Omaha Public Power District Fort Calhoun Station Unit No. 1

Radiological Environmental Operating Report For Technical Specification Section 5.9.4.b

January 1, 2013 to December 31, 2013

OPERATING LICENSE DPR-40

••••

•

•••••

•••••

•••••

•••••

OMAHA PUBLIC POWER DISTRICT FORT CALHOUN STATION RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TECHNICAL SPECIFICATION 5.9.4.b

January 01, 2013 – December 31, 2013

Annual Radiological Environmental Operating Report

This report is submitted in accordance with Section 5.9.4.b of the Technical Specifications of Fort Calhoun Station Unit No. 1, Facility Operating License DPR-40 for the period January 01, 2013 through December 31, 2013.

In addition, this report provides any observations and anomalies that occurred during the monitoring period.

Reviewed by:

•

Supervisor-System Chemistry

Approved by:

Manager-Chemistry

Plant Manager

Site VP and CNO

Annual Radiological Environmental Operating Report

In accordance with Technical Specification 5.9.4.b, herein is the Fort Calhoun Station (FCS) Annual Radiological Environmental Operating Report for year 2013. The data provided is consistent with the objectives as specified in Section 5.2.2 of the Offsite Dose Calculation Manual (ODCM), "Annual Radiological Environmental Operating Report." The report is presented as follows:

- 1) An introductory discussion of the implementation of the Radiological Environmental Monitoring Program (REMP), including program observations and environmental impact relevant to the operation of FCS.
- 2) The sample class, sample collection frequency, number of sample locations, and the number of samples collected this reporting period for each parameter is delineated in Table 1.0.
- 3) A statistical evaluation of REMP data is summarized in Table 2.0, in accordance with Regulatory Guide 4.8, Table 1. For each type of sample media and analysis, Table 2.0 presents data separately for all **indicator** locations, all **control** (background) locations, and the location having the highest annual mean result. For each of these classes, Table 2.0 specifies the following:
 - a. The total number of analyses

•

•

•

•

•

•

•

- b. The fraction of analyses yielding detectable results (i.e., results above the highest Lower Limit of Detection (LLD) for this period)
- c. The maximum, minimum, and average results
- d. Locations with the highest annual mean are specified by code, name, and by distance and direction from the center of plant reactor containment building.
- 4) Table 3.0 is a listing of missed samples and explanations
- 5) FC-801, 2012 Environmental Land Use Survey Report
- 6) Review of Environmental Inc. Quality Assurance Program
- 7) Appendix A describes the Interlaboratory Comparison Program
- 8) Appendix B describes the vendor Data Reporting Conventions utilized
- 9) Appendix C reports the information required when primary coolant specific activity has exceeded the limits of Technical Specification 2.1.3
- 10) Appendix D is the Sample Locations/Map

INTRODUCTION

Radiological Environmental Monitoring Program (REMP) - 2013

This report gives the results of the Radiological Environmental Monitoring Program (REMP) for the year 2013. The REMP is a requirement of the Fort Calhoun Station (FCS) operating license. It was initiated prior to plant operation in 1973.

•

•

•

lacksquare

•

•

۲

•

۲

The main purpose of the REMP is to ensure public safety by monitoring plant discharges and assessing the effect, if any, of plant operations, on the environment. Samples are collected that would account for various exposure pathways such as ingestion, inhalation, adsorption and direct exposure. Samples collected on a regular basis include: air, surface water, ground water, milk, vegetation, fish, sediment, and food crops. Direct radiation is measured by thermoluminescent dosimeters (TLDs). These samples and TLDs are sent to an independent vendor laboratory for analysis. The vendor uses analytical methods that are sensitive enough to detect a level of activity far below that which would be considered harmful. Locations for sample collection are based on radiological and meteorological data from the Annual Effluent Release Report and information obtained from the Environmental Land Use Survey.

Most samples, particularly indicator samples, are collected in a circular area within a five-mile radius of plant containment while control locations are usually outside of five miles. This circle is divided into sixteen equal sectors, each assigned an identification letter "A" through "R" (note: letters "I" and "O" are not used, as they may be mistaken for the numbers "1" and "0"). Sector "A" is centered on North or zero degrees. Sectors are also given directional labels such as "West-Southwest" ("WSW"). Sample locations are listed by number along with their respective distances and direction from plant containment, in the Offsite Dose Calculation Manual (ODCM).

When assessing sample results, data from indicator locations most likely to be effected by plant operations are compared to control locations least or not likely to be effected. Results from an indicator location which were significantly higher than those from a control location, could indicate a plant-attributable effect, and could require additional investigation.

The results of the sample analyses, as required by the FCS Offsite Dose Calculation Manual (ODCM), are presented in the attached statistical tables in accordance with Table 1 of Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants." Sample collection was conducted by plant chemistry/environmental staff. A contract vendor (Environmental Inc., Northbrook, Illinois) performed sample analyses, preparation of monthly reports and the statistical evaluation of sample results. All vendor analysis techniques met the sensitivity requirements as stated in the ODCM.

Results for 2013 were within expected ranges and compared closely with historical results, with the following exceptions.

Ambient Gamma Radiation

1)

Ambient gamma radiation is measured by thermoluminescent dosimeters (TLDs) provided by the vendor laboratory. These dosimeters contain calcium sulfate phosphors and are processed quarterly. Thirty-two new thermoluminescent dosimeters were added to the program during the fourth quarter of 2010.

All sample results are within the range of historical data and displayed less than 16% difference when compared to historical averages. All results were less than 3 sigma standard deviations from historical means. No discrepancy between released effluents and resultant radiation dose measured was observed. No changes in plant operation/procedures are required based upon observed impacts to the environment to date.

Location	Avg. Dose (mr/week)	2013 Avg. Dose (mr/week)
A	1.38	1.60
В	1.45	1.43
С	1.47	1.35
D	1.27	1.28
F	1.43	1.33
G	1.35	1.38
Н	1.47	1.40
	1.53	1.48
J	1.60	1.65
K	1.51	1.53
N	1.42	1.48
0	1.41	1.50
Р	1.45	1.60
S	1.46	1.58
L (Control)	1.30	1.30

10-Year	Trend	Comparison	of T	LD	Locations
---------	-------	------------	------	----	-----------

Milk/Pasture

Milk samples or pasture grasses, if milk is temporarily unavailable, are collected every two weeks during the pasture season from the beginning of May through September, and monthly the rest of the calendar year. Indicator samples are collected from a herd of milk goats at a family farm located approximately 3.4 miles from the plant in Sector J (South). The control samples are collected from a commercial dairy cow herd located approximately 9.9 miles from the plant in Sector J (South). This indicator station was added in March of this year, the control location is unchanged from last year. No indicator sample of vegetation was available in February due to freezing conditions and no milk locations being present within 5 miles.

All sample results for Cesium-134, Cesium-137 and other gammas were at the LLD for both indicator and control locations. No plant-related effects were observed.

•

2)

<u>Fish</u>

3)

•

Ó

•

•

0

5)

Fish are collected on an annual basis. Control samples are collected at a location approximately twenty miles upstream of the plant (river miles 665 - 667). Indicator samples are collected in the immediate vicinity of the power plant (river miles 644 - 646). Several species of fish, important to commercial and recreational interest, representing all levels of the aquatic food chain are collected at both locations.

All sample results are within the range of historical data. Results from both control and indicator locations were less than LLD for all gamma emitters, indicating no plant-related effects.

4) Food Crop

Based on the results of the biennial Land Use Survey, the nearest high deposition pathway for food crops is the Alvin Pechnik Farm in Sector H (0.94 miles, 163°). Accordingly, vegetable samples were collected at Alvin Pechnik Farm for the purposes of the 2013 REMP.

Samples were comparable with historical results and within the range of results reported from the control location garden at Mohr Dairy.

All results were at the LLD for all non-naturally occurring radionuclides. No plant-related effects were observed.

<u>Sediment</u>

River sediment samples are collected twice a year at an upstream control location (0.09 miles, 4° N) and a downstream indicator location (0.45 miles, 108° ESE).

All results were at the LLD for all non-naturally occurring radionuclides. No plant-related effects were observed.

6) <u>Air Monitoring</u>

Air sample results for 2013 were well within historical limits for all locations. Additionally, all indicator locations showed results very similar to the control locations.

All sample results are within the range of historical data. All indicator locations displayed less than 8% difference when compared to historical average. All 2013 results when compared to historical average are within the stated vendor error acceptance tolerance.

Results from both control and indicator locations were less than LLD for gamma emitters and iodine. No changes in plant operation/procedures are required based upon observed impacts to the environment to date.

10 1000		earliphing Leedaterie				
Location	Avg. Beta (pCi/m³)	2013 Avg. Beta (pCi/m ³)				
Sector B	0.030	.029				
Sector D	0.029	.028				
Sector I	0.027	.028				
Sector J	0.028	.030				
Sector K*	0.029	.030				
Sector F (Control)	0.030	.029				

10-Year Trend Comparison of Air Sampling Locations

* At least a 5-Year comparison due to data availability

Surface Water

7)

8)

Water samples are collected upstream of the plant (control location) as well as half-mile downstream and at a municipal water treatment plant on the north edge of Omaha.

Results for Cs-134, Cs-137, and other gammas were all less than LLD. Tritium results were also less than LLD. No plant-related effects were detected.

Ground Water

Quarterly residential well water samples are collected at the following locations: Station No. 15, Smith Farm, Station No. 20, Mohr Dairy, Station No. 74, D. Miller Farm and Station No. 75, Lomp Acreage. All sample results to date have been at the LLD except gross beta due to naturally occurring radionuclides. Gross beta results have ranged from a low of 2.7 pCi/liter to a high of 12.1 pCi/liter, with an average gross beta for the year of 5.7 pCi/liter. Strontium-90 analysis is being conducted on wells as part of the station's groundwater protection program. No plant-related effects were detected.

Table 1.0

Sample Collection Program

Sample Class	Collection Frequency	Number of Sample Locations	Samples Collected this Period.
Background Radiation (TLDs)	Quarterly	47	188
Air Particulates	Weekly	6	312
Airborne Iodine	Weekly	6	312
Milk	Biweekly May thru Sept	2	35 ¹
Surface Water	Monthly	3	36
Ground Water	Quarterly	4	16
Fish	Annually	2	5 ²
Sediment	Semi-annually	2	4
Food Crops	Annually	3	8 ³
		TOTAL	916

Note 1: Milk sample collection total includes vegetation performed for milk unavailability. Milk sampling is semi-monthly during May-Sept, and monthly the rest of the year. Three milk samples were performed in August to maintain ST frequency.

Note 2: Includes one background sample.

•

•••••

•

•••••

•

Note 3: Variety of samples collect during period.

Table 2.0

•

0 Radiological Environmental Monitoring Program Summary

Reporting Period

January-December, 2013

Na	ame of Facility	v		Fort Ca	houn Nuclear Power	Station - Unit 1	Docket No.	50-285	
	cation of racing	y		((County, State)		-		
Sample Type (Units)	Sample Type and Type Number of (Units) Analyses ^a			LLD⁵	Indicator Locations Mean (F) [°] Range [°]	Location with I Annual Me Location ^d	Highest ean Mean (F) ^c Range ^c	Control Locations Mean (F) ^c Range ^c	Number Non- Routine Results ^e
Background Radiation (TLD) (mR/week)	Gamma		188	0.5	1.5 (184/184) (1.1-1.9)	OTD-2K-(I), 2.52 mi. @ 205°	1.7 (4/4) (1.4-1.9)	1.3 (4/4) (1.1-1.5)	0
Airborne Particulates	GB		312	0.005	0.028 (260/260) (0.011-0.067)	OAP-K-(I) 0.65 miles SSE.	0.029 (52/52) (0.011-0.065)	0.029 (52/52) (0.012-0.065)	0
(pown)	GS 24 Cs-134 Cs-137 Other Gammas			0.001 0.001 0.001	< LLD < LLD < LLD	- - -	- - -	< LLD < LLD < LLD	0 0 0
Airborne Iodine (pCi/m3)		I-131	312	0.070	< LLD	-	-	< LLD	0
Milk (pCi/L)		I-131	34	0.5	< LLD	-	-	< LLD	0
	GS K-40 Cs-134 Cs-137 Other Gammas		34	150 15 15 15	1831 (16/16) (1706-1974) < LLD < LLD < LLD	OFM-G-(I), Stangl Dairy, 3.4 mi@369° - - - -	1831 (16/16) (1706-1974) - - - -	1378 (18/18) (1305-1585) < LLD < LLD < LLD < LLD	0 0 0 0
Ground Water (pCi/L)	GB H-3 Sr-90		16 16 16	300 0.71	5.7 (12/12) (2.7-12.1) < LLD < LLD	OGW-A-(I), Smith Farm, 1.9 mi @ 133° - -	6.6 (4/4) (2.7-12.1) - -	5.7 (4/4) (4.1-6.9) < LLD < LLD	0 0 0
(pCi/L)	GS Other	Cs-134 Cs-137 Gammas	16	15 18 15	< LLD < LLD < LLD	- - - -		< LLD < LLD < LLD	0 0 0
Surface Water (pCi/L)	GS Other	Cs-134 Cs-137 Gammas	36	15 18 15	< LLD < LLD < LLD	- - -		< LLD < LLD < LLD	0 0 0 0
		H-3	12	300	< LLD	-	-	< LLD	

Name of Facility Location of Facility

Fort Calhoun Nuclear Power Station - Unit 1 Docket No. Washington, Nebraska

50-285

				(Coun	ty, State)			
Sample	Type and Number of			Indicator Locations	Location with F Annual Me	Highest an	Control Locations	Number Non-
(Units)	Analyses ^a			Mean (F) [°] Range [°]	Location ^d	Mean (F) ^c Range ^c	Mean (F) ^c Range ^c	Routine Results ^e
Fish (pCi/g wet)	GS Mn Co Co Fe Zn Ru Cs Cs	5 58 60 59 65 103 134 137	0.021 0.023 0.016 0.071 0.040 0.031 0.022 0.019	< LLD < LLD < LLD < LLD < LLD < LLD < LLD < LLD < LLD	- - - - - - - - -		< LLD < LLD < LLD < LLD < LLD < LLD < LLD < LLD < LLD	0 0 0 0 0 0 0 0
Sediment pCi/g dry	GS Mr Co Co Fe Zn Cs Cs	4 54 58 60 59 65 134 137	0.023 0.023 0.016 0.066 0.051 0.015 0.020	< LLD < LLD < LLD < LLD < LLD < LLD < LLD < LLD	- - - - -	-	< LLD < LLD < LLD < LLD < LLD < LLD < LLD	0 0 0 0 0 0 0
Food Crops (pCi/g wet)	GS Mn-5 Co-5 Co-6 Fe-5 Zn-0 Zr-N Cs-1 Cs-1 Ba-L	8 54 58 60 59 55 1b-95 134 137 La-140	0.021 0.020 0.014 0.045 0.043 0.023 0.017 0.016 0.015	<pre>< LD < LD</pre>			< LLD < LLD < LLD < LLD < LLD < LLD < LLD < LLD < LLD < LLD	
Vegetation (MI) (pCi/g wet)	GS Mn-{ Co-5 Co-6 Fe-5 Zn-6 Zr-N I-13 CS-1 CS-1 Ba-L	1 58 60 59 65 10-95 1 134 137 La-140	0.033 0.029 0.050 0.052 0.035 0.046 0.026 0.029 0.027	< 11D < 11D			< LLD < LLD	0 0 0 0 0 0 0 0 0 0 0 0 0

^a GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 95% confidence level.

