

LaSalle Station 2601 North 21st Road Marseilles, IL 61341 815 415 2000 Telephone

www.exeloncorp.com

RA13-020

10 CFR 50.36a

April 26, 2013

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555

> LaSalle County Station, Units 1 and 2 Facility Operating License Nos. NPF-11 and NPF-18 NRC Docket Nos. 50-373 and 50-374

Subject: 2012 Annual Radioactive Effluent Release Report

Enclosed is the Exelon Generation Company, LLC, 2012 Annual Radioactive Effluent Release Report for LaSalle County Station, submitted in accordance with 10 CFR 50.36a "Technical specifications on effluents from nuclear power reactors," paragraph (a)(2), and Technical Specification 5.6.3 "Radioactive Effluent Release Report."

Should you have any questions concerning this letter, please contact Mr. Guy V. Ford, Regulatory Assurance Manager, at (815) 415-2800.

Respectfully,

Peter J. Karaba Site Vice President LaSalle County Station

Attachment: 2012 Effluent and Waste Disposal Annual Report

cc: Regional Administrator - NRC Region III NRC Senior Resident Inspector - LaSalle County Station

A 009 TE48 NIRR

1. Regulatory Limits

- a. Gaseous Effluents
 - 1) The air dose due to noble gases released in gaseous effluents, from each reactor unit, from the site shall be limited to the following:
 - a) During any calendar quarter: Less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and
 - b) During any calendar year: Less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.
 - 2) The dose to an individual from radioiodines and radioactive materials in particulate form, and radionuclides, other than noble gases, with half-lives greater than eight days in gaseous effluents released, from each reactor unit, from the site shall be limited to the following:
 - a) During any calendar quarter: Less than or equal to 7.5 mRem to any organ, and
 - b) During any calendar year: Less than or equal to 15 mRem to any organ.
- b. Liquid Effluents
 - 1) The dose or dose commitment to an individual from radioactive materials in liquid effluents released, from each reactor unit, from the site shall be limited:
 - a) During any calendar quarter: Less than or equal to 1.5 mRem to the total body and to less than or equal to 5 mRem to any organ, and
 - b) During any calendar year: Less than or equal to 3 mRem to the total body and to less than or equal to 10 mRem to any organ.
- c. Total Dose
 - The dose or dose commitment to any member of the public, due to releases or radioactivity and radiation, from uranium fuel cycle sources shall be limited to less than or equal to 25 mRem to the body or any organ (except the thyroid, which shall be limited to less than or equal to 75 mRem) over 12 consecutive months.
- 2. Allowable Concentrations
 - a. Gaseous Effluents
 - 1) The dose rate due to radioactive materials released in gaseous effluents from the site shall be limited to the following:
 - a) For noble gases: Less than or equal to 500 mRem/year to the total body and less than or equal to 3000 mRem/year to the skin, and
 - b) For all radioiodines and for all radioactive materials in particulate form, and radionuclides, other than noble gases, with half-lives greater than eight days: Less than or equal to 1500 mRem/year to any organ via the inhalation pathway.

b. Liquid Effluents

 The concentration of radioactive material released from the site shall be limited to ten (10) times the concentrations specified in 10 CFR Part 20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to the following:

Nuclide	DWC
	(µCi/mL)
Kr-85m	2.00E-04
Kr-85	5.00E-04
Kr-87	4.00E-05
Kr-88	9.00E-05
Xe-131m	7.00E-04
Xe-133m	5.00E-04
Xe-133	6.00E-04
Xe-135m	2.00E-04
Xe-135	2.00E-04
Ar-41	7.00E-05

3. Average Energy

- 1) Not applicable average energy is no longer used to determine dose to the public.
- 4. Measurements and Approximations of Total Radioactivity
 - a. Gaseous Effluents
 - 1) Containment Vent and Purge System is sampled by grab sample, which is analyzed for principal gamma emitters and H-3.
 - 2) Main Vent Stack is sampled by grab sample, which is analyzed for principal gamma emitters and H-3.
 - 3) Standby Gas Treatment System is sampled by grab sample, which is analyzed for principal gamma emitters.
 - 4) All release types as listed in 1 and 2 above are sampled at the vent stack, and those listed in 3 above are sampled at the Standby Gas Treatment System whenever there is flow. These effluents are continuously sampled by charcoal cartridge and particulate filter paper, which are analyzed for iodines and principal gamma emitters. Particulate filter papers are composited and analyzed for gross alpha, Sr-89 and Sr-90. Noble gases, gross beta and gamma are continuously monitored by noble gas monitors for the vent stack and the standby gas treatment system.
 - 5) The LaSalle County Station estimate of 17.01Ci/Unit/year of C-14 (in the dioxide fraction) is based upon a normalized C-14 production rate of 5.1 Ci/GWt-yr, a gaseous release fraction of 0.99, a C-14 dioxide fraction of 0.95, a reactor power rating of 3546 MWt (per Unit) and equivalent full power operation of 365 days.
 - b. Liquid Effluents
 - 1) Batch waste release tanks are sampled each batch for principal gamma emitters, I-131, dissolved and entrained noble gases, H-3, gross alpha, Sr-89, Sr-90 and Fe-55.

- 2) Continuous releases are sampled continuously in proportion to the rate of flow of the effluent stream and by grab sample. Samples are analyzed for principal gamma emitters, I-131, dissolved and entrained noble gases, H-3, gross alpha, Sr-89, Sr-90 and Fe-55.
- 5. Batch Releases
 - a. Gaseous

	1)	Number of batch releases:	None
	2)	Total time period for batch releases:	N/A
	3)	Maximum time period for a batch release:	N/A
	4)	Average time period for batch releases:	N/A
	5)	Minimum time period for a batch release:	N/A
b.	Liq	uid	
	1)	Number of batch releases:	None
	2)	Total time period for batch releases: Min.	N/A
	3)	Maximum time period for a batch release: Min.	N/A
	4)	Average time period for batch releases: Min.	N/A
	5)	Minimum time period for a batch release: Min.	N/A
	6)	Average stream flow during periods of release of effluent into a flowing stream: gpm	N/A
Ab	norn	nal Releases	
a.	Ga	seous	
	1)	Number of releases:	None
	2)	Total activity released:	N/A
b.	Liq	uid	
	1)	Number of releases:	None
	2)	Total activity released:	N/A

7. Process Control Program

6.

On May 2, 2012, the following procedure changes were made to RW-AA-100, Process Control Program for Radioactive Wastes, as described below:

a. Step 4.1.8. was added to allow an Exelon Nuclear plant to store waste from another Exelon Nuclear plant provided formal NRC approval is granted for the transfer of the waste. The addition of this procedural step ensures that a formal NRC review and approval process is

completed for the storage of waste from another site. The review and approval process will address the site specific effects on the UFSAR and regulatory bases.

- b. Step 4.2.8. was modified to further clarify the storage of activated hardware. The additional wording, "...in the pool or loading the processed activated hardware into the Dry Cask storage system...", was added to clarify that the storage of activated hardware is generic and remains consistent with the UFSAR description of the Spent fuel Pool and Dry Cask Storage Systems.
- c. Step 4.4.4. was added to the document. The step states that "Shipments sent for offsite storage SHALL meet the storage site's waste acceptance criteria." The addition of this step addresses the transfer of radioactive waste from one Exelon Nuclear plant to another Exelon Nuclear plant. This step also ensures that the formal NRC review and approval process will be completed for the transfer of waste from another site and will address the site specific effects on the UFSAR and regulatory bases.
- d. Numerous minor wording and editorial changes were made throughout the document to correct grammatical errors and to improve document's clarity.

A copy of RW-AA-100, Process Control Program for Radioactive Wastes, has been included as Appendix E to this report.

There were no changes to the Process Control Program processing systems or components. There was no use of a solidification agent (e.g, cement, urea formaldehyde) during the processing of solid radioactive waste.

- 8. Effluent Monitoring Instrumentation timeclocks and sample anomalies.
 - a. <u>Time clocks:</u>

There were no effluent monitoring time clocks exceeded in 2012.

b. Sample anomalies:

There were no sampling anomalies affecting the measurement of effluents experienced during 2012.

In 2012 during a review of hard-to-detect nuclides in previous Annual Radioactive Effluent Release Reports (ARERR), it was discovered that Fe-55 had been reported as "<LLD" in LaSalle County Station's gaseous effluents. The station's ODCM does not require the Fe-55 analysis in gaseous effluents, and the station had not been performing this analysis. This issue was entered into the station's Corrective Actions Program and historical ARERR's were reviewed. The investigation found that this issue originated with an erroneous change to the report template in 2001, when the Errata Section of that ARERR included changes to the 2000 ARERR. The subsequent ARERRs through 2009 used the same template. In 2010, a fleetwide standardized ARERR template was implemented and the error was removed.

In late 2012, LaSalle Station began remediating the groundwater associated with the Unit 1 CY Tank leak using extraction well RW-LS-100S. The effluent from the extraction well is being discharged, via the stormwater piping, to the South Storm Water Pond. The South Storm Water Pond interfaces with the Condenser Discharge, which flows to the Cooling Pond, and the Cooling Pond ultimately blows down to the Illinois River. No other nuclides have been detected, and no tritium has been found to have migrated off site.

9. Offsite Dose Calculation Manual Revisions.

There were two revisions made to the ODCM in 2012. Revision 4 included changes related to the retirement of legacy dose calculation software and the implementation of a new dose calculation software. The revision also included changes related to drum evaporator activities and changes related to a potential pathway for low levels of tritium in the Waste Water Treatment Facility. Revision 5 included a revised description for REMP dosimeters, addition of references related to the ODCM revision, and addition of a discussion regarding offsite dose contribution from activities related to Non Fuel Waste storage at LaSalle.

Each change had a determination performed, in accordance with ODCM revision procedures, to ensure the change would not adversely impact accuracy or reliability of effluent, dose or set point calculations and will maintain the level of radiological effluent controls established by regulatory requirements. The determinations indicated no adverse impacts.

A copy of the ODCM Change Summary Matrix for revision 4 has been included as Appendix A to this report. Also, a copy of revision 4 to the ODCM has been included as Appendix B to this report. All changes in revision 4 to the LaSalle Station ODCM became effective 02/03/2012.

A copy of the ODCM Change Summary Matrix for revision 5 has been included as Appendix C to this report. Also, a copy of revision 5 of the ODCM has been included as Appendix D to this report. All changes in revision 5 to the LaSalle Station ODCM became effective 09/04/2012.

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) UNIT 1 AND UNIT 2 DOCKET NUMBERS 50-373 AND 50-374 GASEOUS EFFLUENTS SUMMATION OF ALL RELEASES

A. Fission & Activation Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter4	Est. Total Error %
1. Total Release	Ci	6.91E+02	8.30E+02	1.13E+03	1.03E+03	2.50E+01
2. Average release rate for the period	µCi/sec	8.77E+01	1.05E+02	1.43E02	1.31E+02	
3. Percent of ODCM limit	%	*	*	*	*	

B. lodine						
1. Total lodine – 131	Ci	9.77E-03	1.03E-02	1.69E-02	2.48E-02	1.50E+01
2. Average release rate for the period	µCi/sec	1.24E-03	1.30E-03	2.14E-03	3.15E-03	
3. Percent of ODCM limit	%	*	*	*	*	1

C. Particulates						
1. Particulates with half-lives > 8 days	Ci	2.47E-03	1.32E-03	4.74E-03	2.37E-03	3.50E+01
2. Average release rate for the period	μCi/sec	3.14E-04	1.68E-04	6.03E-04	3.02E-04	
3. Percent of ODCM limit	%	*	*	*	*]

D. Tritium						
1. Total Release	Ci	1.03E+01	1.79E+00	4.66E-01	1.30E-01	1.50E+01
2. Average release rate for the period	μCi/sec	1.30E+00	2.27E-01	5.91E-02	1.65E-02	
3. Percent of ODCM limit	%	*	*	*	*	

E. Gross Alpha						
1. Total Release	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	3.50E+01
2. Average release rate for the period	μCi/sec	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of ODCM limit	%	*	*	*	*	

F. Carbon-14					
1. Total Release	Ci	8.45E+00	8.52E+00	8.58E+00	8.57E+00
2. Average release rate for the period	μCi/sec	1.07E+00	1.08E+00	1.09E+00	1.09E+00
3. Percent of ODCM limit	%	*	*	*	*

"*" This information is contained in the Radiological Impact on Man section of the report.

"<" Indicates activity of sample is less than LLD given in μ Ci/ml

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) GASEOUS EFFLUENTS ELEVATED RELEASE UNIT 1 AND UNIT 2

Nuclides Released			Continuc	ous Mode	<u> </u>		Batch	Mode	
	Unit	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter
		1	2	3	4	1	2	3	4
A. Fission gases			<u></u>						
Kr-85m	Ci	1.60E+02	1.96E+02	3.17E+02	3.04E+02	N/A	N/A	N/A	N/A
Kr-87	Ci	1.40E+01	6.18E+00	2.75E+00	4.36E+00	N/A	N/A	N/A	N/A
Kr-88	Ci	1.79E+02	2.61E+02	4.06E+02	3.88E+02	N/A	N/A	N/A	N/A
Xe-133m	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	N/A	N/A	N/A	N/A
Xe-133	Ci	3.27E+02	3.63E+02	3.99E+02	3.30E+02	N/A	N/A	N/A	N/A
Xe-135	Ci	1.17E+01	4.01E+00	3.44E+00	4.92E+00	N/A	N/A	N/A	N/A
Xe-138	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	N/A	N/A	N/A	N/A
Ar-41	Ci	7.60E-03	<1.00E-04	<1.00E-04	<1.00E-04	N/A	N/A	N/A	N/A
Total for Period	Ci	6.91E+02	8.30E+02	1.13E+03	1.03E+03	N/A	N/A	N/A	N/A
B. lodines									
I-131	Ci	9.77E-03	1.03E-02	1.69E-02	2.48E-02	N/A	N/A	N/A	N/A
I-132	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
I-133	Ci	1.88E-02	2.57E-02	5.70E-01	8.87E-02	N/A	N/A	N/A	N/A
I-134	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
I-135	Ci	9.04E-03	2.00E-02	5.49E-02	8.07E-02	N/A	N/A	N/A	N/A
Total for Period	Ci	3.76E-02	5.59E-02	1.29E-01	1.94E-01	N/A	N/A	N/A	N/A
Tot. I-131,I-133,I-135	Ci	3.76E-02	5.59E-02	1.29E-01	1.94E-01	N/A	N/A	N/A	N/A
C. Particulates									
Mn-54	Ci	<1.00E-11	2.25E-05	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Co-58	Ci	5.34E-05	1.07E-05	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Fe-59	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Co-60	Ci	5.61E-04	4.42E-04	2.22E-04	3.62E-04	N/A	N/A	N/A	N/A
Zn-65	Ci	2.17E-04	3.17E-05	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Sr <u>-89</u>	Ci	7.06E-04	3.45E-04	2.15E-04	1.06E-03	N/A	N/A	N/A	N/A
Sr-90	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Mo-99	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Cs-134	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Cs- <u>136</u>	Ci	<1.00E-11	5.28E-05	2.81E-05	<1.00E-11	N/A	N/A	N/A	N/A
Cs-137	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Ba-140	Çi	9.29E-04	4.14E-04	2.34E-03	9.50E-04	N/A	N/A	N/A	<u>N/A</u>
La-140	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Ce-141	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Ce-144	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
Total for Period	Ci	2.47E-03	1.32E-03	4.74E-03	2.37E-03	N/A	N/A	N/A	N/A
D. Tritium									
H-3 Total for Period	Ci	1.03E+01	3.34E+00	1.78E+00	8.37E-01	N/A	N/A	N/A	N/A
E. Gross Alpha									N.
Gross Alpha Total for Period	Ci	<1.00E-11	<1.00 <u>E</u> -11	<1.00E-11	<1.00E-11	N/A	N/A	N/A	N/A
F. Carbon-14									
C-14 Total for Period	Ci	8.45E+00	8.52E+00	8.58E+00	8.46E+00	N/A	N/A	N/A	N/A

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) LIQUID RELEASES UNIT 1 AND UNIT 2 SUMMATION OF ALL LIQUID RELEASES

A. Fission & Activation Products	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter4	Est. Total Error %
1. Total Release (not including tritium, gases & alpha)	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A
2. Average diluted concentration during period	μCi/mL	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of applicable limit	%	*	*	*	*	1
B. Tritium	-					
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A
2. Average diluted concentration during period	μCi/mL	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of applicable limit	%	*	*	*	*	1
C. Dissolved & Entrained Gases	-					
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A
2. Average diluted concentration during period	µCi/mL	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of applicable limit	%	*	*	*	*	1
D. Gross Alpha Activity						
1. Total Belease	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A

1. Total Release	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average release rate for the period	μCi/mL	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of ODCM limit	%	*	*	*	*	

E. Volume of Waste Released (prior to dilution)	Liters	0.00E+00	0.00E+00	0.00E+00	0.00E+00
F. Volume of Dilution Water Used During Period	Liters	0.00E+00	0.00E+00	0.00E+00	0.00E+00

"*" This information is contained in the Radiological Impact on Man section of the report.

"<" Indicates activity of sample is less than LLD given in μ Ci/mI

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) LIQUID RELEASES UNIT 1 AND UNIT 2

Nuclides Released			Continuo	ous Mode			Batch	Mode	
A. Fission &		Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter
Activation Products	Unit	1	2	3	4	1	2	3	4
Mn-54	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Fe-55	Ci	<1.00E-06	<1.00E-06	<1.00E-06	<1.00E-06	N/A	N/A	N/A	N/A
Co-58	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Fe-59	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Co-60	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Zn-65	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Sr-89	Ci	<5.00E-08	<5.00E-08	<5.00E-08	<5.00E-08	N/A	N/A	N/A	N/A
Sr-90	Ci	<5.00E-08	<5.00E-08	<5.00E-08	<5.00E-08	N/A	N/A	N/A	N/A
Mo-99	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
1-131	Ci	<1.00E-06	<1.00E-06	<1.00E-06	<1.00E-06	N/A	N/A	N/A	N/A
Cs-134	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Cs-137	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Ce-141	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Ce-144	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	N/A	N/A	N/A	N/A
Total for Period	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></lld<>	N/A	N/A	N/A	N/A
В. Н-3			·	•					
H-3 Total for Period	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
C. Dissolved & Entrained Gasses									
Kr-85m	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Kr-85	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Kr-87	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Kr-88	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Xe-131m	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Xe-133m	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Xe-133	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Xe-135m	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Xe-135	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Ar-41	Ci	<1.00E-05	<1.00E-05	<1.00E-05	<1.00E-05	N/A	N/A	N/A	N/A
Total for Period	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></lld<>	N/A	N/A	N/A	N/A
D. Gross Alpha									
Gross Alpha Total for Period	Ci	<1.00E-07	<1.00E-07	<1.00E-07	<1.00E-07	N/A	N/A	N/A	N/A

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FIRST QUARTER

A. Solid Waste Shipped Offsite for Burial or Disposal (Not irradiated fuel)

1. Types of Waste

Types of Waste	Total Quantity (m ³)	Total Activity (Ci)	Period	Est. Total Error (%)
a. Spent resins, filter sludges, evaporator bottoms, etc	2.29E+01	2.65E+00	1Q12	+/-25%
b. Dry compressible waste, contaminated equip, etc	9.28E+02	6.60E-01	1Q12	+/-25%
c. Irradiated components, control rods, etc	None	None	1Q12	N/A
d. Other (water and oil, FW heater)	2.96E+01	6.15E-03	1Q12	+/-25%

2. Estimate of major nuclide composition (by waste type)

Major Nuclide Composition		Percent Abundance (≥1%)	Shipment Type(s)
a. Spent resins, filter sludges, evaporator bottoms, etc		(2170)	
	H-3	1.424%	LSA
	C-14	19.309%	
	Mn-54	1.741%	<u> </u>
	Fe-55	18.443%	·
	Co-60	45.860%	
	Zn-65	3.814%	
	Cs-137	7.030%	
b. Dry compressible waste, contaminated equip, etc		<u> </u>	
	Cr-51	2.240%	LSA
	Mn-54	6.922%	
	Fe-55	25.544%	
	Co-60	55.613%	
	Zn-65	3.897%	
	l-131	2.648%	
c. Irradiated components, control rods, etc			
	None	N/A	N/A
d. Other (water and oil, FW heater)			
	Cr-51	2.398%	LSA
	Mn-54	6.786%	
	Fe-55	24.886%	
	Co-60	54.104%	
	Zn-65	3.830%	
	I-131	3.406%	
	La-140	1.501%	

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FIRST QUARTER

3. Solid Waste Disposition

Number of Shipments	Mode of Transportation	Destination
14	Hittman Transport	Energy Solutions - Bear Creek
2	Visionary Solutions	Energy Solutions - Bear Creek
3	Hittman Transport	Energy Solutions LLC.

B. Irradiated Fuel Shipments (disposition)

Number of Shipments	Mode of Transportation	Destination
None	N/A	N/A

C. Changes to the Process Control Program

There were no changes to the Process Control Program during this period. There was no use of a solidification agent (e.g, cement, urea formaldehyde) during the processing of solid radioactive waste.

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS SECOND QUARTER

A. Solid Waste Shipped Offsite for Burial or Disposal (Not irradiated fuel)

1. Types of Waste

Types of Waste	Total Quantity (m ³)	Total Activity (Ci)	Period	Est. Total Error (%)
a. Spent resins, filter sludges, evaporator bottoms, etc	1.52E+01	5.60E+00	2Q12	+/-25%
b. Dry compressible waste, contaminated equip, etc	4.64E+02	5.25E+00	2Q12	+/-25%
c. Irradiated components, control rods, etc	None	None	2Q12	N/A
d. Other (Water and Oil, filters & DAW HIC)	7.92E+01	1.41E+00	2Q12	+/-25%

2. Estimate of major nuclide composition (by waste type)

		Percent	Shipment
		Abundance	Type(s)
Major Nuclide Composition		(≥1%)	
a. Spent resins, filter sludges, evaporator bottoms, etc			
	C-14	21.860%	LSA
	Fe-55	20.890%	
	Co-60	51.934%	
	Cs-137	2.673%	
b. Dry compressible waste, contaminated equip, etc			
	C-14	14.008%	LSA
	Mn-54	2.628%	
	Fe-55	23.154%	
	Co-60	54.412%	
	Zn-65	1.483%	
	I-131	1.293%	
c. Irradiated components, control rods, etc			
	None	N/A	N/A
d. Other (Water and Oil, filters & DAW HIC)			
	Cr-51	2.413%	LSA
	Mn-54	6.855%	
	Fe-55	25.144%	<u></u>
	Co-60	54.667%	
	Zn-65	3.869%	
	I-131	3.393%	
	La-140	1.404%	

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS SECOND QUARTER

3. Solid Waste Disposition

Number of Shipments	Mode of Transportation	Destination
11	Hittman Transport	Energy Solutions - Bear Creek
1	Visionary Solutions	Energy Solutions - Bear Creek
2	Hittman Transport	Energy Solutions LLC.
2	Visionary Solutions	Toxco Inc

B. Irradiated Fuel Shipments (disposition)

Number of Shipments	Mode of Transportation	Destination
None	N/A	N/A

C. Changes to the Process Control Program

On May 2, 2012, the following procedure changes were made to RW-AA-100, Process Control Program for Radioactive Wastes, as described below:

- Step 4.1.8. was added to allow an Exelon Nuclear plant to store waste from another Exelon Nuclear plant provided formal NRC approval is granted for the transfer of the waste. The addition of this procedural step ensures that a formal NRC review and approval process is completed for the storage of waste from another site. The review and approval process will address the site specific effects on the UFSAR and regulatory bases.
- Step 4.2.8. was modified to further clarify the storage of activated hardware. The additional wording, "...in the pool or loading the processed activated hardware into the Dry Cask storage system...", was added to clarify that the storage of activated hardware is generic and remains consistent with the UFSAR description of the Spent fuel Pool and Dry Cask Storage Systems.
- Step 4.4.4. was added to the document. The step states that "Shipments sent for offsite storage SHALL meet the storage site's waste acceptance criteria." The addition of this step addresses the transfer of radioactive waste from one Exelon Nuclear plant to another Exelon Nuclear plant. This step also ensures that the formal NRC review and approval process will be completed for the transfer of waste from another site and will address the site specific effects on the UFSAR and regulatory bases.
- Numerous minor wording and editorial changes were made throughout the document to correct grammatical errors and to improve document's clarity.

A copy of RW-AA-100, Process Control Program for Radioactive Wastes, has been included as Appendix E to this report.

There was no use of a solidification agent (e.g, cement, urea formaldehyde) during the processing of solid radioactive waste.

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS THIRD QUARTER

A. Solid Waste Shipped Offsite for Burial or Disposal (Not irradiated fuel)

1. Types of Waste

Types of Waste	Total Quantity (m ³)	Total Activity (Ci)	Period	Est. Total Error (%)
a. Spent resins, filter sludges, evaporator bottoms, etc	None	None	3Q12	N/A
b. Dry compressible waste, contaminated equip, etc	7.10E+01	2.02E+01	3Q12	+/-25%
c. Irradiated components, control rods, etc	None	None	3Q12	N/A
d. Other (water and oil)	None	None	3Q12	N/A

2. Estimate of major nuclide composition (by waste type)

		Percent Abundance	Shipment Type(s)
Major Nuclide Composition		(≥1%)	
a. Spent resins, filter sludges, evaporator bottoms, etc			
	None	N/A	N/A
b. Dry compressible waste, contaminated equip, etc			
	Mn-54	7.728%	LSA
	Fe-55	31.999%	
	Co-58	1.776%	
	Co-60	54.534%	
	Zn-65	3.025%	
c. Irradiated components, control rods, etc			
	None	N/A	N/A
d. Other (water and oil)			
	None	N/A	N/A

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS THIRD QUARTER

3. Solid Waste Disposition

Number of Shipments	Mode of Transportation	Destination
5	Hittman Transport	Energy Solutions - Bear Creek

B. Irradiated Fuel Shipments (disposition)

Number of Shipments	Mode of Transportation	Destination
None	N/A	N/A

C. Changes to the Process Control Program

There were no changes to the Process Control Program during this period. There was no use of a solidification agent (e.g, cement, urea formaldehyde) during the processing of solid radioactive waste.

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FOURTH QUARTER

A. Solid Waste Shipped Offsite for Burial or Disposal (Not irradiated fuel)

1. Types of Waste

Types of Waste	Total Quantity (m ³)	Total Activity (Ci)	Period	Est. Total Error %
a. Spent resins, filter sludges, evaporator bottoms, etc	2.79E+01	4.26E+00	4Q12	+/-25%
b. Dry compressible waste, contaminated equip, etc	6.67E+01	2.95E+00	4Q12	+/-25%
c. Irradiated components, control rods, etc	None	None	4Q12	N/A
d. Other (Water and Oil)	1.21E+01	3.19E-03	4Q12	+/-25%

2. Estimate of major nuclide composition (by waste type)

		Percent	Shipment
		Abundance	Type(s)
Major Nuclide Composition		(≥1%)	
a. Spent resins, filter sludges, evaporator bottoms, etc			
	H-3	1.039%	LSA
	Mn-54	1.485%	· · ·
	Fe-55	25.841%	
	Co-60	43.949%	
	Zn-65	6.160%	
	Cs-134	2.015%	
	Cs-137	17.991%	
b. Dry compressible waste, contaminated equip, etc			
	Mn-54	7.728%	LSA
	Fe-55	31.981%	
	Co-58	1.781%	
	Co-60	54.498%	
	Zn-65	3.026%	
c. Irradiated components, control rods, etc			
	None	N/A	N/A
d. Other (Water and Oil)			
	Mn-54	7.737%	LSA
	Fe-55	32.004%	
	Co-58	1.787%	
	Co-60	54.531%	
	Zn-65	3.029%	,

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FOURTH QUARTER

3. Solid Waste Disposition

Number of Shipments	Mode of Transportation	Destination
2	Hittman Transport	Energy Solutions – Bear Creek
4	Hittman Transport	Energy Solutions LLC
1	Visionary Solutions	Toxco Inc

B. Irradiated Fuel Shipments (disposition)

Number of Shipments	Mode of Transportation	Destination
None	N/A	N/A

C. Changes to the Process Control Program

There were no changes to the Process Control Program during this period. There was no use of a solidification agent (e.g, cement, urea formaldehyde) during the processing of solid radioactive waste.

