ENCLOSURE 1

RADIOACTIVE EFFLUENT RELEASE REPORT FOR JANUARY 1 – DECEMBER 31, 2012

NUCLEAR MANAGEMENT COMPANY MONTICELLO NUCLEAR GENERATING PLANT

License No. DPR-22

RADIOACTIVE EFFLUENT RELEASE REPORT Period: Jan - Dec 2012

Supplemental Information

- 1. Regulatory Limits Quarterly levels requiring reporting to Nuclear Regulatory Commission
 - A. Noble Gases :
 - 5 mrad/quarter gamma radiation 10 mrad/quarter beta radiation
 - B. Long Lived Iodines, Particulates, and Tritium:
 - 7.5 mrem/quarter dose to any organ
 - C. Liquid Effluents:
 - 1.5 mrem/quarter dose to the total body
 - 5.0 mrem/quarter dose to any organ
- 2. Maximum Permissible Concentrations
 - A. Noble Gases :
 - 10 CFR Part 20, Appendix B, Table II, Column 1
 - B. Long Lived Iodines, Particulates, and Tritium:
 - 10 CFR Part 20, Appendix B, Table II, Column 1
 - C. Liquid Effluents:
 - 10 CFR Part 20, Appendix B, Table II, Column 2 2.0 E-4 uci/ml for dissolved and entrained gases
- 3. Average Energy

(Not Applicable)

Supplemental Information (continued)

4. Measurements and Approximations of Total Radioactivity

A. Noble Gases :

Continuous gross activity monitors in Reactor Building Vent and Plant Stack exhaust streams. Weekly isotopic analysis of exhaust streams.

B. Iodines in Gaseous Effluent :

Continuous monitoring with charcoal cartridges in Reactor Building Vent and Plant Stack exhaust streams with weekly analysis.

C. Particulates in Gaseous Effluent :

Continuous monitoring with particulate filters in Reactor Building Vent and Plant Stack exhaust streams with weekly analysis.

D. Tritium in Gaseous Effluent :

Monthly grab samples from Reactor Building Vent and Plant Stack exhaust streams.

E. Liquid Effluents:

Tank sample analyzed prior to each planned release and continuous monitoring of gross activity during planned release.

5. Batch Releases

A. Liquid:

1.	Number of Batch Releases	0	
	Total Time Period for Batch Releases	0.0	min
	Maximum Time Period for a Batch Release	0.0	min
	Average Time Period for a Batch Release	0.0	min
	Minimum Time Period for a Batch Release	0.0	min
6.	Average River Flow During Release	0.0	cf/sec

B. Gaseous:

1.	Number o	of Bat	cch Rele	eases	3				2	
2.	Total Ti	lme Pe	eriod fo	or Ba	ito	ch Rele	eases	95	60.0	min
3.	Maximum	Time	Period	for	a	Batch	Release	87	60.0	${\tt min}$
	Average							47	80.0	min
5.	Minimum	Time	Period	for	а	Batch	Release	8	05.0	min

Supplemental Information (continued)

6. Abnormal Releases

A. Liquid:

1.	Number of Releases	0	
2.	Total Activity Released	0.0	Ci

B. Gaseous :

1.	Number of Releases	0	
2.	Total Activity Released	0.0	Ci

Table 1A Gaseous Effluents - Summation of all Releases

	Units	1st Qtr	2nd Qtr	Est. Total Error, %				
A. Fission & Activation gases								
1. Total Release	Ci	2.35E+02	2.05E+02	2.00E+01				
2. Average Release Rate	uci/sec	3.03E+01	2.60E+01					
3. Percent Tech Spec Qtrly	· · · · · · · · · · · · · · · · · · ·							
Reporting Level								
Gamma Radiation	%	1.41E-01	1.08E-01					
Beta Radiation	ુ	3.38E-02	4.18E-02	ļ.				
B. Iodines	-							
1. Total I-131 Release	Ci	1.79E-03	2.45E-03	1.00E+01				
2. Average I-131 Release Rate	uci/sec	2.30E-04	3.12E-04					
C. Particulates								
1. Total Particulates	Ci	3.46E-04	3.37E-04	3.00E+01				
2. Average Release Rate	uci/sec	4.45E-05	4.28E-05					
3. Gross Alpha Radioactivity	Ci	8.19E-07	5.19E-07					
D. Tritium								
1. Total Release	Ci	5.36E+00	6.86E+00	1.00E+01				
2. Average Release Rate	uci/sec	6.89E-01	8.73E-01					
E. Carbon-14								
1. Total Release	Ci	1.70E+00	1.70E+00	1.00E+01				
2. Average Release Rate	uci/sec	2.20E-01	2.20E-01					
F. Percent Qtrly Tech Spec Reporting Levels								
1. Iodines, Particulates,								
and Tritium	% '	3.83E-01	5.35E-01					

