

10 CFR 50.36a(a)(2) 10 CFR 72.44 (d)(3)

Technical Specification 6.9.1.d

Oyster Creek Generating Station Route 9 South PO Box 388 Forked River, NJ 08731 www.exeloncorp.com

RA-12-055

April 27, 2012

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 - 0001

> Oyster Creek Nuclear Generating Station Renewed Facility Operating License No. DPR-16 NRC Docket No. 50-219

Independent Spent Fuel Storage Facility NRC Docket No. 72-15

Subject: Annual Radioactive Effluent Release Report for 2011

Enclosed with this cover letter is the Annual Radioactive Effluent Release Report for the period January 1 to December 31, 2011. This report includes the Oyster Creek Nuclear Generating Station Independent Spent Fuel Storage Facility.

If any further information or assistance is needed, please contact Mike Ford, Chemistry Manager, at 609-971-2432.

Sincerely,

Michael J. Massaro Vice President – Oyster Creek Nuclear Generating Station

Enclosure: 2011 Annual Radioactive Effluent Release Report

cc: Administrator, USNRC Region I (w/o attachment) USNRC Senior Project Manager, Oyster Creek (w/o attachment) USNRC Senior Resident Inspector, Oyster Creek (w/o attachment) Craig Stewart, American Nuclear Insurers

DOCKET NO. 50-219 (Oyster Creek Generating Station) DOCKET NO. 72-15 (Independent Spent Fuel Storage Facility)

Annual Radioactive Effluent Release Report

2011

Oyster Creek Generating Station

Annual Radioactive Effluent Release Report

2011

Oyster Creek Generating Station

	1.1 TABLE OF CONTENTS	1. 1	
SECTIC	N	n an	PAGE
EXECU		्रा गण्ड्रम् ३२ - २२	1
1. Intro	oduction		3
2. Sup	plemental Information		4
Α	Regulatory Limits		4
В	Effluent Concentration Limits		5
С	Average Energy		5
D	Measurements and Approximations of Total Radioactivity	101 - E-139 - 1	5
E	Batch Releases in Eq. () of 2 Bit 7 to the other in order Bit	ya i wangi i	9
F	Abnormal Releases		9
G	Revisions to the ODCM		9
Н	Radiation Effluent Monitors Out of Service More Than 30 Da	ays	10
Ι	Releases from the Independent Spent Fuel Storage Facility	at a t	10
J	Program Deviations	na Maria	11
Append	x A – Effluent and Waste Disposal Summary	.`	12
Append	x B – Solid Waste and Irradiated Fuel Shipments		19
Append	x C – Radiological Impact to Man		24
Append	x D – Meteorological Data		27
Append	x E - ODCM Revisions		85
Append	x F – ERRATA		86

•

(Page Intentionally Left Blank)

EXECUTIVE SUMMARY

Effluents are strictly monitored to ensure that radioactivity released to the environment is as low as reasonably achievable and does not exceed regulatory limits. Effluent control includes the operation of monitoring systems, in-plant and environmental sampling and analyses programs, quality assurance programs for effluent and environmental programs, and procedures covering all aspects of effluent and environmental monitoring.

Both radiological environmental and effluent monitoring indicate that the operation of Oyster Creek Generating Station (OCGS) does not result in significant radiation exposure of the people or the environment surrounding OCGS and is well below the applicable levels set by the Nuclear Regulatory Commission (NRC) and the Environmental Protection Agency (EPA).

There were liquid radioactive effluent releases during 2011 of concentrations of tritium too low to detect at an LLD of 200 picocuries per liter (pCi/L) at the New Jersey Pollution Discharge Elimination System (NJPDES) permitted main condenser outfall. The releases were part of nearly continuous pumping of groundwater at approximately 70 gpm containing low levels of tritium and no detectable gamma. Exelon and the State of New Jersey Department of Environmental Protection (NJDEP) agreed to this remediation action instead of natural attenuation to address concentrations of tritium in groundwater. Well 73 and supporting equipment and piping were installed to pump groundwater to the intake structure at the inlet of the main circulating water pumps. Provisions were established for both batch and continuous releases of groundwater. There was one Batch release in August 2011 and nearly continuous releases for the entire year of 2011. Nearly Continuous releases occurred from January 1, 2011 through December 31, 2011 with a total of 3.28E+07 gallons of groundwater pumped resulting in 9.63E-01 Ci of tritium released to the discharge canal. The dose to the most limiting member of the public due to the release of groundwater was 4.59E-06 mrem.

There were no liquid or gaseous abnormal releases during 2011.

The maximum hypothetical calculated organ dose (GI-LLI) from iodines, tritium, carbon-14 (C-14), and particulates to any individual due to gaseous effluents was 4.42E-01 mrem, which was approximately 2.95E+00 percent of the annual limit of 15 mrem. The majority of organ dose from gaseous effluents was due to C-14. The maximum calculated gamma air dose in the UNRESTRICTED AREA due to noble gas effluents was 9.83E-03 mrem, which was 9.83E-02 percent of the annual 10 CFR 50 Appendix I, As Low As Reasonably Achievable (ALARA) limit of 10 mrem.

For comparison, the background radiation dose averages approximately 300 mrem per year in the Central New Jersey area, which includes approximately 200 mrem from naturally occurring radon gas and 100 mrem from background radiation.

The Independent Spent Fuel Storage Installation (ISFSI) is a closed system and the only exposure is due to direct radiation. Based on offsite TLD readings, dose due to direct radiation from the ISFSI was less than 1 mrem for 2011. Because it is a sealed unit, no radioactive material was released.

Comparison of environmental sampling results to iodine and particulate gaseous effluents released, showed no radioactivity attributable to the operation of OCGS. Both elevated and ground-level release paths were considered in this review, with total iodines released of 1.07E-02 Ci and total particulates with half-lives greater than 8 days released of 5.46E-02 Ci.

Joint Frequency Tables of meteorological data, per Pasquill Category, as well as for all stability classes, are included. All data was collected from the on-site Meteorological Facility. Data recoveries for the 380-foot data and the 33-foot data were 99.2 percent and 99.3 percent, respectively. The UFSAR commits to Regulatory Guide (RG) 1.23 for Meteorological Facility data recovery. RG 1.23 requires data recovery of at least 90% on an annual basis.

.

a fedia. A

2 Introduction

In accordance with the reporting requirements of Technical Specification 6.9.1.d applicable during the reporting period, this report summarizes the effluent release data for OCGS for the period January 1, 2011 through December 31, 2011. This submittal complies with the format described in Regulatory Guide 1.21, "Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants", Revision 1, June 1974.

Meteorological data was reported in the format specified in Regulatory Guide 1.23, Revision 1, "Meteorological Monitoring Programs for Nuclear Power Plants".

All vendor results were received and included in the report calculations. Therefore the 2011 report is complete.

3 Supplemental Information

Oyster Creek Generating Station

Exelon Generation Company, LLC

ODCM Control 3.11.1.1

A. Regulatory Limits:

		Limit	Units	Receptor	ODCM and 10 CFR 50, Appendix I Design Objective Limits
1.	Noble	Gases:		• •	•.
	a.	≤ 500 ≤ 3000	mrem/yr mrem/yr	Total Body Skin	ODCM Control 3.11.2.1
	b.	≤ 5 ≤ 10	mrad mrad	Air Gamma Air Beta	Quarterly air dose limits ODCM Control 3.11.2.2
	C.	≤ 10 ≤ 20	mrad mrad	Air Gamma Air Beta	Yearly air dose limits ODCM Control 3.11.2.2
. •	d.	< 5	mrem	Total Body (Gamma)	10 CFR 50, Appendix I, Section II.B.2(b)
,		< 15	mrem	Skin (Beta)	, ·
2	Indine	s Tritium	Particulates v	with Half Life > 8 days	•

2. logines, Fritium, Particulates with Half Life > 8 days: a. ≤ 1500 mrem/yr Any Organ

а.	≤ 1500	mrem/yr	Any Organ	ODCM Control 3.11.2.1
b.	≤ 7.5	mrem	Any Organ	Quarterly dose limits ODCM Control 3.11.2.3
C.	≤ 15	mrem	Any Organ	Yearly dose limits ODCM Control 3.11.2.3

3. Liquid Effluents

a. Concentration 10 CFR 20, Appendix B, Table 2 Column 2 1.4

·					
	b.	≤ 1.5 ≤ 5	mrem mrem	Total Body Any Organ	Quarterly dose limits ODCM Control 3.11.1.2
	c.	≤ 3 <u>≤</u> 10	mrem mrem	Total Body Any Organ	Yearly dose limits ODCM Control 3.11.1.2
:		.•	and the second second		

. . . <u>،</u>` ÷ .

B. Effluent Concentration Limits:

Gaseous dose rates rather than effluent concentrations are used to calculate permissible release rates for gaseous releases. The maximum permissible dose rates for gaseous releases are defined in ODCM Controls 3.11.2.1.

The Effluent Concentration Limit (ECL) specified in 10 CFR 20, Appendix B, Table 2, Column 2 for identified nuclides, were used to calculate permissible release rates and concentrations for liquid release per ODCM Controls 3.11.1.1. The total activity concentration at the Route 9 bridge for all dissolved or entrained gases was limited to < $2E-04 \mu$ Ci/ml.

C. Average Energy (E):

The Oyster Creek ODCM limits the instantaneous dose equivalent rates due to the release of noble gases to less than or equal to 500 mrem/year to the total body and less than or equal to 3000 mrem/year to the skin. The average beta and gamma energies (\overline{E}) of the radionuclide mixture in releases of fission and activation gases as described in Regulatory Guide 1.21, "Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plant", may be used to calculate doses in lieu of more sophisticated software. The Oyster Creek radioactive effluent program employs the methodologies presented in U.S. NRC Regulatory Guide 1.109 "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977. Therefore, average energy (\overline{E}) as described in Regulatory Guide 1.21 is not applicable to Oyster Creek.

D. Measurements and Approximations of Total Radioactivity:

1. Fission and Activation Gases

The method used for Gamma Isotopic Analysis is the Canberra Gamma Spectroscopy System with a gas Marinelli beaker. Airborne effluent gaseous activity was continuously monitored and recorded in accordance with the Off Site Dose Calculation Manual (ODCM) Table 4.11.2.1.2-1. Additional grab samples were taken from the stack Radioactive and Gaseous Effluent Monitoring System (RAGEMS) sample point and ground-level release sample points and analyzed at least monthly to determine the isotopic mixture of noble gas activity released for the month. If activity was found in the grab isotopic analysis, the results are entered into Simplified Environmental Effluent Dosimetry System (SEEDS) to calculate dose and dose rates. If no activity is detected in the stack grab samples, post treatment or Off Gas Isotopic Analysis data may be used.

2. <u>lodines</u>

The method used for Gamma Isotopic Analysis is the Canberra Gamma Spectroscopy System with a charcoal cartridge. Iodine activity was continuously sampled and analyzed in accordance with ODCM Table 4.11.2.1.2-1. Charcoal samples are taken from the stack RAGEMS sample

point and ground-level release sample points and analyzed at least weekly to determine the total activity released from the plant based on the average vent flow rates recorded for the sampling period.

Particulates (half-lives > 8 days) 3.

> The method used for Gamma Isotopic Analysis is the Canberra Gamma Spectroscopy System with a particulate filter (47 mm). Particulate activity was continuously sampled and analyzed in accordance with ODCM Table 4.11.2.1.2-1. Particulate samples are taken from the stack RAGEMS sample point and ground-level release sample points and analyzed at least weekly to determine the total activity released from the plant based on the average vent flow rates recorded for the sampling period.

4. Tritium

. .

Α. Gaseous Effluents

> Air from stack and vent effluents was passed through a desiccant column and distilled to remove the moisture collected. An aliquot of the water from the distillate was analyzed for tritium using a liquid scintillation counter.

. . . •

B. - Liquid Effluents and an approximation and the second states are second states and the second states are second st

1 1 11

- Water from liquid effluents was analyzed for tritium using a liquid scintillation counter. Gross Alpha
- 5.

Gross alpha was measured by an off-site vendor for both the gas and liquid effluent composite samples.

. •

Hard-To-Detects 6.

> Hard-To-Detects was measured by an off-site vendor for one set of gas monthly composites. The analysis included Fe-55, I-129, Ni-59, Ni-63. Tc-99, Am-241, Cm-242, Cm-243/244, Pu-238, Pu-239/240 and Pu241. The results of this analysis are utilized until the next Hard-To-Detect analysis is performed.

7. <u>Carbon-14 (C-14)</u>

. .

18

. 6

The amount of C-14 (Ci) released was estimated using the guidance from EPRI Technical Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents. The C-14 was released primarily through the stack (97%) with a small amount (3%) released through plant vents. The activity in liquid effluents was determined to not be significant.

The offsite dose from C-14 was calculated using SEEDS, which uses approved ODCM methodologies. The resulting annual dose to a child from gaseous releases of C-14 is about 4.01E-01 mrem to the bone.

8. Liquid Effluents

Groundwater containing tritium was released during 2011. For batch releases, tritium and principal gamma emitters were determined for each batch prior to release. For continuous releases, tritium and principal gamma emitters were determined for a composite sample daily. The concentration of tritium is limited to ensure concentrations were less than 200 pCi/l in the discharge canal. The gamma emitters were limited to less than detectable concentrations. Gross alpha, gross beta and Hard-to-detect analyses (Fe-55, Ni-63, Sr-89 and Sr-90) were determined for monthly composite samples for each type of release (batch or continuous).

