<u>Methods for Applying Risk</u> <u>Analysis to Fire</u> <u>Scenarios (MARIAFIRES)-2010</u>

Prerequisite Basic Concepts Review for NRC-RES/EPRI Fire PRA Workshops

> Volume 1 Course Prerequisites

> > and

Module 4: Fire Human Reliability Analysis (HRA)

Based on the Joint NRC-RES/EPRI Training Workshops Conducted in 2010

> September 27 and October 25, 2010 Bethesda, MD

Kendra Hill Tammie Pennywell David Stroup Felix Gonzalez Hugh Woods

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001 Electric Power Research Institute 3420 Hillview Avenue Palo Alto, CA 94303

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.gov/reading-rm.html.</u> Publicly released records include, to name a few, NUREG-series publications; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and Title 10, "Energy," in the *Code of Federal Regulations* may also be purchased from one of these two sources.

- 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250
- 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: U.S. Nuclear Regulatory Commission Office of Administration Publications Branch Washington, DC 20555-0001

E-mail: DISTRIBUTION.RESOURCE@NRC.GOV Facsimile: 301–415–2289

Some publications in the NUREG series that are posted at NRC's Web site address

http://www.nrc.gov/reading-rm/doc-collections/nuregs are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractorprepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

DISCLAIMER: Where the papers in these proceedings have been authored by contractors of the U.S. Government, neither the U.S. Government nor any agency thereof, nor any U.S. employee makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use or the results of such use, of any information, apparatus, product, or process disclosed in these proceedings, or represents that its use by such third party would not infringe privately owned rights. The views expressed in these proceedings are not necessarily those of the U.S. Regulatory Commission.

<u>Methods for Applying Risk Analysis to Fire</u> <u>Scenarios (MARIAFIRES)-2010</u>

Prerequisite Basic Concepts Review for NRC-RES/EPRI Fire PRA Workshops (Based on the Joint NRC-RES/EPRI Training Workshops Conducted in 2010)

NUREG/CP-0301 Volume 1 of 2 EPRI 3002000267

August 2013

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research (RES) Washington, DC 20555-0001

U.S. NRC-RES Project Manager M. H. Salley

Electric Power Research Institute (EPRI) 3420 Hillview Avenue Palo Alto, CA 94303

EPRI Project Manager R. Wachowiak

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI NOR ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, OR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

ORGANIZATION THAT PREPARED THIS DOCUMENT:

U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

COURSE TRAINING INSTRUCTORS AND PROJECT MANAGERS

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research (RES) Washington, DC 20555-0001

Susan Cooper - HRA

Sandia National Laboratories (SNL) 1515 Eubank SE Albuquerque, NM 87185

Steven Nowlen - Fire

Mardy Kazarians (Kazarians & Associates) - Fire

Frank Wyant – Electrical

Jeff LaChance – PRA

Mary Pressley - HRA

Electric Power Research Institute (EPRI) 3420 Hillview Avenue Palo Alto, CA 94303

Stuart Lewis - HRA

Science Applications International Corp. (SAIC) 1671 Dell Ave, Suite 100 Campbell, CA 95008

Bijan Najafi

Francisco Joglar-Biloch – Fire

Dan Funk (EDAN Engineering) - Electrical

Richard Anoba (Anoba Consulting Services) - PRA

Erin Collins – HRA

R. Wachowiak

EPRI Project Manager

Kaydee Kohlhepp (Scientech) - HRA

Richard Anoba (Anoba Consulting Services) - PRA

Kendra Hill /Nicholas Melly

U.S. NRC-RES Project Managers

CITATIONS

This report was prepared by:

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research (RES) Washington, DC 20555-0001

Principal Investigators: K. Hill T. Pennywell D. Stroup F. Gonzalez H. Woods Electric Power Research Institute (EPRI) 3420 Hillview Avenue Palo Alto, CA 94303

Principal Investigator: R. Wachowiak

This report describes research sponsored jointly by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research and EPRI.

The report is a corporate document that should be cited in the literature in the following manner:

Prerequisite Basic Concepts Review for NRC-RES/EPRI Fire PRA Workshops – Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES)-2010, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC 20555-0001, and Electric Power Research Institute, Palo Alto, CA, NUREG/CP-0301 and EPRI 3002000267

NUREG/CP-0301 and EPRI 3002000267 has been reproduced from the best available copy

ABSTRACT

The events that necessitated the Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES) training courses are presented in this document's "Introduction and Background" section, which also provides links to previous MARIAFIRES documents based on training courses conducted in 2008 (NUREG/CP-0194) (EPRI 1020621).

This is a supplement to those documents, and provides the slides and other materials used to support the enclosed video recordings of an additional first day of training that was added to the NRC-RES/EPRI Fire PRA courses conducted in 2010. The additional training was presented simultaneously in four modules: Basic Concepts of Circuit Analysis (Section 2 and Appendix A); Basic Concepts of Fire Analysis (Section 3 and Appendix B); Basic Concepts of Fire Human Reliability Assessment (HRA, Section 4 and Appendix C); and Basics of Nuclear Power Plant Probabilistic Risk Assessment (PRA, Section 5 and Appendix D).

The extra day was added because it had been observed in previous sessions that some attendees were not familiar with certain basic concepts that the course developers had assumed they would understand. This diminished the training's value to those attendees, and also delayed the progress of the whole class, which reduced the training's value to everyone.

In future years, this supplement and its video recordings will be given to all prospective students when they register for Fire PRA Workshop training. Before the first day's instruction, they will be expected to have read the short section of this supplement corresponding to the module for which they have registered (i.e., Section 2, 3, 4, or 5), to have followed the slides in the related appendix of this supplement while watching and listening to the videos for that module, and to have responded to the one-page "self assessments" presented in this supplement after the last slide of each video for that module.

Following this process will allow for more detailed instruction on the additional day, thus increasing the training's value to everyone.

Volume 2 of MARIAFIRES-2010 also contains a new module dedicated to Fire Human Reliability Analysis (HRA). This fourth module supplements the original three modules (Module 1 Fire PRA, MARIAFIRES 2008-Volume 1, Module 2 Electrical analysis MARIAFIRES 2008-Volume 2, Module 3 Fire Analysis MARIAFIRES 2008-Volume 3).

<u>NRC Disclaimer</u>: This document's text and video content are intended solely for use as training tools. No portions of their content are intended to represent NRC's conclusions or Regulatory Positions, and they should not be interpreted as such.

	STRACT	.iii
AC	KNOWLEDGEMENTS	vii
LIS	T OF ACRONYM	ix
1	INTRODUCTION AND BACKGROUND	.1
1.1	About this text	.3
2	BASIC CONCEPTS OF CIRCUIT ANALYSIS TRAINING VIDEOS	.5
2.1	Circuit Analysis Basics, Part 1 of 4	.5
2.2	Circuit Analysis Basics, Part 2 of 4	.5
2.3 2.4	Circuit Analysis Basics, Part 3 of 4 Circuit Analysis Basics, Part 4 of 4	.5 .5
3	BASIC CONCEPTS OF FIRE ANALYSIS TRAINING VIDEOS	.7
31	Definitions Part 1 of 6	7
3.2	Fires in the Open and Fully Ventilated Fires, Part 2 of 6	.7
3.3	Compartment Fires, Part 3 of 6	.7
3.4	Detection and Suppression, Part 4 of 6	.7
3.5	Analysis Tools, Part 5 of 6	.8 8
0.0		.0
4 VID	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING	.9
4 VID 4 1	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING EOS	.9 9
4 VID 4.1 4.2	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING EOS Principles of HRA Part 1 of 5 Principles of HRA Part 2 of 5	.9 .9 .9
4 VID 4.1 4.2 4.3	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING EOS Principles of HRA Part 1 of 5 Principles of HRA Part 2 of 5 Principles of HRA Part 3 of 5.	.9 .9 .9 .9
4 VID 4.1 4.2 4.3 4.4	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING EOS Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5.	.9 .9 .9 .9
4 VID 4.1 4.2 4.3 4.4 4.5	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING Peos Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5. Principles of HRA Part 5 of 5.	.9 .9 .9 .9 .9
4 VID 4.1 4.2 4.3 4.4 4.5 5	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5. Principles of HRA Part 5 of 5. BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA)	.9 .9 .9 .9 .9
4 4.1 4.2 4.3 4.4 4.5 5 TR/	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING Peos Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5. Principles of HRA Part 5 of 5. BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA) AINING VIDEOS	.9 .9 .9 .9 10
4 VID 4.1 4.2 4.3 4.4 4.5 5 TR/ 5.1	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING Peos Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5. Principles of HRA Part 5 of 5. BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA) AINING VIDEOS Basics of Nuclear Power Plant PRA Part 1 of 4. Pasice of Nuclear Power Plant PRA Part 1 of 4.	.9 .9 .9 .9 10
4 VID 4.1 4.2 4.3 4.4 4.5 5 TR/ 5.1 5.2 5.3	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5. Principles of HRA Part 5 of 5. Principles of Nuclear Power Plant PRA Part 1 of 4. Basics of Nuclear Power Plant PRA (Accident Sequence Analysis) Part 2 of 4. Basics of Nuclear Power Plant PRA (Systems Analysis) Part 3 of 4.	.9 .9 .9 .9 10
4 VID 4.1 4.2 4.3 4.4 4.5 5 TR/ 5.1 5.2 5.3 5.4	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING EOS Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5. Principles of HRA Part 5 of 5. Principles of HRA Part 5 of 5. BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA) AINING VIDEOS Basics of Nuclear Power Plant PRA Part 1 of 4. Basics of Nuclear Power Plant PRA (Accident Sequence Analysis) Part 2 of 4. Basics of Nuclear Power Plant PRA (Data Analysis) Part 3 of 4. Basics of Nuclear Power Plant PRA (Data Analysis) Part 4 of 4.	.9 .9 .9 .9 10 11 11 11
4 4.1 4.2 4.3 4.4 4.5 5 TR/ 5.1 5.2 5.3 5.4 API	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5. Principles of HRA Part 5 of 5. BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA) AINING VIDEOS Basics of Nuclear Power Plant PRA Part 1 of 4. Basics of Nuclear Power Plant PRA (Accident Sequence Analysis) Part 2 of 4. Basics of Nuclear Power Plant PRA (Systems Analysis) Part 3 of 4. Basics of Nuclear Power Plant PRA (Data Analysis) Part 4 of 4.	.9 .9 .9 .9 10 11 11
4 4.1 4.2 4.3 4.4 4.5 5 TR/ 5.1 5.2 5.3 5.4 API API	BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING PEOS Principles of HRA Part 1 of 5. Principles of HRA Part 2 of 5. Principles of HRA Part 3 of 5. Principles of HRA Part 4 of 5. Principles of HRA Part 5 of 5. BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA) AINING VIDEOS Basics of Nuclear Power Plant PRA Part 1 of 4. Basics of Nuclear Power Plant PRA (Accident Sequence Analysis) Part 2 of 4. Basics of Nuclear Power Plant PRA (Systems Analysis) Part 3 of 4. Basics of Nuclear Power Plant PRA (Data Analysis) Part 4 of 4. PENDICES PENDIX A: MATERIALS SUPPORTING BASIC CONCEPTS OF CIRCUIT ANALYSIS TRAINING VIDEOS.	.9 .9 .9 10 11 11 11 11

CONTENTS

APPENDIX C: MATERIALS SUPPORTING BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT(HRA) TRAINING VIDEOS	.C-1
APPENDIX D: MATERIALS SUPPORTING BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA) TRAINING VIDEOS	.D-1
APPENDIX E: ANSWERS TO SELF ASSESSMENT	. E-1

ACKNOWLEDGMENTS

The authors of this report greatly appreciate the contributions made by instructors and presenters at the 2010 NRC-RES/EPRI Fire PRA Workshop. We would also like to thank the NRC audio visual team members for their efforts in video recording the hours of workshop presentations.

In addition, we want to extend our gratitude to Kathleen Henry of the Information Technology and Infrastructure Branch for her quick responses in addressing our computer needs and issues. We also greatly appreciate the support of Tojuana Fortune-Grasty and LaToya Jones (the NRC's publications specialists) and Guy Beltz (the NRC's printing specialist), whose invaluable support and expertise were critical to ensuring the published report's quality. We also extend a special thanks and appreciation to Carolyn Siu (RES/DRA administrative assistant) for providing the Tech-edit to this report.

