

International Agreement Report

RELAP5/MOD3.3 RELEASE Pre & Postprocessor

Prepared by: Dr. W. Tietsch

Westinghouse Electric Germany GmbH Dudenstrasse 44 68167 Mannheim Germany

Kirk Tien, NRC Project Manager

Division of Systems Analysis Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Manuscript Completed: April 2013 Date Published: December 2013

Prepared as part of The Agreement on Research Participation and Technical Exchange Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by U.S. Nuclear Regulatory Commission

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.gov/reading-rm.html.</u> Publicly released records include, to name a few, NUREG-series publications; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and Title 10, "Energy," in the *Code of Federal Regulations* may also be purchased from one of these two sources.

- 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250
- 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: U.S. Nuclear Regulatory Commission Office of Administration Publications Branch Washington, DC 20555-0001

E-mail: DISTRIBUTION.RESOURCE@NRC.GOV Facsimile: 301–415–2289

Some publications in the NUREG series that are posted at NRC's Web site address

http://www.nrc.gov/reading-rm/doc-collections/nuregs are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractorprepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

DISCLAIMER: This report was prepared under an international cooperative agreement for the exchange of technical information. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

International Agreement Report

RELAP5/MOD3.3 RELEASE Pre & Postprocessor

Prepared by: Dr. W. Tietsch

Westinghouse Electric Germany GmbH Dudenstrasse 44 68167 Mannheim Germany

Kirk Tien, NRC Project Manager

Division of Systems Analysis Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Manuscript Completed: April 2013 Date Published: December 2013

Prepared as part of The Agreement on Research Participation and Technical Exchange Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by U.S. Nuclear Regulatory Commission

ABSTRACT

Since the introduction of the 32-Bit Windows Operating System technology for Personal Computers with INTEL CPU architecture Relap has been migrated from mainframe computers and UNIX workstations to the desktop personal computers. Due to the general structure of Relap the user interface however did not change in the course of this migration. Relap running on PCs still is command line driven and does not take advantage of the benefits of the windows environments. Inputs to the program and outputs have the same structure as the UNIX or mainframe versions. Therefore the classic way of performing analyses with Relap which consist of several, mostly iterative and consecutive steps did not change with PC installations of the program.

Westinghouse Reaktor mid of the 90th developed several tools running on the PC to support the analysts retrieving and documenting results of Relap analyses. Based on these tools and using the power of the object oriented technology and third party functionality for the graphics generation a Graphical Users Interface has been developed by Westinghouse Reaktor which integrates all steps of a typical Relap analysis process. This Pre & Postprocessor has been designed to run in all known Windows environments (Windows95/98, ME, NT4, 2000 and XP). It has the feel and look of typical Windows software and an intuitive users interface which only requires a minimum of training. The actual version 3.3.0 of the Pre & Postprocessor cooperates with the Intel Relap5Mod3.3Release version.

The present report describes the general features of the Pre & Postprocessor, the installation, the typical analysis process including restarts and strip cases and the data retrieval and visualization process. Additionally the Restart Postprocessor, which is a FORTRAN program with command line control, which is used by the Pre & Postprocessor running in the background is described and a source code listing of this program is added.

The Pre & Postprocessor currently is used at Westinghouse Reaktor GmbH as a standard tool and has proven to support the Relap analysis process and to enhance the efficiency of the analysts.

CONTENTS

AB	STRACT	٢	.iii
LIS	T OF FI	GURES	vii
LIS	T OF TA	ABLES	. ix
ABI	BREVIA	TIONS	. xi
1	INTRO	DUCTION	1
2	DESIG	N CONSIDERATIONS AND FEATURES	5
3		RAM DESCRIPTION AND FUNCTIONALITY	
•	3.1	Program Architecture	
	3.2	Managing Relap Projects	
	3.3	Main Functions of RelapPP	
		3.3.1 Overview	
		3.3.2 Top Level Window	
		3.3.3 Relap Command Center	
		3.3.4 Post Processing and Data Visualizing	
		3.3.4.1 Output Post Processor	
		3.3.4.2 Restart Post Processor	
		3.3.4.3 Strip Post Processor	38
		3.3.4.4 Plot Post Processor	
		3.3.5 Documentation	46
		3.3.6 Options, Utilities and Add-on Programs	47
		3.3.7 Restart Postprocessor	55
	3.4	Limits	56
	3.5	Tips, Hints and Troubleshooting	57
4	SYSTE	M REQUIREMENTS, INSTALLATION AND CUSTOMIZED CONFIGURATION	59
5	CONCL	LUSIONS AND OUTLOOK	63
6	REFER	RENCES	65
Anr	nex A-1		67
Anr	nex B-1		79
۸nr			01
AIII			31

LIST OF FIGURES

3.3-1:	Project Menu: "Current Project"	15
3.3-2:	Project Menu: "Current Project"	16
3.3-3:	Menu: "Data Visualization"	17
3.3-4:	Files of the current project	18
3.3-5:	File Suffix Selection Area	19
3.3-7:	Directory selection	21
3.3-8:	Command Line Example	22
3.3-9:	Relap Run	22
3.3-10:	Message about Restart Files	23
3.3-11:	Success Message at the end of a Relap run	23
3.3-12:	File Information	23
3.3-13:	Restart option selection	24
3.3-14:	Strip option selection	25
3.3-15:	Success Message at the end of a Relap Strip run	25
3.3-16:	Results selection	26
3.3-17:	Relap Post Processors	26
3.3-18:	Success Message at the end of the Plot Data File generation	27
3.3-19:	Success Message using an existing Strip Parameter File	28
3.3-20:	Append Restart Outputs Control Dialogue	29
3.3-21:	Success Message of Output File Check	29
3.3-22:	Successful extraction of Minor Edit Data from a Relap Output file	32
3.3-23:	Plot Post Processor Command button	32
3.3-24:	Restart Post Processor with PLOUT file, w/o RSINF file	34
3.3-25:	Parameter Selection for the conversion of PLOUT Plot Data	35
3.3-26:	Plot Files Information	36
3.3-27:	Successful conversions of data from PLOUT format to PLO	
	format	37
3.3-28:	File Selection for multiple Restart PLO files	37
3.3-29:	Current Project direct Pre/Post Processing access	37
3.3-30:	Selection of variables for the "PLO" Plot Post Processor	39
3.3-31:	Processing of PLOUT plot data	40
3.3-32:	Sorting of PLOUT Plot Data	41
3.3-33:	Processing of Strip plot data	41
3.3-34:	Processing of Strip plot data (Ascii tables)	42
3.3-35:	Plotting w/o Default Style	43
3.3-36:	Print Diagram & EXCEL Full Scope Commands	44
3.3-37:	"Öffnen" = Open EXCEL	44
3.3-38:	Excel Graph in Edit Mode	45
3.3-39:	Graph Edit Menu	45
3.3-40:	Guidelines	46
3.3-41:	Relap Documentation	47
3.3-42:	Utilities and Options Menu	48

3.3-43:	INI Editor Menu	50
3.3-44:	File Difference Dialog	51
3.3-45:	File Difference Results	51
3.3-46:	DIFF Result of identical files	51
3.3-47:	DIFF Result of two different files (File 2 with 2 additional lines)	52
3.3-48:	Edit Plot-INI File	54
3.3-49:	Relap Version	54
3.3-50:	Units	54
4-1:	Directory structure adaptation dialogue	61
A-1:	Principal Structure of RelapPP	68
A-2:	Top Level Window	69
A-3:	Relap Command Center	70
A-4:	Structure of the Post Processors	71
A-5:	Extract and process Output Data	72
A-6:	Extract and process Output Data (PLO file exist)	73
A-7:	Extract and process Restart Plot Data	74
A-8:	Successful Extraction of Restart Plot Data	75
A-9:	Plot Post processor: Data Visualization (PLO Channel)	76
A-10:	Plot Post processor: PLOUT Plot Data processing	77
A-11:	Plotting Graphs: Styles affected by PLOT33R.INI	78

LIST OF TABLES

3.3-1:	Prerequisites for the Post Processors	27
3.3-2:	Menu - Post Processor Matrix	30
3.3-3:	Command Line Options of the Relap Restart Postprocessor	55
B-1:	PLO Plotdata Format and typical PAR file	80
B-2:	Parameter File for Strip Data	81
B-3:	PLOUT Data Format	82
B-4:	Restart & Plot Information Files	83
B-5:	Restart Input File	84
B-6:	Strip Input File	85
B-7:	Storing Plot Data in three different Formats	86
B-8:	Relap-INI File	87
B-9:	UNITS-INI File	88
B-10:	UNITS-INI File, Con't	89

ABBREVIATIONS

ATHLET BFBT	Analysis of Thermal-Hydraulics of Leaks and Transients BWR Full-Size Fine-Mesh Bundle Test
BWR	Boiling Water Reactor
CATHARE	Code advancé de thermohydraulique pour accidents de reacteur à eau (advanced Thermohydraulic Code for the Simulation of Accidents in Light Water Reactors)
CHF	Critical Heat Flux
СТ	Computer Tomography
GSS	Generalized steady state
LOCA	Lost of Coolant Accident
LWR	Light Water Reactor
NPP	Nuclear Power Plant
NUPEC	Nuclear Power Engineering Cooperation
PWR	Pressure Water Reactor
RELAP	Reactor loss of coolant Analysis Program
RSME	Root Square Mean Error
TRAC	Transient Reactor Analysis Code
TRACE	TRAC&RELAP advanced computational Engine
US-NRC	U. S. Nuclear Regulatory Commission

1 INTRODUCTION

Relap like all of the other codes and programs used for safety evaluations and design calculations for nuclear installations have been developed in the past on big mainframe computers. All of these programs have several common characteristics. The general structure of the programs is similar. They are programmed in FORTRAN supplemented by machine dependent environments. Input to the programs in general is organized by cards or data files with no direct dialog between the programs and the user. The programs are command line driven and designed to be run as batch cases. The output in general is organized in the ASCII format and stored in files or being printed on line printers. Running these programs, especially Relap, thus always required special user dependent setups on the computer platforms and to the best, task dependent shell scripts.

The classic way of performing analyses with Relap ever since consisted of several, mostly iterative and consecutive steps. The two major steps of the analysis methodology with respect to work effort include input preparation and the extraction and documentation of the calculated results from the often voluminous output files or printouts. Especially for the presentation and documentation of important data in the form of time history plots quite early general purpose plotting tools have been developed. In the early days these programs were running on the mainframes also and were designed to read the ASCII formatted output files and to further process these data for the visualization on screen (e.g. ReGIS Graphics on VT-Terminals) or for plotting graphs on line-printers or on Calcomp plotters.

With UNIX Workstations becoming more and more powerful in the late 80's the FORTRAN programming language very much supported the migration of Relap and other nuclear safety codes from mainframe computers to UNIX workstations. The general handling of Relap on UNIX machines was somehow simplified by the better access of the users to the computers and with the development of graphical user interfaces (X-window) built into the UNIX operating systems. Based on these enhancements some users of Relap for example developed user interfaces to Relap utilizing the Tcl/Tk package. One of the first programs for the postprocessing of Relap results which uses the X-windows power was integrated into the Nuclear Plant Analyzer (NPA) package (/1/), developed by EG&G in Idaho Falls under the sponsorship of the U.S. Nuclear Regulatory Commission. The NPA provided the analysts with tools which allowed him to visually display static or dynamic data on a graphic workstation. However NPA as a simulation tool primarily has been designed for the display of dynamic data with the capability of controlling data sources like Relap. Static data (graphs of parameters) could be displayed on screen or printed by postscript printers, however with a limited performance. Also the plotting of graphs was not very flexible. Later (1994) the NPA internal plot package was upgraded to allow for external plotting programs also. The latest version of NPA (1.4a) was running on all of the major-brand UNIX workstations at that time. Since 1995 NPA however has not been developed further. Especially the program has not been migrated to INTEL operating systems. Now it is the NRC plan to replace NPA totally by SNAP (/3/).

Rather in parallel to the NPA development the ACE/GR data extraction and plotting software has been introduced by Paul J. Turner (/2/), which has been especially upgraded by Ken Jones to provide an interface to the Relap restart and strip data (Xmgr5). This software originally also run only on UNIX systems and requires a X-windows server. Because of the flexibility and versatility of this program and the capability to read binary restart files, Xmgr5 more and more evolved as the standard post-processing tool for Relap.

With the onset of the "PC-Age" and the replacement of the line or graphics terminals by PC's, which were connected to the mainframes by networks, part of the analysis process (input preparation, visualization and plotting of Relap data) moved to the PC's. The usage of the standard PC Software for these tasks increased the effectiveness for this parts of analysis work. However these standard tools often required separate interface tools, e.g. for UNIX file-format conversion or for the extraction of plot data formatted to meet the requirements of the plotting software in use. With the fast development of PC-based Network Client Services X-windows server were running on PCs also. This allowed Xmgr5 (running on the UNIX platform) to be used for data post-processing with this tool on a PC. However there still was a problem in the generation of paper plots. Xmgr5 required plotting hardware to be attached to the UNIX computer.

As the INTEL processors became more powerful, as a logical step Relap was modified go run on INTEL-PCs. Already back in 1993 Westinghouse Reaktor developed a fully tested and verified special version of Relap5MOD1 for Intel –386/486 and Pentium processors which was based on a special IBM RISC-6000 version of Relap5MOD1 Cy19 (/4/). Since that time Westinghouse Reactor also developed tools running on the PC to support the Relap analysts. Today, Relap Intel installations (Windows OS or LINUX) are as common and widely used as UNIX versions on workstations and the future trend points to Relap running on IN-TEL systems. Among others one main reason for this evolution is the substantially decrease of cost of PC components and the steady increase of performance of PC-systems which currently already exceeds the performance of much more costly UNIX-systems.

The typical procedure for Relap calculations in a PC-environment for the time being, which is quite similar to mainframe and UNIX installations, looks like this:

- Relap, still a pure non-Windows program runs in a "DOS Box"
- Input editing is performed by NotePad or special Programmers Editor
- Relap is run by command line or with help of batch-scripts (base or restart cases)
- Results are stored in the Restart-Plot files or the Major Output file

Minor Edit data cannot be extracted from the Main Output without a special tool. All of the plot data is stored in binary form in the Restart-Plot file. The normal procedure to get the interesting data is the stripping process or alternatively applying Xmgr5 (Intel version with X-Windows server running on the PC)

- Generation of strip run inputs
- Run Relap strip case / cases

In the ASCII Strip output file the data is arranged as blocks of parameter data for each time step. Special software is needed to read these data blocks and converse the data into columns which can be directly processed by most of the plotting programs.

- Run the Strip data extraction program
- Run the plotting software and visualize or print the data

The alternative to the post-processing of the Relap data as described above is using the Intel version of Xmgr5. This version is able to read the binary (Intel) Restart-Plot files. The problem with this program however is that it needs a X-Windows server running on that same PC and preferably needs a UNIX simulator like the CYGWIN package. Commercial X-Windows servers however are expensive, freeware servers are not supporting all of the features of Xmgr5.

It can be stated that running Relap on a PC still is a multi-step procedure like running Relap on UNIX platforms or mainframe computers. The advantage of a PC installation is that PC hardware today is much cheaper and more efficient than UNIX hardware. Additionally the usage of standard PC-Windows-Software for the data printing and for documentation like the Office Package (EXCEL) only requires a minimum of additional training.

Our (Westinghouse Reaktor's) goal since the first installations of Relap on PC-systems was to equip Relap with a Graphical Users Interface (GUI) which integrates the total analysis process as described above and makes the handling of Relap as convenient as the usage of other typical PC-programs. The main driver for developing this GUI of course was the expected increase of effectiveness of the analysis process by providing the analysts a tool which is intuitively and easy to use and which supports him the best in performing all of the analysis tasks.

Westinghouse Reaktor GmbH has presented the Relap5 Pre- and Postprocessor (RelapPP) to the CAMP community at the Fall 2000 and Fall 2001 CAMP meetings. Currently this tool works together with the latest Relap5Mod3.3 (xx)-Release version. The latest version of RelapPP33 has been presented at the Fall 2002 CAMP meeting in Alexandria, VA. The program is widely used within Westinghouse and other organizations and has proven to act as a useful add-on to Relap. The program is free to all CAMP members.

2 DESIGN CONSIDERATIONS AND FEATURES

The main goal for the development of the RelapPP Pre- and Postprocessor was to provide Relap on PC platforms an integrated Graphical Users Interface (GUI) which contains all of the necessary tools needed to perform all parts of standard Relap analyses. This GUI should act as a shell to run the command line Relap and additional programs needed and should cover the total analysis process from input preparation to the generation of paper plots for the documentation of Relap results. The Pre- and Postprocessing tool thus should support the analysts in performing Relap analyses. It should increase effectiveness of the analysis process, enhance the quality of the results and last but not least should save money.

To meet these goals the following design considerations were taken:

- The program should run on all standard PCs with all 32 Bit (and up) Windows Operating Systems.
- The installation of the software on the PC should be easy and user specific like most of the Windows applications and should not require administrator rights. The program should make use of the Windows InstallShield process.
- The GUI of the Pre- and Postprocessor must provide the same Look and Feel and the functionality of standard Windows applications in order to minimize the training for the usage of the program.
- The graphics and plotting interface of the program should allow easy access to all of the Relap data including Minor Edit data from the main output, strip data and plot data from restart files.
- The graphics and plotting interface should provide plotting data in common ASCII format for the exchange of this data with external plotting tools like Xmgr5 and should provide plotted graphs that can easy be integrated into other Windows applications like WORD or EXCEL for documentation purposes and printing of these graphs using the Windows printing capabilities.
- The basic graphics and plotting software should be integrated or imbedded into the Preand Postprocessor. The user must be able to setup a personal plotting environment.
- The Pre & Postprocessor should support the analysts with tools and means to easily manage all of his Relap projects and all of the tasks coming along with the performance of Relap analyses.
- All of the Relap documents should be provided to the analyst in electronic form online during the analysis.
- The Pre- and Postprocessor should cooperate with the latest version of Relap5 (Mod3.3(xx) Release)

Based on these principal design considerations the Pre- and Postprocessor has been developed using the MicroSoft Visual Studio programming environment to ensure the best fitting into the MicroSoft Windows world and the best outlook for further smooth development and easy enhancements without compatibility problems.

The RelapPP Pre- and Postprocessor for the Intel Versions of Relap5Mod3.3 Release (RelapPP33R) has the following general features:

- RelapPP33R runs on all standard PCs with nowadays hardware equipment
- RelapPP33R requires the Operating Systems Windows 95 / 98 / ME / NT4.0 / 2000 / XP
- RelapPP33R requires EXCEL95/97 or 2000 / 2002 as Graphics Engine for the embedded plotting of graphs or any other Graphing Software with ASCII plotting data import
- RelapPP33R provides a shell to the Relap Intel Command-Line Version (3.3 Release) with the following sub functions:
- Organize Relap projects, containing inputs, main outputs, strip runs, restarts and all of the different plot data of the different projects
- Make, edit and view input files
- Automatically generate Restart input files
- Automatically generate Strip input files
- Organize restarts
- Organize strip runs
- Set and manage Command-Line Parameters for Relap Runs
- View Input Manuals during Input Preparation
- View Output and Log Files
- View Restart and Plotdata information files
- Compare Output and Input Files using integrated DIFF-function
- Convert Capitals in Relap inputs to lower case
- View the total Relap documentation including the guidelines
- The post-processing of the Relap data is performed by:
- Reading the Minor Edits data from the Relap Main Output and reorganizing the data format to an interchangeable ASCII format (PLO-Format).
- Merging of Plot data from Minor Edits of successive restart runs.
- Reading the Strip Data format and reorganizing the data to the PLO-format.
- Reading the binary plot data from Restarts (Version 3.3 Release) either from Intel plat form or from any other Unix platform and reorganizing the data to an ASCII format (PLOUT-Format) which is used for further postprocessing of this data.
- Selection of parameters to be printed or plotted.
- Generating graphs and Plots from all data sources using the embedded EXCEL Spreadsheet and Graphing Engine.
- Full Excel Plot functionality for the graphs.
- Individual users environment for graphing by EXCEL functions.
- Export of graphing data in three different ASCII data formats (including PLOT Software and Xmgr5).

- Configuration files (INI-Format) for the RelapPP33R environment, for general plot de sign and for the Units of Parameters needed for graphing and data printouts.
- RelapPP33R uses the Standard Windows-Editor Notepad for small files and Pad97 for large Files. Any other Editor can be used by configuration. For very small files the application contains a simple internal ASCII editor.
- RelapPP33R makes use of the Acrobat Reader, Version 5 or up, which has to be installed on the system or will be installed on request during the installation process of the application.
- On demand an external very flexible large file editor (PAD97) and a file management tool will additionally be available. Any preferred other editor can be used.

3 PROGRAM DESCRIPTION AND FUNCTIONALITY

RelapPP33R (RelapPP) is an integrated pre- and postprocessor for the Intel Version of Relap5Mod3.3Release and runs in a typical Windows PC environment. The program communicates with the user by a graphical users interface (GUI) which has the look of a standard Windows application. The task of performing analyses with Relap can be subdivided in subtasks, e.g. input preparation, run Relap, post-processing of results and plotting graphs. The menus, submenus and task windows (Modules) are designed to group all of the necessary subtasks in such way that all tasks for the different steps of a Relap analysis can be accessed within one window. This proceeding helps to support the Relap analyst in performing his task without much training. A detailed description of the program and of all the modules built into the application is given in the following chapters.

3.1 Program Architecture

RelapPP is a Windows application. The development of the GUI has been performed by using the advanced object oriented programming techniques of the MicroSoft Visual Studio Package. Most of the file-handling, the project management, the variable control and management and the not time-sensitive data handling have been programmed using the BASIC language. Some tools like Relap itself and the Restart Postprocessor are programmed using the FORTRAN language. These programs are being called as external programs by the Preand Postprocessor and run in the fore or background.

Am important programming principle followed with the development of the application was that all of the functions and subroutines uniquely used by one Form (Task Window) are coded together with this form. All Subroutines and functions used by several forms are put together in common modules. The same is true for the variables and arrays. The program in total contains 18 forms and 4 common modules.

Object oriented design generally allows simultaneous operation of different tasks. This principle in general is valid for RelapPP also. It is designed like many Windows applications as a MDI (Multiple Document Interface) application. In the Pre & Postprocessor however some tasks depend on data being set or changed by other tasks (e.g. configuration changes). For these cases a built in concurrency control manages possible conflicts between different program tasks. The protection against conflicting access and data corruption e.g. does not allow the user to perform tasks from the menus or open additional windows as long as possible conflicts exist. The user is not especially alerted when certain menus or data is inaccessible.

In a multitasking MDI application the main window, the top level window is called the Shell-Window. This main window which pops up after starting the program, contains all of the menus in a menu bar at the top and a status bar at the bottom. This ShellWindow is a container of all of the ChildApplicationWindows which are subordinate and secondary windows for the separate tasks of the application. The principal structure of the program is shown in Figure A1 (Annex A). The ChildWindows of the RelapPP are structured in this way that they contain all of the methods and controls to perform all of the main and subtasks described in the preceding paragraph. The main tasks of the application are:

- Perform a new Relap analysis (new Relap project)
- Continue the current Relap project
- Post-process old Relap projects and extract data results from any other Relap run.

From the main menu there is also access to all of the Relap documentation by launching the Adobe Acrobat Reader and access to configuration tools, utilities and options.

The most important form of the RelapPP is the Relap Command Center which contains all of the tools and provides access to all external programs and functions for the three main tasks of Relap analyses:

- 1. Setting up and running Relap Base cases
- 2. Making Restart Input files and performing Restart cases
- 3. Making Strip Input files and performing Strip cases

The Relap Command Center runs the Relap Code in a Command Window (DOS-Box). The Relap Screen Output is saved to a Log File. The progress of the calculation can be watched online. The Command Center also runs the external Restart Postprocessor, however in the background (silent mode).

From the Command Center there is access to all postprocessors, the Output Postprocessor for the Minor Edit Plotdata, the Strip Postprocessor for the Plotdata in the Relap Strip Data format and the Restart-Plotdata Postprocessor for the post-processing of the binary Plotdata contained in the Restart files. Additionally the Command Center integrates some help functions to support the analyst. The Postprocessors convert the Plotdata into a common Format (PLO-format). Additionally to the PLO data format the parameter information for the PLO file are documented in a PAR file. The PLO format and a typical PAR file are shown in Table B1. Parameter files from other data sources (PLOUT/Restart or Strip data) have additionally a units column as the units of the parameters are usually not provided with these data (Table B2).

The conversion of the binary data from the restarts is done by a 2-step process:

The binary data is extracted first from the restarts with the help of the external Restart Postprocessor (Command line controlled Fortran program). The Plotdata is saved in the ASCII PLOUT format (Table B3). This data format can be used directly for the visualization of interesting parameters and the plotting of graphs (Data Visualization Module).

Mostly however the restarts contain a huge number of variables. The direct Visualization may therefore take some time to process each parameter. In this cases it is better to extract first

only the parameters of interest and then save them in the PLO format. This is performed by the "Selection of ..." - Module. The actual limit of parameters for the direct post-processing of PLOUT data with the RelapPP is 32768. If a Relap case has more parameters a warning is given and only the first 32768 parameters are processed. In this cases it is recommended to use the stripping function of Relap to extract the plot data of interest from the restarts. The usage of the Relap stripping also is recommended for big restart cases (restart files > 2 GB).

The PLO format originally was designed to represent all of the max. 99 Minor Edit variables, however rearranged compared to the Main Relap Output in order to have only one line of data for all of the parameters for each time step. This format is easy to handle and specific data is easy to extract. Additionally the data can be viewed by any editor with no line length limits (like the PAD97 editor, which comes with the installation package).

Once the data is converted to the PLO format or the plot data exists in the Strip data format (max 999 parameters), parameters of interest can be selected. These groups of parameters can be visualized, exported in three different formats or plotted with the help of the integrated EXCEL engine.

3.2 Managing Relap Projects

Relap projects usually contain a lot of different files where the user sometimes can get lost, especially when projects are named quite similar. In RelapPP a Relap project is defined by a "base"-name. All of the other files affiliated with the project are named at front of the filename with the base name appended by some additional characters, figures and a filename appendix. This guarantees a clear identification of the type of file. All of these files may reside in one directory ("user" directory). RelapPP is designed that only those files correlated to the current project are accessible if the "Run a Relap Project mode" is chosen. The Relap user however can create additional directories, one for each project in order to separate more clearly the files of the different projects. This proceeding can be better compared to the often found workspace organization of projects. Both of the methods are supported by the Preand Postprocessor. In RelapPP subprojects, e.g. for parametric studies are not supported either. Each Base Input file defines a new project. Subprojects however can be organized by using different subdirectories as described above.

RelapPP is a 32-Bit Windows application and in general the naming convention of Windows applies. RelapPP will warn the user if the file names are too long (>40 characters). In the Windows environment the file name length is not really limited (256). The Relap program itself currently defines this limit. The Restart-Postprocessor (Fortran program) limits the length of the file names to 60 characters. If there is a problem with too long file names there are the following possibilities to solve this problem: a) the file appendices should be as short as possible (i = input, o = output, etc.), b) RelapPP should be installed in the main root of a partition (e.g. G:\R5\....) and c) the project name should be shortened. It is recommended to use a meaningful name which describes the project precisely and does not exceed 8 characters (as the DOS convention).

A Relap project usually consists of one Base Case only.

The different files are organized and named as follows:

- Base Case	*	
- Input File	*.i	(Suffix changeable)
- Output File	*.0	(Suffix changeable)
- Restart File	*.r	(Suffix changeable)
- Log File	*.scn	(Suffix changeable)
- Restart Input Files	*_Rxx.i	(Suffix changeable)
- Restart Output Files	*_Rxx.o	(Suffix changeable)
- Restart Log File	*_Rxx.scn	(Suffix changeable)
- Strip Input Files	*_Sxx.i	(Suffix changeable)
- Strip Output Files	*_Sxx.o	(Suffix changeable)
- Strip Files	*_Sxx.str	(Suffix changeable)
- Restart Information File	*.rsinf	
- Restart Plot Data Information File	*.plinf	

A Relap project also contains the output files of the different postprocessors

- Minor edit Data from Main Output	*.plo
 Parameter file for PLO files 	*.par
- Ascii Plotdata from Binary Restart	*.plout
 Plot Data from PLOUT in PLO Form 	*_xx.plo
- Parameter file for this PLO files	*_xx.par
- Strip Files	*_Sxx.str (Suffix changeable)
- Parameter file for Strip data file	*_Sxx.par

Five of the file suffixes are user changeable by the configuration option (s. Chapter 3.5). These suffixes and the base case name of the current project are stored in the configuration file (INI-File) on request and at quitting the program. The restart runs (max 99) are characterized by a "_R" followed by a counter. It is recommended to save the original restart file (e.g. of a steady state run) if a lot of test calculations shall be performed with using that restart as a basis. Relap replaces the original restart and appends the new data for each restart run. In some cases it is not desired to use these modified restart files as basis.

The Strip runs (max 99) are characterized by a "_S" followed by a counter. For each restart run RelapPP offers to generate a Restart Information file and a Plot Data Information file. These files are identified by the appendices "*.rsinf" and "*.plinf". Both of these information files are produced by the external Restart Postprocessor. The data contained in these files give a quick overview over the restart run and the data available. The information is needed for the automatic generation of the restart input files and of the Strip input files. The contents of these files are shown in Table B4.

The Output Postprocessor (Minor Edits) generates the plot data files (*.PLO) and for each PLO file a parameter file. The Strip Postprocessor generates a Parameter file with naming relation to the Strip File. Each time the Restart Processor is launched for the extraction of Restart Plot data both files RSINF and PLINF are made also. The naming of the PLO files

which are the result of a parameter selection process of Restart Plot Data (PLOUT) files are named with a "_" and a counter.

A Relap project in total can consist of:

- 1 Base case input file
- 1 Main output file
- 1-99 Restart Input files
- 1-99 Restart Output files
- 1 Restart file (binary)
- 1-99 Plot Data file (PLO) for Minor Edits
- 1-99 Par files for Plot Data from Minor Edits
- 1 ASCII Plot Data File from Restart (PLOUT)
- 1 Restart Information File
- 1 Restart Plot Data Information File
- 1-99 Plot Data files from PLOUT in PLO Form
- 1-99 Par files for Plot Data from PLOUT
- 1-99 Strip Input files, Strip Output files and Strip files
- 1-99 Par files for Strip Data files

Thus RelapPP can handle complex projects of up to 1000 different files.

3.3 Main Functions of RelapPP

The principal structure of the RelapPP Pre- and Postprocessor is shown in Figure A-1 of Annex A. The functionality of each of the ChildApplication Windows (each of them can contain additional sub or child windows), are explained in the following chapters.

3.3.1 Overview

These are the main tasks of the RelapPP:

Top Level Window

- Welcome Window
- Basic directory setting
- Access to all functions via menus
- Status bar informations

Integrated Relap Shell (Command Center)

- Input preparation (manual, automatic)
- Run Relap, Command line controlled
- Access to Relap Documentation
- Access to all Postprocessors
- Run statistics and information for the user

Output Postprocessor

- Extract Minor Edit Data from main Output and write all Plot Data in PLO format
- Write parameter Data in PAR format
- Link to the Plot Postprocessor for the selection of parameters and groups of parameters to be plotted, printed or visualized

Strip Postprocessor:

- Extract the Parameters data from the Strip files and write the data in PAR format
- Link to the Plot Postprocessor for the selection of parameters and groups of parameters to be plotted, printed or visualized

Restart Postprocessor:

- Extract all Plot Data from the binary Restart file and write the data in ASCII format by the external program RestR533R
- Extraction of up to 99 Parameters and write in PLO format
- Link to the Plot Postprocessor for the direct selection of parameters and groups of pa rameters to be plotted, printed or visualized (similar Xmgr5)

Plot Postprocessor:

- Selection of Variables and groups of variables
- Print selected Parameters in ASCII TXT Format
- Print selected Parameters in PLT Format
- Print selected Parameters in Xmgr5 Format
- Plot Data/Graphs with integrated EXCEL
- Automatic transfer of Data to full-scope EXCEL

Options, Utilities and Add-On Programs:

- Configuration management (INI Files for Environment, Plot-Defaults, Units of Parame ters)
- DIFF-Utility
- Conversion of Capital characters to lower case in input files
- Online Documentation
- User and Debug Options
- Additional programs

3.3.2 Top Level Window

The Relap Pre- and Postprocessor starts with the Main (Top Level) Window shown in Figure A-2 (Annex A) with a centered welcome screen which displays the actual date, the Version of RelapPP, the version of the Relap program and copyright notes. The status bar at the bottom contains the actual project informations (Project name, Relap Rood directory, the users directory and the path where all of the executables are installed). If the application is run the first time the informations in the status bar may be not correct. This is indicated by different

color (red) or "invalid". In this case the configuration has to be performed first. The procedure is explained in chapter 4.

The menus for all of the functions of RelapPP are arranged in a Menu Bar at the top. The menus are grouped with respect to the tasks and are designed as anchored pop-up menus. There are five Top Level Menus:

- 1. Project
- 2. Relap Command Center
- 3. Data Visualization
- 4. Documentation
- 5. Utilities and Options

Additionally there is Information accessible by clicking on "?", which shows the copyright, the actual sub-version of the application and a serial number.

