Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors

PWR-GALE Code

Manuscript Completed: March 1985 Date Published: April 1985

T. Chandrasekaran, J. Y. Lee, C. A. Willis

Division of Systems Integration Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555

.

(2.84)				
BIBLIOGRAPHIC DATA SHEET	NUREG-0017,	Rev. 1		
SEE INSTRUCTIONS ON THE REVERSE				
2. TITLE AND SUBTITLE	3. LEAVE BLANK			
Calculation of Releases of Radioactive Materials in				
Gaseous and Liquid Effluents From Pressurized Water	A DATE BE	PORT COMPLETED		
Reactors (PWR-GALE Code)	MONTH	YEAR		
5. AUTHORIS)	March	1 1985		
	6. DATE	REPORT ISSUED		
	MONTH	YEAR		
T. Chandrasekaran, J.Y. Lee, C.A. Willis	April	1985		
7. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)	8. PROJECT/TASK/WORK UN	IT NUMBER		
Division of Systems Integration	9. FIN OR GRANT NUMBER			
Office of Nuclear Reactor Regulation				
U.S. Nuclear Regulatory Commission				
Washington, DC 20555	11a, TYPE OF REPORT	·····		
10. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)	TIA. TTPE OF REPORT			
Same as 7. above				
	b PERIOD COVERED (Inclusio	ve detes)		
12. SUPPLEMENTARY NOTES				
13. ABSTRACT (200 words or less)				
This ways the second state of AUDEO 0017	10-1-J-4-	6 D.1		
This report revises the original issuance of NUREG-0017,				
Radioactive Materials in Gaseous and Liquid Effluents Fro				
(PWR-GALE Code)" (April 1976), to incorporate more recen				
as well as the results of a number of in-plant measurement	nt programs at	operating		
pressurized water reactors. The PWR-GALE Code is a comp				
calculating the releases of radioactive material in gase	ous and liquid	effluents		
(i.e., the gaseous and liquid source terms). The U.S. Nuclear Regulatory Commission				
uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to				
10 CFR Part 50.				
	requirements c			
	requirements c			
	requirements o			
	requirements o			
	r equit ellerres o			
	r equit emerica o			
	r equit emerica o			
	r equit emerica o			
	r equit emerica o			
		of Appendix I to		
14 DOCUMENT ANALYSIS - a. KEYWORDS/DESCRIPTORS				
14 DOCUMENT ANALYSIS - a. KEYWORDS/DESCRIPTORS Radioactive Effluent		of Appendix I to		
14 DOCUMENT ANALYSIS - a. KEYWORDS/DESCRIPTORS Radioactive Effluent Radioactive Waste		of Appendix I to		
14 DOCUMENT ANALYSIS - B. KEYWORDS/DESCRIPTORS Radioactive Effluent		of Appendix I to ^{15. AVAILABILITY STATEMENT Unlimited}		
14 DOCUMENT ANALYSIS - a. KEYWORDS/DESCRIPTORS Radioactive Effluent Radioactive Waste		of Appendix I to 15. AVAILABILITY STATEMENT Unlimited 16. SECURITY CLASSIFICATION		
14 DOCUMENT ANALYSIS - a. KEYWORDS/DESCRIPTORS Radioactive Effluent Radioactive Waste		of Appendix I to 15. AVAILABILITY STATEMENT Unlimited 16. SECURITY CLASSIFICATION (This page)		
14 DOCUMENT ANALYSIS - & KEYWORDS/DESCRIPTORS Radioactive Effluent Radioactive Waste Radioactive Materials		of Appendix I to 15. AVAILABILITY STATEMENT Unlimited 16. SECURITY CLASSIFICATION		
14 DOCUMENT ANALYSIS - & KEYWORDS/DESCRIPTORS Radioactive Effluent Radioactive Waste Radioactive Materials		15. AVAILABILITY STATEMENT Unlimited 16. SECURITY CLASSIFICATION (This page) Unclassified (This report)		
14 DOCUMENT ANALYSIS - & KEYWORDS/DESCRIPTORS Radioactive Effluent Radioactive Waste Radioactive Materials		of Appendix I to 15. AVAILABILITY STATEMENT Unlimited 16. SECURITY CLASSIFICATION (This page) Unclassified		
14 DOCUMENT ANALYSIS - & KEYWORDS/DESCRIPTORS Radioactive Effluent Radioactive Waste Radioactive Materials		15. AVAILABILITY STATEMENT Unlimited 16. SECURITY CLASSIFICATION (This page) Unclassified (This report) Unclassified		
14 DOCUMENT ANALYSIS KEYWORDS/DESCHIPTORS Radioactive Effluent Radioactive Waste Radioactive Materials b. IDENTIFIERS/OPEN-ENDED TERMS		15. AVAILABILITY STATEMENT Unlimited 16. SECURITY CLASSIFICATION (This page) Unclassified (This report) Unclassified		
14 DOCUMENT ANALYSIS - & KEYWORDS/DESCRIPTORS Radioactive Effluent Radioactive Waste Radioactive Materials		of Appendix I to 15. AVAILABILITY STATEMENT Unlimited 16. SECURITY CLASSIFICATION (This page) Unclassified (This report) Unclassified 17. NUMBER OF PAGES		

i

ABSTRACT

This report revises the original issuance of NUREG-0017, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)" (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The U.S. Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

TABLE OF CONTENTS

		Pa	ige
ABSTRACT ACKNOWLED EXECUTIVE	GEMENTS	· · · · · · · · · · · · · · · · · · ·	
CHAPTER 1	. PWR-G	ALE CODE	
1.1	Introdu	ction	-1
1.2	Definit	ions	.3
1.3	Gaseous	Source Terms	•6
1.4	Liquid	Source Terms	.7
1.5		tions for Completing PWR-GALE Code Input Data	-8
		Parameters Included in the PWR-GALE Code 1- Parameters Required for the PWR-GALE Code 1-	
		IPAL PARAMETERS USED IN PWR SOURCE TERM THEIR BASES	
2.1	Introdu	ction	·1
2.2	Princip	al Parameters and Their Bases2-	•1
	2.2.1 2.2.2 2.2.3	Thermal Power Level	
	2.2.4	Secondary Coolant	
	2.2.5	Systems	
	2.2.6	Effluents	
	2.2.7 2.2.8	Systems	•48
	2.2.9 2.2.10 2.2.11	Exhaust 2- Containment Purge Frequency 2- Containment Internal Cleanup System 2- Radioiodine Removal Efficiencies for Charcoal	-51
	2.2.12	Adsorbers and Particulate Removal Efficiencies for HEPA Filters	
	2.2.13 2.2.14 2.2.15	Storage Tanks	·60 ·61
	2.2.16	Chemical Wastes from Regeneration of Condensate Demineralizers	-68

Preceding page blank

Page

R-1

		Tritium															
		Deconta															
		Deconta													٠	•	2-79
	2.2.20	Deconta															2-80
	2.2.21	Filt Deconta		••• ion													
		Guideli														•	2-00
		Time															2-81
	2.2.23	Adjustm														•	- •.
	-		cipat													•	2-86
		Atmosph	eric 🗄	Stea	m Du	ımp	•	• •	•	• •	•		•	•	•	•	2-89
		Carbon-															
	2.2.26	Argon-4	1 Relo	ease	s.	• •	•	• •	•	• •	•	• •	٠	•	٠	•	2-93
AUADTED A	TNDUT		C 411D) n T			с т т					
	INPUT F		SAMP	LE P	KORL	.EM,	AN)	JRT	RAN		511	NG				
OF THE PW	R-GALE CUL	JE															
3.1	Introduct	tion .															3_1
5.1	Incroduce		• •	• •	•••	• •	•	• •	•	• •	•	••	•	•	•	•	2-1
3.2	Input Dat	:a	• •				•		•		•		•	•			3-1
	•																
		kplanat															
	3.2.2 Ir	nput Co	ding S	Shee	ts	•••	•	•••	•	•••	•	• •	•	•	٠	•	3-5
2 2	C	.]	T		I	0	k										ЭΕ
3.3	Sample Pr	OD I EIII	IN	put	and	υατι	ρυτ	•	•	• •	•	• •	٠	•	•	٠	3-5
3.4	Listing o	of PWR-	GALE (Code									•				3-5
	_roomg c				•	•••	•		•		•	•••	•	•	•	•	
	3.4.1 Nu	uclear	Data I	Libr	ary		•		•		•		•	•	•		3-5
	3.4.2 FC	ORTRAN	Progra	am L	isti	ng	•	• •	•	•••	•	••	•	•	•	•	3-15
			_		_												
CHAPTER 4					OURC	E T	ERM	CAL			ION	<u>S</u>					
FOR PRESS	URIZED WAI	ER REA	CTORS														
4.1	Conoral																<i>1</i> 1
4.1	General .		• •	• •	• •	••	•	••	•	••	٠	• •	•	•	•	•	4-1
4.2	Primary S	System					_										4-1
	i i i indi y c	/J 5 0 0 m	•••	•••	•••	•••	• •	•••	•	•••	•	•••	•	•	•	•	• •
4.3	Secondary	/ Syste	m .	• •	• •		•		•	•••	•		•	•	•	•	4-1
	-	-															
4.4	Liquid Wa	iste Pr	ocess	ing	Syst	ems	•	• •	•	• •	•	• •	•	•	٠	•	4-2
		n			~												
4.5	Gaseous W	laste P	roces	sing	Sys	stem	•	•	•	• •	•	•••	•	٠	•	•	4-3
4.6	Ventilati	ion and	Evba	+	Suct	ome											1 2
4.0	ventilati	Un anu	LXIIa	ISL	Syst	ens.	• •	• •	•	• •	•	• •	•	•	•	•	4-5
APPENDIX	4																
	<u>.</u>																
Liqu	id Source	Term C	alcula	atio	nal	Prod	cedu	ires	s fo	or F	leg	ene	rar	۱t			
Wast	es from De	eminera	lizers	s Ot	her	Thai	n Co	onde	ensa	ate	•						
Demi	neralizers	; 	• •	• •	•••	• •	• •	•	•	••	•	• •	٠	•	•	•	A-1

REFERENCES

LIST OF TABLES

•

Table		Page
1-1	Radioiodine Releases from Building Ventilation Systems Prior to Treatment	1-9
1-2	Radioactive Particulate Releases from Building Ventilation Systems Prior to Treatment	1-10
1-3	PWR Liquid Wastes	1-18
1-4	Decontamination Factors for PWR Liquid Waste Treatment Systems	1-21
1-5	Assigned Removal Efficiencies for Charcoal Adsorbers for Radioiodine Removal	1-29
2-1	Plant Capacity Factors at Operating PWR's	2-3
2-2	Numerical Values - Concentrations in Principal Fluid Streams of the Reference PWR with U-Tube Steam Generators	2-4
2-3	Numerical Values - Concentrations in Principal Fluid Streams of the Reference PWR with Once-Through Steam Generators	2-6
2-4	Parameters Used to Describe the Reference Pressurized Water Reactor with U-Tube Steam Generators	2-8
2-5	Parameters Used to Describe the Reference Pressurized Water Reactor with Once-Through Steam Generators	2-9
2-6	Values Used in Determining Adjustment Factors for Pressurized Water Reactors	2-10
2-7	Adjustment Factors for PWR's with U-Tube Steam Generators	2-12
2-8	Adjustment Factors for PWR's with Once-Through Steam Generators	2-13
2-9	Summary of Iodine-131 and Iodine-133 Primary Coolant Concentrations in PWR's	2-21
2-10	Summary of Radionuclide Primary Coolant Concentrations in PWR's	2-22
2-11	Monthly Average Primary/Secondary Leakage	2-26
2-12	Moisture Carryover in Recirculating U-Tube Steam Generators	2-32

Table	Page
2-13	Annual Iodine Normalized Releases from Containment Ventilation Systems
2-14	Annual Iodine Normalized Releases from Auxiliary Bldg. Ventilation Systems
2-15	Annual Iodine Normalized Releases from Refueling Area Ventilation Systems
2-16	Annual Iodine Normalized Releases from Turbine Building Ventilation Systems
2-17	Particulate Release Rate for Gaseous Effluents 2-42
2-18	Measured Release Upstream of HEPA Filters - Containment
2-19	Measured Releases Upstream of HEPA Filters - Auxiliary Building
2-20	Measured Releases Upstream of HEPA Filters - Fuel Pool Area
2-21	Measured Releases Upstream Filters - Waste Gas System
2-22	Annual Iodine Normalized Releases from Main Condenser Air Ejector Exhaust
2-23	PWR Containment Purging and Venting Experience 2-52
2-24	Waste Gas System Input Flow to Pressurized Storage Tanks and PWR's Without Recombiners
2-25	Waste Gas System Input Flow to Pressurized Storage Tanks for PWR's with Recombiners
2-26	PWR Liquid Wastes
2-27	Calculated Annual Release of Radioactive Material in Untreated Detergent Waste
2-28	Radionuclide Distribution of Detergent Waste 2-69
2-29	Tritium Release Data from Operating PWR's with Zircaloy-Clad Fuels
2-30	Tritium Release Rate from Operating PWR's as a Function of Number of Years of Operation

Table		Page
2-31	Tritium Release Rate from Operating PWR's - Percent of Total Tritium Released in Liquid Effluents	2-76
2-32	Distribution of Tritium Release in Gaseous Effluents	2-78
2-33	Reverse Osmosis Decontamination Factors, Ginna Station	2-82
2-34	Reverse Osmosis Decontamination Factors, Point Beach	2-83
2-35	Reverse Osmosis Decontamination Factors, H. B. Robinson No. 2 Station	2-84
2-36	Expected Reverse Osmosis Decontamination Factors for Specific Nuclides	2-85
2-37	Frequency and Extent of Unplanned Liquid Radwaste Releases from Operating Plants	2-88
2-38	Carbon-14 Release Data from Operating PWR's	2-91
2-39	Distribution of Carbon-14 Released in Gaseous Effluents	2-92
2-40	Summary of Argon-41 Releases for Operating PWR's for 1973-1978	2-94

LIST OF FIGURES

Figure		Page
2-1	Removal Paths for Pressurized Water Reactor with U-Tube Steam Generators	2-14
2-2	Removal Paths for Pressurized Water Reactor with Once-Through Steam Generators	2-15
2-3	Krypton and Xenon K Values as a Function of Reciprocal Temperature	2-62
2-4	Effect of Moisture Content on the Dynamic Adsorption Coefficient	2-63
2-5	Charcoal Moisture as a Function of Relative Humidity $\ .$	2-64
3-1	Input Coding Sheets for Sample Problem	3-6
3-2	Printout of Input and Output for the Sample Problem	3-8
3-3	Program Listing for Gaseous Determination	3-16
3-4	Program Listing for Liquid Determination	3-26

ACKNOWLEDGMENTS

Many individuals contributed to the preparation of Revision 1 of this document. In particular, R. L. Bangart and F. P. Cardile of the Nuclear Regulatory Commission, and A. E. Refre of the Philippine Atomic Energy Commission were the principal contributors. J. W. Mandler and F. Y. Tsang of EG&G Idaho edited this revision and have incorporated the results of a number of in-plant measurement programs at operating pressurized water reactors under an INEL Technical Assistance contract to the Division of Systems Integration, U. S. Nuclear Regulatory Commission (FIN A-6460). The Revision 0 of this document was prepared by L. G. Bell, M. J. Bell, R. R. Bellamy, J. S. Boegli, W. C. Burke, F. P. Cardile, J. T. Collins, J. Y. Lee, P. G. Stoddart, W. D. Travers, and R. A. Weller of the Nuclear Regulatory Commission.

EXECUTIVE SUMMARY

The average quantity of radioactive material released to the environment from a nuclear power reactor during normal operation including anticipated operational occurrences is called the "source term,"* since it is the source or initial number used in calculating the environmental impact of radioactive releases. The PWR-GALE (Pressurized Water Reactor - Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms) from pressurized water reactors. The calculations are based on data generated from operating reactors, field and laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment during normal operation, including anticipated operational occurrences.

The U.S. Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50. The first issue of this NUREG report was published in April 1976. In order to use the best available data for improving the calculational models used by the Commission staff to determine conformance with Appendix I to 10 CFR Part 50, Revision 1 is being issued to update NUREG-0017. This revision incorporates more recent operation data now available and also incorporates the results of a number of in-plant measurement programs at operating pressurized water reactors.

Chapter 1 of this report gives a step-by-step procedure for using the PWR-GALE Code along with a description of the parameters which have been built into the Code for use with all PWR source term calculations. These parameters, which apply generically to all PWR's, have been incorporated into the Code to eliminate the need for their entry on input data cards. Other parameters are required to be entered on input cards used by the Code. Explanations of the data require, along with acceptable means for calculating such data, are given for each input data card.

Descriptions of the principal parameters used in source term calculations and explanations of the bases for each parameter are given in Chapter 2. The parameters have been derived from reactor operating experience where data were available. Where operating data were inconclusive or not available, information was drawn from laboratory and field tests and from engineering judgment. The bases for the source term parameters explain the reasons for choosing the numerical values listed. A list of references used in developing the parameters is also included. The source term parameters used are believed to provide a realistic assessment of reactor and radwaste system operation.

^{* &}quot;Source term" as discussed in this report differs from "accident source term," which deals with potential releases resulting from nuclear reactor accidents.

Chapter 3 contains sample input data together with an explanation of the input to orient the user in making the required entries. Also included is a listing of the input data for a sample problem, a discussion of the nuclear data library used, and a FORTRAN listing of the PWR-GALE Code.

Chapter 4 lists the information needed to generate source terms for PWR's. The information is proved by the applicant and is consistent with the contents of the Safety Analysis Report (ER) of the proposed PWR. This information constitutes the basic data required in calculating the releases of radioactive material in liquid and gaseous effluents.

1.1 INTRODUCTION

In promulgating Appendix I to 10 CFR Part 50, the U. S. Nuclear Regulatory Commission indicated its desire to use the best available data for improving the calculational models used by the Commission Staff to determine conformance with the requirements of the regulation. The first issue of this NUREG Report was published in April 1976. Revision l is being issued to update NUREG-0017 by incorporating more recent operating data now available and also by incorporating the results of a number of in-plant measurement programs at operating pressurized water reactors (PWR's).

The PWR-GALE (Pressurized Water Reactor - Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents from pressurized water reactors. The calculations are based on data generated from operating reactors, field and laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment during normal operation, including anticipated operational occurrences.

The average quantity of radioactive material released to the environment from a nuclear power reactor during normal operation is called the "source term" since it is the source or initial number used in calculating the environmental impact of radioactive releases. The calculations performed by the PWR-GALE Code are based on (1) American Nuclear Society (ANS) 18.1 Working Group recommendations (Ref. 1) for adjustment factors, (2) the release and transport mechanisms that result in the appearance of radioactive material in liquid and gaseous waste streams, (3) plant-specific design features used to reduce the quantities of radioactive materials ultimately released to the environment, and (4) information received on the operation of nuclear power plants.

In a PWR, primary coolant water circulates through the reactor core where it removes the heat from the fuel elements. In the steam generators, heat from the pressurized primary coolant water is transferred to the secondary coolant water to form steam. The steam expands through the turbine and is then condensed and returned to the steam generators. The primary coolant water flows back to the reactor core. The principal mechanisms that affect the concentrations of radioactive materials in the primary coolant are: (1) fission product leakage to the coolant from defects in the fuel cladding and fission product generation in tramp uranium, (2) corrosion products activated in the core, (3) radioactivity removed in the reactor coolant treatment systems, and (4) activity removed because of primary coolant leakage. These mechanisms are described briefly in the following paragraphs. The primary coolant is continuously purified by passing a side stream through filters and demineralizers in the reactor coolant treatment systems (RCTS). It is necessary to maintain the purity of the primary coolant to prevent fouling of heat transfer surfaces and to keep releases to the environment as low as is reasonably achievable. Chemicals are added to the primary coolant to inhibit corrosion and/or improve fuel economy. Lithium hydroxide is added for pH control to reduce corrosion.

Water decomposes into oxygen and hydrogen as a result of radiolysis. The control of oxygen concentration in the primary coolant is important for corrosion control. Hydrogen, added to the primary coolant as dissolved free hydrogen, tends to force the net reaction toward the recombination of hydrogen and oxygen to water at an overall rate sufficient to maintain low primary coolant oxygen concentrations.

Boron is added to the primary coolant as a neutron absorber (shim control). As the fuel cycle progresses, boron is removed from the primary coolant through the RCTS loop (shim bleed). The shim bleed is processed through an evaporator, and the boron in the evaporator bottoms is either reused or packaged as solid waste. The evaporator distillate may be recycled to the reactor coolant system as makeup water or discharged to the environment.

Radioactive gases stripped from the primary coolant by degassification are normally collected in pressurized storage tanks and held for radioactive decay prior to recycle or release to the environment. Alternative treatment methods include charcoal delay systems and cryogenic distillation.

Because of leakage through valve stems and pump shaft seals, some coolant escapes into the containment and the auxiliary buildings. A portion of the leakage evaporates, thus contributing to the gaseous source term, and a fraction remains as liquid, becoming part of the liquid source term. The relative amount of leakage entering the gaseous and liquid phases is dependent upon the temperature and pressure at the point where the leakage occurs. Most of the noble gases enter the gas phase, whereas iodine partitions into both phases.

Leakage of primary coolant into the secondary coolant in the steam generator is the only source of radioactivity in the secondary coolant system. Water or steam leakage from the secondary system provides significant inputs to the liquid and gaseous radwaste treatment systems. Steam leakage may be significant to the gaseous source term since the radioactivity released remains in the gas phase.

In a recirculating U-tube steam generator, the nonvolatile radionuclides leaking from the primary coolant concentrate in the liquid phase in the steam generator. The degree of concentration is controlled by the steam generator blowdown rate and condensate demineralizer flow rate.

Since there is no liquid reservoir in a once-through steam generator, the primary coolant leakage boils to steam when it enters the secondary side of the steam generator. Secondary coolant purity is maintained by a condensate demineralizer system and there is no steam generator blowdown. The concentration of radioactivity in the secondary coolant is controlled by the condensate demineralizer flow rate.

Sources of radioactive wastes from the secondary system are the offgases from the turbine condenser, vent gases from the turbine gland seal, liquid and vent gases from the steam generator blowdown, and liquid and gaseous leaks into the turbine building. Liquid wastes also originate from the chemical regeneration of condensate demineralizers in feedwater/ condensate systems.

In this chapter, a step-by-step procedure for using the PWR-GALE Code is given along with a description of the parameters which have been built into the Code for use with all PWR source term calculations. These parameters, which apply generically to all PWR's, have been incorporated into the Code to eliminate the need for their entry on input data cards. Other parameters are required to be entered on input data cards used by the Code. Explanations of the data required, along with acceptable means for calculating such data, are given for each input data card. Chapter 2 gives the principal source term parameters developed for use with the PWR-GALE Code and explains the bases for each parameter. Chapter 3 contains a sample data input sheet and a Fortran IV listing of the PWR-GALE Code. Chapter 4 lists the information needed to generate source terms that an applicant is required to submit with the application.

1.2 DEFINITIONS

The following definitions apply to terms used in this report:

<u>Activation Gases</u>: The gases (including oxygen, nitrogen, and argon) that become radioactive as a result of irradiation in the core.

Anticipated Operational Occurrences: Unplanned releases of radioactive materials from miscellaneous actions such as equipment failure, operator error, administrative error, that are not of consequence to be considered an accident.

<u>Chemical Waste Steam</u>: Normally liquids that contain relatively high concentrations of decontaminants, regenerants, or chemical compounds other than detergents. These liquids originate primarily from resin regenerant and laboratory wastes.

<u>Clean Waste System</u>: Normally tritiated, nonaerated, low-conductivity liquids consisting primarily of liquid waste collected from equipment leaks and drains and certain valve and pump seal leakoffs. These liquids originate from systems containing primary coolant and are normally reused as primary coolant makeup water. Decontamination Factor (DF): The ratio of the initial amount of a nuclide in a stream (specified in terms of concentration or activity of radioactive materials) to the final amount of that nuclide in a stream following treatment by a given process.

Detergent Waste Stream: Liquids that contain detergent, soaps, or similar organic materials. These liquids consist principally of laundry, personnel shower, and equipment decontamination wastes that normally have a low radioactivity content.

Dirty Waste Stream (Floor Drains): Normally nontritiated, aerated, high-conductivity, non-primary-coolant quality liquids collected from building sumps and floor and sample station drains. These liquids are not readily amenable for reuse as primary coolant makeup water.

Effective Full Power Days: The number of days a plant would have to operate 100% licensed power to produce the integrated thermal power output during a calendar year, i.e.,

Effective Full Power Days =
$$\frac{\text{Integrated Thermal Power}}{\text{Licensed Power Level}} = \frac{\sum_{i=1}^{\Sigma} P_i T_i}{P_i T_i}$$

where

Pi	is the ith power level, in MWt;
P total	is the licensed power level, in MWt; and
Т _і	is the time of operation at power level P $_{ m i},$ in days.

Fission Product: A nuclide produced either by fission or by subsequent radioactive decay or neutron activation of the nuclides formed in the fission process.

<u>Gaseous Effluent Stream</u>: Processed gaseous wastes containing radioactive materials resulting from the operation of a nuclear power reactor.

Liquid Effluent Stream: Processed liquid wastes containing radioactive materials resulting from the operation of a nuclear power reactor.

<u>Partition Coefficient (PC)</u>: The ratio of the concentration of a nuclide in the gas phase to the concentration of a nuclide in the liquid phase when the liquid and gas are at equilibrium.

<u>Partition Factor (PF)</u>: The ratio of the quantity of a nuclide in the gas phase to the total quantity in both the liquid and gas phases when the liquid and gas are at equilibrium.

r

<u>Plant Capacity Factor</u>: The ratio of the average net power to the rated power capacity.

Primary Coolant: The fluid circulated through the reactor to remove heat. The primary coolant activity is considered to be constant over a range of power levels, coolant and cleanup flows, and coolant volumes. Radionuclide concentrations given in this NUREG are based on a recent compilation of available operating data. Therefore, the concentration values in NUREG-0017, Rev. 1 differ from the ANSI N237 values (Ref. 1). Provisions are made in the PWR-GALE Code, in accordance with the recommendations of the standard, for adjusting coolant concentrations should the plant be designed to parameters that are outside the ranges considered in the standard. The radionuclide concentrations used are considered to be representative of measured values based on the available operating data. The radionuclides are divided into the following categories:

- 1. Noble gases
- 2. Halogens (Br, I)
- 3. Cs, Rb
- 4. Water activation products
- 5. Tritium
- 6. Other nuclides (as listed in Tables 2-2 and 2-3 of Chapter 2 of this document)

<u>Radioactive Halogens</u>: The isotopes of fluorine, chlorine, bromine, and iodine. The radicactive isotopes of iodine are the key isotopes considered in dose calculations.

Radioactive Noble Gases: The radioactive isotopes of helium, neon, argon, krypton, xenon, and radon, which are characterized by their chemical inactivity. The radioactive isotopes of krypton and xenon are the key elements considered in dose calculations.

Radioactive Release Rate: The average quantity of radioactive material released to the environment from a nuclear power reactor during normal operation, including anticipated operational occurrences.

<u>Secondary Coolant</u>: The coolant converted to steam by the primary coolant in a heat exchanger (steam generator) to power the turbine. The radionuclide concentrations in the secondary coolant are obtained as discussed above in the definition of primary coolant. <u>Source Term</u>: The calculated average quantity of radioactive material released to the environment from a nuclear power reactor during normal operation, including anticipated operational occurrences. The source term is the isotopic distribution of radioactive materials used in evaluating the impact of radioactive releases on the environment.

<u>Steam Generator Blowdown</u>: Liquid removed from a steam generator in order to maintain proper water chemistry.

Tramp Uranium: The uranium present on the cladding of a fuel rod.

Turbine Building Floor Drains: Liquids of high conductivity and lowlevel radioactivity primarily resulting from secondary system leakage, steam trap drains, sampling system drainage, and maintenance and waste drains.

1.3 GASEOUS SOURCE TERMS

The following sources are considered in calculating the releases of radioactive materials (noble gases, radioactive particulates, carbon-14, tritium, argon-41, and iodine) in gaseous effluents from normal operation, including anticipated operational occurrences:

- 1. Waste gas processing system;
- 2. Steam generator blowdown system;
- 3. Condenser air ejector exhaust;
- 4. Containment purge exhaust;
- 5. Ventilation exhaust air from the auxiliary, and turbine buildings, and the spent fuel pool area; and
- 6. Steam leakage from the secondary system.

The releases of radioactive materials in gaseous effluents from the following sources are calculated to be less than 1 Ci/yr of noble gases and 10^{-7} Ci/yr of iodine-131. Therefore, the following releases are considered negligible:

- 1. Steam releases due to steam dumps to the atmosphere and lowpower physics testing and
- 2. Ventilation air from buildings not covered in 5. above.

The calculational model considers inputs to the waste gas processing system from both continuous stripping of the primary coolant during normal operation and from degassing the primary coolant for two cold shutdowns per year. For plants equipped with steam generator blowdown systems, the model considers iodine present in gases leaving the system vent. The PWR-GALE Code calculates the release rates of noble gases and iodine to building atmospheres based on coolant leakage rates to buildings. Radioiodine releases are related to the iodine-131 coolant concentrations for the PWR being evaluated. Particulate release rates are based on measurements at operating PWR's.

Chapter 2 provides iodine and particulate decontamination factors for removal equipment and parameters for calculating holdup times for noble gases and for calculating tritium, argon-41 and carbon-14 releases.

1.4 LIQUID SOURCE TERMS

The following sources are considered in calculating the release of radioactive materials in liquid effluents from normal operation, including anticipated operational occurrences:

- 1. Processed water generated from the boron recovery system to maintain plant water balance or for tritium control;
- Processed liquid waste discharged from the dirty waste or miscellaneous waste systems;
- Processed liquid waste discharged from the steam generator blowdown treatment system;
- 4. Processed liquid waste discharged from the chemical waste and condensate demineralizer regeneration system;
- 5. Liquid waste discharged from the turbine building floor drain sumps; and
- 6. Detergent waste.

The radioactivity input to the liquid radwaste treatment system is based on the flow rates of the liquid waste streams and their radioactivity levels expressed as a fraction of the primary coolant activity (PCA). The PCA is based on the recommendations of the American National Standard (ANSI N237) Source Term Specification (Ref. 1), with the changes as noted in Section 1.2 under the Primary Coolant definition.

Radionuclide removal by the liquid radwaste treatment system is based on the following parameters:

- 1. Decay during collection and processing and
- 2. Removal by the proposed treatment systems, e.g., filtration, ion exchange, evaporation, reverse osmosis, and plateout.

For PWR's using a deep-bed condensate demineralizer, the inventory of radionuclides collected on the demineralizer resins is calculated by considering the flow rate of condensate at main steam activity that is processed through the demineralizers and radionuclide removal using the decontamination factors given in Chapter 2. The activity on the condensate demineralizer resins will also include the steam generator blowdown activity if the blowdown is recycled to the condensate demineralizers. The radioactivity content of the demineralizer regenerant solution is obtained by considering that all the radioactivity is removed from the resins at the interval dictated by the regeneration frequency.

Methods for calculating collection and processing times and the decontamination factors for radwaste treatment equipment are given in this chapter. The liquid radioactive source terms are adjusted to compensate for equipment downtime and anticipated operational occurrences.

For plants using an onsite laundry, a standard detergent waste source term, adjusted for the treatment provided, is added to the adjusted source term.

1.5 INSTRUCTIONS FOR COMPLETING PWR-GALE CODE INPUT DATA CARDS

1.5.1 PARAMETERS INCLUDED IN THE PWR-GALE CODE

The parameters listed below are built into the PWR-GALE Code since they are generally applicable to all PWR source term calculations and do not require entry on input data cards.

1.5.1.1 The Plant Capacity Factor

0.80 (292 effective full power days per year).

1.5.1.2 Radionuclide Concentrations in the Primary Coolant, Secondary Coolant, and Main Steam

See Section 2.2.3 of Chapter 2 of this document.

1.5.1.3 Radioiodine Releases from Building Ventilation Systems Prior to Treatment

See Table 1-1. For a discussion of the normalization techniques see Section 2.2.4.

1.5.1.4 Radioactive Particulate Releases from Building Ventilation Systems Prior to Treatment

See Table 1-2.

1.5.1.5 Noble Gas Releases from Building Ventilation Systems

Noble Gas Releases from the containment building are based on a leakage rate of 3%/day of primary coolant noble gas inventory. Releases from the auxiliary building are based on 160 lb/day primary coolant leakage. Releases from the turbine building are based on 1700 lb/hr steam leakage.

TABLE 1-1^{+*}

RADIOIODINE RELEASES FROM BUILDING VENTILATION SYSTEMS PRIOR TO TREATMENT (Ci/yr/uCi/g)

	Containment Building	Auxiliary Building**	Turbine Building ***
Annual Normalized* Iodine Release Rate			
Power Operation	$8.0 \times 10^{-4+1}$	0.72 [†]	3.8×10^3
Refueling/Maintenance Outages	0.32**	2.59	4.2 x 10^2

- t* The values in this table come from Tables 2-13 through 2-16.
- * The normalized release rate, during different modes of operation, represents the effective leak rate for radioiodine. It is the combination of the reactor water leakage rate into the building and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured. For the turbine building the effective leak rate must consider the carryover for radioiodine from water to steam in the steam generator.
- ** To obtain the actual iodine release from these buildings in Ci/yr, multiply the normalized release by the iodine coolant concentration in μ Ci/g.
- *** To obtain the actual iodine release from the turbine building in Ci/yr, multiply the normalized release by the secondary coolant concentration in μ Ci/g and by the partition coefficient (NS) from Table 2-6.
- t Includes contribution from the fuel pool area.
- This release rate is expressed in %/day of leakage of primary coolant inventory of iodine and represents the effective leak rate for radioiodine. It is the combination of the reactor water leakage rate into the buildings, and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured. In order to obtain the releases in curies/year during power operations from the containment building of a particular PWR, the normalized leak rates in Table 1-1, are multiplied in the PWR-GALE Code by the iodine concentration in the reactor coolant for that particular PWR, and then this leak rate is considered along with the containment purging method for that particular PWR.

TABLE 1-2

	<u>14</u>	(Ci/yr)/Unit	<u> </u>	
Nuclide	Containment	Auxiliary Building	Fuel Pool Area	Waste Gas System
Cr-51	9.2(-3) [†]	3.2(-4)	1.8(-4)	1.4(-5)
Mn-54	5.3(-3)	7.8(-5)	3.0(-4)	2.1(-6)
Co-57	8.2(-4)	NA	NA	NA
Co-58	2.5(-2)	1.9(-3)	2.1(-2)	8.7(-6)
Co-60	2.6(-3)	5.1(-4)	8.2(-3)	1.4(-5)
Fe-59	2.7(-3)	5.0(-5)	NA	1.8(-6)
Sr-89	1.3(-2)	7.5(-4)	2.1(-3)	4.4(-5)
Sr-90	5.2(-3)	2.9(-4)	8.0(-4)	1.7(-5)
Zr-95	NA	1.0(-3)	3.6(-6)	4.8(-6)
Nb-95	1.8(-3)	3.0(-5)	2.4(-3)	3.7(-6)
Ru-103	1.6(-3)	2.3(-5)	3.8(-5)	3.2(-6)
Ru-106	NA	6.0(-6)	6.9(-5)	2.7(-6)
Sb-125	NA	3.9(-6)	5.7(-5)	NA
Cs-134	2.5(-3)	5.4(-4)	1.7(-3)	3.3(-5)
Cs-136	3.2(-3)	4.8(-5)	NA	5.3(-6)
Cs-137	5.5(-3)	7.2(-4)	2.7(-3)	7.7(-5)
Ba-140	NA	4.0(-4)	NA	2.3(-5)
Ce-141	1.3(-3)	2.6(-5)	4.4(-7)	2.2(-6)

RADIOACTIVE PARTICULATE RELEASES FROM BUILDING VENTILATION SYSTEMS <u>PRIOR TO TREATMENT*</u> (Ci/yr)/Unit

 NA - No release observed from this source. Release assumed to be less than 1.0% of total.

$$+ 9.2(-3) = 9.2 \times 10^{-3}.$$

•

.

* The values in this table come from Tables 2-17 through 2-21.

1.5.1.6 Containment Building Purge Frequency

Two purges at cold shutdown per year plus a continuous purge specified by the applicant in his containment design.

1.5.1.7 Primary System Volumes Degassed per Year

Two coolant volumes per year for cold shutdowns plus volumes degassed due to continuous stripping.

1.5.1.8 Steam Generator Partition Coefficient (PC)	pefficient (PC)
--	-----------------

<u>Once-through</u>	PC
Iodine	1.0
Nonvolatiles	1.0
Recirculation U-Tube	
Iodine	0.01
Nonvolatiles	0.005

1.5.1.9 Radioiodine Releases from the Main Condenser Air Ejector Exhaust Prior to Treatment

The normalized release rate of radioiodine from the main condenser air ejector exhaust prior to treatment is 1.7×10^3 Ci/yr/µCi/g. The normalized release rate represents the effective release rate for radioiodine. It is the combination of the steam flow to the main condenser, the partitioning of radioiodine between the main condenser and the air ejector exhaust where it is measured, and the partition coefficient for radioiodine from water to steam in the steam generator. To obtain the actual iodine release from the main condenser air ejector exhaust in Ci/yr, multiply the normalized release by the secondary coolant concentration in µCi/g and by the iodine partition coefficient (NS) from Table 2-6.

1.5.1.10 Containment Internal Cleanup System

For systems using an internal cleanup system, the PWR-GALE Code calculates the iodine concentration in the containment atmosphere based on 16 hours of system operation prior to purging, an iodine removal efficiency for the charcoal adsorbers corresponding to Table 1-5, a particulate DF of 100 for HEPA filters and an internal mixing efficiency of 70%.

1.5.1.11 Detergent Wastes

The radionuclides listed in Table 2-27 of Chapter 2 are assumed to be released unless treatment is provided or laundry is not processed on site.

1.5.1.12 Tritium Releases

The tritium releases through the combined liquid and vapor pathways are 0.4 Ci/yr per MWt. The quantity of tritium released through the liquid pathway is based on the calculated volume of liquid released, excluding secondary system wastes, with a primary coolant tritium concentration of 1.0 μ Ci/ml up to a maximum of 0.9 of the total quantity of tritium calculated to be available for release. It is assumed that the remainder of the tritium produced is released as a gas from building ventilation exhaust systems.

1.5.1.13 Argon-41 Releases

The annual quantity of argon-41 released from a pressurized water reactor is 34 Ci/yr. The argon-41 is released to the environment via the containment vent when the containment is vented or purged.

1.5.1.14 Carbon-14 Releases

The annual quantity of carbon-14 released is 7.3 Ci/yr, of which the releases from the containment, auxiliary building and waste gas system are 1.6, 4.5 and 1.2 Ci/yr, respectively.

1.5.1.15 Decontamination Factors for Condensate Demineralizer

Demineralizer	Anion	<u>Cs, Rb</u>	Other Nuclides
Deep Bed	10	2	10
Powdex	10	2	10

Note: For a system using filter/demineralizers (Powdex), a zero is entered for a regeneration frequency as explained later in Section 1.5.2.10.

1.5.1.16 Primary Coolant Purification System Demineralizers

Demineralizer	Anion	<u>Cs, Rb</u>	Other Nuclides
Mixed Bed	100	2	50
Cation	1	10	10

1.5.1.17 <u>Releases of Radioactive Material in Liquid Waste from the</u> Turbine Building Floor Drain System

7200 gal/day at main steam activity.

1.5.1.18 Regeneration of Condensate Demineralizers

Flow rates and concentrations of radioactive materials routed to the liquid radwaste treatment system from the chemical regeneration of the condensate demineralizers are based on the following parameters:

- 1. Liquid flow to the demineralizer is based on the radioactivity of the main steam and the fraction of radioactivity which does not bypass the condensate demineralizer if there is pumped forward flow. The steam generator blowdown radioactivity is added to the condensate radioactivity if the blowdown is processed through the condensate demineralizer.
- 2. All radionuclides removed from the secondary coolant by the demineralizer resins are removed from the resins during chemical regeneration. The radioactivity in the regenerant wastes is adjusted for radionuclide decay during demineralizer operation.

1.5.1.19 Adjustment to Liquid Radwaste Source Terms for Anticipated Operational Occurrences

- 1. The calculated source term is increased by 0.16 Ci/yr per reactor using the same isotopic distribution as for the calculated source term to account for anticipated occurrences such as operator errors resulting in unplanned releases.
- 2. Evaporators are assumed to be unavailable for two consecutive days per week for maintenance. If a two-day holdup capacity or an alternate evaporator is available, no adjustment is needed. If less than a two-day capacity is available, the waste excess is assumed to be handled as follows:
 - a. <u>Clean or Dirty Waste</u> Processed through an alternative system (if available) using a discharge fraction consistent with the lower purity system.
 - b. <u>Chemical Waste</u> Discharged to the environment to the extent holdup capacity or an alternative evaporator is not available.

1.5.2 PARAMETERS REQUIRED FOR THE PWR-GALE CODE

Complete the cards designated in the sections below by "(SAR/ER)" from information given in the Safety Analysis and Environmental Reports. Complete the remaining cards (i.e., those not designated below as "(SAR/ER)" cards), using the principal source term parameters specified below and discussed in Chapter 2 of this document.

1.5.2.1 Card 1: Name of Reactor (SAR/ER)

Enter in spaces 33-60 the name of the reactor.

Enter in spaces 78-80 the type of reactor, i.e., PWR.

1.5.2.2 Card 2: Thermal Power Level (SAR/ER)

Enter in spaces 73-80 the maximum thermal power level (in MWt) evaluated for safety considerations in the Safety Analysis Report.

1.5.2.3 Card 3: Mass of Coolant in Primary System (SAR/ER)

Enter in spaces 73-80 the mass of coolant (in 10^3 lb) in the primary system at operating temperature and pressure.

1.5.2.4 Card 4: Primary System Letdown Rate (SAR/ER)

Enter in spaces 73-80 the average letdown rate (gal/min) from the primary system to the purification demineralizers.

1.5.2.5 Card 5: Letdown Cation Demineralizer Flow Rate (SAR/ER)

Enter in spaces 73-80 the annual average flow rate (gal/min) through the cation demineralizers for the control of cesium in the primary coolant. The average flow rate is determined by multiplying the average letdown rate (value entered on Card 4) by the fraction of time the cation demineralizers are in service to obtain the average cation demineralizer flow rate.

1.5.2.6 Card 6: Number of Steam Generators (SAR/ER)

Enter in spaces 73-80 the number of steam generators.

1.5.2.7 Card 7: Total Steam Flow (SAR/ER)

Enter in spaces 73-80 the total steam flow (in 10^6 lb/hr) for all steam generators.

1.5.2.8 Card 8: Mass of Liquid in Each Steam Generator (SAR/ER)

Enter in spaces 73-80 the mass of liquid (in 10^3 lb) in each steam generator.

1.5.2.9 Card 9: Steam Generator Blowdown Rate and Blowdown Treatment Method (SAR/ER)

Enter in spaces 37-44 the steam generator blowdown rate as given in the applicants SAR or ER.

Enter total blowdown rate in thousands of 1b/hr in spaces 37-44. For a once-through steam generator, leave spaces 37-44 blank.

Describe the Blowdown Treatment Method as follows:

- 1. Enter 0 in space 80 if the blowdown is recycled to the condensate system after treatment in the blowdown system whether or not there are condensate demineralizers.
- 2. Enter 1 in space 80 if the steam generator blowdown is recycled directly to condensate system demineralizers without prior treatment in the blowdown system.

3. Enter 2 in space 80 if the steam generator blowdown is not recycled to the condensate system.

If the plant has once-through steam generators, leave space 80 blank.

1.5.2.10 Card 10: Condensate Demineralizer Regeneration Time

For deep-bed condensate demineralizers which do not use ultrasonic resin cleaner, use a 1.2-day regeneration frequency. Multiply the frequency by the number of demineralizers and enter the calculated number of days in spaces 73-80; for deep-bed condensate demineralizers which use ultrasonic resin cleaning, use an 8-day regeneration frequency. For filter/demineralizers (Powdex) or if condensate demineralizers are not used, enter zeros in spaces 73-80.

1.5.2.11 <u>Card 11: Fraction of Feedwater Through Condensate Demineralizer</u> (SAR/ER)

Enter in spaces 73-80 the fraction of feedwater to the steam generator processed through the condensate demineralizers. If condensate demineralizers are not used, enter 0.0 in spaces 73-80.

1.5.2.12 Cards 12-29: Liquid Radwaste Treatment System Input Parameters

Six liquid radwaste inlet streams are considered in the PWR-GALE Code:

- 1. Shim Bleed, Cards 12-14.
- 2. Equipment Drain Waste, Cards 15-17.
- 3. Clean Waste, Cards 18-20.
- 4. Dirty Waste, Cards 21-23.
- 5. Blowdown Waste, Cards 24-26.
- 6. Regenerant Wastes, Cards 27-29.

Three input data cards are used to define the major parameters for each of the six waste streams. Essentially the same information is needed on the three input data cards used for each of the six waste streams. The instructions given in this section are applicable to all six waste streams with the following exception: The inlet waste activity is not entered for Cards 12, 24, and 27 for the shim bleed, blowdown wastes, or regenerant wastes since that activity for these wastes is calculated by the PWR-GALE Code.

Cards 12-14 are used only for the shim bleed stream. For reactor designs that combine the shim bleed with other reactor grade wastes prior to processing, the other wastes are entered as equipment drain wastes on Cards 15-17.

The entries required on the first card (12, 15, 18, 21, 24, and 27) for each of the six waste streams, respectively, considered in the PWR-GALE Code are outlined below and described in more detail in Section 1.5.2.15.1.

- 1. Enter in spaces 17-39 the name of the waste stream (Card 24 spaces 17-44).
- 2. Enter in spaces 42-49 the flow rate (in gal/day) of the inlet stream (except on Cards 24 and 27).
- 3. Enter in spaces 57-61 the activity of the inlet stream expressed as a fraction of primary coolant activity (PCA) (except on Cards 12, 24 and 27).

The second card (13, 16, 19, 22, 25, and 28) for each waste stream contains the overall system decontamination factors for the three categories of radionuclides, as follows:

- 1. Enter in spaces 21-28 the DF for iodine.
- 2. Enter in spaces 34-41 the DF for cesium and rubidium.
- 3. Enter in spaces 47-54 the DF for other nuclides.

The following entries are required on the third card (14, 17, 20, 23, 26, and 29) for each waste stream:

- Enter in spaces 28-33 waste collection time (in days) prior to processing.
- 2. Enter in spaces 48-53 waste processing and discharge times (in days).
- 3. Enter in spaces 72-77 the average fraction of wastes to be discharged after processing.

Cards 24-26 are for waste inputs due to steam generator blowdown.

- 1. Card 24
 - a. For recirculating U-tube steam generator systems, enter the fraction of the blowdown stream processed in spaces 73-80. The PWR-GALE Code will calculate releases based on steam generator blowdown wastes.
 - b. For once-through steam generator systems, leave spaces 73-80 blank.
- 2. Card 25
 - a. If the steam generator blowdown is not recycled to the condensate system, enter blowdown system DF's as explained for Card 13.

- b. If the steam generator blowdown is recycled directly to the condensate system demineralizers without prior treatment in the blowdown system, enter DF of 1.0 for iodine in spaces 21-28, DF of 1.0 for cesium and rubidium in spaces 34-41, and DF of 1.0 for other nuclides in spaces 47-54.
- c. If the steam generator blowdown is recycled to the condensate system demineralizers after treatment in the blowdown system, enter blowdown system DF's as explained for Card 13.
- 3. Card 26

Complete Card 26 as explained for Card 14.

Cards 27-29 are for waste inputs due to regenerant wastes.

- 1. Card 27
 - a. For recirculating U-tube steam generator systems that do not utilize condensate demineralizers in the secondary system, leave spaces 73-80 blank.
 - b. For once-through steam generator systems and for recirculating U-tube steam generator systems that utilize condensate demineralizers in the secondary system, enter the regeneration solution waste flow (gal/day) in spaces 73-80. The inlet waste activity is not needed since the activity is calculated by the PWR-GALE Code.
- 2. Cards 28 and 29

Complete Cards 28 and 29 as explained for Cards 13 and 14.

The following sections explain in more detail the use of the parameters in this report and the information given in the SAR/ER to make the data entries on Cards 12-92 listed above.

1.5.2.12.1 Liquid Waste Flow Rates and Activities (Cards 12, 15, 18, 21, 24 and 27)

Flow rates and activity are calculated, using the waste volumes and activities given in Table 1-3. To the input flow rates given in the table, add expected flows and activities more specific to the plant design as given in the SAR/ER. With the exception of the shim bleed, the individual streams are combined based on the radwaste treatment system described in the SAR/ER.

Waste streams processed with the shim bleed are entered as equipment drain wastes on Cards 15-17. Input activities are based on the weighted average activity of the composite stream entering the waste collection

TABLE 1-3

PWR LIQUID WASTES

EXPECTED DAILY AVERAGE INPUT FLOW RATE (in Gal/day)

			Type of treatment of blowdown recycled to secondary system (U-tube steam generator plants) or type of treatment of condensate (once-through steam generator plants)			Plant with blowdown treat-	
		SOURCE	Deep-bed cond. demineralizers with ultrasonic resin cleaner	Deep-bed cond. demineralizers without ultrasonic resin cleaner	Filter- demineralizer	ment. Product not recycled to condenser or secondary coolant system	FRACTION OF PRIMARY COOLANT ACTIVITY (PCA)
1.	REA	CTOR CONTAINMENT					
-18	a.	Primary coolant pump seal leakage	20	20	20	20	0.1
	b.	Primary coolant leakage, miscellaneous sources	10	10	10	10	1.67*
	с.	Primary coolant equipment drains	500	500	500	500	0.001
2.		MARY COOLANT SYSTEMS TSIDE OF CONTAINMENT)					
	a.	Primary coolant system equipment drains	80	80	80	80	1.0
	b.	Spent fuel pit liner drains	700	700	700	700	0.001
	с.	Primary coolant sampling system drains	200	200	200	200	0.05
	d.	Auxiliary building floor drains	200	200	200	200	0.1

SECONDARY COOLANT SYSTE

	a.	Secondary coolant sampling system drains	1400	1400	1400	1400	10 ⁻⁴
	b.	Condensate demineralizer rinse and transfer solutions	3000	12000	-	-	10 ⁻⁸
	с.	Condensate demineralizer regenerant solutions	850	3400	-	-	Calculated in GALE Code
	d.	Ultrasonic resin cleaner solutions	15000	-	-	-	10 ⁻⁶
	e.	Condensate filter- demineralizer backwash	-	-	8100	-	2 x 10 ⁻⁶
	f.	Steam generator blowdown	-	-	-	Plant dependent**	Plant dependent**
1-19	g.	Turbine building floor drains	7200	7200	7200	7200	Calculated in GALE Code
4.		ERGENT AND DECONTAMINATION					
	a.	On-site laundry facility	300	300	300	300	See Table 2-26
	b.	Hot showers	Negligible	Negligible	Negligible	Negligible	-
	с.	Hand wash sink drains	200	200	200	200	See Table 2-26
	d.	Equipment and area decontamination	40	40	40	40	See Table 2-26
		TOTALS	29,700	26,300	19,000	10,000	

* About 40 percent of the leakage flashes, resulting in PCA fraction of the leakage greater than 1.0. ** Input parameter.

tanks. For example, if the inlet streams A, B, and C enter the dirty waste collector tank at average rates and PCA as listed below,

Stream A	1,000 gal/day at 0.01PCA
Stream B	2,000 gal/day at 0.1PCA
Stream C	500 gal/day at 1.0PCA

the composite A, B, C activity would be calculated as follows:

$\frac{(1,000 \text{ gal/day})(0.01\text{PCA}) + (2,000 \text{ gal/day})(0.1\text{PCA}) + (500 \text{ gal/day})(1.0\text{PCA})}{(1,000 \text{ gal/day} + 2,000 \text{ gal/day} + 500 \text{ gal/day})} = 0.2\text{PCA}$

The entries on Card 21 for this example would then be: spaces 17-33, "Dirty Waste"; spaces 42-49, 3500.; spaces 57-61, "0.2".

The input flow rates and activities are entered in units of gal/day and fractions of PCA, respectively.

1.5.2.12.2 Decontamination Factors for Equipment Used in the Liquid Radwaste Treatment System (Cards 13, 16, 19, 22, 25, and 28)

The decontamination factors (DF's) given in this document are used in the PWR-GALE Code. The DF's represent the expected equipment performance averaged over the life of the plant, including downtime. The following factors should be considered in calculating the overall decontamination factors for the various systems:

- 1. DF's are categorized by one of the following types of radionuclides:
 - a. Halogens
 - b. Cs, Rb
 - c. Other Nuclides
- Note: A DF of 1 is assumed by the PWR-GALE Code for tritium. Noble gases and water activation products, e.g., N-16, are not considered in the liquid code.
 - 2. The system DF for each inlet stream is the product of the individual equipment DF's in each of the subsystems.
 - 3. Equipment that is used optionally (as required) and not included in the normal flow scheme should not be considered in calculating the overall system DF.

Table 1-4 shows the decontamination factors to be used for PWR systems.

TREATMENT SYSTEM	DECONTAMINATION FACTOR				
Demineralizer	Anion	Cs, Rb	Other Nuclides		
Mixed Bed					
Primary coolant letdown (CVCS)	100	2	50		
Radwaste (H ⁺ OH ⁻)	10 ² (10)*	2(10)	10 ² (10)		
Evaporator condensate polishing	5	1	10		
Boron recycle	10	2	10		
Steam generator blowdown	10 ² (10)	10(10)	10 ² (10)		
Cation bed (any system)	1(1)	10(10)	10(10)		
Anion bed (any system)	10 ² (10)	1(1)	1(1)		
Powdex (any system)	10(10)	2(10)	10(10)		
<u>Evaporators</u> Miscellaneous radwaste	All Nuclid Except Iod 10 ³		<u>Iodine</u> 10 ²		
Boric acid recovery	10 ³		10 ²		
Reverse Osmosis	All Nuclides				
Laundry wastes		30			
Other liquid wastes		10			
<u>Filters</u>		DF of 1	for all nuclides		

TABLE 1-4

DECONTAMINATION FACTORS FOR PWR LIQUID WASTE TREATMENT SYSTEMS

^{*} For demineralizers in series, the DF for the second demineralizer is given in parentheses.

The following example illustrates the calculation of the decontamination factor for a dirty waste treatment system: Assume that dirty wastes are collected; processed through a filter, an evaporator, and a mixed-bed polishing demineralizer; and collected for sampling. If required to meet discharge criteria, the contents of the waste sample (test) tank are processed through a mixed-bed demineralizer for additional radionuclide removal. This example may be summarized graphically as:

Demineralizer 2

Dirty waste — Filter — Evaporator — Demineralizer 1 — Waste sample collector tank tank

Extracting from Table 1-4 gives the following values for the example:

	Filter	Evaporator	Demineralizer	Demineralizer 2	Product
Iodine	1	10 ²	5	1	5×10^2
Cs, Rb	1	10 ³	1	1	10 ³
Other Nuclides	1	10 ³	10	1	104

These values are obtained as follows:

- A DF of 1.0 is applied to all nuclides for the filter.
- A DF of 10^2 for iodine and 10^3 for Cs, Rb, and other nuclides is applied for the radwaste evaporator.
- A DF of 5 is applied for iodine, a DF of 1 for Cs, Rb and a DF of 10 for the evaporator condensate polishing demineralizer.
- A DF of 1 is applied to the second demineralizer since this demineralizer's used is optional, and it is not used for normal operations.
- The product of the DF's is obtained by multiplication of the first four columns for each nuclide.

Thus on Card 22, the following would be entered: in spaces 21-28, "500.0"; in spaces 34-41, "1000.0"; and in spaces 47-54, "10000.0".

1.5.2.12.3 Collection Time for Liquid Wastes (Cards 14, 17, 20, 23, 26, and 29 -- Spaces 29-33)

Collection time prior to processing is based on the input flow calculated above. Where redundant tanks are provided, assume the collection tank to be filled to 80% design capacity. If only one tank is provided,

assume the tank to be filled to 40% design capacity. For example, if flow from a 1,000-gal/day floor drain is collected in two 20,000-gallon tanks prior to processing, collection time would be calculated as follows:

Collection time
$$(T_c) = \frac{(0.8)(20,000 \text{ gal})}{(1,000 \text{ gal/day})} = 16 \text{ days}$$

Then, for example, "16.0" should be entered in spaces 29-33 on Card 23.

1.5.2.12.4 Processing and Discharge Time (Cards 14, 17, 20, 23, 26, and 29 -- Spaces 48-53)

Decay during processing and discharge of liquid wastes is shown graphically as follows:

 R_o Tank A — B R_b — Tank C — R_c — Discharge Canal

where

A is the capacity of initial tank in flow scheme, in gal;

- C is the capacity of final tank in flow scheme prior to discharge, in gal;
- $R_{\rm b}$ is the equipment flow capacity of Process B, in gal/day;
- R_{c} is the flow capacity of Tank C discharge pump, in gal/day; and
- R_{0} is the rate of flow of additional waste inputs to Tank C, in $_{gal/day.}$

 $\boldsymbol{T}_{\mathrm{p}}$, the process time credited for decay, is calculated as follows, in days:

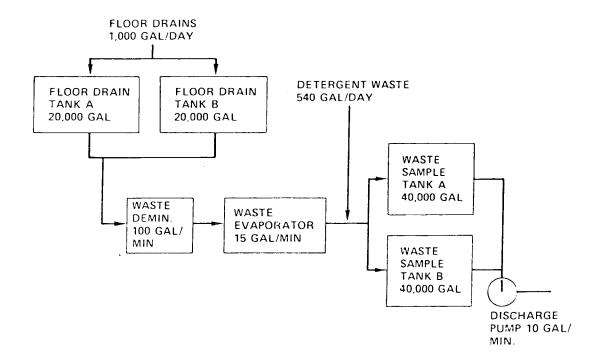
$$T_p = \frac{0.8A}{R_b}$$
 for redundant tanks, or $T_p = \frac{0.4A}{R_b}$ for a single tank

 T_d , the discharge time (50% credited for decay), is calculated as follows, in days:

$$T_d = \frac{0.8C}{R_c}$$
 for redundant tanks, or $T_d = \frac{0.4C}{R_c}$ for a single tank.

After performing the above two calculations, calculate whether credit may be taken for decay during discharge by determining whether

$$0.8C > T_p(R_b + R_o)$$
 for redundant tanks, or
 $0.4C > T_p(R_b + R_o)$ for a single tank.


If so, then

 $Decay = T_p + 0.5T_d$

where "Decay" is the new processing and discharge time to be entered in spaces 48-53 of the third card for each input stream (Cards 14, 17, 20, 23, 26, and 29).

If, however, 0.8C (or 0.4C, as appropriate) $\leq T_p(R_b + R_o)$, T_p is used for the holdup time during processing, since Tank C may be discharged before Tank A has been completely processed. In this case, the T_p value should be entered in spaces 48-53 of the third card.

For example, for the following input waste stream:

Decay time during processing and discharge is calculated as follows:

Process Time $(T_p) = \frac{(0.8)(20,000 \text{ gal})}{(15 \text{ gal/min})(1440 \text{ min/day})} = 0.7 \text{ day}$

Discharge Time $(T_d) = \frac{(0.8)(40,000 \text{ gal})}{(10 \text{ gal/min})(1440 \text{ min/day})} = 2.2 \text{ days}$

Then, checking for decay credit, $0.8C/(R_b + R_o) = 1.45$ days, which is greater than T_p ; therefore, credit is taken for $(T_p + 0.5T_d)$ or 1.8 days for processing and discharge. The input in spaces 48-53 to the Code is 1.8 days for processing and discharge time.