The leaks into the groundwater were reported in the 2009 Annual Radioactive Effluent Release Report as abnormal releases. Estimates of the curies of the tritium releases were reported. Doses due to the release of the groundwater to the discharge canal were included in the report. To ensure that amount of activity discharge is accurate and limiting, the activity and doses as a result of discharges during 2011 from the groundwater remediation project are included in this report.

9. Estimated Total Error Present

Procedure CY-AA-170-2100, Estimated Errors of Effluent Measurements, provides the methodology to obtain an overall estimate of the error associated with radioactive effluents.

10. Composite Samples and Lower Limit of Detection (LLD)

Particulate air samples were composited monthly and analyzed for gross alpha, Sr-89 and Sr-90. Groundwater batch and continuous releases were composited at least monthly and analyzed for gross alpha, Sr-89, Sr-90, Fe-55 and Ni-63. These composites are submitted to an offsite vendor laboratory for analysis. The ODCM required LLD for liquid and airborne releases are as follows:

Liquid:	LLD
Principal Gamma Emitters (Mn-54, Fe-59, Co- 58, Co-60, Zn-65, Mo-99, I-131, Ce-141, Cs-	
134, Cs-137)	5E-07 µCi/ml
Principal Gamma Emitters (Ce-144)	5E-06 µCi/ml
Dissolved and Entrained Gases	1E-05 µCi/ml
H-3	1E-05 µCi/ml
Gross Alpha	1E-07 µCi/ml
Sr-89 and Sr-90	5E-08 µCi/ml
Fe-55 and Ni-63	1E-06 µCi/ml
Airborne	LLD
Principal Gamma Emitters (Kr-87, Kr-88, Xe- 133, Xe-133m, Xe-135, Xe-138)	1E-04 µCi/ml
H-3	1E-06 µCi/ml
I-131	1E-12 µCi/ml
I-133	1E-10 µCi/ml
Principal Gamma Emitters (Mn-54, Fe-59, Co- 58, Co-60, Zn-65, Cs-134, Cs-137, Ce-141)	1E-11 μCi/ml
Principal Gamma Emitters (Mo-99, Ce-144)	1E-10 µCi/ml
Gross Alpha	1E-11 µCi/ml
Sr-89, Sr-90	1E-11 µCi/ml

r.

E. Batch Releases:

1. <u>Liquid</u>

	Qtr 1	Qtr 2	Qtr 3	Qtr 4
Number of Batch Releases	0.00E+00	0.00E+00	1.00E+00	0.00E+00
Total time period for batch releases (min)	0.00E+00	0.00E+00	4.50E+01	0.00E+00
Maximum time period for batch release (min)	0.00E+00	0.00E+00	4.50E+01	0.00E+00
Average time period for batch release (min)	0.00E+00	0.00E+00	4.50E+01	0.00E+00
Minimum time period for batch release (min)	0.00E+00	0.00E+00	4.50E+01	0.00E+00
Average Stream flow during period of release (gpm)	N/A	N/A	9.80E+5	N/A

9 1 - E C .

2. <u>Gaseous</u>

- There were no batch releases of gaseous effluents during 2011.
- F. Abnormal Releases:

There were no abnormal liquid or gaseous releases during 2011.

G. Revisions to the ODCM:

There were no revisions to the ODCM during 2011.

ິ9

H. Radiation Effluent Monitors Out of Service More Than 30 Days

Per ODCM Control 3.3.3.10, "Radioactive Liquid Effluent Monitoring Instrumentation" and 3.3.3.11, Radioactive Gaseous Effluent Monitoring Instrumentation requires:

With less than the minimum number of radioactive liquid/gaseous effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3.3.10-1/3.3.3.11-1. Make every reasonable effort to return the instrument to OPERABLE status within 30 days and, if unsuccessful, explain in the next Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.

The following is a discussion of instrumentation out of service for greater than 30 days:

- 1. The Reactor Building Service Water System Effluent Line was out of service from 3/16/2011 through 5/5/2011. The monitor was taken out of service 3/16/2011 due to a faulty Alarm locked in. The faulty locked in alarm was cleared after maintenance was performed 4/7/2011. During the period the monitor was out of service for the faulty alarm, the monitor was taken out of service for a second reason when it was identified on 3/28/11, that the Service Water Rad Alarm Setpoint may be non-conservative. The alarm setpoint calculation was recalculated and verified to be conservative and the monitor was returned to service 5/5/2011. Though the issue with the faulty locked in alarm was repaired within 30 days, the faulty alarm issue over-lapped with the alarm setpoint issue which was not resolved within 30 days. The alarm setpoint issue was not resolved within 30 days due to the timeline with hiring a vendor to perform the new calculations, performing site reviews of the calculations and Operations acceptance of the calculations and declaring the monitor operable. Both of these issues were entered into our Corrective Action Program (CAP) and corrective actions taken have been documented per process.
- I. Releases from the Independent Spent Fuel Storage Facility:

The ISFSI is a closed system and the only exposure would be due to direct radiation. This includes iodines, particulates, and noble gases. Based on offsite TLD readings, dose due to direct radiation from the ISFSI was less than 1 mrem for 2011. Because it is a sealed unit, no radioactive material was released.

J. Program Deviations:

2.

3.

· · ·

1. During Augmented Off Gas (AOG) sample line pressue testing conducted February 21, 2011, it was discovered that the sample line was not able to maintain pressure due to the filter assembly not being tight. The filter assembly was tightened and the pressure test was completed SAT. This issue was entered into our Corrective Action Program (CAP) and corrective actions implemented to ensure filter assemblies are tight when installed for sampling. The weekly sample results were evaluated against previous sample results for impact to sampling due to the assembly not being tight with no impact identified.

The groundwater remediation composite sampler was found out of service for less than one day on March 29, 2011. The composite sampler is required by ODCM Table 4.11.1.1.1.1 Radioactive Liquid Waste Sampling and Analysis Program. There was enough sample in the composite sampler to perform the required analyses and the composite sampler was immediately returned to service.

The groundwater remediation composite sampler was found out of service for for approximately 4 hours on August 21, 2011. The composite sampler is required by ODCM Table 4.11.1.1.1.1, Radioactive Liquid Waste Sampling and Analysis Program. The composite sampler was immediately returned to service and enough sample was collected in the composite sampler to perform the required analyses.

> Appendix A Effluent and Waste Disposal Summary

3.1.1 LIST OF TABLES

PAGE

Table A - 1 Gaseous Effluents - Summary of All Releases	14
Table A - 2 Gaseous Effluents Release Point: Elevated Release	15
Table A - 3 Gaseous Effluents Release Point: Ground Level Releases	16
Table A - 4 Liquid Effluents – Summary of All Releases	17
Table A - 5 Liquid Release Point: Groundwater Remediation	18

13

r

Table A-1: Gaseous Effluents - Summary Of All Releases

· ·

Period: January 1, 2011 through December 31, 2011

Unit: Oyster Creek

	r	1		· · ·		Est. Total
A. Fission & Activation Gases	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Error %
1. Total Release	Ci	3.60E+01	8.44E+01	5.40E+01	5.19E+01	25.00%
2. Average Release Rate for Period	µCi/sec	4.62E+00	1.07E+01	6.79E+00	6.53E+00	
3. Gamma Air Dose	mrad	1.64E-03	6.57E-03	2.20E-03	2.88E-03	
4. Beta Air Dose	mrad	1.23E-03	9.48E-04	1.19E-03	1.37E-03	
5. Percent of ODCM Limit					_	
- Gamma Air Dose	%	3.28E-02	1.31E-01	4.40E-02	5.76E-02	
- Beta Air Dose	%	1.23E-02	9.48E-03	1.19E-02	1.37E-02	
B: Iodines						
1. Total – I-131	Ci	1.23E-03	6.93E-04	8.15E-04	3.59E-04	25.00%
2. Average Release Rate for Period	µCi/sec	1.58E-04	8.82E-05	1.03E-04	4.52E-05	
3. Percent of ODCM limit	%	*	*	* ,	*	
C. Particulate						
1. Particulates with T 1/2 > 8 days	Ci	2.52E-02	3.43E-03	1.17E-02	1.47E-02	25.00%
2. Average Release Rate for Period	µCi/sec	3.24E-03	4.36E-04	1.47E-03	1.85E-03	C A DAN DAN DA
3. Percent of ODCM limit	%	.* :	*	i * ,	*	
D. Tritlum						
1. Total Release	Ci	5.86E+00	1.10E+01	1.06E+01	1.55E+01	25.00%
2. Average Release Rate for Period	µCi/sec	7.53E-01	1.40E+00	1.33E+00	1.95E+00	STREES.
3. Percent of ODCM limit	%,	*	* .	*	*	
E. Gross Alpha			d destriction			
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<>	<lld< td=""><td>25.00%</td></lld<>	25.00%
2. Average Release Rate for Period	µCi/sec	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of ODCM limit	· %	*	*	*	*	
F. Carbon-14.	5	e				
1. Total Release	Ci	2.46E+00	2.49E+00	2.53E+00	2.53E+00	1
2. Average Release Rate for Period	µCi/sec	3.17E-01	3.17E-01	3.18E-01	3.18E-01	e de la companya de l La companya de la comp
3. Percent of ODCM limit	%	. *	*	*	*	
G., Iodine 131 & 133, Tritlum & P	articulate					
1. Organ Dose	mrem	4.19E-02	1.21E-01	1.49E-01	1.31E-01	
2. Percent of ODCM Limit	· %	5.59E-01	1.61E+00	1.99E+00	1.75E+00	

* ODCM Limit is for combined lodine, tritium, Carbon-14 and particulate only, which is shown in Item G. .

Δ.

• • • • •

'

.

• •

Table A-2: Gaseous Effluents Release Point: Elevated Release

Period: January 1, 2011 through December 31, 2011

ŧ

...,

ł

.

Unit: Oyster Creek

Nuclides				-						
Released			Continuous Mode Batch Mode							
1. Fission gases	Unit	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	
		1	2	3	4	1	2	3	4	
Kr- 85	Ci	<ĽLD	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Kr- 85m	Ci	1.46E+00	4.29E-01	1.71E+00	1.24E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Kr-87	Ci	1.21E+01	1.84E+00	9.18E+00	5.43E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Kr-88	Ci	<lld< td=""><td>4.63E+01</td><td>4.36E+00</td><td>4.12E+00</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	4.63E+01	4.36E+00	4.12E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Xe-133	Ci	<lld< td=""><td><lld< td=""><td>6.15E-01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>6.15E-01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	6.15E-01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Xe-135	Ci	2.24E+01	3.53E+01	3.35E+01	2.97E+01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Xe-135m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.37E+00</td><td><lld< td=""><td><lld< td=""><td><ĻLD</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.37E+00</td><td><lld< td=""><td><lld< td=""><td><ĻLD</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>1.37E+00</td><td><lld< td=""><td><lld< td=""><td><ĻLD</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	1.37E+00	<lld< td=""><td><lld< td=""><td><ĻLD</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><ĻLD</td><td><lld< td=""></lld<></td></lld<>	<ĻLD	<lld< td=""></lld<>	
Xe-137	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Xe-138	Ci	<lld< td=""><td>4.99E-01</td><td>1.85E+00</td><td>6.85E+00</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><pre></pre></td></lld<></td></lld<></td></lld<></td></lld<>	4.99E-01	1.85E+00	6.85E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><pre></pre></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><pre></pre></td></lld<></td></lld<>	<lld< td=""><td><pre></pre></td></lld<>	<pre></pre>	
Ar-41	Ci	、 <lld< td=""><td><lld< td=""><td>2.77E+00</td><td>3.23E+00</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>2.77E+00</td><td>3.23E+00</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	2.77E+00	3.23E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Total for Period	Ci	3.60E+01	8.44E+01	5.40E+01	5.19E+01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
2. lodines				- 15 q M						
I-131	Ci	1.23E-03	6.93E-04	8.15E-04	3.59E-04	<lld< td=""><td><lld< td=""><td><lld< td=""><td><ĽĽD</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><ĽĽD</td></lld<></td></lld<>	<lld< td=""><td><ĽĽD</td></lld<>	<ĽĽD	
I-133	Ci	5.27E-03	7.13E-04	1.00E-03	5.85E-04	: <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
I-135 "	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>ˈ<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>ˈ<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>ˈ<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>ˈ<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	ˈ <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Total for Period	Ci	6.50E-03	1.41E-03	1.82E-03	9.44E-04	<lld< td=""><td><lld< td=""><td><lld .<="" td=""><td><lld< td=""></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td><lld .<="" td=""><td><lld< td=""></lld<></td></lld></td></lld<>	<lld .<="" td=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>	
3. Particulates					e e generale					
Sr-89.	Ci	1.91E-03	4.47E-04	2.22E-03	7.35É-04	∶ <lld< td=""><td><lld< td=""><td><ĽLD</td><td><lļd< td=""></lļd<></td></lld<></td></lld<>	<lld< td=""><td><ĽLD</td><td><lļd< td=""></lļd<></td></lld<>	<ĽLD	<lļd< td=""></lļd<>	
Sr-90	Ci	5.83E-06	<lld< td=""><td>··· <ĽĽD</td><td>2.58E-06</td><td>: <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	··· <ĽĽD	2.58E-06	: <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Cs-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Cs-137	Ci	8.47E-04	<lld< td=""><td><lld< td=""><td>1.24E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>1.24E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.24E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Ba-140	Ci	2.16E-02	9.76E-04	1.33E-03	2.35E-03	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
La-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Cr-51	Ci	<lld< td=""><td>6.68E-05</td><td><lld< td=""><td>2.79E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	6.68E-05	<lld< td=""><td>2.79E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	2.79E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Mn-54	Ci	2.22E-04	2.89E-04	3.24E-04	4.96E-04	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Co-58	Ci	1.95E-04	3.50E-04	5.53E-04	1.02E-03	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Co-60	Ci	3.45E-04	6.13E-04	8.68E-04	1.61E-03	<lld< td=""><td><lld< td=""><td><ĽĽĎ</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><ĽĽĎ</td><td><lld< td=""></lld<></td></lld<>	<ĽĽĎ	<lld< td=""></lld<>	
Mo-99	Ci	1.16E-05	3.34E-05	5.92E-05	1.63E-04	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Ce-141	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Ce-144	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Fe-55	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>¹ <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>¹ <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>¹ <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>¹ <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>¹ <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	¹ <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Fe-59	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lŀd< td=""></lŀd<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lŀd< td=""></lŀd<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lŀd< td=""></lŀd<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lŀd< td=""></lŀd<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lŀd< td=""></lŀd<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lŀd< td=""></lŀd<></td></lld<></td></lld<>	<lld< td=""><td><lŀd< td=""></lŀd<></td></lld<>	<lŀd< td=""></lŀd<>	
Zn-65	Ci	1.32E-05	6.22E-05	7.29E-05	5.10E-04	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Total for Period	Ci	2.51E-02	2.84E-03	5.43E-03	7.74E-03	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
4. Tritium	ŀ	ALTIC IN	14 A							
H-3	Ci	5.74E+00	1.08E+01	1.03E+01	1.53E+01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
5. Gross Alpha				ę.				2. (13)		
Gross Alpha	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
6. Carbon-14	<u> </u>		6 10.1 Jan 19. 3				A 1	1		
C-14	Ci	2.39F+00	2.42F+00	2.45F+00	2.45F+00	<li d<="" td=""><td><li d<="" td=""><td><[] D</td><td><[] []</td></td>	<li d<="" td=""><td><[] D</td><td><[] []</td>	<[] D	<[] []	
					2.402.00		~~~~			

