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ABSTRACT

A total of 25 valid bottom reflood heat transfer experiments have been performed in the
Pennsylvania State University/U.S. Nuclear Regulatory Commission Rod Bundle Heat Transfer
(RBHT) Test Facility to examine the effects of both dispersed flow film boiling and inverted
annular film boiling in rod bundle geometry. The RBHT Test Facility had a full length, 3.66 m
(12 ft), 7x7 rod array with typical pressurized water reactor rod diameters of 9.49 mm (0.374 in)
and a rod pitch of 12.59 mm (0.496 in). The heater rods had a top skewed power shape with a
peak to average power of 1.5 at the 2.77 m (9.08 ft) elevation. The ranges of conditions for the
experiments were pressures from 138 to 414 kPa (20 to 60 psia), flooding rates from 0.0254 to
0.1524 m/s (1 to 6 in/s), and initial peak clad temperatures from 1033 to 1144 degrees K (1400
to 1600 degrees F), inlet subcooling from 11 to 83 degrees K (20 to 150 degrees F), and peak
powers of 1.32 to 2.31 kW/m (0.4 to 0.7 kW/ft). The experiments were performed using a
constant power rather than simulating the reactor decay power. The use of a constant bundle
power extended the reflood transient several hundred seconds and resulted in quasi-steady film
boiling over the majority of the bundle length. There were approximately 500 channels of
transient data recorded for each test including the bundle power, heater rod temperatures,
upper plenum pressure, inlet flow rate, inlet water subcooling, superheated vapor temperatures
in the bundle, spacer grid temperatures, liquid carryover of the bundle, and the detailed axial
bundle pressure drop. Transient mass balances were typically within five percent for the low
flooding rate experiments, and larger for the higher flooding rate experiments. The experimental
data has been qualified and submitted to the U.S. Nuclear Regulatory Commission data bank
for analysis and computer code validation.






FOREWORD

Reflood thermal-hydraulics represents an important set of phenomena during a hypothetical
large break loss-of-coolant-accident (LOCA). These phenomena must be accurately simulated
by systems codes in determining plant response to a LOCA. In spite of significant research into
reflood thermal-hydraulics, there still exists a large uncertainty in these calculations. As a result,
the Nuclear Regulatory Commission (NRC) conducts experimental investigations of reflood
thermal-hydraulics in order to provide data for model development and to more thoroughly
assess its systems codes.

The NRC is currently assessing and improving the TRAC/RELAP Computational Engine
(TRACE) code for best estimate analysis of light water reactors. While calculation of reflood by
TRACE appears to be reasonable, higher accuracy is needed as the code is applied to power
uprates and new plant designs to ensure acceptable margin between expected plant
performance and the regulatory limits. Accurate prediction of the consequences of a large
break LOCA is important because it is one of the postulated accident scenarios that determine
the licensed core power and several other operational parameters. As the NRC places greater
emphasis on risk-informed regulation, a more accurate and reliable systems code is needed to
obtain realistic rather than conservative predictions.

To acquire detailed, fundamental data for use in developing models for an LBLOCA, the NRC
sponsored the design and construction of a Rod Bundle Heat Transfer (RBHT) Test Facility.
Some of these detailed data have only recently become possible because of recent advances in
instrumentation technology for two-phase flow measurements.

This report presents the results of reflood heat transfer tests. The data from these tests will be
used to develop and assess a reflood model for the TRACE code. The results of other test
series will be reported in separate reports. Additional information about the RBHT Test
Program is provided in two previously published reports: NUREG/CR-6975, “Rod Bundle Heat
Transfer Test Facility Test Plan and Design,” and, NUREG/CR-6976, “Rod Bundle Heat
Transfer Test Facility Description.”

With improved data and code models for an LBLOCA, we can more accurately predict the
consequences of LBLOCA accidents and provide better technical bases for regulations
associated with such accidents. As a result, this study will help to achieve the NRC’s strategic
performance goals of making the agency’s regulations more effective, efficient, and realistic.
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EXECUTIVE SUMMARY

As part of the U.S. Nuclear Regulatory Commission’s safety analysis computer code
development efforts, the Rod Bundle Heat Transfer (RBHT) Test Facility has been designed
and constructed at The Pennsylvania State University. The RBHT Test Facility is a full length
simulation of a portion of a pressurized water reactor (PWR) fuel assembly. The bundle is a 7x7
rod array with four unheated corner rods and 45 heated electrical rod which simulate a 17x17
PWR fuel assembly. The RBHT Test Facility has a heated length of 3.66 m (12 ft), with typical
PWR rod diameters of 9.49 mm (0.374 in) and a rod pitch of 12.6 mm (0.496 in). The heater
rods have a top skewed power shape with a peak to average power of 1.5 at the 2.77 m (9.08 ft)
elevation. The ranges of conditions for the experiments are pressures from 138 to 414 kPa (20
to 60 psia), flooding rates from 0.0254 to 0.1524 m/s (1 to 6 in/s), and initial temperatures from
1033 to 1144 degrees K (1400 to 1600 degrees F), inlet subcooling from 11 to 83 degrees K (20
to 150 degrees F), and peak powers of 1.32 to 2.31 kW/m (0.4 to 0.7 kW/ft). Typical PWR
mixing vane spacer grids were simulated in the RBHT bundle.

There are approximately 500 channels of transient data recorded for each test including the
bundle power, heater rod temperatures, upper plenum pressure, inlet flow rate, inlet water
temperature, superheated vapor temperatures in the bundle, spacer grid temperatures, liquid
carryout of the bundle, and the detailed axial bundle pressure drop. Transient mass balances
were typically within five percent for the low flooding rate experiments, and larger for the higher
flooding rate experiments. There are a total of 25 valid experiments performed and reported to
the U.S. Nuclear Regulatory Commission. The data from these experiments were qualified and
submitted to the U.S. Nuclear Regulatory Commission’s data bank for analysis and code
validation purposes.

There are several unique features of the RBHT program which are not found in other rod bundle
reflood heat transfer experiments. The RBHT experiments are performed using constant power
rather than simulating decay power as in previous rod bundle experiments. The use of constant
power results in a quasi-steady dispersed flow film boiling regime in the bundle and extends the
reflood transient. The longer experimental time allows a more detailed examination of the
dispersed flow film boiling heat transfer models in the analysis codes without the additional
complication of a rapidly moving quench front up the bundle. There are traversing miniature
steam probes in the bundle at several elevations which measured the superheated steam
temperature in the presence of saturated entrained droplets. The steam probes are located up-
and downstream of the spacer grids and can indicate the effects of the spacer grids on the two-
phase droplet flow. There is also a laser illuminated high resolution digital camera and
associated software which can measure the entrained droplet size within the bundle at different
elevations relative to the spacer grids. There are a large number of very sensitive differential
pressure cells along the bundle. The mixing vane grids are also instrumented with several
miniature thermocouples such that spacer grid temperature behavior can also be characterized
in addition to the heater rod and vapor temperature measurements. The RBHT Test Facility
reflood heat transfer experiments have provided integrated detailed data that can be used for
advanced safety analysis computer code assessment for dispersed flow film boiling and
inverted annular film boiling in a prototypical rod bundle geometry.
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INTRODUCTION

The objective of the Rod Bundle Heat Transfer (RBHT) Program is to provide high quality
experimental data for computer code model development and validation. As part of this
program, a series of experiments are performed to examine reflood thermal/hydraulic behavior
over a wide range of conditions.

A series of reflood experiments are performed in the (RBHT) facility over a range of pressures,
flow rates, inlet temperatures and simulated powers. The experiments are run using constant
power, which is different from the previously performed FLECHT (Refs. 1 and 2) and FLECHT-
SEASET (Ref. 3) experiments such that the reflooding behavior is quasi-steady for much longer
periods of time. It is believed that the quasi-steady behavior of the RBHT experiments will make
model development and validation easier since the film boiling portions of the experiments are
extended in time. Also, the specific instrumentation which was added to the RBHT for improved
understanding of the reflooding process will provide new and improved data for the quasi-steady
reflood experiments. Specifically, subchannel vapor measurements using miniature
thermocouples on traversing steam probe rakes yield vapor superheat for extended times as the
quench front advances up the heater rods.

There are two basic flow regimes for reflooding in a rod bundle. For high flooding rates,
typically, 0.1524 m/s (6 in/s) or higher, the dominant flow regime for the post-CHF regions in the
bundle is an inverted annular regime in which a thin layer of vapor separates the heated wall
from the subcooled liquid flow which nearly fills the channel. Since the inlet flow is larger than
the quench rate of the fuel rods, a long region of inverted film boiling can exist above the
quench front. As one proceeds upward along the bundle, liquid becomes saturated and begins
to break into chunks or liquid slugs. The length of the inverted annular and the liquid chunk
regimes depends on the flooding rate into the heated bundle, initial subcooling of the liquid,
system pressure, and the rod bundle initial temperature and power level. The heat transfer in
this regime is high and results in immediate clad temperature turnover such that lower peak
cladding temperatures are calculated for this reflood regime. Figure 0.1 shows an example of
both the high and low flooding rate reflood heat transfer and flow regimes.

For low flooding rates, there is no subcooled inverted annular film boiling region. Because of
the low injection flow rate, the liquid quickly reaches saturation and there is bulk boiling of the
fluid below the quench front. In the quench front region, and above the quench front, there is a
froth region which has a medium range void fraction which transitions between a low void
fraction, below the quench front, to the much higher void fraction in the dispersed flow regions
above the quench front. This behavior is shown in Figure 0.1. The heat transfer in this region
occurs between the heated wall and the superheated steam. Liquid droplets in the superheated
steam evaporate reducing the steam temperature as well as increasing the flow rate of the
steam. As a result, the calculated peak cladding temperature usually occurs in this region. In
most reactor reflood calculations, after the initial surge into the core, the flooding rates are very
low, typically 0.0254 m/s (1 in/s) or less such that the dispersed flow film boiling region is the
dominant flow regime of interest and is the heat transfer regime in which the peak cladding
temperature occurs.
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Figure 0.1 Reflood Flow Regimes for High and Low Reflood Rates.

The RBHT instrumentation strategy is primarily designed to obtain detailed information for the
low flooding rate experiments. The low flooding rate conditions are more limiting for postulated
accident conditions, and the phenomena associated with the low flooding rate behavior are

more difficult to predict with accuracy.

This report provides a summary of the data obtained, the data reduction methods and
assumptions used in reducing the data as well as the uncertainty in the experimental data and
derived quantities from the data. A full set of the experimental data was transmitted to the NRC

data bank.



1.1 Rod Bundle Heat Transfer Program Reflood Heat Transfer Test Matrix

A series of reflood heat transfer experiments are performed to provide data for dispersed flow
film boiling in rod bundles as well as for the inverted annular flow film boiling heat transfer
regime. The range of pressures expected during a PWR LBLOCA was examined as well as the
inlet subcooling of the Emergency Core Cooling (ECC) flow into the test bundle. The initial
temperatures are selected to represent a Best-Estimate peak cladding temperature at the
beginning of the reflood portion of the LOCA transient. Most of the experiments use a peak
cladding temperature of 1033 to 1144 degrees K (approximately 1400 degrees F). The flooding
rates vary from 0.0254 to 0.1524 m/s (1 to 6 in/s).

There are a number of repeat experiments in which the laser illuminated digital camera system
is moved to different axial positions in the rod bundle. The strategy is to obtain drop size
information at different elevations, relative to the quench front, for the same system conditions
such that the evolution of the entrained flow can be determined by super-positioning the data
gathered in different experimental runs.

While there is a learning curve in performing the experiments, the test repeatability, mass
balances, and test performance continued to improve over the testing period. The most
significant problem encountered in the reflood test series is pressure oscillations which occurred
due to the control logic for the exhaust control valve. Pressure variations in the test section
were usually small, but there are several experiments in which pressure oscillations could not
be damped and the experimental runs are considered invalid. The reflood heat transfer test log
is given in Table 1.1 for the different experiments performed and there is a Quick Look Report
(QLR) written for each valid experiment which contains a mass balance calculation. The data
from these experiments has been sent to the NRC’s data bank in electronic format.

1.2 References

1. Rosal, E. R., Hochreiter, L. E., McGuire, M. F., Krepinevich, M. C., “FLECHT Low
Flooding Rate Cosine Test Series Data Report,” WCAP-8651, December (1975).

2. Rosal, E. R., Conway, C. E., Krepinevich, M. C., “FLECHT Low Flooding Rate Skewed Test
Series Data Report,” WCAP-9108, May (1977).

3. Lee, N,, Wong, S., Yeh, H.C., and Hochreiter, L.E., “PWR FLECHT-SEASET Unblocked
Bundle, Forced and Gravity Reflood Task Data Evaluation & Analysis Report,”
NRC/EPRI/Westinghouse Report No. 10, WCAP-9891, NUREG/CR-2256, EPRI NP-2013,
November (1981).



Table 1.1 Reflood Heat Transfer Test Log

REHT Test Conditions
Run # Flooding | Peak Initial
Pressure Rate Power | Temp. Inlet . Steamn Probe Laser Ca_mera S_tarl End Walidity Comments
. Subcooling Elevation Time | Time
NRC |kPa (psia)| misec | kWim K K (F Info. :
Test # (infsec) |(kwim)| (F) P m (in) see | se¢
937 131 1033 Rakes 1,2, 4,
138 @0) 00254 (0| 0 | 400 1M1@n |6,7,9,10,11, 3013 | 1362 | Walid Mo droplet data
1a 04 ) 13 in center
945 1.31 1033 Rakes 1,2, 4,
276 (40) 0.0254 (1) 0'4) (1400) 11(20) |6,7,9,10,11, 1709 | 2490 Valid No droplet data
2a : 13 in center
973 131 1033 Rakes 1,2,4, | 286 (1125
276 (40) |0.0254 (1) (ljd) (1400) 11 @0 [6,7,9,10, 11, [downstream of | 400 | 12335 | Valid
2b ’ 13 in gap grid #5
Rakes 3, 4,5
1088 Ll 274 (108) )
1.31 1033 6,7,9,10,11, . Test terminated early,
o 276 (40) |0.0254 (1) 04 | q400) 11 (20) 12,13, in upst{z:ag of | 1625 | 3685 | Walid [T engl e
center g
Rakes 3, 4,5,
o e loozsa | 13| 198 | 4y oy |B7.8.10.11, somatnanct| 2274 | 1916 | vaid
i ' ©.4) | (1400) 12,13, in e -
center 9
1103 Rakes 3,4, 5,
025 1.31 1033 6,7,9,10,11, . Pressure, therefore
B 138 0) 0. M 0.4y | (1400) e 12,13,in Invalid temperature oscillations
center
Rakes 3, 4,5,
108 131 | 1083 6,7,9,10,11,| 2% .
136 (20) [0.0254 (1) 83 (150) ! upstream of | 1106 | 14925 | Walid
4b 0.4) (1400) 12,13,in tid #5
center 9
Rakes 3, 4,5,
12 23 1144 6,7,9,10,11, 2.2 @) . _—
138 (20) [0.1524 (B) 83 (150) ! upstream of Irwalid Inlet flow oscillations
5a 0.7) | (1600) 12,13,in rid #5
center s
Rakes 3, 4,5,
g 23 | 1144 6,7,9,10.11,| 2363 _
136 (20) [0.1524 (B) 83 (150) : downstream of | 740.3 | 10225 | Valid
Sa 0.7) | (1600) 12,13, in grid #6
center
1155 23 1144 ;a?kegs 31041? Test terminated early,
138 (20) |0.1524 (B) (U'?) (1600) 1 @20 i 3}/ | 774 | Valid valid to end time.
Sh c'ental-r Mo droplet data
1160 Rakes 3, 4,5, 2,36 (93)
276 (40) O‘g? (ﬁ?) (:‘1;3) 83 (150) |[6,7,9,10,11, |downstreamn of | 129.5 | 5046 | Valid
B ) 12, in center qgrid #5
1170 23 1144 Rakes 3, 4,5,
276 (40) |0.1524 (B) (U.?') (1600) M@0 |[6,7,910,11, 298 | 7718 | Walid No droplet data
10 ) 12, in center
1178 Rakes 3, 4,5
23 1144 L= . Scrammed, DAS not
276 (40) 0.1524 (B) 53(@6) |6,7,9,10,11, Invalid L
g 0.7) | (1600) 198 I center synchronized
1183 Rakes 3,4,5 . .
23 1144 L . Insufficient nitrogen for
276 (40) 0.1524 (B) 53(96) |6,7,9,10,11, Invalid
8 0.7y | (1e00) 12'in center flow control
1196 23 1144 Rakes 3, 4,5, 2.36 (93)
276 (40) [0.1524 (B) (U.?) (1600) 53 (9B) 6,7,9,10,11, |downstream of | 2266 | 718.7 Yalid Mo droplet data
8 ’ 12, in center qgrid #5
1202 23 1144 Rakes 3, 4,5,
276 (40) |0.1524 (B) 0'7) (1600) 23(42) |6,7,9,10,11, 2585 | 8017 | Valid No droplet data
9 ) 12, in center




Table 1.1 Reflood Heat Transfer Test Log (Cont)

RBHT Test Conditions
Run # Flooding | Peak | Initial
Pressure Rate Power | Temp. 5 t:nlatr Stearn Probe Lag;:;:mera 1S_tarl 1I_En|:| Walidity Comments
NRC |kPa (psia)| misec | kWim | K “KC('l,‘_l)'”g Info. . gr.'ﬁ" ;‘:‘: ;‘;”:
Test # (infsec) | (kW) | (F) -
1223 53 1144 Rakes 3, 4,5,
276 (40) |0.1524 (B) '? 1 mEn |6,7,9,10,11, 1352 | 7886 | Valid No droplet data
10 ©.7) | (1600) 12, in center

Rakes 3, 4,5,
6,7,9,10,11, . Mo droplet data
12, in center

23 1144

138 (20) [0.1524 (B) (1600)

Rakes 3, 4,5,
414 (60) |0.1524 (B) 6,7,9,10,11, X No droplet data

12, in center

Rakes 3, 4,5,
6,7,9,10,11, R No droplet data
12, in center

Rakes 3, 4,5,
6,7,9,10, 11, | downstream of | 844.7
12, in center

Power turned off at
1010.5 sec.

