

Order No. EA-12-049

RS-14-209

August 28, 2014

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

> LaSalle County Station, Units 1 and 2 Facility Operating License Nos. NPF-11 and NPF-18 NRC Docket Nos. 50-373 and 50-374

Subject: Third Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049)

References:

- NRC Order Number EA-12-049, "Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events," dated March 12, 2012
- 2. NRC Interim Staff Guidance JLD-ISG-2012-01, "Compliance with Order EA-12-049, Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events," Revision 0, dated August 29, 2012
- 3. NEI 12-06, "Diverse and Flexible Coping Strategies (FLEX) Implementation Guide," Revision 0, dated August 2012
- 4. Exelon Generation Company, LLC's Initial Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049), dated October 25, 2012
- Exelon Generation Company, LLC Overall Integrated Plan in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049), dated February 28, 2013 (RS-13-021)
- Exelon Generation Company, LLC First Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049), dated August 28, 2013 (RS-13-121)
- Exelon Generation Company, LLC Second Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049), dated February 28, 2014 (RS-14-011)

# U.S. Nuclear Regulatory Commission Integrated Plan Report to EA-12-049 August 28, 2014 Page 2

 NRC letter to Exelon Generation Company, LLC, LaSalle County Station, Units 1 and 2

 Interim Staff Evaluation Relating to Overall Integrated Plan in Response to Order EA-12-049 (Mitigation Strategies) (TAC Nos. MF1121 and MF1122), dated February 21, 2014

On March 12, 2012, the Nuclear Regulatory Commission ("NRC" or "Commission") issued an order (Reference 1) to Exelon Generation Company, LLC (EGC). Reference 1 was immediately effective and directs EGC to develop, implement, and maintain guidance and strategies to maintain or restore core cooling, containment, and spent fuel pool cooling capabilities in the event of a beyond-design-basis external event. Specific requirements are outlined in Attachment 2 of Reference 1.

Reference 1 required submission of an initial status report 60 days following issuance of the final interim staff guidance (Reference 2) and an overall integrated plan pursuant to Section IV, Condition C. Reference 2 endorses industry guidance document NEI 12-06, Revision 0 (Reference 3) with clarifications and exceptions identified in Reference 2. Reference 4 provided the EGC initial status report regarding mitigation strategies. Reference 5 provided the LaSalle County Station, Units 1 and 2 overall integrated plan.

Reference 1 requires submission of a status report at six-month intervals following submittal of the overall integrated plan. Reference 3 provides direction regarding the content of the status reports. References 6 and 7 provided the first and second six-month status reports, respectively, pursuant to Section IV, Condition C.2, of Reference 1 for LaSalle County Station. The purpose of this letter is to provide the third six-month status report pursuant to Section IV, Condition C.2, of Reference 1, that delineates progress made in implementing the requirements of Reference 1. The enclosed report provides an update of milestone accomplishments since the last status report, including any changes to the compliance method, schedule, or need for relief and the basis, if any. The enclosed report also addresses the NRC Interim Staff Evaluation Open and Confirmatory Items contained in Reference 8.

This letter contains no new regulatory commitments. If you have any questions regarding this report, please contact David P. Helker at 610-765-5525.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 28<sup>th</sup> day of August 2014.

Respectfully submitted,

Glen T. Kaegi Director - Licensing & Regulatory Affairs Exelon Generation Company, LLC

Enclosure:

 LaSalle County Station, Units 1 and 2 Third Six-Month Status Report for the Implementation of Order EA-12-049, Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events U.S. Nuclear Regulatory Commission Integrated Plan Report to EA-12-049 August 28, 2014 Page 3

cc: Director, Office of Nuclear Reactor Regulation NRC Regional Administrator - Region III NRC Senior Resident Inspector – LaSalle County Station, Units 1 and 2 NRC Project Manager, NRR – LaSalle County Station, Units 1 and 2 Ms. Jessica A. Kratchman, NRR/JLD/PMB, NRC Mr. Jack R. Davis, NRR/DPR/MSD, NRC Mr. Eric E. Bowman, NRR/DPR/MSD, NRC Mr. Jeremy S. Bowen, NRR/DPR/MSD/MSPB, NRC Mr. Robert L. Dennig, NRR/DPR/MSD/MSPB, NRC Mr. John P. Boska, NRR/DPR/MSD/MSPB, NRC Illinois Emergency Management Agency - Division of Nuclear Safety

# Enclosure

# LaSalle County Station, Units 1 and 2

Third Six-Month Status Report for the Implementation of Order EA-12-049, Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events

(43 pages)

# Enclosure

LaSalle County Station, Units 1 and 2 Third Six Month Status Report for the Implementation of Order EA-12-049, Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events

## 1 Introduction

LaSalle County Station, Units 1 and 2 developed an Overall Integrated Plan (Reference 1), documenting the diverse and flexible strategies (FLEX), in response to Reference 2. This enclosure provides an update of milestone accomplishments since submittal of the Overall Integrated Plan, including any changes to the compliance method, schedule, or need for relief/relaxation and the basis, if any.

2 Milestone Accomplishments

The second 6 Month Update was submitted in February 2014.

3 Milestone Schedule Status

The following provides an update to Attachment 2 of the Overall Integrated Plan. It provides the activity status of each item, and whether the expected completion date has changed. The dates are planning dates subject to change as design and implementation details are developed.

| Activity                                        | Target<br>Completion Date | Activity Status               | Revised Target<br>Completion Date              |
|-------------------------------------------------|---------------------------|-------------------------------|------------------------------------------------|
| Submit 60 Day Status Report                     | Oct 2012                  | Complete                      |                                                |
| Submit Overall Integrated Plan                  | Feb 2013                  | Complete                      |                                                |
| Contract with National SAFER Response<br>Center |                           | Complete                      |                                                |
| Submit 6 Month Updates:                         |                           |                               |                                                |
| Update 1                                        | Aug 2013                  | Complete                      |                                                |
| Update 2                                        | Feb 2014                  | Complete                      |                                                |
| Update 3                                        | Aug 2014                  | Complete with this submittal. |                                                |
| Update 4                                        | Feb 2015                  | Not Started                   |                                                |
| Update 5                                        | Aug 2015                  | Not Started                   |                                                |
| Update 6                                        | Feb 2016                  | Not Started                   |                                                |
| Update 7                                        | Aug 2016                  | Not Started                   |                                                |
| Submit Completion Report                        | Sep 2017                  | Not Started                   | May 2018<br>See Section 5 of<br>this enclosure |

| Activity                                             | Target<br>Completion Date | Activity Status | Revised Target<br>Completion Date              |
|------------------------------------------------------|---------------------------|-----------------|------------------------------------------------|
| Modification Development &<br>Implementation:        |                           |                 |                                                |
| Unit 1 Modification Development (All FLEX Phases)    | Jan 2015                  | Started         |                                                |
| Unit 1 Modification Implementation (All FLEX Phases) | Mar 2016                  | Not Started     |                                                |
| Unit 2 Modification Development (All FLEX Phases)    | Jan 2014                  | Started         | Oct 2014                                       |
| Unit 2 Modification Implementation (All FLEX Phases) | Feb 2015                  | Not Started     |                                                |
| Procedures:                                          |                           |                 |                                                |
| Create Site-Specific Procedures                      | Feb 2015                  | Started         |                                                |
| Validate Procedures (NEI 12-06, Sect. 11.4.3)        | Feb 2015                  | Not Started     |                                                |
| Create Maintenance Procedures                        | Feb 2015                  | Started         |                                                |
| Perform Staffing Analysis                            | Oct 2014                  | Started         |                                                |
| Storage Plan and Construction                        | Feb 2015                  | Started         |                                                |
| FLEX Equipment Acquisition                           | Feb 2015                  | Started         |                                                |
| Training Completion                                  | Feb 2015                  | Started         |                                                |
| National SAFER Response Center<br>Operational        | Dec 2014                  | Started         |                                                |
|                                                      |                           |                 | Mar 2018                                       |
| Unit 1 FLEX Implementation                           | Mar 2016                  | Started         | See Section 5 of this enclosure                |
| Unit 2 FLEX Implementation                           | Feb 2015                  | Started         | Feb 2017<br>See Section 5 of<br>this enclosure |
| Full Site FLEX Implementation                        | Mar 2016                  | Started         | Mar 2018<br>See Section 5 of<br>this enclosure |

# 4 Changes to Compliance Method

Several changes to the compliance method have been made since the February 2014 update (Ref. 7). An update call was held with members of the Nuclear Regulatory Commission on April 4, 2014, to review the current design concepts. During detailed design activities occurring since the FLEX February 2014 6-Month Update Report, several changes were made to the compliance method. The changes were discussed during the April 4, 2014 update call. Attachments 1 and 2 to this update report depict the current water and electrical supply strategies.