^e Mean and range are based on detectable measurements only (i.e., >LLD) Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by code, (2) by name, and (3) by distance and direction relative to the Reactor Containment Building.
 ^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds the typical pre-operational value for the medium or location.

Table 3.0 Listing of Missed Samples (samples scheduled but not collected)

Sample Type	Date	Location	Reason

FORT CHEM	CALI IISTR	HOUN STATION Y FORM	Envi	Repor	t	FC-801 REV 1 Page 1 of 3							
Sector	Dir	Land Use	Owner	Miles	Meters	Deg	Survey Technique	Adult b	Teen e Child Do Infant	XOQ	DOQ	Remarks	
A	N	RESIDENCE MILK ANIMAL	WRIGHT	4.36	7016.74	351	INTERVIEW	X	X	1.60E-07	5.50E-10		
		MEAT ANIMAL											
в	NNE	GROUNDWATER RESIDENCE MILK ANIMAL	RAND, J	4.36 1.93	7016.74 3106.03	351 12	INTERVIEW	X X		1.60E-07 1.30E-06	5.50E-10 2.50E-09		
		MEAT ANIMAL VEGETATION											
	NE		RAND,J HANSEN,S	1.93 1.52	3106.03 2446.20	12 42	INTERVIEW	X X	x	1.30E-06 1.70E-06	2.50E-09 1.80E-09		
		MERT ANIMAL VEGETATION	THIELE	1.59	2558.86	52	MAIL SURVEY	X		1.60E-06	1.70E-09		
	ENE	GROUNDWATER RESIDENCE	HANSEN, S MEADE, G	1.52 4.79	2446.20 7708.76	42 63	MAIL SURVEY	X X	X	1.70E-06 1.60E-07	1.80E-09 8.40E-11	· · · · · · · · · · · · · · · · · · ·	
		MILK ANIMAL MEAT ANIMAL VEGETATION	MEADE G	4 79	7708 76	63	INTERVIEW			1 60F-07	8 40F-11	· · · · · · · · · · · · · · · · · · ·	
E	E	GROUNDWATER RESIDENCE	MEADE,G DOTY,J	4.79 4.67	7708.76 7515.64	63 89	INTERVIEW MAIL SURVEY	X X	<u>.</u>	1.60E-07 2.30E-07	8.40E-11 1.40E-10		
		MILK ANIMAL MEAT ANIMAL	BROTHERS,D	4.91	7901.88	90	INTERVIEW	X		2.30E-07	1.20E-10		
	ESE	GROUNDWATER	DOTY,J WILSON ISLAND	4.67 4.22	7515.64 6791.43	89 121	INTERVIEW	X X		2.30E-07 2.30E-07	1.40E-10 2.60E-10		
		MILK ANIMAL MEAT ANIMAL VEGETATION											
G	SE	GROUNDWATER RESIDENCE	WILSON ISLAND CARTER, T	4.22 1.67	6791.43 2687.60	121 145	INTERVIEW	X X		2.30E-07 1.60E-06	2.60E-10 4.80E-09		
		MEAT ANIMAL VEGETATION	KALIN,W	1.74	2800.26	145	INTERVIEW	X		1.50E-06	4.50E-09		
		GROUNDWATER	SMITH	1.99	3202.59	134	INTERVIEW	X		1.02E-06	2.97E-09	·	

FORT CALHOUN STATION	2012	FC-801
CHEMISTRY FORM	2012	REV 1

Environmental Land Use Survey Report

Page 2 of 3

Sector	Dir	Land Use	Owner	Miles	Meters	Deg	Survey	Ag	e Group	XOQ	DOQ	Remarks
							Technique	dult	een fant			
					40.40.07				F 0 5	4 405 05	5 005 00	
H	SSE	RESIDENCE	LOMP	.65	1046.07	163	INTERVIEW	X		1.10E-05	5.80E-08	
		MILK ANIMAL						1				
		MEAT ANIMAL	HINELINE,R	1.82	2929.01	148	INTERVIEW	X		1.00E-06	5.10E-09	
		VEGETATION	PECHNIK,A	.94	1512.78	163	INTERVIEW	X		4.80E-06	2.60E-08	
		GROUNDWATER	LOMP	.65	1046.07	163	INTERVIEW	X		1.10E-05	5.80E-08	
J	S	RESIDENCE	DOWLER	.73	1174.82	175	INTERVIEW	X		5.70E-06	2.50E-08	
		MILK ANIMAL										
		MEAT ANIMAL	DICKES, L	2.60	4184.29	170	INTERVIEW	X		2.60E-07	9.40E-10	
		VEGETATION	DOWLER	.73	1174.82	175	INTERVIEW	X		5.70E-06	2.50E-08	
		GROUNDWATER	DOWLER	.73	1174.82	175	INTERVIEW	X		5.70E-06	2.50E-08	
K	SSW	RESIDENCE	D.MILLER	.65	1046.07	203	INTERVIEW	X		3.40E-06	1.00E-08	
		MILK ANIMAL										
		MEAT ANIMAL	T. DEIN	2.00	3218.69	189	INTERVIEW	X		2.50E-07	6.70E-10	
		VEGETATION	T.DEIN	2.00	3218.69	189	INTERVIEW	X		2.50E-07	6.70E-10	
		GROUNDWATER	D.MILLER	.65	1046.07	203	INTERVIEW	X		3.40E-06	1.00E-08	
L	SW	RESIDENCE	ROBERTSON,D	.73	1174.82	224	INTERVIEW	X		3.80E-06	7.20E-09	
		MILK ANIMAL										
		MEAT ANIMAL	ROBERTSON,D	.73	1174.82	224	INTERVIEW	X		3.80E-06	7.20E-09	
		VEGETATION	ROBERTSON,D	.73	1174.82	224	INTERVIEW	X		3.80E-06	7.20E-09	
		GROUNDWATER	ROBERTSON,D	.73	1174.82	224	INTERVIEW	X	-	3.80E-06	7.20E-09	
М	WSW	RESIDENCE	BENSEN,M	1.06	1705.90	257	MAIL SURVEY	X		3.60E-06	3.80E-09	
		MILK ANIMAL				II			I		I	
		MEAT ANIMAL	WRICH,B	2.42	3894.61	250	MAIL SURVEY	X		4.60E-07	4.20E-10	
		VEGETATION	RUSSELL,D	1.21	1947.31	246	MAIL SURVEY	X		2.50E-06	2.50E-09	
		GROUNDWATER	BENSEN,M	1.06	1705.90	257	MAIL SURVEY	X		3.60E-06	3.80E-09	
N	W	RESIDENCE	NIELSEN,D	1.20	1931.21	263	INTERVIEW	X		2.40E-06	3.80E-09	
	4	MILK ANIMAL									w	· · · · · · · · · · · · · · · · · · ·
		MEAT ANIMAL	ANDERSON, J	3.25	5230.37	281	INTERVIEW	X	ï	2.40E-07	2.80E-10	
		VEGETATION	ASMUSSEN,G	1.30	2092.15	270	MAIL SURVEY	X		1.90E-06	3.00E-09	
		GROUNDWATER	ANDERSON, J	3.25	5230.37	281	INTERVIEW	X		2.40E-07	2.80E-10	
Р	WNW	RESIDENCE	WACHTER,G	2.27	3653.21	302	INTERVIEW	X		6.10E-07	1.10E-09	
		MILK ANIMAL	,			L(, I		-	
		MEAT ANIMAL	WACHTER,G	2.27	3653.21	302	INTERVIEW	X	[6.10E-07	1.10E-09	
		VEGETATION	WACHTER G	2.27	3653.21	302	INTERVIEW	X		6.10E-07	1.10E-09	
		GROUNDWATER	WACHTER G	2.27	3653.21	302	INTERVIEW	X		6.10E-07	1.10E-09	
		L	· · · · · · · · · · · · · · · · · · ·	I				1				

FORT CALHOUN STATION CHEMISTRY FORM

2012 Environmental Land Use Survey Report

FC-801 REV 1 Page 3 of 3

Sector	Dir	Land Use	Owner	Miles	Meters	Deg	Survey Technique	Adult Teen eby Child Onid Infant	XOQ	DOQ	Remarks
Q	NW	RESIDENCE	HANSEN, R	2.40	3862.43	318	INTERVIEW	X	6.20E-07	1.70E-09	
		MILK ANIMAL									
		MEAT ANIMAL									
		VEGETATION	HANSEN, R	2.40	3862.43	318	INTERVIEW	X	6.20E-07	1.70E-09	
		GROUNDWATER	HANSEN,R	2.40	3862.43	318	INTERVIEW	X	6.20E-07	1.70E-09	
R	NNW	RESIDENCE	SHUBERT,B	2.08	3347.44	330	INTERVIEW	X	9.40E-07	3.40E-09	
		MILK ANIMAL									
		MEAT ANIMAL	SONDERUP	3.73	6002.85	328	INTERVIEW	X	2.60E-07	7.60E-10	
		VEGETATION	SONDERUP	3.73	6002.85	328	INTERVIEW	X	2.60E-07	7.60E-10	
		GROUNDWATER	SONDERUP	3.73	6002.85	328	INTERVIEW	X	2.60E-07	7.60E-10	

Performed by_____

Reviewed by_____

(1) Approximate age categories in receptor deck for evaluating dose commitment:

- Infant 0-1 Yr. Child 1-11 Yrs.
- Teen 12-17 Yrs.
- Adult Over 17 Yrs.

Review of Environmental Inc., Quality Assurance Program

Fort Calhoun Station contracts with Environmental Inc., Midwest Laboratory (vendor lab) to perform radioanalysis of environmental samples. Environmental Inc. participates in interlaboratory comparison (cross-check) programs as part of its quality control program. These programs are operated by such agencies as the Department of Energy, which supply blind-spike samples such as milk or water containing concentrations of radionuclides unknown to the testing laboratory. This type of program provides an independent check of the analytical laboratory's procedures and processes, and provides indication of possible weaknesses. In addition, Environmental Inc. has its own in-house QA program of blind-spike and duplicate analyses.

Vendor in-house spike sampling was performed without a failure and in-house blank analyses were performed within acceptable ranges.

Water sample ERW-1257 was performed in 2012 to determine isotopes of radium. Determinations for Ra-226 and Ra-228 displayed a high bias. Reanalysis of both samples produced acceptable results. No reason was given for the failures. A new test was ordered from ERA to be performed in the first quarter of 2013. That test, ERW-6022, failed in February of 2013 again with a high bias. The test was again reperformed, and like last year, produced acceptable results. It was determined that interference from short lived radon daughters Pb-214 and Bi-214 was producing the high bias. Allowing decay time removes the bias. Radium analysis is not part of the FCS REMP program. OPPD results were not negatively impacted by this vendor identified and corrected issue.

DOE MAPEP air particulate sample MAAP-738 failed low at 0.14 pCi/filter with an acceptable range of 0.36-2.04. The sample was re-analyzed and no alpha activity was detected. The sample was counted per enclosed instructions; however the filter appears to have been loaded on the wrong side. When the sample was flipped over, gross alpha was determined to be 0.61 pCi/filter in the acceptable range. Gross alpha air particulate analysis is not part of the FCS REMP program. Air particulate gross beta, which would not be impacted by the misloaded sample, and is part of the FCS REMP program was performed on the same sample successfully. OPPD results were not negatively impacted by this vendor identified and corrected issue. DOE air particulate sample MAAP-5046 was performed in the 3rd gtr. Gross alpha & gross beta were once again performed satisfactory. Additional gamma scan and transuranic analyses were performed. One of the four transuranic tests, for U-233/234, had a high bias. The sample was reanalyzed, with acceptable results. Uranium analysis is not part of the FCS REMP program. OPPD results were not negatively impacted by these vendor identified issues. Gamma counts from control or indicator spectrums had plant related nuclides present. A sample geometry adjustment was made and the sample recounted. The re-performed analysis was within acceptable limits (6.74).

Two failures occurred on analysis of MAPEP soil samples. MASO-744 failed low on Sr-90 (408.4bq/kq) for a range of 440-816 bq/kg. The sample was reanalyzed using additional fuming nitric separations and produced acceptable results. Another soil sample MASO-5043 was performed in the 3rd quarter and had acceptable Sr-90 results. This soil sample however failed a gamma scan for Co-57(high), it was determined to be an interference from Eu-152 being present in the sample. When the scan was corrected for this energy line interference, that 0 result fell within the acceptance band of 0-5. Sr-90 analysis in soil is not part of the FCS REMP program. OPPD gamma scan results on soil were not negatively impacted by this vendor identified issue.

No test results failed both the ERA and DOE methodologies for a given sample type. Reanalysis produced acceptable results. Ordering of additional tests, and successfully testing after fixes were applied, visibly demonstrates the vendor's commitment to reporting and resolving deficiencies.

These results indicate the vendor's ability to self-identify and correct any deviations from acceptable or expected results. The test results had no impact on Fort Calhoun samples and were documented as such by the vendor.

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE: Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January through December, 2013

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

Table A-2 lists results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 lists REMP specific analytical results from the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Complete analytical data for duplicate analyses is available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Results in Table A-7 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML).

Attachment A lists the laboratory precision at the 1 sigma level for various analyses. The acceptance criteria in Table A-3 is set at ± 2 sigma.

Out-of-limit results are explained directly below the result.