Rakes 3, 4,5,

1346
1.31 1033 ] Pressure, therefore
276 (40) |0.0254 (1) @0 |6,7,9,10,11, Invalid R
24 0.4) | (1400) 12, in center terperature oscillations
1351 Rakes 3,4,5
1.31 1033 L . Pressure, therefore
276 (40) |0.0254 (1) mEn |6,7,9,10,11, Invalid R
28 0.4y | (1400) 12.in center temperature oscillations

Rakes 3, 4,5
1.3 1033 L . Pressure, therefore
1a 138 (20) |0.0254 (1) 0.4y | (1400) 10 81; z:smll sl temperature oscillations

1361




Table 1.1 Reflood Heat Transfer Test Log (Cont)

REHT Test Conditions
Run # Flooding | Peak | Initial
Pressure Rate Power | Temp. 5 Inlet . Steamn Probe LaEer Ca‘mera 1S-tarl End Walidity Comments
NRC [kPa (psia)| misec |kwim | K “ﬂc"""”g Info. levation | Time | Time
Test # (infsec) | kwimy | () ('F) m (in.) sec | sec

Rakes 3, 4,5, | 286 (112.5)
6,7.9,10,11, | downstream of | 313.2

12, in center

Rakes 3, 4,5,
6,7,9,10,11,
12, in center

qgrid #5

1.32 (52.5)

downstream of
grid #3




2. TEST FACILITY DESCRIPTION FOR REFLOOD EXPERIMENTS

The RBHT Test Facility was developed by The Pennsylvania State University and the United
States Nuclear Regulatory Commission. The facility is designed to conduct systematic separate
effects tests under well-controlled laboratory conditions in order to generate fundamental rod
bundle heat transfer data from: two-phase level swell tests, steam flow tests with and without
droplet injection, inverted annular film boiling reflood tests, and dispersed flow film boiling
reflood heat transfer tests. The facility is capable of operating in steady-state forced and
variable reflood modes covering a wide range of flows and heat transfer conditions at pressures
from 1.0 (14.5 psia) to 4.2 bars (60 psia).

2.1 General Facility Description

The test facility consists of the following major components shown schematically in Figure 2.1,
and in an isometric view in Figure 2.2:

o A test section consisting of a lower plenum, a low-mass housing containing the heater
rod bundle, and upper plenum.

Coolant injection and steam injection systems.

Closely coupled phase separation and liquid collection systems.

An injection system.

A pressure fluctuation damping tank and steam exhaust piping.

The test facility is a once-through flow facility in which either water or steam can enter the lower
plenum and flow upward through the rod bundle. The lower plenum is attached to the bottom of
the flow housing and is used as a reservoir for the coolant prior to injection into the rod bundle
during reflood. The upper plenum serves as the first stage for phase separation and liquid
collection of the two-phase effluent exiting the rod bundle. The liquid phase separates from the
flow due to the sudden expansion from the bundle to the larger plenum flow area.

The facility has a large and small liquid carryover tank provided to collect the liquid carryover in
order to measure the amount of entrainment in the flow. The de-entrained liquid from the upper
plenum drains into the top of a 25.6 mm tube, which extends inside the small carryover tank.
When the small carryover tank fills, it overflows into the large carryover tank. A centrifugal two-
phase separator is located downstream of the upper plenum and acts to separate out the
remaining liquid flow from the vapor such that the vortex meter at the exit of the steam pipe will
measure single phase vapor flow only. There is a third liquid collection tank on the phase
separator, which collects the separated liquid.

A pressure-damping tank located before the vortex flow meter and pressure control valve acts
to damp out any pressure oscillations to maintain tight pressure control on the facility.
Separating the exit flows from the bundle provides a means of calculating a transient mass
balance as well as an energy balance on the facility.
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2.1.1 Test Section

The test section consists of the heated rod bundle, flow housing, and the lower and upper
plenums, as shown in Figure 2.3. The heater rod bundle simulates a small portion of a 17x17
PWR reactor fuel assembly. The electrically powered heater rods have a diameter of 9.5 mm
(0.374 in) arranged in a 7x7 array with a 12.6 mm (0.496 in) pitch, as shown in Figure 2.4. The
bundle has 45 heater rods and 4 unheated corner rods. The corner rods are used to provide
structural support for the bundle and provide exit points for thermocouple leads. The support
rods are made from Inconel 600 tubing having a diameter 9.525 mm (0.37 in), a wall thickness
of 2.108 mm (0.083 in), and a total length of 3.96 m (156 in). The heater rods are single ended
and consist of a Monel 500 electrical resistance heating element surrounded by hot pressed
boron nitride (BN) insulation and enclosed in a Inconel 600 cladding, as shown in Figure 2.5.
Since it is desired to re-use the heater rods for multiple experiments, the cladding material was
chosen for its high strength and low thermal expansion coefficient at high temperatures, which
minimizes rod bowing and failure at high temperature operating conditions. The heater rods
have a 3.66 m (12 ft) heated length with a skewed axial power profile, as shown in Figure 2.6,
with the peak power located at the 2.74 m (9 ft) elevation. The maximum-to-average power
ratio (Pmax/Pavg) is 1.5 at the peak power location and 0.5 at both ends of the heated length. The
bundle has a uniform radial power distribution.

Power to each rod is provided by a 60 volt, 12,600 amp, 750 kW DC power supply. Each rod is
rated for 10 kW, and designed to operate at 13.8 bars (200 psig) at a maximum temperature of
1477 degrees K (2200 degrees F), but because of its solid construction it can be operated up to
103.4 bars (1500 psig). Rods marked with an “I” in Figure 2.4 are instrumented with eight 0.508
mm (0.02 in) diameter ungrounded thermocouples attached to the inside surface of the Inconel
sheath at various locations. Rods marked with a “U” are not instrumented. All of the
thermocouple leads exit at the heater rod bottom end. The Inconel 600 thermocouple sheath is
compatible with the heater rod cladding and housing material to reduce differential thermal
expansion and minimize the possibility of causing thermocouple failure during the thermo-
cycling operations.

The rod bundle has seven mixing vane grids shown in Figure 2.7. These grids are similar in
design of a PWR 17x17 fuel assembly, but instead of having dimples and springs, these grids
have only dimples which provide a cold clearance of 0.127 mm (0.005 in) around each heater
rod in order to prevent bowing when the heater rods are linearly expanding at high
temperatures. The grids straps are made out of Inconel 600 alloy sheets which are 0.51 mm
(0.020 in) thick and are 44.5 mm (1.75 in) in height including the mixing vanes. The grids are
located 522 mm (20.55 in) apart except for the spacing between the first and second grid, which
is 588 mm (23.26 in) apart. The first grid is located 102 mm (4.01 in) above the bottom of the
heater length. The grids in conjunction with the corner rods form the heater rod bundle support
structure. The grid locations are similar to the ones found in a 17x17 PWR fuel assembly. The
heater rod top extensions are attached to the 25.4 mm (1 in) thick nickel ground plate by means
of a Morse taper that provides a good electrical contact. The heater rod bottom extension and
copper electrode extend through the lower plenum O-ring pressure seal plate.

The copper electrodes, which are 5.84 mm (0.023 in) in diameter and 203 mm (8 in) long,
extend through holes drilled in the low-melt reservoir shown in Figure 2.8. This reservoir serves
as the electrical power supply positive connection. It contains a low temperature melting alloy at
about 344 degrees K (160 degrees F) which is an excellent conductor, thus providing a good
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electrical contact and mechanical cushion allowing for rod thermal expansion to each heater
rod.

The flow housing provides the pressure and flow boundary for the heater rod bundle. It has a
square geometry. Its inside dimensions are 90.2 x 90.2 mm (3.55 x 3.55 in), and wall thickness
6.4 mm (0.25 in) as shown in Figure 2.4. The housing is made out of Inconel 600, the same
material used for the heater rod cladding and thermocouple sheaths. As pointed out previously,
the high strength of Inconel 600 at elevated temperatures will minimize housing distortion during
testing. The 6.4 mm (0.25 in) wall thickness is the minimum allowable for operating at 4.2 bars
(60 psig) and 811 degrees K (1000 degrees F) taking into consideration the cutouts to
accommodate the large windows and numerous pressure and temperature penetrations through
the walls, as shown in Figure 2.3. The empty housing has a flow area of 83.4 cm? (12.9 in?).
With the rod bundle in place the flow area is 48.6 cm? (7.5 in?). This area is 7.21 percent larger
than the ideal flow area of a 7x7 rod bundle configuration. The excess flow area is due to the
flow housing inside dimensional tolerance and the space needed to insert the rod bundle in the
housing. The gap between the outer rods and the flow housing inner wall is 2.5 mm (0.1 in)
wide.

The flow housing has six pairs of windows. Each window provides a 50.8 x 292 mm (2.0 x 11.5
in) viewing area. Each pair of windows is placed 180 degrees apart and located axially at
elevations overlapping rod bundle spacer grids, thus providing a viewing area about 88.9 mm
(3.5in) below and 152 mm (6 in) above the corresponding space grids. The windows will
facilitate the measurement of droplet size and velocity using a Laser Illuminated Digital Camera
System (LIDCS). In addition, high speed movies using diffused back lighting can be taken
during the experiments for visualization and flow regime information. The windows are made
out of optical grade fused quartz and are mounted on the housing by means of a bolted flange
and Kemprofile high temperature gasket material, as shown in Figure 2.9.

The flow housing is supported from the nickel plate and upper plenum, allowing it to freely
expand downward, thus minimizing thermal buckling and distortion. The two-phase void fraction
will be measured using sensitive differential pressure cells. The flow housing has 23 pressure
taps located at various elevations, as shown in Figure 2.3. The pressure taps are connected to
sensitive differential pressure (DP) cells providing measurements to calculate single-phase
friction losses for determining base rod bundle and grid loss coefficients. Sixteen of these
pressure taps are located about 76.2 to 127 mm (3 to 5 in) apart to provide detailed void fraction
measurements in the froth region above the quench front.

The flow housing also has thirteen stand-off penetrations at various elevations for the traversing

steam probe rakes which measure the superheated steam temperatures in the dispersed flow
regime.

10
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Figure 2.8 Low Melt Reservoir.

Figure 2.9 Housing Window.
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2.1.2 Lower Plenum

The lower plenum is attached to the bottom of the flow housing. The lower plenum is made out
of nominal 203 mm (8 in) schedule 40, 304 stainless steel pipe with an inside diameter of 202
mm (7.94 in), a height of 203 mm (8 in), and a volume of 6570 cm?® (0.232 ft*), as shown in
Figure 2.10. The lower plenum is used as a reservoir for the coolant prior to injection into the
rod bundle during reflood. It connects to the injection water line and steam cooling line. It has
two penetrations for thermocouples monitoring the coolant temperature prior and during reflood,
and pressure taps for static and differential pressure measurements.

The lower plenum also has four Conax fittings with multiple probes sealing glands for the bundle
grid, steam probes and support rod wall thermocouple extensions that are routed through the
bottom of the rod bundle. It contains a flow baffle, which is attached to the flow housing bottom
flange. The flow baffle has a square geometry, similar to the holes that act as a flow distributor
and flow straightener to provide and even flow distribution into the rod bundle.

2.1.3 Upper Plenum

The upper plenum serves as the first stage for phase separation and liquid collection of the two-
phase effluent exiting the rod bundle. The liquid phase separates due to the sudden expansion
from the bundle to the larger plenum flow area. The de-entrained liquid is collected around the
flow housing extension in the upper plenum. The extension acts as a weir preventing the
separated liquid from falling back into the heater rod bundle. The upper plenum vessel
configuration is shown in Figure 2.11. The vessel is made from a 203 mm (8 in) 204 stainless
steel pipe with an inside diameter of 202 mm (7.94 in) and a height of 305 mm (12 in). It has a
volume of 9873 cm?® (0.347 ft°). The plenum has a 76.2 mm (3 in) pipe flange connection to the
steam separator and two penetrations for fluid thermocouples. It is covered with a 203 mm (8
in) 304 stainless steel blind flange. This flange has a 25.4 mm (1 in) penetration for steam
injection, venting, and connecting the safety relief valve and rupture disc assembly. It also has
a pressure tap penetration for static and differential pressure measurements. In addition, the
upper plenum contains an exhaust line baffle shown in Figure 2.12. The baffle is used to further
de-entrain water from the steam and prevents water dripping from the upper plenum cover
flange to be carried out by the exhaust steam. The baffle has a 76.2 mm (3 in) flange
connection at one end. Itis inserted through the upper plenum exit nozzle, and it is bolted
between the nozzle flange and the flange of the pipe going to the steam separator.
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Figure 2.11 Upper Plenum.
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J

Figure 2.12 Exhaust Line Baffle.

2.1.4 Large and Small Carryover Tanks

The de-entrained liquid from the upper plenum drains into the top of a 25.4 mm (1 in) tube which
extends inside a small carryover tank to detect and measure the carryover liquid as soon as
possible. This tank, shown in Figure 2.13, is close-coupled in series with a larger carryover
tank, shown in Figure 2.14, which collects and measures and the amount of liquid overflow from
the smaller carryover tank. The small carryover tank has a volume of about 1388 cm?® (0.049
ft*), and is used to more accurately measure the initial water being collected as a function of
time. The smaller carry over tank is made from 50.8 mm (2 in) schedule 80 pipe having an
overall length of 914 mm (36 in) including the end caps. The large carryover tank is made from
a 102 mm (4 in) schedule 40 pipe with a bottom end cap and top flanges having an overall
length of 183 cm (6 ft) and a capacity of 15917 cm?® (0.562 ft°). Each tank is connected with
25.4 mm (1 in) flexible hose, and has a 25.4 mm (1 in) drain tube, and 9.5 mm (0.375 in) wall
penetrations for installing fluid instrumentation and level indicators.
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Figure 2.13 Small Carryover Tank.
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Figure 2.14 Large Carryover Tank.
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2.1.5 Steam Separator and Collection Tank

The wet steam exhausted from the upper plenum flows through a steam separator (or dryer),
shown in Figure 2.15, where carryover liquid droplets are further separated from the steam and
collected in a small collection tank, shown in Figure 2.16, attached to the bottom of the steam
separator. The steam separator relies on centrifugal force action to provide 99 percent dry
steam. The separated liquid is drained into a collection tank where a differential pressure cell is
used as a level meter to measure liquid accumulation. The steam separator is fabricated from a
356 mm (14 in) diameter 316 stainless steel pipe and is 914 mm (36 in) long. It has 50.8 mm (2
in) connecting nozzles, a 25.4 mm (1 in) drain, and a 12.7 mm (0.5 in) top vent. It also has two
pressure taps for liquid level measurements and two 38.1 mm (1.5 in) side nozzle connections.
The drain tank is a small vessel with a capacity of 11329 cm?® (0.4 ft°). It is made from a 102
mm (4 in) schedule 80 pipe with an overall length of 1.78 m (70 in), including both end caps. It
has a 25.4 mm (1 in) drain nozzle, a 25.4 mm (1 in) top pipe connection to the steam separator,
pressure taps and fluid thermocouple connections.

Figure 2.15 Steam Separator.

21



Figure 2.16 Steam Separator Collection Tank.

2.1.6 Pressure Oscillation Damping Tank

The dry steam from the steam separator flows into a pressure oscillation-damping tank. As its
name implies, it is used to dampen pressure oscillations at the upper plenum caused by rapidly
oscillating steam generation rates in the heater rod bundle during reflood. This effect is coupled
to the characteristics of the pressure control valve, which is located downstream in the steam
exhaust line. It is desirable to have a smooth pressure control in order to minimize uncertainties
when calculating mass balances, steam generation rates, and heat transfer coefficients in the
heater rod bundle, and avoid the pressure control valve causing oscillations in the bundle as it
cycles. The tank has a volume of 0.209 m*(7.38 ft%), which is approximately equal to the total
volume of the rest of the test facility. The pressure tank is fabricated from 356 mm (14 in)
diameter, 304 stainless steel standard schedule pipe and is 2.59 m (102 in) long, as shown in
Figure 2.17. Inside the tank is a 76.2 mm (3 in) schedule 40, 304 stainless steel pipe that
provides a tortuous path for the steam flow to expand into a large volume, thus damping
pressure oscillations. The inlet and outlet nozzles are 76.2 mm (3 in) in diameter with flanges.
The vent and drain lines are made of 25.4 mm (1 in) stainless steel pipe. There are 9.53 mm
(0.375 in) tube penetrations for a fluid thermocouple and two static pressure taps. The tank
walls are heated with clamp-on-strip heaters up to about 11 degrees K (20 degrees F) above
saturation temperatures to prevent steam condensation.
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Figure 2.17 Pressure Oscillation Damping Tank.
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2.1.7 Exhaust Piping

The steam flows out of the pressure oscillation-damping tank through a 76.2 mm (3 in) schedule
40, 304 stainless steel pipe shown schematically in Figure 2.18. The exhaust line has a Vortex
flow meter, a 76.2 mm (3 in) V-Ball pressure control valve, and a muffler at the exit to minimize
the noise caused by steam blowing into the atmosphere. The pressure control valve is
activated by a signal from a static pressure transmitter located on the upper plenum. The line is
also instrumented with a static pressure transmitter, fluid thermocouples, and outer wall
thermocouples. The 76.2 mm (3 in) line has flow-straightening vanes which reduce the pipe
length requirements upstream of the Vortex flow meter in order to obtain accurate flow
measurements. This line has strapped-on electrical heaters to keep the wall temperatures
about 11 degrees K (20 degrees F) above saturation to insure that single-phase steam flow
measurements are made by the Vortex flow meter.

Steam Vent Muffler 4@

To Pressure Oscillation ™
Damping Tank \R

Vortex Flowmeter

Pressure Control
V-Ball Valve

<«—Drain Leg

Figure 2.18 Exhaust Piping.
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2.1.8 Injection Water Supply Tank

The injection water system consists of a water supply tank, a circulation pump, and
interconnecting lines to the test section lower plenum. The water supply tank shown in

Figure 2.19, has a capacity of 0.953 m® (251.75 gal). It is designed for 4.14 bars (60 psig) and
427 degrees K (310 degrees F). The tank is equipped with a submersible electrical heater to
heat the injection water to specified test temperatures. The tank is pressurized by a nitrogen
supply system, which regulates the over-pressure needed for the forced flooding injection tests.
The tank has inlet and outlet nozzles, pressure taps for level measurements, fluid and wall
thermocouples. Water from the tank can be circulated through the test section by a centrifugal
pump with a capacity up to 0.946 m®min (250 gpm), which is needed to perform liquid single-
phase flow tests.