The change to the water supply strategy involves the elimination of the pre-staged 480 VAC FLEX pumps in the Division 2 core standby cooling system (CSCS) pump room on each unit. The revised strategy consists of an appropriately sized portable diesel-driven pump (PDDP) located at the ultimate heat sink (UHS) that provides water for both units. Two (2) FLEX PDDP's will be procured to meet the 'N+1' equipment requirements of NEI 12-06. This PDDP will either be connected to the Division 2 Fuel Pool Cooling Emergency Makeup (FC EMU) piping (Primary connection point) or to the Division 1 FC EMU piping (Alternate connection point) on each unit. The available flow paths for both connection points are depicted on Attachment 1 and include the capability to provide flow to the reactor pressure vessel, spent fuel pool and the suppression pool. This strategy change was made as a result of the detailed design work related to pre-staging the 480 VAC FLEX pumps.

The change to the electrical supply strategy involves the elimination of the power supply need for the pre-staged 480 VAC FLEX pumps. Additionally, receptacles are shown on Attachment 2 for the spare 125VDC chargers. These receptacles are being installed to provide the capability of directly powering these chargers via the Alternate electrical supply connection strategy.

Note that Attachments 1 and 2 depict the water and electrical supply strategies for Unit 1. The strategies are the same for Unit 2.

5 Need for Relief/Relaxation and Basis for the Relief/Relaxation

By letter dated February 27, 2014 (Ref. 3), LaSalle County Station requested relaxation from certain schedule requirements of Order EA-12-049 (Ref. 2) related to installation of the severe accident capable containment vent required by Order EA-13-109 (Ref. 6). The NRC granted that schedule relief via letter dated April 15, 2014 (Ref. 4).

No additional need for relief/relaxation relative to Order EA-12-049 has been identified at this time.

6 Open Items from Overall Integrated Plan and Interim Staff Evaluation

The following tables provide a summary of the open items documented in the Overall Integrated Plan or the Interim Staff Evaluation (ISE) (Ref. 5) and the status of each item.

| Section Reference        | Overall Integrated Plan Open Item                                                                                                                                                                                                           | Status      |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Sequence of Events (p.5) | The times to complete actions in the<br>Events Timeline are based on operating<br>judgment, conceptual designs, and<br>current supporting analyses. The final<br>timeline will be time validated once<br>detailed designs are completed and | NOT STARTED |

| Section Reference                | Overall Integrated Plan Open Item                                                                                                                                                                                                                                                                                                                                                                                           | Status                                                                                          |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                  | procedures developed.                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |
| Sequence of Events (p.10)        | Initial evaluations were used to<br>determine the fuel pool timelines.<br>Formal calculations will be performed to<br>validate this information during<br>development of the spent fuel pool<br>cooling strategy detailed design.                                                                                                                                                                                           | COMPLETED.<br>Determined that the initial<br>evaluations that were<br>performed are sufficient. |
| Sequence of Events (p.10)        | Analysis of deviations between Exelon's<br>engineering analyses and the analyses<br>contained in BWROG Document<br>NEDC-33771P, "GEH Evaluation of<br>FLEX Implementation Guidelines and<br>documentation of results on Att. 1B,<br>"NSSS Significant Reference Analysis<br>Deviation Table." Planned to be<br>completed and submitted with August<br>2013 Six Month Update.                                                | COMPLETED<br>Reference 8 contains the<br>analysis.                                              |
| Strategy Deployment (p.11)       | Transportation routes will be developed<br>from the equipment storage area to the<br>FLEX staging areas. An administrative<br>program will be developed to ensure<br>pathways remain clear or compensatory<br>actions will be implemented to ensure all<br>strategies can be deployed during all<br>modes of operation.<br>Identification of storage areas and<br>creation of the administrative program<br>are open items. | STARTED                                                                                         |
| Programmatic Controls (p.12)     | An administrative program for FLEX to<br>establish responsibilities, and testing &<br>maintenance requirements will be<br>implemented.                                                                                                                                                                                                                                                                                      | STARTED                                                                                         |
| Core Cooling Phase 1 (p.17)      | Additional work will be performed<br>during detailed design development to<br>ensure Suppression Pool temperature<br>will support RCIC operation, in<br>accordance with approved BWROG<br>analysis, throughout the event.                                                                                                                                                                                                   | STARTED                                                                                         |
| Fuel Pool Cooling Phase 1 (p.35) | Complete an evaluation of the spent fuel pool area for steam and condensation.                                                                                                                                                                                                                                                                                                                                              | STARTED                                                                                         |
| Safety Functions Support Phase 1 | Evaluate the habitability conditions for<br>the Main Control Room and develop a                                                                                                                                                                                                                                                                                                                                             | STARTED. LaSalle will be applying the "toolbox"                                                 |

| Section Reference                          | Overall Integrated Plan Open Item                                                                                                                        | Status                     |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| (p.44)                                     | strategy to maintain habitability.                                                                                                                       | approach for habitability. |
| Safety Functions Support Phase 1<br>(p.44) | Evaluate the habitability conditions for<br>the Auxiliary Electric Equipment Room<br>(AEER) and develop a strategy to<br>maintain habitability.          | STARTED                    |
| Safety Functions Support Phase 2<br>(p.48) | Develop a procedure to prop open<br>battery room doors upon energizing the<br>battery chargers to prevent a buildup of<br>hydrogen in the battery rooms. | STARTED                    |

|             | Interim Staff Evaluation Open and Confirmatory It                                                                                                                                                                                                                                                                                                                                                           | tems                                                                                                                                                                                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Open Items                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                          |
| Item Number | Description                                                                                                                                                                                                                                                                                                                                                                                                 | Status                                                                                                                                                                                                                                                   |
| 3.2.3.A     | Verify the modifications associated with Order EA 13-<br>109 on a Hardened Containment Vent System support<br>the sequence of events and actions associated with the<br>LSCS mitigating strategies.                                                                                                                                                                                                         | The modifications<br>associated with Order EA<br>13-109 are scheduled to<br>complete installation at<br>LSCS in 2017 (Unit 2)<br>and 2018 (Unit 1). The<br>modifications will be<br>designed to support the<br>LSCS mitigating<br>strategies.<br>STARTED |
|             | Confirmatory Items                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |
| Item Number | Description                                                                                                                                                                                                                                                                                                                                                                                                 | Status                                                                                                                                                                                                                                                   |
| 3.1.1.2.A   | Confirm that soil liquefaction will not prevent<br>movement of equipment along transportation paths.                                                                                                                                                                                                                                                                                                        | STARTED                                                                                                                                                                                                                                                  |
| 3.1.1.2.B   | Confirm that the egress path for personnel to reach the FLEX storage building is seismically robust, or multiple egress paths that are not seismically robust are identified.                                                                                                                                                                                                                               | STARTED                                                                                                                                                                                                                                                  |
| 3.1.1.4.A   | Confirm that the logistics for equipment transportation,<br>area set up, and other needs for ensuring the equipment<br>and commodities to sustain the site's coping strategies<br>are available from offsite resources.                                                                                                                                                                                     | STARTED                                                                                                                                                                                                                                                  |
| 3.1.3.1.A   | If the licensee credits separation of storage sites to<br>address tornado threats, confirm that the axis of<br>separation and distance between storage locations will<br>provide assurance that a single tornado would not<br>impact all locations if the licensee relies on NEI 12-06,<br>Section 7.3.1, configurations 1.b or 1.c for protection<br>of the portable equipment from the high winds hazard. | LaSalle Station is NOT<br>crediting separation of<br>storage sites to address<br>tornado threats.                                                                                                                                                        |
| 3.2.1.1.A   | Confirm that benchmarks are identified and discussed<br>that demonstrate that the Modular Accident Analysis<br>Program (MAAP) is an appropriate code for the<br>simulation of an ELAP event at LSCS.                                                                                                                                                                                                        | COMPLETE.<br>See Attachment 5.                                                                                                                                                                                                                           |
| 3.2.1.1.B   | Confirm that the collapsed level remains above Top of<br>Active Fuel (TAF) and the cool down rate remains<br>within technical specification limits for MAAP<br>analyses.                                                                                                                                                                                                                                    | COMPLETE.<br>See Attachment 5.                                                                                                                                                                                                                           |