0

			Conce	ntration (pCi/L)		
Lab Code	Date	Analysis	Laboratory	ERA	Control	
			Result ^b	Result ^c	Limits	Acceptance
		_				
ERW-76	01/07/13	Ra-226	10.04 ± 0.55	9.91	7.42 - 11.60	Pass
ERW-76	01/07/13	Ra-228	6.11 ± 1.29	5.22	3.14 - 6.96	Pass
ERW-76	01/07/13	Uranium	5.90 ± 0.58	5.96	4.47 - 7.13	Pass
ERW-1593	04/08/13	Sr-89	43.60 ± 4.32	41.30	31.60 - 48.40	Pass
ERW-1593	04/08/13	Sr-90	23.20 ± 1.70	23.90	17.20 - 28.00	Pass
ERW-1596	04/08/13	Ba-133	74.80 ± 4.00	82.10	69.00 - 90.30	Pass
ERW-1596	04/08/13	Co-60	65.50 ± 3.42	65.90	59.30 - 75.00	Pass
ERW-1596	04/08/13	Cs-134	41.10 ± 3.47	42.80	34.20 - 47.10	Pass
ERW-1596	04/08/13	Cs-137	42.30 ± 4.03	41.70	37.00 - 48.80	Pass
ERW-1596	04/08/13	Zn-65	200.3 ± 10.1	189.0	170.0 - 222.0	Pass
ERW-1598	04/08/13	Gr. Alpha	34.30 ± 1.98	40.80	21.10 - 51.90	Pass
ERW-1598	04/08/13	Gr. Beta	18.70 ± 0.98	21.60	13.00 - 29.70	Pass
ERW-1600	04/08/13	I-131	23.00 ± 1.10	23.80	19.70 - 28.30	Pass
ERW-1600	04/08/13	l-131(G)	23.48 ± 9.44	23.80	19.70 - 28.30	Pass
ERW-1605	04/08/13	Ra-226	16.30 ± 0.70	15.40	11.50 - 17.70	Pass
ERW-1605	04/08/13	Ra-228	5.32 ± 1.30	4.36	2.54 - 5.98	Pass
ERW-1605	04/08/13	Uranium	57.30 ± 4.20	61.20	49.80 - 67.90	Pass
ERW-1606	04/08/13	H-3	4041 ± 194	4050	3450 - 4460	Pass
FRW-6009	10/07/13	Sr-89	22 00 + 2 80	21 90	14 40 + 28 20	Pass
ERW-6009	10/07/13	Sr-90	17 10 + 2 55	18 10	12 80 + 21 50	Pass
ERW-6012	10/07/13	Ba-133	48 20 + 4 29	54 20	44 70 + 59 90	Pass
ERW-6012	10/07/13	Co-60	100.8 + 4.7	102.0	91.80 + 114.00	Pass
ERW-6012	10/07/13	Cs-134	87.30 ± 4.35	86.70	71.10 ± 95.40	Pass
ERW-6012	10/07/13	Cs-137	199.6 ± 7.4	206.0	185.0 - 228.0	Pass
ERW-6012	10/07/13	Zn-65	356.2 ± 13.2	333.0	300.0 - 389.0	Pass
ERW-6015	10/07/13	Gr. Alpha	30.70 ± 11.90	42.80	22.20 ± 54.30	Pass
ERW-6015	10/07/13	Gr. Beta	25.70 ± 6.48	32.20	20.80 ± 39.90	Pass
ERW-6019	10/07/13	I-131	22.50 ± 1.01	23.60	19.60 ± 28.00	Pass
ERW-6022	10/07/13	Ra-226	12.70 ± 1.62	12.10	9.04 ± 14.00	Pass
ERW-6022 d	10/07/13	Ra-228	5.70 ± 0.56	4.02	2.30 ± 5.59	Fail
ERW-6022	10/07/13	Uranium	6.59 ± 0.38	6.24	4.70 ± 7.44	Pass
ERW-6024	10/07/13	H-3	18397 ± 695	17700	15500 - 19500	Pass

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

0

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d The reported result was obtained in the first cycle of counting. It can be positively biased due to extra beta counts contributed by Pb-214 and Bi-214 daughters of Rn-222. Result of second cycle of counting 4.47 pCi/L.

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES^a

Analvsis	Level	One standard deviation for single determination

Gamma Emitters	5 to 100 pCi/liter or kg	5.0 pCi/liter
	> 100 pCi/liter or kg	5% of known value
Strontium-89 ^b	5 to 50 pCi/liter or kg	5.0 pCi/liter
	> 50 pCi/liter or kg	10% of known value
Strontium-90 ^b	2 to 30 pCi/liter or kg	5.0 pCi/liter
	> 30 pCi/liter or kg	10% of known value
Potassium-40	≥ 0.1 g/liter or kg	5% of known value
Gross alpha	≤ 20 pCi/liter	5.0 pCi/liter
	> 20 pCi/liter	25% of known value
Gross beta	≤ 100 pCi/liter	5.0 pCi/liter
	> 100 pCi/liter	5% of known value
Tritium	≤ 4,000 pCi/liter	± 1σ = 169.85 x (known) ^{0.0933}
	> 4,000 pCi/liter	10% of known value
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value
Plutonium	≥ 0.1 pCi/liter, gram, or sample	10% of known value
lodine-131,	≤ 55 pCi/liter	6 pCi/liter
lodine-129 ^b	> 55 pCi/liter	10% of known value
Uranium-238,	≤ 35 pCi/liter	6 pCi/liter
Nickel-63 ^b Technetium-99 ^b	> 35 pCi/liter	15% of known value
Iron-55 ^b	50 to 100 pCi/liter	10 pCi/liter
	> 100 pCi/liter	10% of known value
Other Analyses ^b		20% of known value

^a From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies

Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

•

				mR	•	
Lab Code	Date		Known	Lab Result	Control	
		Description	Value	± 2 sigma	Limits	Acceptance
Environment	al, Inc.					
2013-1	5/6/2013	40 cm.	34.26	39.92 ± 2.67	23.98 - 44.54	Pass
2013-1	5/6/2013	50 cm.	21.93	25.44 ± 3.31	15.35 - 28.51	Pass
2013-1	5/6/2013	60 cm.	15.23	15.88 ± 1.12	10.66 - 19.80	Pass
2013-1	5/6/2013	70 cm.	11.19	10.89 ± 0.66	7.83 - 14.55	Pass
2013-1	5/6/2013	80 cm.	8.57	9.21 ± 0.41	6.00 - 11.14	Pass
2013-1	5/6/2013	90 cm.	6.77	6.52 ± 0.34	4.74 - 8.80	Pass
2013-1	5/6/2013	100 cm.	5.48	5.02 ± 0.53	3.84 - 7.12	Pass
2013-1	5/6/2013	110 cm.	4.53	4.51 ± 0.34	3.17 - 5.89	Pass
2013-1	5/6/2013	120 cm.	3.81	4.28 ± 0.35	2.67 - 4.95	Pass
2013-1	5/6/2013	135 cm.	3.01	2.64 ± 0.18	2.11 - 3.91	Pass
2013-1	5/6/2013	150 cm.	2.44	2.10 ± 0.25	1.71 - 3.17	Pass
2013-1	5/6/2013	180 cm.	1.69	1.78 ± 0.33	1.18 - 2.20	Pass
Environment	al, Inc.					
2013-2	11/18/2013	50 cm.	19.93	22.75 ± 3.67	13.95 - 25.91	Pass
2013-2	11/18/2013	60 cm.	13.84	15.75 ± 1.94	9.69 - 17.99	Pass
2013-2	11/18/2013	70 cm.	10.17	11.24 ± 0.88	7.12 - 13.22	Pass
2013-2	11/18/2013	75 cm.	8.86	9.18 ± 1.23	6.20 - 11.52	Pass
2013-2	11/18/2013	80 cm.	7.79	7.81 ± 1.10	5.45 - 10.13	Pass
2013-2	11/18/2013	90 cm.	6.15	5.98 ± 0.90	4.31 - 8.00	Pass
2013-2	11/18/2013	100 cm.	4.98	5.13 ± 0.73	3.49 - 6.47	Pass
2013-2	11/18/2013	110 cm.	4.12	3.87 ± 0.32	2.88 - 5.36	Pass
2013-2	11/18/2013	120 cm.	3.46	3.11 ± 0.39	2.42 - 4.50	Pass
2013-2	11/18/2013	135 cm.	2.73	2.71 ± 0.83	1.91 - 3.55	Pass
2013-2	11/18/2013	150 cm.	2.21	2.11 ± 0.63	1.55 - 2.87	Pass
2013-2	11/18/2013	180 cm.	1.54	1.81 ± 0.10	1.08 - 2.00	Pass

TABLE A-2. Thermoluminescent Dosimetry, (TLD, CaSO₄: Dy Cards).

•

•

•

•

0

A2-1

•

• • • • 0

		Concentration (pCi/L) ^a								
Lab Code ^b	Date	Analysis	Laboratory results	Known	Control					
			2s, n=1 ^c	Activity	Limits ^d	Acceptance				
SPW-66	1/9/2013	Tc-99	1009 ± 5	1078	754.9 - 1402.0	Pass				
SPW-1891	1/18/2013	Ra-228	35.60 ± 2.75	30.85	21.60 - 40.11	Pass				
SPSO-12313S	1/23/2013	Tc-99	103.5 ± 2.2	107.8	75.46 - 140.14	Pass				
SPMI-264	1/25/2013	Cs-134	110.9 ± 6.7	107.5	96.73 - 118.23	Pass				
SPMI-264	1/25/2013	Cs-137	82.84 ± 7.47	77.48	67.48 - 87.48	Pass				
SPMI-264	1/25/2013	Sr-90	38.19 ± 1.49	40.11	32.09 - 48.13	Pass				
SPW-266	1/25/2013	Co-60	46.89 ± 4.68	44.48	34.48 - 54.48	Pass				
SPW-266	1/25/2013	Cs-134	105.9 ± 8.0	107.5	96.73 - 118.23	Pass				
SPW-266	1/25/2013	Cs-137	42.17 ± 5.65	39.49	29.49 - 49.49	Pass				
SPW-266	1/25/2013	Sr-90	39.84 ± 1.65	40.11	32.09 - 48.13	Pass				
SPAP-376	2/1/2013	Gr. Beta	44.20 ± 0.11	45.68	27.41 - 63.95	Pass				
SPAP-378	2/1/2013	Cs-134	3.71 ± 0.65	3.87	2.32 - 5.42	Pass				
SPAP-378	2/1/2013	Cs-137	97.47 ± 2.50	102. 9	92.61 - 113.19	Pass				
SPW-391	2/1/2013	H-3	63719 ± 703	65626	52501 - 78751	Pass				
SPW-380	2/10/2013	Ni-63	217.0 ± 3.7	205.3	143.7 - 266.9	Pass				
W-30413	3/4/2013	Gr. Alpha	19.77 ± 0.40	20.00	10.00 - 30.00	Pass				
W-30413	3/4/2013	Gr. Beta	30.48 ± 0.34	30.90	20.90 - 40.90	Pass				
W-30713	3/7/2013	Ra-226	18.06 ± 0.51	16.70	11.69 - 21.71	Pass				
W-42713	4/27/2013	Gr. Alpha	20.67 ± 0.40	20.00	10.00 - 30.00	Pass				
W-42713	4/27/2013	Gr. Beta	28.44 ± 0.32	30.90	20.90 - 40.90	Pass				
WW-2870	5/7/2013	Co-60	166.1 ± 7.4	161.6	145.4 - 177.8	Pass				
WW-2870	5/7/2013	Cs-137	161.2 ± 9.3	149.0	134.1 - 163.9	Pass				
WW-2870	5/7/2013	H-3	6853 ± 250	6735	5388 - 8082	Pass				
W-53113	5/31/2013	Ra-226	16.83 ± 0.41	16.70	11.69 - 21.71	Pass				
SPAP-3332	6/19/2013	Am-241	4.60 ± 0.14	4.00	2.40 - 5.60	Pass				
SPW-3334	6/19/2013	Th-230	4.36 ± 0.34	4.00	2.40 - 5.60	Pass				
SPW-3458	6/24/2013	C-14	3825 ± 13	4736	2842 - 6630	Pass				
SPAP-3529	6/27/2013	Cs-134	3.49 ± 1.26	3.30	1.98 - 4.62	Pass				
SPAP-3529	6/27/2013	Cs-137	102.0 ± 2.9	101.1	90.99 - 111.21	Pass				
SPAP-3531	6/27/2013	Gr. Beta	45.64 ± 0.11	45.42	27.25 - 63.59	Pass				
SPF-3533	6/27/2013	Cs-134	1.31 ± 0.14	1.50	0.90 - 2.10	Pass				
SPF-3533	6/27/2013	Cs-137	2.77 ± 0.27	2.43	1.46 - 3.40	Pass				
SPW-3535	6/27/2013	Ni-63	204.3 ± 3.5	204.8	143.4 - 266.2	Pass				
SPW-3537	6/27/2013	Tc-99	104.5 ± 1.7	107.8	75.46 - 140.14	Pass				
SPW-3539	6/27/2013	Fe-55	97015 ± 860	90677	72542 - 108812	Pass				
SPW-1893	6/28/2013	Ra-228	30.16 - 2.73	30.85	21.60 - 40.11	Pass				

TABLE A-3. In-House "Spiked" Samples

		<u></u>				
Lab Code ^b	Date	Analysis	Laboratory results 2s, n=1 ^c	Known Activity	Control Limits ^d	Acceptance
SPW-72913S	7/29/2013	Tc-99	126.6 ± 2.2	107.8	75.46 ± 140.14	Pass
SPW-4373	7/31/2013	Cs-134	91.71 ± 6.02	90.94	80.94 ± 100.94	Pass
SPW-4373	7/31/2013	Cs-137	83.05 ± 7.20	76.57	66.57 ± 86.57	Pass
SPW-4373	7/31/2013	Sr-90	39.28 ± 1.77	39.64	31.71 ± 47.57	Pass
SPW-4374	7/31/2013	Sr-90	42.17 ± 1.71	39.64	31.71 ± 47.57	Pass
SPMI-4376	7/31/2013	Cs-134	82.22 - 7.23	90.94	80.94 ± 100.94	Pass
SPMI-4376	7/31/2013	Cs-137	83.31 - 8.29	76.57	66.57 ± 86.57	Pass
SPMI-4376A	7/31/2013	Sr-90	35.00 ± 1.63	39.64	31.71 ± 47.57	Pass
W-73113	7/31/2013	Ra-226	17.61 ± 0.41	16.70	11.69 ± 21.71	Pass
SPS-4514	8/5/2013	Sr-90	78.63 ± 2.95	79.28	63.42 ± 95.14	Pass
W-82013	8/20/2013	Gr. Alpha	21.53 ± 0.45	20.00	10.00 ± 30.00	Pass
W-82013	8/20/2013	Gr. Beta	28.03 ± 0.32	30.90	20.90 ± 40.90	Pass
SPW-1894	8/28/2013	Ra-228	32.49 ± 3.00	30.85	21.60 ± 40.11	Pass
W-90913	9/9/2013	Gr. Alpha	19.08 ± 0.51	20.10	10.05 ± 30.15	Pass
W-90913	9/9/2013	Gr. Beta	32.12 ± 0.35	32.10	22.10 ± 42.10	Pass
WW-5623	10/3/2013	Co-60	157.0 ± 7.0	155.3	139.8 - 170.8	Pass
WW-5623	10/3/2013	Cs-137	156.0 ± 8.8	148.1	133.3 - 162.9	Pass
WW-5623	10/3/2013	H-3	6590 ± 245	6322	5058 - 7586	Pass
WW-5750	10/3/2013	Co-60	87.00 ± 7.80	77.40	77.00 ± 97.00	Pass
WW-5750	10/3/2013	Cs-137	82.30 ± 7.80	78.80	68.80 ± 88.80	Pass
WW-5750	10/3/2013	H-3	6181 ± 238	6322	5058 - 7586	Pass
W-102813	10/28/2013	Ra-226	15.69 ± 0.37	16.70	11.69 ± 21.71	Pass
SPW-1898	12/17/2013	Ra-228	28.15 ± 2.37	30.85	21.60 ± 40.11	Pass
W-122313	12/23/2013	Gr. Alpha	20.96 ± 0.47	20.10	10.05 ± 30.15	Pass
W-122313	12/23/2013	Gr. Beta	31.00 ± 0.34	32.10	22.10 ± 42.10	Pass

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

- ^b Laboratory codes : W (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine).
- ^c Results are based on single determinations.

