P.O. Box 63 Lycoming, NY 13093

NINE MILE POINT NUCLEAR STATION

May 1, 2012

U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

ATTENTION: Document Control Desk

SUBJECT: Nine Mile Point Nuclear Station Unit No. 2; Docket No. 50-410

Radioactive Effluent Release Report, January - December 2011

In accordance with 10 CFR 50.36a and the Nine Mile Point Unit 2 (NMP2) Technical Specifications, enclosed is the Radioactive Effluent Release Report for the period January through December 2011.

Included in this report is a summary of gaseous and liquid effluents and solid waste released from the station during the reporting period (Attachments 1 - 6), a summary of revisions to the Offsite Dose Calculation Manual (ODCM) and the Radwaste Process Control Program during the reporting period (Attachments 7 and 8), and an explanation as to the cause and corrective actions regarding any station liquid and/or gaseous effluent monitoring instrumentation that was non-functional for greater than 30 days (Attachment 9). Attachments 10 and 11 provide a summary and assessment of radiation doses to Members of the Public within and outside the site boundary, respectively, from liquid and gaseous effluents, as well as direct radiation, in accordance with 40 CFR 190. Attachment 12 provides a summary of the tritium results from the groundwater protection program. Attachment 13 is a copy of Revision 33 and 34 of the ODCM.

The format used for the effluent data is outlined in Appendix B of Regulatory Guide 1.21, Revision 1. Dose assessments were made in accordance with the NMP2 ODCM. During the reporting period from January through December 2011, NMP2 did not exceed any 10 CFR 20, 10 CFR 50, Technical Specification, or ODCM limits for gaseous or liquid effluents.

Should you have questions regarding the information in this submittal, please contact me at (315) 349-5219.

Very truly yours,

John J. Dosa Director Licensing

ADD

JJD/KES

Document Control Desk May 1, 2012 Page 2

٦

ø

- Enclosure: Nine Mile Point Nuclear Station, Unit 2, Radioactive Effluent Release Report, January December 2011
- cc: Regional Administrator, Region I, NRC Project Manager, NRC Resident Inspector, NRC B. Dionne, NRC

ENCLOSURE

1

NINE MILE POINT NUCLEAR STATION, UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2011

NINE MILE POINT NUCLEAR STATION - UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2011

NINE MILE POINT NUCLEAR STATION

NINE MILE POINT NUCLEAR STATION - UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

JANUARY – DECEMBER 2011

SUPPLEMENTAL INFORMATION

Facility: Nine Mile Point Unit 2 Licensee: Nine Mile Point Nuclear Station, LLC

1. <u>TECHNICAL SPECIFICATION/ODCM LIMITS</u>

A) FISSION AND ACTIVATION GASES

- 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 500 mrem/year to the whole body and less than or equal to 3000 mrem/year to the skin.
- 2. The air dose from noble gases released in gaseous effluents from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ, and during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

- 1. Improved Technical Specifications (ITS) limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001-20.2402, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity.
- 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 2 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by an on-line scintillation detector (calibrated against gamma isotopic analysis of a 4.0L Marinelli grab sample) of an isokinetic sample stream.

B) IODINES

Iodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic sample stream.

C) PARTICULATES

Activity released from the main stack and the combined Radwaste/Reactor Building vent is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus.

E) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters.

F) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analyses of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

G) C-14

The production of C-14 and the effluent dose consequences are estimates based on EPRI methodology provided in EPRI Report 1021106, *Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents*, December 2010 and NUREG-0016, *Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)*.

ATTACHMENT 1 SUMMARY DATA

¢

Page 1 of 2

Unit 1	Unit 2 X		Reporting Period January - December 2011
Liquid Efflu	ients:		
ODCM Req	uired Maximum Effluent Concentration (MEC) = 10 x 10C Average MEC - μ Ci/m! (Qtr. <u>1</u>) = NO RELEASES	_	.2402, Appendix B, Table 2, Column 2 Average MEC - μCi/ml (Qtr. <u>3</u>) = NO RELEASES
	Average MEC - µCi/ml (Qtr. 2) = NO RELEASES	5	Average MEC - µCi/ml (Qtr. <u>4</u>) = NO RELEASES
Average Er	ergy (Fission and Activation gases - MEV):	• •	······································
	Qrtr. 1: $E \overline{Y}$ = 8.97E-01 Qrtr. 2: $E \overline{Y}$ = 9.51E-01 Qrtr. 3: $E \overline{Y}$ = 5.78E-01 Qrtr. 4: $E \overline{Y}$ = 8.68E-01	$ar{E}eta = \ ar{E}eta = \ ar{$	2.98E-01 3.57E-01 2.38E-01 3.75E-01
Liquid:			······································
			· · · · · · · · · · · · · · · · · · ·
	Number of Batch Releases	0	
	Total Time Period for Batch Releases (hrs) Maximum Time Period for a Batch Release (hrs)	0.0	
	Average Time Period for a Batch Release (hrs)	0.00	
	Minimum Time Period for a Batch Release	0.00	
			1
		-	
	Total volume of water used to dilute the liquid	<u>1st</u>	2nd <u>3rd 4th</u>
	during the release period (L)	N/A	N/A N/A N/A
	Total volume of water available to dilute the liquid	<u>1st</u>	<u>2nd 3rd 4th</u>
	effluent during the report period (L)	1.11E+10	1.19E+10 1.37E+10 1.32E+10
Gaseous (E	Emergency Condenser Vent) "Not applicable for Unit 2	2''	
			1
	Number of Batch Releases	N/A	4
	Total Time Period for Batch Releases (hrs) Maximum Time Period for a Batch Release (hrs)	N/A N/A	
	Average Time Period for a Batch Release (hrs)	N/A N/A	4
	Minimum Time Period for a Batch Release	N/A	
	Winkhulff Time Fellou for a Datch Release	10/2	1
Gaseous /F	Primary Containment Purge)		
5456045 (F			
	Number of Batch Releases	13	
	Total Time Period for Batch Releases (hrs)	298.7	1
	Maximum Time Period for a Batch Release (hrs)	103.8	1
	Average Time Period for a Batch Release (hrs)	23.0	1
	Minimum Time Period for a Batch Release (hrs)	0.07	1
1		I	J
ł			
Ľ			

ATTACHMENT 1 SUMMARY DATA

¢

Page 2 of 2

Unit 1	Unit 2 <u>X</u>	-		Reporting Period January - December 2011
Abnormal Release	»s:			
A. Liquids:				
	Number of Releases	0	٦	
	Total Activity Released	N/A	Ci	
B. Gaseous:				
	Number of Releases	0		
	Total Activity Released	N/A	Ci	
			_	

) ~

.

