Technical Specification 5.6.3

Palo Verde Nuclear Generating Station PO Box 52034 Phoenix, Arizona 85072-2034 Mail Station 7636

102-06694-TNW/RKR/KAR April 30, 2013

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Dear Sirs:

Subject: Palo Verde Nuclear Generating Station (PVNGS) Units 1, 2, 3 and Independent Spent Fuel Storage Installation (ISFSI) Docket Nos. STN 50-528/529/530 and 72-44 Annual Radioactive Effluent Release Report 2012

In accordance with PVNGS Technical Specification (TS) 5.6.3, enclosed please find the Annual Radioactive Effluent Release Report for 2012. In accordance with PVNGS TS 5.5.1, the enclosed report also includes Revision 26 of the Offsite Dose Calculation Manual (ODCM), which was implemented in 2011.

No new commitments are being made to the NRC by this letter. Should you need further information regarding this submittal, please contact Robert Roehler, Licensing Section Leader, at (623) 393-5241.

Sincerely,

unan. Wasa.

Thomas N. Weber Department Leader, Regulatory Affairs

TNW/RKR/KAR/hsc

Enclosure

cc: A.T. Howell III J. K. Rankin M. A. Brown A. V. Godwin T. Morales NRC Region IV Regional Administrator NRC NRR Project Manager for PVNGS NRC Senior Resident Inspector for PVNGS Arizona Radiation Regulatory Agency (ARRA) Arizona Radiation Regulatory Agency (ARRA)

A member of the **STARS** (Strategic Teaming and Resource Sharing) Alliance Callaway • Comanche Peak • Diablo Canyon • Palo Verde • San Onofre • South Texas • Wolf

ENCLOSURE

2012 ANNUAL RADIOACTIVE

EFFLUENT RELEASE REPORT

)

PALO VERDE NUCLEAR GENERATING STATION UNITS 1, 2 AND 3

2012

ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

USNRC Docket No. STN 50-528/529/530 RCTSAI 1566

Prepared by:Poparad, Adam
J(Z07376)Digitally signed by Poparad, Adam
J(207376)N: cn=Poparad, Adam J(207376)DN: cn=Poparad, Adam J(207376)N: cn=Poparad, Adam J(207376)DN: cn=Poparad, Adam J(207376)N: cn=Poparad, Adam J(207376)DN: cn=Goparad, Adam J(207376)Reviewed by:Gray, Thomas
S(Z99610)Approved by:Moeller, Carl
(Z09119)Moeller, Carl
(Z09119)Digitally signed by Moeller, Carl
(Z09119)

TABLE OF CONTENTS

CTION PAGE	Ξ
INTRODUCTION	5
BIBLIOGRAPHY	6
APPENDIX A SOURCE TERMS AND EFFLUENT AND WASTE DISPOSAL REPORTS	7
APPENDIX B METEOROLOGY	52
APPENDIX C DOSE CALCULATIONS	35
APPENDIX D NEI 07-07 GROUNDWATER PROTECTION INITIATIVE SAMPLING) 4
APPENDIX E OFFSITE DOSE CALCULATION MANUAL Revision 26)6
APPENDIX F CHANGES TO THE PCP 20)3

LIST OF TABLES

TABL	-E	PAGE
1	Evaporation Pond Data	17
2	Batch Release Data	18
3	Units 1, 2 & 3 Gaseous Effluents Average Lower Limit Of Detection	19
4	Unit 1 Gaseous Effluents - Summation Of All Releases	20
5	Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and Iodines	21
6	Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Particulates	22
7	Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines	23
8	Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Particulates	24
9	Unit 1 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines	25
10	Unit 1 Gaseous Effluents - Continuous and Batch - Particulates	26
11	Unit 1 Radiation Doses At And Beyond The Site Boundary	27

LIST OF TABLES

TABL	Ε	PAGE
12	Unit 2 Gaseous Effluents - Summation Of All Releases	28
13	Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and Iodines	29
14	Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Particulates	30
15	Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines	31
16	Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Particulates	32
17	Unit 2 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines	33
18	Unit 2 Gaseous Effluents - Continuous and Batch - Particulates	34
19	Unit 2 Radiation Doses At And Beyond The Site Boundary	35
20	Unit 3 Gaseous Effluents - Summation Of All Releases	36
21	Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and Iodines	37
22	Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Particulates	
23	Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines	39
24	Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Particulates	40
25	Unit 3 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines	41
26	Unit 3 Gaseous Effluents - Continuous and Batch - Particulates	42
27	Unit 3 Radiation Doses At And Beyond The Site Boundary	43

LIST OF TABLES

TABLI	E PA	GE
28	Units 1, 2, and 3 Gaseous Effluents - Continuous - Fission Gases and Iodines - Total By Quarter	44
29	Units 1, 2, and 3 Gaseous Effluents - Continuous - Particulates - Total By Quarter	45
30	Units 1, 2, and 3 Gaseous Effluents - Batch - Fission Gases and Iodines - Total By Quarter	46
31	Units 1, 2, and 3 Gaseous Effluents - Batch - Particulates - Total By Quarter	47
32	Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines - Total By Quar	ter 48
33	Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Quarter	49
34	Units 1, 2 and 3 Gaseous Effluents- Continuous - Fission Gases and Iodine - Total By Unit	50
35	Units 1, 2 and 3 Gaseous Effluents- Continuous - Particulates - Total By Unit	51
36	Units 1, 2 and 3 Gaseous Effluents- Batch - Fission Gases and Iodine - Total By Unit	52
37	Units 1, 2 and 3 Gaseous Effluents- Batch - Particulates - Total By Unit	53
38	Units 1, 2 and 3 Gaseous Effluents- Continuous and Batch - Fission Gases and Iodine - Total By Unit	54
39	Units 1, 2 and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Unit	55
40	Estimation of Total Percent Error	56
41	Effluent Monitoring Instrumentation Out Of Service Greater Than 30 Days	57
42	Solid Waste Summary	58
43	Doses To Special Locations For 2012	88
44	Integrated Population Dose for 2012	89
45	Summary of Individual Doses for 2012	93

INTRODUCTION

This report summarizes effluent and waste disposal source term data, meteorological data and doses from radioactive effluents for the Palo Verde Nuclear Generating Station (PVNGS) for the period of January through December 2012. The data presented meets the reporting requirements of Regulatory Guide 1.21 (Revision 1, June 1974) of the U.S. Nuclear Regulatory Commission and the PVNGS Technical Specifications.

BIBLIOGRAPHY

U.S. Nuclear Regulatory Commission, Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, 1974.

U.S. Nuclear Regulatory Commission, Regulatory Guide 1.23 (Safety Guide 23), "Onsite Meteorological Programs," 1972.

U.S. Nuclear Regulatory Commission, NUREG/CR-2919, "XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," 1982.

U.S. Nuclear Regulatory Commission, NUREG-0579, "Users Guide to GASPAR Code," June 1980.

U.S. Nuclear Regulatory Commission, Regulatory Guide 1.109, "Calculations of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR 50, Appendix I," Revision 1, 1977.

U.S. Nuclear Regulatory Commission, NUREG-0172, "Age-specific Radiation Dose Commitment Factors for a One-Year Chronic Intake," 1977.

U.S. Nuclear Regulatory Commission, NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," 1978.

Technical Specifications, Palo Verde Nuclear Generating Station, Units 1, 2 and 3, Docket No. 50-528/529/530.

Bechtel Power Corp., "Cooling Tower Blowdown System Solar Evaporation Pond," Sept. 1980.

Generation Engineering, "Geotechnical Exploration for Evaporation Pond #2," Oct. 1986

Letter No. 212-00789-WFQ/RHM, "1989 PVNGS Evaporation Pan Data," Jan. 1989.

Offsite Dose Calculation Manual Palo Verde Nuclear Generating Station Units 1, 2 and 3, Rev. 26.

NEI 07-07, Nuclear Energy Institute, Industry Ground Water Protection Initiative – Final Guidance Document, August 2007.

Calculation 13-NC-CH-0200, Rev 7, FSAR - Primary Coolant Activities (PCA)

APPENDIX A

.

SOURCE TERMS AND EFFLUENT AND WASTE DISPOSAL REPORTS

Supplemental Information

1.0 REGULATORY LIMITS

1.1 Liquid Releases

1.1.1 PVNGS ODCM Requirement 3.2

The concentration of radioactive material discharged from secondary system liquid waste to the circulating water system shall be limited to:

5.0E-07 µCi/ml for the principal gamma emitters (except Ce-144)

3.0E-06 µCi/ml for Ce-144

1.0E-06 µCi/ml for I-131.

1.0E-03 µCi/ml for H-3

The concentration of radioactive material discharged from secondary system liquid waste to the onsite evaporation ponds shall be limited to:

2.0E-06 µCi/ml for Cs-134

2.0E-06 µCi/ml for Cs-137

The concentrations specified in 10 CFR Part 20.1001-20.2402, Appendix B, Table 2, Column 2, for all other isotopes

1.1.2 PVNGS ODCM Requirement 4.4

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited:

- a. During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
- b. During any calendar year to less than or equal to 3 mrems to the total body and to less than or equal to 10 mrems to any organ.

1.2 Gaseous Releases

1.2.1 PVNGS ODCM Requirement 3.1

The dose rate due to radioactive materials released in gaseous effluents from the site shall be limited to the following:

- a. For noble gases: Less than or equal to 500 mrems/yr to the total body and less than or equal to 3000 mrems/yr to the skin, and
- b. For I-131 and I-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ.

1.2.2 PVNGS ODCM Requirement 4.1

The air dose due to noble gases released in gaseous effluents, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation and,
- b. During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

1.2.3 PVNGS ODCM Requirement 4.2

The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 7.5 mrems to any organ and,
- b. During any calendar year: Less than or equal to 15 mrems to any organ.

1.2.4 PVNGS ODCM Requirement 4.3

The GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases, from each reactor unit, from the site, when averaged over 31 days, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases, from each reactor unit, to areas at and beyond the SITE BOUNDARY when averaged over 31 days, would exceed 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

1.3 Total Dose

1.3.1 PVNGS ODCM Requirement 5.1

The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to direct radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

2.0 MAXIMUM PERMISSIBLE CONCENTRATIONS

Air: Release Concentrations are limited to dose rate limits described in section 1.2.1 of this report.

3.0 AVERAGE ENERGY

The average energy (\overline{E}) of the radionuclide mixture in releases of fission and activation gases is not applicable to PVNGS.

4.0 MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY IN GASEOUS EFFLUENTS

For continuous releases, sampling is in accordance with PVNGS ODCM Table 3-1. Particulate and iodine radionuclides are sampled continuously at the Plant Vent and Fuel Building exhaust points. The particulate filters and charcoal cartridges are exchanged for analysis at least four times per month. Noble gas and tritium are sampled at least once per 31 days. The hourly average Radiation Monitoring System (RMS) effluent monitor readings are used, when available, to account for increases and decreases in noble gas concentrations between noble gas grab samples. The tritium concentration is assumed constant between sampling periods.

For batch releases, sampling is also in accordance with PVNGS ODCM Table 3-1. For containment purges, the noble gas concentration may be adjusted to account for decreases or increases in concentration during the purge using RMS readings. The volume of air released during the purge is determined using the exhaust fan rated flow rate. For Waste Gas Decay Tank releases, the volume released is corrected to standard pressure.

Effective January 1, 2004, Containment Purge release permits are updated by removing the permit pre-release particulate and iodine activity. This eliminates double accounting for the Containment Purge particulate and iodine activity at the Plant Vent but allows the particulate and iodine activity to be included in the Containment Purge pre-release dose projection.

The Lower Limit of Detection (LLD) of a measurement system is defined in Table 3 - 1 of the PVNGS ODCM. An average LLD for each radionuclide is provided in Table 3.

5.0 BATCH RELEASES

5.1 Gaseous.

Batch release durations are presented in Table 2.

5.2 Liquid

None.

6.0 ABNORMAL RELEASES

None.

7.0 OFFSITE DOSE CALCULATION MANUAL AND PROCESS CONTROL PROGRAM (PCP) REVISIONS

- 7.1 ODCM, Revision 26, effective September 30, 2011, was not changed during the 2012 year. Revision 26 of the ODCM revision is included as Appendix E.
- 7.2 Revision to the Process Control Program (PCP) is included in Appendix F.

8.0 EFFLUENTS AND SOLID WASTES

8.1 Gaseous Effluents

Gaseous effluent information is presented in Table 1 through Table 41. Included in these tables are summaries of the effluents and estimated total error.

8.2 Liquid Effluents

There were no liquid effluent releases beyond the Site Boundary from PVNGS.

8.3 Solid Waste

Solid waste shipments are summarized in Table 42.

9.0 MISCELLANEOUS INFORMATION

9.1 EVAPORATION PONDS

Releases made to the Evaporation Ponds are limited to the concentrations specified in PVNGS ODCM Requirement 3.2. The Evaporation Ponds were monitored in accordance with PVNGS ODCM Requirement 6.1.

The average historical evaporation is approximately 12 inches, per pond, for each of the first and fourth quarters, and 33 inches, per pond, for each of the second and third quarters.

Evaporation Pond One is approximately 250 acres.

Evaporation Pond Two was relined and segmented into 3 sections. 2A is approximately 113 acres, 2B is approximately 82 acres and 2C is approximately 28 acres.

Evaporation Pond Three is constructed of two smaller ponds of 90 acres each (3A and 3B).

The amount of water evaporated from each section of each Evaporaton Pond is listed in Table 1.

Evaporation Pond 1 was empty for maintenance for the year 2012.

Using a site boundary X/Q of 5.0E-05 sec/m³ for the evaporation ponds and equation 4-3 from the ODCM, the dose from the evaporation ponds to a hypothetical individual at the site boundary, for all pathways, is summarized in Table 1.

9.2 RADIATION MONITORING SYSTEM SETPOINT VERIFICATION

Current effluent monitor noble gas channel alert alarm setpoints are based on an assumed one per cent failed fuel source term. The current setpoints are more conservative than setpoints calculated using the actual noble gas source term presented in Table 38.

9.3 RCS RADIOIODINE (TRM T5.0.600)

There were no cases where primary coolant specific activity exceeded the Technical Specification 3.4.17 limits during the reporting period.

9.4 INDEPENDENT SPENT FUEL STORAGE INSTALLATION (ISFSI)

There are no radioactive effluents from the NAC-UMS System. Direct dose at the Site Boundary is reported in the Annual Radiological Environmental Operating Report.

9.5 MAJOR CHANGES TO THE RADIOACTIVE WASTE SYSTEMS (liquid, gaseous, and solid).

Licensee-initiated major changes to the radioactive waste systems (liquid, gaseous, and solid) are submitted as part of the FSAR update (TRM T5.0.500.4.a).

9.6 SAMPLES RESULTS FROM GROUNDWATER WELLS THAT ARE NOT DESCRIBED IN THE ODCM AS PART OF THE REMP (NEI 07-07, Industry Groundwater Protection Initiative, August 2007), are included in Appendix D. This initiative provides added assurance that ground water will not be adversely affected by PVNGS operations.

There were no NEI 07-07, reportable leaks or spills.

There were no positive sample results.

9.7 REPORT ADDENDUM

None.

10.0 DISCUSSION

10.1 Unit One

Unit One operated without a refueling outage.

Maintenance outages: NONE

Estim	Estimated number of fuel defects (source: INPO, CDE)											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
0	0	0	0	0	0	0	0	0	0	0	0	

10.2 Unit Two

.

Unit Two operated with a refueling outage (2R17) from October 6, 2012 to November 8, 2012.

Maintenance outages: NONE.

Estim	Estimated number of fuel defects (source: INPO, CDE)											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
0	0	0	0	0	0	0	0	0	0	0	0	

10.3 Unit Three

Unit Three operated with a refueling outage (3R16) from March 17, 2012 to April 17, 2012.

Maintenance outages: NONE

Estim	Estimated number of fuel defects (source: INPO, CDE)											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
0	0	0	0	0	0	0	0	0	0	0	0	

10.4 Carbon-14

Carbon-14 is formed naturally in the upper atmosphere and also is formed in operating nuclear reactors.

Carbon-14 is not a new power plant emission. Because the overall quantity of radioactive releases has steadily decreased due to improvements in power plant operations, carbon-14 may now qualify as a "principal radionuclide" under revised federal regulatory guidance. The levels of other releases have declined, so carbon-14 releases, expressed as a percentage of total releases, have the potential to achieve "principal radionuclide" status (anything greater than one percent of overall radioactivity in effluents) per updated federal regulatory guidance.

The radiation dose to the public from carbon-14 is much lower than regulatory limits and has been a very small contributor to the total radiation dose that Americans receive each year from natural and manmade sources.

Studies by the United Nations Scientific Committee on the Effects of Atomic Radiation, the National Research Council's BEIR VII study group and the National Council on Radiation Protection and Measurements all show that the risk associated with low-dose radiation from natural and man-made sources, including nuclear power plants, is negligible.

Radiation is measured in units called millirem. The average American is exposed to 620 millirem of radiation every year. Approximately 311 millirem of this comes from natural sources. The majority of the remaining dose (approximately 300 millirem) comes from medical procedures such as CAT scans.Less than one-tenth of a percent of all radiation exposure is from nuclear facilities. Reference: NCRP Report No. 160, Table 1.1.

Starting with the 2010 Annual Radioactive Effluent Release Report, PVNGS will include the estimated exposure from carbon-14 in the Appendix C, dose calculations. The PVNGS calculated production of carbon-14 is 18.5 Curies per cycle (500 days) or 13.5 curies per year. Based on published literature, twenty percent (20%) of the carbon-14 released is assumed to be in an inorganic form (CO₂). PVNGS will use an estimated value of 2.7 curies of carbon-14 released, per reactor, per year. The 2.7 curies will be divided equally between each quarter (0.68 curies per reactor, per quarter). Appendix C, dose calculations include this estimated carbon-14 dose. Appendix C also includes the dose excluding carbon-14 for comparision with historical reports.

10.5 Tritium

PVNGS does not have a liquid release pathway. Removal of tritium is performed by operation of the Boric Acid Concentrator (BAC) in the release mode. Comparison of PVNGS annual tritium curies released to other utilities should be made only after summing both liquid and gaseous tritium curies released.

10.6 Dose Summary

Dose for 2012 was primarily due to the release of tritium. Tritium production is approximately 1000 curies per Reactor Unit per year. In order to control plant tritium concentrations, tritium releases should match tritium production. For 2012, PVNGS released a total of 1990 curies of tritium (see Table 39).

Total dose due to releases from all three Units for 2012 were lower than 2011, primarily due to lower releases of tritium.

Tabl	e 1: Evapora	ation Pond D)ata	<u></u> .	
Evaporation Pond 1	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year
Historical volume of water evaporated (ml)	3.08E+11	8.48E+11	8.48E+11	3.08E+11	
Tritium Concentration (uCi/cc)	N/A	N/A	N/A	N/A	
Tritium Curies	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Evaporation Pond 2A	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year
Historical volume of water evaporated (ml)	1.39E+11	3.83E+11	3.83E+11	1.39E+11	
2A Tritium Concentration (uCi/cc)	9.66E-07	1.02E-06	9.28E-07	1.04E-06	
2A Tritium curies	1.34E-01	3.88E-01	3.55E-01	1.44E-01	1.02E+00
Evaporation Pond 2B	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year
Historical volume of water evaporated (ml)	1.01E+11	2.77E+11	2.77E+11	1.01E+11	
2B Tritium Concentration (uCi/cc)	1.06E-06	1.04E-06	1.35E-06	1.04E-06	
2B Tritium curies	1.06E-01	2.88E-01	3.75E-01	1.05E-01	8.74E-01
Evaporation Pond 2C	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year
Historical volume of water evaporated (ml)	3.46E+10	9.52E+10	9.52E+10	3.46E+10	
2C Tritium Concentration (uCi/cc)	N/A	N/A	N/A	N/A	
2C Tritium curies	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Evaporation Pond 3A	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year
Historical volume of water evaporated (ml)	1.11E+11	3.05E+11	3.05E+11	1.11E+11	
3A Tritium Concentration (uCi/cc)	7.38E-07	8.74E-07	9.31E-07	1.04E-06	
3A Trítium curies	8.19E-02	2.67E-01	2.84E-01	1.16E-01	7.48E-01
Evaporation Pond 3B	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year
Historical volume of water evaporated (ml)	1.11E+11	3.05E+11	3.05E+11	1.11E+11	
3B Tritium Concentration (uCi/cc)	8.67E-07	7.73E-07	9.59E-07	5.62E-07	
3B Tritium curies	9.62E-02	2.36E-01	2.92E-01	6.24E-02	6.87E-01
Dose (mRem)	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year
Pond 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Pond 2	3.34E-03	9.38E-03	1.01E-02	3.46E-03	2.63E-02
Pond 3	2.47E-03	6.97E-03	7.99E-03	2.47E-03	1.99E-02
Total	5.81E-03	1.63E-02	1.81E-02	5.93E-03	4.62E-02

Table 2: Batch	Table 2: Batch Release Data									
All times are in hours	Unit 1	Unit 2	Unit 3							
January - June										
Number of batch releases	20	31	40							
Total time period for batch releases	142.31	330.96	1252.22							
Maximum time period for a batch release	122.20	146.42	167.67							
Average time period for a batch release	7.12	10.68	31.31							
Minimum time period for a batch release	0.45	0.70	0.05							
July - December										
Number of batch releases	19	46	27							
Total time period for batch releases	152.28	1709.73	521.82							
Maximum time period for a batch release	78.80	168.00	123.20							
Average time period for a batch release	8.01	37.17	19.33							
Minimum time period for a batch release	0.58	0.07	0.02							
January - December										
Number of batch releases	39	77	67							
Total time period for batch releases	294.60	2040.69	1774.04							
Maximum time period for a batch release	122.20	168.00	167.67							
Average time period for a batch release	7.55	26.50	26.48							
Minimum time period for a batch release	0.45	0.07	0.02							

	Gaseous E	Units	ole 3: 1, 2 & 3 ge Lower Limit Of	Detection	
	· · · ·	μ	Ci/cc		
Nuclide	Continuous	Batch	Nuclide	Continuous	Batch
Antimony-122	2.20E-13	1.90E-11	Argon-41	4.50E-08	4.50E-08
Antimony-124	8.40E-14	1.70E-11	Krypton-85	7.40E-06	7.40E-06
Barium-140	3.40E-13	5.70E-11	Krypton-85m	2.20E-08	2.20E-08
Bromine-82	3.30E-13	1.40E-11	Krypton-87	5.70E-08	5.70E-08
Cerium-141	8.70E-14	3.10E-11	Krypton-88	7.40E-08	7.40E-08
Cerium-144	3.60E-13	6.50E-11	Xenon-125	2.20E-08	2.20E-08
Cesium-134	1.00E-13	2.60E-11	Xenon-127	2.10E-08	2.10E-08
Cesium-137	8.10E-14	1.70E-11	Xenon-131m	9.10E-07	9.10E-07
Cesium-138	5.20E-10	7.30E-10	Xenon-133	6.30E-08	6.30E-08
Chromium-51	6.90E-13	1.40E-10	Xenon-133m	1.90E-07	1.90E-07
Cobalt-58	8.50E-14	1.70E-11	Xenon-135	2.00E-08	2.00E-08
Cobalt-60	1.00E-13	1.90E-11	Xenon-135m	8.90E-08	8.90E-08
Iron-59	1.70E-13	3.20E-11	Xenon-138	2.00E-07	2.00E-07
Lanthanum-140	2.80E-13	2.10E-11	lodine-131	8.00E-14	7.00E-12
Manganese-54	8.30E-14	1.70E-11	lodine-132	6.60E-12	1.90E-11
Molybdenum-99	2.40E-13	2.80E-11	lodine-133	4.70E-13	1.10E-11
Niobium-95	8.70E-14	1.80E-11	lodine-134	5.90E-11	8.20E-11
Rubidium-88	1.90E-08	1.90E-08	lodine-135	7.00E-12	5.50E-11
Ruthenium-103	7.40E-14	1.50E-11			
Strontium-89	2.15E-15	(1)			
Strontium-90	5.60E-16	(1)			
Tellurium-123m	6.60E-14	1.50E-11			
Tritium	3.80E-07	3.80E-07			
Zinc-65	1.90E-13	3.80E-11			
Zirconium-95	1.80E-13	4.10E-11			
Gross Alpha	3.60E-15	(1)			

Table 4: Unit 1 Gaseous Effluents - Summation Of All Releases										
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total For Year	Est. Total Error % (1)			
A. Fission & activation gases		•		••••••••••••••••••••••••••••••••••••••						
1. Total release	Ci	5.04E-02	4.48E-02	4.89E-02	5.74E-02	2.01E-01	3.54E+01			
2. Average release rate for period	μCi/sec	6.48E-03	5.70E-03	6.15E-03	7.22E-03	6.37E-03				
3. Percent of ODCM Requirement lim	t %	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
B. lodine 131		·					•			
1. Total lodine 131	Ci	1.90E-07	0.00E+00	0.00E+00	0.00E+00	1.90E-07	3.32E+01			
2. Average release rate for period	μCi/sec	2.44E-08	0.00E+00	0.00E+00	0.00E+00	6.02E-09				
3. Percent of ODCM Requirement lim	t %	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
C. Particulates										
1. Particulates with half- lives > 8 day	s Ci	5.28E-07	8.67E-07	1.04E-07	0.00E+00	1.40E-06	3.43E+01			
2. Average release rate for period	μCi/sec	6.79E-08	1.10E-07	1.31E-08	0.00E+00	4.42E-08				
3. Percent of ODCM Requirement lim	t %	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
4. Gross Alpha radioactivity	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
D. Tritium						· · · · · ·				
1. Total release	Ci	1.62E+01	5.39E+01	1.65E+01	1.05E+02	1.92E+02	3.85E+01			
2. Average release rate for period	μCi/sec	2.08E+00	6.86E+00	2.08E+00	1.32E+01	6.09E+00				
3. Percent of ODCM Requirement lim	t %	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
(1) Estimated total error methodology	is presented	in Table 40.		<u> </u>						
3. Percent of ODCM Requirement lim	t % is presented	NA (2) In Table 40.								

			Table 5:			
0	6	C ara 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a	Unit 1			d (. d!
Nuclides	1	1	I Releases - Co	·] · · · · ·		· · ·
Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total
1. Fission gases	•	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	•		· · · · ·
Ar-41	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Total	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
2. lodines		·····		I	I	I
I-131	Ci	1.90E-07	< LLD	< LLD	< LLD	1.90E-07
I-132	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
I-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Total	Ci	1.90E-07	< LLD	< LLD	< LLD	1.90E-07

			Table 6: Unit 1			
Gased	ous Effli	uents - Groun	d Level Releas	es - Continuo	us - Particulate	es
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total
3.Particulates		<u> </u>		•		-
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Br-82	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Co-58	Ci	5.28E-07	< LLD	< LLD	< LLD	5.28E-07
Co-60	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cr-51	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Nb-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Se-75	Ci	< LLD	8.67E-07	< LLD	< LLD	8.67E-07
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Zr-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Total	Ci	5.28E-07	8.67E-07	< LLD	< LLD	1.39E-06
4.Tritium		L				· · · · · · · · · · · · · · · · · · ·
H-3	Ci	1.62E+01	1.02E+01	1.65E+01	1.27E+01	5.55E+01

Table 7: Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
1. Fission gases	1. Fission gases									
Ar-41	Ci	2.49E-02	< LLD	<lld< td=""><td>< LLD</td><td>2.49E-02</td></lld<>	< LLD	2.49E-02				
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-133	Ci	1.43E-04	< LLD	< LLD	< LLD	1.43E-04				
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-138	Ċi	< LLD	< LLD	< LLD	< LLD	< LLD				
Total	Ci	2.50E-02	< LLD	< LLD	< LLD	2.50E-02				
2. lodines					·					
I-131	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-132	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Total	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				

Table 8: Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Particulates								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
3. Particulates		1						
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Br-82	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-58	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-60	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cr-51	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Nb-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-122	Ċi	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	Note 1		
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	Note 1		
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zr-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Total	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
4.Tritium			·					
H-3	Ci	4.22E-03	< LLD	< LLD	< LLD	4.22E-03		
Note 1 - Not required	for bate	ch releases						

Table 9: Unit 1 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
1. Fission gases								
Ar-41	Ci	5.04E-02	4.48E-02	4.89E-02	5.74E-02	2.01E-01		
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Total	Ci	5.04E-02	4.48E-02	4.89E-02	5.74E-02	2.01E-01		
2. lodines				• • • • • • •	· ••			
I-131	Ci	1.90E-07	< LLD	< LLD	< LLD	1.90E-07		
I-132	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
I-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Total	Ci	1.90E-07	< LLD	< LLD	< LLD	1.90E-07		

	Table 10: Unit 1 Gaseous Effluents - Continuous and Batch - Particulates								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3. Particulates					<u>, I</u>	<u> </u>			
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Br-82	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-58	Ci	5.28E-07	< LLD	< LLD	< LLD	5.28E-07			
Co-60	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cr-51	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Nb-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Se-75	Ci	< LLD	8.67E-07	< LLD	< LLD	8.67E-07			
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zr-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Total	Ci	5.28E-07	8.67E-07	< LLD	< LLD	1.39E-06			
Total > 8 days	Ci	1.39E-06	< LLD	< LLD	< LLD	1.39E-06			
4.Tritium									
H-3	Ci	1.62E+01	5.39E+01	1.65E+01	1.05E+02	1.92E+02			

Table 11: Unit 1 Radiation Doses At And Beyond The Site Boundary									
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
Gamma Air Dose	mrad	1.32E-04	1.18E-04	1.28E-04	1.51E-04	5.29E-04			
ODCM Req 4.1 Limit	mrad	5.00E+00	5.00E+00	5.00E+00	5.00E+00	1.00E+01			
% ODCM Limit	%	2.64E-03	2.36E-03	2.56E-03	3.02E-03	5.29E-03			
Beta Air Dose	mrad	4.67E-05	4.15E-05	4.53E-05	5.32E-05	1.87E-04			
ODCM Req 4.1 Limit	mrad	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01			
% ODCM Limit	%	4.67E-04	4.15E-04	4.53E-04	5.32E-04	9.35E-04			
Maximum Organ Dose (excluding skin)	mrem	5.80E-03	1.93E-02	5.93E-03	3.77E-02	6.88E-02			
Age		Teen	Teen	Teen	Teen	Teen			
Organ		Thyroid	Thyroid	Thyroid	Thyroid	Thyroid			
ODCM Req. 4.2 Limit	mrem	7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01			
% ODCM Limit	%	7.73E-02	2.57E-01	7.91E-02	5.03E-01	4.59E-01			

Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Table 12: Unit 2 Gaseous Effluents - Summation Of All Releases										
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total For Year	Est. Total Error % (1)			
A. Fission & activation gases	<u></u>									
1. Total release	Ci	1.11E-01	2.39E-01	3.58E-01	4.08E+00	4.79E+00	3.54E+01			
2. Average release rate for period	µCi/sec	1.43E-02	3.04E-02	4.50E-02	5.13E-01	1.52E-01				
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
B. lodine 131	<u> </u>				·					
1. Total lodine 131	Ci	< LLD	< LLD	< LLD	6.87E-06	6.87E-06	3.32E+01			
2. Average release rate for period	μCi/sec	< LLD	< LLD	< LLD	8.64E-07	2.18E-07				
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
C. Particulates										
1. Particulates with half- lives > 8 days	Ci	9.50E-08	2.69E-06	5.36E-07	1.70E-04	1.74E-04	3.43E+01			
2. Average release rate for period	μCi/sec	1.22E-08	3.42E-07	6.74E-08	2.14E-05	5.51E-06				
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
4. Gross Alpha radioactivity	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
D. Tritium						· · · · · · · · · · · · · · · · · · ·				
1. Total release	Ci	1.44E+02	1.19E+02	5.91E+02	1.81E+02	1.04E+03	3.85E+01			
2. Average release rate for period	μCi/sec	1.85E+01	1.51E+01	7.44E+01	2.28E+01	3.30E+01				
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
(1) Estimated total error methodology is p	presented in	n Table 40.								

Gaseous Efflu	Table 13: Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and Iodines								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases									
Ar-41	Ci	< LLD							
Kr-83m	Ci	< LLD							
Kr-85	Ci	< LLD							
Kr-85m	Ci	< LLD							
Kr-87	Ci	< LLD							
Kr-88	Ci	< LLD							
Kr-89	Ci	< LLD							
Kr-90	Ci	< LLD							
Xe-131m	Ci	< LLD							
Xe-133	Ci	< LLD	< LLD	< LLD	2.32E+00	2.32E+00			
Xe-133m	Ci	< LLD							
Xe-135	Ci	< LLD							
Xe-135m	Ci	< LLD							
Xe-137	Ci	< LLD							
Xe-138	Ci	< LLD							
Total	Ci	< LLD	< LLD	< LLD	2.32E+00	2.32E+00			
2. lodines									
I-131	Ci	< LLD	< LLD	< LLD	6.87E-06	6.87E-06			
I-132	Ci	< LLD							
I-133	Ci	< LLD							
I-134	Ci	< LLD							
I-135	Ci	< LLD							
Total	Ci	< LLD	< LLD	< LLD	6.87E-06	6.87E-06			

Table 14: Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Particulates								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
3. Particulates	•					·		
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Br-82	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-58	Ci	< LLD	< LLD	< LLD	3.46E-05	3.46E-05		
Co-60	Ci	< LLD	< LLD	< LLD	9.01E-06	9.01E-06		
Cr-51	Ci	< LLD	< LLD	< LLD	1.08E-04	1.08E-04		
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Nb-95	Ci	< LLD	< LLD	< LLD	5.07E-06	5.07E-06		
Os-191	Ci	< LLD	< LLD	< LLD	7.73E-06	7.73E-06		
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Se-75	Ci	< LLD	1.23E-06	< LLD	< LLD	1.23E-06		
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sr-89	Ci	6.96E-08	< LLD	< LLD	< LLD	6.96E-08		
Sr-90	Ci	2.54E-08	< LLD	< LLD	< LLD	2.54E-08		
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Te-123m	Ci	< LLD	1.46E-06	5.36E-07	< LLD	2.00E-06		
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zr-95	Ci	< LLD	< LLD	< LLD	2.04E-06	2.04E-06		
Total	Ci	9.50E-08	2.69E-06	5.36E-07	1.67E-04	1.70E-04		
4. Tritium		·		• • • • • • • • • • • • • • • • • • • •	•	•		
H-3	Ci	1.36E+01	1.23E+01	1.51E+01	1.61E+01	5.70E+01		

Table 15: Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases									
Ar-41	Ci	8.74E-02	1.94E-01	2.94E-01	2.23E-01	7.98E-01			
Kr-83m	Ci	< LLD							
Kr-85	Ci	< LLD							
Kr-85m	Ci	< LLD							
Kr-87	Ci	< LLD							
Kr-88	Ci	< LLD							
Kr-89	Ci	< LLD							
Kr-90	Ci	< LLD							
Xe-131m	Ci	< LLD	< LLD	< LLD	1.33E-03	1.33E-03			
Xe-133	Ci	2.33E-02	4.47E-02	6.41E-02	1.47E+00	1.61E+00			
Xe-133m	Ci	< LLD	< LLD	2.28E-06	8.67E-04	8.69E-04			
Xe-135	Ci	2.62E-04	7.43E-04	8.12E-04	6.41E-02	6.59E-02			
Xe-135m	Ci	< LLD							
Xe-137	Ci	< LLD							
Xe-138	Ci	< LLD							
Total	Ci	1.11E-01	2.39E-01	3.59E-01	1.76E+00	2.47E+00			
2. lodines									
I-1 <mark>31</mark>	Ci	< LLD							
I-1 <mark>32</mark>	Ci	< LLD	< LLD	< LLD	2.21E-07	2.21E-07			
I-1 <mark>33</mark>	Ci	< LLD							
I-134	Ci	< LLD							
I-135	Ci	< LLD							
Total	Ci	< LLD	< LLD	< LLD	2.21E-07	2.21E-07			

Gas	Table 16: Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Particulates								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3. Particulates	<u> </u>	• · · · · · · · · · · · · · · · · · · ·		• <u> </u>		•			
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Br-82	Ci	< LLD	< LLD	< LLD	1.66E-06	1.66E-06			
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-58	Ci	< LLD	< LLD	< LLD	1.04E-06	1.04E-06			
Co-60	Ci	< LLD	< LLD	< LLD	1.62E-07	1.62E-07			
Cr-51	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Nb-95	Ci	< LLD	< LLD	< LLD	7.24E-07	7.24E-07			
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	Note 1			
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	Note 1			
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zr-95	Ci	< LLD	< LLD	< LLD	1.91E-06	1.91E-06			
Total	Ci	< LLD	< LLD	< LLD	5.49E-06	5.49E-06			
4. Tritium		· · · · · · · · · · · · · · · · · · ·		·····					
H-3	Ci	1.30E+02	1.06E+02	5.76E+02	1.65E+02	9.78E+02			
Note 1 - Not required	for bate	ch releases							

Table 17: Unit 2 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases									
Ar-41	Ci	8.74E-02	1.94E-01	2.94E-01	2.23E-01	7.98E-01			
Kr-83m	Ci	< LLD							
Kr-85	Ci	< LLD							
Kr-85m	Ci	< LLD							
Kr-87	Ci	< LLD							
Kr-88	Ci	< LLD							
Kr-89	Ci	< LLD							
Kr-90	Ci	< LLD							
Xe-131m	Ci	< LLD	< LLD	< LLD	1.33E-03	1.33E-03			
Xe-133	Ci	2.33E-02	4.47E-02	6.41E-02	3.80E+00	3.93E+00			
Xe-133m	Ci	< LLD	< LLD	2.28E-06	8.67E-04	8.69E-04			
Xe-135	Ci	2.62E-04	7.43E-04	8.12E-04	6.41E-02	6.59E-02			
Xe-135m	Ci	< LLD							
Xe-137	Ci	< LLD							
Xe-138	Ci	< LLD							
Total	Ci	1.11E-01	2.39E-01	3.59E-01	4.08E+00	4.79E+00			
2. lodines									
I-131	Ci	< LLD	< LLD	< LLD	6.87E-06	6.87E-06			
I-132	Ci	< LLD	< LLD	< LLD	2.21E-07	2.21E-07			
I-133	Ci	< LLD							
I-134	Ci	< LLD							
I-135	Ci	< LLD							
Total	Ci	< LLD	< LLD	< LLD	7.09E-06	7.09E-06			

Table 18: Unit 2 Gaseous Effluents - Continuous and Batch - Particulates						
Nuclides Released	Gaseo Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total
3. Particulates						
Ag-110m	Ci	< LLD				
Ba-140	Ci	< LLD		< LLD	< LLD	< LLD
Br-82	Ci	< LLD	< LLD	< LLD	1.66E-06	1.66E-06
Ce-141	Ci	< LLD				
Ce-144	Ci	< LLD				
Co-57	Ci	< LLD				
Co-58	Ci	< LLD	< LLD	< LLD	3.57E-05	3.57E-05
Co-60	Ci	< LLD	< LLD	< LLD	9.17E-06	9.17E-06
Cr-51	Ci	< LLD	< LLD	< LLD	1.08E-04	1.08E-04
Cs-134	Ci	< LLD				
Cs-136	Ci	< LLD				
Cs-137	Ci	< LLD				
Cs-138	Ci	< LLD				
Fe-59	Ci	< LLD				
La-140	Ci	< LLD				
Mn-54	Ci	< LLD				
Mo-99	Ci	< LLD				
Nb-95	Ci	< LLD	< LLD	< LLD	5.80E-06	5.80E-06
Os-191	Ci	< LLD	< LLD	< LLD	7.73E-06	7.73E-06
Rb-88	Ci	< LLD				
Ru-103	Ci	< LLD				
Ru-106	Ci	< LLD				
Sb-122	Ci	< LLD				
Sb-124	Ci	< LLD				
Sb-125	Ci	< LLD				
Se-75	Ci	< LLD	1.23E-06	< LLD	< LLD	1.23E-06
Sn-113m	Ci	< LLD				
Sr-89	Ci	6.96E-08	< LLD	< LLD	< LLD	6.96E-08
Sr-90	Ci	2.54E-08	< LLD	< LLD	< LLD	2.54E-08
Tc-99m	Ci	< LLD				
Te-123m	Ci	< LLD	1.46E-06	5.36E-07	< LLD	2.00E-06
Zn-65	Ci	< LLD				
Zr-95	Ci	< LLD	< LLD	< LLD	3.95E-06	3.95E-06
Total	Ci	9.50E-08	2.69E-06	5.36E-07	1.72E-04	1.76E-04
Total > 8 days	Ci	1.74E-04	< LLD	< LLD	< LLD	1.74E-04
4. Tritium						
H-3	Ci	1.44E+02	1.19E+02	5.91E+02	1.81E+02	1.04E+03

Table 19: Unit 2 Radiation Doses At And Beyond The Site Boundary									
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
Gamma Air Dose	mrad	2.32E-04	5.13E-04	7.78E-04	9.99E-04	2.52E-03			
ODCM Req 4.1 Limit	mrad	5.00E+00	5.00E+00	5.00E+00	5.00E+00	1.00E+01			
% ODCM Limit	%	4.64E-03	1.03E-02	1.56E-02	2.00E-02	2.52E-02			
Beta Air Dose	mrad	8.80E-05	1.93E-04	2.92E-04	1.38E-03	1.95E-03			
ODCM Req 4.1 Limit	mrad	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01			
% ODCM Limit	%	8.80E-04	1.93E-03	2.92E-03	1.38E-02	9.75E-03			
Maximum Organ Dose (excluding skin)	mrem	5.16E-02	4.26E-02	2.12E-01	6.52E-02	3.71E-01			
Age		Teen	Teen	Teen	Teen	Teen			
Organ		W. Body	Thyroid	(1)	Thyroid	Thyroid			
ODCM Req. 4.2 Limit	mrem	7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01			
% ODCM Limit	%	6.88E-01	5.68E-01	2.83E+00	8.69E-01	2.47E+00			

Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Note 1 - All organs except Bone.

