ATTN: Document Control Desk
U.S. Nuclear Regulatory Commission

11555 Rockville Pike
Rockville, MD 20852

SUBJECT:

Beaver Valley Power Station, Unit Nos. 1 and 2
Docket No. 50-334, License No. DPR-66
Docket No. 50-412, License No. NPF-73
Davis-Besse Nuclear Power Station
Docket No. 50-346, License No. NPF-3
Perry Nuclear Power Plant
Docket No. 50-440, License No. NPF-58
FirstEnergy Nuclear Operating Company (FENOC) Expedited Seismic Evaluation
Process (ESEP) Reports, Response to NRC Request for Information Pursuant to
10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force (NTTF) Review of Insights from the Fukushima Dai-ichi Accident

On March 12, 2012, the Nuclear Regulatory Commission (NRC) issued Reference 1 to all power reactor licensees and holders of construction permits in active or deferred status. Enclosure 1 of Reference 1 requested each addressee to reevaluate the site seismic hazard using updated seismic information and present-day regulatory guidance and methodologies and, if necessary, to perform a risk evaluation.

In Reference 2, the Nuclear Energy Institute (NEI) requested NRC agreement to a path forward to complete the seismic reevaluations. This path forward, an augmented approach to responding to Reference 1, included use of a deterministic ESEP as presented in the Electric Power Research Institute (EPRI) draft report, Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima NearTerm Task Force Recommendation 2.1: Seismic. NEI also proposed that the ESEP reports for Central and Eastern U.S. plants would be submitted to the NRC by December 31, 2014. In Reference 3, the NRC agreed with the path forward and the augmented approach presented in the EPRI report, which was subsequently issued as EPRI Report 3002000704 (Reference 4).

Beaver Valley Power Station, Unit Nos. 1 and 2
Davis-Besse Nuclear Power Station
Perry Nuclear Power Plant
L-14-401
Page 2
FENOC used the guidance in Reference 4 to develop the ESEP reports for Beaver Valley Power Station (BVPS) Unit No. 1, BVPS Unit No. 2, Davis-Besse Nuclear Power Station (DBNPS), and Perry Nuclear Power Plant (PNPP). This guidance allows the use of ground motion response spectra (GMRS) as the review level ground motion (RLGM) seismic demand in lieu of using scaled safe shutdown earthquake (SSE) response spectrum to demonstrate that the resulting high confidence of low probability of failure (HCLPF) values for the expedited seismic equipment list (ESEL) components are acceptable. The rationale that has been used by FENOC for the selection of the RLGM for the ESEPs is illustrated in red on the attached flow chart (Figure 1-2 from Reference 4).

The enclosed ESEP reports for BVPS Unit No. 1, BVPS Unit No. 2, DBNPS, and PNPP (Enclosures A, B, C, and D, respectively) provide the information described in Reference 4 in accordance with the schedule identified in Reference 2.

There are no new regulatory commitments contained in this letter. If there are any questions or if additional information is required, please contact Mr. Thomas A. Lentz, Manager - Fleet Licensing, at 330-315-6810.

I declare under penalty of perjury that the foregoing is true and correct. Executed on December 19, 2014.

Respectfully,

Peter P. Sena III

Attachment
Flow Chart Illustrating FENOC Rationale

Enclosures:
A Expedited Seismic Evaluation Process (ESEP) Report Beaver Valley Power Station - Unit 1
B Expedited Seismic Evaluation Process (ESEP) Report Beaver Valley Power Station - Unit 2
C Expedited Seismic Evaluation Process (ESEP) Report Davis-Besse Nuclear Power Station
D Expedited Seismic Evaluation Process (ESEP) Report Perry Nuclear Power Plant

Beaver Valley Power Station, Unit Nos. 1 and 2
Davis-Besse Nuclear Power Station
Perry Nuclear Power Plant
L-14-401
Page 3

References:

1. NRC Letter, Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3, and 9.3, of the NearTerm Task force Review of Insights from the Fukushima Dai-ichi Accident, dated March 12, 2012, Agencywide Documents Access and Management System (ADAMS) Accession No. ML12053A340
2. NEI Letter, Proposed Path Forward for NTTF Recommendation 2.1: Seismic Reevaluations, dated April 9, 2013, ADAMS Accession No. ML13101A379
3. NRC Letter, Electric Power Research Institute Final Draft Report XXXXXX, "Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic," as an Acceptable Alternative to the March 12, 2012, Information Request for Seismic Reevaluations, dated May 7, 2013, ADAMS Accession No. ML13106A331
4. EPRI Report 3002000704, Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic, dated April 2013, ADAMS Accession No. ML13107B387
cc: Director, Office of Nuclear Reactor Regulation (NRR)
NRC Region I Administrator
NRC Region III Administrator
NRC Resident Inspector (BVPS)
NRC Resident Inspector (DBNPS)
NRC Resident Inspector (PNPP)
NRR Project Manager (BVPS)
NRR Project Manager (DBNPS)
NRR Project Manager (PNPP)
Director BRP/DEP (without Enclosures)
Site BRP/DEP Representative (without Enclosures)
Utility Radiological Safety Board (without Enclosures)

Attachment L-14-401

Flow Chart Illustrating FENOC Rationale Page 1 of 1

Figure 1-2
Detailed Flow Chart of the ESEP for the Augmented Approach

Enclosure A

L-14-401
Expedited Seismic Evaluation Process (ESEP) Report Beaver Valley Power Station - Unit 1
(70 pages follow)

Expedited Seismic Evaluation Process (ESEP) Report Beaver Valley Power Station - Unit 1

November 3, 2014

Prepared for
FirstEnergy Nuclear Operating Company

EXPEDITED SEISMIC EVALUATION PROCESS (ESEP) REPORT
 BEAVER VALLEY POWER STATION - UNIT 1

ABSG Consulting Inc. Report No. 2734294-R-019
Revision 0
RIZZO Report No. R11 12-4735
November 3, 2014

APPROVALS

Report Name:

Date:

Revisision No.:

Prepared by:

Reviewed by:

Approved by:

Expedited Seismic Evaluation Process (ESEP)Report
Beaver Valley Power Station - Unit 1
November 3, 2014

Revision 0

Faizin Beigi (ABSG Consulting Inc.)

Eugenc E. Ebeck (FENOC)

Date
$11 / 7 / 2014$ Date

11/7/2014
$\frac{11-7-2014}{\text { Date }}$
$11.10-14$
Date

Table of Revisions

Revision No.	Date	Description of Revision
0	November 3, 2014	Original issue.

TABLE OF CONTENTS

PAGE
LIST OF TABLES 7
LIST OF FIGURES 8
LIST OF ACRONYMS 9
1.0 PURPOSE AND OBJECTIVE 13
2.0 BRIEF SUMMARY OF THE FLEX SEISMIC IMPLEMENTATION STRATEGIES 15
3.0 EQUIPMENT SELECTION PROCESS AND ESEL 17
3.1 EQUIPMENT Selection Process and ESEL 17
4.0 GROUND MOTION RESPONSE SPECTRUM 21
4.1 Plot of GMRS Submitted by the Licensee 21
4.2 COMPARISON TO SSE 23
5.0 REVIEW LEVEL GROUND MOTION 25
5.1 DESCRIPTION OF RLGM SELECTED 25
5.2 Method to estimate ISRS 25
6.0 SEISMIC MARGIN EVALUATION APPROACH 29
6.1 Summary of Methodologies Used. 29
6.2 HCLPF SCREENING Process 30
6.3 SEISMIC WALKDOWN Approach 30
6.4 HCLPF CALCULATION PROCESS 33
6.5 Functional Evaluations of Relays 36
6.6 Tabulated ESEL HCLPF Values (Including Key Failure Modes) 37
7.0 INACCESSIBLE ITEMS 38
7.1 IDENTIFICATION OF ESEL ITEMS INACCESSIBLE FOR WALKDOWNS 38
8.0 ESEP CONCLUSIONS AND RESULTS 39
8.1 SUPPORTING Information 39
8.2 Identification of Planned Modifications 41
8.3 Modification Implementation Schedule 41

TABLE OF CONTENTS (CONTINUED)

PAGE

8.4 Summary of Regulatory Commitments 41
9.0 REFERENCES 42
ATTACHMENT A EXPEDITED SEISMIC EQUIPMENT LIST
ATTACHMENT B TABULATED HCLPF VALUES

LIST OF TABLES

TABLE NO. TITLE PAGE
TABLE 4-1 UHRS AND GMRS USED IN BVPS-1 SPRA, EL 681 22
TABLE 4-2 SSE HORIZONTAL GROUND MOTION RESPONSE SPECTRUM FOR BVPS-1 24
TABLE 5-1 SUMMARY OF GEOTECHNICAL PROFILE DATA UNDERLYING THE BV SITE 26
TABLE 5-2 NORMALIZED STRAIN COMPATIBLE SHEAR MODULI AND DAMPING FOR SOIL UNITS AT THE BV SITE 27
TABLE 6-1 SUMMARY OF CONSERVATIVE DETERMINISTIC FAILURE MARGIN APPROACH 34
TABLE 7-1 SUMMARY OF INACCESSIBLE ITEMS IN BVPS-1 ESEL 38

LIST OF FIGURES

FIGURE NO.
TITLE
PAGE
FIGURE 4-1 COMPARISON BETWEEN GMRS AT CONTROL POINT REPORTED IN SPID MARCH 2014
SUBMITTAL AND GMRS USED IN BVPS-1 SPRA PROJECT.22
$\begin{array}{ll}\text { FIGURE 4-2 } & \text { COMPARISON OF GMRS AND SSE AT CONTROL } \\ & \text { POINT ELEVATION .. } 24\end{array}$

LIST OF ACRONYMS

ABS	ABSG CONSULTING INC.
AC	AIR-CONDITIONING
ACI	AMERICAN CONCRETE INSTITUTE
AFW	AUXILIARY FEED WATER SYSTEM
AISC	AMERICAN INSTITUTE FOR STEEL CONSTRUCTION
ANS	AMERICAN NUCLEAR SOCIETY
AOV	AIR-OPERATED VALVE
ASCE	AMERICAN SOCIETY OF CIVIL ENGINEERS
ASDV	ATMOSPHERIC STEAM DUMP VALVES
ASME	AMERICAN SOCIETY OF MECHANICAL ENGINEERS
AUX	AUXILIARY BUILDING
BDBEE	BEYOND DESIGN BASIS EXTERNAL EVENT
BE	BEST ESTIMATE
BVPS	BEAVER VALLEY POWER STATION
BVPS-1	BEAVER VALLEY POWER STATION - UNIT 1
CCR	REACTOR PLANT COMPONENT AND NEURON TANK
CDFM	CONSERVATIVE DETERMINISTIC FAILURE MARGIN
CEUS	CENTRAL AND EASTERN UNITED STATES
CNTB	CONTROL BUILDING
DC	DIRECT CURRENT
DGB	DIESEL GENERATOR BUILDING
EDG	EMERGENCY DIESEL GENERATORS
EL	ELEVATION
ELAP	EXTENDED LOSS OF ALL ALTERNATING CURRENT POWER
EPRI	ELECTRIC POWER RESEARCH INSTITUTE
ERFS	EMERGENCY RESPONSE FACILITY SUBSTATION
ESEL	EXPEDITED SEISMIC EQUIPMENT LIST
ESEP	EXPEDITED SEISMIC EVALUATION PROCESS

LIST OF ACRONYMS
 (CONTINUED)

EW	EAST-WEST DIRECTION
FDB	FUEL DECONTAMINATION BUILDING
FE	FINITE ELEMENT
FENOC	FIRSTENERGY NUCLEAR OPERATING COMPANY
FIRS	FOUNDATION INPUT RESPONSE SPECTRA
ft	FEET
ft/s	FEET PER SECOND
FULB	FUEL HANDLING BUILDING
FWS	STEAM GENERATOR FEEDWATER SYSTEM
g	ACCELERATION OF GRAVITY
GERS	GENERIC EQUIPMENT RUGGEDNESS DATA
GIP	GENERIC IMPLEMENTATION PROCEDURE
GMRS	GROUND MOTION RESPONSE SPECTRA
HCLPF	HIGH CONFIDENCE OF LOW PROBABILITY OF FAILURE
HVAC	HEATING, VENTILATION, AND AIR-CONDITIONING
Hz	HERTZ
INTS	INTAKE STRUCTURE
IPEEE	INDIVIDUAL PLANT EXAMINATION OF EXTERNAL EVENTS
ISRS	IN-STRUCTURE RESPONSE SPECTRA
MAFE	MEAN ANNUAL FREQUENCY OF EXCEEDANCE
MCC	MOTOR CONTROL CENTER
MOV	MOTOR-OPERATED VALVE
MSVCV	MAIN STEAM VALVE AND CABLE VAULT BUILDING
NEI	NUCLEAR ENERGY INSTITUTE
NPP	NUCLEAR POWER PLANT
NRC	UNITED STATES NUCLEAR REGULATORY COMMISSION
NS	NORTH-SOUTH DIRECTION

LIST OF ACRONYMS (CONTINUED)

NSSS	NUCLEAR STEAM SUPPLY SYSTEM
NTTF	NEAR-TERM TASK FORCE
OIP	OVERALL INTEGRATED PLAN
P\&ID	PROCESS AND INSTRUMENTATION DIAGRAM
pcf	POUNDS PER CUBIC FOOT
PGA	PEAK GROUND ACCELERATION
PPDWST	PRIMARY PLANT DEMINERALIZED WATER STORAGE TANK
psig	POUNDS PER SQUARE INCH GAUGE
RB	REACTOR BUILDING
RCBX	REACTOR CONTAINMENT STRUCTURE
RCIC	REACTOR CORE ISOLATION COOLING
RCS	RIZZO ASSOCIATES
RIZZO	REVIEW LEVEL GROUND MOTION
RLGM	RIVER WATER SYSTEM
RWS	SYSTEM FOR ANALYSIS FOR SOIL STRUCTURE INTERACTION
SASSI	STATION BLACK-OUT
SBO	SEISMIC CAPABILITY ENGINEER
SCE	SEISMIC EVALUATION WORK SHEETS
SEWS	SAFEGUARDS BUILDING
SFGB	STEAM GENERATOR
SG	SEISMIC INTERACTION
SI	SEISMIC MARGIN ASSESSMENT
SMA	SOLENOID-OPERATED VALVE
SOV	SQUARMIC PROBABILISTIC RISK ASSESSMENT
SPRA	SQUG

LIST OF ACRONYMS (CONTINUED)

SRT	SEISMIC REVIEW TEAM
SRV	SERVICE BUILDING
SSCs	STRUCTURES, SYSTEMS, AND COMPONENTS
SSE	SAFE SHUTDOWN EARTHQUAKE
SSI	SOIL STRUCTURE INTERACTION
TDAFWP	TURBINE DRIVEN AUXILIARY FEED WATER PUMP
TH	TIME HISTORY
TRS	TEST RESPONSE SPECTRUM
TURB	TURBINE BUILDING
UHRS	UNIFORM HAZARD RESPONSE SPECTRA
USNRC	U.S. NUCLEAR REGULATORY COMMISSION
VAC	VOLTAGE ALTERNATING CURRENT
V_{S}	SHEAR WAVE VELOCITY

EXPEDITED SEISMIC EVALUATION PROCESS REPORT BEAVER VALLEY POWER STATION - UNIT 1

1.0 PURPOSE AND OBJECTIVE

Following the accident at the Fukushima Dai-ichi Nuclear Power Plant (NPP) resulting from the March 11, 2011, Great Tohoku Earthquake, and subsequent tsunami, the Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) to conduct a systematic review of NRC processes and regulations and to determine if the agency should make additional improvements to its regulatory system. The NTTF developed a set of recommendations intended to clarify and strengthen the regulatory framework for protection against natural phenomena. Subsequently, the NRC issued a 50.54(f) letter on March 12, 2012 [1], requesting information to assure that these recommendations are addressed by all United States (U.S.) NPPs. The 50.54(f) letter requests that licensees and holders of construction permits under 10 CFR Part 50 reevaluate the seismic hazards at their sites against present-day NRC requirements and guidance. Depending on the comparison between the reevaluated seismic hazard and the current design basis, further risk assessment may be required. Assessment approaches acceptable to the staff include a Seismic Probabilistic Risk Assessment (SPRA), or a Seismic Margin Assessment (SMA). Based upon the assessment results, the NRC staff will determine whether additional regulatory actions are necessary.

This Report describes the Expedited Seismic Evaluation Process (ESEP) undertaken for Beaver Valley Power Station - Unit 1 (BVPS-1). The intent of the ESEP is to perform an interim action in response to the NRC's 50.54(f) letter [1] to demonstrate seismic margin through a review of a subset of the plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events.

The ESEP is implemented using the methodologies in the NRC endorsed guidance in Electric Power Research Institute (EPRI) 3002000704 [2].

The objective of this Report is to provide summary information describing the ESEP evaluations and results. The level of detail provided in the Report is intended to enable NRC to understand the inputs used, the evaluations performed, and the decisions made as a result of the interim evaluations.

2.0 BRIEF SUMMARY OF THE FLEX SEISMIC IMPLEMENTATION STRATEGIES

The Beaver Valley Power Station (BVPS) FLEX strategies for Reactor Core Cooling and Heat Removal, Reactor Inventory Control/Long-term Subcriticality, and Containment Function are summarized below. This summary is derived from the BVPS Overall Integrated Plan (OIP) in response to the March 12, 2012 Commission Order EA-12-049 [17].

During Phase 1, Reactor Core Cooling and Heat Removal is accomplished via steam release from the steam generators with make-up supplied via the Auxiliary Feed Water System (AFW). The primary plant demineralized water storage tank (PPDWST), Turbine Driven Auxiliary Feed Water Pump (TDAFWP), and all needed flow paths for feeding steam generators and the flow paths for steam release from the steam generators and steam supply to the TDAFWP are protected from all hazards. AFW Flow Control Valves and Atmospheric Steam Dump Valves (ASDV) are controlled locally and do not need electricity or air for local control.

During Phase 2, cooling water make-up to the PPDWST is via a FLEX portable pump, with suction from the Ohio River. Make-up water is supplied directly to the PPDWST via a new FLEX connection point.

The same Reactor Core Cooling and Heat Removal strategy applies for Phase 3, except that water purification equipment from the National SAFER Response Center is used to purify the make-up water to the PPDWST.

Reactor Inventory Control is maintained through the use of low leakage reactor coolant pump (RCP) seals. Other than installation of the seals, there are no required plant modifications. With low leakage seals, make-up to the reactor coolant system (RCS) is not required during Phase 1.

During Phase 2, Reactor Inventory Control/Long-term Subcriticality is maintained by pumping borated water from the Boric Acid Storage Tanks (BAST) to the RCS using a FLEX high pressure portable pump and new FLEX connection points at the BASTs and downstream of the Charging Pumps.

The same Reactor Inventory Control/Long-term Subcriticality strategy applies for Phase 3, except National SAFER Response Center equipment is used to mix borated water to replace the contents of the BASTs.

Key parameters are available in the control room and communications will be available between the control room and operators that are controlling the valves locally. Electrical components required to maintain the key parameter indication during Phase 1 include the installed safety related batteries, inverters, vital Alternating Current (AC) and Direct Current (DC) buses, instrument racks and control room indicators that are needed for monitoring key reactor parameters in the control room. A load shed strategy is employed to increase the battery life.

During Phase 2, a FLEX portable generator supplies power to the battery chargers through a new FLEX connection point to maintain key parameter indication. The generator back feeds power through the safety related 480 Voltage Alternating Current (VAC) electrical distribution system to the battery chargers.

There are no FLEX actions needed to maintain containment integrity. Low leakage RCP seals minimize the energy input into containment from the RCS. Containment pressure remains less than 5 pounds per square inch gauge (psig) after 7 days post event. Containment temperature and pressure are addressed in recovery actions.

3.0 EQUIPMENT SELECTION PROCESS AND ESEL

3.1 Equipment Selection Process and ESEL

The selection of equipment to be included on the Expedited Seismic Equipment List (ESEL) was based on installed plant equipment credited in the FLEX strategies during Phases 1, 2, and 3 mitigation of a Beyond Design Basis External Event (BDBEE), as outlined in the BVPS OIP in Response to the March 12, 2012, Commission Order EA-12-049 [3]. The OIP provides the BVPS FLEX mitigation strategy and serves as the basis for equipment selected for the ESEP.

The scope of "installed plant equipment" includes equipment relied upon for the FLEX strategies to sustain the critical functions of core cooling and containment integrity consistent with the BVPS OIP [3]. FLEX recovery actions are excluded from the ESEP scope per EPRI 3002000704 [2]. The overall list of planned FLEX modifications and the scope for consideration herein is limited to those required to support core cooling, reactor coolant inventory and subcriticality, and containment integrity functions. Portable and pre-staged FLEX equipment (not permanently installed) are excluded from the ESEL per EPRI 3002000704 [2].

The ESEL component selection followed the EPRI guidance outlined in Section 3.2 of EPRI 3002000704.

1. The scope of components is limited to that required to accomplish the core cooling and containment safety functions identified in Table 3-2 of EPRI 3002000704. The instrumentation monitoring requirements for core cooling/containment safety functions are limited to those outlined in the EPRI 3002000704 guidance, and are a subset of those outlined in the BVPS OIP [3].
2. The scope of components is limited to installed plant equipment, and FLEX connections necessary to implement the BVPS OIP [3] as described in Section 2.0.
3. The scope of components assumes the credited FLEX connection modifications are implemented, and are limited to those required to support a single FLEX success path; i.e., either "Primary" or "Back-up/Alternate".
4. The "Primary" FLEX success path is to be specified. Selection of the "Back-up/Alternate" FLEX success path must be justified.
5. Phase 3 coping strategies are included in the ESEP scope, whereas recovery strategies are excluded.
6. Structures, systems, and components (SSC) excluded per the EPRI 3002000704 [2] guidance are:

- Structures (e.g., Containment, Reactor Building [RB], Control Building [CNTB], Auxiliary Building [AUX], etc.).
- Piping, cabling, conduit, heating, ventilation, and air-conditioning (HVAC), and their supports.
- Manual valves and rupture disks.
- Power-operated valves not required to change state as part of the FLEX mitigation strategies.
- Nuclear steam supply system components (e.g., reactor pressure vessel and internals, RCPs, and seals, etc.)

7. For cases in which neither train was specified as a primary or back-up strategy, then only one train component (generally 'A' train) is included in the ESEL.

3.1.1 ESEL Development

The ESEL was developed by reviewing the BVPS OIP [3] to determine the major equipment involved in the FLEX strategies. Further reviews of plant drawings (e.g., Process and Instrumentation Diagrams [P\&ID] and Electrical One-Line Diagrams) were performed to identify the boundaries of the flowpaths to be used in the FLEX strategies and to identify specific components in the flowpaths needed to support implementation of the FLEX strategies. Boundaries were established at an electrical or mechanical isolation device (e.g., isolation amplifier, valve, etc.) in branch circuits / branch lines off the defined strategy electrical or fluid flowpath. P\&IDs were the primary reference documents used to identify mechanical components and instrumentation. The flow paths used for FLEX strategies were selected and specific components were identified using detailed equipment and instrument drawings, piping isometrics, electrical schematics and one-line drawings, system descriptions, design basis, and documents, etc., as necessary.

3.1.2 Power-Operated Valves

Page 3-3 of EPRI 3002000704 [2] notes that power-operated valves not required to change state are excluded from the ESEL. Page 3-2 also notes that "functional failure modes of electrical and mechanical portions of the installed Phase 1 equipment should be considered (e.g., reactor core isolation cooling ([RCIC]/AFW trips)." To address this concern, the following guidance is applied in the BVPS ESEL for functional failure modes associated with power-operated valves:

- Power-operated valves that remain energized during the Extended Loss of all Alternating Current Power (ELAP) events (such as DC powered valves), were included on the ESEL.
- Power-operated valves not required to change state as part of the FLEX mitigation strategies were included on the ESEL, but indicated as screening out of evaluation. The seismic event also causes the ELAP event; therefore, the valves are incapable of spurious operation as they would be de-energized.
- Power-operated valves not required to change state as part of the FLEX mitigation strategies during Phase 1, and are re-energized and operated during subsequent Phases 2 and 3 strategies, were not evaluated for spurious valve operation as the seismic event that caused the ELAP has passed before the valves are re-powered.

3.1.3 Pull Boxes

Pull boxes were deemed unnecessary to add to the ESELs, as these components provide completely passive locations for pulling or installing cables. No breaks or connections in the cabling are included in pull boxes. Pull boxes were considered part of conduit and cabling, which are excluded in accordance with EPRI 3002000704 [2].

3.1.4 Termination Cabinets

Termination cabinets, including cabinets necessary for FLEX Phase 2 and Phase 3 connections, provide consolidated locations for permanently connecting multiple cables. The termination cabinets and the internal connections provide a completely passive function; however, the cabinets are included in the ESEL to ensure industry knowledge on panel/anchorage failure vulnerabilities is addressed.

3.1.5 Critical Instrumentation Indicators

Critical indicators and recorders are typically physically located on panels/cabinets and are included as separate components; however, seismic evaluation of the instrument indication may be included in the panel/cabinet seismic evaluation (rule-of-the-box).

3.1.6 Phase 2 and Phase 3 Piping Connections

Item 2 in Section 3.1 above notes that the scope of equipment in the ESEL includes "...FLEX connections necessary to implement the BVPS OIP [3] as described in Section 2." Item 3 in Section 3.1 also notes that "The scope of components assumes the credited FLEX connection modifications are implemented, and are limited to those required to support a single FLEX success path (i.e., either "Primary" or "Back-up/Alternate")."

Item 6 in Section 3.0 above goes on to explain that "piping, cabling, conduit, HVAC, and their supports" are excluded from the ESEL scope in accordance with EPRI 3002000704 [2].

Therefore, piping and pipe supports associated with FLEX Phase 2 and Phase 3 connections are excluded from the scope of the ESEP evaluation. However, any active valves in FLEX Phase 2 and Phase 3 connection flow path are included in the ESEL.

4.0 GROUND MOTION RESPONSE SPECTRUM

4.1 Plot of GMRS Submitted by the Licensee

The BVPS-1 major structures are founded in the Pleistocene Terrace deposits or on compacted granular structural backfill at foundation elevations varying between 637 feet (ft) for the Intake Structure (INTS) to 735 ft for the Diesel Generator Building (DGB). The design basis analysis applies the safe shutdown earthquake (SSE) ground motion at the respective building foundations. Therefore, the SSE, and the ground motion response spectra (GMRS), control point elevation is taken to be at the base of the Reactor Containment Structure (RCBX), elevation (EL) 681. The bedrock immediately underlying the RCBX foundation (EL 561) is characterized by shear wave velocities $\left(\mathrm{V}_{\mathrm{S}}\right)$ of about 5,000 feet per second (ft / s).

