ENCLOSURE 1

RADIOACTIVE EFFLUENT RELEASE REPORT FOR JANUARY 1 – DECEMBER 31, 2013

NUCLEAR MANAGEMENT COMPANY MONTICELLO NUCLEAR GENERATING PLANT License No. DPR-22

RADIOACTIVE EFFLUENT RELEASE REPORT Period : Jan - Dec 2013

Supplemental Information

1. Regulatory Limits - Quarterly levels requiring reporting to Nuclear Regulatory Commission

A. Noble Gases :

5 mrad/quarter gamma radiation 10 mrad/quarter beta radiation

B. Long Lived Iodines, Particulates, and Tritium :

7.5 mrem/quarter dose to any organ

C. Liquid Effluents :

1.5 mrem/quarter dose to the total body 5.0 mrem/quarter dose to any organ

2. Maximum Permissible Concentrations

A. Noble Gases :

10 CFR Part 20, Appendix B, Table II, Column 1

B. Long Lived Iodines, Particulates, and Tritium :

10 CFR Part 20, Appendix B, Table II, Column 1

C. Liquid Effluents :

10 CFR Part 20, Appendix B, Table II, Column 2 2.0 E-4 uci/ml for dissolved and entrained gases

3. Average Energy

(Not Applicable)

Supplemental Information (continued)

4. Measurements and Approximations of Total Radioactivity

A. Noble Gases :

Continuous gross activity monitors in Reactor Building Vent and Plant Stack exhaust streams. Weekly isotopic analysis of exhaust streams.

B. Iodines in Gaseous Effluent :

Continuous monitoring with charcoal cartridges in Reactor Building Vent and Plant Stack exhaust streams with weekly analysis.

C. Particulates in Gaseous Effluent :

Continuous monitoring with particulate filters in Reactor Building Vent and Plant Stack exhaust streams with weekly analysis.

D. Tritium in Gaseous Effluent :

Monthly grab samples from Reactor Building Vent and Plant Stack exhaust streams.

E. Liquid Effluents :

Tank sample analyzed prior to each planned release and continuous monitoring of gross activity during planned release.

5. Batch Releases

A. Liquid :

1. Number of Batch Releases	1	
2. Total Time Period for Batch Releases	40.0	min
3. Maximum Time Period for a Batch Release	40.0	min
4. Average Time Period for a Batch Release	40.0	min
5. Minimum Time Period for a Batch Release	40.0	min
6. Average River Flow During Release	10700.0	cf/sec

B. Gaseous :

1. Number of Batch Releases	2	
2. Total Time Period for Batch Releases	1660.0	min
3. Maximum Time Period for a Batch Release	1315.0	min
4. Average Time Period for a Batch Release	830.0	min
5. Minimum Time Period for a Batch Release	345.0	min

Supplemental Information (continued)

6. Abnormal Releases

A. Liquid :

	1. Number of Releases 2. Total Activity Released	0 0.0	Ci
в.	Gaseous :		
	1. Number of Releases 2. Total Activity Released	0 0.0	Ci

Table 1A Gaseous Effluents - Summation of all Releases

۰.				
	Units	lst Qtr	2nd Qtr	Est. Total
	 		· · ·	Error, 🗞

A. Fission & Activation gases

1. Total Release	Ci	1.32E+02	0.00E+00	2.00E+01
2. Average Release Rate	uci/sec	1.70E+01	0.00E+00	
3. Percent Tech Spec Qtrly				
Reporting Level				
Gamma Radiation	010	8.32E-02	0.00E+00	
Beta Radiation	010	2.09E-02	0.00E+00	

B. Iodines

1. Total I-131 Release	Ci	2.15E-03	1.62E-05	1.00E+01
2. Average I-131 Release Rate	uci/sec	2.77E-04	2.06E-06	

C. Particulates

1. Total Particulates	Ci	1.77E-04	5.09E-05	3.00E+01
2. Average Release Rate	uci/sec	2.28E-05	6.47E-06	·····
3. Gross Alpha Radioactivity	Ci	5.27E-07	1.53E-06	

D. Tritium

1. Total Release	Ci	5.67E+00	3.64E+00	1.00E+01
2. Average Release Rate	uci/sec	7.29E-01	4.62E-01	

E. Carbon-14

1. Total Release	Ci	1.20E+00	0.00E+00	1.00E+01
2. Average Release Rate	uci/sec	1.50E-01	0.00E+00	

F. Percent Qtrly Tech Spec Reporting Levels

1 Todines Particulates			
1. Iodines, Particulates,			
and Their	0	4 505 01	
and Tritium	~	4 788-01	6 0.8E-03
	0		0.004 00

Table 1A Gaseous Effluents - Summation of all Releases

· · · · · · · · · · · · · · · · · · ·				
	Units	3rd Ofr	4th Otr	Est. Total
	0111.05	JIG QUI	fth Act	
				Error &
1				

A. Fission & Activation gases

1. Total Release	Ci	2.21E+02	1.51E+02	2.00E+01
2. Average Release Rate	uci/sec	2.79E+01	1.90E+01	
3. Percent Tech Spec Qtrly				
Reporting Level				
Gamma Radiation	% .	1.47E-01	8.32E-02	· ·
Beta Radiation	8	2.76E-02	2.88E-02	•