1.5.2.12.5 Fraction of Wastes Discharged (Cards 14, 17, 20, 23, 26, and 29 -- Spaces 72-77)

The percent of the wastes discharged after processing may vary between 10% and 100%, except as noted below, based on the capability of the system to process liquid waste during equipment downtime, waste volume surges, tritium control requirements, and tank surge capacity. A minimum value of 10% discharge for the liquid radioactive waste treatment system is used when the system is designed for maximum waste recycle, when the system capacity is sufficient to process wastes for reuse during equipment downtime and anticipated operational occurrences, and when a discharge route is provided. For steam generator blowdown treatment systems, less than 10% discharge should be considered on a case-by-base basis, depending on system capacity.

The PWR-GALE Code calculates the release of radioactive materials in liquid waste from the following systems after processing. The quantity released is shown on the printout.

- Boron Recovery System Combined releases from both shim bleed and equipment drains.
- 2. <u>Miscellaneous Liquid Waste System</u> Combined releases from both clean and dirty waste subsystems.
- 3. <u>Secondary Waste System</u> Releases from steam generator blowdown system, regenerant wastes from demineralizer regenerations, or both according to the plant design.
- 4. <u>Turbine Building Floor Drain System</u> Releases of liquid from the turbine building floor drain system are calculated assuming no treatment prior to release. Straight decay time of 6 hours is built into the code.
- 5. <u>Detergent Waste System</u> Combined releases from laundry operations, equipment decontamination solutions, and personnel decontamination showers.

1.5.2.13 Card 30: Letdown System

- 1. Enter 0 in space 80 if there is not continuous gas stripping
 of the full letdown flow. (This sets Y = 0.0.)
- 2. Enter 1 in space 80 if there is continuous degassification of the full letdown flow to the gaseous radwaste system via a gas stripper. (This sets Y = 1.0.)
- 3. Enter 2 in space 80 if there is continuous purging of the volume control tank. (This sets Y = 0.25.)

The total amount of fission gases routed to the gaseous radwaste system from several systems in the plant (e.g., volume control tank, shim bleed gas stripper, equipment drain tanks, cover gas) is calculated in the PWR-GALE Code. (For definition of "Y", see Tables 2-4 & 2-5.)

1.5.2.14 <u>Cards 31-33</u>: Holdup Time for Fission Gases Stripped from Primary Coolant

The holdup time for gases stripped from the primary coolant is hand calculated because of the multiplicity of holdup system designs. The calculations are based on the following parameters:

- 1. Pressurized Storage Tanks
 - a. One storage tank is held in reserve for back-to-back shutdowns, one tank is in the process of filling, and the remainder are used for storage. The PWR-GALE Code will calculate the effective holdup time for filling and add it to the holdup time for storage.
 - b. Calculations are based on the waste gas input flow rate to the pressurized storage tanks, and a storage tank pressure 70% of the design value.
 - c. If the calculated holdup time exceeds 90 days, assume the remaining gases are released after 90 days.

The holdup time (T_h) and fill time (T_f) are calculated as follows:

$$T_{f} = \frac{PV}{F}$$
$$T_{h} = \frac{PV(n-2)}{F}$$

where

n is the number of tanks;

n-2 is the correction to subtract the tank being filled and the tank held in reserve; Ρ is the storage pressure, in atmospheres (dimensionless in this particular calculation); is the time required to fill one tank, in days; T_f Th is the holdup time, in days; is the volume of each tank, in ft^3 (STP); and V F is the waste gas flow rate to pressurized storage tanks. This flow rate should be supplied by the applicant for the specific type of waste gas system design. In the absence of specific data supplied by the applicant, we will use the data given in Section 2.2.12.1, in which the average value for the PWR's listed in Table 2-24 is 170 ft³ /day (STP) per reactor for PWR's without recombiners; and for PWR's with recombiners, the average value for the PWR's listed in Table 2-25 is 30 ft³/day (STP) per reactor.

Enter on Card 31 the holdup time, in days, for Xe in spaces 73-80. Enter on Card 32 the holdup time, in days, for Kr in spaces 73-80. Enter on Card 33 the fill time, in days, in spaces 73-80.

2. Charcoal Delay Systems

Charcoal delay system holdup times are based on the following equation:

T = 0.011 MK/F

where

- F is the system flow rate, in ft³/min; (see 1.5.2.14.1.c, above)
- K is the dynamic adsorption coefficient, in cm^3/g ;
- M is the mass of charcoal adsorber, in thousands of pounds; and
- T is the holdup time, in days.

The dynamic absorption coefficient, K, for Xe and Kr and based on

the system design noted below.

	DYNAMIC	ABSORPTION	COEFFICIENT, K (cm ² /	<u>g)</u>
	Operating 77°F Dew Point 45°F	Operating Dew Point		
Kr	18.5	25	70	105
Xe	330.0	440	1160	2410

Enter on Card 31 the holdup time, in days, for Xe in spaces 73-80. Enter on Card 32 the holdup time, in days, for Kr in spaces 73-80. Leave Card 33 blank.

2

3. Cover Gas Recycle System

For this system or other systems designed to hold gases indefinitely, the calculations are based on a 90-day holdup time.

Enter on Card 31 the holdup time (90 days) for Xe in spaces 73-80. Enter on Card 32 the holdup time (90 days) for Kr in spaces 73-80. Enter on Card 33 the fill time (0 days) in spaces 73-80.

1.5.2.15 Card 34: Waste Gas System Particulate Releases

Card 34 identifies the treatment provided for particulate removal from the waste gas system effluent.

- 1. If ventilation exhaust air is treated through HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 39-41.
- 2. If no treatment is provided for the ventilation exhaust air to remove particulates or if the HEPA filters do not satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter 0.0 in spaces 39-41.

1.5.2.16 Cards 35 and 36: Fuel Handling and Auxiliary Buildings Releases

Cards 35 and 36 indicate the fractions of airborne iodine and radioactive particulates released from the fuel handling and auxiliary buildings, respectively.

TABLE 1-5

ASSIGNED REMOVAL EFFICIENCIES FOR CHARCOAL ADSORBERS FOR RADIOIODINE REMOVAL

Activated Carbon ^a Bed Depth	Removal Efficiencies ^b for Radioiodine %
2 inches. Air filtration system designed to operate inside reactor containment	90.
2 inches. Air filtration system designed to operate outside the reactor containment and relative humidity is controlled at 70%	70.
4 inches. Air filtration system designed to operate outside the reactor containment and relative humidity is controlled at 70%	90.
6 inches. Air filtration system designed to operate outside the reactor containment and relative humidity is controlled to 70%	99.

^a Multiple beds, e.g., two 2-inch beds in series, should be treated as a single bed of aggregate depth of 4 inches.

^b The removal efficiencies assigned to HEPA filters for particulate removal and charcoal adsorbers for radioiodine removal are based on the design, testing, and maintenance criteria recommended in Regulatory Guide 1.140, "Design, Testing and Maintenance Criteria for Normal Ventilation Exhaust System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants" (Ref. 2).

- 1. If ventilation exhaust air is treated through charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the appropriate removal efficiency in spaces 47-49 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If ventilation exhaust air is treated through HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 56-58.
- 3. If no treatment is provided for the ventilation exhaust air to remove radioiodine, enter 0.0 in spaces 47-49; if no treatment is provided to remove particulates, enter 0.0 in spaces 56-58.

1.5.2.17 Card 37: Containment Free Volume (SAR/ER)

Enter the containment volume (in 10^6 ft³) in spaces 73-80.

1.5.2.18 Card 38: Containment Internal Cleanup System (SAR/ER)

- If the containment internal cleanup system uses charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the appropriate removal efficiency in spaces 47-49 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If the containment internal cleanup system uses HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 56-58.
- 3. If there is no containment internal cleanup system, enter 0.0 in spaces 47-49 and in spaces 56-58.
- 4. Enter the flow rate (in 10^3 ft³/min) through the internal cleanup system in spaces 73-80.

The airborne concentration calculations are based on the following parameters:

- a. A primary coolant leakage rate corresponding to the normalized release rate given in Table 1-1.
- b. A continuous normal ventilation flow rate as specified by the applicant.
- c. Operation of the cleanup system for 16 hours prior to purging.
- d. A DF for the charcoal adsorber corresponding to the values in Table 1-5, a DF of 100 for the HEPA filters, and a mixing efficiency of 70%. The mixing efficiency is an effective removal efficiency which takes into account the effects of incomplete mixing in the containment.

e. Continuous leakage of primary coolant during the operation of the internal cleanup system.

1.5.2.19 Card 39: Containment Building Iodine Releases - During Large Volume Purge System Operation

Card 39 indicates the fraction of airborne iodine and radioactive particulates released during purging of the containment building with the large volume containment purge system.

- Note: Treatment referred to below does not include the internal recirculation system.
- 1. If ventilation exhaust air is treated through charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the appropriate removal efficiency in spaces 47-49 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If ventilation exhaust air is treated through HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 56-58.
- 3. If no treatment is provided for the ventilation exhaust air to remove radioiodine, enter 0.0 in spaces 47-49; if no ireatment is provided to remove particulates, enter 0.0 in spaces 56-58.
- 4. Enter the number of purges per year during power operations in spaces 78-80. (Note: The 2 purges at shutdown are stored in the PWR GALE Code and need not be entered on card 39.)
- 1.5.2.20 Card 40: Containment Building Iodine Releases Low Volume Purge During Power Operation

Card 40 indicates the fraction of airborne iodine in the containment atmosphere that is released during the low volume purge of the containment building while the reactor is at power.

- Note: Treatment referred to below does not include the internal recirculation system.
- If ventilation exhaust air is treated through charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the appropriate removal efficiency in spaces 47-49 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If ventilation exhaust air is treated through HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 56-58.
- 3. If no treatment is provided for the ventilation exhaust air to remove radioiodine, enter 0.0 in spaces 47-49; if no treatment is provided to remove particulates, enter 0.0 in spaces 56-58.

- 4. Enter the continuous containment purge rate (ft³/min) in spaces 73-80.
- 1.5.2.21 Card 41: Steam Generator Blowdown Tank Vent
 - 1. Enter 0.0 in spaces 73-80 if the gases from the blowdown flash tank are vented through a condenser prior to release.
 - 2. Enter 0.0 in spaces 73-80 if the blowdown flash tank is vented to the main condenser air ejector.
 - 3. Enter 0.0 in spaces 73-80 for a once-through steam generator system.
 - 4. For older plants which still use flash tanks which vent directly to the atmosphere an iodine partition factor of 0.05 is used.
- 1.5.2.22 <u>Card 42: Percentage of Iodine Removed by the Condenser Air</u> Ejector Offgas Treatment System
 - 1. If, prior to release, the offgases from the condenser air ejector are processed through charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the removal efficiency in spaces 73-80 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
 - 2. If the offgases are released from the condenser air ejector without treatment, enter 0.0 in spaces 73-80.
- 1.5.2.23 Card 43: Detergent Wastes
 - 1. If the plant does not have an onsite laundry, enter 0.0 in spaces 73-80.
 - 2. If the plant has an onsite laundry and detergent wastes are released without treatment, enter 1.0 in spaces 73-80.
 - 3. If detergent wastes are treated prior to discharge, enter the fraction of radionuclides remaining after treatment (1/DF) in spaces 73-80. The parameters in Chapter 2 of this document should be used in determining the DF for the treatment applied to detergent wastes.

CHAPTER 2. PRINCIPAL PARAMETERS USED IN PWR SOURCE TERM CALCULATIONS AND THEIR BASES

2.1 INTRODUCTION

The principal parameters used in source term calculations have been compiled to standardize the calculation of radioactive source terms.

The following sections describe parameters used in the evaluation of radwaste treatment systems. The parameters have been derived from reactor operating experience where data were available. Where operating data were inconclusive or not available, information was drawn from laboratory and field tests and from engineering judgment. The bases for the source term parameters explain the reasons for choosing the numerical values listed. A list of references used in developing the parameters is also included.

The parameters in the PWR-GALE Code will be updated periodically and published in revisions to this NUREG as additional operating data become available. The source term parameters used are believed to provide a realistic assessment of reactor and radwaste system operation.

2.2 PRINCIPAL PARAMETERS AND THEIR BASES

2.2.1 THERMAL POWER LEVEL

2.2.1.1 Parameter

The maximum thermal power level (MWt) evaluated for safety considerations in the Safety Analysis Report.

2.2.1.2 Bases

The power level used in the source term PWR-GALE Code is the maximum power level evaluated for safety considerations in the Safety Analysis Report. Using this value, the evaluation of the radwaste management systems need not be repeated when the applicant applies for a stretch power license at a later date. Past experience indicates that most utilities request approval to operate at maximum power soon after reaching commercial operation.

2.2.2 PLANT CAPACITY FACTOR

2.2.2.1 Parameter

A plant capacity factor of 80% is used, i.e., 292 effective full power days.

2.2.2.2 Bases

The source term calculations are based on a plant capacity factor of 80% averaged over the 30-year operating life of the plant, i.e., the plant operates at 100% power 80% of the time. The plant capacity factors experienced at PWR's are listed in Table 2-1 for the period 1972 through 1977.

The average plant capacity factors shown in Table 2-1 indicate that the 80% factor assumed is higher than the average factors experienced. However, it is expected that the major maintenance problems and extended refueling outages that have contributed to the lower plant capacity factors will be overcome and that the plants will achieve the 80% capacity factor when averaged over 30 years of operation.

2.2.3 RADIONUCLIDE CONCENTRATIONS IN THE PRIMARY AND SECONDARY COOLANT

2.2.3.1 Parameter

As used in the PWR-GALE Code, Tables 2-2 and 2-3 list the expected radionuclide concentrations in the reactor coolant and steam for PWR's with design parameters within the ranges listed in Tables 2-4 and 2-5. Should any design parameter be outside the range in Tables 2-4 and 2-5, the PWR-GALE Code adjusts the concentrations in Tables 2-2 and 2-3, using the factors in Tables 2-6, 2-7, and 2-8. Figures 2-1 and 2-2 show the graphical relationship of the design parameters.

2.2.3.2 <u>Bases</u>

The radionuclide concentrations, adjustment factors, and procedure for effecting adjustments are based on the values and methods in American National Standard ANSI N237, Source Term Specification, (Ref. 1) but have been updated based on a recent compilation of available operating data concerning primary coolant concentrations, steam generator tube leakage, and secondary side radionuclide behavior. Therefore, the concentration values in NUREG-0017, Rev. 1 differ from the ANSI N237 values.

The values in Tables 2-2 and 2-3 provide a set of typical radionuclide concentrations in the primary and secondary systems for reactor designs within the parameters specified in Tables 2-4 and 2-5. The values in Tables 2-2 and 2-3 are those determined to be representative of radio-nuclide concentrations in a PWR over its lifetime based on the currently available data and models. The secondary coolant concentrations given in Tables 2-2 and 2-3 are calculated by using the reference parameters given in Table 2-6 and the equations given in Tables 2-7 and 2-8. It is recognized that some systems will have design parameters that are outside the ranges specified in Tables 2-4 and 2-5. For that reason, a means of adjusting the concentrations to the actual design parameters has been provided in Tables 2-6 through 2-8. The adjustment factors in Table 2-6 through 2-8 are based on the following expression:

FACILITY ^D	Date of Commercial Operation	<u>1972</u>	<u>1973</u>	<u>1974</u>	<u>1975</u>	<u>1976</u>	1977
Haddam Neck San Onofre 1 R. E. Ginna Point Beach 1 H. B. Robinson 2 Palisades Point Beach 2 Turkey Point 3 Surry 1 Maine Yankee Surry 2 Oconee 1 Indian Point 2 Turkey Point 4 Fort Calhoun Prairie Island 1 Zion 1 Kewaunee Three Mile Island 1 Zion 2 Oconee 2 Zion 2 Oconee 3 Arkansas 1 Prairie Island 2 Rancho Seco Calvert Cliffs 1 Cook 1 Millstone 2 Trojan Indian Point 3 Beaver Valley 1 St. Lucie 1	1/68 1/68 7/70 12/70 3/71 12/71 10/72 12/72 12/72 12/72 5/73 7/73 8/73 9/73 9/73 12/73 12/73 12/73 12/73 12/73 12/73 12/74 12/74 12/74 12/74 12/74 12/74 12/74 12/75 5/75 8/75 12/75 5/76 8/76 10/76 12/76	86 72 58 69 78 61	48 ^d 60 81 67 65 40 ^e 72 55 51 17	89 83 50 76 81 d 77 61 50 40 54 40 54 51 71 61 36 9 9 9	84 85 73 70 71 68 88 76 60 69 76 71 68 68 54 83 68 54 83 68 75 9 68 69 73	81 66 52 78 80 75 67 91 e 54 d 57 73 55 75 58 54 64 59 99 88 75 68	82 62 83 85 74 88 78 78 78 78 78 77 65 73 71 73 71 73 75 63 71 73 87 55 63 71 24 83
AVERAGE		71	64	69	72	69	74

^a From monthly Operating Units Status Reports.

^b Indian Point 1 and Yankee Rowe are not included since they are small reactors [< 700 MW(t)].</p>

^C Plant capacity factors listed are for the first full year of commercial operation. Therefore, this list does not include the following plants which began commercial operation in 1977 and 1978: Calvert Cliffs 2, Cook 2, Crystal River 3, Davis Besse 1, Farley 1, Salem 1, North Anna 1, and Three Mile Island 2.

^d Not included due to extended outage for refueling/amintenance.

^e Not included due to extended maintenance/repair to the secondary system.

[†] Not included due to extended operation at reudced power.

⁹ Not included due to extended maintenance outage to repair generator.

NUMERICAL VALUES - CONCENTRATIONS IN PRINCIPAL FLUID STREAMS OF THE REFERENCE PWR WITH U-TUBE STEAM GENERATORS

(µCi/g)

Secondary Coolant*

Isotope	Reactor Coolant**	Water***	Steam ^{††}
Noble Gases			
Kr-85m Kr-85 Kr-87 Kr-88 Xe-131m Xe-133m Xe-133 Xe-135 Xe-135 Xe-137 Xe-138	$1.6(-1)^{+++}$ $4.3(-1)$ $1.5(-1)$ $2.8(-1)$ $7.3(-1)$ $7.0(-2)$ $2.6(0)$ $1.3(-1)$ $8.5(-1)$ $3.4(-2)$ $1.2(-1)$		3.4(-8) 8.9(-8) 3.0(-8) 5.9(-8) 1.5(-7) 1.5(-8) 5.4(-7) 2.7(-8) 1.8(-7) 7.1(-9) 2.5(-8)
Halogens			
Br-84 I-131 I-132 I-133 I-134 I-135	1.6(-2) 4.5(-2) 2.1(-1) 1.4(-1) 3.4(-1) 2.6(-1)	7.5(-8) 1.8(-6) 3.1(-6) 4.8(-6) 2.4(-6) 6.6(-6)	7.5(-10) 1.8(-8) 3.1(-8) 4.8(-8) 2.4(-8) 6.6(-8)
<u>Cs, Rb</u>			
Rb-88 Cs-134 Cs-136 Cs-137	1.9(-1) 7.1(-3) 8.7(-4) 9.4(-3)	5.3(-7) 3.3(-7) 4.0(-8) 4.4(-7)	2.6(-9) 1.7(-9) 2.0(-10) 2.2(-9)
Water Activation	Products		
N-16	4.0(+1)	1.0(-6)	1.0(-7)
Tritium			
H-3	1.0(0)	1.0(-3)	1.0(-3)
Other Nuclides			
Na-24 Cr-51 Mn-54	4.7(-2) 3.1(-3) 1.6(-3)	1.5(-6) 1.3(-7) 6.5(-8)	7.5(-9) 6.3(-10) 3.3(-10)

Isotope	Reactor Coolant**	Water***	Steam ^{††}
Fe-55	1.2(-3)	4.9(-8)	2.5(-10)
Fe-59	3.0(-4)	1.2(-8)	6.1(-11)
Co-58	4.6(-3)	1.9(-7)	9.4(-10)
Co-60	5.3(-4)	2.2(-8)	1.1(-10)
Zn-65	5.1(-4)	2.1(-8)	1.0(-10)
Sr-89	1.4(-4)	5.7(-9)	2.9(-11)
Sr-90	1.2(-5)	4.9(-10)	2.5(-12)
Sr-91	9.6(-4)	2.8(-8)	1.4(-10)
Y-91m	4.6(-4)	3.2(-9)	1.6(-11)
Y-91	5.2(-6)	2.1(-10)	1.1(-12)
Y-93	4.2(-3)	1.2(-7)	6.1(-10)
Zr-95	3.9(-4)	1.6(-8)	7.9(-11)
Nb-95	2.8(-4)	1.1(-8)	5.7(-11)
Mo-99	6.4(-3)	2.5(-7)	1.2(-9)
Tc-99m	4.7(-3)	1.1(-7)	5.7(-10)
Ru-103	7.5(-3)	3.1(-7)	1.6(-9)
Ru-106	9.0(-2)	3.7(-6)	1.8(-8)
Ag-110m	1.3(-3)	5.3(-8)	2.7(-10)
Te-129m	1.9(-4)	7.8(-9)	3.9(-11)
Te-129	2.4(-2)	2.2(-7)	1.1(-9)
Te-131m	1.5(-3)	5.4(-8)	2.7(-10)
Te-131	7.7(-3)	2.9(-8)	1.5(-10)
Te-132	1.7(-3)	6.6(-8)	3.3(-10)
Ba-140	1.3(-2)	5.2(-7)	2.6(-9)
La-140	2.5(-2)	9.3(-7)	4.6(-9)
Ce-141	1.5(-4)	6.1(-9)	3.1(-11)
Ce-143	2.8(-3)	1.0(-7)	5.1(-10)
Ce-144	3.9(-3)	1.6(-7)	8.2(-10)
W-187	2.5(-3)	8.7(-8)	4.4(-10)
Np-239	2.2(-3)	8.4(-8)	4.2(-10)

Secondary Coolant*

* Based on a primary-to-secondary leak of 75 lb/day.

** The concentrations given are for reactor coolant entering the letdown line. These concentrations are obtained from Tables 2-9 and 2-10. N-16 and H-3 concentrations are obtained from Reference 1.

*** The concentrations given are for water in a steam generator.

tt The concentrations given are for steam leaving a steam generator.

 $t + 1.6(-1) = 1.6 \times 10^{-1}$.

NUMERICAL VALUES - CONCENTRATIONS IN PRINCIPAL FLUID STREAMS

OF THE REFERENCE PWR WITH ONCE-THROUGH STEAM GENERATORS

(µCi/g)

Isotope	<u>Reactor Coolant*</u>	Secondary Coolant**
Noble Gases		
Kr-85m Kr-85 Kr-87 Kr-88 Xe-131m Xe-133m Xe-133 Xe-135 Xe-135 Xe-135 Xe-138	1.6(-1) $4.3(-1)$ $1.5(-1)$ $2.8(-1)$ $7.3(-1)$ $7.0(-2)$ $2.6(0)$ $1.3(-1)$ $8.5(-1)$ $3.4(-2)$ $1.2(-1)$	3.4(-8) 8.9(-8) 3.0(-8) 5.9(-8) 1.5(-7) 1.5(-8) 5.4(-7) 2.7(-8) 1.8(-7) 7.1(-9) 2.5(-8)
Halogens Br-84 I-131 I-132 I-133 I-134 I-135	1.6(-2) 4.5(-2) 2.1(-1) 1.4(-1) 3.4(-1) 2.6(-1)	1.8(-8) 5.2(-8) 2.4(-7) 1.6(-7) 3.8(-7) 3.0(-7)
Cs, Rb		
Rb-88 Cs-134 Cs-136 Cs-137	1.9(-1) 7.1(-3) 8.7(-4) 9.4(-3)	6.0(-7) 3.0(-8) 3.6(-9) 3.9(-8)
Water Activation Produ	ucts	
N-16	4.0(+1)	1.0(-6)
Tritium		
H - 3	1.0(0)	1.0(-3)
Other Nuclides		
Na-24 Cr-51 Mn-54 Fe-55 Fe-59 Co-58 Co-60	4.7(-2) 3.1(-3) 1.6(-3) 1.2(-3) 3.0(-4) 4.6(-3) 5.3(-4)	1.0(-7) 6.9(-9) 3.6(-9) 2.7(-9) 6.7(-10) 1.0(-8) 1.2(-9)

TABLE 2-3 (continued)

Isotope	Reactor Coolant*	Secondary Coolant**
Zn-65	5.1(-4)	1.1(-9)
Sr-89	1.4(-4)	3.1(-10)
Sr-90	1.2(-5)	2.7(-11)
Sr-91	9.6(-4)	2.1(-9)
Y-91m	4.6(-4)	9.7(-10)
Y-91	5.2(-6)	1.2(-11)
Y-93	4.2(-3)	9.3(-9)
Zr-95	3.9(-4)	8.7(-10)
Nb-95	2.8(-4)	6.2(-10)
Mo-99	6.4(-3)	1.4(-8)
Tc-99m	4.7(-3)	1.0(-8)
Ru-103	7.5(-3)	1.7(-8)
Ru-106	9.0(-2)	2.0(-7)
Ag-110m	1.3(-3)	2.9(-9)
Te-129m	1.9(-4)	4.2(-10)
Te-129	2.4(-2)	5.1(-8)
Te-131m	1.5(-3)	3.3(-9)
Te-131	7.7(-3)	1.5(-8)
Te-132	1.7(-3)	3.8(-9)
Ba-140	1.3(-2)	2.9(-8)
La-140	2.5(-2)	5.6(-8)
Ce-141	1.5(-4)	3.3(-10)
Ce-143	2.8(-3)	6.2(-9)
Ce-144	3.9(-3)	8.7(-9)
W-187	2.5(-3)	5.6(-9)
Np-239	2.2(-3)	4.9(-9)

- * The concentrations given are reactor coolant entering the letdown line. These concentrations are obtained from Tables 2-9 and 2-10. N-16 and H-3 concentrations are obtained from Reference 1.
- ** Based on primary-to-secondary leakage of 75 lb/day. The concentrations given are for steam leaving a steam generator.

PARAMETERS	USED	TO	DESCRIBE	THE	REFERENCE	PRESSURIZED	WATER
	REA	сто	R WITH U-	TUBE	STEAM GEN	ERATORS	

Parameter	Symbol	Units	Nominal Value	Ran Maximum	ige Minimum
Thermal Power	Р	MWt	3,400	3,800	3,000
Steam flow rate	FS	lb/hr	1.5(7)	1.7(7)	1.3(7)
Weight of water in reactor coolant system	WP	1b	5.5(5)	6.0(5)	5.0(5)
Weight of water in all steam generators	WS	lb	4.5(5)	5.0(5)	4.0(5)
Reactor coolant letdown flow (purification)	FD	lb/hr	3.7(4)	4.2(4)	3.2(4)
Reactor coolant letdown flow (yearly average for boron control)	FB	lb/hr	500	1,000	250
Steam generator blowdown flow (total)	FBD	lb/hr	75,000	100,000	50,000
Fraction of radioactivity in blowdown stream that is not returned to the secondary coolant system	NBD		1.0*	1.0	0.9
Flow through the purification system cation demineralizer	FA	lb/hr	3,700	7,500	0.0
Ratio of condensate demineralizer flow rate to the total steam flow rate	NC		0.0**	0.01	0.0
Ratio of the total amount of noble gases routed to gaseous radwaste from the purification system to the total amount of noble gases routed from the primary coolant system to the purification system (not in- cluding the boron recovery system)	Y		0.0	0.01	0.0

^{*} This value is based on a nominal case of blowdown through blowdown demineralizers back to the main condenser (no condensate demineralizers). Value taken from blowdown demineralizer DF's in Section 2.2.18. Value for cesium and rubidium is 0.9.

^{**} This value is based on a nominal case of no condensate demineralizers. For a U-tube steam generator PWR with full flow condensate demineralizers, a value of NC = 1.0 is used by the PWR-GALE Code. For a U-tube steam generator PWR with condensate demineralizers and pumped forward feedwater heater drains, the value for NC used by the PWR-GALE Code is 0.2 for iodine, and 0.1 for Cs, Rb and other nuclides as discussed on page 2-20.

PARAMETERS	USED 7	TO DESC	RIBE THE	REFERENC	E PRESSURIZED	WATER
RE	ACTOR	WITH C	NCE-THR	UGH STEAM	GENERATORS	

Parameter	Symbol	Units	Nominal Value	Rang Maximum	ge Minimum
Thermal Power	Р	MWt	3,400	3,800	3,000
Steam flow rate	FS	lb/hr	1.5(7)	1.7(7)	1.3(7)
Weight of water in reactor coolant system	WP	1b	5.5(5)	6.0(5)	5.0(5)
Weight of water in all steam generators	WS	lþ	1.0(5)	*	*
Reactor coolant letdown flow (purification)	FD	lb/hr	3.7(4)	4.2(4)	3.2(4)
Reactor coolant letdown flow (yearly average for boron control)	FB	lb/hr	500	1,000	250
Flow through the purification system cation demineralizer	FA	lb/hr	3,700	7,500	0.0
Ratio of condensate demineralizer flow rate to the total steam flow rate	NC		0.65**	0.75	0.55
Ratio of the total amount of noble gases routed to gaseous radwaste from the purification system to the total amount routed from the primary coolant system to the purification system (not including the boron recovery system)	Y		0.0	0.01	0.0

* The secondary coolant inventory is not of importance in a once-through steam generator plant because decay is not an important removal mechanism for most of the isotopes.

^{**} For a PWR that is within the range indicated above, i.e., a PWR with pumped forward feedwater heater drains, the value for NC used by the PWR-GALE Code is 0.2 for iodine and 0.1 for Cs, Rb and other nuclides, as discussed on page 2-20. For a PWR that has full flow condensate demineralizer, a value of NC = 1.0 is used by the PWR-GALE Code.

VALUES USED IN DETERMINING ADJUSTMENT FACTORS FOR PRESSURIZED WATER REACTORS

		Element Class						
Symbol	Description	Noble Gases	Halogens	Cs, Rb	Water Activation Products	<u>H-3</u>	Other <u>Nuclides</u>	
NA	Fraction of material removed in passing through the cation demineralizer	0.0	0.0	0.9	0.0	0.0	0.9*	
NB	Fraction of material removed in passing through the purification demineralizer	0.0	0.99	0.5	0.0	0.0	0.98	
R	Removal rate _ _l reactor coolant (Hr ⁻)**	0.0009	0.067	0.037	0.0	***	0.066	
NS	Ratio of concentration in steam to that in water in the steam generator							
	U-tube steam generator	†	0.01	0.005	† †	1.0	0.005	
	Once-through steam generator	+	1.0	1.0	1.0	1.0	1.0	
NX	Fraction of activity removed in passing through the condensate demineralizers	0.0	0.9	0.5	0.0	0.0	0.9	
r	Removal rate <u>-</u> secondary coolant (Hr ⁻¹)†††							
	U-tube steam generator	†	0.17	0.15	† †	***	0.17	
	Once-through steam generator	†	27	7.5	††	***	14	
FL	Primary-to-secondary leakage (lb/day)	75	75	75	75	75	75	

* These represent effective removal terms and include mechanisms such as plateout. Plateout would be applicable to nuclides such as Mo and corrosion products. ** These values of R apply to the reference PWR's whose parameters are given in Tables 2-4 and 2-5 and have been used in developing Tables 2-7 and 2-8. For PWR's not included in Tables 2-4 and 2-5, the appropriate value for R may be determined by the following equations.

> $R = \frac{FB + (FD - FB)Y}{WP}$ for noble gases $R = \frac{(FD)(NB) + (1 - NB)(FB + (FA)(NA))}{WP}$ for halogens, Cs, Rb, and other nuclides

- *** The concentration of tritium is a function of (1) the inventory of tritiated liquids in the plant, (2) the rate of production of tritium due to activation in the reactor coolant as well as releases from the fuel, and (3) the extent to which tritiated water is recycled or discharged from the plant. The tritium concentrations given in Tables 2-2 and 2-3 are representative of PWR's with a moderate amount of tritium recycle and can be used to calculate source terms in accordance with Regulatory Guide 1.112, "Calculations of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Light-Water-Cooled Power Reactors."
- t Noble gases are rapidly transported out of the water in the steam generator and swept out of the vessel in the steam; therefore, the concentration in the water is negligible and the concentration in the steam is approximately equal to the ratio of the release rate to the steam generator and the steam flow rate. These noble gases are removed from the system at the main condenser.
- tt Water activation products exhibit varying chemical and physical properties in reactor coolants that are not well defined. Most are not effectively removed by the demineralizers, but their concentrations are controlled by decay.
- the three values of r apply to the reference PWR's whose parameters are given in Tables 2-4 and 2-5 and have been used in developing Tables 2-7 and 2-8. For PWR's not included in Tables 2-4 and 2-5, the appropriate value for r may be determined by the following equation:

 $r = \frac{(FBD)(NBD) + (NS)(FS)(NC)(NX)}{WS}$ for halogens, Cs, Rb, and other nuclides

ADJUSTMENT FACTORS FOR PWR'S WITH U-TUBE STEAM GENERATORS

	Adjustment Factors							
		Secondary Coolant						
Element Class	Reactor Water (f)*	Water	Steam					
Noble gases	$\frac{162P}{WP} \frac{0.0009 + \lambda **}{R + \lambda}$		$\frac{1.5 \times 10^7}{FS}$ f					
Halogens	$\frac{162P}{WP} \frac{0.067 + \lambda}{R + \lambda}$	$\frac{4.5 \times 10^5}{WS} \frac{0.17 + \lambda}{r + \lambda} f$	$\frac{4.5 \times 10^5}{WS} \frac{0.17 + \lambda}{r + \lambda} f$					
Cs, Rb	$\frac{162P}{WP} \frac{0.037 + \lambda}{R + \lambda}$	$\frac{4.5 \times 10^5}{WS} \frac{0.15 + \lambda}{r + \lambda} f$	$\frac{4.5 \times 10^{5}}{WS} \frac{0.15 + \lambda}{r + \lambda} f$					
Water activation products	1.0	$\frac{4.5 \times 10^5}{WS}$	$\frac{4.5 \times 10^5}{WS}$					
Tritium	***	***	***					
Other nuclides	$\frac{162P}{WP} \frac{0.066 + \lambda}{R + \lambda}$	$\frac{4.5 \times 10^5}{WS} \frac{0.17 + \lambda}{r + \lambda} f$	$\frac{4.5 \times 10^5}{WS} \frac{0.17 + \lambda}{r + \lambda} f$					

f is the reactor water adjustment factor and is used in the secondary coolant adjustment factors. * λ is the isotopic decay constant (hr⁻¹). **

*** The concentration of tritium is a function of (1) the inventory of tritiated liquids in the plant, (2) the rate of production of tritium due to activation in the reactor coolant as well as releases from the fuel, and (3) the extent to which tritiated water is recycled or discharged from the plant. The tritium concentrations given in Tables 2-2 and 2-3 are representative of PWR's with a moderate amount of tritium recycle and can be used to calculate source terms in accordance with Regulatory Guide 1.112.

T,	AB	L	Ε	2-	8
----	----	---	---	----	---

ADJUSTMENT FACTORS FOR PWR'S WITH ONCE-THROUGH STEAM GENERATORS

	Adjustment Factors				
Nuclide	Reactor Water (f)*	Secondary Coolant			
Noble gases	$\frac{162P}{WP} \frac{0.0009 + \lambda}{R + \lambda}$	$\frac{1.5 \times 10^7}{FS}$ f			
Halogens	$\frac{162P}{WP} \frac{0.067 + \lambda}{R + \lambda}$	$\frac{10^5}{WS} \left(\frac{27 + \lambda}{r + \lambda}\right) f$			
Cs, Rb	$\frac{162P}{WP} \frac{0.037 + \lambda}{R + \lambda}$	$\frac{10^5}{WS} \left(\frac{7.5 + \lambda}{r + \lambda}\right) f$			
Water activation products	1.0	$\frac{1.0 \times 10^5}{WS}$			
Tritium	**	**			
Other nuclides	$\frac{162P}{WP} \frac{0.066 + \lambda}{R + \lambda}$	$\frac{10^5}{WS} \left(\frac{14 + \lambda}{r + \lambda}\right) f$			

* f is the reactor water adjustment factor and is used in the secondary coolant adjustment factors.

** The concentration of tritium is a function of (1) the inventory of tritiated liquids in the plant, (2) the rate of production of tritium due to activation in the reactor coolant as well as releases from the fuel, and (3) the extent to which tritiated water is recycled or discharged from the plant. The tritium concentrations given in Tables 2-2 and 2-3 are representative of PWR's with a moderate amount of tritium recycle and can be used to calculate source terms in accordance with the Regulatory Guide 1.112.

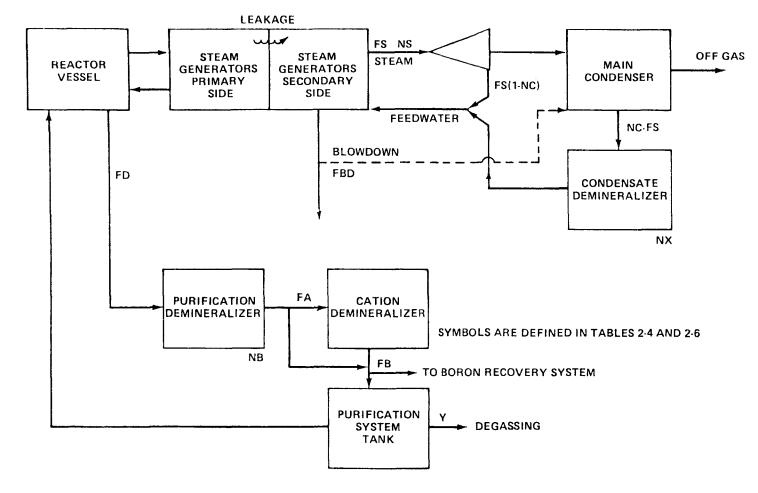


FIGURE 2-1 REMOVAL PATHS FOR PRESSURIZED WATER REACTOR WITH U-TUBE STEAM GENERATORS

2-14

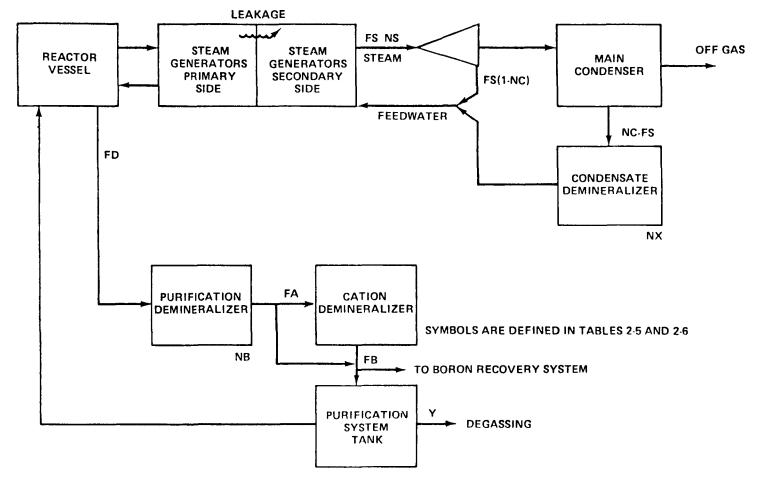


FIGURE 2-2 REMOVAL PATHS FOR PRESSURIZED WATER REACTOR WITH ONCE-THROUGH STEAM GENERATORS

$$C = \frac{S}{W(\lambda + R)K}$$

where

- C is the specific activity (in μ Ci/g)
- K is a conversion factor, 454 g/lb
- R is the removal rate of the isotope from the system due to demineralization, leakage, etc. (hr^{-1}) . (If considering secondary coolant R = r).
- s is the rate of release to and/or production of the isotope in the system (in µCi/hr)
- w is the fluid weight (in lb), and
 - is the decay constant (hr^{-1}) .

The following sample calculations illustrate the method by which the PWR-GALE Code will adjust the radionuclide concentrations in Tables 2-2 and 2-3. As indicated in Tables 2-7 and 2-8, adjustment factors will be calculated for noble gases, halogens, Cs, Rb, and other nuclides.

As an example, the sample case parameters shown below compare with the range of values in Table 2-4 as follows.

Parameter (U-tube steam generator PWR)	Value	Range
Thermal power level, MWt	3800	3000 - 3800
Steam flow rate, lb/hr	17 x 10 ⁶	13 x 10 ⁶ - 17 x 10 ⁶
Mass of reactor coolant, lb	5.5 x 10 ⁵	$5.0 \times 10^5 - 6.0 \times 10^5$
Water weight in all steam generators, lb	4.4×10^5	$4.0 \times 10^5 - 5.0 \times 10^5$
Reactor coolant letdown, lb/hr	4.9×10^4	$3.2 \times 10^4 - 4.2 \times 10^4$
Cation demineralizer flow, lb/hr	4.9×10^3	$0 - 7.5 \times 10^3$
Shim bleed rate - yearly average, lb/hr	650	250 - 1000
Steam generator blowdown flow, lb/hr	60,000	50,000 - 100,000
Fraction of blowdown activity not returned to secondary system	0.99	0.9 - 1.0
Cation demineralizer flow, lb/hr	4900	0.0 - 7500
Condensate demineralizer flow fraction	0.0	0.0 - 0.01
Y (see definition in Table 2-4 and page 1-26)		

Since in this example the parameter for reactor coolant letdown rate $(4.9 \times 10^4 \text{ lb/hr})$ is outside the range specified in Table 2-4 $(3.2 - 4.2 \times 10^4 \text{ lb/hr})$, and the sample case employs continuous purging of the volume control tank, the primary coolant activity is recalculated using the actual design value for all parameters employing the methods described below.

1. Noble Gases (Xe-133 is used as an example)

Using the equation for noble gases in Table 2-7, the adjustment factor, f, is calculated as follows:

$$f = \frac{162P}{WP} \quad \frac{0.0009 + \lambda}{R + \lambda} \tag{1}$$

where the terms in the equations are defined in Tables 2-4 and 2-6.

In calculating f, the variable R is calculated first by using the equation given in Table 2-6 for noble gases

$$R = \frac{FB + (FD - FB)(Y)}{WP}$$
(2)

where the terms of the equation are as defined in Tables 2-4 and 2-6.

Use the sample case parameters given above and the noble gas parameters given in Table 2-6 and substitute in Equation (2) above.

$$R = \frac{650 + (4.9 \times 10^4 - 650) \times 0.25}{5.5 \times 10^5} = 0.023$$

Use the value of R in Equation (1) above.

$$f = \frac{162 \times 3800}{5.5 \times 10^5} \quad \frac{0.0009 + 5.5 \times 10^{-3}}{0.023 + 5.5 \times 10^{-3}} = 0.25$$

The adjusted Xe-133 primary coolant concentration

= (adjustment factor) x (standard Xe-133 concentration)

$$= 0.25 \times 2.6 \mu Ci/g = 0.65 \mu Ci/g$$

2. Halogens (I-131 is used as an example)

Using the equation for halogens in Table 2-7, the adjustment factor, f, is calculated as follows:

$$f = \frac{162P}{WP} \frac{0.067 + \lambda}{R + \lambda}$$
(3)

where the terms in the equations are defined in Tables 2-4 and 2-6.

In calculating f, the variable R is calculated first by using the equation given in Table 2-6.

$$R = \frac{(FD)(NB) + (1 - NB)(FB + (FA)(NA))}{WP}$$
(4)

where the terms in the equation are as defined in Tables 2-4 and 2-6.

Use the sample case parameters given above and the halogen parameters given in Table 2-6 and substitute in Equation (4) above.

$$R = \frac{(4.9 \times 10^4 \times 0.99) + (1 - 0.99)(650 + (4900)(0.0))}{5.5 \times 10^5} = 0.088$$

Use the value of R in Equation (3) above.

۸

$$f = \frac{162(3800)}{5.5 \times 10^5} \qquad \frac{0.067 + 3.6 \times 10^{-3}}{0.088 + 3.6 \times 10^{-3}} = 0.86$$

The adjusted I-131 concentration

= (adjustment factor) x (standard I-131 concentration)

= $0.86 \times 0.045 \ \mu Ci/g = 0.039 \ \mu Ci/g$

3. Cs, Rb (Cs-137 is used as an example)

Using the equation for Cs and Rb in Table 2-7, the adjustment factor, f, is calculated as follows:

$$f = \frac{162P}{WP} \frac{0.037 + \lambda}{R + \lambda}$$
(5)

where the terms in the equation are as defined in Tables 2-4 and 2-6.

In calculating f, the variable R is calculated first by using Equation (4) above. The Cs and Rb parameters given in Table 2-6 and the sample case parameters given in Table 2-9 are used in the equation.

$$R = \frac{(4.9 \times 10^{4} \times 0.5) + (0.5)(650 + (4900)(0.9))}{5.5 \times 10^{5}} = 0.05$$

Use the value of R in Equation (5) above.

$$f = \frac{162(3800)}{5.5 \times 10^5} \frac{0.037 + 2.6 \times 10^{-6}}{0.05 + 2.6 \times 10^{-6}} = 0.83$$

The adjusted Cs-137 concentration

= (adjustment factor) x (standard Cs-137 concentration)
=
$$0.83 \times 9.4 \times 10^{-3} \mu \text{Ci/g} = 7.8 \times 10^{-3} \mu \text{Ci/g}$$

4. Other Nuclides (Te-132 is used as an example)

Using the equation for other nuclides in Table 2-7, the adjustment factor, f, is calculated as follows:

$$f = \frac{162P}{WP} \quad \frac{0.066 + \lambda}{R + \lambda} \tag{6}$$

where the terms in the equation are as defined in Tables 2-4 and 2-6.

In calculating f, the variable R is calculated first by using Equation (4) above. The parameters for other nuclides given in Table 2-6 and the sample case parameters given in Table 2-9 are used in the equation.

$$R = \frac{(4.9 \times 10^4) (0.98) + (1 - 0.98)(650 + (4900)(0.9))}{5.5 \times 10^5} = 0.087$$

Use the value of R in equation (6) above.

$$f = \frac{162 (3800)}{5.5 \times 10^5} \frac{(0.066 + 8.9 \times 10^{-3})}{0.087 + 8.9 \times 10^{-3}} = 0.87$$

The adjusted concentration of Te-132

= (adjustment factor) x (standard Te-132 concentration)

$$= 0.87 \times 1.7 \times 10^{-3} \mu \text{Ci/g} = 1.5 \times 10^{-3} \mu \text{Ci/g}$$

A similar method is used in the PWR-GALE Code to adjust secondary coolant concentrations for reactors with parameters outside the ranges specified in Tables 2-4 and 2-5.

The radionuclide primary coolant concentrations in Tables 2-2 and 2-3 are based on data submitted by utilities with operating PWR's (Ref. 3). The data are also based on measurements taken by the NRC at Ft. Calhoun (Ref. 4), Zion 1 and 2 (Ref. 5), Turkey Point 3 and 4 (Ref. 6), Rancho Seco (Ref. 43), and Prairie Island 1 and 2 (Ref. 42); by EPRI (Ref. 7) at Three Mile Island 1 and Calvert Cliffs; and by measurements at various other PWR's (Ref. 8, 9, and 39).

These data are summarized in Table 2-9 and Table 2-10 indicating the average value of the nuclide concentration for each plant, the years over which the data was obtained, and the total number of years of data for each nuclide.

The secondary coolant concentrations are based on the primary coolant concentrations as obtained above, on 75 lb/day primary-to-secondary leakage in the steam generators, on appropriate steam generator carryover factors, on the appropriate main steam flow, steam generator blowdown flow and fraction of a blowdown flow returned to the secondary coolant, as defined in the plant design, and on the fraction of the nuclides in the main steam which return to the steam generators.

The secondary coolant concentrations are based on 75 lb/day primaryto-secondary leakage. The primary-to-secondary leakage rate experience for 79 years of experience at operating PWR's is given in Table 2-11. The average primary-to-secondary leakage rate in Table 2-11 is 75 lb/day. Westinghouse estimates that the data in Table 2-11 are accurate within + 25% (Ref. 8, 39).

For plants using recirculating U-tube steam generators, carryover due to mechanical entrainment is based on 0.5% moisture in the steam. Table 2-12 provides measured values for moisture carryover at five operating PWR's that use recirculating U-tube steam generators. Based on data from Turkey Point 3 and 4 (Ref. 6) a value of 1% iodine carryover with the steam is used in our evaluations. For once-through steam generators, it is assumed that 100% of both nonvolatile and volatile species is carried over with the steam since this type of steam generator has no liquid reservoir and 100% of the feed is converted to steam.

For PWR's that use condensate demineralizers in the secondary system, the nominal value of the ratio of the condensate demineralizer flow rate to the total steam flow rate is 0.65. This indicates that the nominal case is a design which utilizes a pumped forward model, that is, one in which the reactor steam flow is split with 65% flowing to the low pressure turbines and the main condenser, and 35% pumped forward to the feedwater. The fraction pumped forward to the feedwater does not undergo any treatment in the condensate demineralizers. We have determined that the iodine, Cs, Rb, and "Other Nuclides" of Table 2-2 and Table 2-3 preferentially go with the "pumped forward" fraction. The reason for this is that these nuclides show a tendency to go with the condensed steam in the moisture separator-reheater drains and with the extraction steam lines from the high pressure turbines to the feedwater system. Based on data provided in Ref. 6, 7, 12 and 13 for Turkey Point, Point Beach and Brunswick, the percentages used in the PWR-GALE Code for the amount of activity which is pumped forward and which bypasses the condensate demineralizers is 80% for iodine and 90% for Cs, Rb, and "Other Nuclides" of Table 2-2 and Table 2-3. Since the remainder of the nuclides listed in Tables 2-2 and 2-3 are not removed in the condensate demineralizers, we have not considered the magnitude of bypass for those nuclides.

SUMMARY OF I-131 AND I-133 PRIMARY COOLANT CONCENTRATIONS IN PWR'S* $(\mu Ci/g)$							
Isotope	H.B. Robinson 2 (1973-1978)**	Arkansas 1 (1976)	D.C. Cook 1 (1976-1978)	Trojan (1977-1978)	Palisades (1972–1976)	Point Beach 1/2 (1972-1979)	R.E. Ginna (1971-1978)
I-131 I-133	3.1E-03 1.2E-02	7.3E-03 ***	7.8E-03 1.8E-02	1.3E-02 1.5E-02	1.2E-02 1.6E-02	7.7E-02 3.6E-01	2.2E-01 6.9E-01
<u>Isotope</u> I-131 № I-133	Fort Calhoun 1 (1976-1977) 1.8E-01 1.6E-01	Zion 1/2 (1975-1978) 2.3E-02 6.9E-02	Turkey Point 3/4 (1974-1978) 2.1E-02 6.9E-02	Three Mile (1975- 2.1E **	1977) -02	lvert Cliffs 1 E (19 ⁷ 6) 3.6E-02 ***	eaver Valley 1 (1977-1978) 1.8E-03 5.5E-03
<u>Isotope</u>	Indian Point 2/3 (1975-1978)	Kewaunee (1975-1978)	Prairie Island 1/ (1975-1981)		2 J.M. Far	ley 1 Yankee Rowe	
I-131 I-133	2.5E-02 5.1E-02	5.3E-03 1.3E-02	8.1E-03 1.0E-02	2.1E-02 3.2E-02			1.3E-02 4.7E-02

* Data in this table are based on I-131 and I-133 primary coolant concentrations in Ref. 3 through 9, 42 and 43, and have been adjusted to the NSS parameters listed in Table 2-4 of this report. These adjustments were made using the individual plant parameters and the nominal plant parameters (Table 2-4) and adjusting the actual coolant concentration using the equations in Table 2-7 of this report.

** Data in this table were gathered during the indicated inclusive dates. It does not necessarily imply that data were available during each of the years covered by the period, nor does it mean that the number of data points should be the same for each radionuclide.

*** No value reported.

TABLE 2-	1	0
----------	---	---

SUMMARY OF RADIONUCLIDE PRIMARY COOLANT CONCENTRATIONS IN PWR'S* $(\mu Ci/g)$

	Isotope	H.B. Robinson 2 (1973-1978)**	Arkansas 1 (1976)	D.C. Cook 1 (1976-1978)	Trojan (1977-1978)	Palisades (1972-1976)	Point Beach 1/2 (1972-1979)	R.E. Ginna (1971-1978)
	Kr-85m	1.8E-02	8.0E-03	3.4E-02	2.2E-02	4.0E-01	2.2E-01	2.4E-01
	Kr-85	***	5.2E-03	***	3.5E+00	8.3E-04	2.9E-02	***
	Kr-87	1.7E-02	6.7E-03	4.7E-02	4.2E-02	4.6E-01	1.1E-01	3.8E-01
	Kr-88	2.3E-02	1.3E-02	5.7E-02	4.0E-02	7.5E-01	3.0E-01	6.3E-01
	Xe-131m	***	***	***	***	4.4E+00	9.4E-01	***
	Xe-133m	1.6E-03	3.3E-03	1.5E-02	2.7E-03	1.9E-01	6.5E-02	***
	Xe-133	2.3E-01	2.1E-01	5.8E-01	5.7E-01	4.9E+00	2.8E+00	6.0E+00
	Xe-135m	2.1E-02	***	***	***	1.0E-02	1.4E-01	1.5E-01
	Xe-135	7.8E-02	2.7E-02	1.9E-01	1.2E-01	1.1E+00	1.1E+00	2.2E+00
	Xe-137	***	***	***	***	***	***	***
	Xe-138	***	***	***	6.7E-02	2.2E-03	1.7E-01	***
	B r-84	***	***	***	***	***	***	***
22	I-132	1.5E-02	***	***	1.9E-02	7.1E-03	3.6E-01	7.3E-01
	1-134	3.2E-02	***	2.4E-02	2.2E-02	1.0E-02	6.2 E-01	1.2E+00
	I-135	1.9E-02	***	2.0E-02	1.7E-02	9.2E-03	5.7E-01	6.6E-01
	Rb-88	***	***	***	3.5E-02	2.6E-02	1.7E-01	3.7E-01
	Cs-134	1.9E-03	5.6E-04	2.7E-03	6.0E-04	1.7E-04	1.4E-02	1.1E-02
	Cs-136	3.1E-04	***	5.2E-03	7.2E-04	4.6E-05	2.2E-03	***
	Cs-137	2.3E-03	1.5E-03	4.9E-03	1.3E-03	2.6E-04	1.1E-02	3.1E-02
	N-16	***	***	***	***	***	***	***
	H-3	***	6.3E-02	2.1E-01	***	7.5E-02	5.0E-01	6.7E-01
	Na-24	1.3E-01	8.7E-02	1.2E-02	1.3E-02	5.6E-03	7.6E-02	***
	Cr-51	3.5E-04	3.2E-03	***	***	9.1E-03	***	1.1E-04
	Mn-54	3.4E-04	7.6E-04	8.3E-03	9.7E-04	1.1E-04	2.8E-03	2.5E-05
	Fe-55	***	***	***	***	***	***	***
	Fe-59	1.4E-05	1.6E-03	***	***	1.6E-04	***	2.6E-05
	Co-58	1.3E-03	7.0E-03	1.4E-02	2.2E-03	3.4E-03	9.6E-03	7.6E-04
	Co-60	3.5E-04	6.4E-04	4.5E-03	3.4E-05	1.1E-04	2.3E-04	1.6E-04
	Zn-65	1.7E-05	***	***	***	7.0E-05	***	***
	Sr-89	2.3E-05	***	***	***	***	2.4E-04	***
	Sr-90	5.2E-06	***	***	***	1.1E-04	***	***

2-22

TABLE 2-10	(continued)
------------	-------------

SUMMARY OF RADIONUCLIDE PRIMARY COOLANT CONCENTRATIONS IN PWR'S* $(_{\mu}\text{Ci}/\text{g})$

	Isotope	H.B. Robinson 2 (1973-1978)**	Arkansas 1 (1976)	D.C. Cook 1 (1976-1978)	Trojan (1977-1978)	Palisades (1972-1976)	Point Beach 1/2 (1972-1979)	R.E. Ginna (1971-1978)
	Sr-91	4.9E-04	***	***	***	1.1E-04	***	***
	Y-91m	***	***	***	***	***	***	***
	Y-91	***	***	***	***	***	***	***
	Y-93	***	***	***	***	***	***	***
	Zr-95	1.3E-05	3.4E-04	4.5E-03	***	1.0E-04	***	1.5E-03
	Nb-95	1.3E-05	3.1E-04	2.4E-03	***	7.6E-05	3.6E-04	8.1E-05
	Mo-99	***	7.2E-05	***	***	5.7E-04	3.8E-02	4.1E-04
	Tc-99m	***	***	***	***	7.3E-04	2.5E-02	***
	Ru-103	***	***	***	***	***	***	1.2E-03
	Ru-106	* * *	***	***	***	***	***	***
2-	Ag-110m	***	***	***	***	***	8.8E-03	***
23	Te-129m	***	***	***	***	***	***	***
	Le-129	***	***	***	***	***	***	***
	Te-131m	***	***	***	***	***	***	***
	Te-131	***	***	***	***	***	***	***
	Te-132	* * *	1.3E-03	***	***	6.6E-05	8.8E-03	***
	Ba-140	2.0E-04	***	***	***	6.2E-06	1.6E-01	5.9E-05
	La-140	9.2E-05	***	***	***	3.0E-05	5.2E-01	***
	Ce-141	***	***	***	***	***	***	***
	Ce-143	***	***	***	***	***	***	***
	Ce-144	2.6E-04	1.4E-03	***	***	***	4.5E-02	***
	W-187	3.4E-04	***	***	***	5.8E-04	***	***
	Np-239	***	***	***	***	***	***	2.0E-03

	(µCi/g)								
Isotope	Fort Calhoun 1 (1976-1977)	Zion 1/2 (1975-1978)	Turkey Point 3/4 (1974-1978)	Indian Pt 2/3 (1975-1978)	Yankee Rowe (1975)	Calvert Cliffs l _(1976)	Three Mile Island 1 (1975-1977)	Prairie Island 1/2 (1981)	Rancho Seco (1979)
Kr-85m Kr-85 Kr-87 Kr-88 Xe-131m Xe-133m Xe-133 Xe-135m Xe-135	1.9E-01 3.4E-02 1.9E-01 3.2E-01 6.8E-02 1.6E-01 6.7E+00 9.5E-02 9.3E-01	*** *** *** *** *** *** ***	7.8E-02 *** 9.0E-02 1.3E-01 1.2E-03 9.1E-03 8.8E-01 1.7E-01 5.1E-01	3.4E-02 *** 7.3E-02 *** 8.3E-01 1.0E-01 1.9E-01	5.7E-03 *** 7.6E-03 1.9E-02 *** *** 2.1E-01 *** 3.0E-02	* *	*** *** *** *** *** *** ***	4.9E-04 3.3E-04 1.1E-03 1.1E-03 4.2E-05 7.2E-05 2.2E-03 1.4E-03 3.6E-03	5.5E-02 2.2E-01 5.9E-02 9.9E-02 3.5E-03 4.5E-02 1.5E+00 6.0E-01 4.6E-01
Xe-137 Xe-138 Br-84 I-132 I-134 I-135 Rb-88 Cs-134 Cs-136 Cs-137	1.8E-01 *** 7.1E-02 3.8E-02 7.4E-02 5.0E-01 1.8E-02 1.7E-03 2.0E-02	*** 9.6E-02 1.3E-01 1.1E-01 2.3E-01 9.4E-03 1.2E-03 1.2E-02	3.4E-02 3.4E-02 7.6E-02 1.1E-02 9.3E-02 1.5E-01 8.6E-02 1.0E-01 1.8E-03 1.1E-04 3.1E-03	1.52-01 *** *** *** *** 1.9E-02 *** 2.4E-02	3.0L=02 *** *** 1.8E=02 *** *** *** *** ***	* *	*** *** *** *** *** *** ***	2.9E-03 1.0E-03 5.1E-03 9.0E-03 5.8E-03 5.7E-03 2.2E-05 3.2E-06 6.7E-05	***† 1.7E-01 5.5E-02 5.3E-02 8.3E-02 6.0E-02 1.5E-01 7.7E-03 1.9E-04 9.4E-03
N-16 H-3 Na-24 Cr-51 Mn-54 Fe-55 Fe-59 Co-58 Co-60 Zn-65 Sr-89 Sr-90	*** 1.3E-01 8.8E-03 1.5E-02 4.4E-03 6.5E-04 5.2E-04 1.4E-02 1.0E-03 2.6E-03 6.8E-04 4.2E-06	1.5E-01 1.0E-01 2.1E-03 2.2E-03 1.6E-04 6.2E-04 4.6E-03 7.8E-04 2.4E-03 7.7E-05 3.4E-06	1.0E-02 3.4E-04 3.9E-05 *** 2.3E-04 6.7E-04 1.2E-04 1.6E-05 6.8E-07 1.6E-06	2.4C-02 *** 3.6E-03 *** 1.5E-02 *** 3.6E-03 3.1E-03 *** ***	*** *** 1.7E-03 1.1E-04 *** 6.9E-04 5.8E-04 4.7E-04 *** ***	*** 4.4E-02 *** *** *** *** *** *** *** ***	*** 1.2E-01 *** *** *** *** *** *** *** ***	2.9E-01 9.0E-03 3.0E-05 1.0E-05 2.1E-05 1.5E-06 8.0E-05 1.6E-05 1.7E-06 6.6E-06 5.4E-08	2.5E-01 1.4E-02 6.4E-03 6.8E-04 9.1E-03 5.2E-04 2.4E-02 9.2E-04 2.2E-05 ***

TABLE 2-10 (continued)

.

