

Fire Dynamics Tools (FDT^s) Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program

Supplement 1

Appendices

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.gov/reading-rm.html.</u> Publicly released records include, to name a few, NUREG-series publications; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and Title 10, "Energy," in the *Code of Federal Regulations* may also be purchased from one of these two sources.

- 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250
- 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: U.S. Nuclear Regulatory Commission Office of Administration Publications Branch Washington, DC 20555-0001

E-mail: DISTRIBUTION.RESOURCE@NRC.GOV Facsimile: 301–415–2289

Some publications in the NUREG series that are posted at NRC's Web site address

http://www.nrc.gov/reading-rm/doc-collections/nuregs are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractorprepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG–XXXX) or agency contractors (NUREG/CR– XXXX), (2) proceedings of conferences (NUREG/CP– XXXX), (3) reports resulting from international agreements (NUREG/IA–XXXX), (4) brochures (NUREG/BR–XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG– 0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

Protecting People and the Environment

Fire Dynamics Tools (FDT^s) Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program

Supplement 1

Appendices

Manuscript Completed: June 2013 Date Published: July 2013

Prepared by: D. Stroup*, G. Taylor*, G. Hausman**

*Office of Nuclear Regulatory Research **Region III

M. H. Salley, NRC Project Manager

Office of Nuclear Regulatory Research

ABSTRACT

The U.S. Nuclear Regulatory Commission (NRC) has developed quantitative methods, known as "<u>Fire Dynamics Tools</u>" (FDT^s), for analyzing the impact of fire and fire protection systems in nuclear power plants (NPPs). These methods have been implemented in spreadsheets and taught at the NRC's quarterly regional inspector workshops. The FDT^s were developed using state-of-the-art fire dynamics equations and correlations that were preprogrammed and locked into Microsoft Excel[®] spreadsheets. These FDT^s enable inspectors to perform quick, easy, first-order calculations for potential fire scenarios using today's state-of-the-art principles of fire dynamics. Each FDT^s spreadsheet also contains a list of the physical and thermal properties of the materials commonly encountered in NPPs.

This NUREG-series report documents a new spreadsheet that has been added to the FDT^s suite and describes updates, corrections, and improvements to the existing spreadsheets. The majority of the original FDT^s were developed using principles and information from the Society of Fire Protection Engineers (SFPE) *Handbook of Fire Protection Engineering*, the National Fire Protection Association (NFPA) *Fire Protection Handbook*, and other fire science literature. The new spreadsheet predicts the behavior of power cables, instrument cables, and control cables during a fire. The thermally-induced electrical failure (THIEF) model was developed by the National Institute of Standards and Technology (NIST) as part of the <u>Ca</u>ble <u>Response to L</u>ive <u>Fire</u> (CAROLFIRE) program sponsored by the NRC. The experiments for CAROLFIRE were conducted at Sandia National Laboratories, Albuquerque, New Mexico. THIEF model predictions have been compared to experimental measurements of instrumented cables in a variety of configurations, and the results indicate that the model is an appropriate analysis tool for NPP applications. The accuracy and simplicity of the THIEF model have been shown to be comparable to that of the activation algorithms for various fire protection devices (e.g., sprinklers, heat and smoke detectors).

CONTENTS

CHAPTER 1.	INTRO	DUCTION	۱	1-1
	1.1	Purpose		1-1
	1.2	Organiza	tion of this Report	1-1
CHAPTER 19.		MATING THE THERMALLY-INDUCED ELECTRICAL FAILURE EF) OF CABLES19-1		
	19.1	Objective	S	19-1
	19.2	Introducti	on	19-1
	19.3	Thermally	y-Induced Electrical Failure (THIEF) of Cables .	19-4
		19.3.1	General	19-4
		19.3.2	Cable Properties and Selection Process	19-6
		19.3.3	Exposure Gas Temperature	19-8
	19.4	Assumpti	ons and Limitations	19-10
	19.5	Required	Input for Spreadsheet Calculations	19-10
	19.6	Cautions		19-11
	19.7	Summary	/	19-11
	19.8	Decision	Criteria	19-11
	19.9	Referenc	es	19-11
	19.10	Additiona	I Readings	19-12
	19.11	Problems	5	19-14
		Example	Problem 19.11-1 (SI Units)	19-14
		Example	Problem 19.11-2	19-19
		Example	Problem 19.11-3	19-34
		Example	Problem 19.11-4	19-48
		Example	Problem 19.11-5 (SI Units)	19-78
		Example	Problem 19.11-6 (SI Units)	19-108
			SHEETS – EXAMPLE PROBLEMS (ENGLISH SHEETS – EXAMPLE PROBLEMS (SI UNITS)	

FIGURES

Figure 19-1.	Different signal responses from a thermoset cable (top) and a thermoplastic cable (bottom) when exposed to a fire
Figure 19-2.	Drawing showing the four possible locations for a cable tray relative to the fire
	Schematic (left) and photograph (right) of the "penlight" test apparatus19-14 Results comparing data (short dash line) for XLPE/CSPE, 7 conductor cable exposed to a shroud temperature (long dash line) of 475 °C and THIEF
	prediction (solid line)

TABLES

Table 1-1.	List of Fire Dynamics Tools	.1-1
	Summary of Technical Changes to Original NUREG-1805 Spreadsheets	
Table 19-1.	Common Thermoplastic and Thermoset Cable Insulation and Jacket	
	Materials1	9-8

EXECUTIVE SUMMARY

The U.S. Nuclear Regulatory Commission (NRC) has developed quantitative methods, known as "Fire Dynamics Tools" (FDT^s), for analyzing the impact of fire and fire protection systems in nuclear power plants (NPPs). These methods have been implemented in spreadsheets and taught at the NRC's quarterly regional inspector workshops. The goal of the training is to assist inspectors in calculating the quantitative aspects of a postulated fire and its effects on safe NPP operation. The FDT^s were developed using state-of-the-art fire dynamics equations and correlations that were preprogrammed and locked into Microsoft Excel[®] spreadsheets. These FDT^s enable inspectors to perform quick, easy, first-order calculations for potential fire scenarios using today's state-of-the-art principles of fire dynamics. Each FDT^s spreadsheet also contains a list of the physical and thermal properties of the materials commonly encountered in NPPs.

The FDT^s are intended to assist fire protection inspectors in performing risk-informed evaluations of credible fires that may cause critical damage to essential safe-shutdown equipment, as required by the reactor oversight process (ROP) defined in the NRC's inspection manual. In the ROP, the NRC is moving toward a more risk-informed, objective, predictable, understandable, and focused regulatory process. Key features of the program are a risk-informed regulatory framework, risk-informed inspections, a significance determination process (SDP) to evaluate inspection findings, performance indicators, a streamlined assessment process, and more clearly defined actions that the NRC will take for plants based on their performance.

This NUREG-series report documents a new spreadsheet that has been added to the FDT^s suite and describes updates, corrections and improvements for the existing spreadsheets. The majority of the original FDT^s were developed from the Society of Fire Protection Engineers (SFPE) *Handbook of Fire Protection Engineering*, the National Fire Protection Association (NFPA) *Fire Protection Handbook*, and other fire science literature. The new spreadsheet predicts the behavior of power cables, instrument cables, and control cables during a fire. The thermally-induced electrical failure (THIEF) model was developed by the National Institute of Standards and Technology (NIST) as part of the <u>Cable Response to Live Fire</u> (CAROLFIRE) program sponsored by the NRC.

The primary objective of CAROLFIRE was to characterize the various modes of electrical failure (e.g. hot shorts, shorts to ground) within bundles of power, control and instrument cables. A secondary objective of the project was to develop a simple model to predict <u>th</u>ermally-induced <u>electrical failure</u> (THIEF) when a given interior region of the cable reaches an empirically determined threshold temperature. The experiments for CAROLFIRE were conducted at Sandia National Laboratories.

The THIEF model for cables has been shown to work effectively in realistic fire environments. The THIEF model is essentially a numerical solution of the one dimensional heat conduction equation within a homogenous cylinder with fixed, temperature independent properties. THIEF model predictions have been compared to experimental measurements of instrumented cables in a variety of configurations, and the results indicate that the model is an appropriate analysis tool for NPP applications. The model is of comparable accuracy and simplicity to the activation algorithms for various fire protection devices (e.g., sprinklers, heat and smoke detectors).

ACKNOWLEDGMENTS

Since the publication of NUREG-1805, *Fire Dynamics Tools (FDT^s) Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program*, numerous comments and suggestions for additions, improvements, and a few corrections have been received from users throughout the world. This supplement addresses many of the issues identified by users and adds a new spreadsheet to the suite of FDT^s. The authors thank the internal and external stakeholders who have taken the time to provide comments and suggestions on the original report. We hope this supplement will receive similar attention and appreciate any feedback from users of the material in this supplement.

The authors gratefully acknowledge the support and assistance provided by Naeem Iqbal and Mark Henry Salley of the U.S. Nuclear Regulatory Commission (NRC). They published the original NUREG-1805 in December 2004. The general concepts used in creating and developing the FDT^s spreadsheets were similar to those taught by Dr. Frederick Mowrer whose fire modeling course they had attended during their postgraduate studies at the University of Maryland.

We acknowledge and appreciate the contributions of Mollie Semmes, a fire protection engineering student at the University of Maryland. Mollie's hard work and diligence during her summer internships at NRC ensured that this report was published in a timely fashion and with completely revised and tested spreadsheets. The authors also thank Nicolas Melly, David Gennardo, and Kendra Hill in the Fire Research Branch of the NRC Office of Nuclear Regulatory Research for their comments and testing of the spreadsheets.

The new spreadsheet added to the FDT^s implements a methodology for estimating the thermally-induced electrical failure of cables. This THIEF model was derived from an algorithm developed by Dr. Kevin McGrattan at the National Institute of Standards and Technology based on data obtained from cable tests conducted at Sandia National Laboratories by Mr. Steven Nowlen.

Finally, the authors would like to thank H.W. 'Roy' Woods who provided invaluable support in publishing this report. In addition, we greatly appreciate the efforts of Guy Beltz, NRC printing specialist, and Tojuana Fortune-Grasty, NRC NUREG technical editor, whose expertise were critical to ensuring the quality of the published manuscript.

ABBREVIATIONS

ABS	Acrylonitrile Butadiene Styrene
ACRS	Advisory Committee on Reactor Safeguards (NRC)
ADAMS	Agencywide Documents Access and Management System (NRC)
ADS	Automatic Depressurization System
AFFF	Aqueous Film Forming Foam
AFT	Adiabatic Flame Temperature
AFW	Auxiliary Feedwater
AGA	American Gas Association
AHJ	Authority Having Jurisdiction
AISI	American Iron and Steel Institute
	Administrative Letter
AL	
ALC	Approximate Lethal Concentration
ANS	American Nuclear Society
ANSI	American National Standards Institute
API	American Petroleum Institute
ASCE	American Society of Civil Engineers
ASCOS	Analysis of Smoke Control Systems
ASET	Available Safe Egress Time
ASHRAE	American Society of Heating, Refrigeration, and Air Conditioning Engineers
ASME	American Society of Mechanical Engineers
ASMET	Atria Smoke Management Engineering Tools
ASTM	American Society for Testing and Materials
AT	Auxiliary Transformer
ATF&E	Alcohol, Tobacco, Firearms, and Explosives
AWG	American Wire Gauge
BFC	Bromochlorodifluoro-methane
BFNP	Browns Ferry Nuclear Power Plant
BFRL	•
	Building and Fire Research Laboratory
BL	Bulletin
BLEVE	Boiling Liquid, Expanding Vapor Explosion
BOCA	Building Officials & Code Administration International
BREAK1	Berkeley Algorithm for Breaking Window Glass in a Compartment Fire
BS	British Standard
BTP	Branch Technical Position
BTU	British Thermal Unit
BWR	Boiling-Water Reactor
CAROLFIRE	Cable Response to Live Fire
CCW	Component Cooling Water
CFAST	Consolidate Model of Fire Growth and Smoke Transport
CFD	Computational Fluid Dynamics
CFI	Certified Fire Inspector
CFO	Chief Financial Officer (NRC)
CFR	Code of Federal Regulations
CHF	Critical Heat Flux
CIB	Conseil Internationale du Batiment
CIBSI	Chartered Institution of Building Services Engineers
CIO	Chief Information Officer (NRC)
CL.S.PE	Chlorosulfonated Polyethylene
0L.0.1 L	

CO CO2 CP CPCV CPE CPSC CR CSNI CSP CSR CTEF DDT DETACT-QS DETACT-T2 DID DOE DOT DSSA ECCS EDG EDO ELVAC EMI/RFI EPA EPR EPRI EQ	Carbon Monoxide Carbon Dioxide Construction Permit Chlorinated Polyvinylchloride Chlorinated Polyethylene Consumer Product Safety Commission Circular or Neoprene or Chloroprene Rubber Committee on the Safety of Nuclear Installations Chlorosulfonated Polyethylene Rubber (Kel-F®) Cable Spreading Room Chlorotrifluoroethylene Deflagration to Detonation Transition Detector Actuation Quasi-Steady Detector Actuation Time Square Defense-in-Depth U.S. Department of Energy U.S. Department of Transportation Division of Systems Safety and Analysis (NRC) Emergency Core Cooling System Emergency Diesel Generator Executive Director for Operations (NRC) Elevator Evacuation Electromagnetic or Radio-Frequency Interface Environmental Protection Agency Ethylene-Propylene Rubber Electrical Power Research Institute Equipment Qualification
ESFR ETFE	Early Suppression Fast Response Ethylenetetrafluoroethylene (Tefzel®)
EVA FDI	Ethylvinyl Acetate FAA Federal Aviation Administration Fire Detection Institute
FDM FDS	Fire Demand Model Fire Dynamics Simulator
FDTs	Fire Dynamics Tools
FEM	Finite Element Method
FEMA	Federal Emergency Management Agency
FEP	Fluorinated Polyethylene Propylene (Teflon®)
FFFP	Film-Forming Fluoroprotein Foam
FHA	Fire Hazard Analysis
FIGARO II	Fire and Gas Spread in Room (model)
FIPEC FIRES-T3	Fire Performance of Electrical Cables Fire Response of Structures-Thermal Three (model)
FIVE	Fire Induced Vulnerability Evaluation
FMRC	Factory Mutual Research Corporation
FPA	Foote, Pagni, and Alvares
FPE	Fire Protection Engineer(ing)
FPETOOL	Fire Protection Engineering Tool
FPP	Fire Protection Program
FPS	Fire Protection System
FR	Fire-Retardant
FRP	Fiberglass Reinforced Polyester (Plastic)

NBS	National Bureau of Standards
NEA	Nuclear Energy Agency
NEI	Nuclear Energy Institute
NEMA	National Electrical Manufacturers Association
NFC	National Fire Code
NFPA	National Fire Protection Association
NIOSH	National Institute of Occupational Safety and Health
NIST	National Institute of Standards and Technology
NO2	Nitrogen Dioxide
NOUN	Notification of Unusual Event
NPP	Nuclear Power Plant
NRC	U.S. Nuclear Regulatory Commission
NRR	Office of Nuclear Reactor Regulation (NRC)
NUREG	NUclear REGulatory Guide
OCIO	Office of Chief Information Officer (NRC)
OL	Operating License
ORNL	Oak Ridge National Laboratory
OSHA	Occupational Safety and Health Administration
OSU	Ohio State University
PASS	Personal Alert Safety System
PC	Polycarbonate
PDA	Primary Disconnect Assembly
PE	Polyethylene
PEF	Polyethylene Fluoride
PES	Polyethersulphone
PFA	Perfluoroalkoxy Branched Polymers
PMMA	Polymethylmethacrylate
PP	Polypropylene
PPE	Polytetrafluoroethylene
PRA	Probabilistic Risk Assessment
PS	Polystyrene
PTEF	Polytetrafluoroethylene (Teflon®)
PU	Polyurethane
PVC	Polyvinylchloride
PVF	Polyvinylfluoride
RCP	Reactor Coolant Pump
RES	Office of Nuclear Regulatory Research (NRC)
RG	Regulatory Guide
RHR	Residual Heat Removal
RIS	Regulatory Issue Summary
RMV	Respiratory Minute Volume
ROP	Reactor Oversight Process
RTECS	Registry of the Toxic Effects of Chemical Substance
RTI	Response Time Index
RWFD	Red Wing Fire Department Steam Generator
S/G	
SBC	Standard Building Code
SBCCI	Southern Building Code Congress International
SBDG	Standby Diesel Generator
SBR	Styrene Butadiene Rubber
SCBA	Self-Contained Breathing Apparatus

SDP SER SFPE SI SNL SOLAS SONGS SPLB SRP SSC TASEF TCL TDL TFE THIEF TLC TLV TNT TP TRP TS TSC TTC TVA TVAN UBC UEL UFC UFL UL UPS USFA UVCE V&V VRLA W/D XLPE	Significance Determination Process Significant Event Report Society of Fire Protection Engineers System International Sandia National Laboratories Safety of Lives at Sea San Onofre Nuclear Generating Station Plant Systems Branch (NRC) Standard Review Plan (NUREG-0800) Structure, System, and/or Component Temperature Analysis of Structure Exposed to Fire Toxic Concentration Low Toxic Dose Low Tetrafluoroethylene (Teflon®) Thermally-Induced Electrical Failure Toxic Concentration Low Toxic Concentration Low Threshold Limit Value Trinitrotoluene Thermoplastic Thermal Response Parameter Thermoset Technical Support Center Time-Temperature Curve Tennessee Valley Authority Nuclear Program Uniform Building Code Upper Explosive Limit Uniform Fire Code Upper Flammability Limit Underwriters Laboratories Uninterruptible Power Supply United States Fire Administration Unconfined Vapor Cloud Explosion Verification and Validation Valve-Regulated Lead Acid Weight-to-Heated Perimeter Ratio Crosslinked Polyethylene
XLPO	Crosslinked Polyolefin

NOMENCLATURE

A _c	Compartment floor area
A _e	Surface of element
A _f	Horizontal burning area of fuel
A _H	Ampere hours
As	Cross sectional area
A _T	Area of compartment enclosing surfaces (excluding vent areas)
Av	Area of ventilation openings
B	Flame spread parameter
С	Gas concentration by volume
С	Thermal capacity
Ci	Specific heat of insulation
C _n	Specific heat
C C _i C _p C _s C _v	Specific heat of steel
C _v	Specific heat at constant volume
C _{HF}	Critical heat flux for ignition
D	Diameter
D	Heated parameter
D _{SC}	Scaled distance
E	Emissive power
Ē	Explosive energy released
F	Configuration or shape factor
F	Fire resistance time
F _{TP}	Flux time product
F _c	Float Current per 100 AH
g	Acceleration of gravity
G	Gas discharge rate
H	Thickness of insulation
h	Heat flux time product index
h _c	Compartment height
h _{eff}	Effective heat transfer coefficient
h _{ig}	Heat transfer coefficient at ignition
h _k	Convective heat transfer coefficient
h _v	Height of ventilation opening
H	Thermal capacity of steel section at ambient
H	Height
H _g	Hydrogen gas generation
h _f	Flame height
$h_{f(wall)}$	Wall flame height
h _{f(wall,line)}	Line fire flame height
	Corner fire flame height
h _{f(corner)} k	Thermal conductivity
k k	Thermal conductivity of insulation
	Thermal inertia
kρc K	
K	Mixing efficiency factor
_	Proportionality constant
L _c	Compartment length
	Length
LFL	Lower flammability limit

m	mass
m _f	Mass of fuel vapor
m _f	Mass of fuel burned
	Mass concentration of particulate
m _p	•
m	Mass flow rate
m _e	Mass entrainment rate
m _f	Mass flow rate of fuel
mo	Mass flow rate out of enclosure
m _p	Plume mass flow rate
m"	
	Mass loss rate per unit area
M _p	Mass of particulates produced
Ν	Number of cells (batteries)
Ν	Number of theoretical air changes
Р	Pressure
q"	Heat flux
q" _{crit}	Critical heat flux
	External heat flux
q"e	
q" _{min}	Minimum heat flux required for ignition
q"r	Radiative heat flux
Q	Volume of air
Q _{total}	Total energy release
Q	Heat release rate or energy release rate
Q_{c}	Convective energy release rate
Q _{FO}	Energy release rate to cause flashover
Q _{fs}	Full-scale energy release rate
	Bench-scale energy release rate
R	Radius
R	Radial distance
R	Fire Resistance
RTI	Response time index
S	Visibility
Т	Time
Tb	Burning duration
t _D	Detection time
t _{ig}	Ignition time
tig	Thermal penetration time
t _p t	Detector response time
t _r	•
t _t	Smoke transit time
tactivation	Sprinkler activation time
Т	Temperature
Ta	Ambient temperature
T _f	Fire temperature
T _{FO(max)}	Post-flashover compartment temperature
T _g	Gas temperature
Ts	Steel temperature
	Ceiling jet temperature
T _{jet} T	
T _{p(centerline)}	Plume centerline temperature
T _{activation}	Activation temperature
U _{jet}	Ceiling jet velocity
U _w	Wind velocity
Uo	Gas velocity

u*	Nondimensional wind velocity
V	Volume
V _{def}	Volume of gas for deflagration
Ŵ	Fuel exposed width
W _c	Compartment width
W	Weight of steel column per linear foot
W _{TNT}	Weight of TNT
Y _p	Particulate yield
Z	Height of smoke layer interface above floor
Z _o	Hypothetical virtual origin of fire source
Z _p	Fireball flame height Heat of Combustion
∆H _c ∆Hc _{.eff}	Effective heat of combustion
∆r ic, _{eff} ∆t	Time step
ΔT_q	Gas temperature above ambient
ΔT_{iq}	Ignition temperature above ambient
α	Heat transfer coefficient for steel I
α	Yield (fraction of available energy participating in blast wave generation)
$\alpha_{\sf m}$	Specific extinction coefficient
χr	Fraction of total energy radiated
δ	Thickness
3	Flame emissivity
Ω	Ventilation factor
θ	Flame title or angle of deflection
ρ	Density
$ ho_{a}$	Density of Ambient Air
$ ho_c$	Density of combustion products
$ ho_c$	Density of concrete
ρ _F	Density of fuel vapor
ρ _g	Density of gas
ρ	Density of insulation
σ	Stefan-Boltzmann constant
τ _o	Detector time constant
ν	Regression rate

Subscripts

a bs c c c c	Ambient Bench-scale Compartment Combustion Concrete Current
D	Detection
def	Deflagration
е	Convective
е	External
eff	Effective
е	Entrainment

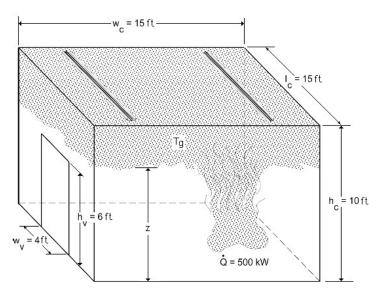
f f f f(corner) f(wall) f(wall,line) FO fs g H I ig jet m min o p p p p r r SC s T Total t	Fire Flame Fuel Corner flame Wall flame Line fire flame Flashover Full-scale Gas Hours Insulation Ignition Ceiling jet Extinction Minimum Out Specific Particulate Plume Penetration Radiative Response Scale Steel Total Total Transient
•	
t	Transient
TNT	Trinitrotoluene
V	Vent
V	Volume
W	Wind

Superscripts

(`)	Per unit time
()″	Per unit area
(`)"	Per unit area, per unit time
*	Nondimensional

APPENDIX A

REVISED SPREADSHEETS – EXAMPLE PROBLEMS (ENGLISH UNITS)


2.16 Problems

2.16.1 Natural Ventilation

Example Problem 2.16.1-1

Problem Statement

Consider a compartment that is 15 ft wide x 15 ft long x 10 ft high ($w_c x l_c x h_c$), with a simple vent that is 4 ft wide x 6 ft tall ($w_v x h_v$). The fire is constant with an HRR of 500 kW. Compute the hot gas layer temperature in the compartment and smoke layer height at 2 minutes assuming that the compartment interior boundary material is (a) 1 ft thick concrete and (b) 1.0 inch thick gypsum board. Assume that the top of the vent is 6 ft.

Example Problem 2-1: Compartment with Natural Ventilation

Solution

Purpose:

For two different interior boundary materials determine following:

- (1) The hot gas layer temperature in the compartment (T_{α}) at t = 2 min after ignition
- (2) The smoke layer height (z) at t = 2 min after ignition

Assumptions:

- (1) Air properties (ambient) at 77 °F
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant heat release rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

- (a) For concrete: 02.1_Temperature_NV_Sup1.xls
- (b) For gypsum board: 02.1_Temperature_NV_Sup1.xls

FDT Input Parameters: (for both spreadsheets)

- Compartment Width (w_c) = 15 ft
- Compartment Length (I_c) = 15 ft
- Compartment Height $(h_c) = 10$ ft
- Vent Width $(w_v) = 4$ ft
- Vent Height $(h_v) = 6$ ft
- Top of Vent from Floor $(V_T) = 6$ ft
- Interior Lining Thickness (δ) = 12 in (concrete) and 1 in. (gypsum board)
- Ambient Air Temperature (T_a) = 77 °F
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Concrete and Gypsum Board on the respective FDT^s
- Fire Heat Release Rate (\dot{Q}) = 500 kW
- Time after ignition (t) = 2 min

Results*

Interior Boundary Material	Hot Gas Layer Temperature (T _g) (Method of MQH) (°F)	Smoke Layer Height (z) (Method of Yamana and Tanaka) (ft)
Concrete	296	6.00 (smoke exiting vent, z < V⊤)
Gypsum Board	425	6.00 (compartment filled with smoke

*see spreadsheet on next page at t = 2 min

Version 1805.1 (English Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 2.16.1-1a

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c)	15.00 ft
Compartment Length (l _c)	15.00 ft
Compartment Height (h _c)	10.00 ft
Vent Width (w_v)	4.00 ft
Vent Height (h_v)	6.00 ^{ft}
Top of Vent from Floor (V_T)	6.00 ft
Interior Lining Thickness (δ)	12.00 in

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)

Specific Heat of Air (c_a) Ambient Air Density ($\rho_a)$

77.00	°F
1.00	kJ/kg-K
1.18	kg/m ³

Note: Ambient Air Density (ρ_a) will automatically correct with Ambient Air Temperature (T_a) Input

THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR

 $\label{eq:linear} \begin{array}{l} \mbox{Interior Lining Thermal Inertia} (k\rho c) \\ \mbox{Interior Lining Thermal Conductivity} (k) \\ \mbox{Interior Lining Specific Heat} (c_p) \\ \mbox{Interior Lining Density} (\rho) \end{array}$

2.9	(kW/m ² -K) ² -sec
0.0016	kW/m-K
0.75	kJ/kg-K
2400	kg/m ³

Version 1805.1 (English Units)

THERMAL PROPERTIES FOR COMMON INTERIOR LINING MATERIALS					
	kρc	k	с	ρ	Select Material
Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m³)	Concrete
Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material
Steel (0.5% Carbon)	197	0.054	0.465	7850	Click the selection
Concrete	2.9	0.0016	0.75	2400	
Brick	1.7	0.0008	0.8	2600	
Glass, Plate	1.6	0.00076	0.8	2710	
Brick/Concrete Block	1.2	0.00073	0.84	1900	
Gypsum Board	0.18	0.00017	1.1	960	
Plywood	0.16	0.00012	2.5	540	
Fiber Insulation Board	0.16	0.00053	1.25	240	
Chipboard	0.15	0.00015	1.25	800	
Aerated Concrete	0.12	0.00026	0.96	500	
Plasterboard	0.12	0.00016	0.84	950	
Calcium Silicate Board	0.098	0.00013	1.12	700	
Alumina Silicate Block	0.036	0.00014	1	260	
Glass Fiber Insulation	0.0018	0.000037	0.8	60	
Expanded Polystyrene	0.001	0.000034	1.5	20	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	
Reference: Klote, J., J.	Milke, Principles o	of Smoke Managemer	nt, 2002, Page 270.]

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

500.00 kW

Calculate

Version 1805.1 (English Units)

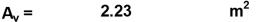
METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-175.

$\Delta T_g = 6.85 \left[Q^2 / ((A_v(h_v)^{1/2}) (A_T h_k))\right]^{1/3}$

Where,

 $\Delta T_{q} = T_{q} - T_{a}$ = upper layer gas temperature rise above ambient (K)

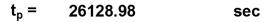

- Q = heat release rate of the fire (kW)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)
- h_k = convective heat transfer coefficient (kW/m²-K)
- $A_T = {total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)$

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

 $A_v = area of ventilation$ opening (m²) $w_v = vent width (m)$ h_v = vent height (m)


Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where,

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- cp = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

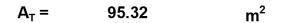
 δ = interior lining thickness (m)

Version 1805.1 (English Units)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where,


See table below for results (column 3)

Area of Compartment Enclosing Surface Boundaries

$$A_T = [2(w_c \times I_c) + 2(h_c \times w_c) + 2(h_c \times I_c)] - A_v$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

Version 1805.1 (English Units)

COMPARTMENT HOT GAS LAYER TEMPERATURE WITH NATURAL $\Delta T_g = 6.85 \left[Q^2/((A_v(h_v)^{1/2}) (A_Th_k))\right]^{1/3}$

$$\Delta T_{g} = T_{g} - T_{a}$$

$$\mathbf{T_g} = \Delta \mathbf{T_g} + \mathbf{T_a}$$

Results	Time Aft	er Ignition (t)	h _k	ΔT_{g}	T _g	Tg	Tg
	(min)	(sec)	(kW/m ² -K)	(°K)	(°K)	(°C)	(°F)
	0	0.00	-	-	298.00	25.00	77.00
	1	60	0.22	108.34	406.34	133.34	272.02
	2	120	0.16	121.61	419.61	146.61	295.90
	3	180	0.13	130.11	428.11	155.11	311.20
	4	240	0.11	136.50	434.50	161.50	322.70
	5	300	0.10	141.67	439.67	166.67	332.01
	10	600	0.07	159.02	457.02	184.02	363.24
	15	900	0.06	170.14	468.14	195.14	383.26
	20	1200	0.05	178.50	476.50	203.50	398.30
	25	1500	0.04	185.26	483.26	210.26	410.47
	30	1800	0.04	190.98	488.98	215.98	420.76
	35	2100	0.04	195.95	493.95	220.95	429.71
	40	2400	0.03	200.36	498.36	225.36	437.64
	45	2700	0.03	204.33	502.33	229.33	444.79
	50	3000	0.03	207.95	505.95	232.95	451.31
	55	3300	0.03	211.28	509.28	236.28	457.30
	60	3600	0.03	214.37	512.37	239.37	462.86

Version 1805.1 (English Units)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA

$$z = ((2kQ^{1/3}t/(3A_c)) + (1/h_c^{2/3}))^{-3/2}$$

Where,

- z = smoke layer height (m)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- h_c = compartment height (m)
- A_c = compartment floor area (m²)
- k = k = a constant given by $k = 0.076/\rho_g$
- ρ_{g} = hot gas layer density (kg/m³)
 - ρ_{g} is given by ρ_{g} = 353/T $_{g}$
- T_g = hot gas layer temperature (K)

Compartment Area Calculation

$$Ac = (w_c) (I_c)$$

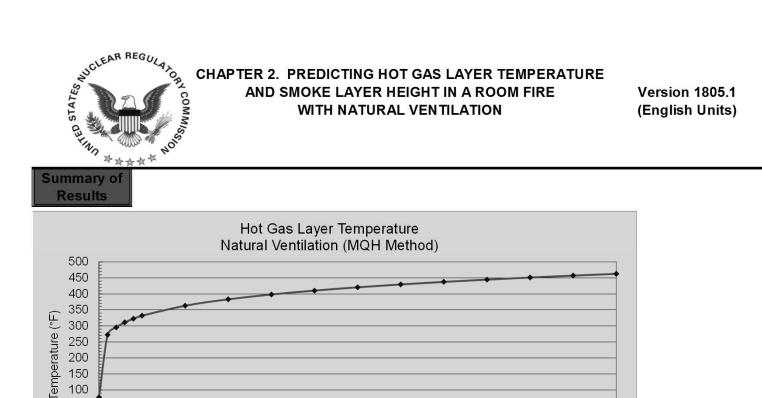
Where, $\begin{aligned} A_c &= \begin{array}{c} compartment \ floor \\ area \ (m^2) \\ w_c &= \begin{array}{c} compartment \ width \\ (m) \\ I_c &= \begin{array}{c} compartment \ length \\ (m) \end{array} \end{aligned}$ $A_c &= \begin{array}{c} 20.90 \\ m^2 \end{array}$

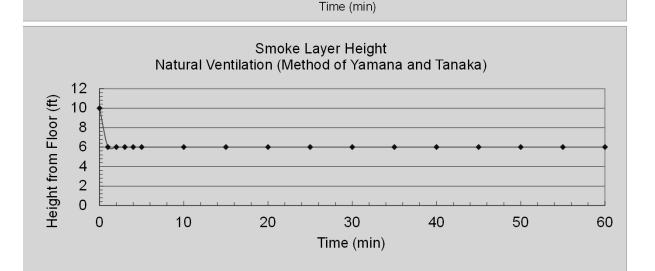
Hot Gas Layer Density Calculation

 $\rho_{g} = 353/T_{g}$

Calculation for Constant K

$$k = 0.076/\rho_g$$


Version 1805.1 (English Units)


SMOKE GAS LAYER HEIGHT WITH NATURAL VENTILATION

 $z = [(2kQ^{1/3}t/(3A_c)] + (1/h_c^{2/3})^{-3/2}]$

Results Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Calculated smoke layer height below the vent height are not creditable since the calculation is not accounting for the smoke exiting the vent.

			Smoke Layer	Smoke Layer	7
Time	ρ _g	Constant (k)	Height	Height	
(min)	(kg/m³)	(kW/m-K)	z (m)	z (ft)	
0	1.18	0.064	3.05	10.00	
1	0.87	0.087	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
2	0.84	0.090	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
3	0.82	0.092	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
4	0.81	0.094	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
5	0.80	0.095	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
10	0.77	0.098	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
15	0.75	0.101	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
20	0.74	0.103	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
25	0.73	0.104	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
30	0.72	0.105	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
35	0.71	0.106	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
40	0.71	0.107	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
45	0.70	0.108	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
50	0.70	0.109	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
55	0.69	0.110	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
60	0.69	0.110	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns, and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by: Additional Information:	Date:	Organization:

Version 1805.1 (English Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 2.16.1-1b

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w_c) Compartment Length (l_c) Compartment Height (h_c)	15.00 ft 15.00 ft 10.00 ft
Vent Width (w_v)	4.00 ft
Vent Height (h _v)	6.00 ^{ft}
Top of Vent from Floor (V $_{\rm T}$)	6.00 ft
Interior Lining Thickness (δ)	1.00 in

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)

Specific Heat of Air (c_a) Ambient Air Density ($\rho_a)$

77.00	°F
1.00	kJ/kg-K
1.18	kg/m ³

Note: Ambient Air Density (ρ_a) will automatically correct with Ambient Air Temperature (T_a) Input

THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR

 $\label{eq:linear} \begin{array}{l} \mbox{Interior Lining Thermal Inertia} (k\rho c) \\ \mbox{Interior Lining Thermal Conductivity} (k) \\ \mbox{Interior Lining Specific Heat} (c_p) \\ \mbox{Interior Lining Density} (\rho) \end{array}$

0.18	(kW/m ² -K) ² -sec
0.00017	kW/m-K
1.1	kJ/kg-K
960	kg/m ³

Version 1805.1 (English Units)

THERMAL PROPERTIES FOR COMMON INTERIOR LINING MATERIALS					
	kρc	k	с	ρ	Select Material
Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m ³)	Gypsum Board 💌
Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material
Steel (0.5% Carbon)	197	0.054	0.465	7850	Click the selection
Concrete	2.9	0.0016	0.75	2400	
Brick	1.7	0.0008	0.8	2600	
Glass, Plate	1.6	0.00076	0.8	2710	
Brick/Concrete Block	1.2	0.00073	0.84	1900	
Gypsum Board	0.18	0.00017	1.1	960	
Plywood	0.16	0.00012	2.5	540	
Fiber Insulation Board	0.16	0.00053	1.25	240	
Chipboard	0.15	0.00015	1.25	800	
Aerated Concrete	0.12	0.00026	0.96	500	
Plasterboard	0.12	0.00016	0.84	950	
Calcium Silicate Board	0.098	0.00013	1.12	700	
Alumina Silicate Block	0.036	0.00014	1	260	
Glass Fiber Insulation	0.0018	0.000037	0.8	60	
Expanded Polystyrene	0.001	0.000034	1.5	20	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	
Reference: Klote, J., J.	Milke, Principles o	of Smoke Managemer	nt, 2002, Page 270.]

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

500.00 kW

Calculate

Version 1805.1 (English Units)

METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-175.

$\Delta T_g = 6.85 \left[Q^2 / ((A_v(h_v)^{1/2}) (A_T h_k))\right]^{1/3}$

Where,

 $\Delta T_{q} = T_{q} - T_{a}$ = upper layer gas temperature rise above ambient (K)

- Q = heat release rate of the fire (kW)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)
- h_k = convective heat transfer coefficient (kW/m²-K)
- $A_T = {total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)$

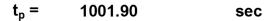
Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

 $A_v = area of ventilation$ opening (m²) $w_v = vent width (m)$ h_v = vent height (m)

 m^2 2.23 A, =


Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where,

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- cp = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

Version 1805.1 (English Units)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where,

 $h_{k} = \frac{\text{heat transfer}}{\text{coefficient (kW/m^{2}-K)}} \\ kpc = \text{interior construction thermal inertia (kW/m^{2}-K)^{2}-sec} \\ (a thermal property of material responsible for the rate of temperature rise)} \\ t = \frac{\text{time after ignition}}{(sec)}$

See table below for results (column 3)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

Version 1805.1 (English Units)

COMPARTMENT HOT GAS LAYER TEMPERATURE WITH NATURAL $\Delta T_g = 6.85 [Q^2/((A_v(h_v)^{1/2}) (A_Th_k))]^{1/3}$

$$\Delta T_{g} = T_{g} - T_{a}$$

$$T_g = \Delta T_g + T_a$$

Results	Time Aft	er Ignition (t)	h _k	ΔT_{g}	Tg	Tg	Τ _g
	(min)	(sec)	(kW/m ² -K)	(°K)	(°K)	(°C)	(°F)
	0	0.00	-	-	298.00	25.00	77.00
	1	60	0.05	172.18	470.18	197.18	386.92
	2	120	0.04	193.27	491.27	218.27	424.88
	3	180	0.03	206.78	504.78	231.78	449.20
	4	240	0.03	216.93	514.93	241.93	467.48
	5	300	0.02	225.15	523.15	250.15	482.28
	10	600	0.02	252.73	550.73	277.73	531.91
	15	900	0.01	270.39	568.39	295.39	563.71
	20	1200	0.01	346.98	644.98	371.98	701.56
	25	1500	0.01	346.98	644.98	371.98	701.56
	30	1800	0.01	346.98	644.98	371.98	701.56
	35	2100	0.01	346.98	644.98	371.98	701.56
	40	2400	0.01	346.98	644.98	371.98	701.56
	45	2700	0.01	346.98	644.98	371.98	701.56
	50	3000	0.01	346.98	644.98	371.98	701.56
	55	3300	0.01	346.98	644.98	371.98	701.56
	60	3600	0.01	346.98	644.98	371.98	701.56

Version 1805.1 (English Units)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA

$$z = ((2kQ^{1/3}t/(3A_c)) + (1/h_c^{2/3}))^{-3/2}$$

Where,

- z = smoke layer height (m)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- h_c = compartment height (m)
- A_c = compartment floor area (m²)
- k = k = a constant given by $k = 0.076/\rho_g$
- ρ_{g} = hot gas layer density (kg/m³)
 - ρ_{g} is given by ρ_{g} = 353/T $_{g}$
- T_g = hot gas layer temperature (K)

Compartment Area Calculation

$$Ac = (w_c) (I_c)$$

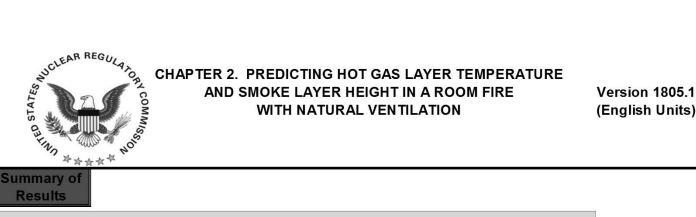
Where, $\begin{aligned} A_c &= \begin{array}{c} compartment \ floor \\ area \ (m^2) \\ w_c &= \begin{array}{c} compartment \ width \\ (m) \\ I_c &= \begin{array}{c} compartment \ length \\ (m) \end{array} \end{aligned}$ $A_c &= \begin{array}{c} 20.90 \\ m^2 \end{array}$

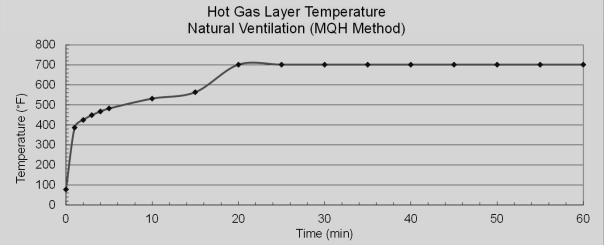
Hot Gas Layer Density Calculation

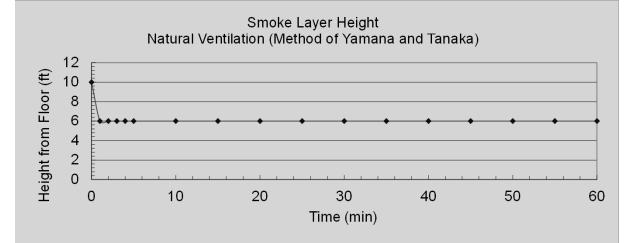
 $\rho_{g} = 353/T_{g}$

Calculation for Constant K

$$k = 0.076/\rho_g$$


Version 1805.1 (English Units)

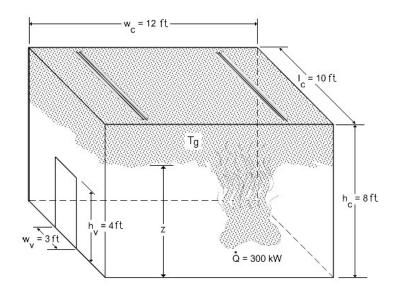

SMOKE GAS LAYER HEIGHT WITH NATURAL VENTILATION


 $z = [(2kQ^{1/3}t/(3A_c)] + (1/h_c^{2/3})^{-3/2}]$

Results Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Calculated smoke layer height below the vent height are not creditable since the calculation is not accounting for the smoke exiting the vent.

			Smoke Layer	Smoke Layer	7
Time	ρ _g	Constant (k)	Height	Height	
(min)	(kg/m³)	(kW/m-K)	z (m)	z (ft)	
0	1.18	0.064	3.05	10.00	
1	0.75	0.101	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
2	0.72	0.106	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
3	0.70	0.109	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
4	0.69	0.111	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
5	0.67	0.113	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
10	0.64	0.119	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
15	0.62	0.122	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
20	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
25	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
30	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
35	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
40	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
45	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
50	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
55	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT
60	0.55	0.139	1.83	6.00	CAUTION: SMOKE IS EXITING OUT VENT

NOTE:


The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns, and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by: Additional Information:	Date:	Organization:

Example Problem 2.16.1-2

Problem Statement

Consider a compartment that is 12 ft wide x 10 ft long x 8 ft high ($w_c x l_c x h_c$) with a simple vent 3 ft wide x 4 ft tall ($w_v x h_v$). The construction is essentially 0.5 ft thick gypsum board. The fire is constant with an HRR of 300 kW. Assume that the top of the vent is 4 ft. Compute the hot gas temperature in the compartment, as well as the smoke layer height at 2 minutes.

Example Problem 2-2: Compartment with Natural Ventilation

Solution

Purpose:

- (1) The hot gas layer temperature in the compartment (T_g) at t = 2 min after ignition
- (2) The smoke layer height (z) at $t = 2 \min \text{ after ignition}$

Assumptions:

- (1) Air properties (ambient) at 77 °F
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 02.1_Temperature_NV_Sup1.xls

FDT^s Input Parameters:

- Compartment Width (w_c) = 12 ft
- Compartment Length $(I_c) = 10$ ft
- Compartment Height $(h_c) = 8$ ft
- Vent Width $(w_v) = 3$ ft
- Vent Height $(h_v) = 4$ ft
- Top of Vent from Floor $(V_T) = 4$ ft
- Interior Lining Thickness (δ) = 6 in
- Ambient Air Temperature $(T_a) = 77$ °F
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Gypsum Board on the FDT^s
- Fire Heat Release Rate (\dot{Q}) = 300 kW

Results*

Hot Gas Layer Temperature (T _g)	Smoke Layer Height (z)
(Method of MQH)	(Method of Yamana and Tanaka)
(°F)	(ft)
480	4.00 (smoke exiting vent, z < V _T)

*see attached spreadsheet on next page at t = 2 min

Version 1805.1 (English Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 2.16.1-2

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c) Compartment Length (l _c) Compartment Height (h _c)	12.00 ft 10.00 ft 8.00 ft
Vent Width (w_v)	3.00 ft
Vent Height (h _v)	4.00 ft
Top of Vent from Floor (V $_{\rm T}$)	4.00 ft
Interior Lining Thickness (δ)	6.00 in

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)

Specific Heat of Air (c_a) Ambient Air Density ($\rho_a)$

77.00	°F
1.00	kJ/kg-K
1.18	kg/m ³

Note: Ambient Air Density (ρ_a) will automatically correct with Ambient Air Temperature (T_a) Input

THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR

 $\label{eq:linear} \begin{array}{l} \mbox{Interior Lining Thermal Inertia} (k\rho c) \\ \mbox{Interior Lining Thermal Conductivity} (k) \\ \mbox{Interior Lining Specific Heat} (c_p) \\ \mbox{Interior Lining Density} (\rho) \end{array}$

	(kW/m ² -K) ² -sec
0.00017	kW/m-K
1.1	kJ/kg-K
960	kg/m ³

Version 1805.1 (English Units)

THERMAL PROPERTIES FOR COMMON INTERIOR LINING MATERIALS					
	kpc	k	С	ρ	Select Material
Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m ³)	Gypsum Board 🚽
Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material
Steel (0.5% Carbon)	197	0.054	0.465	7850	Click the selection
Concrete	2.9	0.0016	0.75	2400	
Brick	1.7	0.0008	0.8	2600	
Glass, Plate	1.6	0.00076	0.8	2710	
Brick/Concrete Block	1.2	0.00073	0.84	1900	
Gypsum Board	0.18	0.00017	1.1	960	
Plywood	0.16	0.00012	2.5	540	
Fiber Insulation Board	0.16	0.00053	1.25	240	
Chipboard	0.15	0.00015	1.25	800	
Aerated Concrete	0.12	0.00026	0.96	500	
Plasterboard	0.12	0.00016	0.84	950	
Calcium Silicate Board	0.098	0.00013	1.12	700	
Alumina Silicate Block	0.036	0.00014	1	260	
Glass Fiber Insulation	0.0018	0.000037	0.8	60	
Expanded Polystyrene	0.001	0.000034	1.5	20	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	
Reference: Klote, J., J.	Milke, Principles of	of Smoke Managemer	nt, 2002, Page 270.]

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

300.00 kW

Calculate

Version 1805.1 (English Units)

METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-175.

$\Delta T_g = 6.85 \left[Q^2 / ((A_v(h_v)^{1/2}) (A_T h_k))\right]^{1/3}$

Where,

 $\Delta T_{q} = T_{q} - T_{a}$ = upper layer gas temperature rise above ambient (K)

- Q = heat release rate of the fire (kW)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)
- h_k = convective heat transfer coefficient (kW/m²-K)
- $A_T = {total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)$

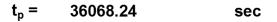
Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

 $A_v = area of ventilation$ opening (m²) $w_v = vent width (m)$ $h_v = vent height (m)$

 m^2 1.11 A, =


Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where,

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- cp = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

Version 1805.1 (English Units)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where,

 $h_k = \frac{\text{heat transfer}}{\text{coefficient (kW/m^2-K)}}$ $kpc = \text{interior construction thermal inertia (kW/m^2-K)^2-sec}$ (a thermal property of material responsible for the rate of temperature rise) $t = \frac{\text{time after ignition}}{(sec)}$

See table below for results (column 3)

Area of Compartment Enclosing Surface Boundaries

$$A_T = [2(w_c \times I_c) + 2(h_c \times w_c) + 2(h_c \times I_c)] - A_v$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

Version 1805.1 (English Units)

COMPARTMENT HOT GAS LAYER TEMPERATURE WITH NATURAL $\Delta T_g = 6.85 \left[Q^2/((A_v(h_v)^{1/2}) (A_Th_k))\right]^{1/3}$

$$\Delta T_{g} = T_{g} - T_{a}$$

$$\mathbf{T_g} = \Delta \mathbf{T_g} + \mathbf{T_a}$$

Results	Time Aft	er Ignition (t)	h _k	ΔT_{g}	T _g	Tg	Tg
	(min)	(sec)	(kW/m ² -K)	(°K)	(°K)	(°C)	(°F)
	0	0.00	-	-	298.00	25.00	77.00
	1	60	0.05	199.69	497.69	224.69	436.44
	2	120	0.04	224.14	522.14	249.14	480.45
	3	180	0.03	239.81	537.81	264.81	508.66
	4	240	0.03	251.59	549.59	276.59	529.86
	5	300	0.02	261.12	559.12	286.12	547.02
	10	600	0.02	293.10	591.10	318.10	604.58
	15	900	0.01	313.59	611.59	338.59	641.46
	20	1200	0.01	328.99	626.99	353.99	669.19
	25	1500	0.01	341.46	639.46	366.46	691.63
	30	1800	0.01	351.99	649.99	376.99	710.59
	35	2100	0.01	361.16	659.16	386.16	727.08
	40	2400	0.01	369.28	667.28	394.28	741.71
	45	2700	0.01	376.60	674.60	401.60	754.89
	50	3000	0.01	383.28	681.28	408.28	766.90
	55	3300	0.01	389.41	687.41	414.41	777.94
	60	3600	0.01	395.10	693.10	420.10	788.18

Version 1805.1 (English Units)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA

$$z = ((2kQ^{1/3}t/(3A_c)) + (1/h_c^{2/3}))^{-3/2}$$

Where,

- z = smoke layer height (m)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- h_c = compartment height (m)
- A_c = compartment floor area (m²)
- k = k = a constant given by $k = 0.076/\rho_g$
- ρ_{g} = hot gas layer density (kg/m³)
 - ρ_{g} is given by ρ_{g} = 353/T $_{g}$
- T_g = hot gas layer temperature (K)

Compartment Area Calculation

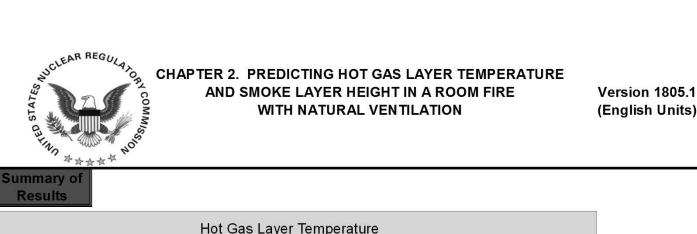
$$Ac = (w_c) (I_c)$$

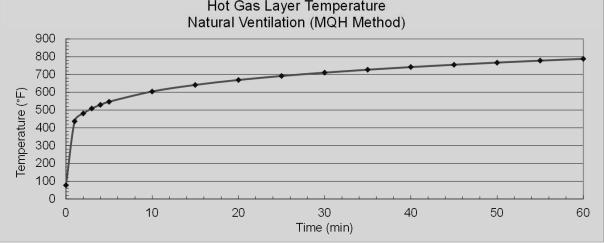
Where, $A_{c} = \begin{array}{c} compartment \ floor \\ area \ (m^{2}) \\ w_{c} = \begin{array}{c} compartment \ width \\ (m) \\ I_{c} = \begin{array}{c} compartment \ length \\ (m) \end{array}$ $A_{c} = \begin{array}{c} 11.15 \\ m^{2} \end{array}$

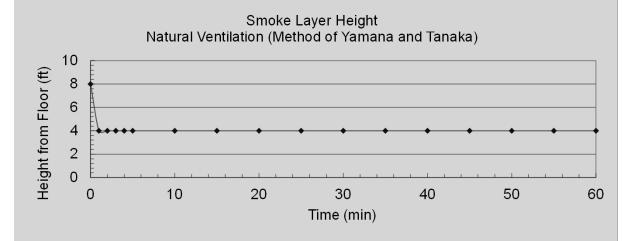
Hot Gas Layer Density Calculation

 $\rho_{g} = 353/T_{g}$

Calculation for Constant K


Version 1805.1 (English Units)

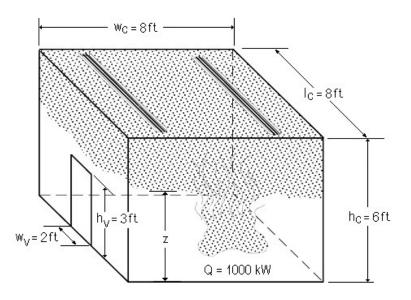

SMOKE GAS LAYER HEIGHT WITH NATURAL VENTILATION


 $z = [(2kQ^{1/3}t/(3A_c)] + (1/h_c^{2/3})^{-3/2}]$

Results Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Calculated smoke layer height below the vent height are not creditable since the calculation is not accounting for the smoke exiting the vent.

			Smoke Layer	Smoke Layer	7
Time	ρ _g	Constant (k)	Height	Height	
(min)	(kg/m³)	(kW/m-K)	z (m)	z (ft)	
0	1.18	0.064	2.44	8.00	
1	0.71	0.107	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
2	0.68	0.112	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
3	0.66	0.116	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
4	0.64	0.118	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
5	0.63	0.120	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
10	0.60	0.127	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
15	0.58	0.132	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
20	0.56	0.135	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
25	0.55	0.138	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
30	0.54	0.140	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
35	0.54	0.142	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
40	0.53	0.144	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
45	0.52	0.145	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
50	0.52	0.147	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
55	0.51	0.148	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT
60	0.51	0.149	1.22	4.00	CAUTION: SMOKE IS EXITING OUT VENT

NOTE:


The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns, and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by: Additional Information:	Date:	Organization:

Example Problem 2.16.1-3

Problem Statement

Consider a compartment that is 8 ft wide x 8 ft long x 6 ft high ($w_c x l_c x h_c$) with a simple vent that is 2 ft wide x 3 ft tall ($w_v x h_v$). The construction is essentially 0.75 ft thick concrete. The fire is constant with an HRR of 1,000 kW. Assume that the top of the vent is 3 ft. Compute the hot gas temperature in the compartment, as well as the smoke layer height at 3 minutes.

Example Problem 2-3: Compartment with Natural Ventilation

Solution

Purpose:

- (1) Determine the hot gas layer temperature in the compartment (T_g) at t = 3 min after ignition
- (2) Determine the smoke layer height (z) at t = 3 min after ignition

Assumptions:

- (1) Air properties (ambient) at 77 °F
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 02.1_Temperature_NV_Sup1.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 8$ ft
- Compartment Length $(I_c) = 8$ ft
- Compartment Height $(h_c) = 6$ ft
- Vent Width $(w_v) = 2$ ft
- Vent Height $(h_v) = 3$ ft
- Top of Vent from Floor $(V_T) = 3$ ft
- Interior Lining Thickness (δ) = 9 in
- Ambient Air Temperature (T_a) = 77 °F
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Concrete on the FDTs
- Fire Heat Release Rate (\dot{Q}) = 1,000 kW

Results*:

Hot Gas Layer Temperature (T _g)	Smoke Layer Height (z)
(Method of MQH)	(Method of Yamana and Tanaka)
(°F)	(ft)
1,060	3.00 compartment filled with smoke)

*see spreadsheet on next page at t = 3 min

Version 1805.1 (English Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

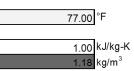
Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 2.16.1-3

INPUT PARAMETERS


COMPARTMENT INFORMATION

Compartment Width (w_c) Compartment Length (I_c)	8.00 ft 8.00 ft
Compartment Height (h _c) Vent Width (w _v)	6.00 ft
Vent Height (h _v)	3.00 ft
Top of Vent from Floor (V $_{\!$	3.00 ft
Interior Lining Thickness (δ)	9.00 in

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)

Specific Heat of Air (c_a) Ambient Air Density ($\rho_a)$

Note: Ambient Air Density (pa) will automatically correct with Ambient Air Temperature (Ta) Input

THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR

 $\label{eq:linear} \begin{array}{l} \mbox{Interior Lining Thermal Inertia} (k\rho c) \\ \mbox{Interior Lining Thermal Conductivity} (k) \\ \mbox{Interior Lining Specific Heat} (c_p) \\ \mbox{Interior Lining Density} (\rho) \end{array}$

2.9	(kW/m ² -K) ² -sec
0.0016	kW/m-K
0.75	kJ/kg-K
2400	kg/m ³

Version 1805.1 (English Units)

THERMAL PRO	PERTIES FOR	R COMMON INTER	RIOR LINING MA	TERIALS	
	kρc	k	с	ρ	Select Material
Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m³)	Concrete
Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material
Steel (0.5% Carbon)	197	0.054	0.465	7850	Click the selection
Concrete	2.9	0.0016	0.75	2400	
Brick	1.7	0.0008	0.8	2600	
Glass, Plate	1.6	0.00076	0.8	2710	
Brick/Concrete Block	1.2	0.00073	0.84	1900	
Gypsum Board	0.18	0.00017	1.1	960	
Plywood	0.16	0.00012	2.5	540	
Fiber Insulation Board	0.16	0.00053	1.25	240	
Chipboard	0.15	0.00015	1.25	800	
Aerated Concrete	0.12	0.00026	0.96	500	
Plasterboard	0.12	0.00016	0.84	950	
Calcium Silicate Board	0.098	0.00013	1.12	700	
Alumina Silicate Block	0.036	0.00014	1	260	
Glass Fiber Insulation	0.0018	0.000037	0.8	60	
Expanded Polystyrene	0.001	0.000034	1.5	20	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	
Reference: Klote, J., J.	Milke, Principles o	of Smoke Managemer	nt, 2002, Page 270.]

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

1000.00 kW

Calculate

Version 1805.1 (English Units)

METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-175.

$\Delta T_g = 6.85 \left[Q^2 / ((A_v(h_v)^{1/2}) (A_T h_k))\right]^{1/3}$

Where,

 $\Delta T_{q} = T_{q} - T_{a}$ = upper layer gas temperature rise above ambient (K)

- Q = heat release rate of the fire (kW)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)
- h_k = convective heat transfer coefficient (kW/m²-K)
- $A_T = {total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)$

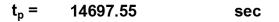
Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

 $A_v = area of ventilation$ opening (m²) $w_v = vent width (m)$ h_v = vent height (m)

 m^2 0.56 A, =


Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where,

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- cp = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

Version 1805.1 (English Units)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where,

 $h_{k} = \frac{\text{heat transfer}}{\text{coefficient (kW/m^{2}-K)}} \\ kpc = \text{interior construction thermal inertia (kW/m^{2}-K)^{2}-sec} \\ (a thermal property of material responsible for the rate of temperature rise)} \\ t = \frac{\text{time after ignition}}{(sec)}$

See table below for results (column 3)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

Version 1805.1 (English Units)

COMPARTMENT HOT GAS LAYER TEMPERATURE WITH NATURAL $\Delta T_g = 6.85 [Q^2/((A_v(h_v)^{1/2}) (A_Th_k))]^{1/3}$

$$\Delta T_{g} = T_{g} - T_{a}$$

$$\mathbf{T_g} = \Delta \mathbf{T_g} + \mathbf{T_a}$$

Results	Time Aft	er Ignition (t)	h _k	ΔT_{g}	Tg	Tg	Tg
	(min)	(sec)	(kW/m ² -K)	(°K)	(°K)	(°C)	(°F)
	0	0.00	-	-	298.00	25.00	77.00
	1	60	0.22	454.72	752.72	479.72	895.50
	2	120	0.16	510.41	808.41	535.41	995.74
	3	180	0.13	546.09	844.09	571.09	1059.97
	4	240	0.11	572.91	870.91	597.91	1108.25
	5	300	0.10	594.62	892.62	619.62	1147.32
	10	600	0.07	667.44	965.44	692.44	1278.39
	15	900	0.06	714.10	1012.10	739.10	1362.39
	20	1200	0.05	749.18	1047.18	774.18	1425.52
	25	1500	0.04	777.56	1075.56	802.56	1476.62
	30	1800	0.04	801.56	1099.56	826.56	1519.80
	35	2100	0.04	822.42	1120.42	847.42	1557.35
	40	2400	0.03	840.92	1138.92	865.92	1590.66
	45	2700	0.03	857.59	1155.59	882.59	1620.67
	50	3000	0.03	872.79	1170.79	897.79	1648.02
	55	3300	0.03	886.76	1184.76	911.76	1673.17
	60	3600	0.03	899.72	1197.72	924.72	1696.49

Version 1805.1 (English Units)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA

$$z = ((2kQ^{1/3}t/(3A_c)) + (1/h_c^{2/3}))^{-3/2}$$

Where,

- z = smoke layer height (m)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- h_c = compartment height (m)
- A_c = compartment floor area (m²)
- k = k = a constant given by $k = 0.076/\rho_g$
- ρ_{g} = hot gas layer density (kg/m³)
 - ρ_{g} is given by ρ_{g} = 353/T $_{g}$
- T_g = hot gas layer temperature (K)

Compartment Area Calculation

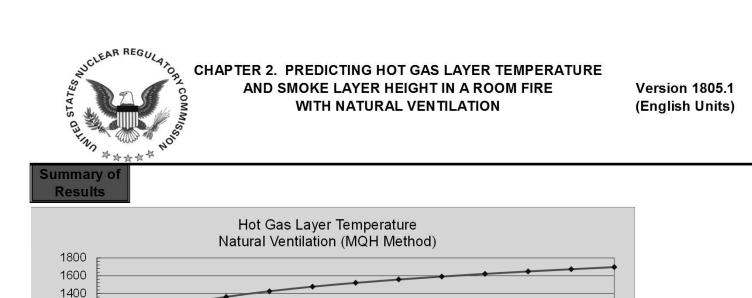
$$Ac = (w_c) (I_c)$$

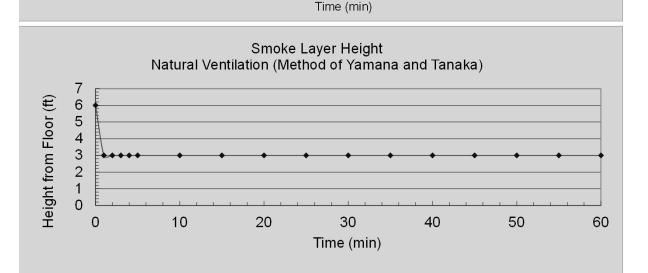
Where, $\begin{aligned} A_c &= \underset{area \ (m^2)}{c} \\ w_c &= \underset{(m)}{c} \\ u_c &= \underset{(m)}{c} \\ I_c &= \underset{(m)}{c} \\ \end{bmatrix} \end{aligned}$

Hot Gas Layer Density Calculation

 $\rho_{g} = 353/T_{g}$

Calculation for Constant K


Version 1805.1 (English Units)


SMOKE GAS LAYER HEIGHT WITH NATURAL VENTILATION

 $z = [(2kQ^{1/3}t/(3A_c)] + (1/h_c^{2/3})^{-3/2}]$

Results Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Calculated smoke layer height below the vent height are not creditable since the calculation is not accounting for the smoke exiting the vent.

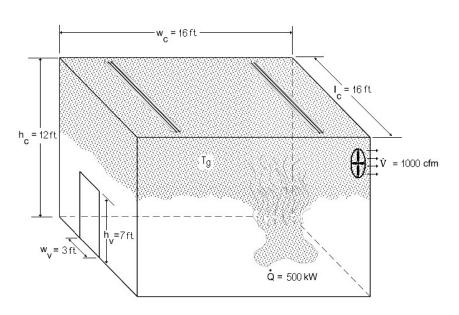
			Smoke Layer	Smoke Layer	7
Time	$ ho_{g}$	Constant (k)	Height	Height	
(min)	(kg/m³)	(kW/m-K)	z (m)	z (ft)	
0	1.18	0.064	1.83	6.00	
1	0.47	0.162	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
2	0.44	0.174	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
3	0.42	0.182	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
4	0.41	0.188	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
5	0.40	0.192	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
10	0.37	0.208	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
15	0.35	0.218	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
20	0.34	0.225	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
25	0.33	0.232	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
30	0.32	0.237	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
35	0.32	0.241	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
40	0.31	0.245	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
45	0.31	0.249	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
50	0.30	0.252	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
55	0.30	0.255	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT
60	0.29	0.258	0.91	3.00	CAUTION: SMOKE IS EXITING OUT VENT

NOTE:

<u>(</u>1200

Temperature (°

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns, and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.


Prepared by:	Date:	Organization:
Checked by: Additional Information:	Date:	Organization:

2.16.2 Forced Ventilation

Example Problem 2.16.2-1

Problem Statement

Consider a compartment that is 16 ft wide x 16 ft long x 12 ft high ($w_c x l_c x h_c$), with a vent opening that is 3 ft wide x 7 ft tall ($w_v x h_v$). The forced ventilation rate is 1,000 cfm (exhaust). Calculate the hot gas layer temperature for a fire size of 500 kW at 2 minutes after ignition. The compartment boundaries are made of (a) 1 ft thick concrete and (b) 0.7 inch thick gypsum board.

Example Problem 2-4: Compartment with Forced Ventilation

Solution

Purpose:

For two different interior lining materials determine the hot gas layer temperature in the compartment (T_g) at t = 2 min after ignition.

Assumptions:

- (1) Air properties (ambient) at 77 $^{\circ}$ F
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls
- (6) The bottom of the vent is at the floor level
- (7) The compartment is open to the outside at the inlet (pressure = 1 atm)

Spreadsheet (FDT^s) Information:

- Use the following FDT^s:
 - (a) For Concrete: 02.2 Temperature FV Sup1.xls
 - (b) For Gypsum Board: 02.2_Temperature_FV_Sup1.xls

Note: The spreadsheet has two methods for calculating the hot gas layer temperature (T_q) . We are going to use both methods to compare the results.

FDT^s Input Parameters: (for both spreadsheets)

- Compartment Width $(w_c) = 16$ ft
- Compartment Length $(I_c) = 16$ ft
- Compartment Height $(h_c) = 12$ ft
- Interior Lining Thickness (δ) = 12 in (concrete) and 0.7 in (gypsum board)
- Ambient Air Temperature (T_a) = 77 °F
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Concrete and Gypsum Board on the respective FDTs
- Compartment Ventilation Rate (\dot{V}) = 1,000 cfm
- Fire Heat Release Rate (\dot{Q}) = 500 kW
- Time after Ignition (t) = 2 min.

Results*

Poundary Matorial	Hot Layer Gas Temp (°F)	erature (T _g)
Boundary Material	Method of Foote, Pagni & Alvares (FPA)	Method of Deal & Beyler
Concrete	288	190
Gypsum Board	426	452

*see spreadsheets on next page at t = 2 min.

Version 1805.1 (English Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Title:

Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection

Example 2.16.2-1a

INPUT PARAMETERS

	RTMENT INFOR					
	Compartment Width (w _c)			1	6.00 ft	
	Compartment Length (I _c)			1	6.00 ft	
	Compartment Height (h _c)			1	2.00 ft	
	Interior Lining Thickness (8)		1	2.00 in	
		67			2.00	
	T CONDITIONS					
	Ambient Air Temperature			7	7.00 °F	
		('a)				
	Specific Heat of Air (c _a)				1.00 kJ/kg-K	
	Ambient Air Density (ρ_a)				1.18 kg/m ³	
	AL PROPERTIES	S OF COMP				
	Interior Lining Thermal Ind				2.9 (kW/m ² -K) ² -sec	
	•	,			2.9 (kW/m -K) -sec 0016 kW/m-K	
	Interior Lining Thermal Co Interior Lining Specific He				0.75 kJ/kg-K	
	•	ar (up)				
	Interior Lining Density (p)				2400 kg/m ³	
	Note: Air density will auto					
THERMA	Note: Air density will auto					
THERMA		S FOR COM			ρ	Select Material
THERMA		S FOR COM			β MATERIALS	Concrete
THERMA		S FOR COM			ρ	
THERMA	AL PROPERTIES	S FOR COM kρc (kW/m ² -K) ² -sec	MON INTER	C (kJ/kg-K)	ρ (kg/m³)	Concrete
THERMA	AL PROPERTIES Material Aluminum (pure)	S FOR COM kpc (KW/m ² -K) ² -sec 500	MON INTER k (kW/m-K) 0.206	C (KJ/kg-K) 0.895	ρ (kg/m ³) 2710	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon)	S FOR COM kpc (kW/m ² -K) ² -sec 500 197 2.9 1.7	MON INTER k (kW/m-K) 0.206 0.054	C (KJ/kg-K) 0.895 0.465 0.75 0.8	ρ (kg/m ³) 2710 7850	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076	C (KJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8	ρ (kg/m ³) 2710 7850 2400 2600 2710	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick	S FOR COM kpc (kW/m ² -K) ² -sec 500 197 2.9 1.7	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008	C (KJ/kg-K) 0.895 0.465 0.75 0.8	ρ (kg/m ³) 2710 7850 2400 2600	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076	C (KJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8	ρ (kg/m ³) 2710 7850 2400 2600 2710	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block	S FOR COM kpc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073	C (KJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00073 0.00073 0.00017	RIOR LINING c (KJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.84 1.1	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00017 0.00017 0.00012	RIOR LINING c (KJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.1 2.5	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00076 0.00073 0.00012 0.00053	RIOR LINING C (KJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8 0.8 1.1 2.5 1.25	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015	C (KJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.1 2.5 1.25 1.25 1.25	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.15 0.12 12	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015 0.00026	C (KJ/Kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.1 2.5 1.25 1.25 1.25 0.96	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15 0.12	MON INTEF k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00073 0.00017 0.00017 0.00012 0.00053 0.00015 0.00026 0.00016	RIOR LINING c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.1 2.5 1.25 1.25 1.25 0.96 0.84	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950	Concrete Scroll to desired material then
THERM	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board	S FOR COM kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15 0.12 0.098	k k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00077 0.00017 0.00012 0.00053 0.00015 0.00026 0.00016 0.00016 0.00013	RIOR LINING c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.1 2.5 1.25 1.25 1.25 1.25 1.25 0.96 0.84 1.12	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700	Concrete Scroll to desired material then
THERMA	AL PROPERTIES Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board Alumina Silicate Block	S FOR COM kpc (kW/m²-K)²-sec 500 197 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15 0.12 0.12 0.098 0.036	k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00076 0.00017 0.00012 0.00012 0.00015 0.00026 0.00013 0.00013	C C (KJ/Kg-K) 0.895 0.465 0.75 0.8 0.8 0.84 1.1 2.5 1.25 1.25 1.25 1.25 1.12 1 1	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700 260	Concrete Scroll to desired material then

COMPARTMENT MASS VENTILATION FLOW RATE

Forced Ventilation Flow Rate (m)

1000.00 cfm

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

Version 1805.1 (English Units)

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-177

$$\Delta T_g/T_a = 0.63(Q/(mc_aT_a))^{0.72}(h_kA_T/(mc_a))^{-0.36}$$

Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

 T_a = ambient air temperature (K)

Q = heat release rate of the fire (kW)

m = compartment mass ventilation flow rate (kg/sec)

c_a = specific heat of air (kJ/kg-K)

 h_k = convective heat transfer coefficient (kW/m²-K)

 A_T = total area of the compartment enclosing surface boundaries (m²)

Thermal Penetration Time Calculation

$$\mathbf{t}_{\rm p} = (\rho \mathbf{c}_{\rm p}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

t_p = 26128.98 sec

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where

 h_k = heat transfer coefficient (kW/m²-K)

 $k\rho c$ = interior construction thermal inertia (kW/m²-K)²-sec

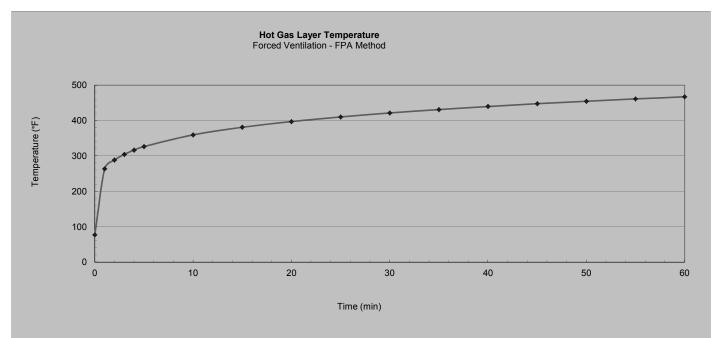
(a thermal property of material responsible for the rate of temperature rise) $t = \mbox{time}$ after ignition (sec)

See table below for results

Area of Compartment Enclosing Surface Boundaries

$$\mathbf{A}_{T} = 2 \left(w_{c} \ge \mathbf{I}_{c} \right) + 2 \left(h_{c} \ge w_{c} \right) + 2 \left(h_{c} \ge \mathbf{I}_{c} \right)$$

 Where
 $A_{T} = \text{ total area of the compartment enclosing surface boundaries } (n^{2})$
 $w_{c} = \text{ compartment width } (m)$
 $I_{c} = \text{ compartment length } (m)$
 $h_{c} = \text{ compartment height } (m)$
 $A_{T} = 118.92 \text{ m}^{2}$


Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_g/T_a = 0.63(Q/(mc_pT_a))^{0.72}(h_kA_T/(mc_p))^{-0.36}$$

$$\Delta T_g = T_g - T_a$$

$$T_g = \Delta T_g + T_a$$

Version 1805.1 (English Units)

Time After Ignition (t)		h _k	∆T _g /T _a	ΔTg	Tg	Tg	Tg
(min)	(sec)	(kW/m ² -K)	-	(K)	(K)	(°C)	(°F)
0	0	-	-	-	298.00	25.00	77.00
1	60	0.22	0.35	103.76	401.76	128.76	263.77
2	120	0.16	0.39	117.55	415.55	142.55	288.59
3	180	0.13	0.42	126.45	424.45	151.45	304.61
4	240	0.11	0.45	133.17	431.17	158.17	316.71
5	300	0.10	0.47	138.63	436.63	163.63	326.54
10	600	0.07	0.53	157.05	455.05	182.05	359.70
15	900	0.06	0.57	168.94	466.94	193.94	381.10
20	1200	0.05	0.60	177.92	475.92	202.92	397.26
25	1500	0.04	0.62	185.21	483.21	210.21	410.39
30	1800	0.04	0.64	191.39	489.39	216.39	421.51
35	2100	0.04	0.66	196.78	494.78	221.78	431.20
40	2400	0.03	0.68	201.57	499.57	226.57	439.82
45	2700	0.03	0.69	205.88	503.88	230.88	447.59
50	3000	0.03	0.70	209.83	507.83	234.83	454.69
55	3300	0.03	0.72	213.46	511.46	238.46	461.22
60	3600	0.03	0.73	216.83	514.83	241.83	467.29

Version 1805.1 (English Units)

METHOD OF DEAL AND BEYLER

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-178.

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = \left(\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}\right) \left(\delta/2\right)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining heat capacity (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

t_p = 26128.98 sec

Heat Transfer Coefficient Calculation

$$h_k = 0.4 \sqrt{(k\rho c/t)}$$
 for $t < t_p$ or $0.4(k/\delta)$ for $t > t_p$

Where

- h_k = heat transfer coefficient (kW/m²-K)
- $k\rho c$ = interior construction thermal inertia (kW/m²-K)²-sec
- (a thermal property of material responsible for the rate of temperature rise)
- δ = thickness of interior lining (m)
 - See table below for results

Area of Compartment Enclosing Surface Boundaries

$$A_T = 2(w_c \times I_c) + 2(h_c \times w_c) + 2(h_c \times I_c)$$

 $A_T = 118.92 \text{ m}^2$

Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_{g} = \mathbf{Q} / (\mathbf{mc}_{a} + \mathbf{h}_{k} \mathbf{A}_{T})$$

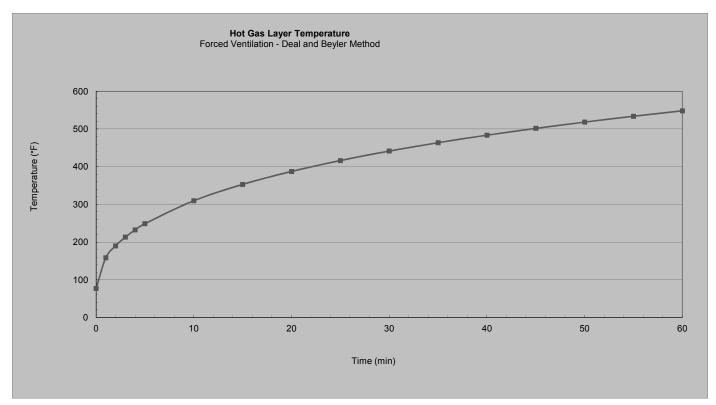
Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

T_a = ambient air temperature (K)

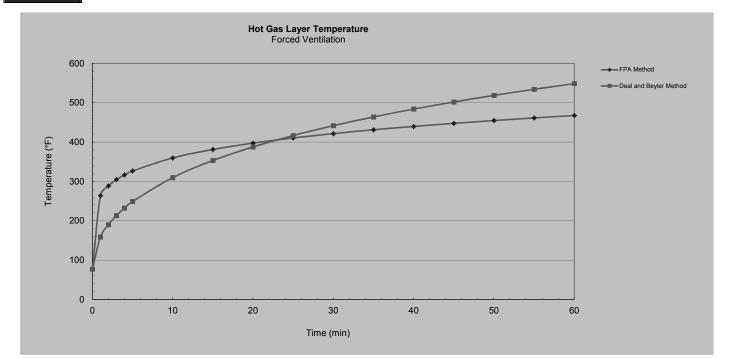
Q = heat release rate of the fire (kW)

m = compartment mass ventilation flow rate (kg/sec)


 c_a = specific heat of air (kJ/kg-K)

- h_k = convective heat transfer coefficient (kW/m²-K)
- A_{T} = total area of the compartment enclosing surface boundaries (m²)

Version 1805.1 (English Units)


Time After Ignition (t)		h _k	∆T _g	Tg	Tg	Tg
(min)	(sec)	(kW/m ² -K)	(K)	(K)	(°C)	(°F)
0	0	-	-	298.00	25.00	77.00
1	60	0.09	45.39	343.39	70.39	158.70
2	120	0.06	62.87	360.87	87.87	190.16
3	180	0.05	75.80	373.80	100.80	213.43
4	240	0.04	86.39	384.39	111.39	232.50
5	300	0.04	95.50	393.50	120.50	248.90
10	600	0.03	129.33	427.33	154.33	309.80
15	900	0.02	153.41	451.41	178.41	353.15
20	1200	0.02	172.57	470.57	197.57	387.62
25	1500	0.02	188.64	486.64	213.64	416.55
30	1800	0.02	202.57	500.57	227.57	441.62
35	2100	0.01	214.90	512.90	239.90	463.82
40	2400	0.01	225.99	523.99	250.99	483.78
45	2700	0.01	236.08	534.08	261.08	501.94
50	3000	0.01	245.34	543.34	270.34	518.62
55	3300	0.01	253.92	551.92	278.92	534.06
60	3600	0.01	261.90	559.90	286.90	548.43

Version 1805.1 (English Units)

Summary of Results

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Version 1805.1 (English Units)

-

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection

Example 2.16.2-1b

INPUT PARAMETERS COMPARTMENT INFORMATION Compartment Width (w_c) Compartment Length (I_c)

Title

Compartment Height (h_c) Interior Lining Thickness (δ)

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)

Specific Heat of Air (c_a)

Ambient Air Density (pa) 1.18 kg/m³ THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES

Interior Lining Thermal Inertia (kpc) Interior Lining Thermal Conductivity (k) Interior Lining Specific Heat (cp) Interior Lining Density (p)

0.18 (kW/m²-K)²-sec 0.00017 kW/m-K 1.10 kJ/kg-K 960 kg/m³

16.00 ft

16.00 ft

12.00 ft

0.70 in

77.00 °F

1.00 kJ/kg-K

500

950

700

260

60

20

Enter Value

Note: Air density will automatically correct with Ambient Air Temperature (T) Input

THERMAL PROPERTIES FOR COMMON INTERIOR LINING MATERIALS Select Material koc Material kW/m²-K)²-sec (kJ/kg-K) (kg/m³) (kW/m-K) Gypsum Board Aluminum (pure) 500 0.206 0.895 2710 Scroll to desired material then Steel (0.5% Carbon) 197 0.054 0.465 7850 Click on selection 0.0016 2400 2600 Concrete 2.9 0.75 0.0008 Brick 1.7 0.8 2710 Glass, Plate 1.6 0.00076 0.8 Brick/Concrete Block 12 0.00073 0.84 1900 Gypsum Board 0.18 0.00017 1.1 960 Plywood 0.16 0.00012 2.5 540 Fiber Insulation Board 0.16 0.00053 1.25 240 Chipboard 0.15 0.00015 1.25 800

0.00026

0.00016

Calcium Silicate Board 0.098 0.00013 1.12 Alumina Silicate Block 0.00014 0.036 Glass Fiber Insulation 0.0018 0.000037 0.8 Expanded Polystyrene 0.001 0.000034 1.5 User Specified Value Enter Value Enter Value Enter Value Reference: Klote, J., J. Milke, Principles of Smoke Management, 2002 Page 270

0.12

0.12

COMPARTMENT MASS VENTILATION FLOW RATE

Aerated Concrete

Plasterboard

Forced Ventilation Flow Rate (m)

1000.00 cfm

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

0.96

0.84

Version 1805.1 (English Units)

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-177.

$$\Delta T_g/T_a = 0.63(Q/(mc_aT_a))^{0.72}(h_kA_T/(mc_a))^{-0.36}$$

Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

 T_a = ambient air temperature (K)

Q = heat release rate of the fire (kW)

m = compartment mass ventilation flow rate (kg/sec)

c_a = specific heat of air (kJ/kg-K)

 h_k = convective heat transfer coefficient (kW/m²-K)

 A_T = total area of the compartment enclosing surface boundaries (m²)

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

t_p = 490.93 sec

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where

 h_k = heat transfer coefficient (kW/m²-K)

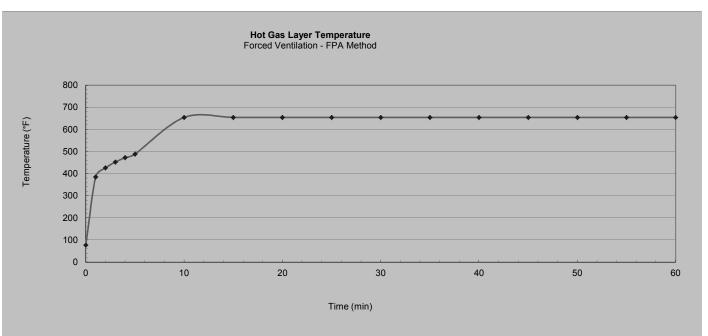
 $k\rho c$ = interior construction thermal inertia (kW/m²-K)²-sec

(a thermal property of material responsible for the rate of temperature rise) $t = \mbox{time}$ after ignition (sec)

See table below for results

Area of Compartment Enclosing Surface Boundaries

$$\mathbf{A}_{T} = 2 \left(w_{c} \ge \mathbf{I}_{c} \right) + 2 \left(h_{c} \ge w_{c} \right) + 2 \left(h_{c} \ge \mathbf{I}_{c} \right)$$
 Where
 A_T = total area of the compartment enclosing surface boundaries (n²)
 w_c = compartment width (m)
 I_c = compartment length (m)
 h_c = compartment height (m)
 A_{T} = 118.92 m²


Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\begin{split} & \Delta T_g / T_a = 0.63 (Q / (mc_p T_a))^{0.72} (h_k A_T / (mc_p))^{-0.36} \\ & \Delta T_g = T_g - T_a \\ & T_g = \Delta T_g + T_a \end{split}$$

Version 1805.1 (English Units)

Time After Ig	nition (t)	h _k	∆T _g /T _a	∆T _g	Т _g	Tg	Tg
(min)	(sec)	(kW/m ² -K)	-	(K)	(K)	(°C)	(°F)
0	0	-	-	-	298.00	25.00	77.00
1	60	0.05	0.57	171.13	469.13	196.13	385.04
2	120	0.04	0.65	193.87	491.87	218.87	425.97
3	180	0.03	0.70	208.55	506.55	233.55	452.39
4	240	0.03	0.74	219.63	517.63	244.63	472.34
5	300	0.02	0.77	228.64	526.64	253.64	488.54
10	600	0.01	1.08	320.79	618.79	345.79	654.43
15	900	0.01	1.08	320.79	618.79	345.79	654.43
20	1200	0.01	1.08	320.79	618.79	345.79	654.43
25	1500	0.01	1.08	320.79	618.79	345.79	654.43
30	1800	0.01	1.08	320.79	618.79	345.79	654.43
35	2100	0.01	1.08	320.79	618.79	345.79	654.43
40	2400	0.01	1.08	320.79	618.79	345.79	654.43
45	2700	0.01	1.08	320.79	618.79	345.79	654.43
50	3000	0.01	1.08	320.79	618.79	345.79	654.43
55	3300	0.01	1.08	320.79	618.79	345.79	654.43
60	3600	0.01	1.08	320.79	618.79	345.79	654.43

Version 1805.1 (English Units)

METHOD OF DEAL AND BEYLER

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-178.

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining heat capacity (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)
- t_p = 490.928809 sec

Heat Transfer Coefficient Calculation

$$h_k = 0.4 \sqrt{(k\rho c/t)}$$
 for $t < t_p$ or $0.4(k/\delta)$ for $t > t_p$

Where

- h_k = heat transfer coefficient (kW/m²-K)
- $k\rho c$ = interior construction thermal inertia $(kW/m^2-K)^2$ -sec
- (a thermal property of material responsible for the rate of temperature rise)
- δ = thickness of interior lining (m)
 - See table below for results

Area of Compartment Enclosing Surface Boundaries

$$A_T = 2(w_c x l_c) + 2(h_c x w_c) + 2(h_c x l_c)$$

 $A_T = 118.92 m^2$

Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_g = \mathbf{Q} / (\mathbf{mc}_a + \mathbf{h}_k \mathbf{A}_T)$$

Where

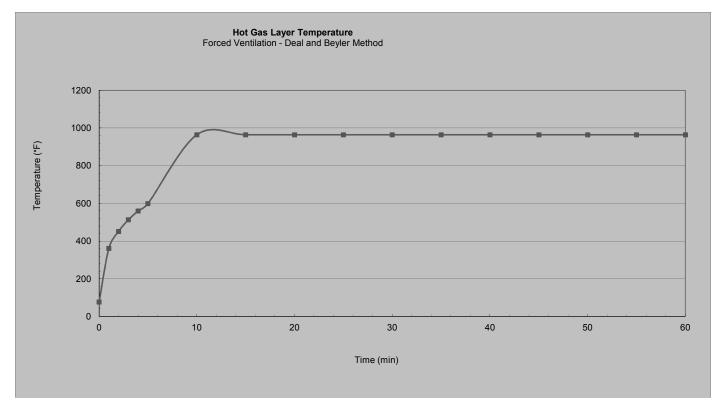
 $\Delta T_g = T_g - T_a$ = upper layer gas temperature rise above ambient (K)

 T_a = ambient air temperature (K)

Q = heat release rate of the fire (kW)

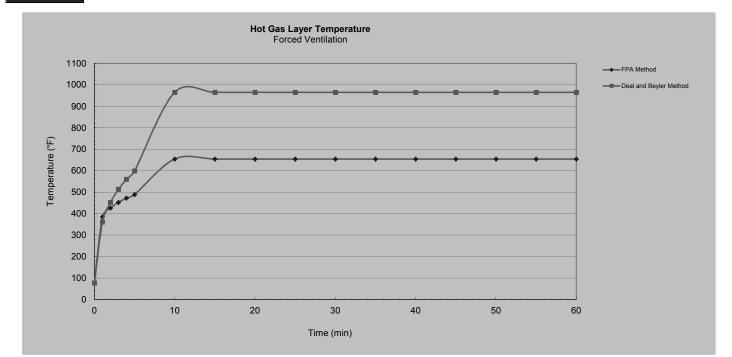
m = compartment mass ventilation flow rate (kg/sec)

 c_a = specific heat of air (kJ/kg-K)


 h_k = convective heat transfer coefficient (kW/m²-K)

 A_{T} = total area of the compartment enclosing surface boundaries (m²)

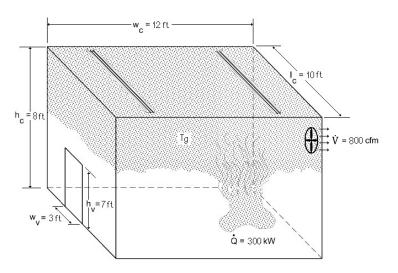
Version 1805.1 (English Units)


Time After	Ignition (t)	h _k	∆Tg	Tg	Τ _g	Tg
(min)	(sec)	(kW/m ² -K)	(K)	(K)	(°C)	(°F)
0	0	-	-	298.00	25.00	77.00
1	60	0.02	158.01	456.01	183.01	361.42
2	120	0.02	208.22	506.22	233.22	451.80
3	180	0.01	242.34	540.34	267.34	513.21
4	240	0.01	268.57	566.57	293.57	560.43
5	300	0.01	289.99	587.99	314.99	598.99
10	600	0.00	493.17	791.17	518.17	964.71
15	900	0.00	493.17	791.17	518.17	964.71
20	1200	0.00	493.17	791.17	518.17	964.71
25	1500	0.00	493.17	791.17	518.17	964.71
30	1800	0.00	493.17	791.17	518.17	964.71
35	2100	0.00	493.17	791.17	518.17	964.71
40	2400	0.00	493.17	791.17	518.17	964.71
45	2700	0.00	493.17	791.17	518.17	964.71
50	3000	0.00	493.17	791.17	518.17	964.71
55	3300	0.00	493.17	791.17	518.17	964.71
60	3600	0.00	493.17	791.17	518.17	964.71

Version 1805.1 (English Units)

Summary of Results

NOTE:


The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

	Prepared by:	Date:]	Organization:	
	Checked by:	Date:]	Organization:	
Add	itional Information:				

Example Problem 2.16.2-2

Problem Statement

Consider a compartment that is 12 ft wide x 10 ft long x 8 ft high ($w_c x l_c x h_c$) with a vent opening that is 3 ft wide x 7 ft tall ($w_v x h_v$). The compartment boundaries are made of 0.5 ft thick gypsum board. The forced ventilation rate is 800 cfm (exhaust). Calculate the hot gas layer temperature in the compartment for a fire size of 300 kW at 2 minutes.

Example Problem 2-5: Compartment with Forced Ventilation

Solution

Purpose:

(1) Determine the hot gas layer temperature in the compartment (T_a) at t = 2 min after ignition.

Assumptions:

- (1) Air properties (ambient) at 77 °F
- (2) Simple rectangular geometry: no beam pockets
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls
- (6) The bottom of the vent is at the floor level
- (7) The compartment is open to the outside at the inlet (pressure = 1 atm)

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 02.2 Temperature FV Sup1.xls

Note: The spreadsheet has two different methods for calculating the hot gas layer temperature. Both methods are presented for comparison.

FDT^s Input Parameters:

- Compartment Width $(w_c) = 12$ ft
- Compartment Length $(I_c) = 10$ ft
- Compartment Height $(h_c) = 8$ ft
- Interior Lining Thickness (δ) = 6 in
- Ambient Air Temperature $(T_a) = 77$ °F
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Gypsum Board on the FDT^s
- Compartment Ventilation Rate (\dot{V}) = 800 cfm
- Fire Heat Release Rate (\dot{Q}) = 300 kW

Results*

Boundary Material	Hot Layer Gas Temperature (T _g) (°F)			
Boundary Materia	Method of Foote, Pagni & Alvares (FPA)	Method of Deal & Beyler		
Gypsum Board	423	493		

*see spreadsheet on next page at t = 2 min

Version 1805.1 (English Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Title:

Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection

Example 2.16.2-2

RTMENT INFOR	RMATION				
Compartment Width (w _c)	1			12.00 ft	
Compartment Length (I _c)				10.00 ft	
Compartment Height (h _c))			8.00 ft	
Interior Lining Thickness	(ð)			6.00 in	
T CONDITIONS	6				
Ambient Air Temperature	e (T _a)		-	77.00 °F	
Specific Heat of Air (ca)				1.00 kJ/kg-K	
Ambient Air Density (ρ_a)				1.18 kg/m ³	
AL PROPERTIE	S OF COMP	ARTMENT	ENCLOSING	G SURFACE	S
Interior Lining Thermal Ir				0.18 (kW/m ² -K) ² -sec	
Interior Lining Thermal C	,		0.0	00017 kW/m-K	
Interior Lining Specific H			0.0	1.10 kJ/kg-K	
				inoring it	
)			960 kg/m^3	
Interior Lining Density (p)		Ambient Air Tempera	ture (Ţ) Input	960 kg/m ³	
Interior Lining Density (ρ) Note: Air density will aut	tomatically correct with A				1.6
Interior Lining Density (p)	tomatically correct with A				
Interior Lining Density (ρ) Note: Air density will aut	tomatically correct with A S FOR COMI kρc	MON INTER		G MATERIA	Select Material
Interior Lining Density (p) Note: Air density will aut AL PROPERTIE Material	kpc (KW/m ² -K) ² -sec	MON INTER	RIOR LINING c (kJ/kg-K)	G MATERIA	Select Material Gypsum Board 👻
Interior Lining Density (p) Note: Air density will aut AL PROPERTIE Material Aluminum (pure)	kpc (kW/m²-K)²-sec 500	MON INTE k (кW/m-К) 0.206	C (kJ/kg-K) 0.895	β ΜΑΤΕRΙΑ	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (p) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon)	K FOR COMI kpc (kW/m ² -K) ² -sec 500 197	MON INTE k (кW/m-К) 0.206 0.054	C (KJ/kg-K) 0.895 0.465	Ο ΜΑΤΕRΙΑ (kg/m ³) 2710 7850	Select Material Gypsum Board 👻
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete	kpc (KW/m ² -K) ² -sec 500 197 2.9	MON INTER k (kW/m-K) 0.206 0.054 0.0016	C (kJ/kg-K) 0.895 0.465 0.75	G MATERIA (kg/m ³) 2710 7850 2400	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (¢) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick	kpc (kW/m ² -K) ² -sec 500 197 2.9 1.7	k k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.0018	C (KJ/kg-K) 0.895 0.465 0.75 0.8	G MATERIA (kg/m ³) 2710 7850 2400 2600	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (o) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate	kρc kμρc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6	k k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076	C (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8	G MATERIA (kg/m ³) 2710 7850 2400 2600 2710	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block	kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2	k k (kW/m-К) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00073	C (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8	β ΜΑΤΕRΙΑ (kg/m ³) 2710 7850 2400 2600 2710 1900	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board	kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18	MON INTER k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00073 0.00073 0.00017	RIOR LININC c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.84 1.1	G MATERIA (kg/m ³) 2710 7850 2400 2600 2710 1900 960	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood	Kpc KW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16	k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00077 0.00017 0.00012	RIOR LININC c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.84 1.1 2.5	G MATERIA (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board	kpc kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16	k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00076 0.00077 0.00017 0.00012 0.00053 0	C C (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 1.1 2.5 1.25 1.25	C MATERIA (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard	коралісаlly correct with A S FOR COMI (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.15	k k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015 0.0015	C (k,J/kg-K) 0.895 0.465 0.75 0.8 0.84 1.1 2.5 1.25 1.25 1.25	β ΜΑΤΕRΙΑ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete	kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15 0.12	k k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00076 0.00073 0.00017 0.00017 0.00053 0.00015 0.00026 0.00026	C (k,J/kg-K) 0.895 0.465 0.75 0.8 0.84 1.1 2.5 1.25 1.25 0.96	β ΜΑΤΕRΙΑ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard	kpc kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15 0.12 0.12	k (kW/m-K) 0.206 0.054 0.0016 0.00073 0.00017 0.00012 0.00053 0.00015 0.00016	C C (kJ/kg-K) 0.895 0.465 0.75 0.8 0.84 1.1 2.5 1.25 1.25 0.96 0.84	G MATERIA	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board	Kpc Kwww. 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15 0.12 0.12 0.098	k k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00077 0.00017 0.00017 0.00015 0.00015 0.00016 0.00013	C (k,J/kg-K) 0.895 0.465 0.75 0.8 0.84 1.1 2.5 1.25 1.25 0.96	G MATERIA (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board Alumina Silicate Block	kpc kpc (kW/m²-K)²-sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15 0.12 0.12 0.098 0.036	k k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00076 0.00017 0.00012 0.00053 0.00015 0.00026 0.00013 0.00013 0.00014	C (k,J/kg-K) 0.895 0.465 0.75 0.8 0.84 1.1 2.5 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.425 1.12	β ΜΑΤΕRΙΑ (kg/m ³) 2710 7850 2400 2600 2711 1900 960 540 240 800 500 950 700 260	Select Material Gypsum Board Scroll to desired material then
Interior Lining Density (c) Note: Air density will aut AL PROPERTIE Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board	Kpc Kwww. 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.15 0.12 0.12 0.098	k k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00077 0.00017 0.00017 0.00015 0.00015 0.00016 0.00013	C (k,J/kg-K) 0.895 0.465 0.75 0.8 0.84 1.1 2.5 1.25 1.25 0.96 0.84 1.12	G MATERIA (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700	Select Material Gypsum Board Scroll to desired material then

COMPARTMENT MASS VENTILATION FLOW RATE

Forced Ventilation Flow Rate (m)

800.00 cfm

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

Version 1805.1 (English Units)

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-177

$$\Delta T_g/T_a = 0.63(Q/(mc_aT_a))^{0.72}(h_kA_T/(mc_a))^{-0.36}$$

Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

 T_a = ambient air temperature (K)

Q = heat release rate of the fire (kW)

- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries (nf)

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

t_p = 36068.24 sec

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where

 h_k = heat transfer coefficient (kW/m²-K)

- $k\rho c$ = interior construction thermal inertia (kW/m²-K)²-sec
 - (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)
 - See table below for results

Area of Compartment Enclosing Surface Boundaries

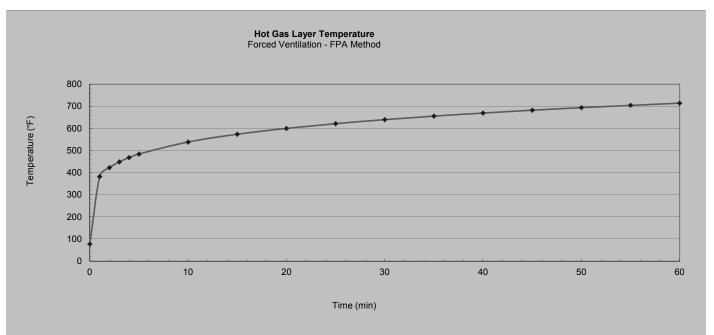
$$A_{T} = 2 (w_{c} \times I_{c}) + 2 (h_{c} \times w_{c}) + 2 (h_{c} \times I_{c})$$
Where
$$A_{T} = \text{ total area of the compartment enclosing surface boundaries } (n^{2})$$

$$w_{c} = \text{ compartment width } (m)$$

$$I_{c} = \text{ compartment length } (m)$$

$$h_{c} = \text{ compartment height } (m)$$

 $A_{T} = 55.00 \text{ m}^2$


Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_g/T_a = 0.63(Q/(mc_pT_a))^{0.72}(h_kA_T/(mc_p))^{-0.36}$$

$$\Delta T_g = T_g - T_a$$

$$T_g = \Delta T_g + T_a$$

Version 1805.1 (English Units)

Time After Ig	nition (t)	h _k	$\Delta T_g/T_a$	∆Tg	Τ _g	Tg	Tg
(min)	(sec)	(kW/m ² -K)	-	(K)	(K)	(°C)	(°F)
0	0	-	-	-	298.00	25.00	77.00
1	60	0.05	0.57	169.45	467.45	194.45	382.01
2	120	0.04	0.64	191.97	489.97	216.97	422.54
3	180	0.03	0.69	206.50	504.50	231.50	448.71
4	240	0.03	0.73	217.48	515.48	242.48	468.46
5	300	0.02	0.76	226.39	524.39	251.39	484.50
10	600	0.02	0.86	256.47	554.47	281.47	538.65
15	900	0.01	0.93	275.89	573.89	300.89	573.61
20	1200	0.01	0.98	290.56	588.56	315.56	600.00
25	1500	0.01	1.01	302.46	600.46	327.46	621.44
30	1800	0.01	1.05	312.56	610.56	337.56	639.60
35	2100	0.01	1.08	321.35	619.35	346.35	655.43
40	2400	0.01	1.10	329.17	627.17	354.17	669.50
45	2700	0.01	1.13	336.22	634.22	361.22	682.20
50	3000	0.01	1.15	342.66	640.66	367.66	693.78
55	3300	0.01	1.17	348.59	646.59	373.59	704.46
60	3600	0.01	1.19	354.09	652.09	379.09	714.36

Version 1805.1 (English Units)

METHOD OF DEAL AND BEYLER

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-178.