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) RADIOLOGICAL IMPACT ON MAN MAXIMUM DOSES RESULTING FROM GASEOUS RELEASES AND COMPLIANCE STATUS

	Quarterly	Units	1st Ouerter	% of	2nd	% of	3 rd	% of	4th	% of	Annual	% of
Infant Receptor			Quarter	Limit	Quarter	Limit	Quarter	Limit	Quarter	Limit	Limit	Limit
Gamma Air	5.00E+00	mRad	6.42E-03	0.13	9.00E-03	0.18	1.39E-02	0.28	1.33E-02	0.27	1.00E+01	0.85
Beta Air	1.00E+01	mRad	3.64E-04	0.004	4.30E-04	0.00	6.09E-04	0.01	5.74E-04	0.01	2.00E+01	0.02
NG Total Body	2.50E+00	mRem	4.28E-03	0.17	6.00E-03	0.24	9.28E-03	0.37	8.87E-03	0.35	5.00E+00	1.14
NG Skin	7.50E+00	mRem	7.24E-03	0.10	1.01E-02	0.13	1.56E-02	0.21	1.49E-02	0.20	1.50E+01	0.64
NNG Organ	7.50E+00	mRem	4.84E-02	0.64	5.10E-02	0.68	8.35E-02	1.11	1.22E-01	1.63	1.50E+01	4.07
							ed.					
	Quarterly	Units	1st	% of	2nd	% of	3 rd	% of	4th	% of	Annual	% of
Child Receptor	Limit		Quarter	Limit	Quarter	Limit	Quarter	Limit	Quarter	Limit	Limit	Limit
Gamma Air	5.00E+00	mRad	6.42E-03	0.13	9.00E-03	0.18	1.39E-02	0.28	1.33E-02	0.27	1.00E+01	0.85
Beta Air	1.00E+01	mRad	3.64E-04	0.004	4.30E-04	0.00	6.09E-04	0.01	5.74E-04	0.01	2.00E+01	0.02
NG Total Body	2.50E+00	mRem	4.28E-03	0.17	6.00E-03	0.24	9.28E-03	0.37	8.87E-03	0.35	5.00E+00	1.14
NG Skin	7.50E+00	mRem	7.24E-03	0.10	1.01E-02	0.13	1.56E-02	0.21	1.49E-02	0.20	1.50E+01	0.64
NNG Organ	7.50E+00	mRem	2.01E-02	0.27	2.12E-02	0.28	3.46E-02	0.46	5.06E-02	0.67	1.50E+01	1.69
Teenager	Quarterly	Units	1st	% of	2nd	% of	3 rd	% of	4th	% of	Annual	% of
Receptor	Limit		Quarter	Limit	Quarter	Limit	Quarter	Limit	Quarter	Limit	Limit	Limit
Gamma Air	5.00E+00	mRad	6.42E-03	0.13	9.00E-03	0.18	1.39E-02	0.28	1.33E-02	0.27	1.00E+01	0.85
Beta Air	1.00E+01	mRad	3.64E-04	0.004	4.30E-04	0.00	6.09E-04	0.01	5.74E-04	0.01	2.00E+01	0.02
NG Total Body	2.50E+00	mRem	4.28E-03	0.17	6.00E-03	0.24	9.28E-03	0.37	8.87E-03	0.35	5.00E+00	1.14
NG Skin	7.50E+00	mRem	7.24E-03	0.10	1.01E-02	0.13	1.56E-02	0.21	1.49E-02	0.20	1.50E+01	0.64
NNG Organ	7.50E+00	mRem	1.01E-02	0.14	1.07E-02	0.14	1.74E-02	0.23	2.55E-02	0.34	1.50E+01	0.85
	Quarterly	Units	1st	% of	2nd	% of	3 rd	% of	4th	% of	Annual	% of
Adult Receptor	Limit	Units	Quarter	Limit	Quarter	Limit	Quarter	Limit	Quarter	Limit	Limit	Limit
Gamma Air	5.00E+00	mRad	6.42E-03	0.13	9.00E-03	0.18	1.39E-02	0.28	1.33E-02	0.27	1.00E+01	0.85
Beta Air	1.00E+01	mRad	3.64E-04	0.004	4.30E-04	0.00	6.09E-04	0.01	5.74E-04	0.01	2.00E+01	0.02
NG Total Body	2.50E+00	mRem	4.28E-03	0.17	6.00E-03	0.24	9.28E-03	0.37	8.87E-03	0.35	5.00E+00	1.14
NG Skin	7.50E+00	mRem	7.24E-03	0.10	1.01E-02	0.13	1.56E-02	0.21	1.49E-02	0.20	1.50E+01	0.64
NNG Organ	7.50E+00	mRem	6.41E-03	0.09	6.74E-03	0.09	1.10E-02	0.15	1.61E-02	0.21	1.50E+01	0.54

The LaSalle County Nuclear Power Station maximum expected annual dose from Carbon-14 has been calculated using the maximum gross thermal capacity at full power operation. The resultant bounding doses are based upon site specific assumptions of source term.

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) RADIOLOGICAL IMPACT ON MAN MAXIMUM DOSES RESULTING FROM LIQUID RELEASES AND COMPLIANCE STATUS

Infant Receptor	Quarterly Limit	Units	1st Quarter	% of Limit	2nd Quarter	% of Limit	3 rd Quarter	% of Limit	4th Quarter	% of Limit	Annual Limit	% of Limit
10CFR50 Appendix	x I compliance											
Total Body	1.50E+00	mRem	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	3.00E+00	0.00
Organ	5.00E+00	mRem	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	1.00E+01	0.00
40CFR141 complia	ance (nearest pub											
Total Body		mRem	0.00E+00		0.00E+00		0.00E+00		0.00E+00		4.00E+00	0.00
Organ		mRem	0.00E+00		0.00E+00		0.00E+00		0.00E+00		4.00E+00	0.00
Child Receptor	Quarterly Limit	Units	1st Quarter	% of Limit	2nd Quarter	% of Limit	3 rd Quarter	% of Limit	4th Quarter	% of Límit	Annual Limít	% of Limit
10CFR50 Appendix	x I compliance				······							
Total Body	1.50E+00	mRem	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	3.00E+00	0.00
Organ	5.00E+00	mRem	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	1.00E+01	0.00
40CFR141 complia	ance (nearest pub	lic drinking	water)									
Total Body		mRem	0.00E+00		0.00E+00		0.00E+00		0.00E+00		4.00E+00	0.00
Organ		mRem	0.00E+00		0.00E+00		0.00E+00		0.00E+00		4.00E+00	0.00
Teenager Receptor	Quarterly Limit	Units	1st Quarter	% of Limit	2nd Quarter	% of Limit	3 rd Quarter	% of Limit	4th Quarter	% of Limit	Annual Limit	% of Limit
10CFR50 Appendix	x I compliance								<u> </u>			
Total Body	1.50E+00	mRem	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	3.00E+00	0.00
Organ	5.00E+00	mRem	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	1.00E+01	0.00
40CFR141 complia	ance (nearest pub	lic drinking	water)									
Total Body		mRem	0.00E+00		0.00E+00		0.00E+00		0.00E+00		4.00E+00	0.00
Organ		mRem	0.00E+00		0.00E+00		0.00E+00		0.00E+00		4.00E+00	0.00
Adult Receptor	Quarterly Limit	Units	1st Quarter	% of Limit	2nd Quarter	% of Limit	3 rd Quarter	% of Limit	4th Quarter	% of Limit	Annual Limit	% of Limit
10CFR50 Appendix	x I compliance										· · · · · · · · · · · · · · · · · · ·	
Total Body	1.50E+00	mRem	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	3.00E+00	0.00
Organ	5.00E+00	mRem	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	0.00E+00	0.00	1.00E+01	0.00
40CFR141 complia	ance (nearest pub	lic drinking	water)									
Total Body		mRem	0.00E+00		0.00E+00		0.00E+00		0.00E+00		4.00E+00	0.00

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) RADIOLOGICAL IMPACT ON MAN MAXIMUM DOSES RESULTING FROM RELEASES AND COMPLIANCE STATUS

10CFR20 / 40CFR190 Compliance

	1 st Quarter Dose (mRem)	2 nd Quarter Dose (mRem)	3 rd Quarter Dose (mRem)	4 th Quarter Dose (mRem)	% Annual Annual Annual Dose Limit Limit (mRem) (mRem/yr)
Unit 1					
					40CFR190 Compliance
U1 D ^{Ex}	7.69E-02	1.03E-01	1.06E-01	1.08E-01	3.93E-01 25 1.57
					10CFR20 Compliance
U1 D ^{Tot}	1.25E-01	1.54E-01	1.89E-01	2.30E-01	6.98E-01 100 0.70
					40CFR190 Compliance
Bone	7.04E-03	7.60E-03	7 00 5 00	7 225 02	
Liver	1.68E-03	1.67E-03	7.28E-03 1.76E-03	7.33E-03 1.89E-03	2.93E-02 25 0.12 7.00E-03 25 0.03
Thyroid	4.84E-02	5.10E-02	8.35E-02	1.22E-01	3.05E-01 75 0.41
Kidney	1.70E-03	1.69E-03	1.80E-03	1.96E-03	7.15E-03 25 0.03
Lung	1.52E-03	1.51E-03	1.50E-03	1.52E-03	6.05E-03 25 0.02
GI-LLI	1.54E-03	1.52E-03	1.52E-03	1.53E-03	6.11E-03 25 0.02
Unit 2					40CFR190 Compliance
U2 D ^{Ex}	9.75E-02	9.65E-02	9.60E-02	9.79E-02	3.88E-01 25 1.55
					10CFR20 Compliance
U2 D ^{Tot}	9.75E-02	9.65E-02	9.60E-02	9.79E-02	3.88E-01 100 0.39
					40CFR190 Compliance
Bone	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 25 0.00
Liver	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 25 0.00
Thyroid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 75 0.00
Kidney	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 25 0.00
Lung	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 25 0.00
GI-LLI	0.00E+00	0.00E+00	0.00E+00	0.00E+00_	0.00E+00 25 0.00

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		wind speed (in mpn)										
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total					
N	1	9	2	0	0	0	12					
NNE	0	2	2	0	0	0	4					
NE	0	0	4	9	0	0	13					
ENE	0	1	5	15	1	0	22					
E	0	3	12	2	0	0	17					
ESE	0	2	1	0	3	0	6					
SE	0	1	1	3	4	0	9					
SSE	0	0	0	0	1	0	l					
S	0	0	1	5	1	0	7					
SSW	0	1	2	2	1	0	6					
SW	2	5	8	2	1	0	18					
WSW	2	2	7	1	1	2	15					
W	1	0	12	1	1	1	16					
WNW	1	1	8	7	3	0	20					
NW	0	1	3	2	2	2	10					
NNW	0	2	1	2	5	0	10					
Variable	0	0	0	0	0	0	0					
Total	7	30	69	51	24	5	186					
s of calm in th s of missing wi					ty dlag	. 0						

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)										
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total				
Ν	0	2	1	0	0	0	3				
NNE	0	1	1	0	0	0	2				
NE	1	0	1	2	0	0	4				
ENE	0	0	1	2	0	0	3				
Ε	0	4	0	0	0	0	4				
ESE	0	4	0	0	0	0	4				
SE	0	0	1	4	1	0	6				
SSE	0	0	2	0	3	0	5				
S	0	0	1	4	1	0	6				
SSW	0	0	1	8	0	0	9				
SW	0	0	0	1	4	0	5				
WSW	0	0	4	1	0	0	5				
W	0	0	5	1	0	1	7				
WNW	0	1	3	. 5	2	0	11				
NW	0	0	1	1	1	0	3				
NNW	0	2	2	1	0	0	5				
Variable	0	0	0	0	0	0	0				
Total	1	14	24	30	12	1	82				

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		wind speed (in mpn)									
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total				
N	1	4	9	0	0	0	14				
NNE	0	2	0	1	0	0	3				
NE	0	0	0	4	0	0	4				
ENE	0	2	2	4	0	0	8				
Ê	1	0	4	0	0	0	5				
ESE	0	2	4	0	0	0	6				
SE	0	2	3	2	0	0	7				
SSE	0	0	1	6	3	0	10				
S	0	1	11	4	0	2	18				
SSW	0	0	4	5	2	1	12				
SW	0	0	1	1	2	0	4				
WSW	0	0	4	1	0	0	5				
W	0	1	6	1	0	0	8				
WNW	0	0	10	8	2	1	21				
NW	0	3	6	3	0	0	12				
NNW	0	2	4	2	0	0	8				
Variable	0	0	0	0	0	0	0				
Total	2	19	69	42	9	4	145				
of calm in th	is stab	ility cl	lass:	0							

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)										
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total				
N	0	5	15	1	2	1	24				
NNE	0	14	12	4	0	0	30				
NE	0	8	13	7	3	0	31				
ENE	0	4	16	26	1	0	47				
Е	0	7	11	8	0	0	26				
ESE	0	6	9	6	0	0	21				
SE	1	5	4	10	6	0	26				
SSE	1	2	8	7	5	3	26				
S	0	7	13	20	7	3	50				
SSW	1	4	16	9	6	12	48				
SW	0	8	14	14	14	4	54				
WSW	0	9	24	18	5	2	58				
W	0	11	22	50	5	2	90				
WNW	1	6	25	37	18	10	97				
NW	0	9	14	14	5	1	43				
NNW	0	8	33	23	23	0	87				
Variable	0	0	0	0	0	0	0				
Total	4	113	249	254	100	38	758				

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)									
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total			
Ν	5	14	0	0	0	0	19			
NNE	2	7	0	0	0	0	9			
NE	1	1	3	0	0	0	5			
ENE	0	4	7	1	0	0	12			
Е	0	16	7	3	0	0	26			
ESE	0	6	3	11	2	0	22			
SE	1	3	7	9	8	0	28			
SSE	0	7	12	20	6	0	45			
S	0	7	13	22	8	2	52			
SSW	0	3	7	21	10	1	42			
SW	1	2	14	23	4	1	45			
WSW	2	4	15	10	3	2	36			
W	3	7	26	15	38	7	96			
WNW	0	11	16	16	9	18	70			
NW	1	10	3	3	0	0	17			
NNW	1	8	0	0	0	0	9			
Variable	0	0	0	0	0	0	0			
Total	17	110	133	154	88	31	533			

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		VV _	wind speed (in mpn)						
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	1	1	0	0	0	0	2		
NE	2	1	1	0	0	0	4		
ENE	0	3	0	0	0	0	3		
E	0	11	6	0	0	0	17		
ESE	0	9	6	1	0	0	16		
SE	0	9	10	1	0	0	20		
SSE	0	4	9	4	1	0	18		
S	0	8	28	14	l	0	51		
SSW	2	4	13	7	14	0	40		
SW	1	12	10	14	0	0	37		
WSW	1	9	17	10	0	0	37		
W	0	16	24	7	2	0	49		
WNW	1	14	13	0	0	0	28		
NW	1	4	0	0	0	0	5		
NNW	1	2	0	0	0	0	3		
Variable	0	0	0	0	0	0	0		
Total	10	107	137	58	18	0	330		

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	2	0	0	0	0	2				
NNE	0	1	0	0	0	0	1				
NE	0	0	0	0	0	0	0				
ENE	1	0	0	0	0	0	1				
Е	0	1	0	0	0	0	1				
ESE	0	5	2	1	0	0	8				
SE	0	12	6	0	0	0	18				
SSE	0	2	10	0	0	0	12				
S	0	6	15	2	0	0	23				
SSW	0	6	19	5	0	0	30				
SW	0	8	6	12	0	0	26				
WSW	0	2	10	2	0	0	14				
W	0	0	5	0	0	0	5				
WNW	0	1	2	0	0	0	3				
NW	0	1	0	0	0	0	1				
NNW	0	0	0	0	0	0	0				
Variable	0	0	0	0	0	0	0				
Total	1	47	75	22	0	0	145				
of calm in th	is stab	ility c	lass:		·						

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

174 7	Wind Speed (in mph)									
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total			
Ν	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	1	0	0	0	1			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	0	0	0	0	0	0			
SW	0	0	0	0	0	0	0			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	1	1	0	2			
NW	0	0	0	0	0	3	3			
NNW	0	0	0	0	0	1	1			
Variable	0	0	0	0	0	0	0			
Total	0	0	1	1	1	4	7			
of calm in th of missing wi				0 s stabil:	ity class	s: 0				

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

ra (- 1	Wind Speed (in mph)								
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	2	1	0	0	3		
NE	0	0	0	1	0	0	1		
ENE	0	0	1	0	2	1	4		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	0	0	0	0		
SW	0	0	0	0	0	0	0		
WSW	0	0	0	0	0	1	1		
W	1	0	1	1	0	0	3		
WNW	0	0	0	2	2	1	5		
NW	0	0	0	2	0	3	5		
NNW	0	0	0	0	0	2	2		
Variable	0	0	0	0	0	0	0		
Total	1	0	4	7	4	8	24		
Hours of calm in t Hours of missing w Hours of missing s	ind meas	urements	s in this				4		

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	3	0	0	0	3			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	3	1	0	4			
ENE	0	0	1	4	10	0	15			
E	0	0	0	3	0	0	3			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0 ·	0	0	0	0	0			
S	0	0	0	4	0	2	6			
SSW	0	1	0	1	1	2	5			
SW	0	2	1	2	0	2	7			
WSW	0	0	4	1	0	1	6			
W	0	0	1	3	1	0	5			
WNW	0	0	0	2	0	2	4			
NW	0	0	0	2	2	4	8			
NNW	0	2	0	0	1	0	3			
Variable	0	0	0	0	0	0	0			
Total	0	5	10	25	16	13	69			
of calm in th	is stab	ility cl	ass:	0						

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Neutral - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

W date of	wind Speed (in mpn)							
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total	
N	0	8	22	17	0	5	52	
NNE	2	6	17	16	1	0	42	
NE	1	3	14	13	14	8	53	
ENE	0	1	19	30	32	3	85	
Ε	0	0	12	9	4	0	25	
ESE	0	3	11	8	3	4	29	
SE	0	3	5	11	10	11	40	
SSE	0	3	3	13	9	9	37	
S	0	7	7	28	27	20	89	
SSW	0	2	10	23	14	29	78	
SW	2	7	7	17	17	17	67	
WSW	0	6	12	30	12	6	66	
W	0	4	15	39	20	25	103	
WNW	0	4	11	40	50	39	144	
NW	0	9	25	25	22	26	107	
NNW	0	2	13	35	8	18	76	
Variable	0	0	0	0	0	0	0	
Total	5	68	203	354	243	220	1093	

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	Wind Speed (in mpn)							
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total	
N	0	0	7	4	0	0	11	
NNE	0	4	7	2	0	0	13	
NE	1	4	4	4	0	0	13	
ENE	0	0	5	6	0	0	11	
E	0	5	8	12	6	0	31	
ESE	0	3	3	8	3	6	23	
SE	1	0	4	10	11	11	37	
SSE	2	4	3	4	10	32	55	
S	1	1	4	7	20	41	74	
SSW	1	0	8	7	14	58	88	
SW	1	3	8	6	17	22	57	
WSW	1	1	8	2	19	10	41	
W	1	8	10	14	21	40	94	
WNW	0	5	10	10	33	57	115	
NW	1	4	10	12	18	4	49	
NNW	1	2	4	1	0	0	8	
Variable	0	0	0	0	0	0	0	
Total	11	44	103	109	172	281	720	

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	Wind Speed (in mpn)										
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total				
N	1	1	4	1	0	0	7				
NNE	0	1	1	0	0	0	2				
NE	0	2	1	0	0	0	3				
ENE	1	0	2	0	0	0	3				
E	0	0	1	1	0	0	2				
ESE	0	0	3	2	2	3	10				
SE	0	1	1	8	1	2	13				
SSE	0	1	1	1	7	7	17				
S	0	2	2	3	12	13	32				
SSW	0	1	3	5	10	21	40				
SW	0	2	8	11	2	6	29				
WSW	1	2	3	4	1	8	19				
W	0	1	3	8	8	4	24				
WNW	0	0	1	1	11	4	17				
NW	0	0	1	4	2	0	7				
NNW	0	0	1	0	0	0	1				
Variable	0	0	0	0	0	0	0				
Total	3	14	36	49	56	68	226				
of calm in th	is stab	ility cl	lass:	0							

LaSalle County Generating Station

Period of Record: January - March 2012 Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Til i un el	Wind Speed (in mph)								
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	1	0	0	0	1		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	1	0	0	1		
SSE	0	0	0	0	9	3	12		
S	0	0	0	3	3	2	8		
SSW	0	0	0	1	2	5	8		
SW	0	0	1	0	0	0	1		
WSW	0	0	1	0	0	8	9		
W	0	0	0	0	0	0	0		
WNW	0	0	0	0	0	0	0		
NW	0	0	1	0	0	0	1		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	4	5	14	18	41		
rs of calm in th rs of missing wi				0 s stabili	ty class.	: 0			

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) METEOROLOGICAL DATA LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	Wind Speed (in mpn)									
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total			
N	0	1	0	3	0	0	4			
NNE	0	1	0	1	0	0	2			
NE	0	0	0	3	0	0	3			
ENE	0	0	0	0	0	0	0			
Е	0	0	1	0	0	0	1			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	1	0	0	0	1			
S	0	0	0	3	3	7	13			
SSW	0	0	1	11	4	0	16			
SW	0	0	0	4	7	1	12			
WSW	0	0	0	8	0	0	8			
W	0	0	0	4	0	0	4			
WNW	0	0	0	1	0	0	1			
NW	0	0	0	3	0	0	3			
NNW	0	0	0	1	0	0	1			
Variable	0	0	0	0	0	0	0			
Total	0	2	3	42	14	8	69			

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4 - 7	8-12	13-18	19-24	24	
					19-24	> 24	Total
N	0	1	l	1	0	0	3
NNE	0	2	0	3	0	0	5
NÈ	0	0	2	11	1	0	14
ENE	0	0	2	1	0	0	3
E	0	0	1	0	1	0	2
ESE	0	0	0	2	2	0	4
SE	0	0	0	0	0	0	0
SSE	0	0	2	4	0	0	6
S	0	0	2	1	2	1	6
SSW	0	0	8	11	1	0	20
SW	0	1	3	5	3	0	12
WSW	0	0	1	4	0	0	5
W	0	0	1	0	0	0	1
WNW	0	0	3	2	0	0	5
NW	0	0	0	5	0	0	5
NNW	0	0	1	3	0	0	4
Variable	0	0	0	0	0	0	0
Total	0	4	27	53	10	1	95

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Mi - A		wind speed (in mpn)							
Wind Directior		4 - 7	8-12	13-18	19-24	> 24	Total		
N	0	2	3	2	0	0	7		
NNE	0	3	7	0	0	0	10		
NE	0	0	14	8	2	0	24		
ENE	0			1					
		0	5		0	0	6		
E	0	0	0	3	2	0	5		
ESE	0	0	2	0	1	0	3		
SE	0	0	1	0	0	0	1		
SSE	0	0	4	3	1	0	8		
S	0	0	0	3	3	0	6		
SSW	0	1	17	7	1	0	26		
SW	0	1	5	9	1	0	16		
WSW	0	0	3	9	0	0	12		
W	0	1	6	1	0	0	8		
WNW	0	0	5	6	0	0	11		
NW	0	0	4	4	1	0	9		
NNW	0	0	4	8	2	0	14		
Variable	0	0	0	0	0	0	0		
Total	0	8	80	64	14	0	166		
Hours of calm in Hours of missing Hours of missing	wind meas	urements	in this				2		

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		W	ind speed	ı (ın mpi	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	1	13	20	7	0	0	41
NNE	1	19	17	7	0	0	44
NE	2	24	32	39	7	0	104
ENE	1	11	22	33	10	0	77
E	0	7	22	28	12	0	69
ESE	0	4	10	11	5	0	30
SE	0	7	9	13	2	0	31
SSE	0	1	10	8	2	0	21
S	0	6	14	14	4	2	40
SSW	0	2	23	16	3	1	45
SW	0	15	15	19	3	0	52
WSW	0	9	16	8	1	2	36
W	0	21	19	10	0	1	51
WNW	1	12	20	8	1	1	43
NW	2	7	17	9	6	0	41
NNW	0	9	26	30	4	1	70
Variable	0	0	0	0	0	0	0
Total	8	167	292	260	60	8	795

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)							
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total	
N	0	18	16	1	0	0	35	
NNE	1	16	16	4	0	0	37	
NE	1	6	14	13	0	0	34	
ENE	0	3	25	21	1	0	50	
Е	0	10	35	5	2	0	52	
ESE	0	8	9	7	0	0	24	
SE	0	4	4	3	0	0	11	
SSE	0	6	9	5	0	0	20	
S	0	3	20	6	2	0	31	
SSW	0	5	31	26	6	0	68	
SW	0	3	16	8	3	1	31	
WSW	1	9	10	3	1	0	24	
W	1	7	13	2	3	3	29	
WNW	1	4	24	3	0	6	38	
NW	0	11	23	5	1	0	40	
NNW	0	13	23	2	0	0	38	
Variable	0	0	0	0	0	0	0	
Total	5	126	288	114	19	10	562	

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		WD	ina speed	a (in mpi	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	9	1	0	0	0	10
NNE	1	5	0	0	0	0	6
NE	0	0	0	0	0	0	0
ENE	0	4	1	0	0	0	5
Ε	1	21	23	1	0	0	46
ESE	0	18	12	0	0	0	30
SE	0	9	4	1	0	0	14
SSE	0	5	16	1	0	0	22
S	1	6	21	3	0	0	31
SSW	0	2	21	1	0	0	24
SW	1	6	8	0	0	0	15
WSW	0	11	13	0	0	0	24
W	1	7	10	1	0	0	19
WNW	0	10	8	0	0	0	18
NW	1	4	0	0	0	0	5
NNW	1	4	2	0	0	0	7
Variable	0	0	0	0	0	0	0
Total	7	121	140	8	0	0	276
of calm in th	is stab	ility c	lass:	0			

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	Wind Speed (in mpn)							
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	0	0	0	0	0	0	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
E	0	4	3	0	0	0	7	
ESE	1	17	3	0	0	0	21	
SE	0	23	13	0	0	0	36	
SSE	0	18	8	0	0	0	26	
S	0	12	13	0	0	0	25	
SSW	0	12	13	0	0	0	25	
SW	0	10	5	0	0	0	15	
WSW	2	14	11	0	0	0	27	
W	0	8	1	0	0	0	9	
WNW	0	2	1	0	0	0	3	
NW	0	2	0	0	0	0	2	
NNW	1	2	0	0	0	0	3	
Variable	0	0	0	0	0	0	0	
Total	4	124	71	0	0	0	199	
of calm in th	is stab	ility c	lass:	0				

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		Wi	nd Speed	d (in mp)	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
Е	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	4	4
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	. 0	0	0	0	0	0
Total	0	0	0	0	0	4	4
Hours of calm in thi Hours of missing wir	ls stab nd meas	ility cl urements	ass: in this	0 s stabil:	ity class	s: 0	

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	wind speed (in mpn)								
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total		
Ν	0	0	0	0	1	0	1		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
Е	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	3	4	7		
SSW	0	0	0	0	2	1	3		
SW	0	0	0	0	2	6	8		
WSW	0	0	0	1	1	0	2		
W	0	0	0	1	1	0	2		
WNW	0	0	0	1	0	0	1		
NW	0	0	0	1	0	0	1		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	0	4	10	11	25		
s of calm in th of missing wi				0 s stabil:	ity class	: 0			

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	wind speed (in mpn)							
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total	
Ν	0	0	0	1	3	0	4	
NNE	0	0	0	0	0	1	1	
NE	0	0	0	0	5	0	5	
ENE	0	0	0	1	0	0	1	
E	0	0	0	0	0	0	0	
ESE	0	0	1	0	0	0	1	
SE	0	0	0	0	0	0	0	
SSE	0	0	1	6	0	0	7	
S	0	0	0	0	2	2	4	
SSW	0	0	1	8	9	4	22	
SW	0	0	0	4	5	5	14	
WSW	0	0	0	4	2	0	6	
W	0	0	0	2	5	0	7	
WNW	0	0	1	1	0	0	2	
NW	0	0	0	5	0	0	5	
NNW	0	0	0	0	3	0	3	
Variable	0	0	0	0	0	0	0	
Total	0	0	4	32	34	12	82	
Hours of calm in the Hours of missing win				0 s stabil:	ity class	s: 0		

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Neutral - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		W	ina speed	ı (ın mpr	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	10	12	26	12	0	60
NNE	1	10	21	17	10	5	64
NE	3	7	21	48	62	29	170
ENE	0	6	19	36	44	10	115
Е	0	5	18	16	21	17	77
ESE	1	3	7	15	12	9	47
SE	0	4	5	13	8	2	32
SSE	0	0	7	11	11	1	30
S	0	2	8	19	9	16	54
SSW	0	1	5	39	35	21	101
SW	1	6	18	21	24	6	76
WSW	0	6	17	17	9	3	52
W	0	7	17	20	6	4	54
WNW	0	8	11	28	11	8	66
NW	0	7	15	21	14	15	72
NNW	0	4	18	12	28	1	63
Variable	0	0	0	0	0	0	0
Total	6	86	219	359	316	147	1133