		Table 20: Unit 3 Gaseous Effluents - Summation Of All Releases										
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total For Year	Est. Total Error % (1)					
A. Fission & activation gases				· · · · · · · · · · · · · · · · · · ·								
. Total release	Ci	6.86E+00	6.90E+00	5.30E-02	1.67E+00	1.55E+01	3.54E+01					
2. Average release rate for period	μCi/sec	8.82E-01	8.78E-01	6.67E-03	2.10E-01	4.92E-01						
B. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)						
B. lodine 131					••••••••••••••••••••••••••••••••••••••	. <u>. </u>						
I. Total lodine 131	Ci	2.24E-05	4.62E-06	< LLD	< LLD	2.70E-05	3.32E+01					
2. Average release rate for period	μCi/sec	2.88E-06	5.88E-07	< LLD	< LLD	8.56E-07						
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)						
C. Particulates												
I. Particulates with half- lives > 8 days	Ci	2.73E-04	8.72E-05	8.70E-06	< LLD	3.70E-04	3.43E+01					
2. Average release rate for period	μCi/sec	3.51E-05	1.11E-05	1.09E-06	< LLD	1.17E-05						
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)						
4. Gross Alpha radioactivity	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
D. Tritium												
I. Total release	Ci	2.84E+02	1.18E+02	1.34E+02	2.27E+02	7.63E+02	3.85E+01					
2. Average release rate for period	μCi/sec	3.65E+01	1.50E+01	1.69E+01	2.86E+01	2.42E+01						
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)						
1) Estimated total error methodology is p	resented in	n Table 40.										

			Table 21: Unit 3			
Gaseous Efflu	uents - C	Ground Level F	Releases - Con Quarter 2	tinuous - Fiss Quarter 3	ion Gases and Quarter 4	Vear total
1. Fission gases						
Ar-41	Ci	6.34E+00	6.85E+00	< LLD	1.33E+00	1.45E+01
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-135	Ci	1.52E-01	< LLD	< LLD	2.80E-01	4.31E-01
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Total	Ci	6.49E+00	6.85E+00	< LLD	1.61E+00	1.49E+01
2. Iodines						
I-1 <mark>31</mark>	Ci	2.23E-05	4.62E-06	< LLD	< LLD	2.69E-05
I-132	Ci	3.32E-04	< LLD	< LLD	< LLD	3.32E-04
I-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
I-1 <mark>3</mark> 4	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Total	Ci	3.54E-04	4.62E-06	< LLD	< LLD	3.59E-04

•

Table 22: Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Particulates										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
3. Particulates										
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Br-82	Ci	6.73E-06	< LLD	< LLD	< LLD	6.73E-06				
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Co-58	Ci	1.10E-04	5.54E-05	8.70E-06	< LLD	1.74E-04				
Co-60	Ci	6.36E-06	2.28E-06	< LLD	< LLD	8.64E-06				
Cr-51	Ci	1.42E-04	2.20E-05	< LLD	< LLD	1.64E-04				
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Mn-54	Ci	2.13E-06	9.09E-07	< LLD	< LLD	3.04E-06				
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Nb-95	Ci	4.31E-06	1.37E-06	< LLD	< LLD	5.68E-06				
Os-191	Ci	3.37E-06	< LLD	< LLD	< LLD	3.37E-06				
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
' Sb-125	Ċi	< LLD	< LLD	< LLD	< LLD	< LLD				
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Zr-95	Ci	2.33E-06	< LLD	< LLD	< LLD	2.33E-06				
Total	Ci	2.76E-04	8.19E-05	8.70E-06	< LLD	3.67E-04				
4. Tritium		· · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
H-3	Ci	2.50E+01	2.92E+01	2.83E+01	2.05E+01	1.03E+02				

Table 23: Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
1. Fission gases										
Ar-41	Ci	2.84E-01	4.96E-02	5.30E-02	5.72E-02	4.43E-01				
Kr-83m	Ci	< LLD								
Kr-85	Ci	< LLD								
Kr-85m	Ci	< LLD								
Kr-87	Ci	< LLD								
Kr-88	Ci	5.02E-05	< LLD	< LLD	< LLD	5.02E-05				
Kr-89	Ci	< LLD								
Kr-90	Ci	< LLD								
Xe-131m	Ci	1.18E-03	< LLD	< LLD	< LLD	1.18E-03				
Xe-133	Ci	9.09E-02	4.23E-05	< LLD	1.59E-03	9.26E-02				
Xe-133m	Ci	8.13E-04	< LLD	< LLD	< LLD	8.13E-04				
Xe-135	Ci	< LLD								
Xe-135m	Ci	< LLD								
Xe-137	Ci	< LLD								
Xe-138	Ci	< LLD								
Total	Ci	3.77E-01	4.97E-02	5.30E-02	5.88E-02	5.38E-01				
2. lodines										
I-131	Ci	9.08E-08	< LLD	< LLD	< LLD	9.08E-08				
I-132	Ci	1.74E-06	< LLD	< LLD	< LLD	1.74E-06				
I-133	Ci	< LLD								
I-134	Ci	< LLD								
I-135	Ci	< LLD								
Total	Ci	1.84E-06	< LLD	< LLD	< LLD	1.84E-06				

Gas	Table 24: Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Particulates									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
3. Particulates										
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Br-82	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Co-58	Ci	1.79E-06	2.40E-06	< LLD	< LLD	4.19E-06				
Co-60	Ci	1.69E-07	2.20E-07	< LLD	< LLD	3.89E-07				
Cr-51	Ci	1.82E-06	1.68E-06	< LLD	< LLD	3.50E-06				
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Fe-59	Ci	1.25E-08	< LLD	< LLD	< LLD	1.25E-08				
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Mn-54	Ci	5.69E-09	< LLD	< LLD	< LLD	5.69E-09				
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Nb-95	Ci	1.23E-07	5.94E-07	< LLD	< LLD	7.17E-07				
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	Note 1				
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	Note 1				
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Te-123m	· Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Zr-95	Ci	1.42E-07	4.04E-07	< LLD	< LLD	5.46E-07				
Total	Ci	4.06E-06	5.30E-06	< LLD	< LLD	9.36E-06				
4. Tritium		l				·				
H-3	Ci	2.59E+02	8.89E+01	1.05E+02	2.07E+02	6.60E+02				
Note 1 - Not required	for bate	ch releases								

Table 25: Unit 3 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
1. Fission gases										
Ar-41	Ci	6.62E+00	6.90E+00	5.30E-02	1.38E+00	1.50E+01				
Kr-83m	Ci	< LLD								
Kr-85	Ci	< LLD								
Kr-85m	Ci	< LLD								
Kr-87	Ci	< LLD								
Kr-88	Ci	5.02E-05	< LLD	< LLD	< LLD	5.02E-05				
Kr-89	Ci	< LLD								
Kr-90	Ci	< LLD								
Xe-131m	Ci	1.18E-03	< LLD	< LLD	< LLD	1.18E-03				
Xe-133	Ci	9.09E-02	4.23E-05	< LLD	1.59E-03	9.26E-02				
Xe-133m	Ci	8.13E-04	< LLD	< LLD	< LLD	8.13E-04				
Xe-135	Ci	1.52E-01	< LLD	< LLD	2.80E-01	4.31E-01				
Xe-135m	Ci	< LLD								
Xe-137	Ci	< LLD								
Xe-138	Ci	< LLD								
Total	Ci	6.86E+00	6.90E+00	5.30E-02	1.67E+00	1.55E+01				
2. lodines										
I-131	Ci	2.24E-05	4.62E-06	< LLD	< LLD	2.70E-05				
I-132	Ci	3.34E-04	< LLD	< LLD	< LLD	3.34E-04				
I-133	Ci	< LLD								
I-134	Ci	< LLD								
I-135	Ci	< LLD								
Total	Ci	3.56E-04	4.62E-06	< LLD	< LLD	3.61E-04				

.

	Table 26:									
	Gaseo	us Effluents -	Unit 3 Continuous ar	nd Batch - Par	ticulates					
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
3. Particulates										
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	<lld< td=""></lld<>				
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Br-82	Ci	6.73E-06	< LLD	< LLD	< LLD	6.73E-06				
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Co-58	Ci	1.11E-04	5.78E-05	8.70E-06	< LLD	1.78E-04				
Co-60	Ci	6.53E-06	2.50E-06	< LLD	< LLD	9.02E-06				
Cr-51	Ci	1.43E-04	2.36E-05	< LLD	< LLD	1.67E-04				
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Fe-59	Ci	1.25E-08	< LLD	< LLD	< LLD	1.25E-08				
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Mn-54	Ci	2.14E-06	9.09E-07	< LLD	< LLD	3.05E-06				
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Nb-95	Ci	4.44E-06	1.97E-06	< LLD	< LLD	6.40E-06				
Os-191	Ci	3.37E-06	< LLD	< LLD	< LLD	3.37E-06				
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Sr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Zr-95	Ci	2.47E-06	4.04E-07	< LLD	< LLD	2.87E-06				
Total	Ci	2.81E-04	8.72E-05	8.70E-06	< LLD	3.76E-04				
Total > 8 days	Ci	3.70E-04	< LLD	< LLD	< LLD	3.70E-04				
4. Tritium			•	•	•					
H-3	Ci	2.84E+02	1.18E+02	1.34E+02	2.27E+02	7.63E+02				

Table 27: Unit 3 Radiation Doses At And Beyond The Site Boundary									
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
Gamma Air Dose	mrad	1.75E-02	1.81E-02	1.39E-04	3.79E-03	3.95E-02			
ODCM Req 4.1 Limit	mrad	5.00E+00	5.00E+00	5.00E+00	5.00E+00	1.00E+01			
% ODCM Limit	%	3.50E-01	3.62E-01	2.78E-03	7.58E-02	3.95E-01			
Beta Air Dose	mrad	6.27E-03	6.40E-03	4.91E-05	1.48E-03	1.42E-02			
ODCM Req 4.1 Limit	mrad	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01			
% ODCM Limit	%	6.27E-02	6.40E-02	4.91E-04	1.48E-02	7.10E-02			
Maximum Organ Dose (excluding skin)	mrem	1.02E-01	4.24E-02	4.80E-02	8.16E-02	2.74E-01			
Age		Teen	Teen	Teen	Teen	Teen			
Organ		Thyroid	Thyroid	Lung	(1)	Thyroid			
ODCM Req. 4.2 Limit	mrem	7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01			
% ODCM Limit	%	1.36E+00	5.65E-01	6.40E-01	1.09E+00	1.83E+00			

Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Note 1 - All organs except Bone

Table 28: Units 1, 2, and 3 Gaseous Effluents - Continuous - Fission Gases and lodines - Total By Quarter										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
1. Fission gases										
Ar-41	Ci	6.34E+00	6.85E+00	< LLD	1.33E+00	1.45E+01				
Kr-83m	Ci	< LLD								
Kr-85	Ci	< LLD								
Kr-85m	Ci	< LLD								
Kr-87	Ci	< LLD								
Kr-88	Ci	< LLD								
Kr-89	Ci	< LLD								
Kr-90	Ci	< LLD								
Xe-131m	Ci	< LLD								
Xe-133	Ci	< LLD	< LLD	< LLD	2.32E+00	2.32E+00				
Xe-133m	Ci	< LLD								
Xe-135	Ci	1.52E-01	< LLD	< LLD	2.80E-01	4.31E-01				
Xe-135m	Ci	< LLD								
Xe-137	Ci	< LLD								
Xe-138	Ci	< LLD								
Total	Ci	6.49E+00	6.85E+00	< LLD	3.93E+00	1.73E+01				
2. lodines										
I-131	Ci	2.25E-05	4.62E-06	< LLD	6.87E-06	3.40E-05				
I-132	Ci	3.32E-04	< LLD	< LLD	< LLD	3.32E-04				
I-133	Ci	< LLD								
I-134	Ci	< LLD								
I-135	Ci	< LLD								
Total	Ci	3.54E-04	4.62E-06	< LLD	6.87E-06	3.66E-04				

Table 29: Units 1, 2, and 3 Gaseous Effluents - Continuous - Particulates - Total By Quarter										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
3. Particulates										
Ag-110m	Ci	< LLD								
Ba-140	Ci	< LLD								
Br-82	Ci	6.73E-06	< LLD	< LLD	< LLD	6.73E-06				
Ce-141	Ci	< LLD								
Ce-144	Ci	< LLD								
Co-57	Ci	< LLD								
Co-58	Ci	1.10E-04	5.54E-05	8.70E-06	3.46E-05	2.09E-04				
Co-60	Ci	6.36E-06	2.28E-06	< LLD	9.01E-06	1.76E-05				
Cr-51	Ci	1.42E-04	2.20E-05	< LLD	1.08E-04	2.72E-04				
Cs-134	Ci	< LLD								
Cs-136	Ci	< LLD								
Cs-137	Ci	< LLD								
Cs-138	Ci	< LLD								
Fe-59	Ci	< LLD								
La-140	Ci	< LLD								
Mn-54	Ci	2.13E-06	9.09E-07	< LLD	< LLD	3.04E-06				
Mo-99	Ci	< LLD								
Nb-95	Ci	4.31E-06	1.37E-06	< LLD	5.07E-06	1.08E-05				
Os-191	Ci	3.37E-06	< LLD	< LLD	7.73E-06	1.11E-05				
Rb-88	Ci	< LLD								
Ru-103	Ci	< LLD								
Ru-106	Ci	< LLD								
Sb-122	Ci	< LLD								
Sb-124	Ci	< LLD								
Sb-125	Ci	< LLD								
Se-75	Ci	< LLD	2.09E-06	< LLD	< LLD	2.09E-06				
Sn-113m	Ci	< LLD								
Sr-89	Ci	6.96E-08	< LLD	< LLD	< LLD	6.96E-08				
Sr-90	Ci	2.54E-08	< LLD	< LLD	< LLD	2.54E-08				
Tc-99m	Ċi	< LLD								
Te-123m	Ci	< LLD	1.46E-06	5.36E-07	< LLD	2.00E-06				
Zn-65	Ci	< LLD								
Zr-95	Ci	2.33E-06	< LLD	< LLD	2.04E-06	4.37E-06				
Total	Ci	2.77E-04	8.55E-05	9.24E-06	1.67E-04	5.39E-04				
4. Tritium		•		•	•	·				
H-3	Ci	5.48E+01	5.16E+01	5.99E+01	4.92E+01	2.16E+02				

Table 30: Units 1, 2, and 3 Gaseous Effluents - Batch - Fission Gases and lodines - Total By Quarter										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
1. Fission gases										
Ar-41	Ci	4.21E-01	2.88E-01	3.96E-01	3.38E-01	1.44E+00				
Kr-83m	Ci	< LLD								
Kr-85	Ci	< LLD								
Kr-85m	Ci	< LLD								
Kr-87	Ci	< LLD								
Kr-88	Ci	5.02E-05	< LLD	< LLD	< LLD	5.02E-05				
Kr-89	Ci	< LLD								
Kr-90	Ci	< LLD								
Xe-131m	Ci	1.18E-03	< LLD	< LLD	1.33E-03	2.51E-03				
Xe-133	Ci	1.14E-01	4.48E-02	6.41E-02	1.48E+00	1.70E+00				
Xe-133m	Ci	8.13E-04	< LLD	2.28E-06	8.67E-04	1.68E-03				
Xe-135	Ci	2.62E-04	7.43E-04	8.12E-04	6.41E-02	6.59E-02				
Xe-135m	Ci	< LLD								
Xe-137	Ci	< LLD								
Xe-138	Ci	< LLD								
Total	Ci	5.38E-01	3.33E-01	4.61E-01	1.88E+00	3.21E+00				
2. lodines										
I-131	Ci	9.08E-08	< LLD	< LLD	< LLD	9.08E-08				
I-132	Ci	1.74E-06	< LLD	< LLD	2.21E-07	1.97E-06				
I-133	Ci	< LLD								
I-134	Ci	< LLD								
I-135	Ci	< LLD								
Total	Ci	1.84E-06	< LLD	< LLD	2.21E-07	2.06E-06				

Table 31: Units 1, 2, and 3 Gaseous Effluents - Batch - Particulates - Total By Quarter									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3. Particulates		· · · · · · · · · · · · · · · · · · ·							
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Br-82	Ci	< LLD	< LLD	< LLD	1.66E-06	1.66E-06			
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-58	Ci	1.79E-06	2.40E-06	< LLD	1.04E-06	5.22E-06			
Co-60	Ci	1.69E-07	2.20E-07	< LLD	1.62E-07	5.51E-07			
Cr-51	Ci	1.82E-06	1.68E-06	< LLD	< LLD	3.50E-06			
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Fe-59	Ci	1.25E-08	< LLD	< LLD	< LLD	1.25E-08			
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mn-54	Ci	5.69E-09	< LLD	< LLD	< LLD	5.69E-09			
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Nb-95	Ci	1.23E-07	5.94E-07	< LLD	7.24E-07	1.44E-06			
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	Note 1			
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	Note 1			
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zr-95	Ci	1.42E-07	4.04E-07	< LLD	1.91E-06	2.45E-06			
Total	Ci	4.06E-06	5.30E-06	< LLD	5.49E-06	1.48E-05			
4. Tritium		<u> </u>	I	L	1 _ <u></u>	d			
H-3	Ci	3.89E+02	2.39E+02	6.82E+02	4.65E+02	1.77E+03			
Note 1 - Not required	for bate	h releases	• • • • • • • • • • • • • • • • • • • •	•	-4	·			

Table 32: Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines - Total By Quarter												
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total						
1. Fission gases												
Ar-41	Ci	6.76E+00	7.14E+00	3.96E-01	1.67E+00	1.60E+01						
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Kr-88	Ci	5.02E-05	< LLD	< LLD	< LLD	5.02E-05						
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Xe-131m	Ci	1.18E-03	< LLD	< LLD	1.33E-03	2.51E-03						
Xe-133	Ci	1.14E-01	4.48E-02	6.41E-02	3.80E+00	4.02E+00						
Xe-133m	Ci	8.13E-04	< LLD	2.28E-06	8.67E-04	1.68E-03						
Xe-135	Ci	1.52E-01	7.43E-04	8.12E-04	3.44E-01	4.97E-01						
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Total	Ci	7.03E+00	7.19E+00	4.61E-01	5.81E+00	2.05E+01						
2. lodines			· · · · · · · · · · · · · · · · · · ·									
I-131	Ci	2.26E-05	4.62E-06	< LLD	6.87E-06	3.41E-05						
I-132	Ci	3.34E-04	< LLD	< LLD	2.21E-07	3.34E-04						
I-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD						
Total	Ci	3.56E-04	4.62E-06	< LLD	7.09E-06	3.68E-04						

Table 33: Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Quarter										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
3. Particulates										
Ag-110m	Ci	< LLD								
Ba-140	Ci	< LLD								
Br-82	Ci	6.73E-06	< LLD	< LLD	1.66E-06	8.39E-06				
Ce-141	Ci	< LLD								
Ce-144	Ci	< LLD								
Co-57	Ci	< LLD								
Co-58	Ci	1.12E-04	5.78E-05	8.70E-06	3.57E-05	2.14E-04				
Co-60	Ci	6.53E-06	2.50E-06	< LLD	9.17E-06	1.82E-05				
Cr-51	Cì	1.43E-04	2.36E-05	< LLD	1.08E-04	2.75E-04				
Cs-134	Ci	< LLD								
Cs-136	Ci	< LLD								
Cs-137	Ci	< LLD								
Cs-138	Ci	< LLD								
Fe-59	Ci	1.25E-08	< LLD	< LLD	< LLD	1.25E-08				
La-140	Ci	< LLD								
Mn-54	Ci	2.14E-06	9.09E-07	< LLD	< LLD	3.05E-06				
Mo-99	Ci	< LLD								
Nb-95	Ci	4.44E-06	1.97E-06	< LLD	5.80E-06	1.22E-05				
Os-191	Ci	3.37E-06	< LLD	< LLD	7.73E-06	1.11E-05				
Rb-88	Ci	< LLD								
Ru-103	Ci	< LLD								
Ru-106	Ci	< LLD								
Sb-122	Ci	< LLD								
Sb-124	Ci	< LLD								
Sb-125	Ci	< LLD								
Se-75	Ci	< LLD	2.09E-06	< LLD	< LLD	2.09E-06				
Sn-113m	Ci	< LLD								
Sr-89	Ci	6.96E-08	< LLD	< LLD	< LLD	6.96E-08				
Sr-90	Ci	2.54E-08	< LLD	< LLD	< LLD	2.54E-08				
Tc-99m	Ci	< LLD								
Te-123m	Ci	< LLD	1.46E-06	5.36E-07	< LLD	2.00E-06				
Zn-65	Ci	< LLD								
Zr-95	Ci	2.47E-06	4.04E-07	< LLD	3.95E-06	6.82E-06				
Total	Ci	2.81E-04	9.08E-05	9.24E-06	1.72E-04	5.53E-04				
Total > 8 days	Ci	3.27E-07	< LLD	< LLD	< LLD	3.27E-07				
4. Tritium			•		····					
H-3	Ci	4.44E+02	2.91E+02	7.41E+02	5.14E+02	1.99E+03				

Table 34: Units 1, 2 and 3 Gaseous Effluents- Continuous - Fission Gases and Iodine - Total By Unit									
Nuclides Released Unit Unit 1 Unit 2 Unit 3 Total Units 1, 2 and 3									
1. Fission gases									
Ar-41	Ci	< LLD	< LLD	1.45E+01	1.45E+01				
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD				
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD				
Xe-133	Ci	< LLD	2.32E+00	< LLD	2.32E+00				
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD				
Xe-135	Ci	< LLD	< LLD	4.31E-01	4.31E-01				
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD				
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD				
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD				
Total	Ci	< LLD	2.32E+00	1.49E+01	1.73E+01				
2. lodines									
I-131	Ci	1.90E-07	6.87E-06	2.69E-05	3.40E-05				
I-132	Ci	< LLD	< LLD	3.32E-04	3.32E-04				
I-133	Ci	< LLD	< LLD	< LLD	< LLD				
I-134	Ci	< LLD	< LLD	< LLD	< LLD				
I-135	Ci	< LLD	< LLD	< LLD	< LLD				
Total	Ci	1.90E-07	6.87E-06	3.59E-04	3.66E-04				

Table 35: Units 1, 2 and 3 Gaseous Effluents- Continuous - Particulates - Total By Unit									
Nuclides Released Unit Unit 1 Unit 2 Unit 3									
3. Particulates									
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD				
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD				
Br-82	Ci	< LLD	< LLD	6.73E-06	6.73E-06				
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD				
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD				
Co-57	Ci	< LLD	< LLD	< LLD	< LLD				
Co-58	Ci	5.28E-07	3.46E-05	1.74E-04	2.09E-04				
Co-60	Ci	< LLD	9.01E-06	8.64E-06	1.76E-05				
Cr-51	Ci	< LLD	1.08E-04	1.64E-04	2.72E-04				
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD				
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD				
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD				
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD				
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD				
La-140	Ci	< LLD	< LLD	< LLD	< LLD				
Mn-54	Ci	< LLD	< LLD	3.04E-06	3.04E-06				
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD				
Nb-95	Ci	< LLD	5.07E-06	5.68E-06	1.08E-05				
Os-191	Ci	< LLD	7.73E-06	3.37E-06	1.11E-05				
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD				
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD				
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD				
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD				
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD				
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD				
Se-75	Ci	8.67E-07	1.23E-06	< LLD	2.09E-06				
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD				
Sr-89	Ci	< LLD	6.96E-08	< LLD	6.96E-08				
Sr-90	Ci	< LLD	2.54E-08	< LLD	2.54E-08				
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD				
Te-123m	Ci	< LLD	2.00E-06	< LLD	2.00E-06				
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD				
Zr-95	Ci	< LLD	2.04E-06	2.33E-06	4.37E-06				
Total	Ci	1.39E-06	1.70E-04	3.67E-04	5.39E-04				
4. Tritium		L	1						
H-3	Ci	5.55E+01	5.70E+01	1.03E+02	2.16E+02				

Table 36: Units 1, 2 and 3 Gaseous Effluents- Batch - Fission Gases and Iodine - Total By Unit									
Nuclides Released Unit Unit 1 Unit 2 Unit 3 Total Units 1, 2 and 3									
1. Fission gases									
Ar-41	Ci	2.01E-01	7.98E-01	4.43E-01	1.44E+00				
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-88	Ci	< LLD	< LLD	5.02E-05	5.02E-05				
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD				
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD				
Xe-131m	Ci	< LLD	1.33E-03	1.18E-03	2.51E-03				
Xe-133	Ci	< LLD	1.61E+00	9.26E-02	1.70E+00				
Xe-133m	Ci	< LLD	8.69E-04	8.13E-04	1.68E-03				
Xe-135	Ci	< LLD	6.59E-02	< LLD	6.59E-02				
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD				
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD				
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD				
Total	Ci	2.01E-01	2.47E+00	5.38E-01	3.21E+00				
2. lodines									
I-131	Ci	< LLD	< LLD	9.08E-08	9.08E-08				
I-132	Ci	< LLD	2.21E-07	1.74E-06	1.97E-06				
I-133	Ci	< LLD	< LLD	< LLD	< LLD				
I-134	Ci	< LLD	< LLD	< LLD	< LLD				
I-135	Ci	< LLD	< LLD	< LLD	< LLD				
Total	Ci	< LLD	2.21E-07	1.84E-06	2.06E-06				

Table 37:									
		Units 1	, 2 and 3		:				
Gaseous Effluents- Batch - Particulates -									
Total By Unit									
Nuclides Released	Nuclides Released Unit Unit 1 Unit 2 Unit 3								
3. Particulates									
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD				
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD				
Br-82	Ci	< LLD	1.66E-06	< LLD	1.66E-06				
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD				
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD				
Co-57	Ci	< LLD	< LLD	< LLD	< LLD				
Co-58	Ci	< LLD	1.04E-06	4.19E-06	5.22E-06				
Co-60	Ci	< LLD	1.62E-07	3.89E-07	5.51E-07				
Cr-51	Ci	< LLD	< LLD	3.50E-06	3.50E-06				
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD				
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD				
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD				
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD				
Fe-59	Ci	< LLD	< LLD	1.25E-08	1.25E-08				
La-140	Ci	< LLD	< LLD	< LLD	< LLD				
Mn-54	Ci	< LLD	< LLD	5.69E-09	5.69E-09				
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD				
Nb-95	Ci	< LLD	7.24E-07	7.17E-07	1.44E-06				
Os-191	Ci	< LLD	< LLD	< LLD	< LLD				
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD				
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD				
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD				
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD				
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD				
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD				
Se-75	Ci	< LLD	< LLD	< LLD	< LLD				
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD				
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1				
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1				
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD				
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD				
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD				
Zr-95	Ci	< LLD	1.91E-06	5.46E-07	2.45E-06				
Total	Ci	< LLD	5.49E-06	9.36E-06	1.48E-05				
4. Tritium			,						
H-3	Ci	1.36E+02	9.78E+02	6.60E+02	1.77E+03				
Note 1 - Not required	for batcl	n releases							

.

Table 38: Units 1, 2 and 3 Gaseous Effluents- Continuous and Batch - Fission Gases and Iodine - Total By Unit											
Nuclides Released	Unit	Unit 1	Unit 2	Unit 3	Total Units 1, 2 and 3						
1. Fission gases	1. Fission gases										
Ar-41	Ci	2.01E-01	7.98E-01	1.50E+01	1.60E+01						
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD						
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD						
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD						
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD						
Kr-88	Ci	< LLD	< LLD	5.02E-05	5.02E-05						
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD						
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD						
Xe-131m	Ci	< LLD	1.33E-03	1.18E-03	2.51E-03						
Xe-133	Ci	< LLD	3.93E+00	9.26E-02	4.02E+00						
Xe-133m	Ci	< LLD	8.69E-04	8.13E-04	1.68E-03						
Xe-135	Ci	< LLD	6.59E-02	4.31E-01	4.97E-01						
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD						
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD						
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD						
Total	Ci	2.01E-01	4.79E+00	1.55E+01	2.05E+01						
2. lodines											
I-131	Ci	1.90E-07	6.87E-06	2.70E-05	3.41E-05						
I-132	Ci	< LLD	2.21E-07	3.34E-04	3.34E-04						
I-133	Ci	< LLD	< LLD	< LLD	< LLD						
I-134	Ci	< LLD	< LLD	< LLD	< LLD						
I-135	Ci	< LLD	< LLD	< LLD	< LLD						
Total	Ci	1.90E-07	7.09E-06	3.61E-04	3.68E-04						

ļ

Table 39: Units 1, 2 and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Unit											
Nuclides Released	Unit	Unit 1	Unit 2	Unit 3	Total Units 1, 2 and 3						
3. Particulates	3. Particulates										
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD						
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD						
Br-82	Ci	< LLD	1.66E-06	6.73E-06	8.39E-06						
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD						
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD						
Co-57	Ci	< LLD	< LLD	< LLD	< LLD						
Co-58	Ci	5.28E-07	3.57E-05	1.78E-04	2.14E-04						
Co-60	Ci	< LLD	9.17E-06	9.02E-06	1.82E-05						
Cr-51	Ci	< LLD	1.08E-04	1.67E-04	2.75E-04						
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD						
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD						
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD						
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD						
Fe-59	Ci	< LLD	< LLD	1.25E-08	1.25E-08						
La-140	Ci	< LLD	< LLD	< LLD	< LLD						
Mn-54	Ci	< LLD	< LLD	3.05E-06	3.05E-06						
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD						
Nb-95	Ci	< LLD	5.80E-06	6.40E-06	1.22E-05						
Os-191	Ci	< LLD	7.73E-06	3.37E-06	1.11E-05						
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD						
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD						
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD						
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD						
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD						
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD						
Se-75	Ci	8.67E-07	1.23E-06	< LLD	2.09E-06						
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD						
Sr-89	Ci	< LLD	6.96E-08	< LLD	6.96E-08						
Sr-90	Ci	< LLD	2.54E-08	< LLD	2.54E-08						
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD						
Te-123m	Ci	< LLD	2.00E-06	< LLD	2.00E-06						
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD						
Zr-95	Ci	< LLD	3.95E-06	2.87E-06	6.82E-06						
Total	Ci	1.39E-06	1.76E-04	3.76E-04	5.53E-04						
Total > 8 days	Ci	1.39E-06	1.74E-04	3.70E-04	5.45E-04						
4. Tritium	·	•	•		···						
H-3	Ci	1.92E+02	1.04E+03	7.63E+02	1.99E+03						

Table 40: Estimation of Total Percent Error

The estimated total error is calculated as follows:

Total Percent Error = $(E_1^2 + E_2^2 + E_3^2 + ... + E_n^2)^{1/2}$

Where E_n = Percent error associated with each contributing parameter.

Parameters contributing to errors in the measurement of gaseous effluents; process flow rates, sample collection, analytical counting and tank volumes.

The following values (%) were used for error calculations.

Fission & Act gases	I-131	Particulates	Tritium	
25	25	25	25	Sample counting error
10	10	10	10	Counting system calibration error
5	5	5	5	Counting system source error
20	N/A	N/A	N/A	Temperature/volume correction error
10	10	10	10	Process flow measuring device ⁽¹⁾
N/A	15	15	15	Sample flow measuring device
N/A	5	N/A	N/A	lodine collection efficiency error
N/A	N/A	10	N/A	Plateout error
N/A	N/A	N/A	20	Bubbler collection efficiency error
N/A	N/A	N/A	2	Sample volume transfer error (pipette)
N/A	N/A	N/A	2	Sample volume error (graduate)
Note 1 - % of f	ull scale		1	L

	Table 41: Effluent Monitoring Instrumentation Out Of Service Greater Than 30 Days											
Unit Instrument Date span of Cause of inoperability inoperability Explanation												
			NONE									
• 												

.

Table 42: Solid Waste Summary

Α.	Solid Waste	Shipped	Offsite F	or Burial	Or Disposal	(not irradiated fuel)
----	-------------	---------	-----------	-----------	-------------	-----------------------

1.0 Type of Waste	Unit	Jan-Dec	estimated total error %
1.a. Spent resin, filters, sludges, evaporator	m ³	1.39E+01	N/A
bottoms, etc.	Ci	2.70E+00	2.50E+01
1.b. Dry compressible waste, contaminated	m ³	5.57E+02	N/A
equipment, etc.	Ci	7.67E+00	2.50E+01
	m ³	0.00E+00	N/A
1.c. Irradiated components, control rods, etc.	Ci	0.00E+00	2.50E+01
	m ³	6.16E+01	N/A
1.d. Other	Ci	6.23E-04	2.50E+01

2.0 Principal Radionuclides

conce filters	ate of major nuc entrations for spo , sludges, evapo ns, etc.	ent resin,
Nuclide Name	Percent Abundance	Curies
Fe-55	2.87E+01	7.75E-01
Ni-63	2.49E+01	6.72E-01
Co-60	1.64E+01	4.44E-01
C-14	1.56E+01	4.21E-01
Co-58	6.10E+00	1.65E-01
H-3	5.80E+00	1.57E-01
Sb-125	9.89E-01	2.67E-02
Mn-54	5.76E-01	1.56E-02
Cs-137	3.90E-01	1.05E-02
Co-57	1.78E-01	4.81E-03
Ni-59	1.33E-01	3.60E-03
Ce-144	9.64E-02	2.60E-03
Sr-90	5.42E-02	1.46E-03
Nb-95	3.40E-02	9.18E-04
Ag-110m	3.28E-02	8.87E-04
Pu-241	7.78E-03	2.10E-04
Ag-108m	6.52E-03	1.76E-04
Nb-94	5.18E-03	1.40E-04
Am-241	4.81E-04	1.30E-05
Cm-243	4.04E-04	1.09E-05
Pu-238	1.69E-04	4.55E-06
Pu-239	1.14E-04	3.07E-06
Cm-242	1.94E-06	5.24E-08
	Total	2.70E+00

	timate of major nuc	
	ncentrations for dry aste, contaminated	
Wa	Percent	equipment, etc.
Nuclide Name	Abundance	Curies
Fe-55	4.12E-02	3.16E-01
Co-58	1.35E-02	1.04E-01
Co-60	1.32E-02	1.01E-01
Cr-51	1.19E-02	9.15E-02
Ni-63	7.14E-03	5.48E-02
Nb-95	3.58E-03	2.74E-02
H-3	2.97E-03	2.28E-02
Zr-95	2.46E-03	1.89E-02
C-14	2.09E-03	1.60E-02
Mn-54	6.81E-04	5.22E-03
Sb-125	3.55E-04	2.72E-03
Cs-137	3.11E-04	2.38E-03
Fe-59	2.78E-04	2.13E-03
Co-57	6.12E-05	4.70E-04
Sn-113	5.52E-05	4.24E-04
Sr-89	5.37E-05	4.12E-04
Ce-144	3.50E-05	2.68E-04
Zn-65	2.38E-05	1.83E-04
Sb-124	2.16E-05	1.66E-04
Hf-181	2.11E-05	1.62E-04
Pu-241	8.83E-06	6.78E-05
Sr-90	5.28E-06	4.05E-05
Am-241	5.27E-06	4.04E-05
Ni-59	3.84E-06	2.95E-05
Cs-134	3.64E-06	2.79E-05
Te-123m	2.82E-06	2.16E-05
Pu-239	4.34E-07	3.33E-06
Pu-238	3.83E-07	2.94E-06
Cm-243	2.80E-07	2.15E-06
Ce-141	2.05E-08	1.57E-07
Cm-242	6.16E-10	4.73E-09
Tc-99	1.16E-10	8.87E-10
	Total	7.67E-01

•

2.c Estimate of major nuclide concentrations for irradiated components, control rods, etc. None

2.d Other

2.d.1 Oi		
Nuclide Name	Percent Abundance	Curies
H-3	4.96E+01	3.09E-04
Co-60	2.94E+01	1.83E-04
Cs-137D	8.14E+00	5.07E-05
Ag-110m	5.92E+00	3.69E-05
Sb-125	3.35E+00	2.09E-05
Ag-108m	1.79E+00	1.11E-05
Ce-144D	9.55E-01	5.95E-06
Cs-134	8.16E-01	5.08E-06
	Total	6.23E-04

3.0 Solid Waste Disposition

3.a

.

Shipments	Mode Of Transportation	Destination
14	Truck	EnergySolutions, UT (Bulk Waste Facility)
7	Truck	EnergySolutions, TN

3.b Irradiated Fuel Shipments: None

3.c Supplemental Information:

Number of Containers	Type of Waste	Container Type	Solidification Agent
1	LSA-II	40' Sealand	None
2	LSA-II	20' Sealand	None
22	LSA-I	20' Sealand	None
1	Limited Quantity	Tandem Transport	None
6	Exempt	Tandem Transport	None

APPENDIX B

METEOROLOGY

JOINT FREQUENCY DISTRIBUTION TABLES

The tables presented in this section are results obtained from processing the hourly meteorological data collected at the Palo Verde Nuclear Generating Station for the period of January - December 2012. The joint frequency distribution (JFD) tables represent the frequency, in terms of the number of observations, that a particular wind speed, wind direction, and stability category occurred simultaneously. On a quarterly, semiannual and annual basis, the JFDs were produced for 35-foot wind speed and wind direction by atmospheric stability class corresponding to the seven Pasquill stability categories, and for wind speed and wind direction for all stability classes combined. Atmospheric stability was classified per Regulatory Guide 1.23, using the 200-foot to 35-foot temperature difference (delta T).

In accordance with NUREG-0133, the batch releases for the year were considered as "long term," since the batch releases are sufficiently random in both time of day and duration. Consequently, the JFDs for the batch releases for all quarters are the same as for the continuous releases.

Discussion

A summary of 2012 Joint Frequency Distribution (JFD) shows a somewhat typical, but variable year. Of the 8784 hours available, 69 hours of data were lost due to a communication line failure for an effective data recovery of 99.2%.

The average 35 foot wind speed was 6.4 mph. Distribution of directions was spread over the compass with a predominant direction (3 sectors of 22.5 degrees each) centered on southwest. (34.5%) A secondary maximum of three sectors centered on the north contained 27.5% of the total. Southwesterly flow winds averaged higher speeds with the most frequent speed at 10 mph. With the northerly directions, the highest frequency occurred at 4.0 mph.

Stability class summary:

Stability class E, F, G, (stable categories) 57.9%. Stability class G, (extremely stable) 27.5%. Stability class A, B, C, (unstable categories) 21.4%. Stability class D, (neutral category) 20.8%.

Overall stable conditions (E,F,G) existed for the year.