٤

Page 1 of 1

Unit 1	Unit 2	x			Reporting Per	iod <u>January -</u>	December 2011
	GASEOUS EFFLU	JENTS - SUI	MMATION OF A	LL RELEASES	, ELEVATED A	ND GROUND I	LEVEL
			<u>1st</u> <u>Quarter</u>	<u>2nd</u> Quarter	<u>3rd</u> Quarter	<u>4th</u> <u>Quarter</u>	<u>Est. Total</u> <u>Error, %</u>
	Activation Gases						
	Release	Ci	8.24E+01	9.84E+01	1.11E+02	4.74E+01	5.00E+01
2. Aver	age Release Rate	µCi/sec	1.06E+01	1.25E+01	1.40E+01	5.96E+00	
B. lodines							
	lodine - 131	Ci	5.19E-04	5.87E-04	8.86E-04	6.95E-04	3.00E+01
2. Aver	age Release Rate for Period	µCi/sec	6.62E-05	7.45E-05	1.13E-04	8.83E-05	
C. Particula		C;	4 405 04	5 405 04		4.005.04	2.005.04
	culates with Half-lives>8days age Release Rate for Period	Ci µCi/sec	1.18E-04 1.50E-05	5.10E-04 6.47E-05	5.68E-04 7.23E-05	4.96E-04 6.30E-05	3.00E+01
	Alpha Radioactivity	Ci	0.00E+00	0.00E+00	7.86E-07	0.00E+00	2.50E+01
	······································					0.002.00	
D. Tritium							
	Release	Ci	2.17E+01	1.37E+01	1.49E+01	1.66E+01	5.00E+01
2. Aver	age Release Rate for Period	µCi/sec	2.76E+00	1.74E+00	1.90E+00	2.11E+00	
Fission ar	<u>f Tech. Spec. Limits</u> d Activation Gases						
Percent o Limit (5 m	f Quarterly Gamma Air Dose R)	%	1.75E-01	2.16E-01	1.54E-01	9.70E-02	
Percent o (10 mrad)	f Quarterly Beta Air Dose Limit	%	8.70E-03	4.40E-03	6.53E-03	3.27E-03	
	f Annual Gamma Air Dose ate (10 mR)	%	8.73E-02	1.95E-01	2.71E-01	3.19E-01	
Percent o Date (20 r	f Annual Beta Air Dose Limit to nrad)	%	4.35E-03	6.55E-03	9.80E-03	1.15E-02	
Percent o (500 mrer	f Whole Body Dose Rate Limit n/yr)	%	6.85E-03	8.41E-03	5.90E-03	3.70E-03	
Percent o mrem/yr)	f Skin Dose Rate Limit (3000	%	1.36E-03	1.66E-03	1.20E-03	7.45E-04	
<u>half-lives</u> Percent o mrem) Percent o (15 mrem	dines, and Particulates (with greater than 8 days) f Quarterly Dose Limit (7.5 f Annual Dose Limit to Date) f Organ Dose Limit (1500	% % %	1.44E-01 7.24E-02 2.92E-03	1.60E-01 1.53E-01 3.21E-03	2.30E-01 2.69E-01 4.57E-03	1.88E-01 3.64E-01 3.81E-03	
mrem) Percent o (15 mrem Percent o	f Annual Dose Limit to Date)	%	7.24E-02	1.53E-01	2.69E-01	3.64E-01	

		GA	SEOUS EFFLUENT		IFASE	
				Continuou		
les Released			<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter
	<u> Gases (1)</u>					
Argon-41		Ci	**	**	**	**
Krypton-8		Ci	**	**	**	**
Krypton-8		Ci	2.05E+01	2.57E+01	1.52E+01	8.86E+00
Krypton-8		Ci	2.16E+00	7.22E+00	**	4.93E-01
Krypton-8		Ci	3.47E+01	4.24E+01	2.34E+01	9.86E+00
Xenon-12		Ci	**	**	**	**
Xenon-13		Ci	**	**	**	**
Xenon-13	-	Ci	1.59E+01	2.23E+01	2.61E+01	5.91E+00
Xenon-13	33m	Ci	**	**	**	**
Xenon-13	35	Ci	**	**	2.48E+01	2.51E+00
Xenon-13	35m	Ci	**	**	1.80E+01	4.07E+00
Xenon-13	37	Ci	**	**	**	**
Xenon-13	38	Ci	**	**	**	1.46E+01
					• •	
lodines	1)					
Iodine-13		Ci	4.25E-04	4.48E-04	7.27E-04	6.29E-04
Iodine-13		Ci	5.81E-03	6.55E-03	7.17E-03	8.69E-03
lodine-13		Ci	**	**	**	**
	-					
Particula	tes (1)					
Chromiur		Ci	**	**	**	**
Mangane		Ci	**	**	1.69E-06	4.54E-06
Iron-55		Ci	1.22E-05	3.79E-05	**	**
Iron-59		Ci	**	**	**	**
Cobalt-58	2	Ci	**	**	**	**
Cobalt-50		Ci	8.43E-06	2.37E-05	1.33E-05	1.96E-05
Neodymi		Ci	8.43E-00 **	2.37 E-05	2.55E-06	**
Zinc-65	unn=1=1/	Ci	**	**	2.55E-00	**
Zinc-65 Strontium	20	Ci	**	**	**	5.25E-05
		-	**	**	**	5.25E-05
Strontium Niobium-		Ci	**	**	**	**
		Ci	**	**	**	**
Zirconiun		Ci	**	**	**	**
Molybder		Ci				
Cesium-1		Ci	**	**	**	**
Cesium-1		Ci	**	**	**	**
Cesium-1		Ci	**	**	**	**
Barium-1		Ci	**	**	**	**
Lanthanu	m-140	Ci	**	**	**	**
Cerium-1	41	Ci	**	**	**	**
Cerium-1	44	Ci	**	**	**	**
				_		
<u>Tritium (</u>	1)	Ci	1.11E+01	9.35E+00	1.11E+01	1.33E+01