LIST OF ACRONYMS

ACB	Air-cooled Circuit Breaker
ACRS	Advisory Committee on Reactor Safeguards
AEP	Abnormal Event Procedure
AFW	Auxiliary Feedwater
AGS	Assistant General Supervisor
AOP	Abnormal Operating Procedure
AOV	Air Operated Valve
ASEP	Accident Sequence Evaluation Program
ATHEANA	A Technique for Human Event Analysis
ATS	Automatic Transfer Switch
ATWS	Anticipated Transient Without Scram
BAT	Boric Acid Tank
BNL	Brookhaven National Laboratory
BWR	Boiling-Water Reactor
CBDT	Cause-Based Decision Tree
CCDP	Conditional Core Damage Probability
CF	Cable (Configuration) Factors
CCPS	Center for Chemical Process Safety
CCW	Component Cooling Water
CDF	Core Damage Frequency
CED	Computational Fluid Dynamics
CFR	Code of Federal Regulations
CLERP	Conditional Large Farly Release Probability
CM	Corrective Maintenance
CR	Control Room
CRS	Cable and Raceway (Database) System
CST	Condensate Storage Tank
CVCS	Chemical and Volume Control System
CWP	Circulating Water Pump
DC	Direct Current
EDG	Emergency Diesel Generator
EDS	Electrical Distribution System
EF	Error Factor
FI	Erroneous Status Indicator
FOP	Emergency Operating Procedure
EPR	Ethylene-Propylene Rubber
FPRI	Electric Power Research Institute
FT	Event Tree
FEDB	Fire Events Database
FEP	Fire Emergency Procedure
FHA	Fire Hazards Analysis
FIVE	Fire-Induced Vulnerability Evaluation (EPRI TR 100370)
FMRC	Factory Mutual Research Corporation
FPRAIG	Fire PRA Implementation Guide (EPRI TR 105928)
FRSS	Fire Risk Scoping Study (NUREG/CR-5088)
FSAR	Final Safety Analysis Report
HCR	Human Cognitive Reliability
HEAF	High Energy Arcing Fault

HEP	Human Error Probability
HFE	Human Failure Event
HPI	High-Pressure Injection
HPCI	High-Pressure Coolant Injection
HRA	Human Reliability Analysis
HRR	Heat Release Rate
HTGR	High-Temperature Gas-cooled Reactor
HVAC	Heating Ventilation and Air Conditioning
	Incremental Core Damage Probability
	Incremental Large Early Release Probability
	Institute for Nuclear Power Operations
	Individual Plant Examination
	Individual Plant Examination of External Events
15	Ignition Source
ISLUCA	Internacing Systems Loss of Coolant Accident
KS	Key Switch
LCO	Limiting Condition of Operation
	Large Early Release Frequency
LFL	Lower Flammability Limit
LOC	Loss of Control
LOCA	Loss-of-Coolant Accident
LPG	Liquefied Petroleum Gas
LP/SD	Low Power and Shutdown
LWGR	Light-Water-cooled Graphite Reactors (Russian design)
MCB	Main Control Board
MCC	Motor Control Center
MCR	Main Control Room
MG	Motor-Generator
MFW	Main Feedwater
MOV	Motor-Operated Valve
MQH	McCaffrey, Quintiere, and Harkleroad's Method
MS	Main Steam
MSIV	Main Steam Isolation Valve
NC	No Consequence
NEI	Nuclear Energy Institute
NEII	Nuclear Electric Insurance Limited
	National Fire Protection Association
	Nuclear Dower Plant
	Not Desitive Sustien Head
	Net Fusilive Suction field
	Non-Qualifieu (IEEE-303) Cable
	0.5. Nuclear Regulatory Commission
URE	Operator Reliability Experiments
P&ID	Piping and Instrumentation Diagram
PE	Polyetnylene
PM	Preventive Maintenance
PMMA	Polymethyl Methacrylate
PORV	Power-Operated Relief Valve
PRA	Probabilistic Risk Assessment
PSF	Performance Shaping Factor
PTS	Pressurized Thermal Shock
PVC	Polyvinyl Chloride

PWR	Pressurized Water Reactor
Q cable	Qualified (IEEE-383) cable
RBMK	Reactor Bolshoy Moshchnosty Kanalny (high-power channel reactor)
RCIC	Reactor Core Isolation Cooling
RCP	Reactor Coolant Pump
RCS	Reactor Coolant System
RDAT	Computer program for Bayesian analysis
RES	Office of Nuclear Regulatory Research (at NRC)
RHR	Residual Heat Removal
RI/PB	Risk-Informed / Performance-Based
RPS	Reactor Protection System
RWST	Refueling Water Storage Tank
SCBA	Self-Contained Breathing Apparatus
SDP	Significance Determination Process
SGTR	Steam Generator Tube Rupture
SI	Safety Injection
SMA	Seismic Margin Assessment
SNPP	Simplified Nuclear Power Plant
SO	Spurious Operation
SOV	Solenoid Operated Valve
SPAR-H	Standardized Plant Analysis Risk HRA
SRV	Safety Relief Valve
SSD	Safe Shutdown
SSEL	Safe Shutdown Equipment List
SST	Station Service Transformer
SUT	Start-up Transformer
SW	Service Water
SWGR	Switchgear
T/G	Turbine/Generator
T-H	Thermal Hydraulic
THERP	Technique for Human Error Rate Prediction
TGB	Turbine-Generator Building
TSP	Transfer Switch Panel
UAT	Unit Auxiliary Transformer
VCT	Volume Control Tank
VTT	Valtion Teknillinen Tutkimuskeskus (Technical Research Centre of Finland)
VVER	The Soviet (now Russian Federation) designation for light-water pressurized reactor
XLPE	Cross-Linked Polyethylene
ZOI	Zone of Influence

1 INTRODUCTION AND BACKGROUND

The U.S. Nuclear Regulatory Commission (NRC) approved the risk-informed and performancebased alternative regulation 10 CFR 50.48(c) in July 2004, which allows licensees the option of using fire protection requirements contained in the National Fire Protection Association (NFPA) Standard 805, "Performance Based Standard for Fire Protection for Light-Water Reactor Electric Generating Plants, 2001 Edition," with certain exceptions. To support licensees' use of that option, the NRC's Office of Nuclear Regulatory Research (RES) and the Electric Power Research Institute (EPRI) jointly issued NUREG/CR-6850 (EPRI 1011989), "Fire PRA Methodology for Nuclear Power Facilities," in September 2005. That report documents state-ofthe art methods, tools, and data for conducting a fire probabilistic risk assessment (PRA) in a commercial nuclear power plant (NPP) application. This report is intended to serve the needs of a fire risk analysis team by providing a general framework for conducting of the overall analysis, as well as specific recommended practices to address each key aspect of the analysis. Participants from the U.S. nuclear power industry supported demonstration analyses and provided peer review of the program. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events fire analyses, are addressed to the extent allowed by the current state-of-the-art and the overall project scope. Although the primary objective of the report is to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advance over previous methods.

NUREG/CR-6850 does not constitute regulatory requirements, and the NRC's participation in the study neither constitutes nor implies regulatory approval of applications based on the analysis contained in that document. The analyses/methods documented in that report represent the combined efforts of individuals from RES and EPRI. Both organizations provided specialists in the use of fire PRA to support this work. However, the results from that combined effort do not constitute either a regulatory position or regulatory guidance.

In addition, NUREG/CR-6850 can be used for risk-informed, performance-based approaches and insights to support fire protection regulatory decision making in general.

However, it is not sufficient to merely develop a potentially useful method, such as NUREG/CR-6850, and announce its availability. It is also necessary to teach potential users how to use the method correctly and to their best advantage. Accordingly, RES and EPRI conducted a joint public workshop for about 80 attendees at the EPRI NDE Center in Charlotte. NC from 14–16 June 2005. A second workshop was held the following year, in the NRC's Two White Flint North Auditorium in Rockville, MD from 24-26 May 2006. About 130 people attended the second workshop. Based on the positive public response to these two workshops, a more detailed training class was developed by the authors of NUREG/CR-6850. Two detailed training workshops were conducted in 2007, one from 23-27 July and another from 27-30 August, both at EPRI headquarters in Palo Alto, CA. About 100 people attended each of these workshops. In 2008, two more workshops were held from 29 September through 2 October, and again from 17-20 November, in Bethesda, MD near NRC headquarters. The two workshops attracted about 170 participants, including domestic representatives from NRC headquarters and all four regional offices, the U.S. Department of Energy, the National Aeronautics and Space Administration, EPRI, NPP licensees/utilities, Nuclear Steam Supply System vendors, consulting engineering firms, and universities. Also in attendance were international representatives from Belgium, Canada, France, Japan, South Korea, Spain, and Sweden.

The material in the 2008 workshops was video recorded by members of RES's Fire Research Branch as an alternative training method for those who were unable to physically attend the training sessions. Materials supporting those videos were published in the three volumes listed (and made available) as stated below (the videos are enclosed in the published paper copies). This material can also serve as a refresher for those who attended one or more of the training sessions, and would be useful preparatory material for those planning to attend a session.

The following URLs link to the 2008 MARIAFIRES reports:

NUREG/CP-0194, EPRI 1020621, *Methods for Applying Risk Analysis to Fire Scenarios* (*MARIAFIRES*) -2008, Volume 1, Overall Course and Module 1: PRA/HRA <u>http://adamswebsearch2.nrc.gov/IDMWS/ViewDocByAccession.asp?AccessionNumber=ML101</u> <u>960259</u>

NUREG/CP-0194, EPRI 1020621, *Methods for Applying Risk Analysis to Fire Scenarios* (*MARIAFIRES*) -2008, Volume 2, Module 2: Electrical Analysis <u>http://adamswebsearch2.nrc.gov/IDMWS/ViewDocByAccession.asp?AccessionNumber=ML101</u> <u>960151</u>

NUREG/CP-0194, EPRI 1020621, *Methods for Applying Risk Analysis to Fire Scenarios* (*MARIAFIRES*) -2008, Volume 3, Module 3: Fire Analysis <u>http://adamswebsearch2.nrc.gov/IDMWS/ViewDocByAccession.asp?AccessionNumber=ML101</u> 950499

This document supplements the above three documents. It provides the slides and other materials used to support the enclosed video recordings of the additional first day of training, which was added to the MARIAFIRES courses in 2010 (i.e., it was not part of the training provided in 2008, as documented in the above three documents). The additional training was presented simultaneously in four modules: Basic Concepts of Circuit Analysis (Section 2 and Appendix A); Basic Concepts of Fire Analysis (Section 3 and Appendix B); Basic Concepts of Fire Human Reliability Assessment (HRA) (Section 4 and Appendix C); and Basics of Nuclear Power Plant Probabilistic Risk Assessment (PRA) (Section 5 and Appendix D).

The extra day was added because it had been observed in previous sessions that some attendees were not familiar with certain basic concepts that the course developers had assumed they would understand. This diminished the training's value to those attendees, and also delayed the progress of the whole class, which reduced the training's value to everyone.

In future years, this supplement and its video recordings will be given to all prospective students when they register for Fire PRA Workshop training. Before the first day's instruction, they will be expected to have read the short section of this supplement corresponding to the module for which they have registered (i.e., Section 2, 3, 4, or 5), to have followed the slides in the related appendix of this supplement while watching and listening to the videos for that module, and to have responded to the one-page "self assessments" presented in this supplement after the last slide of each video for that module (answers to the self assessment questions for all videos and all modules are provided in the back of Appendix D, starting on page D-90).

Following this process will allow for more detailed instruction on the additional day, thus increasing the training's value to everyone.

In Sections 2, 3, 4, and 5 below, the videos' contents are described and each video's duration is given. All videos lasting longer than an hour contain a slide near their midpoint suggesting that the student pause for a break.

1.1 About this text

"Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES) – 2010, Prerequisite Basic Concepts Review for NRC-RES/EPRI Fire PRA Workshops" is a collection of the materials that were presented at a Fire PRA course provided by EPRI and NRC/RES. The training and resulting presentation materials are described in detail and represent over 24 hours of classroom instruction. The training focuses on the Fire PRA methods documented in the joint Electric Power Research Institute (EPRI)/RES publication NUREG/CR-6850 (EPRI 1011989), along with clarifications, enhancements, and additions provided in NUREG/CR-6850 Supplement 1 (EPRI 1019259), "Fire Probabilistic Risk Assessment Methods Enhancements."