| Interim Staff Evaluation Open and Confirmatory Items |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3.2.1.1.C                                            | Confirm that MAAP is used in accordance with<br>Sections 4.1, 4.2, 4.3, 4.4, and 4.5 of the June 2013<br>position paper (ADAMS Accession No.<br>ML13190A201).                                                                                                                                                                                                                                                                                                                                                                              | COMPLETE.<br>See Attachment 5.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 3.2.1.1.D                                            | Confirm that the licensee identifies and justifies the<br>subset of key modeling parameters cited from Tables<br>4-1 through 4-6 of the "MAAP Application Guidance,<br>Desktop Reference for Using MAAP Software,<br>Revision 2" (Electric Power Research Institute Report<br>1020236). This should include response at a plant-<br>specific level regarding specific modeling options and<br>parameter choices for key models that would be<br>expected to substantially affect the ELAP analysis<br>performed for that licensee's plant. | COMPLETE.<br>See Attachment 5.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 3.2.1.1.E                                            | Confirm that the specific MAAP analysis case that was<br>used to validate the timing of mitigating strategies in<br>the Integrated Plan is identified and is appropriate for<br>LSCS. Alternately, a comparable level of information<br>may be included in the supplemental response.                                                                                                                                                                                                                                                      | COMPLETE.<br>See Attachment 5.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 3.2.1.2.A                                            | Confirm adequacy of the technical basis for the<br>assumptions made regarding the leakage rate through<br>the recirculation pump seals and other sources. The<br>analysis should include the assumed pressure-<br>dependence of the leakage rate, and whether the<br>leakage was determined or assumed to be single-phase<br>liquid, two-phase mixture, or steam at the donor cell,<br>and how mixing the leakage flow with the drywell<br>atmosphere is modeled.                                                                          | COMPLETE.<br>See Attachment 5.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 3.2.1.3.A                                            | Confirm that taking readings from a standpipe which is<br>not safety related or seismic does not make the CST<br>level instrumentation inadequate for the automatic<br>swap or informing the operators of CST loss so that<br>they may respond with manual action using the control<br>switches located in the main control room.                                                                                                                                                                                                          | COMPLETE.<br>With a potential loss of<br>the CST Standpipe, which<br>is located inside of the<br>Turbine Building, the<br>water would no longer be<br>present to indicate high<br>level; therefore, because<br>the level instruments are<br>seismically qualified, they<br>will remain adequate to<br>support the automatic<br>suction source swap. |  |  |  |  |
| 3.2.1.4.A                                            | Confirm that pump sizing results consider required water flow rates, the portable/FLEX pump complete                                                                                                                                                                                                                                                                                                                                                                                                                                       | STARTED                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |

| Interim Staff Evaluation Open and Confirmatory Items |                                                                                                                                                                                                                                                                                                                                                                                    |         |  |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
|                                                      | head/flow characteristics, suction and discharge losses,<br>system backpressure, elevation differences and piping<br>losses to allow verification that this will be a successful<br>strategy.                                                                                                                                                                                      |         |  |  |  |
| 3.2.1.4.B                                            | Confirm the generator sizing results consider<br>appropriate electrical loads and adequate capacity of<br>portable/FLEX electrical generators planned for use<br>during Phase 2 and Phase 3.                                                                                                                                                                                       | STARTED |  |  |  |
| 3.2.2.A                                              | Confirm completion of the evaluation of the SFP area<br>for steam and condensation and implementation of a<br>vent path strategy, if needed.                                                                                                                                                                                                                                       | STARTED |  |  |  |
| 3.2.4.1.A                                            | Confirm that operation of RCIC with suction temperatures above 200°F is acceptable.                                                                                                                                                                                                                                                                                                | STARTED |  |  |  |
| 3.2.4.2.A                                            | Confirm that the licensee provides acceptable hydrogen gas ventilation.                                                                                                                                                                                                                                                                                                            | STARTED |  |  |  |
| 3.2.4.4.A                                            | Confirm that the upgrades to the plant communication<br>systems discussed in the licensee communications<br>assessment (ADAMS Accession Nos. ML12306A199<br>and ML13056A135) in response to the March 12, 2012<br>50.54(f) request for information letter for Limerick<br>(sic) and, as documented in the staff analysis (ADAMS<br>Accession No. ML13114A067) have been completed. | STARTED |  |  |  |
| 3.2.4.6.A                                            | Confirm that the proceduralized "toolbox" approach<br>can ensure vital area habitability and confirm the<br>proper staging and protection of any equipment to<br>implement this approach.                                                                                                                                                                                          | STARTED |  |  |  |
| 3.2.4.7.A                                            | Confirm that the design of the FLEX pump suctions<br>will prevent introducing excessive amounts of<br>entrained debris as a result of extreme external hazards<br>(e.g., suspended solids especially from high wind<br>debris) in the cooling water from the Lake Screen<br>House/Lake.                                                                                            | STARTED |  |  |  |
| 3.2.4.10.A                                           | Confirm that the high/low temperature analysis (i.e.,<br>temperatures above/below those currently assumed in<br>the sizing calculations) shows no adverse effects on<br>expected battery life.                                                                                                                                                                                     | STARTED |  |  |  |
| 3.4.A                                                | Confirm conformance to considerations 2 through 10 of NEI 12-06, Section 12.2 for the use of offsite resources or that an acceptable alternate is developed.                                                                                                                                                                                                                       | STARTED |  |  |  |

7 Potential Draft Safety Evaluation Impacts

The FLEX strategy changes described in this update have the potential to impact the DRAFT Safety Evaluation.

# 8 References

The following references support the updates to the Overall Integrated Plan described in this enclosure.

- LaSalle County Station's Overall Integrated Plan in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049)," dated February 28, 2013 (ADAMS Accession No. ML13060A421).
- 2. NRC Order Number EA-12-049, "Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events," dated March 12, 2012.
- 3. Exelon/LaSalle Request for Relaxation from NRC Order EA-12-049, dated February 27, 2014 (ADAMS Accession No. ML14059A076).
- 4. NRC Approval of Exelon/LaSalle Request for Relaxation from NRC Order EA-12-049, dated April 15, 2014 (ADAMS Accession No. ML14071A455).
- LaSalle County Station, Units 1 and 2 Interim Staff Evaluation Relating to Overall Integrated Plan in Response to Order EA-12-049 (Mitigation Strategies), dated February 21, 2014 (ADAMS Accession No. ML14030A220(package)).
- 6. NRC Order Number EA-13-109, "Order Modifying Licenses With Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident Conditions," dated June 6, 2013
- LaSalle County Station, Units 1 and 2 Second Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049), dated February 28, 2014 (ADAMS Accession No. ML14059A431)
- LaSalle County Station, Units 1 and 2, First Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049), dated August 28, 2013 (ADAMS Accession No. ML13241A283)

# 9 Attachments

- 1. FLEX Water Supply Diagram
- 2. FLEX Electrical Supply Diagram
- 3. Portable Equipment Phase 2
- 4. Portable Equipment Phase 3
- 5. LaSalle Evaluation LS-MISC-025, Rev. 1, "Use of MAAP in Support of FLEX Implementation"