Table 1A Gaseous Effluents - Summation of all Releases

	Units	3rd Qtr	4th Qtr	Est. Total				
				Error, %				
A. Fission & Activation gases								
1. Total Release	Ci	1.92E+02	1.65E+02	2.00E+01				
2. Average Release Rate	uci/sec	2.42E+01	2.08E+01					
3. Percent Tech Spec Qtrly Reporting Level								
Gamma Radiation	· %	1.06E-01	1.02E-01					
Beta Radiation	%	4.96E-02	2.47E-02					
B. Iodines				·				
1. Total I-131 Release	Ci	2.96E-03	2.59E-03	1.00E+01				
2. Average I-131 Release Rate	uci/sec	3.72E-04	3.26E-04					
C. Particulates	¥							
1. Total Particulates	Ci	3.42E-04	3.27E-04	3.00E+01				
2. Average Release Rate	uci/sec	4.31E-05	4.11E-05					
3. Gross Alpha Radioactivity	Ci	7.95E-07	6.53E-07					
D. Tritium								
1. Total Release	Ci	8.50E+00	6.97E+00	1.00E+01				
2. Average Release Rate	uci/sec	1.07E+00	8.77E-01					
E. Carbon-14								
1. Total Release	Ci	1.50E+00	1.70E+00	1.00E+01				
2. Average Release Rate	uci/sec	1.90E-01	2.10E-01	'				
F. Percent Qtrly Tech Spec Reporting Levels								
1. Iodines, Particulates, and Tritium	olo	6.14E-01	5.86E-01					

Table 1B Gaseous Effluents - Elevated Releases

		Continuous Mode		Batch Mode	
Nuclides Released	Unit	1st Qtr	2nd Qtr	1st Qtr	2nd Qtr
1. Fission Gases			·		
KR-85M	Ci	1.66E+00	6.13E-01	0.00E+00	0.00E+00
KR-87	Ci	2.66E+00	1.61E+00	0.00E+00	0.00E+00
KR-88	Ci	4.39E+00	1.79E+00	0.00E+00	0.00E+00
KR-89	Ci	2.45E+01	9.49E+00	0.00E+00	0.00E+00
XE-133	Ci	5.80E+01	5.22E+01	0.00E+00	0.00E+00
XE-133M	Ci	1.68E+00	1.35E+00	0.00E+00	0.00E+00
XE-135	Ci	1.75E+01	9.90E+00	0.00E+00	0.00E+00
XE-135M	Ci	1.28E+01	1.38E+01	0.00E+00	0.00E+00
XE-137	Ci	7.59E+01	7.60E+01	0.00E+00	0.00E+00
XE-138	Ci	2.88E+01	3.08E+01	0.00E+00	0.00E+00
Total for Period	Ci	2.28E+02	1.98E+02	0.00E+00	0.00E+00

2. Iodines

I-131	Ci	1.23E-03	1.68E-03	0.00E+00	0.00E+00
I-133	Ci	8.33E-03	1.25E-02	0.00E+00	0.00E+00
I-135	Ci	1.24E-02	2.01E-02	0.00E+00	0.00E+00
Total for Period	Ci	2.20E-02	3.43E-02	0.00E+00	0.00E+00

3. Particulates

CO-60	Ci	5.24E-07	5.01E-07	0.00E+00	0.00E+00
CS-137	Ci	1.01E-06	4.89E-07	0.00E+00	0.00E+00
BA-140	Ci	1.70E-04	1.37E-04	0.00E+00	0.00E+00
CE-141	Ci	0.00E+00	9.88E-08	0.00E+00	0.00E+00
SR-89	Ci	5.68E-05	7.88E-06	0.00E+00	0.00E+00
SR-90	Ci	3.38E-07	2.21E-07	0.00E+00	0.00E+00
Total for Period	Ci	2.29E-04	1.46E-04	0.00E+00	0.00E+00

Table 1B Gaseous Effluents - Elevated Releases

		Continuous Mode		Batch Mode	
Nuclides Released	Unit	3rd Qtr	4th Qtr	3rd Qtr	4th Qtr
1. Fission Gases					
KR-85M	Ci	9.83E-01	8.70E-01	0.00E+00	0.00E+00
KR-87	Ci	2.37E+00	1.69E+00	0.00E+00	0.00E+00
KR-88	Ci	2.97E+00	2.36E+00	0.00E+00	0.00E+00
KR-89	Ci	1.18E+00	8.32E+00	0.00E+00	0.00E+00
XE-133	Ci	2.22E+01	4.46E+01	8.88E-03	0.00E+00
XE-133M	Ci	4.85E-01	1.21E+00	0.00E+00	0.00E+00
XE-135	Ci	1.09E+01	9.03E+00	2.49E-02	0.00E+00
XE-135M	Ci	1.47E+01	1.11E+01	3.03E-03	0.00E+00
XE-137	Ci	9.37E+01	5.43E+01	0.00E+00	0.00E+00
XE-138	Ci	3.59E+01	2.48E+01	0.00E+00	0.00E+00
Total for Period	Ci	1.85E+02	1.58E+02	3.68E-02	0.00E+00

2. Iodines

I-131	Ci	2.17E-03	1.53E-03	0.00E+00	0.00E+00
I-133	Ci	1.37E-02	1.07E-02	8.81E-08	0.00E+00
I-135	Ci	1.93E-02	1.75E-02	0.00E+00	0.00E+00
Total for Period	Ci	3.52E-02	2.98E-02	8.81E-08	0.00E+00

3. Particulates

CO-60	Ci	7.83E-07	7.36E-07	0.00E+00	0.00E+00
CS-137	Ci	1.71E-06	3.73E-07	0.00E+00	0.00E+00
BA-140	Ci	1.41E-04	1.09E-04	0.00E+00	0.00E+00
CE-141	Ci	1.19E-07	5.55E-09	0.00E+00	0.00E+00
SR-89	Ci	1.11E-04	2.01E-05	0.00E+00	0.00E+00
SR-90	Ci	2.86E-07	3.97E-07	0.00E+00	0.00E+00
Total for Period	Ci	2.54E-04	1.31E-04	0.00E+00	0.00E+0 <u>0</u>