(1) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 µCi/ml for required noble gases, 1.00E-11 µCi/ml for required particulates and gross alpha, 1.00E-12 µCi/ml for required lodines, 1.00E-11 µCi/ml for Sr-89/90 and 1.00E-06 µCi/ml for Tritium, as required by the ODCM, has been verified.

(2) Contributions from purges are included. There were no other batch releases during the reporting period.

Page 1 of 1

	GASEOUS	EFFLUENTS - G		RELEASES	
			Continuou	s Mode (2)	
Released		<u>1st Quarter</u>	2nd_Quarter	3rd Quarter	4th Quarter
Fission Gases (1)	0	**	**	**	**
Argon-41	Ci Ci	**	**	**	**
Krypton-85 Krypton-85m	Ci	**	**	**	**
Krypton-87	Ci	**	**	**	**
Krypton-88	Ci	**	**	**	**
Xenon-127	Ci	**	**	**	**
Xenon-131m	Ci	**	**	**	**
Xenon-133	Ci	9.01E+00	7.49E-01	3.05E-01	3.63E-01
Xenon-133m	Ci	**	**	**	**
Xenon-135	Ci	8.19E-02	**	1.68E+00	6.95E-01
Xenon-135m	Ci	**	**	1.82E+00	**
Xenon-137	Ci	**	**	**	**
Xenon-138	Ci	**	**	**	**
lodines (1)					
lodine-131	Ci	9.42E-05	1.39E-04	1.60E-04	6.53E-05
lodine-133	Ci	1.72E-03	1.87E-03	9.35E-04	8.12E-04
lodine-135	Ci	**	**	**	**
Dertievietee (4)					
Particulates (1) Chromium-51	Ci	**	**	4.44E-04	**
Manganese-54	Ci Ci	**	3.47E-06	4.44E-04 3.87E-06	4.05E-05
Iron-55	Ci	7.10E-05	3.91E-04	4.21E-05	2.66E-04
Iron-59	Ci	7.10E-05	3.91E-04 **	4.21E-00	2.00E-04
Cobalt-58	Ci	**	**	5.83E-06	**
Cobalt-60	Ci	2.66E-05	5.33E-05	4.03E-05	1.01E-04
Neodymium-147	Ci	**	**	3.73E-06	**
Zinc-65	Ci	**	**	1.07E-05	1.23E-05
Strontium-89	Ci	**	**	**	**
Strontium-90	Ci	**	**	**	**
Niobium-95	Ci	**	**	**	**
Zirconium-95	Ci	**	**	**	**
Molybdenum-99	Ci	**	**	4.74E-06	**
Cesium-134	Ci	**	**	**	**
Cesium-136	Ci	**	**	**	**
Cesium-137	Ci	**	**	**	**
Barium-140	Ci	**	**	**	**
Lanthanum-140	Ci	**	**	**	**
Cerium-141	Ci	**	**	**	**
Cerium-144	Ci	**	**	**	**
<u>Tritium (1)</u>	Ci	1.06E+01	4.34E+00	3.78E+00	3.27E+00

4

Unit 1 Unit 2	X	.		Reporting Per	iod <u>January -</u>	December 2011
	LIQUID EFFL	UENTS - SUM	MATION OF AL	L RELEASES	(1)	
		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	<u>Est. Total Error, %</u>
A. Fission & Activation Products	·					
 Total Release (not including Tritium, gases, alpha) 	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
B. <u>_Tritium</u>						
1.Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during th reporting period	ne µCi/ml	No Releases	No Releases	No Releases	No Releases	
C. Dissolved and Entrained Gases						
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during th reporting period	ne µCi/mI	No Releases	No Releases	No Releases	No Releases	
D. Gross Alpha Radioactivity						
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
E. <u>Volumes</u>						
1. Prior to Dilution	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Volume of dilution water used during release period	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
 Volume of dilution water available durin reporting period 	ng Liters	1.11E+10	1.19E+10	1.37E+10	1.32E+10	5.00E+01
F. Percent of Tech. Spec. Limits						
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	it %	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Quarterly Organ Dose Limit (5 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Organ Dose Limit to Date (10 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of 10CFR20 Concentration Limit (2), (3)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 µCi/ml)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

(1) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of $5.00E-07 \ \mu\text{Ci/ml}$ for required gamma emitting nuclides, $1.00E-05 \ \mu\text{Ci/ml}$ for required dissolved and entrained noble gases and tritium, $5.00E-08 \ \mu\text{Ci/ml}$ for Sr-89/90, $1.00E-06 \ \mu\text{Ci/ml}$ for I-131 and Fe-55, and $1.00E-07 \ \mu\text{Ci/ml}$ for gross alpha radioactivity, as required by the Off-Site Dose Calculation Manual (ODCM), has been verified.

(2) The percent of 10CFR20 concentration limit is based on the average concentration during the quarter.

(3) Improved Technical Specifications limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001 - 20.2402, Appendix B, Table 2, Column 2. Maximum Effluent Concentrations (MEC) numerically equal to ten times the 10CFR20.1001 - 20.2402 concentrations were adopted to evaluate liquid effluents.

