
NUREG/IA-0433

International

 Agreement Report

RELAP5/MOD3.3 RELEASE Pre & Postprocessor

 Prepared by:
 Dr. W. Tietsch

 Westinghouse Electric Germany GmbH
 Dudenstrasse 44
 68167 Mannheim
 Germany

Kirk Tien, NRC Project Manager

 Division of Systems Analysis
 Office of Nuclear Regulatory Research
 U.S. Nuclear Regulatory Commission
 Washington, DC 20555-0001

Manuscript Completed: April 2013
Date Published: December 2013

Prepared as part of
The Agreement on Research Participation and Technical Exchange
Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission

	

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC’s Public Electronic Reading Room at
http://www.nrc.gov/reading-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda; bulletins
and information notices; inspection and investigative
reports; licensee event reports; and Commission papers
and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, “Energy,” in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

 U.S. Government Printing Office
 Mail Stop SSOP
 Washington, DC 20402–0001
 Internet: bookstore.gpo.gov
 Telephone: 202-512-1800
 Fax: 202-512-2250

2. The National Technical Information Service
Springfield, VA 22161–0002
www.ntis.gov
1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: U.S. Nuclear Regulatory Commission

 Office of Administration
 Publications Branch
 Washington, DC 20555-0001

E-mail: DISTRIBUTION.RESOURCE@NRC.GOV
Facsimile: 301–415–2289

Some publications in the NUREG series that are
posted at NRC’s Web site address
http://www.nrc.gov/reading-rm/doc-collections/nuregs
are updated periodically and may differ from the last
printed version. Although references to material found on
a Web site bear the date the material was accessed, the
material available on the date cited may subsequently be
removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as books,
journal articles, transactions, Federal Register notices,
Federal and State legislation, and congressional reports.
Such documents as theses, dissertations, foreign reports
and translations, and non-NRC conference proceedings
may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852–2738

These standards are available in the library for reference
use by the public. Codes and standards are usually
copyrighted and may be purchased from the originating
organization or, if they are American National Standards,
from—

American National Standards Institute
11 West 42nd Street
New York, NY 10036–8002
www.ansi.org
212–642–4900

	

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

Legally binding regulatory requirements are stated only
in laws; NRC regulations; licenses, including technical
specifications; or orders, not in NUREG-series
publications. The views expressed in contractor-
prepared publications in this series are not necessarily
those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the staff
(NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of conferences
(NUREG/CP-XXXX), (3) reports resulting from
international agreements (NUREG/IA-XXXX), (4)
brochures (NUREG/BR-XXXX), and (5) compilations of
legal decisions and orders of the Commission and
Atomic and Safety Licensing Boards and of Directors’
decisions under Section 2.206 of NRC’s regulations
(NUREG-0750).

DISCLAIMER: This report was prepared under an
international cooperative agreement for the exchange of
technical information. Neither the U.S. Government nor
any agency thereof, nor any employee, makes any
warranty, expressed or implied, or assumes any legal
liability or responsibility for any third party’s use, or the
results of such use, of any information, apparatus,
product or process disclosed in this publication, or
represents that its use by such third party would not
infringe privately owned rights.

NUREG/IA-0433

International

 Agreement Report

RELAP5/MOD3.3 RELEASE Pre & Postprocessor

 Prepared by:
 Dr. W. Tietsch

 Westinghouse Electric Germany GmbH
 Dudenstrasse 44
 68167 Mannheim
 Germany

Kirk Tien, NRC Project Manager

 Division of Systems Analysis
 Office of Nuclear Regulatory Research
 U.S. Nuclear Regulatory Commission
 Washington, DC 20555-0001

Manuscript Completed: April 2013
Date Published: December 2013

Prepared as part of
The Agreement on Research Participation and Technical Exchange
Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission

iii

ABSTRACT

Since the introduction of the 32-Bit Windows Operating System technology for Personal
Computers with INTEL CPU architecture Relap has been migrated from mainframe comput-
ers and UNIX workstations to the desktop personal computers. Due to the general structure
of Relap the user interface however did not change in the course of this migration. Relap
running on PCs still is command line driven and does not take advantage of the benefits of
the windows environments. Inputs to the program and outputs have the same structure as
the UNIX or mainframe versions. Therefore the classic way of performing analyses with Re-
lap which consist of several, mostly iterative and consecutive steps did not change with PC
installations of the program.

Westinghouse Reaktor mid of the 90th developed several tools running on the PC to support
the analysts retrieving and documenting results of Relap analyses. Based on these tools and
using the power of the object oriented technology and third party functionality for the graphics
generation a Graphical Users Interface has been developed by Westinghouse Reaktor which
integrates all steps of a typical Relap analysis process. This Pre & Postprocessor has been
designed to run in all known Windows environments (Windows95/98, ME, NT4, 2000 and
XP). It has the feel and look of typical Windows software and an intuitive users interface
which only requires a minimum of training. The actual version 3.3.0 of the Pre & Postproces-
sor cooperates with the Intel Relap5Mod3.3Release version.

The present report describes the general features of the Pre & Postprocessor, the installa-
tion, the typical analysis process including restarts and strip cases and the data retrieval and
visualization process. Additionally the Restart Postprocessor, which is a FORTRAN program
with command line control, which is used by the Pre & Postprocessor running in the back-
ground is described and a source code listing of this program is added.

The Pre & Postprocessor currently is used at Westinghouse Reaktor GmbH as a standard
tool and has proven to support the Relap analysis process and to enhance the efficiency of
the analysts.

v

CONTENTS

	
ABSTRACT .. iii

LIST OF FIGURES .. vii

LIST OF TABLES .. ix

ABBREVIATIONS ... xi

1 INTRODUCTION ... 1

2 DESIGN CONSIDERATIONS AND FEATURES .. 5

3 PROGRAM DESCRIPTION AND FUNCTIONALITY .. 9

3.1 Program Architecture ... 9

3.2 Managing Relap Projects .. 11

3.3 Main Functions of RelapPP ... 13

3.3.1 Overview .. 13
3.3.2 Top Level Window ... 14
3.3.3 Relap Command Center .. 17
3.3.4 Post Processing and Data Visualizing ... 30

3.3.4.1 Output Post Processor .. 31
3.3.4.2 Restart Post Processor ... 33
3.3.4.3 Strip Post Processor ... 38
3.3.4.4 Plot Post Processor .. 38

3.3.5 Documentation ... 46
3.3.6 Options, Utilities and Add-on Programs ... 47
3.3.7 Restart Postprocessor ... 55

3.4 Limits... .. 56

3.5 Tips, Hints and Troubleshooting .. 57

4 SYSTEM REQUIREMENTS, INSTALLATION AND CUSTOMIZED CONFIGURATION 59

5 CONCLUSIONS AND OUTLOOK ... 63

6 REFERENCES .. 65

Annex A-1 ... 67

Annex B-1 ... 79

Annex C-1 .. 91

vii

LIST OF FIGURES

3.3-1: Project Menu: “Current Project” 15
3.3-2: Project Menu: “Current Project” 16
3.3-3: Menu: “Data Visualization” 17
3.3-4: Files of the current project 18
3.3-5: File Suffix Selection Area 19
3.3-7: Directory selection 21
3.3-8: Command Line Example 22
3.3-9: Relap Run 22
3.3-10: Message about Restart Files 23
3.3-11: Success Message at the end of a Relap run 23
3.3-12: File Information 23
3.3-13: Restart option selection 24
3.3-14: Strip option selection 25
3.3-15: Success Message at the end of a Relap Strip run 25
3.3-16: Results selection 26
3.3-17: Relap Post Processors 26
3.3-18: Success Message at the end of the Plot Data File generation 27
3.3-19: Success Message using an existing Strip Parameter File 28
3.3-20: Append Restart Outputs Control Dialogue 29
3.3-21: Success Message of Output File Check 29
3.3-22: Successful extraction of Minor Edit Data from a Relap Output file 32
3.3-23: Plot Post Processor Command button 32
3.3-24: Restart Post Processor with PLOUT file, w/o RSINF file 34
3.3-25: Parameter Selection for the conversion of PLOUT Plot Data 35
3.3-26: Plot Files Information 36
3.3-27: Successful conversions of data from PLOUT format to PLO

format 37
3.3-28: File Selection for multiple Restart PLO files 37
3.3-29: Current Project direct Pre/Post Processing access 37
3.3-30: Selection of variables for the “PLO” Plot Post Processor 39
3.3-31: Processing of PLOUT plot data 40
3.3-32: Sorting of PLOUT Plot Data 41
3.3-33: Processing of Strip plot data 41
3.3-34: Processing of Strip plot data (Ascii tables) 42
3.3-35: Plotting w/o Default Style 43
3.3-36: Print Diagram & EXCEL Full Scope Commands 44
3.3-37: “Öffnen” = Open EXCEL 44
3.3-38: Excel Graph in Edit Mode 45
3.3-39: Graph Edit Menu 45
3.3-40: Guidelines 46
3.3-41: Relap Documentation 47
3.3-42: Utilities and Options Menu 48

viii

3.3-43: INI Editor Menu 50
3.3-44: File Difference Dialog 51
3.3-45: File Difference Results 51
3.3-46: DIFF Result of identical files 51
3.3-47: DIFF Result of two different files (File 2 with 2 additional lines) 52
3.3-48: Edit Plot-INI File 54
3.3-49: Relap Version 54
3.3-50: Units 54
4-1: Directory structure adaptation dialogue 61
A-1: Principal Structure of RelapPP 68
A-2: Top Level Window 69
A-3: Relap Command Center 70
A-4: Structure of the Post Processors 71
A-5: Extract and process Output Data 72
A-6: Extract and process Output Data (PLO file exist) 73
A-7: Extract and process Restart Plot Data 74
A-8: Successful Extraction of Restart Plot Data 75
A-9: Plot Post processor: Data Visualization (PLO Channel) 76
A-10: Plot Post processor: PLOUT Plot Data processing 77
A-11: Plotting Graphs: Styles affected by PLOT33R.INI 78

ix

LIST OF TABLES

3.3-1: Prerequisites for the Post Processors 27
3.3-2: Menu - Post Processor Matrix 30
3.3-3: Command Line Options of the Relap Restart Postprocessor 55
B-1: PLO Plotdata Format and typical PAR file 80
B-2: Parameter File for Strip Data 81
B-3: PLOUT Data Format 82
B-4: Restart & Plot Information Files 83
B-5: Restart Input File 84
B-6: Strip Input File 85
B-7: Storing Plot Data in three different Formats 86
B-8: Relap-INI File 87
B-9: UNITS-INI File 88
B-10: UNITS-INI File, Con’t 89

xi

ABBREVIATIONS

ATHLET Analysis of Thermal-Hydraulics of Leaks and Transients

BFBT BWR Full-Size Fine-Mesh Bundle Test

BWR Boiling Water Reactor

CATHARE Code advancé de thermohydraulique pour accidents de reacteur à eau
 (advanced Thermohydraulic Code for the Simulation of Accidents in Light
 Water Reactors)

CHF Critical Heat Flux

CT Computer Tomography

GSS Generalized steady state

LOCA Lost of Coolant Accident

LWR Light Water Reactor

NPP Nuclear Power Plant

NUPEC Nuclear Power Engineering Cooperation

PWR Pressure Water Reactor

RELAP Reactor loss of coolant Analysis Program

RSME Root Square Mean Error

TRAC Transient Reactor Analysis Code

TRACE TRAC&RELAP advanced computational Engine

US-NRC U. S. Nuclear Regulatory Commission

1

1 INTRODUCTION

Relap like all of the other codes and programs used for safety evaluations and design calcu-
lations for nuclear installations have been developed in the past on big mainframe comput-
ers. All of these programs have several common characteristics. The general structure of the
programs is similar. They are programmed in FORTRAN supplemented by machine depend-
ent environments. Input to the programs in general is organized by cards or data files with no
direct dialog between the programs and the user. The programs are command line driven
and designed to be run as batch cases. The output in general is organized in the ASCII for-
mat and stored in files or being printed on line printers. Running these programs, especially
Relap, thus always required special user dependent setups on the computer platforms and to
the best, task dependent shell scripts.

The classic way of performing analyses with Relap ever since consisted of several, mostly
iterative and consecutive steps. The two major steps of the analysis methodology with re-
spect to work effort include input preparation and the extraction and documentation of the
calculated results from the often voluminous output files or printouts. Especially for the
presentation and documentation of important data in the form of time history plots quite early
general purpose plotting tools have been developed. In the early days these programs were
running on the mainframes also and were designed to read the ASCII formatted output files
and to further process these data for the visualization on screen (e.g. ReGIS Graphics on
VT-Terminals) or for plotting graphs on line-printers or on Calcomp plotters.

With UNIX Workstations becoming more and more powerful in the late 80’s the FORTRAN
programming language very much supported the migration of Relap and other nuclear safety
codes from mainframe computers to UNIX workstations. The general handling of Relap on
UNIX machines was somehow simplified by the better access of the users to the computers
and with the development of graphical user interfaces (X-window) built into the UNIX operat-
ing systems. Based on these enhancements some users of Relap for example developed
user interfaces to Relap utilizing the Tcl/Tk package. One of the first programs for the post-
processing of Relap results which uses the X-windows power was integrated into the Nuclear
Plant Analyzer (NPA) package (/1/), developed by EG&G in Idaho Falls under the sponsor-
ship of the U.S. Nuclear Regulatory Commission. The NPA provided the analysts with tools
which allowed him to visually display static or dynamic data on a graphic workstation. How-
ever NPA as a simulation tool primarily has been designed for the display of dynamic data
with the capability of controlling data sources like Relap. Static data (graphs of parameters)
could be displayed on screen or printed by postscript printers, however with a limited perfor-
mance. Also the plotting of graphs was not very flexible. Later (1994) the NPA internal plot
package was upgraded to allow for external plotting programs also. The latest version of
NPA (1.4a) was running on all of the major-brand UNIX workstations at that time. Since 1995
NPA however has not been developed further. Especially the program has not been migrated
to INTEL operating systems. Now it is the NRC plan to replace NPA totally by SNAP (/3/).

2

Rather in parallel to the NPA development the ACE/GR data extraction and plotting software
has been introduced by Paul J. Turner (/2/), which has been especially upgraded by Ken
Jones to provide an interface to the Relap restart and strip data (Xmgr5). This software origi-
nally also run only on UNIX systems and requires a X-windows server. Because of the flexi-
bility and versatility of this program and the capability to read binary restart files, Xmgr5 more
and more evolved as the standard post-processing tool for Relap.

With the onset of the “PC-Age” and the replacement of the line or graphics terminals by PC’s,
which were connected to the mainframes by networks, part of the analysis process (input
preparation, visualization and plotting of Relap data) moved to the PC’s. The usage of the
standard PC Software for these tasks increased the effectiveness for this parts of analysis
work. However these standard tools often required separate interface tools, e.g. for UNIX
file-format conversion or for the extraction of plot data formatted to meet the requirements of
the plotting software in use. With the fast development of PC-based Network Client Services
X-windows server were running on PCs also. This allowed Xmgr5 (running on the UNIX plat-
form) to be used for data post-processing with this tool on a PC. However there still was a
problem in the generation of paper plots. Xmgr5 required plotting hardware to be attached to
the UNIX computer.

As the INTEL processors became more powerful, as a logical step Relap was modified go
run on INTEL-PCs. Already back in 1993 Westinghouse Reaktor developed a fully tested and
verified special version of Relap5MOD1 for Intel –386/486 and Pentium processors which
was based on a special IBM RISC-6000 version of Relap5MOD1 Cy19 (/4/). Since that time
Westinghouse Reactor also developed tools running on the PC to support the Relap ana-
lysts. Today, Relap Intel installations (Windows OS or LINUX) are as common and widely
used as UNIX versions on workstations and the future trend points to Relap running on IN-
TEL systems. Among others one main reason for this evolution is the substantially decrease
of cost of PC components and the steady increase of performance of PC-systems which cur-
rently already exceeds the performance of much more costly UNIX-systems.

The typical procedure for Relap calculations in a PC-environment for the time being, which is
quite similar to mainframe and UNIX installations, looks like this:

- Relap, still a pure non-Windows program runs in a “DOS Box”
- Input editing is performed by NotePad or special Programmers Editor
- Relap is run by command line or with help of batch-scripts (base or restart cases)
- Results are stored in the Restart-Plot files or the Major Output file

Minor Edit data cannot be extracted from the Main Output without a special
tool. All of the plot data is stored in binary form in the Restart-Plot file. The normal procedure
to get the interesting data is the stripping process or alternatively applying Xmgr5 (Intel ver-
sion with X-Windows server running on the PC)

- Generation of strip run inputs
- Run Relap strip case / cases

3

In the ASCII Strip output file the data is arranged as blocks of parameter data for each time
step. Special software is needed to read these data blocks and converse the data into col-
umns which can be directly processed by most of the plotting programs.

- Run the Strip data extraction program
- Run the plotting software and visualize or print the data

The alternative to the post-processing of the Relap data as described above is using the Intel
version of Xmgr5. This version is able to read the binary (Intel) Restart-Plot files. The prob-
lem with this program however is that it needs a X-Windows server running on that same PC
and preferably needs a UNIX simulator like the CYGWIN package. Commercial X-Windows
servers however are expensive, freeware servers are not supporting all of the features of
Xmgr5.

It can be stated that running Relap on a PC still is a multi-step procedure like running Relap
on UNIX platforms or mainframe computers. The advantage of a PC installation is that PC
hardware today is much cheaper and more efficient than UNIX hardware. Additionally the
usage of standard PC-Windows-Software for the data printing and for documentation like the
Office Package (EXCEL) only requires a minimum of additional training.

Our (Westinghouse Reaktor’s) goal since the first installations of Relap on PC-systems was
to equip Relap with a Graphical Users Interface (GUI) which integrates the total analysis pro-
cess as described above and makes the handling of Relap as convenient as the usage of
other typical PC-programs. The main driver for developing this GUI of course was the ex-
pected increase of effectiveness of the analysis process by providing the analysts a tool
which is intuitively and easy to use and which supports him the best in performing all of the
analysis tasks.

Westinghouse Reaktor GmbH has presented the Relap5 Pre- and Postprocessor (RelapPP)
to the CAMP community at the Fall 2000 and Fall 2001 CAMP meetings. Currently this tool
works together with the latest Relap5Mod3.3 (xx)-Release version. The latest version of Re-
lapPP33 has been presented at the Fall 2002 CAMP meeting in Alexandria, VA. The pro-
gram is widely used within Westinghouse and other organizations and has proven to act as a
useful add-on to Relap. The program is free to all CAMP members.

5

2 DESIGN CONSIDERATIONS AND FEATURES

The main goal for the development of the RelapPP Pre- and Postprocessor was to provide
Relap on PC platforms an integrated Graphical Users Interface (GUI) which contains all of
the necessary tools needed to perform all parts of standard Relap analyses. This GUI should
act as a shell to run the command line Relap and additional programs needed and should
cover the total analysis process from input preparation to the generation of paper plots for
the documentation of Relap results. The Pre- and Postprocessing tool thus should support
the analysts in performing Relap analyses. It should increase effectiveness of the analysis
process, enhance the quality of the results and last but not least should save money.

To meet these goals the following design considerations were taken:

 The program should run on all standard PCs with all 32 Bit (and up) Windows Operating
Systems.

 The installation of the software on the PC should be easy and user specific like most of

the Windows applications and should not require administrator rights. The program should
make use of the Windows InstallShield process.

 The GUI of the Pre- and Postprocessor must provide the same Look and Feel and the

functionality of standard Windows applications in order to minimize the training for the us-
age of the program.

 The graphics and plotting interface of the program should allow easy access to all of the

Relap data including Minor Edit data from the main output, strip data and plot data from
restart files.

 The graphics and plotting interface should provide plotting data in common ASCII format

for the exchange of this data with external plotting tools like Xmgr5 and should provide
plotted graphs that can easy be integrated into other Windows applications like WORD or
EXCEL for documentation purposes and printing of these graphs using the Windows print-
ing capabilities.

 The basic graphics and plotting software should be integrated or imbedded into the Pre-

and Postprocessor. The user must be able to setup a personal plotting environment.

 The Pre & Postprocessor should support the analysts with tools and means to easily

manage all of his Relap projects and all of the tasks coming along with the performance of
Relap analyses.

 All of the Relap documents should be provided to the analyst in electronic form online

during the analysis.

 The Pre- and Postprocessor should cooperate with the latest version of Relap5

(Mod3.3(xx) Release)

6

Based on these principal design considerations the Pre- and Postprocessor has been devel-
oped using the MicroSoft Visual Studio programming environment to ensure the best fitting
into the MicroSoft Windows world and the best outlook for further smooth development and
easy enhancements without compatibility problems.

The RelapPP Pre- and Postprocessor for the Intel Versions of Relap5Mod3.3 Release (Re-
lapPP33R) has the following general features:

 RelapPP33R runs on all standard PCs with nowadays hardware equipment

 RelapPP33R requires the Operating Systems Windows 95 / 98 / ME / NT4.0 / 2000 / XP

 RelapPP33R requires EXCEL95/97 or 2000 / 2002 as Graphics Engine for the
 embedded plotting of graphs or any other Graphing Software with ASCII plotting data
 import

 RelapPP33R provides a shell to the Relap Intel Command-Line Version (3.3 Release)

with the following sub functions:

- Organize Relap projects, containing inputs, main outputs, strip runs, restarts and all of
 the different plot data of the different projects
- Make, edit and view input files
- Automatically generate Restart input files
- Automatically generate Strip input files
- Organize restarts
- Organize strip runs
- Set and manage Command-Line Parameters for Relap Runs
- View Input Manuals during Input Preparation
- View Output and Log Files
- View Restart and Plotdata information files
- Compare Output and Input Files using integrated DIFF-function
- Convert Capitals in Relap inputs to lower case
- View the total Relap documentation including the guidelines

 The post-processing of the Relap data is performed by:

- Reading the Minor Edits data from the Relap Main Output and reorganizing the data
 format to an interchangeable ASCII format (PLO-Format).
- Merging of Plot data from Minor Edits of successive restart runs.
- Reading the Strip Data format and reorganizing the data to the PLO-format.
- Reading the binary plot data from Restarts (Version 3.3 Release) either from Intel plat
 form or from any other Unix platform and reorganizing the data to an ASCII format
 (PLOUT-Format) which is used for further postprocessing of this data.
- Selection of parameters to be printed or plotted.
- Generating graphs and Plots from all data sources using the embedded EXCEL
 Spreadsheet and Graphing Engine.
- Full Excel Plot functionality for the graphs.
- Individual users environment for graphing by EXCEL functions.
- Export of graphing data in three different ASCII data formats (including PLOT Software
 and Xmgr5).

7

 Configuration files (INI-Format) for the RelapPP33R environment, for general plot de
 sign and for the Units of Parameters needed for graphing and data printouts.
 RelapPP33R uses the Standard Windows-Editor Notepad for small files and Pad97 for
 large Files. Any other Editor can be used by configuration. For very small files the
 application contains a simple internal ASCII editor.

 RelapPP33R makes use of the Acrobat Reader, Version 5 or up, which has to be
 installed on the system or will be installed on request during the installation process of
 the application.

 On demand an external very flexible large file editor (PAD97) and a file management
 tool will additionally be available. Any preferred other editor can be used.

9

3 PROGRAM DESCRIPTION AND FUNCTIONALITY

RelapPP33R (RelapPP) is an integrated pre- and postprocessor for the Intel Version of Re-
lap5Mod3.3Release and runs in a typical Windows PC environment. The program communi-
cates with the user by a graphical users interface (GUI) which has the look of a standard
Windows application. The task of performing analyses with Relap can be subdivided in sub-
tasks, e.g. input preparation, run Relap, post-processing of results and plotting graphs. The
menus, submenus and task windows (Modules) are designed to group all of the necessary
subtasks in such way that all tasks for the different steps of a Relap analysis can be ac-
cessed within one window. This proceeding helps to support the Relap analyst in performing
his task without much training. A detailed description of the program and of all the modules
built into the application is given in the following chapters.

3.1 Program Architecture

RelapPP is a Windows application. The development of the GUI has been performed by us-
ing the advanced object oriented programming techniques of the MicroSoft Visual Studio
Package. Most of the file-handling, the project management, the variable control and man-
agement and the not time-sensitive data handling have been programmed using the BASIC
language. Some tools like Relap itself and the Restart Postprocessor are programmed using
the FORTRAN language. These programs are being called as external programs by the Pre-
and Postprocessor and run in the fore or background.

Am important programming principle followed with the development of the application was
that all of the functions and subroutines uniquely used by one Form (Task Window) are cod-
ed together with this form. All Subroutines and functions used by several forms are put to-
gether in common modules. The same is true for the variables and arrays. The program in
total contains 18 forms and 4 common modules.

Object oriented design generally allows simultaneous operation of different tasks. This prin-
ciple in general is valid for RelapPP also. It is designed like many Windows applications as a
MDI (Multiple Document Interface) application. In the Pre & Postprocessor however some
tasks depend on data being set or changed by other tasks (e.g. configuration changes). For
these cases a built in concurrency control manages possible conflicts between different pro-
gram tasks. The protection against conflicting access and data corruption e.g. does not allow
the user to perform tasks from the menus or open additional windows as long as possible
conflicts exist. The user is not especially alerted when certain menus or data is inaccessible.

In a multitasking MDI application the main window, the top level window is called the Shell-
Window. This main window which pops up after starting the program, contains all of the
menus in a menu bar at the top and a status bar at the bottom. This ShellWindow is a con-
tainer of all of the ChildApplicationWindows which are subordinate and secondary windows
for the separate tasks of the application. The principal structure of the program is shown in
Figure A1 (Annex A).

10

The ChildWindows of the RelapPP are structured in this way that they contain all of the
methods and controls to perform all of the main and subtasks described in the preceding
paragraph. The main tasks of the application are:

- Perform a new Relap analysis (new Relap project)

- Continue the current Relap project

- Post-process old Relap projects and extract data results from any other Relap run.

From the main menu there is also access to all of the Relap documentation by launching the
Adobe Acrobat Reader and access to configuration tools, utilities and options.

The most important form of the RelapPP is the Relap Command Center which contains all of
the tools and provides access to all external programs and functions for the three main tasks
of Relap analyses:

1. Setting up and running Relap Base cases

2. Making Restart Input files and performing Restart cases

3. Making Strip Input files and performing Strip cases

The Relap Command Center runs the Relap Code in a Command Window (DOS-Box). The
Relap Screen Output is saved to a Log File. The progress of the calculation can be watched
online. The Command Center also runs the external Restart Postprocessor, however in the
background (silent mode).

From the Command Center there is access to all postprocessors, the Output Postprocessor
for the Minor Edit Plotdata, the Strip Postprocessor for the Plotdata in the Relap Strip Data
format and the Restart-Plotdata Postprocessor for the post-processing of the binary Plotdata
contained in the Restart files. Additionally the Command Center integrates some help func-
tions to support the analyst. The Postprocessors convert the Plotdata into a common Format
(PLO-format). Additionally to the PLO data format the parameter information for the PLO file
are documented in a PAR file. The PLO format and a typical PAR file are shown in Table B1.
Parameter files from other data sources (PLOUT/Restart or Strip data) have additionally a
units column as the units of the parameters are usually not provided with these data (Table
B2).

The conversion of the binary data from the restarts is done by a 2-step process:

The binary data is extracted first from the restarts with the help of the external Restart Post-
processor (Command line controlled Fortran program). The Plotdata is saved in the ASCII
PLOUT format (Table B3). This data format can be used directly for the visualization of inter-
esting parameters and the plotting of graphs (Data Visualization Module).

Mostly however the restarts contain a huge number of variables. The direct Visualization may
therefore take some time to process each parameter. In this cases it is better to extract first

11

only the parameters of interest and then save them in the PLO format. This is performed by
the “Selection of ...” - Module. The actual limit of parameters for the direct post-processing of
PLOUT data with the RelapPP is 32768. If a Relap case has more parameters a warning is
given and only the first 32768 parameters are processed. In this cases it is recommended to
use the stripping function of Relap to extract the plot data of interest from the restarts. The
usage of the Relap stripping also is recommended for big restart cases (restart files > 2 GB).