Figure 4-1 presents the GMRS at the control point EL 681 and compares this to the GMRS reported in the BVPS-1 March 2014 submittal [3]. The difference is attributed to:

1. The material damping used for the rock material over the upper 500 ft . While the GMRS, reported in the March 2014, submittal is based on the low strain damping of 3.2 percent over a 500 -foot depth of bedrock, the GMRS used in the BV-1 SPRA limits this damping value to the upper 100 ft where the rock is considered as weathered or fractured. Within the depth range of 100 ft to 500 ft , a damping of 1 percent is used based on the unweathered shale dynamic properties from Stokoe et al., [14]. Below a depth of 500 ft , linear material behavior is adopted with the damping value of 0.5 percent is specified consistent with the kappa estimate for the Site.
2. The subsurface profile used in the site amplification analysis. While the GMRS, reported in the March 2014, submittal is based on a profile which extends from the bottom of the RCBX foundation to at depth hard rock, the GMRS used in the SPRA develops from the analysis of the full soil column to plant grade, subsequently truncated to the RB foundation level, in accordance with ISG-17 [18].

Table 4-1 presents the spectral accelerations at selected frequencies defining the GMRS used in the ESEP. The development of this GMRS is more fully described in [3]. This GMRS is also being utilized as basis to obtain fragilities in support of the on-going SPRA. Because the GMRS defines the ground motion at the RCBX foundation, it is also called the RCBX foundation input response spectrum (FIRS).

FIGURE 4-1
COMPARISON BETWEEN GMRS AT CONTROL POINT REPORTED IN SPID MARCH 2014 SUBMITTAL AND GMRS USED IN BVPS-1 SPRA PROJECT

TABLE 4-1
UHRS AND GMRS USED IN BVPS-1 SPRA, EL 681

FREQUENCY (Hz)	HORIZONTAL SPECTRAL ACCELERATION (g) AT THE FOUNDATION ELEVATION		
	$\mathbf{1 x 1 0}^{-\mathbf{4}} \mathbf{~ M A F E ~ U H R S ~}$	$\mathbf{1 x 1 0}^{-\mathbf{5}} \mathbf{\text { MAFE UHRS }}$	GMRS
0.10	0.0027	0.0069	0.0034
0.13	0.0039	0.0098	0.0049
0.16	0.0057	0.0143	0.0071
0.20	0.0087	0.0213	0.0107
0.26	0.0136	0.0325	0.0164
0.33	0.0206	0.0481	0.0244
0.42	0.0289	0.0653	0.0333
0.50	0.0359	0.0792	0.0406
0.53	0.0357	0.0793	0.0406
0.67	0.0370	0.0833	0.0425
0.85	0.0464	0.1073	0.0544
1.00	0.0539	0.1252	0.0635
1.08	0.0577	0.1368	0.0691
1.37	0.0675	0.1729	0.0859
1.74	0.0825	0.2309	0.1128
2.21	0.1104	0.3432	0.1641
2.50	0.1296	0.4307	0.2033

TABLE 4-1
UHRS AND GMRS USED IN BVPS-1 SPRA, EL 681 (CONTINUED)

$*$ Frequency (Hz)	HORIZONTAL SPECTRAL ACCELERATION (g) AT THE FOUNDATION ELEVATION		
	$\mathbf{1 x 1 0}^{-4}$ MAFE UHRS	$\mathbf{1 x 1 0}^{-5}$ MAFE UHRS	GMRS
2.81	0.1642	0.5745	0.2683
3.56	0.2793	0.9716	0.4543
4.52	0.4214	1.2647	0.6091
5.00	0.4476	1.2715	0.6191
5.74	0.4380	1.2228	0.5975
7.28	0.3789	1.1069	0.5360
9.24	0.3272	1.1010	0.5182
10.00	0.3340	1.1760	0.5486
11.72	0.3720	1.2420	0.5855
14.87	0.3887	1.1434	0.5529
18.87	0.3559	1.0245	0.4975
23.95	0.2994	0.8556	0.4161
25.00	0.2891	0.8365	0.4058
30.39	0.2709	0.7571	0.3699
38.57	0.2506	0.6773	0.3331
48.94	0.2357	0.6196	0.3064
62.10	0.2136	0.5531	0.2743
78.80	0.1871	0.4879	0.2417
100.00	0.1765	0.4841	0.2374

Note:

MAFE = mean annual frequency of exceedance.

4.2 COMPARISON TO SSE

Figure 4-2 compares the GMRS with the Site SSE at the control point elevation. The SSE horizontal spectrum is characterized by a peak ground acceleration (PGA) of 0.125 acceleration of gravity (g) and a shape derived from the five percent-damped average response spectra of several acceleration records. This shape is similar to that suggested by Newmark, et al., [12]. The comparison presented on Figure 4-2 illustrates that the maximum ratio of spectral accelerations (GMRS/SSE) is about 2.8 at about 10 Hertz (Hz).

TABLE 4-2

SSE HORIZONTAL GROUND MOTION RESPONSE SPECTRUM FOR BVPS-1

Frequency $[\mathbf{H z}]$	Spectral ACCELERATION $[\mathbf{g}]$
0.20	0.012
0.50	0.076
2.00	0.325
5.00	0.325
20.00	0.125
100.00	0.125

FIGURE 4-2
COMPARISON OF GMRS AND SSE AT CONTROL POINT ELEVATION

5.0 REVIEW LEVEL GROUND MOTION

5.1 DESCRIPTION OF RLGM SELECTED

The ESEP is being completed as part of the Augmented Approach because the GMRS exceed the SSE in the 1 Hz to 10 Hz range. The ESEP guidance (EPRI-3002000704) allows the use of the GMRS as the review level ground motion (RLGM) in lieu of using scaled SSE response spectrum to demonstrate acceptance of the high confidence low probability of failure (HCLPF) values for the ESEL components.

Because BVPS-1 is currently performing a SPRA, the fragilities developed in support are being used to the extent applicable also to accomplish the ESEP. The SPRA GMRS shown on Figure 4-1 represents the ground motion input used to obtain new seismic demand on the components on the ESEL, and to obtain HCLPF and fragilities for the ESEL components. Table 4-1 presents the spectral accelerations at specific frequencies defining the RLGM.

5.2 METHOD TO ESTIMATE ISRS

The process for obtaining in-structure response spectra (ISRS) from the building seismic analysis incorporates the effects of soil structure interaction (SSI) on the seismic response of the building structures. SSI analysis employing the System for Analysis for Soil Structure Interaction (SASSI) code was performed for the buildings of the BVPS-1 because their foundation mat bears on native soils or on Class A Fill. The analytical model for the SSI analysis combines a horizontally layered representation of the subsurface soil column with a finite element (FE) representation of the structure.

Table 5-1 describes the elevations and V_{S} of the soil layers that were used to conduct the site response analysis by RIZZO Associates (RIZZO) [3]. This analysis developed strain compatible dynamic properties of the subsurface layers at the Beaver Valley Site, following the normalized curves listed in Table 5-2. These properties are used in the SSI analyses performed with the SASSI code.

TABLE 5-1

SUMMARY OF GEOTECHNICAL PROFILE DATA UNDERLYING THE BV SITE (REFERENCE [3])

ELEVATION (ft)	STRATA	DENSITY (pcf)	MEDIAN $\mathbf{V}_{\mathbf{S}}(\mathbf{f t / s})$	COV $\mathbf{V}_{\mathbf{S}}$	MEDIAN TH (ft)
735	Structural Backfill	136	730	0.25	15.00
720	Structural Backfill	136	1,015	0.25	39.10
680.9	(1d) Pleistocene Upper and Lower Terrace	125	1,100	0.25	15.90
665	(1e) Pleistocene Upper and Lower Terrace	136	1,200	0.25	40.00
625	(2) M. Pennsylvanian Allegheny Shale	160	5,000	0.20	75.00
550	(3) L. Pennsylvanian Pottsville SS, Conglomerate	160	6,026	0.11	200.00
350	(4) U. Mississippian Mauch Chunk Shale	155	6,744	0.11	50.00
300	(5) L. Mississippian Pocono Sandstone, Conglomerate	155	6,744	0.11	420.00
-120	(6a) U. Devonian Interbedded Shale, Sands, Siltstone	155	7,112	0.11	2874.00
-2994	(6b) U. Devonian Interbedded Shale, Sands, Siltstone	155	6,416	0.11	706.00
-3700	Half Space	168	9,200	-	-

TABLE 5-2
NORMALIZED STRAIN COMPATIBLE SHEAR MODULI AND DAMPING FOR SOIL UNITS AT THE BV SITE

STRAIN $(\%)$	STRUCTURAL BACKFILL		PLEISTOCENE UPPER AND LOWER TERRACE		PLEISTOCENE UPPER AND LOWER TERRACE	
	$\mathbf{G / G}_{\text {max }}$	DAMPING $\mathbf{(\%)}$	$\mathbf{G / G}_{\text {max }}$	$\mathbf{D A M P I N G ~}_{(\%)}^{(\%)}$ $\mathbf{G / G}_{\text {max }}$	DAMPING $\mathbf{(\%)}$	
0.0001	1.0000	1.49	1.0000	1.26	1.0000	1.02
0.000316	0.9968	1.57	0.9977	1.27	0.9982	1.05
0.00100	0.9707	1.84	0.9845	1.50	0.9925	1.26
0.0020	0.9415	2.30	0.9632	1.80	0.9812	1.48
0.00300	0.9123	2.77	0.9419	2.09	0.9699	1.71
0.0050	0.8663	3.41	0.9070	2.55	0.9412	2.03
0.0070	0.8216	4.05	0.8731	2.99	0.9119	2.35
0.0100	0.7545	5.02	0.8221	3.66	0.8680	2.83
0.0200	0.6419	7.00	0.7224	5.22	0.7805	4.08
0.0300	0.5292	8.98	0.6227	6.79	0.6929	5.33
0.0500	0.4486	10.89	0.5466	8.45	0.6170	6.78
0.0700	0.3772	12.57	0.4783	9.97	0.5475	8.14
0.1	0.2702	15.08	0.3760	12.25	0.4431	10.17
0.2	0.1961	18.11	0.2774	15.30	0.3399	12.95
0.3	0.1228	21.05	0.1789	18.34	0.2353	15.73
	1	0.0392	26.60	0.0587	24.68	0.0895

Note:

$\mathrm{G} / \mathrm{G}_{\max }=$ shear modulus (G) normalized by the low strain shear modulus $\left(\mathrm{G}_{\max }\right)$.

A review of existing lumped-mass and stiffness models of the BVPS- 1 structures concluded that these models were not sufficiently adequate to use as basis to scale the building seismic response. Therefore, the building seismic response used in the ESEP (and in the SPRA) is obtained using new FE models of the structures.

The analytical FE models developed here are based on geometric information, such as configuration of floors and walls, dimensions, wall and slab thicknesses, locations, and size of openings, etc., taken from appropriate structure layout drawings and details. The parametric information, such as the material properties, live loads, equipment loads, and boundary conditions are also obtained from drawings, existing reports, and prevalent codes and standards.

The response spectra at the respective foundation levels represent the foundation input ground motion. The seismic Category I structures that have been analyzed are supported at the different foundation depths. Although, the GMRS reported in [3] applies only to the RCBX, the horizontal FIRS were developed for other structures supported at the following elevations:

- EL 713 for the analyses of the AUX, the Service Building (SRV), and the Main Steam Valve and Cable Vault Building (MSVCV)
- EL 723.5 for the analyses of the Fuel Decontamination Building (FDB), the INTS, and the Safeguards Building (SFGB)
- EL 735 for the analysis of the DGB

The seismic response, including the ISRS for the BVPS-1 structures are developed utilizing the time history (TH) modal synthesis in which the input time histories represent the horizontal and vertical FIRS at the respective building foundation levels consistent with the GMRS described in Section 4.0.

ISRS at selected locations are obtained separately, due to three directions of input motion (X, Y, and Z). The resulting response spectra are then combined using the square-root-of-the-sum-of-the-squares (SRSS) method. For example, the three ISRS at a specific location in North-South (NS) direction resulting from ground motion input; respectively, in the NS, East-West (EW), and vertical directions are combined using SRSS.

Subsequently, equipment HCLPF calculations and fragility evaluations are performed based on the conservative deterministic failure margin (CDFM) approach. In accordance with EPRI 1019200 "Seismic Fragility Applications Guide Update," [19] the seismic analyses are performed using Best Estimate (BE) structure stiffness, mass and damping characteristics, and the BE subsurface V_{S} profile compatible with the expected seismic shear strains. The resulting ISRS approximately represent the $84^{\text {th }}$ percentile response suitable for use in the CDFM calculations.

Details of the development of the models, inputs, analysis, and results are presented in ABSG Consulting Inc. (ABS Consulting)/RIZZO Report 2734294-R-005, Revision 1, 2014.

6.0 SEISMIC MARGIN EVALUATION APPROACH

6.1 Summary of Methodologies Used

The seismic margins for components on the ESEL [6] are developed following the EPRI guidelines described in EPRI 6041 [4], EPRI TR-103959 [5] (Methodology for Developing Seismic Fragilities) and EPRI 1002988 (Seismic Fragility Application Guide). Additionally, EPRI 1019200 [19] is used to develop margins using the CDFM approach.

The ESEL is first grouped to identify similar components relative to equipment classes (e.g., Generic Implementation Procedure [GIP]), and then sampled for representative items based on the type of equipment, manufacturer, location, and anchorage, etc. Representative samples in each equipment group are then evaluated to obtain the seismic margins using the EPRI guidelines.

The overall strategy for developing seismic margins for the various SSCs is as follows:

1. Perform screening verification walkdown to document that caveats associated to generic fragilities are met and perform anchorage calculations.
2. Develop the HCLPF capacities based on available experience data, published generic ruggedness spectra, design criteria documents, and design analysis.
3. Rank the components based on preliminary results.
4. Perform improved analysis of selected equipment.

A number of components on the ESEL are breakers and switches that are housed in a "parent" component, such as a motor control center (MCC) or switchgear. For the purposes of this evaluation, calculations are not explicitly performed for these housed components. Instead, their HCLPF is assigned based on the parent component.

Seismic walkdowns as described in EPRI NP 6041 [4] are performed for all "parent" components on the ESEL [6]. Some ESEL components were walked down in February 2013, in
support of SPRA, and these walkdowns were credited, where applicable. The remaining components were walked down in October 2013, during a plant refueling outage.

HCLPF calculations are performed for all "parent" components [6], as described in Section 6.3, which describes the CDFM approach, and the calculation of structural and functional capacities.

6.2 HCLPF Screening Process

No components were screened out based on ruggedness. Rather, the screening level HCLPFs provided in Table 2-4 of EPRI 6041 [4] were utilized to develop mounting level capacities. HCLPF values are then calculated for each component on the ESEL, as described in Section 6.3.

6.3 SEISMIC Walkdown Approach

6.3.1 Seismic Walkdown Approach

The seismic walkdowns of BVPS-1 were performed in accordance with the criteria provided in Section 5 of EPRI 3002000704 [2], which refers to EPRI NP-6041 [7] for the SMA process. The procedures used for different equipment categories are summarized below.

The Seismic Review Team (SRT) reviewed equipment on the equipment walkdown list that were reasonably accessible and in non-radioactive or moderately radioactive environments. For components in high radioactive environments, a smaller team, and more hurried reviews were employed. For components that were not accessible, the equipment inspection relied on alternate means, such as photographs and plant qualification documents.

In the event the walkdown team had a reasonable basis for assuming that a group of components were similar and similarly anchored, a single representative component out of this group was selected for examination. The similarity of a group of items was established based on equipment construction, dimensions, locations, seismic qualification requirement, anchorage type, and configurations. The "similarity basis" was planned to be confirmed during walk-bys, which would also record anomalies in installation or presence of seismic interaction, if any. The representative item was targeted for a thorough review and documentation. All "representative" and "walk by" items were fully documented in Seismic Evaluation Work Sheets (SEWS).

The SRT performed the walkdowns in an ad hoc manner. For each representative component, the SRT performed a thorough inspection and recorded information related to anchorage, load path configuration, and any potential seismic vulnerability associated to the component seismic capacity. These details recorded in SEWS were subsequently used to verify as-built conditions and determine seismic fragilities.

The 100 percent "walk by" is to look for outliers, lack of similarity, anchorage which is different from that shown on drawings or prescribed in criteria for that component, potential SI [Seismic Interaction ${ }^{1}$] problems, situations that are at odds with the team members' past experience, and any other areas of serious seismic concern. If any such concerns surface, then the limited sample size of one component of each type for thorough inspection will have to be increased. The increase in sample size, which should be inspected, will depend upon the number of outliers and different anchorages, etc., which are observed. It is up to the SRT to ultimately select the sample size since they are the ones who are responsible for the seismic adequacy of all elements which they screen from the margin review.

Walk bys also serve to provide the SRT with the sufficient degree of confidence in relation to plant maintenance and construction practices. This is especially used to reinforce the engineering judgment applied for the fragility assessment of inaccessible components. However, in case questionable construction practices are observed in the SSCs, then the system or component class must be inspected in closer detail until the systematic deficiency is defined.

For each item on the equipment walkdown list, a specific SEWS was prepared covering the different caveats. Each SEWS consists of:

- General description of the equipment: Equipment ID, Name, Equipment Category, and Building/Floor/Room
- Equipment Evaluation Caveats

[^0]- Equipment Anchorage
- Seismic Interaction Issues

A database of SEWS was developed in an electronic format using iPad Computers to facilitate entry of the information collected during the walkdowns. The database includes the record of equipment qualifications, walkdown observations, and photographs.

6.3.2 Application of Previous Walkdown Information

Previous seismic walkdowns were used to support the ESEP seismic evaluations. Some of the components on the ESEL were included in the NTTF 2.3 seismic walkdowns [15] and SPRA seismic walkdowns [16]. Those walkdowns were recent enough that they did not need to be repeated for the ESEP.

Several ESEL items were previously walked down during the BVPS-1 Seismic individual plant examination of external events (IPEEE) program. Those walkdown results were reviewed and the following steps were taken to confirm that the previous walkdown conclusions remained valid.

- A walk by was performed to confirm that the equipment material condition and configuration is consistent with the walkdown conclusions and that no new significant interactions related to block walls or piping attached to tanks exist.
- If the ESEL item was screened out based on the previous walkdown, that screening evaluation was reviewed and reconfirmed for the ESEP.

6.3.3 Significant Walkdown Findings

Consistent with the guidance from NP-6041 [7], no significant outliers or anchorage concerns were identified during the BVPS-1 Seismic walkdowns. The following findings were noted during the walkdowns.

- Block walls were identified in the vicinity of the 125 V DC batteries located in the SRV at EL 713. These block walls were assessed for their structural adequacy [6] to withstand the seismic loads associated to the plant's RLGM demand level.

6.4 HCLPF CALCULATION PROCESS

ESEL items in the BVPS-1 were evaluated using the criteria in EPRI NP-6041 [4]. Those evaluations included the following steps:

- Performing seismic capability walkdowns for equipment to verify the installed plant conditions
- Performing screening evaluations using the screening tables in EPRI NP-6041 as described in Section 6.2
- Performing HCLPF calculations considering various failure modes that include both structural failure modes (e.g., anchorage, and load path, etc.) and functional failure modes

All HCLPF calculations were performed using the CDFM methodology and are documented in a BVPS-1 Reference [6].

6.4.1 CDFM Approach

HCLPF values for functionality and anchorage are calculated for each representative component selected from the ESEL. The functional HCLPF for equipment is based on experience data, Generic Equipment Ruggedness Data (GERS), test response data, and design criteria. The functional evaluation is supplemented with the verification of the equipment anchorage following Seismic Qualification Utility Group (SQUG)/GIP procedures. The seismic demand on the equipment is based on the floor response spectra near the equipment support location, and the component damping values as recommended in EPRI 6041 [4].

The CDFM approach described in EPRI 1019200 [19] is utilized to obtain the component HCLPF values. The HCLPF capacities are stated in terms of a selected ground motion PGA. The CDFM approach is consistent with EPRI NP-6041-SL [4], updated to accommodate the parameters presented in Table 6-1.

The screening level HCLPF values provided in EPRI 6041 [4] Table 2-4 are presented in terms of the 5 Hz spectral acceleration at the foundation level. In accordance with EPRI 1019200 [19], these values are used to develop mounting level capacity assuming a median structure
amplification factor of 1.5. The ISRS described in Section 4.2 are compared with this mounting level capacity to develop HCLPF associated with the GMRS shape. Anchorage checks are performed based on the spectral accelerations at the estimated equipment frequencies.

TABLE 6-1

SUMMARY OF CONSERVATIVE DETERMINISTIC FAILURE MARGIN APPROACH (EPRI 1019200, TABLE A.1)

TECHNICAL ISSUE	RECOMMENDED METHOD
Load Combination	Normal + SME.
Ground Response Spectrum	Anchor CDFM Capacity to defined response spectrum shape without consideration of spectral shape variability.
Seismic Demand	Perform seismic demand analysis in accordance with latest version of American Society of Civil Engineers (ASCE) 4.
Damping	Conservative estimate of median damping.
Structural Model	BE (Median) + Uncertainty Variation in Frequency.
Soil Structure Interaction	BE (Median) + Parameter Variation.
In-Structure (Floor) Spectra Generation	Use frequency shifting rather than peak broadening to account for uncertainty plus use conservative estimate of median damping.
Material Strength	Code specified minimum strength or 95\% exceedance actual strength if test data are available.
Static Strength	Code ultimate strength (ACI), maximum strength (AISC), Service Level D (ASME), or functional limits. If test data are available to demonstrate excessive conservatism of code equation then use 84\% exceedance of test data for strength equation.
Inelastic Energy	For non-brittle failure modes and linear analysis, use appropriate inelastic energy absorption factor from ASCE/SEI 43-05 to account for ductility benefits, or perform Absorption levelinear analysis and go to 95\% exceedance ductility

6.4.2 Component Structural Capacity

In general, the CDFM approach:

1. Develops the elastic seismic response for the structures and components for the ground motion.
2. Develops strength margin factor using component capacities as described in Table 6-1.
3. Develops inelastic energy absorption factor based on ASCE 43-05 or at about the 95 percent exceedance probability of ductility levels.
4. Calculates the CDFM capacity as:

$$
\begin{equation*}
H C L P F_{C D F M}=F_{S} \cdot F_{\mu} \cdot P G A \tag{Equation6-1}
\end{equation*}
$$

where,
$F_{S}=$ Strength margin factor,
$F_{\mu}=$ Inelastic energy absorption factor

The strength margin factor is defined as:

$$
F_{S}=\frac{s-D_{n s}}{D_{s}}
$$

(Equation 6-2)
where,
$S=$ Strength of the structural element
$D_{n s}=$ Non-seismic demand (normal operating loads)
$D_{S}=$ Seismic demand

6.4.3 Functional Evaluations

The HCLPF capacities for functionality are based on the comparison of the demand (ISRS) with EPRI 6041 [4] screening level HCLPFs, existing analysis, GERS, or test response spectra.

The screening level HCLPF values provided in EPRI 6041 [4] Table 2-4 are presented in terms of the 5 Hz spectral acceleration at the foundation level. In accordance with EPRI 1019200 [19], these values are used to develop mounting level capacity assuming a median structure amplification factor of 1.5. The ISRS described in Section 5.2 are compared with this mounting level capacity to develop HCLPF associated with the GMRS shape. Anchorage checks are performed based on the spectral accelerations at the estimated equipment frequencies.

Available plant specific seismic qualifications tests are biaxial and all of the published GERS are constructed on the basis of the results of previous biaxial tests of similar types of equipment. These tests apply table input motion in one-horizontal direction and in the vertical direction. For most equipment, for which GERS are available, the vertical test response spectrum (TRS) are at least equal to the horizontal TRS. The published GERS define the horizontal component of the table motion, which is, therefore, taken to represent the capacity stated either in terms of the vertical or horizontal input.

The seismic demand on equipment, on the other hand, is typically defined by ISRS in three orthogonal directions, two horizontal and one vertical. The procedure used to develop the functional capacity compares the resultant horizontal and the vertical ISRS separately with the GERS or TRS. The minimum seismic margin is taken to obtain the functional HCLPF capacity.

6.5 Functional Evaluations of Relays

The only relays applicable to FLEX mitigating strategies are the relays that automatically start the TDAFWP. All other plant control is local at the component.

The relays deenergize Solenoid-Operated Valves (SOVs) that port instrument air away from two Air-Operated Valves (AOVs) that control the supply of steam to the TDAFWP in parallel steam supply pipes. The AOVs fail open on loss of instrument air. As instrument air is not seismic, the failure of air results in automatic opening of the AOVs regardless of relay function. Therefore, the relays are not included in this evaluation.

These relays are slave relays in the solid state protection system and have no lock out function. Additionally, manual control from the control room is available to the operators, which deenergizes the SOVs directly, without the need for any relays. Finally, if DC is lost, such that
there is no control power available to the control room, the SOVs fail open, porting air from the AOVs and admitting steam to the TDAFWP.

6.6 Tabulated ESEL HCLPF Values (Including Key Failure Modes)

Attachment \boldsymbol{B} tabulates the HCLPF values for all components on the ESEL. All HCLPF values exceed the RLGM. The Table in Attachment B also identifies the method used to develop the HCLPF values and the controlling failure mode. Most of the controlling failure modes are either anchorage failure or loss of functionality and do not involve structural integrity. For a limited number of components, the controlling failure mode is the failure of a nearby masonry block wall. These cases are also identified in the Table.

7.0 INACCESSIBLE ITEMS

7.1 Identification of ESEL items inaccessible for walkdowns

A total of seven items in the ESEL were inaccessible during walkdowns mainly due to their location in confined spaces and high radiation areas. Table 7-1 provides the description of the seven inaccessible components, the reason for their inaccessibility and the criteria implemented to confirm the installed condition and, therefore, evaluate their seismic fragility. The criteria implemented to confirm the installed condition follows EPRI NP 6041 [7], where a number of ways of confirming the installed condition of equipment, including follow up walkdowns, photographic or other confirmatory evidence is provided.

TABLE 7-1
SUMMARY OF INACCESSIBLE ITEMS IN BVPS-1 ESEL

COMPONENT ID	DESCRIPTION	REASON FOR INACCESSIBLE	RESOLUTION
BV-NE-1NI-31	BF3 Proportional Counter Source Range Detector	High radiation area (RCBX EL 692)	Fragility is calculated based on design documentation and installation drawings [6].
BV-TRB-1RC- 412B1	Loop 1A Hot Leg Narrow Range Rtd	High radiation area (RCBX EL 718)	Fragility is calculated based on design documentation and installation drawings [6].
BV-TRB-1RC- 412C_D	Loop 1A Cold Leg Narrow Range Dual Element Rtd	High radiation area (RCBX EL 718)	Fragility is calculated based on design documentation and installation drawings [6].
BV-T_C-1II-1	Incore Thermocouple	High radiation area (RCBX EL 767)	Fragility is calculated based on design documentation and installation drawings [6].
BV-LT-1FW-477	1A Steam Generator Wide Range Level Transmitter	High radiation area (RCBX EL 718)	Fragility is calculated based on design documentation and installation drawings [6].
BV-LT-1RC-459	Pressurizer RC-Tk- 1 Level Transmitter	High radiation area (RCBX EL 718)	Fragility is calculated based on design documentation and installation drawings [6].
BV-1CH-E-3	Regenerative Heat Exchanger	High radiation area (RCBX EL 718)	Reviewed plant drawings to obtain information for structural/anchorage evaluation [6].