B. Iodines

1. Total I-131 Release	Ci	1.36E-03	1.72E-03	1.00E+01
2. Average I-131 Release Rate	uci/sec	1.71E-04	2.16E-04	

C. Particulates

1. 7	Total Particulates	Ci	6.87E-04	2.53E-04	3.00E+01
2. 7	Average Release Rate	uci/sec	8.64E-05	3.18E-05	
3.0	Gross Alpha Radioactivity	Ci	8.63E-07	5.93E-07	

D. Tritium

1. Total Release	Ci	3.37E+00	4.55E+00	1.00E+01
2. Average Release Rate	uci/sec	4.24E-01	5.73E-01	
E Carbon-14				

1. Total Release	Ci	1.20E+00	1.80E+00	1.00E+01
2. Average Release Rate	uci/sec	4.50E-01	2.30E-01	

F. Percent Qtrly Tech Spec Reporting Levels

·			
1. Iodines, Particulates,			
and Tritium	50	2.73E-01	3.08E-01

Table 1B Gaseous Effluents - Elevated Releases

		Continuo	ous Mode	Batch	Mode
Nuclides Released	Unit	lst Qtr	2nd Qtr	1st Qtr	2nd Qtr

1. Fission Gases

KR-85M	. Ci	8.08E-01	0.00E+00	0.00E+00	0.00E+00
KR-87	Ci	1.51E+00	0.00E+00	3.46E-03	0.00E+00
KR-88	Ci	2.18E+00	0.00E+00	0.00E+00	0.00E+00
KR-89	Ci	1.28E+00	0.00E+00	0.00E+00	0.00E+00
XE-133	Ci	2.29E+01	0.00E+00	5.26E-03	0.00E+00
XE-133M	Ci	4.65E-01	0.00E+00	0.00E+00	0.00E+00
XE-135	Ci	1.19E+01	0.00E+00	1.04E-02	0.00E+00
XE-135M	Ci	1.13E+01	0.00E+00	0.00E+00	0.00E+00
XE-137	Ci	4.95E+01	0.00E+00	0.00E+00	0.00E+00
XE-138	Ci	2.48E+01	0.00E+00	8.79E-03	0.00E+00
AR-41	Ci	0.00E+00	0.00E+00	7.10E-03	0.00E+00
·····					
Total for Period	<u> Ci </u>	1.27E+02	0.00E+00	3.50E-02	0.00E+00

2. Iodines

Ci	1.30E-03	4.26E-07	0.00E+00	0.00E+00
Ci	8.04E-03	0.00E+00	4.09E-08	0.00E+00
Ci	1.13E-02	0.00E+00	0.00E+00	0.00E+00
Ci	2.06E-02	4.26E-07	4.09E-08	0.00E+00
	Ci Ci Ci Ci	Ci 8.04E-03 Ci 1.13E-02	Ci 8.04E-03 0.00E+00 Ci 1.13E-02 0.'00E+00	Ci 8.04E-03 0.00E+00 4.09E-08 Ci 1.13E-02 0.00E+00 0.00E+00

3. Particulates

CO-60	Ci	6.32E-07	9.02E-07	0.00E+00	0.00E+00
CS-137	Ci	2.48E-07	7.32E-08	0.00E+00	0.00E+00
BA-140	Ci	6.62E-05	0.00E+00	0.00E+00	0.00E+00
SR-89	Ci	8.10E-06	9.06E-07	0.00E+00	0.00E+00
SR-90	Ci	1.18E-07	0.00E+00	0.00E+00	0.00E+00
					· .
Total for Period	Ci	7.53E-05	1.88E-06	0.00E+00	0.00E+00

Table 1B Gaseous Effluents - Elevated Releases

		Continuo	ous Mode	Batch	Mode
Nuclides Released	Unit	3rd Qtr	4th Qtr	3rd Qtr	4th Qtr
· · · · · · · · · · · · · · · · · · ·	N				· · · · · · · · · · · · · · · · · · ·

1. Fission Gases

		•			
KR-85M	Ci	9.03E+00	8.30E-01	0.00E+00	0.00E+0
KR-87	Ci	2.65E+01	1.87E+00	0.00E+00	0.00E+00
KR-88	Ci	2.73E+01	2.15E+00	0.00E+00	0.00E+00
KR-89	Ci	1.38E+00	8.31E+00	0.00E+00	0.00E+00
XE-133	Ci	9.30E+00	3.02E+01	0.00E+00	0.00E+00
XE-133M	Ci	1.67E-01	7.31E-01	0.00E+00	0.00E+0
XE-135	Ci	5.88E+01	7.98E+00	3.46E-04	0.00E+00
XE-135M	Ci	1.26E+01	9.29E+00	0.00E+00	0.00E+00
XE-137	<u> </u>	3.54E+01	5.92E+01	0.00E+00	0.00E+00
XE-138	Ci	3.56E+01	2.34E+01	0.00E+00	0.00E+00
AR-41	Ci	3.37E-01	0.00E+00	4.09E-03	0.00E+0
· · · · · · · · · · · · · · · · · · ·					
Total for Period	Ci	2.16E+02	1.44E+02	4.44E-03	0.00E+00

2. Iodines

I-131	Ci	1.09E-03	1.17E-03	0.00E+00	0.00E+00
I-133	Ci	7.83E-03	7.46E-03	8.79E-09	0.00E+00
I-135	Ci	1.08E-02	9.01E-03	0.00E+00	0:00E+00
Total for Period	Ci	1.98E-02	1.76E-02	8.79E-09	0.00E+00