SUMMARY OF RADIONUCLIDE PRIMARY COOLANT CONCENTRATIONS IN PWR'S*

2-24

SUMMARY OF RADIONUCLIDE PRIMARY COOLANT CONCENTRATIONS IN PWR'S* $(\mu Ci/g)$

			(µc1/9))				
Fort Calhoun 1 (1976-1977)	Zion 1/2 (1975-1978)	Turkey Point 3/4 (1974-1978)	Indian Pt 2/3 <u>(1975-1978)</u>	Yankee Rowe (1975)	Calvert Cliffs l (1976)	Three Mile Island l (1975-1977)	Prairie Island 1/2 (1981)	Rancho Seco (1979)
***	3.8E-03	3.7E-04	***	***	***	***	3.3E-05	7.2E-04
***		***	***	***	***	***		***
5.0E-06		***	***	***	***	***		1.8E-05
***		2.2E-03	***	***	***	***		2.6E-03
1.5E-03		•	***	2.8E-04	***	***		2.9E-04
			***		***	***		4.6E-04
			***		***	***		1.7E-03
4.1E-04	***		***		***	***	***	***
5.4E-02	1.8E-04		***	***	***	***	6.7E-07	7.0E-05
***		***	***	***	***	***	***	***
2.2E-04		1.1E-05	***	***	***	***	3.7E-06	9.7E-05
2.1E-04	3.8E-04	1.9E-04	***	***	***	***	2.0E-06	***
***	***		***	***	***	***	***	***
***	2.1E-03		***	***	***	***	***	***
***	***	7.9E-03	***	***	***	***	***	7.4E-03
***	1.8E-04	4.0E-05	***	***	***	***	1.2E-06	3.1E-05
1.1E-03	1.0E-03	1.1E-04	***	***	***	***	1.9E-05	2.5E-04
4.2E-04	1.8E-03	1.3E-04	***	***	***	***	1.4E-05	1.1E-04
4.3E-04	1.1E-04	1.7E-05	***	***	***	***	***	4.6E-05
8.2E-03	4.6E-04	4.9E-05	***	***	***	***	1.9E-05	***
***	1.4E-04	1.2E-05	***	2.6E-05	***	***	5.4E-06	4.6E-04
1.4E-02	3.1E-03	3.0E-04	***	***	***	***	1.1E-04	2.9E-03
1.2E-02	9.3E-04	1.0E-04	***	***	***	***	3.7E-06	7.6E-04
	Calhoun 1 (1976-1977) *** 5.0E-06 *** 1.5E-03 1.3E-03 5.7E-03 4.1E-04 5.4E-02 *** 2.2E-04 2.1E-04 *** *** 1.1E-03 4.2E-04 4.3E-04 8.2E-03 *** 1.4E-02	Calhoun 1 (1976-1977) Zion 1/2 (1975-1978) *** 3.8E-03 *** 8.7E-04 5.0E-06 4.4E-06 *** 7.9E-03 1.5E-03 4.2E-04 1.3E-03 2.2E-04 5.7E-03 3.5E-03 4.1E-04 *** 5.4E-02 1.8E-04 *** 9.0E-02 2.2E-04 3.1E-03 2.1E-04 3.8E-04 *** *** *** 1.8E-04 *** *** *** 1.8E-03 4.2E-04 1.8E-03 4.2E-04 1.8E-03 4.2E-04 1.8E-03 4.3E-04 1.1E-04 8.2E-03 4.6E-04 *** 1.4E-04 1.4E-02 3.1E-03	Calhoun 1 (1976-1977)Zion 1/2 (1975-1978)Point $3/4$ (1974-1978)***3.8E-03 ***3.7E-04 ***5.0E-064.4E-06 ****** ***5.0E-064.4E-06 ****** ******7.9E-03 2.2E-032.2E-03 1.5E-03 1.3E-03 2.2E-041.5E-034.2E-04 4.5E-051.3E-03 5.7E-032.2E-04 3.5E-03 8.1E-044.1E-04 4.1E-04 ****** 9.0E-02 ***2.2E-04 2.1E-04 ***3.1E-03 3.7E-04 ***2.2E-04 ***3.1E-03 3.7E-04 ******2.4E-02 7.9E-03 ******1.8E-04 7.9E-03 1.1E-051.1E-03 1.0E-03 1.1E-044.2E-04 4.3E-04 4.3E-041.1E-03 4.3E-041.1E-03 4.3E-041.1E-03 4.2E-041.2E-05 8.2E-03 ***1.4E-04 1.2E-051.4E-02 3.1E-033.0E-04	Fort Calhoun 1 (1976-1977)Turkey Zion 1/2 (1975-1978)Indian Point 3/4 (1974-1978)Indian Pt 2/3 (1975-1978)*** $3.8E-03$ (1975-1978) $3.7E-04$ (1975-1978)*** (1975-1978)*** $3.8E-03$ *** $3.7E-04$ ****** ***5.0E-06 $4.4E-06$ $4.4E-06$ ****** ****** ***5.0E-06 $4.4E-06$ $4.4E-06$ ****** ****** ***5.0E-03 $4.2E-04$ $4.5E-05$ ****** ***1.5E-03 $4.2E-04$ $3.5E-03$ $3.5E-03$ $3.1E-04$ ****** *** $2.7E-06$ ***1.3E-03 $4.1E-04$ *** $2.2E-04$ $3.1E-03$ $3.1E-05$ ****** *** ***2.2E-04 $2.1E-04$ *** $3.8E-04$ $1.9E-04$ ***2.2E-04 $3.1E-03$ *** $3.7E-04$ ****** *** $2.4E-02$ ****** *** $1.8E-04$ $4.0E-05$ ****** *** $1.8E-04$ $4.0E-05$ ***1.1E-03 $1.0E-03$ $1.0E-03$ $1.1E-04$ *** *** ***1.1E-03 $1.0E-03$ $1.3E-04$ ***1.1E-03 $1.2E-04$ $1.3E-04$ $4.9E-05$ ***1.1E-03 $1.2E-04$ $1.3E-05$ $1.3E-04$ $1.3E-04$ $1.3E-05$ $1.3E-04$ $1.3E-04$ $1.3E-04$ $1.3E-05$ $1.3E-04$ $1.3E-04$ $1.3E-05$ $1.3E-04$ $1.3E-04$ $1.3E-05$ $1.3E$	Fort Calhoun 1 (1976-1977)Turkey Zion 1/2 (1975-1978)Indian Point 3/4 (1974-1978)Yankee Rowe (1975-1978)***3.8E-03 (1975-1978) $3.7E-04$ (1975-1978)*********3.8E-03 *** $3.7E-04$ ************ $3.7E-04$ *************** $3.7E-04$ *************** $7.9E-03$ *** $2.2E-03$ *********1.5E-03 *** $4.2E-04$ *** $4.5E-05$ *** $2.8E-04$ *** $2.8E-04$ ***1.5E-03 *** $2.2E-04$ *** $3.8E-05$ *** $2.8E-04$ ***1.3E-03 *** $2.2E-04$ *** $3.8E-05$ *** $2.8E-04$ ***1.3E-03 *** $2.2E-04$ *** $3.8E-05$ *** $2.4E-04$ ***5.4E-02 *** $1.8E-04$ *** $2.1E-05$ *** $***$ ****** *** $9.0E-02$ ****** *** $***$ ****** *** $2.1E-03$ *** $1.1E-05$ ****** ****** *** $2.1E-03$ *** $3.7E-04$ ****** ****** *** $1.8E-04$ *** $1.9E-04$ ****** ****** *** $1.8E-04$ *** $1.9E-04$ ****** ****** *** $1.8E-04$ *** $1.9E-04$ ****** ****** *** $1.8E-04$ *** $1.9E-04$ ****** ****** *** $1.8E-04$ *** $1.9E-05$ ****** *** <t< td=""><td>Fort Calhoun 1Zion 1/2 (1975-1978)Turkey Point 3/4 (1974-1978)Indian Pt 2/3 (1975-1978)Yankee Rowe (1975)Calvert Cliffs 1 (1976)***3.8E-03 (1974-1978)3.7E-04 (1975-1978)***************1(1975)(1976)***3.8E-03 ***3.7E-04 ************************5.0E-06 ***4.4E-06 ************************7.9E-03 2.2E-032.2E-03 ************1.5E-03 5.034.2E-04 3.5E-033.5E-05 8.1E-05***2.8E-04 ******1.3E-03 5.7E-032.2E-04 3.5E-033.1E-04 8.1E-04***5.0E-03 ******4.1E-04 ****** 9.0E-02 ***2.7E-06 ****** *********2.2E-04 3.1E-031.1E-05 3.7E-04 ****** *********2.2E-04 3.1E-031.1E-05 3.7E-04 ****** ****** ********* ***1.8E-04 4.0E-051.9E-03 ****** ****** ****** ***1.8E-04 4.0E-051.9E-03 ****** ****** ***1.1E-03 4.2E-041.0E-03 4.2E-041.3E-04 4.2E-05*** ****** ***1.1E-03 4.2E-041.0E-03 4.2E-05*** ****** ***1.1E-03 4.2E-041.2E-05 4.4E-04*** 4.2E-05*** ***<!--</td--><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></t<>	Fort Calhoun 1Zion 1/2 (1975-1978)Turkey Point 3/4 (1974-1978)Indian Pt 2/3 (1975-1978)Yankee Rowe (1975)Calvert Cliffs 1 (1976)***3.8E-03 (1974-1978)3.7E-04 (1975-1978)***************1(1975)(1976)***3.8E-03 ***3.7E-04 ************************5.0E-06 ***4.4E-06 ************************7.9E-03 2.2E-032.2E-03 ************1.5E-03 5.034.2E-04 3.5E-033.5E-05 8.1E-05***2.8E-04 ******1.3E-03 5.7E-032.2E-04 3.5E-033.1E-04 8.1E-04***5.0E-03 ******4.1E-04 ****** 9.0E-02 ***2.7E-06 ****** *********2.2E-04 3.1E-031.1E-05 3.7E-04 ****** *********2.2E-04 3.1E-031.1E-05 3.7E-04 ****** ****** ********* ***1.8E-04 4.0E-051.9E-03 ****** ****** ****** ***1.8E-04 4.0E-051.9E-03 ****** ****** ***1.1E-03 4.2E-041.0E-03 4.2E-041.3E-04 4.2E-05*** ****** ***1.1E-03 4.2E-041.0E-03 4.2E-05*** ****** ***1.1E-03 4.2E-041.2E-05 4.4E-04*** 4.2E-05*** *** </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

* See Footnote of Table 2-9.

** See Footnote of Table 2-9.

*** See Footnote of Table 2-9.

t Data unreliable.

2-25

	PRIMARY/SECONDARY		
(gal/da	y at 70°F; density	= 8.3 1b/g	al)

						1970	<u>)</u>					
Plant	J	F	М	A	M	J	J	A	S	0	N	D
San Onofre	4	4	4	4	3	9	11	8	14	S**	S	0
Connecticut Yankee	0	10	0	S	0	0	20	10	20	0	0	0
R. E. Ginna							0	0	0	0	0	0
Point Beach 1												0
						1071						
	7	-				<u>1971</u>	-		~	<u>^</u>		-
Plant	J	F	M	A	М	J	J	<u> </u>	S	0	<u>N</u>	<u>D</u>
San Onofre	0	0	0	0	0	0	0	0	0	0	0	0
Connecticut Yankee	0	30	15	0	0	10	20	20	15	40	40	40
R. E. Ginna	0	0	S	S	0	0	0	0	0	0	0	0
H. B. Robinson			S	S	S	S	S	S	0	50	55	20
Point Beach 1	0	0	0	10	90	100	53	30	20	20	20	20
						1972						
Plant	J	F	M	A	M	J	J	A	S	0	N	D
San Onofre	S	0	0	0	0	0	22	0	10	30	4	31
Connecticut Yankee	40	40	40	40	40	S	0	0	0	0	0	0
R. E. Ginna	0	0	0	S	S	0	0	0	0	S	0	0
H. B. Robinson	60	60	60	60	3	0	0	0	0	0	0	0
Point Beach 1	40	50	55	55	55	55	55	55	55	S	S	S
Point Beach 2										0	0	0
Surry 1												0
Turkey Point 3												0

* Leakage values listed begin with the first year of commercial operation.
** Shutdown not included in average.

NA - Not Available.

$\frac{MONTHLY \ AVERAGE \star \ PRIMARY/SECONDARY \ LEAKAGE}{(gal/day \ at \ 70^{\circ}F; \ density \ = \ 8.3 \ 1b/gal)}$

						197	3					
Plant	J	F	M	Α	M	J	J	A	S	0	N	D
San Onofre	3	3	0	0	0	0	0	0	0	0	S	S
Connecticut Yankee	0	0	0	0	10	S	0	S	S	S	S	0
R. E. Ginna	0	0	0	0	0	0	0	0	0	0	0	0
H. B. Robinson	6	6	6	S	0	0	1	1	1	۱	7	5
Point Beach 1	S	S	0	0	0	0	0	0	0	0	0	0
Point Beach 2	0	0	0	0	0	0	0	0	0	0	0	0
Surry 1	0	0	0	0	0	0	0	0	0	0	0	0
Turkey Point 3	0	0	0	0	0	0	0	0	0	0	0	0
Surry 2					0	0	0	0	0	0	0	0
Turkey Point 4									0	0	0	0

						1974	-					
Plant	J	F	M	A	M	J	J	Α	S	0	N	D
San Onofre	0	44	60	60	0	0	0	0	0	2	2	2
Connecticut Yankee	0	0	0	S	0	0	0	0	0	0	0	0
R. E. Ginna	S	S	S	0	0	0	0	0	0	0	0	0
H. B. Robinson 2	2	10	112	98	NA	19	2	1	1	1	1	٦
Point Beach 1	0	0	0	S	0	0	0	0	0	0	0	0
Point Beach 2	0	0	0	0	0	0	0	0	0	0	S	S
Surry 1	S	S	0	0	0	115	55	115	115	4	S	S
Turkey Point 3	0	0	0	0	0	0	0	NA	NA	S	S	S
Surry 2	0	0	0	0	S	38	0	0	0	S	S	S
Turkey Point 4	S	0	0	0	0	0	0	22	0	0	0	0
Zion l	S	S	S	0	0	0	S	S	0	0	0	0
Zion 2									0	0	0	0
Indian Point 2								0	0	0	0	0
Prairie Island 1							0	0	0	0	0	0

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (gal/day at 70°F; density = 8.3 lb/gal)

						1975	5					
Plant	J	F	M	A	M	J	J	A	S	0	N	D
San Onofre	2	2	2	2	3	5	0	0	0	0	0	0
Connecticut Yankee	0	0	0	0	0	S	0	0	0	0	0	0
R. E. Ginna	0	0	3	S	0	0	0	0	0	0	0	0
H. B. Robinson 2	1	1	1	3	1	5	3	2	0	0	S	7
Point Beach l	0	61	S	0	1	2	2	2	1	2	S	S
Point Beach 2	0	0	0	0	0	0	0	1	0	0	0	0
Surry 1	S	0	0	0	0	0	0	0	125	S	S	26
Turkey Point 3	0	0	0	0	0	0	0	0	0	0	S	S
Surry 2	0	0	0	0	S	0	0	0	0	0	0	0
Turkey Point 4	0	0	0	S	S	S	7	20	79	0	0	50
Zion 1	0	0	S	0	0	S	0	0	S	0	0	0
Zion 2	0	S	0	0	0	S	0	0	S	0	0	0
Indian Point 2	0	102	S	0	0	0	0	0	0	S	0	0
Prairie Island l	0	0	0	0	0	0	0	0	0	0	0	0
Prairie Island 2	0	0	0	0	0	0	0	0	0	0	0	0
Cook 1									0	0	0	0

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (gal/day at 70°F; density = 8.3 1b/gal)

						1976	5					
Plant	J		M	Α	M	J	J	A	S	0	N	D
San Onofre	0	0	0	0	0	0	46	0	0	S	S	S
Connecticut Yankee	0	0	0	0	S	S	0	0	0	S	0	0
R. E. Ginna	0	S	S	14	0	0	0	S	0	S	0	0
H. B. Robinson 2	2	1	1	1	2	1	2	2	2	6	S	S
Point Beach 2	32	200	5	29	10	12	13	21	23	25	25	25
Surry 1	0	0	28	86	NA	19	39	14	33	1	S	S
Turkey Point 3	12	6	14	0	11	19	0	12	1	S	S	S
Surry 2	95	31	10	0	S	0	0	0	6	S	S	200
Turkey Point 4	62	0	0	S	S	S	0	0	80	42	S	0
Zion 1	0	0	S	S	S	S	0	0	0	S	0	0
Zion 2	S	S	0	S	S	0	0	0	0	S	0	0
Indian Point 2	0	0	0	S	S	S	S	S	S	139	S	S
Prairie Island l	0	0	S	S	0	0	0	0	0	0	0	0
Prairie Island 2	S	0	0	0	0	0	0	0	0	S	S	S
Cook 1	0	0	0	S	S	0	0	0	0	0	0	0
Trojan					0	S	S	S	0	S	S	0
Indian Point 3								0	S	0	0	0
Point Beach 1	0	0	3	3	3	2	3	3	3	S	S	0

1976

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (gal/day at 70°F; density = 8.3 lb/gal)

						<u>1977</u>	, -					
Plant	J	F	Μ	Α	M	J	J	A	S	0	N	D
San Onofre	S	S	S	0	0	1	2	2	S	0	2	1
Connecticut	0	0	0	0	0	0	0	0	0	S	S	0
R. E. Ginna	0	0	0	S	S	0	0	0	0	0	0	0
H. B. Robinson 2	1	1	0	1	1	0	0	1	0	6	41	52
Point Beach 1	4	5	3	6	3	5	5	5	4	S	8	7
Point Beach 2	25	35	33	S	0	0	0	0	0	0	0	0
Surry 1	S	77	144	53	0	0	0	26	58	58	21	0
Turkey Point 3	0	0	0	0	0	0	0	28	72	72	56	S
Surry 2	54 8	360	S	0	NA	18	10	8	4	0	14	0
Turkey Point 4	23	29	71	96	7	S	S	0	0	4	0	0
Zion 1	0	0	0	0	0	0	0	0	S	S	S	0
Zion 2	S	S	S	0	0	0	0	0	0	0	0	0
Indian Point 2	0	0	0	S	0	0	S	0	0	0	0	0
Prairie Island l	0	0	0	S	0	0	0	0	0	0	0	0
Prairie Island 2	0	0	0	0	0	0	0	0	0	1	S	S
Cook 1	S	S	0	0	0	0	0	0	0	0	0	0
Trojan	0	0	0	0	S	S	0	0	0	0	0	0
Indian Point 3	0	0	0	0	0	0	0	0	0	S	S	S
Beaver Valley 1				0	0	S	0	0	S	S	0	0
Salem 1							0	0	0	S	S	0
Farley 1												0

2-30

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (gal/day at 70°F; density = 8.3 lb/gal)

	1978										
Plant	J	F	M	<u>A</u>	M	J	Average,* gal/day				
San Onofre	1	1	1	S	1	1	4.6				
Connecticut Yankee	0	0	0	0	0	0	5.7				
R. E. Ginna	4	0	0	S	S	0	0.27				
H. B. Robinson 2	441	S	S	18	88	190	21				
Point Beach 1	20	7	7	7	120	7	15				
Point Beach 2	0	0	0	S	0	0	7.9				
Surry 1	0	0	0	0	S	S	22				
Turkey Point 3	S	0	0	0	0	0	5.5				
Surry 2	0	46	278	0	0	0	32.				
Turkey Point 4	36	193	0	0	0	0	17.				
Zion 1	0	0	0	0	0	0	0				
Zion 2	0	S	S	S	S	0	0				
Indian Point 2	0	S	S	S	S	0	7.8				
Prairie Island l	0	0	0	S	0	0	0				
Prairie Island 2	0	0	0	0	0	0	0.03				
Cook 1	0	0	0	S	S	S	0				
Trojan	2	2	2	S	S	S	0.38				
Indian Point 3	0	0	0	0	0	S	0				
Beaver Valley 1	0	0	0	0	S	S	0				
Salem 1	0	0	0	S	S	S	0				
Farley 1	0	0	0	0	0	0	0				
Operation Weighted	Averag	e					9				

1978

* Average daily value for each reactor is obtained by the sum of the total monthly leakage rates divided by the total number of days in operation.

MOISTURE CARRYOVERS IN RECIRCULATING U-TUBE STEAM GENERATORS*

Facility		Percent Carryovers	Reference
Palisades		0.08	10, 11
Kansai		0.05	10, 11
Point Beach		0.2	8,12
Turkey Point 3		0.6	6
Turkey Point 4		1.6	6
			
	Average	0.5	

* Measurement based on Na concentration.

The category "Other Nuclides" includes Mo, Y, and Tc which are generally present in colloidal suspensions or as "crud." Although the actual removal mechanism for Y, Mo, and Tc is expected to be plateout or filtration, the quantitative effect of removal is expected to be commensurate with the removal of ionic impurities by ion exchange (within the accuracy of the calculations) and consequently plateout of these nuclides is included in the parameters for ion exchange.

2.2.4 IODINE RELEASES FROM BUILDING VENTILATION SYSTEMS

2.2.4.1 Parameter

The iodine releases from building ventilation systems prior to treatment are calculated by the PWR-GALE Code using the data in Tables 1-1, Tables 2-2 through 2-8 and 2-13 through 2-16.

2.2.4.2 Bases

The iodine-131 releases from building ventilation systems are based on measurements made at a number of operating reactors. The measurements were made during routine plant operation and during plant shutdowns. Work on identifying sources of radioiodine at PWR's has been conducted by C. Pelletier, et al. (Ref. 7) for the Electric Power Research Institute (EPRI), at three operating PWR's; Ginna, Calvert Cliffs 1, and Three Mile Island 1. Measurements have also been made by EG&G Idaho, Inc., Allied Chemical Corp., Idaho National Engineering Laboratory, for the U. S. Nuclear Regulatory Commission at Fort Calhoun (Ref. 4), Zion 1 and 2 (Ref. 5), Turkey Point 3 and 4 (Ref. 6), Prairie Island (Ref.42), and Rancho Seco (Ref. 43).

These measurements indicate that iodine-131 building vent releases are directly related to the reactor coolant iodine-131 concentration. As a result, the releases of iodine are expressed as "normalized" releases, that is, the absolute measured release rate in Ci/yr is divided by the reactor coolant concentration in μ Ci/g to give a "normalized" release rate of iodine-131 in Ci/yr/ μ Ci/g as shown in the following equation:

$$R_{N} = \frac{R_{A}}{C_{RW}}$$

where

ANNUAL IODINE NORMALIZED RELEASES FROM CONTAINMENT VENTILATION SYSTEMS†

NORMAL OPERATION LEAK RATE*

	Normalized Release/Unit
Data Source	10 ⁻³ %/day
Ft. Calhoun (Ref. 4)	0.0014
Three Mile Island 1 (Ref. 7)	2.5
Turkey Point 3/4 (Ref. 6)	0.9
Main Yankee (Ref. 16)	0.1
Ginna (Ref. 19)	0.064
Yankee Rowe (Ref. 14, 16)	1.0
Prairie Island 1/2 (Ref. 42)	0.005
Rancho Seco (Ref. 43)	2.56
Average	0.80

RELEASE FOR EXTENDED OUTAGES**

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)
Three Mile Island 1 (Ref. 7)	0.44
Calvert Cliffs l (Ref. 7)	0.19
Average	0.32

The normalized release rate, expressed in %/day of leakage of primary * coolant inventory of iodine, represents the effective leak rate for radioiodine. It is the combination of the reactor water leakage rate into the buildings, and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured.

^{**} The normalized release rate, expressed in $Ci/yr/\mu Ci/g$, represents the effective leak rate for radioiodine. It is the combination of the reactor water iodine leakage rate into the buildings, and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured.

t These results were obtained using 131 I data. The normalized release rates are applicable to both 131 I and 133 I.

ANNUAL IODINE NORMALIZED RELEASES* FROM AUXILIARY BUILDING VENTILATION SYSTEMS*

NORMAL OPERATION

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)
Zion 1/2 (Ref. 5)	1.0
Fort Calhoun (Ref. 4)	0.12
Ginna (Ref. 7)	0.032
Calvert Cliffs 1 (Ref. 7)	0.57
Three Mile Island 1 (Ref. 7)	0.034
Turkey Point 3/4 (Ref. 6)	1.85
Prairie Island 1/2 (Ref. 42)	0.013
Rancho Seco (Ref. 43)	0.97
Average	0.68

SHUTDOWN

Data Source	Normalized Release/Unit (Ci/yr/uCi/g)
Ginna (Ref. 7)	0.08
Calvert Cliffs 1 (Ref. 7)	0.016
Three Mile Island l (Ref. 7)	0.14
Turkey Point 3/4 (Ref. 6)	6.8
Rancho Seco (Ref. 43)	1.14
Average	2.50

* The normalized release rate, expressed in Ci/yr/µCi/g during different modes of operation, represents the effective leak rate for radioiodine. It is the combination of the reactor water iodine leakage rate into the buildings and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured.

t These results were obtained using ^{131}I data. The normalized release rates are applicable to both ^{131}I and ^{133}I .

ANNUAL IODINE NORMALIZED RELEASES* FROM REFUELING AREA VENTILATION SYSTEMST

NORMAL OPERATION

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)
Ginna (Ref. 7)	0.008
Calvert Cliffs 1 (Ref. 7)	0.049
Three Mile Island 1 (Ref. 7)	0.0012
Turkey Point 3 (Ref. 6)	0.16
Prairie Island 1/2 (Ref. 42)	0.019
Rancho Seco (Ref. 43)	0.01
Average	0.038

SHUTDOWN

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)				
Ginna (Ref. 7)	0.014				
Calvert Cliffs 1 (Ref. 7)	0.039				
Three Mile Island 1 (Ref. 7)	0.06				
Turkey Point 3 (Ref. 6)	0.05				
Rancho Seco (Ref. 43)	0.30				
Average	0.093				

^{*} The normalized release rate, expressed in Ci/yr/µCi/g during different modes of operation, represents the effective leak rate for radioiodine. It is the combination of the reactor water iodine leakage rate into the building, and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured.

t These results were obtained using ^{131}I data. The normalized release rates are applicable to both ^{131}I and ^{133}I .

TABLE 2-16*

ANNUAL IODINE NORMALIZED RELEASES** FROM TURBINE BUILDING VENTILATION SYSTEMS+

NORMAL OPERATION

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)
Monticello	3.1×10^3
Oyster Creek	6.0×10^3
Vermont Yankee	0.35×10^3
Pilgrim	8.5×10^3
Browns Ferry	1.3×10^3
References 3, 5 of Ref. 15	3.3 x 10^3
Average	3.8×10^3

EXTENDED SHUTDOWN

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)				
Monticello	1.7×10^2				
Oyster Creek	3.5×10^2				
Vermont Yankee	0.63×10^2				
Browns Ferry	1.3×10^2				
References 3, 5 of Ref. 15	1.4×10^3				
Average	4.2×10^2				

- * The data in this table are taken from Table 2-8, NUREG-0016, Revision 1, January 1979 (Ref. 15).
- ** The normalized release rate, expressed in Ci/yr/µCi/g during different modes of operation represents the effective leak rate for radioiodine. It is a function of iodine leak rate via steam and the partition coefficient for radioiodine from reactor water to steam in the reactor vessel.
- t These results were obtained using ^{131}I data. The normalized release rates are applicable to both ^{131}I and ^{133}I .

The normalized reactor water release rate, expressed in Ci/yr/ μ Ci/g represents an effective leak rate for reactor water containing iodine. It is the combination of the water leakage rate into the building and the effect of iodine partitioning between the water phase in the systems leakage and the vapor phase in the building atmosphere.

For the turbine building, the secondary coolant iodine releases are directly related to the secondary coolant iodine-131 concentration. Therefore, for the turbine building, the normalized iodine release, R_N , is determined using the following expression:

$$R_{N} = \frac{R_{A}}{C_{RW} \times PC}$$

where

 R_N = normalized release rate of secondary coolant water containing iodine-131, Ci/yr/µCi/g

 R_{Λ} = absolute (measured) iodine-131 release rate, Ci/yr

 C_{DW} = measured secondary coolant iodine-131 concentration, $\mu Ci/g$

PC = measured iodine partition coefficient from secondary coolant water to steam.

The normalized release rate is used to estimate the release from PWR's since this expression for release rate is least variable with time for a given mode of operation. For this reason, it is useful in the determination of releases from PWR's.

Data on normalized release rates from the three reactors used in the EPRI study and the five reactors used in the NRC sponsored study are given for normal operation and shutdown periods in Tables 2-13 through 2-15, for the containment building, auxiliary building and refueling area, respectively. Also given in Table 2-13 is the normalized value of the iodine release data discussed in NUREG-0017, April 1976 (Ref. 14). For Table 2-16, it was considered that since the basic design and operation of PWR and BWR power generation equipment which is housed in the turbine building is essentially identical, the turbine building leakage rates from PWR's and BWR's should be similar. Therefore, for the PWR turbine building normalized iodine release rate, the values for BWR's given in Table 2-15 of NUREG-0016, Revision 1 (Ref. 15) have been used and reproduced here as Table 2-16 of this report.

The data in Tables 2-14 through 2-16 are expressed as total normalized releases during power operation of 300 days and the total normalized releases during shutdowns of 65 days. Since the reactors used in the EPRI study and the NRC study experienced several intermittent shutdowns of short duration during the power operation measurement period, the iodine releases during these short duration outages are included under power operation.

Since the releases from the containment building are dependent on the method of containment purging (see Section 2.2.9, Containment Purging Frequency), the releases in Table 2-13 are expressed in terms of a leak rate (in %/day of primary coolant inventory). In addition, the release from the containment building during extended outages is expressed as a total normalized release as discussed above for other buildings.

In order to obtain the releases in curies/year from the auxiliary building and the refueling area of a particular PWR, the normalized release data in Tables 2-14 and 2-15, respectively, are multiplied in the PWR-GALE Code by the iodine concentrations in the reactor coolant for that particular PWR using the following expression:

$$R_{PWRi} = R_N \times C_{PWRi}$$

where

- R_{PWRi} = calculated annual release rate for particular PWR for iodine isotope i, Ci/yr
- R_N = normalized annual release rate of iodine from Tables 2-14 and 2-15, Ci/yr/µCi/g

 C_{PWRi} = calculated reactor water concentration for particular PWR for iodine isotope i, $\mu Ci/g$

To obtain the release in curies/year from the turbine building of a particular PWR, the normalized release data in Table 2-16 are multiplied in the PWR-GALE Code by the iodine concentration in the secondary coolant water and the iodine partition coefficient from the water to steam in the steam generator for that particular PWR using the following expression:

$$R_{PWRi} = R_N \times SC_{PWRi} \times PC_{PWR}$$

where

- R_{PWRi} = calculated annual release rate for particular PWR for iodine isotope i, Ci/yr
- R_N = normalized annual release rate of iodine from Table 2-16, Ci/yr/µCi/g

- SC_{PWRi} = calculated secondary coolant concentration for particular PWR for iodine isotope i, $\mu Ci/g$
- PC_{PWR} = partition coefficient from the secondary coolant water to steam for the particular PWR (see Table 2-6)

In order to obtain the releases in curies/year from the containment building of a particular PWR, the normalized leak rates in Table 2-13, are multplied in the PWR-GALE Code by the iodine concentration in the reactor coolant for that particular PWR, and then this leak rate is considered along with the containment purging method for that particular PWR.

To obtain the releases during shutdown, multiply the normalized release rates for the shutdown period by the same reactor coolant concentration as for power operations. Use of this reactor coolant concentration is acceptable since the normalization technique based the shutdown normalized release rate on the reactor coolant concentrations prior to shutdown.

Iodine released from PWR building ventilation systems appear in one of the following chemical forms: particulate, elemental, hypoiodious acid (HOI) and organic. Based on data in References 4, 5, 6, 7, 42 and 43, the fraction of the iodine appearing in each of the chemical forms for each building ventilation system is given below:

> FRACTION OF IODINE APPEARING IN EACH CHEMICAL FORM FROM PWR BUILDING VENTILATION SYSTEMS

	Containment	Auxiliary	Turbine	Fuel Handling
Particulate	0.09	0.04	*	0.01
Elemental	0.21	0.21	0.78	0.17
HOI	0.21	0.22	*	0.57
Organic	0.49	0.53	*	0.25

* No data on breakdown of other species.

2.2.5 RADIOACTIVE PARTICULATES RELEASED IN GASEOUS EFFLUENTS

2.2.5.1 Parameter

Use the radioactive particulate release rates in gaseous effluents given in Table 2-17.

Nuclide Containment		Area	System
$\begin{array}{ccccc} Cr-51 & 9.2(-3) \\ Mn-54 & 5.3(-3) \\ Co-57 & 8.2(-4) \\ Co-58 & 2.5(-2) \\ Co-60 & 2.6(-3) \\ Fe-59 & 2.7(-3) \\ Sr-89** & 1.3(-2) \\ Sr-90** & 5.2(-3) \\ Zr-95 & NA \\ Nb-95 & 1.8(-3) \\ Ru-103 & 1.6(-3) \\ Ru-106 & NA \\ Sb-125 & NA \\ Cs-134 & 2.5(-3) \\ Cs-136 & 3.2(-3) \\ Cs-137 & 5.5(-3) \\ Ba-140 & NA \\ Ce-141 & 1.3(-3) \end{array}$	3.2(-4) 7.8(-5) NA 1.9(-3) 5.1(-4) 5.0(-5) 7.5(-4) 2.9(-4) 1.0(-3) 3.0(-5) 2.3(-5) 6.0(-6) 3.9(-6) 5.4(-4) 4.8(-5) 7.2(-4) 4.0(-4) 2.6(-5)	1.8(-4) 3.0(-4) NA 2.1(-2) 8.2(-3) NA 2.1(-3) 8.0(-4) 3.6(-6) 2.4(-3) 3.8(-5) 6.9(-5) 5.7(-5) 1.7(-3) NA 2.7(-3) NA 4.4(-7)	1.4(-5) 2.1(-6) NA 8.7(-6) 1.4(-5) 1.8(-6) 4.4(-5) 1.7(-5) 4.8(-6) 3.7(-6) 3.2(-6) 2.7(-6) NA 3.3(-5) 5.3(-6) 7.7(-5) 2.3(-5) 2.2(-6)

PARTICULATE RELEASE RATE FOR GASEOUS EFFLUENTS* (Ci/yr)/unit

* Particulate release rates are prior to filtration.

- NA No release observed from this source. Release assumed to be less than 1% of total.
- ** Data not available from Ref. 4, 5, 6 or 7, therefore Sr-89 and Sr-90 data were extracted from Semi-annual Effluent Release Reports. Release from each area above calculated by use of percent released from each area from Ref. 4, 5, 6 and 7 data.

2.2.5.2 Bases

Tables 2-18 through 2-21 list measured particulate releases at 12 operating reactors (Ref. 4, 5, 6, 7, 42, and 43). The average annual release rates for each nuclide released from four sources within the plant have been calculated based on the data in Tables 2-18 through 2-21. The measurements shown in Tables 2-18 through 2-21 were taken upstream of HEPA filters on streams on which HEPA filters are located. Based on the data in Tables 2-18 through 2-21, 63% of the releases came from the containment, 5% from the auxiliary building, 31% from the fuel pool area, and less than 1% from the waste gas processing system.

2.2.6 NOBLE GAS RELEASES FROM BUILDING VENTILATION SYSTEMS

2.2.6.1 Parameter

The noble gas releases from building ventilation systems are based on a daily leak rate of 3% of the noble gas inventory in the primary coolant released to the containment atmosphere; on a 160 lb/day primary coolant leak to the auxiliary building; and on a 1700 lb/hr steam leak rate in the turbine building.

2.2.6.2 Bases

The containment building leakage rate is derived from xenon-133 measurements in the containment atmosphere at Ginna and Maine Yankee (Ref. 17). The xenon-133 concentrations in the containment atmospheres at steady state were approximately $5 \times 10^{-3} \mu Ci/cc$ for Main Yankee and $7 \times 10^{-3} \mu Ci/cc$ for Ginna. The containment volumes at these facilities are approximately 1.8 $\times 10^{6}$ ft³ for Maine Yankee and 1 $\times 10^{6}$ ft³ for Ginna. Based on these values, the total microcuries of xenon-133 in the containment building atmosphere are

Maine Yankee

 $(5 \times 10^{-3} \mu \text{Ci/cc})(1.8 \times 10^{6} \text{ ft}^{3})(2.83 \times 10^{4} \text{ cc/ft}^{3}) = 2.5 \times 10^{8} \mu \text{Ci Xe-133}$

Ginna

$$(7 \times 10^{-3} \,\mu\text{Ci/cc})(1 \times 10^{6} \,\text{ft}^{3})(2.83 \times 10^{4} \,\text{cc/ft}^{3}) = 2.0 \times 10^{8} \,\mu\text{Ci Xe-133}$$

Based on the half-life of xenon-133 (5.3d) and the assumption of a constant leakage rate to containment, the daily leakage rate of xenon-133 to the containment for the two plants is

Main Yankee

<u>2.5 x 10⁸ μCi</u> (5.3 day/0.693) = 3.3 x 10⁷ μCi/day Xe-133 leakage

MEASURED RELEASES UPSTREAM OF HEPA FILTERS - CONTAINMENT (Ci/yr)

Nuclide	Three Mile Island l (Ref. 7)	Fort Calhoun (Ref. 4)	Zion 1 & 2 (Ref. 5)	Turkey Point 3 & 4 (Ref. 6)	Calvert Cliffs l <u>(Ref. 7)</u>	Ginna (Ref. 7)	Prairie Island l & 2 (Ref. 42)	Rancho Seco (Ref. 43)	Average (Ci/yr)/unit
Cr-51	5.5(-2)	ND	ND	ND	NA	NA	NA	NA	9.2(-3)
Mn-54	2.1(-2)	1.4(-8)	3.9(-6)	NA	NA	NA	NA	NA	5.3(-3)
Co-57	4.9(-3)	ND	ND	ND	NA	NA	NA	NA	8.2(-4)
Co-58	2.2(-1)	5.6(-8)	1.5(-5)	3.2(-6)	NA	NA	6.6(-8)	2.5(-3)	2.5(-2)
Co-60	2.3(-2)	3.8(-8)	1.2(-5)	3.0(-5)	NA	NA	1.4(-7)	3.3(-4)	2.6(-3)
Fe-59	1.6(-2)	NĎ	ND	ND	NA	NA	NA	NA	2.7(-3)
∾ Zr-95	NÅ	NA	NA	NA	NA	NA	NA	NA	NÁ
॑ Nb-95	1.1(-2)	ND	ND	ND	NA	NA	NA	NA	1.8(-3)
⁶ Ru-103	9 . 5(-3)	ND	ND	ND	NA	NA	NA	NA	1.6(-3)
Ru-106	NÀ	NA	NA	NA	NA	NA	NA	NA	NÅ
Sb-125	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cs-134	2.1(-2)	3.2(-6)	2.3(-4)	7.7(-5)	NA	NA	3.2(-8)	1.5(-3)	2.5(-3)
Cs-136	1.9(-2)	ND	ND	NDÍ	NA	NA	NÀ	NÅ	3.2(-3)
Cs-137	4.4(-2)	4.1(-6)	3.2(-4)	1.9(-4)	NA	NA	6.6(-8)	5.0(-3)	5.5(-3)
Ba-140	NÀ	NĂ	NÀ	NÀ	NA	NA	NÀÍ	NÀÍ	NÀ
Ce-141	8.0(-3)	ND	ND	ND	NA	NA	NA	NA	1.3(-3)

ND = Not detected. For averaging purposes, a value of zero was assumed.

NA = Not analyzed (or no measurement taken); plants not included in averaging.

TABLE 2-1	9
-----------	---

MEASURED RELEASES UPSTREAM OF HEPA FILTERS - AUXILIARY BUILDING

(Ci/yr)

	<u>Nuclide</u>	Three Mile Island l (Ref. 7)	Fort Calhoun (Ref. 4)	Zion 1 & 2 (Ref. 5)	Turkey Point 3 & 4 (Ref. 6)	Calvert Cliffs 1 <u>(Ref. 7)</u>	Ginna (Ref. 7)	Prairie Island l & 2 (Ref. 42)	Rancho Seco (<u>Ref. 43)</u>	Average <u>(Ci/yr)/unit</u>
	Cr-51	1.4(-3)	ND	NA	ND	NA	1.9(-4)	NA	NA	3.2(-4)
	Mn-54	1.1(-4)	NA	NA	6.3(-5)	3.0(-4)	6.7(-5)	2.7(-6)	NA	7.8(-5)
	Co-57	NÁ	NA	NA	NÀ	NÀ	NÀ	ŇA	NA	NA
	Co-58	1.1(-3)	2.0(-3)	NA	1.1(-3)	4.8(-4)	6.3(-4)	4.0(-5)	1.2(-2)	1.9(-3)
	Co-60	2.0(-4)	2.7(-4)	NA	6.0(-4)	2.0(-3)	7.7(-4)	4.5(-5)	7.3(-4)	5.1(-4)
	Fe-59	2.3(-4) ND		ND	ND	NÁ	1.9(-5)	NA	NÁ	5.0(-5)
	Zr-95	2.7(-4)	ND	ND	ND	7.9(-3)	4.1(-5)	5.7(-6)	NA	1.0(-3)
$\dot{\mathbf{v}}$	Nb-95	1.4(-4)	ND	ND	ND	NA	6.0(-5)	1.0(-5)	NA	3.0(-5)
4	Ru-103	9.1(-5)	ND	NA	ND	NA	6.9(-5)	2.7(-6)	NA	2.3(-5)
	Ru-106	NA	ND	NA	ND	NA	2.4(-5)	NA	NA	6.0(-6)
	Sb-125	NA	NA	NA	NA	NA	NÁ	7.7(-6)	NA	3.9(-6)
	Cs-134	8.0(-5)	1.6(-3)	NA	7.9(-4)	2.0(-3)	3.4(-4)	1.5(-6)	5.2(-5)	5.4(-4)
	Cs-136	NA	ND	NA	ND	NA	1.9(-4)	NA	NA	4.8(-5)
	Cs-137	2.0(-4)	1.8(-3)	NA	1.4(-3)	1.9(-3)	1.1(-3)	9.4(-6)	8.0(-5)	7.2(-4)
	Ba-140	NA	ND	ND	ND	NA	1.6(-3)	NA	NA	4.0(-4)
	Ce-141	1.5(-4)	ND	NA	ND	NA	2.8(-5)	1.5(-6)	NA	2.6(-5)

ND = Not detected. For averaging purposes, a value of zero was assumed.

NA = Not analyzed (or no measurement taken); plants not included in averaging.

Measurements were made downstream of the auxiliary building HEPA filter. Due to uncertainty in the DF's of the HEPA filter, the data is not considered.

MEASURED RELEASES UPSTREAM OF HEPA FILTERS - FUEL POOL AREA (Ci/yr)/unit

Nuclide	Three Mile Island 1 (Ref. 7)	Fort Calhoun (Ref. 4)	Zion 1 & 2 (Ref. 5)	Turkey Point 3 & 4 (Ref. 6)	Calvert Cliffs 1 & 2 (Ref. 7)	Ginna (Ref. 7)	Prairie Island 1 & 2 (Ref. 42)	Rancho Seco (<u>Ref. 43)</u>	Average
Cr-51	1.8(-4)	NA	NA	NA	NA	NA	NA	NA	1.8(-4)
Mn-54	1.0(-5)	NA	NA	NA	1.2(-3)	NA	2.6(-6)	NA	2.4(-4)
Co-57	NÁ	NA	NA	NA	NÁ	NA	NA	NA	NÁ
Co-58	8.5(-5)	NA	NA	NA	1.1(-2)	NA	8.8(-6)	6.7(-5)	1.8(-3)
Co-60	4.4(-5)	NA	NA	NA	5.0(-3)	NA	6.9(-6)	7.6(-6)	8.4(-3)
Fe-59	NÁ	NA	NA	NA	NĂ	NA	NÅ	ŇA	NĂ
Zr-95	NA	NA	NA	NA	NA	NA	7.2(-6)	NA	3.6(-6)
Nb-95	3.0(-5)	NA	NA	NA	9.5(-3)	NA	1.7(-5)	NA	1.9(-3)
∾ Ru-103	9.8(-5)	NA	NA	NA	NÀ	NA	1.7(-5)	NA	3.8(-5)
🚖 Ru-106	6.9(-5)	NA	NA	NA	NA	NA	NÁ	NA	6.9(-5)
Sb-125	1.7(-4)	NA	NA	NA	NA	NA	ND	NA	5.7(-5)
Cs-134	9.0(-6)	NA	NA	NA	2.2(-3)	NA	9.8(-7)	9.6(-7)	3.7(-4)
Cs-136	NÀ	NA	NA	NA	NÅ	NA	NÀ	ŇA	NÀ
Cs-137	2.4(-5)	NA	NA	NA	5.6(-3)	NA	4.1(-6)	7.4(-7)	9.4(-4)
Ba-140	NÀ	NA	NA	NA	NÀ	NA	NÀ	ŇA	NÀ
Ce-141	NA	NA	NA	NA	NA	NA	8.8(-7)	NA	4.4(-7)

ND = Not detected. For averaging purposes, a value of zero was assumed.

NA = Not analyzed (or no measurement taken); plants not included in averaging.

MEASURED RELEASES UPSTREAM OF HEPA FILTERS - WASTE GAS SYSTEM (Ci/yr)									
Nuclide	Three Mile Island 1 (Ref. 7)	Fort Calhoun (Ref. 4)	Zion 1 & 2 (Ref. 5)	Turkey Point 3 & 4 (Ref. 6)	Calvert Cliffs l (Ref. 7)	Ginna (Ref. 7)	Prairie Island 1 & 2 (Ref. 42)	Rancho Seco (Ref. 43)	Average <u>(Ci/yr)/unit</u>
Cr-51 Mn-54 Co-57 Co-58 Co-60 Fe-59 Zr-95 Nb-95 Ru-103 Ru-106 Sb-125 Cs-134 Cs-136 Cs-137 Ba-140 Ce-141	8.4(-5) 1.1(-5) NA 4.5(-5) 8.0(-5) 7.2(-6) 1.9(-5) 2.2(-5) 1.9(-5) 1.6(-5) NA 1.2(-4) 3.2(-5) 3.5(-4) 1.4(-4) 1.3(-5)	ND NA 3.8(-6) NA 1.8(-6) ND ND ND ND NA 1.2(-6) NA ND NA	ND 4.0(-6) NA 1.1(-5) 3.2(-6) 1.9(-6) ND ND ND ND ND ND ND NA 1.1(-4) ND 1.1(-4) ND	ND NA 8.8(-7) 2.9(-7) ND NA ND ND ND NA 3.8(-8) ND 8.8(-8) ND	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA 8.4(-9) NA 5.1(-8) 5.9(-8) NA NA NA NA NA 1.1(-8) NA 2.6(-8) NA	1.4(-5) 2.1(-6) NA 8.7(-6) 1.4(-5) 1.8(-6) 4.8(-6) 3.7(-6) 3.2(-6) 2.7(-6) NA 3.3(-5) 5.3(-6) 7.7(-5) 2.3(-5) 2.2(-6)

ND = Not detected. For averaging purposes, a value of zero was assumed.

NA = Not analyzed (or no measurement taken); plants not included in averaging.

2-46

7

Ginna

$$\frac{2 \times 10^8 \ \mu\text{Ci}}{(5.3 \ \text{day}/0.693)} = 2.6 \times 10^7 \ \mu\text{Ci/day} \ \text{Xe-133} \ \text{leakage}$$

7

Based on the xenon-133 concentration during power operation (Ref. 29) and the masses of primary coolant of the two plants, the fraction of the xenon-133 inventory in the containment released per day is

Maine Yankee

$$\frac{3.3 \times 10' \, \mu \text{Ci/day}}{(10^{\dagger} \, \mu \text{Ci/cc} \times 28,300 \, \text{cc/ft}^3 \times 11,000 \, \text{ft}^3)} = 0.01/\text{day} = 1\%/\text{day}$$

Ginna

$$\frac{2.6 \times 10' \,\mu\text{Ci/day}}{(30^{\dagger} \,\mu\text{Ci/cc} \times 28,300 \times 6,234 \,\text{ft}^3)} = 0.005/\text{day} - 0.5\%/\text{day}$$

Reference 16 also contains data for the xenon-133 concentration in the containment atmosphere and the primary coolant at Yankee Rowe for the periods August-October 1971, December 1971 - January 1972 and August-November 1973. These periods encompass several shutdowns and a wide variety of operating conditions, and during these periods the xenon concentration in the containment and in the primary coolant varied by two orders of magnitude. The percent of xenon-133 inventory in the coolant released to the containment atmosphere varied from approximately 0.05%/day to 0.5%/day. Also from Ref. 43, this percent was determined to be 10.4 for Rancho Seco.

On the basis of these data, we consider that 3%/day of the noble gas inventory in the primary coolant is released to the containment atmosphere.

In the auxiliary building, the source term calculation is based on an assumed primary coolant leakage rate of 160 lb/day (20 gal/day). In the absence of available data, this value is based on engineering judgment and is consistent with values proposed in Environmental Reports.

[†] The reactor coolant concentrations for Xe-133 are measured values during 12/73 - 6/74 for Main Yankee and September and October of 1971 for Ginna (Ref. 16).

In the turbine building, it is assumed that steam will leak to the turbine building atmosphere at a rate of 1700 lb/hr. The leakage is considered to be from many sources, each too small to be detected individually, but which, taken collectively, total 1700 lb/hr. The most significant leakage pathway is considered to be leakage through valve stem packings.

2.2.7 STEAM GENERATOR BLOWDOWN FLASH TANK VENT

2.2.7.1 Parameter

- 1. Pressurized water reactors, with U-tube steam generators, that are currently under design, either direct their blowdown through a heat exchanger to cool the blowdown or, if a flash tank is used, vent the flash tank to a flash tank vent condenser or the main condenser. For these plants, iodine releases by this path are negligible and a partition factor of zero is used for the steam generator blowdown flash tank vent.
- 2. For older plants which still utilize flash tanks which vent directly to the atmosphere an iodine partition factor of 0.05 is used.

2.2.7.2 Bases

Approximately one-third of the blowdown stream flashes to steam in the flash tank, provided there is a heat balance between steam generator operating conditions (550°F, 1000 psia) and the blowdown flash tank conditions (240°F, sat.). Although the iodine species in the blowdown stream will be predominantly nonvolatile (volatile species are degassed in the steam generator), significant iodine removal will occur because of entrainment by the flashing steam. A steam quality of 85% is considered in the evaluation. For currently designed PWR's which have provisions to prevent flashing (cooling blowdown below 212°F) or to condense the steam leaving the flash tank, the entrainment losses will be negligible, i.e., a partition factor of zero.

2.2.8 IODINE RELEASES FROM MAIN CONDENSER AIR EJECTOR EXHAUST

2.2.8.1 Parameter

The iodine releases from the main condenser air ejector exhaust prior to treatment are calculated by the PWR-GALE Code using the data in Tables 2-2 through 2-8, and in Table 2-22.

2.2.8.2 Bases

The iodine releases from the main condenser air ejector exhaust are based on secondary side measurements made by EPRI at Point Beach 2, (Ref. 7), by EG&G Idaho, Inc., for the NRC, at Turkey Point 3 and 4 (Ref. 6), and by Westinghouse at Point Beach 1 (Ref. 12) and Haddam Neck (Ref. 38).

ANNUAL IODINE NORMALIZED RELEASES FROM MAIN CONDENSER AIR EJECTOR EXHAUST*

Data Source	Normalized Release <u>(Ci/yr/µCi/g)</u>
Turkey Point 3/4 (Ref. 6)	3.5 (+3)
Point Peach 1/2 (Ref. 7, 12)	6.1 (+2)
Haddam Neck (Ref. 38)	3.0 (+1)
Average	1.7 (+3)

* The normalized release rate represents the effective release rate for radioiodine. It is the combination of the steam flow to the main condenser, the partitioning of radioiodine between the main condenser and the air ejector exhaust where it is measured and the partition coefficient for radioiodine from water to steam in the steam generator. In a manner similar to the discussion of normalized releases for building ventilation releases in Section 2.2.4, the main condenser air ejector exhaust iodine releases are directly related to the secondary coolant iodine-131 concentration. Therefore, for the air ejector exhaust, the normalized iodine release, R_N , is determined using the following expression:

$$R_{N} = \frac{R_{A}}{C_{RW} \times PC}$$

where

 $R_N = normalized effective release rate of iodine-131, Ci/yr/µCi/g$ $R_A = measured (absolute) iodine-131 release rate, Ci/yr$ $C_{RW} = measured secondary coolant iodine-131 concentration, µCi/g$ PC = measured iodine partition coefficient from secondary coolant water to steam in the steam generator.

Data on normalized release rates from the main condenser air ejector exhaust are given in Table 2-22. To obtain the release in curies/year from the air ejector exhaust of a particular PWR, the normalized release data in Table 2-22 are multiplied in the PWR-GALE Code by the iodine concentration in the secondary coolant water and the iodine partition coefficient from the water to steam for that particular PWR using the following expression:

$$R_{PWRi} = R_N \times C_{PWRi} \times PC_{PWR}$$

where

- R_{PWRi} = calculated annual release for particular PWR for iodine isotope i, Ci/yr
- R_N = normalized annual release rate of iodine from Table 2-22, Ci/yr/µCi/g
- C_{PWRi} = calculated secondary coolant concentration for particular PWR for iodine isotope i, $\mu Ci/g$
- PC_{PWR} = Iodine partition coefficient from water to steam in the steam generator for the particular PWR (see Table 2-6)

As discussed in references 6 and 7, most of the iodine in the secondary system is not available for release to the main condenser air ejector exhaust due to iodine bypassing the condenser hotwell in the moisture separator/reheater drains and extraction steam, and possibly due to iodine plating out in the moisture separator/reheater, turbine and main condenser. As a result, the iodine release from the main condenser air ejector exhaust is small compared to the building ventilation releases.

2.2.9 CONTAINMENT PURGE FREQUENCY

2.2.9.1 Parameter

For those plants equipped with small diameter purge lines (diameter of about 8 inches or less), releases are based on continuous ventilation during power operation and on 2 purges per year at cold shutdown with the large containment purge lines. The continuous ventilation rate used in the evaluation is based on the applicant's design.

For older plants (those under review for operating licenses or those for which the construction permit SER was issued prior to July 1, 1975) not equipped with small diameter purge lines, releases are based on 2 purges per year at cold shutdown and 22 purges per year during power operation. The 22 purges consider the effect of use of large containment purge lines and of separate vent lines, if any. If, for a specific plant, there is filtration on the large purge lines but not on the vent lines, an additional GALE Code run will be made to account for the effect of the vent.

Operating experience and special design features (for example, little or no air operated equipment in the containment) to reduce the frequency of containment purging will be considered on a case-by-case basis.

2.2.9.2 Bases

It is assumed that the containment building is purged twice a year for refueling and maintenance. The two purges are considered for cold shutdowns for annual fuel loading and planned maintenance. In addition, experience at operating reactors (Table 2-23) has indicated a need to purge or vent the containment frequently during full power operation and hot standby to control the containment pressure, temperature, humidity, and airborne activity levels (Ref. 17). For the above reasons, new plant designs are to include the capability to purge the containment continuously through small-diameter purge lines (about 8 inches in diameter) and only use the large containment purge lines at cold shutdowns and refueling outages (Ref. 18). On this basis, source term calculations for new plants should consider a continuous ventilation rate based on the applicant's containment design, along with the two cold shutdown purges per year with the large containment purge lines, unless special provisions are made to eliminate or reduce the need for continuous ventilation flow.

PWR CONTAINMENT PURGING AND VENTING EXPERIENCE (REF. 17)

Yankee Rowe

Purge and	vent only after cooldown following shutdown
Reasons:	Routinely pressurize containment for leak detection system
	checks and bring activity down
Duration:	2 to 6 hours

Maine Yankee

Purge once per quarter Reason: Bring activity down Duration: 2 to 3 days each quarter

Indian Point 2

Vent 2 times each day Reason: Pressure balance control Duration: Approximately 1 to 2 hours Purge once every 2 weeks (duration not stated)

Three Mile Island 1

Purge approximately once per week during operation, always purge prior to shutdown Reason: Improve temperature and humidity conditions Duration: Approximately 48 hours

Connecticut Yankee

Purge - Cannot purge during operation, only during shutdown Reason: Primarily to remove activity Duration: 1 to 2 days

San Onofre 1

Purge each cooldown approximately 4 times per year, no purging during power operation Purge for at least 24 hours, ventilate during entire shutdown period

Oconee 1

Continuous purge from startup through 7/1/74 Purged twice since 7/1/74, once on 7/8/74 for several days and again on 8/22/74 for 1 to 2 days Reason: Reduction of gaseous activity for maintenance, etc.

PWR CONTAINMENT PURGING AND VENTING EXPERIENCE (REF. 17)

Oconee 2

Continuous purge since startup, lowest purge rate approximately $20,000 \text{ ft}^3/\text{min}$

Reason: Reduction of gaseous activity for maintenance, etc.

Robinson 2

Purge approximately 20 times per year for 2 minutes each purge for testing of purge valves. In addition, purge approximately 10 times per year for an average of 100 hours each purge for personnel comfort reasons.

Vent about 75 times per year for about four hours each. Venting occurs to control containment pressure and to bring containment pressure to zero gauge prior to purging as noted above.