M1 TROBEN

172" RELIEF
AD RUPTURE DISC

PURGE
M] TROGEN 3" WATER IMLET
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_\_ HEATER
3* WATER OUTLET
PRESSURE _\H:
b TN 1 DRAIN

Figure 2.19 Injection Water Supply Tank.
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2.2 Facility Improvements Over Previous Tests

Significant improvements related to other heater rod bundle testing programs, listed in Section
3.0 Literature Review of the RBHT Test Facility Test Plan and Design Report (NUREG/CR-
6975), have been incorporated in the RBHT Test Facility. These improvements include:

e A low mass square flow housing design which better fits a square rod bundle array and
minimized the housing mass and excess rod bundle flow area.

e The six pairs of windows which provide large viewing areas below and above grid
locations, making it possible to observe and make void fraction and droplet
measurements during reflood testing.

e The use of a laser illuminated Digital Camera system to measure entrained water
droplets sizes, distribution, and velocities in the transition and disperse flow regions.

e The use of a traversing steam probe rake to measure simultaneously steam
temperatures in the flow subchannel and in the rod-to-rod gap. They are specially
designed such that they would not stay wet after having contacted by liquid droplets.

o Differential pressure transmitters axially located 76.2 to 127 mm (3 to 5 in) apart in
conjunction with heater rod and flow housing wall thermocouples to obtain detailed void
fraction and heat transfer information.

o Water droplet injection system in conjunction with steam injection to study the droplet-
steam cooling effects on heat transfer and grids.

e Addition of a large pressure oscillation-damping tank to minimize test section oscillations
observed in the FLECHT and FLECHT-SEASET tests.

e The incorporation of close coupled entrained liquid collection tanks and piping to reduce
delay times for liquid collection.

2.3 Instrumentation and Data Acquisition System

The test instrumentation is designed to measure temperatures, power, flows, liquid levels,
pressures, void fractions, droplet sizes, distributions, and droplet velocities. The vapor velocity
cannot be directly measured in a two-phase dispersed flow, but it can be calculated at different
axial positions from the data. Overall the transient mass and energy balances, mass
inventories, carryover liquid and steam flow can be calculated as functions of time. Heater rod
power, heat rod temperature, and fluid temperature are used to calculate heat fluxes and heat
transfer coefficients, quench times, rod bundle energy losses, convective and radiation heat
transfer to steam, droplets, grids, support rods, and housing. Effects of grids, support rods and
housing behavior during reflood can be determined. Void fraction measurements below the
quench front and in the froth level above the quench front, in conjunction with the laser
illuminated digital camera measurements are used to determine droplet entrainment behavior,
droplet effects on heat transfer, and steam desuperheating. The laser illuminated digital camera
system measurements provide droplet size distribution and velocities during reflood.
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2.3.1 Loop Instrumentation and Controls

Loop instrumentation is shown schematically in Figure 2.20. There are 123 instrumentation
channels assigned to the collection of electrical power, fluid and wall temperatures, levels, flow
differential pressures, and static pressure measurements. The injection water supply tank has
three fluid and three wall thermocouples to monitor water and wall temperatures during heat-up
prior to testing. It has a differential pressure transmitter used as a level meter to determine
water mass in the tank and mass depletion during reflood testing. It also has a static pressure
transmitter that monitors the nitrogen over pressure and controls the nitrogen flow needed to
maintain a constant pressure during forced injection reflood tests. The water injection line is
equipped with a Coriolis Effect Micromotion flow meter that directly measures mass flows up to
454 kg/min (1000 Ibs/min) with an accuracy of plus or minus eleven hundredths of a percent
(x0.11percent) of rate. The steam line has a Rosemount Vortex shedding flow meter to
measure flow up to 7.08 m*/min (250 ft*/min) with an accuracy of plus or minus 65 hundredths
of a percent (£0.65 percent) of rate. Each flow meter is connected through a pneumatic
controller to a V-ball flow control valve. Each line has a fluid thermocouple to measure water or
steam temperature during heat-up and forced injection testing. They also have a static pressure
transmitter which in conjunction with the thermocouples can determine the thermodynamic
properties of the fluid. The injection line has three wall thermocouples to monitor wall
temperatures during heat-up and during testing. One of these thermocouples in conjunction
with a temperature controller regulates the power to an electrical heating cable wrapped around
the injection line. The heating cable is used to heat-up the injection line wall and to maintain the
injection water at the required injection temperature.

The small carryover tank has one fluid and two wall thermocouples. The large carryover tank
instrumentation consists of one fluid thermocouple, three wall thermocouples. Both tanks have
a liquid level meter, which measures the amount of carryover liquid being collected during
testing. In addition, a differential pressure transmitter is connected from the top of the carryover
tank to the upper plenum to determine the static pressure in the carryover tank.

The steam separator is instrumented with one fluid and two wall thermocouples. The drain tank
is instrumented with two fluid and two wall thermocouples. The fluid thermocouple measures
the de-entrained water temperature during testing. The wall thermocouples monitor wall
temperatures during heat-up. The volume of de-entrained water is measured with a level meter
connected across the drain tank.

The pressure oscillation damping tank has two fluid and three wall thermocouples which are
used to monitor vessel walls during heat-up, and to insure that the vessel wall is at a
temperature above saturation to prevent condensation. One wall thermocouple in conjunction
with a temperature controller monitors the power applied to clamp-on heaters that heat up the
tank to the desired wall temperature.
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Figure 2.20 Loop Instrumentation Schematic.




The exhaust line is equipped with a Vortex flow meter which, in conjunction with a static
pressure transmitter and fluid thermocouple measurements, is used to calculate steam
volumetric flows up to 7.08 m*min (250 ft*/min). The flow meter has an accuracy of plus or
minus 65 hundredths of a percent (£0.65 percent) of the rate. The exhaust line also has three
wall thermocouples to measure pipe wall temperatures. One wall thermcouple in conjunction
with a temperature control regulates the power going to clamp-on-heaters which are used for
heating the pipe walls up to a temperature of about 11 degrees K (20 degrees F) above
saturation to prevent steam condensation and to insure accurate single phase steam flow
measurements. The exhaust line has a V-ball pressure control valve. This valve is controlled
by a static pressure transmitter through a pneumatic controller connected to the top of the upper
plenum in order to maintain constant test section pressure during testing.

2.3.2 Test Section Instrumentation

The test section instrumentation consists of the heater rod bundle and flow housing, the low
plenum, and the upper plenum groups. The heater rod bundle and flow housing instrumentation
is shown schematically in Figure 2.21. This figure shows the instrumentation axial locations in
relation to heater rod heated length, grids, steam probe rakes, housing pressure taps and
windows.

Six grids have thermocouples attached to their surfaces in order to determine quenching
behavior during reflood shown in Figure 2.23 through Figure 2.29. Grid and steam probe axial
locations are shown schematically in Figure 2.21. Eight groups of heater rods have
thermocouples at different elevations to cover, as much as possible, the entire rod bundle
heated length. The radial location of each heater rod group is shown in Figure 2.22. The radial
locations of instrumentation rods were chosen in order to be able to characterize heat transfer of
hot rods simulated by the center rods, rod-to-rod and rod-to-housing radiation heat transfer. For
this purpose, heater rod thermocouples, steam probes, and housing wall thermocouples are
located at the same elevations. In addition, symmetrical location of the same group of
instrumented heater rods will help in the data analysis and will determine any anomalies in the
radial flow distribution through the heater rod bundle. Heater rod thermocouples are also placed
at varying distances downstream from a grid to determine the decreasing heat transfer gradient
between grid spans. The steam probes or fluid thermocouples are located at short distances
upstream and downstream of a grid to determine the effect of water droplets being shattered by
the grids on droplet size and distribution, and the desuperheating effect on the steam
temperatures in the disperses flow regime.
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Figure 2.21 Rod Bundle and Housing Instrumentation Axial Locations.
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Figure 2.25 Grid No. 3 Instrumentation.
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Figure 2.29 Grid No. 7 Instrumentation.
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The vapor or steam temperature will be measured using miniature thermocouples having a
diameter of 0.813 mm (0.032 in) which are attached to the spacer grids, as well as the
traversing steam probe rakes having a diameter of 0.381 mm (0.015 in). These are very small
diameter thermocouples that have a fast response time such that they can follow the vapor
temperature accurately in a dispersed, non-equilibrium, two-phase flow. As the froth front
approaches, the number and sizes of the droplets increase which can lead to wetting of these
thermocouples. Experiments performed as part of the FLECHT-SEASET program indicated
that very small thermocouples would provide reliable vapor superheat ready for the longest time
period until they quench as the froth region approaches. While the Lehigh vapor probe was
considered, it is too large and causes a flow distribution effect which is not typical of the bundle.
The Lehigh probe would block 68 percent of the gap between adjacent heat rods. The effect of
the probe would be to distort the data downstream of the sensing location. Such flow
distribution effects were observed in the Lehigh data as well as the INEEL single tube data
which used these probes.

The traversing steam probe rakes are located at the spans between the grids at the upper
heater rod bundle elevations, as shown schematically in Figure 2.30. The traversing steam
probes rakes will measure steam temperatures in the heater rod bundle flow subchannels and
the gaps between the heater rods during the dispersed flow regime. Each rake consists of three
0.381 mm (0.015 in) diameter ungrounded thermocouples mounted on a 0.356 mm (0.014 in)
thick by 6.35 mm (0.25 in) wide Inconel strip. The thermocouples are spaced 12.6 mm (0.496
in) apart which correspond to the heater rod spacing in the bundle. The thermocouple tips are
located facing the steam flow. A 2.39 mm (0.094 in) diameter tube attached to the strip is used
to traverse the steam probe rake across the rod bundle. This tube also carries the
thermocouples leads outside the flow housing through a pressure seal. The tube is attached to
an automated sliding mechanism. It consists of a sliding bar, a 24 DCV motor with a ball drive
shaft, and a linear potentiometer provides a voltage input to the Data Acquisition which
determines the rake thermocouple location and travel distances across the heater rod bundle.

Two fluid thermocouples are placed 24.5 mm (1 in) below the bottom of the bundle heated
length such that injection water temperatures are monitored prior to and when reflood is started.
There are 23 differential pressure transmitters connected to the housing wall pressure taps
providing measurements to calculate single phase flow bundle and grid friction losses, bundle
mass inventory, and void fraction during reflood. There are nine differential pressure cells
connected to pressure taps located 76.2 mm to 127 mm (3 to 5 in) apart to provide detailed
mass inventory, and void fraction data in the froth region above the quench front. In addition,
heater rod and housing wall thermocouples are placed at these pressure tap mid span locations
to determine convective and radiant heat transfer coefficients in the froth region where the
differential pressure cells will give the average void fraction.

The flow housing has six pairs of windows at the following elevations: 61.4 cm (37.2 in), 114 cm
(44.7 in), 166 cm (65.3 in), 218 cm (85.8 in), 270 cm (106.4 in), and 322 cm (126.9 in). Each
pair of windows are 180 degrees apart. The window lenses are made from optical grade fused
quartz and provide a viewing area of about 10.2 cm (4 in) below and 15.2 cm (6 in) above grids
two through seven. The windows are preheated to minimize wetting during reflood using
infrared heaters on each window and by pulsing the heater rod bundle when preheating the flow
housing walls. The infrared heaters are removed just before a test is started. Droplet
measurements above and below a grid can be made through the windows.
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Figure 2.30 Traversing Steam Probe Rake Schematic.

A droplet imaging system known as VisiSizer was developed in conjunction with Oxford Lasers
to measure the size and velocity of water droplets entrained in the steam flow of the RBHT test
section shown schematically in Figure 2.31. VisiSizer uses a pulsed infrared laser to image
water droplets on a 1000x1000 pixel high-resolution black and white digital camera through a
set of windows in the bundle housing. A digital system such as VisiSizer was chosen over
conventional high-speed cameras which are capable of only a few seconds of imaging and have
lower data acquisition speeds. Further, each frame from a standard imaging technique would
need to be analyzed by hand. The VisiSizer system is capable of analyzing 12 to 13 frames per
second for an indefinite period of time. Film from the FLECHT-SEASET tests show poorer
image quality than images taken with VisiSizer in the RBHT experiments. However, VisiSizer is
incapable of measuring anything other than complete droplets. This makes it an inadequate
tool for gathering information about the entrainment front where there are ligaments and other
unusual water behavior.
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An infrared laser is used with the system because it is capable of passing through the quartz
viewing windows and being absorbed by the water droplets entrained in the steam flow.
Because the infrared rays are absorbed by the water droplets, the resulting droplet shadows
can be recorded by the digital camera. So far, there has been no effect of laser light scattering
from rods to droplets. Pictures taken in and out of the rod bundle have the same imaging
characteristics, droplet analyzing capability and clarity. A band pass laser light filter is placed in
front of the digital camera to eliminate non-infrared light from other sources and an anti-glare
attachment is used to eliminate any illumination interference from outside the viewing area. In
addition, rod bundle geometry has little effect in the measurement of droplet distributions and
velocities.

The frames captured by the camera are fed back to a PC at approximately 12 to 13 frames per
second. The software can analyze each frame for droplet size and velocity and write the
recorded data to a size and velocity data array. The software program determines droplet sizes
by determining the area of black vs. white pixels in each droplet image. Once the droplet area
is determined, the program calculates the perimeter of the droplet image to determine the
sphericity of the droplet. The VisiSizer system is capable of determining the surface area based
on diameter of any and all droplets.

Operating the laser in a double pulse mode enables the VisiSizer system to measure both
droplet diameter and velocity for a particular probe volume. The laser pulses twice with a
known pulse delay (on the order of 1 ms) while the camera shutter remains open, creating two
images in the same frame for each droplet. The distance between images is then determined
and the velocity calculated. These velocity characteristics are enough to characterize the
behavior of the flow despite the fact that the droplets are only captured in a single frame.

The local distribution of droplets can be determined for a known probe volume governed by the
software settings. Droplets that lie out of this probe volume on either side of the line of sight will
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be rejected based on focus. The opposite sides of the probe volume will be set by the spacing
of the rods in the bundle. Each droplet is recorded in a two-dimensional array according to size
and velocity. The droplet sizes are recorded in lognormal bins while the velocity bin size is user
defined. Data for the transient reflood experiments is recorded in user defined quasi-steady
state time periods. At the end of each time period the data is saved and a new array is opened.

The VisiSizer enable the experimenters to collect a vast amount of information about the droplet
flow in the test section. The information will be collected in an easy to handle data array and all
information will be written to a CD-ROM to ensure the information will be available for later use.

The four corner support rods are unheated, they are used to support the bundle grids and to
support grid and steam probes thermocouple leads going out of the bundle. These rods are
instrumented with eight thermocouples attached at various elevations corresponding to heater
rods and housing wall thermocouples. The purpose of this arrangement is to quantify radiation
heat transfer losses to unheated surfaces and determine their behavior during reflood.

The DC power supply can be controlled by regulating the voltage, current, or total power output.
The voltage drop across the heater rod bundle is measured by a voltmeter connected to voltage
taps at the Low-Melt pot and the Nickel Ground Plate. The electrical current is measured by a
copper shunt calibrated for 15,000 amps proportional to an output signal of 0-50 millivolts.

The lower plenum is instrumented with two fluid and two wall thermocouples. The fluid
thermocouples monitor the injection water temperature prior and during testing. The wall
thermocouples measure the vessel wall during heat-up and testing. One of the wall
thermocouples in conjunction with a temperature controller regulates electrical power to clamp-
on-heater rods to maintain the vessel wall at inlet temperatures.

The upper plenum is also instrumented with two fluid thermocouples and two wall
thermocouples. The fluid thermocouples measure steam and carryover liquid during testing.
The wall thermocouples monitor vessel wall temperatures during heat-up and testing. The
Upper Plenum is also instrumented with a static pressure transmitter which measures and
controls the test section pressure during testing.

2.3.3 Data Acquisition System

The control and data acquisition system provides control functions and data collection functions
for the RBHT Test Facility. This system consists of two parts: the computer and deplay
terminals residing in the control room and the VXI mainframe and terminal panels residing in the
test facility. The two parts are connected via an industry standing IEEE 1394 (Firewire) serial
control and data interface.

The computer provides the display, control, and data storage functions. It has the capability of
displaying control function set points and process variables, and critical operating parameters
during tests, along with selected variables such as various rod temperatures displayed in real-
times during the experiment. This system will provide dial, meter, and strip-chart functions as
required. The computer collects and saves data from the various instruments, such as voltage,
current, pressure, level flow and temperature; and provides control functions such as heater rod
power, injection water pressure, upper and low plenum temperatures, etc.
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The instrumentation part of this system, residing in the test facility, consists of an industry
standard VXI mainframe (Vme bus with extensions for Instrumentation) from Hewlett-Packard
(HP-E8401AA), and a set of terminal panels (HP E1586A). The VXI mainframe contains a
firewire controller card (HPE8491A) and several (currently seven) state-of-the art data
acquisition and control cards (HP E1419A). The terminal panels provide the isothermal
reference junctions needed for the thermocouples, as well as the voltage and current-loop
input/output (i/o) interface to the RBHT Test Facility. These terminal panels are connected to
the HP E1419A cards with SCSI cables. Seven cards yield a capability of 448 I/O. The VXI
mainframe can hold up to twelve cards, and the firewire interface can support up to sixteen
mainframes.

Each E1419A card can support up to eight signal conditioning plug-ons (scp’s), conditioning
eight channels each. Each E1509A scp contains low-pass anti-aliasing filters, fixed at 7 Hz.
Because of this, the scan rate for each channel must be greater than or equal to the Nyquist
rate of 14 Hz. The maximum a/d conversion rate on each HP E1419A card is nominally
100kHz, but is controlled to rate the user requires. The seven cards can be synchronized to
perform the scans simultaneously. The theoretical maximum scan rate for each channel (on
any individual card) is 100,000/64 = 1,56235 Hz, if all 64 channels are scanned. (Note, the
actual scan rate would be less because of multiplexer switching, amplifier settling times due to
gain changes, etc. There are different scp’s available from HP providing different filter values to
scan at these rates.) The normal data-scanning rate will be 2 Hz during the majority of the
tests, but this rate can be increased to 10 Hz for specific times during testing.
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3. CALCULATIONAL METHODS USED FOR THE RBHT REFLOOD
HEAT TRANSFER EXPERIMENTS

3.1 Transient Heat Transfer Coefficient Calculation (DATARH)

3.1.1 Introduction

The DATARH program is used to calculate the transient heater rod outside surface temperature,
the total surface heat flux and a FLECHT type heat transfer coefficient defined as

q,,

FLECHT — (TW _ Tsm)

(3-1)

which is referenced to the saturation temperature in the test bundle. Both the surface heat flux
q., and the FLECHT heat transfer coefficient represent a total heat transfer from the heater rod
surface and would include radiation heat transfer as well as convection and flow boiling.

Program DATARH.F contains the source code to perform an inverse heat conduction
calculation in an electrically heated rod, in which internal cladding thermocouples exist.