3. Particulates

CO-60	Ci	4.71E-07	1.63E-07	0.00E+00	0.00E+00
CS-137	Ci	1.29E-05	1.65E-07	0.00E+00	0.00E+00
BA-140	Ci	9.65E-05	8.42E-05	0.00E+00	0.00E+00
SR-89	Ci	3.95E-04	4.48E-05	0.00E+00	0.00E+00
SR-90	Ci	3.70E-07	1.34E-07	0.00E+00	0.00E+00
	·				
Total for Period	Ci	5.06E-04	1.29E-04	0.00E+00	0.00E+00

4

Table 1C Gaseous Effluents - Building Vent Releases

·····		Continuo	ous Mode	Batch	Mode
Nuclides Released	Unit	lst Qtr	2nd Qtr	lst Qtr	2nd Qtr

1. Fission Gases

XE-133	Ci	5.23E-01	0.00E+00	0.00E+00	0.00E+00
XE-135	Ci	1.56E+00	0.00E+00	0.00E+00	0.00E+00
XE-135M	Ci	3.31E+00	0.00E+00	0.00E+00	0.00E+00
XE-138	Ci	2.28E-01	0.00E+00	0.00E+00	0.00E+00
Total for Period	Ci	5.62E+00	0.00E+00	0.00E+00	0.00E+00

2. Iodines

I-131	Ci	8.51E-'04	1.57E-05	0.00E+00	0.00E+00
I-133	Ci	6.77E-03	0.00E+00	0.00E+00	0.00E+00
I-135	Ci	1.51E-02	0.00E+00	0.00E+00	0.00E+00
· · · · · · · · · · · · · · · · · · ·					
Total for Period	Ci	2.27E-02	1.57E-05	0.00E+00	0.00E+00

3. Particulates

MN-54	Ci	1.15E-06	2.55E-06	0.00E+00	0.00E+00
CO-58	Ci	1.43E-06	0.00E+00	0.00E+00	0.00E+00
CO-60	Ci	4.41E-05	4.32E-05	0.00E+00	0.00E+00
CS-137	Ci	1.22E-05	3.25E-06	0.00E+00	0.00E+00
BA-140	Ci	4.33E-05	0.00E+00	0.00E+00	0.00E+00
Total for Period	Ci '	1.02E-04	4.90E-05	0.00E+00	0.00E+00

Table 1C Gaseous Effluents - Building Vent Releases

		Continuo	ous Mode	Batch	Mode
Nuclides Released	Unit	3rd Qtr	4th <u>Q</u> tr	3rd Qtr	4th Qtr
			· · · · · · · · · · · · · · · · · · ·		

1. Fission Gases

XE-135	Ci	3.83E+00	4.77E+00	0.00E+00	0.00E+00
XE-135M	Ci	1.25E+00	2.05E+00	0.00E+00	0.00E+00
	•				
Total for Period	Ci	5.08E+00	6.82E+00	0.00E+00	0.00E+00

2. Iodines

I-131	Ci	2.68E-04	5.44E-04	0.00E+00	0.00E+00
I-133	Ci	2.19E-03	4.63E-03	0.00E+00	0.00E+00
Total for Period	Ci	2.46E-03	5.17E-03	0.00E+00	0.00E+00

3. Particulates

MN-54	Ci	4.81E-06	0.00E+00	0.00E+00	0.00E+00
CO-58	Ci	3.74E-05	1.27E-06	0.00E+00	0.00E+00
CO-60	Ci	4.76E-05	4.13E-05	0.00E+00,	0.00E+00
ZN-65	Ci	1.65E-05	0.00E+00	0.00E+00	0.00E+00
CS-137	Ci	2.15E-05	6.77E-05	0.00E+00	0.00E+00
BA-140	Ci	5.36E-05	1.28E-05	0.00E+00	0.00E+00
		•			
Total for Period	Ci	1.81E-04	1.23E-04	0.00E+00	0.00E+00

Table 2A Liquid Effluents - Summation of all Releases

	Units	lst Qtr	2nd Qtr	Est. Total Error, %
A. Fission & Activation products				· ·
 Total Release (not including tritium, gases, alpha) Avg Diluted Concentration 	Ci uci/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
B. Tritium		0.001100		I .
1. Total Release 2. Avg Diluted Concentration	Ci uci/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
C. Dissolved and Entrained Gases				
1. Total Release 2. Avg Diluted Concentration	Ci uci/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
D. Percent Qtrly Tech Spec Report	ing Level		·	
1. Whole Body Dose 2. Organ Dose	0/0 0/0	0.00E+00 0.00E+00	0.00E+00 0.00E+00	
E. Gross Alpha Radioactivity				
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00
F. Volume of Waste Released	i Liters	0.00E+00	0.00E+00	0.00E+00
	4 - 4 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -			· · · · · · · · · · · · · · · · · · ·
F. Volume of Dilution Water Used	Liters	0.00E+00	0.00E+00	0.00E+00

Table 2B Liquid Effluents

		Continuo	ous Mode	Batch	Mode
Nuclides Released	Unit	lst Qtr	2nd Qtr	lst Qtr	2nd Qtr