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 3/31/2012

*** 1ST QRTR ***

STABILITY CLASS A

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE Е ESE SE SSE s SSW SW WSW W WNW NW NNW TOTAL CALM .76- 1.50 1.51- 2.50 2.51- 3.50 3.51- 4.50 4.51- 5.50 5.51- 6.50 6.51- 8.50 8.51-11.50 11.51-14.50 14.51-20.50 0 0 0 ō ō õ õ õ ō ō Ō ŏ ō õ õ õ 0 0 0 0 0 õ Õ õ õ 2 0 0 0 0 0 5 0 0 0 2 0 2 1 0 2 2 16 0 0 4 0 0 0 0 0 Ō >20.50 õ õ ŏ ŏ õ õ ô õ ŏ TOTAL

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
3.51- 4.50	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
4.51- 5.50	0	0	0	0	0	1	0	3	2	2	2	1	0	1	0	0	12
5.51- 6.50	0	0	1	0	0	1	0	3	6	3	1	0	0	0	0	0	15
6.51- 8.50	1	0	1	3	1	0	3	5	3	4	4	4	1	0	0	0	30
8.51-11.50	0	1	0	0	3	2	1	0	2	6	5	3	2	0	1	0	26
11.51-14.50	0	0	0	0	0	0	0	1	1	0	4	1	2	2	0	0	11
14.51-20.50	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	2
>20.50	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
TOTAL	1	1	2	3	4	4	4	12	14	17	20	9	5	4	1	0	101

STABILITY CLASS C

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
2.51- 3.50	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2
3.51- 4.50	1	0	1	0	0	0	0	0	2	1	0	0	1	5	0	0	11
4.51- 5.50	0	0	0	2	1	0	0	1	1	4	5	3	0	1	4	3	25
5.51- 6.50	1	3	3	1	0	1	2	1	5	7	5	2	2	0	0	0	33
6.51- 8.50	1	2	3	0	0	0	1	3	6	1	3	4	0	0	0	3	27
8.51-11.50	1	0	0	2	2	2	2	3	2	3	3	2	0	0	0	3	25
11.51-14.50	1	0	0	0	1	1	0	0	1	2	2	0	1	1	0	0	10
14.51-20.50	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	3
>20.50	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
TOTAL	7	5	7	5	5	4	5	8	17	20	19	11	5	7	4	9	138

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 3/31/2012

*** 1ST QRTR ***

STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH

JOINT FREQUENC		RIBUTION	OF W	IND SPEED	AND	DIRECTION	IN HO	OURS AT	35.00 E	FEET							
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
1.51- 2.50	2	0	1	0	2	0	0	1	5	3	2	3	2	1	4	1	27
2.51- 3.50	3	8	2	6	0	1	1	3	6	8	18	7	7	3	6	3	82
3.51- 4.50	8	11	5	5	2	4	2	5	8	9	13	14	5	10	3	0	104
4.51- 5.50	2	8	10	9	0	1	1	1	8	5	6	1	2	2	1	1	58
5.51- 6.50	3	6	5	2	0	0	1	4	9	3	11	1	2	1	1	1	50
6.51- 8.50	4	4	8	3	4	4	1	1	4	6	3	2	2	1	2	2	51
8.51-11.50	0	0	1	1	3	2	1	1	1	3	5	0	0	0	0	3	21
11.51-14.50	0	0	0	3	3	3	0	0	1	4	2	1	4	3	1	1	26
14.51-20.50	2	0	0	1	9	0	0	0	1	10	7	0	0	3	1	1	35
>20.50	0	0	0	0	0	0	0	0	1	2	2	0	0	0	0	0	5
TOTAL	24	37	32	30	23	15	7	16	44	53	69	29	24	24	19	14	460

STABILITY CLASS E

SPEED (MPH) NNE NE ENE Ε ESE SE SSE SSW N s SW wsw W WNW N₩ NNW TOTAL CALM CALM .76- 1.50 1.51- 2.50 2.51- 3.50 3.51- 4.50 4.51- 5.50 5.51- 6.50 6.51- 8.50 0 2 1 0 0 0 1 2 1 2 2 1 5 5 4 2 28 36 0 3 7 0 1 0 8.51-11.50 11.51-14.50 14.51-20.50 0 0 29 Ō ō ō ō Ō >20.50 TOTAL

STABILITY CLASS F

SPEED (MPH)	N	NNE	NĖ	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
1.51- 2.50	0	1	1	1	1	0	0	0	1	0	4	5	3	5	1	2	25
2.51- 3.50	14	2	0	0	1	1	0	0	2	3	3	10	3	9	8	4	60
3.51- 4.50	5	4	0	0	0	0	0	0	0	4	5	5	3	3	8	6	43
4.51- 5.50	3	3	1	1	1	1	0	0	1	2	5	5	3	6	7	7	46
5.51- 6.50	4	3	1	0	0	0	0	0	1	1	10	2	1	0	3	5	31
6.51- 8.50	8	1	2	1	0	0	0	1	0	4	16	9	2	2	3	15	64
8.51-11.50	1	0	0	1	1	0	0	1	1	0	3	2	1	3	1	7	22
11.51-14.50	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	4
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	36	14	5	4	4	2	0	2	7	14	46	38	16	28	32	48	296

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 3/31/2012

*** 1ST QRTR ***

STABILITY CLASS G

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEFT WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	3
1.51- 2.50	5	3	1	0	1	0	1	2	1	0	2	3	7	13	14	11	64
2.51- 3.50	41	16	5	0	0	0	1	0	0	2	8	2	7	17	38	40	177
3.51- 4.50	91	22	5	1	3	0	0	0	1	0	1	6	3	12	22	72	239
4.51- 5.50	83	16	7	0	0	0	0	0	0	3	1	1	2	2	8	32	155
5.51- 6.50	45	10	4	3	0	0	0	0	0	0	2	1	1	1	3	12	82
6.51- 8.50	40	16	5	0	0	0	0	0	0	0	0	0	0	1	1	12	75
8.51-11.50	15	5	2	0	0	0	0	0	0	0	0	0	0	0	0	12	34
11.51-14.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	320	88	29	4	4		2	2	2		14	13	20	48	86	192	829

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	1	0	0	1	0	0	0	1	0	0	0	1	2	0	2	8
1.51- 2.50	11	4	5	2	5	0	1	3	9	5	11	14	13	21	20	14	138
2.51- 3.50	60	28	8	7	1	2	3	3	9	16	35	25	23	30	56	48	354
3.51- 4.50	106	39	11	6	5	4	3	5	15	16	22	29	13	36	34	81	425
4.51- 5.50	89	29	22	12	2	3	2	5	18	20	21	14	9	14	22	46	328
5.51- 6.50	53	23	18	7	0	2	5	9	26	19	36	9	9	3	7	22	248
6.51- 8.50	55	24	19	9	7	6	12	18	15	20	33	33	5	5	6	32	299
8.51-11.50	17	6	6	6	9	8	4	6	7	20	36	14	9	6	9	31	194
11.51-14.50	3	0	0	3	6	4	0	1	5	15	14	4	9	9	3	4	80
14.51-20.50	3	0	0	1	9	0	0	0	1	16	19	3	3	18	6	4	83
>20.50	6	0	0	0	0	0	0	0	1	11	6	0	0	2	0	1	27
TOTAL	403	154	89	53	45	29	30	50	107	158	233	145	94	146	163	285	2184

TOTAL NUMBER OF OBSERVATIONS: 2184 TOTAL NUMBER OF VALID OBSERVATIONS: 2184 TOTAL NUMBER OF MISSING OBSERVATIONS: 0 PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 % MEAN WIND SPEED FOR THIS PERIOD: 6.2 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

0

 PERCENTAGE
 OCCURRENCE
 OF
 STABILITY
 CLASSES

 B
 C
 D
 E
 F

 4.62
 6.32
 21.06
 13.05
 13.55
 A 3.43 G 37.96

					DISTR	IBUTION	OF WINI	DIREC	TION VS	STABIL	ITY						
	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
A	5	0	0	0	2	4	8	8	7	13	10	3	2	10	0	3	0
в	1	1	2	3	4	4	4	12	14	17	20	9	5	4	1	0	0
С	7	5	7	5	5	4	5	8	17	20	19	11	5	7	4	9	0
D	24	37	32	30	23	15	7	16	44	53	69	29	24	24	19	14	0
Е	10	9	14	7	3	0	4	2	16	36	55	42	22	25	21	19	0
F	36	14	5	4	4	2	0	2	7	14	46	38	16	28	32	48	0
G	320	88	29	4	4	0	2	2	2	5	14	13	20	48	86	192	0
TOTAL	403	154	89	53	45	29	30	50	107	158	233	145	94	146	163	285	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2012 TO 6/30/2012

*** 2ND QRTR ***

STABILITY CLASS A

STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED

(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
4.51- 5.50	0	0	0	0	1	1	1	3	2	3	3	2	1	1	0	0	18
5.51- 6.50	0	0	1	0	1	0	4	8	20	7	5	3	3	1	0	0	53
6.51- 8.50	0	1	0	1	2	2	7	17	24	20	21	13	2	3	1	ō	114
8.51-11.50	0	0	0	0	3	3	4	10	12	30	40	13	3	0	0	Ó	118
11.51-14.50	0	0	0	1	3	1	1	0	2	12	28	4	4	3	2	0	61
14.51-20.50	0	0	0	0	0	0	1	0	2	9	24	8	2	1	1	6	54
>20.50	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	3
TOTAL	0	1	1	2	10	7	18	38	62	81	122	44	15	10	4	7	422

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	2
3.51- 4.50	0	0	0	0	0	0	1	1	0	0	1	0	1	0	1	0	5
4.51- 5.50	1	0	1	0	2	0	0	5	5	7	3	4	4	3	1	1	37
5.51- 6.50	0	0	0	2	2	3	2	8	10	7	7	2	2	1	0	0	46
6.51- 8.50	0	0	0	2	2	1	4	2	4	10	10	9	0	0	0	0	44
8.51-11.50	0	0	0	0	0	0	0	0	1	2	19	7	0	1	0	0	30
11.51-14.50	0	0	0	1	0	1	0	0	0	3	8	0	0	0	1	0	14
14.51-20.50	0	0	0	1	0	1	0	0	0	4	2	2	0	1	0	1	12
>20.50	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
TOTAL	1	0	1	6	6	6	7	16	21	33	51	24	8	6	3	2	191

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
3.51- 4.50	0	1	0	0	1	0	1	0	4	3	0	0	4	1	1	1	17
4.51- 5.50	0	1	2	2	2	2	0	0	9	3	5	2	1	1	2	0	32
5.51- 6.50	0	0	1	1	0	0	0	1	5	2	3	1	1	1	0	0	16
6.51- 8.50	0	0	0	2	0	1	0	1	2	2	3	з	1	0	2	0	17
8.51-11.50	0	0	0	0	0	0	1	0	0	2	6	7	0	0	1	0	17
11.51-14.50	0	0	0	0	1	0	0	0	0	1	2	3	0	1	1	0	9
14.51-20.50	0	0	0	0	0	0	0	0	0	2	2	1	0	0	0	0	5
>20.50	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2
TOTAL	0	2	3	5	4	3	2	2	20	15	23	17	8	4	7	1	116

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2012 TO 6/30/2012

*** 2ND QRTR ***

STABILITY CLASS D

STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

.

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
(111.11)				2.12	-		55	000	0		2						
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	1	0	0	0	0	1	0	1	2	3	2	0	0	2	0	0	12
2.51- 3.50	2	2	3	2	2	1	0	5	9	4	7	2	4	1	2	2	48
3.51- 4.50	0	2	8	6	1	1	1	2	8	8	2	2	1	0	2	2	46
4.51- 5.50	1	1	1	0	0	1	0	3	5	7	5	7	4	1	0	0	36
5.51- 6.50	0	0	3	0	0	0	0	1	2	5	5	5	1	0	0	0	22
6.51- 8.50	0	1	0	0	0	0	0	1	0	2	3	8	2	1	0	0	18
8.51-11.50	0	0	1	0	0	1	0	1	0	3	12	12	4	2	2	1	39
11.51-14.50	0	0	0	0	0	1	0	0	0	2	10	7	2	0	1	0	23
14.51-20.50	0	0	0	0	0	0	0	1	0	9	12	1	2	0	0	0	25
>20.50	0	0	0	0	2	0	1	0	0	1	2	1	0	0	0	0	7
TOTAL	4	6	16		5	6	2	15	26	44	60	45	20	7	7	5	276

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	1	2	0	1	0	0	0	0	0	2	2	0	2	3	1	3	17
2.51- 3.50	2	1	0	1	0	0	0	0	1	1	5	6	7	6	1	6	37
3.51- 4.50	2	1	0	0	0	0	0	0	2	2	5	2	2	2	0	0	18
4.51- 5.50	0	2	0	0	0	0	0	0	0	2	5	3	0	1	0	2	15
5.51- 6.50	0	0	2	0	0	0	0	1	0	3	8	1	3	1	0	0	19
6.51- 8.50	0	2	0	0	0	0	0	1	3	8	27	17	4	4	0	0	66
8.51-11.50	1	0	0	2	0	0	1	0	1	23	48	24	2	1	9	0	112
11.51-14.50	0	0	1	1	0	0	0	2	2	17	19	8	0	1	1	0	52
14.51-20.50	0	0	0	0	1	0	0	1	0	6	13	3	0	1	0	0	25
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	6	8	3	5	1		1	5	9	64	132	64	20	20	12	11	361

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WINW	NW	NNW	TOTAL
(111 11)				LIVE	5	500	55	001	5	0011	011						TOTIE
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	1	1	0	0	2	0	0	0	1	2	1	0	1	0	3	4	16
2.51- 3.50	5	5	2	1	0	0	0	0	0	2	4	4	11	4	6	7	51
3.51- 4.50	4	6	2	1	0	1	2	1	0	3	4	6	9	6	5	4	54
4.51- 5.50	3	0	1	0	0	0	1	1	1	7	12	12	5	3	1	3	50
5.51- 6.50	2	4	1	0	1	0	0	0	3	7	б	9	4	4	1	2	44
6.51- 8.50	0	1	1	0	0	0	0	1	2	18	29	21	6	4	1	2	86
8.51-11.50	0	0	0	0	0	0	0	0	0	9	21	9	0	4	6	4	53
11.51-14.50	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	4
14.51-20.50	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	15	17	7	2	4	1	3	3	7	50	79	61	36	25	23	26	359

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2012 TO 6/30/2012

*** 2ND QRTR ***

STABILITY CLASS G

STABILITY CLASS G STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N	NNE	NE	ENÉ	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
1.51- 2.50	2	0	1	0	0	0	0	1	0	1	1	1	1	3	5	3	19
2.51- 3.50	21	9	2	2	1	0	1	1	1	1	0	5	3	11	16	16	90
3.51- 4.50	47	14	3	2	2	1	0	0	0	0	0	9	4	10	14	17	123
4.51- 5.50	34	10	2	0	0	0	0	0	0	0	5	3	3	0	4	18	79
5.51- 6.50	14	9	0	0	1	0	0	0	1	0	0	1	0	2	1	6	35
6.51- 8.50	6	13	3	1	0	0	0	0	0	1	5	3	2	1	0	1	36
8.51-11.50	1	0	1	0	0	0	0	0	0	1	1	1	0	0	0	2	7
11.51-14.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	125	55	12	5	4	1	1	2	2	4	12 -	23	14	27	40	63	390

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
1.51- 2.50	5	3	1	1	2	1	0	2	3	8	6	1	4	8	9	10	64
2.51- 3.50	30	17	7	6	3	1	1	6	12	8	16	17	27	22	25	31	229
3.51- 4.50	53	24	13	9	4	3	5	4	14	16	12	19	21	20	23	24	264
4.51- 5.50	39	14	7	2	5	4	2	12	22	29	38	33	18	10	8	24	267
5.51- 6.50	16	13	8	3	5	3	6	19	41	31	34	22	14	10	2	8	235
6.51- 8.50	6	18	4	6	4	4	11	23	35	61	98	74	17	13	4	3	381
8.51-11.50	2	0	2	2	3	4	6	11	14	70	147	73	9	8	18	7	376
11.51-14.50	0	0	1	3	4	3	1	2	4	37	69	22	6	5	6	0	163
14.51-20.50	0	0	0	1	2	1	1	2	2	30	53	15	4	3	1	7	122
>20.50	0	0	0	0	2	0	1	0	0	1	6	2	· 0	0	0	1	13
TOTAL	151	89	43	33	34	24	34	81	147	291	479	278	121	99	96	115	2115

TOTAL NUMBER OF OBSERVATIONS: 2184 TOTAL NUMBER OF VALID OBSERVATIONS: 2115 TOTAL NUMBER OF MISSING OBSERVATIONS: 69 PERCENT DATA RECOVERY FOR THIS PERIOD: 96.8 % MEAN WIND SPEED FOR THIS PERIOD: 7.4 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

0

 PERCENTAGE
 OCCURRENCE
 OF
 STABILITY
 CLASSES

 B
 C
 D
 E
 F

 9.03
 5.48
 13.05
 17.07
 16.5
 A 19.95 G 16.97 18.44

					DISTR	IBUTION	OF WINI	DIREC	TION VS	STABIL	ITY						
	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
А	0	1	1	2	10	7	18	38	62	81	122	44	15	10	4	7	0
в	1	0	1	6	6	6	7	16	21	33	51	24	8	6	3	2	0
С	0	2	3	5	4	3	2	2	20	15	23	17	8	4	7	1	0
D	4	6	16	8	5	6	2	15	26	44	60	45	20	7	7	5	0
Е	6	8	3	5	1	0	1	5	9	64	132	64	20	20	12	11	0
F	15	17	7	2	4	1	3	3	7	50	79	61	36	25	23	26	0
G	125	55	12	5	4	1	1	2	2	4	12	23	14	27	40	63	0
TOTAL	151	89	43	33	34	24	34	81	147	291	479	278	121	99	96	115	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 6/30/2012

*** 1ST SEMI ***

STABILITY CLASS A BETWEEN 200.0 AND 35.0 FEET

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED

(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	2
4.51- 5.50	0	0	0	0	1	1	2	3	4	4	3	2	1	1	0	0	22
5.51- 6.50	0	0	1	0	1	0	6	9	22	8	5	3	3	1	0	2	61
6.51- 8.50	0	1	0	1	4	4	11	23	25	20	21	14	2	3	1	0	130
8.51-11.50	0	0	0	0	3	5	4	11	12	32	46	14	3	1	0	0	131
11.51-14.50	0	0	0	1	3	1	1	0	4	13	29	5	5	3	2	0	67
14.51-20.50	0	0	0	0	0	0	1	0	2	11	26	8	3	10	1	6	68
>20.50	5	0	0	0	0	0	0	0	0	6	2	1	0	0	0	2	16
TOTAL	5	1	1	2	12	11 -	26	46	69	94	132	47	17	20	4	10	497

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	Е	ËSE	SE	SSE	s	SSW	SW	wsw	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	3
3.51- 4.50	0	0	0	0	0	0	1	1	0	1	2	0	1	0	1	0	7
4.51- 5.50	1	0	1	0	2	1	0	8	7	9	5	5	4	4	1	1	49
5.51- 6.50	0	0	1	2	2	4	2	11	16	10	8	2	2	1	0	0	61
6.51- 8.50	1	0	1	5	3	1	7	7	7	14	14	13	1	0	0	0	74
8.51-11.50	0	1	0	0	3	2	1	0	3	8	24	10	2	1	1	0	56
11.51-14.50	0	0	0	1	0	1	0	1	1	3	12	1	2	2	1	0	25
14.51-20.50	0	0	0	1	0	1	0	0	0	4	3	2	0	2	0	1	14
>20.50	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	3
TOTAL	2	1	3	9	10	10	11	28	35	50	71	33	13	10	4	2	292

STABILITY CLASS C

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,51- 2.50	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
2.51- 3.50	0	0	0	0	0	0	0	0	0	1	0	0	2	0	0	0	3
3.51- 4.50	1	1	1	0	1	0	1	0	6	4	0	0	5	6	1	1	28
4.51- 5.50	0	1	2	4	3	2	0	1	10	7	10	5	1	2	6	3	57
5.51- 6.50	1	3	4	2	0	1	2	2	10	9	8	3	3	1	0	0	49
6.51- 8.50	1	2	3	2	0	1	1	4	8	3	6	7	1	0	2	3	44
8.51-11.50	1	0	0	2	2	2	3	3	2	5	9	9	0	0	1	3	42
11.51-14.50	1	0	0	0	2	1	0	0	1	3	4	3	1	2	1	0	19
14.51-20.50	1	0	0	0	0	0	0	0	0	3	3	1	0	0	0	0	8
>20.50	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	3
TOTAL	7	7 -	10	10	9	7 -	7	10	37	35	42	28	13	11	11	10	254

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 6/30/2012

*** 1ST SEMI ***

STABILITY CLASS D

STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
1.51- 2.50	3	0	1	0	2	1	0	2	7	6	4	3	2	3	4	1	39
2.51- 3.50	5	10	5	8	2	2	1	8	15	12	25	9	11	4	8	5	130
3.51- 4.50	8	13	13	11	3	5	3	7	16	17	15	16	6	10	5	2	150
4.51- 5.50	3	9	11	9	0	2	1	4	13	12	11	8	6	3	1	1	94
5.51- 6.50	3	6	8	2	0	0	1	5	11	8	16	6	3	1	1	1	72
6.51- 8.50	4	5	8	3	4	4	1	2	4	8	6	10	4	2	2	2	69
8.51-11.50	0	0	2	1	3	3	1	2	1	6	17	12	4	2	2	4	60
11.51-14.50	0	0	0	3	3	4	0	0	1	6	12	8	6	3	2	1	49
14.51-20.50	2	0	0	1	9	0	0	1	1	19	19	1	2	3	1	1	60
>20.50	0	0	0	0	2	0	1	0	1	3	4	1	0	0	0	0	12
TOTAL	28	43	48	38	28	21	9	31	70	97	129	74	44	31	26	19	736

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	3
1.51- 2.50	5	2	2	2	0	0	0	0	2	4	5	3	3	5	2	3	38
2.51- 3.50	4	3	1	2	0	0	1	0	2	3	10	12	12	7	5	7	69
3.51- 4.50	3	3	0	0	0	0	0	0	6	3	7	6	3	8	1	3	43
4.51- 5.50	1	4	4	0	0	0	0	0	4	5	7	6	2	3	2	5	43
5.51- 6.50	0	1	6	1	0	0	0	1	3	7	15	4	6	2	0	2	48
6.51~ 8.50	1	3	0	2	0	0	3	3	4	13	34	30	4	5	0	0	102
8.51-11.50	1	0	3	4	0	0	1	0	2	29	62	30	8	3	16	6	165
11.51-14.50	1	0	1	1	2	0	0	2	2	25	24	9	1	4	2	1	75
14.51-20.50	0	0	0	0	1	0	0	1	0	9	21	6	2	6	5	3	54
>20.50	0	0	0	0	0	0	0	0	0	2	2	0	0	2	0	0	6
TOTAL	16	17	17	12	4	0	- 5 -	7	25	100	187	106	42	45	33	30	646

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
(111 11)					Б	000	00	000	Ģ	0011	011				1111	11111	IOIAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
1.51- 2.50	1	2	1	1	3	0	0	0	2	2	5	5	4	5	4	6	41
2.51- 3.50	19	7	2	1	1	1	0	0	2	5	7	14	14	13	14	11	111
3.51- 4.50	9	10	2	1	0	1	2	1	0	7	9	11	12	9	13	10	97
4.51- 5.50	6	3	2	1	1	1	1	1	2	9	17	17	8	9	8	10	96
5.51- 6.50	6	7	2	0	1	0	0	0	4	8	16	11	5	4	4	7	75
6.51- 8.50	8	2	3	1	0	0	0	2	2	22	45	30	8	6	4	17	150
8.51-11.50	1	0	0	1	1	0	0	1	1	9	24	11	1	7	7	11	75
11.51-14.50	1	0	0	0	0	0	0	0	0	2	2	0	0	0	1	2	8
14.51-20.50	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	51	31	12	6	8		3		14	64	125	99	52	53	55	74	655

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 6/30/2012

*** 1ST SEMI ***

STABILITY CLASS G

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0	1	4
1.51- 2.50	7	3	2	0	1	0	1	3	1	1	3	4	8	16	19	14	83
2.51- 3.50	62	25	7	2	1	0	2	1	1	3	8	7	10	28	54	56	267
3.51- 4.50	138	36	8	3	5	1	0	0	1	0	1	15	7	22	36	89	362
4.51- 5.50	117	26	9	0	0	0	0	0	0	3	6	4	5	2	12	50	234
5.51- 6.50	59	19	4	3	1	0	0	0	1	0	2	2	1	3	4	18	117
6.51- 8.50	46	29	8	1	0	0	0	0	0	1	5	3	2	2	1	13	111
8.51-11.50	16	5	3	0	0	0	0	0	0	1	1	1	0	0	0	14	41
11.51-14.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	445	143	41	9	8	1	3	4	4	9	26	36	34	75	126	255	1219

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	1	0	0	1	0	0	0	1	0	0	0	2	2	0	2	9
1.51- 2.50	16	7	6	3	7	1	1	5	12	13	17	15	17	29	29	24	202
2.51- 3.50	90	45	15	13	4	3	4	9	21	24	51	42	50	52	81	79	583
3.51- 4.50	159	63	24	15	9	7	8	9	29	32	34	48	34	56	57	105	689
4.51- 5.50	128	43	29	14	7	7	4	17	40	49	59	47	27	24	30	70	595
5.51- 6.50	69	36	26	10	5	5	11	28	67	50	70	31	23	13	9	30	483
6.51- 8.50	61	42	23	15	11	10	23	41	50	81	131	107	22	18	10	35	680
8.51-11.50	19	6	8	8	12	12	10	17	21	90	183	87	18	14	27	38	570
11.51-14.50	3	0	1	6	10	7	1	3	9	52	83	26	15	14	9	4	243
14.51-20.50	3	0	0	2	11	1	1	2	3	46	72	18	7	21	7	11	205
>20.50	6	0	0	0	2	0	1	0	1	12	12	2	0	2	0	2	40
TOTAL	554	243	132	86	79	53	64	131	254	449	712	423	215	245	259	400	4299

TOTAL NUMBER OF OBSERVATIONS: 4368 TOTAL NUMBER OF VALID OBSERVATIONS: 4299 TOTAL NUMBER OF MISSING OBSERVATIONS: 69 PERCENT DATA RECOVERY FOR THIS PERIOD: 98.4 % MEAN WIND SPEED FOR THIS PERIOD: 6.8 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

0

 PERCENTAGE
 OCCURRENCE
 OF
 STABILITY
 CLASSES

 B
 C
 D
 E
 F

 6.79
 5.91
 17.12
 15.03
 15.2
 A 11.56 E F 15.03 15.24 G 28.36

					DISTR	IBUTION	OF WIN	D DIREC	TION VS	STABIL	ITY.						
	N	NNE	NĒ	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
А	5	1	1	2	12	11	26	46	69	94	132	47	17	20	4	10	0
в	2	1	3	9	10	10	11	28	35	50	71	33	13	10	4	2	0
С	7	7	10	10	9	7	7	10	37	35	42	28	13	11	11	10	0
D	28	43	48	38	28	21	9	31	70	97	129	74	44	31	26	19	0
Ē	16	17	17	12	4	0	5	7	25	100	187	106	42	45	33	30	0
F	51	31	12	6	8	3	3	5	14	64	125	99	52	53	55	74	0
G	445	143	41	9	8	1	3	4	4	9	26	36	34	75	126	255	0
TOTAL	554	243	132	86	79	53	64	131	254	449	712	423	215	245	259	400	0

.

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2012 TO 9/30/2012

*** 3RD QRTR ***

STABILITY CLASS A

STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED

(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
				-	_				-								
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4.51- 5.50	0	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1	6
5.51- 6.50	0	0	0	3	3	0	0	2	3	0	3	0	2	0	0	0	16
6.51- 8.50	0	0	1	0	2	2	4	5	2	6	30	13	1	0	0	0	66
8.51-11.50	0	1	0	0	1	1	1	3	0	6	34	13	6	2	0	0	68
11.51-14.50	0	0	0	0	0	1	0	0	0	1	14	2	0	0	0	0	18
14.51-20.50	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
TOTAL	0	2	1		7	4	5	11 -	6	13	83	29	10	2	0	2	178

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2
4.51- 5.50	0	0	2	2	0	1	1	0	1	1	5	2	1	0	1	0	17
5.51- 6.50	0	0	0	0	0	1	0	7	6	9	7	6	1	1	0	0	38
6.51- 8.50	0	1	1	1	0	2	1	4	9	15	20	11	5	0	0	0	70
8.51-11.50	0	1	1	0	1	2	1	0	1	3	14	5	0	0	0	0	29
11.51-14.50	0	0	0	0	1	0	0	0	1	0	2	1	0	0	0	0	5
14.51-20.50	0	0	0	0	3	0	0	1	0	0	1	0	0	0	0	0	5
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	2	4	3	5	6	3	12	19	29	49	25	7	1	1	0	166

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	2	1	0	0	1	0	1	1	1	2	0	1	1	0	11
4.51- 5.50	2	2	1	3	2	0	0	2	6	8	11	1	0	2	0	0	40
5.51- 6.50	0	2	1	1	3	0	1	2	12	7	11	3	2	1	1	0	47
6.51- 8.50	0	0	2	0	5	2	1	2	12	8	20	8	4	1	0	0	65
8.51-11.50	0	0	1	1	3	5	0	1	3	1	13	3	3	0	0	0	34
11.51-14.50	0	0	0	2	3	0	1	0	0	0	1	1	0	0	0	0	8
14.51-20.50	1	0	0	2	6	0	0	0	1	0	2	0	0	0	0	0	12
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	3	4		10	22	7	4	7 -	35	25	59	18	9	5	2	0	217

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2012 TO 9/30/2012

*** 3RD QRTR ***

STABILITY CLASS D

STABILITY CLASS D STABILITY CLASS D WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
1.51- 2.50	2	0	0	0	0	0	0	1	4	4	0	1	2	2	1	0	17
2.51- 3.50	2	5	2	3	3	1	2	4	5	4	5	7	6	4	2	3	58
3.51- 4.50	5	5	6	1	0	1	3	2	11	12	21	8	7	5	6	2	95
4.51- 5.50	4	4	8	5	5	1	2	3	9	14	11	10	5	1	1	1	84
5.51- 6.50	0	1	7	2	2	4	0	4	6	14	14	7	5	2	2	1	71
6.51- 8.50	3	4	8	3	6	3	3	5	5	10	24	13	7	1	0	1	96
8.51-11.50	2	6	3	2	8	4	2	3	4	3	22	9	9	2	1	2	82
11.51-14.50	3	0	1	3	5	0	2	1	2	2	14	5	0	1	1	2	42
14.51-20.50	1	2	0	3	10	0	2	2	2	2	19	0	0	1	0	0	44
>20.50	0	0	0	1	0	0	1	0	1	1	1	0	0	0	0	0	5
TOTAL	22	27	35	23	39	14	17	25	49	66	132	60	41	19	14	12	595

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	3
1.51- 2.50	1	1	1	1	0	0	0	1	2	2	3	3	4	5	3	2	29
2.51- 3.50	3	1	3	2	0	0	1	1	3	4	10	3	8	10	6	1	56
3.51- 4.50	7	5	3	1	0	1	1	2	8	2	10	6	3	5	9	9	72
4.51- 5.50	5	2	4	1	0	0	0	0	4	7	21	4	5	4	5	5	67
5.51- 6.50	3	8	1	0	1	1	0	1	2	8	13	11	3	2	2	1	57
6.51- 8.50	2	6	5	3	3	2	4	1	1	6	36	20	5	1	1	0	96
8.51-11.50	1	1	2	5	4	10	5	3	2	7	33	18	1	1	1	3	97
11.51-14.50	0	0	3	4	10	4	4	3	0	3	7	3	2	0	1	0	44
14.51-20.50	0	0	1	8	8	0	2	0	1	2	3	1	0	0	1	0	27
>20.50	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	2
TOTAL	22	24	23	25	29	18	17	12	23	41	136	69	32	29	29	21	550

STABILITY CLASS F

SPEED					_												
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	1	2	1	0	0	0	0	0	1	1	3	2	4	1	2	2	20
2.51- 3.50	3	4	1	0	0	1	1	0	2	1	2	12	5	4	6	9	51
3.51- 4.50	4	4	0	1	0	1	1	1	2	2	8	6	6	7	9	10	62
4.51- 5.50	7	3	2	1	0	0	1	1	2	0	5	4	5	5	5	2	43
5.51- 6.50	4	2	1	0	0	0	1	1	0	3	3	9	4	2	0	2	32
6.51- 8.50	2	0	3	1	0	0	0	0	0	3	13	9	5	1	1	2	40
8.51-11.50	2	0	1	3	0	0	2	0	0	1	2	7	2	0	0	2	22
11.51-14.50	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
14.51-20.50	0	0	0	2	0	0	0	0	0	0	0	1	0	0	0	2	5
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	23	15	9	9	0	2	6	3	7	11	36	50	31	20	23	31	276

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2012 TO 9/30/2012

*** 3RD QRTR ***

STABILITY CLASS G

STABILITY CLASS G STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	2	1	0	0	0	0	0	0	0	1	1	2	1	5	2	2	17
2.51- 3.50	5	1	4	1	0	0	0	0	0	0	1	3	3	3	14	9	44
3.51- 4.50	25	14	3	1	1	0	0	0	0	1	1	2	1	4	9	7	69
4.51- 5.50	28	7	1	0	0	0	0	0	0	0	1	0	3	3	2	13	58
5.51- 6.50	5	7	0	0	0	0	0	0	0	0	1	1	1	1	1	2	19
6.51- 8.50	4	7	1	0	0	0	0	0	0	1	1	0	0	0	1	0	15
8.51-11.50	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	4
11.51-14.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	69	39	11	2	1	0	0	0	0	3	6	8	9	16	29	33	226

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	1	0	0	0	0	0	1	0	1	1	0	0	4
1.51- 2.50	6	4	2	1	0	0	0	2	7	8	7	8	11	13	8	6	83
2.51- 3.50	13	11	10	6	3	2	4	5	10	9	18	25	22	21	28	22	209
3.51- 4.50	41	29	14	5	1	3	6	5	23	19	41	24	17	22	34	28	312
4.51- 5.50	46	18	18	12	8	2	4	7	23	30	54	22	20	15	14	22	315
5.51- 6.50	12	20	10	6	9	6	2	17	29	41	52	37	18	9	6	6	280
6.51- 8.50	11	18	21	8	16	11	13	17	29	49	144	74	27	4	3	3	448
8.51-11.50	5	11	10	11	17	22	11	10	10	21	118	55	21	5	2	7	336
11.51-14.50	3	0	4	10	19	5	7	4	3	6	38	12	2	1	2	2	118
14.51-20.50	2	2	1	15	27	0	4	3	4	4	27	2	0	1	1	2	95
>20.50	0	0	0	1	2	0	1	0	1	1	1	0	0	0	0	1	8
TOTAL	139	113	90	75	103	51	52	70	139	188	501	259	139	92	98	99	2208

TOTAL NUMBER OF OBSERVATIONS: 2208 TOTAL NUMBER OF VALID OBSERVATIONS: 2208 TOTAL NUMBER OF MISSING OBSERVATIONS: 0 PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 % MEAN WIND SPEED FOR THIS PERIOD: 6.9 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

0

PERCENTAGE OCCURRENCE OF STABILITY CLASSES A 8.06 В 7.52 С 9.83 D 26.95 E 24.91 F G 10.24 12.50

					DISTR	IBUTION	OF WIN	D DIREC	TION VS	STABIL	ITY						
	N	NNE	NE	ENE	В	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
А	0	2	1	3	7	4	5	11	6	13	83	29	10	2	0	2	0
в	0	2	4	3	5	6	3	12	19	29	49	25	7	1	1	0	0
С	3	4	7	10	22	7	4	7	35	25	59	18	9	5	2	0	0
D	22	27	35	23	39	14	17	25	49	66	132	60	41	19	14	12	0
Е	22	24	23	25	29	18	17	12	23	41	136	69	32	29	29	21	0
F	23	15	9	9	0	2	6	3	7	11	36	50	31	20	23	31	0
G	69	39	11	2	1	0	0	0	0	3	6	8	9	16	29	33	0
TOTAL	139	113	90	75	103	51	52	70	139	188	501	259	139	92	98	99	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2012 TO 12/31/2012

*** 4TH QRTR ***

STABILITY CLASS A

STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	ŃW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	ő
1.51- 2.50	õ	õ	õ	õ	õ	õ	õ	ő	õ	õ	ō	õ	õ	Ő	õ	ō	Ő
2.51- 3.50	õ	ō	0	0	ō	0	0	0	Ō	ō	Ō	ō	Ó	0	0	ō	Ó
3.51- 4.50	Ō	Ó	Ō	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0
4.51- 5.50	ō	Ó	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.51- 6.50	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	4
6.51- 8.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
8.51-11.50	0	0	0	0	0	0	0	0	1	1	4	2	2	0	0	1	11
11.51-14.50	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	4
14.51-20.50	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	3
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	1	0	1	0	0	2	3	5	2	4	2	2	1	23

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
(111.17)					2	100	00	000	÷		Ş.						
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
4.51- 5.50	0	0	0	0	0	3	2	1	1	1	3	1	1	0	0	0	13
5.51- 6.50	1	0	0	0	1	2	0	0	3	2	0	0	0	0	0	0	9
6.51- 8.50	0.	0	2	1	4	3	0	4	3	2	5	5	1	1	0	2	33
8.51-11.50	1	1	1	0	4	2	0	0	3	0	3	0	1	0	0	1	17
11.51-14.50	0	1	0	0	0	1	0	0	0	1	0	1	2	0	0	1	7
14.51-20.50	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	2
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	2	2	3	1	9	11	2	5	12	7	11	7	5	2	0	4	83

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	1	0	1	2	1	2	1	0	1	1	0	0	10
3.51- 4.50	0	0	1	0	1	3	2	0	2	7	3	0	1	0	0	1	21
4.51- 5.50	1	2	1	1	1	5	1	2	6	8	6	0	1	1	0	0	36
5.51- 6.50	0	0	0	1	6	0	0	0	8	4	3	1	0	0	0	2	25
6.51- 8.50	0	1	1	2	3	3	2	2	3	5	4	2	1	0	2	0	31
8.51-11.50	0	0	1	4	1	0	0	1	2	1	5	2	2	0	0	1	20
11.51-14.50	0	0	0	1	2	0	0	0	0	0	3	0	1	0	0	0	7
14.51-20.50	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1	3	4	9	15	11	6	7	22	30	25	5	7	2	2	4	153

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2012 TO 12/31/2012

*** 4TH QRTR ***

STABILITY CLASS D STABILITY CLASS D STABILITY BASED ON: DELTA T WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEET

.

SPEED					_				_		-						
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
1.51- 2.50	1	3	2	1	0	1	2	1	5	8	12	8	3	6	1	1	55
2.51- 3.50	3	8	3	4	3	6	12	14	9	23	14	4	7	2	1	6	119
3.51- 4.50	1	4	7	8	6	3	3	2	8	20	12	4	1	3	1	5	88
4.51- 5.50	0	11	6	2	3	0	1	2	5	8	12	2	1	0	1	1	55
5.51- 6.50	1	3	6	3	2	0	1	3	5	4	4	2	0	2	0	0	36
6.51- 8.50	2	7	3	3	0	6	2	0	2	3	3	6	3	0	2	0	42
8.51-11.50	0	1	5	7	8	7	3	0	0	1	12	3	7	1	1	1	57
11.51-14.50	0	0	0	0	3	0	0	1	2	1	1	3	4	3	1	1	20
14.51-20.50	0	0	0	0	2	0	0	0	0	0	1	0	0	1	0	0	4
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	8	37	32	28	27	23	24	24	36	68	71	32	26	18	8	15	477

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	٥	٥	0	0	٥	٥	0	0	0	0	2	1	2	0	0	5
1.51- 2.50	4	ž	1	1	ő	ő	1	ñ	2	4	7	4	5	5	2	1	40
2.51- 3.50	2	2	ŝ	2	ő	ő	1	2	ĩ	5	ó	4	2	6	3	2	37
3.51- 4.50	2	3	ĩ	2	ő	ő	1	1	1	5	Å	2	1	ñ	4	0	27
4.51- 5.50	0	2	ō	1	1	ŏ	ō	1	ĩ	6	2	õ	2	1	ō	1	18
5.51- 6.50	2	3	1	ō	0	0	1	0	2	1	2	5	1	1	1	ō	20
6.51- 8.50	1	ō	ō	ō	1	3	2	ō	ō	7	8	7	ŝ	4	3	1	42
8.51-11.50	0	0	0	Ō	ō	3	4	3	ō	4	10	4	1	3	ĩ	2	35
11.51-14.50	0	0	0	2	1	Ō	1	1	ō	1	3	1	1	1	1	0	13
14.51-20.50	0	0	0	0	0	0	ō	ō	ō	0	1	0	1	4	0	ō	
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	1	Ō	0	1
TOTAL	11	13	6	8	3	6	11	8	9	33	37	29	20	28	15	7	244

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	4
1.51- 2.50	0	1	0	0	1	1	0	0	0	1	1	2	3	6	10	3	29
2.51- 3.50	11	2	0	1	2	0	0	0	2	4	4	8	6	16	7	12	75
3.51- 4.50	6	7	0	1	0	0	0	0	2	2	2	5	4	7	7	4	47
4.51- 5.50	7	1	0	0	0	0	0	0	1	3	1	3	4	2	7	3	32
5.51- 6.50	1	2	3	0	0	0	0	0	1	3	2	7	7	2	2	1	31
6.51- 8.50	2	2	0	1	0	0	0	1	0	1	13	5	0	4	6	1	36
8.51-11.50	4	2	1	1	0	0	0	1	0	0	1	1	1	1	2	3	18
11.51-14.50	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	2
14.51-20.50	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	32	17	4	4	5	1	0	2	6	15	24	32	26	38	41	28	275

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2012 TO 12/31/2012

*** 4TH QRTR ***

STABILITY CLASS G

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED		NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
(MPH)	N	NNE	NE	ENE	Б	ESE	5E	SSE	5	55W	SW	WOW	W	WINW	1444	141464	IUIAG
CALM																	0
.76- 1.50	3	0	0	1	1	0	0	1	0	0	0	0	1	1	2	1	11
1.51- 2.50	16	10	8	5	1	2	1	0	2	4	0	2	9	16	18	28	122
2.51- 3.50	60	28	8	4	2	2	1	2	0	4	3	6	9	21	51	63	264
3.51- 4.50	83	45	7	1	1	0	0	0	2	1	4	4	6	17	19	64	254
4.51- 5.50	75	27	4	1	1	0	0	0	1	1	0	0	3	2	9	38	162
5.51- 6.50	23	23	5	0	0	0	0	0	0	1	1	0	0	1	5	14	73
6.51- 8.50	21	16	3	0	0	0	0	0	0	1	2	1	0	0	1	7	52
8.51-11.50	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	2	14
11.51-14.50	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	287	156	35	12	6	4	2	3	5	12	10	13	28	58	105	217	953

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	4	0	0	1	1	0	0	2	0	1	0	3	3	3	2	1	21
1.51- 2.50	21	17	11	7	2	4	4	1	9	17	20	16	20	33	31	33	246
2.51- 3.50	76	40	14	11	8	8	15	20	15	38	22	22	25	46	62	83	505
3.51- 4.50	92	59	16	12	8	6	6	3	17	35	25	15	13	27	31	74	439
4.51- 5.50	83	43	11	5	6	8	4	6	15	27	24	6	12	6	17	43	316
5.51- 6.50	2.8	31	15	5	9	3	2	3	19	15	12	15	9	6	9	17	198
6.51- 8.50	26	26	9	7	8	15	6	7	8	19	35	26	10	9	15	11	237
8.51-11.50	11	10	8	12	13	12	7	5	6	7	35	12	14	5	4	11	172
11.51-14.50	0	2	0	3	7	1	1	2	3	4	7	5	9	5	2	3	54
14.51-20.50	0	0	0	0	3	0	0	0	0	5	3	0	1	7	0	0	19
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
TOTAL	341	228	84	63	65	57	45	49	92	168	183	120	116	148	173	276	2208

TOTAL NUMBER OF OBSERVATIONS: 2208 TOTAL NUMBER OF VALID OBSERVATIONS: 2208 TOTAL NUMBER OF MISSING OBSERVATIONS: 0 PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 % MEAN WIND SPEED FOR THIS PERIOD: 5.1 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

PERCENTAGE OCCURRENCE OF STABILITY CLASSES

0

A B C D E F G 1.04 3.76 6.93 21.60 11.05 12.45 43.16

					DISTR	IBUTION	OF WIND	DIREC	TION VS	STABIL	ITY						
	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
А	0	0	0	1	0	1	0	0	2	3	5	2	4	2	2	1	0
в	2	2	3	1	9	11	2	5	12	7	11	7	5	2	0	4	0
с	1	3	4	9	15	11	6	7	22	30	25	5	7	2	2	4	0
D	8	37	32	28	27	23	24	24	36	68	71	32	26	18	8	15	0
Е	11	13	6	8	3	6	11	8	9	33	37	29	20	28	15	7	0
F	32	17	4	4	5	1	0	2	6	15	24	32	26	38	41	28	0
G	287	156	35	12	6	4	2	3	5	12	10	13	28	58	105	217	0
TOTAL	341	228	84	63	65	57	45	49	92	168	183	120	116	148	173	276	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2012 TO 12/31/2012

*** 2ND SEMI ***

STABILITY CLASS A BETWEEN 200.0 AND 35.0 FEET STABILITY DASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ŏ
1,51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4.51- 5.50	0	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1	6
5.51- 6.50	0	0	0	4	3	1	0	2	3	0	3	0	3	0	1	0	20
6.51- 8.50	0	0	1	0	2	2	4	5	2	6	30	13	1	0	1	0	67
8.51-11.50	0	1	0	0	1	1	1	3	1	7	38	15	8	2	0	1	79
11.51-14.50	0	0	0	0	0	1	0	0	1	2	14	2	1	1	0	0	22
14.51-20.50	0	0	0	0	0	0	0	0	0	1	3	0	0	1	0	0	5
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
TOTAL	0	2	1	4	7	5	5	11	8	16	88	31	14	4	2	3	201

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	0	4
4.51- 5.50	0	0	2	2	0	4	3	1	2	2	8	3	2	0	1	0	30
5.51- 6.50	1	0	0	0	1	3	0	7	9	11	7	6	1	1	0	0	47
6.51- 8.50	0	1	3	2	4	5	1	8	12	17	25	16	6	1	0	2	103
8.51-11.50	1	2	2	0	5	4	1	0	4	3	17	5	1	0	0	1	46
11.51-14.50	0	1	0	0	1	1	0	0	1	1	2	2	2	0	0	1	12
14.51-20.50	0	0	0	0	3	0	0	1	0	1	1	0	0	1	0	0	7
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	2	4	7	4	14	17	5	17	31	36	60	32	12	3	1	4	249

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	1	0	1	2	1	2	1	0	1	1	0	0	10
3.51- 4.50	0	0	3	1	1	3	3	0	3	8	4	2	1	1	1	1	32
4.51- 5.50	3	4	2	4	3	5	1	4	12	16	17	1	1	3	0	0	76
5.51- 6.50	0	2	1	2	9	0	1	2	20	11	14	4	2	1	1	2	72
6.51- 8.50	0	1	3	2	8	5	3	4	15	13	24	10	5	1	2	0	96
8.51-11.50	0	0	2	5	4	5	0	2	5	2	18	5	5	0	0	1	54
11.51-14.50	0	0	0	3	5	0	1	0	0	0	4	1	1	0	0	0	15
14.51-20.50	1	0	0	2	6	0	0	0	1	3	2	0	0	0	0	0	15
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	4	7	11	19	37	18	10	14	57	55	84	23	16	7	4	4	370

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2012 TO 12/31/2012

*** 2ND SEMI ***

STABILITY CLASS D

STABILITY CLASS D STABILITY BASED ON: DELTA T WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N	NNE	NE	ENÉ	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
1.51- 2.50	3	3	2	1	0	1	2	2	9	12	12	9	5	8	2	1	72
2.51- 3.50	5	13	5	7	6	7	14	18	14	27	19	11	13	6	3	9	177
3.51- 4.50	6	9	13	9	6	4	6	4	19	32	33	12	8	8	7	7	183
4.51- 5.50	4	15	14	7	8	1	3	5	14	22	23	12	6	1	2	2	139
5.51- 6.50	1	4	13	5	4	4	1	7	11	18	18	9	5	4	2	1	107
6.51- 8.50	5	11	11	6	6	9	5	5	7	13	27	19	10	1	2	1	138
8.51-11.50	2	7	8	9	16	11	5	3	4	4	34	12	16	3	2	3	139
11.51-14.50	3	0	1	3	8	0	2	2	4	3	15	8	4	4	2	3	62
14.51-20.50	1	2	0	3	12	0	2	2	2	2	20	0	0	2	0	0	48
>20.50	0	0	0	1	0	0	1	0	1	1	1	0	0	0	0	0	5
TOTAL	30	64	67	51	66	37	41	49	85	134	203	92	67	37	22	27	1072

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	1	0	0	0	0	0	0	2	2	3	0	0	8
1.51- 2.50	5	4	2	2	0	0	1	1	4	6	10	7	9	10	5	3	69
2.51- 3.50	5	3	6	4	0	0	2	3	6	9	10	7	10	16	9	3	93
3.51- 4.50	9	8	4	3	0	1	2	3	9	7	14	8	4	5	13	9	99
4.51- 5.50	5	4	4	2	1	0	0	1	5	13	23	4	7	5	5	6	85
5.51- 6.50	5	11	2	0	1	1	1	1	4	9	15	16	4	3	3	1	77
6.51- 8.50	3	6	5	3	4	5	6	1	1	13	44	27	10	5	4	1	138
8.51-11.50	1	1	2	5	4	13	9	6	2	11	43	22	2	4	2	5	132
11.51-14.50	0	0	3	6	11	4	5	4	0	4	10	4	3	1	2	0	57
14.51-20.50	0	0	1	8	8	0	2	0	1	2	4	1	1	4	1	0	33
>20.50	0	0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	3
TOTAL	33	37	29	33	32	24	28	20	32	74	173	98	52	57	44	28	794

STABILITY CLASS F

SPEED					_												
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	4
1.51- 2.50	1	3	1	0	1	1	0	0	1	2	4	4	7	7	12	5	49
2.51- 3.50	14	6	1	1	2	1	1	0	4	5	6	20	11	20	13	21	126
3.51- 4.50	10	11	0	2	0	1	1	1	4	4	10	11	10	14	16	14	109
4.51- 5.50	14	4	2	1	0	0	1	1	3	3	6	7	9	7	12	5	75
5.51- 6.50	5	4	4	0	0	0	1	1	1	6	5	16	11	4	2	3	63
6.51- 8.50	4	2	3	2	0	0	0	1	0	4	26	14	5	5	7	3	76
8.51-11.50	6	2	2	4	0	0	2	1	0	1	3	8	3	1	2	5	40
11.51-14.50	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	3
14.51-20.50	0	0	0	2	1	0	0	0	0	0	0	1	0	0	0	2	6
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	55	32	13	13	5	3	6	5	13	26	60	82	57	58	64	59	551

.