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind	wind speed (in mpn)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	2	5	11	8	4	30	
NNE	0	1	6	14	3	0	24	
NE	0	1	8	22	7	1	39	
ENE	0	0	10	29	5	1	45	
Е	0	2	4	21	16	0	43	
ESE	0	3	5	12	9	0	29	
SE	0	1	7	9	6	4	27	
SSE	0	0	1	9	6	2	18	
S	0	0	6	6	22	12	46	
SSW	0	0	5	8	26	45	84	
SW	0	2	5	9	23	9	48	
WSW	0	0	5	7	3	0	15	
W	0	1	8	10	7	4	30	
WNW	0	4	3	21	12	3	43	
NW	0	0	4	8	18	4	34	
NNW	0	2	7	12	20	1	42	
Variable	0	0	0	0	0	0	0	
Total	0	19	89	208	191	90	597	

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind	willd Speed (in mph)						
Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	0	0	2	2	2	6
NNE	2	0	2	4	0	0	8
NE	1	1	1	1	0	0	4
ENE	0	1	0	0	0	0	1
E	l	0	1	4	2	0	8
ESE	0	4	3	14	3	2	26
SE	1	0	2	24	14	2	43
SSE	0	0	3	7	11	0	21
S	0	0	4	10	14	13	41
SSW	0	4	4	7	20	10	45
SW	0	2	1	7	1	0	11
WSW	0	1	1	6	2	0	10
W	0	1	8	8	10	3	30
WNW	0	0	5	6	0	0	11
NW	2	0	4	2	7	0	15
NNW	1	1	1	0	2	0	5
Variable	0	0	0	0	0	0	0
Total	8	15	40	102	88	32	285

LaSalle County Generating Station

Period of Record: April - June 2012 Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	Wind Speed (in mph) Wind								
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	2	3	0	5		
SSE	0	0	2	15	9	0	26		
S	0	0	0	1	6	4	11		
SSW	0	0	0	0	0	0	0		
SW	0	0	0	3	1	0	4		
WSW	0	0	1	0	6	0	7		
W	0	0	2	0	1	0	3		
WNW	0	0	0	0	0	0	0		
NW	0	0	0	0	0	0	0		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	5	21	26	4	56		
Hours of calm in the				0 s stabili	ity class				

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) METEOROLOGICAL DATA LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	Wind Speed (in mpn)							
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	0	0	0	0	0	0	
NE	0	0	1	0	0	0	1	
ENE	0	0	0	0	0	0	0	
Е	0	0	0	0	0	0	0	
ESE	0	0	1	0	0	0	1	
SE	0	0	2	0	0	0	2	
SSE	0	0	3	0	0	0	3	
S	0	0	0	2	1	0	3	
SSW	0	0	1	3	0	0	4	
SW	0	0	8	3	0	0	11	
WSW	0	0	14	3	0	0	17	
W	0	0	4	2	0	0	6	
WNW	0	0	0	8	0	0	8	
NW	0	0	1	2	0	0	3	
NNW	0	0	0	0	0	0	0	
Variable	0	0	0	0	0	0	0	
Total	0	0	35	23	1	0	59	

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total		
Ν	0	0	1	3	0	0	4		
NNE	0	0	4	0	0	0	4		
NE	0	0	2	1	0	0	3		
ENE	0	0	0	0	0	0	0		
Е	0	0	0	0	0	0	0		
ESE	0	1	0	0	0	0	1		
SE	0	1	8	1	0	0	10		
SSE	0	1	0	0	0	0	1		
S	0	0	5	2	1	0	8		
SSW	0	3	7	5	0	0	15		
SW	0	2	3	2	0	0	7		
WSW	0	2	12	4	0	0	18		
W	0	3	16	1	0	0	20		
WNW	0	1	2	1	0	0	4		
NW	0	0	0	1	0	0	1		
NNW	0	0	3	3	0	0	6		
Variable	0	0	0	0	0	0	0		
Total	0	14	63	24	1	0	102		

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4 - 7	8-12	13-18	19-24 	> 24	Total		
N	0	1	4	3	0	0	8		
NNE	0	0	5	0	0	0	5		
NE	0	0	4	2	0	0	6		
ENE	0	0	2	0	0	0	2		
E	0	1	0	0	0	0	1		
ESE	0	0	2	0	0	0	2		
SE	0	1	2	0	0	0	3		
SSE	0	4	5	0	0	0	9		
S	0	2	4	2	0	0	8		
SSW	0	9	6	2	0	0	17		
SW	0	7	5	4	0	0	16		
WSW	0	3	14	1	0	0	18		
W	0	9	9	3	0	0	21		
WNW	0	4	5	2	0	0	11		
NW	0	1	6	4	2	0	13		
NNW	0	0	7	10	0	0	17		
Variable	0	0	0	0	0	0	0		
Total	0	42	80	33	2	0	157		
of calm in th	is stab	ility cl	ass:	0					

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

1.7 Å	wind Speed (in mpn)						
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	2	15	36	9	0	0	62
NNE	3	13	14	1	0	0	31
NE	1	19	23	14	0	0	57
ENE	0	24	20	17	0	0	61
Е	2	10	10	4	0	0	26
ESE	0	11	7	1	0	0	19
SE	1	21	4	1	0	0	27
SSE	0	19	7	2	0	0	28
S	2	24	23	2	1	0	52
SSW	1	15	13	0	0	0	29
SW	2	21	18	6	0	0	47
WSW	1	19	21	6	0	0	47
W	1	25	14	6	0	0	46
WNW	2	17	15	2	1	0	37
NW	0	6	26	3	3	0	38
NNW	1	19	45	32	0	0	97
Variable	0	0	0	0	0	0	0
Total	19	278	296	106	5	0	704

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	Wind Speed (in mpn)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	26	5	1	0	0	32	
NNE	2	21	13	0	0	0	36	
NE	0	4	29	6	0	0	39	
ENE	2	2	21	5	0	0	30	
Е	1	8	14	0	0	0	23	
ESE	0	9	3	0	0	0	12	
SE	2	2	2	0	0	0	6	
SSE	2	9	4	1	0	0	16	
S	1	11	7	4	0	0	23	
SSW	2	6	9	3	0	0	20	
SW	1	11	9	5	0	0	26	
WSW	1	7	11	2	0	0	21	
W	3	16	7	1	0	0	27	
WNW	1	7	5	1	0	0	14	
NW	0	13	16	0	0	0	29	
NNW	1	16	3	2	0	0	22	
Variable	0	0	0	0	0	0	0	
Total	19	168	158	31	0	0	376	
of calm in th	nis stab	ility cl	lass:	0				

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind speed (in mpn)							
Wind Direction	1-3	4 - 7 	8-12	13-18	19-24	> 24	Total	
N	2	8	0	0	0	0	10	
NNE	1	4	0	0	0	0	5	
NE	1	2	0	0	0	0	3	
ENE	0	2	1	0	0	0	3	
Е	2	29	8	0	0	0	39	
ESE	4	17	1	0	0	0	22	
SE	2	14	4	0	0	0	20	
SSE	4	8	2	0	0	0	14	
S	5	11	8	0	0	0	24	
SSW	2	13	19	2	0	0	36	
SW	5	11	18	0	0	0	34	
WSW	3	14	18	0	0	0	35	
W	4	15	3	0	0	0	22	
WNW	5	32	1	0	0	0	38	
NW	2	13	1	0	0	0	16	
NNW	6	12	3	0	0	0	21	
Variable	0	0	0	0	0	0	0	
Total	48	205	87	2	0	0	342	

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

17 d av 17	Wind Speed (in mpn)								
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total		
N	0	1	0	0	0	0	1		
NNE	0	1	0	0	0	0	1		
NE	0	0	0	0	0	0	0		
ENE	1	0	0	0	0	0	1		
Е	1	13	0	0	0	0	14		
ESE	1	28	1	0	0	0	30		
SE	0	45	4	0	0	0	49		
SSE	0	42	3	0	0	0	45		
S	2	42	23	1	0	0	68		
SSW	0	48	15	0	0	0	63		
SW	3	55	7	0	0	0	65		
WSW	1	48	11	0	0	0	60		
W	3	34	4	0	0	0	41		
WNW	0	25	0	0	0	0	25		
NW	1	1	0	0	0	0	2		
NNW	1	0	0	0	0	0	1		
Variable	0	1	0	0	0	0	1		
Total	14	384	68	1	0	0	467		

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		L W	ind speed	т (тп шрт	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	1	0	0	1
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	1	0	0	1
s of calm in th s of missing wi	ind meas	urements	s in this		-		0

Hours of missing stability measurements in all stability classes: 0

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		L VV	na speed	a (in mpi	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	1	0	0	1
NE	0	0	0	l	0	0	1
ENE	0	0	0	0	0	0	0
Е	0	0	0	0	0	0	0
ESE	0	0	0	1	0	0	1
SE	0	0	2	4	0	0	6
SSE	0	0	0	1	0	0	1
S	0	0	0	0	0	0	0
SSW	0	0	1	0	0	3	4
SW	0	0	4	0	0	0	4
WSW	0	0	0	3	1	0	4
W	0	0	0	2	0	0	2
WNW	0	0	0	2	1	0	3
NW	0	0	1	1	0	0	2
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	8	16	2	3	29
	0 nis stab ind meas	0 Dility cl	8 .ass: s in this	16 0 s stabil:	2	3	

Hours of missing stability measurements in all stability classes: 0

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		¥¥ _	ind speed	r (ru ubi	.1 /		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	0	0	1	2	0	3
NNE	0	0	2	1	0	0	3
NE	0	0	0	3	1	0	4
ENE	0	0	0	0	0	0	0
Е	0	0	0	0	0	0	0
ESE	0	1	0	0	0	0	1
SE	0	0	3	2	0	0	5
SSE	0	1	1	1	0	0	3
S	0	0	3	3	2	0	8
SSW	0	0	2	0	5	2	9
SW	0	1	4	1	1	0	7
WSW	0	0	6	7	0	0	13
W	0	1	17	5	0	0	23
WNW	0	0	0	2	2	0	4
NW	0	0	0	2	1	0	3
NNW	0	0	0	3	0	0	3
Variable	0	0	0	0	0	0	0
Total	0	4	38	31	14	2	89
of calm in th	ie etah	ditte al	2001	0			

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Neutral - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	wind Speed (in mpn)							
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total	
N	0	10	19	42	22	2	95	
NNE	1	6	10	15	2	0	34	
NE	2	13	22	27	21	4	89	
ENE	0	17	9	22	18	2	68	
Е	1	8	4	5	4	0	22	
ESE	0	11	9	2	2	0	24	
SE	0	11	10	2	1	0	24	
SSE	1	16	12	4	0	0	33	
S	0	21	17	14	2	0	54	
SSW	0	17	17	15	5	2	56	
SW	1	18	24	20	5	1	69	
WSW	1	11	29	16	5	0	62	
W	1	20	44	18	7	0	90	
WNW	0	7	24	17	2	0	50	
NW	0	7	25	31	9	6	78	
NNW	2	6	20	23	20	1	72	
Variable	0	0	0	0	0	0	0	
Total	10	199	295	273	125	18	920	

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		W	nd Speed	i (in mpr	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	1	5	12	18	7	0	43
NNE	1	5	5	16	0	0	27
NE	0	5	9	25	12	0	51
ENE	0	0	11	20	3	0	34
Е	0	5	9	19	8	0	41
ESE	0	5	10	6	3	0	24
SE	0	3	6	3	4	0	16
SSE	1	1	4	1	1	0	8
S	1	5	7	6	3	1	23
SSW	0	2	6	9	7	14	38
SW	0	4	6	9	12	12	43
WSW	1	1	7	12	9	1	31
W	0	4	7	14	3	0	28
WNW	2	5	10	8	2	0	27
NW	1	11	8	19	4	0	43
NNW	0	1	10	6	9	1	27
Variable	0	0	0	0	0	0	0
Total	8	62	127	191	87	29	504

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		L W	ind speed	r (in mbi	.1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	2	1	6	4	0	13
NNE	1	1	3	2	2	0	9
NE	0	2	0	2	1	0	5
ENE	1	5	2	0	0	0	8
E	3	6	4	9	3	0	25
ESE	5	1	11	18	2	0	37
SE	1	2	9	21	6	0	39
SSE	0	3	10	14	4	1	32
S	1	5	14	9	16	0	45
SSW	2	4	16	23	16	11	72
SW	0	4	15	23	12	4	58
WSW	2	1	10	28	12	0	53
W	1	0	15	16	7	0	39
WNW	1	3	11	18	1	0	34
NW	3	3	9	7	1	0	23
NNW	0	2	11	6	2	0	21
Variable	0	0	1	0	0	0	1
Total	21	44	142	202	89	16	514

LaSalle County Generating Station

Period of Record: July - September 2012 Stability Class - Extremely Stable- 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

		W	ind Speed	d (in mpi	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	1	0	1
NNE	0	1	0	0	0	0	1
NE	0	0	0	0	0	0	0
ENE	1	0	0	0	0	0	1
Е	0	1	0	0	0	0	1
ESE	1	0	0	0	0	0	1
SE	0	0	2	7	1	0	10
SSE	0	0	1	8	10	0	19
S	1	0	0	8	7	3	19
SSW	0	4	4	0	13	6	27
SW	0	1	8	11	2	1	23
WSW	0	1	7	9	0	0	17
W	1	0	8	9	0	0	18
WNW	0	1	2	6	1	0	10
NW	0	0	2	1	0	0	3
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	4	9	34	59	35	10	151
of calm in th	is stab	ility cl	lass:	0			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

.

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2012) METEOROLOGICAL DATA LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		W T	na speed		.1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
Е	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	1	0	0	1
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	1	0	0	1

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

			L	a (in mpi	,		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Tota
N	0	0	0	0	0	0	0
NNE	0	0	1 ·	0	0	0	1
NE	0	0	1	0	0	0	1
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	5	1	0	6
SW	0	0	0	1	2	0	3
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	O
NW	0	0	0	0	0	0	C
NNW	0	0	0	0	0	0	С
Variable	0	0	0	0	0	0	C
Total	0	0	2	6	3	0	1.]

Hours o Hours of missing stability measurements in all stability classes: 6

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

tit i an al		W	ind Speed	d (in mp)	n)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
Ν	0	0	1	1	0	0	2
NNE	0	0	1	0	0	0	1
NE	0	0	1	0	0	0	1
ENE	0	0	0	0	0	0	0
Е	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	1	6	3	0	10
SW	0	0	0	3	2	0	5
WSW	0	0	0	0	1	0	1
W	0	0	1	0	1	0	2
WNW	0	0	1	2	1	0	4
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	6	12	8	0	26
f calm in th						. 0	

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

17 d an 1		vv.	inu speed	r (TH WD	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	1	25	40	11	0	0	77
NNE	0	16	23	6	0	0	45
NE	0	6	10	3	0	0	19
ENE	0	5	19	1	0	0	25
E	1	6	10	6	0	0	23
ESE	0	4	8	1	0	0	13
SE	0	1	9	4	2	0	16
SSE	0	6	18	8	3	2	37
S	0	10	29	12	7	7	65
SSW	0	14	20	27	24	0	85
SW	1	7	11	10	3	1	33
WSW	0	15	10	6	1	1	33
W	3	23	34	25	8	0	93
WNW	0	19	43	42	8	0	112
NW	2	10	37	22	6	3	80
NNW	1	24	51	24	12	2	114
Variable	0	0	0	0	0	0	0
Total	9	191	372	208	74	16	870

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		W	ind speed	i (in mpi	1)		
Wind Direction	1-3		8-12	13-18		> 24	Total
N	0	25	43	5	0	0	73
NNE	1	30	11	1	0	0	43
NE	0	6	12	1	0	0	19
ENE	1	4	16	3	0	0	24
E	0	5	9	10	6	0	30
ESE	1	4	3	3	1	0	12
SE	1	7	18	2	3	0	31
SSE	2	12	14	2	0	0	30
S	1	5	39	41	12	1	99
SSW	0	6	37	39	16	0	98
SW	1	17	15	18	2	0	53
WSW	3	9	26	13	0	0	51
W	2	22	34	8	2	1	69
WNW	0	23	35	5	11	23	97
NW	0	4	17	1	2	3	27
NNW	0	9	17	13	6	0	45
Variable	0	0	0	0	0	0	0
Total	13	188	346	165	61	28	801

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Miles J		w.	ind speed	i (in mpi	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	1	9	0	0	0	0	10
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	2	1	0	0	0	0	3
Е	1	5	5	0	0	0	11
ESE	0	10	3	0	0	0	13
SE	0	6	5	0	0	0	11
SSE	1	6	17	0	0	0	24
S	2	7	14	6	1	0	30
SSW	0	7	31	15	0	0	53
SW	0	8	10	0	0	0	18
WSW	1	4	6	0	. 0	0	11
W	0	11	6	0	0	0	17
WNW	0	1	7	0	0	0	8
NW	2	3	3	0	0	0	8
NNW	0	2	0	0	0	0	2
Variable	0	0	0	0	0	0	0
Total	10	80	107	21	1	0	219

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		W	ind speed	i (in mpi	1)		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	1	0	0	0	0	0	1
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	3	6	0	0	0	9
ESE	0	9	3	0	0	0	12
SE	1	44	6	0	0	0	51
SSE	1	36	21	0	0	0	58
S	0	27	15	0	0	0	42
SSW	0	23	30	3	0	0	56
SW	0	10	8	3	0	0	21
WSW	0	2	0	1	0	0	3
W	1	3	1	0	0	0	5
WNW	1	7	6	0	0	0	14
NW	0	0	2	0	0	0	2
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	5	164	98	7	0	0	274
of calm in th	ia atab	dlity al	200.	0			

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

			-	iqm mpi	- /		
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

			a (in mpi			
1-3	4 - 7	8-12	13-18	19-24	> 24	Total
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
		0 0 0 0	0 0 0 0 0 0	00	00	····· ····· ····· ····· 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hours of missing stability measurements in all stability classes: 6

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

T.7.4 7	wind Speed (in mpn)								
Wind Direction	1-3	4 - 7 	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	1	0	0	1		
NE	0	0	0	1	0	0	1		
ENE	0	0	0	0	0	0	0		
Е	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	1	1	1	3		
SW	0	0	0	0	1	1	2		
WSW	0	0	0	0	0	0	0		
W	0	0	0	0	0	0	0		
WNW	0	0	0	0	1	0	1		
NW	0	0	0	0	0	0	0		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	0	3	3	2	8		
s of calm in the of missing w				0 s stabili	ity class	: 0			

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Neutral - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4 - 7	8-12	13-18		> 24	Total		
N	1	9	25	32	14	0	81		
NNE	0	6	28	29	10	0	73		
NE	0	1	19	15	3	0	38		
ENE	0	1	13	20	4	0	38		
Ē	0	2	7	6	12	7	34		
ESE	l	2	11	2	1	2	19		
SE	0	4	3	10	0	3	20		
SSE	1	4	22	12	3	6	48		
S	0	7	16	24	8	21	76		
SSW	0	7	9	31	19	41	107		
SW	0	6	15	6	15	11	53		
WSW	1	6	18	3	9	4	41		
W	1	10	26	26	21	10	94		
WNW	0	6	26	34	33	37	136		
NW	1	10	30	51	27	23	142		
NNW	1	12	26	27	9	15	90		
Variable	0	0	0	0	0	0	0		
Total	7	93	294	328	188	180	1090		

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 9 Hours of missing stability measurements in all stability classes: 6

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4 - 7	8-12	13-18	19-24	> 24	Total		
N	0	1	10	16	23	2	52		
NNE	0	2	6	22	6	0	36		
NE	0	1	9	11	3	0	24		
ENE	0	0	0	12	0	0	12		
Е	0	0	2	9	5	1	17		
ESE	0	1	5	3	0	2	11		
SE	0	1	2	6	4	5	18		
SSE	0	1	6	8	13	0	28		
S	0	1	3	23	25	45	97		
SSW	2	3	6	14	32	55	112		
SW	0	3	14	18	18	13	66		
WSW	0	1	8	19	12	8	48		
W	0	3	6	15	10	7	41		
WNW	1	2	12	19	26	12	72		
NW	0	6	10	13	13	1	43		
NNW	0	2	2	3	9	5	21		
Variable	0	0	0	0	0	0	0		
Total	3	28	101	211	199	156	698		

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 12 Hours of missing stability measurements in all stability classes: 6

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	wind Speed (in mpn)									
Wind Direction	1-3	4 - 7 	8-12	13-18	19-24	> 24	Total			
N	1	2	2	0	0	0	5			
NNE	0	1	2	0	0	0	3			
NE	0	0	0	0	0	0	0			
ENE	1	1	0	0	0	0	2			
Е	0	2	1	3	0	0	6			
ESE	1	1	3	4	3	0	12			
SE	0	0	9	7	3	0	19			
SSE	0	0	2	20	9	3	34			
S	0	3	5	16	17	8	49			
SSW	0	0	9	13	13	23	58			
SW	0	1	13	5	19	8	46			
WSW	1	1	3	1	1	1	8			
W	0	0	2	0	0	0	2			
WNW	0	1	2	5	4	0	12			
NW	0	0	0	1	10	2	13			
NNW	0	1	0	1	0	0	2			
Variable	0	0	0	0	0	0	0			
Total	4	14	53	76	79	45	271			
f golm in th	ia atah	iliter o	2001	0						

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

LaSalle County Generating Station

Period of Record: October - December 2012 Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

17. J	Wind Speed (in mph)									
Wind Direction	1-3	4 - 7 	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
Е	0	0	0	0	0	0	0			
ESE	0	2	0	0	0	0	2			
SE	0	0	0	2	3	0	5			
SSE	0	0	1	14	2	0	17			
S	0	0	4	17	9	5	35			
SSW	1	0	4	4	4	12	25			
SW	0	3	7	7	1	1	19			
WSW	0	1	4	3	0	0	8			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	1	0	0	0	1	1	3			
NNW	0	0	0	0	0	0	0			
Variable	0	0	0	0	0	0	0			
Total	2	6	20	47	20	19	114			
of calm in t	his stab	ility c]	ass:	0						

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

Appendix A

.

Offsite Dose Calculation Manual

Revision 4

ODCM Change Summary Matrix

ODCM cl	hange summa	ry matrix		Page 1 of 2
Item #	(Old) Rev.	(New) Rev.	Determination	Description of change
	3 page #	4 page #	identifier	

Editorial and grammatical – Determination EG

Removal of legacy methodology related changes – Determination METH Drum evaporator assessment to gaseous effluent pathway assessment – Determination DRUM WWTF potential tritium pathway and associated related changes – Determination WW

1	TOC	TOC	EG	Table of Contents was revised to reflect changes due to added/removed content
2	1.12.2.1-2	1.12.2.1-2	EG	Formatted (indented) the REC 12.2.1 table, Condition C, logical connector ' <u>OR</u> ' between Required Actions C.3 and C.4, and added '30 days' to the completion time of C.4 to clarify (ref. assignment 1278672-02)
3	I-12.4.1-2 to I-12.4.1- 6	I-12.4.1-2 to I-12.4.1- 6	EG	Title of table R12.4.4-1 corrected to indicate the actual number of pages in the table
4	N/A	II.2-1	WW	Added discussion to section 2.1 detailing the assessment of non significant effluent contribution from WWTF operations (ref. assignment 1301739-07)
5	N/A	11.2-7	DRUM	Added discussion to section 2.4 detailing the assessment of effluent contribution from drum evaporation activities (ref. assignment 1262028-04)
6.	11.3-5	N/A	METH	Removed description of legacy software no longer utilized and dual methodology for dose determination purposes at LaSalle Station in section 3.4.1
7.	II.3-5 to II.3-7	N/A	METH	Removed legacy methodology no longer utilized for liquid dose determination in section 3.4.1.1
8.	11.3-8	N/A	METH	Removed legacy methodology no longer utilized for liquid potable water pathway dose determination in section 3.4.2.1
9.	11.3-9	N/A	METH	Removed legacy methodology no longer utilized for liquid fish ingestion pathway dose determination in section 3.4.3.1
10.	11.4-1	N/A	METH	Removed description of legacy software no longer utilized and dual methodology for dose determination purposes at LaSalle Station in section 4.1
11.	II.4-2 to II.4-3	N/A	METH	Removed legacy methodology no longer utilized for Noble Gas Total Body Dose Rate determination in section 4.2.1.1
12.	II.4-4 to II.4-5	N/A	METH	Removed legacy methodology no longer utilized for Noble Gas Skin Dose Rate determination in section 4.2.1.2
13.	II.4-6 to	N/A	METH	Removed legacy methodology no longer utilized for Non Noble Gas Organ Dose Rate determination in section 4.2.1.3
14.	II.4-8 to II.4-9	N/A	METH	Removed legacy methodology no longer utilized for Noble Gas Gamma Air Dose determination in section 4.2.2.1
15.	II.4-10 to	N/A	METH	Removed legacy methodology no longer utilized for Noble Gas Beta Air Dose

ODCM cl	nange summa	ry matrix		Page 2 of 2
Item #	(Old) Rev.	(New) Rev.	Determination	Description of change
	3 page #	4 page #	identifier	

	11.4-11			determination in section 4.2.2.2
16.	II.4-13	N/A	METH	Removed legacy methodology no longer utilized for Noble Gas Whole Body Dose determination in section 4.2.2.3
17.	II.4-14 to II.4-15	N/A	METH	Removed legacy methodology no longer utilized for Noble Gas Skin Dose determination in section 4.2.2.4
18.	II.4-16	N/A	METH	Removed legacy methodology no longer utilized for Non Noble Gas Organ Dose determination in section 4.2.3
19.	II.4-18 to II.4-19	N/A	METH	Removed legacy methodology no longer utilized for Non Noble Gas Ground Plane Dose determination in section 4.2.3.1
20.	II.4-20 to II.4-21	N/A	METH	Removed legacy methodology no longer utilized for Non Noble Gas Inhalation Dose determination in section 4.2.3.2
21.	II.4-22 to II.4-25	N/A	METH	Removed legacy methodology no longer utilized for Non Noble Gas Vegetation Ingestion Dose determination in section 4.2.3.3
22.	II.4-26 to II.4-27	N/A	METH	Removed legacy methodology no longer utilized for Non Noble Gas Milk Ingestion Dose determination in section 4.2.3.4
23.	II.4-29 to II.4-30	N/A	METH	Removed legacy methodology no longer utilized for Non Noble Gas Meat Ingestion Dose determination in section 4.2.3.5
24.	II.4-38 to II.4-52	11.4-24	METH	Removed legacy methodology data table 4.6 no longer utilized for Noble Gas Dose determination
25.	11.4-53 to 11.4-67	11.4-25	METH	Removed legacy methodology data table 4.7 no longer utilized for Noble Gas Dose determination
26.	11.6-9	II.6-9	EG	Locations on map in figure 6-1 were clarified to more accurately depict the actual locations.
27.	II.6-10	II.6-10	EG	Locations on map in figure 6-2 were clarified to more accurately depict the actual locations.