The Project Menu is subdivided in a "Paths & Directories" option and two submenus: "New Relap project" and "Current Relap Project" (see Figure 3.3-1)

Current Project

🛊 Relap5 Mod3.3 Release Pre & Post-Processor 3.3							
Project Relap Command Center Data Visualization Documentation Utilities and Options ?							
Pathes + <u>D</u> irectories	Strg+P						
New Relap Projects	•						
<u>Current Project: Process Data Files Below</u>	۱.	Run Relap Using Input File	Strg+l				
TYPPWR.INP		Extract Data from	۰,	Relap Output Strg+O			
TYPPWR.OUT		Visualize Data Using PLO-File	Strg+V	Relap Restart Strg+R			
TYPPWR.RST		Visualize Data Using Strip-File	Strg+S				
TYPPWR.PL0	-						
TYPPWR_xx.PL0 : 2 Files							
TYPPWR_Sxx.STR : 2 Files							
E <u>x</u> it	Strg+X						

Figure 3.3-1: Project Menu: "Current Project"

The current project is the project which is shown in the bottom information bar. This menu option has conventional pop-up sub menus as shown in the Figure above and a short path to all of the actual available project files which can be post-processed. The screen shot above for example shows a project which contains an Input File, an Output File, a Restart File and a Plot Data File (*.PLO) of a previous application of the Output Postprocessor to the Output File. Additionally there are also two Plot Data files which are the result of a previous selection of plot data from the restart file and two strip data files. Clicking on the filenames will start the appropriate Pre- or Postprocessor. Clicking on "TYPPWR.INP" will launch the "Relap Command Center", ready to work with this Input file. The same can be achieved by selecting the pop-up sub menu "Run Relap Using Input File" or by selecting the Main Menu Option "Relap Command Center".

Clicking on "TYPPWR.OUT" or "TYPPWR.RST" will immediately launch the Output or the Restart Postprocessor. Again the same is attainable by selecting the pop-up sub menus at the right as shown in the Figure 3.3-1.

Clicking on "TYPPWR.PLO" will guide directly to the Plot Postprocessor where paper plots, or data tables can be made based on the plot data contained in the file. If there is only one file "TYPPWR_01.PLO" then clicking on this filename leads directly to the plot processor. If there are more PLO-files which have been generated previously by the Restart Postprocessor, the number of files appears, as the screenshot shows. When clicking on "TYPPWR_xx.PLO" a file selection window pops up, where the user selects the PLO-file he wants to work with. The same selection can be made for the strip files, if there is more than one. The file selection window in general appears, when using the sub menus "Visualize Data Using PLO- File" and "Visualize Data Using Strip-File"

New Relap Projects

📦 Relap5 Mod3.3 Release 🕞 Pre & Post-Processor 3.3						
Project Relap Command Center Data ⊻i	sualization	Documentation Utilities and Options ?				
Pathes + <u>D</u> irectories	Strg+P					
<u>N</u> ew Relap Projects	Þ	Select Input File> Run Relap				
Current Project: Process Data Files Below TYPPWR.INP TYPPWR.OUT TYPPWR.RST TYPPWR.PLO TYPPWR_01.PLO TYPPWR_S01.STR		Postprocessor for Outputs and Restarts Plot-Postprocessing using Strip Files Plot-Postprocessing using PLO-Files				
E <u>x</u> it	Strg+X					
		-				

Figure 3.3-2: Project Menu: "Current Project"

The New Relap Projects option lets the user start a completely new Relap project either by selection of an existing Relap input file, or by compiling a new input file (Relap Command Center). Once a new project is selected and Relap is run, after quitting the Command Center the user will be asked if the new project shall be the new default (current) project. If the user affirms, the dynamic short links of the current project and the bottom status bar will be updated to reflect the new status. During shutdown process of the RelapPP application the user is asked again if the new project shall really be the actual one. All of the new project information is saved permanently if this is requested by the user.

The "New Relap Projects" menu item also includes all of the post-processing of Relap Results of other previous projects as shown in Figure 3.3-2. The Post-processing of existent Relap data can additionally be performed from the menu "Data Visualization" from the Menu bar at the top of the window.

Data Visualization

📦 Relap5 Mod3.3 Release 🐳 Pre & Post-Processor 3.3							
<u>P</u> roject	$\underline{\mathbf{R}}$ elap Command Center	Data \underline{V} isualization	Documentation	<u>U</u> tilities a			
	Select Relap Output File						
		Select Relap Re:	start File				
		Select Relap Stri	p File				
		Select Plot-Data	File (*.PLO)				

Figure 3.3-3: Menu: "Data Visualization"

The visualization of Relap data is described in Chapter 3.3.4 in detail. This menu allows the post processing of the current or actual Relap project or of past projects. It even allows the post-processing of outputs and strips of previous Relap versions. Only the Restart processor requires the actual Relap version 3.3 Release (aa-cp). The Restart processor however allows the reading of any binary UNIX restart as long as the Relap version is the one required (s. Chapter 3.3.7 for more detail).

Documentation

The documentation menu is described in Chapter 3.3.5.

Utilities & Options

All the Utilities, options and add-on programs intended to support the user are described in Chapter 3.3.6.

3.3.3 Relap Command Center

A screenshot of the Relap Command Center is shown in Figure A-3 (Annex A). The Command Center can be launched, as described above, from three different menus. It is a Child-Application Window which contains all the means and controls to successfully perform a complete Relap analysis. The window size is fixed and cannot be minimized or changed in size. The Command Center in general starts with the default or current project data, found in the Relap-INI configuration file. It is structured in such way that controls, command buttons, and text boxes for information and inputs are grouped with respect to certain sub tasks of a Relap analysis.

The structure of the window includes the following areas:

- 1. Menu Bar at the top
- 2. Header with the project name
- 3. File suffix selection area

- 4. Input/output, Strip and Restart file selection and information area
- 5. Results and Restart directory selection, Relap executable and steam table selection
- 6. Relap Problem Type (New, Restart, Strip) selection, input preparation and run area
- 7. Message window
- 8. Viewing of results and log files
- 9. Post-processing area

All of these 9 groups are described in detail.

Menu bar

The menu bar at the top of the window contains three menu items: The "Base-File List Box", the "Print Project Parameters" option and the "Exit" command. The exit form the Command Center can be achieved by three different commands: By the menu option "Exit", by the Exit Command Button at the lower right corner or the Windows X-button at the top right corner.

The "Print Project Parameters" menu option prints all the file names, directories and settings of the current Relap project using the default Windows Printer.

The "Base-File List Box" option pops up a Listbox which contains all the files belonging to the current Relap project. An example is shown in the next figure.

🗟 Project TYPPWR 🛛 🗙
typpwr.inp
typpwr.out
TYPPWR.Par
typpwr.plinf
TYPPWR.Plo
typpwr.plout
typpwr.rsinf
typpwr.rst
typpwr.scn
TYPPWR_01.Par
TYPPWB_01.PL0
TYPPWR_01_01.PL0
TYPPWR_01_02.Par
TYPPWR_02.PL0
TYPPWR_R01.INP
TYPPWR_R01.0UT
TYPPWR_R01.SCN

Figure 3.3-4: Files of the current project

Project header

The project header is a line of information just below the menu bar which describes the Project. The Command Center reads the "Title Card" of the Relap input file during initialization and whenever a new input file (new project) has been selected and presents the title information in the project header line. If a selected input file cannot be found the line will show the information "..... Input not found!"

File suffix selection area

G BREAK 36.05 CHECK C						
_		Input Suffix	INP			
By	te	Output Suffix	OUT			
		Strip Suffix	STR			
Ву	te	Restart Suffix	RST			
_		Log Suffix	SCN			

Figure 3.3-5: File Suffix Selection Area

The figure above shows the default suffixes of the input files, the output files, the strip files, the restart and of the Log files. These defaults can be changed by placing the mouse cursor into the text boxes and typing the changes. The new suffixes will be saved on the Relap configuration file. The suffix of all the other files of a Relap project can not be changed. The result of changing a suffix, e.g. of the input file, can be immediately observed at the filename field to the left. If the current input file "...\TYPPWR.INP" exists, the input file name color is black. If the input suffix is changed by the user to "i", the file name immediately changes also to "...\TYPPWR.i". The color of the file name becomes red in case this file does not exist. The project header then changes to "TYPPWR-Input not found!". The easiest way to change the input suffix is to make a copy of the input file with a new suffix and then select this input file. The file type of the file selection window has to be set to "All Files" in this case, because the default file type is the current input suffix. The file copy can be made either by the "Edit Input File" – command or by the "File Management" command.

Input/output, Strip and Restart file selection and information area

N E	Restart-Problem	RELAP Projekt: typpwr : TYPICAL PWR MODEL 4 INCH COLD LEG BREA	AI
W	Strip-Problem	Input S G:\Relap533R\User\typpwr.INP	1
	Use Intrinsic Editor	Output G:\RELAP533R\USER\typpwr.OUT 1696936 Byte	•
	Edit Input File	Restart G:\RELAP533R\USER\typpwr.RST 7325080 Byte	

R E S T A R T	 Restart-Problem Strip-Problem Use Inrtrinsic Editor Restart Input 		NCH Byte Byte
S T I P	 Restart-Problem Strip-Problem Use Initrinsic Editor Strip Input 	G:\RELAP533R\USER\typpwr_S01.STR 41328	Byte Byte Byte

Figure 3.3-6: Problem and File Selection Area

The file selection area presents different information for each of the three Relap problem Types which can be handled by the Command Center. The Relap problem can be selected by a check box in the problem selection area as shown in the figure above. For each of the three problem types all the necessary "input" files are shown. The files which can be selected for the different problem types are selectable by the small "S" button. Pressing this button pops up the standard file selection option. These files can also be selected by typing into the text box fields directly. This however is not recommended. The "output" files are not selectable. The background color of these text boxes is orange. For all the output files and for the restart file a file length information is presented at the right side of the file name box. This file length information is dynamic and is updated during a Relap run in a multi tasking operating system environment (e.g. NT4).

The examples above show the file information after Relap has been successfully run. For a new run (not strip or restart) Relap always requests that any existing output file and any existing restart file should be deleted first. If the user wants to save the current Output file or the current Restart file this can be done by the File Management command. Otherwise the "Start Relap" Command deletes these two files upon user request. This deletion is required only for NEW Relap problems. If there is no Output or no Restart for a new problem then the color of the file names is red and the file length is zero.

For big problems Restart files can become rather large. The RelapPP in general can handle file sizes as big as the size the operation system can handle. The file length function however has a limit at 2.147.483.647 Byte (type: long). If restart files exceed this file size this is indicated in the file size text box by "> 2 GByte". If the length of a file name including the path exceeds 40 characters the color of the filename changes to blue. This is to indicate that Relap probably will not accept file names this long.

If the user positions the mouse cursor over one of the filename text box fields, a tool-tip-text box pops up encouraging the user to view or edit the file by simply clicking on the filename. Clicking on the restart filename will start a file selection box offering either the restart information file or the restart plot data information file to be viewed.

Results and Restart directory selection, Relap executable and steam table selection

The directories where the results of Relap runs (Output files, Plotdata files) or restarts are stored can be selected in this area of the RelapPP:

Curr Results	S G:\RELAP533R\USER
Curr Restarts	S G:\RELAP533R\USER
Executable:	S G:\RELAP533R\EXECUTABLES\RELAP533R.EXE
Steam-Table	S G:\RELAP533R\EXECUTABLES\TPFH20

Figure 3.3-7: Directory selection

Additionally the Relap executable and the steam table can be selected. The possibility for the selection of different Relap executables is provided here because there are often new patches or minor versions releases of the Relap code which can be managed without renaming of the executable. This is favorable also if new minor Relap releases should be assessed against older versions. With the selection of the steam table TPFH2O also the "NEW" version of the steam table will be selected. In principle also older Relap version can be selected, however the postprocessors may not work with older versions of the code. A version management for all of the past Relap versions was under consideration for RelapPP, however is not completed now. The path name and file name textboxes as shown in Figure 3.3-7 can not be edited. This is indicated by the gray color of the filenames.

<u>Relap Problem Type (New, Restart, Strip) selection, input preparation and run area,</u> <u>Message Area</u>

As shown in Figure 3.3-6 the Relap problem will be selected by the problem check boxes. If nothing is checked the problem type is "NEW". The command button for editing of the input file and the information on the file selection area vary, as described above for the problem type. There is a third checkbox "Use intrinsic Editor". If this option is checked a built-in simple ASCII editor which has all the necessary functions will be used whenever the file size of a input file does not exceed 16 KB. Otherwise the "Big-Editor" (e.g. PAD97) will be used.

1. Run a new Relap case:

For running a new Relap case none of the problem checkboxes is checked. The Command "Edit Input File" allows modification of the input file of the current project. A new Relap project (Input file) can be selected by pressing the [S] button left of the Input file selection text box (s. Figure 3.3-6). If the user selects "NewFile.INP" he can start right away with the creation of a new Relap project input. A file with a red colored file name does not exist and cannot be ed-

ited. In parallel to the editing of the input file the user has access to the Relap Input Manual or all of the guidelines which can help him modifying or making the Relap input. All of this documentation is in PDF format and will be displayed by means of the installed Acrobat Reader. Multi instances; i.e. Input Manual and several guidelines in parallel are allowed. Once the Input is ready the user starts the Relap run by pressing the "Start Relap" button. The command line parameters of the Relap run will be displayed in the Message window and the user is asked to proceed with these parameters (Fig. 3.3-8):

Command Line: G:\RELAP533R\EXECUTABLES\RELAP533R.EXE				
-i	G:\Relap533R\User\typpwr.inp			
-0	G:\RELAP533R\USER\typpwr.OUT			
-r	G:\RELAP533R\USER\typpwr.RST			
-W	G:\RELAP533R\EXECUTABLES\TPFH20			
-Z	G:\RELAP533R\EXECUTABLES\TPFH20new			

Figure 3.3-8: Command Line Example

The example shown in the figure above is taken from a previous run where already exists the log file, the output file and a PLO file with data extracted from this output file and the restart file together with a PLOUT file converted Plot Data. The user will be asked to allow the program to erase these files. If this is not desired because the files have to be saved first the Relap run will not start. If the user allows the deletion of these files the Relap run starts. The Relap Screen output will be displayed in a Windows command window (DOS-Box).

G:\RELAP533R\EXECUTABLES\RELAP533R.EXE
Copyright (C) 2001-2003 Information Systems Laboratories, Inc.
Thermodynamic properties files used by this problem:
Thermodynamic properties file for h20 obtained from 1fn G:\RELAP533R\EXEC TABLES\TPFH20new,
tpfh2ogibb version 1.0, tables of thermodynamic properties of light wate
generated on 08-Mar-02 at 12:35:55 by stgh2onew 1.0 (1/Mar/01)
Ø\$\$\$\$\$\$ Input processing completed successfully. RELAP5/3.3co Reactor Loss Of Coolant Analysis Program
Copyright (C) 2001-2003 Information Systems Laboratories, Inc. = typical pwr model 4 inch cold leg break 36.05 check case 02-Apr-03 10:09:14
cpuT_(s) probTime dTime_(s) dTCournt Vo1CoP PresCo_MPa VoidCo emass_kg Vo Er PresEr_MPa VoidEr QualaEr NSteps Reason
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure 3.3-9: Relap Run

All the information will be logged to the log file. After the successful completion of the Relap run, including the creation of a complete Restart File, the user will be asked to allow the program to generate the two Restart information files *.PLINF and *.RSINF (s. Table B-4).

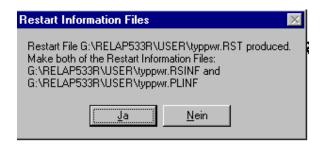


Figure 3.3-10: Message about Restart Files

(Ja = Yes, Nein = No, in the English version of the program all standard messages are in English language)

These two files are generated by the external Restart-Postprocessor in the background. It is convenient to have these two files right after the end of a Relap run available in order to have a look on the data provided there. The data of these two files is needed by the restart input processor, the strip input processor, and by some plot data processors. Whenever the data is needed the existence of these files will be checked and if necessary the files will be generated once again. Once the two files are made the success message shown in the next figure will be displayed in the message box shown in figure 3.3-11:



Figure 3.3-11: Success Message at the end of a Relap run

The user should check the log file for the confirmation of a successful run.

2. Run a Relap Restart case:

A Relap Restart case requires the checking of the "Restart-Problem" checkbox. In the example shown in figure 3.3-6 there already exists a Restart Input file which is identified by "_R01", which means that there is only one restart input available. The Command Center always checks for the latest restart number. For example: if there exist already two restart input files, the file selection information would look like this:

Input	S G:\RELAP533R\USER\TYPPWR_R02.INP
Output	G:\RELAP533R\USER\TYPPWR_R02.0UT
Restart	S G:\RELAP533R\USER\TYPPWR.RST

Figure 3.3-12: File Information

Always the latest version of existing restart input files (_R02) will be selected and is available by default. In the example of figure 3.3-12 the input file exist, but has not been used for a Relap run so far: there is no output file; the color of the filename of the output file is red and the file length is set to "0". Other Restart input files can be selected as described previously by the file selection command [S].

If the latest version of the restart input file is selected, as shown in the example above (figure 3.3-12), the user is asked to edit this file or make a new one by the restart input processor (Figure 3.3-13). If the user selects a previous version of restart input file, he can edit this file directly without additional dialogue by pressing the "Restart Input" command button.

Restart Input File
Edit this Restart Input File G:\Relap533R\User\TYPPWR_R02.INP [Y] or make new Restart Input File G:\Relap533R\User\TYPPWR_R03.INP [N] ?
<u>Ja</u> <u>N</u> ein Abbrechen

Figure 3.3-13: Restart option selection

(Abbrechen = exit or quit without actions, in the English version of the program all standard messages are in English language)

If the user chooses to make a new restart input file the Restart Input Processor generates a new input file with the data found in the *.RSINF file and the Relap Base (main-) input. If the *.RSINF file does not exist at that moment it will be made automatically (Table B-4). A typical automatically made restart input file is shown in table B-5. All the user has to modify is the restart number and the new end time on the time card. In order to have a consistent set of continuous plot data for the base case and the subsequent restarts the user should not modify any model data or add additional minor edit data. It is however not a restriction to change the model data. In these cases the user should be careful in interpreting the plot data.

The restart file which shall be used for the restart run should be selected before the new input file is generated in order to be consistent. The restart is started by pressing the "Start Relap" button. The start procedure will be the same as described above for the "NEW"problem run.

3. Run a Relap Strip case:

A Relap Strip case requires the checking of the "Strip-Problem" checkbox. If this option is checked the Restart option is automatically unchecked (Radio Button behavior). In the example shown in figure 3.3-6 there already exists a Strip Input file which is identified by "_S01", which means that there is only one Strip input and one output and strip file available for that case. Like for the restarts the Command Center always checks for the latest strip case number. If there are more strip cases which have been performed always the latest version of the strip input will be selected and is available by default. Other strip cases, avail-

able for the actual project file can be selected by the strip file selection command [S] (s. fig. 3.3-6).

After pressing the "Strip Input" command button the user is asked to edit this file or to ask the strip input generator to make a new strip input file:



Figure 3.3-14: Strip option selection

If the user chooses to make a new strip input file based on the current restart file and the base case input, the Strip Input Processor generates a new input file (*_S02.INP) with the plot parameter data found in the *.PLINF file. If the *.PLINF file does not exist at that moment it will be generated (Table B-4). A typical automatically made strip input file is shown in table B-6. After generation of the new strip input an informative message is displayed in a message window. The strip input consists of a skeleton of a working strip input. It contains all the accessible parameters (in the TYPPWR example: 6481), arranged as comment cards. The maximum number of parameters to be stripped from a restart file is the Relap limit of 999. The user has to select the parameters he wants to be stripped and has to renumber them in the allowed range from 1001 to 1999. An effective procedure for doing this is the copying of all the selected commented parameters and paste them just after the 103 card and then renumber them. All of the other lines can be left in the file as commented lines.

The strip run is started by pressing the "Start Relap" button. The start procedure will be same as described above for the "NEW"-problem run.

At the end of the strip run the success message window will appear:

Figure 3.3-15: Success Message at the end of a Relap Strip run

Viewing of results and log files

Results of Relap runs can be viewed selectively by several commands in the Viewing & Editing of Results area:

Figure 3.3-16: Results selection

Whenever one result file exists or is available the commands shown in the figure above are enabled. Otherwise they are disabled. If the problem type is "Restart" then the Strip Output command is disabled. For the Output, Log and Restart Informations a file selection window will pop up first with the default selection of the current active project file. Pressing the "Strip Output" Command will first cause the code to check if the current strip file is in the binary format or in ASCII format. A warning is displayed, if the strip file appears to be binary or is produced by a not supported Relap version. A possible problem can be revealed by clicking on the file name directly in the file selection area. In any case the Big-File-Editor is used for the viewing of the file contents.

Post-processing area

Relap results can be post processed by four different processors. They are accessible by the commands in the post-processing area:

Figure 3.3-17: Relap Post Processors

1. The "Output P-P" extracts the Minor Edit Plot Data from the Main Relap outputs.

2. The "Join Restart Output Files" appends Outputs from Restarts to Outputs from the base case in order to have continuous Minor Edit data.

3. The "Restart P-P" post processes plot data from binary Restart files.

4. The "Strip P-P" post processes plot data from ASCII Strip files.

All of the plot data post processing is described in the next chapter 3.3.4. The output append function is described in the actual chapter. The post processors are available only if prerequisite files exist. This is shown in the next table.

Problem	New	Restart	Strip
Output P-P	Base Case Output File	Restart Output Appended Output	-
Join Restart Output Files	Base Case Output File	Restart Output File	-
Restart P-P	Restart File	Restart File	-
Strip P-P	-	-	Strip File

 Table 3.3-1: Prerequisites for the Post Processors

If the files do not exist, the Postprocessor is not available within the Relap Command Center. In these cases the Command button is disabled as shown in Figure 3.3-17 for the "Join Restart Output Files" Command.

After pressing the <u>"Output P-P"</u> button the user is first asked if he wants to proceed, because the Extraction of the Minor Edit data can take some time for big outputs. If a Plot Data File (PLO-File) and a parameter file (PAR-File) already exist for that run, the Parameter file is checked for consistency and a message is displayed. If both files are consistent the user will be asked to keep these two files and continue or to replace the two files by new versions. If the user wants to keep the existing files the program control is transferred to the Data Visualization program after some data loading and organizations. The result of this operation is displayed in the message window.

If the user wants new versions of the plot data files the post processing is started. The progress of the data extraction process is displayed in the message window. When the data is extracted the following message appears:

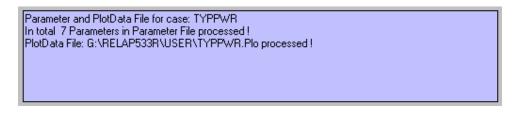
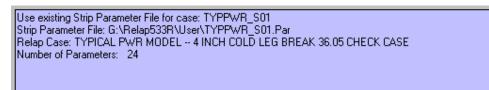



Figure 3.3-18: Success Message at the end of the Plot Data File generation

The program control is then transferred to the Data Visualization program, which is described in chapter 3.3.4.4.

The <u>"Strip P-P"</u> Command first will cause the code to check if the current strip file is in the binary format or in ASCII format. If the actual project has more strip files than one, first a file selection window is displayed with the current strip file as the default selection. A warning is displayed, if the selected strip file appears to be binary or is produced by a not supported Relap version. The Strip P-P is not available in these cases. If the strip file has been checked "OK" the user is asked to overwrite the existing strip parameter file (s. Table B-2), if there is one from a previous strip post-processing run, or to make a new one. If the existing file shall be used, this file will be checked first. The parameter file for strip files has a similar organization as the parameter file for Plot Data files (PLO) and contains the informations, which are not available in the strip files.

The following message is displayed when using an existing Strip parameter file:

Figure 3.3-19: Success Message using an existing Strip Parameter File

If the user wants the post processor to make a new Strip Parameter file or if no file exists, the parameter file will be generated automatically and the program control will be transferred to the "Data Visualization"

The <u>"Restart P-P"</u> Command uses the actual Restart file of the current project. There is only one restart file, therefore no file selection window will be displayed. The user is asked to proceed or quit the command. If the user wants to proceed, the "Extract and Process Relap5 Mod3.3 Release Restart Data" processor will be launched as a Child Application Window. This processor is described in chapter 3.3.4.2.

The <u>"Join Restart Output Files</u>" Command appends Outputs from Restarts at the end of Outputs from the base case in order to have continuous Minor Edit data. The alternative could be the gluing of successive PLO files. The command (Fig.3.3-17) is available only if a base case output and the main output of a restart run exist. Pressing the command pops up the following window (Fig. 3.3-20):

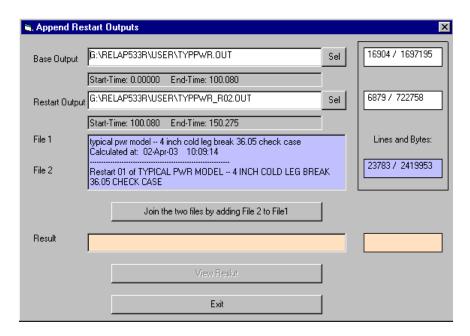


Figure 3.3-20: Append Restart Outputs Control Dialogue

The Base Case output and the main output of the current restart run is automatically selected. The processor reads the start time and end time of the two runs and the number of lines and bytes of each file. Additionally the processor reads the problem description lines of the two output files and presents this information in the blue message field, together with the number of lines and the total number of bytes in case both files are added together. At this time the user can select other than the preselected output files by pressing the Sel-(ect)command buttons. If the user is confident that the two outputs should be merged together he initiates this process by pressing the "Join.." command. The processor then starts a more thorough checking, if the two files are compatible with respect to the number and the sequence of the Minor edit parameters. In case the Minor edits are identical, the user is requested to provide a filename for the new output file. The result of the parameter check is displayed in the information field of the Relap Command Center.

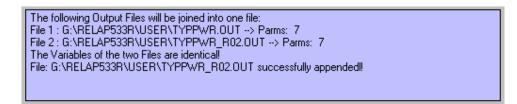


Figure 3.3-21: Success Message of Output File Check

If there are differences in the number of Minor edits and their sequence, the joining of the two files makes no sense and is not performed. The user is informed to locate the problem. If the two files are added together successfully, the filename of the new file, the number of lines and the file length appears in the "Results" fields. At this time the user can view the new out-

put by pressing the "View Results" Command. The processor adds the following two bold lines of information to the top of the file:

1 RBIC/3.3co RELAP5 Based Integrated Code

0Restart: Outputfile from Restart run added to this output

Final time= 150.275 sec advancements attempted= 1019

1 Copyright (C) 2001-2003 Information Systems Laboratories, Inc.

0Execute file: G:\RELAP533R\EXECUTABLES\RELAP533R.EXE

3.3.4 Post Processing and Data Visualizing

Relap results are available from the Minor Edit data in the Relap Main Output, from the Plot Data in the Restart-Plot Data files and the Strip-Data as a result of strip runs. For the post processing of all of the data from these sources there are special programs (processors) integrated into the RelapPP, which extract these data from the files and arrange the data in a form that can be used by the plotting and visualization software. The four post processors are:

- Output Postprocessor
- Restart Postprocessor
- Strip Postprocessor
- Data Visualization and Plot Postprocessor

As described in preceding chapters the post processors are accessible from different menus of the RelapPP:

Main Menu	Sub Menu	Output Proc.	Restart Proc.	Strip Proc	Vis. & Plot Proc
"Project"	"New Relap Projects" (Selection of new files)	Output / Restart automatic selection of appropriate Proc.		Strip	PLO-File
	"Current Project"	Output	Restart	Strip	PLO-File
	(default file or selection)	def.	def.	sel.	sel.
	"Process Data Files Be-	lf Output	lf Restart	lf Strip	If PLOex-
	low"	exists	exists	exist	ist

Table 3.3-2: Menu - Post Processor Matrix

Main Menu	Sub Menu	Output Proc.	Restart Proc.	Strip Proc	Vis. & Plot Proc
				+ sel.	+ sel.
"Relap Com- mand Center"	Command Buttons	If Output exists	lf Restart exists	lf Strip exist + sel.	lf PLOex- ist + sel.
"Data Visualiza- tion"	"Select Relap Output File"	Selected Output			
	"Select Relap Output File"		Selected Restart		
	"Select Relap Strip File"			Selected Strip	
	"Select Plot-Data File (*.PLO)				Selected PLO file

The Main Menu: "Project" – "Current Project" and the short paths are presented in Figure 3.3-1, the sub menu "New Relap Project" is presented in Figure 3.3-2 and the sub menus of the "Data Visualization" menu is seen in the Figure 3.3-3. The access of the post processors from the Relap Command Center has been described in chapter 3.3.3. The structure of the user interface (three child windows) and the data flow of the postprocessors are shown in Figure A-4. The Output- and the Restart-Post Processor have a common user interface, however with different meaning of the data fields and different captions. The parameter conversion processor which converts selected Plot Data in the Restart/PLOUT format to the PLO-format only can be accessed from the Restart Postprocessor function. The Data Visualization Processor has several data input channels (Data in PLO-format, PLOUT-format and STRIP-format). The looks of the user interface and the contents of several data fields vary with the input data format.

3.3.4.1 Output Post Processor

The function of this processor is:

- Extract the Minor Edit Data from the Main Output
- Write the Minor Edits Parameter Data in the PAR file
- Write all Plot Data in PLO format
- Guide the user to the Plot Postprocessor for the selection of parameters and of groups of parameters to be plotted, printed or visualized

The user interface (Child Application Window) of the Output Post Processor is shown in Figure A-5 (Annex A). This window will pop up when the Output Processor option for the current

project or any output file is selected. If the Output Post Processor is selected from the "Relap Command Center" (Command Button: "Output P-P Minor Edits", Fig. 3.3-17) the user interface does not pop up. However all internal functions of the postprocessor work, all files will be generated und the user will be led directly to the Plot Post Processor. If the Output Post Processor is selected from the main menu "Projects", sub menu "New Relap Projects" – "Postprocessor for Outputs and Restarts" (s. Figure 3.3-2), the user has the choice to select any Relap Output file or any Restart file. In case of the option "New Relap Project" the file suffixes may be different from the current suffix for output or restart files. Therefore the selected file, is checked if it is a valid output file or a valid restart file. Based on the file type the appropriate post processor will be launched. Otherwise an error message will appear.

The screenshot (Fig. A-5) shows the situation where only the main output file of a new or of the current project TYPPWR exists. If a PLO file containing the minor edit data already exists for the selected output file, the Post Processor presents the informations shown in Figure A-6 (Annex A). The user has to start the extraction process of the Minor Edit data by pressing the command button ""Extract Minor Edit Data from Output". In case a parameter file (PAR) already exists, a message will ask the user to replace this file. This is recommended. If the user wants to extract the minor edit data once more and if the data extraction process has been ended successful the following information will be shown:

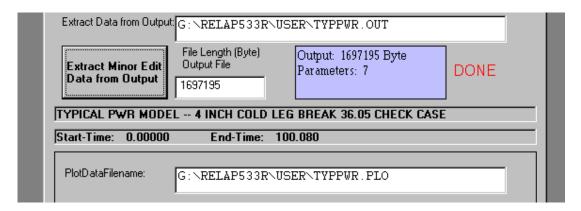


Figure 3.3-22: Successful extraction of Minor Edit Data from a Relap Output file

The start time and the end time of the analyzed transient is read by the post processor from the PLO file. Double clicking on the Filename field launches the Big-Editor which automatically loads the Output file or the PLO file. The length of the PLO file is displayed at the bottom of the Window. The Command button for the Plot Post Processor is enabled if the PLO file has been created successfully (s. Figure 3.3-23). The user can directly proceed to plot data by pressing this command.

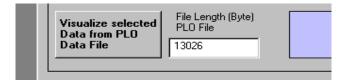


Figure 3.3-23: Plot Post Processor Command button

3.3.4.2 Restart Post Processor

The function of this processor is:

- Extract all Plot Data from the binary Restart file and write the data in ASCII format (Pro gram RestR533R).
- Select and extract parameters from the PLOUT file and write the data in PLO format of up to 99 parameters per PLO file.
- Guide the user to the Plot Post Processor for the selection of parameters and of groups of parameters to be plotted, printed or visualized

The user interface (Child Application Window) of the Restart Post Processor is shown in Figure A-7 (Annex A). This window will pop up when the Restart Processor option for the current project or any other restart file is selected. If the Restart Post Processor is selected from the "Relap Command Center" (Command Button: "Restart P-P", Fig. 3.3-17) before starting the post processing application the user is first asked if the analysis is to proceed or not. If the Restart Post Processor is selected from the main menu "Projects", sub menu "New Relap Projects" – "Postprocessor for Outputs and Restarts" (s. Figure 3.3-2), the user has the choice to select any Relap Restart file. In case of choosing the option "New Relap Project" the file suffix of the restart file may be different to the restart suffix of the current project. Therefore the selected file is checked if it is a valid restart file, otherwise an error message will appear.

The screenshot in figure A-7 shows the situation where only the restart file of a new or the current project TYPPWR exists. The problem description and the start- and end time of the Relap calculation, is displayed only if a valid RSINF file exists for this case. The Restart processor reads this file and extracts this type of informations. Usually after each Relap run with restart option a Restart – Information file (RSINF-file) and a Plot Data – Information file (PLINF-file) will be generated. However the user will be asked to do so (s. Fig. 3.3-10).

If there already exists a PLOUT file containing the plot data from the restart file in the PLOUT ASCII format then some additional information is shown on the Application window. Figure 3.3-24 shows a screen shot of the case that a PLOUT-file exists, but no Restart-Information file. If the user wants to extract the plot data from the restart file, he has to press the command button "Extract Plot Data from Restart". If the user wants to extract the data again as shown in figure 3.3-24, after pressing the command, he will be informed that the PLOUT file already exists and will be asked if he wants to replace this file. Since the extraction process may last long for very big restart files, it is recommended that the user replaces the PLOUT file only if he is not sure if the PLOUT file is corrupt (e.g. parts missing) the extraction process has to be started again. If there is no RSINF file or no PLINF file, both files will be created new. During the extraction process which will be performed in the background by launching the external program RESTR533R.EXE, a progress bar will appear at the bottom of the application window showing to the user that the process is still active.