Table 1C Gaseous Effluents - Building Vent Releases

27123 D-13	TT 1-		ous Mode	Batch	Mode
Nuclides Released	Unit	1st Qtr	2nd Qtr	1st Qtr	2nd Qtr
1. Fission Gases					
XE-133	Ci	6.90E-02	1.29E-01	0.00E+00	0.00E+00
XE-135	Ci	2.64E+00	2.36E+00	0.00E+00	0.00E+00
XE-135M	Ci	4.64E+00	4.57E+00	0.00E+00	0.00E+00
Total for Period	Ci	7.35E+00	7.06E+00	0.00E+00	0.00E+00
2. Iodines	·				
I-131	Ci	5.54E-04	7.77E-04	0.00E+00	0.00E+00
I-133	Ci	5.60E-03	7.40E-03	0.00E+00	0.00E+00
I-135	Ci	7.26E-03	1.06E-02	0.00E+00	0.00E+00
Total for Period	Ci	1.34E-02	1.88E-02	0.00E+00'	0.00E+00
3. Particulates				١	

CO-60	Ci	4.81E-05	5.89E-05	0.00E+00	0.00E+00
CS-137	Ci	4.57E-05	8.68E-05	0.00E+00	0.00E+00
BA-140	Ci	2.25E-05	4.09E-05	0.00E+00	0.00E+00
CE-141	Ci	8.76E-07	0.00E+00	0.00E+00	0.00E+00
SR-89	Ci	0.00E+00	4.28E-06	0.00E+00	0.00E+00
		•			
Total for Period	Ci	1.17E-04	1.91E-04	0.00E+00	0.00E+00

Table 1C Gaseous Effluents - Building Vent Releases

		Continuo	ous Mode	Batch	
Nuclides Released	Unit	3rd Qtr	4th Qtr	3rd Qtr	4th Qtr
1. Fission Gases					
XE-133	Ci	5.80E-02	5.52E-02	0.00E+00	0.00E+00
XE-135	Ci	2.63E+00	2.34E+00	0.00E+00	0.00E+00
XE-135M	Ci	3.86E+00	4.77E+00	0.00E+00	0.00E+00
XE-138	Ci	2.27E-01	0.00E+00	0.00E+00	0.00E+00
·					
Total for Period	. Ci	6.77E+00	7.17E+00	0.00E+00	0.00E+00
2. Iodines					
I-131	Ci	7.86E-04	1.06E-03	0.00E+00	0.00E+00
I-133	Ci	7.32E-03	1.20E-02	0.00E+00	0.00E+00
I-135	Ci	1.08E-02	2.74E-02	0.00E+00	0.00E+00
Total for Period	Ci	1.89E-02	4.04E-02	0.00E+00	0.00E+00
3. Particulates			-		

CO-60	Ci	6.59 E- 05	5.97E-05	0.00E+00	0.00E+00
CS-137	Ci	1.14E-05	4.64E-05	0.00E+00	0.00E+00
BA-140	Ci	1.05E-05	7.33E-05	0.00E+00	0.00E+00
CE-141	Ci	0.00E+00	3.11E-06	0.00E+00	0.00E+00
SR-89	Ci	9.61E-08	1.33E-05	0.00E+00	0.00E+00
Total for Period	Ci	8.79E-05	1.96E-04	0.00E+00	0.00E+00

Table 2A Liquid Effluents - Summation of all Releases

	Units	1st Qtr	2nd Qtr	Est. Total Error, %
A. Fission & Activation products				
1. Total Release (not including tritium, gases, alpha) 2. Avg Diluted Concentration	Ci uci/ml	0.00E+00 0.00E+00	0.00E+00	0.00E+00
B. Tritium	uci/iiii	0.002+00	0.00E+00	I
1. Total Release 2. Avg Diluted Concentration	Ci uci/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
C. Dissolved and Entrained Gases				
1. Total Release 2. Avg Diluted Concentration	Ci uci/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
D. Percent Qtrly Tech Spec Reporti	ng Level			
1. Whole Body Dose	%	0.00E+00	0.00E+00	1
2. Organ Dose	8	0.00E+00	0.00E+00	
E. Gross Alpha Radioactivity				
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00
				'
F. Volume of Waste Released	Liters	0.00E+00	0.00E+00	0.00E+00
`				
F. Volume of Dilution Water Used	Liters	0.00E+00	0.00E+00	0.00E+00
Table 2B	Liquid E	ffluents		

		Continuo	ous Mode	Batch	Mode
Nuclides Released	Unit	1st Qtr	2nd Qtr	1st Qtr	2nd Qtr

None Released This Period

Table 2A Liquid Effluents - Summation of all Releases

	Units	3rd Qtr	4th Qtr	Est. Total Error, %
A. Fission & Activation products			•	
1. Total Release (not including tritium, gases, alpha) 2. Avg Diluted Concentration	Ci uci/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
B. Tritium				1
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00
2. Avg Diluted Concentration	uci/ml	0.00E+00	0.00E+00	'
C. Dissolved and Entrained Gases		•		
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00
2: Avg Diluted Concentration	uci/ml	0.00E+00	0.00E+00	
D. Percent Qtrly Tech Spec Reports	ing Level			
1. Whole Body Dose	%	0.00E+00	0.00E+00	
2. Organ Dose	olo	0.00E+00	0.00E+00	
E. Gross Alpha Radioactivity				
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00
F. Volume of Waste Released	Liters	0.00E+00	0.00E+00	0.00E+00
F. Volume of Dilution Water Used	Liters	0.00E+00	0.00E+00	0.00E+00
Table 2D	Liquid Fi	ffluont a		