The PLO format originally was designed to represent all of the max. 99 Minor Edit variables,
however rearranged compared to the Main Relap Output in order to have only one line of
data for all of the parameters for each time step. This format is easy to handle and specific
data is easy to extract. Additionally the data can be viewed by any editor with no line length
limits (like the PAD97 editor, which comes with the installation package).

Once the data is converted to the PLO format or the plot data exists in the Strip data format
(max 999 parameters), parameters of interest can be selected. These groups of parameters
can be visualized, exported in three different formats or plotted with the help of the integrated
EXCEL engine.

3.2 Managing Relap Projects

Relap projects usually contain a lot of different files where the user sometimes can get lost,
especially when projects are named quite similar. In RelapPP a Relap project is defined by a
“base”-name. All of the other files affiliated with the project are named at front of the filename
with the base name appended by some additional characters, figures and a filename appen-
dix. This guarantees a clear identification of the type of file. All of these files may reside in
one directory (“user” directory). RelapPP is designed that only those files correlated to the
current project are accessible if the “Run a Relap Project mode” is chosen. The Relap user
however can create additional directories, one for each project in order to separate more
clearly the files of the different projects. This proceeding can be better compared to the often
found workspace organization of projects. Both of the methods are supported by the Pre-
and Postprocessor. In RelapPP subprojects, e.g. for parametric studies are not supported
either. Each Base Input file defines a new project. Subprojects however can be organized by
using different subdirectories as described above.

RelapPP is a 32-Bit Windows application and in general the naming convention of Windows
applies. RelapPP will warn the user if the file names are too long (>40 characters). In the
Windows environment the file name length is not really limited (256). The Relap program
itself currently defines this limit. The Restart-Postprocessor (Fortran program) limits the
length of the file names to 60 characters. If there is a problem with too long file names there
are the following possibilities to solve this problem: a) the file appendices should be as short
as possible (i = input, o = output, etc.), b) RelapPP should be installed in the main root of a
partition (e.g. G:\R5\....) and c) the project name should be shortened. It is recommended to
use a meaningful name which describes the project precisely and does not exceed 8 charac-
ters (as the DOS convention).

A Relap project usually consists of one Base Case only.

12

The different files are organized and named as follows:

- Base Case *
- Input File *.i (Suffix changeable)
- Output File *.o (Suffix changeable)
- Restart File *.r (Suffix changeable)
- Log File *.scn (Suffix changeable)
- Restart Input Files *_Rxx.i (Suffix changeable)
- Restart Output Files *_Rxx.o (Suffix changeable)
- Restart Log File *_Rxx.scn (Suffix changeable)
- Strip Input Files *_Sxx.i (Suffix changeable)
- Strip Output Files *_Sxx.o (Suffix changeable)
- Strip Files *_Sxx.str (Suffix changeable)
- Restart Information File *.rsinf
- Restart Plot Data Information File *.plinf

A Relap project also contains the output files of the different postprocessors

- Minor edit Data from Main Output *.plo
- Parameter file for PLO files *.par
- Ascii Plotdata from Binary Restart *.plout
- Plot Data from PLOUT in PLO Form *_xx.plo
- Parameter file for this PLO files *_xx.par
- Strip Files *_Sxx.str (Suffix changeable)
- Parameter file for Strip data file *_Sxx.par

Five of the file suffixes are user changeable by the configuration option (s. Chapter 3.5).
These suffixes and the base case name of the current project are stored in the configuration
file (INI-File) on request and at quitting the program. The restart runs (max 99) are character-
ized by a “_R” followed by a counter. It is recommended to save the original restart file (e.g.
of a steady state run) if a lot of test calculations shall be performed with using that restart as
a basis. Relap replaces the original restart and appends the new data for each restart run. In
some cases it is not desired to use these modified restart files as basis.

The Strip runs (max 99) are characterized by a “_S” followed by a counter. For each restart
run RelapPP offers to generate a Restart Information file and a Plot Data Information file.
These files are identified by the appendices “*.rsinf” and “*.plinf”. Both of these information
files are produced by the external Restart Postprocessor. The data contained in these files
give a quick overview over the restart run and the data available. The information is needed
for the automatic generation of the restart input files and of the Strip input files. The contents
of these files are shown in Table B4.

The Output Postprocessor (Minor Edits) generates the plot data files (*.PLO) and for each
PLO file a parameter file. The Strip Postprocessor generates a Parameter file with naming
relation to the Strip File. Each time the Restart Processor is launched for the extraction of
Restart Plot data both files RSINF and PLINF are made also. The naming of the PLO files

13

which are the result of a parameter selection process of Restart Plot Data (PLOUT) files are
named with a “_” and a counter.

A Relap project in total can consist of:

- 1 Base case input file
- 1 Main output file
- 1-99 Restart Input files
- 1-99 Restart Output files
- 1 Restart file (binary)
- 1-99 Plot Data file (PLO) for Minor Edits
- 1-99 Par files for Plot Data from Minor Edits
- 1 ASCII Plot Data File from Restart (PLOUT)
- 1 Restart Information File
- 1 Restart Plot Data Information File
- 1-99 Plot Data files from PLOUT in PLO Form
- 1-99 Par files for Plot Data from PLOUT
- 1-99 Strip Input files, Strip Output files and Strip files
- 1-99 Par files for Strip Data files

Thus RelapPP can handle complex projects of up to 1000 different files.

3.3 Main Functions of RelapPP

The principal structure of the RelapPP Pre- and Postprocessor is shown in Figure A-1 of An-
nex A. The functionality of each of the ChildApplication Windows (each of them can contain
additional sub or child windows), are explained in the following chapters.

3.3.1 Overview

These are the main tasks of the RelapPP:

Top Level Window

 Welcome Window
 Basic directory setting
 Access to all functions via menus
 Status bar informations

Integrated Relap Shell (Command Center)

 Input preparation (manual, automatic)
 Run Relap, Command line controlled
 Access to Relap Documentation
 Access to all Postprocessors
 Run statistics and information for the user

14

Output Postprocessor

 Extract Minor Edit Data from main Output and write all Plot Data in PLO format
 Write parameter Data in PAR format
 Link to the Plot Postprocessor for the selection of parameters and groups of parameters
 to be plotted, printed or visualized

Strip Postprocessor:

 Extract the Parameters data from the Strip files and write the data in PAR format
 Link to the Plot Postprocessor for the selection of parameters and groups of parameters
 to be plotted, printed or visualized

Restart Postprocessor:

 Extract all Plot Data from the binary Restart file and write the data in ASCII format by the
 external program RestR533R
 Extraction of up to 99 Parameters and write in PLO format
 Link to the Plot Postprocessor for the direct selection of parameters and groups of pa
 rameters to be plotted, printed or visualized (similar Xmgr5)

Plot Postprocessor:

 Selection of Variables and groups of variables
 Print selected Parameters in ASCII TXT Format
 Print selected Parameters in PLT Format
 Print selected Parameters in Xmgr5 Format
 Plot Data/Graphs with integrated EXCEL
 Automatic transfer of Data to full-scope EXCEL

Options, Utilities and Add-On Programs:

 Configuration management (INI - Files for Environment, Plot-Defaults, Units of Parame
 ters)
 DIFF-Utility
 Conversion of Capital characters to lower case in input files
 Online Documentation
 User and Debug Options
 Additional programs

3.3.2 Top Level Window

The Relap Pre- and Postprocessor starts with the Main (Top Level) Window shown in Figure
A-2 (Annex A) with a centered welcome screen which displays the actual date, the Version of
RelapPP, the version of the Relap program and copyright notes. The status bar at the bottom
contains the actual project informations (Project name, Relap Rood directory, the users di-
rectory and the path where all of the executables are installed). If the application is run the
first time the informations in the status bar may be not correct. This is indicated by different

15

color (red) or “invalid”. In this case the configuration has to be performed first. The procedure
is explained in chapter 4.

The menus for all of the functions of RelapPP are arranged in a Menu Bar at the top. The
menus are grouped with respect to the tasks and are designed as anchored pop-up menus.
There are five Top Level Menus:

1. Project
2. Relap Command Center
3. Data Visualization
4. Documentation
5. Utilities and Options

Additionally there is Information accessible by clicking on “?”, which shows the copyright, the
actual sub-version of the application and a serial number.

The Project Menu is subdivided in a “Paths & Directories” option and two submenus: “New
Relap project” and “Current Relap Project” (see Figure 3.3-1)

Current Project

Figure 3.3-1: Project Menu: “Current Project”

The current project is the project which is shown in the bottom information bar. This menu
option has conventional pop-up sub menus as shown in the Figure above and a short path to
all of the actual available project files which can be post-processed. The screen shot above
for example shows a project which contains an Input File, an Output File, a Restart File and a
Plot Data File (*.PLO) of a previous application of the Output Postprocessor to the Output
File. Additionally there are also two Plot Data files which are the result of a previous selection
of plot data from the restart file and two strip data files. Clicking on the filenames will start the
appropriate Pre- or Postprocessor. Clicking on “TYPPWR.INP” will launch the “Relap Com-
mand Center”, ready to work with this Input file. The same can be achieved by selecting the
pop-up sub menu “Run Relap Using Input File” or by selecting the Main Menu Option “Relap
Command Center”.

16

Clicking on “TYPPWR.OUT” or “TYPPWR.RST” will immediately launch the Output or the
Restart Postprocessor. Again the same is attainable by selecting the pop-up sub menus at
the right as shown in the Figure 3.3-1.

Clicking on “TYPPWR.PLO” will guide directly to the Plot Postprocessor where paper plots,
or data tables can be made based on the plot data contained in the file. If there is only one
file “TYPPWR_01.PLO” then clicking on this filename leads directly to the plot processor. If
there are more PLO-files which have been generated previously by the Restart Postproces-
sor, the number of files appears, as the screenshot shows. When clicking on
“TYPPWR_xx.PLO” a file selection window pops up, where the user selects the PLO-file he
wants to work with. The same selection can be made for the strip files, if there is more than
one. The file selection window in general appears, when using the sub menus “Visualize Da-
ta Using PLO- File” and “Visualize Data Using Strip-File”

New Relap Projects

Figure 3.3-2: Project Menu: “Current Project”

The New Relap Projects option lets the user start a completely new Relap project either by
selection of an existing Relap input file, or by compiling a new input file (Relap Command
Center). Once a new project is selected and Relap is run, after quitting the Command Center
the user will be asked if the new project shall be the new default (current) project. If the user
affirms, the dynamic short links of the current project and the bottom status bar will be updat-
ed to reflect the new status. During shutdown process of the RelapPP application the user is
asked again if the new project shall really be the actual one. All of the new project infor-
mation is saved permanently if this is requested by the user.

The “New Relap Projects” menu item also includes all of the post-processing of Relap Re-
sults of other previous projects as shown in Figure 3.3-2. The Post-processing of existent
Relap data can additionally be performed from the menu “Data Visualization” from the Menu
bar at the top of the window.

17

Data Visualization

Figure 3.3-3: Menu: “Data Visualization”

The visualization of Relap data is described in Chapter 3.3.4 in detail. This menu allows the
post processing of the current or actual Relap project or of past projects. It even allows the
post-processing of outputs and strips of previous Relap versions. Only the Restart processor
requires the actual Relap version 3.3 Release (aa-cp). The Restart processor however al-
lows the reading of any binary UNIX restart as long as the Relap version is the one required
(s. Chapter 3.3.7 for more detail).

Documentation

The documentation menu is described in Chapter 3.3.5.

Utilities & Options

All the Utilities, options and add-on programs intended to support the user are described in
Chapter 3.3.6.

3.3.3 Relap Command Center

A screenshot of the Relap Command Center is shown in Figure A-3 (Annex A). The Com-
mand Center can be launched, as described above, from three different menus. It is a Child-
Application Window which contains all the means and controls to successfully perform a
complete Relap analysis. The window size is fixed and cannot be minimized or changed in
size. The Command Center in general starts with the default or current project data, found in
the Relap-INI configuration file. It is structured in such way that controls, command buttons,
and text boxes for information and inputs are grouped with respect to certain sub tasks of a
Relap analysis.

The structure of the window includes the following areas:

1. Menu Bar at the top

2. Header with the project name

3. File suffix selection area

18

4. Input/output, Strip and Restart file selection and information area

5. Results and Restart directory selection, Relap executable and steam table selection

6. Relap Problem Type (New, Restart, Strip) selection, input preparation and run area

7. Message window

8. Viewing of results and log files

9. Post-processing area

All of these 9 groups are described in detail.

Menu bar

The menu bar at the top of the window contains three menu items: The “Base-File List Box”,
the “Print Project Parameters” option and the “Exit” command. The exit form the Command
Center can be achieved by three different commands: By the menu option “Exit”, by the Exit
Command Button at the lower right corner or the Windows X-button at the top right corner.

The “Print Project Parameters” menu option prints all the file names, directories and settings
of the current Relap project using the default Windows Printer.

The “Base-File List Box” option pops up a Listbox which contains all the files belonging to the
current Relap project. An example is shown in the next figure.

Figure 3.3-4: Files of the current project

19

Project header

The project header is a line of information just below the menu bar which describes the Pro-
ject. The Command Center reads the “Title Card” of the Relap input file during initialization
and whenever a new input file (new project) has been selected and presents the title infor-
mation in the project header line. If a selected input file cannot be found the line will show the
information “..... Input not found!”

File suffix selection area

Figure 3.3-5: File Suffix Selection Area

The figure above shows the default suffixes of the input files, the output files, the strip files,
the restart and of the Log files. These defaults can be changed by placing the mouse cursor
into the text boxes and typing the changes. The new suffixes will be saved on the Relap con-
figuration file. The suffix of all the other files of a Relap project can not be changed. The re-
sult of changing a suffix, e.g. of the input file, can be immediately observed at the filename
field to the left. If the current input file “...\TYPPWR.INP” exists, the input file name color is
black. If the input suffix is changed by the user to “i”, the file name immediately changes also
to “...\TYPPWR.i”. The color of the file name becomes red in case this file does not exist. The
project header then changes to “TYPPWR-Input not found!”. The easiest way to change the
input suffix is to make a copy of the input file with a new suffix and then select this input file.
The file type of the file selection window has to be set to “All Files” in this case, because the
default file type is the current input suffix. The file copy can be made either by the “Edit Input
File” – command or by the “File Management” command.

Input/output, Strip and Restart file selection and information area

N
E
W

20

R
E
S
T
A
R
T

S
T
R
I
P

Figure 3.3-6: Problem and File Selection Area

The file selection area presents different information for each of the three Relap problem
Types which can be handled by the Command Center. The Relap problem can be selected
by a check box in the problem selection area as shown in the figure above. For each of the
three problem types all the necessary “input” files are shown. The files which can be selected
for the different problem types are selectable by the small “S” button. Pressing this button
pops up the standard file selection option. These files can also be selected by typing into the
text box fields directly. This however is not recommended. The “output” files are not se-
lectable. The background color of these text boxes is orange. For all the output files and for
the restart file a file length information is presented at the right side of the file name box. This
file length information is dynamic and is updated during a Relap run in a multi tasking operat-
ing system environment (e.g. NT4).

The examples above show the file information after Relap has been successfully run. For a
new run (not strip or restart) Relap always requests that any existing output file and any ex-
isting restart file should be deleted first. If the user wants to save the current Output file or the
current Restart file this can be done by the File Management command. Otherwise the “Start
Relap” Command deletes these two files upon user request. This deletion is required only for
NEW Relap problems. If there is no Output or no Restart for a new problem then the color of
the file names is red and the file length is zero.

For big problems Restart files can become rather large. The RelapPP in general can handle
file sizes as big as the size the operation system can handle. The file length function howev-
er has a limit at 2.147.483.647 Byte (type: long). If restart files exceed this file size this is
indicated in the file size text box by “> 2 GByte”. If the length of a file name including the
path exceeds 40 characters the color of the filename changes to blue. This is to indicate that
Relap probably will not accept file names this long.

21

If the user positions the mouse cursor over one of the filename text box fields, a tool-tip-text
box pops up encouraging the user to view or edit the file by simply clicking on the filename.
Clicking on the restart filename will start a file selection box offering either the restart infor-
mation file or the restart plot data information file to be viewed.

Results and Restart directory selection, Relap executable and steam table selection

The directories where the results of Relap runs (Output files, Plotdata files) or restarts are
stored can be selected in this area of the RelapPP:

Figure 3.3-7: Directory selection

Additionally the Relap executable and the steam table can be selected. The possibility for the
selection of different Relap executables is provided here because there are often new patch-
es or minor versions releases of the Relap code which can be managed without renaming of
the executable. This is favorable also if new minor Relap releases should be assessed
against older versions. With the selection of the steam table TPFH2O also the "NEW" version
of the steam table will be selected. In principle also older Relap version can be selected,
however the postprocessors may not work with older versions of the code. A version man-
agement for all of the past Relap versions was under consideration for RelapPP, however is
not completed now. The path name and file name textboxes as shown in Figure 3.3-7 can
not be edited. This is indicated by the gray color of the filenames.

Relap Problem Type (New, Restart, Strip) selection, input preparation and run area,
Message Area

As shown in Figure 3.3-6 the Relap problem will be selected by the problem check boxes. If
nothing is checked the problem type is “NEW”. The command button for editing of the input
file and the information on the file selection area vary, as described above for the problem
type. There is a third checkbox “Use intrinsic Editor”. If this option is checked a built-in simple
ASCII editor which has all the necessary functions will be used whenever the file size of a
input file does not exceed 16 KB. Otherwise the “Big-Editor” (e.g. PAD97) will be used.

1. Run a new Relap case:

For running a new Relap case none of the problem checkboxes is checked. The Command
“Edit Input File” allows modification of the input file of the current project. A new Relap project
(Input file) can be selected by pressing the [S] button left of the Input file selection text box (s.
Figure 3.3-6). If the user selects “NewFile.INP” he can start right away with the creation of a
new Relap project input. A file with a red colored file name does not exist and cannot be ed-

22

ited. In parallel to the editing of the input file the user has access to the Relap Input Manual
or all of the guidelines which can help him modifying or making the Relap input. All of this
documentation is in PDF format and will be displayed by means of the installed Acrobat
Reader. Multi instances; i.e. Input Manual and several guidelines in parallel are allowed.
Once the Input is ready the user starts the Relap run by pressing the “Start Relap” button.
The command line parameters of the Relap run will be displayed in the Message window and
the user is asked to proceed with these parameters (Fig. 3.3-8):

Figure 3.3-8: Command Line Example

The example shown in the figure above is taken from a previous run where already exists the
log file, the output file and a PLO file with data extracted from this output file and the restart
file together with a PLOUT file converted Plot Data. The user will be asked to allow the pro-
gram to erase these files. If this is not desired because the files have to be saved first the
Relap run will not start. If the user allows the deletion of these files the Relap run starts. The
Relap Screen output will be displayed in a Windows command window (DOS-Box).

Figure 3.3-9: Relap Run

All the information will be logged to the log file. After the successful completion of the Relap
run, including the creation of a complete Restart File, the user will be asked to allow the pro-
gram to generate the two Restart information files *.PLINF and *.RSINF (s. Table B-4).

23

Figure 3.3-10: Message about Restart Files

(Ja = Yes, Nein = No, in the English version of the program all standard messages are in
English language)

These two files are generated by the external Restart-Postprocessor in the background. It is
convenient to have these two files right after the end of a Relap run available in order to have
a look on the data provided there. The data of these two files is needed by the restart input
processor, the strip input processor, and by some plot data processors. Whenever the data is
needed the existence of these files will be checked and if necessary the files will be generat-
ed once again. Once the two files are made the success message shown in the next figure
will be displayed in the message box shown in figure 3.3-11:

Figure 3.3-11: Success Message at the end of a Relap run

The user should check the log file for the confirmation of a successful run.

2. Run a Relap Restart case:

A Relap Restart case requires the checking of the “Restart-Problem” checkbox. In the exam-
ple shown in figure 3.3-6 there already exists a Restart Input file which is identified by
“_R01”, which means that there is only one restart input available. The Command Center
always checks for the latest restart number. For example: if there exist already two restart
input files, the file selection information would look like this:

Figure 3.3-12: File Information

24

Always the latest version of existing restart input files (_R02) will be selected and is available
by default. In the example of figure 3.3-12 the input file exist, but has not been used for a
Relap run so far: there is no output file; the color of the filename of the output file is red and
the file length is set to “0”. Other Restart input files can be selected as described previously
by the file selection command [S].

If the latest version of the restart input file is selected, as shown in the example above (figure
3.3-12), the user is asked to edit this file or make a new one by the restart input processor
(Figure 3.3-13). If the user selects a previous version of restart input file, he can edit this file
directly without additional dialogue by pressing the “Restart Input” command button.

Figure 3.3-13: Restart option selection

(Abbrechen = exit or quit without actions, in the English version of the program all standard
messages are in English language)

If the user chooses to make a new restart input file the Restart Input Processor generates a
new input file with the data found in the *.RSINF file and the Relap Base (main-) input. If the
*.RSINF file does not exist at that moment it will be made automatically (Table B-4). A typical
automatically made restart input file is shown in table B-5. All the user has to modify is the
restart number and the new end time on the time card. In order to have a consistent set of
continuous plot data for the base case and the subsequent restarts the user should not modi-
fy any model data or add additional minor edit data. It is however not a restriction to change
the model data. In these cases the user should be careful in interpreting the plot data.

The restart file which shall be used for the restart run should be selected before the new in-
put file is generated in order to be consistent. The restart is started by pressing the “Start
Relap” button. The start procedure will be the same as described above for the “NEW”-
problem run.

3. Run a Relap Strip case:

A Relap Strip case requires the checking of the “Strip-Problem” checkbox. If this option is
checked the Restart option is automatically unchecked (Radio Button behavior). In the ex-
ample shown in figure 3.3-6 there already exists a Strip Input file which is identified by
“_S01”, which means that there is only one Strip input and one output and strip file available
for that case. Like for the restarts the Command Center always checks for the latest strip
case number. If there are more strip cases which have been performed always the latest
version of the strip input will be selected and is available by default. Other strip cases, avail-

25

able for the actual project file can be selected by the strip file selection command [S] (s. fig.
3.3-6).

After pressing the “Strip Input” command button the user is asked to edit this file or to ask the
strip input generator to make a new strip input file:

Figure 3.3-14: Strip option selection

If the user chooses to make a new strip input file based on the current restart file and the
base case input, the Strip Input Processor generates a new input file (*_S02.INP) with the
plot parameter data found in the *.PLINF file. If the *.PLINF file does not exist at that moment
it will be generated (Table B-4). A typical automatically made strip input file is shown in table
B-6. After generation of the new strip input an informative message is displayed in a mes-
sage window. The strip input consists of a skeleton of a working strip input. It contains all the
accessible parameters (in the TYPPWR example: 6481), arranged as comment cards. The
maximum number of parameters to be stripped from a restart file is the Relap limit of 999.
The user has to select the parameters he wants to be stripped and has to renumber them in
the allowed range from 1001 to 1999. An effective procedure for doing this is the copying of
all the selected commented parameters and paste them just after the 103 card and then re-
number them. All of the other lines can be left in the file as commented lines.

The strip run is started by pressing the “Start Relap” button. The start procedure will be
same as described above for the “NEW”-problem run.

At the end of the strip run the success message window will appear:

Figure 3.3-15: Success Message at the end of a Relap Strip run

Viewing of results and log files

Results of Relap runs can be viewed selectively by several commands in the Viewing & Edit-
ing of Results area:

26

Figure 3.3-16: Results selection

Whenever one result file exists or is available the commands shown in the figure above are
enabled. Otherwise they are disabled. If the problem type is “Restart” then the Strip Output
command is disabled. For the Output, Log and Restart Informations a file selection window
will pop up first with the default selection of the current active project file. Pressing the “Strip
Output” Command will first cause the code to check if the current strip file is in the binary
format or in ASCII format. A warning is displayed, if the strip file appears to be binary or is
produced by a not supported Relap version. A possible problem can be revealed by clicking
on the file name directly in the file selection area. In any case the Big-File-Editor is used for
the viewing of the file contents.

Post-processing area

Relap results can be post processed by four different processors. They are accessible by the
commands in the post-processing area:

Figure 3.3-17: Relap Post Processors

1. The “Output P-P” extracts the Minor Edit Plot Data from the Main Relap outputs.

2. The “Join Restart Output Files” appends Outputs from Restarts to Outputs from the base
case in order to have continuous Minor Edit data.

3. The “Restart P-P” post processes plot data from binary Restart files.

27

4. The “Strip P-P” post processes plot data from ASCII Strip files.

All of the plot data post processing is described in the next chapter 3.3.4. The output append
function is described in the actual chapter. The post processors are available only if prereq-
uisite files exist. This is shown in the next table.

Table 3.3-1: Prerequisites for the Post Processors

Problem New Restart Strip

Output P-P Base Case
Output File

Restart Output
Appended Output

-

Join Restart
 Output Files

Base Case
Output File

Restart
Output File

-

Restart P-P Restart File Restart File -

Strip P-P - - Strip File

If the files do not exist, the Postprocessor is not available within the Relap Command Center.
In these cases the Command button is disabled as shown in Figure 3.3-17 for the “Join Re-
start Output Files” Command.

After pressing the “Output P-P” button the user is first asked if he wants to proceed, be-
cause the Extraction of the Minor Edit data can take some time for big outputs. If a Plot Data
File (PLO-File) and a parameter file (PAR-File) already exist for that run, the Parameter file is
checked for consistency and a message is displayed. If both files are consistent the user will
be asked to keep these two files and continue or to replace the two files by new versions. If
the user wants to keep the existing files the program control is transferred to the Data Visual-
ization program after some data loading and organizations. The result of this operation is
displayed in the message window.

If the user wants new versions of the plot data files the post processing is started. The pro-
gress of the data extraction process is displayed in the message window. When the data is
extracted the following message appears:

Figure 3.3-18: Success Message at the end of the Plot Data File generation

28

The program control is then transferred to the Data Visualization program, which is described
in chapter 3.3.4.4.

The “Strip P-P” Command first will cause the code to check if the current strip file is in the
binary format or in ASCII format. If the actual project has more strip files than one, first a file
selection window is displayed with the current strip file as the default selection. A warning is
displayed, if the selected strip file appears to be binary or is produced by a not supported
Relap version. The Strip P-P is not available in these cases. If the strip file has been checked
“OK” the user is asked to overwrite the existing strip parameter file (s. Table B-2), if there is
one from a previous strip post-processing run, or to make a new one. If the existing file shall
be used, this file will be checked first. The parameter file for strip files has a similar organiza-
tion as the parameter file for Plot Data files (PLO) and contains the informations, which are
not available in the strip files.

The following message is displayed when using an existing Strip parameter file:

Figure 3.3-19: Success Message using an existing Strip Parameter File

If the user wants the post processor to make a new Strip Parameter file or if no file exists, the
parameter file will be generated automatically and the program control will be transferred to
the “Data Visualization”

The “Restart P-P” Command uses the actual Restart file of the current project. There is only
one restart file, therefore no file selection window will be displayed. The user is asked to pro-
ceed or quit the command. If the user wants to proceed, the “Extract and Process Relap5
Mod3.3 Release Restart Data” processor will be launched as a Child Application Window.
This processor is described in chapter 3.3.4.2.

The “Join Restart Output Files” Command appends Outputs from Restarts at the end of
Outputs from the base case in order to have continuous Minor Edit data. The alternative
could be the gluing of successive PLO files. The command (Fig.3.3-17) is available only if a
base case output and the main output of a restart run exist. Pressing the command pops up
the following window (Fig. 3.3-20):

29

Figure 3.3-20: Append Restart Outputs Control Dialogue

The Base Case output and the main output of the current restart run is automatically select-
ed. The processor reads the start time and end time of the two runs and the number of lines
and bytes of each file. Additionally the processor reads the problem description lines of the
two output files and presents this information in the blue message field, together with the
number of lines and the total number of bytes in case both files are added together. At this
time the user can select other than the preselected output files by pressing the Sel-(ect)-
command buttons. If the user is confident that the two outputs should be merged together he
initiates this process by pressing the “Join..” command. The processor then starts a more
thorough checking, if the two files are compatible with respect to the number and the se-
quence of the Minor edit parameters. In case the Minor edits are identical, the user is re-
quested to provide a filename for the new output file. The result of the parameter check is
displayed in the information field of the Relap Command Center.