None Released This Period

Table 2A Liquid Effluents - Summation of all Releases

	Units	3rd Qtr	4th Qtr	Est. Total
		·		Error, 🗞
A. Fission & Activation products				
1. Total Release (not including				· · · · · · · · · · · · · · · · · · ·
tritium, gases, alpha)	Ci	0.00E+00	0.00E+00	0.00E+00
2. Avg Diluted Concentration	uci/ml	0.00E+00	0.00E+00	ļ
B. Tritium	· ·		· .	
1. Total Release	Ci	2.08E-03	0.00E+00	5.00E+01
2. Avg Diluted Concentration	uci/ml	1.31E-07	0.00E+00	
C. Dissolved and Entrained Gases				
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00
2. Avg Diluted Concentration	uci/ml	0.00E+00	0.00E+00	
D. Percent Qtrly Tech Spec Report:	ing Level			
1. Whole Body Dose	00	8.55E-06	0.00E+00	
2. Organ Dose	0/0	2.57E-06	0.00E+00	
E. Gross Alpha Radioactivity				
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00
	·			
F. Volume of Waste Released	Liters	1.32E+04	0.00E+00	0.00E+00
F. Volume of Dilution Water Used	Liters	1.59E+07	0.00E+00	0.00E+00
1. VOLUME OF DITUCTOM WALLET USED		1.395707	0.005+00	
				,

Table 2B Liquid Effluents

		Continuo	ous Mode	Batch	Mode
Nuclides Released	Unit	3rd Qtr	4th Qtr	3rd Qtr	4th Qtr
Tritium	Ci	0.00E+00	0.00E+00	2.08E-03	0.00E+00

Report Date : 4/7/2014

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013 Percent Cutoff: 0

Waste Stream : Resins, Filters, and Evap Bottoms PRD-NA 215 T34A

Waste Class	Volu Ft^3	ime M^3	Curies Shipped	% Error (Ci)
A	1.70E+02	4.81E+00	3.85E+00	+/- 25%
В	0.00E+00	0.00E+00	0.00E+00	+/- 25%
С	0.00E+00	0.00E+00	0.00E+00	+/- 25%
All	1.70E+02	4.81E+00	3.85E+00	+/- 25%

Waste Stream : Dry Active Waste

EPU Metal Wa Insulation 8ft B25	Feed	Water Pump	C-Van FW Piping & Parts B2tplant trash (20' seal	Insulation & Co Cond Pump Mo andplant trash (inte	otor
Waste Class	Volu Ft^3	me M^3	Curies Shipped	%Error (Ci)	
A	4.73E+04	1.34E+03	1.69E+00	+/-25%	
В	0.00E+00	0.00E+00	0.00E+00	+/-25%	
С	0.00E+00	0.00E+00	0.00E+00	+/-25%	w.
All	4.73E+04	1.34E+03	1.69E+00	+/-25%	

Waste Stream : Irradiated Components

Waste Volume Curies % Error Ft^3 ₩^3 Class Shipped (Ci) А 0.00E+00 0.00E+00 0.00E+00 +/-25% В 0.00E+00 0.00E+00 0.00E+00 +/-25% С 0.00E+00 0.00E+00 0.00E+00 +/-25% All 0.00E+00 0.00E+00 0.00E+00 +/-25%

P2 Cooler

Report Date : 4/7/2014

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013 Percent Cutoff: 0

Cond Pump CARV

Waste Stream : Other Waste

Motor Generator Motor13A FW Heater Lathe & Drill Press Insulation

Waste		ume	Curies	% Error
Class	Ft^3	M^3	Shipped	(Ci)
А	4.05E+03	1.15E+02	5.46E-02	+/-25%
В	0.00E+00	0.00E+00	0.00E+00	+/-25%
C	0.00E+00	0.00E+00	0.00E+00	+/-25%
All	4.05E+03	1.15E+02	5.46E-02	+/-25%

Waste Stream : Sum of All 4 Categories

PRD-NA 215 T34A	Motor Generator Moto	c EPU Metal Waste	13A FW Heater
B25 Box	C-Van	Cond Pump	Insulation & Concrete
Insulation	Feed Water Pump	P2 Cooler	FW Piping & Parts

Waste Class	Volu + Ft^3	me M^3	Curies Shipped	% Error (Ci)
A	5.16E+04	1.46E+03	5.59E+00	+/-25%
В	0.00E+00	0.00E+00	0.00E+00	+/~25%
С	0.00E+00	0.00E+00	0.00E+00	+/-25%
All	5.16E+04	1.46E+03	5.59E+00	+/-25%

-Combined Waste Type Shipment, Major Volume Waste Type Shown

Page 1

Report Date : 4/7/2014

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013

Number of Shipments	Mode of Transportation	Destination
1	Hittman Transport	EnergySolutions LLC.
2	Landstar Ranger	Studsvik Processing Facility Memphis
39	Xcel Energy Trucking	Studsvik Processing Facility Memphis