8.0 ESEP CONCLUSIONS AND RESULTS

The conclusions and results of the ESEP evaluation are presented in this Section, including the identification of any required plant modifications and schedules for any follow up actions.

8.1 SUPPORTING INFORMATION

BVPS-1 has performed the ESEP as an interim action in response to the NRC's 50.54(f) letter [1]. The ESEP demonstrates that BVPS-1 has additional seismic margin plant equipment that can be relied upon to protect the reactor core following a beyond design basis seismic event. It was performed using the methodologies in the NRC endorsed guidance in EPRI 3002000704 [2].

The ESEP provides an important demonstration of seismic margin and expedites plant safety enhancements through evaluations and potential near-term modifications of plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events.

The ESEP is part of the overall BVPS-1 response to the NRC's 50.54(f) letter [1]. On March 12, 2014, Nuclear Energy Institute (NEI) submitted to the NRC results of a study [7] of seismic core damage risk estimates based on updated seismic hazard information as it applies to operating nuclear reactors in the Central and Eastern United States (CEUS). The study concluded that "site-specific seismic hazards show that there has not been an overall increase in seismic risk for the fleet of U.S. plants," based on the reevaluated seismic hazards. As such, the "current seismic design of operating reactors continues to provide a safety margin to withstand potential earthquakes exceeding the seismic design basis."

The NRC's May 9, 2014, NTTF 2.1 Screening and Prioritization letter [9] concluded that the "fleetwide seismic risk estimates are consistent with the approach and results used in the Gl-199 safety/risk assessment." The letter also stated that "as a result, the staff has confirmed that the conclusions reached in $\mathrm{Gl}-199$ safety/risk assessment remain valid and that the plants can continue to operate while additional evaluations are conducted."

An assessment of the change in seismic risk for BVPS-1 was included in the fleet risk evaluation submitted in the March 12, 2014, NEI letter [7], therefore, the conclusions in the NRC's May 9 letter [9] also apply to BVPS-1.

In addition, the March 12, 2014, NEI letter [7] provided an attached "Perspectives on the Seismic Capacity of Operating Plants," which (1) assessed a number of qualitative reasons why the design of SSCs inherently contain margin beyond their design level, (2) discussed industrial seismic experience databases of performance of industry facility components similar to nuclear SSCs, and (3) discussed earthquake experience at operating plants.

The fleet of currently operating NPPs was designed using conservative practices, such that the plants have significant margin to withstand large ground motions safely. This has been borne out for those plants that have actually experienced significant earthquakes. The seismic design process has inherent (and intentional) conservatisms which result in significant seismic margins within SSCs. These conservatisms are reflected in several key aspects of the seismic design process, including:

- Safety factors applied in design calculations
- Damping values used in dynamic analysis of SSCs
- Bounding synthetic THs for ISRS calculations
- Broadening criteria for ISRS
- Response spectra enveloping criteria typically used in SSCs analysis and testing applications
- Response spectra based frequency domain analysis rather than explicit TH based time domain analysis
- Bounding requirements in codes and standards
- Use of minimum strength requirements of structural components (concrete and steel)
- Bounding testing requirements
- Ductile behavior of the primary materials (that is, not crediting the additional capacity of materials, such as steel and reinforced concrete beyond the essentially elastic range, etc.)

These design practices combine to result in margins, such that the SSCs will continue to fulfill their functions at ground motions well above the SSE.

The intent of the ESEP is to perform an interim action in response to the NRC's 50.54(f) letter [1] to demonstrate seismic margin through a review of a subset of the plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events. Because the SPRA for BVPS-1 is already under way, the GMRS used in the SPRA is also used as the RLGM for the ESEP evaluation. To more fully characterize the risk impacts of the seismic ground motion represented by the GMRS on a plant specific basis, a more detailed seismic risk assessment (SPRA or risk-based SMA) is being performed in accordance with EPRI 1025287 [10]. As identified in the BVPS-1 Seismic Hazard and GMRS submittal [3], BVPS-1 screens in for a risk evaluation. The complete risk evaluation will more completely characterize the probabilistic seismic ground motion input into the plant, the plant response to that probabilistic seismic ground motion input, and the resulting plant risk characterization. BVPS- 1 will complete that evaluation in accordance with the schedule identified in NEI's letter dated April 9, 2013, [8] and endorsed by the NRC in their May 7, 2013, letter [11].

8.2 Identification of Planned Modifications

As discussed in Section 6.6 and presented in Attachment \boldsymbol{B}, all components on the ESEL have a HCLPF greater than the RLGM $(0.24 \mathrm{~g})$. Therefore, no modifications related to the ESEP are planned.

8.3 Modification Implementation Schedule

As no modifications are planned, this Section is not applicable.

8.4 SUMMARY OF REGULATORY COMMITMENTS

None

9.0 REFERENCES

1. NRC (E Leeds and M Johnson) Letter to All Power Reactor Licensees et al., "Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3, and 9.3 of the Near-Term Task Force Review of Insights from the Fukushima Dai-Ichi Accident," March 12, 2012.
2. EPRI, Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1 - Seismic, Palo Alto, California: May 2013, 3002000704.
3. ABS Consulting and Rizzo Associates, "Probabilistic Seismic Hazard Analysis and Foundation Input Response Spectra Beaver Valley Power Station Seismic Probabilistic Risk Assessment Project," 2734294-R-003 (RIZZO R3 12-4735), Revision 1, October 31, 2014.
4. Electric Power Research Institute, "A Methodology for Assessment of Nuclear Power Plant Seismic Margin," EPRI NP-6041-SL, Revision 1, Palo Alto, California, August 1991.
5. Electric Power Research Institute, "Methodology for Developing Seismic Fragilities," EPRI TR-103959, June 1994.
6. ABS Consulting and Rizzo Associates, "BVPS-1 Seismic Fragility of ESEP Components," Calculation 2734294-C-500/12-4735-C-500, Revision 1, 2014.
7. Nuclear Energy Institute, A. Pietrangelo, Letter to D. Skeen of the USNRC, "Seismic Core Damage Risk Estimates Using the Updated Seismic Hazards for the Operating Nuclear Plants in the Central and Eastern United States," March 12, 2014.
8. Nuclear Energy Institute, A. Pietrangelo, Letter to D. Skeen of the USNRC, "Proposed Path Forward for NTTF Recommendation 2.1: Seismic Reevaluations," April 9, 2013.
9. Nuclear Regulatory Commission, NRC (E Leeds) Letter to All Power Reactor Licensees et al., "Screening and Prioritization Results Regarding Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(F) Regarding Seismic Hazard Re-Evaluations for Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-Ichi Accident," May 9, 2014.
10. EPRI, "Seismic Evaluation Guidance: Screening, Prioritization, and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic," Palo Alto, CA: February 2013. 1025287, 2013.
11. Nuclear Regulatory Commission, NRC (E Leeds) Letter to NEI (J Pollock), "Electric Power Research Institute Final Draft Report Xxxxxx, "Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic," as an Acceptable Alternative to the March 12, 2012, Information Request for Seismic Reevaluations," May 7, 2013.
12. Newmark, N.M., and W. J Hall 1969, "Seismic Design Criteria for Nuclear Reactor Facilities," Proc. World Conf. Earthquake Eng., $4^{\text {th }}$, Santiago, Chile, 1969.
13. Nuclear Regulatory Commission, Regulatory Guide 1.92, "Combining Modal Responses and Spatial Components in Seismic Response Analysis," July 2006.
14. Stokoe, K. H., W. K. Choi, and F-Y Menq, 2003, "Summary Report: Dynamic Laboratory Tests: Unweathered and Weathered Shale Proposed Site of Building 9720-82 Y-12 National Security Complex, Oak Ridge, Tennessee," Department of Civil Engineering, The University of Texas at Austin, Austin, Texas, 2003.
15. ABS Consulting and Paul C. Rizzo Associates, Inc., "Beaver Valley Power Station Unit 1 Near Term Task Force 2.3 Seismic Walkdown Report," 2734294-R-001 (RIZZO R5 12-4735), Revision 1, September 4, 2013.
16. ABS Consulting and Rizzo Associates, "Seismic Walkdown of Beaver Valley Unit 1 Nuclear Power Station Seismic PRA Project," 2734294-R-004 (RIZZO R6 12-4735), Revision 1, October 20, 2014.
17. BVPS Overall Integrated Plan (OIP) in Response to the March 12, 2012, Commission Order EA-12-049, FirstEnergy Corp., Letter No. L-14-25, "FirstEnergy Nuclear Operating Company's Third Six-Month Status Report in Response to March1 2, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049) (TAC Nos. MF0841, MF0842, MF0961, and MF0962)," dated August 28, 2014.
18. U.S. Nuclear Regulatory Commission, NRC, 2010, "Interim Staff Guidance on Ensuring Hazard-Consistent Seismic Input for Site Response and Soil Structure Interaction Analyses" DC/COL-ISG-017, Washington, D.C., March 2010.
19. Electric Power Research Institute, "Seismic Fragility Applications Guide Update," EPRI Report 1019200, Palo Alto, CA, USA, December 2009.

ATTACHMENT A:

EXPEDITED SEISMIC EQUIPMENT LIST

			\cdots	\cdots	$\stackrel{n}{n}$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
䘫			会	$\begin{aligned} & n \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 呙 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 刃 } \\ & \text { 芯 } \end{aligned}$		$\begin{aligned} & \text { M } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \stackrel{y}{6} \end{aligned}$	$$	号
		\|	$>$	Z	Z	$>$	Z	z	Z	Z	z
	$\begin{aligned} & \overrightarrow{0} \\ & \text { Nun } \end{aligned}$	$\left\|\begin{array}{c} 7 \\ 5 \\ 0 \\ 0 \\ 3 \\ 3 \end{array}\right\|$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \end{aligned}$	\mathbb{Z}	$\begin{aligned} & \text { Z } \\ & \text { B } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 甭 } \end{aligned}$	$\stackrel{4}{z}$	砍
$\begin{aligned} & \text { K Z } \\ & \text { Z } \\ & \text { 首易 } \\ & \text { Z } \end{aligned}$		$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{E} \\ \overrightarrow{0} \\ \dot{\theta} \end{array}\right\|$	$\stackrel{\vdots}{\omega}$	$\frac{\underset{i}{3}}{\frac{2}{0}}$	$\begin{aligned} & 7 \\ & \frac{7}{2} \\ & 0 \end{aligned}$	$\frac{\grave{m}}{\stackrel{0}{6}}$	\overleftrightarrow{Z}	$\begin{aligned} & 7 \\ & \underset{\sim}{3} \end{aligned}$	$\frac{\text { y }}{\substack{0}}$	＜	7
$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$									
			$\begin{aligned} & \stackrel{e}{1} \\ & \stackrel{y}{4} \\ & \stackrel{1}{3} \\ & \stackrel{3}{3} \\ & \stackrel{1}{2} \end{aligned}$	$\underset{\sim}{\underset{N}{N}}$	$$			$\begin{aligned} & 0 \\ & \substack{n \\ 3 \\ 3 \\ 3 \\ i \\ \hline} \end{aligned}$			
			－	N	m	＊	\cdots	\bigcirc	\checkmark	∞	a

		$\stackrel{\infty}{\circ}$	\cdots	\cdots	N	\cdots	\cdots	\cdots	\cdots	\cdots		$\stackrel{\infty}{\sim}$	$\stackrel{n}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{n}{\sim}$
		$\begin{aligned} & \text { 䍚 } \end{aligned}$	$\begin{aligned} & \text { 䍛 } \\ & \omega \end{aligned}$		$\begin{aligned} & \text { 刃 } \\ & \text { 岕 } \end{aligned}$	$\begin{aligned} & \text { 䍐 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{y}{4} \end{aligned}$	$\left\|\begin{array}{c} \infty \\ 0 \\ \vdots \\ \vdots \end{array}\right\|$	$\begin{aligned} & \text { M } \\ & \text { W } \end{aligned}$	$\stackrel{\leftrightarrow}{2}$		$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { 合 } \end{aligned}$	$\begin{aligned} & x \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	㐫
		z	z	Z	λ	$>$	\succ	7	$>$	λ	0	$خ$	λ	Z	Z
		$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \end{aligned}$	$\frac{\varangle}{Z}$	$\begin{aligned} & \text { Z } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { 20 } \end{aligned}$		$\begin{aligned} & u \\ & z \\ & Z \\ & Z \end{aligned}$	$\left\|\begin{array}{l} u \\ \vdots \\ z \\ z \end{array}\right\|$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$		$\begin{aligned} & u \\ & \vdots \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { Z } \end{aligned}$
		$\begin{aligned} & \frac{7}{4} \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{<}{z}$	$\begin{aligned} & \text { Z } \\ & \text { 20 } \end{aligned}$	$\begin{aligned} & \text { 岛 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{y}{2} \\ & 5 \\ & \underset{\sim}{2} \\ & 2 \end{aligned}\right.$	$\stackrel{\vdots}{\infty}$	$\left\|\begin{array}{c} i \\ n \\ \omega \\ \omega \end{array}\right\|$	$\stackrel{\vdots}{\infty}$	$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \stackrel{n}{n} \end{gathered}$		$\begin{aligned} & u \\ & Z \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { un } \\ & Z \end{aligned}$
$\begin{aligned} & z_{2}^{2} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\frac{n}{n}$	$\begin{aligned} & \text { 오 } \\ & \text { N゙ } \\ & \sum_{i}^{1} \\ & \text { in } \end{aligned}$			$\left\|\begin{array}{l} n \\ \sum_{n} \\ \vdots \\ i \\ 0 \\ 0 \\ 0 \\ i \\ i \\ i n \end{array}\right\|$	$\begin{aligned} & \tilde{0} \\ & \sum_{1}^{n} \\ & \sum_{i}^{1} \\ & i \end{aligned}$								
		\cdots	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{ }$	¢	\bar{m}	N	m		m	m	¢	n

	$\stackrel{\infty}{\sim}$	$\stackrel{m}{\sim}$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
萑	$$	$\stackrel{\rightharpoonup}{\sim}$	$\begin{aligned} & \text { 合 } \\ & \text { 涴 } \end{aligned}$	$\stackrel{\infty}{\bullet}$	$\begin{aligned} & \infty \\ & 0 \\ & \text { W } \end{aligned}$	\sum_{Z}^{∞}	$\begin{aligned} & \text { 号 } \\ & \text { \& } \end{aligned}$	$\stackrel{\oplus}{\underset{Z}{4}}$
	z	Z	$>$	$>$	z	Z	Z	z
	$\begin{aligned} & u \\ & \vdots \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & b \\ & Z \end{aligned}$
	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$
$\begin{aligned} & \text { z } \\ & 0 \\ & \text { O } \\ & \text { 苞 } \\ & \text { 音 } \end{aligned}$								
	\cdots	m	\％	F	\％	ๆ	母	๕

	\cdots	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$
品	$\stackrel{M}{E}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \times \\ & \infty \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\sim}{E}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	$\frac{\infty}{2}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \propto \\ & \infty \\ & \sim \\ & \hline \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & x \\ & \infty \\ & \infty \\ & \propto \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \text { O } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$
	λ	$>$	z	z	Z	z	z	z	Z	z	z	z	\rangle	z	Z
$\begin{aligned} & \text { 果 } \\ & \text { 首 } \\ & \text { 気 } \\ & 0 \end{aligned}$	$\begin{aligned} & u \\ & \Delta \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & 0 \\ & \text { in } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & b \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$
	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { n } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \text { B } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$
									BV－TI－1RC－432A						$\begin{aligned} & \text { BV-TRB-1RC- } \\ & \text { 432C_D } \end{aligned}$
	\％	＇	$\stackrel{\infty}{+}$	9	안	$\bar{\sim}$	in	n	\％	in	\cdots	－	\cdots	in	8

	§ิ	\cdots	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	\cdots	N	$\stackrel{m}{N}$
	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \alpha \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{w} \\ & \text { n } \end{aligned}$	$\begin{aligned} & \times \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{\lambda}{\sim}$	㐫	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \chi \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\underset{\sim}{*}}{\stackrel{\rightharpoonup}{2}}$	咅
	λ	λ	z	Z	Z	$>$	Z	z	λ	z	Z
	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \\ & z \end{aligned}$
	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \pi \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \pi \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & \text { B } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & u \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$
	$\begin{aligned} & \text { on } \\ & \vdots \\ & \vdots \\ & \underset{\sim}{1} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$										
	\checkmark	To	\bigcirc	G	\bigcirc	8	To	$\stackrel{\infty}{\circ}$	9	\bigcirc	ה

	$\stackrel{n}{n}$	\cdots	88	\cdots	\cdots						
	$\begin{aligned} & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \text { 心 } \end{aligned}$	2_{2}^{∞}	n	\sum_{2}^{n}	$\stackrel{\rightharpoonup}{\sim}$	品	会	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\approx}$	㐫
	Z	Z	Z	$>$	乙	λ	Z	Z	λ	Z	$خ$
	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & 0 \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \text { n } \\ & \text { Z } \end{aligned}$
	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { un } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & b \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & n \\ & Z \end{aligned}$	$\stackrel{\sim}{\infty}$	$\stackrel{\rightharpoonup}{\infty}$	㐫
$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$											
	N	\cdots	さ	\cdots	\cdots	N	$\stackrel{\infty}{\sim}$	2	∞	$\bar{\infty}$	N

	$\stackrel{n}{\sim}$	\cdots	$\stackrel{n}{n}$	§8	\cdots	\cdots	$\stackrel{n}{n}$	\cdots	$\stackrel{n}{n}$	－	$\stackrel{n}{n}$	$\stackrel{m}{n}$	$\stackrel{m}{n}$	$\stackrel{m}{\sim}$
旨	范	㐫	$\stackrel{\rightharpoonup}{w}$	$$	$\begin{aligned} & \vec{\sim} \\ & \stackrel{y}{n} \end{aligned}$	$\frac{\lambda}{\infty}$	岕	$\frac{\lambda}{\omega}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\infty}$
	Z	z	Z	z	z	z	Z	Z	Z	λ	λ	λ	λ	λ
	$\stackrel{\vdots}{\infty}$	$\begin{aligned} & U \\ & \text { Z } \\ & Z \end{aligned}$		$\begin{aligned} & u \\ & i \\ & \text { n } \\ & Z \end{aligned}$	$$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & u \\ & u \\ & z \end{aligned}$	$\stackrel{\sim}{e}$	$\begin{aligned} & u \\ & \vdots \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$
	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\grave{\sim}}{\stackrel{\sim}{\omega}}$	$\stackrel{\grave{\infty}}{\stackrel{\infty}{n}}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\grave{\sim}}{\stackrel{\sim}{\omega}}$	$\stackrel{\vdots}{\infty}$	$\stackrel{\underset{\sim}{e}}{\stackrel{\sim}{\omega}}$	$\stackrel{\lambda}{\infty}$	$\begin{aligned} & u \\ & i \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \Delta \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & z \\ & Z \end{aligned}$
		$\frac{\stackrel{e}{n}}{\stackrel{\rightharpoonup}{z}}$			$\begin{aligned} & \underset{\sim}{\underset{N}{N}} \\ & \stackrel{\rightharpoonup}{\underset{~}{\underset{~}{c}}} \end{aligned}$			$\xrightarrow[\text { A }]{\text { A }}$						
	∞	¢	∞	∞	－	∞	∞	8	$\bar{\square}$	N	ふ	む	$\%$	$\%$

	$\stackrel{n}{n}$	$\stackrel{n}{\sim}$	$\stackrel{n}{n}$	$\stackrel{n}{2}$	$\stackrel{m}{\sim}$	$\stackrel{m}{\sim}$	$\stackrel{n}{n}$	\cdots	\cdots	$\stackrel{n}{\sim}$	$\stackrel{n}{\sim}$	$\stackrel{m}{n}$	$\stackrel{m}{n}$	\cdots	\cdots
	$\frac{\lambda}{\sim}$	$\frac{z}{n}$	$\frac{\lambda}{\infty}$	$\frac{>}{\infty}$	$\frac{\vec{n}}{n}$	$\stackrel{\rightharpoonup}{n}$	希	$\stackrel{\gtrsim}{\sim}$	$\frac{\vec{\sim}}{\sim}$	$\vec{\sim}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \text { p} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{\rightharpoonup}{\infty}$	$\frac{\gtrsim}{\sim}$	会
	λ	λ	λ	Z	Z	Z	Z	z	z	λ	Z	$>$	z	\cdots	z
	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \Delta \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \Delta \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \vdots \\ & Z \end{aligned}$
$\begin{aligned} & \text { Z } \\ & \text { Z } \\ & \text { 关 } \\ & 0 \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { un } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & 0 \\ & \Delta \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & \text { B } \\ & Z \end{aligned}$	\cup \vdots \vdots Z
				$\begin{aligned} & \text { BV-INV-VITBUS1- } \\ & 2 \end{aligned}$	$$	$$				$\begin{gathered} \text { BV-INV-VITBUS1- } \\ 1 \end{gathered}$					$\begin{aligned} & \text { BV-PNL-VITBUS1- } \\ & 3 \end{aligned}$
$\text { 気舄 } \#$	ล	∞	\％	\％	O－	O－	$\stackrel{\%}{0}$	\pm	$\stackrel{\sim}{0}$	$\stackrel{\circ}{\circ}$	So	$\stackrel{\infty}{\circ}$	응	을	三

	\cdots	\cdots	\cdots	$\stackrel{m}{n}$			N	N	$\stackrel{m}{n}$	$\stackrel{n}{n}$	N	
$\begin{aligned} & \text { L } \\ & \text { 花 } \\ & \text { 首 } \end{aligned}$	范	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	品			$\begin{aligned} & \text { M } \\ & \text { U } \\ & \text { W} \end{aligned}$	$\begin{aligned} & \text { 0 } \\ & \text { 岕 } \end{aligned}$	$\frac{\lambda}{\sim}$	$\underset{\sim}{2}$	$\begin{aligned} & \text { 署 } \\ & \stackrel{1}{6} \end{aligned}$	
$\begin{aligned} & \text { Kz } \\ & \text { z } \\ & \text { 曾 } \\ & \text { on } \\ & \text { i } \\ & \text { © } \end{aligned}$												
	$>$	Z	Z	Z	λ	Z	$>$	Z	$>$	Z	λ	λ
	$\begin{aligned} & u \\ & \Delta \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$
	$\begin{aligned} & u \\ & i \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & B \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \\ & Z \end{aligned}$
	$\begin{aligned} & \text { } \\ & \vdots \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & i \\ & 0 \end{aligned}$						$\begin{aligned} & \mathbb{1} \\ & 0 \\ & \vdots \\ & i \\ & \hline 1 \end{aligned}$		$\begin{aligned} & \mathbb{3} \\ & 0 \\ & \vdots \\ & 3 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$			
島	$\stackrel{\mathrm{N}}{=}$	$\stackrel{m}{=}$	\pm	\cdots	\cdots	ミ	$\stackrel{\infty}{=}$	$\stackrel{9}{\square}$	익	ㄱ	N	$\underset{\sim}{\text { ® }}$

	N		N		N				\cdots	N	N		N	N	N
	$\begin{aligned} & \text { 苍 } \\ & \text { 菏 } \end{aligned}$		$\begin{aligned} & \text { M } \\ & 0 \\ & \text { W } \end{aligned}$							$\stackrel{\underset{\alpha}{*}}{\substack{x}}$	$\stackrel{\diamond}{\diamond}$		－		$\stackrel{\text { ¢ }}{\text { ¢ }}$
	Z	Z	Z	Z	Z	Z			\gg	z	z	0	Z	Z	Z
	$\begin{aligned} & u \\ & \text { u } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { z } \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & \vdots \\ & Z \end{aligned}$				$\begin{aligned} & \underset{\sim}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & \frac{1}{2} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \stackrel{y}{3} \end{aligned}$	$\frac{7}{4}$	磪
	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	产			$\begin{aligned} & 7 \\ & \\ & 0 \end{aligned}$	$\underset{\sim}{\text { 足 }}$		A 0 0 0 0		$\frac{7}{7}$
			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \sum_{1}^{1} \\ & \vdots \\ & \frac{1}{2} \\ & 1 \end{aligned}$							$\begin{aligned} & \text { N } \\ & \text { 出 } \\ & \underset{\sim}{1} \\ & \text { 分 } \end{aligned}$	$$				
	$\underset{\sim}{ \pm}$	$\stackrel{\sim}{\sim}$	윽	츠	$\stackrel{\sim}{\square}$	측			윾	N	$\stackrel{m}{2}$		$\stackrel{H}{m}$	\cdots	$\stackrel{\infty}{n}$

	N	N	N	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	\％	$\stackrel{\infty}{\sim}$	\cdots	\cdots	\cdots	$\stackrel{n}{n}$	$\stackrel{m}{n}$	$\stackrel{n}{n}$	$\stackrel{n}{n}$
	$\stackrel{\stackrel{\rightharpoonup}{3}}{4}$	$\stackrel{\underset{\sim}{x}}{\stackrel{x}{4}}$	$\begin{aligned} & \text { 号 } \\ & \vdots \\ & \sim \end{aligned}$	$\left\|\begin{array}{l} x \\ 0 \\ \underset{\sim}{\infty} \end{array}\right\|$	$\begin{aligned} & \times \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { @ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { M } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { z } \\ & \stackrel{y}{n} \end{aligned}$	䧺	$\frac{z}{\infty}$	2
			$\begin{array}{lll} n & 0 \\ n & 0 & z \\ 0 & z & 0 \\ 0 & 1 & E \\ i & 0 & n \\ 0 & 1 & 0 \\ z & 0 & 2 \end{array}$											
	Z	Z	Z	7	λ	Z	z	Z	z	Z	Z	Z	Z	Z
	$\frac{\underset{y y}{c}}{\underset{0}{2}}$	$\begin{aligned} & 7 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\underset{4}{7}}{\substack{\mathrm{O}}}$	$\|\stackrel{\varangle}{Z}\|$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \frac{2}{0} \end{aligned}$	$\underset{Z}{\mathbb{Z}}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\stackrel{\vdots}{\infty}$	$\stackrel{i}{\infty}$	$\begin{aligned} & u \\ & u \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & 0 \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \Delta \\ & z \\ & Z \end{aligned}$
	$\begin{aligned} & \text { 苟 } \\ & 0 \end{aligned}$	$\frac{7}{y}$	$\frac{7}{2}$	$\|\stackrel{\varangle}{Z}\|$	$\begin{aligned} & u \\ & u \\ & z \\ & z \end{aligned}$	$\underset{\sim}{7}$	$\stackrel{\measuredangle}{z}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\stackrel{\sim}{6}$	$\stackrel{\grave{n}}{\stackrel{y}{6}}$	$\begin{aligned} & u \\ & i \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & \text { Z } \end{aligned}$	$\begin{aligned} & U \\ & Z \\ & Z \end{aligned}$	U B Z
								$$						
	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\text { ® }}{\sim}$	악		$\underset{\sim}{\text { N }}$	$\underline{\sim}$	\pm	※	\pm	今	$\stackrel{\infty}{ \pm}$	年	은