Attachment 1







| Atta | chme | nt 3 |
|------|------|------|
|      |      |      |

| LaSalle Portable Equipment Phase 2                                                                                                |      |                        |                  |                 |               |                                                                                                                                                               |                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|------|------------------------|------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                   | Use  | e and (potential / fle | xibility) divers | se uses         |               | Performance Criteria                                                                                                                                          | Maintenance                                                                                                                                                                            |
| List portable<br>equipment                                                                                                        | Core | Containment            | SFP              | Instrumentation | Accessibility |                                                                                                                                                               | Maintenance / PM<br>requirements                                                                                                                                                       |
| Two (2) Hale<br>IP4000DIM-<br>TCL portable<br>diesel driven<br>pumps with<br>two (2)<br>hydraulic<br>submersible<br>booster pumps | Х    | X                      | X                |                 |               | Nominal 4,000 gpm<br>main pump at 150 psig.<br>Hydraulic booster<br>pumps nominal 2,000<br>gpm.                                                               | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Three (3) 480<br>VAC Portable<br>Diesel Driven<br>Generators                                                                      | Х    | X                      | Х                | X               | X             | 500kW                                                                                                                                                         | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Two (2)<br>tandem axle<br>cable trailers<br>with cable<br>reels                                                                   | Х    | X                      | X                | X               | X             | '2N' sets of cable<br>located on one trailer in<br>protected FLEX<br>building. '+1' set of<br>cable located on one<br>trailer in commercial<br>FLEX building. | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |

|                                                                                                                             |                                                |             | LaS | alle Portable Equip  | oment Phase 2 |                                                                                        |                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-----|----------------------|---------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                             | Use and (potential / flexibility) diverse uses |             |     | Performance Criteria | Maintenance   |                                                                                        |                                                                                                                                                                                        |
| List portable<br>equipment                                                                                                  | Core                                           | Containment | SFP | Instrumentation      | Accessibility |                                                                                        | Maintenance / PM<br>requirements                                                                                                                                                       |
| Three (3)<br>Tandem Axle<br>Hose Trailers                                                                                   | X                                              | X           | X   |                      |               | Capable of hauling hoses, fittings, and tools                                          | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Ford F750<br>Truck w/snow<br>plow and two<br>(2) 118 gal<br>diesel fuel<br>tanks with<br>pump and<br>dispensing<br>equpment | Х                                              | X           | X   |                      | X             | Tow vehicle, portable<br>equipment refueling<br>vehicle, and debris<br>removal vehicle | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Six (6) 5.5 kW<br>portable diesel<br>generators                                                                             |                                                |             |     |                      | X             | 5.5 kW, 120/240VAC                                                                     | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |

| LaSalle Portable Equipment Phase 2                                                       |      |             |                      |                 |               |                     |                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------|------|-------------|----------------------|-----------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use and (potential / flexibility) diverse uses                                           |      |             | Performance Criteria | Maintenance     |               |                     |                                                                                                                                                                                        |
| List portable<br>equipment                                                               | Core | Containment | SFP                  | Instrumentation | Accessibility |                     | Maintenance / PM<br>requirements                                                                                                                                                       |
| Ten (10)<br>portable fans<br>with ducting<br>(Support RCIC<br>and other room<br>cooling) | X    |             |                      |                 | X             | 115 VAC, 5,000 SCFM | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Two (2)<br>Oscillating<br>Spray Fire<br>Monitors<br>(Support SFP<br>Spray)               |      |             | X                    |                 |               | 250 gpm             | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Miscellaneous<br>fire hose and<br>fittings                                               | X    | X           | X                    |                 |               | Various             | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |

|                                                                                   |      |             | LaS | alle Portable Equip | oment Phase 2 |                                                       |                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------|------|-------------|-----|---------------------|---------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use and (potential / flexibility) diverse uses                                    |      |             |     |                     |               | Performance Criteria                                  | Maintenance                                                                                                                                                                            |
| List portable<br>equipment                                                        | Core | Containment | SFP | Instrumentation     | Accessibility |                                                       | Maintenance / PM<br>requirements                                                                                                                                                       |
| Miscellaneous<br>Electrical<br>Cable and<br>Connectors                            | X    | X           | X   | X                   | X             | Various                                               | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| 12 "spider"<br>boxes to<br>distribute<br>electrical<br>power                      | X    | X           | X   | X                   | X             | Provide AC power for<br>portable fans, lighting, etc. | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Portable<br>Inflatable<br>Tower<br>Lighting (Ten<br>10' units, Four<br>14' units) |      |             |     |                     | X             | AC powered                                            | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |

|                                                | LaSalle Portable Equipment Phase 2 |             |     |                 |               |                                               |                                                                                                                                                                                        |
|------------------------------------------------|------------------------------------|-------------|-----|-----------------|---------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use and (potential / flexibility) diverse uses |                                    |             |     |                 |               | Performance Criteria                          | Maintenance                                                                                                                                                                            |
| List portable<br>equipment                     | Core                               | Containment | SFP | Instrumentation | Accessibility |                                               | Maintenance / PM<br>requirements                                                                                                                                                       |
| 6 large area<br>fans                           |                                    |             |     |                 | X             | AC. 13,300 cfm.                               | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Portable<br>battery<br>operated fans<br>(5)    |                                    |             |     |                 | X             | AC/DC, variable speed,<br>5,000 to 15,000 cfm | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Hydraulic<br>"rescue"<br>cutters (1)           |                                    |             |     |                 |               | Max 236,250 psf lbf, 6 hp<br>diesel engine    | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |

|                                                     | LaSalle Portable Equipment Phase 2 |             |     |                 |                      |                                                           |                                                                                                                                                                                        |
|-----------------------------------------------------|------------------------------------|-------------|-----|-----------------|----------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use and (potential / flexibility) diverse uses      |                                    |             |     |                 | Performance Criteria | Maintenance                                               |                                                                                                                                                                                        |
| List portable<br>equipment                          | Core                               | Containment | SFP | Instrumentation | Accessibility        |                                                           | Maintenance / PM<br>requirements                                                                                                                                                       |
| Hydraulic<br>circular saw                           |                                    |             |     |                 |                      | 14 inch, 10 hp diesel<br>engine                           | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Miscellaneous<br>cold weather<br>gear               |                                    |             |     |                 | X                    | Coveralls, gloves, hoods                                  | N/A                                                                                                                                                                                    |
| Sleeping bags<br>and cots                           |                                    |             |     |                 | Х                    |                                                           | N/A                                                                                                                                                                                    |
| Cooling vests<br>and spare<br>cooling packs         |                                    |             |     |                 | Х                    | To support "toolbox"<br>approach for area<br>habitability | N/A                                                                                                                                                                                    |
| Porta-potties<br>(4)                                |                                    |             |     |                 | Х                    |                                                           | N/A                                                                                                                                                                                    |
| Portable (AC)<br>fuel transfer<br>pump and<br>hoses | X                                  | X           | Х   | X               | X                    |                                                           | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |

|                                                    |      |                        | LaS              | alle Portable Equip | ment Phase 2  |                                                                          |                                                                                                                                                                                        |
|----------------------------------------------------|------|------------------------|------------------|---------------------|---------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | Use  | e and (potential / fle | exibility) diver | se uses             |               | Performance Criteria                                                     | Maintenance                                                                                                                                                                            |
| List portable<br>equipment                         | Core | Containment            | SFP              | Instrumentation     | Accessibility |                                                                          | Maintenance / PM requirements                                                                                                                                                          |
| Three (3)<br>battery-<br>powered trailer<br>movers | X    | X                      | X                | X                   | X             | Move large trailers in/out<br>of FLEX storage buildings                  | Equipment maintenance<br>and testing will be<br>performed in accordance<br>with the industry<br>templates, as outlined in<br>JLD-ISG-2012-01 section<br>6 and NEI 12-06 section<br>11. |
| Sound-<br>powered phone<br>equipment               | Х    | X                      | Х                | X                   | Х             | Headsets, extra cable sections                                           | N/A                                                                                                                                                                                    |
| Handheld<br>radios                                 | Х    | X                      | X                | X                   | X             | Additional radios for use<br>in talk-around mode,<br>batteries, chargers | N/A                                                                                                                                                                                    |

# Attachment 4

# **BWR Portable Equipment Phase 3 (Generic Equipment)**

Note: The equipment listed is the generic equipment list provided by the National SAFER Response Center and even though LaSalle does not require this equipment in our FLEX strategies, this equipment will be available from the National SAFER Response Center and could be utilized in the Phase 3 time period. {Based on AREVA "Regional Response Center Equipment Technical Requirements" document 51-9199717-007.}

|                                       | l    | Use and (potential / | Performance Criteria | Notes           |               |                                                             |  |
|---------------------------------------|------|----------------------|----------------------|-----------------|---------------|-------------------------------------------------------------|--|
| List portable<br>equipment            | Core | Containment          | SFP                  | Instrumentation | Accessibility |                                                             |  |
| Medium<br>Voltage Diesel<br>Generator | Х    | X                    | Х                    | X               | X             | 1 MW output at 4160<br>Vac, three phase <sup>Note 1</sup>   |  |
| Low Voltage<br>Diesel<br>Generator    | Х    | X                    | X                    | X               | X             | 1100 kW output at 480<br>Vac, three phase <sup>Note 2</sup> |  |
| High Pressure<br>Injection Pump       | Х    |                      |                      |                 |               | 2000 psi shutoff head, 60<br>gpm capacity                   |  |
| SG/RPV<br>Makeup Pump                 | Х    |                      |                      |                 |               | 500 psi / 500 gpm                                           |  |
| Low Pressure /<br>Medium Flow<br>Pump | Х    | X                    | Х                    |                 |               | 300 psi shutoff head,<br>2500 gpm max flow                  |  |
| Low Pressure /<br>High Flow<br>Pump   | Х    | X                    | Х                    |                 |               | 150 psi shutoff head,<br>5000 gpm max flow                  |  |
| Cable /<br>Electrical                 | Х    | X                    | Х                    | X               |               | Various as determined by<br>AREVA document # 51 -           |  |