•

^d Control limits are established from the precision values listed in Attachment A of this report, adjusted to ± 2s. NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

					Concentration (pCi/L	_) ^a
Lab Code	Sample	Date	Analysis ^b	Laborato	ry results (4.66 σ)	Acceptance
	Туре			LLD	Activity ^c	Criteria (4.66 σ)
			-			
SPW-67	Water	1/9/2013	Tc-99	1.10	0.69 ± 0.68	10
SPW-190	Water	1/18/2013	Ra-228	0.74	0.66 ± 0.43	2
SPW-1901	Water	1/18/2013	Ra-228	0.74	0.66 ± 0.43	2
SPMI-263	Milk	1/25/2013	Sr-90	0.64	0.31 ± 0.34	1
SPMI-263	Milk	1/25/2013	Sr-90	0.64	0.31 ± 0.34	1
SPW-265	Water	1/25/2013	Co-60	2.86	2.10 ± 1.72	10
SPW-265	Water	1/25/2013	Cs-134	2.98	2.25 ± 1.57	10
SPW-265	Water	1/25/2013	Cs-137	2.71	0.44 ± 1.61	10
SPW-266	Water	1/25/2013	Sr-90	0.72	-0.12 ± 0.32	1
SPAP-375	Air Filter	2/1/2013	Gr. Beta	0.003	0.016 ± 0.003	0.010
SPAP-377	Air Filter	2/1/2013	Co-60	2.31	-0.34 ± 1.75	100
SPAP-377	Air Filter	2/1/2013	Cs-134	2.72	1.22 ± 1.62	100
SPAP-377	Air Filter	2/1/2013	Cs-137	1.50	-0.52 ± 1.80	100
SPW-391	Water	2/1/2013	H-3	92.04	-29.44 ± 69.24	200
SPW-379	Water	2/10/2013	Ni-63	2.11	0.91 ± 1.30	20
W-30413	Water	3/4/2013	Gr. Alpha	0.35	0.08 ± 0.26	1
W-30413	Water	3/4/2013	Gr. Beta	0.73	0.10 ± 0.51	3.2
W-30713	Water	3/7/2013	Ra-226	0.031	0.032 ± 0.024	1
10/ 40740	W/otos	4/07/0040	Cr. Alaba	0.45	0.44 + 0.20	
VV-42/13	Water	4/27/2013	Gr. Alpha	0.45	-0.14 ± 0.30	1
VV-42/13	vv ater	4/27/2013	Gr. Beta	0.72	-0.23 ± 0.50	3.2
W-00110	Water	0/31/2013	Ra-220	0.03	0.01 ± 0.02	1
SPVV-3333		0/19/2013	In-230	0.01	0.01 ± 0.01	1
SPVV-3439		0/24/2013	0-14	10.89	10.44 ± 6.82	200
SPAP-3528		0/27/2013	CS-134	2.10	-0.98 ± 1.11	100
SPAP-3528	AIF Flitter	6/27/2013	CS-137	2.71	-0.24 ± 1.36	100
SPAP-3530		6/27/2013	Gr. Beta	0.004	0.018 ± 0.003	0.010
SPF-3532	Fish	6/27/2013	CS-134	8.38	-1.39 ± 5.69	100
SPT-3532		6/27/2013	US-13/	8.37	-1.88 ± 6.41	100
5200-3534	vvater	6/2//2013	NI-63	2.47	-1.04 ± 1.48	20
SPW-3536	vvater	6/27/2013	10-99	1.15	-1.11 ± 0.68	10
SPW-3538	water	6/27/2013	Fe-55	170.27	-17.50 ± 102.70	1000
SPW-1903	Water	6/28/2013	Ra-228	0.85	-0.02 ± 0.39	2

•

.

				Concentration (pCi/L) ^a			
Lab Code	Sample	Date	Analysis [₽]	Laborator	y results (4.66o)	Acceptance	
	Туре			LLD	Activity ^c	Criteria (4.66 σ)	
SPW-72913B	Water	7/29/2013	Tc-99	1.44	-0.33 ± 0.87	10	
SPW-4372	Water	7/31/2013	Co-60	1.41	-1.42 ± 3.00	10	
SPW-4372	Water	7/31/2013	Cs-134	3.68	-2.66 ± 3.46	10	
SPW-4372	Water	7/31/2013	Cs-137	3.53	0.29 ± 3.31	10	
SPMI-4375	Milk	7/31/2013	Co-60	3.92	2.65 ± 2.26	10	
SPMI-4375	Milk	7/31/2013	Cs-134	4.67	0.68 ± 2.54	10	
SPMI-4375	Milk	7/31/2013	Cs-137	4.79	1.30 ± 2.68	10	
SPMI-4375	Milk	7/31/2013	Sr-90	0.57	0.32 ± 0.30	1	
W-73113	Water	7/31/2013	Ra-226	0.02	0.04 ± 0.02	1	
SPS-4515	Powder	8/5/2013	Sr-90	0.09	-0.01 ± 0.04	1	
W-82013	Water	8/20/2013	Gr. Alpha	0.42	-0.15 ± 0.28	1	
W-82013	Water	8/20/2013	Gr. Beta	0.74	-0.24 ± 0.51	3.2	
SPW-1904	Water	8/28/2013	Ra-228	0.96	0.85 ± 0.56	2	
CHW-90913	Water	9/9/2013	Gr. Alpha	0.25	0.20 ± 0.29	1	
CHW-90913	Water	9/9/2013	Gr. Beta	0.49	-0.18 ± 0.53	3.2	
CHW-102013	Water	10/20/2013	Gr Alpha	0.20	0.24 + 0.33	1	
CHW-102013	Water Water	10/20/2013	Gr Beta	0.23	-0.32 + 0.54	32	
M-102813	Water Water	10/28/2013	Ra-226	0.04	-0.02 ± 0.04	1	
60W-102013	Water Water	12/17/2013	Ra-220	0.02	0.02 ± 0.01	2	
CHW-122313	Water	12/23/2013	Gr Alpha	0.09	-0.09 + 0.26	1	
CHW-122313	Water	12/23/2013	Gr. Bota	0.23	-0.03 ± 0.20	30	
CHW-122313	Water	12/27/2013	Gr Alpha	0.40	0.00 ± 0.00	0.z 1	
CHW 122713	Water	12/21/2013	Gr. Rota	0.20	0.04 1 0.31	20	
UTIVY-122/13	water	12/21/2013	Gr. Dela	0.49	-0.33 I 0.33	3.2	

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.

^c Activity reported is a net activity result.

(

 ${\color{black}\bullet}$ • ${\color{black}\bullet}$

•••••

**************************************			(Concentration (pCi/L) ^s)	
	-				Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
CE-41 42	1/2/2013	Gr. Beta	8 45 + 0 37	7 90 + 0 35	8 17 + 0 26	Pass
CF-41, 42	1/2/2013	Sr-90	0.10 ± 0.07 0.030 ± 0.015	0.029 ± 0.004	0.030 ± 0.010	Pass
SW/T-8243 8244	1/2/2013	Gr Beta	1.07 ± 0.54	0.029 ± 0.014	0.030 ± 0.010 1 03 + 0.37	Pass
AP-8454 8455	1/2/2013	Be-7	0.053 ± 0.010	0.00 ± 0.01	0.048 ± 0.007	Pass
AP-8517, 8518	1/3/2013	Be-7	0.051 ± 0.015	0.049 ± 0.017	0.040 ± 0.007	Pass
MI-62, 63	1/8/2013	K-40	1317.70 ± 91.70	1351.90 ± 72.50	1334.80 + 58.45	Pass
WW-151, 152	1/8/2013	H-3	222.70 ± 81.00	289.70 + 84.10	256.20 + 58.38	Pass
SG-107, 108	1/11/2013	Ra-226	55.20 ± 5.53	58.60 + 5.94	56.90 + 4.06	Pass
SG-107, 108	1/11/2013	Ra-228	71.60 ± 1.10	74.30 ± 1.70	72.95 ± 1.01	Pass
SG-130, 131	1/14/2013	Ra-226	3.91 ± 0.20	3.45 ± 0.27	3.68 ± 0.17	Pass
SG-130, 131	1/14/2013	Ra-228	2.40 ± 0.33	2.70 ± 0.39	2.55 ± 0.26	Pass
WW-277, 278	1/17/2013	H-3	159.71 ± 77.91	196.57 ± 79.72	178.14 ± 55.73	Pass
WW-256, 257	1/22/2013	H-3	502.70 ± 93.40	483.30 ± 92.60	493.00 ± 65.76	Pass
DW-40010, 40011	1/24/2013	Ra-226	2.55 ± 0.18	2.86 ± 0.20	2.71 ± 0.13	Pass
DW-40010, 40011	1/24/2013	Ra-228	1.78 ± 0.62	2.22 ± 0.62	2.00 ± 0.44	Pass
SWT-361, 362	1/29/2013	Gr. Beta	0.90 ± 0.40	1.01 ± 0.38	0.96 ± 0.28	Pass
DW-484, 485	1/29/2013	Gr. Beta	14.85 ± 1.93	14.81 ± 2.06	14.83 ± 1.41	Pass
S-945, 946	1/29/2013	Cs-137	14.50 ± 0.18	14.45 ± 0.19	14.48 ± 0.13	Pass
S-945, 946	1/29/2013	K-40	7.90 ± 0.74	8.00 ± 0.73	7.95 ± 0.52	Pass
S-340, 341	1/31/2013	Cs-137	0.16 ± 0.05	0.15 ± 0.06	0.15 ± 0.04	Pass
S-340, 341	1/31/2013	K-40	17.35 ± 1.34	19.75 ± 1.25	18.55 ± 0.92	Pass
AP-463, 464	1/31/2013	Be-7	0.27 ± 0.10	0.26 ± 0.10	0.26 ± 0.07	Pass
MI-631, 632	2/13/2013	K-40	1350.50 ± 105.20	1413.70 ± 85.94	1382.10 ± 67.92	Pass
WW-769, 770	2/25/2013	Gr. Beta	1.20 ± 0.33	1.35 ± 0.34	1.28 ± 0.24	Pass
DW-736, 737	2/26/2013	Gr. Beta	1.09 ± 0.54	1.57 ± 0.58	1.33 ± 0.40	Pass
SWU-790, 791	2/26/2013	Gr. Beta	2.68 ± 0.96	2.08 ± 0.95	2.38 ± 0.67	Pass
W-925, 926	2/27/2013	H-3	2265.00 ± 153.00	2329.00 ± 154.00	2297.00 ± 108.54	Pass
AP-1034, 1035	3/7/2013	Be-7	0.17 ± 0.08	0.16 ± 0.09	0.17 ± 0.06	Pass
MI-1076, 1077	3/13/2013	K-40	1347.70 ± 99.32	1396.10 ± 108.00	1371.90 ± 73.36	Pass
CH-1118, 1119	3/14/2013	I-131(G)	109.41 ± 5.69	103.88 ± 7.76	106.65 ± 4.81	Pass
WW-1221, 1222	3/14/2013	H-3	452.11 ± 97.43	403.29 ± 95.46	427.70 ± 68.20	Pass
P-1368, 1369	3/15/2013	H-3	735.24 ± 113.99	666.04 ± 111.41	700.64 ± 79.70	Pass
DW-40017, 40018	3/19/2013	Gr. Alpha	1.43 ± 0.94	1.61 ± 1.00	1.52 ± 0.69	Pass
MI-1473, 1474	4/1/2013	K-40	1618.00 ± 107.00	1767.00 ± 129.00	1692.50 ± 83.80	Pass
AP-2014, 2015	4/1/2013	Be-7	0.055 ± 0.008	0.057 ± 0.006	0.056 ± 0.005	Pass
DW-40023, 40024	4/1/2013	Ra-226	2.29 ± 0.18	2.54 ± 0.20	2.42 ± 0.13	Pass
DW-40023, 40024	4/1/2013	Ra-228	2.99 ± 0.69	2.96 ± 0.67	2.98 ± 0.48	Pass
SWU-736, 737	4/2/2013	Gr. Beta	4.80 ± 0.95	4.43 ± 0.86	4.62 ± 0.64	Pass
AP-2035, 2036	4/2/2013	Be-7	0.070 ± 0.013	0.065 ± 0.013	0.068 ± 0.009	Pass
BS-1680, 1681	4/8/2013	K-40	1995.30 ± 265.70	1992.00 ± 289.40	1993.65 ± 196.44	Pass
SW-1638, 1639	4/9/2013	H-3	1350.77 ± 130.08	1320.45 ± 129.25	1335.61 ± 91.69	Pass