Table A-3: Gaseous Effluents Release Point: Ground Level Releases

Period: January 1, 2011 through December 31, 2011

• •

Unit: Oyster Creek

ReleasedContinuous ModeBatch Mode1. Fission gasesUnitQuarterQu	Nuclides										
I. Fission gases Unit Quarter	Released			Continuous Mode			Batch Mode				
Interval I 2 3 4 1 2 3 4 Kr-85 Ci 4LD <	1 Fission dases	Unit	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	
Kr. 85 Ci LD <lild< li=""> LD LD</lild<>	1. Theorem guees		1	2	3	4	1	2	3	4	
Kr. 65m Ci eLLD <	Kr- 85	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Kr-87 Ci cLD cLD <thcld< th=""> <thcd< th=""></thcd<></thcld<>	Kr- 85m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Kr-B8 Ci <lld< th=""> <lld< th=""></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Kr-87	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Xe-133Ci <lid< th=""><lld< th=""><</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lid<>	Kr-88	Ci	<lld< td=""><td><lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Xe-135 Ci <lld< th=""> <t< td=""><td>Xe-133</td><td>Ci</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></t<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Xe-133	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Xe-135mCi <lld< th=""><lld< th=""></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Xe-135	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Xe-138Ci <lld< th=""><lld< th=""><</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Xe-135m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><ld< td=""><td><lld< td=""></lld<></td></ld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><ld< td=""><td><lld< td=""></lld<></td></ld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><ld< td=""><td><lld< td=""></lld<></td></ld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><ld< td=""><td><lld< td=""></lld<></td></ld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><ld< td=""><td><lld< td=""></lld<></td></ld<></td></lld<></td></lld<>	<lld< td=""><td><ld< td=""><td><lld< td=""></lld<></td></ld<></td></lld<>	<ld< td=""><td><lld< td=""></lld<></td></ld<>	<lld< td=""></lld<>	
Ar-41Ci <lld< th=""><lld< th=""><l< td=""><td>Xe-138</td><td>Ci</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><<u>LLD</u></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></l<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Xe-138	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><<u>LLD</u></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><<u>LLD</u></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><<u>LLD</u></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><<u>LLD</u></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><<u>LLD</u></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><<u>LLD</u></td></lld<></td></lld<>	<lld< td=""><td><<u>LLD</u></td></lld<>	< <u>LLD</u>	
Total for PeriodCi $<$ LLD <t< td=""><td>Ar-41</td><td>Ci</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></t<>	Ar-41	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
2. lodines	Total for Period	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2. lodines					Ma no 97 - 1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I-131	Ci	2.76E-07	1.17E-07	7.05E-08	<lld< td=""><td><lld< td=""><td><lld td="" ·<=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td><lld td="" ·<=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld></td></lld<>	<lld td="" ·<=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I-133	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<>	<lld .<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Total for Period Ci 2.76E-07 1.17E-07 7.05E-08 <lld< th=""> <th< td=""><td>I-135</td><td>Ci</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></th<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	I-135	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
3. ParticulatesCi <lld< th=""><lld< th=""><lld<< td=""><td>Total for Period</td><td>Ci</td><td>2.76E-07</td><td>1.17E-07</td><td>7.05E-08</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>_<lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Total for Period	Ci	2.76E-07	1.17E-07	7.05E-08	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>_<lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>_<lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>_<lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>_<lld< td=""></lld<></td></lld<>	_ <lld< td=""></lld<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3. Particulates					11 (1	in the second			in in differ	
Sr-90Ci $<$ LLD <td>Sr-89</td> <td>Ci</td> <td><lld< td=""><td><lld< td=""><td><lld td="" ·<=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<></td>	Sr-89	Ci	<lld< td=""><td><lld< td=""><td><lld td="" ·<=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td><lld td="" ·<=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<>	<lld td="" ·<=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Cs-134Ci <lld< th=""><lld< th=""><</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Sr-90	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	· <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
CS-137Ci \triangleleft LLD \square LLD </td <td>Cs-134</td> <td>Ci</td> <td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td>	Cs-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Ba-140Ci \prec LLD ι LD	Cs-137	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
La-140Ci <lld< th=""><lld< th=""><</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Ba-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Cr-51 Ci 7.80E-06 <lld< th=""> <lld< th=""></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	La-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld ,<="" td=""><td><lld< td=""><td>···<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld ,<="" td=""><td><lld< td=""><td>···<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td><lld ,<="" td=""><td><lld< td=""><td>···<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<>	<lld ,<="" td=""><td><lld< td=""><td>···<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td>···<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	··· <lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Mn-54 Ci 4.15E-06 5.23E-07 <lld< th=""> 3.45E-08 <lld< th=""> <lld< td=""><td>Cr-51</td><td>Ci</td><td>7.80E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Cr-51	Ci	7.80E-06	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Co-58 Ci 1.25E-06 <lld< th=""> <lld< th=""></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Mn-54	Ci	4.15E-06	5.23E-07	<lld< td=""><td>3.45E-08</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	3.45E-08	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Co-60 Ci 3.23E-06 1.51E-08 <lld< th=""> 3.19E-07 <lld< th=""> <lld< th=""></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Co-58	Ci	1.25E-06	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Mo-99Ci <lld< th=""><lld< th=""><l< td=""><td>Co-60</td><td>Ci</td><td>3.23E-06</td><td>1.51E-08</td><td><lld< td=""><td>3.19E-07</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></l<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Co-60	Ci	3.23E-06	1.51E-08	<lld< td=""><td>3.19E-07</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	3.19E-07	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Ag-110m Ci <lld< th=""> <lld< th=""></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Mo-99	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Ce-141Ci $<$ LLD </td <td>Ag-110m</td> <td>Ci</td> <td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td>	Ag-110m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Ce-144Ci <lld< th=""><lld< th=""><l< td=""><td>Ce-141</td><td>Ci</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></l<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Ce-141	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Fe-55 Ci <lld< th=""> 5.88E-04 6.25E-03 6.99E-03 <lld< th=""> <lld< td=""><td>Ce-144</td><td>Ci</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Ce-144	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Fe-59Ci <lld< th=""><lld< th=""><ll< td=""><td>Fe-55</td><td>Ci</td><td><lld< td=""><td>5.88E-04</td><td>6.25E-03</td><td>6.99E-03</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></ll<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Fe-55	Ci	<lld< td=""><td>5.88E-04</td><td>6.25E-03</td><td>6.99E-03</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	5.88E-04	6.25E-03	6.99E-03	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Zn-65Ci. <lld< th=""><lld< th=""><l< td=""><td>Fe-59</td><td>Ci</td><td><lld< td=""><td><lld< td=""><td>` ≺LLD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></l<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Fe-59	Ci	<lld< td=""><td><lld< td=""><td>` ≺LLD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>` ≺LLD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	` ≺ LLD	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Total for Period Ci 1.64E-05 5.89E-04 6.25E-03 6.99E-03 <lld< th=""> <lld< th=""></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Zn-65	Ci.	<lld< td=""><td><lld< td=""><td>'<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>'<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	' <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
A. Tritium Ci 1.16E-01 2.38E-01 2.34E-01 <lld< th=""> <lld<< td=""><td>Total for Period</td><td>Ci</td><td>1.64E-05</td><td>5.89E-04</td><td>6.25E-03</td><td>6.99E-03</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Total for Period	Ci	1.64E-05	5.89E-04	6.25E-03	6.99E-03	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
H-3 Ci 1.16E-01 2.38E-01 2.38E-01 2.34E-01 <lld< th=""> <l< td=""><td>4. Tritium</td><td></td><td></td><td>2.2.</td><td></td><td></td><td></td><td></td><td>a. (n. 11)</td><td></td></l<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	4. Tritium			2.2.					a. (n. 11)		
5. Gross Alpha Ci <lld< th=""> <lld< t<="" td=""><td>H-3</td><td>Ci</td><td>1.16E-01</td><td>2.38E-01</td><td>2.88E-01</td><td>2.34E-01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	H-3	Ci	1.16E-01	2.38E-01	2.88E-01	2.34E-01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
Gross Alpha Ci <lld< th=""> <lld< th=""></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	5. Gross Alpha			7.92 . (* * *						to as for	
S. Carbon-14 S. Carbon-14 S. Carbon-14 S. Carbon-14 Ci 7.40E-02 7.49E-02 7.57E-02 7.57E-02 <lld< th=""> <</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	Gross Alpha	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
C-14 Ci 7.40E-02 7.49E-02 7.57E-02 7.57E-02 <lld <lld="" <lld<="" td=""><td>6. Carbon-14</td><td></td><td></td><td></td><td></td><td></td><td>South State</td><td></td><td></td><td>1. 1. 1. 1</td></lld>	6. Carbon-14						South State			1. 1. 1 . 1	
	C-14	Ci	7.40E-02	7.49E-02	7.57E-02	7.57E-02	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	
	· ·			· ·				· ·			

......

Table A-4: Liquid Effluents - Summary Of All Releases

Period: January 1, 2011 through December 31, 2011

.

Ę

Unit: Oyster Creek

A. Fission & Activation Products	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Est. Tota Error %
 Total Release not including tritium, gases, alpha 	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<>	<lld< td=""><td>25.00%</td></lld<>	25.00%
2. Average Diluted concentration during period	µCi/ml	<lld< td=""><td><lļd< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lļd<></td></lld<>	<lļd< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lļd<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Total Body Dose	mrem	1.52E-06	1.30E-06	1.05E-06	7.19E-07	
4. Organ Dose	mrem	1.52E-06	1.30E-06	1.05E-06	7.19E-07	
3. Percent of ODCM Limit						
-Total Body Dose	%	1.01E-04	8.67E-05	7.00E-05	4.79E-05	te start i
-Organ Dose	%	3.04E-05	2.60E-05	2.10E-05	1.44E-05	
B. Tritium						
	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Est. Tota Error %
1. Total Release	Ci	3.16E-01	2.67E-01	2.25E-01	1.55E-01	25.00%
2. Average diluted concentration	_ µCi/ml	6.67E-10	7.32E-10	5.86E-10	3.19E-10	
3 Percent of 10CFB20 limit	%	6 67E-05	7.32E-05	5.86F-05	3.19E-05	
C. Dissolved and Entrained Ga	Ses x					
	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Est. Tota Error %
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>25.00%</td></lld<></td></lld<>	<lld< td=""><td>25.00%</td></lld<>	25.00%
2. Average diluted concentration	µCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>1.00</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.00</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.00</td></lld<></td></lld<>	<lld< td=""><td>1.00</td></lld<>	1.00
3. Percent of ODCM limit	%	: <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
D. Gross Alpha Activity						
				· ?:**		
	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Est. Tota Error %
1. Total Release	Units Ci	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Est. Tota Error % 25.00%
1. Total Release	Units Ci	Quarter 1	Quarter 2 <lld< td=""><td>Quarter 3 <lld< td=""><td>Quarter 4</td><td>Est. Tota Error % 25.00%</td></lld<></td></lld<>	Quarter 3 <lld< td=""><td>Quarter 4</td><td>Est. Tota Error % 25.00%</td></lld<>	Quarter 4	Est. Tota Error % 25.00%
1. Total Release	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Est. Tota Error % 25.00%
1. Total Release E. Volume of Waste Released prior to dilution	Units Ci Liters	Quarter 1 CLLD 3.45E+07	Quarter 2 <lld 2.69E+07</lld 	Quarter 3 <lld 2.75E+07</lld 	Quarter 4 <lld 3.50E+07</lld 	Est. Tota Error % 25.00%
1. Total Release E. Volume of Waste Released prior to dilution F. Volume of Dilution Water	Units Ci Liters	Quarter 1 <pre>CLLD 3.45E+07</pre>	Quarter 2 <lld 2.69E+07</lld 	Quarter 3 <lld 2.75E+07</lld 	Quarter 4 <lld 3.50E+07</lld 	Est. 10ta Error % 25.00%