Appendix B

Offsite Dose Calculation Manual

Part I RECS

Part II ODCM

LaSalle Station Units 1 and 2

Revision 4

OFFSITE DOSE CALCULATION MANUAL

PART I RECS

PART II ODCM

LaSalle Station Units 1 and 2

ODCM TABLE OF CONTENTS

<u></u>	THAD DEDGIONE EITEDENT CONTROLO (RECO)	
1.0		<u>PAGE</u> I-1.1-1
1.1	DEFINITIONS	-1.1-1
1.2	LOGICAL CONNECTORS	l-1.2-1
1.3	COMPLETION TIMES	I-1.3-1
1.4	FREQUENCY	I-1.4-1
1.5	REC & RSR IMPLEMENTATION	I-1.5-1
2.0-1 <i>°</i>	1.0 NOT USED	
12.0	ODCM RADIOLOGICAL EFFLUENT CONTROL (REC) APPLICABILITY	I-12.0-1
12.0	ODCM RADIOLOGICAL EFFLUENT SURVEILLANCE REQUIREMENT (RSR) APPLICABILITY	I-12.0-3
12.1	NOT USED	
12.2		I-12.2.1-1
	12.2.1 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION 12.2.2 Radioactive GASEOUS EFFLUENT MONITORING INSTRUMENTATION	
12.3	LIQUID EFFLUENTS	I-12 .3.1-1
	12.3.1 Liquid Effluent Concentration 12.3.2 Dose from Liquid Effluents 12.3.3 Liquid Radwaste Treatment System	I-12.3.2-1

L

.

i

ODCM TABLE OF CONTENTS

		PAGE
12.4	GASEOUS EFFLUENTS AND TOTAL DOSE	I-12.4.1-1
	12.4.1 Gaseous Effluent Dose Rates	1-12.4.1-1
	12.4.2 Dose from Noble Gases	I-12.4.2-1
	12.4.3 Dose from Iodine-131, Iodine-133, Tritium and Radioactive Materials	s in
	Particulate Form	I-12.4.3-1
	12.4.4 Gaseous Radwaste Treatment System	I-12.4.4-1
	12.4.5 Ventilation Exhaust Treatment System	
	12.4.6 Mark II Containment	I-12.4.6-1
	12.4.7 Total Dose	I-12.4.7-1
	12.4.8 Main Condenser	
	12.4.9 Dose Limits For Members Of The Public	I-12.4.9-1
12.5		I-12.5.1-1
	12.5.1 RADIOLOGICAL ENVIRONMENTAL MONITORING	
	PROGRAM (REMP) 12.5.2 LAND USE CENSUS	1-12.5.1-1
	12.5.3 Interlaboratory COMPARISON PROGRAM	1- 12.3.3-1
	12.5.4 METEOROLOGICAL MONITORING PROGRAM	I-12.5.4-1
12.6	REPORTING REQUIREMENTS	I-12.6.1-1
	12.6.1 Annual Radiological Environmental Operating Report	I-12.6.1-1
	12.6.2 Annual Radioactive Effluent Release Report	
	12.6.3 Off-site Dose Calculation Manual (ODCM)	
	12.6.4 Major Changes to Radioactive Waste Treatment Systems (Liquid	
	and Gaseous)	I-12.6.4 - 1

ODCM TABLE OF CONTENTS

В	BASES	•••••		I-E	3-1
	B.12.0	REC & RSF	I-B12.(0-1	
	B.12.1	NOT USED			
	B.12.2	INSTRUME	I-B12.2.	1-1	
		B.12.2.1	Radioactive Liquid Effluent Monitoring	10122	1 1
		B.12.2.2	Radioactive Gaseous Effluent	I-D 2.2.	-
			Monitoring Instrumentation	I-B12.2.2	2-1
	B12.3	LIQUID EF	FLUENTS	I-B12.3. ⁺	1-1
		B.12.3.1	Liquid Effluent Concentration	I-B12.3. [•]	1-1
		B.12.3.2	Dose from Liquid Effluents	I-B12.3.	2-1
		B.12.3.3	Liquid Radwaste Treatment Systems	I-B12.3.:	3-1
	B.12.4	GASEOUS	EFFLUENTS & TOTAL DOSE	I-B12.4.	1-1
		B.12.4.1	Gaseous Effluent Dose Rates	I-B12.4.	1-1
		B.12.4.2	Dose From Noble Gases	I-B12.4.:	2-1
		B.12.4.3	Dose From Iodine-131, Iodine-133Tritium And		
			Radioactive Materials In Particulate Form	I-B12.4.;	3-1
		B.12.4.4	Gaseous Radwaste Treatment		
			(Offgas) System		
		B.12.4.5	Ventilation Exhaust Treatment System		
		B.12.4.6	Mark II Containment	I-B12.4.0	6-1
		B.12.4.7	Total Dose	I-B12.4.	7-1
		B.12.4.8	Main Condenser		
		B.12.4.9	Dose Limits for Members of the Public	I-B12.4.9	9-1
	B.12.5		BICAL ENVIRONMENTAL MONITORING PROGRAM.		
		B.12.5.1	REMP	I-B12.5.	1-1
		B.12.5.2	Land Use Census	I-B12.5.	2-1
		B.12.5.3	Interlaboratory Comparison Program	I-B12.5.3	3-1
		B.12.5.4	Meteorological Monitoring Program	I-B12.5.4	4-1

TABLE OF CONTENTS

PART	<u> – O</u>	
1.0	INTRO	PAGE DOUCTION - ODCM GENERAL INFORMATION II.1-1
	1.1 1.2	STRUCTURE OF THE ODCMII.1-1REGULATIONSII.1-21.2.1Code of Federal RegulationsII.1-21.2.2Radiological Effluent Technical SpecificationsII.1-41.2.3Offsite Dose Calculation ManualII.1-51.2.4Overlapping RequirementsII.1-51.2.5Dose Receiver MethodologyII.1-6
	1.3 1.4	OFFSITE DOSE CALCULATION PARAMETERS
2.0	INSTR	RUMENTATION AND SYSTEMS II.2-1
	2.1	LIQUID RELEASES
	2.2	RADIATION MONITORSII.2-22.2.1Liquid Radwaste Effluent MonitorII.2-22.2.2Service Water Effluent MonitorII.2-22.2.3RHR Heat Exchange Cooling Water Effluent MonitorsII.2-2
	2.3	LIQUID RADIATION EFFLUENT MONITORS ALARM ANDTRIP SETPOINTSII.2-22.3.1 Liquid Radwaste Effluent MonitorII.2-32.3.2 Service Water Effluent MonitorII.2-32.3.3 RHR Heat Exchanger Cooling Water Effluent MonitorsII.2-32.3.4 Discharge Flow RatesII.2-42.3.5 Allocation of Effluents from Common Release PointsII.2-52.3.6 Projected Doses from ReleasesII.2-62.3.7 Solidification of Waste/Process Control ProgramII.2-6
	2.4	AIRBORNE RELEASES. II.2-6 2.4.1 Condenser Offgas Treatment System. II.2-7 2.4.2 Ventilation Exhaust Treatment System. II.2-8
	2.5	GASEOUS EFFLUENT RADIATION MONITORSII.2-82.5.1Station Vent Stack Effluent MonitorII.2-82.5.2Standby Gas Treatment System Effluent MonitorII.2-82.5.3Reactor Building Ventilation MonitorsII.2-92.5.4Condensor Air Ejector MonitorsII.2-92.5.5Turbine Building Trackway and North Service BuildingII.2-10

į.

i.

i

TABLE OF CONTENTS

<u>PART II</u>	<u>– ODCN</u>	
	2.6	PAGEGASEOUS RADIATION EFFLUENT ALARM AND TRIP SETPOINTS. II.2-102.6.1Reactor Building Vent Effluent MonitorII.2-102.6.2Condenser Air Ejector MonitorsII.2-102.6.3Station Vent Stack Effluent MonitorII.2-112.6.4Standby Gas Treatment Stack MonitorII.2-112.6.5Release LimitsII.2-112.6.6Release MixtureII.2-122.6.7Conversion FactorsII.2-132.6.9Allocation of Effluents from Common Release PointsII.2-132.6.10Dose ProjectionsII.2-13
3.0	LIQU 3.1 3.2 3.3	ID EFFLUENTS
	3.4	DOSE METHODOLOGYII.3-53.4.1 Liquid Effluent Dose Method: GeneralII.3-53.4.2 Potable Water PathwayII.3-63.4.3 Fish Ingestion PathwayII.3-73.4.4 Offsite DosesII.3-73.4.5 Drinking WaterII.3-7
	3.5	BIOACCUMULATION FACTORS II.3-7
4.0	GASI	EOUS EFFLUENTS II.4-1
	4.1	GASEOUS EFFLUENTS – GENERAL INFORMATION II.4-1
	4.2	GASEOUS EFFLUENTS - DOSE AND DOSE RATE CALCULATIONREQUIREMENTS4.2.1Instantaneous Dose Rates4.2.2Time Averaged Dose from Noble Gas11.4-54.2.3Time Averaged Dose from Non-Noble Gas Radionuclides11.4-9

.

Ì

÷

;

TABLE OF CONTENTS

•

PART II -	- ODC	M	
5.0	тот	AL DOSE	<u>PAGE</u> . 11.5-1
	5.1	TOTAL DOSE CALCULATION REQUIREMENTS 5.1.1 Total Effective Dose Equivalent Limits; 10CFR20 and 40CFR190 5.1.2 Total Dose Calculation Methodology	. 11.5-1
		5.1.3 BWR Skyshine	
	5.2	BWR SKYSHINE CALCULATION	. 11.5-3
	5.3	ONSITE RADWASTE AND RAD MATERIAL STORAGE FACILITIES 5.3.1 Process Waste Storage Facilities 5.3.2 DAW Storage Facilities 5.3.3 ISFSI Facilities	. 11.5-6 . 11.5-6
	5.4	METHODOLOGY	. 11.5-6
	5.5	TOTAL DOSE	. 11.5-7
	5.6	COMPLIANCE TO TOTAL DOSE LIMITS 5.6.1 Total Effective Dose Equivalent Limit – 10CFR20 Compliance 5.6.2 Dose to a MEMBER OF THE PUBLIC in the Unrestricted Area	. 11.5-8
		5.6.3 Dose to a MEMBER OF THE PUBLIC in the Restricted Area 5.6.4 Total Dose Due to the Uranium Fuel Cycle (40CFR190)	. II <i>.</i> 5-8
	5.7	WHEN COMPLIANCE ASSESSMENT IS REQUIRED	II.5-10
6.0	RAD	IOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	. II.6 - 1

ODCM TABLE OF CONTENTS

LIST OF TABLES

			PAGE
Table 1-1		Compliance Matrix	
Table R12.2.	1-1	Radioactive Liquid Effluent Monitoring Instrumentation	I-12 .2.1-5
Table R12.2.	2-1	Radioactive Gaseous Effluent Monitoring Instrumentation	I-12.2.2-5
Table R12.2.	2-2	Radioactive Gaseous Effluent Monitoring Instrumentation Applicability	I-12.2.2-7
Table R12.3.	1-1	Allowable Concentration of Dissolved or Entrained Noble Gases Released from the Site to Unrestricted Areas in Liquid Waste.	1-12 3 1-3
Table R12.3.	1-2	Radioactive Liquid Waste Sampling and Analysis Program	I-12.3.1-4
Table R12.4.	1-1	Radioactive Gaseous Waste Sampling and Analysis Program	I-12.4.1-2
Table R12.5.	1-1	Radiological Environmental Monitoring Program	I-12.5.1 - 6
Table R12.5.	1-2	Reporting Levels for Radioactivity Concentrations in Environmental Samples	I-12.5.1-11
Table R12.5.	1-3	Detection Capabilities for Environmental Sample Analysis Lower Limit of Detection	I-12.5.1-12
PART II - OD	<u>)CM</u>		
Table 1-1	Regul	atory Dose Limit Matrix	II.1-7
Table 1-2	Dose .	Assessment Receivers	II.1-8
Table 1-3	Misce	llaneous Dose Assessment Factors: Environmental Parameters	11.1-17
Table 1-4	Stable	e Element Transfer Data	II.1-19
Table 2-1	Assun	ned Composition Of the LaSalle Station Noble Gas Effluent	II.2-14

ODCM TABLE OF CONTENTS

LIST OF TABLES

PART II - O		_
Table 3-1	PAG Bioaccumulation Factors (Bfi) to be Used in the Absence of Site- Specific Data	
Table 4-1	Critical Ranges II.4-1	8
Table 4-2	Average Wind Speeds II.4-1	9
Table 4-3	X/Q and D/Q Maxima at or Beyond the Unrestricted Area Boundary II.4-2	:0
Table 4-4	X/Q and D/Q Maxima at or Beyond the Restricted Area Boundary II.4-2	!1
Table 4-5	D/Q at the Nearest Milk Cow and Meat Animal Locations within 5 miles II.4-2	2!
Table 4-6	DeletedII.4.2	24
Table 4-7	Deleted II.4-2	25
Table 4-8	Parameters for Calculations of N-16 Skyshine Radiation From LaSalle	26
Table 4-9	Elevated Level Joint Frequency Distribution Table Summary	27
Table 4-10	Mid Elevation Joint Frequency Distribution Table Summaries	29
Table 4-11	Ground Level Joint Frequency Distribution Table Summary II.4-3	31
Table 4-12	Station Characteristics II.4-3	33
Table 4-13	Dose Factors for Noble Gases II.4-3	34
Table 4-14	External Dose Factors for Standing on Contaminated Ground DFG _{ij} (mrem/hr per pCi/ m ²) II.4-3	35
Table 4-15	Maximum B _i and V _i at or Beyond the Unrestricted Area Boundary II.4-3	38
Table 4-16	Infant Drinking Water A _{it} II.4-5	53
Table 4-17	Child Drinking Water Ait II.4-5	57
Table 4-18	Teen Drinking Water A _{it} II.4-6	31
Table 4-19	Adult Drinking Water A _{iT}	35
LaSalle ODCM	Page 8 of 11 1 Table of Contents	

Table 4-20	Infant Fish A _{it} II.4-69
Table 4-21	Child Fish A _{iT} II.4-73
Table 4-22	Teen Fish A _{it} II.4-77
Table 4-23	Adult Fish A _{iT} II.4-81
Table 4-24	Infant Inhalation P _i II.4-85
Table 4-25	Child Inhalation P _i II.4-89
Table 4-26	Teen Inhalation P _i II.4-93
Table 4-27	Adult Inhalation P _i II.4-97
Table 4-28	All Age Groups Ground Plane R _i II.4-101
Table 4-29	Infant Inhalation R _i II.4-105
Table 4-30	Child Inhalation R _i II.4-109
Table 4-31	Teen Inhalation R _i II.4-113
Table 4-32	Adult Inhalation R _i II.4-117
Table 4-33	Infant Vegetation R _i II.4-121
Table 4-34	Child Vegetation R _i II.4-125
Table 4-35	Teen Vegetation R _i II.4-129
Table 4-36	Adult Vegetation R _i II.4-133
Table 4-37	Infant Milk R _i II.4-137
Table 4-38	Child Milk R _i II.4-141
Table 4-39	Teen Milk R _i II.4-145
Table 4-40	Adult Milk R _i II.4-149
Table 4-41	Infant Meat R _i II.4-153

Table 4-42	Child Meat R _i	II.4-157
Table 4-43	Teen Meat R _i	II.4-161
Table 4-44	Adult Meat R _i	II.4-165
Table 6-1	Radiological Environmental Monitoring Program	11.6-2

4

-

.

ODCM TABLE OF CONTENTS

LIST OF FIGURES

PART I – RADIOLOGICAL EFFLUENT CONTROLS

<u>PAGE</u>

;

PART II – ODCM

None

Figure 1-1	Radiation Exposure Pathways to Humans II.1-9
Figure 1-2	Unrestricted Area Boundary II.1-21
Figure 1-3	Restricted Area Boundary II.1-22
Figure 2-1	Simplified Gaseous Radwaste and Gaseous Effluent Flow Diagram II.2-15
Figure 2-2	Simplified Liquid Radwaste Processing Diagram II.2-17
Figure 2-3	Simplified Liquid Effluent Flow Diagram II.2-18
Figure 2-4	Simplified Solid Radwaste Processing Diagram II.2-19
Figure 6-1	Fixed Air Sampling Sites and Outer Ring TLD Locations II.6-9
Figure 6-2	Inner Ring TLD Locations II.6-10
Figure 6-3	Ingestion and Waterborne Exposure Pathway Sample Locations II.6-11

ī

OFFSITE DOSE CALCULATION MANUAL

PART I RECS

PART II ODCM

LaSalle Station Units 1 and 2

CY-LA-170-301 Revision 4 Part I, Radiological Effluent Controls

RADIOLOGICAL EFFLUENT CONTROLS

LASALLE STATION Units 1 and 2

Т

1.0 USE AND APPLICATION

1.1 DEFINITIONS

-----NOTE-----

The defined terms of this section appear in capitalized type and are applicable throughout these Offsite Dose Calculation Manual (ODCM) Controls and Bases.

Term Definition ACTION ACTION shall be that part of a control that prescribes remedial measures required under designated conditions. CHANNEL A CHANNEL CALIBRATION shall be the adjustment, as CALIBRATION necessary, of the channel output such that it responds within the necessary range and accuracy to known values of the parameter that the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel, including the required sensor, alarm, display, and trip functions, and shall include the CHANNEL FUNCTIONAL TEST. Calibration of instrument channels with resistance temperature detector (RTD) or thermocouple sensors may consist of an in-place qualitative assessment of sensor behavior and normal calibration of the remaining adjustable devices in the channel. The CHANNEL CALIBRATION may be performed by means of any series of sequential, overlapping, or total channel steps so that the entire channel is calibrated. For specific calibration requirements refer to surveillance requirements section for the applicable instrumentation. A CHANNEL CHECK shall be a qualitative assessment, by CHANNEL CHECK observation, of channel behavior during operation. This determination shall include, where possible, comparison of the channel indication and status to other indications or status derived from independent instrument channels measuring the same parameter. CHANNEL A CHANNEL FUNCTIONAL TEST shall be the injection of a FUNCTIONAL TEST simulated or actual signal into the channel as close to the sensor as practicable to verify OPERABILITY, including required alarm, interlock, display, and trip functions, and channel failure trips. The CHANNEL FUNCTIONAL TEST may be performed by means of any series of sequential, overlapping, or total channel steps so that the entire channel is tested.

CONTINUOUS SAMPLING	Uninterrupted sampling with the exception of sampling interruptions of short duration for required surveillances.
DOSE EQUIVALENT I-131	That concentration of I-131 (microcuries/gram) that alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in Table III of TID -14844, AEC, 1962, "Calculation of Distance Factors for Power and Test Reactor Sites"; Table E-7 of Regulatory Guide 1.109, Rev. 1, NRC, 1977; or ICRP 30, Supplement to Part 1, pages 192-212, Table titled, "Committed Dose Equivalent in Target Organs or Tissues per Intake of Unit Activity."
GASEOUS RADWASTE TREATMENT SYSTEM	Any system designed and installed to reduce radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.
MEMBERS OF THE PUBLIC	Any individual, except when that individual is receiving an occupational dose.
MODE	A MODE shall correspond to any one inclusive combination of mode switch position, average reactor coolant temperature, and reactor vessel head closure bolt tensioning specified in Technical Specifications with fuel in the reactor vessel.
OCCUPATIONAL DOSE	The dose received by an individual in the course of employment in which the individual's assigned duties involve exposure to radiation and/or to radioactive material from licensed and unlicensed sources of radiation, whether in the possession of the licensee or other person. Occupational dose does not include dose from background radiation, as a patient from medical practices, from voluntary participation in medical research programs, or as a member of the public.

OFFSITE DOSE CALCULATION MANUAL (ODCM)	The ODCM shall contain the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints, and in the conduct of the Radiological Environmental Monitoring Program. The ODCM shall also contain (1) the Radioactive Effluent Controls and Radiological Environmental Monitoring Program and (2) descriptions of the information that should be included in the Annual Radiological Environmental Operating and Radioactive Effluent Release Reports.
OPERABLE - OPERABILITY	A system, subsystem, division, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s) and when all necessary attendant instrumentation, controls, normal or emergency electrical power, cooling and seal water, lubrication, and other auxiliary equipment that are required for the system, subsystem, division, component, or device to perform its specified function(s) are also capable of performing their related support function(s).
PROCESS CONTROL PROGRAM (PCP)	The PCP shall contain the current formulas, sampling, analyses, test, and determinations to be made to ensure that processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes shall be accomplished in such a way as to assure compliance with 10 CFR Parts 20, 61, and 71, State regulations, burial ground requirements, and other requirements governing the disposal of solid radioactive waste.
PURGE – PURGING	PURGE or PURGING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.
RATED THERMAL POWER (RTP)	The applicable unit's RTP shall be a total reactor core heat transfer rate to the reactor coolant as defined in Technical Specifications.

(continued)

.

٠

RADIOLOGICAL EFFLUENT CONTROL STANDARDS (RECS)	A compilation of the various regulatory requirements, surveillance and bases, commitments and/or components of the radiological effluent and environmental monitoring programs for LaSalle Station. To assist in the understanding of the relationship between effluent regulations, ODCM equations, RECS and related Technical Specification requirements, Table 1-1 provides a matrix that relates these various components, as well as the Radiological Environmental Monitoring Program fundamental requirements.
SITE BOUNDARY	That line beyond which the land is not owned, leased, or otherwise controlled by licensee as defined in ODCM Part II Figure 1-3.
SOLIDIFICATION	SOLIDIFICATION shall be the conversion of radioactive wastes from liquid systems to a homogeneous (uniformly distributed), monolithic, immobilized solid with definite volume and shape, bounded by a stable surface of distinct outline on all sides (free- standing).
SOURCE CHECK	A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a radioactive source (This could be an external source or known radioactive process stream).
THERMAL POWER	THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.
UNRESTRICTED AREA	UNRESTRICTED AREA means an area, access to which is neither limited nor controlled by the licensee.
VENTILATION EXHAUST TREAT- MENT SYSTEM	A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal adsorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust system prior to the release to the environment (such a system is not considered to have any effect on noble gas effluents). Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

VENTING VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

DEFINITIONS PECULIAR TO ESTIMATING DOSE TO MEMBERS OF THE PUBLIC USING THE ODCM COMPUTER PROGRAM:

- a. ACTUAL Refers to using known release data to project the dose to the public for the previous time period. These data are stored in the database and used to demonstrate compliance with the reporting requirements of RECS.
- b. PROJECTED Refers to using known release data from the previous time period or estimated release data to forecast a future dose to the public. This data is <u>NOT</u> incorporated into the database.

Table 1-1 (Page 1 of 2)

COMPLIANCE MATRIX

Desulation		ODCM	DECO	Technical
Regulation	Dose Component Limit	Equation	RECS	Specification
10 CFR 50 Appendix I	 Gamma air dose and beta air dose due to airborne radioactivity in effluent plume. 	4-4 4-5	12.4.2	5.5.4.h
	 Whole body and skin dose due to airborne radioactivity in effluent plume are reported only if certain gamma and beta air dose criteria are 	4-2 4-8	N/A	N/A
	exceeded.			
	b Projected doses due to gaseous release, when averaged over 31 days, exceed 0.3 mrem to any organ.	N/A	12.4.5	5.5.4.f
	 Projected doses due to liquid release, when averaged over 31 days, exceed 0.06 mrem to the total body or 0.2 mrem to any organ. 	N/A	12.3.3	5.5.4.f
	 CDE for all organs and all four age groups due to iodines and particulates in effluent plume. All pathways are considered. 	4-14	12.4.3	5.5.4.i
	 CDE for all organs and all four age groups due to radioactivity in liquid effluents. 	3-3	12.3.2	5.5.4.d
10 CFR 20	 TEDE, totaling all deep dose equivalent components (direct, ground and plume shine) and CDE (all pathways, both airborne and liquid-borne). CDE evaluation is made for adult only using FGR 11 database. 	5-3	12.4.9	5.5.4.c
40 CFR 190 (now by	 Whole body dose (DDE) due to direct dose, ground and plume shine from all sources at a station. 	5-2	12.4.7	5.5.4.j
reference, also part of 10 CFR 20)	2. Organ doses (CDE) to an adult due to all pathways.	3-3 4-8		
Technical Specifications	 "Instantaneous" whole body (DDE), skin (SDE), and thyroid (CDE) dose rates due to radioactivity in airborne effluents. For the thyroid dose, only inhalation is considered. 	4-9 4-10 4-6	12.4.1	5.5.4.g
	2. "Instantaneous" concentration limits for liquid effluents.	3-5	12.3.1	5.5.4.b
	3. Radioactive Effluent Release Report	N/A	12.6.2	5.6.3

Table 1-1 (Page 2 of 2)

COMPLIANCE MATRIX

Regulation		Dose Component Limit		RECS	Technical Specification
10CFR50 Appendix I Section IV.B.2	1.	Implement environmental monitoring program.	N/A	12.5.1	N/A
10CFR50 Appendix I Section IV.B.3	1.	Land Use Census	N/A	12.5.2	N/A
10CFR50 Appendix I Section IV.B.2	1.	Interlaboratory Comparison Program	N/A	12.5.3	N/A
10CFR50 Appendix I Section IV.B.2 and Technical Specifications	1.	Annual Radiological Environmental Operating Report	N/A	12.6.1	5.6.2

1.0 USE AND APPLICATION

1.2 Logical Connectors

PURPOSE	The purpose of this section is to explain the meaning of logical connectors.			
	Logical connectors are used in ODCM to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in ODCM are <u>AND</u> and <u>OR</u> . The physical arrangement of these connectors constitutes logical conventions with specific meanings.			
BACKGROUND	Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentations of the logical connectors. When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.			
EXAMPLES	The following examples illustrate the use of logical connectors.			
	(continued)			

1

L

1.2 Logical Connectors

EXAMPLES (continued)

EXA	MΡΙ	LE 1	1.2-1	
				-

ACTIONS CONDITION **REQUIRED ACTION** COMPLETION TIME Α. Control not met. A.1 Verify . . . AND A.2 Restore . . .

In this example, the logical connector <u>AND</u> is used to indicate that, when in Condition A, both Required Actions A.1 and A.2 must be completed.

1.2 Logical Connectors

EXAMPLES (continued) EXAMPLE 1.2-2

ACTIONS CONDITION **REQUIRED ACTION** COMPLETION TIME A.1 Α. Control not met. Trip . . . OR A.2.1 Verify ... AND A.2.2.1 Reduce . . . OR A.2.2.2 Perform . . . <u>OR</u> A.3 Align

This example represents a more complicated use of logical connectors. Required Actions A.1, A.2 and A.3 are alternate choices, only one of which must be performed as indicated by the use of the logical connector <u>OR</u> and the left justified placement. Any one of these three Action may be chosen. If A.2 is chose, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector <u>AND</u>. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector <u>OR</u> indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.

1.0 USE AND APPLICATION

1.3 Completion Times

PURPOSE	The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.
BACKGROUND	ODCM Radiological Effluent Controls (RECs) specify minimum requirements for ensuring safe operation of the unit. The ACTIONS associated with a REC state Conditions that typically describe the ways in which the requirements of the REC can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Times.
DESCRIPTION	The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., inoperable equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the unit is in a MODE or specified condition stated in the Applicability of the REC. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the unit is not within the REC Applicability.
	If situations are discovered that require entry into more than one Condition at a time within a single REC (multiple Conditions), the Required Actions for each Condition must be performed within the associated Completion Time. When in multiple Conditions, separate Completion Times are tracked for each Condition starting from the time of discovery of the situation that required entry into the Condition.
	Once a Condition has been entered, subsequent divisions, subsystem, components or variables expressed in the Condition, discovered to be inoperable or not within limits, will <u>not</u> result in separate entry into the Condition unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.
	(continued)

,

DESCRIPTION (continued)	However, when a <u>subsequent</u> division, subsystem, component, or variable expressed in the Condition is discovered to be inoperable or not within limits, the Completion Time(s) may be extended. To apply this Completion Time extension, two criteria must first be met. The subsequent inoperability:				
	a. Must exist concurrent with the <u>first</u> inoperability; and				
	b.	Must remain inoperable or not within limits after the first inoperability is resolved.			
	The total Completion Time allowed for completing a Required Action to address the subsequent inoperability shall be limited to the more restrictive of either:				
	а.	The stated Completion Time, as measured from the initial entry into the Condition, plus an additional 24 hours; or			
	b.	The stated Completion Time as measured from discovery of the subsequent inoperability.			
	The above Completion Time extension does not apply to those RECs that have exceptions that allow completely separate re-entry into the Condition (for each division, subsystem, component, or variable expressed in the Condition) and separate tracking of Completion Times based on this re- entry. These exceptions are stated in individual RECs.				
	The above Completion Time extension does not apply to a Completion Time with a modified "time zero." This modified "time zero" may be expressed as a repetitive time (i.e., "once per 8 hours," where the Completion Time is referenced from a previous completion of the Required Action versus the time of Condition entry) or as a time modified by the phrase "from discovery" Example 1.3-3 illustrates one use of this type of Completion Time. The 10 day Completion Time specified for Condition A and B in Example 1.3-3 may not be extended.				
EXAMPLES		llowing examples illustrate the use of Completion Times with Int types of Conditions and changing Conditions.			

EXAMPLES (continued) EXAMPLE 1.3-1

ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME	
В.	Required Action and associated Completion	B.1	Be in MODE 3.	12 hours	
	Time not met.	AND		36 hours	
		B.2	Be in MODE 4.		

Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are in to be in MODE 3 within 12 hours <u>AND</u> in MODE 4 within 36 hours. A total of 12 hours is allowed for reaching MODE 3 and a total of 36 hours (not 48 hours) is allowed for reaching MODE 4 from the time that Condition B was entered. If MODE 3 is reached within 6 hours, the time allowed for reaching MODE 4 is the next 30 hours because the total time allowed for reaching MODE 4 is 36 hours.

If Condition B is entered while in MODE 3, the time allowed for reaching MODE 4 is the next 36 hours.

T.

1.3 Completion Times

EXAMPLES (continued) EX

EXAMPLE 1.3-2

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	One monitor inoperable.	A.1	Restore monitor to OPERABLE status.	7 days
В.	Required Action and associated Completion Time not met.	B.1	Be in MODE 3.	12 hours
		AND		
		B.2	Be in MODE 4.	36 hours

When a monitor is declared inoperable, Condition A is entered. If the monitor is not restored to OPERABLE status within 7 days, Condition B is also entered and the Completion Time clocks for Required Action B.1 and B.2 start. If the inoperable monitor is restored to OPERABLE status after Condition B is entered, Condition A and B are exited, and therefore, the Required Actions of Condition B may be terminated.

When a monitor pump is declared inoperable while the first monitor is still inoperable, Condition A is not re-entered for the second monitor. REC 12.0.3 is entered, since the ACTIONS do not include a Condition from more than one inoperable monitor. The Completion Time clock for Condition A does not stop after REC 12.0.3 is entered, but continues to be tracked from the time Condition A was initially entered.