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining heat capacity (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)
- $t_p = 36068.2391 \text{ sec}$

Heat Transfer Coefficient Calculation

$$h_k = 0.4 \sqrt{(k\rho c/t)}$$
 for $t < t_p$ or $0.4(k/\delta)$ for $t > t_p$

Where

- h_k = heat transfer coefficient (kW/m²-K)
- $k\rho c$ = interior construction thermal inertia (kW/m²-K)²-sec
- (a thermal property of material responsible for the rate of temperature rise)
- δ = thickness of interior lining (m)
 - See table below for results

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = 2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})$$
$$A_{T} = 55.00 \text{ m}^{2}$$

Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_g = Q / (mc_a + h_k A_T)$$

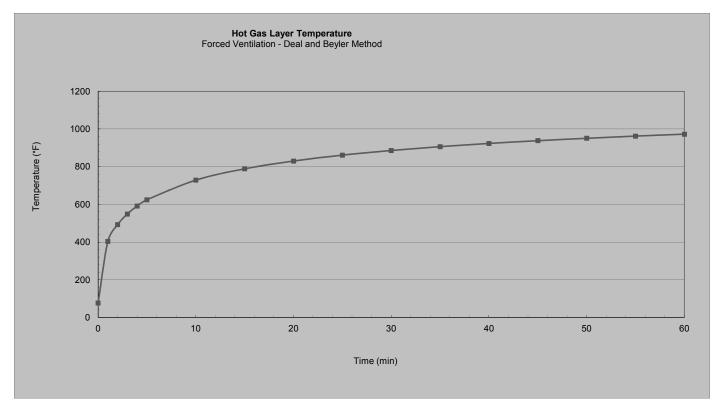
Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

 T_a = ambient air temperature (K)

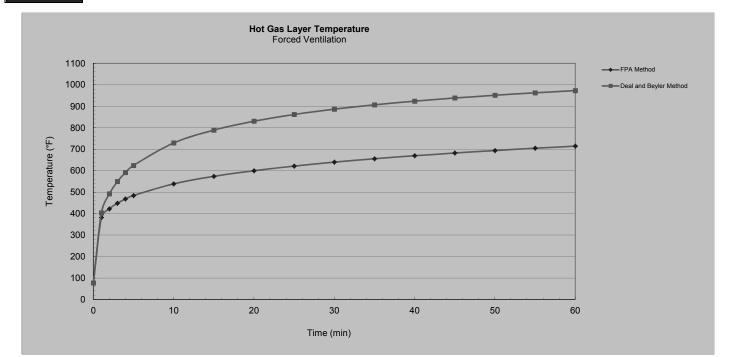
Q = heat release rate of the fire (kW)

m = compartment mass ventilation flow rate (kg/sec)


 c_a = specific heat of air (kJ/kg-K)

- h_k = convective heat transfer coefficient (kW/m²-K)
- A_{T} = total area of the compartment enclosing surface boundaries (m²)

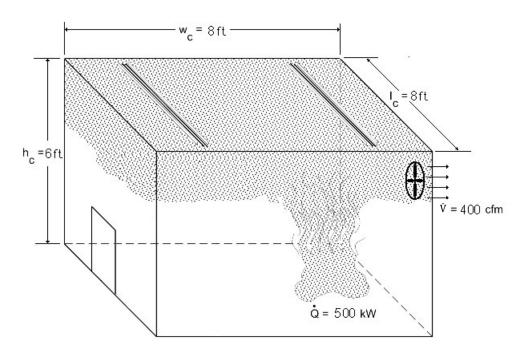
Version 1805.1 (English Units)


Time After	r Ignition (t)	h _k	ΔTg	Tg	Тg	Tg
(min)	(sec)	(kW/m ² -K)	(K)	(K)	(°C)	(°F)
0	0	-	-	298.00	25.00	77.00
1	60	0.02	181.58	479.58	206.58	403.84
2	120	0.02	230.90	528.90	255.90	492.62
3	180	0.01	262.48	560.48	287.48	549.47
4	240	0.01	285.79	583.79	310.79	591.42
5	300	0.01	304.22	602.22	329.22	624.60
10	600	0.01	362.20	660.20	387.20	728.95
15	900	0.01	395.59	693.59	420.59	789.06
20	1200	0.00	418.60	716.60	443.60	830.48
25	1500	0.00	435.90	733.90	460.90	861.62
30	1800	0.00	449.62	747.62	474.62	886.31
35	2100	0.00	460.89	758.89	485.89	906.60
40	2400	0.00	470.39	768.39	495.39	923.71
45	2700	0.00	478.57	776.57	503.57	938.43
50	3000	0.00	485.71	783.71	510.71	951.28
55	3300	0.00	492.03	790.03	517.03	962.66
60	3600	0.00	497.68	795.68	522.68	972.82

Version 1805.1 (English Units)

Summary of Results

NOTE:


The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prep	ared by:]	Date:]	Organization:	
Che	cked by:	ב	Date:]	Organization:	
Additiona	al Information:					

Problem 2.16.2-3

Problem Statement

Consider a compartment that is 8 ft wide x 8 ft long x 6 ft high ($w_c x l_c x h_c$). The compartment boundaries are made of 0.75 ft thick brick. The forced ventilation rate is 400 cfm (exhaust). Calculate the hot gas layer temperature in the compartment for a fire size of 500 kW at 2 minutes.

Example Problem 2-6: Compartment with Forced Ventilation

Solution

Purpose:

(1) Determine the hot gas layer temperature in the compartment (T_g) at t = 2 min after ignition.

Assumptions:

- (1) Air properties (ambient) at 77 °F
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls
- (6) The bottom of the vent is at the floor level
- (7) The compartment is open to the outside at the inlet (pressure = 1 atm)

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 02.2_Temperature_FV_Sup1.xls

Note: The spreadsheet has two different methods for calculating the hot gas layer temperature. We are going to use both methods to compare values.

FDT^s Input Parameters:

- Compartment Width (w_c) = 8 ft
- Compartment Length $(I_c) = 8$ ft
- Compartment Height (h_c) = 6 ft
- Interior Lining Thickness (δ) = 9 in
- Ambient Air Temperature $(T_a) = 77$ °F
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Brick on the FDT^s
- Compartment Ventilation Rate (\dot{V}) = 400 cfm
- Fire Heat Release Rate (\dot{Q}) = 500 kW

Results*

Boundary Matorial	Hot Layer Gas Temperature (T _g) (°F)			
Boundary Material	Method of Foote, Pagni & Alvares (FPA)	Method of Deal & Beyler		
Brick	611	626		

*see spreadsheet on next page at t = 2 min.

Version 1805.1 (English Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Title:

Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection

Example 2.16.2-3

INPUT PARAMETERS

COMPAR	RTMENT INFOR	MATION				
	Compartment Width (w _c)				8.00 ft	
	Compartment Length (I _c)				8.00 ft	
	Compartment Height (h _c)				6.00 ft	
	Interior Lining Thickness (a	δ)			9.00 in	
	0 (,				
	CONDITIONS					
	Ambient Air Temperature	(T.)		7	7.00 °F	
	Ambient Air Temperature	(1 _a)		1	7.00 F	
	Specific Heat of Air (c _a)				1.00 kJ/kg-K	
	Ambient Air Density (ρ_a)				1.18 kg/m ³	
						<u>.</u>
IHERMA	L PROPERTIES	S OF COMPA	ARIMENIE	NCLOSING		
	Interior Lining Thermal Ine	ertia (kpc)			1.7 (kW/m ² -K) ² -sec	
	Interior Lining Thermal Co	nductivity (k)		0.0	0008 kW/m-K	
	Interior Lining Specific Hea	at (c _p)			0.80 kJ/kg-K	
	Interior Lining Density (p)			2	2600 kg/m ³	
	Note: Air density will auto	matically correct with A	mbient Air Temperatur			
	-					
TUEDMA						2
THERMA	L PROPERTIES					
THERMA		kρc	k	С	ρ	Select Material
THERMA	Material	kρc (kW/m²-K)²-sec	k (kW/m-K)	c (kJ/kg-K)	ρ (kg/m³)	Select Material Brick
THERMA	Material Aluminum (pure)	kρc	k (kW/m-K) 0.206	c (kJ/kg-K) 0.895	ρ (kg/m³) 2710	Select Material Brick Scroll to desired material then
THERMA	Material	kρc (kW/m ² -K) ² -sec 500 197	k (kW/m-K) 0.206 0.054	c (kJ/kg-K) 0.895 0.465	ρ (kg/m ³) 2710 7850	Select Material Brick
THERMA	Material Aluminum (pure)	kρc (kW/m ² -K) ² -sec 500 197 2.9	k (kW/m-K) 0.206	c (kJ/kg-K) 0.895 0.465 0.75	ρ (kg/m³) 2710	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7	k (kW/m-K) 0.206 0.054 0.0016 0.0008	c (kJ/kg-K) 0.895 0.465 0.75 0.8	ρ (kg/m ³) 2710 7850 2400 2600	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6	k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.0008	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8	ρ (kg/m ³) 2710 7850 2400 2600 2710	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2	k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00076	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18	k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00073	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.84 1.1	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16	k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00017 0.00012	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 1.1 2.5	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16	k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00017 0.00012 0.00053	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.84 1.1 2.5 1.25	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard	kpc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.15	k (kW/m-K) 0.206 0.054 0.0008 0.00076 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 1.1 2.5 1.25 1.25 1.25	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.15 0.12	k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015 0.00015 0.00026	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.84 1.1 2.5 1.25 1.25 1.25 0.96	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.16 0.15 0.12 0.12	k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00076 0.00073 0.00017 0.00012 0.00015 0.00015 0.00026 0.00016	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 1.1 2.5 1.25 1.25 1.25 0.96 0.84	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.16 0.15 0.12 0.12 0.12 0.098	k (kW/m-K) 0.206 0.054 0.0016 0.00073 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015 0.00015 0.00016 0.00016 0.00013	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.84 1.1 2.5 1.25 1.25 1.25 0.96	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board Alumina Silicate Block	kpc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.16 0.15 0.12 0.12 0.098 0.036	k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015 0.00026 0.00016 0.00013 0.00014	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8 1.1 2.5 1.25 1.25 1.25 1.25 0.96 0.84 1.12 1	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700 260	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board Alumina Silicate Block Glass Fiber Insulation	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.16 0.15 0.12 0.12 0.12 0.098	k (kW/m-K) 0.206 0.054 0.0016 0.00073 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015 0.00015 0.00016 0.00016 0.00013	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.84 1.1 2.5 1.25 1.25 1.25 0.96 0.84 1.12 1 0.8	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board Alumina Silicate Block	kpc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.15 0.12 0.12 0.098 0.036 0.0018	k (kW/m-K) 0.206 0.054 0.0016 0.0008 0.00076 0.00073 0.00017 0.00012 0.00053 0.00015 0.00015 0.00015 0.00016 0.00013 0.00014 0.000037	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.8 0.8 1.1 2.5 1.25 1.25 1.25 1.25 0.96 0.84 1.12 1	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700 260 60	Select Material Brick Scroll to desired material then
THERMA	Material Aluminum (pure) Steel (0.5% Carbon) Concrete Brick Glass, Plate Brick/Concrete Block Gypsum Board Plywood Fiber Insulation Board Chipboard Aerated Concrete Plasterboard Calcium Silicate Board Alumina Silicate Block Glass Fiber Insulation Expanded Polystyrene	kρc (kW/m ² -K) ² -sec 500 197 2.9 1.7 1.6 1.2 0.18 0.16 0.16 0.16 0.15 0.12 0.12 0.12 0.098 0.036 0.0018 0.001 Enter Value	k (kW/m-K) 0.206 0.054 0.0016 0.00076 0.00076 0.00073 0.00017 0.00012 0.00015 0.00015 0.00026 0.00016 0.00013 0.00014 0.000037 0.000034 Enter Value	c (kJ/kg-K) 0.895 0.465 0.75 0.8 0.8 0.8 0.84 1.1 2.5 1.25 1.25 1.25 0.96 0.84 1.12 1 0.8 1.5	ρ (kg/m ³) 2710 7850 2400 2600 2710 1900 960 540 240 800 500 950 700 260 60 20	Select Material Brick Scroll to desired material then

COMPARTMENT MASS VENTILATION FLOW RATE

Forced Ventilation Flow Rate (m)

400.00 cfm

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

Version 1805.1 (English Units)

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-177

$$\Delta T_g/T_a = 0.63(Q/(mc_aT_a))^{0.72}(h_kA_T/(mc_a))^{-0.36}$$

Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

 T_a = ambient air temperature (K)

Q = heat release rate of the fire (kW)

m = compartment mass ventilation flow rate (kg/sec)

c_a = specific heat of air (kJ/kg-K)

 h_k = convective heat transfer coefficient (kW/m²-K)

 A_T = total area of the compartment enclosing surface boundaries (m²)

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

t_p = 33967.67 sec

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where

 h_k = heat transfer coefficient (kW/m²-K)

- $k\rho c$ = interior construction thermal inertia (kW/m²-K)²-sec
 - (a thermal property of material responsible for the rate of temperature rise) $t = \mbox{time}$ after ignition (sec)

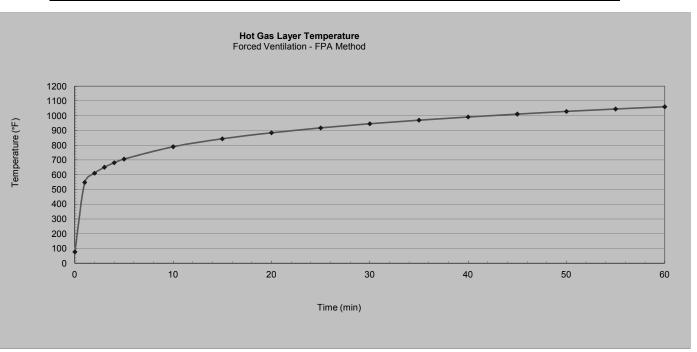
See table below for results

Area of Compartment Enclosing Surface Boundaries

$$\mathbf{A}_{T} = 2 \left(w_{c} \ge \mathbf{I}_{c} \right) + 2 \left(h_{c} \ge w_{c} \right) + 2 \left(h_{c} \ge \mathbf{I}_{c} \right)$$

 Where
 $A_{T} = \text{ total area of the compartment enclosing surface boundaries } (n^{2})$
 $w_{c} = \text{ compartment width } (m)$
 $I_{c} = \text{ compartment length } (m)$
 $h_{c} = \text{ compartment height } (m)$
 $A_{T} = 29.73 \text{ m}^{2}$

.


Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_g/T_a = 0.63(Q/(mc_pT_a))^{0.72}(h_kA_T/(mc_p))^{-0.36}$$

$$\Delta T_g = T_g - T_a$$

$$T_g = \Delta T_g + T_a$$

Version 1805.1 (English Units)

Time After Ig	nition (t)	h _k	∆T _g /T _a	ΔT _g	Τ _g	Tg	Tg
(min)	(sec)	(kW/m ² -K)	-	(K)	(K)	(°C)	(°F)
0	0	-	-	-	298.00	25.00	77.00
1	60	0.17	0.88	261.70	559.70	286.70	548.05
2	120	0.12	0.99	296.47	594.47	321.47	610.65
3	180	0.10	1.07	318.92	616.92	343.92	651.05
4	240	0.08	1.13	335.87	633.87	360.87	681.56
5	300	0.08	1.17	349.63	647.63	374.63	706.34
10	600	0.05	1.33	396.09	694.09	421.09	789.97
15	900	0.04	1.43	426.08	724.08	451.08	843.95
20	1200	0.04	1.51	448.73	746.73	473.73	884.71
25	1500	0.03	1.57	467.12	765.12	492.12	917.81
30	1800	0.03	1.62	482.70	780.70	507.70	945.86
35	2100	0.03	1.67	496.28	794.28	521.28	970.31
40	2400	0.03	1.71	508.36	806.36	533.36	992.04
45	2700	0.03	1.74	519.25	817.25	544.25	1011.65
50	3000	0.02	1.78	529.19	827.19	554.19	1029.54
55	3300	0.02	1.81	538.35	836.35	563.35	1046.02
60	3600	0.02	1.84	546.84	844.84	571.84	1061.32

Version 1805.1 (English Units)

METHOD OF DEAL AND BEYLER

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-178.

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining heat capacity (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

t_p = 33967.674 sec

Heat Transfer Coefficient Calculation

$$h_k = 0.4 \sqrt{(k\rho c/t)}$$
 for $t < t_p$ or $0.4(k/\delta)$ for $t > t_p$

Where

- h_k = heat transfer coefficient (kW/m²-K)
- $k\rho c$ = interior construction thermal inertia (kW/m²-K)²-sec
- (a thermal property of material responsible for the rate of temperature rise)
- δ = thickness of interior lining (m)
 - See table below for results

Area of Compartment Enclosing Surface Boundaries

$$A_T = 2(w_c x l_c) + 2(h_c x w_c) + 2(h_c x l_c)$$

 $A_T = 29.73 m^2$

Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_g = Q / (mc_a + h_k A_T)$$

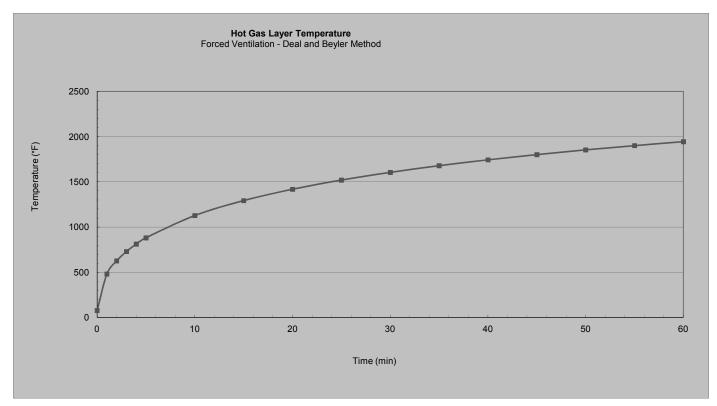
Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

 T_a = ambient air temperature (K)

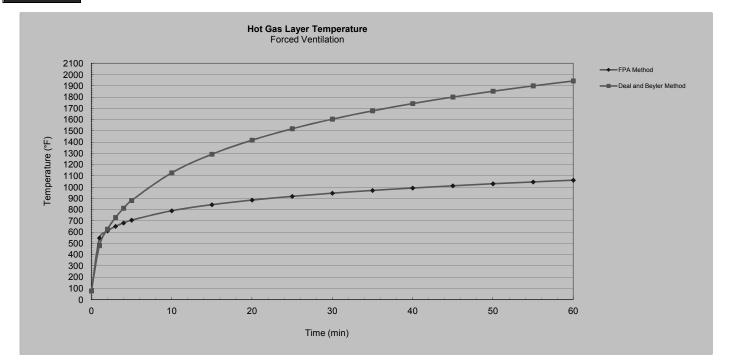
Q = heat release rate of the fire (kW)

m = compartment mass ventilation flow rate (kg/sec)


 c_a = specific heat of air (kJ/kg-K)

- h_k = convective heat transfer coefficient (kW/m²-K)
- A_{T} = total area of the compartment enclosing surface boundaries (m²)

Version 1805.1 (English Units)

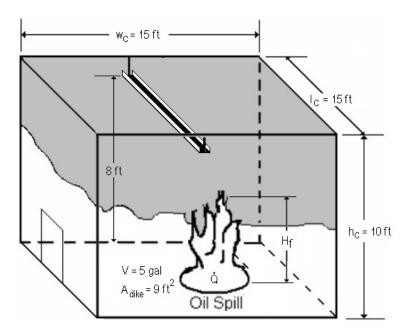

Time After	r Ignition (t)	h _k	ΔTg	Tg	Tg	Tg
(min)	(sec)	(kW/m ² -K)	(K)	(K)	(°C)	(°F)
0	0	-	-	298.00	25.00	77.00
1	60	0.07	224.69	522.69	249.69	481.44
2	120	0.05	305.06	603.06	330.06	626.11
3	180	0.04	362.51	660.51	387.51	729.52
4	240	0.03	408.35	706.35	433.35	812.03
5	300	0.03	446.91	744.91	471.91	881.44
10	600	0.02	583.70	881.70	608.70	1127.67
15	900	0.02	675.27	973.27	700.27	1292.48
20	1200	0.02	744.93	1042.93	769.93	1417.87
25	1500	0.01	801.34	1099.34	826.34	1519.42
30	1800	0.01	848.79	1146.79	873.79	1604.83
35	2100	0.01	889.74	1187.74	914.74	1678.53
40	2400	0.01	925.74	1223.74	950.74	1743.33
45	2700	0.01	957.84	1255.84	982.84	1801.11
50	3000	0.01	986.78	1284.78	1011.78	1853.21
55	3300	0.01	1013.12	1311.12	1038.12	1900.62
60	3600	0.01	1037.27	1335.27	1062.27	1944.09

Version 1805.1 (English Units)

Summary of Results

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.


Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

3.11 Problems

Example Problem 3.11-1

Problem Statement

A pool fire scenario arises from a breach (leak or rupture) in an auxiliary cooling water pump oil tank. This event allows the fuel contents of the pump to spill and spread over the compartment floor. A 5 gallon, 9.0 ft² surface area spill of flammable liquid (lubricating oil) leads to consideration of a pool fire in a compartment with a concrete floor. The fuel is ignited and spreads rapidly over the surface, reaching steady burning almost instantly. Compute the HRR, burning duration, and flame height of the pool fire. The dimensions of the compartment are 15 ft wide x 15 ft deep x 10 ft high. The cable tray is located 8 ft above the pool fire. Determine whether the flame will impinge upon the cable tray. Assume instantaneous and complete involvement of the liquid pool with no fire growth and no intervention by the plant fire department or automatic suppression systems.

Example Problem 3-1: Compartment with Pool Fire

Solution

Purpose:

- (1) Determine the Heat Release Rate (HRR) of the fire source.
- (2) Determine the burning duration of the pool fire.
- (3) Determine the flame height of the pool fire.
- (4) Determine whether the flame will impinge upon the cable tray.

Assumptions:

- (1) Instantaneous and complete involvement of the liquid in the pool fire
- (2) The pool fire is burning in the open
- (3) No fire growth period (instantaneous HRR_{max})
- (4) The pool is circular or nearly circular and contains a fixed mass of liquid volume
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 03_HRR_Flame_Height_Burning_Duration_Calculations_Sup1.xls

FDT^s Input Parameter:

- Fuel Spill Volume (V) = 5 gallons Fuel Spill Area or Dike Area (A_{dike}) = 9.0 ft²
- Select Fuel Type: Lube Oil

Results*

Heat Release Rate	Burning Duration (t _b)	Pool Fire Flame Height (H (ft)	
(HRR) (Ợ) kW (Btu/sec)	(min.)	Method of Heskestad	Method of Thomas
772 (731)	7.35	7.6	8.75

*see spreadsheet on next page

Both methods for pool fire flame height estimation show that pool fire flames will impinge upon the cable tray.

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 3.11-1

INPUT PARAMETERS

Gravitational Acceleration (g) Ambient Air Density (ρ_a)

5.00 gallons 9.00 ft² 0.039 kg/m²-sec 46000 kJ/kg 760 kg/m³ 0.7 m⁻¹ 77.00 °F 9.81 m/sec² 9.81 kg/m³

Note: Air density will automatically correct with Ambient Air Temperature (1a) Input

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Density	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	ρ (kg/m ³)	$k\beta$ (m ⁻¹)	Lube Oil
Methanol	0.017	20,000	796	100	SCrOII to desired fuel typ
Ethanol	0.015	26,800	794	100	Click on selection
Butane	0.078	45,700	573	2.7	
Benzene	0.085	40,100	874	2.7	
Hexane	0.074	44,700	650	1.9	
Heptane	0.101	44,600	675	1.1	
Xylene	0.09	40,800	870	1.4	
Acetone	0.041	25,800	791	1.9	
Dioxane	0.018	26,200	1035	5.4	
Diethy Ether	0.085	34,200	714	0.7	
Benzine	0.048	44,700	740	3.6	
Gasoline	0.055	43,700	740	2.1	
Kerosine	0.039	43,200	820	3.5	
Diesel	0.045	44,400	918	2.1	
JP-4	0.051	43,500	760	3.6	
JP-5	0.054	43,000	810	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	760	0.7	
561 Silicon Transformer Fluid	0.005	28,100	960	100	
Fuel Oil, Heavy	0.035	39,700	970	1.7	
Crude Oil	0.0335	42,600	855	2.8	
Lube Oil	0.039	46,000	760	0.7	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-26.

Version 1805.1 (English Units)

ESTIMATING POOL FIRE HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 $DH_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

 A_{f} = A_{dike} = surface area of pool fire (area involved in vaporization) (r^2)

kb = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

Where Adike = surface area of pool fire (m²) D = pool fire diameter (m)

 $D = \sqrt{(4A_{dike}/\pi)}$

D = 1.032 m

Heat Release Rate Calculation (Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

Q = m"
$$\Delta H_{c,eff}$$
 (1-e^{-k β D}) A_{dike}
Q = 731.26 Btu/sec 771.52 kW

ESTIMATING POOL FIRE BURNING DURATION

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-197.

$$t_b = 4V / \pi D^2 v$$

Where

- t_{b} = burning duration of pool fire (sec)
- V = volume of liquid (m^3)
- D = pool diameter (m)
- v = regression rate (m/sec)

Calculation for Regression Rate

$$v = m''/\rho$$

Where

v = regression rate (m/sec)

m" = mass burning rate of fuel (kg/m²-sec)

 ρ = liquid fuel density (kg/m³)

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

7.35 minutes

Note that a liquid pool fire with a given amount of fuel can burn for long periods of time over small area or for short periods of time over a large area.

Version 1805.1 (English Units)

ESTIMATING POOL FIRE FLAME HEIGHT

METHOD OF HESKESTAD

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 2-10.

Where

- H_f = pool fire flame height (m)
- Q = pool fire heat release rate (kW)
- D = pool fire diameter (m)

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

H_f = 7.56 ft 2.31 m

METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-204.

Where

- H_f = pool fire flame height (m)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ρ_a = ambient air density (kg/m³)
- D = pool fire diameter (m)
- g = gravitational acceleration (m/sec²)

Pool Fire Flame Height Calculation

 $H_f = 42 D (m''/(\rho_a \sqrt{(g D))})^{0.61}$

H_f = 8.75 ft 2.67 m

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

Heat Release Rate Calculation

(Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

Method of Thomas

 $H_f = 42 D (m''/(\rho_a \sqrt{(g D))})^{0.61}$

 $Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$

Answer Q= 731.26 Btu/sec 771.52 kW

Burning Duration Calculation

$$t_{\rm b} = 4V/\pi D^2 v$$

Flame Height Calculation

Method of Heskestad

 $H_f = 0.235 Q^{2/5} - 1.02 D$

Answer METHOD OF HESKESTAD 7.56 ft METHOD OF THOMAS 8.75 ft

ESTIMATING POOL FIRE RESULTS FOR RANDOM SIZE SPILLS USING INPUT PARAMETERS

Area (ft ²)	Area (m ²)	Diameter (m)	Q (kW)	t _b (sec)	H _f (ft) (Heskestad)	H _f (ft) (Thomas)
1	0.09	0.34	35.66	3969.67	2.07	4.08
2	0.19	0.49	96.19	1984.84	3.16	5.19
3	0.28	0.60	170.49	1323.22	4.03	5.97
4	0.37	0.69	254.77	992.42	4.77	6.60
5	0.46	0.77	346.90	793.93	5.43	7.13
6	0.56	0.84	445.52	661.61	6.02	7.60
7	0.65	0.91	549.63	567.10	6.57	8.02
8	0.74	0.97	658.49	496.21	7.08	8.40
9	0.84	1.03	771.52	441.07	7.56	8.75
10	0.93	1.09	888.26	396.97	8.01	9.07
11	1.02	1.14	1008.32	360.88	8.44	9.38
12	1.11	1.19	1131.38	330.81	8.85	9.67
13	1.21	1.24	1257.17	305.36	9.24	9.94
14	1.30	1.29	1385.45	283.55	9.62	10.20
15	1.39	1.33	1516.02	264.64	9.97	10.45
20	1.86	1.54	2197.59	198.48	11.60	11.55
25	2.32	1.72	2916.42	158.79	12.99	12.48
50	4.65	2.43	6814.63	79.39	18.19	15.87
75	6.97	2.98	10946.20	52.93	21.86	18.28
100	9.29	3.44	15166.14	39.70	24.75	20.20

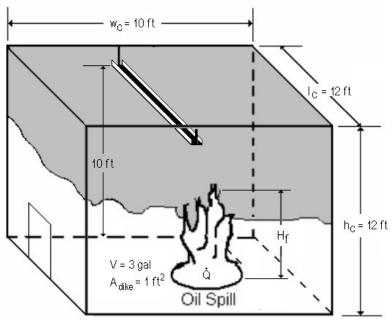
Caution! The purpose of this random spill size chart is to aid the user in evaluating the hazard of random sized spills. Please note that the calculation does not take into account the viscosity or volatility of the liquid, or the absorptivity of the surface. The results generated for small volume spills over large areas should be used with

NOTE:

The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared	by:	

Date: Date:


Organization:

Checked by:

Example Problem 3.11-2

Problem Statement

A standby diesel generator (SBDG) room in a power plant has a 3 gallon spill of diesel fuel over a 1 ft² dike area. This event allows the diesel fuel to form a pool. The diesel is ignited and fire spreads rapidly over the surface, reaching steady burning almost instantly. Compute the HRR, burning duration, and flame height of the pool fire. The dimensions of the compartment are 10 ft wide x 12 ft deep x 12 ft high. The cable tray is located 10 ft above the pool fire. Determine whether flame will impinge upon the cable tray. Also, determine the minimum area required of the pool fire for the flame to impinge upon the cable tray. Assume instantaneous, complete involvement of the liquid pool with no fire growth and no intervention by plant fire department or automatic suppression.

Example Problem 3-2: Compartment with Pool Fire

Solution

Purpose:

- (1) Determine the Heat Release Rate (HRR) of the fire source.
- (2) Determine the burning duration of the pool fire.
- (3) Determine the flame height of the pool fire.
- (4) Determine whether the flame will impinge upon the cable tray.
- (5) Determine the minimum dike area required for the flame to impinge upon the cable tray.

Assumptions:

- (1) Instantaneous and complete involvement of the liquid in the pool fire
- (2) The pool fire is burning in the open
- (3) No fire growth period (instantaneous HRR_{max})
- (4) The pool is circular or nearly circular and contains a fixed mass of liquid volume
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s: (a) 03_HRR_Flame_Height_Burning_Duration_Calculations_Sup1.xls

FDT^s Input Parameter:

- Fuel Spill Volume (V) = 3 gallons
- Fuel Spill Area or Dike Area (A_{dike}) = 1.0 ft²
- Select Fuel Type: Diesel

Results*

Heat Release Rate (HRR) (Ø)	Burning	Pool Fire Flame Height (H _f) (ft)	
kW (Btu/sec)	Duration (t₀) (min.)	Method of Heskestad	Method of Thomas
95 (90)	42	3.6	4.5

*see spreadsheet on next page

Both methods for pool fire flame height estimation show that the pool fire flame will not impinge the cable tray.

To determine the minimum dike area required for the flame to impinge upon the cable tray, the user must substitute different values for the area in the spreadsheet until we obtain a flame height value of 10 ft (cable tray height). The user must keep the input values used for the previous results, and change only the area value. This trial and error procedure is shown in the following table.

Trial	A _{dike} (ft ²)	Pool Fire Flame Height (H _f) (ft)	
	(11)	Method of Heskestad	Method of Thomas
1	7	9.7	8.8
2	8	10.3	9.2
3	9	10.8	9.6

To be conservative, we are going to consider the method that gets the first 10 ft flame height. The method of Heskestad tells that the pool fire flame will impinge upon the cable tray if the dike area is 7.6 ft². For practical purposes, we could say that a spill pool area around 7 to 8 ft² would be a risk for the cable tray integrity.

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 3.11-2

3.00 gallons

1.00 ft² 0.045 kg/m²-sec

44400 kJ/kg 918 kg/m³

2.1 m⁻¹

77.00 °F

9.81 m/sec² 1.18 kg/m³

INPUT PARAMETERS

Gravitational Acceleration (g) Ambient Air Density (ρ_a)

Note: Air density will automatically correct with Ambient Air Temperature (1) Input

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Density	Empirical Constant	Select Fuel Type
Fuei	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	ρ (kg/m ³)	$k\beta$ (m ⁻¹)	Diesel
Methanol	0.017	20,000	796	100	SCrOII to desired fuel typ
Ethanol	0.015	26,800	794	100	Click on selection
Butane	0.078	45,700	573	2.7	
Benzene	0.085	40,100	874	2.7	
Hexane	0.074	44,700	650	1.9	
Heptane	0.101	44,600	675	1.1	
Xylene	0.09	40,800	870	1.4	
Acetone	0.041	25,800	791	1.9	
Dioxane	0.018	26,200	1035	5.4	
Diethy Ether	0.085	34,200	714	0.7	
Benzine	0.048	44,700	740	3.6	
Gasoline	0.055	43,700	740	2.1	
Kerosine	0.039	43,200	820	3.5	
Diesel	0.045	44,400	918	2.1	
JP-4	0.051	43,500	760	3.6	
JP-5	0.054	43,000	810	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	760	0.7	
561 Silicon Transformer Fluid	0.005	28,100	960	100	
Fuel Oil, Heavy	0.035	39,700	970	1.7	
Crude Oil	0.0335	42,600	855	2.8	
Lube Oil	0.039	46,000	760	0.7	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-26.

Version 1805.1 (English Units)

ESTIMATING POOL FIRE HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 $DH_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

 A_{f} = A_{dike} = surface area of pool fire (area involved in vaporization) (n^{\prime})

kb = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

Where Adike = surface area of pool fire (m²) D = pool fire diameter (m)

$$D = \sqrt{(4A_{dike}/\pi)}$$

D= 0.344 m

Heat Release Rate Calculation (Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

Q = m"
$$\Delta H_{c,eff}$$
 (1-e^{-k β D}) A_{dike}
Q = 90.49 Btu/sec 95.47 kW

ESTIMATING POOL FIRE BURNING DURATION

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-197.

$$\mathbf{t}_{\mathrm{b}} = \mathbf{4}\mathbf{V} / \pi \mathbf{D}^2 \mathbf{v}$$

Where

- t_{b} = burning duration of pool fire (sec)
- V = volume of liquid (m^3)
- D = pool diameter (m)
- v = regression rate (m/sec)

Calculation for Regression Rate

$$v = m''/\rho$$

Where

- v = regression rate (m/sec)
 - m" = mass burning rate of fuel (kg/m²-sec)

 ρ = liquid fuel density (kg/m³)

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

41.56 minutes

Note that a liquid pool fire with a given amount of fuel can burn for long periods of time over small area or for short periods of time over a large area.

Version 1805.1 (English Units)

ESTIMATING POOL FIRE FLAME HEIGHT

METHOD OF HESKESTAD

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 2-10.

Where

- H_f = pool fire flame height (m)
- Q = pool fire heat release rate (kW)
- D = pool fire diameter (m)

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

H_f = 3.62 ft 1.10 m

METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-204.

Where

- H_f = pool fire flame height (m)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ρ_a = ambient air density (kg/m³)
- D = pool fire diameter (m)
- g = gravitational acceleration (m/sec²)

Pool Fire Flame Height Calculation

 $H_f = 42 D (m''/(\rho_a \sqrt{(g D))})^{0.61}$

H_f = 4.45 ft 1.36 m

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

Summary of Results	
--------------------	--

Heat Release Rate Calculation

(Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

Method of Thomas

 H_{f} = 42 D (m"/($\rho_{a} \sqrt{(g D)})$)^{0.61}

 $Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$

Answer Q= 90.49 Btu/sec 95.47 kW

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

Answer t_b= 2493.37 sec 41.56 minutes

Flame Height Calculation

Method of Heskestad

 $H_f = 0.235 Q^{2/5} - 1.02 D$

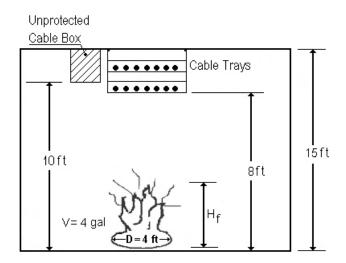
Answer	METHOD OF HESKESTAD	3.62 ft	
	METHOD OF THOMAS	4 45 ft	

ESTIMATING POOL FIRE RESULTS FOR RANDOM SIZE SPILLS USING INPUT PARAMETERS

Area (ft ²)	Area (m ²)	Diameter (m)	Q (kW)	t _b (sec)	H _f (ft) (Heskestad)	H _f (ft) (Thomas)
1	0.09	0.34	95.47	2493.37	3.62	4.45
2	0.19	0.49	237.56	1246.69	5.25	5.66
3	0.28	0.60	397.47	831.12	6.45	6.52
4	0.37	0.69	567.36	623.34	7.44	7.20
5	0.46	0.77	743.51	498.67	8.28	7.78
6	0.56	0.84	923.86	415.56	9.02	8.29
7	0.65	0.91	1107.11	356.20	9.68	8.75
8	0.74	0.97	1292.42	311.67	10.28	9.16
9	0.84	1.03	1479.22	277.04	10.84	9.55
10	0.93	1.09	1667.09	249.34	11.35	9.90
11	1.02	1.14	1855.75	226.67	11.83	10.24
12	1.11	1.19	2044.96	207.78	12.28	10.55
13	1.21	1.24	2234.57	191.80	12.71	10.85
14	1.30	1.29	2424.46	178.10	13.11	11.13
15	1.39	1.33	2614.53	166.22	13.49	11.40
20	1.86	1.54	3565.55	124.67	15.17	12.60
25	2.32	1.72	4515.13	99.73	16.58	13.61
50	4.65	2.43	9224.83	49.87	21.58	17.32
75	6.97	2.98	13894.78	33.24	25.04	19.94
100	9.29	3.44	18548.48	24.93	27.79	22.04

Caution! The purpose of this random spill size chart is to aid the user in evaluating the hazard of random sized spills. Please note that the calculation does not take into account the viscosity or volatility of the liquid, or the absorptivity of the surface. The results generated for small volume spills over large areas should be used with

NOTE:


The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 3.11-3

Problem Statement

In one NPP, it was important to determine whether a fire involving a 4 gallon spill of lubricating oil from an auxiliary feed water (AFW) pump could cause damage to an unprotected electrical cable pull box and cable trays. The unprotected pull box and cable trays were located 10 ft and 8 ft above the AFW pump, respectively. The pump room had a floor area of 20 ft x 20 ft and a ceiling height of 15 ft with a vent opening of 5 ft x 15 ft. Compute the HRR, burning duration, and flame height of the pool fire with a diameter of 4 ft. The lowest cable tray is located 8 ft above the pool. Determine whether flame will impinge upon the cable tray or cable pull box. Assume instantaneous, complete involvement of the liquid pool with no fire growth and no intervention by the plant fire department or automatic suppression systems.

Example 3-3: Compartment with Pool Fire

Solution

Purpose:

- (1) Determine the Heat Release Rate (HRR) of the fire source.
- (2) Determine the burning duration of the pool fire.
- (3) Determine the flame height of the pool fire.
- (4) Determine whether the flame will impinge upon the cable tray or cable pull box.

Assumptions:

- (1) Instantaneous and complete involvement of the liquid in the pool fire
- (2) The pool fire is burning in the open
- (3) No fire growth period (instantaneous HRR_{max})
- (4) The pool is circular or nearly circular and contains a fixed mass of liquid volume
- (5) The fire is located at the center of the compartment or away from the walls

Pre FDT^s Calculations:

The input parameters of the FDT^s assigned for this problem are the fuel spill volume, dike area and fuel material. As we can see, the problem statement does not give the dike area but the pool diameter is given. The dike area can be obtained from the formula of the area of a circle, since we assume that the pool has circular shape.

$$A_{dike} = \frac{\pi}{4} D^2 = \frac{\pi}{4} (4 ft)^2 = 12.56 ft^2$$

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 03_HRR_Flame_Height_Burning_Duration_Calculations_Sup1.xls

FDT^s Inputs: (for both spreadsheets)

- Fuel Spill Volume (V) = 4 gallons
- Fuel Spill Area or Dike Area (A_{dike}) = 12.56 ft²
- Select Fuel Type: Lube Oil

Results*

Heat Release Rate (HRR) (Ż) kW (Btu/sec)	Burning Duration (t_b) (min.)	Pool Fire Flame Height (H _f) (ft)		
		Method of Heskestad	Method of Thomas	
1,202 (1,139)	4.2	9.1	9.8	

*see spreadsheet on next page

Both methods for pool fire flame height estimation show that the pool fire flame will impinge upon the cable tray and cable pull box.

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 3.11-3

4.00 gallons

12.56 ft²

INPUT PARAMETERS

0.039 kg/m²-sec 46000 kJ/kg 760 kg/m³ 0.7 m⁻¹ 77.00 °F 9.81 m/sec² 1.18 kg/m³

Note: Air density will automatically correct with Ambient Air Temperature (1) Input

THERMAL PROPERTIES DATA

Gravitational Acceleration (g) Ambient Air Density $\langle \rho_a \rangle$

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Density	Empirical Constant	Select Fuel Type
Fuei	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	ρ (kg/m ³)	$k\beta$ (m ⁻¹)	Lube Oil
Methanol	0.017	20,000	796	100	SCrOII to desired fuel ty
Ethanol	0.015	26,800	794	100	Click on selection
Butane	0.078	45,700	573	2.7	
Benzene	0.085	40,100	874	2.7	
Hexane	0.074	44,700	650	1.9	
Heptane	0.101	44,600	675	1.1	
Xylene	0.09	40,800	870	1.4	
Acetone	0.041	25,800	791	1.9	
Dioxane	0.018	26,200	1035	5.4	
Diethy Ether	0.085	34,200	714	0.7	
Benzine	0.048	44,700	740	3.6	
Gasoline	0.055	43,700	740	2.1	
Kerosine	0.039	43,200	820	3.5	
Diesel	0.045	44,400	918	2.1	
JP-4	0.051	43,500	760	3.6	
JP-5	0.054	43,000	810	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	760	0.7	
561 Silicon Transformer Fluid	0.005	28,100	960	100	
Fuel Oil, Heavy	0.035	39,700	970	1.7	
Crude Oil	0.0335	42,600	855	2.8	
_ube Oil	0.039	46,000	760	0.7	
Jser Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-26.

Version 1805.1 (English Units)

ESTIMATING POOL FIRE HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 $DH_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

 A_{f} = A_{dike} = surface area of pool fire (area involved in vaporization) (n^2)

kb = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

Where Adike = surface area of pool fire (m²) D = pool fire diameter (m)

 $D = \sqrt{(4A_{dike}/\pi)}$

D = 1.219 m

Heat Release Rate Calculation (Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

Q = m"
$$\Delta H_{c,eff}$$
 (1-e^{-k β D}) A_{dike}
Q = 1138.81 Btu/sec 1201.50 kW

ESTIMATING POOL FIRE BURNING DURATION

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-197.

$$\mathbf{t}_{\mathrm{b}} = \mathbf{4}\mathbf{V} / \pi \mathbf{D}^2 \mathbf{v}$$

Where

- t_{b} = burning duration of pool fire (sec)
- V = volume of liquid (m^3)
- D = pool diameter (m)
- v = regression rate (m/sec)

Calculation for Regression Rate

$$v = m''/\rho$$

Where

v = regression rate (m/sec)

m" = mass burning rate of fuel (kg/m²-sec)

 ρ = liquid fuel density (kg/m³)

v = 0.000051 m/sec

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

t_b = 252.85 sec

4.21 minutes

Note that a liquid pool fire with a given amount of fuel can burn for long periods of time over small area or for short periods of time over a large area.

Version 1805.1 (English Units)

ESTIMATING POOL FIRE FLAME HEIGHT

METHOD OF HESKESTAD

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 2-10.

Where

- H_f = pool fire flame height (m)
- Q = pool fire heat release rate (kW)
- D = pool fire diameter (m)

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

H_f = 9.07 ft 2.77 m

METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-204.

Where

- H_f = pool fire flame height (m)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ρ_a = ambient air density (kg/m³)
- D = pool fire diameter (m)
- g = gravitational acceleration (m/sec²)

Pool Fire Flame Height Calculation

 $H_f = 42 D (m''/(\rho_a \sqrt{(g D))})^{0.61}$

H_f = 9.82 ft 2.99 m

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

Heat Release Rate Calculation

(Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

Method of Thomas

 H_{f} = 42 D (m"/($\rho_{a} \sqrt{(g D)})$)^{0.61}

 $\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \ \mathbf{D}} \right) \mathbf{A}_{dike}$

Answer	Q=	1138.81 Btu/sec	1201.50 kW	
--------	----	-----------------	------------	--

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

Flame Height Calculation

Method of Heskestad

 $H_f = 0.235 Q^{2/5} - 1.02 D$

Apowor	METHOD OF HESKESTAD	9.07 ft	
Answer	METHOD OF THOMAS	9.82 ft	

ESTIMATING POOL FIRE RESULTS FOR RANDOM SIZE SPILLS USING INPUT PARAMETERS

Area (ft ²)	Area (m ²)	Diameter (m)	Q (kW)	t _b (sec)	H _f (ft) (Heskestad)	H _f (ft) (Thomas)
1	0.09	0.34	35.66	3175.74	2.07	4.08
2	0.19	0.49	96.19	1587.87	3.16	5.19
3	0.28	0.60	170.49	1058.58	4.03	5.97
4	0.37	0.69	254.77	793.93	4.77	6.60
5	0.46	0.77	346.90	635.15	5.43	7.13
6	0.56	0.84	445.52	529.29	6.02	7.60
7	0.65	0.91	549.63	453.68	6.57	8.02
8	0.74	0.97	658.49	396.97	7.08	8.40
9	0.84	1.03	771.52	352.86	7.56	8.75
10	0.93	1.09	888.26	317.57	8.01	9.07
11	1.02	1.14	1008.32	288.70	8.44	9.38
12	1.11	1.19	1131.38	264.64	8.85	9.67
13	1.21	1.24	1257.17	244.29	9.24	9.94
14	1.30	1.29	1385.45	226.84	9.62	10.20
15	1.39	1.33	1516.02	211.72	9.97	10.45
20	1.86	1.54	2197.59	158.79	11.60	11.55
25	2.32	1.72	2916.42	127.03	12.99	12.48
50	4.65	2.43	6814.63	63.51	18.19	15.87
75	6.97	2.98	10946.20	42.34	21.86	18.28
100	9.29	3.44	15166.14	31.76	24.75	20.20

Caution! The purpose of this random spill size chart is to aid the user in evaluating the hazard of random sized spills. Please note that the calculation does not take into account the viscosity or volatility of the liquid, or the absorptivity of the surface. The results generated for small volume spills over large areas should be used with

NOTE:

The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

4.9 Problems

Example Problem 4.9-1

Problem Statement

A pool fire scenario arises from a breach (leak or rupture) in an oil-filled transformer. This event allows the fuel contents of the transformer to spill 2 gallons along a wall with an area of 9 ft^2 . A cable tray is located 8 ft above the fire. Calculate the wall flame height of the fire and determine whether the flame will impinge upon the cable tray.

Solution

Purpose:

- (1) Calculate the wall flame height.
- (2) Determine whether the flame will impinge upon the cable tray.

Assumptions:

- (1) Air is entrained only from one side during the combustion process.
- (2) The fire is located at or near a wall configuration of a compartment that affects the spread of the fire.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 04_Flame_Height_Calculations_Sup1.xls (click on *Wall_Flame_Height*)

FDT^s Input Parameters:

- Fuel spill volume (V) = 2 gallons
- Fuel Spill Area or Dike Area (A_{dike}) = 9.0 ft²
- Select Fuel Type: Transformer Oil, Hydrocarbon

Results*

Fuel	Wall Fire Flame Height (H _{f(Wall)}) (ft)	Cable Tray Impingement
Transformer Oil, Hydrocarbon	10.0	Yes

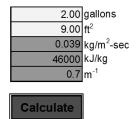
*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the wall fire flame height.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-1

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	kβ (m ⁻¹)	Transformer Oil, Hydrocarbon 🖃
Acetone	0.041	25,800	1.9	Scroll to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		

Version 1805.1 (English Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} (1 - e^{-k\beta D}) \mathbf{A}_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta H_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where,

A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.032 m

Heat Release Rate Calculation

Q = 771.52 kW 731.26 Btu/sec

Version 1805.1 (English Units)

Heat Release Rate Per Unit Length of Fire Calculation

Q' = Q/L

Where,

Q' = heat release rate per unit length (kW/m)

 Q = fire heat release rate of the fire (kW)

L = length of the fire source (m)

Fire Source Length Calculation

$$L x W = A_{dike}$$

 $L \times W = 0.836 \text{ m}^2$ L = 0.914 m

Heat Release Rate Per Unit Length of Fire Calculation

Version 1805.1 (English Units)

ESTIMATING WALL FIRE FLAME HEIGHT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-134.


$H_{f(wall)} = 0.034 \text{ Q}'^{2/3}$

Where,

H_{f(wall)} = wall fire flame height (m)

Q' = rate of heat release per unit length of the fire (kW/m)

$H_{f(wall)} = 0.034 \text{ Q}'^{2/3}$

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, and NFPA Fire Protection Handbook, 19th Edition, 2003. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 4.9-2

Problem Statement

A pool fire scenario arises from a transient combustible liquid spill. This event allows the fuel contents of a 15 gallon can to form along a wall with an area of 30 ft^2 . A cable tray is located 12 ft above the fire. Determine the line wall fire flame height and whether the flame will impinge upon the cable tray if the spilled liquids are (a) diesel, (b) acetone, and (c) methanol.

Solution

Purpose:

- (1) Calculate the line wall fire flame height using three transient combustibles.
- (2) Determine whether the flame will impinge upon the cable tray in each case.

Assumptions:

- (1) Air is entrained only from one side during the combustion process.
- (2) The fire is located at or near a wall configuration of a compartment that affects the spread of the fire.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 04_Flame_Height_Calculations_Sup1.xls (click on *Wall_Line_Flame_Height*)

FDT^s Input Parameters:

- Fuel spill volume (V) = 15 gallons
- Fuel Spill Area or Dike Area (A_{dike}) = 30.0 ft²
- Select Fuel Type: Diesel, Acetone, and Methanol

Results*

Fuel	Wall Line Fire Height (H _{f(Wall Line)}) (ft)	Cable Tray Impingement
Diesel	12.3	Yes
Acetone	8.0	No
Methanol	3.8	No

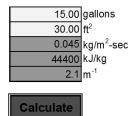
*see spreadsheets on next page

Version 1805.1 (English Units)

The following calculations estimate the line fire flame height against the wall.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-2a

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	$kβ (m^{-1})$	Diesel
Acetone	0.041	25,800	1.9	Scroll to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		

Version 1805.1 (English Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta H_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

 A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where,

 A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.884 m

Heat Release Rate Calculation

Q = 5462.02 kW 5177.01 Btu/sec

Version 1805.1 (English Units)

Heat Release Rate Per Unit Length of Fire Calculation

Q' = Q/L

Where,

Q' = heat release rate per unit length (kW/m)

 Q = fire heat release rate of the fire (kW)

L = length of the fire source (m)

Fire Source Length Calculation

$$L x W = A_{dike}$$

 $L x W = 2.787 m^2$

L = 1.669 m

Heat Release Rate Per Unit Length of Fire Calculation

Version 1805.1 (English Units)

ESTIMATING LINE WALL FIRE FLAME HEIGHT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-134.

$H_{f(wall line)} = 0.017 Q'^{2/3}$

Where,

 $H_{f(wall line)}$ = wall fire flame height (m)

Q' = rate of heat release per unit length of the fire (kW/m)

$H_{f(wall line)}$ = 0.017 Q' ^{2/3}

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3 rd Edition, 2002, and NFPA Fire
Protection Handbook, 19 th Edition, 2003. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user.
Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to
David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

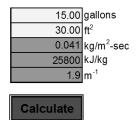
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Version 1805.1 (English Units)

The following calculations estimate the line fire flame height against the wall.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-2b

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	$kβ (m^{-1})$	Acetone
Acetone	0.041	25,800	1.9	SCITI to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		J

Version 1805.1 (English Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta H_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

 A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where,

 A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.884 m

Heat Release Rate Calculation

Q = 2865.94 kW 2716.39 Btu/sec

Version 1805.1 (English Units)

Heat Release Rate Per Unit Length of Fire Calculation

Q' = Q/L

Where,

Q' = heat release rate per unit length (kW/m)

Q = fire heat release rate of the fire (kW)

L = length of the fire source (m)

Fire Source Length Calculation

$$L x W = A_{dike}$$

 $L x W = 2.787 m^2$

L = 1.669 m

Heat Release Rate Per Unit Length of Fire Calculation

Version 1805.1 (English Units)

ESTIMATING LINE WALL FIRE FLAME HEIGHT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-134.

$H_{f(wall line)} = 0.017 \text{ Q'}^{2/3}$

Where,

 $H_{f(wall line)}$ = wall fire flame height (m)

Q' = rate of heat release per unit length of the fire (kW/m)

$H_{f(wall line)}$ = 0.017 Q' ^{2/3}

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, and NFPA Fire
Protection Handbook, 19 th Edition, 2003. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to
David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

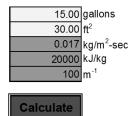
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Version 1805.1 (English Units)

The following calculations estimate the line fire flame height against the wall.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-2c

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	kβ (m ⁻¹)	Methanol
Acetone	0.041	25,800	1.9	SCI to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		

Version 1805.1 (English Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta H_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where,

 A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.884 m

Heat Release Rate Calculation

Q = 947.61 kW 898.16 Btu/sec

Version 1805.1 (English Units)

Heat Release Rate Per Unit Length of Fire Calculation

Q' = Q/L

Where,

Q' = heat release rate per unit length (kW/m)

 Q = fire heat release rate of the fire (kW)

L = length of the fire source (m)

Fire Source Length Calculation

$$L x W = A_{dike}$$

 $L x W = 2.787 m^2$

L = 1.669 m

Heat Release Rate Per Unit Length of Fire Calculation

Version 1805.1 (English Units)

ESTIMATING LINE WALL FIRE FLAME HEIGHT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-134.

$H_{f(wall line)} = 0.017 \text{ Q'}^{2/3}$

Where,

 $H_{f(wall line)}$ = wall fire flame height (m)

Q' = rate of heat release per unit length of the fire (kW/m)

$H_{f(wall line)} = 0.017 \text{ Q}'^{2/3}$

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3 rd Edition, 2002, and NFPA Fire
Protection Handbook, 19 th Edition, 2003. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user.
Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of
these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lgbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 4.9-3

Problem Statement

A pool fire scenario arises from a rupture in a diesel generator fuel line. This event allows diesel fuel to spill 1.5 gallons along the corner of walls with an area of 10 ft². An unprotected junction box is located 12 ft above the fire. Determine whether the flame will impinge upon the junction box.

Solution

Purpose:

- (1) Calculate the line wall fire flame height.
- (2) Determine whether the flame will impinge upon the junction box.

Assumptions:

- (1) Air is entrained only from one side during the combustion process.
- (2) The fire is located at or near a wall configuration of a compartment that affects the spread of the fire.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 04_Flame_Height_Calculations_Sup1.xls (click on *Corner_Flame_Height*)

FDT^s Input Parameters:

- Fuel spill volume (V) = 1.5 gallons
- Fuel Spill Area or Dike Area $(A_{dike}) = 10 \text{ ft}^2$
- Select Fuel Type: **Diesel**

Results*

Fuel	Corner Fire Flame Height (H _{f(Corner)}) (ft)	Junction Box Impingement
Diesel	21.1	Yes

*see spreadsheet on next page

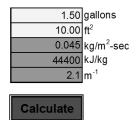
CHAPTER 4 ESTIMATING CORNER FIRE FLAME HEIGHT

Version 1805.1 (English Units)

The following calculations estimate the corner fire flame height

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-3

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	$\mathbf{k}\beta$ (m ⁻¹)	Diesel
Acetone	0.041	25,800	1.9	SCITI to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		J

CHAPTER 4 ESTIMATING CORNER FIRE FLAME HEIGHT

Version 1805.1 (English Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} (1 - e^{-k\beta D}) \mathbf{A}_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta H_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where,

 A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.088 m

Heat Release Rate Calculation

Q = 1667.09 kW 1580.10 Btu/sec

CHAPTER 4 ESTIMATING CORNER FIRE FLAME HEIGHT

Version 1805.1 (English Units)

ESTIMATING CORNER FIRE FLAME HEIGHT

Reference: Hesemi and Tokunaga, "Modeling of Turbulent Diffusion Flames and Fire Plumes for the Analysis of Fire Growth," Proceeding of the 21th National Heat Transfer Conference, American Society of Mechanical Engineers (ASME), 1983.

$H_{f(corner)} = 0.075 Q^{3/5}$

Where,

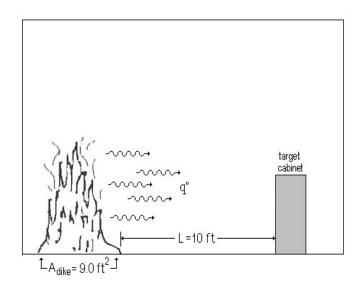
Q = heat release rate of the fire (kW)

$H_{f(corner)} = 0.075 Q^{3/5}$

Answer	H _{f(corner)} =	21.10 ft	6.43 m

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, and Hesemi and Tokunage, 1983. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.


Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

5.11 Problems

Example Problem 5.11-1

Problem Statement

A pool fire scenario arises from a breach (leak or rupture) in a transformer. This event allows the fuel contents of the transformer to spill and spread over the compartment floor. The compartment is very large and has a high ceiling (e.g., typical reactor building elevation of a BWR, turbine building open area). A pool fire ensues with a spill area of 9.0 ft² on the concrete floor. Calculate the flame radiant heat flux to a target (cabinet) at ground level with no wind using: a) point source radiation model and b) solid flame radiation model. The distance between the fire source and the target edge is assumed to be 10 ft.

Example Problem 5-1: Radiant Heat Flux from a Pool Fire to a Target Fuel

Solution

Purpose:

(1) Calculate the radiant heat flux from the pool fire to the target cabinet using the point source and solid flame radiation models.

Assumptions:

- (1) The pool is circular or nearly circular.
- (2) Radiation to the surroundings can be approximated as being isotropic or emanating from a point source (valid for point source radiation model only).
- (3) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1.xls (click on Point Source and Solid Flame 1 for point source and solid flame analysis respectively).

FDT^s Input Parameters: (For both spreadsheets)

- Fuel Spill Area or Curb Area (A_{curb}) = 9.0 ft
 Distance between Fire Source and Target (L) = 10 ft
 Select Fuel Type: Transformer Oil, Hydrocarbon

Results*

Radiation Model	Radiant Heat Flux (<i>q</i> '') (kW/m ²)
Point Source	1.45
Solid Flame	3.05

* see spreadsheet on next page

CHAPTER 5 ESTIMATING RADIANT HEAT FLUX FROM FIRE TO A TARGET FUEL AT GROUND LEVEL UNDER WIND-FREE CONDITIONS POINT SOURCE RADIATION MODEL

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-1a

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c.eff}$)$} \\ \mbox{Empirical Constant (k)$} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Fuel Area or Dike Area (A_{dike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Radiative Fraction (χ_r)$} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

0.039 kg/m²-sec 46000 kJ/kg 0.7 m⁻¹ 771.52 kW 9.00 ft² 10.00 0.30

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	$k\beta (m^{-1})$	Transformer Oil, Hydrocarbon 🚽
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire Pro	otection Engineering , 3 rd Ec	lition, 2002, Page 3-26.		

A-116

CHAPTER 5 ESTIMATING RADIANT HEAT FLUX FROM FIRE TO A TARGET FUEL AT GROUND LEVEL UNDER WIND-FREE CONDITIONS POINT SOURCE RADIATION MODEL

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

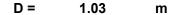
Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-272.

POINT SOURCE RADIATION MODEL

$$q'' = Q \chi_r / 4 \pi R^2$$

Where

q" = incident radiative heat flux on the target (kW/m²)


Q = pool fire heat release rate (kW)

 χ r = radiative fraction

R = distance from center of the pool fire to edge of the target (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} (\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}}) \mathbf{A}_{f}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 ΔH_c = effective heat of combustion of fuel (kJ/kg)

 A_{f} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Distance from Center of the Fire to Edge of the Target Calculation

$$R = L+D/2$$

Where R = distance from center of the pool fire to edge of the target (m) L = distance between pool fire and target (m) D = pool fire diameter (m) R = 3.56 m

CHAPTER 5 ESTIMATING RADIANT HEAT FLUX FROM FIRE TO A TARGET FUEL AT GROUND LEVEL UNDER WIND-FREE CONDITIONS POINT SOURCE RADIATION MODEL

RADIATIVE HEAT FLUX CALCULATION

$q'' = Q \chi_r / 4 \pi R^2$

Answer	q" =	0.13 Btu/ft ² -sec	1.45 kW/m ²	
NOTE:				
assumptions a interpreted by accuracy of th	and have inherent limitations. The resul an informed user. Although each calcu	oped in the SFPE Handbook of Fire Protection ts of such calculations may or may not have rea lation in the spreadsheet has been verified with ents, concerns and suggestions or to report an	asonable predictive capabilities for a given situ the results of hand calculation, there is no ab	ation and should only be solute guarantee of the
Prepared by:		Date:	Organization:	
Checked by:		Date:	Organization:	
Additional Info	ormation:			

CHAPTER 5 **ESTIMATING RADIANT HEAT FLUX FROM FIRE** TO A TARGET FUEL AT GROUND LEVEL UNDER WIND-FREE CONDITIONS SOLID FLAME RADIATION MODEL

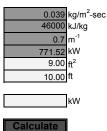
The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:


Example 5.11-1b

INPUT PARAMETERS

Mass Burning Rate of Fuel (m") Effective Heat of Combustion of Fuel (AHc eff) Empirical Constant (kß) Heat Release Rate (Q) Fuel Area or Dike Area (Adike) Distance between Fire and Target (L)

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here ightarrow

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS Mass Burning Rate Heat of Combustion Empirical Select Fuel Type Fuel ∆H_{c,eff} (kJ/kg) m" (kg/m²-sec) $k\beta (m^{-1})$ Transformer Oil, Hydrocarbon Methanol 0.017 20,000 100 Scroll to desired fuel type then 0.015 26,800 Click on selection Ethanol 100 Butane 0.078 45,700 2.7 Benzene 0.085 40,100 2.7 0.074 44,700 1.9 Hexane 0.101 44,600 1.1 Heptane 0.09 40,800 Xylene 1.4 Acetone 0.041 25,800 1.9 Dioxane 0.018 26,200 5.4 Diethy Ether 0.085 34,200 0.7 Benzine 0.048 44,700 3.6 Gasoline 0.055 43.700 2.1 Kerosine 0.039 43,200 3.5 0 045 44 400 Diesel 21 JP-4 0.051 43,500 3.6 JP-5 0.054 43,000 1.6 Transformer Oil, Hydrocarbon 0.039 46,000 0.7 561 Silicon Transformer Fluid 0.005 28,100 100 0.035 Fuel Oil, Heavy 39,700 1.7 Crude Oil 0.0335 42,600 2.8 Lube Oil 0.039 46,000 0.7 Douglas Fir Plywood 0.01082 10,900 100 User Specified Value Enter Value Enter Value Enter Value Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-26.

CHAPTER 5 ESTIMATING RADIANT HEAT FLUX FROM FIRE TO A TARGET FUEL AT GROUND LEVEL **UNDER WIND-FREE CONDITIONS** SOLID FLAME RADIATION MODEL

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

$$q'' = EF_{1->2}$$

Where

q" = incident radiative heat flux on the target (kW/m²)

E = emissive power of the pool fire flame (kW/m^2)

 $F_{1\rightarrow2}$ = view factor between target and the flame

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

$$D = \sqrt{(4A_{dike}/\pi)}$$

Where

 A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

D =

1.03 m

56.88 kW/m²

Emissive Power Calculation

E =	58 (10 ^{-0.00823 D})
	Where E = emissive power of the pool fire flame (kW/m²) D = diameter of the pool fire (m)

View Factor Calculation

E =

F _{1->2,H} =	$(B-1/S)/\pi(B^2-1)^{1/2}\tan^{-1}((B+1)(S-1)/(B-1)(S+1))^{1/2}-(A-1/S)/(\pi(A^2-1)^{1/2})\tan^{-1}((A+1)(S-1)/(A-1)(S+1))^{1/2}$
F _{1->2,V} =	$1/(\pi S) \tan^{-1}(h/(S^2-1)^{1/2})-(h/\pi S) \tan^{-1}((S-1)/(S+1))^{1/2} + Ah/\pi S(A^2-1)^{1/2} \tan^{-1}((A+1)(S-1)/(A-1)(S+1))^{1/2}$
A =	(h ² +S ² +1)/2S
В =	(1+S ²)/2S
S =	2R/D
h =	2H _# /D
F _{1->2,max} =	√(F ² _{1→2,H} + F ² _{1→2,V})

Where

F_{1->2,H} = horizontal view factor

 $F_{1\rightarrow 2,V}$ = vertical view factor E

- R = distance from center of the pool fire to edge of the target (m)
- H_f = height of the pool fire flame (m)
- D = pool fire diameter (m)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

R = L+D/2 =

3.564 m

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}^{\mathsf{H}} \Delta \mathbf{H}_{\mathsf{c},\mathsf{eff}} \left(\mathbf{1} - \mathbf{e}^{\mathsf{-k}\beta \mathsf{D}} \right) \mathbf{A}_{\mathsf{dike}}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (n²)
- kβ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

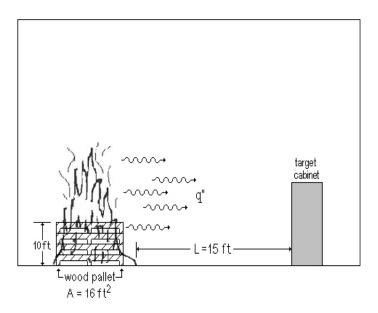
771.52 kW

Pool Fire Flame Height Calculation

- Where
 - Hf = flame height (m)
 - Q = heat release rate of fire (kW)
 - D = fire diameter (m)

2.305 m $H_f =$ S = 2R/D = 6.908 h = 2H_f/D = 4.468 A = (h²+S²+1)/2S = 4.971 B = (1+S²)/2S = 3.526 \mathbf{F}_{H1} \mathbf{F}_{H3} F_{1->2,H} F_{H2} F_{H4} 0.016 0.858 0.814 0.016 F_{1->2,H} = 0.318 0.315 0.051 \mathbf{F}_{V1} F_{1->2,V} = $\textbf{F}_{\textbf{V2}}$ F_{V3} F_{V4} F_{1->2.V} $F_{1-2, max} = \sqrt{(F_{1-2,H}^2 + F_{1-2,V}^2)} =$ 0.054 0.147 0.210 0.814 0.051 0.027

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer q" =	0.27 Btu/ft ² -sec	3.05 kW/m ²	
NOTE:			
The above calculations are based on principles developed in assumptions and have inherent limitations. The results of sur be interpreted by an informed user. Although each calculatio the accuracy of these calculations. Any questions, comments David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.	ich calculations may or may not have reasonation in the spreadsheet has been verified with the	able predictive capabilities for a given the results of hand calculation, there	en situation and should only e is no absolute guarantee of
Prepared by:	Date:	Organization:	
Checked by:	Date:	Organization:	
Additional Information:			

Example Problem 5.11-2

Problem Statement

A transient combustible fire scenario may arise from burning wood pallets (4 ft x 4 ft = 16 ft²), stacked 10 ft high on the floor of a compartment with a very high ceiling. Calculate the flame radiant heat flux to a target (safety-related cabinet) at ground level with no wind, using the point source radiation model and the solid flame radiation model. The distance between the fire source and the target edge (L) is assumed to be 15 ft.

Example Problem 5-2: Radiant Heat Flux from a Burning Pallet to a Target Fuel

Solution

Purpose:

(1) Calculate the radiant heat flux from the fire source to the target cabinet using the point source and solid flame radiation models.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) Radiation to the surroundings can be approximated as being isotropic or emanating from a point source (valid for point source radiation model only).
- (3) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1.xls
 (click on *Point Source* and *Solid Flame 1* for point source and solid flame analysis, respectively)

FDTs Inputs: (For both spreadsheets)

- Fuel Spill Area or Curb Area (A_{curb}) = 16 ft²
- Distance between Fire Source and Target (L) = 15 ft
- Select Fuel Type: Douglas Fir Plywood

Results*

Radiation Model	Radiant Heat Flux (<i>q</i> ^{′′}) (kW/m ²)
Point Source	0.15
Solid Flame	0.45

*see spreadsheet on next page

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-2a

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c.eff}$)$} \\ \mbox{Empirical Constant (k)$} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Fuel Area or Dike Area (A_{dike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Radiative Fraction (χ_{r})$} \end{array}$

0.01082 kg/m²-sec 10900 kJ/kg 100 m⁻¹ 175.31 kW 16.00 ft² 15.00 ft 0.30

Calculate

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuer	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	$k\beta (m^{-1})$	Douglas Fir Plywood 🚽
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value]

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-26.

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

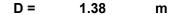
Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-272.

POINT SOURCE RADIATION MODEL

$$q'' = Q \chi_r / 4 \pi R^2$$

Where

q" = incident radiative heat flux on the target (kW/m²)


Q = pool fire heat release rate (kW)

χr = radiative fraction

R = distance from center of the pool fire to edge of the target (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} (\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}}) \mathbf{A}_{f}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 ΔH_c = effective heat of combustion of fuel (kJ/kg)

 A_f = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Distance from Center of the Fire to Edge of the Target Calculation

$$R = L+D/2$$

Where R = distance from center of the pool fire to edge of the target (m) L = distance between pool fire and target (m) D = pool fire diameter (m) R = 5.26 m

RADIATIVE HEAT FLUX CALCULATION

$q'' = Q \chi_r / 4 \pi R^2$

Answer	q'' =	0.01 Btu/ft ² -sec 0		κW/m ²
NOTE:				
assumptions a interpreted by accuracy of th	and have inherent limitations. The read an informed user. Although each ca	esults of such calculations may or may	not have reasonable predicti verified with the results of ha	Edition, 2002. Calculations are based on certain ve capabilities for a given situation and should only be and calculation, there is no absolute guarantee of the preadsheets, please send an email to
Prepared by:			Date:	Organization:
Checked by:			Date:	Organization:
Additional Info	ormation:			

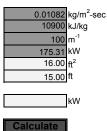
The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:


Example 5.11-2b

INPUT PARAMETERS

 $\begin{array}{l} \text{Mass Burning Rate of Fuel (m")} \\ \text{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \text{Empirical Constant (k)} \\ \text{Heat Release Rate (Q)} \\ \text{Fuel Area or Dike Area (A_{tike})$} \\ \text{Distance between Fire and Target (L)} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS Mass Burning Rate Heat of Combustion Empirical Select Fuel Type Fuel ∆H_{c,eff} (kJ/kg) m" (kg/m²-sec) $k\beta (m^{-1})$ Douglas Fir Plywood -Methanol 0.017 20,000 100 Scroll to desired fuel type then 0.015 26,800 Click on selection Ethanol 100 Butane 0.078 45,700 2.7 Benzene 0.085 40,100 2.7 0.074 44,700 1.9 Hexane 0.101 44,600 1.1 Heptane 0.09 40,800 Xylene 1.4 Acetone 0.041 25,800 1.9 Dioxane 0.018 26,200 5.4 Diethy Ether 0.085 34,200 0.7 Benzine 0.048 44,700 3.6 Gasoline 0.055 43.700 2.1 Kerosine 0.039 43,200 3.5 0 045 44 400 Diesel 21 JP-4 0.051 43,500 3.6 JP-5 0.054 43,000 1.6 Transformer Oil, Hydrocarbon 0.039 46,000 0.7 561 Silicon Transformer Fluid 0.005 28,100 100 Fuel Oil, Heavy 0.035 39,700 1.7 Crude Oil 0.0335 42,600 2.8 Lube Oil 0.039 46,000 0.7 Douglas Fir Plywood 0.01082 10,900 100 User Specified Value Enter Value Enter Value Enter Value

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-26.

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

Where

q" = incident radiative heat flux on the target (kW/m²)

E = emissive power of the pool fire flame (kW/m^2)

 $F_{1\rightarrow2}$ = view factor between target and the flame

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

$$D = \sqrt{(4A_{dike}/\pi)}$$

Where

 A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

D =

1.38 m

Emissive Power Calculation

E =	58 (10 ^{-0.00823 D})
	Where E = emissive power of the pool fire flame (kW/m²) D = diameter of the pool fire (m)
E =	56.51 kW/m ²

56.51 kW/m²

View Factor Calculation

F _{1->2,H} =	$(B-1/S)/\pi(B^2-1)^{1/2}\tan^{-1}((B+1)(S-1)/(B-1)(S+1))^{1/2}-(A-1/S)/(\pi(A^2-1)^{1/2})\tan^{-1}((A+1)(S-1)/(A-1)(S+1))^{1/2}$
F _{1->2,V} =	$1/(\pi S) \tan^{-1}(h/(S^2-1)^{1/2})-(h/\pi S) \tan^{-1}((S-1)/(S+1))^{1/2} + Ah/\pi S(A^2-1)^{1/2} \tan^{-1}((A+1)(S-1)/(A-1)(S+1))^{1/2}$
A =	(h ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h =	2H _₹ /D
F _{1->2,max} =	√(F ² _{1>2,H} + F ² _{1>2,V})

Where

F_{1->2,H} = horizontal view factor

 $F_{1\rightarrow 2,V}$ = vertical view factor E

- R = distance from center of the pool fire to edge of the target (m)
- H_f = height of the pool fire flame (m)
- D = pool fire diameter (m)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

R = L+D/2 =

5.260 m

Heat Release Rate Calculation

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (n²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

175.31 kW

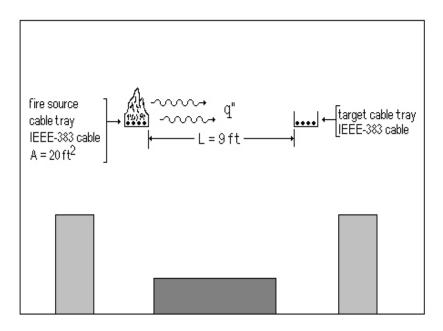
Pool Fire Flame Height Calculation

$H_{f} = 0.235$	Q ^{2/5} -1.02 D
-----------------	--------------------------

- Where
 - Hf = flame height (m)
 - Q = heat release rate of fire (kW)
 - D = fire diameter (m)

	H _f =	0.453 m				
S = 2R/D =	7.647					
h = 2H _f /D =	0.658					
A = (h ² +S ² +1)/2S =	3.917					
$B = (1+S^2)/2S =$	3.889					
		F _{H1}	F _{H2}	F _{H3}	F _{H4}	F _{1->2,H}
F _{1->2,H} =	0.000		0.318	0.851	0.318	0.850 0.000
F _{1->2,V} =	0.008	F _{v1}	F _{V2}	F _{V3}	F_{V4}	F _{1->2,V}
$F_{1-2, \text{ max}} = \sqrt{F_{1-2,H}^2 + F_{1-2,V}^2}$	0.008		0.004	0.020	0.028	0.850 0.008

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer	nswer q" = 0.04 Btu/ft ² -sec		0.45 k	W/m ²	
NOTE:					
assumptions a be interpreted the accuracy of	Iculations are based on principles developed in t and have inherent limitations. The results of suc by an informed user. Although each calculation of these calculations. Any questions, comments, @nrc.gov or Naeem.lqbal@nrc.gov.	h calculations may or may not have n in the spreadsheet has been verifie	e reasonable predictive divide the results of	ve capabilities for a give f hand calculation, there	n situation and should only is no absolute guarantee of
Prepared by:		Da	te:	Organization:	
Checked by:		Da	ite:	Organization:	
Additional Info	prmation:				

Example Problem 5.11-3

Problem Statement

A fire scenario may arise from a horizontal cable tray burning in a very large compartment. The cables in the tray are IEEE-383 unqualified and made of PE/PVC insulation material (assume that the exposed area of the cable is 20 ft²). Another safety-related cable tray also filled with IEEE-383 unqualified made of PE/PVC insulation material is located at a radial distance (L) of 9 ft from the fire source. Calculate the flame radiant heat flux to a target (safety-related cable tray) using the point source radiation model and solid flame radiation model. Is this heat flux sufficient to ignite the cable tray?

Example Problem 5-3: Radiant Heat Flux from a Burning Cable Tray to a Target Fuel

Solution

Purpose:

- (1) Calculate the radiant heat flux from the burning cable tray to the target cable tray using the point source and solid flame radiation models.
- (2) Determine if the heat flux is sufficient to ignite the cable tray.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) Radiation to the surroundings can be approximated as being isotropic or emanating from a point source (point source radiation model only).
- (3) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

 (a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1.xls (click on *Point Source* and *Solid Flame 1* for point source and solid flame analysis, respectively).

FDT^s Inputs: (For both spreadsheets)

- Mass Burning Rate of Fuel (\dot{m}'') = 0.0044 kg/m²-sec
- Effective Heat of Combustion of Fuel ($\Delta H_{c,eff}$) = 25,100 kJ/kg
- Empirical Constant ($k\beta$) = 100 (use this if actual value is unknown)
- Fuel Spill Area or Curb Area $(A_{curb}) = 20 \text{ ft}^2$
- Distance between Fire Source and Target (L) = 9 ft

Note: Since the insulation material (PE/PVC) is not available in the thermal properties data of the spreadsheet, we have to input the mass burning rate and effective heat of combustion in the spreadsheet. Values of cable materials properties are available in Table 3-4. Select **User-Specified Value**, and enter the respective values.

Results*

Radiation Model	Radiant Heat Flux (<i>q</i> '') (kW/m²)
Point Source	0.4
Solid Flame	1.1

*see spreadsheet on next page

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-3a

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c.eff}$)$} \\ \mbox{Empirical Constant (k)$} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Fuel Area or Dike Area (A_{dike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Radiative Fraction (χ_r)$} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

0.0044 kg/m²-sec 25100 kJ/kg 100 m⁻¹ 205.20 kW 20.00 ft² 9.00 ft 0.30

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuei	m" (kg/m ² -sec)	∆H _{c.eff} (kJ/kg)	$k\beta$ (m ⁻¹)	User Specified Value
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire Pro	otection Engineering , 3 rd Ec	ition, 2002, Page 3-26.		

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

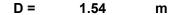
Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-272.

POINT SOURCE RADIATION MODEL

$$q'' = Q \chi_r / 4 \pi R^2$$

Where

q" = incident radiative heat flux on the target (kW/m²)


Q = pool fire heat release rate (kW)

 χ r = radiative fraction

R = distance from center of the pool fire to edge of the target (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} (\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}}) \mathbf{A}_{f}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 ΔH_c = effective heat of combustion of fuel (kJ/kg)

 A_{f} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q = 205.2 kW

Distance from Center of the Fire to Edge of the Target Calculation

$$R = L+D/2$$

Where R = distance from center of the pool fire to edge of the target (m) L = distance between pool fire and target (m) D = pool fire diameter (m) R = 3.51 m

RADIATIVE HEAT FLUX CALCULATION

$q'' = Q \chi_r / 4 \pi R^2$

m ²
, 2002. Calculations are based on certain babilities for a given situation and should only be lculation, there is no absolute guarantee of the heets, please send an email to
Organization:
Organization:

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-3b

INPUT PARAMETERS

 $\begin{array}{l} \text{Mass Burning Rate of Fuel (m")} \\ \text{Effective Heat of Combustion of Fuel (ΔH_{c.eff}$)$} \\ \text{Empirical Constant (k)} \\ \text{Heat Release Rate (Q)} \\ \text{Fuel Area or Dike Area (A_{tike})$} \\ \text{Distance between Fire and Target (L)} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

0.0044	kg/m ² -sec
25100 100	0
205.20	kW
20.00 9.00	
0.00	
	kW

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS Mass Burning Rate Heat of Combustion Empirical Select Fuel Type Fuel ∆H_{c,eff} (kJ/kg) m" (kg/m²-sec) $k\beta (m^{-1})$ User Specified Value -Methanol 0.017 20,000 100 Scroll to desired fuel type then 0.015 26,800 Click on selection Ethanol 100 Butane 0.078 45,700 2.7 Benzene 0.085 40,100 2.7 0.074 44,700 1.9 Hexane 0.101 44,600 1.1 Heptane 0.09 40,800 Xylene 1.4 Acetone 0.041 25,800 1.9 Dioxane 0.018 26,200 5.4 Diethy Ether 0.085 34,200 0.7 Benzine 0.048 44,700 3.6 Gasoline 0.055 43.700 2.1 Kerosine 0.039 43,200 3.5 0.045 44 400 Diesel 21 JP-4 0.051 43,500 3.6 JP-5 0.054 43,000 1.6 Transformer Oil, Hydrocarbon 0.039 46,000 0.7 561 Silicon Transformer Fluid 0.005 28,100 100 Fuel Oil, Heavy 0.035 39,700 1.7 Crude Oil 0.0335 42,600 2.8 Lube Oil 0.039 46,000 0.7 Douglas Fir Plywood 0.01082 10,900 100 User Specified Value Enter Value Enter Value Enter Value

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-26.

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

Where

q" = incident radiative heat flux on the target (kW/m²)

E = emissive power of the pool fire flame (kW/m^2)

 $F_{1\rightarrow2}$ = view factor between target and the flame

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

$$D = \sqrt{(4A_{dike}/\pi)}$$

Where

 A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

D =

1.54 m

Emissive Power Calculation

E =	58 (10 ^{-0.00823 D})		
	Where E = emissive power of the pool fire flame (kW/m²) D = diameter of the pool fire (m)		
E =	56.33 kW/m ²		

View Factor Calculation

F _{1->2,H} =	$(B-1/S)/\pi(B^2-1)^{1/2}\tan^{-1}((B+1)(S-1)/(B-1)(S+1))^{1/2}-(A-1/S)/(\pi(A^2-1)^{1/2})\tan^{-1}((A+1)(S-1)/(A-1)(S+1))^{1/2}$
F _{1->2,V} =	$1/(\pi S) \tan^{-1}(h/(S^2-1)^{1/2})-(h/\pi S) \tan^{-1}((S-1)/(S+1))^{1/2} + Ah/\pi S(A^2-1)^{1/2} \tan^{-1}((A+1)(S-1)/(A-1)(S+1))^{1/2}$
A =	(h ² +S ² +1)/2S
В =	(1+S ²)/2S
S =	2R/D
h =	2H₄/D
F _{1->2,max} =	√(F ² _{1→2,H} + F ² _{1→2,V})

Where

F_{1->2,H} = horizontal view factor

 $F_{1\rightarrow 2,V}$ = vertical view factor E

- R = distance from center of the pool fire to edge of the target (m)
- H_f = height of the pool fire flame (m)

D = pool fire diameter (m)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

R = L+D/2 =

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}^{\mathsf{H}} \Delta \mathbf{H}_{\mathsf{c},\mathsf{eff}} \left(\mathbf{1} - \mathbf{e}^{\mathsf{k}\beta \mathsf{D}} \right) \mathbf{A}_{\mathsf{dike}}$$

Where

Q = pool fire heat release rate (kW)

3.512 m

- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (n²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

205.20 kW

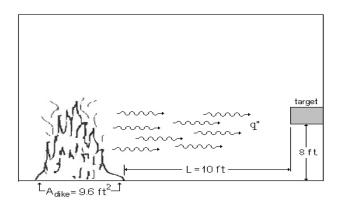
Pool Fire Flame Height Calculation

$H_{f} = 0.235$	Q ^{2/5} -1.02 D
-----------------	--------------------------

- Where
 - Hf = flame height (m)
 - Q = heat release rate of fire (kW)
 - D = fire diameter (m)

	H _f =	0.408 m				
S = 2R/D =	4.567					
h = 2H _f /D =	0.530					
A = (h ² +S ² +1)/2S =	2.424					
B = (1+S ²)/2S =	2.393					
		F _{H1}	F _{H2}	F _{H3}	F _{H4}	F _{1->2,H}
F _{1->2,H} =	0.001		0.318	0.896	0.318	0.893 0.001
F _{1->2,V} =	0.020	F _{v1}	F _{V2}	F _{V3}	F _{V4}	F _{1->2,V}
$F_{1-2, \text{max}} = \sqrt{(F_{1-2,H}^2 + F_{1-2,V}^2)} =$	0.020		0.008	0.025	0.041	0.893 0.020

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer	q" =	0.10 Btu/ft ² -sec	1.10 kW/m ²	
NOTE:				
The above c assumptions be interprete the accuracy	alculations are based on principles developed in t and have inherent limitations. The results of suc d by an informed user. Although each calculatior of these calculations. Any questions, comments o@nrc.gov or Naeem.lqbal@nrc.gov.	h calculations may or may not have reasonant in the spreadsheet has been verified with t	able predictive capabilities for a giv he results of hand calculation, ther	en situation and should only e is no absolute guarantee of
Prepared by:		Date:	Organization:	
Checked by:		Date:	Organization:	
Additional In	formation:			

Example Problem 5.11-4

Problem Statement

A pool fire scenario may arise from a leak in a pump. This event allows the lubricating oil to spill and spread over the compartment floor. A pool fire ensues with a spill of 9.6 ft² is considered in a compartment with a concrete floor. The distance (L) between the pool fire and the target edge is assumed to be 10 ft. Calculate the flame radiant heat flux to a vertical target (safety-related) 8 ft high above the floor with no wind, using the solid flame radiation model. If the vertical target contains IEEE-383 unqualified cables ($\dot{q}'_{critical} = 5 \ kW/m^2$), could there be cable failure in this fire scenario?

Example Problem 5-4: Radiant Heat Flux from a Pool Fire to a Vertical Target Fuel

Solution

Purpose:

- (1) Calculate the radiant heat flux from the pool fire to the vertical target using the solid flame radiation model.
- (2) Determine if the IEEE-383 unqualified cables are damaged.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1.xls (click on Solid Flame 2)

FDT^s Inputs:

- Fuel Spill Area or Curb Area (A_{curb}) = 9.6 ft²
- Distance between Fire Source and Target (L) = 10 ft
- Vertical Distance of Target from Ground $(H_1 = H_{f1}) = 8 \text{ ft}$
- Select Fuel Type: Lube Oil

Results*

Radiation Model	Radiant Heat Flux (<i>ġ''</i>) (kW/m²)	Cable Failure
Solid Flame	3.0	No, $\dot{q}_r'' < \dot{q}_{critical}''$

*see spreadsheet on next page

Version 1805.1 (English Units)

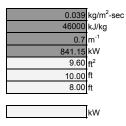
The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:


Example 5.11-4

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \mbox{Empirical Constant (K)} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Fuel Area or Dike Area (A_{tike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Vertical Distance of Target from Ground ($H_1 = H_{rf1})$} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here ightarrow

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	$k\beta$ (m ⁻¹)	Lube Oil
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-26.

Version 1805.1 (English Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

q" = EF_{1->2}

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

Emissive Power Calculation

E = 58 (10	^{0.00823 D})	
Wh E = D =		of the pool fire flame (kW/m ²) bool fire (m)
E =	56.84	(kW/m²)

View Factor Calculation

F _{1->2,V1} =	$1/(\pi S) tan^{-1}(h_1/(S^2-1)^{1/2}) - (h_1/\pi S) tan^{-1}((S-1)/(S+1))^{1/2} + A_1h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} tan^{-1}(A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} tan^{-1}(A_1+1)(A_1+1$
F _{1->2,V2} =	$1/(\pi S) \tan^{-1}(h_2/(S^2-1)^{1/2}) - (h_2/\pi S) \tan^{-1}((S-1)/(S+1))^{1/2} + A_2h_2/\pi S(A_2^{-2}-1)^{1/2} \tan^{-1}((A_2+1)(S-1)/(A_2-1)(S+1))^{1/2} + A_2h_2/\pi S(A_2^{-2}-1)^{1/2} + A_2h_2/\pi S(A_2^{-2}-1)^{1$
A ₁ =	(h ₁ ² +S ² +1)/2S
A ₂ =	(h ₂ ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h ₁ =	2H _{ff} /D
h ₂ =	2H ₁₂ /D
F _{1->2,V} =	F _{1->2,V1} + F _{1->2,V2}

Where

F_{1->2,V} = total vertical view factor

 R = distance from center of the pool fire to edge of the target (m)

 H_f = height of the pool fire flame (m)

D = pool fire diameter (m)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where $R = \text{distance from center of the pool fire to edge of the target (m)} \\ L = \text{distance between pool fire and target (m)}$

D = pool fire diameter (m)

Heat Release Rate Calculation

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q = 841.15 kW

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

Where

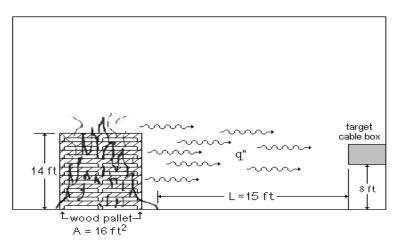
H_f = flame height (m) Q = heat release rate of fire (kW) D = fire diameter (m)

H_f = 2.389 m

S = 2R/D =		6.721			
h ₁ = 2H _{f1} /D =		4.576			
h ₂ = 2H _{f2} /D =	$2(H_{f}-H_{f1})/D =$	-0.094			
$A_1 = (h_1^2 + S^2 + 1)/2S =$		4.993			
$A_2 = (h_2^2 + S^2 + 1)/2S =$		3.435			
B = (1+S ²)/2S =		3.435			
		F _{V1}	F _{V2}	F _{V3}	F _{V4} F _{1->2,V1}
F _{1->2,V1} =	0.054	0.0	29	0.154	0.221 0.812 0.054
F _{1->2,V2} =	-0.002	F _{V1}	F _{V2}	F _{V3}	F _{V4} F _{1->2,V2}
$F_{1 \rightarrow 2, V} = F_{1 \rightarrow 2, V1} + F_{1 \rightarrow 2, V2} =$	0.053	-0.0	D1	-0.003	-0.005 0.860 -0.002

Version 1805.1 (English Units)

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer	q" =	0.26 Btu/ft ² -sec	2.99 kW/m ²	
NOTE:				
and have inh informed use	erent limitations. The results of such calo r. Although each calculation in the sprea Any questions, comments, concerns and	culations may or may not have reas dsheet has been verified with the re	onable predictive capabilities for esults of hand calculation, there i	ion, 2002. Calculations are based on certain assumptions a given situation and should only be interpreted by an is no absolute guarantee of the accuracy of these ind an email to David.Stroup@nrc.gov or
Prepared by:			Date:	Organization:
Checked by:			Date:	Organization:
Additional Inf	formation:			

Example Problem 5.11-5

Problem Statement

A transient combustible fire scenario may arise from burning wood pallets (4 ft x 4 ft = 16 ft²), stacked 14 ft high on the floor of a compartment. Calculate the flame radiant heat flux from exposure fire to a vertical target (safety-related electrical junction box) located 8 ft high above the floor, with no wind, using the solid flame radiation model. The distance (L) between the transient fire and the target edge is assumed to be 15 ft.

Solution

Purpose:

(1) Calculate the radiant heat flux from the burning pallet to the vertical target fuel using the solid flame radiation model.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1.xls (click on Solid Flame 2)

FDT^s Inputs:

- Fuel Spill Area or Curb Area (A) = 16 ft^2
- Distance between Fire Source and Target (L) = 15 ft
- Vertical Distance of Target from Ground $(H_1 = H_{f1}) = 8 \text{ ft}$
- Select Fuel Type: Douglas Fir Plywood

Results*

Radiation Model	Radiant Heat Flux (<i>q</i> '') (kW/m ²)
Solid Flame	0.30

*see spreadsheet on next page

Version 1805.1 (English Units)

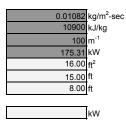
The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:


Example 5.11-5

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \mbox{Empirical Constant (K)} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Fuel Area or Dike Area (A_{tike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Vertical Distance of Target from Ground ($H_1 = H_{rf1})$} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here ightarrow

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
	m" (kg/m ² -sec)	ΔH _{c,eff} (kJ/kg)	$k\beta$ (m ⁻¹)	Douglas Fir Plywood
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-26.