The intent of this publication is to provide to the public the training materials used during the Fire PRA training. This material is not intended to be a substitute for the direct interaction provided in the Fire PRA courses, but is meant to augment that training and serve as a reference. Enthusiastic future students can use the material to become familiar with the general principles of Fire PRA prior to attending the course. Students who have already taken the course can use the material for reference. The material consists of a series of reports that document the presentations, including some speakers' notes and text. In addition, an edited version of the video recorded training session is attached to this text. This video version is intended to be viewed while simultaneously viewing the corresponding slide presentations that were delivered during the live workshop.

In providing this material, the authors hope that those who plan to attend the course can arrive more informed, those who have already attended can have a reference for future work, and those who have been unable to attend have a means to gain a more complete understanding of the intent and goals of NUREG/CR-6850 (EPRI 1011989).

2 BASIC CONCEPTS OF CIRCUIT ANALYSIS TRAINING VIDEOS

2.1 Circuit Analysis Basics, Part 1 of 4

This video's discussions include the reasoning of adding the first day to the electrical training, what subjects will be covered within the training, and circuit design. Slide 7 (page A-8) refers to a handout provided during the class, which contains eight pages of electrical circuit drawing symbols, plus one page of standard circuit component name abbreviations and one page of standard device numbers which were used as additional slides (pages A-9 through A-18). This material is in Appendix A, Part 1 of 4, pages A-2 through A-18; the video's duration is 43 minutes long.

2.2 Circuit Analysis Basics, Part 2 of 4

This video's discussions include many types of electrical drawings and how to read them, general conventions of circuits, grounded vs. ungrounded circuits, plant electrical distribution system design, plant electrical equipment, types of cables and raceways, transformers, valve operators, switchgears and relays, circuit breakers, types of electric motors, instruments, miscellaneous equipment (e.g., batteries, control panels), and types of fire-induced cable failures (e.g., shorts to ground, hot shorts). The slides are in Appendix A, Part 2 of 4, pages A-20 through A-42; the video is 1 hour and 18 minutes long, with a suggested break near its midpoint.

Note that slide 12 (page A-25) refers to the "standard device numbers" handout, which is shown and discussed on the last slide of Part 1 of 4 (page A-18) and is not further discussed in this Part 2 of 4.

Please also note that slide 29 (page A-42) is not discussed; it is shown only as a reference to the video clip and DC test photos presented in Part 4 of 4.

2.3 Circuit Analysis Basics, Part 3 of 4

This video presents a slide (picture) show of electrical equipment. The pictures were projected onto the lecture room screen and are clearly shown on the video, and are therefore not provided in this document; thus Appendix A, Part 3 of 4, contains only that video's title slide (page A-44), along with its self assessment (page A-45). The video is 52 minutes long.

2.4 Circuit Analysis Basics, Part 4 of 4

Approximately the first 15 minutes of this video are devoted to describing (and exhibiting) various electrical cable samples. The list of cables exhibited is shown on the lecture room's screen, and is clearly legible in the video; therefore, it is not separately provided in this document. The video continues by presenting the DC electrical cable test video clip and test photos that were referenced in slide 29 at the end of Part 2 of 4 (page A-42); slide 29 is also repeated in this Part 4 of 4 (page A-47). It then moves on to a presentation of 19 circuit drawings (pages A-48 through A-66), and concludes with a thorough, knowledgeable presentation of the background, history, and development of nuclear power plant fire protection regulations, e.g., such as Appendix R, which is summarized on slide 30, page A-67 (the discussion is much more detailed than the slide). These slides and circuit drawings are provided in Appendix A, Part 4 of 4, pages A-46 through A-67; the video is 1 hour and 41 minutes long, with a suggested break near its midpoint.

3 BASIC CONCEPTS OF FIRE ANALYSIS TRAINING VIDEOS

3.1 Definitions, Part 1 of 6

September presentation (video titled, "Part 1 of 6, 9/27/2010 session")

This video presents topics including the basic nature of fires, the fire triangle (fuel, oxygen, initial ignition source), materials that burn, the combustion process, flame characteristics, fire effects, fire plume, radiative heat transfer, fire propagation, heat release rate, compartment fires, and zone of influence (ZOI).

It should be noted that the video track of this recording remains frozen during the 25:14 - 25:50 time interval (part of the discussion of slide 12, page B-7), and remains unsynchronized with the audio track thereafter (i.e., during the discussion of slides 13-20, pages B-8 through B-11). However, the audio track is uninterrupted, and remains properly coordinated with the video track's indications of the slides being shown. Thus, except for possibly creating a visual distraction (which can be avoided by simply not watching the presenter), these flaws should not diminish the usefulness of the information presented.

Because of this problem, the October presentation would have been used herein instead of the September presentation. However, the October recording was incomplete; the presentation of slides 1-15 was missing, so the September presentation was the only complete video available. The slides used in this video are provided in Appendix B, "Definitions, Part 1 of 6, 9/27/2010 session," pages B-2 through B-11; the video is 36 minutes long.

October presentation (video titled, "Part 1 of 6, last 5 slides only (16-20)")

In this video, an alternate approach is used in the discussion of slides 16-20, which covers such topics as heat release rate, compartment fires, and ZOI. The slides used in this video are provided in Appendix B, "Definitions, Part 1 of 6, last 5 slides only (16-20)," pages B-13 through B-15; the video is 13 minutes long.

3.2 Fires in the Open and Fully Ventilated Fires, Part 2 of 6

This video discusses various aspects of fires that are <u>not</u> limited by their air supply, including heat release rate, laminar and turbulent flames, ignition of gases, ignition of liquids, ignition of solids, flame spread rates, and fire plume temperature. The slides used in this video are provided in Appendix B, "Fires in the Open and Fully Ventilated Fires, Part 2 of 6," pages B-17 through B-26; the video is 1 hour and 8 minutes long, with a suggested break near its midpoint.

3.3 Compartment Fires, Part 3 of 6

This video discusses various aspects of fires that <u>are</u> limited by their air supply (e.g., in compartments of nuclear power plants), such as the build-up of a hot gas/smoke layer above the fire in the upper parts of the compartment. The slides used in this video are provided in Appendix B, "Compartment Fires, Part 3 of 6," pages B-28 through B-35; the video is 45 minutes long. Note that Slide 14, page B-34, was not discussed.

3.4 Detection and Suppression, Part 4 of 6

This video discusses the typical detection and suppression features of nuclear power plants credited in Fire PRAs. Fire detection systems include prompt, smoke, heat, incipient, and

delayed types. Fire suppression methods include prompt, automatic, dry-pipe/pre-action, deluge, CO2, Halon, fire brigade, and passive (e.g., fire barriers). The slides used in this video are provided in Appendix B, "Detection and Suppression, Part 4 of 6," pages B-37 through B-45; the video is 1 hour long.

3.5 Analysis Tools, Part 5 of 6

This video's discussions include fire modeling in a Fire PRA, how fire develops in a scenario, what damage is generated, when damage is generated, the timing of detection and suppression, the different types of fire models (hand calculations, zone models, field models, and special models), which model to choose, and verification and validation of fire models.

During the discussion of slide 8, page B-50, reference is made to the fire models presented as spreadsheets in NUREG-1805, which are available at:

http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1805/

After the discussion of the zone model MAGIC on slide 10, page B-51, another zone model (CFAST) is discussed at some length; there were no slides or handouts regarding CFAST, and although it is stated that there is a website from which it can be downloaded and used, the details were not made clear.

The slides used in this video are provided in Appendix B, "Analysis Tools, Part 5 of 6," pages B-47 through B-55; the video is 1 hour and 16 minutes long, with a suggested break near its midpoint.

3.6 Fire Scenarios, Part 6 of 6

This video's discussions include the set of elements representing a fire scenario, which are ignition source, intervening combustibles, targets, fire protection features, the compartment in which it occurs, and a timeline. It also describes screening and detailed analyses of a fire scenario, and explains the factors involved in scenario quantification. The slides used in this video are provided in Appendix B, "Fire Scenarios, Part 6 of 6," pages B-57 through B-63; the video is 46 minutes long.

4 BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING VIDEOS

4.1 Principles of HRA Part 1 of 5

This section introduces the Principles of Human Reliability Analysis (HRA) module, along with discussions on the purpose and objectives of this introductory course. This section covers the definition of HRA and how HRA fits into Probabilistic Risk Assessment (PRA), including what HRA does with event tree and fault tree information. The slides corresponding to this material are located in Appendix C, pages C-2 through C-17; the video is 37 minutes long.

4.2 Principles of HRA Part 2 of 5

This section includes a discussion of what an HRA models, as well as a discussion of the ASME/ANS standard requirements for HRA. The categories of human failure events (HFEs) are identified, and other classifications of HFEs (errors of commission and errors of omission) are discussed. The slides covered are located in Appendix C, pages C-19 through C-33; the video is 52 minutes long.

4.3 Principles of HRA Part 3 of 5

This section discusses the guidance for and the keys to performing HRA and the keys to performing HRA. It covers guidance associated with HRA processes, other HRA tools or approaches, and HRA quantification methods. The keys to performing HRA are also discussed in this section. The slides covered are located in Appendix C, pages C-35 through C-51; the video is 1 hour and 14 minutes long, with a suggested break near its midpoint.

4.4 Principles of HRA Part 4 of 5

This section discusses how one can understand human error. The assertions that human error is neither random nor typically the underlying cause of a mishap are explored, as well as the assertion that human error can be predicted. The slides are located in Appendix C, pages C-53 through C-63; the video is 45 minutes long, including the part discussed below.

The last third of this video discusses a significant event detailed in a handout provided by the speaker. The essential points of the discussion are readily understandable from the video without referencing the handout, which is not provided in this document. However, full details of the event (including the fact that it occurred on June 9, 1985, at Davis Besse) are readily available online, as follows:

Working from a paper copy of this document:

<u>www.nrc.gov</u>; NRC LIBRARY; Document Collections; NUREG-Series Publications; Publications Prepared by NRC Staff NUREG-(nnnn); Scroll down to NUREG-1624; Appendices A through G; Appendix A, pgs. A.6-1 through A.6-5.

Working from an electronic file of this document, one can go to the last step of the above using the following URL:

http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1624/r1/sr1624r1-appa-appg.pdf

4.5 Principles of HRA Part 5 of 5

This section covers the important features of existing HRA methods, including: the Technique for Human Error Rate Prediction (THERP); the Accident Sequence Evaluation Program (ASEP); Cause-Based Decision Tree (CBDT) Method; the Human Cognitive Reliability (HCR)/Operator Reliability Experiments (ORE) Method; the Standardized Plant Analysis Risk HRA (SPAR-H) Method; and A Technique for Human Event Analysis (ATHEANA). The slides are located in Appendix C, pages C-65 through C-74; the video is 1 hour and 5 minutes long, with a suggested break near its midpoint.

5 BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA) TRAINING VIDEOS

This video is divided into four parts. However, all of the supporting slides are presented in one continuously numbered set in Appendix D, "Materials Supporting Basics of Nuclear Power Plant Probabilistic Risk Assessment (PRA) Videos" (pages D-2 through D-88).

5.1 Basics of Nuclear Power Plant PRA Part 1 of 4

This section introduces the Basics of Nuclear Power Plant PRA module with an overview, objectives, and outline. Topics covered in this section include an introduction to the concept of "risk," an overview of the PRA process, and a discussion of the strengths and limitations of PRA. The first of the principal steps in PRA, Initiating Event Analysis, is also covered in this section. The slides corresponding to this material are located in Appendix D, pages D-2 through D-14; the video is 1 hour and 12 minutes long, with a suggested break near its midpoint.

5.2 Basics of Nuclear Power Plant PRA (Accident Sequence Analysis) Part 2 of 4

This section covers the Accident Sequence Analysis step of the PRA. It contains a discussion on event tree model development, including the purpose of event tree analysis, the currently accepted techniques and notation for event tree construction, and the ways in which event tree logic is used to quantify PRAs. The slides corresponding to this material are located in Appendix D, pages D-16 through D-28; the video is 1 hour and 53 minutes long, with a suggested break near its midpoint.