Page 2 of 2

Unit 1 Unit 2 Reporting Period January - December 2011 Х LIQUID EFFLUENTS RELEASED Batch Mode (1),(2) Nuclides Released 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter **Nuclides Released** Strontium-89 Ci No Releases No Releases No Releases No Releases Strontium-90 Ci No Releases No Releases No Releases No Releases Cesium-134 Ci No Releases Cesium-137 Ci lodine-131 Ci No Releases No Releases No Releases No Releases Cobalt-58 Ci No Releases No Releases No Releases No Releases Cobalt-60 Ci No Releases No Releases No Releases No Releases Iron-59 Ci No Releases No Releases No Releases No Releases Ci Zinc-65 No Releases No Releases No Releases No Releases Ci No Releases No Releases No Releases No Releases Manganese-54 Ci No Releases Chromium-51 No Releases No Releases No Releases Zirconium-95 Ci No Releases No Releases No Releases No Releases Niobium-95 Ci No Releases Molybdenum-99 Ci No Releases No Releases No Releases No Releases Ci Technetium-99m Barium-140 Ci No Releases No Releases No Releases No Releases Ci No Releases No Releases No Releases No Releases Lanthanum-140 Cerium-141 Ci No Releases No Releases No Releases No Releases Ci No Releases No Releases No Releases No Releases Tungsten-187 Ci No Releases No Releases No Releases No Releases Arsenic-76 lodine-133 Ci No Releases No Releases No Releases No Releases No Releases Iron-55 Ci No Releases No Releases No Releases Ci No Releases No Releases No Releases No Releases Neptunium-239 Ci No Releases No Releases No Releases No Releases Silver-110m Ci No Releases No Releases No Releases No Releases Gold-199 No Releases No Releases Cerium-144 Ci No Releases No Releases Ci Cesium-136 No Releases No Releases No Releases No Releases Copper-64 Ci No Releases No Releases No Releases No Releases **Dissolved or Entrained Gases** Ci No Releases No Releases No Releases No Releases Tritium Ci No Releases No Releases No Releases No Releases

(1) No continuous mode release occurred during the report period as indicated by effluent sampling.

(2) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 μCi/ml for required gamma emitting nuclides, 1.00E-05 μCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μCi/ml for Sr-89/90, 1.00E-06 μCi/ml for I-131 and Fe-55, and 1.00E-07 μCi/ml for gross alpha radioactivity, as identified in the ODCM, has been verified.

	SOLID V	ASTE AND IRRA	DIATED FUEL SH			<u>.</u>	
A1. TYPE		<u>Volume</u> (m ³)		<u>Activity (1)</u> (Ci)			
		<u>Class</u>			<u>Class</u>		
	A	В	С	A	В	С	
a.1 Spent Resin (Dewatered)	2.21E+01	0.00E+00	0.00E+00	9.92E+01	0.00E+00	0.00E+00	
a.2 Filter Sludge	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
a.3 Concentrated Waste	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Totals	2.21E+01	0.00E+00	0.00E+00	9.92E+01	0.00E+00	0.00E+00	
b.1 Dry Compressible Waste	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
b.2 Dry Non-Compressible Waste (Contaminated	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Totals	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
c. Irradiated Components,	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
d. Other (to vendor for processing)						
d.1 WCS Filter Septa	4.96E+00	0.00E+00	0.00E+00	1.36E+00	0.00E+00	0.00E+00	

Unit 1	Unit 2 X	Reporting Period	January - December 2011
	SOLID WASTE AND IR	RADIATED FUEL SHIPMENTS	
A1. TYPE	<u>Container</u>	Package	Solidification Agent
a.1 Spent Resin (Dewatered)	Poly Liner	General Design	None
a.2 Filter Sludge			
b.1 Dry Compressible Waste			
b.2 Dry Non-Compressible			
c. Irradiated Components, Control Rods			
d. Other (To vendor for processing	3)		
d.1 WCS Filter Septa	Steel Liner	General Design	None

Unit 1	Unit 2 X	Reporting Period January - December 2011			
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS					
A2. ESTIMATE OF MAJO	OR NUCLIDE COMPOSITION (BY TYPE	E OF WASTE)			
a. Spent Resins, Filter SI	udges, Concentrated Waste				
	Nuclide [.]	Percent			
	Fe-55	45.1			
	Co-60	41.6			
	Mn-54	6.5			
	Zn-65	3.5			
	Ni-63	2.1			
	3, Sr-90, Cs-134, Cs-137, Ce-144, Pu-23	38, 1.2			
Pu-239, .	Am-241, Cm-242, Cm-243				
b. Dry Compressible Was	ste, Dry Non-Compressible Waste (Cont	aminated Equipment)			
	Nuclide	Percent			
c. Irradiated Components	6, Control Rods: There were no shipmer				
	Nuclide	Percent			
d. Other: (To vendor for p	processing)				
1. WCS Filter Septa					
	Nuclide	Percent			
	Fe-55	46.9			
	Co-60	39.8			
	Zn-65	5.4			
	Mn-54	3.7			
	Ni-63	2.6			
	Cs-137	1.0			
		0.6			
H-3, Sr-90, Cs-134, Ce	-144, Pu-238, Pu-239, Am-241, Cm-242	., 8:5			

1

Unit 1	Unit 2X	Reporting Period January - December 2011						
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS								
A3. SOLID WASTE DISPOSITION]							
Number of Shipments	Mode of Transportatio	n <u>Destination</u>						
1	Hittman Transport	Studsvik Processing Faciility, Memphis, TN						
6	Hittman Transport	Studsvik Processing Facility, Erwin, TN						
B. IRRADIATED FUEL SHIPMEN	IS (Disposition)							
		Destination						
Number of Shipments	Mode of Transportation	n <u>Destination</u>						
		1						
D. SEWAGE WASTES SHIPPED TO A TREATMENT FACILITY FOR PROCESSING AND BURIAL								
There are no shipments of sewage sludge with detectable quantities of plant-related nuclides from NMP to the treatment facility during the reporting period.								