Version 1805.1 (English Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

q" = EF_{1->2}

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.38 m

Emissive Power Calculation

$E = 58 \; (10^{-0.00823 D})$		
N	/here	
E =	emissive power	of the pool fire flame (kW/m ²)
D =	diameter of the	bool fire (m)
E =	56.51	(kW/m²)

View Factor Calculation

F _{1->2,V1} =	$1/(\pi S) tan^{-1}(h_1/(S^2-1)^{1/2}) - (h_1/\pi S) tan^{-1}((S-1)/(S+1))^{1/2} + A_1 h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} + A_1 h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1}(A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} + A_1 h_1/\pi S(A_1-1)^{1/2} tan^{-1}(A_1+1)(S+1)/(A_1-1)(S+1))^{1/2} + A_1 h_1/\pi S(A_1-1)(A$
F _{1->2,V2} =	$1/(\pi S) tan^{-1}(h_2/(S^2-1)^{1/2}) - (h_2/\pi S) tan^{-1}((S-1)/(S+1))^{1/2} + A_2 h_2/\pi S(A_2^{-2}-1)^{1/2} tan^{-1}((A_2+1)(S-1)/(A_2-1)(S+1))^{1/2} + A_2 h_2/\pi S(A_2^{-2}-1)^{1/2} tan^{-1}(A_2+1)(S-1)/(A_2-1)(S+1) + A_2 h_2/\pi S(A_2^{-2}-1)^{1/2} tan^{-1}(A_2+1)(S+1) + A_2 h_2/\pi S(A_2-1) + A$
A ₁ =	(h ₁ ² +S ² +1)/2S
A ₂ =	(h ₂ ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h ₁ =	2H _{f1} /D
h ₂ =	2H _{t2} /D
F _{1->2,V} =	F _{1->2,V1} + F _{1->2,V2}

Where

 $F_{1\rightarrow 2,V}$ = total vertical view factor

R = distance from center of the pool fire to edge of the target (m)

 H_f = height of the pool fire flame (m)

D = pool fire diameter (m)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where $R = \text{distance from center of the pool fire to edge of the target (m)} \\ L = \text{distance between pool fire and target (m)}$

D = pool fire diameter (m)

Heat Release Rate Calculation

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q = 175.31 kW

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

Where

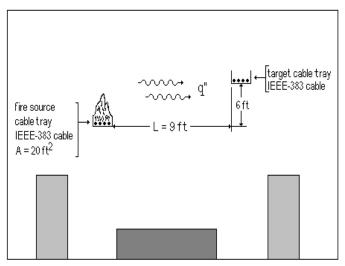
H_f = flame height (m) Q = heat release rate of fire (kW) D = fire diameter (m)

H_f = 0.453 m

S = 2R/D =		7.647		
h ₁ = 2H _{f1} /D =		3.545		
h ₂ = 2H _{f2} /D =	$2(H_{f}-H_{f1})/D =$	-2.887		
A ₁ = (h ₁ ² +S ² +1)/2S =		4.710		
$A_2 = (h_2^2 + S^2 + 1)/2S =$		4.434		
B = (1+S ²)/2S =		3.889		
		F _{V1} F _{V2}	F _{v3}	F _{V4} F _{1->2,V1}
F _{1->2,V1} =	0.037	0.018	0.106	0.151 0.827 0.037
F _{1->2,V2} =	-0.032	F _{V1} F _{V2}	F _{v3}	F _{V4} F _{1->2,V2}
$F_{1 \rightarrow 2, V} = F_{1 \rightarrow 2, V1} + F_{1 \rightarrow 2, V2} =$	0.005	-0.015	-0.086	-0.123 0.834 -0.032

Version 1805.1 (English Units)

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer	q" =	0.03 Btu/ft ² -sec	0.30 kW/m ²	
NOTE:				
and have inh informed use	erent limitations. The results of such er. Although each calculation in the s Any questions, comments, concerns	calculations may or may not have reas preadsheet has been verified with the re	onable predictive capabilities for esults of hand calculation, there	ion, 2002. Calculations are based on certain assumptions r a given situation and should only be interpreted by an is no absolute guarantee of the accuracy of these and an email to David.Stroup@nrc.gov or
Prepared by:			Date:	Organization:
Checked by:			Date:	Organization:
Additional Inf	formation:			

Example Problem 5.11-6

Problem Statement

A fire scenario may arise from a horizontal cable tray burning in a very large compartment. The cables in the tray are IEEE-383 unqualified $(\dot{q}''_{critical} = 5 \ kW/m^2)$ and made of XPE/FRXPE insulation material (assume that the exposed area of the cable is 20 ft²). A safety-related cable tray is also filled with IEE E-383 qualified $(\dot{q}''_{critical} = 10 \ kW/m^2)$ made of XLPE insulation material located at a radial distance (L) of 9 ft from the fire source and 6 ft above the fire source. Calculate the flame radiant heat flux to a target (safety-related cable tray) using the solid flame radiation model. Is the IEEE-383 qualified cable tray damaged?

Example Problem 5-6: Radiant Heat Flux from a Burning Cable Tray to a Vertical Target Fuel

Solution

Purpose:

- (1) Calculate the radiant heat flux from the burning cable tray to the vertical target cable tray using the solid flame radiation model.
- (2) Determine if the IEEE-383 cable tray (target) is damaged.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1.xls (click on Solid Flame 2)

FDT^s Inputs:

- Mass Burning Rate of Fuel ($\dot{m}^{\prime\prime}$) = 0.0037 kg/m²-sec
- Effective Heat of Combustion of Fuel ($\Delta H_{c,eff}$) = 28,300 kJ/kg Fuel Spill Area or Curb Area (A_{curb}) = 20 ft² Distance between Fire Source and Target (L) = 9 ft

- Vertical Distance of Target from Ground $(H_1 = H_{f1}) = 6$ ft

Note: Since the insulation material (XPE/FRXPE) is not available in the thermal properties data of the spreadsheet, we have to input the mass burning rate and effective heat of combustion in the spreadsheet. Values of cable materials properties are available in Table 3-4. Select **User-Specified Value**, and enter the \dot{m}'' and $\Delta H_{c,eff}$ values from Table 3-4.

Results*

Radiation Model	Radiant Heat Flux (<i>q</i> '') (kW/m²)	Cable Failure
Solid Flame	0.6	No, $\dot{q}_r'' < \dot{q}_{critical}''$

*see spreadsheet on next page

Version 1805.1 (English Units)

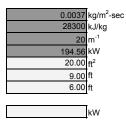
The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:


Example 5.11-6

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \mbox{Empirical Constant (K)} \\ \mbox{Heat Release Rate (Q)$} \\ \mbox{Fuel Area or Dike Area (A_{tike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Vertical Distance of Target from Ground ($H_1 = H_{rf1})$} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here ightarrow

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

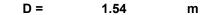
Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	$k\beta$ (m ⁻¹)	User Specified Value
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-26.

Version 1805.1 (English Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-276.


SOLID FLAME RADIATION MODEL

q" = EF_{1->2}

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

Emissive Power Calculation

$E = 58 \ (10^{-0.00823 D})$		
E = D =	Where emissive power of diameter of the p	of the pool fire flame (kW/m²) lool fire (m)
E =	56.33	(kW/m²)

View Factor Calculation

F _{1->2,V1} =	$1/(\pi S) tan^{-1}(h_1/(S^2-1)^{1/2}) - (h_1/\pi S) tan^{-1}((S-1)/(S+1))^{1/2} + A_1h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} tan^{-1}((A_1+1)(S+1))^{1/2} tan^{-1}((A_1+1)((A_1+1)(S+1))^{1/2} tan^{-$
F _{1->2,V2} =	$1/(\pi S) \tan^{-1}(h_2/(S^2-1)^{1/2}) - (h_2/\pi S) \tan^{-1}((S-1)/(S+1))^{1/2} + A_2h_2/\pi S(A_2^{-2}-1)^{1/2} \tan^{-1}((A_2+1)(S-1)/(A_2-1)(S+1))^{1/2} + A_2h_2/\pi S(A_2^{-2}-1)^{1/2} $
A ₁ =	(h ₁ ² +S ² +1)/2S
A ₂ =	(h ₂ ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h ₁ =	2H _{f1} /D
h ₂ =	2H _{f2} /D
F _{1->2,V} =	F _{1->2,V1} + F _{1->2,V2}

Where

 $F_{1\rightarrow 2,V}$ = total vertical view factor

R = distance from center of the pool fire to edge of the target (m)

 H_f = height of the pool fire flame (m)

D = pool fire diameter (m)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where $R = \text{distance from center of the pool fire to edge of the target (m)} \\ L = \text{distance between pool fire and target (m)}$

D = pool fire diameter (m)

Heat Release Rate Calculation

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q = 194.56 kW

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

Where

H_f = flame height (m) Q = heat release rate of fire (kW) D = fire diameter (m)

H_f = 0.366 m

S = 2R/D =		4.567			
h ₁ = 2H _{f1} /D =		2.378			
h ₂ = 2H _{f2} /D =	2(H _f -H _{f1})/D =	-1.902			
A ₁ = (h ₁ ² +S ² +1)/2S =		3.012			
A ₂ = (h ₂ ² +S ² +1)/2S =		2.789			
B = (1+S ²)/2S =		2.393			
		F _{V1}	F _{V2}	F _{V3}	F _{V4} F _{1->2,V1}
F _{1->2,V1} =	0.071	0	.034	0.112	0.176 0.846 0.071
F _{1->2,V2} =	-0.061	F _{V1}	F _{V2}	F _{V3}	F _{V4} F _{1->2,V2}
$F_{1 \rightarrow 2, V} = F_{1 \rightarrow 2, V1} + F_{1 \rightarrow 2, V2} =$	0.010	-0	.028	-0.089	-0.142 0.861 -0.061

Version 1805.1 (English Units)

RADIATIVE HEAT FLUX CALCULATION

q" = EF_{1->2}

Answer	q" =	0.05 Btu/ft ² -sec	0.57 kW/m ²				
NOTE:							
The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3 rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.							
Prepared by:			Date:	Organization:			
Checked by:			Date:	Organization:			
Additional Inf	formation:						

6.11 Problems

Example Problem 6.11-1

Problem Statement

Calculate the ignition time for a PVC/PE power cable, assuming that a 6.5 ft diameter pool fire produces a 25 kW/m^2 heat flux.

Solution

Purpose:

(1) Calculate the ignition time for a PVC/PE power cable.

Assumptions:

(1) The material is infinitely thick.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 06_Ignition_Time_Calculations_Sup1.xls (click on *Ignition_Time_Calculations3*)

FDT^s Input Parameters:

- Exposure or External Radiative Heat Flux to Target Fuel ($\dot{q}_e^{\prime\prime}$) = 25 kW/m²
- Click on the option button for Electrical Cables Power
- Select Material: PVC/PE

Results*

Material	Ignition Time (t _{ig}) (Method of Tewarson) (min.)
PVC/PE	9.0

*see spreadsheet on next page

CHAPTER 6 ESTIMATING THE IGNITION TIME OF A TARGET FUEL EXPOSED TO A CONSTANT RADIATIVE HEAT

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 6.11-1

INPUT PARAMETERS

Exposure or External Radiative Heat Flux to Target Fuel (q"e) Target Critical Heat Flux for Ignition (CHF) Target Thermal Response Parameter (TRP)

25.00 kW/m² 15.00 kW/m² 263 kW-sec1/2/m2 Calculate

CRITICAL HEAT FLUX AND THERMAL RESPONSE PARAMETER FOR MATERIALS

Materials		Thermal Response Parameter (TRP)	
lectrical Cables - Power	CHF (kW/m ²)	(kW-sec ^{1/2} /m ²)	
PVC/PVC	19.00	248.5	Select Material
PE/PVC	15.00	232.5	PVC/PE
PVC/PE	15.00	263	SCROII to desired material then
Silicone/PVC	19.00	212	Click on selection
Silicone/crosslinked polyolefin (XLPO)	27.50	446	
EPR (ethylene-propylene rubber/EPR)	21.50	517	
XLPE/XLPE	22.50	329.5	
XLPE/EVA (ethyl-vinyl acetate)	17.00	472.5	
XLPE/Neoprene	15.00	291	
XLPO/XLPO	20.50	498	
XLPO, PVF (polyvinylidine fluoride)/XLPO		526	
EPR/Chlorosulfonated PE	16.50	349.5	
EPR, FR	21.00	368.5	
User Specified Value	Enter Value	Enter Value	
Electrical Cables - Communications	1		Select Material
PVC/PVC	15.00	131	
PE/PVC	20.00	183	Scroll to desired material then
XLPE/XLOP	20.00	498	Click on selection
Si/XLOP	20.00	457	
EPR-FR	19.00	295	
Chlorinated PE	12.00	217	
ETFE/EVA	22.00	454	
PVC/PVF	30.00	264	
FEP/FEP	36.00	645	
User Specified Value	Enter Value	Enter Value	
Synthetic Materials			Select Material
Polypropylene	15.00	193	
Nylon	15.00	270	Scroll to desired material then
Polymethylmethacrylate (PMMA)	11.00	274	Click on selection
Polycarbonate	15.00	331	
Polycarbonate panel	16.00	420	
User Specified Value	Enter Value	Enter Value	
Natural Materials			Select Material
Wood (red oak)	10.00	134	
Wood (douglas fir)	10.00	138	Scroll to desired material then
Wood (douglas fir/fire retardant, FR)	10.00	251	Click on selection
Corrugated paper (light)	10.00	152	
User Specified Value	Enter Value	Enter Value	

CHAPTER 6 ESTIMATING THE IGNITION TIME OF A TARGET FUEL EXPOSED TO A CONSTANT RADIATIVE HEAT

ESTIMATING IGNITION TIME FOR COMBUSTIBLES METHOD OF TEWARSON THERMALLY THICK MATERIALS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-83.

$$\sqrt{(1/t_{ig})} = (\sqrt{(4/\pi)} (q"_e - CHF))/TRP t_{ig} = (\pi/4) (TRP)^2/(q"_e - CHF)^2$$

Where

 t_{ig} = target ignition time (sec)

 $q_{e}^{"}$ = external radiative heat flux to target (kW/m²)

CHF = target critical heat flux for ignition (kW/m^2)

TRP = thermal response parameter of target material (kW-sec²/m²)

 $t_{ig} = (\pi/4) (TRP)^2/(q''_e - CHF)^2$

Answer t _{ig} =	543.25 sec	9.05 minutes	
assumptions and have inherent limitation interpreted by an informed user. Althout	inciples developed in the SFPE Handbook of Fire Protection Engins. The results of such calculations may or may not have reasonary each calculation in the spreadsheet has been verified with the setions, comments, concerns and suggestions or to report an erro gnrc.gov.	able predictive capabilities for a given situation a results of hand calculation, there is no absolute g	nd should only be guarantee of the
Prepared by:		Date: Or	
Checked by:		Date: Or	
Additional Information:			

Example Problem 6.11-2

Problem Statement

Determine the time for 2 inch thick Douglas fir plywood to ignite when it is subjected to a flame heat flux of 25 kW/m², assuming the surface of the plywood is initially at 68 $^{\circ}$ F.

Solution

Purpose:

(1) Calculate the ignition time of Douglas fir plywood.

Assumptions:

(1) The material is infinitely thick.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 06_Ignition_Time_Calculations_Sup1.xls (click on *Ignition_Time_Calculations3*)

FDT^s Input Parameters:

- Exposure or External Radiative Heat Flux to Target Fuel = 25 kW/m²
- Click on the option button for Natural Materials
- Select Material: Wood (Douglas fir)

Note: The ignition time calculation method (Tewarson) provided in the spreadsheet *Ignition_Time_Calculations3* does not require the material thickness or initial surface temperature; therefore, material thickness and temperature are additional information only. However, if the initial temperature of the material is relatively high (compare with ambient temperature range), the ignition time value definitely will not be realistic based on this method. Also, we are assuming the material as infinitely thick to use the method; thus, we do not have to consider the thickness for this problem.

Results*

Material	Ignition Time (t _{ig}) (Method of Tewarson) (min.)
Wood (Douglas fir)	1.11

*see spreadsheet on next page

CHAPTER 6 ESTIMATING THE IGNITION TIME OF A TARGET FUEL EXPOSED TO A CONSTANT RADIATIVE HEAT

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 6.11-2

INPUT PARAMETERS

Exposure or External Radiative Heat Flux to Target Fuel (q"e) Target Critical Heat Flux for Ignition (CHF) Target Thermal Response Parameter (TRP)

25.00 kW/m² 10.00 kW/m² 138 kW-sec1/2/m2 Calculate

CRITICAL HEAT FLUX AND THERMAL RESPONSE PARAMETER FOR MATERIALS

Materials		Thermal Response Parameter (TRP)	
Electrical Cables - Power	CHF (kW/m ²)	(kW-sec ^{1/2} /m ²)	
PVC/PVC	19.00	248.5	Select Material
PE/PVC	15.00	232.5	
PVC/PE	15.00	263	Scroll to desired material then
Silicone/PVC	19.00	212	Click on selection
Silicone/crosslinked polyolefin (XLPO)	27.50	446	
EPR (ethylene-propylene rubber/EPR)	21.50	517	
XLPE/XLPE	22.50	329.5	
XLPE/EVA (ethyl-vinyl acetate)	17.00	472.5	
XLPE/Neoprene	15.00	291	
XLPO/XLPO	20.50	498	
XLPO, PVF (polyvinylidine fluoride)/XLPO	15.50	526	
EPR/Chlorosulfonated PE	16.50	349.5	
EPR, FR	21.00	368.5	
User Specified Value	Enter Value	Enter Value	
Electrical Cables - Communications			Select Material
PVC/PVC	15.00	131	
PE/PVC	20.00	183	Scroll to desired material then
XLPE/XLOP	20.00	498	Click on selection
Si/XLOP	20.00	457	
EPR-FR	19.00	295	
Chlorinated PE	12.00	217	
ETFE/EVA	22.00	454	
PVC/PVF	30.00	264	
FEP/FEP	36.00	645	
User Specified Value	Enter Value	Enter Value	
Synthetic Materials			Select Material
Polypropylene	15.00	193	
Nylon	15.00	270	Scroll to desired material then
Polymethylmethacrylate (PMMA)	11.00	274	Click on selection
Polycarbonate	15.00	331	
Polycarbonate panel	16.00	420	
User Specified Value	Enter Value	Enter Value	
Natural Materials			Select Material
Wood (red oak)	10.00	134	Wood (douglas fir)
Wood (douglas fir)	10.00	138	Scroll to desired material then
Wood (douglas fir/fire retardant, FR)	10.00	251	Click on selection
Corrugated paper (light)	10.00	152	
0 11 (0)	Enter Value	Enter Value	
User Specified Value Reference: SFPE Handbook of Fire Protection Engli			

CHAPTER 6 ESTIMATING THE IGNITION TIME OF A TARGET FUEL EXPOSED TO A CONSTANT RADIATIVE HEAT

ESTIMATING IGNITION TIME FOR COMBUSTIBLES METHOD OF TEWARSON THERMALLY THICK MATERIALS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-83.

$$\sqrt{(1/t_{ig})} = (\sqrt{(4/\pi)} (q"_e - CHF))/TRP t_{ig} = (\pi/4) (TRP)^2/(q"_e - CHF)^2$$

Where

 t_{ig} = target ignition time (sec)

 $q_{e}^{"}$ = external radiative heat flux to target (kW/m²)

CHF = target critical heat flux for ignition (kW/m^2)

TRP = thermal response parameter of target material (kW-sec²/m²)

 $t_{ig} = (\pi/4) (TRP)^2/(q''_e - CHF)^2$

Answer t _{ig}	= 66.48 sec	1.11 minutes
NOTE:		
assumptions and interpreted by an i accuracy of these	ations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, have inherent limitations. The results of such calculations may or may not have reasonable precision of the second sec	dictive capabilities for a given situation and should only be of hand calculation, there is no absolute guarantee of the
Prepared by:		Date: Or
Checked by:		Date: Or
Additional Informa	ation:	

7.12 Problems

Example Problem 7.12-1

Problem Statement

A 32 gallon trash can exposure fire source is located 6.5 ft beneath a horizontal cable tray. It is assumed that the trash fire ignites an area of approximately 21 ft² of the cable tray. The cables in the tray are IEEE-383 unqualified and made of PE/PVC insulation material. Compute the full-scale HRR of the PE/PVC cable insulation. The bench-scale HRR of PE/PVC is 589 kW/m².

Solution

Purpose:

(1) Calculate the full-scale HRR of the PE/PVC insulation material.

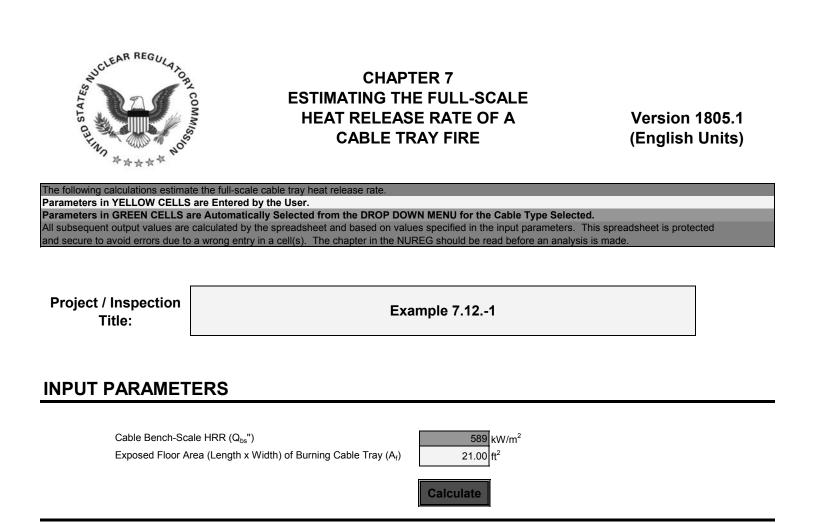
Assumptions:

(1) Lee's correlation is valid for this fire scenario.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 07_Cable_HRR Calculations_Sup1.xls


FDT^s Input Parameters:

- Exposure Cable Tray Burning Area (A_f) = 21 ft²
- Select Material: **PE/PVC** (the one with a bench-scale HRR of 589 kW/m²)

Results*

Cable	Full Scale HRR (\dot{Q}_{fs})
Insulation	(kW)
PE/PVC	517

^{*}see spreadsheet on next page

HEAT RELEASE RATE DATA FOR CABLE TRAY FIRE

BENCH-SCALE HRR OF CABLE TRAY FIRE

	Bench-Scale HRR per	Select Cable Type
Cable Type	Unit Floor Area (L x W)	PE/PVC
	Q" _{bs} (kW/m²)	Scroll to desired cable type then
FRXPE/CI.S.PE	258	Click on selection
ld PE	1071	
PE, Nylon/PVC, Nylon	231	
PE, Nylon/PVC, Nylon	218	
PE, PP/CI.S.PE	345	
PE, PP/CI.S.PE	299	
PE, PP/CI.S.PE	271	
PE, PP/CI.S.PE	177	
PE/PVC	589	
PE/PVC	395	
PE/PVC	359	
PE/PVC	312	
Silicone, glass braid	128	
Silicone, glass braid, asbestos	182	
Teflon	98	
XPE/CI.S.PE	204	
XPE/FRXPE	475	
XPE/Neoprene	354	
XPE/Neoprene	302	
XPE/XPE	178	
User Specified Value	Enter Value	
Reference: "Categorization of Cable Flammability, P Flammability Parameters," EPRI Research Project 1		

CHAPTER 7 ESTIMATING THE FULL-SCALE HEAT RELEASE RATE OF A CABLE TRAY FIRE

Version 1805.1 (English Units)

ESTIMATING FULL-SCALE CABLE TRAY HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition 2002, Page 3-16.

$Q_{fs} = 0.45 Q_{bs}$ " A_f

Where,

 Q_{fs} = cable tray full-scale HRR (kW) Q_{bs} " = cable tray bench-scale HRR (kW/m²)

 A_f = exposed floor area (length x width) of burning cable tray (m²)

Heat Release Rate Calculation

 $Q_{fs} = 0.45 Q_{bs} A_{f}$

Answer Q_{fs} =

490.12 Btu/sec

517.10 kW

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 7.12-2

Problem Statement

A 1.5 ft high stack of untreated wood pallets (exposure fire source) from a recent plant modification ignites and is located 5 ft beneath a horizontal cable tray. It is assumed that the wood pallets ignite an area of approximately 43 ft² of the cable tray. The cables in the tray are IEEE-383 qualified and made of PE insulation material. Compute the full-scale HRR of PE cable insulation. The bench-scale HRR of PE material is 1,071 kW/m².

Solution

Purpose:

(1) Calculate the full-scale HRR of the PE insulation material.

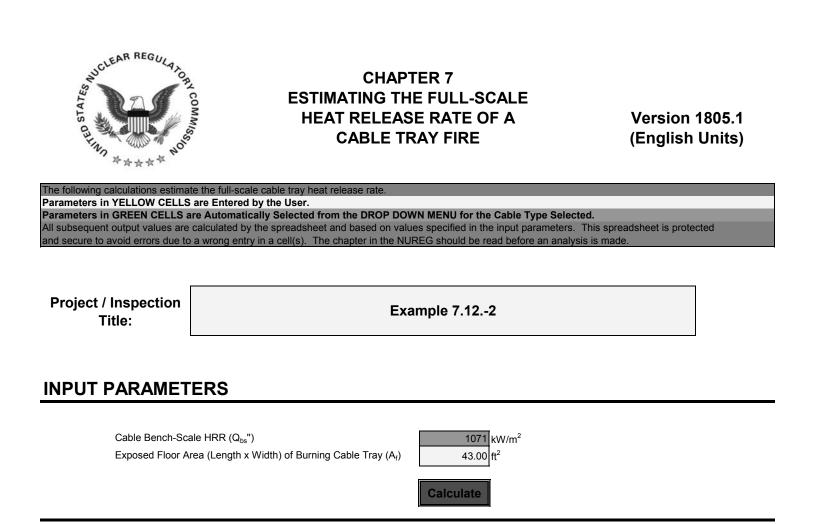
Assumptions:

(1) Lee's correlation is valid for this fire scenario.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 07_Cable_HRRCalculations_Sup1.xls


FDT^s Input Parameters:

- Exposure Cable Tray Burning Area (A_f) = 43 ft²
- Select Material: Id PE

Results*

Cable Insulation	Full Scale HRR (\dot{Q}_{fs}) (kW)
ld PE	1,925

*see spreadsheet on next page

HEAT RELEASE RATE DATA FOR CABLE TRAY FIRE

BENCH-SCALE HRR OF CABLE TRAY FIRE

	Bench-Scale HRR per	Select Cable Type
Cable Type	Unit Floor Area (L x W)	Id PE 👻
	Q" _{bs} (kW/m²)	Scroll to desired cable type then
FRXPE/CI.S.PE	258	Click on selection
ld PE	1071	
PE, Nylon/PVC, Nylon	231	
PE, Nylon/PVC, Nylon	218	
PE, PP/CI.S.PE	345	
PE, PP/CI.S.PE	299	
PE, PP/CI.S.PE	271	
PE, PP/CI.S.PE	177	
PE/PVC	589	
PE/PVC	395	
PE/PVC	359	
PE/PVC	312	
Silicone, glass braid	128	
Silicone, glass braid, asbestos	182	
Teflon	98	
XPE/CI.S.PE	204	
XPE/FRXPE	475	
XPE/Neoprene	354	
XPE/Neoprene	302	
XPE/XPE	178	
User Specified Value	Enter Value	
Reference: "Categorization of Cable Flammability, P Flammability Parameters," EPRI Research Project 1		

CHAPTER 7 ESTIMATING THE FULL-SCALE HEAT RELEASE RATE OF A CABLE TRAY FIRE

Version 1805.1 (English Units)

ESTIMATING FULL-SCALE CABLE TRAY HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition 2002, Page 3-16.

$Q_{fs} = 0.45 Q_{bs}$ " A_f

Where,

 Q_{fs} = cable tray full-scale HRR (kW) Q_{bs} " = cable tray bench-scale HRR (kW/m²)

 A_f = exposed floor area (length x width) of burning cable tray (m²)

Heat Release Rate Calculation

 $Q_{fs} = 0.45 Q_{bs} A_{f}$

Answer Q_{fs} =

1824.85 Btu/sec

1925.31 kW

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 7.12-3

Problem Statement

A 3.5 ft diameter flammable liquid (lubricating oil) pool fire arises from a breach in an auxiliary cooling water pump oil tank. The pool fire is located on the floor, 10 ft beneath a horizontal cable tray. It is assumed that the pool fire ignites an area of approximately 10.8 ft² of the cable tray. The cables in the tray are IEEE-383 unqualified and made of XPE/FRXPE insulation material. Compute the full scale HRR of XPE/FRXPE cable insulation. The bench-scale HRR of XPE/FRXPE is 475 kW/m².

Solution

Purpose:

(1) Calculate the full-scale HRR of the XPE/FRXPE insulation material.

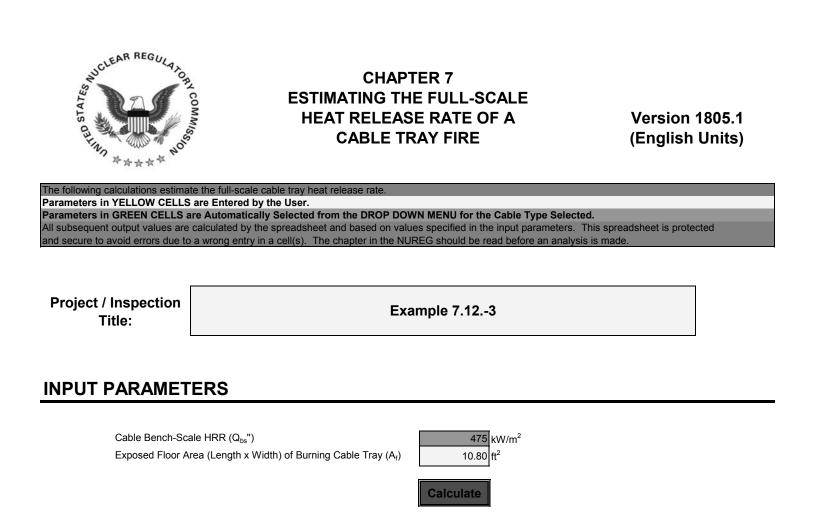
Assumptions:

(1) Lee's correlation is valid for this fire scenario.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 07_Cable_HRR Calculations_Sup1.xls


FDT^s Input Parameters:

- Exposure Cable Tray Burning Area (A_f) = 10.8 ft^2
- Select Material: XPE/FRXPE

Results*

Cable	Full Scale HRR (\dot{Q}_{fs})
Insulation	(kW)
XPE/FRXPE	214

^{*}see spreadsheet on next page

HEAT RELEASE RATE DATA FOR CABLE TRAY FIRE

BENCH-SCALE HRR OF CABLE TRAY FIRE

	Bench-Scale HRR per	Select Cable Type
Cable Type	Unit Floor Area (L x W)	XPE/FRXPE
	Q" _{bs} (kW/m ²)	Scroll to desired cable type then
FRXPE/CI.S.PE	258	Click on selection
ld PE	1071	
PE, Nylon/PVC, Nylon	231	
PE, Nylon/PVC, Nylon	218	
PE, PP/CI.S.PE	345	
PE, PP/CI.S.PE	299	
PE, PP/CI.S.PE	271	
PE, PP/CI.S.PE	177	
PE/PVC	589	
PE/PVC	395	
PE/PVC	359	
PE/PVC	312	
Silicone, glass braid	128	
Silicone, glass braid, asbestos	182	
Teflon	98	
XPE/CI.S.PE	204	
XPE/FRXPE	475	
XPE/Neoprene	354	
XPE/Neoprene	302	
XPE/XPE	178	
User Specified Value	Enter Value	
Reference: "Categorization of Cable Flammability, F Flammability Parameters," EPRI Research Project		

CHAPTER 7 ESTIMATING THE FULL-SCALE HEAT RELEASE RATE OF A CABLE TRAY FIRE

Version 1805.1 (English Units)

ESTIMATING FULL-SCALE CABLE TRAY HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition 2002, Page 3-16.

$Q_{fs} = 0.45 Q_{bs}$ " A_f

Where,

 Q_{fs} = cable tray full-scale HRR (kW) Q_{bs} " = cable tray bench-scale HRR (kW/m²)

 A_f = exposed floor area (length x width) of burning cable tray (m²)

Heat Release Rate Calculation

 $Q_{fs} = 0.45 Q_{bs} A_{f}$

Answer Q_{fs} =

203.28 Btu/sec

214.47 kW

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

8.9 Problems

Example Problem 8.9-1

Problem Statement

A horizontal power cable fails as a result of self-initiated fire and burn in a compartment. Compute the burning duration of a cable tray with an exposed surface area of 1 ft² filled with 10 lb of non-IEEE-383 qualified PE/PVC cables. The heat release per unit floor area of PE/PVC is 589 kW/m², and the heat of combustion is 24,000 kJ/kg.

Solution

Purpose:

(1) Calculate the burning duration of the cable material (PE/PVC).

Assumptions:

- (1) Combustion is incomplete and takes place entirely within the confines of the compartment.
- (2) Virtually all of the potential energy in the fuel is released in the involved compartment.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 08_Burning_Duration Solid_Sup1.xls

FDT^s Input Parameters:

- Mass of Solid Fuel (m_{solid}) = 10 lb
- Exposure Fuel Surface Area (A_{fuel}) = 1 ft²
- Select Material: PE/PVC

Results*

Material	Burning Duration (t _{solid}) (min.)
PE/PVC	33

^{*}see spreadsheet on next page

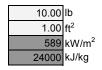
CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (English Units)

The following calculations provides an approximation of the burning duration of solid combustibles based on free burning rate with a given surface area. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.


Project / Inspection Title:

Example 8.9-1

INPUT PARAMETERS

COMPARTMENT INFORMATION

Mass of Solid Fuel (m_{solid}) Exposed Floor Area (Length x Width) of Fuel (A_{fuel}) Heat Release Rate (HRR) per Unit Floor Area (Q") Effective Heat of Combustion ($\Delta H_{c.eff}$)

Calculate

THERMAL PROPERTIES OF SOLID COMBUSTIBLE MATERIALS

Material	HRR per Unit Floor Area Q"	Heat of Combustion ΔH_c	Select Material
	(kW/m²)	(kJ/kg)	PE/PVC
Douglas Fir Plywood	221	17600	Scroll to desired material then
Empty Cartons 15 ft high	1700	12700	Click on selection
Ethylene Propylene Dien Rubber (EPDM)	956	28800	
Fire Retardant Treated Plywood	81	13500	
Nylon 6/6	1313	32000	
Particle Board, 19 mm thick	1900	17500	
PE, Nylon/PVC, Nylon	231	9200	
PE/PVC	589	24000	
Polycarbonate	420	24400	
Polyethylene (PE)	1408	46500	
Polymethlmethacrylate (PMMA)	665	26000	
Polypropylene (PP)	1509	43200	
Polystyrene (PS)	1101	42000	
Polyurethane	710	45000	
Polyvinyl Chloride (PVC) Flexible	237	15700	
Strene-Butadiene Copolymers (SBR)	163	44000	
Teflon	98	3200	
Wood Pallets, stacked 1.5 ft high	1420	14000	
Wood Pallets, stacked 5 ft high	3970	14000	
Wood Pallets, stacked 10 ft high	6800	14000	
XPE/FRXPE	475	28300	
XPE/Neoprene	354	10300	
User Specified Value	Enter Value	Enter Value	

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (English Units)

References:

"Categorization of Cable Flammability, Part 1: Laboratory Evaluation of Cable Flammability Parameters," EPRI Research Project 1165-1, NP-1200, Part 1. Karlsson and Quantiere, Enclosure Fire Dynamics, Chapter 3: Energy Release Rate," CRC Press, 1999.

Johnson, D. G., "Combustion Properties of Plastics," Journal of Applied Fire Science, Volume 4, No. 3, 1994-95, pp. 185-201.

Hirschler, M. M., "Heat Release from Plastic Materials," Heat Release in Fires, Babrauskas and Grayson, Editors, Elsevier Applied Science, 1992.

BURNING DURATION OF SOLID COMBUSTIBLES

Reference: Buchanan, A. H., "Structural Design for Fire Safety," 2001, Page 38.

The burning duration of a solid fuel can be calculated if the total energy contained in the fuel and HRR are known. The burning duration is given by:

$Q = E / t_{solid}$ or $t_{solid} = (E) / (Q'' A_{Fuel})$

Where,

t_{solid} = burning duration of solid combustible (sec)

- $E = m_{Fuel} \Delta H_c$ = total energy contained in the fuel (kJ)
- Q = heat release rate of fire (kW)
- Q" = heat release rate per unit floor area of fuel (kW/m²)

A_{Fuel} = exposed floor area (length x width) of fuel (m²)

 $t_{solid} = (m_{Fuel} \Delta H_c) / (Q'' A_{Fuel})$

Where,

 m_{Fuel} = mass of solid fuel (kg) ΔH_c = fuel effective heat of combustion (kJ/kg)

 $t_{solid} = (m_{solid} \Delta H_c) / (Q'' A_{solid})$

Λ	-		~ *
A	ns	W	er

t_{solid} =

1989.44 sec

33.16 min

NOTE: The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 8.9-2

Problem Statement

A horizontal cable tray filled with non-IEEE-383 qualified XPE/FRXPE cables are ignited as a result of overhead welding and burn in a compartment 20 ft wide x 20 ft deep x 10 ft high. The cable tray has a nominal width of 2 ft and a linear length of 24 ft (i.e., exposed surface area of 48 ft²). Compute the burning duration of XPE/FRXPE cables assuming the mass of cables is 50 lb. The heat release per unit area of XPE/FRXPE is 475 kW/m² and heat of combustion is 28,300 kJ/kg.

Solution

Purpose:

(1) Calculate the burning duration of the cable material (XPE/FRXPE).

Assumptions:

- (1) Combustion is incomplete and takes place entirely within the confines of the compartment.
- (2) Virtually all of the heat energy in the fuel is released in the involved compartment.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 08_Burning_Duration Solid_Sup1.xls

FDT^s Input Parameters:

- Mass of Solid Fuel (m_{solid}) = 50 lb
- Exposure Fuel Surface Area (A_{fuel}) = 48 ft²
- Select Material: **XPE/FRXPE**

Results*

Material	Burning Duration (t _{solid}) (min.)
XPE/FRXPE	5.1

^{*}see spreadsheet on next page

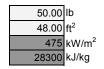
CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (English Units)

The following calculations provides an approximation of the burning duration of solid combustibles based on free burning rate with a given surface area. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.


Project / Inspection Title:

Example 8.9-2

INPUT PARAMETERS

COMPARTMENT INFORMATION

Mass of Solid Fuel (m_{solid}) Exposed Floor Area (Length x Width) of Fuel (A_{fuel}) Heat Release Rate (HRR) per Unit Floor Area (Q") Effective Heat of Combustion ($\Delta H_{c.eff}$)

Calculate

THERMAL PROPERTIES OF SOLID COMBUSTIBLE MATERIALS

Material	HRR per Unit Floor Area Q"	Heat of Combustion ΔH_c	Select Material
	(kW/m²)	(kJ/kg)	XPE/FRXPE
Douglas Fir Plywood	221	17600	Scroll to desired material then
Empty Cartons 15 ft high	1700	12700	Click on selection
Ethylene Propylene Dien Rubber (EPDM)	956	28800	
Fire Retardant Treated Plywood	81	13500	
Nylon 6/6	1313	32000	
Particle Board, 19 mm thick	1900	17500	
PE, Nylon/PVC, Nylon	231	9200	
PE/PVC	589	24000	
Polycarbonate	420	24400	
Polyethylene (PE)	1408	46500	
Polymethlmethacrylate (PMMA)	665	26000	
Polypropylene (PP)	1509	43200	
Polystyrene (PS)	1101	42000	
Polyurethane	710	45000	
Polyvinyl Chloride (PVC) Flexible	237	15700	
Strene-Butadiene Copolymers (SBR)	163	44000	
Teflon	98	3200	
Wood Pallets, stacked 1.5 ft high	1420	14000	
Wood Pallets, stacked 5 ft high	3970	14000	
Wood Pallets, stacked 10 ft high	6800	14000	
XPE/FRXPE	475	28300	
XPE/Neoprene	354	10300	
User Specified Value	Enter Value	Enter Value	

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (English Units)

References:

"Categorization of Cable Flammability, Part 1: Laboratory Evaluation of Cable Flammability Parameters," EPRI Research Project 1165-1, NP-1200, Part 1. Karlsson and Quantiere, Enclosure Fire Dynamics, Chapter 3: Energy Release Rate," CRC Press, 1999.

Johnson, D. G., "Combustion Properties of Plastics," Journal of Applied Fire Science, Volume 4, No. 3, 1994-95, pp. 185-201.

Hirschler, M. M., "Heat Release from Plastic Materials," Heat Release in Fires, Babrauskas and Grayson, Editors, Elsevier Applied Science, 1992.

BURNING DURATION OF SOLID COMBUSTIBLES

Reference: Buchanan, A. H., "Structural Design for Fire Safety," 2001, Page 38.

The burning duration of a solid fuel can be calculated if the total energy contained in the fuel and HRR are known. The burning duration is given by:

$Q = E / t_{solid}$ or $t_{solid} = (E) / (Q'' A_{Fuel})$

Where,

t_{solid} = burning duration of solid combustible (sec)

- $E = m_{Fuel} \Delta H_c$ = total energy contained in the fuel (kJ)
- Q = heat release rate of fire (kW)
- Q'' = heat release rate per unit floor area of fuel (kW/m²)

A_{Fuel} = exposed floor area (length x width) of fuel (m²)

 $t_{solid} = (m_{Fuel} \Delta H_c) / (Q'' A_{Fuel})$

Where,

 m_{Fuel} = mass of solid fuel (kg) ΔH_c = fuel effective heat of combustion (kJ/kg)

 $t_{solid} = (m_{solid} \Delta H_c) / (Q'' A_{solid})$

Answer

t_{solid} =

303.01 sec

5.05 min

NOTE: The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lgbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 8.9-3

Problem Statement

A fire involving a 1.5 ft high stack of wood pallets is located in a compartment 40 ft wide x 40 ft deep x 10 ft high. The mass of the wood pallets is 30 lb. Compute the burning duration of the wood pallet fire in the compartment. The exposed surface area of the wood pallets is 4 ft x 4 ft or 16 ft².

Solution

Purpose:

(1) Calculate the burning duration of the stack of wood pallets.

Assumptions:

- (1) Combustion is incomplete and takes place entirely within the confines of the compartment.
- (2) Virtually all of the heat energy in the fuel is released in the involved compartment.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 08_Burning_Duration Solid_Sup1.xls

FDT^s Input Parameters:

- Mass of Solid Fuel (m_{solid}) = 30 lb
- Exposure Fuel Surface Area (A_{fuel}) = 16 ft²
- Select Material: Wood pallet, stacked 1.5 ft high

Results*

Material	Burning Duration (t _{solid}) (min.)
Wood pallet, stacked 1.5 ft high	1.5

*see spreadsheet on next page

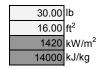
CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (English Units)

The following calculations provides an approximation of the burning duration of solid combustibles based on free burning rate with a given surface area. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.


Project / Inspection Title:

Example 8.9-3

INPUT PARAMETERS

COMPARTMENT INFORMATION

Mass of Solid Fuel (m_{solid}) Exposed Floor Area (Length x Width) of Fuel (A_{fuel}) Heat Release Rate (HRR) per Unit Floor Area (Q") Effective Heat of Combustion ($\Delta H_{c.eff}$)

Calculate

THERMAL PROPERTIES OF SOLID COMBUSTIBLE MATERIALS

Material	HRR per Unit Floor Area Q"	Heat of Combustion ΔH_c	Select Material
material	(kW/m²)	(kJ/kg)	Wood Pallets, stacked 1.5 ft high
Douglas Fir Plywood	221	17600	Scroll to desired material then
Empty Cartons 15 ft high	1700	12700	Click on selection
Ethylene Propylene Dien Rubber (EPDM)	956	28800	
Fire Retardant Treated Plywood	81	13500	
Nylon 6/6	1313	32000	
Particle Board, 19 mm thick	1900	17500	
PE, Nylon/PVC, Nylon	231	9200	
PE/PVC	589	24000	
Polycarbonate	420	24400	
Polyethylene (PE)	1408	46500	
PolymethImethacrylate (PMMA)	665	26000	
Polypropylene (PP)	1509	43200	
Polystyrene (PS)	1101	42000	
Polyurethane	710	45000	
Polyvinyl Chloride (PVC) Flexible	237	15700	
Strene-Butadiene Copolymers (SBR)	163	44000	
Teflon	98	3200	
Wood Pallets, stacked 1.5 ft high	1420	14000	
Wood Pallets, stacked 5 ft high	3970	14000	
Wood Pallets, stacked 10 ft high	6800	14000	
XPE/FRXPE	475	28300	
XPE/Neoprene	354	10300	
User Specified Value	Enter Value	Enter Value	

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (English Units)

References:

"Categorization of Cable Flammability, Part 1: Laboratory Evaluation of Cable Flammability Parameters," EPRI Research Project 1165-1, NP-1200, Part 1. Karlsson and Quantiere, Enclosure Fire Dynamics, Chapter 3: Energy Release Rate," CRC Press, 1999.

Johnson, D. G., "Combustion Properties of Plastics," Journal of Applied Fire Science, Volume 4, No. 3, 1994-95, pp. 185-201.

Hirschler, M. M., "Heat Release from Plastic Materials," Heat Release in Fires, Babrauskas and Grayson, Editors, Elsevier Applied Science, 1992.

BURNING DURATION OF SOLID COMBUSTIBLES

Reference: Buchanan, A. H., "Structural Design for Fire Safety," 2001, Page 38.

The burning duration of a solid fuel can be calculated if the total energy contained in the fuel and HRR are known. The burning duration is given by:

$Q = E / t_{solid}$ or $t_{solid} = (E) / (Q'' A_{Fuel})$

Where,

t_{solid} = burning duration of solid combustible (sec)

- $E = m_{Fuel} \Delta H_c$ = total energy contained in the fuel (kJ)
- Q = heat release rate of fire (kW)
- Q'' = heat release rate per unit floor area of fuel (kW/m²)

A_{Fuel} = exposed floor area (length x width) of fuel (m²)

 $t_{solid} = (m_{Fuel} \Delta H_c) / (Q'' A_{Fuel})$

Where,

 m_{Fuel} = mass of solid fuel (kg) ΔH_c = fuel effective heat of combustion (kJ/kg)

 $t_{solid} = (m_{solid} \Delta H_c) / (Q'' A_{solid})$

Answer

t_{solid} =

90.26 sec

1.50 min

NOTE:

The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

9.11 Problems

Example Problem 9.11-1

Problem Statement

A steel beam is located 25 ft above the floor. Calculate the temperature of the beam exposed from a 34.5 ft^2 lube oil pool fire. Assume the HRR of the fire is 5,000 kW.

Solution

Purpose:

(1) Determine the plume centerline temperature for the pool fire scenario.

Assumptions:

- (1) All heat is released at a point.
- (2) Buoyant forces are more significant than momentum forces.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 09_Plume_Temperature_Calculations_Sup1.xls

FDT^s Input Parameters:

- Heat Release Rate (\dot{Q}) = 5,000 kW
- Distance from the Top of the Fuel to the Ceiling (z) = 25 ft
- Area of Combustible Fuel (A_c) = 34.5 ft²

Results*

Heat Release	Plume Centerline
Rate (Ż)	Temperature (T _{p(centerline)})
(kW)	(°F)
5,000	471

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the centerline plume temperature in a compartment fire.

Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 9.11-1

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) Elevation Above the Fire Source (z) Area of Combustible Fuel (A_c) Ambient Air Temperature (T_a)

50	00.00	kW
	25.00	
	34.50	ft ²
	77.00	°F

AMBIENT CONDITIONS

Specific Heat of Air (c_a) Ambient Air Density (ρ_a) Acceleration of Gravity (g) Convective Heat Release Fraction (χ_c)

1.00	kJ/kg-K
1.18	kg/m ³
9.81	m/sec ²
0.70	

NOTE: Ambient Air Density (pa) will automatically correct with Ambient Air Temperature (Ta) Input

Version 1805.1 (English Units)

ESTIMATING PLUME CENTERLINE TEMPERATURE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 2-6.

$$T_{p(centerline)} - T_a = 9.1 (T_a/g c_a^2 \rho_a^2)^{1/3} Q_c^{2/3} (z - z_0)^{-5/3}$$

Where,

T_{p(centerline)} = plume centerline temperature (°C)

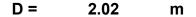
- Q_c = convective portion of the heat release rate (kW)
- T_a = ambient air temperature (K)
- $g = acceleration of gravity (m/sec^2)$
- c_a = specific heat of air (kJ/kg-K)
- ρ_a = ambient air density (kg/m³)
- z = distance from the top of the fuel package to the ceiling (m)
- z_0 = hypothetical virtual origin of the fire (m)

Convective Heat Release Rate Calculation

$Q_c = \chi_c Q$

Where,

- Q_c = convective portion of the heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χ_{c} = convective heat release fraction


 $Q_{c} = 3500 \text{ kW}$

Fire Diameter Calculation

$$A_{c} = \pi D^{2}/4$$
$$D = \sqrt{(4 A_{c}/\pi)}$$

Where,

 A_c = area of combustible fuel (m²) D = fire diameter (m)

Version 1805.1 (English Units)

Hypothetical Virtual Origin Calculation

 $z_0/D = -1.02 + 0.083 (Q^{2/5})/D$ Where, z_0 = virtual origin of the fire (m) Q = heat release rate of fire (kW) D = fire diameter (m) $z_0/D = 0.22$ $z_0 = 0.44 m$

Mean Flame Height Calculation

$$L = -1.02D + 0.235 (Q^{2/5})$$

Where,

- L = mean flame height (m)
- Q = heat release rate of fire (kW)
- D = fire diameter (m)

Version 1805.1 (English Units)

ESTIMATING PLUME CENTERLINE TEMPERATURE

 $T_{p(centerline)} - T_{a} = 9.1 (T_{a}/g c_{a}^{2} \rho_{a}^{2})^{1/3} Q_{c}^{2/3} (z - z_{0})^{-5/3}$ $T_{p(centerline)} - T_{a} = 218.97 \quad ^{\circ}K$ $T_{p(centerline)} = 9.1 (T_{a}/g c_{a}^{2} \rho_{a}^{2})^{1/3} Q_{c}^{2/3} (z - z_{0})^{-5/3} + Ta$ $T_{p(centerline)} = 516.97 \quad ^{\circ}K$

ESTIMATED PLUME CENTERLINE TEMPERATURE

Answer $T_{p(centerline)} = 471.15 \,^{\circ}F$ 243.97 $\,^{\circ}C$

NOTE:			
The above calculations are based on principles develop			
are based on certain assumptions and have inherent lim			
capabilities for a given situation and should only be inter			
verified with the results of hand calculation, there is no a	•	-	• •
concerns and suggestions or to report an error(s) in the	spreadsneets, please send	ran email to David.Stroup@nrc.go	or inaeem.iqbai@nrc.gov.
Prepared by:	Date:	Organization:	
	2 0.0.	0.90	
Checked by:	Date:	Organization:	
Additional Information:			

Example Problem 9.11-2

Problem Statement

Estimate the maximum plume temperature at the ceiling of an 8 ft high room above a 1,000 kW trash fire with an area of 10 ft². Assume that the ambient air temperature is 77 °F.

Solution

Purpose:

(1) Determine the maximum plume centerline temperature for the transient combustible fire scenario.

Assumptions:

- (1) All heat is released at a point.
- (2) Buoyant forces are more significant than momentum forces.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 09_Plume_Temperature_Calculations_Sup1.xls

FDT^s Input Parameters:

- Heat Release Rate (\dot{Q}) = 1000 kW
- Distance from the Top of the Fuel to the Ceiling (z) = 8 ft
- Area of Combustible Fuel (A_c) = 10 ft²

Results*

Heat Release	Plume Centerline
Rate (夕)	Temperature (T _{p(centerline)})
(kW)	(°F)
1,000	1,021

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the centerline plume temperature in a compartment fire.

Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 9.11-2

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) Elevation Above the Fire Source (z) Area of Combustible Fuel (A_c) Ambient Air Temperature (T_a)

1000.00	kW
8.00	
10.00	ft ²
77.00	°F
	-

Calculate

AMBIENT CONDITIONS

Specific Heat of Air (c_a) Ambient Air Density (ρ_a) Acceleration of Gravity (g) Convective Heat Release Fraction (χ_c)

1.00	kJ/kg-K
1.18	kg/m ³
9.81	m/sec ²
0.70	

NOTE: Ambient Air Density (pa) will automatically correct with Ambient Air Temperature (Ta) Input

Version 1805.1 (English Units)

ESTIMATING PLUME CENTERLINE TEMPERATURE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 2-6.

$$T_{p(centerline)} - T_a = 9.1 (T_a/g c_a^2 \rho_a^2)^{1/3} Q_c^{2/3} (z - z_0)^{-5/3}$$

Where,

T_{p(centerline)} = plume centerline temperature (°C)

- Q_c = convective portion of the heat release rate (kW)
- T_a = ambient air temperature (K)
- $g = acceleration of gravity (m/sec^2)$
- c_a = specific heat of air (kJ/kg-K)
- ρ_a = ambient air density (kg/m³)
- z = distance from the top of the fuel package to the ceiling (m)
- z_0 = hypothetical virtual origin of the fire (m)

Convective Heat Release Rate Calculation

$Q_c = \chi_c Q$

Where,

- Q_c = convective portion of the heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χ_{c} = convective heat release fraction

 $Q_{c} = 700 kW$

Fire Diameter Calculation

$$A_{c} = \pi D^{2}/4$$
$$D = \sqrt{(4 A_{c}/\pi)}$$

Where,

 A_c = area of combustible fuel (m²) D = fire diameter (m)

Version 1805.1 (English Units)

Hypothetical Virtual Origin Calculation

 $z_0/D = -1.02 + 0.083 (Q^{2/5})/D$ Where, z_0 = virtual origin of the fire (m) Q = heat release rate of fire (kW) D = fire diameter (m) $z_0/D = 0.19$ $z_0 = 0.21 m$

Mean Flame Height Calculation

Where,

- L = mean flame height (m)
- Q = heat release rate of fire (kW)
- D = fire diameter (m)

Version 1805.1 (English Units)

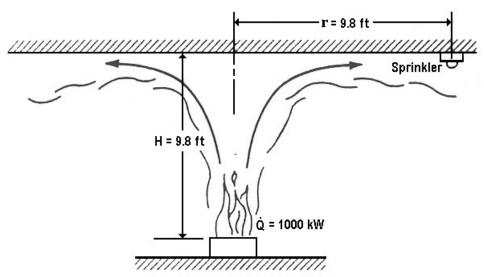
ESTIMATING PLUME CENTERLINE TEMPERATURE

 $T_{p(centerline)} - T_{a} = 9.1 (T_{a}/g c_{a}^{2} \rho_{a}^{2})^{1/3} Q_{c}^{2/3} (z - z_{0})^{-5/3}$ $T_{p(centerline)} - T_{a} = 524.40 \text{ °K}$ $T_{p(centerline)} = 9.1 (T_{a}/g c_{a}^{2} \rho_{a}^{2})^{1/3} Q_{c}^{2/3} (z - z_{0})^{-5/3} + Ta$

 $T_{p(centerline)} = 822.40$ °K

ESTIMATED PLUME CENTERLINE TEMPERATURE

Answer $T_{p(centerline)} = 1020.92$ °F 549.40 °C


NOTE:			
The above calculations are based on principles develop			
are based on certain assumptions and have inherent lin			
capabilities for a given situation and should only be inte			
verified with the results of hand calculation, there is no a			
concerns and suggestions or to report an error(s) in the	spreadsneets, please sei	id an email to David.Strou	p@nrc.gov of Naeem.iqbai@nrc.gov.
Prepared by:	Deter	Organization:	
	Date:	Organization.	
Checked by:	Date:	Organization:	
	Dute.	organization	
Additional Information:			

10.10 Problems

Example Problem 10.10-1

Problem Statement

A fire with \dot{Q} = 1,000 kW occurs in a space that is protected with sprinklers. Sprinklers are rated at 165 °F [standard response link with RTI = 130 (m-sec)^{1/2}] and located 9.8 ft on center. The ceiling is 9.8 ft above the fire. The ambient temperature is 77 °F. Would the sprinklers activate, and if so how long would it take for them to activate?

Example Problem 10-1: Fire Scenario with Sprinkler

Solution

Purpose:

- (1) Determine if the sprinklers will be activated for the fire scenario.
- (2) If the sprinkles are activated, how long would it take for them to activate?

Assumptions:

- (1) The fire is located away from walls and corners.
- (2) The fire is steady state.
- (3) The ceiling is unconfined.
- (4) Only convective heat transfer from the hot fire gases is considered.
- (5) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1.xls (click on *Sprinkler*)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 1,000 kW
- Distance from the Top of the Fuel Package to the Ceiling (H) = 9.8 ft
- Radial Distance from the Plume Centerline to the Sprinkler (r) = 9.8 ft
- Ambient Air Temperature (T_a) = 77 °F
- Select Type of Sprinkler = Standard response link
- Select Sprinkler Classification = Ordinary

Note: Ordinary classification has been selected because the rated value for the sprinklers in this problem (165 °F) is within the range of temperature ratings for ordinary sprinklers (135 °F – 170 °F).

Results*

Sprinkler Type	Sprinkler Activation Time (t _{activation}) (min.)
Standard Response Link	1.5

*see spreadsheet on next page

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

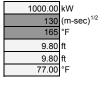
All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 10.10-1

INPUT PARAMETERS


Heat Release Rate of the Fire (Q) (Steady State) Sprinkler Response Time Index (RTI) Activation Temperature of the Sprinkler (Tactivation)

Height of Ceiling above Top of Fuel (H)

Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Ambient Air Temperature (T_a)

Convective Heat Release Rate Fraction (γ_c) r/H =

1.00

0.70 Calculate

GENERIC SPRINKLER RESPONSE TIME INDEX (RTI)*

Common Sprinkler Type	Generic Response Time Index (RTI) (m-sec) ^{1/2}	Select Type of Sprinkler
Standard response bulb	235	Scroll to desired sprinkler type then Click on selection
Standard response link	130	
Quick response bulb	42	
Quick response link	34	
Jser Specified Value	Enter Value	

March 15-16, 1995, Kowloon, Hong Kong, pp. 211-218. *Note: The actual RTI should be used when the value is available.

GENERIC SPRINKLER TEMPERATURE RATING (Tactivation)*

Temperature Classification	Range of Temperature	Generic Temperature	Select Sprinkler Classification
	Ratings (°F)	Ratings (°F)	Ordinary
Ordinary	135 to 170	165	Scroll to desired sprinkler class
ntermediate	175 to 225	212	then Click on selection
High	250 to 300	275	
Extra high	325 to 375	350	
√ery extra high	400 to 475	450	
Ultra high	500 to 575	550	
Jltra high	650	550	
User Specified Value	-	Enter Value	

nce: Automatic Sprinkler Systems Handbook, 6th Edition, National Fire Protectior

Association, Quincy, Massachusetts, 1994, Page 67.

*Note: The actual temperature rating should be used when the value is available.

ESTIMATING SPRINKLER RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

 $t_{activation}$ = sprinkler activation response time (sec)

RTI = sprinkler response time index (m-sec)^{1/2} u_{iet} = ceiling jet velocity (m/sec)

T_{jet} = ceiling jet temperature (°C) T_a = ambient air temperature (°C)

T_{activation} = activation temperature of sprinkler (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{iet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

T_{jet} = ceiling jet temperature (°C)

 T_a = ambient air temperature (°C)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

Qc = convective portion of the heat release rate (kW)

Q = heat release rate of the fire (kW)

 χ c = convective heat release rate fraction

for r/H ≤ 0.18 for r/H > 0.18

Radial Distance	to Ceiling	Height Ratio	Calculation
	to cennig	Theight Natio	Calculation

r/H =	1.00 r/H > 0.18		
>0.18	8 86.84	<0.18	272.78
T _{jet} - T _a =	{5.38 (Q/r)^2/3}/H		
T _{jet} - T _a =	86.84		
T _{jet} =	111.84 (°C)		

Ceiling Jet Velocity Calculation

$$u_{jet} = 0.96 (Q/H)^{1/3}$$
 for r/H ≤ 0.15
 $u_{jet} = (0.195 Q^{1/3} H^{1/2})/r^{5/6}$ for r/H > 0.15

Where

ujet = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Radial Distance to Ceiling Height Ratio Calculation

>0.15 1.35 <0.15 6.665880958

u _{jet} =	(0.195 Q^1/3 H^1/2)/r^5/6	
u _{jet} =	1.354	m/sec

SPRINKLER ACTIVATION TIME CALCULATION

tactivation

Answer	The sprinkler will respond in approximately	1.54 minutes
	NOTE: If t _{activation} = "NUM" Sprinkler does not activate	

NOTE:		
The above calculations are based on principles developed in the SFPE Handbook assumptions and have inherent limitations. The results of such calculations may contempreted by an informed user. Although each calculation in the spreadsheet has accuracy of these calculations. Any questions, comments, concerns and suggestine David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.	or may not have reasonable predictive capabili s been verified with the results of hand calcula	ities for a given situation and should only be tion, there is no absolute guarantee of the
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 10.10-2

Problem Statement

If the sprinklers in Problem10-1 are replaced by sprinklers with a response time index (RTI) of 235 (m-sec)^{$\frac{1}{2}$}, how long would it take for them to activate?

Solution

Purpose:

(1) Determine the activation time for the specified sprinkles under the fire scenario of Problem 10-1.

Assumptions:

- (1) The fire is located away from walls and corners.
- (2) The fire is steady state.
- (3) The ceiling is unconfined.
- (4) Only convective heat transfer from the hot fire gases is considered.
- (5) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1.xls (click on *Sprinkler*)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 1000 kW
- Distance from the Top of the Fuel Package to the Ceiling (H) = 9.8 ft
- Radial Distance from the Plume Centerline to the Sprinkler (r) = 9.8 ft
- Ambient Air Temperature (T_a) = 77 °F
- Select Type of Sprinkler = Standard Response Bulb
- Select Sprinkler Classification = Ordinary

Note: The RTI value of 235 (m-sec)^{1/2} corresponds to standard response bulb sprinkler. Ordinary classification has been selected because the rated value for the sprinklers in this problem (165 °F, same as Problem10-1) is within the range of temperature ratings for ordinary sprinklers (135 °F – 170 °F).

Results*

Sprinkler Type	Sprinkler Activation Time (t _{activation}) (min.)
Standard Response Bulb	2.8

*see spreadsheet on next page

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

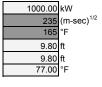
and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection

Title:

Example 10.10-2

INPUT PARAMETERS


Heat Release Rate of the Fire (Q) (Steady State) Sprinkler Response Time Index (RTI) Activation Temperature of the Sprinkler (Tactivation)

Height of Ceiling above Top of Fuel (H)

Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Ambient Air Temperature (T_a)

Convective Heat Release Rate Fraction (γ_c) r/H =

1.00

0.70 Calculate

GENERIC SPRINKLER RESPONSE TIME INDEX (RTI)*

esired sprinkler type then Click on selection

March 15-16, 1995, Kowloon, Hong Kong, pp. 211-218. *Note: The actual RTI should be used when the value is available.

GENERIC SPRINKLER TEMPERATURE RATING (Tactivation)*

		(aotivation)	
Temperature Classification	Range of Temperature	Generic Temperature	Select Sprinkler Classification
	Ratings (°F)	Ratings (°F)	Ordinary
Ordinary	135 to 170	165	Scroll to desired sprinkler class
Intermediate	175 to 225	212	then Click on selection
High	250 to 300	275	
Extra high	325 to 375	350	
Very extra high	400 to 475	450	
Ultra high	500 to 575	550	
Ultra high	650	550	
User Specified Value	-	Enter Value	

Reference: Automatic Sprinkler Systems Handbook, 6th Edition, National Fire Protection

Association, Quincy, Massachusetts, 1994, Page 67.

*Note: The actual temperature rating should be used when the value is available.

ESTIMATING SPRINKLER RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

 $t_{activation}$ = sprinkler activation response time (sec)

RTI = sprinkler response time index (m-sec)^{1/2} u_{iet} = ceiling jet velocity (m/sec)

T_{jet} = ceiling jet temperature (°C) T_a = ambient air temperature (°C)

T_{activation} = activation temperature of sprinkler (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{iet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

T_{jet} = ceiling jet temperature (°C)

 T_a = ambient air temperature (°C)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

Qc = convective portion of the heat release rate (kW)

Q = heat release rate of the fire (kW) χ c = convective heat release rate fraction

700 kW

A-199

for r/H ≤ 0.18 for r/H > 0.18

Radial Distance	to Ceiling	Height Ratio	Calculation
	to cennig	Theight Natio	Calculation

r/H =	1.00 r/H > 0.18		
>0.18	8 86.84	<0.18	272.78
T _{jet} - T _a =	{5.38 (Q/r)^2/3}/H		
T _{jet} - T _a =	86.84		
T _{jet} =	111.84 (°C)		

Ceiling Jet Velocity Calculation

$$u_{jet} = 0.96 (Q/H)^{1/3}$$
 for r/H ≤ 0.15
 $u_{jet} = (0.195 Q^{1/3} H^{1/2})/r^{5/6}$ for r/H > 0.15

Where

ujet = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Radial Distance to Ceiling Height Ratio Calculation

>0.15 1.35 <0.15 6.665880958

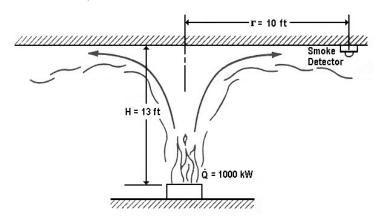
u _{jet} =	(0.195 Q^1/3 H^1/2)/r^5/6	
u _{jet} =	1.354	m/sec

SPRINKLER ACTIVATION TIME CALCULATION

 $t_{activation}$ = (RTI/($\sqrt{u_{jet}}$)) (In (T_{jet} - T_a)/(T_{jet} - T_{activation}))

t_{activation} 167.18 sec

Answer	The sprinkler will respond in approximately	2.79 minutes
	NOTE: If t _{activation} = "NUM" Sprinkler does not activate	
NOTE:		
The above calcula	ations are based on principles developed in the SFPE Handbook of Fire Protection I	Engineering, 3 rd Edition, 2002. Calculations are based on certain


	or may not have reasonable predictive capabilities for a given situation and should only be s been verified with the results of hand calculation, there is no absolute guarantee of the ions or to report an error(s) in the spreadsheets, please send an email to
Prepared by:	Date: Organization:
Checked by:	Date: Organization:
Additional Information:	

11.12 Problems

Example Problem 11.12-1

Problem Statement

Estimate the response time of a smoke detector that is located 10 ft radially from the centerline of a 1,000 kW pool fire in a 13 ft tall compartment.

Example Problem 11-1: Fire Scenario with Smoke Detector

Solution

Purpose:

(1) Determine the response time of the smoke detector for the fire scenario.

Assumptions:

- (1) The fire is steady state
- (2) The forced ventilation system is off
- (3) There is no heavily obstructed overhead

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1.xls (click on Smoke_Detector)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 1,000 kW
- Ceiling Height (H) = 13 ft
- Radial Distance from the Plume Centerline to the Smoke Detector (r) = 10 ft

Results*

Heat Release Rate (\dot{Q}) (kW)	Smoke Detector Activation Time (t _R) (sec)		
1.000	Method of Alpert	Method of Mowrer	Method of Milke
1,000	0.33	0.74	0.26

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 11.12-1

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Height of Ceiling above Top of Fuel (H) Activation Temperature of the Smoke Detector (T_{activation}) Smoke Detector Response Time Index (RTI) Ambient Air Temperature (T_a) Convective Heat Release Rate Fraction (χ_c)

 $\begin{array}{l} \mbox{Plume Leg Time Constant (C_{pl}) (Experimentally Determined)} \\ \mbox{Ceiling Jet Lag Time Constant (C_{pl}) (Experimentally Determined)} \\ \mbox{Temperature Rise of Gases Under the Ceiling (ΔT_c)} \end{array}$

for Smoke Detector to Activate r/H = 0.77

0 kW	1000.00
0 ft	10.00
	13.00
0 °F	86.00
0 (m-sec)1/2	5.00
°F	77.00

0.70
0.67
1.2
18.00

ESTIMATING SMOKE DETECTOR RESPONSE TIME

METHOD OF ALPERT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-140.

 $t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$

This method assume smoke detector is a low RTI device with a fixed activation temperature

Where

 $t_{activation}$ = detector activation time (sec)

- RTI = detector response time index (m-sec)^{1/2}
- u_{jet} = ceiling jet velocity (m/sec)
- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)

 $T_{activation}$ = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$\begin{split} T_{jet} - T_a &= 16.9 \ (Q)^{2/3} / H^{5/3} & \text{for } r/H \leq 0.18 \\ T_{jet} - T_a &= 5.38 \ (Q/r)^{2/3} / H & \text{for } r/H > 0.18 \end{split}$$

Where

T_{jet}= ceiling jet temperature (°C)

- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where Qc = convective portion of the heat release rate (kW)

- Q = heat release rate of the fire (kW)
- $\chi_{\rm c}$ = convective heat release rate fraction

 $Q_c =$

700 kW

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.77	r/H > 0.18	
>0.18	64.59	<0.18	170.33
T _{jet} - T _a =	5.38 ((Q/r)^2/3)/H		
T _{jet} - T _a =		64.59	
T _{jet} =		89.59 (°C)	

Ceiling Jet Velocity Calculation

$u_{jet} = 0.96 (Q/H)^{1/3}$	for r/H ≤ 0.15
$u_{jet} = (0.195 Q^{1/3} H^{1/2})/r^{5/6}$	for r/H > 0.15

Where

u_{jet} = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.77 r/H ≯	> 0.15	
>0.1	15	1.53	<0.15	6.07
u _{jet} =	•	H^1/2)/r^(5/6)		
u _{jet} =	1.533	m/se	ec	

Smoke Detector Response Time Calculation

$$\begin{split} t_{activation} &= (\text{RTI/}(\sqrt{u_{jet}})) \text{ (In } (\text{T}_{jet} - \text{T}_{a})/(\text{T}_{jet} - \text{T}_{activation})) \\ t_{activation} &= 0.33 \text{ sec} \\ \text{NOTE: If } t_{activation} = \text{"NUM" Detector does not activate} \end{split}$$

METHOD OF MOWRER

References: Mowrer, F., "Lag Times Associated With Fire Detection and Suppression," Fire Technology, August 1990, p. 244.

$\mathbf{t}_{\text{activation}} = \mathbf{t}_{\text{pl}} + \mathbf{t}_{\text{cj}}$

Where

 $t_{activation}$ = detector activation time (sec) t_{pl} = transport lag time of plume (sec)

 t_{cj} = transport lag time of ceiling jet (sec)

Transport Lag Time of Plume Calculation

$$t_{pl} = C_{pl} (H)^{4/3} / (Q)^{1/3}$$
Where
$$tpl = t_{pl} = transport lag time of plume (sec)$$

$$Cpl = C_{pl} = plume lag time constant$$

$$H = H = height of ceiling above top of fuel (m)$$

$$Q = Q = heat release rate of the fire (kW)$$

$$t_{pl} = 0.42 \text{ sec}$$

Transport Lag Time of Ceiling Jet Calculation

$$\begin{split} t_{cj} &= (r)^{11/6} / (C_{cj}) (Q)^{1/3} (H)^{1/2} \\ \text{Where} \\ & \text{tcj} &= t_{cj} = \text{transport lag time of ceiling jet (sec)} \\ & \text{Ccj} &= C_{cj} = \text{ceiling jet lag time constant} \\ & \text{r} &= r = \text{radial distance from the plume centerline to the detector (m)} \\ & \text{H} &= \text{H} = \text{height of ceiling above top of fuel (m)} \\ & \text{Q} &= \text{Q} = \text{heat release rate of the fire (kW)} \\ \end{split}$$

Smoke Detector Response Time Calculation

 $\mathbf{t}_{\text{activation}} = \mathbf{t}_{\text{pl}} + \mathbf{t}_{\text{cj}}$

t_{activation} =

0.74 sec

METHOD OF MILKE

References: Milke, J., "Smoke Management for Covered Malls and Atria," Fire Technology, August 1990, p. 223. NFPA 92B, "Guide for Smoke Management Systems in Mall, Atria, and Large Areas," 2000 Edition, Section A.3.4.

$$t_{activation} = X H^{4/3}/Q^{1/3}$$

Where tactivation = detector activation time (sec) $X = 4.6 \ 10^{-4} \ Y^2 + 2.7 \ 10^{-15} \ Y^6$

- H = height of ceiling above top of fuel (ft)
- Q = heat release rate from steady fire (Btu/sec)

Where

 $\begin{array}{l} Y=\ Y=\Delta T_c\ H^{5/3}\ /\ Q^{2/3}\\ \Delta Tc=\ \Delta T_c\ =\ temperature\ rise\ of\ gases\ under\ the\ ceiling\ for\ smoke\ detector\ to\ activate\ (^{\circ}F) \end{array}$

Before estimating smoke detector response time, stratification effects can be calculated. NFPA 92B, 2000 Edition, Section A.3.4 provides following correlation to estimate smoke stratification in a compartment.

$$H_{max} = 74 Q_c^{2/5} / \Delta T_{f->c}^{3/5}$$

Where

Hmax = H_{max} = the maximum ceiling clearance to which a plume can rise (ft)

 $Q_{c} = Q_{c}$ = convective portion of the heat release rate (Btu/sec)

 ΔTf ->c = ΔT_{f ->c = difference in temperature due to fire between the fuel location and ceiling level (°F)

Convective Heat Release Rate Calculation

Btu/sec

Difference in Temperature Due to Fire Between the Fuel Location and Ceiling Level

 $\Delta T_{f-c} = 1300 \ Q_c^{2/3} / H^{5/3}$

Where

 $\Delta T_{f,c}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

13.03 ft

Q_c = convective portion of the heat release rate (Btu/sec)

H = ceiling height above the fire source (ft)

Smoke Stratification Effects

 $H_{max} = 74 \ Q_c^{2/5} / \Delta T_{f->c}^{3/5}$ $H_{max} = 13.03 \ ft$ In this case the highest point of smoke rise is estimated to be

In this case the highest point of smoke rise is estimated to be Thus, the smoke would be expected to reach the ceiling mounted smoke detector.

 $Y = \Delta T_c H^{5/3} / Q^{2/3}$ Y = 13.41 X = 4.6 10⁻⁴ Y² + 2.7 10⁻¹⁵ Y⁶ X = 0.08

Smoke Detector Response Time Calculation

 $t_{activation} = X H^{4/3}/Q^{1/3}$

t_{activation} = 0.26 sec

Organization:

Organization:

	Calculation Method	Smoke Detector Response Time (sec)
0	METHOD OF ALPERT	0.33
Results	METHOD OF MOWRER	0.74
Tresuits	METHOD OF MILKE	0.26

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Date:

Date:

Prepared by:	
i icpaica by.	

Checked by:

Additional Information:

Example Problem 11.12-2

Problem Statement

During a routine inspection, an NRC resident inspector finds a stack of 4 ft high wood pallets left in the NPP after a recent MOV modification. When the inspector questions the licensee about this transient combustible, the licensee assures the inspector that if the transient ignited, the smoke detection system would alarm in less than 1 minute.

The SFPE Handbook provides test data for a stack of 4 ft high wood pallets, from which the HRR can be estimated at 3.5 MW.

The compartment has a 25 ft ceiling with the smoke detectors spaced 30 ft on center. The pallets are located in the worst position (i.e., in the center of four smoke detectors).

How long does it take the smoke detector to alarm?

Solution

Purpose:

(1) Determine the response time of the smoke detector for the fire scenario.

Assumptions:

- (1) The fire is steady-state.
- (2) The forced ventilation system is off.
- (3) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1.xls (click on Smoke_Detector)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 3,500 kW
- Ceiling Height (H) = 25 ft
- Radial Distance from the Plume Centerline to the Smoke Detector (r) = 21.2 ft

Results*

Heat Release Rate (ġ) (kW)	Smoke Detector Activation Time (t _R) (sec)		
3.500	Method of Alpert	Method of Mowrer	Method of Milke
3,300	0.43	1.27	0.67

*see spreadsheets on next page

Therefore, it can be assumed that the smoke detectors would alarm within 1 minute.

Version 1805.1 (English Units)

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 11.12-2

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Height of Ceiling above Top of Fuel (H) Activation Temperature of the Smoke Detector (Tactivation) Smoke Detector Response Time Index (RTI) Ambient Air Temperature (T_a)

Convective Heat Release Rate Fraction (χ_c) Plume Leg Time Constant (C_{pl}) (Experimentally Determined) Ceiling Jet Lag Time Constant (Ccj) (Experimentally Determined) Temperature Rise of Gases Under the Ceiling (ΔT_c)

for Smoke Detector to Activate r/H = 0.85

3500.00	kW
21.20	ft
25.00	
86.00	°F
	(m-sec)1/2
77.00	°F
	•

0.7	70
0.6	67
1	.2
18.0)(

ESTIMATING SMOKE DETECTOR RESPONSE TIME

METHOD OF ALPERT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-140.

 $t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$

This method assume smoke detector is a low RTI device with a fixed activation temperature

Where

 $t_{activation}$ = detector activation time (sec)

- RTI = detector response time index (m-sec)^{1/2}
- u_{jet} = ceiling jet velocity (m/sec)
- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)

 $T_{activation}$ = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$\begin{split} T_{jet} - T_a &= 16.9 \ (Q)^{2'3} / H^{5'3} & \text{for } r/H \leq 0.18 \\ T_{jet} - T_a &= 5.38 \ (Q/r)^{2'3} / H & \text{for } r/H > 0.18 \end{split}$$

Where

T_{jet} = ceiling jet temperature (°C)

- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where Qc = convective portion of the heat release rate (kW)

- Q = heat release rate of the fire (kW)
- χ_c = convective heat release rate fraction

 $Q_c =$

2450 kW

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.85	r/H > 0.18	
>0.18	46.91	<0.18	132.03
T _{jet} - T _a =	5.38 ((Q/r)^2/3)/H		
T _{jet} - T _a =		46.91	
T _{jet} =		71.91 (°C)	

Ceiling Jet Velocity Calculation

$u_{jet} = 0.96 (Q/H)^{1/3}$	for r/H ≤ 0.15
$u_{jet} = (0.195 Q^{1/3} H^{1/2})/r^{5/6}$	for r/H > 0.15

Where

u_{jet} = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.85 r/H 3	> 0.15	
>0.	15	1.73	<0.15	7.41
u _{jet} =	(0.195 Q^1/3 1.726	H^1/2)/r^(5/6) m/s	~~	
u _{jet} =	1.720	m/s	ec	

Smoke Detector Response Time Calculation

$$\begin{split} t_{activation} &= (\text{RTI/}(\sqrt{u_{jet}})) \text{ (In } (\text{T}_{jet} - \text{T}_{a})/(\text{T}_{jet} - \text{T}_{activation})) \\ t_{activation} &= 0.43 \text{ sec} \\ \text{NOTE: If } t_{activation} = \text{"NUM" Detector does not activate} \end{split}$$

METHOD OF MOWRER

References: Mowrer, F., "Lag Times Associated With Fire Detection and Suppression," Fire Technology, August 1990, p. 244.

$\mathbf{t}_{\text{activation}} = \mathbf{t}_{\text{pl}} + \mathbf{t}_{\text{cj}}$

Where

 $t_{activation}$ = detector activation time (sec) t_{pl} = transport lag time of plume (sec)

 t_{cj} = transport lag time of ceiling jet (sec)

Transport Lag Time of Plume Calculation

$$t_{pl} = C_{pl} (H)^{4/3} / (Q)^{1/3}$$
Where

$$t_{pl} = t_{pl} = t_{nn} \text{ sport lag time of plume (sec)}$$

$$C_{pl} = C_{pl} = plume \text{ lag time constant}$$

$$H = H = \text{ height of ceiling above top of fuel (m)}$$

$$Q = Q = \text{ heat release rate of the fire (kW)}$$

$$t_{pl} = 0.66 \text{ sec}$$

Transport Lag Time of Ceiling Jet Calculation

$$\begin{split} t_{cj} &= (r)^{11/6} / (C_{cj}) (Q)^{1/3} (H)^{1/2} \\ \text{Where} \\ & \text{tcj} &= t_{cj} = \text{transport lag time of ceiling jet (sec)} \\ & \text{Ccj} &= C_{cj} = \text{ceiling jet lag time constant} \\ & \text{r} &= r = \text{radial distance from the plume centerline to the detector (m)} \\ & \text{H} &= \text{H} = \text{height of ceiling above top of fuel (m)} \\ & \text{Q} &= \text{Q} = \text{heat release rate of the fire (kW)} \\ \end{split}$$

Smoke Detector Response Time Calculation

 $\mathbf{t}_{\text{activation}} = \mathbf{t}_{\text{pl}} + \mathbf{t}_{\text{cj}}$

t_{activation} =

1.27 sec

METHOD OF MILKE

References: Milke, J., "Smoke Management for Covered Malls and Atria," Fire Technology, August 1990, p. 223. NFPA 92B, "Guide for Smoke Management Systems in Mall, Atria, and Large Areas," 2000 Edition, Section A.3.4.

$$t_{activation} = X H^{4/3}/Q^{1/3}$$

Where tactivation = detector activation time (sec) $X = 4.6 \ 10^{-4} \ Y^2 + 2.7 \ 10^{-15} \ Y^6$

H = height of ceiling above top of fuel (ft)

Q = heat release rate from steady fire (Btu/sec)

Where

 $\begin{array}{l} Y=\ Y=\Delta T_{c}\ H^{5/3}\ /\ Q^{2/3}\\ \Delta Tc=\ \Delta T_{c}\ =\ temperature\ rise\ of\ gases\ under\ the\ ceiling\ for\ smoke\ detector\ to\ activate\ (^{\circ}F) \end{array}$

Before estimating smoke detector response time, stratification effects can be calculated. NFPA 92B, 2000 Edition, Section A.3.4 provides following correlation to estimate smoke stratification in a compartment.

$$H_{max} = 74 Q_c^{2/5} / \Delta T_{f->c}^{3/5}$$

Where

Hmax = H_{max} = the maximum ceiling clearance to which a plume can rise (ft)

 $Q_{c} = Q_{c}$ = convective portion of the heat release rate (Btu/sec)

 ΔTf ->c = ΔT_{f ->c = difference in temperature due to fire between the fuel location and ceiling level (°F)

Convective Heat Release Rate Calculation

Btu/sec

Difference in Temperature Due to Fire Between the Fuel Location and Ceiling Level

 $\Delta T_{f-2c} = 1300 \ Q_c^{2/3} / H^{5/3}$

Where $\Delta T_{t>c}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

25.05 ft

Q_c = convective portion of the heat release rate (Btu/sec)

H = ceiling height above the fire source (ft)

 $\Delta T_{f->c} =$ 1066.53 °F

Smoke Stratification Effects

 $H_{max} = 74 \ Q_c^{2/5} / \Delta T_{f-c}^{3/5}$ H_{max} = 25.05 ft In this case the highest point of smoke rise is estimated to be

Thus, the smoke would be expected to reach the ceiling mounted smoke detector.

 $\mathbf{Y} = \Delta \mathbf{T_c} \ \mathbf{H}^{5/3} / \ \mathbf{Q}^{2/3}$ Y = 17.30 $X = 4.6 \ 10^{-4} \ Y^2 + 2.7 \ 10^{-15} \ Y^6$ X = 0.14

Smoke Detector Response Time Calculation

 $t_{activation} = X H^{4/3}/Q^{1/3}$

t_{activation} = 0.67 sec

	Calculation Method	Smoke Detector Response Time (sec)
0	METHOD OF ALPERT	0.43
Results	METHOD OF MOWRER	1.27
Tresuits	METHOD OF MILKE	0.67

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Date:

Date:

_	
Prepared by:	

Checked by:

Additional Information:

Organization:

Organization:

Example Problem 11.12-3

Problem Statement

During a triennial inspection, an NRC inspector discovers that every other smoke detector has inadvertently been painted and is not functional. The detection system in the compartment is singlezoned to arm a pre-action sprinkler system. The detectors are 20 ft on center. The ceiling is 23 ft. The sprinkler system uses 165 °F sprinklers, 10 ft on center, 4 inches from the ceiling. The licensee states that even with half the smoke detectors inoperable, a smoke detector would alarm and charge the preaction system before a quick-response link-type sprinkler head fuses. The expected fire in the compartment is approximately 750 kW. Is the licensee's statement true?

Solution

Purpose:

- (1) Determine the response time of the smoke detector for the fire scenario.
- (2) Determine the response time of the sprinkler system.

Assumptions:

- (1) The fire is steady-state.
- (2) The forced ventilation system is off.
- (3) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1.xls (click on *Smoke-Detector*)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 750 kW
- Ceiling Height (H) = 23 ft
- Radial Distance from the Plume Centerline to the Smoke Detector (r) = 20 ft
- (b) 10_Detector_Activation_Time_Sup1.xls (click on *Sprinkler*)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 750 kW
- Select Quick Response Link
- Select Ordinary
- Ceiling Height (H) = 23 ft
- Radial Distance from the Plume Centerline to the Sprinkler (r) = 7.1 ft

Results*

Heat Release Rate (Ż) (kW)	Smoke Detector Activation Time (t _R) (sec)		
750	Method of Alpert	Method of Mowrer	Method of Milke
750	1.5	1.94	6.0

*see spreadsheet on next page

The sprinkler heads do not activate. Therefore, the licensee's statement is true; however, the non-activation of the sprinkler heads should be of great concern.

Version 1805.1 (English Units)

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 11.12-3a

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) Radial Distance to the Detector (r)**never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Height of Ceiling above Top of Fuel (H) Activation Temperature of the Smoke Detector (T_{activation}) Smoke Detector Response Time Index (RTI) Ambient Air Temperature (T_a)

 $\begin{array}{l} \mbox{Convective Heat Release Rate Fraction} \ (\chi_c) \\ \mbox{Plume Leg Time Constant} \ (C_{pl}) \ (Experimentally Determined) \\ \mbox{Ceiling Jet Lag Time Constant} \ (C_{cl}) \ (Experimentally Determined) \\ \mbox{Temperature Rise of Gases Under the Ceiling} \ (\Delta T_c) \\ \end{array}$

for Smoke Detector to Activate r/H = 0.87

750.00	kW
20.00	ft
23.00	
86.00	°F
5.00	(m-sec)1/2
77.00	°F

0.70
0.67
1.2
18.00

ESTIMATING SMOKE DETECTOR RESPONSE TIME

METHOD OF ALPERT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-140.

 $t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$

This method assume smoke detector is a low RTI device with a fixed activation temperature

Where

 $t_{activation}$ = detector activation time (sec)

- RTI = detector response time index (m-sec)^{1/2}
- u_{jet} = ceiling jet velocity (m/sec)
- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)

 $T_{activation}$ = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$\begin{split} T_{jet} - T_a &= 16.9 \ (Q)^{2/3} / H^{5/3} & \text{for } r/H \leq 0.18 \\ T_{jet} - T_a &= 5.38 \ (Q/r)^{2/3} / H & \text{for } r/H > 0.18 \end{split}$$

Where

T_{jet}= ceiling jet temperature (°C)

- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where Qc = convective portion of the heat release rate (kW) Q = heat release rate of the fire (kW)

- χ_c = convective heat release rate fraction
- (c convective near release rate fraction

 $Q_c =$

525 kW

Radial Distance to Ceiling Height Ratio Calculation

0.87	r/H > 0.18	
18.98	<0.18	54.33
5.38 ((Q/r)^2/3)/H		
	18.98	
	43.98 (°C)	
	18.98	18.98 <0.18 5.38 ((Q/r)^2/3)/H 18.98

Ceiling Jet Velocity Calculation

u _{jet} = 0.96 (Q/H) ^{1/3}	for r/H ≤ 0.15
$u_{jet} = (0.195 Q^{1/3} H^{1/2})/r^{5/6}$	for r/H > 0.15

Where

u_{jet} = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.87 r/H >	> 0.15	
>0.1	15	1.04	<0.15	4.56
u _{jet} =	(0.195 Q^1/3	H^1/2)/r^(5/6)		
u _{jet} =	1.040	m/se	ec	

Smoke Detector Response Time Calculation

$$\begin{split} t_{activation} &= (\text{RTI/}(\sqrt{u_{jet}})) \text{ (In } (\text{T}_{jet} - \text{T}_{a})/(\text{T}_{jet} - \text{T}_{activation})) \\ t_{activation} &= 1.50 \text{ sec} \\ \text{NOTE: If } t_{activation} = \text{"NUM" Detector does not activate} \end{split}$$

METHOD OF MOWRER

References: Mowrer, F., "Lag Times Associated With Fire Detection and Suppression," Fire Technology, August 1990, p. 244.

$\mathbf{t}_{\text{activation}} = \mathbf{t}_{\text{pl}} + \mathbf{t}_{\text{cj}}$

Where

 $t_{activation}$ = detector activation time (sec) t_{pl} = transport lag time of plume (sec)

 t_{cj} = transport lag time of pluttle (sec)

Transport Lag Time of Plume Calculation

$$t_{pl} = C_{pl} (H)^{4/3} / (Q)^{1/3}$$
Where

$$t_{pl} = t_{pl} = t_{nsport} \text{ lag time of plume (sec)}$$

$$C_{pl} = C_{pl} = \text{ plume lag time constant}$$

$$H = H = \text{ height of ceiling above top of fuel (m)}$$

$$Q = Q = \text{ heat release rate of the fire (kW)}$$

$$t_{pl} = 0.99 \text{ sec}$$

Transport Lag Time of Ceiling Jet Calculation

$$\begin{split} t_{cj} &= (r)^{11/6} / (C_{cj}) (Q)^{1/3} (H)^{1/2} \\ \text{Where} \\ & \text{tcj} &= t_{cj} = \text{transport lag time of ceiling jet (sec)} \\ & \text{Ccj} &= C_{cj} = \text{ceiling jet lag time constant} \\ & \text{r = r = radial distance from the plume centerline to the detector (m)} \\ & \text{H} &= \text{H} = \text{height of ceiling above top of fuel (m)} \\ & \text{Q} &= \text{Q} = \text{heat release rate of the fire (kW)} \\ \end{split}$$

Smoke Detector Response Time Calculation

 $\mathbf{t}_{\text{activation}} = \mathbf{t}_{\text{pl}} + \mathbf{t}_{\text{cj}}$

t_{activation} =

1.94 sec

METHOD OF MILKE

References: Milke, J., "Smoke Management for Covered Malls and Atria," Fire Technology, August 1990, p. 223. NFPA 92B, "Guide for Smoke Management Systems in Mall, Atria, and Large Areas," 2000 Edition, Section A.3.4.

$$t_{activation} = X H^{4/3}/Q^{1/3}$$

Where tactivation = detector activation time (sec) $X = 4.6 \ 10^{-4} \ Y^2 + 2.7 \ 10^{-15} \ Y^6$

H = height of ceiling above top of fuel (ft)

Q = heat release rate from steady fire (Btu/sec)

Where

 $\begin{array}{l} Y=\ Y=\Delta T_c\ H^{5/3}\ /\ Q^{2/3}\\ \Delta Tc=\ \Delta T_c\ =\ temperature\ rise\ of\ gases\ under\ the\ ceiling\ for\ smoke\ detector\ to\ activate\ (^{\circ}F) \end{array}$

Before estimating smoke detector response time, stratification effects can be calculated. NFPA 92B, 2000 Edition, Section A.3.4 provides following correlation to estimate smoke stratification in a compartment.

$$H_{max} = 74 Q_c^{2/5} / \Delta T_{f->c}^{3/5}$$

Where

Hmax = H_{max} = the maximum ceiling clearance to which a plume can rise (ft)

 $Q_{c} = Q_{c}$ = convective portion of the heat release rate (Btu/sec)

 ΔTf ->c = ΔT_{f ->c = difference in temperature due to fire between the fuel location and ceiling level (°F)

Convective Heat Release Rate Calculation

$$\begin{array}{l} \textbf{Q}_{c} = \textbf{Q} \; \boldsymbol{\chi}_{c} \\ \\ \textbf{Where} \\ \textbf{Q}_{c} = \text{convective portion of the heat release rate (Btu/sec)} \\ \textbf{Q} = \text{heat release rate of the fire (Btu/sec)} \\ \boldsymbol{\chi}_{c} = \text{convective heat releas rate fraction} \end{array}$$

Btu/sec

Difference in Temperature Due to Fire Between the Fuel Location and Ceiling Level

 $\Delta T_{f-c} = 1300 \ Q_c^{2/3} / H^{5/3}$

Where $\Delta T_{t>c}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

23.05 ft

Q_c = convective portion of the heat release rate (Btu/sec)

H = ceiling height above the fire source (ft)

 $\Delta T_{f->c} =$ 438.85 °F

Smoke Stratification Effects

 $H_{max} = 74 \ Q_c^{2/5} / \Delta T_{f-c}^{3/5}$ H_{max} = 23.05 ft In this case the highest point of smoke rise is estimated to be

Thus, the smoke would be expected to reach the ceiling mounted smoke detector.

 $\mathbf{Y} = \Delta \mathbf{T_c} \ \mathbf{H}^{5/3} / \ \mathbf{Q}^{2/3}$ Y = 42.04 $X = 4.6 \ 10^{-4} \ Y^2 + 2.7 \ 10^{-15} \ Y^6$ X = 0.81

Smoke Detector Response Time Calculation

 $t_{activation} = X H^{4/3}/Q^{1/3}$

t_{activation} = 5.96 sec

Organization:

Organization:

	Calculation Method	Smoke Detector Response Time (sec)
0	METHOD OF ALPERT	1.50
Results	METHOD OF MOWRER	1.94
Tresuits	METHOD OF MILKE	5.96

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Date:

Date:

Prepared by:		

Checked by:

Additional Information:

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 11.12-3b

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) Sprinkler Response Time Index (RTI) Activation Temperature of the Sprinkler (Tactivation)

Height of Ceiling above Top of Fuel (H)

Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Ambient Air Temperature (T_a)

Convective Heat Release Rate Fraction (χ_c) r/H = 0.31

750.00 kW

Calculate

GENERIC SPRINKLER RESPONSE TIME INDEX (RTI)*

Common Sprinkler Type	Generic Response Time Index (RTI) (m-sec) ^{1/2}	Select Type of Sprinkler Quick response link
Standard response bulb	235	Scroll to desired sprinkler type then Click on selection
Standard response link	130	
Quick response bulb	42	
Quick response link	34	
User Specified Value	Enter Value	
Reference: Madrzykowski, D., "Eval	uation of Sprinkler Activation Prediction Method	ds"
ASIAFLAM'95. International Conference	ence on Fire Science and Engineering, 1 st Pro	ceeding.

March 15-16, 1995, Kowloon, Hong Kong, pp. 211-218. *Note: The actual RTI should be used when the value is available.

GENERIC SPRINKLER TEMPERATURE RATING (Tactivation)*

Temperature Classification	Range of Temperature	Generic Temperature	Select Sprinkler Classification
	Ratings (°F)	Ratings (°F)	Ordinary
Ordinary	135 to 170	165	Scroll to desired sprinkler class
Intermediate	175 to 225	212	then Click on selection
High	250 to 300	275	
Extra high	325 to 375	350	
Very extra high	400 to 475	450	
Ultra high	500 to 575	550	
Ultra high	650	550	
User Specified Value	-	Enter Value	

nce: Automatic Sprinkler Systems Handbook, 6th Edition, National Fire Protectior

Association, Quincy, Massachusetts, 1994, Page 67.

*Note: The actual temperature rating should be used when the value is available.

ESTIMATING SPRINKLER RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

 $t_{activation}$ = sprinkler activation response time (sec)

RTI = sprinkler response time index (m-sec)^{1/2} u_{iet} = ceiling jet velocity (m/sec)

 T_{jet} = ceiling jet temperature (°C) T_a = ambient air temperature (°C)

T_{activation} = activation temperature of sprinkler (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{iet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

T_{jet} = ceiling jet temperature (°C)

 T_a = ambient air temperature (°C)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

Qc = convective portion of the heat release rate (kW)

Q = heat release rate of the fire (kW) χ c = convective heat release rate fraction

 $Q_c =$

525 kW

for r/H ≤ 0.18 for r/H > 0.18

Radial Distance	to Ceiling	Height Ratio	Calculation
	to cennig	Theight Natio	Calculation

r/H =	0.31 r/H > 0.18		
>0.18	37.86	<0.18	54.33
$T_{jet} - T_a = {$	5.38 (Q/r)^2/3}/H		
T _{jet} - T _a =	37.86		
T _{jet} =	62.86 (°C)		

Ceiling Jet Velocity Calculation

$$u_{jet} = 0.96 (Q/H)^{1/3}$$
 for r/H ≤ 0.15
 $u_{jet} = (0.195 Q^{1/3} H^{1/2})/r^{5/6}$ for r/H > 0.15

Where

ujet = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.31 r/H > 0.15		
>0.15	2.47	<0.15	4.55733256

u _{jet} =	(0.195 Q^1/3 H^1/2)/r^5/6	

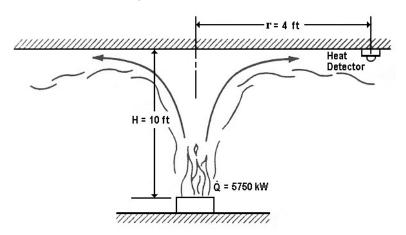
u _{iet} =	2.465	m/sec
⊶iet	2.400	11// 5000

SPRINKLER ACTIVATION TIME CALCULATION

 $t_{activation} = (\text{RTI/}(\sqrt{u_{jet}})) \text{ (In } (\text{T}_{jet} - \text{T}_{a})/(\text{T}_{jet} - \text{T}_{activation}))$

t_{activation} #NUM! sec

Answer	The sprinkler will respond in approximately	#NUM!	minutes
	NOTE: If t _{activation} = "NUM" Sprinkler does not activate		
NOTE:			
assumptions and interpreted by an accuracy of these	ations are based on principles developed in the SFPE Handbook have inherent limitations. The results of such calculations may of informed user. Although each calculation in the spreadsheet has a calculations. Any questions, comments, concerns and suggesti rc.gov or Naeem.lqbal@nrc.gov.	or may not have reasonabl s been verified with the res	ole predictive capabilities for a given situation and should only b esults of hand calculation, there is no absolute guarantee of the
Prepared by		Dat	ate: Organization:
Checked by	r.	Dat	organization:


Additional Information:

12.12 Problems

Example Problem 12.12-1

Problem Statement

A 34.5 ft² lube oil pool fire with \dot{Q} = 5,750 kW occurs in a space protected with fixed-temperature heat detectors. Calculate the activation time for the fixed-temperature heat detectors, using 10 ft spacing, in an area with a ceiling height 10 ft. The detector activation temperature is 128 °F, the radial distance to the detector is 4 ft, and the ambient temperature is 77 °F.

Example Problem 12-1: Fire Scenario with Heat Detectors

Solution

Purpose:

(1) Determine the response time of the fixed-temperature heat detectors for the fire scenario.