Table A-5: Liquid Release Point: Groundwater Remediation

Period: January 1, 2011 through December 31, 2011

Unit: Oyster Creek

Nuclides									
Released		Continuous Mode Batch Mode							
Fission &	Unit	_							
Activation		Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter	Quarter
Products		1	2	3	4	1	2	3	4
Sr-89	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Sr-90	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
I-131	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zn-65	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cr-51	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zr-95	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nb-95	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mo-99	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Tc-99m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ba-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
La-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ce-141	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-55	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ce-144	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total for Period	d	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Dissolved En	traine	d Gases 🖉							
Xe-133	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-135	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Tritium 🔬 🐟	12320	e la comuna	enten 3.	200					
H-3	Ci	3.16E-01	2.67E-01	2.25E-01	1.55E-01	<lld< td=""><td><lld< td=""><td>6.21E-05</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>6.21E-05</td><td><lld< td=""></lld<></td></lld<>	6.21E-05	<lld< td=""></lld<>
Gross Alpha	A. 45.0		a an				ં ં હત્વ ા		
Gross Alpha	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

A. Solid waste shipped offsite for burial or disposal (not irradiated fuel)

1. Type of waste

Total	Total	Period	Est. Total
Quantity	Activity		Error%
(m ³)	, (Ci)		
1.32E+02	6.90E+02	2011	2.50E+01
6.32E+02	6.11E-01	2011	2.50E+01
0.00E+00	0.00E+00	2011	2.50E+01
5.79E+02	1.37E+02	2011	2.50E+01
	Total Quantity (m ³) 1.32E+02 6.32E+02 0.00E+00 5.79E+02	Total Total Quantity Activity (m³) (Ci) 1.32E+02 6.90E+02 6.32E+02 6.11E-01 0.00E+00 0.00E+00 5.79E+02 1.37E+02	Total Total Period Quantity Activity (m ³) (Ci) 1.32E+02 6.90E+02 2011 6.32E+02 6.11E-01 2011 0.00E+00 0.00E+00 2011 5.79E+02 1.37E+02 2011

• • • • • • •			, , , ,
			· · · ·
· · · · · · · · · · · · · · · · · · ·		, · · · .	
		• • •	· · ·
	1		· · · · · · · · · · · · · · · · · · ·

1. Estimate of Major Nuclide Composition (By Waste Type)

Category A – Spent Resin, Filters, Sludges, Evaporator Bottoms, etc.

Isotope	Waste Class A		Waste	Class B	Waste Class C		
	Curies	Percent	Curies	Percent	Curies	Percent	
H-3	2.27E-01	6.71E-02	9.85E-02	3.48E-02	3.51E-01	5.14E-01	
C-14 .	5.30E-01	1.57E-01	8.41E-02	2.97E-02	1.12E+01	1.64E+01	
Cr-51			de la comunicación de la		9.07E-33	1.33E-32	
Mn-54	2.79E+01	8.25E+00	3.02E+00	1.07E+00	2.20E-02	3.22E-02	
Fe-55	2.43E+02	7.18E+01	1.48E+02	5.23E+01	4.16E+01	6.09E+01	
Fe-59					7.32E-21	1.07E-20	
Co-57	3.86E-03	1.14E-03				0.00E+00	
Co-58	1.17E-01	3.46E-02	1.04E-02	3.67E-03	8.58E-14	1.26E-13	
Co-60	5.50E+01	1.63E+01	5.66E+01	2.00E+01	1.18E+01	1.73E+01	
Ni-59		an and the second	4.21E-02	1.49E-02		0.00E+00	
Ni-63	2.67E+00	7.89E-01	3.97E+00	1.40E+00	9.50E-01	1.39E+00	
Zn-65	3.15E+00	9.31E-01	1.28E+00	4.52E-01	4.72E-04	6.91E-04	
Sr-89	3.05E-04	9.02E-05	1.60E-03	5.65E-04	2.33E-20	3.41E-20	
Sr-90	1.63E-02	4.82E-03	2.53E-01	8.94E-02	8.51E-02	1.25E-01	
Nb-95	2005 SS				5.91E-27	8.65E-27	
Tc-99			1.34E-02	4.73E-03		0.00E+00	
Ag-110m	2.03E-02	6.00E-03	3.05E-03	1.08E-03		0.00E+00	
Sb-125	3.48E-02	1.03E-02			1.21E-02	1.77E-02	
Cs-134	2.23E-03	6.59E-04	2.20E-01	7.77E-02	1.85E-02	2.71E-02	
Cs-137	5.21E+00	1.54E+00	6.93E+01	2.45E+01	1.73E+00	2.53E+00	
Ce-144	2.77E-01	8.19E-02	7.74E-02	2.73E-02	5.59E-05	8.19E-05	
Pu-238	1.15E-03	3.40E-04	4.74E-03	1.67E-03	2.58E-02	3.78E-02	
Pu-239	2.89E-04	8.54E-05	1.83E-03	6.46E-04	6.16E-03	9.02E-03	
Pu-240						0.00E+00	
Pu-241	1.12E-01	3.31E-02	9.24E-02	3.26E-02	4.46E-01	6.53E-01	
Am-241	1.72E-03	5.08E-04	6.66E-03	2.35E-03	1.09E-02	1.60E-02	
Cm-242	1.48E-04	4.38E-05	3.35E-05	1.18E-05	7.46E-08	1.09E-07	
Cm-243	1.48E-03	4.38E-04	1.97E-03	6.96E-04		0.00E+00	
Cm-244			3.24E-03	1.14E-03	3.02E-02	4.42E-02	
Totals	3.38E+02	1.00E+02	2.83E+02	1.00E+02	6.83E+01	1.00E+02	

Note: Grey fields are where results were not reported in the NRC Regulatory Guide 1.21 Report

Isotope	e Waste Class A		
	Curies	Percent	
H-3	2.24E-05	3.67E-03	
C-14	1.74E-04	2.85E-02	
Mn-54	9.17E-02	1.50E+01	
Fe-55	3.18E-01	5.21E+01	
C0-57	4.37E-05	7.16E-03	
Co-58	2.84E-03	4.65E-01	
Co-60	1.50E-01	2.46E+01	
Ni-63	3.48E-03	5.70E-01	
Zn-65	2.28E-02	3.73E+00	
Sr-89	8.08E-06	1.32E-03	
Sr-90	1.30E-04	2.13E-02	
Tc-99	1.23E-05	2.01E-03	
Cs-134	1.06E-04	1.74E-02	
Cs-137	2.08E-02	3.41E+00	
Ce-144	2.18E-04	3.57E-02	
Pu-238	1.15E-06	1.88E-04	
Pu-239	3.85E-07	6.30E-05	
Pu-241	3.00E-04	4.91E-02	
Am-241	6.62E-06	1.08E-03	
Cm-242	1.47E-06	2.41E-04	
Cm-243	3.16E-06	5.17E-04	
Cm-244	3.16E-06	5.17E-04	
Totals	6 11E-01	1 00E±02	

Category B – Dry Compressible Waste, Contaminated Equipment, etc.

Category C - Irradiated components, control rods, etc.

No Irradiated components, control rods, etc. shipped

1. 1.

Isotope	Waste	Class A	Waste Class B		
	Curies	Percent	Curies	Percent	
H-3	1.95E-01	4.28E+01	7.47E-04	5.46E-04	
C-14	3.51E-05	7.70E-03			
Mn-54	4.64E-02	1.02E+01	4.55E+00	3.33E+00	
Fe-55	6.17E-02	1.35E+01	8.71E+01	6.37E+01	
C0-57	7.54E-06	1.65E-03			
Co-58	5.82E-03	1.28E+00			
Co-60	1.02E-01	2.24E+01	2.19E+01	1.60E+01	
Ni-63	2.24E-03	4.91E-01	1.09E+00	7.97E-01	
Zn-65	1.91E-02	4.19E+00	3.99E+00	2.92E+00	
Sr-89	3.26E-04	7.15E-02			
Sr-90	2.49E-04	5.46E-02	7.09E-02	5.19E-02	
Тс-99	2.65E-06	5.81E-04	1.53E-02	1.12E-02	
Cs-134	2.27E-05	4.98E-03	7.92E-02	5.79E-02	
Cs-137	2.20E-02	4.82E+00	1.76E+01	1.29E+01	
Ce-144	1.17E-03	2.57E-01	2.77E-01	2.03E-01	
Pu-238	2.36E-07	5.17E-05	8.58E-04	6.28E-04	
Pu-239	7.98E-08	1.75E-05	2.90E-04	2.12E-04	
Pu-240		s.	2.90E-04	2.12E-04	
Pu-241	5.64E-05	1.24E-02	3.03E-02	2.22E-02	
Am-241	1.39E-06	3.05E-04	1.08E-03	7.90E-04	
Cm-242	2.78E-07	6.09E-05	2.09E-05	1.53E-05	
Cm-243	6.78E-07	1.49E-04	6.55E-04	4.79E-04	
Cm-244	6.78E-07	1.49E-04	6.47E-04	4.73E-04	
Totals	4.56E-01	1.00E+02	1.37E+02	1.00E+02	

Category D - Other - Scrap Metal

Note: Grey fields are where results were not reported in the NRC Regulatory Guide 1.21 Report

2. Solid Waste (Disposition)

Number of Shipments	Mode of Transportation	Destination
19	Hittman Transport Co.	Barnwell Disposal Facility
1	Hittman Transport Co.	Barnwell Processing Facility
3	Hittman Transport Co.	Clive Disposal Facility (Bulk)
20	Hittman Transport Co.	Duratek - Bear Creek
1	Hittman Transport Co.	Duratek - Bear Creek
1	Tri - State Motor Transit	Duratek - Bear Creek
11	Hittman Transport Co.	Duratek Radwaste Processing, Inc.

B. Irradiated Fuel Shipments (disposition).

There were no irradiated fuel shipments

C. Changes to the Process Control Program There were no changes to the Process Control Plan in 2011.

> Appendix C Radiological Impact to Man

. .

Per ODCM Administrative Control 6.2, an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources (including doses from primary effluent pathways and direct radiation) for the previous calendar year must be made to show conformance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. For purposes of this calculation the following assumptions were made:

Gaseous

- Nearest resident was SE sector at 925 meters
- Actual 2011 meteorology and measured gaseous effluent releases were used
- All significant pathways were assumed to be present
- Occupancy factor was considered 100%.

<u>Liquid</u>

- Doses calculated in the discharge canal at the Route 9 bridge
- Fish, shellfish and shoreline pathways doses calculated

40 CFR Part 190 Compliance

- Thermoluminescence Dosimetry (TLD) measurements (minus average of control stations) measured direct radiation for the nearest resident
- The highest calculated dose for gamma air dose and liquid total body were summed for total body dose
- The highest calculated dose for gamma air dose, child bone and liquid organ were summed for organ dose
- The limits for Kr-85, I-129, Pu-239 and other alpha-emitting transuranic radionuclides with half-lives greater than one year were not exceeded

The ODCM does not require total body doses to the population and average doses to individuals in the population from gaseous effluents to a distance of 50 miles from the site to be calculated.

				Location		% of			
	Applicable	Estimated	Age	Distance	Direction	Applicable			
Effluent	Organ	Dose	Group	(meters)	(toward)	Limit	Limit	Unit	
	Gamma -								
Noble Gas	Air Dose	9.83E-03	All	500	NNE	9.83E-02	10	mrad	
	Beta – Air								
Noble Gas	Dose	3.49E-03	All	590	NNW	1.75E-02	20	mrad	
	Total Body								
Noble Gas	(Gamma)	3.46E-03	All	995	NNE	6.92E-02	5	mrem	
Noble Gas	Skin (Beta)	4.37E-03	All	995	NNE	2.91E-02	15	mrem	
lodine,							-		
Particulate,	Bono	4 405 01	Child	025	0E	2 055.00	15	mrom	
Carbon-14 &	Done	4.422-01	Child	920	3E	2.950+00	15	Intent	
Tritium			· ·						
Liquid	Total body	4.59E-06	All	South F	Route 9	1.53E-04	3	mrem	
Liquid	Organ	4.59E-06	All	Brid	dge	4.59E-05	10	mrem	
Direct Radiation	Total Body	<lld< td=""><td>All</td><td>644</td><td>SE</td><td><lld< td=""><td>25</td><td>mrem</td></lld<></td></lld<>	All	644	SE	<lld< td=""><td>25</td><td>mrem</td></lld<>	25	mrem	
						Sectors a			
40 CFR Part 190 Compliance									
Total Dose	Total Body	9.83E-03	All	925	SE	3.93E-02	25	mrem	
Total Dose	Bone	4.52E-01	All	925	SE	1.81E+00	25	mrem	
Total Dose	Thyroid	1.09E-01	All	925	SE	1.45E-01	75	mrem	

A summary of gaseous and liquid radiation doses to most likely exposed MEMBER OF THE PUBLIC was as follows:

Appendix D Meteorological Data

Ż

LIST OF METEOROLOGICAL DATA TABLES

i.