The purpose of the code is to calculate the surface temperature, the surface heat flux and the
FLECHT type transient heat transfer coefficient for heater rods. The program uses
experimental data and heater rod dimensions to perform calculations. The mathematical model
for the calculations is described in Section 3.1.2 below.

The program described herein has been modified for the RBHT experiments from the
DATARH.F program used for the FLECHT-SEASET experiments. Differences between heater
rods used in the FLECHT-SEASET experiments and the RBHT experiments (e.g., rod
dimensions, differences in rod internal materials) have been accounted for in this version of the
program.

The sections that follow describe the structure of the DATARH program, RBHT rod geometry,
heater rod materials, and the input files required for executing the current version of the
program.

3.1.2 Mathematical Model

A heat conduction problem is termed an “Inverse Heat Conduction Problem” if at least one
spatial condition is specified at an interior point of a heat conducting body. Because of this un-
orthodox condition, the solution to an inverse problem is more complicated. Even if the
governing equations are linear, classical methods such as Fourier analysis and Laplace
transformation would fail to yield a solution. For the Fourier method, the eigenvalues are not
readily obtainable from the resulting Strum-Louivalle system of equations; hence, Fourier series
representation of the solution cannot be determined. Transformation techniques lead to a
solution in Laplace variable space which defines an inverse transform into the real time space.
Although the numerical method is not without difficulty, meaningful results can be obtained if
due care is exercised.
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The finite difference approximation in implicit form of a one-dimensional heat conduction equation in
cylindrical coordinates is typically

Bm)T(n-1)+ An)T(n)+C(m)T(n+1)=T'(n)—Q0(n);1<n<N (3-2)
where

A r(n=1/2) k(n-1/2)

BO= 0oy v plmet &9

Clny = _A0_r(n+1/2) Kn+1/2) (34)
(A0 r(n)  p(n)c(n)

A(n) = B(n)— C(n)—1 (3-5)

O(n) = AR (3-6)

p(n)e(n)

and T(n) the unknown temperature node at point n, T'(n) the known temperature at node point n
(This is also the “initial value”™), r the spatial variable, Ar the spatial increment, and A8 the time
increment.

k, p, ¢ are the thermal conductivity, density and heat capacity, respectively. Their numerical
values are computed at T'. If values at half intervals are required, they are evaluated at the
average of two adjacent temperatures. q is the volumetric heat generation rate. N is the
number of internals. Hence, there are N+1 node points.

For n = 1, the node point is at the center of the rod, T(n-1) = T(n+1), since at this point the
symmetry requires the flux be zero. At the point n-M, T(n) is the known measured temperature
and finally, at the outer boundary point, n = N, T(n+l) is the desired wall temperature. If the heat
conducting body is made up by composite material, the temperature at the interface can be
handled by usual means; i.e., both the temperature and flux must be continuous. However, in
this case, the spatial interval size, Ar, would vary from region to region such that particular node
points coincide with the material interfaces and T(M).

Apply Equation (3-2) to node points n = 1,2,...N and combining the boundary condition T(0) =
T(2) with the finite difference equation at n = 1 to eliminate T(0), we have a set of N linear
simultaneous equation with N unknown temperatures, T(n); n = 1,..., N+1, n # M. The solution
of this set of equations defines the temperature field at a given time step, 6. The transient
solution can thus be obtained by repeating the same procedure with successive increments of
AB.

The method outlined above is simple-minded in principle and straightforward in practice.
Because of the implicit finite difference scheme, the stability of the computation is guaranteed.
As long as reasonable increment sizes, Ar and A8, are chosen, acceptable numerical accuracy
is expected.
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It is noticed that if M = N+1, the inverse heat conduction problem is reduced to a more
conventional type with a flux condition specified on one boundary (centerline) and a temperature
condition specified on the other (wall). In this case, the coefficient matrix for the linear
equations, as defined by Equation (3-2), is tri-diagonal. However, the presence of a known
temperature, T(M) at M # N+1, in the linear set to replace the wall temperature, T(N+1),
destroys the tri-diagonality and consequently complicates the solution procedure since for linear
equations with a tri-diagonal coefficient matrix, the solution can be obtained by a time saving
matrix resolution technique which is not applicable to any other form of matrix.

Let us, for the time being, ignore the fact that T(M) is known and assume that T(N+1) is known
instead. The linear equation, written in the usual manner is:

[JIT = F —=C(N)T(N +1)G (3-7)

where [J] is the tri-diagonal coefficient matrix defined by Equations (3-2) and (3-3), T the
solution vector with N components, F the “source” vector with the components defined by the

quantities on the left-hand side of Equation (3-2), G the vector with first N-1 components equal
to zero and the N-th component equal to one (i.e., q(i)=C, i#N, q(i)=l, i=N).

If X and Y are, respectively, solutions of

—

[J]1X =F (3-8)

[J]Y =-G (3-9)
The linearity of Equation (3-7) leads to

T =X+C(N)T(N +1)Y (3-10)

Equation (3-10), in scalar form for n = M, gives

T(M)=X(M)+C(N)T(N +1)Y (M) (3-11)
or
T(N+1):T(M)_X(M),Y(M)¢O (3-12)
C(N)Y (M)

Since all the quantities on the right hand side of Equation (3-11) are known, the wall
temperature T(N+1), can be computed. The remaining temperature field can be obtained by
repeated application of Equation (3-10).

If the transient temperature measurement T(M) is both accurate and frequent enough, the
method outlined above will produce acceptable results. In practice, however, such accuracy
and frequency as demanded by the numerical method is almost impossible to achieve. Any
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error in T(M), either due to instruments or due to interpretation, would be amplified in this
numerical process. An error is usually propagative and oscillatory and results from a
successive over and under correction of the heat balance as demanded by the governing heat
conduction equation. A small error in T(M) often renders the calculations for wall temperature
and wall flux useless since their error is amplified as the calculation steps through time.

Therefore, it is desirable to devise a numerical method such that the input error of T(M) could be
damped during the subsequent computation steps. One such method is programmed in
DATARH. It must be stressed that damping of input error can only improve the accuracy of the
computed results by reducing the input error amplification. The inheritant error due to
inaccurate input data still remains.

The basic principle of the method is to utilize the information of T(M) available over an open
time span when the computation is just entering this time span. Let the parenthesized

superscript denote a relative time step, then the computation of 7 would not only involve an
initial value 7', but also 7® (M), T (M),... This calculation is followed by an optimization

process to minimize the error amplification. This optimization can be accomplished in, although
not restricted to, a least-squared sense.

Following Equation (3-2) and the subscript notation defined above, we have:
Bm)TV (n=1)+ An)T" (n)+ C(m)TV (n+1) =-0(n) =T (n) (3-13)
B(N)TP(N =1)+ A(N)TP(N)=-Q(N)-T”(N)-C(N)T(N +1) (3-14)
The solution using Equation (3-10) is;
T =X+ C(N)I(N+1)Y?" (3-15)

In the above equation, all of the components in X and Y are known. 7 is not known
since the wall temperature T(N+1) needs to be determined.

The computation can be carried out for one more time step as:

BT =1+ Am)T? (n)+ Cm)T® (n+1)
=-0(n) =T (n) (3-16)
=-0(n)- X" (n)—C(N)T(N +1)Y?"

B(N)T® (N —=1)+ A(N)T?(N)
=—Q(N)-T"(N)-C(N)T(N +1)

=—Q(N)- XY (N)-C(N)T(N +1)Y(N)—C(N)T(N +1)
= —Q(N) = XV (N) = CNT(N + Dy " (V) +1}

(3-17)
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The above equations form a linear system which is in the same form as that defined in Equation

(3-7) provided that the vectors Fand G are suitably modified. The linear set has the solution of
the form of Equation (3-10)

T =X® 4+ C(N)T(N+1)Y? (3-18)
For the other time steps, similar equations can be written:

7% =X+ C(N)T(N +1)Y® (3-19)

TV =XV +C(NT(N+D)Y;j=1.2,...,] (3-20)

In the above equations, the vectors XY and Y are known for all j and time steps. The
computation can terminate at any value of J. This set of equations are optimized to obtain the
value of T(N+1).

At a location where the measurements are recorded for T9(M), Equations (3-19) and (3-20)
give

TOM)=XY M)+ C(N)T(N+1)YY (M) (3-21)

The measured temperatures u? are known for all values of j. The error between the computed
and measured temperature is given as

9(]) — T(j) (M) _u(j)

’ | | (3-22)
=XV (M)+C(N)T(N+DYV (M) —u'; j=12,...,J

The problem is now reduced to finding a T(N+1) such that 8 is at a minimum. This can be
accomplished by a least-squares method

0> =3 JiEVT = {ix )+ c(T(N + 1YY (M) —u |7 (3-23)
dT(N +1)=>0 (3-24)
,X(j)(M)—u(j) 3 ]
2 TO0h +C(N)T(N+1)=0 (3-25)
TN +1) =y =X (3-26)

C(N) Y (M)

Therefore, the desired temperature field can be calculated by
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TV =X +C(N)T(N +1)Y " (3-27)

Equation (3-27) defines the initial values for the computations of the subsequent time step. The
computation can be carried out repeatedly for each advance of time increment.

3.1.3 Structure of the source program DATARH.F

This section briefly describes the structure of the source program. Detailed comments may be
found within the body of the source program as well. The reader is advised that it will be helpful
if a listing of the program DATARH.F is referenced as the remainder of this section is being
read, since this will enhance the reader’s understanding of the description of the program
structure that follows.

All real variables used in the program have been declared double precision numbers, as
indicated by the use of the implicit double precision (a-h, 0-z) statement. The program reads
two character variables, title1 and rloc, that may each be up to 15 alphanumeric characters in
length. These are intended to be identifiers of a test case. No intermediate spaces may be
present within each set of alphanumeric characters. However, each identifier may be of length
less than 15 alphanumeric characters if desired.

The program utilizes a number of data arrays, which may be identified by examining the
dimension statements within the main program and sub-programs. It is important to note that
some of these arrays have been declared to be of length 20000, while others have been
declared to be of length 10 or 50. There are several arrays that have multiple dimensions; e.g.,
array t; is seen to be of dimension 10x10. These numerical figures are indicative of limits built
into the program.

The length 20000 indicates that the current version of the program is capable of reading in up to
a maximum of 20000 sets of input data, each comprising time, clad temperature and power to
the rod being analyzed (See input file described below). It also indicates that the maximum
number of points in time for which the program is capable of computing heat flux and heat
transfer coefficient values is limited to 20000.

The length 10 indicates that the region between two adjacent conduction nodes may be divided
into a maximum of 10 sub-regions. As seen by the data (r(i), i = 1,5) statement, the program is
capable of handling five outer conduction nodes and one implied conduction node at the rod-
center, and hence five regions. Thus, the length 50 arises from the fact that the total number of
sub-regions that may be handled by this version of the program is 10x5. The radial distance
from the center of a heater rod to each outer conduction node is initialized by the data (r(i), i =
1,5) statement.

The program reads input data via an input file. The file name is “datarhin.dat” and the file must
exist at the time the executable is run. The required content of this file is described in a section
that follows. The program will write output data to a file by the name of out1.dat. This file will be
created by the executable during a run, and a file by this name must not be present in the
working directory at run-time. If the output file from a previous run exists, it must either be
deleted, or be renamed.
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Initializing the number of sub-regions within the region between a given pair of conduction
nodes is accomplished by the array intv(i), i = 1 through 5. As discussed above, the maximum
number of sub-regions within any region is limited to 10. The heater rod length is set to be 3.66
m (12 ft) by means of variable tlength.

After all input data has been read, and once the initialization of the conduction region
dimensions and heater rod length has been completed, the program will write a summary of the
input data to the output file. It is after this that the computational procedures begin.

The first step is to convert the input time scale (array timer) so that the time of reflood is treated
as zero-time. This is accomplished by a do loop that causes the time of reflood, tflood, to be
subtracted from each time value (array timer) that was read by the program. Next, the number
of data points that would be output by the program, jtime, is computed using the last value of
input time, timer(nscan), the first value of input time, timer(1), and the value of dt (which is the
time interval between results computed by the program). Note that nscan is the number of sets
of input data points. Now, an array of time values at which results will be output, array time, is
computed. This too is accomplished by a do loop, and is performed by first setting time(1) equal
to timer(1), and then successively adding the value of dt to the current value of time to get the
next time value.

The next step is to compute an array of sink temperatures, Tsink. This array will have nscan
number of values. It should be noted that the current version of the program treats the
saturation temperature corresponding to the operating pressure as the sink temperature
throughout the length of the heater rod. Thus, all values in array Tsink will numerically be the
same.

The program will now access an interpolation subroutine (subroutine tbl) to compute the
saturation temperature, rod power, and the clad temperature at each value in array time (the
time values at which results are desired). The value of sink temperature computed, Tsink, will
be written to the output file at this time as well.

Preparation of an array, q, that will contain volumetric heat generation rates at each value of
array time is performed next. Each interpolated value of rod power (at a given value of time) is
multiplied by the axial power factor, fax, and the radial power factor (if applicable), fp, and is
divided by the total rod length. Then, each resulting value of q is converted to a volumetric heat
generation rate by means of appropriate conversion factors and rod dimensions.

It should be noted that the values for fax, fp, and fka have been calculated for each
thermocouple location in the RBHT rod bundle and are hardwired into the DATARH source
code. Although placeholders still exist in the required input file they are not used during
calculations and it is recommended that the values of these variables be set to zero in the input
file.

The program investigates the curvature of the future three data points next. The subroutine that
performs the inverse conduction calculation is called after this computation. Once the inverse
conduction calculation is completed for all time values desired, values of heat flux and heat
transfer coefficient at the rod surface are computed. These values along with the computed rod
surface temperature at each time value are then written to the output file. The program will then
continue onto the next case (if input data are present), or will terminate if the end of input data
has been reached.
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3.1.4 RBHT Rod Geometry and Materials

Figure 2.4 shows the cross section of the RBHT bundle. The bundle has forty-five heater rods
and four unheated corner rods. The corner rods are used to support the bundle and provide
exits for the grid thermocouple leads. The support rods are made from Inconel 600 tubing
having a diameter of 9.525 mm (0.375 in), a wall thickness of 2.108 mm (0.083 in) and a form
length of 3.96 m (156 in). Figure 2.5 shows the cross section of an electrically heated rod. The
heater rods are single ended and consist of a Monel 500 electrical resistance element filled and
surrounded by hot pressed Boron Nitride (BN) insulation and enclosed in an Inconel 600
cladding as shown in the figure. The heater rods are 3.66 m (12 ft) in heated length with a
skewed axial power profile, as shown in Figure 2.6, with the peak power located at 2.74 m (9 ft)
elevation. The bundle has a uniform radial power distribution. The maximum to average power
ration (Pmax/Pavg) is 1.5, and the minimum to average power ratio (Pmin/Pavg) is 0.5 at both ends
of the heated length.

Table 3.1 shows the description of the geometry for the RBHT heater rod geometry and
dimensions.

Table 3.1 Geometry and Dimensions of RBHT Heater Rod

Material r (mm, in) Thickness of each region dr (mm, in)
Boron Nitride 0,0 1.71, 0.07

Monel K-500 1.71,0.07 1.14, 0.045

Boron Nitride 2.86,0.113 1.18, 0.047

Inconel 600 4.04,0.159 0.71, 0.028

Rod Radius 4.75,0.187
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3.1.5 Input File Required for Executing the Current Version of the Program

The program reads input data via an input file names datarhin.dat. This file must exist at the
time the executable is run.

The input file, datarhin.dat should contain sets of input data arranged in lines, one line being
required per reflood experiment analyzed. Each line must have values for the following input
variables in the specified format, separated by one or more spaces:

IFAC: Integer. Test facility identifier, 4 for RBHT facility.

ITEST: Integer. Identifier for experimental run.

ICHAN: Integer. Identifier for thermocouple channel.

IMETRIC: Integer. Units of input data, O for British, 1 for Sl.

NSCAN: Integer. Number of input data points.

DT: Real. Desired time interval between successive values of heat
flux and heat transfer coefficient calculated [s].

TFLOOD: Real. Time of reflood start [s].

TSTOP: Real. Time of refloof stop [s].

TITLE: Character, A15. Identifier for each experimental run.

RLOC: Character, A15. Rod location/elevation.

FAX: Real. Axial power factor (hardwired in source code but value of
0.0 must be present in input file).

FP: Real. Fraction of zone power to this rod (hardwired in source
code but value of 0.0 must be present in input file).

FKA: Real. Volumetric fraction of Monel 500 (hardwired in source code
but value of 0.0 must be present in input file).

PRES: Real. System pressure [psial.

NSCAN sets of time, bundle power, and clad temperature follow. One set of values must
appear on each successive line and each value must be separated by at least one space. A
description of the data required follows:

TIME: Real. Array of experimental time values [s].
POWER: Real. Bundle Power at corresponding TIME value [kW].
TEMP: Real. Experimental temperature at corresponding TIME value for

ICHAN [degrees F or K] (depending on IMETRIC value).