Table 2B Liquid Effluents

		Continuo	ous Mode	Batch	Mode
Nuclides Released	Unit	3rd Qtr	4th Qtr	3rd Qtr	4th Qtr

None Released This Period

Page

Report Date:

3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

During Period From

01/01/2012 to

12/31/2012

Percent Cutoff:

Waste Stream: Resins, Filters, and Evap Bottoms

PRD-NA 215 T34A PRD-NA 215 Bend PR-D-NA-T34B

Waste	Volu	ıme	Curies	% Error
Class	Ft^3	M^3	Shipped	(Ci)
Α	5.10E+02	1.44E+01	1.11E+01	+/- 25%
В	0.00E+00	0.00E+00	0.00E+00	+/- 25%
С	0.00E+00	0.00E+00	0.00E+00	+/- 25%
All	5.10E+02	1.44E+01	1.11E+01	+/- 25%

Waste Stream : Dry Active Waste

B25 Box

C-Van

OSD Bath Tub

OSD Trash

Waste	Volu		Curies	%Error
Class	Ft^3	M^3	Shipped	(Ci)
Α	5.59E+03	1.58E+02	2.36E-01	+/-25%
В	0.00E+00	0.00E+00	0.00E+00	+/-25%
С	0.00E+00	0.00E+00	0.00E+00	+/-25%
All	5.59E+03	1.58E+02	2.36E-01	+/-25%

Waste Stream : Irradiated Components

Waste Class	Volui Ft^3	ne M^3	Curies Shipped	% Error (Ci)
А	0.00E+00	0.00E+00	0.00E+00	+/-25%
В	0.00E+00	0.00E+00	0.00E+00	+/-25%
С	0.00E+00	0.00E+00	0.00E+00	+/-25%
All	0.00E+00	0.00E+00	0.00E+00	+/-25%

Page

2

Report Date:

3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

During Period From

01/01/2012 to

12/31/2012

Percent Cutoff:

Waste Stream : Other Waste

OSD

OSD Trash

B25 Paint Solutions

Waste	Vol	ume	Curies	% Error
Class	Class Ft^3	M^3	Shipped	(Ci)
Α	^3.19E+03	9.05E+01	2.58E+01	+/-25%
В	0.00E+00	0.00E+00	0.00E+00	+/-25%
С	0.00E+00	0.00E+00	0.00E+00	+/-25%
All	3.19E+03	9.05E+01	2.58E+01	+/-25%

Waste Stream : Sum of All 4 Categories

PRD-NA 215 T34A

PRD-NA 215 Bend

B25 Box

C-Van

PR-D-NA-T34B

OSD

OSD Bath Tub

OSD Trash

OSD Trash

B25 Paint Solutions

Waste Class	Volu Ft^3	ime M^3	Curies Shipped	% Error (Ci)
А	9.30E+03	2.63E+02	3.71E+01	+/-25%
В	0.00E+00	0.00E+00	0.00E+00	+/-25%
С	0.00E+00	0.00E+00	0.00E+00	+/-25%
All	9.30E+03	2.63E+02	3.71E+01	+/-25%

-Combined Waste Type Shipment, Major Volume Waste Type Shown

Page 1

Report Date:

3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From 01/01/2012 to 12/31/2012

Number of Shipments	Mode of Transportation	Destination
1	Hittman Transport	Energy Solutions Bear Creek
4	Hittman Transport	EnergySolutions LLC.
1	Perkins Specialized Transport	EnergySolutions LLC.
1	Xcel Energy Trucking	EnergySolutions LLC.
4	Xcel Energy Trucking	Studsvik Processing Facility Memphis

Page

Report Date: 3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

Resins, Filters, and Evap Waste Class A	Dottom	
Nuclide Name	Percent Abundance	Curies
H-3	0.300%	3.34E-02
7-14 C-14	0.826%	9.19E-02
/n-54	2.724%	3.03E-01
e-55	13.365%	1.49E+00
Co-58	0.777%	8.64E-02
Co-60	39.882%	4.44E+00
Ni-63	1.982%	2.20E-01
Zn-65	2.895%	3.22E-01
3r-90	2.037%	2.26E-01
c-99	0.002%	2.63E-04
-129	0.002%	9.54E-04
-131	0.192%	2.13E-02
Cs-137	33.388%	3.71E+00
3a-140	1.045%	1.16E-01
_a-140	0.084%	9.38E-03
Ce-141	0.381%	4.24E-02
Ce-144	0.071%	7.87E-03
Pu-238	0.004%	4.22E-04
Pu-239	0.004%	1.91E-04
Pu-240	0.002%	1.91E-04
\m-240	0.002%	2.78E-04
\m-243	0.028%	3.13E-03
Cm-242	0.001%	1.03E-04
Cm-243	0.001%	1.47E-04
Cm-244	0.001%	6.48E-05
	0.00170	0. 4 0L-03
Resins, Filters, and Evap	Bottom	
Vaste Class All		
Nuclide Name	Percent Abundance	Curies
1-3	0.300%	3.34E-02
C-14	0.826%	9.19E-02
∕In-54	2.724%	3.03E-01
e-55	13.365%	1.49E+00
Co-58	0.777%	8.64E-02
Co-60	39.882%	4.44E+00
Ni-63	1.982%	2.20E-01
<u> 2n-65</u>	2.895%	3.22E-01
Sr-90	2.037%	2.26E-01
Гс-99	0.002%	2.63E-04
-129	0.009%	9.54E-04
-131	0.192%	2.13E-02
Cs-137	33.388%	3.71E+00
3a-140	1.045%	1.16E-01
_a-140	0.084%	9.38E-03
Ce-141	0.381%	4.24E-02
Ce-144	0.071%	7.87E-03