Turkey Point 3

For period 1/1/74 to 7/1/74

Total purges	14
Total time	502 hours*
Maximum duration (1 purge)	253 hours
Minimum duration (1 purge)	3 hours
Infrequent purges or vents	of 10 minutes for pressure control.

Turkey Point 4

For period 1/1/74 to 7/1/74

Total purges	5
Total time	984 hours*
Maximum time (l purge)	742 hours
Minimum time (1 purge)	5 hours

Surry 1 and 2

Containment operates at negative pressure. Discharge from vacuum pumps through filters to stack. During cold shutdown, there is continuous purging of containment.

Prairie Island

Frequency:	Once per week for about 8 hours
Reason:	To relieve pressure buildup due to instrument air leakage
	to containment

PWR CONTAINMENT PURGING AND VENTING EXPERIENCE (REF. 17)

Kewaunee

Frequency:	5 times in 60 days usually for less than 1 hour, longer
	if for personnel entry.
Reason:	Pressure control. During the 60-day period, purging
	occurred for personnel entry.

Point Beach

Continuous venting through a monitoring line at about 10 ft^3 /min flow. Gas filtered on way to stack.

Palidades

One per week for about 10 minutes duration (planned upon resumption of power operation) Reason: To control pressure buildups

Zion

Venting for pressure buildup about twice per week depending on outside temperature. Ranges from twice per day to once every two weeks.

Purges to control environment range from once per day to once every two weeks.

Duration: 3/4 hour on venting; 3-4 hours on purging.

Fort Calhoun**

For periods from 1/1/76 to 6/31/76 and 5/5/77 to 12/31/77. Average of 65 purges per year with an average duration of about 20 hours.

Millstone 2**

For period from 7/1/75 through 12/31/77. About 45 purges per year with an average duration of about 9 hours.

^{*} Generally, long purges occur during plant outages while at cold shutdown conditions.

^{**} Data for these plants was obtained from the Semi-annual Release Reports
for the plants for the period indicated.

For older plants (those under review for operating licenses or those for which the construction permit SER was issued prior to July 1, 1975) (Ref. 18) not equipped with small diameter purge lines, frequent periodic purges or vents will be used to control the above parameters (Ref. 18). A frequency of 22 purges per year during power operation is considered representative of plant operating experience for the combined effects of purging and venting.

2.2.10 CONTAINMENT INTERNAL CLEANUP SYSTEM

2.2.10.1 Parameter

Assume the internal cleanup system will operate for 16 hours prior to purging, that it provides a DF for radioiodine removal on charcoal adsorbers corresponding to the values in Table 1-5, and a DF of 100 for particulate removal on HEPA filters and that there is a containment air mixing efficiency of 70%.

2.2.10.2 Bases

Internal cleanup systems may be used to reduce airborne iodine concentrations in the containment air prior to purging. Such systems normally recirculate containment air through HEPA filters and charcoal adsorbers to effect iodine and particulare removal. For source term calculations, it is assumed that the cleanup systems are operated for 16 hours prior to purging. It is considered that charcoal adsorbers provide a DF for iodine corresponding to the values in Table 1-5, that HEPA filters provide a DF of 100 for particulates, and that the containment air mixing efficiency is 70%. The system operation time of 16 hours considers that two shifts will elapse following a decision to enter the containment. The time period of two shifts is a reasonable amount of time for pre-entry preparations.

A 70% mixing efficiency, based on data from the Ginna Station containment building atmosphere test conducted in 1971 (Ref. 19), is used in evaluations. Data from Reference 19 are

Parameter	Symbol [missing]	Value
Length of test run	Т	6 hours
Initial iodine activity	Ao	1.2 x 10 ⁻⁸ μCi/cc
Final iodine activity	Α	1.2 x 10 ⁻⁹ µCi/cc
Containment volume	۷	10^6 ft ³
Internal recirculation system flow rate	F	6.1 x 10 ⁵ ft ³ /hr

The efficiency of iodine removal, E, can be estimated from

$$\frac{A_{o}}{A} = \exp\left(\frac{FET}{V}\right)$$

Substituting Ginna data into the equation

$$\frac{1 \times 10^{-8}}{1 \times 10^{-9}} = \exp \left[(6.1 \times 10^5) (E) (6) / (10^6) \right]$$

10 = exp (3.7E), therefore E = 0.63.

The iodine removal efficiency E is a function of filter efficiency, $\rm E_{a},$ and mixing efficiency, $\rm E_{m}.$

$$E = E_a E_m = 0.63$$

In calculating E_m we used the assumed DF of 10 for charcoal derived from Table 1-5, (90% removal). Using E_a equal to 0.9, E_m is calculated to be 70%.

$$E_{\rm m} = E/E_{\rm a} = 0.63/0.9 = 0.7$$

2.2.11 RADIOIODINE REMOVAL EFFICIENCIES FOR CHARCOAL ADSORBERS AND PARTICULATE REMOVAL EFFICIENCIES FOR HEPA FILTERS

2.2.11.1 Parameter

Use a removal efficiency of 99% for particulate removal by HEPA filtration. For charcoal adsorbers, which satisfy the guideline of Reg. Guide 1.140 (Rev. 2), removal efficiencies for all forms of radioiodine are as follows:

Activated Carbon Bed Depth ^a	Removal Efficiencies For Radioiodine(%)
2 inches. Air filtration system designed to operate inside primary containment.	90
2 inches. Air filtration system designed to operate outside the primary containment and relative humidity is controlled to 70%.	70

^a Multiple beds, e.g., two 2-inch beds in series, should be treated as single bed of aggregate depth of 4 inches.

Activated Carbon Bed Depth ^a	Removal Efficiencies For Radioiodine(%)	
4 inches. Air filtration system designed to operate outside the primary containment and relative humidity is controlled to 70%.	90	
6 inches. Air filtration system designed to operate outside the primary containment and relative humidity is controlled to 70%.	99	

2.2.11.2 Bases

The removal efficiencies assigned to HEPA filters for particulate removal and charcoal adsorbers for radioiodine removal are based on the design, testing and maintenance criteria recommended in Regulatory Guide 1.140, "Design, Testing and Maintenance Criteria for Normal Ventilation Exhaust System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants" (Ref. 2).

2.2.12 WASTE GAS SYSTEM INPUT FLOW TO PRESSURIZED STORAGE TANKS

2.2.12.1 Parameter

The input flow rate to the pressurized storage tanks is variable depending on the system design as can be seen from Table 2-24 and 2-25. Therefore each applicant should supply the value of F, the waste gas system input flow to the pressurized storage tanks. If detailed design information is not available, the data given in Tables 2-24 and 2-25 may be used. These data show that the average waste gas input flow is 170 ft³/day (STP) per reactor for PWR's without recombiners and 30 ft³/day (STP) per reactor for PWR's with recombiners.

2.2.12.2 Bases

As can be seen from Tables 2-24 and 2-25 there is variation among PWR system designs for the waste gas system input flow.

A review of the waste gas processing systems proposed for a number of PWR's as given in the respective PSAR's and FSAR's has yielded the design flow rates shown in Tables 2-24 and 2-25. Table 2-24 indicates that for reactors designed without recombiners to treat the gas prior to holdup in pressurized storage tanks, the average expected flow is approximately 170 ft³/day (STP) per reactor. Table 2-25 indicates that for reactors designed with recombiners to remove hydrogen prior to holdup in pressurized storage tanks, the average expected flow is approximately $30 \text{ ft}^3/\text{day}$ (STP) per reactor.

WASTE GAS SYSTEM INPUT FLOW TO PRESSURIZED STORAGE TANKS FOR PWR'S WITHOUT RECOMBINERS

Reactor	Net Flow per Reactor ft ³ /day (STP)
San Onofre 2/3	57
Waterford 3	171
Pilgrim 2	69
St. Lucie 1/2	139
Millstone 2	49
Arkansas 1/2	68
Byron 1/2	173
Sequoyah 1/2	173
Marble Hill 1/2	173
Diablo Canyon 1/2	343
Trojan	225
Oconee 1/2/3	180
Davis Besse 1	144
Bellefonte 1/2	163
Average Net Flow for PWR's without recombiners	= 170 ft ³ /day (STP) per reactor

WASTE GAS SYSTEM INPUT FLOW TO PRESSURIZED STORAGE TANKS FOR PWR'S WITH RECOMBINERS

Reactor	Net Flow per Reactor ft ³ /day (STP)
WPPSS 1	96
Farley 1/2 McGuire 1/2	3 18
Average Net Flow for PWR's with recombiners	= 30 ft ³ /day (STP) per reactor

^{*} Net flow rate is determined downstream of any recombiner (which is assumed 100% effective in removing hydrogen).

2.2.13 HOLDUP TIMES FOR CHARCOAL DELAY SYSTEMS

2.2.13.1 Parameter

T = 0.011 MK/F

where

T is the holdup time, in days; and
K is the dynamic adsorption coefficient, in cm³/g, (see chart below);
M is the mass of charcoal adsorber, in 10³ lbs;
F is the system flow rate, in ft³/min;
0.011 is the factor to convert from (10³ lb. cm³/g)/(ft³/min) to days.

Dynamic adsorption coefficients, K, (in cm^3/g) are as follows:

	Operating 77°F Dew Point 45°F	Operating 77°F Dew Point O°F	Operating 77°F Dew Point -40°F	Operating O°F Dew Point -20°F
Kr	18.5	25	70	105
Xe	330	440	1160	2410

2.2.13.2 Bases

Charcoal delay systems are evaluated using the above equation and dynamic adsorption coefficients. T = MK/F is a standard equation for the calculation of delay times in charcoal adsorption systems (Ref. 20). The dynamic adsorption coefficients (K values) for Xe and Kr are dependent on operating temperature and moisture content (Ref. 21 and 22) in the charcoal, as indicated by the values in the above parameter. The K values represent a composite of data from operating reactor charcoal delay systems (Ref. 23 and 24) and reports concerning charcoal adsorption systems (Ref. 20-22, 24-27).

The factors influencing the selection of K values are:

1. Operational data from KRB (Ref. 23) and from KWL (Ref. 24), and from Vermont Yankee (Ref. 28).

- 2. The effect of temperature on the dynamic adsorption coefficients, indicated in Figure 2-3 (Ref. 21).
- 3. The effect of moisture on the dynamic adsorption coefficients, shown in Figure 2-4. The affinity of charcoal for moisture, shown in Figure 2-5.
- 4. The variation in K values between researchers and between the types of charcoal used in these systems (Refs. 21 and 27). Because of the variation in K values based on different types of charcoal and the data reported, average values taken from KRB and KWL data shown in Figure 2-3 are used.

The coefficient 0.011 adjusts the units and was calculated as follows:

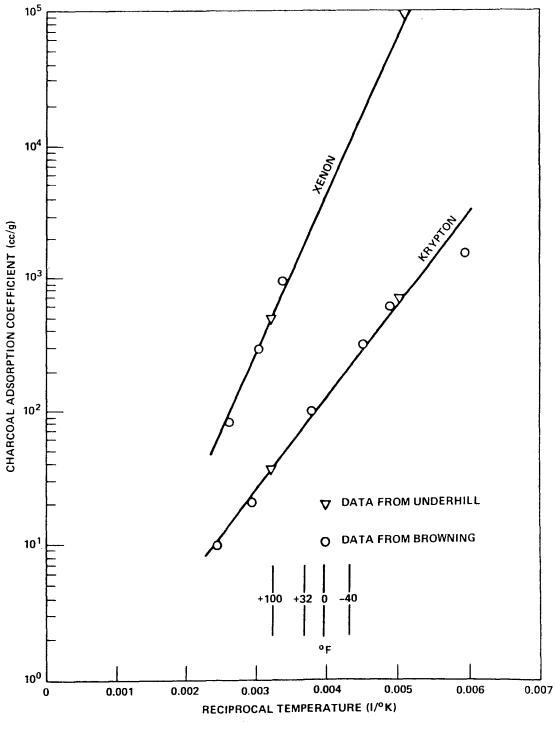
$$T(days) = \frac{M(10^{3} lbs) K(cm^{3}/g)(454 g/lb) 3.53 x 10^{-5} ft^{3}/cm^{3})}{F(ft^{3}/min)(1440 min/day)}$$

 $T = 0.011 \frac{MK}{F}$

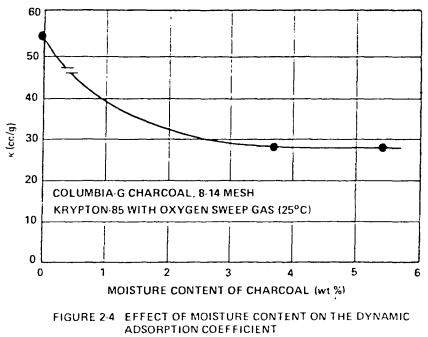
2.2.14 LIQUID WASTE INPUTS

2.2.14.1 Parameter

The flow rates listed in Table 2-26 are used as inputs to the liquid radwaste treatment system. Flows that cannot be standardized are added to those listed in Table 2-26 to fit an individual application, e.g., shim bleed and equipment leaks to the reactor coolant drain tank. Disposition of liquid streams to the appropriate collection tanks is based on the applicant's proposed method of processing.


2.2.14.2 Bases

The flow rates used represent average values for a plant operating at steady-state conditions. The values are derived from values proposed by the ANS 55.6 Working Group in proposed American National Standard, "Liquid Radioactive Waste Processing System for Light Water Reactor Plants," (Ref. 29) from operating and design data, and from information furnished by applicants in response to source term questions. Data from Zion (Ref. 5) indicate that the values for fraction of primary coolant activity given in Table 2-26 provide reasonable estimates of plant operating experience.


2.2.15 DETERGENT WASTE

2.2.15.1 Parameters

For plants with an onsite laundry, use the radionuclide distribution given in Table 2-27 for untreated detergent wastes. The quantities shown

PWR LIQUID WASTES

EXPECTED DAILY AVERAGE INPUT FLOW RATE (in Gal/day)

				system (U-tube ste treatment of o	of blowdown recyc eam generator plan condensate (once-t enerator plants)	Plant with blowdown treat-		
			SOURCE	Deep-bed cond. demineralizers with ultrasonic resin cleaner	Deep-bed cond. demineralizers without ultrasonic resin cleaner	Filter- demineralizer	ment. Product not recycled to condenser or secondary coolant 	FRACTION OF PRIMARY COOLANT ACTIVITY (PCA)
2-	1.	REA	CTOR CONTAINMENT					
-65		a.	Primary coolant pump seal leakage	20	20	20	20	0.1
		b.	Primary coolant leakage, miscellaneous sources	10	10	10	10	1.67*
		с.	Primary coolant equipment	500	500	500	500	0.001
	2.		MARY COOLANT SYSTEMS TSIDE OF CONTAINMENT)					
		a.	Primary coolant system equipment drains	80	80	80	80	1.0
		b.	Spent fuel pit liner drains	700	700	700	700	0.001
		с.	Primary coolant sampling system drains	200	200	200	200	0.05
		d.	Auxiliary building floor drains	200	200	200	200	0.1

2-65

TABLE 2-26	(Continued)
------------	-------------

3. SECONDARY COOLANT SYSTEMS

		TOTALS	29,700	26,300	19,000	10,000	
	d.	Equipment and area decontamination	40	40	40	40	**
	с.	Hand wash sink drains	200	200	200	200	**
	b.	Hot showers	Negligible	Negligible	Negligible	Negligible	-
	a.	On-site laundry facility	300	300	300	300	**
4.		ERGENT AND DECONTAMINATION					
66 6	g.	Turbine building floor drains	7200	7200	7200	7200	Calculated in GALE Code
2 - D	f.	Steam generator blowdown	-	-	-	Plant dependent ^{††}	Plant dependent [†]
	e.	Condensate filter- demineralizer backwash	-	-	8100	-	2 x 10 ⁻⁶
	d.	Ultrasonic resin cleaner solutions	15000	-	-	-	10 ⁻⁶
	c.	Condensate demineralizer regenerant solutions	850	3400	-	-	Calculated in GALE Code
	b.	Condensate demineralizer rinse and transfer solutions	3000	12000	-	-	10 ⁻⁸
	a.	Secondary coolant sampling system drains	1400	1400	1400	1400	10 ⁻⁴

** GALE Code uses release data given in Table 2-27 to calculate releases from this source.

tf Input parameter

2-66

* About 40% of the leakage flashes, resulting in PCA fraction of the leakage greater than 1.0.

CALCULATED ANNUAL RELEASE OF RADIOACTIVE MATERIALS IN UNTREATED DETERGENT WASTE

Nuclide		Ci/yr/reactor
P-32		1.8(-4)
Cr-51		4.7(-3)
Mn-54		3.8(-3)
Fe-55		7.2(-3)
Fe-59		2.2(-3)
Co-58		7.9(-3)
Co-60		1.4(-2)
Ni-63		1.7(-3)
Sr-89		8.8(-5)
Sr-90		1.3(-5)
Y-91		8.4(-5)
Zr-95		1.1(-3)
Nb-95		1.9(-3)
Mo-99		6(-5)
Ru-103		2.9(-4)
Ru-106		8.9(-3)
Ag-110m		1.2(-3)
Sb-124		4.3(-4)
I-131		1.6(-3)
Cs-134		1.1(-2)
Cs-136		3.7(-4)
Cs-137		1.6(-2)
Ba-140		9.1(-4)
Ce-141		2.3(-4)
Ce-144		3.9(-3)
	TOTAL	0.09 Ci

-

in Table 2-27 should be added to the adjusted liquid source term. Detergent waste releases should be reduced, using appropriate decontamination factors from this report if treatment is provided.

2.2.15.2 Bases

In the evaluation of liquid radwaste treatment systems, it is assumed that detergent wastes (laundry and personnel drains) will have the radionuclide distribution given in Table 2-27. The radionuclide distribution is based on measurements at four nuclear power plants, which are given in Table 2-28.

2.2.16 CHEMICAL WASTES FROM REGENERATION OF CONDENSATE DEMINERALIZERS

2.2.16.1 Parameter

- 1. Liquid flows to demineralizer at main steam activity.
- 2. All nuclides removed from the secondary coolant by the demineralizers are removed from the resins during regeneration.
- 3. Use a regeneration cycle of 1.2 days times the number of demineralizers for deep bed condensate system without ultrasonic resin cleaner (URC); for systems using URC, use a regeneration cycle of 8 days times the number of demineralizers.

2.2.16.2 Bases

Operating data (Ref. 30, 31) from Arkansas Nuclear One-Unit 1 indicate that one condensate demineralizer (without URC) is chemically regenerated every 1.2 days. The 8-day period for systems using URC is from Reference 29.

All material exchanged or filtered out by the resins between regenerations is contained in the regenerant waste streams, therefore, each regeneration will have approximately the same effectiveness (i.e., each regeneration removes all material collected since the previous regeneration, leaving a constant quantity of material on the resins after regeneration). Regeneration cycles are normally controlled by particulate buildup on resin beds, resulting in high pressure drops across the bed.

2.2.17 TRITIUM RELEASES

2.2.17.1 Parameter

The tritium releases through the combined liquid and vapor pathways are 0.4 Ci/yr per MWt. The quantity of tritium released through the liquid pathway is based on the calculated volume of liquid released, excluding secondary system wastes, with a primary coolant tritium concentration of 1.0 μ Ci/ml up to a maximum of 90% of the total quantity of tritium calculated to be available for release. It is assumed that the remainder of the tritium produced is released as a gas from building

Nuclide	Oyster Creek (1971-1973) (Ref. 41)	Ginna (1972-1973) (Ref. 8)	Zion* (1977) (Ref. 5)	Fort Calhoun (1977) (Ref. 4)
P-32 Cr-51 Mn-54 Fe-55 Fe-59 Co-58 Co-60 Ni-63 Sr-89 Sr-90 Y-91 Zr-95 Nb-95 Mo-99 Ru-103 Ru-106 Ag-110m Sb-124 I-131 Cs-134 Cs-136 Cs-137 Ba-140 Ce-141 Ce-144	1.5(-2) 2.3(-1) 1.3 3.5(-1) 2.9(-1) 3.5(-1) 3.8 NA 2.1(-2) 2.5(-3) NA 8.3(-2) 1.6(-1) NA 1.3(-2) NA 1.3(-2) NA 0.1(-2) 4.3(-1) 1.7(-1) NA 2.9(-1) 7.6(-2) 3.3(-2) 7.3(-2)	NA NA NA NA 4.1(-1) 9(-1) NA NA NA NA NA 1.6(-1) 2(-1) 5(-3) 3.2(-2) 7.4(-1) 1(-1) NA 5.5(-2) 1.4 NA 2.5 NA 5(-3) 5.8(-1)	NA 9.4(-1) 1.6(-1) 1.9 2.6(-1) 2.4 9.8(-1) 3.5(-1) 7(-3) 7.6(-4) 1.4(-2) 1.4(-1) 2.7(-1) NA 5.2(-2) NA NA 4.7(-2) 1.7(-1) 1.5 6.2(-2) 2.1 NA NA NA	NA NA 1.9(-2) 1.6(-1) NA 1.5(-1) 3(-2) 7.1(-2) 1.4(-3) NA NA NA NA NA NA NA NA NA NA NA NA NA
TOTAL	7.7	7.2	11.4	3.5

RADIONUCLIDE DISTRIBUTION OF DETERGENT WASTE (millicuries/month)

Note: NA = radionuclides were not analyzed.

* For two units.

ventilation exhaust systems. About eighty percent of the tritium in the gaseous effluents is released from the auxiliary building ventilation system, including the refueling area, and the remaining 20% of the tritium in gaseous effluents is released from the containment building ventilation system.

2.2.17.2 Bases

The release rate of 0.4 Ci/yr/MWt is based on a review of the tritium release rates at a number of PWR's and on data from specific measurements of tritium inventory and tritium releases at the Ginna plant (Ref. 8). The measurements at Ginna were made during the first two core cycles during which the reactor operated 605 effective full power days. The observed tritium buildup during this period was 1410 Ci. For the same period, 910,000 MWd of thermal power were generated. Using these data, considering an 80% plant capacity factor and considering tritium decay, the annual average tritium release is

 $\frac{1410 \text{ Ci}}{910,000 \text{ MWd}} \quad (0.8)(365 \text{ days/yr}) \text{ e}^{-0.693(1)/12.3} = 0.43 \text{ Ci/yr per MWt}$

Table 2-29 gives the reported liquid and gaseous tritium releases for 1972-1978 for thirty-five operating PWR's that use zircaloy clad fuel and started commercial operation before 1978. Table 2-29 shows these data expressed as the average release rate from the plants as a function of the number of years of operation of each plant. The tritium release rate from a PWR should reach a steady state value after a few years as a result of leakages from the plant. Table 2-30 illustrates the fact that the tritium release rate is approaching a steady state value of approximately 0.4 Ci/yr/MWt which is the value obtained from the Ginna measurements. At steady state, the release rate from a plant is approximately equal to the amount entering the primary coolant since only about 5% per year of the plant tritium inventory will decay. Based on the data from Ginna and the data in Table 2-30 we will use a release rate of 0.4 Ci/yr/MWt, which considers both liquid and vapor pathways.

The amount of tritium released via the liquid pathway is calculated from the volume of primary coolant that is released in the nonrecyclable waste streams for the boron recovery, clean waste, and dirty waste systems. The concentration of tritium in wastes originating from primary coolant is assumed to be $1 \ \mu$ Ci/ml, consistent with the N237 source term. Tritium in liquid that leaks into, or is used as makeup to, the secondary system is considered to be released in liquid effluents through the turbine building floor drain discharge. The parameters for primary coolant activity prior to processing are used to calculate the tritium concentration in the waste streams.

Data in Table 2-31 indicate that tritium released in liquid effluents can make up a large fraction of the total tritium produced. Therefore we have considered that the tritium calculated to be released in liquid effluents is up to a maximum of 90% of the total quantity of tritium calculated to be available for release.

	Power per unit	Startup	Nuclear Thermal Output per unit 10 ⁶ MWDt					
Reactor Name	MWt	Date	<u>1972</u>	<u>1973</u>	<u>1974</u>	<u>1975</u>	<u>1976</u>	<u>1977</u>
R. E. Ginna H. B. Robinson Point Beach 1/2 Palisades Maine Yankee Indian Point 2/3 Surry 1/2 Turkey Point 3/4 Oconee 1/2/3 Zion 1/2 Fort Calhoun Prairie Island 1/2 Kewaunee Three Mile Island 1 Rancho Seco Arkansas 1 Calvert Cliffs 1/2 Cook 1 Millstone 2	1520 2200 1518 2530 2440 2758 2441 2200 2568 3250 1420 1650 1650 1650 2535 2772 2568 2700 3250 2560	1969 1970 1970/72 1971 1972 1973/76 1972/73 1972/73 1972/73 1973/74/74 1973/73 1973/74 1974 1974 1974 1974 1974 1974 1974 19	0.32 0.62 0.42 0.24	0.45 0.51 0.77 0.27	0.28 0.39 0.43 0.02 0.48 0.48 0.48 0.80 1.08 0.51	0.40 0.57 0.87 0.37 0.61 0.69 1.21 1.16 1.95 1.37 0.28 0.94 0.45 0.73 0.17 0.64 0.58	0.29 0.66 0.91 0.40 0.81 0.56 1.05 1.12 1.65 1.29 0.30 0.86 0.45 0.58 0.29 0.50 0.84 0.90 0.63	0.46 0.59 0.93 0.72 0.69 1.46 1.27 1.13 1.67 1.53 0.39 1.03 0.46 0.73 0.75 0.68 1.24 0.64 0.59
Trojan St. Lucie 1 Beaver Valley 1 Salem 1	3411 2560 2652 3338	1975 1976 1976 1976 1976					0.31	0.88 0.73 0.42 0.28

TRITIUM RELEASE DATA FROM OPERATING PWR'S WITH ZIRCALOY-CLAD FUELS*

* Data from semiannual reports of reactors listed.

TABLE 2-29 (continued)

	Power per unit	Startup	Tr	itium R	eleased Gase	•) Per S	ite
Reactor Name	MWt	Date	<u>1972</u>	<u>1973</u>	1974	1975	1976	<u>1977</u>
R. E. Ginna	1520	1969	0.01	1.1	0.36	5.8	23.6	50
H. B. Robinson	2200	1970	1.0	4.0	52.0	193	158	61
Point Beach 1/2	1518	1970/72	8.0	25.0	43.0	177	395	194
Palisades	2530	1971	5.0	0.3	**	**	**	2.2
Maine Yankee	2440	1972			7.5	4.7	3.7	2.1
Indian Point 2/3	2758	1973/76			20.0	24.5	23.7	12.4
Surry 1/2	2441	1972/73			60.0	32	372	87 9
Turkey Point 3/4	2200	1972/73			9.2	3.5	5.2	3.9
Oconee 1/2/3	2568	1973/74/74			0.75	1600	502	62.6
Zion 1/2	3250	1973/73				**	**	**
Fort Calhoun	1420	1973				2.4	2.5	3.0
Prairie Island 1/2	1650	1973/74				10.1	33.1	88
Kewaunee	1650	1974				37.3	0.70	3.75
Three Mile Island 1	2535	1974				40.3	717	129
Rancho Seco	2772	1974				7.73	9.1	20.7
Arkansas 1	2568	1974				0.52	6.7	190
Calvert Cliffs 1/2	2700	1974/76				1.23	41	117
Cook 1	3250	1975					0.11	0.20
Millstone 2	2560	1975					21.3	47
Trojan	3411	1975					1.5	2.9
St. Lucie 1	2560	1976						320
Beaver Valley 1	2652	1976						213
Salem 1	3338	1976						51

TRITIUM RELEASE DATA FROM OPERATING PWR'S WITH ZIRCALOY-CLAD FUELS*

* Data from semiannual reports of reactors listed.

** No reported data.

TABLE 2-29 (continued)

TRITIUM RELEASE DATA FROM OPERATING PWR'S WITH ZIRCALOY-CLAD FUELS*	TRITIUM RELEASE	DATA FROM	OPERATING	PWR's	WITH	ZIRCALOY-CLAD FU	ELS*
---	-----------------	-----------	-----------	-------	------	------------------	------

	Power	Stantun	Tr	itium Re		(Ci/Yr)	Per Si	te
Reactor Name	per unit <u>MWt</u>	Startup Date	<u>1972</u>	<u>1973</u>	Liqu <u>1974</u>	<u>1975</u>	<u>1976</u>	<u>1977</u>
R. E. Ginna H. B. Robinson Point Beach 1/2 Palisades Maine Yankee Indian Point 2/3 Surry 1/2 Turkey Point 3/4 Oconee 1/2/3 Zion 1/2 Fort Calhoun Prairie Island 1/2 Kewaunee Three Mile Island 1 Rancho Seco Arkansas 1 Calvert Cliffs 1/2 Cook 1 Millstone 2 Trojan St. Lucie 1 Beaver Valley 1	1520 2200 1518 2530 2440 2758 2441 2200 2568 3250 1420 1650 1650 1650 1650 2535 2772 2568 2700 3250 2560 3411 2560 2652	1969 1970/72 1970/72 1971 1972 1973/76 1972/73 1972/73 1973/74/74 1973/73 1973/74 1973/73 1973/74 1974 1974 1974 1974 1974 1974 1975 1975 1975 1975 1975 1976 1976	120 410 560 210	286 431 556 185	195 475 832 8.3 219 48 246 580 124	261 624 886 41.3 177 366 442 793 3550 39.4 111 763 277 463 132 460 263	242 980 694 9.6 368 332 782 771 2192 1.1 122 1925 213 189 1.2 213 189 0.0 212 274 192 277 36	119 685 1000 56 153 371 408 924 1918 727 157 1349 295 192 0.09 192 0.09 192 0.09 192 245 575 285 211 311 242 108
Beaver Valley 1 Salem 1	2652 3338	1976 1976						108 296

* Data from semiannual reports of reactors listed.

* No radioactive liquid wastes were discharged from Unit 2 during the entire year. Note: For 1975, there were no radioactive liquid wastes discharged from Unit 1 during the last 6 months.

 †† Rancho Seco is designed to be a zero or very low liquid release plant.

TABLE 2-29 (continued)

	Power per unit	Startup		Tritium /yrMwt				
Reactor Name	MWt	Date			1974	1975	1976	<u>1977</u>
R. E. Ginna H. B. Robinson Point Beach 1/2 Palisades Maine Yankee Indian Point 2/3 Surry 1/2 Turkey Point 3/4	1520 2200 1518 2530 2440 2758 2441 2200	1969 1970 1970/72 1971 1972 1973/76 1972/73 1972/73	0.11 0.19 0.39 0.26	0.19 0.25 0.22 0.20	0.20 0.39 0.59 - 0.14 0.04 0.11 0.16	0.19 0.42 0.36 - 0.09 0.17 0.11 0.20	0.27 0.50 0.35 - 0.13 0.19 0.32 0.20	0.11 0.37 0.37 0.02 0.07 0.08 0.30 0.24
Oconee 1/2/3 Zion 1/2 Fort Calhoun Prairie Island 1/2 Kewaunee Three Mile Island 1 Rancho Seco Arkansas 1 Calvert Cliffs 1/2	2568 3250 1420 1650 2535 2772 2568 2700	1973/74/74 1973/73 1973 1973/74 1974 1974 1974 1974 1974 1974			0.07	0.79 - 0.12 0.24 0.20 0.20 0.20 0.24 0.21 0.13	0.48 - 0.12 0.66 0.14 0.46 0.01 0.13 0.11	0.35 0.12 0.41 0.19 0.13 0.01 0.19 0.16
Cook 1 Millstone 2 Trojan St. Lucie 1 Beaver Valley 1 Salem 1	3250 2560 3411 2560 2652 3338	1975 1975 1975 1976 1976 1976					0.06 0.14 0.04	0.13 0.13 0.10 0.22 0.22 0.36

TRITIUM RELEASE DATA FROM OPERATING PWR'S WITH ZIRCALOY-CLAD FUELS*

* Data from semiannual reports of reactors listed.

TRITIUM RELEASE RATE FROM OPERATING PWR's

AS A	FUNCTION OF	NUMBER	OF YEARS	S OF OPE	RATION		
	(Ci/yrMWt	per ur	nit at 80%	6 capaci	ty)		
	1	2	3		5	_6	_7
Ginna	0.11	0.19	0.20	0.19	0.27	0.11	0.17
Robinson	0.19	0.25	0.39	0.42	0.50	0.37	-
Pt. Beach 1/2	0.39	0.22	0.59	0.36	0.35	0.37	0.51
Maine Yankee	0.14	0.09	0.13	0.07	0.18	-	-
Indian Pt. 2/3	0.04	0.17	0.19	0.08	-		
Surry 1/2	0.11	0.11	0.32	0.30	-		
Turkey Pt. 3/4	0.16	0.20	0.20	0.24	0.20		
Oconee 1/2/3	0.07	0.77	0.48	0.35	0.19		
Ft. Calhoun	0.12	0.12	0.12	0.13	-		
Prairie Is. 1/2	0.24	0.66	0.41	0.25			
Kewaunee	0.20	0.14	0.19	0.20	-		
TMI 1	0.20	0.46	0.13	0.17	-		
Arkansas 1	0.21	0.13	0.19	-	-		
Calvert Cliffs 1/2	0.13	0.11	0.16	-	-		
Cook	0.06	0.13	0.31	-	-		
Millstone	0.14	0.13	-	-	-		
Trojan	0.04	0.10	-	-	-		
St. Lucie	0.22	-	-	-	-		
Beaver Valley	0.22	0.51	-	-	-		
Salem	0.36	0.41	-	-	-		
Average	0.16	0.29	0.30	0.25	0.26	0.31	0.40

PERCENT (OF TOTAL	TRITIUM RE	LEASED IN	LIQUID EF	FLUENTS	
Reactor	<u>1972</u>	<u>1973</u>	<u>1974</u>	<u>1975</u>	<u>1976</u>	<u>1977</u>
R. E. Ginna	100.0	99.6	99.8	97.8	91.1	70.4
H. B. Robinson	99.8	99.1	90.1	76.4	86.1	91.8
Point Beach 1/2	98.6	95.7	95.1	83.3	63.7	83.8
Palisades	97.7	99.8	**	**	**	96.2
Maine Yankee			96.7	97.4	99.0	98.6
Indian Point 2/3			70.6	93.7	93.3	96.8
Surry 1/2			80.4	93.2	67.8	31.7
Turkey Point 3/4			98.4	99.6	99.3	99.6
Oconee 1/3			99.4	68.9	81.4	96.8
Zion 1/2				**	**	**
Fort Calhoun				97.9	98.0	98.1
Prairie Island 1/2				98.7	98.3	93.9
Kewaunee				88.1	99.7	98.7
Three Mile Island 1				92.0	20.9	59.8
Rancho Seco				94.5	0.0 ^{††}	0.43 ^{††}
Arkansas 1				99.9	96.9	56.3
Calvert Cliffs 1/2				99.5	87.0	83.1
Cook 1					100.0	100.0
Millstone 2					92.9	81.8
Trojan					96.0	99.1
St. Lucie 1						43.1
Beaver Valley 1						33.6
Salem 1						85.3
						
Weighted Average*	99.2	98.0	91.1	89.5	83.5	78.5

TRITIUM RELEASE DATA FROM OPERATING PWR'S

* Average weighted by nuclear thermal output per unit.

** No reported data.

tt Rancho Seco is designed to be a zero or very low liquid release plant.

The difference between the tritium calculated to be available for release from the primary coolant and the tritium calculated to be released in liquid effluents is considered to be released as a vapor through building ventilation exhaust systems. Based on measurements taken in 1975 through 1977 at Ginna, Calvert Cliffs and Three Mile Island (Ref. 7) and in 1976 and 1977 at Zion 1/2 (Ref. 5), and in 1977 at Turkey Point (Ref. 6), in 1978-79 at Rancho Seco (Ref .43), and in 1980-1981 at Prairie Island 1/2 (Ref. 42), Table 2-32 provides the distribution of tritium released from various sources within the plant. Based on data in Table 2-32, approximately 32% of tritium in gaseous effluents is released from the auxiliary building, 50% from the refueling area, and 18% from the containment. Since the refueling area in a PWR generally vents to the same release point as the auxiliary building, we have included these two releases together in our parameter.

2.2.18 DECONTAMINATION FACTORS FOR DEMINERALIZERS

2.2.18.1 Parameter

Anion	<u>Cs, Rb</u>	Other Nuclides
100	2	50
10	2	10
5	1	10
10 ² (10)	2(10)	10 ² (10)
10 ² (10)	10(10)	10 ² (10)
1(1)	10(10)	10(10)
10 ² (10)	1(1)	1(1)
10(10)	2(10)	10(10)
	100 10 5 10 ² (10) 10 ² (10) 1(1) 10 ² (10)	100 2 10 2 5 1 $10^2(10)$ 2(10) $10^2(10)$ 10(10) $1(1)$ 10(10) $10^2(10)$ 1(1)

Note: For two demineralizers in series, the DF for the second demineralizer is given in parentheses.

The following operating conditions were considered for the evaluation of demineralizer performance:

 The DF is dependent upon the inlet radioactivity and ion concentrations and bed volume ion exchange capacity. For demineralizer performance within the same range of controlled operating conditions, the DF increases with inlet radioactivity concentration and decreases with bed volume throughout.

TABLE 2-32*

Plant	Auxiliary Building	Refueling Area	Containment Building
Ginna (Ref. 7)	31	69	NM
Calvert Cliffs 1 (Ref. 7)	38	46	16
Three Mile Is. 1 (Ref. 7)	5	43	52
Zion 1/2 (Ref. 5)	79	WA	21
Turkey Point 3/4 (Ref. 6)	75	17	8
Rancho Seco (Ref. 43)	92	WA	8
Prairie Island 1/2 (Ref. 43)	7.2	91.8	1.0
Average	32	50	18

DISTRIBUTION OF TRITIUM RELEASE IN GASEOUS EFFLUENTS

Source of Gaseous Tritium Release (% of Total)

NM - Not measured.

WA - Release from refueling area combined with auxiliary building release.

* The following method is used to determine the $^{3}\mathrm{H}$ release in this table.

Containment Building operation average % of total release

 $(16 + 52 + 21 + 8 + 8 + 1)\% \div (6) = 17.7\% = 18\%$

Then the Refueling Area for Ginna is reduced by

18%, i.e., (69-18)% = 51%

Now the operation average $\ensuremath{\texttt{\%}}$ of the total release for the Refueling Area is

 $(51 + 46 + 43 + 17 + 91.8)\% \div (5) = 50\%$

Then use (79-50)% = 29% and (92-50)% = 42% into Zion and Rancho Seco auxiliary building's data, respectively, to calculate the operational average of Auxiliary Building release which is equal to

 $(31 + 38 + 5 + 29 + 75 + 42 + 7.2)\% \div (7) = 32\%$

- 2. When two demineralizers are used in series, the first demineralizer will have a higher DF than the second. However, the data in Reference 32 indicate that Cs and Rb will be more strongly exchanged in the second demineralizer in series than the first as the concentration of preferentially exchanged competing nuclides is reduced.
- 3. As indicated in Reference 32, compounds of Y, Mo, and Tc form colloidal particles that tend to plate out on solid surfaces. Mechanisms such as plateout on the relatively large surface areas provided by demineralizer resin beds result in removal of these nuclides to the degree stated above. An analysis of effluent release data indicates that these nuclides, although present in the primary coolant, are not found in the effluent streams.

2.2.18.2 <u>Bases</u>

The decontamination factors (DF's) for purification, radwaste, and evaporator condensate demineralizers are based on (1) source term measurements made at Fort Calhoun, Zion, Turkey Point, Prairie Island, and Rancho Seco stations by In-Plant Source Term Measurement Program (Refs. 4, 5, 6, 42, and 43); (2) the findings of a generic review in the nuclear industry by the Oak Ridge National Laboratory (ORNL) (Ref. 32); and (3) measurements taken at Three Mile Island 1 (Ref. 40). The DF's for the remaining demineralizers are based on ORNL findings.

The ORNL generic review contains operating and theoretical data which provides a basis for the numerical values assigned. The ORNL data were projected to obtain a performance value expected over an extended period of operation. It is considered that attempts to extend the service life of the resin will reduce the DF's below those expected under controlled operating conditions.

Average DF's for Ft. Calhoun, Zion, Turkey Point, Rancho Seco, and Prairie Island stations were obtained by dividing the average inlet radionuclide concentration of samples by that of the average outlet concentrating for each nuclide.

Based on the data in References 4, 5, 6, 32, 42, and 43, the DF used for the parameter was that considered to be representative of the data.

2.2.19 DECONTAMINATION FACTORS FOR EVAPORATORS

2.2.19.1 Parameter

	Decontamination Factors		
	All Nuclides Except Iodine	Iodine	
Miscellaneous radwaste evaporators	10 ³	10 ²	
Boric acid evaporators	10 ³	10 ²	
Separate evaporator for detergent wastes	10 ²	10 ²	

2.2.19.2 Bases

The decontamination factors for evaporators are based on: (1) source term measurements made at Fort Calhoun, Zion, Turkey Point, Prairie Island, and Rancho Seco stations by In-Plant Source Term Measurement Program (Ref. 4, 5, 6, 42, and 43) and (2) the findings of a generic review in the nuclear industry by the Oak Ridge National Laboratory (Ref. 33).

Average DF's for Zion, Ft. Calhoun, Turkey Point, Rancho Seco, and Prairie Island, were obtained by dividing the average inlet radioactivity of samples by the average outlet radioactivity of samples for each radionuclide.

Based on the data given in References 4, 5, 6, 33, 42, and 43, the DF used for the parameter was that considered to be the most representative of the data.

2.2.20 DECONTAMINATION FACTORS FOR LIQUID RADWASTE FILTERS

2.2.20.1 Parameter

A DF of 1 for liquid radwaste filters is assigned for all radionuclides.

2.2.20.2 Bases

Reference 34 contains findings of a generic review by ORNL of liquid radwaste filters used in the nuclear industry. Due to various filter types and filter media employed, reported values of decontamination factors vary widely, with no discernible trend. The principal conclusion reached in the ORNL report is that no credit should be assigned to liquid radwaste filters (DF of 1) until a larger data base is obtained.

Additional data from Ft. Calhoun (Ref. 4), Zion 1/2 (Ref. 5) and Turkey Point 3/4 (Ref. 6), Rancho Seco (Ref. 43), and Prairie Island 1/2 (Ref. 42) indicate that decontamination factors in liquid radwaste filters vary widely from less than 1 to greater than 50 (with a mean value of 1.3). Therefore a DF of 1 for liquid radwaste filters is used.

2.2.21 DECONTAMINATION FACTORS FOR REVERSE OSMOSIS

2.2.21.1 Parameter

Overall DF of 30 for laundry wastes and DF of 10 for other liquid radwastes.

2.2.21.2 Bases

Reverse osmosis processes are generally run as semibatch processes. The concentrated stream rejected by the membrane is recycled until a desired fraction of the batch is processed through the membrane. The ratio of the volume processed through the membrane to the inlet batch volume is the percent recovery. The DF normally specified for the process is the ratio of nuclide concentrations in the concentrated liquor stream to the concentrations in the effluent stream. This ratio is termed as the membrane DF (DF_m). For source term calculations, the system DF (DF_s) should be used. The system DF is the ratio of the nuclide concentrations in the feed stream to those in the effluent stream. The relationship between the system DF and the membrane DF is nonlinear and is a function of the percent recovery. This relationship can be expressed as follows:

$$DF_s = \frac{F}{1 - (1 - F)^{1/DF_m}}$$

where

 DF_{m} is the membrane DF;

DF_s is the system DF; and

F is the ratio of effluent volume to inlet volume (fractional recovery).

Tables 2-33 through 2-36 give membrane DF's derived from operating data at Point Beach, Ginna and Robinson (Ref. 35) and laboratory data on simulated radwaste liquids (Ref. 36). These data indicate that the overall membrane DF is approximately 100. The percent recovery for liquid radwaste processes using reverse osmosis is expected to be approximately 95%, i.e., 5% concentrated liquor. Using these values in the above equation, the system DF is approximately 30.

$$DF_{s} = \frac{0.95}{1 - (1 - 0.95)^{1/100}} = 30$$

The data used were derived mainly from tests on laundry wastes. The DF for other plant wastes, e.g., floor drain wastes, is expected to be lower because of the higher concentrations of iodine and cesium isotopes. As indicated by the data in Tables 2-33, 2-35 and 2-36, the membrane DF for these isotopes is lower than the average membrane DF used in the evaluation for laundry waste.

2.2.22 GUIDELINES FOR CALCULATING LIQUID WASTE HOLDUP TIMES

The holdup times to permit radioactive decay applied to the input waste streams are calculated using the following parameters:

1. The collection time should be calculated for an 80% volume change in the tank, based on the liquid waste flow rates from the inlet sources.

Nuclide	Concentrate Activity (µCi/cm ³)	Product Activity (µCi/cm ³)	Membrane DF
Ce-144	2.68 (-4)	<2.2 (-7)	1200
Co-58	8.55 (-5)	<3.4 (-8)	2500
Ru-103	5.83 (-5)	<5.5 (-8)	1100
Cs-137	4.09 (-4)	6.6 (-6)	60
Cs-134	2.02 (-4)	3.2 (-6)	60
Nb-95	5.35 (-5)	<5.3 (-8)	1000
Zr-95	2.36(-5)	<3.7 (-8)	640
Mn-54	8.82 (-5)	<3.4 (-8)	2600
Co-60	9.62 (-4)	<8.1 (-8)	12,000
Total isotopic	2.15(-3)	9.8 (-6)	219
Gross beta	1.63 (-3)	1.86 (-5)	88
TOTAL	3.78(-3)	2.84(-5)	
Average			133

REVERSE OSMOSIS DECONTAMINATION FACTORS, GINNA STATION

TABLE 2	-34
---------	-----

REVERSE OSMOSIS DECONTAMINATION FACTORS, POINT BEACH

Date	Time	Concentrate Activity (µCi/ml)	Product Activity (µCi/ml)	Membrane DF
6/14/71	0840	1.1 (-5)	6.8 (-7)	16
	1225	6.3 (-5)	4.2 (-7)	150
	1350	6.8 (-5)	3.2 (-7)	213
6/15/71	1030	2.7 (-4)	3.1 (-6)	87
	1315	1.0 (-4)	1.7 (-6)	59
	1440	1.3 (-4)	1.1 (-7)	1200
	1510	1.6 (-4)	1.1 (-7)	1500
	1530	1.8 (-4)	5.7 (-7)	316
TOTAL		9.8 (-4)	7.0 (-6)	
	Averag	e		140

REVERSE OSMOSIS DECONTAMINATION FACTORS, H. B. ROBINSON NO. 2 STATION

	<u>Co-60</u>	<u>Co-58</u>	<u>I-131</u>
	264	29	14
	382		20
	436		39
	107	229	26
	76	490	96
	94	131	11
Average	227	220	34
Average		220	34

EXPECTED REVERSE OSMOSIS DECONTAMINATION FACTORS FOR SPECIFIC NUCLIDES

Nuclide	Concentrate Activity _(µCi/ml)_	Product Activity (µCi/ml)	Membrane DF
Co-60	2.5 (-4)	5 (-7)	500
Mo-99	3.8 (-2)	1 (-3)	40
I-131, 132, 133, 134, 135	1.2 (-1)	4 (-3)	30
Cs-134, 137	4.3 (-2)	2 (-4)	200
TOTAL	2 (-1)	5 (-3)	
AVERAGE			40

- 2. The process time is the total time liquid remains in the system for processing, based on the flow rate through the limiting process step.
- 3. The discharge time is one-half the time required to empty the final liquid waste sample (test) tank to the environment. This value is based on the maximum rate of the discharge pumps and the nominal tank volume.

The calculated values in 1. and the total of 2. and 3. are used as inputs to the computer PWR-GALE Code.

- 2.2.23 ADJUSTMENT TO LIQUID RADWASTE SOURCE TERMS FOR ANTICIPATED OPERATIONAL OCCURRENCES
- 2.2.23.1 Parameter
 - 1. Increase the calculated source term by 0.16 Ci/yr per reactor using the same isotopic distribution as for the calculated source term to account for anticipated operational occurrences such as operator errors that result in unplanned releases.
 - 2. Assume evaporators to be unavailable for two consecutive days per week for maintenance. If a 2-day hold-up capacity exists in the system (including surge tanks) or an alternative evaporator is available, no adjustment is needed. If less than a 2-day capacity is available, assume the waste excess is handled as follows:
 - a. <u>High-purity or low-purity waste</u> Processed through an alternative system (if available) using a discharge fraction consistent with the lower purity system.
 - b. <u>Chemical Waste</u> Discharged to the environment to the extent holdup capacity or an alternative evaporator is available.
 - 3. The following methods should be used for calculating holdup times and effective system DF:
 - a. <u>Holdup Capacity</u> If two or more holdup tanks are available, assume one tank is full (80% capacity) with the remaining tanks empty at the start of the two-day outage. If there is only one holdup tank, assume that it is 40% full at the start of the two-day outage with a usable capacity of 80%.
 - b. Effective System DF Should the reserve storage capacity be inadequate for waste holdup over a two-day evaporator outage, and should an alternate evaporator be unavailable to process the wastes from the out-of-service evaporator, the subsystem DF should be adjusted to show the effect of the evaporator outage.

For example, a DF of 10^{51} was calculated for a radwaste demineralizer and radwaste evaporator in series. If an adjustment were required for the evaporator being out-of-service two days/week, with only one day holdup tank capacity, then the effective system DF can be calculated as follows:

- 1. For 6 days (7 2 + 1) out of 7 the system DF would be 10^5 .
- For the remaining one day, the system DF would be 10² (only the demineralizer DF is considered). The effective DF is:

$$DF = \left[\left(\frac{6}{7}\right) \left(10^{-5}\right) + \left(\frac{1}{7}\right) \left(10^{-2}\right) \right]^{-1} = 7.0 \times 10^{2}$$

2.2.23.2 Bases

Reactor operating data over an 8 year period, January 1970 through December 1977, representing 154 reactor years of operation, were evaluated to determine the frequency and extent of unplanned liquid releases. During the period evaluated, 62 unplanned liquid releases occurred; 23 due to operator errors, 26 due to component failures, 5 due to inadequate procedures or failure to follow procedures, and the remaining 8 due to miscellaneous causes such as design errors. Table 2-37 summarizes the findings of this evaluation. Based on the data provided in Table 2-37 it is estimated that 0.16 Ci/reactor year will be discharged in unplanned releases in liquid effluents.

The availability of evaporators in waste treatment systems is expected to be in the range of 60 to 80%. Unavailability is attributed to scaling, fouling of surfaces, instrumentation failures, corrosion, and occasional upsets resulting in high carryovers requiring system cleaning. A value of two consecutive days unavailability per week was chosen as being representative of operating experience. For systems having sufficient tank capacity to collect and hold wastes during the assumed 2-day/week outage, no adjustments are required for the source term. If less capacity is available, the difference between the waste expected during two days of normal operation and the available holdup capacity is assumed to follow an alternative route for processing. Since processing through an alternative route implies mixing of wastes having different purities and different dispositions after treatment, it is assumed that the fraction of waste discharged following processing will be that normally assumed for the less pure of the two waste streams combined.

Since chemical and regenerant wastes are not amenable to processes other than evaporation, it is assumed that unless an alternative evaporation route is available, chemical and regenerant wastes in excess of the storage capacity are discharged without treatment.

[†] 10^3 (Evap.) x 10^2 (demin) = 10^5 is obtained using DF's from Section 2.2.19.1.

FREQUENCY AND EXTENT OF UNPLANNED LIQUID RADWASTE RELEASES FROM OPERATING PLANTS*

Unplanned Liquid Releases

Total number (unplanned releases)	62
Fraction due to personnel error	0.37
Fraction due to component failure	0.42
Fraction due to inadequate procedures or failure to follow procedures	0.08
Fraction due to other causes	0.13
Approximate activity (Ci)	24.
Fraction of cumulative occurrence per reactor year (plants reporting releases <5 gals of liquid waste/reactor year)	0.16
Fraction of cumulative occurrences per reactor year (plants reporting activity released >0.01 Ci/reactor year)	0.28
Activity per release (Ci/release)	0.39
Activity released per reactor year (Ci/reactor year)	0.16
Volume of release per reactor year (gal/reactor year)	633.

^{*} Values in this table are based on reported values in 1970-1977 Licensee Event Reports representing 154 reactor years of operation.

2.2.24 ATMOSPHERIC STEAM DUMP

2.2.24.1 Parameter

Noble gases and radioiodines released to the atmosphere from the steam dumps because of turbine trips and low-power physics tests will have a negligible effect on the calculated gaseous source term.

2.2.24.2 Bases

In the evaluation, consideration has been given to the quantity of noble gases and radioiodine released to the atmosphere from steam dumps because of low-power physics testing and turbine trips from full power. The evaluation indicates that the iodine-131 and noble gas releases will be less than 1% of the turbine building gaseous source term.

The evaluation of releases following a turbine trip from full power is based on the following parameters:

- 1. An average of two turbine trips annually;
- 2. 40% turbine bypass capacity to the main condenser;
- 3. Two-second rod insertion time required to scram the reactor following a turbine trip; and
- 4. Twelve-second cycle time to recirculate one primary coolant volume through the reactor and steam generator.

The above parameters are based on a 3400-MWt RESAR-3 reactor. Using these parameters, it is postulated that steam will continue to be produced at a full-power rate during the time the control rods are inserted and during the time required to recirculate one primary coolant volume. After this time, the turbine bypass will be adequate to handle steam generated from decay heat. The quantity of steam released

> = $(1.5 \times 10^7 \text{ lb/hr})(60\%)(14 \text{ sec})(2 \text{ trips/year})(454 \text{ g/lb})(\frac{\text{hr}}{3600 \text{ sec}})$ = $3 \times 10^7 \text{ g-steam/yr}$

The iodine-131 concentration in_8 the main steam for a U-tube steam generator is approximately 1.8 x 10⁻⁹ µCi/g-steam from Table 2-2.

Based on the steam release calculated above, the associated iodine-131 release is approximately 6.0×10^{-7} Ci/yr.

I-131/yr =
$$(3.2 \times 10^7 \frac{\text{g-steam}}{\text{yr}})(1.8 \times 10^{-8} \mu\text{Ci/g-steam})(10^{-6} \frac{\text{Ci}}{\mu\text{Ci}})$$

= 5.8 × 10⁻⁷ Ci/yr

Releases due to low-power physics testing are calculated based on one 10-hour release of steam each year following a refueling. For a RESAR-3 reactor, low-power physics testing is conducted at 5% power. The conditions given above for power level and steady-state main steam iodine-131 activity are used. In addition, it is assumed that the reactor will be shut down for 30 days for refueling prior to low-power physics testing. The iodine-131 releases are calculated to be approximately 4.6×10^{-6} Ci/yr using the following equation:

> I-131/yr = $(1.5 \times 10^7 \text{ lb/hr steam})(0.05)(454 \text{ g/lb})(10 \text{ hr/yr})$ (1.8 x $10^{-8} \mu \text{Ci/g-steam}) \exp \left[\frac{-(0.693)(30 \text{ days})}{(8.05 \text{ days})}\right] 10^{-6} \text{Ci/}\mu\text{Ci}$ I-131/yr = 4.6 x 10^{-6}Ci/yr

2.2.25 CARBON-14 RELEASES

2.2.25.1 Parameter

The annual quantity of carbon-14 released from a pressurized water reactor is 7.3 Ci/yr. It is assumed that most of the carbon-14 will form volatile compounds that will be released from the waste gas processing system and from the containment and auxiliary building atmospheres to the environment.

2.2.25.2 Bases

The annual release of 7.5 Ci of carbon-14 is based on measurements at ten operating PWR's presented in Table 2-38. Kunz et al. (Ref. 37) found that the carbon-14 reacts to form volatile compounds (principally CH_4 , C_2H_6 , and CO_2) that are collected in the waste gas processing system through degassing of the primary coolant and released to the environment via the plant vent. Data from Refs. 4, 5, 6, 42, and 43 also indicate carbon-14 is released from the containment and auxiliary building vent as a result of leakage of primary coolant into the containment and auxiliary building atmospheres.

As shown in Table 2-39, an average of measurements, made at Turkey Point 3 and 4, Zion 1 and 2, Fort Calhoun, Prairie Island 1 and 2, and Rancho Seco indicates that the release of carbon-14 breaks down to 22.6% from the containment building, 61.0% from the auxiliary building vents and 16.4% from the waste gas processing system. Therefore on this basis, it is assumed that 1.6 Ci/yr of carbon-14 is released from the containment building, 4.5 Ci/yr of carbon-14 is released from the auxiliary building vents and 1.2 Ci/yr of carbon-14 is released from the waste gas processing system.

CARBON-14 RELEASE DATA FROM OPERATING PWR's

Plant*	<u>1975</u>	<u>1976</u>	<u>1977</u>	<u>1978</u>	Annual Average Ci/yr-unit
Conn. Yankee	44	40	30	70	46
Yankee Rowe	1.6	0.13	0.24	0.33	0.58
Plant**			Area		Annual Release Ci/yr-unit
Turkey Point 3/4		Aux. Bldg. Containment WGPS [†] Spent Fuel <i>i</i>	Area		2.4 0.075 0.82 <u>0.38</u>
		Total			3.7
Fort Calhoun		Fuel Pool an WGPS Containment		dg.	0.30 0.81 0.78
		Total			1.9
Zion 1/2		Cont. Bldg. Fuel Handling and Aux. Bldg. WGPS			1.8 1.4 0.062
		Total			3.3
Prairie Island 1,	/2	Cont. Build [.] Fuel Handlin WGPS		. Bìdg.	0.016 3.3 0.25
		Total			3.6
Rancho Seco		Cont. Build [.] Fuel Handlin WGPS		. Bldg.	0.9 1.85 0.85
		Total			3.6
		Average			7.3

* Based on semi-annual release reports. ** Based on In-Plant Source Term Measurements. Waste gas processing system.

DISTRIBUTION OF CARBON-14 RELEASED IN GASEOUS EFFLUENTS

Plant	Plant Areas: Containment	Aux. Bldg. and Fuel Handling	WGPS
Turkey Point 3/4	2%	75%	23%
Fort Calhoun	41%	16%	43%
Zion 1/2	55%	43%	2%
Rancho Seco	25%	51%	24%
Prairie Island 1/2	0.5%	92.5%	7%
Average:	22.6%	61.0%	16.4%

2.2.26 ARGON-41 RELEASES

2.2.26.1 Parameter

The annual quantity of argon-41 released from a pressurized water reactor is 34 Ci/yr. The argon-41 is released to the environment via the containment vent when the containment is vented or purged.

2.2.26.2 Bases

Argon-41 is formed by neutron activation of stable naturally occurring argon-40 in the containment air surrounding the reactor vessel. The argon-41 is released to the environment when the containment is vented or purged. Table 2-40 provides a summary of available data and gaseous argon-41 releases from operating PWR's. The information reported by the licensees is not sufficiently detailed to correlate reported argon-41 releases with plant size and plant operating parameters. However, the average argon-41 release is estimated to be 34 curies per year.