	\cdots	\cdots	$\stackrel{n}{n}$	$\stackrel{n}{n}$	$\stackrel{n}{\sim}$	$\stackrel{m}{\sim}$		N	\cdots		\cdots	$\stackrel{\sim}{n}$	\cdots
	$\begin{aligned} & \text { 䀫 } \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \end{aligned}$	$\underset{\sim}{\lambda}$	$\frac{\vec{\rightharpoonup}}{\infty}$	$\vec{\sim}$	$\stackrel{\rightharpoonup}{w}$		$\stackrel{\underset{\sim}{e}}{\stackrel{\rightharpoonup}{c}}$	$\stackrel{\underset{\sim}{\alpha}}{\underset{\sim}{x}}$	$\stackrel{\leftrightarrow}{\underset{\sim}{e}}$	$\stackrel{e}{e}$	$\stackrel{\underset{\alpha}{\mathrm{K}}}{\mathrm{\alpha}}$	$\stackrel{\underset{\sim}{x}}{\stackrel{\rightharpoonup}{2}}$
	λ	$>$	λ	$>$	λ	Z		z	z	z	z	Z	Z
	$\begin{aligned} & u \\ & \vdots \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & z \\ & \text { Z } \end{aligned}$	$\left\|\begin{array}{l} u \\ z \\ z \\ z \end{array}\right\|$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$							
	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & \stackrel{\nu}{\omega} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & U \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{gathered} u \\ z \\ z \\ z \end{gathered}$	$\begin{aligned} & u \\ & u \\ & Z \end{aligned}$	王						
$\begin{aligned} & \text { z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$													
	$\begin{aligned} & \widehat{u} \\ & \vdots \\ & \vdots \\ & \sum_{i}^{\prime} \\ & i \\ & i \end{aligned}$			$\begin{aligned} & \text { İ } \\ & \frac{1}{1} \\ & \sum_{i}^{\prime} \\ & i \end{aligned}$									
	\cdots	$\xrightarrow[\sim]{\sim}$	$\stackrel{n}{n}$	-	\cdots	$\stackrel{\sim}{\sim}$		n	$\stackrel{\infty}{\sim}$	i	8	$\stackrel{\square}{\square}$	No

	\cdots	\cdots	N	N	N	$\stackrel{m}{n}$	$\stackrel{\sim}{n}$	\cdots	\cdots	\cdots	$\stackrel{\sim}{n}$
	$\stackrel{\times}{\underset{\alpha}{\alpha}}$	$\underset{\sim}{\underset{\alpha}{*}}$	$\begin{aligned} & \text { M } \\ & \text { D } \\ & \sim \end{aligned}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\gtrsim}{\sim}$	$\begin{aligned} & \text { м } \\ & \stackrel{p}{\mu} \end{aligned}$	$\stackrel{\underset{\sim}{e}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\underset{\alpha}{\alpha}}{\substack{2}}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{4}}$	$\stackrel{\leftrightarrow}{4}$
								Z 0 0 0 0	$$		
	Z	Z	z	Z	Z	z	z	Z	Z	Z	Z
$\begin{aligned} & \text { AZ } \\ & \text { 易 } \\ & \text { 曷苞 } \end{aligned}$											
$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$											
$\begin{aligned} & y_{4}^{Z} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$									$\begin{aligned} & 8 \\ & \stackrel{8}{U} \\ & U \\ & \vdots \\ & \vdots \\ & \text { B } \end{aligned}$	8 0 0 0 1 1 i	
	$\stackrel{\text { On}}{\sim}$	－	$\stackrel{2}{2}$	\％	－	$\stackrel{\infty}{\bullet}$	8	ㄹ	ミ	N	$\stackrel{N}{N}$

	N	\cdots			$\stackrel{\infty}{\sim}$	$\hat{\sim}$	人̀	人̀	$\hat{\bigcirc}$	$\stackrel{\infty}{\sim}$	
$\begin{aligned} & \text { U } \\ & \text { 花 } \\ & \end{aligned}$	$\stackrel{\underset{\sim}{*}}{\substack{x}}$	㐫			$\begin{aligned} & \times \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { x } \\ & 0 \\ & \sim \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \text { x } \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	
	z	Z	z	z	Z	z	z	Z	Z	z	Z
										$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
				$\begin{aligned} & N \\ & \substack{U \\ 0 \\ 1 \\ \sum_{1}^{\prime} \\ i \\ i \\ \hline} \end{aligned}$					V9tI－ODI－IL－NG	$\begin{aligned} & u \\ & u \\ & 0 \\ & 1 \\ & \vdots \\ & i \\ & 0 \\ & 0 \\ & \sum_{1} \\ & i \\ & i \\ & \infty \end{aligned}$	
	さ	$\stackrel{n}{n}$	$\stackrel{\bigcirc}{\square}$	N	$\stackrel{\infty}{ }$	$\xlongequal{2}$	$\stackrel{\otimes}{\sim}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{\sim}$

		\cdots										
呆		$\stackrel{\underset{\sim}{e}}{\stackrel{\rightharpoonup}{s}}$	$\stackrel{\underset{\sim}{㐅}}{\stackrel{\rightharpoonup}{*}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \stackrel{y}{n} \end{aligned}$	号	吴	号	ヘ	合	$\stackrel{\substack{4 \\<}}{ }$	$\stackrel{\underset{\sim}{*}}{\stackrel{\rightharpoonup}{*}}$	$\stackrel{\underset{\sim}{*}}{\stackrel{\rightharpoonup}{*}}$
		3 0 0 0										
	Z	Z	Z	Z	Z	乙	Z	Z	z	z	Z	Z
$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0, ~ \\ & 0 \\ & 0 \end{aligned}$												
							$\begin{aligned} & U \\ & N \\ & \vdots \\ & U \\ & U \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$					
$\left\lvert\, \begin{aligned} & \text { 国 } \\ & \text { 雷 } \# \end{aligned}\right.$	$\stackrel{\infty}{\infty}$	$\stackrel{\otimes}{\sim}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	\％	$\bar{\square}$	N	\cong	\％	๕	$\stackrel{\circ}{2}$

	\cdots	\cdots	8	88	人̀	$\stackrel{\infty}{\sim}$		人̀	숫	人̀	
葆	$\stackrel{\diamond}{\stackrel{\rightharpoonup}{*}}$	$\stackrel{\underset{\sim}{e}}{\substack{\alpha}}$	$\begin{aligned} & x \\ & \underset{\sim}{\infty} \\ & \sim \end{aligned}$	$\begin{aligned} & \times \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & x \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \times \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \hline \sim \end{aligned}$	$\begin{aligned} & x \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$		
			7 0 0 0 0 0 0 0 0				Z 0 0 0 0 0				Z 0 0 0 0 0 0 0 0
	z	z	Z	z	z	Z	z	z	z	Z	Z
	§	$\stackrel{\infty}{\circ}$	2	－	웃	Ǹ	กิ	－	No	O-	$\stackrel{\text { N}}{\text { N}}$

	88	\cdots	§＇	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	§8	§\％
	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	炭	$\begin{aligned} & \times \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	合	号	N	O	合	品	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \hline \end{aligned}$	
									7 0 0 0 0	Z 0 0 0 0 0 0 0 0	Z 0 0 0 0 0 0
	Z	Z	z	z	Z	Z	z	Z	z	Z	Z
				$\begin{aligned} & \mathbb{1} \\ & \stackrel{1}{U} \\ & \vdots \\ & \pm \\ & \vdots \\ & \hline \end{aligned}$					$\begin{aligned} & \text { d } \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$	$$	
	$\stackrel{\infty}{\text { N }}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\circ}{\sim}$	コ	$\stackrel{\mathrm{N}}{\mathrm{N}}$	$\stackrel{m}{\sim}$	$\stackrel{ \pm}{N}$	$\stackrel{n}{n}$	$\stackrel{\bigcirc}{\sim}$	$\stackrel{N}{N}$	$\stackrel{\infty}{\sim}$

	\%	88	\%	\%	$\xrightarrow{\text { ¢ }}$	\%	§8	§	§'	§8	§\%	\%80
足	$\begin{aligned} & \underset{\sim}{\infty} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \times \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \times \\ & \infty \\ & \infty \\ & \alpha \end{aligned}$	$\begin{aligned} & \propto \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \times \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \times \\ & \underset{\sim}{0} \\ & \sim \end{aligned}$	㐅
	Z	Z	Z	Z	Z	Z	z	z	Z	z	z	Z
$\begin{aligned} & Z \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$												
			$\begin{aligned} & \pm \\ & \vdots \end{aligned}$		$\begin{aligned} & 0 \\ & \vdots \end{aligned}$				0 3 4 4 \vdots \vdots \vdots 3			
	$\stackrel{\square}{\sim}$	N	ㅈN	N	$\underset{N}{N}$	ন	N	N	N	Nิ	సे	N

	\%	\%	\%	§\%	§	§	\%	\%	\%	\%	¢80	\%
	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \sim \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \times \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \times \\ & \infty \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \hline \alpha \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & x \\ & \infty \\ & 0 \\ & \hline \alpha \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \times \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$
						$\begin{aligned} & \underset{\sim}{z} \\ & \underset{\sim}{6} \\ & \underset{\sim}{c} \\ & \underset{\sim}{0} \\ & \underset{\sim}{n} \end{aligned}$						
	Z	Z	Z	z	z	Z	Z	z	z	Z	Z	Z
$\begin{aligned} & \text { A Z } \\ & \text { 首 } \\ & \text { y } \\ & \text { an } \\ & 0 \end{aligned}$												
		$\begin{aligned} & \stackrel{N}{n} \\ & \underset{\sim}{n} \\ & \dot{n} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \tilde{m} \\ & \frac{1}{1} \\ & \dot{n} \\ & \vdots \\ & \dot{\Delta} \end{aligned}$		$\begin{aligned} & \approx \\ & \stackrel{\omega}{n} \\ & \omega \\ & \omega \\ & \vdots \\ & \dot{n} \end{aligned}$		$\begin{aligned} & \hat{m} \\ & \frac{1}{n} \\ & \omega \\ & \vdots \\ & \dot{n} \\ & \dot{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \vdots \\ & \dot{\omega} \\ & \vdots \\ & i \end{aligned}$				
	त	Ñ	$\underset{N}{N}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\varkappa}$	స゚	$\stackrel{N}{\sim}$	$\stackrel{\infty}{\sim}$	$\xrightarrow{\text { N}}$	$\stackrel{i}{\text { N }}$	$\underset{\sim}{7}$	$\stackrel{\text { N }}{\text { N }}$

	\％	\％	\％	\％	8	\％	\％	\％	§\％	No	§＇	\％
	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & x \\ & \infty \\ & 0 \\ & \alpha \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \sim \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \times \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \text { ๗ } \\ & \text { ヘ } \end{aligned}$
	Z	Z	z	z	z	Z	z	Z	Z	Z	Z	z
$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$												
$\begin{aligned} & \text { y } \\ & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & u \\ & \frac{1}{4} \\ & \vdots \\ & \vdots \\ & \vdots \\ & i \end{aligned}$	$\begin{aligned} & \vec{U} \\ & \vdots \\ & \vdots \\ & n \\ & \vdots \\ & \vdots \\ & n \end{aligned}$	$\begin{aligned} & \tilde{U} \\ & \vdots \\ & \omega \\ & \omega \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & n \\ & \frac{1}{4} \\ & \omega \\ & \vdots \\ & \vdots \\ & \dot{n} \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & 山 \\ & \omega \\ & \Delta \\ & \prime \\ & \dot{\prime} \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & \omega \\ & \omega \\ & \vdots \\ & \dot{n} \\ & \dot{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & \dot{n} \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \hat{U} \\ & \frac{1}{4} \\ & \omega \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & 8 \\ & \frac{2}{4} \\ & \dot{n} \\ & \vdots \\ & \vdots \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 4 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$	
$\left\|\begin{array}{l} \text { 牙 } \\ \text { 至 } \end{array}\right\|$	$\underset{\sim}{\underset{\sim}{c}}$	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{4}$	N	$\stackrel{\infty}{\sim}$	$\stackrel{\underset{\sim}{c}}{ }$	N	N	N	\cdots	$\stackrel{\sim}{\sim}$

ATTACHMENT B:

TABULATED HCLPF VALUES

EQUIPMENT ID	HCLPF	β_{C}	β_{R}	β_{U}	$\mathbf{A}_{\text {m }}$	FAILURE MODE	Fragility Method
PT-1CV-101A	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
PT-1LM-100A	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
LT-1RC-459	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
LT-1WT-104A	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
PT-1MS-474	0.60	0.40	0.24	0.32	1.51	Anchorage	New Analysis
T-C-1II-1	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
TRB-1RC-412B1	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
TRB-1RC-412C_D	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
NE-1NI-31	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
RK-1PRI-PROC-3	0.53	0.40	0.24	0.32	1.34	Anchorage	New Analysis
RK-1PRI-PROC-12	0.53	0.40	0.24	0.32	1.34	Anchorage	New Analysis
RK-1PRI-PROC-13	0.53	0.40	0.24	0.32	1.34	Anchorage	New Analysis
RK-1PRI-PROC-19	0.53	0.40	0.24	0.32	1.34	Anchorage	New Analysis
RK-1SEC-PROC-A	0.55	0.40	0.24	0.32	1.39	Anchorage	New Analysis
RK-1SEC-PROC-H	0.55	0.40	0.24	0.32	1.39	Anchorage	New Analysis
PQ-1CV-101A	0.55	0.40	0.24	0.32	1.39	Anchorage	Assigned By Rule of the Box. Parent Component: RK-1SEC-PROC-A
RK-1PRI-PROC-30	0.70	0.40	0.24	0.32	1.77	Functional	Earthquake Experience Data
PNL-DC1-1	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
PI-1MS-474	0.68	0.40	0.24	0.32	1.72	Anchorage	Assigned By Rule of the Box. Parent Component: VB-C
TI-1RC-412A	0.68	0.40	0.24	0.32	1.72	Anchorage	Assigned By Rule of the Box. Parent Component: VB-B
PI-1RC-403	0.68	0.40	0.24	0.32	1.72	Anchorage	Assigned By Rule of the Box. Parent Component: VB-A
LI-1RC-459A	0.68	0.40	0.24	0.32	1.72	Anchorage	Assigned By Rule of the Box. Parent Component: VB-B

EQUIPMENT ID	$\mathbf{H C L P F}$	$\boldsymbol{\beta}_{\mathbf{C}}$	$\boldsymbol{\beta}_{\mathbf{R}}$	$\boldsymbol{\beta}_{\mathbf{U}}$	$\mathbf{A}_{\mathbf{m}}$	FAILURE MODE	FRAGILITY METHOD
LI-1WT-104A1	0.68	0.40	0.24	0.32	1.72	Anchorage	Assigned By Rule of the Box. Parent Component: VB-C
PI-1LM-100A	0.68	0.40	0.24	0.32	1.72	Anchorage	Assigned By Rule of the Box. Parent Component: VB-A
VB-A	0.68	0.40	0.24	0.32	1.72	Anchorage	New Analysis
VB-B	0.68	0.40	0.24	0.32	1.72	Anchorage	New Analysis
VB-C	0.68	0.40	0.24	0.32	1.72	Anchorage	New Analysis
RL-1CV-101A	0.52	0.40	0.24	0.32	1.32	Anchorage	Assigned By Rule of the Box. Parent Component: RK-REAC- PROT-A
RK-REAC-PROT-A	0.52	0.40	0.24	0.32	1.32	Anchorage	New Analysis
LI-1FW-477A	0.70	0.40	0.24	0.32	1.77	Functional	Assigned By Rule of the Box. Parent Component: PNL-SHUTDN
PNL-SHUTDN	0.70	0.40	0.24	0.32	1.77	Functional	Earthquake Experience Data
NI-1NI-31B	0.47	0.40	0.24	0.32	1.18	Anchorage	Assigned By Rule of the Box.
Parent Component: BB-B							
BB-B	0.47	0.40	0.24	0.32	1.18	Anchorage	New Analysis
PNL-1EE-CONN-2	1.31	0.40	0.24	0.32	3.32	Functional	Earthquake Experience Data
1E7-FLXD01	1.31	0.40	0.24	0.32	3.32	Functional	Earthquake Experience Data
CH-TK-1A	0.39	0.40	0.24	0.32	1.00	Anchorage	New Analysis
CH-TK-1B	0.39	0.40	0.24	0.32	1.00	Anchorage	New Analysis
CH-E-3	0.68	0.35	0.24	0.26	1.54	Anchorage	New Analysis
WT-TK-10	0.27	0.35	0.24	0.26	0.61	Structural	New Analysis
QS-TK-1	0.30	0.35	0.24	0.26	0.68	Structural	

Enclosure B
L-14-401
Expedited Seismic Evaluation Process (ESEP) Report
Beaver Valley Power Station - Unit 2
(69 pages follow)

Expedited Seismic Evaluation Process (ESEP) Report Beaver Valley Power Station - Unit 2

November 3, 2014

Prepared for
FirstEnergy Nuclear Operating Company

EXPEDITED SEISMIC EVALUATION PROCESS (ESEP) REPORT
 BEAVER VALLEY POWER STATION - UNIT 2

ABSG Consulting Inc. Report No. 2734294-R-020
Revision 0
RIZZO Report No. R11 12-4736
November 3, 2014

APPROVALS

Report Name:

Date:
Rëvision No:
Revision 0

Prepared by:

Reviewed by:

Approved by:
Expedited Seismic Evaluation Process (ESEP): Report
Beaver Valley Power Station-Unit2
November 3, 2014

Mohammed Alvi (FENOC)

$11 / 03 / 2014$
Date

11/7/2014
Date
$\frac{11 / 7 / 2014}{\text { Date }}$

Eugene E. Ebeck (FENOC)

$$
11-7-2014
$$

$$
\overline{\text { Date }}
$$

$$
11-10-14
$$

Date

Table of Revisions

Revision No.	Date	Description of Revision
0	November 3, 2014	Original issue.

TABLE OF CONTENTS

PAGE
LIST OF TABLES 7
LIST OF FIGURES 8
LIST OF ACRONYMS 9
1.0 PURPOSE AND OBJECTIVE 13
2.0 BRIEF SUMMARY OF THE FLEX SEISMIC IMPLEMENTATION STRATEGIES 15
3.0 EQUIPMENT SELECTION PROCESS AND ESEL 17
3.1 EQuipment Selection Process and ESEL 17
4.0 GROUND MOTION RESPONSE SPECTRUM 21
4.1 Plot of GMRS Submitted by the Licensee 21
4.2 COMPARISON TO SSE 23
5.0 REVIEW LEVEL GROUND MOTION 25
5.1 Description of RLGM Selected 25
5.2 Method to estimate ISRS 25
6.0 SEISMIC MARGIN EVALUATION APPROACH 29
6.1 Summary of Methodologies Used 29
6.2 HCLPF Screening Process 30
6.3 Seismic Walkdown Approach 30
6.4 HCLPF CALCULATION PROCESS 32
6.5 Functional Evaluations of Relays 36
6.6 Tabulated ESEL HCLPF Values (Including Key Failure Modes) 36
7.0 INACCESSIBLE ITEMS 38
7.1 IDENTIFICATION OF ESEL ITEMS INACCESSIBLE FOR WALKDOWNS 38
8.0 ESEP CONCLUSIONS AND RESULTS 39
8.1 SUPPORTING INFORMATION 39
8.2 Identification of Planned Modifications 41
8.3 MODIFICATION IMPLEMENTATION SCHEDULE 41

TABLE OF CONTENTS

 (CONTINUED)
PAGE

8.4 SUMMARY OF REGULATORY COMMITMENTS .. 41
9.0 REFERENCES ... 42

ATTACHMENT A EXPEDITED SEISMIC EQUIPMENT LIST
ATTACHMENT B TABULATED HCLPF VALUES

LIST OF TABLES

TABLE NO. TITLE PAGE
TABLE 4-1 UHRS AND GMRS USED IN BVPS-2 SPRA, EL 681 22
TABLE 4-2 SSE HORIZONTAL GROUND MOTION RESPONSE SPECTRUM FOR BVPS-2 24
TABLE 5-1 SUMMARY OF GEOTECHNICAL PROFILE DATA UNDERLYING THE BV SITE 26
TABLE 5-2 NORMALIZED STRAIN COMPATIBLE SHEARMODULI AND DAMPING FOR SOIL UNITS AT THEBV SITE27
TABLE 6-1 SUMMARY OF CONSERVATIVE DETERMINISTIC FAILURE MARGIN APPROACH 34
TABLE 7-1 SUMMARY OF INACCESSIBLE ITEMS IN BVPS-2 ESEL 38

LIST OF FIGURES

FIGURE NO.
TITLE
PAGE
FIGURE 4-1 COMPARISON BETWEEN GMRS AT CONTROL POINT REPORTED IN SPID MARCH 2014
SUBMITTAL AND GMRS USED IN BVPS-2 SPRA PROJECT.22
$\begin{array}{ll}\text { FIGURE 4-2 } & \text { COMPARISON OF GMRS AND SSE AT CONTROL } \\ \text { POINT ELEVATION ... } 24\end{array}$

LIST OF ACRONYMS

ABS	ABSG CONSULTING INC.
AC	ALTERNATING CURRENT
ACI	AMERICAN CONCRETE INSTITUTE
AFW	AUXILIARY FEED WATER SYSTEM
AISC	AMERICAN INSTITUTE FOR STEEL CONSTRUCTION
ANS	AMERICAN NUCLEAR SOCIETY
ASCE	AMERICAN SOCIETY OF CIVIL ENGINEERS
ASDV	ATMOSPERHIC STEAM DUMP VALVES
ASME	AUXILIARY BUILDING
AUX	BORIC ACID STORAGE TANKS
BAST	BEYOND DESIGN BASIS EXTERNAL EVENT
BFBEE	BEST ESTIMATE
BE	BEAVER VALLEY POWER STATION
BVPS	BEAVER VALLEY POWER STATION - UNIT 2
BVPS-2	PRIMARY COMPONENT COOLING WATER SYSTEM
CCP	CONSERVATIVE DETERMINISTIC FAILURE MARGIN
CDFM	CENTRAL AND EASTERN UNITED STATES
CEUS	CONTROL BUILDING
CNTB	EIRECT CURRENT
DC	EXPEDITED SEISMIC EVALUATION PROCESS
DGB	EAIESEL GENERATOR BUILDING
EL	ELEVATION
ELAP	EXTENDED LOSS OF ALL ALTERNATING CURRENT POWER
EPRI	ELECTRIC POWER RESEARCH INSTITUTE
ESEL	ESEP

LIST OF ACRONYMS
 (CONTINUED)

FE
FENOC
FIRS
FNC
FPW
ft
ft / s
g
GERS
GIP
GMRS
HCLPF
HVAC
HZ
ISRS
KV
MAFE
MCC
MSVCV
NEI
NPP
NRC
NS
NSSS
NTTF
NUREG
OIP

FINITE ELEMENT
FIRSTENERGY NUCLEAR OPERATING COMPANY
FOUNDATION INPUT RESPONSE SPECTRA
FUEL POOL COOLING AND PURIFICATION SYSTEM
FIRE PROTECTION SYSTEM
FEET
FEET PER SECOND
ACCELERATION OF GRAVITY
GENERIC EQUIPMENT RUGGEDNESS DATA
GENERIC IMPLEMENTATION PROCEDURE
GROUND MOTION RESPONSE SPECTRA
HIGH CONFIDENCE OF LOW PROBABILITY OF FAILURE
HEATING, VENTILATION, AND AIR-CONDITIONING
HERTZ
IN-STRUCTURE RESPONSE SPECTRA
KILOVOLT
MEAN ANNUAL FREQUENCY OF EXCEEDANCE
MOTOR CONTROL CENTER
MAIN STEAM VALVE AND CABLE VAULT BUILDING
NUCLEAR ENERGY INSTITUTE
NUCLEAR POWER PLANT
UNITED STATES NUCLEAR REGULATORY COMMISSION
NORTH-SOUTH DIRECTION
NUCLEAR STEAM SUPPLY SYSTEM
NEAR-TERM TASK FORCE
U.S.N.R.C. REGULATION

OVERALL INTEGRATED PLAN

LIST OF ACRONYMS (CONTINUED)

P\&ID	PROCESS AND INSTRUMENTATION DIAGRAM
pcf	POUNDS PER CUBIC FOOT
PGA	PEAK GROUND ACCELERATION
PPDWST	PRIMARY PLANT DEMINERALIZED WATER STORAGE TANK
QSS	QUENCH SPRAY SYSTEM
RB	REACTOR BUILDING
RCBX	REACTOR CONTAINMENT STRUCTURE
RCIC	REACTOR CORE ISOLATION COOLING
RCS	REACTOR COOLANT SYSTEM
RIZZO	REVIEW LEVEL GROUND MOTION
RLGM	ERF SUBSTATION DIESEL BUILDING
RSGB	SEISMIC EVALUATION WORK SHEETS
SEWS	SAFEGUARDS BUILDING
SFGB	SEISMIC INTERACTION
SI	SOLEETY INJECTION SYSTEM
SIS	SEISMIC MARGIN ASSESSMENT
SOV	SEISMIC PROBABILISTIC RISK ASSESSMENT
SMA	SEISMIC QUALITY UTILTY GROUP
SPRA	SYSTEM FOR ANALYSIS FOR SOIL STRUCTURE INTERACTION
SQUG	SQUARE-ROOT-OF-THE-SUM-OF-THE-SQUARES
SASSI	SEISMIC REVIEW TEAM
SRSS	SERVICE BUILDING
SRT	STRUCTURES, SYSTEMS, AND COMPONENTS STRUCTURE INTERACTION
SRV	SSCs

LIST OF ACRONYMS (CONTINUED)

SWS	SERVICE WATER SYSTEM
TDAFWP	TURBINE DRIVEN AUXILIARY FEED WATER PUMP
TH	TIME HISTORY
TRS	TEST RESPONSE SPECTRUM
TURB	TURBINE BUILDING
UHRS	UNIFORM HAZARD RESPONSE SPECTRA
USNRC	UNITED STATES NUCLEAR REGULATORY COMMISSION
VAC	VOLTAGE ALTERNATING CURRENT
VLVP	VALVE PIT
V_{S}	SHEAR WAVE VELOCITY

EXPEDITED SEISMIC EVALUATION PROCESS REPORT BEAVER VALLEY POWER STATION - UNIT 2

1.0 PURPOSE AND OBJECTIVE

Following the accident at the Fukushima Dai-ichi Nuclear Power Plant (NPP) resulting from the March 11, 2011, Great Tohoku Earthquake, and subsequent tsunami, the Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) to conduct a systematic review of NRC processes and regulations and to determine if the agency should make additional improvements to its regulatory system. The NTTF developed a set of recommendations intended to clarify and strengthen the regulatory framework for protection against natural phenomena. Subsequently, the NRC issued a 50.54(f) letter on March 12, 2012 [1], requesting information to assure that these recommendations are addressed by all United States (U.S.) NPPs. The 50.54(f) letter requests that licensees and holders of construction permits under 10 CFR Part 50 reevaluate the seismic hazards at their sites against present-day NRC requirements and guidance. Depending on the comparison between the reevaluated seismic hazard and the current design basis, further risk assessment may be required. Assessment approaches acceptable to the staff include a Seismic Probabilistic Risk Assessment (SPRA), or a Seismic Margin Assessment (SMA). Based upon the assessment results, the NRC staff will determine whether additional regulatory actions are necessary.