🐃 Extract and Proces	s Relap5 Mod3.3 Release Restart Data	×
Exit Select New Restart	File Select Relap Version for Output Processing	
Extract Data from Restart:	G:\RELAP533R\USER\TYPPWR.RST	
Extract Plot-Data from Restart	File Length (Byte) Restart File 7333800	
,		
Convert Data to PLO Format from File:	G:\RELAP533R\USER\TYPPWR.plout	
Select Plot-Data and convert to	File Length (Byte) Parameters: 5482 PLOUT File	
PLO Format now	10415593	
Plot Data with EXCEL		

Figure 3.3-24: Restart Post Processor with PLOUT file, w/o RSINF file

At the end of a successful extraction process the messages and information seen on Figure A-8 is displayed. The start time and the end time of the analyzed transient is read by the post processor from the RSINF file. The Relap case description is read from the PLINF file. Double clicking on the file name field of the restart file launches the Small-Editor which automatically loads the RSINF file. Double clicking on the file name field of the PLINF file. If both of the RSINF-file and the PLINF-file do not exist, as shown in the figure above (Fig. 3.3-24), the file names are printed in gray color and double clicking on the file names is not possible.

After a successful extraction run some additional statistical messages appear in the blue message field (s. Fig. A-8). If the Relap problem contains more that 99 plot data parameters (which is almost the case even for small problems) an additional Message pops up informing the user that only 99 parameters are allowed for each Plot data file in the PLO format and that more PLO files are necessary if more parameter have to be converted to PLO format. The structure of a PLO file is shown in Table B-1 (Annex B). The limit to 99 parameters comes from the limit of minor edits in the main output of a Relap run. Because of practical reasons it is not recommended to put such a large number of parameters into one PLO file. After a successful run the two command buttons for the further plotting process are enabled. The two alternative possibilities to proceed are shown in the Figure A-4 (Annex A):

- "Select Plot Data and convert to PLO Format now"
- "Visualize selected Data from PLOUT directly w/o PLO conversion"

The two choices are in principle equivalent with respect to the visualization of parameters, the printing of graphs and the printing of data tables. However there is some difference in the

processing speed and the handling of data of very big restart files (many parameters and many times steps). There is some difference with respect to data documentation also. Because of the structure of the data in PLO files these files can be documented better than PLOUT data files. For very big restart files it is recommended not to proceed without the PLO conversion at first. The user has an alternative to speed up the plot process for big restart files by stripping the interesting data first and as a second step by using the Strip Data Post Processor.

The command "Visualize selected Data from PLOUT directly w/o PLO conversion" directly guides the user to the Plot Post Processor providing the PLOUT data and the plot parameter information found in the PLINF file. If there is no PLINF file (s. Fig. 3.3-24) an error message is displayed. The plot post processor is described below.

The command "Select Plot Data and convert to PLO Format now" starts the child application "Parameter Selection" (s. Figure 3.3-25). All the parameters found in the PLINF file are listed in a list box sorted by the "Variable code" (Varcode). Sorting by parameters can be selected by the radio button at the top. This sorting sometimes is more convenient for the extraction of groups of parameters, e.g. all of the Mass Flows.

🐂 Parameter Sele	ction		_ 🗆 🗙
Sort by Parm 🔍	Sort by Varcode:	۲	
0	count		Clear Selection
0	cputime		
0	dt		
0	dtcrnt		Convert
0	emass		selected Data
0	errmax		to PLO-Format
0	reac		
	reacm reacrb		SI 🔽 BU 🗖
ů ů	reacrb reacrm		Number of
ŏ	reacs	i l	PLO Files: 3
ŏ	reactf	i I	
ŏ	reactm		
ŏ	rkfipow	i 1	TYPPWB.Plo
Ō	rkgapow	!	TYPPWR-Plo
0	rkpowa	!	TYPPWR.plout
0	rkpowk	!	TYPPWR_01.PL0
0	rkreac	!	TYPPWR_02.PL0
0	rkrecper	!	TYPPWR_03.PL0
0	rktpow	!	
0	tmass		
1	cntrlvar		
1	systms		
			Click File to view
Parameters total:	5481		
Parameter number:	0		Done and
	,		Return
Parameters selecte	d:		

Figure 3.3-25: Parameter Selection for the conversion of PLOUT Plot Data

In the blue message fields at the bottom of the window the total number of parameters, the actual selected parameter and the number of selected parameters are presented. If more then 99 parameter are selected a warning is popped up. In the message fields at the right the total number of PLO files corresponding to the actual PLOUT file is given and the file names of all PLO files belonging to the current project.

Selection of parameters is possible by clicking with the left mouse button. If the first parameter is selected the "Convert Selected Data to PLO-Format" command is enabled. Deselection can be performed by left mouse click with CTRL-Key of the keyboard pressed or by the command "Clear Selection". Multiple Selection of parameters is possible by either pressing the CTRL-Key and multiple left mouse clicks on single selected parameters or for groups of parameters (in the sort by parameter mode) by pressing the Shift-key and using the mouse or the navigation keys (Page-up, page-down, up, down) to maneuver through the list. Once the selection is made the command "Convert Selected Data to PLO-Format" starts the extraction process. The result will be written into a new PLO file with automatic selection of the next available PLO-file number. The new file name is shown in the message field. Clicking on file names of existing PLO files will launch an appropriate editor for the viewing of the file. Clicking on the PLOUT file should be avoided since PLOUT files tend to be very big. Since conversion can take some time, a progress bar is displayed on the bottom of the main window of the Restart Post processor. The result of a successful extraction is seen on figure 3.3-26.

lvar lvar lvar lvar lvar lvar lvar lvar	112 13 14 15 16 17 18 19 20 21 22 0	Number of PLO Files: 4 TYPPWR_04.PL0 TYPPWR.Plo TYPPWR.Plo TYPPWR_01.PL0 TYPPWR_01.PL0 TYPPWR_02.PL0 TYPPWR_03.PL0 TYPPWR_04.PL0
ime	0	
		Click File to view

Figure 3.3-26: Plot Files Information

Up to 99 PLO files can be produced by this tool. The "Done and Return" command gets back to the Main Application. The result of the data extraction process is summarized as shown in the next figure.

Convert Data to PLO Format from File:	G:\REL&P533R\USER\TYPPWR.plout						
Select Plot-Data and convert to PLO Format no w	File Length (Byte) PLOUT File 10415593	1 PLO file produced. 4 PLO files total.	DONE				
Plot Data with EXCEL							
Visualize selected Data from PLOUT directly w/o PLO Conversion							

Figure 3.3-27: Successful conversions of data from PLOUT format to PLO format

For the visualization of data in PLO files the command "Plot Data with EXCEL" is enabled now. If more than one PLO files are available for the current restart case a file selection dialog is displayed before starting the Plot Postprocessor.

Select a RES	TART PLO File				? ×
<u>S</u> uchen in:	🔄 User	-	£	C	
 Tests TYPPWR TYPPWR TYPPWR TYPPWR TYPPWR 	_02.PL0 _03.PL0				
Datei <u>n</u> ame:	TYPPWR_04.PL0				Ö <u>f</u> fnen
Datei <u>t</u> yp:	RESTART PLO Files (*_xx.PLO)		•	4	Abbrechen

Figure 3.3-28: File Selection for multiple Restart PLO files

The number of Restart PLO files is updated also for the short path of the Main Menu "Current project", as shown below. Clicking on the menu line "TYPPWR_xx.PLO: 4 Files" will pop up the same file selection window as shown in figure 3.3-28.

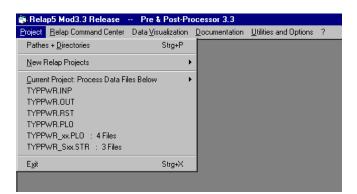


Figure 3.3-29: Current Project direct Pre/Post Processing access

3.3.4.3 Strip Post Processor

The Strip Post Processor can be started from five different menu options, as described in previous chapters (from the main menu bar: 3 sub menu options of "Project", the "Relap Command Center" and from the "Data Visualization" menu).

The function of this processor is:

- Check the validity of the strip file selected.
- Extract the parameter data from the selected strip file and write the data in a PAR file.
- Provide a link to the Plot Postprocessor and provide the Plot Post Processor with the strip and the PAR file

If the current project has more strip files than one, a selection window (like Fig. 3.3-28) lets the user make a choice of the strip file he wants to work with. After the selection of a strip file the processor first checks if the file has all of the attributes of a valid strip file (Relap has the option of making also binary strip files). If the file is not a valid strip file the user is warned and the processor ends. If the strip file passes the checks the user is asked to overwrite any existing strip parameter file (s. Table B-2). If there is an existing one the user can chose to work with this file. It is recommended however to let the program make new PAR files. The PAR files contain plot data informations which are not found in the strip files (e.g. units of variables). If the PAR file has been made, the control is transferred to the Plot Post Processor which pops up with the "Data Visualization" window.

3.3.4.4 Plot Post Processor

As shown in figure A-4 (Annex A) the Plot Post Processor has four input data channels. The input data to the processor has the following data formats:

- PLO format (s. table B1), from Minor Edits or selections from PLOUT
- PLOUT format (s. table B-3), ASCII from restart plot data
- Strip format, Relap ASCII option
- PAR format (from PLO data and from strip data)

The function of the processor is:

- Display plot data information and selection of plot data files
- Selection of variables and groups of variables to be printed or viewed
- Print selected parameters in ASCII TXT format
- Print selected parameters in PLT format
- Print selected parameters in Xmgr5 format
- Make graphs of selected plot data with the integrated EXCEL engine
- Plot the graphs
- Launch the full-scope EXCEL for additional functions

The user interface of the application ("Data Visualization Window"), which is shown in figure A-9 (Annex A), contains all of the commands and tools for these tasks. The application window is divided into two functional parts. In the upper part there is a menu bar and data fields for the display of the Relap case description and the time interval of the analysis, data fields of the filenames containing the plot data and variable selection Combo Box. The screen shot in figure A-9 shows the processor for the post processing of plot data in the PLO format. New PLO files, other than the default one can be selected also either by the command in menu bar or by the small command button right of the file name field. If a new PLO file has been selected the processor automatically looks for the accompanying PAR file. If there is no PAR file, a new one will be generated automatically and loaded. The user even can select only a PAR file. The program then looks for the appropriate PLO file. The correlation will be checked in this case and the PAR data will be loaded. By clicking on the file name text fields the files can be viewed via an editor as described previously.

The selection of single variables or groups of variables for a new plot or graph is the same as described in the previous chapter. The selection box displays the informations also found in the PAR files. Once the first variable has been selected, the "Show Diagram" menu option in the menu bar at the top of the window and the command button at the right is enabled (s. figure 3.3-30).

Variables s	selected			
7	351	MFLOWJ	505000000	•
1	301	Р	345010000	
2	302	P	180010000	
3	303	P	280010000	
4	304 305	VOIDG VOIDG	345010000 335060000	
6	306	VOIDG	212010000	
7	351	MFLOWJ	505000000	
7	MFLOWJ	5 05 000	100	Clear all Selections
				Diagram Defaults

Figure 3.3-30: Selection of variables for the "PLO" Plot Post Processor

All the selected variables are listed in the blue message window shown in the figure above. The message window displays up to 4 parameters. For five and more a scroll bar appears at the right of the message window. The total number of selected variables is displayed in the small text field as shown in figure 3.3-30. The deselection of single variables or groups of variables has been described previously. The "Clear all Selections" command resets all selected variables.

In case the Plot Post Processor is called from the Restart Post Processor for the processing of PLOUT plot data the plot post processing is a child process of the Restart Post Processor. This is shown in Figure A-10 (Annex A). The upper part of the "Data Visualization" window is modified for the PLOUT processing as shown in Figure 3.3-31.

🖏 D	ata Visualizatio	on				_ 🗆 X
Exit	Select new Plot-	File Show Diagram	Print Diagram	Run Excel	Diagram Options	
typ	oical pwr model -	- 4 inch cold leg brea	ak 36.05 check c	ase		
Sta	art-Time: 0.000	0000000 End-Time	e: 150.2754103	5		
Plo	otout Data File:					
G:VF	RELAP533R\USE	R\TYPPWR.plout			_	
·		Double Click to Vie	ew, Not recomme	nded! File > 5	5 MB	
Varia	ables selected					
LE	1 0	cputi	me sec		Sort D Param	
)ata sortet: Re	cords				

Figure 3.3-31: Processing of PLOUT plot data

The information about the Relap case description and the time intervals of the analysis are read from the associated PLINF and RSINF files. In the file name data field the active PLOUT file is displayed. However it cannot be reselected, like in the PLO case. The file selection command in the menu bar and the file selection button at the right of the file name field is disabled. If the mouse cursor is put over the file name field, the "ToolTipText" shown in the figure above is displayed, warning the user not to double click on this file for viewing. The "Big-file" editor launched by double clicking works on even very big files, however it may take time. If the user wants information about the PLOUT file he better double clicks on the PLOUT file name in the Restart Post processing window (s. Fig. A-10). For the PLOUT data processing there is no parameter file in PAR format. All data needed by the plot post processor will be read from the PLINF file and stored in internal arrays supplemented by additional data like the units of the variables. Consequently the PAR file name field is disabled here.

Restart/Plot files usually contain very much variables. All of the parameters of the current restart file are listed in the variables selection field (COMBO Box). The order is by default the order found in the Restart file (PLOUT, PLINF files). This default order is "Sorted by Records" as shown in figure 3.3-31. To make it more convenient to select associated data from the considerable amount of data, the user can change the sorting order of the data from "Record" to "Parameters" to "Variables" and back to Records by consecutively pressing the Sorting Command button. The sorting order "Variables" e.g. is shown in the next figure.

174020000	mflowj	kg/s	4285	-	Sort Data: Records
174020000	mflowj	kq/s	4285		
174020000	qualaj		4288		
174020000	rhofj	kg∕m^3	4281		
174020000	rhogj	kg∕m^3	4282		
174020000	ufj	J∕kg	4283		
174020000	uqi	J∕kq	4284		
174020000	velfj	m∕ ຣ໌	4279		
174020000	velgj	m/s	4280	-	
4285 17402	000 mflowj			- L	
	· · · · · · · · · · · · · · · · · · ·		Clear all		
			Selections		

Figure 3.3-32: Sorting of PLOUT Plot Data

The caption of the sorting command button changes accordingly with the sorting order. In the figure above it is shown that the units of the parameters are listed also. This information is kept in a "Units" file, managed by the "Utilities and Options" Menu of the Main Menu. Selection of single Parameters and groups of parameters, and deselection is the same as for the PLO data case.

In case the Plot Post Processor is called in order to process Strip plot data the upper part of the "Data Visualization" window looks as shown in Figure 3.3-33. The information about the Relap case description and the time intervals of the analysis are read from the Strip file and the associated RSINF file. In the file name data field the Strip file selected is displayed. Like in the case for PLOUT files it cannot be reselected. The file selection command in the menu bar and the file selection button right of the file name field is disabled. Double clicking on the file name field launches the big-file editor for the viewing of this file. For each Strip file there is also a PAR file containing additional data. The file name is displayed in the orange file name field below the Strip file name field. Double clicking on the file name field below the Strip file name field.

, D	ata V	isu	alization								_ 🗆
xit	Selec	st ne	ew Plot-File	Sho	w Diagram	Print Dia	igram	Run Excel	Diagram I	Options	
typ	ical p	wr n	nodel 4 ii	ich co	ld leg break	36.05 cl	heck ca	ise			
Sta	art-Tin	ne:	0.000000	0000	End-Time:	150.27	541035				
Stri	ip Data	a Fili	e ('.STR')								
G:\F	Relap5	533F	?\User\TYF	PWR_	S01.STR						
Plo	t-Para	mete	er-File: (*.P/	\R'')							
G:\F	Relap5	533F	R\User\TYF	PWR_	S01.Par						
Varia	ables s	elec	ted							Sort	
Γ		1	D		CPUTIME	((sec)		-	Data:P	ara
D)ata s	ort	et: Record	ls						meters	

Figure 3.3-33: Processing of Strip plot data

Strip files can contain up to 999 variables. All the variables of the current strip file are listed in the variables selection field (COMBO Box). The order is by default the order found in the strip file (PAR file). This default order is "Sorted by Records" as shown in the figure above. The sorting order can be changed as described for the PLOUT case. The selection of single parameters and groups of parameters, and the deselection has been described previously.

The selection of parameters for visualization or for plotting graphs should be made with respect to consistent units for the Y-axis of the graph. If the user does not want to plot the data in graphs and rather wants to store the data in separate files or print the data on paper he can select groups of any parameters, e.g. all of the parameters related to one hydraulic component.

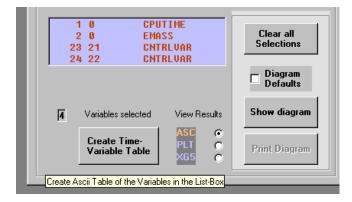


Figure 3.3-34: Processing of Strip plot data (Ascii tables)

As shown in the figure above there are three different data formats available for storing or printing the data in ASCII format:

- Pure ASCII format
- PLT Plot Format
- Xmgr5 Format

All of these different data formats are shown in the Table B-7. In the ASCII Format the plot data is arranged in columns. This data format is understood by most of the external plotting software. In the PLT format the data for each parameter is arranged in blocks of 6 columns. This PLT format has been used in the past by special plotting programs in connection with main frame applications. The XG5 format can be imported directly by the Xmgr5 software.

The different formats can be selected by three radio buttons shown in the figure 3.3-34. The format selected changes the color to orange. Once the user clicked on the command button "Create Time Variable Table" he is asked to provide a file name. The file suffix is automatically preset, as shown in Table B-7 (Annex B). Once the file has been created the user can view the result by clicking on the orange Format name in the field left of the radio buttons. Only the actual created file in the orange colored Format is available.

If at least one variable has been selected, the command button and the top menu option "Show Diagram" is enabled. The style of a graph on the screen or a paperplot can be determined by the user within the limits build into the RelapPP and within the limits of the embedded EXCEL engine. The general configuration of RelapPP is described in chapter 3.3.6. During the startup of RelapPP the program reads all the INI files. In the PLOT33R.INI file there is some information about the style of the graph. The "Default Look" of the graph is characterized by all the logical variables in the PLOT33R.INI file set to TRUE. In this case the checkbox "Diagram Defaults", seen in figure 3.3-34 is checked.

Figure A-11 shows an example of the PLOT33R.INI file where one of the logical variables, the variable L_Colored_Lines, has been set to FALSE. If this option is true the lines on the graph are colored, which enhances the differences of individual multiple lines. If the logical variable L_Colored_Lines is set to FALSE, B&W printers print the lines in different styles (e.g. dashed, solid). Figure A-11 also shows the meaning of the different variables in the INI file. For the visualization on the screen or by printing with a color printer all the logical variables may be set to TRUE. Alternatively either the option "Default Diagram Look" on the Main Menu option "Utilities & Options" or the checkbox on the Data Visualization Application Window can be checked. The correlation of these two possibilities is shown in the following screenshot (Fig. 3.3-35). If the "Diagrams Default" Option or checkbox is checked, the "Edit Plot INI File" Command on the Main Menu and the "Diagram Options" Command on the "Data Visualization" Window is not available. The figure below shows the situation where these options are available to the user.

Utilities and Options ?	
Edit <u>C</u> onfiguration File	Data Visualization
Edit Parameters And <u>U</u> nits	Exit Select new Plot-File Show Diagram Print Diagram Run Excel Diagram Options
DIFF of two	TYPICAL PWR MODEL 4 INCH COLD LEG BREAK 36.05 CHECK CASE
Conversion of Capitals in Files	Start-Time: 0.00000 End-Time: 100.080
File Management	Plot Data File: (*.PLO*) G:\RELAP533R\USER\TYPPWR.Plo
Debugging Mode ✔ Progressbar for Big Files Default Diagram - Look	Plot-Parameter-File: (*.PAR'') G:\RELAP533R\USER\TYPPWR.Par Variables selected
Edit Plot-INI File	1 301 P 345010000
Actual Relap Version	
Actual Projekt Files	
	Clear all
	Liear all Selections
	Diagram Defaults

Figure 3.3-35: Plotting w/o Default Style

Once variables have been selected the "Show Diagram" commands become available. These commands prepare the plot data for the built in link to the EXCEL engine, transfer all of the required data to the EXCEL spread sheet and initiate the graphing parameters and display the graph. A typical graph is shown in Figure A-11 (Annex A). EXCEL spread sheets have a limit of 32767 lines. In the plotting postprocessor any line (time step number) beyond this limit is ignored (the ASCII tables are not limited). The number of Columns (Plot Parameters + Time Column) is limited to less than 100. With respect to the dynamically allocated data arrays the number of columns allowed minus 1 times the number of rows should be less than 524288 (2¹⁹). The program checks these limits and automatically corrects faulty figures in the PLOT33R.INI file. For max.-lines-graphs the maximum value of parameters allowed is 16.

Once a graph has been generated the commands "Print Diagram" are enabled (Fig. 3.3-36). The graph will be plotted by the default printer. The printer can be changed by the Windows functions to change or add printers.

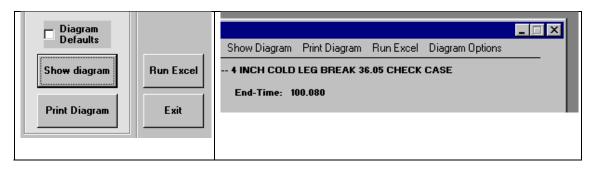
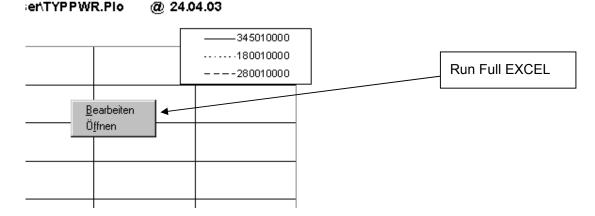



Figure 3.3-36: Print Diagram & EXCEL Full Scope Commands

By the commands "Run Excel", which are available now, the user can start the full EXCEL. All the data including the graph are transferred to the full EXCEL application organized in Maps. Equivalent to these commands the user can right-click on the graph (s. figure 3.3-37) and chose the "open" command.

(In the US Version of RelapPP all the messages and captions are in English language)

Within the Full Scope EXCEL all defaults for plots, like color of the graphing area, style of the headers, axes and legends and others can be personalized. By choosing the upper command "Bearbeiten" (= Edit, s. above figure) all the desired changes can be made even easier. The Excel Plot Window changes into the "Edit" mode which is characterized by the tabs for the selection of the spread sheets of a map (s. figure 3.3-38). The diagram spreadsheet always contains the graph, the first table spreadsheet contains the plot data. All the other spread sheets (Default = 2) are empty and can be used for special purposes. The number of additional spread sheets can be setup within EXCEL. Two times "ESC" on the keyboard leaves the Edit Mode.

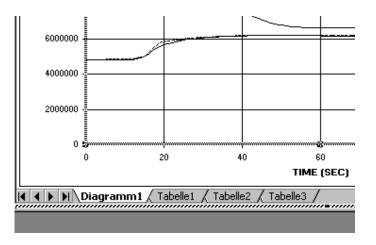


Figure 3.3-38: Excel Graph in Edit Mode

Just left-clicking on any graph element lets the user change the style of this element within the limits EXCEL provides. Clicking the right mouse button on any space between graph elements pops up the menu shown in the next figure.

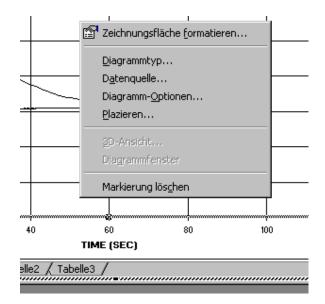


Figure 3.3-39: Graph Edit Menu

This menu allows the formatting of the canvas of the plot and provides several sub menus to edit the diagram type, to edit the data source (Data in table 1) and several other diagram options. The user specific default or standard diagram type can be set up by the "Diagram Type..." sub menu. More details for the formatting of graphs with EXCEL are available from the MicroSoft Press or any other literature for EXCEL (/5/ or later versions).

3.3.5 Documentation

The Relap documentation can be fully accessed by the main menu "Documentation" or partly by the Relap Command Center.

Input Descriprion and User Guidelines

The Relap Command Center (Figure A-3) provides a "Documentation" section where the user has access to the Relap Input Manual or to the "User Guidelines" released for the current Relap version. The Input Manual is installed by default into the directory "RelapRootDirectory\Manuals" (s. installation chapter). The filename of the input manual is set by the initialization of the application (s. next section). Pressing the command button launches the Acrobat Reader which is installed in the system which automatically loads the Input Manual. The manual can be viewed in parallel to the input development.

The "Guidelines" command provides the choice of viewing all the guidelines applicable to the Relap version installed. Pressing the "Guidelines" command button starts a selection window, shown in the next figure.

🖼 Guidelines 📃 🗖 🗙
ModelingGuidelines.pdf Reasons.pdf UserGuidelines322Beta.pdf UserGuidelines33Beta.pdf UserGuidelines33Beta.pdf UserGuidelines33Release.pdf
Double Click the filename to view

Figure 3.3-40: Guidelines

Any of the guidelines in the list can be viewed by the Acrobat Reader just by double clicking on the file name. The list dynamically displays all of the *.PDF files in the Guidelines directory

(RelapRootDirectory\Guidelines, s. installation chapter). The major guidelines distributed by the USNRC are installed by default. Any new guideline in PDF format can be added by just copying the file into in this directory.

Relap Documentation and Quicklook RelapPP

All the Relap documentation is accessible from the Top Level Menu "Documentation" (s. Figure A-2, Annex A). A screenshot of this menu is shown in the next figure.

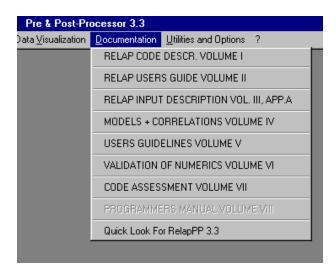


Figure 3.3-41: Relap Documentation

Clicking on any of the menu items starts the ACROBAT Reader, which loads the documentation selected. Like the Input Manual all the documentation are in PDF format and installed by default in the directory "RelapRootDirectory\Manuals" (s. installation chapter). The caption of the menu items is set by the initialization of the RelapPP application. The user can change these in the "Edit Configuration File" sub menu, which is described in the next chapter. If any of the files is missing in the manuals directory or the file name is misspelled an error message warns the user.

3.3.6 Options, Utilities and Add-on Programs

Most of the utilities, some of the options and add-on programs are available from the Top Level Menu "Utilities and Options". The next figure shows the submenus of this menu. Most of the utilities and options deal with configuration subjects. There however is one configuration aspect which has been put to the Top Level Menu "Projects": The "Paths and Directories" submenu (s. Figure 3.3-2). This submenu provides access to the basic directory structure of the RelapPP application. This command opens the same directory name dialog as is automatically popped up if the application is run the first time. The procedure of changing and adapting the directory structure is explained in chapter 4. The user is advised that it is not recommended to change the directory structure of a current project. It may be convenient only to change the user's directory for different projects. Another configuration aspect has already been explained in the description of the "Relap Command Center": The change of the directory for the current results, the current restarts directory, the intermediate change of

the Relap Executable, and the steam table. These options have been put to the Relap Command Center because during Relap analyses it may be convenient to better structure the current project. The access to other Relap versions via the executables may be helpful locating Relap errors by comparison to older Relap versions.

Utilities and Options ?
Edit <u>C</u> onfiguration File
Edit Parameters And <u>U</u> nits
DIFF of two
Conversion of Capitals in Files
File Management
Debugging Mode
✓ Progressbar for Big Files
Default Diagram - Look
Edit Plot-INI File
Actual Relap Version 🔹 🕨
Units of Parameters
Actual Projekt Files

Figure 3.3-42: Utilities and Options Menu

All the 12 submenus are described subsequently.

Edit Configuration File

This command starts the built in simple text editor which allows editing of the Relap – INI file. The contents of this file are shown in table B-8 (Annex B). The INI file consists of several elements and sections. The sections are headed by section headers and keywords, which must not be changed. All comments are preceded by ";" (semicolon). The end of the file is marked by "; EOF". The sequence of the different sections must not be changed either. The sections are:

1. Start-up

In this section the current major Relap version, the Relap executable, the main steam table and the directory structure of the current project is referenced. These data will be read by the application during startup and saved internally. If the directory structure read from the INI file cannot be verified by the program the user will be notified and provided with the directory name dialog box as described earlier (s. chapter 4). Normally all output will be saved in the user directory. The user however can change the output and restart file path for the current project by the "Path and Directories" submenu (explained in previous chapters) or in the Relap Command Center. The Relap Version information should not be changed also. This information is used by the program to distinguish between different Relap versions, because during the development of the application Relap Output design and Restart design has been changed. If the user selects a new Relap project and he is quitting the RelapPP he will be asked if the new project should be the current or default one for the next start up. If the user affirms the new data is saved in the INI file.

2. Manuals

All the manuals are installed by default in the "ManualsDir". If the user wants the manuals in another directory, he has to change the data for this keyword. The next 8 keywords contain the text of the captions of the command options of the "Documentation" top level menu. The program reads this information during startup and dynamically adapts the submenu items, even the width of the menu bars. The user can change the text and adapt to his needs. The next 8 keywords "Pdf(0..7)" contain the associated filenames of the documentation files. The manuals data only can be changed by the INI-editor option.

3. Run

The Run section contains the base-name of the current Relap project and the default file suffixes of the input, the output, the restart, the strip file and the Log-file. At startup the RelapPP application initializes the current Relap project, using this data. All of this data is subject to change with changing to another Relap project or changing the suffixes in the Relap Command Center. As explained earlier the user always will be asked to confirm the change to another project at the end of the RelapPP application.

4. Editor

The INI file contains link data to two different editors which are used by RelapPP. The DOSeditor is currently not working, has to remain however for internal reasons. The Win_Small_ed – Editor will be used for small files like the Log-File, RSNIF files and other small files (< 16KB) The Win-Big_ed – Editor will be used for rather large files. The user can define which editor shall be used for small files and which one for big files. The RelapPP installation package provides the option to install a rather powerfull freeware editor (PAD97) for Big files. Users who like to install the PAD97 editor have to obey to the License terms and conditions for the use of this program (see Chapter 4 for more information). For small files the standard Notepad is a good choice. Any other editor can be used. The RelapPP application additionally provides a built-in simple text editor for special purposes, especially for the INI files. This editor can also be used for small files optionally (explained in the Relap Command Center chapter).

5. Browser

The browser section contains the link to the PDF Reader. The RelapPP installation provides the option to install the latest ACROBAT Reader. However any Reader installed in the system (Acrobat Version 4 and up) can be used. The link to the ACROBAT Reader executable has to be changed in this case.

The INI file can be printed on the default printer or saved, if changes have been made. (s. Figure 3.3-43). In this case all the data will be read again and checked and all the internal data of the program will be updated with respect to the changes made.

G:\RELAP533R\EXECUT	[~1\RELAP33R.INI
<u>File</u> <u>Print</u> <u>E</u> xit	
Save Ini-File and Exit	P533R\MANUALS
Save as	CODE DESCR. V
Abandon Changes and Exit	JSERS GUIDE V
CommandI(2)=RELAP	INPUT DESCRIP
Command1(3)=MODELS	S + CORRELATIO

Figure 3.3-43: INI Editor Menu

Edit Parameters and Units

This command again starts the built in simple text editor loading the UNITS - INI file. The contents of this file are shown in Table B-9 (Annex B). This INI file contains all of the Relap parameters which are available from any of the Relap data sources (Minor edits, Strip data, Restart Plot data). As has been explained earlier, the Relap Plot Data mostly comes without any units or nomenclature of the parameters (despite the Minor Edits). The data from this file will be read by the program in case of data visualizations, plotting and plot data table generation (s. previous chapters) and will be used for the automatic description of the graph axes.

The data in this INI file can be edited, including data removal or additions of new parameters. All of the cautions to handle the file are shown in table B-9:

- Data begins at line number 5 (the first 4 lines are ignored)
- Any data line has a total width of 77 characters including the "." (period) at the end-of-line
- The column width for the parameter data is marked by a ruler in the fourth line
- Empty lines are allowed for better structuring (no end of line period)
- Any number of new parameters and their description can be added
- The last line is marked with a "@" at the first place.
- The sequence of data is not important

The INI file can be printed on the default printer or saved. As shown for the Relap – INI file.

Diff of two

The purpose of the "Diff of two" Command is the comparison of two ASCII files and the documentation of the changes. The command provides a file selection dialog as shown in the next figure.

🛋 Differ	ence of two Files	X
	G:\RELAP533R\USER\	
File 1		Sel
File 2	G:\RELAP533R\USER\	Sel
	Difference of two Files	
Besult		-
	Show Result	
	Exit	

Figure 3.3-44: File Difference Dialog

By default the files are assumed to be in the Users-directory. If the user selects one file and wants to compare it to the same file he will get the warning that the files are identical and no action will be taken. If the files selected have different file names and they are identical, the user will be notified also.

🐃 Differe	ence of two Files		×
File 1	G:\Relap533R\User\typpwr.i	Sel	
File 2	G:\Relap533R\User\typpwr.inp	Sel	
	Difference of two Files		
Result	typpwr_typpwr.inp		
	Show Result		
	Exit		

Figure 3.3-45: File Difference Results

The result of the comparison will be saved in a file with a meaningful file name as shown in the example above. The result can be viewed by the "Show Results" command. In case the files are identical the contents of the results file is shown in the figure 3.3-46.

🗒 typpwr_typpwr.	.inp - Ed	itor	
<u>D</u> atei <u>B</u> earbeiten			

Figure 3.3-46: DIFF Result of identical files

The result of the comparison looks like the screenshot in Figure 3.3-47, if the second file, for example contains two additional lines.