Assumptions:

- (1) The fire is located away from walls and corners.(2) The fire is steady state and plume is under unconfined ceiling.
- (3) Only convective heat transfer from the hot fire gases is considered.
- (4) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1.xls (click on FTHDetector)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 5,750 kW
- Radial Distance to the Detector (r) = 4 ft
- Activation Temperature of the Fixed-Temperature Heat Detector (Tactivation) = 128 °F
- Distance from the Top of the Fuel Package to the Ceiling (H) = 10 ft
- Ambient Air Temperature (T_a) = 77 °F
- Click on the option button for FTH detectors with $T_{activation}$ = 128 °F
- Select Detector Spacing: 10

Results*

Detector Type	Heat Detector Activation Time (t _{activation}) (min.)
Fixed-Temperature	0.2

*see spreadsheet on next page

CHAPTER 10 ESTIMATING SPRINKLER RESPONSE TIME

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.					
Project / Inspection Title:		Example 12.12-1			
INPUT PARAME	TERS				
Radial Distance Activation Temp Detector Respor	ate of the Fire (Q) (Steady State) to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the liste erature of the Fixed Temperature Heat Detector ($T_{activation}$) nse Time Index (RTI) g above Top of Fuel (H) nperature (T_a)	ted spacing** 5750.00 kW 4.00 ft 128 °F 490.00 (m-sec) ^{1/2} 10.00 ft 77.00 °F			
Convective Heat r/H =	t Release Fraction (χ_c) 0.40	0.70			

INPUT DATA FOR ESTIMATING HEAT DETECTOR RESPONSE TIME

Activation Temperature T

T= 128 F	UL Listed Spacing	Response Time Index	Activation	
	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	10	490	128	10 🔫
	15	306	128	Scroll to desired spacing th
				Click on selection
	20	325	128	Click on selection
	25	152	128	
	30	116	128	
	40	87	128	
	50	72	128	
	70	44	128	
	User Specified Value	Enter Value	Enter Value	
T= 135 F	UL Listed Spacing	Response Time Index	Activation	
	r (ft)	RTI (m-sec)1/2	Temperature (°F)	Select Detector Spacing
	10	404	135	
	15	233	135	Scroll to desired spacing the
				Click on selection
	20	165	135	Click on selection
	25	123	135	
	30	98	135	
	40	70	135	
	50	54	135	
	70	20	135	
	User Specified Value	Enter Value	Enter Value	
T= 145 F	UL Listed Spacing	Response Time Index	Activation	
	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	10	321	145	
	15	191	145	Scroll to desired spacing the
	20	129	145	Click on selection
	25	96	145	
	30	75	145	
	40	50	145	
	50	37	145	
	70	11	145	
	User Specified Value	Enter Value	Enter Value	
			Activation	
T= 160 F	UL Listed Spacing	Response Time Index	Activation	
T= 160 F	UL Listed Spacing r (ft)	Response Time Index RTI (m-sec) ^{1/2}		Select Detector Spacing
T= 160 F	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
T= 160 F	r (ft) 10	RTI (m-sec) ^{1/2} 239	Temperature (°F) 160	
T= 160 F	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	
]T= 160 F	r (ft) 10	RTI (m-sec) ^{1/2} 239	Temperature (°F) 160	
]T= 160 F	r (ft) 10 15 20	RTI (m-sec) ^{1/2} 239 135 86	Temperature (°F) 160 160 160	Scroll to desired spacing the
]T= 160 F	r (ft) 10 15 20 25	RTI (m-sec) ^{1/2} 239 135 86 59	Temperature (°F) 160 160 160 160	Scroll to desired spacing the
]T= 160 F	r (ft) 10 15 20 25 30	RTI (m-sec) ^{1/2} 239 135 86 59 44	Temperature (°F) 160 160 160 160 160	Scroll to desired spacing the
]T= 160 F	r (ft) 10 15 20 25	RTI (m-sec) ^{1/2} 239 135 86 59	Temperature (°F) 160 160 160 160 160 160	Scroll to desired spacing the
]T= 160 F	r (ft) 10 15 20 25 30	RTI (m-sec) ^{1/2} 239 135 86 59 44 22	Temperature (°F) 160 160 160 160 160	Scroll to desired spacing the
2T= 160 F	r (ft) 10 15 20 25 30 40	RTI (m-sec) ^{1/2} 239 135 86 59 44 22	Temperature (°F) 160 160 160 160 160 160	Scroll to desired spacing the
	r (ft) 10 15 20 25 30 40	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index	Temperature (°F) 160 160 160 160 160 160	Scroll to desired spacing the
	r (ft) 10 15 20 25 30 40 User Specified Value	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value	Temperature (°F) 160 160 160 160 160 160 Enter Value	Scroll to desired spacing the
	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft)	RTI (m-sec) ^{11/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{11/2}	Temperature (°F) 160 160 160 160 160 160 160 160 160 Activation Temperature (°F)	Scroll to desired spacing the Click on selection
	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196	Temperature (°F) 160 160 160 160 160 160 160 160 Temperature Value Activation Temperature (°F) 170	Scroll to desired spacing the Click on selection
	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170 170	Scroll to desired spacing th Click on selection Select Detector Spacing Scroll to desired spacing th
	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196	Temperature (°F) 160 160 160 160 160 160 160 160 Temperature Value Activation Temperature (°F) 170	Scroll to desired spacing th Click on selection
	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170 170	Scroll to desired spacing th Click on selection Select Detector Spacing Scroll to desired spacing th
	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 170 170 170 170 170 170 170 170 170 170	Scroll to desired spacing th Click on selection Select Detector Spacing Scroll to desired spacing th
	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 25 25 25 25 25 25 25 25 25 25	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27	Temperature (°F) 160 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170 170 170 170 170 170 17	Scroll to desired spacing the Click on selection
	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 170 170 170 170 170 170 170 170 170 170	Scroll to desired spacing the Click on selection
]T= 170 F	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170 170 170 170 170 170 Enter Value	Scroll to desired spacing the Click on selection
]T= 170 F	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing UL Listed Spacing	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170 170 170 170 170 170 Enter Value Activation	Scroll to desired spacing th Click on selection Select Detector Spacing Scroll to desired spacing th Click on selection
]T= 170 F	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing r (ft) UL Listed Spacing r (ft)	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index RTI (m-sec) ^{1/2}	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170 170 170 170 Enter Value Activation Temperature (°F)	Scroll to desired spacing th Click on selection Select Detector Spacing Scroll to desired spacing th
]T= 170 F	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing r (ft) UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 10 15 20 25 30 10 10 15 20 25 30 10 10 10 10 15 20 25 30 10 10 10 10 10 10 10 10 10 1	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index RTI (m-sec) ^{1/2} Response Time Index RTI (m-sec) ^{1/2} 119	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170	Scroll to desired spacing th Click on selection Select Detector Spacing Scroll to desired spacing th Click on selection
]T= 170 F	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing r (ft) UL Listed Spacing r (ft)	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index RTI (m-sec) ^{1/2}	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170 170 170 170 Enter Value Activation Temperature (°F)	Scroll to desired spacing th Click on selection Select Detector Spacing Scroll to desired spacing th Click on selection
]T= 170 F	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 UL Listed Spacing r (ft) 10 15 20 25 30 UL Listed Spacing r (ft) 10 15 20 25 30 USER Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 USER Specified Value	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index RTI (m-sec) ^{1/2} Response Time Index RTI (m-sec) ^{1/2} 119	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170	Scroll to desired spacing th Click on selection Select Detector Spacing Scroll to desired spacing th Click on selection
2T= 160 F 2T= 170 F	r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing r (ft) UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 10 15 20 25 30 10 10 15 20 25 30 10 10 10 10 15 20 25 30 10 10 10 10 10 10 10 10 10 1	RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index RTI (m-sec) ^{1/2} Response Time Index 21	Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 170 170 170 170 170 170 170 170 170 170 170 170 196 196	Scroll to desired spacing t Click on selection Select Detector Spacing Scroll to desired spacing t Click on selection

CHAPTER 10 ESTIMATING SPRINKLER RESPONSE TIME

ESTIMATING FIXED TEMPERATURE HEAT DETECTOR RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

- $t_{activation}$ = detector activation time (sec)
 - RTI = detector response time index (m-sec)^{1/2}
 - u_{jet} = ceiling jet velocity (m/sec)
 - T_{jet} = ceiling jet temperature (°C)
 - T_a = ambient air temperature (°C)

 $T_{activation}$ = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$
for r/H ≤ 0.18 $T_{jet} - T_a = 5.38 (Q/r)^{2/3}/H$ for r/H > 0.18

Where

- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

- Where
- Qc = convective heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χc = convective heat release fraction

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.40 r/H > 0.18	i		
	>0.18	496.40	<0.18	846.53	
T _{jet} - T	Г _а =	5.38 ((Q/r)^2/3)/H			
T _{jet} - T	Г _а =	496.40			
T _{jet} =		521.40 (°C)			

Ceiling Jet Velocity Calculation

$u_{jet} = 0.96 (Q/H)^{1/3}$	for r/H ≤ 0.15
u _{jet} = (0.195 Q ^{1/3} H ^{1/2})/r ^{5/6}	for r/H > 0.15

Where

- u_{jet} = ceiling jet velocity (m/sec)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.40 r/H > 0.15			
	>0.15	5.17		<0.15	11.862
u _{jet} =	(0.1	95 Q^1/3 H′	`1/2)/r^(5/6)		
u _{jet} =	5.17	71	m/sec		

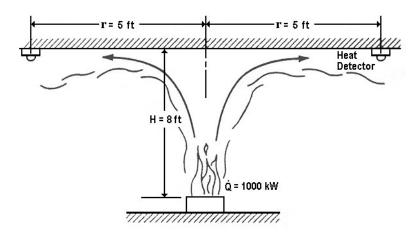
DETECTOR ACTIVATION TIME CALCULATION

 $t_{activation} = (\text{ RTI/}(\sqrt{u_{jet}})) \text{ (In (T_{jet} - T_a)/(T_{jet} - T_{activation}))}$

t_{activation} = 12.66 sec

Answer The detector will respond in approximately

0.21 minutes


NOTE: If t_{activation} = "NUM" Detector does not activate

NOTE.					
NOTE: The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3 rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these					
calculations. Any questions, comments, concerns and suggestions or to report a Naeem.lqbal@nrc.gov.					
Prepared by:	Date:	Organization:			
Checked by:	Date:	Organization:			
Additional Information:					

Example Problem 12.12-2

Problem Statement

A trash fire with \dot{Q} = 1,000 kW occurs in a space protected with fixed-temperature heat detectors. Calculate the activation time for the fixed-temperature heat detectors, using 10 ft spacing, in an area with a ceiling height of 8 ft. The fire is located directly between heat detectors. The detector activation temperature is 160 °F, and the ambient temperature is 77 °F.

Solution

Purpose:

(1) Determine the response time of the fixed-temperature heat detectors for the fire scenario.

Assumptions:

- (1) The fire is located away from walls and corners.
- (2) The fire is steady state and plume is under unconfined ceiling.
- (3) Only convective heat transfer from the hot fire gases is considered.
- (4) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1.xls (click on FTHDetector)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 1,000 kW
- Radial Distance to the Detector (r) = 5 ft
- Activation Temperature of the Fixed-Temperature Heat Detector (Tactivation) = 160 °F
- Distance from the Top of the Fuel Package to the Ceiling (H) = 8 ft
- Ambient Air Temperature (T_a) = 68 °F
- Click on the option button for FTH detectors with $T_{activation}$ = 160 °F
- Select Detector Spacing: 10

Results*

Detector Type	Heat Detector Activation Time (t _{activation}) (min.)
Fixed-Temperature	1.00

*see spreadsheet on next page

CHAPTER 10 ESTIMATING SPRINKLER RESPONSE TIME

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.					
Project / Inspection Title: Example 12.12-2					
INPUT PARAMETERS					
Radial Dista Activation T Detector Re Height of Co	se Rate of the Fire (Q) (Steady State) Ince to the Detector (r) ** never more than 0.707 or 1/2 emperature of the Fixed Temperature Heat Detector (sponse Time Index (RTI) illing above Top of Fuel (H) Temperature (T _a)				
Convective r/H =	Heat Release Fraction (χ_c) 0.63	0.70 Calculate			

INPUT DATA FOR ESTIMATING HEAT DETECTOR RESPONSE TIME

Activation Temperature T

T= 128 F	UL Listed Spacing	Response Time Index	Activation	
L I - 120 F	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	10	490	128	
	15	306	128	Scroll to desired spacing th
	20	325	128	Click on selection
	25	152	128	
	30	116	128	
	40	87	128	
	50	72	128	
	70	44	128	
	User Specified Value	Enter Value	Enter Value	
	UL Listed Spacing	Response Time Index	Activation	
🖸 T= 135 F		RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	r (ft)			Select Detector Spacing
	10	404	135	
	15	233	135	Scroll to desired spacing the
	20	165	135	Click on selection
		123	135	
	25			
	30	98	135	
	40	70	135	
	50	54	135	
	70	20	135	
	User Specified Value	Enter Value	Enter Value	
🖸 T= 145 F	UL Listed Spacing	Response Time Index	Activation	
1-1451	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
				School Betterter optioning
	10	321	145	
	15	191	145	Scroll to desired spacing the
	20	129	145	Click on selection
	25	96	145	
	30	75	145	
			-	
	40	50	145	
	50	37	145	
	00			
	70	11	145	
		11		
	70 User Specified Value	11 Enter Value	145 Enter Value	_
⊙ T= 160 F	70	11 Enter Value Response Time Index	145	_
🖸 T= 160 F	70 User Specified Value	11 Enter Value	145 Enter Value	Select Detector Spacing
⊡ T= 160 F	70 User Specified Value UL Listed Spacing r (ft)	11 Enter Value Response Time Index RTI (m-sec) ¹¹²	145 Enter Value Activation Temperature (°F)	Select Detector Spacing
⊡ T= 160 F	70 User Specified Value UL Listed Spacing r (ft) 10	11 Enter Value Response Time Index RTI (m-sec) ^{11/2} 239	145 Enter Value Activation Temperature (°F) 160	10 💌
⊡T=160 F	70 User Specified Value UL Listed Spacing r (ft) 10 15	11 Enter Value Response Time Index RTI (m-sec) ^{11/2} 239 135	145 Enter Value Activation Temperature (°F) 160 160	10 Scroll to desired spacing the
© T= 160 F	70 User Specified Value UL Listed Spacing r (ft) 10	11 Enter Value Response Time Index RTI (m-sec) ^{11/2} 239	145 Enter Value Activation Temperature (°F) 160	10 💌
€ T= 160 F	70 User Specified Value UL Listed Spacing r (ft) 10 15	11 Enter Value Response Time Index RTI (m-sec) ^{11/2} 239 135	145 Enter Value Activation Temperature (°F) 160 160	10 Scroll to desired spacing the
C T= 160 F	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59	145 Enter Value Activation Temperature (°F) 160 160 160 160	10 Scroll to desired spacing the
⊡ T= 160 F	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44	145 Enter Value Activation Temperature (°F) 160 160 160 160 160	10 Scroll to desired spacing the
⊡T=160 F	70 User Specified Value VL Listed Spacing r (ft) 10 15 20 25 30 40	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22	145 Enter Value Activation Temperature (°F) 160 160 160 160 160	10 Scroll to desired spacing the
⊡T=160 F	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22	145 Enter Value Activation Temperature (°F) 160 160 160 160 160	10 Scroll to desired spacing the
	70 User Specified Value VL Listed Spacing r (ft) 10 15 20 25 30 40	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index	145 Enter Value Activation Temperature (°F) 160 160 160 160 160	10 Scroll to desired spacing the
⊡ T= 160 F ⊡ T= 170 F	70 User Specified Value IL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 Enter Value	10 Scroll to desired spacing the
	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft)	11 Enter Value Response Time Index RTI (m-sec) ¹¹² 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ¹¹²	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 Enter Value Activation Temperature (°F)	10 Scroll to desired spacing the Click on selection
	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170	10 Image: Constraint of the second secon
	70 User Specified Value VL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value VL Listed Spacing r (ft) 10 15	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170	10 Image: Constraint of the second secon
	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170	10 Image: Constraint of the second secon
	70 User Specified Value VL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value VL Listed Spacing r (ft) 10 15	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170	10 Image: Constraint of the second secon
	70 User Specified Value r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 UL Listed Spacing 25	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170 170	10 Image: Constraint of the second secon
	70 User Specified Value r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170	10 Image: Constraint of the second secon
E T= 170 F	70 User Specified Value (IL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170 170 170	10 Image: Constraint of the second secon
	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 160	10 Image: Constraint of the second secon
E T= 170 F	70 User Specified Value (IL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170 170 170 170 170 170 170	10 Image: Constraint of the second secon
E T= 170 F	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 160	10 Image: Constraint of the second secon
E T= 170 F	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 USER Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 USER Specified Value UL Listed Spacing r (ft) 10 10 10 10 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 15 10 10 15 10 10 15 10 10 15 10 10 10 15 10 10 10 15 10 10 10 10 10 10 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index RTI (m-sec) ^{1/2}	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170 170 170 170 170 170 Enter Value	10 Image: Constraint of the second secon
E T= 170 F	70 User Specified Value r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 User Specified Value UL Listed Spacing r (ft) 10 15	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{1/2} 196 109 64 39 27 Enter Value Response Time Index RTI (m-sec) ^{1/2}	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 Activation Temperature (°F) 170 196 196	10 Image: Constraint of the second secon
E T= 170 F	70 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 User Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 USER Specified Value UL Listed Spacing r (ft) 10 15 20 25 30 40 USER Specified Value UL Listed Spacing r (ft) 10 10 10 10 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 15 10 10 15 10 10 15 10 10 10 10 15 10 10 10 15 10 10 10 10 10 10 10 15 10 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15	11 Enter Value Response Time Index RTI (m-sec) ^{1/2} 239 135 86 59 44 22 Enter Value Response Time Index RTI (m-sec) ^{11/2} 196 109 64 39 27 Enter Value Response Time Index RTI (m-sec) ^{11/2}	145 Enter Value Activation Temperature (°F) 160 160 160 160 160 160 160 Enter Value Activation Temperature (°F) 170 170 170 170 170 170 170 Enter Value	10 Image: Constraint of the second secon

CHAPTER 10 ESTIMATING SPRINKLER RESPONSE TIME

ESTIMATING FIXED TEMPERATURE HEAT DETECTOR RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

- $t_{activation}$ = detector activation time (sec)
 - RTI = detector response time index (m-sec)^{1/2}
 - u_{jet} = ceiling jet velocity (m/sec)
 - T_{jet} = ceiling jet temperature (°C)
 - T_a = ambient air temperature (°C)

 $T_{activation}$ = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$
for r/H ≤ 0.18 $T_{jet} - T_a = 5.38 (Q/r)^{2/3}/H$ for r/H > 0.18

Where

- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

- Where
- Qc = convective heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χc = convective heat release fraction

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.63 r/H > 0).18	
>	0.18	166.60	<0.18	382.57
T _{jet} - T _a =	5.38 ((Q/r)^2/3)/H		
T _{jet} - T _a =		166.60		
T _{jet} =		186.60 (°C)		

Ceiling Jet Velocity Calculation

$u_{jet} = 0.96 (Q/H)^{1/3}$	for r/H ≤ 0.15
u _{jet} = (0.195 Q ^{1/3} H ^{1/2})/r ^{5/6}	for r/H > 0.15

Where

- u_{jet} = ceiling jet velocity (m/sec)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0	.63 r/H > 0.15		
	>0.15	2.14		<0.15	7.1324
u _{jet} =	(0.1	195 Q^1/3 H	^1/2)/r^(5/6)		
u _{jet} =	2.1	43	m/sec		

DETECTOR ACTIVATION TIME CALCULATION

 $t_{activation} = (\text{ RTI/}(\sqrt{u_{jet}})) \text{ (In (T_{jet} - T_a)/(T_{jet} - T_{activation}))}$

t_{activation} = 59.82 sec

Answer The detector will respond in approximately

1.00 minutes

NOTE: If t_{activation} = "NUM" Detector does not activate

NOTE		
NOTE:		
The above calculations are based on principles developed in the SFPE Handbook of and have inherent limitations. The results of such calculations may or may not have		
informed user. Although each calculation in the spreadsheet has been verified with		
calculations. Any questions, comments, concerns and suggestions or to report an e		
Naeem.lqbal@nrc.gov.	· · · · · ·	
Prepared by:	Date:	Organization:
	2000	
Checked by:	Date:	Organization:
Additional Information:		

13.10 Problems

Example Problem 13.10-1

Problem Statement

Consider a compartment 20 ft wide x 25 ft long x 12 ft high ($w_c x I_c x h_c$), with an opening 3 ft wide and 8 ft high ($w_v x h_v$). The interior lining material of the compartment is 6 in. concrete. Calculate the HRR necessary for flashover, \dot{Q}_{FO} , and the post-flashover compartment temperature, T_{PFO} .

Solution

Purpose:

(1) Determine the heat release rate for flashover for the given compartment.

Assumptions:

(1) Natural Ventilation

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 13_Compartment_Flashover_Calculations_Sup1.xls (click on *Post_Flashover_Temperature* to calculate the post-flashover temperature) (click on *Flashover-HRR* to calculate the HRR for flashover)

FDT^s Input Parameters:

-Compartment Width $(w_c) = 20$ ft -Compartment Length $(I_c) = 25$ ft -Compartment Height $(h_c) = 12$ ft -Vent Width $(w_v) = 3$ ft -Vent Height $(h_v) = 8$ ft -Interior Lining Thickness $(\delta) = 6$ in. (Flashover-HRR only) -Select Material: **Concrete** (Flashover-HRR only)

Results*

Post-Flashover Compartment Temperature (T _{PFO}) (°F)	HRR for Flashover (\dot{Q}_{FO}) (kW)		
Method of Law	Method of MQH	Method of Babrauskas	Method of Thomas
1,492	1,612	2,611	2,806

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the compartment post-flashover temperature.

Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-1a

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c)
Compartment Length (Ic)
Compartment Height (h _c)
Vent Width (w _v)
Vent Height (h _v)

20.00 ft			
25.00 ft			
12.00 ft			
3.00 ft			
8.00 ft			
Calculate			

Version 1805.1 (English Units)

METHOD OF MARGARET LAW

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-183.

$T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Where,

 $T_{PFO (max)}$ = maximum compartment post-flashover temperature (°C) Ω = ventilation factor

Ventilation Factor

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}_{\mathsf{v}}})$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Area of Ventilation Opening Calculation

$$A_{v} = (w_{v}) (h_{v})$$

Where,

 A_v = area of ventilation opening (m²)

- w_v = vent width (m)
- h_v = vent height (m)

$$A_v = 2.23 \text{ m}^2$$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

 A_v = area of ventilation opening (m²)

$$A_{T} = 191.01 \text{ m}^{2}$$

Version 1805.1 (English Units)

Ventilation Factor Calculation

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}_{\mathsf{v}}})$$

Where,

 Ω = ventilation factor

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

h_v = vent height (m)

 $Ω = 54.22 \text{ m}^{-1/2}$

COMPARTMENT POST-FLASHOVER TEMPERATURE

 $T_{PFO(max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Answer T_{PFO (max)} = 1492.23 °F 811.24 °C

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (English Units)

The following calculations estimate the minimum heat release rate required to compartment flashover.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-1b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Vent Width (w_v)} \\ \mbox{Vent Height (h_v)} \\ \mbox{Interior Lining Thickness } (\delta) \\ \mbox{Interior Lining Thermal Conductivity (k)} \end{array}$

20.00	ft
25.00	ft
12.00	ft
3.00	ft
8.00	ft
6.00	
0.0016	kW/m-K
Calculate	

THERMAL PROPERTIES DATA

MATERIAL	THERMAL CONDUCTIVITY	Select Material
MATERIAL	k (kW/m-K)	Concrete 🗸
Aerated Concrete	0.00026	Scroll to desired material
Alumina Silicate Block	0.00014	Click on selection
Aluminum (pure)	0.206	
Brick	0.0008	
Brick/Concrete Block	0.00073	
Calcium Silicate Board	0.00013	
Chipboard	0.00015	
Concrete	0.0016	
Expended Polystyrene	0.000034	
Fiber Insulation Board	0.00053	
Glass Fiber Insulation	0.000037	
Glass Plate	0.00076	
Gypsum Board	0.00017	
Plasterboard	0.00016	
Plywood	0.00012	
Steel (0.5% Carbon)	0.054	
User Specified Value	Enter Value	
Reference: Klote, J., J. Milke, Principles of Smoke Manage	ement, 2002, Page 270.	

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (English Units)

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$$

Where,

- Q_{FO} = heat release rate necessary for flashover (kW)
- h_k = effective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)

Heat Transfer Coefficient Calculation

$$h_k = k/\delta$$

Assuming that compartment has been heated thoroughly before flashover, i.e., t > tp.

Where,

- h_k = effective heat transfer coefficient (kW/m²-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

0.010 kW/m²-K

Area of Ventilation Opening Calculation

$$A_{v} = (w_{v}) (h_{v})$$

Where,

- A_v = area of ventilation opening (m²)
- w_v = vent width (m)
- h_v = vent height (m)

$$A_v = 2.23 \text{ m}^2$$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

- AT = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

MINIMUM HEAT RELEASE RATE FOR FLASHOVER

 \mathbf{Q}_{FO} = 610 $\sqrt{(\mathbf{h}_k \mathbf{A}_T \mathbf{A}_v (\sqrt{\mathbf{h}_v}))}$

Q_{FO} = 1611.84 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF BABRAUSKAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Q_{FO} = 2611.29 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Where,

Q_{FO} = heat release rate necessary for flashover (kW)

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 $A_v =$ area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Q_{FO} = 2805.96 kW

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Summary of Results

CALCULATION METHOD	Flashover HRR	
	Btu/sec	kW
METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)	1528	1612
METHOD OF BABRAUSKAS	2475	2611
METHOD OF THOMAS	2660	2806

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:

Additional Information:

Example Problem 13.10-2

Problem Statement

Consider a compartment 20 ft wide x 25 ft long x 12 ft high ($w_c x I_c x h_c$), with an opening 3 ft wide and 8 ft high ($w_v x h_v$). The interior lining material of the compartment is 5/8 in. gypsum. Calculate the HRR necessary for flashover, \dot{Q}_{FO} , and the post-flashover compartment temperature, T_{PFO} .

Solution

Purpose:

(1) Determine the heat release rate for flashover for the given compartment.

Assumptions:

(1) Natural Ventilation

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 13_Compartment_Flashover_Calculations_Sup1.xls
 (click on *Post_Flashover_Temperature* to calculate the post-flashover temperature)
 (click on *Flashover-HRR* to calculate the HRR for flashover)

FDTs Input Parameters:

- Compartment Width $(w_c) = 20$ ft
- Compartment Length $(I_c) = 25$ ft
- Compartment Height $(h_c) = 12$ ft
- Vent Width $(w_v) = 3$ ft
- Vent Height $(h_v) = 8$ ft
- Interior Lining Thickness (δ) = 0.63 in. (Flashover-HRR only)
- Select Material: Gypsum Board (Flashover-HRR only)

Results*

Post-Flashover Compartment Temperature (T _{PFO}) (°F)	HRR for Flashover (\dot{Q}_{FO}) (kW)		
Method of Law	Method of MQH	Method of Babrauskas	Method of Thomas
1,492	1,621	2,611	2,806

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the compartment post-flashover temperature.

Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-2a

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c)
Compartment Length (Ic)
Compartment Height (h _c)
Vent Width (w _v)
Vent Height (h _v)

20.00 ft				
25.00 ft				
12.00 ft				
3.00 ft				
8.00 ft				
Calculate				

Version 1805.1 (English Units)

METHOD OF MARGARET LAW

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-183.

$T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Where,

 $T_{PFO (max)}$ = maximum compartment post-flashover temperature (°C) Ω = ventilation factor

Ventilation Factor

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}_{\mathsf{v}}})$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Area of Ventilation Opening Calculation

$$A_{v} = (w_{v}) (h_{v})$$

Where,

 A_v = area of ventilation opening (m²)

- w_v = vent width (m)
- h_v = vent height (m)

$$A_v = 2.23 \text{ m}^2$$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

 A_v = area of ventilation opening (m²)

$$A_{T} = 191.01 \text{ m}^{2}$$

Version 1805.1 (English Units)

Ventilation Factor Calculation

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}_{\mathsf{v}}})$$

Where,

 Ω = ventilation factor

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

h_v = vent height (m)

 $Ω = 54.22 \text{ m}^{-1/2}$

COMPARTMENT POST-FLASHOVER TEMPERATURE

 $T_{PFO(max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Answer T_{PFO (max)} = 1492.23 °F 811.24 °C

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		
Additional Information:		

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (English Units)

The following calculations estimate the minimum heat release rate required to compartment flashover.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-2b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Vent Width (w_v)} \\ \mbox{Vent Height (h_v)} \\ \mbox{Interior Lining Thickness } (\delta) \\ \mbox{Interior Lining Thermal Conductivity (k)} \end{array}$

20.00	ft
25.00	
12.00	ft
3.00	ft
8.00	
0.63	
0.00017	kW/m-K
Calculate	

THERMAL PROPERTIES DATA

MATERIAL	THERMAL CONDUCTIVITY	Select Material
MATERIAL	k (kW/m-K)	Gypsum Board 🗸
Aerated Concrete	0.00026	Scroll to desired material
Alumina Silicate Block	0.00014	Click on selection
Aluminum (pure)	0.206	
Brick	0.0008	
Brick/Concrete Block	0.00073	
Calcium Silicate Board	0.00013	
Chipboard	0.00015	
Concrete	0.0016	
Expended Polystyrene	0.000034	
Fiber Insulation Board	0.00053	
Glass Fiber Insulation	0.000037	
Glass Plate	0.00076	
Gypsum Board	0.00017	
Plasterboard	0.00016	
Plywood	0.00012	
Steel (0.5% Carbon)	0.054	
User Specified Value	Enter Value	
Reference: Klote, J., J. Milke, Principles of Smoke Manage	ment, 2002, Page 270.	

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (English Units)

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$$

Where,

- Q_{FO} = heat release rate necessary for flashover (kW)
- h_k = effective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

h_v = height of ventilation opening (m)

Heat Transfer Coefficient Calculation

$$h_k = k/\delta$$

Assuming that compartment has been heated thoroughly before flashover, i.e., t > tp.

Where,

- h_k = effective heat transfer coefficient (kW/m²-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

0.011 kW/m²-K

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

- A_v = area of ventilation opening (m²)
- w_v = vent width (m)
- h_v = vent height (m)

$$A_v = 2.23 \text{ m}^2$$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

w_c = compartment width (m)

- I_c = compartment length (m)
- h_c = compartment height (m)

 A_v = area of ventilation opening (m²)

MINIMUM HEAT RELEASE RATE FOR FLASHOVER

 \mathbf{Q}_{FO} = 610 $\sqrt{(\mathbf{h}_k \mathbf{A}_T \mathbf{A}_v (\sqrt{\mathbf{h}_v}))}$

Q_{FO} = 1621.40 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF BABRAUSKAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Q_{FO} = 2611.29 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Where,

Q_{FO} = heat release rate necessary for flashover (kW)

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 $A_v =$ area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Q_{FO} = 2805.96 kW

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Summary of Results

CALCULATION METHOD	Flashover HRR	
	Btu/sec	kW
METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)	1537	1621
METHOD OF BABRAUSKAS	2475	2611
METHOD OF THOMAS	2660	2806

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:

Additional Information:

Example Problem 13.10-3

Problem Statement

Consider a compartment 20 ft wide x 25 ft long x 12 ft high ($w_c x I_c x h_c$), with an opening 6 ft wide and 8 ft high ($w_v x h_v$). The interior lining material of the compartment is 6 in. concrete. Calculate the HRR necessary for flashover, \dot{Q}_{FO} , and the post-flashover compartment temperature, T_{PFO} .

Solution

Purpose:

(1) Determine the heat release rate for flashover for the given compartment.

Assumptions:

(1) Natural Ventilation

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 13.1_Compartment_Flashover_Calculations_Sup1.xls
 (click on Post_Flashover_Temperature to calculate the post-flashover temperature)
 (click on Flashover-HRR to calculate the HRR for flashover)

FDT^s Input Parameters:

-Compartment Width $(w_c) = 20$ ft -Compartment Length $(I_c) = 25$ ft -Compartment Height $(h_c) = 12$ ft -Vent Width $(w_v) = 6$ ft -Vent Height $(h_v) = 8$ ft -Interior Lining Thickness $(\delta) = 6$ in. (Flashover-HRR only) -Select Material: **Concrete** (Flashover-HRR only)

Results*

Post-Flashover Compartment Temperature (T _{PFO}) (°F)	HRR for Flashover (\dot{Q}_{FO}) (kW)		
Method of Law	Method of MQH	Method of Babrauskas	Method of Thomas
1,982	2,266	5,223	4,105

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the compartment post-flashover temperature.

Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-3a

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c)
Compartment Length (Ic)
Compartment Height (h _c)
Vent Width (w _v)
Vent Height (h _v)

20.00 ft				
25.00 ft				
12.00 ft				
6.00 ft				
8.00 ft				
Calculate				

Version 1805.1 (English Units)

METHOD OF MARGARET LAW

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-183.

$T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Where,

 $T_{PFO (max)}$ = maximum compartment post-flashover temperature (°C) Ω = ventilation factor

Ventilation Factor

$$\Omega = (\mathbf{A}_{\mathrm{T}} - \mathbf{A}_{\mathrm{v}}) / \mathbf{A}_{\mathrm{v}} (\sqrt{\mathbf{h}_{\mathrm{v}}})$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Area of Ventilation Opening Calculation

$$A_{v} = (w_{v}) (h_{v})$$

Where,

 A_v = area of ventilation opening (m²)

- w_v = vent width (m)
- h_v = vent height (m)

 $A_v = 4.46 \text{ m}^2$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

 A_v = area of ventilation opening (m²)

$$A_{\rm T} = 188.78 \ {\rm m}^2$$

Version 1805.1 (English Units)

Ventilation Factor Calculation

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}_{\mathsf{v}}})$$

Where,

 Ω = ventilation factor

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

h_v = vent height (m)

 $Ω = 26.47 \text{ m}^{-1/2}$

COMPARTMENT POST-FLASHOVER TEMPERATURE

 $T_{PFO(max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Answer T_{PFO (max)} = 1982.42 °F 1083.57 °C

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		
Additional Information:		

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (English Units)

The following calculations estimate the minimum heat release rate required to compartment flashover.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-3b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Vent Width (w_v)} \\ \mbox{Vent Height (h_v)} \\ \mbox{Interior Lining Thickness } (\delta) \\ \mbox{Interior Lining Thermal Conductivity (k)} \end{array}$

20.00	ft
25.00	ft
12.00	ft
6.00	ft
8.00	ft
6.00	
0.0016	kW/m-K
	_
Calculate	

THERMAL PROPERTIES DATA

MATERIAL	THERMAL CONDUCTIVITY	Select Material
	k (kW/m-K)	Concrete
Aerated Concrete	0.00026	Scroll to desired material
Alumina Silicate Block	0.00014	Click on selection
Aluminum (pure)	0.206	
Brick	0.0008	
Brick/Concrete Block	0.00073	
Calcium Silicate Board	0.00013	
Chipboard	0.00015	
Concrete	0.0016	
Expended Polystyrene	0.000034	
Fiber Insulation Board	0.00053	
Glass Fiber Insulation	0.000037	
Glass Plate	0.00076	
Gypsum Board	0.00017	
Plasterboard	0.00016	
Plywood	0.00012	
Steel (0.5% Carbon)	0.054	
User Specified Value	Enter Value	
Reference: Klote, J., J. Milke, Principles of Smoke Management, 2002, Page 270.		

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (English Units)

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$$

Where,

- Q_{FO} = heat release rate necessary for flashover (kW)
- h_k = effective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

h_v = height of ventilation opening (m)

Heat Transfer Coefficient Calculation

$$h_k = k/\delta$$

Assuming that compartment has been heated thoroughly before flashover, i.e., t > tp.

Where,

- h_k = effective heat transfer coefficient (kW/m²-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

0.010 kW/m²-K

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

- A_v = area of ventilation opening (m²)
- w_v = vent width (m)
- h_v = vent height (m)

$$A_v = 4.46 \text{ m}^2$$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

- AT = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

MINIMUM HEAT RELEASE RATE FOR FLASHOVER

 \mathbf{Q}_{FO} = 610 $\sqrt{(\mathbf{h}_k \mathbf{A}_T \mathbf{A}_v (\sqrt{\mathbf{h}_v}))}$

Q_{FO} = 2266.14 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF BABRAUSKAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

 $Q_{FO} = 5222.58$ kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Q_{FO} = 4104.66 kW

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Summary of Results

CALCULATION METHOD	Flashover HRR	
	Btu/sec	kW
METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)	2148	2266
METHOD OF BABRAUSKAS	4950	5223
METHOD OF THOMAS	3891	4105

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:

Additional Information:

14.10 Problems

Example Problem 14.10-1

Problem Statement

A closed compartment in a facility pump room has dimensions 10 ft wide x 12 ft long x 10 ft high ($w_c x I_c x h_c$). A fire starts with a constant HRR of \dot{Q} = 100 kW. Estimate the pressure rise attributable to the expansion of gases after 10 seconds.

Solution

Purpose:

(1) Estimate the pressure rise in the compartment 10 seconds after ignition.

Assumptions:

- (1) The energy release rate is constant.
- (2) The mass rate of the fuel is neglected in the conversion of mass.
- (3) The specific heat is constant with temperature.
- (4) The hydrostatic pressure difference over the height of the compartment is negligible compared to the dynamic pressure.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 14_Compartment_Over_Pressure_Calculations_Sup1.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 10$ ft
- Compartment Length $(I_c) = 12$ ft
- Compartment Height $(h_c) = 10$ ft
- Fire Heat Release Rate (\dot{Q}) = 100 kW
- Time After Ignition (t) = 10 sec

Results*

Pressure Rise	1.73 psi
---------------	----------

*see spreadsheet on next page

CHAPTER 14 ESTIMATING PRESSURE RISE DUE TO A FIRE IN A CLOSED COMPARTMENT

Version 1805.1 (English Units)

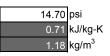
The following calculations estimate the pressure rise in a compartment due to fire and combustion.
Parameters in YELLOW CELLS are Entered by the User.
All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and
secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 14.10-1

INPUT PARAMETERS

COMPARTMENT INFORMATION


Compartment Width (w_c) Compartment Length (l_c) Compartment Height (h_c) Fire Heat Release Rate (Q) Time after Ignition (t) Ambient Air Temperature (T_a)

10.00	ft
12.00	ft
10.00	ft
100.00	kW
10.00	sec
77.00	°F
	-

Calculate

AMBIENT CONDITIONS

Initial Atmospheric Pressure (P_a) Specific Heat of Air at Constant Volume (c_v) Ambient Air Density (ρ_a)

NOTE:

Values of Specific Heat of Air at Constant Volume (cv) range from 0.71 to 0.85 kJ/kg-k

Ambient Air Density (p_a) will automatically correct with Ambient Air Temperature (T_a) Input

CHAPTER 14 ESTIMATING PRESSURE RISE DUE TO A FIRE IN A CLOSED COMPARTMENT

Version 1805.1 (English Units)

METHOD OF KARLSSON AND QUINTIERE

Reference: Karlsson and Quintiere, Enclosure Fire Dynamics, 1999, Page 192.

$(P - P_a) / P_a = Q t / (V \rho_a c_v T_a)$

Where,

- P = compartment pressure due to fire and combustion (kPa)
- P_a = initial atmospheric pressure (kPa)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- V = compartment volume (m^3)
- ρ_a = ambient density (kg/m³)
- cv = specific heat of air at constant volume (kJ/kg-K)
- T_a = ambient air temperature (K)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (m^3)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

Pressure Rise in Compartment

 $(\mathbf{P} - \mathbf{P}_a) / \mathbf{P}_a = \mathbf{Q} \mathbf{t} / (\mathbf{V} \rho_a \mathbf{c}_v \mathbf{T}_a)$

 $(P-P_a)/P_a = 0.117$ atm

Multiplying by the atmospheric pressure (P_a) = 101 kPa Gives a pressure difference equal to:

Answer 1.73 psi 11.90 kPa

This example shows that in a very short time the pressure in a closed compartment rises to quite a large value.

Most buildings have leaks of some sort. The above example indicates that even though a fire compartment may be closed, the pressure rise is very rapid and would presumably lead to sufficient leaks to prevent any further pressure rise from occurring. We will use this conclusion when dealing with pressure rises in enclosures with small leaks.

NOTE:

The above calculations are based on principles developed in the Enclosure Fire Dynamics. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 14.10-2

Problem Statement

A facility has a sealed compartment (assume zero leakage) with a blowout panel that is designed to fail at two atmospheres. The compartment is 20 ft wide x 25 ft long x 10 ft high. A fire is assumed with a constant heat release rate of 255 kW.

At what time (sec) does the blowout panel fail?

Solution

Purpose:

(1) Estimate the time after ignition the pressure reaches 2 atm (202.5 kPa).

Assumptions:

- (1) The energy release rate is constant.
- (2) The mass rate of the fuel is neglected in the conversion of mass.
- (3) The specific heat is constant with temperature.
- (4) The hydrostatic pressure difference over the height of the compartment is negligible compared to the dynamic pressure.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 14_Compartment_Over_Pressure_Calculations_Sup1.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 20$ ft
- Compartment Length (I_c) = 25 ft
- Compartment Height $(h_c) = 10$ ft
- Fire Heat Release Rate (\dot{Q}) = 255 kW
- Time After Ignition (t) = varies until output is 202.5 kPa

Results*

Time after Ignition	278 sec

*see spreadsheet on next page

CHAPTER 14 ESTIMATING PRESSURE RISE DUE TO A FIRE IN A CLOSED COMPARTMENT

Version 1805.1 (English Units)

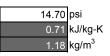
The following calculations estimate the pressure rise in a compartment due to fire and combustion.
Parameters in YELLOW CELLS are Entered by the User.
All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and
secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 14.10-2

INPUT PARAMETERS

COMPARTMENT INFORMATION


Compartment Width (w_c) Compartment Length (l_c) Compartment Height (h_c) Fire Heat Release Rate (Q) Time after Ignition (t) Ambient Air Temperature (T_a)

	20.00
	25.00
	10.00
kW	255.00
sec	278.00
°F	77.00
-	

Calculate

AMBIENT CONDITIONS

Initial Atmospheric Pressure (P_a) Specific Heat of Air at Constant Volume (c_v) Ambient Air Density (ρ_a)

NOTE:

Values of Specific Heat of Air at Constant Volume (cv) range from 0.71 to 0.85 kJ/kg-k

Ambient Air Density (p_a) will automatically correct with Ambient Air Temperature (T_a) Input

CHAPTER 14 ESTIMATING PRESSURE RISE DUE TO A FIRE IN A CLOSED COMPARTMENT

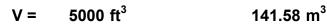
Version 1805.1 (English Units)

METHOD OF KARLSSON AND QUINTIERE

Reference: Karlsson and Quintiere, Enclosure Fire Dynamics, 1999, Page 192.

$(P - P_a) / P_a = Q t / (V \rho_a c_v T_a)$

Where,


- P = compartment pressure due to fire and combustion (kPa)
- P_a = initial atmospheric pressure (kPa)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- V = compartment volume (m^3)
- ρ_a = ambient density (kg/m³)
- cv = specific heat of air at constant volume (kJ/kg-K)
- T_a = ambient air temperature (K)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (m^3)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

Version 1805.1 (English Units)

Pressure Rise in Compartment

 $(\mathbf{P} - \mathbf{P}_a) / \mathbf{P}_a = \mathbf{Q} \mathbf{t} / (\mathbf{V} \rho_a \mathbf{c}_v \mathbf{T}_a)$

 $(P-P_a)/P_a = 1.998$ atm

Multiplying by the atmospheric pressure (P_a) = 101 kPa Gives a pressure difference equal to:

Answer 29.37 psi 202.48 kPa

This example shows that in a very short time the pressure in a closed compartment rises to quite a large value.

Most buildings have leaks of some sort. The above example indicates that even though a fire compartment may be closed, the pressure rise is very rapid and would presumably lead to sufficient leaks to prevent any further pressure rise from occurring. We will use this conclusion when dealing with pressure rises in enclosures with small leaks.

NOTE:

The above calculations are based on principles developed in the Enclosure Fire Dynamics. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

15.18 Problems

Example Problem 15.18-1

Problem Statement

In an NPP, a liquid propane gas (LPG) driven forklift is used to unload materials from an upcoming outage. Mechanical failure could result in the release of LPG in the area. The maximum fuel capacity of the forklift is 10 gallons. Calculate pressure rise, energy released by expanding LPG, and equivalent TNT charge weight. Assume that the mass of the vapor released is 48 lb.

Solution

Purpose:

(1) Estimate pressure rise, energy released, and TNT equivalent.

Assumptions:

- (1) The atmospheric pressure is 14.7 psi.
- (2) Ambient air temperature is 77 °F.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 15_Explosion_Calculations_Sup1.xls

FDT^s Input Parameters:

- Select Fuel Type = **Propane**
- Percent yield = 100%
- Mass of flammable vapor release = 48 lb

Results*

Pressure Rise	76.7 psi	
Energy Released	957,983 Btu	
Equivalent TNT	496 lb	

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the pressure and energy due to an explosion in a confined space.

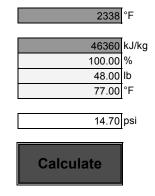
Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 15.18-1

INPUT PARAMETERS


EXPLOSIVE FUEL INFORMATION

Adiabatic Flame Temperature of the Fuel ((T_{ad})

Heat of Combustion of the Fuel (ΔH_c) Yield (α) ^{See Note} Mass of Flammable Vapor Release (m_F) Ambient Air Temperature (T_a)

Initial Atmospheric Pressure (P_a)

Note: The fraction of available combustion is 1% for unconfined mass release and 100% for confined vapor release energy participating in blast wave generation.

THERMAL PROPERTIES FOR FUEL

Adiaba	FUEL FLAMMABILITY DATA Adiabatic Flame Heat of Combustion Temperature Heat of Combustion	Select Fuel Type	
1 401	T _{ad} (°F)	∆H _c (kJ/kg)	Propane
Acetylene	4779	48,220	Scroll to desired Fuel Type then
Carbon Monoxide	4329	10,100	Click on selection
Ethane	2244	47,490	
Ethylene	4152	47,170	
Hydrogen	4085	130,800	
Methane	2143	50,030	
n-Butane	2442	45,720	
n-Heptane	2586	44,560	
n-Octane	2478	44,440	
n-Pentane	2356	44,980	
Propane	2338	46,360	
Propylene	4050	45,790	
User Specified Value	Enter Value	Enter Value	

Version 1805.1 (English Units)

METHOD OF ZALOSH

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-312.

Pressure Rise from a Confined Explosion

$$P_{max})/P_a = (T_{ad}/T_a)$$
$$P_{max} = (T_{ad}/T_a) P_a$$

Where,

(

- P_{max} = maximum pressure developed at completion of combustion (kPa)
- P_a = initial atmospheric pressure (kPa)
- T_{ad} = adiabatic flame temperature (K)
- T_a = ambient temperature (K)

Blast Wave Energy Calculation $E = \alpha \Delta H_c m_F$

Where,

- E = blast wave energy (kJ) [E is the Trinitrotoluene (TNT) equivalent energy]
- α = yield (a is the fraction of available combustion energy participating in blast wave generation)
- ΔH_c = heat of combustion (kJ/kg)
- m_F = mass of flammable vapor release (kg)

TNT Mass Equivalent Calculation $W_{TNT} = E/4500$

Where,

W_{TNT} = weight of TNT (kg) E = explosive energy release (kJ)

Version 1805.1 (English Units)

Summary of Results

Pressure Rise from a Confined Explosion

 $P_{max} = (T_{ad}/T_a) P_a$

Answer	P _{max} =	76.66 psi	528.57 kPa				
Blast Wa	Blast Wave Energy						
	$E = \alpha \Delta I$	H _c m _F					
Answer	E =	957983.04 Btu	1011490.91 kJ				
TNT Mas	s Fouivalent						
INT Mus	TNT Mass Equivalent W _{TNT} = E/4500						
Answer	W _{TNT} =	495.55 lb	224.78 kg				
NOTE:							
The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995.							

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 15.18-2

Problem Statement

An investigator is performing a review of an accident at a facility. The report states that a pipe fitter accidently left his acetylene "B" tank on which leaked its contents and caused the explosion. Assuming the tank was full (40 ft³ of gas at atmospheric pressure), how large could the explosion have been?

Solution

Purpose:

(1) Estimate energy released, and TNT equivalent.

Assumptions:

- (1) The atmospheric pressure is 14.7 psi.
- (2) Ambient air temperature is 77 °F.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 15_Explosion_Calculations_Sup1.xls

FDT^s Input Parameters:

- Select Fuel Type = **Acetylene**
- Percent yield = 100%
- Mass of vapor release = volume x density (from manufacture's Web site) 40 ft^3 x .0677 lb/ft³ = 2.7 lb

Results*

Energy Released	56,049 Btu	
Equivalent TNT	29.0 lb	

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the pressure and energy due to an explosion in a confined space.

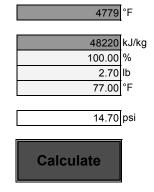
Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 15.18-2

INPUT PARAMETERS


EXPLOSIVE FUEL INFORMATION

Adiabatic Flame Temperature of the Fuel ((T_{ad})

Heat of Combustion of the Fuel (ΔH_c) Yield (α) ^{See Note} Mass of Flammable Vapor Release (m_F) Ambient Air Temperature (T_a)

Initial Atmospheric Pressure (P_a)

Note: The fraction of available combustion is 1% for unconfined mass release and 100% for confined vapor release energy participating in blast wave generation.

THERMAL PROPERTIES FOR FUEL

FU	EL FLAMMABILITY DAT	Α			
Fuel	Adiabatic Flame Temperature	Heat of Combustion	Select Fuel Type		
	T _{ad} (°F)	∆H _c (kJ/kg)	Acetylene		
Acetylene	4779	48,220	Scroll to desired Fuel Type then		
Carbon Monoxide	4329	10,100	Click on selection		
Ethane	2244	47,490			
Ethylene	4152	47,170			
Hydrogen	4085	130,800			
Methane	2143	50,030			
n-Butane	2442	45,720			
n-Heptane	2586	44,560			
n-Octane	2478	44,440			
n-Pentane	2356	44,980			
Propane	2338	46,360			
Propylene	4050	45,790			
User Specified Value	Enter Value	Enter Value			
Reference: SFPE Handbook of Fire	ference: SFPE Handbook of Fire Protection Engineering, 2 nd Edition, 1995, Page 1-86.				

Version 1805.1 (English Units)

METHOD OF ZALOSH

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-312.

$$P_{max})/P_a = (T_{ad}/T_a)$$

 $P_{max} = (T_{ad}/T_a) P_a$

Where,

(

- P_{max} = maximum pressure developed at completion of combustion (kPa)
- P_a = initial atmospheric pressure (kPa)
- T_{ad} = adiabatic flame temperature (K)
- T_a = ambient temperature (K)

Blast Wave Energy Calculation $E = \alpha \Delta H_c m_F$

Where,

- E = blast wave energy (kJ) [E is the Trinitrotoluene (TNT) equivalent energy]
- α = yield (a is the fraction of available combustion energy participating in blast wave generation)
- ΔH_c = heat of combustion (kJ/kg)
- m_F = mass of flammable vapor release (kg)

TNT Mass Equivalent Calculation W_{TNT} = E/4500

Where,

W_{TNT} = weight of TNT (kg) E = explosive energy release (kJ)

Version 1805.1 (English Units)

Summary of Results

Pressure Rise from a Confined Explosion

 $P_{max} = (T_{ad}/T_a) P_a$

Answer	P _{max} =	143.56 psi	989.80 kPa
Blact Wa	ve Energy		
DIASLIVA	$E = \alpha \Delta I$	H _c m _F	
Answer	E =	56048.52 Btu	59179.09 kJ
TNT Mas	s Equivalent W _{TNT} = E/4	500	
Answer	W _{TNT} =	28.99 lb	13.15 kg

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lgbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 15.18-3

Problem Statement

Which has a larger TNT mass equivalent: 10 lb (mass vapor) of acetylene or 5 lb (mass vapor) of hydrogen?

Solution

Purpose:

(1) Estimate TNT equivalent.

Assumptions:

- (1) The atmospheric pressure is 14.7 psi.
- (2) Ambient air temperature is 77 °F.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 15_Explosion_Calculations_Sup1.xls

FDT^s Input Parameters:

- Select Fuel Type = Acetylene
- Percent yield = 100%
- Mass of flammable vapor release = 10 lb
- Select Fuel Type = Hydrogen
- Percent yield = 100%
- Mass of flammable vapor release = 5 lb

Results*

	Acetylene	Hydrogen
Equivalent TNT	107 lb	146 lb

*see spreadsheet on next page

Therefore, 5 lb of hydrogen produces more explosive force than 10 lb of acetylene.

Version 1805.1 (English Units)

The following calculations estimate the pressure and energy due to an explosion in a confined space.

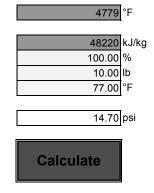
Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 15.18-3a

INPUT PARAMETERS


EXPLOSIVE FUEL INFORMATION

Adiabatic Flame Temperature of the Fuel ((T_{ad})

Heat of Combustion of the Fuel (ΔH_c) Yield (α) ^{See Note} Mass of Flammable Vapor Release (m_F) Ambient Air Temperature (T_a)

Initial Atmospheric Pressure (P_a)

Note: The fraction of available combustion is 1% for unconfined mass release and 100% for confined vapor release energy participating in blast wave generation.

THERMAL PROPERTIES FOR FUEL

Fuel	UEL FLAMMABILITY DA Adiabatic Flame Temperature	Heat of Combustion	Select Fuel Type	
i dei	T _{ad} (°F)	∆H _c (kJ/kg)	Acetylene	
Acetylene	4779	48,220	Scroll to desired Fuel Type then	
Carbon Monoxide	4329	10,100	Click on selection	
Ethane	2244	47,490		
Ethylene	4152	47,170		
Hydrogen	4085	130,800		
Methane	2143	50,030		
n-Butane	2442	45,720		
n-Heptane	2586	44,560		
n-Octane	2478	44,440		
n-Pentane	2356	44,980		
Propane	2338	46,360		
Propylene	4050	45,790		
User Specified Value	Enter Value	Enter Value		

Version 1805.1 (English Units)

METHOD OF ZALOSH

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-312.

$$(P_{max})/P_a = (T_{ad}/T_a)$$
$$P_{max} = (T_{ad}/T_a) P_a$$

Where,

- P_{max} = maximum pressure developed at completion of combustion (kPa)
- P_a = initial atmospheric pressure (kPa)
- T_{ad} = adiabatic flame temperature (K)
- T_a = ambient temperature (K)

Blast Wave Energy Calculation $E = \alpha \Delta H_c m_F$

Where,

- E = blast wave energy (kJ) [E is the Trinitrotoluene (TNT) equivalent energy]
- α = yield (a is the fraction of available combustion energy participating in blast wave generation)
- ΔH_c = heat of combustion (kJ/kg)
- m_F = mass of flammable vapor release (kg)

TNT Mass Equivalent Calculation W_{TNT} = E/4500

Where,

W_{TNT} = weight of TNT (kg) E = explosive energy release (kJ)

Version 1805.1 (English Units)

Summary of Results

Pressure Rise from a Confined Explosion

 $P_{max} = (T_{ad}/T_a) P_a$

Answer	P _{max} =	143.56 psi	989.80 kPa	
Blast Wa	ave Energy E = α ∆ł	−, mr		
Answer	E =	207587.10 Btu	219181.82 kJ	
TNT Mass Equivalent W _{TNT} = E/4500				
Answer	W _{TNT} =	107.38 lb	48.71 kg	

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Version 1805.1 (English Units)

The following calculations estimate the pressure and energy due to an explosion in a confined space

Parameters in YELLOW CELLS are Entered by the User.

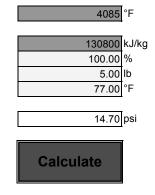
Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 15.18-3b

INPUT PARAMETERS

EXPLOSIVE FUEL INFORMATION


Adiabatic Flame Temperature of the Fuel ((T_{ad})

Heat of Combustion of the Fuel (ΔH_c) Yield (α) See Note Mass of Flammable Vapor Release (m_F) Ambient Air Temperature (T_a)

Initial Atmospheric Pressure (P_a)

Note: The fraction of available combustion is 1% for unconfined mass release and 100% for confined vapor release energy participating in blast wave generation.

Refe

ΤН

Fuel	Adiabatic Flame Temperature	Heat of Combustion	Select Fuel Type	
	T _{ad} (°F)	∆H _c (kJ/kg)	Hydrogen	
Acetylene	4779	48,220	Scroll to desired Fuel Type then	
Carbon Monoxide	4329	10,100	Click on selection	
Ethane	2244	47,490		
Ethylene	4152	47,170		
Hydrogen	4085	130,800		
Methane	2143	50,030		
n-Butane	2442	45,720		
n-Heptane	2586	44,560		
n-Octane	2478	44,440		
n-Pentane	2356	44,980		
Propane	2338	46,360		
Propylene	4050	45,790		
Jser Specified Value	Enter Value	Enter Value		

Version 1805.1 (English Units)

METHOD OF ZALOSH

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-312.

$$P_{max})/P_a = (T_{ad}/T_a)$$

 $P_{max} = (T_{ad}/T_a) P_a$

Where,

(

- P_{max} = maximum pressure developed at completion of combustion (kPa)
- P_a = initial atmospheric pressure (kPa)
- T_{ad} = adiabatic flame temperature (K)
- T_a = ambient temperature (K)

Blast Wave Energy Calculation $E = \alpha \Delta H_c m_F$

Where,

- E = blast wave energy (kJ) [E is the Trinitrotoluene (TNT) equivalent energy]
- α = yield (a is the fraction of available combustion energy participating in blast wave generation)
- ΔH_{c} = heat of combustion (kJ/kg)
- m_F = mass of flammable vapor release (kg)

TNT Mass Equivalent Calculation W_{TNT} = E/4500

Where,

W_{TNT} = weight of TNT (kg) E = explosive energy release (kJ)

Version 1805.1 (English Units)

Summary of Results

Pressure Rise from a Confined Explosion

 $P_{max} = (T_{ad}/T_a) P_a$

Answer	P _{max} =	124.54 psi	858.67 kPa		
Riact Wa	ive Energy				
	$\mathbf{E} = \alpha \Delta \mathbf{I}$	H _c m _F			
Answer	E =	281547.00 Btu	297272.73 kJ		
TNT Mass Equivalent W _{TNT} = E/4500					
Answer	W _{TNT} =	145.64 lb	66.06 kg		

NOTE: The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

16.14 Problems

Example Problem 16.14-1

Problem Statement

Assume a 60-cell GT-41 (3,730 Ampere-hour) battery near the end of its life, on equalize at 2.33 VPC at an electrolyte temperature of 92 °F. Estimate the rate of hydrogen generation (in cubic feet per minute).

Solution

Purpose:

(1) Estimate the rate of hydrogen generation.

Assumptions:

(1) Old Antimony-type battery

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 16_Battery_Room_Flammable_Gas_Conc_Sup1.xls (click on *Battery_Room_Hydrogen*)

FDT^s Input Parameters:

- Ampere Hours = 3730 Ah
- Number of Cells = 60
- Click on Old Antimony type and Select 2.33 VPC

Results*

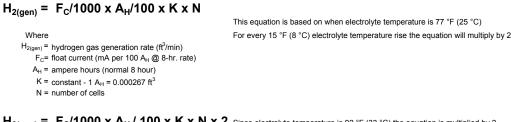
Generation Rate	0.538 ft ³ /min

*see spreadsheet on next page

CHAPTER 16 CALCUALATING THE RATE OF HYDROGEN GAS GENERATION IN BATTERY ROOMS

Version 1805.1 (English Units)

	ns estimate the full-scale W CELLS are Entered		skease rate.
arameters in GREEN	CELLS are Automatic	ally Selected from	n the DROP DOWN MENU for the Cable Type Selected.
			nd based on values specified in the input parameters. This spreadsheet is protected hapter in the NUREG should be read before an analysis is made.
	ors due to a wrong entry		
Project / Ins	pection Title:		Example 16.14-1
NPUT PAR	AMETERS		
ATTERY INFORMAT			
	Float Current (F _C) Ampere Hours (A _H)		450 mA per 100 A _H @ 8-hr. rate 3730.00 Ampere hours
	Number of Cells (N)		60.00
	Constant (K)		0.000267 ft ³
OMPARTMENT INFO	Compartment Width (w _c)	26.00 ft
	Compartment Length	(l _c)	50.00 ft
	Compartment Height	(h _c)	12.00 ft
AMMABLE GAS INF			
ower Flammability Lim			4.00 %
			Calculate
loat Currer	nt Demand o	f Fully Ch	arged Stationary Lead-Acid Cells
ioat ourier		-	n, Operation, and Maintenance Manual, Section 58.00,
	Heritage Series, Flooded L		
	New Antimony	Fc*	
		Antimony	Palast Charge Current Value
	(VPC) 2.15	New 15	Select Charge Current Value
	2.17	19	Scroll to desired value then Click on selection
	2.20 2.23	26 37	
	2.25	45	
	2.27 2.33	60 120	
	2.37	195	
	2.41 User Specified Value	300 Enter Value	*(milliamperes per 100 AH @ 8-hr. rate)
		F _c *	
	Charge Voltage	Antimony	
	(VPC)	Old	Select Charge Current Value
	2.15 2.17	60 80	2.33 Scroll to desired value then Click on selection
	2.20	105	
	2.23 2.25	150 185	
	2.27	230	
	2.33 2.37	450 700	
	2.41	1100	
	User Specified Value	Enter Value F _c *	*(milliamperes per 100 AH @ 8-hr. rate)
	Calcium Charge Voltage	Antimony	
		Calcium	Select Charge Current Value
	(VPC)	Calcium	
	(VPC) 2.15	d	Sorroll to design durates them Click an extention
	(VPC) 2.15 2.17	4	Scroll to desired value then Click on selection
	(VPC) 2.15 2.17 2.20 2.23	4 6 8	Scroll to desired value then Click on selection
	(VPC) 2.15 2.17 2.20 2.23 2.25	4 6 8 11	Scroll to desired value then Click on selection
	(VPC) 2.15 2.17 2.20 2.23	4 6 8 11 12 24	Scroll to desired value then Click on selection
	(VPC) 2.15 2.17 2.20 2.23 2.25 2.27 2.33 2.37	4 6 8 11 12	Scroll to desired value then Click on selection


CHAPTER 16 CALCUALATING THE RATE OF HYDROGEN GAS **GENERATION IN BATTERY ROOMS**

Version 1805.1 (English Units)

METHOD OF YUASA, INC.

Reference: Yuasa, Inc., Safety Storage, Installation, Operation, and Maintenance Manual, Section 58.00, Heritage Series, Flooded Lead-Acid Batteries, 2000.

Estimating Hydrogen Gas Generation Rate

H_{2(gen)} = F_C/1000 x A_H / 100 x K x N x 2 Since electrolyte temperature is 92 °F (33 °C) the equation is multiplied by 2

0.538 ft³/min 0.015230 m³/min $H_{2(qen)} =$

Estimating Hydrogen Gas in Compartment Based on Given Flammability Limit

 $H_{2(comp)} = V \times FL$ Where H_{2(comp)}= hydrogen gas in compartment (ft³) V = volume of compartment (ft^3) FL = hydrogen gas flammability limit

 $H_{2(comp)} =$

624 ft³

Volume of Compartment

 $V = w_c x I_c x h_c$ Where V = compartment volume (ft³) w_c = compartment width (ft) Ic = compartment length (ft) hc = compartment height (ft) 15600 ft³ V =

Estimating Time Required to Reach Hydrogen Concentration on Given Flammability Limit

 $t_{H2} = H_{2(comp)} / H_{2(gen)}$

Where t_{H2} = time require to reach on given flammability limit (min) H_{2(comp)} = hydrogen gas in compartment (ft³) H_{2(gen)} = hydrogen gas generation rate (ft³/min)

1160.30 min. or approx. t_{H2} =

19 hours

Summary of Results

ESTIMATING HYDROGEN GAS GENERATION RATE

 $H_{2(gen)} = F_C / 1000 \times A_H / 100 \times K \times N \times 2$

Answer H _{2(gen)} =	0.53779 ft ³ /min	0.01523 m³/min
------------------------------	------------------------------	----------------

ESTIMATING TIME REQUIRED TO REACH HYDROGEN CONCENTRATION ON GIVEN FLAMMABILITY LIMIT

 $t_{H2} = H_{2(comp)} / H_{2(gen)}$

Answer t_{H2}= 1160.30 min or approx. 19 hours

NOTE: The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:

Date:

Date:

Organization:

Organization:

Additional Information:

Example Problem 16.14-2

Problem Statement

Consider an enclosure (10 ft wide x 10 ft long x 10 ft high) 1,000 ft³ in turbine generator area of a nuclear facility in which hydrogen gas is accumulated. Calculate the concentration of hydrogen gas by volume reaching its LFL of 4 percent.

Solution

Purpose:

(1) Estimate the concentration of hydrogen gas in the compartment at LFL.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 16_Battery_Room_Flammable_Gas_Conc_Sup1.xls (click on *Flammable_Gas_Buildup*)

FDT^s Input Parameters:

- Compartment Width (w_c) = 10 ft
- Compartment Length $(I_c) = 10$ ft
- Compartment Height (h_c) = 10 ft
- Select Hydrogen

Results*

Volume	40 ft ³	
*see spreadsheet on next page		

Therefore, the concentration of hydrogen gas in the 1000 ft³ compartment is 4% (40/1000).

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BATTERY ROOMS

Version 1805.1 (English Units)

The following calculations estimate the full-scale cable tray heat release rate.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 16.14-2

INPUT PARAMETERS

Lower Flammability Limit of Flammable Gas or Vapor (LFL) Compartment Width (w_c) Compartment Length (l_c) Compartment Height (h_c)

	4.00	
1	0.00	ft
1	0.00	ft
1	0.00	ft

Calculate

LOWER FLAMMABILITY DATA FOR GASES AND VAPORS

Gases and	LFL	Select Gas or Vapor
Vapors	Volume-Percent	Hydrogen -
		Scroll to desired gas or vapor then Click on selection
Hydrogen	4.00	
Carbon Monoxide	12.50	
Methane	5.00	
Ethane	3.00	
Propane	2.10	
n-Butane	1.80	
n-Pentane	1.40	
n-Hexane	1.20	
n-Heptane	1.05	
n-Octane	0.95	
n-Nonane	0.85	
n-Decane	0.75	
Ethene	2.70	
Propane	2.40	
Butene-1	1.70	
Acetylene	2.50	
Methanol	6.70	
Ethanol	3.30	
n-Propanol	2.20	
Acetone	2.60	
Methyl Ethyl Ketone	1.90	
Diethyl Ketone	1.60	
Benzene	1.30	
User Specified Value	Enter Value	

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BATTERY ROOMS

Version 1805.1 (English Units)

ESTIMATING FLAMMABLE CONCENTRATION OF GASES USING LIMITS OF FLAMMABILITY

Volume of Gas or Vapor for Deflagration = V x LFL

Where

V = volume of enclosure (ft^3)


LFL= lower flammability of a gas or vapor (percent-volume)

Volume of Compartment

 $V = w_c \times I_c \times h_c$

Where

V = compartment volume (ft³) wc = compartment width (ft) lc = compartment length (ft) hc = compartment height (ft)

Volume of Gas or Vapor for Deflagration = V x LFL

Answer	Volume of Gas or Vapor for Deflagration =	40 ft ³	1.13 ו	m ³
NOTE:				
The above ca assumptions interpreted by accuracy of t	alculations are based on principles developed in the S and have inherent limitations. The results of such cal y an informed user. Although each calculation in the s these calculations. Any questions, comments, concern o@nrc.gov or Naeem.lqbal@nrc.gov.	lculations may or may not have spreadsheet has been verified	e reasonable predictive capabil with the results of hand calcula	lities for a given situation and should only be ation, there is no absolute guarantee of the
Prepared by:	:		Date:	Organization:
Checked by:			Date:	Organization:
Additional Inf	formation:			

Example Problem 16.14-3

Problem Statement

Assume a leak of 100 ft³/min of a 15 percent hydrogen gas/air mixture in a compartment that is 29 ft wide x 15 ft long x 12 ft high ($w_c x l_c x h_c$). How long would it take to reach a hydrogen concentration of 2 percent throughout the enclosure, assuming infiltration through multiple compartment cracks?

Solution

Purpose:

(1) Estimate the time until the room reaches 2% hydrogen concentration.

Assumptions:

- (1) Infiltration through compartment leaks.
- (2) The mass rate of the fuel is neglected in the conversion of mass.
- (3) The specific heat is constant with temperature.
- (4) The hydrostatic pressure difference over the height of the compartment is negligible compared to the dynamic pressure.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:


(a) 16_Battery_Room_Flammable_Gas_Conc_Sup1.xls (click on *Flammable_Gas_Buildup_Time*)

FDT^s Input Parameters:

- Compartment Width $(w_c) = 29$ ft
- Compartment Length (I_c) = 15 ft
- Compartment Height $(h_c) = 12$ ft
- Enter 100 ft²/min as the Leakage Rate
- Enter 15% as Percent of Combustible Gas/Air Mixture
- Enter 2% as Combustible Gas Concentration (C)
- Click on Infiltration Through Cracks and select 0.3 from the drop-down menu

Results*

*see spreadsheet on next page

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BATTERY ROOMS

Version 1805.1 (English Units)

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 16.14-3

INPUT PARAMETERS

COMPARTMENT INFORMATION HYDROGEN LEAK INFORMATION

Compartment Width (w _c)
Compartment Length (I _c)
Compartment Height (h _c)
Leakage Rate
Percent of Combustible Gas/Air Mixture
Combustible Gas Concentration (C)
Mixing Efficiency Factor (K)

29.00	
15.00	ft
12.00	ft
100.00	ft ³ /min
15.00	percent
2.00	percent
0.3	
	-
Coloulate	

Mixing Efficiency (K Values) for Various Ventilation Arrangements

Reference: NFPA 69, "Sta	andard on Explosion	Prevention Systems," 1997 Edition.
Infiltration Through Cracks	К	Select Ventilation Arrangement
Single Exhaust Opening	0.2	0.3
Multiple Exhaust Openings	0.3	Scroll to desired arrangement then Click on selection
🖸 Open Door, or Windows	К	Select Ventilation Arrangement
Single Exhaust Opening	0.2	
Multiple Exhaust Openings	0.4	Scroll to desired arrangement then Click on selection
Grill and Registers	К	Select Ventilation Arrangement
Single Exhaust Opening	0.3	
Multiple Exhaust Openings	0.5	Scroll to desired arrangement then Click on selection
🖸 Diffusers	K	Select Ventilation Arrangement
Single Exhaust Opening	0.5	
Multiple Exhaust Openings	0.7	Scroll to desired arrangement then Click on selection
Multiple Exhaust Openings	0.7	SCrOII to desired arrangement then CliCk on selection
Multiple Exhaust Openings	0.7 K	Scroll to desired arrangement then Click on selection Select Ventilation Arrangement
Perforated Ceiling Single Exhaust Opening	<u>К</u> 0.8	
Perforated Ceiling	<u>К</u> 0.8	
Perforated Ceiling Single Exhaust Opening	<u>К</u> 0.8	Select Ventilation Arrangement Scroll to desired arrangement then Click on selection
Perforated Ceiling Single Exhaust Opening	<u>К</u> 0.8	Select Ventilation Arrangement
Perforated Ceiling Single Exhaust Opening Multiple Exhaust Openings	К 0.8 0.9 К	Select Ventilation Arrangement Scroll to desired arrangement then Click on selection

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BATTERY ROOMS

Version 1805.1 (English Units)

METHOD OF NFPA 69, STANDARD ON EXPLOSION PREVENTION SYSTEMS

Reference: NFPA 69, "Standard on Explosion Prevention Systems, 1997 Edition, Appendix D.

Estimating Number of Theoretical Air Changes

In [1 - (CQ / G)] = - K N

Where

- C = combustible gas concentration
- Q = air flow rate (fresh air) in enclosure (ft³/min)
- G = combustible gas leakage rate (ft^3 /min)
- K = mixing efficiency factor (constant)
- N = number of theoretical air changes

Q = air flow rate (fresh air) in enclosure

- Q = 85.00 ft³/min
- G = combustible gas leakage rate

G = 15 (ft³/min)

N = number of theoretical air changes

Estimating Combustible Gas Concentration Buildup Time

t = (V / leakage rate) * N

Where t = buildup time (min) V = compartment volume (ft³) leakage rate (ft³/min) N = number of theoretical air changes

Volume of Compartment

$$V = w_c \times I_c \times h_c$$

Where

V = compartment volume (ft³) wc = compartment width (ft) lc = compartment length (ft) hc = compartment height (ft)

$$V = 5220.00 \text{ ft}^3$$

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BATTERY ROOMS

Version 1805.1 (English Units)

COMBUSTIBLE GAS CONCENTRATION BUILDUP TIME

t = (V / leakage rate) * N

Answer	t =	20.93 min	utes				
NOTE:							
The above calcu certain assumption should only be in absolute guarant	ons and have terpreted b tee of the ad	ve inherent limitations. The re y an informed user. Although	esults of such ca each calculation Any questions,	lculations may or ma n in the spreadsheet	y not have rease has been verifie	ng, 3 rd Edition, 2002. Calculations are base onable predictive capabilities for a given situ d with the results of hand calculation, there is or to report an error(s) in the spreadsheet	ation and is no
Prepared by:				Date:		Organization:	
Checked by:				Date:		Organization:	
Additional Inform	ation:						

17.14 Problems

Example Problem 17.14-1

Problem Statement

Calculate the thickness of spray-on fire protection required to provide a 2-hour fire resistance for a W12 x 16 beam to be substituted for a W8 x 18 beam requiring 1.44 in. of protection for the same rating.

Solution

Purpose:

(1) Estimate the spray-on thickness required for the beam substitution.

Assumptions:

(1) The 1.44 in. of spray-on provides the W8 x 18 beam 2 hours of fire resistance.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

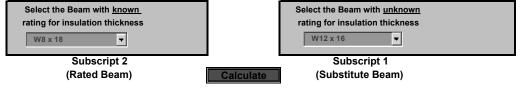
(a) 17.1_FR_Beams_Columns_Substitution_Correlation_Sup1.xls (click on *Beam*)

FDT^s Input Parameters:

- Known beam insulation thickness
- Select W8 x 18 for Rated Beam
- Select W12 x 16 for Substitute Beam

Results*

Substitute Beam	1.6 in
Spray on Thickness	1.0 11


*see spreadsheet on next page

CHAPTER 17 ESTIMATING THE THICKNESS OF FIRE PROTECTION SPRAY-APPLIED COATING FOR STRUCTURAL STEEL BEAMS (SUBSTITUTION CORRELATION)

Version 1805.1 (English Units)

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made. **Project / Inspection** Example 17.14-1 Title: **INPUT PARAMETERS** Rated Design Thickness of Beam Insulation (T₂) 1.44 in Known Insulation Rating Weight of the Beam (W₂) 18 lb/ft Heated Perimeter of Beam (D₂) 31.57 in Unknown Insulation Rating Weight of the Beam (W₁) 16.00 lb/ft Heated Perimeter of Beam (D1) 35.51 in SECTIONAL FACTORS FOR STEEL BEAMS

CHAPTER 17 ESTIMATING THE THICKNESS OF FIRE PROTECTION SPRAY-APPLIED COATING FOR STRUCTURAL STEEL BEAMS (SUBSTITUTION CORRELATION)

Version 1805.1 (English Units)

ESTIMATING THICKNESS OF FIRE PROTECTION INSULATION ON UNRATED BEAM

Reference: UL Fire Resistance Directory, Volume 1, 1995, Page 19.

$T_1 = ((W_2/D_2 + 0.6)T_2)/(W1/D_1 + 0.6)$

Where

T₁ = calculated thickness of fire protection insulation on unrated beam (in)

 T_2 = design thickness of insulation on rated beam (in)

 W_1 = weight of beam with unknown insulation rating (lb/ft)

 W_2 = weight of design rated beam (lb/ft)

 D_1 = heated perimeter of unrated beam (in)

 D_2 = heated perimeter of the rated beam (in)

REQUIRED EQUIVALENT THICKNESS OF FIRE PROTECTION INSULATION ON UNRATED BEAM

$T_1 = ((W_2/D_2 + 0.6)T_2)/(W1/D1 + 0.6)$

Answer	T ₁ =	1.60 in

Beams with a larger W/D ratio can always be substituted for the structural member listed with a specific fire resistive covering without changing the thickness of the covering.

assumptions and have inherent limitations. The interpreted by an informed user. Although each	results of such calculations may or ma calculation in the spreadsheet has bee comments, concerns and suggestions of	re Protection Engineering, 3 rd Edition, 2002. Calculations are based on certain y not have reasonable predictive capabilities for a given situation and should only be n verified with the results of hand calculation, there is no absolute guarantee of the or to report an error(s) in the spreadsheets, please send an email to
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 17.14-2

Problem Statement

Use the quasi-steady-state heat transfer approach to determine the fire resistance of a W24 x 76 steel beam protected with 0.5 in. of spray-on mineral fiber material. Sprayed-on mineral fiber has the following thermal properties:

- Thermal Conductivity (k_i) = 0.06936 Btu/ft-hr-°F
- Specific Heat (c_i) = 0.2868 Btu/lb-°F
- Density (ρ_i) =19.0 lb/ft³

Solution

Purpose:

(1) Estimate the fire resistance of the beam.

Assumptions:

(1) The heat transfer is quasi-steady-state.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 17.2_FR_Beams_Columns_Quasi_Steady_State_Spray_Insulated_Sup1.xls (click on *Beam*)

FDTs Input Parameters:

- Select W24 x 76 beam
- Enter 0.5 in spray-on thickness
- Select Sprayed Mineral Fiber from Insulation Type drop-down menu

Results*

Fire Resistance 42.5 min

*see spreadsheet on next page

Version 1805.1 (English Units)

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 17.14-2

INPUT PARAMETERS

Ratio of Weight of Steel Section per Linear Foot and Heated Perimeter (W/D)		12.34 lb/ft ²
Thickness of Spray-Applied Protection on Steel Beam (h)	h ≥ 1/16 in	0.50 in
Density of Spray-Applied Material (pi)		19.00 lb/ft ³
Thermal Conductivity of Spray-Applied Material (k)		0.06936 Btu/ft-hr-°F
Specific Heat of Spray-Applied Material (q)		0.2868 Btu/lb-°F
Ambient Air Temperature (T _a)		77 °F
Specific Heat of Steel (c _s)		0.132 Btu/lb-°F
	-	
		Calculate

SECTIONAL FACTORS FOR STEEL BEAMS

Select Beam

24x76 Scroll to desired beam size then Click on selection

THERMAL PROPERTIES OF SPRAY-APPLIED INSULATION MATERIALS

Insulation Material Spray-Applied	Density Ρ _i (Ib/ft ³)	Thermal Conductivity k _i (Btu/ft-hr-°F)	Specific Heat c _i (Btu/lb-°F)
Sprayed mineral fiber	19	0.06936	0.2868
Perlite or vermiculite	22	0.06936	0.2868
High density perlite or vermiculite	35	0.06936	0.2868
User Specified Value	Enter Value	Enter Value	Enter Value
Reference: Buchanan, A. H., Structural Design for Fire Safety, 2001, Page 179.			

Select Insulation Type
Sprayed mineral fiber
Scroll to desired material then Click on selection

Version 1805.1 (English Units)

ESTIMATING FIRE RESISTANCE TIME USING QUASI-STEADY-STATE APPROACH

Reference: "Analytical Methods for Determining Fire Resistance of Steel Members," "SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 4-209.

Temperature Rise in Steel Beam

$\Delta T_{s} = (k_{i}/(c_{s} h W/D + 1/2 c_{i} \rho_{i} h^{2})) (T_{f} - T_{s}) \Delta t$

Where

- ΔT_s = temperature rise in steel (°F)
- k_i = thermal conductivity of spray-applied material (Btu/ft-sec-°F)
- ρ_i = density of spray-applied material (lb/ft³)
- c_i = specific heat of spray-applied material (Btu/lb-°F)
- c_s = specific heat of steel (Btu/lb-°F)
- h = thickness of spray-applied protection on steel beam (in)
- W/D = ratio of weight of steel section per linear foot and heated perimeter (lb/ft)
- T_f = fire exposure temperature (°F)
- T_s = steel temperature (°F)
- Δt = time step (sec)

$c_{s} W/D > 2 c_{i} \rho_{i} h$

Where

c_s = specific heat of steel (Btu/lb-°F)

W/D = ratio of weight of steel section per linear foot and heated perimeter (lb/ff)

- ρ_{i} = density of spray-applied material (lb/ft³)
- $c_i\,$ = specific heat of spray-applied material (BTU/lb- $^\circ F)$
- h = thickness of spray-applied protection on steel beam (in)

1.63 > 0.45

196 sec

3.27 minutes

The Maximum Allowable Time Step

 $\Delta t = \Delta t =$

For ASTM-E-119 exposure, T_f at any time, t, is given by the following expression

Where

 T_f = fire exposure temperature (°F) C_1 = constant = 620 t = time step (sec) T_a = ambient air temperature (°F)

$\Delta T_{s1} = (k_i / (c_s h W/D + 1/2 c_i \rho_i h^2)) ((C_1 LOG (0.133 t_1 + 1) + T_a) - T_{s0}) \Delta t$

Where

$$\label{eq:t1} \begin{split} t_1 &= \Delta t/2 \\ T_{s0} &= \mbox{initial steel temperature (°F)} \end{split}$$

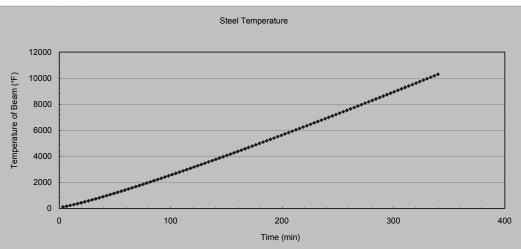
Caution! This equation is only valid up to 1000 °F (538 °C) where carbon steel structural members begin to fail. Predicted temperatures above 1000 °F (538 °C) are not accurate or valid.

 $\Delta T_{s2} = (k_i / (c_s h W/D + 1/2 c_i \rho_i h^2)) ((C_1 LOG (0.133 t_2 + 1)+T_a) - T_s) \Delta t$

Where

$$\label{eq:t2} \begin{split} t_2 &= t_1 + \Delta t/2 \\ T_s &= T_{s0} + \Delta T_s \text{ from previous row} \end{split}$$

Version 1805.1 (English Units)


Answer

				-
Time	Time	∆T _s	Τs	
(min)	(sec)	(°F)	(°F)	
3.3	196	40	117	
6.5	392	53	170	
9.8	588	60	230	
13.1	785	65	294	
16.3	981	68	362	
19.6	1177	71	433	
22.9	1373	73	506	
26.2	1569	75	581	
29.4	1765	77	658	
32.7	1961	78	737	
36.0	2158	80	817	
39.2	2354	81	898	
42.5	2550	82	980	
45.8	2746	83	1063	Failure of Beam
49.0	2942	84	1148	Failure of Beam
52.3	3138	85	1233	Failure of Beam
55.6	3334	86	1319	Failure of Beam
58.8	3531	87	1406	Failure of Beam
62.1	3727	88	1494	Failure of Beam
65.4	3923	89	1583	Failure of Beam
68.6	4119	89	1672	Failure of Beam
71.9	4315	90	1762	Failure of Beam
75.2	4511	91	1853	Failure of Beam
78.5	4707	91	1944	Failure of Beam
81.7	4904	92	2036	Failure of Beam
85.0	5100	92	2128	Failure of Beam
88.3	5296	93	2221	Failure of Beam
91.5	5492	93	2315	Failure of Beam
94.8	5688	94	2409	Failure of Beam
98.1	5884	94	2503	Failure of Beam
101.3	6080	95	2598	Failure of Beam
104.6	6277	95	2693	Failure of Beam
107.9	6473	96	2789	Failure of Beam
111.1	6669	96	2885	Failure of Beam
114.4	6865	97	2982	Failure of Beam
117.7	7061	97	3079	Failure of Beam
121.0	7257	97	3177	Failure of Beam
124.2	7453	98	3275	Failure of Beam
127.5	7650	98	3373	Failure of Beam
130.8	7846	99	3471	Failure of Beam
134.0	8042	99	3570	Failure of Beam
137.3	8238	99	3670	Failure of Beam
140.6	8434	100	3769	Failure of Beam
143.8	8630	100	3869	Failure of Beam
147.1	8826	100	3969	Failure of Beam
150.4	9023	101	4070	Failure of Beam
153.6	9219	101	4171	Failure of Beam
156.9	9415	101	4272	Failure of Beam
160.2	9611	102	4374	Failure of Beam
163.5	9807	102	4475	Failure of Beam
166.7	10003	102	4578	Failure of Beam
170.0	10199	102	4680	Failure of Beam

			-	
Time	Time	ΔT _s	Τs	
(min)	(sec)	(°F)	(°F)	
173.3	10396	103	4783	Failure of Beam
176.5	10592	103	4885	Failure of Beam
179.8	10788	103	4989	Failure of Beam
183.1	10984	103	5092	Failure of Beam
186.3	11180	104	5196	Failure of Beam
189.6	11376	104	5300	Failure of Beam
192.9	11572	104	5404	Failure of Beam
196.1	11769	104	5508	Failure of Beam
199.4	11965	105	5613	Failure of Beam
202.7	12161	105	5718	Failure of Beam
205.9	12357	105	5823	Failure of Beam
209.2	12553	105	5928	Failure of Beam
212.5	12749	106	6034	Failure of Beam
215.8	12945	106	6139	Failure of Beam
219.0	13142	106	6245	Failure of Beam
222.3	13338	106	6352	Failure of Beam
225.6	13534	106	6458	Failure of Beam
228.8	13730	107	6565	Failure of Beam
232.1	13926	107	6671	Failure of Beam
235.4	14122	107	6778	Failure of Beam
238.6	14318	107	6886	Failure of Beam
241.9	14515	107	6993	Failure of Beam
245.2	14711	108	7101	Failure of Beam
248.4	14907	108	7208	Failure of Beam
251.7	15103	108	7316	Failure of Beam
255.0	15299	108	7424	Failure of Beam
258.3	15495	108	7533	Failure of Beam
261.5	15691	109	7641	Failure of Beam
264.8	15888	109	7750	Failure of Beam
268.1	16084	109	7859	Failure of Beam
271.3	16280	109	7968	Failure of Beam
274.6	16476	109	8077	Failure of Beam
277.9	16672	109	8186	Failure of Beam
281.1	16868	110	8296	Failure of Beam
284.4	17064	110	8406	Failure of Beam
287.7	17261	110	8516	Failure of Beam
290.9	17457	110	8626	Failure of Beam
294.2	17653	110	8736	Failure of Beam
297.5	17849	110	8846	Failure of Beam
300.8	18045	111	8957	Failure of Beam
304.0	18241	111	9067	Failure of Beam
307.3	18437	111	9178	Failure of Beam
310.6	18634	111	9289	Failure of Beam
313.8	18830	111	9400	Failure of Beam
317.1	19026	111	9512	Failure of Beam
320.4	19222	111	9623	Failure of Beam
323.6	19418	112	9734	Failure of Beam
326.9	19614	112	9846	Failure of Beam
330.2	19810	112	9958	Failure of Beam
333.4	20007	112	10070	Failure of Beam
336.7	20203	112	10182	Failure of Beam
340.0	20399	112	10294	Failure of Beam
8		•		

Version 1805.1 (English Units)

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Date:	Organization:	
Date:	Organization:	

18.11 Problems

Example Problem 18.11-1

Problem Statement

A compartment is 30 ft wide x 20 ft long x 15 ft high ($w_c x I_c x h_c$). In the center of the compartment, 1 lb of polypropylene is involved in flaming combustion:

- (a) From the center of the compartment, can you see the "Reflecting Exit Sign" at either end of the compartment?
- (b) What if you increase the mass of burned fuel (polypropylene) to 2 lbs?

Solution

Purpose:

(1) Determine the visibility of the exit sign.

Assumptions:

(1) Complete burning within the method specified

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 18_Visibility_Through_Smoke_Sup1.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 30$ ft
- Compartment Length (I_c) = 20 ft
- Compartment Height (h_c) = 15 ft
- Mass of fuel burn = 1 lb
- Select Reflecting Signs
- Select Flaming Combustion
- Select Polypropylene

Results*

	1 lb of material	2 lb of material
Visible Distance	12.37 ft	6.18 ft

*see spreadsheet on next page

Therefore, the signs placed at either end of the room (10 feet away) are visible with 1 lb of material burning, but would not be visible if 2 lb of material was burned.

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-1a

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_p)} \end{array}$

30.00	ft
20.00	ft
15.00	ft
1.00	lb
3	
37000	ft²/lb
0.059	

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)
	К	Reflecting Signs
Building Components in Reflected Light	3	Scroll to desired Situation then
Illuminated Signs	8	Click on selection
Reflecting Signs	3	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Mil	ke, Principles of Smoke	
Management, 2002, Page 31.		

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

	Specific Extinction Coefficient	Select Mode of Combustion /	
Mode of Combustion	Specific Extinction Coefficient	Specific Extinction Coefficient (α_m)	
	α _m (ft²/lb)	Flaming Combustion	
Flaming Combustion	37000	Scroll to desired Mode of Combustion then	
Smoldering Combustion	21000	Click on selection	
User Specified Value	Enter Value		
Reference: John H. Klote & James A. Milke, Principles of Smoke			
Management, 2002, Page 32.			

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)
Material	(y _p)	Polypropylene -
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection
Fiberboard	0.008	
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003	
Nylon	0.075	
Perfluoroalkoxy (PFA; Teflon [™])	0.002	
Phenolic Foam	0.002	
Polyester	0.09	
Polyethylene (PE)	0.06	
Polyethylene Foam	0.076	
Polymethylemethacrylate (PMMA; Plexiglas [™])	0.022	
Polypropylene	0.059	
Polystyrene	0.164	
Polystyrene Foam	0.194	
Polyurethane Foam (Flexible)	0.188	
Polyurethane Foam (Rigid)	0.118	
Polyvinylchloride (PVC)	0.172	
Silicone	0.065	
Silicone Rubber	0.078	
Tetrafluoroethylene (TFE; TeflonTM)	0.003	
Wood (Douglas Fir)	0.018	
Wood (Hemlock)	0.015	
Wood (Red Oak)	0.015	
Wool 100%	0.008	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 35.		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

- S = visibility through smoke (ft)
- K = proportionality constant
- α_m = specific extinction coefficient (ft²/lb)
- m_p = mass concentration of particulate (lb/ft³)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (ft^3)
- w_c = compartment width (ft)
- I_c = compartment length (ft)

h_c = compartment height (ft)

Mass of Particulates Produced (airborne particulate)

$$M_p = y_p M_f$$

Where, M_p = mass of particulates produced (lb) y_p = particulates yield M_f = mass of fuel consumed (lb)

M_p = 0.05900 lb

Mass Concentration of the Particulates Calculation $m_{\rm p}$ = M_{\rm p} / V

Where,

- m_p = mass concentration of the particulates (lb/ft³)
- M_p = mass of particulates produced (lb)
- V = volume of the compartment (m^3)

$$m_p = 6.55556E-06 \text{ lb/ft}^3$$

Version 1805.1 (English Units)

Summary of Results

Visibility Through Smoke Calculation

 $S = K / \alpha_m m_p$

Answer S = 12.37 ft 3.77 m	
----------------------------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
	Date.	
Additional Information:		

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-1b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_p)} \end{array}$

30.00	ft
20.00	ft
15.00	ft
2.00	lb
3	
37000	ft²/lb
0.059	

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)	
	К	Reflecting Signs	
Building Components in Reflected Light	3	Scroll to desired Situation then	
Illuminated Signs	8	Click on selection	
Reflecting Signs	3		
User Specified Value	Enter Value		
Reference: John H. Klote & James A. Milke, Principles of Smoke			
Management, 2002, Page 31.			

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

	Specific Extinction Coefficient	Select Mode of Combustion /	
Mode of Combustion	Specific Extinction Coefficient	Specific Extinction Coefficient (α_m)	
	α _m (ft²/lb)	Flaming Combustion	
Flaming Combustion	37000	Scroll to desired Mode of Combustion then	
Smoldering Combustion	21000	Click on selection	
User Specified Value	Enter Value		
Reference: John H. Klote & James A. Milke, Principles of Smoke			
Management, 2002, Page 32.			

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)
Material	(y _p)	Polypropylene -
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection
Fiberboard	0.008	
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003	
Nylon	0.075	
Perfluoroalkoxy (PFA; Teflon [™])	0.002	
Phenolic Foam	0.002	
Polyester	0.09	
Polyethylene (PE)	0.06	
Polyethylene Foam	0.076	
Polymethylemethacrylate (PMMA; Plexiglas [™])	0.022	
Polypropylene	0.059	
Polystyrene	0.164	
Polystyrene Foam	0.194	
Polyurethane Foam (Flexible)	0.188	
Polyurethane Foam (Rigid)	0.118	
Polyvinylchloride (PVC)	0.172	
Silicone	0.065	
Silicone Rubber	0.078	
Tetrafluoroethylene (TFE; TeflonTM)	0.003	
Wood (Douglas Fir)	0.018	
Wood (Hemlock)	0.015	
Wood (Red Oak)	0.015	
Wool 100%	0.008	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 35.		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

- S = visibility through smoke (ft)
- K = proportionality constant
- α_m = specific extinction coefficient (ft²/lb)
- m_p = mass concentration of particulate (lb/ft³)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (ft^3)
- w_c = compartment width (ft)
- I_c = compartment length (ft)
- h_c = compartment height (ft)

Mass of Particulates Produced (airborne particulate)

$M_p = y_p M_f$

Where, M_p = mass of particulates produced (lb) y_p = particulates yield M_f = mass of fuel consumed (lb)

M_p = 0.11800 lb

Mass Concentration of the Particulates Calculation $m_{\rm p}$ = M_{\rm p} / V

Where,

- m_p = mass concentration of the particulates (lb/ft³)
- M_p = mass of particulates produced (lb)
- V = volume of the compartment (m^3)

Version 1805.1 (English Units)

Summary of Results

Visibility Through Smoke Calculation

 $S = K / \alpha_m m_p$

Answer	S =	6.18 ft	1.88 m
--------	-----	---------	--------

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by	Date:	Oreanization
Checked by:	Dale.	Organization:
Additional Information:		

Example Problem 18.11-2

Problem Statement

A compartment is 10 ft wide x 30 ft long x 12 ft high ($w_c x I_c x h_c$). What is the minimum amount (lb) of rigid polyurethane foam involved in smoldering combustion necessary to obstruct the visibility for the length of the compartment to a building compartment in reflective light?

Solution

Purpose:

(1) Determine the minimum mass of burning fuel that will obscure the sign.

Assumptions:

(1) Complete burning within the method specified

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 18_Visibility_Through_Smoke_Sup1.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 10$ ft
- Compartment Length $(I_c) = 30$ ft
- Compartment Height $(h_c) = 12$ ft
- Mass of fuel burn = variable
- Select Reflecting Signs
- Select Smoldering Combustion
- Select Polyurethane Foam (Rigid)

Results*

Visible Distance	Mass of Fuel Burn
30 ft	0.14 lb

*see spreadsheet on next page

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-2

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_p)} \end{array}$

10.00	ft
30.00	ft
12.00	ft
0.14	lb
3	
21000	ft²/lb
0.118	

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)
	К	Reflecting Signs
Building Components in Reflected Light	3	Scroll to desired Situation then
Illuminated Signs	8	Click on selection
Reflecting Signs	3	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 31.		

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

Mode of Combustion	Specific Extinction Coefficient	Select Mode of Combustion / Specific Extinction Coefficient (α _m)
	α _m (ft²/lb)	Smoldering Combustion
Flaming Combustion	37000	Scroll to desired Mode of Combustion then
Smoldering Combustion	21000	Click on selection
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 32.		

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)	
Waterial	(y _p)	Polyurethane Foam (Rigid)	
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then	
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection	
Fiberboard	0.008		
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003		
Nylon	0.075		
Perfluoroalkoxy (PFA; Teflon [™])	0.002		
Phenolic Foam	0.002		
Polyester	0.09		
Polyethylene (PE)	0.06		
Polyethylene Foam	0.076		
Polymethylemethacrylate (PMMA; Plexiglas TM)	0.022		
Polypropylene	0.059		
Polystyrene	0.164		
Polystyrene Foam	0.194		
Polyurethane Foam (Flexible)	0.188		
Polyurethane Foam (Rigid)	0.118		
Polyvinylchloride (PVC)	0.172		
Silicone	0.065		
Silicone Rubber	0.078		
Tetrafluoroethylene (TFE; TeflonTM)	0.003		
Wood (Douglas Fir)	0.018		
Wood (Hemlock)	0.015		
Wood (Red Oak)	0.015		
Wool 100%	0.008		
User Specified Value	Enter Value		
Reference: John H. Klote & James A. Milke, Principles of	Smoke		
Management, 2002, Page 35.			

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

- S = visibility through smoke (ft)
- K = proportionality constant
- α_m = specific extinction coefficient (ft²/lb)
- m_p = mass concentration of particulate (lb/ft³)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (ft^3)
- w_c = compartment width (ft)
- I_c = compartment length (ft)
- h_c = compartment height (ft)

3600.00 ft³

Mass of Particulates Produced (airborne particulate)

 $M_p = y_p M_f$

Where, M_p = mass of particulates produced (lb) y_p = particulates yield M_f = mass of fuel consumed (lb)

Mass Concentration of the Particulates Calculation $m_{\rm p}$ = M_{\rm p} / V

Where,

- m_p = mass concentration of the particulates (lb/ft³)
- M_p = mass of particulates produced (lb)
- V = volume of the compartment (m^3)

$$m_p = 4.58889E-06 \text{ lb/ft}^3$$

Version 1805.1 (English Units)

Summary of Results

Visibility Through Smoke Calculation

 $S = K / \alpha_m m_p$

Answer	S =	31.13 ft	9.49 m	
--------	-----	----------	--------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 18.11-3

Problem Statement

An inspector finds 5 lbs of PVC pipe in a compartment 10 ft wide x 30 ft long x 12 ft high (w_c x l_c x h_c):

- (a) What is the visibility to a reflecting sign given flaming combustion?
- (b) What is the visibility to a reflecting sign given smoldering combustion?