Report Date : 4/7/2014

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013 Percent Cutoff: 0

Nuclide Name	Percent Abundance	Curies
H-3	0.289%	1.11E-02
Mn-54	.1.458%	5.61E-02
Fe-55	7.731%	2.98E-01
Co-58	0.328%	1.26E-02
Co-60	31.150%	1.20E+00
Ni-59	0.019%	7.31E-04
Ni-63	2.433%	9.36E-02
Zn-65	1.837%	7.07E-02
Sr-90	0.282%	1.09E-02
1-129	0.002%	6.68E-05
1-131	0.031%	1.18E-03
Cs-137	54.111%	2.08E+00
Ba-140	0.095%	3.66E-03
La-140	0.000%	· 5.54E-11
Ce-141	0.182%	6.99E-03
Ce-144	0.016%	6.13E-04
Pu-238	0.002%	5.87E-05
Pu-239	0.001%	3.58E-05
Pu-240	0.001%	3.58E-05
Pu-241 .	0.025%	9.77E-04
Am-241	0.006%	2.26E-04
Cm-242	0.000%	4.64E-06
Cm-243	0.001%	5.16E-05
Cm-243	0.001%	5.15E-05
Waste Class A Nuclide Name	Percent Abundance	Curies
		CHIES
H-3	0.001%	1.34E-05
H-3 C-14	0.001% 0.003%	1.34E-05 4.86E-05
H-3 C-14 Cr-51	0.001% 0.003% 0.000%	1.34E-05 4.86E-05 6.40E-10
H-3 C-14 Cr-51 Mn-54	0.001% 0.003% 0.000% 1.696%	1.34E-05 4.86E-05 6.40E-10 2.86E-02
H-3 C-14 Cr-51 Mn-54 Fe-55	0.001% 0.003% 0.000% 1.696% 66.550%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58	0.001% 0.003% 0.000% 1.696% 66.550% 0.139%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m Sb-124	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07 2.68E-09
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m Sb-124 I-129	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07 2.68E-09 4.92E-07
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m Sb-124 I-129 I-131	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07 2.68E-09 4.92E-07 4.39E-21
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m Sb-124 I-129 I-131 Cs-134	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07 2.68E-09 4.92E-07 4.39E-21 3.00E-06
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m Sb-124 I-129 I-131 Cs-134 Cs-137	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07 2.68E-09 4.92E-07 4.39E-21 5.00E-06 2.23E-02
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m Sb-124 I-129 I-131 Cs-134 Cs-137 Ba-140	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07 2.68E-09 4.92E-07 4.39E-21 5.00E-06 2.23E-02 4.07E-15
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m Sb-124 I-129 I-131 Cs-134 Cs-137 Ba-140 La-140	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07 2.68E-09 4.92E-07 4.39E-21 5.00E-06 2.23E-02 4.07E-15 9.79E-48
H-3 C-14 Cr-51 Mn-54 Fe-55 Co-58 Co-60 Ni-63 Zn-65 Sr-90 Nb-95 Tc-99 Ag-110m Sb-124 I-129 I-131 Cs-134 Cs-137 Ba-140	0.001% 0.003% 0.000% 1.696% 66.550% 0.139% 29.334% 0.008% 0.742% 0.006% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%	1.34E-05 4.86E-05 6.40E-10 2.86E-02 1.12E+00 2.34E-03 4.94E-01 1.41E-04 1.25E-02 9.63E-05 1.26E-09 1.36E-07 3.84E-07 2.68E-09 4.92E-07 4.39E-21 5.00E-06 2.23E-02 4.07E-15

.

3

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013 Percent Cutoff: 0

Th-230	0.005%	8.95E-05
Pu-238	0.000%	1.74E-07
Pu-239	0.000%	8.77E-08
Pu-240	0.000%	8.77E-08
Am-241	0.000%	9.62E-08
Am-243	0.000%	1.61E-06
Cm-242	0.000%	9.36E-09
Cm-243	0.000%	6.38E-08
Cm-244	0.000%	2.18E-08
Dry Active Waste Waste Class All		
Nuclide Name	Percent Abundance	Curies
H-3	0.001%	1.34E-05
C-14	0.003%	4.86E-05
Cr-51	0.000%	6.40E-10
Mn-54	1.696%	2.86E-02
Fe-55	66.550%	1.12E+00
Co-58	0.139%	2.34E-03
	29.334%	4.94E-03
Co-60		
Ni-63	0.008%	1.41E-04
Zn-65	0.742%	1.25E-02
Sr-90	0.006%	9.63E-05
Nb-95	0.000%	1.26E-09
Tc-99	0.000%	1.36E-07
Ag-110m	0.000%	3.84E-07
Sb-124	0.000%	2.68E-09
I-129	0.000%	4.92E-07
I-131 ·	0.000%	4.39E-21
Cs-134	0.000%	3.00E-06
Cs-137	1.324%	2.23E-02
Ba-140	0.000%	4.07E-15
La-140	0.000%	9.79E-48
Ce-141	0.108%	1.82E-03
Ce-144	0.084%	1.42E-03
Th-230	0.005%	8.95E-05
Pu-238	0.000%	1.74E-07
Pu-239	0.000%	8.77E-08
Pu-240	0.000%	8.77E-08
Am-241	0.000%	9.62E-08
Am-243	0.000%	1.61E-06
Cm-242	0.000%	9.36E-09
	0.000%	6.38E-08
Cm-243		
Cm-244	0.000%	2.18E-08
Other Waste		
Waste Class A		
Nuclide Name	Percent Abundance	Curies
H-3	0.014%	7.56E-06
C-14	0.050%	2.74E-05
Cr-51	0.000%	3.76E-10