This Report describes the Expedited Seismic Evaluation Process (ESEP) undertaken for Beaver Valley Power Station - Unit 2 (BVPS-2). The intent of the ESEP is to perform an interim action in response to the NRC's 50.54(f) letter [1] to demonstrate seismic margin through a review of a subset of the plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events.

The ESEP is implemented using the methodologies in the NRC endorsed guidance in Electric Power Research Institute (EPRI) 3002000704 [2].

The objective of this Report is to provide summary information describing the ESEP evaluations and results. The level of detail provided in the Report is intended to enable NRC to understand the inputs used, the evaluations performed, and the decisions made as a result of the interim evaluations.

2.0 BRIEF SUMMARY OF THE FLEX SEISMIC IMPLEMENTATION STRATEGIES

Abstract

The Beaver Valley Power Station (BVPS) FLEX strategies for Reactor Core Cooling and Heat Removal, Reactor Inventory Control/Long-term Subcriticality, and Containment Function are summarized below. This summary is derived from the BVPS Overall Integrated Plan (OIP) in response to the March 12, 2012 Commission Order EA-12-049 [17].

During Phase 1, Reactor Core Cooling and Heat Removal is accomplished via steam release from the steam generators with make-up supplied via the Auxiliary Feed Water System (AFW). The primary plant demineralized water storage tank (PPDWST), Turbine Driven Auxiliary Feed Water pump(TDAFWP) and all needed flow paths for feeding steam generators and the flow paths for steam release from the steam generators and steam supply to the TDAFW pump are protected from all hazards. AFW Flow Control Valves and Atmospheric Steam Dump Valves (ASDV) are controlled locally and do not need electricity or air for local control.

During Phase 2, cooling water make-up to the PPDWST is via a FLEX portable pump, with suction from the Ohio River. Make-up water is supplied directly to the PPDWST via a new FLEX connection point.

The same Reactor Core Cooling and Heat Removal strategy applies for Phase 3, except that water purification equipment from the National SAFER Response Center is used to purify the make-up water to the PPDWST.

Reactor Inventory Control is maintained through the use of low leakage reactor coolant pump (RCP) seals. Other than installation of the seals, there are no required plant modifications. With low leakage seals, make-up to the reactor coolant system (RCS) is not required during Phase 1.

During Phase 2, Reactor Inventory Control/Long-term Subcriticality is maintained by pumping borated water from the Boric Acid Storage Tanks (BAST) to the RCS using a FLEX high pressure portable pump and new FLEX connection points at the BASTs and downstream of the Charging Pumps.

The same Reactor Inventory Control/Long-term Subcriticality strategy applies for Phase 3, except National SAFER Response Center equipment is used to mix borated water to replace the contents of the BASTs.

Key parameters are available in the control room and communications will be available between the control room and operators that are controlling the valves locally. Electrical components required to maintain the key parameter indication during Phase 1 include the installed safety related batteries, inverters, vital Alternating Current (AC) \& Direct Current (DC) buses, instrument racks and control room indicators that are needed for monitoring key reactor parameters in the control room. A load shed strategy is employed to increase the battery life.

During Phase 2, a FLEX portable generator supplies power to the battery chargers through a new FLEX connection point to maintain key parameter indication. The generator back feeds power through the safety related 480 Voltage Alternating Current (VAC) electrical distribution system to the battery chargers.

There are no FLEX actions needed to maintain containment integrity. Low leakage RCP Seals minimize the energy input into containment from the RCS. Containment pressure remains less than 5 pounds per square inch gauge (psig) after 7 days post event. Containment temperature and pressure are addressed in recovery actions.

3.0 EQUIPMENT SELECTION PROCESS AND ESEL

3.1 Equipment Selection Process and ESEL

The selection of equipment to be included on the Expedited Seismic Equipment List (ESEL) was based on installed plant equipment credited in the FLEX strategies during Phases 1, 2, and 3 mitigation of a Beyond Design Basis External Event (BDBEE), as outlined in the BVPS OIP in Response to the March 12, 2012, Commission Order EA-12-049 [17]. The OIP provides the BVPS FLEX mitigation strategy and serves as the basis for equipment selected for the ESEP.

The scope of "installed plant equipment" includes equipment relied upon for the FLEX strategies to sustain the critical functions of core cooling and containment integrity consistent with the BVPS OIP [17]. FLEX recovery actions are excluded from the ESEP scope per EPRI 3002000704 [2]. The overall list of planned FLEX modifications and the scope for consideration herein is limited to those required to support core cooling, reactor coolant inventory and subcriticality, and containment integrity functions. Portable and pre-staged FLEX equipment (not permanently installed) are excluded from the ESEL per EPRI 3002000704 [2].

The ESEL component selection followed the EPRI guidance outlined in Section 3.2 of EPRI 3002000704.

1. The scope of components is limited to that required to accomplish the core cooling and containment safety functions identified in Table 3-2 of EPRI 3002000704. The instrumentation monitoring requirements for core cooling/containment safety functions are limited to those outlined in the EPRI 3002000704 guidance, and are a subset of those outlined in the BVPS OIP [17].
2. The scope of components is limited to installed plant equipment and FLEX connections necessary to implement the BVPS OIP [17] as described in Section 2.0.
3. The scope of components assumes the credited FLEX connection modifications are implemented, and are limited to those required to support a single FLEX success path; i.e., either "Primary" or "Back-up/Alternate".
4. The "Primary" FLEX success path is to be specified. Selection of the "Back-up/Alternate" FLEX success path must be justified.
5. Phase 3 coping strategies are included in the ESEP scope, whereas recovery strategies are excluded.
6. Structures, systems, and components (SSC) excluded per the EPRI 3002000704 [2] guidance are:

- Structures (e.g., Containment, Reactor Building [RB], Control Building [CNTB], Auxiliary Building [AUX], etc.).
- Piping, cabling, conduit, heating, ventilation, and air-conditioning (HVAC), and their supports.
- Manual valves and rupture disks.
- Power-operated valves not required to change state as part of the FLEX mitigation strategies.
- Nuclear steam supply system components (e.g., reactor pressure vessel and internals, RCPs, and seals, etc.).

7. For cases in which neither train was specified as a primary or back-up strategy, then only one train component (generally ' A ' train) is included in the ESEL.

3.1.1 ESEL Development

The ESEL was developed by reviewing the BVPS OIP [17] to determine the major equipment involved in the FLEX strategies. Further reviews of plant drawings (e.g., Process and Instrumentation Diagrams [P\&ID] and Electrical One-Line Diagrams) were performed to identify the boundaries of the flowpaths to be used in the FLEX strategies and to identify specific components in the flowpaths needed to support implementation of the FLEX strategies. Boundaries were established at an electrical or mechanical isolation device (e.g., isolation amplifier, valve, etc.) in branch circuits / branch lines off the defined strategy electrical or fluid flowpath. P\&IDs were the primary reference documents used to identify mechanical components and instrumentation. The flow paths used for FLEX strategies were selected and specific components were identified using detailed equipment and instrument drawings, piping isometrics, electrical schematics and one-line drawings, system descriptions, design basis, and documents, etc., as necessary.

3.1.2 Power-Operated Valves

Page 3-3 of EPRI 3002000704 [2] notes that power-operated valves not required to change state are excluded from the ESEL. Page 3-2 also notes that "functional failure modes of electrical and mechanical portions of the installed Phase 1 equipment should be considered (e.g., reactor core isolation cooling [RCIC]/AFW trips)." To address this concern, the following guidance is applied in the BVPS ESEL for functional failure modes associated with power-operated valves:

- Power-operated valves that remain energized during the Extended Loss of all Alternating Current Power (ELAP) events (such as DC powered valves), were included on the ESEL.
- Power-operated valves not required to change state as part of the FLEX mitigation strategies were included on the ESEL, but indicated as screening out of evaluation. The seismic event also causes the ELAP event; therefore, the valves are incapable of spurious operation as they would be de-energized.
- Power-operated valves not required to change state as part of the FLEX mitigation strategies during Phase 1, and are re-energized and operated during subsequent Phases 2 and 3 strategies, were not evaluated for spurious valve operation as the seismic event that caused the ELAP has passed before the valves are re-powered.

3.1.3 Pull Boxes

Pull boxes were deemed unnecessary to add to the ESELs, as these components provide completely passive locations for pulling or installing cables. No breaks or connections in the cabling are included in pull boxes. Pull boxes were considered part of conduit and cabling, which are excluded in accordance with EPRI 3002000704 [2].

3.1.4 Termination Cabinets

Termination cabinets, including cabinets necessary for FLEX Phase 2 and Phase 3 connections, provide consolidated locations for permanently connecting multiple cables. The termination cabinets and the internal connections provide a completely passive function; however, the cabinets are included in the ESEL to ensure industry knowledge on panel/anchorage failure vulnerabilities is addressed.

3.1.5 Critical Instrumentation Indicators

Critical indicators and recorders are typically physically located on panels/cabinets and are included as separate components; however, seismic evaluation of the instrument indication may be included in the panel/cabinet seismic evaluation (rule-of-the-box).

3.1.6 Phase 2 and Phase 3 Piping Connections

Item 2 in Section 3.1 above notes that the scope of equipment in the ESEL includes "... FLEX connections necessary to implement the BVPS OIP [17] as described in Section 2." Item 3 in Section 3.1 also notes that "The scope of components assumes the credited FLEX connection modifications are implemented, and are limited to those required to support a single FLEX success path (i.e., either "Primary" or "Back-up/Alternate")."

Item 6 in Section 3.0 above goes on to explain that "piping, cabling, conduit, HVAC, and their supports" are excluded from the ESEL scope in accordance with EPRI 3002000704 [2].

Therefore, piping and pipe supports associated with FLEX Phase 2 and Phase 3 connections are excluded from the scope of the ESEP evaluation. However, any active valves in FLEX Phase 2 and Phase 3 connection flow path are included in the ESEL.

4.0 GROUND MOTION RESPONSE SPECTRUM

4.1 Plot of GMRS Submitted by the Licensee

The BVPS-2 major structures are founded in the Pleistocene Terrace deposits or on compacted granular structural backfill at foundation elevations varying between 681 feet (ft) for the RB to 725 ft for the Service Building (SRV). The design basis analysis applies the safe shutdown earthquake (SSE) ground motion at the respective building foundations. Therefore, the SSE, and the ground motion response spectra (GMRS), control point elevation is taken to be at the base of the RCBX, elevation (EL) 681. The bedrock immediately underlying the RCBX foundation (EL 561) is characterized by shear wave velocities (V_{S}) of about 5,000 feet per second (ft / s).

Figure 4-1 presents the GMRS at the control point EL 681 and compares this to the GMRS reported in the BVPS-2 March 2014 submittal [3]. The difference is attributed to:

1. The material damping used for the rock material over the upper 500 ft . While the GMRS, reported in the March 2014, submittal is based on the low strain damping of 3.2 percent over a 500 -foot depth of bedrock, the GMRS used in the BV-2 SPRA limits this damping value to the upper 100 ft where the rock is considered as weathered or fractured. Within the depth range of 100 ft to 500 ft , a damping of 1 percent is used based on the unweathered shale dynamic properties from Stokoe et al., [14]. Below a depth of 500 ft , linear material behavior is adopted with the damping value of 0.5 percent is specified consistent with the kappa estimate for the Site.
2. The subsurface profile used in the site amplification analysis. While the GMRS, reported in the March 2014, submittal is based on a profile which extends from the bottom of the RCBX foundation to at depth hard rock, the GMRS used in the SPRA develops from the analysis of the full soil column to plant grade, subsequently truncated to the RB foundation level, in accordance with ISG-17 [18].

Table 4-1 presents the spectral accelerations at selected frequencies defining the GMRS used in the ESEP. The development of this GMRS is more fully described in [3]. This GMRS is also being utilized as basis to obtain fragilities in support of the on-going SPRA. Because the GMRS defines the ground motion at the RCBX foundation, it is also called the RCBX foundation input response spectrum (FIRS).

FIGURE 4-1
COMPARISON BETWEEN GMRS AT CONTROL POINT REPORTED IN SPID MARCH 2014 SUBMITTAL AND GMRS USED IN BVPS-2 SPRA PROJECT

TABLE 4-1
UHRS AND GMRS USED IN BVPS-2 SPRA, EL 681

FREQUENCY (Hz)	Horizontal Spectral Acceleration (g) at the Foundation Elevation		
	1×10^{-4} MAFE UHRS	1×10^{-5} MAFE UHRS	GMRS
0.10	0.0027	0.0069	0.0034
0.13	0.0039	0.0098	0.0049
0.16	0.0057	0.0143	0.0071
0.20	0.0087	0.0213	0.0107
0.26	0.0136	0.0325	0.0164
0.33	0.0206	0.0481	0.0244
0.42	0.0289	0.0653	0.0333
0.50	0.0359	0.0792	0.0406
0.53	0.0357	0.0793	0.0406
0.67	0.0370	0.0833	0.0425
0.85	0.0464	0.1073	0.0544
1.00	0.0539	0.1252	0.0635
1.08	0.0577	0.1368	0.0691
1.37	0.0675	0.1729	0.0859
1.74	0.0825	0.2309	0.1128
2.21	0.1104	0.3432	0.1641
2.50	0.1296	0.4307	0.2033
2.81	0.1642	0.5745	0.2683
3.56	0.2793	0.9716	0.4543

TABLE 4-1
UHRS AND GMRS USED IN BVPS-2 SPRA, EL 681
(CONTINUED)

FREQUENCY (Hz)	HORIZONTAL SPECTRAL ACCELERATION (g) AT THE FOUNDATION ELEVATION		
	$\mathbf{1 x 1 0}^{-4}$ MAFE UHRS	$\mathbf{1 x 1 0}^{-5}$ MAFE UHRS	GMRS
4.52	0.4214	1.2647	0.6091
5.00	0.4476	1.2715	0.6191
5.74	0.4380	1.2228	0.5975
7.28	0.3789	1.1069	0.5360
9.24	0.3272	1.1010	0.5182
10.00	0.3340	1.1760	0.5486
11.72	0.3720	1.2420	0.5855
14.87	0.3887	1.1434	0.5529
18.87	0.3559	1.0245	0.4975
23.95	0.2994	0.8556	0.4161
25.00	0.2891	0.8365	0.4058
30.39	0.2709	0.7571	0.3699
38.57	0.2506	0.6773	0.3331
48.94	0.2357	0.6196	0.3064
62.10	0.2136	0.5531	0.2743
78.80	0.1871	0.4879	0.2417
100.00	0.1765	0.4841	0.2374

Note:
MAFE = mean annual frequency of exceedance.

4.2 COMPARISON TO SSE

Figure 4-2 compares the GMRS with the Site SSE at the control point elevation. The SSE horizontal spectrum is characterized by a peak ground acceleration (PGA) of 0.125 acceleration of gravity (g) and a shape derived from the five percent-damped average response spectra of several acceleration records. This shape is similar to that suggested by Newmark, et al., [12]. The comparison presented on Figure 4-2 illustrates that the maximum ratio of spectral accelerations (GMRS/SSE) is about 2.8 at about $10 \mathrm{Hertz}(\mathrm{Hz})$.

TABLE 4-2
SSE HORIZONTAL GROUND MOTION RESPONSE SPECTRUM FOR BVPS-2

Frequency $[\mathbf{H z}]$	Spectral ACCELERATION $[\mathbf{g}]$
0.20	0.012
0.50	0.076
2.00	0.325
6.00	0.325
20.00	0.125
100.00	0.125

FIGURE 4-2
COMPARISON OF GMRS AND SSE AT CONTROL POINT ELEVATION

5.0 REVIEW LEVEL GROUND MOTION

5.1 DESCRIPTION OF RLGM SELECTED

The ESEP is being completed as part of the Augmented Approach because the GMRS exceed the SSE in the 1 Hz to 10 Hz range. The ESEP guidance (EPRI-3002000704) allows the use of the GMRS as the review level ground motion (RLGM) in lieu of using scaled SSE response spectrum to demonstrate acceptance of the high confidence low probability of failure (HCLPF) values for the ESEL components.

Because BVPS-2 is currently performing a SPRA, the fragilities developed in support are being used to the extent applicable also to accomplish the ESEP. The SPRA GMRS shown on Figure 4-1 represents the ground motion input used to obtain new seismic demand on the components on the ESEL, and to obtain HCLPF and fragilities for the ESEL components.
Table 4-1 presents the spectral accelerations at specific frequencies defining the RLGM.

5.2 METHOD TO ESTIMATE ISRS

The process for obtaining in-structure response spectra (ISRS) from the building seismic analysis incorporates the effects of soil structure interaction (SSI) on the seismic response of the building structures. SSI analysis employing the System for Analysis for Soil Structure Interaction (SASSI) code was performed for the buildings of the BVPS-2 because their foundation mat bears on native soils or on Class A Fill. The analytical model for the SSI analysis combines a horizontally layered representation of the subsurface soil column with a finite element (FE) representation of the structure.

Table 5-1 describes the elevations and V_{S} of the soil layers that were used to conduct the site response analysis by RIZZO Associates (RIZZO) [3]. This analysis developed strain compatible dynamic properties of the subsurface layers at the Beaver Valley Site, following the normalized curves listed in Table 5-2. These properties are used in the SSI analyses performed with the SASSI code.

TABLE 5-1
SUMMARY OF GEOTECHNICAL PROFILE DATA UNDERLYING THE BV SITE (REFERENCE [3])

ELEVATION (ft)	STRATA	DENSITY (pcf)	MEDIAN $\mathbf{V}_{\text {S (ft/s) }}$	COV $\mathbf{V}_{\mathbf{S}}$	MEDIAN TH (ft)
735	Structural Backfill	136	730	0.25	15.00
720	Structural Backfill	136	1,015	0.25	39.10
680.9	(1d) Pleistocene Upper and Lower Terrace	125	1,100	0.25	15.90
665	(1e) Pleistocene Upper and Lower Terrace	136	1,200	0.25	40.00
625	(2) M. Pennsylvanian Allegheny Shale	160	5,000	0.20	75.00
550	(3) L. Pennsylvanian Pottsville SS, Conglomerate	160	6,026	0.11	200.00
350	(4) U. Mississippian Mauch Chunk Shale	155	6,744	0.11	50.00
300	(5) L. Mississippian Pocono Sandst., Conglomerate	155	6,744	0.11	420.00
-120	(6a) U. Devonian Interbedded Shale, Sands, Siltstone	155	7,112	0.11	2874.00
-2994	(6b) U. Devonian Interbedded Shale, Sands, Siltstone	155	6,416	0.11	706.00
-3700	Half Space	168	9,200	-	-

TABLE 5-2
NORMALIZED STRAIN COMPATIBLE SHEAR MODULI AND DAMPING FOR SOIL UNITS AT THE BV SITE

STRAIN $(\%)$	STRUCTURAL BACKFILL		PLEISTOCENE UPPER AND LOWER TERRACE		PLEISTOCENE UPPER AND LOWER TERRACE	
	$\mathbf{G / G}_{\text {max }}$	DAMPING $\mathbf{(\%)}$	$\mathbf{G / G}_{\text {max }}$	$\mathbf{D A M P I N G ~}_{(\%)}^{(\%)}$ $\mathbf{G / G}_{\text {max }}$	DAMPING $\mathbf{(\%)}$	
0.0001	1.0000	1.49	1.0000	1.26	1.0000	1.02
0.000316	0.9968	1.57	0.9977	1.27	0.9982	1.05
0.00100	0.9707	1.84	0.9845	1.50	0.9925	1.26
0.0020	0.9415	2.30	0.9632	1.80	0.9812	1.48
0.00300	0.9123	2.77	0.9419	2.09	0.9699	1.71
0.0050	0.8663	3.41	0.9070	2.55	0.9412	2.03
0.0070	0.8216	4.05	0.8731	2.99	0.9119	2.35
0.0100	0.7545	5.02	0.8221	3.66	0.8680	2.83
0.0200	0.6419	7.00	0.7224	5.22	0.7805	4.08
0.0300	0.5292	8.98	0.6227	6.79	0.6929	5.33
0.0500	0.4486	10.89	0.5466	8.45	0.6170	6.78
0.0700	0.3772	12.57	0.4783	9.97	0.5475	8.14
0.1	0.2702	15.08	0.3760	12.25	0.4431	10.17
0.2	0.1961	18.11	0.2774	15.30	0.3399	12.95
0.3	0.1228	21.05	0.1789	18.34	0.2353	15.73
1	0.0392	26.60	0.0587	24.68	0.0895	22.67

Note:

$\mathrm{G} / \mathrm{G}_{\text {max }}=$ shear modulus (G) normalized by the low strain shear modulus $\left(\mathrm{G}_{\text {max }}\right)$.

A review of existing lumped-mass and stiffness models of the BVPS-2 structures concluded that these models were not sufficiently adequate to use as basis to scale the building seismic response. Therefore, the building seismic response used in the ESEP (and in the SPRA) is obtained using new FE models of the structures.

The analytical FE models developed here are based on geometric information, such as configuration of floors and walls, dimensions, wall and slab thicknesses, locations, and size of openings, etc., taken from appropriate structure layout drawings and details. The parametric information, such as the material properties, live loads, equipment loads, and boundary conditions are also obtained from drawings, existing reports, and prevalent codes and standards.

The response spectra at the respective foundation levels represent the foundation input ground motion. The seismic Category I structures that have been analyzed are supported at the different foundation depths. Although, the GMRS reported in [3] applies only to the RCBX, the horizontal FIRS were developed for other structures supported at the following elevations:

- EL 681 for the analysis of the RB
- EL 703 for the analyses of the AUX and the CNTB
- EL 713 for the analyses of the DGB, Main Steam Valve and Cable Vault Building (MSVCV), and Safeguards Building (SFGB)
- EL 723.5 for the analyses of the Fuel Decontamination Building (FDB) and SRV

The seismic response, including the ISRS for the BVPS-2 structures are developed utilizing the time history (TH) modal synthesis in which the input time histories (TH) represent the horizontal and vertical FIRS at the respective building foundation levels consistent with the GMRS described in Section 4.0.

ISRS at selected locations are obtained separately, due to three directions of input motion (X, Y, and Z). The resulting response spectra are then combined using the square-root-of-the-sum-of-the-squares (SRSS) method. For example, the three ISRS at a specific location in North-South (NS) direction resulting from ground motion input; respectively, in the NS, East-West (EW), and vertical directions are combined using SRSS.

Subsequently, equipment HCLPF calculations and fragility evaluations are performed based on the conservative deterministic failure margin (CDFM) approach. In accordance with EPRI 1019200 "Seismic Fragility Applications Guide Update" [19], the seismic analyses are performed using Best Estimate (BE) structure stiffness, mass and damping characteristics, and the BE subsurface V_{S} profile compatible with the expected seismic shear strains. The resulting ISRS approximately represent the 84th percentile response suitable for use in the CDFM calculations.

Details of the development of the models, inputs, analysis, and results are presented in ABSG Consulting Inc. (ABS Consulting) Report 2734294-R-012, Revision 1, 2014.

6.0 SEISMIC MARGIN EVALUATION APPROACH

6.1 Summary of Methodologies Used

The seismic margins for components on the ESEL [6] are developed following the EPRI guidelines described in EPRI 6041 [4], EPRI TR-103959 [5] (Methodology for Developing Seismic Fragilities) and EPRI 1002988 (Seismic Fragility Application Guide). Additionally, EPRI 1019200 [19] is used to develop margins using the CDFM approach.

The ESEL is first grouped to identify similar components relative to equipment classes (e.g., Generic Implementation Procedure [GIP]), and then sampled for representative items based on the type of equipment, manufacturer, location, and anchorage, etc. Representative samples in each equipment group are then evaluated to obtain the seismic margins using the EPRI guidelines.

The overall strategy for developing seismic margins for the various SSCs is as follows:

1. Perform screening verification walkdown to document that caveats associated to generic fragilities are met and perform anchorage calculations.
2. Develop the HCLPF capacities based on available experience data, published generic ruggedness spectra, design criteria documents, and design analysis.
3. Rank the components based on preliminary results.
4. Perform improved analysis of selected equipment.

A number of components on the ESEL are breakers and switches that are housed in a "parent" component, such as a motor control center (MCC) or switchgear. For the purposes of this evaluation, calculations are not explicitly performed for these housed components. Instead, their HCLPF is assigned based on the parent component.

Seismic walkdowns as described in EPRI NP 6041 [4] are performed for all "parent" components on the ESEL [6]. Some ESEL components were walked down in February 2013, in
support of SPRA, and these walkdowns were credited, where applicable. The remaining components were walked down in May 2014, during a plant refueling outage.

HCLPF calculations are performed for all "parent" components [6], as described in Section 6.3, which describes the CDFM approach, and the calculation of structural and functional capacities.

6.2 HCLPF Screening Process

No components were screened out based on ruggedness. Rather, the screening level HCLPFs provided in Table 2-4 of EPRI 6041 [4] were utilized to develop mounting level capacities. HCLPF values are then calculated for each component on the ESEL, as described in Section 6.3.

6.3 SEISMIC Walkdown Approach

6.3.1 Seismic Walkdown Approach

The seismic walkdowns of BVPS-2 were performed in accordance with the criteria provided in Section 5 of EPRI 3002000704 [2], which refers to EPRI NP-6041 [7] for the SMA process. The procedures used for different equipment categories are summarized below.

The Seismic Review Team (SRT) reviewed equipment on the equipment walkdown list that were reasonably accessible and in non-radioactive or moderately radioactive environments. For components in high radioactive environments, a smaller team, and more hurried reviews were employed. For components that were not accessible, the equipment inspection relied on alternate means, such as photographs and plant qualification documents.

In the event the walkdown team had a reasonable basis for assuming that a group of components were similar and similarly anchored, a single representative component out of this group was selected for examination. The similarity of a group of items was established based on equipment construction, dimensions, locations, seismic qualification requirement, anchorage type, and configurations. The "similarity basis" was planned to be confirmed during walk bys, which would also record anomalies in installation or presence of seismic interaction, if any. The representative item was targeted for a thorough review and documentation. All "representative" and "walk by" items were fully documented in Seismic Evaluation Work Sheets (SEWS).

The SRT performed the walkdowns in an ad hoc manner. For each representative component, the SRT performed a thorough inspection and recorded information related to anchorage, load path configuration, and any potential seismic vulnerability associated to the component seismic capacity. These details recorded in SEWS were subsequently used to verify as-built conditions and determine seismic fragilities.