lacksquare ${\color{black}\bullet}$ • • ${\color{black}\bullet}$ •

			(Concentration (pCi/L) ^s	1	
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
		·····				
WW-2394, 2395	4/9/2013	H-3	348.08 ± 88.40	302.43 ± 86.41	325.25 ± 61.81	Pass
DW-40035, 40036	4/12/2013	Ra-226	1.36 ± 0.15	1.29 ± 0.13	1.33 ± 0.10	Pass
DW-40035, 40036	4/12/2013	Ra-228	1.22 ± 0.49	1.38 ± 0.53	1.30 ± 0.36	Pass
MI-1825, 1826	4/15/2013	K-40	1290.20 ± 113.80	1378.60 ± 91.99	1334.40 ± 73.17	Pass
MI-1825, 1826	4/15/2013	Sr-90	0.68 ± 0.32	0.46 ± 0.31	0.57 ± 0.22	Pass
DW-40049, 40050	4/15/2013	Gr. Alpha	1.88 ± 0.69	2.51 ± 0.71	2.20 ± 0.50	Pass
WW-1909, 1910	4/16/2013	H-3	2145.68 ± 156.65	2108.32 ± 155.80	2127.00 ± 110.47	Pass
DW-40064, 40065	4/23/2013	Gr. Alpha	1.95 ± 0.79	1.80 ± 0.81	1.88 ± 0.57	Pass
DW-40066, 40067	4/23/2013	Ra-226	1.98 ± 0.17	1.66 ± 0.16	1.82 ± 0.12	Pass
DW-40066, 40067	4/23/2013	Ra-228	2.30 ± 0.59	2.32 ± 0.59	2.31 ± 0.42	Pass
F-2225, 2226	5/1/2013	K-40	2.81 ± 0.37	2.67 ± 0.39	2.74 ± 0.27	Pass
BS-2267, 2268	5/1/2013	K-40	13.46 ± 0.64	13.59 ± 0.62	13.52 ± 0.45	Pass
SG-2235, 2236	5/2/2013	Ac-228	18.30 ± 0.60	18.50 ± 0.60	18.40 ± 0.42	Pass
SG-2235, 2236	5/2/2013	Gr. Alpha	54.00 ± 3.70	51.90 ± 3.40	52.95 ± 2.51	Pass
SG-2235, 2236	5/2/2013	Pb-214	11.30 ± 0.30	11.20 ± 0.20	11.25 ± 0.18	Pass
AP-2288, 2289	5/2/2013	Be-7	0.19 ± 0.10	0.19 ± 0.08	0.19 ± 0.07	Pass
WW-3091, 3092	5/2/2013	H-3	1107.91 ± 153.49	1263.37 ± 157.43	1185.64 ± 109.94	Pass
SW-2373, 2374	5/8/2013	H-3	324.80 ± 86.81	364.61 ± 88.53	344.71 ± 62.00	Pass
W-2352, 2353	5/9/2013	Ra-226	0.91 ± 0.20	1.29 ± 0.22	1.10 ± 0.15	Pass
W-2352, 2353	5/9/2013	Ra-228	1.28 ± 0.87	1.03 ± 0.94	1.16 ± 0.64	Pass
CF-2499, 2500	5/13/2013	K-40	11.52 ± 0.45	12.55 ± 0.61	12.04 ± 0.38	Pass
F-3987, 3988	5/20/2013	K-40	3.07 ± 0.48	3.05 ± 0.43	3.06 ± 0.32	Pass
BS-4113, 4114	5/20/2013	K-40	8.06 ± 0.44	7.99 ± 0.44	8.02 ± 0.31	Pass
SO-2902, 2903	5/22/2013	Th-228	0.57 ± 0.07	0.51 ± 0.06	0.54 ± 0.05	Pass
SO-2902, 2903	5/22/2013	Th-230	0.39 ± 0.06	0.40 ± 0.05	0.40 ± 0.04	Pass
SO-2902, 2903	5/22/2013	Th-232	0.55 ± 0.07	0.62 ± 0.06	0.59 ± 0.05	Pass
WW-2776, 2777	5/23/2013	H-3	261.76 ± 100.85	283.17 ± 101.68	272.46 ± 71.61	Pass
WW-2818, 2819	5/23/2013	H-3	999.35 ± 126.15	880.63 ± 122.43	939.99 ± 87.90	Pass
S-7271, 7272	5/27/2013	Cs-137	2.82 ± 0.10	2.91 ± 0.09	2.86 ± 0.07	Pass
S-7271, 7272	5/27/2013	K-40	21.52 ± 0.97	21.13 ± 1.02	21.32 ± 0.70	Pass
P-2923, 2924	5/29/2013	H-3	441.31 ± 92.75	374.30 ± 89.94	407.80 ± 64.60	Pass
WW-3133, 3134	6/1/2013	H-3	278.42 ± 86.54	209.45 ± 83.44	243.93 ± 60.11	Pass
WW-3049, 3050	6/5/2013	H-3	156.08 ± 79.16	244.66 ± 83.86	200.37 ± 57.66	Pass
DW-40079, 40080	6/5/2013	Ra-226	6.67 ± 0.30	7.03 ± 0.35	6.85 ± 0.23	Pass
DW-40079, 40080	6/5/2013	Ra-228	5.55 ± 0.75	6.11 ± 0.77	5.83 ± 0.54	Pass
DW-40089, 40090	6/5/2013	Gr. Alpha	6.82 ± 0.90	5.64 ± 1.02	6.23 ± 0.68	Pass
DW-40091, 40092	6/5/2013	Ra-226	3.44 ± 0.19	3.66 ± 0.19	3.55 ± 0.13	Pass
DW-40091, 40092	6/5/2013	Ra-228	3.70 ± 0.68	4.69 ± 0.73	4.20 ± 0.50	Pass
DW-40103, 40104	6/5/2013	Ra-226	0.98 ± 0.22	0.62 ± 0.15	0.80 ± 0.13	Pass
MI-3154, 3155	6/12/2013	K-40	1513.00 ± 128.10	1456.70 ± 110.30	1484.85 ± 84.52	Pass
P-3385, 3386	6/14/2013	H-3	236.88 ± 87.87	242.87 ± 88.14	239.88 ± 62.23	Pass
F-3776, 3777	6/16/2013	Cs-137	0.039 ± 0.015	0.048 ± 0.019	0.044 ± 0.012	Pass
F-3776, 3777	6/16/2013	Gr. Beta	4.52 ± 0.09	4.63 ± 0.09	4.57 ± 0.06	Pass
F-3776, 3777	6/16/2013	K-40	3.40 ± 0.41	3.52 ± 0.39	3.46 ± 0.29	Pass

• 0 • • lacksquare• ${}^{\bullet}$

				Concentration (pCi/L)	a	
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
S-3238, 3239	6/17/2013	Be-7	1139.80 ± 215.00	1102.00 ± 194.70	1120.90 ± 145.03	Pass
S-3238, 3239	6/17/2013	Cs-134	26.23 ± 13.23	39.91 ± 11.73	33.07 ± 8.84	Pass
S-3238, 3239	6/17/2013	Cs-137	72.75 ± 25.99	85.91 ± 22.58	79.33 ± 17.21	Pass
S-3238, 3239	6/17/2013	K-40	21847.00 ± 656.50	22158.00 ± 622.80	22002.50 ± 452.46	Pass
SO-3343, 3344	6/17/2013	Cs-137	0.087 ± 0.022	0.084 ± 0.017	0.086 ± 0.014	Pass
SO-3343, 3344	6/17/2013	K-40	8.90 ± 0.53	9.47 ± 0.49	9.19 ± 0.36	Pass
DW-40118, 40119	6/26/2013	Gr. Alpha	3.56 ± 1.07	4.51 ± 0.96	4.04 ± 0.72	Pass
DW-40118, 40119	6/26/2013	Ra-226	2.52 ± 0.22	2.48 ± 0.19	2.50 ± 0.15	Pass
DW-40118, 40119	6/26/2013	Ra-228	2.75 ± 0.71	2.86 ± 0.75	2.81 ± 0.52	Pass
WW-3583, 3584	6/27/2013	H-3	6732.57 ± 246.74	6807.94 ± 247.98	6770.26 ± 174.91	Pass
AP-4092, 4093	6/28/2013	Be-7	0.078 ± 0.015	0.083 ± 0.017	0.080 ± 0.011	Pass
E-3608, 3609	7/1/2013	K-40	1.28 ± 0.13	1.29 ± 0.11	1.28 ± 0.09	Pass
MI-3629, 3630	7/1/2013	K-40	1840.70 ± 130.10	1804.90 ± 143.00	1822.80 ± 96.66	Pass
AP-4050, 4051	7/1/2013	Be-7	0.094 ± 0.009	0.093 ± 0.009	0.093 ± 0.006	Pass
DW-40134, 40135	7/1/2013	Ra-226	1.75 ± 0.15	1.56 ± 0.15	1.66 ± 0.11	Pass
DW-40134, 40135	7/1/2013	Ra-228	2.07 ± 0.60	1.61 ± 0.57	1.84 ± 0.41	Pass
AP-4071, 4072	7/3/2013	Be-7	0.066 ± 0.009	0.069 ± 0.011	0.067 ± 0.007	Pass
DW-40144, 40145	7/9/2013	Gr. Alpha	3.66 ± 0.85	2.85 ± 0.79	3.26 ± 0.58	Pass
DW-40146, 40147	7/9/2013	Ra-226	0.70 ± 0.11	0.72 ± 0.11	0.71 ± 0.08	Pass
DW-40146, 40147	7/9/2013	Ra-228	1.00 ± 0.58	0.70 ± 0.52	0.85 ± 0.39	Pass
VE-3818, 3819	7/9/2013	Be-7	0.41 ± 0.11	0.46 ± 0.18	0.43 ± 0.11	Pass
VE-3818, 3819	7/9/2013	K-40	4.67 ± 0.30	4.52 ± 0.43	4.60 ± 0.26	Pass
XW-4646, 4647	7/15/2013	H-3	465.00 ± 111.00	525.00 ± 114.00	495.00 ± 79.56	Pass
WW-4134, 4135	7/16/2013	H-3	315.86 ± 123.54	264.98 ± 121.78	290.42 ± 86.73	Pass
AP-4155, 4156	7/18/2013	Be-7	0.20 ± 0.11	0.16 ± 0.09	0.18 ± 0.07	Pass
MI-4218, 4219	7/22/2013	K-40	1426.80 ± 117.50	1335.70 ± 110.60	1381.25 ± 80.68	Pass
MI-4218, 4219	7/22/2013	Sr-90	0.62 ± 0.32	0.67 ± 0.32	0.65 ± 0.23	Pass
WW-4239, 4240	7/23/2013	H-3	223.71 ± 92.64	221.74 ± 92.56	222.73 ± 65.48	Pass
WW-4394, 4395	7/30/2013	Gr. Alpha	2.63 ± 1.49	2.57 ± 1.11	2.60 ± 0.93	Pass
WW-4394, 4395	7/30/2013	Gr. Beta	3.72 ± 1.17	2.63 ± 1.29	3.18 ± 0.87	Pass
WW-4394, 4395	7/30/2013	H-3	271.50 ± 91.30	297.60 ± 91.50	284.55 ± 64.63	Pass
SWU-4478, 4479	7/30/2013	Gr. Beta	2.07 ± 0.54	2.24 ± 0.55	2.16 ± 0.39	Pass
DW-40159, 40160	7/31/2013	Ra-226	3.39 ± 0.63	2.39 ± 0.45	2.89 ± 0.39	Pass
DW-40159, 40160	7/31/2013	Ra-228	3.29 ± 0.73	2.94 ± 0.68	3.12 ± 0.50	Pass
VE-4436, 4437	8/1/2013	Be-7	0.98 ± 0.21	0.89 ± 0.17	0.94 ± 0.14	Pass
VE-4436, 4437	8/1/2013	K-40	3.95 ± 0.39	3.75 ± 0.31	3.85 ± 0.25	Pass
G-4457, 4458	8/1/2013	Be-7	0.78 ± 0.19	0.67 ± 0.16	0.72 ± 0.12	Pass
G-4457, 4458	8/1/2013	Gr. Beta	6.15 ± 0.14	6.10 ± 0.14	6.13 ± 0.10	Pass
G-4457, 4458	8/1/2013	K-40	4.25 ± 0.36	4.60 ± 0.41	4.42 ± 0.27	Pass
VE-4520, 4521	8/1/2013	K-40	2.20 ± 0.16	2.09 ± 0.17	2.15 ± 0.12	Pass
WW-4772, 4773	8/6/2013	H-3	143.80 ± 86.70	157.80 ± 87.30	150.80 ± 61.52	Pass