SUMMARY OF ARGON-41 RELEASES FOR OPERATING PWR's FOR 1973-1978 (Ci/yr per reactor)

Reactor Name	Year	<u>Release</u>
Yankee Rowe	1974 1975 1976 1977 1978 (1/2 yr)	0.85 0.93 0.3 0.49 0.47
Haddam Neck	1973 1977 1978 (1/2 yr)	0.044 0.08 0.041
Ginna	1975 1976	5.8 0.19
Point Beach 1/2	1973 1974 1975 1976 1977 1978 (1/2 yr)	17.6 16 208 31 9.2 13.3
H. B. Robinson	1975 (1/2 yr) 1976 1977 1978 (1/2 yr)	16.2 15.4 23.1 46.2
Surry	1974 (1/2 yr) 1975 1976 1977 (1/2 yr)	15 0.32 9.15 16.5
D. C. Cook	1978 (1/2 yr)	19.7
Turkey Pt. 3/4	1974 1975 1976 1977	26 51.3 39.4 45
Oconee 1/2/3	1974 (1/2 yr) 1975 1976 1977 1978 (1/2 yr)	59.5 42 118 8.1 19.9

TABLE 2-40 (continued)

SUMMARY OF ARGON-41 RELEASES FOR OPERATING PWR's FOR 1973-1978

Reactor Name	Year	Release
Fort Calhoun	1975 1976 1977 1978 (1/2 yr)	8.2 2.2 2.3 0.27
Palisades	1978 (1/2 yr)	0.01
Zion 1/2	1978 (1/2 yr)	24.8
Prairie Island 1/2	1975 1976 1977 1978	1.3 21 31.8 13.5
Kewaunee	1976 (1/2 yr) 1978 (1/2 yr)	30 5,9
Three Mile Island 1	1975 (1/2 yr) 1976 1977 1978 (1/2 yr)	50 12 66 46.5
Calvert Cliffs	1976 (1/2 yr) 1977 (1/2 yr)	2 3.1
Rancho Seco	1977 1978 (1/2 yr)	9.8 1.8

(Ci/yr per reactor)

* All data provided by the semiannual effluent release reports and the annual operating reports for each PWR listed.

.

CHAPTER 3. INPUT FORMAT, SAMPLE PROBLEM, AND FORTRAN LISTING OF THE PWR-GALE CODE

3.1 INTRODUCTION

This chapter contains additional information for using the PWR-GALE Code. Chapter 1 of this report described the entries required to be entered on input data cards. Section 3.2 of this chapter contains sample input data and an explanation of the input to orient the user in making the entries described in Chapter 1.

Section 3.3 of this chapter contains a listing of the input data for the sample problem and the resultant output. Section 3.4 contains a discussion of the nuclear data library used and a FORTRAN listing of the PWR-GALE Code.

3.2 INPUT DATA

This section contains (a) an explanation of the input used in the sample problem and (b) input coding sheets for the sample problem.

3.2.1 EXPLANATION OF THE INPUTS FOR THE SAMPLE PROBLEM

Only the inputs for the GALE code runs for the sample problem that are not obvious are explained:

Condensate demineralizer regeneration time (days) Input - 8.4 days Put this input in card 10 in the appropriate field allotted for this input.

Basis

The sample problem assumes eight condensate deep beds, one of which is spare in parallel with no ultrasonic resin cleaning. The regeneration time for a bed is therefore 7×1.2 days = 8.4 days.

The liquid waste inputs are based on assuming the following:

A. Waste Generation Rates and Effective	PCA Fraction	S
Waste Type	Gal/day	PCA Fraction
Shim Bleed	1440	Code applies the CVCS DFs internally
Equipment Drains		
Pump seal leakage Pump seal leakage (Table 2-26)	300 20	1.0 0.1

Waste Type	Gal/day	PCA Fraction
Other primary coolant leakage from miscellaneous sources inside the containment (Table 2-26) Total equipment drain wastes	10 330	1.67 0.97 effective
Clean Wastes		
Primary coolant equipment drains (Outside containment) Spent fuel pit liner drains Primary coolant sampling system drains (segregated from	80 700	1.0 0.001
secondary coolant samples)	200	0.05
Total Clean Wastes	980	0.093 effective
Dirty Wastes		
Primary coolant equipment Reactor containment cooling system Auxiliary building floor drains	500 200	0.001 0.1
Secondary coolant sampling system drains	1400	0.0001
Total Dirty Wastes	2100	0.01 effective
Regenerant Wastes	3400	Code internally calculates the buildup on the beds
Condensate demineralizer rinse and transfer solution (secondary system wastes)	12000	10 ⁻⁸

A. Waste Generation Rates and Effective PCA Fractions (Cont'd)

B. Available Equipment for Liquid Wastes Processing

Equipment	Number	Capacity (Each)
Recycle holup tank (To collect shim bleed and equipment drains)	2	50,000 gal
Clean waste holdup tank Dirty waste holdup tank	2	7,000 gal 10,000 gal
Regenerant solution receiving tank	2	20,000 gal

		Capacity
Equipment	Number	(Each)
Resin and transfer solution receiving tank (To collect secondary system condensate demineralizer resin and transfer solution) Clean waste monitor tank	2	20,000 gal
(For processed shim bleed, equipment drains and clean wastes)	1	10,000 gal
Dirty waste monitor tank	2	10,000 gal
Secondary waste monitor tank (For processed regenerant wastes and secondary system condensate demineralizer resin and transfer solution)	2	10,000 gal
Recycle feed demineralizer (To process shim bleed and equipment drains and located upstream of the recycle holdup		
tank)	1	50 GPM
Recycle evaporator condensate demineralizer	1	50 GPM
Evaporator condensate demineralizer A (For clean wastes)	1	50 GPM
Evaporator condensate demineralizer B	I	50 di M
(For dirty wastes)	1	50 GPM
Secondary waste evaporator condensate demineralizer (To process regenerant wastes)	1	50 GPM
Secondary waste demineralizer (To process secondary system condensate demineralizer resin and transfer solution) Steam generator blowdown demineralizer	1	50 GPM
(To process steam generator blowdown)	2 in series	300 GPM
Recycle evaporator	1	30 GPM
(For processing shim bleed and equipment drains) Radwaste evaporator	i	30 UPM
(For processing dirty wastes and clean wastes) Secondary waste evaporator	1	30 GPM
(For processing regenerate wastes)	I	30 GPM

B. Available Equipment for Liquid Wastes Processing (Cont'd)

- C. Additional Notes about Liquid Wastes
 - The above list includes only the processing equipment assumed for generating the liquid waste inputs for running the GALE code. For example, it does not consider such equipment as filters, evaporator condensate tank, reactor makeup water storage tank, etc.

- Except the condensate deep bed demineralizers in the secondary system, all other demineralizers are assumed to be mixed bed and non-regenerative.
- 3. The processed steam generator blowdown is assumed to be totally returned to the secondary system. It is also assumed that the steam generator blowdown is 75,000 pounds/hr (~150 GMP).
- 4. Secondary system condensate demineralizer rinse and transfer solution waste has not been included as input for the sample problem GALE code run for the following reasons:
 - a. This waste is assumed to be collected in a collection system dedicated for this waste in the sample problem.
 - b. Even if 100 percent of this waste is released without treatment, the release from this stream is expected to be ≤ 0.15 percent of the total liquid effluent release. If, however, this waste is processed by the secondary waste demineralizer listed above, the release from this stream is expected to be ≤ 0.012 percent of the total liquid effluent release. Furthermore, it is likely that this waste will be processed and a major fraction of this processed waste will be recycled to the condensate storage system for eventual reuse in the secondary plant.

Note that if assumption <u>a</u> is not satisfied in any design, then the inputs for this waste should be properly integrated with the appropriate subsystem inputs (for example, the dirty waste subsystem) and the effective inputs for the combined waste system should be included for the GALE code run for that design.

- The detergent wastes are assumed to be released without any prior treatment.
- 6. All the liquid waste subsystems included in the GALE code run for the sample problem have at least a two-day holdup capacity for holding up the wastes prior to processing them.
- 7. In view of what has been stated above, no additional run need be made to evaluate the liquid effluent releases; also no adjustments need be made to waste subsystem DFs for possible equipment downtime.
- D. The gaseous waste inputs to the GALE code run for the sample problem are based on assuming the following:
 - 1. There is neither continuous degassification of the full letdown flow to the gaseous radwaste system via a gas stripper nor continuous purging of the volume control tank.
 - 2. Fill time and holdup time for gases stripped from the primary system are based on the following:

Number of pressurized storage tanks - 4 Volume of each tank at STP - 650 CF Design pressure for each tank - 150 psig No recombiners

- 3. Containment has small diameter (8 inches) purge line and the low volume containment purge rate is 1000 CFM.
- 4. Containment has no internal cleanup (kidney) system.
- Number of high volume containment purges during <u>power</u> operation -0.
- 6. Fuel, auxiliary and containment buildings have HEPA filters and four inch charcoal adsorbers on their exhaust lines and these filter units satisfy the guidelines of Regulatory Guide 1.140. Containment building has these filters both on the low and high volume purge exhaust lines. Waste gas system has HEPA filters on its exhaust line which satisfies the guidelines of Regulatory Guide 1.140. The iodine releases via the main condenser air ejector removal system are assumed to be released without any treatment prior to their releases.
- 7. Steam generator blowdown flash tank exhaust is <u>not</u> vented directly to the atmosphere.

3.2.2 INPUT CODING SHEETS

Figure 3-1 shows the input coding sheets used for the sample problem.

3.3 SAMPLE PROBLEM - INPUT AND OUTPUT

Figure 3-2 shows printouts of the input and output for a sample problem using the PWR-GALE Code.

3.4 LISTING OF PWR-GALE CODE

3.4.1 NUCLEAR DATA LIBRARY

Calculation of the releases of radioactive materials in liquid effluents using the GALE Code requires a library of nuclear data available from the Division of ADP Support, USNRC (301) 492-7713. For convenience, the tape consists of five files, written in card image form. The contents of the five files are:

- 1. File 1: A FORTRAN listing of the liquid effluent code.
- 2. File 2: Nuclear data library for corrosion and activation products for use with the liquid effluent code.

	FURTRAN	CODING FORM				
CODER		DATE	ADDRESS		PHONE	
PROBLEM	TITLE PWR-GALE CODE		PROGRAM NO.	CHG. NO.	SHEET	OF
STATEMENT NUMBER	O=ZERO Ø=ALPHA O	ι = ΟΝΕ. Ι = Α <u>ι</u> ρμα ι	2 = TWO Z = ALPHA ;	2		IDENTIFICATION
12131415 6	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3	713813914014:1421431441451	46147148149150151152153154155156157	5815916016:1621631641651661671681	6917017:172 73	174175176177178179180
CIAIRIDI	<u>] μι Νι ΑμΜί Εί μια μη ΑμΜί Ει μΟυ Εί μαι Εί Αι Οι Τι Οι Αμμαία (μ. μ. μ.</u>	<u></u>			$Y_1P_1E_1 =$	
	2 ₁ 1 ^P 10 ₁ W1T1H1 1 1T1H1E1R1M1A1L1 1 ^P 101W1E1R1 1 ¹ 1E1V1E1L1	(MIEIGIAIWIAITITI	Sı)ıı, ili ili ili ili ili ili ili ili ili il)
CIAIRIDI	31 PICTVIOILLI I IMIAISIST IQIELIPIRITIMIALRIVI I GOODIL	<mark>ΑΝΤ</mark> Ι(ΙΤΙΗΙΟΙΟ	SIAINIDI LIBISI) I I			<u> </u>
	4 ILIEITIDIWINI I I ^P IRIIIMIAIRIYI ISIYISITIEIMI ILIEITIDIOIM	<u>ΑΙΝΙ ΙΒΙΑΙΤΙΕΙ Ι(</u>	GIPIML) I I I I I I I I I I I I I I I I I I I		↓	<u> </u>
	5 I. C. BIFILIRI I I ILIEITIDIOIWINI ICIAITITIOINI IDIEIMITINIE	E <u>i Ri Ai Li Ii Zi Ei Ri</u> i	FILIOIWI (IGIPIMI)	╾┹╶╁╴╆╶┠╶┟╖┠╖┢┉╉╶┞╶┨		
CIAIRIDI	61 INIOLGIEINI I INIUMIBLEIRI IOIFI ISITIFIALMI IGIEINIEI	RATORS.L.			444	<u>, , , , , , ,)</u>
	7, ITIQISITIFILI I ITIQITIALLI ISITIFIAIMI IFILIOLMI I(IMILI	LI I O NI LI BI S	$/_1H_1R_1$) $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			
C, A, R, D,	8, WILTIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CH I S T E A M	G . E . N . E . R . A . T . O . R (. T .	HIOLUISIAINIDI LIBISI		<u> </u>
	91 IBILIWIDIWINI I IBILIOIWIDIOIWINI-ITIHIOIUSI ILIBI/IHIRI	(<u> </u>	LIQIWIDIQIWINI ITIRIEIA	<u>Τι Μι Ει Νι Τι ΙΙΙΝ ΙΡΙΟΙΤΙ</u>	<u></u>	101R12111
C_A_R_D_ 1	O ₁ IR IE IG IE IN IT I I I CIOINI DI ELNI SI ALTI EL ID IE IM I INI EL RIALLI.	I I Z. EL RI JR JE JG JE J	NIEIRIAITIIOINI ITIIMI	<u>Ει ι(μΟιΑιΥιδι) ι ι Ε</u>	<u> </u>	<u> </u>
CIAIRIDI 1	1 FFCOMILICIONDEINISIALTEIDEMITINERALLI	I <u>IZIEIRI IFILIOIW</u>	IFIRIAIC TITIOINI		<u> </u>	<u></u>)
C ₁ A ₁ R ₁ D ₁	2	<u></u>			╶┷╼┿╼┷┿╸	└── ┟ ── ┟ ── ┟ ── ┟ ── ┎
CIAIRIDI 1	3 · · · · · · · · · · · · · · · · · · ·	1 : 1) DIFIO	=1(1 1 + 1 1 1) + 1 1	<u> </u>		
CIAIRIDI 1	4. Ι. Ι. Ι. Ι. Ι. Ι. Ο. Μ.ΙΕΙΕΙΟΙΤΙΙ ΙΟΙΝΙ Ι (Ι. Ι. Ι. Ι.). ΙΟΙΑΙΥ	Υ <mark>ιδι ΙΡΙ ΒΙΟΙ ΟΙ ΕΙ </mark> δ		SI IFIRIAICITI DIIS	С_ Н (<u>, , ,), , , , , , , , , , , , , , , , </u>
CIAIRIDI 1	5, , , , , , , , , , , , , E, Q, U, I, P, M, E, N, T, , D, R, A, I, N, S, , I, N, P,		[GIPIDI(LILL) PICIAL I I		L <u>. I. I. I. I.</u>
CIAIRIDI 1	$6_{1} + \frac{1}{1} + \frac{1}{1$	1 1) D F 101	=_(įį	<u></u>
	7, 1, 1, 1, 1, 1, 1, C,O,L,L,E,C,T,I,O,N, 1(1,1,1,1), 1D,A,	Y _I S _{I I} P _I ROCES	$S_1(1 + 1 + 1) + D_1A_1Y$	$S_{\perp} = F_{\downarrow} R_{1} A_{1} C_{1} T_{\perp} = D_{1} I_{\perp} S_{1}$	Ci Hi I	<u>)</u>
CIAIRIDI 1	8 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	<u> </u>	$(1 + 1) + G(P_1 D_1 + 1)$	<u> </u>		
CIAIRIDI 1	9, , , , , , , , D, F, I, =, (, , , , , , ,), D, F, C, S, =, (, , ,	1 1) D, F, O	=_(<u> </u>
CIALRIDI 2	Οι τ. τ. τ. τ. τ. τ. Ο.Ο.Ε.Ε.Ε.Ο.Τ.Τ.Ο.Ν(<u> (1. S</u>	SI I (I I I I I I DIAIY	<u>SI IFIRIAICITI IDELES</u>	<u>Ci Hi I (</u>	<u>)</u>
CIAIRIDI 2	<u>1,</u>		<u></u>			<u> </u>
CIAIRIDI 2	$\frac{2}{1} + \frac{1}{1} + \frac{1}$		= 1(1 1 1 + 1)		╶┶╶┶╶┟╴┢╴	
$C_1 A_1 R_1 D_1 + 2$	31	YIS IP RIOICIEIS	SI (I I I I). ID (A IY	S . F.R. ALCETE LDI LES	CLHL (<u>)</u>
		<u></u>			└──┴──╁──╁──╆──	L → L J. L I L.
<u></u>		<u> </u>		╷ └─┨─┨ ╶┨╶┨╶┨╶┨╺┨╺ ┨╼┚		
1213141616		7138139140141142143144145	4614714814915015 152153154155156157	58 59 60 6 62 63 64 65 66 67 68	69,70,7,72,73	14175176177178179185

	FOR	TRAN CODING FORM				
CODER		DATE	ADDRESS		PHONE	
PROBLEM TITLE PWR-GALE C	CODE		PROGRAM NO.	CHG. NO.	SHEET OF	
STATEMENT NUMBER	O = ZERO Ø = Alpha o	F = ONE I = ALPHA F	2 : TWO 2 : ALPHA	2	IDENTIFIC	ATION
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16	1711811912021122123124125126127128129130131132133134	435136137138139140141 142143144145	146147148149150151 15215315415515615	57158159160161 16216316416516	666768697071727374757677	717817918
$C_A_R_D_2_4_1_1_1_1_1$	BILIQIWIDIOIWINI I IFIRIAICITIIOIN	<u>↓PR_1O_1C_1E_1S_1S_1E_LD_</u>			<u></u>	<u> </u>
C, A, R, D, 2 5, 1	$D_1F_1I_1 = (1 + 1 + 1 + 1) D_1F_1C_1S_1 = 1$, , , , , , ,), D, F, O,		<u> </u>	<u></u>	111
CIAIRIDI 261 IIIII	CIOILILLEICETETIOENEI(LI FEL)E	DIA YISI PROICIEIS	1 SI I (I I I I I) I ID IA I)	ISI IFIRIAICITI I	$\frac{D_{1}I_{1}S_{1}C_{1}H_{1}(1)}{D_{1}I_{1}S_{1}C_{1}H_{1}(1)}$)
	RIEIGIEINIEIRIAINIJI IFILIOIWI IRIA				<u> </u>	<u> </u>
CIAIRIDI 28 IIIIIII	<u> D F I = () F C S = (</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>1=1(1,1,1,1,1,1),1,1</u>	<u></u>	· · · · · · · · · · · · · · · · · · ·	
CIAIRIDI 291 IIIIII	C101L1L1E1C1T1IO1N1 (1 1 1 1)1	DIA YISI IPTRIOICIEIS	ISI I (I I I I) I IDIAI)	ΥΊζι ΓΕΙΒΙΑΙΟΙΤΙ Ι)
CIAIRIDI 3 OF ILI III	IISI ITHIEIRIEL ICIOLN TI HNU OL	US ISTIRILIPIPITING	r TOLEr I EF OF FLIF I FLE	TO Q W N IFILIOI	W121 101+11+01 R1211	
	HIOILIDIUIPI ITIIMELI FORRIXIE	IN 10 IN 1 (1 D A Y. S.).		_₩Ĺ_Ă_+ţ_₩Ĺ_Ĺ_ĹĹ_Ĺ	<u></u>	<u> </u>
CIAIRIDI 3 21 ITIALUI 21 I III	HIOILIDIUIPI ITIIIMIELIFIOLRI KIF	<u>a yi pi ti o ni i (i Di Ai Yi S</u>	1) <u>1 </u>	<u> </u>		
C, A, R, D, 3 3, T, A, U, 3 ,	Fililiti II II MED JOIFI DIELCIALY	I I TI AI N. KI SI IFIOIRI	ITIHLEL IGLALSI I SITIB	I BPIER I (IDIAI	Yısı)ı i fili fili i i i i i i i i i i i i i i	
C _I A _I R _I D _I 3 4 1 1 1 1 1 1 1	GIAISI WIAISITIEI ISIYISITIEIMI IH	1E1P1A1?1(1 1)1 1 1			╺┶╼┶╼┖╌┦╸┖╺╄╼┺╼┶╼	
CIAIRIDI 3 51 1 1 1 1 1 1	FIUIEILI IHIAINIDILIGUBILIDIGI I	I I I CIHIALRICIOIAIL	1?1(1)1H1E1P1A1?1(1		╶┵┵┷╼┽╌┦┥┥┷┹┻┺	
CIAIRIDI 3 61 1 1 1 1 1 1 1	AIUIXIIILIAIRIYI BILLDIGI III	I I I C HIA RICIOIAI	<u>, 2) (, 1) , 1H IE IP IA (21 (</u> 1		<u></u>	
CIAIRIDI 3 7 ICIOINIVIOILI II	CIOINITIAITINIMIEINITI VIOLLUMIE	<u>i i (i Mi Ii Li Li Li Li Qi Ni i</u> F	17131)1 1 4 1 1 1 1 1 1		<u></u>	
C ₁ A ₁ R ₁ D ₁ 3 8 1 1 1 1 1 1	ICIOINLTIMITI IAITIMI I LO LE FAN	URICIHIARCOLAL	<u>1?1(1_1)_HIE1PIA1?1(1</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	οιοιοιζιξτωτ) (τ εττ	<u> </u>
C, A, R, D, 39, 11, 11, 11, 1	<u>іС і N і Т і Мі Т і – і Н і І і G і Ні і V і ОГЦ і і Ріці</u> і	R G g IC HIA; RICIOLALI	<u>1 ?1 (1 1)1 HIEIPIA1?1 (1</u>	<u>), i įniuimibie</u> i	RI/IYIEIA;RI	ل
CIAIRIDI 401 IIIII	ICINITIMITI-ILIOIWI N 101LI PIULRIG	ELLICIHIARICIOLAL	<u>; ?, (, ,), ,H,E,P,A,?,(</u> ,	<u>, , , , , , , , , , , , , , , , , , , </u>	CIFIM:)	i
CIAIRIDI 4 1 FIVNI III	<u>FIRIALCITIIONIIIIOIDIINEI RIE</u>	LILIEIAISIED IFIRIOIM	II I BILIOI WIDIOI WINI ITI	<u>ΑΙΝΙΚΙ Ι VLΕΙΝΙΤΙ Ι</u>	<u></u>	
CIAIRIDI 4 21 IFIELDI I I I	PIEIRICIEINITI IOIFI IIO DINE	IREMIOVIEDI FIRI	MI ALI PENJECTO	Ο ΙΑΙ ΙΑΙΕΙΔΙΕΙΑΙSΙ	E	
CIAIRIDI 4 31 PIFILIALUINI	<u>IDIEITIEFRIGIEINITI I WIALSITIEI PIE</u>	┶┺╼┺╼┚╼┲┲┲				
		<u></u>	·			
			1.1.1.1.1.1.1.1.1	<u> </u>		11.1
		<u> </u>		<u></u>		<u> </u>
		┷┷╼┶╌┶╴┶╌╈╌┷╴┶╴┶╴				
1213141567181910111213141516	171-81-912012-12212312412512612712812913013-132133134	4 35 36 37 38 39 40 41 42 43 44 4	946147148149150151 1521531541551561	57,58,59,60,61,62,63,64,65,6	5616716816917017:122 317417517617	77178179

.

TYPE = PWR NAME OF REACTOR SAMPLE PWR REV 1 1 NAME CARD THERMAL POWER LEVEL (MEGAWATTS) 3400. 2 POWTH CARD MASS OF PRIMARY COOLANT (THOUSAND LBS) 550. CARD 3 PCVOL 75. 4 LETDWN PRIMARY SYSTEM LETDOWN RATE (GPM) CARD LETDOWN CATION DEMINERALIZER FLOW (GPM) 7.5 5 CBFLR CARD 4. CARD 6 NOGEN NUMBER OF STEAM GENERATORS TOTAL STEAM FLOW (MILLION LBS/HR) 15. CARD 7 TOSTFL MASS OF LIQUID IN EACH STEAM GENERATOR (THOUSAND LBS) 112.5 CARD 8 WLI BLOWDOWN-THOUS LB/HR 75.0 BLOWDOWN TREATMENT-INPUT 0,1, OR 2 0 CARD 9 BLWDWN CONDENSATE DEMINERALIZER REGENERATION TIME (DAYS) 8.4 CARD 10 REGENT 0.65 CONDENSATE DEMINERALIZER FLOW FRACTION CARD 11 FFCDM 1440. GPD CARD 12 SHIM BLEED RATE 1.0E05 DFI= 5.0E03DFCS= 2.0E03DF0 = CARD 13 COLLECTION 22.6 DAYS PROCESS 0.93 DAYS FRACT DISCH .1 CARD 14 EQUIPMENT DRAINS INPUT 330.0 GPD AT 0.97 PCA CARD 15 DFI= 5.0E03DFCS= 2.0E03DF0 = 1.0E05 CARD 16 COLLECTION 22.6 DAYS PROCESS 0.93 DAYS FRACT DISCH .1 CARD 17 GPD AT .093 PCA CLEAN WASTE INPUT 980. CARD 18 DFI= 5.0E02DFCS= 1.0E03DF0 = 1.0E04 CARD 19 COLLECTION 5.7 DAYS PROCESS 0.13 DAYS FRACT DISCH 0.1 CARD 20 2100. GPD AT 0.01 PCA DIRTY WASTES CARD 21 DFI= 5.0E02DFCS= 1.0E03DF0 = 1.0E04 CARD 22 COLLECTION 3.8 DAYS PROCESS 0.19 DAYS FRACT DISCH 1.0 CARD 23 1. CARD 24 BLOWDOWN FRACTION PROCESSED DFI= 1.00E03DFCS= 1.00E02DF0 = 1.00E03 CARD 25 DAYS PROCESS 0.0 DAYS FRACT DISCH 0.0 COLLECTION 0.0 CARD 26 3400. REGENERANT FLOW RATE (GPD) CARD 27 DFI= 5.0E02DFCS= 1.0E03DF0 = 1.0E04 CARD 28 DAYS PROCESS 0.37 DAYS FRACT DISCH 0.1 CARD 29 COLLECTION 4.7 IS THERE CONTINUOUS STRIPPING OF FULL LETDOWN FLOW? 0,1,0R 2 0 CARD 30 HOLDUP TIME FOR XENON (DAYS) 60. CARD 31 TAU1 HOLDUP TIME FOR KRYPTON (DAYS) 60. CARD 32 TAU2 FILL TIME OF DECAY TANKS FOR THE GAS STRIPPER (DAYS) 30. CARD 33 TAU3 CARD 34 GAS WASTE SYSTEM HEPA?99. CARD 35 FUEL HANDLG BLDG CHARCOAL?90. HEPA?99. AUXILIARY BLDG CHARCOAL?90. HEPA?99. CARD 36 2.45 CARD 37 CONVOL CONTAINMENT VOLUME (MILLION FT3) CNTMT ATM. CLEANUP CHARCOAL?0.0 HEPA?0.0 RATE(1000CFM) CARD 38 CNTMT-HIGH VOL PURGE CHARCOAL?90. HEPA?99. NUMBER/YEAR CARD 39 0.0 CNTMT LOW VOL PURGE CHARCOAL?90. HEPA?99. RATE (CFM) 1000. CARD 40 CARD 41 FVN FRACTION IODINE RELEASED FROM BLOWDOWN TANK VENT CARD 42 FEJ PERCENT OF IODINE REMOVED FROM AIR EJECTOR RELEASE FRACTION IODINE RELEASED FROM BLOWDOWN TANK VENT 0.0 0.0 1. CARD 43 PFLAUN DETERGENT WASTE PF

BAMPLE PWR REV 1	PWR
THERMAL POWER LEVEL (MEGAWATTS)	3400.0000
PLANT CAPACITY FACTOR	0.8000
MASS OF PRIMARY COULANT (THOUSAND LOS)	550.0000
PRIMARY SYSTEM LOTDOWN RATE (GPN)	75.0000
LETDUWN CATIUN DEMINERALIZER FLOW (8MM)	7.5000
NUMBER OF STEAM GENERATORS	4.0000
TUTAL STEAM ELOW (MILLION LOS/HR)	15.0000
MASS OF LIRUID IN EACH STEAN GENERATUR (THOUSAND LBS)	112.5000
MASS OF WATEM IN STEAM GENERATORS (TUDUSAND LUS)	45ñ.0000
HLUWDOWN RATE (THOUSAND LRS/HR)	75.0000
PHIMARY TO SECONPARY LEAK RATE (LBS/VAY)	75.0000
CUNDENSATE DEMINERALIZER REGENERATION TIME (DAYS)	8.4000
FISSION PRODUCT CARRY-OVER FRACTION	.0050
HALOGEN CARRY-OVER FRACTION	.0100
CUNDENSATE DEMINGRALIZER FLOW FRACTION	.6500

LIQUID WASTE INPUTS

	STREAM	FLOW RATE	FRACTION OF PCA	FRACTION DISCMARGED	CULLECTION TIME	DECAY TIME	DEC	ONTAMINATI	ON FACTORS
		(GAL/DAY)			(DAYS)	(DAYS)	1	CS	OTHERS
	SHIM BLEED RATE	1.44E+03	1.0000	,1000	22,6000	.9300	5.0nE+03	2.00E+03	1.00E+05
	EQUIPMENT DRAINS	3.30E+04	.9700	1000	22.6000	.9300	5.00E+03	2.00E+03	1.00E+05
	CLEAN WASTE INPUT	9.90E+04	.0930	1000	9,7000	1300	5.00E+02	1.00E+03	1.00E+04
	DIRTY WASTES	2.10F+03	.0100	1.0000	4,8000	1900	5.00E+02	1.00E+03	1.00E+04
	BLOWDOWN	2.16E+09		0.000	0.000	0.000	1.0000+03	1.00E+02	1.00E+03
ယု	UNTREATED BLOWDOWN	0.		1.000	0.000	0.000	1.00E+00	1.00E+00	1.00E+00
ώ		3.40E+0.		.100	4.700	.370	5.00E+02	1.00E+00	1.00E+04

GASEOUS WA	STE	INPUTS	
		THERE IS NOT CONTINOUS STRIPPING OF FULL LETOWN FLOW	
		HULDUP TIME LOR MENON (DAYS)	60.0000
		HULDUP TIME FOR MRYPTON (DAYS)	60.0000
		FILL TIME OF DECAY TANKS FOR THE GAS STRIPPER (DAYS)	30.0000
		GAS WASTE SYNTEM PARTICULATE WELEUSE FRACTION	.0100
		AUXILIARY BLUG IODINE RELEASE FRACTION	.1000
		PARTICULATE RELEASE FRACTION	.0100
		CONTAINMENT VOLUME (MILLION 13)	2.4500
		FREQUENCY OF CNTHT BLDG HIGH VOL PURGE (TIMES/YR)	2.0000
		CNIMT-HIGH VUL PURGEIODINE RELEASE FRACTION	.1000
		PARTICULATE RELEASE FRACTION	.0100
		CNIMT LOW VOL RUNGE RATE (CFM)	1000.0000
		CNTMT LOW VOL PURGE IODINE RELEASE FRACTION	.1000
		PARTICULATE RELEASE FRACTION	.0100
		STEAM LEAK TH TURBINE BLDG (LBS/HR)	1700.0000
		FRACTION IDDINE RELEASED FROM BLUWDUWN TANK VENT	0.0000
		PERCENT OF INDINE REMOVED FROM AIR EVECTOR RELEASE	1.0000

.

-

SAMPLE MWR REV 1 LINUID EFFLUENTS

			3Ce _4									
ANNUAL RELEASES TO DISCHARGE CANAL												
				ENTRATIONS						ADJUSTED	DETERGENT	TOTAL
	NUCLIDE	HALE-LIFE	PRIMARY	SECUNDARY		HISC. WASTES	SECONUARY	TURB BLDG	TOTAL LWS	TOTAL	WASTES	
				(MICRO CI/ML)	(CURIED)	(CURIES)	(CURIES)	(CURIES)	(CURIES)	(CI/YR)	(CI/YR)	(CI/YR)
			VATION PHUDUC							• •		
	NA 24	6.25F-01	4.70E404	1.42E-06	.00000	.00003	.00000	.00005	.00009	.00114	0.00000	.00110
	P 32	1.43E+01	0.	0.	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	.00018	.00018
	CH 51	2.78E+01	3.10E-03	1.22E-07	•00000	.00001	.000 <u>n</u> 0	.00001	.00005	.00025	.00470	.00500
	MN 54	3.03E+02	1.60E-03	6,08E-08	.00000	.00001	.00000	.00000	.00001	.00014	.00380	.00390
	FE 55	9.50F+02	1.20E403	4,59E-08	.00000	.00000	.00000	.00000	.00001	.00010	.00720	.00730
	FE 59 C0 58	4.50E+01 7.13E+01	3.00E=04	1.12E-08 1.78E-07	.00000	00000.	.000ñ0	.00000	.00000	20000.	.00220	.00220
	CO 60	1.92E+03	4,60E≠04 5,30E≠04	2.06L-08	•00000	\$0000.	.00000	.00001	.00003	.00038	.00790	.00430
	NI 63	3.36E+04		0.	0.00040	.0000U 0.00000	.000ñ0 0.000ñ0	.00000 0.00000	00000. 0,0000.0	.00005 0.00000	.01400 .00170	.01400 .00170
	ZN 65	2.45E+02	0. 5.10E≠04	1,97E-08	.00000	.00000	.00000	.00000	.00000	.00004	0.00000	+00004
	W187	9.96E-01	2.506-03	8.22L-08	.00000	.00000	.00000	.00000	.00001	.00008	0.00000	.00004
	NP239	2.35E+00	2.20E-03	7.90E-08	.00000	.00000	.00000	.00000	.00001	.00011	0.00000	.00011
				•••••				.00000	• • • • • • • •		0.00000	
	FISSION	PRODUCTS										
	SR 89	5.40E+01	1.40E404	5.34E-09	.00000	.00000	.00000	.00000	.00000	.00001	.00009	.00010
	SR 90	1.03E+04	1.20E405	4 59E-10	.00000	.00000	.000.00	.00000	.00000	.00000	.00001	.00001
	SH 91	4.03E-01	9.60E-04	2.67E-08	+000U0	.00000	.00000	.00000	.00000	.00002	0.00000	\$0000
	Y 91M	3.47E-02	4.60E404	3.16E-09	.00900	.00000	.000.00	.00000	.00000	.00001	0.00000	.00001
	Y 91	5.0AE+01	5,20E409	1.97E-10	.00000	.00000	.00000	.00000	.000nn	.00000	.00008	.00009
	Y 93	4.25E-01	4.20E⊐03	1,14E-07	•00000	.00000	.000.00	.00000	.00001	.00007	0.00000	.00007
	ZR 95	6.50E+01	3.90E+0	1.50E-08	.00000	.00000	.000ā0	.00000	.00000	.00003	.00110	.00110
μ	NB 95	3.5nE+01	2.80E-04	1.03E-08	.00000	.00000	.00000	.00000	.00000	.00002	.00190	.00190
-9	MO 99	2.79E+00	6.40E403	2.35E-07	.00000	.00003	.00000	.00001	.00003	.00035	.00006	.00041
	TC 99M	2.508-01	4.70E+04	1.06E-07	-00000	.00002	.00000	.00001	.00002	.00030	0.00000	.00030
	RU103	3.96E+01	7,50E+03	2.90E-07	.00000	.00004	.00000	.00001	.00005	.00062	.00029	.00091
	RH103M	3.96E-02	0.	0.	.00000	.0000	.00000	.00001	.00005	.00061	0.00000	.00061
	RU106	3.47E+02	9.00E-04	3.46E-06	.00094	.00037	.00000	.00017	.00059	.00766	.00890	.01700
	RH106	3.47E-04 2.57E+02	0.	0.	.00004	.00037	.00000	.00017	.00059	.00766	0.00000	.00770
	AGIIOM	2.976-04	1.30E-03	4.96E-08	.00000	.00001	.00000	.00000	.00001	.80011	.00120	.00130
	AG110 SH124	0.00E+01	0.	0.	0.00000	00000. 000000	.00000	.00000 0.000n0	.00000	.00001	0.00000	.00001 .00043
	TE129M	3.40E+01	0. 1.90E≠04	0. 7.30E-09	.00000	.00000	0.00000	.00000	0,00000 ,00000	0.0000.0	0.00000	.00002
	TE129	4.79E-02	2.408404	2.17E-07	.00000	.00000	.00000	.00000	.00000	.00002	0.00000	.00002
	TEISIM	1.25E+00	1.50E-03	5.09E-08	.00000	.00000	.00000	.00000	.00000	.00006	0.00000	.00006
	J131	8.05E+00	4.50E+04	1.36E-06	.00017	.00309	.000.01	,00013	.00340	.04429	.00160	.04600
	TE132	3.25E+00	1.70E403	6,20E-08	.00000	.00000	.00000	.00000	.00001	.00010	0.00000	.00010
	1132	9.58E-02	2.10E+01	2.77E-06	.00000	.00019	.00000	.00005	.00024	.00313	0.00000	.00310
	4133	8.75E-01	1.40E404	3 75L-06	.00003	.00290	.00000	00031	.00325	.04226	0,00000	.04200
	1134	3.67E-02	3.40E-01	2 27E-06	.00000	.00001	0.000.00	.00000	.00002	.00021	0.00000	15000.
	CS134	7.49E+02	7.10E-03	2 84E-07	.00050	.00029	.00000	.00001	.00081	.01060	.01100	00550.
	1135	2.19E-01	2.60E-01	5.47E-06	.00000	.00133	.000.00	.00029	.00163	.02122	0.00000	.02100
	CS136	1,30E+01	8.70E≠04	3,45E-08	.00003	.00003	.00000	.00000	.00007	.00089	.00037	.00130
	CS137	1,10E+04	9.40E≠03	3.79E-07	•000558	.00039	.00000	.00002	.00109	.01413	.01600	.03000
	BA137M	1.77E-03	0.	0.	+00093	.00037	.00000	.00002	*00JUS	.01355	0.00000	.01300
	BA140	1.28E+01	1.30E-04	4 87E-07	.00000	.00005	.00000	.00005	.00008	.00098	.00091	.00190
	LA140	1.68E+00	2.50E-04	8.16L-07	.00000	.0000/	.000n0	.000n4	.00012	.00155	0.00000	.00160
	CE141	3.24E+01	1.50E-04	5,/1E-09	.00000	.00000	.00000	.00000	.00000	.00001	.00023	.00024
	CE143	1.38E+00	5.80E403	9.43E-08	·000V0	.00000	.000ñ0	.00000	.00001	.00011	0.00000	.00011
	PR143	1.37E+01	0.	0.	.00000	.00000	.00000	.00000	.00000	.00001	0.00000	.00001
	CE144	2.048+02	3.90E403	1.50E-07	.00000	\$0000.	.00000	.00001	.00003	.00033	.00390	.00420
	PR144	1.20E-02		0.	.00000	.00002	.00000	.00001	.00003	.00033	0.00000	.00033
	ALL OTHE		2.14E401	6.26E-07	•00000	.00000	.00000	.00000	.00000	.00001	0.00000	.00001
	TUTAL	TRITIUM)	1.48E.00	2.52E-05	.00216	00073	00011	00141		17531	.08975	.26000
	LEXEEPT	1.1.10.01	I * 405 400	r*255403	+Une+0	.00972	.000 <u>n</u> 1	.00141	.01331	.17331	• (10 4 1 3	• vanda

L. 5

TRITIUM RELEASE 280 CURIES PEN YEAR Note: •00000 Invitates that the value is less than 1.0e-5.

SAMPLE PWR REV 1	PWR
THERMAL POWER LEVEL (HEGAWATTE)	3400,00000
PLANT CAPACITY FACTOR	0.80
MASS OF PRIMARY COULANT (THOUSAND LOS)	550,00000
PRIMARY SYSTEM LETUDUN RATE (GPM)	75,00000
LETOUNN CATIVI DEMINERALIZED FLOW (GPM)	7.50000
NUMBED OF STEAM GENERATORS	4,00000
TUTAL STEAM FLUM (MILLION LHS/HR)	15,00000
MASS OF LIQUAD IN EACH STEAM GENERATUR (THOUSAND LOS)	112,50000
BLOWDOWN NATE (TUDUSAND LRS/HR)	75,00000
CURDENSATE DEMINERALIZER REGENERATION TIME (DAYS)	8.40000
CONDENSATE DEMINERALIZER FLOW FRACTION	.65000

LIGHTD WASTE INPUTS

- FIGUID MASIE THEOL	5							
		FRACTION	FRACTION	COLLECTION	UFCAY			
STHEAM	FLUW RATE	UF PCA	DISCHARGED	TIME	TIME	DECONTAM	INATION	FACTORS
	(GAL/DAY)			(UAYS)	(DAYS)	Ť	CS	OTHERS
SHIM BLEED WATE	1.44F.+0.	1.0000	.1000	55.0000	.9300	5.00E+03	2.00E+0	1.00E+05
EQUIPMENT DRAINS	3.30F+04	.9700	.1000	22.6000	.7300	5.00E+03	2.00E+0	1.00E+05
CLEAN WASTE LOPUT	9.A0E+04	.0930	.1000	₽.7000	.1300	5.0nE+02	_1.00 ₹+0 ♥	1.00E+04
DIRTY WASLES	5.10E+03	.0100	1,0000	3,8000	.1900	5.00E+02	1.00E+0	1.00E+04
BLOWDOWN	S-16E+05		0.000	0.000	0.000	1.00E+03	1.00E+04	1.00E+03
UNTREATED BLOWDUW	4 6.		1.000	0.00	0.000	1+0ñE+00	1.00E+09	1.00E+00
REGENERANT SOLS	3.40E+04		•100	4.700	• 370	5+0nE+02	1.00E+08	1,00E+04

GASEOUS WASTE INPUTS

f.	INPUTS	
	THERE IS NOT CONTINUOUS STRIPPING OF FULL LETOWN FLOW	
	FLUW RATE THHOUGH GAS STRIPPER (GPM)	1,22917
	HULDUP TIME FOR KEHOH (DAYS)	60,00000
	AULDUP TIME FOR KRYPTON (DAYS)	60.00000
	FILL TIME OF DECAY TANKS FOR THE GAS STRIPPER (DAYS)	30,00000
	PRIMARY COOLANT LEAK TO ADAILIANY BLUG (LE/UAY)	160,00000
	GAS WASTE SYSTEM PARTICULATE HELEASE FRACTION	.01000
	FUEL HANDLE HEDE ADDINE HELEASE FRACTION	10000
	PANTICULATE RELEASE FRACTION	.01000
	AUXILIARY HLUG INDINE DELEASE FRACTION	.10000
	PARTICULATE RELEASE FRACTION	.01000
	CONTATIONENT VOLUME (MILLION + T3)	2.45000
	FREQUENCY OF PHIMARY CUULANT DEVASSING (TIMES/YR)	2,00000
	PRIMARY TO SECONDARY LEAK HATE (LB/UBY)	75,00000
	THERE IS NOT A KIDNEY FILTER	
	FRACTION JOUANE BYPASSING CONDENSATE DEMINERALIZER	.35000
	LUDINE PARTIFION FACTOR (GAS/LIQUID) IN STEAN GENERATO	
	FPEQUENCY OF CNIMT BLOG HIGH VOL PURVE (TIMES/YR)	2.00000
	CHINT-HIGH VUL PURGEIONINE PELEASE FRACTION	.10000
	PARTICULATE MELEOSE FRACTION	.01000
	CHINT LOW VOL PURGE HATE (CEH)	1000.00000
	CHINT LOW VOL PURGE LODINE RELEASE FRACTION	.10000
	PARTICULATE RELEASE FRACTION	,01000
	STEAM LEAK TU TUMHINE BLUG (LESZMR)	1700,00000
	FRACTION TOUTHE RELEASED FROM BLUWDUPN TANK VENT	0.00000
	PERCENT OF JUDINE REHOVED FROM ALL EVECTOR RELEASE	1,00000

SAMPLE PWR REV 1

GASEOUS RELEASE RATE - CURIES PER YEAR

		SECONDARY		ILDING VENT	-	•			
	CODEAN) (MICRUCI/GM) (CODLANT MICROCIVEN)	FILL MANDLG	REACTOR	AUXILIARY	TURBINE	BLOWDOWN Vent Offgas	AIR EJECTOR Exhaust	TOTAL

14131	4.500L-02	1.397E-V6	5 · *F-04	3.7E-03	1.4E-02	0.	0.	0•	1.8E-02
14133	1.400E-01	3.177E-06	1.05-03	7.9E-03	4.5E-02	1. 9 €-04	۰ <u>۵</u> ,	0.	\$.5E-92
		THTAL H	I DELEACHU VIA GASE		- 1160 07 (95				

TUTAL H-3 RELEASED VIA GASEOUS PATHWAY = 1100 CI/YR

C-14 RELEASED VIA GASEOUS PATHWAY = 7.3 CL/YR

AR-41 RELEASED VIA CUNTAINMENT VENT = 34 CI/YR

	PRTMARY SECUNUARY		GAS STRIPPING		BUILDING VENTILATION					
	COULANT (MICRUCI/GM)	COULANT (MICROGI/ON)	SHUTLOWN	CUNTINUOUS	REACTOR	AUXILIARY	TURBINE	BLOWDOWN Vent Offgas	AIR EJECTOR Exhaust	TOTAL
	1.600E-01			0.	4.8E+01	3.0E+00	 C .	0,	2.0E+00	5,3E+01
KR-AS	4.300E-01	8.400L-08	5.1F+05	8+3E+02	9.#E+02	9.0E+00	0.	0.	4.0E+00	2,QKiQ3
KR-A7	1.500L-01	3.000E-08	0.	0.	1.4E+01	3.0E+00	Q.	۹,	1.0E+00	1 .8 8+91
KN-80	2.800£-01	5.9V0E-08	0.	0 4	5.0E+01	6.0E+00	đ.	9.	3.0E+00	6,5K-Qi
XE-131M	7.300E-01	1.50nE-07	1.1E+01	2. 4E+01	1,\$E+03	1.5E+01	•.	۰.	7.0E+00	1,60+03
XE-133H	7.0002-02	1.500E-08	0.	0.	1.0E+02	1.0E+00	Q.,	۹.	0.	1.0E+01
XE=133	2,600E+00	5.400E-07	υ.	U •	4.7E+03	5.5E+01	0.	۰.	2.6E+01	4.8 6 403
XE-135M	1.300E-01	2.740E-48	0.	0.	3,0E+00	3.0E+00	0.	۰.	1.0E+00	7.0 Ę +00
XE-135	A.500E+01	1.8V0E-07	υ.	0.	4.6E+02	1.8E+01	٥.	ø.	9.0E+08	4.9E+01
XE-137	3.490£-02	7.1VnE-09	0.	0.	0.	ō.	Q.	۰,	0.	0,
XE-138	1.200L-01	2.540E-08	0.	0.	2.0E+00	3+0E+00	Q.	۹.	1.0E+00	4.0E+01
TOTAL N	OALE GASES									9,1E+03

GASEOUS RELEASE RATE - CURIES PER YEAR

0.0 APPEARING IN THE TABLE INDICATES RELEASE IS LESS THAN 1.0 CITYR FOR NOBLE GAS. 0.0001 CITYR FOR I

AIRBORNE PARTICULATE RELEASE RATE-CURIES PER YEAR

NUCLIPE	WASTE GAS System	BUIL(REACTOR		TION FUEL HANPLG	TOTAL	
C6+21	1.4F-07	9.28-05	3.25-06	1.8E-06	9,7E-05	
MNL54	2.1E-08	5.3E-05	7.8E-07	3,0E-06	5,7E-05	
C0457	0.	8.2E-06	0.	0.	8.2E-06	
CU-58	8.7F-08	2.5E-04	1,9E-05	2.1E-04	4+8E-04	
C046n	1.4E-07	2.6E-05	5.1E-06	8.2E-05	1+1E-04	
FE459	1.8E-08	2,7E-05	5.0E-07	0.	2.85-05	
SREAG	4.4E-07	1.3E-04	7,5E-06	2.1E-05	1.6E-04	
SR-9n	1+7E-0/	5.2E-05	2.9E-06	8.0E-06	6,3E-05	
ZRE95	4.8F-08	0.	1.0E-05	3.6E-08	1.0E-05	
NHL95	3.7E-08	1.8E-05	3.0E-07	2.4E-05	4.25-05	
KU-103	3.2F-08	1.6E-05	2.3E-07	3.8E-07	1.7E-05	
RU-106	2.7F-08	0.	6.0E-08	6.9E-07	7.8E-07	
SB4125	0.	0.	3.9E-18	5.7E-07	6+1E-07	
CS-134	3.3E-07	2,5E-05	5.4E-06	1.7E-05	4.8E-05	
CS-130	5.3F-08	3.2E-05	4.8E-07	0.	3.3E-05	
CS-137	7.7E-07	5,58-05	7.2E-06	2.7E-05	9.0E-05	
BA-140	2.3F-07	0•	4.0E-06	0.	4.2E-06	
CE-141	5.56-94	1.3E-05	2.6E-07	4.4E-09	1.3E-05	
*************************			*** * ******			

- 3. File 3: Nuclear data library for fuel materials and their transmutation products for use with the liquid effluent code.
- 4. File 4: Nuclear data library for fission products for use with the liquid effluent code.

5. File 5: A FORTRAN listing of the gaseous effluent code.

The tape is written in the following format:

DCB = (RECFM = FB, LRECL = 80, BLKSIZE = 3200)

Use of the tape requires two data cards in addition to those described in Chapter 1 containing the plant parameters. For a low enrichment uranium-235 oxide-fueled light water reactor, these cards should always contain the following data:

Card	Column	Input Data
1	1-72	Title
1	75	The value 2
2	1-10	The value 0.632
2	11-20	The value 0.333
2	21-30	The value 2.0
2	31-40	The value 1.0E-25
2	41-46	The date (month, day, year) of the calculation
2	48	The value l
2	50	The value O
2	52	The value O

A description of the information contained in the nuclear data library can be found in the report ORNL-4628, "ORIGEN - The ORNL Isotope Generation and Depletion Code," dated May 1973.

3.4.2 FORTRAN PROGRAM LISTING

Figure 3-3 and 3-4 provides the program listings for the PWR-GALE Code gaseous and liquid determinations.

FIGURE 3-3 PROGRAM LISTING FOR GASEOUS DETERMINATION 000260 #DECK PGALEGS GALE CODE FOR CALCULATING GASEOUS EFFLUENTS FROM PWRS. MODIFIED С AUG. 1979 TU IMPLEMENT APPENDIX I TO 10 CHR 50, REACTOR С WATER CONCENTRATIONS LALCULATED USING METHODS OF DRAFT STANDARD 000300 С ANS 237 "RADIOACTIVE MATCHIALS IN PRINCIPAL FLUID STREAMS OF 000310 С LIGHT WATER COOLED NULLEAR POWER PLANTS" DRATT DATED MAY 20, 1974000320 С С THE FOLLOWING FIRST STATEMENT IS SPECIFIC FOR THE CDC USERS. С FOR THE IBM USERS, DELETE THIS STATEMENT. С С PROGRAM PGALEGS (INPUT, OUTPUT, TAPE5=INPUT, TAPE5=OUTPUT) REAL NUCLIU(13) REAL PPART(18) DIMENSION ACONT(13), CUCP(13), CBSP(13), ASHIMC(13), ASHIMS(13) DIMENSION CHPP(13) DIMENSION ASHIM(13), CUNCP(13), CONCS(13), DECON(13), FHBL(13) DIMENSION DECOH(13), NAME(8), EVT(13), TBL(13), CPL(13), AXBL(13) DIMENSION BVOG(13), TOI(13), X2(13), X3(13), X4(13), X5(13) DIMENSION CTPRO(13), XP1(13), XP2(11), WORD(14), WARD(5), WURD(4) DIMENSION PCBL(18) PAXBL(18) PCBP(18) PAXHP(14) PGWS(18) PTOTP(18) DIMENSION PGWL (18), PCPCP (18), PCBSP (18), PRCONT (18) DIMENSION PEHBL(18), PEHBP(18) DIMENSION HNAX (2), RNAXS (2), RNFH (2), RNFHS (2), RNT (2), RNTS (2), RNS (2) DATA NICLID/" KR-85M"," KR-85"," KR-87"," KR-98"," XE-131M", 1" XE-133M", XE-133", XE-135", XE-135", XE-135", XE-137", 2" XE-138"," I-131"," 1-133"/ DATA PPART/" CR-51"," MN-54"," CO-57"," CU-58"," CO-60"," FE-59", 1" SR-89"," SR-90"," ZK-95"," NB-95"," RU-103"", RU-106"," SB-125", 2" CS-134"," CS-136"," CS-137"," BA-140"," CE-141"/ С XP1 AND XP2 ARE THE PRIMARY CUOLANT AND SECONDARY COOLANT С CUNCENTRATIONS, RESPECTIVELY (MICROCI/GM). С C DATA XP1/1.6E-1,4.3E-1,1.5E-1,2.8E-1,7.3E-1,7.0E-2,2.6E+0,1.3E-1.8 1.5E-1,3.4E-2,1.2E-1,4,5E-2,1.4E-1/ DATA AP2/3.4E-8,8.9E-4,3.0E-8,5.9E_8,1.5E-7,1.5E-8,5.4E-7,2.7E-8,1 1.8E-7.7.1E-9.2.5E-8/ C DECAY CONSTANTS FOR THE CURRESPONDING NUCLID (1/SEC). С С DATA DECUN/4,38E-5,2.03E-7,1.52E-4,6.88E-5,6.00E-7,3.55E-6,1.52E-6 1,7.41E_4,2.09E-5.2.96E-3,8.14E-4,9.97E-7,9.17E-6/ С NORMALIZED IODINE ANNUAL RELEASE (CI/YR/M1CROUI/GM). С С DATA RNS/0.32,0.32/ DATA RNAX/0.68,0.68/ DATA RNAXS/2.5.2.5/ DATA RNFH/0.038,0.038/ UATA RNFHS/0.093.0.094/ DATA RNT/3.8E3,3.8E3/ DATA RNTS/4.2E2,4.2E2/ С PARTICULATE ANNUAL RELEASE RATE (CI/YR) C С DATA PCRP/9.2E_3,5.3E43,8.2E_4,2.5E-2,2.6E-3,4.7E-3,1.3E-2,5.2E-3, 10.0E+0,1.8E-3,1.6E-3,0.0E+0,0.0E+0,2.5E-3,3.2L-3,5.5E-3,0.0E+0,1.3 28-31 DATA PAXBP/3,2E-4,7.85-5,0.0E+0,1.95-3,5.1E-4,5.0E-5,7.5E-4,2.9E-4 1,1.0E-3,3.0E-5,2.3E-5,6.0E-6,3.9E-6,5.4E-4,4.9E-5,7.2E-4,4.0E-4,2. 265-31 DATA PFHBP/1.8E-4,3.05-4,0.0E+0,2.1E-2,8.4E-3,0.0E+0,2.1E-3,8.0E-4

3-16

1,3,6E-6,2,4E-3,3.8E+5,6.9E-5,5.7E-5,1.7E-3,0.VE+0,2.7E-3,0.0E+0,4. 24E-7/ DATA PGWS/1.4E-5.2.1E-6.0.0E.0.8.7E-6.1.44-5.1.8E-6.4.4E-5.1.7E-5. 14.8E-6,3.7E-6,3.2E-6,4.7E-6,0.0E+0,3.3E-5,5.3L-6,7.7E-5,2.3E-5,2.2 2E-6/ BUILT-IN PARAMETERS OPFRA=0.80 AUXLR=160. EM=2.0 GENL=75. CLFNG=0.03 CLFI=8_0E-6 PURTIM=16. TBLK=1700. 001880 AFPTEG=0.0 READ (5,1000) NAME + TYPE WRITE(6,1440) WRITE(6,1000)NAME, TYPE READ (5,1010) WORD , POWT WRITE(6,1010)WORD, PO#1H WRITE(6,1020) READ (5,1010) WORD, PRIVUL WRITE(6,1010)WORD, PRIVOL READ (5,1010) WORD, DEM1EL WRITE(6,1010)WORD, DEHIFL READ (5,1010) WORD, CHFLR WRITE(6,1010)WORD, CBFER READ (5,1010) WORD, GEN WRITE(6,1010)WORD,GEN READ (5,1010) WURD, TOSTEL WRITE(6,1010)WORD, TOSTFL READ (5, 1010) WORD, WLI WRITE (6,1010) WORD, WLI 004600 WLI=GEN#WLI READ (5,1040) TBD, KENRT WRITE (6,1050) TBD IF (KFNRT.EQ.0) FNRTSC=0.99 IF (KENRT.EQ.1) ENRTS 50.9 IF (KFNRT.EQ.2) FNRTSC=1.0 READ (5,1010) WORD , REGENT WRITE(6,1010)WORD,REGENT 004740 READ DATA FOR LIQUID INFORMATION 004760 READ (5,1010) WORD, FFCDM WRITE(6,1010)WORD,FFCDM READ (5,1060) WARD, SBLUR 004820 CwA=1.0 READ (5,1070) DFICW, DFCSCW, DFCW READ (5,1080) TC, TSTORC & CWFP WRITE(6,1090) WRITE(6,1100) WRITE (6,1110) WARD, SBLUR, CWA, CWFD, TC, TSTORC, DF1CW, DFCSCW, DFCW READ (5,1120) WARD, EDFLR, EDA READ (5.1070) DFIED, DFCSED, DFED READ (5,1080) TE, TS, EDF 4 WRITE (6,1110) WARD, EDFLR, EDA, EDFD, TE, TS, DFIED, PFCSED, DFED READ (5.1120) WARD . DWFLH. DWA READ (5,1070) DF IDV, DFCSDW, UFDW

с

C C

С

C C C

```
READ (5, 108Q) TD, TSTORD DWFP
      WRITE (6,1110) WARD, DWFLR, DWA, DWFD, TD, TSTORP, DF4DW, DFCSDW, DFDW
      READ (5.1120) WARD . DWFL2, DWR
      READ (5,1070) DFID2, DFC$D2, PFD2
      READ (5, 1080) T2, TSTOR2, DWF2
      WRITE (6,1110) WARD, DWFL2, DW2, DWF2, T2, TSTOR2, DF1D2, DFCSD2, DFD2
      READ (5.1130) BDTFR
      READ (5,1070) DFICM, DFCSCM, DFCM
      READ (5,1080) TCM, TSTORE, CHED
      READ (5,1130) RGWFR
      READ (3, 1070) DFIRG. DFCSRG, DFRG
      READ (5,1080) TRG, TSTORR, RGFD
       IF (TBD EQ.0.0) GO TO 30
                                                                                 005070
      BUFR=TBD#1.0E3+BDTFR/0.3476
      WRITE(6,1140)BDFR, CMFL, TCM, TSTORB, DFICM, DFCSCM, DFCM
                                                                                 005090.
      BUFR=TBD+1.UE3+ABS(1.4BDTLR)/0.3476
      WRITE(6,1150)BDFR
      IF (FFCDM.EQ.0.0) GO TU 50
      IF (REGENT. EQ. 0.0) GO 10 40
  30
      WRITE (6,1160) RGWFR, RGED, TRG, TSTURR, DFIRG, VFC5MG, DFRG
      GO TO 50
      RGWFR=n.0
  40
      WRITE (6,1160) RGWFR, RGLD, THG, TSTORR, DFIRG, DFCSHG, DFRG
                                                                                 005190
С
      READ DATA FOR GAS INFURMATION
С
                                                                                 005210
С
      WRITE(6,1170)
  50
      READ (5,1180) KGTRWT
      IF (KGTRWT.EQ.0) GO TO 70
      GTRW=(DEM1FL-SBLDR/1440.)/DEM1FL
                                                                                 005250
      IF (KGTRWT.EW.2) GO TO 60
      WRITE(6,1190)
      GO TO 80
      GTRW=0_25*GTRW
  60
      WRITE(6,1200)
      GU TO BO
      GTRH=0.0
  70
      wRITE(6,1210)
      SRB=GTRW+DEM1FL+(SBLDH+EDFLR)/1440.
  80
      WRITE (6,1220) SRB
      READ (5,1010) WORD, TAU1
      WRITE (6,1010) WORD, TAUL
      READ (5,1010) WORD , TAU2
      WRITE (6, 1010) WORD, TAU3
      READ (5, 1010) WORD, TAU3
      WRITE (6, 1010) WORD, TAU3
      WRITE(6,1230)
      GWPRF=1.0
      AXIRF=1.0
      AXPRF=1.0
      CHIRF=1.0
       CHPRF#1.0
      CLIRF=1.0
      CLPRF=1.0
      F.HIRF=1.0
      FHPRF=1.0
      CAIRF=1.0
      CAPRF=1.0
      READ (5,1250) WURD, GWHRE
      IF (GWHRE.GT.0.0) GWPRF=1.0-GWHRE/100.
      WRITE (6,1260) WURD, GWPHF
      READ (5,1270) WARD .FHCHRE .FUHRE
      IF (FHCHRE.GT.0.0) FHIRT=1.0-FHCHRE/100.
3-18
```