Figure 3.3-21: Success Message of Output File Check

If there are differences in the number of Minor edits and their sequence, the joining of the two
files makes no sense and is not performed. The user is informed to locate the problem. If the
two files are added together successfully, the filename of the new file, the number of lines
and the file length appears in the “Results” fields. At this time the user can view the new out-

30

put by pressing the “View Results” Command. The processor adds the following two bold
lines of information to the top of the file:

1 RBIC/3.3co RELAP5 Based Integrated Code

0Restart: Outputfile from Restart run added to this output

 Final time= 150.275 sec advancements attempted= 1019

1 Copyright (C) 2001-2003 Information Systems Laboratories, Inc.

0Execute file: G:\RELAP533R\EXECUTABLES\RELAP533R.EXE

3.3.4 Post Processing and Data Visualizing

Relap results are available from the Minor Edit data in the Relap Main Output, from the Plot
Data in the Restart-Plot Data files and the Strip-Data as a result of strip runs. For the post
processing of all of the data from these sources there are special programs (processors) in-
tegrated into the RelapPP, which extract these data from the files and arrange the data in a
form that can be used by the plotting and visualization software. The four post processors
are:

- Output Postprocessor

- Restart Postprocessor

- Strip Postprocessor

- Data Visualization and Plot Postprocessor

As described in preceding chapters the post processors are accessible from different menus
of the RelapPP:

Table 3.3-2: Menu - Post Processor Matrix

Main Menu Sub Menu Output
Proc.

Restart
Proc.

Strip Proc Vis. & Plot
Proc

“Project” “New Relap Projects”
(Selection of new files)

Output / Restart
automatic selection
of appropriate Proc.

Strip PLO-File

 “Current Project”
(default file or selection)

Output
def.

Restart
def.

Strip
sel.

PLO-File
sel.

 “Process Data Files Be-
low”

If Output
exists

If Restart
exists

If Strip
exist

If PLOex-
ist

31

Main Menu Sub Menu Output
Proc.

Restart
Proc.

Strip Proc Vis. & Plot
Proc

+ sel. + sel.

“Relap Com-
mand Center”

Command Buttons If Output
exists

If Restart
exists

If Strip
exist
+ sel.

If PLOex-
ist

+ sel.

“Data Visualiza-
tion”

“Select Relap Output File”

Selected
Output

 “Select Relap Output File” Selected
Restart

 “Select Relap Strip File” Selected
Strip

 “Select Plot-Data File
(*.PLO)

 Selected
PLO file

The Main Menu: “Project” – “Current Project” and the short paths are presented in Figure
3.3-1, the sub menu “New Relap Project” is presented in Figure 3.3-2 and the sub menus of
the “Data Visualization” menu is seen in the Figure 3.3-3. The access of the post processors
from the Relap Command Center has been described in chapter 3.3.3. The structure of the
user interface (three child windows) and the data flow of the postprocessors are shown in
Figure A-4. The Output- and the Restart-Post Processor have a common user interface,
however with different meaning of the data fields and different captions. The parameter con-
version processor which converts selected Plot Data in the Restart/PLOUT format to the
PLO-format only can be accessed from the Restart Postprocessor function. The Data Visual-
ization Processor has several data input channels (Data in PLO-format, PLOUT-format and
STRIP-format). The looks of the user interface and the contents of several data fields vary
with the input data format.

3.3.4.1 Output Post Processor

The function of this processor is:

 Extract the Minor Edit Data from the Main Output
 Write the Minor Edits Parameter Data in the PAR file
 Write all Plot Data in PLO format
 Guide the user to the Plot Postprocessor for the selection of parameters and of groups of
parameters to be plotted, printed or visualized

The user interface (Child Application Window) of the Output Post Processor is shown in Fig-
ure A-5 (Annex A). This window will pop up when the Output Processor option for the current

32

project or any output file is selected. If the Output Post Processor is selected from the “Relap
Command Center” (Command Button: “Output P-P Minor Edits”, Fig. 3.3-17) the user inter-
face does not pop up. However all internal functions of the postprocessor work, all files will
be generated und the user will be led directly to the Plot Post Processor. If the Output Post
Processor is selected from the main menu “Projects”, sub menu “New Relap Projects” –
“Postprocessor for Outputs and Restarts” (s. Figure 3.3-2), the user has the choice to select
any Relap Output file or any Restart file. In case of the option “New Relap Project” the file
suffixes may be different from the current suffix for output or restart files. Therefore the se-
lected file, is checked if it is a valid output file or a valid restart file. Based on the file type the
appropriate post processor will be launched. Otherwise an error message will appear.

The screenshot (Fig. A-5) shows the situation where only the main output file of a new or of
the current project TYPPWR exists. If a PLO file containing the minor edit data already exists
for the selected output file, the Post Processor presents the informations shown in Figure A-6
(Annex A). The user has to start the extraction process of the Minor Edit data by pressing the
command button “”Extract Minor Edit Data from Output”. In case a parameter file (PAR) al-
ready exists, a message will ask the user to replace this file. This is recommended. If the
user wants to extract the minor edit data once more and if the data extraction process has
been ended successful the following information will be shown:

Figure 3.3-22: Successful extraction of Minor Edit Data from a Relap Output file

The start time and the end time of the analyzed transient is read by the post processor from
the PLO file. Double clicking on the Filename field launches the Big-Editor which automati-
cally loads the Output file or the PLO file. The length of the PLO file is displayed at the bot-
tom of the Window. The Command button for the Plot Post Processor is enabled if the PLO
file has been created successfully (s. Figure 3.3-23). The user can directly proceed to plot
data by pressing this command.

Figure 3.3-23: Plot Post Processor Command button

33

3.3.4.2 Restart Post Processor

The function of this processor is:

 Extract all Plot Data from the binary Restart file and write the data in ASCII format (Pro
 gram RestR533R).
 Select and extract parameters from the PLOUT file and write the data in PLO format of
 up to 99 parameters per PLO file.
 Guide the user to the Plot Post Processor for the selection of parameters and of groups
 of parameters to be plotted, printed or visualized

The user interface (Child Application Window) of the Restart Post Processor is shown in Fig-
ure A-7 (Annex A). This window will pop up when the Restart Processor option for the current
project or any other restart file is selected. If the Restart Post Processor is selected from the
“Relap Command Center” (Command Button: “Restart P-P”, Fig. 3.3-17) before starting the
post processing application the user is first asked if the analysis is to proceed or not. If the
Restart Post Processor is selected from the main menu “Projects”, sub menu “New Relap
Projects” – “Postprocessor for Outputs and Restarts” (s. Figure 3.3-2), the user has the
choice to select any Relap Restart file. In case of choosing the option “New Relap Project”
the file suffix of the restart file may be different to the restart suffix of the current project.
Therefore the selected file is checked if it is a valid restart file, otherwise an error message
will appear.

The screenshot in figure A-7 shows the situation where only the restart file of a new or the
current project TYPPWR exists. The problem description and the start- and end time of the
Relap calculation, is displayed only if a valid RSINF file exists for this case. The Restart pro-
cessor reads this file and extracts this type of informations. Usually after each Relap run with
restart option a Restart – Information file (RSINF-file) and a Plot Data – Information file
(PLINF-file) will be generated. However the user will be asked to do so (s. Fig. 3.3-10).

If there already exists a PLOUT file containing the plot data from the restart file in the PLOUT
ASCII format then some additional information is shown on the Application window. Figure
3.3-24 shows a screen shot of the case that a PLOUT-file exists, but no Restart-Information
file. If the user wants to extract the plot data from the restart file, he has to press the com-
mand button “Extract Plot Data from Restart”. If the user wants to extract the data again as
shown in figure 3.3-24, after pressing the command, he will be informed that the PLOUT file
already exists and will be asked if he wants to replace this file. Since the extraction process
may last long for very big restart files, it is recommended that the user replaces the PLOUT
file only if he is not sure if the PLOUT file is compatible with the restart file. Otherwise, if the
data in the existent PLOUT file is corrupt (e.g. parts missing) the extraction process has to be
started again. If there is no RSINF file or no PLINF file, both files will be created new. During
the extraction process which will be performed in the background by launching the external
program RESTR533R.EXE, a progress bar will appear at the bottom of the application win-
dow showing to the user that the process is still active.

34

Figure 3.3-24: Restart Post Processor with PLOUT file, w/o RSINF file

At the end of a successful extraction process the messages and information seen on Figure
A-8 is displayed. The start time and the end time of the analyzed transient is read by the post
processor from the RSINF file. The Relap case description is read from the PLINF file. Dou-
ble clicking on the file name field of the restart file launches the Small-Editor which automati-
cally loads the RSINF file. Double clicking on the file name field of the PLOUT file launches
the Big-Editor which automatically loads the PLINF file. If both of the RSINF-file and the
PLINF-file do not exist, as shown in the figure above (Fig. 3.3-24), the file names are printed
in gray color and double clicking on the file names is not possible.

After a successful extraction run some additional statistical messages appear in the blue
message field (s. Fig. A-8). If the Relap problem contains more that 99 plot data parameters
(which is almost the case even for small problems) an additional Message pops up informing
the user that only 99 parameters are allowed for each Plot data file in the PLO format and
that more PLO files are necessary if more parameter have to be converted to PLO format.
The structure of a PLO file is shown in Table B-1 (Annex B). The limit to 99 parameters
comes from the limit of minor edits in the main output of a Relap run. Because of practical
reasons it is not recommended to put such a large number of parameters into one PLO file.
After a successful run the two command buttons for the further plotting process are enabled.
The two alternative possibilities to proceed are shown in the Figure A-4 (Annex A):

- “Select Plot Data and convert to PLO Format now”
- “Visualize selected Data from PLOUT directly w/o PLO conversion”

The two choices are in principle equivalent with respect to the visualization of parameters,
the printing of graphs and the printing of data tables. However there is some difference in the

35

processing speed and the handling of data of very big restart files (many parameters and
many times steps). There is some difference with respect to data documentation also. Be-
cause of the structure of the data in PLO files these files can be documented better than
PLOUT data files. For very big restart files it is recommended not to proceed without the PLO
conversion at first. The user has an alternative to speed up the plot process for big restart
files by stripping the interesting data first and as a second step by using the Strip Data Post
Processor.

The command “Visualize selected Data from PLOUT directly w/o PLO conversion” directly
guides the user to the Plot Post Processor providing the PLOUT data and the plot parameter
information found in the PLINF file. If there is no PLINF file (s. Fig. 3.3-24) an error message
is displayed. The plot post processor is described below.

The command “Select Plot Data and convert to PLO Format now” starts the child application
“Parameter Selection” (s. Figure 3.3-25). All the parameters found in the PLINF file are listed
in a list box sorted by the “Variable code” (Varcode). Sorting by parameters can be selected
by the radio button at the top. This sorting sometimes is more convenient for the extraction of
groups of parameters, e.g. all of the Mass Flows.

Figure 3.3-25: Parameter Selection for the conversion of PLOUT Plot Data

36

In the blue message fields at the bottom of the window the total number of parameters, the
actual selected parameter and the number of selected parameters are presented. If more
then 99 parameter are selected a warning is popped up. In the message fields at the right the
total number of PLO files corresponding to the actual PLOUT file is given and the file names
of all PLO files belonging to the current project.

Selection of parameters is possible by clicking with the left mouse button. If the first parame-
ter is selected the “Convert Selected Data to PLO-Format” command is enabled. Deselection
can be performed by left mouse click with CTRL-Key of the keyboard pressed or by the
command “Clear Selection”. Multiple Selection of parameters is possible by either pressing
the CTRL-Key and multiple left mouse clicks on single selected parameters or for groups of
parameters (in the sort by parameter mode) by pressing the Shift-key and using the mouse
or the navigation keys (Page-up, page-down, up, down) to maneuver through the list. Once
the selection is made the command “Convert Selected Data to PLO-Format” starts the ex-
traction process. The result will be written into a new PLO file with automatic selection of the
next available PLO-file number. The new file name is shown in the message field. Clicking on
file names of existing PLO files will launch an appropriate editor for the viewing of the file.
Clicking on the PLOUT file should be avoided since PLOUT files tend to be very big. Since
conversion can take some time, a progress bar is displayed on the bottom of the main win-
dow of the Restart Post processor. The result of a successful extraction is seen on figure 3.3-
26.

Figure 3.3-26: Plot Files Information

Up to 99 PLO files can be produced by this tool. The “Done and Return” command gets back
to the Main Application. The result of the data extraction process is summarized as shown in
the next figure.

37

Figure 3.3-27: Successful conversions of data from PLOUT format to PLO format

For the visualization of data in PLO files the command “Plot Data with EXCEL” is enabled
now. If more than one PLO files are available for the current restart case a file selection dia-
log is displayed before starting the Plot Postprocessor.

Figure 3.3-28: File Selection for multiple Restart PLO files

The number of Restart PLO files is updated also for the short path of the Main Menu “Current
project”, as shown below. Clicking on the menu line “TYPPWR_xx.PLO: 4 Files” will pop up
the same file selection window as shown in figure 3.3-28.

Figure 3.3-29: Current Project direct Pre/Post Processing access

38

3.3.4.3 Strip Post Processor

The Strip Post Processor can be started from five different menu options, as described in
previous chapters (from the main menu bar: 3 sub menu options of “Project”, the “Relap
Command Center” and from the “Data Visualization” menu).

The function of this processor is:

 Check the validity of the strip file selected.

 Extract the parameter data from the selected strip file and write the data in a PAR file.
 Provide a link to the Plot Postprocessor and provide the Plot Post Processor with the
 strip and the PAR file

If the current project has more strip files than one, a selection window (like Fig. 3.3-28) lets
the user make a choice of the strip file he wants to work with. After the selection of a strip file
the processor first checks if the file has all of the attributes of a valid strip file (Relap has the
option of making also binary strip files). If the file is not a valid strip file the user is warned
and the processor ends. If the strip file passes the checks the user is asked to overwrite any
existing strip parameter file (s. Table B-2). If there is an existing one the user can chose to
work with this file. It is recommended however to let the program make new PAR files. The
PAR files contain plot data informations which are not found in the strip files (e.g. units of
variables). If the PAR file has been made, the control is transferred to the Plot Post Proces-
sor which pops up with the “Data Visualization” window.

3.3.4.4 Plot Post Processor

As shown in figure A-4 (Annex A) the Plot Post Processor has four input data channels. The
input data to the processor has the following data formats:

 PLO format (s. table B1), from Minor Edits or selections from PLOUT

 PLOUT format (s. table B-3), ASCII from restart plot data

 Strip format, Relap ASCII option

 PAR format (from PLO data and from strip data)

The function of the processor is:

 Display plot data information and selection of plot data files

 Selection of variables and groups of variables to be printed or viewed

 Print selected parameters in ASCII TXT format

 Print selected parameters in PLT format

 Print selected parameters in Xmgr5 format

 Make graphs of selected plot data with the integrated EXCEL engine

 Plot the graphs

 Launch the full-scope EXCEL for additional functions

39

The user interface of the application (“Data Visualization Window”), which is shown in figure
A-9 (Annex A), contains all of the commands and tools for these tasks. The application win-
dow is divided into two functional parts. In the upper part there is a menu bar and data fields
for the display of the Relap case description and the time interval of the analysis, data fields
of the filenames containing the plot data and variable selection Combo Box. The screen shot
in figure A-9 shows the processor for the post processing of plot data in the PLO format. New
PLO files, other than the default one can be selected also either by the command in menu
bar or by the small command button right of the file name field. If a new PLO file has been
selected the processor automatically looks for the accompanying PAR file. If there is no PAR
file, a new one will be generated automatically and loaded. The user even can select only a
PAR file. The program then looks for the appropriate PLO file. The correlation will be
checked in this case and the PAR data will be loaded. By clicking on the file name text fields
the files can be viewed via an editor as described previously.

The selection of single variables or groups of variables for a new plot or graph is the same as
described in the previous chapter. The selection box displays the informations also found in
the PAR files. Once the first variable has been selected, the “Show Diagram” menu option in
the menu bar at the top of the window and the command button at the right is enabled (s.
figure 3.3-30).

Figure 3.3-30: Selection of variables for the “PLO” Plot Post Processor

All the selected variables are listed in the blue message window shown in the figure above.
The message window displays up to 4 parameters. For five and more a scroll bar appears at
the right of the message window. The total number of selected variables is displayed in the
small text field as shown in figure 3.3-30. The deselection of single variables or groups of
variables has been described previously. The “Clear all Selections” command resets all se-
lected variables.

In case the Plot Post Processor is called from the Restart Post Processor for the processing
of PLOUT plot data the plot post processing is a child process of the Restart Post Processor.
This is shown in Figure A-10 (Annex A). The upper part of the “Data Visualization” window is
modified for the PLOUT processing as shown in Figure 3.3-31.

40

Figure 3.3-31: Processing of PLOUT plot data

The information about the Relap case description and the time intervals of the analysis are
read from the associated PLINF and RSINF files. In the file name data field the active
PLOUT file is displayed. However it cannot be reselected, like in the PLO case. The file se-
lection command in the menu bar and the file selection button at the right of the file name
field is disabled. If the mouse cursor is put over the file name field, the “ToolTipText” shown
in the figure above is displayed, warning the user not to double click on this file for viewing.
The “Big-file” editor launched by double clicking works on even very big files, however it may
take time. If the user wants information about the PLOUT file he better double clicks on the
PLOUT file name in the Restart Post processing window (s. Fig. A-10). For the PLOUT data
processing there is no parameter file in PAR format. All data needed by the plot post proces-
sor will be read from the PLINF file and stored in internal arrays supplemented by additional
data like the units of the variables. Consequently the PAR file name field is disabled here.

Restart/Plot files usually contain very much variables. All of the parameters of the current
restart file are listed in the variables selection field (COMBO Box). The order is by default the
order found in the Restart file (PLOUT, PLINF files). This default order is “Sorted by Records”
as shown in figure 3.3-31. To make it more convenient to select associated data from the
considerable amount of data, the user can change the sorting order of the data from “Rec-
ord” to “Parameters” to “Variables” and back to Records by consecutively pressing the Sort-
ing Command button. The sorting order “Variables” e.g. is shown in the next figure.

41

Figure 3.3-32: Sorting of PLOUT Plot Data

The caption of the sorting command button changes accordingly with the sorting order. In the
figure above it is shown that the units of the parameters are listed also. This information is
kept in a “Units” file, managed by the “Utilities and Options” Menu of the Main Menu. Selec-
tion of single Parameters and groups of parameters, and deselection is the same as for the
PLO data case.

In case the Plot Post Processor is called in order to process Strip plot data the upper part of
the “Data Visualization” window looks as shown in Figure 3.3-33. The information about the
Relap case description and the time intervals of the analysis are read from the Strip file and
the associated RSINF file. In the file name data field the Strip file selected is displayed. Like
in the case for PLOUT files it cannot be reselected. The file selection command in the menu
bar and the file selection button right of the file name field is disabled. Double clicking on the
file name field launches the big-file editor for the viewing of this file. For each Strip file there
is also a PAR file containing additional data. The file name is displayed in the orange file
name field below the Strip file name field. Double clicking on the file name starts the editor
loading the PAR file.

Figure 3.3-33: Processing of Strip plot data

42

Strip files can contain up to 999 variables. All the variables of the current strip file are listed in
the variables selection field (COMBO Box). The order is by default the order found in the strip
file (PAR file). This default order is “Sorted by Records” as shown in the figure above. The
sorting order can be changed as described for the PLOUT case. The selection of single pa-
rameters and groups of parameters, and the deselection has been described previously.

The selection of parameters for visualization or for plotting graphs should be made with re-
spect to consistent units for the Y-axis of the graph. If the user does not want to plot the data
in graphs and rather wants to store the data in separate files or print the data on paper he
can select groups of any parameters, e.g. all of the parameters related to one hydraulic com-
ponent.

Figure 3.3-34: Processing of Strip plot data (Ascii tables)

As shown in the figure above there are three different data formats available for storing or
printing the data in ASCII format:

 Pure ASCII format

 PLT Plot Format

 Xmgr5 Format

All of these different data formats are shown in the Table B-7. In the ASCII Format the plot
data is arranged in columns. This data format is understood by most of the external plotting
software. In the PLT format the data for each parameter is arranged in blocks of 6 columns.
This PLT format has been used in the past by special plotting programs in connection with
main frame applications. The XG5 format can be imported directly by the Xmgr5 software.

The different formats can be selected by three radio buttons shown in the figure 3.3-34. The
format selected changes the color to orange. Once the user clicked on the command button
“Create Time Variable Table” he is asked to provide a file name. The file suffix is automati-
cally preset, as shown in Table B-7 (Annex B). Once the file has been created the user can
view the result by clicking on the orange Format name in the field left of the radio buttons.
Only the actual created file in the orange colored Format is available.

43

If at least one variable has been selected, the command button and the top menu option
“Show Diagram” is enabled. The style of a graph on the screen or a paperplot can be deter-
mined by the user within the limits build into the RelapPP and within the limits of the embed-
ded EXCEL engine. The general configuration of RelapPP is described in chapter 3.3.6. Dur-
ing the startup of RelapPP the program reads all the INI files. In the PLOT33R.INI file there is
some information about the style of the graph. The “Default Look” of the graph is character-
ized by all the logical variables in the PLOT33R.INI file set to TRUE. In this case the check-
box “Diagram Defaults”, seen in figure 3.3-34 is checked.

Figure A-11 shows an example of the PLOT33R.INI file where one of the logical variables,
the variable L_Colored_Lines, has been set to FALSE. If this option is true the lines on the
graph are colored, which enhances the differences of individual multiple lines. If the logical
variable L_Colored_Lines is set to FALSE, B&W printers print the lines in different styles
(e.g. dashed, solid). Figure A-11 also shows the meaning of the different variables in the INI
file. For the visualization on the screen or by printing with a color printer all the logical varia-
bles may be set to TRUE. Alternatively either the option “Default Diagram Look” on the Main
Menu option “Utilities & Options” or the checkbox on the Data Visualization Application Win-
dow can be checked. The correlation of these two possibilities is shown in the following
screenshot (Fig. 3.3-35). If the “Diagrams Default” Option or checkbox is checked, the “Edit
Plot INI File” Command on the Main Menu and the “Diagram Options” Command on the “Da-
ta Visualization” Window is not available. The figure below shows the situation where these
options are available to the user.

Figure 3.3-35: Plotting w/o Default Style

Once variables have been selected the “Show Diagram” commands become available. The-
se commands prepare the plot data for the built in link to the EXCEL engine, transfer all of

44

the required data to the EXCEL spread sheet and initiate the graphing parameters and dis-
play the graph. A typical graph is shown in Figure A-11 (Annex A). EXCEL spread sheets
have a limit of 32767 lines. In the plotting postprocessor any line (time step number) beyond
this limit is ignored (the ASCII tables are not limited). The number of Columns (Plot Parame-
ters + Time Column) is limited to less than 100. With respect to the dynamically allocated
data arrays the number of columns allowed minus 1 times the number of rows should be less
than 524288 (219). The program checks these limits and automatically corrects faulty figures
in the PLOT33R.INI file. For max.-lines-graphs the maximum value of parameters allowed is
16.

Once a graph has been generated the commands “Print Diagram” are enabled (Fig. 3.3-36).
The graph will be plotted by the default printer. The printer can be changed by the Windows
functions to change or add printers.

Figure 3.3-36: Print Diagram & EXCEL Full Scope Commands

By the commands “Run Excel”, which are available now, the user can start the full EXCEL.
All the data including the graph are transferred to the full EXCEL application organized in
Maps. Equivalent to these commands the user can right-click on the graph (s. figure 3.3-37)
and chose the “open” command.

Figure 3.3-37: “Öffnen” = Open EXCEL

(In the US Version of RelapPP all the messages and captions are in English language)

Run Full EXCEL

45

Within the Full Scope EXCEL all defaults for plots, like color of the graphing area, style of the
headers, axes and legends and others can be personalized. By choosing the upper com-
mand “Bearbeiten” (= Edit, s. above figure) all the desired changes can be made even easi-
er. The Excel Plot Window changes into the “Edit” mode which is characterized by the tabs
for the selection of the spread sheets of a map (s. figure 3.3-38). The diagram spreadsheet
always contains the graph, the first table spreadsheet contains the plot data. All the other
spread sheets (Default = 2) are empty and can be used for special purposes. The number of
additional spread sheets can be setup within EXCEL. Two times “ESC” on the keyboard
leaves the Edit Mode.

Figure 3.3-38: Excel Graph in Edit Mode

Just left-clicking on any graph element lets the user change the style of this element within
the limits EXCEL provides. Clicking the right mouse button on any space between graph el-
ements pops up the menu shown in the next figure.

Figure 3.3-39: Graph Edit Menu

46

This menu allows the formatting of the canvas of the plot and provides several sub menus to
edit the diagram type, to edit the data source (Data in table 1) and several other diagram
options. The user specific default or standard diagram type can be set up by the “Diagram
Type...” sub menu. More details for the formatting of graphs with EXCEL are available from
the MicroSoft Press or any other literature for EXCEL (/5/ or later versions).

3.3.5 Documentation

The Relap documentation can be fully accessed by the main menu “Documentation” or partly
by the Relap Command Center.

Input Descriprion and User Guidelines

The Relap Command Center (Figure A-3) provides a “Documentation” section where the
user has access to the Relap Input Manual or to the “User Guidelines” released for the cur-
rent Relap version. The Input Manual is installed by default into the directory “RelapRootDi-
rectory\Manuals” (s. installation chapter). The filename of the input manual is set by the ini-
tialization of the application (s. next section). Pressing the command button launches the
Acrobat Reader which is installed in the system which automatically loads the Input Manual.
The manual can be viewed in parallel to the input development.

The “Guidelines” command provides the choice of viewing all the guidelines applicable to the
Relap version installed. Pressing the “Guidelines” command button starts a selection win-
dow, shown in the next figure.

Figure 3.3-40: Guidelines

Any of the guidelines in the list can be viewed by the Acrobat Reader just by double clicking
on the file name. The list dynamically displays all of the *.PDF files in the Guidelines directory

47

(RelapRootDirectory\Guidelines, s. installation chapter). The major guidelines distributed by
the USNRC are installed by default. Any new guideline in PDF format can be added by just
copying the file into in this directory.

Relap Documentation and Quicklook RelapPP

All the Relap documentation is accessible from the Top Level Menu “Documentation” (s. Fig-
ure A-2, Annex A). A screenshot of this menu is shown in the next figure.

Figure 3.3-41: Relap Documentation

Clicking on any of the menu items starts the ACROBAT Reader, which loads the documenta-
tion selected. Like the Input Manual all the documentation are in PDF format and installed by
default in the directory “RelapRootDirectory\Manuals” (s. installation chapter). The caption of
the menu items is set by the initialization of the RelapPP application. The user can change
these in the “Edit Configuration File” sub menu, which is described in the next chapter. If any
of the files is missing in the manuals directory or the file name is misspelled an error mes-
sage warns the user.

3.3.6 Options, Utilities and Add-on Programs

Most of the utilities, some of the options and add-on programs are available from the Top
Level Menu “Utilities and Options”. The next figure shows the submenus of this menu. Most
of the utilities and options deal with configuration subjects. There however is one configura-
tion aspect which has been put to the Top Level Menu “Projects”: The “Paths and Directo-
ries” submenu (s. Figure 3.3-2). This submenu provides access to the basic directory struc-
ture of the RelapPP application. This command opens the same directory name dialog as is
automatically popped up if the application is run the first time. The procedure of changing
and adapting the directory structure is explained in chapter 4. The user is advised that it is
not recommended to change the directory structure of a current project. It may be convenient
only to change the user’s directory for different projects. Another configuration aspect has
already been explained in the description of the “Relap Command Center”: The change of
the directory for the current results, the current restarts directory, the intermediate change of

48

the Relap Executable, and the steam table. These options have been put to the Relap Com-
mand Center because during Relap analyses it may be convenient to better structure the
current project. The access to other Relap versions via the executables may be helpful locat-
ing Relap errors by comparison to older Relap versions.