# **BWR Portable Equipment Phase 3 (Generic Equipment)**

Note: The equipment listed is the generic equipment list provided by the National SAFER Response Center and even though LaSalle does not require this equipment in our FLEX strategies, this equipment will be available from the National SAFER Response Center and could be utilized in the Phase 3 time period. {Based on AREVA "Regional Response Center Equipment Technical Requirements" document 51-9199717-007.}

|                                      | l    | Jse and (potential / | Performance Criteria | Notes           |               |                                                                    |  |
|--------------------------------------|------|----------------------|----------------------|-----------------|---------------|--------------------------------------------------------------------|--|
| List portable<br>equipment           | Core | Containment          | SFP                  | Instrumentation | Accessibility |                                                                    |  |
|                                      |      |                      |                      |                 |               | 9199717 - 007                                                      |  |
| Hose /<br>Mechanical<br>Connections  | Х    | X                    | X                    |                 |               | Various as determined by<br>AREVA document # 51 -<br>9199717 - 007 |  |
| Lighting<br>Towers<br>(3/unit)       |      |                      |                      |                 | x             | 40,000 lumens                                                      |  |
| Diesel Fuel<br>Transfer              |      |                      |                      |                 |               | 500 gallon air-lift<br>container                                   |  |
| Diesel Fuel<br>Transfer Tank         |      |                      |                      |                 |               | 264 gallon tank, with mounted AC/DC pumps                          |  |
| Portable Fuel<br>Transfer Pump       |      |                      |                      |                 |               | 60 gpm after filtration                                            |  |
| Electrical<br>Distribution<br>System |      |                      |                      |                 |               | 4160 V, 250 MVA,<br>1200 A                                         |  |

Note 1: 1 MW is the individual generator output, and 2 MW is the total standard output to be supplied by the Phase 3 MV generators to satisfy identified load demands. The total output is created by connection of several smaller generators in parallel. Loads in excess of 2 MW are planned to be addressed as additional generators classified as non-generic equipment (see Section 8.4).

Note 2: The 1100 kW unit is derated to 1000 kW.

|                                                         |      | LaS         | alle Portable | Equipment Phase 3 | 8 (Non-Generi | c Equipment)                                                                                                                                                                    |                                                                                    |
|---------------------------------------------------------|------|-------------|---------------|-------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Use and (potential / flexibility) diverse uses          |      |             |               |                   |               | Performance Criteria                                                                                                                                                            | Notes                                                                              |
| List portable<br>equipment                              | Core | Containment | SFP           | Instrumentation   | Accessibility |                                                                                                                                                                                 |                                                                                    |
| 2500/5000<br>GPM<br>Suction<br>Booster<br>Lift<br>Pumps | X    | X           | X             |                   |               | The Suction Booster Lift<br>Pump will assist in<br>providing 26 feet of<br>suction lift to the Low<br>Pressure Medium Flow<br>Pumps and the Low<br>Pressure High Flow<br>Pumps. | Exelon/LaSalle is currently<br>pursuing participation in<br>this equipment group . |

|                                                                                                                                         | Phase 3 Response Equipment/Commodities                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Item                                                                                                                                    | Notes                                                                                                          |
| <ul> <li>Radiation Protection Equipment</li> <li>Survey instruments</li> <li>Dosimetry</li> <li>Off-site monitoring/sampling</li> </ul> | These types of equipment will be requested from site to site and utility to utility on an as required basis.   |
| Commodities <ul> <li>Food</li> <li>Potable water</li> </ul>                                                                             | These types of commodities will be requested from site to site and utility to utility on an as required basis. |

# Attachment 5

Copy of LS-MISC-025 Rev. 1 (20 pages including cover page)

| RM DOCUMENTA                                                                                                                                                   | TION NO. LS-MISC-025                                                                                                                                                                                                       | <b>REV:</b> 1                                                                                                                               | PAGE NO. 1                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| STATION: LaSalle                                                                                                                                               |                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                        |
| UNIT(S) AFFECTE                                                                                                                                                | D: Units 1 and 2                                                                                                                                                                                                           |                                                                                                                                             |                                                                                                                        |
| TITLE: Use of MAA                                                                                                                                              | AP in Support of FLEX Implen                                                                                                                                                                                               | nentation                                                                                                                                   |                                                                                                                        |
| SUMMARY (Includ                                                                                                                                                | e UREs incorporated):                                                                                                                                                                                                      |                                                                                                                                             |                                                                                                                        |
| MAAP 4.0.5 calcula<br>containment press<br>Blackout (SBO) eve<br>provided relating to<br>to the plants respond<br>include in the next<br>additional details re | ations (LS-MISC-017-R1) wer<br>ure and temperature response<br>ents. The NRC has requested<br>the use of MAAP for FLEX a<br>nse to EA-12-049. The attach<br>update to EA-12-049. Revisio<br>egarding the NRC's information | e performed to es<br>to a variety of es<br>that some additionalysis as part of<br>ed information is<br>on 1 includes discont<br>on request. | stimate the<br>xtended Station<br>onal information be<br>the periodic update<br>being provided to<br>ussion to provide |
| [] Review require                                                                                                                                              | ed after periodic Update                                                                                                                                                                                                   |                                                                                                                                             |                                                                                                                        |
| [X] Internal RM I<br>Electronic Calcula                                                                                                                        | Documentation [<br>ation Data Files: N/A                                                                                                                                                                                   | ] External RM                                                                                                                               | Documentation                                                                                                          |
| <u>Method of Review</u><br>This RM documen                                                                                                                     | : [X] Detailed [] Alterr<br>tation supersedes: <u>Rev</u>                                                                                                                                                                  | ate [] Review (<br>.0in its entire                                                                                                          | of External Document<br>ety.                                                                                           |
| Prepared by:                                                                                                                                                   | Alex H. Duvall /                                                                                                                                                                                                           | Aly J<br>Sign                                                                                                                               | 2au 7/22/14<br>Date                                                                                                    |
| Reviewed by:                                                                                                                                                   | Gary W. Hayner //                                                                                                                                                                                                          | Adam<br>OSign                                                                                                                               | 1 7/22/14<br>Date                                                                                                      |
| Approved by: _                                                                                                                                                 | Edward T. Burns / E                                                                                                                                                                                                        | Sign                                                                                                                                        | n 1 7/22/14<br>Date                                                                                                    |

| RM DOCUMENTAT                                                                                                                                                    | TION NO. LS-MISC-025                                                                                                                                                                                        | <b>REV:</b> 1                                                                                                                                                      | PAGE NO. 1                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| STATION: LaSalle                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                |
| UNIT(S) AFFECTEI                                                                                                                                                 | D: Units 1 and 2                                                                                                                                                                                            |                                                                                                                                                                    |                                                                                                                |
| TITLE: Use of MAA                                                                                                                                                | P in Support of FLEX Imple                                                                                                                                                                                  | mentation                                                                                                                                                          |                                                                                                                |
| SUMMARY (Include                                                                                                                                                 | e UREs incorporated):                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                |
| MAAP 4.0.5 calcula<br>containment pressu<br>Blackout (SBO) eve<br>provided relating to<br>to the plants respon<br>include in the next u<br>additional details re | tions (LS-MISC-017-R1) we<br>re and temperature respons<br>nts. The NRC has requeste<br>the use of MAAP for FLEX<br>se to EA-12-049. The attac<br>update to EA-12-049. Revisi<br>garding the NRC's informat | re performed to esti<br>se to a variety of extend<br>d that some addition<br>analysis as part of the<br>hed information is be<br>on 1 includes discussion request. | mate the<br>ended Station<br>hal information be<br>he periodic update<br>eing provided to<br>ession to provide |
| [] Review require                                                                                                                                                | d after periodic Update                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                |
| [X] Internal RM D<br>Electronic Calcula<br><u>Method of Review</u><br>This RM documen                                                                            | ocumentation<br>tion Data Files: N/A<br>[ [X] Detailed [ ] Alte<br>tation supersedes: <u>Re</u>                                                                                                             | [ ] External RM I<br>rnate [ ] Review of<br><u>v. 0 in its entiret</u>                                                                                             | Documentation<br>External Document                                                                             |
| Prepared by: _                                                                                                                                                   | Alex H. Duvall //                                                                                                                                                                                           | Sign                                                                                                                                                               | /<br>Date                                                                                                      |
| Reviewed by: _                                                                                                                                                   | Gary W. Hayner //                                                                                                                                                                                           | Sign                                                                                                                                                               | /<br>Date                                                                                                      |
| Approved by: _                                                                                                                                                   | Edward T. Burns /                                                                                                                                                                                           | Sign                                                                                                                                                               | /<br>Date                                                                                                      |