Uppwr_typpwr.inp - Editor	
<u>D</u> atei <u>B</u> earbeiten <u>S</u> uchen <u>?</u>	
22a23 > 202 120.0 1.0-7 0. 40a42 > 352 mflowj 395000000 End Diff	00 400

Figure 3.3-47: DIFF Result of two different files (File 2 with 2 additional lines)

The representation of the DIFF results is almost the same as known from the Unix DIFF command. The DIFF function internally is performed by a small external program, which is controlled by command line options.

The DIFF feature not only can be used for Input files, but also for big Output files or plot data files to search differences between different calculations.

Conversion of Capitals in Files

Relap unfortunately does not allow capital letters in input files (Unix as well as Intel versions). Only comments in comment lines marked with the "*" are allowed to be spelled in capital letters. Relap reacts unpredictable if capitals are found in the input data stream and the search for the error is painful for big models. A common error is the spelling of floating point numbers like 1.345E3. To help the user with eliminating this error source and to convert e.g. older Relap models which are still with capital letters (older Relap version prior to 5 MOD 3 did accept capitals) the conversion utility has been integrated into the RelapPP.

After starting the utility the user gets a file selection dialog window where he can determine the input file to be processed. After selection of this file he has to define the filename of the converted file. Per default the Utility suggests to add "LowerCase" to the original file name. The Utility ignores any comments in capitals. After the conversion the user is asked if he likes to edit/view the new file.

File Management

The file management option, which also is available from the Relap Command Center, provides a link to an external file management application (TN Turbo Navigator) which is supplied with the installation packet and which is rather powerful. Users who like to install the Turbo Navigator have to obey to the License Terms and Conditions which come with the TN installation (see Chapter 4 for more information). If TN is not installed, RelapPP launches the standard Windows EXPLORER instead.

Debugging Mode

The "Debugging Mode" (s. Figure 3.3-42) is a menu option which can be checked like a check box. The startup default is "disabled". If the debugging mode is enabled additional information is displayed in message boxes to help the user understand data transfer or to know which files are at work in case of troubles. The following list shows where additional information is given. There may be additional needs for more information. These are subject for implementation from case to case.

- Relap Command Center: Additional information at starting a Relap run and generation strip and restart input files
- Minor Edit and Restart Plot Data processor: Extracting the Data and transfer of data for plotting graphs
- Plotprocessor: Additional list used internally for the selection of paramenters and selection of Plot Data files
- Conversion of capital letters into lower cases
- Difference of two files

Progressbar for Big Files

There are operations in connection with the plot data retrieving which take some time for big files. In these cases there are "Progressbars" built in some child application windows which notify the user that the retrieval process is still going on. The "Progressbar for Big Files" flag is set by default at startup of the RelapPP. The operation however takes some processor time itself. The option can be disabled if not needed. The progressbar is implemented in the Plot Data Extraction processor for Relap Output and Restart files and for the extraction of selected Plot data from PLOUT files. However if enabled the progressbar is active for the Minor Edit Data processing only for output files larger than 50 Kbytes.

Default Diagram – Look

The "Default Diagram – Look" option has been described already in chapter 3.3.4.4 "Plot Post Processor". The menu option and its linkage to the options on the plot post processor application window are shown in figure 3.3-35.

Edit Plot-INI File

The "Edit Plot-INI File command is disabled if the "Default Diagram – Look" option is checked as shown in the next figure.

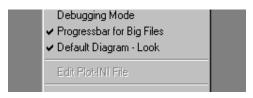


Figure 3.3-48: Edit Plot-INI File

If the command is enabled the user can edit the PLOT33R.INI file with the built in simple INI editor. The figure A-11 shows an example of the PLOT33R.INI file and the meaning of the parameters. More details are explained in the chapter 3.2.4.4.

Actual Relap Version

As shown in the next figure this command only displays the current actual Relap version which RelapPP is working with. Originally a selection of different Relap Versions was intended. This, however, has been removed due to excessive management and overhead load in the application. As has been explained in the chapter "Relap Command Center" the user still has the choice to implement different Relap Versions by the selection of different executables. In this case the user is advised to accept error messages from RelapPP because of design changes of Outputs and Restarts from Relap version to Relap version.

Figure 3.3-49: Relap Version

Units of Parameters

As shown in the next figure the RelapPP application by default uses the SI units for plotting and graphing. British Units cannot be selected at the moment, however this option will be implemented in the future. The restriction to SI units, however, is not a real limitation, because SI is the international standard now and the user can use British units by modifying the UNITS.INI file as explained previously. (see Table B-9).



Figure 3.3-50: Units

Actual Project Files

As shown in the figure above (3.3-49) the "Actual Project Files" command is disabled. As a replacement this command has been implemented into the Relap Command center.

3.3.7 Restart Postprocessor

The Restart Postprocessor RSTR533R which is called by RelapPP is an external program controlled by command line options. The programming language used is FORTRAN95 which guarantees compatibility with the INTEL Relap version. The postprocessor has been designed to run on 32 Bit Windows platforms like Windos95 / 98 / NT4.0, Windows2000 and XP. The main features of RSTR533R are:

- Extract PlotData from Relap Restart/Plot-File
- Create Information files for Plots and Restarts
- Create Informations of Plotparameters for Strip runs
- Create automatic Strip Input for RELAP 5/MOD3.3

RSTR533R has been designed to read and process restarts, including appending and replacing restarts of RELAP5MOD3.3 Release Version running on:

- Intel (PC) Version
- IBM ÀIX
- DEC Alpha
- HPC180
- SGI84
- SUN OS5.6

The program can be used also as standalone program within the windows environment (DOS-BOX or CMD-Shell) with the command line options shown in the next table. As part of RelapPP the program is used in silent mode (option –no). The command line options and the organization of options are known from typical UNIX programs or from Relap itself.

Options		Default	
-ri	Restart/strip input file name	RESTINP	
-ro	Restart output w/o plot data	RESTOUT	
-or	Restart information file	RESTINF	
-po	Plot parameter & data file	PLOTOUT	
-00	Plot parameter info file	PLOTINF	
-S0	Strip input file for RELAP	STRIPINP	
-r	Write restart output file		
-p	Write plot data file		
-S	Write strip input file		
-d	Debug data file	DEBUG	
-no	No screen output		
-h/?	Help		

The Restart Postprocessor creates all the necessary files used by RelapPP (Restart Information, Plot Data Information and the PLOUT file). The program also generates the Strip Input file described in the Relap Command Center chapter. Without the options "-p" and/or "r" by default only the RESTINF and PLOTINF data will be written. When used as stand alone program the program allows the extraction of any plot data from a restart file and write the restart file again without the plot data (this saves hard disk space in some cases). If Unix restart files are processed (e.g. from IBM AIX or SGI installations or any other non-INTEL restart files) the RESTOUT file will not be written by default.

The "-h /?" option provides the user with a UNIX like simple help screen of how to use the command line parameters. The debug option produces some very helpful details regarding the single steps of working through a restart file including binary information. This is helpful for reading non – INTEL restarts or for finding the sources of troubles. The debug information will be visible on screen and will be saved in the file named "DEBUG".

The source code of the Relap Restart Postprocessor is listed in Annex C. The data record definitions of Relap restarts (RSTPLT, PLOTINF, PLOTALF, RESTART and PLOTREC records), the technique of reading non-INTEL restarts and the maneuvering through a restart is described in the source code comments. The actual version of the program allows the processing of restarts of Relap 5 MOD 3.3 Release (aa..zz) versions. The version will be checked by the program. Any other version will be rejected.

3.4 Limits

The size of a certain Relap project literately is only limited by the PC hardware and the Windows environment. However there are some practical limits with respect to calculation speed for the Relap calculations itself and the post processing of big data files. One of the future improvements of the program will be to enhance the data extraction speed which currently is influenced considerably by the not optimal internal data management. This drawback however can be compensated by more powerful INTEL CPUs and faster Hard Disks.

Most of the limits are imposed by Relap itself, like the limit of maximal variables, Minor edits, Strip parameters and others. We (Westinghouse) have successfully calculated Relap problems on PC with going to the Relap limits and Restart file sizes up to 20 Gbyte. Even data files this big could be post processed with RelapPP.

The most prominent limits with RelapPP are the following (Some are described in previous chapters):

- The file name length including the path for Relap runs is limited to 41 characters
- The file name length including the path for stand alone Restart Post processor is limited to 60 characters
- File length of restarts or Output files > 2147 483 647 Byte (2Gbyte) cannot be shown in the file length data fields in the Relap Command Center or the Postprocessing application

window. In these cases a message is presented that the file length exceeds this limit.

- The number of parameters in PLO file is limited to 99 (+ time) with respect to the total maximal number of minor edits in Relap runs.
- The number of parameters in strip files is limited to 999 with respect to the total maximal number strip variables in Relap runs.
- The number of parameters for the conversion of selected data from PLOUT format is limited also to 99 (+ time) with respect to PLO format
- The maximum number of parameters for restart files from which variables can be selected is limited to 32167 (internal pointer is limited to 2¹⁵-1). This limit can be overcome as explained previously by the stripping of selected data.
- The maximum number of parameters for restart files for the direct access to the plot da ta from Restart files is limited to 32167 (internal pointer of the selection table is limited to 2¹⁵-1)
- The maximum number of time steps which can be processed by EXCEL is limited by EX CEL to 32168 (The number of Columns (all Plot Parameters + Time Column) is limited to less than 100. With respect to the dynamically allocated data arrays the number of columns allowed minus 1 times number of rows should be less than 524288 (2¹⁹). This has been explained in a previous chapter

3.5 Tips, Hints and Troubleshooting

Most of the applications built in the RelapPP Pre- and Post processor are equipped with meaningful information to guide the user through all the steps of a full Relap analysis. Every of the bugs usually found in any software product should be eliminated now based on the extensive use of the program within Westinghouse and useful hints from other users form the CAMP community. However it is still a software product and all of the multi thousands of combinations of different successive steps for the performing of analyses and of maneuvering through an object oriented program cannot be tested sufficiently. If the user gets unexpected messages or experiences unexpected behavior he has the choice first to activate the debug mode and check again and second to analyze the problem step by step.

Most errors however come from data files which for some reason do not contain the correct information expected by the program. One of the first actions to analyze problems should be to view the participating data files, especially the PLO data file, the PLOUT file, the RSINF and the PLINF file. All the data formats used are listed in Annex B.

Another problem can come from the extraction of data from the binary restart files. The debugging is described in the previous chapter. Often, if there are for some reason no resulting files, another try to extract the data from restarts helps to solve that problem. The reason for that problem sometimes could be traced down to Windows internal processes. After starting the external "Restart Post Postprocessor" program RelapPP permanently checks if the process is still active and if the files, which have to be generated have been written and closed. This very seldom is boykottet by Windows.

If strip output files are processed, the user should be sure, the data format of the strip files is in the ASCII format. The format will be checked by RelapPP. However, the user may not understand the error message if the file is in the ASCII format, and only some important information is missing at the head of the file.

Very big files sometimes take long to process. The user should not become unpatient, especially when the progress-bar mode is not activated. He much more should check the CPU activity with help of the Windows task manager or the hard disk activity LED on the Desktop or Midi Tower case to decide if there is a hang up or not.

4 SYSTEM REQUIREMENTS, INSTALLATION AND CUSTOMIZED CONFIGURATION

The RelapPP Pre- and Post Processor is distributed by CD-ROM. All of the programs and Libraries needed for a complete RelapPP installation are provided. The CD contains:

- The RelapPP Pre- and Post Processor for Relap5MOD3.3Rrelase (eventually a Patch of the latest sub version on diskette)
- Relap5MOD3.3Release, latest sub version with all accompanying files and documenta tions as distributed by the NRC
- The Restart Post Processor RSTR533R.EXE
- The UNIX like Diff-utility DIFF.EXE
- Acrobat Reader 5.x, as distributed by Acrobat (including the Acrobat license agreements)
- PAD97 big file editor by GTSoft, Version 1.05, Copyright © 1997-98 by Gustavo Tondello, Pad 97 is a replacement for Notepad wich has many features not present in Notepad. All accompanying files including the license agreement and terms and conditions of use
- Turbo Navigator v1.44, Copyright © 1999-2000 by Marko Vodopija, <u>www.TurboNavigator.com</u>, with all accompanying files including the license agreement and terms and conditions of use
- XMGR5 for INTEL as distributed by the NRC
- Testversion of Xmanager(R) version 1.3.9, Copyright (c) 1997-2002 by NetSarang Com puter, Inc., Xmanager is a high performance X11R6 PC X server for Windows 95/98/ME and Windows NT/2000/XP. If you are not a registered user, you can use this program 30 days only for evaluation and that any other use requires purchase of a license. All informations are included.

The hardware requirements for RelapPP are the following:

- Standard PC with Intel Processor (CPU frequency: 200 Mhz as a minimum, 2.0 Ghz and up is recommended for good performance for big problems)
- A minimum of 64 MB of Ram. 256/512 MB for PIV processors
- A minimum of 100 MB of Hard Disk Space. Up to 30 GB needed for big problems
- Fast Hard disk drive (7200 rpm and up) for good performance
- Standard graphic devices with medium resolution minimum 800*600 (recommended: 1280*1024)

- Windows Operating System 95 / 98 / ME / NT4.0 / 2000 / XP latest Service pack
- EXCEL 95/97, 2000, 2002 for Plotting Graphs (EXCEL comes with the MicroSoft Office packages)
- Acrobat Reader Version 4 or up (provided with the installation packet)

The installation of the program is performed automatically by the autostart function of the CD-ROM or manually by starting the setup.exe program in the root directory of the CD. The setup program guides the user through the complete installation process. A typical, a full and a user defined installation is provided for the users convenience.

The Installshield process creates the following directory structure in the default directory (can be changed) c:\program:

- Relap Root Directory: C:\Program\R533R (~)
 Acrobat Directory: ~\Acrobat
 Relap Bin Directory: ~\Executables
 Guidelines Directory: ~\Guidelines
 Manuals Directory: ~\Manuals
 Relap User Directdory: ~\User
- Xmgr5 & X-manager ~\Xmgr

Relap5 MOD 3.3R, the steam tables, the relapPP pre- and Postprocessor and all of the INIfiles, the Restart Postprocessor RSTR533R, the DIFF-utility, TN and PAD97 and all files belonging to these are installed in the Excecutables directory. All of the Manuals are installed in directory ~\Manuals, the guidelines provided by NRC are copied into the guidelines directory. The test input, the test output and the test restart files are copied into the users directory. In order to obey to the limit of file name length for Relap runs it is strongly advised to change the "Relap Root Directory" to C:\R533R for example. The installation routine registers all the programs, creates several Icons on the desktop, and selections on the "Windows Start Menu", depending on the installed programs which come with the distribution CD.

As shown in Table B-8 (Annex B) the Relap533R-INI file contains the actual directory structure. In the distribution CD the INI file contains a default directory structure. At the first startup of RelapPP the directory structure probably has to be changed. In case the provided defaults cannot be verified by the program at the first startup the following screen with directory selection dialogs pops up. The user has to change all the paths marked red.

Relap Root directory:	C:\Programs\R533R
Relap Bin directory:	C:\Programs\R533R\Executables
User directory:	C:\Programs\R533R\user
Manuals directory:	C:\Programs\R533R\Manuals
Output/Plot/Par-Dir.:	
Restarts directory:	
	Click on Form to exit

Figure 4-1: Directory structure adaptation dialogue

He cannot continue without a correct directory structure. He additionally has the choice to set a path for Outputs, Plot data and for restart data at this time. This information, however, will not be saved in the INI file as explained in previous sections. Whenever the directory structure found in the INI file cannot be verified by RelaPP this dialog starts at the beginning. This can happen, if the user changes directory names outside the control of the RelapPP application. Red colored path names indicate that the path cannot be found. This information is also given in the message boxes at the bottom of the main screen of the RelapPP application.

Once the directory structure has been adapted, the user should check and modify if necessary the following details prior to start any Relap analysis:

- Description of the commands to view the Relap manuals and the filenames (explained in chapter 3.3.6, section "Edit Configuration File")
- Path to the Windows Editor NOTEPAD or WORDPAD
- Path to the big-file editor PAD97 if installed or to any other capable editor
- Path to the Acrobat Reader if the Relap Root Directory na me has been changed or to Acrobat as already installed on the system
- Check of the filename of the "Quick-Look" documentation for RelapPP in the Manuals directory. If necessary, the file name has to be changed to "Quick-Look.PDF".
- Change or adaptation of the units of the parameters for the data plotting. This is described in chapter 3.3.6 in section "Edit Parameters and Units"
- Change or adaptation of the plot settings for the data plotting. This is described in chapter 3.3.6 in section "Edit Plot-INI File"

5 CONCLUSIONS AND OUTLOOK

The RelapPP Pre- and Post Processor have been developed to support the Relap analyst. The tool is not intended to replace any of the NRC tools like Xmgr5 or SNAP. It is intended to be an add on for Relap PC users who like to work with an integrated application where all of the programs needed for complete Relap analyses are available by key stroke. The tool has proven its effectiveness during long time usage within Westinghouse.

The development of the Pre- and Post processor has reached now a status of projected completeness. However, there still are ideas for improvements and additions. Some of these ideas for future development are:

- Enhancement of performance for very large problems
- Extension of the 32167 Parameter Limit for the direct selection for the Restart Processing
- Extension or workaround of the time step limit of 32168 which comes with EXCEL
- Integration of Xmgr5 or other Plot-Package (Simple Plots with HPGL and Quick Viewer)
- Extension of plotting Capabilities when using EXCEL by user-specific layouts and easier plotting of clipped time sections
- Addition of Relap Project specific Sets of Parameters and the Management of these Sets (comparable to Xmgr5)
- Input Preprocessor with User Guidance and Intelligence
- Implementation of a Help System

6 REFERENCES

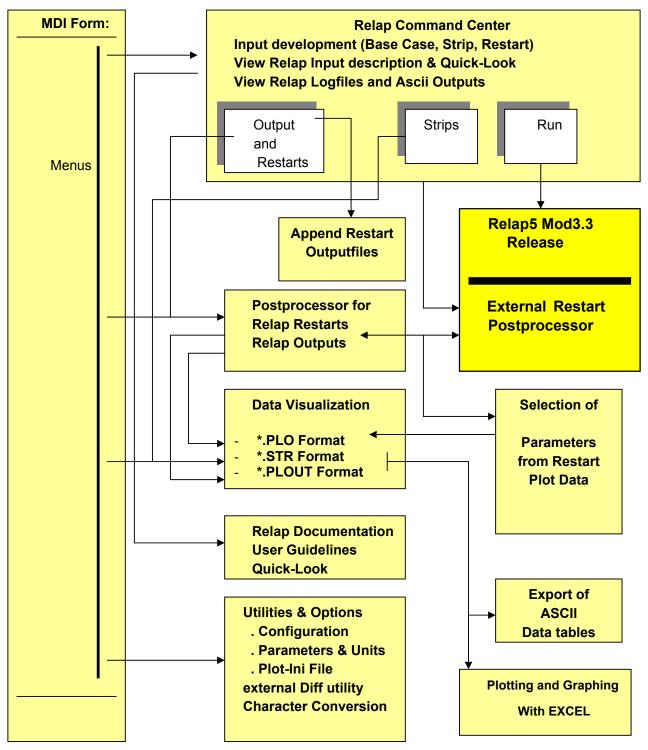
- /1/ Dale M. Snider et al. "Nuclear Plant Analyzer (NPA), EGG-EAST-9096 EG&G Idaho Inc. April 1990
- /2/ Paul J. Turner, "ACE/gr, Graphics for Exploratory Data Analysis" Oregon, Graduate In stitute of Technology, 1991 – 1995, XMGR5 Extensions by K. Jones, Idaho Nation al Engineering and Environmental Laboratory, further developed by ACE/gr Development Team (1995 – 1998), currently maintained by Evgeny Stambulchik, Rehovot, Israel. Actual version: 4.1.2I
- /3/ Symbolic Nuclear Analysis Package SNAP, U.S. Nuclear Regulatory Commission, under development
- /4/ B. Worth et al. "Generation and Verification of a RELAP5/MOD1-EUR Code Version Running on IBM RISC-6000 Workstations", Joint Reserch Center ISPRA Site, Safety Technology Institute, Tech.Note I93.140, October 1993
- /5/ "Users Manual Microsoft Excel 97", Microsoft Corporation, 1997

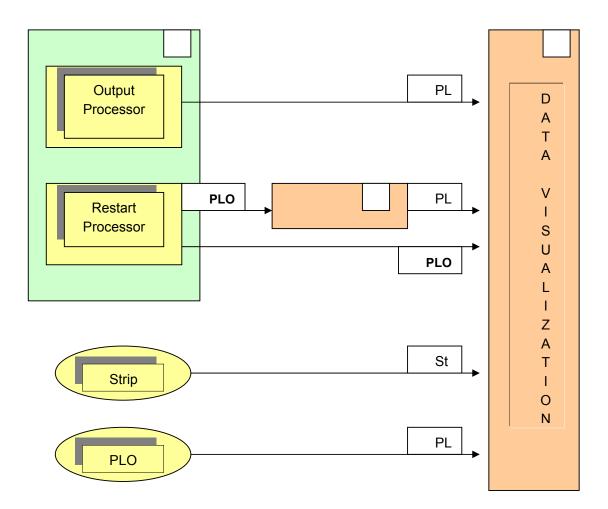
Annex A-1

Figures

Page No.

A-1:	Principal Structure of RelapPP	68
A-2:	Top Level Window	69
A-3:	Relap Command Center	70
A-4:	Structure of the Post Processors	71
A-5:	Extract and process Output Data	72
A-6:	Extract and process Output Data (PLO file exist)	73
A-7:	Extract and process Restart Plot Data	74
A-8:	Successful Extraction of Restart Plot Data	75
A-9:	Plot Post processor: Data Visualization (PLO Channel)	76
A-10:	Plot Post processor: PLOUT Plot Data processing	77
A-11:	Plotting Graphs: Styles affected by PLOT33R.INI	78




Figure A-1: Principal Structure of RelapPP

🗊 Rela	p5 Mod3.3 Release	Pre & Post-Pr	ocessor 3.3		-	
<u>P</u> roject	$\underline{\mathbf{R}}$ elap Command Center	Data \underline{V} isualization	<u>D</u> ocumentation	$\underline{U}\ensuremath{tilities}$ and $O\ensuremath{o}\ensuremath{tilities}$?	
						_
Actua	al Project: TYPPWR		G:\	RELAP533R		
G:\RE	ELAP533R\USER		G.5	RELAP533R\EXE	CUTABLES	

Figure A-2: Top Level Window

Relap Command Center	Dave				×
	_		c		
RELAP Projekt: TYPPWR : TYPIL	AL PWR MUDEL 4 II	NCH LULD LE	а вн	EAK 36.05 U	HELK L
Input S G:\RELAP533R\USER\TYP	PWR.INP			Input Suffix	INP
Output G:\RELAP533R\USER\TYP	PWR.OUT	1696936	Byte	Output Suffix	OUT
				Strip Suffix	STR
Restart G:\RELAP533R\USER\TYP	PWR.RST	7325080	Byte	Restart Suffix	RST
				Log Suffix	SCN
Curr Results S G:\RELAP533R\USI	R				
				Join	,
		EXE		Restar Output	
Steam-Table S G:\RELAP533R\EXE	CUTABLES\TPFH20				
Restart-Problem Documenta	tion Vie	w/Edit Results		Postprocess	ors
	ten l		i I		
		Jutput File]	Output F Minor E	
In the Procent poer in the intervention Itput G:\RELAP533R\USER\TYPPWR.OUT Itstart G:\RELAP533R\USER\TYPPWR.RST Itstart Itstart G:\RELAP533R\USER\TYPPWR.RST Itstart Itstart G:\RELAP533R\USER Itstart G:\RELAP533R\USER Itstart G:\RELAP533R\USER Itstart G:\RELAP533R\USER Itstart G:\RELAP533R\USER Itstart G:\RELAP533R\EXECUTABLES\RELAP533R.EXE Itstart G:\RELAP533R\EXECUTABLES\TPFH20					
Edit Input File			:	Strip F	-р
	📸 _	Log File]		
Start Relap	🚰 🛛 📊	RestInfos	1	Restart	P-P
			1		
					Exit

Figure A-3: Relap Command Center

- 1: "Extract and Process Output / Restart Data"
- 2: "Parameter Selection" (PLOUT to PLO Conversion)
- 3: "Data Visualization" (+ Ascii Tables + Plotting with EXCEL-engine)

Figure A-4: Structure of the Post Processors

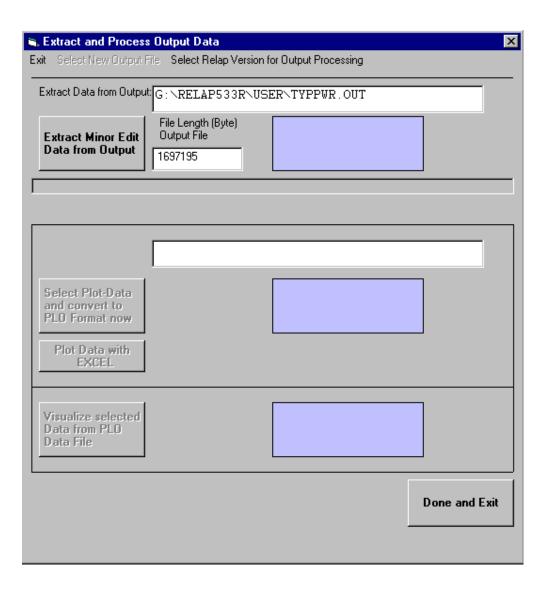


Figure A-5: Extract and process Output Data

Sector And Process	s Output Data		×
Exit Select New Output	File Select Relap Version	for Output Processing	
Extract Data from Outpu	t G: NRELAP533RNUS	SER\TYPPWR.OUT	
Extract Minor Edit Data from Output	File Length (Byte) Output File 1697195		
TYPICAL PWR MODE	EL 4 INCH COLD LE	G BREAK 36.05 CHECK CA	SE
Start-Time: 0.00000	End-Time: 10	0.080	
PlotDataFilename:	G:\RELAP533R\US	SER\TYPPWR.PLO	
Select Plot-Data and convert to PLD Format now			
Plot Data with EXCEL			
Visualize selected Data from PLO Data File	File Length (Byte) PLO File 13026		
			Done and Exit

Figure A-6: Extract and process Output Data (PLO file exist)

	s Relap5 Mod3.3 Relea		×
Exit Select New Restart	File Select Relap Version	for Output Processing	
Extract Data from Restart:	G:\RELAP533R\US	ER\TYPPWR.RST	
Extract Plot-Data from Restart	File Length (Byte) Restart File 7333800		
typical pwr model 4	inch cold leg break 36	6.05 check case	
Start-Time: 0.0000	000000 End-Time:	150.27541035	
Select Plot-Data and convert to PLO Format now Plot Data with	File Length (Byte) PLOUT File		
EXCEL			
Visualize selected Data from PLOUT directly w/o PLO Conversion			
			Done and Exit

Figure A-7: Extract and process Restart Plot Data

(RSINF file exist)

Extract and Proces			x
Exit Select New Restart	File Select Helap V	ersion for Output Processing	
Extract Data from Restart:	G: NRELAP533	R\USER\TYPPWR.RST	
Extract Plot-Data from Restart	File Length (Byte) Restart File 7333800	Restart: 7333800 Byte Plotout: 10415593 Byte Params.: 5481	DONE
typical pwr model 4	inch cold leg bre	ak 36.05 check case	
Start-Time: 0.00000)00000 End-Tir	ne: 150.27541035	
Convert Data to PLO Format from File:	G: \RELAP533	R\USER\TYPPWR.plout	
Select Plot-Data and convert to PLO Format no w	File Length (Byte) PLOUT File 10415593	Parameters: 5481 Operations may take long!	
Plot Data with EXCEL	Message		×
Visualize selected Data from PLOUT directly w/o PLO Conversion	<u>!</u> \	Max. 99 Parms per PLO-File allowed. Multiple Files needed for processing	
			Done and Exit

Figure A-8: Successful Extraction of Restart Plot Data

🖏 D	ata Visualization					_ 🗆 ×
Exit	Select new Plot-File	Show Diagram	Print Diagram	Run Excel	Diagram Options	
TY	PICAL PVR MODEL	4 INCH COLD	LEG BREAK 3	6.05 CHECK	CASE	
Sta	art-Time: 0.00000	End-Time: 1	00.080			
	ot Data File: (*.PLO'')					
- - -	RELAP533R\USER\T					
	it-Parameter- File: (*.PA					
	RELAP533R\USER\T	YPPWR.Par				
Varia	ables selected					
	1 301 P	34	5010000		<u>-</u>	
				Clear all		
				Selections		
				 Diagram Defaults 		
				2 0100110		
	0 Variables sele	ected View	Results 9	ihow diagra	am	
		ASC	•			
	Create Tin Variable T	18- PLT	Ö	Print Diagra	m F	xit
	variable I	able XG5	o L	- mic bragh		· · · ·

Figure A-9: Plot Post processor: Data Visualization (PLO Channel)

-	s Relap5 Mod3.3 Rele File Select Relap Version		X		le Show Diagram Print		 Diagram Options
Extract Data from Restart:	G:\RELAP533R\U	SERNTYPPWR.RST		Start-Time: 0.0000	inch cold leg break 36.0 000000 End-Time: 150		
Extract Plot-Data	File Length (Byte) Restart File			Plotout Data File: G:\RELAP533R\USEF	\TYPPWR.plout]
from Restart	7333800				Double Click to View	v, Not recommended! File	> 5 MB
	l inch cold leg break 3			Variables selected			
Start-Time: 0.0000	000000 End-Time:	150.27541035		1 0	cputime	sec	Sort Data: Parameters
Convert Data to PLO Format from File: Select Plot-Data and convert to PLO Format now Plot Data with EXCEL Visualize selected Data from PLOUT directly w/o PLO Conversion	File Length (Byte) PLOUT File 10415593	Parameters: 5482		Data sortet: Rec	selected View Result		
-	-		Done and Exit	Create Variable			Exit

Figure A-10: Plot Post processor: PLOUT Plot Data processing

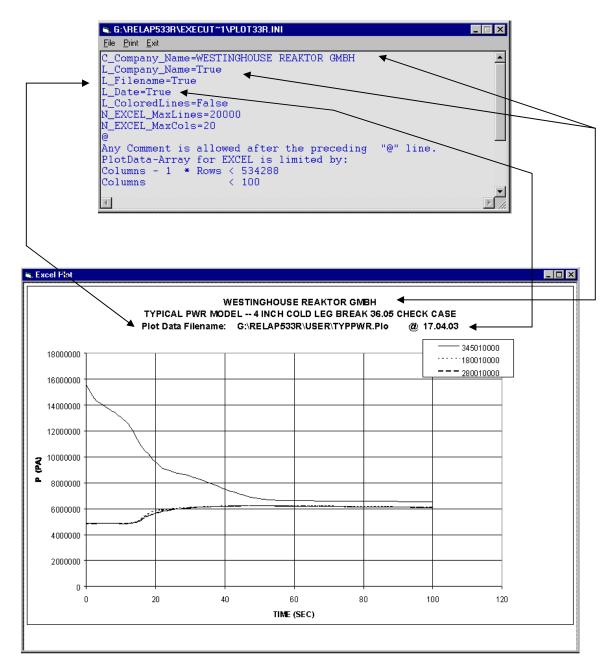


Figure A-11: Plotting Graphs: Styles affected by PLOT33R.INI

Annex B-1

Tables

Page No.