		IF (FHHRE.GT.0.0) FHPRF=1.0-FHHRE/100. WRITE (6,1280) WARD,FHIMF,FHPRF READ (5,1270) WARD,AXCHHE,AXHRE IF (AXCHRE.GT.0.0) AXIRL=1.0-AXCHRE/100. IF (AXHRE.GT.0.0) AXPRF=1.0-AXHME/100. WRITE (6,1280) WARD,AXIMF,AAPRF READ (5,1010) WORD,CONVUL WRITE (6,1010) WORD,CONVUL	
		WRITE(6,1290) READ(5,1370)WARD,CAGHRE,CAHRE,CFM IF(CACHRE.GT.0.0)CAIRE=1.0-CACHRE/100. IF(CAHRE.GT.0.0)CAPRF=1.0-CAHRE/100.	
		IF(CFM_EQ.0.0) GO TO YO KID=1 WRITE(6.1300)CFM.PURTIM	005710
	90	60 TO 100 KID=0	
	100	WRITE(6,1310) IF(FFCDM.GT.0.0) GO TU 110 WRITE(6,1320)	
	110	GO TO <u>1</u> 20 FIBCD= <u>1</u> .0-FFCDM	
	• • •	WRITE(6,1330)FIBCD	
	120	IF (TBD_E0.0.0) GO TO 130	V05840
		CUN=0.01 WRITE(6,1340)CON	
		GO TO 140	
	130	CON=1.0	
		WRITE(6,1340)CON	
	140	READ(5,)350)wARD,CHCHKE,CUHRE,ENP IF(CHCHRE.GT.0.0)CHIRL=1.0-CHCHRE/100.	
		IF (CHHRE.0T.0.0) CHPRF= .0-CHHRE/100.	
		EN=2.0+ENP	
		WKITE(6,1360)EN	
		WRITE(6,1200)WARD, CHIRF, CHPRF	
		READ (5, 1370) WARD.CLCHKE, CLHRE, PNOV1	
		IF (CLCHRE.GT.0.0) CLIRE=1.0-CLCHRE/100. IF (CLHRE.GT.0.0) CLPRF=1.0-CLHRE/100.	
		IF(PNOV1+LT-1+0) GO TU 150	
		WRITE (6,1380) WARD, PNOV1, WARD, CLIRF, CLPRF	
		GO TO 160	
	150	WRITE(6,1390)	
	160	WRITE (6,1400) TBLK	
		READ (5,1010) WORD,FVN WRITE (6,1010) WORD,FVN	
		READ (5, 1010) WORD, FEJP	
		FEJP=1,0-FEJP/100.	
	ſ	WRITE(6,1010)WORD, FEJP	
		READ(5,1010)WORD,PFLAUN IF(PFLAUN,LE.0.0) WRI <u>1</u> E(6+1430)	
c		TI (FFEd() () C) WATER(C) () C)	006210
č		CUNVERSION OF UNITS	006550
¢			006230
		T0STFL=T0STFL*1000000+	006240 006260
		WLI=WLI*1000. CUNVOL=CUNVOL*1000000*	006270
		CFM=CFM*1000.	006280
		TBD=TBD+1E3	006590
		PHIVOL=PHIVOL+1E3	006300
		DEM1FL=DEM1FL+500.53	006310 006320
		SBLDR=SRLUR+.3476 EUFLR=EDFLR+.3476	006330
		Here here the second seco	

~

	DWFLR=DWFLR+.3476	006340
	DwFL2=DwFL2*.3476	0 1 6 3 5 0
	CBFLR=CBFLR+500,53	0n6360
С	-	
С	H3COPW IS THE PWR TRITIUM PRIMARY COOLANT CONVENTRATION IN UCI/GM	0n63A0
С		
	H3C0P⊌=1.0	006390
	H3PRPW=0.4*POWTH	
	TPLRPW=SBLDR+CWA+CWFD+EDFLR+EDA+EDFD+DWFLH+DWA+DWFD+DWFL2+DW2+DWF2	005400
	H3RLPW=TPLRPW+H3COPW+3.977	006410
	IF (H3RLPW.GT.0.9*H3PRPW)HBRLPW=0.9*H3PRPW	0.064.20
	H3RLG=H3PRPW_H3RLPW	006430 006440
	DIV=10.**(INT(ALOG10(13RL@))-1)	006450
		006460
	IH3RLG=INT(H3RLG/DIV+0,5) #IDIV	006470
	IF (TAU3, EQ. 0.) TAU3=.0)	006480
	SR8=SR8+500.53	006490
	PE=365 / TAU3	006500
	T1=3,1557E7/EN+OPFRA T3=3,1557E+U7/PE	006510
	T4=TAU1*86400.	006520
	T5=TAU2*86400.	006530
	DO 190 I=1+13	
190	DECOH(I)=DECON(I)*360V.	
190	$00\ 200\ I=1,13$	
20 0	CONCP(I) = XPI(I)	
	TE (PONTH-LT, 3000, DR. PONTH-GT, 3800,) GO TU 210	
	IF (PRIVOLALT 5 OF5 OR PRIVOL GT. 6 OE5) GU TO 410	
	IF (UFN IFL .LT . 3. 2F4 OR .DEMIFL .UT .4.2E4) GO TU 410	
	IF (SBLDR.LT.250OR.SPLUR_GT.1000.) GO TO 210	
	IF(CBFLP.GT.7500.) GO TO 210	
	IF (KGTRWT.GI.0) GU TO 210	
	GO TO 240	
210	AFPTEG=].0	006660
	RNG2=(SBLDR+DEM1FL+ GTRW)/PRIVOL	000000
	RHAL2= (DEM1FL+0.99+0.V1+SBLDR)/PRIVOL	
	RK2G=161.76*POWTH/PRIVOL	
	DO 230 I=1,13	
	IF(I.GT.11) GO TO 220 CONCP(I)=CUNCP(I)*RK2⊴*(.⊉009+DECOH(I))/(RNG2+DECOH(I))	
	GO TO 230	
230	CONCP(I)=CONCP(I)*RK29*(0.067+DECOH(I))/(RHAL2+DECOH(I))	
	CONTINUE	
240	IF (TBP_EQ.0.0) GO TO 280	
C 240	11 (1DP+C4+0+0) 00 10 300	
ç	PWTYPE=1.0 IS FOR PWRS WITH U-TUBE STEAM VENERATORS	
č		
-	PwTYPE=1.0	006780
	DO 250 I=1,11	
250	CONCS(I) = XP2(I)	
	CONCS(12) = 1.8E = 6	
	CONCS(13) = 4.8E-6	
	IF (AFPTEG.EQ.1.0) GO TO 300	
	IF (WLI LT. 4.0E5.0R. WLI GT. 5.0E5) GO TU 300	
	IF (TOSTFL.LT.1.3E7.0R.TOSTFL.GT.1.7E7) GO TO 300	
	IF (TBP LT.5.0E4.0R.TBU GT.1.0E5) GO TO 300	
	IF (FFCDM.GT.0.01) GO TO 300	
c	GO TO 340	
с с	PWTYPE=2.0 IS FOR PWRY WITH ONCE-THROUGH STEAD GENERATORS	
с С	INTIFECTV #3 FOR ENGY ***** 0000001000-000 -1000 -000000000	
280	P * TYPE = 2 • 0	
200	DO 290 I=1,11	

290	CONCS(I)=XP2(I)	
	CUNCS(12)=5.2E-8	
	CONCS(13)=1.6E-7 IF(AFPTEG.EQ.1.0) GO TO 300	
	IF (TOSTFL.LT.1.3E7.0R.TOSTFL.GT.1.7E7) GO TO 300	
	IF (FFCDM.LT.0.55.0R.FLCDM.GT.0.75) GO TO 300	
	GO TO 340	
300	CONTINUE	
	IF (FFCDM.GT.0.01.AND.FFCPM.LT.1.0) FFCDM=0.2 RHAL3=(TBD*FNRTSC.9*GON*TOSTFL*FFCDM)/WL1	
	DO 330 I=1.13	
	IF(I_GT_11) GO TO 310	
	CONCS(I)=CONCS(I)+1.5E7/TUSTFL+(CONCP(I)/XP1(1))	007140
	60 TO 330	
310	IF(PWTYPE.EQ.2.0) GO 10 320 CONCS(I)=CONCS(I)*(4.5E5/#LI)*(0.17+DECOH(I))/(RHAL3+DECOH(I))*	•
	(CONCP(I)/XP1(I))	007190
	0 To 30	
320	CONCS(I)=CONCS(I)*(1.VE5/WLI)*(27.0+DECOH(I))/(RHAL3+DECOH(I))*	
	1 (CONCP (I) / XP1 (I))	
330	CONTINUE PNOV=PNOV1/CONVOL+60+	
340 C		007240
c	THIS PART OF PROGRAM IS FUR NUBLE GASES	0n7250
C		
	DO 370 I=1+13 X2(I)=(DECON(I)+PNOV/4600+)*T1	007780
	IF(X2(I), GT.30), X2(I)=30.	
	X3(I) = DECON(I) * T3	007300
	1F(X3(1).61.30.) X3(1)=30.	U07330
	X4(I) = DECON(I) + I4	001330
	IF(X4(I),GT.30) X4(I)=30 X5(I) = DECON(I) + T5	007360
	xUK=x5(I)	007370
	IF (X5(I).GT.30.) XDK=30.	
	IF(1.GT.11) GO TO 350	
	IF(I.GT.4) XDK=X4(I) CTPRO(I)=(CUNCP(I)*PRIVOL*CLFNG)/(DECOH(I)*PNUV)*1.892E-5	Uñ7470
	ACONT(T) = CTPRO(T) + (1 + (1 + (2 + (2 + (2 + (2 + (2 + (2	007480
	ASHIM(I)=(CUNCP(I)*SRE)/D&COH(I)*4.54E-4*(1.*EXP(~X3(I)))	007490
	AXBL(I)=CUNCP(I) *AUXLH*, 1657+OPFRA	007500
	CBCP(I) = EN * PNOV * (CTPRO(I)*T1/3600.+CTPRU(I)*(EXP(-X2(I))-1.)	007520
	1/(DECOH(I)+PNOV)) CBSP(I)=EN#ACONT(I)	007530
	CBL(I) = CBCP(I) + CBSP + I	007540
	ASHIMC(I)=PE*ASHIM(I)*EXP(-XDK)*OPFRA	
	ASHIMS(I)=EM*CONCP(I)*PRIVOL*4.54E_4*EXP(-XDK)	007570
	EJT(I)=CONCS(I)*TOSTFL*3.977*OPFRA TBL(I)=CONCS(I)*TBLK*3.977*OPFRA	007580
	FHBL (I)=0.0	• () • 5 () •
	BVOG(I)=0.0	007590
	TEST=1.0	007600
	IF (CBL (I) LT. TEST) CBL(I)=0.0	0n7610 0n7620
	IF (ASHIMS(I).LT.TEST)ASHIMS(I)=0.0 IF (ASHIMC(I).LT.TEST)ASHIMC(I)=0.0	007630
	$IF(EJT(I) \cdot LT \cdot TEST)EJT(I) = 0.0$	007640
	IF(TBL(I)+LT+TEST)TBL(I)=0+0	007650
	IF (AXBL (I) .LT. TEST) AXBL (I) =0.0	007660
	GO TO 370	Uñ7680
с с	THIS PART UF PROGRAM IS FUR IUDINE	007690
U	THIS FART OF FROMRAM AS THE TODANG	

С		0n7700
350	CTPRO(I) = (CUNCP(I) * PRIVOL*CLFI) / (DECOH(I) + PNOV) * 1.892E-5	
	ACONT(I) = CTPRO(I) + (1 + (EXP(-X2/I)))	007720
		~
	AXBL(I) = (RNAX(J) + RNAX(J)) *CONCP(I) *AXIRF FHBL(I) = (RNFH(J) + RNFH(A)) *CONCP(I) *FHIRF	
	ASHIMC(I)=0+0	007740
	ASHIMS (I) =0.0	007750
	EBCP(I) = EN * PNOV * (CTHRO(I)*T1/3600.+CTPRU(I)*(EXP(-X2(I))-1.)007760
	1/(DECOH(I)+PNOV))*CLIKF	
	CBPP(I)=ENP*ACONT(I)*GHIRE	
	CBSP(I)=RNS(J) *CONCP(I) *CUIRF	
	GBL(I) = CBCP(I) + CBSP(I) + CBRP(I)	
	EJT(I)=1.7E3*CONCS(I) CON*FEJP	
	TBL(I) = (RNT(J) + RNTS(J)) + CUNCS(I) + CON	
	BVOG(I)=CONCS(I)+TBD+LVN+3,977+OPFRA	007830 .
	IF (KIP_EQ.0) GO TO 360	
	DLAK=(CFM*60.*CACHRE*0.01*0.7/CONVOL)+DEEUH(I)	0.7040
	EXX2=DLAK+PURTIM	007860
	IF(EXX2.GT.30.) EXX2=20.	007880
	EXPF=Exp(-EAx2)	007890
	EXPC=1°=EXPF ELSS=CHIRF*CONCP(I)*PHIV0L*CLFI*1.892E=5/PLAK*EXPC	011040
	CBL(I) = CBPP(I) * EXPF * ELSS*ENP * CBCP(I) * (1 - PURT M/(8760 * OPFRA/EN))	+
	12*CHIMF#0.16*CONCP(I) *PURTIM/(24.*32.5) *EXPC/(DLAK*PURTIM)	
	2+ (CBSP(I) -2, *CHIRF*0, 16*(UNCP(I) *PURTIM/(24, 432,5))	
360		
0.00	IF (CBL(I).LT.TEST)CBL(I)=0.0	007930
	$IF(EJT(I) \cdot LT \cdot TEST)EJT(I) = 0.0$	007940
	IF (BVOG(I).LT.TEST)BVUG(I)=0.0	007950
	IF(T8L(I).LT.TEST)T8L(I)=0.0	007960
	$IF(AxBL(I) \cdot LT \cdot TEST)AXPL(I) = 0.0$	Un7970
	IF(FHBL(I).LT.TEST)FHBL(I)=0.0	
370	CONTINUE	008020
	M51G=1	000020
	NSIG=13 CALL SIGF2(CBL,MSIG,NS·G)	008040
	CALL SIGF2 (ASHIMS, MSIU, NSIG)	008050
	CALL SIGF2 (ASHIMC, MSIU, NSIG)	008060
	CALL SIGF2(EJT, MSIG, NSIG)	008070
	CALL SIGF2 (BVOG, MSIG, NSIG)	008080
	CALL SIGF2(TBL, MSIG, NSIG)	0 <u>0</u> 8090
	CALL SIGF2(AXBL, MSIG, NSIG)	008100
	CALL SIGF2(FHBL, MSIG, NSIG)	
	00 380 I=1,13	-
	TOT(I)=CBL(I)+EJT(I)+1BL(1)+AXBL(I)+FHBL(1)+BYOG(I)+ASHIMC(I)+ASH	1
	1MS(I)	
380	CONTINUE	008140
	CALL SIGF2(TOT, MSIG, NSIG)	000140
	WRITE(6,1440)	
	WRITE(6,1450)NAME WRITE(6,1460)	
	WHITE(6,1560)	
	WRITE (6,1480)	
	DO 385 I=12,13	
	WRITE (6,1495) NUCLIDYIL, CONCP(I), CONCS(I), HBL(I),	
	1CBL(I),AXBL(I),TBL(I),BV09(I),EJT(I),TOT(1)	
385	CONTINUE	
-	WHITE (6,1480)	
	WRITE(6,1510) IH3RLG	
	WRITE(6,1440)	
	WRITE(6,1450)NAME	
	WRITE(6,1460)	

6ASTO1=0.0 W0 30 I =1+11 WFITE (A, 1490) NUCL D(1) CONCS(1) +ASHIMS(1) +ASHIMC(1) + ICUL[1, AXML(1), TBL(1) +0V06(1) SEUT(1), TOT(4) GASTOT=GASTUT-TOT(1) 300 CONTINUE D1V=10, **(INT(ALOG) (GASTOT))-1) W1TE (6, 1480) WHITE (6, 1480) <		WRITE(6,1470) WRITE(6,1480)				
<pre>wHITE(:,1490)NUCLID(1).CONCP(1).CONCS(1).ASHIMS(1).ASHIMC(1). GCUIAAXE(1).TEL(1).HOVOS(1).ELT(1).TOT(1) GASTOTAINT(GASTOT/DIV.ELT(1).TOT(1) GASTOTAINT(GASTOT/DIV.ELT(1).TOT(1) GASTOTAINT(GASTOT/DIV.ELT(1).TOT(1) GASTOTAINT(GASTOT/DIV.ELT(1).TOT(1) GASTOTAINT(GASTOT/DIV.ELT(1).TOT(1) GASTOTAINT(GASTOT/DIV.ELT(1).TOT(1) WHITE(::::::::::::::::::::::::::::::::::::</pre>						
1CdL(1),XBL(1),TBL(1)+BV00(1)+EJT(1),TOT(1) 008370 90 COMIINUE 008370 91 01010,E 008370 92 COMINUE 008370 93 COMINUE 008370 94 COMINUE 008370 94 COMINUE 008370 95 COMINUE 008370 96 COMINUE 008370 97 WHITE(6,150) 008370 97 WHITE(6,150) WHITE(6,150) 97 WHITE(6,150) 008560 97 CONTINUE (6700,670,000 008560 97 CONTSINCTOR (1) (7000,070,000 008560 97 CONTSINCTOR (1) (700,070,000 008560 97 CONTSINCTOR (1) (700,070,000 008560 98 CONTSINCTOR (1) (700,070,000 008560 98 CONTSINCTOR (1) (700,070,000 00870 98 CONTSINCTOR (1) (700,070,000 010,000 99 CONTSINCTOR (1) (700,070,000 010,000 99 PCLOPTICIENDECONT (1) (7000,000,000		UO 390 I=1,11		P.T. CONCELTS ASHI	MS(T) ASHIMC(T).	
GASTOT=GASTUT+TOT(I) 390 CONTINUE 01V=10.**(INT(ALGG10(SASTOT))=1) 0008370 WHITE(6,1500) GASTOT WHITE(6,1500) GASTOT WHITE(6,1500) WHIT		- WRIE(6+1490)	NUCLIDIII, CONC NUCLIDIII, RVOGI	TISFUTITI. TOTILI	03(1) (0311) (0(1))	
390 CONTINUE Dj0360 D1V=10.**(INT(ALGE]0('GASTGT))=1) Dj0360 GASTOTAINT(GASTOT/DIV.0.\$)*DIV 008370 wHITE(6,1840) 008370 wHITE(6,1520) wHITE(6,1530) wHITE(6,1540) wHITE(6,1540) wHITE(6,1540) 008560 C THIS PART UF PROGRAM 15 FUR THE PARTICULATES C U 430 I=1.18 PACONT(1)=PLUP(1)(8700.*00PRA) 008560 C THIS PART UF PROGRAM 15 FUR THE PARTICULATES C U 430 I=1.18 PACONT(1)=PLUP(1)(8700.*00PRA) 008560 C U 430 I=1.18 PACONT(1)=PLUP(1)(8700.*00PRA) 008560 C U 430 I=1.18 PACONT(1)=PLUP(1)(8700.*00PRA) 008560 C U 430 I=1.18 PACONT(1)=PUNCONT(1)/PNOV*(1.=PAND*(-PNUV*0(1)))) 106860 +20 PC11 +21 CONTO(1)=PUNCONT(1)/PNOV*(1.=PNUV*0(1))) 108670 +20 PC11<=PAND*(1)=PAND*(1)				1//20111/1/01/01		
D14=10;**(INT (ALGG10 (2ASTGT))=1) 008360 GASTG =AINT (GASTGT/U*0.5)*DIV 008370 WHITE (6,1500) GASTGT WHITE (6,1500) GASTGT WHITE (6,1500) WHITE (6,1500) U 430 Tel+18 PHOLOTI (1)=PLUB (1)/(8700.*0PFRA) PHOLOTI (1)=PLUB (1)/(8700.*0PFRA) PHOLOTI (1)=PLUB (1)/(8700.*0PFRA) PHOLOTI (1)=PLUB (1)/(8700.*0PFRA) PHOLOTI (1)=PLUB (1)/(8700.*0PFRA) U 008560 C THIS PART OF PROGRAM IS FUR THE PARTICULATES C UU 430 Tel+18 PHOLOTI (1)=PLUB (1)/(8700.*0PFRA) PCLEP (1)=(EN*(QHEPACOTI (1)/PROV*(1.*EXP(-PNOV*OH)))) 1*CLPRF PCUE (1)=FURCOTI (1)/PROV*(1.0-EXP(-PNUV*UC)))*CHPRF PCUE (1)=PCUE (1).*PEBP(1) PLOTE (1)=PCUE (1).*PEBPF PCUE (1)=PCUE (1).*PEBPF PCUE (1)=PCUE (1).*PEBPF PCUE (1)=PCUE (1).*PEBPF PCUE (1)=PCUE (1).*PEBPF PCUE (1)=PCUE (1).*PEBPF PCUE (1)=PCUE (1).*PEX2E30. D088710 D088710 PLAPF=EXP(-PEX2E) PEXPERSIONE (1)*PEX2E30. D088710 D08870 N101 430 CONTINUE MSIGE 008700 N101 430 CONTINUE MSIGE 008700 N102 C FORMATS FORMATS FORMATS FORMATS FORMATS C C FORMATS FORMATS FORMATS FORMATS FORMATS C D00870 C PUEAPERSIDE CONTINUE WHITE (6,1500)PPACT (1)*PENE (1)*PACEL (1)*PACEL (1)*PTOTP (1) 450 C C FORMATS FORMATS FORMATS FORMATS FORMATS C D006 FURMAT(32X+804,12X,A4) D005 FURMAT(32X+804,12X,A4) D005 FURMAT(32X+804,12X,A4) D005 FURMAT(32X+804,12X,A4) D005 FURMAT(32X+804,12X,A4) D005 FURMAT(32X+804,12X,A4) D005 FURMAT(52X+804,12X,A4) D005 FURMAT(52	390		101(1)			
WHITE 16, 1500) GASTOT WHITE 16, 1500) WHITE 16		DIV=10. ##(INT				
white (6,1480) white (6,1520) white (6,1530) white (6,1540) white (1,1540) white				#DIV		008370
<pre>WHITE(6,1520) WHITE(6,150) WHITE(6,150) WHITE(6,150) WHITE(6,150) WHITE(6,150) WHITE(6,1540) UHANDONALSANALS UNABLE STATES UNABLE STATES</pre>			GASTOT			
<pre>whiTE(6,1440) whiTE(6,150)NAME whiTE(6,150)NAME whiTE(6,150)NAME whiTE(6,150)NAME whiTE(6,150)NAME whiTE(6,150)NAME whiTE(6,150)NAME whiTE(6,150)NAME vhiTE(6,150)NAME vhiTE(6,150NAME vhiTE</pre>						
<pre>wRITE(6,150)NAME wRITE(6,1540) wRITE(6,</pre>						
wRITE(6,1530) wRITE(6,1540) wRITE(6,1640) <td< td=""><td></td><td></td><td>NAME</td><td></td><td></td><td></td></td<>			NAME			
wRITE(A,1480) uP=8766, *OPFRA/EN 008560 C THIS PART OF PROGRAM IS FUR THE PARTICULATES vu 430 I=1+18 PHCONT(I)=0*CBP(I)/(8700*OPFRA) IF (PMOV,0T*0.0) FO TO 410 PCRCP(I)=0*U 008560 Y Y0 430 I=1*18 PHCONT(I)*CBP(I)/(8700*OPFRA) IF (PMOV,0T*0.0) FO TO 410 PCRCP(I)=0*U 008600 10 PCGP(I)=0*U 00850 vu 10 420 TENENCONT(I)/PROV*(I*EXP(-PNOV*OH)))) 1*CEPRF +PCBP(I)=(EN*(PHCONT(I)/PNOV*(I*O*(I*EXP(-PNOV*OH))))) 1*CEPRF +PCBP(I)=(EN*(PHCONT(I)/PNOV*(I*O*(I*EXP(-PNOV*OH))))) 1*CEPRF +PCBP(I)=(EN*(PHCONT(I)/PNOV*(I*O*(I*O*EXP(-PNOV*OH))))) 1*CEPRF +PCBP(I)=(EN*(PHCONT(I)/PNOV*(I*O*(I*O*EXP(-PNOV*OH))))) 1*CEPRF +PCBP(I)=PCBP(I)=(EN*(PHCONT(I)/PNOV*(I*O*(I)))) 008710 +PCBP(I)=PCBP(I)=PCBP(I) 008740 PDLAK=CFM*00.*CAHHE*0*01*0.*7/CONVOL 008710 PEXPET:PEXP(-PEXX2) 008730 PEXPET:PEXP(-PEXX2) 008740 PELSS=PPCUNT(I)/PDLAK*PEXPC*CHPHF 008710 PCBL(I)=PCBL(I)*PEXPE*PE*PE*PE*PE*PE*PE*PE*PE*PE*PE*PE*PE*P						
QH=876ñ.*0PFRA/EN 008560 C THIS PART OF PROGRAM IS FUR THE PARTICULATES C U0 430 I=1+18 PHCOUT (1)=FUBF(I)/(8700.*0PFRA) 06860 IF (FNOV.GT.0.0) GO TO 410 06860 PCGSP(I)=0.0 06850() C 07055(1)=(InOPHCONT (1)?0N*0HPRF GU TO 420 0687(0) 410 PCGSP(I)=(EN*(QH*PRCONT(I))PRCONT(I)/PNOV*(1*TEXP(-PNOV*OH)))) 1aCLPRF PCHSP(I)=(EN*(PRCONT(I))PNOV*(1*0-EXP(-PNUV*UT)))*CHPRF 20 PCHL(I)=PCHCP(I)*PCBP(I) PCHSP(I)=(I)*PCHOP(I)*PCBP(I) 068710 IF (RID_FU.0) 06070 410 PAXEL(I)=PARBP(I)*AXPKF PFHBF(I)*APHPF PCHL(I)=PCHCP(I)*PCBP(I) 068710 IF (RID_FU.0) 06070 430 PULAK=CFM*00.*CARE*0+01*0.*7/CONVOL 068710 PEXPE=EXP(-PEXX2) 068710 PEXPE=DLAK*PURITM 068710 PELSE=PEQUAT(I)*PEXPE*PC*CHPHF 068740 PELSE=PEQUAT(I)*PEXPE*PE*PC*CHPHF 068740 NSIG=18 068740 CALL SIGF2(PCBL,*SIG*NSIG) 068740 NSIG=18 068740 OU 440 I=1*18 068740						
C THIS PART OF PROGRAM IS FUR THE PARTICULATES DU 430 I=1.18 PRCOTT(I)=PUBP(I)/(8790.*0PFRA) IF(PNOV.GT.0.0) GO TO 410 PCGP(I)=0.0 CCSP(I)=CLN0 (0 FO 410 PCGSP(I)=CLN0 (0 FO 410 PCGSP(I)=CLN0 (0 FORONT(I)/PNOV*(1.*TEXP(-PNOV*OH)))) I*CLPRF PCGDF(I)=CLN0 (PRCONT(I)/PNOV*(1.*O-EXP(-PNOV*QD))))*CHPRF 420 PCGL(I)=PCGP(I)+PCGBP(I) PASS(I)=PASP(I)*ASP(I) PASS(I)=PCGP(I)+PCGBP(I) PCGL(I)=PCGP(I)*PCGBP(I) PCGL(I)=PCGP(I)*PCGBP(I)*CONVOL PASS(I)=PCGP(I)*PCGBP(I)*CONVOL PCSS(I)=CCGP(I)*PCGP(I)*CONVOL PCSS=PCCUN(I)/PDLAK*PEXPC*CHPFF PCGL(I)=PCGP(I)*PCSSEN*PCGP(I)*(1.*PURTIM/(8760.*OPFRA/E00A760 1N) 430 CONTINUE MSIG=18 CALL SIGF2(PCGL,MSIG,MSIG) DO 440 I=1.18 PCGL(I)=PCGL(I)*PCSL(I)*PCGL(I)*PCGL(I)*PFHBL(I) 440 CONTINUE MSIG=18 CALL SIGF2(PCGL,MSIG,MSIG) DO 440 I=1.18 WRITE(6,1550)PPART(I)*PGWL(I)*PCGL(I)*PAXBL(I)*PFHBL(I)*PTOTP(I) 450 CONTINUE MSIG=16, CONTINUE MSIG=16, CALL SIGF2(PTOP*,MSIG,NSIĞ) DO 440 I=1.18 WRITE(6,1550)PPART(I)*PGWL(I)*PCGL(I)*PAXBL(I)*PFHBL(I) 450 CONTINUE MSIG=16, STOP C FORMATS FORMATY FORMATS FORMATS CONTINUE MSIG=2 DO FORMAT(322,844,122,44) 1005 FORMATS FORMATS FORMATS CONTINUE MSIG=2 DO FORMAT(324,844,122,44) 1005 FORMAT(304,840,122,44) 1005 FORMAT(324,844,122,44) 1005 FORMAT(324,844,122,44) 1005 FORMAT(345,844,122,44) 1005 FORMAT(345,844,122,44) 1005 FORMAT(345,844,122,44) 1005 FORMAT(345,844,122,44) 1005 FORMAT(345,844,122,44) 1005 FORMAT(345,844,122,44) 1005 FORMAT(345,844,122,44) 1005 FORMAT(345,844,122,44) 1005 FORMAT(34						0.08540
C THIS PART OF PROGRAM LS FUR THE PARTICULATES C UU 430 I=1.18 PPCONT(I)=PLUP(I)/(8700.40PFRA) IF(PNOV.6T.0.0) 60 TO 410 PCGCP(I)=0.0 UD 420 410 PCGCP(I)=0.0 410 PCGCP(I)=(EN*(QH*PRCONT(I)*PNOV*(I.*EXP(-PNOV*QH)))) 1*CCPRF PCGSP(I)=(EN*(PRCONT(I)*PNOV*(I.0-EXP(-PNUV*QD)))*CCH*RF 420 PCHL(I)=PCGSP(I)*CGSP(I) PAXUL(I)=PAXBP(I)*AXPAF PFTBL(I)=PFHBP(I)*AXPAF PCHL(I)=PCGSP(I)*QGWRFF IF(K1D_E0.0) GO TO 430 PDLX*CF(M*00.*CATKE0.000*.7/CONVOL PEXX2*DLAK*PURTIM IF(PEXX2.0T.*30.) PEXX2=30. 008710 PEXPF=EXP(-PEXX2) 008770 1N) 430 CONTINUE MSIG=18 CONTINUE MSIG=18 CONTINUE CALL SIGF2(PCBL,MSIG,MSIG) 008700 00 440 I=1.18 PTOTP(I)=PCGL(I)*PCMS(I)*PGWL(I)*PFHBL(I) 440 CONTINUE CALL SIGF2(PCDF,MSIG:NSIG) 008850 D0 450 I=1.18 WHITE(6,150)PPART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHRL(I)*PTOTP(I) 450 CONTINUE WHITE(6,1480) STOP C FORMATS FORMATY FORMATS FORMATS C 1000 FURMAT(32X*,844,12X*,44) 1005 FURMAT(1)6X**BLOWDOWN IS PMOCESSED THRUUGH CONVENSATE DEMIN*)	•	QH=8760.40PFR	AZEN			0(00000
U0 430 I=1:18 PHCONT (I)=PLBP (I) / (8700.*00FRA) IF (PNOV.GT.0.0) GO TO 410 PCHCP (I)=0.0 PCHCP (I)=0.0	С	THIS PART OF	PROGRAM IS FUR	THE PARTICULATES		
PRCONT (1)=PCUBP (1) / (8700.*00PFRA) IF (PNOV.GT.0.0) GO TO 410 0ñ8600 PCASP (1)=clopHQCONT (1) @0H*UHPRF 0ñ8600 *10 PCASP (1)=clopHQCONT (1) PRCONT (1) /PNOV*(1.*=EXP(=PNOV*QH)))) 1*CLPRF PCBSP (1)=(EN*(QH*PRCONT(1) /PNOV*(1.*=EXP(=PNOV*QH))))*CHPRF *20 PCHL (1)=PCHCP (1)*PCB3*(1) PAXE (1)=PCHCP (1)*PCB3*(1) PNOV*(1.0=EXP(=PNOV*QH)))*CHPRF *20 PCHL (1)=PCHCP (1)*PCB3*(1) PAXE (1)=PCHCP (1)*PCB3*(1) PARF PFH3L (1)=PFH3P (1)*FH4F PCHC1)=PCHS(1)*GAXPAF PFH3L (1)=PCHCP (1)*PCB3*(1)*GANPAF 0ñ8710 PLAK*CFM*00.*GCHRE*0.01*0.7/CONV0L PLAK*CFM*0.*GCHRE*0.01*0.7/CONV0L PLAK*CFM*0.*GCHAFE*0.01*0.7/CONV0L PEXPF=EXP(=PEXX2) 0ñ8730 P68740 PELSS=PRCUNT (1)/PDLAK*PEXPC*CHPHF 0ñ8740 PCLSS=PRCUNT (1)/PDLAK*PEXPC*CHPHF 0ñ8740 PCLSS=PRCUNT (1)/PDLAK*PEXPC*CHPHF 0ñ8740 MS1G=2 0ñ8740 NS1G=18 008790 NS1G=18 008790 NS1G=18 0ñ8850 0ñ8850 D0 +50 I=1.18 0ñ8850 0ñ8850 D0 +50 I=1.18 0ñ8850<	U	DO 430 I=1.18				
PCiCP(I)=0.0 008600 PCiCP(I)=L(0PRCONT(I)*QH*QHPRF 0010 0010 0000 10 PCsCP(I)=(Exe(QH*PRCONT(I))*PRCONT(I)/PNOV*(I*TEXP(-PNOV*OH)))) 1*CLPRF PCsCP(I)=(Exe(QH*PRCONT(I))*PROV*(I*O-EXP(-PNOV*QH)))) 1*CLPRF PCsCP(I)=PCSP(I) PCsCP(I)=PCSP(I)+PCSP(I) PARP(I)*PCSP(I) PAdd(I)=PCSP(I)*PCSP(I) PCSP(I)*CHPRF PAdd(I)=PCSP(I)*PCSP(I)*(I)*PFHF 068710 PFHSL(I)=PCSP(I)*OCONTIM 068710 PLAK=CFM*00*CARE*0*01*0*7/CONVOL 068710 PLAK=CFM*00*CARE*0*01*0*7/CONVOL 068710 PEXPF=EXP(-PEXX2) 068730 PEXPF=EXP(-PEXX2) 068740 PELSS=PRCONT(I)/PDLAK*PEXPC*CHPHF 068770 PELSS=PRCONT(I)/PDLAK*PEXPC*CHPHF 068770 PCSCIPT 068790 NSIG=18 068790 CALL SIGF2(PCBL*MSIG*NSIG) 068710 D0 440 I=1*18 068750 068750 D0 450 I=1*18 068750 068850				FRA)		
<pre>PCLSP (1) = L(1PRCONT (1) * 0H*CHPRF ou To 420 410 PCsCP (1) = (EN* (QH*PRCONT (1) - PRCONT (1) / PNOV* (1* = EXP (= PNOV*QH)))) 1*CLPRF PCBSP (1) = (EN* (PRCONT (1) / PNOV* (1* 0 = EXP (= PNOV*QH)))) *CHPRF 420 PCH (1) = PCGP (1) *PCBSP (1) PAXd (1) = PCGP (1) *PCBSP (1) PAXd (1) = PCGP (1) *AXPHF PF HBL (1) = PCHBP (1) *FHPHF PowL (1) = PCHBP (1) *GWPRF IF (KID = E0*0) *GOT 0 4 30 PDLAK=CFM************************************</pre>			0) GO TO 410			0.206.00
GU TO 420 410 PCBCP(I) = (EN* (QH*PRCONT(I) / PRCONT(I) / PNOV*(I*=EXP(-PNOV*QH)))) I*CLPRF PCBSP(I) = (EN* (PRCONT(I) / PNOV*(I*0-EXP(-PNOV*QH))))*CHPRF 420 PCBL(I) = PCHC(I) + PCBP(I) PAxd(I) = PCHC(I) + PCBP(I) PAxd(I) = PCHC(I) + PCBP(I) PAxd(I) = PCHC(I) + PCBP(I) PPCBP(I) + PCBP(I) PAxd(I) = PCHC(I) + PCBP(I) + PPHPF Poul(I) = PCHC(I) + PCBP(I) PULAK=CFM*00.*CCHPRF 068710 PLXX=2*DL=AK*PURTIM 068710 IF (PEXx2: 0F.30.) PEXX2=30* PEXPF=EXP(-PEXX2) 068730 PELSS=PCONT(I) / PDLAK*PEXPC*CHPRF PCBL(I) = PCBSP(I) * PEXPE*PELSS*EN*PCBCP(I)*(I)*(I*TIM/(8760.*0PFRA/E068760 N) 008770 430 CONTINUE 008790 MSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008790 D0 40 I=1,18 008790 WRITE(6,1550)PPART(I)*PAXB5(I)*PGWL(I)*PFHBL(I) 068850 CALL SIGF2(PCDTP,MSIGINSIG) 068850 D0 450 I=1,18 WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXB1(I)*PFHRL(I)*PTOTP(I) 450 CONTINUE VHITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXB1(I)*PFHRL(I)*PTOTP(I) 450 CONTINUE FORMATS<			USONT TO BOHALI	DOF		
410 PCBCP(I)=(EN*(QH*PRCONT(I)=PRCONT(I)=PRCONT(I)=PROV*(I+=EXP(=PNOV*QH)))) 1*CLPRF PCBSP(I)=(EN*(PRCONT(I)=PROV*(I*O=EXP(=PNOV*Q(D))))*CHPRF 420 PCHL(I)=PCHCP(I)+PCBSP(I) PAXdL(I)=PAXBP(I)*AXPHF PFHL(I)=PCHS(I)*GWPRF IF(KID_EO*O)*C(I)*GWPRF IF(KID_EO*O)*C(AHRE*0*01*0*7/CONVOL PEXZ=PDLAK*PURTIM 008710 PEXPC=1.=PEXPC PEXPC=2PCI=PEXZ2) 0A8740 PEXPC=1.=PEXPF PCBL(I)=PCBSP(I)*PEXPE*PELSS*EN*PCBCP(I)*(1.=PURTIM/(8760**OPFRA/E00A760 N)) 430 CONTINUE MSIG=2 008790 NSIG=18 CALL SIGF2(PCBL,MSIG,NSIG) 00 440 I=1*18 PTOTP(I)=PCBI(I)*PAXB5(I)*PCBL(I)*PFHBL(I) 440 CONTINUE CALL SIGF2(PCDF,MSIG*NSI*) 00 450 I=1*18 WRITE(6*1550)PPART(I)*PGWL(I)*PCBL(I)*PAXB1(I)*PFHBL(I)*PTOTP(I) 450 CONTINUE WRITE(6*1550)PPART(I)*PGWL(I)*PCBL(I)*PFHBL(I)*PTOTP(I) 450 CONTINUE WRITE(6*1480) STOP C FORMATS FORMAT* FORMATS FORMATS C 1000 FORMAT(32X*8A4+17X*A4) 1005 FORMAT(12X*8A4+17X*A4) 1005 FORMAT(16X**BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN*)			RCONT(1) 100804	PRI .		
1*CLPPF PCBSP(I) = (EN* (PRCONT.(1)/PNOV*(1.0-EXP(-PNUV*(0))))*CHPRF 420 PCHL(1)=PCHCP(I)*PCB3P(I) PAXdL(I)=PAXBP(I)*AXPHF PFHBL(I)=PCHCP(I)*PCB3P(I)*GWPRF IF(K10_E0.0) GO TO 430 PDLAK=CFM*00.*CAHRE*0.01*0.7/CONVOL PLX2=POLAK*PURTIM D08710 F(PEX2.*T.30.) PEXX2=30. 0A8740 PEXPC=1PEX2) 0A8740 PELSS=PRCONT(I)/PDLAK*PEXPC*CHPMF PCBL(I)=PCBSP(I)*PEXPF+PELSS*EN*PCBCP(I)*(1PURTIM/(8760.*OPFRA/E00A*760 NN) 008770 VSIG=18 008790 NSIG=2 008790 NSIG=18 008790 NSIG=18 008790 VSIG=18 008790 NSIG=18 008790 NSIG=18 008790 NSIG=18 008790 NSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008790 D0 440 I=1.18 008790 PTOP(I)=PCBL(I)+PAXBL(I)+PGWL(I)+PFHBL(I) 008850 D0 450 I=1.18 008850 WRITE(6,1550)PPART(I)*PGWL(I)+PCBL(I)+PAXBL(I),PFHRL(I)+PTOTP(I) 450 CONTINUE	410	PCHCP(T) = (EN*)	(OH*PRCONT(I) -	PRCONT(I)/PNOV#(1.	-EXP(-PNOV+QH)))	
420 PCHL(I) = PCHCP(I) + PCBSP(I) PAXBL(I) = PAXBP(I) * AXPMF PFBL(I) = PFHBP(I) * FHP4F PowL(I) = PG*S(I) * GMPAF IF(K10, E0.0) GO TO 430 PDLAK=CFM*D0,*CAHEE*0*01*0.7/CONV0L PEX2=PDLAK*OPURTIM IF(PEX2,*G*+30.) PEXX2=30. PEXPF=EXP(-PEXX2) 008710 IF(PEX2,*G*-30.) PEXX2=30. PEXPF=EXP(-PEXX2) 008740 PELSS=PRCUNT(I)/PDLAK*PEXPC*CHPHF PCBL(I) = PCBSP(I)*PEXPF+PELSS*EN*PCBCP(I)*(1FURTIM/(8760.*0PFRA/E008760 1N) 008770 430 CONTINUE MSIG=12 008790 NSIG=18 008790 CALL SIGF2(PCBL,*MSIG, NSIG) 008810 00 440 I=1.18 008790 NSIG=18 008790 CALL SIGF2(PCBL(I)*PART(I)*PGWL(I)*PFHBL(I) 440 CONTINUE WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHRL(I)*PTOTP(I) 450 CONTINUE WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHRL(I)*PTOTP(I) 450 CONTINUE WRITE(6,150)PPART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHRL(I)*PTOTP(I) 450 STOP	410	1 + CLPRF				
PAXBL(I)=PAXBP(I)*AXPPF PFHBL(I)=PFHBP(I)*FHPF Powl(I)=PGWS(I)*GWPRF IF(KID.E0.0) GO TO 430 PDLAK=CFM*60.*CCHRE*0.01*0.7/CONVOL PEXX2=DLAK*PURTIM 008710 IF(PEXx2.0T.30.) PEXX2=30. PEXPF=EXP(-PEXX2) 008740 PEXPF=EXP(-PEXX2) 008740 PEXPETEXP(I)*PEXPF PCBL(I)=PCBSP(I)*PEXPF.*PELSS*EN*PCBCP(I)*(1PURTIM/(8760.*OPFRA/E008760 N) 008770 430 CONTINUE MSIG=18 CONTINUE MSIG=2 008790 NSIG=18 PTOTP(1)=PCBL(1)+PAXB5(I) ±PGWL(I)+PFHBL(I) 440 CALL SIGF2(PCBL,*MSIG*NSIØ) 00 00 440 CALL SIGF2(PCBL(I)+PGWL(I)+PFHBL(I) 440 CALL SIGF2(PTOTP,*MSIG*NSIØ) 00 00 WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHRL(I)*PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C FORMAT(32X*8644*12X*A4) 1005 <td></td> <td>PCBSP(I)=(EN*</td> <td>(PRCONT (1) /PNO</td> <td>V+(1.0-EXP(-PHUV*4</td> <td>で))))、*CHPRF</td> <td></td>		PCBSP(I)=(EN*	(PRCONT (1) /PNO	V+(1.0-EXP(-PHUV*4	で))))、*CHPRF	
PFHBL(I)=PFHBP(I)*FHPMF PowL(I)=PGWS(I)*GWPRF IF(KID_E0.0) GO TO 430 PULAK=CFM*00.*CAHRE*0.01*0.7/CONVOL PEXZ=PDLAK*PURTIM 008710 IF(PEXZ=PDLAK*PURTIM 008710 IF(PEXZ=PDLAK*PURTIM 008710 PEXFE=EX*(-PEXZ) 008740 PELSS=PRCUNT(1)/PDLAK*PEXPC*CHPHF PCBL(I)=PCBSP(I)*PEXPF_*PELSS*EN*PCBCP(I)*(1PURTIM/(8760.*0PFRA/E008760 1N)1 008770 430 CONTINUE MSIG=2 008790 NSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008790 NSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008790 NSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008850 00 = 40 I=1,18 008850 00 = 50 I=1,18 008850 WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHRL(I)*PTOTP(I) 450 CONTINUE WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHRL(I)*PTOTP(I) 450 CONTINUE WRITE(6,1540) STOP C C FORMAT C FORMAT(32X*844+12X*	420					
PowL (1) = PG % S (1) * GWPRF IF (KID_EQ.0) GO TO 430 PDLAK=CFM*00,*CAHRE*0,01*0.7/CONVOL PEXX2=PDLAK*PURTIM 008710 IF (FEXx2.57.30.) PEXX2=30. 008730 PEXPC=T1PEXPF 008740 PELSS=PRCUNT(I)/PDLAK*PEXPC*CHPRF 008770 PCBL(I)=PCBSP(I)*PEXPF+PELSS*EN*PCBCP(I)*(1PURTIM/(8760.*0PFRA/E008760 IN) 008770 430 CONTINUE 008790 MSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008790 D0 440 I=1.18 008790 PTOTP(I)=PCBL(I)+PAXBL(I)+PGWL(I)+PFHBL(I) 008850 00 +40 CONTINUE 008850 00 +50 I=1.18 008850 WRITE(6.1550)PPART(I)+PGWL(I)+PCBL(I)+PAXBL(I),PFHBL(I),PTOTP(I) 450 CONTINUE WRITE(6.1550)PPART(I)+PGWL(I),PCBL(I)+PAXBL(I),PFHBL(I),PTOTP(I) 450 CONTINUE WRITE(6.1480) STOP C FORMAT(32X+8A4,12X+A4) 1005 FORMAT(32X+8A4,12X+A4) 1005 FORMAT(16X, "BLOWDOWN IS PHOCESSED THROUGH CONVENSATE DEMIN#)						
IF (KID_EQ.0) GO TO 430 PDLAK=CFM*00.*CAHRE*0.01*0.7/CONVOL PEX2=PDLAK*PCFMTIM IF (PEX2=6T.30.) PEXX2=30. PEXPF=EXP(-PEX2) 008730 PEXPF=EXP(-PEX2) 008740 PELSS=PCONT(I)/PDLAK*PEXPC*CHPHF PCBL(I)=PCBSP(I)*PEXPF+PELSS*EN*PCBCP(I)*(1PURTIM/(8760.*OPFRA/E008760 1N)) 430 CONTINUE MSIG=2 008790 NSIG=18 CALL SIGF2(PCBL,MSIG,NSIG) 00 440 I=1.18 PTOTP(I)=PCBL(I)+PAXB;(I)*PGWL(I)+PFHBL(I) 440 CONTINUE CALL SIGF2(PTOTP,MSIG:NSIG) 00 440 I=1.18 WRITE(6,1550)PPART(I)*PGWL(I)*PFHBL(I) 450 CONTINUE WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PFHBL(I),PTOTP(I) 450 CONTINUE WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PFHBL(I)*PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C C C FORMATS FORMATY FORMATS FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FURMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DLMIN")						
PULAK=CFM*60.*CAHRE*0.01*0.7/CONVOL PEXX2=PDLAK*PURTIM 008710 IF (PEXX2=bURIM 008710 IF (PEXX2=bURIM 008710 PEXPF=EXP(-PEXX2) 008730 PEXPETEXP(-PEXX2) 008740 PEXPETEXP(-PEXX2) 008740 PEXPETEXP(-PEXX2) 008740 PELSS=PRCONT(1)/PDLAK*PEXPC*CHPHF 008770 N) 008770 430 CONTINUE 008790 MSIG=1 008790 NSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008790 NSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008790 NO 440 I=1,18 008790 PTOTP(1)=PCBL(I)+PAXBL(I)+PFHBL(I) 008850 00 440 I=1,18 008850 D0 450 I=1,18 008850 WRITE(6,1550)PPART(I),PGWL(I),PCBL(I),PAXBL(I),PFHRL(I),PTOTP(I) 450 CONTINUE WRITE(6,1550)PPART(I),PGWL(I),PCBL(I),PAXBL(I),PFHRL(I),PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C FORMAT C FORMAT C FORMAT COO						
PEXX2=PDLAK*PURTIM 008710 IF (PEXX2.0T.30.) PEXX2=30. 0ñ8730 PEXPF=EXP(-PEXX2) 0ñ8730 PEXPETIPEXPF 008740 PELSS=PRCUNT(I)/PDLAK*PEXPC*CHPHF 008770 N0 CONTINUE 008770 430 CONTINUE 008790 NSIG=18 008790 NSIG=18 008710 CALL SIGF2(PCBL,MSIG,NSIG) 008790 NSIG=18 008710 CALL SIGF2(PCBL,MSIG,NSIG) 008790 NSIG=18 008790 VOID 440 1=1.18 008810 PTOTP(I)=PCBL(I)+PAXBL(I)+PFHBL(I) 008850 VOID 450 1=1.18 008850 WRITE(6,1550)PPART(I)+PGWL(I)+PCBL(I)+PAXBL(I),PFHBL(I),PTOTP(I) 450 CONTINUE WRITE(6,1550)PPART(I)+PGWL(I)+PCBL(I)+PAXBL(I),PFHBL(I),PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C FORMATS FORMATS C FORMAT(32X+8A4,12X,A4) 1000 FORMAT(32X+8A4,12X,A4) 1005 FURMAT(16X+"BLOWDOWN IS PROCESSED THRUUGH CONVENSATE DEMIN")				7/CONVOL		
PEXPF=EXP(-PEXX2) 0n8730 PEXPC=1, -PEXPF 0n8740 PELSS=PRCONT(I)/PDLAK*PEXPC+CHPRF 0n8740 PCBL(I)=PCBSP(I)*PEXPF+PELSS*EN*PCBCP(I)*(1, -PURTIM/(8760,*0PFRA/E008760) 008770 430 CONTINUE 008770 MSIG=2 008790 NSIG=18 008790 CALL SIGF2(PCBL, MSIG, NSIG) 008790 NSIG=18 008790 DO 440 I=1,18 008790 PTOTP(I)=PCBL(I)+PAXB, (I) ±PGWL(I)+PFHBL(I) 008850 DO 450 I=1,18 008850 WRITE(6,1550)PPART(I)+PGWL(I)+PCBL(I)+PAXBL(I),PTOTP(I) 008850 STOP C C FORMATS FORMATS C FORMAT(32X+884,12X,44) 1005 1005 FORMAT(164, "BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")						0 <u>0</u> 8710
PEXPC#1PEXPF 0n8740 PELSS=PRCONT(I)/PDLAK*PEXPC*CHPRF 008770 PCBL(I)=PCBSP(I)*PEXPF*PELSS*EN*PCBCP(I)*(1PURTIM/(8760.*0PFRA/E008760 008770 1N) 008770 430 CONTINUE 008790 MSIG=2 008790 NSIG=18 008710 CALL SIGF2(PCBL,MSIG,NSIG) 008710 D0 440 I=1:18 008810 PTOTP(I)=PCBL(I)+PAXB;(I)+PGWL(I)+PFHBL(I) 008850 CALL SIGF2(PTOTP,MSIG1NSIG) 008850 D0 +50 I=1:18 008850 WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXB;(I)*PFHBL(I)*PTOTP(I) 450 CONTINUE WRITE(6,1550)PPART(I)*PGWL(I)*PCBL(I)*PAXB;(I)*PFHBL(I)*PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C FORMATS FORMATS C FORMAT (322*844,12*,44) 1005 FORMAT (164*"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")						0.07.0
PELSS=PRCUNT(I)/PDLAK*PEXPC*CHPHF PELSS=PRCUNT(I)*PEXPE*PELSS*EN*PCBCP(I)*(1PURTIM/(8760.*0PFRA/E008760 1N)) 008770 430 CONTINUE MSIG=2 008790 NSIG=18 008790 CALL SIGF2(PCBL, MSIG, NSIG) 008790 D0 440 I=1:18 PTOTP(I)=PCBL(I)*PAXBL(I)*PGWL(I)*PFHBL(I) 008850 D0 450 CONTINUE CALL SIGF2(PTOTP:MSIG:NSIG) 008850 D0 450 I)*PAXBL(I)*PGWL(I)*PFHBL(I) 440 CONTINUE 008850 D0 450 I)*PART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHBL(I)*PTOTP(I) 450 CONTINUE 008850 WRITE(6:1550)PPART(I)*PGWL(I)*PCBL(I)*PAXBL(I)*PFHBL(I)*PTOTP(I) 450 STOP C FORMATS C FORMATS FORMAT* 1000 FORMAT (32X*8A4*12X*A4*) FORMATS 1005 FURMAT (16X*"BLOWDOWN IS PHOCESSED THROUGH CONVENSATE DEMIN*)						· •
PCBL(I)=PCBSP(I)*PEXPF+PELSS*EN+PCBCP(I)*(1PURTIM/(8760.*0PFRA/E008760 1N)) 430 CONTINUE MSIG=2 008790 NSIG=18 008890 CALL SIGF2(PCBL,MSIG,NSIG) 008810 DO 440 I=1,18 PTOTP(I)=PCBL(I)+PAXBL(I)+PFHBL(I) 440 CONTINUE CALL SIGF2(PTOTP,MSIG1NSIG) 008850 DO 450 I=1,18 WRITE(6,1550)PPART(I)+PGWL(I)+PCBL(I)+PAXBL(I),PFHRL(I)+PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C C C FORMATS FORMATY FORMATS FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FORMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")		PEXPCE - PEXP	1 1. JODIAK 90 F X P C	*CHPRF		0()0740
IN)) 008770 430 CONTINUE 008790 MSIG=2 008790 NSIG=18 008710 CALL SIGF2(PCBL,MSIG,NSIG) 008710 D0 440 I=1:18 PTOTP(I)=PCBL(I)+PAXBL(I)+PFHBL(I) 008850 440 CONTINUE 008850 CALL SIGF2(PTOTP,MSIG:NSIG) 008850 D0 450 I=1:18 WRITE(6:1550)PPART(I):PGWL(I):PCBL(I):PAXBL(I):PFHRL(I):PTOTP(I) 450 CONTINUE WRITE(6:1550)PPART(I):PGWL(I):PCBL(I):PAXBL(I):PFHRL(I):PTOTP(I) 450 CONTINUE WRITE(6:1480) STOP C FORMATS FORMATS C FORMATS FORMATS 1000 FORMAT(32X:8A4,12X:A4) 1005 FURMAT(16X:"BLOWDOWN IS PROCESSED THRUUGH CONVENSATE DEMIN")		PCBL/IN-PCBSP	1)/PULANIPUAR (T)#PEXPE+PELS	S&EN+PCRCP(I)*(1	-FURTIM/ (8760 . + OPFR	A/E008760
430 CONTINUE 008790 MSIG=2 008790 NSIG=18 008790 CALL SIGF2(PCBL,MSIG,NSIG) 008810 D0 440 I=1+18 008790 PTOTP(I)=PCBL(I)+PAXBL(I)+PGWL(I)+PFHBL(I) 008850 CALL SIGF2(PTOTP,MSIG:NSIG) 008850 D0 450 I=1,18 008850 WRITE(6,1550)PPART(I)+PGWL(I)+PCBL(I)+PAXBL(I)+PFHRL(I)+PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C FORMATS C FORMATS FORMAT 32X+8A4,12X,A4) 1000 FORMAT(32X+8A4,12X,A4) 1005 FORMAT(16X+"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")		• •				008770
MSIG=2 008790 NSIG=18 008710 CALL SIGF2(PCBL,MSIG,NSIG) 008710 D0 440 I=1,18 008710 PTOTP(I)=PCBL(I)+PAXBL(I)+PFHBL(I) 440 CONTINUE 00850 D0 450 I=1,18 008850 WRITE(6,1550)PPART(I)+PGWL(I)+PCBL(I)+PAXBL(I),PFHBL(I)+PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP STOP C FORMATS FORMATS 1000 FORMAT(32X+8A4,12X+A4) 1005 FORMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN#)	430					_
CALL SIGF2(PCBL,MSIG,NSIG) D0 440 I=1,18 PTOTP(I)=PCBL(I)+PAXBL(I)+PGWL(I)+PFHBL(I) 440 CONTINUE CALL SIGF2(PTOTP,MSIG:NSIG) D0 450 I=1,18 WRITE(6,1550)PPART(I)+PGWL(I),PCBL(I),PAXBL(I),PFHRL(I),PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C C C FORMATS FORMATS FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FURMAT(16X,"BLOWDOWN IS PROCESSED THRUUGH CONVENSATE DEMIN")						00879 0
DO 440 I=1,18 PTOTP(I)=PCBL(I)+PAXBB(I)±PGWL(I)+PFHBL(I) 440 CONTINUE CALL SIGF2(PTOTP,MSIG1NSIG) DO 450 I=1,18 WRITE(6,1550)PPART(I)+PGWL(I)+PCBL(I)+PAXBL(I)+PFHBL(I)+PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C C C FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FORMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")						0.09.910
PTOTP(I)=PCBL(I)+PAXBL(I)+PGWL(I)+PFHBL(I) 440 CONTINUE CALL SIGF2(PTOTP,MSIG:NSIG) D0 450 I=1,18 WRITE(6,1550)PPART(I)+PGWL(I),PCBL(I),PAXBL(I),PFHBL(I),PTOTP(I) 450 CONTINUE WRITE(6,14B0) STOP C C C C FORMATS FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FORMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")						000010
440 CONTINUE CALL SIGF2(PTOTP,MSIG:NSIG) 008850 D0 450 I=1,18 WRITE(6,1550)PPART(I);PGWL(I);PCBL(I);PAXEL(I);PFHBL(I);PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C FORMATS FORMATY C FORMAT(32X;8A4,12X;A4) 1005 FORMAT(16X;"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")		PTOTP(1)=PCH	(T) + PAX84 (T) + P	GWL/I)+PFHBL(I)		
CALL SIGF2(PTOTP,MSIGINSIG) D0 450 I=1,18 WRITE(6,1550)PPART(I),PGWL(I),PCBL(I),PAXHL(I),PTOTP(I) 450 CONTINUE WRITE(6,1480) STOP C C C FORMATS FORMATS FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FORMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")	440		VI) + HV=0 (+) =-			
WRITE(6,1550)PPART(I);PGWL(I);PCBL(I);PAXBL(I);PFHBL(I);PTOTP(I) 450 CUNTINUE WRITE(6,1480) STOP C C C C FORMATS FORMATY FORMATS FORMATS C 1000 FORMAT(32X;8A4;12X;A4) 1005 FURMAT(16X;"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")	.,.		OTP,MSIGINSIG)			0n8850
450 CUNTINUE WRITE(6,1480) STOP C C C FORMATS FORMAT C 1000 FORMAT(32X,8A4,12X,A4) 1005 FURMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")		DO 450 I=1,18				
WRITE(6,1480) STOP C C FORMATS FORMATY FORMATS FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FORMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")			PPART(I) PGWL(I),PCBL(I),PAXPL(I	, PEARL (I) PIOIP (I)
STOP C C FORMATS FORMATO FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FURMAT(16X,"BLOWDOWN IS PROCESSED THRUUGH CONVENSATE DEMIN")	450	- • •				
C C FORMATS FORMATO FORMATS C 1000 FORMAT(32X,8A4,12X,A4) 1005 FURMAT(16X,"BLOWDOWN IS PROCESSED THRUUGH CONVENSATE DEMIN")						
C FORMATS FORMATY FORMATS FORMATS C 1000 FORMAT(32X+8A4,12X,A4) 1005 FURMAT(16X,"BLOWDOWN IS PROCESSED THRUUGH CONVENSATE DEMIN")	С	3101				
C 1000 FORMAT(32X,8A4,12X,A4) 1005 FURMAT(16X,"BLOWDOWN IS PROCESSED THRUUGH CONVENSATE DEMIN")		ORMATS	FORMATO	FORMATS	FORMATS	
1005 FURMAT(16X,"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")	-					
		FORMAT (32X,8A	4,12X,A4)	CESSED THOUGH CON	UENSATE DEMININ	
	1002	T UKMAT (] 04 1 "B	LUWDUWN IS PMU	3-23	CHORIC PENANNY	