.

PAGE

Table D – 1	Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the Oyster Creek Generating Station, January – March, 2011	29
Table D – 2	Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, January – March, 2011	36
Table D – 3	Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the Oyster Creek Generating Station, April – June, 2011	43
Table D – 4	Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, April – June, 2011	50
Table D – 5	Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the Oyster Creek Generating Station, July – September, 2011	57
Table D – 6	Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, July – September, 2011	64
Table D – 7	Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the Oyster Creek Generating Station, October – December, 2011	71
Table D – 8	Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, October – December, 2011	78

Table D - 1Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

		1	W	ind Speed	(in mph	.)		
· • • • •	Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
	N ;	0	. 7	7	0	0	0	14
	NNE	0	12	1	0	0	0	13
•	NE	· · O	6	· 5	0	0	0	11
	ENE	0	5	12	3	0	0	20
1	Έ	0	1	.3	0	0	0	4
	ESE	0	5.	4	0.	0	0	9
	SE	0	9	23	0	0	0	32
	SSE	0	2	3	0	0	0	5
	S	1	5	17	11	1	0	35
	SSW	0	1	7	3	0	0	11
	SW	0	10	7	3	0	0	20
	WSW	0	11	18	6	0	0	35
	W	0	12	17	6	0	0	35
	WNW	1	15	75	27	4	0	122
	NW	1	20	69	11	0	0	101
	NNW	0	6	15	0	0	0	21
,	Variable	0	0	0	0	0	0	0
	Total	3	127	283	70	5	0	488

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 10

29

15.

Table D - 1Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind			-	• -	•		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	3	2	0	0	• 0	5
NNE	0	1	0	0	0	. 0	1
NE	0	4	1	0	0	0	5
ENE	0	2	0	1	0	. 0	3
Е	0	0	1	0	0	. 0	1
ESE	0	0	0	0	0	. 0	0
SE	1	1	2	0	0	0	4
SSE	0	2	3	0.	0	. 0	5
S	0	1	4	5 .	0	0	10
SSW	0	0	0	0	0	0	0
SW	0	1	5	0	0	0	6
WSW	1	4	4	0	0	0	9
W	0	5	9	2	0	0	16
WNW	0	5	7	3	1	0	16
NW	1	6	3	0	0	0	10
NNW	1	4	3	0	0	0	8
Variable	0	0	0	0	0	. 0	0
Total	4	39	44	11	1	0	99

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 10

Table D - 1Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind	1		-				
Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	2	0	0	0	. 0	2
NE	0	2	3	0	0	0	5
ENE	0	1	1	0	0	0	2
Е	0	0	2	0	0	0	2
ESE	0	0	1	2	0	0	3
SE	0	1	0	0	0	0	1
SSE	0	1	0	0	0	0	1
S	0	2	2	1	0	0	5
SSW	0	1	2	0	0	0	3
SW	0	2	0	0	0	0	2
WSW	0	1	1	0	0	0	2
W	0	3	1	1	0	0	5
WNW	1 ່	4	3	2	0	0	10
NW	0	4	2	1	0	0	7
NNW	1	1	2	0	0	0	4
Variable	0	0	0	0	0	[`] 0	0
Total	2	25	20	7	0	0	54

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 10
Table D - 1Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Period of Record: January - March 2011 Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind			-	· •			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1.	12	/	0	0	. 0	20
NNE	2	12	3	3 ູ	0	, O	20
NE	1	40	18	0	0	0	59
ENE	0	19	17	1	0	O	37
E	1	6	15	0	0	Э	22
ESE	3	7	11	6	0	. 0	27
SE	1	14	8.	4	0	0	27
SSE	1	19	16	10	0	0	46
S	3	13	17	15	0	0	48
SSW	1	9	9	3	0	0	22
SW	1	17	10	0	0	0	28
WSW	7	19	6	0	0	0	32
W	2	27	20	6	0	0	55
WNW	6	28	46	19	3	0	102
NW	1	11	23	15	0	0	50
NNW	0	11	18	2	0	0	31
Variable	0	0	0	0	0	0	0
Total	31	264	244	84	3	0	626

Wind Speed (in mph)

Hours of calm in this stability class: 1 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 10 Table D - 1Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind		•••	Ind Speed	a (in mbi	1)		
Direction	1-3	4-7 	8-12	13-18	19-24 	> 24	Total
Ň	1	4	0	0	0	0	5
NNE	3	3	0	0	0	0	6
NE	5	5	3	0	0	0	13
ENE	2	6	7	1	0	0	16
E	4	3	0	0	0	0	7
ESÉ	3	1	1	1	0	0	6
SE	4	3	0	0	0	0	7
SSE	5	4	2	2	0	0	13
S	3	14	7	1	2	0	27
SSW	6	28	12	0	2	0	48
SW	7	26	11	1	0	0	45
WSW	12	16	7	2	0	0	37
W	11	40	20	6	1	0	78
WNW	7	59	21	2	0	0	89
NW	9	29	5	0	0	0	43
NNW	4	8	0	0	0	0	12
Variable	1	0	0	0	0	0	1
Total	87	249	96	16	5	0	453
f solw in th		414 <u>-</u>	·	1			

Hours of calm in this stability class: 1 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 10

- --- ___

Table D - 1Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Period of Record: January - March 2011 Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind			<u>-</u>		-,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	2	0	0	0	0	0	2
NE	1	0	0	0	0	0	1
ENE	0	3	0	0	0	0	3
E	0	2	0	0	0	0	2
ESE	0	1	0	0	0	0	1
SE	2	0.	0.	0	0	0	2
SSE	0	0	0	0	0	0	0
S	1	4	0	0	0	0	5
SSW	4	4	0	0	0	0	8
SW	10	12	0	0	0	0	22
WSW	13	16	0	0	0	0	29
W	10	19	0	0	0	0	29
WMW	12	19	0	0	0	0	31
NW	12	19	0	0	0	. 0	31
NNW	7.	4	0	0	0	0	11
Variable	0	0	0	0	0	0	0
Total	74	103	0	0	0	0	177

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 10

Table D – 1 Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the Oyster Creek Generating Station, January - March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	Wind				•	•		
	Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
	N	0	0	0	0	0	0	0
	NNE	0	0	0	0	0	0	0
	NE	0	0	0	0	0	0	0
	ENE	1	0	0	0	0	0	1
	Е	1	1	0	0	0	0	2
	ESE	0	0	0	0	0	0	0
	SE	1	0	0	0	0	0	1
	SSE	3	0	0	0	0	0	3
	S	2	0	0	0	0	0	2
	SSW	1	1	0	0	0	0	2
	SW	13	4	0	0	0	0	17
	WSW	69	26	0	0	0	0	95
	W	59	9	0	0	0	0	68
	WNW	23	8	0	0	0	0	31
	NW	13	9	0	0	0	0	22
	NNW	4	0	0	0	0	0	4
	Variable	0	0	0	0	0	0	0
	Total	190	58	0	0	0	0	248
Hours of Hours of Hours of	of calm in of missing of missing	this stab wind meas stability	eility ci urements measure	lass: s in this ements ir	0 s stabili n all sta	ity class ability o	s: 0 classes:	10

Table D - 2Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Period of Record: January - March 2011 Stability Class - Extremely Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	2	1	0	0	3
NNE	0	0	0	0	0	0	0
NE	0	0	3	2	0	, O	5
ENE	0	0	2	1	0	. 0	3
Е	0	0	2	0	0	0	2
ESE	0	0	0	1	0	0	1
SE	0	0	2	Ο,	0	0	2
SSE	0	0	0	0	0	0	0
S	0	0	0 .	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	1	2	3	0	6
W	0	0	0	4	3	0	7
WNW	0	0	1	10	3	1	15
NW	0	0	1	24	24	6	55
NNW	0	0	2	2	4	0	8
Variable	0	0	0	0	0	0	0
Total	Ó	0.	16	47	37	7	107

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 10

Table D - 2Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, January -- March, 2011

Period of Record: January - March 2011 Stability Class - Moderately Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

Wind Speed (in mph)

Wind	1-3	4-7	- 8-12	13-18	19-24	> 24	Total
N	0	0	5	4	0	0	9
NNE	0	0	1	0	0	0	1
NE	0	0	1	1	0	0	2
ENE	0	0	6	0	0	0	6
E	0	1	0	0	2	0	3
ESE	0	0	0	1	0	0	1
SE	0	1	9	4	0	0	14
SSE	0 .	0	1	0	0	0	1
S	0	0	1	0	0	0	1
SSW	0	0	0	5	1	1	7
SW	0	0	1	5	1	0	7
WSW	0	1	5	2	1	0	9
W	0	0	2	2	4	4	12
WNW	0	1	2	6	1	2	12
NW	0	1	3	18	6	4	32
NNW	0	0	5	1	1	0	7
Variable	0	0	0	0	Ó	0	0
Total	0	5	42	49	17	11	124
Hours of calm in the Hours of missing with Hours of missing st	nis stab .nd meas :ability	ility cl urements measure	lass: s in thi: ements in	0 s stabil: n all sta	ity class ability (s: 1 classes:	10

Table D - 2Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Slightly Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

Tel i mai		W	ind Speed	d (in mpl	ר)		
Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total
N	0	0	2	2	0	0	4
NNE	0	0	1	1	0	, , 0	2
NE	0	1	2	0	0	0	3
ENE	0	0	2	0	1	0	3
Е	0	0	2	0	3	. 0	5
ESE	0	1	0	1	0	<u>,</u> , О	2
SE	0	1	2	2	0	. 0	5
SSE	0	0	5	0	0	0	5
S	0	0	1	3	2	1	7
SSW	0	0	2	5	4	0	11
SW	0	1	1	2	2	0	6
WSW	0	0	1	1	3	1	6
W	0	0	3	5	2	2	12
WNW	0	0	7	9	4	13	33
NW	0	0	8	13	14	2	37
NNW	0	1	4	3	1	0	9
Variable	0	0	0	0	0	0	0
Total	0	5	43	47	36	19	150

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 10

Table D - 2Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Neutral - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

		Wi	nd Speed	d (in mph	n)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	2	6	14	0	0	22
NNE	0	3	11	14	0	0	28
NE	1	2	14	17	12	7	53
ENE	0	0	18	21	17	3	59
, E	0	2	2	13	13	0	30
ESE	0	3	2	10	6	3	24
SE	1	1	4	11	3	5	25
SSE	2	2	14	4	7	1	30
S	1 [`]	4	7	17	10	11	50
SSW	l	0	8	22	14	8	53
SW	1	0	4	14	6	2	27
WSW	0	1	4	22	15	2	44
W	0	7	16	17	11	7	58
WNW	0	2	15	40	30	52	139
NW	0	5	14	44	27	[′] 30	120
NNW	1	2	10	15	20	11	59
Variable	0	0	0	0	0	0	0
Total	8	36	149	295	191	[`] 142	821
of golm in th	ic ctab	ility ol	2001				

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 4 Hours of missing stability measurements in all stability classes: 10

Table D - 2Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Slightly Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

Wind Speed (in mph)

Wind	•		· · · · · ·		,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
					<i>*</i>		
N	0	2	6	5	0	0	13
NNE	0	2	1	4	1	0	8
NE	1	0	2	8	4	0	15
ENE	0	0	4	10	3	0	17
E	0	1	5	6	6	0	18
ESE	0	2	1	2	1	5	11
SE	0	3	2	9	3	7	24
SSE	1	1	5	7	3	8	25
S	1	1	4	8	5	4	23
SSW	0	1	11	9	17	4	42
SW	0	3	4	14	37	8	66
WSW	0	0	0	14	9	6	29
W	0	3	4	15	3	. 6	31
WNW	0	0	4	29	41	26	100
NW	0	0	1	25	49	4	7 9
NNW	0	1	1	21	17	1	41
Variable	0	0	0	0	0	0	0
Total	3	20	55	186	199	79	542

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 10

_.... .

. . . .