4

Page 1 of 1

Unit 1	Unit 2	<u> </u>	Reporting Period January - December 2011	
	SUMMARY OF C	HANGES TO THE OFF-SITE	DOSE CALCULATION MANUAL (ODCM)	
The Unit 2	Off-Site Dose Calculati	on Manual (ODCM) was	revised twice during the reporting period.	
		REVISIO	N 33	
Page #	New/Amended Section #	Description of Change	Reason for Change	
l 3.3-13	Table D 3.3.2-1	Deleted Instrument 1.c, Offgas Sample Flow Rate Measuring Device.	This change eliminates the requirement to estimat offgas sample flow every 4 hours, when the indicating device is inoperable. This change eliminates an unnecessary action and is consister with NUREG-1302.	
	T	REVISIO	N 34	
Page #	New/Amended Section #	Description of Change	Reason for Change	
3.3-9	D 3.3.2	Required Action E.1 wording was revised.	Editorial change for clarification.	
I 3.3-10	D 3.3.2	Required Action H.1 was modified by replacing the action to suspend gaseous effluent releases with an action to implement appropriate compensatory actions.	This change was made to avoid putting the plant through an unnecessary transient and so that gaseous radioactive releases can be more readily estimated while the radiation monitoring equipment is out of service. Suspending releases via the stack or vent, (which for the stack would mean shutting down the plant), would result in continued releases via other unmonitored pathways that would have been unquantifiable.	
II 63	Table D 5.1	Changed the name of Sample Location 33 from Alcan Aluminum to Novelis.	Facility changed ownership and was renamed.	

.

.

Unit 1	Unit 2	x	Reporting Period <u>January - December 2011</u>
	SUMMARY OF CH	ANGES TO	THE PROCESS CONTROL PROGRAM (PCP)
There were no	changes to the NMP	2 Process C	Control Program (PCP) during the reporting period.

Reporting Period January - December 2011 Unit 1 Unit 2 Х SUMMARY OF NON-FUNCTIONAL MONITORS Dates Monitor was Monitor Cause and Corrective Actions Non-Functional 2RMS-CAB170A, June 15, 2011 to The cause of the non-functional event was a system lock up Stack WRGMS July 25, 2011 during performance of the quarterly functional testing surveillance. The non-functional duration was extended by the work stoppage experienced in July 2012. Vendor support was obtained, the cabinet cooler was cleaned to provide adequate cooling to the local system cooler, and the system was restarted with vendor assistance. 2LWS-CAB206, January 1, 2011 to This monitor exceeded 30 days non-functional twice during 2011 Liquid Waste September 7, 2011 The cause of the non-functionality was an intentional lapse of the required surveillances since no liquid discharges were planned or Discharge Monitor and scheduled. On September 7, 2011, all surveillances were November 4, 2011 to December 31. brought current and the monitor was declared functional in 2010 anticipation of a possible discharge. No discharge was performed. The second non-functionality commenced on November 4, 2011, when the surveillances were allowed to exceed their grace dates. While the monitor is non-functional, the manual discharge isolation valves are locked in the closed position. The current non-functionality is tracked under ESL 2011 0243.

Unit 1 Unit 2 X

Reporting Period: January - December 2011

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Introduction

An assessment of the radiation dose potentially received by a Member of the Public due to their activities inside the site boundary from Nine Mile Point Unit 2 (NMP2) liquid and gaseous effluents has been conducted for the period January through December 2011.

This assessment considers the maximum exposed individual and the various exposure pathways resulting from liquid and gaseous effluents to identify the maximum dose received by a Member of the Public during their activities within the site boundary.

Prior to September 11, 2001, the public had access to the Energy Information Center for purposes of observing the educational displays or for picnicking and associated activities. Fishing also occurred near the shoreline adjacent to the Nine Mile Point (NMP) site. Fishing near the shoreline adjacent to the NMP site was the onsite activity that resulted in the potential maximum dose received by a Member of the Public. Following September 11, 2001 public access to the Energy Information Center has been restricted and fishing by Members of the Public at locations on site is also prohibited. Although fishing was not conducted during 2011 the annual dose to a hypothetical fisherman was still evaluated to provide continuity of data for the location.

<u>Dose Pathways</u>

Dose pathways considered for this evaluation included direct radiation, inhalation and external ground (shoreline sediment or soil) doses. Other pathways, such as ingestion pathways, are not considered because they are either not applicable, insignificant, or are considered as part of the evaluation of the total dose to a member of the public located off-site. In addition, only releases from the NMP2 Stack and Radwaste/Reactor Building Vent were evaluated for the inhalation pathway. Dose due to aquatic pathways such as liquid effluents is not applicable since swimming is prohibited at the NMP site.

Dose to a hypothetical fisherman is received through the following pathways while standing on the shoreline fishing:

- External ground pathway; this dose is received from plant related radionuclides detected in the shoreline sediment.
- Inhalation pathway; this dose is received through inhalation of gaseous effluents released from the NMP2 Stack and Radwaste/Reactor Building Vent.
- Direct radiation pathway; dose resulting from the operation of Nine Mile Point Unit 1 (NMP1), NMP2 and the James A. Fitzpatrick Nuclear Power Plant (JAFNPP) Facilities.

Methodologies for Determining Dose for Applicable Pathways

External Ground (Shoreline Sediment) Pathway

Dose from the external ground (shoreline sediment) is based on the methodology in the NMP2 Offsite Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the hypothetical maximum exposed individual fished from the shoreline at all times.