5.3 Basics of Nuclear Power Plant PRA (Systems Analysis) Part 3 of 4

This section covers the Systems Analysis step of the PRA. It contains a discussion of fault tree model development, including an introduction to fault tree analysis terminology, Boolean algebra, and the purposes and methods of fault tree analysis. The slides corresponding to this material are located in Appendix D, pages D-30 through D-44; the video is 1 hour and 57 minutes long, including the following additional sub-part, with a suggested break near its midpoint.

The additional sub-part, "Human Reliability Analysis," discusses HRA, including the purpose and objectives of HRA, modeling human actions, categories of human failure events in PRA, and certain HRA methods. The discussions in this sub-part are at a higher level, compared to the discussions provided in the separate HRA section (i.e., Section 4 of this document and its corresponding slides in Appendix C). The slides corresponding to this sub-part of "Part 3 of 4" are located in Appendix D, pages D-45 through D-58. Note that slides 102 (EPRI's Cause-Based Decision Tree Method, page D-56) and 104 (the NRC's ATHEANA HRA Method, page D-57) are not discussed in the video.

5.4 Basics of Nuclear Power Plant PRA (Data Analysis) Part 4 of 4

This section covers the Data Analysis and Accident Sequence Quantification steps of the PRA; it also includes a sub-part on the Level 2/Large Early Release Frequency (LERF) Analysis. The Data Analysis section is intended to help students understand the parameters typically modeled in PRA and how each parameter is quantified. This includes a discussion on how to quantify

the initiating event frequencies and component failure rates that are needed to feed into the system fault trees and sometimes the event trees. The Accident Sequence Quantification and importance analysis section introduces the concept of plant damage states. The LERF section provides a brief introduction to accident progression analysis. The slides corresponding to this material are located in Appendix D, pages D-60 through D-88; the video is 1 hour and 41 minutes long, with a suggested break near its midpoint.

In the discussion of slides 115 and 116 (page D-65), it is suggested that NUREG/CR-6823, "Handbook of Parameter Estimation for Probabilistic Risk Assessment," is a good source of data for use in PRAs. That document is publically available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6823/

APPENDIX A: MATERIALS SUPPORTING BASIC CONCEPTS OF CIRCUIT ANALYSIS VIDEOS

Sandia National Laboratories

EPRI/NRC-RES FIRE PRA METHODOLOGY

Circuit Analysis Basics Part 1 of 4

D. Funk - Edan Engineering Corp. F. Wyant - Sandia National Laboratories

Joint RES/EPRI Fire PRA Workshop September and October 2010 Washington, DC A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

CIRCUIT <i>Introductio</i>	ANALYSIS	BASICS	
• Who Shou	IId Attend?		
 – Nuclear operatin control c control c 	plant personnel ig knowledge, bi circuits, power d	with rudime ut very limite istribution sy	ntary electrical and plant d experience with electrical 'stems, and instrument
 Nuclear Appendiand and met 	plant personnel ix R, NFPA 805, thods	with no prev or Fire PRA	vious exposure to circuit analysis concepts
• Who's Her	e?		
 Name, (What do 	Drganization, Ex you want from	perience this "Basics"	course?
ire PRA Workshop, 2010, ire PRA Circuit Analysis	Washington DC Basics	Slide 2	A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPF

A-3

	CIRCUIT ANALY objectives	SIS BASICS	
	 This Course is Intel 	nded to:	
	 For less experienc electrical fundame failure analysis 	ed personnel, provide a 1-day introdu ntals from a perspective of fire-induc	uction to ed circuit
A-4	 Provide fundamen concepts and meth covered by the ma 	al information necessary to grasp the ods of fire PRA circuit analysis that a n Module 2 course	are
	 Present overviews control, and instrur 	of typical nuclear plant electrical pov nentation circuits	ver,
	 Introduce fire-indu- impact on circuit op 	ced cable failure modes and explain t peration	their
	 Describe the evolu fire protection 	tion of circuit analysis for nuclear pov	ver plant
	Fire PRA Workshop, 2010, Washington DC Fire PRA Circuit Analysis Basics	Slide 3 A Collaboration of U.S. NRC Office of Research (RES) & Electric Power Re	f Nuclear Regulatory search Institute (EPRI)

CIRCUIT ANALYSIS BASICS Topics

- Circuit Design Basics
- Plant Electric Distribution System Design
- Plant Electrical Equipment
- Fire-Induced Cable Failures
- Evolution of Fire Protection Circuit Analysis

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

CIRCUIT ANALYSIS BASICS **Circuit Design Basics**

- Typical Circuit Devices & Symbols
- Types of Drawings and How to Read Them
- General Conventions
- Grounded vs. Ungrounded Circuits
- ANSI/IEEE Standard Device Numbers

Typical Circuit Devices & Symbols **CIRCUIT ANALYSIS BASICS**

- Circuit Breakers & Fuses
- Motor Starters & Contactors
- Relays & Contacts
- Terminal Blocks
- Control Power Transformers
- Actuating Coils
- Indicating Lamps & Alarms
- Switches
- Control/Hand (maintained, momentary, spring-return to normal)
 - Limit & Torque
 - Sensors
- Transfer & Isolation
 - Position

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Typical Circuit Devices & Symbols, cont... **CIRCUIT ANALYSIS BASICS**

Refer to Symbol Library Handout

Fire PRA Workshop, 2010, Washington DC Fire PRA Circuit Analysis Basics

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)
TYPICAL ELECTRICAL DRAWING SYMBOLS AND CONVENTIONS

ELECTRICAL SYMBOLS

Pushbutton - Momentary or spring return. Single Circuit (make)	Pushbutton - Momentary or spring return. Single Circuit (break)	Pushbutton - Momentary or spring return. Two Circuil	Pushbutton - Maintained, two circuit	Pushbutton - Maintained, single circuit	Selector Two position, maintained Switch - (designate position shown; i.e. A=Auto; i(-iland)	Selector "Three position, SR indicates spring Switch - return from position so labeled. ("TRIP-(NCRUAL)-CLOSE" position shown)	Limit Switch - Normally oper - Not applicable for Motor Operated Valves and Solenoid Valves.	Limit Switch - Normally closed - Not applicable for Motor Operatod Valves and Schundd Valves.
	ala	ala o o		+	ч -0-0- -0-0- -0-0- -0-0- -0-0- -0-0- -0-00-	2 -0- 2 -0- 3 -0- 8 -0- 8 -0- 8 -0- 8 -0- 8 -0- 8 -0- 8 -0- 8 -0- 8 -0- 1 -0- 8 -0- 1 -0- 8 -0- 1 -0- -0- 1 -0- 1 -0- -0- -0- -0- -0- -0- -0- -0- -0- -0-	-20-	- Po
S, SWLTCHES, CONTACTORS AND RELAYS DESCREPTION	Relay contact - Shown with rulay in de-energized or in reset position. (Show relay coil designation near con- tact.)	Timing Relay Contact - TDC indicates contact closes at end of timing period. TDO contact opens at end of timing period.	Coil - Relay, contactors, cirruit breaker, solenoid etc. (Show device designation, XL)	Coil - Timing Relay - TDPU indicates Liming period start: when coil is energized. TDDO indicates timing period starts when coil is de-energized.	Latching Relay or Mechanically-Held Contactor O=operate; R=reset; "C:trip coil; CC=closing coil. (Coils may be separated on diagram)	Knife Switch, general. (if shown closed, terminals must be added.)	Switch - General, single pole, single throw.	Switch - One pole of multi-pole switch shown. Other poles shown elsewhere.
CONTACTS SYMBOL	+ x1 ≠ x1 + x0. N.C.	T TDC TDO		TDPU (TDPU)))

	Used with other symbols to indicate device is adjustable		
+ (Posilive) - (Nepative)	Polarity markinys - Direct current.) ste	3-phase, 3 wire zipzag, grounded neutral
3E 	İnstanlaneous Polarity Markinga	ı-	Connection to earth ground (may be plant grounding system)
\triangleleft	3-pliase, 3-wire, della		Connection to chassis or frame
N ¹¹	3-phase, 3-wire, open delta Arounded	0	Terminal - may be added to any of the following symbols at connection points.
\prec	3-phase, 3-wire, wye	r¶1	Short circuit (not a fault)
	3-phase, 3-wire, wyo prounded neutral		Terminal - Designates termination point of field run cables to main control board, emergency power board, main control board termination cabinet or emergency power board termination cabinet.
\prec	3-phase, 3-wirc, zigzag	•	

Flow Switch - Closes on increase in flow at value shown	Flow Switch ~ Opens on increase in flow at value shown.	Flow Switch - Closes on decrease in flow at value shown.	Flow Switch - Opens on decrease in flow at value shown.	Liquid Level - Opens on rising level Switch (Closes on low level)	Liquid Level - Closes on rising level Switch (Opens on low level)	Pressure or Vacuum - Closes on rising pressure Switch	Pressure or Vacuum - Opens on rising pressure Switch (Closes on increase in vacuum)	Temperature Switch - Closes on increasing temp.	Z Torque Switch - Opens on high torque
-0 -0 -0	40-	-00-	-00-	0-20-	-0	-00-			-80

Transductor - Control winding shown with 5 loops. Power winding shown with 3 loops.	Transformer - General, two winding	Autotransformer - General	Transformer - General, three winding	Current Transformer - number represents quantity (Add instantaneous polarity marks - and ratio)	Bushing Type Gurrent Transformer	Potential Transformer - number represents quantity (Show instantaneous polarity marks, voltage rating, vectors, etc.)
	nth	nhy	ulu ulu	3		J. T

Puse - General	lligh Voltage Primary Puse Cutout	Likhtning Arrester - General Gap Type	Lightning Arrester - Valve or film type	Circuit Breaker - General	Puwer Circuit Breaker - (Show location of operating mechanism)	Circuit Breaker, 3-pole with magnetic - overload device in each pole. (Show rating)	Circuit Breaker, 3-pole, drawout type (Used in metal clad switchgear groups)
		8	<u> </u> -) or > > > > > > > > > > > > > > > > > >	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

RELAYS

DIAGRAM CONNECTIONS

WIRE NUMBERING

WIRE NUMBERING SYSTEM

 The following standard interconnecting wire numbers shall be used wherever applicable (for computer - schedule programming).

		•	
1 1	<u>Purpose</u> A - Pháse Power	e <u>Number</u> 4	<u>Purpose</u> A - Phase Potential
N	B - Phase Power		(See Notes 3 & 5)
£	C - Phase Power	ŝ	A - Phase Current
(Note 1	.) Annunciator		(See Notes 3 & 5)
N	D. C. Negative (See Note 2)	6	B - Phase Potential
<u>D</u> ;	D. C. Positive (See Note 2)		(See Notes 3 & 5)
D	<pre>115 volt A. CGround Return (see Note 2)</pre>	2	B Phase Current
×	115 volt A. C. (See Note 2)		(see Notes 3 & 5)
U	Closing (See Note 2)	¢	C - Phase Potential
H	Tripping (See Note. 2).		(See Notes 3 & 5)
0	Opening, MOV Only (See Note 2) 🔊	σ	C - Phase Current
íu.	Instrumentation/(e.g. indicator recorder, etci)See Note 2)		(See Notes 3 & 5)
н	Computer (See Note 2)		
¥	General Control (Meither tripping nor closing; See Note 2)	0	Potential (or Current) Neutral (See Notes 4 £ 5)
٨	Amber Lamp (See Note 2)		
£	Blue Lamp (See Note 2)		
ц	Green Lamp (See Note 2)		
ы	Red Lamp (See Note 2)	Ś	
М	White Lamp (See Note 2)	2	

*Abbreviation for equipment - The corresponding equipment number will appear in a table on the elementary diagram (c.g. MCB = Q1II12C005)

1

		. 3-phase wye, grounded		3-phase delta			
Basic, Generalur or Molor	Field, Compensating, Generator or Motor	Field, Series, Generator or Motor	Field, Short or Separately Excited, Generator or Motor	Field, Permanent Magnet, Generator or Motor	l-phase	2-phase	3-phase, wye
\bigcirc	Ę	Ę		Md	\bigcirc	\otimes	\triangleleft