Table D - 2Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Oyster Creek Alpha

Period of Record: January - March 2011 Stability Class - Moderately Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

tation al		Wi	nd Speed	d (in mpl	n)		
Direction	1-3	4-7 -	8-12	13-18	19-24	> 24	Total
N	1	4	3	19	10	0	37
NNE	0	0	1	2	0	0	3
NE	0	2	1	0	0	0	3
ENE	0	0	0	0	0	0	0
E	0	0	1	0	0	0	1
ESE	0	0	0	0	0	0	0
SE	0	2	1	0	0	0	3
SSE	0	0	1	0	0	0	1
` S	0	1	2	1	1	0	5
SSW	2	2	3	3	3	0	13
SW	0	1	5	7	7	1	21
WSW	0	0	2	2	13	3	20
W	0	1	3	6	2	1	13
WNW	0	0	4	18	17	· 4	43
NW	0	1	2	12	25	0	40
NNW	0	2	3	24	18	1	48
Variable	0	0	0	0	0	0	0
Total	3	16	32	94	96	10	251
Hours of calm in th	is stab	ility cl	ass:	. 0 stabili	ty class	. 0	•

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 10

41

Table D - 2Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, January – March, 2011

Period of Record: January - March 2011 Stability Class - Extremely Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

Wind			F	. (_	
Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total
N	0	0	2	7	0	0	9
NNE	0	2	1	2	0	0	5
NE	1	1	0	1	0	0	3
ENE	0	0	2	1	0	0	3
E	0	1 '	1	0	0	0	2
ESE	1	1	3	0	0	: 0	5
SE	0	6	3	0	0	0	9
SSE	0	2	0	0;	0	0	2
S	0	1	1	0	0	Ó O	2
SSW	0	1	0	2	1	0	4
SW	1	2	2	4	2	0	11
WSW	0	1	3	10	5	0	19
W	1	2	3	8	0	0	14
WNW	2	1	4	5	6	0	18
NW	0	5	7	13	6	· 0	31
NNW	0	5	5	1	0	0	11
Variable	0	0 :	0	0	0	· 0	0
Total	6	31	37	54	20	0	148

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 10

Table D - 3Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind			-	-			
Direction	1-3	4-7 	8-12	13-18	19-24	> 24 	Total
N	0	6	1	0	0	. 0	7
NNE	0	9 ,	2	0	0	0	11
NE	1	10	17	1	0	0	29
ENE	0	21	40	5	0	0	66
Е	1	23	33 .	0	0	0	57
ESE	1	40	32	0	0	0	73
. SE	4,.	22	29.	0	0	0	55
SSE	0,	12	42	11	0	0	65
S	0	8	53	19	1	0	81
SSW	0	9	9	1	0	0	19
SW	0	8	5	0	0	0	13
WSW	1	7	27	5	0	0	40
W	0	13	25	3	0	0	41
WNW	0	12	21	15	0	0	48
NW	1	16	16	5	0	0	38
NNW	1.	13	4	0	0	0	18
Variable	0	0	0	0	0	0	0
Total	10	229	356	65	1	0	661

Wind Speed (in mph)

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 19 Table D - 3Wind Speed by Direction Measured at 33 Feet for various Stability Classes for theOyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

		W	ind Speed	d (in mp)	n)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	0	0	0	0	0	2
NNE	0	0	1	0	0	0	1
NE	1	4	3	0	0	. 0	8
ENE	0	5	5	1	0	0	11
E	0	3	7	1	0	0	11
ESE	0	6	3	0.	0	. 0	9
SE	2	12.,	0_	0	0	0	14
SSE	0	7	4	0	0	0	11
S	0	4	7	6	0	0	17
SSW	1	1	3	1.	0	0	6
SW	1	2	2	0	0	0	5
WSW	0	2	5	0	0	0	7
W	0	3	2	0	0	0	5
WNW	1	6	3	2	0	0	12
NW	0	2	1	0	0	0	3
NNW	0	2	0	0	0	0	2
Variable	0	0	0	0	0	0	0
Total	8	59	46	11	0	0	124

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 19

Table D – 3Wind Speed by Direction Measured at 33 Feet for various Stability Classes for theOyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

tuti en el	Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	1	0	0	0	0	1	
NE	0	4	1	0	0	0	5	
ENE	1	2	2	0	0	0	5	
E	1	2	2	1	0	0	6	
ESE	0	2	0	2	0	0	4	
SE	0	9	0	0	0	0	9	
SSE	0	4	2	0	0	0	6	
S	0	3	5	3	0	0	11	
SSW	0	0	0 [']	1	0	0	1	
SW	0	0	0	0	0	0	0	
WSW	0	2	0	0	0	0	2	
W	1	1	1	0	0	0	3	
WNW	0	3	3	0	0	0	6	
NW	0	1	2	0	0	0	3	
NNW	1	0	0	0	0	0	1	
Variable	0	0	0	0	0	0	0	
Total	4	34	18	7	0	0	63	

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 19 Table D - 3Wind Speed by Direction Measured at 33 Feet for various Stability Classes for theOyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind							-
Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total
N	4	7	1	0	0	0	12
NNE	3	17	0	0	0	, 0	20
NE	5	37	3	1	0	0	46
ENE	2	23	11	4	0	0	40
E	1	21	17	0	0	0	39
ESE	4	28	8	3	0	. 0	43
SE	4	48 _{(,}	9	Ο.	1	, 0	62
SSE	8	33	8	3	0	0	52
S	4	29	49	24	2	0	108
SSW	0	6 /	8	7	2	0	23
SW	1	6	4	0	0	0	11
WSW	3	9	2	0	0	. 0	14
W .	1	12	5	0	0	0	18
WNW	1	14	9	0	0	0	24
NW	1	8	6	0	0	. 0	15
NNW	6	11	0	0	0	0	17
Variable	0	0	0	0,	0	0	0
Total	48	309 .	140	42	5	0	544

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 19

Table D - 3Wind Speed by Direction Measured at 33 Feet for various Stability Classes for theOyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph) Wind 4-7 8-12 13-18 19-24 > 24 Total Direction 1-3 ----____ ____ ____ _____ ____ _____ ----Ν NNE NE ENE Ε 0 * ESE SE SSE S SSW SW WSW W WNW NW NNW 0 ' Variable Total

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 19

Table D - 3Wind Speed by Direction Measured at 33 Feet for various Stability Classes for theOyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

	Wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	2	0	0	0	0	0	2		
NE	1	0	0	0	0	0	1		
ENE	1	0	0	0	0	0	1		
Е	0	0	0	0	0	0	0		
ESE	1	0	0	0	0	0	1		
SE	4	0	0	0	0	0	4		
SSE	1	1	0	0	0	0	2		
S	9	1	0	0	0	0	10		
SSW	6	0	0	0	0	0	6		
SW	12	7	0	0	0	0	19		
WSW	7	22	0	0	0	0	29		
W	6	8	0	0	0	0	14		
WNW	6	0	0	0	0	0	6		
NW	3	8	0	0	0	0	11		
NNW	4	4	0	0	0	0	8		
Variable	2	0	0	0	0	0	2		
Total	65	51	0	0	0	0	116		
of calm in th	ie stab	ility c	acc •	1					

Hours of calm in this stability class: 1 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 19

Table D - 3Wind Speed by Direction Measured at 33 Feet for various Stability Classes for theOyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

tati - al		Wi	nd Speed	l (in mpł	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
 N	1	0	0	0	0	0	
NNE	0	1	0	0	0	0	1
NE	1	0	0	0	0	0	1
ENE	0	0	0	0	0	0	0
Е	1	0	0	0	0	0	1
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	1	0	0	0	0	0	1
SSW	5	1	0	0	0	0	6
SW	17	6	0	0	0	0	23
WSW	51	14	0	0	0	0	65
W	66	7	0	0	0	0	73
WNW	31	5	0	0	0	, 0	36
NW	15	9	0	0	0	0	24
NNW	5	1	0	0	0	0	6
Variable	0	0	0	0	0	0	0
Total	194	44	0	0	0	0	238

Hours of calm in this stability class: 1 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 19

49

Table D – 4 Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, April – June, 2011

Period of Record: April - June 2011 Stability Class - Extremely Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

141 - J	Wind Speed (in mph)										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	0	1	1	0	0	2				
NNE	0	0	3	0	0	0	3				
NE	0	1	7	8	0	0	16				
ENE	0	0	10	5	2	0	17				
Е	0	1	7	9	0	0	17				
ESE	0	1.	18	2,	0	. 0	21				
SE	0	1,	8	0	0	. 0	9				
SSE	0	0	1	1	1	0	3				
S	0	0	2	10	4	0	16				
SSW	0	1.	3 🚬	4 ,	2	0	10				
SW	0	0	1	4	0	0	5				
WSW	0	Ο ͺ	0	3	6	1	10				
W	0	0	6	10	4	3	23				
WNW	0	0	4	4	9	4	21				
NW	0	0	5	2	10	2	19				
NNW	0	1	3	1	2	0	7				
Variable	0	0	0	0	0	0	0				
Total	0	6	79	64	40	10	199				
Hours of calm in th Hours of missing wi	is stab nd meas	ility cl urements	ass: in this	0 stabili	ty class.	: 1					

Hours of missing stability measurements in all stability classes: 19

,

Table D – 4 Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Moderately Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

			,	Wind Spee	d (in mp	h)		
	Direction	n 1-3	4-7	8-12	13-18	19-24	> 24	Total
	N	0	3	2	0	0	0	5
'	NNE	0	0	. 2	0	0	0	2
	NE	0	0	1	1	0	0	2
	ENE	1	1	10	2 ΄	2	1	17
	Е	0	3	7	3	1	0	14
	ESE	0	4	9	1	0	0	14
	SE	0	2	9	0	0	0	11
	SSE	0	1	12	1	0	0	14
	S	0	0	4	12	5	0	21
	SSW	0	0	3	13	2	0	18
	SW	0	2	3	1	1	0	7
	WSW	0	0	4	2	2	0	8
	W	0	0	4	8	2	1	15
	WNW	0	1	5	4	7	2	19
	NW	0	1	2	2	2	4	11
	NNW	0	0	6	1	0	0	7
	Variable	0	0	0	0	0	0	0
	Total	1	18	83	51	24	8	185
of of	calm in missing	this sta wind mea	ability of asurement	class: ts in this	0 s stabil:	ity class	s: 0	:

Hours Hours Hours of missing stability measurements in all stability classes: 19

51

......

Table D - 4Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, April – June, 2011

Period of Record: April - June 2011 Stability Class - Slightly Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

1		Wi	nd Speed	l (in mpł	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	5	0	0	0	6
NNE	0	3	0	0	0	0	3
NE	1	0	5	4	0	0	10
ENE	0	1	5	2	2	1	11
Е	0	4	10	5	1	0	20
ESE	0	3	7	1	1	. 0	12
SE	0	4	12	0	0	. 0	16
SSE	0	3	6	7	0	0	16
S	0	0	11	8	4	1	24
SSW	0	2	1	4	5	. 0	12
SW	0	3	3	0	0	0	6
WSW	0	2	2	3	1	0	8
W	1	2	3	1	1	1	9
WNW	0	3	6	1	2	0	12
NW	0	2	5	3	3	1	14
NNW	0	1	2	2	1	0	6
Variable	0	0	0	0	0	0	0
Total	2	34	83	41	21	4	185
· · ·				•			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 19

- -- ------

Table D – 4Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

į.

Period of Record: April - June 2011 Stability Class - Neutral - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

		Wi	nd Speed	l (in mph	n) .		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
,							
N	3	3	3	3	0	0	12
NNE	1	5	10	6	0	0	22
NE	0	6	22	18	4	0	50
ENE	1	8	13	25	5	8	60
E	2	10	14	29	8	1	64
ESE	2	6	23	8	5	7	51
SE	3	27	31	12	5	1	79
SSE	1	15	43	16	3	5	83
S	0	12	42	31	17	14	116
SSW	2	3	17	39	34	24	119
SW	0	4	5	2	3	0	14
WSW	1	1	6	7	4	0	19
W	1	3	4	11	4	0	23
WNW	0	3	10	13	14	1	41
NW	1	3	13	13	10	1	41
NNW	0	4	2	2	0	0	8
Variable	0	0	0	0	0	0	0
Total	18	113	258	235	116	62	802

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 19

Table D - 4Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, April – June, 2011

Period of Record: April - June 2011 Stability Class - Slightly Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

177 d an 2		W	ind Speed	d (in mp)	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	4	3	12	1	0	20
NNE	1	2	2	4	0	0	9
NÉ	0	0	4	0	1	0	5
ENE	0	1	0	1	0	0	2
Е	0	5	2	1	1	0	9
ESE	3	7	1	0	0	0	11
SE	1	4	2	1	0	2	10
SSE	1	6	16	7	0	1	31
S	2	2	15	11	5	2	37
SSW	2	9	10	36	30	, 7	94
SW	0	2	9	23	21	4	59
WSW	0	3	5	11	18	1	38
W	0	3	3	12	13	1	32
WNW	0	1	5	8	18	0	32
NW	0	1	5	8	7	1	22
NNW	0	2	5	6	5	0	18
Variable	0	0.	0	0	0	0	0
Total	10	52	87	141	120	19	429

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 19

· - : Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Table D – 4 Oyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

: •

Period of Record: April - June 2011 Stability Class - Moderately Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

	ration of		Wi	nd Speed	l (in mp)	1)		
	Wind Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total
	N	1	0	3	5	2	0	11
•	NNE	0	0	1	0	0	0	1
	NE	1	0	2	2	0	0	5
	ENE	1	0	0	0	0	0	1
	Е	1	0	0	0	0	0	1
	ESE	0	1	0	0	0	· 0	1
	SE	1	0	0	0	0	0	1
	SSE	0	3	3	0	0	0	6
	S	1	7	2	4	0	0	14
	SSW	0	2	3	5	0	0	10
	SW	3	3	5	6	6	0	23
	WSW	0	3	7	8	17	0	35
	W	1	3	4	4	10	4	26
	WNW	0	3	2	7	11	5	28
	NW	1	6	7	14	7	0	35
	NNW	0	3	2	6	6	1	18
	Variable	0	0	0	0	0	0	0
	Total	11	34	41	61	59	10	216
Hours (of calm in th of missing wi	his stal ind meas	, ility cl surements	ass: in this	0 stabili	ty class	s: 0	

Hours of missing stability measurements in all stability classes: 19

Table D – 4 Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, April – June, 2011

Oyster Creek Alpha

Period of Record: April - June 2011 Stability Class - Extremely Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

• • • •

	Wind Speed (in mph)									
WI Direc	na tion 1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	4	3	7	7	. 0	21			
NNE	0	0	0	2	0	. 0	2			
NE	0	1	1	0	0	· 0	2			
ENE	0	1	0	0	0	0	1			
E	0	3	1	0	0	[;] 0	4			
ESE	0	1	0	0	0	0	1			
SE	0	1 :	0	0	0	· 0	1			
SSE	0	2	0	0	0	0	2			
S	0	4 `	0	0	0	- 0	4			
SSW	4	2	9	3	0	0	18			
SW	0	4	4	4	0	0	12			
WSW	0	1	3	3	2	0	9			
W	1	3 '	9	2	5	0	20			
WNW	0	1	3	5	6	0	15			
NW	2	2	3	5 '	5	[;] 0	17			
NNW	0	1 '	3	4	8	• • • 0	16			
. Varial	ble O	0 -	0	0	0	0	0			
Tota	1 7	31	39	35	33	0	145			
Hours of calm Hours of miss Hours of miss	in this stab ing wind meas ing stability	ility cla urements measurem	uss: in this ments in	0 stabili all sta	ty class bility c	: 0 lasses:	19			

Table D - 5Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

.