Figure 3.3-42: Utilities and Options Menu

All the 12 submenus are described subsequently.

Edit Configuration File

This command starts the built in simple text editor which allows editing of the Relap – INI file.
The contents of this file are shown in table B-8 (Annex B). The INI file consists of several
elements and sections. The sections are headed by section headers and keywords, which
must not be changed. All comments are preceded by “;” (semicolon). The end of the file is
marked by “; EOF”. The sequence of the different sections must not be changed either. The
sections are:

1. Start-up

In this section the current major Relap version, the Relap executable, the main steam table
and the directory structure of the current project is referenced. These data will be read by the
application during startup and saved internally. If the directory structure read from the INI file
cannot be verified by the program the user will be notified and provided with the directory
name dialog box as described earlier (s. chapter 4). Normally all output will be saved in the
user directory. The user however can change the output and restart file path for the current
project by the “Path and Directories” submenu (explained in previous chapters) or in the Re-
lap Command Center. The Relap Version information should not be changed also. This in-
formation is used by the program to distinguish between different Relap versions, because
during the development of the application Relap Output design and Restart design has been
changed.

49

If the user selects a new Relap project and he is quitting the RelapPP he will be asked if the
new project should be the current or default one for the next start up. If the user affirms the
new data is saved in the INI file.

2. Manuals

All the manuals are installed by default in the “ManualsDir”. If the user wants the manuals in
another directory, he has to change the data for this keyword. The next 8 keywords contain
the text of the captions of the command options of the “Documentation” top level menu. The
program reads this information during startup and dynamically adapts the submenu items,
even the width of the menu bars. The user can change the text and adapt to his needs. The
next 8 keywords “Pdf(0..7)” contain the associated filenames of the documentation files. The
manuals data only can be changed by the INI-editor option.

3. Run

The Run section contains the base-name of the current Relap project and the default file
suffixes of the input, the output, the restart, the strip file and the Log-file. At startup the Re-
lapPP application initializes the current Relap project, using this data. All of this data is sub-
ject to change with changing to another Relap project or changing the suffixes in the Relap
Command Center. As explained earlier the user always will be asked to confirm the change
to another project at the end of the RelapPP application.

4. Editor

The INI file contains link data to two different editors which are used by RelapPP. The DOS-
editor is currently not working, has to remain however for internal reasons. The
Win_Small_ed – Editor will be used for small files like the Log-File, RSNIF files and other
small files (< 16KB) The Win-Big_ed – Editor will be used for rather large files. The user can
define which editor shall be used for small files and which one for big files. The RelapPP in-
stallation package provides the option to install a rather powerfull freeware editor (PAD97) for
Big files. Users who like to install the PAD97 editor have to obey to the License terms and
conditions for the use of this program (see Chapter 4 for more information). For small files
the standard Notepad is a good choice. Any other editor can be used. The RelapPP applica-
tion additionally provides a built-in simple text editor for special purposes, especially for the
INI files. This editor can also be used for small files optionally (explained in the Relap Com-
mand Center chapter).

5. Browser

The browser section contains the link to the PDF Reader. The RelapPP installation provides
the option to install the latest ACROBAT Reader. However any Reader installed in the sys-
tem (Acrobat Version 4 and up) can be used. The link to the ACROBAT Reader executable
has to be changed in this case.

50

The INI file can be printed on the default printer or saved, if changes have been made. (s.
Figure 3.3-43). In this case all the data will be read again and checked and all the internal
data of the program will be updated with respect to the changes made.

Figure 3.3-43: INI Editor Menu

Edit Parameters and Units

This command again starts the built in simple text editor loading the UNITS - INI file. The
contents of this file are shown in Table B-9 (Annex B). This INI file contains all of the Relap
parameters which are available from any of the Relap data sources (Minor edits, Strip data,
Restart Plot data). As has been explained earlier, the Relap Plot Data mostly comes without
any units or nomenclature of the parameters (despite the Minor Edits). The data from this file
will be read by the program in case of data visualizations, plotting and plot data table genera-
tion (s. previous chapters) and will be used for the automatic description of the graph axes.

The data in this INI file can be edited, including data removal or additions of new parameters.
All of the cautions to handle the file are shown in table B-9:

- Data begins at line number 5 (the first 4 lines are ignored)

- Any data line has a total width of 77 characters including the “.” (period) at the end-of-line

- The column width for the parameter data is marked by a ruler in the fourth line

- Empty lines are allowed for better structuring (no end of line period)

- Any number of new parameters and their description can be added

- The last line is marked with a “@” at the first place.

- The sequence of data is not important

The INI file can be printed on the default printer or saved. As shown for the Relap – INI file.

Diff of two

The purpose of the “Diff of two” Command is the comparison of two ASCII files and the doc-
umentation of the changes. The command provides a file selection dialog as shown in the
next figure.

51

Figure 3.3-44: File Difference Dialog

By default the files are assumed to be in the Users-directory. If the user selects one file and
wants to compare it to the same file he will get the warning that the files are identical and no
action will be taken. If the files selected have different file names and they are identical, the
user will be notified also.

Figure 3.3-45: File Difference Results

The result of the comparison will be saved in a file with a meaningful file name as shown in
the example above. The result can be viewed by the “Show Results” command. In case the
files are identical the contents of the results file is shown in the figure 3.3-46.

Figure 3.3-46: DIFF Result of identical files

52

The result of the comparison looks like the screenshot in Figure 3.3-47, if the second file, for
example contains two additional lines.

Figure 3.3-47: DIFF Result of two different files (File 2 with 2 additional lines)

The representation of the DIFF results is almost the same as known from the Unix DIFF
command. The DIFF function internally is performed by a small external program, which is
controlled by command line options.

The DIFF feature not only can be used for Input files, but also for big Output files or plot data
files to search differences between different calculations.

Conversion of Capitals in Files

Relap unfortunately does not allow capital letters in input files (Unix as well as Intel versions).
Only comments in comment lines marked with the “*” are allowed to be spelled in capital let-
ters. Relap reacts unpredictable if capitals are found in the input data stream and the search
for the error is painful for big models. A common error is the spelling of floating point num-
bers like 1.345E3. To help the user with eliminating this error source and to convert e.g. older
Relap models which are still with capital letters (older Relap version prior to 5 MOD 3 did
accept capitals) the conversion utility has been integrated into the RelapPP.

After starting the utility the user gets a file selection dialog window where he can determine
the input file to be processed. After selection of this file he has to define the filename of the
converted file. Per default the Utility suggests to add “LowerCase” to the original file name.
The Utility ignores any comments in capitals. After the conversion the user is asked if he
likes to edit/view the new file.

File Management

The file management option, which also is available from the Relap Command Center, pro-
vides a link to an external file management application (TN Turbo Navigator) which is sup-
plied with the installation packet and which is rather powerful. Users who like to install the
Turbo Navigator have to obey to the License Terms and Conditions which come with the TN
installation (see Chapter 4 for more information). If TN is not installed, RelapPP launches the
standard Windows EXPLORER instead.

53

Debugging Mode

The “Debugging Mode” (s. Figure 3.3-42) is a menu option which can be checked like a
check box. The startup default is “disabled”. If the debugging mode is enabled additional in-
formation is displayed in message boxes to help the user understand data transfer or to
know which files are at work in case of troubles. The following list shows where additional
information is given. There may be additional needs for more information. These are subject
for implementation from case to case.

- Relap Command Center: Additional information at starting a Relap run and generation
 strip and restart input files

- Minor Edit and Restart Plot Data processor: Extracting the Data and transfer of data for
 plotting graphs

- Plotprocessor: Additional list used internally for the selection of paramenters and selec-
 tion of Plot Data files

- Conversion of capital letters into lower cases

- Difference of two files

Progressbar for Big Files

There are operations in connection with the plot data retrieving which take some time for big
files. In these cases there are “Progressbars” built in some child application windows which
notify the user that the retrieval process is still going on. The “Progressbar for Big Files” flag
is set by default at startup of the RelapPP. The operation however takes some processor
time itself. The option can be disabled if not needed. The progressbar is implemented in the
Plot Data Extraction processor for Relap Output and Restart files and for the extraction of
selected Plot data from PLOUT files. However if enabled the progressbar is active for the
Minor Edit Data processing only for output files larger than 50 Kbytes.

Default Diagram – Look

The “Default Diagram – Look” option has been described already in chapter 3.3.4.4 “Plot
Post Processor”. The menu option and its linkage to the options on the plot post processor
application window are shown in figure 3.3-35.

Edit Plot-INI File

The “Edit Plot-INI File command is disabled if the “Default Diagram – Look” option is checked
as shown in the next figure.

54

Figure 3.3-48: Edit Plot-INI File

If the command is enabled the user can edit the PLOT33R.INI file with the built in simple INI
editor. The figure A-11 shows an example of the PLOT33R.INI file and the meaning of the
parameters. More details are explained in the chapter 3.2.4.4.

Actual Relap Version

As shown in the next figure this command only displays the current actual Relap version
which RelapPP is working with. Originally a selection of different Relap Versions was intend-
ed. This, however, has been removed due to excessive management and overhead load in
the application. As has been explained in the chapter “Relap Command Center” the user still
has the choice to implement different Relap Versions by the selection of different executa-
bles. In this case the user is advised to accept error messages from RelapPP because of
design changes of Outputs and Restarts from Relap version to Relap version.

Figure 3.3-49: Relap Version

Units of Parameters

As shown in the next figure the RelapPP application by default uses the SI units for plotting
and graphing. British Units cannot be selected at the moment, however this option will be
implemented in the future. The restriction to SI units, however, is not a real limitation, be-
cause SI is the international standard now and the user can use British units by modifying the
UNITS.INI file as explained previously. (see Table B-9).

Figure 3.3-50: Units

55

Actual Project Files

As shown in the figure above (3.3-49) the “Actual Project Files” command is disabled. As a
replacement this command has been implemented into the Relap Command center.

3.3.7 Restart Postprocessor

The Restart Postprocessor RSTR533R which is called by RelapPP is an external program
controlled by command line options. The programming language used is FORTRAN95 which
guarantees compatibility with the INTEL Relap version. The postprocessor has been de-
signed to run on 32 Bit Windows platforms like Windos95 / 98 / NT4.0, Windows2000 and
XP. The main features of RSTR533R are:

 Extract PlotData from Relap Restart/Plot-File
 Create Information files for Plots and Restarts
 Create Informations of Plotparameters for Strip runs
 Create automatic Strip Input for RELAP 5/MOD3.3

RSTR533R has been designed to read and process restarts, including appending and re-
placing restarts of RELAP5MOD3.3 Release Version running on:

 Intel (PC) Version
 IBM AIX
 DEC Alpha
 HPC180
 SGI84
 SUN OS5.6

The program can be used also as standalone program within the windows environment
(DOS-BOX or CMD-Shell) with the command line options shown in the next table. As part of
RelapPP the program is used in silent mode (option –no). The command line options and the
organization of options are known from typical UNIX programs or from Relap itself.

Table 3.3-3: Command Line Options of the Relap Restart Postprocessor

Options Default

 -ri Restart/strip input file name RESTINP
 -ro Restart output w/o plot data RESTOUT
 -or Restart information file RESTINF
 -po Plot parameter & data file PLOTOUT
 -op Plot parameter info file PLOTINF
 -so Strip input file for RELAP STRIPINP

 -r Write restart output file
 -p Write plot data file
 -s Write strip input file

 -d Debug data file DEBUG
 -no No screen output
 -h / ? Help

56

The Restart Postprocessor creates all the necessary files used by RelapPP (Restart Infor-
mation, Plot Data Information and the PLOUT file). The program also generates the Strip
Input file described in the Relap Command Center chapter. Without the options “-p” and/or “-
r” by default only the RESTINF and PLOTINF data will be written. When used as stand alone
program the program allows the extraction of any plot data from a restart file and write the
restart file again without the plot data (this saves hard disk space in some cases). If Unix
restart files are processed (e.g. from IBM AIX or SGI installations or any other non-INTEL
restart files) the RESTOUT file will not be written by default.

The “-h /?” option provides the user with a UNIX like simple help screen of how to use the
command line parameters. The debug option produces some very helpful details regarding
the single steps of working through a restart file including binary information. This is helpful
for reading non – INTEL restarts or for finding the sources of troubles. The debug information
will be visible on screen and will be saved in the file named “DEBUG”.

The source code of the Relap Restart Postprocessor is listed in Annex C. The data record
definitions of Relap restarts (RSTPLT, PLOTINF, PLOTALF, RESTART and PLOTREC rec-
ords), the technique of reading non-INTEL restarts and the maneuvering through a restart is
described in the source code comments. The actual version of the program allows the pro-
cessing of restarts of Relap 5 MOD 3.3 Release (aa..zz) versions. The version will be
checked by the program. Any other version will be rejected.

3.4 Limits

The size of a certain Relap project literately is only limited by the PC hardware and the Win-
dows environment. However there are some practical limits with respect to calculation speed
for the Relap calculations itself and the post processing of big data files. One of the future
improvements of the program will be to enhance the data extraction speed which currently is
influenced considerably by the not optimal internal data management. This drawback how-
ever can be compensated by more powerful INTEL CPUs and faster Hard Disks.

Most of the limits are imposed by Relap itself, like the limit of maximal variables, Minor edits,
Strip parameters and others. We (Westinghouse) have successfully calculated Relap prob-
lems on PC with going to the Relap limits and Restart file sizes up to 20 Gbyte. Even data
files this big could be post processed with RelapPP.

The most prominent limits with RelapPP are the following (Some are described in previous
chapters):

- The file name length including the path for Relap runs is limited to 41 characters

- The file name length including the path for stand alone Restart Post processor is limited
 to 60 characters

- File length of restarts or Output files > 2147 483 647 Byte (2Gbyte) cannot be shown in
the file length data fields in the Relap Command Center or the Postprocessing application

57

window. In these cases a message is presented that the file length exceeds this
limit.

- The number of parameters in PLO file is limited to 99 (+ time) with respect to the total
 maximal number of minor edits in Relap runs.

- The number of parameters in strip files is limited to 999 with respect to the total maximal
 number strip variables in Relap runs.

- The number of parameters for the conversion of selected data from PLOUT format is
 limited also to 99 (+ time) with respect to PLO format

- The maximum number of parameters for restart files from which variables can be selected
is limited to 32167 (internal pointer is limited to 215 -1). This limit can be overcome as
explained previously by the stripping of selected data.

- The maximum number of parameters for restart files for the direct access to the plot da
 ta from Restart files is limited to 32167 (internal pointer of the selection table is limited to
 215 -1)

- The maximum number of time steps which can be processed by EXCEL is limited by EX
CEL to 32168 (The number of Columns (all Plot Parameters + Time Column) is limited
to less than 100. With respect to the dynamically allocated data arrays the number of
columns allowed minus 1 times number of rows should be less than 524288 (219). This has
been explained in a previous chapter

3.5 Tips, Hints and Troubleshooting

Most of the applications built in the RelapPP Pre- and Post processor are equipped with
meaningful information to guide the user through all the steps of a full Relap analysis. Every
of the bugs usually found in any software product should be eliminated now based on the
extensive use of the program within Westinghouse and useful hints from other users form the
CAMP community. However it is still a software product and all of the multi thousands of
combinations of different successive steps for the performing of analyses and of maneuver-
ing through an object oriented program cannot be tested sufficiently. If the user gets unex-
pected messages or experiences unexpected behavior he has the choice first to activate the
debug mode and check again and second to analyze the problem step by step.

Most errors however come from data files which for some reason do not contain the correct
information expected by the program. One of the first actions to analyze problems should be
to view the participating data files, especially the PLO data file, the PLOUT file, the RSINF
and the PLINF file. All the data formats used are listed in Annex B.

Another problem can come from the extraction of data from the binary restart files. The de-
bugging is described in the previous chapter. Often, if there are for some reason no resulting
files, another try to extract the data from restarts helps to solve that problem. The reason for
that problem sometimes could be traced down to Windows internal processes. After starting

58

the external “Restart Post Postprocessor” program RelapPP permanently checks if the pro-
cess is still active and if the files, which have to be generated have been written and closed.
This very seldom is boykottet by Windows.

If strip output files are processed, the user should be sure, the data format of the strip files is
in the ASCII format. The format will be checked by RelapPP. However, the user may not un-
derstand the error message if the file is in the ASCII format, and only some important infor-
mation is missing at the head of the file.

Very big files sometimes take long to process. The user should not become unpatient, espe-
cially when the progress-bar mode is not activated. He much more should check the CPU
activity with help of the Windows task manager or the hard disk activity LED on the Desktop
or Midi Tower case to decide if there is a hang up or not.

59

4 SYSTEM REQUIREMENTS, INSTALLATION AND
CUSTOMIZED CONFIGURATION

The RelapPP Pre- and Post Processor is distributed by CD-ROM. All of the programs and
Libraries needed for a complete RelapPP installation are provided. The CD contains:

- The RelapPP Pre- and Post Processor for Relap5MOD3.3Rrelase (eventually a Patch of
 the latest sub version on diskette)

- Relap5MOD3.3Release, latest sub version with all accompanying files and documenta
 tions as distributed by the NRC

- The Restart Post Processor RSTR533R.EXE

- The UNIX like Diff-utility DIFF.EXE

- Acrobat Reader 5.x, as distributed by Acrobat (including the Acrobat license agreements)

- PAD97 big file editor by GTSoft, Version 1.05, Copyright © 1997-98 by Gustavo Tondello,
Pad 97 is a replacement for Notepad wich has many features not present in Notepad. All
accompanying files including the license agreement and terms and conditions of use

- Turbo Navigator v1.44, Copyright © 1999-2000 by Marko Vodopija,
 www.TurboNavigator.com, with all accompanying files including the license agreement
 and terms and conditions of use

- XMGR5 for INTEL as distributed by the NRC

- Testversion of Xmanager(R) version 1.3.9, Copyright (c) 1997-2002 by NetSarang Com
puter, Inc., Xmanager is a high performance X11R6 PC X server for Windows 95/98/ME
and Windows NT/2000/XP. If you are not a registered user, you can use this program 30
days only for evaluation and that any other use requires purchase of a license. All
informations are included.

The hardware requirements for RelapPP are the following:

- Standard PC with Intel Processor (CPU frequency: 200 Mhz as a minimum, 2.0 Ghz and
 up is recommended for good performance for big problems)

- A minimum of 64 MB of Ram. 256/512 MB for PIV processors

- A minimum of 100 MB of Hard Disk - Space. Up to 30 GB needed for big problems

- Fast Hard disk drive (7200 rpm and up) for good performance

- Standard graphic devices with medium resolution minimum 800*600 (recommended:
 1280*1024)

60

- Windows Operating System 95 / 98 / ME / NT4.0 / 2000 / XP latest Service pack

- EXCEL 95/97, 2000, 2002 for Plotting Graphs (EXCEL comes with the MicroSoft Office
 packages)

- Acrobat Reader Version 4 or up (provided with the installation packet)

The installation of the program is performed automatically by the autostart function of the
CD-ROM or manually by starting the setup.exe program in the root directory of the CD. The
setup program guides the user through the complete installation process. A typical, a full and
a user defined installation is provided for the users convenience.

The Installshield process creates the following directory structure in the default directory (can
be changed) c:\program:

- Relap Root Directory: C:\Program\R533R (~)

- Acrobat Directory: ~\Acrobat

- Relap Bin Directory: ~\Executables

- Guidelines Directory: ~\Guidelines

- Manuals Directory: ~\Manuals

- Relap User Directdory: ~\User

- Xmgr5 & X-manager ~\Xmgr

Relap5 MOD 3.3R, the steam tables, the relapPP pre- and Postprocessor and all of the INI-
files, the Restart Postprocessor RSTR533R, the DIFF-utility, TN and PAD97 and all files be-
longing to these are installed in the Excecutables directory. All of the Manuals are installed in
directory ~\Manuals, the guidelines provided by NRC are copied into the guidelines directory.
The test input, the test output and the test restart files are copied into the users directory. In
order to obey to the limit of file name length for Relap runs it is strongly advised to change
the “Relap Root Directory” to C:\R533R for example. The installation routine registers all the
programs, creates several Icons on the desktop, and selections on the “Windows Start
Menu”, depending on the installed programs which come with the distribution CD.

As shown in Table B-8 (Annex B) the Relap533R-INI file contains the actual directory struc-
ture. In the distribution CD the INI file contains a default directory structure. At the first startup
of RelapPP the directory structure probably has to be changed. In case the provided defaults
cannot be verified by the program at the first startup the following screen with directory selec-
tion dialogs pops up. The user has to change all the paths marked red.

61

Figure 4-1: Directory structure adaptation dialogue

He cannot continue without a correct directory structure. He additionally has the choice to set
a path for Outputs, Plot data and for restart data at this time. This information, however, will
not be saved in the INI file as explained in previous sections. Whenever the directory struc-
ture found in the INI file cannot be verified by RelaPP this dialog starts at the beginning. This
can happen, if the user changes directory names outside the control of the RelapPP applica-
tion. Red colored path names indicate that the path cannot be found. This information is also
given in the message boxes at the bottom of the main screen of the RelapPP application.

Once the directory structure has been adapted, the user should check and modify if neces-
sary the following details prior to start any Relap analysis:

- Description of the commands to view the Relap manuals and the filenames (explained
 in chapter 3.3.6, section “Edit Configuration File”)

- Path to the Windows Editor NOTEPAD or WORDPAD

- Path to the big-file editor PAD97 if installed or to any other capable editor

- Path to the Acrobat Reader if the Relap Root Directory na me has been changed or to
 Acrobat as already installed on the system

- Check of the filename of the “Quick-Look” documentation for RelapPP in the Manuals
 directory. If necessary, the file name has to be changed to “Quick-Look.PDF”.

- Change or adaptation of the units of the parameters for the data plotting. This is
 described in chapter 3.3.6 in section “Edit Parameters and Units”

- Change or adaptation of the plot settings for the data plotting. This is described in
 chapter 3.3.6 in section “Edit Plot-INI File”

63

5 CONCLUSIONS AND OUTLOOK

The RelapPP Pre- and Post Processor have been developed to support the Relap analyst.
The tool is not intended to replace any of the NRC tools like Xmgr5 or SNAP. It is intended to
be an add on for Relap PC users who like to work with an integrated application where all of
the programs needed for complete Relap analyses are available by key stroke. The tool has
proven its effectiveness during long time usage within Westinghouse.

The development of the Pre- and Post processor has reached now a status of projected
completeness. However, there still are ideas for improvements and additions. Some of these
ideas for future development are:

- Enhancement of performance for very large problems

- Extension of the 32167 Parameter Limit for the direct selection for the Restart
 Processing

- Extension or workaround of the time step limit of 32168 which comes with EXCEL

- Integration of Xmgr5 or other Plot-Package (Simple Plots with HPGL and
 Quick Viewer)

- Extension of plotting Capabilities when using EXCEL by user-specific layouts and
 easier plotting of clipped time sections

- Addition of Relap Project specific Sets of Parameters and the Management of
 these Sets (comparable to Xmgr5)

- Input Preprocessor with User Guidance and Intelligence

- Implementation of a Help System

65

6 REFERENCES

/1/ Dale M. Snider et al. “Nuclear Plant Analyzer (NPA), EGG-EAST-9096
 EG&G Idaho Inc. April 1990

/2/ Paul J. Turner, “ACE/gr, Graphics for Exploratory Data Analysis” Oregon, Graduate In
stitute of Technology, 1991 – 1995, XMGR5 Extensions by K. Jones, Idaho Nation al
Engineering and Environmental Laboratory, further developed by ACE/gr Development
Team (1995 – 1998), currently maintained by Evgeny Stambulchik, Rehovot, Israel. Ac-
tual version: 4.1.2I

/3/ Symbolic Nuclear Analysis Package SNAP, U.S. Nuclear Regulatory Commission,
under development

/4/ B. Worth et al. “Generation and Verification of a RELAP5/MOD1-EUR Code Version
 Running on IBM RISC-6000 Workstations”, Joint Reserch Center ISPRA Site, Safety
 Technology Institute, Tech.Note I93.140, October 1993

/5/ “Users Manual Microsoft Excel 97”, Microsoft Corporation, 1997

67

Annex A-1

Figures

 Page No.

A-1: Principal Structure of RelapPP 68
A-2: Top Level Window 69
A-3: Relap Command Center 70
A-4: Structure of the Post Processors 71
A-5: Extract and process Output Data 72
A-6: Extract and process Output Data (PLO file exist) 73
A-7: Extract and process Restart Plot Data 74
A-8: Successful Extraction of Restart Plot Data 75
A-9: Plot Post processor: Data Visualization (PLO Channel) 76
A-10: Plot Post processor: PLOUT Plot Data processing 77
A-11: Plotting Graphs: Styles affected by PLOT33R.INI 78

68

Figure A-1: Principal Structure of RelapPP

MDI Form:

Menus

Utilities & Options
 . Configuration
 . Parameters & Units
 . Plot-Ini File
external Diff utility
Character Conversion

Relap Documentation
User Guidelines
Quick-Look

Relap Command Center
Input development (Base Case, Strip, Restart)
View Relap Input description & Quick-Look
View Relap Logfiles and Ascii Outputs

Data Visualization

- *.PLO Format
- *.STR Format
- *.PLOUT Format

Postprocessor for
Relap Restarts
Relap Outputs

 Relap5 Mod3.3
 Release

 External Restart
 Postprocessor

Plotting and Graphing

With EXCEL

Export of
ASCII

Data tables

Output
and
Restarts

Strips

Append Restart
Outputfiles

Selection of

Parameters
from Restart

Plot Data

Run

69

Figure A-2: Top Level Window

70

Figure A-3: Relap Command Center

71

1: “Extract and Process Output / Restart Data”

2: “Parameter Selection” (PLOUT to PLO Conversion)

3: “Data Visualization” (+ Ascii Tables + Plotting with EXCEL-engine)

Figure A-4: Structure of the Post Processors

Output
Processor

Restart
Processor

PL

PL

St

PLO PL

PLO

Strip

PLO

D
A
T
A

V
I
S
U
A
L
I
Z
A
T
I
O
N

72

Figure A-5: Extract and process Output Data

73

Figure A-6: Extract and process Output Data (PLO file exist)

74

Figure A-7: Extract and process Restart Plot Data

 (RSINF file exist)

75

Figure A-8: Successful Extraction of Restart Plot Data

76

Figure A-9: Plot Post processor: Data Visualization (PLO Channel)

77

Figure A-10: Plot Post processor: PLOUT Plot Data processing

78

Figure A-11: Plotting Graphs: Styles affected by PLOT33R.INI

79

Annex B-1

Tables

 Page No.