Unit 1 Unit 2 X

Reporting Period: January - December 2011

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

The total dose received by the whole body and skin of the maximum exposed individual during 2011 was calculated using the following input parameters:

- Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks per year)
- Density in grams per square meter = 40,000
- Shore width factor = 0.3
- Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6.
- Fractional portion of the year = 1 (used average radionuclide concentration over total time period)
- Average Cs-137 concentration = 1.35E-01 pCi/g

The total whole body and skin doses received by a hypothetical maximum exposed fisherman from the external ground pathway is presented in Table 1, Exposure Pathway Annual Dose.

Inhalation Pathway

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP2 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2011 calculated using the following input parameters for gaseous effluents released from both the NMP2 Stack and Radwaste/Reactor Building Vent for the time period exposure is received:

NMP2 Stack:

Variable	Fisherman ¹
X/Q (s/m ³)	9.6 E-07
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m ³ /year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	1.43 E+06
$C-14 (pCi/sec)^2$	7.14E+05
Mn-54 (pCi/sec)	2.64 E-01
Fe-55 (pCi/sec)	1.61 E+00
Co-60 (pCl/sec)	2.41 E+00
Sr-89 (pCI/sec)	2.23 E+00
I-131 (pCi/sec)	7.64 E+01
I-133 (pCi/sec)	9.58 E+02
Nd-147 (pCi/sec)	1.08 E-01

Page 3 of 5

Unit 1

Unit 2 X

Reporting Period: January - December 2011

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

NMP2 Radwaste/Reactor Building Vent:

Variable	Fisherman ¹
X/Q (s/m ³)	2.8 E-06
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m ³ /year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	4.83 E+05
Cr-51 (pCi/sec)	1.88 E+01
Mn-54 (pCi/sec)	2.03 E+00
Fe-55 (pCi/sec)	3.46 E+01
Co-58 (pCi/sec)	2.47 E-01
Co-60 (pCi/sec)	8.23E+00
Zn-65 (pCi/sec)	9.75 E-01
Mo-99 (pCi/sec)	2.01E-01
I-131 (pCi/sec)	1.54 E+01
I-133 (pCi/sec)	1.53 E+02
Nd-147 (pCi/sec)	1.58E-01

1. The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Radwaste/Reactor Building Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.

2. C-14 release rate determined from NUREG-0016, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)," and EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents."

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Annual Dose.

Unit 1 Unit 2 X

Reporting Period: January - December 2011

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP2 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 and December 31, TLD data for the second, third, and fourth quarters of 2011 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	1.65 E-03
Exposure time (hours)	312

Total Doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Annual Dose.

<u>Dose Received By A Hypothetical Maximum Exposed Member of the Public Inside the Site Boundary</u> <u>During 2011</u>

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from liquid and gaseous effluents released from NMP2 during 2011:

Exposure Pathway	Dose Type	Fisherman (mrem)
External Ground	Whole Body	2.12 E-03
	Skin of Whole Body	2.48 E-03
Inhalation	Whole Body	2.09 E-04
	Maximum Organ	Bone: 4.44 E-04
	Thyroid	3.59 E-04
Direct Radiation	Whole Body	0.52

TABLE 1Exposure Pathway Annual Dose

Unit 2 X Unit 1

Reporting Period: January - December 2011

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Based on these values, the total annual dose received by a hypothetical maximum exposed Member of the Public inside the site boundary is as follows:

Annual Dose Summary Fisherman **Total Annual Dose for 2011** (mrem) Total Whole Body 5.19 E-01 2.48 E-03 Skin of Whole Body Maximum Organ Bone: 4.44 E-04

3.59 E-04

Thyroid

TABLE 2

Unit 1	Unit 2	х

Reporting Period: January - December 2011

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Introduction

An assessment of radiation doses potentially received by the likely most exposed Member of the Public located beyond the site boundary was conducted for the period January through December 2011 for comparison against the 40 CFR 190 annual dose limits.

The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 2 (NMP2), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of Nine Mile Point Unit 1 (NMP1), NMP2 and the James A. FitzPatrick Nuclear Power Plant (JAFNPP) facilities must be considered.

40 CFR 190 requires the annual radiation dose received by Members of the Public in the general environment, as a result of plant operations, be limited to:

- < 25 mRem whole body
- < 25 mRem any organ (except thyroid)
- <75 mRem thyroid

This evaluation compares doses resulting from liquid and gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP1, NMP2 and JAFNPP nuclear facilities.

Dose Pathways

Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point Site.

Dose to the likely most exposed Member of the Public, outside the site boundary, is received through the following pathways:

- Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in fish that is consumed by a Member of the Public.
- Vegetation consumption pathway; this dose is received from plant radionuclides that have concentrated in vegetation that is consumed by a Member of the Public.
- Shoreline Sediment; this dose is received as a result of an individual's exposure to plant radionuclides deposited in the shoreline sediment, which is used as a recreational area.
- Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is received through
 exposure to gaseous effluents released from NMP1, NMP2 and JAFNPP operating facilities.
- Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAFNPP facilities.

Methodologies for Determining Dose for Applicable Pathways

Fish Consumption

Dose received as a result of fish consumption is based on the methodology specified in the NMP2 Off-Site Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. The dose for 2011 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed Member of the Public consumes fish taken near the site discharge points.

No radionuclides were detected in fish samples collected and analyzed during 2011; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2011.

Unit 1 Unit 2 X

Reporting Period: January - December 2011

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Vegetation Consumption

Dose received as a result of vegetation consumption is based on the methodology specified in the NMP2 ODCM as adapted from Regulatory Guide 1.109. The dose for 2011 is calculated from actual analysis results of environnmental vegetation samples taken near the likely most exposed Member of the Public.

No radionuclides were detected in vegetation samples collected and analyzed during 2011; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2011.

For estimating C-14, dose received as a result of vegetation consumption is based on the methodology specified in the NMP2 ODCM as adapted from Regulatory Guide 1.109. The estimated concentration of C-14 in vegetation is based on the estimated concentration of C-14 in the plant gaseous effluents.

<u>Shoreline Sediment</u>

Dose received from shoreline sediment is based on the methodology in the NMP2 ODCM as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the most likely exposed Member of the Public spends 67 hours/year along the shoreline for recreational purposes.