Period of Record: July - September 2011 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

÷ +

	T. T. I		•••		~ (*Þ.	-,		
	Wind Directior	n 1-3	4-7	8-12	13-18	19-24	> 24	Total
	· N	2	8	4	0	0	0	14
	NNE	2	2	3	0 -	0	0	7
	NE	1	10	13	0	0	0	24
	ENE	1.	15	18	Ο.	0	0	34
	Ē	2	24	11	0	0	0	37
	ESE	Ο,	35	21	0	0	0	56
	SE	0	32	31	0	0	0	63
	SSE .	3.	7	43	0	0	0	53
	S .	1	13	68	6	0	0	88
	SSW	1 ·	11	14	1	0	0	27
	SW	2	23	9 .	0	0	0	34
	WSW	2	17	16	0	0	0	35
,	·W	0	25	10	0	0	0	35
	WNW	0	39	22	0	0	0	61
	NW	1	23	2	0	0	0	26
	NNW	1	13	1	0	0	0	15
	Variable	0	0	0	0	0	0	0
	Total	19	297	286	7	0	0	609
Hours Hours Hours	of calm in of missing of missing	this stab wind meas stability	oility cl surements measure	lass: s in this ements ir	0 s stabili n all sta	ity class ability o	s: 3 classes:	6

Table D - 5Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

taté se al	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	1	0	0	0	 0	1			
NNE	2	1	0	0	0	0	3			
NE	2	0	0	0	0	0	2			
ENE	0	1	0	0	0	0	1			
Е	0	3	1	0	0	0	4			
ESE	0	5	1	0	0	0	6			
SE	0	12	5	0	0	. 0	17			
SSE	0	8	4	0	0	0	12			
S	0	5	17	0	0	0	22			
SSW	0	1	2	0	0	0	3			
SW	1	4	1	0	0	0	6			
WSW	1	2	2	0	0	0	5			
W	1	4	2	0	0	0	7			
WNW	2	6	2	0	0	0	10			
NW	3	5	3	0	0	0	11			
NNW	1	6	0	0	0	0	7			
Variable	0	0	0	0	0	0	0			
Total	13	64	40	0	0	. 0	117			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

Table D – 5

 Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
					~		
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	1	1	0	0	0	2
ENE	0	1	1	0	0	0	2
E	1	1	1	0	0	0	3
ESE	0	0	0	0	0	0	0
SE	0	4	0	0	0	0	4
SSE	0	2	1	0	0	0	3
S	0	1	3	1	0	0	5
SSW	0	3	3	0	0	0	6
SW	0	1	1	0	0	0	2
WSW	0	1	0	0	0	0	1
W	0	2	1	0	0	0	3
WNW	0	2	0	0	0	0	2
NW	1	2	0	0	0	0	3
NNW	1	ບໍ	0	0	0	0	1
Variable	0	0	0	0	0	0	0
Total	3	21	12	1	0	0	37

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

59

Table D - 5Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, July - September, 2011

Period of Record: July - September 2011 Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
						-	
N	1	6	1	0	0	0	8
NNE	0	4	2	0	0	· 0	6
NE	1	7	9	2	1	0	20
ENE	3	14	4	2	2	0	25
E	1	18	5	0	1	0	25
ESE	2	24	1	0	0	· 0	27
SE	1	31	5	0	0	· 0	37
SSE	4	25	4	0	0	0	33
S	6	32	40	5	0	0	83
SSW	5	7	13	1	0	0	26
SW	7	17	3	0	0	0	27
WSW	6	14	1	4	0	0	25
W	4	9	1	1	1	0	16
WNW	2	7	1	0	0	0	10
NW	5	9	1	1'	0	0	16
NNW	3	4	1	1	0	0	9
Variable	0	0	0	0	0	0	0
Total	51	228	92	17	5	0	393

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 6

Table D - 5Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

1.14	Wind Speed (in mph)										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	4	1	0	0	0	0	5				
NNE	1	2	0	0	0	0	3				
NE	3	16.	11	0	0	0	30				
ENE	8	12	5	1	2	. 0	28				
E	1,	9	2	0	2	. 0	14				
ESE	5	9	0	1	0	0	15				
SE	7	17	0	0	0	0	24				
SSE	14	18	2	0	0	0	34				
S	12	47.	14	0	0	0	73				
SSW	20	55	10	0	0	0	85				
SW	26	61	1	2	0	0	90				
WSW	20	42	0	2	0	0	64				
W	15	11	1	1	0	0	28				
WNW	5	10	0	0	0	0	15				
NW	5	8	0	0	0	0	13				
NNW	3	8	2	0	0	0	13				
Variable	0	0 ·	0	0	0	0	0				
Total	149	326	48	7	4	0	534				

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 6

61

Table D - 5Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Period of Record: July - September 2011 Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

wind										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	5	0	0	0	0	0	5			
NNE	0	0	0	0	0	0	0			
NE	2	0	0	0	0	. 0	2			
ENE	1	0	0	0	0	0	1			
Е	0	0	0	0	0	0	0			
ESE	1	0	0	0	0	0	1			
SE	4	0	0	0	0	0	4			
SSE	3	3	2	0	0	0	8			
S	14	5	1	0	0	0	20			
SSW	13	7	0	0	0	0	20			
SW	16	12	0	Ο.	0	0	28			
WSW	22	17	0	0	0	0	39			
W	20	6	0	0	0	0	26			
WNW	11	5	0	0	0	0	16			
NW	7	9	0	0	0	0	16			
NNW	2	2	0	0	0	0	4			
Variable	0	0	0	0	0	0	0			
Total	121	66	3	0	0	0	190			

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

Table D – 5	Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
	Oyster Creek Generating Station, July – September, 2011

Period of Record: July - September 2011 Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	Wind	1-3	1-3 4-7 8-12			19-24	4 > 24	Total
	i'' N	2	0	0	0	0	0	2
	NNE	1	1	0	0	0	0	2
	NE	0	0	0	0	0	0	0
	ENE	0	0	0	0	0	0	0
	E	1	0	0	0	0	0	1
	ESE	0	0	0	0	0	0	0
	SE	1	0	ο΄	0	0	0	1
	SSE	1	0	0	0	0	0	1
	S	1	0	0	0	0	0	1
	SSW	12	0	0	0	0	0	12
	SW	51	4	0	0	0	0	55
	WSW	100	10	0	0	0	0	110
	W	68	1	1	0	0	0	70
	WNW	31	2	0	0	0	0	33
	NW	20	4	0	0	0	0	24
	NNW	0	2	0	0	0	0	2
	Variable	1	0	0	0	0	0	1
	Total	290	24	1	0	0	0	315
Hours Hours Hours	of calm in t of missing w of missing s	his stal vind meas tability	oility cl surements y measure	lass: s in this ements in	0 s stabil: n all sta	ity class ability o	s: 0 classes:	6

Table D – 6Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Extremely Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

	Wind Speed (in mph)											
Direction	1-3	4-7	8-12	13-18 	19-24	> 24	Total					
Ν	0	0	0	0	0	· · · · 0	0					
NNE	0	0	0	0	0	0	0					
NE	0	0	4	3	0	0	7					
ENE	0	0	9	1	0	0	10					
. E	ο	0	8	4	1	0	13					
ESE	0	1	7	1	0	0	9					
SE	0	0	8	3	0	0	11					
SSE	0	0	5	2	0	0	7					
S	0	0	3	4	2	0	9					
SSW	0	0	2	6	0	0	8					
SW	0	1	4	2	0	0	7					
WSW	0	1	7	7	0	0	15					
W	0	1	3	2	0	0	6					
WINW	0	2	7	6	1	0	16					
NW	0	0	4	2	0	0	6					
NNW	0	0	0	0	0	0	0					
Variable	0	0	0	0	0	0	0					
Total	0	6	71	43	4	0	124					
Hours of calm in the	is stab	ility cl	ass:	0 stabili	ty class	. 0						

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

Table D - 6Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

...

Period of Record: July - September 2011 Stability Class - Moderately Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	2	4	2	0	0	8
NNE	0	0	1	1	0	0	2
NE	0	0	0	1	3	0	4
ENE	0	3	4	0	0	. 0	7
E	0	2	6	1	0	0	9
ESE	0	2	12	1	0	0	15
SE	0	3	18	1	0	0	22
SSE	0	2	20	8	0	0	30
S	0	0	3	16	2	0	21
SSW	0	0	6	14	0	0	20
SW	0	1	5	0	0	0	6
WSW	0	4	7	5	0	0	16
W	0	5	5	3	0	0	13
WNW	0	2	12	6	0	0	20
NW	0	5	8	3	0	0	16
NNW	0	2	4	0	0	0	6
Variable	0	0	0	0	0	0	0
Total	0	33	115	62	5	0	215

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

Table D - 6Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Slightly Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

tuti en al		Wind Speed (in mph)								
Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total			
N	0	1	1	1	0	0	3			
NNE	0	1	1	0	0	0	2			
NE	0	0	3	4	1	0	8			
ENE	0	0	4	3	0	. 0	7			
Е	0	1	1	1	1	0	4			
ESE	0	5	5	1	0	0	11			
SE	1	2	15	Ο,	0	0	18			
SSE	. 0	2	8	2	0	0	12			
S	1	1	15	12	1	. 0	30			
SSW	0	2	12	12	3	0	29			
SW	0	0	2	4	0	0	6			
WSW	0	2	9	5	0	0	16			
W	0	3	2	2	3	0	10			
WNW	0	2	6	10	0	0	18			
NW	0	2	10	4 .	0	0	16			
NNW	0	4	7	1	0	0	12			
Variable	0	0	0	0	0	0	0			
Total	2	28	101	62	9	0	202			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 6

Table D - 6Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Neutral - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

tite of		Wi	nd Speed	1 (in mp)	ı)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
·		 2		5		0	11
.,	T	2	0	5	U	U	14
NNE	0	3	4	5	0	0	12
NE	1	0	5	7	16	0	29
ENE	1	2	7	12	11	3	36
Е	0	6	17	12	3	1	39
ESE	0	2	21	8	1	2	34
SE	1	11	26	17	0	1	56
SSE	2	7	22	17	1	0	49
S	1	7	31	19	19	1	78
SSW	3	6	26	65	30	2	132
SW	1	9	12	11	1	0	34
WSW	3	8	10	14	3	4	42
W	2	7	9	8	0	4	30
WNW	1	3	8	10	1	1	24
NW	1	6	13	7	1	0	28
NNW	2	2	10	2	3	4	23
Variable	0	0	0	0	0	0	0
Total	20	81	227	219	90	23	660

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 3 Hours of missing stability measurements in all stability classes: 6

67

.
Table D - 6Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Slightly Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	1	5	3	0	2	0	11			
NNE	0	1	3	2	0	0	6			
NE	0	4	1	2	0	0	7			
ENE	1	0	3	6	0	7	17			
E	2	4	9	7	0	5	27			
ESE	3	3	6	3 ₂	0	. 1	16			
SE	3	4.	15	8	0	0	30			
SSE	0	3	13	10	1	0	27			
S	1	8	16	23	6	0	54			
SSW	2	6	20	60	7	0	95			
SW	2	3.	12	46	30	1	94			
WSW	2	5	8	28	17	1	61			
Ŵ	0	2	5	28	9	1	45			
WNW	1	3	10	10	3	0	27			
NW	0	2	4	4	1	0	11			
NNW	0	1	5	2	10	0	18			
Variable	0	0	0	0	0	0	0			
Total	18	54	133	239	86	16	546			

Table D - 6Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Moderately Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

1	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	2	1	0	0	3			
NNE	1	0	3	1	0	0	5			
NE	0	3	1	0	1	0	5			
ENE	1	1	4	0	0	0	6			
Е	0	3	2	1	0	0	6			
ESE	0	0	0	0	0	0	0			
SE	1	0	1	0	0	0	2			
SSE	0	1	4	0	0	0	5			
S	0	4	3	0	0	0	7			
SSW	0	8	11	9	2	0	30			
SW	0	4	3	9	10	0	26			
WSW	0	3	5	12	20	5	45			
W	0	3	12	8	13	1	37			
WNW	2	4	6	5	8	0	25			
NW	0	1	3	5	8	0	17			
NNW	2	2	3	7	7	0	21			
Variable	0	0	0	0	0	0	0			
Total	7	37	63	58	69	6	240			

Table D - 6Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, July – September, 2011

Oyster Creek Alpha

Period of Record: July - September 2011 Stability Class - Extremely Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

• * •

	Wind Speed (in mph)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
-						·				
N	0	2	5	9	2	0	18			
NNE	0	3	2	6	1	0	12			
NE	1	4	3	4	0	0	12			
ENE	0	0	2	1	0	0	3			
Е	0	0	6	0	0	0	6			
ESE	1	2	0	0	0	···· 0	3			
SE	0	1	0	0	0	0	1			
SSE	0	0	1	0	0	0	1			
S	0	2	2	4	0	0	8			
SSW	3	5	4	9	0	0	21			
SW	1	5	3	9	1	0	19			
WSW	1	7	3	5	6	0	22			
W	0	6	14	6	2	5	33			
WNW	0	0	12	1	5	. 0	18			
NW	0	1	6	5	4	. 0	16			
NNW	0	0	5	8	2	0	15			
Variable	0	0	ο	0	0	· 0	0			
Total	7	38	68	67	23	5	208			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

.

the second second second

Table D - 7Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Oyster Creek Alpha

. .