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2012 TO 12/31/2012

*** 2ND SEMI ***

STABILITY CLASS G

STABILITY BASED ON: DELTA T WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH BETWEEN 200.0 AND 35.0 FEET

JOINT FREQUEN	CY DIST	TRIBUTION		IND SPEED	AND	DIRECTION	IN H	OURS AT	35.00 H	FEET							
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	3	0	0	1	1	0	0	1	0	0	0	0	1	1	2	1	11
1.51- 2.50	18	11	8	5	1	2	1	0	2	5	1	4	10	21	20	30	139
2.51- 3.50	65	29	12	5	2	2	1	2	0	4	4	9	12	24	65	72	308
3.51- 4.50	108	59	10	2	2	0	0	0	2	2	5	6	7	21	28	71	323
4.51- 5.50	103	34	5	1	1	0	0	0	1	1	1	0	6	5	11	51	220
5.51- 6.50	28	30	5	0	0	0	0	0	0	1	2	1	1	2	6	16	92
6.51- 8.50	25	23	4	0	0	0	0	0	0	2	3	1	0	0	2	7	67
8.51-11.50	6	8	2	0	0	0	0	0	0	0	0	0	0	0	0	2	18
11.51-14.50	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	356	195	46	14	7	4	2	3	5	15	16	21	37	74	134	250	1179

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	4	0	0	1	2	0	0	2	0	1	1	3	4	4	2	1	25
1.51- 2.50	27	21	13	8	2	4	4	3	16	25	27	24	31	46	39	39	329
2.51- 3.50	89	51	24	17	11	10	19	25	25	47	40	47	47	67	90	105	714
3.51- 4.50	133	88	30	17	9	9	12	8	40	54	66	39	30	49	65	102	751
4.51- 5.50	129	61	29	17	14	10	8	13	38	57	78	28	32	21	31	65	631
5.51- 6.50	40	51	25	11	18	9	4	20	48	56	64	52	27	15	15	23	478
6.51- 8.50	37	44	30	15	24	26	19	24	37	68	179	100	37	13	18	14	685
8.51-11.50	16	21	18	23	30	34	18	15	16	28	153	67	35	10	6	18	508
11.51-14.50	3	2	4	13	26	6	8	6	6	10	45	17	11	6	4	5	172
14.51-20.50	2	2	1	15	30	0	4	3	4	9	30	2	1	8	1	2	114
>20.50	0	0	0	1	2	0	1	0	1	1	1	0	0	1	0	1	9
TOTAL	480	341	174	138	168	108	97	119	231	356	684	379	255	240	271	375	4416

TOTAL NUMBER OF OBSERVATIONS: 4416 TOTAL NUMBER OF VALID OBSERVATIONS: 4416 TOTAL NUMBER OF MISSING OBSERVATIONS: 0 PERCENT DATA RECOVERY FOR THIS PERIOD; 100.0 % MEAN WIND SPEED FOR THIS PERIOD: 6.0 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

PERCENTAGE OCCURRENCE OF STABILITY CLASSES

0

A 4.55 F С в D E 17.98 G 12.48 24.28 5.64 8.38 26.70

	N	NNE	NE	ENE	DISTR E	IBUTION ESE	OF WIN SE	D DIREC SSE	TION VS S	STABIL SSW	.ITY SW	WSW	W	WNW	Ŋ₩	NNW	CALM
А	0	2	1	4	7	5	5	11	8	16	88	31	14	4	2	3	0
в	2	4	7	4	14	17	5	17	31	36	60	32	12	3	1	4	0
с	4	7	11	19	37	18	10	14	57	55	84	23	16	7	4	4	0
D	30	64	67	51	66	37	41	49	85	134	203	92	67	37	22	27	0
Б	33	37	29	33	32	24	28	20	32	74	173	98	52	57	44	28	ō
F	55	32	13	13	5	3	6	5	13	26	60	82	57	58	64	59	0
G	356	195	46	14	7	4	2	3	5	15	16	21	37	74	134	250	0
TOTAL	480	341	174	138	168	108	97	119	231	356	684	379	255	240	271	375	Ō

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 12/31/2012

*** ANNUAL ***

STABILITY CLASS A BETWEEN 200.0 AND 35.0 FEET

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED

(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	3
4.51- 5.50	0	0	0	0	2	1	2	4	5	4	3	3	2	1	0	1	28
5.51- 6.50	0	0	1	4	4	1	6	11	25	8	8	3	6	1	1	2	81
6.51- 8.50	0	1	1	1	6	6	15	28	27	26	51	27	3	3	2	0	197
8.51-11.50	0	1	0	0	4	6	5	14	13	39	84	29	11	3	0	1	210
11.51-14.50	0	0	0	1	3	2	1	0	5	15	43	7	6	4	2	0	89
14.51-20.50	0	0	0	0	0	0	1	0	2	12	29	8	3	11	1	6	73
>20.50	5	0	0	0	0	0	0	0	0	6	2	1	0	0	0	3	17
TOTAL	5	3	2	6	19	16	31	57	77	110	220	78	31	24	6	13	698

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	3
3.51- 4.50	0	0	0	0	0	0	1	1	3	2	2	0	1	0	1	0	11
4.51- 5.50	1	0	3	2	2	5	3	9	9	11	13	8	6	4	2	1	79
5.51- 6.50	1	0	1	2	3	7	2	18	25	21	15	8	3	2	0	0	108
6.51- 8.50	1	1	4	7	7	6	8	15	19	31	39	29	7	1	0	2	177
8.51-11.50	1	3	2	0	8	6	2	0	7	11	41	15	3	1	1	1	102
11.51-14.50	0	1	0	1	1	2	0	1	2	4	14	3	4	2	1	1	37
14.51-20.50	0	0	0	1	3	1	0	1	0	5	4	2	0	3	0	1	21
>20.50	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	3
TOTAL	4	5	10	13	24	27	16	45	66	86	131	65	25	13	5	6	541

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
2.51- 3.50	0	0	0	0	1	0	1	2	1	3	1	0	3	1	0	0	13
3.51- 4.50	1	1	4	1	2	3	4	0	9	12	4	2	6	7	2	2	60
4.51- 5.50	3	5	4	8	6	7	1	5	22	23	27	6	2	5	6	3	133
5.51- 6.50	1	5	5	4	9	1	3	4	30	20	22	7	5	2	1	2	121
6.51- 8.50	1	3	6	4	8	6	4	8	23	16	30	17	6	1	4	3	140
8.51-11.50	1	0	2	7	6	7	3	5	7	7	27	14	5	0	1	4	96
11.51-14.50	1	0	0	3	7	1	1	0	1	3	8	4	2	2	1	0	34
14.51-20.50	2	0	0	2	6	0	0	0	1	6	5	1	0	0	0	0	23
>20.50	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	3
TOTAL	11	14	21	29	46	25	17	24	94	90	126	51	29	18	15	14	624

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 12/31/2012

*** ANNUAL ***

STABILITY CLASS D BETWEEN 200.0 AND 35.0 FEET

STABILITY BASED ON: DELTA T WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED

(MPH)	N	NNE	NE	ENE	Е	E\$E	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	3
1.51- 2.50	6	3	3	1	2	2	2	4	16	18	16	12	7	11	6	2	111
2.51- 3.50	10	23	10	15	8	9	15	26	29	39	44	20	24	10	11	14	307
3.51- 4.50	14	22	26	20	9	9	9	11	35	49	48	28	14	18	12	9	333
4.51- 5.50	7	24	25	16	8	3	4	9	27	34	34	20	12	4	3	3	233
5.51- 6.50	4	10	21	7	4	4	2	12	22	26	34	15	8	5	3	2	179
6.51- 8.50	9	16	19	9	10	13	6	7	11	21	33	29	14	3	4	3	207
8.51-11.50	2	7	10	10	19	14	6	5	5	10	51	24	20	5	4	7	199
11.51-14.50	3	0	1	6	11	4	2	2	5	9	27	16	10	7	4	4	111
14.51-20.50	3	2	0	4	21	0	2	3	3	21	39	1	2	5	1	1	108
>20.50	0	0	0	1	2	0	2	0	2	4	5	1	0	0	0	0	17
TOTAL	58	107	115	89	94	58	50	80	155	231	332	166	111	68	48	46	1808

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	1	0	0	2	0	0	0	0	0	0	2	3	3	0	0	11
1.51- 2.50	10	6	4	4	0	0	1	1	6	10	15	10	12	15	7	6	107
2.51- 3.50	9	6	7	6	0	0	3	3	8	12	20	19	22	23	14	10	162
3.51- 4.50	12	11	4	3	0	1	2	3	15	10	21	14	7	13	14	12	142
4.51- 5.50	6	8	8	2	1	0	0	1	9	18	30	10	9	8	7	11	128
5.51- 6.50	5	12	8	1	1	1	1	2	7	16	30	20	10	5	3	3	125
6.51- 8.50	4	9	5	5	4	5	9	4	5	26	78	57	14	10	4	1	240
8.51-11.50	2	1	5	9	4	13	10	6	4	40	105	52	10	7	18	11	297
11.51-14.50	1	0	4	7	13	4	5	6	2	29	34	13	4	5	4	1	132
14.51-20.50	0	0	1	8	9	0	2	1	1	11	25	7	3	10	6	3	87
>20.50	0	0	0	0	2	0	0	0	0	2	2	0	0	3	0	0	9
TOTAL	49	54	46	45	36	24	33	27	57	174	360	204	94	102	77	58	1440

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	0	0	0	0	0	0	0	1	1	0	1	1	0	0	0	5
1.51- 2.50	2	5	2	1	4	1	0	0	3	4	9	9	11	12	16	11	90
2.51- 3.50	33	13	3	2	3	2	1	0	6	10	13	34	25	33	27	32	237
3.51- 4.50	19	21	2	3	0	2	3	2	4	11	19	22	22	23	29	24	206
4.51- 5.50	20	7	4	2	1	1	2	2	5	12	23	24	17	16	20	15	171
5.51- 6.50	11	11	6	0	1	0	1	1	5	14	21	27	16	8	6	10	138
6.51- 8.50	12	4	6	3	0	0	0	3	2	26	71	44	13	11	11	20	226
8.51-11.50	7	2	2	5	1	0	2	2	1	10	27	19	4	8	9	16	115
11.51-14.50	1	0	0	1	1	0	0	0	0	2	2	0	0	0	1	3	11
14.51-20.50	0	0	0	2	2	0	0	0	0	0	0	1	0	0	0	2	7
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	106	63	25	19	13	6	9	10	27	90	185	181	109	111	119	133	1206

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2012 TO 12/31/2012

*** ANNUAL ***

STABILITY CLASS G STABLLITY CLASS G STABLLITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	ŃNW	TOTAL
CALM																	0
.76- 1.50	3	0	0	1	1	0	0	1	0	0	0	0	2	3	2	2	15
1.51- 2.50	25	14	10	5	2	2	2	3	3	6	4	8	18	37	39	44	222
2.51- 3.50	127	54	19	7	3	2	3	3	1	7	12	16	22	52	119	128	575
3.51- 4.50	246	95	18	5	7	1	0	0	3	2	6	21	14	43	64	160	685
4.51- 5.50	220	60	14	1	1	0	0	0	1	4	7	4	11	7	23	101	454
5.51- 6.50	87	49	9	3	1	0	0	0	1	1	4	3	2	5	10	34	209
6.51- 8.50	71	52	12	1	0	0	0	0	0	3	8	4	2	2	3	20	178
8.51-11.50	22	13	5	0	0	0	0	0	0	1	1	1	0	0	0	16	59
11.51-14.50	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	801	338	87	23	15	5	5	7		24	42	57	71	149	260	505	2398

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	4	1	0	1	3	0	0	2	1	1	1	3	6	6	2	3	34
1.51- 2.50	43	28	19	11	9	5	5	8	28	38	44	39	48	75	68	63	531
2.51- 3.50	179	96	39	30	15	13	23	34	46	71	91	89	97	119	171	184	1297
3.51- 4.50	292	151	54	32	18	16	20	17	69	86	100	87	64	105	122	207	1440
4.51- 5.50	257	104	58	31	21	17	12	30	78	106	137	75	59	45	61	135	1226
5.51- 6.50	109	87	51	21	23	14	15	48	115	106	134	83	50	28	24	53	961
6.51- 8.50	98	86	53	30	35	36	42	65	87	149	310	207	59	31	28	49	1365
8.51-11.50	35	27	26	31	42	46	28	32	37	118	336	154	53	24	33	56	1078
11.51-14.50	6	2	5	19	36	13	9	9	15	62	128	43	26	20	13	9	415
14.51-20.50	5	2	1	17	41	1	5	5	7	55	102	20	8	29	8	13	319
>20.50	6	0	0	1	4	0	2	0	2	13	13	2	0	3	0	3	49
TOTAL	1034	584	306	224	247	161	161	250	485	805	1396	802	470	485	530	775	8715

TOTAL NUMBER OF OBSERVATIONS: 8784 TOTAL NUMBER OF VALID OBSERVATIONS: 8715 TOTAL NUMBER OF MISSING OBSERVATIONS: 69 PERCENT DATA RECOVERY FOR THIS PERIOD: 99.2 % MEAN WIND SPEED FOR THIS PERIOD: 6.4 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

.

PERCENTAGE OCCURRENCE OF STABILITY CLASSES B C D E F

0

A 8.01 В 6.21 с 7.16 E F 16.52 13.84 G 27.52 20.75

					DISTR	IBUTION	OF WIN	D DIREC	TION VS	STABI	LITY						
	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	CALM
A	5	3	2	6	19	16	31	57	77	110	220	78	31	24	6	13	0
в	4	5	10	13	24	27	16	45	66	86	131	65	25	13	5	6	0
с	11	14	21	29	46	25	17	24	94	90	126	51	29	18	15	14	0
D	58	107	115	89	94	58	50	80	155	231	332	166	111	68	48	46	0
Е	49	54	46	45	36	24	33	27	57	174	360	204	94	102	77	58	0
F	106	63	25	19	13	6	9	10	27	90	185	181	109	111	119	133	0
G	801	338	87	23	15	5	5	7	9	24	42	57	71	149	260	505	0
TOTAL	1034	584	306	224	247	161	161	250	485	805	1396	802	470	485	530	775	0

APPENDIX C

DOSE CALCULATIONS

GASEOUS EFFLUENT DOSE CALCULATIONS

Doses to the maximum individual and the surrounding population resulting from the release of radioactive material in gaseous effluents from the Palo Verde Nuclear Generating Station were calculated using the GASPAR computer program. The radionuclides considered in the dose calculations were Tritium, Iodine-131, Iodine-132, Iodine-133, Iodine-135, all noble gases, and particulates having a half-life greater than eight days and for which dose factors are contained in NUREG-0172. Locations selected for individual dose calculations included for each sector, the site boundary, and within five miles, if present, the nearest residence, the nearest garden, and the nearest milk animal. GASPAR implements the radiological dose models of Regulatory Guide 1.109 to determine the radiation exposure to man from four principal atmospheric exposure pathways: plume, ground deposition, inhalation, and ingestion. Doses to the maximum individual and the population were calculated as a function of age group and pathway for significant body organs.

Table 43 presents the doses on a quarterly, semiannual and annual basis for the Energy Information Center. An occupancy factor of 1.0 (implying continuous occupancy over the entire year) was considered for the Energy Information Center and the exposure pathways considered to calculate its doses were plume, ground deposition, and inhalation.

Table 44 presents the population dose.

Table 45 summarizes the individual doses and compares the result to PVNGS ODCM Requirement limits. The site boundary and residence locations for which data are presented represent the highest annual doses.

Based on results obtained by placing TLDs on the site boundary in each sector, the net dose for this reporting period, from direct-radiation, (plume and ground deposition) from all three units was indistinguishable from preoperational values of 8 - 14 μ R/hr (17 - 30 mR/Std Qtr).

There were no liquid effluents associated with the operation of this facility.

Dose Calculation Models

The GASPAR computer code was used to evaluate the radiological consequences of the routine release of gaseous effluents. GASPAR implements the dose calculational methodologies of Regulatory Guide 1.109, Revision 1.

Source terms for each quarter are combined with station-specific demographic data and each quarter's atmospheric diffusion estimates for gaseous dose calculations.

Atmospheric diffusion estimates are generated by the XOQDOQ computer code using onsite meteorological data as input. Additional input to GASPAR includes the following site-specific data:

0 to 5 mile nearest residence, milk animal and garden in each of the 16 compass sectors, based on the 2012 Land Use Census.

0 to 10 mile population from the PVNGS Emergency Plan, Rev 47.

The 10 to 50 mile population distribution from the PVNGS UFSAR, Figure 2.1-12.

The population distribution of metropolitan Phoenix greater than 50 miles from PVNGS, based on the 1980 federal census results, is conservatively included in the 40 to 50 mile sectors (NE=123; ENE=140,097; E=621,130; ESE=8,392).

Absolute humidity of 6.0 g/m³ from the PVNGS UFSAR, Table 2.3-16.

The fraction of the year that vegetables are grown (0.667) from the PVNGS ER-OL, Section 2.1.3.4, Table 2.1-8.

The fraction of daily feed derived from pasture while on pasture (0.35) and length of grazing season for milk animals beyond 5 miles (0.75) from the PVNGS ER-OL, Section 2.1.3.4.3.

The fraction of daily feed derived from pasture while on pasture (0.05) and length of grazing season for meat animals (0.25) from the PVNGS ER-OL, Section 2.1.3.4.4.

There were three (3) sectors containing milk animal (goat or cow) locations within five (5) miles. For calculational purposes these milk animals are assumed to be fed 100% on pasture grass during the year.

Other values used for input to GASPAR are default values from Regulatory Guide 1.109, Revision 1.

Table 43:Doses To Special Locations For 2012

ENERGY INFORMATION CENTER LOCATED ONSITE 0.45 MILE S FROM UNIT 1, 0.29 MILE SSE FROM UNIT 2 AND 0.20 MILE ESE FROM UNIT 3

	(MREM)	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
1ST	QUARTER								
	ADULT	4.24E-01	4.24E-01	2.44E-02	4.24E-01	4.24E-01	4.24E-01	4.24E-01	4.39E-01
	TEEN	4.27E-01	4.27E-01	2.44E-02	4.27E-01	4.27E-01	4.28E-01	4.28E-01	4.41E-01
	CHILD	3.80E-01	3.80E-01	2.44E-02	3.80E-01	3.80E-01	3.80E-01	3.80E-01	3.95E-01
	INFANT	2.28E-01	2.28E-01	2.44E-02	2.28E-01	2.28E-01	2.29E-01	2.29E-01	2.43E-01
2ND	QUARTER								
	ADULT	1.57E-01	1.57E-01	1.54E-02	1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.67E-01
	TEEN	1.58E-01	1.58E-01	1.54E-02	1.58E-01	1.58E-01	1.58E-01	1.58E-01	1.68E-01
	CHILD	1.42E-01	1.42E-01	1.54E-02	1.42E-01	1.42E-01	1.42E-01	1.42E-01	1.51E-01
	INFANT	8.81E-02	8.81E-02	1.54E-02	8.81E-02	8.81E-02	8.81E-02	8.81E-02	9.74E-02
1ST	SEMI-ANNU	AL							
	ADULT	5.82E-01	5.82E-01	3.98E-02	5.82E-01	5.82E-01	5.82E-01	5.82E-01	6.06E-01
	TEEN	5.85E-01	5.85E-01	3.98E-02	5.85E-01	5.85E-01	5.86E-01	5.86E-01	6.09E-01
	CHILD	5.22E-01	5.22E-01	3.98E-02	5.22E-01	5.22E-01	5.22E-01	5.22E-01	5.46E-01
	INFANT	3.17E-01	3.17E-01	3.98E-02	3.17E-01	3.17E-01	3.18E-01	3.18E-01	3.41E-01
3rd	QUARTER								
	ADULT	2.86E-01	2.86E-01	7.19E-04	2.86E-01	2.86E-01	2.86E-01	2.86E-01	2.87E-01
	TEEN	2.88E-01	2.88E-01	7.19E-04	2.88E-01	2.88E-01	2.88E-01	2.88E-01	2.88E-01
	CHILD	2.55E-01	2.55E-01	7.19E-04	2.55E-01	2.55E-01	2.55E-01	2.55E-01	2.55E-01
	INFANT	1.46E-01	1.46E-01	7.19E-04	1.46E-01	1.46E-01	1.46E-01	1.46E-01	1.47E-01
4 TH	QUARTER								
	ADULT	6.09E-01	6.09E-01	9.50E-03	6.09E-01	6.09E-01	6.09E-01	6.09E-01	6.16E-01
	TEEN	6.13E-01	6.13E-01	9.50E-03	6.13E-01	6.13E-01	6.13E-01	6.13E-01	6.20E-01
	CHILD	5.43E-01	5.43E-01	9.50E-03	5.43E-01	5.43E-01	5.43E-01	5.43E-01	5.50E-01
	INFANT	3.17E-01	3.17E-01	9.50E-03	3.17E-01	3.17E-01	3.17E-01	3.17E-01	2.16E-01
2ND	SEMI-ANNU	AL							
	ADULT	8.95E-01	8.95E-01	1.02E-02	8.95E-01	8.95E-01	8.95E-01	8.95E-01	9.02E-01
	TEEN	9.00E-01	9.00E-01	1.02E-02	9.00E-01	9.00E-01	9.00E-01	9.00E-01	9.08E-01
	CHILD	7.97E-01	7.97E-01	1.02E-02	7.97E-01	7.97E-01	7.97E-01	7.97E-01	8.05E-01
	INFANT	4.63E-01	4.63E-01	1.02E-02	4.63E-01	4.63E-01	4.63E-01	4.63E-01	3.62E-01
ANNU	JAL								
	ADULT	1.48E+00	1.48E+00	5.01E-02	1.48E+00	1.48E+00	1.48E+00	1.48E+00	1.51E+00
	TEEN	1.49E+00	1.49E+00	5.01E-02	1.49E+00	1.49E+00	1.49E+00	1.49E+00	1.52E+00
	CHILD	1.32E+00	1.32E+00	5.01E-02	1.32E+00	1.32E+00	1.32E+00	1.32E+00	1.35E+00
	INFANT	7.79E-01	7.79E-01	5.01E-02	7.79E-01	7.79E-01	7.80E-01	7.80E-01	7.03E-01

Table 44:Integrated Population Dose for 2012

JAN - MAR

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	3.23E-03 .05%	3.23E-03 .05%		3.23E-03	3.23E-03	3.23E-03 .05%	3.23E-03 .05%	5.99E-03
GROUND	7.41E-05 .00%	7.41E-05	7.41E-05 2.23%			7.41E-05	7.41E-05 .00%	8.71E-05
INHAL	1.50E+00 25.39%			1.50E+00 25.39%		1.50E+00 25.39%		
VEGET	3.82E+00 64.80%			3.82E+00 64.80%		3.82E+00 64.80%		
COW MILK	3.91E-01 6.63%	3.91E-01 6.63%				3.91E-01 6.63%		3.91E-01 6.63%
MEAT	1.84E-01 3.12%		2.28E-08 .00%			1.84E-01 3.12%		
TOTAL	5.89E+00	5.89E+00	3.32E-03	5.89E+00	5.89E+00	5.89E+00	5.89E+00	5.89E+00
(1) ER CAPITA OSE (REM)	3.01E-06	3.01E-06	1.69E-09	3.01E-06	3.01E-06	3.01E-06	3.01E-06	3.01E-06

APR - JUN

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	3.73E-03	3.73E-03	3.73E-03 98.68%	3.73E-03 .14%		3.73E-03	3.73E-03	6.65E-03 .25%
GROUND	4.92E-05	4.92E-05		4.92E-05 .00%		4.92E-05 .00%		5.78E-05 .00%
INHAL	9.23E-01 34.77%			9.23E-01 34.77%	9.23E-01 34.77%			:
VEGET	1.44E+00 54.15%	1.44E+00 54.15%		1.44E+00 54.15%				
COW MILK		2.31E-01 8.71%				2.31E-01 8.71%		
MEAT	5.92E-02 2.23%	5.92E-02	1.04E-10 .00%			5.92E-02 2.23%		
TOTAL	2.66E+00	2.66E+00	3.78E-03	2.66E+00	2.66E+00	2.66E+00	2.66E+00	2.66E+00
(1) PER CAPITA DOSE (REM)	1.36E-06	 1.36E-06	1.93E-09	1.36E-06	1.36E-06	1.36E-06	1.36E-06	1.36E-06

•

Table 44: (continued) Integrated Population Dose for 2012

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME				6.96E-03				
GROUND	1.23E-04 .00%			1.23E-04 .00%				
INHAL				2.42E+00 28.30%				
VEGET				5.26E+00 61.49%				
COW MILK				6.22E-01 7.28%				
 MEAT 				2.43E-01 2.84%				
TOTAL	8.55E+00	+	+ 7.10E-03	+ 8.55E+00	8.55E+00	8.55E+00	8.55E+00	8.55E+00
(1) ER CAPITA OSE (REM)	4.36E-06	4.36E-06	3.62E-09	4.36E-06	4.36E-06	4.36E-06	4.36E-06	4.36E-06

JUL - SEP

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	1.54E-04 .00%	1.54E-04		1.54E-04 .00%		1.54E-04 .00%	1.54E-04 .00%	3.00E-04 .01%
GROUND	2.00E-06 .00%			2.00E-06		2.00E-06	2.00E-06 .00%	2.35E-06 .00%
INHAL	1.62E+00 35.69%	1.62E+00 35.69%	0.00E+00	1.62E+00 35.69%		1.62E+00 35.69%		
VEGET	2.40E+00 53.04%	2.40E+00	0.00E+00 .00%			2.40E+00 53.04%		
COW MILK		4.13E-01 9.14%				4.13E-01 9.14%		4.13E-01 9.14%
MEAT		9.63E-02						
TOTAL	4.53E+00	4.53E+00	1.56E-04	4.53E+00	4.53E+00	4.53E+00	4.53E+00	4.53E+00
(1) PER CAPITA DOSE (REM)	2.31E-06	2.31E-06	7.96E-11	2.31E-06	2.31E-06	2.31E-06	2.31E-06	2.31E-06

Table 44: (continued)Integrated Population Dose for 2012

OCT - DEC

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	2.95E-03 .03%	2.95E-03		2.95E-03		2.95E-03		8.69E-03
GROUND	8.46E-05 .00%	8.46E-05		8.46E-05			8.46E-05 .00%	9.95E-05 .00%
INHAL	2.24E+00 26.14%			•		2.24E+00 26.14%		1
VEGET		5.45E+00 63.60%		,		5.45E+00 63.60%		
COW MILK	6.14E-01 7.17%	6.14E-01 7.17%				6.14E-01 7.17%		
MEAT	2.61E-01 3.05%	2.61E-01 3.05%				2.61E-01 3.05%		
TOTAL	8.56E+00	8.56E+00	3.04E-03	8.56E+00	8.56E+00	8.56E+00	8.56E+00	8.57E+00
(1) PER CAPITA OSE (REM)	4 .37E-06	4.37 E-06	1.55E-09	4.37E-06	4.37E-06	4.37E-06	4.37E-06	4.37E-06

JUL - DEC

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	3.11E-03 .02%	3.11E-03		3.11E-03		3.11E-03	3.11E-03 .02%	8.99E-03
GROUND	8.66E-05 .00%	8.66E-05 .00%			•	8.66E-05 .00%		1.02E-04 .00%
INHAL	3.85E+00 29.45%	•	1.53E-06 .05%			3.85E+00 29.45%		3.85E+00 29.43%
VEGET	7.85E+00 59.95%	7.85E+00 59.95%				7.85E+00 59.95%		
COW MILK	1.03E+00 7.85%	1.03E+00 7.85%				1.03E+00 7.85%		1.03E+00 7.85%
MEAT	3.58E-01 2.73%	3.58E-01 2.73%				3.58E-01 2.73%	3.58E-01 2.73%	1
TOTAL	1.31E+01	1.31E+01	3.20E-03	1.31E+01	1.31E+01	1.31E+01	1.31E+01	+ 1.31E+01
(1) PER CAPITA DOSE (REM)	6.69E-06	6.69E-06	1.63E-09	6.69E-06	6.69E-06	6.69E-06	6.69E-06	+ 6.69E-06

Table 44: (continued) Integrated Population Dose for 2012

JAN - DEC

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	1.01E-02 .05%	1.01E-02 .05%	1.01E-02 97.77%			1.01E-02		2.16E-02 .10%
GROUND	2.10E-04		2.10E-04			2.10E-04 .00%	2.10E-04	2.47E-04 .00%
INHAL	6.27E+00 28.99%	6.27E+00 28.99%	7.22E-06	6.27E+00 28.99%		6.27E+00 29.00%		6.27E+00 28.98%
VEGET	1.31E+01 60.56%					1.31E+01 60.56%		
COW MILK	1.65E+00 7.63%	1.65E+00 7.63%				1.65E+00 7.63%		
MEAT	6.00E-01 2.77%		2.34E-08 .00%			6.00E-01 2.77%		
TOTAL	2.16E+01	2.16E+01	1.03E-02	2.16E+01	2.16E+01	2.16E+01	2.16E+01	2.16E+01
(1) PER CAPITA DOSE (REM)		1.10E-05	5.26E-09	1.10E-05	1.10E-05	1.10E-05	1.10E-05	1.10E-05

Note 1: Personrem total divided by 50-mile population of 1,959,000

	Summ		le 45: idual Doses	for 2012		
· · · · · · · · · · · · · · · · · · ·	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total
Gamma Air Dose	mrad	1.40E-02	6.78E-03	2.83E-04	4.69E-03	2.43E-02
ODCM Req. 4.1 Limit	mrad	5.00E+00	5.00E+00	5.00E+00	5.00E+00	1.00E+01
% ODCM Limit	%	2.80E-01	1.36E-01	5.66E-03	9.38E-02	2.43E-01
Beta Air Dose	mrad	5.01E-03	2.40E-03	1.05E-04	2.88E-03	9.90E-03
ODCM Req. 4.1 Limit	mrad	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01
% ODCM Limit	%	5.01E-02	2.40E-02	1.05E-03	2.88E-02	4.95E-02
Maximum Individual		· · ·	- 1		<u>_</u>	- t
Total Body	mrem	9.26E-03	4.52E-03	1.88E-04	3.09E-03	1.61E-02
Skin	mrem	1.49E-02	7.24E-03	3.03E-04	5.34E-03	2.63E-02
Site Boundary Location					L	
Unit 1	miles	1.70 SSE	1.40 SSW	1.27 SE	1.70 SSE	1.70 SSE
Unit 2	miles	1.88 SSE	1.14 SSW	1.31 SE	1.88 SSE	1.88 SSE
Unit 3	miles	1.73 SSE	1.00 SSW	1.40 SE	1.73 SSE	1.73 SSE
	Age	Infant	Infant	Infant	Child	Infant
Maximum Organ Dose (excluding skin)	Organ	Bone	Bone	Bone	Bone	Bone
(excluding skin)	mrem	2.25E-01	2.62E-01	2.08E-01	1.94E-01	8.81E-01
ODCM Req. 4.2 Limit	mrem	7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01
% ODCM Limit ⁽¹⁾	%	3.01E+00	3.52E+00	2.77E+00	2.59E+00	5.89E+00
Location			••••••	•		- -
Unit 1	miles	2.30 ENE	2.30 ENE	2.30 ENE	2.43 ENE	2.30 ENE
Unit 2	miles	2.52 ENE	2.52 ENE	2.52 ENE	2.63 ENE	2.52 ENE
Unit 3	miles	2.70 NE	2.70 NE	2.70 NE	2.80 ENE	2.70 NE
Maximum Organ Dose	Age	Teen	Infant	Infant	Teen	Infant
excluding C-14 ⁽³⁾	Organ	Thyroid	Thyroid	Thyroid (2)	Thyroid (2)	Thyroid
(excluding skin)	mrem	1.61E-01	8.25E-02	1.59E-01	1.79E-01	4.52E-01
ODCM Req. 4.2 Limit		7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01
% ODCM Limit ⁽¹⁾		2.15E+00	1.10E+00	2.12E+00	2.39E+00	3.01E+00
Organ dose from tritium only for Unit 2 location above	mrem	1.51E-01	8.09E-02	1.59E-01	1.76E-01	4.48E-01
Fraction of organ dose from tritium only for Unit 2 location above ^(2,3)	%	67.1%	30.9	76.4%	90.7%	50.9%
X/Q for Unit 2 location above	sec/m ³	9.85E-07	1.24E-06	9.31E-07	8.80E-07	1.02E-06
D/Q for Unit 2 location above	m ⁻²	1.08E-09	2.13E-09	1.90E-09	8.14E-10	1.50E-09
		1				

ODCM Requirement 5.1 has higher limits than ODCM Requirement 4.2, therefore the percent of limits are more conservative based on ODCM Requirement 4.2 than on ODCM Requirement 5.1.