A	Ammeter
All	Ampere-hour
U	Coulombme ter
CMA	Contact-making (or breaking)
	ammeter
CMC	Contact-making (or breaking)
	clock
CMV	Contact-making (or breaking)
	voltmeter
CRO	Oscilloscope or cathoderay
	oscillograph
DB	DB (decibel) meter
	Audio level/meter
DBM	DBM (decibels referred to
	<pre>1 milliwatt (meter)</pre>
MD	Demand meter
DTR	Demand-totalizing relay
ſr.,	Frequency meter
9	Galvanometer
GD	Ground detector
ĩ	Indicating
INT.	Integrating
UA	Microanneter
MA	Milliammeter
MN	Noise meter
OHM	Ohmmeter
OP	Oil pressure
OSCG	Oscillograph, string
ΡF	Power factor
IId	Phasemeter

Watthour meter

Standard volume indicator Meter, audio level Wattmeter Varhour meter Volume indicator: Meter, Total time: Elapsed time Recording demand meter Position indicator Temperature meter Thermal converter Recording Reactive factor Synchroscope Volt-ammeter audio level Telemeter Voltmeter Varmeter PI RD RF FF FT FT VA VAR VAR VAR M H ß

ANSI/IEEE Standard Device Numbers

- 1 Master Element
- 2 Time Delay Starting or Closing Relay
- 3 Checking or Interlocking Relay
- 4 Master Contactor
- 5 Stopping Device
- 6 Starting Circuit Breaker
- 7 Rate of Change Relay
- 8 Control Power Disconnecting Device
- 9 Reversing Device
- 10 Unit Sequence Switch
- 11 Multifunction Device
- 12 Overspeed Device
- 13 Synchronous-speed Device
- 14 Underspeed Device
- 15 Speed or Frequency-Matching Device
- 20 Elect. operated valve (solenoid valve)
- 21 Distance Relay
- 23 Temperature Control Device
- 24 Volts per Hertz Relay
- 25 Synchronizing or Synchronism-Check Device
- 26 Apparatus Thermal Device
- 27 Undervoltage Relay
- 29 Isolating Contactor
- 30 Annunciator Relay
- 32 Directional Power Relay
- 36 Polarity or Polarizing Voltage Devices
- 37 Undercurrent or Underpower Relay
- 38 Bearing Protective Device
- 39 Mechanical Conduction Monitor
- 40 Loss of Field Relay
- 41 Field Circuit Breaker
- 42 Running Circuit Breaker
- 43 Manual Transfer or Selector Device
- 46 Reverse-phase or Phase-Balance Relay
- 47 Phase-Sequence Voltage Relay
- 48 Incomplete-Sequence Relay
- 49 Machine or Transformer Thermal Relay
- 50 Instantaneous Overcurrent
- 51 AC Time Overcurrent Relay
- 52 AC Circuit Breaker
- 53 Exciter or DC Generator Relay

- 54 High-Speed DC Circuit Breaker
- 55 Power Factor Relay
- 56 Field Application Relay
- 59 Overvoltage Relay
- 60 Voltage or Current Balance Relay
- 62 Time-Delay Stopping or Opening Relay
- 63 Pressure Switch
- 64 Ground Detector Relay
- 65 Governor
- 66 Notching or jogging device
- 67 AC Directional Overcurrent Relay
- 68 Blocking or "out of step" Relay
- 69 Permissive Control Device
- 71 Level Switch
- 72 DC Circuit Breaker
- 74 Alarm Relay
- 75 Position Changing Mechanism
- 76 DC Overcurrent Relay
- 78 Phase-Angle Measuring or Out-of-Step Relay
- 79 AC-Reclosing Relay
 - 81 Frequency Relay
 - 83 Automatic Selective Control or Transfer Relay
 - 84 Operating Mechanism
 - 85 Carrier or Pilot-Wire Receiver Relay
 - 86 Lockout Relay
 - 87 Differential Protective Relay
 - 89 Line Switch
 - 90 Regulating Device
 - 91 Voltage Directional Relay
 - 92 Voltage and Power Directional Relay
 - 94 Tripping or Trip-Free Relay
 - B Bus
 - F Field
 - G Ground or generator
 - N Neutral
 - T Transformer

Sandia National Laboratories

EPRI/NRC-RES FIRE PRA METHODOLOGY

Circuit Analysis Basics Part 2 of 4

D. Funk - Edan Engineering Corp. F. Wyant - Sandia National Laboratories

Joint RES/EPRI Fire PRA Workshop September and October 2010 Washington, DC

Fire PRA Workshop, 2010, Washington DC Fire PRA Circuit Analysis Basics

CIRCUIT ANALYSIS BASICS

CIRCUIT ANALYSIS BASICS General Conventions

- Polarity AC & DC Circuits
- 3-Phase vs. Single-Phase Power
- Delta vs. Wye Connected Circuits
- Normally Open vs. Normally Closed Contacts
- Conductor, Cable, & Raceway IDs
- Electrical vs. Physical Connectivity
- Others ?

Grounded vs. Ungrounded Circuits **CIRCUIT ANALYSIS BASICS**

- How can you tell?
- Why one or the other?
- Advantages & disadvantages
- Affect during normal circuit operation?
- Affect during abnormal circuit operation?
- Where will you likely see in practice?
- Types of grounding
- Solid
- High Impedance or Resistance
- Low Impedance or Resistance
- Where is ground point established?
- Why do we care so much about grounding?

ANSI/IEEE Standard Device Numbers CIRCUIT ANALYSIS BASICS

Standard Device Number Handout Refer to

Fire PRA Workshop, 2010, Washington DC Fire PRA Circuit Analysis Basics

Plant Electrical Distribution System Design **CIRCUIT ANALYSIS BASICS**

- Voltage Levels
- Off-site Power Components
- High-voltage Switchgear and Related Equipment
- Protective Relays
- Load Centers (LC) and Station Service Transformers (SST)
- Motor Control Centers (MCC)
- Battery & DC Distribution System
- Vital AC Distribution System
- Plant Process Instrumentation (NSSS Instruments)
- Reactor Protection and Accident Mitigation Systems

	cont
	Design,
LYSIS BASICS	Distribution System
CIRCUIT ANAI	Plant Electrical L

- Primary Distribution Breakdown
- Voltage Levels
- Off-site Power Components
- High-voltage Switchgear and Related Equipment
- Protective Relays
- Load Centers (LC) and Station Service Transformers (SST)
- Motor Control Centers (MCC)
- Battery & DC Distribution System Î
- Vital AC Distribution System

Plant Electrical Distribution System Design, cont... **CIRCUIT ANALYSIS BASICS**

CIRCUIT ANALYSIS BASICS Plant Electrical Equipment

- Cables and Panel Wiring
- Raceway Types
- Transformers Big to Small
- Air Operated Valves (AOV)
- Solenoid Valves (SOV)
- Motor Operated Valve (MOV)
- High & Medium Voltage Switchgear
- Protective Relays

Research (RES) & Electric Power Research Institute (EPRI) A Collaboration of U.S. NRC Office of Nuclear Regulatory

Plant Electrical Equipment, cont.. **CIRCUIT ANALYSIS BASICS**

- Circuit Breakers Big to Small
- AC Motors Big to Small
- DC Motors
- Instrumentation Circuits
- Electrical Control Panels
- Electrical Power Panels
- Batteries & Chargers
- Inverters

CIRCUIT ANALYSIS Cables & Raceways	BASICS	
 Cables and Panel Wiring Single-conductor cable Multi-conductor cable Triplex cable Triplex cable Size conventions and ampacity Shielded, unshielded, & armored Materials – Conductor, insulation, & jacket 	 Raceway Types Conduit Tray - ladder and so Wireways Wireways Pull boxes Junction boxes Junction boxes Duct-banks Embedded conduit Air drops Fire wraps 	Ē
Fire PRA Workshop, 2010, Washington DC Fire PRA Circuit Analysis Basics	Slide 18 A Collaboration of U.S. NRC Office of Nucl Research (RES) & Electric Power Researc	ear Regulatory h Institute (EPR

-

CIRCUIT ANALYSIS BASICS Transformers

Power Transformers

- Main transformers
- Unit auxiliary transformers (UAT)
- Startup or reserve auxiliary transformer (SUT, RAT) ľ
- Station service transformer (SST)
- Control Power Transformers (CPT)
- Instrument Transformers
- Potential transformer (PT)
- Current transformer (CT)
- Zero sequence current transformer
- Specialty Transformers

CIRCUIT ANALYSIS BASICS Valves

- Air Operated Valves (AOV)
- Pilot solenoid operated
- Bi-modal function
- Modulate function
- Solenoid Valves (SOV)
- AC & DC operated
- Motor Operated Valve (MOV)
- Typical design
- Inverted design

CIRCUIT ANALYSIS BASICS Switchgear & Relays

- High Voltage Switchgear
- Switchyard equipment
- Typically individual components
- Medium Voltage Switchgear
- 12.47 kV, 7.2 kV, 6.9 kV, & 4.16 kV
- Typically metal-clad, indoor, draw-out design
- Separate control power circuit and protective devices Ĩ
- Protective Relays
- Overcurrent relays (50, 51, 50N, 51N, 50G)
- Differential relays (87, 87T, 87B)
- Undervoltage relays (27)
- Frequency relays (81)
- Reverse power relays (32, 67)
- Lockout relays (86)

CIRCUIT ANALYSIS BASICS Circuit Breakers

- Medium Voltage Power Circuit Breakers
- Often called Power Circuit Breakers (PCB) or Vacuum Circuit Breakers (VCB) 1
 - 1,000 V 15 kV
- Separate 125 VDC control power
- Separate close and trip coils
- Fails "as-is" on loss of control power
- No overcurrent protection w/o control power
- Separate trip devices protective relays
- Low Voltage Power Circuit Breakers (LVPCB)
- Below 1,000 V
- Same basic features as medium voltage power breakers I
- Internal or external trip devices
- Molded Case Circuit Breakers
- Internal trip devices thermal and/or magnetic
- Generally manually operated

Fire PRA Workshop, 2010, Washington DC Fire PRA Circuit Analysis Basics

CIRCUIT ANALYSIS BASICS Motors

- AC, DC, 1-phase, 3-phase
- Synchronous vs. induction design
- Large motors controlled by circuit breaker
- Smaller motors often controlled by a "motor starter"
- Continuous duty (pump) vs. intermittent duty (MOV)
- MOVs and DC motors are most often reversing design
- High temp is usually an alarm or time-delay trip
- Locked rotor current must be considered
- We don't know anything else about motors

Process Instruments & Reactor Protection **CIRCUIT ANALYSIS BASICS**

- Process Instrumentation
- Temperature
- Level
- Flow
- Pressure
- Reactor Trip
- Trip signals
- Actuation circuitry
- Engineered Safety Features Actuation System
 - Input signals
- Actuation logic
- Solid-state protection system (SSPS)

CIRCUIT ANALYSIS BASICS Instruments

- 4-20 mA output signal design is common
- Twisted shielded pair (TSP), coaxial cables
- Key elements of instrument loop
 - Loop power supply
 - Transmitter/sensor
- Bi-stables for control and actuation signals
- Indicators
- Provide
- Indication
 - Alarm
- RPS & ESFAS input
 - Control signals
- Comprised of multiple modules/cards
- Highly integrated signals isolation is challenging
- Distinctly different from a circuit analysis perspective

CIRCUIT ANALYSIS BASICS Miscellaneous Equipment

- Control Panels
- Power Panels
- Batteries
- Battery Chargers
- Inverters
- Other ??

CIRCUIT ANALYSIS BASICS Fire-Induced Cable Failures

- Short circuits
- Short to earth ground
- Short to reference ground
 - Conductor-to-conductor
- Open Circuits
- Hot Shorts
- Intra-cable hot shorts
- Inter-cable hot shorts
- 3-Phase proper polarity hot shorts
- Ungrounded DC proper polarity hot shorts
 - Multiple hot shorts

Fire-Induced Cable Failures, cont.. **CIRCUIT ANALYSIS BASICS**

[Video clip & some photos from DC Tests]

Circuit Analysis Basics

1. Draw the symbols used to indicate polarity in a dc circuit with a brief description?

2. Circuit grounding is useful to establish a common voltage potential.

- a) False
- b) True

3. Define the following:

a) AOV-

b) MOV -

c) SOV-

from Science to Solutions- International Corporation

Science Applications

EPRI/NRC-RES FIRE PRA METHODOLOGY

Circuit Analysis Basics Part 3 of 4

D. Funk - Edan Engineering Corp.
F. Wyant - Sandia National Laboratories

Note that only this video's title screen and self assessment page are provided here, because no slildes were used during its presentation Joint RES/EPRI Fire PRA Workshop September and October 2010 Washington, DC
Self- Assessment

Circuit Analysis Basics

Best answered by listening to Electrical Videos Part 3 of 4

1. What is a MCC?

- a) Major Current Circuit
- b) Motor Control Circuit
- *c)* Major Control Center
- d) Motor Control Center
- 2. Fill in the missing information, according to the speaker in the video:

As related to power plants and motor control centers (MCCs) for analysis purposes the main items addressed are ______.