While in REC 12.0.3, if one of the inoperable monitors is restored to OPERABLE status and the Completion Time for Condition A has not expired, REC 12.0.3 may be exited and operation continued in accordance with Condition A.

EXAMPLES <u>EXAMPLE 1.3-2</u> (continued)

While in REC 12.0.3, if one of the inoperable monitors is restored to OPERABLE status and the Completion Time for Condition A has expired, REC 12.0.3 may be exited and operation continued in accordance with Condition B. The Completion Time for Condition B is tracked from the time the Condition A Completion Time expired.

On restoring one of the monitors to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first monitor was declared inoperable. This Completion Time may be extended if the monitor restored to OPERABLE status was the first inoperable monitor. A 24 hour extension to the stated 7 days is allowed, provided this does not result in the second monitor being inoperable for > 7 days.

EXAMPLES

(continued) EXAMPLE 1.3-3

ACTIONS

	CONDITION		REQUIRED ACTION	
Α.	One Function X subsystem inoperable.	A.1	Restore Function X subsystem to OPERABLE status.	7 days <u>AND</u> 10 days from discovery of failure to meet the Control
В.	One Function Y subsystem inoperable.	B.1	Restore Function Y subsystem to OPERABLE status.	72 hours AND 10 days from discovery to meet Control
C.	One Function X subsystem inoperable. <u>AND</u> One Function Y subsystem inoperable.	C.1 <u>OR</u> C.2	Restore Function X subsystem to OPERABLE status. Restore Function Y subsystem to OPERABLE status.	72 hours 72 hours

(continued)

•

EXAMPLES <u>EXAMPLE 1.3-3</u> (continued)

When one Function X subsystem and one Function Y subsystem are inoperable, Condition A and Condition B are concurrently applicable. The Completion Times for Condition A and Condition B are tracked separately for each subsystem, starting from the time each subsystem was declared inoperable and the Condition was entered. A separate Completion Time is established for Condition C and tracked from the time the second subsystem was declared inoperable (i.e., the time the situation described in Condition C was discovered).

If Required Action C.2 is completed within the specified Completion Time, Conditions B and C are exited. If the Completion Time for Required Action A.1 has not expired, operation may continue in accordance with Condition A. The remaining Completion Time in Condition A is measured from the time the affected subsystem was declared inoperable (i.e., initial entry into Condition A).

The Completion Times of Conditions A and B are modified by a logical connector, with a separate 10 day Completion Time measured from the time it was discovered the REC was not met. In this example, without the separate Completion Time, it would be possible to alternate between Conditions A, B, and C in such a manner that operation could continue indefinitely without ever restoring systems to meet the REC. The separate Completion Time modified by the phrase "from discovery of failure to meet the Control" is designed to prevent indefinite continued operation while not meeting the REC. This Completion Time allows for an exception to the normal "time zero" for beginning the Completion Time "clock." In this instance, the Completion Time "time zero" is specified as commencing at the time the associated Condition was entered.

EXAMPLES EXAMPLE 1.3-4

(continued)

ACTIONS

ACT	IUNS			
CONDITION		I		
A.	One or more required instruments inoperable.	A.1	Restore instruments(s) to OPERABLE status.	4 hours
В.	Required Action and associated Completion	B.1	Be in MODE 3.	12 hours
	Time not met.	AND		36 hours
		B.2	Be in MODE 4.	

A single Completion Time is used for any number of instruments inoperable at the same time. The Completion Time associated with Condition A is based on the initial entry into Condition A and is not tracked on a per instrument basis. Declaring subsequent instruments inoperable, while Condition A is still in effect, does not trigger the tracking of separate Completion Times.

Once one of the instruments has been restored to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first instrument was declared inoperable. The Completion Time may be extended if the instrument restored to OPERABLE status was the first inoperable instrument. The Condition A Completion Time may be extended for up to 4 hours provided this does not result in any subsequent instrument being inoperable for > 4 hours.

If the Completion Time of 4 hours (plus the extension) expires while one or more instruments are still inoperable, Condition B is entered.

EXAMPLES (continued)	ACTI	AMPLE 1.3-5 TIONS 			
		CONDITION	F	REQUIRED ACTION	
	A.	One or more instruments inoperable.	A.1	Restore instrument(s) to OPERABLE status.	4 hours
	В.	Required Action and associated Completion Time not met.	B.1	Be in MODE 3.	12 hours
		time not met.	AND		36 hours
			B.2	Be in MODE 4.	

The Note above the ACTIONS Table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each inoperable instrument, and Completion Times tracked on a per instrument basis. When an instrument is declared inoperable, Condition A is entered and its Completion Time starts. If subsequent instruments are declared inoperable, Condition A is entered for each instrument and separate Completion Times start and are tracked for each instrument.

If the Completion Time associated with an instrument in Condition A expires, Condition B is entered for that instrument. If the Completion Times associated with subsequent instruments in Condition A expire, Condition B is entered separately for each instrument and separate Completion Times start and are tracked for each instrument. If a instrument that caused entry into Condition B is restored to OPERABLE status, Condition B is exited for that instrument.

Since the Note in this example allows multiple Condition entry and tracking of separate Completion Times, Completion Time extensions do not apply.

EXAMPLES

(continued)

EXAMPLE 1.3-6

ACTIONS

	CONDITION	REQUIRED ACTION	
Α.	One channel inoperable.	Perform RSR 12.x.x.x. <u>OR</u> Reduce THERMAL POWER to \leq 50% RTP.	Once per 8 hours 8 hours
В.	Required Action and associated Completion Time not met.	B.1 Be in MODE 3.	12 hours

Entry into Condition A offers a choice between Required Action A.1 or A.2. Required Action A.1 has a "once per" Completion Time, which qualifies for the 25% extension, per RSR 12.0.2 to each performance after the initial performance. The initial 8 hour interval of Required Action A.1 begins when Condition A is entered and the initial performance of Required Action A.1 must be completed within the first 8 hour interval. If Required Action A.1 is followed and the Required Action is not met within the Completion Time (plus the extension allowed by RSR 12.0.2), Condition B is entered. If Required Action A.2 is followed and the Completion Time of 8 hours is not met, Condition B is entered.

If after entry into Condition B, Required Action A.1 or A.2 is met, Condition B is exited and operation may then continue in Condition A.

EXAMPLES

(continued) EXAMPLE 1.3-7

ACTIONS

	CONDITION	6	REQUIRED ACTION	
Α.	One subsystem inoperable.	A.1	Verify affected subsystem isolated.	1 hour <u>AND</u> Once per 8 hours thereafter
		A.2	Restore subsystem to OPERABLE status.	72 hours
В.	Required Action and associated Completion Time not met.	В.1 <u>AND</u>	Be in MODE 3.	12 hours
<u> </u>		B.2	Be in MODE 4.	36 hours

Required Action A.1 has two Completion Times. The 1 hour Completion Time begins at the time the Condition is entered and each "Once per 8 hours thereafter" interval begins upon performance of Required Action A.1.

If after Condition A is entered, Required Action A.1 is not met within either the initial 1 hour or any subsequent 8 hour interval from the previous performance (plus the extension allowed by RSR 12.0.2), Condition B is entered. The Completion Time clock for Condition A does not stop after Condition B is entered, but continues from the time Condition A was initially entered. If Required Action A.1 is met after Condition B is entered, Condition B is exited and operation may continue in accordance with Condition A, provided the Completion Time for Required Action A.2 has not expired.

IMMEDIATEWhen "Immediately" is used as a Completion Time, the Required Action should be
pursued without delay and in a controlled manner.TIME

•

1.0 USE AND APPLICATION

1.4 Frequency

PURPOSE	The purpose of this section is to define the proper use and application of Frequency requirements.
DESCRIPTION	Each ODCM Radiological Effluent Surveillance Requirement (RSR) has a specified Frequency in which the Surveillance must be met in order to meet the associated ODCM REC. An understanding of the correct application of the specified Frequency is necessary for compliance with the RSR.
	The "specified Frequency" is referred to throughout this section and each of the Requirements of Section 12.0, ODCM Surveillance Requirement (RSR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each RSR, as well as certain Notes in the Surveillance column that modify performance requirements.
	Sometimes special situations dictate when the requirements of a Surveillance are to be met. They are "otherwise stated" conditions allowed by RSR 12.0.1. They may be stated as clarifying Notes in the Surveillance, as part of the Surveillance, or both. Example 1.4-4 discusses these special situations.
	Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated REC is within its Applicability, represent potential RSR 12.0.4 conflicts. To avoid these conflicts, the RSR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With a RSR satisfied, RSR 12.0.4 imposes no restriction.
	The use of "met" or "performed" in these instances conveys specified meanings. A Surveillance is "met" only when the acceptance criteria are satisfied. Known failure of the requirements of a Surveillance, even without a Surveillance specifically being "performed," constitutes a Surveillance not "met." "Performance" refers only to the requirement to
	(continued)

1.4 Frequency

DESCRIPTION	specifically determine the ability to meet the acceptance criteria.
(continued)	RSR 12.0.4 restrictions would not apply if both the following conditions are
	satisfied:

- a. The Surveillance is not required to be performed; and
- b. The Surveillance is not required to be met or, even if required to be met, is not known to be failed.

EXAMPLES The following examples illustrate the various ways that Frequencies are specified. In these examples, the Applicability of the REC (REC not shown) is MODES 1, 2, and 3.

EXAMPLE 1.4-1

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Perform CHANNEL CHECK	12 hours

Example 1.4-1 contains the type of RSR most often encountered in the ODCM. The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by RSR 12.0.2 for operational flexibility. The measurement of this interval continues at all times, event when the RSR is not required to be met per RSR 12.0.1 (such as when the equipment is inoperable, a variable is outside specified limits, or the unit is outside the Applicability of the REC). If the interval specified by RSR 12.0.2 is exceeded while the unit is in a MODE or other specified condition in the Applicability of the REC,

1.4 Frequency

EXAMPLES <u>EXAMPLE 1.4-1</u> (continued)

and the performance of the Surveillance is not otherwise modified (refer to Examples 1.4-3 and 1.4-4), then RSR 12.0.3 becomes applicable.

If the interval as specified by RSR 12.0.2 is exceeded while the unit is not in a MODE or other specified condition in the Applicability of the REC for which performance of the RSR is required, the Surveillance must be performed within the Frequency requirements of RSR 12.0.2 prior to entry into the MODE or other specified condition. Failure to do so would result in a violation of RSR 12.0.4.

EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY Verify flow is within limits. Once within 12 hours after ≥ 25% RTP AND 24 hours thereafter

Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "<u>AND</u>" indicates that both Frequency requirements must be met. Each time reactor power is increased from a power level < 25% RTP to \geq 25% RTP, the Surveillance must be performed within 12 hours.

1.4 Frequency

EXAMPLES <u>EXAMPLE 1.4-2</u> (continued)

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "<u>AND</u>"). This type of Frequency does not qualify for the extension allowed by RSR 12.0.2.

"Thereafter" indicates future performances must be established per RSR 12.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If reactor power decreases to < 25% RTP, the measurement of both intervals stops. New intervals start upon reactor power reaching 25% RTP.

EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Not required to be performed until 12 hours after \geq 25% RTP.	
Perform channel adjustment.	7 days

The interval continues whether or not the unit operation is < 25% RTP between performances.

As the Note modifies the required <u>performance</u> of the Surveillance, it is construed to be part of the "specified Frequency." Should the 7 day interval be exceeded while operation is < 25% RTP, this Note allows 12 hours after power reaches \geq 25% RTP to perform the Surveillance. The Surveillance is still considered to be within the "specified Frequency." Therefore, if the Surveillance were not performed within the 7 day interval (plus the extension allowed by RSR 12.0.2), but operation was < 25% RTP,

(continued)

ŗ

1.4 Frequency

EXAMPLES <u>EXAMPLE 1.4-3</u> (continued)

it would not constitute a failure of the RSR or failure to meet the REC. Also, no violation of RSR 12.0.4 occurs when changing MODES, even with the 7 day Frequency not met, provided operation does not exceed 12 hours with power \geq 25% RTP.

Once the unit reaches 25% RTP, 12 hours would be allowed for completing the Surveillance. If the Surveillance were not performed within this 12 hour interval, there would then be a failure to perform a Surveillance within the specified Frequency, and the provisions of RSR 12.0.3 would apply.

EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS	
SURVEILLANCE	FREQUENCY
Only required to be met in MODE 1.	
Verify leakage rates are within limits.	24 hours

Example 1.4-4 specifies that the requirements of this Surveillance do not have to be met until the unit is in MODE 1. The interval measurement for the Frequency of this Surveillance continues at all times, as described in Example 1.4-1. However, the Note constitutes an "otherwise stated" exception to the Applicability of this Surveillance. Therefore, if the Surveillance were not performed within the 24 hour interval (plus the extension allowed by RSR 12.0.2), but the unit was not in MODE 1, there would be no failure of the RSR nor failure to meet the REC. Therefore, no violation of RSR 12.0.4 occurs when changing MODES, even with the 24 hour Frequency exceeded, provided the MODE change was not made into MODE 1. Prior to entering MODE 1 (assuming again that the 24 hour Frequency were not met), RSR 12.0.4 would require satisfying the RSR.

÷

1.0 USE AND APPLICATION

1.5 REC and RSR Implementation

The ODCM provides those limitations upon plant operations which are part of the licensing basis for the station but do not meet the criteria for continued inclusion in the Technical Specifications.

It also provides information which supplements the Technical Specifications by implementing the requirements of Technical Specification Sections 5.5.1, 5.5.4, 5.6.2, and 5.6.3.

RECs and RSRs are implemented the same as Technical Specifications (see 12.0 Applicability). However, RECs and RSRs are treated as plant procedures and are not part of the Technical Specifications. Therefore the following exceptions apply:

- Violations of the Action or Surveillance requirements in a REC are not reportable as conditions prohibited by, or deviations from, the Technical Specifications per 10 CFR 50.72 or 10 CFR 50.73.
- b. Power reduction or plant shutdowns required to comply with the Actions of a REC are not reportable per 10 CFR 50.72 or 10 CFR 50.73.

2.0 through 11.0 NOT USED

INTENTIONALLY BLANK

Sections 2.0 through 11.0 are not used in the ODCM in order to maintain the Original ODCM numbering convention 12.0 ODCM RADIOLOGICAL EFFLUENT CONTROL (REC) APPLICABILITY

REC 12.0.1	RECs shall be met during the MODES or other specified conditions in the Applicability, except as provided in REC 12.0.2.
REC 12.0.2	Upon discovery of a failure to meet a REC, the Required Actions of the associated Conditions shall be met, except as provided in REC 12.0.5. If the REC is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.
REC 12.0.3	 When a REC is not met and the associated ACTIONS are not met, an associated ACTION is not provided, or if directed by the associated ACTIONS, action shall be initiated within 1 hour to: a. Implement appropriate compensatory actions as needed; b. Verify that the plant is not in an unanalyzed condition or that a required safety function is not compromised by the inoperabilities; and c. Within 12 hours, obtain Shift Operations Superintendent or designee approval of the compensatory actions and the plan for exiting REC 12.0.3. Exceptions to this REC are stated in the individual RECs. Where corrective measures are completed that permit operation in accordance with the REC or ACTIONS, completion of the actions required by REC 12.0.3 is not required. REC 12.0.3 is only applicable in MODES 1, 2, and 3.
REC 12.0.4	When a REC is not met, entry into a MODE or other specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the MODE or other specified

REC 12.0.4 (continued)	condition in the Applicability for an unlimited period of time. This REC shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
	Exceptions to this REC are stated in the individual RECs.
	REC 12.0.4 is only applicable for entry into a MODE or other specified condition in the Applicability in MODES 1, 2, and 3.
REC 12.0.5	Equipment removed from service or declared inoperable to comply with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate its OPERABILITY or the OPERABILITY of other equipment. This is an exception to REC 12.0.2 for the system returned to service under administrative control to perform the testing required to demonstrate OPERABILITY.
REC 12.0.6	RECs, including associated ACTIONS, shall apply to each unit individually, unless otherwise indicated. Whenever the REC refers to a system or component that is shared by both units, the ACTIONS will apply to both units simultaneously.

.

- RSR 12.0.1 RSRs shall be met during the MODES or other specified conditions in the Applicability for individual RECs, unless otherwise stated in the RSR. Failure to meet a RSR, whether such failure is experienced during the performance of the RSR or between performances of the RSR, shall be failure to meet the REC. Failure to perform a RSR within the specified Frequency shall be failure to meet the REC except as provided in RSR 12.0.3. RSRs do not have to be performed on inoperable equipment or variables outside specified limits.
- RSR 12.0.2 The specified Frequency for each RSR is met if the RSR is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.

For Frequencies specified as "once," the above interval extension does not apply.

If a Completion Time requires periodic performance on a "once per . . ." basis, the above Frequency extension applies to each performance after the initial performance.

Exceptions to this RSR are stated in the individual RSRs.

RSR 12.0.3 If it is discovered that a RSR was not performed within its specified Frequency, then compliance with the requirement to declare the REC not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified Frequency, whichever is greater. This delay period is permitted to allow performance of the RSR. A risk evaluation shall be performed for any Surveillance delayed greater than 24 hours and the risk impact shall be managed.

If the RSR is not performed within the delay period, the REC must immediately be declared not met, and the applicable Condition(s) must be entered.

When the RSR is performed within the delay period and the RSR is not met, the REC must immediately be declared not met, and the applicable Condition(s) must be entered.

RSR 12.0.4	Entry into a MODE or other specified condition in the Applicability of a REC shall not be made unless the REC's RSRs have been met within their specified Frequency. This provision shall not prevent entry into MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
	RSR 12.0.4 is only applicable for entry into a MODE or other specified condition in the Applicability in MODES 1, 2, and 3.
RSR 12.0.5	RSRs shall apply to each unit individually, unless otherwise indicated.

CY-LA-170-301 Revision 4 Part I, Radiological Effluent Controls

12.1 NOT USED

INTENTIONALLY BLANK

12.2 INSTRUMENTATION

12.2.1 Radioactive Liquid Effluent Monitoring Instrumentation.

- REC 12.2.1 The Radioactive Liquid Effluent Instrumentation channels in Table R12.2.1-1 shall be OPERABLE with their alarm/trip setpoints to ensure that the limits of REC 12.3.1 are not exceeded.
- APPLICABILITY: When pump flow is present in the system. For Blowdown, when the Blowdown Flow Control Valve is >0% open and the Blowdown line is not otherwise isolated.

ACTIONS

-----NOTE-----

1. Separate Condition entry is allowed for each instrument channel.

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	One or more required instrument channels inoperable due to its alarm/trip setpoint less conservative than required.	A.1 <u>OR</u>	Suspend the release of radioactive liquid effluents monitored by the instrument channel.	Immediately
		A.2	Enter the Condition referenced in Table R12.2.1-1 for the instrument channel.	Immediately
В.	One or more required instrument channels inoperable for reasons other than Condition A.	B.1	Enter the Condition referenced In Table R12.2.1-1 for the instrument channel.	Immediately
		<u> </u>		(continued)

ACTIONS

	CONDITION	REQUIRED ACTION	COMPLETION TIME
C.	As required by Required Action A.2 or B.1 and referenced in Table R12.2.1-1.	C.1 Perform RSR 12.3.1.1 on at least two independent samples of the tanks contents.	Prior to each release
		AND	
		C.2 Verify the release rate calculations and discharge valve line-up independently with at least two qualified members of the technical staff.	Prior to each release
		AND	
		C.3 Return instrument channel to OPERABLE status.	30 days
		OR	
		C.4 Place Administrative Control Clearance order to Lock-Closed 0WF201, RW DSCH Tank River DSCH Valve, to remove the ability to conduct a Liquid Radwaste Discharge.	30 days
D.	Required Action and associated Completion Time of Condition C not met.	D.1 Suspend release of radioactive effluents via this pathway.	Immediately
Ε.	As required by Required Action A.2 or B.1 and referenced in Table R12.2.1-1.	E.1 Analyze affected effluent grab samples for principal gamma emitters and I-131 at an LLD as specified in Table R12.3.1-2.	Once per 8 hours
		AND	
_		E.2 Restore the instrument channel to OPERABLE status.	30 days

CY-LA-170-301 Revision 4 Part I, Radiological Effluent Controls

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME	
F.	As required by Required Action A.2 or B.1 and referenced in Table R12.2.1-1.	F.1NOTE Pump curves for instrument 3.a, or known valve positions for instrument 3.b, may be used to estimate flow.			
			Estimate the flow rate for the release in progress via the affected pathway.	Once per 4 hours	
		F.2	With remote position indication for 0WL005 (BDFCV) not available, verify valve position locally.	Prior to each release.	
G.	NOTE Required Action G.1 shall be completed if this Condition is entered. Required Action C.3 or C.4, or E.2 and associated Completion Time not met.	G.1	Explain why the inoperability was not corrected in a timely manner in the next Radioactive Effluent Release Report.	In accordance with Technical Specification 5.6.3.	

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
RSR 12.2.1.1	Perform SOURCE CHECK.	Prior to each release
RSR 12.2.1.2	Perform CHANNEL FUNCTIONAL TEST.	Prior to each Release
RSR 12.2.1.3	Perform CHANNEL CHECK.	24 hours
RSR 12.2.1.4	Perform SOURCE CHECK.	31 days
RSR 12.2.1.5	Perform CHANNEL FUNCTIONAL TEST. Except for Instrument 3.b, the test shall also demonstrate that the instrument indicates measured levels above the alarm/trip setpoint and that the control room alarm annunciates and the affected pathway automatically isolates, as applicable, under the following conditions:	92 days
	a. Loss of power,b Downscale failure, orc. Controls not set in Operate or High Voltage mode.	
RSR 12.2.1.6	Perform CHANNEL CALIBRATION. (No longer applicable per E.C. #360580)	N/A
RSR 12.2.1.7	Perform CHANNEL CALIBRATION	24 months
RSR 12.2.1.8		12 months
Perform	POSITION INDICATION VERIFICATION	

L

I.

Table R12.2.1-1 (page 1 of 2)	
Radioactive Liquid Effluent Monitoring Instrumentation	

- - - -

. ...

		INSTRUMENT	REQUIRED CHANNELS PER IINSTRUMENT	CONDITION REFERENCED FROM REQUIRED ACTION A.2 AND B.1	SURVEILLANCE REQUIREMENTS
1.		mma Scintillation Monitor providing Alarm Automatic Termination of Release			
	а.	Liquid Radwaste Effluents Line	1	С	RSR 12.2.1.1 RSR 12.2.1.3 RSR 12.2.1.5 RSR 12.2.1.7 ^(a)
2.	but	mma Scintillation Monitors providing Alarm not providing Automatic Termination of ease			
	a .	Service Water Effluent Line (Unit 1)	1	E	RSR 12.2.1.4 RSR 12.2.1.3 RSR 12.2.1.5 RSR 12.2.1.7 ^(a)
	b.	Service Water Effluent Line (Unit 2)	1	E	RSR 12.2.1.4 RSR 12.2.1.3 RSR 12.2.1.5 RSR 12.2.1.7 ^(a)
	C.	RHR Service Water (Line A) Effluent Line (Unit 1)	1	E	RSR 12.2.1.4 RSR 12.2.1.3 RSR 12.2.1.5 RSR 12.2.1.7 ^(a)
	d.	RHR Service Water (Line B) Effluent Line (Unit 1)	1	E	RSR 12.2.1.4 RSR 12.2.1.3 RSR 12.2.1.5 RSR 12.2.1.7 ^(e)
	e.	RHR Service Water (Line A) Effluent Line (Unit 2)	1	E	RSR 12.2.1.4 RSR 12.2.1.3 RSR 12.2.1.5 RSR 12.2.1.7 ⁽⁸⁾
	f.	RHR Service Water (Line B) Effluent Line (Unit 2)	1	E	RSR 12.2.1.4 RSR 12.2.1.3 RSR 12.2.1.5 RSR 12.2.1.7 ^(a)

⁽ⁿ⁾ The initial CHANNEL CALIBRATION shall be performed using one or more of the reference radioactive standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, the initial reference radioactive standards or radioactive sources that have been related to the initial calibration shall be used, in order to demonstrate linearity of the original calibration. This transfer calibration, combined with signal inputs, satisfies channel calibration and functional test requirements as implemented by station procedures.

	INSTRUMENT	REQUIRED CHANNELS PER IINSTRUMENT	CONDITION REFERENCED FROM REQUIRED ACTION A.2 AND B.1	SURVEILLANCE REQUIREMENTS
3.	Flow Rate Measurement Devices			
	a. Liquid Radwaste Effluent Line	1	F	RSR 12.2.1.2 RSR 12.2.1.3 RSR 12.2.1.7
	b. 0WL005 BDFCV Position Indication	1	F	RSR 12.2.1.8

Table R12.2.1-1 (page 2 of 2) Radioactive Liquid Effluent Monitoring Instrumentation

12.2 INSTRUMENTATION

12.2.2 Radioactive Gaseous Effluent Monitoring Instrumentation

REC 12.2.2 The Radioactive Gaseous Effluent Instrumentation channels in Table R12.2.2-1 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of REC 12.4.1 are not exceeded.

APPLICABILITY: According to Table R12.2.2-1

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. One or more required instrument channels inoperable due to its alarm/trip setpoint less conservative than required.	A.1 Suspend the release of radioactive gaseous effluents monitored by the instrument channel.	Immediately
	OR	
	A.2 Enter the Condition referenced in Table R12.2.2-1 for the instrument channel.	Immediately
B. One or more required instrument channels inoperable for reasons other than Condition A.	B.1 Enter the Condition referenced in Table R12.2.2-1 for the instrument channel.	Immediately
<u> </u>		(continued)

.

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
C. As required by Required Action A.2 or B.1 and referenced in Table R12.2.2-1.	C.1 Place instrument channel in trip.	1 hour
D. As required by Required Action A.2 or B.1 and referenced in Table R12.2.2-1.	D.1 Obtain grab samples.	Once per 8 hours
	D.2 Analyze grab samples for noble gas emitters.	Within 24 hours following each grab sample
	AND	
	D.3 Restore instrument channel to OPERABLE status.	30 days
E. As required by Required Action A.2 or B.1 and referenced in Table R12.2.2-1.	E.1 Obtain grab samples.	Once per 8 hours
Γ 2.2.2 - 1.	E.2 Analyze grab samples for noble gas emitters at an LLD as specified in Table R12.4.1-1.	Within 24 hours following each grab sample
	AND	
	E.3 Restore instrument channel to OPERABLE status.	30 days
F. As required by Required Action A.2 or B.1 and referenced in Table R12.2.2-1.	F.1 Establish CONTINUOUS SAMPLING with auxiliary sampling equipment as required in Table R12.4.1-1.	4 hours
	AND	
	F.2 Restore instrument channel to OPERABLE status.	30 days

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
G.	As required by Required Action A.2 or B.1 and referenced in Table	G.1 <u>AND</u>	Estimate flow rate.	Once per 4 hours
	R12.2.2-1.	G.2	Restore instrument channel to OPERABLE status.	30 days
Н.	Action A.2 or B.1 and referenced in Table	H.1 AND	Verify offgas treatment system not bypassed.	Immediately
	R12.2.2-1.		Verify at least one Instrument 1.a channel OPERABLE.	Immediately
			<u>OR</u>	
		H.2.2	Verify Required Actions for	Immediately
		AND	Condition D are met.	
		Н.3 <u>AND</u>	Obtain and analyze grab samples.	Once per 24 hours.
		H.4	Restore instrument channel to OPERABLE status.	30 days
1.	NOTE	1.1	Explain in the next	In accordance with
	Required Action I.1 shall be completed if this Condition is entered.		Radioactive Effluent Release Report why the inoperability was not corrected within the time specified.	Technical Specification 5.6.3.
	Required Action and associated Completion Time of Required Action D.3, E.3, F.2, or G.2 or H.4 not met.			