The sample input and output files from DATARH are given at the end of this section.
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Sample input file: datarhin.dat

IFAC ITEST ICHAN IMETRIC NSCAN DT TFLOOD TSTOP

4 937 5 0 6025 0.50 301.30 1362.00
TITLE RLOC FAX FP  FKA PRES
RBHT_TEST_937 RodB2-38.4 0.0 0.0 0.0 20.0
TIME POWER TEMP

0.25 -0.0005 674.2396

0.50 -0.0005 674.1904

0.75 -0.0005 674.1823

1.00 -0.0005 674.1577
1.25 -0.0005 674.1331
1.50 -0.0005 674.0920
1.75 -0.0005 674.0593
2.00 -0.0005 674.0183

300.00 142.3709 921.2880
300.25 143.8328 922.3034
300.50 143.3725 923.3672
300.75 143.2022 924.5842
301.00 142.5886 925.6238
301.25 143.2425 926.7762
301.50 143.3150 927.7829
301.75 142.7787 928.9585
302.00 142.9874 929.9327
302.25 151.4578 930.9714
302.50 151.2813 931.9538
302.75 143.6488 933.1535
303.00 154.7328 934.2566

1516.00 0.0000 218.2863
1516.25 0.0000 218.3030
1516.50 0.0000 218.2947
1516.75 0.0000 218.2697
1517.00 0.0000 218.2947
1517.25 0.0000 218.2614
1517.50 0.0000 218.2531
1517.75 0.0000 218.2614
1506.50 0.0000 218.3530
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Sample Output File

wrxxxeeex Program DATARH - Universal Rev. 01
FRERRR*RRR* Revision Date: 01-14-2010
sxxrrxkirss QRHT Test 937

kkkkkkkkkkk CHANNEL =
Fremmmrerr Rod ID = RodB2-38.4

Initial Run Conditions

56

Nunmber of data points 6025
Axial Power Factor :0.84700
Fraction of Zone Power to rod 0.02222
Volumetric fraction of wire 0.85212
System pressure 20.00000 psi
System pressure 0.13790 MPa
Start of relood 301.30 sec
End time 1362.00 sec
Output interval 0.50 sec
Saturation Temperature is 227.92000 deg. F
381.99444 K
Temperature at reflood 926.96 deg F
Temperature at reflood 770.36 K
Turn around time 22.45 sec
Turn around temperature 999.46 deg F
Turn around temperature 810.64 K
Quench time 156.45 sec
Quench temperature 656.08 deg F
Quench temperature 619.87 K
*kkkkkkkkkkkk Summary Of Results *kkkkkkkkkkkkk
TIME TEMP TSURF QSURF HTC TIME TSURF DT QSURF HTC
sec degF degF Btu/hr-ft2 Btu/hr-ft2-F sec K K W/m2  W/m2-K
0.45] 928.96 ] 928.03 [ 1.64E+03| 2.34E+00 | 0.45] 770.96 | 388.95 | 5.16E+03| 1.33E+01
0.95] 930.97] 930.07 | 2.10E+03| 2.99E+00 | 0.95] 772.09| 390.09 | 6.62E+03| 1.70E+01
1.45]933.15] 932.28 | 1.73E+03| 2.45E+00 | 1.45] 773.32| 391.31 | 5.44E+03| 1.39E+01
1.95]1935.33| 9344 | 1.76E+03| 2.50E+00 | 1.95] 774.49| 392.49 | 5.57E+03| 1.42E+01
2.451937.36| 936.5 | 1.78E+03| 2.51E+00 | 2.45] 775.66 | 393.66 | 5.61E+03| 1.43E+01
2.95| 939.5 | 938.52 | 2.00E+03| 2.81E+00 | 2.95| 776.78 | 394.78 | 6.30E+03| 1.60E+01
3.45 | 941.54|940.54 | 2.00E+03| 2.81E+00 | 3.45| 777.9 | 395.9 | 6.31E+03| 1.59E+01
3.95|943.48|942.54 | 2.03E+03| 2.84E+00 | 3.95| 779.01| 397.01| 6.41E+03| 1.61E+01
4.45 | 945.42|944.55| 2.01E+03| 2.80E+00 | 4.45| 780.13 | 398.13 | 6.33E+03| 1.59E+01
4,95 | 947.46| 946.46 | 2.42E+03| 3.36E+00 | 4.95] 781.19] 399.19| 7.62E+03| 1.91E+01
5.45 1 949.46 | 948.51 | 2.09E+03| 2.90E+00 | 5.45] 782.33 | 400.33 | 6.59E+03| 1.65E+01
5.95 | 951.46| 950.46 | 2.18E+03| 3.02E+00 | 5.95| 783.41| 401.41| 6.89E+03| 1.72E+01
6.45 | 953.37 ] 952.45| 2.11E+03| 2.91E+00 | 6.45| 784.52] 402.51 | 6.66E+03| 1.65E+01
6.95 | 955.28 | 954.39 | 2.47E+03| 3.40E+00 | 6.95| 785.6 | 403.6 | 7.78E+03| 1.93E+01
7.451957.37| 956.5 | 2.03E+03| 2.79E+00 | 7.45| 786.77 | 404.76 | 6.40E+03 | 1.58E+01
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3.1.6 Calculation of the Power Factor at Each Thermocouple Location

Stern Laboratories, Inc. measured the resistance of each heater rod filament beginning from the
bottom of the heated length to the end of the heated length. The measurements were made
over increments of one tenth of the length of the rod and the cumulative resistances were
reported. Table 3.2 shows a sample table of data from Stern.

Table 3.2 Heater Number 1

Length (in) Resistance (Ohm)

0 0.000
14.28 0.018
28.55 0.040
42.83 0.066
57.1 0.096
71.38 0.129
85.65 0.166
99.93 0.211
114.20 0.258
128.48 0.291
142.75 0.315

WINDOWS (EAST

Rod A1 Rod B1 Rod C1 Rod D1 Rod E1 Rod F1 Rod G1
Support Rod | GR-7 GR-0 GR-7 GR-0 GR-0 Support Rod
PSP-15 PSP-45 PSP-16 PSP-48 PSP-42
Rod A2 Rod B2 Rod C2 Rod D2 Rod E2 Rod F2 Rod G2
GR-0 GR-1 GR-2 GR-6 GR-8 GR-1 GR-0
PSP-40 PSP-36 PSP-32 PSP-12 PSP-6 PSP-37 PSP-47
Rod A3 Rod B3 Rod C3 Rod D3 Rod E3 Rod F3 Rod G3
GR-0 GR-8 GR-5 GR-3 GR-4 GR-8 GR-0
PSP-49 PSP-27 PSP-4 PSP-21 PSP-7 PSP-28 PSP-43
Rod A4 Rod B4 Rod C4 Rod D4 Rod E4 Rod F4 Rod G4
GR-7 GR-3 GR-3 GR-3 GR-3 GR-5 GR-0
PSP-17 PSP-22 PSP-23 PSP-25 PSP-24 PSP-2 PSP-44
Rod A5 Rod B5 Rod C5 Rod D5 Rod E5 Rod F5 Rod G5
GR-0 GR-2 GR-4 GR-8 GR-4 GR-2 GR-0
PSP-41 PSP-33 PSP-8 PSP-29 PSP-9 PSP-34 PSP-50
Rod A6 Rod B6 Rod C6 Rod D6 Rod E6 Rod F6 Rod G6
GR-7 GR-1 GR-2 GR-6 GR-8 GR-1 GR-0
PSP-18 PSP-38 PSP-35 PSP-13 PSP-30 PSP-39 PSP-3
Rod A7 Rod B7 Rod C7 Rod D7 Rod E7 Rod F7 Rod G7
Support Rod [ GR-0 GR-6 GR-7 GR-0 GR-7 Support Rod
PSP-1 PSP-11 PSP-19 PSP-46 PSP-20

WINDOWS (WEST)

Figure 3.1 RBHT Test Facility, Heater Rod Locations (Looking Down from Top).
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Figure 3.1 shows the schematic of the RBHT Test Facility heater rod layout. The 7x7 bundle
consists of 8 groups of rods as indicated by GR - # (group number), these are instrumented
rods while GR-0 rods are un-instrumented. The PSP - # is the serial number of the rods as
given by Stern.

Axial Power Ratio Vs. Length for Rod F4

1.6
1.4
1.2

0.8
0.6
0.4
0.2

Power Ratio

=)
N
S
[a—
S
S

150
Length (in)

Figure 3.2 Axial Power Ratio for Rod F4.

The heater rod is composed of a series of resistances along the length. The power shape is
obtained by appropriately changing the pitch of the heater element.

Using the data, the resistance for every incremental length (one tenth of the total length) is
calculated by subtracting the value of resistance over the total length (0 to that axial location)
from the previous value (0 to the previous axial location). This would give the resistance of the
filament portion for that region (one-tenth of the total length). The incremental length over which
the measurements are made is also calculated.

The axial power factor is defined as the ratio of the incremental resistance for that incremental
length over the incremental length to the total resistance of the rod over the total heated length.
Using this definition, the axial power factor over each incremental length is calculated.

This is plotted as a function of length to get the power shape for each rod. Since the
measurements provided by Stern was over every tenth of the heated length, these points were
plotted at an average axial position (for example, for the length between 14.28 and 28.55 in, the
incremental resistance and hence the power factor over this span was plotted at a location of
21.415in). Such a plot is shown in Figure 3.2, for Rod F4 (Stern heater number 2)
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Measurements from Stern were such that they bypassed the peak power location, meaning the
measurement was taken at 99.93 and 114.20 in elevations. The peak power location was 108
in. In order to calculate the power factor at the peak power location and for any arbitrary
location along the length of the heater rod, a straight line is fit for the power factor calculated
using the data points between 0 and 108 in. The equation for the power factor is a function of
length along the heater rod. Using this equation, the peak power factor is calculated for each
rod (i.e., the value of power factor is calculated at 108 in location). This is then used along with
the remaining calculated values of power factors (for length beyond 108 in) and another such
plot is made. An equation relating the power ratio and the heated length is obtained for the
region beyond 108 in. Thus, for each heater rod, two plots are made, one for the length of the
heater rod below the peak power location and the other beyond the peak power location to the
end of the heated length. Using the equations for the power ratio as a function of axial position,
the power factor at any location along the heater rod is obtained.

This procedure is followed for each rod with thermocouples and the power factor for every

thermocouple location is obtained. Table 3.3 shows a typical calculation for one rod. (The
resistances are values before swaging.)

Table 3.3 Sample Power Factor Calculation for One Heater Rod

Stern Lab Heater Number 2: RBHT ROD F4
Length Increment | Averaged |Heater # 2| Difference | Power |Channel #|Instrument] Power
length Length |Resistance Ratio Location ratio
(in) (in) (in) Ohm Ohm THERMOCOUPLE INFORMATION
0 14.28 7.14 0 0.017 0.55 98 85.6 1.29
14.28 14.27 21.415 0.017 0.022 0.71 99 88.4 1.31
28.55 14.28 35.69 0.039 0.026 0.84 100 92.4 1.35
42.83 14.27 49.965 0.065 0.03 0.96 101 94.3 1.37
57.1 14.28 64.24 0.095 0.034 1.09 102 97.2 1.39
71.38 14.27 78.515 0.129 0.038 1.22 108 1.49
85.65 14.28 92.79 0.167 0.042 1.35 103 108.8 1.47
99.93 14.27 107.065 0.209 0.044 1.42 104 111 1.41
108 1.49
114.2 14.28 121.34 0.253 0.035 1.13
128.48 14.27 135.615 0.288 0.023 0.74
142.75 0.311

Figure 3.3 and Figure 3.4 show plots of the power ratio as a function of length along the heater
rod. Figure 3.3 is the plot from the beginning of the heated length to the peak power location
(108 in), while Figure 3.4 is the plot from the peak power location (108 in) to the end of heated
length.

The values of the axial power factor for all the thermocouples used in the RBHT Test Facility is

shown in Table 3.4. The values of the axial power factors range from 0 to 1.5, which is the
value at peak power location of 108 in. For example: RodB1_47.9 refers to the thermocouple at
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47.9 in elevation for rod B1. These values are directly used in DATARH for the local rod heat
flux and heat transfer coefficient calculations.

y =0.0092x +0.4978
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Figure 3.3 Power Factor as a Function of Length (Beginning of Heated Length to
Peak Clad Temperature Location).
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Table 3.4 Axial Power Factors for the RBHT Heater Rods

Rod ID Elevation Power Rod ID Elevation | Power Rod ID Elevation | Power
(inches) Factor (inches) Factor (inches) Factor
RodB1 47.9 0.936 RodE2 66 1.111 RodF3 54 0.993
RodB1 _63.6 1.082 RodE2 _69.8 1.147 RodF3 57 1.022
RodB1 _68.6 1.128 RodE2 72.9 1.176 RodF3 60 1.05
RodB1 _79.7 1.231 RodE2 74.9 1.195 RodF3 66.1 1.108
RodB1 97.1 1.393 RodF2 4.1 0.519 RodF3 69.9 1.145
RodB1 114.8 1.314 RodF2 11.2 0.586 RodF3 73 1.174
RodB1 _126.7 0.99 RodF2 16.2 0.634 RodF3 75 1.193
RodB1 1394 0.644 RodF2 233 0.701 RodA4 48 0.94
RodD1 47.9 0.941 RodF2 29.2 0.757 RodA4 63.8 1.084
RodD1 63.8 1.093 RodF2 33.3 0.796 RodA4 68.8 1.13
RodD1 _68.8 1.141 RodF2 353 0.815 RodA4 79.9 1.231
RodD1 _79.9 1.248 RodF2 38.3 0.843 RodA4 97.1 1.387
RodD1 97.3 1.415 RodB3 50.2 0.956 RodA4 115 1.291
RodD1 115 1.317 RodB3 54.1 0.992 RodA4 126.8 0.977
RodD1 _126.6 0.99 RodB3 56.9 1.018 RodA4 139.4 0.642
RodD1 _139.4 0.629 RodB3 60.1 1.048 RodB4 88.4 1.303
RodB2 4.1 0.521 RodB3 66.1 1.104 RodB4 91.3 1.329
RodB2 11.2 0.589 RodB3 69.9 1.139 RodB4 93.3 1.347
RodB2 16.2 0.636 RodB3 73 1.168 RodB4 95.1 1.363
RodB2 23.3 0.704 RodB3 75 1.187 RodB4 100 1.407
RodB2 29.3 0.761 RodC3 79.8 1.228 RodB4 106 1.461
RodB2 33.3 0.799 RodC3 85.6 1.281 RodB4 109.9 1.414
RodB2 35.3 0.818 RodC3 88.5 1.308 RodB4 142.3 0.549
RodB2 38.4 0.847 RodC3 92.4 1.344 RodC4 88.4 1.328
RodC2 41 0.87 RodC3 94.4 1.362 RodC4 91.1 1.354
RodC2 53.1 0.983 RodC3 97.2 1.388 RodC4 93.4 1.376
RodC2_55 1 RodC3 108.8 1.463 RodC4 95.3 1.394
RodC2_57.8 1.026 RodD3 88.3 1.313 RodC4 100.1 1.439
RodC2 63.9 1.083 RodD3 91.3 1.341 RodC4 106.1 1.496
RodC2 73.8 1.175 RodD3 93.1 1.358 RodC4 110 1.448
RodC2_75.8 1.194 RodD3 95.3 1.378 RodC4 142.2 0.553
RodC2_76.8 1.203 RodD3 100.1 1.423 RodD4 88.3 1.323
RodD2 103.2 1.455 RodD3 106.1 1.479 RodD4 91.3 1.351
RodD2 106 1.481 RodD3 110 1.46 RodD4 93.2 1.369
RodD2 112.6 1.358 RodD3 142.1 0.51 RodD4 95.2 1.388
RodD2 114.9 1.295 RodE3 63.4 1.079 RodD4 100.1 1.434
RodD2 117.4 1.227 RodE3 113.6 1.331 RodD4 106.1 1.491
RodD2 120.8 1.134 RodE3 115.5 1.281 RodD4 110 1.44
RodD2 124.8 1.024 RodE3 118.5 1.203 RodD4 142.1 0.534
RodD2 128.6 0.92 RodE3 122.7 1.094 RodE4 88.4 1.303
RodE2 50.1 0.962 RodE3 126.5 0.995 RodE4 91.2 1.329
RodE2 54 0.998 RodE3 131.7 0.86 RodE4 93.2 1.347
RodE2 56.9 1.025 RodE3 135.6 0.759 RodE4 95.3 1.365
RodE2 59.9 1.054 RodF3 50.1 0.956 RodE4 100.9 1.416
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Table 3.4 Axial Power Factors for the RBHT Heater Rods (Continued)
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Rod ID Elevation | Power Rod ID Elevation | Power Rod ID Elevation | Power
(inches) Factor (inches) Factor (inches) Factor
RodE4 106.1 1.463 RodF5 57.8 1.022 RodE6 75 1.184
RodE4 110 1.428 RodF5 64 1.08 RodF6 4.1 0.528
RodE4 142.3 0.54 RodF5 73.8 1.171 RodF6 11.2 0.593
RodF4 85.6 1.285 RodF5 75.8 1.19 RodF6_16.3 0.639
RodF4 88.4 1.311 RodF5 76.8 1.199 RodF6 23.3 0.703
RodF4 92.4 1.348 RodA6 47.7 0.942 RodF6 29.3 0.757
RodF4 94.3 1.365 RodA6 _63.6 1.085 RodF6 33.3 0.794
RodF4 97.2 1.392 RodA6 68.5 1.129 RodF6 _35.3 0.812
RodF4 108.8 1.47 RodA6_79.8 1.231 RodF6 _38.3 0.839
RodF4 111 1.41 RodA6 97.4 1.389 RodC7 112.6 1.323
RodB5 41 0.872 RodA6 115.1 1.29 RodC7 116.6 1.224
RodB5 52.9 0.982 RodA6 126.6 0.986 RodC7 124.4 1.03
RodB5 55 1.002 RodA6 139.9 0.633 RodC7 _128.4 0.931
RodB5 57.8 1.028 RodB6 4.1 0.526 RodD7 47.9 0.948
RodB5 64 1.085 RodB6 _11.2 0.592 RodD7 63.6 1.091
RodB5 73.9 1.177 RodB6_16.2 0.638 RodD7 _68.8 1.138
RodB5 75.9 1.196 RodB6 23.3 0.703 RodD7 79.8 1.238
RodB5 76.9 1.205 RodB6 29.3 0.758 RodD7 97.1 1.396
RodC5 63.7 1.059 RodB6 _33.3 0.795 RodD7 114.9 1.293
RodC5 113.6 1.298 RodB6 _35.3 0.813 RodD7 126.7 0.958
RodC5 115.7 1.246 RodB6_38.4 0.842 RodD7 139.4 0.598
RodC5 122.7 1.073 RodC6 40.9 0.866 RodF7 47.9 0.946
RodC5 _126.7 0.974 RodC6_52.8 0.981 RodF7 _63.8 1.101
RodC5 _131.6 0.853 RodC6_54.8 1.001 RodF7 68.9 1.15
RodC5 135.7 0.752 RodC6_57.8 1.03 RodF7 79.9 1.257
RodD5 50 0.959 RodC6 63.8 1.088 RodF7 97.2 1.425
RodD5 54.1 0.996 RodC6 _73.7 1.184 RodF7 114.9 1.333
RodD5 56.9 1.022 RodC6_75.8 1.204 RodF7 126.8 0.953
RodD5_60 1.051 RodC6_76.8 1.214 RodF7 1394 0.551
RodD5_66.1 1.107 RodD6 103.1 1.457
RodD5 _69.9 1.142 RodD6 106 1.484
RodD5 72.9 1.169 RodD6 112.9 1.354
RodD5 74.9 1.188 RodD6 114.9 1.298
RodE5 63.6 1.085 RodD6 116.8 1.246
RodES5 113.6 1.339 RodD6 120.9 1.132
RodES5 115.4 1.292 RodD6 124.8 1.024
RodE5 118.7 1.208 RodD6 128.7 0.916
RodE5 122.6 1.108 RodE6 50.2 0.956
RodE5 126.6 1.006 RodE6 54.1 0.992
RodE5 131.6 0.878 RodE6 57 1.018
RodES5 _135.6 0.775 RodE6_60.2 1.048
RodF5 41 0.866 RodE6 66.1 1.102
RodF5 53.1 0.978 RodE6 70 1.138
RodF5 55 0.996 RodE6 73.1 1.166




3.2 Quench Front Determination

A simple program was developed and added to the DATARH source code to determine the
quench front progress for the RBHT reflood experiments. As a result of the program, the
location of the quench front as a function of time is obtained.