No radionuclides were detected in shoreline sediment samples collected and analyzed during 2011; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2011.

Dose Pathways Resulting From Gaseous Effluents

Dose received by the likely most exposed Member of the Public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP1 ODCM, NMP2 ODCM, and the JAFNPP ODCM. These calculations consider deposition, inhalation and ingestion pathways. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAFNPP during 2011 provides a total dose to the whole body and maximum organ dose for this pathway.

Carbon-14 Dose Pathways Resulting from Gaseous Effluents

The Carbon-14 (C-14) effluent source terms are used to estimate radiological doses from C-14 in site gaseous waste effluents. These estimates were generated in order to meet the NRC requirement to incorporate C-14 in nuclear power plant 2011 Annual Radiological Effluent Release Reports (ARERRs). The C-14 production and effluent source term estimates were based on EPRI methodology provided in EPRI Report 1021106, *Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010.* The following methodology was used to estimate C-14 gaseous release activity and dose components for the 2011 ARERR.

EPRI Methodology for Estimating C-14 Production Rates in Boiling Water Reactors (BWRs):

For BWRs, EPRI Report 1021106 summarized the distribution of C-14 in release pathways as follows: gaseous 95% to 99%, liquid <0.5% and solid 1% to 5%. The report also states that \sim 95% of C-14 in BWR gaseous waste effluents exists in the carbon dioxide form, which contributes to population dose via photosynthesis uptake in the food consumption cycle.

Unit 1	- <u>-</u>	_ Unit	2 <u>X</u>	Rep	orting Period: January - December 2011
	DOS	ES TO	MEMBERS C	OF THE PUBLIC DUE TO THEIR ACTIVITIES OU	TSIDE THE SITE BOUNDARY
each ur Effectiv Report	nit: (1) co /e Full Po	ontinuc ower I	ous release Days (EFPD	us dose calculations in the site ARERR are m of the estimated C-14 generated during pow s) for the period, (2) maximum C-14 activit ction as carbon dioxide for gaseous releases t	wer operation based on the number o ty from literature values cited in EPR
Equatio	on 1 estim	ates th	e maximum	annual production of C-14, PR _{MAX} , for each	BWR unit.
	PR _{MAX}	=	5.1 • MV	VT / 1000	[Eq 1]
Where:					
	5.1	=	BWR Nor	malized Production (Ci/GWt-yr)	
	MWT	=		ts Thermal (MWt)	
	1000	=	Conversio	on Factor (MWt to GWt)	
Equatio unit.	on 2 estim	ates th	ne C-14 activ	vity released, A_{C-14} , into the gaseous pathwa	y during the time period for each BWI
	A _{C-14}		PR _{MAX} •	0.99 • EFPD / 365, Ci (for time period)	[Eq 2]
Where:					
	PR _{MAX}		=	maximum annual production rate of C-14,	
	0.99			fraction C-14 in BWR gaseous pathway relea	
	ÉÉPP			literature value in EPRI Report 1021106; also	
	EFPD			number of effective full power days for the up period; e.g., yearly (Table 1),	nit during the time
	365			conversion factor, 365 days in a typical year	

Unit 1	. <u> </u>	Jnit 2	x	- Reporting Period: January - December 20	D11
	DOSES	TO MEM	BERS	OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY	
	on 3 estimate riod for each			vity released in carbon dioxide form, $A_{C-14, CO2}$, into the gaseous pathway duri	ng the
	A _{C-14, CO2}	=		$PR_{MAX} \bullet 0.99 \bullet 0.95 \bullet EFPD / 365, Ci (for time period) [Eq$	[3 ק
Where:					
	PR _{MAX}	=		maximum annual production rate of C-14,	
	0.99	=		fraction of C-14 in BWR gaseous pathway releases (maximum literature value in EPRI Report 1021106; also Table 1),	
	0.95	=		fraction of C-14 as carbon dioxide in BWR gaseous pathway releases (typical literature value in EPRI Report 1021106, also Table 1),	
	EFPD	=		number of effective full power days for the unit during the time period, e.g., yearly (Table 1),	
	365	=		conversion factor, 365 days in a typical average year	i
For eac	h BWR unit	, the 201	1 estir	nated C-14 activity releases (total and carbon dioxide chemical form) are sum	marized

in Table 1.

	<u>Table 1</u> 2011 BWR Estimated C-14 Gaseous Releases					
BWR	BWRGaseous ReleaseCO2 Form ReleaseMax. Annual Prod. Rate 					
NMP1	0.99	0.95	358 EFPD (98.08%)	9.44 Ci/yr	8.01 Ci	7.61 Ci
NMP2	0.99	0.95	328 EFPD (89.86%)	17.68 Ci/yr	16.85 Ci	16.0 Ci
JAFNPP	0.99	0.95	358 EFPD (98.08%)	10.82 Ci/yr	10.64 Ci	10.0 Ci

(a) Maximum literature values from EPRI Report 1021106.

(b) Typical value from EPRI Report 1021106.

As long as the core designs and power ratings are not significantly changed, the maximum annual production rates and annual total and carbon dioxide activity releases in Table 1 should be acceptable for use in estimating C-14 gaseous release activity and dose components for the ARERR.

Unit 1 Unit 2 X

Reporting Period: January - December 2011

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Direct Radiation Pathway

Dose as a result of direct gamma radiation from the site encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion, and ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2011, the closest residence and the critical downwind residence are at the same location.