3-23

```
FURMAT(16X, "BLOWDOWN IS NUT PROCESSED THROUGH COND. DEMIN.")
FURMAT(16X, 13A4, A2, F10, 5)
1007
1010
      FURMAT (16X, "PLANT CAPACITY FACTUR", T74, "0.80")
1020
      FORMAT (16x, "PERCENT FUEL #ITH CLADDING DEFECT2", T74, F7.5)
1030
      FORMAT (36x+F8,4,35x+I)
1040
      FORMAT (16X, "BLOWDOWN HATE (THOUSAND LBS/HK) "+ 4X, F9.5)
1050
      FORMAT (15X+4A4, A2, 8X+18.0)
1060
      FORMAT (20X+F8.0+2(5X+F8.0))
1070
      FORMAT (27X+F6.2+14X+F9.2+18X+F6.2)
1080
      FORMAT ( /, " LIQUID WASTE INPUTS")
1090
                  (30X, "FRACTION FRACTION
                                              COLLECTION DECAY /8X5 STREAM
      FORMAT
1100
                                                TIME
                                                          TIME ..... DECONTAM
                        OF PCA DISCHARGED
            FLOW RATE
     2INATION FACTORS 1/20X = (GAL/DAY) 123X + (DAYS)
                                                           (DAYS) ", 7X.
     3"1",8%,"CS",8X,"OTHER5")
     FURMAT (2X, 4A4, A2, 1PE9, 2, 1X, 4 (0PF8, 4, 2X), 3 (1PE9, 2, 1X))
1110
      FORMAT (15X, 4A4, A2, 8X, F8.0, 7X, F6.4)
1120
      FURMAT (70X, F10.5)
1130
     FURMAT (2X, "BLOWDOWN", 10X, 1PE9.2, 11X, F8, 3, 2X, 2(F8, 3, 2X),
1140
     13(1PE9.2,1X))
     FORMAT (2X, "UNTREATED PLOWPOWN", 1PE9.2, 11X)"
                                                                     0.000
                                                         1.000
1150
               1.00E+00 1.0UE+0U 1.00E+00")
     10.000
                                      ",1PE9.2+14X+0PF5.3,2X+2(F8.3.2X).
1160 FORMAT (2X+""EGENERANT SOLG
     13(1PE9.2,1X))
     FURMAT (/, " GASEOUS WASTE INPUTS")
1170
1180
      FURMAT(79X+11)
      FURMAT (16X, "THERE IS CONTINUOUS STRIPPING OF FULL LETDOWN FLOW")
FURMAT (16X, "THERE IS CONTINUOUS LOW VOL PURGE OF VOL. CUNTROL TK")
1190
1200
     FORMAT (164, "THERE IS NOT CONTINUOUS STRIPTING OF FULL LETUWN FLO"
1210
     1)
     FORMAT (16X, "FLOW RATE THROUGH GAS STRIPPER (6MM) "+19X, F9.5)
1220
1230 FORMAT (16X, "PRIMARY CUOLANT LEAK TO AUXILIARY BLDG (LB/DAY) ". T72.
     1"160.00000")
      FURMAT(16X,4A4,6X,F3.V)
1250
     FURMAT (16x, 4A4, 4X, "PARTICULATE RELEASE FRACTIVN", 6X, F10.5)
1260
      FURMAT (16X, 5A4, 10X, F3, 6X, F3.0)
1270
     FURMAT (16X, 5A4, "IODINE RELEASE FRACTION", 11X, 10.5/36X, "PARTICULAT
1280
     1E RELEASE FRACTION ..., 6X, F10.5)
     FURMAT (16X, "FREQUENCY OF PRIMARY COOLANT DEGADSING (TIMES/YR)", T74
1290
     1,"2.00000"/16X, "PRIMARY TO SECONDARY LEAK RATE (LU/DAY)", T72,
     2" 75.00000")
     FORMAT (16X, "THERE IS & KIDNEY FILTER "/20X, "CONTAINMENT ATMOSPHERE
1300
     ICLEANUP RATE (THOUSAND CFM) ", T71, F10, 5/20%, "PURGE TIME OF CONTAINM
     2ENT (HOURS) ", T71, F10, 7)
     FURMAT (16X, "THERE IS NOT & KIDNEY FILTER")
1310
     FORMAT (16X, "THERE IS NOT & CONDENSATE DEMINERALIZER")
1320
     FORMAT (16X, "FRACTION LODINE BYPASSING CONVENSATE DEMINERALIZER",
1330
     17X, T72, F9.5)
     FORMAT (16X, "IODINE PARTITION FACTOR (GAS/LIQUID) IN STEAM GENERATO
1340
     1R ",E7,5)
     FURMAT (16X, 5A4, 10X, F3, 0, 6X, F3, 0, 19X, F3, 0)
1350
     FORMAT (16X, "FREQUENCY OF ENTMT BLDG HIGH YOL MURGE (TIMES/YR)",
1360
     1T73,F8.5)
     FURMAT (16X, 5A4, 10X, F3,0, 6X, F3.0, 14X, F8.2)
1370
1380 FORMAT (16X, 5A4, "RATE (GFM)", 24X, F11, 5/16X, 5A4, "IODINE RELEASE FRACT
     110N", 11X, F10, 5/36X, "PARTIEULATE RELEASE FRACTION", 6X, F10.5)
     FURMAT (16X, "THERE IS NOT A CNTMT BLDG LOW VOLUME PURGE")
1390
      FURMAT (16X, "STEAM LEAN TO TURBINE BLDG (LBS/HM)", 19X, F10.5)
1400
      FORMAT ("0", 15%, "THERE IS NOT AN UN_SITE LAUNDRY")
1430
      FORMAT (1H1)
1440
1450
      FURMAT (16X, 8A4)
      FORMAT (1H0+67X, "GASEOUS RELEASE RATE - CUMIES PER YEAR")
1460
      FURMAT (1H0+11X, "PRIMARY", 4X, "SECONDARY", 7X, "GAS STRIPPING", 11X,
1470
     1"BUILDING VENTILATION"/12X,"CUOLANT",5X,"COOL4NT",5X,21("-"),
```

-	AIR EJECTOR TUTAL"/10X," (MICROCI/GM) (N	1
7	SICROCI/GM) SHUTDOWN CUNTINUOUS REACTUR AUXILIARY TURBINE	
-	VENT OFFGAS EXHAUST")	
1400		
1480	FORMAT (1H0,130 ("-"))	
1490	FORMAT ("0 ", A8, 2(2X, 1 PE10.3), 8(3X, 1 PE8.1, 1X))	
1495	FORMAT ("0 ", A8, 2 (2X, 14E10.3), 12X, 7 (3X, 14E4.1, 1X))	
1500	FORMAT (1H0," TOTAL NUBLE GASES", 101X+1PE0.1)	
1510	FORMAT/1H0.30X. "TOTAL H+3 RELEASED VIA GASEOUS PATHWAY = ",14," CJ	
1	/YR"//31X."C=14 RELEASED XIA GASEOUS PATHWAY 7 7.3 CI/YR"7/31X.	
	μ_{AR} = 41 pri Eased Via CUNTAINMENT VENT = 34 CI/YR")	
1526	FORMAT (1H0, "0.0 APPEARING IN THE TABLE INVICALES RELEASE IS LESS	
1920	THAN 1.0 CI/YR FOR NOULE GAS, 0.0001 CI/YR FOR IN)	
15.24	FORMAT (1H0,54X, "AIRBONNE PARTICULATE RELEASE HATE-CURIES PER YEAR"	1
- 1	I) TRANSPORTER AND THE ALCH ANY UNDER DIAG WENTLY ATTONN (27 UNDER TOPI	
1540	FORMAT (1H0, 36X, "WASTE GAS", 16X, "BUILDING VENTILATION"/2X, "NUCLIDE"	
1	+28X, "SYSTEM", 14X, "REACTOR AUXILIARY FUEL HANDLG", 7X, "TOTAL")	
1550	FORMAT (1H0, A8, 28X, 1PE8, 1, 11X, 1PE8, 1, 4X, 1PE8, 1, 4X, 1PE8, 1, 10X, 1PE8, 1	L .
1		
1560	FORMAT/1HD.11X. "PRIMARY".4X."SECONDARY".25X."DUILDING VENTILATIO"	•
100	VI2X."COOLANT".5X."COULANT".15X.44("-").6X."BLOWDOWN AIR EJECTOR	8
	TOTAL "/10X, " (MICROCI/GM) (MICROCI/GM) ", 12X, "FUEL HANDLG REACTO)
	AUXILIARY TURBINE VENT OFFGAS EXHAUST")	
3		008930
		008940
#DECK		008950
	SUBROUTINE SIGF2(RLPT:MSIG,NSIG)	008960
	DIMENSION RLPT (NSIG)	
	IF (MSIG.EU.2) GO TO 30	008970
	DO 20 I=1.N3IG	008980
	IF (RLPT(1).EQ.0.0) GU TO 20	008990
	IF (I.GT.11) GO TO 10	
С	THIS PART OF SUBROUTINE IS FOR NOBLE GASES	009010
-	DIV=10 ** (INT (ALOG10 (HLPT (I)))-1)	000050
	IF (RLPT(I).LT.10.) DIV=1.00	0 n 90 30
	RLPT(I) = AINT(RLPT(I)/UIV+0.5) + DIV	009040
	GU TO pn	009050
•		009060
C	THIS PART OF SUBROUTINE IS FOR IODINE	009070
10	CONTINUE	009080
	ISUB=2	009090
	IF (RLPT(I).GT.1.0) ISUB=1	009090
	DIV=10, **(INT(ALOG)0(KLPT(I)))-ISUB)	
	RLPT(I) = AINT(RLPT(I)/UIV+0.5) *DIV	009110
20	CONTINUE	009120
30	CONTINUE	009130
C T	THIS PART OF SUBROUTINE IS FOR PARTICULATES	009140
	DO 50 1=1,NSIG	0 <u>0</u> 9150
	IF (RLPT(I).EQ.0.) GO TO \$0	009160
	DIV=10 **(INT(ALOG10(KLPT(I)))-2)	009170
	RLPT(I) = AINI(RLPT(I)/UIV+0.5) *DIV	009180
. .		009190
50	CONTINUE	009200
	RETURN	009210
	END	003610

	PROGRAM LISTING FOR LIQUID DETERMINATION	
+DEC	K PGALELO	00056
С	GALE CODE FOR CALCULATING LIQUID EFFLUENTS FROM PWRS. MUDIFIED	
С	AUG. 1979 TO IMPLEMENT APPENDIX I TO 10 CFR PART 50. REALTOR	
С	WATER CONCENTRATIONS VALCULATED USING METHODS OF DRAFT STANDARD	00030
С	ANS 237 "RAUIOACTIVE MATEMIALS IN PRINCIPAL FLUID STREAMS OF	00031
С	LIGHT WATER COOLED NULLEAR POWER PLANTS" DRALT DATED MAY 20, 1974	+00035
	MODIFIED EDITION OF ORIGEN PROGRAM TO COMPUTE EFFLUENTS FROM BWR	00033
C. C. C.	AND PWR RADWASTE SYSTEMS	00034
С		00035
С	STATEMENTS *PROGRAM PGALELQ* AND *LEVEL 2* ARE FOR CDC USERS.	
C	FOR IBM USERS DELETE THESE STATEMENTS.	
C	PROGRAM PGALELQ (INPUI,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,	
	REALLETDWN,NOGEN	00038
	REALLETDWA	00039
	COMMON/MATHIX/A(2500)+LUC(2500),NON0(800)+KD(400)	00047
	LEVEL 2,A,LUC,NONO,KD	00036
	COMMON/CONST/MMN.ERR, MZERU	
	COMMON/EW/XTEMP(800), ANEW(10,800), B(800), U(800)	
	COMMON/FLUXN/REGENT, DAS (800), ILITE, IACT, ITOT	
	COMMON/OUT/NUCL (BOO)	
	CUMMON/CUNC/PCONC(800), SCUN(800), RINV(800)	
	COMMON/COUL/REACTR.POW1,SPLDR,BLWDWN,FPEF,HEF,EDFLR,DFIED,DFCSED,	
	1 UFED, DFIDW, DFCSDW, DFDW, EVA, DWA, CWA, DFCM, UFICM, DFCSCM,	
	2 DFCW,DF1Cw,DFCSCW,BD1FR,LDFD,DWFD,CWFD,CMFD,1S,TE,TD,TC,TCM, 3 TSTORC,TSTURD,TSTORB,DWFL2,DW2,DWF2,12,TSTOR2,DF1D2,DFCSU2,DFD2,	
	4 PFLAUN,DWFLR COMMONJAPCDUL/RGWFR,DLIRG,DFCSRG,DFRG,TRG,TSTURR,RGFD	00066
	COMMON/RDTES/RENRT	00067
	COMMON/CONP/PWCONC(800),SCUTV(800),SCOT(800)	
	DIMENSION WURD15(4), WURD18(5), WORD56(14), WORD8(2), REACTR(7)	
c		00087
C C	READ NUCLEAR DATA AND CONSTRUCT TRANSITION MAIRIX	
C		00089
	CALL NUDATA(NLIBE)	
С		00091
	DO 50 I=5'ILOL	00092
	NONO(I) = NUNO(I) + NONO(1-1)	00093
20	KD(I) = KD(I) + NONO(I-1)	0n094
С		
С	BUILT-IN PARAMETERS	
С		
	PF=0,80	
~	TBLK=1700.	
С		
	MMN=0 MZERO=21	
	$D0 \ 30 \ J=1,800$	
	PCONC(J)=0.0	00117
	SCON(J) = 0.0	00119
	RINV(J) = 0.0	00150
30		
		00125
С	READ DESCRIPTION OF REACTUR AND PADWASTE TREALMENT PLANT	00126
C C	READ DESCRIPTION OF REACTUR AND PADWASTE TREALMENT PLANT	
c c c		00127
C C	PKINT 9026	00127 00129 00130
C C		00127 00129 00130 00131
C C	PRINT 9026 READ 9010,REACTR.TYPE	00127 00129 00130 00131 00132
C C	PRINT 9026 READ 9010,REACTR.TYPE PRINT 9010,REACTR.TYPE	00126 00127 00129 00130 00131 00132 00133

FIGURE 3-4

		0 - 1 2 5 6
	PRINT 9027	001350
	READ DATA FUR LIQUID INFURMATION	
	KEAD 9022, WURD56, PCVOL	0n13A0
	PRINT 9022, WORD56, PCVUL	001390 001420
	READ 9012, WORD56, LETUWN	001430
	PRINT 9012, WORD56, LETYWN	001440
	READ 9012,WORD56,CBFLM PRINT 9012,WORD56,CBFLR	001450
	READ 9011, WORD56, NOGE	001460
	PRINT 9011, WORD56, NOGEN	001470
	READ 9022. WURD56. STMFN	001480
	PRINT 9022, WORD56, STMLR	001490
	READ 9022, WURD56, WLI	001520
	PRINT 9022, WORD56, WLI	001530
	SCVOL=NOGEN#WLI	0n1540 0n1550
	PRINT 9029, SCVOL	001580
	READ 9055,BLWDWN,KFNRT PRINT 9051,BLWDWN	001590
	RFNRT=1.0	
	IF (KFNRT.EQ.2) RFNRT.0.0	
	PRINT 9041	001620
	READ 9012, WURD56, REGENT	001630
	PRINT 9012, WORD56, REGENT	001640
	IF (BLWDWN.EQ.0.0) GO TO 40	
	FPEF=0,005	001670
	HEF=0.01 PRINT 9030,FPEF,HEF	001680
	GO TO 50	
40	FPEF=1.0	
ŦŬ	HEF=1.0	001710 .
	PRINT 9n30, FPEF, HEF	001720
50	READ 9020, WURD56, FFCDM	001750
	PRINT 9020, WORD56, FFCUM	001750
	IF(FFCDM.LT.0.00]) GO TO 60	001770
	DFCB=10.0 DFCBCS=2.0	001780
	GU TO 70	
60	ØFCB=1.0	
	DFCBCS=1.0	001810
70	READ 9056,WORD18,SBLDR	0
	C#A=1.0	001860 001870
	READ 9014.UFICW, DFCSCW, DFCW	001880
	READ 9015,TC,TSTORC,CWFD PRINT 9045	001890
	PRINT 0016	001900
	PRINT 9017, WORD18, SBLUR, CWA, CWFD, TC, TSTORC, DF4CW, DFCSCW, DFCW	001910
•	READ 9013,WURD18,EDFLK,WOKD8,EDA	001920
	READ 9014, DFIED, DFCSEV, DF+D	001930
	READ 9015, TE, TS, EDFD	001940 001950
	PRINT 9017, WORD18, EDFLR, EDA, EDFD, TE, TS, DF4ED, PFCSED, DFED READ 9013, WORD18, DWFLK, WORD8, DWA	001960
	READ 9014, DFIDW, DFCSDW, DFDW	001970
	READ SAISTD. ISTORD. DWED	Un1980
	PRINT 9017, WORD18, DWFLR, DWA, DWFD, TD, TSTORU, DF4DW, DFCSDW, DFDW	001990
	READ 9n13, WURD18, DWFL4, WORD8, PW2	005000
	READ 9014, DFID2, DFCSD2, UFV2	002010
	READ 9015, T2, TSTOR2, DWF2	002020
	PRINT 9017, WORD18, DWFL2, DW2, DWF2, T2, TSTOR2, DF102, DFCSD2, DFD2	0n2030 0n2040
	READ 9037,BUTER READ 9014,DFICM,DECSCM,DECM	002050
	READ 9014, DFICH, DFCSCH, DFCH	002060
	VANA 11121 AND 121 AND	

...

c c c

	KEAD 9037+KGWFR	002070
	READ 9014, DF IRG, DFCSRU, DFNG	002080
	READ 9015, TKG, TSTORR, MGFD	002090
	IF (BLWDWN.EQ.0.0) GO 10 75	
	BDFR=BLWDWN*1E3*RDTFR/0.3476	002110
	PRINT 9034, BDFR, CMFD, TCM, TSTORB, DFICH, DFGSCM, PFCM	002120
	BUFR=BLWDWN+1.0E3+ABS(1.+DDTFR)/0.3476	, 002130
	PRINT 9035, BDFR	002140
	IF (FFCDM.EQ.0.0) GO TH 90	
75	IF (REGENT-E4.0.0) GO TO 80	
()	PRINT 9038, RGWFR, RGFD, TRG, TSTORR, DFIRG, DFCSRG, DFRG	002180
	60 TO 90	
	RGWFR=0.0	
80	PRINT 9038, RGWFR, RGFD1TRG, TSTORR, DFIRG, DFCSRG, DFRG	002210
^		
90	IF (KENRT.EU.2) GO TO 100	002240
	FNRTSO=1.0-1.0/(DFCM*VFCB)	002250
	FNRTSI=1.0-1.0/(DFICM*DFCB)	002260
	FNRTSC=1.0-1.0/(DFCSCM+DFCBCS)	002200
	GU TO 110	
100	FNRTSO=1.0	002290
	FNRTSI=1.0	002290
-	FNRTSC=].0	002320
C		002320
C	READ DATA FOR GAS INFURMATION	002340
C		0(12.540
110	PRINT 9046	002360
	READ 9721,KGTRWT	002370
	IF (KGTRWT.EQ.0) PRINT 9053	005380
	IF (KGTRWT.LQ.1) PRINT 9052	002390
	IF (KGTRWT.EQ.2) PRINT 9075	002400
	READ 9012, WORD56, TAU1	Un2410
	PRINT 9012, WORD56, TAU	002420
	READ 9012, WORD56, TAU2	
	PRINT 9012, WORD56, TAU2	002430
	READ 9012, WORD56, TAU3	002440
	PRINT 9012, WORD56, TAU3	0 n2450
	GWPRF=1.0	
	AXIRF=1.0	
	AXPRF=1.0	
	CHIRF=1.0	
	CHPRF=1.0	
	CLIRF=1.0	
	CLPRF=1.0	
	FHIRF=1.0	
	FHPRF=1.0	
	CAIRF=1.0	
	CAPRF=1.0	
	READ 9065, WORD15, GWHRE	
	IF (GWHRE. UT. 0.0) GWPRF=1.0-GWHRE/100.	
	PRINT 9066, WORD15, GWPSF	
	READ 9067, WORD18, FHCHME, FUHRE	
	IF (FHCHPE.GT.0.0) FHIRF=1.0-FHCHRE/100.	
	IF (FHHRE.GT.0.0) FHPRT=1.0-FHHRE/100.	
	READ 9667+WURD18+AXCHME+AXHRE	
	IF (AXCHRE.GT.0.0) AXIMF=1.0-AXCHRE/100.	
	IF (AXHRE.GT.0.0) AXPRL=1.0-AXHRE/100.	
	PRINT 9068, WORD18, AXIME, AXPRE	• .
	READ 9722, WORD56, CONVUL	002600
	PRINT 9022, WORD56, CONVOL	002610
	READ 9069.WURD18.CACHME.CAHRE.CFM	
	IF (CACHRE.GT.O.O) CAIMF=1.0-CACHRE/100.	
	IF (CAHRE.GT.0.0) CAPRE=1.0-CAMRE/100.	
	3-28	

120	READ 9071, WORD18, CHCHRE, CHHRE IF (CHCHRE.GT.0.0) CHIRF=1.0-CHCHRE/100. IF (CHHRE.GT.0.0) CHPRL=1.0-CHHRE/100. EN=2.0 PRINT 9072,EN PRINT 9068, WORD18, CHIRF, CHPRF READ 9069, WORD18, CLIRF, CHRE, PNOV1 IF (CLCHRE.GT.0.0) CLIRF=1.0-CLCHRE/100. IF (CLRE.GT.0.0) CLPRE=1.0-CLHRE/100. IF (PNOV1.LT.1.0) GO TH 120 PRINT 9070, WORD18, PNOV1, WORD18, CLIRF, CLPRE GO TO 130 PRINT 9073	0n2680
130	PRINT 9064,TBLK REAU 9020,WORD56,FVN PRINT 9020,WORD56,FVN READ 9020,WORD56,FEJ	002800 002810 002820
	FEJ=1.0-FEJ/100. PRINT 9020,WORD56,FEJ READ 9020,WORD56,PFLAUN IF(PFLAUN.LE.0.0) PRINT 9048 PRINT 9026	002830 002900 002910 002920 002930
с с с	CONVERSION OF UNITS EDFLR=EDFLR+48.8 DWFLR=DWFLR+48.8	002940 002950 002950 002960 002970 002980
с с с	DWFL2=DWFL2*48.8 CALCULATE PRIMARY COULANT CONCENTRATIONS	004080
140	AFPTES=0.0 DO 140 I=1,ITOT PCONC(I)=PWCONC(I) POWA=POW1 PCVOA=PCV0L*1E3 LETDWA=LETDWN*500.53 SBLDA=SBLDR*.3476 CBFLA=CBFLR*500.53	004120 004150 004160 004170 004180 004190
с с с	CHECK TO SEE IF PRIMARY PLANT PARAMETERS ARE WITHIN SPECIFIED Ranges	004200 004210
c	IF (POWA.LT.3000OR.PYWA.\$T.3800.) GO TO 150 IF (PCYOA.LT.5.0E5.OR.PCVOA.GT.6.0E5) GO TU 150 IF (LETDWA.LT.3.2E4.OR.LETPWA.GT.4.2E4) GO TO 150 IF (SBLDA.LT.250OR.SHLDA.GT.1000.) GO TO 150 IF (CBFLA.GT.7500.) GO TO 150 GO TO 190	
c c	CALCULATE PRIMARY COULANT ADJUSTMENT FACTURS	
150	AFPTES=1.0 RHAL2=(LETDWA*0.99+0.V1*SdLDA)/PCVOA RCSRB2=(LETDWA*0.5+0.5*(SUDA+CBFLA*0.9))/PCVUA RCFP2=(LETDWA*0.98+0.V2*(SBLDA+CBFLA*0.9))/PCVOA RK2=161.76*POWA/PCVOA PO 180 J=1:ITUT	004310
	IF (PCQNC(J).EQ.0.0) GU TO 180 NZ=NUCL(J)/10000 DL=UIS(J)*3500. IF (NZ.EQ.53.0R.NZ.EQ.35) 50 TU 160 IF (NZ.EQ.37.0R.NZ.EQ.35) 50 TU 170	004360 004370

```
PCONC(J) = PCONC(J) * RK2*(0.066+UL)/(RCFP2+UL)
      GU TO 180
  160 PCONC(J) = PCONC(J) * RK2 * (0.067+DL) / (RHAL2+DL)
      60 TO 180
      PCONC(J) = PCONC(J) * RK2*(0.037+DL)/(RCSRB2+PL)
 17D
      CONTINUE
 180
      SBLDR=SBLDR+48.8
 190
                                                                            004470
      PCV0L=PCV0L+1000.+0.7/62.4
C
С
      CALCULATE SECONDARY CUOLANT CONCENTRATIONS
С
                                                                            004490
      SCVOA=SCVOL*1E3
                                                                            004500
      BLWDWA=BLWDWN+1E3
                                                                            004510
      STMFA=STMFR#1E6
                                                                             004520
      FFCDA=FFCDM
С
      CHECK TO SEE IF SECONDARY PLANT PARAMETERS ARE WITHIN SPECIFIED
                                                                            004530
С
                                                                             004540
C
      RANGES
С
      IF (BLWDWN.EQ.0.0) GO TO 280
С
      PWTYPE=1.0 IS FOR PWRS WITH U-TUBE STEAM GENERATORS
С
С
      PWTYPE=1.0
      DO 200 I=1.ITOT
      SCON(I)=SCUTV(I)
 200
      IF (AFPTES.EQ.1.0) 60 10 250
      IF (SCY0A.LT.4.0E5.0R.SCV0A.GT.5.0E5) GO TU 250
      IF (STMFA.LT.1.3E7.0R.STNF8.GT.1.7E7) GO TU 250
      IF (BLWDWA.LT.5.0E4.0R.BLWDWA.GT.1.0E5) GO TO 450
      IF (FFCDA.GT.0.01) GO TO 250
      IF (FNRTSC.LT.0.8999) 0 TU 370
      GO TO 390
С
      PWTYPE=2.0 IS FOR PWRS WITH ONCE-THROUGH STEAM GENERATORS
С
С
      PWTYPE=2.0
 230
      BO 240 I=1,ITOT
      SCON(I)=SCOT(I)
 240
      IF (AFPTES.EQ.1.0) GO TO 250
      IF (STMFA.LT.1.3E7.0R.STMFA.GT.1.7E7) GO TU 250
      IF (FFCDA.LT.0.55.0R.FLCDA.GT.0.75) GO TO 250
      GO TO 390
С
      CALCULATE SECONDARY CUOLANT ADJUSTMENT FACTORS
С
С
  250 IF (FFCDA.GT.0.01.AND.FFCDA.LT.1.0) FFCDA=0.2
      RHAL3= (BLWDWA*FNRTSI+V.9+HEF*STMFA*FFCDA) / SCVUA
      IF (FFCDA.GT.0.01.AND.FFCDA.LT.1.0) FFCDA=0.1
      RCSRB3=(HLWDWA*FNRTSC+0.5*FPEF*STMFA*FFCDA)/SUVOA
                                                                            004910
      KCFP3=(BLWDWA*FNRTS0+V.9*FPEF*STMFA*FFCDA)/SCV0A
                                                                             004920
      IF (PWTYPE.EQ.2.0) GO 10 330
                                                                             004940
      RK3=4.5E5/SCVOA
      DO 320 I=1,ITOT
      IF (SCUN(I) . EQ. 0.0) GO TO 820
                                                                            005120
      NZ=NUCL(I)/10000
                                                                             005130
      DL=UIS(I)+3600.
      IF (NZ . EQ . 53. OR . NZ . EQ . 45) 40 TO 300
      IF (NZ .EQ. 37 .OR .N7 .EQ. 55) 60 TO 310
      SCON(I)=SCUN(I)*RK3*(0,17+DL)/(RCFP3+UL)*(PCPMC(I)/PWCONC(I))
      GO TO 320
      SCON(I)=SCON(I)*RK3*(0,17+DL)/(RHAL3+DL)*(PCOMC(I)/PWCONC(I))
 300
```

```
3-30
```

_	GU TO 320	
310	SCON(I)=SCUN(I) #RK3#(U.15+DL)/(KCSRB3+DL)*(PCUNC(I)/PWCONC(I))	
320	CONTINUE	
	60 TO 390	
330	RK3=1.ñE5/SCV0A D0 360 I=1.ITOT	
	$IF(SCON(I) \cdot EQ_{0} \cdot 0) = 0 = TO = 360$	
	NZ=NUCL(I)/10000	005260
	DL=DIS(I)*3600.	005270
	IF (NZ+EQ+53+0R+NZ+EQ+35) 00 TO 340	
	IF (NZ • EQ • 55 • OR • NZ • EQ • 37) 90 TO 350	
	SCQN(I)=SCON(I) #RK3#(]4.0+DL)/(RCFP3+DL)#(PCOMC(I)/PWCONC(I))	
	GO TO 360	
340	SCON(I)=SCON(I) *RK3*(27.0+DL)/(RHAL3+DL)*(PCQHC(I)/P*CONC(I))	
340	GO TO 360	
350	SCON(I)=SCUN(I)*RK3*(7.5+PL)/(RCSRB3+DL)*(PCQNC(I)/PWCONC(I))	
360	CONTINUE	
200	GO TO 390	
370	RCSRB3=(BLWDWA+FNRTSC+0.5+FPEF+STMFA+FFCDA)/SUVOA	
510	RK3=4.5E5/SCVOA	005380
	DU 380 I=1,ITOT	
	IF (SCON(I) . EQ.0.0) GO TO 380	_
	NZ=NUCL(I)/10000	005410
	IF (NZ .NE . 37 . AND .NZ .NE . 55) GO TO 380	
	DL=DIS(I)+3600.	005430
	RSC=0.15	
	SCON(I)=SCON(I)*RK3*(RSC+PL)/(RCSRB3+DL)*(PCQNC(I)/PWCONC(I))	005460
380	CONTINUE	
390	BLWDWN=BLWDWN*1E3/500+53	
	SCV0L=SCV0L*1000./62.4	005490
	STMFR=STMFR+2000.	005500
	DO 400 I=1,ITOT	
	IF (PCONC(I) . EQ. 0.0) GU TO 400	0-55-00
	PCONC(I)=PCONC(I)/(DI\$(I)*1.6283E13)	005530
	$SCON(I) = SCUN(I) / (DIS(\frac{1}{2}) * 1 \cdot 6283E13)$	005540
400	CONTINUE	005560
Ç	COMPUTE REMOVAL CONSTANT FOR CONDENSATE DEMINERALIZER	005500
C	CUMPULE REMOVAL CONSIGNT FOR CONDENSATE DEMINERALIZED	
С	IF (FFCDM.GT.0.01.AND.FFCDM.LT.1.0) FFCDM=0.1	
	CIXRC=(0.9*BLWDWN*RFNRT/DACH+0.9*STMFR*FPEF*FLCDM)/(SCVUL*7.48*60)	•
		005620
	1) CIXRCS={0.5*BLWDWN*RFMRT/PFCSCM+0.5*STMFR*FPEE*FFCDM}/(SCVOL*7.48*	
		005640
	IF (FFCDM.GT.0.01.AND.LFCDM.LT.1.0) FFCDM=0.2	-
	CIXRIB=(0.9*BLWDWN*RFWRT/DFICM+0.9*STMFR*HEF*FCDM)/(SCVOL*7.48*6	00ñ5650
		0 <u>05660</u>
	DO 410 I=1,ITOT	
	NZ=NUCL(I)/10000	00568 0
	PR=CIXRC	
	IF (NZ.EQ.37.OR.NZ.EQ.55) PR=C1XRCS	
	IF (NZ.E0.53.0R.NZ.EQ.35) PR=CIXRIB	
	XZHJ=SCON(I) *PR*SCVOL 0.02832	
	B(I)=XZHJ	005730
410	CONTINUE	
C		
C	CALCULATE RADIOISOTOPE INVENTORIES ON CONVENSATE RESINS	
C		005790
	CALL SOLVE	00140
/ - -		
420	KINV(I)=XTEMP(I)	005820
	CALL EFFTAB STOP	2 (- - C V
	J I U'	

006490 C FORMATS 006500 FORMATS С FURMATS 006510 С 006620 9010 FORMAT (32X+7A4,16X,A4) 006630 9011 FORMAT (16X+13A4+A3+F9+4) 006640 9012 FORMAT (16X+14A4+F8.4) 9013 FORMAT (15X, 4A4, A2, 8X, 18.0, 1X, A4, A2, F6.4) 9014 FORMAT (20X) F8.0,2(5X) F8.0)) 006660 9015 FORMAT (27X, F6.2, 14X, F9.2, 18X, F6.2) 006670 9016 FORMAT ("0", 30X, "FRACTION FRACTION COLLECTION 1 FLOW RATE OF PGA PISCHARGED TIME DECAY 1/8X, ISTREAM 006680 TIME", 10X + "DECONTA006690 2MINATION FACTORS"/20X1" (GAL/DAY) "23X," (DAYS) 006700 (DAYS) ", 7X, 006710 3"1",8X,"CS",6X,"OTHER\$") 9017 FURMAT (2X,4A4,A2,1PE9,2,1X,4(0PF8,4,2X),3(1PE9,2,1X)) 006730 9020 FORMAT(16X,14A4,F8.4) 006740 9021 FORMAT (79X, I1) 006750 9022 FORMAT (16X, 1444, F8.4) 006870 9026 FORMAT(1H1) 9027 FURMAT (16X, "PLANT CAPACITY FACTOR", T75, "0.8000") 9029 FORMAT (16X, "MASS OF WATER IN STEAM GENERATORS (THOUSAND LBS)", T73, 006900 006910 1F8.4) 9030 FURMAT(16X, "FISSION PRODUCT CARRY-OVER FRACTION", T75, F6.4/16X, 006920 016930 1"HALOGEN CARRY_OVER FRACTION"+T75,F6.4) 9034 FORMAT(2X, "BLOWDOWN", 10X, 1PE9.2, 14X, 0PF5.3, 2X, 2(F8.3, 2X), 006960 13(1PE9.2,1X)) 9035 FORMAT (2X, "UNTREATED PLOWDOWN", 1PE9.2, 11X," 1.000 0.000 1.00E+00 1.0VE+00 1.00E+00") 10.000 007000 9037 FURMAT (72X, F8.2) 9038 FORMAT (2X, "REGENERANT OLS ", 1PE9.2, 14X, 0PF\$, 3, 2X, 2 (F8, 3, 2X), 007010 007020 13(1PE9.2.1X)) 9039 FURMAT (316, E21, 14) 9040 FORMAT(16,E21.14) 9041 FORMAT (16X, "PRIMARY TH SECONDARY LEAK RATE (LUS/DAY)", T73, 1" 75.0000") (/, "O LIQUID WASTE INPUTS") 007060 9045 FURMAT 007070 9046 FORMAT (/, "O GASEOUS WASTE INPUTS") 9048 FURMAT ("0",15X, "THERE IS NOT AN ON_SITE LAUNDRY") 007080 9051 FURMAT (16X, "BLOWDOWN RATE (THOUSAND LBS/HR) "+ 45X, F8.4) 007090 9052 FORMAT (16X, "THERE IS GONTINUOUS STRIPPING OF FULL LETDOWN FLOW") 007100 9053 FORMAT (16X, "THERE IS NOT CONTINUUS STRIRPING OF FULL LETOWN FLOW"007110 007120 1) 007140 9055 FURMAT (36X+F8.4,35X+I) 007150 9056 FORMAT (15X,4A4,A2,8X, E8.0) 9064 FORMAT (16X, "STEAM LEAN TO TURBINE BLDG (LBS/HR)", 19X, F10.4) 9065 FORMAT (16X,4A4,6X,F3.0) 9066 FURMAT (16x, 4A4, 4X, "PARTICULATE RELEASE FRACTION", 6X, F10.4) 9067 FORMAT (16X, 5A4, 10X, F3, 0, 6X, F3.0) 9068 FORMAT (16X, 5A4, "IODINE RELEASE FRACTION", 11X, 10, 4/36X, "PARTICULAT 1E RELEASE FRACTION ..., 6X, F10.4) 9069 FURMAT(16x,5A4,10x,F3,0,6X,F3.0,14x,F8.2) 9070 FORMAT (16X, 5A4, "RATE (GFN) ", 25X, F10.4/16X, 5A4, "IODINE RELEASE FRACT 110N", 11X, F10.4/36X, "PARTICULATE RELEASE FRACTION", 6X, F10.4) 9071 FURMAT (16X, 5A4, 10X, F3, 0, 6X, F3, 0, 19X, F3, 0) 9072 FORMAT (16X, "FREQUENCY OF CNTMT BLDG HIGH VOL PURGE (TIMES/YR)", 007330 1T74,F7.4) 9073 FORMAT (16X, "THERE IS NOT A CNTMT BLDG LOW VOL PURGE") 007350 9075 FORMAT (16X, "THERE IS FONTINUOUS LOW VOL PURGE OF VOL. CONTROL TK") 007360 007370 END 007380 *DECK EFFTAB 007390 SUBROUTINE EFFTAB DIMENSION ISOTP (3,100) DIMENSION REACTR(7), NAME (3), CWCONC (800), DWCONY (800), CMCONC (800) 3-32

	DIMENSION TURBDR (800) DWCUN2 (800) DCUNC (400) DOTHER (100) COMMON/FLUXN/REGENT, DIS(800), ILITE, IACT, ITOT COMMON/OUT/NUCL (800) CUMMON/COOL/REACTR, POW1, SBLDR, BLWDWN, FPEF, HEF, EDFLR, DFIED, DFCSED, 1 DFED, DFIDW, DFCSDW, DFUW, EDA, DWA, CWA, DFCM, UFICM, DFCSCM, 2 DFCW, DFICW, DFCSCW, BDIFR, DFD, DWFD, CWFD, CMFD, IS, TE, TD, TC, TCM, 3 TSTORC, TSTORD, TSTORB, DWFL2, DW2, DWF2, T2, TSTOR2, DFID2, DFCSP2, DFD2,	
<u> </u>	4 PFLAUN,DWFLR COMMON/APCOOL/RGWFR,DLIRG;DFCSRG,DFRG,TRG,TSTURR,RGFD COMMON/BDTES/RFNRT COMMON/CONC/PCONC(8001,SCUN(800),RINV(800) COMMON/DET/LAUNDRY(251,WLAUND(25)	0ñ7630 0n7640
с с с	H3COP# IS THE PWR TRITIUM PRIMARY COOLANT CONVENTRATION IN UCI/GN	007790 007800
0	H3PRPW=0.4*POW1 H3C0PW=1.0	007810
	00 30 J=1,ITOT	
	CwCONC (J) = 0.0	007920
	EDCONC(J)=0.0	007930
	DwCONC(J) = 0.0	007940
	DwCONS(J) = 0.0	007950
	CMCONC(J) = 0.0	007960
	NZ=NUCL (J)/10000	007970
	IF (NZ . EQ . 36 . OR . NZ . EQ . 44) 90 TO 30	007980
	CWCONC(J)=PCONC(J)+CWA	007990
	EDCONC (J) = PLONC (J) + EDA	000800
	DwCONC (J) = PCONC (J) + DWA	008010
	DwCON2(J) = PCONC(J) * DW2	008020 008050
	CMCONC (J) = SCON (J)	000000
	DFCVCS=50.	008070
	IF (NZ.EQ.1) DFCVCS=1.0	008070
	IF (NZ.EQ.35.0R.NZ.EQ.53) PFCVCS=100.	008080
	IF (NZ.EQ.37.0R.NZ.EQ.55) UFCVCS=2.	008090
	CWCONC(J) = CWCONC(J) / DĽCVCG	008100
30	CONTINUE	008110
C	CALCULATE RADIOACTIVITY AFTER COLLECTION AT A CONSTANT RATE	008120
С С	CALCULATE RADIOACTIVITY ATTER COLLECTION AT A CONSTANT NATE	008130
L.	CALL COLLECT(TC#86400,,CwConc,ITOT)	- (/ - 1 3 -
	CALL COLLECT (TE#86400, EDGONC, ITOT)	
	CALL COLLECT (TD#86400, PWCONC/ITOT)	
	CALL COLLECT (T2*86400, DWCON2, ITOT)	
	CALL COLLECT (TCM+8640V.,CMCONC,ITOT)	
	IF (REGENT.LE.0.0) GO TO 50	
	CALL STORAG (TRG+86400, RINV, ITOT)	
50	00 100 I=1,ITOT	008210
- •	NZ=NUCL(I)/10000	008220
	TURBDR(I)=1991.*5.*SCHN(I)	008230
	IF (NZ.EQ.1) GO TO 100	008240
	IF (NZ.EQ.35.0R.NZ.EQ.53) \$0 TO 60	008250
	IF (NZ . EQ . 37 . OR . NZ . EQ . 35) 0 TU 70	008260
С		008270
с с с	CHEMICAL TREATMENT FOR OTHER CATIONS	008280
C		008290
	CWCONC(I)=CWCONC(I)/DECW	008300
	EDCONC(I)=EDCONC(I)/DLED	008310
	DWCONC(I)=DWCONC(I)/DEDW	008320
	DWCONC(I) = DWCONC(I) / DFD2	008330
	$CMCONC(I) = CMCONC(I) + (1 \cdot 0 - PDTFR + (1 \cdot 0 - CMFD/PFCM))$	0ñ8 340
C C	TU TREAT PWR TURRINE PUILPING FLOOR DRAINS THROUGH DIRTY WASTE	018350
	3-33	

с с с с с

C C	SYSTEM, DELETE C FOR GOMMENT ON CARDS BELOW, UNTIL NEXT MESSAGE	0ñ8 360
	RINV (I)=RINV (I)/DLRG	008370
•	TURBDR(I)=1991.*5.*SCUN(I)*FPEF	0n8380 008390
С	TURBDR(I)=1991.*5.*SCUN(I)*FPEF/DFDW	008390
с	ĢO TO 100	008410
c	CHEMICAL TREATMENT FOR ANIONS	008420
ĉ		008430
60	CWCONC(I)=CWCONC(I)/DEIGW	008440
	EDCONC(I) = EDCONC(I) YDFIED	008450 008460
	BWCONC(I)=DWCONC(I)/DLIBW DWCON2(I)=DWCON2(I)/DLIB2	008470
	$CMCONE(I) = CMCONE(I) + (1 \cdot 0 - BDTFR + (1 \cdot 0 - CMFD/PFICM))$	008480
	RINV (I)=RINV (I)/DLIRG	0084 90
	TURBDR(I)=1991.*5.*SC4N(I)*HEF	008500
C	TURBOR(I)=1991.*5.*SCUN(I)*HEF/DFIDW	008510
_	GO TO 100	0n8520 Vn8530
C C	CHEMICAL TREATMENT FOR RB AND CS	008540
C C	ENEMILAL INCAIMENT FUS NO AND US	008550
70	CWCONC(I)=CWCONC(I)/DECSCW	008560
	EUCONC(I)=EDCUNC(I)/DECSED	008570
	DWCONC(I)=DWCONC(I)/DECSDW	008580
	DWCON2(I)=DWCON2(I)/DFCSD2	008590 008600
	CMCONF(I)=CMCONC(I)*(1.0-#DTFR*(1.0-CMFD/PFC5LM)) RINV (I)=RINV (I)/DFCSRG	008610
	TURBDR(I)=1991.*5.*SCUN(I)*FPEF	008620
c	TURBDR(I)=1991.*5.*SCUN(I)*FPEF/DFCSDW	008630
100	CONTINUE	008640
Ç		008650
C	COMPUTE RADIOACTIVE DECAY DURING PROCESSING AND SAMPLING	008660 008670
С	CALL STORAG(TSTORC#86400.,CWCUNC,ITOT)	0,000,0
	CALL STORAG(TS+86400.1EDCUNC, ITUT)	
	CALL STORAG(TSTORD#86400.;DWCUNC.ITOT)	
	CALL STORAG (TSTOR2+86400+1DWCUN2+ITUT)	
	CALL STORAG (TSTORB#86400, CMCUNC, ITOT)	
	CALL STOPAG (TSTORR*86400.)RINV, ITOT)	
	CALL STORAG(21600,,TUBBDH,ITOT) D0 130 I=1,ITOT	008750
	ABLOW=0.0	008770
	IF (REGENT.LT.0.001) GP TO 110	008780
	ABLOW=RINV(I)+292.44R9FD/HEGENT	
110	ABLOW=ABLOW+BLWDWN+1991.+ &MCONC(I)+(1.0-RFNRT)	
130	CMCONC(I)=ABLOW GWFR=SBLDR+CWFD+0.02832	0.08860
	EDFLR=EDFLR*EDFD*0.02022	008870
	DWFR=DWFLR*DWFD*0.02832	008880
	DWFR2=DWFL2+DWF2+0.02932	008890
	TPLRPW=CWFR*CWA+EDFLR*EDA+DWFR*DWA+DWFR2*DW2	008900
	H3RLPW=TPLRYW*H3COPW	008910
	IF(H3RLPW.GT.0.9*H3PRPW) 03RLPW≈0.9*H3PRP₩ RH3RLP=H3RLPW/10.	068930
	INTRIM=RH3RLP	008940
	IH3RLP=INTRIM*10	008950
	TOTAL=0.0	
	I1=ILITE+IACT+1	009050
	$\begin{array}{c} 0 0 140 I=1 + I T 0 T \\ 0 Z=N_{1} (2) Z=N_{$	0()7050
	NZ=NUCL(I)/10000 IF(NZ+E0.36+0R+NZ+E0+94) 00 TV 140	
	0151-070(1) + 1 + 283513	U09080
	3-34	

	CwCONC(I)=DISI*(CwCONC(I)*CWFR+EDCONC(I)*CDFLK) DwCONC(I)=(DwCONC(I)*DWFR+DWCUN2(I)*DWFR2)*DISI CMCONC(I)=CMCUNC(I)*DVFR+DWCUN2(I)*DWFR2)*DISI	UD9090 0n9100 009110
	CMCONC(I)=CMCUNC(I)+D1SI TURBDR(I)=TURBDR(I)+D1SI	009120
	$IF(NUCL(I) \cdot EQ_{10030}) = 0 TU 140$	
	TOTAL =TOTAL +CWCONC(I)+DWCONC(I)+CMCONC(I)+TURBDR(I)	009140 009150
140	CONTINUE A0I=0.16	004120
	AOR= (AOI+TOTAL) /TOTAL	009170
	SCNORM=0.0	
	SAPRIM=0.0	009190 009200
	SSEC=0.0 SCWAST=0.0	009210
	SDWAST=0.0	009220
	SABLOW=0.0	009230
	STB=0.0	009240
	STOTAL =0.0	009250 009280
	PAPRIM=0.0 PSEC=0_0	009290
	PCWAST=0.0	009300
	PDWAST=0.0	009310
		0 <u>0</u> 9320 0 <u>0</u> 9330
	PTB=0.0 PTOTAL =0.0	009340
		009370
	TLAUND=0.0	009380
	CTOTAL=0.0	009 390 009400
	PRINT 9001, REACTR PRINT 9002	009400
	PRINT 9010	009430
	KOUNTR=1	009440
	DU 180 I=1,ITOT	
	IF(I.EQ.II) PRINT 901} NZ=NUCL(I)/10000	
	IF (NZ+EQ.36+OR.NZ+EQ.>4) 90 TO 180	
	IF (NZ.EQ.1) GO TO 180	
	DISI=DIS(I)*1.6283E+13	
	APRIM=PCONC(I) +DISI ASEC=Scon(I) +DISI	
	CWASTE=CWCUNC(I)	
	DWASTE=DWCONC(I)	
	ABLOW=CMCONC(I)	
	TB=TURBDR(I) TUTAL≑CWASTE+DWASTE+A₽LOW+TB	009600
	TOTALN=TOTAL+AOR	009610
	NUCLI=NUCL(I)	0.06.20
	XLAUND=0.0 IF (I.gt.155.and.I.lt.190) GO TO 152	009630
	$IF (I \in \mathbb{R}_{225}) = 0 = 10 = 152$	
	00 150 L=1.25	
	IF (LAUNDRY (L) .EQ.NUCLI) XLAUND=WLAUND (L) *PFLAUN	
150	CONTINUE	
155	TUTALG=TUTALN+XLAUND	
	IF (TOTALG.LT.0.00001) GO TU 160	
		009710 009720
	IF (TOTALG.GT.1.)ISU ^B 71 DIV=10,##(INT(ALOG10(IOTALG))7ISUB)	009730
	TOTALG=AINT (TOTALG/DIV+0.5)*DIV	009740
160	IF(NUCL(I).EQ.10030) TOTALN=TOTAL	
	IF $(NZ \cdot EQ \cdot 1)$ GO TO 162	
	SAPRIM=SAPRIM+APRIM SSEC=SSEC+ASEC	069810

SABLOW=SABLOW+ABLOW	009820
SCWAST=SCWAST+CWASTE	009830
SDWAST=SDWAST+DWASTE	009840
STB=STB+TB	009850
STOTAL=STOTAL+TOTAL	009860
SCNORM=SCNORM+TOTALN	009890
	009900
CTOTAL=CTOTAL+TOTALG	009910
162 IF (TOTALG.LT.0.00001) GQ TO 180	
168 IF (MOD (KOUNTR, 50) .NE. 9) GO TO 170	
PRINT 9000, REACTR	0ñ9940
PRINT 9002	
170 CALL NOAH (NUCL (I), NAME)	
THALF=8.0225E-6/DISTI	
PRINT 9003, NAME, THALF : APRIM, ASEC, CWASTE, DWASTE, ABLOW,	
1TB, TOTAL, TOTALN, XLAUND, TOTALG	_
	010030
$IF(NZ \cdot EQ \cdot 1) = GO TO 180$	_
PAPRIM=PAPRIM+APRIM	010050
PSEC=PSEC+ASEC	010060
PCWAST=PCWAST+CWASTE	010070
PDWAST=PDWAST+DWASTE	010080
PABLOW=PABLOW+ABLOW	010000
PTB=PTB+TB	010100
PTOTAL=PTUTAL+TOTAL	010110
PNORM=PNORM+TOTALN	010140
180 CONTINUE	010150
PAPRIM=SAPRIM-PAPRIM	010160
PSEC=SSEC-PSEC	010170
PCWAST=SCWAST-PCWAST	010180
PDWAST=SUWAST-PDWAST	010190
PABLOW=SAULOW-PABLOW	010200
PTB=STB_PTB	010210
PTOTAL=STOTAL-PTOTAL	010550
PNORM=SCNURM_PNORM	010250
ISURC=>	010260
IF (CTOTAL.GT.1.) ISUBC=1	010270
DIV=10.**(INT(ALOG10(CTOTAL)) TISUBC)	010280
CTOTAL=AINT (CTOTAL/DIV+0.\$) +DIV	010290
IF (PNORM.LT.0.00001; GO TU 190	010310
DIV=10.**(INT(ALOG1V(PNVRM))-2)	010310
PNORMT=AINT(PNORM/DIV+0.5)+DIV	010320
GO TO 200	
190 PNORMT=PNORM 200 PRINT 9004, PAPRIM,PSEC,PCWAST,PDWAST,PABLOW,PTB,PTOTAL,PNOR	M
	010380
1 PNORMT PRINT 9005, SAPRIM, SEC, SCWAST, SDWAST, SABLD*, STB, STOTAL, SCNOP	DI0300
	010400
1 TLAUND, GTOTAL	010410
PRINT 9012: IH3RLP	•10.10
PRINT 9013 Return	010420
9000 FURMAT (1H1+20X,7A4, " LIQUID EFFLUENTS (CONTINUED)")	010480
9001 FURMAT (1H1,20X,7A4," LIQUID EFFLUENTS")	010490
9002 FORMAT (1H0,55%, "ANNUAL RELEASES TO DISCHARGE CANAL"/20%, "COOLA	
10NCENTRATIONSH, 57 (I-III, ADJUSTED DETERGEN TOTAL IVI NUC	CLIDOJOSIO
ZE HALF-LIFE PRIMARY SECONDARY BOMON KS MISC. WASTES SE	
3DARY TURB BLDG TOTAL LWB TOTAL WASTES "/10X	
4" (DAYS) "2 (" (MICRO LI/ML)"), 1X, 4 (" (CURIES) "), " (CURIES) ",	
5" (CI/YR) (CI/YR) (CI/YR) "	010550
9003 FURMAT/1X,A2,I3,A1,2X,1PE9,2,2(2X,E9,2,2X),0P+7(1X,F9,5,1X),F1(0.5)
9004 FORMAT (1X, "ALL OTHERS", 9X, 1PE9.2.4X, E9.2.0P, 2X, 6(1X, F9.5, 1X), 3)	Χ,
1 "0.00000",1X,F10.5)	
3-36	

```
9005 FORMAT (" TOTAL "/." (EXCEPT TRITIUM)
                                              ",1"E9,4,4X,E9.2,0P42X,
     1 7(1X+F9.5+1X),F10.5)
 9010 FORMAT (" CURROSION AND ACTIVATION PRODUCTS")
                                                                            010740
                                                                            010750
 9011 FORMAT ("OFISSION PRODUCTS")
 9012 FORMAT (1H0,1X,"TRITIUM RELEASE", 12X, I3,"
                                                    CURIES PER YEAR")
                                                                            010760
 9013 FORMAT (1H0,1x, "NOTE: ,00000 INDICATES THAT THE VALUE IS LESS THAN
     11.0E-5.")
 9014 FORMAT (3X, 10 (2X, A2, I3: A1)/3X, 10 (2X, A2, I3: A1))
                                                                            010770
      END
                                                                            010780
+DEGK BLKDAT
                                                                            010790
      BLOCK DATA BLKDAT
C
      PWCONG CONTAINS PRIMARY COOLANT CONCENTRATIONS FOR PWRS. SCUTV
С
      AND SCOT CONTAIN SECONDARY COOLANT CONCENTRATIONS FOR PLANTS
C
      WITH U-TUBE STEAM GENERATORS AND FOR PLANTS WITH ONCE-THRUUGH
С
      STEAM GENERATORS, RESPECTIVELY.
Ç
С
      COMMON/CONP/PWCONC(800), SCUTV(800), SCUT(800)
      COMMON/DET/LAUNDRY (251, WLAUND (25)
      DATA PWCONC/36+0,4.7E42,67+0,3.1E-3,4*0,1.6E-3,5*0,1.2E-3,3*0,3.0E
     1-4,0.0,4.6E-3,2*0,5.3E-4,17*0,5.1E-4,102*0,2.2E-3,64*0,2.2E-3,68*0
     2,1.6E-2,18+0,1.9E-1,4#0,1.4E-4,3+0,1.2E-5,5+0,9.6E-4,4.6E-4,5.2E-6
     3,9#0,4,2E-3,11#0,3,9E44,0+0+2+8E-4,15*0,6,4E-3,4+7E-3,16#0,7.5E-3,
     415*0,9.nE-2,0.0,20*0,1.3E-3,104*0,1.9E-4,2.4E-2,12*0,1.5E-3,7.7E-3
     5,4.5E-2,5*0,1.7E-3,2.1E-1,4*0,1.4E-1,5*0,3.4E-1,2*0,7.1E-0,2*0,2.6
     6E-1,8*0,8.7E-4,3*0,9.4E-3,13*0,1.3E-2;2.5E-2;5*0,1.5E-4,12*0,2.8E-
     73,3+0,3.9E-3,92+0/
      DATA SCUTV/36*0,1.5E-9,67*0,1.3E-7,4*0,6.5E-8,5*0,4.9E-8,3*0,1.2E-
     18,0.0,1.9E-7,2*0.2.2E48,17*0,2.1E-8,102*0,8.75-8,64*0,8.4E-8,68*0,
     27.5E-8,18*0,5.3E-7,4*0,5.7E-9,3*0,4.9E-10+5*0,2.8E-8,3.2E-9,2.1E-1
     30,9*0,1.2E-7,11*0,1.6E-8,0.0,1.1E-8,15*0,2.5E-7,1.1E-7,16*0,3.1E-7
     4,15*0,3.7E-6,0.0,20*0,5<u>.</u>3E-8,104*0,7.8E-9,2.2E-7,12*0,5.4E-8,2.9E-
     58,1.8E_6,5*0,6.6F_8,3,1E_0,4*0,4.8E-6,5*0,2.4E-6,2*0,3.3E-7,2*0,6.
     66E-6,8*0,4.0E-8,3*0,4.4E-7,13*0,5.2E-7,9.3E-7,5*0,6.1E-9,12*0,1.0E
     7-7,3+0,1.6E-7,92+0/
      DATA SCOT/36+0,1.0E47,67+0,6.9E-9,4+0,3.6E-9,3+0,2.7E-9,3+0,6.7E-1
     10,0,0,1,0E-8,2*0,1,2E49,17*0,1,1E-9,102*0,5,6E-9,64*0,4,9E-9,68*0,
     21.8E-8,18* ,6.0E-7,4*0,3.1E-10,3*0,2.7E-11,5*0,2.1E-9,9.7E-10,1.2E
     3-11,9*0,9.3E_9,11*0,8*7E-10,0*0,6*2E-10,15*0,1*4E-8,1*0E-8,16*0,1*
     47E-8,15+0,2.0E-7.0.0,40+0,2.9E-9,10++0,4.2E-10,5.1E-8,12+0,3.3E-9,
     51.5E-8,5.2E-8,5+0,3.8E-9,2.4E-7,4+0,1.6E-7,5+0,3.8E-7,2+0,3.0E-8,2
     6*0,3.0E_7,8*0,3.6E_9,2*0,3.9E-8,13*0,2.9E-8,5*6E-8,5*0,3.3E-10,12*
     70,6.2E-9,3*0,8.7E-9,92*0/
С
      LAUNDRY ARE THE RADIOISOTOPES IN THE DETERGEN! WASTES.
C
      WLAUND ARE THE CORRESPONDING CONCENTRATIONS.
С
С
      DATA LAUNDRY/150320,240510,250540,260550,260590,270580,270600,2806
     130,380890,380900.390910,400950,410950,420990,441030,441060,471101,
     2511240,531310,551340,751360,551370,561400,581410,581440/
     DATA WLAUND/1.8E-4.4.7E-3,3.8E-3,7.2E-3,2.2E-3,7.9E-3,1.4E-2,1.7E-
13,8.8E-5,1.3E-5,8.4E-5,1.1E-3,1.9E-3,6.0E-5,2.9E-4,8.9E-3,1.2E-3,4
     2.3E-4,1.6E-3,1.1E-2,3,7E-4,1.6E-2,9.1E-4,2.3E-4,3.9E-3/
                                                                            011230
      END
                                                                            011240
*DECK SOLVE
                                                                            011250
      SUBROUTINE SOLVE
      COMMON/EQ/XTEMP(800), XNEW(10,800), B(800), P(800)
      COMMON/FLUXN/REGENT, DIS(800), ILITE, IACT, I OT
                                                                            011350
      00 10 I=1+ITOT
                                                                            011360
      D(I) = -DIS(I)
                                                                            011370
   10 XTEMP(I)=0.0
      DELT=REGENT*86400.
                                                                            011390
      CALL DECAY(1,DELT,ITO[)
```