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
RSR 12.2.2.1	Perform CHANNEL CHECK.	24 hours
RSR 12.2.2.2	Perform SOURCE CHECK.	24 hours
RSR 12.2.2.3	NOTE For Instruments 4.b and 4.c, not required to be performed until 7 days after Standby Gas Treatment is placed in operation. 	7 days
RSR 12.2.2.4	Perform SOURCE CHECK.	31 days
RSR 12.2.2.5	Perform CHANNEL FUNCTIONAL TEST. For Instruments 3.a (log monitor only) and 1.a, the test shall also demonstrate that the control room alarm annunciates and the automatic isolation capability of the affected pathway, as applicable, under the following conditions:	92 days
	a. Upscale,b. Inoperative, orc. Downscale	
RSR 12.2.2.6	Perform CHANNEL FUNCTIONAL TEST. The test shall also demonstrate that the instrument indicates measured levels above the alarm setpoint and that the control room alarm annunciates on a Loss of Counts condition.	92 days
RSR 12.2.2.7	Perform CHANNEL CALIBRATION	24 months

Table R12.2.2-1 (page 1 of 2) Radioactive Gaseous Effluent Monitoring Instrumentation

			APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS	REQUIRED CHANNELS PER INSTRUMENT	CONDITION REFERENCED FROM REQUIRED ACTION A.2 AND B.1	SURVEILLANCE REQUIREMENTS
1.		in Condenser Offgas Treatment stem Effluent Monitoring System				
a.		Noble Gas Activity Monitor – Providing Alarm and Automatic Termination of Release (Post-Treat)	(b)	2	C, if only one required channel inoperable D, if both required channels inoperable	RSR 12.2.2.1 RSR 12.2.2.2 RSR 12.2.2.5 RSR 12.2.2.7 ⁽⁹⁾
2.	Ма	in Stack Monitoring System				
	a.	Noble Gas Activity Monitor (Low or Mid Range WRGM)	(c)	1	E	RSR 12.2.2.1 RSR 12.2.2.4 RSR 12.2.2.6 RSR 12.2.2.7 ^(d)
	b.	lodine Sampler (Grab Sampler)	(c)	1	F	RSR 12.2.2.3
	C.	Particulate Sampler (Grab Sampler)	(c)	1	F	RSR 12.2.2.3
	d.	Effluent System Flow Rate Monitor	(c)	1	G	RSR 12.2.2.1 RSR 12.2.2.5 RSR 12.2.2.7
	e.	Sampler Flow Rate Monitor (Low/Mid/Hi)	(C)	1	G	RSR 12.2.2.1 RSR 12.2.2.5 RSR 12.2.2.7

(Continued)

(a) Equipment Part Numbers (EPN) are provided in Table R12.2.2-2.

- (b) During effluent releases via this pathway.
- (c) At all times.
- (d) The initial CHANNEL CALIBRATION shall be performed using one or more of the referenced radioactive standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATIONS, the initial reference radioactive standards or radioactive sources that have been related to the initial calibration shall be used.
- (e) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference radioactive standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, the initial calibration shall be used, in order to demonstrate linearity of the original calibration. This transfer calibration, combined with signal inputs, satisfies channel calibration and functional test requirements as implemented by station procedures.

ţ

ł

1

Table R12.2.2-1 (page 2 of 2) Radioactive Gaseous Effluent Monitoring Instrumentation

				-		
		INSTRUMENT ^(®)	APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS	REQUIRED CHANNELS PER INSTRUMENT	CONDITION REFERENCED FROM REQUIRED ACTION A.2 AND B.1	SURVEILLANCE REQUIREMENTS
3.	Мо	ndenser Air Ejector Radioactivity nitor (Prior to Input to Holdup stem)				
	a.	Noble Gas Activity Monitor	(1)	1	н	RSR 12.2.2.1 RSR 12.2.2.4 RSR 12.2.2.5 RSR 12.2.2.7 ^(d)
4.		ndby Gas Treatment (SGT) nitoring System				
	a.	Noble Gas Activity Monitor (Low or Mid Range WRGM)	(g)	1	E	RSR 12.2.2.1 RSR 12.2.2.4 RSR 12.2.2.6 RSR 12.2.2.7 ^(d)
	b.	lodine Sampler (Grab Sampler)	(g)	1	F	RSR 12.2.2.3
	C .	Particulate Sampler (Grab Sampler)	(g)	1	F	RSR 12.2.2.3
	d.	Effluent System Flow Rate Monitor	(g)	1	G	RSR 12.2.2.1 RSR 12.2.2.5 RSR 12.2.2.7
	e .	Sampler Flow Rate Monitor (Low/Mid/Hi)	(g)	1	G	RSR 12.2.2.1 RSR 12.2.2.5 RSR 12.2.2.7

(a) Equipment Part Numbers (EPN) are provided in Table R12.2.2-2.

(d) The initial CHANNEL CALIBRATION shall be performed using one or more of the referenced radioactive standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATIONS, the initial reference radioactive standards or radioactive sources that have been related to the initial calibration shall be used.

(f) During operation of the main condenser air ejector.

(g) During operation of SGT.

i

1

Table R12.2.2-2 (page 1 of 2) Radioactive Gaseous Effluent Monitoring Instrumentation Applicability

	INSTRUMENT	EPNS OF APPLICABLE EQUIPMENT
Α.	Unit 1 Applicable Instruments	
1.	Main Condenser Offgas Treatment System Effluent Monitoring System	
	a. Noble Gas Activity Monitor – Providing Alarm and Automatic Termination of Release	1D18-N903A, K901A, K601A, R601 1D18-N903B, K901B, K601B, R601
2 .	Main Stack Monitoring System	
	a. Noble Gas Activity Monitor (Low or Mid Range WRGM)	0D18-N514, R517, R518 Low Range 0D18-N515, R517, R518 Mid Range
	b. Iodine Sampler (Grab Sampler)	
	c. Particulate Sampler (Grab Sampler)	
	d. Effluent System Flow Rate Monitor	0FT-VR019, 0FY-VR019 AND 019A, 0FR-VR019, 0D18- K510, 0D18-R518
	e. Sampler Flow Rate Monitor (Low/Mid/Hi)	0D18-N527, 0D18-N528, 0D18-R518 Low 0D18-N530, 0D18-N531, 0B18-R518 Mid/Hi
3.	Condenser Air Ejector Radioactivity Monitor (Prior to Input to Holdup System)	
	a. Noble Gas Activity Monitor	1D18-N002, K613, R604, or 1D18-N012, K600, R605
4.	Standby Gas Treatment (SGT) Monitoring System	
	a. Noble Gas Activity Monitor (Low/Mid Range WRGM)	0D18-N511, R515, R516 Low Range 0D18-N512, R515, R516 Mid Range
	b. Iodine Sampler (Grab Sampler)	
	c. Particulate Sampler (Grab Sampler)	
	d. Effluent System Flow Rate Monitor	1FT-VG009, 1FY-VG009, 1FR-VG-009
	e. Sampler Flow Rate Monitor (Low/Mid/Hi)	0D18-N521, 0D18-N522, 0D18-R516 Low 0D18-N524, 0D18-N525, 0B18-R516 Mid/Hi

Table R12.2.2-2 (page 2 of 2) Radioactive Gaseous Effluent Monitoring Instrumentation Applicability

	INSTRUMENT	EPNS OF APPLICABLE EQUIPMENT
В.	Unit 2 Applicable Instruments	
1.	Main Condenser Offgas Treatment System Effluen Monitoring System	it
	a. Noble Gas Activity Monitor – Providing Alarm and Automatic Termination of Release	2D18-N903A, K901A, K601A, R601 2D18-N903B, K901B, K601B, R601
2.	Main Stack Monitoring System	
	a. Noble Gas Activity Monitor (Low or Mid Range WRGM)	e 0D18-N514, R517, R518 Low Range 0D18-N515, R517, R518 Mid Range
	b. lodine Sampler (Grab Sampler)	
	c. Particulate Sampler (Grab Sampler)	
	d. Effluent System Flow Rate Monitor	0FT-VR019, 0FY-VR019 AND 019A, 0FR-VR019, 0D18- K510, 0D18-R518
	e. Sampler Flow Rate Monitor (Low/Mid/Hi)	0D18-N527, 0D18-N528, 0D18-R518 Low 0D18-N530, 0D18-N531, 0B18-R518 Mid/Hi
3.	Condenser Air Ejector Radioactivity Monitor (Prior Input to Holdup System)	to
	a. Noble Gas Activity Monitor	2D18-N002, K613, R604, or 2D18-N012, K600, R605
4.	Standby Gas Treatment (SGT) Monitoring System	
	a. Noble Gas Activity Monitor (Low/Mid Range WRGM)	0D18-N511, R515, R516 Low Range 0D18-N512, R515, R516 Mid Range
	b. lodine Sampler (Grab Sampler)	
	c. Particulate Sampler (Grab Sampler)	
	d. Effluent System Flow Rate Monitor	2FT-VG009, 2FY-VG009, 2FR-VG-009
	e. Sampler Flow Rate Monitor (Low/Mid/Hi)	0D18-N521, 0D18-N522, 0D18-R516 Low 0D18-N524, 0D18-N525, 0B18-R516 Mid/Hi

12.3 LIQUID EFFLUENTS

12.3.1 Liquid Effluent Concentration

- REC 12.3.1 The concentration of radioactive material released from the site to areas at or beyond the SITE BOUNDARY shall be limited to:
 - a. 10 times the concentration specified in 10 CFR 20.1001-20.2402 Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases; and
 - b. the values listed in Table R12.3.1-1 for total activity concentration for all dissolved or entrained noble gases.

APPLICABILITY: At all times.

ACTIONS

· <u> </u>	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	Concentration of radioactive material released to areas at or beyond the SITE BOUNDARY not within limits.	A.1	Initiate action to restore the concentration to within limits.	Immediately
В.	Requirements of RSR 12.3.1.4 not met.	B.1	Enter Condition A of Technical Requirements Manual Section 3.7.d.	Immediately

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
RSR 12.3.1.1	Determine radioactivity content of each radioactive liquid waste batch by sampling and analysis in accordance with Table R12.3.1-2.	In accordance with the Radioactive Liquid Waste Sampling and Analysis Program.
RSR 12.3.1.2	Perform post-release analysis of samples composited from batch releases in accordance with Table R12.3.1-2.	In accordance with the Radioactive Liquid Waste Sampling and Analysis Program.
RSR 12.3.1.3	Determine radioactivity concentration of liquids discharged from continuous release points by sampling and analysis in accordance with Table R12.3.1-2.	In accordance with the Radioactive Liquid Waste Sampling and Analysis Program.

SURVEILLANCE REQUIREMENTS

RSR 12.3.1.4	NOTE	
	Not required to be performed until 7 days after the start of addition if tank(s) is empty at the beginning of the addition.	
	Verify the quantity of radioactive material of each outside temporary tank is low enough to ensure that in the event of an uncontrolled release of the tanks contents, the resulting concentration would be less than the REC limits.	7 days when radioactive material is being added to the tank(s).
		Once within 7 days after each completion of addition of radioactive material to the tank(s).

CY-LA-170-301 Revision 4 Part I, Radiological Effluent Controls ł

Table R12.3.1-1

ALLOWABLE CONCENTRATION (AC) OF DISSOLVED OR ENTRAINED NOBLE GASES RELEASED FROM THE SITE TO UNRESTRICTED AREAS IN LIQUID WASTE

NUCLIDE	ALLOWABLE CONCENTRATION (µCi/ml)*
Kr-85m	2 x 10 ⁻⁴
Kr-85	5 x 10 ⁻⁴
Kr-87	4 x 10 ⁻⁵
Kr-88	9 x 10 ⁻⁵
Ar-41	7 x 10 ⁻⁵
Xe-131m	7 x 10 ⁻⁴
Xe-133m	5 x 10 ⁴
Xe-133	6 x 10 ⁻⁴
Xe-135m 2 x 10 ⁻⁴	
Xe-135	2 x 10 ⁻⁴

* Computed from Equation 20 of ICRP Publication 2 (1959), adjusted for infinite cloud submersion in water, and R = 0.01 rem/week, density = 1.0 g/cc and Pw/Pt = 1.0.

Table R12.3.1-2 (Page 1 of 4)

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

LIQUID RELEASE TYPE	SAMPLING FREQUENCY ⁽⁹⁾	MINIMUM ANALYSIS FREQUENCY ⁽⁹⁾	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT OF DETECTION (LLD) ^(a) (µCi/ml)
A. Batch Waste Release Tanks ^(d)	Prior to each release, Each	Prior to each release, Each Batch	Principal Gamma Emitters ⁽⁾	5x10 ⁻⁷
Release ranks	Batch	Lacin Dateri	I-131	1x10 ⁻⁶
	Prior to each release, Each	31 days	Н-3	1x10 ⁻⁵
	Batch	Composite ^(b)	Gross Alpha	1x10 ⁻⁷
	Prior to each	92 days	Sr-89, Sr-90	5x10 ⁻⁸
	release, Each Batch Composite ^(b)		Fe-55	1x10 ⁻⁶
	Prior to each release, One Batch per 31 days	31 days	Dissolved & Entrained Gases (Gamma Emitters)	1x10 ⁻⁵
B. Plant Continuous Releases ^(e)		7 days Composite ^(c)	I-131	1x10 ⁻⁶
Cooling Pond Blowdown	CONTINUOUS		Principal Gamma Emitters ⁽¹⁾	5x10 ⁻⁷
- - -	31 days Grab Sample	31 days	Dissolved & Entrained Gases (Gamma Emitters)	1x10 ^{.5}
		31 days	H-3	1x10 ⁻⁵
		Composite ^(c)	Gross Alpha	1x10 ^{.7}
		92 days	Sr-89, Sr-90	5x10 ⁻⁸
	CONTINUOUS	Composite ^(c)	Fe-55	1x10 ⁻⁶

÷

Table R12.3.1-2 (Page 2 of 4)

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM TABLE NOTATION

a. The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

$$LLD = \frac{4.66S_b}{E \cdot V \cdot 2.22 \times 10^6 \cdot Y \cdot e^{(-\lambda \Delta I)}}$$

Where:

LLD = the a priori lower limit of detection (microcurie per unit mass or volume),

s_b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute),

$$=\frac{\sqrt{B}}{t}$$

B = background sum (counts)

t = count time (minutes)

E = the counting efficiency (counts per transformation),

V = the sample size (units of mass or volume),

 2.22×10^6 = the number of transformations per minute per microcurie,

Y = the fractional radiochemical yield, when applicable,

 λ = the radioactive decay constant for the particular radionuclide and for composite samples, and

 Δt = the elapsed time between the midpoint of sample collection and the time of counting (for plant effluents, not environmental samples). For batch samples taken and analyzed prior to release, Δt is taken to be zero.

The value of s_b used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance. Typical values of E, V, Y, and Δt shall be used in the calculation.

Alternate LLD Methodology

An alternate methodology for LLD determination follows and is similar to the above LLD equation:

$$LLD = \frac{(2.71 + 4.65\sqrt{B}) \cdot Decay}{E \cdot q \cdot b \cdot Y \cdot t \cdot (2.22x10^6)}$$

Page I-12.3.1-5

i.

Table R12.3.1-2 (Page 3 of 4)

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM TABLE NOTATION

Where:

- B = background sum (counts)
- E = counting efficiency
- q = sample quantity (mass or volume)
- b = abundance (if applicable)

Y= fractional radiochemical yield or collection efficiency (if applicable)

t= count time (minutes)

 2.22×10^6 = number of disintegrations per minute per microcurie

 $2.71 + 4.65\sqrt{B} = k^2 + (2k\sqrt{2}\sqrt{B})$, and k = 1.645

(k=value of the t statistic from the single-tailed t distribution at a significance level of 0.95 and infinite degrees of freedom. This means that the LLD result represents a 95% detection probability with a 5% probability of falsely concluding that the nuclide is present when it is not or that the nuclide is not present when it is.)

 $Decay = e^{\lambda\Delta t} [\lambda RT / (1 - e^{-\lambda RT})] [\lambda T_d / (1 - e^{-\lambda Td})] \text{ if applicable}$

 λ = radioactive decay constant (units consistent with Δt , RT and T_d)

 Δt = "delta t", or the elapsed time between sample collection or the midpoint of sample collection and the time the count is started, depending on the type of sample (units consistent with λ)

RT = elapsed real time, or the duration of the sample count (units consistent with λ)

 T_d = sample deposition time, or the duration of analyte collection onto the sample media (units consistent with λ)

The LLD may alternately be determined using installed radioanalytical software, if available. In addition to determining the correct number of channels over which to total the background sum, utilizing the software's ability to perform decay corrections (i.e. during sample collection, from sample collection to start of analysis, and during counting), this alternate method will result in a more accurate determination of the LLD.

It should be recognized that the LLD is defined as a before the fact limit representing the capability of a measurement system and not as an after the fact limit for a particular measurement.

Table R12.3.1-2 (Page 4 of 4)

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM TABLE NOTATION

- b. A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sample employed results in a specimen which is representative of the liquids released.
- c. To be representative of the quantities and concentrations of radioactive materials in liquid effluents, samples shall be collected in proportion to the rate of flow of the effluent stream. Prior to analyses, all samples taken for the composite shall be thoroughly mixed in order for the composite sample to be representative of the effluent release.
- d. A batch release is the discharge of liquid waste of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed to assure representative sampling.
- e. A continuous release is the discharge of liquid wastes of a non-discrete volume; e.g., from a volume of system that has an input flow during the continuous release.
- f. The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, at the 95% confidence level, together with the above nuclides, shall also be identified and reported.
- g. The provisions of RSR 12.0.2 and RSR 12.0.3 are applicable to the Radioactive Liquid Waste Sampling and Analysis Program.

L.

ŗ

1

Í.

÷

12.3 LIQUID EFFLUENTS

12.3.2 Dose from Liquid Effluents

- REC 12.3.2 The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each reactor unit, from the site shall be limited to:
 - a. \leq 1.5 mrem to the total body and \leq 5.0 mrem to any organ during any calendar quarter; and
 - b. \leq 3.0 mrem to the total body and \leq 10.0 mrem to any organ during any calendar year.

APPLICABILITY: At all times.

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
ANOTE Required Action A.1 shall be completed if this Condition is entered. Calculated dose not within limits.	A.1 Submit a Report, pursuant to 10CFR50, Appendix I, Section IV.A, to the NRC that identifies causes for exceeding limits, radiological impact on finished drinking water supplies at the nearest downstream drinking water source and defines actions to be taken to reduce releases of radioactive materials in liquid effluents during the remainder of the current calendar quarter and during the subsequent three calendar quarters so that the cumulative dose or dose commitment is within the limits of REC 12.3.2.b.	30 days following the end of the quarter in which the release occurred
 B. Calculated dose exceeds two times (2x) the limits. 	B.1 Enter Condition A of REC 12.4.7.	Immediately

	SURVEILLANCE	FREQUENCY
RSR 12.3.2.1	NOTE Only required to be performed if liquid releases have occurred since the last performance of this RSR. 	31 days

12.3 LIQUID EFFLUENTS

12.3.3 Liquid Radwaste Treatment Systems

REC 12.3.3. The Liquid Radwaste Treatment System shall:

- a. Be OPERABLE; and
- b. Be used to reduce the radioactive materials in liquid wastes prior to their discharge when the projected doses due to the liquid effluent, from each reactor unit, from the site would exceed 0.06 mrem to the total body or 0.2 mrem to any organ when averaged over 31 days.

APPLICABILITY: At all times.

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	Liquid Radwaste Treatment System inoperable.	A.1	Restore Liquid Radwaste Treatment System to OPERABLE status.	31 days
Β.	NOTE Required Action B.1 shall be completed if this Condition is entered. Untreated liquid waste release in progress. <u>AND</u> Projected dose not within limits.	B.1	Submit a report to the NRC that includes inoperable equipment or subsystem identification and reason, action taken to restore the inoperable equipment to OPERABLE status, and a summary description of the action(s) taken to prevent recurrence.	30 days
C.	Required Action C.1 shall be completed if this Condition is entered. Required Action and Associated Completion time of Condition A not met.	C.1	Submit a report to the NRC that includes inoperable equipment or subsystem identification and reason, action taken to restore the inoperable equipment to OPERABLE status, and a summary description of the action(s) taken to prevent recurrence.	30 days

..... .

	SURVEILLANCE	FREQUENCY
RSR 12.3.3.1NOTENOTE Only required to be performed if liquid releases are planned and RSR has not been performed in the last 38 days 18 hours.		
	Determine projected doses due to liquid releases in accordance with the ODCM methods.	31 days
RSR 12.3.3.2	NOTENOTENOTENOTENOTENOTE	
	Operate the Liquid Radwaste Treatment System equipment for at least 30 minutes.	92 days if a portable (vendor supplied) waste treatment system is being used.
		180 days if a portable (vendor- supplied) waste treatment system is not being used.

12.4.1 Gaseous Effluent Dose Rates

- REC 12.4.1 The dose rate at or beyond the SITE BOUNDARY due to radioactive materials in gaseous effluents released from the site shall be limited to the following:
 - a. For noble gases, < 500 mrem/year to the total body and < 3000 mrem/year to the skin; and
 - b. For iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives > 8 days, ≤ 1500 mrem/year to any organ via the inhalation pathway.

APPLICABILITY: At all times.

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. Dose rate not within limits.	A.1 Initiate action to decrease release rates to maintain dose rates within limits.	Immediately

	SURVEILLANCE				
RSR 12.4.1.1	Verify the dose rates due to noble gases, iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives > 8 days in gaseous effluents is within limits utilizing the methodology and parameters of the ODCM limits by obtaining and analyzing representative samples in accordance with Table R12.4.1-1.	In accordance with the Radioactive Gaseous Waste Sampling and Analysis Program			

Table R12.4.1-1 (Page 1 of 5)

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

GA	SEOUS RELEASE TYPE	SAMPLING FREQUENCY ⁽ⁱ⁾	MINIMUM ANALYSIS FREQUENCY ⁽¹⁾	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT OF DETECTION (LLD) (µCi/ml) ^a
A .	Containment Vent and Purge	Prior to each release	Prior to each release	Principal Gamma Emitters ⁹	1x10 ⁻⁴
	System ^h	Each Purge [⊳] Grab Sample	Each Purge ^b	H-3	1x10 ⁻⁶
В.	Main Vent Stack	31 days [⊳] Grab Sample	31 days⁵	Principal Gamma Emitters ⁹	1x10 ⁻⁴
		7 days ^{b.e} Grab Sample	7 days ^{b,e}	Н-3	1x10 ⁻⁶
C.	Standby Gas Treatment System	24 hours ^c Grab Sample	24 hours ^c	Principal Gamma Emitters ⁹	1x10 ⁻⁴
D.	Main Vent Stack And Standby Gas		7 days ^d	I-131	1x10 ⁻¹²
	Treatment System ^c	CONTINUOUS	Charcoal Sample	I-133	1x10 ⁻¹⁰
		CONTINUOUS	7 days ^d Particulate Sample	Principal Gamma Emitters ⁹ (I-131, Others)	1x10 ⁻¹¹
		CONTINUOUS	31 days Composite Particulate Sample	Gross Alpha	1x10 ⁻¹¹
		CONTINUOUS	92 days Composite Particulate Sample	Sr-89,Sr-90	1x10 ⁻¹¹
		CONTINUOUS	Noble Gas Monitor	Noble Gases, Gross Beta or Gamma	1×10 ⁻⁶

ł

Į.

Table R12.4.1-1 (Page 2 of 5)

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM TABLE NOTATION

a. The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability with 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66S_b}{E \cdot V \cdot 2.22 \times 10^6 \cdot Y \cdot e^{(-\lambda\Delta t)}}$$

Where:

- LLD is the "a priori" lower limit of detection as defined above (as microcurie per unit mass or volume),
- s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

$$=\frac{\sqrt{B}}{t}$$

B = background sum (counds)

t = count time (minutes)

E is the counting efficiency (as counts per transformation),

V is the sample size (in units of mass or volume),

- 2.22×10^6 is the number of transformations per minute per microcurie,
- Y is the fractional radiochemical yield (when applicable),
- λ is the radioactive decay constant for the particular radionuclide, and
- Δt is the elapsed time between midpoint of sample collection and time of counting (for plant effluents, not environmental samples).

The value of s_b used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance. Typical values of E, V, Y, and Δt shall be used in the calculation.

Alternate LLD Methodology

An alternate methodology for LLD determination follows and is similar to the above LLD equation:

$$LLD = \frac{(2.71 + 4.65\sqrt{B}) \cdot Decay}{E \cdot q \cdot b \cdot Y \cdot t \cdot (2.22x10^6)}$$

Page I-12.4.1-3

1

Table R12.4.1-1 (Page 3 of 5)

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM TABLE NOTATION

Where:

- B = background sum (counts)
- E = counting efficiency
- q = sample quantity (mass or volume)
- b = abundance (if applicable)
- Y = fractional radiochemical yield or collection efficiency (if applicable)
- t = count time (minutes)
- 2.22×10^6 = number of disintegrations per minute per microcurie

2.71 + 4.65
$$\sqrt{B}$$
 = k² + (2k $\sqrt{2} \sqrt{B}$), and k = 1.645

(k=value of the t statistic from the single-tailed t distribution at a significance level of 0.95 and infinite degrees of freedom. This means that the LLD result represents a 95% detection probability with a 5% probability of falsely concluding that the nuclide is present when it is not or that the nuclide is not present when it is.)

- Decay = $e^{\lambda \Delta t} [\lambda RT/(1-e^{-\lambda RT})][\lambda T_d/(1-e^{-\lambda Td})]$ if applicable
- λ = radioactive decay constant (units consistent with Δt , RT and T_d)
- Δt = "delta t", or the elapsed time between sample collection or the midpoint of sample collection and the time the count is started, depending on the type of sample (units consistent with λ)
- RT = elapsed real time, or the duration of the sample count (units consistent with λ)
- T_d = sample deposition time, or the duration of analyte collection onto the sample media (units consistent with λ)

The LLD may alternately be determined using installed radioanalytical software, if available. In addition to determining the correct number of channels over which to total the background sum, utilizing the software's ability to perform decay corrections (i.e. during sample collection, from sample collection to start of analysis, and during counting), this alternate method will result in a more accurate determination of the LLD.

It should be recognized that the LLD is defined as a before the fact limit representing the capability of a measurement system and not as an after the fact limit for a particular measurement.

b. Sampling and analyses shall also be performed following shutdown, startup, or a thermal power change exceeding 20 percent of RATED THERMAL POWER in 1 hour unless (1) analysis shows that the dose equivalent I-131 concentration in the primary coolant has not increased more than a factor of 5, and (2) the noble gas activity monitor shows that effluent activity has not increased by more than a factor of 3.

Table R12.4.1-1 (Page 4 of 5)

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM TABLE NOTATION

- c. Whenever there is flow through the SGT. If SGT is run more than 2 hrs in a 24-hour period, ensure a noble gas sample is obtained prior to securing SGT and particulate and iodine samples are taken within 24 hrs after securing SGT. A 2-hour run ensures required sample lower limits of detection are met for particulates and iodine. A SGT run of less than 2 hrs is not a significant contribution to offsite dose and requires no sampling.
- d. Samples shall be changed at least once per 7 days and the analyses completed within 48 hours after removal from the sampler. Sampling shall also be performed within 24 hours following each shutdown, startup, or thermal power level change exceeding 20% of RATED THERMAL POWER in one hour. This requirement does not apply if 1) analysis shows that the dose equivalent I-131 concentration in the primary coolant has not increased by more than a factor of 5, and 2) the noble gas activity monitor shows that effluent activity has not increased by more than a factor of 3. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10.
- e. Tritium grab samples shall be taken at least once per 7 days from the plant vent to determine tritium releases in the ventilation exhaust from the spent fuel pool area whenever spent fuel is in the spent fuel pool. If there is no spent fuel in the fuel pool, sampling and analysis of tritium grab samples shall be performed at least once per 31 days.
- f. The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with RECs 12.4.1, 12.4.2 and 12.4.3.
- g. The principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 for gaseous emissions and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, at the 95% confidence level, together with the above nuclides, shall also be identified and reported.
- h. The drywell tritium and noble gas samples and associated purge calculations are required when the Unit is at power (i.e. critical) and for the first 24 hours of purging activities following shutdown. The drywell tritium and noble gas sample results are valid for 30 hours from sample time if 1) the drywell radioactivity monitors have not indicated an increase in airborne or gaseous radioactivity, and 2) the drywell equipment and floor drain sump pumps run times have not indicated an increase in leakage in the drywell since the sample was taken, and 3) conditions are such that activity can be calculated for the radionuclide concentration at the time of the release.

If there is any reason to suspect that gaseous radioactivity levels have changed in the drywell that would compromise the calculated, or estimated, radionuclide concentrations at the time of the release, since the last sample (30 hours), a new sample and analyses should be requested prior to starting a drywell purge to meet the intent of providing current analyses to reflect actual activity released to the environment. If a known steady state leakage condition exists in the drywell it is possible to calculate a safe and accurate release package. Final release quantification will be based on calculated radionuclide concentrations at the time of the actual release.

Table R12.4.1-1 (Page 5 of 5)

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM TABLE NOTATION

If the drywell is PURGED in accordance with the ODCM definition, both noble gas and tritium analyses must be completed before the purge begins. If the drywell is simply VENTING in accordance with the ODCM definition, no sample is required before venting.

i. The provisions of RSR 12.0.2 and RSR 12.0.3 are applicable to the Radioactive Gaseous Waste Sampling and Analysis Program.

12.4.2 Dose from Noble Gases

- REC 12.4.2 The air dose due to noble gases in gaseous effluents released from each reactor unit from the site shall be limited to the following:
 - a. For gamma radiation, \leq 5 mrad during any calendar quarter and \leq 10 mrad during any calendar year; and
 - b. For beta radiation, ≤ 10 mrad during any calendar quarter and ≤ 20 mrad during any calendar year.