The quench front program uses the outside rod temperatures predicted by DATARH, locations
of these temperatures, and the test time as input. The reflood start time is the starting time for
the program. The program runs as part of DATARH and outputs results in the same output file
as seen in the sample output file presented above.

A simple criterion is used to determine the quench front location from the heated rod

temperature data. One sample of plot for change in rod temperature with time is presented in
Figure 3.5 and quench time is indicated on the figure.
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Figure 3.5 Clad Temperature at 2.24 m, Experiment 1096.

The first attempt to determine the quench front time was to use a simple numerical approach to
get the first derivative for the above data. The time at which the first derivative reaches its
maximum value was assumed as the quench time since the rate of change of the heater rod
temperature would be the greatest.
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Equation (3-28) gives the relationship used to evaluate the first derivative from the heater rod
data:

dT _ Ti+l _27—; +]—;'—1
dt At

(3-28)

where in the program, At is the variable DT defined in the input file datarhin.dat and Ti.q, Ti, Tiq
are predicted heater rod outside surface temperatures from DATARH predictions.

Figure 3.6 presents the change in the first derivative of temperature with respect to reflood time
on two different scales. The figure shows that the first derivative reaches its maximum value
approximately 10 s after rod quenches. In order to obtain a more accurate value of the quench
time, an additional requirement was added to the program. This requirement determines the
quench time when the first derivative of temperature versus time curve is greater than 11.1
degrees K/s (20.0 degrees F/s). The value of 11.1 degrees K/s (20 degrees F/s) was
determined by examining most of the rod temperature data for all tests and several elevations,
although this value is set to 28 degrees K/s (50 degrees F/s) in FLECHT-SEASET analysis (Ref.
1), since the data recording frequency in RBHT tests is smaller (10 samples/s, in FLECHT-
SEASET it was 2 samples/s or less), 11.1 degrees K/s (20.0 degrees F/s) is a suitable criterion
for these tests.

For the case illustrated in Figure 3.6, the quench time was determined to be 892 s, and the
quench temperature for this case is 618 degrees K (653 degrees F).

Figure 3.7 and Figure 3.8 present samples of calculations performed to analyze quench front
progress.

As a result of the program, the rod surface temperature at the quenched elevation is also
obtained. Figure 3.9 and Figure 3.10 present the data for quenched temperature versus
elevation for experiments 1096 and 1383, respectively. As the figures show, the quench
temperature data follows a distribution. The mean quench temperatures and standard deviation
for these mean temperatures are also presented in the figures. The mean quench temperature
for the reference (40 psia) experiment was found to be 694 degrees K (789 degrees F) and for
the reference (20 psia) experiment the mean quench temperature was found to be 667 degrees
K (741 degrees F).

The quench front program developed for rods was also used to determine the quench front
progress for the bundle housing to prepare an input for the energy balance programs to
calculate housing heat release. Figure 3.11 and Figure 3.12 present the housing quench front
locations versus time for experiments 1096 and 1383, respectively.

The quench front locations for the housing and the rods are shown in Figure 3.13 and Figure
3.14 for the reference experiments. Since the housing is an unpowered structure, it quenches
slightly earlier than the heated rods. The figures show that housing and rods quench almost at
the same time up to 2 m (6.5 ft) elevation and the peak clad temperature turnaround occurs
during this period. This indicates that the housing quench does not affect the turnaround time
for the heater rods. At the higher elevations, the difference between quench time of the heater
rods and housing does increase.
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3.3 RBHT Mass Balance

3.3.1 Introduction

As part of the validation of the experiments performed at the RBHT test facility, it was necessary
to perform a mass balance using the experimental data. A Fortran program was written to read
the output data files and perform the mass balance calculations. The program incorporates
steam tables used for calculating density and is input-deck driven, which allows for flexibility in
changing key parameters such as the facility dimensions. Finally, the program outputs the
finished mass balance information for easy plotting and analysis.

3.3.2 Methodology

In order to calculate the mass balance for the rod bundle test loop it is necessary to determine
the locations where mass is stored and where mass flow rate measurements should be taken.
For the rod bundle test loop, the elements needed to make up the mass balance are
summarized as follows:

Mass Storage . Drain & Carryover . Upper Plenum . Steam Outlet|  |Inlet Mass
in the Bundle Tanks Mass Storage Mass Storage MassFlow | | Flow

The mass storage in the bundle is calculated using the overall pressure drop in the bundle. The
calculation can be done one or two ways. First, it can be done by simply considering the overall
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pressure drop in the bundle and calculating the mass storage directly from this value using the
cross-sectional area of the bundle. This approach calculates the mass storage, where there is
no pressure drop correction due to acceleration or friction and may tend to be an over-estimate
of the mass storage. The second method is more involved and includes a frictional pressure
drop correction of the overall pressure drop. The frictional pressure drop component is made up
of friction from both the rods and grids. Acceleration pressure drop is ignored.

It was found for the calculations when the frictional pressure drop was considered; it caused the
mass storage in the bundle to be much lower than expected. This is probably due to models for
grid and rod friction that were used and the calculation method. However, when only the overall
pressure drop was used, the agreement between the expected and predicted bundle mass
storage was improved. Although the frictional pressure calculation is still included in the mass
balance code for completeness, for all results presented in this report the friction calculation was
turned off.

The mass storage in each of the tanks (small and large carryover tanks and drain tank) was
calculated from the liquid elevation, taken from a differential pressure cell, and the cross-
sectional area of the tank. The differential pressure cells were calibrated at standard conditions
and reported in inches of H,O. The liquid head is taken directly from this reading and the mass
storage is calculated as the product of the liquid head, the density at STP, and the cross
sectional area of the tank.

The upper plenum mass storage calculation is done very differently from the rest. The reason
for this is that there are no direct indicators of the liquid level in the upper plenum.
Consequently, an estimate of the liquid level must be made. To achieve this, the upper plenum
is assumed to begin filling when the large carryover tank has already filled. Also, the liquid flow
rate into the plenum is assumed to be constant and equal to the flow rate into the large
carryover tank for the few seconds before it is filled. For the mass balanced performed, the
estimate fits the expected values quite well.

When the upper plenum fills liquid overflows into the steam separator drain tank, as indicated by
an increase in the rate at which the tank is filling. This additional flow into the drain tank is
assumed to be at the same rate at which the large carryover tank and upper plenum are filled.

Eventually, liquid carryover from the steam separator drain tank begins to fill the pressure
oscillating tank. This tank does not have a level indicator, however, the liquid is drained from
the tank and weighed when the test concludes. In performing the transient mass balance, it is
assumed that the rate of liquid collection is the same as the rate at which the steam separator
drain tank is filled. In some of the shorter reflood tests, no water was collected in the pressure
oscillating tank.

The steam flow from the facility was calculated simply from the measured steam flow and the
density at the exit. A thermocouple and a pressure transducer near the exit of the exhaust
allowed the density to be calculated. Using the density and volumetric flow rate from the
exhaust line, the mass flow rate could be calculated. In experiments where the exhaust flow
meter was over-ranged, for example 1143, a calculation was performed using a relationship of
pressure drop to flow rate developed from other experimental data. The pressure drop data
was then used to calculate an exhaust flow rate.
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Finally, each of the mass accumulations calculated so far must sum together to equal the mass
flowed into the bundle at the inlet. For some experiments the inlet mass flow was calculated
using the level and density of the water in the supply tank. (This method was used rather than
the direct measurement of flow rate because of an error found in the inlet flow meter reading.
Although the problem with the flow meter did not emerge until later in the test series, each test
was re-calculated using the supply tank measurement). The change in the mass storage of the
supply tank is equal to the mass injected into the bundle. The mass storage in the supply tank
is calculated the same as the mass accumulation in the carryover and drain tanks. The liquid
level is reported as inches of H,O and the cross-sectional area and standard density are known.
The only slight difference between this calculation and the calculation of the mass accumulation
in the other tanks is that this tank has a cross-sectional area that varies with elevation. A table
of cross-section area was used in the program to determine the tank cross-sectional area
depending on the liquid elevation.

The mass balance must be concluded when either the drain or large carryover tank is filled.
After this point, an accurate estimation of mass accumulation cannot be performed. The mass
imbalance is calculated as the difference in the total inlet mass and the sum of all of the other
contributions at then end of the experiment or when the drain or large carryover tank is filled.
The percent of mass imbalance is calculated as this difference divided by the total inlet mass.
In general, the mass imbalance was greater for higher flooding rate tests.

3.3.3 Summary of Mass Imbalances

Figure 3.15 gives a summary of the mass imbalance for each of the RBHT experiments. In
general, the calculation of the mass balance agrees within five percent of the injected mass for
most of the experiments. The exceptions are two experiments with more than 15 percent
imbalance, and three experiments with a mass imbalance of more than 10 percent. The two
experiments with the greatest imbalance were both high flooding rate cases (6 in/s). One
possible explanation for this imbalance occurring for high flooding rates is that some liquid was
able to pass through the steam separator and out of the facility with the steam flow or it was
collected in the pressure damping tank and was not measured. The exit flow rate from the
facility is calculated bases on the properties of steam, so this extra liquid flow would be
unaccounted for. In addition, the short duration of these runs may cause additional error due to
transient effects that would not be as pronounced in longer duration runs, such as liquid storage
in facility piping and equipment. Individual mass balance calculations for each experiment are
given in the next section and the details of the mass balance program.
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3.3.4 Transient Mass Balance

Percent Mass Imbalance

Figure 3.15 Summary of Mass Imbalances.

3.3.4.1 Bundle Inlet Mass

The bundle inlet mass flow is calculated from the level in the supply tank. Table 3.5 lists the
parameters required for calculating the mass flow rate from the level in the supply tank. The
supply tank cross-sectional area is taken from the facility design description report and is

calculated as a function of elevation. A look-up and interpolation table is include in the code
and follows the cross-sectional area profile in Figure 3.16.

Table 3.5 Supply Tank Parameters

Description Location Base Units Fortran Variable
Supply Tank Level Supply Tank (0-119 in) in H,O suplvl

Supply Tank Area Supply Tank in? suparea

Supply Tank Pressure Supply Tank psig suppr

Supply Tank Liquid Temp.  Supply Tank (bottom) degrees F suptmp

Supply Tank Liquid Dens. Supply Tank (bottom) Ibm/ft rhotk

Supply Line Pressure Supply Line (after valve) psig suppr

Supply Line Liquid Temp. Supply Line (after valve) degrees F suptmp

Supply Line Liquid Dens. Supply Tank (after valve) Ibm/ft® rho
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Figure 3.16 Supply Tank Cross-Sectional Area.

The temperature and pressure parameters were taken directly from the data acquisition output
data and are used to calculate the density at the corresponding location using an algorithm
based on “Properties of Water and Steam in SlI-Units,” 2nd Revised and Updated Printing,
Springer 1979, and written in 1998 by Bernhard Spang of The Mining Company.

In order to determine the flow rate from the supply tank, it is first necessary to determine the
correct change in level. The level transducer for the supply tank measures the level as if it were
water at STP. This is a key point. If the water in the supply tank is not at standard conditions,
a correction must be made to calculate the correct change in level. This is done by correcting
the level by the ratio of densities at STP and tank conditions respectively.

AL _ Psre

corrected measured

Prank (3-29)

Next, multiplying this corrected level change by the cross sectional area of the tank at that
elevation will give the volumetric displacement.

AV = ALcorrected ’ Atank (x) (3'30)
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Since the volume is coming from the conditions in the tank, the mass displaced should be
calculated from the density at that location.

% = AV ptank (3_31)

Now, simplifying the expression for the mass, we see that the tank density is no longer
considered.

= ALmeasured ’ pSTP ’ Atank (X) (3-32)

|

This mass represents the additional mass supplied over the length of time that AL is
determined. The level is reported as in H,O, and the change in level gives the mass decrease
in the tank over time. The decrease in supply tank mass is the mass supplied to the bundle.
The mass flowed into the bundle between two times is:

My = (AP_y = AP,) Py - A(Z)sup.tk. (3-33)

where A(Z)sup_tk_ is the area of the supply tank, which is a function of the water level.

3.3.4.2 Steam Exhaust
The exhaust steam flow is reported in the output file as ft*/min.

The mass flowing from the exhaust (Ibm) is given as:

m,, = p,, -, AT (3-34)

exh

where the density is calculated from the temperature and pressure at the exhaust.

3.3.4.3 Large and Small Carryover Tanks and Drain Tank

The mass storage (Ibm) in the tanks is calculated by the liquid head in the tank and the cross-
sectional area of the tank. The liquid head is reported as inH,0 and the density of reference is
the density at STP. Therefore, the mass of liquid in the tank is simply calculated as:

M = tank pSTP Atank (3-35)

This mass will be cumulative at each time. This calculation is done for the small and large
carryover tanks and the drain tank.

3.3.5 Mass Storage in the Bundle

To calculate the mass storage in the bundle the elevation pressure drop must be isolated from
the overall pressure drop. The acceleration pressure drop will be ignored, so the frictional
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pressure drop across each grid and for the rods must be calculated. In order to do this, the
quench front information must be entered to the code in the form of an input deck with as few or
as many points as is necessary to describe the quench front behavior. The code then uses
those points to generate a polynomial of the desired order to describe the quench front elevation
over time. Using this polynomial, the code determines at each time step whether the quench
front has reached any given grid location. If the quench front has not reached the grid, the
pressure drop is calculated for that grid.

First, the velocity must be found so that the Reynolds number can be calculated. This is done
using the exit volumetric flow rate.

=, Lo (3-36)
pvap Agrid
where
Agrid = 0'877Abundle

The Reynolds number can now be calculated.

PayVD
Re = v 1 (3-37)
luvap

The k value for the grid is taken as a polynomial function of Reynolds number.

K gig = —6.965X 107" Re’+5.222x107° Re*—1.456x107* Re+3.249 (3-38)
The frictional pressure drop over the grid can now be calculated by

kgrid pvap V 2
AP, =—F—— (3-39)
28,

The pressure is taken at the location closest to the grid and the temperature is taken as the
largest of the three grid thermocouples in the flow.

The frictional pressure drop over the rods is calculated by a correlation by Wantland (Ref. 2()
which gives the rod friction factor as

044
- Reo.39

S (3-40)

Then, the rod frictional pressure drop is
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2
ap =L Pl

= 3-41
rods Dh 2g . ( )

Where L is the length of the rods above the quench front.

The elevation pressure drop is calculated by subtracting the frictional pressure drops from the
overall pressure drop.

APelev = A])mt - ZAPg id A})mafs (3-42)

Tl

Finally, the mass storage in the bundle is calculated by
-4 AP, Sc
M yynaie = Apundie elev g (3_43)

A sample of mass balance calculation is presented in Figure 3.17. For the valid experiments,
the results of the mass balance calculations are presented in Quick Look Reports.

Mass Balance Exp. 1383

120
Bundle Inlet (Supply Line)
Large Carryover Tank
100 Small Carryover Tank
Seperator Drain Tank

—— Exhaust Steam

80
Bundle Storage
—— Upper Plenum /
60 | —— SS Housing/Accumulator J"’/‘
—— Mass Inventory / /
40

I

100 200 300 400 500 600 700 800 900

Mass (kg)

0

Time after Reflood (sec)

Figure 3.17 Mass Balance Plot for Experiment 1383.
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3.4 Droplet Measurements

3.4.1 Droplet Measurement Instrumentation

The method of analyzing the droplet distributions in the rod bundle involves the use of a system
known as VisiSizer, shown in Figure 3.18 and Figure 3.19, which is capable of real-time
analysis of droplet size and velocity distributions. The system consists of a high-resolution
digital camera, infrared laser, data analysis software, and associated computer and control
equipment.

The camera, a Kodak Megaplus™ digital camera, has a resolution of over 1.0 megapixels. The
laser system incorporates an infrared beam of wavelength 805 nm and is capable of pulsing at
frequencies up to 1000 Hz. The laser can also pulse twice during a single camera frame to
produce a double image used in determining velocity information. The beam of the laser is
scattered with an opaque sheet of plastic to produce uniform background lighting for imaging.
The system captures high-resolution images of the injection streams and analyzes the images
at a rate of about 7 frames per second, identifying droplets as dark images in front of the laser-
illuminated scattering sheet. The diameter of each droplet is determined automatically by
referencing the number of dark pixels in the droplet image to the pixel area of a calibration
circle.

A variety of user-defined parameters control the counting of the droplets, including focus
rejection and sphericity criteria. Those data that do not meet the user set criteria are rejected.
Focus rejection is determined by considering the sharpness of the droplet image by quantifying
the intensity gradient at the outer edge of the droplet. In addition, the droplet analysis duration
can be controlled by elapsed time, number of frames, or number of droplets counted. The
software also calculates real-time statistics such as the mean and Sauter-mean diameters as
well as displays the diameter distribution and, if applicable, the velocity distribution. Velocity is
determined by double-pulsing the laser to capture the motion of a droplet. Analysis of the
velocity is done automatically using criteria such as direction of motion, velocity range, and size
matching.

The test setup for this analysis involves positioning the camera such that the view is through the
quartz windows on the sides of the facility housing. The laser is placed opposite to the housing
such that it provides a backlighting through the rod bundle. The size of the area imaged is large
enough for only two subchannels to be analyzed for each position of the camera. A general
schematic of the camera setup is shown in Figure 3.18.

It can also be seen in Figure 3.18 that the size of the probe volume will not be bounded by the
edges of the rods at the focal plane. The width of the focal plane will be smaller than the gap
size due to the parallax of viewing through the depth of the rod bundle. Figure 3.19 is an
example of the image produced when viewing through the bundle, where the black images are
the heater rods and the light image is the gap between the rods. The center of the image is the
row of rods directly in front of the camera and the white regions are the row of gaps on either
side of the rod. The width of the probe volume will be a function of the distance of the camera
from the rod bundle. It is also important to note that fuzzy borders produced by out-of-focus
rods in the image decrease the width of the probe volume even more. The variation of the gap
size in the image is due to the difficulty in aligning the camera to a high degree of precision. For
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the experiments presented here, the width of the focal plane is approximately 2.16 mm (0.085
in), which is about 70 percent of the overall gap width.
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Figure 3.18 General Schematic of the Imaging System.

Figure 3.19 Typical VisiSizer Image Through the Rod Bundle (No Droplets Present).