# TABLE OF CONTENTS

#### Page

| 1.0 | PURPOSE & SCOPE                          | 3 |
|-----|------------------------------------------|---|
| 2.0 | REQUESTED INFORMATION ON THE USE OF MAAP | 3 |
| 3.0 | REFERENCES                               | 9 |

Section

## 1.0 PURPOSE & SCOPE

The purpose of the included information is to respond to NRC questions relating to the use of the Modular Accident Analysis Program (MAAP) Version 4 in support of the plant's response to NRC Order EA-12-049 [1]. The MAAP analysis is documented separately in LS-MISC-017-R1.

## 2.0 REQUESTED INFORMATION ON THE USE OF MAAP

In response to the letter of October 3, 2013 from Jack Davis (NRR) to Joe Pollock (NEI) [2], the following responses have been developed regarding the use of MAAP4 for estimating accident progression timing in support of the Overall Integrated Plan (OIP) for LaSalle.

## 2.1 NRC ITEM 1

## Question 1

From the June 2013 position paper, benchmarks must be identified and discussed which demonstrate that MAAP4 is an appropriate code for the simulation of an ELAP event at your facility.

## Response to Item 1:

The generic response provided by EPRI Technical Report 3002002749, "Technical Basis for Establishing Success Timelines in Extended Loss of AC Power Scenarios in Boiling Water Reactors Using MAAP4, A Guide to MAAP Thermal-Hydraulic Models" [6] concludes that MAAP4 is an appropriate code for the simulation of an ELAP at this facility.

## 2.2 NRC ITEM 2

# **Question 2**

The collapsed level must remain above Top of Active Fuel (TAF) and the cool down rate must be within Technical Specification limits.

LS-MISC-025-R1.doc

#### Response to Item 2:

Attachment 1A of the LaSalle Integrated Plan (Feb. 2013) states that the operators would commence a cooldown of the RPV at 20 min at a rate of 20°F/hr which is within the Technical Specifications limit of 100°F/hr. The following plot of the RPV pressure from the MAAP4 analysis confirms this cooldown rate for the supporting MAAP4 calculation was modeled correctly.





For the representative MAAP4 run (Case 3.e), the collapsed RPV water level inside the shroud remains above Top of Active Fuel (TAF) for the duration of the analysis. The plots below shows that the lowest RPV water level, calculated by MAAP4, is approximately 60" (5') below instrument zero<sup>(1)</sup>. TAF is located at -161" (-13.42') relative to instrument zero. As shown in the following plots, the collapsed RPV water level remains at least 8' above TAF for the duration of the analysis.



From 0 to 72 Hours

(1) Instrument zero is at +527.5" (43.96') above vessel zero.



MAAP Calculation of Collapsed RPV Water Level Inside the Shroud From 0 to 10 Hours

## 2.3 NRC ITEM 3

#### **Question 3**

MAAP4 must be used in accordance with Sections 4.1, 4.2, 4.3, 4.4, and 4.5 of the June 2013 position paper.

#### Response to Item 3:

The MAAP4 analysis performed for LaSalle was carried out in accordance with Sections 4.1, 4.2, 4.3, 4.4, and 4.5 of the June 2013 position paper, EPRI Technical Report 3002001785, "Use of Modular Accident Analysis Program (MAAP) in Support of Post-Fukushima Applications" [3]. The requirements of each of these sections of the generic guideline (EPRI Technical Report 3002001785) are dispositioned below.

LS-MISC-025-R1.doc

#### 2.3.1 Compliance with Section 4.1

Section 4.1 of the EPRI report discusses documentation of the verification and validation of the MAAP 4.0.5 installation [3]. The MAAP 4.0.5 BWR output provided by EPRI with the MAAP 4.0.5 installation (run on Windows XP) was compared to the computer running output files generated on the computer system (operating Windows 7) that is used for all MAAP4 calculations in the LaSalle MAAP ELAP analysis. The Peach Bottom sample Parameter File provided with the MAAP 4.0.5 software installation package (PEACH4.par) was used to accomplish this validation.

The Peach Bottom Parameter File was executed using the MAAP 4.0.5 code with the large loss of coolant (LLOCA1.inp) and station blackout (SBO1A1.inp) scenario input files provided with the MAAP 4.0.5 software installation package. The output files generated from these executions as part of local code installation are compared with the output files for the same scenarios that were provided by EPRI with the MAAP 4.0.5 installation (i.e., post-executed files). The input and output files generated during this installation validation process are not included with this report; however, key results of the EPRI files and the validation files are compared below.

The following is the comparison of the EPRI sample outputs with the same cases performed on the computer used for LaSalle calculations. As noted in Section 4.1 of the June 2013 Position Paper, validation of the MAAP installation is adequate for alternate computer and operating systems if the figures-of-merit at the end of the user-generated log file agree with the figures-of-merit from the log file provided with the MAAP installation are within certain tolerances [3].

#### LLOCA-LARGE LOSS OF COOLANT ACCIDENT

The first EPRI test case is the LLOCA sequence (LLOCA1.inp) initiated with a doubleended recirculation line break (28" break area) at the bottom elevation of the downcomer/reactor pressure vessel penetration. This break drains the reactor coolant into the drywell. All RPV injection sources are assumed to be unavailable. The end time of the sequence is 40 hours. The Table 2-1 provides a comparison of LLOCA

LS-MISC-025-R1.doc

results between the Windows XP MAAP 4.0.5 output files provided with the MAAP 4.0.5 installation (LLOCA1.log) and the output file generated using a Windows 7 computer. A comparison of results shows a valid installation of the software. The output results show slight but acceptable differences (i.e., within code tolerances) between the Windows XP run provided by EPRI and the Windows 7 run performed as part of this installation assessment. This comparison confirms that there are no issues using Windows 7 to perform MAAP 4.0.5 calculations.

## Table 2-1

|                                          | Calculated Parameter Value                  |                                            |  |  |  |
|------------------------------------------|---------------------------------------------|--------------------------------------------|--|--|--|
| Parameter                                | PEACH4.par<br>MAAP 4.0.5 with<br>Windows XP | PEACH4.par<br>MAAP 4.0.5 with<br>Windows 7 |  |  |  |
| Time Core Uncovery                       | 41.8 sec                                    | 41.8 sec                                   |  |  |  |
| Time of Core Temp >2499K                 | 1381.4 sec                                  | 1382.1 sec                                 |  |  |  |
| Time of First Relocation to Lower Plenum | 5909.6 sec                                  | 5984.6 sec                                 |  |  |  |
| Time of First Vessel Failure             | 12287.5 sec                                 | 11733.3 sec                                |  |  |  |
| First Vessel Failure Mode,<br>Node       | CRD tube ejection                           | CRD tube ejection                          |  |  |  |
| UO <sub>2</sub> Mass in Pedestal         | 81514.9 kg                                  | 81518.9 kg                                 |  |  |  |
| UO <sub>2</sub> Mass in Drywell          | 77057.9 kg                                  | 77054.4 kg                                 |  |  |  |
| Csl Mass in Containment                  | 29.0203 kg                                  | 29.0786 kg                                 |  |  |  |
| SrO Mass in Corium                       | 70.7301 kg                                  | 71.2745 kg                                 |  |  |  |
| Fraction of Zr Clad Reacted in Vessel    | 0.1988                                      | 0.2118                                     |  |  |  |

# PEACH BOTTOM (PEACH4) LLOCA COMPARISON

## **STATION BLACKOUT**

The second EPRI test case is the SBO sequence (SBO1A1.inp) modeled as the loss of onsite and offsite AC power. Battery backed injection systems (i.e., HPCI and RCIC) are available for the life of the battery charge. The end time of the sequence is 40 hours. The table below provides a comparison of the SBO results between the Windows XP MAAP 4.0.5 output file provided with the MAAP 4.0.5 installation (SBO1A1.log) and the output file generated using the Windows 7 computer. A comparison of results shows a valid installation of the software. The output results show slight but acceptable differences (i.e., within code tolerances) between the Windows XP run provided by EPRI and the Windows 7 run performed as part of this installation assessment. This comparison confirms that there are no issues using Windows 7 to perform MAAP 4.0.5 calculations.