B-1:	PLO Plotdata Format and typical PAR file	80
B-2:	Parameter File for Strip Data	81
B-3:	PLOUT Data Format	82
B-4:	Restart & Plot Information Files	83
B-5:	Restart Input File	84
B-6:	Strip Input File	85
B-7:	Storing Plot Data in three different Formats	86
B-8:	Relap-INI File	87
B-9:	UNITS-INI File	88
B-10:	UNITS-INI File, Con't	89

TYPPWR.Plo - Datei <u>B</u> earbeiten							. 🗆
TYPICAL PWR	MODEL 4 INCH C	OLD LEG BREAK 3	6.05 CHECK CASE	:	07-AUG-02	15:11:1	8
RELAP5/3.3	REACTOR	LOSS OF COOLAN	T ANALYSIS PROG	RAM Output	File: G:\RELAP53	3R\USER\TYP	PWR
TIME	Р	Р	Р	VOIDG	VOIDG	VOIDG	
(SEC)	345010000	180010000	280010000	345010000	335060000	21201000	ß
(320)	(PA)	(PA)	(PA)	045010000	009000000	21201000	
0.00000	1.55732E+07	4.82550E+06	4.82550E+06	0.0000	0.0000	0.0000	
1.00375	1.50488E+07	4.83164E+06	4.83215E+06	0.0000	0.0000	0.0000	
2.02729	1.45683E+07	4.82674E+06	4.82657E+06	0.0000	0.0000	0.0000	
3.00192	1.42987E+07	4.82903E+06	4.82903E+06	0.0000	0.0000	0.0000	
4.02537	1.41105E+07	4.83016E+06	4.82788E+06	0.0000	0.0000	0.0000	
5.00003	1.39510E+07	4.83351E+06	4.83010E+06	0.0000	0.0000	0.0000	
6.02323	1.37546E+07	4.83619E+06	4.83184E+06	0.0000	0.0000	0.0000	
7.04651	1.36070E+07	4.83568E+06	4.83070E+06	0.0000	0.0000	0.0000	
8.02083	1.34309E+07	4.83706E+06	4.83154E+06	0.0000	0.0000	0.0000	
9.04361	1.32267E+07	4.83870E+06	4.83133E+06	0.0000	0.0000	0.0000	
10.0171	1.30494E+07	4.83743E+06	4.82721E+06	0.0000	0.0000	0.0000	
11.0386	1.27817E+07	4.83812E+06	4.82103E+06	0.0000	0.0000	0.0000	
12.0174	1.25557E+07	4.85053E+06	4.83043E+06	0.0000	0.0000	0.0000	
13.0017	1.22082E+07	4.88624E+06	4.85955E+06	0.0000	0.0000	0.0000	
14.0002	1.17724E+07	4.93885E+06	4.90892E+06	0.0000	0.0000	0.0000	
15.0076	1.12624E+07	5.02235E+06	4.99863E+06	0.0000	0.0000	0.0000	
16.0181	1.08094E+07	5.19763E+06	5.14477E+06	0.0000	0.0000	0.0000	
17.0236	1.04582E+07	5.42537E+06	5.34187E+06	0.0000	0.0000	0.0000	
18.0155	1.01509E+07	5.59573E+06	5.44595E+06	0.0000	0.0000	0.0000	
19.0625	9.85061E+06	5.73837E+06	5.54081E+06	0.0000	0.0000	0.0000	
20.0068	9.62955E+06	5.82628E+06	5.61676E+06	0.0000	0.0000	0.0000	
21.0813	9.29601E+06	5.87550E+06	5.69459E+06	0.0000	0.0000	0.0000	
22.0353	9.11953E+06	5.87523E+06	5.74919E+06	0.0000	2.76632E-07	0.0000	
23.0351	9.01239E+06	5.90370E+06	5.80809E+06	0.0000	1.68485E-06	0.0000	
24.0822	8.91239E+06	5.93529E+06	5.86322E+06	0.0000	0.0000	0.0000	
25.0761	8.81677E+06	5.96967E+06	5.90975E+06	0.0000	1.67299E-07	0.0000	
26.0070	8.75359E+06	6.00973E+06	5.94743E+06	0.0000	2.03249E-07	0.0000	
27.0841	8.69593E+06	6.03687E+06	5.97592E+06	0.0000	4.97147E-07	0.0000	
28.0942	8.63816E+06	6.04860E+06	5.99717E+06	0.0000	8.25926E-07	0.0000	
•							

TYPP₩R.Par-E atei <u>B</u> earbeiten <u>S</u>			
MINOR EDIT	REQUESTS	Output File: G:\RELAP533R\USER\TYPPWR.0	UT
REQ.NUM.	VARIABLE		
301	Р	345010000	
3 0 2	Р	180010000	
3 0 3	Р	280010000	
304	VOIDG	345010000	
3 05	VOIDG	335060000	
306	VOIDG	212010000	
351	MFLOWJ	50500000	
•			
			• •

 Table B-2:
 Parameter File for Strip Data

STRIP FILE	PARAMETERS FROM	FILE: G:	\Relap533Beta\user	PROB2 S05.STR
REQ.NUM.	VARIABLE CODE	PARAMETER		_
na	100010000	Р	(Pa)	
na	110010000	Р	(Pa)	
na	110020000	Р	(Pa)	
na	110030000	Р	(Pa)	
na	120010000	Р	(Pa)	
na	130010000	Р	(Pa)	
na	130020000	Р	(Pa)	
na	130030000	Р	(Pa)	
na	130040000	Р	(Pa)	
na	132010000	Р	(Pa)	
na	140010000	Р	(Pa)	

Table B-3: PLOUT Data Format

Pad 97 - [Rv.pl ■ File Edit Tool	lout] Is Search Options Window ?	
Program name	.3 PLOT INFORMATION Date (MM/DD/YY): 03/25/03 e: RSTR533.EXE Ver 2.4.1 21.08.2002 : G:\RELAP533R\USER\Rv.RST	A
RESTART INPU RSV 255	UT FILE WAS WRITTEN BY PROGRAM RELAP5/3.3co ON 25-Mar-03 : Studie - Rückschlagventil	25-Mar-03
time	0	
cputime	0	
emass tmass	0	
dt	0	
dternt	0	
count	0	
vlvarea	120	
vlvstem	120	
rho	100010000	
I .		
I .		
· .		
mflowj	13500000	
voidfj	13500000	
voidgj	13500000 13500000	
qualaj	13300000	
plotrec		
TIME = 0.000	00000E+00	
0.13419E+01 (D.00000E+00 0.14462E+01 0.10000E-06 0.00000E+00 0.00000E+00	
0.00000E+00 0	0.00000E+00 0.99797E+03 0.99797E+03 0.24161E+01 0.91622E+05	
0.25571E+07 0	0.10000E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.45000E+06	
	25047E+00 0.00000E+00 0.00000E+00 0.29500E+03 0.42105E+03	
	D.00000E+00 O.00000E+00 O.00000E+00 O.42105E+03 O.00000E+00	
	D.99797E+03 0.24161E+01 0.91622E+05 0.25571E+07 0.10000E+01	
	0.00000E+00 0.00000E+00 0.45000E+06 0.00000E+0025047E+00	
	0.00000E+00 0.29500E+03 0.42105E+03 0.14885E+04 0.00000E+00 0.00000E+00 0.42105E+03 0.00000E+00 0.99797E+03 0.99797E+03	
	0.00000E+00 0.4210SE+03 0.00000E+00 0.99797E+03 0.99797E+03 0.91622E+05 0.25571E+07 0.10000E+01 0.00000E+00 0.00000E+00	
	0.91822E+05 0.2557E+07 0.10000E+01 0.0000E+00 0.0000E+00 0.45000E+06 0.00000E+0025047E+00 0.00000E+00 0.00000E+00	
	0.42105E+03 0.14885E+04 0.00000E+00 0.00000E+00 0.00000E+00	
	0.00000E+00 0.99797E+03 0.99797E+03 0.24161E+01 0.91622E+05	_1
J		
		ns Caps Line 1, Column 1

Table B-4: Restart & Plot Information Files

Pad 97 - [typpwr.rsinf]	
Eile Edit Tools Search Options Window 2	_ 8 ×
RELAP 5MOD3 RESTART INFORMATION Date (MM/DD/YY): 10/18/02	
Program name: RSTR533.EXE Ver 2.4.1 21.08.2002	
Input file : G:\RELAP533R\USER\TYPPWR.RST	
RESTART INPUT FILE WAS WRITTEN BY PROGRAM RELAP5/3.3 ON 07-Aug-02	
READ RESTART RECORD O TIME = 0.000000000	
READ RESTART RECORD 830 TIME = 80.1506071777	
READ RESTART RECORD 887 TIME = 100.3681430608	
READ RESTART RECORD 887 TIME = 100.3681430608	
READ RESTART RECORD 1012 TIME = 150.2668884797	
****** EOF FOUND ON READ OF INPUT FILE: G:\RELAP533R\US	
Ins Caps Li	ne 1, Column 1

📚 Pad 97 - [typ	pwr.plinf]		
📔 <u>F</u> ile <u>E</u> dit <u>T</u> i	ools <u>S</u> earch	<u>Options</u> <u>W</u> indow <u>?</u>	_ 뭔 ×
🛛 🗅 🚅 🖬 🖿	i 🚭 🐰	🖹 🛍 🗠 🙀	
Program na	me: RSTR5	RAMETER INFORMATION Date (MM/DD/YY): 10/18/02 333.EXE Ver 2.4.1 21.08.2002 :LAP533R\USER\TYPPWR.RST	
		WAS WRITTEN BY PROGRAM RELAP5/3.3 ON 07-Aug-02 4 inch cold leg break 36.05 check case	07-Aug
_	time	0	
	cputime	0	
2	emass	0	
2832	velf	270050000	
2833	velg	270050000	
2834	p	270050000	
· .			
	reacrm	0	
	reacm	0	
	reacrb	0	
	reactf	0	
5461	reac	0	
I I			► I
		Ins Caps Lir	ie 17, Column 11

Table B-5: Restart Input File

```
Pad 97 - [TYPPWR_R01.INP]
                                                                           _ 🗆 ×
File Edit Tools Search Options Window ?
                                                                           _ 8 ×
🗅 🚅 🖬 🖆 🎒 👗 🖻 🛍 🗠 🛤
* Restart Input Deck: G:\RELAP533R\USER\TYPPWR RO1.INP
                                                                              ٠
* Date: 18.10.02
=Restart 01 of TYPICAL PWR MODEL -- 4 INCH COLD LEG BREAK 36.05 CHECK CASE
* Restart Info from previous Restart/Plot File:
* RELAP 5MOD3 RESTART INFORMATION Date (MM/DD/YY): 10/18/02
* Program name: RSTR533.EXE Ver 2.4.1 21.08.2002
* Input file : G:\RELAP533R\USER\typpwr.RST
* _____
* RESTART INPUT FILE WAS WRITTEN BY PROGRAM RELAP5/3.3 ON 07-Aug-02
* READ RESTART RECORD O TIME = 0.0000000000
* READ RESTART RECORD 830 TIME = 80.1506071777
* READ RESTART RECORD 887 TIME = 100.3681430608
80
100 restart
               transnt
* Restart No.
103 887 * at Timestep: 100.3681430608
* Restart No.
* Adapt to current Problem and Modify last Time Card!!
201 150.0 1.0-7 0.50 3 2 40
                                     160
* It is strongly recommended not to change the
* Minor Edit cards 301 through 399 or add any new
* and Minor Edit Data Cards or change the model
* to guarantee for continuous plotting data!
301 p 345010000
302 p
          180010000
        280010000
303 p
304 voidg 345010000
305 voidg 335060000
306 voidg 212010000
351 mflowj 505000000
. end
                                                          Ins Caps Line 19, Column 1
```

Table B-6: Strip Input File

Pad 97 - [TYPPWR_S02.INP] _ 🗆 × <u>File</u> Edit <u>T</u>ools <u>Search</u> <u>Options</u> <u>Window</u> _ 8 × 🗋 🗁 🔚 📹 🎒 👗 🖻 🛍 🗠 🛤 ٠ * _____ * _____ * RESTART FILE WAS WRITTEN BY PROGRAM RELAP5/3.3co ON 02-Apr-03 * RESTART FILE NAME : G:\RELAP533R\USER\TYPPWR.RST * DATE (MM/DD/YY) : 04/02/03 * STRIP-INPUT FILE NAME : STRIPINP * STRIP-OUTPUT WILL BE IN ASCII FORMAT (FMTOUT) * _____ * NUMBER OF PARAMETERS IN THIS PROBLEM : 5481 * NOTE: STRIP PARAMETERS VALID ONLY 1001 .. 1999. * _____ = typical pwr model -- 4 inch cold leg break 36.05 check case 100 strip fmtout *100 strip binary 103 0 *1001 cputime 0 * *1002 emass 0 * *1003 tmass 0 0 * *1004 dt *1005 dtcrnt 0 * 0 * *1006 count 0 *1997 sattemp 202010000 * *1998 floreg 202010000 *1999 rho 204010000 * *1999 rho * * NOTE: STRIP PARAMETERS VALID ONLY 1001 .. 1999. *2000 rhof 204010000 * *2001 rhog 204010000 * *6478 reacm 0 * *6479 reacrb 0 * *6480 reactf 0 * *6481 reac * 0 . end * _____ Ins Caps Line 25, Column 1

 Table B-7:
 Storing Plot Data in three different Formats

TYPPWR_S	01.ASC - Editor				_ 🗆 🗙
<u>D</u> atei <u>B</u> earbeite	n <u>S</u> uchen <u>?</u>				
TYPICAL PWR	R MODEL 4	INCH COLD LEG	BREAK 36.05	CHECK CASE	×
TIME	CPUTIME	EMASS		CNTRLUAR	
LTHE	GPUTTHE		CNTRLVAR		
(050)	0	0	21	22	
(SEC)	(Sec)	(kg)	4 007665.04	4 050405.04	
		0 0,00000E+00			
		1 2,22627E-01			
		1 6,43588E-01			
		1 8,15747E-01			
		1 9,78501E-01			
		1 1,10444E+00			
		1 3,34223E+00			
		1 3,51430E+00			
		1 3,67721E+00			
		1 3,88115E+00			
		1 4,03556E+00			
1,10386E+0	01 3,14252E+0	1 4,08703E+00	1,33744E+01	1,25310E+01	-
4					D //

TYPPWR_S01.	PLT - Editor					
<u>D</u> atei <u>B</u> earbeiten						
0 2		101 10	1			
TYPICAL PWR M	ODEL 4 IN	ICH COLD LEG	BREAK 36.05	CHECK CASE		
TIME (SEC)						
CPUTIME (sec)					
CPUTIME @ 0						
EMASS @ 0 CNTRLUAR @ 21						
CNTRLUAR @ 21						
.00000E+00	.10037E+03	.00000E+00				
,00000E+00	,77752E+02	.00000E+00				
,00000E+00	10038E+01	20273E+01	,30019E+01	,40254E+01	.50000E+01	
,60232E+01	,70465E+01	,80208E+01	,90436E+01	10017E+02	11039E+02	
12017E+02	13002E+02	,14000E+02	15008E+02	,16018E+02	17024E+02	
,18015E+02	19063E+02	,20007E+02	21081E+02	22035E+02	23035E+02	
,24082E+02	,25076E+02	,26007E+02	,27084E+02	,28094E+02	,29026E+02	
,30116E+02	,31122E+02	,32028E+02	,33091E+02	,34043E+02	,35016E+02	
,36012E+02	,37035E+02	,38090E+02	,39021E+02	,40142E+02	,41134E+02	
,42156E+02	,43033E+02	,44115E+02	,45042E+02	,46185E+02	,47164E+02	
,48170E+02	,49204E+02	,50053E+02	,51140E+02	,52031E+02	,53173E+02	
,54111E+02	,55071E+02	,56055E+02	,57063E+02	,58095E+02	,59153E+02	
,60240E+02	,61072E+02	,62195E+02	,63048E+02	,64202E+02	,65085E+02	
,66270E+02	,67165E+02	,68068E+02	,69282E+02	,70203E+02	,71132E+02	
,72068E+02	,73012E+02	,74282E+02	,75242E+02	,76210E+02	,77185E+02	
,78166E+02	,79155E+02	,80151E+02	,81153E+02	,82162E+02	,83178E+02	
,84201E+02	,85232E+02	,86271E+02	,87319E+02	,88021E+02	,89080E+02	
,90146E+02 .96299E+02	,91218E+02 .97034E+02	,92297E+02 .98140E+02	,93019E+02 ,99252E+02	,94108E+02 .10037E+03	,95201E+02	
,902996+02	,97034E+02	,701402+02	,77272E+02	,100372*03		-
1						

<u>D</u> atei <u>B</u> earbeiten <u>S</u> uchen	2				
# TYPICAL PWR MOD	EL 4 INCH COL	D LEG BREAK 36.0	5 CHECK CASE		
⊒TYPE nxy					
TIME	CPUTIME	EMASS	CNTRLVAR	CNTRLVAR	
(SEC)	(sec)	(kg)			
0.00000E+00	4.446393E+00	0.00000E+00	1.337437E+01	1.253103E+01	
1.003752E+00	1.560244E+01	2.226270E-01	1.337437E+01	1.253103E+01	
2.027288E+00	1.717470E+01	6.435884E-01	1.337437E+01	1.253103E+01	
3.001917E+00	1.872693E+01	8.157468E-01	1.337437E+01	1.253103E+01	
4.025372E+00	2.035928E+01	9.785011E-01	1.337437E+01	1.253103E+01	
5.000035E+00	2.190149E+01	1.104440E+00	1.337437E+01	1.253103E+01	
6.023230E+00	2.351381E+01	3.342228E+00	1.337437E+01	1.253103E+01	
7.046512E+00	2.512613E+01	3.514297E+00	1.337437E+01	1.253103E+01	
8.020830E+00	2.664832E+01	3.677211E+00	1.337437E+01	1.253103E+01	
-					
-					
9.629903E+01	7.670029E+01	1.598718E+01	1.220825E+01	9.867024E+00	
9.703386E+01	7.690058E+01	1.598942E+01	1.220496E+01	9.792497E+00	
9.814037E+01	7.718098E+01	1.599274E+01	1.220060E+01	9.678582E+00	
9.925167E+01	7.746139E+01	1.599611E+01	1.219705E+01	9.562995E+00	
1.003681E+02	7.775181E+01	1.599958E+01	1.219389E+01	9.446327E+00	
x					

Table B-8: Relap-INI File

G:\RELAP533R\EXECUT~1\RELAP33R.INI
<u>File Print Exit</u>
; Do NOT change any keywords or the sequences ;
[Start_up] ; Relap Version 5 Mod 3.1 and newer RVersion=3300 RELAPRootDir=G:\RELAP533R RelapBinDir=G:\RELAP533R\EXECUTABLES RELAPUserDir=G:\RELAP533R\USER RELAPExe=RELAP533R.EXE ASteam=TPFH20
[Manuals] ManualsDir=G:\RELAP533R\MANUALS Command1(0)=RELAP CODE DESCR. VOLUME I Command1(1)=RELAP USERS GUIDE VOLUME II Command1(2)=RELAP INPUT DESCRIPTION VOL. III, APP.A Command1(3)=MODELS + CORRELATIONS VOLUME IV Command1(4)=USERS GUIDELINES VOLUME V Command1(5)=VALIDATION OF NUMERICS VOLUME VI Command1(6)=CODE ASSESSMENT VOLUME VII Command1(7)=PROGRAMMERS MANUAL VOLUME VIII
Pdf (0) =VOLUME1.PDF Pdf (1) =VOLUME2.PDF Pdf (2) =INPUTMANUAL.PDF Pdf (3) =VOLUME4.PDF Pdf (4) =VOLUME5.PDF Pdf (5) =VOLUME6.PDF Pdf (6) =VOLUME7.PDF Pdf (7) =VOLUME8.PDF
[Run] BaseFile=TYPPWR InputSuffix=INP OutputSuffix=OUT RestartSuffix=RST LogFileSuffix=SCN StripFileSuffix=STR
[Editor] Win_Small_ed=NOTEPAD.EXE Win_Big_ed=G:\RELAP533R\EXECUTABLES\PAD97.EXE Dos_ed=EDIT.COM
[Browser] ;PDF Browser, Install in Default Windows Directory !! Browser=D:\PROGRAMME\ADOBE\ACROBAT 4.0\READER\ACRORD32.EXE

Table B-9: UNITS-INI File

; Do NOT change the Width of any Column. Data @ line 5. Last line: @ Line Length: 76 + . (77) ; Paramter - Units - 29.04.2001 count Rechenschritt Count Advancement cputime sec sec CPU-Zeit CPU Time emass kg lb Fehler-Masse Totale Masse Error Mass Total Mass lb tmass kg Zeitschritt Time Step Courant Zeitschritt Courant Time Step dt sec sec dtcrnt sec sec btu/s lb/ft^3 °F ft^3 acqtank W Accu.Tot.Energ.TransAccuTotEnergieTransp. kg/m^3 Accu.NonCondensDichtAccuNonCond.Density . Accu.mit.Wand.Temp. Accu.av.Wall Temp. acrhon К⁻ m^3 acttank Accu.Gas Volume Accu.Gas Volume acvdm ft³ m^3 Accu.Liqu.Volume Accu.Liqu. Volume acvlig pmpvel U/min rad/s Pumpen Drehzahl Pump Rot.Velocity lbf/in^2 pmphead Pa Pumpenhöhe Pumphead lbf*ft pmptrq N*m Pumpen Torque Pump Torque Effektivität TurbineTurbine Efficiency turef Turbinen Leistung Turbine Power turpow W Btu/s N*m lbf*ft Turbinen Torque Turbine Torque turtra Turbinen Drehzahl turvel U/min rad/s Turbine Rot. Velocity. Ventil Fläche Ventil Öffnung Valve Area Ratio vlvarea vlvstem Valve stem position . kg/m^3 lb/ft^3 BOR Dichte boron Boron Density floreg FLOREG Flow regime number Pa lbf/in Druck Volume Pressure р Leistung im Volumen Tot.vol.heat source . q W Btu/s NonCond.Mass.Verh. Equ.Qualität quala Vol.noncond.massfrac. quale Vol.equil.quality Statische Qualität Vol.static.quality quals Btu/s lb/ft³ lb/ft³ lb/ft³ Volumen Leistung Vol.wal heat source awa W kg/m^3 kg/m^3 rho Dichte Total density Liquid density rhof Flui Dichte Dampf Dichte Vapor density SättigungstemperaturVolume sat.temp. Schallgeschwind. Volume son.velocity rhog kg/m^3 sattemp Κ ٥F ft/s sounde m/s Fluid Temperatur Dampf Temperatur tempf ĸ ٥F Volume liqu.temp. tempg °F Volume vap.temp. Κ uf J/kg Btu/lb Vol. Liqu.Spec.Ener Volume liq.energy Btu/lb lb/ft³*s uq J/kg Vol. Gas.Spec.Ener Volume vap.energy . kg/m^3*s Verdampf/Conden. vapgen Vap.gen./Cond. rate Vol.Fluid Geschw. Volume Liq.velocity . Volume Vap.velocity . velf m/s ft/s Vol.Dampf Geschw. velq m/s ft/s voidf Volume Void (fluid) Vol. liquid fraction. voidq Volume Void (gas) Vol. gas fraction

88

Table B-10: UNITS-INI File, Con't

mflowj qualaj rhofj rhogj sonicj ufj ugj velfj velfj voidfj voidfj	kg/s kg/m^3 m/s J/kg J/kg m/s m/s	lb/s lb/ft^3 ft/s Btu/lb Btu/lb ft/s ft/s	Junc. NonCond.Qual Junc. Fluid.Dichte Junc. Dampf.Dichte Junc. Schallgeschw Junc. Liqu.Spec.Ener Junc. Gas.Spec.Ener Junc. Gas Geschw.	Liq. & Vap.flow rate. Jun.noncond.mass.fra. Jun.Liqu.density . Jun.Gas.density . Jun. sound speed . rJun. liqu.spec.energy. Jun. vap.spec.energy. Jun. liqu.velocity . Jun. Vap.velocity . nJun. liquid fraction. Jun. vapor fraction .
htchf hthtc htrnr httemp	W/m^2 W/m^2·K W/m^2 K		CHF FHeat transfer coeff Wärmefluss Mesh Point Temp.	Critical heat flux . .Heat transfer coeff . Heat flux . Mesh point temp
reac reacrb reacrb reacrm reactf reactf reactm rkfipow rkgapow rkgapow rkpowk rkpowk rkreac rkrecper rktpow @	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Bor Rückkopplung Moderator Rückk. Abschaltraktivität Brennstoff.Rückkop. Mod.Temp Rückkop. Reaktor Leistung Nachzerfallsleist. Nazef Actiniden Nazef Fission Prod. Reaktivität ReaaktorPeriode	Tot.Reactiv.feedback. .Tot.React.feedb.mod Reac.feedb.moderator. ScramReactivity . TempReactivity feedb. Reac.feedb.mod.temp Reactor pow. fission. Reactor pow.decay . React.pow.decay.acti. React.pow.decay.fiss. Reactivity . Reactivity . Reciprocal period . .Total reactor power .

Annex C-1

Source Code Listing of the Relap5MOD3.3R Restart Postprocessor

С Last change: DWT 20 Sep 2002 1:03 pm С С С С Purpose: C C C Extract PlotData from Restart/Plot-File Create Inormation files about Plots & Restarts Create Information about Plotparameters for Strip files C C Create automatic Strip Input for RELAP 5/MOD3.2.2Gamma and RELAP 5/MOD3.3Beta C and RELAP 5/MOD3.3 Release RSTR33.R С Options: -s and -so for stripfile С _____ С С Development: Dr. Tietsch С Based on RESTI120 C Created: 02.07.1994 С 1.10 fuer IBM-RISK/486-PC Version: C Version 1.20 fuer IBM-RISK/486-PC (06.10.94) 1.21 fuer IBM-RISK/486-PC Lahey Fortran 90 Vers. 40a 1.22 fuer IBM-RISK/486-PC Lahey Fortran 95 Vers. 5.5 1.30 fuer IBM-RISK C C C Version: restlh9 Version: resti95 Version: restaix Ĉ read IBM-Risc6000 Restart Data of restaix relap5 Mod 1 ABB version С restaix 2.0 fuer Relap5 3.2.2.Gamma INTEL Version C C C C C Version: RSTR532 fuer Relap5 3.2.2.Gamma AIX Version fuer Relap5 3.2.2.Gamma INTEL/AIX Version fuer Relap5 3.2.2.Gamma INTEL/AIX Version fuer Relap5 3.2.2.Gamma ma..z Version for Version: 2.1 RSTR32a Version: 2.2 RSTR32u 2.2.1 2.2.2 Version: RSTR32u1 RSTR32u2 Version: C C INTEL/AIX/DECALPHA/hpc180/sgi64/sunOS56 platforms RSTR32u2 2.2.3 fuer Relap5 3.2.2 Gamma ma..z Version 2.2.4 fuer Relap5 3.2.2.Gamma ma..z Version Version: RSTR32u3 С Version: RSTR32u4 С Process Restartfiles from Restarts also RSTR32u4 С Version 2.3 fuer Relap5 3.3 Beta pt Version RSTR33 Contrl + 4 real variablesRSTR332.3.0 fuer Relap5 3.3 Beta pt VersionRSTR33.02.3.1 fuer Relap5 3.3 Beta pt Version mit ÄnderungenRSTR33.1 С č Version: C Version: C fuer grosse Files RSTR33.1 2.4.0fuer Relap5 3.3 Release VersionRSTR33.R2.4.1fuer Relap5 3.3 Release Version mit ÄnderungenRSTR33R1 С Version: C C Version: fuer grosse Files RSTR33R1 С C Last Update: 27.09.1994 , 30.11.2000 (1.21) restlh9 C 07.12.2000 (1.30) Last Update: restaix С Last Update: 17.01.2001 (2.00) RSTR532 С Last Update: 17.01.2001 (2.10) RSTR32a С Last Update: 18.01.2001 (2.20) RSTR32u С Last Update: 19.01.2001 (2.21) RSTR32u1 Ĉ 04.03.2001 (2.22) 27.04.2001 (2.23) Last Update: RSTR32u2 Ĉ Last Update: RSTR32u3 С 12.06.2001 (2.24) Last Update: RSTR32u4 С Last Update: 23.09.2001 (2.3) RSTR33 C C C Last Update: 07.10.2001 (2.3.0) RSTR33.0 21.08.2002 (2.3.1) 08.08.2002 (2.4.0) Last Update: RSTR33.1 Last Update: RSTR33.R С 20.09.2002 (2.4.1) Last Update: RSTR33R1 С С _____ -ri restart/strip_input_file Defaults: -ro restart_output w/o plotdata definition of the start_output w/o plotdata definition of the start_output w/o plot С Options: C C C RESTINP RESTOUT RESTINE plot_parm & data_file plot_parameter_info_file strip inputfile for RELAP C C PLOTOUT -po -op PLOTINF -so C C C C C C STRIPINP -d debug data in file DEBUG -r write restart output file - 5 write strip input file write plotdata file -p C C no screen output -no -h/? HELP С С w/o -p and/or -r the default is: only RESTINF and/or PLOTINF files will be written С For AIX/DEC/SUN and SGI Restarts RESTOUT will not be processed!' RSTR32u2 С С _____ RESTaix С Technology reading restart files with PC written with AIX : С (HPC180,SGI64 and SunOS56 are equivalent to AIX) RSTR32u2 (DECalpha in equivalent to Intel) C C C C C C C RSTR32u2 AIX writes Bits of Integer*2,4, Real4, Real8 in opposite order RESTaix than Intel based compilers, so they must be swept. Example: RESTaix RESTaix RESTaix Ilint(1) = Ilaix(4)С Ilint(2) = Ilaix(3)RESTaix

Ilint(3) = Ilaix(2)RESTaix Ilint(4)=Ilaix(1) RESTaix RESTaix new function: intel-integer*4=iflip(aix-integer*4) RESTaix RESTaix Data written with AIX (and s.o.)operation system must be read by RSTR32u2 INTEL programs in 4 Byte pieces. Bits must be flipped. e.g. R8 aix writes 8 Bytes as follows: RESTaix RESTaix RESTaix Bvtes: 8765 4 3 2 1 RESTaix RESTaix equivalence: I4aix(1) I4aix(2) RESTaix RESTaix 5678 flip Bits with Iflip 1234 RESTaix I4int(2) I4int(1) RESTaix 5 6 7 8 change order RESTaix 1234 RESTaix equivalence: I4aix(1) I4aix(2)RESTaix RESTaix Result. R8int RESTaix RESTaix REAL*8 R8aix,R8int INTEGER*4 I4aix(2), I4int(2) EQUIVALENCE (I4aix(1), R8aix) EQUIVALENCE (I4int(1), R8int) RESTaix RESTaix RESTaix RESTaix RESTaix RESTaix AIX data must be read in by INTEL in 4BYTE chunks in transparent RESTaix access mode. RESTaix RESTaix First Byte of INTEL restart plot file is an 8, AIX is .ne. 8 RESTaix RESTaix Method to read in the binary data stream from aix restart file RESTaix is to first read the pointer as 2 Real*4 numbers, which are RESTaix equivalenced to I*4, than reading the data defined b the pointer RESTaix with one read statement, then reading the next pointer and so on.RESTaix RESTaix Meaning of the I*4 Pointers: RESTaix RESTaix Pointer(1) = Number Bytes back to preceding Pointer RESTaix Pointer(2) = Number Bytes to next Pointer RESTaix RESTaix Example: 112 80 : 112 Byte = 14 Real*8 back '^ Peal*8 to ne RESTaix RESTaix 80 Byte = 10 Real*8 to next Pointer RESTaix Note: Relap writes additional Pointers as well (lx, iwrd) RESTaix which are needed for the determination of the length of RESTaix RESTaix the data blocks _____ Technology: RELAP5 MOd 3.2 and up Restart consits of the following parts: Type Wordlengt Length I RSTPLT Record: Program Identifications Program Identification Example: ' RELAP5/3.2mz Empty A8 ' ' 1) 8 2 а 2) 8 а 1 3) Characterstring 8 3 а Example: 'restart-plot file Date/Time file was written Example '13-DEC-00 18:55:29 Two Intgers, 2nd Variable irout 4) 8 3 a 5) i 4 2 II PLOTINF Record: 'plotinf' 1) Length of PLOTALF record (lenb) 8 1 r Example: 0, 379 Length of PLOTREC record (lenc) 2) 1 r 8 Example: 0, 190 if lenc=(lenb+1)/2 then plot data is compressed using the sqoz subroutine (two r4 values are packed int one r8) III PLOTALF Record: 'plotalf' alphanumeric part of the variable a 8 lenb 1) Example: 'time IV PLOTNUM Record: 'plotnum' numeric part of the variable r 1) 8 lenb Example: 0.000000 v RESTART Record: 'restart'