The 100 percent "walk by" is to look for outliers, lack of similarity, anchorage which is different from that shown on drawings or prescribed in criteria for that component, potential SI [Seismic Interaction ${ }^{1}$] problems, situations that are at odds with the team members' past experience, and any other areas of serious seismic concern. If any such concerns surface, then the limited sample size of one component of each type for thorough inspection will have to be increased. The increase in sample size, which should be inspected, will depend upon the number of outliers and different anchorages, etc., which are observed. It is up to the SRT to ultimately select the sample size since they are the ones who are responsible for the seismic adequacy of all elements which they screen from the margin review.

Walk bys also serve to provide the SRT with the sufficient degree of confidence in relation to plant maintenance and construction practices. This is especially used to reinforce the engineering judgment applied for the fragility assessment of inaccessible components. However, in case questionable construction practices are observed in the SSCs, then the system or component class must be inspected in closer detail until the systematic deficiency is defined.

For each item on the equipment walkdown list, a specific SEWS was prepared covering the different caveats. Each SEWS consists of:

- General description of the equipment: Equipment ID, Name, Equipment Category, and Building/Floor/Room
- Equipment Evaluation Caveats

[^1]- Equipment Anchorage
- Seismic Interaction Issues

A database of SEWS was developed in an electronic format using iPad Computers to facilitate entry of the information collected during the walkdowns. The database includes the record of equipment qualifications, walkdown observations, and photographs.

6.3.2 Application of Previous Walkdown Information

Previous seismic walkdowns were used to support the ESEP seismic evaluations. Some of the components on the ESEL were included in the NTTF 2.3 seismic walkdowns [15] and SPRA seismic walkdowns [16]. Those walkdowns were recent enough that they did not need to be repeated for the ESEP.

6.3.3 Significant Walkdown Findings

Consistent with the guidance from NP-6041 [7], no significant outliers or anchorage concerns were identified during the BVPS-2 seismic walkdowns. The SRT did not identify any potential seismic vulnerabilities associated to any of the screened-in ESEL components in BVPS-2.

6.4 HCLPF CALCULATION PROCESS

ESEL items in the BVPS-2 were evaluated using the criteria in EPRI NP-6041 [4]. Those evaluations included the following steps:

- Performing seismic capability walkdowns for equipment to verify the installed plant conditions
- Performing screening evaluations using the screening tables in EPRI NP-6041 as described in Section 6.2
- Performing HCLPF calculations considering various failure modes that include both structural failure modes (e.g., anchorage, and load path, etc.) and functional failure modes

All HCLPF calculations were performed using the CDFM methodology and are documented in a BVPS-2 Reference [6].

6.4.1 CDFM Approach

HCLPF values for functionality and anchorage are calculated for each representative component selected from the ESEL. The functional HCLPF for equipment is based on experience data, Generic Equipment Ruggedness Data (GERS), test response data, and design criteria. The functional evaluation is supplemented with the verification of the equipment anchorage following Seismic Qualification Utility Group (SQUG)/GIP procedures. The seismic demand on the equipment is based on the floor response spectra near the equipment support location, and the component damping values as recommended in EPRI 6041 [4].

The CDFM approach described in EPRI 1019200 [19] is utilized to obtain the component HCLPF values. The HCLPF capacities are stated in terms of a selected ground motion PGA. The CDFM approach is consistent with EPRI NP-6041-SL [4], updated to accommodate the parameters presented in Table 6-I.

The screening level HCLPF values provided in EPRI 6041 [4] Table 2-4 are presented in terms of the 5 Hz spectral acceleration at the foundation level. In accordance with EPRI 1019200 [19] these values are used to develop mounting level capacity assuming a median structure amplification factor of 1.5 . The ISRS described in Section 4.2 are compared with this mounting level capacity to develop HCLPF associated with the GMRS shape. Anchorage checks are performed based on the spectral accelerations at the estimated equipment frequencies.

TABLE 6-1
SUMMARY OF CONSERVATIVE DETERMINISTIC FAILURE MARGIN APPROACH (EPRI 1019200, TABLE A.1)

TECHNICAL ISSUE	RECOMMENDED METHOD
Load Combination	Normal + SME.
Ground Response Spectrum	Anchor CDFM Capacity to defined response spectrum shape without consideration of spectral shape variability.
Seismic Demand	Perform seismic demand analysis in accordance with latest version of American Society of Civil Engineers (ASCE) 4.
Damping	Conservative estimate of median damping.
Structural Model	BE (Median) + Uncertainty Variation in Frequency.
Soil Structure Interaction	BE (Median) + Parameter Variation.
In-Structure (Floor) Spectra Generation	Use frequency shifting rather than peak broadening to account for uncertainty plus use conservative estimate of median damping.
Material Strength	Code specified minimum strength or 95\% exceedance actual strength if test data are available.
Static Strength	Code ultimate strength (ACI), maximum strength (AISC), Service Level D (ASME), or functional limits. If test data are available to demonstrate excessive conservatism of code equations then use 84\% exceedance of test data for strength equation.
Inelastic Energy	For non-brittle failure modes and linear analysis, use appropriate inelastic energy absorption factor from ASCE/SEI 43-05 to account for ductility benefits, or perform Aonlinear analysis and go to 95\% exceedance ductility levels.

6.4.2 Component Structural Capacity

In general, the CDFM approach:

1. Develops the elastic seismic response for the structures and components for the ground motion.
2. Develops strength margin factor using component capacities as described in Table 6-1.
3. Develops inelastic energy absorption factor based on ASCE 43-05 or at about the 95 percent exceedance probability of ductility levels.
4. Calculates the CDFM capacity as:
$H C L P F_{C D F M}=F_{S} \cdot F_{\mu} \cdot P G A$
(Equation 6-1)
where,
$F_{S}=$ Strength margin factor,
$F_{\mu}=$ Inelastic energy absorption factor

The strength margin factor is defined as:

$$
F_{S}=\frac{s-D_{n s}}{D_{s}}
$$

(Equation 6-2)
where,
$S=$ Strength of the structural element
$D_{n s}=$ Non-seismic demand (normal operating loads)
$D_{S}=$ Seismic demand

6.4.3 Functional Evaluations

The HCLPF capacities for functionality are based on the comparison of the demand (ISRS) with EPRI 6041 [4] screening level HCLPFs, existing analysis, GERS, or test response spectra.

The screening level HCLPF values provided in EPRI 6041 [4] Table 2-4 are presented in terms of the 5 Hz spectral acceleration at the foundation level. In accordance with EPRI 1019200 [19], these values are used to develop mounting level capacity assuming a median structure amplification factor of 1.5 . The ISRS described in Section 5.2 are compared with this mounting level capacity to develop HCLPF associated with the GMRS shape. Anchorage checks are performed based on the spectral accelerations at the estimated equipment frequencies.

Available plant specific seismic qualifications tests are biaxial and all of the published GERS are constructed on the basis of the results of previous biaxial tests of similar types of equipment.

These tests apply table input motion in one-horizontal direction and in the vertical direction. For most equipment, for which GERS are available, the vertical test response spectrum (TRS) are at least equal to the horizontal TRS. The published GERS define the horizontal component of the table motion, which is, therefore, taken to represent the capacity stated either in terms of the vertical or horizontal input.

The seismic demand on equipment, on the other hand, is typically defined by ISRS in three orthogonal directions, two horizontal and one vertical. The procedure used to develop the functional capacity compares the resultant horizontal and the vertical ISRS separately with the GERS or TRS. The minimum seismic margin is taken to obtain the functional HCLPF capacity.

6.5 Functional Evaluations of Relays

The only relays applicable to FLEX mitigating strategies are the relays that automatically start the TDAFWP. All other plant control is local at the component.

The relays deenergize Solenoid-Operated Valves (SOVs) that directly control the supply of steam to the TDAFWP. Since the Vital DC power system is safety related and seismic, the SOVs remain energized and closed until the relays signal the SOVs to open and admit steam to the TDAFWP. Therefore, these relays were included for analysis. Both the relays that actuate on undervoltage of the 4 KV busses that supply power to the normal main feed pumps and the relays that actuate on low steam generator water level were included for the AS/G only, as only one success path is required for this evaluation.

These relays are slave relays in the solid state protection system and have no lock out function. Additionally, manual control from the control room is available to the operators, which deenergizes the SOVs directly, without the need for any relays. Finally, if DC is lost, such that there is no control power available to the control room, the SOVs fail open, directly admitting steam to the TDAFWP.

6.6 Tabulated ESEL HCLPF Values (Including Key Failure Modes)

Attachment B tabulates the HCLPF values for all components on the ESEL. All HCLPF values exceed the RLGM. The Table in Attachment B also identifies the method used to develop the

HCLPF values and the controlling failure mode. Most of the controlling failure modes are either anchorage failure or loss of functionality and do not involve structural integrity.

7.0 INACCESSIBLE ITEMS

7.1 Identification of ESEL items inaccessible for walkdowns

A total of seven items in the ESEL were inaccessible during walkdowns, mainly due to their location in confined spaces and high radiation areas. Table 7-1 provides the description of the seven inaccessible components, the reason for their inaccessibility and the criteria implemented to confirm the installed condition and, therefore, evaluate their seismic fragility. The criteria implemented to confirm the installed condition follows EPRI NP 6041 [7], where a number of ways of confirming the installed condition of equipment, including follow up walkdowns, photographic or other confirmatory evidence is provided.

TABLE 7-1
SUMMARY OF INACCESSIBLE ITEMS IN BVPS-2 ESEL

COMPONENT ID	DESCRIPTION	REASON FOR INACCESSIBLE	RESOLUTION
BV-2NMS-NE31	Neutron Element - Source Range Neutron Monitor	High radiation area (RCBX EL 692)	Fragility is calculated based on design documentation and installation drawings [6].
BV-2RCS-TE01E	Incore Thermocouple	High radiation area (RCBX EL 692)	Fragility is calculated based on design documentation and installation drawings [6].
BV-2RCS-TE413	React Clnt Hot Leg LP 21	High radiation area (RCBX EL 732)	Fragility is calculated based on design documentation and installation drawings [6].
BV-2RCS-TE410	React Clnt Cold Leg LP 21 Temp Element	High radiation area (RCBX EL $732)$	Fragility is calculated based on design documentation and installation drawings [6].
BV-2FWS-LT474	Steam Generator $21 a ~ L e v e l ~$ Transmitter	High radiation area (RCBX EL $738)$	Fragility is calculated based on design documentation and installation drawings [6].
BV-2FWS-LT477	(2rcs*Sg21a) Wide Range Level Transmitter	High radiation area (RCBX EL 767)	Fragility is calculated based on design documentation and installation drawings [6].
BV-2CHS-E23	Regenerative Heat Exchanger	High radiation area (RCBX EL $718)$	Reviewed plant drawings to obtain information for structural/anchorage evaluation [6].

8.0 ESEP CONCLUSIONS AND RESULTS

The conclusions and results of the ESEP evaluation are presented in this Section, including the identification of any required plant modifications and schedules for any follow up actions.

8.1 SUPPORTING INFORMATION

BVPS-2 has performed the ESEP as an interim action in response to the NRC's 50.54(f) letter [1]. The ESEP demonstrates that BVPS-2 has additional seismic margin plant equipment that can be relied upon to protect the reactor core following a beyond design basis seismic event. It was performed using the methodologies in the NRC endorsed guidance in EPRI 3002000704 [2].

The ESEP provides an important demonstration of seismic margin and expedites plant safety enhancements through evaluations and potential near-term modifications of plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events.

The ESEP is part of the overall BVPS-2 response to the NRC's 50.54(f) letter [1]. On March 12, 2014, Nuclear Energy Institute (NEI) submitted to the NRC results of a study [7] of seismic core damage risk estimates based on updated seismic hazard information as it applies to operating nuclear reactors in the Central and Eastern United States (CEUS). The study concluded that "site-specific seismic hazards show that there has not been an overall increase in seismic risk for the fleet of U.S. plants," based on the reevaluated seismic hazards. As such, the "current seismic design of operating reactors continues to provide a safety margin to withstand potential earthquakes exceeding the seismic design basis."

The NRC's May 9, 2014, NTTF 2.1 Screening and Prioritization letter [9] concluded that the "fleetwide seismic risk estimates are consistent with the approach and results used in the Gl-199 safety/risk assessment." The letter also stated that "as a result, the staff has confirmed that the conclusions reached in Gl-199 safety/risk assessment remain valid and that the plants can continue to operate while additional evaluations are conducted."

An assessment of the change in seismic risk for BVPS-2 was included in the fleet risk evaluation submitted in the March 12, 2014, NEI letter [7], therefore, the conclusions in the NRC's May 9 letter [9] also apply to BVPS-2.

In addition, the March 12, 2014, NEI letter [7] provided an attached "Perspectives on the Seismic Capacity of Operating Plants," which (1) assessed a number of qualitative reasons why the design of SSCs inherently contain margin beyond their design level, (2) discussed industrial seismic experience databases of performance of industry facility components similar to nuclear SSCs, and (3) discussed earthquake experience at operating plants.

The fleet of currently operating NPPS was designed using conservative practices, such that the plants have significant margin to withstand large ground motions safely. This has been borne out for those plants that have actually experienced significant earthquakes. The seismic design process has inherent (and intentional) conservatisms which result in significant seismic margins within SSCs. These conservatisms are reflected in several key aspects of the seismic design process, including:

- Safety factors applied in design calculations
- Damping values used in dynamic analysis of SSCs
- Bounding synthetic THs for ISRS calculations
- Broadening criteria for ISRS
- Response spectra enveloping criteria typically used in SSCs analysis and testing applications
- Response spectra based frequency domain analysis rather than explicit TH based time domain analysis
- Bounding requirements in codes and standards
- Use of minimum strength requirements of structural components (concrete and steel)
- Bounding testing requirements
- Ductile behavior of the primary materials (that is, not crediting the additional capacity of materials, such as steel and reinforced concrete beyond the essentially elastic range, etc.)

These design practices combine to result in margins, such that the SSCs will continue to fulfill their functions at ground motions well above the SSE.

The intent of the ESEP is to perform an interim action in response to the NRC's 50.54(f) letter [1] to demonstrate seismic margin through a review of a subset of the plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events. Because the SPRA for BVPS-2 is already under way, the GMRS used in the SPRA is also used as the RLGM for the ESEP evaluation. To more fully characterize the risk impacts of the seismic ground motion represented by the GMRS on a plant specific basis, a more detailed seismic risk assessment (SPRA or risk-based SMA) is being performed in accordance with EPRI 1025287 [10]. As identified in the BVPS-2 Seismic Hazard and GMRS submittal [3], BVPS-2 screens in for a risk evaluation. The complete risk evaluation will more completely characterize the probabilistic seismic ground motion input into the plant, the plant response to that probabilistic seismic ground motion input, and the resulting plant risk characterization. BVPS-2 will complete that evaluation in accordance with the schedule identified in NEI's letter dated April 9, 2013, [8] and endorsed by the NRC in their May 7, 2013 letter [11].

8.2 Identification of Planned Modifications

As discussed in Section 6.6 and presented in Attachment B, all components on the ESEL have a HCLPF greater than the RLGM $(0.24 \mathrm{~g})$. Therefore, no modifications related to the ESEP are planned.

8.3 Modification Implementation Schedule

As no modifications are planned, this Section is not applicable.

8.4 Summary of Regulatory Commitments

None

9.0 REFERENCES

1. NRC (E Leeds and M Johnson) Letter to All Power Reactor Licensees et al., "Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3 and 9.3 of the Near-Term Task Force Review of Insights from the Fukushima Dai-Ichi Accident," March 12, 2012.
2. EPRI, Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1 - Seismic, Palo Alto, California: May 2013, 3002000704.
3. ABS Consulting and Rizzo Associates, "Probabilistic Seismic Hazard Analysis and Foundation Input Response Spectra Beaver Valley Power Station Seismic Probabilistic Risk Assessment Project," 2734294-R-003 (RIZZO R3 12-4735), Revision 1, October 31, 2014.
4. EPRI, "A Methodology for Assessment of Nuclear Power Plant Seismic Margin," EPRI NP-6041-SL, Revision 1, Palo Alto, California, August 1991.
5. EPRI, "Methodology for Developing Seismic Fragilities," EPRI TR-103959, June 1994.
6. ABS Consulting and Rizzo Associates, "BVPS-2 Seismic Fragility of ESEP

Components," Calculation 2734294-C-502/12-4735-C-502, Revision 1, 2014.
7. Nuclear Energy Institute, A. Pietrangelo, Letter to D. Skeen of the USNRC, "Seismic Core Damage Risk Estimates Using the Updated Seismic Hazards for the Operating Nuclear Plants in the Central and Eastern United States," March 12, 2014.
8. Nuclear Energy Institute, A. Pietrangelo, Letter to D. Skeen of the USNRC, "Proposed Path Forward for NTTF Recommendation 2.1: Seismic Reevaluations," April 9, 2013.
9. Nuclear Regulatory Commission, NRC (E Leeds) Letter to All Power Reactor Licensees et al., "Screening and Prioritization Results Regarding Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(F) Regarding Seismic Hazard Re-Evaluations for Recommendation 2.1 of the Near-Term Task Force Review of Insights From the Fukushima Dai-Ichi Accident," May 9, 2014.
10. EPRI, "Seismic Evaluation Guidance: Screening, Prioritization, and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic," Palo Alto, CA: February 2013, 1025287, 2013.
11. Nuclear Regulatory Commission, NRC (E Leeds) Letter to NEI (J Pollock), "Electric Power Research Institute Final Draft Report Xxxxxx, "Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force

Recommendation 2.1: Seismic," as an Acceptable Alternative to the March 12, 2012, Information Request for Seismic Reevaluations," May 7, 2013.
12. Newmark, N.M and W. J Hall 1969, "Seismic Design Criteria for Nuclear Reactor Facilities," Proc. World Conf. Earthquake Eng., $4^{\text {th }}$, Santiago, Chile, 1969.
13. Nuclear Regulatory Commission, Regulatory Guide 1.92, "Combining Modal Responses and Spatial Components in Seismic Response Analysis," July 2006.
14. Stokoe, K. H., W. K. Choi, and F-Y Menq, 2003, "Summary Report: Dynamic Laboratory Tests: Unweathered and Weathered Shale Proposed Site of Building 9720-82 Y-12 National Security Complex, Oak Ridge, Tennessee," Department of Civil Engineering, The University of Texas at Austin, Austin, Texas, 2003.
15. ABS Consulting and Paul C. Rizzo Associates, Inc., "Beaver Valley Power Station Unit 2 Near Term Task Force 2.3 Seismic Walkdown Report," 2734294-R-008 (RIZZO R5 12-4736), Revision 1, September 4, 2013.
16. ABS Consulting and Rizzo Associates, "Seismic Walkdown of Beaver Valley Unit 2 Nuclear Power Station Seismic PRA Project," 2734294-R-011 (RIZZO R6 12-4736), Revision 1, 2014.
17. BVPS Overall Integrated Plan (OIP) in Response to the March 12, 2012, Commission Order EA-12-049, FirstEnergy Corp., Letter No. L-14-25, "FirstEnergy Nuclear Operating Company's Third Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049) (TAC Nos. MF0841, MF0842, MF0961, and MF0962)," dated August 28, 2014.
18. U.S. Nuclear Regulatory Commission, "Interim Staff Guidance on Ensuring Hazard-Consistent Seismic Input for Site Response and Soil Structure Interaction Analyses" DC/COL-ISG-017, Washington, D.C., March 2010.
19. Electric Power Research Institute, "Seismic Fragility Applications Guide Update," EPRI Report 1019200, Palo Alto, CA, December 2009.

ATTACHMENT A:

EXPEDITED SEISMIC EQUIPMENT LIST

ESEL ITEM \#	Functional Location	DESCRIPTION	NORMAL Position	Desired Position	Screene D In?	Reason Not Screened In	BUILDING	Elevation/ ROOM									
FLEX Phase 1																	
Core Cooling, Demineralized Water to S/G VIA 2FWE-P22																	
1	$\begin{gathered} \hline \text { BV-2FWE- } \\ \text { TK210 } \\ \hline \end{gathered}$	PRIMARY PLANT DEMIN WATER STORAGE TANK	STBY	IN SVC	Y		PDWS	735									
2	BV-2FWE-109	PRIMARY DWST TO (2FWE*P22) ISOLATION	OPEN	OPEN	N	$\begin{aligned} & \text { MANUAL } \\ & \text { VALVE } \\ & \hline \end{aligned}$	PDWS	735									
3	BV-2FWE-93	(2FWE*P22) SUPPLY FROM PRIMARY DWST	OPEN	OPEN	N	$\begin{aligned} & \text { MANUAL } \\ & \text { VALVE } \end{aligned}$	SFGB	718									
4	BV-2FWE-P22	AUX FEED PUMP TURBINE DRIVEN	STBY	IN SVC	Y		SFGB	718									
5	$\begin{aligned} & \text { BV-2FWE- } \\ & \text { FCV122 } \end{aligned}$	(2FWE*P22) DISCHARGE CHECK AND RECIRCULATING VALVE	OPEN	OPEN	Y		SFGB	718									
6	BV-2FWE-36	(2FWE*P22) 'A`HEADER DISCH ISOLATION & OPEN & OPEN & N & \[\begin{aligned} & \hline \text { MANUAL } \\ & \text { VALVE } \\ & \hline \end{aligned} \] & SFGB & 718 \\ \hline 7 & \[\begin{aligned} & \text { BV-2FWE- } \\ & \text { HCV100E } \end{aligned} \] & 21A SG AFW THROTTLE VLV & OPEN & OPEN & N & VALVE DOES NOT INITIALLY CHANGE POSITION & SFGB & 741 \\ \hline 8 & BV-2FWE-42A & AUX FEED CHECK`A`HEADER TO SG`A	N/A	N/A	N	CHECK VALVE	SFGB	741									
9	$\begin{gathered} \hline \text { BV-2FWE- } \\ \text { FE100A } \end{gathered}$	STEAM GENERATOR A AUX FEED LINE FLOW ELEMENT	N/A	N/A	N	PIPING ELEMENT											
10	$\begin{gathered} \text { BV-2FWE- } \\ \text { FE101A } \end{gathered}$	300 GPM FLOW ELEMENT	N/A	N/A	N	PIPING ELEMENT	SFGB	737									
11	BV-2FWE-99	AUX FEED TO SG `A' CHECK	N/A	N/A	N	CHECK VALVE	RCBX	767									
Core Cooling, Steam from S/G to Atmosphere (Operator Local Operation)																	
12	$\begin{gathered} \text { BV-2RCS- } \\ \text { SG21A } \end{gathered}$	STEAM GENERATOR LOOP A	IN SVC	IN SVC	N	NSSS COMPONENT	RCBX	718									
13	BV-2SVS-23	(2SVS*PCV101A) ISOL	OPEN	OPEN	N	$\begin{aligned} & \text { MANUAL } \\ & \text { VALVE } \\ & \hline \end{aligned}$	MSVCV	797									
14	$\begin{aligned} & \hline \text { BV-2SVS- } \\ & \text { PCV101A } \\ & \hline \end{aligned}$	21A STEAM GENERATOR ATMOS STM DUMP VALVE	STBY	IN SVC	Y		MSVCV	797									
15	$\begin{aligned} & \text { BV-2SVS- } \\ & \text { PCV101A- } \\ & \text { MOTOR } \end{aligned}$	21A STEAM GENERATOR ATMOS STM DUMP VAL	STBY	IN SVC	Y		MSVCV	797									
	$\stackrel{\text { ® }}{ }$	$\stackrel{N}{2}$	$\stackrel{\text { ® }}{ }$	人̀	ล̀	ล̀	$\stackrel{N}{2}$		$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\underset{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	\cdots
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
	$\begin{aligned} & u \\ & i \\ & i \end{aligned}$	$\begin{aligned} & u \\ & i \\ & i \end{aligned}$	$\begin{aligned} & 3 \\ & i \\ & i \end{aligned}$	$\begin{aligned} & 3 \\ & \vdots \\ & \sum \\ & \sum \end{aligned}$	$\begin{aligned} & > \\ & \vdots \\ & \sum \\ & \sum \end{aligned}$	$\begin{aligned} & \lambda \\ & \vdots \\ & \sum \\ & \Sigma \end{aligned}$	$\begin{aligned} & \text { B } \\ & i \\ & \text { n } \end{aligned}$		$\begin{aligned} & > \\ & \vdots \\ & \vdots \\ & \sum \end{aligned}$	$\begin{aligned} & \lambda \\ & \lambda \\ & \sum \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & i \\ & i \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & \sum \\ & \sum \end{aligned}$	$\begin{aligned} & \lambda \\ & i \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \omega \\ & \omega \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { 岕 } \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
													$\begin{aligned} & \text { M } \\ & \text { 岩 } \\ & 2 \\ & \text { u } \\ & \text { M } \end{aligned}$				
	\rangle	$>$	\rangle	z	z	z	z	$\left\|\begin{array}{c} \tilde{N} \\ \underset{i}{a} \end{array}\right\|$	Z	$>$	λ	Z	z	$>$	$>$	λ	λ
	$\begin{aligned} & u \\ & i \\ & z \\ & z \end{aligned}$	$\stackrel{\varangle}{Z}$	$\begin{aligned} & u \\ & \vdots \\ & \text { z } \end{aligned}$	$\stackrel{\grave{\omega}}{\omega}$	$\stackrel{i}{\infty}$	$\frac{\grave{\omega}}{\omega}$	$\stackrel{\vdots}{e}$		$\begin{aligned} & \text { Z } \\ & \stackrel{2}{0} \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { ? } \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { ~ } \end{aligned}$	\overleftrightarrow{Z}	$\stackrel{\longleftarrow}{z}$	$\begin{aligned} & u \\ & i \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & 0 \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$
	$\frac{\grave{\sim}}{\frac{\omega}{n}}$	\overleftrightarrow{Z}	$\stackrel{\sim}{\omega}$	$\stackrel{\vdots}{\omega}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{i}{\infty}$	$\stackrel{\nu}{\infty}$		$\frac{7}{4}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\mathbb{Z}	$\stackrel{\varangle}{z}$	$\stackrel{\sim}{\infty}$	$\stackrel{\Gamma}{\omega}$	$\stackrel{\vdots}{\infty} \underset{\omega}{\omega}$	号
															\square		
			$\begin{aligned} & n \\ & n \\ & n \\ & \lambda_{N} \\ & \vdots \\ & i \\ & i \\ & i \\ & \infty \\ & n \end{aligned}$		$\left\lvert\, \begin{array}{ll} n & < \\ \sum_{N} & \vdots \\ n & 0 \\ 1 & s \\ m & n \end{array}\right.$				$\begin{aligned} & n \\ & n_{n}^{n} \\ & \sum_{n}^{N} \\ & i \end{aligned}$	$\begin{aligned} & \text { is } \\ & \sum_{N}^{\omega} 0 \\ & i \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { ne } \\ & \sum_{N}^{n} 0 \\ & i \\ & i \\ & i=0 \end{aligned}$	$\begin{aligned} & \text { Ò } \\ & \text { ஸ̀ } \\ & \sum_{N}^{N} \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \circ \\ & \frac{0}{n} \\ & n \\ & \lambda_{n}^{n} \\ & N \\ & i \end{aligned}$			$$	$\begin{aligned} & \vec{\sim} \\ & \underset{\sim}{n} \\ & \tilde{n} \\ & \underset{\sim}{c} \\ & 1 \end{aligned}$
	\bigcirc	N	$\stackrel{\infty}{\sim}$	Ω	은	$\bar{\sim}$	N		\cdots	$\underset{\sim}{*}$	\cdots	$\stackrel{\sim}{\sim}$	N	$\stackrel{\infty}{\sim}$	స	¢	m
		－				$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{n}$	\cdots		$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{n}$		
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:		
岛		$\begin{aligned} & x \\ & \infty \\ & \infty \\ & \sim \end{aligned}$	$\frac{̣}{E}$	${\underset{U}{3}}_{\substack{0}}$	\sum_{U}^{∞}	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{-}{尸} \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{0}{E}$	$\stackrel{\bigoplus}{Z}$	$\frac{\bigoplus}{Z}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\bigoplus}{\ddot{0}}$	$\begin{aligned} & \underset{\sim}{x} \\ & 0 \\ & \propto \end{aligned}$	$\frac{\infty}{E}$		
		λ	$>$	Z	Z	Z	Z	z	z	z	z	z	Z	z	Z		
		$\begin{aligned} & U \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & b \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \text { z } \\ & Z \end{aligned}$	$\stackrel{\rightharpoonup}{e}$	$\begin{aligned} & u \\ & 3 \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \text { Z } \end{aligned}$	雉	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$		
		$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & z \\ & z \end{aligned}$ Z	$\begin{aligned} & u \\ & i \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { z } \end{aligned}$	$\stackrel{\grave{\sim}}{\omega}$	$\begin{aligned} & u \\ & \text { in } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { Z } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{m}{n} \end{aligned}$	$\begin{aligned} & u \\ & Z \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \\ & Z \end{aligned}$		
						$\begin{aligned} & \text { (2RCS*SG21A) WIDE RANGE } \\ & \text { LEVEL TRANSMITTER } \end{aligned}$					$\stackrel{\oplus}{\sim}$ 섬 学 2 Z O $\stackrel{3}{0}$ \sum 品 品 $\omega_{3} 3$						
					$\begin{aligned} & \sum_{n}^{n} \\ & \underset{\sim}{x} \underset{\sim}{y} \\ & i \end{aligned}$					$\begin{aligned} & \text { n } \\ & \text { d } \\ & \text { d } \\ & \text { id } \\ & \text { d } \end{aligned}$							
		N	m	m	\cdots	\cdots	－	$\stackrel{\infty}{\sim}$	$\stackrel{9}{m}$	\％	7	\％	$\stackrel{\text { \％}}{ }$	\％	$\underset{\sim}{\sim}$		
			$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{n}$	$\stackrel{\infty}{\sim}$	\cdots	\bigcirc	\cdots	$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\text { ¢ }}{\sim}$	\cdots		
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:		
O	$\underset{Z}{\bullet}$	$\stackrel{@}{\leftrightarrows}$	$\stackrel{\infty}{\underset{U}{4}}$	$\begin{aligned} & x \\ & \infty \\ & 0 \\ & \sim \end{aligned}$	$\stackrel{\oplus}{\underset{U}{e}}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\infty}{\underset{U}{4}}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{\mathscr{M}}{\leftrightarrows}$	$\begin{aligned} & \propto \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\underset{\sim}{\bullet}$	$\begin{aligned} & x \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \text { M } \end{aligned}$	$\stackrel{0}{\square}$		
	Z	Z	z	z	z	Z	z	z	z	Z	z	Z	z	z	z		
	$\begin{aligned} & U \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \text { in } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { B } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & b \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$		
	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \Delta \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \text { un } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & \text { z } \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \text { n } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & z \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { z } \end{aligned}$	U \vdots U Z		
						$$						$\begin{aligned} & \sum_{n}^{3} \\ & \underset{\sim}{w} \\ & \stackrel{\infty}{亡} \\ & i \end{aligned}$					
	\pm	大	$\stackrel{\infty}{+}$	ช	i	\bar{n}	N	\cdots	$\stackrel{ \pm}{n}$	\cdots	$\stackrel{\circ}{\sim}$	in	$\stackrel{\infty}{n}$	in	8		
	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	\cdots	－	$\stackrel{\infty}{*}$	\cdots	$\hat{8}$	$\stackrel{\infty}{\wedge}$		$\stackrel{\infty}{N}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\wedge}$				
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:			
呆	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\underset{\sim}{\bullet}$	$\begin{aligned} & \underset{\sim}{x} \\ & \text { n } \end{aligned}$	$\frac{\otimes}{2}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \overrightarrow{3} \\ & i \\ & \sum \end{aligned}$	$\stackrel{\oplus}{E}$	$\stackrel{\infty}{Z}$	$\begin{aligned} & 3 \\ & \vdots \\ & \sum \\ & \sum \end{aligned}$	$\stackrel{\oplus}{E}$	$\begin{aligned} & \text { z } \\ & \text { n } \\ & i \end{aligned}$	$\stackrel{H}{0}$	$\begin{aligned} & \vec{U} \\ & \sum \\ & \Sigma \end{aligned}$	$\stackrel{\sim}{E}$			
	Z	Z	Z	Z	Z	λ	λ	z	z	z	Z	Z	Z	Z			
	$\begin{aligned} & u \\ & u \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & i \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { Z } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\stackrel{\grave{\sim}}{\stackrel{\sim}{\omega}}$	$\begin{aligned} & u \\ & i \\ & n \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & 0 \\ & ⿱ 亠 幺 \\ & Z \end{aligned}$	$\stackrel{\nearrow}{n}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$			
$\begin{aligned} & \text { y } \\ & \sum_{2}^{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \text { un } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { n } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{gathered} \stackrel{\sim}{\infty} \\ \stackrel{n}{n} \end{gathered}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & \text { Z } \end{aligned}$	$\stackrel{\rightharpoonup}{\omega}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	u \vdots \vdots Z			
						$\begin{aligned} & \sum_{i}^{n} \underset{\sim}{i} \underset{\sim}{t} \\ & \underset{i}{1} \end{aligned}$	$\sum_{i=1}^{n} \underset{i}{i} \underset{A}{J}$	$$			$$	$\begin{aligned} & \sum_{N}^{n} \frac{\pi}{n} \\ & \lambda_{m}^{1} \\ & \hline \end{aligned}$		\sum_{n}^{∞}			
$\text { 商至 } \#$	$\bar{\square}$	N	O	G	$\mathfrak{6}$	\bigcirc	¢	$\stackrel{\infty}{\circ}$	8	\bigcirc	N	N	\cdots	̇			
$\begin{gathered} \hline \text { ESEL } \\ \text { ITEM } \\ \# \end{gathered}$	FUNCTIONAL Location	DESCRIPTION	NORMAL Position	DESIRED Position	Screene D In?	Reason Not Screened In	Building	Elevation/ Room									
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:									
75	$\begin{aligned} & \text { BV-2MSS- } \\ & \text { PT484 } \end{aligned}$	STEAM GENERATOR 21B DISCH STEAM PRESSURE TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	MSVCV	778									
76	$\begin{gathered} \text { BV-2MSS- } \\ \text { PI484 } \end{gathered}$	STEAM GEN 21B DISCHARGE STEAM PRESSURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB	735									
77	$\begin{gathered} \hline \text { BV-2MSS- } \\ \text { PT485 } \end{gathered}$	STEAM GENERATOR DISCH PRESSURE TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	MSVCV	778									
78	$\begin{gathered} \text { BV-2MSS- } \\ \text { PI485 } \end{gathered}$	STEAM GEN DISCH PRESSURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB										
79	$\begin{gathered} \text { BV-2MSS- } \\ \text { PI485A } \end{gathered}$	STEAM GEN DISCHARGE PRESSURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB										
80	$\begin{gathered} \text { BV-2MSS- } \\ \text { PT485F } \end{gathered}$	STEAM GENERATOR 2RCSSG21B STEAM PRESSURE TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	MSVCV	778									
81	$\begin{aligned} & \text { BV-2MSS- } \\ & \text { PI485F } \end{aligned}$	STEAM GENERATOR 21B DISCHARGE PRES INDICATOR ON ALT SHUTDN PNL	STBY	STBY	N	ONLY NEED ONE TRAIN	CBLT	755									
82	$\begin{gathered} \hline \text { BV-2MSS- } \\ \text { PT486 } \end{gathered}$	STEAM GENERATOR DISCH PRESSURE TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	MSVCV	778									
83	$\begin{gathered} \hline \text { BV-2MSS- } \\ \text { PI486 } \end{gathered}$	STEAM GEN DISCHARGE PRESSURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB										
84	$\begin{gathered} \text { BV-2MSS- } \\ \text { PT494 } \end{gathered}$	STEAM GEN 21C DISCH STEAM PRESSURE TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	MSVCV	778									
85	$\begin{gathered} \text { BV-2MSS- } \\ \text { PI494 } \end{gathered}$	STEAM GEN 21C DISCH STEAM PRESSURE IND	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB	735									
86	$\begin{gathered} \text { BV-2MSS- } \\ \text { PT495 } \end{gathered}$	STEAM GENERATOR DISCH PRESSURE TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	MSVCV	778									
87	$\begin{gathered} \hline \text { BV-2MSS- } \\ \text { PI495 } \end{gathered}$	STEAM GEN DISCH PRESSURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB										
88	$\begin{gathered} \hline \text { BV-2MSS- } \\ \text { PT496 } \end{gathered}$	STEAM GENERATOR DISCH PRESSURE TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	MSVCV	778									
89	$\begin{gathered} \hline \text { BV-2MSS- } \\ \text { PI496 } \end{gathered}$	STEAM GEN DISCH PRESSURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB										
90	$\begin{aligned} & \text { BV-2MSS- } \\ & \text { PI496A } \end{aligned}$	STEAM GEN DISCH PRESSURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB										
ESEL ITEM \#	Functional LOCATION	DESCRIPTION	NORMAL Position	Desired Position	Screene D In?	Reason Not Screened In	Building	Elevation/ Room									
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:									
91	$\begin{gathered} \text { BV-2RCS- } \\ \text { TI413 } \end{gathered}$	REACTOR COOLANT HOT LEG LOOP 21 TEMPERATURE INDICATOR	IN SVC	IN SVC	Y		CNTB	735									
92	$\begin{gathered} \text { BV-2RCS- } \\ \text { TT413 } \end{gathered}$	REACTOR COOLANT HOT LEG LOOP 21 TEMP TRANSMITTER	IN SVC	IN SVC	Y												
93	$\begin{gathered} \text { BV-2RCS- } \\ \text { TI413A } \end{gathered}$	REACTOR COOLANT HOT LEG LOOP 21 TEMPERATURE INDICATOR	STBY	STBY	N	ONLY NEED ONE TRAIN	CNTB	707									
94	BV-2RCSTE413F	REACT CLNT LOOP 1 HOT LEG TEMP	IN SVC	IN SVC	N	$\begin{aligned} & \hline \text { ONLY NEED } \\ & \text { ONE TRAIN } \end{aligned}$	RCBX	738									
95	$\begin{gathered} \text { BV-2RCS- } \\ \text { TI413F } \end{gathered}$	REACT CLNT LOOP 1 HOT LEG TEMP INDICATOR ON ALT SHUTDOWN PANEL	STBY	STBY	N	ONLY NEED ONE TRAIN	CBLT	755									
96	$\begin{gathered} \hline \text { BV-2RCS- } \\ \text { TE413 } \end{gathered}$	REACT CLNT HOT LEG LP 21	IN SVC	IN SVC	Y		RCBX	732									
97	$\begin{gathered} \text { BV-2RCS- } \\ \text { TI423 } \end{gathered}$	REACTOR COOLANT HOT LEG LOOP 22 TEMPERATURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB	735									
98	$\begin{gathered} \text { BV-2RCS- } \\ \text { TE423 } \\ \hline \end{gathered}$	REACT CLNT HOT LEG LP 22 TEMPERATURE ELEMENT	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	RCBX	732									
99	$\begin{aligned} & \text { BV-2RCS- } \\ & \text { TT423 } \end{aligned}$	REACTOR COOLANT HOT LEG LOOP 22 TEMP TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN											
100	$\begin{gathered} \text { BV-2RCS- } \\ \text { TI423A } \end{gathered}$	REACTOR COOLANT HOT LEG LOOP 22 TEMPERATURE INDICATOR	STBY	STBY	N	ONLY NEED ONE TRAIN	CNTB	707									
101	$\begin{gathered} \text { BV-2RCS- } \\ \text { TE423A } \\ \hline \end{gathered}$	REACT CLNT LOOP 2 HOT LEG TEMP ELEMENT	IN SVC	IN SVC	N	$\begin{aligned} & \text { ONLY NEED } \\ & \text { ONE TRAIN } \end{aligned}$	RCBX	732									
102	$\begin{gathered} \text { BV-2RCS- } \\ \text { TI423F } \end{gathered}$	REACT CLNT LOOP 2 HOT LEG TEMP INDICATOR ON ALT SHUTDOWN PANEL	STBY	STBY	N	ONLY NEED ONE TRAIN	CBLT	755									
103	$\begin{gathered} \text { BV-2RCS- } \\ \text { TE423F } \\ \hline \end{gathered}$	REACT CLNT LOOP 2 HOT LEG TEMP ELEMENT	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	RCBX	738									
104	$\begin{gathered} \hline \text { BV-2RCS- } \\ \text { TT423F } \end{gathered}$	REACT CLNT LOOP 2 HOT LEG TEMP TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN											
105	$\begin{gathered} \text { BV-2RCS- } \\ \text { TE433 } \\ \hline \end{gathered}$	REACT CLNT HOT LEG LP 23 TEMP ELEMENT	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	RCBX	732									
$\begin{gathered} \text { ESEL } \\ \text { ITEM } \\ \# \\ \hline \end{gathered}$	Functional LOCATION	DESCRIPTION	NORMAL Position	Desired POSITION	Screene D In?	Reason Not Screened In	Building	Elevation/ Room									
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:									
106	$\begin{gathered} \text { BV-2RCS- } \\ \text { TI433AA } \end{gathered}$	REACTOR COOLANT LOOP 23 HOT LEG TEMPERATURE INDICATOR	STBY	STBY	N	ONLY NEED ONE TRAIN	CNTB	707									
107	$\begin{gathered} \text { BV-2RCS- } \\ \text { TT433 } \end{gathered}$	REACTOR COOLANT HOT LEG LOOP 23 TEMP TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN											
108	$\begin{gathered} \text { BV-2RCS- } \\ \text { TE410 } \end{gathered}$	REACT CLNT COLD LEG LP 21 TEMP ELEMENT	IN SVC	IN SVC	Y		RCBX	732									
109	$\begin{gathered} \text { BV-2RCS- } \\ \text { TI410 } \end{gathered}$	REACTOR COOLANT COLD LEG LOOP 21 TEMPERATURE INDICATOR	IN SVC	IN SVC	Y		CNTB	735									
110	$\begin{gathered} \text { BV-2RCS- } \\ \text { TT410 } \end{gathered}$	REACTOR COOLANT COLD LEG LOOP 21 TEMPERATURE TRANSMITTER	IN SVC	IN SVC	Y		CNTB	707									
111	$\begin{gathered} \text { BV-2RCS- } \\ \text { TE410F } \end{gathered}$	REAC COOL LOOP 1 COLD LEG TEMP ELEMENT	IN SVC	IN SVC	N	$\begin{aligned} & \text { ONLY NEED } \\ & \text { ONE TRAIN } \end{aligned}$	RCBX	718									
112	$\begin{aligned} & \text { BV-2RCS- } \\ & \text { TI410F } \end{aligned}$	REAC COOL LOOP 1 COLD LEG TEMP INDICATOR	STBY	STBY	N	ONLY NEED	CBLT	755									
113	$\begin{gathered} \text { BV-2RCS- } \\ \text { TT410F } \end{gathered}$	REACTOR COOLANT LOOP 1 COLD LEG TEMP TRANSMITT	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN											
114	$\begin{gathered} \hline \text { BV-2RCS- } \\ \text { TE420 } \\ \hline \end{gathered}$	REACT CLNT COLD LEG LP 22 TEMP ELEMENT	IN SVC	IN SVC	N	$\begin{aligned} & \hline \text { ONLY NEED } \\ & \text { ONE TRAIN } \end{aligned}$	RCBX	732									
115	$\begin{aligned} & \text { BV-2RCS- } \\ & \text { TI420 } \end{aligned}$	REACTOR COOLANT COLD LEG LOOP 22 TEMPERATURE INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB	735									
116	$\begin{gathered} \text { BV-2RCS- } \\ \text { TT420 } \end{gathered}$	REACTOR COOLANT COLD LEG LOOP 22 TEMP TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB	707									
117	$\begin{aligned} & \text { BV-2RCS- } \\ & \text { TE420F } \end{aligned}$	REAC COOL LOOP 2 COLD LEG TEMP ELEMENT	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	RCBX	738									
118	$\begin{aligned} & \text { BV-2RCS- } \\ & \text { TI420F } \end{aligned}$	REAC COOL LOOP 2 COLD LEG TEMP INDICATOR ON ALT SHUTDOWN PANEL	STBY	STBY	N	ONLY NEED ONE TRAIN	CBLT	755									
119	$\begin{aligned} & \text { BV-2RCS- } \\ & \text { TT420F } \end{aligned}$	REACTOR COOLANT LOOP 2 COLD LEG TEMP TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN											
120	$\begin{gathered} \hline \text { BV-2RCS- } \\ \text { TE430 } \end{gathered}$	REACTOR CLNT LP 23 COLD LEG TEMP ELEMENT	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	RCBX	732									
	-	$\hat{\gtrless}$	\cdots	$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$		$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{O}{2}$		$\stackrel{\infty}{\sim}$	\cdots		
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:		
足	$\underset{\sim}{\varrho}$	\sum_{Z}^{∞}	$\stackrel{\oplus}{\underset{U}{\bullet}}$	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\frac{\infty}{2}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\stackrel{\ddots}{0}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \text { O } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \text { n } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\sim}{\underset{Z}{C}}$	$\stackrel{\underset{\alpha}{\infty}}{\substack{2}}$	$\stackrel{\sim}{\underset{U}{2}}$	$\begin{aligned} & \propto \\ & \propto \\ & \propto \\ & \propto \end{aligned}$	$\begin{aligned} & \text { H } \\ & 0 \end{aligned}$		
	Z	z	z	Z	λ	λ	Z	z	z	λ	\checkmark	z	z	z	z		
	$\stackrel{\sim}{p}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$								$\begin{aligned} & U \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { un } \\ & \text { Z } \end{aligned}$	$\stackrel{\grave{m}}{\omega}$		
	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \text { u } \\ & \text { s } \\ & \text { Z } \end{aligned}$								$\begin{aligned} & u \\ & \vdots \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & U \\ & \text { n } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & Z \end{aligned}$	㐫		
													$\begin{array}{ll} n & \\ 0 & 0 \\ 0 & 0 \\ & 0 \\ 1 & \ddots \\ m & 1 \end{array}$				
	극	N	$\xrightarrow{3}$	$\stackrel{\text { I }}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	측	$\stackrel{\sim}{\mathrm{I}}$	극	윾	$\underline{\square}$	$\stackrel{\text { N }}{\sim}$	\cdots	$\stackrel{\square}{2}$	\cdots		
ESEL ITEM \#	Functional Location	DESCRIPTION	NORMAL Position	DESIRED Position	Screene D In?	Reason Not Screened In	BUILDING	Elevation/ Room									
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:									
136	$\begin{gathered} \text { BV-2RCS- } \\ \text { LT460 } \end{gathered}$	PRESSURIZER LEVEL TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	RCBX	718									
137	$\begin{gathered} \text { BV-2RCS- } \\ \text { LI460 } \end{gathered}$	PRESSURIZER LEVEL INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB	735									
138	$\begin{gathered} \text { BV-2RCS- } \\ \text { LI460A } \end{gathered}$	PRESSURIZER LEVEL INDICATOR	STBY	STBY	N	ONLY NEED ONE TRAIN	CNTB	707									
139	$\begin{gathered} \text { BV-2FWE- } \\ \text { LT104A } \end{gathered}$	PRI PLANT DEMIN WTR STORAGE TK 210 LVL CONTROL TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	YARD	730									
140	$\begin{aligned} & \text { BV-2FWE- } \\ & \text { LT104A1 } \end{aligned}$	PRIM PLANT DEMIN WATER STORAGE TANK 2FWE-TK210 LEVEL TRANSMITTER	IN SVC	IN SVC	Y		SFGB										
141	$\begin{aligned} & \text { BV-2FWE- } \\ & \text { LI104A1 } \end{aligned}$	PRIMARY PLANT DEMINERALIZED WTR STORAGE TANK LEVEL INDICATOR	IN SVC	IN SVC	Y		CNTB										
142	$\begin{aligned} & \text { BV-2FWE- } \\ & \text { LT104AA2 } \end{aligned}$	PRIM PLANT DEMIN WATER STORAGE TANK 2FWE-TK210 LEVEL TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	SFGB										
143	$\begin{aligned} & \text { BV-2FWE- } \\ & \text { LI104A2 } \end{aligned}$	PRIMARY PLANT DEMINERALIZED WTR STORAGE TANK LEVEL INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB										
144	$\begin{aligned} & \text { BV-2FWE- } \\ & \text { LT104A3 } \end{aligned}$	PRIMARY PLANT DEMIN WATER STORAGE TANK LEVEL TRANSMITTER	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	SFGB										
145	$\begin{gathered} \text { BV-2FWE- } \\ \text { LI104A3 } \end{gathered}$	LEVEL INDICATOR FOR PRIMARY PLANT DEMIN WATER ST	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	YARD	730									
146	$\begin{aligned} & \text { BV-2NMS- } \\ & \text { NE31 } \end{aligned}$	NEUTRON ELEMENT SOURCE RANGE NEUTRON MONITOR	IN SVC	IN SVC	Y		RCBX	692									
147	$\begin{aligned} & \text { BV-2NMS- } \\ & \text { NI31A } \end{aligned}$	NEUTRON INDICATOR SOURCE RANGE NEUTRON MONITORING	IN SVC	IN SVC	Y		CNTB	735									
148	$\begin{gathered} \hline \text { BV-2NMS- } \\ \text { NI31B } \\ \hline \end{gathered}$	SOURCE RANGE 1 COUNT RATE NEUTRON INDICATOR	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	CNTB	735									
	人	\cdots	\cdots	$\hat{\mathrm{N}}$	\cdots	\％		\cdots	$\hat{8}$	\cdots	人̀	\％	숫	人̀			
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:			
旨	$\underset{\sim}{\underset{\sim}{\sim}}$	$\stackrel{H}{P}$	$\stackrel{\propto}{\stackrel{@}{Z}}$	$\stackrel{\infty}{\leftrightarrows}$	$\stackrel{\models}{0}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{\sim}{\underset{\sim}{c}}$	$\stackrel{\sim}{\leftrightarrows}$	$\stackrel{N}{Z}$	$\stackrel{M}{\leftrightarrows}$	$\begin{aligned} & x \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	$\stackrel{@}{Z}$	$\stackrel{\sim}{\square}$			
	z	Z	Z	Z	Z	Z	z	Z	Z	Z	7	خ	λ	$>$			
	$\begin{gathered} \stackrel{\sim}{\infty} \\ \stackrel{\infty}{n} \end{gathered}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\stackrel{\succsim}{\omega}$	$\frac{\grave{m}}{\stackrel{N}{n}}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { z } \end{aligned}$	$\stackrel{\sim}{\omega}$	$\begin{aligned} & u \\ & \text { un } \\ & z \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & n \\ & Z \end{aligned}$	U			
	$\begin{gathered} \stackrel{\rightharpoonup}{m} \\ \stackrel{\sim}{\sim} \end{gathered}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & u \\ & \text { u } \\ & \text { Z } \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\underset{\sim}{\omega}}{\stackrel{\omega}{\omega}}$	$\begin{aligned} & u \\ & i \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	市	$\begin{aligned} & u \\ & \Delta \\ & Z \end{aligned}$	$\stackrel{\sim}{n}$	$\begin{aligned} & u \\ & z \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	\cup B Z Z			
		$\begin{aligned} & \sum_{i}^{\infty} \frac{1}{m} \\ & \lambda_{m}^{\prime} \\ & i_{n}^{\prime} \end{aligned}$		$\begin{aligned} & \sum_{i}^{\infty} \underset{\theta}{i} \\ & \lambda_{n}^{1} \underset{Z}{z} \end{aligned}$	$\begin{aligned} & \sum_{i=1}^{\infty} \frac{n}{0} \\ & i_{i}^{1} \bar{z} \end{aligned}$	$\begin{aligned} & \sum_{\lambda}^{\infty} \underset{\sim}{n} \underset{\sim}{N} \\ & \lambda_{i}^{\prime} \end{aligned}$	$\begin{aligned} & \sum_{\lambda}^{\infty} \underset{N}{N} \\ & \lambda_{i}^{1} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \sum_{N}^{n} \underset{\sim}{n} \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \sum_{\lambda}^{n} \underset{N}{\sim} \\ & \underset{\sim}{1} \\ & \lambda_{n}^{\prime} \end{aligned}$	$\begin{aligned} & \sum_{\lambda}^{\infty} \underset{\sim}{i} \\ & \lambda_{n}^{\prime} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \sum_{N}^{\infty} \underset{N}{N} \\ & \lambda_{n}^{\prime} \underset{z}{N} \end{aligned}$						
	g	윤	$\stackrel{n}{n}$	N	$\stackrel{n}{n}$	－	\cdots	\cdots	n	$\stackrel{\infty}{\sim}$	n	8	$\stackrel{\square}{\square}$	No			
	$\hat{\mathrm{Q}}$	\cdots	人̀	$\stackrel{\sim}{\sim}$	으N	－	¢	\cdots	－	¢	¢	人	$\hat{\sim}$	人े龴⿵冂人	人	\cdots	
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
		$\frac{\infty}{E}$	$\stackrel{\infty}{\leftrightarrows}$	$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \stackrel{y}{n} \end{aligned}$	$\frac{>}{\infty}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\infty}$	$\frac{>}{\infty}$	$\stackrel{z}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\oplus}{\underset{Z}{E}}$	$\stackrel{\oplus}{E}$	$\stackrel{\infty}{\underset{3}{4}}$	$\begin{aligned} & 3 \\ & i \\ & i \end{aligned}$	
	λ	λ	λ	Z	z	z	z	λ	Z	$>$	z	λ	λ	z	z	Z	Z
	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \Delta \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { n } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & 4 \\ & z \end{aligned}$	$\begin{aligned} & U \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \end{aligned}$	$\begin{aligned} & u \\ & 0 \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & 8 \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$
	$\begin{aligned} & u \\ & 0 \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & \text { u } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { u } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & \cup \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { un } \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { n } \\ & Z \end{aligned}$
									$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & B \\ & 5 \end{aligned}$								
$\begin{aligned} & { }_{2}^{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$																	
	$\underset{\sim}{6}$	す	ํ	8	$\underline{\sim}$	$\stackrel{\infty}{\bullet}$	\％	$\stackrel{\square}{2}$	ミ	N	$\stackrel{N}{\sim}$	さ	$\stackrel{\sim}{n}$	$\stackrel{\text { 난 }}{ }$	N	$\stackrel{\infty}{\triangle}$	9
$\left.\begin{array}{	c	c	l	l	l	l	l	l	}\hline \begin{array}{c}\text { ESEL } \\ \text { ITEM } \\ \#\end{array} & \begin{array}{c}\text { FUNCTIONAL } \\ \text { Location }\end{array} & \text { DESCRIPTION } & \begin{array}{c}\text { NORMAL } \\ \text { Position }\end{array} & \begin{array}{c}\text { DESIRED } \\ \text { Position }\end{array} & \begin{array}{c}\text { SCREENE } \\ \text { D In? }\end{array} & \begin{array}{c}\text { REASON NOT } \\ \text { SCREENED IN }\end{array} & \text { BUILDING }\end{array} \begin{array}{c}\text { ELEVATION/ } \\ \text { Room }\end{array}\right]$								
$\begin{gathered} \hline \text { ESEL } \\ \text { ITEM } \\ \# \end{gathered}$ \#	Functional Location	Description	NORMAL Position	DESIRED Position	Screene DIN?	REASON Not Screened In	Building	Elevation/ Room									
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
RCS Boration, Portable Pump to RCS																	
196	BV-2CHS-723	CHG PP 21A DISCH HDR VENT	CLOSED	OPEN	N	MANUAL VALVE	AUX	735									
197	BV-2CHS-25	CHG PP 21A DISCH ISOL	OPEN	OPEN	N	MANUAL VALVE	AUX	735									
198	BV-2CHS-28	(2CHS*FCV122) INLET ISOL	OPEN	OPEN	N	MANUAL VALVE	AUX	710									
199	$\begin{aligned} & \text { BV-2CHS- } \\ & \text { FCV122 } \end{aligned}$	CHARGING PUMPS DISCHARGE FLOW CONTROL valve	OPEN	OPEN	N	REMAINS OPEN FOR MINIMUM FLOW ON LOSS OF AIR?	AUX	710									
200	BV-2CHS-30	(2CHS*FCV122) OUT ISOL	OPEN	OPEN	N	MANUAL VALVE	AUX	710									
201	$\begin{aligned} & \text { BV-2CHS- } \\ & \text { MOV289 } \end{aligned}$	NORMAL CHARGING HDR ISOLATION VALVE	OPEN	OPEN	N	MOV DOES NOT CHANGE POSITION	MSVCV	718									
202	BV-2CHS-31	CHARGING HEADER ISOL CHECK	N/A	N/A	N	CHECK VALVE	RCBX	718									
203	BV-2CHS-E23	REGENERATIVE HEAT EXCHANGER	IN SVC	IN SVC	Y		RCBX	718									
204	$\begin{aligned} & \text { BV-2CHS- } \\ & \text { MOV310 } \end{aligned}$	REGEN HX NORMAL CHARGING DISCHARGE VALVE	OPEN	OPEN	N	$\begin{gathered} \hline \text { MOV DOES NOT } \\ \text { CHANGE } \\ \text { POSITION } \\ \hline \end{gathered}$	RCBX	692									
205	BV-2CHS-871	NORM CHARGING UPSTREAM CHECK VALVE TO RCS	N/A	N/A	N	CHECK VALVE	RCBX	692									
206	BV-2CHS-872	EXCESS LTDM TO PRIMARY DRNS VENT	N/A	N/A	N	CHECK VALVE	RCBX	692									
207	BV-MCC-2-E08	$\begin{aligned} & \text { 480V MOTOR CONTROL } \\ & \text { CENTER } \end{aligned}$	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	DGB	732									
208	TBD	PLACE HOLDER FOR FUSE AND DISCONNECT SWITCH PANEL	STBY	STBY	N	ONLY NEED ONE TRAIN	DGB	732									
209	BV-PNL-2EE- CONN-1	PLACE HOLDER FOR CONNECTION PANEL TO BE INSTALLED	STBY	STBY	N	ONLY NEED ONE TRAIN	DGB	732									
210	$\begin{gathered} \text { BV-480VUS-2- } \\ 9 \end{gathered}$	480V SUBSTATION 2-9 BUS 2P	IN SVC	IN SVC	N	ONLY NEED ONE TRAIN	SRV	730									
	人	－	\cdots	N	$\stackrel{\circ}{\sim}$	人	$\stackrel{\sim}{\sim}$	N		$\stackrel{\bigcirc}{\sim}$	$\stackrel{0}{2}$	\cdots		$\stackrel{\bigcirc}{\sim}$	운	$\stackrel{\bigcirc}{2}$	
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
$\begin{aligned} & \text { 亮 } \\ & \text { 首 } \end{aligned}$	$\stackrel{m}{3}$	$\stackrel{\rightharpoonup}{n}$	$\frac{\underset{\sim}{2}}{}$	$\begin{aligned} & \text { M } \\ & \hline 0 \end{aligned}$	$\frac{\lambda}{\infty}$	$\frac{\infty}{2}$	$\begin{aligned} & \vec{~} \\ & \stackrel{y}{n} \end{aligned}$	$\stackrel{\rightharpoonup}{\sim}$		$\stackrel{\underset{\sim}{*}}{\stackrel{\rightharpoonup}{*}}$	$\stackrel{\underset{\alpha}{\alpha}}{\substack{\alpha}}$	$\underset{\substack{x}}{\substack{2}}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\rightharpoonup}{2}}$		$\stackrel{\star}{\gtrless}$	$\stackrel{\underset{\sim}{*}}{\stackrel{\leftrightarrow}{2}}$	$\frac{0}{\square}$
	Z	z	z	λ	λ	λ	$>$	z		Z	z	Z	z	z	Z	z	z
	$\begin{aligned} & u \\ & i \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \text { un } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \vdots \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \infty \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \vdots \\ & Z \end{aligned}$	\cdots								
	$\begin{aligned} & u \\ & i \\ & \vdots \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & z \\ & z \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & z \\ & Z \end{aligned}$	$\begin{aligned} & u \\ & u \\ & z \end{aligned}$	$\begin{aligned} & u \\ & 0 \\ & \text { z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & z \end{aligned}$	$\begin{aligned} & u \\ & \vdots \\ & \text { Z } \end{aligned}$	$\begin{aligned} & u \\ & i \\ & \text { Z } \end{aligned}$	$\begin{aligned} & \bar{x} \\ & y \\ & y y y \end{aligned}$								
$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$																	
				$\begin{aligned} & \text { o} \\ & \stackrel{H}{N} \\ & \text { N} \\ & \text { U } \\ & \sum_{i}^{\prime} \end{aligned}$											$\left\|\begin{array}{ll} 0_{1} & N \\ 0 & 1 \\ N & 8 \\ 1 & 3 \\ i & F \end{array}\right\|$		
	$\bar{\sim}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{m}{\sim}$	$\stackrel{ \pm}{\sim}$	$\frac{n}{n}$	$\stackrel{0}{\sim}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\infty}{\sim}$		$\frac{9}{2}$	슷	ন্స	N	N	N	N	N
	N	$\stackrel{\infty}{\sim}$	N		N	N	N		$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\infty}{\sim}$	\cdots	N	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$		
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
首	$\stackrel{\stackrel{y}{s}}{\stackrel{\rightharpoonup}{s}}$		佥	鲳	呂	M	合	$\begin{aligned} & > \\ & \vdots \\ & \sum \end{aligned}$	$\begin{aligned} & \text { B } \\ & \vdots \\ & \sum \end{aligned}$	$\stackrel{\bigoplus}{\underset{Z}{U}}$	$\begin{aligned} & \vec{u} \\ & \Delta \\ & \sum \end{aligned}$	$\underset{\sim}{c}$	$\begin{aligned} & 3 \\ & \vdots \\ & \sum \\ & \sum \end{aligned}$	$\begin{aligned} & \text { x } \\ & 0 \\ & \sim \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ๙ } \\ & 0 \\ & \sim \end{aligned}$	χ 0 0 \sim	
	z	Z	Z	z	Z	z	z	Z	z	z	z	z	z	z	Z	Z	
$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$																	
							$\begin{aligned} & \text { í } \\ & \text { U } \\ & \text { N } \\ & \text { 灾促 } \end{aligned}$						$\left\|\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 & n \\ 1 & 2 \\ 1 & 0 \\ 0 & 2 \end{array}\right\|$	$\begin{array}{ll} 1 & 1 \\ n_{0} & 0 \\ 0 & n \\ & 2 \\ 1 & 0 \\ m & \sum \end{array}$			
$\begin{aligned} & \text { 国 } \\ & \text { 盆 } \end{aligned}$	ત્ને	$\underset{N}{\infty}$	ત్సి	$\underset{\sim}{\sim}$	तิ	$\underset{\sim}{N}$	Nั	$\stackrel{\sim}{\text { N }}$	べ	®o	$\underset{\sim}{N}$	$\stackrel{\infty}{N}$	$\underset{\sim}{\hat{N}}$	우N	－	$\stackrel{\text { N }}{\sim}$	
				$\stackrel{n}{n}$	\cdots		$\stackrel{\infty}{\sim}$	N	\cdots	$\stackrel{\sim}{n}$	\cdots	\％	\cdots				
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:			
花	$\begin{aligned} & \underset{\sim}{\infty} \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & x \\ & \text { ò } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \times \\ & \text { ê } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \times \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\stackrel{\sim}{\underset{Z}{E}}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & 0 \\ & \hline \propto \end{aligned}$	$\begin{aligned} & \vec{u} \\ & \lambda \\ & \lambda \end{aligned}$		$\stackrel{\underset{\sim}{\alpha}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\underset{\alpha}{x}}{\substack{x \\ \hline}}$	$\begin{aligned} & \underset{\sim}{\otimes} \\ & \text { en } \end{aligned}$	$\underset{~}{\underset{\sim}{\mathrm{C}}}$	$\stackrel{\infty}{E}$			
	z	z	z	Z	Z	z	z	z	Z	Z	乙	z	z	Z			
$\begin{aligned} & \text { Z Z } \\ & \text { Z } \\ & \text { 首曷 } \\ & \text { Z } \end{aligned}$																	
							$\left.\begin{array}{l} 1 \\ 0 \\ 0 \\ n \\ \alpha \\ \alpha \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right]$										
				$\begin{aligned} & \text { O} \\ & 0 \\ & \text { N } \\ & \text { N } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { U } \\ & \text { N } \\ & \text { N } \\ & \text { B } \end{aligned}$	$\left\lvert\,\right.$	$\left\lvert\, \begin{array}{ll} 1 & N \\ 0 & 0 \\ 0 & n \\ & n \\ 1 & 2 \\ m & 2 \end{array}\right.$	$\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ 0 & n \\ \cline { 1 - 1 } & 2 \\ 1 & 0 \\ 0 & 2 \end{array}$	$\begin{aligned} & \text { o} \\ & 0 \\ & \text { N } \\ & \text { B } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { 它 } \\ & \text { N } \\ & \text { N } \\ & \text { ìn } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { U } \\ & \text { N } \\ & \text { Ni } \\ & \text { N } \end{aligned}$						
	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\underset{\sim}{*}}$	$\underset{\sim}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{\text { N }}{ }$	$\stackrel{\infty}{\mathrm{c}}$	$\stackrel{\text { ® }}{\sim}$	－	N	N	\cdots	$\stackrel{+}{\sim}$	\cdots	$\stackrel{\sim}{\sim}$			
	\cdots	\cdots	\cdots	$\stackrel{\text { 잣 }}{ }$	$\stackrel{\text { 앗 }}{ }$	\cdots	\cdots	\cdots	$\stackrel{\bigcirc}{2}$	\cdots		\cdots	\cdots	\cdots			
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:			
品	$\stackrel{\underset{\sim}{\alpha}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\leftrightarrow}{\alpha}$	$\stackrel{\underset{\sim}{e}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\underset{\sim}{*}}{\stackrel{\rightharpoonup}{*}}$	$\stackrel{\underset{\sim}{\mathrm{K}}}{\underset{\sim}{2}}$	$\stackrel{\leftrightarrow}{\diamond}$		$\stackrel{x}{2}$	$\stackrel{\substack{\mathrm{S} \\ \hline \\ \hline}}{ }$	$\stackrel{\leftrightarrow}{e}$	${\underset{U}{6}}_{\infty}^{\infty}$	$\stackrel{\text { 犬 }}{\stackrel{\text { S }}{2}}$	$\stackrel{\underset{\sim}{\mathrm{C}}}{\stackrel{\rightharpoonup}{\mathrm{C}}}$	$\stackrel{\underset{\sim}{*}}{\stackrel{\rightharpoonup}{*}}$			
	Z	Z	z	z	z	Z	Z	Z	z	z	乙	Z	Z	z			
	$\begin{aligned} & \text { ì } \\ & \text { U } \\ & \text { N } \\ & \text { N } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { én } \\ & \text { N } \\ & \text { N } \\ & \text { in an } \end{aligned}$		$\left\lvert\, \begin{array}{ll} 1 & < \\ 0 & \leq \\ 0 & 0 \\ & 1 \\ 1 & U \\ m & 0 \end{array}\right.$		$\begin{aligned} & \text { O} \\ & \text { U } \\ & \text { N } \\ & \text { in } \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \text { ou } \\ & 0 \\ & \text { N } \\ & \text { N } \\ & \text { in } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { U } \\ & \text { N } \\ & \text { in } \\ & \text { n } \end{aligned}$	$\left\lvert\, \begin{array}{ll} 0 & 8 \\ 0 & 8 \\ 0 & 8 \\ N & 0 \\ \vdots & 0 \\ m & \end{array}\right.$			
	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\rightharpoonup}{n}$	$\stackrel{0}{\mathrm{~N}}$	무N	N	N	－	N	－	－	－	－	$\stackrel{\bigcirc}{\text { N}}$			
$\begin{gathered} \hline \text { ESEL } \\ \text { ITEM } \\ \# \\ \hline \end{gathered}$	Functional LOCATION	DESCRIPTION	NORMAL Position	DESIRED Position	Screene D In?	Reason Not SCREENED IN	BUILDING	Elevation/									
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:									
271	$\begin{aligned} & \hline \text { BV-2CCP- } \\ & \text { DCV101A } \end{aligned}$	(2CCP*E21A) DIFF PRESS CONTROL			N	RESTORATION	AUX	710									
272	$\begin{gathered} \hline \text { BV-2CCP- } \\ \text { TI100A1 } \end{gathered}$	CCP-E21A INLET HDR TEMPERATURE INDICATOR			N	RESTORATION	AUX	710									
273	$\begin{aligned} & \text { BV-2RHS- } \\ & \text { MOV702A } \end{aligned}$	RHS TRAIN A SUPPLY ISOLATION			N	RESTORATION	RCBX	718									
274	$\begin{aligned} & \text { BV-2RHS- } \\ & \text { MOV701A } \end{aligned}$	RHS TRAIN A SUPPLY ISOLATION			N	RESTORATION	RCBX	718									
275	$\begin{aligned} & \text { BV-2RHS- } \\ & \text { PI603A } \end{aligned}$	RHS PUMP SUCTION P21A PRESSURE INDICATOR			N	RESTORATION	RCBX										
276	$\begin{aligned} & \text { BV-2RHS- } \\ & \text { PT603A } \end{aligned}$	RESID HEAT REMOVAL PUMP RHS-P21A SUCTION PRESSURE TRANSMITTER			N	RESTORATION	RCBX	707									
277	BV-2RHS-P21A	RESIDUAL HEAT REMOVAL PUMP 21A			N	RESTORATION	RCBX	692									
278	$\begin{aligned} & \text { BV-2RHS- } \\ & \text { PI602A } \end{aligned}$	RESIDUAL HEAT PUMP DISCHARGE PRESSURE INDICATOR			N	RESTORATION	CNTB										
279	$\begin{aligned} & \text { BV-2RHS- } \\ & \text { PT602A } \end{aligned}$	2RHS-P21A PUMP DISCHARGE PRESSURE TRANSMITTER			N	RESTORATION	RCBX	718									
280	$\begin{gathered} \hline \text { BV-2RHS- } \\ \text { TE604A } \end{gathered}$	TEMP ELEMENT RES HT REMVL SYSTEM INLET TEMP			N	RESTORATION	RCBX	718									
281	$\begin{gathered} \text { BV-2RHS- } \\ \text { TR604A } \end{gathered}$	RES HT REMOVAL SYS INLET TEMP INPUT FROM 2RHS- TT606			N	RESTORATION	CNTB										
282	$\begin{gathered} \text { BV-2RHS- } \\ \text { TT604A } \end{gathered}$	RESIDUAL HEAT REMOVAL SYSTEM INLET TEMP TRANSMITTER			N	RESTORATION	CNTB										
283	$\begin{gathered} \text { BV-2RHS- } \\ \text { E21A } \\ \hline \end{gathered}$	RES HEAT REMOVAL HEAT EXCHANGER			N	RESTORATION	RCBX										
284	$\begin{aligned} & \text { BV-2RHS- } \\ & \text { HCV758A } \end{aligned}$	RHS TRAIN A HX OUTLET FLOW CONTROL			N	RESTORATION	RCBX	707									
285	$\begin{gathered} \text { BV-2RHS- } \\ \text { TE606A } \end{gathered}$	TEMP ELEMENT RES HT REMVL SYSTEM OUTLET TEMP			N	RESTORATION	RCBX	718									
		\％	$\stackrel{\infty}{\sim}$		\cdots	®ิ－	$\stackrel{\infty}{\sim}$	N	츷	N	N	N	N				
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
安	$\underset{\sim}{\bullet}$	$\begin{aligned} & \underset{\sim}{x} \\ & \text { © } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\bigoplus}{Z}$	$\stackrel{N}{\underset{Z}{E}}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \hline \alpha \end{aligned}$	合	号	$\|\stackrel{\infty}{\mathrm{O}}\|$	号	号	号	品	呂	会	
		$$															
	Z	z	Z	z	Z	Z	Z	Z	Z	Z	Z	z	z	z	z	Z	
										FUEL POOL COOLING PUMP							
	$\underset{\sim}{\infty}$	$\stackrel{\text { Ni}}{\infty}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty}$	$\underset{\sim}{8}$	त	N	Ǹ	ה	$\stackrel{\sim}{2}$	$\stackrel{\circ}{\text { N}}$	ते	$\stackrel{\infty}{\text { N }}$	הે	8	각	
ESEL ITEM \#	Functional Location	DESCRIPTION	NORMAL Position	Desired Position	$\begin{gathered} \text { SCREENE } \\ \text { D IN? } \end{gathered}$	Reason Not Screened In	Building	Elevation/ Room									
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:									
302	$\begin{aligned} & \hline \text { BV-2HVR- } \\ & \text { FN201A } \end{aligned}$	CONTAINMENT AIR RECIRC FAN			N	RESTORATION	RCBX	692									
303	$\begin{aligned} & \text { BV-2HVR- } \\ & \text { CLC201A } \end{aligned}$	COOLING COIL RC AIR RECIRCULATION			N	RESTORATION	RCBX										
304	$\begin{aligned} & \hline \text { BV-2HVR- } \\ & \text { FN201B } \end{aligned}$	CONTAINMENT AIR RECIRC FAN			N	RESTORATION	RCBX	692									
305	$\begin{aligned} & \text { BV-2HVR- } \\ & \text { CLC201B } \end{aligned}$	COOLING COIL RC AIR RECIRCULATING			N	RESTORATION	RCBX										
306	$\begin{aligned} & \text { BV-2HVR- } \\ & \text { FN201C } \end{aligned}$	CONTAINMENT AIR RECIRC FAN			N	RESTORATION	RCBX	692									
307	$\begin{aligned} & \text { BV-2HVR- } \\ & \text { CLC201C } \end{aligned}$	COOLING COIL RC AIR RECIRCULATING			N	RESTORATION	RCBX										
308	2VERTBD-A	MAIN CONTROL BOARD VERTICAL SECTION A					CNTB	735									
309	2VERTBD-C	MAIN CONTROL BOARD VERTICAL SECTION C					CNTB	735									
310	2BNCHBD-B	MAIN CONTROL BOARD BENCH SECTION B					CNTB	735									
311	PNL-2SHUTDN	EMERGENCY SHUTDOWN PANEL					CNTB	707									
312	$\begin{gathered} \text { RELAY } \\ \text { MODEL } \\ \text { AR440AR } \end{gathered}$	HOUSED BY RK-2RC-PRT-A					CNTB	707									
313	RK-2RC-PRT-A	SOLID STATE PROTECTION SYSTEM TRAIN 'A					CNTB	707									