Sandia National Laboratories

EPRI/NRC-RES FIRE PRA METHODOLOGY

Circuit Analysis Basics Part 4 of 4

D. Funk - Edan Engineering Corp. F. Wyant - Sandia National Laboratories

Joint RES/EPRI Fire PRA Workshop September and October 2010 Washington, DC A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Fire-Induced Cable Failures, cont... **CIRCUIT ANALYSIS BASICS**

[Video clip & some photos from DC Tests]

Fire PRA Workshop, 2010, Washington DC Fire PRA Circuit Analysis Basics

A-54

A-58

B		\cup		П	L LJ		Ŀ		L	J		Т		\neg	ONS
					HIMNIHC ILA 0 D.G. STATTING AIR COOLER/DRYER AUTO. DRAIN VALVE OSR42V794-A	NOTES:	I. ALL BREAKERS IN THESE 208V. DISTRIBUTION PANELS ARE ITE TYPE EQ-B OR BQ.			REFERENCES: A-177538 ELECT.GEN.DETAILS & NOTES NUTES UNTRIA DIAG USEVA	& 42 CIR. LTG. PNL.		Basics 12	120/208 VAC Panel Diagram	11 12 12 13 OPERATIO
DIESEL BUILDING DIESEL BUILDING DIRTB507-A MCC CELL HN-N2 HRU 1-6 DLN-1, IA, IA, IA, IA, IA, IA, IA, IA, IA, IA	73329) U 20A 20A 2U 13329) U 20A 2U 20A 2U 20A 20A 2U 20A 2U 20A 2U	SPACE - 5C, 5U	I R21-3 IV I	VAC- IIIU ZOA ZOA ZOA IZU CONTIAGE732B-N JUNCTION BOX VAC- IIU ZOA IZU (2)J02 ISR4365334 JUNCTION BOX R. ROOM X IBAHMNI3A I34 IP IP IP IVAC R. ROOM X R2I Igu 20A IUU IDX IDX I.13 Igu 20A IUU IDX IDX IDX R. ROOM X R2I Igu IP IP ID ID ID	IN STATE OF THE OFFICE	IAG D-173136 2P 2P 2DAHMN20A SPACE HEATERS FOR CONN DIAG. 20A 0A 0A 20A,20B 11600,2666.24 D-202935 20A MK-CJE 20A,20B 11600,2666.24 D-202935 2P 2P CDA.44 P1664 D-202935	STALE ZIA ZIA ZIA ZIA ZIA ZIA E HEATER IDAHHN23A 3P 3P 3P 2P 2CO CIC IN 273A, 29A 3A 3A 3A 2A CIC IN 273A, 29A 3A 3A 3A CIC IN 273A, 29A 3A 3A ACC IN 273A, 29A 3A 3A 3A	$SPACE = \frac{3P}{25A_125E} = -\frac{3P}{25A_125E} = -\frac{3P}{2} = -\frac{3P}{2} = -\frac{3P}{26A_12EB_12EC} = -\frac{3P}{26A_12EB_12EC} = -\frac{3P}{2} = -\frac{3P}{$	Z7B11 IDNH5006A Z7B Z7B O O O Z7C12 c2)ua2 c2)ua2 in in in UCT B0X in in in in UST 60019-W in in in in		TO GROUND BUS UCT BOX 1Y516012-N WCC CELL FN-G6				
EPTACLES	-173329)	CONNDIAG.D-1729 ELEM DIAG.D-1729 ELEM DIAG.D-1721 SCHENE DIESEL LOCA RELAY PANEL	L <u>GSH22L504-1</u> <u>PLV</u> IDAHMN09C <u>N</u> 9B.9U.G (3)JA2		SIL IDAHMNISA 15 IC R21 2526	UTER IDXHMN19A 194.198 3149 (22)J03			10NH50068	- Z7B	SWITCH SWITCH 5001-N			1 Marcia Marcia Instead Instead Instead	Max NO

Т

4		÷		F		_
	R LIMIT SWITCH DEVELOPMENT LIMITORQUE OPER. 0 1 SWITCH NLVE POSITION 1 3340 1 CLOSE VALVE POSITION 1 3380 1 CLOSE VALVE POSITION 2 3380 2 3380 3 POLVE 3380 6 6 00FEN 3380 6 6 00FEN 3380 1 3380 1 00FEN 3380 1 3380 1 00FEN	4 33B0 11 33B0 11 33BC 14 33BC 16 33BC 15 33BC 16 17 CLOSING TORDUE SWITCH 17 CLOSING TORDUE SWITCH 18 INTERRUPTS CONTROL CIRCUIT 18 DEFINICAL OVERLOAD 0CCURS DURING CLOSING 18 OPENNIC TORQUE SWITCH 18 OPENNIC TORQUE SWITCH 18 OPENNIC TORQUE SWITCH 18 OPENNIC 18 OPENNIC 18 OPENNIC 18 OPENNIC 18 OPENNIC 18 OPENNIC 18 OPENNIC	NOTES: LIMIT SWITCH DEVELOPMENT- LIMITOROUE OPER. 1. INTERMEDIATE POSITIONS ARE EXPRESSED IN PERCENTAGE OF FULL OPEN. EX. 33A05 CONTACT ACTUATES WHEN THE VALVE EX. 33A05 CONTACT ACTUATES WHEN THE VALVE EX. 3205 CONTACT ACTUATES WHEN THE VALVE S. OPEN IS ± 2.5%. 3. LIMITOROUE VALVES STROKED OPEN TO A POSITION OF 290% ARE CONSIDERED FULLY OPEN WITH THE EXCEPTION OF XVG2802A & B-MS, WHICH MUST BE STATEMENT IS MUCLEAR ENGINEERING LETTER COSS-20371, DATED 11/9/87.	DRAWING LEGIBILITY	Basics 13 Valve Limit Switch Legend	208002_××_8001
	ABBREVIATIONS ABBREVIATIONS AL AL BLU BLU BLU BLU BLU BLU BLU BLU BLU BL	DEVICE IDENTIFICATION (COMPUTER DRAWINGS) DEVICE 52 NUMBER 52	LIMIT SWITCH DEVELOPMENT FOR AIR OPERATED VALVES and DAMPERS AND A			
	MOTES. MOTES. NOW IN THE "OPEN POSITION A IN THE "OPEN POSITION IF WITCHES FICS HOWN IN THE "OFF-SHELF" POSITION, IF WIRE MARK IS THE WIRE MARK SHOWN PLUS THE SYSTEM SHEET A IN THE "CLOSED" POSITION EXCEPT AS NOTED). AN IN THE "CLOSED" POSITION EXCEPT AS NOTED. AN IN THE "CLOSED" POSITION AND THIS SERIES DRAWINGS ARE FOR TWO LAMPS IN SERIES TION SETPOINT DATABASE/LIST SHALL BE CHECKED TO MONLY THE SETPOINT DATABASE/LIST SHALL BE CHECKED TO AN IN THE SETPOINT DATABASE/LIST SHALL BE AS NOTED. AN IN	MIT SMITCH DEVELOPMENT - ROTORK OPERATOR TAGT OPEN INTERMEDIATE CLOSED -25 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27	FICE COMPUTER GENERATED DRAWINGS) INDICATING LIGHT INDICATING LIGHT INDICATING LIGHT INDICATING LIGHT REAKER BREAKER BREAKER BREAKER BREAKEN BREAK IN CIRCUIT SHOWING	EQUIPMENT TERMINAL LITAMINAL NUMBER ABOVE INDICATES NO CONNECTION INDICATES CONNECTION		1/4°=1·4°" - 5 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

A-62

2	10%. Montritin intalatis Pocciets Condoca Recourses a province, and the Fueld Recourses a fuel mont, and 10 he montements	A STATE AND A STAT	14,140,000,041,000,000,000,000,000,000,0							*
z	10 LOOP DESEN PRESSUR PRESSUR COMPLEXIC	Concept of the set of	5-224-287-5 1684 9-4611	 ی ا	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	<u>م</u>	0	-	z

A-67	CIRCUIT ANALYSIS <i>Evolution of Fire Protec</i> Appendix R – the later years Appendix R – the later years Appendix R – redux Early Generation Fire PRA Early Generation Fire PRA Early Generation Fire PRA Cable Fire Tests Cable Fire Tests Operator Manual Actions Cable Fire Tests Cable Fire Tests Cable Fire Tests Cable Fire PRA EBRI 1011989 - NUREG/CR-6 Multiple Spurious Operations (Multiple Spurious (BASICS tion Circl tion Circl MSO) MSO) MSO) trary alterna trary alterna	uit Analysis Generation Fire PRA Generation Fire PRA ive to fire protection tive to fire protection SS
	Fire PRA Circuit Analysis Basics	Slide 30	Research (RES) & Electric Power Research Institute (EPRI)

APPENDIX B: MATERIALS SUPPORTING BASIC CONCEPTS OF FIRE ANALYSIS VIDEOS

Self- Assessment								
Fire PRA Methodology								
1. A fire requires the pre	sence of :		,					
and	to burn?							
2. What is the <u>main</u> adve fire?	rse effect of concern in a nuclear	[.] power plant rega	ording the effects of					
a) Oxygen levels	b) Combustion products	c) Heat	d) Smoke					
3. Heat Flux is the amounda) Trueb) False	nt of heat transferred expressed i	n units of (kW).						

Self-Assessment

Fire PRA Methodology

Best answered by listening to Fire Video Part 1 of 6, last 5 slides only

1. The Heat Release Rate (HRR) of a fire has a time dependent behavior which typically has three phases:

a)

b)

c)

2. An oxygen limited fire is considered?

- *a)* A fire in the open
- **b)** A compartment fire
- *c)* A fuel limited fire
- d) A fire plume

3. Calculation of the Zone of Influence (ZOI) is dependent upon the fire, target and orientation.

- a) True
- b) False

Self-Assessment

Fire PRA Methodology

- With a spark or small flame present, ignition is based on whether the gaseous fuel concentration is between the ______ and _____ flammability limits.
- 2. Entrainment is air drawn into the fire plume by upward movement of the buoyant plume?
 - **a)** True
 - b) False

3. Match the type of ignition to corresponding characteristics.

- a) Ignition of gases
- b) Ignition of liquids
- c) Ignition of solids

_ Must first evaporate sufficiently to form a flammable mixture in the presence of a pilot.

_____ 250°C (480°F) to 450°C (840°F) is the typical piloted ignition temperature range.

_ The fuel-air mixture is said to be flammable if a flame will propagate in this mixture.

	Self-Assessment	
Fire PRA Methodology		
1.	is used to calculate the temperature inside a cable.	
2	Hot Gas Laver (HGL) changes as a function of	
Ζ.	a) Time	
	b) Area	
	c) Distance	
	d) Height	
3.	Name the phases in a compartment fire:	
	a)	
	b)	
	c)	
	u) e)	
	c, f)	
	·	

Self-Assessment

Fire PRA Methodology

- 1. Name typical fire detection methods credited in Fire PRA:
 - a)
 - b)
 - c)
 - d)
 - e)
- 2. Explain how smoke detectors differ from heat detectors.