	<u>Table 2</u> Dose Potentially Received by the Likely Most Exposed Member of the Public Outside the Site Boundary During 2011				
Exposure Pathway	Outside the Site Boundary During 2011Exposure PathwayDose TypeDose (mrem)				
Fish Consumption	Total Whole Body	No Dose			
	Total Maximum Organ	No Dose			
Shoreline Sediment	Total Whole Body	No Dose			
	Total Skin of Whole Body	No Dose			
Gaseous Effluents	Total Whole Body	1.28 E-03			
	Thyroid	3.55 E-03			
	Maximum Organ	Lung: 1.42 E -03			
Gaseous Effluent	Total Whole Body	4.05 E-02			
(C-14)	Maximum Organ	Bone: 2.03 E-01			
Direct Radiation	Total Whole Body	2.9			

Based on these values the maximum total annual dose potentially received by the likely most exposed Member of the Public during 2011 is as follows:

- Total Whole Body: 2.9 E+00 mrem • Total Thyroid: 3.55 E-03 mrem
- Maximum Organ: Bone: 2.03 E-01 mrem

40 CFR 190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and JAFNPP facilities. The maximum organ dose (Bone: 0.203 mrem), maximum thyroid dose (0.04 mrem) and the maximum whole body dose (2.9 mrem) are below the 40 CFR 190 criteria of 25 mrem per calendar year to the maximum exposed organ or the whole body, and below 75 mrem per calendar year to the thyroid.

GROUNDWATER MONITORING DATA

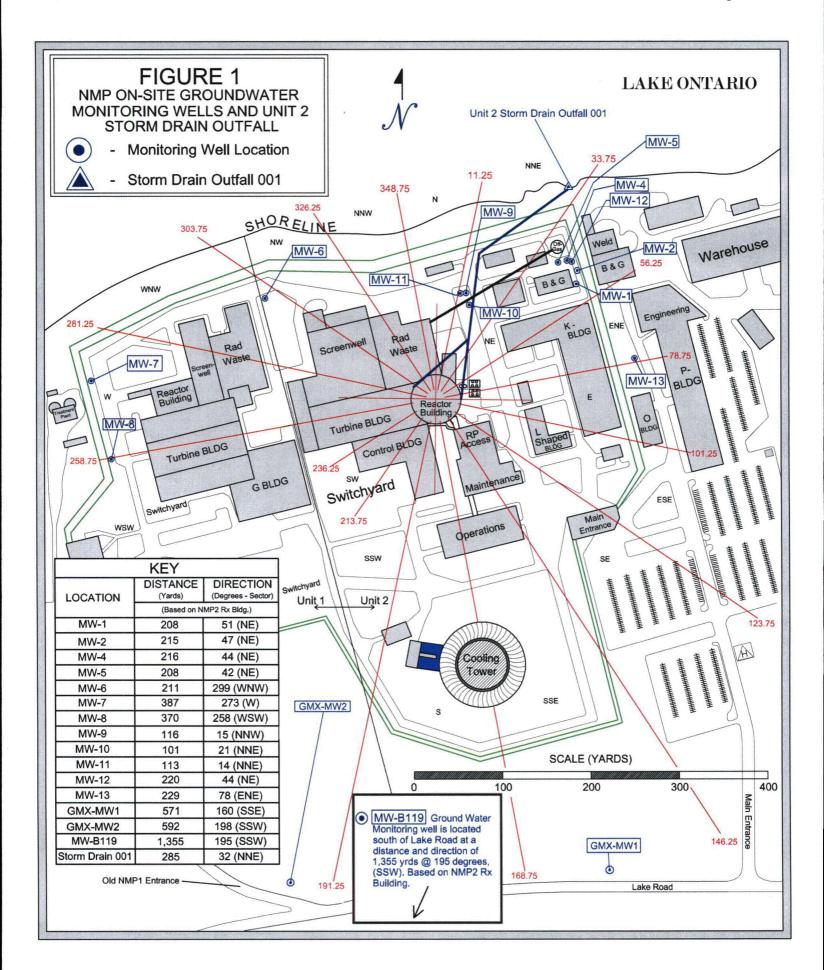
Reporting Period January - December 2011

CONCENTRATION OF TRITIUM IN GROUNDWATER SAMPLES

(pCi/l ±1 sigma)

Control Location*	Date	Tritium
GMX-MW1	1/11/2011	<424
GMX-MW1	5/16/2011	<417
GMX-MW1	9/13/2011	<408
GMX-MW1	11/2/2011	<415
GMX-MW2	1/12/2011	<424
MW-B119	5/17/2011	<410
MW-B119	9/14/2011	<408
MW-B119	11/3/2011	<414

Indicator Location*	Date	Tritium
MW-1	1/11/2011	<424
MW-1	9/12/2011	<408
MW-1	11/1/2011	<415
MW-4	5/17/2011	<410
MW-5	1/11/2011	<424
MW-5	5/17/2011	<410
MW-5	9/12/2011	<408
MW-5	11/1/2011	<415
MW-6	1/11/2011	<424
MW-6	5/17/2011	<410
MW-6	9/13/2011	<408
MW-6	11/1/2011	<415
MW-7	1/12/2011	<424
MW-7	5/18/2011	<410


Indicator Location*	Date	Tritium
MW-7	9/13/2011	<408
MW-7	11/2/2011	<415
MW-8	1/12/2011	<424
MW-8	5/18/2011	<410
MW-8	9/13/2011	<408
MW-8	11/2/2011	<415
MW-11	9/13/2011	<408
MW-11	11/1/2011	<415
MW-12	9/12/2011	<408
MW-12	11/1/2011	<415
MW-13	9/12/2011	<408
MW-13	11/1/2011	<415

Indicator Location*	Date	Tritium
NMP2 Depression Cone [†]	1/3/2011	<407
	1/10/2011	<407
	1/17/2011	<410
	3/21/2011	<430
	4/4/2011	<428
	8/1/2011	<423
	9/6/2011	<407
	9/26/2011	<420
	10/3/2011	<412
	11/22/2011	<420

* Corresponds to sample location on Figure 1

† Sample collected from storm drain, discharge point of Depression Cone sumps

Page 2 of 2

Unit 1 _____ Unit 2 ___ X

4 3

Reporting Period January - December 2011

OFF-SITE DOSE CALCULATION MANUAL (ODCM)

Revision 33 and Revision 34