•

	<u> </u>			Concentration (pCi/L)	a	
				<u> </u>	Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
VE-4709, 4710	8/8/2013	Gr. Beta	31.40 ± 1.00	30.70 ± 1.00	31.05 ± 0.71	Pass
VE-4709, 4710	8/8/2013	H-3	1504.00 ± 132.00	1468.00 ± 131.00	1486.00 ± 92.99	Pass
VE-4709, 4710	8/8/2013	U-233/4	0.009 ± 0.002	0.005 ± 0.002	0.007 ± 0.001	Pass
VE-4709, 4710	8/8/2013	U-238	0.005 ± 0.002	0.004 ± 0.001	0.005 ± 0.001	Pass
WW-4562, 4563	8/8/2013	H-3	208.82 ± 105.55	213.13 ± 105.73	210.97 ± 74.70	Pass
SG-4651, 4652	8/13/2013	Gr. Alpha	29.00 ± 3.10	28.80 ± 3.20	28.90 ± 2.23	Pass
SG-4651, 4652	8/13/2013	Gr. Beta	34.10 ± 1.80	34.00 ± 1.80	34.05 ± 1.27	Pass
SG-4651, 4652	8/13/2013	Ra-226	9.00 ± 0.20	8.70 ± 0.20	8.85 ± 0.14	Pass
VE-4835, 4836	8/13/2013	K-40	3.01 ± 0.24	3.08 ± 0.28	3.04 ± 0.19	Pass
WW-4877, 4878	8/14/2013	H-3	217.35 ± 87.57	276.63 ± 90.20	246.99 ± 62.86	Pass
LW-4856, 4857	8/15/2013	Gr. Beta	0.96 ± 0.40	0.94 ± 0.38	0.95 ± 0.28	Pass
W-4982, 4983	8/16/2013	H-3	757.43 ± 112.40	767.56 ± 112.76	762.50 ± 79.60	Pass
VE-4919, 4920	8/19/2013	K-40	4891.90 ± 407.90	4907.40 ± 350.40	4899.65 ± 268.87	Pass
VE-4919, 4920	8/19/2013	Be-7	470.50 ± 159.60	325.10 ± 104.10	397.80 + 95.27	Pass
DW-40184, 40185	8/19/2013	Ra-228	2.35 ± 0.72	2.53 ± 0.70	2.44 ± 0.50	Pass
DW-40184, 40185	8/19/2013	Ra-228	1.44 ± 0.35	2.30 ± 0.56	1.87 ± 0.33	Pass
AP-5003, 5004	8/22/2013	Be-7	0.23 ± 0.10	0.21 ± 0.10	0.22 ± 0.07	Pass
LW-5229, 5230	8/29/2013	Gr. Beta	1.09 ± 0.86	2.28 ± 0.96	1.69 ± 0.64	Pass
SS-5333, 5334	9/3/2013	Cs-137	89.20 ± 41.60	97.80 + 34.60	93.50 + 27.05	Pass
SS-5333, 5334	9/3/2013	K-40	11893.00 ± 681.30	12353.00 ± 778.90	12123.00 ± 517.41	Pass
VE-5313, 5314	9/3/2013	K-40	1.84 ± 0.20	1.85 ± 0.20	1.85 ± 0.14	Pass
VE-5313, 5314	9/3/2013	Gr. Beta	2.38 ± 0.04	2.43 ± 0.04	2.41 ± 0.03	Pass
WW-5617, 5618	9/5/2013	H-3	1987.00 ± 147.00	2094.00 ± 150.00	2040.50 ± 105.01	Pass
AP-5355, 5356	9/5/2013	Be-7	0.22 ± 0.12	0.27 ± 0.14	0.25 ± 0.09	Pass
XW-5694, 5695	9/8/2013	C-14	0.94 ± 0.09	0.78 ± 0.10	0.86 ± 0.07	Pass
VE-5409, 5410	9/9/2013	K-40	3.60 ± 0.26	3.33 ± 0.29	3.46 ± 0.19	Pass
AP-5430, 5431	9/12/2013	Be-7	0.26 ± 0.10	0.26 ± 0.10	0.26 ± 0.07	Pass
MI-5401, 5402	9/12/2013	K-40	1404.60 ± 114.10	1356.10 ± 128.60	1380.35 ± 85.96	Pass
WW-5451, 5452	9/12/2013	H-3	196.66 ± 84.44	200.78 ± 84.64	198.72 ± 59.78	Pass
MI-5484, 5485	9/16/2013	K-40	1398.50 ± 88.93	1364.60 ± 113.30	1381.55 ± 72.02	Pass
WW-5568, 5569	9/17/2013	H-3	274.69 ± 87.95	203.72 ± 84.71	239.20 ± 61.05	Pass
BS-5764, 5765	9/20/2013	Cs-137	0.40 ± 0.03	0.37 ± 0.02	0.39 ± 0.02	Pass
BS-5764, 5765	9/20/2013	K-40	17.97 ± 0.59	17.54 ± 0.55	17.76 ± 0.40	Pass
VE-5638, 5639	9/23/2013	K-40	4.15 ± 0.33	4.46 ± 0.38	4.31 ± 0.25	Pass
WW-5596, 5597	9/23/2013	Gr. Beta	5.97 ± 1.39	5.95 ± 1.45	5.96 ± 1.01	Pass
G-5680, 5681	9/25/2013	Be-7	0.36 ± 0.13	0.35 ± 0.09	0.35 ± 0.08	Pass
G-5680, 5681	9/25/2013	Gr. Beta	3.81 ± 0.11	3.77 ± 0.11	3.79 ± 0.08	Pass
G-5680, 5681	9/25/2013	K-40	3.23 ± 0.32	2.99 ± 0.24	3.11 ± 0.20	Pass
S-5659, 5660	9/26/2013	Ac-228	1.19 ± 0.21	1.06 ± 0.21	1.13 ± 0.15	Pass
S-5659, 5660	9/26/2013	Cs-137	0.13 ± 0.04	0.14 ± 0.05	0.14 ± 0.03	Pass
S-5659, 5660	9/26/2013	K-40	16.08 ± 1.39	16.65 ± 1.46	16.37 ± 1.01	Pass
S-5659, 5660	9/26/2013	Pb-214	0.97 ± 0.15	1.10 ± 0.16	1.04 ± 0.11	Pass
AP-6345, 6346	9/30/2013	Be-7	0.077 ± 0.010	0.081 ± 0.008	0.079 ± 0.006	Pass
AP-6366, 6367	9/30/2013	Be-7	0.078 ± 0.012	0.083 ± 0.014	0.081 ± 0.009	Pass

lacksquare0

				Concentration (pCi/L)	а	
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
			-, ,			
DW-5701, 5702	9/30/2013	Gr. Beta	14.48 ± 2.04	13.32 ± 1.84	13.90 ± 1.37	Pass
SG-5722, 5723	9/30/2013	Ra-226	12.41 ± 0.47	11.98 ± 0.59	12.20 ± 0.38	Pass
SG-5722, 5723	9/30/2013	Ra-228	7.84 ± 0.71	8.13 ± 0.97	7.99 ± 0.60	Pass
G-5806, 5807	10/1/2013	Be-7	3.26 ± 0.30	3.11 ± 0.13	3.19 ± 0.16	Pass
G-5806, 5807	10/1/2013	K-40	6.65 ± 0.21	6.68 ± 0.50	6.67 ± 0.27	Pass
SG-5827, 5828	10/1/2013	Ac-228	4.08 ± 0.33	3.92 ± 0.40	4.00 ± 0.26	Pass
SG-5827, 5828	10/1/2013	K-40	2.55 ± 0.65	2.37 ± 0.63	2.46 ± 0.45	Pass
SG-5827, 5828	10/1/2013	Pb-214	3.82 ± 0.17	3.93 ± 0.20	3.88 ± 0.13	Pass
VE-5848 5849	10/1/2013	K-40	1.62 ± 0.16	1 57 + 0 14	1.60 ± 0.10	Pass
AP-6408, 6409	10/3/2013	Be-7	0.072 ± 0.015	0.063 ± 0.012	0.068 ± 0.010	Pass
f-5954 5955	10/3/2013	K-40	2.74 ± 0.36	3.02 ± 0.34	2 88 + 0 25	Pass
P-6035_6036	10/7/2013	H-3	198 41 + 85 00	288 60 + 89 15	243 51 + 61 59	Pass
SG-6115 6116	10/8/2013	Ac-228	5 22 + 0 50	4 87 + 0 48	5.05 + 0.35	Pass
SG-6115 6116	10/8/2013	K-40	5.61 + 1.08	4.01 ± 0.40	6.11 ± 0.75	Pase
SG-6115 6116	10/8/2013	Ph-214	4 29 + 0 24	4 24 + 0 20	4 27 + 0 16	Pass
VE-6136 6137	10/8/2013	Re-7	-4.25 ± 0.24	4.24 ± 0.20	-4.27 ± 0.10	Dass
VE-6136 6137	10/8/2013	Be-7 K-40	2.78 ± 0.35	2.61 ± 0.33	0.00 ± 0.12 2.60 ± 0.24	Pass
M/M/ 6108 6199	10/8/2013	H_3	12073 70 + 332 60	12757 80 ± 330 00	12865 75 ± 0.24	Pass
VE-6240 6241	10/0/2013	K-40	14 20 + 0 20	14 05 ± 0 54	14 62 ± 0.24	Pass
W 5006 5007	10/9/2013	Gr Alpha	14.23 ± 0.23	14.95 ± 0.04	14.02 ± 0.31	Pass
W 5006 5007	10/9/2013	Gr. Rota	0.07 ± 1.10	4.07 ± 1.00	3.97 ± 0.00	Pass
W-5990, 5997	10/9/2013	De 229	9.02 ± 0.00	0.00 ± 1.02	9.10 ± 0.09	Pass
W-3990, 3997	10/9/2013	Ra-220	3.42 ± 1.02	3.39 I 1.01	3.41 I U.72	Pass
DW 40224, 40225	10/11/2013	Ra-220	0.02 ± 0.10	0.76 ± 0.10	0.09 ± 0.07	Pass
DVV-40224, 40225	10/11/2013	Ra-220	0.07 ± 0.00	1.00 ± 0.34	0.94 ± 0.39	Pass
05 6264 6262	10/11/2013	п-J Во 7	400.41 ± 111.04	304.00 I 107.04	405.03 ± 77.57	Pass
CF-0201, 0202	10/14/2013	Be-7	1.97 ± 0.24	2.06 ± 0.22	2.01 ± 0.16	Pass
CF-6261, 6262	10/14/2013	K-40	11.55 ± 0.56	12.06 ± 0.61	11.80 ± 0.41	Pass
MI-6303, 6304	10/14/2013	K-40	1507.30 ± 110.80	1482.40 ± 110.00	1494.85 ± /8.0/	Pass
VE-6534, 6535	10/17/2013	K-40	15.96 ± 0.17	16.16 ± 0.36	16.06 ± 0.20	Pass
S-64/1, 64/2	10/18/2013	Ac-228	0.94 ± 0.19	0.78 ± 0.18	0.86 ± 0.13	Pass
S-64/1, 64/2	10/18/2013	K-40	12.82 ± 1.05	12.90 ± 1.17	12.86 ± 0.79	Pass
S-6471, 6472	10/18/2013	Pb-214	0.88 ± 0.11	0.72 ± 0.12	0.80 ± 0.08	Pass
VE-6597, 6598	10/22/2013	K-40	2.46 ± 0.22	2.58 ± 0.20	2.52 ± 0.15	Pass
WW-65/6,65//	10/22/2013	H-3	745.60 ± 110.70	663.30 ± 107.60	/04.45 ± /7.19	Pass
LW-6681, 6682	10/29/2013	Gr. Beta	2.00 ± 0.92	2.17 ± 0.98	2.09 ± 0.67	Pass
SWU-6/65, 6/66	10/29/2013	Gr. Beta	3.07 ± 0.61	2.90 ± 0.65	2.99 ± 0.45	Pass
WW-6849, 6850	10/29/2013	H-3	803.00 ± 113.80	826.60 ± 112.50	844.80 ± 80.01	Pass
MI-0/00, 0/0/	10/30/2013	N-40	1370.60 ± 109.60	1449.20 ± 105.50	1409.90 ± 76.06	Pass
50-6744, 6745	10/30/2013	AC-220	0.40 ± 0.11	0.51 ± 0.11	0.48 ± 0.08	Pass
50-6744, 6745	10/30/2013	BHZ 14	0.48 ± 0.10	0.30 ± 0.10	0.39 ± 0.07	Pass
30-0/44, 0/43	10/30/2013	US-13/ Gr Boto	0.21 ± 0.04	U.24 ± U.U4	0.23 ± 0.03	Pass
50-0/44, 0/49 50 6744 6745	10/30/2013	Gr. Deta	21.40 ± 1.14	21.44 ± 1.11	21.42 ± 0.80	Pass
5U-0/44, 0/45	10/30/2013	N-40	14.93 I U.88	15.20 ± 0.90	15.U/ ± 0.63	Pass
5U-0/44, 0/49	10/20/2013	PD-212	U.43 ± U.U4	0.40 ± 0.05	0.42 ± 0.03	Pass
5U-0/44, 0/45	10/30/2013	Ka-220	1.47 ± 0.35	1.31 ± 0.36	1.39 ± 0.25	Pass
30-0/44, 0/45	10/30/2013	11-208	0.16 ± 0.04	0.16 ± 0.04	0.16 ± 0.03	Pass

0

				Concentration (pCi/L) ^a		
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
DW 40238 40230	10/31/2013	Pa-228	0.94 ± 0.41	1 60 ± 0 55	1 27 + 0 24	Pass
DW-40230, 40239	11/1/2013	Na-220	503 00 + 104 72	648 60 ± 106 80	620 80 ± 74 82	Pass
CE 6970 6971	11/1/2013	K-40	12.67 ± 0.40	12.20 ± 0.03	12.09 ± 0.34	Pass
VNI 6929 6920	11/4/2013	K-40	12.07 ± 0.49	160 21 ± 74 00	12.90 ± 0.04	Pass
RS 6801 6802	11/5/2013	Ce-137	0.018 ± 0.010	0.018 ± 0.009	129.10 ± 40.00	Pass
DS-0091, 0092	11/5/2013	Gr Beta	12.41 + 1.74	0.010 ± 0.003	0.010 ± 0.007	Pass
DS-0091, 0092	11/5/2013		6 49 + 0 33	5.51 ± 1.51	630 ± 0.26	Pass
DO-0091, 0092	11/5/2013	Gr Alpha	0.49 ± 0.33 2.87 ± 1.30	0.20 ± 0.40	0.39 ± 0.20	Pass
WWW-0912, 0913	11/5/2013	Gr. Reta	2.07 ± 1.00 3.18 ± 0.87	4.40 ± 1.47	3.07 ± 0.90 3.18 ± 0.62	Pass
WW 6012,0913	11/5/2013		3.10 ± 0.07 349.01 ± 101.42	3.10 ± 0.07	380 58 + 70 54	Pass
80 6054 6055	11/6/2013	Ce-137	0.14 ± 0.03	430.14 ± 30.00	0.13 ± 0.02	Pass
SO-0904, 0900	11/6/2013	K-40	$15 16 \pm 0.03$	0.12 ± 0.02	0.13 ± 0.02 14.64 ± 0.48	Dass
S-6076 6077	11/13/2013	K-40	22 36 + 0.69	14.11 ± 0.04 22.62 + 0.72	22 49 + 0 50	Pass
5-0570, 0577	11/15/2013	Gr Alnha	15.00 ± 3.41	22.02 ± 0.72	17.65 + 2.63	Pass
$D_{V}=40240, 40247$	11/18/2013	Bo-7	10.00 ± 0.41 17 79 + 0.51	18.00 + 0.80	17.03 ± 2.03	Pass
DW-40250 40251	11/18/2013	Ba-226	27 77 + 2 84	10.09 ± 0.00 26 15 + 2 67	26 96 + 1 95	Pass
DW = 40250, 40251	11/18/2013	Ra-228	7 91 + 0 94	632 + 0.84	7 12 + 0 63	Dase
M/M/ 7164 7165	11/10/2013	H_3	266.00 + 01.10	268 00 + 01 20	267 00 + 64 45	Dass
SS-7334 7335	11/20/2013	K-40	15 51 + 0 72	14 14 + 0 80	14 83 + 0 54	Pass
W/W_7558 7559	11/22/2013	H-3	229 86 + 83 89	191 77 + 82 05	210 82 + 58 67	Pass
1 W-7292 7293	11/26/2013	Gr Beta	1 92 + 0 75	2 38 + 0 77	210.02 ± 00.07 2 15 + 0 54	Pass
W-7292, 7200	12/1/2013	Ra-226	0.87 ± 0.73	0.88 ± 0.25	0.88 ± 0.17	Pass
W-7229 7230	12/1/2013	Ra-228	3.00 ± 0.98	3.27 ± 1.16	3.14 ± 0.76	Pass
SG_7313 7314	12/2/2013	Ac-228	6.33 ± 0.23	6.69 ± 0.30	651 + 0.19	Pass
SG-7313 7314	12/2/2013	K-40	5 47 + 0 61	6 24 + 0 74	5 86 + 0 48	Pass
SG-7313, 7314	12/2/2013	Ph-214	5.60 ± 0.14	5.37 + 0.16	5.60 ± 0.10 5.49 ± 0.11	Pass
W-7432, 7433	12/4/2013	Gr. Beta	5.35 ± 1.20	3.89 ± 1.23	4.62 ± 0.86	Pass
WW-7516, 7517	12/10/2013	H-3	369.30 ± 95.64	269.22 + 91.35	319.26 + 66 13	Pass
SG-7579, 7580	12/20/2013	Ra-226	3.72 ± 0.11	3 85 + 0.30	3.79 + 0.16	Pass
SG-7579, 7580	12/20/2013	Ra-228	2.38 ± 0.18	2.77 ± 0.44	2.58 + 0.24	Pass
LW-7684, 7685	12/23/2013	Gr. Beta	0.84 ± 0.51	1.96 ± 0.61	1.40 ± 0.40	Pass
DW-40261, 40262	12/27/2013	Ra-226	0.54 ± 0.10	0.67 ± 0.10	0.61 ± 0.07	Pass
DW-40261, 40262	12/27/2013	Ra-228	1.09 ± 0.51	1.12 ± 0.43	1.11 ± 0.33	Pass
SWU-7663, 7664	12/30/2013	Gr. Beta	2.85 ± 0.71	3.88 ± 0.77	3.37 ± 0.52	Pass

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

* Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g).