Solution

Purpose:

(1) Determine the visibility under the different burning methods.

Assumptions:

(1) Complete burning within the method specified

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 18_Visibility_Through_Smoke_Sup1.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 10$ ft
- Compartment Length $(I_c) = 30$ ft
- Compartment Height $(h_c) = 12$ ft
- Mass of fuel burn = 5 lbs
- Select Reflecting Signs
- Select Flaming Combustion (get result)
- Select Smoldering Combustion (get result)
- Select PVC

Results*

Burning Method	Visibility
Flaming	0.34 ft
Smoldering	0.60 ft

*see spreadsheet on next page

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-3a

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_p)} \end{array}$

10.00	ft
30.00	ft
12.00	ft
5.00	lb
3	
37000	ft²/lb
0.172	

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)
	К	Reflecting Signs
Building Components in Reflected Light	3	Scroll to desired Situation then
Illuminated Signs	8	Click on selection
Reflecting Signs	3	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 31.		

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

Mode of Combustion	Specific Extinction Coefficient	Select Mode of Combustion / Specific Extinction Coefficient (α _m)
	α _m (ft²/lb)	Flaming Combustion
Flaming Combustion	37000	Scroll to desired Mode of Combustion then
Smoldering Combustion	21000	Click on selection
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 32.		

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)
Material	(y _p)	Polyvinylchloride (PVC)
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection
Fiberboard	0.008	
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003	
Nylon	0.075	
Perfluoroalkoxy (PFA; Teflon [™])	0.002	
Phenolic Foam	0.002	
Polyester	0.09	
Polyethylene (PE)	0.06	
Polyethylene Foam	0.076	
Polymethylemethacrylate (PMMA; Plexiglas [™])	0.022	
Polypropylene	0.059	
Polystyrene	0.164	
Polystyrene Foam	0.194	
Polyurethane Foam (Flexible)	0.188	
Polyurethane Foam (Rigid)	0.118	
Polyvinylchloride (PVC)	0.172	
Silicone	0.065	
Silicone Rubber	0.078	
Tetrafluoroethylene (TFE; TeflonTM)	0.003	
Wood (Douglas Fir)	0.018	
Wood (Hemlock)	0.015	
Wood (Red Oak)	0.015	
Wool 100%	0.008	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of	Smoke	
Management, 2002, Page 35.		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

- S = visibility through smoke (ft)
- K = proportionality constant
- α_m = specific extinction coefficient (ft²/lb)
- m_p = mass concentration of particulate (lb/ft³)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (ft^3)
- w_c = compartment width (ft)
- I_c = compartment length (ft)
- h_c = compartment height (ft)

3600.00 ft³

Mass of Particulates Produced (airborne particulate)

 $M_p = y_p M_f$

Where, M_p = mass of particulates produced (lb) y_p = particulates yield M_f = mass of fuel consumed (lb)

Mass Concentration of the Particulates Calculation $m_{\rm p}$ = $M_{\rm p}$ / V

Where,

- m_p = mass concentration of the particulates (lb/ft³)
- M_p = mass of particulates produced (lb)
- V = volume of the compartment (m^3)

$$m_p = 2.38889E-04 \text{ lb/ft}^3$$

Version 1805.1 (English Units)

Summary of Results

Visibility Through Smoke Calculation

 $S = K / \alpha_m m_p$

Answer	S =	0.34 ft	0.10 m	
--------	-----	---------	--------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
	Detail	
Checked by:	Date:	Organization:
Additional Information:		

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-3b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_p)} \end{array}$

ft
ft
ft
lb
ft²/lb

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)
	К	Reflecting Signs
Building Components in Reflected Light	3	Scroll to desired Situation then
Illuminated Signs	8	Click on selection
Reflecting Signs	3	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Mil	ke, Principles of Smoke	
Management, 2002, Page 31.		

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

Mode of Combustion	Specific Extinction Coefficient	Select Mode of Combustion / Specific Extinction Coefficient (α _m)
	α _m (ft²/lb)	Smoldering Combustion
Flaming Combustion	37000	Scroll to desired Mode of Combustion then
Smoldering Combustion	21000	Click on selection
User Specified Value	Enter Value	
Reference: John H. Klote & James	A. Milke, Principles of Smoke	
Management, 2002, Page 32.		

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (yp)
Wateriai	(y _p)	Polyvinylchloride (PVC)
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection
Fiberboard	0.008	
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003	
Nylon	0.075	
Perfluoroalkoxy (PFA; Teflon [™])	0.002	
Phenolic Foam	0.002	
Polyester	0.09	
Polyethylene (PE)	0.06	
Polyethylene Foam	0.076	
Polymethylemethacrylate (PMMA; Plexiglas TM)	0.022	
Polypropylene	0.059	
Polystyrene	0.164	
Polystyrene Foam	0.194	
Polyurethane Foam (Flexible)	0.188	
Polyurethane Foam (Rigid)	0.118	
Polyvinylchloride (PVC)	0.172	
Silicone	0.065	
Silicone Rubber	0.078	
Tetrafluoroethylene (TFE; TeflonTM)	0.003	
Wood (Douglas Fir)	0.018	
Wood (Hemlock)	0.015	
Wood (Red Oak)	0.015	
Wool 100%	0.008	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of	Smoke	
Management, 2002, Page 35.		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

- S = visibility through smoke (ft)
- K = proportionality constant
- α_m = specific extinction coefficient (ft²/lb)
- m_p = mass concentration of particulate (lb/ft³)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (ft^3)
- w_c = compartment width (ft)
- I_c = compartment length (ft)
- h_c = compartment height (ft)

3600.00 ft³

Mass of Particulates Produced (airborne particulate)

 $M_p = y_p M_f$

Where, M_p = mass of particulates produced (lb) y_p = particulates yield M_f = mass of fuel consumed (lb)

Mass Concentration of the Particulates Calculation m_{p} = M_{p} / V

Where,

- m_p = mass concentration of the particulates (lb/ft³)
- M_p = mass of particulates produced (lb)
- V = volume of the compartment (m^3)

$$m_p = 2.38889E-04 \text{ lb/ft}^3$$

Version 1805.1 (English Units)

Summary of Results

Visibility Through Smoke Calculation

 $S = K / \alpha_m m_p$

Answer S = 0.60 ft 0.18 m	
---------------------------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

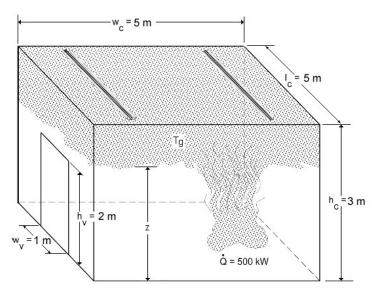
NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
	Date.	
Additional Information:		

APPENDIX B

REVISED SPREADSHEETS – EXAMPLE PROBLEMS (SI UNITS)


2.16 Problems

2.16.1 Natural Ventilation

Example Problem 2.16.1-1

Problem Statement

Consider a compartment that is 5 m wide x 5 m long x 3 m high ($w_c x l_c x h_c$), with a simple vent that is 1 m wide x 2 m tall ($w_v x h_v$). The fire is constant with an HRR of 500 kW. Compute the hot gas layer temperature in the compartment and smoke layer height at 2 minutes assuming that the compartment interior boundary material is (a) 0.3048 m thick concrete and (b) 0.0254 m thick gypsum board. Assume that the top of the vent is 2 m.

Example Problem 2-1: Compartment with Natural Ventilation

Solution

Purpose:

For two different interior boundary materials determine following:

- (1) The hot gas layer temperature in the compartment (T_q) at t = 2 min after ignition
- (2) The smoke layer height (z) at t = 2 min after ignition

Assumptions:

- (1) Air properties (ambient) at 25 °C
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant heat release rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

- (a) For concrete: 02.1_Temperature_N V_Sup1_SI.xls
- (b) For gypsum board: 02.1_Temperature_NV_Sup1_SI.xls

FDT^s Input Parameters: (for both spreadsheets)

- Compartment Width $(w_c) = 5 \text{ m}$
- Compartment Length $(I_c) = 5 \text{ m}$
- Compartment Height $(h_c) = 3 m$
- Vent Width $(w_v) = 1 \text{ m}$
- Vent Height (h_v) = 2 m
- Top of Vent from Floor $(V_T) = 2 \text{ m}$
- Interior Lining Thickness (δ) = 30.48 cm (concrete) and 2.54 cm (gypsum board)
- Ambient Air Temperature $(T_a) = 25 \degree C$
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Concrete and Gypsum Board on the respective FDT^s
- Fire Heat Release Rate (\dot{Q}) = 500 kW
- Time after Ignition $(t) = 2 \min$

Results*

Interior Boundary Material	Hot Gas Layer Temperature (T _g) (Method of MQH) (°C)	Smoke Layer Height (z) (Method of Yamana and Tanaka) (m)
Concrete	144	2.0 (smoke exiting vent, z < V _T)
Gypsum Board	214	2.0 (compartment filled with smoke)

*see spreadsheet on next page at t = 2 min

Version 1805.1 (SI Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 2.16.1.-1a

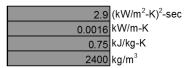
INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w_c) Compartment Length (l_c) Compartment Height (h_c)	5.00 m 5.00 m 3.00 m
Vent Width (w_v)	1.00 m
Vent Height (h_v)	2.00 m
Top of Vent from Floor (V $_{\rm T})$	2.00 m
Interior Lining Thickness (δ)	30.50 cm

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)


Specific Heat of Air (c_a) Ambient Air Density ($\rho_a)$

25.00	°C
1.00	kJ/kg-K
1.18	kg/m ³

Note: Ambient Air Density (pa) will automatically correct with Ambient Air Temperature (Ta) Input

THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR

Interior Lining Thermal Inertia (kpc) Interior Lining Thermal Conductivity (k) Interior Lining Specific Heat (c_p) Interior Lining Density (ρ)

Version 1805.1 (SI Units)

	kpc	k	с	ρ	Select Material
Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m ³)	Concrete
Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material
Steel (0.5% Carbon)	197	0.054	0.465	7850	Click the selection
Concrete	2.9	0.0016	0.75	2400	
Brick	1.7	0.0008	0.8	2600	
Glass, Plate	1.6	0.00076	0.8	2710	
Brick/Concrete Block	1.2	0.00073	0.84	1900	
Gypsum Board	0.18	0.00017	1.1	960	
Plywood	0.16	0.00012	2.5	540	
Fiber Insulation Board	0.16	0.00053	1.25	240	
Chipboard	0.15	0.00015	1.25	800	
Aerated Concrete	0.12	0.00026	0.96	500	
Plasterboard	0.12	0.00016	0.84	950	
Calcium Silicate Board	0.098	0.00013	1.12	700	
Alumina Silicate Block	0.036	0.00014	1	260	
Glass Fiber Insulation	0.0018	0.000037	0.8	60	
Expanded Polystyrene	0.001	0.000034	1.5	20	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

500.00 kW

Calculate

Version 1805.1 (SI Units)

METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-175.

$\Delta T_g = 6.85 \left[Q^2 / ((A_v(h_v)^{1/2}) (A_T h_k))\right]^{1/3}$

Where,

 $\Delta T_{q} = T_{q} - T_{a}$ = upper layer gas temperature rise above ambient (K)

- Q = heat release rate of the fire (kW)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)
- h_k = convective heat transfer coefficient (kW/m²-K)
- total area of the compartment enclosing surface $A_T = \frac{1}{2}$
 - boundaries excluding area of vent openings (m²)

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

A_v = area of ventilation opening (m²) $w_v = vent width (m)$ $h_v = vent height (m)$

 m^2 2.00 A, =

Thermal Penetration Time Calculation

$$\mathbf{t}_{p} = (\rho \mathbf{c}_{p}/\mathbf{k}) (\delta/2)^{2}$$

Where,

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

Version 1805.1 (SI Units)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where,

h_k = heat transfer coefficient (kW/m²-K) kρc = interior construction thermal inertia (kW/m²-K)²-sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

See table below for results (column 3)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- $h_c = compartment height (m)$

 A_v = area of ventilation opening (m²)

$$A_{\rm T} = 108.00$$
 m²

Version 1805.1 (SI Units)

COMPARTMENT HOT GAS LAYER TEMPERATURE WITH NATURAL $\Delta T_g = 6.85 \left[Q^2/((A_v(h_v)^{1/2})(A_Th_k))\right]^{1/3}$

$$\Delta T_g = T_g - T_a$$

$$T_g = \Delta T_g + T_a$$

Results	Time Aft	er Ignition (t)	h _k	ΔT_{g}	Tg	Tg	Tg
	(min)	(sec)	(kW/m²-K)	(°K)	(°K)	(°C)	(°F)
	0	0.00	-	-	298.00	25.00	77.00
	1	60	0.22	106.16	404.16	131.16	268.09
	2	120	0.16	119.16	417.16	144.16	291.50
	3	180	0.13	127.50	425.50	152.50	306.49
	4	240	0.11	133.76	431.76	158.76	317.76
	5	300	0.10	138.83	436.83	163.83	326.89
	10	600	0.07	155.83	453.83	180.83	357.49
	15	900	0.06	166.72	464.72	191.72	377.10
	20	1200	0.05	174.91	472.91	199.91	391.84
	25	1500	0.04	181.54	479.54	206.54	403.77
	30	1800	0.04	187.14	485.14	212.14	413.85
	35	2100	0.04	192.01	490.01	217.01	422.61
	40	2400	0.03	196.33	494.33	221.33	430.39
	45	2700	0.03	200.22	498.22	225.22	437.40
	50	3000	0.03	203.77	501.77	228.77	443.78
	55	3300	0.03	207.03	505.03	232.03	449.65
	60	3600	0.03	210.05	508.05	235.05	455.10

Version 1805.1 (SI Units)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA

$$z = ((2kQ^{1/3}t/(3A_c)) + (1/h_c^{2/3}))^{-3/2}$$

Where,

- z = smoke layer height (m)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- h_c = compartment height (m)
- A_c = compartment floor area (m²)
- k = k = a constant given by $k = 0.076/\rho_g$
- ρ_{g} = hot gas layer density (kg/m³)
 - ρ_g is given by $\rho_g = 353/T_g$
- T_g = hot gas layer temperature (K)

Compartment Area Calculation

$$Ac = (w_c) (I_c)$$

Where,

 $A_c =$

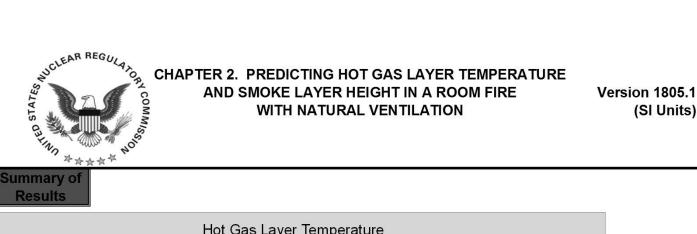
25.00 m²

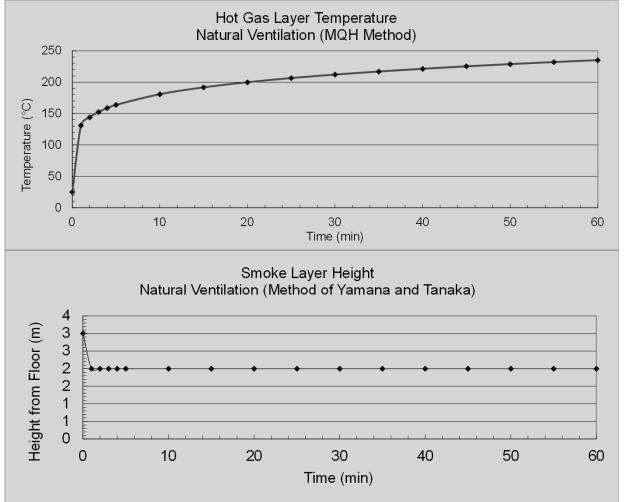
Hot Gas Layer Density Calculation

 $\rho_{g} = 353/T_{g}$

Calculation for Constant K

$$k = 0.076/\rho_g$$


Version 1805.1 (SI Units)


SMOKE GAS LAYER HEIGHT WITH NATURAL VENTILATION

 $z = [(2kQ^{1/3}t/(3A_c)] + (1/h_c^{2/3})^{-3/2}]$

Results Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Calculated smoke layer height below the vent height are not creditable since the calculation is not accounting for the smoke exiting the vent.

				Smoke Layer	7
Time	ρ _g	Constant (k)	Smoke Layer Height	Height	
(min)	(kg/m³)	(kW/m-K)	z (m)	z (ft)	
0	1.18	0.064	3.00	9.84	
1	0.87	0.087	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
2	0.85	0.090	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
3	0.83	0.092	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
4	0.82	0.093	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
5	0.81	0.094	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
10	0.78	0.098	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
15	0.76	0.100	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
20	0.75	0.102	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
25	0.74	0.103	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
30	0.73	0.104	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
35	0.72	0.105	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
40	0.71	0.106	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
45	0.71	0.107	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
50	0.70	0.108	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
55	0.70	0.109	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
60	0.69	0.109	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns, and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by: Additional Information:	Date:	Organization:

Version 1805.1 (SI Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 2.16.1.-1b

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w_c) Compartment Length (l_c) Compartment Height (h_c)	5.00 m 5.00 m 3.00 m
Vent Width (w _v) Vent Height (h _v)	1.00 m
Top of Vent from Floor (V_T)	2.00 m
Interior Lining Thickness (δ)	2.54 cm

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)

Specific Heat of Air (c_a) Ambient Air Density ($\rho_a)$

25.00	°C
1.00	kJ/kg-K
1.18	kg/m ³

Note: Ambient Air Density (pa) will automatically correct with Ambient Air Temperature (Ta) Input

THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR

Interior Lining Thermal Inertia (kpc) Interior Lining Thermal Conductivity (k) Interior Lining Specific Heat (c_p) Interior Lining Density (ρ)

0.18	(kW/m ² -K) ² -sec
0.00017	kW/m-K
1.1	kJ/kg-K
960	kg/m ³

Version 1805.1 (SI Units)

THERMAL PRO	THERMAL PROPERTIES FOR COMMON INTERIOR LINING MATERIALS								
	kρc	k	с	ρ	Select Material				
Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m ³)	Gypsum Board 🚽				
Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material				
Steel (0.5% Carbon)	197	0.054	0.465	7850	Click the selection				
Concrete	2.9	0.0016	0.75	2400					
Brick	1.7	0.0008	0.8	2600					
Glass, Plate	1.6	0.00076	0.8	2710					
Brick/Concrete Block	1.2	0.00073	0.84	1900					
Gypsum Board	0.18	0.00017	1.1	960					
Plywood	0.16	0.00012	2.5	540					
Fiber Insulation Board	0.16	0.00053	1.25	240					
Chipboard	0.15	0.00015	1.25	800					
Aerated Concrete	0.12	0.00026	0.96	500					
Plasterboard	0.12	0.00016	0.84	950					
Calcium Silicate Board	0.098	0.00013	1.12	700					
Alumina Silicate Block	0.036	0.00014	1	260					
Glass Fiber Insulation	0.0018	0.000037	0.8	60					
Expanded Polystyrene	0.001	0.000034	1.5	20					
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value]				
Reference: Klote, J., J.	Milke, Principles o	of Smoke Managemen	t, 2002, Page 270.						

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

500.00 kW

Calculate

Version 1805.1 (SI Units)

METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-175.

$\Delta T_g = 6.85 \left[Q^2 / ((A_v(h_v)^{1/2}) (A_T h_k))\right]^{1/3}$

Where,

 $\Delta T_{q} = T_{q} - T_{a}$ = upper layer gas temperature rise above ambient (K)

- Q = heat release rate of the fire (kW)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)
- h_k = convective heat transfer coefficient (kW/m²-K)
- total area of the compartment enclosing surface $A_T = \frac{1}{2}$
 - boundaries excluding area of vent openings (m²)

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

A_v = area of ventilation opening (m²) $w_v = vent width (m)$ $h_v = vent height (m)$

 m^2 2.00 A, =

Thermal Penetration Time Calculation

$$\mathbf{t}_{p} = (\rho \mathbf{c}_{p}/\mathbf{k}) (\delta/2)^{2}$$

Where,

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

Version 1805.1 (SI Units)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where,

h_k = heat transfer coefficient (kW/m²-K) kpc = interior construction thermal inertia (kW/m²-K)²-sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

See table below for results (column 3)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- $h_c = compartment height (m)$

 A_v = area of ventilation opening (m²)

$$A_{\rm T} = 108.00$$
 m²

Version 1805.1 (SI Units)

$\label{eq:compartment} \begin{array}{l} \hline \textbf{COMPARTMENT HOT GAS LAYER TEMPERATURE WITH NATURAL} \\ & \Delta T_g = 6.85 \; [Q^2/((A_v(h_v)^{1/2}) \; (A_Th_k))]^{1/3} \end{array}$

$$\Delta T_g = T_g - T_a$$

$$T_g = \Delta T_g + T_a$$

Results	Time Aft	er Ignition (t)	h _k	ΔT_{g}	Tg	Tg	Tg
	(min)	(sec)	(kW/m²-K)	(°K)	(°K)	(°C)	(°F)
	0	0.00	-	-	298.00	25.00	77.00
	1	60	0.05	168.72	466.72	193.72	380.69
	2	120	0.04	189.38	487.38	214.38	417.88
	3	180	0.03	202.62	500.62	227.62	441.71
	4	240	0.03	212.57	510.57	237.57	459.63
	5	300	0.02	220.63	518.63	245.63	474.13
	10	600	0.02	247.64	545.64	272.64	522.76
	15	900	0.01	264.96	562.96	289.96	553.92
	20	1200	0.01	340.00	638.00	365.00	689.00
	25	1500	0.01	340.00	638.00	365.00	689.00
	30	1800	0.01	340.00	638.00	365.00	689.00
	35	2100	0.01	340.00	638.00	365.00	689.00
	40	2400	0.01	340.00	638.00	365.00	689.00
	45	2700	0.01	340.00	638.00	365.00	689.00
	50	3000	0.01	340.00	638.00	365.00	689.00
	55	3300	0.01	340.00	638.00	365.00	689.00
	60	3600	0.01	340.00	638.00	365.00	689.00

Version 1805.1 (SI Units)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA

$$z = ((2kQ^{1/3}t/(3A_c)) + (1/h_c^{2/3}))^{-3/2}$$

Where,

- z = smoke layer height (m)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- h_c = compartment height (m)
- A_c = compartment floor area (m²)
- k = k = a constant given by $k = 0.076/\rho_g$
- ρ_g = hot gas layer density (kg/m³)
 - ρ_{g} is given by ρ_{g} = 353/T $_{g}$
- T_g = hot gas layer temperature (K)

Compartment Area Calculation

$$Ac = (w_c) (I_c)$$

Where,

 $A_c =$

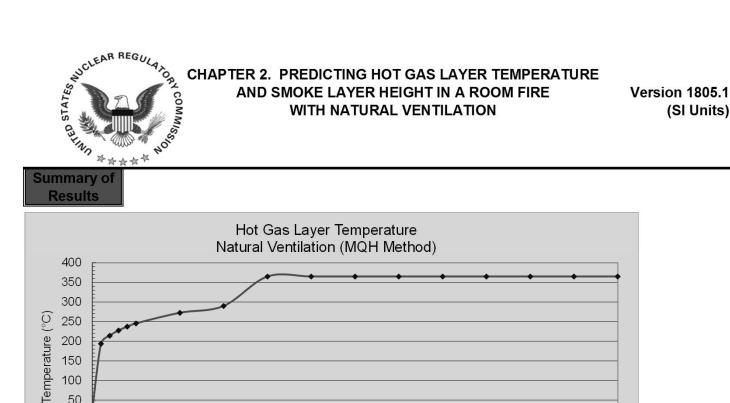
25.00 m²

Hot Gas Layer Density Calculation

 $\rho_{g} = 353/T_{g}$

Calculation for Constant K

$$k = 0.076/\rho_g$$


Version 1805.1 (SI Units)

SMOKE GAS LAYER HEIGHT WITH NATURAL VENTILATION

 $z = [(2kQ^{1/3}t/(3A_c)] + (1/h_c^{2/3})^{-3/2}]$

Results Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Calculated smoke layer height below the vent height are not creditable since the calculation is not accounting for the smoke exiting the vent.

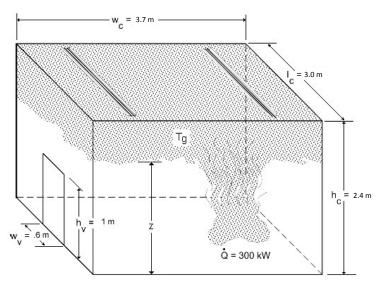
				Smoke Layer	1
Time	ρ _g	Constant (k)	Smoke Layer Height	Height	
(min)	(kg/m³)	(kW/m-K)	z (m)	z (ft)	
0	1.18	0.064	3.00	9.84	
1	0.76	0.100	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
2	0.72	0.105	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
3	0.71	0.108	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
4	0.69	0.110	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
5	0.68	0.112	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
10	0.65	0.117	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
15	0.63	0.121	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
20	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
25	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
30	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
35	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
40	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
45	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
50	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
55	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT
60	0.55	0.137	2.00	6.56	CAUTION: SMOKE IS EXITING OUT VENT

Time (min)

Time (min)

Smoke Layer Height Natural Ventilation (Method of Yamana and Tanaka)

Height from Floor (m)


The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns, and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by: Additional Information:	Date:	Organization:

Example Problem 2.16.1-2

Problem Statement

Consider a compartment that is 3.7 m wide x 3.0 m long x 2.4 m high ($w_c x l_c x h_c$) with a simple vent 0.6 m wide x 1 m tall ($w_v x h_v$). The construction is essentially 0.1524 m thick gypsum board. The fire is constant with an HRR of 300 kW. Assume that the top of the vent is 1 m. Compute the hot gas temperature in the compartment, as well as the smoke layer height at 2 minutes.

Example Problem 2-2: Compartment with Natural Ventilation

Solution

Purpose:

- (1) The hot gas layer temperature in the compartment (T_g) at t = 2 min after ignition
- (2) The smoke layer height (z) at t = 2 min after ignition

Assumptions:

- (1) Air properties (ambient) at 25 °C
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 02.1_Temperature_NV_Sup1_SI.xls

FDT^s Input Parameters:

- Compartment Width (w_c) = 3.7 m
- Compartment Length (I_c) = 3.0 m
- Compartment Height (h_c) = 2.4 m
- Vent Width $(w_v) = 0.6 \text{ m}$
- Vent Height $(h_v) = 1 \text{ m}$
- Top of Vent from Floor $(V_T) = 1 \text{ m}$
- Interior Lining Thickness (δ) = 15.24 cm
- Ambient Air Temperature $(T_a) = 25 \degree C$
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Gypsum Board on the FDT^s
- Fire Heat Release Rate (\dot{Q}) = 300 kW

Results*

Hot Gas Layer Temperature (T _g)	Smoke Layer Height (z)
(Method of MQH)	(Method of Yamana and Tanaka)
(°C)	(m)
310	1.0 (smoke exiting vent, z < V _T)

*see attached spreadsheet on next page at t = 2 min

Version 1805.1 (SI Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 2.16.1.-2

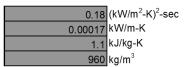
INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c)	3.70 m
Compartment Length (l _c)	3.00 m
Compartment Height (h _c)	2.40 m
Vent Width (w_v)	0.60 m
Vent Height (h_v)	1.00 m
Top of Vent from Floor (V_T)	1.00 m
Interior Lining Thickness (δ)	15.24 cm

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)


Specific Heat of Air (c_a) Ambient Air Density ($\rho_a)$

25.00	°C
	kJ/kg-K
1.18	kg/m ³

Note: Ambient Air Density (pa) will automatically correct with Ambient Air Temperature (Ta) Input

THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR

Interior Lining Thermal Inertia (kpc) Interior Lining Thermal Conductivity (k) Interior Lining Specific Heat (c_p) Interior Lining Density (ρ)

Version 1805.1 (SI Units)

THERMAL PROPERTIES FOR COMMON INTERIOR LINING MATERIALS					
	kρc	k	с	ρ	Select Material
Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m ³)	Gypsum Board 🚽
Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material
Steel (0.5% Carbon)	197	0.054	0.465	7850	Click the selection
Concrete	2.9	0.0016	0.75	2400	
Brick	1.7	0.0008	0.8	2600	
Glass, Plate	1.6	0.00076	0.8	2710	
Brick/Concrete Block	1.2	0.00073	0.84	1900	
Gypsum Board	0.18	0.00017	1.1	960	
Plywood	0.16	0.00012	2.5	540	
Fiber Insulation Board	0.16	0.00053	1.25	240	
Chipboard	0.15	0.00015	1.25	800	
Aerated Concrete	0.12	0.00026	0.96	500	
Plasterboard	0.12	0.00016	0.84	950	
Calcium Silicate Board	0.098	0.00013	1.12	700	
Alumina Silicate Block	0.036	0.00014	1	260	
Glass Fiber Insulation	0.0018	0.000037	0.8	60	
Expanded Polystyrene	0.001	0.000034	1.5	20	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value]
Reference: Klote, J., J. Milke, Principles of Smoke Management, 2002, Page 270.					

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

300.00 kW

Calculate

Version 1805.1 (SI Units)

METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-175.

$\Delta T_g = 6.85 \left[Q^2 / ((A_v(h_v)^{1/2}) (A_T h_k))\right]^{1/3}$

Where,

 $\Delta T_{q} = T_{q} - T_{a}$ = upper layer gas temperature rise above ambient (K)

- Q = heat release rate of the fire (kW)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)
- h_k = convective heat transfer coefficient (kW/m²-K)
- total area of the compartment enclosing surface $A_T = \frac{1}{2}$
 - boundaries excluding area of vent openings (m²)

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

A_v = area of ventilation opening (m²) $w_v = vent width (m)$ $h_v = vent height (m)$

 m^2 0.60 A, =

Thermal Penetration Time Calculation

$$\mathbf{t}_{p} = (\rho \mathbf{c}_{p}/\mathbf{k}) (\delta/2)^{2}$$

Where,

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

Version 1805.1 (SI Units)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where,

h_k = heat transfer coefficient (kW/m²-K) kρc = interior construction thermal inertia (kW/m²-K)²-sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

See table below for results (column 3)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- $h_c = compartment height (m)$

 A_v = area of ventilation opening (m²)

$$A_{T} = 53.76$$
 m²

Version 1805.1 (SI Units)

$\label{eq:compartment} \begin{array}{l} \hline \textbf{COMPARTMENT HOT GAS LAYER TEMPERATURE WITH NATURAL} \\ & \Delta T_g = 6.85 \; [Q^2/((A_v(h_v)^{1/2}) \; (A_Th_k))]^{1/3} \end{array}$

$$\Delta T_g = T_g - T_a$$

$$T_g = \Delta T_g + T_a$$

Results	Time Aft	er Ignition (t)	h _k	ΔT_{g}	Tg	Tg	Tg
	(min)	(sec)	(kW/m²-K)	(°K)	(°K)	(°C)	(°F)
	0	0.00	-	-	298.00	25.00	77.00
	1	60	0.05	253.93	551.93	278.93	534.07
	2	120	0.04	285.03	583.03	310.03	590.05
	3	180	0.03	304.95	602.95	329.95	625.92
	4	240	0.03	319.93	617.93	344.93	652.88
	5	300	0.02	332.05	630.05	357.05	674.70
	10	600	0.02	372.72	670.72	397.72	747.89
	15	900	0.01	398.78	696.78	423.78	794.80
	20	1200	0.01	418.36	716.36	443.36	830.05
	25	1500	0.01	434.21	732.21	459.21	858.59
	30	1800	0.01	447.61	745.61	472.61	882.70
	35	2100	0.01	459.26	757.26	484.26	903.67
	40	2400	0.01	469.60	767.60	494.60	922.27
	45	2700	0.01	478.91	776.91	503.91	939.03
	50	3000	0.01	487.39	785.39	512.39	954.30
	55	3300	0.01	495.19	793.19	520.19	968.35
	60	3600	0.01	502.43	800.43	527.43	981.37

Version 1805.1 (SI Units)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA

$$z = ((2kQ^{1/3}t/(3A_c)) + (1/h_c^{2/3}))^{-3/2}$$

Where,

- z = smoke layer height (m)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- h_c = compartment height (m)
- A_c = compartment floor area (m²)
- k = k = a constant given by k = $0.076/\rho_g$
- ρ_{g} = hot gas layer density (kg/m³)
 - ρ_{g} is given by ρ_{g} = 353/T_g
- T_g = hot gas layer temperature (K)

Compartment Area Calculation

$$Ac = (w_c) (I_c)$$

Where,

 $A_c =$

11.10

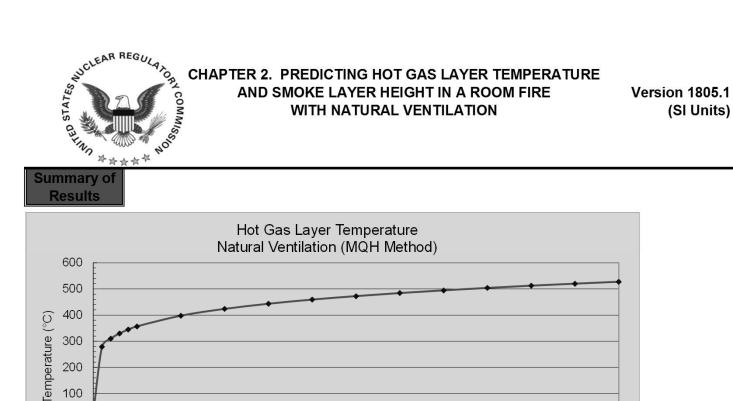
m²

Hot Gas Layer Density Calculation

 $\rho_{g} = 353/T_{g}$

Calculation for Constant K

$$k = 0.076/\rho_{g}$$


Version 1805.1 (SI Units)

SMOKE GAS LAYER HEIGHT WITH NATURAL VENTILATION

 $z = [(2kQ^{1/3}t/(3A_c)] + (1/h_c^{2/3})^{-3/2}]$

Results Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Calculated smoke layer height below the vent height are not creditable since the calculation is not accounting for the smoke exiting the vent.

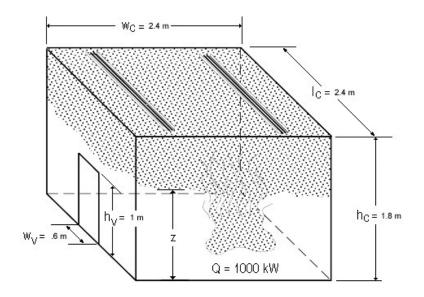
				Smoke Layer	7
Time	ρ _g	Constant (k)	Smoke Layer Height	Height	
(min)	(kg/m³)	(kW/m-K)	z (m)	z (ft)	
0	1.18	0.064	2.40	7.87	
1	0.64	0.119	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
2	0.61	0.126	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
3	0.59	0.130	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
4	0.57	0.133	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
5	0.56	0.136	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
10	0.53	0.144	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
15	0.51	0.150	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
20	0.49	0.154	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
25	0.48	0.158	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
30	0.47	0.161	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
35	0.47	0.163	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
40	0.46	0.165	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
45	0.45	0.167	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
50	0.45	0.169	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
55	0.45	0.171	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
60	0.44	0.172	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT

Time (min)

Time (min)

Smoke Layer Height Natural Ventilation (Method of Yamana and Tanaka)

Height from Floor (m)


The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns, and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by: Additional Information:	Date:	Organization:

Example Problem 2.16.1-3

Problem Statement

Consider a compartment that is 2.4 m wide x 2.4 m long x 1.8 m high ($w_c x l_c x h_c$) with a simple vent that is 0.6 m wide x 1 m tall ($w_v x h_v$). The construction is essentially 0.2286 m thick concrete. The fire is constant with an HRR of 1,000 kW. Assume that the top of the vent is 1 m. Compute the hot gas temperature in the compartment, as well as the smoke layer height at 3 minutes.

Example Problem 2-3: Compartment with Natural Ventilation

Solution

Purpose:

- (1) Determine the hot gas layer temperature in the compartment (T_g) at t = 3 min after ignition
- (2) Determine the smoke layer height (z) at t = 3 min after ignition

Assumptions:

- (1) Air properties (ambient) at 25 °C
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 02.1_Temperature_N V_Sup1_SI.xls

FDT^s Input Parameters:

- Compartment Width (w_c) = 2.4 m
- Compartment Length (I_c) = 2.4 m
- Compartment H eight (h_c) = 1.8 m
- Vent Width $(w_v) = 0.6 \text{ m}$
- Vent Height $(h_v) = 1 \text{ m}$
- Top of Vent from Floor $(V_T) = 1 \text{ m}$
- Interior Lining Thickness (δ) = 22.86 cm
- Ambient Air Temperature $(T_a) = 25 \degree C$
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Concrete on the FDTs
- Fire Heat Release Rate (\dot{Q}) = 1,000 kW

Results*:

Hot Gas Layer Temperature (T _g)	Smoke Layer Height (z)
(Method of MQH)	(Method of Yamana and Tanaka)
(°C)	(m)
556	1.0 (compartment filled with smoke)

*see spreadsheet on next page at t = 3 min

Version 1805.1 (SI Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 2.16.1.-3

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c) Compartment Length (I _c) Compartment Height (h _c)	2.40 m 2.40 m 1.80 m
Vent Width (w_v)	0.60 m
Vent Height (h _v)	1.00 ^m
Top of Vent from Floor (V_T)	1.00 m
Interior Lining Thickness (δ)	22.86 cm

AMBIENT CONDITIONS

Ambient Air Temperature (T_a)

Specific Heat of Air (c_a) Ambient Air Density ($\rho_a)$

25.00	°C
1.00	kJ/kg-K
1.18	kg/m ³

Note: Ambient Air Density (pa) will automatically correct with Ambient Air Temperature (Ta) Input

THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR

 $\label{eq:linear} \begin{array}{l} \mbox{Interior Lining Thermal Inertia} (k\rho c) \\ \mbox{Interior Lining Thermal Conductivity} (k) \\ \mbox{Interior Lining Specific Heat} (c_{\rho}) \\ \mbox{Interior Lining Density} (\rho) \end{array}$

2.9	(kW/m ² -K) ² -sec
0.0016	kW/m-K
0.75	kJ/kg-K
2400	kg/m ³

Version 1805.1 (SI Units)

Material	kρc	k	С	ρ	Select Material	
	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m³)	Concrete	
Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material	
Steel (0.5% Carbon)	197	0.054	0.465	7850	Click the selection	
Concrete	2.9	0.0016	0.75	2400		
Brick	1.7	0.0008	0.8	2600		
Glass, Plate	1.6	0.00076	0.8	2710		
Brick/Concrete Block	1.2	0.00073	0.84	1900		
Gypsum Board	0.18	0.00017	1.1	960		
Plywood	0.16	0.00012	2.5	540		
Fiber Insulation Board	0.16	0.00053	1.25	240		
Chipboard	0.15	0.00015	1.25	800		
Aerated Concrete	0.12	0.00026	0.96	500		
Plasterboard	0.12	0.00016	0.84	950		
Calcium Silicate Board	0.098	0.00013	1.12	700		
Alumina Silicate Block	0.036	0.00014	1	260		
Glass Fiber Insulation	0.0018	0.000037	0.8	60		
Expanded Polystyrene	0.001	0.000034	1.5	20		
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value		

FIRE SPECIFICATIONS

Fire Heat Release Rate (Q)

1000.00 kW

Calculate

Version 1805.1 (SI Units)

METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-175.

$\Delta T_g = 6.85 \left[Q^2 / ((A_v(h_v)^{1/2}) (A_T h_k))\right]^{1/3}$

Where,

 $\Delta T_{q} = T_{q} - T_{a}$ = upper layer gas temperature rise above ambient (K)

- Q = heat release rate of the fire (kW)
- A_v = area of ventilation opening (m²)
- h_v = height of ventilation opening (m)
- h_k = convective heat transfer coefficient (kW/m²-K)
- total area of the compartment enclosing surface $A_T = \frac{1}{2}$
 - boundaries excluding area of vent openings (m²)

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

A_v = area of ventilation opening (m²) $w_v = vent width (m)$ $h_v = vent height (m)$

 m^2 0.60 A, =

Thermal Penetration Time Calculation

$$\mathbf{t}_{p} = (\rho \mathbf{c}_{p}/\mathbf{k}) (\delta/2)^{2}$$

Where,

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

Version 1805.1 (SI Units)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$

Where,

h_k = heat transfer coefficient (kW/m²-K) kρc = interior construction thermal inertia (kW/m²-K)²-sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

See table below for results (column 3)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- w_c = compartment width (m)
- I_c = compartment length (m)
- $h_c = compartment height (m)$

 A_v = area of ventilation opening (m²)

$$A_{T} = 28.20$$
 m²

Version 1805.1 (SI Units)

$\label{eq:compartment} \begin{array}{l} \hline \textbf{COMPARTMENT HOT GAS LAYER TEMPERATURE WITH NATURAL} \\ & \Delta T_g = 6.85 \; [Q^2/((A_v(h_v)^{1/2}) \; (A_Th_k))]^{1/3} \end{array}$

$$\Delta T_g = T_g - T_a$$

$$T_g = \Delta T_g + T_a$$

Results	Time Aft	er Ignition (t)	h _k	ΔT_{g}	Tg	Tg	Tg
	(min)	(sec)	(kW/m²-K)	(°K)	(°K)	(°C)	(°F)
	0	0.00	-	-	298.00	25.00	77.00
	1	60	0.22	442.10	740.10	467.10	872.77
	2	120	0.16	496.24	794.24	521.24	970.22
	3	180	0.13	530.93	828.93	555.93	1032.67
	4	240	0.11	557.01	855.01	582.01	1079.61
	5	300	0.10	578.11	876.11	603.11	1117.60
	10	600	0.07	648.91	946.91	673.91	1245.03
	15	900	0.06	694.27	992.27	719.27	1326.69
	20	1200	0.05	728.37	1026.37	753.37	1388.07
	25	1500	0.04	755.97	1053.97	780.97	1437.75
	30	1800	0.04	779.30	1077.30	804.30	1479.73
	35	2100	0.04	799.58	1097.58	824.58	1516.24
	40	2400	0.03	817.57	1115.57	842.57	1548.63
	45	2700	0.03	833.78	1131.78	858.78	1577.80
	50	3000	0.03	848.55	1146.55	873.55	1604.39
	55	3300	0.03	862.14	1160.14	887.14	1628.85
	60	3600	0.03	874.73	1172.73	899.73	1651.52

Version 1805.1 (SI Units)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA

$$z = ((2kQ^{1/3}t/(3A_c)) + (1/h_c^{2/3}))^{-3/2}$$

Where,

- z = smoke layer height (m)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- h_c = compartment height (m)
- A_c = compartment floor area (m²)
- k = k = a constant given by k = $0.076/\rho_g$
- ρ_{g} = hot gas layer density (kg/m³)
 - ρ_{g} is given by ρ_{g} = 353/T_g
- T_g = hot gas layer temperature (K)

Compartment Area Calculation

$$Ac = (w_c) (I_c)$$

Where,

 $A_c =$

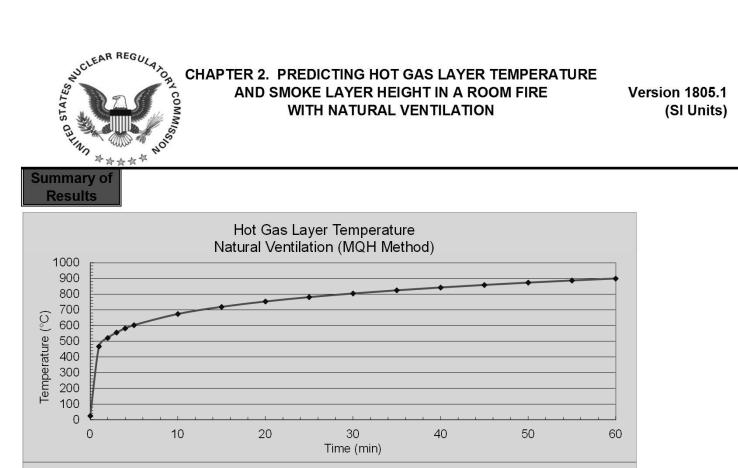
5.76 m²

Hot Gas Layer Density Calculation

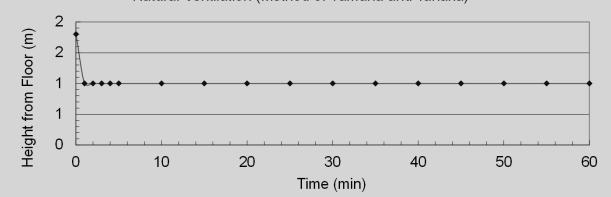
 $\rho_{g} = 353/T_{g}$

Calculation for Constant K

$$k = 0.076/\rho_g$$


Version 1805.1 (SI Units)

SMOKE GAS LAYER HEIGHT WITH NATURAL VENTILATION


 $z = [(2kQ^{1/3}t/(3A_c)] + (1/h_c^{2/3})^{-3/2}]$

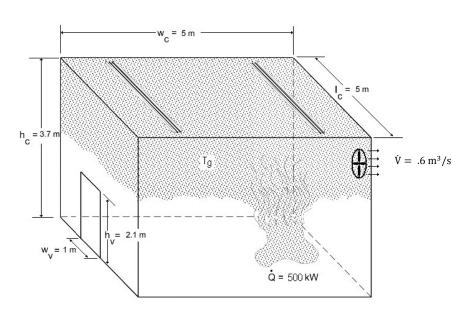
Results Caution! The smoke layer height is a conservative estimate and is only intended to provide an indication where the hot gas layer is located. Calculated smoke layer height below the vent height are not creditable since the calculation is not accounting for the smoke exiting the vent.

		-		Smoke Layer	1
Time	ρ _g	Constant (k)	Smoke Layer Height	Height	
(min)	(kg/m³)	(kW/m-K)	z (m)	z (ft)	
0	1.18	0.064	1.80	5.91	
1	0.48	0.159	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
2	0.44	0.171	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
3	0.43	0.178	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
4	0.41	0.184	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
5	0.40	0.189	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
10	0.37	0.204	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
15	0.36	0.214	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
20	0.34	0.221	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
25	0.33	0.227	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
30	0.33	0.232	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
35	0.32	0.236	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
40	0.32	0.240	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
45	0.31	0.244	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
50	0.31	0.247	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
55	0.30	0.250	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT
60	0.30	0.252	1.00	3.28	CAUTION: SMOKE IS EXITING OUT VENT

Smoke Layer Height Natural Ventilation (Method of Yamana and Tanaka)

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns, and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.


Prepared by:	Date:	Organization:
Checked by: Additional Information:	Date:	Organization:

2.16.2 Forced Ventilation

Example Problem 2.16.2-1

Problem Statement

Consider a compartment that is 5 m wide x 5 m long x 3.7 m high ($w_c x l_c x h_c$), with a vent opening that is 1 m wide x 2.1 m tall ($w_v x h_v$). The forced ventilation rate is 0.6 m³/sec (exhaust). Calculate the hot gas layer temperature for a fire size of 500 kW at 2 minutes after ignition. The compartment boundaries are made of (a) 30.48 cm thick concrete and (b) 1.778 cm thick gypsum board.

Example Problem 2-4: Compartment with Forced Ventilation

Solution

Purpose:

For two different interior lining materials determine the hot gas layer temperature in the compartment (T_q) at t = 2 min after ignition.

Assumptions:

- (1) Air properties (ambient) at 25 °C
- (2) Simple rectangular geom etry (no beam pockets)
- (3) One-dimnsional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls
- (6) The bottom of the vent is at the floor level
- (7) The compartment is open to the outside at the inlet (pressure = 1 atm)

Spreadsheet (FDT^s) Information:

- Use the following FDT^s:
 - (a) For Concrete: 02.2 Temperature FV Sup1 SI.xls
 - (b) For Gypsum Board: 02.2_Temperature_FV_Sup1_SI.xls

Note: The spreadsheet has two methods to calculate the hot gas layer temperature (T_g) . We are going to use both methods to compare the results.

FDT^s Input Parameters: (for both spreadsheets)

- Compartment Width $(w_c) = 5 m$
- Compartment Length $(I_c) = 5 m$
- Compartment Height (h_c) = 3.7 m
- Interior Lining Thickness (δ) = 30.48 cm (concrete) and 1.778 cm (gypsum board)
- Ambient Air Temperature (T_a) = 25 °C
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Concrete and Gypsum Board on the respective FDT^s
- Compartment Ventilation Rate (\dot{V}) = 0.6 m³/sec
- Fire Heat Release Rate (\dot{Q}) = 500 kW
- Time after lignition $(t) = 2 \min$

Results*:

Doundor (Motorial	Hot Layer Gas Temperature (Tg) (°C)				
Boundary Material	Method of Foote, Pagni & Alvares (FPA)	Method of Deal & Beyler			
Concrete	131	84			
Gypsum Board	200	215			

*see spreadsheets on next page at t = 2 min.

Version 1805.1 (SI Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

Parameters in YEL Parameters in GRI	lations estimate the hot gas LOW CELLS are Entered EEN CELLS are Automatic out values are calculated by	by the User. ally Selected from the	DROP DOWN MI	ENU for the Material		adsheet is protected						
and secure to avoid	l errors due to a wrong entry	/ in a cell(s). The chapte	er in the NUREG s	hould be read before	an analysis is made	ð.						
Project / Inspectic	Project / Inspection Title: Example 2.16.2-1a											
	RAMETERS											
COMPAR		MATION			_							
	Compartment Width (w _c) Compartment Length (I _c) Compartment Height (h _c)			5.0	0 m 0 m 0 m							
	Interior Lining Thickness (δ)		30.4	8 cm							
	CONDITIONS											
	Ambient Air Temperature ((T _a)		25.0	0°C							
	Specific Heat of Air (c_a) Ambient Air Density (ρ_a)			1.1	0 kJ/kg-K 8 kg/m [~]							
THERMAL	. PROPERTIES	OF COMPA	RTMENT			ES						
	Interior Lining Thermal Ine				9 (kW/m ² -K) ² -sec							
	Interior Lining Thermal Co Interior Lining Specific Hea				6 kW/m-K 5 kJ/kg-K							
	Interior Lining Density (p)	α (Ορ)			10 kg/m^3							
	Note: Air density will autor	matically correct with Arr	bient Air Tempera									
THERMAL	. PROPERTIES	FOR COMM	ON INTEI	RIOR LININ	G MATERI	ALS						
	Material	kρc	k	с	ρ	Select Material						
		(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m ³)	Concrete						
	Aluminum (pure)	500	0.206 0.054	0.895	2710	Scroll to desired material then Click on selection						
	Steel (0.5% Carbon) Concrete	197 2.9	0.0016	0.465 0.75	7850 2400	Click on selection						
	Brick	1.7	0.0008	0.8	2600							
	Glass, Plate	1.6	0.00076	0.8	2710							
	Brick/Concrete Block	1.2	0.00073	0.84	1900							
	Gypsum Board	0.18 0.16	0.00017 0.00012	1.1 2.5	960 540							
	Plywood Fiber Insulation Board	0.16	0.00053	1.25	240							
	Chipboard	0.15	0.00015	1.25	800							
	Aerated Concrete	0.12	0.00026	0.96	500							
	Plasterboard	0.12	0.00016	0.84	950							
	Calcium Silicate Board Alumina Silicate Block	0.098 0.036	0.00013 0.00014	1.12	700 260							
	Glass Fiber Insulation	0.0018	0.000037	0.8	60							
	Expanded Polystyrene	0.001	0.000034	1.5	20							
	User Specified Value Reference: Klote, J., J. Milke, Pr	Enter Value	Enter Value	Enter Value	Enter Value	J						
					-							
COMPARTMENT N	IASS VENTILATION FLOV Forced Ventilation Flow Ra			0.6	0 m³/sec							
FIRE SPECIFICAT	IONS											
	Fire Heat Release Rate (C	!)		500.0 Calculate	0 kW							

Version 1805.1 (SI Units)

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-177

$\Delta T_g/T_a = 0.63(Q/(mc_aT_a))^{0.72}(h_kA_T/(mc_a))^{-0.36}$

Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

- T_a = ambient air temperature (K)
- Q = heat release rate of the fire (kW)
- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries (m²)

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)} \quad for \ t < t_p \quad or \qquad (k/\delta) \quad for \ t > t_p$ Where $h_k = heat \ transfer \ coefficient \ (kW/m^2-K) \\ k\rhoc = interior \ construction \ thermal \ inertia \ (kW/m^2-K)^2-sec$

- (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)
 - See table below for results

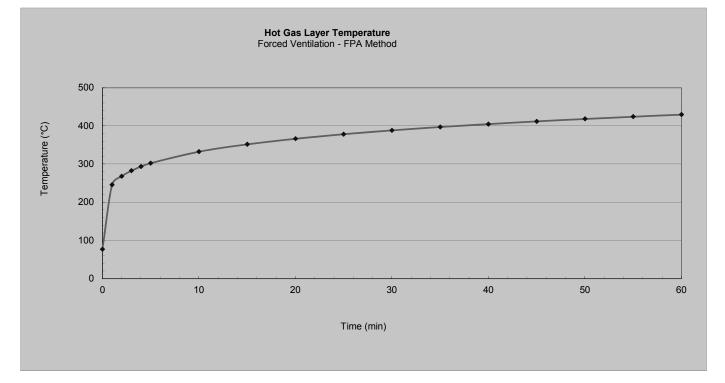
Area of Compartment Enclosing Surface Boundaries

$$A_T = 2 (w_c x I_c) + 2 (h_c x w_c) + 2 (h_c x I_c)$$

Where

 A_T = total area of the compartment enclosing surface boundaries (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)


 $A_{T} = 124.00 \text{ m}^2$

Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_g/T_a = 0.63(Q/(mc_pT_a))^{0.72}(h_kA_T/(mc_p))^{-0.36}$$

$$\Delta T_g = T_g - T_a$$

$$T_g = \Delta T_g + T_a$$

Time After Ig	nition (t)	h _k	∆T _g /T _a	ΔT _g	Tg	Tg	Tg
(min)	(sec)	(kW/m ² -K)	_	(K)	(K)	(°C)	(°F)
0	0	-	-	-	298.00	25.00	77.00
1	60	0.22	0.31	93.75	391.75	118.75	245.75
2	120	0.16	0.36	106.21	404.21	131.21	268.17
3	180	0.13	0.38	114.25	412.25	139.25	282.65
4	240	0.11	0.40	120.32	418.32	145.32	293.58
5	300	0.10	0.42	125.25	423.25	150.25	302.45
10	600	0.07	0.48	141.90	439.90	166.90	332.41
15	900	0.06	0.51	152.64	450.64	177.64	351.75
20	1200	0.05	0.54	160.75	458.75	185.75	366.35
25	1500	0.04	0.56	167.34	465.34	192.34	378.21
30	1800	0.04	0.58	172.92	470.92	197.92	388.26
35	2100	0.04	0.60	177.79	475.79	202.79	397.02
40	2400	0.03	0.61	182.11	480.11	207.11	404.80
45	2700	0.03	0.62	186.01	484.01	211.01	411.83
50	3000	0.03	0.64	189.58	487.58	214.58	418.24
55	3300	0.03	0.65	192.86	490.86	217.86	424.14
60	3600	0.03	0.66	195.90	493.90	220.90	429.62

Version 1805.1 (SI Units)

METHOD OF DEAL AND BEYLER

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-178.

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining heat capacity (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)
- t_p = 26129 sec

Heat Transfer Coefficient Calculation

$$h_{k} = 0.4 \sqrt{(k\rho c \text{ for } t < t_{p})}$$
 or $0.4(k/\delta \text{ or } t > t_{p})$

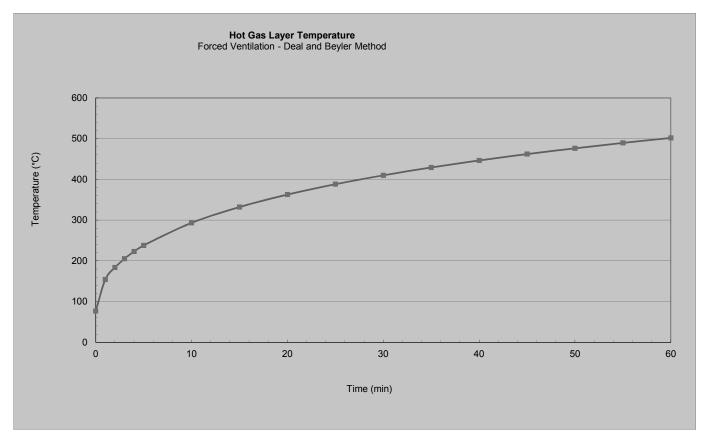
Where

- h_k = heat transfer coefficient (kW/m²-K)
- $k\rho c$ = interior construction thermal inertia $(kW/m^2-K)^2$ -sec
 - (a thermal property of material responsible for the rate of temperature rise)
- δ = thickness of interior lining (m) See table below for results

Area of Compartment Enclosing Surface Boundaries

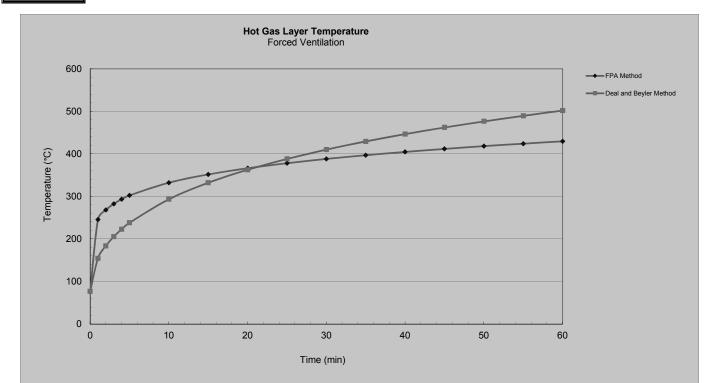
$$A_{T} = 2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})$$
$$A_{T} = 124.00 \text{ m}^{2}$$

Compartment Hot Gas Layer Temperature With Forced Ventilation


$$\Delta T_g = \mathbf{Q} / (\mathbf{mc}_a + \mathbf{h}_k \mathbf{A}_T)$$

Where

- ΔT_g = T_g T_a = upper layer gas temperature rise above ambient (K)
- T_a = ambient air temperature (K)
- Q = heat release rate of the fire (kW)
- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- $A_{\rm T}$ = total area of the compartment enclosing surface boundaries (m²)


Time Afte	r Ignition (t)	h _k	ΔTg	Tg	Tg	Tg
(min)	(sec)	(kW/m ² -K)	(K)	(K)	(°C)	(°F)
0	0	-	-	298.00	25.00	77.00
1	60	0.09	43.05	341.05	68.05	154.48
2	120	0.06	59.37	357.37	84.37	183.87
3	180	0.05	71.36	369.36	96.36	205.45
4	240	0.04	81.13	379.13	106.13	223.03
5	300	0.04	89.49	387.49	114.49	238.08
10	600	0.03	120.22	418.22	145.22	293.40
15	900	0.02	141.79	439.79	166.79	332.23
20	1200	0.02	158.78	456.78	183.78	362.80
25	1500	0.02	172.91	470.91	197.91	388.24
30	1800	0.02	185.07	483.07	210.07	410.13
35	2100	0.01	195.78	493.78	220.78	429.40
40	2400	0.01	205.35	503.35	230.35	446.63
45	2700	0.01	214.02	512.02	239.02	462.23
50	3000	0.01	221.94	519.94	246.94	476.49
55	3300	0.01	229.24	527.24	254.24	489.64
60	3600	0.01	236.02	534.02	261.02	501.83

Version 1805.1 (SI Units)

Summary of Results

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Version 1805.1 (SI Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

Parameters in YEL Parameters in GRI	lations estimate the hot ga LOW CELLS are Entered EEN CELLS are Automat but values are calculated b	d by the User. ically Selected from the	DROP DOWN M	ENU for the Materi		adabaat ja protostad
	l errors due to a wrong ent					
Project / Inspectio	on Title:		Exa	ample 2.16.2-1b)	
_	RAMETERS					
COMPAR	IMENT INFOR	MATION				
	Compartment Width (w _c)				5.00 m	
	Compartment Length (I _c)				5.00 m	
	Compartment Height (h _c)				3.70 m	
	Interior Lining Thickness	(δ)			1.78 cm	
AMBIENT	CONDITIONS					
	Ambient Air Temperature	(T _a)		25	5.00 °C	
	Specific Heat of Air (c _a)			· · · · · ·	1.00 kJ/kg-K	
	Ambient Air Density (ρ_a)				1.18 kg/m [~]	
THERMAL	. PROPERTIES	S OF COMPA	RTMENT	ENCLOSII	NG SURFA	CES
	Interior Lining Thermal In	ertia (kρc)		(0.18 (kW/m ² -K) ² -sec	
	Interior Lining Thermal C				017 kW/m-K	
	Interior Lining Specific He				1.10 kJ/kg-K 960 kg/m ³	
	Interior Lining Density (ρ) Note: Air density will auto	omatically correct with Arr	bient Air Tempera		<u>960 </u> kg/m	
THERMAL	PROPERTIE	S FOR COMM	ON INTE	RIOR I INII		
		kpc	k	c	ρ	Select Material
	Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m ³)	Gypsum Board
	Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material then
	Steel (0.5% Carbon)	197	0.054	0.465	7850	Click on selection
	Concrete Brick	2.9 1.7	0.0016 0.0008	0.75 0.8	2400 2600	
	Glass, Plate	1.6	0.00076	0.8	2710	
	Brick/Concrete Block	1.2	0.00073	0.84	1900	
	Gypsum Board Plywood	0.18 0.16	0.00017 0.00012	1.1 2.5	960 540	
	Fiber Insulation Board	0.16	0.00053	1.25	240	
	Chipboard	0.15	0.00015	1.25	800	
	Aerated Concrete Plasterboard	0.12 0.12	0.00026 0.00016	0.96 0.84	500 950	
	Calcium Silicate Board	0.098	0.00013	1.12	700	
	Alumina Silicate Block Glass Fiber Insulation	0.036	0.00014	1 0.8	260 60	
	Expanded Polystyrene	0.0018 0.001	0.000037 0.000034	1.5	20	
	User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	
	Reference: Klote, J., J. Milke, I	Principles of Smoke Manageme	nt, 2002 Page 270 .			
COMPARTMENT	MASS VENTILATION FLO	WRATE				
	Forced Ventilation Flow F	Rate (m)		(0.60 m ³ /sec	
FIRE SPECIFICAT	IONS					
	Fire Heat Release Rate (Q)		r	0.00 kW	
				Calculate		

Version 1805.1 (SI Units)

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-177

$\Delta T_g/T_a = 0.63(Q/(mc_aT_a))^{0.72}(h_kA_T/(mc_a))^{-0.36}$

Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

- T_a = ambient air temperature (K)
- Q = heat release rate of the fire (kW)
- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries (m²)

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$ Where

 h_k = heat transfer coefficient (kW/m²-K)

- $k\rho c$ = interior construction thermal inertia (kW/m²-K)²-sec
- (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)
 - See table below for results

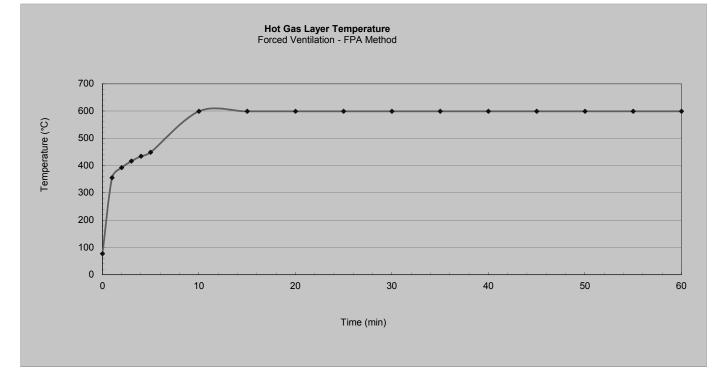
Area of Compartment Enclosing Surface Boundaries

$$A_T = 2 (w_c x I_c) + 2 (h_c x w_c) + 2 (h_c x I_c)$$

Where

 A_T = total area of the compartment enclosing surface boundaries (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)


 $A_{T} = 124.00 \text{ m}^{2}$

Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_{g}/T_{a} = 0.63(Q/(mc_{p}T_{a}))^{0.72}(h_{k}A_{T}/(mc_{p}))^{-0.36}$$

$$\Delta T_{g} = T_{g} - T_{a}$$

$$T_{g} = \Delta T_{g} + T_{a}$$

Time After Ig	nition (t)	h _k	ΔT _g /T _a	∆T _g	Τ _g	Τ _g	Τ _g
(min)	(sec)	(kW/m²-K)		(K)	(K)	(°C)	(°F)
0	0	-	-	-	298.00	25.00	77.00
1	60	0.05	0.52	154.61	452.61	179.61	355.31
2	120	0.04	0.59	175.16	473.16	200.16	392.29
3	180	0.03	0.63	188.42	486.42	213.42	416.16
4	240	0.03	0.67	198.44	496.44	223.44	434.19
5	300	0.02	0.69	206.57	504.57	231.57	448.82
10	600	0.01	0.97	289.83	587.83	314.83	598.70
15	900	0.01	0.97	289.83	587.83	314.83	598.70
20	1200	0.01	0.97	289.83	587.83	314.83	598.70
25	1500	0.01	0.97	289.83	587.83	314.83	598.70
30	1800	0.01	0.97	289.83	587.83	314.83	598.70
35	2100	0.01	0.97	289.83	587.83	314.83	598.70
40	2400	0.01	0.97	289.83	587.83	314.83	598.70
45	2700	0.01	0.97	289.83	587.83	314.83	598.70
50	3000	0.01	0.97	289.83	587.83	314.83	598.70
55	3300	0.01	0.97	289.83	587.83	314.83	598.70
60	3600	0.01	0.97	289.83	587.83	314.83	598.70

Version 1805.1 (SI Units)

METHOD OF DEAL AND BEYLER

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-178.

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining heat capacity (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

$t_{\rm p}$ = 490.929 sec

Heat Transfer Coefficient Calculation

$$h_{k} = 0.4 \sqrt{(k\rho c \text{ for } t < t_{p})}$$
 or $0.4(k/\delta or t > t_{p})$

Where

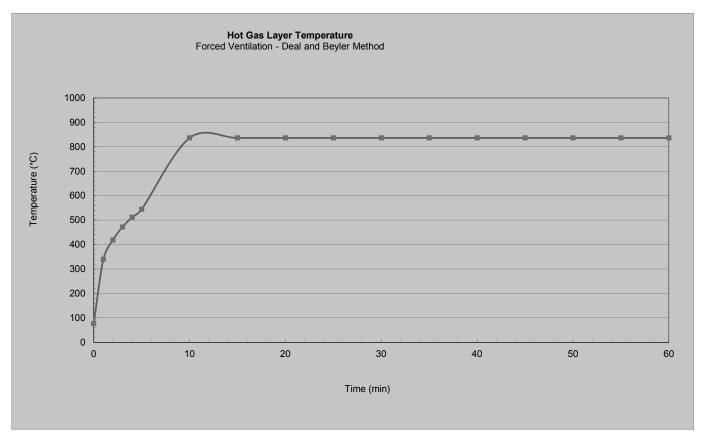
- h_k = heat transfer coefficient (kW/m²-K)
- $k\rho c$ = interior construction thermal inertia $(kW/m^2-K)^2$ -sec
 - (a thermal property of material responsible for the rate of temperature rise)

 δ = thickness of interior lining (m) See table below for results

Area of Compartment Enclosing Surface Boundaries

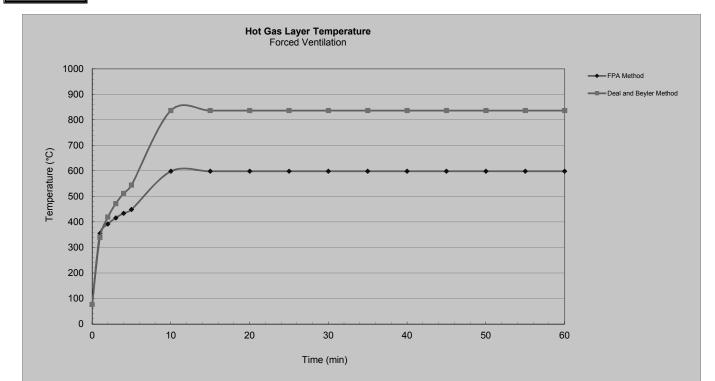
$$A_{T} = 2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})$$
$$A_{T} = 124.00 \text{ m}^{2}$$

Compartment Hot Gas Layer Temperature With Forced Ventilation


$$\Delta T_{g} = \mathbf{Q} / (\mathbf{mc}_{a} + \mathbf{h}_{k} \mathbf{A}_{T})$$

Where

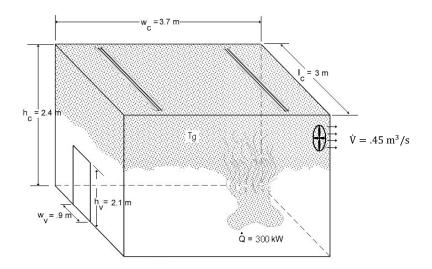
- $\Delta T_g = T_g T_a$ = upper layer gas temperature rise above ambient (K)
- T_a = ambient air temperature (K)
- Q = heat release rate of the fire (kW)
- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- $A_{\rm T}$ = total area of the compartment enclosing surface boundaries (m²)


Time Afte	r Ignition (t)	h _k	ΔTg	Tg	Tg	Tg
(min)	(sec)	(kW/m ² -K)	(K)	(K)	(°C)	(°F)
0	0	-	-	298.00	25.00	77.00
1	60	0.02	145.88	443.88	170.88	339.59
2	120	0.02	189.99	487.99	214.99	418.98
3	180	0.01	219.37	517.37	244.37	471.87
4	240	0.01	241.65	539.65	266.65	511.97
5	300	0.01	259.65	557.65	284.65	544.37
10	600	0.00	421.95	719.95	446.95	836.51
15	900	0.00	421.95	719.95	446.95	836.51
20	1200	0.00	421.95	719.95	446.95	836.51
25	1500	0.00	421.95	719.95	446.95	836.51
30	1800	0.00	421.95	719.95	446.95	836.51
35	2100	0.00	421.95	719.95	446.95	836.51
40	2400	0.00	421.95	719.95	446.95	836.51
45	2700	0.00	421.95	719.95	446.95	836.51
50	3000	0.00	421.95	719.95	446.95	836.51
55	3300	0.00	421.95	719.95	446.95	836.51
60	3600	0.00	421.95	719.95	446.95	836.51

Version 1805.1 (SI Units)

Summary of Results

NOTE:


The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 2.16.2-2

Problem Statement

Consider a compartment that is 3.7 m wide x 3.0 m long x 2.44 m high ($w_c x l_c x h_c$) with a vent opening that is 0.9 m wide x 2.1 m tall ($w_v x h_v$). The compartmentboundaries are made of 0.1524 m thick gypsum board. The forced ventilation rate is 0.45 m³/sec (exhaust). Calculate the hot gas layer temperature in the compartment for a fire size of 300 kW at 2 minutes.

Example Problem 2-5: Compartment with Forced Ventilation

Solution

Purpose:

(1) Determine the hot gas layer temperature in the compartment (T_a) at t = 2 min after ignition.

Assumptions:

- (1) Air properties (ambient) at 25 °C
- (2) Simple rectangular geometry no beam pockets
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
- (5) The fire is located at the center of the compartment or away from the walls
- (6) The bottom of the vent is at the floor level
- (7) The compartment is open to the outside at the inlet (pressure = 1 atm)

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 02.2_Temperature_FV_Sup1_SI.xls

Note: The spreadsheet has two different methods for calculating the hot gas layer temperature. Both methods are presented for comparison.

FDT^s Input Parameters:

- Compartment Width (w_c) = 3.7 m
- Compartment Length $(I_c) = 3.0 \text{ m}$
- Compartment Height $(h_c) = 2.4 \text{ m}$
- Interior Lining Thickness (δ) = 15.24 cm
- Ambient Air Temperature $(T_a) = 25 °C$
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select **Gypsum Board** on the FDT^s
- Compartment Ventilation Rate (\dot{V}) = 0.45 m³/sec
- Fire Heat Release Rate (\dot{Q}) = 300 kW

Results*

Roundany Matorial	Hot Layer Gas Tem (°C)	perature (T _g)		
Boundary Material	Method of Foote, Pagni & Alvares (FPA)	Method of Deal & Beyler		
Gypsum Board	206	243		

*see spreadsheet on next page at t = 2 min

Version 1805.1 (SI Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

	lations estimate the hot gas I		noke layer height	t in enclosure fire.							
	EEN CELLS are Automatica	-		ENU for the Material S	Selected.						
	out values are calculated by t										
and secure to avoid	l errors due to a wrong entry	in a cell(s). The chapter	in the NUREG s	should be read before a	an analysis is made						
			_								
Project / Inspectio	roject / Inspection Title: Example 2.16.2-2										
INPUT PA	RAMETERS										
COMPAR	MENT INFORM	MATION									
	Compartment Width (w _c)			3.70) m						
	Compartment Length (I_c)			3.00) m						
	Compartment Height (h _c)			2.40) m						
	.	、 、									
	Interior Lining Thickness (δ)		15.24	1 cm						
	CONDITIONS										
	Ambient Air Temperature (1	Γ_)		25.00	ວະໄດ						
		u,									
	Specific Heat of Air (c _a)) kJ/kg-K						
	Ambient Air Density (ρ _a)				3 kg/m [×]						
THERMAL	PROPERTIES	OF COMPAR	RTMENT		_	ES					
	Interior Lining Thermal Iner				3 (kW/m ² -K) ² -sec						
	Interior Lining Thermal Con Interior Lining Specific Heat	,			KW/m-K						
	Interior Lining Density (ρ)	(C _p)) kJ/kg-K) kg/m ³						
	Note: Air density will auton	natically correct with Amb	pient Air Tempera		Ng/III						
THERMAL	PROPERTIES	FOR COMM			G MATERI	ΔΙ S					
		kρc	k			Select Material					
	Material	(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	, (kg/m ³)	Gypsum Board 🚽					
	Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material then					
	Steel (0.5% Carbon)	197	0.054	0.465	7850	Click on selection					
	Concrete Brick	2.9 1.7	0.0016 0.0008	0.75 0.8	2400 2600						
	Glass, Plate	1.6	0.00076	0.8	2710						
	Brick/Concrete Block	1.2	0.00073	0.84	1900						
	Gypsum Board Plywood	0.18 0.16	0.00017 0.00012	1.1 2.5	960 540						
	Fiber Insulation Board	0.16	0.00053	1.25	240						
	Chipboard	0.15	0.00015	1.25	800						
	Aerated Concrete Plasterboard	0.12 0.12	0.00026 0.00016	0.96 0.84	500 950						
	Calcium Silicate Board	0.098	0.00013	1.12	700						
	Alumina Silicate Block	0.036	0.00014	1	260						
	Glass Fiber Insulation Expanded Polystyrene	0.0018 0.001	0.000037 0.000034	0.8 1.5	60 20						
	User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value						
	Reference: Klote, J., J. Milke, Prin	nciples of Smoke Management	t, 2002 Page 270 .								
	MASS VENTILATION FLOW	RATE									
	Forced Ventilation Flow Ra			0.45	5 m ³ /sec						
	10110										
FIRE SPECIFICAT	IONS Fire Heat Release Rate (Q))		300.00	Dkw						
				Calculate							

Version 1805.1 (SI Units)

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-177

$\Delta T_g/T_a = 0.63(Q/(mc_aT_a))^{0.72}(h_kA_T/(mc_a))^{-0.36}$

Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

- T_a = ambient air temperature (K)
- Q = heat release rate of the fire (kW)
- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries (m²)

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

$$t_p = 36068.24 \text{ sec}$$

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$ Where $h_k = heat transfer coefficient (kW/m²-K)$

 k_{pc} = interior construction thermal inertia (kW/m²-K)²-sec

(a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

See table below for results

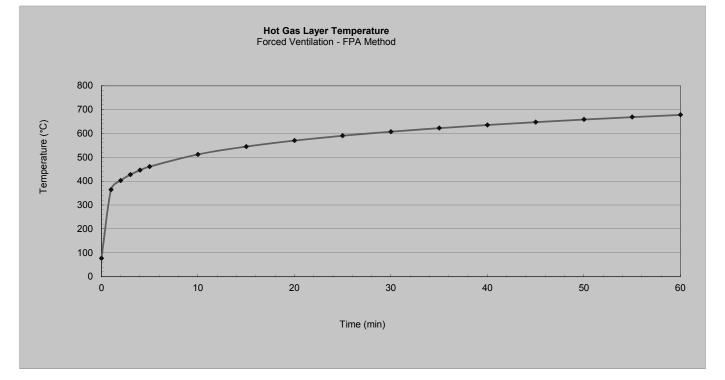
Area of Compartment Enclosing Surface Boundaries

$$A_T = 2 (w_c x I_c) + 2 (h_c x w_c) + 2 (h_c x I_c)$$

Where

 A_T = total area of the compartment enclosing surface boundaries (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)


 $A_{T} = 54.36 \text{ m}^{2}$

Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_{g}/T_{a} = 0.63(Q/(mc_{p}T_{a}))^{0.72}(h_{k}A_{T}/(mc_{p}))^{-0.36}$$

$$\Delta T_{g} = T_{g} - T_{a}$$

$$T_{g} = \Delta T_{g} + T_{a}$$

Time After Ig	nition (t)	h _k	∆T _g /T _a	ΔT _g	Tg	Tg	Tg
(min)	(sec)	(kW/m ² -K)	_	(K)	(K)	(°C)	(°F)
0	0	-	-	-	298.00	25.00	77.00
1	60	0.05	0.54	159.75	457.75	184.75	364.54
2	120	0.04	0.61	180.97	478.97	205.97	402.75
3	180	0.03	0.65	194.68	492.68	219.68	427.42
4	240	0.03	0.69	205.02	503.02	230.02	446.04
5	300	0.02	0.72	213.42	511.42	238.42	461.16
10	600	0.02	0.81	241.78	539.78	266.78	512.21
15	900	0.01	0.87	260.09	558.09	285.09	545.16
20	1200	0.01	0.92	273.91	571.91	298.91	570.04
25	1500	0.01	0.96	285.14	583.14	310.14	590.25
30	1800	0.01	0.99	294.65	592.65	319.65	607.37
35	2100	0.01	1.02	302.94	600.94	327.94	622.30
40	2400	0.01	1.04	310.31	608.31	335.31	635.56
45	2700	0.01	1.06	316.96	614.96	341.96	647.53
50	3000	0.01	1.08	323.03	621.03	348.03	658.45
55	3300	0.01	1.10	328.62	626.62	353.62	668.52
60	3600	0.01	1.12	333.81	631.81	358.81	677.85

Version 1805.1 (SI Units)

METHOD OF DEAL AND BEYLER

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-178.

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining heat capacity (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)
- t_p = 36068.2 sec

Heat Transfer Coefficient Calculation

$$h_{k} = 0.4 \sqrt{(k\rho c \text{ for } t < t_{p})}$$
 or $0.4(k/\delta \text{ or } t > t_{p})$

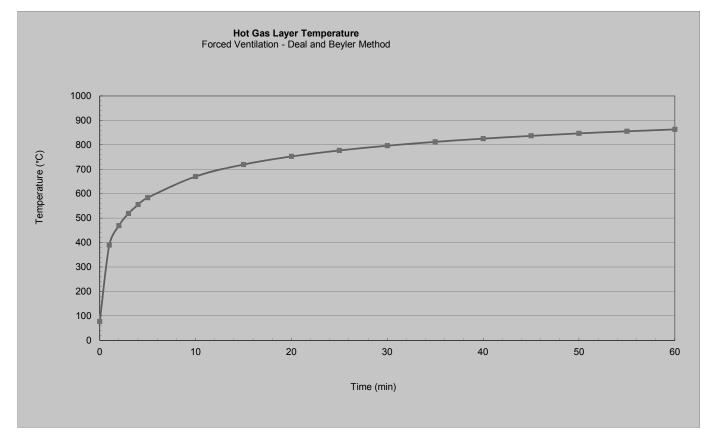
Where

- h_k = heat transfer coefficient (kW/m²-K)
- $k\rho c$ = interior construction thermal inertia $(kW/m^2-K)^2$ -sec
 - (a thermal property of material responsible for the rate of temperature rise)
- δ = thickness of interior lining (m) See table below for results

Area of Compartment Enclosing Surface Boundaries

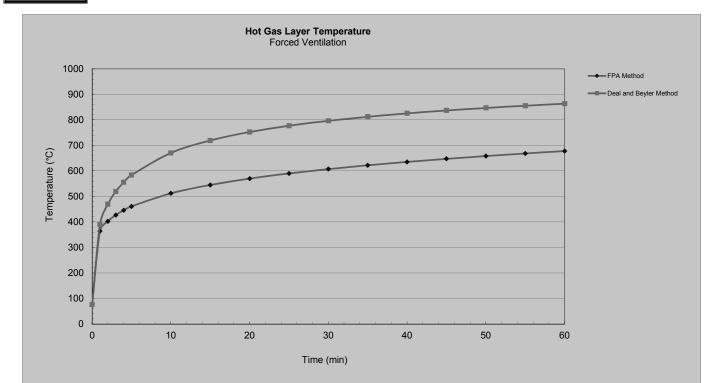
$$A_{T} = 2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})$$
$$A_{T} = 54.36 \text{ m}^{2}$$

Compartment Hot Gas Layer Temperature With Forced Ventilation


$$\Delta T_{g} = \mathbf{Q} / (\mathbf{mc}_{a} + \mathbf{h}_{k} \mathbf{A}_{T})$$

Where

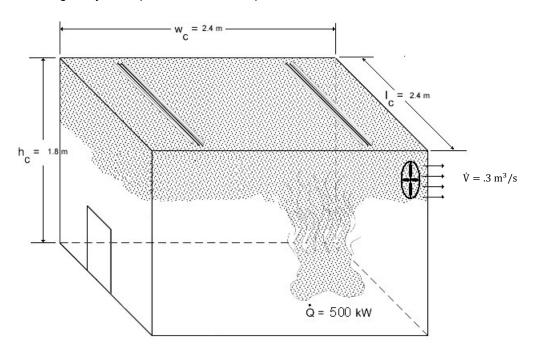
- ΔT_g = T_g T_a = upper layer gas temperature rise above ambient (K)
- T_a = ambient air temperature (K)
- Q = heat release rate of the fire (kW)
- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- $A_{\rm T}$ = total area of the compartment enclosing surface boundaries (m²)


Time Afte	r Ignition (t)	h _k	ΔTg	Tg	Tg	Τ _g
(min)	(sec)	(kW/m ² -K)	(K)	(K)	(°C)	(°F)
0	0	-	-	298.00	25.00	77.00
1	60	0.02	174.01	472.01	199.01	390.22
2	120	0.02	218.15	516.15	243.15	469.67
3	180	0.01	245.77	543.77	270.77	519.38
4	240	0.01	265.83	563.83	290.83	555.50
5	300	0.01	281.51	579.51	306.51	583.72
10	600	0.01	329.79	627.79	354.79	670.62
15	900	0.01	356.90	654.90	381.90	719.43
20	1200	0.00	375.30	673.30	400.30	752.54
25	1500	0.00	388.98	686.98	413.98	777.16
30	1800	0.00	399.74	697.74	424.74	796.53
35	2100	0.00	408.52	706.52	433.52	812.33
40	2400	0.00	415.88	713.88	440.88	825.58
45	2700	0.00	422.18	720.18	447.18	836.93
50	3000	0.00	427.67	725.67	452.67	846.80
55	3300	0.00	432.50	730.50	457.50	855.50
60	3600	0.00	436.80	734.80	461.80	863.25

Version 1805.1 (SI Units)

Summary of Results

NOTE:


The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Problem 2.16.2-3

Problem Statement

Consider a compartment that is 2.4 m wide x 2.4 m long x 1.8 m high (w_c x l_c x h_c). The compartment boundaries are made of 0.2286 m thick brick. The forced ventilation rate is 0.3 m3/sec (exhaust). Calculate the hot gas layer temperature in the compartment for a fire size of 500 kW at 2 minutes.

Example Problem 2-6: Compartment with Forced Ventilation

Solution

Purpose:

(1) Determine the hot gas layer temperature in the compartment (T_{a}) at t = 2 min after ignition.

Assumptions:

- (1) Air properties (ambient) at 25 °C
- (2) Simple rectangular geometry (no beam pockets)
- (3) One-dimensional heat flow through the compartment boundaries
- (4) Constant Heat Release Rate (HRR)
 (5) The fire is located at the center of the compartment or away from the walls
- (6) The bottom of the vent is at the floor level
- (7) The compartment is open to the outside at the inlet (pressure = 1 atm

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 02.2_Temperature_FV_Sup1_SI.xls

Note: The spreadsheet has two different methods for calculating the hot gas layer temperature. We are going to use both methods to compare values.

FDT^s Input Parameters:

- Compartment Width (w_c) = 2.4 m
- Compartment Length $(I_c) = 2.4 \text{ m}$
- Compartment Height (h_c) = 1.8 m
- Interior Lining Thickness (δ) = 22.86 cm
- Ambient Air Temperature $(T_a) = 25 \degree C$
- Specific Heat of Air $(c_p) = 1 \text{ kJ/kg-K}$
- Material: Select Brick on the FDTs
- Compartment Ventilation Rate (\dot{V}) = 0.3 m³/sec
- Fire Heat Release Rate (\dot{Q}) = 500 kW

Results*

Doundon (Motorial	Hot Layer Gas Temperature (T _g) (°C)		
Boundary Material	Method of Foote, Pagni & Alvares (FPA)	Method of Deal & Beyler	
Brick	279	315	

*see spreadsheet on next page at t = 2 min.

Version 1805.1 (SI Units)

COMPARTMENT WITH THERMALLY THICK/THIN BOUNDARIES

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire. Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.								
All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.								
Project / Inspection Title: Example 2.16.2-3								
_	RAMETERS							
COMPAR	IMENT INFORI	MATION						
	Compartment Width (w _c)			2.40				
	Compartment Length (I _c) Compartment Height (h _c)			2.40				
	Interior Lining Thickness (&	5)		22.86	6 cm			
AMBIENT	CONDITIONS				_			
	Ambient Air Temperature (T _a)		25.00	D°C			
	Specific Heat of Air (c_a) Ambient Air Density (ρ_a)				0 kJ/kg-K 8 kg/mĭ			
THERMAL	PROPERTIES	OF COMPAR	RTMENT	ENCLOSIN	G SURFAC	CES		
	Interior Lining Thermal Ine	rtia (kρc)		1.7	7 (kW/m ² -K) ² -sec			
	Interior Lining Thermal Con				B kW/m-K			
	Interior Lining Specific Hea Interior Lining Density (ρ)	at (C _p)			0 kJ/kg-K 0 kg/m ³			
	Note: Air density will autor	matically correct with Am	bient Air Tempera		Ng/III			
THERMAL	PROPERTIES	FOR COMM	ON INTEI	RIOR LINING	G MATERI	ALS		
	Material	kρc	k	с	ρ	Select Material		
		(kW/m ² -K) ² -sec	(kW/m-K)	(kJ/kg-K)	(kg/m ³)	Brick		
	Aluminum (pure)	500	0.206	0.895	2710	Scroll to desired material then		
	Steel (0.5% Carbon) Concrete	197 2.9	0.054 0.0016	0.465 0.75	7850 2400	Click on selection		
	Brick	1.7	0.0008	0.8	2600			
	Glass, Plate	1.6	0.00076	0.8	2710			
	Brick/Concrete Block	1.2	0.00073	0.84	1900			
	Gypsum Board Plywood	0.18 0.16	0.00017 0.00012	1.1 2.5	960 540			
	Fiber Insulation Board	0.16	0.00053	1.25	240			
	Chipboard	0.15	0.00015	1.25	800			
	Aerated Concrete	0.12	0.00026	0.96	500			
	Plasterboard Calcium Silicate Board	0.12 0.098	0.00016 0.00013	0.84 1.12	950 700			
	Alumina Silicate Block	0.036	0.00014	1	260			
	Glass Fiber Insulation	0.0018	0.000037	0.8	60			
	Expanded Polystyrene	0.001	0.000034 Enter Value	1.5	20 Enter Value			
	User Specified Value Reference: Klote, J., J. Milke, Pr	Enter Value inciples of Smoke Managemen		Enter Value	Enter Value	J		
COMPARTMENT	IASS VENTILATION FLOW Forced Ventilation Flow Ra			0.30) m³/sec			
FIRE SPECIFICAT	IONS Fire Heat Release Rate (Q))		500.00) kW			
				Calculate				

Version 1805.1 (SI Units)

METHOD OF FOOTE, PAGNI, AND ALVARES (FPA)

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-177

$\Delta T_g/T_a = 0.63(Q/(mc_aT_a))^{0.72}(h_kA_T/(mc_a))^{-0.36}$

Where

 ΔT_g = T_g - T_a = upper layer gas temperature rise above ambient (K)

- T_a = ambient air temperature (K)
- Q = heat release rate of the fire (kW)
- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries (m²)

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining specific heat (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)

Heat Transfer Coefficient Calculation

 $h_k = \sqrt{(k\rho c/t)}$ for $t < t_p$ or (k/δ) for $t > t_p$ Where h_k = heat transfer coefficient (kW/m²-K)

 $k\rho c$ = interior construction thermal inertia $(kW/m^2-K)^2$ -sec

(a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

See table below for results

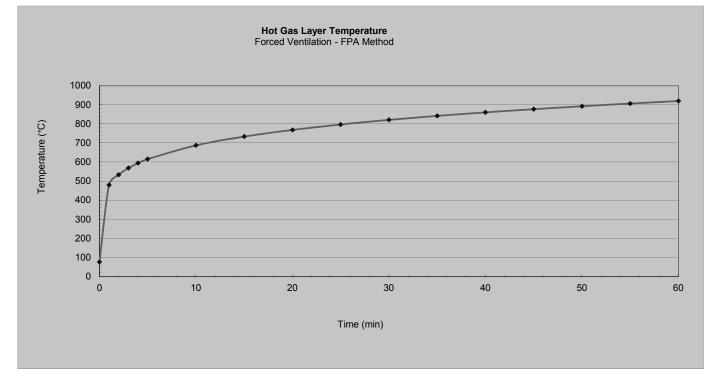
Area of Compartment Enclosing Surface Boundaries

$$A_T = 2 (w_c x I_c) + 2 (h_c x w_c) + 2 (h_c x I_c)$$

Where

 A_T = total area of the compartment enclosing surface boundaries (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)


 $A_{T} = 28.80 \text{ m}^{2}$

Compartment Hot Gas Layer Temperature With Forced Ventilation

$$\Delta T_{g}/T_{a} = 0.63(Q/(mc_{p}T_{a}))^{0.72}(h_{k}A_{T}/(mc_{p}))^{-0.36}$$

$$\Delta T_{g} = T_{g} - T_{a}$$

$$T_{g} = \Delta T_{g} + T_{a}$$

Time After Ignition (t)		h _k	∆T _g /T _a	∆T _g	Τ _g	Tg	Тg
(min)	(sec)	(kW/m ² -K)	_	(K)	(K)	(°C)	(°F)
0	0	-	-	-	298.00	25.00	77.00
1	60	0.17	0.75	224.05	522.05	249.05	480.29
2	120	0.12	0.85	253.82	551.82	278.82	533.88
3	180	0.10	0.92	273.04	571.04	298.04	568.47
4	240	0.08	0.96	287.55	585.55	312.55	594.59
5	300	0.08	1.00	299.33	597.33	324.33	615.80
10	600	0.05	1.14	339.11	637.11	364.11	687.40
15	900	0.04	1.22	364.78	662.78	389.78	733.61
20	1200	0.04	1.29	384.17	682.17	409.17	768.51
25	1500	0.03	1.34	399.92	697.92	424.92	796.85
30	1800	0.03	1.39	413.26	711.26	438.26	820.87
35	2100	0.03	1.43	424.89	722.89	449.89	841.79
40	2400	0.03	1.46	435.22	733.22	460.22	860.40
45	2700	0.03	1.49	444.55	742.55	469.55	877.19
50	3000	0.02	1.52	453.06	751.06	478.06	892.51
55	3300	0.02	1.55	460.90	758.90	485.90	906.62
60	3600	0.02	1.57	468.17	766.17	493.17	919.71

Version 1805.1 (SI Units)

METHOD OF DEAL AND BEYLER

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-178.

Thermal Penetration Time Calculation

$$\mathbf{t}_{\mathrm{p}} = (\rho \mathbf{c}_{\mathrm{p}}/\mathbf{k}) (\delta/2)^2$$

Where

- t_p = thermal penetration time (sec)
- ρ = interior lining density (kg/m³)
- c_p = interior lining heat capacity (kJ/kg-K)
- k = interior lining thermal conductivity (kW/m-K)
- δ = interior lining thickness (m)
- t_p = 33967.7 sec

Heat Transfer Coefficient Calculation

$$h_{k} = 0.4 \sqrt{(k\rho c \text{ for } t < t_{p})}$$
 or $0.4(k/\delta or t > t_{p})$

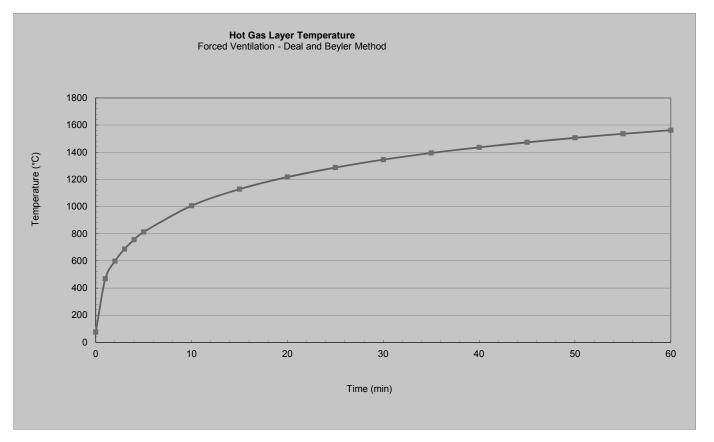
Where

- h_k = heat transfer coefficient (kW/m²-K)
- $k\rho c$ = interior construction thermal inertia $(kW/m^2-K)^2$ -sec
 - (a thermal property of material responsible for the rate of temperature rise)
- δ = thickness of interior lining (m) See table below for results

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = 2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})$$
$$A_{T} = 28.80 \text{ m}^{2}$$

Compartment Hot Gas Layer Temperature With Forced Ventilation


$$\Delta T_g = \mathbf{Q} / (\mathbf{mc}_a + \mathbf{h}_k \mathbf{A}_T)$$

Where

- ΔT_g = T_g T_a = upper layer gas temperature rise above ambient (K)
- T_a = ambient air temperature (K)
- Q = heat release rate of the fire (kW)
- m = compartment mass ventilation flow rate (kg/sec)
- c_a = specific heat of air (kJ/kg-K)
- h_k = convective heat transfer coefficient (kW/m²-K)
- $A_{\rm T}$ = total area of the compartment enclosing surface boundaries (m²)

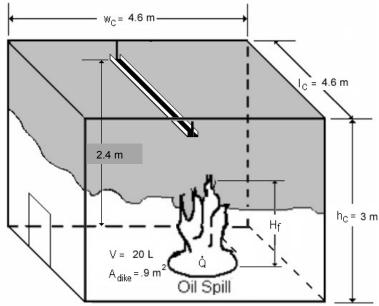

Time Afte	r Ignition (t)	h _k	ΔT _g	Τ _g	Tg	Tg
(min)	(sec)	(kW/m ² -K)	(K)	(K)	(°C)	(°F)
0	0	-	-	298.00	25.00	77.00
1	60	0.07	217.91	515.91	242.91	469.25
2	120	0.05	289.60	587.60	314.60	598.28
3	180	0.04	339.00	637.00	364.00	687.21
4	240	0.03	377.38	675.38	402.38	756.29
5	300	0.03	408.98	706.98	433.98	813.16
10	600	0.02	516.23	814.23	541.23	1006.21
15	900	0.02	584.08	882.08	609.08	1128.35
20	1200	0.02	633.74	931.74	658.74	1217.73
25	1500	0.01	672.78	970.78	697.78	1288.00
30	1800	0.01	704.82	1002.82	729.82	1345.68
35	2100	0.01	731.92	1029.92	756.92	1394.45
40	2400	0.01	755.32	1053.32	780.32	1436.58
45	2700	0.01	775.87	1073.87	800.87	1473.57
50	3000	0.01	794.16	1092.16	819.16	1506.48
55	3300	0.01	810.59	1108.59	835.59	1536.05
60	3600	0.01	825.48	1123.48	850.48	1562.87

Version 1805.1 (SI Units)

Summary of Results

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.


Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

3.11 Problems

Example Problem 3.11-1

Problem Statement

A pool fire scenario arises from a breach (leak or rupture) in an auxiliary cooling water pump oil tank. This event allows the fuel contents of the pump to spill and spread over the compartment floor. A 20 liter, 0.9 m^2 surface area, spill of flammable liquid (lubricating oil) leads to consideration of a pool fire in a compartment with a concrete floor. The fuel is ignited and spreads rapidly over the surface, reaching steady burning almost instantly. Compute the HRR, burning duration, and flame height of the pool fire. The dimensions of the compartment are 4.6 m wide x 4.6 m deep x 3.0 m high. The cable tray is located 2.4 m above the pool fire. Determine whether the flame will impinge upon the cable tray. Assume instantaneous and complete involvement of the liquid pool with no fire growth and no intervention by the plant fire department or automatic suppression systems.

Example Problem 3-1: Compartment with Pool Fire

Solution

Purpose:

- (1) Determine the Heat Release Rate (HRR) of the fire source.
- (2) Determine the burning duration of the pool fire.
- (3) Determine the flame height of the pool fire.
- (4) Determine whether the flame will impinge upon the cable tray.