Note 2: All organs except bone Note 3 Refer to discussion in section 10.4

APPENDIX D

NEI 07-07 GROUNDWATER PROTECTION INITIATIVE SAMPLING

APP-19	1/10/12	Cesium-134	<2.5	pCi//L	ambient monitoring
APP-19		Cesium-137	<2.4	pCi//L	ambient monitoring
APP-19	1/10/12	Cobalt-60	<2.4	pCi//L	ambient monitoring
APP-19	1/10/12		<241	pCi//L	ambient monitoring
APP-22		Cesium-134	<2.5	pCi//L	ambient monitoring
APP-22		Cesium-137	<2.3	pCi//L	ambient monitoring
APP-22		Cobalt-60	<2.4	pCi//L	ambient monitoring
APP-22	1/10/12		<241	pCi//L	ambient monitoring
APP-21		Cesium-134	<2.8	pCi//L	ambient monitoring
APP-21		Cesium-137	<2.4	pCi//L	ambient monitoring
APP-21		Cobalt-60	<2.7	pCi//L	ambient monitoring
APP-21	1/10/12		<241	pCi//L	ambient monitoring
APP-20		Cesium-134	<2.8	pCi//L	ambient monitoring
APP-20		Cesium-137	<2.4	pCi//L	ambient monitoring
APP-20		Cobalt-60	<2.6	pCi//L	ambient monitoring
APP-20	1/10/12		<250	pCi//L	ambient monitoring
APP-9		Cesium-134	<2.6	pCi//L	routine
APP-9		Cesium-134 Cesium-137	<2.4	pCi//L	routine
APP-9		Cobalt-60	<2.5	pCi//L pCi//L	routine
APP-9	1/19/12		<255	pCi//L	routine
APP-10		Cesium-134	<2.4	pCi//L	routine
APP-10 APP-10		Cesium-134 Cesium-137	<2.3	pCi//L	routine
APP-10 APP-10		Cobalt-60	<2.3	pCi//L	routine
APP-10 APP-10	1/19/12		<255	pCi//L pCi//L	routine
APP-10 APP-12		Cesium-134	<2.7	pCi//L	routine
APP-12 APP-12		Cesium-134 Cesium-137	<2.6		routine
APP-12 APP-12		Cobalt-60	<2.4	pCi//L	routine
APP-12 APP-12	1/19/12		<255	pCi//L	routine
APP-12 APP-22		Cesium-134	<2.3	pCi//L	
APP-22 APP-22			_	pCi//L	ambient monitoring
APP-22 APP-22		Cesium-137	<2.3	pCi//L	ambient monitoring
		Cobalt-60	<2.1	pCi//L	ambient monitoring
APP-22	4/18/12			pCi//L	ambient monitoring ambient monitoring
APP-19		Cesium-134 Cesium-137	<2.5	pCi//L	
APP-19 APP-19		Cobalt-60	<2.3	pCi//L	ambient monitoring
APP-19 APP-19	4/18/12		<2.2	pCi//L	ambient monitoring
			<252	pCi//L pCi//L	ambient monitoring
APP-21		Cesium-134	<2.7		ambient monitoring
APP-21		Cesium-137	<2.5	pCi//L	ambient monitoring
APP-21		Cobalt-60	<2.6	pCi//L	ambient monitoring
APP-21	4/18/12		<252	pCi//L	ambient monitoring
APP-20		Cesium-134	<2.7	pCi//L	ambient monitoring
APP-20		Cesium-137	<2.5	pCi//L	ambient monitoring
APP-20		Cobalt-60	<2.6	pCi//L	ambient monitoring
APP-20	4/18/12		<252	pCi//L	ambient monitoring
APP-9		Cesium-134	<2.6	pCi//L	routine
APP-9		Cesium-137	<2.5	pCi//L	routine
APP-9		Cobalt-60	<2.5	pCi//L	routine
APP-9	4/18/12		<252	pCi//L	routine
APP-10		Cesium-134	<2.4	pCi//L	routine
APP-10		Cesium-137	<2.5	pCi//L	routine
APP-10		Cobalt-60	<2.7	pCi//L	routine
APP-10	4/18/12		<252	pCi//L	routine
APP-12		Cesium-134	<2.3	pCi//L	routine
APP-12	4/18/12	Cesium-137	<2.3	pCi//L	routine

Onsite Radiological Groundwater Monitoring Data

			_		
APP-12	4/18/12	Cobalt-60	<2.3	pCi//L	routine
APP-12	4/18/12	Tritium	<252	pCi//L	routine
PV-14H	4/25/12	Cesium-134	<2.5	pCi//L	routine
PV-14H	4/25/12	Cesium-137	<2.4	pCi//L	routine
PV-14H		Cobalt-60	<2.5	pCi//L	routine
PV-14H	4/25/12		<263	pCi//L	routine
PV-195A		Cesium-134	<2.6	pCi//L	routine
PV-195A		Cesium-137	<2.5	pCi//L	routine
PV-195A		Cobalt-60	<2.6	pCi//L	routine
PV-195A	4/25/12		<243	pCi//L	routine
APP-4R		Cesium-134	<2.3	pCi//L	routine
APP-4R		Cesium-137	<2.1	pCi//L	routine
APP-4R		Cobalt-60	<2.2	pCi//L	routine
APP-4R	4/26/12		<263	pCi//L	routine
APP-18		Cesium-134	<2.4	pCi//L	routine
APP-18		Cesium-137	<2.5	pCi//L	routine
APP-18		Cobalt-60	<2.6	pCi//L	routine
APP-18	4/26/12		<243	pCi//L	routine
PV-193A		Cesium-134	<2.5	pCi//L	routine
PV-193A		Cesium-137	<2.5	pCi//L	routine
PV-193A		Cobalt-60	<2.5	pCi//L	routine
PV-193A	4/26/12		<263	pCi//L	routine
APP-15		Cesium-134	<2.4	pCi//L	routine
APP-15		Cesium-137	<2.3	pCi//L	routine
APP-15		Cobalt-60	<2.3	pCi//L	routine
APP-15	4/26/12		<263	pCi//L	routine
PV-R2AR		Cesium-134	<2.3	pCi//L	routine
PV-R2AR		Cesium-134	<2.3	pCi//L	routine
PV-R2AR		Cobalt-60	<2.3		
PV-R2AR PV-R2AR	4/26/12		<243	pCi//L	routine
		Cesium-134	<2.4	pCi//L	routine
APP-3		Cesium-137		pCi//L	routine
APP-3 APP-3		Cobalt-60	<2.2	pCi//L	routine
				pCi//L	routine
APP-3	5/24/12		<247	pCi//L	routine
PV-198AR		Cesium-134	<2.6	pCi//L	routine
PV-198AR		Cesium-137 Cobalt-60	<2.7	pCi//L	routine
PV-198AR PV-198AR	5/24/12		<2.5 <247	pCi//L pCi//L	routine
APP-9		Cesium-134	<2.4		routine
		Cesium-134 Cesium-137		pCi//L	routine
APP-9			<2.3	pCi//L	routine
APP-9		Cobalt-60	<2.3	pCi//L	routine
APP-9	5/24/12		<247	pCi//L	routine
PV-Q8		Cesium-134	<2.4	pCi//L	routine
PV-Q8		Cesium-137	<2.3	pCi//L	routine
PV-Q8		Cobalt-60	<2.4	pCi//L	routine
PV-Q8	5/25/12		<247	pCi//L	routine
PV-34H		Cesium-134	<2.3	pCi//L	routine
PV-34H		Cesium-137	<2.4	pCi//L	routine
PV-34H		Cobalt-60	<2.4	pCi//L	routine
PV-34H	5/25/12		<247	pCi//L	routine
APP-5		Cesium-134	<2.2	pCi//L	routine
APP-5		Cesium-137	<2.2	pCi//L	routine
APP-5		Cobalt-60	<2.2	pCi//L	routine
APP-5	5/25/12	Tritium	<247	pCi//L	routine

APP-7	5/25/12	Cesium-134	<2.5	pCi//L	routine
APP-7		Cesium-137	<2.4	pCi//L	routine
APP-7		Cobalt-60	<2.6	pCi//L	routine
APP-7	5/25/12		<247	pCi//L	routine
APP-10		Cesium-134	<2.4	pCi//L	routine
APP-10		Cesium-137	<2.4	pCi//L	routine
APP-10		Cobalt-60	<2.4	pCi//L	routine
APP-10	5/25/12		<247	pCi//L	routine
APP-12		Cesium-134	<2.7	pCi//L	routine
APP-12		Cesium-137	<2.6	pCi//L	routine
APP-12		Cobalt-60	<2.5	pCi//L	routine
APP-12	6/13/12		<253	pCi//L	routine
APP-9		Cesium-134	<2.3	pCi//L	routine
APP-9		Cesium-137	<2.5	pCi//L	routine
APP-9		Cobalt-60	<2.7	pCi//L	routine
APP-9	7/18/12		<249	pCi//L	routine
APP-10		Cesium-134	<2.2	pCi//L	routine
APP-10 APP-10		Cesium-134 Cesium-137	<2.0	pCi//L	routine
APP-10 APP-10		Cobalt-60	<2.2	pCi//L	routine
APP-10 APP-10	7/18/12		<249	pCi//L	routine
APP-10 APP-12		Cesium-134	<2.5	pCi//L	routine
APP-12 APP-12		Cesium-134 Cesium-137	<2.4	pCi//L	routine
APP-12 APP-12		Cobalt-60	<2.5	pCi//L	routine
APP-12 APP-12	7/18/12		<249	pCi//L	routine
APP-12 APP-22		Cesium-134	<2.4	pCi//L	
		Cesium-134 Cesium-137			ambient monitoring
APP-22			<2.5	pCi//L	ambient monitoring
APP-22		Cobalt-60	<2.5	pCi//L	ambient monitoring
APP-22	7/18/12		<249	pCi//L	ambient monitoring
APP-19		Cesium-134	<2.2	pCi//L	ambient monitoring
APP-19		Cesium-137	<2.1	pCi//L	ambient monitoring
APP-19		Cobalt-60	<2.3	pCi//L	ambient monitoring
APP-19	7/18/12		<249	pCi//L	ambient monitoring
APP-21		Cesium-134	<2.2	pCi//L	ambient monitoring
APP-21		Cesium-137	<2.1	pCi//L	ambient monitoring
APP-21		Cobalt-60	<2.1	pCi//L	ambient monitoring
APP-21	7/18/12		<249	pCi//L	ambient monitoring
APP-20		Cesium-134	<2.3	pCi//L	ambient monitoring
APP-20		Cesium-137	<2.5	pCi//L	ambient monitoring
APP-20		Cobalt-60	<2.6	pCi//L	ambient monitoring
APP-20	7/18/12		<249	pCi//L	ambient monitoring
PV-14H		Cesium-134	<2.5	pCi//L	routine
PV-14H		Cesium-137	<2.4	pCi//L	routine
PV-14H	10/15/12		<2.6	pCi//L	routine
PV-14H	10/15/12		<256	pCi//L	routine
PV-195A		Cesium-134	<2.2	pCi//L	routine
PV-195A		Cesium-137	<2.0	pCi//L	routine
PV-195A	10/16/12		<2.2	pCi//L	routine
PV-195A	10/16/12		<256	pCi//L	routine
APP-15		Cesium-134	<2.5	pCi//L	routine
APP-15		Cesium-137	<2.5	pCi//L	routine
APP-15	10/16/12		<2.6	pCi//L	routine
APP-15	10/16/12		<256	pCi//L	routine
PV-193A		Cesium-134	<2.2	pCi//L	routine
PV-193A	10/16/12	Cesium-137	<2.3	pCi//L	routine

PV-193A	10/16/12	Cobalt-60	<2.2	pCi//L	routine
PV-193A	10/16/12	Tritium	<256	pCi//L	routine
APP-18	10/16/12	Cesium-134	<2.5	pCi//L	routine
APP-18	10/16/12	Cesium-137	<2.5	pCi//L	routine
APP-18		Cobalt-60	<2.6	pCi//L	routine
APP-18	10/16/12	Tritium	<256	pCi//L	routine
APP-4R	10/16/12	Cesium-134	<2.5	pCi//L	routine
APP-4R	10/16/12	Cesium-137	<2.6	pCi//L	routine
APP-4R	10/16/12	Cobalt-60	<2.5	pCi//L	routine
APP-4R	10/16/12	Tritium	<256	pCi//L	routine
APP-19	10/23/12	Cesium-134	<2.7	pCi//L	ambient monitoring
APP-19		Cesium-137	<2.5	pCi//L	ambient monitoring
APP-19	10/23/12	Cobalt-60	<2.4	pCi//L	ambient monitoring
APP-19	10/23/12	Tritium	<255	pCi//L	ambient monitoring
APP-22	10/23/12	Cesium-134	<2.3	pCi//L	ambient monitoring
APP-22	10/23/12	Cesium-137	<2.2	pCi//L	ambient monitoring
APP-22	10/23/12	Cobalt-60	<2.0	pCi//L	ambient monitoring
APP-22	10/23/12	Tritium	<255	pCi//L	ambient monitoring
APP-21	10/23/12	Cesium-134	<2.6	pCi//L	ambient monitoring
APP-21	10/23/12	Cesium-137	<2.5	pCi//L	ambient monitoring
APP-21	10/23/12	Cobalt-60	<2.7	pCi//L	ambient monitoring
APP-21	10/23/12	Tritium	<255	pCi//L	ambient monitoring
APP-20	10/23/12	Cesium-134	<2.3	pCi//L	ambient monitoring
APP-20	10/23/12	Cesium-137	<2.1	pCi//L	ambient monitoring
APP-20	10/23/12	Cobalt-60	<2.2	pCi//L	ambient monitoring
APP-20	10/23/12	Tritium	<255	pCi//L	ambient monitoring
APP-9	10/23/12	Cesium-134	<2.2	pCi//L	routine
APP-9		Cesium-137	<2.3	pCi//L	routine
APP-9	10/23/12	Cobalt-60	<2.2	pCi//L	routine
APP-9	10/23/12	Tritium	<255	pCi//L	routine
APP-10	10/23/12	Cesium-134	<2.6	pCi//L	routine
APP-10	10/23/12	Cesium-137	<2.4	pCi//L	routine
APP-10	10/23/12	Cobalt-60	<2.6	pCi//L	routine
APP-10	10/23/12		<255	pCi//L	routine
APP-12		Cesium-134	<2.6	pCi//L	routine
APP-12	10/23/12	Cesium-137	<2.5	pCi//L	routine
APP-12	10/23/12	Cobalt-60	<2.3	pCi//L	routine
APP-12	10/23/12	Tritium	<255	pCi//L	routine
PV-R2AR		Cesium-134	<2.3	pCi//L	routine
PV-R2AR	12/13/12	Cesium-137	<2.2	pCi//L	routine
PV-R2AR	12/13/12		<2.1	pCi//L	routine
PV-R2AR	12/13/12	Tritium	<256	pCi//L	routine

APPENDIX E

.

OFFSITE DOSE CALCULATION MANUAL Revision 26

OFFSITE DOSE CALCULATION MANUAL PALO VERDE NUCLEAR GENERATING STATION UNITS 1, 2 AND 3

REVISION 26

Originator	Drinovsky, Louis J(Z3369	Digitally signed by Drinovsky, Louis J(Z33699) DN: cn=Drinovsky, Louis J(Z33699) Reason I am the author of this document Date: 2011.08.11 15:41:19 -07'00'
Technical Reviewer	Bungard, Jam P(Z18012)	Digitally signed by Bungard, James P(Z18012) PN: cn=Bungard, James P(Z18012) Reatty: I have reviewed this document Date: 2011.08.18 14:51:39 -07'00'
Director, Radiation Protection	John Gaffn	Digitally signed by John Gaffney DN: cn=John Gaffney, o=RP Administration, ou=8800, anall=z36459@apsc.com, c=US Reastore I am approving this document Date: 2011.08.26 13:44:11-07'00'
PRB	Borchert, Pet (Z13982)	Cell Digitally signed by Borchert, Peter (Z13982) N: cn=Borchert, Peter (Z13982) Resemplar approving this document Date: 2011.09.29 05:45:41 -07'00'

Effective Date: 9/30/2011

TABLE OF CONTENTS

	TIT	LE		PAGE
1.0	INT	RODUC	ΓΙΟΝ	1
	1.1	Liquid	Effluent Pathways	1
	1.2		s Effluent Pathways	2
	1.3		ce Pathways	2
	1.4	Meteor	-	4
2.0	GAS	EOUS E	FFLUENT MONITOR SETPOINTS	5
	2.1	Require	ements: Gaseous Monitors	5
		2.1.1	Surveillance Requirements	5
		2.1.2	Implementation of the Requirements	12
			2.1.2.1 Equivalent Dose Factor Determination	13
			2.1.2.2 Site Release Rate Limit (Q _{SITE})	14
			2.1.2.3 Unit Release Rate Limits (Q _{UNIT})	15
			2.1.2.4 Setpoint Determination	15
			2.1.2.5 Monitor Calibration	16
3.0	GAS	EOUS A	ND LIQUID EFFLUENT DOSE RATES	17
	3.1	Require	ments: Gaseous Effluents	17
		3.1.1	Surveillance Requirements	17
		3.1.2	Implementation of the Requirements	18
	3.2	Require	ments: Secondary System Liquid Waste Discharges To Onsite Evaporation 1	Ponds or
		Circulat	ing Water System - Concentration	26
		3.2.1	Surveillance Requirements	26
		3.2.2	Implementation of the Requirements	26
4.0	GAS	EOUS &	LIQUID EFFLUENTS - DOSE	31
	4.1	Require	ments: Noble Gases	31
		4.1.1	Surveillance Requirements	31
		4.1.2	Implementation of the Requirement: Noble Gas	32
	4.2	Require	ment: Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate	
		Form W	ith Half-Lives Greater Than 8 Days	33
		4.2.1	Surveillance Requirements	33
		4.2.2	Implementation of the Requirement	34
	4.3	-	ments: Gaseous Radwaste Treatment	36
		4.3.1	Surveillance Requirements	36
		4.3.2	Implementation of the Requirement	37
	4.4		ments: Liquid Effluents	57
		4.4.1	Surveillance Requirements	57
		4.4.2	Implementation of the Requirements	57

TABLE OF CONTENTS

	TITL	Æ			PAGE	
5.0	TOTAL DOSE AND DOSE TO PUBLIC ONSITE					
	5.1	Requ 5.1.1 5.1.2	ement: Total Dose Surveillance Rec Implementation		58 58 58	
6.0	RAD	IOLO(ICAL ENVIRON	MENTAL MONITORING PROGRAM (REMP)	62	
	6.1	6.1.1 6.1.2		of the Requirements	62 63 63	
	6.2 6.3	6.2.1 6.2.2			71 71 71 72	
		6.3.1 6.3.2	Surveillance Rec		72 72	
7.0	RAD	OLO	ICAL REPORTS	5	83	
	7.1 7.2	-		dioactive Effluent Release Report diological Environmental Operating Report	83 85	
APPE	NDIX	A I	ETERMINATION	OF CONTROLLING LOCATION	86	
APPE	NDIX	BJ	3.1GASEOUS3.2SECONDA	IREMENTS IVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION EFFLUENT - DOSE RATE RY SYSTEM LIQUID WASTE DISCHARGE TO VAPORATION PONDS - CONCENTRATION	87 87 87 88	
			4.2 GASEOUS and All Rad4.3 GASEOUS	EFFLUENT - DOSE, Noble Gases EFFLUENT - DOSE - Iodine-131, Iodine-133, Tritium, ionuclides in Particulate Form With Half-Lives Greater Than 8 Day RADWASTE TREATMENT RY SYSTEM LIQUID WASTE DISCHARGE TO	88	
			ONSITE EV 5.1 TOTAL DO 5.1 RADIOLOO 5.2 LAND USE	VAPORATION PONDS - DOSE ISE AND DOSE TO PUBLIC ONSITE GICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)	90 90 91 91 91 91	
APPE	NDIX	сı	EFINITIONS		92	
APPE	NDIX	DF	EFERENCES		96	

LIST OF TABLES

TABLE	TITLE	PAGE
1-1	NUISANCE PATHWAYS	3
2-1	RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION	6
2-2	RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS	10
3-1	RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM	20
3-2	DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE SITE BOUNDARY	23
3-3	DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS	24
3-4	P _i VALUES FOR THE INHALATION PATHWAY	25
3-5	RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM	27
3-6	RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION	30
3-7	RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS	30
4-1	RI DOSE CONVERSION FACTORS FOR THE GROUND PLANE PATHWAY	39
4-2	RI DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - ADULT RECEPTOR	40
4-3	RI DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - TEEN RECEPTOR	41
4-4	RI DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - CHILD RECEPTOR	42
4-5	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - ADULT RECEPTOR	43
4-6	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - TEEN RECEPTOR	44
4-7	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - CHILD RECEPTOR	45
4-8	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - ADULT RECEPTOR	46
4-9	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - TEEN RECEPTOR	47
4-10	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - CHILD RECEPTOR	48

LIST OF TABLES

TABLE	TITLE	PAGE
4-11	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - INFANT RECEPTOR	49
4-12	RI DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - ADULT RECEPTOR	50
4-13	RI DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - TEEN RECEPTOR	51
4-14	RI DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - CHILD RECEPTOR	52
4-15	RI DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - INFANT RECEPTOR	53
4-16	PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 1	54
4-17	PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 2	55
4-18	PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 3	56
6-1	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	64
6-2	REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES	68
6-3	DETECTION CAPABILITIES FOR ENVIRONMENTAL ANALYSIS	69
6-4	RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS	73
C-1	FREQUENCY NOTATION	95

LIST OF FIGURES

FIGURE	TITLE	PAGE
6-1	Radiological Environmental Monitoring Program Sample Sites 0 - 10 miles	77
6-2	Radiological Environmental Monitoring Program Sample Sites 10 - 35 Miles	78
6-3	Radiological Environmental Monitoring Program Sample Sites 35 - 75 Miles DELETED	79
6-4	Site Exclusion Area Boundary DELETED	80
6-5	Gaseous Effluent Release Points	81
6-6	Low Population Zone DELETED	82

1.0 INTRODUCTION

The Offsite Dose Calculation Manual (ODCM) implements the program elements which are required by the Administrative Controls section of the Technical Specifications. The ODCM contains the operational requirements, the surveillance requirements, and actions required if the operational requirements are not met for the Radioactive Effluent Controls Program and the Radiological Environmental Monitoring Program to assure compliance with 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50. The Technical Specifications, Section 3.0, also apply to the ODCM. Substitute the word "Requirements" for "Limiting Condition for Operation." It should be noted that the hot and cold shutdown and operability requirements in Technical Specification 3.0.3 and 3.0.4 do not apply to any of the requirements contained in this ODCM. The ODCM also contains descriptions of the information that should be included in the Annual Radiological Environmental Operating Report and the Annual Radioactive Effluent Release Report required by the Technical Specifications.

The ODCM provides the parameters and methodology to be used in calculating offsite doses resulting from radioactive effluents, in the calculation of gaseous effluent monitor Alarm/Trip Setpoints, and in the conduct of the Radiological Environmental Monitoring Program. Included are methods for determining air, whole body, and organ dose at the controlling location due to plant effluents to assure compliance with the regulatory requirements detailed in the ODCM. Methods are included for performing dose projections to assure compliance with the gaseous treatment system operability sections of the ODCM. The ODCM utilizes information from NRC Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," October 1977, and NRC NUREG 0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," October 1978. NUREG 0133 utilizes some of the key information in Regulatory Guide 1.109 to provide methods which were used in the preparation of the radiological effluent Technical Specifications and which have now been transferred to the ODCM in accordance with NRC Generic Letter 89-01, "Implementation of Programmatic Controls for Radiological Effluent Technical Specifications in the Administrative Controls Section of the Technical Specifications and the Relocation of Procedural Details of RETS to the Offsite Dose Calculation Manual or to the Process Control Program," January 31, 1989, and NUREG 1301, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors," Generic Letter 89-01, Supplement No. 1, April 1991. Further guidance for the implementation of the new 10 CFR Part 20, effective January 1, 1994, was obtained from the Federal Register, Vol. 58, December 23, 1993. It is recognized that this is only draft guidance, however, it is the only guidance for referencing the new 10 CFR 20 in the ODCM.

1.1 Liquid Effluent Pathways

Dose calculation methodology for radioactive liquid effluents is not included in this manual due to the desert location of the plant, the hydrology of the area, and the fact that there are no liquid releases to areas at or beyond the SITE BOUNDARY during normal operation. All liquid discharges to the onsite evaporation ponds are controlled by Section 3.2. The impact of postulated accidental seepages on the groundwater system, and in particular on the existing wells located in the 5-mile zone around the site area has been calculated and analyzed in Section 2.4.13.3 of the PVNGS FSAR.

If plant operating conditions become such that the likelihood of a liquid effluent pathway is created, then dose calculation methodology for this pathway will be added to this manual.

1.2 Gaseous Effluent Pathways

All gaseous effluents are treated as ground level releases and are considered to be "long-term" as discussed in NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants." This includes the containment purge and Waste Gas Decay Tank releases as well as the normal ventilation system and condenser vacuum exhaust releases. All releases are either greater than 500 hours in duration or are made at random, not depending upon atmospheric conditions or time of day. The releases are lumped together and calculated as an entity. Historical annual average X/Q values are used throughout this manual for all gaseous effluent setpoint and dose calculations. Airborne releases are further subdivided into two subclasses:

1.2.1 Iodine-131, Iodine-133, Tritium and Radionuclides in Particulate Form with Half-lives Greater than Eight Days

In this model, a controlling location is identified for assessing the maximum exposure to a MEMBER OF THE PUBLIC for the various pathways and to critical organs. Infant exposure occurs through inhalation and any actual milk pathway. Child, teenager and adult exposure derives from inhalation, consumed vegetation pathways, and any actual milk and meat pathways. Dose to each of the seven organs listed in Regulatory Guide 1.109 (bone, liver, total body, thyroid, kidney, lung and GI-LLI) are computed from individual nuclide contributions in each sector. The largest of the organ doses in any sector is compared to 10 CFR 50, Appendix I design objectives. The release rates of these nuclides will be converted to instantaneous dose rates for comparison to the limits of 10 CFR 20.

1.2.2 Noble Gases

The air dose from both the beta and gamma radiation component of the noble gases will be assessed and compared to the 10 CFR 50, Appendix I design objectives. The noble gas release rate will be converted to instantaneous dose rates for comparison to the limits of 10 CFR 20.

Section 2.0 of this manual discusses the methodology to be used in determining effluent monitor alarm/trip setpoints to assure compliance with the 10 CFR Part 20 limits as implemented in Section 3.0. Section 4.0 discusses the methods to assure releases are As Low As Reasonably Achievable (ALARA) in accordance with Appendix I to 10 CFR Part 50. Methods are described in Section 5.0 for determining the annual cumulative dose to a MEMBER OF THE PUBLIC from gaseous effluents and direct radiation to assure compliance with 40 CFR Part 190.

The requirements for the Annual Radiological Effluent Release Report and the Radiological Environmental Monitoring Program, including the Annual Land Use Census and the Interlaboratory Comparison Program, and the Annual Environmental Report are described in Sections 6.0 and 7.0 of this manual.

1.3 Nuisance Pathways

This section addresses the potential release pathways which should not contribute more than 10% of the doses evaluated in this manual. Table 1-1 lists examples of potential release pathways. The ODCM methodology for calculation of doses will be applied to an applicable release pathway if a likely potential arises for contributing more than 10% of the doses evaluated in this manual.

TABLE 1-1

NUISANCE PATHWAYS

(EXAMPLES)

Evaporation Pond	
Cooling Towers	
Laundry/Decon Building Exhaust	
Unmonitored Secondary System Steam Vents/Reliefs	
Turbine Building Ventilation Exhaust	
Unmonitored Tank Atmospheric Vents	
Dry Active Waste Processing and Storage (DAWPS) Building	
Respirator Cleaning Facility	
Secondary Side Decontamination Equipment	
Low Level Radioactive Material Storage Facility	

1.4 Meteorology

Historical annual average atmospheric dispersion (X/Q) and deposition (D/Q) data, based on nine years of meteorological data, and given in Table 3-2 for each of the three nuclear generating units are used to demonstrate compliance with the ODCM Requirements. These Requirements include:

Section 2.0	Gaseous Effluent Monitor Setpoints;
Section 3.0	Gaseous and Liquid Effluent - Dose Rate
Section 4.0	Gaseous and Liquid Effluent - Dose
Section 5.0	Total Dose and Dose to Public Onsite

Sections 2.0 and 3.0 specify utilizing the highest X/Q or D/Q meteorological dispersion parameter at the Site Boundary for any of the three units as applicable. Using the highest dispersion parameter for any of the units provides a conservative assumption to assure compliance with the higher 10 CFR Part 20 limits.

Section 4.0 specifies utilizing the highest X/Q at the Site Boundary for the particular unit, from Table 3-2 for noble gases. The highest X/Q and D/Q are utilized for the particular unit's releases as applicable for gases other than noble gases (iodines, particulates, and tritium) for the controlling pathway's location (site boundary using Table 3-2 or other controlling locations using Table 4-16, 4-17, or 4-18).

Section 5.0 specifies utilizing the highest X/Q for the particular unit's releases at the controlling location from Table 4-16, 4-17, or 4-18, for noble gases. The highest X/Q and D/Q are utilized for the particular unit's releases as applicable for gases other than noble gases at the controlling pathway's location using Table 4-16, 4-17, or 4-18.

Section 7.0 requires that the meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses.

2.0 GASEOUS EFFLUENT MONITOR SETPOINTS

2.1 Requirements: Gaseous Monitors

The radioactive gaseous effluent monitoring instrumentation channels shown in Table 2-1 shall be OPERABLE with their alarm/trip setpoints set to ensure that the dose requirements in Section 3.0 are not exceeded. The alarm/trip setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in Section 2.1.2.

Applicability: As shown in Table 2-1.

Action:

- **a.** With the low range radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Requirement, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel, or declare the channel inoperable, or change the setpoint so it is acceptably conservative.
- **b.** With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 2-1. Restore the inoperable instrumentation to OPERABLE status within 30 days or, if unsuccessful, explain in the next Annual Radioactive Effluent Release Report why this inoperability was not corrected within the time specified.

2.1.1 Surveillance Requirements

a. Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 2-2.

TABLE 2-1

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

	INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
GASE	OUS RADWASTE SYSTEM			
a. N A	oble Gas Activity Monitor - Providing Alarm and utomatic Termination of Release #RU-12	1	#	35
b. F	low Rate Monitor	1	#	36
NOT U	JSED			
DELE	TED			
PLAN	T VENT SYSTEM			
A. L	ow Range Monitors			
a.	Noble Gas Activity Monitor #RU-143	1	*	37
b	. Iodine Sampler	1	*	40
c	Particulate Sampler	1	*	40
d	. Flow Rate Monitor	1	*	36
e	. Sampler Flow Rate Measuring Device	1	*	36
B. H	ligh Range Monitors			
a	. Noble Gas Activity Monitor #RU-144	1	*	42
b	. Iodine Sampler	1	*	42
c	. Particulate Sampler	1	*	42
d	. Sampler Flow Rate Measuring Device	1	*	42
	a. N A b. F NOT U DELE PLAN A. L a. b c d e B. H a b c	GASEOUS RADWASTE SYSTEMa.Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release #RU-12b.Flow Rate MonitorNOT USEDDELETEDDANT VENT SYSTEMA tow Range Monitorsa.Noble Gas Activity Monitor #RU-143b.Iodine Samplerc.Particulate Samplerd.Flow Rate Monitore.Sampler Flow Rate Measuring DeviceB High Range Monitorsa.Noble Gas Activity Monitor #RU-144b.Iodine Samplerc.Flow Rate Measuring DeviceA toy Bander Samplera.Noble Gas Activity Monitor #RU-144b.Iodine Samplerc.Iodine Samplera.Noble Gas Activity Monitor #RU-144b.Iodine Samplera.Noble Gas Activity Monitor #RU-144b.Iodine Samplerc.Particulate Samplerc.Particulate Samplerc.Particulate Samplerc.Particulate Sampler	INSTRUMENTOPERABLEGASEOUS RADWASTE SYSTEMa. Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release #RU-121b. Flow Rate Monitor1NOT USEDDELETEDPLANT VENT SYSTEMa. Noble Gas Activity Monitor #RU-1431b. Iodine Sampler1c. Particulate Sampler1d. Flow Rate Monitor1e. Sampler Flow Rate Measuring Device1b. Iodine Sampler1c. Particulate Sampler1d. Flow Rate Monitor1e. Sampler Flow Rate Measuring Device1b. Iodine Sampler1c. Particulate Sampler1d. Flow Rate Monitor1e. Sampler Flow Rate Measuring Device1b. Iodine Sampler1c. Particulate Sampler1a. Noble Gas Activity Monitor #RU-1441b. Iodine Sampler1c. Particulate Sampler1a. Noble Gas Activity Monitor #RU-1441b. Iodine Sampler1c. Particulate Sampler1	INSTRUMENTOPERABLEAPPLICABILITYGASEOUS RADWASTE SYSTEM1#a. Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release #RU-121#b. Flow Rate Monitor1#b. Flow Rate Monitor1#PLANT VENT SYSTEMa. Noble Gas Activity Monitor #RU-1431*b. Iodine Sampler1*c. Particulate Sampler1*d. Flow Rate Monitor1*e. Sampler Flow Rate Measuring Device1*b. Iodine Sampler1*c. Particulate Sampler1*c. Joine Rate Menitors1*g. Noble Gas Activity Monitor #RU-1441*g. Noble Gas Activity Monitor #RU-1441*<

TABLE 2-1 (Continued)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

			INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
5.	FUI	EL B	UILDING VENTILATION SYSTEM			
	Α.	Lov	w Range Monitors			
		a.	Noble Gas Activity Monitor #RU-145	1	##	37, 41
		b.	Iodine Sampler	1	##	40
		c.	Particulate Sample	1	##	40
		d.	Flow Rate Monitor	1	##	36
		e.	Sampler Flow Rate Measuring Device	1	##	36
	B. High Range Monitors		h Range Monitors			
		a.	Noble Gas Activity Monitor #RU-146	1	##	42
		b.	Iodine Sampler	1	##	42
		c.	Particulate Sample	1	##	42
		d.	Sampler Flow Rate Measuring Device	1	##	42

Table 2-1 (Continued)

TABLE NOTATION

- * At all times.
- ** During GASEOUS RADWASTE SYSTEM operation
- *** Whenever the condenser air removal system is in operation, or whenever turbine glands are being supplied with steam from sources other than the auxiliary boiler(s).
- # During waste gas release.
- ## In MODES 1, 2, 3, and 4 or when irradiated fuel is in the fuel storage pool.
- ACTION 35 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be released to the environment provided that prior to initiating the release:
 - a. At least two independent samples of the tanks contents are analyzed, and
 - b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup;

Otherwise, suspend release of radioactive effluents via this pathway.

- ACTION 36 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the flow rate is estimated at least once per 4 hours.
- ACTION 37 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the actions of (a) or (b) or (c) are performed:
 - a. Initiate the Preplanned Alternate Sampling Program to monitor the appropriate parameter(s).
 - b. Place moveable air monitors in-line.
 - c. Either take grab samples at least once per 12 hours, OR obtain gas channel monitor readings locally at least once per 12 hours if the channel is functional locally but inoperable due to loss of communication with the minicomputer. The surveillance requirements of Section 2.1.1 must be performed at the required frequencies for the channel to be functional locally.
- ACTION 38 NOT USED
- ACTION 39 NOT USED
- ACTION 40 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via the effected pathway may continue provided samples are continuously collected with auxiliary sampling equipment as required in Table 3-1 within one hour after the channel has been declared inoperable.
- ACTION 41 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirements, comply with Technical Requirements Manual TLCO 3.3.108.

Table 2-1 (Continued)

TABLE NOTATION

- ACTION 42 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement initiate the Preplanned Alternate Sampling Program to monitor the appropriate parameter(s) within 72 hours, and:
 - a. Either restore the inoperable channel(s) to OPERABLE status within 7 days of the event, or
 - b. Prepare and submit a Special Report to the Commission within 14 days following the event outlining the action(s) taken, the cause of the inoperability, and the plans and schedule for restoring the system to OPERABLE status.

TABLE 2-2

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

		INSTRUMENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	MODE IN WHICH SURVEILLANCE IS REQUIRED
1.	GA	SEOUS RADWASTE SYSTEM					
	a.	Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release RU-12	Р	P(7)	R(3)	Q(1),(2),P###	#
	b.	Flow Rate Monitor	Р	N.A.	R	Q,P###	#
2.	DE	LETEÐ					
3.	DE	LETED					
4.		ANT VENT SYSTEM J-143 and RU-144)					
	a.	Noble Gas Activity Monitor	D(5)	M(7)	R(3)	Q(2)	*
	b.	Iodine Sampler	N.A.	N.A.	N.A.	N.A.	*
	c.	Particulate Sampler	N.A.	N.A.	N.A.	N.A.	*
	d.	Flow Rate Monitor	D(6)	N.A.	R	Q	*
	e.	Sampler Flow Rate Measuring Device	D(6)	N.A.	R	Q	*
5.		EL BUILDING VENTILATION SYSTEM J-145 and RU-146)					
	a.	Noble Gas Activity Monitor	D(5)	M(7)	R(3)	Q(2)	##
	b.	Iodine Sampler	N.A.	N.A.	N.A.	N.A.	##
	c.	Particulate Sample	N.A.	N.A.	N.A.	N.A.	##
	d.	Flow Rate Monitor	D(6)	N.A.	R	Q	##
	e.	Sampler Flow Rate Measuring Device	D(6)	N.A.	R	Q	##

Table 2-2 (Continued)

TABLE NOTATION

- * At all times.
- ** During GASEOUS RADWASTE SYSTEM operation
- *** Whenever the condenser air removal system is in operation, or whenever turbine glands are being supplied with steam from sources other than the auxiliary boiler(s).
- # During waste gas release.
- ## In MODES 1, 2, 3, and 4 or when irradiated fuel is in the fuel storage pool.
- ### Functional test should consist of, but not be limited to, a verification of system isolation capability by the insertion of a simulated alarm condition.
- (1) The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolation of this pathway occurs if the instrument indicates measured levels above the alarm/trip setpoint.
- (2) The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm setpoint.
 - 2. Circuit failure.
 - 3. Instrument indicates a downscale failure.
 - 4. Instrument controls not set in operate mode.
- (3) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration may be used in lieu of the reference standards associated with the initial calibration.
- (4) NOT USED
- (5) The channel check for channels in standby status shall consist of verification that the channel is on-line and reachable.
- (6) Daily channel check not required for flow monitors in standby status.
- (7) LED may be utilized as the check source in lieu of a source of increased activity.

2.1.2 Implementation of the Requirements

The general methodology for establishing low range gaseous effluent monitor setpoints is based upon a site release rate limit in μ Ci/sec derived from site specific meteorological dispersion conditions, radioisotopic distribution, and whole body and skin dose factors. The high alarm of the low range monitors will alarm/trip when the release rate from an individual vent will result in exceeding the limits in Section 3.1. 80% of Section 3.1 limits is considered to be the site release rate limit. The site release rate limit will be allocated among the licensed units' release points. The unit release rate limit will then be utilized for the determination of gaseous effluent monitor setpoints. A fraction of the unit release rate limit is then allotted to each release point and its monitor alert setpoint (μ Ci/cc) is derived using actual or fan design flow rates.

Administrative values are used to reduce each setpoint to account for the potential activity in other releases. These administrative values shall be reviewed based on actual release data.

For the purpose of implementation of Section 2.1, the alarm setpoint levels for low range effluent noble gas monitors are established to ensure that personnel are alerted when the noble gas releases are at a rate such that if the releases would continue for the year they would approach the total body dose rate of 500 mrem/yr and 3000 mrem/yr skin dose in Section 3.1. The equations in Section 3.1 of this manual provide the methodology for calculating the gaseous effluent dose rate.

The evaluation of doses due to releases of radioactive material can be simplified by the use of equivalent dose factors as defined in Section 2.1.2.1.

The equivalent dose factors will be evaluated periodically to assure that the best information on isotopic distribution is being used for the dose equivalent value.

2.1.2.1 Equivalent Dose Factor Determination

The equivalent whole body dose factor is calculated as follows:

$$K_{eq} = \sum_{i} [(K_{i})(f_{i})]$$
 (2-1)

Where:

$$K_{eq}$$
 = the equivalent whole body dose factor weighted by historical radionuclide distribution in releases in mrem/yr per μ Ci/m³.

- K_i = the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per μ Ci/m³ from Table 3-3.
- f_i = the fraction of noble gas radionuclide i in the total noble gas radionuclide mix.

The equivalent skin dose factor is calculated as follows:

$$(L+1.1M)_{eq} = \sum_{i} [(L_{i}+1.1M_{i})(f_{i})]$$
(2-2)

Where:

- $(L+1.1M)_{eq}$ = the equivalent skin dose factor due to beta and gamma emissions from all noble gases released, weighted by the historical radionuclide distribution in releases in mrem/yr per μ Ci/m³.
- L_i = the skin dose factor due to the beta emissions for each identified noble gas radionuclide i, in mrem/yr per μ Ci/m³ from Table 3-3.
- M_i = the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per μ Ci/m³ from Table 3-3.
- f_i = the fraction of noble gas radionuclide i in the total noble gas radionuclide mix.
- 1.1 = unit conversion constant of 1.1 mrem/mrad converts air dose to skin dose.

•

2.1.2.2 Site Release Rate Limit (Q_{SITE})

The release rates corresponding to 80% of the whole body (Q_{WB}) and skin (Q_{SK}) dose rate limits are calculated using the equivalent dose factors defined in Section 2.1.2.1. The site release rate limit (Q_{SITE}) is the lower of Q_{WB} or Q_{SK} , thus assuring that the more restrictive dose rate limit will not be exceeded.

The Q_{SITE} is established as follows:

$$Q_{SITE,WB} = \frac{(D_{WB})(0.8)}{(K_{eg})(X/Q)_{SITE}}$$
(2-3)

Where:

Q _{SITE,WB}	=	the site release rate, in μ Ci/sec, that would deliver a dose rate 80% of the whole body dose rate limit, D_{WB} .
D_{WB}	=	whole body dose rate limit of 500 mrem/yr.
K _{eq}	=	equivalent whole body dose factor, in mrem/yr per μ Ci/m ³ weighted by the historical radionuclide distribution.
(X/Q) _{SITE}	=	8.91E-06, the highest calculated annual average dispersion parameter, in sec/ m^3 , at the Site Boundary for any of the 3 units, from Table 3-2.
0.8	=	administrative factor to compensate for any unexpected variability in the radionuclide mix and to ensure that Site Boundary dose rate limits will not be exceeded.
		$(D_{})(0.8)$

$$Q_{SITE,SK} = \frac{(D_{SK})(0.8)}{(L+1.1M)_{eq}(X/Q)_{SITE}}$$
(2-4)

Where:

Q _{SITE,SK}	=	the site release rate limit, in μ Ci/sec, that would deliver a dose rate 80% of the skin dose rate limit, D _{SK} .
D _{SK}	=	skin dose rate limit of 3000 mrem/yr.
(L+1.1M) _{eq}	=	equivalent skin dose factor, in mrem/yr per μ Ci/m ³ , weighted by the radionuclide distribution.
(X/Q) _{SITE}	=	8.91E-06, the highest calculated annual average dispersion parameter, in sec/m ³ , at the Site Boundary for any of the three units, from Table 3-2.
0.8	=	administrative factor to compensate for any unexpected variability in the radionuclide mix and to ensure that Site Boundary dose rate limits will not be exceeded.

After determination of the Q_{SITE} whole body and skin dose rates (equations 2-3 and 2-4, respectively), the most conservative result will be used as Q_{SITE} , the site release rate limit.

2.1.2.3 Unit Release Rate Limits (Q_{UNIT})

Typically Q_{SITE} will be divided equally among operating units. If operational history dictates a larger fraction of the Q_{SITE} be assigned to a specific unit then a weighted average of each unit's contribution to the Q_{SITE} will be utilized to determine the Q_{UNIT} .

$$Q_{\text{UNIT}} = (f_{\text{UNIT}}) (Q_{\text{SITE}})$$
(2-5)

Where:

Q _{UNIT}	=	unit release rate	limit,	in µCi/sec.
-------------------	---	-------------------	--------	-------------

 f_{UNIT} = the fraction (≤ 1) of noble gas historically released from a specific operating unit to the total of all noble gas released from the site.

 Q_{SITE} = the site release rate limit, in μ Ci/sec determined in Section 2.1.2.2.

2.1.2.4 Setpoint Determination

To comply with the requirements in Section 2.1, the alarm/trip setpoints can now be established using the unit release rate limit (Q_{UNIT}) to ensure that the noble gas releases do not exceed the dose rate limits.

To allow for multiple sources of releases from different or common release points, the effluent monitor setpoint includes an administrative factor which allocates a percentage of the unit release rate limit to each of the release sources. Monitor setpoints will also be adjusted in accordance with Nuclear Administrative and Technical Manual procedures to account for monitor-specific characteristics.

Monitors RU-143 and RU-145

The alarm/trip setpoint for Monitors RU-143 and RU-145 is calculated as follows:

$$\frac{\text{Monitor}}{\text{Setpoint}} \le \frac{(Q_{\text{UNIT}})(a)}{(472)(\text{Flow Rate})}$$
(2-6)

Where:

Monitor

- Setpoint = the setpoint for the effluent monitor, in μ Ci/cc, which provides a safe margin of assurance that the allowable dose rate limits will not be exceeded.
- Q_{UNIT} = unit release rate limit, in μ Ci/sec, as determined in Section 2.1.2.3.
- Flow Rate = the flow rate, in cfm, from flow rate monitors or the fan design flow rate for the release source under consideration.
- 472 = conversion factor, cubic centimeter/second per cubic feet/minute.

a

= fraction of Q_{UNIT} allocated for a specific release point. The sum of these administrative values shall be less than or equal to one.

Monitor RU-12

The alarm/trip setpoint for Monitor RU-12, the Waste Gas Decay Tank Monitor, is calculated as follows:

$$\frac{\text{Monitor}}{\text{setpoint}} \le \frac{[(Q_{\text{UNIT}})(\mathbf{a})(0.9) - (\text{H})(\text{PF})(472)]}{(\text{Flow Rate})(472)}$$
(2-7)

Where:

Monitor

Η

а

- Setpoint = the setpoint for the monitor, in μ Ci/cc at STP, which provides a safe margin of assurance that the allowable dose rate limits will not be exceeded.
- Q_{UNIT} = unit release rate limit, in μ Ci/sec, as determined in Section 2.1.2.3.
- Flow Rate = flow rate, in cfm at STP at which the tank will be released.
- PF = the current process flow of the plant vent in CFM.
 - = the current plant vent monitor concentration in μ Ci/cc.
 - = fraction of Q_{UNIT} allocated for a specific release point. This administrative value should be equal to or less than the administrative value used for the Plant Vent.
- 0.9 = an administrative value to account for potential increases in activity from other contributors to the same release point.
- 472 = conversion factor, cubic centimeter/second per cubic feet/minute.

If there is no release associated with this monitor, the monitor setpoint should be established as close as practical to background to prevent spurious alarms, and yet assure an alarm should an inadvertent release occur.

2.1.2.5 Monitor Calibration

The Radiation Level Conversion Factor (RLF) for each monitor is entered into the Radiation Monitoring System Database and may change whenever the monitor is calibrated. Calibration is performed in accordance with Nuclear Administrative and Technical Manual procedures.

3.0 GASEOUS AND LIQUID EFFLUENT DOSE RATES

3.1 Requirements: Gaseous Effluents

The dose rate due to radioactive materials released in gaseous effluents from the site (see Figure 6-4 and Figure 6-5) shall be limited to the following:

- **a.** For noble gases: Less than or equal to 500 mrems/yr to the total body and less than or equal to 3000 mrems/yr to the skin, and
- **b.** For I-131 and I-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ.

Applicability: At all times.

Action:

With the dose rate(s) exceeding the above limits, immediately decrease the release rate to within the above limits(s).