## Table 2-2

#### PEACH4 SBO COMPARISON

|                                             | Calculated Parameter Value                  |                                            |
|---------------------------------------------|---------------------------------------------|--------------------------------------------|
| Parameter                                   | PEACH4.par<br>MAAP 4.0.5 with<br>Windows XP | PEACH4.par<br>MAAP 4.0.5 with<br>Windows 7 |
| Time Core Uncovery                          | 27783.3 sec                                 | 27783.3 sec                                |
| Time of Core Temp >2499K                    | 31246.7 sec                                 | 31246.7 sec                                |
| Time of First Relocation to<br>Lower Plenum | 46372.9 sec                                 | 46428.1 sec                                |
| Time of First Vessel Failure                | 47832.2 sec                                 | 47890.3 sec                                |
| First Vessel Failure Mode,<br>Node          | CRD tube ejection                           | CRD tube ejection                          |
| UO <sub>2</sub> Mass in Pedestal            | 76008.7 kg                                  | 76331.9 kg                                 |
| UO <sub>2</sub> Mass in Drywell             | 82589.3 kg                                  | 82265.8 kg                                 |
| Csl Mass in Containment                     | 20.4359 kg                                  | 19.4627 kg                                 |
| SrO Mass in Corium                          | 69.0067 kg                                  | 68.5566 kg                                 |
| Fraction of Zr Clad Reacted in<br>Vessel    | 0.5031                                      | 0.5031                                     |

# 2.3.2 Compliance with Section 4.2

This section discusses the testing requirements of the MAAP 4.0.5 Parameter File. Testing and review of the LaSalle MAAP 4.0.5 Parameter File is documented in Exelon Risk Management document LS-PSA-009, Rev. 2 [5], which concludes that the Parameter File has been adequately tested and reviewed.

#### 2.3.3 Compliance with Section 4.3

This section discusses the preparation and confirmation requirements of MAAP 4.0.5 input files. The LaSalle MAAP FLEX analysis, LS-MISC-017, Rev. 1 [7], documents the creation of these input files in Section 6 and Attachment 1 and the results of the analysis output in Section 7 and Attachment 1.

## 2.3.4 Compliance with Section 4.4

This section discusses the requirements for control of the analysis model files, the analysis documentation, and the review of the analysis. LS-MISC-017, Rev. 1, provides documentation of the analysis and was reviewed by Exelon qualified staff. The MAAP scenario input and output files are stored appropriately.

#### 2.3.5 Compliance with Section 4.5

This section discusses the requirements of qualified individuals to perform the analysis. Preparation and review of the MAAP analysis in LS-MISC-017, Rev. 1 was conducted using Exelon engineering training certification guide ENANRM08. All personnel responsible for the analysis are qualified in this certification guide.

#### 2.4 NRC ITEM 4

#### **Question 4**

In using MAAP4, the licensee must identify and justify the subset of key modeling parameters cited from Tables 4-1 through 4-6 of the "MAAP4 Application Guidance, Desktop Reference for Using MAAP4 Software, Revision 2" (Electric Power Research Institute Report 1020236) [4]. This should include response at a plant-specific level regarding specific coding options and parameter choices for key models that would be expected to substantially affect the ELAP analysis performed for that licensee's plant. Although some suggested key phenomena are identified below, other parameters considered important in the simulation of the ELAP event by the vendor / licensee should also be included.

- a. Nodalization
- b. General two-phase flow modeling
- c. Modeling of heat transfer and losses
- d. Choked flow
- e. Vent line pressure losses
- f. Decay heat (fission products / actinides / etc.)

LS-MISC-025-R1.doc

Response to Item 4:

a. The reactor vessel nodalization is fixed by the MAAP code and cannot be altered by the user, with the exception of the detailed core nodalization. The LaSalle MAAP 4.0.5 Parameter File divides the core region into 5 equal volume radial regions and 13 axial regions. The axial nodalization represents 10 equal-sized fueled nodes, 1 unfueled node at the top, and 2 unfueled nodes at the bottom. The LaSalle MAAP 4.0.5 Parameter File is documented in LS-PSA-009, Rev. 2 [5]. The figure below, taken from the MAAP Users Manual, illustrates the vessel nodalization scheme.



LS-MISC-025-R1.doc

Containment nodalization is defined by the user. The standard nodalization scheme is used in the LaSalle MAAP 4.0.5 Parameter File and represents the following individual compartments:

- 1. Upper Pedestal
- 2. Drywell
- 3. Suppression chamber (Wetwell)
- 4. Lower Pedestal

The figure below illustrates the LaSalle containment nodalization along with an identification of containment flow junctions.



LS-MISC-025-R1.doc

b. General two-phase flow from the reactor vessel is described in the EPRI Technical Report 3002002749, Section 2 [6]. In the case of the scenario outlined in the integrated plan, flow can exit the RPV via the open SRV(s) and from the assumed recirculation pump seal leakage. Flow from the SRV(s) will be single-phase steam and flow from the recirc pump seal or other RPV leakage will be single-phase liquid due to the location of the break low in the RPV with RPV level maintained above TAF. Upon exiting the RPV, the seal leakage will flash a portion of the flow to steam based on saturated conditions in the drywell, creating a steam source and a liquid water source to the drywell. As described in the EPRI Technical Report 3002002749, "Technical Basis for Establishing Success Timelines in Extended Loss of AC Power Scenarios in Boiling Water Reactors Using MAAP4 - A Guide to MAAP Thermal-Hydraulic Models", Section 2, [6] there are two MAAP parameters that can influence the two-phase level in the RPV – FCO (void concentration factor) and FCHTUR (churn-turbulent critical velocity coefficient). The following table confirms that the parameter values match the recommended values as outlined in the EPRI Technical Report 3002002749, Section 3. The LaSalle MAAP 4.0.5 Parameter File is documented in LS-PSA-009, Rev. 2 [5].

| PARAMETER NAME | VALUE USED IN THE<br>LASALLE MAAP ANALYSIS | EPRI<br>RECOMMENDED VALUE |
|----------------|--------------------------------------------|---------------------------|
| FCO            | 1.5248                                     | 1.5248                    |
| FCHTUR         | 1.53                                       | 1.53                      |

c. Modeling of heat transfer and losses from the RPV are described in Section 2 of the EPRI Technical Report 3002002749 [6]. The MAAP parameters that control these processes, as defined in the EPRI report, are provided below with the values selected to represent LaSalle. LS-PSA-009, Rev. 2, documents the LaSalle MAAP 4.0.5 Parameter File [5].

| PARAMETER NAME                                                                  | VALUE USED IN THE<br>LASALLE MAAP ANALYSIS | COMMENT                                                                                                                                                      |
|---------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QC0 – not-thru-insulation<br>heat transfer from RPV<br>during normal operation. | 3.753E6 BTU/hr                             | Plant specific value based on drywell heat<br>removal to coolers during normal<br>operation. Typical values range between<br>1-2 MW (3.4E6 to 6.8E6 BTU/hr). |
| FINPLT – number of plates<br>in reflective insulation                           | 10.0                                       | Plant-specific value                                                                                                                                         |
| XTINS – average reflective<br>insulation thickness                              | 0.2917 ft                                  | Plant-specific value                                                                                                                                         |

LS-MISC-025-R1.doc

At the request of the NRC, the following information, as used in the MAAP analysis, is provided.