Assumptions:

- (1) Instantaneous and complete involvement of the liquid in the pool fire
- (2) The pool fire is burning in the open
- (3) No fire growth period (instantaneous HRR_{max})
- (4) The pool is circular or nearly circular and contains a fixed mass of liquid volume
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 03_HRR_Flame_H eight_Burning_Duration_Calculations_Sup1_SI.xls

FDT^s Input Parameter:

- Fuel Spill Volume (V) =20 liters Fuel Spill Area or Dike Area (A_{dike}) = 0.9 m²
- Select Fuel Type: Lube Oil

Results*

Heat Release Rate	Burning Duration (t _b)	Pool Fire Flame Height (H _f) (m)		
(HRR) (Ż) (kW)	(min.)	Method of Heskestad	Method of Thomas	
851	7.22	2.4	2.7	

*see spreadsheet on next page

Both methods for pool fire flame height estimation show that the pool fire flame will impinge upon the cable tray.

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

Version 1805.1 (SI Units)

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (} \Delta H_{c,eff}) \\ \mbox{Fuel Density (} \rho) \\ \mbox{Empirical Constant (k} \beta) \\ \mbox{Ambient Air Temperature (} T_a) \end{array}$

Gravitational Acceleration (g) Ambient Air Density (ρ_a)

20.00 liters 0.90 m² 0.039 kg/m²-sec 46000 kJ/kg 760 kg/m³ 0.7 m⁻¹ 25.00 °C 9.81 m/sec² 1.18 kg/m³

ate

Example 3.11-1

Note: Air density will automatically correct with Ambient Air Temperature (T_a) Input

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Density	Empirical Constant	Select Fuel Type	
Fuei	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	ρ (kg/m ³)	$k\beta$ (m ⁻¹)	Lube Oil 🔫	
Methanol	0.017	20,000	796	100	Scroll to desired fuel typ	
Ethanol	0.015	26,800	794	100	Click on selection	
Butane	0.078	45,700	573	2.7		
Benzene	0.085	40,100	874	2.7		
Hexane	0.074	44,700	650	1.9		
Heptane	0.101	44,600	675	1.1		
Xylene	0.09	40,800	870	1.4		
Acetone	0.041	25,800	791	1.9		
Dioxane	0.018	26,200	1035	5.4		
Diethy Ether	0.085	34,200	714	0.7		
Benzine	0.048	44,700	740	3.6		
Gasoline	0.055	43,700	740	2.1		
Kerosine	0.039	43,200	820	3.5		
Diesel	0.045	44,400	918	2.1		
JP-4	0.051	43,500	760	3.6		
JP-5	0.054	43,000	810	1.6		
Transformer Oil, Hydrocarbon	0.039	46,000	760	0.7		
561 Silicon Transformer Fluid	0.005	28,100	960	100		
Fuel Oil, Heavy	0.035	39,700	970	1.7		
Crude Oil	0.0335	42,600	855	2.8		
Lube Oil	0.039	46,000	760	0.7		
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value		

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-26.

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 $DH_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

 $A_f = A_{dike}$ = surface area of pool fire (area involved in vaporization) (m²)

kb = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

Where Adike = surface area of pool fire (m²) D = pool fire diamter (m)

$D = \sqrt{(4A_{dike}/\pi)}$

D = 1.070 m

Heat Release Rate Calculation (Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} (\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta D}) \mathbf{A}_{dike}$$

Q = 851.41 kW

806.98 Btu/sec

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE BURNING DURATION

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-197.

$$t_b = 4V / \pi D^2 v$$

Where

- t_{b} = burning duration of pool fire (sec)
- V = volume of liquid (m^3)
- D = pool diameter (m)
- v = regression rate (m/sec)

Calculation for Regression Rate

$$v = m''/\rho$$

Where

v = regression rate (m/sec)
 m" = mass burning rate of fuel (kg/m²-sec)

433.05 sec

 ρ = liquid fuel density (kg/m³)

v = 0.000051 m/sec

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

t_b =

7.22 minutes

Note that a liquid pool fire with a given amount of fuel can burn for long periods of time over small area or for short periods of time over a large area.

CHAPTER 3: ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE FLAME HEIGHT

METHOD OF HESKESTAD

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 2-10.

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

Where

- H_f = pool fire flame height (m)
- Q = pool fire heat release rate (kW)
- D = pool fire diameter (m)

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

H_f = 2.40 m 7.88 ft

METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-204.

Where

- H_f = pool fire flame height (m)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ρ_{a} = ambient air density (kg/m³)
- D = pool fire diameter (m)
- g = gravitational acceleration (m/sec²)

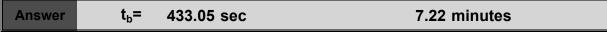
Pool Fire Flame Height Calculation

H_f = 2.74 m 8.97 ft

Version 1805.1 (SI Units)

Summary	of Results	
---------	------------	--

Heat Release Rate Calculation


(Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

 $Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$

Answer Q= 851.41 kW 806.98 Btu/sec

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

Flame Height Calculation

Method of Heskestad

H_f = 0.235 Q^{2/5} - 1.02 D

Answer	METHOD OF HESKESTAD	2.40 m
AllSwei	METHOD OF THOMAS	2.74 m

Method of Thomas

 H_f = 42 D (m"/($\rho_a \sqrt{(g D)})$)^{0.61}

ESTIMATING POOL FIRE RESULTS FOR RANDOM SIZE SPILLS USING INPUT PARAMETERS

Area (ft ⁻)	Area (m ⁻)	Diameter (m)	Q (kW)	t _b (sec)	H _f (m) (Heskestad)	H _f (m) (Thomas)
1	0.09	0.34	35.66	4195.17	0.63	1.24
2	0.19	0.49	96.19	2097.58	0.96	1.58
3	0.28	0.60	170.49	1398.39	1.23	1.82
4	0.37	0.69	254.77	1048.79	1.45	2.01
5	0.46	0.77	346.90	839.03	1.65	2.17
6	0.56	0.84	445.52	699.19	1.84	2.32
7	0.65	0.91	549.63	599.31	2.00	2.44
8	0.74	0.97	658.49	524.40	2.16	2.56
9	0.84	1.03	771.52	466.13	2.31	2.67
10	0.93	1.09	888.26	419.52	2.44	2.77
11	1.02	1.14	1008.32	381.38	2.57	2.86
12	1.11	1.19	1131.38	349.60	2.70	2.95
13	1.21	1.24	1257.17	322.71	2.82	3.03
14	1.30	1.29	1385.45	299.65	2.93	3.11
15	1.39	1.33	1516.02	279.68	3.04	3.18
20	1.86	1.54	2197.59	209.76	3.53	3.52
25	2.32	1.72	2916.42	167.81	3.96	3.80
50	4.65	2.43	6814.63	83.90	5.54	4.84
75	6.97	2.98	10946.20	55.94	6.66	5.57
100	9.29	3.44	15166.14	41.95	7.54	6.16

Caution! The purpose of this random spill size chart is to aid the user in evaluating the hazard of random sized spills. Please note that the calculation does not take into account the viscosity or volatility of the liquid, or the absorptivity of the surface. The results generated for small volume spills over large

NOTE:

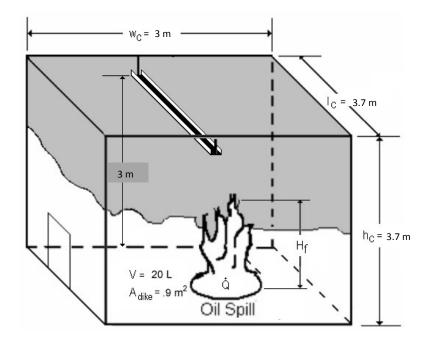
The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Date:

Date:

Prepared	by:

Checked by:


Organization:

Additional Information:

Example Problem 3.11-2

Problem Statement

A standby diesel generator (SBDG) room in a power plant has a 10 liter spill of diesel fuel over a 0.1 m^2 diked area. This event allows the diesel fuel to form a pool. The diesel is ignited and fire spreads rapidly over the surface, reaching steady burning almost instantly. Compute the HRR, burning duration, and flame height of the pool fire. The dimensions of the compartment are 3.0 m wide x 3.7 m deep x 3.7 m high. The cable tray is located 3.0 m above the pool fire. Determine whether flame will impinge upon the cable tray. Also, determine the minimum area of the pool fire required for the flame to impinge upon the cable tray. Assume instantaneous, complete involvement of the liquid pool with no fire growth and no intervention by plant fire department or automatic suppression.

Example Problem 3-2: Compartment with Pool Fire

Solution

Purpose:

- (1) Determine the Heat Release Rate (HRR) of the fire source.
- (2) Determine the burning duration of the pool fire.
- (3) Determine the flame height of the pool fire.
- (4) Determine whether the flame will impinge upon the cable tray.
- (5) Determine the minimum dike area required for the flame to impinge upon the cable tray.

Assumptions:

- (1) Instantaneous and complete involvement of the liquid in the pool fire
- (2) The pool fire is burning in the open
- (3) No fire growth period (instantaneous HRR_{max})
- (4) The pool is circular or nearly circular and contains a fixed mass of liquid volume
- (5) The fire is located at the center of the compartment or away from the walls

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 03_HRR_Flame_Height_Burning_Duration_Calculations_Sup1_SI.xls

FDT^s Input Parameter:

- Fuel Spill Volume (V) = 10 liters
- Fuel Spill Area or Dike Area (A_{dike}) = 0.1 m²
- Select Fuel Type: **Diesel**

Results*

Heat Release Rate (HRR) (Q)	Burning Duration (t_b)	Pool Fire Flar (n					
(RKK) (Q) (KW)	(min.)	Method of Heskestad	Method of Thomas				
105	34	1.2	1.4				
	*aaa amraadahaat	an next needs	*acc aprocedabact on post page				

see spreadsheet on next page

Both methods for pool fire flame height estimation show that pool fire flame will not impinge the cable tray.

To determine the minimum dike area required for the flame to impinge upon the cable tray, the user must substitute different values for the area in the spreadsheet until we obtain a flame height value of 3 m (cable tray height). The user must keep the input values used for the previous results, and change only the area value. This trial and error procedure is shown in the following table.

Trial	A_{dike}	Pool Fire Flame Height (H _f) (m)	
	(m²)	Method of Heskestad	Method of Thomas
1	7	2.9	2.7
2	8	3.1	2.8
3	9	3.3	2.9

To be conservative, we are going to consider the method that gets the 3 m flame height first. The method of Heskestad tells that the pool fire flame will impinge upon the cable tray if the dike area is 7.2 m^2 . For practical purposes, we could say that a spill pool area around 7 to 8 m² would be a risk for the cable tray integrity.

Version 1805.1 (SI Units)

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:	Example 3.11-2

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Fuel Density } (\rho) \\ \mbox{Empirical Constant } (k\beta) \\ \mbox{Ambient Air Temperature } (T_a) \end{array}$

Gravitational Acceleration (g) Ambient Air Density (ρ_a)

10.00 0.10 m² 0.045 kg/m²-sec 44400 kJ/kg 918 kg/m³ 2.1 m⁻¹ 25.00 °C 9.81 m/sec² 1.18 kg/m³

ate

Note: Air density will automatically correct with Ambient Air Temperature (T_a) Input

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

	Mass Burning Rate	Heat of Combustion	Density	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c.eff}$ (kJ/kg)	ρ (kg/m ³)	$k\beta$ (m ⁻¹)	Diesel
Methanol	0.017	20,000	796	100	Scroll to desired fuel
Ethanol	0.015	26,800	794	100	Click on selection
Butane	0.078	45,700	573	2.7	
Benzene	0.085	40,100	874	2.7	
Hexane	0.074	44,700	650	1.9	
Heptane	0.101	44,600	675	1.1	
Xylene	0.09	40,800	870	1.4	
Acetone	0.041	25,800	791	1.9	
Dioxane	0.018	26,200	1035	5.4	
Diethy Ether	0.085	34,200	714	0.7	
Benzine	0.048	44,700	740	3.6	
Gasoline	0.055	43,700	740	2.1	
Kerosine	0.039	43,200	820	3.5	
Diesel	0.045	44,400	918	2.1	
JP-4	0.051	43,500	760	3.6	
JP-5	0.054	43,000	810	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	760	0.7	
561 Silicon Transformer Fluid	0.005	28,100	960	100	
Fuel Oil, Heavy	0.035	39,700	970	1.7	
Crude Oil	0.0335	42,600	855	2.8	
Lube Oil	0.039	46,000	760	0.7	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-26.

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 $DH_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

 $A_f = A_{dike}$ = surface area of pool fire (area involved in vaporization) (m²)

kb = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

Where Adike = surface area of pool fire (m²) D = pool fire diamter (m)

$D = \sqrt{(4A_{dike}/\pi)}$

D = 0.357 m

Heat Release Rate Calculation (Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} (1 - e^{-k\beta D}) \mathbf{A}_{dike}$$

Q = 105.36 kW

99.86 Btu/sec

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE BURNING DURATION

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-197.

$$t_b = 4V / \pi D^2 v$$

Where

- $t_{\mbox{\tiny b}}$ = burning duration of pool fire (sec)
- V = volume of liquid (m^3)
- D = pool diameter (m)
- v = regression rate (m/sec)

Calculation for Regression Rate

$$v = m''/\rho$$

Where

v = regression rate (m/sec)
 m" = mass burning rate of fuel (kg/m²-sec)

2040.00 sec

 ρ = liquid fuel density (kg/m³)

v = 0.000049 m/sec

Burning Duration Calculation

$$t_{\rm b} = 4V/\pi D^2 v$$

34.00 minutes

Note that a liquid pool fire with a given amount of fuel can burn for long periods of time over small area or for short periods of time over a large area.

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE FLAME HEIGHT

METHOD OF HESKESTAD

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 2-10.

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

Where

- H_f = pool fire flame height (m)
- Q = pool fire heat release rate (kW)
- D = pool fire diameter (m)

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

H_f = 1.15 m 3.77 ft

METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-204.

Where

- H_f = pool fire flame height (m)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ρ_{a} = ambient air density (kg/m³)
- D = pool fire diameter (m)
- g = gravitational acceleration (m/sec²)

Pool Fire Flame Height Calculation

H_f = 1.39 m 4.56 ft

Version 1805.1 (SI Units)

Summary	of Results	
---------	------------	--

Heat Release Rate Calculation

(Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

 $Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$

Answer Q= 105.36 kW 99.86 Btu/sec

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

Answer t_b= 2040.00 sec 34.00 minutes

Flame Height Calculation

Method of Heskestad

H_f = 0.235 Q^{2/5} - 1.02 D

Answer	METHOD OF HESKESTAD	1.15 m	
Answei	METHOD OF THOMAS	1.39 m	

Method of Thomas

 $H_f = 42 D (m''/(\rho_a \sqrt{(g D))})^{0.61}$

ESTIMATING POOL FIRE RESULTS FOR RANDOM SIZE SPILLS USING INPUT PARAMETERS

Area (ft ⁻)	Area (m ⁻)	Diameter (m)	Q (kW)	t _b (sec)	H _f (m) (Heskestad)	H _f (m) (Thomas)
1	0.09	0.34	95.47	2195.84	1.10	1.36
2	0.19	0.49	237.56	1097.92	1.60	1.73
3	0.28	0.60	397.47	731.95	1.97	1.99
4	0.37	0.69	567.36	548.96	2.27	2.20
5	0.46	0.77	743.51	439.17	2.52	2.37
6	0.56	0.84	923.86	365.97	2.75	2.53
7	0.65	0.91	1107.11	313.69	2.95	2.67
8	0.74	0.97	1292.42	274.48	3.13	2.79
9	0.84	1.03	1479.22	243.98	3.30	2.91
10	0.93	1.09	1667.09	219.58	3.46	3.02
11	1.02	1.14	1855.75	199.62	3.61	3.12
12	1.11	1.19	2044.96	182.99	3.74	3.22
13	1.21	1.24	2234.57	168.91	3.87	3.31
14	1.30	1.29	2424.46	156.85	4.00	3.39
15	1.39	1.33	2614.53	146.39	4.11	3.47
20	1.86	1.54	3565.55	109.79	4.62	3.84
25	2.32	1.72	4515.13	87.83	5.05	4.15
50	4.65	2.43	9224.83	43.92	6.58	5.28
75	6.97	2.98	13894.78	29.28	7.63	6.08
100	9.29	3.44	18548.48	21.96	8.47	6.72

Caution! The purpose of this random spill size chart is to aid the user in evaluating the hazard of random sized spills. Please note that the calculation does not take into account the viscosity or volatility of the liquid, or the absorptivity of the surface. The results generated for small volume spills over large

NOTE:

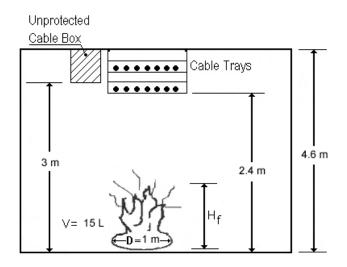
The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Date:

Prepared	by:

Checked by:

Date:


Organization:

Additional Information:

Example Problem 3.11-3

Problem Statement

In one NPP, it was important to determine whether a fire involving a 15 liter spill of lubricating oil from an auxiliary feedwater (AFW) pump could cause damage to an unprotected electrical cable pull box and cable trays. The unprotected pull box and cable trays were located 3.0 m and 2.4 m above the AFW pump, respectively. The pump room had a floor area of 6 m x 6 m and a ceiling height of 4.6 m with a vent opening of 1.5 m x 4.6 m. Compute the HRR, burning duration, and flame height of the poolfire with a diameter of 1 m. The lowest cable tray is located 2.4 m above the pool. Determine whether flame will impinge upon the cable tray or cable pull box. Assume instantaneous, complete involvement of the liquid pool with no fire growth and no intervention by the plant fire department or automatic suppression systems.

Example 3-3: Compartment with Pool Fire

Solution

Purpose:

- (1) Determine the Heat Release Rate (HRR) of the fire source.
- (2) Determine the burning duration of the pool fire.
- (3) Determine the flame height of the pool fire.
- (4) Determine whether the flame will impinge upon the cable tray or cable pull box.

Assumptions:

- (1) Instantaneous and complete involvement of the liquid in the pool fire
- (2) The pool fire is burning in the open
- (3) No fire growth period (instantaneous HRR_{max})
- (4) The pool is circular or nearly circular and contains a fixed mass of liquid volume
- (5) The fire is located at the center of the compartment or away from the walls

Pre FDT^s Calculations:

The input parameters of the FDT^s assigned for this problem are the fuel spill volume, dike area and fuel material. As we can see, the problem statement does not give the dike area but the pool diameter is given. The dike area can be obtained from the formula of the area of a circle, since we assume that the pool has circular shape.

$$A_{dike} = \frac{\pi}{4}D^2 = \frac{\pi}{4}(1\ m)^2 = 0.8\ m^2$$

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 03_HRR_Flame_Height_Burning_Duration_Calculations_Sup1_SI.xls

FDT^s Inputs: (for both spreadsheets)

- Fuel Spill Volume (V) = 15 liters
- Fuel Spill Area or Dike Area (A_{dike}) = 0.8 m²
- Select Fuel Type: Lube Oil

Results*

Heat Release Rate	Burning Duration (t_b)	Pool Fire Flame Height (H _f) (m)		
(HRR) (Q̇́) (kW)	(min.)	Method of Heskestad	Method of Thomas	
727	6.1	2.3	2.6	

*see spreadsheet on next page

Both methods for pool fire flame height estimation show that pool fire flame will impinge upon the cable tray and cable pull box.

Version 1805.1 (SI Units)

The following calculations estimate the hot gas layer temperature and smoke layer height in enclosure fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title: Example 3.11-3

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (} \Delta H_{c,eff}) \\ \mbox{Fuel Density (} \rho) \\ \mbox{Empirical Constant (k} \beta) \\ \mbox{Ambient Air Temperature (} T_a) \end{array}$

Gravitational Acceleration (g) Ambient Air Density (ρ_a)

15.00 0.80 m² 0.039 kg/m²-sec 46000 kJ/kg 760 kg/m³ 0.7 m⁻¹ 25.00 °C 9.81 m/sec² 1.18 kg/m³

ate

Note: Air density will automatically correct with Ambient Air Temperature (T_a) Input

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Density	Empirical Constant	Select Fuel Type
Fuei	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	ი (kg/m³)	$k\beta$ (m ⁻¹)	Lube Oil -
Methanol	0.017	20,000	796	100	Scroll to desired fuel typ
Ethanol	0.015	26,800	794	100	Click on selection
Butane	0.078	45,700	573	2.7	
Benzene	0.085	40,100	874	2.7	
Hexane	0.074	44,700	650	1.9	
Heptane	0.101	44,600	675	1.1	
Xylene	0.09	40,800	870	1.4	
Acetone	0.041	25,800	791	1.9	
Dioxane	0.018	26,200	1035	5.4	
Diethy Ether	0.085	34,200	714	0.7	
Benzine	0.048	44,700	740	3.6	
Gasoline	0.055	43,700	740	2.1	
Kerosine	0.039	43,200	820	3.5	
Diesel	0.045	44,400	918	2.1	
JP-4	0.051	43,500	760	3.6	
JP-5	0.054	43,000	810	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	760	0.7	
561 Silicon Transformer Fluid	0.005	28,100	960	100	
Fuel Oil, Heavy	0.035	39,700	970	1.7	
Crude Oil	0.0335	42,600	855	2.8	
Lube Oil	0.039	46,000	760	0.7	
User Specified Value	Enter Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-26.

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

Q = pool fire heat release rate (kW)

m" = mass burning rate of fuel per unit surface area (kg/m²-sec)

 $DH_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

 $A_f = A_{dike}$ = surface area of pool fire (area involved in vaporization) (m²)

kb = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

Where Adike = surface area of pool fire (m²) D = pool fire diamter (m)

$D = \sqrt{(4A_{dike}/\pi)}$

D = 1.009 m

Heat Release Rate Calculation (Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} (\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}}) \mathbf{A}_{dike}$$

Q = 727.10 kW

689.16 Btu/sec

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE BURNING DURATION

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 3-197.

$$t_b = 4V / \pi D^2 v$$

Where

- $t_{\mbox{\tiny b}}$ = burning duration of pool fire (sec)
- V = volume of liquid (m^3)
- D = pool diameter (m)
- v = regression rate (m/sec)

Calculation for Regression Rate

$$v = m''/\rho$$

Where

v = regression rate (m/sec)
 m" = mass burning rate of fuel (kg/m²-sec)

365.38 sec

 ρ = liquid fuel density (kg/m³)

v = 0.000051 m/sec

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

t_b =

6.09 minutes

Note that a liquid pool fire with a given amount of fuel can burn for long periods of time over small area or for short periods of time over a large area.

Version 1805.1 (SI Units)

ESTIMATING POOL FIRE FLAME HEIGHT

METHOD OF HESKESTAD

Reference: SFPE Handbook of Fire Protection Engineering , 2nd Edition, 1995, Page 2-10.

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

Where

- H_f = pool fire flame height (m)
- Q = pool fire heat release rate (kW)
- D = pool fire diameter (m)

Pool Fire Flame Height Calculation

$$H_f = 0.235 Q^{2/5} - 1.02 D$$

H_f = 2.25 m 7.38 ft

METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-204.

Where

- H_f = pool fire flame height (m)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ρ_{a} = ambient air density (kg/m³)
- D = pool fire diameter (m)
- g = gravitational acceleration (m/sec^2)

Pool Fire Flame Height Calculation

H_f = 2.63 m 8.61 ft

Version 1805.1 (SI Units)

Summary	of	Results
---------	----	---------

Heat Release Rate Calculation


(Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition)

 $Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$

Answer Q= 727.10 kW 689.16 Btu/sec

Burning Duration Calculation

$$t_b = 4V/\pi D^2 v$$

Flame Height Calculation

Method of Heskestad

H_f = 0.235 Q^{2/5} - 1.02 D

Answor	METHOD OF HESKESTAD	2.25 m
AllSwei	METHOD OF THOMAS	2.63 m

Method of Thomas

 $H_f = 42 D (m''/(\rho_a \sqrt{(g D))})^{0.61}$

ESTIMATING POOL FIRE RESULTS FOR RANDOM SIZE SPILLS USING INPUT PARAMETERS

Area (ft ⁻)	Area (m ⁻)	Diameter (m)	Q (kW)	t _b (sec)	H _f (m) (Heskestad)	H _f (m) (Thomas)
1	0.09	0.34	35.66	3146.37	0.63	1.24
2	0.19	0.49	96.19	1573.19	0.96	1.58
3	0.28	0.60	170.49	1048.79	1.23	1.82
4	0.37	0.69	254.77	786.59	1.45	2.01
5	0.46	0.77	346.90	629.27	1.65	2.17
6	0.56	0.84	445.52	524.40	1.84	2.32
7	0.65	0.91	549.63	449.48	2.00	2.44
8	0.74	0.97	658.49	393.30	2.16	2.56
9	0.84	1.03	771.52	349.60	2.31	2.67
10	0.93	1.09	888.26	314.64	2.44	2.77
11	1.02	1.14	1008.32	286.03	2.57	2.86
12	1.11	1.19	1131.38	262.20	2.70	2.95
13	1.21	1.24	1257.17	242.03	2.82	3.03
14	1.30	1.29	1385.45	224.74	2.93	3.11
15	1.39	1.33	1516.02	209.76	3.04	3.18
20	1.86	1.54	2197.59	157.32	3.53	3.52
25	2.32	1.72	2916.42	125.85	3.96	3.80
50	4.65	2.43	6814.63	62.93	5.54	4.84
75	6.97	2.98	10946.20	41.95	6.66	5.57
100	9.29	3.44	15166.14	31.46	7.54	6.16

Caution! The purpose of this random spill size chart is to aid the user in evaluating the hazard of random sized spills. Please note that the calculation does not take into account the viscosity or volatility of the liquid, or the absorptivity of the surface. The results generated for small volume spills over large

NOTE:

The above calculations are based on principles developed in the Structural Design for Fire Safety, 2001. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Date:

Prepared	by:
Prepared	by:

Checked by:

Date:

Organization:

Additional Information:

4.9 Problems

Example Problem 4.9-1

Problem Statement

A pool fire scenario arises from a breach (leak or rupture) in an oil-filled transformer. This event allows the fuel contents of the transformer to spill 8 liters along a wall with an area of 0.8 m^2 . A cable tray is located 2.4 m above the fire. Calculate the wall flame height of the fire and determine whether the flame will impinge upon the cable tray.

Solution

Purpose:

- (1) Calculate the wall flame height.
- (2) Determine whether the flame will impinge upon the cable tray.

Assumptions:

- (1) Air is entrained only from one side during the combustion process.
- (2) The fire is located at or near a wall configuration of a compartment that affects the spread of the fire.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 04_Flame_Height_Calculations_Sup1_SI.xls (click on Wall_Flame_Height)

FDT^s Input Parameters:

- Fuel spill volum e (V) = 8 liters
- Fuel Spill Area or Dike Area (A_{dike}) = 0.8 m²
- Select Fuel Type: Transformer Oil, Hydrocarbon

Results*

Fuel	Wall Fire Flame Height (H _{f(Wall)}) (m)	Cable Tray Impingement
Transformer Oil, Hydrocarbon	3.0	Yes

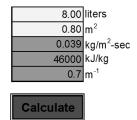
*see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the wall fire flame height.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-1

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	kβ (m ⁻¹)	Transformer Oil, Hydrocarbon 🚽
Acetone	0.041	25,800	1.9	SCrOII to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		

Version 1805.1 (SI Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta H_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where,

 A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

D = 1.009 m

Heat Release Rate Calculation

Q = 727.10 kW 689.16 Btu/sec

Version 1805.1 (SI Units)

Heat Release Rate Per Unit Length of Fire Calculation

Q' = Q/L

Where,

Q' = heat release rate per unit length (kW/m)

 Q = fire heat release rate of the fire (kW)

L = length of the fire source (m)

Fire Source Length Calculation

$$L x W = A_{dike}$$

 $L x W = 0.800 m^2$

L = 0.894 m

Heat Release Rate Per Unit Length of Fire Calculation

Version 1805.1 (SI Units)

ESTIMATING WALL FIRE FLAME HEIGHT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-134.

$H_{f(wall)} = 0.034 \text{ Q}'^{2/3}$

Where,

H_{f(wall)} = wall fire flame height (m)

Q' = rate of heat release per unit length of the fire (kW/m)

$H_{f(wall)} = 0.034 \text{ Q}'^{2/3}$

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, and NFPA Fire Protection Handbook, 19th Edition, 2003. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 4.9-2

Problem Statement

A pool fire scenario arises from a transient combustible liquid spill. This event allows the fuel contents of a 57 liter can to form along a wall with an area of 2.8 m^2 . A cable tray is located 3.7 m above the fire. Determine the line wall fire flame height and whether the flame will impinge upon the cable tray if the spilled liquids are (a) diesel, (b) acetone, and (c) methanol.

Solution

Purpose:

- (1) Calculate the line wall fire flame height using three transient combustibles.
- (2) Determine whether the flame will impinge upon the cable tray in each case.

Assumptions:

- (1) Air is entrained only from one side during the combustion process.
- (2) The fire is located at or near a wall configuration of a compartment that affects the spread of the fire.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 04_Flame_Height_Calculations_Sup1_Sl.xls (click on *Wall_Line_Flame_Height*)

FDT^s Input Parameters:

- Fuel spill volume (V) = 57 liters
- Fuel Spill Area or Dike Area $(A_{dike}) = 2.8 \text{ m}^2$
- Select Fuel Type: Diesel, Acetone, and Methanol

Results*

Fuel	Wall Line Fire Height (H _{f(Wall Line)}) (m)	Cable Tray Impingement
Diesel	3.8	Yes
Acetone	2.4	No
Methanol	1.2	No

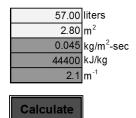
*See spreadsheets on next page

Version 1805.1 (SI Units)

The following calculations estimate the line fire flame height against the wall.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-2a

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	$\mathbf{k}\beta$ (m ⁻¹)	Diesel
Acetone	0.041	25,800	1.9	Scroll to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		

Version 1805.1 (SI Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(1 - e^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta \text{H}_{\text{c,eff}}\text{=}$ effective heat of combustion of fuel (kJ/kg)

A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where, A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

D = 1.888 m

Heat Release Rate Calculation

Q = 5488.30 kW 5201.92 Btu/sec

Version 1805.1 (SI Units)

Heat Release Rate Per Unit Length of Fire Calculation

Q' = Q/L

Where,

Q' = heat release rate per unit length (kW/m)

 Q = fire heat release rate of the fire (kW)

L = length of the fire source (m)

Fire Source Length Calculation

$$L x W = A_{dike}$$

 $L x W = 2.800 m^2$

L = 1.673 m

Heat Release Rate Per Unit Length of Fire Calculation

Version 1805.1 (SI Units)

ESTIMATING LINE WALL FIRE FLAME HEIGHT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-134.

$H_{f(wall line)} = 0.017 \text{ Q}'^{2/3}$

Where,

H_{f(wall line)} = wall fire flame height (m)

Q' = rate of heat release per unit length of the fire (kW/m)

$H_{f(wall line)} = 0.017 \text{ Q}'^{2/3}$

Answer	H _{f(wall line)} =	3.75 m	12.31 ft	
--------	-----------------------------	--------	----------	--

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, and NFPA Fire Protection Handbook, 19th Edition, 2003. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

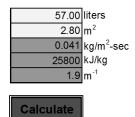
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Version 1805.1 (SI Units)

The following calculations estimate the line fire flame height against the wall.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-2b

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	$\mathbf{k}\beta$ (m ⁻¹)	Acetone
Acetone	0.041	25,800	1.9	Scroll to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		

Version 1805.1 (SI Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} (1 - e^{-k\beta D}) \mathbf{A}_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta \text{H}_{\text{c,eff}}\text{=}$ effective heat of combustion of fuel (kJ/kg)

A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where, A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

D = 1.888 m

Heat Release Rate Calculation

Q = 2879.89 kW 2729.62 Btu/sec

Version 1805.1 (SI Units)

Heat Release Rate Per Unit Length of Fire Calculation

Q' = Q/L

Where,

Q' = heat release rate per unit length (kW/m)

 Q = fire heat release rate of the fire (kW)

L = length of the fire source (m)

Fire Source Length Calculation

$$L x W = A_{dike}$$

 $L x W = 2.800 m^2$

L = 1.673 m

Heat Release Rate Per Unit Length of Fire Calculation

Version 1805.1 (SI Units)

ESTIMATING LINE WALL FIRE FLAME HEIGHT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-134.

$H_{f(wall line)} = 0.017 \text{ Q}'^{2/3}$

Where,

H_{f(wall line)} = wall fire flame height (m)

Q' = rate of heat release per unit length of the fire (kW/m)

$H_{f(wall line)} = 0.017 \text{ Q}'^{2/3}$

Answer $H_{f(wall line)} = 2.44 \text{ m}$ 8.01 ft	
--	--

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, and NFPA Fire Protection Handbook, 19th Edition, 2003. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

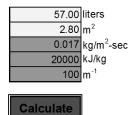
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Version 1805.1 (SI Units)

The following calculations estimate the line fire flame height against the wall.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-2c

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	$\mathbf{k}\beta$ (m ⁻¹)	Methanol
Acetone	0.041	25,800	1.9	Scroll to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		

Version 1805.1 (SI Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(1 - e^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta \text{H}_{\text{c,eff}}\text{=}$ effective heat of combustion of fuel (kJ/kg)

A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where, A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

D = 1.888 m

Heat Release Rate Calculation

Q = 952.00 kW 902.32 Btu/sec

Version 1805.1 (SI Units)

Heat Release Rate Per Unit Length of Fire Calculation

Q' = Q/L

Where,

Q' = heat release rate per unit length (kW/m)

 Q = fire heat release rate of the fire (kW)

L = length of the fire source (m)

Fire Source Length Calculation

$$L x W = A_{dike}$$

 $L x W = 2.800 m^2$

L = 1.673 m

Heat Release Rate Per Unit Length of Fire Calculation

Version 1805.1 (SI Units)

ESTIMATING LINE WALL FIRE FLAME HEIGHT

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-134.

$H_{f(wall line)} = 0.017 \text{ Q}'^{2/3}$

Where,

H_{f(wall line)} = wall fire flame height (m)

Q' = rate of heat release per unit length of the fire (kW/m)

$H_{f(wall line)} = 0.017 \text{ Q}'^{2/3}$

Answer H _{f(wall line)} = 1.17 m 3	.83 ft
---	--------

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, and NFPA Fire Protection Handbook, 19th Edition, 2003. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 4.9-3

Problem Statement

A pool fire scenario arises from a rupture in a diesel generator fuel line. This event allows diesel fuel to spill 5.7 liters along the corner of walls with an area of 0.9 m^2 . An unprotected junction box is located 3.7 m above the fire. Determine whether the flame will impinge upon the junction box.

Solution

Purpose:

- (1) Calculate the line wall fire flame height.
- (2) Determine whether the flame will impinge upon the junction box.

Assumptions:

- (1) Air is entrained only from one side during the combustion process.
- (2) The fire is located at or near a wall configuration of a compartment that affects the spread of the fire.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 04_Flame_Height_Calculations_Sup1_SI.xls (click on Corner_Flame_Height)

FDTs Input Parameters:

- Fuel spill volume (V) = 5.7 liters
- Fuel Spill Area or Dike Area $(A_{dike}) = 0.9 \text{ m}^2$
- Select Fuel Type: **Diesel**

Results*

Fuel	Corner Fire Flame Height (H _{f(Corner)}) (m)	Junction Box Impingement
Diesel	6.3	Yes

*see spreadsheet on next page

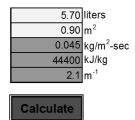
CHAPTER 4 ESTIMATING CORNER FIRE FLAME HEIGHT

Version 1805.1 (SI Units)

The following calculations estimate the corner fire flame height

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Fuel Type Selected.


All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 4.9-3

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Fuel Spill Volume (V)} \\ \mbox{Fuel Spill Area or Dike Area (A_{dike})} \\ \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \end{array}$

THERMAL PROPERTIES FOR

BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuel	m" (kg/m ² -sec)	$\Delta H_{c,eff}$ (kJ/kg)	kβ (m ⁻¹)	Diesel
Acetone	0.041	25,800	1.9	Scroll to desired fuel type then
Benzene	0.085	40,100	2.7	Click on selection
Benzene	0.048	44,700	3.6	
Butane	0.078	45,700	2.7	
Crude Oil	0.034	42,600	2.8	
Diesel	0.045	44,400	2.1	
Diethy Ether	0.085	34,200	0.7	
Dioxane	0.018	26,200	5.4	
Ethanol	0.015	26,800	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Gasoline	0.055	43,700	2.1	
Heptane	0.101	44,600	1.1	
Hexane	0.074	44,700	1.9	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Kerosene	0.039	43,200	3.5	
Lube Oil	0.039	46,000	0.7	
Methanol	0.017	20,000	100	
Silicon Transformer Fluid (561)	0.005	28,100	100	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
Xylene	0.09	40,800	1.4	
User Specified Value	Enter Value	Enter Value	Enter Value]
Reference: SFPE Handbook of I	Fire Protection Engineering	, 3 rd Edition, Page 3-26.		J

CHAPTER 4 ESTIMATING CORNER FIRE FLAME HEIGHT

Version 1805.1 (SI Units)

Heat Release Rate Calculation

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-25.

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where,

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- $\Delta H_{c,eff}$ = effective heat of combustion of fuel (kJ/kg)

A_{dike} = surface area of pool fire (area involved in vaporization) (m²)

 $k\beta$ = empirical constant (m⁻¹)

D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

NOTE: Liquids with relatively high flash point, like transformer oil, require localized heating to achieve ignition.

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where,

 A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.070 m

Heat Release Rate Calculation

Q = 1608.29 kW 1524.37 Btu/sec

CHAPTER 4 ESTIMATING CORNER FIRE FLAME HEIGHT

Version 1805.1 (SI Units)

ESTIMATING CORNER FIRE FLAME HEIGHT

Reference: Hesemi and Tokunaga, "Modeling of Turbulent Diffusion Flames and Fire Plumes for the Analysis of Fire Growth," Proceeding of the 21th National Heat Transfer Conference, American Society of Mechanical Engineers (ASME), 1983.

$H_{f(corner)} = 0.075 Q^{3/5}$

Where,

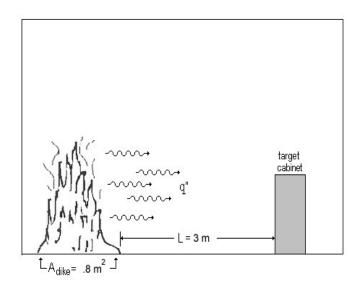
Q = heat release rate of the fire (kW)

$H_{f(corner)} = 0.075 Q^{3/5}$

Answer	H _{f(corner)} =	6.29 m	20.65 ft

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, and Hesemi and Tokunage, 1983. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.


Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

5.11 Problems

Example Problem 5.11-1

Problem Statement

A pool fire scenario arises from a breach (leak or rupture) in a transformer. This event allows the fuel contents of the transformer to spill and spread over the compartment floor. The compartment is very large and has a high ceiling (e.g., typical reactor building elevation of a BWR, turbine building open area). A pool fire ensues with a spill area of 0.8 m² on the concrete floor. Calculate the flame radiant heat flux to a target (cabinet) at ground level with no wind using: a) point source radiation model and b) solid flame radiation model. The distance between the fire source and the target edge is assumed to be 3.0 m.

Example Problem 5-1: Radiant Heat Flux from a Pool Fire to a Target Fuel

Solution

Purpose:

(1) Calculate the radiant heat flux from the pool fire to the target cabinet using the point source and solid flame radiation models.

Assumptions:

- (1) The pool is circular or nearly circular.
- (2) Radiation to the surroundings can be approximated as being isotropic or emanating from a point source (valid for point source radiation model only).
- (3) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1_SI.xls (click on Point Source and Solid Flame 1 for point source and solid flame analysis, respectively)

- FDT^s Input Parameters: (For both spreadsheets) Fuel Spill Area or Curb Area (A_{curb}) = 0.8 m² Distance between Fire Source and Target (L) = 3.0 m
 - Select Fuel Type: Transformer Oil, Hydrocarbon

Results*

Radiation Model	Radiant Heat Flux (\dot{q} ") (kW/m ²)
Point Source	1.4
Solid Flame	3.0
Solid Flame	

* see spreadsheet on next page

Version 1805.1 (SI Units)

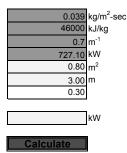
The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:


Example 5.11-1a

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \mbox{Empirical Constant (k)} \\ \mbox{Heat Release Rate (Q)} \\ \mbox{Heat Release Rate (Q)} \\ \mbox{Fuel Area or Dike Area (A_{dike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Radiative Fraction (χ_r)} \end{array}$

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
Fuei	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	$k\beta$ (m ⁻¹)	Transformer Oil, Hydrocarbon -
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire Pr	otection Engineering , 3 rd Ec	lition, 2002, Page 3-26.		-

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-272.

POINT SOURCE RADIATION MODEL

$$\mathbf{q''} = \mathbf{Q} \chi_r / \mathbf{4} \pi \mathbf{R}^2$$

Where

q" = incident radiative heat flux on the target (kW/m²)

Q = pool fire heat release rate (kW)

 χ r = radiative fraction

R = distance from center of the pool fire to edge of the target (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2 / 4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}'' \Delta \mathbf{H}_{c,eff} (\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}}) \mathbf{A}_{f}$$

Where

Q = pool fire heat release rate (kW)

- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_{c} = effective heat of combustion of fuel (kJ/kg)
- A_{f} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Distance from Center of the Fire to Edge of the Target Calculation

$$R = L+D/2$$

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION

$q'' = Q \chi_r / 4 \pi R^2$

Answer	q" =	1.41 kW/m ²	0.12 Btu/ft ² -sec	;
NOTE:	leuletiene ens besed en mineir	los developed in the CEDE Llosdheets	of Fire Destaction Engineering (
assumptions a interpreted by accuracy of th	and have inherent limitations.	The results of such calculations may or ach calculation in the spreadsheet has ns, comments, concerns and suggestic	r may not have reasonable pred been verified with the results of	 ⁴⁰ Edition, 2002. Calculations are based on certain ictive capabilities for a given situation and should only be hand calculation, there is no absolute guarantee of the spreadsheets, please send an email to
Prepared by:			Date:	Organization:
Checked by:			Date:	Organization:
Additional Info	ormation:			

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-1b

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \mbox{Empirical Constant (k)} \\ \mbox{Heat Release Rate (Q)} \\ \mbox{Fuel Area or Dike Area (A_{tike})$} \\ \mbox{Distance between Fire and Target (L)} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here ightarrow

0.039	kg/m ² -sec
46000	kJ/kg
0.7	m ⁻¹
727.10	kW
0.80	
3.00	m
	kW

Calculate

THERMAL PROPERTIES DATA

Fuel	Mass Burning Rate m" (kg/m ² -sec)	Heat of Combustion	Constant kβ (m ⁺)	Select Fuel Type		
	()	∆H _{c,eff} (kJ/kg)	1.	Transformer Oil, Hydrocarbon		
Methanol	0.017	20,000	100	Scroll to desired fuel type then		
Ethanol	0.015	26,800	100	Click on selection		
Butane	0.078	45,700	2.7			
Benzene	0.085	40,100	2.7			
Hexane	0.074	44,700	1.9			
Heptane	0.101	44,600	1.1			
Xylene	0.09	40,800	1.4			
Acetone	0.041	25,800	1.9			
Dioxane	0.018	26,200	5.4			
Diethy Ether	0.085	34,200	0.7			
Benzine	0.048	44,700	3.6			
Gasoline	0.055	43,700	2.1			
Kerosine	0.039	43,200	3.5			
Diesel	0.045	44,400	2.1			
JP-4	0.051	43,500	3.6			
JP-5	0.054	43,000	1.6			
Transformer Oil, Hydrocarbon	0.039	46,000	0.7			
561 Silicon Transformer Fluid	0.005	28,100	100			
Fuel Oil, Heavy	0.035	39,700	1.7			
Crude Oil	0.0335	42,600	2.8			
Lube Oil	0.039	46,000	0.7			
Douglas Fir Plywood	0.01082	10,900	100			
User Specified Value	Enter Value	Enter Value	Enter Value			

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

$$q'' = EF_{1->2}$$

Where

q" = incident radiative heat flux on the target (kW/m²)

E = emissive power of the pool fire flame (kW/m^2)

 $F_{1\rightarrow2}$ = view factor between target and the flame

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

$$D = \sqrt{(4A_{dike}/\pi)}$$

Where

 A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

1.01 m

D =

Emissive Power Calculation

E =	58 (10 ^{-0.00823 D})
	Where E = emissive power of the pool fire flame (kW/m²) D = diameter of the pool fire (m)
E =	56.90 kW/m ²

View Factor Calculation

E =

F _{1->2,H} =	$(B-1/S)/\pi(B^2-1)^{1/2} \tan^{-1} ((B+1) (S-1)/(B-1)(S+1))^{1/2} - (A-1/S)/(\pi(A^2-1)^{1/2}) \tan^{-1} ((A+1)(S-1)/(A-1)(S+1))^{1/2}$
F _{1->2,V} =	1/(πS) tan ⁻¹ (h/(S ² -1) ^{1/2})-(h/πS) tan ⁻¹ ((S-1)/(S+1)) ^{1/2} + Ah/πS(A ² -1) ^{1/2} tan ⁻¹ ((A+1)(S-1)/(A-1)(S+1)) ^{1/2}
A =	(h ² +S ² +1)/2S
B =	(1+S ²)/2S
S =	2R/D
h =	2H#D
F _{1->2,max} =	$\sqrt{(F_{1>2,H}^2 + F_{1>2,V}^2)}$

Where

F_{1->2,H} = horizontal view factor

 $F_{1\rightarrow 2,V}$ = vertical view factor E

- R = distance from center of the pool fire to edge of the target (m)
- H_f = height of the pool fire flame (m)
- D = pool fire diameter (m)

Version 1805.1 (SI Units)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

R = L+D/2 = 3.505 m

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}^{\mathsf{H}} \Delta \mathbf{H}_{\mathsf{c},\mathsf{eff}} \left(\mathbf{1} - \mathbf{e}^{\mathsf{k}\beta \mathsf{D}} \right) \mathbf{A}_{\mathsf{dike}}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (n²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

727.10 kW

Pool Fire Flame Height Calculation

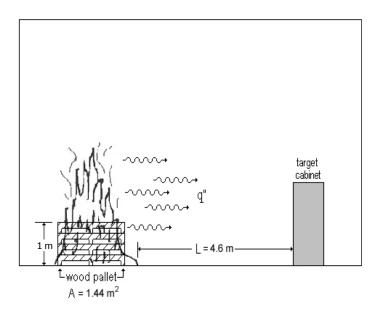
 $H_f = 0.235 Q^{2/5} - 1.02 D$

- Where
 - Hf = flame height (m)
 - Q = heat release rate of fire (kW)
 - D = fire diameter (m)

	H _f =	2.249 m				
S = 2R/D =	6.945					
h = 2H _f /D =	4.457					
A = (h ² +S ² +1)/2S =	4.975					
B = (1+S ²)/2S =	3.544					
		F _{H1}	F _{H2}	F _{H3}	F _{H4}	F _{1->2,H}
F _{1->2,H} =	0.016		0.318	0.858	0.316	0.815 0.016
F _{1->2,V} =	0.051	F _{V1}	F _{V2}	F _{V3}	F _{V4}	F _{1->2,V}
$F_{1-2, \text{ max}} = \sqrt{(F_{1-2,H}^2 + F_{1-2,V}^2)} =$	0.053		0.026	0.146	0.209	0.815 0.051

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer q" =	3.02 kW/m ²	0.27 Btu/ft ² -se	C
NOTE:			
The above calculations are based on principles de assumptions and have inherent limitations. The re	esults of such calculations may or may alculation in the spreadsheet has been mments, concerns and suggestions or	not have reasonable predictive verified with the results of hand	capabilities for a given situation and should only be d calculation, there is no absolute guarantee of the
		- . []	
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Information:			

Example Problem 5.11-2

Problem Statement

A transient combustible fire scenario may arise from burning wood pallets $1.2 \text{ m} \times 1.2 \text{ m} = 1.44 \text{ m}^2$, stacked 1 m high on the floor of a compartment with a very high ceiling. Calculate the flame radiant heat flux to a target (safety-related cabinet) at ground level with no wind, using the point source radiation model and the solid flame radiation model. The distance between the fire source and the target edge (L) is assumed to be 4.6 m.

Example Problem 5-2: Radiant Heat Flux from a Burning Pallet to a Target Fuel

Solution

Purpose:

(1) Calculate the radiant heat flux from the fire source to the target cabinet using the point source and solid flame radiation models.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) Radiation to the surroundings can be approximated as being isotropic or emanating from a point source (valid for point source radiation model only).
- (3) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

- (a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1_SI.xls
 (click on *Point Source* and *Solid Flame 1* for point source and solid flame analysis respectively)
- FDT^s Inputs: (For both spreadsheets)
 - -Fuel Spill Area or Curb Area $(A_{curb}) = 1.44 \text{ m}^2$ -Distance between Fire Source and Target (L) = 4.6 m
 - -Select Fuel Type: Douglas Fir Plywood

Results*

Radiant Heat Flux (<i>q</i> ^{''}) (kW/m ²)
0.15
0.44

* see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:


Example 5.11-2a

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \\ \mbox{Heat Release Rate } (Q) \\ \mbox{Fuel Area or Dike Area } (A_{dike}) \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Radiative Fraction } (\chi_{r}) \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
rdei	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	$k\beta$ (m ⁻¹)	Douglas Fir Plywood 🚽
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire Pro	otection Engineering, 3 rd Ec	lition, 2002, Page 3-26.		-

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-272.

POINT SOURCE RADIATION MODEL

$$\mathbf{q''} = \mathbf{Q} \chi_r / \mathbf{4} \pi \mathbf{R}^2$$

Where

q" = incident radiative heat flux on the target (kW/m²)

Q = pool fire heat release rate (kW)

 χ r = radiative fraction

R = distance from center of the pool fire to edge of the target (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} (\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}}) \mathbf{A}_{f}$$

Where

Q = pool fire heat release rate (kW)

- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{f} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Distance from Center of the Fire to Edge of the Target Calculation

$$R = L+D/2$$

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION

$q'' = Q \chi_r / 4 \pi R^2$

Answer	q" =	0.15 kW/m ²	0.01 Btu/ft ² -sec	
NOTE				
assumptions interpreted by accuracy of th	and have inherent limitations. T / an informed user. Although ea	he results of such calculations may or r ich calculation in the spreadsheet has b s, comments, concerns and suggestion	nay not have reasonable predic een verified with the results of h	Edition, 2002. Calculations are based on certain tive capabilities for a given situation and should only be hand calculation, there is no absolute guarantee of the spreadsheets, please send an email to
Prepared by			Date:	Organization:
Checked by:			Date:	Organization:
Additional Info	ormation:			

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-2b

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \mbox{Empirical Constant (k)} \\ \mbox{Heat Release Rate (Q)} \\ \mbox{Fuel Area or Dike Area (A_{tike})$} \\ \mbox{Distance between Fire and Target (L)} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

	kg/m ² -sec
10900	kJ/kg
100	m ⁻¹
169.83	kW
1.44	m²
4.60	m
	kW

Calculate

THERMAL PROPERTIES DATA

Fuel	Mass Burning Rate m" (kg/m ² -sec)	Heat of Combustion	Constant kβ (m ⁺)	Select Fuel Type
	(3)	∆H _{c,eff} (kJ/kg)	, , ,	Douglas Fir Plywood
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-26.

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

$$q'' = EF_{1->2}$$

Where

q" = incident radiative heat flux on the target (kW/m²)

E = emissive power of the pool fire flame (kW/m^2)

 $F_{1\rightarrow2}$ = view factor between target and the flame

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

$$D = \sqrt{(4A_{dike}/\pi)}$$

Where

 A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

D =

1.35 m

Emissive Power Calculation

E =	58 (10 ^{-0.00823 D})		
	Where E = emissive power of the pool fire flame (kW/m ²) D = diameter of the pool fire (m)		
E =	56.53 kW/m ²		

View Factor Calculation

F _{1->2,H} =	$(B-1/S)/\pi(B^2-1)^{1/2} \tan^{-1} ((B+1) (S-1)/(B-1)(S+1))^{1/2} - (A-1/S)/(\pi(A^2-1)^{1/2}) \tan^{-1} ((A+1)(S-1)/(A-1)(S+1))^{1/2}$
F _{1->2,V} =	$1/(\pi S) \tan^{-1}(h/(S^2-1)^{1/2})-(h/\pi S) \tan^{-1}((S-1)/(S+1))^{1/2} + Ah/\pi S(A^2-1)^{1/2} \tan^{-1}((A+1)(S-1)/(A-1)(S+1))^{1/2}$
A =	(h ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h =	2H _# /D
F _{1->2,max} =	$\sqrt{(F_{1>2,H}^2 + F_{1>2,V}^2)}$
	1.4

Where

F_{1->2,H} = horizontal view factor

F_{1->2,V} = vertical view factor E

- R = distance from center of the pool fire to edge of the target (m)
- H_f = height of the pool fire flame (m)
- D = pool fire diameter (m)

Version 1805.1 (SI Units)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

R = L + D/2 =5.277 m

Heat Release Rate Calculation

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (n²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

169.83 kW

Pool Fire Flame Height Calculation

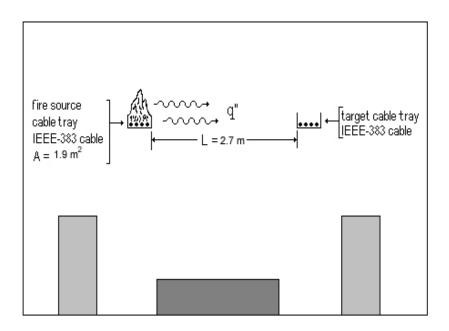
 $H_f = 0.235 Q^{2/5} - 1.02 D$

- Where
 - Hf = flame height (m) Q = heat release rate of fire (kW)
 - D = fire diameter (m)

	H _f =	0.451 m				
S = 2R/D =	7.794					
h = 2H _f /D =	0.667					
A = (h ² +S ² +1)/2S =	3.990					
B = (1+S ²)/2S =	3.961					
		F _{H1}	F _{H2}	F _{H3}	F _{H4}	F _{1->2,H}
F _{1->2,H} =	0.000		0.318	0.850	0.318	0.849 0.000
F _{1->2,V} =	0.008	F _{V1}	F _{V2}	F _{V3}	F _{V4}	F _{1->2,V}
$F_{1-2, max} = \sqrt{(F_{1-2,H}^2 + F_{1-2,V}^2)} =$	0.008		0.004	0.020	0.028	0.849 0.008

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer	q" =	0.44 kW/m ²	0.04 Btu/ft ² -sec	
NOTE:				
assumptions interpreted b accuracy of t	and have inherent limitations. The results	of such calculations may or may nation in the spreadsheet has been v	ot have reasonable predictive of erified with the results of hand	tion, 2002. Calculations are based on certain capabilities for a given situation and should only be calculation, there is no absolute guarantee of the dsheets, please send an email to
Prepared by:			Date:	Organization:
Checked by:			Date:	Organization:
Additional In	formation:			

Example Problem 5.11-3

Problem Statement

A fire scenario may arise from a horizontal cable tray burning in a very large compartment. The cables in the tray are IEEE-383 unqualified and made of PE/PVC insulation material (assume that the exposed area of the cable is 1.9 m²). Another safety-related cable tray also filled with IEEE-383 unqualified made of PE/PVC insulation material is located at a radial distance (L) of 2.7 m from the fire source. Calculate the flame radiant heat flux to a target (safety-related cable tray) using the point source radiation model and solid flame radiation model. Is this heat flux sufficient to ignite the cable tray?

Example Problem 5-3: Radiant Heat Flux from a Burning Cable Tray to a Target Fuel

Solution

Purpose:

- (1) Calculate the radiant heat flux from the burning cable tray to the target cable tray using the point source and solid flame radiation models.
- (2) Determine if the heat flux is sufficient to ignite the cable tray.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) Radiation to the surroundings can be approximated as being isotropic or emanating from a point source (point source radiation model only).
- (3) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1_SI.xls
 (click on *Point Source* and *Solid Flame 1* for point source and solid flame analysis, respectively).

FDT^s Inputs: (For both spreadsheets)

- Mass Burning Rate of Fuel $(\dot{m''})$ = 0.0044 kg/m²-sec
- Effective Heat of Combustion of Fuel ($\Delta H_{c,eff}$) = 25,100 kJ/kg
- Empirical Constant (k β) = 100 m⁻¹ (use this if actual value is unknown)
- Fuel Spill Area or Curb Area (A_{curb}) = 1.9 m²
- Distance between Fire Source and Target (L) = 2.7 m

Note: Since the insulation material (PE /PVC) is not available in the thermal properties data of the spreadsheet, we have to input the mass burning rate and effective heat of combustion in the spreadsheet. Values of cable materials properties are available in Table 3-4. Select **User-Specified Value**, and enter the respective values.

Results*

Radiation Model	Radiant Heat Flux (\dot{q} ") (kW/m²)			
Point Source	0.4			
Solid Flame	1.1			

* see spreadsheet on next page

Version 1805.1 (SI Units)

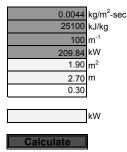
The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:


Example 5.11-3a

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \\ \mbox{Heat Release Rate } (Q) \\ \mbox{Fuel Area or Dike Area } (A_{dike}) \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Radiative Fraction } (\chi_{r}) \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate	Heat of Combustion	Empirical Constant	Select Fuel Type
ruei	m" (kg/m ² -sec)	∆H _{c,eff} (kJ/kg)	$k\beta (m^{-1})$	User Specified Value
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire Pro	otection Engineering , 3 rd Ec	lition, 2002, Page 3-26.		-

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-272.

POINT SOURCE RADIATION MODEL

$$q'' = Q \chi_r / 4 \pi R^2$$

Where

q" = incident radiative heat flux on the target (kW/m²)

Q = pool fire heat release rate (kW)

 χ r = radiative fraction

R = distance from center of the pool fire to edge of the target (m)

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} (\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}}) \mathbf{A}_{f}$$

Where

Q = pool fire heat release rate (kW)

- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{f} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Distance from Center of the Fire to Edge of the Target Calculation

$$R = L+D/2$$

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION

$q'' = Q \chi_r / 4 \pi R^2$

Answer	q" =	0.41 kW/m ²	0.04 Btu/ft ² -sec	
NOTE:				
The above ca assumptions interpreted by accuracy of th	and have inherent limitations. Th	e results of such calculations may or m h calculation in the spreadsheet has be , comments, concerns and suggestions	hay not have reasonable predict een verified with the results of h	Edition, 2002. Calculations are based on certain ive capabilities for a given situation and should only be and calculation, there is no absolute guarantee of the preadsheets, please send an email to
Prepared by			Date:	Organization:
Checked by:			Date:	Organization:
Additional Info	ormation:			

Version 1805.1 (SI Units)

-

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-3b

INPUT PARAMETERS

 $\begin{array}{l} \text{Mass Burning Rate of Fuel (m")} \\ \text{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \text{Empirical Constant (k)} \\ \text{Heat Release Rate (Q)} \\ \text{Fuel Area or Dike Area (A_{tike})$} \\ \text{Distance between Fire and Target (L)} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

0.0044	kg/m ² -sec
25100	kJ/kg
100	
209.84	
1.90	m²
2.70	m
	kW

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS Mass Burning Rate Heat of Combustion Constant Select Fuel Type Fuel m" (kg/m²-sec) ∆H_{c.eff} (kJ/kg) kβ (m') User Specified Value Methanol 0.017 20,000 100 Scroll to desired fuel type then 26,800 Click on selection Ethanol 0.015 100 0.078 45,700 Butane 2.7 Benzene 0.085 40,100 2.7 0.074 44,700 Hexane 1.9 0.101 44,600 1.1 Heptane 0.09 40,800 Xylene 1.4 Acetone 0.041 25,800 1.9 Dioxane 0.018 26,200 5.4 Diethy Ether 0.085 34,200 0.7 Benzine 0.048 44,700 3.6 Gasoline 0.055 43.700 2.1 Kerosine 0.039 43,200 3.5 0 045 44 400 Diesel 21 JP-4 0.051 43,500 3.6 JP-5 0.054 43.000 1.6 Transformer Oil, Hydrocarbon 0.039 46,000 0.7 561 Silicon Transformer Fluid 0.005 28,100 100 Fuel Oil, Heavy 0.035 39,700 1.7 Crude Oil 0.0335 42,600 2.8 Lube Oil 0.039 46,000 0.7 Douglas Fir Plywood 0.01082 10,900 100 User Specified Value Enter Value Enter Value Enter Value Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-26.

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering , 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

$$q'' = EF_{1->2}$$

Where

q" = incident radiative heat flux on the target (kW/m²)

E = emissive power of the pool fire flame (kW/m^2)

 $F_{1\rightarrow 2}$ = view factor between target and the flame

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$

$$\mathsf{D} = \sqrt{(4\mathsf{A}_{\mathsf{dike}}/\pi)}$$

Where

 A_{dike} = surface area of pool fire (m²) D = pool fire diamter (m)

1.56 m

D =

Emissive Power Calculation

E =	58 (10 ^{-0.00823 D})
	Where E = emissive power of the pool fire flame (kW/m²) D = diameter of the pool fire (m)
E =	56.32 kW/m ²

View Factor Calculation

F _{1->2,H} =	$(B-1/S)/\pi(B^2-1)^{1/2} \tan^{-1} ((B+1) (S-1)/(B-1)(S+1))^{1/2} - (A-1/S)/(\pi(A^2-1)^{1/2}) \tan^{-1} ((A+1)(S-1)/(A-1)(S+1))^{1/2}$
F _{1->2,V} =	1/(πS) tan ⁻¹ (h/(S ² -1) ^{1/2})-(h/πS) tan ⁻¹ ((S-1)/(S+1)) ^{1/2} + Ah/πS(A ² -1) ^{1/2} tan ⁻¹ ((A+1)(S-1)/(A-1)(S+1)) ^{1/2}
A =	(h ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h =	2H∉D
F _{1->2,max} =	$\sqrt{(F_{1>2,H}^2 + F_{1>2,V}^2)}$

Where

 $F_{1\rightarrow 2,H}$ = horizontal view factor

 $F_{1\rightarrow2,V}$ = vertical view factor $F_{1\rightarrow2,W}$ = maximum view factor

- R = distance from center of the pool fire to edge of the target (m)
- H_f = height of the pool fire flame (m)
- D = pool fire diameter (m)

Version 1805.1 (SI Units)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

R = L+D/2 = 3.478 m

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (n²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

209.84 kW

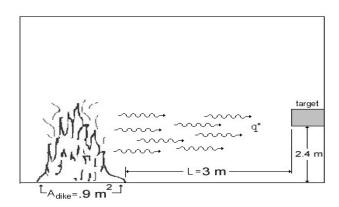
Pool Fire Flame Height Calculation

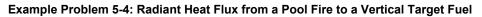
- Where
 - Hf = flame height (m) Q = heat release rate of fire (kW)
 - D = fire diameter (m)
 - D = fire diameter (m)

	H _f =	0.408 m				
S = 2R/D =	4.472					
$h = 2H_f/D =$	0.525					
A = (h ² +S ² +1)/2S =	2.379					
B = (1+S ²)/2S =	2.348					
		F _{H1}	F _{H2}	F _{H3}	F _{H4}	F _{1->2,H}
F _{1->2,H} =	0.001		0.318	0.898	0.318	0.895 0.001
F _{1->2,V} =	0.020	F _{V1}	F _{V2}	F _{v3}	F_{V4}	F _{1->2,V}
$F_{1-2, \text{ max}} = \sqrt{F_{1-2,H}^2 + F_{1-2,V}^2} =$	0.020		0.009	0.025	0.041	0.895 0.020

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}


Answer q" =	1.14 kW/m ²	0.10 Btu/ft ² -se	c
NOTE:			
The above calculations are based on principles develor assumptions and have inherent limitations. The result interpreted by an informed user. Although each calcul accuracy of these calculations. Any questions, commo David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.	s of such calculations may or may lation in the spreadsheet has been	not have reasonable predictive verified with the results of han	e capabilities for a given situation and should only be d calculation, there is no absolute guarantee of the
Prepared by:]	Date:	Organization:
		240.	
Checked by:		Date:	Organization:
Additional Information:			

Example Problem 5.11-4

Problem Statement

A pool fire scenario may arise from a leak in a pump. This event allows the lubricating oil to spill and spread over the compartment floor. A pool fire ensues with a spill of 0.9 m² in a compartment with a concrete floor. The distance (L) between the pool fire and the target edge is assumed to be 3 m. Calculate the flame radiant heat flux to a vertical target (safety-related) 2.4 m high above the floor with no wind, using the solid flame radiation model. If the vertical target contains IEEE-383 unqualified cables $(\dot{q}_{critical}^{"} = 5 \text{ kW/m}^2)$, could there be cable failure in this fire scenario?

Solution

Purpose:

- (1) Calculate the radiant heat flux from the pool fire to the vertical target using the solid flame radiation model.
- (2) Determine if the IEEE-383 unqualified cables are damaged.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1_SI.xls (click on Solid Flame 2)

FDT^s Inputs:

- Fuel Spill Area or Curb Area (A_{curb}) = 0.9 m²
- Distance between Fire Source and Target (L) = 3 m
- Vertical Distance of Target from Ground $(H_1 = H_{f1}) = 2.4 \text{ m}$
- Select Fuel Type: Lube Oil

Results*

Radiation Model	Radiant Heat Flux $(\dot{q''})$ (kW/m ²)	Cable Failure
Solid Flame	3.1	No, $\dot{q}_r'' < \dot{q}_{critical}''$

* see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

nd secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-4

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel } (\Delta H_{c,eff}) \\ \mbox{Empirical Constant } (k\beta) \\ \mbox{Heat Release Rate } (Q) \\ \mbox{Fuel Area or Dike Area } (A_{tike}) \\ \mbox{Distance between Fire and Target } (L) \\ \mbox{Vertical Distance of Target from Ground } (H_1 = H_{ff}) \\ \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

0.039 kg/m²-sec 46000 kJ/kg 0.7 m⁻¹ 851.41 kW 0.90 m² 3.00 m 2.40 m

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate m" (kg/m ² -sec)	Heat of Combustion ∆H _{c.eff} (kJ/kg)	$\begin{array}{l} \text{Empirical Constant} \\ k\beta \left(m^{-1} \right) \end{array}$	Select Fuel Type
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

Where $\begin{array}{l} q^{"} = \mbox{ incident radiative heat flux on the target (kW/nf^2)} \\ E = \mbox{ emissive power of the pool fire flame (kW/m^2)} \\ F_{1,>2} = \mbox{ view factor between target and the flame} \end{array}$

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.07 m

Emissive Power Calculation

E = 58 (10^{-0.00823 D})

Where

E = emissive power of the pool fire flame (kW/m²) D = diameter of the pool fire (m)

$$E = 56.84 (kW/m^2)$$

View Factor Calculation

F _{1->2,V1} =	$1/(\pi S) tan^{-1} (h_1/(S^2-1)^{1/2}) - (h_1/\pi S) tan^{-1} ((S-1)/(S+1))^{1/2} + A_1 h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1} ((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} + A_1 h_1/\pi S(A_1-1)^{1/2} + A_$
F _{1->2,V2} =	$1/(\pi S) tan^{-1}(h_2/(S^2-1)^{1/2}) - (h_2/\pi S) tan^{-1}((S-1)/(S+1))^{1/2} + A_2 h_2/\pi S(A_2^{-2}-1)^{1/2} tan^{-1}((A_2+1)(S-1)/(A_2-1)(S+1))^{1/2} + A_2 h_2/\pi S(A_2^{-2}-1)^{1/2} tan^{-1}(A_2+1)(S+1)^{1/2} tan^{-1}(A_2+1)(S+1)^{1/2} tan^{-1}(A_2+1)(S+1)^{1/2} tan^{-1}(A_2+1)(A_2+1)(S+1)^{1/2} tan^{-1}(A_2+1)(A_2+1)(S+1)^{1/2} tan^{-1}(A_2+1)(A_2+$
A ₁ =	(h ₁ ² +S ² +1)/2S
A ₂ =	(h ₂ ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h ₁ =	2H _{f1} /D
h ₂ =	2H _{f2} /D
F _{1->2,V} =	F _{1->2,V1} + F _{1->2,V2}

Where

 $F_{1\rightarrow 2,V}$ = total vertical view factor

R = distance from center of the pool fire to edge of the target (m)

 H_f = height of the pool fire flame (m)

D = pool fire diameter (m)

Version 1805.1 (SI Units)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

R = L+D/2 = 3.535 m

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

851.41 kW

Pool Fire Flame Height Calculation

$H_f = 0.235 Q^{2/5} - 1.02 D$

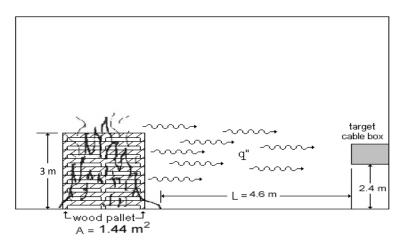
Where

- H_f = flame height (m)
- Q = heat release rate of fire (kW)
- D = fire diameter (m)

	H _f =	2.401 m			
S = 2R/D =		6.605			
h ₁ = 2H _{f1} /D =		4.484			
$h_2 = 2H_{f2}/D =$	$2(H_{f}-H_{f1})/D =$	0.001			
$A_1 = (h_1^2 + S^2 + 1)/2S =$		4.900			
$A_2 = (h_2^2 + S^2 + 1)/2S =$		3.378			
B = (1+S ²)/2S =		3.378			
		F _{v1}	F _{V2}	F _{V3}	F _{V4} F _{1->2,V1}
F _{1->2,V1} =	0.055	0.02	9	0.153	0.221 0.813 0.055
F _{1->2,V2} =	0.000	F _{V1}	F _{V2}	F _{V3}	F _{V4} F _{1->2,V2}
$F_{1 \rightarrow 2, V} = F_{1 \rightarrow 2, V1} + F_{1 \rightarrow 2, V2} =$	0.055	0.00	0	0.000	0.000 0.861 0.000

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer q" =	3.13 kW/m ²	0.28 Btu/ft ² -sec	
NOTE:			
assumptions and have inherent limitat interpreted by an informed user. Altho	ough each calculation in the spreadsheet has b	nay not have reasonable predictive een verified with the results of hand	ition, 2002. Calculations are based on certain e capabilities for a given situation and should only be d calculation, there is no absolute guarantee of the accurac , please send an email to David.Stroup@nrc.gov or
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Information:			

Example Problem 5.11-5

Problem Statement

A transient combustible fire scenario may arise from burning wood pallets $1.2 \text{ m} \times 1.2 \text{ m} = 1.44 \text{ m}^2$ stacked 3 m high on the floor of a compartment. Calculate the flame radiant heat flux from exposure fire to a vertical target (safety-related electrical junction box) located 2.4 m high above the floor, with no wind, using the solid flame radiation model. The distance (L) between the transient fire and the target edge is assumed to be 4.6 m.

Solution

Purpose:

(1) Calculate the radiant heat flux from the burning pallet to the vertical target fuel using the solid flame radiation model.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1_Heat_Flux_Calculations_Wind_Free_Sup1_SI.xls (click on Solid Flame 2)

FDT^s Inputs:

- Fuel Spill Area or Curb Area $(A_{curb}) = 1.44 \text{ m}^2$
- Distance between Fire Source and Target (L) = 4.6 m
- Vertical Distance of Target from Ground (H₁ = H_{f1}) = 2.4 m
- Select Fuel Type: Douglas Fir Plywood

Results*

Radiation Model	Radiant Heat Flux (<i>q</i> '') (kW/m ²)
Solid Flame	0.30

* see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

nd secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-5

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \mbox{Empirical Constant (k)} \\ \mbox{Heat Release Rate (Q)} \\ \mbox{Heat Release Rate (Q)} \\ \mbox{Fuel Area or Dike Area (A_{tike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Vertical Distance of Target from Ground ($H_1 = H_{ff})} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

0.01082	kg/m ² -sec
10900	kJ/kg
100	m ⁻¹
169.83	
1.44	m²
4.60	
2.40	m
	kW

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate m" (kg/m ² -sec)	Heat of Combustion ∆H _{c.eff} (kJ/kg)	Empirical Constant $k\beta (m^{-1})$	Select Fuel Type Douglas Fir Plywood
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire Prote	ection Engineering, 3rd Edition	n, 2002, Page 3-26.		

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

Where $\begin{array}{l} q^{"} = \mbox{ incident radiative heat flux on the target (kW/nf^2)} \\ E = \mbox{ emissive power of the pool fire flame (kW/m^2)} \\ F_{1,>2} = \mbox{ view factor between target and the flame} \end{array}$

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.35 m

Emissive Power Calculation

E = 58 (10^{-0.00823 D})

E =emissive power of the pool fire flame (kW/m²)D =diameter of the pool fire (m)

$$E = 56.53 (kW/m^2)$$

View Factor Calculation

F _{1->2,V1} =	$1/(\pi S) tan^{-1}(h_1/(S^2-1)^{1/2}) - (h_1/\pi S) tan^{-1}((S-1)/(S+1))^{1/2} + A_1h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} + A_1h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1}(A_1-1)(S+1))^{1/2} + A_1h_1/\pi S(A_1-1)^{1/2} tan^{-1}(A_1-1)(S+1))^{1/2} + A_1h_1/\pi S(A_1-1)^{1/2} tan^{-1}(A_1-1)(S+1))^{1/2} tan^{-1}(A_1-1)(A_1-1)(A_1-1)^{1/2} tan^{-1}(A_1-1)(A_1-1)^{1/2} tan^{-1}(A_1-1)^{1/2} tan^{-1}(A_1-1)(A_1-1)(A_1-1)^{1/2} tan^{-1}(A_1-1)^{1/2} ta$
F _{1->2,V2} =	$1/(\pi S) tan^{-1}(h_2/(S^2-1)^{1/2}) - (h_2/\pi S) tan^{-1}((S-1)/(S+1))^{1/2} + A_2h_2/\pi S(A_2^{-2}-1)^{1/2} tan^{-1}((A_2+1)(S-1)/(A_2-1)(S+1))^{1/2} tan^{-1}((A_2+1)(S-1)/(A_2-1)(S+1))^{1/2} tan^{-1}((A_2+1)(S-1)/(A_2-1)(S+1))^{1/2} tan^{-1}((A_2+1)(S+1)/(A_2-1)(S+1))^{1/2} tan^{-1}((A_2+1)(S+1)/(A_2-1))^{1/2} tan^{-1}((A_2+1)(A_2-1)/(A_2-1))^{1/2} tan^{-1}((A_2+1)(A_2-1)/(A_2-1))^{1/2} tan^{-1}((A_2+1)(A_2-1)/(A_2-1))^{1/2} tan^{-1}((A_2+1)(A_2-1)/(A_2-1))^{1/2} tan^{-1}((A_2+1)(A_2-1)/(A_2-1))^{1/2} tan^{-1}((A_2+1)(A_2-1)/(A_2-1))^{1/2} tan^{-1}((A_2+1)(A_2-1)/(A_2-1))^{1/2} tan^{-1}((A_2+1)(A_2-1))^{1/2} tan^{-1}((A_2-1)(A_2-1))^{1/2} tan^{-1}((A_$
A ₁ =	(h ₁ ² +S ² +1)/2S
A ₂ =	(h ₂ ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h ₁ =	2H _{f1} /D
h ₂ =	2H _{f2} /D
F _{1->2,V} =	F _{1>2,V1} + F _{1>2,V2}

Where

 $F_{1\rightarrow 2,V}$ = total vertical view factor

 ${\sf R}$ = distance from center of the pool fire to edge of the target (m)

 H_f = height of the pool fire flame (m)

D = pool fire diameter (m)

Version 1805.1 (SI Units)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

Heat Release Rate Calculation

$$\mathbf{Q} = \mathbf{m}^{"} \Delta \mathbf{H}_{c,eff} \left(\mathbf{1} - \mathbf{e}^{-\mathbf{k}\beta \mathbf{D}} \right) \mathbf{A}_{dike}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

169.83 kW

Pool Fire Flame Height Calculation

$H_f = 0.235 Q^{2/5}$ -1.02 D

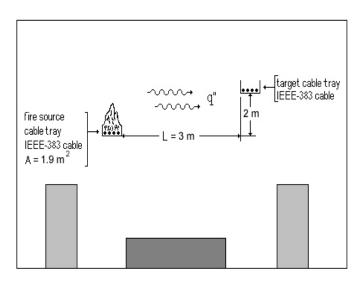
Where

- H_f = flame height (m)
- Q = heat release rate of fire (kW)
- D = fire diameter (m)

	H _f =	0.451 m		
S = 2R/D =		7.794		
h ₁ = 2H _{f1} /D =		3.545		
$h_2 = 2H_{f2}/D =$	$2(H_{f}-H_{f1})/D =$	-2.878		
A ₁ = (h ₁ ² +S ² +1)/2S =		4.767		
$A_2 = (h_2^2 + S^2 + 1)/2S =$		4.493		
B = (1+S ²)/2S =		3.961		
		F _{V1}	F _{v2} F _{v3}	F _{V4} F _{1->2,V1}
F _{1->2,V1} =	0.036	0.018	0.104	0.148 0.827 0.036
F _{1->2,V2} =	-0.030	F _{V1}	F _{v2} F _{v3}	F _{V4} F _{1->2,V2}
$F_{1->2, V} = F_{1->2,V1} + F_{1->2,V2} =$	0.005	-0.015	-0.085	-0.121 0.834 -0.030

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION


q" = EF_{1->2}

Answer q" =	0.30 kW/m ²	0.03 Btu/ft ² -sec	
NOTE:			
The above calculations are based on principles develop assumptions and have inherent limitations. The results interpreted by an informed user. Although each calcula of these calculations. Any questions, comments, conce Naeem.lqbal@nrc.gov.	of such calculations may or ma tion in the spreadsheet has bee	y not have reasonable predictive capabi on verified with the results of hand calcul	lities for a given situation and should only be ation, there is no absolute guarantee of the accurac
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Information:			

Example Problem 5.11-6

Problem Statement

A fire scenario may arise from a horizontal cable tray burning in a very large compartment. The cables in the tray are IEEE-383 unqualified $(\dot{q}_{critical}^{"} = 5 \text{ kW/m}^2)$ and made of XPE/FRXPE insulation material (assume that the exposed area of the cable is 1.9 m². A safety-related cable tray is also filled with IEEE-383 qualified $(\dot{q}_{critical}^{"} = 10 \text{ kW/m}^2)$ made of XLPE insulation material located at a radial distance (L) of 3 m from the fire source and 2 m above the fire source. Calculate the flame radiant heat flux to a target (safety-related cable tray) using the solid flame radiation model. Is the IEEE-383 qualified cable tray damaged?

Example Problem 5-6: Radiant Heat Flux from a Burning Cable Tray to a Vertical Target Fuel

Solution

Purpose:

- (1) Calculate the radiant heat flux from the burning cable tray to the vertical target cable tray using the solid flame radiation model.
- (2) Determine if the IEEE-383 cable tray (target) is damaged.

Assumptions:

- (1) The fire source will be nearly circular.
- (2) The correlation for solid flame radiation model is suitable for most fuels.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 05.1 Heat Flux Calculations Wind Free Sup1 SI.xls (click on Solid Flame 2)

FDT^s Inputs:

- Mass Burning Rate of Fuel (\dot{m} ") = 0.0037 kg/m²-sec
- Effective Heat of Com bustion of Fuel ($\Delta H_{c,eff}$) = 28,300 kJ/kg Fuel Spill Area or Curb Area (A_{curb}) = 1.9 m²
- Distance between Fire Source and Target (L) = 3 m
- Vertical Distance of Target from Ground $(H_1 = H_{f1}) = 2 \text{ m}$

Note: Since the insulation material (XPE /FRXPE) is not available in the thermal properties data of the spreadsheet, we have to input the mass burning rate and effective heat of combustion in the spreadsheet. Values of cable materials properties are available in Table 3-4. Select **User-Specified Value**, and enter the \dot{m} " and Fuel $\Delta H_{c.eff}$ values from Table 3-4.

Results*

Radiation Model	Radiant Heat Flux (<i>q</i> ^{''}) (kW/m ²)	Cable Failure
Solid Flame	0.60	No, $\dot{q}_r^{\prime\prime} < < \dot{q}_{critical}^{\prime\prime}$

* see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

nd secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 5.11-6

INPUT PARAMETERS

 $\begin{array}{l} \mbox{Mass Burning Rate of Fuel (m")} \\ \mbox{Effective Heat of Combustion of Fuel (ΔH_{c,eff}$)$} \\ \mbox{Empirical Constant (k)} \\ \mbox{Heat Release Rate (Q)} \\ \mbox{Heat Release Rate (Q)} \\ \mbox{Fuel Area or Dike Area (A_{tike})$} \\ \mbox{Distance between Fire and Target (L)} \\ \mbox{Vertical Distance of Target from Ground ($H_1 = H_{ff})} \end{array}$

OPTIONAL CALCULATION FOR GIVEN HEAT RELEASE RATE

Select "User Specified Value" from Fuel Type Menu and Enter Your HRR here \rightarrow

0.0037	kg/m ² -sec kJ/kg
28300	kJ/kg
100	m ⁻¹
198.95	kW
1.90	m²
2.70	
1.80	m
	kW

Calculate

THERMAL PROPERTIES DATA

BURNING RATE DATA FOR FUELS

Fuel	Mass Burning Rate m" (kg/m ² -sec)	Heat of Combustion ∆H _{c.eff} (kJ/kg)	Empirical Constant $k\beta (m^{-1})$	Select Fuel Type User Specified Value
Methanol	0.017	20,000	100	Scroll to desired fuel type then
Ethanol	0.015	26,800	100	Click on selection
Butane	0.078	45,700	2.7	
Benzene	0.085	40,100	2.7	
Hexane	0.074	44,700	1.9	
Heptane	0.101	44,600	1.1	
Xylene	0.09	40,800	1.4	
Acetone	0.041	25,800	1.9	
Dioxane	0.018	26,200	5.4	
Diethy Ether	0.085	34,200	0.7	
Benzine	0.048	44,700	3.6	
Gasoline	0.055	43,700	2.1	
Kerosine	0.039	43,200	3.5	
Diesel	0.045	44,400	2.1	
JP-4	0.051	43,500	3.6	
JP-5	0.054	43,000	1.6	
Transformer Oil, Hydrocarbon	0.039	46,000	0.7	
561 Silicon Transformer Fluid	0.005	28,100	100	
Fuel Oil, Heavy	0.035	39,700	1.7	
Crude Oil	0.0335	42,600	2.8	
Lube Oil	0.039	46,000	0.7	
Douglas Fir Plywood	0.01082	10,900	100	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire Prote	ection Engineering, 3rd Edition	n, 2002, Page 3-26.		

Version 1805.1 (SI Units)

ESTIMATING RADIATIVE HEAT FLUX TO A TARGET FUEL

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-276.

SOLID FLAME RADIATION MODEL

Where q" = incident radiative heat flux on the target (kW/m²) E = emissive power of the pool fire flame (kW/m^2) $F_{1>2}$ = view factor between target and the flame

Pool Fire Diameter Calculation

$$A_{dike} = \pi D^2/4$$
$$D = \sqrt{(4A_{dike}/\pi)}$$

Where A_{dike} = surface area of pool fire (m²) D = pool fire diameter (m)

D = 1.56 m

Emissive Power Calculation

E = 58 (10^{-0.00823 D})

Where

E =

emissive power of the pool fire flame (kW/m²) D = diameter of the pool fire (m)

$$E = 56.32 (kW/m^2)$$

View Factor Calculation

F _{1->2,V1} =	$1/(\pi S) tan^{-1}(h_1/(S^2-1)^{1/2}) - (h_1/\pi S) tan^{-1}((S-1)/(S+1))^{1/2} + A_1h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1}((A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} + A_1h_1/\pi S(A_1^{-2}-1)^{1/2} tan^{-1}(A_1+1)(S-1)/(A_1-1)(S+1))^{1/2} + A_1h_1/\pi S(A_1+1)(S+1)^{1/2} + A_1h_1/\pi S(A_1+1)(S+1)^{1/2} + A_1h_1/\pi S(A_1+1)(S+1)^{1/2} + A_1h_1/\pi S(A_1+1)(S+1))^{1/2} + A_1h_1/\pi S(A_1+1)(S+1)(S+1)^{1/2} + A_1h_1/\pi S(A_1+1)(S+1)^{1/2} $
F _{1->2,V2} =	$1/(\pi S) \tan^{-1}(h_2/(S^2-1)^{1/2}) - (h_2/\pi S) \tan^{-1}((S-1)/(S+1))^{1/2} + A_2h_2/\pi S(A_2^{-2}-1)^{1/2} \tan^{-1}((A_2+1)(S-1)/(A_2-1)(S+1))^{1/2} + A_2h_2/\pi S(A_2^{-2}-1)^{1/2} + A_2h_2/\pi$
A ₁ =	(h ₁ ² +S ² +1)/2S
A ₂ =	(h ₂ ² +S ² +1)/2S
в =	(1+S ²)/2S
S =	2R/D
h ₁ =	2H _{ft} /D
h ₂ =	2H _{f2} /D
F _{1->2,V} =	F _{1>2,V1} + F _{1>2,V2}

Where

F_{1->2,V} = total vertical view factor

R = distance from center of the pool fire to edge of the target (m)

 H_f = height of the pool fire flame (m)

D = pool fire diameter (m)

Version 1805.1 (SI Units)

Distance from Center of the Pool Fire to Edge of the Target Calculation

R = L + D/2

Where

R = distance from center of the pool fire to edge of the target (m)

- L = distance between pool fire and target (m)
- D = pool fire diameter (m)

R = L+D/2 = 3.478 m

Heat Release Rate Calculation

$$Q = m'' \Delta H_{c,eff} (1 - e^{-k\beta D}) A_{dike}$$

Where

- Q = pool fire heat release rate (kW)
- m" = mass burning rate of fuel per unit surface area (kg/m²-sec)
- ΔH_c = effective heat of combustion of fuel (kJ/kg)
- A_{dike} = surface area of pool fire (area involved in vaporization) (m²)
- $k\beta$ = empirical constant (m⁻¹)
- D = diameter of pool fire (diameter involved in vaporization, circular pool is assumed) (m)

Q =

198.95 kW

Pool Fire Flame Height Calculation

$H_f = 0.235 Q^{2/5}$ -1.02 D

Where

- H_f = flame height (m)
- Q = heat release rate of fire (kW)
- D = fire diameter (m)

	H _f =	0.366 m			
S = 2R/D =		4.472			
h ₁ = 2H ₁₁ /D =		2.315			
$h_2 = 2H_{f2}/D =$	2(H _f -H _{f1})/D =	-1.844			
A ₁ = (h ₁ ² +S ² +1)/2S =		2.947			
$A_2 = (h_2^2 + S^2 + 1)/2S =$		2.728			
$B = (1+S^2)/2S =$		2.348			
		F _{V1}	F _{V2}	F _{V3}	F _{V4} F _{1->2,V1}
F _{1->2,V1} =	0.072	0.	.035	0.111	0.175 0.848 0.072
F _{1->2,V2} =	-0.062	F _{V1}	F _{V2}	F _{v3}	F _{V4} F _{1->2,V2}
$F_{1 \rightarrow 2, V} = F_{1 \rightarrow 2, V1} + F_{1 \rightarrow 2, V2} =$	0.010	-0.	.028	-0.088	-0.141 0.864 -0.062

Version 1805.1 (SI Units)

RADIATIVE HEAT FLUX CALCULATION

q" = EF_{1->2}

Answer q" =	0.59 kW/m ²	0.05 Btu/ft ² -sec	
NOTE:			
The above calculations are based on principles develop assumptions and have inherent limitations. The results interpreted by an informed user. Although each calcula of these calculations. Any questions, comments, conce Naeem.lqbal@nrc.gov.	of such calculations may or ma ation in the spreadsheet has bee	y not have reasonable predictive capab on verified with the results of hand calcu	ilities for a given situation and should only be lation, there is no absolute guarantee of the accurac
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Information:			

6.11 Problems

Example Problem 6.11-1

Problem Statement

Calculate the ignition time for a PVC/PE power cable, assuming that a 2 m diameter pool fire produces a 25 kW $/m^2$ heat flux.

Solution

Purpose:

(1) Calculate the ignition time for a PVC/PE power cable.

Assumptions:

(1) The material is infinitely thick.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 06_Ignition_Time_Calculations_Sup1_SI.xls (click on *Ignition_Time_Calculations3*)

FDT^s Input Parameters:

- Exposure or External Radiative Heat Flux to Target Fuel ($\dot{q}_e^{\prime\prime}$) = 25 kW/m²
- Click on the option button for Electrical Cables Power
- Select Material: PVC/PE

Results*

Material	Ignition Time (t _{ig}) Method of Tewarson (min.)
PVC/PE	9.1

*see spreadsheet on next page

CHAPTER 6 ESTIMATING THE IGNITION TIME OF A TARGET FUEL EXPOSED TO A CONSTANT RADIATIVE HEAT

wing calculations estimate the full-scale cable t			
ers in YELLOW CELLS are Entered by the U ers in GREEN CELLS are Automatically Sele		VN MENU for the Cable Type	Selected.
quent output values are calculated by the spreater to avoid errors due to a wrong entry in a cell			
The to avoid citors due to a wrong citity in a cen			
		Exan	nple 6.11-1
Project / Inspection Title:		Exui	
PARAMETERS			
Exposure or External Radiative Heat Flu	x to Target Fuel (q"e)		25.00 kW/m ²
Target Critical Heat Flux for Ignition (CH	F)		15.00 kW/m ²
Target Thermal Response Parameter (T	RP)		263 kW-sec ^{1/2} /m ²
		Calculate	
L HEAT FLUX AND THERMAL RESPONSE F			
Materials Selectrical Cables - Power	CHF (kW/m ²)	tion Thermal Response Param (kW-sec ^{1/2} /m ²)	
PVC/PVC	19.00	248.5	Select Material
PE/PVC	15.00	246.5	PVC/PE
PVC/PE	15.00	263	SCIOII to desired material then
Silicone/PVC	19.00	212	Click on selection
Silicone/crosslinked polyolefin (XLPO)	27.50	446	
EPR (ethylene-propylene rubber/EPR)	21.50	517	
XLPE/XLPE	22.50	329.5	
XLPE/EVA (ethyl-vinyl acetate)	17.00	472.5	
XLPE/Neoprene	15.00	291	
XLPO/XLPO	20.50	498 526	
XLPO, PVF (polyvinylidine fluoride)/XLP EPR/Chlorosulfonated PE	16.50	349.5	
EPR, FR	21.00	368.5	
User Specified Value	Enter Value	Enter Value	
Electrical Cables - Communications			Select Material
PVC/PVC	15.00	131	
PE/PVC	20.00	183	Scroll to desired material then
XLPE/XLOP	20.00	498	Click on selection
Si/XLOP	20.00	457	
EPR-FR Chloringtod PE	19.00 12.00	295 217	
Chlorinated PE ETFE/EVA	22.00	454	
PVC/PVF	30.00	264	
FEP/FEP	36.00	645	
User Specified Value	Enter Value	Enter Value	
Synthetic Materials			Select Material
Polypropylene	15.00	193	Conclusion de la charter de la charter
Nylon	15.00	270	Scroll to desired material then
Polymethylmethacrylate (PMMA)	11.00	274	Click on selection
Polycarbonate Polycarbonate panel	15.00 16.00	331 420	
User Specified Value	Enter Value	Enter Value	
Natural Materials			Select Material
Wood (red oak)	10.00	134	
Wood (douglas fir)	10.00	138	Scroll to desired material then
Wood (douglas fir/fire retardant, FR)	10.00	251	Click on selection
Corrugated paper (light)	10.00	152	
User Specified Value	Enter Value	Enter Value	

CHAPTER 6 ESTIMATING THE IGNITION TIME OF A TARGET FUEL EXPOSED TO A CONSTANT RADIATIVE HEAT

Version 1805.1 (SI Units)

ESTIMATING IGNITION TIME FOR COMBUSTIBLES METHOD OF TEWARSON THERMALLY THICK MATERIALS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-83.

$$\sqrt{(1/t_{ig})} = (\sqrt{(4/\pi)} (q''_{e} - CHF))/TRP$$

$$t_{ig} = (\pi/4) (TRP)^2/(q''_e - CHF)^2$$

Where

 t_{ig} = target ignition time (sec)

 $q_{e}^{"}$ = external radiative heat flux to target (kW/m²)

CHF = target critical heat flux for ignition (kW/m²)

TRP = thermal response parameter of target material (kW-sec²/m²)

 $t_{ig} = (\pi/4) (TRP)^2/(q''_e - CHF)^2$

Answer t _{ig} =	543.25 sec	9.05 minutes
assumptions and have inherent limitations. Thinterpreted by an informed user. Although eac	he results of such calculations may or may not have reaso ch calculation in the spreadsheet has been verified with th s, comments, concerns and suggestions or to report an er	ngineering, 3 rd Edition, 2002. Calculations are based on certain onable predictive capabilities for a given situation and should only be he results of hand calculation, there is no absolute guarantee of the rror(s) in the spreadsheets, please send an email to
Prepared by:		Date: Or
Checked by:		Date: Or
Additional Information:		

Example Problem 6.11-2

Problem Statement

Determine the time for 5.08 cm thick Douglas fir plywood to ignite when it is subjected to a flame heat flux of 25 kW /m², assuming the surface of the plywood is initially at 20 °C.

Solution

Purpose:

(1) Calculate the ignition time of Douglas fir plywood.

Assumptions:

(1) The material is infinitely thick.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 06_Ignition_Time_Calculations_Sup1_SI.xls (click on *Ignition_Time_Calculations3*)

FDT^s Input Parameters:

- Exposure or External Radiative Heat Flux to Target Fuel (\dot{q}_e'') = 25 kW /m²
- Cick on the option button for Natural Materials
- Select Material: Wood (Douglas fir)

Note: The ignition time calculation method (Tewarson) provided in the spreadsheet *Ignition_Time_Calculations3* does not require the material thickness or initial surface temperature; therefore, material thickness and temperature are additional information only. However, if the initial temperature of the material is relatively high (compare with ambient temperature range), the ignition time value definitely will not be realistic based on this method. Also, we are assuming the material as infinitely thick to use the method; thus, we do not have to consider the thickness for this problem.

Results*

Material	Ignition Time (t _{ig}) Method of Tewarson (min.)
Wood (Douglas fir)	1.11

*see spreadsheet on next page

CHAPTER 6 ESTIMATING THE IGNITION TIME OF A TARGET FUEL EXPOSED TO A CONSTANT RADIATIVE HEAT

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User. Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 6.11-2

INPUT PARAMETERS

Exposure or External Radiative Heat Flu Target Critical Heat Flux for Ignition (CH	• (1-	10.00	kW/m² kW/m²
Target Thermal Response Parameter (T	,	138	kW-sec ^{1/2} /m ²
		Calculate	
EAT FLUX AND THERMAL RESPONSE F	PARAMETER FOR MATERIAL	.S	
Materials	Critical Heat Flux for Ignition	Thermal Response Parameter (TRP)	
Electrical Cables - Power	CHF (kW/m ²)	(kW-sec ^{1/2} /m ²)	
PVC/PVC	19.00	248.5	Select Material
PE/PVC	15.00	232.5	
PVC/PE	15.00	263	Scroll to desired material then
Silicone/PVC	19.00	212	Click on selection
Silicone/crosslinked polyolefin (XLPO)	27.50	446	
EPR (ethylene-propylene rubber/EPR)	21.50	517	
XLPE/XLPE	22.50	329.5	
XLPE/EVA (ethyl-vinyl acetate)	17.00	472.5	
XLPE/Neoprene	15.00	291	
XLPO/XLPO	20.50	498	
XLPO, PVF (polyvinylidine fluoride)/XLP		526	
EPR/Chlorosulfonated PE EPR, FR	16.50 21.00	349.5 368.5	
User Specified Value	Enter Value	Enter Value	
Electrical Cables - Communications			Select Material
PVC/PVC	15.00	131	Select Material
PE/PVC	20.00	183	Scroll to desired material then
			Click on selection
XLPE/XLOP	20.00 20.00	498 457	Click on selection
Si/XLOP			
EPR-FR	19.00	295	
Chlorinated PE ETFE/EVA	12.00 22.00	217 454	
PVC/PVF	30.00	264	
FEP/FEP	36.00	645	
User Specified Value	Enter Value	Enter Value	
Synthetic Materials			Select Material
Polypropylene	15.00	193	
Nylon	15.00	270	Scroll to desired material then
Polymethylmethacrylate (PMMA)	11.00	274	Click on selection
Polycarbonate	15.00	331	
Polycarbonate panel	16.00	420	
User Specified Value	Enter Value	Enter Value	
Natural Materials			Select Material
Wood (red oak)	10.00	134	Wood (douglas fir)
Wood (douglas fir)	10.00	138	SCFOII to desired material then
Wood (douglas fir/fire retardant, FR)	10.00	251	Click on selection
Corrugated paper (light)	10.00	152	
oon agated paper (light)	Enter Value	Enter Value	

CHAPTER 6 ESTIMATING THE IGNITION TIME OF A TARGET FUEL EXPOSED TO A CONSTANT RADIATIVE HEAT

Version 1805.1 (SI Units)

ESTIMATING IGNITION TIME FOR COMBUSTIBLES METHOD OF TEWARSON THERMALLY THICK MATERIALS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-83.

$$\sqrt{(1/t_{ig})} = (\sqrt{(4/\pi)} (q"_e - CHF))/TRP t_{ig} = (\pi/4) (TRP)^2/(q"_e - CHF)^2$$

Where

 t_{ig} = target ignition time (sec)

 $q_e^{"} = \text{external radiative heat flux to target (kW/m²)}$

CHF = target critical heat flux for ignition (kW/m^2)

TRP = thermal response parameter of target material (kW-sec²/m²)

 $t_{ig} = (\pi/4) (TRP)^2/(q''_e - CHF)^2$

Answer t _{ig} =	66.48 sec	1.11 minutes
NOTE:		
assumptions and have inherent interpreted by an informed user	sed on principles developed in the SFPE Handbook of Fire Protection Eng t limitations. The results of such calculations may or may not have reasor r. Although each calculation in the spreadsheet has been verified with the Any questions, comments, concerns and suggestions or to report an erro em.lqbal@nrc.gov.	hable predictive capabilities for a given situation and should only be results of hand calculation, there is no absolute guarantee of the
Prepared by:		Date: Or
Checked by:		Date: Or
Additional Information:		

7.12 Problems

Example Problem 7.12-1

Problem Statement

A 120 liter trash can exposure fire source is located 2 m beneath a horizontal cable tray. It is assumed that the trash fire ignites an area of approximately 2 m^2 of the cable tray. The cables in the tray are IEEE-383 unqualified and made of PE/PVC insulation material. Compute the full-scale HRR of the PE/PVC cable insulation. The bench-scale HRR of PE/PVC is 589 kW/m².