3.1.1 Surveillance Requirements

- a. The dose rate due to noble gases in gaseous effluents shall be determined to be within the above limits in accordance with the methods contained in Section 3.1.2.
- b. The dose rate due to I-131, I-133, tritium and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents shall be determined to be within the above limits in accordance with the methods contained in Section 3.1.2 by obtaining representative samples and performing analyses in accordance with the sampling and analysis program specified in Table 3-1.

3.1.2 Implementation of the Requirements

Noble Gases

Noble gas activity monitor setpoints are established at release rates which permit corrective action to be taken before exceeding the 10 CFR 20 annual dose limits as described in Section 2.0. The requirements for sampling and analysis of continuous and batch effluent releases are given in Table 3-1. The methods for sampling and analysis of continuous and batch effluent releases are given in the Nuclear Administrative and Technical Manual procedures. The dose rate in unrestricted areas shall be determined using the following equations.

For whole body dose rate:

$$D_{WB} = \sum_{i} [(K_{i})(X/Q)_{SITE}(Q_{i})]$$
(3-1)

For skin dose rate:

$$D_{SK} = \sum_{i} [(L_{i} + 1.1M_{i})(X/Q)_{SITE}(Q_{i})]$$
(3-2)

Where:

 K_i = the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per μ Ci/m³ from Table 3-3.

 Q_i = the release rate of radionuclide i, in μ Ci/sec.

- $(X/Q)_{SITE} = 8.91E-06$, the highest calculated annual average dispersion parameter, in sec/m³, for any of the three units, from Table 3-2.
- D_{WB} = the annual whole body dose rate (mrem/yr.).
- L_i = the skin dose factor due to the beta emissions for each identified noble gas radionuclide i, in mrem/yr per μ Ci/m³ from Table 3-3.
- M_i = the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per μ Ci/m³ from Table 3-3.
- D_{SK} = the annual skin dose rate (mrem/yr).
- 1.1 = unit conversion constant of 1.1 mrem/mrad converts air dose to skin dose.

I-131, I-133, tritium and radionuclides in particulate form with half-lives greater than 8 days

The methods for sampling and analysis of continuous and batch releases for I-131, I-133, tritium and radionuclides in particulate form with half-lives greater than 8 days, are given in the applicable Nuclear Administrative and Technical Manual procedures. Additional monthly and quarterly analyses shall be performed in accordance with Table 3-1. The total organ dose rate in unrestricted areas shall be determined by the following equation:

$$D_{o} = \sum_{i} [(P_{i})(X/Q)_{SITE}(Q_{i})]$$
(3-3)

Where:

P _i	=	the dose factor, in mrem/yr per μ Ci/m ³ , for radionuclide i, for the inhalation pathway, from Table 3-4.
(X/Q) _{SITE}	=	8.91E-06, the highest calculated annual average dispersion parameter, in sec/m^3 , at the Site Boundary, for any of the three units,
Qi	=	the release rate of radionuclide i, in μ Ci/sec
Do	=	the total organ dose rate (mrem/yr).

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

GA	ASEOUS RELEASE TYPE	SAMPLING FREQUENCY	MINIMUM ANALYSIS FREQUENCY	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT OF DETECTION (LLD) (µCi/ml) ^a
A.	Waste Gas Storage	P Each Tank Grab Sample	P Each Tank	Principal Gamma Emitters ^g	1.0E-04
B. Containment Purge		P P Each Purge ^{b,c} Each Purge ^{b,c}		Principal Gamma Emitters ^g	1.0E-04
		Grab Sample		Н-3	1.0E-06
C.	1. DELETED 2. Plant Vent	M ^{b,e} Grab Sample	M ^b	Principal Gamma Emitters ^g	1.0E-04
	3. Fuel Bldg. Exhaust			Н-3	1.0E-06
		Continuous ^f	4/M ^d Charcoal Sample	I-131	1.0E-12
				I-133	1.0E-10
		Continuous ^f	4/M ^d Particulate Sample	Principal Gamma Emitters ^g (I-131, Others)	1.0E-11
		Continuous ^f	M Composite Particulate Sample	Gross Alpha	1.0E-11
		Continuous ^f	Q Composite Particulate Sample	Sr-89, Sr-90	1.0E-11
D.	All Radwaste Types as listed in A., B., and C., above.	Continuous ^f	Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1.0E-06

Table 3-1 (Continued)

TABLE NOTATION

a The LLD is the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a real signal.

For a particular measurement system (which may include radiochemical separation):

LLD =
$$\frac{4.66 \text{ s}_{b}}{\text{E * V * 2.22E6 * Y * exp(-\lambda \Delta t)}}$$

Where:

LLD is the a priori lower limit of detection as defined above (as μ Ci per unit mass or volume). Current literature defines the LLD as the detection capability for the instrumentation only and the MDC minimum detectable concentration, as the detection capability for a given instrument, procedure and type of sample.

 s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency (as counts per transformation),

V is the sample size (in units of mass or volume),

2.22E6 is the number of transformations per minute per microcurie,

Y is the fractional radiochemical yield (when applicable),

 λ is the radioactive decay constant for the particular radionuclide, and

 Δt is the elapsed time between the midpoint of sample collection and time of counting (for plant effluents, not environmental samples).

The value of s_b used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance. In calculating the LLD for a radionuclide determined by gamma-ray spectrometry the background should include the typical contributions of other radionuclides normally present in the samples. Typical values of E, V, Y, and Δt should be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

Table 3-1 (Continued)

TABLE NOTATION

- b Analyses shall also be performed following SHUTDOWN, STARTUP, or a THERMAL POWER change exceeding 15% of the RATED THERMAL POWER within a 1-hour period if 1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the primary coolant has increased more than a factor of 3; and 2) the noble gas activity monitor on the plant vent shows that effluent activity has increased by more than a factor of 3. If the associated noble gas vent monitor is inoperable, samples must be obtained as soon as possible. Analyses shall be performed within a four-hour period. This requirement does not apply to the Fuel Building Exhaust.
- c Sampling and analyses shall also be performed at least once per 31 days when purging time exceeds 30 days continuous.
- d Samples shall be changed at least 4 times a month and analyses shall be completed within 48 hours after changing (or after removal from sampler). When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10.
- e Tritium grab samples shall be taken at least monthly from the ventilation exhaust from the spent fuel pool area, whenever spent fuel is in the spent fuel pool.
- f The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with Requirements 3.1, 4.1 and 4.2 of the ODCM.
- g The principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 for gaseous emissions and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides shall also be identified and reported in the Annual Radioactive Effluent Release Report.

DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES

AT THE SITE BOUNDARY

<u>DIRECTION</u>	DISTANCE (METERS)	UNIT 1 X/Q (SEC/m ³)	D/Q (m ⁻²)	UNIT 2 DISTANCE (METERS)	X/Q (SEC/m ³)	D/Q (m ⁻²)	UNIT 3 DISTANCE (METERS)	X/Q (SEC/m ³)	D/Q (m ⁻²)
Ν	1037	4.93E-06	9.24E-09	1318	3.85E-06	6.17E-09	1661	3.54E-06	4.86E-09
NNE	1057	4.14E-06	1.19E-08	1342	3.18E-06	7.93E-09	1693	2.86E-06	6.23E-09
NE	2206	2.84E-06	6.84E-09	2545	2.42E-06	5.34E-09	2756	2.21E-06	4.65E-09
ENE	1967	2.51E-06	4.43E-09	2206	2.22E-06	3.64E-09	2337	2.08E-06	3.30E-09
Е	1927	2.56E-06	3.24E-09	2163	2.27E-06	2.66E-09	2290	2.14E-06	2.41E-09
ESE	1967	2.61E-06	2.46E-09	2067	2.32E-06	2.11E-09	2023	2.37E-06	2.10E-09
SE	2049	3.56E-06	2.36E-09	2101	3.47E-06	2.26E-09	2256	3.24E-06	2.00E-09
SSE	2730	3.80E-06	1.58E-09	3026	3.43E-06	1.32E-09	2786	3.72E-06	1.52E-09
S	3006	5.07E-06	1.78E-09	2699	5.16E-06	1.97E-09	2346	5.90E-06	2.51E-09
SSW	2258	6.52E-06	3.20E-09	1836	7.90E-06	4.56E-09	1607	8.91E-06	5.73E-09
SW	1487	7.47E-06	5.65E-09	1208	· 7.72E-06	6.88E-09	1057	8.68E-06	8.61E-09
WSW	1251	4.52E-06	5.93E-09	1014	5.55E-06	8.44E-09	889	5.34E-06	8.83E-09
W	1225	4.73E-06	9.49E-09	993	5.86E-06	1.34E-08	871	6.72E-06	1.67E-08
WNW	1244	3.76E-06	6.76E-09	1010	4.67E-06	9.60E-09	885	5.37E-06	1.19E-08
NW	1254	3.43E-06	5.87E-09	1191	3.62E-06	6.40E-09	1045	4.17E-06	7.98E-09
NNW	1069	3.70E-06	7.26E-09	1342	2.85E-06	4.87E-09	1561	2.93E-06	4.58E-09

Reference: Distances are from the PVNGS ER-OL, Table 2.3-33. Dispersion and Deposition parameters are from a September, 1985, calculation by NUS Corporation based on 9 years of meteorological data; NUS Corporation letter NUS-ANPP-1386, dated October 4, 1985.

.

	Whole Body Dose Factor K _i	Skin Dose Factor L _i	Gamma Air Dose Factor M _i	Beta Air Dose Factor N _i
Radionuclide	<u>mrem-m</u> ³ yr-μCi	<u>mrem-m</u> ³ yr-µCi	<u>mrad-m</u> ³ yr-μCi	<u>mrad-m</u> ³ yr-μCi
Kr-83m	7.56E-02		1.93E+01	2.88E+02
Kr-85m	1.17E+03	1.46E+03	1.23E+03	1.97E+03
Kr-85	1.61E+01	1.34E+03	1.72E+01	1.95E+03
Kr-87	5.92E+03	9.73E+03	6.17E+03	1.03E+04
Kr-88	1.47E+04	2.37E+03	1.52E+04	2.93E+03
Kr-89	1.66E+04	1.01E+04	1.73E+04	1.06E+04
Kr-90	1.56E+04	7.29E+03	1.63E+04	7.83E+03
Xe-13lm	9.15E+01	4.76E+02	1.56E+02	1.11E+03
Xe-133m	2.51E+02	9.94E+02	3.27E+02	1.48E+03
Xe-133	2.94E+02	3.06E+02	3.53E+02	1.05E+03
Xe-135m	3.12E+03	7.11E+02	3.36E+03	7.39E+02
Xe-135	1.81E+03	1.86E+03	1.92E+03	2.46E+03
Xe-137	1.42E+03	1.22E+04	1.51E+03	1.27E+04
Xe-138	8.83E+03	4.13E+03	9.21E+03	4.75E+03
Ar-41	8.84E+03	2.69E+03	9.30E+03	3.28E+03

DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS

Reference: Regulatory Guide 1.109, Table B-1.

P_i VALUES FOR THE INHALATION PATHWAY

NUCLIDE	Age Group	Organ	Pi
H-3	TEEN	LIVER	1.27E+03
CR-51	TEEN	LUNG	2.10E+04
MN-54	TEEN	LUNG	1.98E+06
FE-59	TEEN	LUNG	1.53E+06
CO-58	TEEN	LUNG	1.34E+06
CO-60	TEEN	LUNG	8.72E+06
ZN-65	TEEN	LUNG	1.24E+06
SR-89	TEEN	LUNG	2.42E+06
SR-90	TEEN	BONE	1.08E+08
ZR-95	TEEN	LUNG	2.69E+06
SB-124	TEEN	LUNG	3.85E+06
I-131	CHILD	THYROID	1.62E+07
I-133	CHILD	THYROID	3.85E+06
CS-134	TEEN	LIVER	1.13E+06
CS-137	CHILD	BONE	9.07E+05
BA-140	TEEN	LUNG	2.03E+06
CE-141	TEEN	LUNG	6.14E+05
CE-144	TEEN	LUNG	1.34E+07

(mrem/yr/µCi/m³)

3.2 Requirements: Secondary System Liquid Waste Discharges To Onsite Evaporation Ponds or Circulating Water System - Concentration

The concentration of radioactive material discharged from secondary system liquid waste to the circulating water system shall be limited to:

5.0E-07 μ Ci/ml for the principal gamma emitters (except Ce-144)

3.0E-06 µCi/ml for Ce-144

1.0E-06 µCi/ml for I-131

1.0E-03 µCi/ml for H-3

The concentration of radioactive material discharged from secondary system liquid waste to the onsite evaporation ponds shall be limited to:

2.0E-06 µCi/ml for Cs-134

2.0E-06 µCi/ml for Cs-137

The concentrations specified in 10 CFR Part 20.1001-20.2402, Appendix B, Table 2, Column 2, for all other isotopes

Applicability: At all times.

Action:

When any secondary system liquid waste discharge pathway concentration determined in accordance with the surveillance requirements given below exceeds the above Requirements, divert that discharge pathway to the liquid radwaste system without delay or terminate the discharge.

3.2.1 Surveillance Requirements

a. Secondary system liquid wastes shall be sampled and analyzed according to the sampling and analysis program of Table 3-5.

3.2.2 Implementation of the Requirements

This requirement is implemented by Nuclear Administrative and Technical Manual procedures.

Se	condary System Liquid Release Pathway	Destination	Aı	Sampling & nalysis Frequency	Notes	Type Of Activity Analysis	Lower Limit Of Detection (LLD) ^a (µCi/ml)
1.	Chemical Waste Neutralizer	Retention Tank	P	Each Batch		Principal Gamma Emitters ^c	5.0E-07
	Tank (CWNT) ^b	liquid radwaste		N. A.		I-131	1.0E-06
						Н-3	1.0E-05
2.	Steam Generator Blowdown	circ. water	Ρ	Each Batch	1	Principal Gamma Emitters ^c	5.0E-07
	Low TDS Sump ^b	CWNT		N. A.		I-131	1.0E-06
						H-3	1.0E-05
3.	Condensate	1					
	a. Condensate Polishing Low	circ. water	P	Each Batch	3	Principal Gamma Emitters ^c	5.0E-07
	TDS Sump ^b	CWNT		N. A.		I-131	1.0E-06
						H-3	1.0E-05
	b. Initial Backwash	(low TDS sump) to	P	Each Discharge		Principal Gamma Emitters ^c	5.0E-07
		circ. water				I-131	1.0E-06
		(low TDS sump) to CWNT		N. A.		Н-3	1.0E-05
	c. Pre-service rinse effluent	Retention Tank	Ρ	Each Discharge	2	Principal Gamma Emitters ^c	5.0E-07
		through SC-N-V069				I-131	1.0E-06
		condenser through SC-N-UV232		N. A.		Н-3	1.0E-05
	d. Overboard condensate	circ water through	Ρ	Each Discharge		Principal Gamma Emitters ^c	5.0E-07
		CD-N-V194				I-131	1.0E-06
		Retention Tank through SC-N-V079	Р	Each Discharge	2	Н-3	1.0E-05
4.	Turbine Building Sump ^d	Retention Tank	D	Grab Sample	3	Principal Gamma Emitters ^c	5.0E-07
		CWNT		N. A.		I-131	1.0E-06
						Н-3	1.0E-05

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

TABLE 3-5

ODCM Rev. 26

ΓAI	BLE	3-5	5

Se	condary System Liquid Release Pathway	Destination	A	Sampling & nalysis Frequency	Notes	Type Of Activity Analysis	Lower Limit Of Detection (LLD) ^a (µCi/ml)
5.	North & South Condenser Area	Retention Tank	D	Grab Sample	3	Principal Gamma Emitters ^c	5.0E-07
	Sumps ^d	CWNT		N. A.		I-131	1.0E-06
						H-3	1.0E-05
6.	Steam Generator Blowdown to	Retention Tank	Ρ	Each Discharge	2	Principal Gamma Emitters ^c	5.0E-07
	Retention Tank	through SC-N-V064				I-131	1.0E-06
						H-3	1.0E-05
7.	Retention Tank to Evaporation	evaporation pond	Ρ	Each Batch		Principal Gamma Emitters ^c	5.0E-07
	Pond					I-131	1.0E-06
						H-3	1.0E-05

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

1 Sampling and analysis are required only when concentration for chemical waste neutralizer tank or steam generator activity exceeds the requirement

2 RU-200 shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST at the frequencies shown in Table 3-6. The Alarm/Trip setpoints for RU-200 are set to ensure that the concentrations in the Retention Tanks do not exceed the Requirement

3 Sampling and analysis are required only when concentration for chemical waste neutralizer tank or condensate activity exceeds the requirement

Table 3-5 (Continued)

TABLE NOTATION

a The LLD is defined as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system which may include radiochemical separation:

LLD =
$$\frac{4.66 \text{ s}_{\text{b}}}{\text{E * V * 2.22E6 * Y * exp}(-\lambda\Delta t)}$$

Where:

LLD is the "a priori" lower limit of detection as defined above as microcuries per unit mass or volume,

 s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate as counts per minute,

E is the counting efficiency as counts per disintegration,

V is the sample size in units of mass or volume,

2.22E6 is the number of disintegrations per minute per microcurie,

Y is the fractional radiochemical yield when applicable,

 λ is the radioactive decay constant for the particular radionuclide, and

 Δt is the elapsed time between midpoint of sample collection and time of counting.

Typical values of E, V, Y, and Δt should be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

- b A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed to assure representative sampling.
- c The principal gamma emitters for which the LLD specification applies include the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, and Ce-141. Ce-144 shall also be measured, but with an LLD of 3.0E-06. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radioactive Effluent Release Report.
- d A continuous release is the discharge of liquid wastes of a nondiscrete volume, e.g., from a volume of a system that has an input flow during the continuous release

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

Instrument	Channel Check	Source Check	Channel Calibration	Channel Functional Test	Mode in which Surveillance is Required
RU-200	Р	N. A.	R	Q	See Table 3-7

TABLE 3-7

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

Secondary System Liquid Release Pathway	Mode in which Surveillance is Required	Action if RU-200 is inoperable
Pre-service rinse to Retention Tanks	At All Times	Obtain grab sample at least once per 12 hours and analyze in accordance with section 3.2
Condensate overboard to Retention Tanks	1-4	Obtain grab sample at least once per 12 hours and analyses in accordance with section 3.2
Steam Generator Blowdown/Drain to Retention Tanks	At All Times	Modes 1-4: Suspend the release Modes 5,6 & defueled: Obtain grab sample at least once per 12 hours and analyze in accordance with sec- tion 3.2

SURVEILLANCE REQUIREMENTS

4.0 GASEOUS & LIQUID EFFLUENTS - DOSE

4.1 Requirements: Noble Gases

The air dose due to noble gases released in gaseous effluents, from each reactor unit to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-5) shall be limited to the following:

- **a.** During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation and,
- **b.** During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

Applicability: At all times.

Action:

With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.1.1 Surveillance Requirements

a. Cumulative dose contributions for the current calendar quarter and current calendar year for noble gases shall be determined in accordance with the methodology contained in Section 4.1.2 at least once per 31 days.

4.1.2 Implementation of the Requirement: Noble Gas

The air dose in unrestricted areas beyond the site boundary due to noble gases released in gaseous effluents from each unit during any specified time period shall be determined by the following equations:

For gamma radiation:

$$D \gamma_{u} = (3.17E-08) \Sigma_{i} [(M_{i}) (X/Q)_{UNIT}(Q_{i})]$$
(4-1)

For beta radiation:

$$D \beta_{u} = (3.17E-08) \sum_{i} [(N_{i}) (X/Q)_{UNIT}(Q_{i})]$$
(4-2)

Where:

- M_i = the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per μ Ci/m³ from Table 3-3.
- N_i = the air dose factor due to beta emissions for each identified noble gas radionuclide i, in mrad/yr per μ Ci/m³ from Table 3-3.
- $(X/Q)_{UNIT}$ = the highest calculated annual average dispersion parameter, in sec/m³, at the site boundary for the particular Unit, from Table 3-2. Optionally, the highest value may be used for any Unit calculation.

=7.47E-06 from Unit 1 =7.90E-06 from Unit 2 =8.91E-06 from Unit 3

- $D \gamma_u$ = the total gamma air dose, for the particular unit, in mrad, due to noble gases released in gaseous effluents for a specified time period at the SITE BOUNDARY.
- $D \beta_u$ = the total beta air dose, for the particular unit, in mrad, due to noble gases released in gaseous effluents for a specified time period at the SITE BOUNDARY.
- Q_i = the integrated release, from the particular unit, in μ Ci, of each identified noble gas radionuclide i, in gaseous effluents for a specified time period.
- 3.17E-08 = the inverse of seconds in a year (yr/sec).

The cumulative gamma air dose and beta air dose for a quarterly or annual evaluation shall be based on the calculated dose contribution from each specified time period occurring during the reporting time period.

4.2 Requirement: Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Days

The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-5) shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 7.5 mrems to any organ and,
- **b.** During any calendar year: Less than or equal to 15 mrems to any organ.

Applicability: At all times.

Action:

With the calculated dose from the release of iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.2.1 Surveillance Requirements

a. Cumulative dose contributions for the current calendar quarter and current calendar year for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days shall be determined in accordance with the methodology and parameters contained in Section 4.2.2 at least once per 31 days.

4.2.2 Implementation of the Requirement

The organ dose to an individual from I-131, I-133, tritium, and all radionuclides in particulate form, with half-lives greater than eight days, in gaseous effluents released to unrestricted areas from each reactor unit is calculated using the following expressions:

$$D_{ou} = (3.17E-08) \sum_{i} [\sum_{k} (R_{ik} W_k) (Qi)]$$
(4-3)

Where:

- D_{ou} = the total accumulated organ dose from gaseous effluents for a particular unit, to a MEMBER OF THE PUBLIC, in mrem, at the SITE BOUNDARY or at the controlling location.
- Q_i = the quantity of radionuclide i, in μ Ci, released in gaseous effluents from a particular unit.
- R_{ik} = the dose factor for each identified radionuclide i, for pathway k (for the inhalation pathway in mrem/yr per μ Ci/m³ and for the food and ground plane pathways in m² mrem/yr per μ Ci/sec, except H-3, which has units of mrem/yr per μ Ci/m³) at the controlling location. The R_{ik} 's for each age group are given in Tables 4-1 through 4-15.
- 3.17E-08 = the inverse of seconds per year (yr/sec).
- W_k = the highest annual average dispersion or deposition parameter for the particular Unit, used for estimating the dose at the site boundary or to a MEMBER OF THE PUBLIC at the controlling location for the particular Unit. Optionally, the highest value may be used for any Unit calculation.
 - = $(X/Q)_{UNIT}$, in sec/m³ for the inhalation pathway and for all tritium calculations, for organ dose at the site boundary, from Table 3-2.
 - =7.47E-06 from Unit 1 =7.90E-06 from Unit 2 =8.91E-06 from Unit 3
 - = $(X/Q)_{UNTT}$, in sec/m³ for the inhalation pathway and for all tritium calculations, for organ dose at the controlling location, from Table 4-16, 4-17 or 4-18.
 - =2.92E-06 from Unit 1 =2.19E-06 from Unit 2 =2.31E-06 from Unit 3
 - = $(D/Q)_{UNIT}$, in m⁻², for the food and ground plane pathways, for organ dose at the site boundary, from Table 3-2.
 - =1.19E-08 from Unit 1 =1.34E-08 from Unit 2 =1.67E-08 from Unit 3

= $(D/Q)_{UNIT}$, in m⁻², for the food and ground plane pathways, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18.

=3.25E-09	from	Unit 1
=3.88E-10	from	Unit 2
=4.21E-10	from	Unit 3

Residences, vegetable gardens and milk animals located within 5 miles of the site will be identified during the annual land use census. The controlling pathway and location will be identified and will be used for all MEMBER OF THE PUBLIC dose evaluations.

The R_i values were calculated in accordance with the methodologies in NUREG-0133. The following site specific information was used to calculate R_i :

	<u>Value</u>
The length of the grazing season for milk animals (f_s) . Ref. ER-OL, Section 2.1.3.4.3	0.75
The length of the grazing season for meat animals (f_s) . Ref. ER-OL, Section 2.1.3.4.4	0.25
The fraction of daily feed derived from pasture while on pasture for milk animals (f_p) . Ref. ER-OL, Section 2.1.3.4.3	0.35
The fraction of daily feed derived from pasture while on pasture for meat animals (f_p) . Ref. ER-OL, Section 2.1.3.4.3	0.05
The fraction of year vegetables are grown, (f_l) approximation. Ref. ER-OL, Section 2.1.3.4, Table 2.1-8.	0.667
The annual absolute humidity (g/m ³), H, Ref. UFSAR, Table 2.3-16	6

4.3 Requirements: Gaseous Radwaste Treatment

The GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases, from each reactor unit, from the site (see Figure 6-4 and Figure 6-5) when averaged over 31 days, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases, from each reactor unit, to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-5) when averaged over 31 days would exceed 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

Applicability: At all times:

Action:

With radioactive gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days, a Special Report which includes the following information:

- a. Identification of the inoperable equipment or subsystems and the reason for inoperability,
- b. Action(s) taken to restore the inoperable equipment to OPERABLE status, and
- c. Summary description of action(s) taken to prevent a recurrence.

4.3.1 Surveillance Requirements

a. Doses due to gaseous releases from the site shall be projected at least once per 31 days, in accordance with the methodology and parameters in Section 4.3.2.

4.3.2 Implementation of the Requirement

Where possible, consideration for expected operational evolutions (i.e., outages, etc.) should be taken in the dose projections.

Dose Projection - Noble Gases

The air dose, in mrads is determined using the methodology described in Section 4.1.2 of this manual. This information is used to determine an air dose projection for the next 31 days using the following equations:

For gamma radiation:

$$31 \operatorname{day} \gamma = D\gamma \pm CD\gamma \tag{4-4}$$

For beta radiation:

$$31 \operatorname{day} \beta = D\beta \pm CD\beta \tag{4-5}$$

Where:

Dγ	=	the total gamma air dose in mrads at the site boundary due to noble gases
		released in gaseous effluents for the previous 31 days.

- $D\beta$ = the total beta air dose in mrads at the site boundary due to noble gases released in gaseous effluents for the previous 31 days.
- CD γ = any current or projected change in gamma air dose, in mrads, due to noble gases released in gaseous effluents, which could have a significant impact on 31 day γ .
- $CD\beta$ = any current or projected change in beta air dose, in mrads, due to noble gases released in gaseous effluents, which could have a significant impact on 31 day β .

When performing the 31 day dose projection using the Gaseous Radioactive Effluent Tracking System (GRETS), $D\gamma$ and $D\beta$ will include the dose from any release permits that fall within the selected 31 day time period. As a result, the actual dose projection will often be based on the accumulated dose for a time period greater than 31 days.

Dose Projection - I-131, I-133, tritium, and all radionuclides in particulate form with half-lives greater than eight days

The organ dose, in mrem, is determined using the methodology described in Section 4.2.2 of this manual. This information is used to determine an organ dose projection for the next 31 days using the following equation:

$$31 day_0 = D_0 \pm CD_0 \tag{4-6}$$

Where:

- D_o = the total organ dose due to I-131, I-133, tritium, and all radionuclides in particulate form with half-lives greater than eight days in mrem, released in gaseous effluents for the previous 31 days.
- CD_o = any current or projected change in organ dose, in mrem, which could have a significant impact on 31 day_o.

When performing the 31 day dose projection using the Gaseous Radioactive Effluent Tracking System (GRETS), D_0 will include the dose from any release permits that fall within the selected 31 day time period. As a result, the actual dose projection will often be based on the accumulated dose for a time period greater than 31 days.

NUCLIDE	T. BODY	SKIN
H-3	0.00E+00	0.00E+00
CR-51	4.66E+06	5.51E+06
MN-54	1.39E+09	1.63E+09
FE-59	2.73E+08	3.21E+08
CO-58	3.79E+08	4.44E+08
CO-60	2.15E+10	2.53E+10
ZN-65	7.47E+08	8.59E+08
SR-89	2.16E+04	2.51E+04
SR-90	0.00E+00	0.00E+00
ZR-95	2.45E+08	2.84E+08
SB-124	5.98E+08	`6.90E+08
I-131	1.72E+07	2.09E+07
I-133	2.45E+06	2.98E+06
CS-134	6.86E+09	8.00E+09
CS-137	1.03E+10	1.20E+10
BA-140	2.05E+07	2.35E+07
CE-141	1.37E+07	1.54E+07
CE-144	6.95E+07	8.04E+07

RI DOSE CONVERSION FACTORS FOR THE GROUND PLANE PATHWAY

Ri DOSE CONVERSION FACTORS FOR THE VEGETATION

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.87E+03	2.87E+03	2.87E+03	2.87E+03	2.87E+03	2.87E+03
CR-51	0.00E+00	0.00E+00	4.00E+04	2.39E+04	8.82E+03	5.31E+04	1.01E+07
MN-54	0.00E+00	2.97E+08	5.66E+07	0.00E+00	8.83E+07	0.00E+00	9.09E+08
FE-59	1.14E+08	2.68E+08	1.03E+08	0.00E+00	0.00E+00	7.49E+07	8.93E+08
CO-58	0.00E+00	2.84E+07	6.38E+07	0.00E+00	0.00E+00	0.00E+00	5.76E+08
CO-60	0.00E+00	1.59E+08	3.51E+08	0.00E+00	0.00E+00	0.00E+00	2.99E+09
ZN-65	3.00E+08	9.56E+08	4.32E+08	0.00E+00	6.39E+08	0.00E+00	6.02E+08
SR-89	9.08E+09	0.00E+00	2.61E+08	0.00E+00	0.00E+00	0.00E+00	1.46E+09
SR-90	5.76E+11	0.00E+00	1.41E+11	0.00E+00	0.00E+00	0.00E+00	1.67E+10
ZR-95	1.08E+06	3.47E+05	2.35E+05	0.00E+00	5.45E+05	0.00E+00	1.10E+09
SB-124	9.53E+07	1.80E+06	3.78E+07	2.31E+05	0.00E+00	7.42E+07	2.71E+09
I-131	5.49E+07	7.85E+07	4.50E+07	2.57E+10	1.35E+08	0.00E+00	2.07E+07
I-133	1.39E+06	2.42E+06	7.38E+05	3.56E+08	4.22E+06	0.00E+00	2.17E+06
CS-134	4.44E+09	1.06E+10	8.64E+09	0.00E+00	3.42E+09	1.13E+09	1.85E+08
CS-137	6.06E+09	8.29E+09	5.43E+09	0.00E+00	2.81E+09	9.36E+08	1.60E+08
BA-140	9.43E+07	1.19E+05	6.18E+06	0.00E+00	4.03E+04	6.78E+04	1.94E+08
CE-141	1.73E+05	1.17E+05	1.33E+04	0.00E+00	5.44E+04	0.00E+00	4.48E+08
CE-144	3.12E+07	1.30E+07	1.67E+06	0.00E+00	7.73E+06	0.00E+00	1.05E+10

PATHWAY - ADULT RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE VEGETATION

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	3.36E+03	3.36E+03	3.36E+03	3.36E+03	3.36E+03	3.36E+03
CR-51	0.00E+00	0.00E+00	5.60E+04	3.11E+04	1.23E+04	7.99E+04	9.41E+06
MN-54	0.00E+00	4.41E+08	8.74E+07	0.00E+00	1.31E+08	0.00E+00	9.04E+08
FE-59	1.69E+08	3.94E+08	1.52E+08	0.00E+00	0.00E+00	1.24E+08	9.31E+08
CO-58	0.00E+00	4.16E+07	9.59E+07	0.00E+00	0.00E+00	0.00E+00	5.74E+08
CO-60	0.00E+00	2.42E+08	5.45E+08	0.00E+00	0.00E+00	0.00E+00	3.15E+09
ZN-65	4.11E+08	1.43E+09	6.65E+08	0.00E+00	9.12E+08	0.00E+00	6.04E+08
SR-89	1.43E+10	0.00E+00	4.10E+08	0.00E+00	0.00E+00	0.00E+00	1.70E+09
SR-90	7.30E+11	0.00E+00	1.80E+11	0.00E+00	0.00E+00	0.00E+00	2.05E+10
ZR-95	1.64E+06	5.17E+05	3.56E+05	0.00E+00	7.60E+05	0.00E+00	1.19E+09
SB-124	1.47E+08	2.70E+06	5.73E+07	3.33E+05	0.00E+00	1.28E+08	2.96E+09
I-131	5.29E+07	7.41E+07	3.98E+07	2.16E+10	1.28E+08	0.00E+00	1.47E+07
I-133	1.29E+06	2.19E+06	6.68E+05	3.06E+08	3.84E+06	0.00E+00	1.66E+06
CS-134	6.90E+09	1.62E+10	7.53E+09	0.00E+00	5.16E+09	1.97E+09	2.02E+08
CS-137	9.86E+09	1.31E+10	4.57E+09	0.00E+00	4.46E+09	1.73E+09	1.87E+08
BA-140	1.07E+08	1.31E+05	6.88E+06	0.00E+00	4.44E+04	8.80E+04	1.65E+08
CE-141	2.61E+05	1.74E+05	2.00E+04	0.00E+00	8.19E+04	0.00E+00	4.98E+08
CE-144	5.11E+07	2.12E+07	2.75E+06	0.00E+00	1.26E+07	0.00E+00	1.29E+10

PATHWAY - TEEN RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE VEGETATION

T.BODY THYROID **KIDNEY** NUCLIDES BONE LIVER LUNG **GI-LLI** 5.23E+03 5.23E+03 5.23E+03 H-3 0.00E+00 5.23E+03 5.23E+03 5.23E+03 **CR-51** 0.00E+00 6.02E+04 0.00E+00 1.08E+05 1.64E+04 1.10E+05 5.75E+06 MN-54 0.00E+00 6.49E+08 1.73E+08 0.00E+001.82E+08 0.00E+00 5.45E+08 FE-59 3.79E+08 6.13E+08 3.05E+08 0.00E+00 0.00E+00 1.78E+08 6.38E+08 CO-58 0.00E+00 6.21E+07 1.90E+08 0.00E+00 0.00E+00 0.00E+00 3.62E+08 CO-60 0.00E+00 3.70E+08 1.09E+09 0.00E+00 0.00E+00 0.00E+00 2.05E+09 ZN-65 7.93E+08 2.11E+09 1.31E+09 0.00E+00 1.33E+09 0.00E+00 3.71E+08 SR-89 3.44E+10 0.00E+009.83E+08 0.00E+00 0.00E+000.00E+00 1.33E+09 0.00E+00 0.00E+00 0.00E+00 SR-90 1.22E+12 3.09E+11 0.00E+00 1.64E+10 **ZR-95** 3.72E+06 8.17E+05 7.27E+05 0.00E+00 1.17E+06 0.00E+00 8.52E+08 SB-124 3.38E+08 4.39E+06 1.19E+08 7.47E+05 0.00E+00 1.88E+08 2.12E+09 I-131 9.95E+07 1.00E+08 5.68E+07 3.31E+10 1.64E+08 0.00E+00 8.90E+06 2.91E+06 1.10E+06 5.41E+08 4.85E+06 0.00E+00 I-133 2.36E+06 1.17E+06 **CS-134** 1.57E+10 2.57E+10 5.43E+09 0.00E+00 7.98E+09 2.86E+09 1.39E+08 0.00E+00 **CS-137** 2.34E+10 2.24E+10 3.31E+09 7.31E+09 2.63E+09 1.40E+08 **BA-140** 2.20E+08 1.93E+05 1.28E+07 0.00E+00 6.27E+04 1.15E+05 1.11E+08 CE-141 6.15E+05 3.07E+05 4.55E+04 0.00E+00 0.00E+00 1.34E+05 3.83E+08 CE-144 1.24E+08 3.89E+07 6.62E+06 0.00E+00 2.15E+07 0.00E+00 1.01E+10

PATHWAY - CHILD RECEPTOR

1

Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	4.33E+02	4.33E+02	4.33E+02	4.33E+02	4.33E+02	4.33E+02
CR-51	0.00E+00	0.00E+00	3.44E+02	2.06E+02	7.58E+01	4.57E+02	8.65E+04
MN-54	0.00E+00	2.71E+06	5.18E+05	0.00E+00	8.08E+05	0.00E+00	8.31E+06
FE-59	2.60E+07	6.11E+07	2.34E+07	0.00E+00	0.00E+00	1.71E+07	2.04E+08
CO-58	0.00E+00	2.84E+06	6.36E+06	0.00E+00	0.00E+00	0.00E+00	5.75E+07
CO-60	0.00E+00	2.61E+07	5.76E+07	0.00E+00	0.00E+00	0.00E+00	4.90E+08
ZN-65	9.97E+07	3.17E+08	1.43E+08	0.00E+00	2.12E+08	0.00E+00	2.00E+08
SR-89	3.41E+07	0.00E+00	9.79E+05	0.00E+00	0.00E+00	0.00E+00	5.47E+06
SR-90	4.43E+09	0.00E+00	1.09E+09	0.00E+00	0.00E+00	0.00E+00	1.28E+08
ZR-95	2.68E+05	8.58E+04	5.81E+04	0.00E+00	1.35E+05	0.00E+00	2.72E+08
SB-124	2.67E+06	5.05E+04	1.06E+06	6.48E+03	0.00E+00	2.08E+06	7.59E+07
I-131	1.36E+05	1.94E+05	1.11E+05	6.37E+07	3.33E+05	0.00E+00	5.13E+04
I-133	4.56E-03	7.94E-03	2.42E-03	1.17E+00	1.39E-02	0.00E+00	7.14E-03
CS-134	2.17E+08	5.17E+08	4.23E+08	0.00E+00	1.67E+08	5.56E+07	9.05E+06
CS-137	3.11E+08	4.25E+08	2.78E+08	0.00E+00	1.44E+08	4.79E+07	8.22E+06
BA-140	4.35E+05	5.46E+02	2.85E+04	0.00E+00	1.86E+02	3.13E+02	8.95E+05
CE-141	8.87E+02	6.00E+02	6.80E+01	0.00E+00	2.79E+02	0.00E+00	2.29E+06
CE-144	4.23E+05	1.77E+05	2.27E+04	0.00E+00	1.05E+05	0.00E+00	1.43E+08

PATHWAY - ADULT RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.58E+02	2.58E+02	2.58E+02	2.58E+02	2.58E+02	2.58E+02
CR-51	0.00E+00	0.00E+00	2.75E+02	1.53E+02	6.03E+01	3.93E+02	4.62E+04
MN-54	0.00E+00	2.07E+06	4.11E+05	0.00E+00	6.18E+05	0.00E+00	4.25E+06
FE-59	2.08E+07	4.85E+07	1.87E+07	0.00E+00	0.00E+00	1.53E+07	1.15E+08
CO-58	0.00E+00	2.19E+06	5.04E+06	0.00E+00	0.00E+00	0.00E+00	3.02E+07
CO-60	0.00E+00	2.03E+07	4.56E+07	0.00E+00	0.00E+00	0.00E+00	2.64E+08
ZN-65	7.01E+07	2.43E+08	1.14 E+0 8	0.00E+00	1.56E+08	0.00E+00	1.03E+08
SR-89	2.88E+07	0.00E+00	8.24E+05	0.00E+00	0.00E+00	0.00E+00	3.43E+06
SR-90	2.87E+09	0.00E+00	7.08E+08	0.00E+00	0.00E+00	0.00E+00	8.05E+07
ZR-95	2.14E+05	6.76E+04	4.65E+04	0.00E+00	9.93E+04	0.00E+00	1.56E+08
SB-124	2.18E+06	4.02E+04	8.52E+05	4.95E+03	0.00E+00	1.91E+06	4.40E+07
I-131	1.13E+05	1.58E+05	8.49E+04	4.61E+07	2.72E+05	0.00E+00	3.13E+04
I-133	3.82E-03	6.48E-03	1.98E-03	9.04E-01	1.14E-02	0.00E+00	4.90E-03
CS-134	1.73E+08	4.07E+08	1.89E+08	0.00E+00	1.29E+08	4.94E+07	5.06E+06
CS-137	2.58E+08	3.43E+08	1.20E+08	0.00E+00	1.17E+08	4.54E+07	4.88E+06
BA-140	3.59E+05	4.40E+02	2.31E+04	0.00E+00	1.49E+02	2.96E+02	5.54E+05
CE-141	7.45E+02	4.97E+02	5.71E+01	0.00E+00	2.34E+02	0.00E+00	1.42E+06
CE-144	3.56E+05	1.47E+05	1.91E+04	0.00E+00	8.80E+04	0.00E+00	8.96E+07

PATHWAY - TEEN RECEPTOR

Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT

NUCLIDES	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	3.12E+02	3.12E+02	3.12E+02	3.12E+02	3.12E+02	3.12E+02
CR-51	0.00E+00	0.00E+00	4.29E+02	2.38E+02	6.51E+01	4.35E+02	2.28E+04
MN-54	0.00E+00	2.37E+06	6.31E+05	0.00E+00	6.64E+05	0.00E+00	1.99E+06
FE-59	3.68E+07	5.96E+07	2.97E+07	0.00E+00	0.00E+00	1.73E+07	6.20E+07
CO-58	0.00E+00	2.55E+06	7.82E+06	0.00E+00	0.00E+00	0.00E+00	1.49E+07
CO-60	0.00E+00	2.40E+07	7.09E+07	0.00E+00	0.00E+00	0.00E+00	1.33E+08
ZN-65	1.05E+08	2.80E+08	1.74E+08	0.00E+00	1.77E+08	0.00E+00	4.92E+07
SR-89	5.45E+07	0.00E+00	1.56E+06	0.00E+00	0.00E+00	0.00E+00	2.11E+06
SR-90	3.70E+09	0.00E+00	9.39E+08	0.00E+00	0.00E+00	0.00E+00	4.99E+07
ZR-95	3.81E+05	8.36E+04	7.45E+04	0.00E+00	1.20E+05	0.00E+00	8.73E+07
SB-124	3.95E+06	5.12E+04	1.38E+06	8.72E+03	0.00E+00	2.19E+06	2.47E+07
I-131	2.09E+05	2.11E+05	1.20E+05	6.96E+07	3.46E+05	0.00E+00	1.87E+04
I-133	7.09E-03	8.77E-03	3.32E-03	1.63E+00	1.46E-02	0.00E+00	3.53E-03
CS-134	3.05E+08	5.00E+08	1.06E+08	0.00E+00	1.55E+08	5.56E+07	2.70E+06
CS-137	4.75E+08	4.55E+08	6.71E+07	0.00E+00	1.48E+08	5.33E+07	2.85E+06
BA-140	6.63E+05	5.81E+02	3.87E+04	0.00E+00	1.89E+02	3.46E+02	3.36E+05
CE-141	1.40E+03	6.99E+02	1.04E+02	0.00E+00	3.07E+02	0.00E+00	8.72E+05
CE- 144	6.72E+05	2.11E+05	3.58E+04	0.00E+00	1.17E+05	0.00E+00	5.49E+07