The depth of the probe volume is also dependent on the distance of the camera from the
bundle, but more directly on the focus rejection setting. The focus rejection setting is used to
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reject droplets that appear out-of-focus due to their distance from the focal plane. In the
experiments presented here this depth is approximately 5 mm.

The imaging system is calibrated using a small calibration reticule. The system is trained and
focused on the reticule which is attached to a quartz window on the housing. Using the known
size of the calibration circles on the reticule, the distance can be determined between the
camera and the quartz window using a calibration curve that was developed. The camera can
then be focused on the center of the desired subchannel in the bundle by adjusting the focus
setting to the desired new distance from the camera.

A very detailed set of characterization and calibration bench tests separate from the rod bundle
experiments were performed on the VisiSizer system. These bench tests helped determine the
effects of the various rejection parameters on the droplet data acquisition as well as define the
functional range and effectiveness of the system.

3.4.2 Droplet Size Measurements

For each test in the matrix a series of droplet measurements were taken at a single elevation.
Runs were divided into ten-second periods in which droplet sizes were measured. For each of
the ten-second period statistics were performed and the results were plotted as a function of
both time and the quench front elevation.

It should be noted that the droplet diameters measured in these experiments are lower than
those found in the FLECHT-SEASET series of tests. A number of causes may have contributed
to a smaller droplet diameter for the RBHT tests.

The bias of the measuring technique to smaller droplets can be caused by the difference in
behavior of large droplets compared to small droplets. First, the image of a large droplet is
more likely to be overlapping with the image of a heater rod. The VisiSizer system is not able to
determine the size of a droplet that is touching a rod because the entire droplet is not visible and
it cannot distinguish the droplet image from that of the rod. In addition, images of larger droplets
are more likely to be overlapping with images of other droplets. If the two droplet images are
overlapping and offset, then both droplets in the overlapped area will be seen as a single droplet
and will be rejected due to the spherosity criteria. Finally, larger droplets may also tend to be
less spherical than small droplets. This causes the large droplets to be more likely to be
rejected by the spherosity criteria even if it is in-focus and not overlapping any other droplet
images.

3.4.3 Droplet Size and Elevation

The size of the droplets present in the rod bundle is dependent on the elevation for two reasons.
First, droplets will tend to evaporate as they travel upward in the bundle with the superheated
steam flow. Also, the droplets may impact on spacer grids and shatter into smaller droplets.
These effects can be seen on the diameter distributions of the droplets measured with the
VisiSizer system.

In the preliminary shakedown reflood testing, the VisiSizer system was used to determine the
effect of spacer grids on the diameters of droplets. The elevations within the bundle were
approximately 2.74 m (108 in) and 2.90 m (114 in), with a grid located at about 2.79 m (110 in).
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The bundle was pressurized to 1.38 bar (25 psia) and the reflooding rate was set to 25.4 mm/s
(1in/s). The injected water was 339 degrees K (150 degrees F) subcooled.

The diameter distributions obtained from the two locations can be seen in Figure 3.20. It can be
seen that the droplet distribution changes shape from upstream to downstream of the grid, and
that the mean size decreases. As had been done in the FLECHT-SEASET series of tests, the
data from Figure 3.20 was fitted to a log-normal distribution as shown in Figure 3.21. The figure
shows the log-normal fit for the distributions upstream and downstream of the grid in the same
manner as Figure 3.20. The log normal distribution curves show more dramatically the effect of
spacer grid on droplet breakup.

The arithmetic mean diameters for the droplets upstream and downstream of the spacer grid
are 0.64 and 0.45 mm (0.025 and 0.018 in) respectively, which represents a 29 percent
decrease in the mean size of the droplets.

A series of separate effects tests were performed on an individual grid strap with individual
droplets impinging on a thin strip of metal simulating a grid strap. There have also been laser-
dopler experiments by Lee et al (Ref. 7) and similar experiments by Clare (Ref. 8) to examine
droplet breakup caused by spacer grids. Figure 3.22 shows a plot of drop breakup data for
different drop size to grid strap thickness ratios as a function of drop impact Weber number.
Figure 3.22 also shows the curve fit correlated to the data as a function of the drop diameter to
strap thickness.
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Figure 3.20 Normalized Droplet Distributions Upstream and
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76



Draplet Log-Mormal Distribution
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Figure 3.21 Probability Distribution Log-Normal Curve Fits Upstream and
Downstream of the Spacer Grid.

For the RBHT experiments, the unshattered droplet diameter to grid strap thickness ratio (d./W)
is 2.1. COBRA-TF computer code calculations were performed for this experiment, and the
prediction for the velocity of the droplets upstream of the spacer grid is 1.78 m/s (5.85 ft/s). The
corresponding droplet Weber number (using properties at saturation) is 55.24. Using the
correlation form given in Figure 3.22 for droplet breakup, the resulting droplet diameter ratio
(den/do) should be about 0.74. For this RBHT experiment, the ratio is 0.71, using the peak
values from the distributions shown in Figure 3.21.
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Figure 3.22 Drop Breakup Data as a Function of Droplet Impact Weber Number.

The change in droplet diameter due to evaporation was another factor considered in the
FLECHT-SEASET tests. For droplet evaporation over a 76 mm (3 in) length, the droplet
diameter was calculated to reduce by less than one percent. Therefore, it can be assumed that
the overall change in droplet diameter due to evaporation would be less than two percent, which
would not account for much of the 29 percent reduction in diameter over the grid span, as seen
in Figure 3.21.

Additional evidence of droplet breakup can be seen in the results from the test matrix. A few
examples of measurements of mean droplet diameter at different elevations are shown in Figure
3.23 through Figure 3.25. In these figures, one can clearly see that for tests with identical
conditions, the droplet diameter decreases with elevation. Figure 3.23 should show the effect of
a single grid on the droplet diameter. Figure 3.24, likewise shows the effect of a single grid, but
over a greater length within the bundle. Figure 3.25 represents the effects of two spacer grids
on the droplet diameter.
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Figure 3.23 Comparison of Droplet Diameter from Experiment 1088 (2.74 m) and
Experiment 973 (2.86 m).
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Figure 3.25 Comparison of Droplet Diameter from Experiment 1319 (1.84 m) and
Experiment 1383 (2.86 m).
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3.4.4 Droplet Velocity

Although the VisiSizer system is capable of obtaining velocity information, its ability to do so in
the bundle geometry is severely limited. The system uses a double-pulse technique to capture
a double exposure of the droplet images. The system then compares the location of similar
droplets to determine the velocity. However, when using the double-pulse mode, contrast in the
image is much less compared to the single-pulse mode. This makes the droplet recognition
much harder since the droplets will not be much darker than the background. In addition,
velocity mode tends to reject more droplets because the diameter rejection criteria are
compounded by velocity rejection criteria. As a result, the velocity mode captures fewer
droplets than diameter-only mode.

However, despite these limitations, some preliminary droplet velocity information was collected
with the VisiSizer system during one of the early shakedown reflood tests. Figure 3.26 shows a
plot representing the diameter and velocity distribution for an experiment where the camera was
located at 2.74 m (108 in) and shows the resulting velocity and size distribution downstream of
the grid.
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Figure 3.26 Size and Velocity Distribution Downstream of the Spacer Grid.
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Figure 3.26 shows that there is very little correlation between droplet size and velocity for
droplets immediately downstream of a spacer grid. This lack of correlation between drop
velocity and size has also been observed in the FLECHT-SEASET experiments.

3.4.5 Calculation of Interfacial Area from Droplet Distribution Data

In order to estimate the droplet interfacial area in the dispersed flow region of the bundle, the
digital droplet imaging data is used along with calculations of total liquid flow. In this section, the
procedure for determining droplet interfacial area will be outlined.

The dispersed flow film boiling region is extremely complex since the dispersed droplets act as
heat sinks and alter the vapor superheat temperature such that the film boiling is a two-step
process. Thatis, heat is transferred to the continuous vapor phase from the heated walls, and
then heat is transferred to the entrained water droplets by interfacial heat and mass transfer. As
a result, the vapor temperature is a dependent parameter that is a function of both the wall heat
transfer and the interfacial heat transfer. Therefore, the droplet interfacial area is a parameter of
great importance when investigating these heat transfer processes.

The droplet data from the digital imaging system can be collected to give a time-line of droplet
diameter information for a given location within the rod bundle. In addition, the Sauter mean
diameter (SMD) can also be determined using the conventional formulation.

o xld)
2 (r.4) (3-44)

where

ds2 SMD

f; fraction of droplet group i,
d; diameter of droplet group i

The SMD represents the diameter of a particle whose ratio of volume to surface area is the
same as the complete sample. The SMD is calculated over many time intervals in order to
observe the trend in droplet size. For example, Figure 3.27 shows the SMD evolution for
Experiment 1383.

The near flow of droplets is determined from the mass and energy balance program.

The total interfacial area of the droplets can be estimated from the total droplet volume using the
calculated mass flow and density and the droplet SMD.
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Figure 3.27 Sauter Mean Diameter Time History for Experiment 1383.

The volume of n droplets:

V= %mZ( fd}) (3-45)
where
f, = fraction of droplet group i

d, = diameter of droplet group 1

Surface area of n droplets:

_ 2
A—ﬂ'nZ(fid[ ) (3-46)
So, solving of area in terms of volume:
2
A:6Vzgﬁj3;: oy
Z fl i 32 (3_47)

which represents the simple formula for converting the total measured droplet volume into
surface area using the SMD measurement.
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Finally, this equation must be converted to a rate equation, since the reported parameter is rate
of liquid mass. In addition, the mass rate is converted to a volume rate by the liquid density at
saturation. The resulting rate of interfacial area because:

i,
e (3-48)

The mass rate for Experiment 1383 is shown in Figure 3.28. Using this formula at several times
over the reflood transient, a curve representing the evolution of droplet interfacial area can be

obtained, as shown in Figure 3.29.

Liquid Flowrate for Exp. 1382 at 112.5in
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Figure 3.28 Liquid Flow rate for Experiment 1383.

3.4.6 Droplet Measurement Data for Individual Experiments

The droplet data and individual number of droplet counts are given in the Appendix A for each
experiment in which data was obtained. The test run number, camera location, and test
conditions are given on each plot. The data is taken as a function of time and the moving
quench front location is also indicated on each plot. Drop mass diameter and Sauter mean

diameters are also plotted.
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Rate of Interfacial Area for Exp. 1383 at 112.5in
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Figure 3.29 Rate of Interfacial Area for Experiment 1383.
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4. CONCLUSIONS

A series of forced reflood heat transfer experiments has been completed in the RBHT Test
Facility. The reflood heat transfer experiments which were performed provided additional and
new data which has not been obtained in other rod bundle reflood tests. The new data
included:

1. Detailed non-equilibrium vapor superheat temperature measurements along the axial
length of the bundle, and immediately downstream of the spacer grids.

2. Spacer grid temperature surface measurements within the rod bundle at the different
axial positions.

3. Detailed entrained droplet size measurements as observed between the heater rods
both upstream and downstream of the spacer grids.

4. Detailed heater rod temperature measurements along the axial length of the rod bundle
specifically downstream of the spacer grids.

5. Detailed pressure drop along the bundle to determine the spacer grid losses and void
fraction distribution along the bundle length.

6. Liquid carryover measurements of the entrained liquid flow out of the bundle measured
using both a small carryover tank and a large carryover tank such that detecting
entrained water was faster.

7. Both liquid and steam flows from the bundle exit were measured such that a system
mass balance could be performed on each test.

The RBHT reflood heat transfer experiments were specifically designed for use in Best-Estimate
computer code validation efforts, not as tests to determine licensing limits. As such, these tests
were designed with more complete instrumentation such that local heat transfer phenomena
could be identified and quantified more accurately. The experiments were also designed for
easier computer code modeling with a linear axial power distribution, no radial power gradient,
and constant power rather than decay power. Using the constant power results in quasi-steady
reflood tests of much longer duration such that it is easier to model and study the dispersed flow
film boiling phenomena which is the heat transfer regime of interest.

The spacer grids used in these experiments are similar in design to prototypical PWR
production mixing vanes grids found on most PWR fuel assembly designs. The heat transfer
phenomena associated with the spacers observed in the RBHT Test Facility is expected to be
similar to that of a commercial PWR. The spacer grids have a first order effect on the local heat
transfer downstream of the spacer grid. The grids can re-wet, shatter entrained droplets, and
enhance the convective heat transfer downstream. All these effects enhance the dispersed flow
film boiling downstream of the grids resulting in lower measured heater rod temperatures
downstream of the grids. This was clearly observable in the RBHT reflood heat transfer
experiments.
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The heater rod instrumentation has also been designed such that detailed axial quench front
information can be obtained for comparisons to Best-Estimate computer codes. The quasi-
steady nature of the experiments along with the extended reflood times due to the constant
power which was used, provide a significant challenge to today’s computer code predictions.
The longer transients will provide an opportunity for errors in the calculations to accumulate and
cause a deviation from the experimental data. The code developer will have a much clearer
indication of which models are causing this deviation, since the tests are quasi-steady, such that
they can more easily correct the problem. The RBHT reflood heat transfer experiments have
provided new and needed data which can be used for Best-Estimate computer code
development and validation.
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APPENDIX A. TEST RESULTS

This appendix contains the tables and plots for the selected data of 25 valid reflood heat
transfer tests performed at the RBHT Test Facility.

For each test run, the following tables and plots are presented:

List of the run conditions

Listing of the measurements for the selected thermocouples
Upper plenum pressure

Inlet liquid flow rate, outlet vapor flow rate

Inlet flow temperature

Bundle Voltage and Current

Rod surface temperatures — calculated as described in Chapter 3, Section 1 at five
selected locations, corresponding to steam probe locations and at the top section of the
bundle

Steam temperatures - data from 5 steam probes at the upper section of the bundle
Grid temperatures for the top 3 spacer grids
Heat transfer coefficients - calculated as described in Chapter 3, Section 1

Heater rod quench data - calculations performed for this is described in Chapter 3,

Section 2

Droplet Measurements - described in Chapter 3, Section 4

In temperature, heat transfer coefficient, and quench front plots, time zero represents when the

reflood starts.
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 937

RUN CONDITIONS
Upper Plenum Pressure: 138 kPa (20 psia)
Initial Peak Clad Temperature: 1033 degrees K (1400 degrees F)
Rod Peak Power: 1.31 kW/m (0.4 kW/t)
Flooding Rate: 0.0254 m/s (1 in/s)
Inlet Subcooling: 11 degrees K (20 degrees F)
Start of Reflood: 301.3s
End of Reflood: 1362 s
Test Date: 5/13/2002
Comments: No droplet data
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 937
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Current (Amp)

RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 937
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 945

RUN CONDITIONS
Upper Plenum Pressure: 276 kPa (40 psia)
Initial Peak Clad Temperature: 1033 degrees K (1400 degrees F)
Rod Peak Power: 1.31 KW/m (0.4 kKWIt)
Flooding Rate: 0.0254 m/s (1 in/s)
Inlet Subcooling: 11 degrees K (20 degrees F)
Start of Reflood: 1709 s
End of Reflood: 2490 s
Test Date: 5/13/2002
Comments: No droplet data
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 945
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RBHT - TEST FACILITY
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RUN CONDITIONS

Upper Plenum Pressure:

Initial Peak Clad Temperature:

Rod Peak Power:
Flooding Rate:
Inlet Subcooling:
Start of Reflood:
End of Reflood:
Test Date:

Comments:

RBHT - REFLOOD TESTS
SUMMARY SHEET

RUN NO: 973

276 kPa (40 psia)

1033 degrees K (1400 degrees F)
1.31 kW/m (0.4 kW/ft)

0.0254 m/s (1 in/s)

11 degrees K (20 degrees F)

400 s

1233.5s

5/16/2002

Steam probes positioned in subchannel gaps.
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 973
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 973
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RBHT Exp. 973
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RBHT Exp. 973
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Steam Probe Temperature during Reflood
RBHT Exp. 973
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RBHT Exp. 973
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RBHT Exp. 973
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RBHT Exp. 973
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RBHT Exp. 973
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Elevation (m)

Quench Data, RBHT Exp. 973
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-Test Conditions-
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Flooding Rate: 25.4 mm/sec
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1.2

Droplet Sauter Mean Diameter - Exp. 973
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RUN CONDITIONS

Upper Plenum Pressure:

Initial Peak Clad Temperature:

Rod Peak Power:
Flooding Rate:
Inlet Subcooling:
Start of Reflood:
End of Reflood:
Test Date:

Comments:

RBHT - REFLOOD TESTS
SUMMARY SHEET

RUN NO: 1088

276 kPa (40 psia)

1033 degree K (1400 degree F)
1.31 kW/m (0.4 kW/ft)

0.0254 m/s (1 in/s)

11 degree K (20 degree F)
162.5s

368.5 s
5/31/2002

Test terminated early but valid to end time. Quench front
at 1.52 m (60 in) at test termination.
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Absolute Pressure (kPa)

Mass Flow (kg/s)

RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1088
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Fluid Temperature (K)

Volumetric Flow (m#3/min}

RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1088
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RBHT - TEST FACILITY

Inlet Flow Temperature vs. Time, Exp 1088
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1088
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Temperature (K)

Temperature (K)

Heater Rod Temperature during Reflood
RBHT Exp. 1088
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Temperature (K)
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Heater Rod Temperature during Reflood
RBHT Exp. 1088
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Temperature (K)
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Heater Rod Temperature during Reflood
RBHT Exp. 1088
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Temperature (K)

Temperature (K)

Steam Probe Temperature during Reflood
RBHT Exp. 1088
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Steam Probe Temperature during Reflood

RBHT Exp. 1088
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Temperature (K)

HTC (W/m %K)

Spacer Grid Temperature during Reflood
RBHT Exp. 1088
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Heat Transfer Coefficient during Reflood
RBHT Exp. 1088
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-Test Conditions-
Pressure: 2.76 bar

Droplet Counts - Exp. 1088

Flooding Rate: 25.4 mm/sec

Peak Power: 1.31 k
Initial Temp: 760 C
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Mean Droplet Diameter - Exp. 1088
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-Test Conditions-

Pressure: 2.76 bar
Flooding Rate: 25.4 mm/sec
Peak Power: 1.31 kW/m
Initial Temp: 760 C

Inlet Subcooling: 11.1.C

Camera Location: 2.74 m
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Droplet Sauter Mean Diameter - Exp. 1088
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RBHT - REFLOOD TESTS

SUMMARY SHEET

RUN NO: 1096
RUN CONDITIONS
Upper Plenum Pressure: 138 kPa (20 psia)
Initial Peak Clad Temperature: 1033 degrees K (1400 degrees F)
Rod Peak Power: 1.31 kW/m (0.4 kW/t)
Flooding Rate: 0.0254 m/s (1 in/s)
Inlet Subcooling: 11 degrees K (20 degrees F)
Start of Reflood: 2274 s
End of Reflood: 1916 s
Test Date: 6/4/2002