APPLICABILITY: At all times.

ACTIONS

	CONDITION	REQUIRED ACTION	COMPLETION TIME
Α.	NOTE Required Action A.1 shall be completed if this Condition is entered.	A.1 Submit a report to the NRC, pursuant to 10CFR50 Appendix I Section IV.A, that identifies causes for exceeding limits, defines corrective actions to be taken to reduce the releases, and proposed corrective actions to assure that subsequent releases are within limits.	end of the quarter in
	Calculated air dose not within limits.		ses,
В.	Calculated air dose exceeds two times (2x) the limits.	B.1 Enter Condition A of RE 12.4.7.	EC Immediately

SURVEILLANCE	FREQUENCY
RSR 12.4.2.1 Determine cumulative dose contributions for the current calendar quarter and current calendar year in accordance with the ODCM.	31 days

- 12.4.3 Dose From Iodine -131, Iodine -133, Tritium, and Radioactive Materials in Particulate Form
 - REC 12.4.3 The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium and all radionuclides in particulate form, with half-lives > 8 days, in gaseous effluents released from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to:
 - a. \leq 7.5 mrem to any organ during any calendar quarter; and
 - b. \leq 15 mrem to any organ during any calendar year.

APPLICABILITY: At all times.

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	NOTE Required Action A.1 shall be completed if this Condition is entered. Calculated dose not within limits.	A.1	Submit a report to the NRC, pursuant to 10CFR50 Appendix I Section IV.A, that identifies causes for exceeding limits, defines corrective actions to be taken to reduce the releases, and proposed corrective actions to assure that subsequent releases are within limits.	30 days following the end of the quarter in which the release occurred
В.	Calculated dose exceeds two times (2x) the limits.	B.1	Enter Condition A of REC 12.4.7.	Immediately

	SURVEILLANCE			
RSR 12.4.3.1	Determine cumulative dose contributions for the current calendar quarter and calendar year for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days in accordance with the methodology and parameters in the ODCM.	31 days		

12.4.4 GASEOUS RADWASTE TREATMENT SYSTEM

REC 12.4.4 The GASEOUS RADWASTE (OFF-GAS) TREATMENT SYSTEM shall be OPERABLE and in operation.

APPLICABILITY: During Main Condenser Air Ejector system operation.

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	GASEOUS RADWASTE TREATMENT SYSTEM inoperable.	A.1	Restore system to OPERABLE status.	7 days
	<u>OR</u>	ANC	2	
	GASEOUS RADWASTE TREATMENT SYSTEM not in operation.	A.2	Place system in operation.	
В.	NOTE Required Action B.1 shall be completed if this Condition is entered.	B.1	that includes defective equipment or subsystem identification and inoperability cause, actions	30 days
	Required action and Associated Completion Time not met.		taken to restore the inoperable equipment to OPERABLE status, and summary description of actions taken to prevent a recurrence.	

	FREQUENCY	
RSR 12.4.4.1	Verify the GASEOUS RADWASTE TREATMENT SYSTEM is in operation.	7 days

12.4 GASEOUS EFFLUENTS AND TOTAL DOSE

12.4.5 VENTILATION EXHAUST TREATMENT SYSTEM

REC 12.4.5 The appropriate portions of the VENTILATION EXHAUST TREATMENT SYSTEM shall:

- BE OPERABLE; and а.
- b. be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses from each reactor unit from the site would exceed 0.3 mrem to any organ, when average over 31 days.

APPLICABILITY: At all times.

Separate Condition entry is allowed for each VENTILATION EXHAUST TREATMENT system pathway.

ACTIONS

ACT	ACTIONS				
-	CONDITION	REQUIRED ACTION	COMPLETION TIME		
Α.	One or more required VENTILATION EXHAUST TREATMENT SYSTEMS inoperable.	A.1 Restore system to OPERABLE status.	31 days		
B.	NOTE Required Action B.1 shall be completed if this condition is entered. Untreated gaseous waste release in progress. <u>AND</u> Projected dose not within limits.	B.1 Submit a report to the NRC that includes inoperable equipment or subsystem identification and reason for inoperability, actions taken to restore the inoperable equipment to OPERABLE status, and summary description of actions taken to prevent a recurrence.	30 days		

ACTIONS

.

	CONDITION		REQUIRED ACTION	COMPLETION TIME
C.	NOTE Required Action C.1 shall be completed if this Condition is entered.	C.1	Submit a report to the NRC that includes inoperable equipment or subsystem identification and reason for inoperability, actions	30 days
	Required Action and associated Completion Time of Condition A not met.		taken to restore the inoperable equipment to OPERABLE status, and summary description of actions taken to prevent a recurrence.	

	SURVEILLANCE	FREQUENCY
RSR 12.4.5.1	Project doses due to gaseous releases from the site in accordance with the ODCM.	31 days
RSR 12.4.5.2	NOTENOTENOTENOTE	92 days

12.4.6 MARK II Containment

REC 12.4.6 VENTING or PURGING of the containment drywell shall be:

- a. through the Primary Containment Vent and Purge System, or
- b. through the Standby Gas Treatment (SGT) System.

APPLICABILITY: During drywell VENTING or PURGING.

ACTIONS

CONDITION			REQUIRED ACTION	COMPLETION TIME
Α.	Above requirements not met.	A.1	Suspend all drywell VENTING and PURGING.	Immediately

	SURVEILLANCE	FREQUENCY
RSR 12.4.6.1	Verify containment drywell is aligned for VENTING or PURGING through the Primary Containment Vent and Purge System or the SGT System.	12 hours
RSR 12.4.6.2	Only required to be met when in MODES 1, 2, or 3.	
	 Verify: a. Both SGT trains are OPERABLE, and b. Only one of the SGT System trains to be used for PURGING. 	Prior to PURGING through the SGT System.

12.4.7 Total Dose

- REC 12.4.7 The dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and radiation from all uranium fuel cycle sources over 12 consecutive months shall be limited to:
 - a. \leq 25 mrem to the total body; and
 - b. \leq 75 mrem to the thyroid; and
 - c. \leq 25 mrem to any other organ.

APPLICABILITY: At all times.

ACTIONS

	CONDITION	REQUIRED ACTION	COMPLETION TIME	
Α.	NOTE Required Action A.1 and A.2 shall be completed if this Condition is entered.	A.1 Submit a report to the NRC (Director, Nuclear Reactor Regulation) that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the limits to include estimates of radiation exposure to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for a 12 consecutive month period that includes the release(s) covered by this report.	(Director, Nuclear Reactor Regulation) that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the limits to include estimates of radiation exposure to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for a 12 consecutive month period that includes the release(s) covered by this	30 days
	As required by Required Action B.1 of REC 12.3.2, 12.4.2, or 12.4.3.			
	<u>OR</u>			
	Calculated Total Dose not within limits.			
		AND	(continued)	

ACTIONS

,

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. (continued)	A.2NOTE Only applicable if the release condition resulting in violation of 40 CFR 190 has not been corrected. 	30 days

SURVEILLANCE	FREQUENCY	
RSR 12.4.7.1Determine cumulative dose contributions from direct radiation and liquid and gaseous effluents in accordance with the ODCM.	31 days	

12.4.8 Main Condenser

- REC 12.4.8 The release rate of the sum of the activities from the noble gases measured prior to the holdup line shall be limited to $\leq 3.4 \times 10^5 \mu$ Ci/sec after 30 minutes decay.
- APPLICABILITY: MODE 1, MODES 2 and 3 with any steam line not isolated and steam jet air ejectors (SJAE) in operation.

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	Release rate of the sum of the activities from noble gases prior to the holdup line not within the limits.		Restore the release rate to within limit.	72 hours
В.	Required Action and associated Completion Time not met.	B.1	Isolate all main steam lines.	12 hours
		OR		
		B.2	Isolate the SJAE.	12 hours
		OR		
		B.3.1	MODE 3	12 hours
			AND	
		B.3.2	MODE 4	36 hours

.

i

	SURVEILLANCE	FREQUENCY
RSR 12.4.8.1	Monitor the noble gas radioactivity rate prior to the holdup line in accordance with the ODCM and Table R12.2.2-1	CONTINUOUSLY
RSR 12.4.8.2	NOTE	
	Verify the release rate of the sum of the activities from noble gases prior to the holdup line is within limits by performing an isotopic analysis of a representative sample of gases taken prior to the holdup line.	Once within 4 hours after a ≥50% increase in the nominal steady state fission gas release from the primary coolant, as indicated by the off gas pre- treatment Noble Gas Activity Monitor, after factoring out increases due to changes in THERMAL POWER level <u>AND</u> 31 days

12.4.9 Dose Limits for MEMBERS OF THE PUBLIC

REC 12.4.9 Operations shall be conducted such that:

- a. Total Effective Dose Equivalent (TEDE) to individual MEMBERS OF THE PUBLIC does not exceed 100 mrem/year; and
- b. The dose in any unrestricted area from external sources does not exceed 2 mrem in any one hour.

APPLICABILITY: At all times.

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	NOTE Required Action A.1 shall be completed if this Condition is entered. Dose limit of REC Item a. exceeded.	A.1	Submit a report to the NRC in accordance with 10 CFR 20.2203.	30 days
B.	NOTE Required Action B.1 shall be completed if this Condition is entered. Dose limit of REC Item b. exceeded.	B.1	Submit a report to the NRC in accordance with 10 CFR 20.2203.	30 days

	FREQUENCY	
RSR 12.4.9.1	Calculate the TEDE to individual MEMBERS OF THE PUBLIC in accordance with the ODCM.	12 months
RSR 12.4.9.2	Determine and/or evaluate direct radiation exposures in unrestricted areas.	12 months

12.5 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

12.5.1 Radiological Environmental Monitoring Program (REMP)

REC 12.5.1 The REMP shall be conducted as specified in Table R12.5.1-1.

APPLICABILITY: At all times.

ACTIONS	
---------	--

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	NOTE Required Action A.2 shall be completed if this Condition is entered. 	A.1	Initiate action to identify suitable, alternative sampling media and/or specific locations for obtaining replacement samples for the pathway of interest and add them to the REMP. Delete locations from which samples are unavailable.	Immediately
		AND		
		A.2	Prepare and submit a controlled version of the ODCM, in the next Annual Radiological Environmental Operating Report (REOR) including revised figures and tables reflecting the new location(s) with supporting information identifying the sample unavailability cause and justification of the new sampling location(s).	In accordance with Technical Specification 5.6.2

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Β.	NOTE Required Action B.1 shall be completed if this Condition is entered. Level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeds the reporting levels of Table R12.5.1-2 when averaged over any calendar quarter.	B.1	Submit a report to the NRC that identifies the cause(s) for exceeding the limits and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to a MEMBER OF THE PUBLIC is less than the calendar year reporting level of REC 12.3.2, 12.4.2 or 12.4.3. The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.	30 days
C.	NOTE Required Action C.1 shall be completed if this Condition is entered. More than one radionuclide in Table R12.5.1-2 detected in the sampling medium. <u>AND</u> $\frac{C_1}{RL_1} + \frac{C_2}{RL_2} + \ge 1.0$ where; C = concentration RL = reporting level.	C.1	Submit a report to the NRC that identifies the cause(s) for exceeding the limits and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to a MEMBER OF THE PUBLIC is less than the calendar year reporting level of REC 12.3.2, 12.4.2 or 12.4.3. The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.	30 days

AC	T	0	N	S
-	_			

	CONDITION	REQUIRED ACTION	COMPLETION TIME
D.	CONDITION NOTE Required Action D.1 and D.2 shall be completed if this Condition is entered. 	D.1NOTE Only required when the measured levels of radioactivity are the result of plant effluents. 	COMPLETION TIME
		D.2NOTE Only required when the radionuclides detected are <u>not</u> the result of plant effluents.	In accordance with
		Describe the condition in the next Annual REOR.	Technical Specification 5.6.2.

.

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
ENOTE Required Action E.1 shall be completed if this Condition is entered. RSR 12.5.1.1 not met.	E.1 Prepare and submit to the NRC, in the next Annual REOR, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.	In accordance with Technical Specification 5.6.2.

	SURVEILLANCE	FREQUENCY
RSR 12.5.1.1	NOTES	
	 Deviations to the sampling schedule for the following reasons may occur and the RSR still be considered met provided the deviations are described in the next Annual REOR: 	
	 a. specimens are unobtainable due to hazardous conditions, seasonal unavailability, or malfunction of sampling equipment, or 	
	 b. a person or business who participates in the program goes out of business or can no longer provide samples, or 	
	 c. a contractor omission which is corrected as soon as discovered. 	
	 Malfunctioning equipment shall be corrected/replaced and replacement suppliers shall be found, as applicable, as soon as practicable. 	
	Collect and analyze samples in accordance with Table R12.5.1-1 and the ODCM to the detection capabilities required by Table R12.5.1-3.	In accordance with the Radiological Environmental Monitoring Program

Table R12.5.1-1 (Page 1 of 5)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

EXPOSURE PATHWAY AND/ OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY ⁽¹¹⁾	TYPE AND FREQUENCY OF ANALYSIS ⁽¹¹⁾
1. Airborne Radioiodine and Particulates	Samples from a total of eight locations: a. Indicator- Near Field Four samples from locations within 4.0 km (2.5 mi) in	CONTINUOUS sampler operation with particulate sample collection once per 7 days, or more frequently if required due to dust loading, and radioiodine	Radioiodine Canister: I-131 analysis once per 14 days on near field samples and control ⁽²⁾ samples.
	different sectors. b. Indicator- Far Field Four additional locations within 4.0 to 10 km (2.5 to 6.2	canister collection once per 14 days.	Particulate Sampler: Gross beta analysis following once per 7 day filter change ⁽³⁾ and gamma
	mi) in different sectors. c. Control		isotopic analysis ⁽⁴⁾ once per 92 days on composite filters by location on near field and control ⁽²⁾ samples.
	One sample from a control location within 10 to 30 km (6.2 to 18.6 mi).		

Table R12.5.1-1 (Page 2 of 5)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

EXPOSURE PATHWAY AND/ OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY ⁽¹¹⁾	TYPE AND FREQUENCY OF ANALYSIS ⁽¹¹⁾
2. Direct Radiation ⁽⁵⁾	Forty routine monitoring stations, either with a thermoluminescent dosimeter (TLD) or with one instrument for measuring dose rate continuously, placed as follows:	92 days	Gamma dose on each TLD once per 92 days.
	 a. Indicator- Inner Ring (100 Series TLD) One in each meteorological sector, in the general area of the SITE BOUNDARY (within 0.1 to 2.0 miles; 0.2 to 3.2 km); 		
	 Indicator- Outer Ring (200 Series TLD) One in each meteorological sector, within 4.8 to 10 km (3 to 6.2 mi); 		
	 Other (300 Series TLD) One at each Airborne location given in part 1.a. and 1.b. 		
	The balance of the TLDs to be placed at special interest locations beyond the Restricted Area where either a MEMBER OF THE PUBLIC or Exelon Nuclear employees have routine access.		
	 Control One at each airborne control location given in part 1.c. 		

Table R12.5.1-1 (Page 3 of 5)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

E	XPOSURE PATHWAY AND/ OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY ⁽¹¹⁾	TYPE AND FREQUENCY OF ANALYSIS ⁽¹¹⁾
3.	Waterborne a. Ground/Well	 a. Indicator Samples from two sources only if likely to be affected.⁽⁶⁾ 	92 days	Gamma isotopic ⁽⁴⁾ and tritium analysis once per 92 days.
	b. Drinking ⁽⁷⁾	 a. Indicator One Sample from each community drinking water supply that could be affected by the station discharge within 10 km (6.2 mi) downstream of discharge. 	Grab samples once per 7 days.	Gross beta and gamma isotopic analyses ⁽⁴⁾ on once per 31 day composite; tritium analysis on once per 92 day composite. I-131 on each composite when calculated dose for water consumption > 1 mrem/year.
	c. Surface Water ⁽⁷⁾	If no community water supply (Drinking Water) exists within 10 km downstream of discharge then surface water sampling shall be performed. a. Indicator	Grab samples once per 7 days.	Gross beta and gamma isotopic analyses ⁽⁴⁾ on once per 31 day composite; tritium analysis on once per 92 day composite.
		One sample downstream		
	d. Control Sample ⁽⁷⁾	a. Control One surface sample upstream of discharge.	Grab samples once per 7 days.	Gross beta and gamma isotopic analyses ⁽⁴⁾ on once per 31 day composite; tritium analysis on once per 92 day composite.
	e. Sediment	 a. Indicator At least one sample from downstream⁽⁷⁾ area within 10 km (6.2 mi). 	184 days	Gamma isotopic analysis ⁽⁴⁾ once per 184 days.

Table R12.5.1-1 (Page 4 of 5) RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

EXPOSURE PATHWAY AND/ OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY ⁽¹¹⁾	TYPE AND FREQUENCY OF ANALYSIS ⁽¹¹⁾
4. Ingestion a. Milk ⁽⁸⁾	 a. Indicator Samples from milking animals from a maximum of three locations within 10 km (6.2 mi) distance. b. Control One sample from milking animals at a control location within 10 to 30 km (6.2 to 18.6 mi). 	Once per 14 days when animals are on pasture (May through October), once per 31 days at other times (November through April).	Gamma isotopic ⁽⁴⁾ and I-131 ⁽⁹⁾ analysis on each sample.
b. Fish	 a. Indicator Representative samples of commercially and recreationally important species in discharge area, and representative samples from the LaSalle Lake. b. Control Representative samples of commercially and recreationally important species in control locations upstream of discharge. 	Twice per 12 months.	Gamma isotopic analysis ⁽⁴⁾ on edible portions
c. Food Products	 a. Indicator Two representative samples from the principal food pathways grown in each of four major quadrants within 10 km (6.2 mi), if available: At least one root vegetable sample⁽¹⁰⁾ At least one broad leaf vegetable (or vegetation)⁽¹⁰⁾ b. Control Two representative samples similar to indicator samples grown within 15 to 30 km (9.3 to 18.6 mi). 	12 months	Gamma isotopic ⁽⁴⁾ and I-131 analysis on each sample.

Table R12.5.1-1 (Page 5 of 5)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

TABLE NOTATIONS

- (1) Specific parameters of distance and direction from the centerline of the midpoint of the two units and additional description where pertinent, shall be provided for each and every sample location in Table R12.5.1-1, except for vegetation. For vegetation, due to location variability year to year, the parameters of distance and direction shall be provided in the Annual Environmental Operating Report.
- (2) Far field samples are analyzed when the respective near field sample results are inconsistent with previous measurements and radioactivity is confirmed as having its origin in airborne effluents from the station, or at the discretion of the ODCM Specialist.
- (3) Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than 10 times the yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.
- (4) Gamma isotopic analysis means the identification and quantification of gamma emitting radionuclides that may be attributable to the effluents from the station.
- (5) One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation. The 40 locations is not an absolute number. The number of direct radiation monitoring stations may be reduced according to geographical limitations; e.g., if a station is adjacent to a lake, some sectors may be over water thereby reducing the number of dosimeters that could be placed at the indicated distances. The frequency of analysis or readout for TLD systems will depend upon the characteristics of the specific system used and should be selected to obtain optimum dose information with minimal fading.
- (6) Groundwater samples shall be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.
- (7) The "downstream" sample shall be taken in an area beyond but near the mixing zone. The "upstream sample" shall be taken at a distance beyond significant influence of the discharge. Upstream samples in an estuary must be taken far enough upstream to be beyond the station influence.
- (8) If milking animals are not found in the designated indicator locations, or if the owners decline to participate in the REMP, all milk sampling may be discontinued.
- (9) I-131 analysis means the analytical separation and counting procedure are specific for this radionuclide.
- (10) One sample shall consist of a volume/weight of sample large enough to fill contractor specified container.
- (11) The provisions of RSR 12.0.2 and RSR 12.0.3 are not applicable to the REMP.

Table R12.5.1-2

REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES REPORTING LEVELS

ANALYSIS	WATER (pCi/l)	AIRBORNE PARTICULATE OR GASES (pCi/m ³)	FISH (pCi/kg, wet)	MILK (pCi/l)	FOOD PRODUCTS (pCi/kg, wet)
H-3	20,000 ⁽¹⁾				
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Zr-Nb-95	400				
I-131	2 ⁽²⁾	0.9		3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200			300	

For drinking water samples. This is 40 CFR Part 141 value. If no drinking water pathway exists, a value of 30,000 pCi/l may be used. If no drinking water pathway exists, a value of 20 pCi/l may be used. (1) (2)

.

Table R12.5.1-3

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS^(a)

LOWER LIMIT OF DETECTION (LLD)^(b)

ANALYSIS	WATER (pCi/l)	AIRBORNE PARTICULATE OR GASES (pCi/m ³)	FISH (pCi/kg, wet)	MILK (pCi/l)	FOOD PRODUCTS (pCi/kg, wet)	SEDIMENT/SOIL (pCi/kg, dry)
Gross Beta	4	0.01				
H-3	2,000					
Mn-54	15		130			
Fe-59	30		260			
Co-58,60	15		130		·····	
Zn-65	30		260			
Zr-95	30					
Nb-95	15					
I-131	1 ^(c)	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-140	60			60		
La-140	15			15		

(a) All peaks identified at the 95% confidence level, shall also be analyzed and reported.

(b) Most restrictive ODCM LLD requirement or technical requirement. The reported minimum detectable concentration (MDC) shall be < these values.

(c) If no drinking water pathway exists, a value of 15 pCi/l may be used (NUREG 1301/1302)

12.5 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

12.5.2 Land Use Census

REC 12.5.2 A Land Use Census shall be conducted and shall identify within a distance of 10 km (6.2 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence, and an enumeration of livestock. For dose calculation, a garden will be assumed at the nearest residence.

-----NOTES-----

- 1. The 16 meteorological sectors requirement may be reduced according to geographical limitations; e.g. at a lake site where some sectors will be over water.
- 2. The nearest industrial facility shall also be documented if closer than the nearest residence.

APPLICABILITY: At all times.

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
ANOTE Required Action A.1 and A.2 shall be completed if this Condition is entered.	A.1 Add the new location to the Radiological Environmental Monitoring Program (REMP).	30 days
Land use census identifies a location which yields a calculated dose or dose commitment, via the same exposure pathway, that is at least 20% greater than at a location from which samples are currently being obtained in accordance with REC 12.5.1.	AND	
		(continued)

ACTIONS

	CONDITION	REQUIRED ACTION	COMPLETION TIME
Α.	(continued)	A.2NOTE The sampling location(s), excluding the control location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may be deleted from the REMP after October 31 of the year in which Land Use Census was conducted.	
		Submit the documentation for a change in the ODCM in the next Annual Radiological Environmental Operating Report and include the revised figures and tables for the ODCM reflecting the new location(s) with information supporting the change in sampling locations.	In accordance with Technical Specification 5.6.2.

SURVEILLANCE REQUIREMENTS

SURVEILLANCE		FREQUENCY
RSR 12.5.2.1	Conduct a land use census during the growing season, between June 1 and October 1, using information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities. The results of the census shall be included in the Annual Radiological Environmental Operating Report.	NOTE RSR 12.0.2 and 12.0.3 are not applicable. 12 months

12.5 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

12.5.3 Interlaboratory Comparison Program

REC 12.5.3	Analyses shall be performed on radioactive materials supplied as part
	of an Interlaboratory Comparison Program that is traceable to NIST.

APPLICABILITY: At all times.

ACTIONS

CONDITION		REQUIRED ACTION	COMPLETION TIME
ANOTE Required Action A.1 shall be completed if this Condition is entered. 	-	Report corrective actions to prevent recurrence to the NRC in the next Annual Radiological Environmental Operating Report.	In accordance with Technical Specification 5.6.2

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
RSR 12.5.3	Include a summary of the results of the Interlaboratory Comparison Program in the Annual Radiological Environmental Operating Report.	In accordance with Technical Specification 5.6.2

12.5 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

12.5.4 Meteorological Monitoring Program (NOT APPLICABLE)

12.6.1 Annual Radiological Environmental Operating Report

- 12.6.1.1 Routine Annual Radiological Environmental Operating Report covering the operation of the Units during the previous calendar year shall be submitted by May 15 of each year. The report shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental monitoring program for the report period. The material provided shall be consistent with the objectives outlined in the Offsite Dose Calculation Manual, and in 10 CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.c. It should include, as found appropriate, a comparison of preoperational studies with operational controls or with previous environmental surveillance reports, and an assessment of the observed impacts of the plant operation on the environment. A single submittal may be made for a multiple unit station. The submittal should combine sections common to all units at the station.
- 12.6.1.2 The Annual Radiological Environmental Operating Report shall include the results of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the tables and figures in Part II, Section 6 of the ODCM, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.
- 12.6.1.3 The reports shall also include the following: a summary description of the Radiological Environmental Monitoring Program; legible maps covering all sampling locations keyed to a table giving distances and directions from the midpoint between the two units; reasons for not conducting the Radiological Environmental Monitoring Program as required by REC 12.5.1, and discussion of all deviations from the sampling schedule of Table R12.5.1-1; a Table of Missed Samples and a Table of Sample Anomalies for all deviations from the sampling schedule of ODCM Part II, Table 6.1-1; discussion of environmental sample measurements that exceed the reporting levels of Table R12.5.1-2 but are not the result of plant effluents; discussion of all analyses in which the LLD required by Table R12.5.1-3 was not achievable: results of the Land Use Census required by REC 12.5.2; and the results of licensee participation in an Interlaboratory Comparison Program and the corrective actions being taken if the specified program is not being performed as required by REC 12.5.3.

12.6.1 Annual Radiological Environmental Operating Report (continued)

- 12.6.1.4 The Annual Radiological Environmental Operating Report shall also include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability. In lieu of submission with the Annual Radiological Environmental Operating Report, the licensee has the option of retaining the summary of required meteorological data on site in a file that shall be provided to the NRC upon request.
- 12.6.1.5 The Annual Radiological Environmental Operating Report shall also include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. This report shall also include an assessment of radiation doses to the most likely exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year. The assessment of radiation doses shall be performed in accordance with the methodology and parameters in the ODCM and in compliance with 10 CFR 20 and 40 CFR 190, "Environmental Radiation Protection Standards for Nuclear Power Operation."

12.6.2 Annual Radioactive Effluent Release Report

- 12.6.2.1 The radioactive effluent release reports covering the operation of the unit during the previous calendar year of operation shall be submitted in accordance with 10 CFR 50.36a prior to May 1 of each year. The report shall include a summary of the quantities of radioactive liquid and gaseous effluent and solid waste released from the unit. The material provided shall be consistent with the objectives outlined in the ODCM and the PROCESS CONTROL PROGRAM and in conformance with 10 CFR 50.36a and 10 CFR 50, Appendix I, Section IV.B.1. A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit.
- 12.6.2.2 The radioactive effluent release reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, "Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof.
- 12.6.2.3 The radioactive effluent release report shall include the following information for each type of solid waste shipped offsite during the report period:
 - 1. Container volume,
 - 2. Total curie quantity (specify whether determined by measurement or estimate),
 - 3. Principal radionuclides (specify whether determined by measurement or estimate),
 - 4. Type of waste (e.g., spent resin, compacted dry waste, evaporator bottoms),
 - 5. Type of container (e.g., LSA, Type A, Type B, Large Quantity), and
 - 6. Solidification agent (e.g., cement, urea formaldehyde).

12.6.2 Radioactive Effluent Release Report (continued)

- 12.6.2.4 The radioactive effluent release reports shall include unplanned releases from the site to unrestricted areas of radioactive materials in gaseous and liquid effluents on a quarterly basis.
- 12.6.2.5 The radioactive effluent release reports shall include any changes to the PROCESS CONTROL PROGRAM (PCP) made during the reporting period.
- 12.6.2.6 The radioactive effluent release reports shall include a description of licensee initiated major changes to the radioactive waste treatment systems (liquid, gaseous and solid), as described in Section 12.6.3.)

12.6.3 Offsite Dose Calculation Manual (ODCM)

- 12.6.3.1 The ODCM is common to LaSalle Unit 1 and LaSalle Unit 2. The ODCM shall contain the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring alarm and trip setpoints, and in the conduct of the radiological environmental monitoring program; and
- 12.6.3.2 The ODCM shall also contain the radioactive effluent controls and radiological environmental monitoring activities, and descriptions of the information that should be included in the Annual Radiological Environmental Operating, and Radioactive Effluent Release Reports required by Technical Specifications 5.6.2 and 5.6.3.
- 12.6.3.3 Licensee-initiated changes to the ODCM:
 - a. Shall be documented and records of reviews performed shall be retained as required by the Quality Assurance (QA) Manual. This documentation:
 - Shall contain sufficient information to support the change(s) together with the appropriate analyses or evaluations justifying the change(s); and
 - Shall contain a determination that the change(s) maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and 10 CFR Part 50, Appendix I, and not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.
 - 3. Shall become effective after approval of the Plant Manager.
 - 4. Shall be submitted to the NRC in the form of a complete, legible copy of the entire ODCM as a part of or concurrent with the Radioactive Effluent Release Report for the period of the report in which any change to the ODCM was made. Each change shall be identified by markings in the margin of the affected pages, clearly indicating the area of the page that was changed, and shall indicate the date (i.e., month and year) the change was implemented.