PATHWAY - CHILD RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.02E+03	1.02E+03	1.02E+03	1.02E+03	1.02E+03	1.02E+03
CR-51	0.00E+00	0.00E+00	8.28E+03	4.95E+03	1.82E+03	1.10E+04	2.08E+06
MN-54	0.00E+00	3.99E+06	7.61E+05	0.00E+00	1.19E+06	0.00E+00	1.22E+07
FE-59	9.69E+06	2.28E+07	8.73E+06	0.00E+00	0.00E+00	6.36E+06	7.59E+07
CO-58	0.00E+00	1.74E+06	3.90E+06	0.00E+00	0.00E+00	0.00E+00	3.53E+07
CO-60	0.00E+00	8.41E+06	1.85E+07	0.00E+00	0.00E+00	0.00E+00	1.58E+08
ZN-65	6.34E+08	2.02E+09	9.12E+08	0.00E+00	1.35E+09	0.00E+00	1.27E+09
SR-89	4.90E+08	0.00E+00	1.41E+07	0.00E+00	0.00E+00	0.00E+00	7.86E+07
SR-90	2.43E+10	0.00E+00	5.96E+09	0.00E+00	0.00E+00	0.00E+00	7.02E+08
ZR-95	3.39E+02	1.09E+02	7.37E+01	0.00E+00	1.71E+02	0.00E+00	3.45E+05
SB-124	9.11E+06	1.72E+05	3.61E+06	2.21E+04	0.00E+00	7.09E+06	2.59E+08
I-131	7.77E+07	1.11E+08	6.37E+07	3.64E+10	1.91E+08	0.00E+00	2.93E+07
I-133	1.02E+06	1.77E+06	5.39E+05	2.60E+08	3.08E+06	0.00E+00	1.59E+06
CS-134	2.83E+09	6.73E+09	5.50E+09	0.00E+00	2.18E+09	7.23E+08	1.18E+08
CS-137	3.83E+09	5.24E+09	3.43E+09	0.00E+00	1.78E+09	5.91E+08	1.01E+08
BA-140	7.11E+06	8.93E+03	4.66E+05	0.00E+00	3.04E+03	5.11E+03	1.46E+07
CE-141	8.73E+03	5.90E+03	6.70E+02	0.00E+00	2.74E+03	0.00E+00	2.26E+07
CE-144	1.01E+06	4.21E+05	5.41E+04	0.00E+00	2.50E+05	0.00E+00	3.41E+08

PATHWAY - ADULT RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.33E+03	1.33E+03	1.33E+03	1.33E+03	1.33E+03	1.33E+03
CR-51	0.00E+00	0.00E+00	1.45E+04	8.03E+03	3.17E+03	2.06E+04	2.43E+06
MN-54	0.00E+00	6.64E+06	1.32E+06	0.00E+00	1.98E+06	0.00E+00	1.36E+07
FE-59	1.69E+07	3.95E+07	1.52E+07	0.00E+00	0.00E+00	1.24E+07	9.33E+07
CO-58	0.00E+00	2.93E+06	6.76E+06	0.00E+00	0.00E+00	0.00E+00	4.04E+07
CO-60	0.00E+00	1.42E+07	3.21E+07	0.00E+00	0.00E+00	0.00E+00	1.86E+08
ZN-65	9.74E+08	3.38E+09	1.58E+09	0.00E+00	2.17E+09	0.00E+00	1.43E+09
SR-89	9.03E+08	0.00E+00	2.59E+07	0.00E+00	0.00E+00	0.00E+00	1.08E+08
SR-90	3.43E+10	0.00E+00	8.48E+09	0.00E+00	0.00E+00	0.00E+00	9.64E+08
ZR-95	5.94E+02	1.87E+02	1.29E+02	0.00E+00	2.75E+02	0.00E+00	4.32E+05
SB-124	1.62E+07	2.99E+05	6.34E+06	3.69E+04	0.00E+00	1.42E+07	3.27E+08
I-131	1.41E+08	1.98E+08	1.06E+08	5.76E+10	3.40E+08	0.00E+00	3.91E+07
I-133	1.86E+06	3.15E+06	9.60E+05	4.39E+08	5.52E+06	0.00E+00	2.38E+06
CS-134	4.91E+09	1.16E+10	5.36E+09	0.00E+00	3.67E+09	1.40E+09	1.44E+08
CS-137	6.95E+09	9.24E+09	3.22E+09	0.00E+00	3.15E+09	1.22E+09	1.32E+08
BA-140	1.28E+07	1.57E+04	8.27E+05	0.00E+00	5.33E+03	1.06E+04	1.98E+07
CE-141	1.60E+04	1.07E+04	1.23E+03	0.00E+00	5.03E+03	0.00E+00	3.06E+07
CE-144	1.86E+06	7.68E+05	9.97E+04	0.00E+00	4.59E+05	0.00E+00	4.67E+08

PATHWAY - TEEN RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK

NUCLIDES	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.09E+03	2.09E+03	2.09E+03	2.09E+03	2.09E+03	2.09E+03
CR-51	0.00E+00	0.00E+00	2.95E+04	1.64E+04	4.47E+03	2.99E+04	1.56E+06
MN-54	0.00E+00	9.94E+06	2.65E+06	0.00E+00	2.79E+06	0.00E+00	8.34E+06
FE-59	3.92E+07	6.35E+07	3.16E+07	0.00E+00	0.00E+00	1.84E+07	6.61E+07
CO-58	0.00E+00	4.48E+06	1.37E+07	0.00E+00	0.00E+00	0.00E+00	2.61E+07
CO-60	0.00E+00	2.21E+07	6.52E+07	0.00E+00	0.00E+00	0.00E+00	1.23E+08
ZN-65	1.91E+09	5.09E+09	3.17E+09	0.00E+00	3.21E+09	0.00E+00	8.95E+08
SR-89	2.23E+09	0.00E+00	6.38E+07	0.00E+00	0.00E+00	0.00E+00	8.65E+07
SR-90	5.80E+10	0.00E+00	1.47E+10	0.00E+00	0.00E+00	0.00E+00	7.81E+08
ZR-95	1.38E+03	3.03E+02	2.70E+02	0.00E+00	4.34E+02	0.00E+00	3.16E+05
SB-124	3.84E+07	4.99E+05	1.35E+07	8.49E+04	0.00E+00	2.13E+07	2.41E+08
I-131	3.42E+08	3.44E+08	1.96E+08	1.14E+11	5.65E+08	0.00E+00	3.06E+07
I-133	4.51E+06	5.57E+06	2.11E+06	1.04E+09	9.29E+06	0.00E+00	2.25E+06
CS-134	1.13E+10	1.86E+10	3.92E+09	0.00E+00	5.76E+09	2.07E+09	1.00E+08
CS-137	1.67E+10	1.60E+10	2.36E+09	0.00E+00	5.22E+09	1.88E+09	1.00E+08
BA-140	3.10E+07	2.71E+04	1.81E+06	0.00E+00	8.83E+03	1.62E+04	1.57E+07
CE-141	3.94E+04	1.97E+04	2.92E+03	0.00E+00	8.62E+03	0.00E+00	2.45E+07
CE-144	4.57E+06	1.43E+06	2.44E+05	0.00E+00	7.94E+05	0.00E+00	3.74E+08

PATHWAY - CHILD RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	3.18E+03	3.18E+03	3.18E+03	3.18E+03	3.18E+03	3.18E+03
CR-51	0.00E+00	0.00E+00	4.67E+04	3.05E+04	6.66E+03	5.93E+04	1.36E+06
MN-54	0.00E+00	1.85E+07	4.19E+06	0.00E+00	4.10E+06	0.00E+00	6.79E+06
FE-59	7.32E+07	1.28E+08	5.04E+07	0.00E+00	0.00E+00	3.78E+07	6.11E+07
CO-58	0.00E+00	8.96E+06	2.23E+07	0.00E+00	0.00E+00	0.00E+00	2.23E+07
CO-60	0.00E+00	4.52E+07	1.07E+08	0.00E+00	0.00E+00	0.00E+00	1.07E+08
ZN-65	2.57E+09	8.81E+09	4.06E+09	0.00E+00	4.27E+09	0.00E+00	7.44E+09
SR-89	4.25E+09	0.00E+00	1.22E+08	0.00E+00	0.00E+00	0.00E+00	8.74E+07
SR-90	6.31E+10	0.00E+00	1.61E+10	0.00E+00	0.00E+00	0.00E+00	7.88E+08
ZR-95	2.45E+03	5.97E+02	4.23E+02	0.00E+00	6.43E+02	0.00E+00	2.97E+05
SB-124	7.41E+07	1.09E+06	2.30E+07	1.97E+05	0.00E+00	4.64E+07	2.29E+08
I-131	7.14E+08	8.42E+08	3.70E+08	2.77E+11	9.83E+08	0.00E+00	3.00E+07
I-133	9.52E+06	1.39E+07	4.06E+06	2.52E+09	1.63E+07	0.00E+00	2.35E+06
CS-134	1.82E+10	3.40E+10	3.44E+09	0.00E+00	8.76E+09	3.59E+09	9.24E+07
CS-137	2.67E+10	3.13E+10	2.22E+09	0.00E+00	8.39E+09	3.40E+09	9.78E+07
BA-140	6.37E+07	6.37E+04	3.28E+06	0.00E+00	1.51E+04	3.91E+04	1.57E+07
CE-141	7.81E+04	4.77E+04	5.61E+03	0.00E+00	1.47E+04	0.00E+00	2.46E+07
CE-144	6.55E+06	2.68E+06	3.67E+05	0.00E+00	1.08E+06	0.00E+00	3.76E+08

PATHWAY - INFANT RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE INHALATION

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.26E+03	1.26E+03	1.26E+03	1.26E+03	1.26E+03	1.26E+03
CR-51	0.00E+00	0.00E+00	1.00E+02	5.95E+01	2.28E+01	1.44E+04	3.32E+03
MN-5 4	0.00E+00	3.96E+04	6.30E+03	0.00E+00	9.84E+03	1.40E+06	7.74E+04
FE-59	1.18E+04	2.78E+04	1.06E+04	0.00E+00	0.00E+00	1.02E+06	1.88E+05
CO-58	0.00E+00	1.58E+03	2.07E+03	0.00E+00	0.00E+00	9.28E+05	1.06E+05
CO-60	0.00E+00	1.15E+04	1.48E+04	0.00E+00	0.00E+00	5.97E+06	2.85E+05
ZN-65	3.24E+04	1.03E+05	4.66E+04	0.00E+00	6.90E+04	8.64E+05	5.34E+04
SR-89	3.04E+05	0.00E+00	8.72E+03	0.00E+00	0.00E+00	1.40E+06	3.50E+05
SR-90	9.92E+07	0.00E+00	6.10E+06	0.00E+00	0.00E+00	9.60E+06	7.22E+05
ZR-95	1.07E+05	3.44E+04	2.33E+04	0.00E+00	5.42E+04	1.77E+06	1.50E+05
SB-124	3.12E+04	5.89E+02	1.24E+04	7.55E+01	0.00E+00	2.48E+06	4.06E+05
I-131	2.52E+04	3.58E+04	2.05E+04	1.19E+07	6.13E+04	0.00E+00	6.28E+03
I-133	8.64E+03	1.48E+04	4.52E+03	2.15E+06	2.58E+04	0.00E+00	8.88E+03
CS-134	3.73E+05	8.48E+05	7.28E+05	0.00E+00	2.87E+05	9.76E+04	1.04 E+0 4
CS-137	4.78E+05	6.21E+05	4.28E+05	0.00E+00	2.22E+05	7.52E+04	8.40E+03
BA-140	3.90E+04	4.90E+01	2.57E+03	0.00E+00	1.67E+01	1.27E+06	2.18E+05
CE- 141	1.99E+04	1.35E+04	1.53E+03	0.00E+00	6.26E+03	3.62E+05	1.20E+05
CE-144	3.43E+06	1.43E+06	1.84E+05	0.00E+00	8.48E+05	7.78E+06	8.16E+05

PATHWAY - ADULT RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE INHALATION

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.27E+03	1.27E+03	1.27E+03	1.27E+03	1.27E+03	1.27E+03
CR-51	0.00E+00	0.00E+00	1.35E+02	7.50E+01	3.07E+01	2.10E+04	3.00E+03
MN-54	0.00E+00	5.11E+04	8.40E+03	0.00E+00	1.27E+04	1.98E+06	6.68E+04
FE-59	1.59E+04	3.70E+04	1.43E+04	0.00E+00	0.00E+00	1.53E+06	1.78E+05
CO-58	0.00E+00	2.07E+03	2.78E+03	0.00E+00	0.00E+00	1.34E+06	9.52E+04
CO-60	0.00E+00	1.51E+04	1.98E+04	0.00E+00	0.00E+00	8.72E+06	2.59E+05
ZN-65	3.86E+04	1.34E+05	6.24E+04	0.00E+00	8.64E+04	1.24E+06	4.66E+04
SR-89	4.34E+05	0.00E+00	1.25E+04	0.00E+00	0.00E+00	2.42E+06	3.71E+05
SR-90	1.08E+08	0.00E+00	6.68E+06	0.00E+00	0.00E+00	1.65E+07	7.65E+05
ZR-95	1.46E+05	4.58E+04	3.15E+04	0.00E+00	6.74E+04	2.69E+06	1.49E+05
SB-124	4.30E+04	7.94E+02	1.68E+04	9.76E+01	0.00E+00	3.85E+06	3.98E+05
I-131	3.54E+04	4.91E+04	2.64E+04	1.46E+07	8.40E+04	0.00E+00	6.49E+03
I-133	1.22E+04	2.05E+04	6.22E+03	2.92E+06	3.59E+04	0.00E+00	1.03E+04
CS-134	5.02E+05	1.13E+06	5.49E+05	0.00E+00	3.75E+05	1.46E+05	9.76E+03
CS-137	6.70E+05	8.48E+05	3.11E+05	0.00E+00	3.04E+05	1.21E+05	8.48E+03
BA-140	5.47E+04	6.70E+01	3.52E+03	0.00E+00	2.28E+01	2.03E+06	2.29E+05
CE-141	2.84E+04	1.90E+04	2.17E+03	0.00E+00	8.88E+03	6.14E+05	1.26E+05
CE-144	4.89E+06	2.02E+06	2.62E+05	0.00E+00	1.21E+06	1.34E+07	8.64E+05

PATHWAY - TEEN RECEPTOR

RI DOSE CONVERSION FACTORS FOR THE INHALATION

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.12E+03	1.12E+03	1.12E+03	1.12E+03	1.12E+03	1.12E+03
CR-51	0.00E+00	0.00E+00	1.54E+02	8.55E+01	2.43E+01	1.70E+04	1.08E+03
MN-54	0.00E+00	4.29E+04	9.51E+03	0.00E+00	1.00E+04	1.58E+06	2.29E+04
FE-59	2.07E+04	3.34E+04	1.67E+04	0.00E+00	0.00E+00	1.27E+06	7.07E+04
CO-58	0.00E+00	1.77E+03	3.16E+03	0.00E+00	0.00E+00	1.11E+06	3.44E+04
CO-60	0.00E+00	1.31E+04	2.26E+04	0.00E+00	0.00E+00	7.07E+06	9.62E+04
ZN-65	4.26E+04	1.13E+05	7.03E+04	0.00E+00	7.14E+04	9.95E+05	1.63E+04
SR-89	5.99E+05	0.00E+00	1.72E+04	0.00E+00	0.00E+00	2.16E+06	1.67E+05
SR-90	1.01E+08	0.00E+00	6.44E+06	0.00E+00	0.00E+00	1.48E+07	3.43E+05
ZR-95	1.90E+05	4.18E+04	3.70E+04	0.00E+00	5.96E+04	2.23E+06	6.11E+04
SB-124	5.74E+04	7.40E+02	2.00E+04	1.26E+02	0.00E+00	3.24E+06	1.64E+05
I-131	4.81E+04	4.81E+04	2.73E+04	1.62E+07	7.88E+04	0.00E+00	2.84E+03
I-133	1.66E+04	2.03E+04	7.70E+03	3.85E+06	3.38E+04	0.00E+00	5.48E+03
CS-134	6.51E+05	1.01E+06	2.25E+05	0.00E+00	3.30E+05	1.21E+05	3.85E+03
CS-137	9.07E+05	8.25E+05	1.28E+05	0.00E+00	2.82E+05	1.04E+05	3.62E+03
BA-140	7.40E+04	6.48E+01	4.33E+03	0.00E+00	2.11E+01	1.74E+06	1.02E+05
CE-141	3.92E+04	1.95E+04	2.90E+03	0.00E+00	8.55E+03	5.44E+05	5.66E+04
CE-144	6.77E+06	2.12E+06	3.61E+05	0.00E+00	1.17E+06	1.20E+07	3.89E+05

PATHWAY - CHILD RECEPTOR

Ri DOSE CONVERSION FACTORS FOR THE INHALATION

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
Н-3	0.00E+00	6.47E+02	6.47E+02	6.47E+02	6.47E+02	6.47E+02	6.47E+02
CR-51	0.00E+00	0.00E+00	8.95E+01	5.75E+01	1.32E+01	1.28E+04	3.57E+02
MN-54	0.00E+00	2.53E+04	4.98E+03	0.00E+00	4.98E+03	1.00E+06	7.06E+03
FE-59	1.36E+04	2.35E+04	9.48E+03	0.00E+00	0.00E+00	1.02E+06	2.48E+04
CO-58	0.00E+00	1.22E+03	1.82E+03	0.00E+00	0.00E+00	7.77E+05	1.11E+04
CO-60	0.00E+00	8.02E+03	1.18E+04	0.00E+00	0.00E+00	4.51E+06	3.19E+04
ZN-65	1.93E+04	6.26E+04	3.11E+04	0.00E+00	3.25E+04	6.47E+05	5.14E+04
SR-89	3.98E+05	0.00E+00	1.14 E+0 4	0.00E+00	0.00E+00	2.03E+06	6.40E+04
SR-90	4.09E+07	0.00E+00	2.59E+06	0.00E+00	0.00E+00	1.12E+07	1.31E+05
ZR-95	1.15E+05	2.79E+04	2.03E+04	0.00E+00	3.11E+04	1.75E+06	2.17E+04
SB-124	3.79E+04	5.56E+02	1.20E+04	1.01E+02	0.00E+00	2.65E+06	5.91E+04
I-131	3.79E+04	4.44E+04	1.96E+04	1.48E+07	5.18E+04	0.00E+00	1.06E+03
I-133	1.32E+04	1.92E+04	5.60E+03	3.56E+06	2.24E+04	0.00E+00	2.16E+03
CS-134	3.96E+05	7.03E+05	7.45E+04	0.00E+00	1.90E+05	7.97E+04	1.33E+03
CS-137	5.49E+05	6.12E+05	4.55E+04	0.00E+00	1.72E+05	7.13E+04	1.33E+03
BA-140	5.60E+04	5.60E+01	2.90E+03	0.00E+00	1.34E+01	1.60E+06	3.84E+04
CE-141	2.77E+04	1.67E+04	1.99E+03	0.00E+00	5.25E+03	5.17E+05	2.16E+04
CE-144	3.19E+06	1.21E+06	1.76E+05	0.00E+00	5.38E+05	9.84E+06	1.48E+05

PATHWAY - INFANT RECEPTOR

PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 1

DIRECTION	X/Q (Sec/m ³)	RESIDENCE(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	GARDEN(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	MILK(b) Dist. Miles	D/Q (m ⁻²)
N	2.92E-06	1.4	3.25E-09	2.92E-06	1.4	3.25E-09	7.03E-07	(a)	3.48E-10
NNE	1.81E-06	1.8	2.88E-09	4.70E-07	(a)	4.04E-10	4.70E-07	(a)	4.04E-10
NE	1.95E-06	1.9	3.85E-09	1.76E-06	2.1	3.29E-09	5.77E-07	(a)	6.51E-10
ENE	1.03E-06	2.7	1.08E-09	1.03E-06	2.7	1.08E-09	3.86E-07	(a)	2.86E-10
Е	9.39E-07	2.8	6.68E-10	3.71E-07	(a)	1.87E-10	3.71E-07	(a)	1.87E-10
ESE	6.37E-07	3.7	2.84E-10	4.12E-07	4.6	1.60E-10	4.12E-07	4.6	1.60E-10 goat
SE	8.83E-07	4.1	2.61E-10	8.83E-07	4.1	2.61E-10	5.84E-07	(a)	1.52E-10
SSE	1.27E-06	4.7	2.61E-10	1.09E-06	(a)	2.15E-10	1.09E-06	(a)	2.15E-10
S	2.58E-06	4.6	4.85E-10	2.09E-06	5.2	3.59E-10	2.13E-06	5.1	3.71E-10 cow
SSW	3.26E-06	3.5	8.26E-10	2.28E-06	(a)	4.53E-10	2.28E-06	(a)	4.53E-10
SW	2.80E-06	2.9	9.10E-10	1.58E-06	(a)	3.56E-10	1.58E-06	(a)	3.56E-10
WSW	1.95E-06	2.6	1.09E-09	8.55E-07	(a)	3.18E-10	8.55E-07	(a)	3.18E-10
W	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10
WNW	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10
NW	8.24E-07	3.8	5.25E-10	7.55E-07	4.1	4.61E-10	6.02E-07	(a)	3.27E-10
NNW	1.46E-06	2.0	1.47E-09	5.20E-07	(a)	3.04E-10	5.20E-07	(a)	3.04E-10

(a) 5-mile value used since there is no pathway located within the sector up to five miles.

(b) Controlling locations are discussed in Appendix A.

References: 1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 2

DIRECTION	X/Q (Sec/m ³)	RESIDENCE(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	GARDEN(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	MILK(b) Dist. Miles	D/Q (m ⁻²)
N	2.73E-06	1.5	2.92E-09	2.39E-06	1.7	2.35E-09	7.03E-07	(a)	3.48E-10
NNE	2.20E-06	1.5	3.87E-09	2.20E-06	1.5	3.87E-09	4.70E-07	(a)	4.04E-10
NE	1.85E-06	2.0	3.55E-09	1.57E-06	2.3	2.78E-09	5.77E-07	(a)	6.51E-10
ENE	1.03E-06	2.7	1.08E-09	1.03E-06	2.7	1.08E-09	3.86E-07	(a)	2.86E-10
Е	8.80E-07	3.0	6.06E-10	3.71E-07	(a)	1.87E-10	3.71E-07	(a)	1.87E-10
ESE	6.25E-07	3.7	2.76E-10	3.96E-07	4.7	1.51E-10	3.96E-07	4.7	1.51E-10 goat
SE	9.06E-07	4.0	2.72E-10	9.06E-07	4.0	2.72E-10	5.84E-07	(a)	1.52E-10
SSE	1.34E-06	4.5	2.81E-10	1.09E-06	(a)	2.15E-10	1.09E-06	(a)	2.15E-10
S	2.63E-06	4.5	5.01E-10	2.19E-06	5.0	3.88E-10	2.19E-06	5.0	3.88E-10 cow
SSW	3.48E-06	3.2	9.19E-10	2.28E-06	(a)	4.53E-10	2.28E-06	(a)	4.53E-10
SW	2.93E-06	2.7	9.75E-10	1.58E-06	(a)	3.56E-10	1.58E-06	(a)	3.56E-10
WSW	2.01E-06	2.5	1.16E-09	8.55E-07	(a)	3.18E-10	8.55E-07	(a)	3.18E-10
W	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10
WNW	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10	6.03E-07	<u>(a)</u>	3.25E-10
NW	7.84E-07	4.0	4.88E-10	7.84E-07	4.0	4.88E-10	6.02E-07	(a)	3.27E-10
NNW	1.46E-06	2.0	1.47E-09	5.20E-07	5.0	3.04E-10	5.20E-07	(a)	3.04E-10

(a) 5-mile value used since there is no pathway located within the sector up to five miles.

(b) Controlling locations are discussed in Appendix A.

References: 1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 3

DIRECTION	X/Q (Sec/m ³)	RESIDENCE(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	GARDEN(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	MILK(b) Dist. Miles	D/Q (m ⁻²)
N	2.58E-06	1.8	2.47E-09	2.42E-06	1.9	2.22E-09	7.03E-07	(a)	3.48E-10
NNE	1.85E-06	1.7	2.97E-09	1.85E-06	1.7	2.97E-09	4.70E-07	(a)	4.04E-10
NE	1.66E-06	2.2	3.00E-09	1.48E-06	2.4	2.54E-09	5.77E-07	(a)	6.51E-10
ENE	8.75E-07	2.9	8.86E-10	8.75E-07	2.9	8.86E-10	3.86E-07	(a)	2.86E-10
Е	8.90E-07	3.0	6.17E-10	4.06E-07	4.6	2.15E-10	4.25E-07	4.5	2.31E-10 goat
ESE	6.37E-07	3.7	2.84E-10	5.80E-07	4.0	2.46E-10	3.73E-07	(a)	1.37E-10
SE	5.84E-07	(a)	1.52E-10	5.84E-07	(a)	1.52E-10	5.84E-07	(a)	1.52E-10
SSE	1.36E-06	4.4	2.88E-10	1.09E-06	(a)	2.15E-10	1.09E-06	(a)	2.15E-10
S	2.65E-06	4.2	5.25E-10	2.25E-06	4.9	4.06E-10	2.31E-06	4.8	4.21E-10 cow
SSW	3.64E-06	3.1	9.82E-10	2.28E-06	(a)	4.53E-10	2.28E-06	(a)	4.53E-10
SW	3.19E-06	2.5	1.11E-09	1.58E-06	(a)	3.56E-10	1.58E-06	(a)	3.56E-10
WSW .	2.12E-06	2.4	1.26E-09	8.55E-07	(a)	3.18E-10	8.55E-07	(a)	3.18E-10
W	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10	7.54E-10	(a)	4.44E-10
WNW	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10
NW	6.83E-07	4.3	4.05E-10	6.82E-07	4.3	4.05E-10	6.02E-07	(a)	3.27E-10
NNW	1.34E-06	2.2	1.26E-09	5.16E-07	5.0	3.01E-10	5.20E-07	(a)	3.04E-10

(a) 5-mile value used since there is no pathway located within the sector up to five miles.

(b) Controlling locations are discussed in Appendix A.

References: 1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

4.4 Requirements: Liquid Effluents

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY (See Figure 6-4 and Figure 6-5) shall be limited:

- **a.** During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
- **b.** During any calendar year to less than or equal to 3 mrems to the total body and to less than or equal to 10 mrems to any organ.

Applicability: At all times.

Action:

With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.4.1 Surveillance Requirements

Cumulative dose contributions from liquid effluents for the current calendar quarter and the current calendar year shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.

4.4.2 Implementation of the Requirements

This Requirement does not require implementation guidance. There are no offsite liquid effluent releases.

5.0 TOTAL DOSE AND DOSE TO PUBLIC ONSITE

5.1 Requirement: Total Dose

The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to direct radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

Applicability: At all times.

Action:

With the calculated doses from the release of radioactive materials in liquid and gaseous effluents exceeding twice the limits of Section 4.4a, 4.4b, 4.1a, 4.1b, 4.2a or 4.2b calculations shall be made including direct radiation contributions from the reactor units (including outside storage tanks, etc.) to determine whether the above limits of Section 5.1 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in 10 CFR 20.2203(a)(4), shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits, and if the release condition resulting in violation of 40 CFR Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report within 30 days is considered a timely request, and a variance is granted until staff action on the request is complete.

5.1.1 Surveillance Requirements

- a. Cumulative dose contributions from the gaseous effluents shall be determined in accordance with the surveillance requirements of Section 4.4.1, 4.1.1 and 4.2.1 and in accordance with the methodology and parameters contained in Section 5.1.2.
- b. Cumulative dose contributions from direct radiation from the reactor units and from radwaste storage tanks shall be determined in accordance with the methodology and parameters in Section 5.1.2. This requirement is applicable only under conditions set forth in Section 5.1, Action.

5.1.2 Implementation of the Requirement

Since all other uranium fuel cycle sources are greater than 20 miles away, only the PVNGS site need be considered.

The total dose to any MEMBER OF THE PUBLIC will be determined based on a sum of the doses from all three units' releases and doses from direct radiation from PVNGS.

This dose evaluation is performed annually and submitted with the Annual Radioactive Effluent Release Report to assure compliance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. NUREG-0543, Methods for Demonstrating LWR Compliance With the EPA Uranium Fuel Cycle Standard (40 CFR Part 190), February 1980, provides a discussion on compliance with 40 CFR Part 190 in relation to the Radiological Environmental Technical Specifications for sites of up to four nuclear power reactors. The NUREG concludes that as long as a nuclear plant site operates at a level below the 10 CFR Part 50, Appendix I reporting requirements, and there is no significant source of direct radiation from the site, no extra analysis is required to demonstrate compliance with 40 CFR Part 190. As a result, this dose evaluation will also be performed whenever calculated doses associated with effluent releases exceed twice the limits of Section 4.4a, 4.4b, 4.1a, 4.1b, 4.2a or 4.2b.

Dose Contribution from Liquid and Gaseous Effluents

The annual whole body dose accumulated by a MEMBER OF THE PUBLIC for the noble gases released in gaseous effluents is determined by using the following equation:

$$D_{WB} = (3.17E-08) \sum_{i} [(K_i) (X/Q)_{UNIT} (Q_i)]$$
(5-1)

Where:

- K_i = the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per μCi/m³ from Table 3-3.
 Q_i = the integrated release of radionuclide i, in μCi for the previous calendar year.
 (X/Q)_{UNIT} = the highest calculated annual average dispersion parameter, in sec/m³, for a
- particular unit, at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.

=2.92E-06 from Unit 1	
=2.19E-06 from Unit 2	
=2.31E-06 from Unit 3	

- D_{WB} = the annual whole body dose in mrem to a MEMBER OF THE PUBLIC at the controlling location due to noble gases released in gaseous effluents.
- 3.17E-08 = the inverse of seconds in a year (yr/sec).

The annual dose to any organ accumulated by a MEMBER OF THE PUBLIC for iodine-131, iodine-133, tritium and all radionuclides in particulate form with half-lives greater than 8 days released in gaseous effluents is determined by using the following equation:

$$D_{o} = (3.17E-08) \sum_{i} [\sum_{k} (R_{ik} W_{k}) (Q_{i})]$$
(5-2)

Where:

- D_o = the total annual organ dose from gaseous effluents to a MEMBER OF THE PUBLIC, in mrem, at the controlling location.
- Q_i = the integrated release of radionuclide i, in μ Ci, for the previous calendar year.
- R_{ik} = the dose factor for each identified radionuclide i, for pathway k (for the inhalation pathway in mrem/yr per μ Ci/m³ and for the food and ground plane pathways in m²-mrem/yr per μ Ci/sec) at the controlling location. The R_{ik} 's for each age group are given in Tables 4-1 through 4-15.
- W_K = the highest annual average dispersion or deposition parameter for the particular unit, used for estimating the total annual organ dose to a MEMBER OF THE PUBLIC at the controlling location for the particular unit.
 - = $(X/Q)_{UNIT}$, in sec/m³ for the inhalation pathway and for all tritium calculations, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.
 - =2.92E-06 from Unit 1 =2.19E-06 from Unit 2 =2.31E-06 from Unit 3
 - = $(D/Q)_{UNIT}$, in m⁻², for the food and ground plane pathways, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.
 - =3.25E-09 from Unit 1 =3.88E-10 from Unit 2 =4.21E-10 from Unit 3
- 3.17E-08 = the inverse of seconds in a year (yr/sec).

Dose Due to Direct Radiation

The component of dose to a MEMBER OF THE PUBLIC due to direct radiation will be evaluated by first determining the direct radiation dose at the site boundary in each sector, and then extrapolating the site boundary dose to the controlling location by the inverse square law of distance.

Dose from Radioactive Liquid and Gaseous Effluents to MEMBERS OF THE PUBLIC due to their activities within the SITE BOUNDARY.

These activities have been determined to be limited to the vicinity of the Energy Information Center (EIC) located inside the SITE BOUNDARY. An assumption was made that no MEMBER OF THE PUBLIC would spend more than eight hours per year at this location. However this calculation has been historically performed assuming an occupancy factor of one (implying continuous occupancy over the entire year).

A X/Q, determined for the Energy Information Center, will be used for this assessment.

Equations 5-1 and 5-2 in Section 5.1.2 should be used for this assessment.

6.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

6.1 Requirement: REMP

The radiological environmental monitoring program shall be conducted as specified in Table 6-1, based on locations determined using data from the pre-operational monitoring period; and/or the operational monitoring period indicating a need to make changes in the program.

Applicability: At all times.

Action:

- **a.** With the radiological environmental monitoring program not being conducted as specified in Table 6-1, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report, as required by Section 7.2, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- **b.** With the level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeding the reporting levels of Table 6-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose* to A MEMBER OF THE PUBLIC is less than the calendar year limits of Section 4.4, 4.1 and 4.2. When more than one of the radionuclides in Table 6-2 are detected in the sampling medium, this report shall be submitted if:

 $\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + \ldots \ge 1.0$

When radionuclides other than those in Table 6-2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose* to a MEMBER OF THE PUBLIC is equal to or greater than the calendar year limits of Section 4.4, 4.1 and 4.2. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report.

- c. With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by Table 6-1, identify locations for obtaining replacement samples and add them to the Radiological Environmental Monitoring Program within 30 days. The specific locations from which samples were unavailable may then be deleted from the monitoring program.
- * The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.

6.1.1 Surveillance Requirements

a. The radiological environmental monitoring samples shall be collected pursuant to Table 6-1 from the specific locations given in Table 6-4 and Figure and Figure 6-2 and shall be analyzed pursuant to the requirements of Table 6-1, and the detection capabilities required by Table 6-3.

6.1.2 Implementation of the Requirements

The results of the radiological environmental monitoring program are intended to supplement the results of the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected based on the effluent measurements and modeling of the environmental exposure pathways. Thus the specified environmental monitoring program provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures to individuals resulting from station operation.

This requirement is implemented by Nuclear Administrative and Technical Manual procedures.

Airborne			of Analysis ^d
Radioiodine and particulates	Samples from 5 locations: 4 samples at or near the SITE BOUNDARIES (#14A, 15, 29, 40) including 3 different sectors of the highest calculated annual average ground level D/Q.* 1 sample (#40) from areas of special interest, which is from the vicinity of a community having the highest calculated annual average D/Q. 1 sample (#6A) from a control location 15-30 km (9-18 mi) distant and in the least prevalent wind direction. ^e	Continuous sampling collected weekly, or more frequently if required by dust loading.	Gross beta weekly ^c , I-131 weekly; gamma isotopic analysis of composite (by location) quarterly.
	Forty (40) routine monitoring stations (#5-40, #42, #44, #46, #50) either with two or more dosimeters or with one instrument for measuring and recording dose rate continuously, placed as follows: An inner ring of stations, one in each meteorological sector in the general area of the site boundary (16 locations); An outer ring of stations, one in each meteorological sector in the 6-8 km (4-5 mi) range from the site (16 locations); and The balance of the stations (8 locations) to be placed in special interest areas such as population centers, nearby residences, schools, and in one or two areas to serve as control stations.	Quarterly	Gamma dose quarterly.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Exposure Pathway and/or Sample	Number of Representative Samples and Sample Locations ^a	Sampling and Collection Frequency ^a	Type and Frequency of Analysis ^d
Waterborne			
Surface	85 acre Water storage reservoir (#60) 45 acre Water storage reservoir (#61) Evaporation pond #1 (#59) Evaporation pond #2 (#63) Evaporation pond #3 (#64)	Quarterly grab sample	Tritium and gamma isotopic analysis quarterly.
Ground	2 onsite wells ^f (#57, #58)	Quarterly grab sample	Tritium and gamma isotopic analysis quarterly.
Drinking (well)	3 wells from surrounding residences (#46, #48, #49) that would be affected by its discharge.	Composite sample of weekly grab samples over 2-week period when I-131 analysis is performed, monthly composite of weekly grab samples otherwise	I-131 analysis on each composite when the dose calculated for the consumption of the water is greater than 1 mrem per year. ^g Composite for gross beta and gamma isotopic analyses monthly. Composite for tritium analysis quarterly.
Ingestion Milk	Samples from milking animals in 3 locations within 5 km (3 mi) distant having the highest dose potential. If there are none, 1 sample from milking animals in each of three areas between 5 and 8 km (3-5 mi) distant (#51, #54) where doses are calculated to be greater than 1 mrem per year. ^g One sample from milking animals at a control location 15 to 30 km (9-18 mi) distant (#53) and in the least prevalent wind direction. ^e	Semimonthly for animals on pasture; otherwise, monthly.	Gamma isotopic and I-131 analysis semimonthly when animals are on pasture or monthly at other times.

I

L

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

ODCM Rev. 26

Exposure Pathway and/or Sample	Number of Representative Samples and Sample Locations ^a	Sampling and Collection Frequency ^a	Type and Frequency of Analysis ^d			
Food Products *	2 samples (#47) of 3 types of broad leaf vegetation (as available) from locations identified per the criteria of Section 6.2b. of this manual.	Monthly during growing season.	Gamma isotopic analysis.			
	1 control sample (#62) of 3 types of broad leaf vegetation (as available) grown 15 to 30 km (9-18 mi) distant in the least prevalent wind direction. ^e	Monthly during growing season.	Gamma isotopic analysis.			
	 * When broad leaf vegetation samples are not available, reports from 4 existing supplemental airborne radioiodine sample locations will be substituted. 					

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

٠

TABLE 6-1 (Continued)

TABLE NOTATION

- a The number, media, frequency, and location of sampling may vary from site to site. It is recognized that, at times, it may not be possible or practical to obtain samples of the media of choice at the most desired location or time. In these instances suitable alternative media and locations may be chosen for the particular pathway in question. Actual locations (distance and direction) from the site shall be provided in Table 6-4 and Figure 6-1 or Figure 6-2 in the ODCM. Refer to Regulatory Guide 4.1, "Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants."
- b Regulatory Guide 4.13 provides guidance for thermoluminescence dosimetry (TLD) systems used for environmental monitoring. One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purposes of this table, a thermoluminescent dosimeter may be considered to be one phosphor, and two or more phosphors in a packet may be considered as two or more dosimeters. Film badges should not be used for measuring direct radiation.
- c Particulate sample filters shall be analyzed for gross beta 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air or water is greater than 10 times the yearly mean of control samples for any medium, gamma isotopic analysis should be performed on the individual samples.
- d Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.
- e The purpose of this sample is to obtain background information. If it is not practical to establish control locations in accordance with the wind direction and distance criteria, other sites that provide valid background data may be substituted.
- f Groundwater samples should be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.
- g The dose shall be calculated for the maximum organ and age group, using the methodology and parameters in the ODCM.

REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN

Analysis	Water (pCi/l)	Airborne Particulate or Gas (pCi/m ³)	Fresh Milk (pCi/l)	Food Products (pCi/kg, wet)
Н-3	20,000 *			<u> </u>
Mn-54	1,000]		
Fe-59	400			
Co-58	1,000			
Co-60	300			
Zn-65	300			
Zr-Nb-95	400			
I-131	2 **	0.9	3	100
Cs-134	30	10	60	1,000
Cs-137	50	20	70	2,000
Ba-La-140	200		300	

ENVIRONMENTAL SAMPLES

* For drinking water samples. This is a 40 CFR 141 value. If no drinking water pathway exists, a value of 30,000 pCi/l may be used.

** If no drinking water pathway exists, a reporting level of 20 pCi/l may be used.

	Lov	wer Limit of Detection (L	LD) ^b	
Analysis	Water (pCi/l)	Airborne Particulate or Gas (pCi/m ³)	Fresh Milk (pCi/l)	Food Products (pCi/kg, wet)
Gross Beta	4	0.01		
H-3	2000*			
Mn-54	15			
Fe-59	30			
Co-58, -60	15			
Zn-65	30			
Zr-95	30			
Nb-95	15			
I-131	1**	0.07	1	60
Cs-134	15	0.05	15	60
Cs-137	18	0.06	18	80
Ba-140	60		60	
La-140	15		15	

DETECTION CAPABILITIES FOR ENVIRONMENTAL ANALYSIS^a

NOTE: This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

* If no drinking water pathway exists, a value of 3000 pCi/l may be used.

** If no drinking water pathway exists, a value of 15 pCi/l may be used.

Table 6-3 (Continued)

TABLE NOTATION

- a Guidance for detection capabilities for thermoluminescent dosimeters used for environmental measurements is given in Regulatory Guide 4.13.
- b Table 6-3 indicates acceptable detection capabilities for radioactive materials in environmental samples. These detection capabilities are tabulated in terms of the lower limits of detection (LLDs). The LLD is defined, for purposes of this guide, as the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66s_b}{E * V * 2.22 * Y * exp(-\lambda\Delta t)}$$

Where:

LLD is the a priori lower limit of detection as defined above (as pCi per unit mass or volume),

 s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency (as counts per disintegration),

V is the sample size (in units of mass or volume),

2.22 is the number of disintegrations per minute per picocurie,

Y is the fractional radiochemical yield (when applicable),

 λ is the radioactive decay constant for the particular radionuclide, and

 Δt for environmental samples is the elapsed time between sample collection (or end of the sample collection period) and time of counting.

In calculating the LLD for a radionuclide determined by gamma-ray spectrometry the background should include the typical contributions of other radionuclides normally present in the samples (e.g., potassium-40 in milk samples). Typical values of E, V, Y, and Δt should be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report.

6.2 Requirement: Land Use Census

A land use census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence and the nearest garden* of greater than 50 m² (500 ft²) producing broad leaf vegetation.

Applicability: At all times.

Action:

- **a.** With a land use census identifying a location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in Section 4.2.1, identify the new location(s) in the next Annual Radioactive Effluent Release Report, pursuant to Section 7.1.
- **b.** With a land use census identifying a location(s) that yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with Section 6.1, add the new location(s) to the radiological environmental monitoring program within 30 days. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may then be deleted from the monitoring program.

6.2.1 Surveillance Requirements

a. The land use census shall be conducted during the growing season annually using that information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities. The results of the land use census shall be included in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.2.2 Implementation of the Requirements

The above Requirement is implemented by Nuclear Administrative and Technical Manual procedures.

* Broad Leaf vegetation sampling of at least three different kinds of vegetation may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Specifications for broad leaf vegetation sampling in Table 6-1 shall be followed, including analysis of control samples.