- 3. Name typical fire suppression methods credited in Fire PRA:
 - a)
 - b)
 - c)
 - d)
 - e)
 - f)

Fire PRA Workshop, 2010, Washington DC Introduction to Fire Analysis

Fire PRA Workshop, 2010, Washington DC Introduction to Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 15

verifica	atior	n and	l va	lidat	lon	
Parameter				Fire Model		
		FDT ^S	FIVE-Rev1	CFAST	MAGIC	FDS
Hot gas layer temperature ("upper layer	Room of Origin	YELLOW+	YELLOW+	GREEN	GREEN	GREEN
temperature")	Adjacent Room	N/A	N/A	YELLOW	YELLOW+	GREEN
Hot gas layer height ("layer interface height")		N/A	N/A	GREEN	GREEN	GREEN
Ceiling jet temperature ("target/gas temperature")		N/A	YELLOW+	YELLOW+	GREEN	GREEN
Plume temperature		YELLOW-	YELLOW+	N/A	GREEN	YELLOW
Flame height		GREEN	GREEN	GREEN	GREEN	YELLOW
Oxygen concentration		N/A	N/A	GREEN	YELLOW	GREEN
Smoke concentration		N/A	N/A	YELLOW	YELLOW	YELLOW
Room pressure		N/A	N/A	GREEN	GREEN	GREEN
Target temperature		N/A	N/A	YELLOW	YELLOW	YELLOW
Radiant heat flux		YELLOW	YELLOW	YELLOW	YELLOW	YELLOW
Total heat flux		N/A	N/A	YELLOW	YELLOW	YELLOW
Wall temperature		N/A	N/A	YELLOW	YELLOW	YELLOW
Total heat flux to walls		N/A	N/A	YELLOW	YELLOW	YELLOW

Self-Assessment

Fire PRA Methodology

- 1. What are the steps of PRA fire modeling:
 - a)
 - b)
 - c)
 - d)
 - e)
- 2. Define fire modeling?

- 3. Name the different types of fire models discussed in the materials:
 - a)
 - b)
 - c)
 - d)

Fire Scenario Time Line

- 1. Starts with a specific ignition source
- 2. Fire growth involving the affected fuel,
- 3. Heat transfer from the fire to other items within the zone of influence,
- 4. Damage of the affected items (e.g., cables and equipment items),
- 5. Propagation of the fire to other materials,
- Detection of the fire (Note: this step could occur right after #2, or even #1 if there is very early warning smoke detection present)
- 7. Automatic initiation of suppression systems of the area,
- 8. Fire brigade response,
- 9. Successful fire extinguishment.

Fire PRA Workshop, 2010, Washington DC Introduction to Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 3

		Se	lf- Assessment
		l	Fire PRA Methodology
1. In	the	video, Part 6 o _	f 6, the speaker states, "Timeline is key to analyzing risk assessment".
	a) b)	True False	
2. In			, at any level of detail, a fire scenario represents a collection of more
de	taile	d scenarios.	
	a)	screening	
	b)	practice	
	c)	, processing	
	d)	principle	
3. In	your	[,] own words, e	xplain Core Damage Frequency (CDF) in scenario quantification.

APPENDIX C: MATERIALS SUPPORTING BASIC CONCEPTS OF FIRE HUMAN RELIABILITY ASSESSMENT (HRA) TRAINING VIDEOS

SRL2	Overv	iew of PRA Proce	SS
	 PRAs are and provid Three lev 	e performed to find severe a de quantitative results to su els of PRA have evolved:	iccident weaknesses ipport decision-making.
	Level	An Assessment of:	Result
	1	Plant accident initiators and systems'/operators' response	Core damage frequency & contributors
	2	Reactor core melt, and frequency and modes of containment failure	Categorization & frequencies of containment releases
	3	Public health consequences	Estimation of public & economic risks
	Fire PRA Workshop, Princi	2010, Washington DC Slide 7	A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Example E	SWR Mitigating Systems
Function	Systems
Reactivity Control	Reactor Protection System, Standby Liquid Control, Alternate Rod Insertion
RCS Overpressure Protection	Safety/Relief Valves
Coolant Injection	High Pressure Coolant Injection, High Pressure Core Spray, Reactor Core Isolation Cooling, Low Pressure Core Spray, Low Pressure Coolant Injection (RHR)
	Alternate Systems- Control Rod Drive Hydraulic System, Condensate, Service Water, Firewater
Decay Heat Removal	Power Conversion System, Residual Heat Removal (RHR) modes (Shutdown Cooling, Containment Spray, Suppression Pool Cooling)
Fire PRA Workshop, 2010, Washi Principles of HRA	ngton DC Slide 17 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Example P\	xample PWR Mitigating Systems	
Function	Systems	
Reactivity Control	Reactor Protection System (RPS)	
RCS Overpressure Protection	Safety valves, pressurizer Power-Operated Relief Valves (PORVs)	
Coolant Injection	Accumulators, High Pressure Safety Injection (HPSI), Chemical Volume and Control System (CVCS), Low Pressure Safety Injection (LPSI), High Pressure Recirculation (may require LPSI)	
Decay Heat Removal	Power Conversion System (PCS), Auxiliary Feedwater (AFW), Residual Heat Removal (RHR), Feed and Bleed (PORV + HPSI)	
e PRA Workshop, 2010, Washingt	on DC Slide 18 A Collaboration of U.S. NRC Office of Nuclear Regulat Research (RES) & Electric Power Research Institute (

Example S	Success C	riteria	
IE	Reactor Trip	Short Term Core Cooling	Long Term Core Cooling
Transient	Auto Rx Trip or Man. Rx Trip	PCS or 1 of 3 AFW or 1 of 2 PORVs & 1 of 2 ECI	PCS or 1 of 3 AFW or 1 of 2 PORVs & 1 of 2 ECR
Medium or Large LOCA	Auto Rx Trip or Man. Rx Trip	1 of 2 ECI	1 of 2 ECR
Fire PRA Workshop, 2010, Wash Principles of HRA	ngton DC Slide	20 A Collaboration of Research (RES) &	U.S. NRC Office of Nuclear Reg Electric Power Research Institu

Fault Tre	e Symbol	ls
Symbol		Description
	"OR" Gate	Logic gate providing a representation of the Boolean union of input events. The output will occur if at least one of the inputs occur.
	"AND" Gate	Logic gate providing a representation of the Boolean intersection of input events. The output will occur if all of the inputs occur.
	Basic Event	A basic component fault which requires no further development. Consistent with level of resolution in databases of component faults.
Fire PRA Workshop, 2010, Wash Principles of HRA	nington DC Slid	e 30 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Human Reliability Analysis (HRA) Basics
1. What is HRA?
2. List the three main products of an HRA:
•
•
3. True or False
In terms of PRA Classification, a seismic event is an example of an Internal Hazard.

Human Reliability Analysis (HRA) Basics

1. Pre-initiator human failure events are sometimes referred to as ______ because they are not revealed until there is a demand for the affected system.

 A PRA in which generic data and models are used and the scope and level of detail are sufficient to identify relative importance of <u>contributors</u> down to <u>system</u> or <u>train</u> level would meet ______, according to the ASME/ANS PRA standard.

- 3. A human failure event resulting from a well intended but inappropriate, overt action that, when taken leads to a change in the plant and results in a degraded plant state is called a(n)
 - a) Error of Commission

- **b)** Pre initiator
- c) Error of Omission
- d) Human error

Self- Assessment
Human Reliability Analysis (HRA) Basics
 In terms of keys to performing HRA, an important key to building an understanding of the problem is
 2. List two examples of published HRA processes: • •
3. Explain the "blame culture" or "human-as-a-hazard" view

Course Outline
 What is HRA? Where does HRA fit into PRA? What does HRA model? Is there a standard for performing HRA? What guidance is there for performing HRA? What are the keys to performing HRA? How can we understand human error? What are the important features of existing HRA methods? What are the HRA concerns or issues for fire PRA? Any final questions?
Fire PRA Workshop, 2010, Washington DC Principles of HRA Slide 92 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Self-Assessment Human Reliability Analysis (HRA) Basics				
b)				
 It is important for an HRA analyst to do his/her best to "understand the problem" by understanding the, operator actions and potential failures or errors. 				
3. True or False Human error cannot be predicted.				

Self-Assessment

Human Reliability Analysis (HRA) Basics

Match the HRA methods with the descriptions below:

1.	ATHEANA	 a. most extensively documented and the most widely used HRA technique, models execution errors using task analysis
2.	CBDT	b. An approach for identifying and defining HFEs, quantification method that makes use of expert elicitation and focuses on error-forcing context
3.	THERP	 method developed by the NRC as a simple method to evaluate the contribution made by operators to events. Commonly used in significance determination process (SDP) evaluations
4.	SPAR-H	 consists of a series of decision trees to address potential causes of errors, produces HEPs based on those decisions

APPENDIX D: MATERIALS SUPPORTING BASICS OF NUCLEAR POWER PLANT PROBABILISTIC RISK ASSESSMENT (PRA) TRAINING VIDEOS

Example Initiating Events (PWR) from NUREG/CR-5750

Category	Initiating Event	Mean Frequency (per critical year)
В	Loss of offsite power	4.6E-2
L	Loss of condenser	0.12
Р	Loss of feedwater	8.5E-2
Q	General transient (PCs available)	1.2
F	Steam generator tube rupture	7.0E-3
	ATWS	8.4E-6
G7	Large LOCA	5E-6
G6	Medium LOCA	4E-5
G3	Small LOCA	5E-4
Fire PRA Workshop, 2010 PRA/HRA Overview	Washington DC Slide 25 A Coll Research	laboration of U.S. NRC Office of Nuclear Regulatory arch (RES) & Electric Power Research Institute (EPRI)

Example Initiating Events (PWR) from NUREG/CR-5750 (cont.)

Category	Initiating Event	Mean Frequency (per critical year)
G2	Stuck-open relief valve	5.0E-3
K1	High energy line break outside containment	1.0E-2
C1+C2	Loss of vital medium or low voltage ac bus	2.3E-2
C3	Loss of vital dc bus	2.1E-3
D	Loss of instrument or control air	9.6E-3
E1	Loss of service water	9.7E-4
Fire PRA Workshop, 2010, PRA/HRA Overview	Washington DC Slide 26 A Collaboratio Research (RE	n of U.S. NRC Office of Nuclear Regulatory S) & Electric Power Research Institute (EPRI)

Probabilistic Risk Assessment (PRA) Basics

1. Why are Probabilistic Risk Assessments performed?

- 2. List three reasons why there are limitations of PRA:
 - •
 - •
 - •

3. An initiating event is

- a) A high level representation of a vital safety function.
- **b)** Any potential occurrence that could disrupt plant operations to a degree that a reactor trip or plant shutdown is required.
- c) A graphical model depicting the various fault paths that will result in the occurrence of an undesired event.
- d) all of the above

Prerequisite Basic Concepts Review for NRC-RES/EPRI Fire PRA Workshops

Accident Sequence Analysis

- Purpose: Students will learn purposes & techniques of accident sequence (event) analysis. Students will be exposed to the concept of accident sequences and learn how event tree analysis is related to the identification and quantification of dominant accident sequences.
- Objectives:
 - Understand purposes of event tree analysis
 - Understand currently accepted techniques and notation for event tree construction
 - Understand purposes and techniques of accident sequence identification
 - Understand how to simplify event trees
 - Understand how event tree logic is used to quantify PRAs

Slide 29

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

• References: NUREG/CR-2300, NUREG/CR-2728

Fire PRA Workshop, 2010, Washington DC PRA/HRA Overview

Event Trees Typically used to model the response to an initiating event · Features: - Generally, one system-level event tree for each initiating event group is developed Identifies systems/functions required for mitigation - Identifies operator actions required for mitigation - Identifies event sequence progression - End-to-end traceability of accident sequences leading to bad outcome Primary use - Identification of accident sequences which result in some outcome of interest (usually core damage and/or containment failure) - Basis for accident sequence quantification A Collaboration of U.S. NRC Office of Nuclear Regulatory Fire PRA Workshop, 2010, Washington DC PRA/HRA Overview Slide 30 Research (RES) & Electric Power Research Institute (EPRI)

BWR Mitigating Systems				
Function	Systems			
Reactivity Control	Reactor Protection System, Standby Liquid Control, Alternate Rod Insertion			
RCS Overpressure Protection	Safety/Relief Valves			
Coolant Injection	High Pressure Coolant Injection, High Pressure Core Spray, Reactor Core Isolation Cooling, Low Pressure Core Spray, Low Pressure Coolant Injection (RHR)			
Decay Heat	Condensate, Service Water, Firewater			
Removal	Power Conversion System, Residual Heat Removal (RHR) modes (Shutdown Cooling, Containment Spray, Suppression Pool Cooling)			
ire PRA Workshop, 2010, Washingt RA/HRA Overview	on DC Slide 39 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPR			