12.6.4 Major Changes to Radioactive Waste Treatment Systems (Liquid and Gaseous)

- 12.6.4.1 Licensee initiated major changes to the radioactive waste treatment systems (liquid and gaseous):
 - a. Shall be reported to the Commission in the Radioactive Effluent Release Report for the period in which the evaluation was reviewed by the Plant Operations Review Committee (PORC). The discussion of each change shall contain:
 - 1. A summary of the evaluation that led to the determination that the change could be made in accordance with 10 CFR 50.59;
 - 2. Sufficient detailed information to totally support the reason for the change without benefit or additional or supplemental information;
 - A detailed description of the equipment, components and processes involved and the interfaces with other plant systems;
 - 4. An evaluation of the change which shows the predicted releases of radioactive materials in liquid and gaseous effluents waste that differ from those previously predicted in the license application and amendments thereto;
 - 5. An evaluation of the change which shows the expected maximum exposures to individual in the unrestricted area and to the general population that differ from those previously estimated in the license application and amendments thereto;
 - 6. A comparison of the predicted releases of radioactive materials, in liquid and gaseous effluents, to the actual releases for the period to when the changes are to be made;
 - 7. An estimate of the exposure to plant operating personnel as a result of the change; and
 - 8. Documentation of the fact that the change was reviewed and found acceptable by the PORC.
 - b. Shall become effective upon review and acceptance by the PORC.

BASES

General

It is expected that releases of radioactive material in effluents will be kept at small fractions of the limits specified in Section 20.1302 of 10 CFR, Part 20. At the same time, the licensee is permitted the flexibility of operation, compatible with consideration of health and safety, to assure that the public is provided a dependable source of power even under unusual operating conditions which may temporarily result in releases higher than such small fractions, but still within the limits specified in Section 20.1302 of 10 CFR, Part 20. It is expected that in using this operational flexibility under unusual operating conditions the licensee will exert his best efforts to keep levels of radioactive material in effluents as low as practicable.

B 12.0 OFFSITE DOSE CALCULATION MANUAL (ODCM) RADIOLOGICAL EFFLUENT CONTROL (REC) APPLICABILITY

BASES	
RECs	REC 12.0.1 through REC 12.0.6 establish the general requirements applicable to all RECs in Sections 12.1 through 12.5 and apply at all times, unless otherwise stated.
REC 12.0.1	REC 12.0.1 establishes the Applicability statement within each individual REC as the requirement for when the REC is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Requirement).
REC 12.0.2	REC 12.0.2 establishes that upon discovery of a failure to meet a REC, the associated ACTIONS shall be met. The Completion Time of each Required Action for an ACTIONS Condition is applicable from the point in time that an ACTIONS Condition is entered. The Required Actions establish those remedial measures that must be taken within specified Completion Times when the requirements of a REC are not met. This Requirement establishes that:
	a. Completion of the Required Actions within the specified Completion Times constitutes compliance with a REC; and
	 Completion of the Required Actions is not required when a REC is met within the specified Completion Time, unless otherwise specified.
	There are two basic types of Required Actions. The first type of Required Action specifies a time limit in which the REC must be met. This time limit is the Completion Time to restore an inoperable system or component to OPERABLE status or to restore variables to within specified limits. If this type of Required Action is not completed within the specified Completion Time, a shutdown may be required to place the unit in a MODE or condition in which the REC is not applicable. (Whether stated as a Required Action or not, correction of the entered Condition is an action that may always be considered upon entering ACTIONS.) The second type of Required
	(continued)

•

REC 12.0.2 Action specifies the remedial measures that permit continued operation of (continued) the unit that is not further restricted by the Completion Time. In this case, compliance with the Required Actions provides an acceptable level of safety for continued operation. Completing the Required Actions is not required when a REC is met or is no longer applicable, unless otherwise stated in the individual RECs. The nature of some Required Actions of some Conditions necessitates that, once the Condition is entered, the Required Actions must be completed even though the associated Condition no longer exists. The individual REC's ACTIONS specify the Required Actions where this is the case. An example of this is in REC 12.4.2, "Dose from Noble Gases." The Completion Times of the Required Actions are also applicable when a system or component is removed from service intentionally. The reasons for intentionally relying on the ACTIONS include, but are not limited to, performance of Surveillances, preventive maintenance, corrective maintenance, or investigation of operational problems. Entering ACTIONS for these reasons must be done in a manner that does not compromise safety. Intentional entry into ACTIONS should not be made for operational convenience. Additionally, if intentional entry into ACTIONS would result in redundant equipment being inoperable, alternatives should be used instead. Doing so limits the time both subsystems/divisions of a function are inoperable and limits the time conditions exist which may result in REC 12.0.3 being entered. Individual RECs may specify a time limit for performing a RSR when equipment is removed from service or bypassed for testing. In this case, the Completion Times of the Required Actions are applicable when this time limit expires, if the equipment remains removed from service or bypassed. When a change in MODE or other specified condition is required to comply with Required Actions, the unit may enter a MODE or other specified condition in which another REC becomes applicable. In this case, the Completion Times of the associated Required Actions would apply from the point in time that the new REC becomes applicable and the ACTIONS Condition(s) are entered.

REC 12.0.3	REC 12.0.3 establishes the actions that must be implemented is not met and:	
	а.	An associated Required Action and Completion Time is not met and no other Condition applies; or
	b.	The condition of the unit is not specifically addressed by the associated ACTIONS. This means that no combination of Conditions stated in the ACTIONS can be made that exactly corresponds to the actual condition of the unit. Sometimes, possible combinations of Conditions are such that entering REC 12.0.3 is warranted; in such cases, the ACTIONS specifically state a Condition corresponding to such combinations and also that REC 12.0.3 be entered immediately.
	comp or tha Shift actior interp	entering REC 12.0.3, 1 hour is allowed to implement appropriate bensatory actions and verify the plant is not in an unanalyzed condition at a required safety function is not compromised. Within 12 hours, Operations Superintendent or designee approval of the compensatory ins and the plan for exiting REC 12.0.3 must be obtained. The use and pretation of specified times to complete the actions of REC 12.0.3 are stent with the discussion of Section 1.3, Completion Times.
		actions required in accordance with REC 12.0.3 may be terminated REC 12.0.3 exited if any of the following occurs:
	а.	The REC is now met.
	b.	A Condition exists for which the Required Actions have now been performed.
	C.	ACTIONS exist that do not have expired Completion Times. These Completion Times are applicable from the point in time that the Condition is initially entered and not from the time REC 12.0.3 is exited.
		(continued)

Т

BASES	
REC 12.0.3 (continued)	In MODES 1, 2, and 3, REC 12.0.3 provides actions for Conditions not covered in other Requirements. The requirements of REC 12.0.3 do not apply in MODES 4 and 5 because the unit is already in the most restrictive Condition. The requirements of REC 12.0.3 do not apply in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual RECs sufficiently define the remedial measures to be taken.
REC 12.0.4	 REC 12.0.4 establishes limitations on changes in MODES or other specified conditions in the Applicability when an REC is not met. It precludes placing the unit in a MODE or other specified condition stated in that Applicability (e.g., Applicability desired to be entered) when the following exist: a. Unit conditions are such that the requirements of the REC would not be met in the Applicability desired to be entered; and b. Continued noncompliance with the REC requirements, if the Applicability were entered, would result in the unit being required to exit the Applicability desired to be entered to comply with the Required Actions. Compliance with Required Actions that permit continued operation of the
	 Compliance with Required Actions that permit continued operation of the unit for an unlimited period of time in a MODE or other specified condition provides an acceptable level of safety for continued operation. This is without regard to the status of the unit before or after the MODE change. Therefore, in such cases, entry into a MODE or other specified condition in the Applicability may be made in accordance with the provisions of the Required Actions. The provisions of this REC should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability. The provisions of REC 12.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of REC 12.0.4 shall not prevent

BASES	
REC 12.0.4 (continued)	changes in MODES or other specified conditions in the Applicability that result from any unit shutdown.
	Exceptions to REC 12.0.4 are stated in the individual RECs. The exceptions allow entry into MODES or other specified conditions in the Applicability when the associated ACTIONS to be entered do not provide for continued operation for an unlimited period of time. Exceptions may apply to all the ACTIONS or to a specific Required Action of a REC.
	Surveillances do not have to be performed on the associated inoperable equipment (or on variables outside the specified limits), as permitted by RSR 12.0.1. Therefore, changing MODES or other specified conditions while in an ACTIONS Condition, either in compliance with REC 12.0.4, or where an exception to REC 12.0.4 is stated, is not a violation of RSR 12.0.1 or RSR 12.0.4 for those Surveillances that do not have to be performed due to the associated inoperable equipment. However, RSRs must be met to ensure OPERABILITY prior to declaring the associated equipment OPERABLE (or variable within limits) and restoring compliance with the affected REC.
	REC 12.0.4 is only applicable when entering MODE 3 from MODE 4, MODE 2 from MODE 3 or 4, or MODE 1 from MODE 2. Furthermore, REC 12.0.4 is applicable when entering any other specified condition in the Applicability only while operating in MODE 1, 2, or 3. The requirements of REC 12.0.4 do not apply in MODES 4 and 5, or in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual Requirements sufficiently define the remedial measures to be taken.
REC 12.0.5	REC 12.0.5 establishes the allowance for restoring equipment to service under administrative controls when it has been removed from service or declared inoperable to comply with ACTIONS. The sole purpose of this Requirement is to provide an exception to REC 12.0.2 (e.g., to not comply with the applicable Required Action(s)) to allow the performance of required testing to demonstrate:
	a. The OPERABILITY of the equipment being returned to service; or

BASES	
REC 12.0.5 (continued)	b. The OPERABILITY of other equipment.
(The administrative controls ensure the time the equipment is returned to service in conflict with the requirements of the ACTIONS is limited to the time absolutely necessary to perform the required testing to demonstrate OPERABILITY. This Requirement does not provide time to perform any other preventive or corrective maintenance.
	An example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to prevent the trip function from occurring during the performance of required testing on another channel in the other trip system. A similar example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to permit the logic to function and indicate the appropriate response during the performance of required testing on another channel in the same trip system.
REC 12.0.6	REC 12.0.6 establishes the applicability of each REC to both Unit 1 and Unit 2 operation. Whenever a requirement applies to only one unit, or is different for each unit, this will be identified in the appropriate section of the REC (e.g., Applicability, RSR, etc.) with parenthetical reference, Notes, or other appropriate presentation within the body of the requirement.

B 12.0 ODCM RADIOLOGICAL SURVEILLANCE REQUIREMENT (RSR) APPLICABILITY

.

BASES	
RSRs	RSR 12.0.1 through RSR 12.0.5 establish the general requirements applicable to all Requirements in 12.1 through 12.5 and apply at all times, unless otherwise stated.
RSR 12.0.1	RSR 12.0.1 establishes the requirement that RSRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the REC apply, unless otherwise specified in the individual RSRs. This REC is to ensure that RSRs are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a RSR within the specified Frequency, in accordance with RSR 12.0.2, constitutes a failure to meet a REC.
	Systems and components are assumed to be OPERABLE when the associated RSRs have been met. Nothing in this RSR, however, is to be construed as implying that systems or components are OPERABLE when:
	 The systems or components are known to be inoperable, although still meeting the RSRs; or
	 The requirements of the RSR(s) are known to be not met between required RSR performances.
	RSR do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated REC are not applicable, unless otherwise specified.
	Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given RSR. In this case, the unplanned event may be credited as fulfilling the performance of the RSR.
	(continued)

BASES

RSR 12.0.1 (continued) RSRs, including RSRs invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. RSRs have to be met and performed in accordance with RSR 12.0.2, prior to returning equipment to OPERABLE status.

Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment OPERABLE. This includes ensuring applicable RSRs are not failed and their most recent performance is in accordance with RSR 12.0.2. Post maintenance testing may not be possible in the current MODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established. In these situations, the equipment may be considered OPERABLE provided testing has been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a MODE or other specified condition where other necessary post maintenance tests can be completed.

RSR 12.0.2 RSR 12.0.2 establishes the requirements for meeting the specified Frequency for RSRs and any Required Action with a Completion Time that requires the periodic performance of the Required Action on a "once per..." interval.

RSR 12.0.2 permits a 25% extension of the interval specified in the Frequency. This extension facilitates RSR scheduling and considers plant operating conditions that may not be suitable for conducting the RSR (e.g., transient conditions or other ongoing RSR or maintenance activities).

The 25% extension does not significantly degrade the reliability that results from performing the RSR at its specified Frequency. This is based on the recognition that the most probable result of any particular RSR being performed is the verification of conformance with the RSRs.

As stated in RSR 12.0.2, the 25% extension also does not apply to the initial portion of a periodic Completion Time that requires performance on a "once per..." basis. The 25% extension applies to each performance after the initial performance. The initial performance of the Required Action,

BASES

RSR 12.0.2 whether it is a particular RSR or some other remedial action, is considered a single action with a single Completion Time. One reason for not allowing the 25% extension to this Completion Time is that such an action usually verifies that no loss of function has occurred by checking the status of redundant or diverse components or accomplishes the function of the inoperable equipment in an alternative manner.

The provisions of RSR 12.0.2 are not intended to be used repeatedly merely as an operational convenience to extend RSR intervals (other than those consistent with refueling intervals) or periodic Completion Time intervals beyond those specified.

RSR 12.0.3 RSR 12.0.3 establishes the flexibility to defer declaring affected equipment inoperable or an affected variable outside the specified limits when a RSR has not been completed within the specified Frequency. A delay period of up to 24 hours or up to the limit of the specified Frequency, whichever is greater, applies from the point in time it is discovered that the RSR has not been performed in accordance with RSR 12.0.2, and not at the time that the specified Frequency was not met. This delay period provides adequate time to complete RSRs that have been missed. This delay period permits the completion of a RSR before complying with Required Actions or other remedial measures that might preclude completion of the RSR.

The basis for this delay period includes consideration of unit conditions, adequate planning, availability of personnel, the time required to perform the RSR, the safety significance of the delay in completing the required RSR, and the recognition that the most probable result of any particular RSR being performed is the verification of conformance with the requirements.

When a RSR with a Frequency based not on time intervals, but upon specified unit conditions, operating situations, or requirements of regulations (e.g., prior to each release, or in accordance with the Radioactive Liquid Waste Sampling and Analysis Program, etc.) is discovered to not have been

RSR 12.0.3 performed when specified, RSR 12.0.3 allows for the full delay period of up to the specified Frequency to perform the RSR. However, since there is not a time interval specified, the missed RSR should be performed at the first reasonable opportunity.

RSR 12.0.3 provides a time limit for, and allowances for the performance of, RSRs that become applicable as a consequence of MODE changes imposed by Required Actions.

Failure to comply with specified Frequencies for RSRs is expected to be an infrequent occurrence. Use of the delay period established by RSR 12.0.3 is a flexibility which is not intended to be used as an operational convenience to extend RSR intervals. While up to 24 hours or the limit of the specified Frequency is provided to perform the missed RSR, it is expected that the missed RSR will be performed at the first reasonable opportunity. The determination of the first reasonable opportunity should include consideration of the impact on plant risk (from delaying the RSR as well as any plant configuration changes required or shutting the plant down to perform the RSR) and impact on any analysis assumptions, in addition to unit conditions, planning, availability of personnel, and the time required to perform the RSR. This risk impact should be managed through the program in place to implement 10 CFR 50.65(a)(4) and its implementation guidance, NRC Regulatory Guide 1.182, "Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants." This Regulatory Guide addresses consideration of temporary and aggregate risk impacts, determination of risk management action thresholds, and risk management action up to and including plant shutdown. The missed RSR should be treated as an emergent condition as discussed in the Regulatory Guide. The risk evaluation may use quantitative, qualitative, or blended methods. The degree of depth and rigor of the evaluation should be commensurate with the importance of the component. Missed RSRs for important components should be analyzed quantitatively. If the results of the risk evaluation determine the risk increase is significant, this evaluation should be used to determine the safest course of action. All missed RSRs will be placed in the station's Corrective Action Program.

BASES

RSR 12.0.3 (continued) If a RSR is not completed within the allowed delay period, then the equipment is considered inoperable or the variable then is considered outside the specified limits and the Completion Times of the Required Actions for the applicable REC Conditions begin immediately upon expiration of the delay period. If a RSR is failed within the delay period, then the equipment is inoperable, or the variable is outside the specified limits and the Completion Times of the Required Actions for the applicable REC Conditions begin immediately upon the failure of the RSR.

Completion of the RSR within the delay period allowed by this RSR, or within the Completion Time of the ACTIONS, restores compliance with RSR 12.0.1.

RSR 12.0.4 RSR 12.0.4 establishes the requirement that all applicable RSRs must be met before entry into a MODE or other specified condition in the Applicability.

This RSR ensures that system and component OPERABILITY requirements and variable limits are met before entry into MODES or other specified conditions in the Applicability for which these systems and components ensure safe operation of the unit.

The provisions of this RSR should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.

However, in certain circumstances, failing to meet a RSR will not result in RSR 12.0.4 restricting a MODE change or other specified condition change. When a system, subsystem, division, component, device, or variable is inoperable or outside its specified limits, the associated RSR(s) are not required to be performed per RSR 12.0.1 which states that RSRs do not have to be performed on inoperable equipment. When equipment is inoperable, RSR 12.0.4 does not apply to the associated RSR(s) since the requirement for the RSR(s) to be performed is removed. Therefore, failing to perform the RSRs within the specified Frequency, on equipment that is inoperable, does not result in a RSR 12.0.4 restriction to changing MODES or other specified conditions of the Applicability. However, since the REC is not met in this instance, REC 12.0.4 will govern any restrictions that may (or may not) apply to MODE or other specified condition changes.

RSR 12.0.4 The provisions of RSR 12.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of RSR 12.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown.

The precise requirements for performance of RSRs are specified such that exceptions to RSR 12.0.4 are not necessary. The specific time frames and conditions necessary for meeting the RSRs are specified in the Frequency, in the RSR, or both. This allows performance of RSRs when the prerequisite condition(s) specified in a RSR procedure require entry into the MODE or other specified condition in the Applicability of the associated REC prior to the performance or completion of a RSR. A RSR that could not be performed until after entering the REC Applicability would have its Frequency specified such that it is not "due" until the specific conditions needed are met. Alternately, the RSR may be stated in the form of a Note as not required (to be met or performed) until a particular event, condition, or time has been reached. Further discussion of the specific formats of RSRs' annotation is found in Section 1.4, Frequency.

RSR 12.0.4 is only applicable when entering MODE 3 from MODE 4, MODE 2 from MODE 3 or 4, or MODE 1 from MODE 2. Furthermore, RSR 12.0.4 is applicable when entering any other specified condition in the Applicability only while operating in MODE 1, 2, or 3. The requirements of RSR 12.0.4 do not apply in MODES 4 and 5, or in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual Controls sufficiently define the remedial measures to be taken.

RSR 12.0.5 RSR 12.0.5 establishes the applicability of each RSR to both Unit 1 and Unit 2 operation. Whenever a requirement applies to only one unit, or is different for each unit, this will be identified with parenthetical reference, Notes, or other appropriate presentation within the RSR.

B 12.1 NOT USED

INTENTIONALLY BLANK

B 12.2 INSTRUMENTATION

B 12.2.1 Radioactive Liquid Effluent Monitoring Instrumentation

BASES

The radioactive liquid effluent monitoring instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases of liquid effluents. The alarm/trip setpoints for these instruments shall be calculated in accordance with the procedures in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of RECS. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50.

B 12.2 INSTRUMENTATION

B 12.2.2 Radioactive Gaseous Effluent Monitoring Instrumentation

BASES

The radioactive gaseous effluent monitoring instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/trip setpoints for these instruments shall be calculated in accordance with the procedures in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of RECS.

B 12.3 LIQUID EFFLUENTS

B 12.3.1 Liquid Effluent Concentration

BASES

This control is provided to ensure that the concentration of radioactive materials released in liquid waste effluents from the site will be less than ten (10) times the concentration levels specified in Appendix B, Table 2, Column 2 to 10 CFR 20.1001-2402. This limitation provides additional assurance that the levels of radioactive materials in bodies of water outside the site will result in exposure within (1) the Section II.A design objectives of Appendix I, 10 CFR 50, to an individual, and (2) the limits of 10 CFR 20.1301 to the population. In addition, this limit is associated with 40 CFR 141 which states concentration limits at the nearest downstream potable water supply. The results of the analyses of RSR 12.3.1.1, 12.3.1.2, and 12.3.1.3 shall be used with the calculational methods in the ODCM to assure that the concentrations at the point of release are maintained within the limits of this REC. Refer to Technical Specification 5.5.9.b for the definition of an outside temporary tank.

B.12.3 LIQUID EFFLUENTS

B 12.3.2 Dose From Liquid Effluents

BASES

This control is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. The REC implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents will be kept "as low as is reasonably achievable." Also, for fresh water sites with drinking water supplies which can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR 141. The dose calculations in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.

This control applies to the release of radioactive materials in liquid effluents from each reactor at the site. For units with shared radwaste treatment systems, the liquid effluents from the shared systems are proportioned among the units sharing that system.

B 12.3 LIQUID EFFLUENTS

B 12.3.3 Liquid Radwaste Treatment Systems

BASES

The OPERABILITY of the liquid radwaste treatment system ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as is reasonably achievable." A system bypass allows connection to portable waste treatment equipment. This enables the efficient processing of liquid radwaste through the use of state-of-the-art radwaste processing technology. The portable radwaste treatment system may be used in lieu of various portions of the liquid radwaste treatment system. When a portable waste treatment is not used, RSR 12.3.3.2 may be extended to 180 days. This control implements the requirements of 10 CFR Part 50.36a. General Design Criterion 50 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.0 of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the liquid radwaste treatment system were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50, for liquid effluents. This specification implements Technical Specification Section 5.5.4.f for liquid effluents.

B 12.4.1 Gaseous Effluent Dose Rates

BASES

This control is provided to ensure that the dose at any time at the site boundary from gaseous effluents from all units on the site will be within the annual dose limits of RECS for unrestricted areas. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of an individual in an unrestricted area, either within or outside the site boundary exceeding the limits specified in 10 CFR 20.1301. For individuals who may at times be within the site boundary, the occupancy of the individual will be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the site boundary. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to an individual at or beyond the site boundary to less than or equal to a dose rate of 500 mrem/year to the total body or to less than or equal to a dose rate of 3000 mrem/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background via the inhalation pathway to less than or equal to a dose rate of 1500 mrem/year.

This control applies to the release of radioactive effluents in gaseous effluents from all reactors at the site. For units within shared radwaste treatment systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

B 12.4.2 Dose from Noble Gases

BASES

This control is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The Operability Requirements are the guides set forth in Section II.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable." The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated. The dose calculations established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man fror Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, "Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at the site boundary are based upon the historical average atmospheric conditions.

B 12.4.3 Dose from Iodine-131, Iodine-133, Tritium and Radioactive Materials in Particulate Form

BASES

The control is provided to implement the requirements of Sections II.C. III.A and IV.A of Appendix I, 10 CFR Part 50. The operability requirements are the guides set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." The ODCM calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methods for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, "Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors." Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for radioiodines, radioactive materials in particulate form and radionuclides other than noble gases are dependent on the existing radionuclide pathways to man, in the unrestricted area. The pathways which were examined in the development of these calculations were: 1) individual inhalation of airborne radionuclides, 2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, 3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man, and 4) deposition on the ground with subsequent exposure of man.

B 12.4.4 GASEOUS RADWASTE TREATMENT (OFF-GAS) SYSTEM

BASES

The OPERABILITY of the GASEOUS RADWASTE TREATMENT SYSTEM ensures that the system will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable". This specification implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section II.0 of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

B 12.4.5 VENTILATION EXHAUST TREATMENT SYSTEM

BASES

The OPERABILITY of the VENTILATION EXHAUST TREATMENT SYSTEM ensures that the system will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable". This specification implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section II.0 of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents. This control implements Technical Specification 5.5.4.f for gaseous effluents.

B 12.4.6 MARK II CONTAINMENT

BASES

This control provides reasonable assurance that releases from drywell purging operations will not exceed the annual dose limits of 10 CFR 20 for unrestricted areas.

Based on definition, VENTING would not release a volume resulting in significant contribution to gaseous plant effluents, nor resultant offsite dose. As such, there is no ODCM requirement for sampling. Sampling is required for PURGING, however, since the entire drywell volume is potentially released. Sampling prior to conducting a drywell PURGE provides a pre-release check to ensure release limits will not be exceeded, and allows for the subsequent calculation of offsite dose as a result of the drywell purge.

Once the Unit is sub-critical following shutdown, the initial 24 hour purge will exchange multiple volumes of the drywell removing the pre-existing noble gas concentration, and the lack of any source term will yield no new concentration. Likewise, there will be no source term until criticality has been achieved following startup.

B 12.4.7 Total Dose

BASES

This control is provided to meet the dose limitations of 40 CFR 190. The specification requires the preparation and submittal of a report whenever the calculated doses from plant radioactive effluents exceed twice the design objective doses of Appendix I. For sites containing up to 4 reactors, it is highly unlikely that the resultant dose to a member of the public will exceed the dose limits of 40 CFR 190 if the individual reactors remain within the reporting requirement level. The report will describe a course of action that should result in the limitation of dose to a member of the public for 12 consecutive months to within the 40 CFR 190 limits. For the purpose of the report, it may be assumed that the dose commitment to the member of the public from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 5 miles must be considered. If the dose to any member of the public is estimated to exceed the requirements of 40 CFR 190, the report with a request for a variance (provided the release conditions resulting in violation of 40 CFR 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11, is considered to be a timely request and fulfills the requirements of 40 CFR 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR 190, and does not apply in any way to the requirements for dose limitation of 10 CFR Part 20, as addressed in other sections of the RECS. An individual is not considered a member of the public during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

B 12.4.8 Main Condenser

BASES

This control provides reasonable assurance that the releases from the main condenser will not exceed the requirements of the LaSalle Technical Specifications 3.7.6. In addition, a sample is required within 4 hours if the increase is not due to thermal power changes. If the cause is known and not fuel related <u>and</u> less than 1 hour in duration, then no sample is required. [This is based on a letter from W. R. Huntington to Operating Engineers, Shift Engineers and F.R. Lawless, dated May 24, 1984.]

B 12.4.9 Dose Limits for MEMBERS OF THE PUBLIC

BASES

This control applies to direct exposure of radioactive materials as well as radioactive materials released in gaseous and liquid effluents. 10 CFR 20.1301 sets forth the 100 mrem/year dose limit to members of the public; 2 mrem in any one-hour limit in the unrestricted area; and reiterates that the licensee is also required to meet the 40 CFR 190 standards. 10 CFR 20.1302 provides options to determine compliance to 10 CFR 20.1301. Compliance to the above operability requirement is based on 10 CFR 20, 40 CFR 190 and LaSalle Station Technical Specification 5.5.4.g. The Effluents Program shall implement monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters of the ODCM.

÷

B 12.5 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

B 12.5.1 Radiological Environmental Monitoring Program

BASES

The Radiological Environmental Monitoring Program required by this section provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of MEMBERS OF THE PUBLIC resulting from the station operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring. The initially specified monitoring program will be effective for at least the first 3 years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by Table R 12.5.1-3 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as a before the fact limit representing the capability of a measurement system and not as an after the fact limit for a particular measurement.

Detailed discussion of the LLD, and other detection limits, can be found in HASL Procedures Manual, HASL-300 (revised annually), Currie, LA., "Limits for Qualitative Detection and Quantitative Determination - Application to Radiochemistry," Anal. Chem. 40, 586-93 (1968), and Hartwell, J.K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report ARH-SA-215 (June 1975).

Table R12.5.1-1 requires "one sample of each community drinking water supply downstream of the plant within 10 kilometers." Drinking water supply is defined as water taken from rivers, lakes, or reservoirs (not well water) that is used for drinking.

B 12.5 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

B 12.5.2 Land Use Census

BASES

This control is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the Radiological Environmental Monitoring Program given in the ODCM are made if required by the results of this census. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. An annual garden census will not be required since the licensee will assume that there is a garden at the nearest residence in each sector for dose calculations.

B 12.5 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

B 12.5.3 Interlaboratory Comparison Program

BASES

The requirement for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental samples matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

ł

B 12.5 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

B 12.5.4 Meteorological Monitoring Program (NOT APPLICABLE)