B-1: PLO Plotdata Format and typical PAR file 80
B-2: Parameter File for Strip Data 81
B-3: PLOUT Data Format 82
B-4: Restart & Plot Information Files 83
B-5: Restart Input File 84
B-6: Strip Input File 85
B-7: Storing Plot Data in three different Formats 86
B-8: Relap-INI File 87
B-9: UNITS-INI File 88
B-10: UNITS-INI File, Con’t 89

80

Table B-1: PLO Plotdata Format and typical PAR file

81

Table B-2: Parameter File for Strip Data

82

Table B-3: PLOUT Data Format

83

Table B-4: Restart & Plot Information Files

84

Table B-5: Restart Input File

85

Table B-6: Strip Input File

86

Table B-7: Storing Plot Data in three different Formats

87

Table B-8: Relap-INI File

88

Table B-9: UNITS-INI File

; Do NOT change the Width of any Column. Data @ line 5. Last line: @
; Paramter - Units - 29.04.2001 Line Length: 76 + . (77)
; --.
ppppppppppppsisisisisisibubububububussssssssssssssssssssbbbbbbbbbbbbbbbbbbbb.
time sec sec Zeit Time .
count Rechenschritt Count Advancement .
cputime sec sec CPU-Zeit CPU Time .
emass kg lb Fehler-Masse Error Mass .
tmass kg lb Totale Masse Total Mass .
dt sec sec Zeitschritt Time Step .
dtcrnt sec sec Courant Zeitschritt Courant Time Step .

acqtank W btu/s Accu.Tot.Energ.TransAccuTotEnergieTransp.
acrhon kg/m^3 lb/ft^3 Accu.NonCondensDichtAccuNonCond.Density .
acttank K °F Accu.mit.Wand.Temp. Accu.av.Wall Temp. .
acvdm m^3 ft^3 Accu.Gas Volume Accu.Gas Volume .
acvliq m^3 ft^3 Accu.Liqu.Volume Accu.Liqu. Volume .

pmpvel U/min rad/s Pumpen Drehzahl Pump Rot.Velocity .
pmphead Pa lbf/in^2 Pumpenhöhe Pumphead .
pmptrq N*m lbf*ft Pumpen Torque Pump Torque .

turef Effektivität TurbineTurbine Efficiency .
turpow W Btu/s Turbinen Leistung Turbine Power .
turtrq N*m lbf*ft Turbinen Torque Turbine Torque .
turvel U/min rad/s Turbinen Drehzahl Turbine Rot.Velocity.

vlvarea Ventil Fläche Valve Area Ratio .
vlvstem Ventil Öffnung Valve stem position .

boron kg/m^3 lb/ft^3 BOR Dichte Boron Density .
floreg FLOREG Flow regime number .
p Pa lbf/in Druck Volume Pressure .
q W Btu/s Leistung im Volumen Tot.vol.heat source .
quala NonCond.Mass.Verh. Vol.noncond.massfrac.
quale Equ.Qualität Vol.equil.quality .
quals Statische Qualität Vol.static.quality .
qwg W Btu/s Volumen Leistung Vol.wal heat source .
rho kg/m^3 lb/ft^3 Dichte Total density .
rhof kg/m^3 lb/ft^3 Flui Dichte Liquid density .
rhog kg/m^3 lb/ft^3 Dampf Dichte Vapor density .
sattemp K °F SättigungstemperaturVolume sat.temp. .
sounde m/s ft/s Schallgeschwind. Volume son.velocity .
tempf K °F Fluid Temperatur Volume liqu.temp. .
tempg K °F Dampf Temperatur Volume vap.temp. .
uf J/kg Btu/lb Vol. Liqu.Spec.Ener Volume liq.energy .
ug J/kg Btu/lb Vol. Gas.Spec.Ener Volume vap.energy .
vapgen kg/m^3*s lb/ft^3*s Verdampf/Conden. Vap.gen./Cond. rate .
velf m/s ft/s Vol.Fluid Geschw. Volume Liq.velocity .
velg m/s ft/s Vol.Dampf Geschw. Volume Vap.velocity .
voidf Volume Void (fluid) Vol. liquid fraction.
voidg Volume Void (gas) Vol. gas fraction .

89

Table B-10: UNITS-INI File, Con’t

mflowj kg/s lb/s Fluid&Gas Durchsatz Liq. & Vap.flow rate.
qualaj Junc. NonCond.Qual Jun.noncond.mass.fra.
rhofj kg/m^3 lb/ft^3 Junc. Fluid.Dichte Jun.Liqu.density .
rhogj kg/m^3 lb/ft^3 Junc. Dampf.Dichte Jun.Gas.density .
sonicj m/s ft/s Junc. Schallgeschw Jun. sound speed .
ufj J/kg Btu/lb Junc. Liqu.Spec.EnerJun. liqu.spec.ener..
ugj J/kg Btu/lb Junc. Gas.Spec.Ener Jun. vap.spec.energy.
velfj m/s ft/s Junc. Liqu.Geschw. Jun. liqu.velocity .
velgj m/s ft/s Junc. Gas Geschw. Jun. Vap.velocity .
voidfj Junc. Liqu. FraktionJun. liquid fraction.
voidgj Junc. Gas Fraktion Jun. vapor fraction .

htchf W/m^2 Btu/s·ft^2 CHF Critical heat flux .
hthtc W/m^2·K Btu/s-ft^2°FHeat transfer coeff.Heat transfer coeff .
htrnr W/m^2 Btu/s·ft^2 Wärmefluss Heat flux .
httemp K °F Mesh Point Temp. Mesh point temp. .

reac $ $ Totale Reaktivität Tot.Reactiv.feedback.
reacm $ $ Tot.Moderator Rückk.Tot.React.feedb.mod..
reacrb $ $ Bor Rückkopplung React.feedb. boron .
reacrm $ $ Moderator Rückk. Reac.feedb.moderator.
reacs $ $ Abschaltraktivität ScramReactivity .
reactf $ $ Brennstoff.Rückkop. TempReactivity feedb.
reactm $ $ Mod.Temp Rückkop. Reac.feedb.mod.temp..
rkfipow W W Reaktor Leistung Reactor pow. fission.
rkgapow W W Nachzerfallsleist. Reactor pow. decay .
rkpowa W W Nazef Actiniden React.pow.decay.acti.
rkpowk W W Nazef Fission Prod. React.pow.decay.fiss.
rkreac $ $ Reaktivität Reactivity .
rkrecper s^-1 s^-1 ReaaktorPeriode Reciprocal period .
rktpow W W Totale ReaktorLeist.Total reactor power .
@

91

Annex C-1

Source Code Listing of the Relap5MOD3.3R Restart Postprocessor

92

C Last change: DWT 20 Sep 2002 1:03 pm
C
C
C RSTR533B.FOR ==
C Purpose:
C Extract PlotData from Restart/Plot-File
C Create Inormation files about Plots & Restarts
C Create Information about Plotparameters for Strip files
C Create automatic Strip Input for RELAP 5/MOD3.2.2Gamma
C and RELAP 5/MOD3.3Beta
C and RELAP 5/MOD3.3 Release RSTR33.R
C Options: -s and -so for stripfile
C ===
C
C Development: Dr. Tietsch
C Based on RESTI120
C Created: 02.07.1994
C Version: 1.10 fuer IBM-RISK/486-PC
C Version: 1.20 fuer IBM-RISK/486-PC (06.10.94)
C Version: 1.21 fuer IBM-RISK/486-PC Lahey Fortran 90 Vers. 40a restlh9
C Version: 1.22 fuer IBM-RISK/486-PC Lahey Fortran 95 Vers. 5.5 resti95
C Version: 1.30 fuer IBM-RISK restaix
C read IBM-Risc6000 Restart Data of restaix
C relap5 Mod 1 ABB version restaix
C Version: 2.0 fuer Relap5 3.2.2.Gamma INTEL Version RSTR532
C Version: 2.1 fuer Relap5 3.2.2.Gamma AIX Version RSTR32a
C Version: 2.2 fuer Relap5 3.2.2.Gamma INTEL/AIX Version RSTR32u
C Version: 2.2.1 fuer Relap5 3.2.2.Gamma INTEL/AIX Version RSTR32u1
C Version: 2.2.2 fuer Relap5 3.2.2.Gamma ma..z Version for RSTR32u2
C INTEL/AIX/DECALPHA/hpc180/sgi64/sunOS56 platforms RSTR32u2
C Version: 2.2.3 fuer Relap5 3.2.2.Gamma ma..z Version RSTR32u3
C Version: 2.2.4 fuer Relap5 3.2.2.Gamma ma..z Version RSTR32u4
C Process Restartfiles from Restarts also RSTR32u4
C Version: 2.3 fuer Relap5 3.3 Beta pt Version RSTR33
C Contrl + 4 real variables RSTR33
C Version: 2.3.0 fuer Relap5 3.3 Beta pt Version RSTR33.0
C Version: 2.3.1 fuer Relap5 3.3 Beta pt Version mit Änderungen RSTR33.1
C fuer grosse Files RSTR33.1
C Version: 2.4.0 fuer Relap5 3.3 Release Version RSTR33.R
C Version: 2.4.1 fuer Relap5 3.3 Release Version mit Änderungen RSTR33R1
C fuer grosse Files RSTR33R1
C
C Last Update: 27.09.1994 , 30.11.2000 (1.21) restlh9
C Last Update: 07.12.2000 (1.30) restaix
C Last Update: 17.01.2001 (2.00) RSTR532
C Last Update: 17.01.2001 (2.10) RSTR32a
C Last Update: 18.01.2001 (2.20) RSTR32u
C Last Update: 19.01.2001 (2.21) RSTR32u1
C Last Update: 04.03.2001 (2.22) RSTR32u2
C Last Update: 27.04.2001 (2.23) RSTR32u3
C Last Update: 12.06.2001 (2.24) RSTR32u4
C Last Update: 23.09.2001 (2.3) RSTR33
C Last Update: 07.10.2001 (2.3.0) RSTR33.0
C Last Update: 21.08.2002 (2.3.1) RSTR33.1
C Last Update: 08.08.2002 (2.4.0) RSTR33.R
C Last Update: 20.09.2002 (2.4.1) RSTR33R1
C
C ==
C Options: Defaults:
C -ri restart/strip_input_file RESTINP
C -ro restart_output w/o plotdata RESTOUT
C -or restart_info_file RESTINF
C -po plot_parm & data_file PLOTOUT
C -op plot_parameter_info_file PLOTINF
C -so strip inputfile for RELAP STRIPINP
C -d debug data in file DEBUG
C -r write restart output file
C -s write strip input file
C -p write plotdata file
C -no no screen output
C -h/? HELP
C
C w/o -p and/or -r the default is:
C only RESTINF and/or PLOTINF files will be written
C For AIX/DEC/SUN and SGI Restarts RESTOUT will not be processed!' RSTR32u2
C ==
C Technology reading restart files with PC written with AIX : RESTaix
C (HPC180,SGI64 and SunOS56 are equivalent to AIX) RSTR32u2
C (DECalpha in equivalent to Intel) RSTR32u2
C AIX writes Bits of Integer*2,4, Real4, Real8 in opposite order RESTaix
C than Intel based compilers, so they must be swept. Example: RESTaix
C RESTaix
C I1int(1)=I1aix(4) RESTaix
C I1int(2)=I1aix(3) RESTaix

93

C I1int(3)=I1aix(2) RESTaix
C I1int(4)=I1aix(1) RESTaix
C RESTaix
C new function: intel-integer*4=iflip(aix-integer*4) RESTaix
C RESTaix
C Data written with AIX (and s.o.)operation system must be read by RSTR32u2
C INTEL programs in 4 Byte pieces. Bits must be flipped. RESTaix
C e.g. R8 aix writes 8 Bytes as follows: RESTaix
C RESTaix
C Bytes: 8 7 6 5 4 3 2 1 RESTaix
C ------- ------- RESTaix
C equivalence: I4aix(1) I4aix(2) RESTaix
C RESTaix
C flip Bits with Iflip 5 6 7 8 1 2 3 4 RESTaix
C I4int(2) I4int(1) RESTaix
C change order 1 2 3 4 5 6 7 8 RESTaix
C ------- ------- RESTaix
C equivalence: I4aix(1) I4aix(2) RESTaix
C RESTaix
C Result: R8int RESTaix
C RESTaix
C REAL*8 R8aix,R8int RESTaix
C INTEGER*4 I4aix(2), I4int(2) RESTaix
C EQUIVALENCE (I4aix(1), R8aix) RESTaix
C EQUIVALENCE (I4int(1), R8int) RESTaix
C RESTaix
C RESTaix
C AIX data must be read in by INTEL in 4BYTE chunks in transparent RESTaix
C access mode. RESTaix
C RESTaix
C First Byte of INTEL restart plot file is an 8, AIX is .ne. 8 RESTaix
C RESTaix
C Method to read in the binary data stream from aix restart file RESTaix
C is to first read the pointer as 2 Real*4 numbers, which are RESTaix
C equivalenced to I*4, than reading the data defined b the pointer RESTaix
C with one read statement, then reading the next pointer and so on.RESTaix
C RESTaix
C Meaning of the I*4 Pointers: RESTaix
C RESTaix
C Pointer(1)= Number Bytes back to preceding Pointer RESTaix
C Pointer(2)= Number Bytes to next Pointer RESTaix
C RESTaix
C Example: 112 80 : RESTaix
C 112 Byte = 14 Real*8 back RESTaix
C 80 Byte = 10 Real*8 to next Pointer RESTaix
C Note: Relap writes additional Pointers as well (lx, iwrd) RESTaix
C which are needed for the determination of the length of RESTaix
C the data blocks RESTaix
C ==
C Technology:
C RELAP5 MOd 3.2 and up Restart consits of the following parts:
C Type Wordlengt Length
C I RSTPLT Record: Program Identifications
C
C 1) Program Identification a 8 2
C Example: ' RELAP5/3.2mz '
C 2) Empty A8 ' ' a 8 1
C
C 3) Characterstring a 8 3
C Example: 'restart-plot file '
C 4) Date/Time file was written a 8 3
C Example '13-DEC-00 18:55:29 '
C 5) Two Intgers, 2nd Variable irout i 4 2
C
C II PLOTINF Record: 'plotinf'
C
C 1) Length of PLOTALF record (lenb) r 8 1
C Example: 0, 379
C 2) Length of PLOTREC record (lenc) r 8 1
C Example: 0, 190
C if lenc=(lenb+1)/2 then plot data is compressed
C using the sqoz subroutine (two r4 values are
C packed int one r8)
C
C III PLOTALF Record: 'plotalf'
C
C 1) alphanumeric part of the variable a 8 lenb
C Example: 'time '
C
C IV PLOTNUM Record: 'plotnum'
C
C 1) numeric part of the variable r 8 lenb
C Example: 0.000000
C
C V RESTART Record: 'restart'

94

C
C 1) Print variable iprint r 8 1
C two integers, second: iprint
C Example: 0, 23
C 2) no of restart record ncount r 8 1
C two integers, second: ncount
C Example: 0, 0
C ---> these are written only for restart No. 0
C and for every restartet problem at time of restart
C 3) Title record, ptitle string r 8 8
C 4) Title record, ctitle string r 8 12
C 5) Named common block comctl r 8 lx
C ---> these are written for every restart data block
C 6) Named common block contrl r 8 lx
C Time of restart: timehy R8 on pos 5 in contrl block
C Number restartblock : rstblcknumber1531 I4 on pos 47 / 1
C Restart number : ncount I4 on pos 48 / 2
C 7) Other named common blocks and r 4/8 lx
C dynamic commonblocks
C
C VI PLOTREC Record: 'plotrec'
C
C 1) numeric value of variable r 8 lenc
C Example: 0.000000
C two R4 values packed into one R8, when compressed
C use unsqoz to uncompress or even better in case
C of INTEL read in continuously as R4. Data is in
C right order
C
C
C The principal access to the data is achieved by consideration
C of the data organzation in RSTPLT files as follows:
C - Two Integers (4) must be read before any data
C LEN or lz : defines the length of the data record
C iwrd8 or iwrd : defines the length of word to be read
C example 8 ---> read in as A8 or R8
C 4 ---> read in as Integer or
C two of them as R8 or A8
C - Depending of these informations the following data block
C has to be read in in fa array as R8 or in any other array
C
C EXAMPLE: read(rstplt-file) LEN,iwrd --> 50, 8
C j = LEN*iwrd/8
C read(rstplt-file) (fa(i-1),i=1,j)
C
C - If one of the pltrst records follows, this is indicated
C by one of the keywords 'plotinf'
C 'plotalf'
C 'plotnum'
C 'plotrec'
C 'restart'
C
C on position i (=1) in fa
C - The restart record consists in principal of 5 blocks of
C data, three of them are written at each restart block,
C two (the title record and the comctl common data block)
C are written only at time 0
C
C ==
 PROGRAM RSTR533 RESTR33.R
 IMPLICIT REAL*8 (A-H,O-Z)
C
*comdeck fast
C
C PARAMETER (LFSIZ=2**17-1) RESTI120
C PARAMETER (LFSIZ=100000)
 parameter (lfsiz=2200000) RSTR5322
 common /fast/ fa(lfsiz)
 real*8 fa
 integer ia(2,lfsiz)
 equivalence (fa(1),ia(1,1))
 REAL*4 FFA (LFSIZ*2) RSTR53u
 INTEGER iia (LFSIZ*2) RSTR53u
 EQUIVALENCE (FFA(1),fa(1)) RSTR53u
 EQUIVALENCE (FFA(1),iia(1)) RSTR53u
C
*comdeck fastc
C
c arrays define dynamic pool area. fa and ia are equivalent floating
c and integer areas.
c
*comdeck comctl
c
 integer ncoms,nfiles
 parameter (ncoms=104, nfiles=50)

95

c
 common /comctl/ comdat(ncoms),comdln(ncoms),filid(nfiles) ,
 & filsiz(nfiles),filndx(0:nfiles) ,
 & writedynamicfile0(ncoms+1) ,
 & writecommonblck2(ncoms+1) ,
 & is4(ncoms+1) ,
 & safe1
c
 real*8 filid,safe1
 integer comdat,comdln,filsiz,filndx
 logical newrst
c
 equivalence (safe1,newrst)
c
 logical writedynamicfile0,
 & writecommonblck2 ,
 & is4
c***
c Data dictionary for local variables
c i=integer r=real l=logical c=character
c***
c Type Name Definition
c---
c i comdat(ncoms) = index relative to fa of first word of
c common block to be saved.
c i comdln(ncoms) = length of common block to be saved.
c r filid(nfiles) = ftb filid for dynamic storage files.
c filid(1) input data and work scratch space during advancement
c filid(2) time step control block.
c filid(3) component description block.
c filid(4) hydrodynamic volumes block.
c filid(5) hydrodynamic junctions block.
c filid(6) Thermodynamic property file.
c filid(7) interactive input and output variable storage.
c filid(8) heat structure geometry and temperature block.
c filid(9) heat structure material property storage.
c filid(10) table of inlet and outlet junctions for each volume.
c filid(11) general table storage.
c filid(12) minor edit file.
c filid(13) time dependent volumes and junctions pointers.
c filid(14) table of heat structures and data for each volume.
c filid(15) plot heading and control information.
c filid(16) minor edit control, save area, and labels.
c filid(17) plot record buffer.
c filid(18) trip block.
c filid(19) internal plot file control information.
c filid(20) file for statistics during advancement.
c filid(21) reactor kinetics data.
c filid(22) 2d plot requests and specifications.
c filid(23) plot comparison data tables.
c filid(24) steady state block for statistics counters and uo.
c filid(25) Volume data needed for a moving system.
c filid(26) plot data for the internal plot routines.
c filid(27) control system block.
c filid(28) component indices in normal (input) order.
c filid(29) Tabular data for rotations and translations for
c moving problem.
c filid(30) hydrodynamic system control information.
c filid(31) code coupling data
c filid(32) reflood rezoning model storage space.
c filid(33) user supplied plot record variable requests.
c filid(34) fission product data.
c filid(35) fixed list vectors.
c filid(36) scdap data.
c filid(37) steady state initialization check file.
c filid(38) file for radiation heat transfer.
c filid(40) file for sparse matrix strategy.
c filid(43) file for level model geometry description
c (i.e. stacks)
c i filndx(0:nfiles) = index of dynamic file in fast or ftblcm
c block.
c i filsiz(nfiles) = length of dynamic file.
c l is4 = tbd
c i ncoms = number of common control slots.
c parameter = 104
c l newrst = true if a restart problem, used during
c input processing.
c i nfiles = number of dynamic file slots.
c parameter = 50
c r safe1 = not written on restart file, provided to
c allow length checking when reading from
c restart file.
c Used for timer argument when timing
c transient subroutine execution times.
c l writecommonblck2 = flag to write common block at complete

96

c restart.
c l writedynamicfile0 = flag for dynamic file on disk to be
c written at co restart.
c***
*comdeck comctlc
c
c ncoms number of common control slots.
c nfiles number of dynamic file slots.
c comdat index relative to fa of first word of common block to be
c saved.
c comdln length of common block to be saved.
c filid ftb filid for dynamic storage files.
c filsiz length of dynamic file.
c safe1 not written on restart file, provided to allow length
c checking when reading from restart file. Used for
c timer argument when timing transient subroutine
c execution times.
c newrst true if a restart problem, used during input processing.
c filndx index of dynamic file in fast or ftblcm block.
c filflg flag for dynamic file on disk to be written at complete
c restart (bit 1), flag to write common block file at complete
c restart (bit 4).
c
c filflg has been replaced with the following variables:
c l (replaces bit 1) writedynamicfile0 flag for dynamic file on
c disk to be written at co
c restart.
c l (replaces bit 3) writecommonblck2 flag to write common blo
c at complete restart.
c
c l (replaces bit 5) is4 tbd
c
c filid(1) input data and work scratch space during advancement.
c filid(2) time step control block.
c filid(3) component description block.
c filid(4) hydrodynamic volumes block.
c filid(5) hydrodynamic junctions block.
c filid(6) Thermodynamic property file.
c filid(7) interactive input and output variable storage.
c filid(8) heat structure geometry and temperature block.
c filid(9) heat structure material property storage.
c filid(10) table of inlet and outlet junctions for each volume.
c filid(11) general table storage.
c filid(12) minor edit file.
c filid(13) time dependent volumes and junctions pointers.
c filid(14) table of heat structures and data for each volume.
c filid(15) plot heading and control information.
c filid(16) minor edit control, save area, and labels.
c filid(17) plot record buffer.
c filid(18) trip block.
c filid(19) internal plot file control information.
c filid(20) file for statistics during advancement.
c filid(21) reactor kinetics data.
c filid(22) 2d plot requests and specifications.
c filid(23) plot comparison data tables.
c filid(24) steady state block for statistics counters and uo.
c filid(25) Volume data needed for a moving system.
c filid(26) plot data for the internal plot routines.
c filid(27) control system block.
c filid(28) component indices in normal (input) order.
c filid(29) Tabular data for rotations and translations for moving
c problem.
c filid(30) hydrodynamic system control information.
c filid(31) code coupling data
c filid(32) reflood rezoning model storage space.
c filid(33) user supplied plot record variable requests.
c filid(34) fission product data.
c filid(35) fixed list vectors.
c filid(36) scdap data.
c filid(37) steady state initialization check file.
c filid(38) file for radiation heat transfer.
c filid(40) file for sparse matrix strategy.
c filid(43) file for level model geometry description (i.e. stacks)
c***
c
*comdeck contrl
C Changes from versin 3.2.2Gamma to 3.3Beta
c
 common /contrl/ dthy,dtht,dtn,dt,timehy,timeht,errmax,tmass ,
C & tmasso,emass,emasso,count,cpurem(5),stdtrn,gravcn,testda(20), RESTR33
C New in Relap5 3.3Beta ---------------------------- RESTR33
 & tmasso,emass,emasso,count,curtmi,curtmj,curtrs,prevnd, RESTR33
C New in Relap5 3.3Beta ---------------------------- RESTR33
 & cpurem(5),stdtrn,gravcn,testda(20), RESTR33
 & aflag,isrestartenabled0,ismajoreditenabled1,

97

 & isminoreditenabled2,isplotenabled3,iscompleterestart4,
 & interactiveflag5,isimplicithttrnsfr6,istwostepflag7,
 & stdystatetermflg8,integrationflag9,isathenaopt10,
 & isscdapopt11,isplotsqzflg12,rwtrstpltcmprssflag13,
 & transrotatflag14,rstblcknumber1531,succes,done,ncount,
 & nstsp,nrepet,help,nany,skipt,problemtype05,
 & problemopt611,ncase,fail,uniti,unito,chngno(90),
 & ishydrochng0,isheatcondchng1,isrknchng2,ispltrcrdchng3,
 & isradiationchng4,isfissionprdctchng5,iscntrlsyschng6,
 & pageno,isprntaccum0,isprntbrntrn1,
 & isprntccfl2,isprntchfcal3,isprntconden4,isprntdittus5,
 & isprnteqfinl6,isprntfwdrag7,isprntht2tdp9,isprnthtfinl12,
 & isprnthtrc113,isprnthydro15,isprntistate17,isprntjchoke18,
 & isprntjprop19,isprntnoncnd20,isprntphantj21,isprntphantv22,
 & isprntpimplt23,isprntpintfc24,isprntprednb25,isprntpreseq26,
 & isprntpstdnb27,isprntqfmove28,isprntsimplt29,isprntstacc0,
 & isprntstate1,isprntstatep2,isprntsuboil3,isprntsysitr4,
 & isprnttstate6,isprntvalve7,isprntvexplt8,isprntvfinl9,
 & isprntvimplt10,isprntvlvela11,isprntvolvel12,isprnttrip13,
 & isprntpower14,isprntvolume15,isprntjunction16,isprntheatstr17,
 & isprntradht18,isprntreflood19,isprntfsnprdtr20,isprntcontrol21,
 & isprntinput22,isprntmiedit23,islevelmodel0,
 & islevelcrossing1,issnapon,
 & rktpow3d,safe2
c
 real*8 dthy,dtht,dtn,dt,timehy,timeht,errmax,tmass,tmasso,emass,
C & emasso,count,cpurem,stdtrn,gravcn,testda,rktpow3d,safe2 RESTR33
 & emasso,count,curtmi,curtmj,curtrs,prevnd,cpurem,stdtrn,gravcn, RESTR33
 & testda,rktpow3d,safe2 RESTR33

c
 integer succes,done,ncount,nstsp,nrepet,help,nany,
 & ncase,pageno,cpurei(2,5)
c
 logical aflag,skipt,fail,uniti,unito,chngno,nmechk,issnapon
c
cblh replacement variables for iextra
 logical ishydrochng0 ,
 & isheatcondchng1 ,
 & isrknchng2 ,
 & ispltrcrdchng3 ,
 & isradiationchng4 ,
 & isfissionprdctchng5,
 & iscntrlsyschng6
c
cblh replacement variables for imdctl
 logical islevelmodel0 ,
 & islevelcrossing1
c
cblh replacement variables for iroute
 integer problemtype05 ,
 & problemopt611
c
cblh replacement variables for print
 logical
 & isrestartenabled0 ,
 & ismajoreditenabled1 ,
 & isminoreditenabled2 ,
 & isplotenabled3 ,
 & iscompleterestart4 ,
 & interactiveflag5 ,
 & isimplicithttrnsfr6 ,
 & istwostepflag7 ,
 & stdystatetermflg8 ,
 & integrationflag9 ,
 & isathenaopt10 ,
 & isscdapopt11 ,
 & isplotsqzflg12 ,
 & rwtrstpltcmprssflag13,
 & transrotatflag14
c
cblh replacement variables for ihlppr
 logical
 & isprntaccum0,
 & isprntbrntrn1,
 & isprntccfl2,
 & isprntchfcal3,
 & isprntconden4,
 & isprntdittus5,
 & isprnteqfinl6,
 & isprntfwdrag7,
 & isprntht2tdp9,
 & isprnthtfinl12,
 & isprnthtrc113,
 & isprnthydro15,