Page

2

Report Date: 3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

Pu-239	0.002%	1.91E-04
Pu-240	0.002%	1.91E-04
Am-241	0.003%	2.78E-04
Am-243	0.028%	3.13E-03
Cm-242	0.001%	1.03E-04
Cm-243	0.001%	1.47E-04
Cm-244	0.001%	6.48E-05
Dry Active Waste		
Waste Class A		
Nuclide Name	Percent Abundance	Curies
H-3	0.042%	9.97E-05
Mn-54	1.729%	4.08E-03
Fe-55	60.073%	1.42E-01
Co-58	0.097%	2.30E-04
Co-60	35.946%	8.49E-02
Ni-63	0.142%	3:34E-04
Zn-65	0.739%	1.75E-03
Sb-125	0.021%	5.02E-05
Cs-137	1.058%	2.50E-03
Ce-141	0.060%	1.42E-04
Ce-144	0.073%	1.72E-04
Pu-238	0.001%	1.65E-06
Pu-239	0.001%	1.43E-06
Pu-240	0.001%	1.43E-06
Pu-241	0.009%	2.16E-05
Pu-242	0.000%	8.36E-08
Am-241	0.008%	1.86E-05
Cm-242	0.000%	5.61E-08
Cm-243	0.000%	7.23E-07
Cm-244	0.000%	7.23E-07
Dry Active Waste		
Waste Class All		
Nuclide Name	Percent Abundance	Curies
H-3	0.042%	9.97E-05
Mn-54	1.729%	4.08E-03
Fe-55	60.073%	1.42E-01
Co-58	0.097%	2.30E-04
Co-60	35.946%	8.49E-02
Ni-63	0.142%	3.34E-04
Zn-65	0.739%	1.75E-03
Sb-125	0.021%	5.02E-05
Cs-137	1.058%	2.50E-03
Ce-141	0.060%	1.42E-04
Ce-144	0.073%	1.72E-04
Pu-238	0.001%	1.65E-06
Pu-239	0.001%	1.43E-06
Pu-240	0.001%	1.43E-06
Pu-241 .	0.009%	2.16E-05
Pu-242	0.000%	8.36E-08

Page

3

Report Date : 3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

Am-241	0.008%	1.86E-05
Cm-242	0.000%	5.61E-08
Cm-243	0.000%	7.23E-07
Cm-244	0.000%	7.23E-07
Other Waste		v
Waste Class A	•	
Nuclide Name	Percent Abundance	Curies
H-3	0.165%	4.26E-02
C-14	0.512%	1.32E-01
CI-36	0.000%	1.43E-05
Ar-39	0.000%	1.70E-06
Ca-41	0.000%	1.25E-07
Cr-51	0.458%	1.18E-01
Mn-53	0.000%	4.11E-08
Mn-54	3.773%	9.72E-01
Fe-55	32.640%	8.41E+00
Co-58	1.136%	2.93E-01
Co-60	47.642%	1.23E+01
Ni-59	0.015%	3.85E-03
Ni-63	3.497%	9.01E-01
Zn-65	4.539%	1.17E+00
Se-79	0.000%	8.94E-09
Sr-90	1.035%	2.67E-01
Zr-93	0.000%	8.94E-10
Nb-92m	0.000%	2.17E-12
Nb-94	0.000%	5.63E-06
Nb-95	0.087%	2.23E-02
Mo-93	0.000%	6.88E-06
Tc-99	0.001%	3.68E-04
Ag-110m	0.014%	3.56E-03
Sn-121m	0.000%	6.80E-08
Sb-124	0.017%	4.40E-03
Sb-125	0.005%	1.40E-03
l-129	0.005%	1.33E-03
I-131	1.980%	5.10E-01
Cs-134	0.047%	1.22E-02
Cs-137	0.014%	3.67E-03
Ba-140	1.238%	3.19E-01
La-140	0.045%	1.16E-02
Ce-141	0.132%	3.39E-02
Ce-144	0.036%	9.32E-03
Sm-151	0.000%	3.39E-07
Eu-152	0.000%	1.97E-12
Eu-154	0.000%	8.11E-05
Eu-155	0.000%	3.21E-05
Tb-158	0.000%	3.39E-08
Ho-166m	0.000%	2.50E-06
Pb-205	0.000%	2.60E-11
Th-230	0.933%	2.40E-01
Pu-238	0.002%	5.20E-04