6.3 Requirement: Interlaboratory Comparison Program

Analyses shall be performed on radioactive materials supplied as part of an Interlaboratory Comparison Program that correspond to samples required by Table 6-1, as applicable.

Applicability: At all times.

Action:

a. With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.3.1 Surveillance Requirements

a. A summary of the results obtained as part of the above required Interlaboratory Comparison Program and in accordance with the methodology and parameters in this manual shall be included in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.3.2 Implementation of the Requirements

PVNGS laboratories or contract laboratories which perform analyses for the Radiological Environmental Monitoring Program (REMP) participate in an Interlaboratory Comparison Program. The participation includes all of the determinations (sample medium-radionuclide combinations) that are included in the monitoring program.

If deviation from specified limits is identified an investigation is made to determine the reason for the deviation and corrective actions are taken as necessary. The results of all analyses made under this program are included in the Annual Radiological Environmental Operating Report.

TABLE 6-4

.

RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS

SAMPLE SITE	SAMPLE TYPE	NOTE (d)	LOCATION DESIGNATION (a)	LOCATION DESCRIPTION (c)
1	TLD	SUP	E30	Goodyear
2	TLD	SUP	ENE24	Scott-Libby School
3	TLD	SUP	E21	Liberty School
4	TLD	SUP	E16	Buckeye
4	Air	SUP	E16	Same as TLD
5	TLD (b)	SP	ESE11	Palo Verde School
6	TLD (b)	Control	SSE31	APS Gila Bend substation
6A	Air (b)	Control	SSE13	Old US 80
7	TLD (b)	SP	SE7	Old US 80 and Arlington School Rd.
7A	Air	SUP	ESE3	Arlington School
8	TLD (b)	OR	SSE4	Southern Pacific Pipeline Rd.
9	TLD (b)	OR	S5	Southern Pacific Pipeline Rd.
10	TLD (b)	OR	SE5	355th Ave. and Elliot Rd.
11	TLD (b)	OR	ESE5	339th Ave. and Dobbins Rd.
12	TLD (b)	OR	E5	339th Ave. and Buckeye-Salome Rd.
13	TLD (b)	IR	NI	N site boundary
14	TLD (b)	IR	NNE2	NNE site boundary
14A	Air (b)		NNE2	371st Ave. and Buckeye-Salome Rd.
15	TLD (b)	IR	NE2	NE site boundary, WRF access road
15	Air (b)		NE2	Same as TLD
16	TLD (b)	IR	ENE2	ENE site boundary
17	TLD (b)	IR	E2	E site boundary
17A	Air	SUP	E3	351st Ave.
18	TLD (b)	IR	ESE2	ESE site boundary
19	TLD (b)	IR	SE2	SE site boundary
20	TLD (b)	IR	SSE2	SSE site boundary

TABLE 6-4

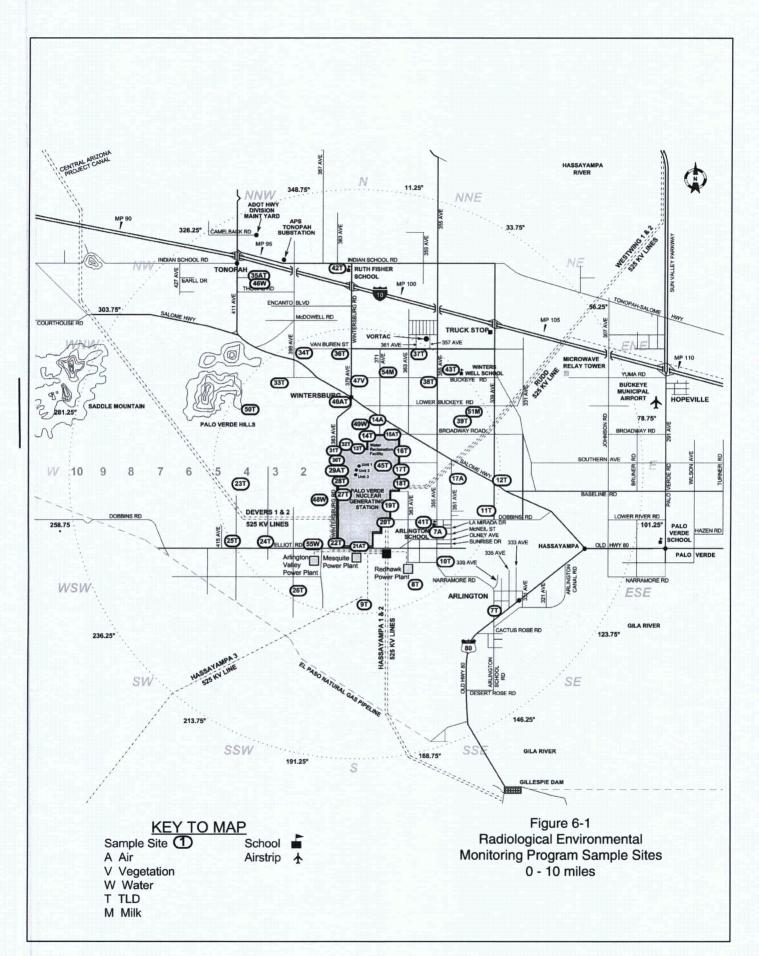
RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS

SAMPLE SITE	SAMPLE TYPE	NOTE (d)	LOCATION DESIGNATION (a)	LOCATION DESCRIPTION (c)
21	TLD (b)	IR	S3	S site boundary
21	Air	SUP	S3	Same as TLD
22	TLD (b)	IR	SSW3	SSW site boundary
23	TLD (b)	OR	W5	N of Elliot Rd
24	TLD (b)	OR	SW4	N of Elliot Rd.
25	TLD (b)	OR	WSW5	N of Elliot Rd.
26	TLD (b)	OR	SSW4	Duke Property
27	TLD (b)	IR	SW 1	SW site boundary
28	TLD (b)	IR	WSW1	WSW site boundary
29	TLD (b)	IR	W 1	W site boundary
29	Air (b)		W1	Same as TLD
30	TLD (b)	IR	WNW1	WNW site boundary
31	TLD (b)	IR	NW1	NW site boundary
32	TLD (b)	IR	NNW1	NNW site boundary
33	TLD (b)	OR	NW4	S of Buckeye Rd.
34	TLD (b)	OR	NNW5	395th Ave. and Van Buren St.
35	TLD (b)	SP	NNW8	Tonopah
35	Air	SUP	NNW8	Same as TLD
36	TLD (b)	OR	N5	Wintersburg Rd. and Van Buren St.
37	TLD (b)	OR	NNE5	363rd Ave. and Van Buren St.
38	TLD (b)	OR	NE5	355th Ave. and Buckeye Rd.
39	TLD (b)	OR	ENE5	343rd Ave. N of Broadway Rd.
40	TLD (b)	SP	N2	Wintersburg
40	Air (b)		N2	Same as TLD
41	TLD	SUP	ESE3	Arlington School
42	TLD (b)	SP	N8	Ruth Fisher School
43	TLD	SUP	NE5	Winters Well School

TABLE 6-4

RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS

SAMPLE SITE	SAMPLE TYPE	NOTE (d)	LOCATION DESIGNATION (a)	LOCATION DESCRIPTION (c)
44	TLD (b)	Control	ENE35	El Mirage
45	TLD	SUP Transit Control	ONSITE	Central lab, lead pig
46	TLD (b)	SP	ENE30	Litchfield Park School
46	Water (b)	WD	NNW8	Local residence
47	TLD	SUP	E35	Littleton School
47	Vegetation (b)		N3	Local residence
48	TLD	SUP	E24	Jackrabbit Trail
48	Water (b)	WD	SW1	Local residence
49	TLD	SUP	ENE11	Palo Verde Rd.
49	Water (b)	WD	N2	Local residence
50	TLD (b)	OR	WNW5	S of Buckeye-Salome Rd.
51	Milk (b)		ENE5	Local residence (goats)
53	Milk (b)	Control	NE30	Local residence (goats)
54	Milk (b)		NNE4	Local residence (goats)
55	Water	WD SUP	SW3	Local residence
57	Ground Water (b)	WG	onsite	Well 27ddc
58	Ground Water (b)	WG	onsite	Well 34abb
59	Surface Water (b)	WS	onsite	Evaporation Pond #1
60	Surface Water (b)	WS	onsite	85 acre Water storage reservoir
61	Surface Water (b)	WS	onsite	45 acre Water storage reservoir
62	Vegetation (b)	Control	ENE26	Commercial produce company
63	Surface Water (b)	WS	onsite	Evaporation Pond #2
64	Surface Water (b)	WS	onsite	Evaporation Pond #3

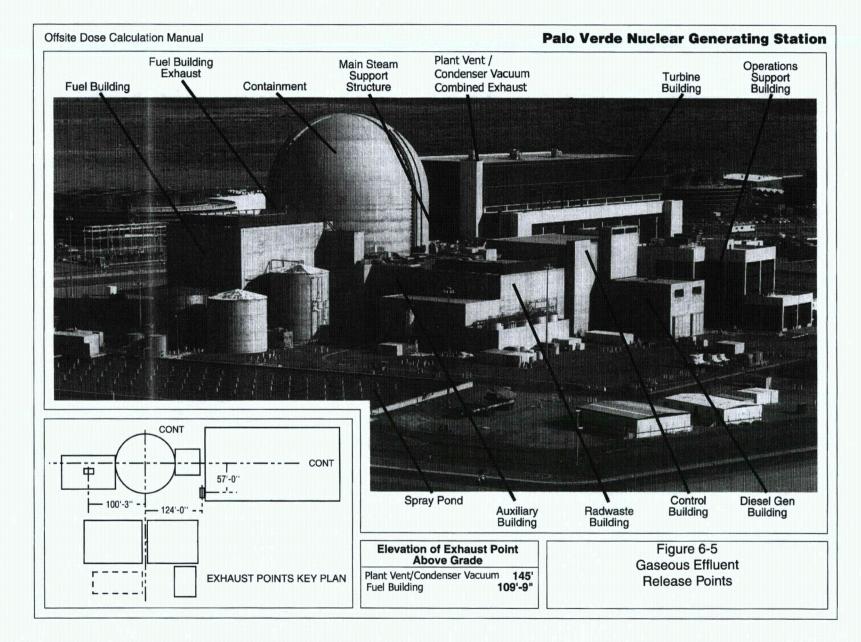

1

I

,

NOTES: (a) Distance and direction are relative to the Unit 2 containment, rounded to the nearest mile.

- (b) These samples fulfill the requirements of the ODCM, Table 6-1.
- (c) Refer to Figure 6-1 and Figure 6-2 for relative locations of sample sites.
- (d) IR inner ring
 - OR outer ring
 - SP school or population center
 - WS waterborne surface
 - WG waterborne ground
 - WD waterborne drinking
 - SUP -designated supplemental sampling location


78

ODCM Rev. 26

Figure 6-3 Radiological Environmental Monitoring Program Sample Sites 35 - 75 Miles DELETED Figure 6-4 Site Exclusion Area Boundary DELETED

Refer to UFSAR Figure 2.1-4

.

81

ODCM Rev. 26

Figure 6-6 Low Population Zone DELETED

Refer to UFSAR Figure 2.1-15

ODCM Rev. 26

,

7.0 RADIOLOGICAL REPORTS

7.1 Requirement: Annual Radioactive Effluent Release Report *

Routine Annual Radioactive Effluent Release Reports covering the operation of the units during the previous calendar year shall be submitted in accordance with Technical Specification 5.6.3.

The Annual Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof.

The Annual Radioactive Effluent Release Report shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability**. This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. This same report shall also include an assessment of the radiation doses from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY (Figure 6-4) during the report period. All assumptions used in making these assessments, i.e., specific activity, exposure time and location, shall be included in these reports. The meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses. The assessment of radiation doses shall be performed in accordance with the methodology and parameters in the ODCM.

The Annual Radioactive Effluent Release Report shall also include an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year to show conformance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. Acceptable methods for calculating the dose contributions are given Section 5.0 and Regulatory Guide 1.109 Rev. 1, October 1977.

The Annual Radioactive Effluent Release Report shall also include information required by the Technical Requirements Manual, Section 5.0.600.1.

- * A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit.
- ** In lieu of submission with the Annual Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

The Annual Radioactive Effluent Release Reports shall include the following information for each class of solid waste (as defined by 10 CFR Part 61) shipped offsite during the report period:

- a. Container volume,
- b. Total curie quantity (specify whether determined by measurement or estimate),
- c. Principal radionuclides (specify whether determined by measurement or estimate),
- **d.** Source of waste and processing employed (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms),
- e. Type of container (e.g., LSA, Type A, Type B, Large Quantity), and
- f. Solidification agent or absorbent (e.g., cement, urea formaldehyde).

The Annual Radioactive Effluent Release Reports shall include a list and description of unplanned releases from the site to UNRESTRICTED AREAS of radioactive materials in gaseous and liquid effluents made during the reporting period.

Changes to the ODCM shall be submitted in the form of a complete, legible copy as part of or concurrent with the Annual Radioactive Effluent Release Report for the period of the report in which any change in the ODCM was made. Changes made to the Process Control Program shall be submitted with the Annual Radioactive Effluent Release Report for the period of the report in which any change in the Process Control Program was made.

7.2 Requirement: Annual Radiological Environmental Operating Report *

Routine Annual Radiological Environmental Operating Reports covering the operation of the units during the previous calendar year shall be submitted by May 15 of each year in accordance with Technical Specification 5.6.2.

The Annual Radiological Environmental Operating Reports shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental surveillance activities for the report period, including a comparison with preoperational studies, with operational controls as appropriate, and with previous environmental surveillance reports, and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use censuses required by Section 6.2.

The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in Table 6-4 and Figure and Figure 6-2 as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

The reports shall also include the following: a summary description of the radiological environmental monitoring program; at least two legible maps** covering all sampling locations keyed to a table giving distances and directions from the centerline of one reactor; the results of licensee participation in the Interlaboratory Comparison Program, required by Section 6.3; discussion of all deviations from the sampling schedule of Table 6-1; and discussion of all analyses in which the LLD required by Table 6-3 was not achievable.

- * A single submittal may be made for a multiple unit station.
- ** One map shall cover stations near the SITE BOUNDARY; a second shall include the more distant stations.

APPENDIX A DETERMINATION OF CONTROLLING LOCATION

The controlling location is the location of the MEMBER OF THE PUBLIC who receives the highest doses.

The determination of a controlling location for implementation of 10CFR50 for radioiodines and particulates is known to be a function of:

- (1) Isotopic release rates
- (2) Meteorology
- (3) Exposure pathway
- (4) Receptor's age

The incorporation of these parameters into Equation 5-2 results in the respective equations at the controlling location. The isotopic release rates are based upon the source terms calculated using the PVNGS Environmental Report, Operating License Stage, Table 3.5-12, without carbon.

All of the locations and exposure pathways, identified in the 1984 Land Use Census, have been evaluated. These include cow milk ingestion, goat milk ingestion, vegetable ingestion, inhalation, and ground plane exposure. An infant is assumed to be present at all milk pathway locations. A child is assumed to be present at all vegetable garden locations. The ground plane exposure pathway is only considered to be present where an infant is not present. Naturally, inhalation is present everywhere an individual is present.

For the determination of the controlling locations, the highest X/Q and D/Q values, based on the 9 year meteorological data base, for the vegetable garden, cow milk, and goat milk pathways, are selected for each unit. The receptor organ doses have been calculated at each of these locations. Based upon these calculations, it is determined that the controlling receptor pathway is a function of unit location. For Unit 1, the controlling receptor is a garden-child pathway; for releases from Unit 2 and Unit 3 the controlling receptor is a cow milk-infant pathway. These determinations are based upon Table 4-16, 4-17, or 4-18, which, in turn, is based upon the 1984 Land Use Census. Locations of the nearest residences, gardens and milk animals, as determined in the 1984 Land Use Census, are given in Table 4-16, 4-17, and 4-18.

APPENDIX B BASES FOR REQUIREMENTS

B-2.1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/trip setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, 64 of Appendix A to 10 CFR PART 50.

There are two separate radioactive gaseous effluent monitoring systems: the low range effluent monitors for normal plant radioactive gaseous effluents and the high range effluent monitors for post-accident plant radioactive gaseous effluents. The low range monitors operate at all times until the concentration of radioactivity in the effluent becomes too high during post-accident conditions. The high range monitors only operate when the concentration of radioactivity in the effluent is above the setpoint in the low range monitors.

B-3.1 GASEOUS EFFLUENT - DOSE RATE

This requirement provides reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRICTED AREA, either at or beyond the SITE BOUNDARY, in excess of the design objectives of Appendix I to 10 CFR part 50. This requirement is provided to ensure that gaseous effluents from all units on the site will be appropriately controlled. It provides operational flexibility for releasing gaseous effluents to satisfy the Section II.A and II.C design objectives of Appendix I to 10 CFR part 50. For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. Examples of calculations for such MEMBERS OF THE PUBLIC, with the appropriate occupancy factors, shall be given in the ODCM. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrems/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/year. This requirement does not affect the requirement to comply with the annual limitations of 10 CFR 20.1301(a).

This requirement applies to the release of radioactive materials in gaseous effluents from all reactor units at the site.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLD). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

B-3.2 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO ONSITE EVAPORATION PONDS - CONCENTRATION

This requirement is provided to ensure that the annual total effective dose equivalent to individual members of the public from the licensed operation does not exceed the requirements of 10 CFR Part 20, due to the accumulated activity in the evaporation ponds from the secondary system discharges.

Restricting the concentrations of the secondary liquid wastes discharged to the onsite evaporation ponds will restrict the quantity of radioactive material that can accumulate in the ponds. This, in turn, provides assurance that in the event of an uncontrolled release of the pond's contents to an UNRESTRICTED AREA, the resulting total effective dose equivalent to individual members of the public at the nearest exclusion area boundary will not exceed the requirements of 10 CFR Part 20.

This requirement applies to the secondary system liquid waste discharges of radioactive materials from all reactor units to the onsite evaporation ponds.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLD). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

B-4.1 GASEOUS EFFLUENT - DOSE, Noble Gases

This requirement is provided to implement Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. This requirement implements the guides set forth in Section II.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

B-4.2 GASEOUS EFFLUENT - DOSE - Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Days

This requirement is provided to implement the requirements of Sections II.C, III.A, IV.A of Appendix I, 10 CFR Part 50. This requirement is the guide set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The ODCM calculational methods specified in the surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases for Light-Water-Cooled Reactors," Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man, in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of these calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat-producing animals graze with consumption of the milk and meat by man, and (4) deposition on the ground with subsequent exposure of man.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

B-4.3 GASEOUS RADWASTE TREATMENT

The OPERABILITY of the GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensures that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as reasonably achievable." This requirement implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

The minimum analysis frequency of 4/M (i.e., at least 4 times per month at intervals no greater than 9 days and a minimum of 48 times a year) is used for certain radioactive gaseous waste sampling in Table 3-1. This will eliminate taking double samples when quarterly and weekly samples are required at the same time.

B-4.4 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO ONSITE EVAPORATION PONDS - DOSE

This requirement is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. This requirement implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.

This requirement applies to the release of liquid effluents from each reactor at the site. For units with shared radwaste treatment systems, the liquid effluents from the shared system are proportioned among the units sharing that system.

B-5.1 TOTAL DOSE AND DOSE TO PUBLIC ONSITE

This requirement is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR 20.1301(d). The requirement specifies the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. Even if a site was to contain up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the reactor units (including outside storage tanks, etc.) are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, submittal of the Special Report within 30 days with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR Part 190.11 and 10 CFR Part 20.2203(a)(4), is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to other requirements for dose limitation of 10 CFR Part 20, as addressed in Section 3.2 and 3.1 of the ODCM. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle. Demonstration of compliance with the limits of 40 CFR Part 190 or with the design objectives of Appendix I to 10 CFR Part 50 will be considered to demonstrate compliance with the 0.1 rem limit of 10 CFR 20.1301.

B-6.1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

The Radiological Environmental Monitoring Program required by this requirement provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of MEMBERS OF THE PUBLIC resulting from the station operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring. The initially specified monitoring program will be effective for at least the first 3 years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLD). The LLDs required by Table 6-3 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

B-6.2 LAND USE CENSUS

This requirement is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the radiological environmental monitoring program are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 m² provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and (2) a vegetation yield of 2 kg/m².

B-6.3 INTERLABORATORY COMPARISON PROGRAM

The requirement for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

APPENDIX C

DEFINITIONS

Note:

The following definitions were derived from the Palo Verde Nuclear Generating Station Technical Specifications. These selected definitions support those portions of the Technical Specifications which were transferred to the ODCM and have been incorporated into the Requirements sections of the ODCM.

Definitions:

The defined terms of this section appear in capitalized type and are applicable throughout the Requirements sections of this ODCM.

ACTION

ACTION shall be that part of a requirement which prescribes remedial measures required under designated conditions.

CHANNEL CALIBRATION

See the Technical Specification definition.

CHANNEL CHECK

See the Technical Specification definition.

CHANNEL FUNCTIONAL TEST

See the Technical Specification definition.

DOSE EOUIVALENT I-131

See the Technical Specification definition.

FREQUENCY NOTATION

The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table C-1.

GASEOUS RADWASTE SYSTEM

A GASEOUS RADWASTE SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

MEMBER(S) OF THE PUBLIC

MEMBER(S) OF THE PUBLIC shall include all persons who are not occupationally associated with the plant. This category does not include employees of the licensee, its contractors, or vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational, or other purposes not associated with the plant.

APPENDIX C

DEFINITIONS (Continued)

OPERABLE-OPERABILITY

A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s), and when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component or device to perform its function(s) are also capable of performing their related support function(s).

<u>MODE</u>

See the Technical Specification definition.

PROCESS CONTROL PROGRAM

The PROCESS CONTROL PROGRAM shall contain the current formulas, sampling, analyses, test, and determinations to be made to ensure that processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10 CFR Parts 20, 61, and 71, State regulations, burial ground requirements, and other requirements governing the disposal of solid radioactive waste.

PURGE-PURGING

PURGE or PURGING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

RATED THERMAL POWER

See the Technical Specification definition.

SITE BOUNDARY

The SITE BOUNDARY shall be that line beyond which the land is neither owned, nor leased, nor otherwise controlled by the licensee.

SOLIDIFICATION

SOLIDIFICATION shall be the conversion of radioactive wastes from liquid systems to a homogeneous (uniformly distributed), monolithic, immobilized solid with definite volume and shape, bounded by a stable surface of distinct outline on all sides (free-standing).

SOURCE CHECK

A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a source of increased radioactivity.

THERMAL POWER

THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

APPENDIX C

DEFINITIONS (Continued)

UNRESTRICTED AREA

An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY access to which is not controlled by the licensee for the purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the SITE BOUNDARY used for residential quarters or for industrial, commercial, institutional, and/or recreational purposes.

VENTILATION EXHAUST TREATMENT SYSTEM

A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal adsorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment. Such a system is not considered to have any effect on noble gas effluents. Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

VENTING

VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

TABLE C-1

FREQUENCY NOTATION

NOTATION	FREQUENCY	
S	At least once per 12 hours.	
D	At least once per 24 hours.	
W	At least once per 7 days.	
4/ M	At least 4 times per month at intervals no greater than 9 days and a minimum of 48 times per year.	
М	At least once per 31 days.	
Q	At least once per 92 days.	
SA	At least once per 184 days.	
ANNUALLY	At least once per 365 days	
R	At least once per 18 months.	
Р	Completed prior to each release.	
S/U	Prior to reactor startup.	
N.A.	Not Applicable.	

APPENDIX D REFERENCES

- 1 Title 10, Code of Federal Regulations, Part 20, "Standards for Protection Against Radiation."
- 2 Title 10, Code of Federal Regulations, Part 50, "Domestic Licensing of Production and Utilization Facilities."
- 3 Title 40, Code of Federal Regulations, Part 190, Environmental Radiation Protection Standards for Nuclear Power Operations."
- 4 Federal Register, Vol. 58, No. 245, Thursday, December 23, 1993, Notices, pages 68170-68179.
- 5 Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974.
- 6 Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977.
- 7 Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977.
- 8 Regulatory Guide 4.1, "Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants," Revision 1, April 1975.
- 9 NUREG-0133, Preparation of Radiological Effluent Technical Specifications For Nuclear Power Plants, Oct. 1978.
- 10 NUREG 0841, "Final Environmental Statement Related to the Operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3", Section 5.9.1.4, February, 1982.
- 11 NUREG-1301, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactor", Arpil 1991.
- 12 Environmental Report Operating License Stage, Palo Verde Nuclear Generating Station, December 1981.
- 13 PVNGS Updated Final Safety Analysis Report
- 14 Calculation 13-NC-ZY-252, "Annual Average Dose from Normal Operation Liquid Discharge from the Evaporation Pond", Rev 0.
- 15 Calculation 13-NC-ZY-253, "Annual Average Dose from Normal Operation Airborne Direct and Sky Shine from the Evaporation Pond", Rev 0.
- 16 Calculation 13-NC-ZY-254, "Radiation Dose Due to an Evaporation Pond Dike Failure During a Seismic Event", Rev. 0.

APPENDIX F

Changes to the PCP

PVNGS ARERR 2012

Radwaste Process Control Program	76DP-0RP03	Revision 6
Appendix A, Page 1 of 1 (Sample)		'ample)

PCP Revision Notice

Date:04/04/12 Page	of <u>2</u>			
Originator: <u>Terrance Dickinson</u> Ext.: <u>5491</u>				
Description of Revision:				
This PCP revision notice is for the inclusion of the EnergySolutions Self-Engaging Rapid Dewatering System (SERDS) into the current procedure 76DP-0RP03, "Radwaste Process Control Program" and justification for use of SERDS at PVNGS for the dewatering and drying of bead resin. Revision is NOT reportable - PRB review, R.P. Director Approval, and reporting in the				
 annual Radioactive Effluent Release Report are not required. Revision is reportable - Requires PRB review, R.P. Director Approval, reporting in the annual Radioactive Effluent Release Report, and a justification for the revision below. 				
Justification for Revision: (Ensure the following items are addressed) (UFSAR 13.5.2.2.E)				
1. Sufficient information to support the change together with the appropriate an evaluations justifying the change(s), and	alyses or			
2. A determination that the change will maintain the overall conformance of the solidif product to existing requirements of Federal, State, or other applicable regulations.	ied waste			

This revision is considered reportable and requires PRB review/approval, RP Director Approval and reporting in the Annual Radioactive Effluent Release Report as it involves a change to processing parameters that could cause an alteration in the final waste product characteristics due to changing vendors and processing equipment. The SERDS system will be operated in accordance with PVNGS procedure 76RP-0RW82, "Self-Engaging Rapid Dewatering System (SERDS) Operation". The 76RP-0RW82 procedure was developed from the EnergySolutions operating procedure, CS-OP-PR-045, Revision 1, "Setup and operation of EnergySolutions Self-Engaging Rapid Dewatering System, see Attachment 1. Additional requirements identified during review of the CNSI Non-Proprietary Topical Report, RDS-1000 Radioactive Waste Dewatering System RDS-25506-01-NP, Revision 1, March 1988, the vendor and PVNGS leak testing requirements and the remote sampler instructions were included in development of procedure 76RP-0RW82.

The NRC approved Topical Report RDS-25506-01-NP, see Attachment 2, including appendices was reviewed and found to be similar to the approved resin drying Proprietary Topical Report No. TP-02-P-A, for the previously approved Pacific Nuclear Dewatering System used at PVNGS. (Continued)

Use additional pages as required.

76DP-0RP03, Appendix-A

Page _____ of ____

Radwaste Process Control Program	76DP-0RP03	Revision 6
Appendix A, Page 1 o	f1 (S	'ample)

Items from the Topical Report, RDS-25506-01-NP that required further clarification were addressed by EnergySolutions in a question and answer format, see Attachment 3, EnergySolutions correspondence dated March 30, 2012.

Review of the PVNGS UFSAR and the EnergySolutions SERDS process did not identify any required changes to the UFSAR for implementation of this new waste process. Specifically, UFSAR Section 11.4.2.3.1 describes spent resins processing by transferring the waste to approved disposal containers which are dewatered and then dried to meet burial requirements. Complete waste processing and absence of free liquids prior to shipment is assured by the implementation of the Process Control Program (PCP) consistent with the recommendations of Branch Technical Position ETSB 11-3. In addition, review of NUREG-0800, Solid Waste Management Systems did not identify any implementation or operating impacts with the EnergySolutions SERDS process at PVNGS.

Review of the PVNGS Technical Requirements Manual (TRM) for applicability to the SERDS process implementation identified TRM 5.0.500.17 which describes the Process Control Program purpose. The NRC approved Topical Report, RDS-25506-01-NP, SERDS operating procedure 76RP-0RW82 and previously evaluated PVNGS procedures contain the required information to demonstrate compliance with applicable parts of 10CFR Part 20 "Standards for Protection Against Radiation", Part 61 "Licensing Requirements for Land Disposal of Radioactive Waste" and Part 71 "Packaging and Transportation of Radioactive Material" including burial site requirements for the disposal of solid radioactive waste. The NRC correspondence dated October 27th 1988 included in the attached NRC approved Topical Report, RDS-25506-01-NP, contains the specific information evaluation for ALARA, burial and transportation requirements.

The above documentation review contain sufficient information to support this change and it was determined that the addition of the EnergySolutions Self-Engaging Rapid Dewatering System will maintain overall conformance with the PVNGS Process Control program.

As described in procedure 75DP-0RP04, Step 3.2.2 the Radiological Services Department shall ensure the PCP related information is included in the Annual Radioactive Effluent Release Report. This is accomplished by completion of PRI-4, CRAI 4152533.

Approved By:	Gray, Thomas S(Z99610)/	i Digitally signed by Gray. Thomas 5(299610) DN: cn=Gray. Thomas 5(299610) Degaçon: I am approving this document	Date:
	Radiological Se	Date: 2012.05.08 09:20:24-07'00' Prvices Department Leader	
	nuuioiogicui se	r vices Depuriment Leuder	

As stated in the PVNGS UFSAR 13.5.2.2.E any changes to the Process Control Program shall become effective after review and acceptance by the PRB (refer to subsection 13.4.2.6.h) and approval by the Director, Radiation Protection.

Plant review B minutes.	oard approval was ob	otained on	as documented in meeting	r >
Approved By:	Moeller, Carl (Z	Digitally signed by Moeller, Carl (2009119) DN: cn=Moeller, Carl (209119) Date: 2012.05.17 13:17:25 -07'00'	zo9119) Date:	
Use additional pag	Gaffney, John	Difection Director Digitally signed by Gaffney, John P(Z3645) DN: cn=Gaffney, John P(Z36459) Beason: I am approving this document Date: 2012.05.23 07:11:20 -07'00'	59) 76DP-0RP03, Appe	endix-A

Plant Review Board Monthly Meeting 12-008 May 15, 2012

I. VERIFICATION OF QUORUM

Members:

M. McGhee D. Coxon G. Sowers T. Hook	(Alt Chair – Attachment A)
G. Bucci	(Alternate)
K. Parrish	(Alternate)
T. Gray	(Alternate)
J. Reynolds	(Alternate)
H. McKaig	(Alternate)
M. Van Dop	(Alternate)

Minutes recorded by: E. O'Neill Guests:

B. Ferguson	S. Bittner	R. Wilferd
D. Kanitz	W. Harnden	T. Curtis
D. Hautala	R. Roehler	K. Moeller
R. Atkisson	F. Swirbul	R. Stroud
T. Dickenson		

The meeting was 17 minutes late starting because the required quorum was not met. Per 02DP-0AP01 Plant Review Board step 4.2.2 "A PRB minimum quorum consists of six individuals: a Chair (or designated alternate Chair), at least three primary members, and no more than two alternate members." The meeting initially lacked three primary members; as Mr. Coxon was scheduled to chair the meeting he could not be counted as a primary member. The other primary members present were Mr. Sowers and Mr. Hook, along with seven alternate members. As a work-a-round; Mr. Berryman, site plant manager, designated Mr. McGhee as the alternate chair per step 4.2.1 of 02DP-0AP01 (Attachment A). Therefore, Mr. Coxon could then be counted as a primary member and the quorum requirements were met. The initial lack of a quorum was documented on PVAR 4165351.

The meeting convened at 1317 after receiving written designation that Mr. McGhee would be the alternate chair; the quorum and member training qualification review was then completed by Mr. McGhee and second verified by Mr. O'Neill.

II. PREVENT EVENTS BRIEFING

Mr. McGhee conducted a pre-job briefing which included an update to plant status with assistance and interaction of board members. Relevant operating experience was discussed.

Plant Review Board Monthly Meeting 12-008 May 15, 2012

Members reviewed the current spreadsheet developed for trending PRB meeting attendance (Attachment B). There was board discussion on how to document on the PRB Attendance indicator the issue with not meeting a quorum. On future indicators the issue will be a footnote for the May 15th meeting. The current PRB indicator was developed to track and trend diversity of the organizations at the meetings, not whether the attendance was by a primary or alternate member.

III AGENDA

Mr. McGhee reviewed the agenda (Attachment C) and discussed governing procedure 02DP-0AP01 Plant Review Board, although it is "information" use, it was present and referenced concerning the quorum requirements to ensure compliance.

IV. MEETING MINUTES

12-005 Unit 3 Restart from Refueling

Mr. Coxon made a motion to accept Meeting Minutes 12-005; motion was seconded by Mr. Hook and unanimously approved by the board.

12-006 Unit 3 Restart from a Reactor Trip

Mr. Coxon made a motion to accept Meeting Minutes 12-006 (correct spelling error); motion was seconded by Ms. Parrish and approved by the board with 1 alternate member abstaining.

12-007 April Monthly

Ms. Parrish made a motion to accept Meeting Minutes 12-007 (correct 1 spelling error); motion was seconded by Mr. Bucci and approved by the board with 1 alternate member abstaining.

V. MONTHLY PRB REPORTS

Unit Report and Aggregate Impact of Degraded and Non-Conforming Conditions by Safety Function

Mr. Ferguson gave a presentation of the Unit Report and the Aggregate Impact of Degraded and Non-Conforming Conditions by Safety Function for Unit 1. (Attachment D)

There was considerable board discussion on the Spray Pond concrete structure below the water line cracking. The below waterline cracks are not susceptible to the cracking mechanism of the above waterline cracks and have been evaluated per a POD to not impact the structural integrity of the spray pond. The discussion concentrated on the stations response to the issue; although the cracks were identified 2 years ago recently one had

Plant Review Board Monthly Meeting 12-008 May 15, 2012

grown significantly. There currently is no plan or corrective action that was known to the presenter or the board for dealing with the underwater cracking. The Plant Review Board requested the subject matter expert of the Spray Pond cracking issues give a presentation at the June monthly PRB meeting on the significance of the below the waterline cracks, and the urgency of a plan to repair the cracks. ACT 4165566

There was also board discussion on the timeliness of actions to address the voiding in both trains of the Essential Chill Water system. The board was informed that the site general manager had recently challenged the organization to rectify the situation. Mr. Bucci added that a meeting was just held with senior management, Chemistry, Operations and Engineering and more aggressive actions are planned, starting with the surge tank where it is believed the microbiological condition originates.

Reactivity Management Report

Mr. Ferguson presented the Reactivity Management Report for April. (Attachment E). There was one Significance Level 3 event, four Significant Level 4 events and five Significance Level 5 events affecting the reactivity management performance indicator for the month of April. PVNGS site performance is in the fourth quartile when compared with other utilities. Unit 1 is in the fourth quartile with a current index value of 79.1. Unit 2 is in the fourth quartile with a current index value of 79.6.

During the March PRB meeting the members made four recommendations; following are the Reactivity Management Committee answers to those recommendations. (ACT 4143018)

- Determine if Operations input or ownership is desired for Reactivity Management associated CRDRs belonging to other departments and if so determine if a change to a plant procedure or policy is needed. Answer: The Reactivity Management Committee consensus was it would be beneficial to the Site, if Operations partnered with the CRDR owner in an oversight role in the corrective action process and have CRDR approval signature for Significance level 1, 2 and 3 events.
- 2) Review the use of the Pink Reactivity Management Clock Reset (should we have a separate Clock for Reactivity Management or set thresholds which would generate a Site Clock Reset or Dept Clock Reset)

Plant Review Board Monthly Meeting 12-008 May 15, 2012

Answer: The Reactivity Management Committee consensus was that the Pink Reactivity Management clock resets add value to the Site and draw additional attention to the Highest Nuclear Safety Function.

3) Determine if a pictorial representation of how other Departments besides Operations can affect Reactivity would be useful (it was suggested that TMI has a good pictorial that we may want to use)

Answer: Reactivity Management Committee consensus was that it would add value to the Site.

4) Ensure any recently completed ACE or SIG CRDRs for Reactivity related event are presented to the PRB at the next monthly meeting.

Answer: The Reactivity Management Committee Chair person will identify the recently completed Reactivity Management ACE and Significant CRDRs to the PRB Secretary who will schedule the appropriate CRDR owners to conduct a presentation to the PRB.

The last recommendation generated discussion on what specifically the PRB would be accomplishing with a review. Currently, the Reactivity Management Committee reviews any CRDRs that could affect reactivity, ACE and Significant CRDRs are also reviewed by CARB, and an additional review is performed by NAD as a 'backend' review. Mr. McGhee agreed to help draft a process to clearly state what the PRB would be looking for during their review.

Site Operational Focus Indicators (OFIs)

At the April meeting the members questioned the PRBs role in reviewing the indicators – specifically, it was hard to tell what if any of the indicators were impacting nuclear safety. Based on board recommendation, Mr. Andrews took the following action (ACT 4144092)

Action from the April 17, 2012, Monthly Plant Review Board meeting. The PRB Chair Pete Borchert, PRB Alternate Chair Doug Coxon, and PRB Alternate Chair for 4/17/12 George Andrews, discuss and determine the PRBs role in reviewing the Operational Focus Indicators. The board does not feel adequate information is available in the performance indicators to determine if there are any nuclear safety concerns.

The ACT was closed by Mr. Andrews: "I met with alternate chair Doug Coxon and we agreed that the "PRB related" items (e.g. OWAs, DEG/NC conditions, etc.) in the OFI are included elsewhere in the standard PRB reports. As such, the OFI will not be included in future PRBs following the May PRB wherein this conclusion is discussed." Mr. Borchert also agreed.

Plant Review Board Monthly Meeting 12-008 May 15, 2012

During board discussion it was noted that the issues that could affect nuclear safety were covered on other reports routinely reviewed by the PRB with the exception of fire impairments. Mr. Coxon stated they could easily be included in the aggregate report.

Mr. Coxon made a motion for the PRB to no longer review the OFIs as regular monthly business and to include fire impairments in the aggregate reports. Mr. McKaig seconded the motion and it passed unanimously.

Nuclear Regulatory Affairs Monthly Summary Reports for April 2012

Mr. Hautala presented the Nuclear Regulatory Affairs Monthly Summary Reports for April. (Attachment G). During the month of April, one event notification (ENS) was issued that concerned manually tripping Unit 3 during low power physics testing.

VI. LDCR 12-T001 Changes to the cyber security plan implementation schedule.

Ms. Bittner gave a presentation (Attachment H) and background information on the reason for the LDCR, she emphasized there would be no change to the originally committed due dates, only a change in the scope of what would be provided on those dates. Based on new analysis concerning cyber focused target sets, new requirements were issued by the NRC. These new requirements have impacted PVNGS' original plan and actions. Ms. Bittner stated the NRC is expecting this LDCR and that approximately 60% of the industry already has a similar revision in their commitments that PVNGS is requesting. After board questions and challenges; Ms. Parish made a motion to accept LDCR 12-T001; it was seconded by Mr. McKaig and unanimously passed.

VII. Process Control Program

Mr. Dickenson gave a presentation (see Attachment I) on the proposed changes to the Radwaste Process Control Program. Essentially, the 1980's vintage equipment for drying the resin waste is being replaced with new equipment with new technology resulting in an average drying time of 5 hours vs. 8 hours. Additionally the new technology measures the end results by the amount of water that was removed from the resin vs. the humidity remaining after drying. The change does not impact the FSAR description or requirements. There was considerable board discussion on the process for approval of the new system. Because it is considered a "tool" and is not permanently installed plant equipment it does not require reviews that are customary for new plant equipment or plant modifications (e.g. 50.59). As a "Learning Opportunity" Mr. McGhee requested Mr. Dickenson provide him and Mr. Van Dop with some history of past Radwaste Process Control Program revisions and the

Plant Review Board Monthly Meeting 12-008 May 15, 2012

change management that was used. Mr. McKaig made a motion to approve the revision to the process control program; it was seconded by Mr. Hook and approved by the board with 1 alternate member abstaining.

VIII. Surveillance Frequency Control Program

The board had approved an LDCR to "Relocate Surveillance Frequencies to License Control – RITSTF Initiative 5B" on March 4, 2011, with the caveat that the PRB would approve the final program procedure. At the April monthly PRB meeting, during review of the draft procedure, the board determined 01DP-0RS02, "Surveillance Test Risk Informed Documented Evaluation (STRIDE) Process" needed a revision to remove the PRB as a technical inline approver – as their role would be oversight of the process from a nuclear safety perspective.

Following the April meeting, Mr. Wilferd revised the procedure and sent it to the board members for review and comment. Five board members provided 38 comments; Ms. Parish had not yet thoroughly reviewed the answers\resolution to her comments. Mr. Van Dop made a motion to approve the surveillance frequency program procedure provided Ms. Parrish is satisfied with the resolution to her comments. It was seconded by Mr. Gray and unanimously passed. [Re: CRAIs 4098316 & 4098311]

NOTE: On May 18th Ms. Parrish responded that "I'm satisfied with Arlie's resolution of my comments on 01DP-0RS01. I was able to meet with the SFCP team and NIRM today, and have no open issues."

IX. MEETING ADJOURNMENT

Mr. Coxon made a motion to adjourn. The motion to adjourn was seconded by Ms. Parish, with no nuclear safety concerns noted and no dissenting votes the meeting was adjourned at 1613.

Submitted by: PR	B Technical Assistant
O'Neill, Edward A(Z98979)	Digitality signed by O'Well, Edward A1298979) Protection Concell, Edward A12989/9) - Resturg, Lam the author of this Jocument Date: 2012.07.12 12:31:54 -0700*
Approved by:	PRB Chairman
Borchert, (È Digitally signed by Borchert, Peter (Z13982) DN: cn=Borchert, Peter
Peter /	(ZI 3982) Reason: I am approving this
(Z13982)	صحكالالقتلين Date: 2012:07.17 12:51:43 -07'00'

Page 6 of 6