98

 & isprntistate17,
 & isprntjchoke18,
 & isprntjprop19
 logical
 & isprntnoncnd20,
 & isprntphantj21,
 & isprntphantv22,
 & isprntpimplt23,
 & isprntpintfc24,
 & isprntprednb25,
 & isprntpreseq26,
 & isprntpstdnb27,
 & isprntqfmove28,
 & isprntsimplt29
 logical
 & isprntstacc0,
 & isprntstate1,
 & isprntstatep2,
 & isprntsuboil3,
 & isprntsysitr4,
 & isprnttstate6,
 & isprntvalve7,
 & isprntvexplt8,
 & isprntvfinl9,
 & isprntvimplt10,
 & isprntvlvela11,
 & isprntvolvel12,
 & isprnttrip13,
 & isprntpower14,
 & isprntvolume15
 logical
 & isprntjunction16,
 & isprntheatstr17,
 & isprntradht18,
 & isprntreflood19,
 & isprntfsnprdtr20,
 & isprntcontrol21,
 & isprntinput22,
 & isprntmiedit23
c
 integer rstblcknumber1531
c
 equivalence (safe2,nmechk), (cpurem(1),cpurei(1,1))
c***
c Data dictionary for local variables
c i=integer r=real l=logical c=character
c***
c Type Name Definition
c---
c l aflag = Set true in dtstep when heat
c structures are to be advanced.
c checked in htadv
c l chngno(90) = true if option # is set
c r count = Real value of the integer ncount
c i cpurei(5) = Integer values (5) of the real cpurem
c (1,2,3) not used
c (4) word 4 from 105 card
c = ncount1, ncount for starting
c diagnostic edits
c = -1, write to dumpfil1 for
c ncount2 = cpurei(5), stop
c = -2, write to dumpfil1 for
c ncount2 = cpurei(5),
c redo timestep, write to
c dumpfil2, stop
c = -3, set in dtstep for -2 case.
c (5) word 5 from 105 card
c = ncount2, ncount for
c terminating diagnostic edits
c r cpurem(5) = Contains cpu remaining times values
c and advancement counts to start/stop
c diagnostic edit from input.
C -----------new in Relap5 mod3.3beta----------------------------------RESTR33
c r curtmi = Time for next minor edit. RESTR33
c r curtmj = Time for next major edit. RESTR33
c r curtrs = Time for next restart edit. RESTR33
c r prevnd = Previous time step card end time. RESTR33
C -----------new in Relap5 mod3.3beta----------------------------------RESTR33
c i done = Integer flag indicating state of
c transient.
c 0 = advancements are to continue,
c !=0 = advancements are to be
c terminated.
c r dt = Current time step.
c r dtht = Heat structure time step, currently

99

c the same as dthy.
c r dthy = Hydrodynamic time step requested by
c user.
c r dtn = Time step limit due to material
c transport stability limit
c (Courant limit).
c r emass = Current mass error.
c r emasso = Old mass error.
c r errmax = Error estimate used in time step
c control.
c l fail = Set to true if error encountered.
c r gravcn = Gravitational constant (which may be
c set by input).
c i help = Used to control debug editing and
c termination.
c l integrationflag9 = on-line selection of time integration
c flag
c l interactiveflag5 = interactive flag.
c l isathenaopt10 = athena option.
c l iscntrlsyschng6 = control system change.
c l iscompleterestart4 = complete restart
c l isfissionprdctchng5 = fission product change.
c l isheatcondchng1 = heat conduction change.
c l ishydrochng0 = hydrodynamic change.
c l isimplicithttrnsfr6 = implicit heat transfer
c l islevelcrossing1 = level crossing activated.
c l islevelmodel0 = level model activated.
c l ismajoreditenabled1 = major edit enabled
c l isminoreditenabled2 = minor edit enabled
c l isplotenabled3 = plot enabled
c l isplotsqzflg12 = plot record squoz flag.
c l ispltrcrdchng3 = plot record change.
c l isprntaccum0 = activate accum print block
c l isprntbrntrn1 = activate brntrn print block
c l isprntccfl2 = activate ccfl print block
c l isprntchfcal3 = activate chfcal print block
c l isprntconden4 = activate conden print block
c l isprntcontrol21 = activate control print block
c l isprntdittus5 = activate dittus print block
c l isprnteqfinl6 = activate eqfinl print block
c l isprntfsnprdtr20 = activate fsnprdtr print block
c l isprntfwdrag7 = activate fwdrag print block
c l isprntheatstr17 = activate heatstr print block
c l isprntht2tdp9 = activate ht2tdp print block
c l isprnthtfinl12 = activate htfinl print block
c l isprnthtrc113 = activate htrc print block
c l isprnthydro15 = activate hydro print block
c l isprntinput22 = activate input print block
c l isprntistate17 = activate istate print block
c l isprntjchoke18 = activate jchoke print block
c l isprntjprop19 = activate jprop print block
c l isprntjunction16 = activate junction print block
c l isprntmiedit23 = activate miedit print block
c l isprntnoncnd20 = activate noncnd print block
c l isprntphantj21 = activate phantj print block
c l isprntphantv22 = activate phantv print block
c l isprntpimplt23 = activate phantv pimplt block
c l isprntpintfc24 = activate phantv pintfc block
c l isprntpower14 = activate power print block
c l isprntprednb25 = activate prednb print block
c l isprntpreseq26 = activate preseq print block
c l isprntpstdnb27 = activate pstdnb print block
c l isprntqfmove28 = activate qfmove print block
c l isprntradht18 = activate radht print block
c l isprntreflood19 = activate reflood print block
c l isprntsimplt29 = activate simplt print block
c l isprntstacc0 = activate stacc print block
c l isprntstate1 = activate state print block
c l isprntstatep2 = activate statep print block
c l isprntsuboil3 = activate suboil print block
c l isprntsysitr4 = activate sysitr print block
c l isprnttrip13 = activate trip print block
c l isprnttstate6 = activate tstate print block
c l isprntvalve7 = activate valve print block
c l isprntvexplt8 = activate vexplt print block
c l isprntvfinl9 = activate vfinl print block
c l isprntvimplt10 = activate vimplt print block
c l isprntvlvela11 = activate vlvela print block
c l isprntvolume15 = activate volume print block
c l isprntvolvel12 = activate volvel print block
c l isradiationchng4 = radiation change.
c l isrestartenabled0 = restart enable bit.
c l isrknchng2 = reactor kinetics change.
c l isscdapopt11 = scdap is active
c l istwostepflag7 = two step method

100

c i nany = Number of mass error messages
c remaining to be issued.
c i ncase = Case number
c Initially = -1 in blkdta
c 0 if last case of series
c i ncount = Count of number of advancements,
c successful or otherwise.
c l nmechk = true if no mass error check requested
c on time step card
c i nrepet = Number of hydrodynamic advancements
c at current dt to finish a requested
c time step of dthy.
c i nstsp = Number of standard advancements.
c i pageno = Page number.
c i problemopt611 = Problem option (see ityp2 in inputd).
c 1 = stdy-st (1 and 2 are used for new
c and restart)
c 2 = transnt
c 3 = binary (3 and 4 are used for strip
c 4 = fmtout
c i problemtype05 = Problem type (see ityp1 in inputd).
c 1 = new
c 2 = restart
c 3 = relap5 internal plots (not used)
c 5 = strip
c 6 = cmpcom (compare dump records)
c i rstblcknumber1531 = restart block number.
c l rwtrstpltcmprssflag13 =
c r safe2 = Last word in common block. Its address is
c obtained using locf and is used with the
c address of the first word, dthy, to
c compute the length of the common block.
c The length is used when the common block
c is written out to a file.
c Make sure it is on an 8-byte boundary.
c l skipt = Logical flag used to control first
c entry processing in
c subroutine dtstep.
c r stdtrn = Steady state - transient flag
c l stdystatetermflg8 = steady state termination
c i succes = Integer flag indicating success of
c the advancement.
c 0 = no need to repeat advancement
c with reduced time step
c 1 = excessive truncation error
c 2 = water property error
c 3 = non-diagonal matrix
c 4 = metal appears
c r rktpow3d = Total reactor power calculated by RELAP5/PA
c r testda(20) = Data array for minor edits and
c plotting during debug.
c Temporary coding is used to load data
c in this array and scnreq accepts
c testda as a legal request.
c r timeht = Problem time for heat structure
c advancements.
c r timehy = Problem time for hydrodynamic
c advancements.
c r tmass = Total mass of water in system
c currently.
c r tmasso = Total mass of water in system at
c time = 0.0.
c l transrotatflag14 = transient rotation flag
c 0.0 = steady state
c 1.0 = transient
c l uniti = If true, SI units on input.
c l unito = If true, SI units on output.
c***
*comdeck contrx
c
c variables in comctl.h common block
c
c T Name Definition
c r dthy Hydrodynamic time step requested by user.
c r dtht Heat structure time step, currently the same as dthy.
c r dtn Time step limit due to material transport stability limit
c (Courant limit).
c r dt Current time step.
c r timehy Problem time for hydrodynamic advancements.
c r timeht Problem time for heat structure advancements.
c r errmax Error estimate used in time step control.
c r tmass Total mass of water in system currently.
c r tmasso Total mass of water in system at time = 0.0.
c r emass Current mass error.
c r emasso Old mass error.

101

c r cpurem(5) Contains cpu remaining times values and advancement
c counts to start/stop diagnostic edit from input.
c i cpurei Integer values (5) of the real cpurem
c (1=>3) not used
c (4) word 4 from 105 card
c = ncount1, ncount for starting diagnostic edits
c = -1, write to dumpfil1 for ncount2 = cpurei(5), stop
c = -2, write to dumpfil1 for ncount2 = cpurei(5),
c redo timestep, write to dumpfil2, stop
c = -3, set in dtstep for -2 case.
c (5) word 5 from 105 card
c = ncount2, ncount for terminating diagnostic edits
c r stdtrn Steady state - transient flag
c 0.0 = steady state
c 1.0 = transient
c r gravcn Gravitational constant (which may be set by input).
c r testda Data array for minor edits and plotting during debug.
c Temporary coding is used to load data in this array and
c scnreq accepts testda as a legal request.
c l aflag Is set true in dtstep when heat structures are to be advance
c checked in htadv
c i print Misc. packed word.
c Bits numbered 1-32 from right end.
c 1 (=1) restart enable bit,
c (bit 1 is set in inputd if rstrip is to write formatted output
c 2 (=2) major edit enable bit,
c 3 (=4) minor edit enable bit,
c 4 (=8) plot enable bit,
c 5 (=16) complete restart switch,
c 6 (=32) interactive flag,
c 7 (=64) implicit heat transfer flag,
c 8 (=128) two step flag,
c 9 (=256) steady state termination flag,
c 10 (=512) on-line selection of time integration flag,
c 11 (=1024) athena option,
c 12 (=2048) scdap option,
c 13 (=4096) plot record squoz flag,
c 14 (=8192) restart-plot file compress flag,
c 15 (=16384) transient rotation flag,
c 16-32 restart block number.
c
c print replaced with the following variables:
c l (replaces bit 1) isrestartenabled0 restart enable bit.
c l (bit 2) ismajoreditenabled1 major edit enable bit
c l (bit 3) isminoreditenabled2 minor edit enable bit
c l (bit 4) isplotenabled3 plot enable bit.
c l (bit 5) iscompleterestart4 complete restart switc
c l (bit 6) interactiveflag5 interactive flag.
c l (bit 7) isimplicithttrnsfr6 implicit heat transfe
c l (bit 8) istwostepflag7 two step flag.
c l (bit 9) stdystatetermflg8 steady state terminatio
c l (bit 10) integrationflag9 on-line selection of ti
c integration flag
c l (bit 11) isathenaopt10 athena option.
c l (bit 12) isscdapopt11 scdap option.
c l (bit 13) isplotsqzflg12 plot record squoz flag.
c l (bit 15) transrotatflag14 transient rotation flag
c i (replaces bits 16-32) rstblcknumber1531 restart block number.
c
c i succes Integer flag indicating success of the advancement.
c 0 = no need to repeat advancement with reduced time step
c 1 = excessive truncation error
c 2 = water property error
c 3 = non-diagonal matrix
c 4 = metal appears
c i done Integer flag indicating state of transient.
c 0 = advancements are to continue,
c !=0 = advancements are to be terminated.
c i ncount Count of number of advancements, successful or otherwise.
c r count Real value of the integer ncount
c i nstsp Number of standard advancements.
c i nrepet Number of hydrodynamic advancements at current dt to finish
c a requested time step of dthy.
c i help Used to control debug editing and termination.
c i nany Number of mass error messages remaining to be issued.
c l skipt Logical flag used to control first entry processing in
c subroutine dtstep.
c i iroute Problem type and problem option from 100 card
c Initially = -1 in blkdta
c Set to 0 at top of rcards, reset to 1, if insufficient room
c In inputd, it contains two integers packed into one word
c Problem type, bits 1-6 (see ityp1 in inputd)
c 1 = new
c 2 = restart
c 3 = relap5 internal plots (not used)

102

c 4 = re-edit problem (not used)
c 5 = strip
c 6 = cmpcom (compare dump records)
c Problem option, bits 7-12 (see ityp2 in inputd)
c 1 = stdy-st (1 and 2 are used for new and restart)
c 2 = transnt
c 3 = binary (3 and 4 are used for strip)
c 4 = fmtout
c if rnewp is called in inputd, iroute = problem option
c if rstrip is called in inputd, iroute = 5
c
c iroute replaced with the following variables:
c i (replaces bits 1- 6) problemtype05 (see ityp1 in inputd).
c i (bits 7-12) problemopt611 (see ityp2 in inputd).
c
c i ncase Case number
c Initially = -1 in blkdta
c = zero if last case of series
c l fail Set to true if error encountered.
c l uniti If true, SI units on input.
c l unito If true, SI units on output.
c i iextra Packed word containing flags indicating what models
c were changed at restart.
c Bits numbered 1-32 from right end.
c 1 (=1) hydrodynamic change
c 2 (=2) heat conduction change
c 3 (=4) reactor kinetics change
c 4 (=8) plot record change
c 5 (=16) radiation change
c 6 (=32) fission product change
c 7 (=64) control system change
c This quantity could be equivalenced with nmechk
c if this quantity is not needed to pad to an even number
c of integer words.
c
c iextra replaced with the following variables:
c l (replaces bit 1) ishydrochng0 hydrodynamic change.
c l (bit 2) isheatcondchng1heat conduction change.
c l (bit 3) isrknchng2 reactor kinetics change.
c l (bit 4) ispltrcrdchng3 plot record change.
c l (bit 5) isradiationchng4 radiation change.
c l (bit 6) isfissionprdctchng5 fission product change.
c l (bit 7) iscntrlsyschng6control system change.
c
c i pageno Page number.
c r rktpow3d Total reactor power calculated by RELAP5/PARCS
c r safe2 Same purpose as safe1
c l nmechk true if no mass error check requested on time step card
c (no 1 bit on time step card)
c equivalenced to safe2
c imdctl(1) control word for individual code models
c Bits numbered 1-32 from right end
c 1 (=1) level model activated
c 2 (=2) level crossing activated
c 3-31 nod used
c
c imdctl(1) replaced with the following variables:
c l (replaces bit 1) islevelmodel0 level model activated.
c l (bit 2) islevelcrossing1 level crossing activated.
c
c imdctl(2) not used
c
c ihlppr(1) and ihlppr(2) are replaced by the following logical variable
c l isprntaccum0 activate accum print block
c l isprntbrntrn1 activate brntrn print block
c l isprntccfl2 activate ccfl print block
c l isprntchfcal3 activate chfcal print block
c l isprntconden4 activate conden print block
c l isprntdittus5 activate dittus print block
c l isprnteqfinl6 activate eqfinl print block
c l isprntfwdrag7 activate fwdrag print block
c l isprntht2tdp9 activate ht2tdp print block
c l isprnthtfinl12 activate htfinl print block
c l isprnthtrc113 activate htrc print block
c l isprnthydro15 activate hydro print block
c l isprntistate17 activate istate print block
c l isprntjchoke18 activate jchoke print block
c l isprntjprop19 activate jprop print block
c l isprntnoncnd20 activate noncnd print block
c l isprntphantj21 activate phantj print block
c l isprntphantv22 activate phantv print block
c l isprntpimplt23 activate pimplt print block
c l isprntpintfc24 activate pintfc print block
c l isprntprednb25 activate prednb print block
c l isprntpreseq26 activate preseq print block

103

c l isprntpstdnb27 activate pstdnb print block
c l isprntqfmove28 activate qfmove print block
c l isprntsimplt29 activate simplt print block
c l isprntstacc0 activate stacc print block
c l isprntstate1 activate state print block
c l isprntstatep2 activate statep print block
c l isprntsuboil3 activate suboil print block
c l isprntsysitr4 activate sysitr print block
c l isprnttstate6 activate tstate print block
c l isprntvalve7 activate valve print block
c l isprntvexplt8 activate vexplt print block
c l isprntvfinl9 activate vfinl print block
c l isprntvimplt10 activate vimplt print block
c l isprntvlvela11 activate vlvela print block
c l isprntvolvel12 activate volvel print block
c l isprnttrip13 activate trip print block
c l isprntpower14 activate power print block
c l isprntvolume15 activate volume print block
c l isprntjunction16 activate junction print block
c l isprntheatstr17 activate heatstr print block
c l isprntradht18 activate radht print block
c l isprntreflood19 activate reflood print block
c l isprntfsnprdtr20 activate fsnprdtr print block
c l isprntcontrol21 activate control print block
c l isprntinput22 activate input print block
c l isprntmiedit23 activate miedit print block
c
c***
c
*comdeck genrl
c
 common /genrl/ ctitle,ptitle
 character ctitle*108,ptitle*64
c***
*comdeck genrlc
c
c ctitle contains title card of case, time, and date.
c ptitle contains program version identification and title.
c uniti units for input, si if true, british if false.
c unito units for output, si if true, british if false.
c safe3 same purpose as safe1.
c***
C
C--
 LOGICAL FL,TERMINAL,RSTPLOT,INTEL,DEBUG,SCREEN,LHELP
 LOGICAL RESTI,PLOTI,RESTO,PLOTO,STRIPO, BINARY
C
 CHARACTER TITOLO(8)*8 RSTR532
 EQUIVALENCE (PTITLE,TITOLO) RSTR532
 CHARACTER TITELC(14)*8 RSTR532
 EQUIVALENCE (CTITLE,TITELC) RSTR532
C
 INTEGER*4 LEN, iwrd8, iwrd, lx, lxa, lxn, lenb, lenc, ix, iza RSTR532
 LOGICAL lcompr RSTR532
 LOGICAL lpt RESTR33
 INTEGER nmbrst,i,j, icard, irstbl RSTR532u4
C INTEGER problemtype05, problemopt611 RSTR532u4
 character*8 frstrc(6),aW(14),cfa(1),strec(6)
 CHARACTER*1 frstrca(8) RSTR532u2
 CHARACTER*1 frstrcb(8) RSTR533.R
 equivalence (frstrc(2),frstrca(1)) RSTR532u2
 equivalence (aw(2),frstrcb(1)) RSTR533.R
 equivalence (cfa,fa) RSTR532
 REAL*8 IW(10)
 EQUIVALENCE(aW(1),IW(1))
 INTEGER*4 iaW(2,14) RSTR532
 EQUIVALENCE(aW(1),iaW(1,1)) RSTR532
C
 REAL*8 R8aix RESTaix
 REAL*8 R8int RESTaix
 REAL*4 R4aix(2) RESTaix
 REAL*4 R4int(2) RESTaix
 INTEGER*1 Pointer(8) RESTaix
 REAL*4 RPOINTR(2) RESTaix
 INTEGER*1 I1aix1(4),I1aix2(4) RESTaix
 INTEGER*1 I1int1(4),I1int2(4) RESTaix
 INTEGER*4 I4aix(2), I4int(2) RESTaix
 LOGICAL L4int(2) RESTaix
 EQUIVALENCE (I1int1(1), I4int(1)) RESTaix
 EQUIVALENCE (I1int2(1), I4int(2)) RESTaix
 EQUIVALENCE (I1int1(1), L4int(1)) RESTaix
 EQUIVALENCE (I1int2(1), L4int(2)) RESTaix
 EQUIVALENCE (RPOINTR(1), R8aix) RESTaix
 EQUIVALENCE (I4int(1), R8int) RESTaix
 EQUIVALENCE (I4int(1), R4int(1)) RESTaix

104

 EQUIVALENCE (RPOINTR(1), Pointer(1)) RESTaix
 EQUIVALENCE (RPOINTR(1), I4aix(1)) RESTaix
 EQUIVALENCE (RPOINTR(1), I1aix1(1)) RESTaix
 EQUIVALENCE (RPOINTR(2), I1aix2(1)) RESTaix
C
 character*8 label
 PARAMETER (NFIL=13)
 character*50 arg,progr,arg0
 CHARACTER cword*8 RESTLH9
 INTEGER ISTATUS
 INTEGER RSIN,RSOUT,RSINF,PLOUT,PLINF,DEBU,IOUT RSTR532u1
 INTEGER RSTPLT,RSTIN,STRIPF RSTR532
C CHARACTER args(NFIL)*4,FNAMES(NFIL)*40,FORMS(3)*12
 CHARACTER args(NFIL)*4,FNAMES(NFIL)*60,FORMS(3)*12 RSTR532u3
 CHARACTER STAT(3)*7 RESTLH9
C
 DIMENSION IUN(NFIL),IFORMS(NFIL),ISTAT(NFIL)
 data forms/'FORMATTED ','UNFORMATTED ',' '/
 data STAT /'OLD ','UNKNOWN',' '/
 DATA (IUN(I),IFORMS(I),ISTAT(I),ARGS(I),FNAMES(I),I=1,NFIL)
 &/12,2,2,'-ri ','RESTINP RSTR532u3
 & ' RSTR532u3
 &,11,2,2,'-ro ','RESTOUT RSTR532u3
 & ' RSTR532u3
 &, 7,1,2,'-or ','RESTINF RSTR532u3
 & ' RSTR532u3
 &, 9,1,2,'-po ','PLOTOUT RSTR532u3
 & ' RSTR532u3
 &, 8,1,2,'-op ','PLOTINF RSTR532u3
 & ' RSTR532u3
 &,10,1,2,'-so ','STRIPINP RSTR532u3
 & ' RSTR532u3
 &,13,1,2,'-d ',' RSTR532u3
 & ' RSTR532u3
 &, 0,3,3,'-r ',' RSTR532u3
 & ' RSTR532u3
 &, 0,3,3,'-s ',' RSTR532u3
 & ' RSTR532u3
 &, 0,3,3,'-p ',' RSTR532u3
 & ' RSTR532u3
 &, 0,3,3,'-no ','LOGGING TO SCREEN RSTR532u3
 & ' RSTR532u3
 &, 0,3,3,'-h ',' RSTR532u3
 & ' RSTR532u3
 &, 0,3,3,'? ',' RSTR532u3
 & '/ RSTR532u3
C
C
C DATA FRSTRC/' ',' ','RESTART ','PLOT FIL',
C 1'E ',' '/
 DATA FRSTRC/' ',' ','restart-','plot fil', RSTR532
 1'e ',' '/ RSTR532
C
 DATA STREC/' ',' ','STRIP FI','LE ',
 *' ',' '/
C
C DATA PTITLE/'RELAP5/M','OD1/019I','REACTOR ','LOSS OF ', RESTLH9
C *'COOLANT ','ANALYSIS',' PROGRAM'/ RESTLH9
C DATA TITOLO/'RELAP5/M','OD1/019I','REACTOR ','LOSS OF ', RESTLH9
C *'COOLANT ','ANALYSIS',' PROGRAM'/ RESTLH9
C DATA TITOLO/' Relap 5','/3.2mz ','REACTOR ','LOSS OF ', RSTR532
C *'COOLANT ','ANALYSIS',' PROGRAM',' '/ RSTR532
C DATA TITOLO/' Relap 5','/3.2pt ','REACTOR ','LOSS OF ', RESTR33
C *'COOLANT ','ANALYSIS',' PROGRAM',' '/ RESTR33
C DATA TITOLO/' Relap 5','/3.3 ','REACTOR ','LOSS OF ', RESTR33.R
C *'COOLANT ','ANALYSIS',' PROGRAM',' '/ RESTR33.R
C
 DATA TERMINAL/.TRUE./
 DATA RSTPLOT/.TRUE./
 DATA STRIPO/.FALSE./
 DATA BINARY/.FALSE./
 DATA RESTO/.FALSE./
 DATA PLOTO/.FALSE./
 DATA RESTI/.FALSE./
 DATA PLOTI/.FALSE./
 DATA INTEL/.TRUE./ RSTR5322
 DATA DEBUG/.FALSE./
 DATA LHELP/.FALSE./
 DATA SCREEN/.TRUE./
C
C PTITLE=' Relap 5/3.2m REACTOR LOSS OF COOLANT ANALYSIS PROGRAM RSTR532
C PTITLE=' Relap 5/3.2pt REACTOR LOSS OF COOLANT ANALYSIS PROGRAM REST33
 PTITLE=' Relap 5/3.3 REACTOR LOSS OF COOLANT ANALYSIS PROGRAM REST33.R
 * ' RSTR532
C arg0 ='RSTR5322G.EXE Ver 2.2.1 19.01.2001' RSTR53u1

105

C arg0 ='RSTR5322G.EXE Ver 2.2.2 04.03.2001' RSTR53u2
C arg0 ='RSTR5322G.EXE Ver 2.2.3 27.04.2001' RSTR53u3
C arg0 ='RSTR5322G.EXE Ver 2.2.4 11.06.2001' RSTR53u4
C arg0 ='RSTR533B.EXE Ver 2.3 23.09.2001' RESTR33
C arg0 ='RSTR533B.EXE Ver 2.3.0 07.10.2001' RESTR33.0
C arg0 ='RSTR533B.EXE Ver 2.3.1 21.08.2002' RESTR33.1
C arg0 ='RSTR533.EXE Ver 2.4 08.08.2002' RESTR33.R
 arg0 ='RSTR533.EXE Ver 2.4.1 21.08.2002' RESTR33R1
C FRSTRC(2) = PTITLE(2) RESTLH9
 FRSTRC(1) = TITOLO(1) RESTLH9
 FRSTRC(2) = TITOLO(2) RESTLH9
C
C --
C
* do 9 I= 1,NFIL
* print *,' I/O = ',iun(I),' ',forms(iforms(I)),' ',
* & stat(istat(I)),' ',args(I),' ',fnames(I)(1:20)
* 9 continue
C
 narg=nargs()
C
 i0=0
 i1=1
 i2=narg-1
 call getarg(i0,progr,istatus)
 progr = arg0 RSTR532
C print *,'narg=',narg,' i0=',i0,' progr=',progr,' Length= ',istatus
 i=i1
 do 10 while (i.le.i2)
 call getarg(i,arg,istatus)
C print *,'i=',i,' arg=',arg
 do j=1,nfil
 if (arg(1:4).eq.'-r ') then
 TERMINAL =.FALSE.
 RESTO =.TRUE.
 write (fnames(8)(1:20),'(a20)') 'WRITE RESTART FILE '
 i = i + 1
 go to 10
 endif
 if (arg(1:4).eq.'-s ') then
 TERMINAL =.FALSE.
 PLOTO =.FALSE.
 RESTO =.FALSE.
 STRIPO =.TRUE.
 write (fnames(9)(1:20),'(a20)') 'WRITE STRIP INFILE '
 i = i + 1
 go to 10
 endif
 if (arg(1:4).eq.'-p ') then
 TERMINAL =.FALSE.
 PLOTO =.TRUE.
 write (fnames(10)(1:20),'(a20)') 'WRITE PLOT-DATA FILE'
 i = i + 1
 go to 10
 endif
 if (arg(1:4).eq.'-no ') then
 SCREEN =.FALSE.
 write (fnames(11)(1:20),'(a20)') 'NO SCREEN OUTPUT '
 i = i + 1
 go to 10
 endif
 if ((arg(1:4).eq.'-h ').or.(arg(1:4).eq.'? ')) then
 LHELP =.TRUE.
 write (fnames(12)(1:20),'(a20)') 'Help invoked '
 write (fnames(13)(1:20),'(a20)') 'Help invoked '
 i = i + 1
 go to 10
 endif
 if (arg(1:4).eq.'-d ') then
 DEBUG =.TRUE.
 write (fnames(7)(1:20),'(a20)') 'DEBUG '
 i = i + 1
 go to 10
 endif
 if (arg(1:4).eq.args(j))then
C call getarg(i+1,fnames(j),istatus) RESTLH9
 call getarg(i+1,arg,istatus) RESTLH9
 fnames(j) = arg RESTLH9
C print *,'i+1=',i+1,' fname=',fnames(j)
 i = i + 2
 go to 10
 endif
 enddo
 print *,'argument ',arg(1:4),' not existent'
 i = i + 1