TABLE A-6. Department of Energy's Mixed Analyte PerforMAnce Evaluation Program (MAPEP).

	· · · · · · · · · · · · · · · ·			Concentration	а	·········
				Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MAAD-738	02/01/13	Am-241	0 10 + 0 02	0.10	0.07 - 0.14	Pass
MAAP-738	02/01/13	Co-57	2 58 + 0.06	2.36	1 65 - 3 07	Pass
MAAP-738	02/01/13	Co-60	2.00 ± 0.00	2.30	0.00 - 0.10	Page
MAAP-738	02/01/13	Cs-134	1.82 ± 0.13	1 78	1 25 - 2 31	Pass
MAAP-738	02/01/13	Cs-137	2.93 + 0.10	2.60	1.82 - 3.38	Pass
MAAP-738	02/01/13	Mn-54	4.87 + 0.13	4.26	2 98 - 5 54	Pass
MAAP-738	02/01/13	Pu-238	0.12 ± 0.02	0.13	0.09 - 0.17	Pass
MAAP-738	02/01/13	Pu-239/40	0.11 ± 0.02	0.12	0.09 - 0.16	Pass
MAAP-738	02/01/13	Sr-90	1.39 ± 0.14	1.49	1.04 - 1.94	Pass
MAAP-738	02/01/13	U-233/4	0.03 ± 0.01	0.03	0.02 - 0.04	Pass
MAAP-738	02/01/13	U-238	0.23 ± 0.03	0.23	0.16 - 0.30	Pass
MAAP-738	02/01/13	Zn-65	3.84 ± 0.20	3.13	2.19 - 4.07	Pass
				0110		1 400
MAAP-738 ^d	02/01/13	Gr. Alpha	0.14 ± 0.03	1.20	0.36 - 2.04	Fail
MAAP-738	02/01/13	Gr. Beta	0.93 ± 0.06	0.85	0.43 - 1.28	Pass
MAW-806	02/01/13	Am-241	0.71 ± 0.08	0.69	0.48 - 0.90	Pass
MAW-806	02/01/13	Co-57	31.20 ± 0.40	30.90	21.60 - 40.20	Pass
MAW-806	02/01/13	Co-60	19.70 ± 0.30	16.56	13.69 - 25.43	Pass
MAW-806	02/01/13	Cs-134	23.20 ± 0.50	24.40	17.10 - 31.70	Pass
MAW-806	02/01/13	Cs-137	0.03 ± 0.12	0.00	0.00 - 1.00	Pass
MAW-806	02/01/13	Fe-55	34.00 ± 3.30	44.00	30.80 - 57.20	Pass
MAW-806	02/01/13	H-3	511.60 ± 12.50	507.00	355.00 - 659.00	Pass
MAW-806	02/01/13	K-40	2.20 ± 0.90	0.00	0.00 - 5.00	Pass
MAW-806	02/01/13	Mn-54	27.60 ± 0.50	27.40	19.20 - 35.60	Pass
MAW-806	02/01/13	Ni-63	34.30 ± 2.80	33.40	23.40 - 43.40	Pass
MAW-806	02/01/13	Pu-238	0.83 ± 0.10	0.88	0.62 - 1.15	Pass
MAW-806	02/01/13	Pu-239/40	0.02 ± 0.02	0.01	0.00 - 1.00	Pass
MAW-806	02/01/13	Sr-90	9.30 ± 0.80	10.50	7.40 - 13.70	Pass
MAW-806	02/01/13	Tc-99	10.25 ± 0.40	13.10	9.20 - 17.00	Pass
MAW-806	02/01/13	U-233/4	0.31 ± 0.05	0.32	0.22 - 0.41	Pass
MAW-806	02/01/13	U-238	1.91 ± 0.13	1.95	1.37 - 2.54	Pass
MAW-806	02/01/13	Zn-65	31.60 ± 0.80	30.40	21.30 - 39.50	Pass
MAW-811	02/01/13	Gr. Alpha	1.87 ± 0.09	2.31	0.69 - 3.93	Pass
MAW-811	02/01/13	Gr. Beta	13.04 ± 0.13	13.00	6.50 - 19.50	Pass
MAW-811	02/01/13	I-129	4.60 ± 0.19	6.06	4.24 - 7.88	Pass

•

•

•

•

				Concentration	a	
				Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MASO-739	02/01/13	Am-241	106.90 ± 11.40	113.00	79.00 - 147.00	Pass
MASO-739	02/01/13	Co-57	0.60 ± 0.50	0.00	0.00 - 5.00	Pass
MASO-739	02/01/13	Co-60	739.20 ± 28.50	691.00	484.00 - 898.00	Pass
MASO-739	02/01/13	Cs-134	863.30 ± 34.10	887.00	621.00 - 1153.00	Pass
MASO-739	02/01/13	Cs-137	661.80 ± 25.70	587.00	411.00 - 763.00	Pass
MASO-739	02/01/13	K-40	745.80 ± 33.30	625.30	437.70 - 812.90	Pass
MASO-739	02/01/13	Mn-54	1.10 ± 1.00	0.00	0.00 - 5.00	Pass
MASO-739	02/01/13	Zn-65	1109.60 ± 44.10	995.00	697.00 - 1294.00	Pass
MASO-744	02/01/13	Ni-63	682.60 ± 16.80	670.00	469.00 - 871.00	Pass
MASO-744	02/01/13	Pu-238	0.20 ± 0.90	0.00	0.00 - 1.00	Pass
MASO-744	02/01/13	Pu-239/40	88.30 ± 9.00	79.50	55.70 - 103.40	Pass
MASO-744 °	02/01/13	Sr-90	408.40 ± 14.00	628.00	440.00 - 816.00	Fail
MASO-744	02/01/13	Tc-99	380.50 ± 16.80	444.00	311.00 - 577.00	Pass
MASO-744	02/01/13	U-233/4	53.20 ± 4.80	62.50	43.80 - 81.30	Pass
MASO-744	02/01/13	U-238	242.10 ± 10.20	281.00	197.00 - 365.00	Pass
MAVE-747	02/01/13	Co-57	10.37 ± 0.17	8.68	6.08 - 11.28	Pass
MAVE-747	02/01/13	Co-60	6.48 ± 0.17	5.85	4.10 - 7.61	Pass
MAVE-747	02/01/13	Cs-134	0.02 ± 0.04	0.00	0.00 - 0.10	Pass
MAVE-747	02/01/13	Cs-137	7.79 ± 0.21	6.87	4.81 - 8.93	Pass
MAVE-747	02/01/13	Mn-54	0.00 ± 0.05	0.00	0.00 - 0.10	Pass
MAVE-747	02/01/13	Zn-65	7.29 ± 0.33	6.25	4.38 - 8.13	Pass
MASO-5043	08/01/13	Am-241	1.40 ± 1.70	0.00	0.00 - 5.00	Pass
MASO-5043 '	08/01/13	Co-57	699.60 ± 3.90	0.00	0.00 - 5.00	Fail
MASO-5043	08/01/13	Cs-134	1191.70 ± 23.00	1172.00	820.00 - 1524.00	Pass
MASO-5043	08/01/13	Cs-137	1072.00 ± 5.10	977.00	684.00 - 1270.00	Pass
MASO-5043	08/01/13	K-40	760.00 ± 16.20	633.00	443.00 - 823.00	Pass
MASO-5043	08/01/13	Mn-54	753.80 ± 4.90	674.00	472.00 - 876.00	Pass
MASO-5043	08/01/13	Ni-63	560.00 ± 23.70	571.00	400.00 - 742.00	Pass
MASO-5043	08/01/13	Pu-238	68.40 ± 7.50	61.50	43.10 - 80.00	Pass
MASO-5043	08/01/13	Pu-239/40	0.40 ± 0.80	0.36	0.00 - 1.00	Pass
MASO-5043	08/01/13	Sr-90	383.90 ± 14.50	460.00	322.00 - 598.00	Pass
MASO-5043	08/01/13	Tc-99	-1.00 ± 10.50	0.00	0.00 - 5.00	Pass
MASO-5043	08/01/13	U-233/4	23.80 ± 3.30	30.00	21.00 - 39.00	Pass
MASO-5043	08/01/13	U-238	26.80 + 3.50	34.00	23 80 - 44 20	Pass
			20.00 20.00	0	20100 44.20	1 466

TABLE A-6. Department of Energy's Mixed Analyte PerforMAnce Evaluation Program (MAPEP).

				Concentration	a	
				Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MAW-5052	08/01/13	l-129	2.75 ± 0.20	3.79	2.65 - 4.93	Pass
MAW-5094	08/01/13	Am-241	0.00 ± 0.01	0.00	0.00 - 5.00	Pass
MAW-5094	08/01/13	Co-57	0.01 ± 0.09	0.00	0.00 - 5.00	Pass
MAW-5094	08/01/13	Co-60	23.20 ± 0.32	23.58	16.51 - 30.65	Pass
MAW-5094	08/01/13	Cs-134	27.60 ± 0.58	30.40	21.00 - 39.00	Pass
MAW-5094	08/01/13	Cs-137	32.31 ± 0.52	31.60	22.10 - 41.10	Pass
MAW-5094	08/01/13	Fe-55	39.20 ± 3.50	53.30	37.30 - 69.30	Pass
MAW-5094	08/01/13	Gr. Alpha	0.54 ± 0.05	0.70	0.21 - 1.19	Pass
MAW-5094	08/01/13	Gr. Beta	5.85 ± 0.09	5.94	2.97 - 8.91	Pass
MAW-5094	08/01/13	H-3	1.20 ± 3.00	0.00	0.00 - 5.00	Pass
MAW-5094	08/01/13	K-40	2.22 ± 0.90	0.00	0.00 - 5.00	Pass
MAW-5094	08/01/13	Mn-54	0.010 ± 0.11	0.00	0.00 - 5.00	Pass
MAW-5094	08/01/13	Ni-63	21.80 ± 3.30	26.40	18.50 - 34.30	Pass
MAW-5094	08/01/13	Pu-238	1.30 ± 0.11	1.22	0.85 - 1.58	Pass
MAW-5094	08/01/13	Pu-239/40	0.98 ± 0.09	1.00	0.70 - 1.30	Pass
MAW-5094	08/01/13	Sr-90	6.40 ± 0.60	7.22	5.05 - 9.39	Pass
MAW-5094	08/01/13	Tc-99	13.10 ± 0.70	16.20	11.30 - 21.10	Pass
MAW-5094	08/01/13	U-233/4	0.080 ± 0.019	0.07	0.00 - 1.00	Pass
MAW-5094	08/01/13	U-238	0.032 ± 0.012	0.03	0.00 - 1.00	Pass
MAW-5094	08/01/13	Zn-65	35.30 ± 0.90	34.60	24.20 - 45.00	Pass
	09/01/12	C a 57	0.01 + 0.03	0.00	0.00 0.00	Page
	00/01/13		0.01 ± 0.03	0.00	0.00 - 0.00	Pass
	00/01/13		0.00 I 0.04	5.00	3.64 6.76	Pass
	00/01/13	05-134	0./ 1 I U.23	J.20 6 60	3.04 - 0.70 4.62 0.59	Pass
	00/01/13	US-137	7.04 ± 0.20	0.00	4.02 - 0.08	Pass
	00/01/13	1717-04 75 65	9.00 I 0.24	1.00	0.02 - 10.24	Pass

				Concentration	а	
				Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MAAP-5046	08/01/13	Am-241	0.01 ± 0.02	0.00	0.02 - 0.04	Pass
MAAP-5046	08/01/13	Co-57	3.48 ± 0.14	3.40	1.90 - 3.50	Pass
MAAP-5046	08/01/13	Co-60	2.44 ± 0.08	3.40	1.60 - 3.00	Pass
MAAP-5046	08/01/13	Cs-134	0.01 ± 0.03	0.00	0.02 - 0.04	Pass
MAAP-5046	08/01/13	Cs-137	3.09 ± 0.13	2.70	1.90 - 3.50	Pass
MAAP-5046	08/01/13	Gr. Alpha	0.28 ± 0.04	0.90	0.27 - 1.53	Pass
MAAP-5046	08/01/13	Gr. Beta	1.90 ± 0.08	1.63	0.82 - 2.45	Pass
MAAP-5046	08/01/13	Mn-54	3.95 ± 0.12	3.50	2.50 - 4.60	Pass
MAAP-5046	08/01/13	Pu-238	0.14 ± 0.028	0.12	0.087 - 0.16	Pass
MAAP-5046	08/01/13	Pu-239/40	0.10 ± 0.022	0.092	0.064 - 0.12	Pass
MAAP-5046	08/01/13	Sr-90	1.69 ± 4.10	1.81	1.27 - 2.35	Pass
MAAP-5046 ⁹	08/01/13	U-233/4	0.044 ± 0.012	0.029	0.020 - 0.038	Fail
MAAP-5046	08/01/13	U-238	0.19 ± 0.027	0.21	0.14 - 0.27	Pass
MAAP-5046	08/01/13	Zn-65	3.27 ± 0.18	2.70	2.50 - 4.60	Pass

^a Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^b Laboratory codes as follows: MAW (water), MAAP (air filter), MASO (soil), MAVE (vegetation).

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

^d The filter was recounted overnight, no significant alpha activity could be detected.

^e The sample was reanalyzed using additional fuming nitric separations. Result of reanalysis: 574.4 ± 35.2 Bq/kg.

^f Interference from Eu-152 resulted in misidentification of Co-57.

⁹ Result of repeat analysis: 0.031 ± 0.013 pCi/filter.