Page 2

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013 Percent Cutoff: 0

Mn-54	1.723%	9.40E-04
Fe-55	63.565%	3.47E-02
Co-58	0.134%	7.29E-05
Co-60	30.339%	1,66E-02
Ni-63	0.145%	7.94E-05
Zn-65	0.822%	4.48E-04
Sr-90	0.099%	5.43E-05
Nb-95	0.000%	7.32E-10
Tc-99	0.000%	7.65E-08
Ag-110m	0.000%	2.17E-07
Sb-124	0.000%	1.54E-09
I-129	0.001%	2.77E-07
I-131	0.000%	2.82E-21
Cs-134	0.003%	1.70E-06
Cs-137	2.826%	1.54E-03
Ba-140	0.000%	2.50E-15
La-140	0.000%	7.16E-48
Ce-141	0.103%	5.62E-05
Ce-144	0.081%	4.42E-05
Th-230	0.092%	5.05E-05
Pu-238	0.000%	9.78E-08
Pu-239	0.000%	4.95E-08
Pu-240	0.000%	4.94E-08
Am-241	0.000%	5.42E-08
Am-243	0.002%	9.10E-07
Cm-242	0.000%	5.31E-09
Cm-243	0.000%	3.60E-08
Cm-244	0.000%	1.23E-08
	· · · · · · · · · · · · · · · · · · ·	
Other Waste	· · · · ·	· · · · · · · · · · · · · · · · · · ·
Waste Class All		· · · · · · · · · · · · · · · · · · ·
Nuclide Name	Percent Abundance	Curies
H-3	0.014%	7.56E-06
C-14	0.050%	2.74E-05
Cr-51	0.000%	3.76E-10
Mn-54	1.723%	9.40E-04
Fe-55	63.565%	3.47E-02
Co-58	0.134%	7.29E-05
Co-60	30.339%	1.66E-02
Ni-63	0.145%	7.94E-05
Zn-65	0.822%	4.48E-04
Sr-90	0.099%	5.43E-05
Nb-95	0.000%	7.32E-10
110 00	0.000%	7.65E-08
Tc-99		
Tc-99		2 17F-07
Ag-110m	0.000%	2.17E-07
Ag-110m Sb-124	0.000% 0.000%	1.54E-09
Ag-110m Sb-124 I-129	0.000% 0.000% 0.001%	1.54E-09 2.77E-07
Ag-110m Sb-124 I-129 I-131	0.000% 0.000% 0.001% 0.000%	1.54E-09 2.77E-07 2.82E-21
Ag-110m Sb-124 I-129	0.000% 0.000% 0.001%	1.54E-09 2.77E-07

Page 3

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013 Percent Cutoff: 0

La-140	0.000%	7.16E-48
Ce-141	0.103%	5.62E-05
Ce-144	0.081%	4.42E-05
Th-230	0.092%	5.05E-05
Pu-238	0.000%	9.78E-08
Pu-239	0.000%	4.95E-08
Pu-240	0.000%	4.94E-08
Am-241	0.000%	5.42E-08
Am-243	0.002%	9.10E-07
Cm-242	0.000%	5.31E-09
Cm-243	0.000%	3.60E-08
Cm-244	0.000%	1.23E-08
Sum of All 4 Categories		· · · · · · · · · · · · · · · · · · ·
Waste Class A		
Nuclide Name	Percent Abundance	Curies
H-3	0.199%	1.11E-02
C-14	0.001%	7.61E-05
Cr-51	0.000%	1.02E-09
Mn-54	1.532%	8.56E-02
Fe-55	26.015%	1.45E+00
Co-58	0.269%	1.50E-02
Co-60	30.595%	1.71E+00
Ni-59	0.013%	7.31E-04
Ni-63	1.679%	9.39E-02
Zn-65 1	1.497%	8.36E-02
Sr-90	0.197%	1.10E-02
Nb-95	0.000%	1.99E-09
Tc-99	0.000%	2.12E-07
Ag-110m -	0.000%	6.01E-07
Sb-124	0.000%	4.22E-09
1-129	0.001%	6.76E-05
1-131	0.021%	1.18E-03
Cs-134	0.000%	4.70E-06
Cs-137	37.690%	2.11E+00
Ba-140	0.066%	3.66E-03
La-140	0.000%	5.54E-11
Ce-141	0.159%	8.86E-03
Ce-144	0.037%	2.08E-03
Th-230	0.003%	1.40E-04
Pu-238	0.001%	5.90E-05
Pu-239	0.001%	3.59E-05
Pu-240	0.001%	3.59E-05
Pu-241	0.017%	9.77E-04
Am-241	0.004%	2.26E-04
Am-243	0.000%	2.52E-06
Cm-242	0.000%	4.66E-06
Cm-242	0.001%	5.17E-05
Cm-243	0.001%	5.15E-05
0111-244	0.00170	0.101-00

Report Date : 4/7/2014

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013 Percent Cutoff: 0

Nuclide Name	Percent Abundance	Curies	
H-3	0.199%	1.11E-02	
C-14	0.001%	7.61E-02	
Cr-51	0.000%	1.02E-09	
Mn-54	1.532%	8.56E-02	
Fe-55	26.015%	1.45E+00	
	0.269%		
Co-58		1.50E-02	
Co-60 Ni-59	30.595% 0.013%	1.71E+00	
		7.31E-04 9.39E-02	
Ni-63 Zn-65	1.679%	8.36E-02	
	1.497%		
Sr-90 Nb-95	0.197% 0.000%	1.10E-02 1.99E-09	
		2.12E-07	
Tc-99	0.000%		
Ag-110m	0.000%	6.01E-07	
Sb-124 I-129	0.000% 0.001%	4.22E-09	
		6.76E-05	
I-131	0.02170	1.18E-03	
Cs-134	0.000%	4.70E-06	
Cs-137	37.690%	2.11E+00	
Ba-140	0.066%	3.66E-03	
La-140	0.000%	5.54E-11	
Ce-141	0.159%	8.86E-03	
Ce-144	0.037%	2.08E-03	
Th-230	0.003%	1.40E-04 I	
Pu-238	0.001%	5.90E-05	
Pu-239	0.001%	3.59E-05	
Pu-240	0.001%	3.59E-05	
Pu-241	0.017%	9.77E-04	
Am-241	0.004%	2.26E-04	
Am-243	0.000%	2.52E-06	
Cm-242	0.000%	4.66E-06	
Cm-243	0.001%	5.17E-05	
Cm-244	0.001%	5.15E-05	
Resins, Filters, and Evap	Bottom		
Waste Class A	Dereent Abundance	Curries	
Nuclide Name	Percent Abundance	Curies	
H-3	0.289%	1.11E-02	
Mn-54	1.458%	5.61E-02	
Fe-55	7.731%	2.98E-01	
Co-58	0.328%	1.26E-02	
Co-60	31.150%	1.20E+00	
Ni-59	0.019%	7.31E-04	
Ni-63	2.433%	9.36E-02	
Zn-65	1.837%	7.07E-02	
Sr-90	0.282%	1.09E-02	
-129	0.002%	6.68E-05	
1-131	0.031%	1.18E-03	
Cs-137	54.111%	2.08E+00	