Function	Systems		
Reactivity Control	Reactor Protection System		
RCS Overpressure Protection	Safety valves, Pressurizer power-operated relief valves (PORV)		
Coolant Injection	Accumulators, High Pressure Safety Injection, Chemical Volume and Control System, Low Pressure Safety Injection (LPSI), High Pressure Recirculation (may require LPSI)		
Decay Heat Removal	Power Conversion System (main feedwater), Auxiliary Feedwater, Residual Heat Removal (RHR), Feed and Bleed (PORV + HPSI)		

Example Success Criteria				
IE	Reactor Trip	Short Term Core Cooling	Long Term Core Cooling	
Transient	Auto Rx Trip or Man. Rx Trip	PCS or 1 of 3 AFW or 1 of 2 PORVs & 1 of 2 ECI	PCS or 1 of 3 AFW or 1 of 2 PORVs & 1 of 2 ECR	
Medium or Large LOCA	Auto Rx Trip or Man. Rx Trip	1 of 2 ECI	1 of 2 ECR	
e PRA Workshop, 2010, Washing A /HRA Overview	on DC Slide	41 A Collaboration of Research (RES) 8	U.S. NRC Office of Nuclear Re Electric Power Research Instit	

Self- Assessment				
Probabilistic Risk Assessment (PRA) Basics				
1. What is the primary use of an event tree?				
2. Event trees are typically used to model the response to an				
3. What are the principal steps in event tree development?				
a) þ)				
c)				
d)				
e)				
f)				

Fault Tree Symbols				
Symbol	Description			
	"OR" Gate	Logic gate providing a representation of the Boolean union of input events. The output will occur if at least one of the inputs occur.		
	"AND" Gate	Logic gate providing a representation of the Boolean intersection of input events. The output will occur if all of the inputs occur.		
	Basic Event	A basic component fault which requires no further development. Consistent with level of resolution in databases of component faults.		
Fire PRA Workshop, 2010, Washingt PRA/HRA Overview	fon DC Slid	e 58 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)		

Self- Assessment	
------------------	--

Probabilistic Risk Assessment (PRA) Basics

- 1. An analytical technique, whereby an **undesired state** of the system is specified (usually a state that is critical from a safety standpoint), and the system is then analyzed **in the context of its environment and operation** to find all **credible** ways in which the undesired event can occur.
 - a) Event sequence
 - **b)** Response analysis
 - c) Accident sequence
 - d) Fault tree analysis

2. Fault trees use ______ to develop the fault logic in the tree.

3. Write the name and give a description of the symbol below:

<u>Name:</u>	Description:

Dominant Accident Sequences (Examples)										
Surry (NUREG-1150)		Grand Gulf (NUREG-1150)								
Seq D 1 S 2 S 3 S 5 S 6 M 7 In 8 Li 11 A 12 Li 13 M 14 Li 114 Li 115 Li 116 A 117 VI 118 S 120 S	Description Station Blackout (SBO) - Batt Depl. SBO - RCP Seal LOCA SBO - RCP Seal LOCA SBO - Stuck Open PORV Medium LOCA - Recirc Failure tterfacing LOCA SGTR - No Depress - SG Integ'ty Fails GGTR - No Depress - SG Integ'ty Fails os of MRVWAFW - Feed & Bleed Fail Medium LOCA - Injection Failure TWS - Unfa vorable Mod. Temp Coeff. arge LOCA - Recirculation Failure Medium LOCA - Injection Failure Medium LOCA - Injection Failure TWS - Emergency Boration Failure TWS - Santergency Boration Failure (ery Small LOCA - Injection Failure SBO - Battery Depletion BSO - Stuck Open PORV	% CDF 26.0 13.1 11.6 82 54 42 40 355 24 2.1 2.0 1.8 1.7 1.6 1.6 1.6 1.5 1.1 1.1 1.1 0.8	Cum 26.0 39.1 50.7 58.9 64.3 68.5 72.5 76.0 78.4 80.5 82.5 84.3 86.0 87.6 89.2 90.8 92.3 93.4 94.5 95.3	Seq 1 2 3	Description Station Blackout (SBO) With HPCS And RCIC Failure SBO With One SORV, HPCS And RCIC Failure ATWS - RPS Mechanical Failure With MSIVs Closed, Operator Fails To Initiate SLC, HPCS Fails And Operator Fails To Depressurize	% CDF 89.0 4.0 3.0	Cum 89.0 93.0 96.0			

Self- Assessmen	It
-----------------	----

Probabilistic Risk Assessment (PRA) Basics

1. Define the following:

- Cut set –
- Minimal cut set –

2. Bayesian techniques combine an initial estimate (called a ______) with plantspecific data (likelihood function) to produce a final estimate (called a ______).

3. What is the difference between aleatory and epistemic uncertainty?

APPENDIX E: ANSWERS TO SELF ASSESSMENT

Answers to Self-Assessment

Fire PRA Methodology

Fire Videos (Part 1 of 6):

- 1. Fuel, oxygen, and energy
- 2. с
- 3. b, correct unit is kW/m^2

Fire Videos (Part 1 of 6, last 5 slides):

- 1. Growth, steady burn, decay
- 2. b
- 3. а

Fire Videos (Part 2 of 6):

- 1. upper and lower
- 2. a
- 3. b, c, a

Fire Videos (Part 3 of 6):

- 1. Conduction
- 2. a
- 3. a) ignition b) growth c) HGL build-up d) flashover e) fully developed fire f) decay

Fire Videos (Part 4 of 6):

- 1. a) promptb) smokec) heatd) incipiente) delayed
- 2. Smoke detectors measure the particulates that enter the chamber of the device; whereas, heat detectors measure temperature increases.
- 3. a) promptb) automatic sprinklersc) dry-Pipe/pre-action sprinklersd) deluge systemse) CO2 auto & manualf) halong)fire brigade

Fire Videos (Part 5 of 6):

- 1. a) define modeling objectivesb) select and describe fire scenariosc) select the appropriatemodel(s)d) run/apply the modele) interpret modeling results
- 2. Fire modeling is an approach for predicting various aspects of fire generated conditions
- **3.** a) hand calculations b) zone models c) field models d) special models

Fire Videos (Part 6 of 6):

- 1. a
- 2. d
- 3. Can be explained based on the information presented on Slide #12 and Slide #13

Answers to Self- Assessment

Human Reliability Analysis (HRA) Basics

HRA Videos (Part 1 of 5):

- 1. Human Reliability Analysis (HRA) is a structured approach used to identify potential human failure events and to systematically estimate the probability of those errors using data, models, or expert judgment.
- 2.
- Human Failure Events (HFE)
- Qualitative evaluation or analysis of factors influencing human errors and successes
- Human Error Probabilities (HEP) for each HFE
- 3. False, a seismic event is an External Hazard

HRA Videos (Part 2 of 5):

- 1. latent errors
- 2. Capability Category I
- 3. а

HRA Videos (Part 3 of 5):

- 1. context
- 2.
- EPRI's SHARP1 A Revised Systematic Human Action Reliability Procedure, EPRI TR-101711
- NRC's Good Practices for Implementing Human Reliability Analysis (HRA), NUREG-1792
- 3. The "blame culture" or "human-as-a-hazard" view is a commonly held belief by some that: If we could just eliminate the human, we'd never have any problems.

HRA Videos (Part 4 of 5):

1.

- a) Classifications, categories, types, etc...
 - Errors of omission and commission
- **b)** Behavior models
 - Information processing models, such as: detection, situation assessment, etc...
- 2. context
- 3. False, because human error is not random.

HRA Videos (Part 5 of 5):

- 1. B
- 2. D
- 3. A
- 4. C

Answers to Self- Assessment

Probabilistic Risk Assessment (PRA) Basics

PRA Videos (Part 1 of 4):

- 1. PRAs are performed to find severe accident weaknesses and provide quantitative results to support decision-making.
- 2. Several limitations, refer to Slide #14
- 3. b

PRA Videos (Part 2 of 4):

- 1. Identification of accident sequences which result in some outcome of interest (usually core damage and/or containment failure); and basis for accident sequence quantification
- 2. <u>initiating event</u>
- 3.
- a. Determine boundaries of analysis
- b. Define critical plant safety functions available to mitigate each initiating event
- c. Determine systems available to perform each critical plant safety function
- d. Determine success criteria for each system for performing each critical plant safety function
- e. Generate system-level event tree
- f. Generate functional event tree (optional)

PRA Videos (Part 3 of 4):

- 1. d
- 2. <u>gates</u>
- 3. Name: Basic Event

Description: a basic component fault which requires no further development. Consistent with level of resolution in databases of component faults.

PRA Videos (Part 4 of 4):

- 1.
- a. A cut set is a combination of events that cause the sequence to occur
- b. A minimal cut set is the smallest combination of events that causes two sequences to occur
- 2. <u>prior</u>, <u>posterior</u>
- 3. Refer to Slide #140

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION (12-2010) NRCMD 3.7	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.)		
BIBLIOGRAPHIC DATA SHEET			
(See instructions on the reverse)	NUREG/CP-0301, Vol. 1		
2. TITLE AND SUBTITLE	3. DATE REPORT PUBLISHED		
Volume 1 - Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES)-2010 Prerequisite Basic Concepts Review for NRC-RES/EPRI Fire PRA Workshops	MONTH	YEAR	
	August	2013	
	4. FIN OR GRANT N	FIN OR GRANT NUMBER	
5. AUTHOR(S)	6. TYPE OF REPORT		
Compiled and edited by K. Hill, T. Pennywell, F. Gonzalez, D. Stroup, and H. Woods(NRC)	Conference Proceedings		
	7. PERIOD COVERED (Inclusive Dates)		
 B. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U. S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address.) U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Washington, DC 20555-0001 Electric Power Research Institute (EPRI), 3420 Hillview Avenue, Palo Alto, CA 94303 			
 SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above", if contractor, provide NRC Division, Commission, and mailing address.) U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Washington, Electric Power Research Institute (EPRI), 3420 Hillview Avenue, Palo Alto, CA 94303 	Office or Region, U. 3	S. Nuclear Regulatory	
10. SUPPLEMENTARY NOTES NRC-RES/EPRI Fire PRA Workshops conducted September 27 and October 25, 2010, in Bethesda, MD			
11. ABSTRACT (200 words or less) The U.S. Nuclear Regulatory Commission (NRC) approved the risk-informed and performance-based alternative regulation 10 CFR 50.48(c) in July, 2004, which allows licensees the option of using fire protection requirements contained in the National Fire Protection Association (NFPA) Standard 805, "Performance Based Standard for Fire Protection for Light-Water Reactor Electric Generating Plants, 2001 Edition," with certain exceptions. To support licensees' use of that option, the NRC and the Electric Power Research Institute (EPRI) jointly issued NUREG/CR-6850 (EPRI 1011989) "Fire PRA Methodology for Nuclear Power Facilities," in September 2005. That report documents the state-of-the-art methods, tools, and data for conducting a fire Probabilistic Risk Assessment (PRA) in a commercial nuclear power plant (NPP) application. Since the release of NUREG/CR-6850 in 2005, the NRC-RES and EPRI have conducted a number of joint public workshops to provide training in the use of the methodologies and tools contained in the document. The workshops have attracted both domestic and international attendees. The material in this NUREG/CP was recorded during the first day of each of two week-long workshops conducted in 2010, during which certain fundamental, basic principles were discussed that are prerequisite for the remaining days of the workshops. It was adapted by the NRC-RES Fire Research Branch (FRB) members for use by persons before they attend future workshops to be used to cover more advanced material. This report can also serve as a refresher for those who attended one or more previous training sessions.			
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)	13. AVAILAB		
nuclear power plant, probabilistic risk assessment (PRA), fire modeling, circuit analysis	14. SECURIT		
	(This Page)		
	U (This Day	nclassified	
	(This Report U	nclassified	
	15. NUMBE	R OF PAGES	
	16. PRICE		

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS

NUREG/CP-0301, Vol. 1 EPRI 3002000267

<u>M</u>ethods for <u>A</u>pplying <u>R</u>isk <u>A</u>nalysis to <u>Fire</u> <u>S</u>cenarios (MARIAFIRES) - 2010

August 2013