C C C C C C C

000000000000000

0000000000000000

0000000000000

C

C

С

С

С

C C C

00000000000000000

00000000

C C C C C

00000000

C C

```
0000000000000
            1)
                    Print variable iprint
                                                                               1
                                                            r
                                                                     8
                    two integers, second: iprint
Example: 0, 23
             2)
                    no of restart record ncount
                                                                     8
                                                                               1
                                                            r
                    two integers, second: ncount
                    Example: 0, 0
       ---> these are written only for restart No. 0
              and for every restartet problem at time of restart
                    Title record, ptitle string
Title record, ctitle string
             3)
                                                         r
                                                                               8
                                                                     8
             4)
                                                                     8
                                                            r
                                                                              12
00000000
            5)
                    Named common block comctl
                                                            r
                                                                     8
                                                                              lx
             these are written for every restart data block
       --->
                   Named common block contrl r 8 lx
Time of restart: timehy R8 on pos 5 in contrl block
            6)
                    Number restartblock : rstblcknumber1531 I4 on pos 47 /
Restart number : ncount I4 on pos 48 /
                                                                     I4 on pos 48 / 2
                    Other named common blocks and
             7)
                                                                     4/8
                                                                              lx
0000000000000000
                    dynamic commonblocks
         VI PLOTREC Record: 'plotrec'
                    numeric value of variable
             1)
                                                                               lenc
                                                            r
                                                                     8
                    Example: 0.000000
                    use unsqoz to uncompress or even better in case
                    of INTEL read in continuously as R4. Data is in
                    right order
         The principal access to the data is achieved by consideration of the data organzation in RSTPLT files as follows:
               - Two Integers (4) must be read before any data
LEN or lz
                                : defines the length of the data record
                iwrd8 or iwrd : defines the length of word to be read
example 8 ---> read in as A8 or R8
4 ---> read in as Integer or
two of them as R8 or A8
              - Depending of these informations the following data block
                has to be read in in fa array as R8 or in any other array
                EXAMPLE: read(rstplt-file) LEN, iwrd --> 50, 8
                            j = LEN * i wrd/8
                            read(rstplt-file) (fa(i-1),i=1,j)
              - If one of the pltrst records follows, this is indicated
                by one of the keywords 'plotinf'
                                            'plotalf'
                                            'plotnum'
                                             'plotrec'
                                             restart
                                                       on position i (=1) in fa
              - The restart record consists in principal of 5 blocks of
                data, three of them are written at each restart block, two (the title record and the comctl common data block)
Ĉ
                are written only at time 0
С
С
  _____
       PROGRAM RSTR533
                                                                                     RESTR33.R
       IMPLICIT REAL*8 (A-H,O-Z)
С
*comdeck fast
C
C
        PARAMETER (LFSIZ=2**17-1)
PARAMETER (LFSIZ=100000)
                                                                                     RESTI120
C
        parameter (lfsiz=2200000)
                                                                                     RSTR5322
        common /fast/ fa(lfsiz)
        real*8 fa
        integer ia(2,lfsiz)
        equivalence (fa(1),ia(1,1))
REAL*4 FFA (LFSIZ*2)
                                                                                      RSTR53u
        INTEGER iia (LFSIZ*2)
                                                                                      RSTR53u
        EQUIVALENCE (FFA(1), fa(1))
EQUIVALENCE (FFA(1), iia(1))
                                                                                      RSTR5311
                                                                                     RSTR53u
С
*comdeck fastc
С
   arrays define dynamic pool area. fa and ia are equivalent floating
С
С
   and integer areas.
*comdeck comctl
С
        integer ncoms, nfiles
        parameter (ncoms=104, nfiles=50)
```

```
94
```

```
common /comctl/ comdat(ncoms),comdln(ncoms),filid(nfiles) ,
& filsiz(nfiles),filndx(0:nfiles)
& writedynamicfile0(ncoms+1) ,
      & writecommonblck2 (ncoms+1)
      & is4(ncoms+1)
     & safe1
С
        real*8 filid,safe1
        integer comdat, comdln, filsiz, filndx
        logical newrst
С
        equivalence (safe1, newrst)
С
        logical writedynamicfile0,
      æ
                 writecommonblck2 ,
      æ
                  is4
c Data dictionary for local variables
c i=integer r=real l=logical c=character
с Туре
           Name
                                                  Definition
                                    с-
     _ _ _ _ _ _ _ _ _ _ _ _ _ _
           comdat(ncoms) = index relative to fa of first word of
  i
С
                                    common block to be saved.
С
                                = length of common block to be saved.
= ftb filid for dynamic storage files.
   i
С
           comdln(ncoms)
С
           filid(nfiles)
   r
С
           filid(1) input data and work scratch space during advancement
                      time step control block.
component description block.
С
           filid(2)
С
           filid(3)
                       hydrodynamic volumes block.
hydrodynamic junctions block.
           filid(4)
С
           filid(5)
С
С
           filid(6)
                       Thermodynamic property file.
С
           filid(7)
                       interactive input and output variable storage.
С
           filid(8)
                       heat structure geometry and temperature block.
                       heat structure material property storage.
С
           filid(9)
           filid(10) table of inlet and outlet junctions for each volume.
С
            filid(11) general table storage.
С
           filid(12) minor edit file.
С
С
           filid(13) time dependent volumes and junctions pointers.
           filid(14) table of heat structures and data for each volume.
filid(15) plot heading and control information.
filid(16) minor edit control, save area, and labels.
С
С
С
           filid(17) plot record buffer.
filid(18) trip block.
С
С
           filid(19) internal plot file control information.
filid(20) file for statistics during advancement.
С
С
С
           filid(21) reactor kinetics data.
           filid(22) 2d plot requests and specifications.
С
           filid(23) plot comparison data tables.
filid(24) steady state block for statistics counters and uo.
filid(25) Volume data needed for a moving system.
С
С
С
           filid(26) plot data for the internal plot routines.
filid(27) control system block.
С
С
           filid(28) component indices in normal (input) order.
filid(29) Tabular data for rotations and translations for
С
С
                        moving problem.
С
С
            filid(30) hydrodynamic system control information.
С
            filid(31) code coupling data
С
            filid(32) reflood rezoning model storage space.
С
           filid(33) user supplied plot record variable requests.
           filid(34) fission product data.
filid(35) fixed list vectors.
С
С
            filid(36) scdap data.
С
            filid(37) steady state initialization check file.
С
            filid(38) file for radiation heat transfer.
С
С
            filid(40) file for sparse matrix strategy.
С
           filid(43) file for level model geometry description
                         ( i.e. stacks )
С
           filndx(0:nfiles) = index of dynamic file in fast or ftblcm
   i
С
                                    block.
С
            filsiz(nfiles)
                                 = length of dynamic file.
С
   i
   1
                                 = tbd
С
           is4
С
   i
           ncoms
                                 = number of common control slots.
                                    parameter = 104
С
   1
                                 = true if a restart problem, used during
           newrst
С
                                 input processing.
= number of dynamic file slots.
С
   i
           nfiles
С
                                    parameter = 50
С
                                 = not written on restart file, provided to
С
   r
            safe1
                                    allow length checking when reading from
С
С
                                     restart file.
                                   Used for timer argument when timing transient subroutine execution times.
С
С
  1
           writecommonblck2 = flag to write common block at complete
С
```

С

```
95
```

```
restart.
writedynamicfile0 = flag for dynamic file on disk to be
written at co restart.
С
c 1
С
* * * * * * * * * * * * * * *
*comdeck comctlc
С
            number of common control slots.
С
   ncoms
   nfiles number of dynamic file slots.
comdat index relative to fa of first word of common block to be
С
С
             saved.
С
             length of common block to be saved.
   comdln
С
С
   filid
             ftb filid for dynamic storage files.
С
   filsiz length of dynamic file.
С
   safe1
             not written on restart file, provided to allow length
             checking when reading from restart file. Used for
С
             timer argument when timing transient subroutine
С
С
             execution times.
С
   newrst
             true if a restart problem, used during input processing.
             index of dynamic file in fast or ftblcm block.
С
   filndx
С
   filflg flag for dynamic file on disk to be written at complete
             restart (bit 1), flag to write common block file at complete
С
С
             restart (bit 4).
С
   filflg has been replaced with the following variables:
С
c l (replaces bit 1)
                             writedynamicfile0
                                                          flag for dynamic file on
                                                           disk to be written at co
                                                           restart.
c l (replaces bit 3)
                                writecommonblck2
                                                           flag to write common blo
                                                           at complete restart.
C
С
c l (replaces bit 5)
                                                           t.bd
                                 is4
С
С
   filid(1) input data and work scratch space during advancement.
   filid(2) time step control block.
filid(3) component description block.
С
С
               hydrodynamic volumes block.
hydrodynamic junctions block.
С
   filid(4)
   filid(5)
С
С
   filid(6)
               Thermodynamic property file.
               interactive input and output variable storage.
С
   filid(7)
   filid(8)
               heat structure geometry and temperature block.
С
С
   filid(9)
               heat structure material property storage.
   filid(10) table of inlet and outlet junctions for each volume.
С
   filid(11) general table storage.
С
   filid(12) minor edit file.
С
   filid(13) time dependent volumes and junctions pointers.
С
   filid(14) table of heat structures and data for each volume.
filid(15) plot heading and control information.
С
С
   filid(16) minor edit control, save area, and labels.
filid(17) plot record buffer.
filid(18) trip block.
filid(19) internal plot file control information.
filid(20) file for statistics during advancement.
С
С
С
С
С
   filid(21) reactor kinetics data.
С
   filid(22) 2d plot requests and specifications.
С
С
   filid(23) plot comparison data tables.
   filid(24) steady state block for statistics counters and uo.
filid(25) Volume data needed for a moving system.
filid(26) plot data for the internal plot routines.
filid(27) control system block.
С
С
С
С
   filid(28) component indices in normal (input) order.
filid(29) Tabular data for rotations and translations for moving
С
С
                problem.
С
   filid(30) hydrodynamic system control information.
С
   filid(31) code coupling data
filid(32) reflood rezoning model storage space.
С
С
   filid(33) user supplied plot record variable requests.
С
   filid(34) fission product data.
filid(35) fixed list vectors.
С
С
   filid(36) scdap data.
С
   filid(37) steady state initialization check file.
С
   filid(38) file for radiation heat transfer.
С
   filid(40) file for sparse matrix strategy.
filid(43) file for level model geometry description ( i.e. stacks )
С
С
C*
*comdeck contrl
     Changes from versin 3.2.2Gamma to 3.3Beta
С
С
        common /contrl/ dthy,dtht,dtn,dt,timehy,timeht,errmax,tmass ,
      & tmasso, emass, emasso, count, cpurem(5), stdtrn, gravcn, testda(20),
                                                                                         RESTR33
С
С
        New in Relap5 3.3Beta
                                                                                         RESTR33
      & tmasso,emass,emasso,count,curtmi,curtmj,curtrs,prevnd,
                                                                                         RESTR33
      New in Relap5 3.3Beta ------
& cpurem(5),stdtrn,gravcn,testda(20),
С
                                                                                         RESTR33
                                                                                         RESTR33
      & aflag, isrestartenabled0, ismajoreditenabled1,
```

```
& isminoreditenabled2, isplotenabled3, iscompleterestart4,
      & interactiveflag5, isimplicithttrnsfr6, istwostepflag7,
& stdystatetermflg8, integrationflag9, isathenaopt10,
& isscdapopt11, isplotsgzflg12, rwtrstpltcmprssflag13,
      & transrotatflag14, rstblcknumber1531, succes, done, ncount,
      & nstsp,nrepet,help,nany,skipt,problemtype05,
      & problemopt611, ncase, fail, uniti, unito, chngno(90),
      & ishydrochng0, isheatcondchng1, isrknchng2, ispltrcrdchng3,
      & isradiationchng4, isfissionprdctchng5, iscntrlsyschng6,
      & pageno,isprntaccum0,isprntbrntrn1,
& isprntccf12,isprntchfcal3,isprntconden4,isprntdittus5,
      & isprnteqfinl6,isprntfwdrag7,isprntht2tdp9,isprnthtfinl2,
& isprnthtrc113,isprnthydro15,isprntistate17,isprntjchoke18,
      & isprntjprop19,isprntnoncnd20,isprntphantj21,isprntphantv22
      & isprntpimplt23,isprntpintfc24,isprntpredhb25,isprntpreseq26,
& isprntpstdhb27,isprntqfmove28,isprntsimplt29,isprntstacc0,
      & isprntstate1,isprntstate02,isprntsuboil3,isprntsysitr4,
& isprntstate6,isprntvalve7,isprntvexplt8,isprntvfin19,
      & isprntvimplt10, isprntvlvela11, isprntvolvel12, isprnttrip13,
      & isprntpower14, isprntvolume15, isprntjunction16, isprntheatstr17,
        isprntradht18, isprntreflood19, isprntfsnprdtr20, isprntcontrol21,
      &
      & isprntinput22, isprntmiedit23, islevelmodel0,
      & islevelcrossing1, issnapon,
      & rktpow3d, safe2
С
        real*8 dthy,dtht,dtn,dt,timehy,timeht,errmax,tmass,tmasso,emass,
С
      & emasso, count, cpurem, stdtrn, gravcn, testda, rktpow3d, safe2
                                                                                       RESTR33
        emasso, count, curtmi, curtmj, curtrs, prevnd, cpurem, stdtrn, gravcn,
                                                                                       RESTR33
                                                                                       RESTR33
      & testda,rktpow3d,safe2
С
        integer succes, done, ncount, nstsp, nrepet, help, nany,
      & ncase, pageno, cpurei (2,5)
С
        logical aflag, skipt, fail, uniti, unito, chngno, nmechk, issnapon
C
cblh replacement variables for iextra
        logical ishydrochng0
                  isheatcondchng1
      æ
      &
                  isrknchng2
      &
                  ispltrcrdchng3
      æ
                  isradiationchng4
                  isfissionprdctchng5,
      &
                  iscntrlsyschnq6
      &
cblh replacement variables for imdctl
        logical islevelmodel0
      &
                  islevelcrossing1
cblh replacement variables for iroute
        integer problemtype05
      &
                  problemopt611
cblh replacement variables for print
        logical
      &
                  isrestartenabled0
                  ismajoreditenabled1
      &
                  isminoreditenabled2
      &
                  isplotenabled3
      &
      &
                  iscompleterestart4
      δ.
                  interactiveflag5
                  isimplicithttrnsfr6
      &
                  istwostepflag7
      æ
                  stdystatetermflq8
      &
                  integrationflag9
      &
                  isathenaopt10
      &
                  isscdapopt11
      &
      æ
                  isplotsqzflg12
                  rwtrstpltcmprssflag13,
transrotatflag14
      æ
      &
cblh replacement variables for ihlppr
        logical
      æ
                  isprntaccum0
      &
                  isprntbrntrn1,
      &
                  isprntccfl2,
                  isprntchfcal3,
      &
                  isprntconden4,
      &
      &
                  isprntdittus5,
      &
                  isprnteqfinl6,
      &
                  isprntfwdrag7,
      δ.
                  isprntht2tdp9,
                  isprnthtfin112,
      8
      &
                  isprnthtrc113,
```

```
    a isprintintiers,
    b isprinthydro15,
```

& isprntistate17, isprntjchoke18, isprntjprop19 & & logical & isprntnoncnd20, & isprntphantj21, & isprntphantv22, & isprntpimplt23, isprntpintfc24, & isprntprednb25, isprntpreseq26, & & & isprntpstdnb27, & isprntqfmove28, & isprntsimplt29 logical isprntstacc0, & & isprntstate1, & isprntstatep2, & isprntsuboil3, & isprntsysitr4, δ. isprnttstate6, δ. isprntvalve7, isprntvexplt8, & & isprntvfin19, & isprntvimplt10, & isprntvlvela11, & isprntvolvel12, & isprnttrip13, & isprntpower14, isprntvolume15 & logical isprntjunction16, & & isprntheatstr17, & isprntradht18, & isprntreflood19, isprntfsnprdtr20, æ isprntcontrol21, & isprntinput22, & isprntmiedit23 & С integer rstblcknumber1531 С equivalence (safe2,nmechk), (cpurem(1),cpurei(1,1)) C***** c Data dictionary for local variables c Type Name Definition C -l aflag = Set true in dtstep when heat С structures are to be advanced. С checked in htadv = true if option # is set С С l chngno(90) С = Real value of the integer ncount r count i cpurei(5) = Integer values (5) of the real cpurem С (1,2,3) not used (4) word 4 from 105 card = ncount1, ncount for starting C C С С diagnostic edits С = -1, write to dumpfill for ncount2 = cpurei(5), stop = -2, write to dumpfill for ncount2 = cpurei(5), С С С redo timestep, write to dumpfil2, stop С С = -3, set in dtstep for -2 case. С С (5) word 5 from 105 card С = ncount2, ncount for terminating diagnostic edits
= Contains cpu remaining times values
and advancement counts to start/stop С r cpurem(5) С С diagnostic edit from input. С С -----new in Relap5 mod3.3beta---------RESTR33 = Time for next minor edit. = Time for next major edit. С r curtmi RESTR33 С r curtmi RESTR33 = Time for next restart edit. С RESTR33 r curtrs = Previous time step card end time. r prevnd RESTR33 C C -----new in Relap5 mod3.3beta--------RESTR33 С i done = Integer flag indicating state of С transient. С 0 = advancements are to continue, !=0 = advancements are to beС terminated.
= Current time step. С r dt С r dtht = Heat structure time step, currently С

the same as dthy.
= Hydrodynamic time step requested by С r dthy С С user. Time step limit due to material transport stability limit С r dtn С С (Courant limit). С = Current mass error. r emass С r emasso = Old mass error. = Error estimate used in time step С r errmax С control. С l fail = Set to true if error encountered. С r gravcn = Gravitational constant (which may be С set by input). = Used to control debug editing and С i help termination. С l integrationflag9 = on-line selection of time integration С С flag С l interactiveflag5 = interactive flag. l isathenaopt10 = athena option. С С l iscntrlsyschng6 = control system change. 1 iscompleterestart4 = complete restart С isfissionprdctchng5 = fission product change. С 1 isheatcondchng1 = heat conduction change. С 1 ishydrochng0 = hydrodynamic change. 1 С isimplicithttrnsfr6 = implicit heat transfer С islevelcrossing1 = level crossing activated. С 1 С 1 islevelmodel0 = level model activated. ismajoreditenabled1 С Т = major edit enabled isminoreditenabled2 = minor edit enabled С 1 = plot enabled = plot record squoz flag. isplotenabled3 С С isplotsqzflg12 1 ispltrcrdchng3 = plot record change. С С 1 isprntaccum0 = activate accum print block С 1 isprntbrntrn1 = activate brntrn print block С 1 isprntccfl2 = activate ccfl print block isprntchfcal3 = activate chfcal print block
= activate conden print block С 1 isprntconden4 С С isprntcontrol21 = activate control print block = activate dittus print block С 1 isprntdittus5 isprnteqfin16 = activate eqfinl print block С 1 С 1 isprntfsnprdtr20 = activate fsnprdtr print block = activate fwdrag print block С 1 isprntfwdrag7 isprntheatstr17 = activate heatstr print block С = activate ht2tdp print block
= activate htfinl print block С isprntht2tdp9 isprnthtfin112 С ٦ 1 isprnthtrc113 = activate htrc print block С С 1 isprnthydro15 = activate hydro print block С 1 isprntinput22 = activate input print block = activate istate print block = activate jchoke print block = activate jprop print block = activate junction print block isprntistate17 С 1 isprntjchoke18 isprntjprop19 С Т С isprntjunction16 С С isprntmiedit23 = activate miedit print block 1 1 isprntnoncnd20 = activate noncnd print block С = activate phantj print block = activate phantv print block = activate phantv pimplt block = activate phantv pintfc block С 1 isprntphantj21 isprntphantv22 С Т isprntpimplt23 С С isprntpintfc24 = activate power print block С isprntpower14 isprntprednb25 С 1 = activate prednb print block С Т isprntpreseq26 = activate preseq print block = activate pstdnb print block С 1 isprntpstdnb27 isprntgfmove28 = activate qfmove print block С 1 = activate radht print block isprntradht18 С = activate reflood print block С 1 isprntreflood19 = activate simplt print block С 1 isprntsimplt29 С 1 isprntstacc0 = activate stacc print block С 1 isprntstate1 = activate state print block = activate statep print block
= activate suboil print block С 1 isprntstatep2 isprntsuboil3 С = activate sysitr print block С isprntsysitr4 = activate trip print block С 1 isprnttrip13 = activate tstate print block С 1 isprnttstate6 С 1 isprntvalve7 = activate valve print block = activate vexplt print block С 1 isprntvexplt8 = activate vfinl print block 1 isprntvfin19 С = activate vimplt print block
= activate vlvela print block isprntvimplt10 С 1 isprntvlvela11 С = activate volume print block С 1 isprntvolume15 isprntvolvel12 = activate volvel print block С 1 = radiation change. С Т isradiationchng4 = restart enable bit. = reactor kinetics change. С 1 isrestartenabled0 С 1 isrknchng2 l isscdapopt11 = scdap is active С l istwostepflag7 = two step method

c i ncase = Case number c Initially = -1 in blkdta c Incount = Count of number of advancements, c successful or otherwise. c I nmechk = true if no mass error check requester c n time step card c i nrepet = Number of hydrodynamic advancements c i nstsp = Number of standard advancements. c i pageno = Page number. c i problemopt611 = Problem option (see ityp2 in inputd) c 2 = transnt	
c0 if last case of seriesci ncountc= Count of number of advancements, successful or otherwise.c1 nmechkci nrepetci nrepetc- Number of hydrodynamic advancements at current dt to finish a requested time step of dthy.ci nstspci pagenoci problemopt611c- Problem option (see ityp2 in inputd) 1 = stdy-st (1 and 2 are used for new and restart)	
csuccessful or otherwise.cl nmechk= true if no mass error check requestercon time step cardci nrepet= Number of hydrodynamic advancementsci nstsp= Number of dthy.ci nstsp= Number of standard advancements.ci pageno= Page number.ci problemopt611= Problem option (see ityp2 in inputd)cumber of stardart)	
c1 nmechk= true if no mass error check requester on time step cardci nrepet= Number of hydrodynamic advancements at current dt to finish a requested time step of dthy.ci nstsp= Number of standard advancements.ci pageno= Page number.ci problemopt611= Problem option (see ityp2 in inputd) 1 = stdy-st (1 and 2 are used for new and restart)	
<pre>c i nrepet = Number of hydrodynamic advancements c at current dt to finish a requested c time step of dthy. c i nstsp = Number of standard advancements. c i pageno = Page number. c i problemopt611 = Problem option (see ityp2 in inputd) c 1 = stdy-st (1 and 2 are used for new</pre>	
cat current dt to finish a requested time step of dthy.ci nstsp= Number of standard advancements.ci pageno= Page number.ci problemopt611= Problem option (see ityp2 in inputd)c1= stdy-st (1 and 2 are used for new and restart)	
c i nstsp = Number of standard advancements. c i pageno = Page number. c i problemopt611 = Problem option (see ityp2 in inputd) c 1 = stdy-st (1 and 2 are used for new and restart)	
c i problemopt611 = Problem option (see ityp2 in inputd) c 1 = stdy-st (1 and 2 are used for new and restart)	
c 1 = stdy-st (1 and 2 are used for new c and restart)	
	ò
	ò
c 3 = binary (3 and 4 are used for strip c 4 = fmtout	
c i problemtype05 = Problem type (see ityp1 in inputd).	
c 1 = new c 2 = restart	
c 3 = relap5 internal plots (not used)	
c6 = cmpcom (compare dump records)	
<pre>c i rstblcknumber1531 = restart block number. c l rwtrstpltcmprssflag13 =</pre>	
c r safe2 = Last word in common block. Its addre	
c obtained using locf and is used with c address of the first word, dthy, to	the
c compute the length of the common bloc c The length is used when the common b	
c is written out to a file.	
c Make sure it is on an 8-byte boundar c l skipt = Logical flag used to control first	7 -
c entry processing in c subroutine dtstep.	
c r stdtrn = Steady state - transient flag	
c l stdystatetermflg8 = steady state termination c i succes = Integer flag indicating success of	
c the advancement.	
c with reduced time step	
c 1 = excessive truncation error c 2 = water property error	
c 3 = non-diagonal matrix	
c 4 = metal appears c r rktpow3d = Total reactor power calculated by RE	LAP5/PA
c r testda(20) = Data array for minor edits and c plotting during debug.	
c Temporary coding is used to load data	
c in this array and scnreq accepts c testda as a legal request.	
c r timeht = Problem time for heat structure c advancements.	
c r timehy = Problem time for hydrodynamic	
c advancements. c r tmass = Total mass of water in system	
c currently.	
c r tmasso = Total mass of water in system at c time = 0.0.	
c l transrotatflag14 = transient rotation flag c 0.0 = steady state	
c 1.0 = transient	
c l uniti = If true, SI units on input. c l unito = If true, SI units on output.	
c*************************************	******
c	
c variables in comctl.h common block c	
c T Name Definition c r dthy Hydrodynamic time step requested by user.	
c r dtht Heat structure time step, currently the same as dthy.	· ·
c r dtn Time step limit due to material transport stability l c (Courant limit).	LIIIILÜ
c r dt Current time step. c r timehy Problem time for hydrodynamic advancements.	
c r timeht Problem time for heat structure advancements.	
c r errmax Error estimate used in time step control. c r tmass Total mass of water in system currently.	
c r tmasso Total mass of water in system at time = 0.0. c r emass Current mass error.	
c r emasso Old mass error.	

```
c r cpurem(5) Contains cpu remaining times values and advancement
c counts to start/stop diagnostic edit from input.
c i cpurei Integer values (5) of the real cpurem
              (1=>3) not used
С
С
              (4) word 4 from 105 card
С
                   = ncount1, ncount for starting diagnostic edits
                  = -1, write to dumpfill for ncount2 = cpurei(5), stop
= -2, write to dumpfill for ncount2 = cpurei(5),
С
С
                   redo timestep, write to dumpfil2, stop
= -3, set in dtstep for -2 case.
C
С
              (5) word 5 from 105 card
С
             = ncount2, ncount for terminating diagnostic edits
Steady state - transient flag
С
c r stdtrn
              0.0 = steady state
1.0 = transient
С
С
             Gravitational constant (which may be set by input).
c r gravcn
              Data array for minor edits and plotting during debug.
c r testda
              Temporary coding is used to load data in this array and
С
              schreq accepts testda as a legal request.
С
c l aflag
              Is set true in dtstep when heat structures are to be advance
              checked in htadv
С
 i print
С
              Misc. packed word.
Bits numbered 1-32 from right end.
С
              1 (=1) restart enable bit, (bit 1 is set in inputd if rstrip is to write formatted output
С
С
                (=2) major edit enable bit,
С
              2
С
                (=4) minor edit enable bit,
              3
С
                (=8) plot enable bit,
              4
                (=16) complete restart switch,
(=32) interactive flag,
С
              5
С
              6
С
                      implicit heat transfer flag,
                (=64)
С
                (=128) two step flag,
              8
С
              9
                (=256) steady state termination flag,
              10
С
                 (=512) on-line selection of time integration flag,
С
              11 (=1024) athena option,
              12 (=2048) scdap option,
13 (=4096) plot record squoz flag,
14 (=8192) restart-plot file compress flag,
С
С
С
              15 (=16384) transient rotation flag,
С
              16-32 restart block number
С
С
c print replaced with the following variables:
                                    isrestartenabled0
                                                              restart enable bit.
      (replaces bit
С
  1
                            1)
 1
                                                              major edit enable bit
С
                 bit
                            2)
                                    ismajoreditenabled1
С
  1
                 bit
                            3)
                                     isminoreditenabled2
                                                              minor edit enable bit
С
 1
                 bit
                            4)
                                    isplotenabled3
                                                              plot enable bit.
                 bit
С
 1
                            5)
                                    iscompleterestart4
                                                               complete restart switc
 1
                 bit
                            6)
                                    interactiveflag5
                                                               interactive flag.
С
                                    isimplicithttrnsfr6
С
  1
                 bit
                            7)
                                                               implicit heat transfe
 1
                            8)
                                                               two step flag.
С
                 bit
                                    istwostepflag7
                                                              steady state terminatio
  1
                            9)
                                    stdystatetermflg8
С
                 bit
 1
                 bit
                                                              on-line selection of ti
С
                           10)
                                    integrationflag9
                                                               integration flag
С
С
  1
                 bit
                           11)
                                     isathenaopt10
                                                               athena option.
С
  1
                 bit
                           12)
                                    isscdapopt11
                                                              scdap option.
  1
С
                 bit
                           13)
                                    isplotsqzflg12
                                                              plot record squoz flag.
                                    transrotatflag14
С
  1
                 bit
                           15)
                                                               transient rotation flag
С
 i
     (replaces bits 16-32)
                                    rstblcknumber1531
                                                              restart block number.
С
 i succes Integer flag indicating success of the advancement.
С
              0 = no need to repeat advancement with reduced time step
С
              1 = excessive truncation error
С
С
              2 = water property error
              3 = non-diagonal matrix
С
              4 = metal appears
С
              Integer flag indicating state of transient.
c i done
              0 = advancements are to continue,
!=0 = advancements are to be terminated.
С
С
             Count of number of advancements, successful or otherwise.
Real value of the integer ncount
c i ncount
c r count
  i nstsp
              Number of standard advancements.
С
              Number of hydrodynamic advancements at current dt to finish
c i nrepet
              a requested time step of dthy.
С
c i help
              Used to control debug editing and termination.
              Number of mass error messages remaining to be issued.
Logical flag used to control first entry processing in
 i nany
С
c l skipt
С
              subroutine dtstep.
             Problem type and problem option from 100 card
Initially = -1 in blkdta
 i iroute
С
С
              Set to 0<sup>°</sup> at top of rcards, reset to 1, if insufficient room
С
С
              In inputd, it contains two integers packed into one word
С
              Problem type, bits 1-6 (see ityp1 in inputd)
С
               1 = \text{new}
               2 = restart
С
С
               3 = relap5 internal plots (not used)
```

```
С
               4 = re-edit problem (not used)
С
               5 = strip
              6 = cmpcom (compare dump records)
Problem option, bits 7-12 (see ityp2 in inputd)
С
С
С
               1 = stdy-st (1 and 2 are used for new and restart)
С
               2 = transnt
               3 = binary (3 and 4 are used for strip)
С
С
               4 = fmtout
              if rnewp is called in inputd, iroute = problem option
С
              if rstrip is called in inputd, iroute = 5
С
С
С
 iroute replaced with the following variables:
                                   problemtype05 (see ityp1 in inputd).
problemopt611 (see ityp2 in inputd).
    (replaces bits 1- 6)
С
 i
                 bits 7-12)
сi
С
c i ncase
              Case number
              Initially = -1 in blkdta
= zero if last case of series
С
С
c l fail
              Set to true if error encountered.
c l uniti
              If true, SI units on input.
 l unito
              If true, SI units on output.
С
              Packed word containing flags indicating what models
c i iextra
              were changed at restart.
Bits numbered 1-32 from right end.
1 (=1) hydrodynamic change
С
С
С
                (=2) heat conduction change
С
              2
С
                (=4) reactor kinetics change
              3
С
                (=8) plot record change
              4
              5 (=16) radiation change
6 (=32) fission product change
7 (=64) control system change
С
С
С
              This quantity could be equivalenced with nmechk
С
С
              if this quantity is not needed to pad to an even number
              of integer words.
С
С
 iextra replaced with the following variables:
С
      (replaces bit 1)
  1
                              ishvdrochng0
                                                          hydrodynamic change.
С
  1
С
                 bit 2)
                               isheatcondchnq1heat
                                                          conduction change.
 1
                                                          reactor kinetics change.
С
                 bit 3)
                               isrknchng2
                 bit 4)
                                                          plot record change.
 1
                               ispltrcrdchng3
С
c l
                 bit 5)
                               isradiationchng4
                                                          radiation change.
                               isfissionprdctchng5
С
  1
                 bit 6)
                                                          fission product change.
c 1
                               iscntrlsyschng6control system change.
                 bit 7)
      (
С
c i pageno
                                 Page number.
c r rktpow3d
                               Total reactor power calculated by RELAP5/PARCS
c r safe2
                                Same purpose as safe1
c l nmechk
                               true if no mass error check requested on time step card
С
                               (no 1 bit on time step card)
c equivalenced to safe2
 imdctl(1) control word for individual code models
Bits numbered 1-32 from right end
С
С
              1 (=1) level model activated
2 (=2) level crossing activated
С
С
С
              3-31 nod used
С
c imdctl(1) replaced with the following variables:
С
  l (replaces bit 1)
                               islevelmodel0
                                                       level model activated.
  1
                 bit 2)
С
                               islevelcrossing1
                                                      level crossing activated.
c imdctl(2)
                                                      not used
С
c ihlppr(1) and ihlppr(2) are replaced by the following logical variable
                               activate accum print block
activate brntrn print block
 l isprntaccum0
С
c l isprntbrntrn1
                               activate ccfl print block
С
  l isprntccfl2
c l isprntchfcal3
                               activate chfcal print block
c l isprntconden4
                               activate conden print block
c l
                               activate dittus print block
    isprntdittus5
c l isprnteqfinl6
                               activate eqfinl print block
                               activate fwdrag print block
activate ht2tdp print block
c l
    isprntfwdrag7
c l isprntht2tdp9
    isprnthtfin112
 1
                          activate htfinl print block
С
c l
    isprnthtrc113
                          activate htrc print block
c l
    isprnthydro15
                          activate hydro print block
c l isprntistate17
                          activate istate print block
                          activate jchoke print block
activate jprop print block
activate noncnd print block
c l isprntjchoke18
c l isprntjprop19
c l isprntnoncnd20
 1
С
    isprntphantj21
                          activate phantj print block
c l isprntphantv22
                          activate phanty print block
c l isprntpimplt23
                          activate pimplt print block
                          activate printfc print block
activate prednb print block
activate preseq print block
c l isprntpintfc24
c l isprntprednb25
c l isprntpreseq26
```

```
102
```

activate pstdnb print block activate qfmove print block activate simplt print block activate stacc print block c l isprntpstdnb27 c l isprntqfmove28 c l isprntsimplt29 c l isprntstacc0 c l isprntstate1 activate state print block activate statep print block activate suboil print block c l isprntstatep2 c l isprntsuboil3 c l isprntsysitr4 activate sysitr print block c l isprnttstate6 activate tstate print block activate valve print block activate vexplt print block c l isprntvalve7 c l isprntvexplt8 С 1 isprntvfin19 activate vfinl print block c l isprntvimplt10 activate vimplt print block c l isprntvlvela11 activate vlvela print block c l isprntvolvel12 activate volvel print block activate trip print block c l isprnttrip13 activate power print block activate volume print block c l isprntpower14 c l isprntvolume15 c l isprntjunction16 activate junction print block c l isprntheatstr17 activate heatstr print block c l isprntradht18 activate radht print block c l isprntreflood19 c l isprntreflood19 c l isprntfsnprdtr20 c l isprntcontrol21 c l isprntinput22 c l isprntfsnprdtr20 c l isprntfsnpr c l isprntreflood19 c l isprntmiedit23 activate miedit print block С C *comdeck genrl С common /genrl/ ctitle,ptitle character ctitle*108, ptitle*64 *comdeck genrlc С ctitle contains title card of case, time, and date. С ptitle contains program version identification and title. С units for input, si if true, british if false. С uniti units for output, si if true, british if false. С unito С ***** C* C C - - -LOGICAL FL, TERMINAL, RSTPLOT, INTEL, DEBUG, SCREEN, LHELP LOGICAL RESTI, PLOTI, RESTO, PLOTO, STRIPO, BINARY С CHARACTER TITOLO(8)*8 RSTR532 EQUIVALENCE (PTITLE, TITOLO) RSTR532 CHARACTER TITELC(14)*8 RSTR532 EQUIVALENCE (CTITLE, TITELC) RSTR532 С INTEGER*4 LEN, iwrd8, iwrd, lx, lxa, lxn, lenb, lenc, ix, iza RSTR532 LOGICAL lcompr RSTR532 LOGICAL lpt RESTRAA INTEGER nmbrst, i, j, icard, irstbl RSTR532u4 INTEGER problemtype05, problemopt611 character*8 frstrc(6),aW(14),cfa(1),strec(6) С RSTR532u4 CHARACTER*1 frstrca(8) RSTR532u2 CHARACTER*1 frstrcb(8) RSTR533.R equivalence (frstrc(2),frstrca(1)) RSTR532112 equivalence (aw(2),frstrcb(1))
equivalence (cfa,fa) RSTR533.R RSTR532 REAL*8 IW(10) EQUIVALENCE (aW(1), IW(1)) INTEGER*4 iaW(2,14) RSTR532 EQUIVALENCE(aW(1), iaW(1,1)) RSTR532 C REAL*8 R8aix RESTaix REAL*8 R8int RESTaix REAL*4 R4aix(2) RESTaix REAL*4 R4int(2) RESTaix INTEGER*1 Pointer(8) RESTaix REAL*4 RPOINTR(2) INTEGER*1 Ilaix1(4),Ilaix2(4) RESTaix RESTaix INTEGER*1 Ilint1(4), Ilint2(4) RESTaix INTEGER*4 I4aix(2), I4int(2) LOGICAL L4int(2) RESTaix RESTaix EQUIVALENCE (Ilint1(1), I4int(1)) EQUIVALENCE (Ilint2(1), I4int(2)) RESTaix RESTaix EQUIVALENCE (IIInt2(1), I4Int(2)) EQUIVALENCE (IIInt1(1), L4int(1)) EQUIVALENCE (IIInt2(1), L4int(2)) EQUIVALENCE (RPOINTR(1), R8aix) EQUIVALENCE (I4int(1), R8int) EQUIVALENCE (I4int(1), R4int(1)) RESTaix RESTaix RESTaix RESTaix RESTaix