Page

Report Date: 3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

Pu-239	0.001%	2.76E-04
Pu-240	0.001%	2.76E-04
Pu-241	0.002%	6.03E-04
Pu-242	0.000%	2.33E-06
Am-241	0.006%	1.43E-03
Am-243	0.017%	4.35E-03
Cm-242	0.001%	1.68E-04
Cm-243	0.001%	1.97E-04
Cm-244	0.000%	2.01E-05
Other Waste		
Waste Class All		
Nuclide Name	Percent Abundance	Curies
H-3	0.165%	4.26E-02
C-14	0.512%	1.32E-01
CI-36	0.000%	1.43E-05
Ar-39	0.000%	1.70E-06
Ca-41	0.000%	1.25E-07
Cr-51	0.458%	1.18E-01
Mn-53	0.000%	4.11E-08
Mn-54	3.773%	9.72E-01
Fe-55	32.640%	8.41E+00
Co-58	. 1.136%	2.93E-01
Co-60	47.642%	1.23E+01
Ni-59	0.015%	3.85E-03
Ni-63	3.497%	9.01E-01
Zn-65	4.539%	1.17E+00
Se-79	0.000%	8.94E-09
Sr-90	1.035%	2.67E-01
Zr-93	0.000%	8.94E-10
Nb-92m	0.000%	2.17E-12
Nb-94	0.000%	5.63E-06
Nb-95	0.087%	2.23E-02
Mo-93	0.000%	6.88E-06
Tc-99	0.001%	3.68E-04
Ag-110m	0.014%	3.56E-03
Sn-121m	0.000%	6.80E-08
Sb-124	0.017%	4.40E-03
Sb-125	0.005%	1.40E-03
I-129	0.005%	1.33E-03
I-131	1.980%	5.10E-01
Cs-134	0.047%	1.22E-02
Cs-137	0.014%	3.67E-03
Ba-140	1.238%	3.19E-01
La-140	0.045%	1.16E-02
Ce-141	0.132%	3.39E-02
Ce-144	0.036%	9.32E-03
Sm-151	0.000%	3.39E-07
Eu-152	0.000%	1.97E-12
Eu-152 Eu-154	0.000%	8.11E-05
Eu-154 Eu-155	0.000%	3.21E-05
_u-100	0.00070	3.£1L-03

Page

e 5

Report Date: 3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

Tb-158	0.000%	3.39E-08
Ho-166m	0.000%	2.50E-06
Pb-205	0.000%	2.60E-11
Th-230	0.933%	2.40E-01
Pu-238	0.002%	5.20E-04
Pu-239	0.001%	2.76E-04
Pu-240	0.001%	2.76E-04
Pu-241	0.002%	6.03E-04
Pu-242	0.000%	2.33E-06
Am-241	0.006%	1.43E-03
Am-243	0.017%	4.35E-03
Cm-242	0.001%	1.68E-04
Cm-243	0.001%	1.97E-04
Cm-244	0.000%	2.01E-05
Sum of All 4 Categories		
Waste Class A		
Nuclide Name	Percent Abundance	Curies
H-3	0.205%	7.61E-02
C-14	0.603%	2.24E-01
CI-36	0.000%	1.43E-05
Ar-39	0.000%	1.70E-06
Ca-41	0.000%	1.25E-07
Cr-51	0.318%	1.18E-01
Mn-53	0.000%	4.11E-08
Mn-54	3.446%	1.28E+00
Fe-55	27.040%	1.00E+01
Co-58	1.022%	3.79E-01
Co-60	45.243%	1.68E+01
Ni-59	0.010%	3.85E-03
Ni-63	3.022%	1.12E+00
Zn-65	4.022%	1.49E+00
Se-79	0.000%	8.94E-09
Sr-90	1.329%	4.93E-01
Zr-93	0.000%	8.94E-10
Nb-92m	0.000%	2.17E-12
Nb-94	0.000%	5.63E-06
Nb-95	0.060%	2.23E-02
Mo-93	0.000%	6.88E-06
Tc-99	0.002%	6.31E-04
Ag-110m	0.010%	3.56E-03
Sn-121m	0.000%	6.80E-08
Sb-124	0.012%	4.40E-03
Sb-125	0.004%	1.45E-03
1-129	0.004%	2.28E-03
I-131	1.432%	5.32E-01
Cs-134	0.033%	1.22E-02
Cs-137	10.019%	3.72E+00
Ba-140	1.172%	4.35E-01
La-140	0.057%	2.10E-02
Ce-141	0.206%	7.64E-02

Page

6

Report Date: 3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

Ce-144	0.047%	1.74E-02
Sm-151	0.000%	3.39E-07
Eu-152	0.000%	1.97E-12
Eu-154	0.000%	8.11E-05
Eu-155	0.000%	3.21E-05
Tb-158	0.000%	3.39E-08
Ho-166m	0.000%	2.50E-06
Pb-205	0.000%	2.60E-11
Th-230	0.648%	2.40E-01
Pu-238	0.003%	9.43E-04
Pu-239	0.001%	4.68E-04
Pu-240	0.001%	4.68E-04
Pu-241	0.002%	6.24E-04
Pu-242	0.000%	2.41E-06
Am-241	0.005%	1.72E-03
Am-243	0.020%	7.48E-03
Cm-242	0.001%	2.71E-04
Cm-243	0.001%	3.45E-04
Cm-244	0.000%	8.57E-05
Sum of All 4 Categories		
Waste Class All	Descrit Abundance	C. Tale
Nuclide Name	Percent Abundance	Curies
H-3	0.205%	7.61E-02
C-14	0.603%	2.24E-01
CI-36	0.000%	1.43E-05
Ar-39	0.000%	1.70E-06
Ca-41	0.000%	1.25E-07
Cr-51	0.318%	1.18E-01
Mn-53	0.000%	4.11E-08
Mn-54	3.446%	1.28E+00
Fe-55	27.040%	1.00E+01
Co-58	1.022%	3.79E-01
Co-60	45.243%	1.68E+01
Ni-59	0.010%	3.85E-03
Ni-63	3.022%	1.12E+00
Zn-65	4.022%	1.49E+00
Se-79	0.000%	8.94E-09
Sr-90	1.329%	4.93E-01
Zr-93	0.000%	8.94E-10
Nb-92m	0.000%	2.17E-12
Nb-94	0.000%	5.63E-06
Nb-95	0.060%	2.23E-02
Mo-93	0.000%	6.88E-06
Tc-99	0.002%	6.31E-04
Ag-110m	0.010%	3.56E-03
Sn-121m	0.000%	6.80E-08
Sb-124	0.012%	4.40E-03
Sb-125	0.004%	1.45E-03
I-129 I-131	0.006% 1.432%	2.28E-03 5.32E-01