. •

Period of Record: October - December2011 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind			····•	• •	•		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	6	1	0	0	0	7
NNE	1	5	11	0	0	. 0	17
NE	0	14	8	0	0	0	22
ENE	0	14	0	0	0	0	14
Е	1 .	7	1	0	0	0	9
ESE	1	12	0	0	0	0	13
SE	1	7	8	0	0	0	16
SSE	0	5	4	1	0	0	10
S	1	1	16.	6	0	0	24
SSW	0	6	21	5	0	0	32
SW	2	3	19	5	0	0	29
WSW	1	12	16	4	0	0	33
W	1	16	18	3	0	0	38
WNW	0	22	25	7	0	0	54
NW	1	19	46	0	0	0	66
NNW	1	7	6	1	0	0	15
Variable	0	0	0	0	0	0	0
	· .	455		20	0	0	200
Total	11	156	200	32	U	U	399

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 13

Table D - 7Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, October - December, 2011

Period of Record: October - December2011 Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

111 - A	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	2	2	0	0	0	4		
NE	0	3	1	0	0	0	4		
ENE	0	0	0	0	0	0	0		
E	0	3	0	0	0	0	3		
ESE	0	1	0	Ο.	0	0	1		
SE	0	3	0	0	0	0	3		
SSE	0	1	0	0	0	0	1		
S	0	2	4	0	0	0	6		
SSW	2	1	3	2	0	0	8		
SW	1	3	3	0	0	0	7		
WSW	2	1	2	Ο,	0	0	5		
W	0	6	3	1	0	0	10		
WNW	0	7	1	1	0	0	9		
NW	1	2	8	1	0	0	12		
NNW	0	3	1	0	0	0	4		
Variable	0	0	0	0	0	0	0		
Total	6	38	28	5	0	0	77		

Table D - 7Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Oyster Creek Alpha

Period of Record: October - December2011 Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph) Wind 4-7 8-12 13-18 19-24 > 24 Total Direction 1-3 ____ _____ ----____ ____ ____ _ _ _ _ _ ____ Ν NNE NE ENE Ε ESE SE SSE S SSW SW WSW W WNW NW NNW Variable Total

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 13

Table D - 7Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, October - December, 2011

Period of Record: October - December2011 Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

	Wind Speed (in mph)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	3	7	0	1	0	0	11			
NNE	5	14	1	4	0	0	24			
NE	5	7	14	3	0	0	29			
ENE	1	10	14	1	0	0	26			
Е	1	13	10	0	0	0	24			
ESE	4	14	5	0	0	, O	23			
SE	1	5	5	1	0	0	12			
SSE	0	6	4	1	1	0	12			
S	0	24	27	3	1	0	55			
SSW	2	13	26	4	0	0	45			
SW	3	16	13	0	0	0	32			
WSW	2	13	4	0	0	0	19			
W	5	7	11	0	0	0	23			
WNW	5	13	12	11	0	0	41			
NW	2	26	16	1	0	, 0	45			
NNW	3	9	8	0	0	0	20			
Variable	0	0	0	0	0	0	0			
Total	42	197	170	30	2	0	441			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 13

Table D - 7Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Oyster Creek Alpha

. .

Period of Record: October - December2011 Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Direction							Wind Speed (in mph)								
		4-7 	8-12	13-18	19-24	> 24	Total								
N	1	3	9	0	0	0	13								
NNE	2	7	3	0	0	0	12								
NE	5	12	7	0	0	0	24								
ENE	4	7	2	1 :	0	0	14								
E	6	6	2	0	0	. 0	14								
ESE	3	1	0	0	0	0	4								
SE	5	6	2	0	0	0	13								
SSE	3	14	5	2	0	0	24								
S	5	30	14	2	0	0	51								
SSW	4	41	27	2	1	0	75								
SW	7	53	22	1	0	0	83								
WSW	L1	39	2	1	0	0	53								
W	8	27	3	0	0	0	38								
WNW	12	49	8	0	0	0	69								
NW	L2	26	3	0	0	0	41								
NNW	4	8	7	0	0	0	19								
Variable	0	0	Ō	0	0	0	0								
Total	92	329	116	9	1	0	547								

Table D - 7Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Period of Record: October - December2011 Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

للاغ مرجا	Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	2	1	0	0	0	0	3	
NNE	3	0	0	0	0	0	3	
NE	2	1	0	0	0	0	3	
ENE	1	1	0	0	0	0	2	
E	3	1	0	0	0	0	4	
ESE	1	0	0	0	0	. 0	1	
SE	2	0	0	0	0	[•] : [•] 0	2	
SSE	3	4	0	0	0	0	7	
S	2	1 ່	0	0	0	0	3	
SSW	5	10	0	0	0	0	15	
SW	10	23	0	0	0	0	33	
WSW	13	43	1	0	0	0	57	
W	13	16	0	0	0	0	29	
WNW	11	13	0	0	0	0	24	
NW	14	8	0	0.	0	. 0	22	
NNW	10	5	0	0	0	0	15	
Variable	0	0	0	0	0	0	0	
Total	95	127	1	0	0	0	223	

Hours of calm in this stability class: 1 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 13

.

Table D - 7Wind Speed by Direction Measured at 33 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Oyster Creek Alpha

A THE THE ALL AND

Period of Record: October - December2011 Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

.

. .

	Wind		VV 1	na speed	a (in mp	.1)		
	Direction	n 1-3	4-7	8-12	13-18	19-24	> 24	Total
	N	4	0	0	0	0	0	4
	NNE	2	0	0	0	0	0	2
	NE	2	0	0	0	0	0	2
	ENE	1	0	0	0	0	0	1
	E	1	0	0	0	0	0	1
	ESE	2	0	0	0	0	0	2
	SE	2	0	0	0	0	0	2
	SSE	3	0	0	0	0	0	3
	S	4.	0	0	0	0	0	4
	SSW	6	4	0	0	0	0	10
	SW	27	13	0.	0	0	0	40
	WSW	126	23	0	0	0	0	149
	W	130	11	0	0	0	0	141
	WNW	28	6	0	0	0	. 0	34
	NW ,	41	17	0	0	0	0	58
	NNW	3	2	0	0	0	0	5
	Variable	0	0	0	0	0	0	0
	Total	382	76	0	0	0	0	458
Hours	of calm in	this stak	oility cl	ass:	3	tu oloco		
Hours	of missing	stability	measure	ments in	all sta	bility c	lasses:	13

 Table D – 8
 Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, October – December, 2011

Oyster Creek Alpha

Period of Record: October - December2011 Stability Class - Extremely Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

turi		Wi					
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	1	, 0	1
NE	0	0	6	3	1	0	10
ENE	0	0	3	0.	0	0	3
Е	0	0	0	0	0	. 0	0
ESE	0	0,	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	2	0	0	0	2
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	1	1
WSW	0	0	1	1	0	0	2
W	0	0	0	3	2	0	5
WNW	0	0	0	0	2	1	3
NW	0	0	1	2	0	0	3
NNW	0	0	0	0	1	0	1
Variable	0	0	0	0	0	0	0
Total	0	0	13	9	7	2	31

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 13

Table D - 8Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Oyster Creek Alpha

Period of Record: October - December2011 Stability Class - Moderately Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

Wind Speed (in mph) Wind 4-7 8-12 > 24 Direction 1-3 13-18 19-24 Total _____ ____ _ _ _ _ _ _ _ _ _ _ ____ ____ _ _ _ _ _ ____ Ν NNE \mathbf{NE} ENE Е ESE SE 3 ΄ SSE S SSW SW WSW W WNW NW NNW Variable Total

Table D – 8Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Period of Record: October - December2011 Stability Class - Slightly Unstable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

۰. ۲

7		Wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	1	0	0	0	0	1			
NNE	0	0	0	2	0	0	2			
NE	0	5	2	3	0	0	10			
ENE	0	2	1	1	0	0	4			
Е	0	0	3	0	0	0	3			
ESE	0	0	0	1.	0	. 0	1			
SE	0	1	0	0	0	0	1			
SSE	0	1	5	0	0	0	6			
S	0	0	2	3	0	0	5			
SSW	0	1.	2	10	2	1	16			
SW	0	0	4	7	6	1	18			
WSW	0	3	2	6	2	2	15			
W	0	1	4	7	2	0	14			
WNW	0	0	9	4	2	4	19			
NW .	0	4	5	11	7	0	27			
NNW	0	1	1	6	3	1	12			
Variable	0	0	0	0,	0	0	0			
Total	0	20	40	61	24	. 9	154			

Table D - 8Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Oyster Creek Alpha

Period of Record: October - December2011 Stability Class - Neutral - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

111 · · · · · · · · · · · · · · · · · ·		Wi	nd Speed				
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	4	7	6	0	18
NNE	3	2	8	8	5	5	31
NE	0	5	11	16	3	3	38
ENE	0	5	9	6	15	16	51
E	1	5	5	1	7	3	22
ESE	0	8 ΄	10	11	0	2	31
SE	1	7	6	0	4	1	19
SSE	1	4	7	1	3	2	18
S	0	0	11	5	3	0	19
SSW	2	0	8	40	31	8	89
SW	1	3	2	22	22	7	57
WSW	0	7	14	15	10	2	48
W	1	2	11	14	9	1	38
WNW	2	4	15	10	15	13	59
NW	0	3	6	33	17	12	71
NNW	1	3	6	22	11	4	47
Variable	0	0	0	0	Ó	0	0
Total	13	5 9	133	211	161	79	656

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 13

Table D - 8Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Period of Record: October - December2011 Stability Class - Slightly Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

1.1.1 - A	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	2	4	10	3	, 0	19		
NNE	0	2	2	7	3	0	14		
NE	0	4	4	3	3	0	14		
ENE	0	1	2	7	6	0	16		
E	0	2	5	3	0	0	10		
ESE	0	1 .	8	5	2	, 1	17		
SE	0	1.	6	10 ,	1	, 1	19		
SSE	0	2	6	9	5	5	27		
S	0	2	2	12	10	2	28		
SSW	0	1	8	33	35	0	77		
SW	0	0	5	38	52	5	100		
WSW	0	3	8	19	26	4	60		
W	0	4	5	18	16	2	45		
WNW	0	2	6	18	23	5	54		
NW	0	2	4	33	17	., 3	59		
NNW	1 、	0	3	22	13	0	39		
Variable	0	0.	0.	0	0	0	0		
Total	1	29	78	247	215	28	598		

Table D - 8Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the
Oyster Creek Generating Station, October – December, 2011

Oyster Creek Alpha

Period of Record: October - December2011 Stability Class - Moderately Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

Wind Speed (in mph) Wind . > 24 Direction 1-3 4-7 8-12 13 - 1819 - 24Total _____ ____ ---------_ _ _ _ _ ----_ _ _ _ _ ____ Ν NNE NE ENE Ε ESE 0 . SE SSE S SSW SW WSW W WNW NW 2 ` NNW Variable

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 13

67 ່

16 `

Total

 Table D – 8
 Wind Speed by Direction Measured at 380 Feet for various Stability Classes for the Oyster Creek Generating Station, October – December, 2011

Period of Record: October - December2011 Stability Class - Extremely Stable - 380Ft-33Ft Delta-T (F) Winds Measured at 380 Feet

tation 1	Wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	5	2	10	10	0	27		
NNE	0	2	7	11	0	0	20		
NE	0	3	3	3	0	0	9		
ENE	1	3	3	0	0	0	7		
Е	2	2	2	0	0	0	6		
ESE	0	4	1	0	0	0	5		
SE	0	1	5	0	0	0	6		
SSE	0	6	6	0	0	0	12		
S	2	2	2	2	1	0	9		
SSW	2	4	16	19	5	0	46		
SW	2	4	13	29	10	1	59		
WSW	2	1	11	17	15	4	50		
W	1	7	6	11	11	3	39		
WNW	2	4	8	17	3	0	34		
NW	0	4	5	21	8	0	38		
NNW	2	4	3	10	7	1	27		
Variable	0	0	0	0	0	0	0		
Total	16	56	93	150	70	9	394		

• • • • • • • •

. .

Appendix E ODCM Revisions

None

Appendix F ERRATA

Revised Annual Radioactive Effluent Release Reports for 2006, 2007, 2008 and 2009 will be submitted under separate cover. The reports are being revised to correct the stack release data that was incorrect due to the stack sample line separation.