| PARAMETER DEFINITION                             | PARAMETER<br>NAME IN MAAP                                                | VALUE USED IN THE<br>LASALLE MAAP ANALYSIS |
|--------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
| Power level, MWth                                | QCR0                                                                     | 3546 MWth                                  |
| Initial CST water volume, gal                    | VCSTO (ft <sup>3</sup> )                                                 | 262,482.2 ft <sup>3</sup>                  |
| Initial CST water temperature, F                 | HCST (enthalpy)                                                          | 95°F                                       |
| Initial suppression pool water mass, Ibm         | Calculated from input                                                    | 8,119,000 lbm                              |
| Initial suppression pool water level, ft         | XWRB0(i), where i is node<br>number for wetwell                          | 26.5 ft                                    |
| Initial suppression pool water<br>temperature, F | TWRB0(i), where i is node<br>number for wetwell                          | 105.0°F                                    |
| Drywell free volume, ft <sup>3</sup>             | VOLRB(i), where I is node<br>number for drywell                          | 220,402.4 ft <sup>3</sup>                  |
| Wetwell free volume, ft3                         | VOLRB(i) – volume of<br>suppression pool water from<br>initial pool mass | 295757.0 ft3                               |
| Containment vent pressure, psia                  | Refer to MAAP analysis<br>document                                       | 26.32 psia                                 |
| RCIC max flow rate, gpm                          | WVRCIC                                                                   | 625 gpm                                    |
| Max FLEX pump flow rate, gpm                     | Refer to MAAP analysis<br>document                                       | 300 gpm                                    |
| Lowest set SRV flow rate, lb/hr                  | Derived from SRV area,<br>ASRV                                           | 862,400                                    |
| Lowest set SRV pressure, psia                    | PSETRV                                                                   | 1090.7                                     |
| Recirc pump seal leakage, gpm                    | Value that was used to define<br>LOCA area, ALOCA                        | 36<br>(18 gpm per pump)                    |
| Total leakage used in the transient, gpm         | Value that was used to define<br>LOCA area, ALOCA                        | 100                                        |

d. Choked flow from the SRV and the recirculation pump seal leakage (as break flow) is discussed in the EPRI Technical Report 3002002749 in Section 4 and Section 2, respectively [6]. The parameters identified that impact the flow calculation are listed below with input values identified. LS-PSA-009, Rev. 2, documents the LaSalle MAAP 4.0.5 Parameter File [5].

| PARAMETER NAME                                     | VALUE USED IN THE<br>LASALLE MAAP ANALYSIS                  | EPRI<br>RECOMMENDED VALUE |
|----------------------------------------------------|-------------------------------------------------------------|---------------------------|
| ASRV – effective flow area for<br>relief valve     | 0.0927 ft <sup>2</sup><br>(based on rated flow at pressure) | Plant-specific value      |
| ALOCA – seal leakage area                          | 1.55E-3 ft <sup>2</sup><br>(100 gpm at normal conditions)   | Plant-specific value      |
| FCDBRK – discharge coefficient<br>for seal leakage | 0.75                                                        | 0.75                      |

LS-MISC-025-R1.doc

- e. Containment vent line pressure loss can be represented in two ways. The actual piping flow area can be input along with a discharge coefficient (FCDJ). An alternative method would be to calculate the effective flow are given the estimated piping losses, and input a loss coefficient of 1.0. For the LaSalle analysis, the vent area is input based on a 10" diameter pipe and a discharge coefficient of 0.75 was selected. For this vent flow, MAAP assumes a compressible, adiabatic, critical flow between containment and the environment. This flow is only adjusted for pressure loss using the discharge coefficient (i.e., the physical losses from piping and pipe components are not independently considered, rather the effects are averaged as the discharge coefficient). The vent is assumed to cycle in the open and close states via operator actions to maintain wetwell pressure between 5 and 8 psig.
- f. The decay heat calculation in MAAP is discussed in the EPRI Technical Report 3002002749, Section 2 [6]. Input parameters used to compute the decay heat are identified in the EPRI report and are listed in the following table along with their values used in the LaSalle analysis. LS-PSA-009, Rev. 2, documents the LaSalle MAAP 4.0.5 Parameter File [5].

| PARAMETER NAME                                                 | VALUE USED IN THE<br>LASALLE MAAP ANALYSIS | EPRI<br>RECOMMENDED VALUE |
|----------------------------------------------------------------|--------------------------------------------|---------------------------|
| FENRCH – normal fuel enrichment                                | 0.0381                                     | Plant-specific value      |
| EXPO – average exposure                                        | 29,549.6 MW-day/ton                        | Plant-specific value      |
| FCR – total capture rate of U-238 / total absorption rate      | 0.323                                      | Plant-specific value      |
| FFAF – total absorption rate / total<br>fission rate           | 2.30                                       | Plant-specific value      |
| FQFR1 – fraction of fission power<br>due to U-235 and PU-241   | 0.510                                      | Plant-specific value      |
| FQFR2 – fraction of fission power<br>due to PU-239             | 0.405                                      | Plant-specific value      |
| FQFR3 – fraction of fission power<br>due to U-238              | 0.085                                      | Plant-specific value      |
| TIRRAD – average effective<br>irradiation time for entire core | 26,280 hours                               | Plant-specific value      |

#### 2.5 NRC ITEM 5

#### **Question 5**

The specific MAAP4 analysis case that was used to validate the timing of mitigating strategies in the integrated plan must be identified and should be available on the ePortal for NRC staff to view. Alternately, a comparable level of information may be included in the supplemental response. In either case, the analysis should include a plot of the collapsed vessel level to confirm that TAF is not reached (the elevation of the TAF should be provided) and a plot of the temperature cool down to confirm that the cool down is within Technical Specification limits.

#### Response to Item 5:

The MAAP analysis performed in support of the LaSalle OIP is documented in calculation LS-MISC-017 Rev. 1 [7] and is available on the ePortal. Case 3e was the specific MAAP run selected to represent the scenario as described in Attachment 1A of the integrated plan.

#### 2.6 ADDITIONAL ITEMS

Additionally, this document responds to the following question:

## Additional Question (Question 6)

Confirm adequacy of the technical basis for the assumptions made regarding the leakage rate through the recirculation pump seals and other sources. The analysis should include the assumed pressure-dependence of the leakage rate, and whether the leakage was determined or assumed to be single-phase liquid, two-phase mixture, or steam at the donor cell, and how mixing the leakage flow with the drywell atmosphere is modeled.

#### Response to Item 6:

Leakage is estimated for LaSalle to be 18 gpm of recirculation pump seal leakage per pump (36 gpm total) in addition to 25 gpm to account for additional primary system leakage (61 gpm total) per Table 15.9-1 of the LaSalle UFSAR. This estimated leakage rate is conservatively modeled to be 100 gpm and is assumed to initiate at t = 30 minutes relative to accident initiation. This leakage is modeled in MAAP4 using a fixed junction flow area that achieves a total of 100 gpm leakage at full operating pressure and temperature. As the RPV is depressurized, leakage will decrease because the leakage flow rate is dependent on upstream pressure. Although actual recirculation pump seal leakage may initiate much later following transient initiation (e.g., an hour or more), this modeling approach is a reasonable upper bound representation of actual recirculation pump seal leakage.

General two-phase flow from the reactor vessel is described in Section 2 of EPRI Technical Report 3002002749 [6]. The location of the modeled leakage in the MAAP4 analysis is approximately at the elevation of the recirculation pump seals and hence is expected to be a single-phase liquid in the donor cell for the scenarios examined. However, MAAP calculates the conditions in the donor cell each timestep. Based on these conditions, as well as the flow characteristics and downstream node conditions, MAAP4 will determine if the leakage flashes into steam or is released as a single-phase liquid. MAAP4 assumes homogenous mixing in the drywell and adds the discharged mass and energy to the appropriate phases in the downstream node.

#### 3.0 REFERENCES

- [1] NRC EA-12-049, Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (BDBEE), March 2012.
- [2] Jack R. Davis (NRR) to Joseph E. Pollock (NEI), U.S. Nuclear Regulatory Commission, ADAMS Accession No.: ML13275A318, October 3, 2013.
- [3] "Use of Modular Accident Analysis Program (MAAP) in Support of Post-Fukushima Applications," EPRI, Palo Alto, CA: 2013. 3002001785.
- [4] MAAP4 Application Guidance. EPRI, Palo Alto, CA: 2010. 1020236.
- [5] LS-PSA-009, LaSalle MAAP 4.0.5 Parameter File Notebook, Rev. 2.
- [6] Technical Basis for Establishing Success Timelines in Extended Loss of AC Power Scenarios in Boiling Water Reactors Using MAAP4, A Guide to MAAP Thermal-Hydraulic Models. EPRI, Palo Alto, CA: 2010. 3002002749.
- [7] LaSalle MAAP Analysis to Support Initial FLEX Strategy, LS-MISC-017, Rev. 1.

LS-MISC-025-R1.doc