Solution

Purpose:

(1) Calculate the full-scale HRR of the PE/PVC insulation material.

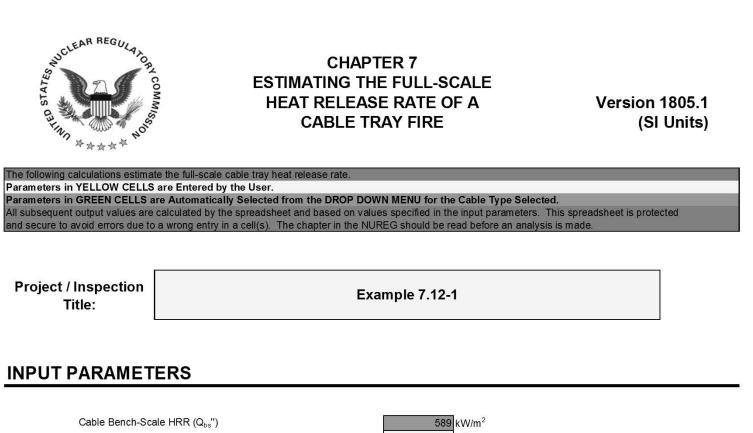
Assumptions:

(1) Lee's correlation is valid for this fire scenario.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 07_Cable_HRRCalculations_Sup1_SI.xls


FDTs Input Parameters:

- Exposed Floor Area of Burning Cable Tray $(A_f) = 2 m^2$
- Select Material: **PE/PVC** (the one with a bench-scale HRR of 589 kW/m²)

Results*

Cable	Full Scale HRR (\dot{Q}_{fs})
Insulation	(kW)
PE/PVC	530

^{*}see spreadsheet on next page

Exposed Floor Area (Length x Width) of Burning Cable Tray (A_f)

000	KVV/
2.00	m²
Onlassiata	
Calculate	

HEAT RELEASE RATE DATA FOR CABLE TRAY FIRE

BENCH-SCALE HRR OF CABLE TRAY FIRE

	Bench-Scale HRR per	Select Cable Type
Cable Type	Unit Floor Area (L x W)	PE/PVC
	Q" _{bs} (kW/m ²)	Scroll to desired cable type then
FRXPE/CI.S.PE	258	Click on selection
ld PE	1071	
PE, Nylon/PVC, Nylon	231	
PE, Nylon/PVC, Nylon	218	
PE, PP/CI.S.PE	345	
PE, PP/CI.S.PE	299	
PE, PP/CI.S.PE	271	
PE, PP/CI.S.PE	177	
PE/PVC	589	
PE/PVC	395	
PE/PVC	359	
PE/PVC	312	
Silicone, glass braid	128	
Silicone, glass braid, asbestos	182	
Teflon	98	
XPE/CI.S.PE	204	
XPE/FRXPE	475	
XPE/Neoprene	354	
XPE/Neoprene	302	
XPE/XPE	178	
User Specified Value	Enter Value	
Reference: "Categorization of Cable Flammability, I Flammability Parameters," EPRI Research Project		

CHAPTER 7 ESTIMATING THE FULL-SCALE HEAT RELEASE RATE OF A CABLE TRAY FIRE

Version 1805.1 (SI Units)

ESTIMATING FULL-SCALE CABLE TRAY HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition 2002, Page 3-16.

$$Q_{fs} = 0.45 Q_{bs}$$
" A_f

Where,

 Q_{fs} = cable tray full-scale HRR (kW) Q_{bs} " = cable tray bench-scale HRR (kW/m²)

 A_f = exposed floor area (length x width) of burning cable tray (m²)

Heat Release Rate Calculation

 $Q_{fs} = 0.45 Q_{bs} A_f$

Answer	Q _{fs} =	530.10 kW	502.44 Btu/sec	
--------	-------------------	-----------	----------------	--

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 7.12-2

Problem Statement

A 0.5 m high stack of untreated wood pallets (exposure fire source) from a recent plant modification ignites and is located 1.5 m beneath a horizontal cable tray. It is assumed that the wood pallets ignite an area of approximately 4 m² of the cable tray. The cables in the tray are IEEE-383 qualified and made of PE insulation material. Compute the full-scale HRR of PE cable insulation. The bench-scale HRR of PE material is 1,071 kW/m².

Solution

Purpose:

(1) Calculate the full-scale HRR of the PE insulation material.

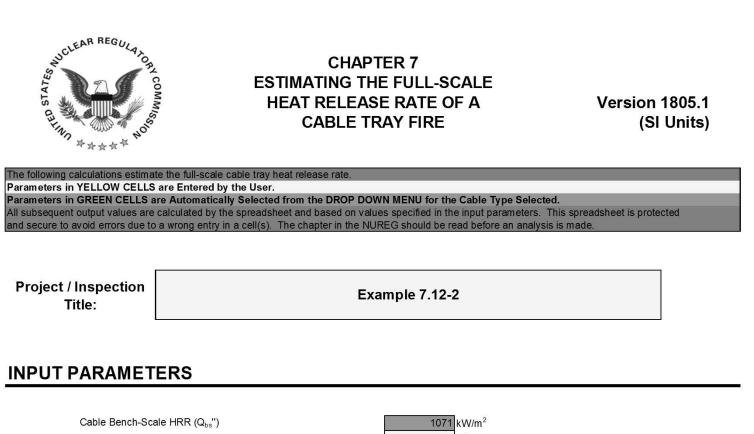
Assumptions:

(1) Lee's correlation is valid for this fire scenario.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 07_Cable_HRRCalculations_Sup1_SI.xls


FDTs Input Parameters:

- Exposed Floor Area of Burning Cable Tray $(A_f) = 4 m^2$
- Select Material: Id PE

Results*

Cable Insulation	Full Scale HRR (\dot{Q}_{fs}) (kW)
ld PE	1,925

*see spreadsheet on next page

Exposed Floor Area (Length x Width) of Burning Cable Tray (A_f)

10	071	kW/n
4	.00	m²
Calculat	е	

HEAT RELEASE RATE DATA FOR CABLE TRAY FIRE

BENCH-SCALE HRR OF CABLE TRAY FIRE

	Bench-Scale HRR per	Select Cable Type
Cable Type	Unit Floor Area (L x W)	Id PE
	Q" _{bs} (kW/m ²)	Scroll to desired cable type then
FRXPE/CI.S.PE	258	Click on selection
ld PE	1071	
PE, Nylon/PVC, Nylon	231	
PE, Nylon/PVC, Nylon	218	
PE, PP/CI.S.PE	345	
PE, PP/CI.S.PE	299	
PE, PP/CI.S.PE	271	
PE, PP/CI.S.PE	177	
PE/PVC	589	
PE/PVC	395	
PE/PVC	359	
PE/PVC	312	
Silicone, glass braid	128	
Silicone, glass braid, asbestos	182	
Teflon	98	
XPE/CI.S.PE	204	
XPE/FRXPE	475	
XPE/Neoprene	354	
XPE/Neoprene	302	
XPE/XPE	178	
User Specified Value	Enter Value	
Reference: "Categorization of Cable Flammability, Flammability Parameters," EPRI Research Project		

CHAPTER 7 ESTIMATING THE FULL-SCALE HEAT RELEASE RATE OF A CABLE TRAY FIRE

Version 1805.1 (SI Units)

ESTIMATING FULL-SCALE CABLE TRAY HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition 2002, Page 3-16.

$$Q_{fs} = 0.45 Q_{bs}$$
" A_f

Where,

 Q_{fs} = cable tray full-scale HRR (kW) Q_{bs} " = cable tray bench-scale HRR (kW/m²)

 A_f = exposed floor area (length x width) of burning cable tray (m²)

Heat Release Rate Calculation

 $Q_{fs} = 0.45 Q_{bs} A_f$

Answer

 $Q_{fs} =$

1925.39 kW

1824.92 Btu/sec

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 7.12-3

Problem Statement

A 1.1 m diameter flammable liquid (lubricating oil) pool fire arises from a breach in an auxiliary cooling water pump oil tank. The pool fire is located on the floor, 3 m beneath a horizontal cable tray. It is assumed that the pool fire ignites an area of approximately 1 m² of the cable tray. The cables in the tray are IEEE-383 unqualified and made of XPE /FRXPE insulation material. Compute the full scale HRR of XPE/FRXPE cable insulation. The bench-scale HRR of XPE/FRXPE is 475 kW/m².

Solution

Purpose:

(1) Calculate the full-scale HRR of the XPE/FRXPE insulation material.

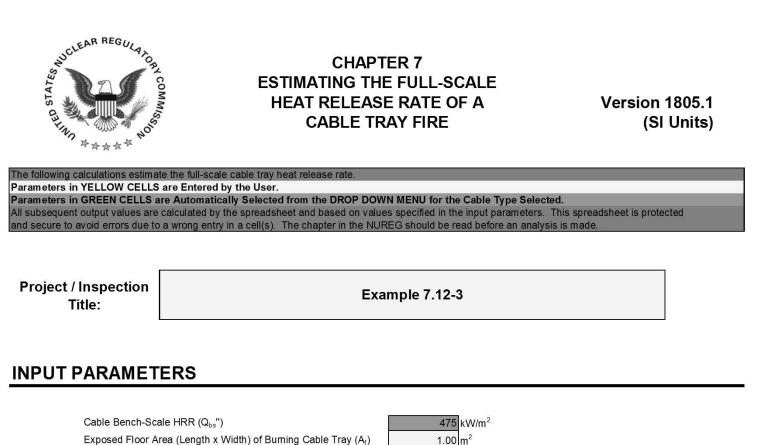
Assumptions:

(1) Lee's correlation is valid for this fire scenario.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 07_Cable_HRCalculations_Sup1_SI.xls


FDT^s Input Parameters:

- Exposure Cable Tray Burning Area $(A_f) = 1 \text{ m}^2$
- Select Material: XPE/FRXPE

Results*

Cable	Full Scale HRR (\dot{Q}_{fs})
Insulation	(kW)
XPE/FRXPE	214

^{*}see spreadsheet on next page

1.00 m

HEAT RELEASE RATE DATA FOR CABLE TRAY FIRE

BENCH-SCALE HRR OF CABLE TRAY FIRE

	Bench-Scale HRR per	Select Cable Type
Cable Type	Unit Floor Area (L x W)	XPE/FRXPE
	Q" _{bs} (kW/m ²)	Scroll to desired cable type then
FRXPE/CI.S.PE	258	Click on selection
ld PE	1071	
PE, Nylon/PVC, Nylon	231	
PE, Nylon/PVC, Nylon	218	
PE, PP/CI.S.PE	345	
PE, PP/CI.S.PE	299	
PE, PP/CI.S.PE	271	
PE, PP/CI.S.PE	177	
PE/PVC	589	
PE/PVC	395	
PE/PVC	359	
PE/PVC	312	
Silicone, glass braid	128	
Silicone, glass braid, asbestos	182	
Teflon	98	
XPE/CI.S.PE	204	
XPE/FRXPE	475	
XPE/Neoprene	354	
XPE/Neoprene	302	
XPE/XPE	178	
User Specified Value	Enter Value	
Reference: "Categorization of Cable Flammability, I Flammability Parameters," EPRI Research Project		

CHAPTER 7 ESTIMATING THE FULL-SCALE HEAT RELEASE RATE OF A CABLE TRAY FIRE

Version 1805.1 (SI Units)

ESTIMATING FULL-SCALE CABLE TRAY HEAT RELEASE RATE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition 2002, Page 3-16.

$$Q_{fs} = 0.45 Q_{bs}$$
" A_f

Where,

 Q_{fs} = cable tray full-scale HRR (kW) Q_{bs} " = cable tray bench-scale HRR (kW/m²)

 A_f = exposed floor area (length x width) of burning cable tray (m²)

Heat Release Rate Calculation

 $Q_{fs} = 0.45 Q_{bs} A_f$

Answer

 $Q_{fs} =$

213.75 kW

202.60 Btu/sec

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

8.9 Problems

Example Problem 8.9-1

Problem Statement

A horizontal power cable fails as a result of self-initiated fire and burn in a compartment. Compute the burning duration of a cable tray with an exposed surface area of 0.1 m² filled with 4.54 kg of non-IEEE-383 qualified PE/PVC cables. The heat release per unit floor area of PE/PVC is 589 kW/m², and the heat of combustion is 24,000 kJ/kg.

Solution

Purpose:

(1) Calculate the burning duration of the cable material (PE/PVC).

Assumptions:

- (1) Combustion is incomplete and takes place entirely within the confines of the compartment.
- (2) Virtually all of the potential energy in the fuel is released in the involved compartment.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 08_Burning_DurationSolid_Sup1_SI.xls

FDTs Input Parameters:

- Mass of Solid Fuel (m_{solid}) = 4.54 kg
- Exposure Fuel Surface Area $(A_{fuel}) = 0.1 \text{ m}^2$
- Select Material: PE/PVC

Results*

Material	Burning Duration (t _{solid}) (min.)
PE/PVC	31

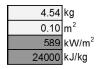
*see spreadsheet on next page

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (SI Units)

The following calculations provides an approximation of the burning duration of solid combustibles based on free burning rate with a given surface area. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.


Project / Inspection Title:

Example 8.9-1

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Mass of Solid Fuel (msolid)} \\ \mbox{Exposed Floor Area (Length x Width) of Fuel (Afuel)} \\ \mbox{Heat Release Rate (HRR) per Unit Floor Area (Q")} \\ \mbox{Effective Heat of Combustion } (\Delta H_{\rm c.eff}) \end{array}$

Calculate

THERMAL PROPERTIES OF SOLID COMBUSTIBLE MATERIALS

Material	HRR per Unit Floor Area Q"	Heat of Combustion ΔH_c	Select Material
material	(kW/m²)	(kJ/kg)	PE/PVC
Douglas Fir Plywood	221	17600	Scroll to desired material then
Empty Cartons 15 ft high	1700	12700	Click on selection
Ethylene Propylene Dien Rubber (EPDM)	956	28800	
Fire Retardant Treated Plywood	81	13500	
Nylon 6/6	1313	32000	
Particle Board, 19 mm thick	1900	17500	
PE, Nylon/PVC, Nylon	231	9200	
PE/PVC	589	24000	
Polycarbonate	420	24400	
Polyethylene (PE)	1408	46500	
Polymethlmethacrylate (PMMA)	665	26000	
Polypropylene (PP)	1509	43200	
Polystyrene (PS)	1101	42000	
Polyurethane	710	45000	
Polyvinyl Chloride (PVC) Flexible	237	15700	
Strene-Butadiene Copolymers (SBR)	163	44000	
Teflon	98	3200	
Wood Pallets, stacked 1.5 ft high	1420	14000	
Wood Pallets, stacked 5 ft high	3970	14000	
Wood Pallets, stacked 10 ft high	6800	14000	
XPE/FRXPE	475	28300	
XPE/Neoprene	354	10300	
User Specified Value	Enter Value	Enter Value	

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (SI Units)

References:

"Categorization of Cable Flammability, Part 1: Laboratory Evaluation of Cable Flammability Parameters," EPRI Research Project 1165-1, NP-1200, Part 1.

Karlsson and Quantiere, Enclosure Fire Dynamics, Chapter 3: Energy Release Rate," CRC Press, 1999.

Johnson, D. G., "Combustion Properties of Plastics," Journal of Applied Fire Science, Volume 4, No. 3, 1994-95, pp. 185-201.

Hirschler, M. M., "Heat Release from Plastic Materials," Heat Release in Fires, Babrauskas and Grayson, Editors, Elsevier Applied Science, 1992.

BURNING DURATION OF SOLID COMBUSTIBLES

Reference: Buchanan, A. H., "Structural Design for Fire Safety," 2001, Page 38.

The burning duration of a solid fuel can be calculated if the total energy contained in the fuel and HRR are known. The burning duration is given by:

Q = E / tsolid or $t_{solid} = (E) / (Q'' AFuel)$

Where,

 t_{solid} = burning duration of solid combustible (sec)

- E = mFuel DHc = total energy contained in the fuel (kJ)
- Q = heat release rate of fire (kW)
- Q" = heat release rate per unit floor area of fuel (kW/m²)
- A_{Fuel} = exposed floor area (length x width) of fuel (m²)

$t_{solid} = (m_{Fuel} \Delta H_c) / (Q'' A_{Fuel})$

Where,

m_{Fuel} = mass of solid fuel (kg)

 ΔH_c = fuel effective heat of combustion (kJ/kg)

t_{solid} = (msolid DHc) / (Q" Asolid)

Answer	t _{solid} =	1849.92 sec	30.83 min
NOTE:			
assumptions a situation and s hand calculatio	nd have inherent limitat hould only be interprete on, there is no absolute	tions. The results of such calculation ad by an informed user. Although eac	Design for Fire Safety, 2001. Calculations are based on certain s may or may not have reasonable predictive capabilities for a given th calculation in the spreadsheet has been verified with the results of alculations. Any questions, comments, concerns and suggestions or to o@nrc.gov or Naeem.lqbal@nrc.gov.
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Info	rmation:		

Example Problem 8.9-2

Problem Statement

A horizontal cable tray filled with non-IEEE-383 qualified XPE/FRXPE cables are ignited as a result of overhead welding and burn in a compartment 6.1 m wide x 6.1 m deep x 3 m high. The cable tray has a nominal width of 0.6 m and a linear length of 7.3 m (i.e., exposed surface area of 4.4 m²). Compute the burning duration of XPE/FRXPE cables assuming the mass of cables is 22.7 kg. The heat release per unit area of XPE/FRXPE is 475 kW/m² and heat of combustion is 28,300 kJ/kg.

Solution

Purpose:

(1) Calculate the burning duration of the cable material (XPE/FRXPE).

Assumptions:

- (1) Combustion is incomplete and takes place entirely within the confines of the compartment.
- (2) Virtually all of the heat energy in the fuel is released in the involved compartment.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 08_Burning_Duration Solid_Sup1_SI.xls

FDTs Input Parameters:

- Mass of Solid Fuel (m_{solid}) = 22.7 kg
- Exposure Fuel Surface Area $(A_{fuel}) = 4.4 \text{ m}^2$
- Select Material: XPE/FRXPE

Results*

Material	Burning Duration (t _{solid}) (min.)	
XPE/FRXPE	5	

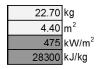
^{*}see spreadsheet on next page

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (SI Units)

The following calculations provides an approximation of the burning duration of solid combustibles based on free burning rate with a given surface area. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.


Project / Inspection Title:

Example 8.9-2

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Mass of Solid Fuel (msolid)} \\ \mbox{Exposed Floor Area (Length x Width) of Fuel (Afuel)} \\ \mbox{Heat Release Rate (HRR) per Unit Floor Area (Q")} \\ \mbox{Effective Heat of Combustion } (\Delta H_{\rm c.eff}) \end{array}$

Calculate

THERMAL PROPERTIES OF SOLID COMBUSTIBLE MATERIALS

Material	HRR per Unit Floor Area Q"	Heat of Combustion ΔH_c	Select Material
Material	(kW/m²)	(kJ/kg)	XPE/FRXPE
Douglas Fir Plywood	221	17600	Scroll to desired material then
Empty Cartons 15 ft high	1700	12700	Click on selection
Ethylene Propylene Dien Rubber (EPDM)	956	28800	
Fire Retardant Treated Plywood	81	13500	
Nylon 6/6	1313	32000	
Particle Board, 19 mm thick	1900	17500	
PE, Nylon/PVC, Nylon	231	9200	
PE/PVC	589	24000	
Polycarbonate	420	24400	
Polyethylene (PE)	1408	46500	
PolymethImethacrylate (PMMA)	665	26000	
Polypropylene (PP)	1509	43200	
Polystyrene (PS)	1101	42000	
Polyurethane	710	45000	
Polyvinyl Chloride (PVC) Flexible	237	15700	
Strene-Butadiene Copolymers (SBR)	163	44000	
Teflon	98	3200	
Wood Pallets, stacked 1.5 ft high	1420	14000	
Wood Pallets, stacked 5 ft high	3970	14000	
Wood Pallets, stacked 10 ft high	6800	14000	
XPE/FRXPE	475	28300	
XPE/Neoprene	354	10300	
User Specified Value	Enter Value	Enter Value	

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (SI Units)

References:

"Categorization of Cable Flammability, Part 1: Laboratory Evaluation of Cable Flammability Parameters," EPRI Research Project 1165-1, NP-1200, Part 1.

Karlsson and Quantiere, Enclosure Fire Dynamics, Chapter 3: Energy Release Rate," CRC Press, 1999.

Johnson, D. G., "Combustion Properties of Plastics," Journal of Applied Fire Science, Volume 4, No. 3, 1994-95, pp. 185-201.

Hirschler, M. M., "Heat Release from Plastic Materials," Heat Release in Fires, Babrauskas and Grayson, Editors, Elsevier Applied Science, 1992.

BURNING DURATION OF SOLID COMBUSTIBLES

Reference: Buchanan, A. H., "Structural Design for Fire Safety," 2001, Page 38.

The burning duration of a solid fuel can be calculated if the total energy contained in the fuel and HRR are known. The burning duration is given by:

Q = E / tsolid or $t_{solid} = (E) / (Q'' AFuel)$

Where,

 t_{solid} = burning duration of solid combustible (sec)

- E = mFuel DHc = total energy contained in the fuel (kJ)
- Q = heat release rate of fire (kW)
- Q" = heat release rate per unit floor area of fuel (kW/m²)
- A_{Fuel} = exposed floor area (length x width) of fuel (m²)

$t_{solid} = (m_{Fuel} \Delta H_c) / (Q'' A_{Fuel})$

Where,

m_{Fuel} = mass of solid fuel (kg)

 ΔH_c = fuel effective heat of combustion (kJ/kg)

t_{solid} = (msolid DHc) / (Q" Asolid)

Answer	t _{solid} =	307.37 sec	5.12 min
NOTE:			
The above cald assumptions a situation and s hand calculatio	nd have inherent limita hould only be interprete on, there is no absolute	tions. The results of such calculatio ad by an informed user. Although ea guarantee of the accuracy of these	al Design for Fire Safety, 2001. Calculations are based on certain ns may or may not have reasonable predictive capabilities for a given ach calculation in the spreadsheet has been verified with the results of calculations. Any questions, comments, concerns and suggestions or to up@nrc.gov or Naeem.lqbal@nrc.gov.
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Info	mation:		

Example Problem 8.9-3

Problem Statement

A fire involving a 0.5 m high stack of wood pallets is located in a compartment 12 m wide x 12 m long x 3 m high. The mass of the wood pallets is 14 kg. Compute the burning duration of the wood pallet fire in the compartment. The exposed surface area of the wood pallets is $1.2 \text{ m x} \cdot 1.2 \text{ m or } 1.44 \text{ m}^2$.

Solution

Purpose:

(1) Calculate the burning duration of the stack of wood pallets.

Assumptions:

- (1) Combustion is incomplete and takes place entirely within the confines of the compartment.
- (2) Virtually all of the heat energy in the fuel is released in the involved compartment.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 08_Burning_Duration Solid_Sup1_SI.xls

FDT^s Input Parameters:

- Mass of Solid Fuel (m_{solid}) = 14 kg
- Exposure Fuel Surface Area $(A_{fuel}) = 1.44 \text{ m}^2$
- Select Material: Wood pallet, stacked 1.5 ft high

Results*

Material	Burning Duration (t _{solid}) (min.)	
Wood pallet, stacked 1.5 ft high	1.6	

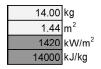
*see spreadsheet on next page

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (SI Units)

The following calculations provides an approximation of the burning duration of solid combustibles based on free burning rate with a given surface area. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.


Project / Inspection Title:

Example 8.9-3

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Mass of Solid Fuel (msolid)} \\ \mbox{Exposed Floor Area (Length x Width) of Fuel (Afuel)} \\ \mbox{Heat Release Rate (HRR) per Unit Floor Area (Q")} \\ \mbox{Effective Heat of Combustion } (\Delta H_{c.eff}) \end{array}$

Calculate

THERMAL PROPERTIES OF SOLID COMBUSTIBLE MATERIALS

Material	HRR per Unit Floor Area Q"	Heat of Combustion ΔH_c	Select Material
Material	(kW/m²)	(kJ/kg)	Wood Pallets, stacked 1.5 ft high
Douglas Fir Plywood	221	17600	Scroll to desired material then
Empty Cartons 15 ft high	1700	12700	Click on selection
Ethylene Propylene Dien Rubber (EPDM)	956	28800	
Fire Retardant Treated Plywood	81	13500	
Nylon 6/6	1313	32000	
Particle Board, 19 mm thick	1900	17500	
PE, Nylon/PVC, Nylon	231	9200	
PE/PVC	589	24000	
Polycarbonate	420	24400	
Polyethylene (PE)	1408	46500	
PolymethImethacrylate (PMMA)	665	26000	
Polypropylene (PP)	1509	43200	
Polystyrene (PS)	1101	42000	
Polyurethane	710	45000	
Polyvinyl Chloride (PVC) Flexible	237	15700	
Strene-Butadiene Copolymers (SBR)	163	44000	
Teflon	98	3200	
Wood Pallets, stacked 1.5 ft high	1420	14000	
Wood Pallets, stacked 5 ft high	3970	14000	
Wood Pallets, stacked 10 ft high	6800	14000	
XPE/FRXPE	475	28300	
XPE/Neoprene	354	10300	
User Specified Value	Enter Value	Enter Value	

CHAPTER 8 ESTIMATING BURNING DURATION OF SOLID COMBUSTIBLES

Version 1805.1 (SI Units)

References:

"Categorization of Cable Flammability, Part 1: Laboratory Evaluation of Cable Flammability Parameters," EPRI Research Project 1165-1, NP-1200, Part 1.

Karlsson and Quantiere, Enclosure Fire Dynamics, Chapter 3: Energy Release Rate," CRC Press, 1999.

Johnson, D. G., "Combustion Properties of Plastics," Journal of Applied Fire Science, Volume 4, No. 3, 1994-95, pp. 185-201.

Hirschler, M. M., "Heat Release from Plastic Materials," Heat Release in Fires, Babrauskas and Grayson, Editors, Elsevier Applied Science, 1992.

BURNING DURATION OF SOLID COMBUSTIBLES

Reference: Buchanan, A. H., "Structural Design for Fire Safety," 2001, Page 38.

The burning duration of a solid fuel can be calculated if the total energy contained in the fuel and HRR are known. The burning duration is given by:

Q = E / tsolid or $t_{solid} = (E) / (Q'' AFuel)$

Where,

 t_{solid} = burning duration of solid combustible (sec)

- E = mFuel DHc = total energy contained in the fuel (kJ)
- Q = heat release rate of fire (kW)
- Q" = heat release rate per unit floor area of fuel (kW/m²)
- A_{Fuel} = exposed floor area (length x width) of fuel (m²)

$t_{solid} = (m_{Fuel} \Delta H_c) / (Q'' A_{Fuel})$

Where,

m_{Fuel} = mass of solid fuel (kg)

 ΔH_c = fuel effective heat of combustion (kJ/kg)

t_{solid} = (msolid DHc) / (Q" Asolid)

Answer	t _{solid} =	95.85 sec	1.60 min
NOTE:			
assumptions a situation and sl hand calculatio	nd have inherent limitati hould only be interpreted on, there is no absolute g	ons. The results of such calculation d by an informed user. Although eac guarantee of the accuracy of these c	Design for Fire Safety, 2001. Calculations are based on certain s may or may not have reasonable predictive capabilities for a given sh calculation in the spreadsheet has been verified with the results of alculations. Any questions, comments, concerns and suggestions or to o@nrc.gov or Naeem.lqbal@nrc.gov.
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Infor	rmation:		

9.11 Problems

Example Problem 9.11-1

Problem Statement

A steel beam is located 7.6 m above the floor. Calculate the temperature of the beam exposed from a 3.2 m^2 lube oil pool fire. Assume the HRR of the fire is 5,000 kW.

Solution

Purpose:

(1) Determine the plume centerline temperature for the pool fire scenario.

Assumptions:

- (1) All heat is released at a point.
- (2) Buoyant forces are more significant than momentum forces.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 09_Plume_Temperature_Calculations_Sup1_SI.xls

FDT^s Input Parameters:

- Heat Release Rate (\dot{Q}) = 5,000 kW
- Distance from the Top of the Fuel to the Ceiling (z) = 7.6 m
- Area of Combustible Fuel (A_c) = 3.2 m²

Results*

Heat Release	Plume Centerline
Rate (Ż)	Temperature (_{Tp(centerline)})
(kW)	(°C)
5,000	245

*see spreadsheet on next page

CHAPTER 9 ESTIMATING CENTERLINE TEMPERATURE OF A BUOYANT FIRE PLUME

Version 1805.1 (SI Units)

The following calculations estimate the centerline plume temperature in a compartment fire.
Parameters should be specified ONLY IN THE YELLOW INPUT PARAMETER BOXES.
All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected
and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 9.11-1

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) Elevation Above the Fire Source (z) Area of Combustible Fuel (A_c) Ambient Air Temperature (T_a)

kW	5000.00
m	7.60
m ²	3.20
°C	25.00

Calculate

AMBIENT CONDITIONS

Specific Heat of Air (c_a) Ambient Air Density (ρ_a) Acceleration of Gravity (g) Convective Heat Release Fraction (χ_c)

1.00	kJ/kg-K
1.18	kg/m ³
9.81	m/sec ²
0.70	

NOTE: Ambient Air Density (Pa) will automatically correct with Ambient Air Temperature (Ta) Input

CHAPTER 9 ESTIMATING CENTERLINE TEMPERATURE OF A BUOYANT FIRE PLUME

Version 1805.1 (SI Units)

ESTIMATING PLUME CENTERLINE TEMPERATURE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 2-6.

$T_{p(centerline)} - T_a = 9.1 (T_a/g c_a^2 \rho_a^2)^{1/3} Q_c^{2/3} (z - z_0)^{-5/3}$

Where,

T_{p(centerline)} = plume centerline temperature (°C)

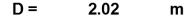
- Q_c = convective portion of the heat release rate (kW)
- T_a = ambient air temperature (K)
- $g = acceleration of gravity (m/sec^2)$
- c_a = specific heat of air (kJ/kg-K)
- ρ_a = ambient air density (kg/m³)
- z = distance from the top of the fuel package to the ceiling (m)
- z_0 = hypothetical virtual origin of the fire (m)

Convective Heat Release Rate Calculation

$Q_c = \chi_c Q$

Where,

- Q_c = convective portion of the heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χ_{c} = convective heat release fraction


 $Q_{c} = 3500 \text{ kW}$

Fire Diameter Calculation

$$A_{c} = \pi D^{2}/4$$
$$D = \sqrt{(4 A_{c}/\pi)}$$

Where,

 A_c = area of combustible fuel (m²) D = fire diameter (m)

CHAPTER 9 ESTIMATING CENTERLINE TEMPERATURE OF A BUOYANT FIRE PLUME

Version 1805.1 (SI Units)

Hypothetical Virtual Origin Calculation

 $z_0/D = -1.02 + 0.083 (Q^{2/5})/D$ Where, $z_0 = virtual origin of the fire (m)$ Q = heat release rate of fire (kW) D = fire diameter (m) $z_0/D = 0.22$ $z_0 = 0.45 m$

Mean Flame Height Calculation

$$L = -1.02D + 0.235 (Q^{2/5})$$

Where,

L = mean flame height (m)

Q = heat release rate of fire (kW) D = fire diameter (m)

Version 1805.1 (SI Units)

ESTIMATING PLUME CENTERLINE TEMPERATURE

 $T_{p(centerline)} - T_{a} = 9.1 (T_{a}/g c_{a}^{2} \rho_{a}^{2})^{1/3} Q_{c}^{2/3} (z - z_{0})^{-5/3}$ $T_{p(centerline)} - T_{a} = 220.08 \text{ °K}$

 $T_{p(centerline)} = 9.1 (T_a/g c_a^2 \rho_a^2)^{1/3} Q_c^{2/3} (z - z_0)^{-5/3} + Ta$

 $T_{p(centerline)} = 518.08$ °K

ESTIMATED PLUME CENTERLINE TEMPERATURE

Answer $T_{p(centerline)} = 245.08 \text{ °C}$ 473.14 °F
--

NOTE:				
The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3 rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.				
Prepared by:	Date:	Organization:		
Checked by:	Date:	Organization:		
Additional Information:				

Example Problem 9.11-2

Problem Statement

Estimate the maximum plume temperature at the ceiling of a 2.4 m high room above a 1,000 kW trash fire with an area of 1 m². Assume that the ambient air temperature is 25 °C.

Solution

Purpose:

(1) Determine the maximum plume centerline temperature for the transient combustible fire scenario.

Assumptions:

- (1) All heat is released at a point.
- (2) Buoyant forces are more significant than momentum forces.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 09_Plume_Temperature_Calculations_Sup1_SI.xls

FDTs Input Parameters:

- Heat Release Rate (\dot{Q}) = 1000 kW
- Distance from the Top of the Fuel to the Ceiling (z) = 2.4 m
- Area of Combustible Fuel $(A_c) = 1 \text{ m}^2$

Results*

Heat Release Rate (\dot{Q}) (kW)	Plume Centerline Temperature (T _{p(centerline})) (°C)
1,000	548

*see spreadsheet on next page

CHAPTER 9 ESTIMATING CENTERLINE TEMPERATURE OF A BUOYANT FIRE PLUME

Version 1805.1 (SI Units)

The following calculations estimate the centerline plume temperature in a compartment fire.
Parameters should be specified ONLY IN THE YELLOW INPUT PARAMETER BOXES.
All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected
and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 9.11-2

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) Elevation Above the Fire Source (z) Area of Combustible Fuel (A_c) Ambient Air Temperature (T_a)

kW	1000.00
m	2.40
m ²	1.00
°C	25.00

Calculate

AMBIENT CONDITIONS

Specific Heat of Air (c_a) Ambient Air Density (ρ_a) Acceleration of Gravity (g) Convective Heat Release Fraction (χ_c)

1.00	kJ/kg-K
1.18	kg/m ³
9.81	m/sec ²
0.70	

NOTE: Ambient Air Density (Pa) will automatically correct with Ambient Air Temperature (Ta) Input

CHAPTER 9 ESTIMATING CENTERLINE TEMPERATURE OF A BUOYANT FIRE PLUME

Version 1805.1 (SI Units)

ESTIMATING PLUME CENTERLINE TEMPERATURE

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 2-6.

$T_{p(centerline)} - T_a = 9.1 (T_a/g c_a^2 \rho_a^2)^{1/3} Q_c^{2/3} (z - z_0)^{-5/3}$

Where,

T_{p(centerline)} = plume centerline temperature (°C)

- Q_c = convective portion of the heat release rate (kW)
- T_a = ambient air temperature (K)
- $g = acceleration of gravity (m/sec^2)$
- c_a = specific heat of air (kJ/kg-K)
- ρ_a = ambient air density (kg/m³)
- z = distance from the top of the fuel package to the ceiling (m)
- z_0 = hypothetical virtual origin of the fire (m)

Convective Heat Release Rate Calculation

$Q_c = \chi_c Q$

Where,

- Q_c = convective portion of the heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χ_{c} = convective heat release fraction

 $Q_{c} = 700 kW$

Fire Diameter Calculation

$$A_{c} = \pi D^{2}/4$$
$$D = \sqrt{(4 A_{c}/\pi)}$$

Where,

 A_c = area of combustible fuel (m²) D = fire diameter (m)

CHAPTER 9 ESTIMATING CENTERLINE TEMPERATURE OF A BUOYANT FIRE PLUME

Version 1805.1 (SI Units)

Hypothetical Virtual Origin Calculation

 $z_0/D = -1.02 + 0.083 (Q^{2/5})/D$ Where, $z_0 = virtual origin of the fire (m)$ Q = heat release rate of fire (kW) D = fire diameter (m) $z_0/D = 0.15$ $z_0 = 0.16$ m

Mean Flame Height Calculation

Where,

L = mean flame height (m) Q = heat release rate of fire (kW)

D = fire diameter (m)

Version 1805.1 (SI Units)

ESTIMATING PLUME CENTERLINE TEMPERATURE

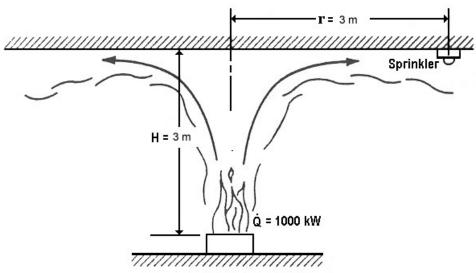
 $T_{p(\text{centerline})} - T_a = 9.1 (T_a/g c_a^2 \rho_a^2)^{1/3} Q_c^{2/3} (z - z_0)^{-5/3}$ $T_{p(\text{centerline})} - T_a = 523.16 \text{ °K}$

 $T_{p(centerline)} = 9.1 (T_a/g c_a^2 \rho_a^2)^{1/3} Q_c^{2/3} (z - z_0)^{-5/3} + Ta$

 $T_{p(centerline)} = 821.16$ °K

ESTIMATED PLUME CENTERLINE TEMPERATURE

Answer	T _{p(centerline)} =	548.16 °C	1018.68 °F	


NOTE:					
The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3 rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.					
Prepared by:	Date:	Organization:			
Checked by:	Date:	Organization:			
Additional Information:					

10.10 Problems

Example Problem 10.10-1

Problem Statement

A fire with \dot{Q} = 1,000 kW occurs in a space that is protected with sprinklers. Sprinklers are rated at 74 °C [standard response link with RTI = 130 (m-sec^{1/2})] and located 3 m on center. The ceiling is 3.0 m above the fire. The ambient temperature is 25 °C. Would the sprinklers activate, and if so, how long would it take for them to activate?

Example Problem 10-1: Fire Scenario with Sprinkler

Solution

Purpose:

- (1) Determine if the sprinklers will be activated for the fire scenario.
- (2) If the sprinkles are activated, how long would it take for them to activate?

Assumptions:

- (1) The fire is located away from walls and corners.
- (2) The fire is steady state.
- (3) The ceiling is unconfined.
- (4) Only convective heat transfer from the hot fire gases is considered.
- (5) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1_SI.xls (click on Sprinkler)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 1,000 kW
- Distance from the Top of the Fuel Package to the Ceiling (H) = 3 m
- Radial Distance from the Plume Centerline to the Sprinkler (r) = 3 m
- Ambient Air Temperature (T_a) = 25 °C
- Select Type of Sprinkler = Standard response link
- Select Sprinkler Classification = Ordinary

Note: Ordinary classification has been selected because the rated value for the sprinklers in this problem (74 °C) is within the range of temperature ratings for ordinary sprinklers (57 °C – 77 °C).

Results*

Sprinkler Type	Sprinkler Activation Time (t _{activation}) (min.)
Standard Response Link	1.6

*see spreadsheet on next page

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 10.10-1

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) Sprinkler Response Time Index (RTI) Activation Temperature of the Sprinkler (Tactivation) Height of Ceiling above Top of Fuel (H)

Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Ambient Air Temperature (T_a)

Convective Heat Release Rate Fraction (χ_c) r/H =

1.00

0.70 Calculate

GENERIC SPRINKLER RESPONSE TIME INDEX (RTI)*

Generic Response	Select Type of Sprinkler
Time Index (RTI) (m-sec) ^{1/2}	Standard response link
235	Scroll to desired sprinkler type then Click on selection
130	
42	
34	
Enter Value	
	Time Index (RTI) (m-sec) ^{1/2} 235 130 42 34

March 15-16, 1995, Kowloon, Hong Kong, pp. 211-218. *Note: The actual RTI should be used when the value is available.

GENERIC SPRINKLER TEMPERATURE RATING (Tactivation)*

Temperature Classification	Range of Temperature	Generic Temperature	Select Sprinkler Classification
	Ratings (°F)	Ratings (°F)	Ordinary
Ordinary	135 to 170	165	Scroll to desired sprinkler class
Intermediate	175 to 225	212	then Click on selection
High	250 to 300	275	
Extra high	325 to 375	350	
Very extra high	400 to 475	450	
Ultra high	500 to 575	550	
Ultra high	650	550	
User Specified Value	-	Enter Value	

nce: Automatic Sprinkler Systems Handbook, 6th Edition, National Fire Protectior

Association, Quincy, Massachusetts, 1994, Page 67.

*Note: The actual temperature rating should be used when the value is available.

ESTIMATING SPRINKLER RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

 $t_{activation}$ = sprinkler activation response time (sec)

RTI = sprinkler response time index (m-sec)^{1/2} u_{iet} = ceiling jet velocity (m/sec)

 T_{jet} = ceiling jet temperature (°C) T_a = ambient air temperature (°C)

T_{activation} = activation temperature of sprinkler (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{iet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

T_{jet} = ceiling jet temperature (°C)

 T_a = ambient air temperature (°C)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

Qc = convective portion of the heat release rate (kW)

Q = heat release rate of the fire (kW)

 χ c = convective heat release rate fraction

$$Q_c =$$

700 kW

B-194

for r/H ≤ 0.18 for r/H > 0.18

Radial Distance to Ceiling Height Ratio Calculation

r/H =	1.00 r/H > 0.18		
>0.18	86.21	<0.18	270.82
T _{jet} - T _a =	{5.38 (Q/r)^2/3}/H		
T _{jet} - T _a =	86.21		
T _{jet} =	111.21 (°C)		

Ceiling Jet Velocity Calculation

$$u_{jet} = 0.96 (Q/H)^{1/3}$$
 for r/H ≤ 0.15
 $u_{jet} = (0.195 Q^{1/3} H^{1/2})/r^{5/6}$ for r/H > 0.15

Where

ujet = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Radial Distance to Ceiling Height Ratio Calculation

>0.15	1.35	<0.15	6.656268234
-------	------	-------	-------------

u _{jet} =	(0.195 Q^1/3 H^1/2)/	r^5/6
u _{jet} =	1.352	m/sec

SPRINKLER ACTIVATION TIME CALCULATION

 $t_{activation}$ = (RTI/($\sqrt{u_{jet}}$)) (In (T_{jet} - T_a)/(T_{jet} - T_{activation}))

t_{activation} 93.60 sec

Answer	The sprinkler will respond in approximately	1.56 minutes
	NOTE: If t _{activation} = "NUM" Sprinkler does not activate	
NOTE:		

The above calculations are based on principles developed in the SFPE Handbook of Fir assumptions and have inherent limitations. The results of such calculations may or may interpreted by an informed user. Although each calculation in the spreadsheet has beer accuracy of these calculations. Any questions, comments, concerns and suggestions or David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.	r not have reasonable predictive capabilities for a given situation and should only be n verified with the results of hand calculation, there is no absolute guarantee of the
Prepared by:	Date: Organization:
Checked by:	Date: Organization:
Additional Information:	

Example Problem 10.10-2

Problem Statement

If the sprinklers in Problem 10-1 are replaced by sprinklers with a response time index (RTI) of 235 (m-sec)^{$\frac{1}{2}$}, how long would it take for them to activate?

Solution

Purpose:

(1) Determine the activation time for the specified sprinklers under the fire scenario of Problem 10-1.

Assumptions:

- (1) The fire is located away from walls and corners.
- (2) The fire is steady state.
- (3) The ceiling is unconfined.
- (4) Only convective heat transfer from the hot fire gases is considered.
- (5) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1_SI.xls (click on Sprinkler)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 1000 kW
- Distance from the Top of the Fuel Package to the Ceiling (H) = 3 m
- Radial Distance from the Plume Centerline to the Sprinkler (r) = 3 m
- Ambient Air Temperature (T_a) = 25 °C
- Select Type of Sprinkler = Standard response bulb
- Select Sprinkler Classification = Ordinary

Note: The RTI value of 235 (m-sec)^{1/2} corresponds to a standard response bulb sprinkler. Ordinary classification has been selected because the rated value for the sprinklers in this problem (74 °C, same as Problem 10-1) is within the range of temperature ratings for ordinary sprinklers (57 °C – 77 °C).

Results*

Sprinkler Type	Sprinkler Activation Time (t _{activation}) (min.)
Standard Response Bulb	2.8

*see spreadsheet on next page

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 10.10-2

INPUT PARAMETERS

r/H =

Heat Release Rate of the Fire (Q) (Steady State) Sprinkler Response Time Index (RTI) Activation Temperature of the Sprinkler (T_{activation}) Height of Ceiling above Top of Fuel (H)

Radial Distance to the Detector (r)*never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Ambient Air Temperature (T_a)

Convective Heat Release Rate $\mbox{Fraction}\left(\chi_{c}\right)$

1.00

Calculate

GENERIC SPRINKLER RESPONSE TIME INDEX (RTI)*

Common Sprinkler Type	Generic Response	Select Type of Sprinkler
	Time Index (RTI) (m-sec) ^{1/2}	Standard response bulb
Standard response bulb	235	Scroll to desired sprinkler type then Click on selection
Standard response link	130	
Quick response bulb	42	
Quick response link	34	
User Specified Value	Enter Value	
Reference: Madrzykowski, D., "Eval	uation of Sprinkler Activation Prediction Metho	ds"
ASIAFI AM'95 International Confere	nce on Fire Science and Engineering 1 st Pro	aceedina

ASIAFLAM'95, International Conference on Fire Science and Engineering, 1 st Proc

March 15-16, 1995, Kowloon, Hong Kong, pp. 211-218.

*Note: The actual RTI should be used when the value is available.

GENERIC SPRINKLER TEMPERATURE RATING (Tactivation)*

Temperature Classification	Range of Temperature	Generic Temperature	Select Sprinkler Classification
	Ratings (°F)	Ratings (°F)	Ordinary
Ordinary	135 to 170	165	Scroll to desired sprinkler class
Intermediate	175 to 225	212	then Click on selection
High	250 to 300	275	
Extra high	325 to 375	350	
Very extra high	400 to 475	450	
Ultra high	500 to 575	550	
Ultra high	650	550	
User Specified Value	-	Enter Value	

Reference: Automatic Sprinkler Systems Handbook, 6 th Edition, National Fire Protection

Association, Quincy, Massachusetts, 1994, Page 67.

*Note: The actual temperature rating should be used when the value is available.

for r/H ≤ 0.18 for r/H > 0.18

ESTIMATING SPRINKLER RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

 $t_{activation}$ = sprinkler activation response time (sec)

RTI = sprinkler response time index $(m-sec)^{1/2}$ u_{jet} = ceiling jet velocity (m/sec)

 u_{jet} = ceiling jet velocity (m/sec) T_{jet} = ceiling jet temperature (°C)

 T_{a} = ambient air temperature (°C)

 $T_{activation}$ = activation temperature of sprinkler (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{iet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

T_{jet} = ceiling jet temperature (°C)

 T_a = ambient air temperature (°C)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

Qc = convective portion of the heat release rate (kW)

Q = heat release rate of the fire (kW) χ c = convective heat release rate fraction

Q_c =

700 kW

Radial Distance to Ceiling Height Ratio Calculation

r/H =	1.00 r/H > 0.18		
>0.18	86.21	<0.18	270.82
T _{jet} - T _a =	{5.38 (Q/r)^2/3}/H		
T _{jet} - T _a =	86.21		
T _{jet} =	111.21 (°C)		

Ceiling Jet Velocity Calculation

$$u_{jet} = 0.96 (Q/H)^{1/3}$$
 for r/H ≤ 0.15
 $u_{jet} = (0.195 Q^{1/3} H^{1/2})/r^{5/6}$ for r/H > 0.15

Where

ujet = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Radial Distance to Ceiling Height Ratio Calculation

>0.15 1.35 <0.15 6.656268234

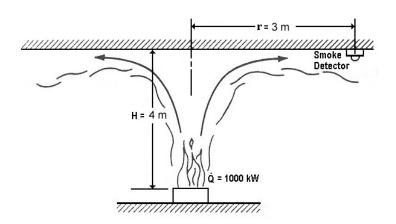
u _{jet} =	(0.195 Q^1/3 H^1/2)/	r^5/6
u _{jet} =	1.352	m/sec

SPRINKLER ACTIVATION TIME CALCULATION

 $t_{activation} = (RTI/(\sqrt{u_{jet}})) (In (T_{jet} - T_a)/(T_{jet} - T_{activation})) t_{activation}$ 169.19 sec

t_{activation}

Answer	The sprinkler will respond in approximately	2.82 minutes
	NOTE: If t _{activation} = "NUM" Sprinkler does not activate	
NOTE:		
The above calcula	ations are based on principles developed in the SFPE Handbook of Fire Protection	Engineering, 3 rd Edition, 2002. Calculations are based on certain


•	s been verified with the results of hand calculation, there is no absolute guarantee of the ions or to report an error(s) in the spreadsheets, please send an email to
Prepared by:	Date: Organization:
Checked by:	Date: Organization:
Additional Information:	

11.12 Problems

Example Problem 11.12-1

Problem Statement

Estimate the response time of a smoke detector that is located 3 m radially from the centerline of a 1,000 kW pool fire in a 4 m tall compartment.

Example Problem 11-1: Fire Scenario with Smoke Detector

Solution

Purpose:

(1) Determine the response time of the smoke detector for the fire scenario.

Assumptions:

- (1) The fire is steady state
- (2) The forced ventilation system is off
- (3) There is no heavily obstructed overhead

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1_SI.xls (click on Smoke_Detector)

FDTs Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 1,000 kW
- Ceiling Height (H) = 4 m
- Radial Distance from the Plume Centerline to the Smoke Detector (r) = 3 m

Results*

Heat Release Rate (kW)	Smoke Detector Activation Time (t _R) (sec)		
1,000	Method of Alpert	Method of Mowrer	Method of Milke
	0.32	0.74	0.22

*see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 11.12-1

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Height of Ceiling above Top of Fuel (H) Activation Temperature of the Smoke Detector (T_{activation}) Smoke Detector Response Time Index (RTI) Ambient Air Temperature (T_a)

 $\begin{array}{l} \mbox{Convective Heat Release Rate Fraction} (\chi_c) \\ \mbox{Plume Leg Time Constant} (C_{\mu}) (Experimentally Determined) \\ \mbox{Ceiling Jet Lag Time Constant} (C_{cj}) (Experimentally Determined) \\ \mbox{Temperature Rise of Gases Under the Ceiling } (\Delta T_c) \\ \mbox{for Smoke Detector to Activate} \\ \end{array}$

r/H = 0.75

		-
1	000.00	kW
	3.00	
	4.00	
	30.00	
	5.00	(m-sec) ^{1/2} °C
	25.00	°C

	0.70
	0.67
	1.2
°C	10.00

Calculate

ESTIMATING SMOKE DETECTOR RESPONSE TIME

METHOD OF ALPERT

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

 $t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$ This method assume smoke detector is a low RTI device with a fixed activation temperature

Where

 $t_{activation}$ = detector activation time (sec) RTI = detector response time index (m-sec)^{1/2}

- u_{jet} = ceiling jet velocity (m/sec)
- T_{jet} = ceiling jet temperature (°C)

T_a = ambient air temperature (°C)

T_{activation} = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

T_{iet} -

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{jet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

- Qc = convective portion of the heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χ_c = convective heat release rate fraction

700 kW

for r/H ≤ 0.18

for r/H > 0.18

Version 1805.1 (SI Units)

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.75	r/H > 0.18	
>0.18	64.66	<0.18	167.67
T _{jet} - T _a =	5.38 ((Q/r)^2/3)/H		
T _{jet} - T _a =		64.66	
T _{jet} =		89.66 (°C)	

Ceiling Jet Velocity Calculation

u _{jet} = 0.96 (Q/H) ^{1/3}	for r/H ≤ 0.15
u _{iet} = (0.195 Q ^{1/3} H ^{1/2})/r ^{5/6}	for r/H > 0.15

Where

u_{jet} = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =	/H = 0.75 r/H > 0.15			
>0.1	5	1.56	<0.15	6.05
u _{jet} =	(0.195 Q^1/3 H^1/	/2)/r^(5/6)		
u _{jet} =	1.561	m/s	ec	

Smoke Detector Response Time Calculation

$$\begin{split} t_{activation} &= (\text{RTI/}(\sqrt{u_{jet}})) \; (\text{In } (\text{T}_{jet} - \text{T}_{a})/(\text{T}_{jet} - \text{T}_{activation})) \\ t_{activation} &= & 0.32 \; \text{sec} \\ \text{NOTE: If } t_{activation} &= \text{"NUM" Detector does not activate} \end{split}$$

Version 1805.1 (SI Units)

METHOD OF MOWRER

References: Mowrer, F., "Lag Times Associated With Fire Detection and Suppression," Fire Technology, August 1990, p. 244.

$t_{activation} = t_{pl} + t_{cj}$

Where

 $\begin{array}{l} t_{activation} = \mbox{ detector activation time (sec)} \\ t_{pl} = \mbox{ transport lag time of plume (sec)} \\ t_{cj} = \mbox{ transport lag time of ceiling jet (sec)} \end{array}$

Transport Lag Time of Plume Calculation

$$\begin{split} \textbf{t}_{pl} &= \textbf{C}_{pl} ~(\textbf{H})^{4/3} /(\textbf{Q})^{1/3} \\ \text{Where} \\ & \quad tpl = t_{pl} = \text{transport lag time of plume (sec)} \\ & \quad Cpl = C_{pl} = \text{plume lag time constant} \\ & \quad H = \text{H} = \text{height of ceiling above top of fuel (m)} \\ & \quad Q = Q = \text{heat release rate of the fire (kW)} \\ \hline \textbf{t}_{pl} = & \textbf{0.43 sec} \end{split}$$

Transport Lag Time of Ceiling Jet Calculation

$$\begin{split} t_{cj} &= (r)^{11/6} / (C_{cj}) \ (Q)^{1/3} \ (H)^{1/2} \\ \text{Where} \\ & \begin{array}{c} t_{cj} &= t_{cj} = \text{transport lag time of ceiling jet (sec)} \\ & C_{cj} &= C_{cj} = \text{ceiling jet lag time constant} \\ & r &= r = \text{radial distance from the plume centerline to the detector (m)} \\ & H &= H = \text{height of ceiling above top of fuel (m)} \\ & Q &= Q = \text{heat release rate of the fire (kW)} \\ \end{array} \\ & \begin{array}{c} t_{cj} &= \\ \end{array} \end{array}$$

Smoke Detector Response Time Calculation

 $t_{activation} = t_{pl} + t_{cj}$ $t_{activation} =$

0.74 sec

Version 1805.1 (SI Units)

METHOD OF MILKE

References: Milke, J., "Smoke Management for Covered Malls and Atria," Fire Technology, August 1990, p. 223. NFPA 92B, "Guide for Smoke Management Systems in Mall, Atria, and Large Areas," 2000 Edition, Section A.3.4.

$t_{activation} = X H^{4/3}/Q^{1/3}$

Where

tactivation = detector activation time (sec) X = 4.6 10^{-4} Y² + 2.7 10^{-15} Y⁶

H = height of ceiling above top of fuel (ft)

 $Y = \Delta T_c H^{5/3} / Q^{2/3}$

Q = heat release rate from steady fire (Btu/sec)

Where

 ΔTc = temperature rise of gases under the ceiling for smoke detector to activate (°C)

Before estimating smoke detector response time, stratification effects can be calculated. NFPA 92B, 2000 Edition, Section A.3.4 provides following correlation to estimate smoke stratification in a compartment.

$$H_{max} = 74 Q_c^{2/5} / \Delta T_{f->c}^{3/5}$$

Where

Hmax = the maximum ceiling clearance to which a plume can rise (ft)

Qc = convective portion of the heat release rate (Btu/sec)

 $\Delta T_{f,sc}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

Convective Heat Release Rate Calculation

$$\begin{aligned} \mathbf{Q_c} &= \mathbf{Q} \; \boldsymbol{\chi_c} \\ & \text{Where} \\ & \mathbf{Q_c} = \text{convective portion of the heat release rate (kW)} \\ & \mathbf{Q} = \text{heat release rate of the fire (kW)} \\ & \boldsymbol{\chi_c} = \text{convective heat release rate fraction} \end{aligned}$$

663.097 Btu/sec

Version 1805.1 (SI Units)

Difference in Temperature Due to Fire Between the Fuel Location and Ceiling Level

 ΔT_{f-c} = 1300 $Q_c^{2/3}$ / $H^{5/3}$

Where $\Delta T_{t>c}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

- Q_c = convective portion of the heat release rate (Btu/sec)
- H = ceiling height above the fire source (ft)

734.39 °C 1353.90 °F $\Delta T_{f->c} =$

Smoke Stratification Effects

 $H_{max} = 74 \ Q_c^{2/5} / \Delta T_{f-c}^{3/5}$ H_{max} = 4.01 m 13.15 ft In this case the highest point of smoke rise is estimated to be **4.01** m

Thus, the smoke would be expected to reach the ceiling mounted smoke detector.

$$Y = \Delta T_c H^{5/3} / Q^{2/3}$$

Y = 12.68
X = 4.6 10⁻⁴ Y² + 2.7 10⁻¹⁵ Y⁶
X = 0.07

Smoke Detector Response Time Calculation

$$t_{activation} = X H^{4/3}/Q^{1/3}$$

t_{activation} = 0.22 sec

Version 1805.1 (SI Units)

	Calculation Method	Smoke Detector Response Time (sec)	
	METHOD OF ALPERT	0.32	
Summary of Results	METHOD OF MOWRER	0.74	
Results	METHOD OF MILKE	0.22	

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 11.12-2

Problem Statement

During a routine inspection, an NRC resident inspector finds a 1.2 m high stack of wood pallets left in the NPP after a recent MOV modification. When the inspector questions the licensee about this transient combustible, the licensee assures the inspector that if the transient ignited, the smoke detection system would alarm in less than 1 minute.

The SFPE Handbook provides test data for a stack of 4 ft high wood pallets, from which the HRR can be estimated at 3.5 MW.

The compartment has a 7.6 m ceiling with the smoke detectors spaced 9 m (30 ft) on center. The pallets are located in the worst position (i.e., in the center of four smoke detectors).

How long does it take the smoke detector to alarm?

Solution

Purpose:

(1) Determine the response time of the smoke detector for the fire scenario.

Assumptions:

- (1) The fire is steady-state.
- (2) The forced ventilation system is off.
- (3) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1_SI.xls (click on *Smoke_Detector*)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 3,500 kW
- Ceiling Height (H) = 7.6 m
- Radial Distance from the Plume Centerline to the Smoke Detector (r) = 6.46 m

Results*

Heat Release Rate (\dot{Q}) (kW)	Smoke Detector Activation Time (t _R) (sec)		
3.500	Method of Alpert	Method of Mowrer	Method of Milke
3,300	0.43	1.27	0.56

*see spreadsheets on next page

Therefore, it can be assumed that the smoke detectors would alarm within 1 minute.

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 11.12-2

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Height of Ceiling above Top of Fuel (H) Activation Temperature of the Smoke Detector (T_{activation}) Smoke Detector Response Time Index (RTI) Ambient Air Temperature (T_a)

 $\begin{array}{l} \mbox{Convective Heat Release Rate Fraction } (\chi_c) \\ \mbox{Plume Leg Time Constant } (C_{pl}) \mbox{ (Experimentally Determined)} \\ \mbox{Ceiling Jet Lag Time Constant } (C_c) \mbox{ (Experimentally Determined)} \\ \mbox{Temperature Rise of Gases Under the Ceiling } (\Delta T_c) \\ \mbox{for Smoke Detector to Activate} \end{array}$

r/H = 0.85

	-
3500.00	kW
6.46	m
7.60	m
30.00	
5.00	(m-sec) ^{1/2} °C
25.00	°C

0.70	
0.67	
1.2	
10.00	°C

Calculate

ESTIMATING SMOKE DETECTOR RESPONSE TIME

METHOD OF ALPERT

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

 $t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$ This method assume smoke detector is a low RTI device with a fixed activation temperature

Where

 $t_{activation}$ = detector activation time (sec) RTI = detector response time index (m-sec)^{1/2}

- u_{jet} = ceiling jet velocity (m/sec)
- T_{jet} = ceiling jet temperature (°C)

T_a = ambient air temperature (°C)

T_{activation} = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{jet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

- Qc = convective portion of the heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χ_c = convective heat release rate fraction

2450 kW

for r/H ≤ 0.18

for r/H > 0.18

Version 1805.1 (SI Units)

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.85	r/H > 0.18	
>0.18	47.05	<0.18	132.61
T _{jet} - T _a =	5.38 ((Q/r)^2/3)/H		
T _{jet} - T _a =		47.05	
T _{jet} =		72.05 (°C)	

Ceiling Jet Velocity Calculation

u _{jet} = 0.96 (Q/H) ^{1/3}	for r/H ≤ 0.15
u _{iet} = (0.195 Q ^{1/3} H ^{1/2})/r ^{5/6}	for r/H > 0.15

Where

u_{jet} = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.85 r/H >	0.85 r/H > 0.15		
>0.1	15	1.72	<0.15	7.41	
u _{jet} = (0.195 Q^1/3 H^1/2)/r^(5/6)					
u _{jet} =	1.724	m/se	ec		

Smoke Detector Response Time Calculation

$$\begin{split} t_{activation} &= (\text{RTI/}(\sqrt{u_{jet}})) \; (\text{In } (\text{T}_{jet} - \text{T}_{a})/(\text{T}_{jet} - \text{T}_{activation})) \\ t_{activation} &= & 0.43 \; \text{sec} \\ \text{NOTE: If } t_{activation} &= \text{"NUM" Detector does not activate} \end{split}$$

Version 1805.1 (SI Units)

METHOD OF MOWRER

References: Mowrer, F., "Lag Times Associated With Fire Detection and Suppression," Fire Technology, August 1990, p. 244.

$t_{activation} = t_{pl} + t_{cj}$

Where

 $\begin{array}{l} t_{activation} = \mbox{ detector activation time (sec)} \\ t_{pl} = \mbox{ transport lag time of plume (sec)} \\ t_{cj} = \mbox{ transport lag time of ceiling jet (sec)} \end{array}$

Transport Lag Time of Plume Calculation

$$\begin{split} \mathbf{t_{pl}} &= \mathbf{C_{pl}} \; (\mathbf{H})^{4/3} / (\mathbf{Q})^{1/3} \\ \text{Where} \\ & \quad t_{pl} = t_{pl} = \text{transport lag time of plume (sec)} \\ & \quad C_{pl} = C_{pl} = \text{plume lag time constant} \\ & \quad H = H = \text{height of ceiling above top of fuel (m)} \\ & \quad Q = Q = \text{heat release rate of the fire (kW)} \\ \\ & \quad \mathbf{t_{pl}} = \mathbf{0.666 \ sec} \end{split}$$

Transport Lag Time of Ceiling Jet Calculation

$$\begin{split} t_{cj} &= (r)^{11/6} / (C_{cj}) \ (Q)^{1/3} \ (H)^{1/2} \\ \text{Where} \\ & \begin{array}{c} t_{cj} &= t_{cj} = \text{transport lag time of ceiling jet (sec)} \\ C_{cj} &= C_{cj} = \text{ceiling jet lag time constant} \\ r &= r = \text{radial distance from the plume centerline to the detector (m)} \\ H &= H = \text{height of ceiling above top of fuel (m)} \\ Q &= Q = \text{heat release rate of the fire (kW)} \\ \end{array}$$

Smoke Detector Response Time Calculation

 $t_{activation} = t_{pl} + t_{cj}$ $t_{activation} =$

1.27 sec

Version 1805.1 (SI Units)

METHOD OF MILKE

References: Milke, J., "Smoke Management for Covered Malls and Atria," Fire Technology, August 1990, p. 223. NFPA 92B, "Guide for Smoke Management Systems in Mall, Atria, and Large Areas," 2000 Edition, Section A.3.4.

$t_{activation} = X H^{4/3}/Q^{1/3}$

Where

tactivation = detector activation time (sec) X = 4.6 10^{-4} Y² + 2.7 10^{-15} Y⁶

H = height of ceiling above top of fuel (ft)

Q = heat release rate from steady fire (Btu/sec)

Where

 $Y = \Delta T_c H^{S'3} / Q^{2'3}$ $\Delta Tc = temperature rise of gases under the ceiling for smoke detector to activate (°C)$

Before estimating smoke detector response time, stratification effects can be calculated. NFPA 92B, 2000 Edition, Section A.3.4 provides following correlation to estimate smoke stratification in a compartment.

$$H_{max} = 74 Q_c^{2/5} / \Delta T_{f->c}^{3/5}$$

Where

Hmax = the maximum ceiling clearance to which a plume can rise (ft)

Qc = convective portion of the heat release rate (Btu/sec)

 $\Delta T_{f,sc}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

Convective Heat Release Rate Calculation

Q_c

 Q_{c}

2320.84 Btu/sec

Version 1805.1 (SI Units)

Difference in Temperature Due to Fire Between the Fuel Location and Ceiling Level

 ΔT_{f-c} = 1300 $Q_c^{2/3}$ / $H^{5/3}$

Where $\Delta T_{t>c}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

Q_c = convective portion of the heat release rate (Btu/sec)

H = ceiling height above the fire source (ft)

577.11 °C 1070.80 °F $\Delta T_{f->c} =$

Smoke Stratification Effects

 $H_{max} = 74 \ Q_c^{2/5} / \Delta T_{f-c}^{3/5}$ H_{max} = 7.62 m 24.98 ft In this case the highest point of smoke rise is estimated to be **7.62** m

Thus, the smoke would be expected to reach the ceiling mounted smoke detector.

$$Y = \Delta T_c H^{5/3} / Q^{2/3}$$

Y = 16.03
X = 4.6 10⁻⁴ Y² + 2.7 10⁻¹⁵ Y⁶
X = 0.12

Smoke Detector Response Time Calculation

$$t_{activation} = X H^{4/3}/Q^{1/3}$$

t_{activation} = 0.56 sec

Version 1805.1 (SI Units)

	Calculation Method	Smoke Detector Response Time (sec)	
Summony	METHOD OF ALPERT	0.43	
Summary of Results	METHOD OF MOWRER	1.27	
results	METHOD OF MILKE	0.56	

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:	Date.	
Additional Information:		

Example Problem 11.12-3

Problem Statement

During a triennial inspection, an NRC inspector discovers that every other smoke detector has inadvertently been painted and is not functional. The detection system in the compartment is singlezoned to arm a pre-action sprinkler system. The detectors are 6.1 m on center. The ceiling is 7 m. The sprinkler system uses 74 °C sprinklers, 3 m on center, and 10.2 cm from the ceiling. The licensee states that even with half the smoke detectors inoperable, a smoke detector would alarm and charge the preaction system before a quick-response link-type sprinkler head fuses. The expected fire in the compartment is approximately 750 kW. Is the licensee's statement true?

Solution

Purpose:

- (1) Determine the response time of the smoke detector for the fire scenario.
- (2) Determine the response time of the sprinkler system.

Assumptions:

- (1) The fire is steady-state.
- (2) The forced ventilation system is off.
- (3) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1_SI.xls (click on Smoke-Detector)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 750 kW
- Ceiling Height (H) = 7 m
- Radial Distance from the Plume Centerline to the Smoke Detector (r) = 6.1 m
- (b) 10_Detector_Activation_Time_Sup1_SI.xls (click on Sprinkler)

FDT^s Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 750 kW
- Select Quick Response Link
- Select Ordinary
- Ceiling Height (H) = 7 m
- Radial Distance from the Plume Centerline to the Sprinkler (r) = 4.3 m

Results*

Heat Release Rate (\dot{Q}) (kW)	Smoke Detector Activation Time (t _R) (sec)		
750	Method of Alpert	Method of Mowrer	Method of Milke
	1.5	1.9	4.9
*see spreadsheet on peyt page			

*see spreadsheet on next page

The sprinkler heads do not activate. Therefore, the licensee's statement is true; however, the non-activation of the sprinkler heads should be of great concern.

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 11.12-3a

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** Height of Ceiling above Top of Fuel (H) Activation Temperature of the Smoke Detector (T_{activation}) Smoke Detector Response Time Index (RTI) Ambient Air Temperature (T_a)

 $\begin{array}{l} \mbox{Convective Heat Release Rate Fraction} \ (\chi_c) \\ \mbox{Plume Leg Time Constant} \ (C_{pl}) \ (Experimentally Determined) \\ \mbox{Ceiling Jet Lag Time Constant} \ (C_{cl}) \ (Experimentally Determined) \\ \mbox{Temperature Rise of Gases Under the Ceiling} \ (\Delta T_c) \\ \mbox{for Smoke Detector to Activate} \end{array}$

r/H = 0.87

		-
75	50.00	kW
	6.10	m
	7.00	
	30.00	
	5.00	(m-sec) ^{1/2} °C
2	25.00	°C

0.70	
0.67	
1.2	
10.00	°C

Calculate

ESTIMATING SMOKE DETECTOR RESPONSE TIME

METHOD OF ALPERT

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

 $t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$ This method assume smoke detector is a low RTI device with a fixed activation temperature

Where

 $t_{activation}$ = detector activation time (sec) RTI = detector response time index (m-sec)^{1/2}

- u_{jet} = ceiling jet velocity (m/sec)
- T_{jet} = ceiling jet temperature (°C)

T_a = ambient air temperature (°C)

T_{activation} = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

$$T_{jet} - T_a = 5.38 (Q/r)^{2/3}/H$$

Where

- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

- Qc = convective portion of the heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χ_c = convective heat release rate fraction
- $Q_c =$

525 kW

for r/H ≤ 0.18

for r/H > 0.18

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.87	r/H > 0.18	
>0.18	19.00	<0.18	54.46
T _{jet} - T _a =	5.38 ((Q/r)^2/3)/H		
T _{jet} - T _a =		19.00	
T _{jet} =		44.00 (°C)	

Ceiling Jet Velocity Calculation

$u_{jet} = 0.96 (Q/H)^{1/3}$	for r/H ≤ 0.15
$u_{jet} = (0.195 \ Q^{1/3} \ H^{1/2})/r^{5/6}$	for r/H > 0.15

Where

u_{jet} = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.87 r/H ≯	0.87 r/H > 0.15		
>0.1	15	1.04	<0.15	4.56	
u _{jet} =	(0.195 Q^1/3	H^1/2)/r^(5/6)			
u _{jet} =	1.039	m/se	ec		

Smoke Detector Response Time Calculation

$$\begin{split} t_{activation} &= (\text{RTI/}(\sqrt{u_{jet}})) \; (\text{In } (\text{T}_{jet} - \text{T}_{a})/(\text{T}_{jet} - \text{T}_{activation})) \\ t_{activation} &= 1.50 \; \text{sec} \\ \text{NOTE: If } t_{activation} = "\text{NUM" Detector does not activate} \end{split}$$

Version 1805.1 (SI Units)

METHOD OF MOWRER

References: Mowrer, F., "Lag Times Associated With Fire Detection and Suppression," Fire Technology, August 1990, p. 244.

$t_{activation} = t_{pl} + t_{cj}$

Where

 $\begin{array}{l} t_{activation} = \mbox{ detector activation time (sec)} \\ t_{pl} = \mbox{ transport lag time of plume (sec)} \\ t_{cj} = \mbox{ transport lag time of ceiling jet (sec)} \end{array}$

Transport Lag Time of Plume Calculation

$$\begin{split} \mathbf{t}_{pl} &= \mathbf{C}_{pl} \; (\mathbf{H})^{4/3} / (\mathbf{Q})^{1/3} \\ \text{Where} \\ & t_{pl} = t_{pl} = \text{transport lag time of plume (sec)} \\ & C_{pl} = C_{pl} = \text{plume lag time constant} \\ & H = \text{H} = \text{height of ceiling above top of fuel (m)} \\ & Q = Q = \text{heat release rate of the fire (kW)} \\ \\ & \mathbf{t}_{pl} = \\ \end{split}$$

Transport Lag Time of Ceiling Jet Calculation

$$\begin{split} t_{cj} &= (r)^{11/6} / (C_{cj}) \ (Q)^{1/3} \ (H)^{1/2} \\ \text{Where} \\ & \begin{array}{c} t_{cj} &= t_{cj} = \text{transport lag time of ceiling jet (sec)} \\ C_{cj} &= C_{cj} = \text{ceiling jet lag time constant} \\ r &= r = \text{radial distance from the plume centerline to the detector (m)} \\ H &= H = \text{height of ceiling above top of fuel (m)} \\ Q &= Q = \text{heat release rate of the fire (kW)} \\ \end{array} \\ t_{cj} &= \begin{array}{c} 0.95 \ sec \end{array}$$

Smoke Detector Response Time Calculation

 $t_{activation} = t_{pl} + t_{cj}$ $t_{activation} =$

1.94 sec

Version 1805.1 (SI Units)

METHOD OF MILKE

References: Milke, J., "Smoke Management for Covered Malls and Atria," Fire Technology, August 1990, p. 223. NFPA 92B, "Guide for Smoke Management Systems in Mall, Atria, and Large Areas," 2000 Edition, Section A.3.4.

$t_{activation} = X H^{4/3}/Q^{1/3}$

Where

tactivation = detector activation time (sec) X = 4.6 10^{-4} Y² + 2.7 10^{-15} Y⁶

H = height of ceiling above top of fuel (ft)

 $Y = \Delta T_c H^{5/3} / Q^{2/3}$

Q = heat release rate from steady fire (Btu/sec)

Where

 ΔTc = temperature rise of gases under the ceiling for smoke detector to activate (°C)

Before estimating smoke detector response time, stratification effects can be calculated. NFPA 92B, 2000 Edition, Section A.3.4 provides following correlation to estimate smoke stratification in a compartment.

$$H_{max} = 74 Q_c^{2/5} / \Delta T_{f->c}^{3/5}$$

Where

Hmax = the maximum ceiling clearance to which a plume can rise (ft)

Qc = convective portion of the heat release rate (Btu/sec)

 $\Delta T_{f,\text{-c}}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

Convective Heat Release Rate Calculation

$$\begin{aligned} \mathbf{Q_c} &= \mathbf{Q} \; \boldsymbol{\chi_c} \\ & \text{Where} \\ & \mathbf{Q_c} = \text{convective portion of the heat release rate (kW)} \\ & \mathbf{Q} = \text{heat release rate of the fire (kW)} \\ & \boldsymbol{\chi_c} = \text{convective heat release rate fraction} \end{aligned}$$
$$\begin{aligned} \mathbf{Q_c} &= \mathbf{525.00 \ kW} \end{aligned}$$

497.323 Btu/sec

Version 1805.1 (SI Units)

Difference in Temperature Due to Fire Between the Fuel Location and Ceiling Level

 ΔT_{f-c} = 1300 $Q_c^{2/3}$ / $H^{5/3}$

Where $\Delta T_{t>c}$ = difference in temperature due to fire between the fuel location and ceiling level (°F)

Q_c = convective portion of the heat release rate (Btu/sec)

H = ceiling height above the fire source (ft)

226.54 °C 439.78 °F $\Delta T_{f->c} =$

Smoke Stratification Effects

 $H_{max} = 74 \ Q_c^{2/5} / \Delta T_{f-c}^{3/5}$ H_{max} = 7.01 m 23.01 ft In this case the highest point of smoke rise is estimated to be **7.01** m

Thus, the smoke would be expected to reach the ceiling mounted smoke detector.

$$Y = \Delta T_c H^{5/3} / Q^{2/3}$$

Y = 39.03
X = 4.6 10⁻⁴ Y² + 2.7 10⁻¹⁵ Y⁶
X = 0.70

Smoke Detector Response Time Calculation

$$t_{activation} = X H^{4/3}/Q^{1/3}$$

t_{activation} = 4.94 sec

Version 1805.1 (SI Units)

	Calculation Method	Smoke Detector Response Time (sec)	
Summony of	METHOD OF ALPERT	1.50	
Summary of Results	METHOD OF MOWRER	1.94	
Results	METHOD OF MILKE	4.94	

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 11.12-3b

INPUT PARAMETERS

Heat Release Rate of the Fire (Q) (Steady State) 750.00 kW Sprinkler Response Time Index (RTI) 34 (m-sec)^{1/2} Activation Temperature of the Sprinkler (Tactivation) 165 Height of Ceiling above Top of Fuel (H) 7.00 Radial Distance to the Detector (r) **never more than 0.707 or $1/2\sqrt{2}$ of the listed spacing** 4.30 m Ambient Air Temperature (T_a) 25.00 °C Convective Heat Release Rate Fraction (χ_c) 0.70 r/H = 0.61 Calculate

GENERIC SPRINKLER RESPONSE TIME INDEX (RTI)*

Common Sprinkler Type	Generic Response	Select Type of Sprinkler
	Time Index (RTI) (m-sec) ^{1/2}	Quick response link
Standard response bulb	235	Scroll to desired sprinkler type then Click on selection
Standard response link	130	
Quick response bulb	42	
Quick response link	34	
User Specified Value	Enter Value	
Reference: Madrzykowski, D., "Evalu	uation of Sprinkler Activation Prediction Method	ls"
ASIAFLAM'95, International Confere	nce on Fire Science and Engineering, 1 st Prod	ceeding,

March 15-16, 1995, Kowloon, Hong Kong, pp. 211-218.

*Note: The actual RTI should be used when the value is available.

GENERIC SPRINKLER TEMPERATURE RATING (Tactivation)*

Temperature Classification	Range of Temperature	Generic Temperature	Select Sprinkler Classification
	Ratings (°F)	Ratings (°F)	Ordinary -
Ordinary	135 to 170	165	Scroll to desired sprinkler class
Intermediate	175 to 225	212	then Click on selection
High	250 to 300	275	
Extra high	325 to 375	350	
Very extra high	400 to 475	450	
Ultra high	500 to 575	550	
Ultra high	650	550	
User Specified Value	-	Enter Value	

Reference: Automatic Sprinkler Systems Handbook, 6 th Edition, National Fire Protection

Association, Quincy, Massachusetts, 1994, Page 67.

*Note: The actual temperature rating should be used when the value is available.

ESTIMATING SPRINKLER RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19 th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

 $t_{activation}$ = sprinkler activation response time (sec)

RTI = sprinkler response time index $(m-sec)^{1/2}$ u_{jet} = ceiling jet velocity (m/sec)

 u_{jet} = ceiling jet velocity (m/sec) T_{jet} = ceiling jet temperature (°C)

 T_{a} = ambient air temperature (°C)

 $T_{activation}$ = activation temperature of sprinkler (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{iet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

T_{jet} = ceiling jet temperature (°C)

 T_a = ambient air temperature (°C)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

Where

Qc = convective portion of the heat release rate (kW)

Q = heat release rate of the fire (kW) χ c = convective heat release rate fraction

Q_c =

525 kW

for r/H ≤ 0.18 for r/H > 0.18

r/H =	0.61 r/H > 0.18		
>0.18	23.99	<0.18	54.46
T _{jet} - T _a =	{5.38 (Q/r)^2/3}/H		
T _{jet} - T _a =	23.99		
T _{jet} =	48.99 (°C)		

Ceiling Jet Velocity Calculation

$$\begin{array}{ll} u_{jet} = 0.96 \; (Q/H)^{1/3} & \mbox{for } r/H \leq 0.15 \\ u_{jet} = (0.195 \; Q^{1/3} \; H^{1/2})/r^{5/6} & \mbox{for } r/H > 0.15 \end{array}$$

Where

ujet = ceiling jet velocity (m/sec)

Q = heat release rate of the fire (kW)

H = height of ceiling above top of fuel (m)

r = radial distance from the plume centerline to the sprinkler (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.61 r/H > 0.15
	•••••••••••

>0.15 1.39 <0.15 4.559588408

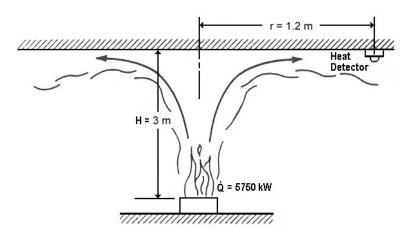
u _{jet} =	(0.195 Q^1/3 H^1/2)/r^5/6	
u _{jet} =	1.390	m/sec

SPRINKLER ACTIVATION TIME CALCULATION

 $t_{activation} = (\text{RTI/}(\sqrt{u_{jet}})) \text{ (In } (\text{T}_{jet} - \text{T}_{a})/(\text{T}_{jet} - \text{T}_{activation}))$

t_{activation} #NUM! sec

Answer	The sprinkler will respond in approximately	#NUM!	minutes	
	NOTE: If t _{activation} = "NUM" Sprinkler does not activate			
NOTE:				
assumptions and interpreted by an accuracy of these	ations are based on principles developed in the SFPE Handbook of I have inherent limitations. The results of such calculations may or m informed user. Although each calculation in the spreadsheet has be a calculations. Any questions, comments, concerns and suggestions c.gov or Naeem.lqbal@nrc.gov.	hay not have reasonab een verified with the re	le predictive capabilit sults of hand calculat	ties for a given situation and should only be tion, there is no absolute guarantee of the
Prepared by		Dat	te:	Organization:
Checked by		Dat	te:	Organization:


Additional Information:

12.12 Problems

Example Problem 12.12-1

Problem Statement

A 3.2 m² lube oil pool fire with \dot{Q} = 5,750 kW occurs in a space protected with fixed- temperature heat detectors. Calculate the activation time for the fixed-temperature heat detectors, using 3 m spacing, in an area with a ceiling height of 3 m. The detector activation temperature is 53 °C, the radial distance to the detector is 1.2 m, and the ambient temperature is 25 °C.

Example Problem 12-1: Fire Scenario with Heat Detectors

Solution

Purpose:

(1) Determine the response time of the fixed-temperature heat detectors for the fire scenario.

Assumptions:

- (1) The fire is located away from walls and corners.
- (2) The fire is steady state and plume is under unconfined ceiling.
- (3) Only convective heat transfer from the hot fire gases is considered.
- (4) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 10_Detector_Activation_Time_Sup1_SI.xls (click on FTHDetector)

FDTs Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 5,750 kW
- Radial Distance to the Detector (r) = 1.2 m
- Activation Temperature of the Fixed-Temperature Heat Detector (Tactivation) = 53 °C
- Distance from the Top of the Fuel Package to the Ceiling (H) = 3 m
- Ambient Air Temperature $(T_a) = 25 \degree C$
- Click on the option button for FTH Detectors with T_{activation} = 128 °F
- Select Detector Spacing: 10

Results*

Detector Type	Heat Detector Activation Time (t _{activation}) (min.)
Fixed-Temperature	0.2

*see spreadsheet on next page

The following calculations estin	nate the full-scale cable tray heat release rate.			
Parameters in YELLOW CELI	S are Entered by the User.			
Parameters in GREEN CELLS	are Automatically Selected from the DROP	DOWN MENU for the Cable Type Selected.		
All subsequent output values a	re calculated by the spreadsheet and based on	values specified in the input parameters. This spreadsheet is protected		
and secure to avoid errors due	to a wrong entry in a cell(s). The chapter in the	e NUREG should be read before an analysis is made.		
Project / Inspection Title:		Example 12.12-1		
INPUT PARAME	TERS			
Heat Release R	ate of the Fire (Q) (Steady State)	5750.00 kW		
	to the Detector (r) **never more than 0.707 or perature of the Fixed Temperature Heat Detector			
Detector Respo	Detector Response Time Index (RTI) 490.00 (m-sec) ^{1/2}			
Height of Ceiling Ambient Air Ter	g above Top of Fuel (H) nperature (T _a)	3.00 m 25.00 °C		
Convective Heat Release Fraction (χ_c) 0.70				
r/H =	0.40	Calculate		

INPUT DATA FOR ESTIMATING HEAT DETECTOR RESPONSE TIME

Activation Temperature T

erature T _{activation}				
🖸 T= 128 F	UL Listed Spacing	Response Time Index	Activation	
<u>1 1201</u>	r (ft)	RTI (m-sec) [™]	Temperature (°F)	Select Detector Spacing
	10	490	128	10 -
	15	306	128	Scroll to desired spacing then
	20	325	128	Click on selection
	25	152	128	
	30	116	128	
	40	87	128	
	50	72	128	
	70	44 Fatan Malua	128	
	User Specified Value	Enter value	Enter Value	1
		L		1
🖸 T= 135 F	UL Listed Spacing	Response Time Index RTI (m-sec) ¹¹²	Activation	Only of Data stan One sing
	r (ft)	, ,	Temperature (°F)	Select Detector Spacing
	10	404	135	
	15	233	135	Scroll to desired spacing then
	20	165	135	Click on selection
	25	123	135	
	30	98	135	
	40	70	135	
	50	54	135	
	70	20	135	
	User Specified Value		Enter Value	
	User Specified value		Enter value	1
		D T 11	A 11 11	1
🖸 T= 145 F	UL Listed Spacing	Response Time Index RTI (m-sec) ^{1/2}	Activation	
	r (ft)		Temperature (°F)	Select Detector Spacing
	10	321	145	
	15	191	145	Scroll to desired spacing then
	20	129	145	Click on selection
	25	96	145	
	30	75	145	
	40	50	145	
	50	37	145	
	70	11	145	
	User Specified Value		Enter Value	
	Osci opecifica value			1
	LIL Listed Spasing	Booponeo Timo Indov	Activation	
🖸 T= 160 F	UL Listed Spacing	Response Time Index RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	r (ft)	. ,		Select Detector Spacing
	10	239	160	
	15	135	160	Scroll to desired spacing then
	20	86	160	Click on selection
	25	59	160	
	30	44	160	
	40	22	160	
	User Specified Value	Enter Value	Enter Value	
				-
🖸 T= 170 F	UL Listed Spacing	Response Time Index	Activation	
L I-1/0F	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	10	196	170	
	15	109	170	Scroll to desired spacing then
	20	64	170	Click on selection
	25		170	
		39		
	30	27	170	
	User Specified Value	Enter Value	Enter Value	1
🖸 T= 196 F	UL Listed Spacing	Response Time Index	Activation	
	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	10	119	196	
	15	55	196	Scroll to desired spacing then
	20	21	196	
	User Specified Value	Enter Value	Enter Value	Click on selection
Reference: NFPA		Alarm Code, Appendix B, Table		

for r/H ≤ 0.18

for r/H > 0.18

ESTIMATING FIXED TEMPERATURE HEAT DETECTOR RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

- $t_{activation}$ = detector activation time (sec)
 - RTI = detector response time index (m-sec)^{1/2}
 - u_{jet} = ceiling jet velocity (m/sec)
 - T_{jet} = ceiling jet temperature (°C)
 - T_a = ambient air temperature (°C)

 $T_{activation}$ = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{jet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

- Where
- Q_{C} = convective heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χc = convective heat release fraction

 $Q_{c} = 4025 \text{ kW}$

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.40 r/H > 0.18		
>0.18	509.70	<0.18	869.22
T _{jet} - T _a =	5.38 ((Q/r)^2/3)/H		
T _{jet} - T _a =	509.70		
T _{jet} =	534.70 (°C)		

Ceiling Jet Velocity Calculation

$u_{jet} = 0.96 (Q/H)^{1/3}$	for r/H ≤ 0.15
u _{jet} = (0.195 Q ^{1/3} H ^{1/2})/r ^{5/6}	for r/H > 0.15

Where

- u_{jet} = ceiling jet velocity (m/sec)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =	0.40 r/H > 0.15				
	>0.15	5.20		<0.15	11.925
u _{jet} =	(0.1	95 Q^1/3 H^1	l/2)/r^(5/6)		
u _{jet} =	5.19	8	m/sec		

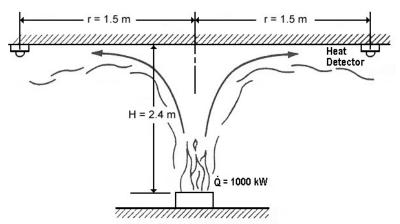
DETECTOR ACTIVATION TIME CALCULATION

 $t_{activation} = (\text{ RTI/}(\sqrt{u_{jet}})) \text{ (In (T_{jet} - T_a)/(T_{jet} - T_{activation}))}$

t_{activation} = 12.29 sec

Answer The detector will respond in approximately

0.20 minutes


NOTE: If t_{activation} = "NUM" Detector does not activate

NOTE		
NOTE: The above calculations are based on principles developed in the SFPE Handbook of Fire Prote have inherent limitations. The results of such calculations may or may not have reasonable pre user. Although each calculation in the spreadsheet has been verified with the results of hand of questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, p	edictive capabilities for a given situation and calculation, there is no absolute guarantee of	should only be interpreted by an informed the accuracy of these calculations. Any
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 12.12-2

Problem Statement

A trash fire with \dot{Q} = 1,000 kW occurs in a space protected with fixed-temperature heat detectors. Calculate the activation time for the fixed-temperature heat detectors, using 3 m spacing, in an area with a ceiling height of 2.4 m. The fire is located directly between heat detectors. The detector activation temperature is 71 °C, and the ambient temperature is 20 °C.

Example Problem 12-2: Fire Scenario with heat detectors equidistant from the fire source

Solution

Purpose:

(1) Determine the response time of the fixed-temperature heat detectors for the fire scenario.

Assumptions:

- (1) The fire is located away from walls and corners.
- (2) The fire is steady state and plume is under unconfined ceiling.
- (3) Only convective heat transfer from the hot fire gases is considered.
- (4) There is no heavily obstructed overhead.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(1) 10_Detector_Activation_Time_Sup1_SI.xls (click on FTHDetector)

FDTs Input Parameters:

- Heat Release Rate of the Fire (\dot{Q}) = 1,000 kW
- Radial Distance to the Detector (r) = 1.5 m
- Activation Temperature of the Fixed-Temperature Heat Detector (Tactivation) = 71 °C
- Distance from the Top of the Fuel Package to the Ceiling (H) = 2.4 m
- Ambient Air Temperature $(T_a) = 20 \degree C$
- Click on the option button for FTH detectors with T_{activation} = 160 °F
- Select Detector Spacing: 10

Results*

Detector Type	Heat Detector Activation Time (t _{activation}) (min.)
Fixed-Temperature	0.9

*see spreadsheet on next page

The following calculations estin	nate the full-scale cable tray heat release rate.	
Parameters in YELLOW CELI	LS are Entered by the User.	
Parameters in GREEN CELLS	S are Automatically Selected from the DROP DO	DWN MENU for the Cable Type Selected.
All subsequent output values a	re calculated by the spreadsheet and based on va	lues specified in the input parameters. This spreadsheet is protected
and secure to avoid errors due	to a wrong entry in a cell(s). The chapter in the N	UREG should be read before an analysis is made.
Project / Inspection Title:		Example 12.12-2
INPUT PARAME	TERS	
Heat Release R	ate of the Fire (Q) (Steady State)	1000.00 kW
	to the Detector (r) **never more than 0.707 or 1/2 perature of the Fixed Temperature Heat Detector (
Detector Response Time Index (RTI) 239.00 (m-sec) ^{1/2}		
Height of Ceiling Ambient Air Ter	g above Top of Fuel (H) nperature (T _a)	2.40 m 25.00 °C
Convective Hea	t Release Fraction (χ_c)	0.70
r/H =	0.63	Calculate

INPUT DATA FOR ESTIMATING HEAT DETECTOR RESPONSE TIME

Activation Temperature -

ature T _{activation}				
🖸 T= 128 F	UL Listed Spacing	Response Time Index	Activation	
L I - 120 F	r (ft)	RTI (m-sec)"2	Temperature (°F)	Select Detector Spacing
	10	490	128	
	15	306	128	Scroll to desired spacing then
	20	325	128	Click on selection
	25	152	128	
	30	116	128	
	40	87	128	
	50	72	128	
	70	44	128	
	User Specified Value	Enter Value	Enter Value	1
			A 12 12	1
🖸 T= 135 F	UL Listed Spacing	Response Time Index RTI (m-sec) ^{1/2}	Activation	Select Detector Spacing
	r (ft)	、 ,	Temperature (°F)	Select Detector Spacing
	10	404	135	
	15	233	135	Scroll to desired spacing then
	20	165	135	Click on selection
	25	123	135	
	30	98	135	
	40	70	135	
	50	54	135	
	70	20	135	
	User Specified Value		Enter Value	
				2
🖸 T= 145 F	UL Listed Spacing	Response Time Index	Activation	1
L 1- 145 F	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	10	321	145	
	15	191	145	Scroll to desired spacing then
	20	129	145	Click on selection
				Click off selection
	25	96	145	
	30	75	145	
	40	50	145	
	50	37	145	
	70	11	145	
	User Specified Value	Enter Value	Enter Value	
🖸 T= 160 F	UL Listed Spacing	Response Time Index	Activation	
	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
	10	239	160	10 💌
	15	135	160	Scroll to desired spacing then
	20	86	160	Click on selection
	25	59	160	
	30	44	160	
	40	22	160	
	User Specified Value		Enter Value	
	UL Listed Spacing	Response Time Index	Activation	1
🖸 T= 170 F	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
				concer betterior optioning
	10	196	170	Soroll to desired encoing then
	15	109	170	Scroll to desired spacing then
	20	64	170	Click on selection
	25	39	170	
	30	27	170	
	User Specified Value	Enter Value	Enter Value	
🖸 T= 196 F	UL Listed Spacing	Response Time Index	Activation	
	r (ft)	RTI (m-sec) ^{1/2}	Temperature (°F)	Select Detector Spacing
			106	
	10	119	196	
	10 15	119 55	196	Scroll to desired spacing then
				Scroll to desired spacing then
	15	55 21	196	Scroll to desired spacing then Click on selection
	15 20 User Specified Value	55 21	196 196 Enter Value	

ESTIMATING FIXED TEMPERATURE HEAT DETECTOR RESPONSE TIME

Reference: NFPA Fire Protection Handbook, 19th Edition, 2003, Page 3-140.

$$t_{activation} = (RTI/(\sqrt{u_{jet}})) (In ((T_{jet} - T_a)/(T_{jet} - T_{activation})))$$

Where

- $t_{activation}$ = detector activation time (sec)
 - RTI = detector response time index (m-sec)^{1/2}
 - u_{jet} = ceiling jet velocity (m/sec)
 - T_{jet} = ceiling jet temperature (°C)
 - T_a = ambient air temperature (°C)

T_{activation} = activation temperature of detector (°C)

Ceiling Jet Temperature Calculation

$$T_{jet} - T_a = 16.9 (Q)^{2/3}/H^{5/3}$$

 $T_{jet} - T_a = 5.38 (Q/r)^{2/3}/H$

Where

- T_{jet} = ceiling jet temperature (°C)
- T_a = ambient air temperature (°C)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Convective Heat Release Rate Calculation

$$Q_c = \chi_c Q$$

- Where
- Qc = convective heat release rate (kW)
- Q = heat release rate of the fire (kW)
- χc = convective heat release fraction

for r/H ≤ 0.18

for r/H > 0.18

Radial Distance to Ceiling Height Ratio Calculation

r/H =		0.63 r/H > 0.18		
	>0.18	171.07	<0.18	392.83
T _{jet} - T _a =	5.38 ((Q/r)^2/3)/H		
T _{jet} - T _a =	:	171.07		
T _{jet} =		196.07 (°C)		

Ceiling Jet Velocity Calculation

u _{jet} = 0.96 (Q/H) ^{1/3}	for r/H ≤ 0.15
u _{jet} = (0.195 Q ^{1/3} H ^{1/2})/r ^{5/6}	for r/H > 0.15

Where

- u_{jet} = ceiling jet velocity (m/sec)
- Q = heat release rate of the fire (kW)
- H = height of ceiling above top of fuel (m)
- r = radial distance from the plume centerline to the detector (m)

Radial Distance to Ceiling Height Ratio Calculation

r/H =		().63 r/H > 0.15		
	>0.15	2.15		<0.15	7.1702
u _{jet} =	(0.1	95 Q^1/3 H^1	/2)/r^(5/6)		
u _{jet} =	2.15	5	m/sec		

DETECTOR ACTIVATION TIME CALCULATION

 $t_{activation} = (\text{ RTI/}(\sqrt{u_{jet}})) \text{ (In (T_{jet} - T_a)/(T_{jet} - T_{activation}))}$

t_{activation} = 51.14 sec

Answer The detector will respond in approximately

0.85 minutes

NOTE: If t_{activation} = "NUM" Detector does not activate

NOTE:		
The above calculations are based on principles developed in the SFPE Handbo have inherent limitations. The results of such calculations may or may not have user. Although each calculation in the spreadsheet has been verified with the r questions, comments, concerns and suggestions or to report an error(s) in the	e reasonable predictive capabilities for a giv results of hand calculation, there is no abso	piven situation and should only be interpreted by an informed solute guarantee of the accuracy of these calculations. Any
	a . [
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

13.10 Problems

Example Problem 13.10-1

Problem Statement

Consider a compartment 6.0 m wide x 8.0 m long x 4.0 m high ($w_c x l_c x h_c$), with an opening 1.0 m wide and 2.5 m high ($w_v x h_v$). The interior lining material of the compartment is 15.24 cm concrete. Calculate the HRR necessary for flashover, \dot{Q}_{FO} , and the post-flashover compartment temperature, T_{PFO} .

Solution

Purpose:

(1) Determine the heat release rate for flashover for the given compartment.