Page

7

Report Date:

3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

Cs-134	0.033%	1.22E-02
Cs-137	10.019%	3.72E+00
Ba-140	1.172%	4.35E-01
La-140 ~	0.057%	2.10E-02
Ce-141	0.206%	7.64E-02
Ce-144	0.047%	1.74E-02
Sm-151	0.000%	, 3.39E-07
Eu-152	0.000%	1.97E-12
Eu-154	0.000%	8.11E-05
Eu-155	0.000%	3.21E-05
Tb-158	0.000%	3.39E-08
Ho-166m	0.000%	2.50E-06
Pb-205	0.000%	2.60E-11
Th-230	0.648%	2.40E-01
Pu-238	0.003%	9.43E-04
Pu-239	0.001%	4.68E-04
Pu-240	0.001%	4.68E-04
Pu-241	0.002%	6.24E-04
Pu-242	0.000%	2.41E-06
Am-241	0.005%	1.72E-03
Am-243	0.020%	7.48E-03
Cm-242	0.001%	2.71E-04
Cm-243	0.001%	3.45E-04
Cm-244	0.000%	8.57E-05

Page

1

Report Date :

3/21/2013

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

During Period From 01/01/2012 to 12/31/2012

Manifest Number	Date Shipped	Waste Volume Used	Burial volume Used
12-60	12/28/2012	Yes	
12-59	12/20/2012	Yes	
12-52	12/14/2012	Yes	
12-49	11/26/2012	Yes	
12-53	11/17/2012	Yes	
12-46	10/11/2012	Yes	
12-41	10/3/2012	Yes	
12-38	9/24/2012	Yes	
12-31	8/27/2012	Yes	
12-9	3/6/2012	Yes	
12-4	1/31/2012	Yes	

ENCLOSURE 2

OFF-SITE RADIATION DOSE ASSESSMENT FOR JANUARY 1 – DECEMBER 31, 2012

MONTICELLO NUCLEAR GENERATING PLANT

Offsite Radiation Dose Assessment for January 1, - December 31, 2012

An assessment of radiation dose due to releases from the Monticello Nuclear Generating Plant during 2012 was performed in accordance with the Offsite Dose Calculation Manual (ODCM). Computed doses were well below the 40 CFR 190 Standards and 10 CFR Part 50, Appendix I Guidelines.

Offsite dose calculation formulas and meteorological data from the Offsite Dose Calculation Manual were used in making this assessment. Source terms were obtained from the Radioactive Effluent Release Report for 2012.

Offsite Dose from Gaseous Releases (ODCM –08.01 section 2.1.3)

Computed dose due to gaseous releases are reported in Table 1. Critical receptor location and pathways for organ dose are reported in Table 2. Whole body and organ dose due to gaseous releases are a small percentage of Appendix I Guidelines.

Offsite Dose From Liquid Releases (ODCM –08.01 section 2.1.3)

Dose from liquid releases are listed in Table 1.

There were no liquid releases in 2012.

<u>Dose to Individuals Due to Their Activities Inside the Site Boundary</u> (ODCM -08.01 section 2.1.3)

Computed dose to the whole body, skin and organ (thyroid), are reported in Table 1. There are several groups of concern, Security Officers training at the rifle range at the old EPA station, cleaning contractors at the Receiving Warehouse and XCEL Energy Company transmission and distribution crews working in the substation. Use of a very conservative assumption of 40 hours/week spent inside the site boundary by these groups would conservatively represent the most exposed individual. The annual whole body, skin and organ dose was computed using plant stack and reactor building vent X/Q and D/Q values for the Substation (a bounding location due to predominant wind direction and nearness to the release points) as input to the GASPAR code. This computed dose was reduced by the factor of 40/168 to account for limited occupancy.

<u>Dose to the Likely Most Exposed Member of the General Public from Reactor Releases and Other Nearby Uranium Fuel Cycle Sources</u> (ODCM -08.01 section 2.1.4)

There are no other uranium fuel facilities in the vicinity of the Monticello site. The only artificial source of exposure to the general public in addition to the plant effluent releases is from direct radiation of the reactor and the steam turbines.

An Independent Spent Fuel Storage Facility (ISFSI) was constructed west of the plant in 2007. The initial loading campaign was completed in 2008 with 10 HCM's loaded with spent fuel. Neutron and Gamma monitoring results at the site boundary show no significant differences between these TLD's and the control TLD's.

Environmental TLD's were used to provide data on direct and skyshine radiation dose and the GASPAR code was used to provide data on dose from airborne pathways.

TLD results from the area of the site boundary and the 5 mile ring show no significant differences between these TLD's and the control TLD's.