106

 10 continue
C
 IF (LHELP) GOTO 9000
C
 RSTIN = iun(1)
 RSOUT = iun(2)
 RSINF = iun(3)
 PLOUT = iun(4)
 PLINF = iun(5)
 STRIPF = iun(6)
 DEBU = iun(7)
C RSTR532u1
 IF(SCREEN) THEN RSTR532u1
 IOUT = 0 RSTR532u1
 ELSE RSTR532u1
 IF (DEBUG) THEN RSTR532u1
 IOUT = DEBU RSTR532u1
 ELSE RSTR532u1
 IOUT = RSINF RSTR532u1
 END IF RSTR532u1
 ENDIF RSTR532u1
C RSTR532u1
 if (DEBUG) then
 open (DEBU,FILE=fnames(7),FORM=forms(iforms(7))
 & ,STATUS=stat(istat(7)))
 write (DEBU,'(A)') ' DEBUGGING INFORMATIONS'
 write (DEBU,'(A)') ' Parameters in commandline processed:'
 do 11 I= 1,NFIL
 write (DEBU,'(A,I3,A,A,A,A,A,A,A,A)')' I/O = ',iun(I),' ',
 & forms(iforms(I)),' ',
 & stat(istat(I)),' ',args(I),' ',fnames(I)(1:60) RSTR532u3
 11 continue
 end if
C
C --
C CHECK Machine Version
C --
C
 open (RSTIN,FILE=fnames(1),FORM='UNFORMATTED' RSTR32a
 & ,STATUS=stat(istat(1)),ACCESS='TRANSPARENT') RSTR32a
 READ (RSTIN, err=20,IOSTAT=IOS) POINTER RSTR32a
 if (POINTER(1).ne.8) INTEL = .FALSE. RSTR32a
C If not INTEL machine then write restart w/o plot data is RSTR32a
C not indented RSTR32a
 IF(.NOT.INTEL) RESTO = .FALSE. RSTR32a
 if (DEBUG) then RSTR32a
 write (DEBU,'(1x,A,8(1x,I2))') 'FIRST 8 BYTES : ',POINTER RSTR32a
 endif RSTR32a
 if (screen) then RSTR32a
 if (INTEL) then RSTR32a
C write (*,*) ' Machine Version: INTEL / PC' RSTR32a
 write (*,*) ' Machine Version: Intel or DEC-Alpha' RSTR32u2
C if (DEBUG) write (DEBU,'(A)') ' Machine Version: INTEL / PC' RSTR32a
 if (DEBUG) write (DEBU,'(A)') ' Machine Version: INTEL or DEC-AlRSTR32u2
 &pha' RSTR32u2
 else RSTR32a
C write (*,*) ' Machine Version: WS / AIX' RSTR32a
 write (*,*) ' Machine Version: IBM-AIX, SunOS56, SGI64, HPC18RSTR32u2
 &0' RSTR32u2
C if (DEBUG) write (DEBU,'(A)') ' Machine Version: WS / AIX' RSTR32a
 if (DEBUG) write (DEBU,'(A)') ' Machine Version: IBM-AIX, SunOS5RSTR32u2
 &6, SGI64, HPC180' RSTR32u2
 end if RSTR32a
 endif RSTR32a
 close (RSTIN) RSTR32a
C
C --
C CHECK FILE HEADER and RELAP-VERSION
C --
C
 IF(INTEL) THEN
 open (RSTIN,FILE=fnames(1),FORM=forms(iforms(1)) RESTLH9
 & ,STATUS=stat(istat(1))) RESTLH9
 read (RSTIN,end=20,err=20) LEN,iwrd8
 read (RSTIN,end=20,err=20) (aW(i),i=1,LEN)
 ELSE
 open (RSTIN,FILE=fnames(1),FORM='UNFORMATTED' RSTR32a
 & ,STATUS=stat(istat(1)),ACCESS='TRANSPARENT') RSTR32a
 READ (RSTIN,err=20,IOSTAT=IOS) RPOINTR(2),LEN,iwrd8 RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) I4int(2) RSTR32a
 LEN = Iflip(LEN) RSTR32a
 iwrd8 = Iflip(iwrd8) RSTR32a
* WRITE(*,*) LEN, iwrd8 RSTR32a
 READ (RSTIN,err=20,IOSTAT=IOS) RPOINTR RSTR32a

107

 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) I4int RSTR32a
 READ (RSTIN,err=20,IOSTAT=IOS) (aW(i),i=1,LEN) RSTR32a
* WRITE(*,*) aW(1),' ',aw(2),' ',aw(3),' ',aw(4),' '
* WRITE(*,*) aw(5),' ',aw(6),' ',aw(7),' ',aw(8),' '
 ENDIF
C
C iaW(2,10) = iroute: replaced by
 IF (INTEL) THEN
 problemopt611 = iaW(1,10)
 problemtype05 = iaW(2,10)
 ELSE
 problemopt611 = IFlip(iaW(1,10)) RSTR5322
 problemtype05 = IFlip(iaW(2,10)) RSTR5322
 END IF
C
 if (DEBUG) then
 write (DEBU,'(1x,A,I6,A,I6)') 'LEN = ',LEN,' iwrd8 =', iwrd8
 write (DEBU,'(1x,A)')'-------- -------- -------- -------- ------
 &--'
 write (DEBU,'(1x,9A)')aW(1),' ',aW(2),' ',aW(3),' ',aW(4),' ',
 & aW(5)
 write (DEBU,'(1x,9A)')aW(6),' ',aW(7),' ',aW(8),' ',aW(9),' ',
 & aW(10)
 write (DEBU,'(1x,A,I6)') 'problemopt611 = ',problemopt611
 write (DEBU,'(1x,A,I6)') 'problemtype05 = ',problemtype05
 endif
C
 GO TO 30
C
 20 WRITE (*,2020) IOS
 2020 FORMAT (1X,'****** ERROR ON FIRST READ OF INPUT FILE. '
 & ,' IOS = ',I4)
 GO TO 25
C
C --
C CHECK RELAP VERSION (RELAP5/MOD3.2xx) RSTR532
C CHECK RELAP VERSION (RELAP5/MOD3.3) RSTR533.R
C --
C
 30 CONTINUE
 if (DEBUG) then
 write (DEBU,'(1x,A)')'Check Relap Version'
 write (DEBU,'(1x,A)') aW(2)
 write (DEBU,'(1x,A)') FRSTRC(2)
 endif
 IF (aW(2) .EQ. FRSTRC(2)) GO TO 35
C Check additionally for Development Versions aa .. zz RSTR33.R
C FRSTRCA (1) = / RSTR33.R
C FRSTRCA (2) = 3 RSTR33.R
C FRSTRCA (3) = . RSTR33.R
C FRSTRCA (4) = 3 RSTR33.R
C FRSTRCA (5) = a .. z CHAR(97) = a RSTR33.R
C FRSTRCA (6) = a .. z CHAR(122) = z RSTR33.R
C FRSTRCA (7..8) = " " RSTR33.R
 DO j=5,6 RSTR33.R
 DO i=97,122 RSTR532u2
C frstrca(6) = CHAR(i) RSTR532u2
 frstrca(j) = CHAR(i) RSTR33.R
C write (DEBU,'(1x,A,5x,A)') aW(2),FRSTRC(2) RSTR532u2
 if (frstrcb(j) .EQ. frstrca(j)) go to 34 RSTR33.R
 END DO RSTR33.R
 34 CONTINUE RSTR33.R
 IF (aW(2) .EQ. FRSTRC(2)) GO TO 35 RSTR532u2
 END DO RSTR532u2
 WRITE (*,2030)
 lpt = .FALSE. RESTR33
 2030 FORMAT (1X,'****** RESTART-PLOT FILE IS NOT COMPATIBLE WITH'
 &,' THIS VERSION OF THE PROGRAM.')
 GO TO 25
C
C CHECK IF RESTART-PLOT or STRIP OUTPUT
C
 35 CONTINUE
 lpt = .TRUE. RESTR33
 if (DEBUG) then
 write (DEBU,'(1x,A)') 'Check if RESTART-PLOT or STRIP OUTPUT'
 write (DEBU,'(1x,A,5x,a)')aW(4),aW(5)
 write (DEBU,'(1x,A,5x,a)')FRSTRC(3),FRSTRC(4)
 write (DEBU,'(1x,A,5x,a)')STREC(3),STREC(4)
 endif
 IF (aW(4).EQ.FRSTRC(3).AND.aW(5).EQ.FRSTRC(4)) RSTPLOT = .TRUE.
 IF (aW(4).EQ. STREC(3).AND.aW(5).EQ. STREC(4)) RSTPLOT = .FALSE.
 IF (STRIPO) RSTPLOT = .FALSE.

108

C
 IF(.NOT.RSTPLOT)RESTO=.FALSE.
 GO TO 40
 25 CLOSE (RSTIN)
 GO TO 1000
C --
C EVERYTHING IS OK, NOW OPEN ALL REQUIRED FILES
C --
 40 CONTINUE
 REWIND (RSTIN)
C -----------------
 IF(RSTPLOT) THEN
 DO I=3,5,2
 open (IUN(I),FILE=fnames(I),FORM=forms(iforms(I))
 & ,STATUS=stat(istat(I)))
 ENDDO
 ELSE
 write (fnames(3)(1:20),'(a20)') ' '
 open (IUN(5),FILE=fnames(5),FORM=forms(iforms(5))
 & ,STATUS=stat(istat(5)))
 open (IUN(6),FILE=fnames(6),FORM=forms(iforms(6))
 & ,STATUS=stat(istat(6)))
 ENDIF
C -----------------
 IF (RESTO) THEN
 open (IUN(2),FILE=fnames(2),FORM=forms(iforms(2))
 & ,STATUS=stat(istat(2)))
 ELSE
 write (fnames(2)(1:20),'(a20)') ' '
 ENDIF
C -----------------
 IF (PLOTO) THEN
 open (IUN(4),FILE=fnames(4),FORM=forms(iforms(4))
 & ,STATUS=stat(istat(4)))
 ELSE
 write (fnames(4)(1:20),'(a20)') ' '
 ENDIF
C -----------------
 IF (STRIPO) THEN
 open (IUN(6),FILE=fnames(6),FORM=forms(iforms(6))
 & ,STATUS=stat(istat(6)))
 ELSE
 write (fnames(6)(1:20),'(a20)') ' '
 ENDIF
C
C --
 call cdate(cword)
C --
C
 IF (SCREEN) THEN
 IF (RSTPLOT) THEN
C write(*,'(/1X,a\)')'RELAP5 MOD3.2 RESTART/PLOT INFORMATION 'RSTR532
 write(*,'(/1X,a\)')'RELAP5 MOD3.3 RESTART/PLOT INFORMATION 'RSTR533.R
 ELSE
C write(*,'(/1X,a\)')'RELAP5 MOD3.2 STRIP INFORMATION 'RSTR532
 write(*,'(/1X,a\)')'RELAP5 MOD3.3 STRIP INFORMATION 'RSTR533.R
 ENDIF
 WRITE(*,'(1x,a,a10)')'Date (MM/DD/YY):',cword
 write(*,'(1x,a,a50)')'Program name :',progr
 write(*,*)' ',(args(i),' ',fnames(i)(1:20),i=1,3)
 write(*,*)' ',(args(i),' ',fnames(i)(1:20),i=4,6)
 write(* ,*)' --
 &---------------------'
 END IF
C
 write(PLINF,'(1X,a\)',ERR=900)'RELAP 5MOD3 PLOT PARAMETER INFORMAT
 &ION '
 write(PLINF,'(1x,a,a10)')'Date (MM/DD/YY):',cword
 write(PLINF,'(1x,a,a50)')'Program name: ',progr
C write(PLINF,'(1X,a,a20)')'Input file : ',fnames(1)(1:20)
 write(PLINF,'(1X,a,a60)')'Input file : ',fnames(1)(1:60) RSTR32u3
 write(PLINF,*)'---
 &--------------------'
C
 IF (PLOTO) THEN
C write(PLOUT,'(1X,a\)',ERR=901)'RELAP 5MOD3.2 PLOT INFORMATION '
 write(PLOUT,'(1X,a\)',ERR=901)'RELAP 5MOD3.3 PLOT INFORMATION 'RSTR33.R
 write(PLOUT,'(1x,a,a10)')'Date (MM/DD/YY):',cword
 write(PLOUT,'(1x,a,a50)')'Program name: ',progr
C write(PLOUT,'(1X,a,a20)')'Input file : ',fnames(1)(1:20)
 write(PLOUT,'(1X,a,a60)')'Input file : ',fnames(1)(1:60) RSTR32u3
 write(PLOUT,*)'---
 &--------------------'
 ENDIF
C

109

 IF (RSTPLOT) THEN
 write(RSINF,'(1X,a\)',ERR=997)'RELAP 5MOD3 RESTART INFORMATION'
 write(RSINF,'(1x,a,a10)')'Date (MM/DD/YY):',cword
 write(RSINF,'(1x,a,a50)')'Program name: ',progr
C write(RSINF,'(1X,a,a20)')'Input file : ',fnames(1)(1:20)
 write(RSINF,'(1X,a,a60)')'Input file : ',fnames(1)(1:60) RSTR32u3
 write(RSINF,*)'---
 &--------------------'
 ENDIF
C
C --
C NOW READ FILE HEADER AND THE OTHER DATA OF RST-PLT FILE
C --
C
 IF(INTEL) THEN
 read (RSTIN,end=20,err=20) LEN,iwrd8
 read (RSTIN,end=20,err=20) (aW(i),i=1,LEN)
 ELSE
 READ (RSTIN,err=20,IOSTAT=IOS) RPOINTR(2),LEN,iwrd8 RSTR32a
 LEN = Iflip(LEN) RSTR32a
 iwrd8 = Iflip(iwrd8) RSTR32a
* WRITE(*,*) LEN, iwrd8 RSTR32a
 READ (RSTIN,err=20,IOSTAT=IOS) RPOINTR RSTR32a
 READ (RSTIN,err=20,IOSTAT=IOS) (aW(i),i=1,LEN) RSTR32a
 ENDIF
 IF (SCREEN) THEN
 WRITE (*,2004) IW(1),IW(2),IW(7),IW(8)
 ENDIF
C
 IF(.NOT.TERMINAL) THEN
 IF (RSTPLOT) THEN
 IF (PLOTO) WRITE (PLOUT,2004) IW(1),IW(2),IW(7),IW(8) RSTR532
 IF (RESTO) WRITE (RSOUT,ERR=998) LEN,iwrd8 RSTR532
 IF (RESTO) WRITE (RSOUT,ERR=998) (aW(KL),KL=1,LEN) RSTR532
 ELSE
 IF (PLOTO) WRITE (PLOUT,2005) IW(1),IW(2),IW(7),IW(8) RSTR532
 ENDIF
 ENDIF
 IF (RSTPLOT) THEN
 WRITE (RSINF,2004) IW(1),IW(2),IW(7),IW(8) RSTR532
 WRITE (PLINF,2004) IW(1),IW(2),IW(7),IW(8) RSTR532
 ELSE
 WRITE (PLINF,2005) IW(1),IW(2),IW(7),IW(8) RSTR532
 ENDIF
C
 IF(STRIPO) THEN
 WRITE (STRIPF,2001)
 WRITE (STRIPF,2002)
 WRITE (STRIPF,2001)
 WRITE (STRIPF,2002)
 WRITE (STRIPF,2003) IW(1),IW(2),IW(7),IW(8)
 WRITE (STRIPF,2002)
 WRITE (STRIPF,2006) fnames(1)(1:40) RSTR32u3
 WRITE (STRIPF,2007) cword
 WRITE (STRIPF,2002)
 WRITE (STRIPF,2008) fnames(6)(1:40) RSTR32u3
 WRITE (STRIPF,2009)
 WRITE (STRIPF,2001)
 ENDIF
C
 2001 FORMAT ('* ', 77('='))
 2002 FORMAT ('* ')
 2003 FORMAT ('* RESTART FILE WAS WRITTEN BY PROGRAM ', 2A8
 & ,' ON ',A8,A1)
 2004 FORMAT (' RESTART INPUT FILE WAS WRITTEN BY PROGRAM ',2A8
 & ,' ON ',A8,A1)
 2005 FORMAT (' STRIP INPUT SOURCE WAS WRITTEN BY PROGRAM ',2A8
 & ,' ON ',A8,A1)
 2006 FORMAT ('* RESTART FILE NAME : ',A40) RSTR32u3
 2007 FORMAT ('* DATE (MM/DD/YY) : ',A10)
 2008 FORMAT ('* STRIP-INPUT FILE NAME : ',A30)
 2009 FORMAT ('* STRIP-OUTPUT WILL BE IN ASCII FORMAT (FMTOUT)')
 2010 FORMAT ('* NUMBER OF PARAMETERS IN THIS PROBLEM : ',I4)
 2011 FORMAT ('* ONLY THE FIRST 999 PARAMETERS ARE CONSIDERED.')
 2012 FORMAT ('* THE REMAINDER OF ',I4,' ARE TREATED AS COMMENT (*).')
 2013 FORMAT ('* NOTE: STRIP PARAMETERS VALID ONLY 1001 .. 1999.') RSTR33.0
C
C ----------------- NOW READ RESTART/PLOT/STRIP DATA -------------------
C
 nmbrst = 0
 LENB = 0
 LENC = 0 RSTR532
 ix = 1
 IZA = 1
C

110

C---------------------------------------LOOP----------------------------
C
 if (DEBUG) then
 write (DEBU,'(1x,A)') 'Enter RESTART-PLOTDATA LOOP'
 endif
 GOTO 50
 45 continue
 IF(STRIPO) THEN
 WRITE (STRIPF,2010) lenb-2
 if (lenb.gt.999) then
C WRITE (STRIPF,2011) RSTR33.0
C WRITE (STRIPF,2012) (lenb-2-999) RSTR33.0
 WRITE (STRIPF,2013) RSTR33.0
 end if
 WRITE (STRIPF,2001)
 ENDIF
 GOTO 50
C
 50 continue
C
C --
C READ RECORD LENGTH AND WORD-WIDTH
C --
C
 if(INTEL) then
 read (rstin,err=903,end=902,iostat=ios) lx, iwrd RSTR532
 else
 READ (RSTIN,err=903,iostat=ios) RPOINTR RSTR32a
 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) 'A:I4int = ',I4int(1), I4int(2) RSTR32a
 IF(I4int(2).eq.0)goto 902
 READ (RSTIN,err=903,iostat=ios) lx, iwrd RSTR32a
 lx = Iflip(lx) RSTR32a
 iwrd = Iflip(iwrd) RSTR32a
 endif
 j = lx*iwrd/8
 lx = j
* write (*,*) lx, iwrd
C
 if(INTEL) then
 read (rstin,err=903,end=902,iostat=ios) (fa(i+ix-1),i=1,lx) RSTR532
 else
 READ (RSTIN,err=903,IOSTAT=IOS) RPOINTR RSTR32a
 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) 'B:I4int = ',I4int(1), I4int(2) RSTR32a
 READ (RSTIN,err=903,IOSTAT=IOS) (fa(i+ix-1),i=1,lx) RSTR32a
 endif
 label = cfa(ix) RSTR532
* WRITE(*,*) label
 if (DEBUG) then
 write (DEBU,'(1x,A,I6,A,I6,A,A)') 'lx = ',lx,' iwrd =', iwrd,
 & ' label = ',label
 endif
 51 IF (label.eq.'plotrec ') THEN
 IF (.NOT.TERMINAL) THEN
 if (ploto) write(PLOUT,'(/1x,a8)')label
 ENDIF
 if (SCREEN) then
 IF (IZA.eq.1) write(*,'(/1x,a8\)')label
 write(*,'(A1\)')'.'
 endif
 IZA = IZA + 1
 GO TO 90
 ENDIF
 IF(.NOT.TERMINAL) THEN
 IF (RSTPLOT) THEN
 IF (RESTO) WRITE (RSOUT,ERR=998) lx, iwrd RSTR532
 IF (RESTO) WRITE (RSOUT,ERR=998) (fa(i+ix-1),i=1,lx) RSTR532
 ENDIF
 ENDIF
 IF (label.eq.'plotinf ') GO TO 60 RSTR532
 IF (label.eq.'plotalf ') GO TO 65 RSTR532
 IF (label.eq.'plotnum ') GO TO 70 RSTR532
 IF (label.eq.'restart ') GO TO 80 RSTR532
C no label ---> common block of restart will be read
 RESTI = .TRUE.
 GO TO 85
C
C---------------------------------------PLOTINF-------------------------
C
C READ PLOTINF RECORDS
C
C --

111

C
C ---------------First read Length of plotdata record
C
 60 continue
 if(INTEL) then
 lenb = ia(2,ix+1) RSTR5322
 lenc = ia(2,ix+2) RSTR5322
 else
 lenb = Iflip(ia(2,ix+1)) RSTR5322
 lenc = Iflip(ia(2,ix+2)) RSTR5322
 endif
 if (DEBUG) then
 WRITE(DEBU,'(1x,A,I6)') 'LENGTH OF PLOTINF-RECORDS: ',lenb RSTR532
 WRITE(DEBU,'(1x,A,I6)') 'LENGTH OF PLOTREC-RECORDS: ',lenc RSTR532
 end if
 lcompr = .false.
 if (lenc.NE.((lenb+2)/2)) then RSTR532
 GOTO 906 RSTR532
 ELSE RSTR532
 if (DEBUG) then
 WRITE(DEBU,'(1x,A)') 'PLOTRECORDS ARE COMPRESSED!!' RSTR532
 endif
 lcompr = .true.
 endif
 GOTO 61
C --
C Write this info later, when Problem has been read in restart block
 IF (.NOT.TERMINAL) THEN RSTR532
C if (PLOTO) write(PLOUT,'(I4)') ' ',lenb-1 RSTR532
 if (PLOTO) write(PLOUT,'(1X,I6)') ' ',lenb-1 RSTR33.11
C no write into RSTOUT FILE RSTR532
 ENDIF RSTR532
C write(PLINF,'(I4)') ' ',lenb-1 RSTR532u3
 write(PLINF,'(1X,I6)') ' ',lenb-1 RSTR33.11
C --
 61 ix = ix + lx RSTR532
 GOTO 45 RSTR532
C
C --
C
C ---------------Second read PLOTALF record (parameters)
C
 65 lxa = lx RSTR532
 if (DEBUG) then
 WRITE(DEBU,'(1x,2(A,I6),A)') 'PLOTALF-RECORD : ',lxa,
 & ' x ',iwrd,' BYTES'
 endif
 ix = ix + lx RSTR532
 GOTO 50 RSTR532
C
C --
C
C ---------------Third Read PLOTNUM record (volumes/junctions,...)
C
 70 lxn = lx RSTR532
 if (lxa.ne.lxn) then RSTR532
 GOTO 904 RSTR532
 end if RSTR532
 if (DEBUG) then
 WRITE(DEBU,'(1x,2(A,I6),A)') 'PLOTNUM-RECORD : ',lxn,
 & ' x ',iwrd,' BYTES'
 end if
 ix = ix + lx RSTR532
 GOTO 50 RSTR532
C
C --------------------------------------RESTART INFO--------------------
C READ RESTART INFORMATION
C---------------------------------------RST-BLOCK-----------------------
C
 80 continue
 if(INTEL) then
C Read print variable (2 * I4) RSTR532
 iprint = ia(2,ix+1) RSTR532
C Read ncount variable (2 * I4) RSTR532
 ncount = ia(2,ix+2) RSTR532
 else
 iprint = Iflip(ia(2,ix+1)) RSTR5322
 ncount = Iflip(ia(2,ix+2)) RSTR5322
 endif
C i print and n count variable are not longer suportet in Relap RSTR533.R
C version 3.3 RSTR533.R
 if (DEBUG) then
C WRITE(DEBU,'(1x,A,I6)') 'PRINT VARIABLE : ',iprint RSTR532
C WRITE(DEBU,'(1x,A,I6)') 'NCOUNT VARIABLE (NO.RST) : ',ncount RSTR532
 WRITE(DEBU,'(1x,A,I6,A)') 'PRINT VARIABLE : ',iprint,RSTR533.R

112

 * ' Not supportet in Version 3.3!' RSTR533.R
 WRITE(DEBU,'(1x,A,I6,A)') 'NCOUNT VARIABLE (NO.RST) : ',ncount,RSTR533.R
 * ' Not supportet in Version 3.3!' RSTR533.R
 end if
 ix = ix + lx
C if (ncount>0) GOTO 84 RSTR32u4
C The next line is no longer valid in version 3.3 and replaced RSTR533.R
C by the line following the lx checking for next word RSTR533.R
C if (iprint>32767) GOTO 84 RSTR32u4
C flag 16 - 32 = Restart Blocknumber (=0 for restart) RSTR32u4
C
C The GENRL Data and the comctl Data are read in only the first time
C for each new or restartet problem
C
 if(INTEL) then
 read (rstin,err=903,end=902,iostat=ios) lx, iwrd RSTR532
 else
 READ (RSTIN,err=903,IOSTAT=IOS) RPOINTR RSTR32a
 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) I4int RSTR32a
 READ (RSTIN,err=903,IOSTAT=IOS) lx, iwrd RSTR32a
 lx = Iflip(lx) RSTR32a
 iwrd = Iflip(iwrd) RSTR32a
 endif
C
C The next three lines replace the iprint check RSTR533.R
C
 if (lx .GT. 30) then RSTR533.R
 GOTO 88 RSTR533.R
 end if RSTR533.R
C
 if (DEBUG) then
 WRITE(DEBU,'(1x,2(A,I6),A)') 'TITEL---RECORD : ',lx,
 & ' x ',iwrd,' BYTES'
 end if
 if(INTEL) then
 read (rstin,err=903,end=902,iostat=ios) (fa(i+ix-1),i=1,lx) RSTR532
 else
 READ (RSTIN,err=903,IOSTAT=IOS) RPOINTR RSTR32a
 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) I4int RSTR32a
 READ (RSTIN,err=903,IOSTAT=IOS) (fa(i+ix-1),i=1,lx) RSTR32a
 endif
 IF(.NOT.TERMINAL) THEN
 IF (RSTPLOT) THEN
 IF (RESTO) WRITE (RSOUT,ERR=998) lx, iwrd RSTR532
 IF (RESTO) WRITE (RSOUT,ERR=998) (fa(i+ix-1),i=1,lx) RSTR532
 ENDIF
 ENDIF
 write (ptitle,'(8a8)') (fa(i+ix-1),i=1,8)
 write (ctitle,'(12a8)') (fa(i+ix-1),i=9,20)
 if (SCREEN) then
 write (*,*) ptitle
 write (*,'(A80)') ctitle
 endif
 if (DEBUG) then
 WRITE(DEBU,'(1x,A)') ptitle RSTR532
 WRITE(DEBU,'(1x,A)') ctitle RSTR532
 end if
C
 if (ncount>0) GOTO 86 RSTR32u4
C
C --
 IF (.NOT.TERMINAL) THEN RSTR532
 if (PLOTO) write (PLOUT,'(1x,A94)') ctitle RSTR532
C-------------------------------------new in 2.3.1 RSTR33.1
C if (PLOTO) write (PLOUT,'(1X,I4)')lenb-1 RSTR532
 if (PLOTO) write (PLOUT,'(1X,I6)')lenb-1 RSTR532
C-------------------------------------new in 2.3.1 RSTR33.1
C no write into RSTOUT FILE RSTR532
 ENDIF RSTR532
 write(PLINF,'(1X,A94)') ctitle RSTR532
C-------------------------------------new in 2.3.1 RSTR33.1
C write(PLINF,'(1X,I4)') lenb-1 RSTR532u3
 write(PLINF,'(1X,I6)') lenb-1 RSTR33.1
C-------------------------------------new in 2.3.1 RSTR33.1
 IF(STRIPO) THEN
 WRITE (STRIPF,'(2H= ,A77)') ctitle
 WRITE (STRIPF,'(17H100 strip fmtout)')
 WRITE (STRIPF,'(18H*100 strip binary)')
 WRITE (STRIPF,'(5H103 0)')
 ENDIF
C