Assumptions:

(1) Natural Ventilation

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 13_Compartment_Flashover_Calculations_Sup1_SI.xls
 (click on *Post_Flashover_Temperature* to calculate the post-flashover temperature)
 (click on *Flashover-HRR* to calculate the HRR for flashover)

FDTs Input Parameters:

- Compartment Width $(w_c) = 6.0 \text{ m}$
- Compartment Length $(I_c) = 8.0 \text{ m}$
- Compartment Height $(h_c) = 4.0 \text{ m}$
- Vent Width $(w_v) = 1.0 \text{ m}$
- Vent Height $(h_v) = 2.5 \text{ m}$
- Interior Lining Thickness (δ) = 15.24 cm (*Flashover-HRR only*)
- Select Material: Concrete (Flashover-HRR only)

Results*

Post-Flashover Compartment Temperature (T _{PFO}) (°C)	HRR for Flashover (\dot{Q}_{FO}) (kW)		(\dot{Q}_{FO})
Method of Law	Method of MQH	Method of Babrauskas	Method of Thomas
832	1,781	2,965	3097

*see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the compartment post-flashover temperature.

Parameters in YELLOW CELLS are Entered by the User. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-1a

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c)
Compartment Length (I_c)
Compartment Height (h _c)
Vent Width (W_v)
Vent Height (h _v)

_		1
	2.50	
	1.00 2.50	
	4.00	
	8.00	
	6.00	

Version 1805.1 (SI Units)

METHOD OF MARGARET LAW

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-183.

$T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Where,

 $T_{PFO(max)}$ = maximum compartment post-flashover temperature (°C) Ω = ventilation factor

Ventilation Factor

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}}_{\mathsf{v}})$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

 A_v = area of ventilation opening (m²)

- w_v = vent width (m)
- h_v = vent height (m)

$$A_v = 2.50 \text{ m}^2$$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

 A_v = area of ventilation opening (m²)

$$A_{\rm T} = 205.50 \, {\rm m}^2$$

Version 1805.1 (SI Units)

Ventilation Factor Calculation

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}}_{\mathsf{v}})$$

Where,

 Ω = ventilation factor

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

 h_v = vent height (m)

 $Ω = 51.36 \text{ m}^{-1/2}$

COMPARTMENT POST-FLASHOVER TEMPERATURE

 $T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Answer	T _{PFO (max)} =	832.33 °C	1530.19 °F

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

The following calculations estimate the minimum heat release rate required to compartment flashover.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-1b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Vent Width (w_v)} \\ \mbox{Vent Height (h_v)} \\ \mbox{Interior Lining Thickness (δ)} \\ \mbox{Interior Lining Thermal Conductivity (k)} \end{array}$

6.00	
8.00	
4.00	m
1.00	m
2.50	
15.24	
0.0016	kW/m-K
Calculate	

THERMAL PROPERTIES DATA

	THERMAL CONDUCTIVITY	Select Material
MATERIAL	k (kW/m-K)	Concrete
Aerated Concrete	0.00026	Scroll to desired material
Alumina Silicate Block	0.00014	Click on selection
Aluminum (pure)	0.206	
Brick	0.0008	
Brick/Concrete Block	0.00073	
Calcium Silicate Board	0.00013	
Chipboard	0.00015	
Concrete	0.0016	
Expended Polystyrene	0.000034	
Fiber Insulation Board	0.00053	
Glass Fiber Insulation	0.000037	
Glass Plate	0.00076	
Gypsum Board	0.00017	
Plasterboard	0.00016	
Plywood	0.00012	
Steel (0.5% Carbon)	0.054	
User Specified Value	Enter Value	
Reference: Klote, J., J. Milke, Principles of Smoke Manag	ement, 2002, Page 270.	

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$$

Where,

- Q_{FO} = heat release rate necessary for flashover (kW)
- h_k = effective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

h_v = height of ventilation opening (m)

Heat Transfer Coefficient Calculation

$$h_k = k/\delta$$

Assuming that compartment has been heated thoroughly before flashover, i.e., t > tp.

Where,

- h_k = effective heat transfer coefficient (kW/m²-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

0.010 kW/m²-K

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

A,

- A_v = area of ventilation opening (m²)
- w_v = vent width (m)
- h_v = vent height (m)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

m²

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

Version 1805.1 (SI Units)

MINIMUM HEAT RELEASE RATE FOR FLASHOVER

 $Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$

Q_{FO} = 1781.39 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF BABRAUSKAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Q_{FO} = 2964.64 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

 $h_{\rm v}$ = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Q_{FO} = 3097.08 kW

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

Summary of Results

CALCULATION METHOD	FLASHOVER HRR (kW)
METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)	1781
METHOD OF BABRAUSKAS	2965
METHOD OF THOMAS	3097

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 13.10-2

Problem Statement

Consider a compartment 6.0 m wide x 8.0 m long x 4.0 m high ($w_c x l_c x h_c$), with an opening 1.0 m wide and 2.5 m high ($w_v x h_v$). The interior lining material of the compartment is 1.6 cm gypsum. Calculate the HRR necessary for flashover, \dot{Q}_{FQ} , and the post- flashover compartment temperature, T_{PFO} .

Solution

Purpose:

(1) Determine the heat release rate for flashover for the given compartment.

Assumptions:

(1) Natural Ventilation

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 13_Compartment_Flashover_Calculations_Sup1_SI.xls (click on *Post_Flashover_Temperature* to calculate the post-flashover temperature) (click on *Flashover-HRR* to calculate the HRR for flashover)

FDT^s Input Parameters:

- Compartment Width (w_c) = 6.0 m
- Compartment Length $(I_c) = 8.0 \text{ m}$
- Com partment Height $(h_c) = 4.0 \text{ m}$
- Vent Width $(w_v) = 1.0 \text{ m}$
- Vent Height $(h_v) = 2.5 \text{ m}$
- Interior Lining Thickness (δ) = 1.6 cm (Flashover-HRR only)
- Select Material: Gypsum Board (Flashover-HRR only)

Results*

Post-Flashover Compartment Temperature (T _{PFO}) (°C)	HRR for Flashover (\dot{Q}_{FO}) (kW)		
Method of Law	Method of MQH	Method of Babrauskas	Method of Thomas
832	1,792	2,965	3,097

*see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the compartment post-flashover temperature.

Parameters in YELLOW CELLS are Entered by the User. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-2a

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c)
Compartment Length (I_c)
Compartment Height (h _c)
Vent Width (W_v)
Vent Height (h _v)

Γ	Calculate	1
	2.50	m
	1.00	m
	4.00	m
	8.00	m
	6.00	m

Version 1805.1 (SI Units)

METHOD OF MARGARET LAW

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-183.

$T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Where,

 $T_{PFO(max)}$ = maximum compartment post-flashover temperature (°C) Ω = ventilation factor

Ventilation Factor

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}}_{\mathsf{v}})$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

 A_v = area of ventilation opening (m²)

- w_v = vent width (m)
- h_v = vent height (m)

$$A_v = 2.50 \text{ m}^2$$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

 A_v = area of ventilation opening (m²)

$$A_{T} = 205.50 \text{ m}^{2}$$

Version 1805.1 (SI Units)

Ventilation Factor Calculation

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}}_{\mathsf{v}})$$

Where,

 Ω = ventilation factor

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

 h_v = vent height (m)

 $Ω = 51.36 \text{ m}^{-1/2}$

COMPARTMENT POST-FLASHOVER TEMPERATURE

 $T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Answer I _{PFO (max)} – 832.33 C 1530.19 F
--

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

The following calculations estimate the minimum heat release rate required to compartment flashover.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-2b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Vent Width (w_v)} \\ \mbox{Vent Height (h_v)} \\ \mbox{Interior Lining Thickness (δ)} \\ \mbox{Interior Lining Thermal Conductivity (k)} \end{array}$

	_				
6.00					
8.00					
4.00	m				
1.00	m				
2.50					
1.60					
0.00017	kW/m-K				
Calculate					

THERMAL PROPERTIES DATA

MATERIAL	THERMAL CONDUCTIVITY	Select Material
MATERIAL	k (kW/m-K)	Gypsum Board
Aerated Concrete	0.00026	Scroll to desired material
Alumina Silicate Block	0.00014	Click on selection
Aluminum (pure)	0.206	
Brick	0.0008	
Brick/Concrete Block	0.00073	
Calcium Silicate Board	0.00013	
Chipboard	0.00015	
Concrete	0.0016	
Expended Polystyrene	0.000034	
Fiber Insulation Board	0.00053	
Glass Fiber Insulation	0.000037	
Glass Plate	0.00076	
Gypsum Board	0.00017	
Plasterboard	0.00016	
Plywood	0.00012	
Steel (0.5% Carbon)	0.054	
User Specified Value	Enter Value	
Reference: Klote, J., J. Milke, Principles of Smoke Manage		

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$$

Where,

- Q_{FO} = heat release rate necessary for flashover (kW)
- h_k = effective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

h_v = height of ventilation opening (m)

Heat Transfer Coefficient Calculation

$$h_k = k/\delta$$

Assuming that compartment has been heated thoroughly before flashover, i.e., t > tp.

Where,

- h_k = effective heat transfer coefficient (kW/m²-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

0.011 kW/m²-K

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

A,

- A_v = area of ventilation opening (m²)
- w_v = vent width (m)
- h_v = vent height (m)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

m²

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

Version 1805.1 (SI Units)

MINIMUM HEAT RELEASE RATE FOR FLASHOVER

 $Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$

Q_{FO} = 1792.07 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF BABRAUSKAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Q_{FO} = 2964.64 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

 $h_{\rm v}$ = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Q_{FO} = 3097.08 kW

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

Summary of Results

CALCULATION METHOD	FLASHOVER HRR (kW)
METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)	1792
METHOD OF BABRAUSKAS	2965
METHOD OF THOMAS	3097

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 13.10-3

Problem Statement

Consider a compartment 6.0 m wide x 8.0 m long x 4.0 m high ($w_c x l_c x h_c$), with an opening 2.0 m wide and 2.5 m high ($w_v x h_v$). The interior lining material of the compartment is 15.24 cm concrete. Calculate the HRR necessary for flashover, \dot{Q}_{FO} , and the post-flashover compartment temperature, T_{PFO} .

Solution

Purpose:

(1) Determine the heat release rate for flashover for the given compartment.

Assumptions:

(1) Natural Ventilation

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 13.1_Compartment_Flashover_Calculations_Sup1_SI.xls
 (click on *Post_Flashover_Temperature* to calculate the post-flashover temperature)
 (click on *Flashover-HRR* to calculate the HRR for flashover)

FDTs Input Parameters:

- Compartment Width (w_c) = 6.0 m
- Compartment Length (I_c) = 8.0 m
- Compartment Height (h_c) = 4.0 m
- Vent Width $(w_v) = 2.0 \text{ m}$
- Vent Height $(h_v) = 2.5 \text{ m}$
- Interior Lining Thickness (δ) = 15.24 cm (*Flashover-HRR only*)
- Select Material: Concrete (Flashover-HRR only)

Results*

Post-Flashover Compartment Temperature (T _{PFO}) (°C)	HRR for Flashover (\dot{Q}_{FO}) (kW)		
Method of Law	Method of MQH	Method of Babrauskas	Method of Thomas
1,100	2,504	5,929	4,572

*see spreadsheet on next page

CHAPTER 13 PREDICTING COMPARTMENT **POST-FLASHOVER TEMPERATURE**

Version 1805.1 (SI Units)

The following calculations estimate the compartment post-flashover temperature.

Parameters in YELLOW CELLS are Entered by the User. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-3a

INPUT PARAMETERS

COMPARTMENT INFORMATION

Compartment Width (w _c)
Compartment Length (I_c)
Compartment Height (h _c)
Vent Width (W_v)
Vent Height (h _v)

_		1
	2.50	m
	2.00	
	4.00	m
	8.00	m
	6.00	m

CHAPTER 13 PREDICTING COMPARTMENT POST-FLASHOVER TEMPERATURE

Version 1805.1 (SI Units)

METHOD OF MARGARET LAW

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-183.

$T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Where,

 $T_{PFO(max)}$ = maximum compartment post-flashover temperature (°C) Ω = ventilation factor

Ventilation Factor

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}}_{\mathsf{v}})$$

Where,

- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

 A_v = area of ventilation opening (m²)

- w_v = vent width (m)
- h_v = vent height (m)

$$A_v = 5.00 \text{ m}^2$$

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

 A_v = area of ventilation opening (m²)

$$A_{\rm T} = 203.00 \ {\rm m}^2$$

CHAPTER 13 PREDICTING COMPARTMENT POST-FLASHOVER TEMPERATURE

Version 1805.1 (SI Units)

Ventilation Factor Calculation

$$\Omega = (\mathbf{A}_{\mathsf{T}} - \mathbf{A}_{\mathsf{v}}) / \mathbf{A}_{\mathsf{v}} (\sqrt{\mathbf{h}}_{\mathsf{v}})$$

Where,

 Ω = ventilation factor

 A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

 h_v = vent height (m)

 $Ω = 25.05 \text{ m}^{-1/2}$

COMPARTMENT POST-FLASHOVER TEMPERATURE

 $T_{PFO (max)} = 6000 (1 - e^{-0.1\Omega}) / (\sqrt{\Omega})$

Answer T_{PFO (max)} =

1100.95 °C

2013.70 °F

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:	
Checked by:	Date:	Organization:	
Additional Information:			

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

The following calculations estimate the minimum heat release rate required to compartment flashover.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 13.10-3b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Vent Width (w_v)} \\ \mbox{Vent Height (h_v)} \\ \mbox{Interior Lining Thickness (δ)} \\ \mbox{Interior Lining Thermal Conductivity (k)} \end{array}$

6.0	
8.0	0 m
4.0	0 m
2.0	0 m
2.5	0 m
15.2	
0.001	6 kW/m-K
	_
Calculate	

THERMAL PROPERTIES DATA

MATERIAL	THERMAL CONDUCTIVITY	Select Material
MATERIAL	k (kW/m-K)	Concrete
Aerated Concrete	0.00026	Scroll to desired material
Alumina Silicate Block	0.00014	Click on selection
Aluminum (pure)	0.206	
Brick	0.0008	
Brick/Concrete Block	0.00073	
Calcium Silicate Board	0.00013	
Chipboard	0.00015	
Concrete	0.0016	
Expended Polystyrene	0.000034	
Fiber Insulation Board	0.00053	
Glass Fiber Insulation	0.000037	
Glass Plate	0.00076	
Gypsum Board	0.00017	
Plasterboard	0.00016	
Plywood	0.00012	
Steel (0.5% Carbon)	0.054	
User Specified Value	Enter Value	
Reference: Klote, J., J. Milke, Principles of Smoke Manage	ment, 2002, Page 270.	1

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$$

Where,

- Q_{FO} = heat release rate necessary for flashover (kW)
- h_k = effective heat transfer coefficient (kW/m²-K)
- A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)
- A_v = area of ventilation opening (m²)

h_v = height of ventilation opening (m)

Heat Transfer Coefficient Calculation

$$h_k = k/\delta$$

Assuming that compartment has been heated thoroughly before flashover, i.e., t > tp.

Where,

- h_k = effective heat transfer coefficient (kW/m²-K)
- k = interior lining thermal conductivity (kW/m-K)

 δ = interior lining thickness (m)

0.010 kW/m²-K

Area of Ventilation Opening Calculation

$$A_v = (w_v) (h_v)$$

Where,

- A_v = area of ventilation opening (m²)
- w_v = vent width (m)
- h_v = vent height (m)

Area of Compartment Enclosing Surface Boundaries

$$A_{T} = [2(w_{c} \times I_{c}) + 2(h_{c} \times w_{c}) + 2(h_{c} \times I_{c})] - A_{v}$$

Where,

A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

m²

- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)
- A_v = area of ventilation opening (m²)

Version 1805.1 (SI Units)

MINIMUM HEAT RELEASE RATE FOR FLASHOVER

 $Q_{FO} = 610 \sqrt{(h_k A_T A_v (\sqrt{h_v}))}$

Q_{FO} = 2503.89 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF BABRAUSKAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

 A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 750 A_v (\sqrt{h_v})$$

Q_{FO} = 5929.27 kW

PREDICTING FLASHOVER HEAT RELEASE RATE METHOD OF THOMAS

Reference: SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 3-184.

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Where,

 Q_{FO} = heat release rate necessary for flashover (kW)

A_T = total area of the compartment enclosing surface boundaries excluding area of vent openings (m²)

 A_v = area of ventilation opening (m²)

 h_v = height of ventilation opening (m)

Minimum Heat Release Rate for Flashover

$$Q_{FO} = 7.8 A_T + 378 A_v (\sqrt{h_v})$$

Q_{FO} = 4571.75 kW

CHAPTER 13 PREDICTING COMPARTMENT FLASHOVER HEAT RELEASE RATE

Version 1805.1 (SI Units)

Summary of Results

CALCULATION METHOD	FLASHOVER HRR (kW)
METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)	2504
METHOD OF BABRAUSKAS	5929
METHOD OF THOMAS	4572

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions, or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

14.10 Problems

Example Problem 14.10-1

Problem Statement

A closed compartment in a facility pump room has dimensions 3.0 m wide x 3.7 m long x 3.0 m high ($w_c x I_c x h_c$). A fire starts with a constant HRR of \dot{Q} = 100 kW. Estimate the pressure rise attributable to the expansion of gases after 10 seconds.

Solution

Purpose:

(1) Estimate the pressure rise in the compartment 10 seconds after ignition.

Assumptions:

- (1) The energy release rate is constant.
- (2) The mass rate of the fuel is neglected in the conversion of mass.
- (3) The specific heat is constant with temperature.
- (4) The hydrostatic pressure difference over the height of the compartment is negligible compared to the dynamic pressure.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 14_Compartment_Over_Pressure_Calculations_Sup1_SI.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 3.0 \text{ m}$
- Compartment Length $(I_c) = 3.7 \text{ m}$
- Compartment Height $(h_c) = 3.0 \text{ m}$
- Fire Heat Release Rate (\dot{Q}) = 100 kW
- Time After Ignition (t) = 10 sec

Results*

Pressure Rise	12.14 kPa
---------------	-----------

*see spreadsheet on next page

CHAPTER 14 ESTIMATING PRESSURE RISE DUE TO A FIRE IN A CLOSED COMPARTMENT

Version 1805.1 (SI Units)

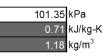
The following calculations estimate the pressure rise in a compartment due to fire and combustion.
Parameters in YELLOW CELLS are Entered by the User.
All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and
secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 14.10-1

INPUT PARAMETERS

COMPARTMENT INFORMATION


 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Fire Heat Release Rate (Q)} \\ \mbox{Time after Ignition (t)} \\ \mbox{Ambient Air Temperature (T_a)} \end{array}$

3.00	m
3.70	m
3.00	
100.00	kW
10.00	sec
25.00	°C

Calculate

AMBIENT CONDITIONS

Initial Atmospheric Pressure (P_a) Specific Heat of Air at Constant Volume (c_v) Ambient Air Density (ρ_a)

NOTE:

Values of Specific Heat of Air at Constant Volume (cv) range from 0.71 to 0.85 kJ/kg-k

Ambient Air Density (ρ_a) will automatically correct with Ambient Air Temperature (T_a) Input

CHAPTER 14 ESTIMATING PRESSURE RISE DUE TO A FIRE IN A CLOSED COMPARTMENT

Version 1805.1 (SI Units)

METHOD OF KARLSSON AND QUINTIERE

Reference: Karlsson and Quintiere, Enclosure Fire Dynamics, 1999, Page 192.

$(P - P_a) / P_a = Q t / (V \rho_a c_v T_a)$

Where,

- P = compartment pressure due to fire and combustion (kPa)
- P_a = initial atmospheric pressure (kPa)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- V = compartment volume (m³)
- ρ_a = ambient density (kg/m³)
- cv = specific heat of air at constant volume (kJ/kg-K)
- T_a = ambient air temperature (K)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (m³)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

 $V = 33.30 \text{ m}^3$ 1175.978402 ft³

Pressure Rise in Compartment

$$(P - P_a) / P_a = Q t / (V \rho_a c_v T_a)$$

 $(P-P_a)/P_a = 0.120$ atm

Multiplying by the atmospheric pressure (P_a) = 101 kPa Gives a pressure difference equal to:

Answer

12.14 kPa

1.76 psi

This example shows that in a very short time the pressure in a closed compartment rises to quite a large value.

Most buildings have leaks of some sort. The above example indicates that even though a fire compartment may be closed, the pressure rise is very rapid and would presumably lead to sufficient leaks to prevent any further pressure rise from occurring. We will use this conclusion when dealing with pressure rises in enclosures with small leaks.

NOTE: The above calculations are based on principles developed in the End limitations. The results of such calculations may or may not have rea informed user. Although each calculation in the spreadsheet has be of these calculations. Any questions, comments, concerns and sugg David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.	asonable predictive capabilities for a en verified with the results of hand o	a given situation and should only be interpreted by an calculation, there is no absolute guarantee of the accuracy
Prepared by:	Date:	Organization:
	5 · []	
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 14.10-2

Problem Statement

A facility has a sealed compartment (assume zero leakage) with a blowout panel that is designed to fail at two atmospheres. The compartment is 6.1 m long x 7.6 m wide x 3.0 m high. A fire is assumed with a constant heat release rate of 255 kW.

At what time (sec) does the blow out panel fail?

Solution

Purpose:

(1) Estimate the time after ignition the pressure reaches 2 atm (202.5 kPa).

Assumptions:

- (1) The energy release rate is constant.
- (2) The mass rate of the fuel is neglected in the conversion of mass.
- (3) The specific heat is constant with temperature.
- (4) The hydrostatic pressure difference over the height of the compartment is negligible compared to the dynamic pressure.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 14_Compartment_Over_Pressure_Calculations_Sup1_SI.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 6.1 \text{ m}$
- Compartment Length $(I_c) = 7.6 \text{ m}$
- Compartment Height (h_c) = 3.0 m
- Fire Heat Release Rate (\dot{Q}) = 255 kW
- Time After Ignition (t) = varies until output is 202.5 kPa

Results*

Time After Ignition 274 sec

*see spreadsheet on next page

CHAPTER 14 ESTIMATING PRESSURE RISE DUE TO A FIRE IN A CLOSED COMPARTMENT

Version 1805.1 (SI Units)

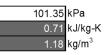
The following calculations estimate the pressure rise in a compartment due to fire and combustion.
Parameters in YELLOW CELLS are Entered by the User.
All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and
secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 14.10-2

INPUT PARAMETERS

COMPARTMENT INFORMATION


 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (I_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Fire Heat Release Rate (Q)} \\ \mbox{Time after Ignition (t)} \\ \mbox{Ambient Air Temperature (T_a)} \end{array}$

6.10	
7.60	m
3.00	
255.00	kW
274.00	sec
25.00	°C
	-

Calculate

AMBIENT CONDITIONS

Initial Atmospheric Pressure (P_a) Specific Heat of Air at Constant Volume (c_v) Ambient Air Density (ρ_a)

NOTE:

Values of Specific Heat of Air at Constant Volume (cv) range from 0.71 to 0.85 kJ/kg-k

Ambient Air Density (ρ_a) will automatically correct with Ambient Air Temperature (T_a) Input

CHAPTER 14 ESTIMATING PRESSURE RISE DUE TO A FIRE IN A CLOSED COMPARTMENT

Version 1805.1 (SI Units)

METHOD OF KARLSSON AND QUINTIERE

Reference: Karlsson and Quintiere, Enclosure Fire Dynamics, 1999, Page 192.

$(P - P_a) / P_a = Q t / (V \rho_a c_v T_a)$

Where,

- P = compartment pressure due to fire and combustion (kPa)
- P_a = initial atmospheric pressure (kPa)
- Q = heat release rate of the fire (kW)
- t = time after ignition (sec)
- V = compartment volume (m³)
- ρ_a = ambient density (kg/m³)
- cv = specific heat of air at constant volume (kJ/kg-K)
- T_a = ambient air temperature (K)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

- V = volume of the compartment (m³)
- w_c = compartment width (m)
- I_c = compartment length (m)
- h_c = compartment height (m)

V = 139.08 m³ 4911.563848 ft³

Pressure Rise in Compartment

$$(P - P_a) / P_a = Q t / (V \rho_a c_v T_a)$$

 $(P-P_a)/P_a = 2.004$ atm

Multiplying by the atmospheric pressure (P_a) = 101 kPa Gives a pressure difference equal to:

Answer 203.15 kPa

This example shows that in a very short time the pressure in a closed compartment rises to quite a large value.

Most buildings have leaks of some sort. The above example indicates that even though a fire compartment may be closed, the pressure rise is very rapid and would presumably lead to sufficient leaks to prevent any further pressure rise from occurring. We will use this conclusion when dealing with pressure rises in enclosures with small leaks.

29.46 psi

NOTE: The above calculations are based on principles developed in the En limitations. The results of such calculations may or may not have re informed user. Although each calculation in the spreadsheet has be of these calculations. Any questions, comments, concerns and sug David.Stroup@nrc.gov or Naeem.Iqbal@nrc.gov.	easonable predictive capabili een verified with the results o	lities for a given situation and should only be interpreted by an of hand calculation, there is no absolute guarantee of the accuracy
Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

15.18 Problems

Example Problem 15.18-1

Problem Statement

In an NPP, a liquid propane gas (LPG) driven forklift is used to unload materials from an upcoming outage. Mechanical failure could result in the release of LPG in the area. The maximum fuel capacity of the forklift is 38 liters. Calculate pressure rise, energy released by expanding LPG, and equivalent TNT charge weight. Assume that the mass of the vapor released is 22 kg.

Solution

Purpose:

(1) Estimate pressure rise, energy released, and TNT equivalent.

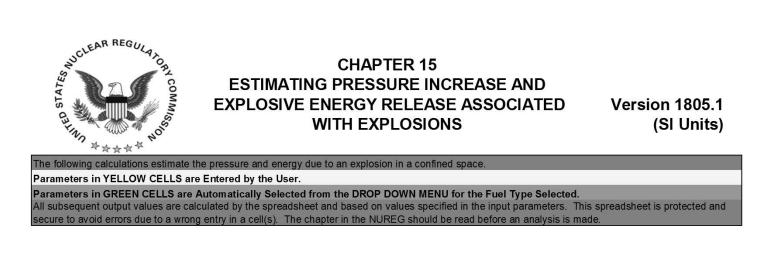
Assumptions:

- (1) The atmospheric pressure is 101.35 kPa.
- (2) Ambient air temperature is 25 °C.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 15_Explosion_Calculations_Sup1_SI.xls


FDT^s Input Parameters:

- Select Fuel Type = **Propane**
- Percent yield = 100%
- Mass of flammable vapor release = 22 kg

Results*

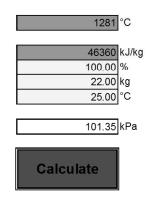
Pressure Rise	529 kPa
Energy Released	1,019,920 kJ
Equivalent TNT	227 kg

*see spreadsheet on next page

Project / Inspection Title:

Example 15.18-1

INPUT PARAMETERS


EXPLOSIVE FUEL INFORMATION

Adiabatic Flame Temperature of the Fuel ((T_{ad})

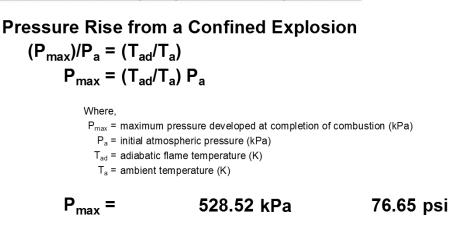
Heat of Combustion of the Fuel (ΔH_c) Yield (α) ^{See Note} Mass of Flammable Vapor Release (m_F) Ambient Air Temperature (T_a)

Initial Atmospheric Pressure (P_a)

Note: The fraction of available combustion is 1% for unconfined mass release and 100% for confined vapor release energy participating in blast wave generation.

THERMAL PROPERTIES FOR FUEL

FUEL FLAMMABILITY DATA


Fuel	Adiabatic Flame Temperature	Heat of Combustion	Select Fuel Type
	T _{ad} (°C)	∆H _c (kJ/kg)	Propane 🗾
Acetylene	2637	48,220	Scroll to desired Fuel Type then
Carbon Monoxide	2387	10,100	Click on selection
Ethane	1229	47,490	
Ethylene	2289	47,170	
Hydrogen	2252	130,800	
Methane	1173	50,030	
n-Butane	1339	45,720	
n-Heptane	1419	44,560	
n-Octane	1359	44,440	
n-Pentane	1291	44,980	
Propane	1281	46,360	
Propylene	2232	45,790	
User Specified Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire	e Protection Engineering, 2 nd Editio	on, 1995, Page 1-86.	

Version 1805.1 (SI Units)

METHOD OF ZALOSH

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-312.

Blast Wave Energy Calculation

 $E = \alpha \Delta H_c m_F$

Where,

- E = blast wave energy (kJ) [E is the Trinitrotoluene (TNT) equivalent energy]
- α = yield (a is the fraction of available combustion energy participating in blast wave generation)
- ΔH_{c} = heat of combustion (kJ/kg)
- $\rm m_F$ = mass of flammable vapor release (kg)

TNT Mass Equivalent Calculation $W_{TNT} = E/4500$

Where, W_{TNT} = weight of TNT (kg)

E = explosive energy release (kJ)

W_{TNT} = 226.65 kg 499.68 lb

Version 1805.1 (SI Units)

Results Summary

Pressure Rise from a Confined Explosion

 $P_{max} = (T_{ad}/T_a) P_a$

Answer	P _{max} =	528.52 kPa	76.65 psi				
Blast Way	Blast Wave Energy						
	$E = \alpha \Delta$	H _c m _F					
Answer	E =	1019920.00 kJ	965966.23 Btu				
TNT Mass	s Equivalent W _{TNT} = E/4	500					
Answer	W _{TNT} =	226.65 kg	499.68 lb				
NOTE:							
The above calcu			of Fire Protection Engineering, 2nd Edition, 1995. Calculations h calculations may or may not have reasonable predictive				

are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheet, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 15.18-2

Problem Statement

An investigator is performing a review of an accident at a facility. The report states that a pipe fitter accidently left his acetylene "B" tank on which leaked its contents and caused the explosion. Assuming the tank was full (1.133 m³ of gas at atmospheric pressure), how large could the explosion have been?

Solution

Purpose:

(1) Estimate energy released, and TNT equivalent.

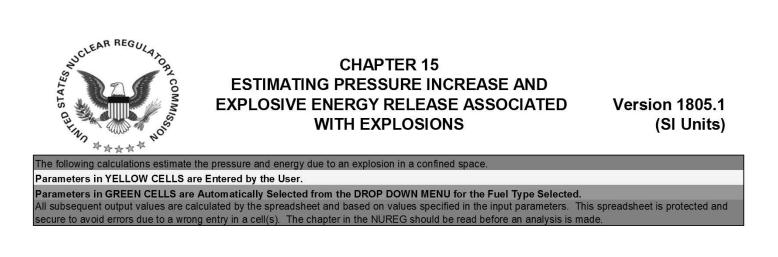
Assum ptions:

- (1) The atmospheric pressure is 101.35 kPa
- (2) Ambient air temperature is 25 °C.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 15_Explosion_Calculations_Sup1_SI.xls


FDT^s Input Parameters:

- Select Fuel Type = Acetylene
- Percent yield = 100%
- Mass of vapor release = volume x density (from manufacture's Web site) 1.133 m³ x 1.087 kg/m³ = 1.23 kg

Results*

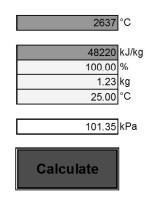
Energy Released	59,310 kJ
Equivalent TNT	13.2 kg

*see spreadsheet on next page

Project / Inspection Title:

Example 15.18-2

INPUT PARAMETERS


EXPLOSIVE FUEL INFORMATION

Adiabatic Flame Temperature of the Fuel ((T_{ad})

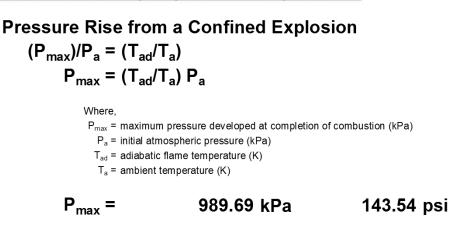
Heat of Combustion of the Fuel (ΔH_c) Yield (α) ^{See Note} Mass of Flammable Vapor Release (m_F) Ambient Air Temperature (T_a)

Initial Atmospheric Pressure (P_a)

Note: The fraction of available combustion is 1% for unconfined mass release and 100% for confined vapor release energy participating in blast wave generation.

THERMAL PROPERTIES FOR FUEL

FUEL FLAMMABILITY DATA


Fuel	Adiabatic Flame Temperature	Heat of Combustion	Select Fuel Type
	T _{ad} (°C)	∆H _c (kJ/kg)	Acetylene
Acetylene	2637	48,220	Scroll to desired Fuel Type then
Carbon Monoxide	2387	10,100	Click on selection
Ethane	1229	47,490	
Ethylene	2289	47,170	
Hydrogen	2252	130,800	
Methane	1173	50,030	
n-Butane	1339	45,720	
n-Heptane	1419	44,560	
n-Octane	1359	44,440	
n-Pentane	1291	44,980	
Propane	1281	46,360	
Propylene	2232	45,790	
User Specified Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire	e Protection Engineering, 2 nd Editio	on, 1995, Page 1-86.	1

Version 1805.1 (SI Units)

METHOD OF ZALOSH

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-312.

Blast Wave Energy Calculation

 $E = \alpha \Delta H_c m_F$

Where,

- E = blast wave energy (kJ) [E is the Trinitrotoluene (TNT) equivalent energy]
- α = yield (a is the fraction of available combustion energy participating in blast wave generation)
- ΔH_c = heat of combustion (kJ/kg)

 m_F = mass of flammable vapor release (kg)

TNT Mass Equivalent Calculation $W_{TNT} = E/4500$

Where, W_{TNT} = weight of TNT (kg) E = explosive energy release (kJ)

$$W_{TNT} = 13.18 \text{ kg} 29.06 \text{ lb}$$

Version 1805.1 (SI Units)

Results Summary

Pressure Rise from a Confined Explosion

 $P_{max} = (T_{ad}/T_a) P_a$

Answer	P _{max} =	989.69	kPa		143.54 psi	
Blast Wav	ve Energy E = α ∆l	H _c m _F				
Answer	E =	59310.60	kJ	56	173.07 Btu	
TNT Mass	Equivalent W _{TNT} = E/4	500				
Answer	W _{TNT} =	13.18	kg		29.06 lb	
are based on cert capabilities for a g verified with the re	ain assumptions and l given situation and sho esults of hand calculat	inciples developed in the nave inherent limitations. ould only be interpreted by ion, there is no absolute g an error(s) in the spreadsh	The results of suc an informed user. Juarantee of the ac	h calculations may or ma Although each calculat curacy of these calculat	ay not have reasonab ion in the spreadshee ions. Any questions,	le predictive et has been comments,
Prepared by:		Date:		Organization:		
Checked by:		Date:		Organization:		
Additional Informa	ation:					1

Example Problem 15.18-3

Problem Statement

Which has a larger TNT mass equivalent: 5 kg (mass vapor) of acetylene or 2.5 kg (mass vapor) of hydrogen?

Solution

Purpose:

(1) Estimate TNT equivalent.

Assumptions:

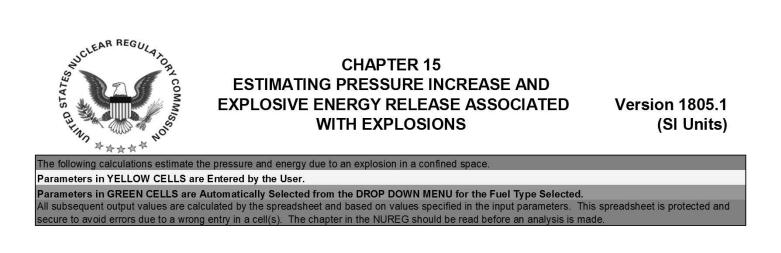
- (1) The atmospheric pressure is 101.35 kPa
- (2) Ambient air temperature is 25 °C.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 15_Explosion_Calculations_Sup1_SI.xls

FDT^s Input Parameters:


- Select Fuel Type = Acetylene
- Percent yield = 100%
- Mass of flammable vapor release = 5 kg
- Select Fuel Type = Hydrogen
- Percent yield = 100%
- Mass of flammable vapor release = 2.5 kg

Results*

	Acetylene	Hydrogen
Equivalent TNT	54 kg	73 kg

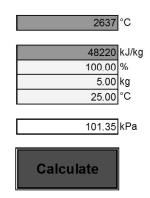
*see spreadsheet on next page

Therefore, 2.5 kg of hydrogen produces more explosive force than 5 kg of acetylene.

Project / Inspection Title:

Example 15.18-3a

INPUT PARAMETERS


EXPLOSIVE FUEL INFORMATION

Adiabatic Flame Temperature of the Fuel ((T_{ad})

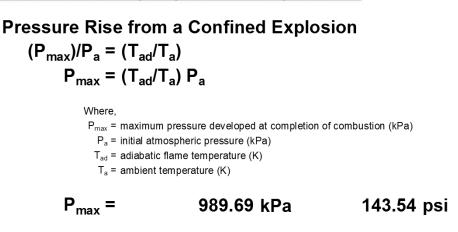
Heat of Combustion of the Fuel (ΔH_c) Yield (α) ^{See Note} Mass of Flammable Vapor Release (m_F) Ambient Air Temperature (T_a)

Initial Atmospheric Pressure (P_a)

Note: The fraction of available combustion is 1% for unconfined mass release and 100% for confined vapor release energy participating in blast wave generation.

THERMAL PROPERTIES FOR FUEL

FUEL FLAMMABILITY DATA


Fuel	Adiabatic Flame Temperature	Heat of Combustion	Select Fuel Type
	T _{ad} (°C)	∆H _c (kJ/kg)	Acetylene
Acetylene	2637	48,220	Scroll to desired Fuel Type then
Carbon Monoxide	2387	10,100	Click on selection
Ethane	1229	47,490	
Ethylene	2289	47,170	
Hydrogen	2252	130,800	
Methane	1173	50,030	
n-Butane	1339	45,720	
n-Heptane	1419	44,560	
n-Octane	1359	44,440	
n-Pentane	1291	44,980	
Propane	1281	46,360	
Propylene	2232	45,790	
User Specified Value	Enter Value	Enter Value	
Reference: SFPE Handbook of Fire	e Protection Engineering, 2 nd Editio	on, 1995, Page 1-86.	1

Version 1805.1 (SI Units)

METHOD OF ZALOSH

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-312.

Blast Wave Energy Calculation

 $E = \alpha \Delta H_c m_F$

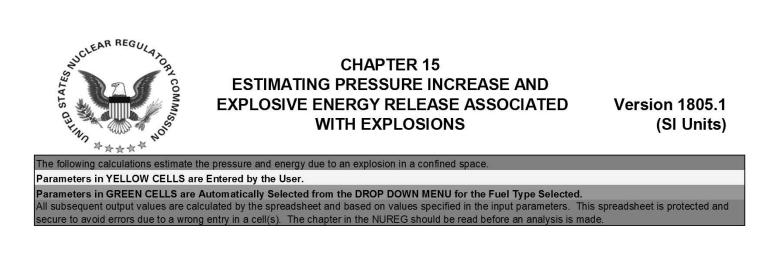
Where,

- E = blast wave energy (kJ) [E is the Trinitrotoluene (TNT) equivalent energy]
- α = yield (a is the fraction of available combustion energy participating in blast wave generation)
- $\Delta H_{\rm c}$ = heat of combustion (kJ/kg)
- m_F = mass of flammable vapor release (kg)

TNT Mass Equivalent Calculation $W_{TNT} = E/4500$

Where, W_{TNT} = weight of TNT (kg) E = explosive energy release (kJ)

 $W_{TNT} = 53.58 \text{ kg}$ 118.12 lb


Version 1805.1 (SI Units)

Results Summary

Pressure Rise from a Confined Explosion

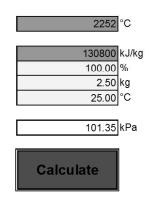
 $P_{max} = (T_{ad}/T_a) P_a$

Answer	P _{max} =	989.69 kPa	143.54 psi					
Blast Wave Energy E = α ΔH _c m _F								
Answer	E =	241100.00 kJ	228345.81 Btu					
TNT Mass	s Equivalent W _{TNT} = E/4	500						
Answer	W _{TNT} =	53.58 kg	118.12 lb					
are based on cer capabilities for a verified with the r	rtain assumptions and given situation and sh results of hand calcula	have inherent limitations. The results of su ould only be interpreted by an informed use tion, there is no absolute guarantee of the a	of Fire Protection Engineering, 2nd Edition, 1995. Calculations ch calculations may or may not have reasonable predictive r. Although each calculation in the spreadsheet has been accuracy of these calculations. Any questions, comments, an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.					
Prepared by:		Date:	Organization:					
Checked by:		Date:	Organization:					
Additional Inform	nation:							

Project / Inspection Title:

Example 15.18-3b

INPUT PARAMETERS


EXPLOSIVE FUEL INFORMATION

Adiabatic Flame Temperature of the Fuel ((T_{ad})

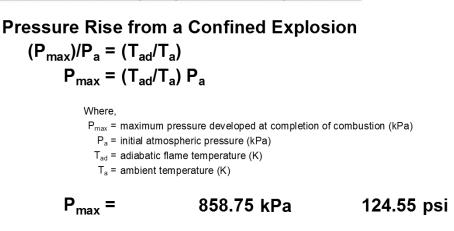
Heat of Combustion of the Fuel (ΔH_c) Yield (α) ^{See Note} Mass of Flammable Vapor Release (m_F) Ambient Air Temperature (T_a)

Initial Atmospheric Pressure (P_a)

Note: The fraction of available combustion is 1% for unconfined mass release and 100% for confined vapor release energy participating in blast wave generation.

THERMAL PROPERTIES FOR FUEL

FUEL FLAMMABILITY DATA


Fuel	Adiabatic Flame Temperature	Heat of Combustion	Select Fuel Type	
	T _{ad} (°C)	∆H _c (kJ/kg)	Hydrogen 🔽	
Acetylene	2637	48,220	Scroll to desired Fuel Type then	
Carbon Monoxide	2387	10,100	Click on selection	
Ethane	1229	47,490		
Ethylene	2289	47,170		
Hydrogen	2252	130,800		
Methane	1173	50,030		
n-Butane	1339	45,720		
n-Heptane	1419	44,560		
n-Octane	1359	44,440		
n-Pentane	1291	44,980		
Propane	1281	46,360		
Propylene	2232	45,790		
User Specified Value	Enter Value	Enter Value		
Reference: SFPE Handbook of Fire	e Protection Engineering, 2 nd Edition	on, 1995, Page 1-86.		

Version 1805.1 (SI Units)

METHOD OF ZALOSH

Reference: SFPE Handbook of Fire Protection Engineering, 2nd Edition, 1995, Page 3-312.

Blast Wave Energy Calculation

 $E = \alpha \Delta H_c m_F$

Where,

- E = blast wave energy (kJ) [E is the Trinitrotoluene (TNT) equivalent energy]
- α = yield (a is the fraction of available combustion energy participating in blast wave generation)
- ΔH_{c} = heat of combustion (kJ/kg)
- m_F = mass of flammable vapor release (kg)

TNT Mass Equivalent Calculation W_{TNT} = E/4500

Where, W_{TNT} = weight of TNT (kg) E = explosive energy release (kJ)

 $W_{TNT} = 72.67 \text{ kg}$ 160.20 lb

Version 1805.1 (SI Units)

Results Summary

Pressure Rise from a Confined Explosion

 $P_{max} = (T_{ad}/T_a) P_a$

Answer	P _{max} =	858.75 kPa	124.55 psi
Blast Wav	e Energy E = α ΔΗ	_c m _F	
Answer	E =	327000.00 kJ	309701.70 Btu
TNT Mass	Equivalent W _{TNT} = E/45	00	
Answer	W _{TNT} =	72.67 kg	160.20 lb
are based on cert capabilities for a g verified with the re	ain assumptions and ha given situation and shou esults of hand calculatio	ave inherent limitations. The results and only be interpreted by an informed on, there is no absolute guarantee of	book of Fire Protection Engineering, 2nd Edition, 1995. Calculations of such calculations may or may not have reasonable predictive I user. Although each calculation in the spreadsheet has been the accuracy of these calculations. Any questions, comments, send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Informa	ation:		

16.14 Problems

Example Problem 16.14-1

Problem Statement

Assume a 60-cell GT-41 (3,730 Ampere-hour) battery near the end of its life, on equalize at 2.33 VPC at an electrolyte temperature of 33 °C. Estimate the rate of hydrogen generation (in cubic meters per minute).

Solution

Purpose:

(1) Estimate the rate of hydrogen generation.

Assumptions:

(1) Old Antimony-type battery

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 16_Battery_Room_Flammable_Gas_Conc_Sup1_SI.xls (click on *Battery_Room_Hydrogen*)

FDTs Input Parameters:

- Ampere Hours = 3730 Ah
- Number of Cells = 60
- Click on Old Antimony type and Select 2.33 VPC

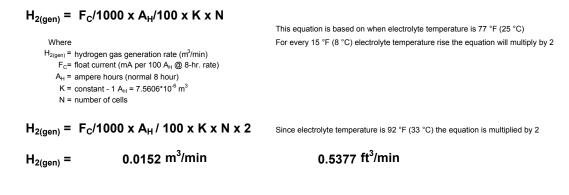
Results*

Generation Rate 0.0152 m³/min

*see spreadsheet on next page

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GAS GENERATION IN BATTERY ROOMS

arameters in YELLO	ons estimate the full-scale OW CELLS are Entered b	y the User.		
II subsequent output v	values are calculated by t	he spreadsheet and base	ROP DOWN MENU for the Cable Type Selected. ad on values specified in the input parameters. This spreadsheet is protected	
nd secure to avoid err	rors due to a wrong entry	in a cell(s). The chapter	in the NUREG should be read before an analysis is made.	
	[
Project / Ins	pection Title:	Example 16.14-1		
NPUT PAR				
ATTERY INFORMAT	Float Current (F _C)		450 mA per 100 A _H @ 8-hr. rate	
	Ampere Hours (A _H) Number of Cells (N)		3730.00 Ampere hours 60.00	
OMPARTMENT INFO	Constant (K) DRMATION		0.00000756 m ³	
	Compartment Width (v Compartment Length (7.93 m 15.24 m	
	Compartment Height (3.66 m	
LAMMABLE GAS IN	FORMATION			
ower Flammability Lin			4.00 %	
			Calculate	
-loat Currel			ed Stationary Lead-Acid Cells	
	Heritage Series, Flooded Le	ad-Acid Batteries, 2000.	ion, and maintenance manual, Section 36.00,	
		F _c * Antimony		
	(VPC)	New	Select Charge Current Value	
	2.17	15 19	Scroll to desired value then Click on selection	
		26 37		
		45 60		
	2.33	120		
	2.41	195 300		
	User Specified Value Old Antimony	Enter Value Fc*	*(milliamperes per 100 AH @ 8-hr. rate)	
	Charge Voltage	Antimony		
		Old 60	Select Charge Current Value	
	2.17	80 105	Scroll to desired value then Click on selection	
	2.23	150		
	2.27	185 230		
		450 700		
	2.41 User Specified Value	1100 Enter Value	*(milliamperes per 100 AH @ 8-hr. rate)	
		F _C *		
		Antimony Calcium	Select Charge Current Value	
	2.15 2.17	4	Scroll to desired value then Click on selection	
	2.20	6		
		8 11		
	2.27	12 24		
	2.37	38		
	2.41	58		



CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GAS GENERATION IN BATTERY ROOMS

METHOD OF YUASA, INC.

Reference: Yuasa, Inc., Safety Storage, Installation, Operation, and Maintenance Manual, Section 58.00, Heritage Series, Flooded Lead-Acid Batteries, 2000.

Estimating Hydrogen Gas Generation Rate

Estimating Hydrogen Gas in Compartment Based on Given Flammability Limit

 $H_{2(comp)} = V \times FL$

Where $H_{2(comp)}$ = hydrogen gas in compartment (m³) V = volume of compartment (m³) FL = hydrogen gas flammability limit

 $H_{2(comp)} = 17.67209064 \text{ m}^3$

Volume of Compartment

 $V = w_c \times l_c \times h_c$ Where $V = \text{compartment volume } (m^3)$ $w_c = \text{compartment width } (m)$ lc = compartment length (m) hc = compartment height (m) $V = 441.802266 \text{ m}^3$

Estimating Time Required to Reach Hydrogen Concentration on Given Flammability Limit

 $t_{H2} = H_{2(comp)} / H_{2(gen)}$

Where t_{H2} = time require to reach on given flammability limit (min) $H_{2(comp)}$ = hydrogen gas in compartment (m³) $H_{2(gen)}$ = hydrogen gas generation rate (m³/min) t_{H2} = 1160.46 min. or approx.

19 hours

Summary of Results

ESTIMATING HYDROGEN GAS GENERATION RATE

$H_{2(gen)} = F_C / 1000 \times A_H / 100 \times K \times N \times 2$

Answer H _{2(gen)} = 0.01523 m ³ /min	0.53773 ft ³ /min
--	------------------------------

ESTIMATING TIME REQUIRED TO REACH HYDROGEN CONCENTRATION ON GIVEN FLAMMABILITY LIMIT

 $t_{H2} = H_{2(comp)} / H_{2(gen)}$

Answer t _{H2} =	1160.46 min. or approx.	19 hours	
--------------------------	-------------------------	----------	--

NOTE:

А

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
dditional Information:		

Example Problem 16.14-2

Problem Statement

Consider an enclosure 3.0 m wide x 3.0 m long x 3.0 m high or 27 m^3 in the turbine generator area of a nuclear facility in which hydrogen gas is accumulated. Calculate the concentration of hydrogen gas by volume reaching its LFL of 4 percent.

Solution

Purpose:

(1) Estimate the concentration of hydrogen gas in the compartment at LFL.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 16_Battery_Room_Flammable _Gas_Conc_Sup1_SI.xls (click on *Flammable_Gas_Buildup*)

FDT^s Input Parameters:

- Compartment Width (w_c) = 3.0 m
- Compartment Length $(I_c) = 3.0 \text{ m}$
- Compartment Height $(h_c) = 3.0 \text{ m}$
- Select Hydrogen

Results*

Volume	1.08 m ³		
*see spreadsheet on next page			

Therefore, the concentration of hydrogen gas in the 27 m^3 compartment is 4% (1.08/27).

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BATTERY ROOMS

The following calculations estimate the full-scale cable tray heat release rate. Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 16.14-2

INPUT PARAMETERS

Lower Flammability Limit of Flammable Gas or Vapor (LFL) Compartment Width (w_c)

Compartment Length (I _c)
Compartment Height (h _c)

4.00	%
4.00 3.00	m
3.00	
3.00	m
	_
Calculate	

LOWER FLAMMABILITY DATA FOR GASES AND VAPORS

Gases and Vapors	LFL Volume-Percent	Select Gas or Vapor Hydrogen Scroll to desired gas or vapor then Click on selection
Hydrogen	4.00	
Carbon Monoxide	12.50	
Methane	5.00	
Ethane	3.00	
Propane	2.10	
n-Butane	1.80	
n-Pentane	1.40	
n-Hexane	1.20	
n-Heptane	1.05	
n-Octane	0.95	
n-Nonane	0.85	
n-Decane	0.75	
Ethene	2.70	
Propane	2.40	
Butene-1	1.70	
Acetylene	2.50	
Methanol	6.70	
Ethanol	3.30	
n-Propanol	2.20	
Acetone	2.60	
Methyl Ethyl Ketone	1.90	
Diethyl Ketone	1.60	
Benzene	1.30	
User Specified Value Reference: SFPE Handbook o	Enter Value	

ESTIMATING FLAMMABLE CONCENTRATION OF GASES USING LIMITS OF FLAMMABILITY

Volume of Gas or Vapor for Deflagration = V x LFL

Where

V = volume of enclosure (m^3)

LFL= lower flammability of a gas or vapor (percent-volume)

Volume of Compartment

 $V = w_c \times I_c \times h_c$

Where

Vere V = compartment volume (m³) wc = compartment width (m) lc = compartment length (m) hc = compartment height (m)

V = 27.00 m³

Volume of Gas or Vapor for Deflagration = V x LFL

Answer Volume of Gas or Vapor for Deflagration =	1.08 m ³	3	38.1 ft ³
NOTE: The above calculations are based on principles developed in the assumptions and have inherent limitations. The results of such be interpreted by an informed user. Although each calculation in the accuracy of these calculations. Any questions, comments, c David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.	calculations may or may not have n the spreadsheet has been verif	e reasonable predictive fied with the results of ha	capabilities for a given situation and should only and calculation, there is no absolute guarantee of
Prepared by:		Date:	Organization:
Checked by:		Date:	Organization:
Additional Information:			

Example Problem 16.14-3

Problem Statement

Assume a leak of 3 m³/min of a 15 percent hydrogen gas/air mixture in a compartment that is 9.0 m wide x 4.6 m long x 3.7 m high ($w_c x l_c x h_c$). How long would it take to reach a hydrogen concentration of 2 percent throughout the enclosure, assuming infiltration through multiple compartment cracks?

Solution

Purpose:

(1) Estimate the time until the room reaches 2% hydrogen concentration.

Assumptions:

- (1) Infiltration through compartment leaks.
- (2) The mass rate of the fuel is neglected in the conversion of mass.
- (3) The specific heat is constant with temperature.
- (4) The hydrostatic pressure difference over the height of the compartment is negligible compared to the dynamic pressure.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 16_Battery_Room_Flammable_Gas_Conc_Sup1_SI.xls (click on *Flammable_Gas_Buildup_Time*)

FDT^s Input Parameters:

- Compartment Width (w_c) = 9.0 m
- Compartment Length $(I_c) = 4.6 \text{ m}$
- Compartment Height (h_c) = 3.7 m
- Enter 3 m³/min as the Leakage Rate
- Enter 15% as Percent of Combustible Gas/Air M ixture
- Enter 2% as Combustible Gas Concentration (C)
- Click on Infiltration Through Cracks and select 0.3 from the drop-down menu

Results*

|--|

*see spreadsheet on next page

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BETTERY ROOMS

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 16.14-3

9.00 m 4.60 m 3.70 m 3.00 m³/min 15.00 percent 2.00 percent

Calculate

INPUT PARAMETERS

COMPARTMENT INFORMATION HYDROGEN LEAK INFORMATION

Compartment Width (w _c)	
Compartment Length (I _c)	
Compartment Height (h _c)	
Leakage Rate	
Percent of Combustible Gas/Air Mixture	
Combustible Gas Concentration (C)	
Mixing Efficiency Factor (K)	

Mixing Efficiency (K Values) for Various Ventilation Arrangements

Reference: NFPA 69, "Standard on Explosion Prevention Systems," 1997 Edition.				
Infiltration Through Cracks	К	Select Ventilation Arrangement		
Single Exhaust Opening	0.2	0.3		
Multiple Exhaust Openings	0.3	Scroll to desired arrangement then Click on selection		
🖸 Open Door, or Windows	К	Select Ventilation Arrangement		
Single Exhaust Opening	0.2			
Multiple Exhaust Openings	0.4	Scroll to desired arrangement then Click on selection		
Grill and Registers	К	Select Ventilation Arrangement		
Single Exhaust Opening	0.3			
Multiple Exhaust Openings	0.5	Scroll to desired arrangement then Click on selection		
C Diffusers	К	Select Ventilation Arrangement		
Diffusers Single Exhaust Opening		Select Ventilation Arrangement		
	0.5	Select Ventilation Arrangement Scroll to desired arrangement then Click on selection		
Single Exhaust Opening	0.5			
Single Exhaust Opening	0.5			
Single Exhaust Opening Multiple Exhaust Openings	0.5 0.7 К	Scroll to desired arrangement then Click on selection		
Single Exhaust Opening Multiple Exhaust Openings	0.5 0.7 K 0.8	Scroll to desired arrangement then Click on selection		
Single Exhaust Opening Multiple Exhaust Openings C Perforated Ceiling Single Exhaust Opening	0.5 0.7 K 0.8	Scroll to desired arrangement then Click on selection Select Ventilation Arrangement		
Single Exhaust Opening Multiple Exhaust Openings C Perforated Ceiling Single Exhaust Opening	0.5 0.7 K 0.8	Scroll to desired arrangement then Click on selection Select Ventilation Arrangement		
Single Exhaust Opening Multiple Exhaust Openings Perforated Ceiling Single Exhaust Opening Multiple Exhaust Openings	0.5 0.7 К 0.8 0.9 К	Scroll to desired arrangement then Click on selection Select Ventilation Arrangement Scroll to desired arrangement then Click on selection		

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BETTERY ROOMS

METHOD OF NFPA 69, STANDARD ON EXPLOSION PREVENTION SYSTEMS

Reference: NFPA 69, "Standard on Explosion Prevention Systems, 1997 Edition, Appendix D.

Estimating Number of Theoretical Air Changes

In [1 - (CQ / G)] = - K N

Where

- C = combustible gas concentration
- Q = air flow rate (fresh air) in enclosure (m^3/min)
- G = combustible gas leakage rate (m^3 /min)
- K = mixing efficiency factor (constant)
- ${\sf N}$ = number of theoretical air changes

Q = air flow rate (fresh air) in enclosure

- Q = 2.55 m³/min
- G = combustible gas leakage rate

 $G = 0.45 (m^3/min)$

N = number of theoretical air changes

Estimating Combustible Gas Concentration Buildup Time

t = (V / leakage rate) * N

Where t = buildup time (min) V = compartment volume (m³) leakage rate (m³/min) N = number of theoretical air changes

Volume of Compartment

$$V = w_c \times I_c \times h_c$$

Where

V = compartment volume (m³) wc = compartment width (m) lc = compartment length (m) hc = compartment height (m)

CHAPTER 16 CALCULATING THE RATE OF HYDROGEN GENERATION IN BETTERY ROOMS

COMBUSTIBLE GAS CONCENTRATION BUILDUP TIME

t = (V / leakage rate) * N

Answer	t =	20.4	7 minutes			
NOTE:						
certain assumption should only be in absolute guarant	ons and have terpreted by ee of the acc	e inherent limitation an informed user. curacy of these cal	s. The results of such Although each calcula	calculations may or may no tion in the spreadsheet has	on Engineering, 3 rd Edition, 2002. Co of have reasonable predictive capab been verified with the results of har d suggestions or to report an error(s	ilities for a given situation and ad calculation, there is no
Prepared by:				Date:	Organization	
Checked by:				Date:	Organization	
Additional Inform	ation:					

17.14 Problems

Example Problem 17.14-1

Problem Statement

Calculate the thickness of spray-on fire protection required to provide a 2-hour fire resistance for a W12 x 16 beam to be substituted for a W8 x 18 beam requiring 3.66 cm of protection for the same rating.

Solution

Purpose:

(1) Estimate the spray-on thickness required for the beam substitution.

Assumptions:

(1) The 3.66 cm. of spray-on provides the W8 x 18 beam 2 hours of fire resistance.

Spreadsheet (FDT^s) Information:

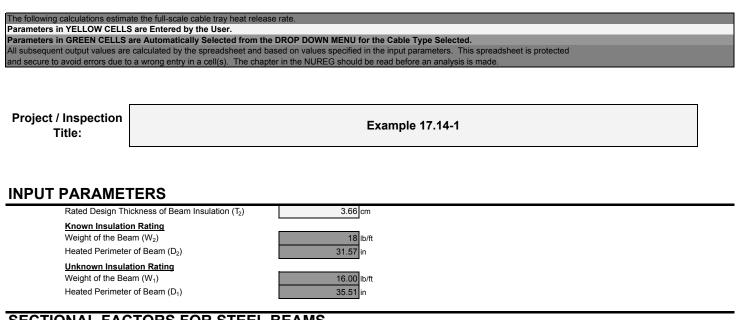
Use the following FDT^s:

(a) 17.1_FR_Beams_Columns_Substitution_Correlation_Sup1_SI.xls (click on *Beam*)

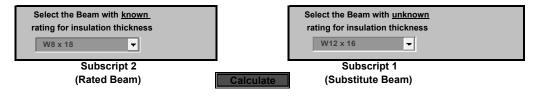
FDT^s Input Parameters:

- Known beam insulation thickness
- Select W8 x 18 for Rated Beam
- Select W12 x 16 for Substitute Beam

Results*


Substitute Beam	4.1 cm
Spray on Thickness	4.1 Cm

*see spreadsheet on next page



CHAPTER 17 ESTIMATING THE THICKNESS OF FIRE PROTECTION SPRAY-APPLIED COATING FOR STRUCTURAL STEEL BEAMS (SUBSTITUTION CORRELATION)

Version 1805.1 (SI Units)

SECTIONAL FACTORS FOR STEEL BEAMS

CHAPTER 17 ESTIMATING THE THICKNESS OF FIRE PROTECTION SPRAY-APPLIED COATING FOR STRUCTURAL STEEL BEAMS (SUBSTITUTION CORRELATION)

Version 1805.1 (SI Units)

ESTIMATING THICKNESS OF FIRE PROTECTION INSULATION ON UNRATED BEAM

Reference: UL Fire Resistance Directory, Volume 1, 1995, Page 19.

$T_1 = ((W_2/D_2 + 0.6)T_2)/(W1/D_1 + 0.6)$

Where

 T_1 = calculated thickness of fire protection insulation on unrated beam (in)

T₂ = design thickness of insulation on rated beam (in)

 W_1 = weight of beam with unknown insulation rating (lb/ft)

 W_2 = weight of design rated beam (lb/ft)

 D_1 = heated perimeter of unrated beam (in)

 D_2 = heated perimeter of the rated beam (in)

REQUIRED EQUIVALENT THICKNESS OF FIRE PROTECTION INSULATION ON UNRATED BEAM

$T_1 = ((W_2/D_2 + 0.6)T_2)/(W1/D1 + 0.6)$

Answer	T ₁ =	4.1 cm		1.60 in		
	Beams with a larger W/D ratio can always be substituted for the structural member listed with a specific fire resistive covering without changing the thickness of the covering.					
assumptions interpreted b accuracy of t	and have inherent limitations y an informed user. Although	s. The results of h each calculatio stions, comments	d in the SFPE Handbook of Fire Protect f such calculations may or may not have on in the spreadsheet has been verified s, concerns and suggestions or to repor	e reasonable predictive capabilities with the results of hand calculation,	for a given situation and should only be there is no absolute guarantee of the	
Prepared by:			Date:	Organization:		
Checked by:			Date:	Organization:		
Additional Int	formation:					

Example Problem 17.14-2

Problem Statement

Use the quasi-steady-state heat transfer approach to determine the fire resistance of a W24 x 76 steel beam protected with 1.27 cm of spray-on mineral fiber material. Sprayed-on mineral fiber has the follow ing thermal properties:

- Thermal Conductivity, k_i = 0.06936 Btu/ft-hr-°F
- Specific Heat, c_i = 0.2868 Btu/lb-°F
- Density, $\rho_i = 19.0 \text{ lb/ft}^3$

Solution

Purpose:

(1) Estimate the fire resistance of the beam.

Assumptions:

(1) The heat transfer is quasi-steady-state.

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 17.2_FR_Beams_Columns_Quasi_Steady_State_Spray_Insulated_Sup1_SI.xls (click on *Beam*)

FDT^s Input Parameters:

- Select W24 x 76 beam
- Enter 1.27 cm spray-on thickness
- Select Sprayed Mineral Fiber from Insulation Type drop-down menu

Results*

*see spreadsheet on next page

Version 1805.1 (SI Units)

The following calculations estimate the full-scale cable tray heat release rate Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from the DROP DOWN MENU for the Cable Type Selected.

All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected

and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 17.14-2

INPUT PARAMETERS

Ratio of Weight of Steel Section per Linear Foot and Heated Perimeter (W/D)		12.34 lb/ft ²
Thickness of Spray-Applied Protection on Steel Beam (h)	h ≥ 1/6 cm	1.27 cm
Density of Spray-Applied Material (pi)		19.00 lb/ft ³
Thermal Conductivity of Spray-Applied Material (k)		0.06936 Btu/ft-hr-°F
Specific Heat of Spray-Applied Material (c)		0.2868 Btu/lb-°F
Ambient Air Temperature (T _a)		25 °C
Specific Heat of Steel (c _s)		0.132 Btu/lb-°F
	-	
		Calculate

SECTIONAL FACTORS FOR STEEL BEAMS

Select Beam

24x76 Scroll to desired beam size then Click on selection

THERMAL PROPERTIES OF SPRAY-APPLIED INSULATION MATERIALS

Insulation Material Spray-Applied	Density ρ _i (Ib/ft ³)	Thermal Conductivity k _i (Btu/ft-hr-°F)	Specific Heat c _i (Btu/lb-°F)	
Sprayed mineral fiber	19	0.06936	0.2868	
Perlite or vermiculite	22	0.06936	0.2868	
High density perlite or vermiculite	35	0.06936	0.2868	
User Specified Value	Enter Value	Enter Value	Enter Value	
Reference: Buchanan, A. H., Structural Design for Fire Safety, 2001, Page 179.				

Select Insulation Type
Sprayed mineral fiber
Scroll to desired material then Click on selection

Version 1805.1 (SI Units)

ESTIMATING FIRE RESISTANCE TIME USING QUASI-STEADY-STATE APPROACH

Reference: "Analytical Methods for Determining Fire Resistance of Steel Members," "SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002, Page 4-209.

Temperature Rise in Steel Beam

$\Delta T_{s} = (k_{i}/(c_{s} h W/D + 1/2 c_{i} \rho_{i} h^{2})) (T_{f} - T_{s}) \Delta t$

Where

- ΔT_s = temperature rise in steel (°F)
- k_i = thermal conductivity of spray-applied material (Btu/ft-sec-°F)
- ρ_i = density of spray-applied material (lb/ft³)
- c_i = specific heat of spray-applied material (Btu/lb-°F)
- c_s = specific heat of steel (Btu/lb-°F)
- h = thickness of spray-applied protection on steel beam (in)
- W/D = ratio of weight of steel section per linear foot and heated perimeter (lb/ff)
- T_f = fire exposure temperature (°F)
- T_s = steel temperature (°F)
- Δt = time step (sec)

$c_{s} W/D > 2 c_{i} \rho_{i} h$

Where

c_s = specific heat of steel (Btu/lb-°F)

- W/D = ratio of weight of steel section per linear foot and heated perimeter (lb/ff)
- ρ_{i} = density of spray-applied material (lb/ft³)
- $c_i\,$ = specific heat of spray-applied material (BTU/lb-°F)
- h = thickness of spray-applied protection on steel beam (in)
- 1.63 > 0.45

The Maximum Allowable Time Step

 $\Delta t = \Delta t =$

196 sec 3.27 minutes

For ASTM-E-119 exposure, T_f at any time, t, is given by the following expression

$$T_f = C_1 LOG (0.133 t + 1) + T_s$$

Where

 T_f = fire exposure temperature (°F) C_1 = constant = 620 t = time step (sec) T_a = ambient air temperature (°F)

$\Delta T_{s1} = (k_i / (c_s h W/D + 1/2 c_i \rho_i h^2)) ((C_1 LOG (0.133 t_1 + 1) + T_a) - T_{s0}) \Delta t$

Where

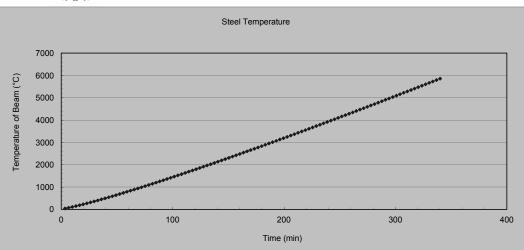
 $t_1 = \Delta t/2$ T_{s0} = initial steel temperature (°F) Caution! This equation is only valid up to 1000 °F (538 °C) where carbon steel structural members begin to fail. Predicted temperatures above 1000 °F (538 °C) are not accurate or valid.

$\Delta T_{s2} = (k_i / (c_s h W/D + 1/2 c_i \rho_i h^2)) ((C_1 LOG (0.133 t_2 + 1) + T_a) - T_s) \Delta t$

Where

$$\label{eq:t2} \begin{split} t_2 &= t_1 + \Delta t/2 \\ T_s &= T_{s0} + \Delta T_s \text{ from previous row} \end{split}$$

Version 1805.1 (SI Units)


Answer

Time	Time	∆T _s	Τ _s	
(min)	(sec)	(°F)	(°C)	
3.3	196	43	49	
6.5	392	56	80	
9.8	588	63	114	
13.1	785	67	152	
16.3	981	71	191	
19.6	1177	74	232	
22.9	1373	76	274	
26.2	1569	78	317	
29.4	1765	80	362	
32.7	1961	81	407	
36.0	2158	83	453	
39.2	2354	84	499	
42.5	2550	85	547	Failure of Beam
45.8	2746	86	594	Failure of Beam
49.0	2942	87	643	Failure of Beam
52.3	3138	88	692	Failure of Beam
55.6	3334	89	741	Failure of Beam
58.8	3531	90	791	Failure of Beam
62.1	3727	91	841	Failure of Beam
65.4	3923	91	892	Failure of Beam
68.6	4119	92	943	Failure of Beam
71.9	4315	93	995	Failure of Beam
75.2	4511	93	1047	Failure of Beam
78.5	4707	94	1099	Failure of Beam
81.7	4904	95	1151	Failure of Beam
85.0	5100	95	1204	Failure of Beam
88.3	5296	96	1257	Failure of Beam
91.5	5492	96	1311	Failure of Beam
94.8	5688	97	1365	Failure of Beam
98.1	5884	97	1419	Failure of Beam
101.3	6080	98	1473	Failure of Beam
104.6	6277	98	1527	Failure of Beam
107.9	6473	99	1582	Failure of Beam
111.1	6669	99	1637	Failure of Beam
114.4	6865	99	1692	Failure of Beam
117.7	7061	100	1748	Failure of Beam
121.0	7257	100	1804	Failure of Beam
124.2	7453	101	1859	Failure of Beam
127.5	7650	101	1916	Failure of Beam
130.8	7846	101	1972	Failure of Beam
134.0	8042	102	2028	Failure of Beam
137.3	8238	102	2085	Failure of Beam
140.6	8434	102	2142	Failure of Beam
143.8	8630	103	2199	Failure of Beam
147.1	8826	103	2256	Failure of Beam
150.4	9023	103	2314	Failure of Beam
153.6	9219	104	2371	Failure of Beam
156.9	9415	104	2429	Failure of Beam
160.2	9611	104	2487	Failure of Beam
163.5	9807	105	2545	Failure of Beam
166.7	10003	105	2603	Failure of Beam
170.0	10199	105	2662	Failure of Beam

Time	Time	47	Ŧ	Т
		ΔT _s	Ts	
(min)	(sec)	(°F)	(°C)	
173.3	10396	105	2720	Failure of Beam
176.5	10592	106	2779	Failure of Beam
179.8	10788	106	2838	Failure of Beam
183.1	10984	106	2897	Failure of Beam
186.3	11180	106	2956	Failure of Beam
189.6	11376	107	3015	Failure of Beam
192.9	11572	107	3074	Failure of Beam
196.1 199.4	<u>11769</u> 11965	107 107	3134 3193	Failure of Beam
199.4 202.7		107	3193	Failure of Beam
202.7	12161 12357	108	3253	Failure of Beam
205.9		108		Failure of Beam
209.2	<u>12553</u> 12749	108	3373 3433	Failure of Beam
212.5	12749	108	3433	Failure of Beam
215.0	12945	109	3494	Failure of Beam
219.0	13142	109	3615	Failure of Beam
222.3	13534	109	3675	Failure of Beam
225.6	13534	109	3675	Failure of Beam
232.1	13926	110	3736	Failure of Beam
232.1	13920	110	3858	Failure of Beam
235.4	14122	110	3919	Failure of Beam
230.0	14515	110	3919	Failure of Beam
241.9	14515	110	4041	Failure of Beam
245.2	14907	111	4041	Failure of Beam
240.4	15103	111	4103	Failure of Beam
255.0	15299	111	4226	Failure of Beam
258.3	15495	111	4288	Failure of Beam
261.5	15691	111	4349	Failure of Beam
264.8	15888	111	4411	Failure of Beam
268.1	16084	112	4473	Failure of Beam
271.3	16280	112	4535	Failure of Beam
274.6	16476	112	4598	Failure of Beam
277.9	16672	112	4660	Failure of Beam
281.1	16868	112	4722	Failure of Beam
284.4	17064	112	4785	Failure of Beam
287.7	17261	113	4847	Failure of Beam
290.9	17457	113	4910	Failure of Beam
294.2	17653	113	4973	Failure of Beam
297.5	17849	113	5036	Failure of Beam
300.8	18045	113	5098	Failure of Beam
304.0	18241	113	5161	Failure of Beam
307.3	18437	114	5225	Failure of Beam
310.6	18634	114	5288	Failure of Beam
313.8	18830	114	5351	Failure of Beam
317.1	19026	114	5414	Failure of Beam
320.4	19222	114	5478	Failure of Beam
323.6	19418	114	5541	Failure of Beam
326.9	19614	114	5605	Failure of Beam
330.2	19810	115	5668	Failure of Beam
333.4	20007	115	5732	Failure of Beam
336.7	20203	115	5796	Failure of Beam
340.0	20399	115	5860	Failure of Beam

Version 1805.1 (SI Units)

NOTE:

The above calculations are based on principles developed in the SFPE Handbook of Fire Protection Engineering, 3rd Edition, 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:]	Date:	Organization:
Checked by:]	Date:	Organization:
Additional Information:			

18.11 Problems

Example Problem 18.11-1

Problem Statement

A compartment is 9.0 m wide x 6.1 m long x 4.6 m high ($w_c x l_c x h_c$). In the center of the compartment, 0.5 kg of polypropylene is involved in flaming combustion:

- (a) From the center of the compartment, can you see the "Reflecting Exit Sign" at either end of the compartment?
- (b) What if you increase the mass of burned fuel (polypropylene) to 1 kg?

Solution

Purpose:

(1) Determine the visibility of the exit sign.

Assumptions:

(1) Complete burning within the method specified

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 18_Visibility_Through_Smoke_Sup1_SI.xls

FDT^s Input Parameters:

- Compartment Width $(w_c) = 9.0 \text{ m}$
- Compartment Length $(I_c) = 6.1 \text{ m}$
- Compartment Height (h_c) = 4.6 m
- Mass of fuel burn = 0.5 kg
- Select Reflecting Signs
- Select Flaming Combustion
- Select Polypropylene

Results*

	0.5 kg of Material	1 kg of Material
Visible Distance	3.39 m	1.69 m

*see spreadsheet on next page

Therefore, the signs placed at either end of the room (3.0 m away) are visible with 0.5 kg of material burning, but would not be visible if 1 kg of material was burned.

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-1a

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_c)} \end{array}$

m
m
m
kg
m²/kg

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)
	к	Reflecting Signs
Building Components in Reflected Light	3	Scroll to desired Situation then
Illuminated Signs	8	Click on selection
Reflecting Signs	3	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Mi	lke, Principles of Smoke	
Management, 2002, Page 31.		

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

	Specific Extinction Coefficient	Select Mode of Combustion /
Mode of Combustion		Specific Extinction Coefficient (α_m)
	α _{m (} m²/kg)	Flaming Combustion
Flaming Combustion		Scroll to desired Mode of Combustion then
Smoldering Combustion	4301.1	Click on selection
User Specified Value	Enter Value	
Reference: John H. Klote & James	A. Milke, Principles of Smoke	
Management, 2002, Page 32.		

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)
Material	(y _p)	Polypropylene 🗸
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection
Fiberboard	0.008	
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003	
Nylon	0.075	
Perfluoroalkoxy (PFA; Teflon [™])	0.002	
Phenolic Foam	0.002	
Polyester	0.09	
Polyethylene (PE)	0.06	
Polyethylene Foam	0.076	
Polymethylemethacrylate (PMMA; Plexiglas [™])	0.022	
Polypropylene	0.059	
Polystyrene	0.164	
Polystyrene Foam	0.194	
Polyurethane Foam (Flexible)	0.188	
Polyurethane Foam (Rigid)	0.118	
Polyvinylchloride (PVC)	0.172	
Silicone	0.065	
Silicone Rubber	0.078	
Tetrafluoroethylene (TFE; TeflonTM)	0.003	
Wood (Douglas Fir)	0.018	
Wood (Hemlock)	0.015	
Wood (Red Oak)	0.015	
Wool 100%	0.008	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of	Smoke	
Management, 2002, Page 35.		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

S = visibility through smoke (m)

K = proportionality constant

 $\alpha_{\rm m}$ = specific extinction coefficient (m²/kg)

m_p = mass concentration of particulate (kg/m³)

Compartment Volume Calculation

 $V = W_c \times I_c \times h_c$

Where,

V = volume of the compartment (m^3)

w_c = compartment width (m)

 I_c = compartment length (m)

 h_c = compartment height (m)

252.54 m³

Mass of Particulates Produced (airborne particulate)

$$M_p = y_p M_f$$

Where, M_p = mass of particulates produced (kg) y_p = particulates yield M_f = mass of fuel consumed (kg)

$M_p = 0.02950 \text{ kg}$

Mass Concentration of the Particulates Calculation

$$m_p = M_p / V$$

Where,

- m_p = mass concentration of the particulates (kg/m³)
- M_p = mass of particulates produced (kg)
- V = volume of the compartment (m^3)

$$m_p = 1.16813E-04 \text{ kg/m}^3$$

Version 1805.1 (English Units)

Results Summary

Visibility Through Smoke Calculation

 $S = K / \alpha_m m_p$

Answer	S =	3.39 m	11.12 ft	
--------	-----	--------	----------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.Iqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-1b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_c)} \end{array}$

m
m
m
kg
m²/kg

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)	
	К	Reflecting Signs	
Building Components in Reflected Light	3	Scroll to desired Situation then	
Illuminated Signs	8	Click on selection	
Reflecting Signs	3		
User Specified Value	Enter Value		
Reference: John H. Klote & James A. Milke, Principles of Smoke			
Management, 2002, Page 31.			

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

	Specific Extinction Coefficient	Select Mode of Combustion /
Mode of Combustion	Specific Extinction obenicient	Specific Extinction Coefficient (α_m)
	α _{m (} m²/kg)	Flaming Combustion
Flaming Combustion	7578.2	Scroll to desired Mode of Combustion then
Smoldering Combustion	4301.1	Click on selection
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 32.		

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)
Wateria	(y _p)	Polypropylene 🗸
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection
Fiberboard	0.008	
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003	
Nylon	0.075	
Perfluoroalkoxy (PFA; Teflon [™])	0.002	
Phenolic Foam	0.002	
Polyester	0.09	
Polyethylene (PE)	0.06	
Polyethylene Foam	0.076	
Polymethylemethacrylate (PMMA; Plexiglas [™])	0.022	
Polypropylene	0.059	
Polystyrene	0.164	
Polystyrene Foam	0.194	
Polyurethane Foam (Flexible)	0.188	
Polyurethane Foam (Rigid)	0.118	
Polyvinylchloride (PVC)	0.172	
Silicone	0.065	
Silicone Rubber	0.078	
Tetrafluoroethylene (TFE; TeflonTM)	0.003	
Wood (Douglas Fir)	0.018	
Wood (Hemlock)	0.015	
Wood (Red Oak)	0.015	
Wool 100%	0.008	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of	Smoke	
Management, 2002, Page 35.		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

S = visibility through smoke (m)

K = proportionality constant

 α_m = specific extinction coefficient (m²/kg)

m_p = mass concentration of particulate (kg/m³)

Compartment Volume Calculation

 $V = W_c \times I_c \times h_c$

Where,

V = volume of the compartment (m^3)

w_c = compartment width (m)

 I_c = compartment length (m)

 h_c = compartment height (m)

252.54 m³

Mass of Particulates Produced (airborne particulate)

 $M_p = y_p M_f$

Where, M_p = mass of particulates produced (kg) y_p = particulates yield M_f = mass of fuel consumed (kg)

$$M_p = 0.05900 \text{ kg}$$

Mass Concentration of the Particulates Calculation

$$m_p = M_p / V$$

Where,

- m_p = mass concentration of the particulates (kg/m³)
- M_p = mass of particulates produced (kg)
- V = volume of the compartment (m^3)

$$m_p = 2.33626E-04 \text{ kg/m}^3$$

Version 1805.1 (English Units)

Results Summary

Visibility Through Smoke Calculation

S = K / $\alpha_m m_p$

Answer	S =	1.69 m	5.56 ft	
--------	-----	--------	---------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 18.11-2

Problem Statement

A compartment is 3.0 m wide x 9.0 m long x 3.7 m high ($w_c x l_c x h_c$). What is the minimum amount (kg) of rigid polyurethane foam involved in smoldering combustion necessary to obstruct the visibility for the length of the compartment to a building compartment in reflective light?

Solution

Purpose:

(1) Determine the minimum mass of burning fuel that will obscure the sign.

Assumptions:

(1) Complete burning within the method specified

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 18_Visibility_Through_Smoke_Sup1_SI.xls

FDT^s Input Parameters:

- Compartment Width (w_c) = 3.0 m
- Compartment Length $(I_c) = 9.0 \text{ m}$
- Compartment Height $(h_c) = 3.7 \text{ m}$
- Mass of fuel burn = variable
- Select Reflecting Signs
- Select Smoldering Combustion
- Select Polyurethane Foam (Rigid)

Results*

Visible Distance	Mass of Fuel Burn
8.95 m	0.066 kg

*see spreadsheet on next page

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-2

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_c)} \end{array}$

3.00	m
9.00	m
3.70	m
0.07	kg
3	
4301.1	m²/kg
0.118	

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)
	к	Reflecting Signs
Building Components in Reflected Light	3	Scroll to desired Situation then
Illuminated Signs	8	Click on selection
Reflecting Signs	3	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 31.		

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

	Specific Extinction Coefficient	Select Mode of Combustion /		
Mode of Combustion	Specific Extiliction Coefficient	Specific Extinction Coefficient (α_m)		
	α _{m (} m²/kg)	Smoldering Combustion		
Flaming Combustion	7578.2	Scroll to desired Mode of Combustion then		
Smoldering Combustion	4301.1	Click on selection		
User Specified Value	Enter Value			
Reference: John H. Klote & James A. Milke, Principles of Smoke				
Management, 2002, Page 32.				

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)
Wateria	(y _p)	Polyurethane Foam (Rigid)
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection
Fiberboard	0.008	
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003	
Nylon	0.075	
Perfluoroalkoxy (PFA; Teflon [™])	0.002	
Phenolic Foam	0.002	
Polyester	0.09	
Polyethylene (PE)	0.06	
Polyethylene Foam	0.076	
Polymethylemethacrylate (PMMA; Plexiglas [™])	0.022	
Polypropylene	0.059	
Polystyrene	0.164	
Polystyrene Foam	0.194	
Polyurethane Foam (Flexible)	0.188	
Polyurethane Foam (Rigid)	0.118	
Polyvinylchloride (PVC)	0.172	
Silicone	0.065	
Silicone Rubber	0.078	
Tetrafluoroethylene (TFE; TeflonTM)	0.003	
Wood (Douglas Fir)	0.018	
Wood (Hemlock)	0.015	
Wood (Red Oak)	0.015	
Wool 100%	0.008	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of	Smoke	
Management, 2002, Page 35.		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

S = visibility through smoke (m)

K = proportionality constant

 $\alpha_{\rm m}$ = specific extinction coefficient (m²/kg)

m_p = mass concentration of particulate (kg/m³)

Compartment Volume Calculation

 $V = w_c \times I_c \times h_c$

Where,

V

V = volume of the compartment (m^3)

w_c = compartment width (m)

 I_c = compartment length (m)

 h_c = compartment height (m)

99.90 m³

Mass of Particulates Produced (airborne particulate)

 $M_p = y_p M_f$

Where, M_p = mass of particulates produced (kg) y_p = particulates yield M_f = mass of fuel consumed (kg)

$$M_p = 0.00779 \text{ kg}$$

Mass Concentration of the Particulates Calculation

$$m_p = M_p / V$$

Where,

- m_p = mass concentration of the particulates (kg/m³)
- M_p = mass of particulates produced (kg)
- V = volume of the compartment (m^3)

$$m_p = 7.79580E-05 \text{ kg/m}^3$$

Version 1805.1 (English Units)

Results Summary

Visibility Through Smoke Calculation

 $S = K / \alpha_m m_p$

Answer	S =	8.95 m	29.35 ft	
--------	-----	--------	----------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:	Date:	Organization:
Checked by:	Date:	Organization:
Additional Information:		

Example Problem 18.11-3

Problem Statement

An inspector finds 3 kg of PVC pipe in a compartment 3.0 m wide x 9.14 m long x 3.7 m high (w_c x l_c x h_c):

(a) What is the visibility to a reflecting sign given flaming combustion?

(b) What is the visibility to a reflecting sign given smoldering combustion?

Solution

Purpose:

(1) Determine the visibility under the different burning methods.

Assumptions:

(1) Complete burning within the method specified

Spreadsheet (FDT^s) Information:

Use the following FDT^s:

(a) 18_Visibility_Through_Smoke_Sup1_SI.xls

FDT^s Input Parameters:

- Compartment Width (w_c) = 3.0 m
- Compartment Length $(I_c) = 9.0 \text{ m}$
- Compartment Height (h_c) = 3.7 m
- Mass of fuel burn = 3 kg
- Select Reflecting Signs
- Select Flaming Combustion (get result)
- Select Smoldering Combustion (get result)
- Select PVC

Results*

Burning Method	Visibility
Flaming	0.08 m
Smoldering	0.14 m

*see spreadsheet on next page

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-3a

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_{p})} \end{array}$

3.00	m
9.00	m
3.70	m
3.00	kg
3	
7578.2	m²/kg
0.172	

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)	
	К	Reflecting Signs	
Building Components in Reflected Light	3	Scroll to desired Situation then	
Illuminated Signs	8	Click on selection	
Reflecting Signs	3		
User Specified Value	Enter Value		
Reference: John H. Klote & James A. Milke, Principles of Smoke			
Management, 2002, Page 31.			

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

	Specific Extinction Coefficient	Select Mode of Combustion /		
Mode of Combustion	Specific Extinction obenicient	Specific Extinction Coefficient (α_m)		
	α _{m (} m²/kg)	Flaming Combustion		
Flaming Combustion	7578.2	Scroll to desired Mode of Combustion then		
Smoldering Combustion	4301.1	Click on selection		
User Specified Value	Enter Value			
Reference: John H. Klote & James A. Milke, Principles of Smoke				
Management, 2002, Page 32.				

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)
Material	(y _p)	Polyvinylchloride (PVC)
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection
Fiberboard	0.008	
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003	
Nylon	0.075	
Perfluoroalkoxy (PFA; Teflon [™])	0.002	
Phenolic Foam	0.002	
Polyester	0.09	
Polyethylene (PE)	0.06	
Polyethylene Foam	0.076	
Polymethylemethacrylate (PMMA; Plexiglas [™])	0.022	
Polypropylene	0.059	
Polystyrene	0.164	
Polystyrene Foam	0.194	
Polyurethane Foam (Flexible)	0.188	
Polyurethane Foam (Rigid)	0.118	
Polyvinylchloride (PVC)	0.172	
Silicone	0.065	
Silicone Rubber	0.078	
Tetrafluoroethylene (TFE; TeflonTM)	0.003	
Wood (Douglas Fir)	0.018	
Wood (Hemlock)	0.015	
Wood (Red Oak)	0.015	
Wool 100%	0.008	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of	Smoke	
Management, 2002, Page 35.		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

S = visibility through smoke (m)

K = proportionality constant

 $\alpha_{\rm m}$ = specific extinction coefficient (m²/kg)

m_p = mass concentration of particulate (kg/m³)

Compartment Volume Calculation

 $V = W_c \times I_c \times h_c$

Where,

V

V = volume of the compartment (m^3)

w_c = compartment width (m)

 I_c = compartment length (m)

 h_c = compartment height (m)

99.90 m³

Mass of Particulates Produced (airborne particulate)

 $M_p = y_p M_f$

Where,
$$\begin{split} M_{p} &= mass \mbox{ of particulates produced (kg)} \\ y_{p} &= particulates \mbox{ yield} \\ M_{f} &= mass \mbox{ of fuel consumed (kg)} \end{split}$$

$M_p = 0.51600 \text{ kg}$

Mass Concentration of the Particulates Calculation

$$m_p = M_p / V$$

Where,

- m_p = mass concentration of the particulates (kg/m³)
- M_p = mass of particulates produced (kg)
- V = volume of the compartment (m^3)

Version 1805.1 (English Units)

Results Summary

Visibility Through Smoke Calculation

 $S = K / \alpha_m m_p$

Answer	S =	0.08 m	0.25 ft	
--------	-----	--------	---------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:		Date:	Organization:	
Checked by:		Date:	Organization:	
Additional Informa	tion:			

CHAPTER 18

ESTIMATING VISIBILITY THROUGH SMOKE

Version 1805.1 (English Units)

The following calculations estimate the smoke obscuration during a fire.

Parameters in YELLOW CELLS are Entered by the User.

Parameters in GREEN CELLS are Automatically Selected from each DROP DOWN MENU for the Situation, Mode of Combustion and Material Selected. All subsequent output values are calculated by the spreadsheet and based on values specified in the input parameters. This spreadsheet is protected and secure to avoid errors due to a wrong entry in a cell(s). The chapter in the NUREG should be read before an analysis is made.

Project / Inspection Title:

Example 18.11-3b

INPUT PARAMETERS

COMPARTMENT INFORMATION

 $\begin{array}{l} \mbox{Compartment Width (w_c)} \\ \mbox{Compartment Length (l_c)} \\ \mbox{Compartment Height (h_c)} \\ \mbox{Mass of Fuel Burn (M_f)} \\ \mbox{Situation / Proportionality Constant for Visibility (K)} \\ \mbox{Mode of Combustion / Specific Extinction Coefficient (α_m)} \\ \mbox{Material / Particulate Yield (y_c)} \end{array}$

m
m
m
kg
m²/kg

Calculate

RECOMMENDED SITUATION / PROPORTIONALITY CONSTANTS FOR VISIBILITY

Situation	Proportionality Constant	Select Situation / Proportionality Constant for Visibility (K)
	к	Reflecting Signs
Building Components in Reflected Light	3	Scroll to desired Situation then
Illuminated Signs	8	Click on selection
Reflecting Signs	3	
User Specified Value	Enter Value	
Reference: John H. Klote & James A. Milke, Principles of Smoke		
Management, 2002, Page 31.		

Version 1805.1 (English Units)

MODE OF COMBUSTION / SPECIFIC EXTINCTION COEFFICIENT

	Specific Extinction Coefficient	Select Mode of Combustion /			
Mode of Combustion		Specific Extinction Coefficient (α _m)			
	α _{m (} m²/kg)	Smoldering Combustion			
Flaming Combustion	7578.2	Scroll to desired Mode of Combustion then			
Smoldering Combustion	4301.1	Click on selection			
User Specified Value	Enter Value				
Reference: John H. Klote & James A. Milke, Principles of Smoke					
Management, 2002, Page 32.					

MATERIAL / PARTICULATE YIELD OF SOLID FUELS (WELL-VENTILATED FIRES)

Material	Particulate Yield	Select Material / Particulate Yield (y _p)		
Material	(y _p)	Polyvinylchloride (PVC)		
Acrylonitrile-Butadiene-Styrene (ABS)	0.105	Scroll to desired Material then		
Ethylenetetrafluoroethylene (ETFE; Tefzel [™])	0.042	Click on selection		
Fiberboard	0.008			
Fluorinated Polyethylene-Polypropylene (FEP; Teflon [™])	0.003			
Nylon	0.075			
Perfluoroalkoxy (PFA; Teflon [™])	0.002			
Phenolic Foam	0.002			
Polyester	0.09			
Polyethylene (PE)	0.06			
Polyethylene Foam	0.076			
Polymethylemethacrylate (PMMA; Plexiglas [™])	0.022			
Polypropylene	0.059			
Polystyrene	0.164			
Polystyrene Foam	0.194			
Polyurethane Foam (Flexible)	0.188			
Polyurethane Foam (Rigid)	0.118			
Polyvinylchloride (PVC)	0.172			
Silicone	0.065			
Silicone Rubber	0.078			
Tetrafluoroethylene (TFE; TeflonTM)	0.003			
Wood (Douglas Fir)	0.018			
Wood (Hemlock)	0.015			
Wood (Red Oak)	0.015			
Wool 100%	0.008			
User Specified Value	Enter Value			
Reference: John H. Klote & James A. Milke, Principles of Management, 2002, Page 35.	Smoke]		

Version 1805.1 (English Units)

ESTIMATING VISIBILITY THROUGH SMOKE METHOD OF JIN

Reference: John H. Klote & James A. Milke, Principles of Smoke Management, 2002, Page 32.

$$S = K / \alpha_m m_p$$

Where,

S = visibility through smoke (m)

K = proportionality constant

 $\alpha_{\rm m}$ = specific extinction coefficient (m²/kg)

m_p = mass concentration of particulate (kg/m³)

Compartment Volume Calculation

 $V = W_c \times I_c \times h_c$

Where,

V

V = volume of the compartment (m^3)

w_c = compartment width (m)

 I_c = compartment length (m)

 h_c = compartment height (m)

99.90 m³

Mass of Particulates Produced (airborne particulate)

 $M_p = y_p M_f$

Where, M_p = mass of particulates produced (kg) y_p = particulates yield M_f = mass of fuel consumed (kg)

$M_p = 0.51600 \text{ kg}$

Mass Concentration of the Particulates Calculation

$$m_p = M_p / V$$

Where,

- m_p = mass concentration of the particulates (kg/m³)
- M_p = mass of particulates produced (kg)
- V = volume of the compartment (m^3)

$$m_p = 5.16517E-03 \text{ kg/m}^3$$

Version 1805.1 (English Units)

Results Summary

Visibility Through Smoke Calculation

S = K / $\alpha_m m_p$

Answer	S =	0.14 m	0.44 ft	
--------	-----	--------	---------	--

Visibility in smoke is defined in terms of the furthest distance at which an object can be perceived.

NOTE:

The above calculations are based on principles developed in the Principles of Smoke Management by Klote and Milke 2002. Calculations are based on certain assumptions and have inherent limitations. The results of such calculations may or may not have reasonable predictive capabilities for a given situation and should only be interpreted by an informed user. Although each calculation in the spreadsheet has been verified with the results of hand calculation, there is no absolute guarantee of the accuracy of these calculations. Any questions, comments, concerns and suggestions or to report an error(s) in the spreadsheets, please send an email to David.Stroup@nrc.gov or Naeem.lqbal@nrc.gov.

Prepared by:		Date:	Organization:[
Checked by:		Date:	Organization:	
Additional Inform	nation:			

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER 12-2010) IRCMD 3.7				
BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse)	and Addendum Numbers, If any.) NUREG-1805 Supplement 1 Volume 2			
2. TITLE AND SUBTITLE	3. DATE REPORT PUBLISHED			
Fire Dynamics Tools (FDTs) - Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear	MONTH	YEAR		
Regulatory Commission Fire Protection Inspection Program - Supplement 1	July	2013		
	4. FIN OR GRANT NUMBER			
5. AUTHOR(S) 6. TYPE OF REPORT				
D. Stroup, G. Taylor, G. Hausman	Technical			
	7. PERIOD COVERE	PERIOD COVERED (Inclusive Dates)		
 PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U. S. Nuclear Regular contractor, provide name and mailing address.) Division of Risk Analysis Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 	tory Commission, and	mailing address; if		
 PONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above", if contractor, provide NRC Division, Office or Region, U. S. Nuclear Regulatory Commission, and mailing address.) 				
Same as above				
10. SUPPLEMENTARY NOTES M.H. Salley, NRC Project Manager				
11. ABSTRACT (200 words or less) The U.S. Nuclear Regulatory Commission (NRC) has developed quantitative methods, known as "Fire Dynamics Tools" (FDTs), for analyzing the impact of fire and fire protection systems in nuclear power plants (NPPs). These methods have been implemented in spreadsheets and taught at the NRC's quarterly regional inspector workshops. The FDTs were developed using state-of-the-art fire dynamics equations and correlations that were preprogrammed and locked into Microsoft Excel® spreadsheets. These FDTs enable inspectors to perform quick, easy, first-order calculations for potential fire scenarios using today's state-of-the-art principles of fire dynamics. Each FDTs spreadsheet also contains a list of the physical and thermal properties of the materials commonly encountered in NPPs. This NUREG-series report documents a new spreadsheet that has been added to the FDTs suite and describes updates, corrections, and improvements to the existing spreadsheets. The majority of the original FDTs were developed using principles and information from the Society of Fire Protection Engineers (SFPE) Handbook of Fire Protection Engineering, the National Fire Protection Association (NFPA) Fire Protection Handbook, and other fire science literature. The new spreadsheet predicts the behavior of power cables, instrument cables, and control cables during a fire. The thermally-induced electrical failure (THIEF) model was developed by the National Institute of Standards and Technology (NIST) as part of the Cable Response to Live Fire (CAROLFIRE) program sponsored by the NRC. The experiments for CAROLFIRE were conducted at Sandia National Laboratories, Albuquerque, New Mexico. THIEF model predictions have been compared to experimental measurements of instrumented cables in a variety of configurations, and the results indicate that the model is an appropriate analysis tool for NPP applications. The accuracy and simplicity of the THIEF model have been shown to be comparable to that of the activation algorithms fo				
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)	13. AVAILAE	BILITY STATEMENT		
Fire Dynamics, Fire Hazard Analysis (FHA), Risk-Informed Regulation, Fire Safety, Fire Protectio	n, 14. SECURI	UNLIMITED		
Probabilistic Risk Assessment (PRA), Fire Modeling, Significance Determination Process	(This Page,			
		nclassified		
	(This Repo	か nclassified		
		15. NUMBER OF PAGES		
16. PRICE				

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS

NUREG-1805 Supplement 1, Vol. 2 Fire Dynamics Tools FDT[®] Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program

July 2013