Revision 0

ATTACHMENT B:

TABULATED HCLPF VALUES

EQUIPMENT ID	HCLPF	β_{C}	β_{R}	β_{U}	$\mathbf{A}_{\text {m }}$	Failure Mode	Fragility Method
2NMS-NE31	0.28	0.40	0.24	0.32	0.71	Function After	Based on Component-Specific Design Criteria
MCC-2-E09	0.51	0.40	0.24	0.32	1.31	Function After	Gers
MCC-2-E07	0.78	0.40	0.24	0.32	1.98	Anchorage	New Analysis
480VUS-2-8	1.14	0.40	0.24	0.32	2.69	Functional	Gers
2FWE-P22	0.65	0.40	0.24	0.32	1.64	Anchorage	New Analysis
2FWE-T22	0.65	0.40	0.24	0.32	1.64	Anchorage	Assigned By Rule of the Box. Parent Component: 2FWE-T22
2FWE-TTV22	0.65	0.40	0.24	0.32	1.64	Anchorage	Assigned By Rule of the Box. Parent Component: 2FWE-T22
2FWE-TGV22	0.65	0.40	0.24	0.32	1.64	Anchorage	Assigned By Rule of the Box. Parent Component: 2FWE-T22
2SVS-PCV101A	4.08	0.45	0.24	0.38	11.63	Functional	Scaling From Pipe Stress Calculation
2SVS-PCV101A-MOTOR	4.08	0.45	0.24	0.38	11.63	Functional	Assigned By Rule of the Box. Parent Component: 2SVS-PCV101A
2SVS-PCV101A-OPER	4.08	0.45	0.24	0.38	11.63	Functional	Assigned By Rule of the Box. Parent Component: 2SVS-PCV101A
2SVS-PCV101A-POS	4.08	0.45	0.24	0.38	11.63	Functional	Assigned By Rule of the Box. Parent Component: 2SVS-PCV101A
2MSS-SV101A	0.39	0.45	0.24	0.38	1.12	Functional	Earthquake Experience Data
2FWE-FCV122	0.61	0.40	0.24	0.38	1.55	Functional	Earthquake Experience Data
2MSS-SOV105A	0.31	0.45	0.24	0.38	0.89	Functional	Earthquake Experience Data
2MSS-SOV105D	0.31	0.45	0.24	0.38	0.89	Functional	Earthquake Experience Data
PNL-DC2-01	0.80	0.40	0.24	0.32	2.03	Function After	Earthquake Experience Data
PNL-VITBS2-1A	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
BAT-2-1	1.12	0.40	0.24	0.32	2.85	Anchorage	New Analysis
BAT-CHG2-1	0.80	0.40	0.24	0.32	2.03	Functional	Gers
UPS-VITBS2-1	1.10	0.40	0.24	0.32	2.78	Functional	Gers
2FWS-LT477	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
2RCS-LT459	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
2LMS-PT950	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
2MSS-PT474	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
2FWE-LT104A1	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
2RCS-PT403	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
2RCS-TE413	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
2RCS-TE410	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness

EQUIPMENT ID	HCLPF	β_{C}	$\beta_{\text {R }}$	β_{U}	$\mathbf{A}_{\text {m }}$	FAILURE MODE	FRAGILITY METHOD
2RCS-TE01E	0.50	0.40	0.24	0.32	1.27	Functional	Assigned Based on Seismic Ruggedness
RK-2PRI-PROC-1	0.65	0.40	0.24	0.32	1.66	Anchorage	New Analysis
RK-2PRI-PROC-2	0.65	0.40	0.24	0.32	1.66	Anchorage	New Analysis
RK-2SEC-PROC-A	0.65	0.40	0.24	0.32	1.66	Anchorage	New Analysis
RK-2RC-PRT-A	0.65	0.40	0.24	0.32	1.66	Anchorage	New Analysis
2RCS-TT413	0.65	0.40	0.24	0.32	1.66	Anchorage	Assigned By Rule of the Box. Parent Component: RK-2PRI-PROC-1
2RCS-TT410	0.65	0.40	0.24	0.32	1.66	Anchorage	Assigned By Rule of the Box. Parent Component: RK-2PRI-PROC-2
RK-2NUC-INS	0.64	0.40	0.24	0.32	1.64	Function After	Earthquake Experience Data
2VERTBD-A	0.64	0.40	0.24	0.32	1.64	Function After	Earthquake Experience Data
2VERTBD-C	0.64	0.40	0.24	0.32	1.64	Function After	Earthquake Experience Data
2BNCHBD-B	0.64	0.40	0.24	0.32	1.64	Function After	Earthquake Experience Data
2RCS-TI413	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: 2VERTBD-A
2RCS-TI410	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: 2VERTBD-A
2FWS-LI477	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: 2VERTBD-C
2RCS-LI459A	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: 2BNCHBD-B
2LMS-PI950	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: 2VERTBD-A
2MSS-PI474	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: 2VERTBD-C
2FWE-LI104A1	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: 2VERTBD-C
2NMS-NI31A	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: RK-2NUC-INS
2RCS-PI403	0.64	0.40	0.24	0.32	1.64	Function After	Assigned By Rule of the Box. Parent Component: 2VERTBD-A
PNL-2RPU-A	0.74	0.40	0.24	0.32	1.87	Anchorage	New Analysis
PNL-2SHUTDN	0.39	0.40	0.24	0.32	0.98	Anchorage	New Analysis
2FWE-TK210	0.87	0.35	0.24	0.26	1.96	Structural / Anchorage	New Analysis
2QSS-TK21	0.45	0.35	0.24	0.26	1.02	Structural / Anchorage	New Analysis
2CHS-TK21A	0.62	0.40	0.24	0.32	1.56	Structural / Anchorage	New Analysis
2CHS-TK21B	0.62	0.40	0.24	0.32	1.56	Structural / Anchorage	New Analysis

[^0]: 1 EPRI 3002000704 [2] Page 5-4 limits the ESEP SI reviews to "nearby block walls" and "piping attached to tanks," which are reviewed "to address the possibility of failures due to differential displacements." Other potential SI evaluations are "deferred to the full seismic risk evaluations performed in accordance with EPRI 1025287 [15]."

[^1]: 1 EPRI 3002000704 [2] Page 5-4 limits the ESEP SI reviews to "nearby block walls" and "piping attached to tanks," which are reviewed "to address the possibility of failures due to differential displacements." Other potential SI evaluations are "deferred to the full seismic risk evaluations performed in accordance with EPRI 1025287 [15]."