Comments:
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RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1096
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1096
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1096
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Temperature (K)

Temperature (K)

Heater Rod Temperature during Reflood
RBHT Exp. 1096
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RBHT Exp. 1096
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RBHT Exp. 1096
1000

900 ’1

—_Chan. 260 1.75m (69in)
—__Chan. 261 1.75m (69in)

800 - J

700

600

500 -

400

300 T T T T

0 200 400 600 800 1000 1200 1400

Time after Reflood (sec)

Spacer Grid Temperature during Reflood
RBHT Exp. 1096
1100

1600

1800

1000

— Chan. 266 2.26m (89in)
— Chan. 267 2.26m (89in)| |

900

800 -

700 ~

600 - I"ﬂ\

500

400

300 T T T T

0 200 400 600 800 1000 1200 1400

Time after Reflood (sec)

A-87

1600

1800



Temperature (K)

HTC (W/m %K)

Spacer Grid Temperature during Reflood
RBHT Exp. 1096
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Droplet Counts - Exp. 1096
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Mean Droplet Diameter - Exp. 1096
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Droplet Sauter Mean Diameter - Exp. 1096
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RBHT - REFLOOD TESTS

SUMMARY SHEET

RUN NO: 1108
RUN CONDITIONS
Upper Plenum Pressure: 138 kPa (20 psia)
Initial Peak Clad Temperature: 1033 degrees K (1400 degrees F)
Rod Peak Power: 1.31 kW/m (0.4 kW/t)
Flooding Rate: 0.0254 m/s (1 in/s)
Inlet Subcooling: 83 degrees K (150 degrees F)
Start of Reflood: 110.6 s
End of Reflood: 14925 s
Test Date: 6/6/2002
Comments: Heater rod surfaces below 1m (40 in) quench to a

temperature below saturation due to the high inlet
subcooling. Therefore DATARH calculated heat transfer
coefficients are not presented below this elevation after rod
qguench.
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RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1108
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1108
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 1143

RUN CONDITIONS
Upper Plenum Pressure: 138 kPa (20 psia)
Initial Peak Clad Temperature: 1144 degrees K (1600 degrees F)
Rod Peak Power: 2.3 kW/m (0.7 kW/ft)
Flooding Rate: 0.1524 m/s (6 in/s)
Inlet Subcooling: 83 degrees K (150 degrees F)
Start of Reflood: 740.3 s
End of Reflood: 1022.5s
Test Date: 6/12/2002
Comments: Heater rod surfaces below 2.4 m (94 in) quench to a

temperature below saturation due to the high inlet
subcooling. Therefore DATARH calculated heat transfer
coefficients are not presented below this elevation after rod
qguench.
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RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1143
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1143
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1143
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1.2

Mean Diameter (mm)
o o
o)} o0

o
I

0.2

Mean Droplet Diameter - Exp. 1143

-Test Conditions-
Pressure: 1.38 bar
Flooding Rate: 1562 mm/sec
Peak Power: 2.3 kW/m
Initial Temp: 871.1C

Inlet Subcooling: 83.3 C
Camera Location: 2.21m

Quench Front Location (m)
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Droplet Sauter Mean Diameter - Exp. 1143

-Test Conditions-
Pressure: 1.38 bar
Flooding Rate: 1562 mm/sec
Peak Power: 2.3 kW/m
Initial Temp: 871.1C

Inlet Subcooling: 83.3 C
Camera Location: 2.21m

Quench Front Location (m)
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 1155

RUN CONDITIONS
Upper Plenum Pressure: 138 kPa (20 psia)
Initial Peak Clad Temperature: 1144 degrees K (1600 degrees F)
Rod Peak Power: 2.3 kW/m (0.7 kW/ft)
Flooding Rate: 0.1524 m/s (6 in/s)
Inlet Subcooling: 11 degrees K (20 degrees F)
Start of Reflood: 369 s
End of Reflood: 774 s
Test Date: 6/14/2002
Comments: Test terminated early, valid up to end of reflood time.

Quench front at 2.35 m (93 in) at test termination.

No Droplet Data
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RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1155
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1155
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1155
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RBHT Exp. 1155
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RBHT Exp. 1155
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Heat Transfer Coefficient during Reflood

RBHT Exp. 1155

1000000 -
3
£ ]
E 1000 -
o
[l
o
——Chan. 59 1.4m (55in)
——Chan. 107 1.4m (55in)
——Chan. 155 1.4m (55in)
1 T T T T T T T
0 50 100 150 200 250 300 350 400
Time after Reflood (sec)
Heat Transfer Coefficient during Reflood
RBHT Exp. 1155
1000000 -
3
£ 1
S 1000 -
($)
= ey
— Chan. 235 2.37m (93.4in)
—— Chan. 243 2.37m (93.2in)
1
0 50 100 150 200 250 300 350 400

Time after Reflood (sec)

A-149



HTC (W/m %K)

HTC (W/m 2K)

Heat Transfer Coefficient during Reflood
RBHT Exp. 1155

1000000 -

10000 -

100 -

M

—— Chan. 205 2.54m (100.9in)
—— Chan. 237 2.54m (100.1in)
—— Chan. 245 2.54m (100.1in)

50 100 150 200 250 300 350

Time after Reflood (sec)

Heat Transfer Coefficient during Reflood
RBHT Exp. 1155

400

1000000 -

10000 -

1| —— Chan. 195 2.93m (115.5in)
| |——Chan. 211 2.93m (115.4in)
|| —— Chan. 227 2.93m (115.7in)

50 100 150 200 250 300 350

Time after Reflood (sec)

A-150

400



HTC (W/m 2-K)

HTC (W/m 2-K)

Heat Transfer Coefficient during Reflood
RBHT Exp. 1155

1000000 -
{|——Chan. 70 3.07m (120.8in)
| |——Chan. 134 3.07m (120.9in)
| | ——Chan. 196 3.01m (118.5in)
10000 4
100 4 W
1 T T T T T T T
0 50 100 150 200 250 300 350 400
Time after Reflood (sec)
Heat Transfer Coefficient during Reflood
RBHT Exp. 1155
1000000 1
] —Chan. 216 3.45m (135.6in)
—— Chan. 232 3.45m (135.7in)
10000 -
100 -
1 T T T T T T T

0 50 100 150 200 250 300 350 400

Time after Reflood (sec)

A-151



Elevation (m)

3.5

2.5

1.5

0.5

Quench Data, RBHT Exp. 1155

Time after Reflood (sec)

A-152

Ne o
3
-
.« ®
F XK
L. 2 K
B
“‘
&
0..,0
o®
»
o
-
-
50 100 150 200 250 300 350 400



RBHT - REFLOOD TESTS

SUMMARY SHEET

RUN NO: 1160
RUN CONDITIONS
Upper Plenum Pressure: 276 kPa (40 psia)
Initial Peak Clad Temperature: 1144 degrees K (1600 degrees F)
Rod Peak Power: 2.3 kW/m (0.7 kWI/ft)
Flooding Rate: 0.127 m/s (5 in/s)
Inlet Subcooling: 83 degrees K (150 degrees F)
Start of Reflood: 129.5s
End of Reflood: 504.6 s
Test Date: 6/17/2002
Comments: Heater rod surfaces below 2.4 m (94 in) quench to a

temperature below saturation due to the high inlet
subcooling. Therefore DATARH calculated heat transfer
coefficients are not presented below this elevation after rod
quench.
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RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1160
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Inlet Flow vs. Time, Exp 1160
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Fluid Temperature (K)

Volumetric Flow (m#3/min}

RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1160
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1160
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 1170

RUN CONDITIONS
Upper Plenum Pressure: 276 kPa (40 psia)
Initial Peak Clad Temperature: 1144 degrees K (1600 degrees F)
Rod Peak Power: 2.3 kW/m (0.7 kW/ft)
Flooding Rate: 0.1524 m/s (6 in/s)
Inlet Subcooling: 11 degrees K (20 degrees F)
Start of Reflood: 298 s
End of Reflood: 7718 s
Test Date: 6/19/2002
Comments: No droplet data

A heater rod surface (chan. 200) at 3.45 m (135.6 in)
guenches to a temperature below saturation due to bottom
reflood from subcooled liquid accumulation in the upper
plenum. Therefore DATARH calculated heat transfer
coefficients are not presented for this channel.
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Absolute Pressure (kPa)

Mass Flow (kg/s)

RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1170
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Fluid Temperature (K)

RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1170
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1170
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Quench Data, RBHT Exp. 1170
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RUN CONDITIONS

Upper Plenum Pressure:

Initial Peak Clad Temperature:

Rod Peak Power:
Flooding Rate:
Inlet Subcooling:
Start of Reflood:

End of Reflood:

Test Date:

Time after Reflood (sec)

RBHT - REFLOOD TESTS
SUMMARY SHEET

RUN NO: 1196

276 kPa (40 psia)

1144 degrees K (1600 degrees F)
2.3 kW/m (0.7 kW/ft)

0.1524 m/s (6 in/s)

53 degrees K (96 degrees F)
226.6 s

718.7 s

6/25/2002
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Comments: No Droplet Data

Heater rod surfaces below 2.29 m (90 in) quench to a
temperature below saturation due to the high inlet
subcooling. Therefore DATARH calculated heat transfer
coefficients are not presented below this elevation after rod
qguench.
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RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1196
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Inlet Flow vs. Time, Exp 1196
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1196
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1196
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Heat Transfer Coefficient during Reflood
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 1202

RUN CONDITIONS
Upper Plenum Pressure: 276 kPa (40 psia)
Initial Peak Clad Temperature: 1144 degrees K (1600 degrees F)
Rod Peak Power: 2.3 kW/m (0.7 kW/ft)
Flooding Rate: 0.1524 m/s (6 in/s)
Inlet Subcooling: 23 degrees K (42 degrees F)
Start of Reflood: 258.5s
End of Reflood: 801.7 s
Test Date: 6/26/2002
Comments: No droplet data
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1202
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 1223

RUN CONDITIONS
Upper Plenum Pressure: 276 kPa (40 psia)
Initial Peak Clad Temperature: 1144 degrees K (1600 degrees F)
Rod Peak Power: 2.3 kW/m (0.7 kWI/ft)
Flooding Rate: 0.1524 m/s (6 in/s)
Inlet Subcooling: 11 degrees K (20 degrees F)
Start of Reflood: 135.2s
End of Reflood: 788.6 s
Test Date: 6/28/2002
Comments: No droplet data
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RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1223
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RBHT - TEST FACILITY

Inlet Flow vs. Time, Exp 1223
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Fluid Temperature (K)

RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1223
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1223
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 1228

RUN CONDITIONS
Upper Plenum Pressure: 138 kPa (20 psia)
Initial Peak Clad Temperature: 1144 degrees K (1600 degrees F)
Rod Peak Power: 2.3 kW/m (0.7 kW/ft)
Flooding Rate: 0.1524 m/s (6 in/s)
Inlet Subcooling: 23 degrees K (42 degrees F)
Start of Reflood: 120.5s
End of Reflood: 11125 s
Test Date: 7/1/2002
Comments: No droplet data

A-241



26'GE6 ¥e'Gl. S.°0lS LLLLLL 90¢cl SZ'GlL GE0951 | x44]" €81 wg/'z €0
¥£'CL6 ¥2'29. G.'80% 16°2991 L'€LLL GZ'Gl £9°01G1 29'v60L 18l woy'g €0
6£°968 8¢£'€5/ SL'¥6€ ¥G V9l 9v'89L1 SL'vl ¥8°€0G1 G8°0601 08l wse'z €0
6Ll ¢ 789 T 4% €L'¥6El £2°0€01 GZ'GlL cl'0/LclL 10°L96 161 wgl'e €3
9G°268 G2'LS. GL'1S€E 26°L.G) 457" SL°9l £9vEYL ¥'2G0L 8.1 w/l'gz €0
ZL' 9% 68'7LG G.'6€ 1689/ £€°289 S.°9l S6°019 A% 8¥C wioe ¥a
8/'68. Sl'¥69 S.'¥9G 1/°0G9) 4 &9%Y" SCel 2S'€LGlL €2°9601 YAL4 we6/.'Z ¥a
2€'198 68'€E. G2'68Y G8'GL.LL €9'80C| SLYl L0'¥.S1 98'6CL1 144 wyG'Z $a
69'GEY S9'6l. SLvEY 16°299) 41" SLYl G1'62S1 167011 (N4 w/eZ ¥a
£G°0S8 6'/¢L SC6lLY €L .¥91 6L0LL1 SL'vl £€6°CLGL 6°G660L [A44 wee'e va
WLl ¥6°€89 G200 10'845) socell SL'vl [4ox4°14" 962901 344 wyg'e ¥a
10°208 ¢L'€0. §2'9.¢ 1/'G6¥) £€9801 S.'Gl 8.°99¢| L'¥10L |44 woe'L &d
ScLL GG'¥89 G§2'S9¢ Lr'elrl ¥6°€/0L SZ'Gl Z2'0G¢EL 67°G001 [X44 weg'L 6a
£9'28. 81°069 SL'6v¢C 2C'60v| 82°8¢01 SL'vl 1L'€6CL LL'v.6 [444 wg/'L 6d
€9'118 6290/ T 44 L0'Lv¥) /26501 SC'6l Y eLElL 96'786 344 wg9'lL 6d
L'LEL 88°199 G.'881 7€00¥ | GE'EE0l SL'LL 88'9.C| 9/.'¥96 (\[44 weg'L 6d
6.°,69 70'€19 Scell ¥E'GLEL 9’6101 Sl G962l Y'€96 6LC wey'lL 6a
8'€69 £8°019 G209 €0°1S€El G6°G001 S/l G/'GET| 16°L¥6 124 w/¢'l 6d
16°9%9 18119 SLEVL 9°/0€) €8°186 S29l 92021 1G'€C6 yA%4 w/z'L 6d
69'G/9 //1'0€9 G/1'809 8'vlcl 1/2'0€6 GL'Gl 16601 81998 1 w/z'¢ 9d
¢0'9.. 1G'989 S.'¥6S 29°0l€El 1G'€86 SC'Gl c9'l6llL 6E°LL6 Sel w/l'¢ 9d
£2'G08 €1°¢0. G1'8.G ¢G'/6EL 82°1€01 SZ'Gl 9'69¢L 12096 el w/o'¢ 9d
6.°CE8 ¥0'8l. G1'€9G 61°G8¥| 670801 GZ'Gl v’ 6vElL 80°S001 el w/e'¢ 9d
68°168 §9'8¢. GZ'Leg ¥0°0SG | 1G9LLL SL'Yl £9'80¥1 96°2£0L [4%) wge'z 9d
G8'86.L 61669 G2 0vS G8'98G| 96°9¢L 1 scel 18'6GvL L1901 Lel w/g'z 9d
GZ'GE6 16V, G/1°00G S'€0LL 12°10C1 GZ'GlL G0'CSS| €O LLLL 0cl we9'z 9d
42413 82'29. G208 #G'8691 c0'66LL SLYl 9G°1GG1 9€°LLLL 621 weo'g 9d
£ 0€8 8991/ S.'162 19'Go¥L 196901 G/.91 G6°LEEL 9€'G66 144" we6'L 90
816/ 12'G69 SC'€lC SL vyl 208501 G291 Ly'GLEL 91986 [44" w/g8'L 90
869/ /0'€89 rx4%4 Gl'6.€1 /15120l G261 9l'6¥ClL 9¢€'6¥6 34" weo'L 90
1260 6£'619 S2'8lL €G'Leel Cl'S66 SZ'8l L1€LCl 9¢€°'6¢6 (04" w/y'L 90
89'G89 2£'9€9 G1'€91 Z2'L0€L 19'L86 S.'8l 60°¢6Ll G9'LL6 6¢l wee'l 90
21999 8/1'G29 SL'¥S1 £'96¢L GG'G/6 Sc'Ll £eegllL 6.°Cl6 8¢l wye'l 90
G6°LE9 /¥'909 G290} 628811 GG'Gl6 S.'8l 89°/801 G9'698 L€l wy0'L 90
£1'98G 8L°18G S2'88 £8°1601 96°198 S.°Gl L€°€00) 8.°Cl8 LGl w/68'0 99
99'G8G G/1°08G SZ'L8 £'€L0) 99'168 S.°Gl 16°G86 11°€08 0S1 woyg'0 99
62°G9G £'69G G2'89 €/l0L GG'0¢C8 SL'Yl C.'8¢6 68°9.. 4] Wyy/'0 99
£G°209 Z1'06G G2'2S 92’186 £5°008 Sccl 6,016 €719/ 14 Wwges'0 99
(4,) aamesadwa] [(y) ainjesadwsa] [(-08s) awi] [(4,) ainmesadwsa] [(y) ainjesadwa] [(-oss) awi] [(4.) pooay 1e [ (M) pooyyey 1e | Jaquny
yousnp yousnp yousnp puno.euln ] punoteuin]  |punoseuin] | sinjesadwsa) | aimeledws] | |puuey) |uoness|g poy

A-242



Absolute Pressure (kPa)

Mass Flow (kg/s)

RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1228
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1228
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RBHT Exp. 1228
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RBHT Exp. 1228
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RBHT - REFLOOD TESTS

SUMMARY SHEET
RUN NO: 1280

RUN CONDITIONS
Upper Plenum Pressure: 138 kPa (20 psia)
Initial Peak Clad Temperature: 1144 degrees K (1600 degrees F)
Rod Peak Power: 2.3 kW/m (0.7 kW/ft)
Flooding Rate: 0.1524 m/s (6 in/s)
Inlet Subcooling: 83 degrees K (150 degrees F)
Start of Reflood: 173.2s
End of Reflood: 506.2 s
Test Date: 7/17/2002
Comments: No Droplet Data

Heater rod surfaces below 2.54 m (100 in) quench to a
temperature below saturation due to the high inlet
subcooling. Therefore DATARH calculated heat transfer
coefficients are not presented below this elevation after rod
quench.
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RBHT - TEST FACILITY

Upper Plenum Pressure vs. Time, Exp 1280
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RBHT - TEST FACILITY

Steam Exhaust Flow vs. Time, Exp 1280
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RBHT - TEST FACILITY

Test Section Voltage vs. Time, Exp 1280
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Temperature (K)
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Heater Rod Temperature during Reflood

RBHT Exp. 1280
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Heater Rod Temperature during Reflood
RBHT Exp. 1280
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Steam Probe Temperature during Reflood
RBHT Exp. 1280
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