C	EQUIVALENCE (RPOINTR(1), Pointer(1)) EQUIVALENCE (RPOINTR(1), I4aix(1)) EQUIVALENCE (RPOINTR(1), I1aix1(1)) EQUIVALENCE (RPOINTR(2), I1aix2(1))	RESTaix RESTaix RESTaix RESTaix
C	character*8 label PARAMETER (NFIL=13) character*50 arg,progr,arg0	
	CHARACTER cword*8 INTEGER ISTATUS	RESTLH9
	INTEGER RSIN, RSOUT, RSINF, PLOUT, PLINF, DEBU, IOUT INTEGER RSTPLT, RSTIN, STRIPF	RSTR532u1 RSTR532
C	CHARACTER args(NFIL)*4,FNAMES(NFIL)*40,FORMS(3)*12 CHARACTER args(NFIL)*4,FNAMES(NFIL)*60,FORMS(3)*12 CHARACTER STAT(3)*7	RSTR532u3 RESTLH9
С	<pre>DIMENSION IUN(NFIL), IFORMS(NFIL), ISTAT(NFIL) data forms/'FORMATTED ','UNFORMATTED ',' '/ data STAT /'OLD ','UNKNOWN',' '/ DATA (IUN(I), IFORMS(I), ISTAT(I), ARGS(I), FNAMES(I), I=1,NFIL) &/12,2,2,'-ri ','RESTINP & ' &,11,2,2,'-ro ','RESTINF & ' &,7,1,2,'-or ','RESTINF & ' &,9,1,2,'-po ','PLOTOUT & ' &,8,1,2,'-op ','PLOTINF & ' &,13,1,2,'-d ',' & ' &,0,3,3,'-r ',' & ' &,0,3,3,'-s ',' & 0,3,3,'-s ',' & 0,3,3,'-no ','LOGGING TO SCREEN & ' &,0,3,3,'-h ',' & ' &,0,3,3,'? ',' & ''</pre>	RSTR532u3 RSTR532u3
C C C	DATA FRSTRC/' ',' ','RESTART ','PLOT FIL', 1'E ',' '/	
c	DATA FRSTRC/''','''','restart-','plot fil', 1'e'',''''	RSTR532 RSTR532
	DATA STREC/' ',' ','STRIP FI','LE ', *' ',' '/	
000000000000	DATA PTITLE/'RELAP5/M','OD1/0191','REACTOR ','LOSS OF ', *'COOLANT ','ANALYSIS',' PROGRAM'/ DATA TITOLO/'RELAP5/M','OD1/0191','REACTOR ','LOSS OF ', *'COOLANT ','ANALYSIS',' PROGRAM'/ DATA TITOLO/' Relap 5','/3.2mz ','REACTOR ','LOSS OF ', *'COOLANT ','ANALYSIS',' PROGRAM',' // DATA TITOLO/' Relap 5','/3.2pt ','REACTOR ','LOSS OF ', *'COOLANT ','ANALYSIS',' PROGRAM',' // DATA TITOLO/' Relap 5','/3.3 ','REACTOR ','LOSS OF ', *'COOLANT ','ANALYSIS',' PROGRAM',' //	RESTLH9 RESTLH9 RESTLH9 RSTR532 RSTR532 RESTR33 RESTR33 RESTR33.R RESTR33.R
	DATA TERMINAL/.TRUE./ DATA RSTPLOT/.TRUE./ DATA STRIPO/ FALSE./ DATA BINARY/.FALSE./ DATA PLOTO/.FALSE./ DATA PLOTO/.FALSE./ DATA RESTI/.FALSE./ DATA PLOTI/.FALSE./ DATA INTEL/.TRUE./ DATA DEBUG/.FALSE./ DATA LHELP/.FALSE./ DATA SCREEN/.TRUE./	RSTR5322
C C C	PTITLE=' Relap 5/3.2m REACTOR LOSS OF COOLANT ANALYSIS PROGRAM PTITLE=' Relap 5/3.2pt REACTOR LOSS OF COOLANT ANALYSIS PROGRAM PTITLE=' Relap 5/3.3 REACTOR LOSS OF COOLANT ANALYSIS PROGRAM	REST33 REST33.R
С	*	RSTR532 RSTR53u1

```
arg0 ='RSTR5322G.EXE Ver 2.2.2 04.03.2001'
arg0 ='RSTR5322G.EXE Ver 2.2.3 27.04.2001'
arg0 ='RSTR5322G.EXE Ver 2.2.4 11.06.2001'
                                                                                   RSTR53u2
C
C
C
C
C
C
C
                                                                                   RSTR53u3
                                                                                   RSTR53u4
             ='RSTR533B.EXE Ver 2.3
                                            23.09.2001'
      arq0
                                                                                   RESTR33
      arg0
            ='RSTR533B.EXE
                                Ver 2.3.0 07.10.2001
                                                                                   RESTR33.0
С
      arg0 ='RSTR533B.EXE Ver 2.3.1 21.08.2002'
                                                                                   RESTR33.1
      arg0 ='RSTR533.EXE Ver 2.4
arg0 ='RSTR533.EXE Ver 2.4.1
С
                                          08.08.2002'
                                                                                   RESTR33.R
                               Ver 2.4.1 21.08.2002'
                                                                                   RESTR33R1
      FRSTRC(2) = PTITLE(2)
FRSTRC(1) = TITOLO(1)
С
                                                                                   RESTLH9
                                                                                   RESTLH9
      FRSTRC(2) = TITOLO(2)
                                                                                   RESTLH9
С
С
  - - - -
             С
      *
     æ
*
   9
     continue
С
      narg=nargs()
С
      i_{0}=0
      i1=1
      i2=narg-1
      call getarg(i0,progr,istatus)
      progr = arg0
print *,'narg=',narg,' i0=',i0,' progr=',progr,' Length= ',istatus
                                                                                   RSTR532
С
       i=i1
      do 10 while (i.le.i2)
          call getarg(i,arg,istatus)
print *,'i=',i,' arg=',arg
С
          do j=1,nfil
              if (arg(1:4).eq.'-r ') then
                 TERMINAL =. FALSE.
                 RESTO
                          =.TRUE.
                 write (fnames(8)(1:20), '(a20)') 'WRITE RESTART FILE '
                 i = i + 1
                 go to 10
              endif
              if (arg(1:4).eq.'-s ') then
                 TERMINAL =. FALSE.
                         =.FALSE.
                 PLOTO
                           =.FALSE.
                 RESTO
                 STRIPO
                          =.TRUE.
                 write (fnames(9)(1:20), '(a20)') 'WRITE STRIP INFILE '
                 i = i + 1
                 go to 10
              endif
              if (arg(1:4).eq.'-p ') then
                 TERMINAL =.FALSE.
PLOTO =.TRUE.
                 write (fnames(10)(1:20), '(a20)') 'WRITE PLOT-DATA FILE'
                 i = i + 1
                 go to 10
              endif
              if (arg(1:4).eq.'-no ') then
                 SCREEN =.FALSE.
write (fnames(11)(1:20),'(a20)') 'NO SCREEN OUTPUT
                                                                                1
                 i = i + 1
                 go to 10
              endif
              if ((arg(1:4).eq.'-h ').or.(arg(1:4).eq.'? ')) then
                 LHELP =.TRUE.
write (fnames(12)(1:20),'(a20)') 'Help invoked
write (fnames(13)(1:20),'(a20)') 'Help invoked
                 i = i + 1
                 go to 10
              endif
             if (arg(1:4).eq.'-d ') then
DEBUG =.TRUE.
                 write (fnames(7)(1:20), '(a20)') 'DEBUG
                                                                               .
                 i = i + 1
                 go to 10
              endif
              if (arg(1:4).eq.args(j))then
                 call getarg(i+1, fnames(j), istatus)
call getarg(i+1, arg, istatus)
С
                                                                                   RESTLH9
                                                                                   RESTLH9
                 fnames(j) = arg
print *,'i+1=',i+1,' fname=',fnames(j)
i = i + 2
                                                                                   RESTLH9
С
                 go to 10
             endif
          enddo
          print *, 'argument ', arg(1:4), ' not existent'
          i = i + 1
```

10 continue С IF (LHELP) GOTO 9000 С RSTIN = iun(1) RSOUT = iun(2)RSINF = iun(3) PLOUT = iun(4)PLINF = iun(5)STRIPF = iun(6)DEBU = iun(7)С RSTR532u1 IF(SCREEN) THEN RSTR532u1 IOUT = 0RSTR532u1 ELSE RSTR532111 IF (DEBUG) THEN RSTR532u1 IOUT = DEBU RSTR532u1 ELSE RSTR532u1 IOUT = RSINF END IF RSTR532u1 RSTR532111 ENDIF RSTR532u1 С RSTR532u1 if (DEBUG) then open (DEBU, FILE=fnames(7), FORM=forms(iforms(7)) ,STATUS=stat(istat(7))) & write (DEBU,'(A)') ' DEBUGGING INFORMATIONS'
write (DEBU,'(A)') ' Parameters in commandline processed:' do 11 I= 1,NFIL write (DEBU, '(A,I3,A,A,A,A,A,A,A,A,A)')' I/O = ',iun(I),' ', forms(iforms(I)),' ' & stat(istat(I)),' ', args(I),' ', fnames(I)(1:60) RSTR532u3 & 11 continue end if С С _ _ _ _ _ _____ č CHECK Machine Version C C open (RSTIN,FILE=fnames(1),FORM='UNFORMATTED' RSTR32a s, STATUS=stat(istat(1)),ACCESS='TRANSPARENT')
READ (RSTIN, err=20,IOSTAT=IOS) POINTER
if (POINTER(1).ne.8) INTEL = .FALSE. RSTR32a & RSTR32a RSTR32a If not INTEL machine then write restart w/o plot data is С RSTR32a not indented С RSTR32a IF(.NOT.INTEL) RESTO = .FALSE. RSTR32a if (DEBUG) then RSTR32a write (DEBU, '(1x, A, 8(1x, I2))') 'FIRST 8 BYTES : ', POINTER RSTR32a endif RSTR32a RSTR32a if (screen) then if (INTEL) then RSTR32a write (*,*) ' Machine Version: INTEL / PC' write (*,*) ' Machine Version: Intel or DEC-Alpha' С RSTR32a RSTR32u2 if (DEBUG) write (DEBU,'(A)') ' Machine Version: INTEL / PC' RSTR32a if (DEBUG) write (DEBU,'(A)') ' Machine Version: INTEL or DEC-AlRSTR32u2 С &pha ' RSTR32112 else RSTR32a write (*,*) ' Machine Version: WS / AIX' RSTR32a write (*,*) ' Machine Version: IBM-AIX, SunOS56, SGI64, HPC18RSTR32u2 С '0& RSTR32u2 if (DEBUG) write (DEBU,'(A)') ' Machine Version: WS / AIX' RSTR32a if (DEBUG) write (DEBU,'(A)') ' Machine Version: IBM-AIX, SunOS5RSTR32u2 С &6, SGI64, HPC180' RSTR32112 end if RSTR32a endif RSTR32a close (RSTIN) RSTR32a С С C C CHECK FILE HEADER and RELAP-VERSION _____ С IF(INTEL) THEN open (RSTIN, FILE=fnames(1), FORM=forms(iforms(1)) RESTLH9 ,STATUS=stat(istat(1))) read (RSTIN,end=20,err=20) LEN,iwrd8 RESTLH9 & read (RSTIN,end=20,err=20) (aW(i),i=1,LEN) ELSE open (RSTIN,FILE=fnames(1),FORM='UNFORMATTED' RSTR32a ,STATUS=stat(istat(1)),ACCESS='TRANSPARENT') READ (RSTIN,err=20,IOSTAT=IOS) RPOINTR(2),LEN,iwrd8 RSTR32a 8 RSTR32a I4int(2) = Iflip(I4aix(2))RSTR32a WRITE(*,*) I4int(2) RSTR32a * LEN = Iflip(LEN) RSTR32a iwrd8 = Iflip(iwrd8)
WRITE(*,*) LEN, iwrd8 RSTR32a RSTR32a READ (RSTIN, err=20, IOSTAT=IOS) RPOINTR RSTR32a

```
I4int(1)=Iflip(I4aix(1))
                                                                                                      RSTR32a
            I4int(2)=Iflip(I4aix(2))
WRITE(*,*) I4int
                                                                                                      RSTR32a
                                                                                                      RSTR32a
            READ (RSTIN,err=20,IOSTAT=IOS) (aW(i),i=1,LEN)
WRITE(*,*) aW(1),' ',aw(2),' ',aw(3),' ',aw(4),' '
WRITE(*,*) aw(5),' ',aw(6),' ',aw(7),' ',aw(8),' '
                                                                                                      RSTR32a
*
        ENDIF
C
С
        iaW(2,10) = iroute: replaced by
        IF (INTEL) THEN
           problemopt611 = iaW(1, 10)
            problemtype05 = iaW(2,10)
        ELSE
        problemopt611 = IFlip(iaW(1,10))
problemtype05 = IFlip(iaW(2,10))
END IF
                                                                                                      RSTR5322
                                                                                                      RSTR5322
С
        if (DEBUG) then
           write (DEBU,'(1x,A,I6,A,I6)') 'LEN = ',LEN,' iwrd8 =', iwrd8
write (DEBU,'(1x,A)')'------
       &--'
          write (DEBU, '(1x,9A)')aW(1), ' ',aW(2), ' ',aW(3), ' ',aW(4), ' ',
                                          aW(5)
       &
           write (DEBU, '(1x,9A)')aW(6), ' ',aW(7), ' ',aW(8), ' ',aW(9), ' ',
                                          aW(10)
       &
          write (DEBU,'(1x,A,I6)') 'problemopt611 = ',problemopt611
write (DEBU,'(1x,A,I6)') 'problemtype05 = ',problemtype05
        endif
С
        GO TO 30
С
    20 WRITE (*,2020) IOS
 2020 FORMAT (1X, '***** ERROR ON FIRST READ OF INPUT FILE. '
      & ,' IOS = ',I4)
GO TO 25
С
C
С
        CHECK RELAP VERSION (RELAP5/MOD3.2xx)
                                                                                                     RSTR532
C
        CHECK RELAP VERSION (RELAP5/MOD3.3)
                                                                                                     RSTR533.R
С
       С
    30 CONTINUE
        if (DEBUG) then
            write (DEBU,'(1x,A)')'Check Relap Version'
write (DEBU,'(1x,A)') aW(2)
write (DEBU,'(1x,A)') FRSTRC(2)
        endif
        IF (aW(2) .EQ. FRSTRC(2)) GO TO 35
        Check additionally for Development Versions aa .. zz
                                                                                                      RSTR33.R
000000000
                  \begin{array}{c} FRSTRCA & (1) = \\ FRSTRCA & (2) = \end{array} 
                                                                                                      RSTR33.R
                                        3
                                                                                                      RSTR33.R
                 FRSTRCA (3) =
                                                                                                      RSTR33.R
                FRSTRCA ( 3 ) = .

FRSTRCA ( 4 ) = 3

FRSTRCA ( 5 ) = a ... z

FRSTRCA ( 6 ) = a ... z

FRSTRCA ( 7...8 ) = " "
                                                                                                      RSTR33.R
                                                     CHAR(97) = a
                                                                                                      RSTR33.R
                                                      CHAR(122) = z
                                                                                                      RSTR33.R
                                                                                                      RSTR33.R
        DO j=5,6
                                                                                                      RSTR33.R
            DO i=97,122
                                                                                                      RSTR532u2
С
                 frstrca(6) = CHAR(i)
                                                                                                      RSTR532u2
                frstrca(j) = CHAR(i)
write (DEBU,'(1x,A,5x,A)') aW(2),FRSTRC(2)
                                                                                                      RSTR33.R
С
                                                                                                      RSTR532112
                if (frstrcb(j) .EQ. frstrca(j)) go to 34
                                                                                                      RSTR33.R
            END DO
                                                                                                      RSTR33 R
    34 CONTINUE
                                                                                                      RSTR33.R
            IF (aW(2) .EQ. FRSTRC(2)) GO TO 35
                                                                                                      RSTR532u2
        END DO
                                                                                                      RSTR532u2
        WRITE (*,2030)
 lpt = .FALSE.
2030 FORMAT (1X,'***** RESTART-PLOT FILE IS NOT COMPATIBLE WITH'
    &,' THIS VERSION OF THE PROGRAM.')
                                                                                                      RESTR33
        GO TO 25
С
С
        CHECK IF RESTART-PLOT or STRIP OUTPUT
С
    35 CONTINUE
        lpt = .TRUE.
                                                                                                      RESTR33
        if (DEBUG) then
            (DEBU,'(1x,A)') 'Check if RESTART-PLOT or STRIP OUTPUT'
write (DEBU,'(1x,A,5x,a)')aW(4),aW(5)
write (DEBU,'(1x,A,5x,a)')FRSTRC(3),FRSTRC(4)
write (DEBU,'(1x,A,5x,a)')STREC(3),STREC(4)
        endif
        IF (aW(4).EQ.FRSTRC(3).AND.aW(5).EQ.FRSTRC(4)) RSTPLOT = .TRUE.
IF (aW(4).EQ.STREC(3).AND.aW(5).EQ.STREC(4)) RSTPLOT = .FALSE.
IF (STRIPO) RSTPLOT = .FALSE.
```

```
107
```

```
C
       IF(.NOT.RSTPLOT)RESTO=.FALSE.
   GO TO 40
25 CLOSE (RSTIN)
       GO TO 1000
С
                        _____
       EVERYTHING IS OK, NOW OPEN ALL REQUIRED FILES
С
С
  - - -
                                                 ----
   40 CONTINUE
       REWIND (RSTIN)
С
       IF (RSTPLOT) THEN
           DO I=3,5,2
              open (IUN(I),FILE=fnames(I),FORM=forms(iforms(I))
                            ,STATUS=stat(istat(I)))
      æ
           ENDDO
       ELSE
           write (fnames(3)(1:20),'(a20)') '
           open (IUN(5),FILE=fnames(5),FORM=forms(iforms(5))
                         ,STATUS=stat(istat(5)))
      æ
           open (IUN(6), FILE=fnames(6), FORM=forms(iforms(6))
      &
                         ,STATUS=stat(istat(6)))
       ENDIF
С
       IF (RESTO) THEN
           open (IUN(2), FILE=fnames(2), FORM=forms(iforms(2))
                         ,STATUS=stat(istat(2)))
       ELSE
           write (fnames(2)(1:20),'(a20)') '
       ENDIF
С
       IF (PLOTO) THEN
           open (IUN(4),FILE=fnames(4),FORM=forms(iforms(4))
                         ,STATUS=stat(istat(4)))
      ۶.
       ELSE
          write (fnames(4)(1:20), '(a20)') '
       ENDIF
С
       IF (STRIPO) THEN
          open (IUN(6),FILE=fnames(6),FORM=forms(iforms(6))
      æ
                         ,STATUS=stat(istat(6)))
       ELSE
          write (fnames(6)(1:20), '(a20)') '
       ENDIF
С
С
  ----
                                        -----
                                                              call cdate(cword)
С
                            С
       IF (SCREEN) THEN
       IF (SCREEN, IMAN
IF (RSTRLOT) THEN
write(*,'(/1X,a\)')'RELAP5 MOD3.2 RESTART/PLOT INFORMATION
write(*,'(/1X,a\)')'RELAP5 MOD3.3 RESTART/PLOT INFORMATION
С
                                                                                         'RSTR532
                                                                                        'RSTR533.R
       ELSE
           write(*, '(/1X, a\)')'RELAP5 MOD3.2 STRIP INFORMATION write(*, '(/1X, a\)')'RELAP5 MOD3.3 STRIP INFORMATION
С
                                                                                         'RSTR532
                                                                                         'RSTR533.R
       ENDIF
       WRITE(*,'(1x,a,a10)')'Date (MM/DD/YY):',cword
      write(*, '(1x,a,a10)')'Date (MM/DD/YY):', cword
write(*, '(1x,a,a50)')'Program name :',progr
write(*,*)' ', (args(i),' ',fnames(i)(1:20),i=1,3)
write(*,*)' ', (args(i),' ',fnames(i)(1:20),i=4,6)
write(* ,*)'
&------'
                                                                        -----
       END IF
С
       write(PLINF,'(1X,a\)',ERR=900)'RELAP 5MOD3 PLOT PARAMETER INFORMAT
      &ION '
       write(PLINF,'(1x,a,a10)')'Date (MM/DD/YY):',cword
С
                                                                                        RSTR32u3
      & - - -
                         С
      IF (PLOTO) THEN
write(PLOUT,'(1X,a\)',ERR=901)'RELAP 5MOD3.2 PLOT INFORMATION '
write(PLOUT,'(1X,a\)',ERR=901)'RELAP 5MOD3.3 PLOT INFORMATION 'RSTR33.R
write(PLOUT,'(1x,a,a10)')'Date (MM/DD/YY):',cword
write(PLOUT,'(1x,a,a50)')'Program name: ',progr
write(PLOUT,'(1X,a,a50)')'Input file : ',fnames(1)(1:20)
write(PLOUT,'(1X,a,a60)')'Input file : ',fnames(1)(1:60) RSTR32u3
write(PLOUT,*)'-------'
С
С
                 _____
      &----
       ENDIF
```

```
С
```

IF (RSTPLOT) THEN (RSIPLOI, Interv write (RSINF, '(1X,a\)', ERR=997)'RELAP 5MOD3 RESTART INFORMATION' write (RSINF, '(1x,a,a10)')'Date (MM/DD/YY):', cword write (RSINF, '(1x,a,a50)')'Program name: ', progr (1)(1, 0) write(RSINF, (1X,a,abu)')'Program name: ',progr write(RSINF,'(1X,a,a20)')'Input file : ',fnames(1)(1:20) write(RSINF,'(1X,a,a60)')'Input file : ',fnames(1)(1:60) write(RSINF,*)'------С RSTR32113 . £----' ENDIF С С _____ C NOW READ FILE HEADER AND THE OTHER DATA OF RST-PLT FILE С С TF(INTEL) THEN read (RSTIN, end=20, err=20) LEN, iwrd8 read (RSTIN, end=20, err=20) (aW(i), i=1, LEN) ELSE READ (RSTIN, err=20, IOSTAT=IOS) RPOINTR(2), LEN, iwrd8 RSTR32a LEN = Iflip(LEN)RSTR32a iwrd8 = Iflip(iwrd8) RSTR32a WRITE(*,*) LEN, iwrd8 READ (RSTIN,err=20,IOSTAT=IOS) RPOINTR * RSTR32a RSTR32a READ (RSTIN, err=20, IOSTAT=IOS) (aW(i), i=1, LEN) RSTR32a ENDIF IF (SCREEN) THEN WRITE (*,2004) IW(1),IW(2),IW(7),IW(8) ENDIF С IF(.NOT.TERMINAL) THEN IF (RSTPLOT) THEN IF (PLOTO) WRITE (PLOUT, 2004) IW(1), IW(2), IW(7), IW(8) RSTR532 IF (RESTO) WRITE (RSOUT, ERR=998) LEN, iwrd8 RSTR532 IF (RESTO) WRITE (RSOUT, ERR=998) (aW(KL), KL=1, LEN) RSTR532 ELSE IF (PLOTO) WRITE (PLOUT, 2005) IW(1), IW(2), IW(7), IW(8) RSTR532 ENDIF ENDIF IF (RSTPLOT) THEN WRITE (RSINF,2004) IW(1),IW(2),IW(7),IW(8) RSTR532 WRITE (PLINF, 2004) IW(1), IW(2), IW(7), IW(8) RSTR532 ELSE WRITE (PLINF,2005) IW(1),IW(2),IW(7),IW(8) RSTR532 ENDIF С IF(STRIPO) THEN WRITE (STRIPF,2001) WRITE (STRIPF,2002) WRITE (STRIPF, 2001) WRITE (STRIFF,2002) WRITE (STRIFF,2003) IW(1),IW(2),IW(7),IW(8) WRITE (STRIFF,2002) WRITE (STRIFF,2006) fnames(1)(1:40) RSTR32u3 WRITE (STRIPF, 2007) cword WRITE (STRIPF,2002) WRITE (STRIPF,2008) fnames(6)(1:40) WRITE (STRIPF,2009) WRITE (STRIPF,2001) RSTR32u3 ENDIF С 2001 FORMAT ('* ', 77('=')) 2002 FORMAT ('* ') 2003 FORMAT ('* RESTART FILE WAS WRITTEN BY PROGRAM ', 2A8 ON ', A8, A1) æ 2004 FORMAT (' RESTART INPUT FILE WAS WRITTEN BY PROGRAM ',2A8 2004 FORMAT (' RESTART INPUT FILE WAS WRITTEN BY PROGRAM ',2A8 & ,' ON ',A8,A1) 2005 FORMAT (' STRIP INPUT SOURCE WAS WRITTEN BY PROGRAM ',2A8 & ,' ON ',A8,A1) 2006 FORMAT ('* RESTART FILE NAME : ',A40) 2007 FORMAT ('* DATE (MM/DD/YY) : ',A10) 2008 FORMAT ('* STRIP-INPUT FILE NAME : ',A30) 2009 FORMAT ('* STRIP-OUTPUT WILL BE IN ASCII FORMAT (FMTOUT)') 2010 FORMAT ('* STRIP-OUTPUT WILL BE IN ASCII FORMAT (FMTOUT)') 2010 FORMAT ('* STRIP-OUTPUT WILL BE IN ASCII FORMAT (FMTOUT)') RSTR32113 2010 FORMAT ('* SIRIP-OUPOT WILL BE IN ASCIT FORMAT (FRIGOT,) 2010 FORMAT ('* NUMBER OF PARAMETERS IN THIS PROBLEM : ', I4) 2011 FORMAT ('* ONLY THE FIRST 999 PARAMETERS ARE CONSIDERED.') 2012 FORMAT ('* THE REMAINDER OF ',I4,' ARE TREATED AS COMMENT (*).') 2013 FORMAT ('* NOTE: STRIP PARAMETERS VALID ONLY 1001 .. 1999.') RSTR33.0 С С ----- NOW READ RESTART/PLOT/STRIP DATA -----С nmbrst = 0LENB = 0LENC = 0RSTR532 ix = 1IZA = 1С

```
С-----ьоор-----ьоор------
С
      if (DEBUG) then
          write (DEBU, '(1x, A)') 'Enter RESTART-PLOTDATA LOOP'
      endif
      GOTO 50
   45 continue
      IF(STRIPO) THEN
WRITE (STRIPF,2010) lenb-2
         MrITE (bb.gt.999) then
WRITE (STRIPF,2011)
WRITE (STRIPF,2012) (lenb-2-999)
С
                                                                                 RSTR33.0
C
                                                                                 RSTR33.0
             WRITE (STRIPF, 2013)
                                                                                 RSTR33.0
          end if
         WRITE (STRIPF, 2001)
      ENDIF
      GOTO 50
С
   50 continue
С
С
                                            С
      READ RECORD LENGTH AND WORD-WIDTH
Ĉ
     _____
С
      if(INTEL) then
         read (rstin,err=903,end=902,iostat=ios) lx, iwrd
                                                                                 RSTR532
      else
         READ (RSTIN, err=903, iostat=ios) RPOINTR
                                                                                 RSTR32a
         I4int(1)=Iflip(I4aix(1))
I4int(2)=Iflip(I4aix(2))
WRITE(*,*) 'A:I4int = ',
                                                                                 RSTR32a
                                                                                 RSTR32a
                                    ,I4int(1), I4int(2)
                                                                                 RSTR32a
          IF(I4int(2).eq.0)goto 902
          READ (RSTIN, err=903, iostat=ios) lx, iwrd
                                                                                 RSTR32a
          lx = Iflip(lx)
                                                                                 RSTR32a
          iwrd = Iflip(iwrd)
                                                                                 RSTR32a
      endif
       j = lx*iwrd/8
      ĺx = j
      write (*,*) lx, iwrd
С
      if(INTEL) then
         read (rstin,err=903,end=902,iostat=ios) (fa(i+ix-1),i=1,lx)
                                                                                RSTR532
      else
         READ (RSTIN, err=903, IOSTAT=IOS) RPOINTR
                                                                                 RSTR32a
          I4int(1) = Iflip(I4aix(1))
                                                                                 RSTR32a
         Hint(2)=Iflip(I4aix(2))
WRITE(*,*) 'B:I4int = ',I4int(1), I4int(2)
                                                                                 RSTR32a
                                                                                 RSTR32a
         READ (RSTIN, err=903, IOSTAT=IOS) (fa(i+ix-1), i=1, lx)
                                                                                 RSTR32a
      endif
                                                                                 RSTR532
      label = cfa(ix)
      WRITE(*,*) label
if (DEBUG) then
         &
      endif
   51 IF (label.eq.'plotrec ') THEN
IF (.NOT.TERMINAL) THEN
if (ploto) write(PLOUT,'(/lx,a8)')label
          ENDIF
          if (SCREEN) then
             IF (IZA.eq.1) write(*,'(/lx,a8\)')label
write(*,'(A1\)')'.'
          endif
          IZA = IZA + 1
          GO TO 90
      ENDIF
      IF(.NOT.TERMINAL) THEN
         IF (RSTPLOT) THEN
IF (RESTO) WRITE (RSOUT,ERR=998) lx, iwrd
IF (RESTO) WRITE (RSOUT,ERR=998) (fa(i+ix-1),i=1,lx)
                                                                                 RSTR532
                                                                                 RSTR532
         ENDIF
      ENDIF
      IF (label.eq.'plotinf ') GO TO 60
IF (label.eq.'plotalf ') GO TO 65
IF (label.eq.'plotnum ') GO TO 70
IF (label.eq.'restart ') GO TO 80
    no label ---> common block of restart will be read
    prome more

                                                                                 RSTR532
                                                                                 RSTR532
                                                                                 RSTR532
                                                                                 RSTR532
С
      RESTI = .TRUE.
GO TO 85
С
C - - - - -
       C
C
      READ PLOTINE RECORDS
С
С
```

C C -----First read Length of plotdata record Ĉ 60 continue if(INTEL) then lenb = ia(2, ix+1)RSTR5322 lenc = ia(2, ix+2)RSTR5322 else lenb = Iflip(ia(2,ix+1))
lenc = Iflip(ia(2,ix+2)) RSTR5322 RSTR5322 endif if (DEBUG) then WRITE(DEBU,'(1x,A,I6)') 'LENGTH OF PLOTINF-RECORDS: ',lenb WRITE(DEBU,'(1x,A,I6)') 'LENGTH OF PLOTREC-RECORDS: ',lenc RSTR532 RSTR532 end if lcompr = .false. if (lenc.NE.((lenb+2)/2)) then RSTR532 GOTO 906 RSTR532 ELSE RSTR532 if (DEBUG) then WRITE(DEBU, '(1x, A)') 'PLOTRECORDS ARE COMPRESSED!!' RSTR532 endif lcompr = .true. endif GOTO 61 С С Write this info later, when Problem has been read in restart block IF (.NOT.TERMINAL) THEN RSTR532 if (PLOTO) write(PLOUT, '(14)') ' ',lenb-1
if (PLOTO) write(PLOUT, '(1X, 16)') ' ',lenk С RSTR532 ',lenb-1 RSTR33.11 С no write into RSTOUT FILE RSTR532 ENDIF RSTR532 write(PLINF,'(I4)') ' ',lenb-1
write(PLINF,'(1X,I6)') ' ',lenb-1 С RSTR532u3 RSTR33.11 С -----61 ix = ix + 1xRSTR532 GOTO 45 RSTR532 С C _____ С C C -----Second read PLOTALF record (parameters) 65 lxa = lxRSTR532 if (DEBUG) then WRITE (DEBU, '(1x, 2(A, I6), A)') 'PLOTALF-RECORD : ', 1xa, 'x',iwrd,' BYTES' & endif ix = ix + lx GOTO 50 RSTR532 RSTR532 C C C C ----------Third Read PLOTNUM record (volumes/junctions,...) C $70 \ \text{lxn} = \ \text{lx}$ RSTR532 if (lxa.ne.lxn) then GOTO 904 RSTR532 RSTR532 end if RSTR532 if (DEBUG) then WRITE(DEBU,'(1x,2(A,I6),A)') 'PLOTNUM-RECORD : ',1xn, 'x ',iwrd,' BYTES' & end if ix = ix + lxRSTR532 GOTO 50 RSTR532 С C -----RESTART INFO-----_ _ _ _ _ С READ RESTART INFORMATION -----RST-BLOCK------C-С 80 continue if(INTEL) then С Read print variable (2 * I4) RSTR532 iprint = ia(2, ix+1)RSTR532 Read ncount variable (2 * I4) С RSTR532 ncount = ia(2, ix+2)RSTR532 else iprint = Iflip(ia(2,ix+1))
ncount = Iflip(ia(2,ix+2)) RSTR5322 RSTR5322 endif i print and n count variable are not longer suportet in Relap RSTR533.R С version 3.3 if (DEBUG) then С RSTR533.R WRITE(DEBU, '(1x,A,I6)') 'PRINT VARIABLE : ',iprint RSTR532 WRITE(DEBU, '(1x,A,I6)') 'NCOUNT VARIABLE (NO.RST) : ',ncount RSTR532 С Ĉ WRITE (DEBU, '(1x, A, 16, A)') 'PRINT VARIABLE : ', iprint, RSTR533.R