113

C --
C
C ---------------Print Plotdata-Info in PLOTOUT, PLOTINF
C
C --
 IF (.NOT.TERMINAL) THEN RSTR532
 if (PLOTO) then RSTR532
 do i=5,lenb+3 RSTR532
 j = lenb+i RSTR532
 If(INTEL) then
 write(PLOUT,81) cfa(i),ia(2,j) RSTR5322
 else
 write(PLOUT,81) cfa(i),Iflip(ia(2,j)) RSTR5322
 endif
 end do RSTR532
 end if RSTR532
C no write into RSTOUT FILE RSTR532
 ENDIF RSTR532
 do i=5,lenb+3 RSTR532
 j = lenb+i RSTR532
 If(INTEL) then
C write(PLINF,81) cfa(i),ia(2,j) RSTR5322
 write(PLINF,181) i-5,cfa(i),ia(2,j) RSTR5322u3
 else
C write(PLINF,81) cfa(i),Iflip(ia(2,j)) RSTR5322
 write(PLINF,181) i-5,cfa(i),Iflip(ia(2,j)) RSTR5322u3
 endif
 end do RSTR532
 81 format(1X,A8,' ',I9,' ') RSTR532
 181 format(1X,I9,' ',A8,' ',I9,' ') RSTR532u3
c write to stripinput file
 icard = 1000
 IF(STRIPO) THEN
 do i=6,lenb+3
 j = lenb+i
 icard = icard + 1
 If(INTEL) then RSTR5322
 if (icard.gt.1999) then RSTR5322
 if (icard.eq.2000) then RSTR33.0
 WRITE(STRIPF,2013) RSTR33.0
 end if RSTR33.0
 write(STRIPF,83) icard, cfa(i),ia(2,j) RSTR5322
 else
C write(STRIPF,82) icard, cfa(i),ia(2,j) RSTR5322
 write(STRIPF,83) icard, cfa(i),ia(2,j) RSTR33.0
 end if
 else
 IF((cfa(i)(1:3)).eq.'ext') then RSTR5322
 icard = icard - 1 RSTR5322
 write(STRIPF,83) icard, cfa(i),Iflip(ia(2,j)) RSTR5322
 else
 if (icard.gt.1999) then RSTR5322
 write(STRIPF,83) icard, cfa(i),Iflip(ia(2,j)) RSTR5322
 else
 write(STRIPF,82) icard, cfa(i),Iflip(ia(2,j)) RSTR5322
 end if
 endif
 endif
 end do
 WRITE (STRIPF,'(5H. end)')
 WRITE (STRIPF,2001)
 GOTO 999
 82 format(I4,' ',A8,' ',I9,' *')
 83 format('*',I4,' 'A8,' ',I9,' *')
 ENDIF

C
C --
C
 86 continue RSTR5322u4
C
 ix = ix + lx
 icomctl = ix
 if (DEBUG) then
 WRITE(DEBU,'(1x,A,I6)') 'POSITION OF COMCTL = ',lx RSTR532
 end if
C
C CommonBlock /comctl/ starts at position icomstart
C
C This Datablock is read only once
C
 if(INTEL) then
 read (rstin,err=903,end=902,iostat=ios) lx, iwrd RSTR532
 else
 READ (RSTIN,err=903,IOSTAT=IOS) RPOINTR RSTR32a

114

 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) I4int RSTR32a
 READ (RSTIN,err=903,IOSTAT=IOS) lx, iwrd RSTR32a
 lx = Iflip(lx) RSTR32a
 iwrd = Iflip(iwrd) RSTR32a
 endif
C
 if (DEBUG) then
 WRITE(DEBU,'(1x,2(A,I6),A)') 'COMCTL--RECORD : ',lx,
 & ' x ',iwrd,' BYTES'
 end if
 j = lx*iwrd/8
 if(INTEL) then
 read (rstin,err=903,end=902,iostat=ios) (fa(i+ix-1),i=1,j) RSTR532
 else
 READ (RSTIN,err=903,IOSTAT=IOS) RPOINTR RSTR32a
 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) I4int RSTR32a
 READ (RSTIN,err=903,IOSTAT=IOS) (fa(i+ix-1),i=1,j) RSTR32a
 endif
C Now write the data
 IF(.NOT.TERMINAL) THEN
 IF (RSTPLOT) THEN
 IF (RESTO) WRITE (RSOUT,ERR=998) lx, iwrd RSTR532
 IF (RESTO) WRITE (RSOUT,ERR=998) (fa(i+ix-1),i=1,j) RSTR532
 ENDIF
 ENDIF
 ix = ix + J
C
C --
C
 84 continue
 icontrl = ix
 if (DEBUG) then
 WRITE(DEBU,'(1x,A,I6)') 'POSITION OF CONTRL = ',lx RSTR532
 end if
C
C CommonBlock /contrl/ starts at position icontrlstart
C
C This Datablock is read in every restart block
C
 if(INTEL) then
 read (rstin,err=903,end=902,iostat=ios) lx, iwrd RSTR532
 else
 READ (RSTIN,err=903,IOSTAT=IOS) RPOINTR RSTR32a
 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) I4int RSTR32a
 READ (RSTIN,err=903,IOSTAT=IOS) lx, iwrd RSTR32a
 lx = Iflip(lx) RSTR32a
 iwrd = Iflip(iwrd) RSTR32a
 endif
C
C -----> new in Relap 3.3 RSTR533.R
C GOTO 87 RSTR533.R
 88 CONTINUE RSTR533.R
C RSTR533.R
 icontrl = ix RSTR533.R
 if (DEBUG) then RSTR533.R
 WRITE(DEBU,'(1x,A,I6)') 'POSITION OF CONTRL = ',ix RSTR533.R
 end if RSTR533.R
C RSTR533.R
 87 CONTINUE RSTR533.R
C -----> new in Relap 3.3 RSTR533.R
C
 if (DEBUG) then
 WRITE(DEBU,'(1x,2(A,I6),A)') 'CONTRL--RECORD : ',lx,
 & ' x ',iwrd,' BYTES'
 end if
 j = lx*iwrd/8
 if(INTEL) then
 read (rstin,err=903,end=902,iostat=ios) (fa(i+ix-1),i=1,j) RSTR532
 else
 READ (RSTIN,err=903,IOSTAT=IOS) RPOINTR RSTR32a
 I4int(1)=Iflip(I4aix(1)) RSTR32a
 I4int(2)=Iflip(I4aix(2)) RSTR32a
* WRITE(*,*) I4int RSTR32a
 READ (RSTIN,err=903,IOSTAT=IOS) (fa(i+ix-1),i=1,j) RSTR32a
 endif
C Now write the data
 IF(.NOT.TERMINAL) THEN
 IF (RSTPLOT) THEN
 IF (RESTO) WRITE (RSOUT,ERR=998) lx, iwrd RSTR532

115

 IF (RESTO) WRITE (RSOUT,ERR=998) (fa(i+ix-1),i=1,j) RSTR532
 ENDIF
 ENDIF
C
C check Number of restart and time of restart block
C
C Time of restart: timehy R8 on position 5 in contrl block
C Number restart : rstblcknumber1531 I4 on position 48 / 2
C
 IF(INTEL) then
C timehy = fa(icontrl+5) RSTR5322
 timehy = fa(icontrl+4) RSTR32u4
C irstbl = ia(1,icontrl+47) RSTR32u4
C done = ia(1,icontrl+48) RSTR32u4
C nmbrst = ia(2,icontrl+48) RSTR5322
C problemtype05 = ia(2,icontrl+51) RSTR32u4
C problemopt611 = ia(1,icontrl+52) RSTR32u4
 irstbl = ia(1,icontrl+51) RSTR33
 done = ia(1,icontrl+52) RSTR33
 nmbrst = ia(2,icontrl+52) RSTR33
 problemtype05 = ia(2,icontrl+55) RSTR32
 problemopt611 = ia(1,icontrl+56) RSTR32
 else
C I4int(1)=Iflip(ia(2,icontrl+5)) RSTR5322
C I4int(2)=Iflip(ia(1,icontrl+5)) RSTR5322
 I4int(1)=Iflip(ia(2,icontrl+5)) RSTR32u4
 I4int(2)=Iflip(ia(1,icontrl+5)) RSTR32u4
 timehy = r8int RSTR5322
C nmbrst = Iflip(ia(2,icontrl+48)) RSTR5322
C problemtype05 = Iflip(ia(1,icontrl+53)) RSTR32u4
C problemopt611 = Iflip(ia(2,icontrl+53)) RSTR32u4
 nmbrst = Iflip(ia(2,icontrl+52)) RSTR33
 problemtype05 = Iflip(ia(1,icontrl+57)) RSTR33
 problemopt611 = Iflip(ia(2,icontrl+57)) RSTR33
 endif
C
 if (SCREEN) then
 write(*,'(/)')
* write(* ,*)'READ RESTART RECORD ',nmbrst,' TIME =',timehy
 write (*,'(1X,A,I6,A,f17.10)')'READ RESTART RECORD ',nmbrst,
 & ' TIME =', timehy
 endif
 if (DEBUG) then
 write(DEBU,'(/)')
* write(* ,*)'READ RESTART RECORD ',nmbrst,' TIME =',timehy
 write (DEBU,'(1X,A,I6,A,f17.10)')'READ RESTART RECORD ',nmbrst,
 & ' TIME =', timehy
 WRITE(DEBU,'(1X,A,I6) ')'Done: ',done REST533
 WRITE(DEBU,'(1X,A,I6) ')'RestartBlock: ',irstbl REST533
 WRITE(DEBU,'(1X,A,I6) ')'Problemtype: ',problemtype05REST533
 WRITE(DEBU,'(1X,A,I6) ')'ProblemOpt: ',problemopt611REST533
 endif
 IF(RSTPLOT) THEN
* write(RSINF,*)'READ RESTART RECORD ',nmbrst,' TIME =',timehy
 write (RSINF,'(1X,A,I6,A,f17.10)')'READ RESTART RECORD ',
 & nmbrst,' TIME =', timehy
 ENDIF
C
C New in Relap 5 Mod 3.3 : ncount is not assigned anymore RSTR33.R
 ncount = nmbrst RSTR33.R
C
 if (nmbrst.ne.ncount) then
 goto 910
 end if
C
C now start over in fa position 1 to read in the dynamic rst-data
C
 ix = 1
 GOTO 50 RSTR532
C
 85 continue
C
C read in all other common blocks
C
 ix = ix + lx
C j = lx*iwrd/8
 if (iwrd.eq.4) then
 j = lx * 2
 end if
 if (DEBUG) then
 WRITE(DEBU,'(1x,2(A,I6),A)') 'COMMON/DYNAMIC : ',lx,
 & ' x ',iwrd,' BYTES'
 end if
 GO TO 50
C

116

C---------------------------------------PLOTREC-------------------------
C
C READ PLOTREC RECORD
C
 90 continue
C Length of PlotData Record RESTLH9
 if (lx.ne.lenc) then
 GOTO 907
 end if
 if (lcompr) then
 if (iwrd.eq.4) then
 GOTO 908
 end if
 else
 if (iwrd.eq.4) then
 GOTO 909
 end if
 end if
C Data is in fa array from ix - ix+lx (lx=lenc)
 if (lcompr) then
 IF(.NOT.TERMINAL) THEN
 if(INTEL) then
 if (PLOTO) write (PLOUT,'(1X,A,e13.7)')'TIME = ',ffa(2*ix+1) RSTR5322
 if (PLOTO) write (PLOUT,'(6(e11.5,1X))',err=900) (ffa(2*ix+1+ RSTR5322
 & kk),kk=1,lenb-2) RSTR5322
 else
 if(PLOTO) then
C iia(2*ix+1)=ffa(2*ix+1) RSTR5322
 I4int(2)=Iflip(iia(2*ix+1)) RSTR5322
 write (PLOUT,'(1X,A,e13.7)')'TIME = ',R4int(2) RSTR5322
 do kk=1,lenb-2 RSTR5322
 iia(2*ix+1+kk)=Iflip(iia(2*ix+1+kk)) RSTR5322
 end do RSTR5322
 write (PLOUT,'(6(e11.5,1X))',err=900) RSTR5322
 & (ffa(2*ix+1+kk),kk=1,lenb-2) RSTR5322
 endif
 endif
C no write into RSTOUT FILE !!
 ENDIF
C alternative: Use of unsqoz function:
C fa array of length lenc will be expanded by factor of two
C call unsqoz (fa(ix+1),lenb)
C write (*,*) fa(ix+1),fa(ix+2),fa(ix+3)
C if (PLOTO) write (PLOUT,'(1X,A,e13.7)')'TIME = ',fa(ix+1)
C if (PLOTO) write (PLOUT,'(6(e11.5,1X))',err=900) (fa(ix+1+
C & kk),kk=1,lenb-2)
 else
C not compressed data, so read in PLOTOUT directly
 IF(.NOT.TERMINAL) THEN
 if(INTEL) then
 if (PLOTO) write (PLOUT,'(1X,A,e13.7)')'TIME = ',fa(ix+1) RSTR5322
 if (PLOTO) write (PLOUT,'(6(e11.5,1X))',err=900) (fa(ix+1+i), RSTR5322
 & i = 1,lenc-1) RSTR5322
 else
 if(PLOTO) then RSTR5322
 R8aix = fa(ix+1) RSTR5322
 I4int(1)=Iflip(I4aix(2)) RSTR5322
 I4int(2)=Iflip(I4aix(1)) RSTR5322
 write (PLOUT,'(1X,A,e13.7)')'TIME = ',R8int RSTR5322
 do i=1,lenc-1 RSTR5322
 R8aix = fa(ix+1+i) RSTR5322
 I4int(1)=Iflip(I4aix(2)) RSTR5322
 I4int(2)=Iflip(I4aix(1)) RSTR5322
 fa(ix+1+i)=R8int RSTR5322
 end do RSTR5322
 write (PLOUT,'(6(e11.5,1X))',err=900) RSTR5322
 & (fa(ix+1+i),i=1,lenc-1) RSTR5322
 endif RSTR5322
 endif
C no write into RSTOUT FILE !!
 ENDIF
 end if
 ix = 1
 IZA = IZA + 1
 PLOTI = .TRUE.
 GO TO 50
C
C--FEHLER
C
 100 WRITE (IOUT,2036) RSTR532u1
 2036 FORMAT (//' ******** WRONG INFORMATION IN HEADER OF DATA '
 & ,'RECORD.')
 GO TO 999
C
C--WEITER

117

C
 900 write (IOUT,2200) RSTR532u1
 2200 FORMAT(//' ****** Write ERROR on PLOTDATA INFORMATION FILE !!')
 GO TO 1000
C
 901 write (IOUT,2201) RSTR532u1
 2201 FORMAT(//' ****** Write ERROR on PLOTDATA FILE !!')
 GO TO 1000
C
 902 WRITE (IOUT,2202) fnames(1)(1:15) RSTR532u1
 2202 FORMAT (//' ****** EOF FOUND ON READ OF ' RSTR532u3
 & ,'INPUT FILE: ',A15,'...')
 GO TO 999
C
 903 WRITE (IOUT,2203) IOS RSTR532u1
 2203 FORMAT (/,' ****** ERROR ON READ OF INPUT FILE. ' RSTR532u1
 & ,' IOS = ',I4)
 GO TO 1000
C
 904 WRITE (IOUT,2204) lxa,lxn RSTR532u1
 2204 FORMAT (1X,'****** PLOTINF RECORD LENGTH ERROR: '
 & ,I4, ' # ',I4)
 GO TO 1000
C
 906 WRITE (IOUT,2206) lenb,lenc RSTR532u1
 2206 FORMAT (1X,'****** PLOTDATA RECORD LENGTH ERROR: '
 & ,I4, ' # ',I4)
 GO TO 1000
 907 WRITE (IOUT,2206) lenc,J RSTR532u1
 GO TO 1000
 908 WRITE (IOUT,2208) iwrd RSTR532u1
 2208 FORMAT (1X,'****** COMPRESSED DATA WORD LENGTH: 'I4)
 GO TO 1000
 909 WRITE (IOUT,2209) iwrd RSTR532u1
 2209 FORMAT (1X,'****** UNCOMPRESSED DATA WORD LENGTH: 'I4)
 GO TO 1000
 910 WRITE (IOUT,2210) nmbrst, ncount RSTR532u1
 2210 FORMAT (1X,'****** ERROR READING RESTART BLOCK NUMBER: No:'
 & ,I4, ' # ',I4)
 GO TO 1000
 997 write (IOUT,2299) RSTR532u1
 2299 FORMAT(//' ****** Write ERROR on RESTART INFORMATION FILE !!')
 GO TO 1000
C
 998 WRITE (PLOUT,2300)
 2300 FORMAT (//' ****** Write ERROR on RESTART FILE !!')
C
 999 CONTINUE
 IF (RSTPLOT) THEN
 IF (.NOT.RESTI) WRITE (RSINF,2290)
 IF (.NOT.PLOTI) WRITE (PLOUT,2291)
 IF (SCREEN) THEN
 IF (.NOT.RESTI) WRITE (*,2290)
 IF (.NOT.PLOTI) WRITE (*,2291)
 END IF
 ELSE
 IF (.NOT.PLOTI) WRITE (PLINF,2295)
 ENDIF
 do i = 1,nfil-2
 close (iun(i))
 enddo
 IF (SCREEN) THEN
 IF (RESTI) WRITE (*,2293)
 IF (PLOTI.or.STRIPO) WRITE (*,2294)
 ENDIF
 GO TO 1000
 2290 FORMAT(//' ****** NO RESTARTS ON RESTART/PLOT INPUT FILE !!')
 2291 FORMAT(//' ****** NO PLOT DATA ON RESTART/PLOT INPUT FILE !!')
 2292 FORMAT(//' ****** NO PLOT DATA ON STRIP FILE !!')
 2293 FORMAT(' ****** RESTARTS PROCESSED WELL !!')
 2294 FORMAT(' ****** PLOTDATA PROCESSED WELL !!')
 2295 FORMAT(' ****** NO PLOT DATA PROCESSED, STRIP CASE !!') RSTR532u1
C ==
C9000 write (*,*) 'PROGRAM RESTR532G Version 2.24' RSTR32u4
C9000 write (*,*) 'PROGRAM RSTR33B Version 2.3.1' RSTR33.1 write
(*,*)
 9000 write (*,*) 'PROGRAM RSTR533 Version 2.4.1 ' RSTR33R1
 write (*,*)
 write (*,*)' Options: Defaults:'
 write (*,*)' -ri restart/strip_input_file RESTINP'
 write (*,*)' -ro restart_output w/o plotdata RESTOUT'
 write (*,*)' -or restart_info_file RESTINF'
 write (*,*)' -po plot_parm & data_file PLOTOUT'
 write (*,*)' -op plot_parameter_info_file PLOTINF'
 write (*,*)' -so strip inputfile for RELAP STRIPINP'

118

 write (*,*)' -d debug data in file DEBUG'
 write (*,*)' -r write restart output file'
 write (*,*)' -s write strip input file'
 write (*,*)' -p write plotdata file'
 write (*,*)' -no no screen output'
 write (*,*)' -h/? HELP'
 write (*,*)' w/o -p and/or -r the default is:'
 write (*,*)' only RESTINF and/or PLOTINF files will be written'
 write (*,*)' -----> try again !'
 write (*,*)' For AIX Restarts RESTOUT will not be processed!'
C
C ==
 1000 Continue RESTLH9
C1000 RETURN RESTLH9
C Changed for Lahey F90 RESTLH9
 END
C--C
C C
C CDATE C
C C
C--C
 SUBROUTINE CDATE (CWORD)
C RETURNS DATE IN WORD IN CHARACTER TYPE IN FORM MM/DD/YY
C
 character*8 cword
C
C The following additions are due to LF90 RESTLH9
 CHARACTER*10 date, time, zone RESTLH9
 INTEGER dt(8), IM, ID, IY RESTLH9
C ---------------------------------------
C CALL GETDAT(IY,IM,ID) RESTLH9
C Changes due to Lahey LF90 RESTLH9
 call date_and_time (date, time, zone, dt) RESTLH9
C The following additions are due to LF90 RESTLH9
 IM=dt(2) RESTLH9
 ID=dt(3) RESTLH9
 IY=dt(1) RESTLH9
* write (*,*) IY,IM,ID RESTLH9
 if (IY>1999) then RESTLH9
 IY = IY - 2000 RESTLH9
 else RESTLH9
 IY = IY - 1900 RESTLH9
 end if RESTLH9
C ---------------------------------------
 WRITE(CWORD,100)IM,ID,IY RESTLH9
100 FORMAT(I2,'/',I2,'/',I2)
C ---------------------------------------
 if (IM.lt.10) write(CWORD(1:1),'(a1)') '0'
 if (ID.lt.10) write(CWORD(4:4),'(a1)') '0'
 if (IY.lt.10) write(CWORD(7:7),'(a1)') '0'
C ---------------------------------------
 RETURN
 END
C--C
C C
C NARGS C RESTLH9
C for Lahey F90 Version 4.0a Compiler C
C--C
 INTEGER FUNCTION NARGS()
C RETURNS Number of Arguments including Programm-Name
C
 INTEGER I, J, PARCNT
 LOGICAL FOUND
 CHARACTER(len = 512) acl, acm
 PARCNT=0
 J = 1
 FOUND = .FALSE.
C Get Command Line String and Determine Length
 CALL getcl(acl)
 acm = TRIM(acl)
C acm = 'ee ee ee ee'
 I = NEWLEN(acm)
 do while (J <= I)
 if ((acm(J:J).ne.' ').and..NOT.(FOUND)) then
 FOUND = .TRUE.
C WRITE(*,*)'J1+ = ', J
 PARCNT=PARCNT+1
 J = J + 1
 if (acm(J:J).eq.' ') then
 FOUND = .FALSE.
C WRITE(*,*)'J2a- = ', J
 J = J + 1
 else
 do WHILE (FOUND)
 if ((acm(J:J).ne.' ') .AND. J < I) then

119

 FOUND = .TRUE.
C WRITE(*,*)'J2a+ = ', J
 else
 FOUND = .FALSE.
C WRITE(*,*)'J2a- = ', J
 END if
 J = J + 1
 end do
 end if
 else
 FOUND = .FALSE.
C WRITE(*,*)'J1- = ', J
 J = J + 1
 end if
 end do
C write(*,*)'CommandLine = ',acm,' Length = ',I, ' NARGS = ',PARCNT
 NARGS=PARCNT + 1
C | to be compatible with Powerstation Fortran
C
 RETURN
 END
C--C
C C
C GETARG C RESTLH9
C C
C--C
 SUBROUTINE GETARG(NO,ARGUM,ST)

C RETURNS Argument Number NO in String ARGUM and Length of Argument
C Usage:
C Call getarg(NO,ARGUM,ST)
C n : Integer*2; input: position of desired argument
C 0 : The command itself
C ARGUM : Character*(*); output: Argument
C ST : Integer*2; output: Completion status
C = -1 if n < 0 or n > number of args
C
 INTEGER ST
 INTEGER*2 iarg, Ilen, ipos, jpos, iparlen, NO, ipar
 CHARACTER*50 ARGUM
 CHARACTER(len = 512) acl, acm
 LOGICAL FOUND, START
 FOUND = .FALSE.
 START = .FALSE.
 ST = 1
 ipar = 0
 jpos = 0
 iparlen = 0
 ARGUM = ' '
 iarg = nargs()
 CALL getcl(acl)
 acm = TRIM(acl)
 Ilen = NEWLEN(acm)
 if (NO==0) then
 ARGUM = 'RESTaix.EXE'
 ST = 7
 GOTO 20
 end if
 if ((NO<0).or.(NO>(iarg-1))) then
 ST = -1
 GOTO 20
 end if
C
 do 10 ipos = 1, Ilen+1
 if (acm(ipos:ipos).ne.' ') then
 if (.NOT.(FOUND)) ipar = ipar + 1
 FOUND = .TRUE.
 if (START) then
 else
 if (ipar==NO) START = .TRUE.
 jpos = ipos
 end if
 if (ipar==NO) START = .TRUE.
 iparlen = iparlen+1
 else
 FOUND = .FALSE.
 if (ipar==NO) GOTO 15
 iparlen = 0
 endif
C write (*,*) 'ip=',ipar,' j=',jpos,' i=',ipos,' len=',iparlen
 10 continue
 15 continue
 st = iparlen
 ARGUM = acm(jpos:jpos+iparlen-1)
C write (*,*) 'Parameter No:',NO,' Length=',st

120

C write (*,*) 'Parameter :',ARGUM
 20 CONTINUE
 RETURN
 END
C--C
C C
C NEWLEN C RESTLH9
C C
C--C
 Integer Function NEWLEN(Str)

C RETURNS Length of String indep. of defined Character Length
C Max Stringlenth = ?
C
 CHARACTER(LEN = *) :: str
 Integer ILEN, J
 ILEN = LEN(STR)
C
 do 10 J = ILEN, 0 , -1
 if (STR(J:J).eq.' ') then
 else
 goto 20
 END if
 10 Continue
 20 Continue
C
 NEWLEN = J
 RETURN
 END
C--C
C C
C IREC C RESTLH9
C C
C--C
 Integer Function IREC(I,iMESS)

C RETURNS Length of Record for reading formatted Data
C written with MS-FORTRAN PowerStation 1.0
C
 INTEGER*1 I
 INTEGER BYTES,iMESS
C
 IF (I==-127) THEN
 BYTES = 128
 else
C < -127 (-128) or < 0
 IF (I<0) THEN
 BYTES = 128
 IF (iMESS>0) write (iMESS,*) 'WARNING! RECORD Pointer: ',I,
 & ' set to 128 !'
 IF (iMESS<0) write (*,*) 'WARNING! RECORD Pointer: ',I,
 & ' set to 128 !'
 ELSE
 BYTES = I
 END IF
 END IF
 IREC=BYTES
 RETURN
 END
C--C
C C
C IFLIP C RESTaix
C C
C--C
 Integer Function IFLIP(I4)
C
C RETURNS Integer*4 for Intel
C AIX writes Bytes of Integer*2 or 4 in opposite order
C so they must be swept. Example
C new function intel-integer*4=iflip(aix-integer*4)
C
C The same holds true for conversion of R4:
C first equivalence r4 to I4
C then swap bytes with iflip function
C
C Conversion of Real*8 additionally needs swapping
C of the two I4 integers:
C Example:
C REAL*8 R8aix
C REAL*8 R8int
C INTEGER*4 I4aix(2), I4int(2)
C EQUIVALENCE (I4aix(1), R8aix)
C EQUIVALENCE (I4int(1), R8int)
C
C R8aix=Real8Number

121

C I4int(2)=iflip(I4aix(1))
C I4int(1)=iflip(I4aix(2))
C Real8Number=R8int
C
 INTEGER*1 I1int(4), I1aix(4)
 INTEGER*4 I4aix, I4int,I4
 EQUIVALENCE (I1aix(1), I4aix)
 EQUIVALENCE (I1int(1), I4int)
 I4aix=I4
 I1int(1)=I1aix(4)
 I1int(2)=I1aix(3)
 I1int(3)=I1aix(2)
 I1int(4)=I1aix(1)
 IFLIP=I4int
 RETURN
 END
C--C
C C
C UNSQOZ C RSTR532
C C
C--C

 subroutine unsqoz (a,num)
 implicit none
c Unsqueeze one packed word (obtained from sqoz) into two floating
c point words.
c On 32 bit machines, simply convert real*8 words to real*4 words.
c Locals
 integer i, i1, n, num
 real*8 a(num)
 real*8 da
 real*4 fa(2)
 equivalence (da,fa(1))
 n = iand(num+1,not(1))
 i1 = ishft(n,-1)
 write (*,*)n,i1
 do 10 i = i1,1,-1
 da = a(i)
 a(n) = fa(2)
 a(n-1) = fa(1)
 n = n - 2
 10 continue
 Return
end

U
N

IT
E

D
 S

TA
T

E
S

N

U
C

L
E

A
R

 R
E

G
U

L
A

T
O

R
Y

 C
O

M
M

IS
S

IO
N

W
A

S
H

IN
G

T
O

N
, D

C
 20555-0001

O

F
F

IC
IA

L B
U

S
IN

E
S

S

N
U

R
EG

/IA-0433

R
ELAP5/M

O
D

3.3 R
ELEASE Pre &

 Postprocessor
D

ecem
ber 2013

	1smrecyclelogo.pdf
	Page 1