Therefore, the likely most exposed member of the general public will not receive an annual radiation dose from reactor effluent releases and all other fuel cycle activities in excess of 40 CFR 190 standards of 25 millirem to the whole body, 75 millirem to the thyroid and 25 millirem to any other organ.

REMP samples obtained from all 5 air sample stations and both goat milk producers during 2012 identified no detectable concentrations of isotopes that could be related to operation of the Monticello Nuclear Generating Station.

Changes in Land Use and Non Obtainable Milk or Vegetable Samples

(ODCM –08.01 sections 2.1.8 and 2.1.9)

There were several changes in land use resulting in increases in calculated doses. A residence obtaining Goat Milk for retail sale was identified during performance of the Annual Land Use Census and was added to the program (M-16, Kitzman Residence). Additionally a Control Goat Milk residence was added to the program (M-17, Greniger Residence). The goat farms were added to the program in October of 2010. Both goat farms are seasonal and only obtain milk samples from April to November. As a result there were no goat milk samples obtained prior to April 11th and after November 7th for M-16 and for the control location (M-17). In addition to milk sampling, vegetation samples were obtained in 2012 from two locations down wind and one control location. Two onsite monitoring wells (MW-15A & 15B) were added to the Ground Water Monitoring program in the third quarter of 2012 and analyzed for tritium and gamma-emitting isotopes.

Supplemental Information, both Stack Wide Range Gas Monitors Non-Functional

Surveillance 0355, Stack Wide Range Gas Monitor Source Check was not completed by the required compliance date to satisfy TRM 3.3.3.1-1 Channel Check and ODCM-03.01 (AR 01328021). The surveillance compliance was due on 3/4/12 at 17:25 and was not completed until 3/5/12 at 18:25. This event led to both Stack Wide Range Gas Monitors (WRGM) being non-functional for approximately 25 hours. There was no nuclear, radiological, industrial or environmental impact to the plant, plant personnel or the public since Stack A WRGM was available, but non-functional due to missing the TRM/ODCM surveillance. Stack B WRGM was non-functional at the time due to the replacement of SV-4796B (WO 386123). Required compensatory samples were not taken and the TRM LCO was not entered.

Table 1

Offsite Radiation Dose Assessment - Monticello

PERIOD: January 1, through December 31, 2012

		10CFR50 Appendix I
== GASEOUS RELEASES	DOSE -	Guidelines
Maximum Site Boundary Gamma Air Dose	0.0141	
(mrad/year)		10
Maximum Site Boundary Beta Air Dose	0.0118	
(mrad/year)	·	20
Maximum Off-Site Dose to Any Organ		
(mrem/year)	0.0752	15
Maximum Dose to the Likely Most Exposed		
Member of the General Public (mrem/year)		ĺ
Whole Body	0.0056	5
Skin	0.0152	15
Max Organ (Thyroid)	0.0752	15
ED :: LIQUID RELEASES :: : : :		
Maximum Off-Site Dose (mrem)		
Whole Body	0	3
Max Organ (All except bone)	0	10
		40 CFR 190
GASEOUS RELEASES	DOSE	LIMITS
Maximum Dose to Individuals due to their		
Activities Inside the Site Boundary (mrem)		·
Whole Body	0.0293	.25
Thyroid	0.0419	75
Max Other Organ (Skin)	0.0355	25

Table 2

Offsite Radiation Dose Assessment - Monticello Supplemental Information

PERIOD: January 1, through December 31, 2012

Fig. 2 Tagaseous Releases 2 2 2 2 2 2		
Maximum Site Boundary Dose Location		
(from Reactor Building Vents)	·	
Sector	SS	SE
Distance (miles)	0.	40
Substation		
~		
Sector	,	5
Distance from Plant Stack (miles)	0	.2
Distance from Reactor Building Vents	0.2	
Critical Receptor Location	_	·
Sector	SS	SE .
Distance from Reactor Building Vents (miles)	3.	.0
Pathways	Plume, Ground, Inl	nalation, Goat Milk
Age Group	INFANT	
Organ •	THYROID	
LIQUID RELEASES		
St. Paul Drinking Water Intake Location		·
Pathways	Drinking Water	Drinking Water, Fish
Age Group	Infant	Adult
Organ	Whole Body	GI Tract
Dilution Factor (drinking water)	7:1	7:1

Bases for Radiation Dose Statements

Thermoluminescent dosimeters (TLD) are stationed around MNGP to measure the ambient gamma radiation field. Monitoring stations are placed near the site boundary and approximately five (5) miles from the reactor, in locations representing sixteen (16) compass sectors. Other locations are chosen to measure the radiation field at places of special interest such as nearby residences, meeting places and population centers. Control sites are located further than ten (10) miles from the site, in areas that should not be affected by plant operations. The results from the TLD's are reported in the Annual Radiological Environmental Monitoring Report (REMP). The results from this effort indicated no excess dose to offsite areas.

Additionally, NUREG-0543, METHODS FOR DEMONSTRATING LWR COMPLIANCE WITH THE EPA URANIUM FUEL CYCLE STANDARD (40 CFR PART 190) states in section IV, "As long as a nuclear plant site operates at a level below the Appendix I reporting requirements, no extra analysis is required to demonstrate compliance with 40 CFR Part 190". The organ and whole body doses reported in Table 1 are determined using 10 CFR 50 Appendix I methodology. The doses reported are well below the limits of Appendix I.