' Not supportet in Version 3.3!' RSTR533.R
WRITE(DEBU,'(1x,A,I6,A)') 'NCOUNT VARIABLE (NO.RST) : ',ncount,RSTR533.R
' Not supportet in Version 3.3!' RSTR533.R * end if ix = ix + lxС if (ncount>0) GOTO 84 RSTR32u4 The next line is no longer valid in version 3.3 and replaced RSTR533.R CCCCCCC by the line following the lx checking for next word RSTR533 R if (iprint>32767) GOTO 84 RSTR32114 flag 16 - 32 = Restart Blocknumber (=0 for restart) RSTR32u4 The GENRL Data and the comctl Data are read in only the first time for each new or restartet problem С if(INTEL) then read (rstin,err=903,end=902,iostat=ios) lx, iwrd RSTR532 else READ (RSTIN, err=903, IOSTAT=IOS) RPOINTR RSTR32a I4int(1) = Iflip(I4aix(1))RSTR32a I4int(2)=Iflip(I4aix(2)) RSTR32a WRITE(*,*) I4int RSTR32a READ (RSTIN,err=903,IOSTAT=IOS) lx, iwrd lx = Iflip(lx) RSTR32a RSTR32a iwrd = Iflip(iwrd) RSTR32a endif С C C The next three lines replace the iprint check RSTR533.R if (lx .GT. 30) then RSTR533.R GOTO 88 RSTR533.R end if RSTR533.R С if (DEBUG) then WRITE (DEBU, '(1x, 2(A, I6), A)') 'TITEL---RECORD : ', lx, 'x ', iwrd, ' BYTES' & end if if(INTEL) then read (rstin,err=903,end=902,iostat=ios) (fa(i+ix-1),i=1,lx) RSTR532 else READ (RSTIN, err=903, IOSTAT=IOS) RPOINTR RSTR32a I4int(1) = Iflip(I4aix(1))RSTR32a I4int(2)=Iflip(I4aix(2)) WRITE(*,*) I4int RSTR32a * RSTR32a READ (RSTIN, err=903, IOSTAT=IOS) (fa(i+ix-1), i=1, lx) RSTR32a endif IF(.NOT.TERMINAL) THEN IF (RSTPLOT) THEN IF (RESTO) WRITE (RSOUT,ERR=998) lx, iwrd IF (RESTO) WRITE (RSOUT,ERR=998) (fa(i+ix-1),i=1,lx) RSTR532 RSTR532 ENDIF ENDIF write (ptitle,'(8a8)') (fa(i+ix-1),i=1,8)
write (ctitle,'(12a8)') (fa(i+ix-1),i=9,20) if (SCREEN) then
 write (*,*) ptitle
 write (*,'(A80)') ctitle endif if (DEBUG) then WRITE(DEBU,'(1x,A)') ptitle WRITE(DEBU,'(1x,A)') ctitle RSTR532 RSTR532 end if С if (ncount>0) GOTO 86 RSTR32114 С С - - ------IF (.NOT.TERMINAL) THEN RSTR532 if (PLOTO) write (PLOUT, '(1x,A94)') ctitle C-----new in 2.3.1 RSTR532 RSTR33.1 if (PLOTO) write (PLOUT, '(1X,I4)')lenb-1 if (PLOTO) write (PLOUT, '(1X,I6)')lenb-1 С RSTR532 RSTR532 ----new in 2.3.1 C-----. _ _ _ _ RSTR33.1 no write into RSTOUT FILE С RSTR532 ENDIF RSTR532 write(PLINF,'(1X,A94)') ctitle RSTR532 C----------in 2.3.1 RSTR33.1 write(PLINF, '(1X, I4)') lenb-1 С RSTR532u3 write(PLINF, '(1X, I6)') lenb-1 RSTR33.1 C---------new in 2.3.1 RSTR33.1 IF(STRIPO) THEN WRITE (STRIPF,'(2H= ,A77)') ctitle WRITE (STRIPF,'(17H100 strip fmtout)') WRITE (STRIPF,'(18H*100 strip binary)') WRITE (STRIPF,'(5H103 0)') ENDIF

С

C		
C C C	Print Plotdata-Info in PLOTOUT, PLOTINF	
C	<pre>IF (.NOT.TERMINAL) THEN if (PLOTO) then do i=5,lenb+3 j = lenb+i</pre>	RSTR532 RSTR532 RSTR532 RSTR532 RSTR532
	If(INTEL) then write(PLOUT,81) cfa(i),ia(2,j)	RSTR5322
	else write(PLOUT,81) cfa(i),Iflip(ia(2,j))	RSTR5322
С	endif end do end if no write into RSTOUT FILE ENDIF do i=5,lenb+3 j = lenb+i	RSTR532 RSTR532 RSTR532 RSTR532 RSTR532 RSTR532 RSTR532
С	<pre>If(INTEL) then write(PLINF,81) cfa(i),ia(2,j) write(PLINF,181) i-5,cfa(i),ia(2,j)</pre>	RSTR5322 RSTR5322u3
С	else write(PLINF,81) cfa(i),Iflip(ia(2,j))	RSTR5322
0.1	<pre>write(PLINF,181) i-5,cfa(i),Iflip(ia(2,j)) endif end do format (1X b0 document (1X b0 document))</pre>	RSTR5322u3 RSTR532
	<pre>format(1X,A8,' ',I9,' ') format(1X,I9,' ',A8,' ',I9,' ') write to stripinput file</pre>	RSTR532 RSTR532u3
	<pre>icard = 1000 IF(STRIPO) THEN do i=6,lenb+3 j = lenb+i icard = icard + 1</pre>	
	If (INTEL) then if (icard.gt.1999) then if (icard.eq.2000) then WRITE(STRIPF,2013) end if write(STRIPF,83) icard, cfa(i),ia(2,j)	RSTR5322 RSTR5322 RSTR33.0 RSTR33.0 RSTR33.0 RSTR33.0 RSTR5322
С	else write(STRIPF,82) icard, cfa(i),ia(2,j) write(STRIPF,83) icard, cfa(i),ia(2,j)	RSTR5322 RSTR5320 RSTR33.0
	<pre>end if else IF((cfa(i)(1:3)).eq.'ext') then</pre>	RSTR5322 RSTR5322 RSTR5322 RSTR5322 RSTR5322
	write(STRIPF,82) icard, cfa(i),Iflip(ia(2,j)) end if endif endif end do	RSTR5322
82 83	WRITE (STRIPF,'(5H. end)') WRITE (STRIPF,2001) GOTO 999 format(I4,' ',A8,' ',I9,' *') format('*',I4,' 'A8,' ',I9,' *') ENDIF	
C 86 C	continue	RSTR5322u4
	<pre>ix = ix + lx icomctl = ix if (DEBUG) then WRITE(DEBU,'(lx,A,I6)') 'POSITION OF COMCTL = ',lx end if</pre>	RSTR532
C C C	CommonBlock /comctl/ starts at position icomstart	
C	This Datablock is read only once	
5	if(INTEL) then read (rstin,err=903,end=902,iostat=ios) lx, iwrd	RSTR532
	else READ (RSTIN,err=903,IOSTAT=IOS) RPOINTR	RSTR32a

I4int(1)=Iflip(I4aix(1)) RSTR32a I4int(2)=Iflip(I4aix(2))
WRITE(*,*) I4int RSTR32a RSTR32a READ (RSTIN, err=903, IOSTAT=IOS) lx, iwrd RSTR32a lx = Iflip(lx)RSTR32a iwrd = Iflip(iwrd) RSTR32a endif С if (DEBUG) then WRITE (DEBU, '(1x, 2(A, I6), A)') 'COMCTL--RECORD : ', lx, & 'x',iwrd,' BYTES' end if = lx*iwrd/8 if(INTEL) then read (rstin,err=903,end=902,iostat=ios) (fa(i+ix-1),i=1,j) RSTR532 else READ (RSTIN, err=903, IOSTAT=IOS) RPOINTR RSTR32a I4int(1) = Iflip(I4aix(1)) RSTR32a I4int(2)=Iflip(I4aix(2)) RSTR32a * WRITE(*,*) I4int RSTR32a READ (RSTIN,err=903,IOSTAT=IOS) (fa(i+ix-1),i=1,j) RSTR32a endif Now write the data IF(.NOT.TERMINAL) THEN С IF (RSTPLOT) THEN IF (RESTO) WRITE (RSOUT,ERR=998) lx, iwrd IF (RESTO) WRITE (RSOUT,ERR=998) (fa(i+ix-1),i=1,j) RSTR532 RSTR532 ENDIF ENDIF ix = ix + JС С _____ С 84 continue icontrl = ix if (DEBUG) then WRITE (DEBU, '(1x, A, I6)') 'POSITION OF CONTRL = ', 1x RSTR532 end if С C C C CommonBlock /contrl/ starts at position icontrlstart This Datablock is read in every restart block č if(INTEL) then read (rstin,err=903,end=902,iostat=ios) lx, iwrd RSTR532 else READ (RSTIN, err=903, IOSTAT=IOS) RPOINTR RSTR32a I4int(1) = Iflip(I4aix(1))RSTR32a I4int(2) = Iflip(I4aix(2))RSTR32a WRITE(*,*) I4int
READ (RSTIN,err=903,IOSTAT=IOS) lx, iwrd * RSTR32a RSTR32a lx = Iflip(lx)RSTR32a iwrd = Iflip(iwrd) RSTR32a endif С ----> new in Relap 3.3 RSTR533.R С Ĉ GOTO 87 RSTR533.R 88 CONTINUE RSTR533.R С RSTR533.R icontrl = ix RSTR533.R if (DEBUG) then RSTR533.R WRITE(DEBU, '(1x, A, I6)') 'POSITION OF CONTRL = ',ix RSTR533.R end if RSTR533 R RSTR533.R С 87 CONTINUE RSTR533.R С ----> new in Relap 3.3 RSTR533.R С if (DEBUG) then WRITE (DEBU, '(1x, 2(A, I6), A)') 'CONTRL--RECORD : ', lx, x ',iwrd,' BYTES' & end if j = lx * iwrd/8if(INTEL) then read (rstin,err=903,end=902,iostat=ios) (fa(i+ix-1),i=1,j) RSTR532 else READ (RSTIN, err=903, IOSTAT=IOS) RPOINTR RSTR32a I4int(1) = Iflip(I4aix(1))RSTR32a I4int(2) = Iflip(I4aix(2)) RSTR32a WRITE(*,*) I4int * RSTR32a READ (RSTIN, err=903, IOSTAT=IOS) (fa(i+ix-1), i=1, j) RSTR32a endif Now write the data IF(.NOT.TERMINAL) THEN IF (RSTPLOT) THEN С IF (RESTO) WRITE (RSOUT, ERR=998) lx, iwrd RSTR532

114

```
IF (RESTO) WRITE (RSOUT, ERR=998) (fa(i+ix-1),i=1,j)
                                                                                           RSTR532
           ENDIF
       ENDIF
C
C
       check Number of restart and time of restart block
С
       Time of restart: timehy R8 on position 5 in contrl block
Number restart : rstblcknumber1531 I4 on position 48 / 2
C
C
C
       IF(INTEL) then
С
           timehy = fa(icontrl+5)
                                                                                             RSTR5322
           timehy = fa(icontrl+4)
                                                                                              RSTR32u4
С
           irstbl = ia(1, icontrl+47)
                                                                                              RSTR32u4
C
C
           done = ia(1, icontrl+48)
                                                                                             RSTR32u4
           nmbrst = ia(2,icontrl+48)
                                                                                             RSTR5322
č
           problemtype05 = ia(2,icontrl+51)
problemopt611 = ia(1,icontrl+52)
                                                                                             RSTR32u4
C
                                                                                             RSTR32u4
           irstbl = ia(1,icontrl+51)
                                                                                              RSTR33
           done = ia(1, icontrl+52)
                                                                                             RSTR33
           nmbrst = ia(2, icontrl+52)
                                                                                             RSTR33
           problemtype05 = ia(2,icontrl+55)
                                                                                             RSTR32
           problemopt611 = ia(1,icontrl+56)
                                                                                             RSTR32
       else
           I4int(1)=Iflip(ia(2,icontrl+5))
                                                                                             RSTR5322
С
           I4int(2)=Iflip(ia(2,icontrl+5))
I4int(1)=Iflip(ia(2,icontrl+5))
С
                                                                                             RSTR5322
                                                                                              RSTR32u4
           I4int(2)=Iflip(ia(1,icontrl+5))
                                                                                             RSTR32u4
           time(2) = r8int
mmbrst = Iflip(ia(2,icontrl+48))
problemtype05 = Iflip(ia(1,icontrl+53))
problemopt611 = Iflip(ia(2,icontrl+53))
nmbrst = Iflip(ia(2,icontrl+52))

                                                                                             RSTR5322
С
                                                                                             RSTR5322
Ĉ
                                                                                             RSTR32u4
Ĉ
                                                                                             RSTR32u4
                                                                                             RSTR33
           problemtype05 = Iflip(ia(1,icontrl+57))
problemopt611 = Iflip(ia(2,icontrl+57))
                                                                                             RSTR33
                                                                                             RSTR33
       endif
С
       if (SCREEN) then
           write(*, '(/)')
write(* ,*)'READ RESTART RECORD ',nmbrst,' TIME =',timehy
*
           write (*, '(1X, A, I6, A, f17.10) ') 'READ RESTART RECORD ', nmbrst,
                                                  ' TIME = ',
      æ
                                                                                timehv
       endif
       if (DEBUG) then
           write(DEBU,'(/)')
write(* ,*)'READ RESTART RECORD ',nmbrst,' TIME =',timehy
*
           write (DEBU,'(1X,A,I6,A,f17.10)')'READ RESTART RECORD ',nmbrst,
' TIME =', timehy
      &
           WRITE (DEBU, '(1X,A,I6)
WRITE (DEBU, '(1X,A,I6)
WRITE (DEBU, '(1X,A,I6)
WRITE (DEBU, '(1X,A,I6)
                                                    ') 'Done:
                                                                         ', done
                                                                                          -
REST533
                                                   ')'RestartBlock: ',irstbl REST533
')'Problemtype: ',problemtype05REST533
')'ProblemOpt: ',problemopt611REST533
       endif
       IF (RSTPLOT) THEN
            *
      &
       ENDIF
С
С
       New in Relap 5 Mod 3.3 : ncount is not assigned anymore
                                                                                             RSTR33.R
       ncount = nmbrst
                                                                                             RSTR33.R
С
       if (nmbrst.ne.ncount) then
       goto 910
end if
С
C
       now start over in fa position 1 to read in the dynamic rst-data
С
       ix = 1
       GOTO 50
                                                                                             RSTR532
С
   85 continue
С
С
       read in all other common blocks
С
       ix = ix + lx
С
       j = lx * iwrd/8
       if (iwrd.eq.4) then
    j = lx * 2
end if
        if (DEBUG) then
          WRITE(DEBU, '(1x,2(A,I6),A)') 'COMMON/DYNAMIC : ',lx,
'x ',iwrd,' BYTES'
       end if
       GO TO 50
С
```

```
115
```

C-----PLOTREC-----PLOTREC-----C С READ PLOTREC RECORD Ĉ 90 continue С Length of PlotData Record RESTLH9 if (lx.ne.lenc) then GOTO 907 end if if (lcompr) then if (iwrd.eq.4) then GOTO 908 end if else if (iwrd.eq.4) then GOTO 909 end if end if С Data is in fa array from ix - ix+lx (lx=lenc) if (lcompr) then IF(.NOT.TERMINAL) THEN 8 else if(PLOTO) then iia(2*ix+1)=ffa(2*ix+1) I4int(2)=Iflip(iia(2*ix+1)) write(PLOUT,'(1X,A,e13.7)')'TIME = ',R4int(2) С RSTR5322 RSTR5322 RSTR5322 do kk=1,lenb-2 RSTR5322 iia(2*ix+1+kk) =Iflip(iia(2*ix+1+kk)) RSTR5322 end do RSTR5322 write (PLOUT, '(6(e11.5,1X))',err=900) RSTR5322 (ffa(2*ix+1+kk),kk=1,lenb-2) & RSTR5322 endif endif no write into RSTOUT FILE !! С ENDIF alternative: Use of unsqoz function: fa array of length lenc will be expanded by factor of two С C C C C C C δ. else С not compressed data, so read in PLOTOUT directly IF(.NOT.TERMINAL) THEN RSTR5322 RSTR5322 RSTR5322 & else if(PLOTO) then RSTR5322 R8aix = fa(ix+1) I4int(1)=Iflip(I4aix(2)) RSTR5322 RSTR5322 If int (2) = If i p (I4aix(1))
write (PLOUT, '(1X,A,e13.7)')'TIME = ',R8int RSTR5322 RSTR5322 do i=1,lenc-1 RSTR5322 R8aix = fa(ix+1+i) I4int(1)=Iflip(I4aix(2)) I4int(2)=Iflip(I4aix(1)) RSTR5322 RSTR5322 RSTR5322 fa(ix+1+i)=R8intRSTR5322 end do RSTR5322 write (PLOUT, '(6(e11.5,1X))',err=900) RSTR5322 (fa(ix+1+i),i=1,lenc-1) RSTR5322 & endif RSTR5322 endif no write into RSTOUT FILE !! С ENDIF end if ix = 1IZA = IZA + 1 PLOTI = .TRUE. GO TO 50 С -----FEHLER C-С 100 WRITE (IOUT,2036) RSTR532u1 2036 FORMAT (//' ******* WRONG INFORMATION IN HEADER OF DATA ' & ,'RECORD.') GO TO 999 С C----------WEITER

116

С 900 write (IOUT,2200) 2200 FORMAT(//' ****** Write ERROR on PLOTDATA INFORMATION FILE !!') RSTR532u1 GO TO 1000 901 write (IOUT,2201) 2201 FORMAT(//' ****** Write ERROR on PLOTDATA FILE !!') GO TO 1000 RSTR532111 С 902 WRITE (IOUT,2202) fnames(1)(1:15) 2202 FORMAT (//' ****** EOF FOUND ON READ OF ' & ,'INPUT FILE: ',A15,'...') RSTR532u1 RSTR532u3 GO TO 999 С 903 WRITE (IOUT,2203) IOS 2203 FORMAT (/,' ****** ERROR ON READ OF INPUT FILE. ' & ,' IOS = ',I4) RSTR532111 RSTR532u1 GO TO 1000 904 WRITE (IOUT,2204) lxa,lxn 2204 FORMAT (1X,'****** PLOTINF RECORD LENGTH ERROR: ' & ,I4, ' # ',I4) GO TO 1000 RSTR532111 С 906 WRITE (IOUT,2206) lenb,lenc 2206 FORMAT (1X,'****** PLOTDATA RECORD LENGTH ERROR: ' & ,I4, ' # ',I4) GO TO 1000 RSTR532u1 907 WRITE (IOUT,2206) lenc,J GO TO 1000 RSTR532u1 908 WRITE (IOUT,2208) iwrd 2208 FORMAT (1X,'***** COMPRESSED DATA WORD LENGTH: 'I4) RSTR532u1 GO TO 1000 909 WRITE (IOUT,2209) iwrd 2209 FORMAT (1X,'***** UNCOMPRESSED DATA WORD LENGTH: 'I4) RSTR532111 GO TO 1000 910 WRITE (IOUT,2210) nmbrst, ncount 2210 FORMAT (1X,'****** ERROR READING RESTART BLOCK NUMBER: No:' & ,I4, ' # ',I4) GO TO 1000 RSTR532u1 997 Write (IOUT,2299) 2299 FORMAT(//' ****** Write ERROR on RESTART INFORMATION FILE !!') RSTR532u1 GO TO 1000 С 998 WRITE (PLOUT,2300) 2300 FORMAT (//' ****** Write ERROR on RESTART FILE !!') С 999 CONTINUE IF (RSTPLOT) THEN IF (.NOT.RESTI) WRITE (RSINF,2290) IF (.NOT.PLOTI) WRITE (PLOUT,2291) IF (SCREEN) THEN IF (.NOT.RESTI) WRITE (*,2290) IF (.NOT.PLOTI) WRITE (*,2291) END IF ELSE IF (.NOT.PLOTI) WRITE (PLINF, 2295) ENDIF do i = 1, nfil-2close (iun(i)) enddo IF (SCREEN) THEN IF (RESTI) WRITE (*,2293) IF (PLOTI.or.STRIPO) WRITE (*,2294) ENDIF GO TO 1000 GO TO 1000 2290 FORMAT(//' ****** NO RESTARTS ON RESTART/PLOT INPUT FILE !!') 2291 FORMAT(//' ****** NO PLOT DATA ON RESTART/PLOT INPUT FILE !!') 2292 FORMAT(//' ****** NO PLOT DATA ON STRIP FILE !!') 2293 FORMAT(' ****** RESTARTS PROCESSED WELL !!') 2294 FORMAT(' ****** PLOTDATA PROCESSED WELL !!') 2295 FORMAT(' ****** NO PLOT DATA PROCESSED, STRIP CASE !!') RSTR532u1 C _____ C9000 write (*,*) 'PROGRAM RESTR532G Version 2.24' C9000 write (*,*) 'PROGRAM RSTR33B Version 2.3.1' RSTR32114 RSTR33 1 write (*,*) 9000 write (*,*) 'PROGRAM RSTR533 Version 2.4.1 ' RSTR33R1 write (*,*) '
write (*,*)
write (*,*)'
write (*,*)'
write (*,*)'
write (*,*)'
write (*,*)'
write (*,*)' Options: Defaults:' -ri restart/strip_input_file RESTINP' restart_output w/o plotdata restart_info_file plot_parm & data_file plot_parameter_info_file strip inputfile for RELAP RESTOUT' -ro -or RESTINE PLOTOUT' PLOTINF' STRIPINP' -po -op write (*,*)' - 50

write (*,*)'
write (*,*)'
write (*,*)'
write (*,*)'
write (*,*)' -d debug data in file DEBUG ' write restart output file' write strip input file' write plotdata file' -r - S -p -no no screen output' write (*,*)'
write (*,*)'
write (*,*)'
write (*,*)'
write (*,*)' -h/? HELP' w/o -p and/or -r the default is:' only RESTINF and/or PLOTINF files will be written' write (*,*)' For AIX Restarts RESTOUT will not be processed!' С C _____ 1000 Continue RESTLH9 C1000 RETURN RESTLH9 C Changed for Lahey F90 RESTLH9 END C------C C С С CDATE С С C C------C SUBROUTINE CDATE (CWORD) RETURNS DATE IN WORD IN CHARACTER TYPE IN FORM $\rm MM/DD/YY$ С С character*8 cword С С The following additions are due to LF90 RESTLH9 CHARACTER*10 date, time, zone INTEGER dt(8), IM, ID, IY RESTLH9 RESTLH9 С - - -C C CALL GETDAT(IY, IM, ID) RESTLH9 Changes due to Lahey LF90 call date_and_time (date, time, zone, dt) RESTLH9 RESTLH9 С The following additions are due to LF90 RESTLH9 IM=dt(2) RESTLH9 ID=dt(3) RESTLH9 IY=dt(1) RESTLH9 write (*,*) IY, IM, ID RESTLH9 if (IY>1999) then RESTLH9 IY = IY - 2000RESTLH9 else IY = IY - 1900 RESTLH9 RESTLH9 end if RESTLH9 С WRITE(CWORD, 100) IM, ID, IY RESTLH9 100 FORMAT(I2, '/', I2, '/', I2) С _____ if (IM.lt.10) write(CWORD(1:1),'(al)') '0'
if (ID.lt.10) write(CWORD(4:4),'(al)') '0'
if (IY.lt.10) write(CWORD(7:7),'(al)') '0' С ------RETURN END -----C C C C C NARGS С RESTLH9 for Lahey F90 Version 4.0a Compiler С -----C ----C INTEGER FUNCTION NARGS() С RETURNS Number of Arguments including Programm-Name С INTEGER I, J, PARCNT LOGICAL FOUND CHARACTER(len = 512) acl, acm PARCNT=0 J = 1FOUND = .FALSE. С Get Command Line String and Determine Length CALL getcl(acl) acm = TRIM(acl)
acm = 'ee ee ee ee' С I = NEWLEN(acm) do while (J <= I) if ((acm(J:J).ne.' ').and..NOT.(FOUND)) then FOUND = .TRUE. WRITE(*,*)'J1+ = ', J С PARCNT=PARCNT+1 J = J + 1if (acm(J:J).eq.' ') then FOUND = .FALSE. WRITE(*,*)'J2a- = ', J С J = J + 1else do WHILE (FOUND) if ((acm(J:J).ne.'') .AND. J < I) then

```
FOUND = .TRUE.
WRITE(*,*)'J2a+ = ', J
С
                    else
                       FOUND = .FALSE.
                        WRITE(*,*)'J2a- = ', J
С
                    END if
                    J = J + 1
                 end do
             end if
          else
             FOUND = .FALSE.
С
             WRITE(*,*)'J1- = ', J
             J = J + 1
          end if
       end do
С
       write(*,*)'CommandLine = ',acm,' Length = ',I, ' NARGS = ',PARCNT
       NARGS=PARCNT + 1
С
                        | to be compatible with Powerstation Fortran
С
       RETURN
       END
C-
C
               -----
                                                                         ----C
       - - - -
                                                                              C
Ĉ
                                  GETARG
                                                                              С
                                                                                  RESTLH9
С
                                                                               C
C-
                                                                              -C
       SUBROUTINE GETARG (NO, ARGUM, ST)
       RETURNS Argument Number NO in String ARGUM and Length of Argument
C
C
C
C
       Usage:
       Call getarg(NO, ARGUM, ST)
                         : Integer*2; input: position of desired argument
0 : The command itself
                    n
C
C
C
C
C
C
C
C
                    INTEGER ST
       INTEGER*2 iarg, Ilen, ipos, jpos, iparlen, NO, ipar
       CHARACTER*50 ARGUM
      CHARACTER(len = 512) acl, acm
LOGICAL FOUND, START
       FOUND = .FALSE.
START = .FALSE.
       ST = 1
       ipar = 0
jpos = 0
      iparlen = 0
ARGUM = ' '
       iarg = nargs()
       CALL getcl(acl)
acm = TRIM(acl)
Ilen = NEWLEN(acm)
       if (NO==0) then
          ARGUM = 'RESTaix.EXE'
ST = 7
          GOTO 20
       end if
       if ((NO<0).or.(NO>(iarg-1))) then
          ST = -1
          GOTO 20
       end if
С
      do 10 ipos = 1, Ilen+1
    if (acm(ipos:ipos).ne.' ') then
             if (.NOT. (FOUND)) ipar = ipar + 1
FOUND = .TRUE.
             if (START) then
              else
                 if (ipar==NO) START = .TRUE.
                 jpos = ipos
              endif
              if (ipar==NO) START = .TRUE.
              iparlen = iparlen+1
          else
             FOUND = .FALSE.
             if (ipar==NO) GOTO 15
              iparlen = 0
          endif
          write (*,*) 'ip=',ipar,' j=',jpos,' i=',ipos,' len=',iparlen
С
   10 continue
   15 continue
       st = iparlen
      ARGUM = acm(jpos:jpos+iparlen-1)
write (*,*) 'Parameter No:',NO,' Length=',st
С
```

```
write (*,*) 'Parameter :',ARGUM
С
   20 CONTINUE
     RETURN
     END
C-
                                                               ----C
С
                                                                     С
С
                             NEWLEN
                                                                     С
                                                                       RESTLH9
С
                                                                     C
C-
           -----
                                        -----
                                                                ----C
     Integer Function NEWLEN(Str)
С
     RETURNS Length of String indep. of defined Character Length
С
     Max Stringlenth = ?
С
     CHARACTER(LEN = *) :: str
     Integer ILEN, J
     ILEN = LEN(STR)
С
     do 10  J = ILEN, 0 , -1
if (STR(J:J).eq.' ') then
            else
            goto 20
END if
   10 Continue
   20 Continue
С
     NEWLEN = J
     RETURN
     END
C-
                                                                   - - C
C
C
                                                                     С
                             IREC
                                                                     С
                                                                       RESTLH9
С
                                                                     С
C-
                                                               ----C
      Integer Function IREC(I, iMESS)
С
     RETURNS Length of Record for reading formatted Data
     written with MS-FORTRAN PowerStation 1.0
С
C
     INTEGER*1 I
     INTEGER BYTES, iMESS
C
     IF (I = -127) THEN
        BYTES = 128
     else
С
             < -127 (-128) or < 0
        IF (I<0) THEN
           BYTES = 128
           IF (iMESS>0) write (iMESS,*) 'WARNING! RECORD Pointer: ',I,
                                        ' set to 128 !'
'WARNING! RECORD Pointer: ',I,
    &
           IF (iMESS<0) write (*,*)
                                         ' set to 128 !'
    &
         ELSE
           BYTES = I
         END IF
     END IF
     IREC=BYTES
     RETURN
     END
C - -
                    ------
                                              -----C
C
C
C
                                                                     C
                                                                    Ĉ
                                                                       RESTaix
                             IFLIP
                                                                     С
C-
                                  -----C
     Integer Function IFLIP(I4)
С
0000000000000000000000
     RETURNS Integer*4 for Intel
     AIX writes Bytes of Integer*2 or 4 in opposite order
     new function intel-integer*4=iflip(aix-integer*4)
     The same holds true for conversion of R4:
         first equivalence r4 to I4
         then swap bytes with iflip function
     Conversion of Real*8 additionally needs swapping
     of the two I4 integers:
     Example:
                  REAL*8
                           R8aix
                  REAL*8
                            R8int
                  INTEGER*4 I4aix(2), I4int(2)
                  EQUIVALENCE (I4aix(1), R8aix)
EQUIVALENCE (I4int(1), R8int)
                  R8aix=Real8Number
```

```
I4int(2)=iflip(I4aix(1))
I4int(1)=iflip(I4aix(2))
Real8Number=R8int
C
C
C
C
C
          INTEGER*1 Ilint(4), Ilaix(4)
INTEGER*4 I4aix, I4int,I4
EQUIVALENCE (Ilaix(1), I4aix)
EQUIVALENCE (Ilint(1), I4int)
I4aix=I4
            I4a1x=14
I1int(1)=I1aix(4)
I1int(2)=I1aix(3)
I1int(3)=I1aix(2)
I1int(4)=I1aix(1)
          IFLIP=I4int
RETURN
          END
C-
C
C
C
                       ------
                                                                                                                   ----C
             - - -
                                                                                                                             C
                                                      UNSQOZ
                                                                                                                             С
                                                                                                                                  RSTR532
                                                                                                                             C
C-
           _____
                                                                                                                     - - - - C
            subroutine unsqoz (a,num)
implicit none
Unsqueeze one packed word (obtained from sqoz) into two floating
С
              point words.
On 32 bit machines, simply convert real*8 words to real*4 words.
С
С
            Locals
integer i, i1, n, num
real*8 a(num)
real*8 da
real*4 fa(2)
С
             equivalence (da,fa(1))
          equivalence (da,fa(1))
n = iand(num+1,not(1))
i1 = ishft(n,-1)
write (*,*)n,i1
do 10 i = i1,1,-1
da = a(i)
a(n) = fa(2)
a(n-1) = fa(1)
n = n - 2
continue
Paturn
     10
            Return
end
```

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION (9-2004) NRCMD 3.7	(Assigned	. REPORT NUMBER Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.)			
See instructions on the reverse)	N	NUREG/IA-0433			
2. TITLE AND SUBTITLE	3. DATE REPORT PUBLISHED				
RELAP5/MOD3.3 RELEASE Pre & Postprocessor		ONTH	YEAR		
	Decem		2013		
	4. FIN OR	4. FIN OR GRANT NUMBER			
5. AUTHOR(S) Dr. W. Tietsch	6. TYPE OF REPORT Technical 7. PERIOD COVERED (Inclusive Dates)				
8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address.) Westinghouse Electric Germany GmbH Dudenstrasse 44 68167 Mannheim Germany					
 9. SPONSORING ORGANIZATION - NAME AND ADDRESS (<i>if NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address.</i>) Division of Systems Analysis Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 					
10. SUPPLEMENTARY NOTES A. Calvo, NRC Project Manager		3			
11. ABSTRACT (200 words or less) Since the introduction of the 32-Bit Windows Operating System technology for Personal Computers with INTEL CPU architecture Relap has been migrated from mainframe comput-ers and UNIX workstations to the desktop personal computers. Due to the general structure of Relap the user interface however did not change in the course of this migration. Relap running on PCs still is command line driven and does not take advantage of the benefits of the windows environments. Inputs to the program and outputs have the same structure as the UNIX or mainframe versions. Therefore the classic way of performing analyses with Re-lap which consist of several, mostly iterative and consecutive steps did not change with PC installations of the program.					
Westinghouse Reaktor mid of the 90th developed several tools running on the PC to support the analysts retrieving and documenting results of Relap analyses. Based on these tools and using the power of the object oriented technology and third party functionality for the graphics generation a Graphical Users Interface has been developed by Westinghouse Reaktor which integrates all steps of a typical Relap analysis process. This Pre & Postprocessor has been designed to run in all known Windows environments (Win-dows95/98, ME, NT4, 2000 and XP). It has the feel and look of typical Windows software and an intuitive users interface which only requires a minimum of training. The actual version 3.3.0 of the Pre & Postproces-sor cooperates with the Intel Relap5Mod3.3Release version.					
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) ATHLET		13. AVAILABII unlimited	LITY STATEMENT		
Westinghouse Electric Germany GmbH Pre-processor Relap5Mod3.3 Postprocessor U.S. Nuclear Regulatory Commission		14. SECURITY (This Page) unclassif (This Report) unclassif			
SNAP			R OF PAGES		
		16. PRICE			

PRINTED ON RECYCLED PAPER

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS

NUREG/IA-0433

RELAP5/MOD3.3 RELEASE Pre & Postprocessor

December 2013