Page 5

Report Date : 4/7/2014

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013 Percent Cutoff: 0

Ba-140	0.095%	3.66E-03
La-140	0.000%	5.54E-11
Ce-141	0.182%	6.99E-03
Ce-144	0.016%	6.13E-04
Pu-238	0.002%	5.87E-05
Pu-239	0.001%	3.58E-05
Pu-240	0.001%	3.58E-05
Pu-241	0.025%	9.77E-04
Am-241	0.006%	2.26E-04
Cm-242	0.000%	4.64E-06
Cm-243	0.001%	5.16E-05
Cm-244	0.001%	5.15E-05
Resins, Filters, and E	vap Bottom	

Report Date : 4/7/2014

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013

Manifest Number	Date Shipped	Waste Volume Used	Burial volume Use
13-168	10/22/2013	Yes	
13-167	10/21/2013	Yes	
13-135	7/15/2013	Yes	· · · · · · · · · · · · · · · · · · ·
13-126	7/8/2013	Yes	
13-122	6/24/2013	Yes	
13-121	6/24/2013	Yes	
13-111	6/10/2013	Yes	
13-108	6/10/2013	Yes	
13-104	6/3/2013	Yes	
13-101	5/28/2013	Yes	
13-99	5/20/2013	Yes	
13-95	5/13/2013	Yes	
13-89	5/13/2013	Yes	
13-92	5/13/2013	Yes	
13-94	5/13/2013	Yes	
13-85	4/29/2013	Yes	
13-84	4/29/2013	Yes	
13-83	4/29/2013	Yes	· · · · · · · · · · · · · · · · · · ·
13-78	4/22/2013	Yes	
13-77	4/22/2013	Yes	
13-69	4/22/2013	Yes	
13-63	4/15/2013	Yes	
13-72	4/15/2013	Yes	
13-70	4/15/2013	Yes	
13-54	4/8/2013	Yes	
13-61	4/8/2013	Yes	
13-60	4/8/2013	Yes	
13-48	4/1/2013	Yes	
13-37	4/1/2013	Yes	
13-47	4/1/2013	Yes	
13-43	3/24/2013	Yes	
13-42	3/24/2013	Yes	
13-46	3/24/2013	Yes	
13-41	3/24/2013	Yes	
13-38	3/20/2013	Yes	·····
13-33	3/19/2013	Yes	
13-35	3/19/2013	Yes	· · · · · · · · · · · · · · · · · · ·

Report Date : 4/7/2014

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2013 to 12/31/2013

Manifest Number	Date Shipped	Waste Volume Used	Burial volume Used
13-29	3/19/2013	Yes	
13-25	3/11/2013	Yes	
13-18	3/11/2013	Yes	
13-11	3/7/2013	Yes	
13-02	1/15/2013	Yes	

ENCLOSURE 2

OFF-SITE RADIATION DOSE ASSESSMENT FOR JANUARY 1 – DECEMBER 31, 2013

MONTICELLO NUCLEAR GENERATING PLANT

Offsite Radiation Dose Assessment for January 1, - December 31, 2013

An assessment of radiation dose due to releases from the Monticello Nuclear Generating Plant during 2013 was performed in accordance with the Offsite Dose Calculation Manual (ODCM). Computed doses were well below the 40 CFR 190 Standards and 10 CFR Part 50, Appendix I Guidelines.

Offsite dose calculation formulas and meteorological data from the Offsite Dose Calculation Manual were used in making this assessment. Source terms were obtained from the Radioactive Effluent Release Report for 2013.

The dispersion parameters used in the ODCM are calculated using the computer program XOQDOQ and are based on meteorological data from 1976 to 1978. These dispersion parameters are being recalculated using meteorological data from 2006 to 2010. The calculations are not complete at the time of this report. The impact of these new calculations will have little or no impact on the annual dose to the public.

Offsite Dose from Gaseous Releases (ODCM –08.01 section 2.1.3)

Computed dose due to gaseous releases are reported in Table 1. Critical receptor location and pathways for organ dose are reported in Table 2. Whole body and organ dose due to gaseous releases are a small percentage of Appendix I Guidelines.

Offsite Dose From Liquid Releases (ODCM –08.01 section 2.1.3)

Dose from liquid releases are listed in Table 1.

Dose is based on release of Turbine Building Normal Waste Sump water containing H-3 in the third quarter. Whole body and organ dose due to this release are a small percentage of appendix I Guidelines.