0

0

			Concentration (p	Concentration (pCi/L) ^b							
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control						
<u></u>	·		Result ^c	Result ^d	Limits	Acceptance					
ERAP-1174	03/18/13	Am-241	65.2 ± 4.4	66.8	41.2 - 90.4	Pass					
ERAP-1174	03/18/13	Co-60	226.5 ± 4.1	214.0	166.0 - 267.0	Pass					
ERAP-1174	03/18/13	Cs-134	1101.2 ± 23.6	1110.0	706.0 - 1380.0	Pass					
ERAP-1174	03/18/13	Cs-137	1065.6 ± 21.4	940.0	706.0 - 1230.0	Pass					
ERAP-1174	03/18/13	Fe-55	178.8 ± 88.0	225.0	69.8 - 440.0	Pass					
ERAP-1174	03/18/13	Mn-54	< 3.1	0.0	0.0 - 50.0	Pass					
ERAP-1174	03/18/13	Pu-238	50.0 ± 3.0	51. 1	34.3 - 65.9	Pass					
ERAP-1174	03/18/13	Pu-239/40	65.7 ± 2.6	65.2	47.2 - 85.2	Pass					
ERAP-1174	03/18/13	U-233/4	54.0 ± 2.5	59.4	36.8 - 89.6	Pass					
ERAP-1174	03/18/13	U-238	55.6 ± 2.6	58.9	38.1 - 81.4	Pass					
ERAP-1174	03/18/13	Uranium	112.0 ± 5.6	121.0	67.0 - 184.0	Pass					
ERAP-1174	03/18/13	Zn-65	236.6 ± 13.8	199.0	142.0 - 275.0	Pass					
ERAP-1175	03/18/13	Gr. Alpha	52.3 ± 2.8	42.3	14.2 - 65.7	Pass					
ERAP-1175	03/18/13	Gr. Beta	36.2 ± 2.0	25.1	15.9 - 36.6	Pass					
ERSO-1176	03/18/13	Am-241	293.1 ± 97.4	229.0	134.0 - 297.0	Pass					
ERSO-1176	03/18/13	Pu-238	909.0 ± 180.0	788.0	474.0 - 1090.0	Pass					
ERSO-1176	03/18/13	Pu-239/40	432.0 ± 120.0	366.0	239.0 - 506.0	Pass					
ERSO-1176	03/18/13	Sr-90	8050.8 ± 376.0	8530.0	3250.0 - 13500.0	Pass					
ERSO-1176	03/18/13	U-233/4	1662.6 ± 150.0	1920.0	1170.0 - 2460.0	Pass					
ERSO-1176	03/18/13	U-238	1682.8 ± 160.0	1900.0	1180.0 - 2410.0	Pass					
ERSO-1176	03/18/13	Uranium	3404.0 ± 330.5	3920.0	2130.0 - 5170.0	Pass					
ERSO-1176	03/18/13	Ac-228	1335.0 ± 132.0	1240.0	795.0 - 1720.0	Pass					
ERSO-1176	03/18/13	Bi-212	1420.0 ± 311.0	1240.0	330.0 - 1820.0	Pass					
ERSO-1176	03/18/13	Bi-214	2626.0 ± 60.0	3660.0	2200.0 - 5270.0	Pass					
ERSO-1176	03/18/13	Co-60	7951.0 ± 45.4	7920.0	5360.0 - 10900.0	Pass					
ERSO-1176	03/18/13	Cs-134	5785.0 ± 51.0	6370.0	4160.0 - 7650.0	Pass					
ERSO-1176	03/18/13	Cs-137	6106.0 ± 47.9	6120.0	4690.0 - 7870.0	Pass					
ERSO-1176	03/18/13	K-40	11756.0 ± 284.3	10300.0	7520.0 - 13800.0	Pass					
ERSO-1176	03/18/13	Mn-54	< 28.0	0.0	0.0 - 1000.0	Pass					
ERSO-1176	03/18/13	Pb-212	1096.0 ± 29.1	1240.0	812.0 - 1730.0	Pass					
ERSO-1176	03/18/13	Pb-214	2875.0 ± 60.0	3660.0	2140.0 - 5460.0	Pass					
ERSO-1176	03/18/13	Th-234	2404.0 ± 218.3	1900.0	601.0 - 3570.0	Pass					
ERSO-1176	03/18/13	Zn-65	1542.0 ± 56.4	1400.0	1110.0 - 1860.0	Pass					
	347.44										

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

 ${\color{black}\bullet}$ ${ } \bullet$ ${ \bullet }$ ${ \bullet }$ •

	<u> </u>		Concentration (p0	Ci/L) ^b		
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control	
<u></u>	·		Result ^c	Result ^d	Limits	Acceptance
ERVE-1180	03/18/13	Am-241	569.8 ± 81.7	553.0	338.0 - 735.0	Pass
ERVE-1180	03/18/13	Cm-244	1260.9 ± 107.3	1340.0	657.0 - 2090.0	Pass
ERVE-1180	03/18/13	Co-60	2130.5 ± 48.0	1920.0	1320.0 - 2680.0	Pass
ERVE-1180	03/18/13	Cs-134	1296.5 ± 68.0	1240.0	797.0 - 1610.0	Pass
ERVE-1180	03/18/13	Cs-137	600.1 ± 34.3	544.0	394.0 - 757.0	Pass
ERVE-1180	03/18/13	K-40	34078.0 ± 787.0	31900.0	23000.0 - 44800.0	Pass
ERVE-1180	03/18/13	Mn-54	< 28.7	0.0	0.0 - 300.0	Pass
ERVE-1180	03/18/13	Pu-238	2476.5 ± 259.4	1980.0	1180.0 - 2710.0	Pass
ERVE-1180	03/18/13	Pu-239/40	2659.3 ± 273.2	2260.0	1390.0 - 3110.0	Pass
ERVE-1180	03/18/13	Sr-90	3809.7 ± 420.5	3840.0	2190.0 - 5090.0	Pass
ERVE-1180	03/18/13	U-233/4	2460.6 ± 205.0	2460.0	1620.0 - 3160.0	Pass
ERVE-1180	03/18/13	U-238	2319.1 ± 189.6	2440.0	1630.0 - 3100.0	Pass
ERVE-1180	03/18/13	Uranium	4866.3 ± 375.6	5010.0	3390.0 - 6230.0	Pass
ERVE-1180	03/18/13	Zn-65	1052.5 ± 82.1	878.0	633.0 - 1230.0	Pass
ERW-1184	03/18/13	Am-241	114.5 ± 8.1	118.0	79.5 - 158.0	Pass
ERW-1184	03/18/13	Co-60	2221.8 ± 17.0	2270.0	1970.0 - 2660.0	Pass
ERW-1184	03/18/13	Cs-134	1309.4 ± 58.4	1400.0	1030.0 - 1610.0	Pass
ERW-1184	03/18/13	Cs-137	1865.9 ± 22.0	1880.0	1600.0 - 2250.0	Pass
ERW-1184	03/18/13	Fe-55	503.1 ± 105.0	712.0	424.0 - 966.0	Pass
ERW-1184	03/18/13	Mn-54	< 9.4	0.0	0.0 - 100.0	Pass
ERW-1184	03/18/13	Pu-238	98.4 ± 5.6	98.8	73.1 - 123.0	Pass
ERW-1184	03/18/13	Pu-239/40	184.5 ± 7.7	185.0	144.0 - 233.0	Pass
ERW-1184	03/18/13	Sr-90	125.7 ± 6.0	137.0	89.2 - 181.0	Pass
ERW-1184	03/18/13	U-233/4	44.9 ± 3.4	48.8	36.7 - 62.9	Pass
ERW-1184	03/18/13	U-238	46.5 ± 3.5	48.4	36.9 - 59.4	Pass
ERW-1184	03/18/13	Uranium	93.3 ± 7.1	99.5	73.1 - 129.0	Pass
ERW-1184	03/18/13	Zn-65	412.8 ± 32.0	384.0	320.0 - 484.0	Pass
ERW-1186	03/18/13	Gr. Alpha	109.1 ± 5.7	130.0	46.2 - 201.0	Pass
ERW-1186	03/18/13	Gr. Beta	74.5 ± 6.4	78.9	45.2 - 117.0	Pass
ERW-1188	03/18/13	H-3	12279.0 ± 319.0	12300.0	8240.0 - 17500.0	Pass

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: ERW (water), ERAP (air filter), ERSO (soil), ERVE (vegetation). Results are reported in units of pCi/L, except for air filters (pCi/Filter), vegetation and soil (pCi/kg).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA. A known value of "zero" indicates an analysis was included in the testing series as

a "false positive". Control limits are not provided.

APPENDIX B

•

•

•

DATA REPORTING CONVENTIONS

Data Reporting Conventions

- 1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.
- 2.0. Single Measurements

Each single measurement is reported as follows: x ± s

where: x = value of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: <L, where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

3.0. Duplicate analyses

0

0

3.1	Individual results:	For two analysis resu	lts; x ₁ ± s ₁ and x ₂ ± s ₂
	Reported result:	$x \pm s;$ where $x = ($	1/2) (x ₁ + x ₂) and s = (1/2) $\sqrt{s_1^2 + s_2^2}$
3.2.	Individual results:	<l1, <l2<="" td=""><td><u>Reported result:</u> <l, <math="" l="lower" of="" where="">L_1 and L_2</l,></td></l1,>	<u>Reported result:</u> <l, <math="" l="lower" of="" where="">L_1 and L_2</l,>
3.3.	Individual results:	x ± s, <l< td=""><td><u>Reported result:</u> $x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l></td></l<>	<u>Reported result:</u> $x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l>

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average \bar{x} and standard deviation s of a set of n numbers $x_1, x_2 \dots x_n$ are defined as follows:

$$\bar{x} = \frac{1}{n} \sum x$$
 $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the figure following those to be retained is equal to or greater than 5, the figure is dropped and the last retained figure is raised by 1. As an example, 11.445 is rounded off to 11.45.
- 4.6 Composite samples which overlap the next month or year are reported for the month or year in which most of the sample is collected.

APPENDIX C

TECHNICAL SPECIFICATION 2.1.3

REACTOR COOLANT DOSE EQUIVALENT IODINE ABOVE TECHNICAL SPECIFICATION LIMIT

During the 2013 reporting period, radioactivity of primary coolant did not exceed the limits of Technical Specification 2.1.3.

•

•

•

•

•

•

APPENDIX D

•

•

Ŏ

•

•

•

SAMPLE LOCATIONS/MAP

	Approximate	Approximate		Air Mon	itoring							
Approximate Collection Sites	Distance from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne Iodine	TLD	Water	Milk	Sediment	Fish	Vegetables and Food Products	Ground-water
Onsite Station, 110-meter weather tower	0.53	293°/WNW	Р			x						
Onsite Station, adjacent to old plant access road	0.59	207°/SSW	к	x	x	x						
Offsite Station, Intersection of Hwy. 75 and farm access road	0.94	145°/SE	G			x						
Blair OPPD office	2.86	305°/NW	Q	х	x	x						
Fort Calhoun, NE City Hall	5.18	150°/SSE	н			x						
Fence around intake gate, Desoto Wildlife Refuge	2.07	102°/ESE	F			x						
Onsite Station, entrance to Plant Site from Hwy. 75	0.55	191°/S	J			x						
Onsite Station, NW of Plant	0.68	305°/NW	Q			x						
Onsite Station, WSW of Plant	0.61	242°/WSW	М			x						
Offsite Station, SE of Plant	1.07	39°/SE	G			x						

	Approximate	Approximate		Air Mon	itoring							
Approximate Collection Sites	Distance from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne Iodine	TLD	Water	Milk	Sediment	Fish	Vegetables and Food Products	Ground-water
Metropolitan Utilities Dist., Florence Treatment Plant North Omaha, NE	14.3	154°/SSE	н				x					
West bank Missouri River, downstream from Plant discharge	0.45	108°/ESE	F				x		x			
Upstream from Intake Bldg., west bank of river	0.09	4°/N	A				x		x			
Smith Farm	1.99	134°/SE	G									Х
Mohr Dairy	9.86	186°/S	J								X	Х
Fish Sampling Area, Missouri River	0.08 (R.M. 645.0)	6°/N	A							x		
Fish Sampling Area, Missouri River	17.9 (R.M. 666.0)	358°/N	A							x		
Alvin Pechnik Farm	0.94	163°/SSE	н								x	
Valley Substation #902	19.6	221°/SW	L	х	x	x						
D. Miller Farm	0.65	203°/SSW	K									x

	Approximate	Approximate		Air Mon	itoring							
Approximate Collection Sites	Distance from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne Iodine	TLD	Water	Milk	Sediment	Fish	and Food Products	Ground-water
Lomp Acreage	0.65	163°/SSE	Н	x	x	X						Х
Onsite Farm Field	0.52	118°/ESE	F								x	
Offsite Station Intersection Hwy 75/Co. Rd. P37	0.75	227°/SW	L			x						
Offsite Station Desoto Township	1.57	144°/SE	G	x	x	x						
Dowler Acreage	0.73	175°/S	J	Х	x	X						
Sector A-1	1.94	0°/NORTH	A			x						
Sector B-1	1.97	16°/NNE	В			X						
Sector C-1	1.56	41°/NE	C			X		_				
Sector D-1	1.34	71°/ENE	D			X						
Sector E-1	1.54	90°/EAST	Е			X						
Sector F-1	0.45	108°/ESE	F			X						
Sector G-1	1.99	134°/SE	G			X						
Sector H-1	1.04	159°/SSE	Н			x						
Sector J-1	0.71	179°/SOUTH	J			X						
Sector K-1	0.61	205°/SSW	K			X						
Sector L-1	0.74	229°/SW	L			X						
Sector M-1	0.93	248°/WSW	М			X						
Sector N-1	1.31	266°/WEST	N			X						

	Approximate	Approximate		Air Mon	itoring					Fish		
Approximate Collection Sites	Distance from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne Iodine	TLD	Water	Milk	Sediment	Fish	Vegetables and Food Products	Ground-water
Sector P-1	0.60	291°/WNW	Р			X						
Sector Q-1	0.67	307°/NW	Q			X						
Sector R-1	2.32	328°/NNW	R			x						
Sector A-2	4.54	350°/NORTH	A			X						
Sector B-2	2.95	26°/NNE	В			X						
Sector C-2	3.32	50°/NE	C			x						
Sector D-2	3.11	75°/ENE	D			X						
Sector E-2	2.51	90°/EAST	Е			X						
Sector F-2	2.91	110°/ESE	F			X						
Sector G-2	3.00	140°/SE	G			X						
Sector H-2	2.58	154°/SSE	Н			X						
Sector J-2	3.53	181°/SOUTH	J			X						
Sector K-2	2.52	205°/SSW	K			X						
Sector L-2	2.77	214°/SW	L			X						
Sector M-2	2.86	243°/WSW	М			X						
Sector N-2	2.54	263°/WEST	N			X						
Sector P-2	2.99	299°/WNW	Р			X						
Sector Q-2	3.37	311°/NW	Q			X						
Sector R-2	3.81	328°/NNW	R			X						
Stangl Farm	3.4	369°/SOUTH	J		:			X				