Dose to Individuals Due to Their Activities Inside the Site Boundary (ODCM -08.01 section 2.1.3)

Computed dose to the whole body, skin and organ (thyroid), are reported in Table 1. There are several groups of concern, Security Officers training at the rifle range at the old EPA station, cleaning contractors at the Receiving Warehouse and XCEL Energy Company transmission and distribution crews working in the substation. Use of a very conservative assumption of 40 hours/week spent inside the site boundary by these groups would conservatively represent the most exposed individual. The annual whole body, skin and organ dose was computed using plant stack and reactor building vent X/Q and D/Q values for the Substation (a bounding location due to predominant wind direction and nearness to the release points) as input to the GASPAR code. This computed dose was reduced by the factor of 40/168 to account for limited occupancy.

Dose to the Likely Most Exposed Member of the General Public from Reactor Releases and Other Nearby Uranium Fuel Cycle Sources (ODCM -08.01 section 2.1.4)

There are no other uranium fuel facilities in the vicinity of the Monticello site. The only artificial source of exposure to the general public in addition to the plant effluent releases is from direct radiation of the reactor and the steam turbines.

An Independent Spent Fuel Storage Facility (ISFSI) was constructed west of the plant in 2007. The initial loading campaign was completed in 2008 with 10 HCM's loaded with spent fuel. There was an additional loading campaign in 2013 with an additional 5 HCM's loaded with spent fuel. Neutron and Gamma monitoring results at the site boundary show no significant differences between these TLD's (Thermoluminescent Dosimeters) and the control TLD's.

Environmental TLD's were used to provide data on direct and skyshine radiation dose and the GASPAR code was used to provide data on dose from airborne pathways.

TLD results from the area of the site boundary and the 5 mile ring show no significant differences between these TLD's and the control TLD's.

Therefore, the likely most exposed member of the general public will not receive an annual radiation dose from reactor effluent releases and all other fuel cycle activities in excess of 40 CFR 190 standards of 25 millirem to the whole body, 75 millirem to the thyroid and 25 millirem to any other organ.

REMP (Radiological Environmental Monitoring Program) samples obtained from all 5 air sample stations and all three vegetation sampling locations during 2013 identified no detectable concentrations of isotopes that could be related to operation of the Monticello Nuclear Generating Plant.

Changes in Land Use and Non Obtainable Milk or Vegetable Samples (ODCM -08.01 sections 2.1.8 and 2.1.9)

There were changes in land use resulting in changes to the sampling program. Both goat farms used in the sampling program stopped sampling their goats for milk in 2013 and were removed from the program.

Table 1

Offsite Radiation Dose Assessment - Monticello

PERIOD: January 1, through December 31, 2013

		10CED 50 And a Real
		10CFR50 Appendix I
GASEOUS RELEASES	DOSE	Guidelines
Maximum Site Boundary Gamma Air Dose		-
(mrad/year)	0.00841	10
Maximum Site Boundary Beta Air Dose		
(mrad/year)	0.00795	20
Maximum Off-Site Dose to Any Organ		
(mrem/year)	0.0491	15
Maximum Dose to the Likely Most Exposed		
Member of the General Public (mrem/year)		
Whole Body	0.0472	5
Skin	0.0359	15
Max Organ (Thyroid)	0.0491	15
LIQUID RELEASES		
Maximum Off-Site Dose (mrem)		
Whole Body	1.28E-07	3
Max Organ (All except bone)	1.28E-07	10
		40 CFR 190
GASEOUS RELEASES	DOSE	LIMITS
Maximum Dose to Individuals due to their		
Activities Inside the Site Boundary (mrem)		
Whole Body	0.0187	25
Thyroid	0.0240	75
Max Other Organ (Skin)	0.0230	25

Table 2

Offsite Radiation Dose Assessment - Monticello Supplemental Information

PERIOD: January 1, through December 31, 2013

CACCOHODELEACEC		
GASEOUS RELEASES		
Maximum Site Boundary Dose Location		
(from Reactor Building Vents)		
Sector	SSE	
Distance (miles)	0	.4
Substation		
×		
Sector	SSE	
Distance from Plant Stack (miles)	0.2	
Distance from Reactor Building Vents	0.2	
Critical Receptor Location		
* · ·		
Sector	SE	
Distance from Reactor Building Vents (miles)	1.1	
Pathways	Plume, Ground, Inhalation, Vegetable	
Age Group	CHILD	
Organ	THYROID	
LIQUID RELEASES		
St. Paul Drinking Water Intake Location		
Pathways	Drinking Water	Drinking Water, Fish
Age Group	Infant	Adult
Organ	Whole Body	GI Tract
Dilution Factor (drinking water)	7:1	7:1

Bases for Radiation Dose Statements

Thermoluminescent dosimeters (TLD) are stationed around MNGP to measure the ambient gamma radiation field. Monitoring stations are placed near the site boundary and approximately five (5) miles from the reactor, in locations representing sixteen (16) compass sectors. Other locations are chosen to measure the radiation field at places of special interest such as nearby residences, meeting places and population centers. Control sites are located further than ten (10) miles from the site, in areas that should not be affected by plant operations. The results from the TLD's are reported in the Annual Radiological Environmental Monitoring Report. The results from this effort indicated no excess dose to offsite areas.

Additionally, NUREG-0543, METHODS FOR DEMONSTRATING LWR COMPLIANCE WITH THE EPA URANIUM FUEL CYCLE STANDARD (40 CFR PART 190) states in section IV, "As long as a nuclear plant site operates at a level below the Appendix I reporting requirements, no extra analysis is required to demonstrate compliance with 40 CFR Part 190". The organ and whole body doses reported in Table 1 are determined using 10 CFR 50 Appendix I methodology. The doses reported are well below the limits of Appendix I.