30	CALL TERM(DELT,1,ITOT) CALL EQUIL(1,ITOT) DO 30 I=1,ITOT XTEMP(I)=XNEW(1,I) RETURN	$\begin{array}{c} 0 \overline{1} 1410 \\ 0 \overline{1} 1420 \\ 0 \overline{1} 1430 \\ 0 \overline{1} 1440 \\ 0 \overline{1} 1450 \end{array}$
*DECK	END TERM SUBROUTINE TERM(T,M,IIOT)	071460
••••••	TERM ADDS ONE TERM TO EACH ELEMENT OF THE SOLUTION VECTOR CSUM(J) IS THE CURRENT APPROXIMATION TO XNEW(M,J) CIMO(J) IS THE VECTOR CONTAINING THE LAST TERM ADDED TO EACH ELEMENT OF CSUM(J) CIMN(J) IS THE VECTOR CONTAINING 1/TON TIMES THE NEW TERM TO BE ADDED TO CSUM(J) CIMN(J) IS GENERATED FROM CIMO(J) BY A RECURSION RELATION: CIMN(J) = SUM OVEM L QF (AP(J;L)*CIMO(L)) AP(I,J) IS THE REDUCEY TRANSITION MATMIX FOR THE LONG-LIVED NUCLIPES	011480 011490 011500 011510 011520 011530 011530 011540 011550 011560 011570 011580 011590
	LOGICALLONG DIMENSION AP(2500), CIMB(800), CIM0(800), CIMN(800), CSUM(800)	011600
	DIMENSION QUB(50),LOCP(2500),NONP(800) COMMON/SERIES/ XP(800),XP&R(800),LONG(800) COMMON/CUNST/MMN,ERR,MZERU	011690
	COMMON/EW/XTEMP(800),XNEW(10,800),B(800),P(800) COMMON/MATRIX/A(2500),LOC(2500),NON0(800),KD(400)	011730
	LEVEL 2,A,LOC,NON0,KD COMMON/TERMU/DD(100), UXP(100);QUEUE(50),NUU(50),NQUEUE(50),NQ(800) NUL=0	0 <u>0</u> 0540 011750 011760
с	NN=0 FIRST CONSTRUCT REDUCED TRANSITION MATRIX FOR LUNG_LIVED ISOTOPES	011770 011780
	DO 220 L=1+ITOT IF(.NOT.LUNG(L)) GO TU 210	0 <u>1</u> 1790 0 <u>1</u> 1800 0 <u>1</u> 1810
	NUM=NDND(L) IF(M.GT.MMN.OR.M.EQ.MZERC) NUM=KD(L)	011820 011820 011830
	CIMB(L)=B(L) IF(NUM_LE.NUL) GO TO Â10 NS-NNAT	011840
		011860 011870
	NL=NUM_NUL DO 200 N1=1,NL	011880
	J=LOC(N)	0 <u>1</u> 1890 0 <u>1</u> 1900
с	DJ=-D(J)	0 <u>1</u> 1910 0 <u>1</u> 1920
c c	THIS IS A TEST TO SEE IF ONE OF THE ASSYMPTOLIC SOLUTIONS APPLIES	5011930 011940
	IF(+NOT+LONG(J)) GO TU 10 NN=NN+1	0 <u>1</u> 1950 011960
		0 <u>1</u> 1970 0 <u>1</u> 1980
_	60 TO 200	011990 012000
C C C	GOING BACK UP THE CHAIN TH FIND A PARENT WHICT IS NOT IN Equilibrium	012010
C 10	NSAVE=0	012030 012040
	QUE=A(N)/DJ DRB=1.0	012050 012060
	CIMB(L) = CIMB(L) + QUE * B(J) $RQ(L) = 0$ 3-38	012070 012080

	NQ(J)=L -	012090
20	NUX=NONn (J)	015100
	IF(M.GT.MMN.OR.M.EQ.M/ERO) NUX=KD(J)	012110
	NUF=0	012120
	IF (J.9T.1) NUF=NONO (2-1)	012130
	NX=NUX_NUF	012140
	IF (NX.LT.1) GO TO 190	012150 012160
		012180
	DO 180 KK=1,NX	012170
		012190
		012200
	₽J=-D(J]) KP=J	012210
30	IF (J1.EQ.NQ(KP)) GO TO 100	012220
50	KP=NQ(KP)	012230
	IF (KP.NE.0) GO TO 30	012240
	AKDJQ=QUE*A(K)/DJ	012250
	IF(.NOT.LUNG(J1)) GO TO 160	015560
	TRM=1.0-XP(J1)	012270
	IF (TRM.LT.1.0E-6) GO TO 120	012280
	NQ (JI)=J	012290
	I=1	012300
	KP=J1	012310
40	DD(I) = -D(KP)	012320
	DXP(I) = XP(KP)	012330
	KP=NQ(KP)	012340
	IF(KP.EQ.0) GO TO 50	012350
		012360
•	IF (I.LE.100) GO TO 40 IF QUEUE OF SHORT-LIVED NUCLIDES EXCEEDS 100 ISOTOPES, TERMINATE	012370 012380
c	CHAIN AND WRITE MESSAGE	012390
С	PRINT 9000, M+L,JIJJANDJQ	012400
9000	FORMAT ("ITUO LONG & QUEUE HAS BEEN FORMED IN LERM", 415, E12.5)	012410
9000	GU TO 190	012420
50	UATM=0_E0	012430
	IM=I-1	0]2440
	B0 110 I=2,IM	0ī2450
	DL=DD(I)	012460
	XPL=DXP(I)	012470
	BATE=0.E0	012480
· .	II=I-I	012490 012500
С	P R VONDY FORM OF BATEMAN EQUATIONS ORNL-TM-361	012500
	PO 100 KB=1.11	012520
	XPJ=DXP(KB) IF(XPL+XPJ+LT+ERR) GO TO 100	012530
	DK=DD(KB)	012540
	PROD = (DL/DK-1.0)	012550
	DKR=PKOD	012560
	IF (ABS (PRUD) . GT. 1. E-4) GU TO 60	012570
С	USE THIS FORM FOR TWO NEARLY EQUAL HALF-LIVES	012580
	PROD=T+DK+XPJ+(1.0-0.5+(DL-DJ)+T)	0 <u>1</u> 2590
	GO TO 70	015600
60	RROD=(xPJ-XPL)/PROD	012610
	PRO1=XPJ/DKK	012620
70		0 <u>1</u> 2630 012640
	S1=2,/(DK*T)	012640
	DO 90 JK=1+I1	012650
	IF(JK.EQ.KB) GO TO 90 S=1.0-DK/UD(JK)	012670
	$IF(ABS(S) \cdot GT \cdot 1 \cdot E - 4) = 0 TU = 80$	012680
	$IF (ABS(DKR) \cdot GT \cdot 1 \cdot 0E - 4) PROD = PRO1$	012690
	S#S1	012700
80	PI=PI*S	012710
- •		

		_
	IF (ABS (PI) .GT .1. E25) GO TO 100	012720
90	CONTINUE	012730
	BATE=BATE+PROD/PI	012740
100	CONTINUE	012750
С	IF SUMMATION IS NEGATIVE, SET EQUAL TO ZEND AND PRINT MESSAGE	012760
	IF (BATE.LT.0.E0) PRINTYO01, L, IM, BATE, BATM	012770
90 0 1	FORMAT ("IBALE IS NEGATIVE IN TERM. THERE ARE MORE THAN TWO SHORT-	
	IVED NUCLIDES IN A CHAIN WITH NEARLY EQUAL DIAGONAL ELEMENTS"/	012790
	2" L, IM, BATE, BATM = ", 315, 192E12.5)	012800
	IF (BATE.LT.0.EO)BATE=0.EO	0 <u>1</u> 2810 012820
	BATM=BATM+BATE	012830
110	CONTINUE	012830
	DRA=AKDJQ+DJ+(TRM-BATM)/T#M	012850
		012860
120	DRA=AKDJQ*AMAX1 (DRB,0,0)*PJ	012870
130	IF (NS.GT.NN) GO TO 150	012880
	DO 140 LJ=NS,NN IF(LOCP(LJ).NE,J1) GU TO 140	012890
		012900
	AP(LJ)=AP(LJ)+DRA GV TO 180	012910
140	CONTINUE	012920
140 150	NN=NN+1	012930
190	AP (NN) =DRA	012940
	LOCP(NN) = J1	012950
	GU TO 180	012960
160	IF (AKPJQ.LE.1.0E-06) GO TO 180	0 <u>1</u> 2970
	IF (NSAVE.GE.50) GO TO 180	0 <u>1</u> 2980
170	NSAVE=NSAVE+1	012990
	NQUEUE (NSAVE) = J1	013000
	QUEUE (NSAVE) = AKDJQ	013010
	NQU (NSAVE) =J	013020
	$QUB(NSAVE) = DRB - 1 \cdot / (DJ $	013030
180	CONTINUE	013040 013050
190	IF (NSAVE.LE.O) GO TO 200	013050
		013050
		013080
	NQ(J) = NQU(NSAVE)	013090
	DRB=QUB(NSAVE) CIMB(L)=CIMB(L)+QUE+B(J)+&AMAX1(DRB,0.0)	013100
	NSAVE=NSAVE=1	013110
	GU TO 20	013120
200	CONTINUE	013130
210	NUL=NONO(L)	013140
	NONP (L) = NN	013150
220	CONTINUE	0 <u>1</u> 3160
С	FIND NORM OF MATRIX AND ESTIMATE ERROR AS DESCRIBED IN LAPIDUS	013170
C	AND LUUS, OPTIMAL CONTROL OF ENGINEERING PROCESSES BLAISDELL 1967	013180
С	FIND THE MINIMUM OF THE MAXIMUM ROW SUM AND THE MAXIMUM COLUMN SU	M013190
	ASUM =0.0	0 <u>1</u> 3200
	ASUMJ=0.0	013210
		0 <u>1</u> 3220 013230
	$00\ 250\ I=1,IT0T$	013230
	IF(.NOT.LONG(I)) GO TH 250	013250
	A∩=DI DI=~D(I)*T	013250
	N∩W=NONb(I)	013270
	IF (NUL_GT.HUM) GO TO 240	013280
	DO 230 N=NUL,NUM	013290
230	AJ=AJ+AP(N)	013300
240	AI=DI+DI	013310
- • •	IF (AI . GT . ASUM) ASUM =AI	013320
	IF (AJ.GT.ASUMJ) ASUMJ=AJ	013330
	3-40	

		0.20040
250	NUL=NONP(I)+1	0 <u>1</u> 3340 013350
_	IF (ASUMJ.LT.ASUM) ASUM=ABUMJ	
C	USE ASUM TO DECIDE HOW MANY TERMS ARE REQUIRED AND ESTIMATE ERROR	013370
	NLARGE=3.5*ASUM +5.	013380
	XLARGE=NLARGE	
	ERR1=EXP(ASUM) + (ASUM +2.71828/XLARGE) + NLARGE/SQRT(6.2832+XLARGE) IF(ERR1.GT.1.E-3) PRINT 9002, ERR1, ASUM NLARGE	013390
	IF (ERRI, GT.1.E.3) PRINT 9002, ERRI, ASUM , NLARGE	013410
	FORMAT ("OMAXIMUM ERROB GT 0.001, ="F10.6,", THACE = "F10.4,	013420
	1 "NLARGE = "IG)	013420
С	NEXT GENERATE MATRIX EXPONENTIAL SOLUTION	013440
	DO 260 I=1+ITOT	013450
	CSUM(I)=XTEMP(I)	013460
	CIMN(I)=XTEMP(I)	013400
260	CONTINUE	013480
	EKR3=0.001*ERR	013490
	DO 310 NT=1,NLARGE	013500
	UO 270 J=1.1TOT	013510
	CIMO(I) = CIMN(I)	013520
270		013530
		013540
	NUL=1	013550
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	013560
	IF (.NOT.LUNG(I)) GO TO 300	013570
	NUM=NONP(I) GIMNI=0.0	013580
	IF(NT.EQ.1) CIMNI=CIMU(I)	013590
	IF (NUL_GT-NUM) GO TO $\frac{290}{290}$	013600
	DO 280 N=NUL,NUM	013610
	J=LOCP(N)	013620
280	CIMNI=CIMNI+AP(N)+CIMV(J)	013630
290	CIMNI=CIMNI+D(I) *CIM0(I)	0]3640
270	CIMNI=TON*CIMNI	013650
	IF (ABS (CIMNI) .LT.ERR31CIMNI=0.E0	013660
	CIMN(I)=CIMNI	013670
	CSUM(I)=CSUM(I)+CIMNI	0 <u>1</u> 3680
30 0	NUL=NONP(I)+1	013690
310	CONTINUE	0 <u>1</u> 3700
	DO 320 I=1,ITOT	013710
	IF(CSUM(I).LT.ERR) CDUM(I)=0.0	013720
	IF (LONG(I)) XNEW(M,I)=CSUM(I)	013730
320	CONTINUE	013740
	RETURN	013750
	END	013760
# DE G K	DECAY	013770
	SUBROUTINE DECAY (M, T, 1TOT)	013780
С	BECAY TREATS SHORT-LIVED ISOTOPES AT BEGINNING OF CHAINS USING	013790
Ç	BATEMAN EQUATIONS	013800
	LOGICALLONG	0 <u>1</u> 3810 013860
	COMMON/SERIES/ XP (800), XPAR (800), LONG (800)	013000
	CUMMON/CONST/MMN, ERR, MZERU	
	COMMON/EQ/XTEMP(800),XNEW(10,800);B(800);P(800) CUMMON/MATRIX/A(2500);LOC(2500);NON0(800);KD(800)	013900
	LEVEL 2, A, LOC, NONO, KD	000560
	COMMON/TERMD/DD(100), UXP(100); QUEUE(50), NUU(50), NQUEUE(50), NQ(800)	013910
		-10-10
	AXN=_ALOG(0.001) DU 10 I=1.ITOT	013920
	XPAR(I)=0.0	013930
	LONG(I)=.FALSE.	013940
	XPI=0.0	013950
	DT=D(I)+T	013960
	IF(DT.LT50.) GO TO 10	013970
	$IF(ABS(DT) \cdot LE \cdot AXN) = LUNG(I) = TRUE $	013980
	XPI=EXP(DT)	013990
	3-41	

10	XP(I)=XPI-	014000
	NUL=1	014010
	DO 160 L=1.ITUT	0 <u>1</u> 4020 0 <u>1</u> 4030
		014040
		014050
	NUM=NŸNO(L) IF(M.Ģt.mmn.or.m.eq.m²ero) NUM=KD(L)	014060
	IF (NUH LT.NUL) GO TO 150	014070
	DO 140 N=NUL,NUM	014080
	J=LOC (N)	014090
	$\mathcal{D}_{J=-D}(J)$	014100
	IF(LONG(J)) GO TO 140	014110
С	USE THIS FORM FOR TWO NEARLY EQUAL HALF-LIVES	014120
	IF (ABS (DL/DJ-1.0).LE.1.0E-5) XTEM=XTEM+XTEMP (J) *A (N) *XP (J) *T	014130
	IF (ABS (DL/DJ-1.0).GT.1.0E-5)	014140 014150
1	XTEM=XTEM+XTEMP(J) #A(N) # (XP(J) #AP(L))/(DL-DW)	014150 014160
		014170
	NQ(L)=0 NQ(J)=L	014180
	NSAVE=0	014190
20	NUX=NONO(J)	014200
~ 0	IF (M.GT.MMN.OR.M.EQ.MZERO) NUX=KD(J)	014210
	NUF=1	014220
	IF (J.GT.1) NUF=NONO (U-1)+1	014230
	IF (NUF.GT.NUX) GO TO 130	014240
	DO 120 K=NUF,NUX	014250
	JI=LOC(K)	014260 014270
	IF(LONG(J1)) GO TO 120 KP=J	014270
3.0	ΓF(J1+EQ+NU(KP)) GO TO 120	014290
30	kP = NQ(KP)	V14300
	IF (KP.NE.U) GO TO 30	014310
	$\beta J = -D(J1)$	014320
	AKDJQ=A(K)/DJ+QUE	014330
	IF (AKDJR.LE.1.0E-06) GO TO 120	014340
	NQ (J1) = J	014350
	I=1	014360
	KP=J1	014370 014380
40	DU(I) = -D(KP)	014390
	ΔXP(I)=XP(KP) DXP(I)=XP(KP)	014400
	$IF(KP \cdot EQ \cdot 0)$ GO TO 50	014410
	I=I+1	014420
	IF(I_LE_100) GO TO 40	014430
	PRINT 9000, M.L. JIJJ, AKDJQ	014440
9000	FURMAT ("1",415,E12.5)	014450
	GU TO 130	014460
50	HATE=0,E0	014470
	II=I-1	014480
	XPL=XP(L) D R VQNDY FORM OF BATEMAN EQUATIONS ORNL-TM-361	014490 014500
С	DO 100 KB=1,11	014510
	XPJ=DXP(KB)	014520
	IF (XPL+XPJ+LT+ERR) GO TO 100	014530
	PV=DD(KB)	014540
	PROD = (DL/UK-1.0)	014550
	UKR=PROD	014560
	IF (ABS (PRUD) .GT.1.E-4) GU TO 60	014570
	PROD=T*DK*XPJ*(1.0-0.5*(DL-DJ)*T)	014580
		014590
60	PROD= (XPJ-XPL)/PROD	0 <u>1</u> 4600 0 <u>1</u> 4610
	PR01=XPJ/UKR 3-42	014010

70	PI=1.0 -	014620
	S1=2,/(DK*T)	014630
	DO 90 JK=1+I1	014640
	IF (JK.EQ.KH) GO TO 90	014650
	S=1.0-DK/DD (JK)	014660
	IF (ABS(S) . GT . 1 . E - 47 20 TU 80	014670
С	USE THIS FORM FOR TWO NEAKLY EQUAL HALF-LIVES	014680
	IF (ABS (DKR) .GT.1.0E+4) PROD=PRO1	014690 014700
	S=S1	014710
80	PI⇒PI*S IF(AB\$(PI).GT.1.E25) GO ₹0 100	014720
		014720
90	CONTINUE BATE=BATE+PROD/PI	014740
100		014750
100	IF (BATE.LT.0.E0) PRINTYOO1.L, ISBATE, XTEM, XTEMP (J1), AKDJQ	014760
0001	FORMAT (" L, I, BATE, XTEM, XTEMP (J1), AKDJQ = ",215,1P4E12.5)	014770
2001	IF (BATE.LT.U.EO)BATE=0.EO	014780
	XTEM=XTEM+XTEMP(J1) *AKDUQ*BATE	014790
	IF (NSAVE.GE.50) GO TO 120	014800
110	NSAVE=NSAVE+1	014810
•••	NQUEUE (NSAVE) = J1	014820
	QUEUE (NSAVE) = AKDJQ	0 <u>1</u> 4830
	NQU (NSAVE) = J	014840
120	CONTINUE	014850
130	IF(NSAVE.LE.O) GO TO 140	0 <u>1</u> 4860
	J=NQUEUE (NSAVE)	014870
	QUE=QUEUE (NSAVE)	014880
	NQ(J)=NQU(NSAVE)	014890
	NSAVE=NSAVE-1	014900
	GO TO 20	014910 014920
140		014920
154	IF (LONG(L)) XPAR(L) = $XTEM/P(L)$	014940
150	NUL=NQN0(L)+1 IF(•NQT•LUNG(L))	014950
160	CONTINUE	014950
100		014970
	IF (LONG(I)) XTEMP(I)=XTEMP(I)+XPAR(I)	014980
	IF (.NQT.LONG(I)) XTEMP(I)=0.0	014990
170	CONTINUE	015000
	RETURN	015010
	ĘND	015020
#DECK	EQUIL	015030
	SUBROUTINE EQUIL (M, ITUT)	015040
С		015050
C	EQUIL PUTS SHORT-LIVED DAUGHTERS IN EQUILIBRIUM WITH PARENTS	015060
C C C	EQUIL USES GAUSS-SEIVEL ATERATION TO GENERATE STEADY STATE	0 <u>1</u> 5070 015080
	CONCENTRATIONS	015090
L	LOGICALLONG	015100
	COMMON/EQ/XTEMP(800),XNEW(10,800),B(800),P(800)	010100
	COMMON/MATRIX/A (2500) + LOC (2500) + NONO (800) + KD (200)	0]5140
	LEVEL 2,A,LUC,NONO,KD	000580
	COMMON/CUNST/MMN, ERR, MZERU	_
	CUMMON/SERIES/ XP (8001, XFAR (800), LONG (800)	0]5160
	QXN=0.001	-
	DO 10 I=1.ITOT	015170
	XPAR(I)=0.0	015180
	IF (.NOT.LUNG(I)) GO TU 10	015190
	$XTEMP(I) = XTEMP(I) * XP(\frac{1}{2})$	015200
_	XPAR(I) = AMAX1(XNEW(M,I) - XTEMP(I),0.0)	0 <u>1</u> 5210 0 <u>1</u> 5220
10		015230
7.0		015240
20	N = 0	

	B1G=0.0	015250
	00 60 I=1,ITOT	015260
	NUM = NONO(I) - N	015270
	DI = -D(I)	V15280
	IF (LONG(I)) GU TO 50	015290
	XNW=B(T)	015300
		015310
	IF (NUN_EQ.0) GO TO 31	015320
		0 <u>1</u> 5330
		015340
		015350
		015360
		015370
	IF (LONG(J)) XJ=XJ+XTEMP(J)/(1.0-DJ/DI)	015380
	LX* (N) A+W/X=W/X	015390 015400
30	CONTINUE	015400
31		015420
		015430
	ARG=ABS((XNW-XPAR(I))/XNW)	015440
	4. (015450
40		015460
50 60	N=NONO(I) CONTINIJE	015470
60	$IF(BIG_{L}T_{*}WXN) = GO_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}$	015480
	ITER=ITER+1	015490
	IF (ITER.LT.100) GO TU 20	015500
	PRINT 9000	0]5510
	STOP	015520
70	00 80 1=1,ITOT	015530
	IF (.NQT.LUNG(I)) XNEW(M,I)=XNEW(M,I)+XPAH(I)	015540
80	CONTINUE	015550
	KETURN	015560
9000	FORMAT (" GAUSS SEIDEL ITERATION DID NOT CUNVERGE IN EQUIL")	015570
	ENÐ	015580
#DECK	NUDATA	015590
	SUBROUTINE NUDATA (NLIPE)	015600
С	NUDATA VERSION TO HANVLE THREE TYPES OF NUCLEAR DATA LIBRARIES	015610
C	HAS POINTER, NLIBE, = 1 FWR HTGR	015620
C	= 2 FOR LIGHT WATER REACTUR	015630 015640
C C	= 3 FUR LMFBR	015650
C	= 4 FUR MSBK	015670
	INTEGERELE(99),STA(2) DIMENSION CUEFF(7,800),NPROD(7,800),CAPT(6),Y4ELD(5,500)	010010
	DIMENSION Y(5), NSORS(4), TYLD(5), NUCAL(6)	
	DIMENSION SKIP (20), MSHS (20), NAME (3)	
	DIMENSION TUCAP (800) + 125 (100) + TITLE (20) + 4 (809) + FG (800) +	
	1ALPHAN (100) , SPONF (100) , ABUND (500) , KAP (800) , MMAX (800)	
	COMMON/LABEL/ELE.STA	015750
	COMMON/CONST/MMN, ERR, MZERU	-
	COMMON/EU/XTEMP (800) , XNEW (10,800) , B (800) , P (800)	
	COMMON/FLUXN/REGENT, DIS(800), ILITE, IACT, ITOT	
		_
	COMMON/MATRIX/A(2500) +LOC(2500) +NONO(800) +KD(800)	015850
	LEVEL 2, A, LOC, NONO, KD	00000
	COMMON/CCUEFF/COEFF	
	LEVEL 2, CUEFF	
	EQUIVALENCE (XNEW(1,401), NPROD(1,1))	
	EUUIVALENCE (AI, DLAM)	015880
	DATA NUCAL/-20030,-10000,10,11,-10,-9/	015890
	DATA MSRS/922330,922350,902320,922380,942390,922330,922350,942410,	012400
	922380,942390,942410,922350,942400,922380,942390,922330, 922350,902320,922380,942390/	015910
i	2 922350,902320,922380,942390/ 3-44	V 1 J 7 C U

С		0]5930
C C	PROGRAM TO COMPUTE A MATRIX (TRANSITION MATRIX) FROM NUCLEAR DATA	015940
C		015950
_	READ 9011, (TITLE(I), I=1, 18), NLIBE	015960
С	IF (NLIBE.LT.D) PROGRAM WILL READ TAPE IN CASDAR FORMAT	015970 015980
	IGWC=0	015990
	IF(NLIRE.GT.O) GO YO 10 IGWC=1	016000
	NLIBE=INLIBE	016010
	PRINT 9000	016020
9000	FORMAT (1H0, "WILL READ TAPS GENERATED BY CASDAK")	016030
10	N1=4-NI TBE	0 <u>1</u> 6040
20	READ 9001, THERM, RES, FOST, ERR, NMO, NDAY, NYR, MPCTAB, INPT; IR	016050
	PRINT 9005, NMO, NUAY, NYR	016060
	PRINT 9006	016070
	PRINT 9007	0 <u>1</u> 6080 016090
	PRINT 9008	016100
	PRINT 9009 Print 9010	016110
	PRINT 9013	016120
	PRINT 9014	016130
с		016140
č	THERM = RATIO OF THERMAL FLUX TO TOTAL FLUX	016150
С	RES = RATIU OF RESONANCE FLUX TO TOTAL FLUX	016160
С	FAST = RATIU OF FAST FLUX TO TOTAL FLUX	016170
С	ERR = TRUNCATION ERROR LIWIT	016180
С		016190
C	READ DATA FOR LIGHT EGEMENTS	016200 016210
С	K-C8/NITHF-11	016220
	κ=5*(NLIBE-1) μυ 30 κ1=1+5	016230
	K2=K+Kj	016240
30	NSORS (K1) = MSRS (K2)	0 <u>1</u> 6250
	PRINT 9018, THERM, RES, FAST, (NSORS (K), K=1,5), NLIBE	016260
	I=0	016270
	NUTAPE=0	0 <u>1</u> 6290 016290
40	I=I+1 READ(8,9034)NUCL(I),DHAM,LU,FB1,FP,FP1,FT+FA+LSF,Q(I),FG(I),ABUND	
50	11) DUNY1 DUNY2	(0)0300
	IF (EOF (8) • NE • 0) GOTO 260	vī6320
	$IF(IGWC_GT_0)$ GO TO ZO	016330
		016340
60	READ (8,9035) SIGTH, FNG1, FNA, FNP, RITH, FINA, FINM, SIGMEV, FN2N1, FFNA,	0]6350
	1 FFNP,IT	016360
	GO TO 90	016370
70	DO 80 N=1+NLIBE	016380
80	READ (8,9040) SIGTH, FNG1, FNA, FNP, RITH, FINA, FINP, SIGMEV, FN2N1, FFNA,	016340
90	1 FFNP,IT IF(N1.EQ.0) GO TO 110	016410
90	p0 100 N=1,N1	016420
100	KEAD (8,9036) SKIP	016430
110	IF (IT.EQ.0) GQ TO 50	016440
120	M≖0	016450
	CALL HALF (A1, IU)	016460
	NUCLI=NUCL(I)	016470
	$IF(NUCLI_EW_0)$ GO TO 260	016480 016490
	CALL NOAH(NUCLI,NAME) IF(MOD/T-1,50) _FQ_ 01 PRINT 9012, (TIILE (N),N=1,18)	016500
	IF (MOD(I-1,50) .EQ. 01 PRINT 9012, (TIILE (N),N=1,18) IF (MOD(I-1,50) .EQ. 01 PRINT 9016	016510
	SIGTH=THERM#SIGTH	016520
	RITH=RES#RITH	016530
	SIGMEV=FAST*SIGMEV	016540
	SIGNA=SIGTH+FNA+RITH+LINA+SIGMEV+FFNA	016550
	2.45	

```
016560
      SIGNP=SIGTH*FNP+RITH*LINP+SIGMEV*FFNP
                                                                                0]6570
       FNG=1.0-FNA-FNP
                                                                                016580
       IF (FNG.LT.1.0E_4)FNG=V.
                                                                                016590
      FING=1.0-FINA-FINP
                                                                                016600
       IF (FING.LT.1.0E-4)FIND=0.
                                                                                016610
       EN2N=1.0-FENA-FENP
                                                                                016620
       IF (FN2N, LT.1, 0E-4) FN2N=0.
                                                                                016630
       SIGNG=SIGTH*FNG+RITH*GING
                                                                                016640
      SIGN2N=SIGMEV*FN2N
                                            DLAM, FB1, F2, FP1, FT, FA, SIGNG,
                                                                                016650
 130
      PRINT 9033,
                       NAME .
                       FNG1.SLGN2N, FN2N1, SIGNA, SIGNP, 4(I), FG(I), ABUND(I)
                                                                                016660
     1
                                                                                0]6670
С
      TEST RADIOACTIVITY
                                                                                016680
С
                                                                                016690
      IF (A1.LE.ERR)
                       GO TO 180
 140
                                                                                016700
       ABETA=1.0
                                                                                0]6710
С
                                                                                016720
      TEST POSITRON EMISSION
С
                                                                                016730
С
                                                                                016740
      IF (FP LT. ERR) GO TO 150
                                                                                016750
      M=M+1
                                                                                016760
      CUEFF(M,I)=FP*A1
                                                                                016770
      NPROD(M, I) = NUCLI-10000
                                                                                016780
      ABETA=ABETA-FP
                                                                                016790
С
      TEST POSITRON EMISSION TO EXCITED STATE OF PRUDUCT NUCLIDE
                                                                                016800
С
                                                                                076810
С
                                                                                016820
      IF (FP1 .LT. ERR) GO TH 150
                                                                                016830
      M=M+1
                                                                                016840
      COEFF(M,I) = FP1 * COEFF(M-1+J)
                                                                                016850
      NPROD(M,I) = NPROD(M-1,I)+1
                                                                                016860
      COEFF(M-1+I)=COEFF(M-1,I)=COEFF(M+I)
                                                                                016870
С
                                                                                016880
      TEST ISOMERIC TRANSITION
С
                                                                                016890
С
                                                                                016900
      IF (FT LT.ERR) GO TO 160
 150
                                                                                016910
      M=M+1
                                                                                016920
      COEFF(M,I)=FT#A1
                                                                                016930
      NPROD (M, I) = NUCLI
                                                                                016940
      ABETA=ABETA-FT
                                                                                016950
С
                                                                                016960
      TEST ALPHA EMISSION
С
                                                                                016970
С
                                                                                0<u>1</u>6980
      IF (FA LT. ERR) GO TO 170
 160
                                                                                016990
      M=M+1
                                                                                017000
      COEFF (M,I)=FA+A1
                                                                                017010
      NPROD (M, I) = NUCL I - 20040
                                                                                017020
      M=M+1
                                                                                017030
      COEFF(M,I) = COEFF(M-1,I)
                                                                                017040
      NPROD(M, I) = 20040
                                                                                017050
      ABETA=ABETA-FA
                                                                                017060
С
                                                                                017070
      TEST NEGATRON EMISSION
С
                                                                                017080
С
                                                                                017090
      IF (ABETA.LT.1.E-4) GO TO 180
 170
                                                                                017100
      M=M+1
                                                                                017110
      CUEFF (M, I) = ABETA # A1
                                                                                017120
      NPROD(M,I)=NUCLI+10000
                                                                                017130
С
      TEST NEGATRON EMISSION TO EXCITED STATE OF PRODUCT NUCLIDE
                                                                                017140
С
                                                                                017150
С
                                                                                0j7160
      IF (FB1 .LT. ERR) GO TU 180
                                                                                017170
      M=M+1
                                           3-46
```

		-
	CUEFF(M,I)=FB1+COEFF(M-1,1)	017180
	NPROD $(M \cdot I) = NPROD (M - 1 \cdot 1) + 1$	Uī7190
	COEFF(M-1,I) = COEFF(M-1,I) = COEFF(M+I)	012500
С		017210
	COMPUTE NEUTRON CAPTURE CROSS SECTIONS IN THREE REGIONS	017220
С	LOMPUTE NEOTRUN CAPTORE CROSS SECTIONS IN THESE REGIONS	
Ç		017230
	KAP(I)=M	017240
180		017250
	DO 190 KI=1,6	10m
190	CAPT(KI) =0.0	017260
1 / 0		017270
	GAPT(1)=SIGNA	
	CAPT(2)=SIGNP	017580
	CAPT(4)=SIGNG*FNG1	017290
		017300
	CAPT(3)=SIGNG-CAPT(4)	
	CAPT (9)=SIGN2N+FN2N1	017310
		017320
	CAPT(5)=SIGN2N-CAPT(6)	-
200	TOCAP(I)=0.0	0 <u>1</u> 7330 [.]
C	TOTAL NEUTRON CROSS SECTION FOR NUCLIDE (I)	017340
Ŭ		0]7350
	DO 220 K=1+6	
	CAPKI5CAPT(K)	017360
	IF (CAPKI.LT.ERR) GO TO 220	017370
	M=M+1	0 <u>1</u> 7380
	NPROD (M.I) = NUCLI+NUCAL (K)	017390
		017400
	COEFF(M,I)=CAPKI	-
	TOCAP(I)=TOCAP(I)+CAPNI	017410
	IF (K. NE. 1) GO TO 210	017420
		017430
	M=M+1	
	$CUEFF(M,I) = COEFF(M-1, \frac{1}{2})$	017440
		017450
	NPROD(M,I) = 20040	2
210	IF(K.NE.2) GO TO 220	017460
	M=M+1	017470
	-	017480
	COEFF(M,I)=COEFF(M-1, <u>1</u>)	-
	NPROD(M, I) = 10010	017490
220	CONTINUE	017500
-		077510
230	IF (MOP (NUCLI, 10), EQ,0) 00 TO 250	÷
	DO 240 K=1.M	017520
740		017530
240	NPROD(K,I)=NPROD(K,I)+1	
250	MMAX(I) =M	0 <u>1</u> 7540
	IF (M.GT.7) PRINT 9039, M	017550
		017560
	DIS(I) = A1	
	ĢO TO 40	017570
260	ILITE = I-1	017580
200		017590
	IACT=0	
С		017600
	DEAD DATA ON ACTINIDES	017610
C	READ DATA ON ACTINIDE	
С		017620
270	READ (0,9034) NUCL (I) .DLAN, IU, FB1, FP, FP1, FT, FA, ESF, Q(I), FG(I), DUMMY	,017630
	1DUMY1,DUMY2	0.74-0
	IF (EOF (B) • NE • 0) GOTO 450	017650
	DO 280 N=1,NLIBE	Vī7660
	READ (8,9037) SIGNG, RING, FNG1, SIGF, RIF, SIGFF, SIGN2N, FN2N1, SIGN3N, I	1017670
		0.776.00
280	CONTINUE	0 <u>1</u> 7680
-	IF(N1.EQ.0) GQ TO 300	017690
		017700
	DO 290 N=1,N1	
290	READ(8,9036) SKIP	017710
300	IF (IT .EW. 0) GO TO 270	017720
		017730
310	M=0	
	NUCLI=NUCL(I)	017740
		017750
	IF (NUCLI.LW.0) GO TO 450	÷
	BO 320 K=1,5	017760
	IF (NUCLI.EW.NSORS(K)) NSURS(K)=I	0]7770
		017780
320	CONTINUE	
	CALL HALF (A1,IU)	017790
	CALL NOAH (NUCLI, NAME)	017800
	2.47	

	SIGNG=THEKM&SIGNG+RESTRING	017810
	SIGF =THERM#SIGF +RESPRIF +FAST#SIGFF	017820
	SIGN2N=SIGN2N*FAST	017830
	SIGN3N=SIGN3N*FAST	017840
	IF (MOD (IACT, 50), EQ.0) PRINT 9012, (TITLE (N), N=1,18)	017850
330	IF (MOP (IACT, 50), EQ. 0) PRINT 9024	017860
	PRINT 9026, NAME, DLAM, FB1, FP, FP1, FT, FA, FSF, SIGNG 1 FNG1, SIGF, BIGN2N, SIGN3N, Q(1), FU(1)	017880
340	1 FNG1,54GF,51GN2N,51GN3N,W(4),FV(1) IACT=IACT+1	017890
		017900
С С С	TEST RADIOACTIVITY	017910
č		077920
	IF (Al.LT.ERR) GO TO 200	0]7930
	ABETA=1.0	017940
С	TEST POSITRON EMISSION	017950
	IF (FP LT. LRR) GO TO 350	017960
	ABETA=ABETA-FP	017970
		017980 017990
	COEFF(M,I)=FP+A1 NPROD(M,I)=NUCLI-10000	018000
с	POSITRON EMISSION TO EXCITED STATE	018010
L.	IF (FP1 .LT. ERR) GO TO 350	018020
	M#M+1	018030
	COEFF(M,I) = FP1 * COEFF(M-1,I)	0j8040
	NPROD(M, I) = NPROD(M-1, I) + 1	018050
	CUEFF(M-1,I) = COEFF(M-1,I) - COEFF(M,I)	018060
С	ISOMERIC TRANSITION	018070
350	IF (FT .LT.ERR) GO TO 300	018080
		018090
	COEFF(M,I)=FT+A1	0 <u>1</u> 8100 018110
	NPROD(M,I)=NUCLI ABETA=ABETA-FT	018120
С	ALPHA EMISSION	018130
360	IF (FA LT-ERR) GO TO 370	018140
200	M=M+1	018150
	CUEFF(M,I)=FA+A1	018160
	NPROD(M,I)=NUCLI-20040	018170
	M=M+1	018180
	COEFF(M,I) = COEFF(M-1,I)	018190
	NPROD(M, I) = 20040	018200
c	ABETA=ARETA-FA	018210 018220
C	₩ΕΤΑ ΦΕCAY IF(ABEta.LT.1.E-4) GO TO 380	018230
370	M=M+1	018240
	COEFF(M,I)=ABETA*A1	018250
	NPROD(M,I)=NUCLI+10000	0ī826 0
	IF (FB1 .LT. ERR) GO TO 380	018270
	M=M+1	018280
	COEFF(M,I) = COEFF(M-1,I) * FB1	018290
	CUEFF(M-1,I) = COEFF(M-1,I) = COEFF(M,I)	018300
~	$NPROD(M, I) = NPROD(M-1, \frac{1}{2}) + 1$	018310 018320
C C	NEUTRON CAPTURE CROSS SECTIONS	018330
C	HEDIRAN CHITURE CRUBS SECTIONS	018340
380	KAP(])=M	018350
300	00 390 K=1,6	018360
390	CAPT(K) = 0.0	018370
- • •	CAPT(2)=SIGNG*FNG1	0 <u>1</u> 8380
	CAPT(1) = SIGNG - CAPT(2)	018390
	CAPT(4)=SIGN2N&FN2N1	018400
	CAPT(3) = SIGN2N CAPT(4)	018410
4 0 0	FISS(IACT)=SIGF 3-48	018420

		-
	$TOEAP(I) = 0 \cdot 0$	018430
	ÚO [°] 419 [°] K=1,4	018440
	CAPKI=CAPT(K)	018450
		018460
	IF (CAPKI.LT.ERR) GO TO 410	
	M=M+1	018470
	TOGAP(I)=TOCAP(I)+CAPKI	018480
	COEFF(M,I)=CAPKI	018490
	NPROD (M+I) =NUCLI+NUCAL (K+2)	018500
		-
410	CONTINUE	018510
	TOCAP(I)=TOCAP(I)+FIS\$(IA&T)	018520
С	N-3N CROSS SECTION	018530
•	A17=SIGN3N	0]8540
		018550
	IF(A17.LT.ERR) GO TO \$ 0	
	M=M+1	018560
	$COEFF(M \rightarrow I) = A17$	018570
	NPROD(M , I) = NUCLI - 20	0ī858 0
		018590
	TUCAP(I) = TUCAP(I) + A17	<u> </u>
420	IF (MOP (NUCLI, 10) . EQ, 0) GO TO 440	018600
	DO 430 K=1,M	018610
430	NPROD(κ , I)=NPROD(κ , I)=1	018620
-		018630
440	MMAX(I)=M	<u> </u>
	IF(M.GT.7) PRINT 9039, M	0 <u>1</u> 8640
	SPUNF(IACT)=FSF*A1+6.V23E23	018650
	&LPHAN(IACT)=FA*A1*6.023E13*Q(I)**3.65	018660
	DIS(I) = AI	018670
		018680
	I = I + 1	2 ·
	GO TO 770	018690
450		018700
	DO 460 K=1,5	018710
440		018720
460	TYLD(K) = 0.0	_
С		018730
С	READ DATA FOR FISSION PRODUCTS	018740
Ċ		018750
470	READ (0,9034) NUCL (I) .DLAM, IU, FU1, FP, FP1, FT, FA, LSF, Q(I), FG(I), DUMMY	.018760
470		
	10UMY1. DUMY2	0.0.7.0.0
	IF (EOF (8) •NE • 0) GOTO690	0 <u>1</u> .8780
	DO 480 N=1+NLIBE	018790
480	READ (8,9038) SIGNG, RING, FNG1, Y, IT	018800
400		018810
	IF (N1.EQ.0) GO TO 500	018820
	00 490 N=1,N1	· · · · · · · · · · · · · · · · · · ·
490	READ (8,9036) SKIP	018830
500	IF (IT _EW. 0) GO TO 470	018840
510	M=0	018850
210	÷	018860
	CALL HALF (A1, IU)	
520	NUCLI=NUCL(I)	018870
	IF (NUCLI.EQ.0) GO TO \$90	018880
	CALL NOAH (NUCLI, NAME)	018890
	IF (MOD (IL, 50), EQ. 0) PRINT 9012; (TITLE (N), N=1, 18)	018900
		018910
	SIGNG7THERM*SIGNG+RESTRING	
	IF (NLIBE.EQ.3) GO TO 3 0	0 <u>1</u> 8920
530	IF (MOP (IL ,502, EQ.0) PRINT 9019	0 <u>1</u> 8930
	PRINT 9021, NAME, DLAM, FB1, FP, FP1, FT, SIGNG,	0j8940
		018950
	GO TO 550	018960
540	IF (MOP(IL,50), EQ.0) PHINT 9020	018970
-	PRINT 9022, NAME 1 DLAM, FB1, FP, FP1, FT, SIGNG, FNG1,	018980
		018990
~	Y(2) * Y(4) * (5) * U(1) * U(1)	
G		019000
С	TEST RADIUACTIVITY	019010
С		019020
550	IF (A1.LT.ERR) GO TO 000	019030
220		019040
•	ABETA=1.0	
С	POSITRON EMISSION	019050

	A3=FP -	019060
	IF (A3.LT.ERR) GO TO \$70	019070
	ABETAJABETA-A3	019080
	AP1=A3+FP1	019090
	AP=A3-AP1	019100
	IF(AP.LT.ERR) GO TO \$60	0 <u>1</u> 9110
	M=M+1	019150
	COEFF(M,I)=AP#A1	019130
	NPROD(M,I)=NUCLI-10000	0 <u>1</u> 9140
560	IF(AP1'LT.ERR) GO TO 570	019150
	M=M+1	019160
	CUEFF(M,I)=AP1*A1	0 <u>1</u> 917Ó
	NPROD (M, I) = NUCLI-9999	019180
С	ISOMERIC TRANSITION	019190
570	IF(FT LT. ERR) GO TO 500	019200
		019550 019510
	COEFF(M,I)=FT*A1	019230
	NPROD(M,I)=NUCLI	019230
•	ABETA-ABETA-FT	019250
C	NEGATRON EMISSION	019260
580	IF(ABETA.LT.1.0E-4) GU TC 600 A2=FB1	019270
	AB1=ABETA*A2	019280
	AB=ABETA-AD1	019290
	IF (AB .LT . 1 .E 4) GO TO 590	019300
	M=M+1	019310
	CUEFF(M,I)=AB*A1	019320
	NPROD (M, I) = NUCLI+10000	019330
590	IF (AB1,LT.1,E-6) GO TV 600	019340
	M=M+1	019350
	COEFF(M,I) = AB1 + A1	019360
	NPRUD (M,I) = NUCLI+1000	019370 019380
C	NEUTRON CAPTURE CROSS SECTIONS FOR FISSION PRUDUCTS USING	
ç	REGION APPROXIMATION	019400
C C	KEGTON AFLOOVINATION	019410
600	KAP(I)=M	019420
000	D0 610 K=1,6	019430
610	CAPT(K) = 0.0	019440
010	CAPT(2)=SIGNG*FNG1	019450
	CAPT(1) = SIGNG = CAPT(2)	019460
	TOCAP(I)=0.0	0 <u>1</u> 9470
	D0 620 K=1,2	019480
	CAPKI=CAPT(K)	0 <u>1</u> 9490
	IF(CAPKI.LT.ERR) GO TO 680	019500
	M=M+1	019510
	TUEAP(I)=TUCAP(I)+CAPOI	019520
	CUEFF(M,I)=CAPKI	019530
	NPROD(M, I) = NUCLI + NUCAL(K+2)	0 <u>1</u> 9540 019550
620	CONTINUE	019560
630	IF (MOP (NUCLI, 10) . EQ. 0) GO TO 650	019570
6 I D	D0 640 K=1,M	019580
640 650	NPROD(K,I)=NPROD(K,I)+1	019590
65 0	IL=IL+1 DV 660 J=1+5	019600
	YJ=Y(J)+0.010	019610
	TYLD(J) = TYLD(J) + YJ	019620
660	YIELD(J,IL)=YJ	019630
4 3 V	IF (NLIBE, EQ. 1. OR. NLIBE, EQ. 4) GO TO 680	019640
670	IF (NLIRE, EU. 3) YIELD(1+IL)=YJ	019650
	YIELD(3,IL)=YJ	019660
680	MMAX(I)=M 3-50	019670

019680 IF (M. GT. 7)- PRINT 9037, M 019690 DIS(I) = A1019700 I = I + 1019710 GO TO 470 019720 690 IFP=IL 019730 С ALL DATA ON NUCLIDES HAS BEEN READ, BEGIN TO COMPUTE MATRIX COEFF 019740 C 019750 C 019760 ITOT=I-1 019770 С FIND PRODUCT NUCLIDES FOR REACTIONS OF LIGHT FLEMENTS 019780 С 019790 C 019800 NON=0 019810 DO 700 K=1,ITOT 019820 NONO(K) = 0700 019830 IF (ILITE.LT.1) GO TO 760 019840 DO 750 I=1,ILITE 019850 NUCLI=NUCL(I) 019860 00 720 J=1,ILITE 019870 KMAX=KAP (J) 019880 IF (KMAX.LT.1) GO TO 20 019890 00 710 M=1+KMAX 019900 IF (NUCLI.NE.NPROD (M, J)) GH TO 710 019910 NONO(I) = NONO(I) + 10,9920 NON=NON+1 019930 IF (NON.GT.2500) PRINT 9041, NON, NUCL(I) 019940 A(NON) = COEFF(M,J)019950 JT=J 019960 LOC(NON) = JT019970 CUNTINUE 710 0199A0 CONTINUE 720 019990 KD(I) = NONO(I)020000 00 740 J=1,ILITE 020010 K1=KAP(J)+1 020020 KMAX=MMAX(J) 020030 IF (KMAx_LT.K1) GO TO 740 020040 00 730 M=K1,KMAX 020050 IF (NUCLI.NE.NPROD (M.J.) GU TO 730 020060 NONO(I) = NONO(I) + 1 020020 NON=NON+1 IF (NON.GT.2500) PRINT 9041. NON, NUCL(I) 020080 020090 A(NON) = COEFF(M,J)JT=J 020100 020110 LOC(NON) = JT020120 730 CONTINUE 020130 CONTINUE 740 020140 750 CONTINUE 020150 С NON ZERO MATRIX ELEMENTS FOR THE ACTINIDES 020160 С 020170 С 020180 IF (IACT.LT.1) 760 GO TO 920 020190 IU=ILITE+1 020200 I1=ILITE+IACT 020210 DO 810 I=I0,I1 020220 NUCLI=NUCL(I) 020230 00 780 J=10,11 020240 MAX=KAP(J) 020250 IF (MAX .LT .1) GO TO 740 020260 DO 770 M=1,MAX IF (NUCLI.NE.NPROD (M.J.) \$0 TO 770 020270 NONO(I) = NUNO(I) + 1 020280 050500 NUN=NON+1 020300 IF (NON GT. 2500) PRINT 9041. NON, NUCL (I)

	A(NON) = COEFF(M, J)	020310
	J=TL	020320
	LOC (NON) = JT	020330
770	CONTINUE	020340
780	CONTINUE	020350 020360
	KD(I)=NONO(I)	020380
	$\begin{array}{c} 0 & 8 \\ 0 & J = I \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	020380
	M1=KAB(J)+1 M2=MMAx(J)	020390
	IF(M2+LT+M1) GO TO 890	020400
	DO 790 M=M1,M2	020410
	IF (NUCLI.NE.NPROD (M, J)) GU TO 790	020420
	NON0 (I) = NUN0 (I) + 1	020430
	NON=NON+1	020440
	IF (NON, GT. 2500) PRINT 9041, NON, NUCL(I)	020450
	A(NON) = COEFF(M, J)	020460
	JT=J	020470
	LOC (NON) = JT	020480
790	CONTINUE	020490
80 0	CONTINUE	020500
810	CONTINUE	020510 020520
ç	MATRIX ELEMENTS FOR FISSION PRODUCTS	020520
C	MAIRIX ELEMENTS FOR 1133144 PRODUCTS	020540
C 820	IF (IFR LT.1) RETURN	
020	IM=ILITE+IACT	020560
	10=IM+1	020570
	IF (ITOT.LT.IO) RETURN	
	DO 880 I=I0,ITOT	020590
	NUCLI=NUCL(I)	020600
	12=MAX0(10,1-10)	020610
	$I3=MIN_0(ITUT,I+10)$	020620
	DU 840 J=12,13	020630
	KMAX=KAP(J)	020640 020650
	IF (KMAX.LT.1) GO TO 440	020660
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	020670
	IF (NUCLI.NE.NPROD(M,J)) G4 TO 830 NONO(I)=NONO(I)+1	020680
	NON=NON+1	020690
	IF (NON, GT. 2500) PRINI 9001, NON, NUCL (I)	020700
	A (NON) = CUEFF (M, J)	020710
	JT=J	020720
	LOC (NQN) = JT	020730
830	CONTINUE	020740
840	CONTINUE	020750
	KD(I) = NONO(I)	020760
	DO 860 J=I2,I3	020770
	K1=KAP(J)+1	020780 020790
	KMAX=MMAX(J)	020800
	IF (KMAX.LT.K1) GO TO 760	020810
	00 850 M=K1,KMAX IF(NUCLI.NE.NPROD(M,J1) G4 T0 850	020820
	NONO (I) = NUNO (I) + 1	020830
	NON=NON+1	020840
	IF (NON_GT.2500) PRINT 90%1, NON, NUCL (I)	020850
	A(NON) = COEFF(M,J)	020860
	JT=J	020870
	LOC(NON) = JT	020880
850	CONTINUE	020890
860	CUNTINUE	020900
	IF (IACT.LT.1) GO TO 880	020910
	μο 870 κ=1.5 3-52	020920

020930 IL=I-IM 020940 IF (YIELD (K, IL) . LT. ERR) GU TO 870 020950 NON=NON+1 020960 IF (NON. GT. 2500) PRINT 9061. NON, NUCL(I) 020970 NONO(I) = NONO(I) + 1020980 KK=NSORS(K) 020990 LOC (NON) =KK 021000 KF=KK-TLITE 021010 A(NON)=YIELD(K,IL)+FISS(K) 021020 870 CONTINUE 021030 880 CONTINUE 021040 IF(IFP'LE.0) GO TO 900 021050 IF (NLIBE.NE.3) GO TO \$90 TYLD(2), TYLD(4), TYLD(5) 021060 PRINT 9027, 021070 GO TO 900 021080 PRINT 9030. (TYLD(I), 1=1, 5)890 С 021090 ALL MATRIX ELEMENTS ARE NOW COMPUTED 021100 C 021110 С BEGIN TRANSIENT SOLUTION 021150 С 021130 С 021140 С TEMPORARILY WRITE OUT MATRIX ELEMENTS 021150 С 021160 900 IF(IR _EW. 0) RETURN 021170 PRINT 9029 021180 N=0 021190 DO 910 I=1, ITOT 021200 NUM=NONA(I) 051510 GO TO 910 IF (NUM LE.0) 021550 N1 = N + N(M)021230 N=N+1 021240 PRINT 9028. I.DIS (I), TOCAP(I), (A(K), LUC(K), K=N, N1) 021250 N=N1 021260 910 CONTINUE 021270 RETURN 081280 STOP 920 021290 C FURMATS 021300 FURMATS С FURMATS FORMATS 021310 С 051350 9001 FORMAT (4F10.5,612) 9005 FORMAT(1H1,43X, "NUCLEAR THANSMUTATION DATA WEVISED ", I2; "/", I2, "0, 1370 1/", I2, /, "ONUCL = NUCLIDE = 10000 * ATUMIC NO + 10 * MASS NO + ISOM021380 ZERIC STATE (0 OR 1)", JOX, "DLAM = DECAY CONSTANT (1/SEC) ." ... FB, 021390 3FP, FA, FT = FRACTIONAL DECAY BY BETA, POSITRUN (OR ELECTRON CAPTUO21400 4RE), ALPHA, INTERNAL TRANSITION. FB = 1 - FP - FA - FT";/." FB1,021410 5 FP1, FNG1, FN2N1 = FRACTION UF BETA, POSITRON, N-GAMMA, N-2N TRAN021420 6SITIONS TO EXCITED STATE UF PRODUCT NUCLIPE"./." SIGTH, SIGNG, SIG021430 7F, SIGNA, SIGNP = THERMAL CHOSS SECTIONS (BARNS) FOR ABSORPTION, NO21440 8-GAMMA, FISSION, N-ALPHA, N-PROTON.") 021450 FORMAT(" SIGNG = SIGTH * (1 - FNA -FNP). SIGNA = SIGTH * FNA. 021460 ISIGNP = SIGTH * FNP. FNA; FNP = FRACTION THE MAL N-ALPHA, N-PROTO021470 9006 FORMAT (" 2N. ", /, " RITH, RING, RIF, RINA, RINP = RESUNANCE INTEGRAL FOR ABSUR021480 3PTION, N-GAMMA, FISSION, N-ALPHA, N-PROTON,",7," RING = RITH * (021490 41 - FINA - FINP). RINA = BITH * FINA, RINP = MITH * FINP. FINA, F021500 SINP = FRACTION RESONANCE N-ALPHA, N-PROTON.",/," SIGMEV, SIGFF, SI021510 6GN2N, SIGNAF, SIGNPF # FAST CROSS SECTIONS (BARNS) FOR ABSORPTION, 021520 7FISSION, N-2N, N-ALPHA, N-PROTON."./," SIGNAN = SIGMEV # (1 - FF021530 8NA - FFNP) . SIGNAF = SIGNEV + FFNA. SIGNPF = SIGMEV + FFNP. FFN021540 9A, FFDP = FRACTION FAST NTALPHA, N-P.") 021550 9007 FURMAT (1 Y23, Y25, Y02, Y28, Y49 = FISSIUN YIELD (PERCENT) FROM 23021560 13-U, 235-U, 232-TH, 238-U, 239- PU.",/," 4 = DEAT PER DISINTEGRATI021570 20N. FG = FRACTION OF HEAT IN GAMMAS OF ENERGY GREATER THAN 0.2 ME021580 3V. ", /, "O EFFECTIVE CHUSS SECTIONS FOR A VULUME AVERAGED THERMAL (LO21590

4T 0.876 EV) FLUX ARE AS FULLOWS.",/," N_GAMMA - SIGNG * THERM021600 5 + RING * RES.",/," FISSION - SIGF * THERM + RIF * RES + SIGF021610 6F . FAST. ", 10X, "THERM = 1/V CURRECTION FOR THERMAL SPECTRUM AND TE021620 _ SIGN2N + FAST.", 36X, "RES 7MPERATURE . " . / . " = RATIU 021630 N-4N BOF RESONANCE FLUX PER LETUARGY UNIT TO THERMAL FLUX.") 021640 N-ALPHA - SIGNA + THERM + RINA + RES + SIGNAF + FAST021650 9008 FORMAT (" RATIO OF FAST (GT 1.0 MEV) TO THERMAL FLUX "021660 1.",7X, "FAST = 1.45 # N-PROTON - SIGNP * THERM + RINP * HES + SIGNPF * FAST .") 2/" 021670 HALF LIVEST DECAY SCHEMES, AND 021680 9009 FORMAT (140,59X, "REFERENCES", /, " ITHERMAL POWER , /, " C M LEBERER, J M HULLANDER, AND I PERLMAN "TABO21690 2LE OF ISOTOPES - SIXTH EDITION ... JOHN WILEY AND SONS, INC (1967) .021700 3/ . B S DZHELEPOV AND L & PEKER "DECAY SCHEMES OF RADIOACTIVE NUCOP1710 4LEI"" PERGAMMON PRESS (1981) ", /, " D T GOLDMAN AND JAMES R ROSSER "021720 S"CHART OF THE NUCLIDES" NINTH EDITION GENERAL ELECTRIC CO (JULY 021730 61966) ", /, " E D ARNOLD ""PROGRAM SPECTRA"" APPENDIX A OF ORNL-3576 021740 021750 7 (APRIL 1964) ") CROSS SECTIONS AND FLUX SPECTRA # / , " B E PRINCE ""NEUT021760 9010 FORMATIN 1RON REACTION RATES IN THE MSRE SPECTRUM"" ORNL-4119, PP 79-83 (JUL021770 2Y 1967) ", /, " B E PRINGE ""NEUTRON ENERGY SPECTRA IN MSRE AND MSBR" 021780 3" ORNL_4191, PP 50-58 (DEC 1967)", /, " M D GOLUBERG ET AL ""NEUTRUN021790 4 CROSS SECTIONS BNL+325. SECOND ED, SUPP NO 2 (MAY 1964 - AUG 19021800 566) ALSO EARLIER EDITIONS",/," H T KERR, UNPUBLISHED ERC COMPILATIO21810 60N (FEB 1968)",/," M N DR&KE ""A COMPILATION OF RESONANCE INTEGRAL021820 75"" NUCLEUNICS, VOL 24, NU 8, PP 108-111 (AUG 1966)",/," BNWL STAF021830 8F ""INVESTIGATION OF N-2N CROSS SECTIONS"" BNWC-98, PP 44-98 (JUNE021840 021850 9 1965)") 021860 9011 FORMAT (1844,13) 021870 9012 FURMAT (1H1+20X,18A4) 9013 FORMAT (" H ALTER AND C E NEBER ""PRODUCTION OF H AND HE IN METALS 021880 IDURING REACTOR IRRADIATION J NUCL MATLS, VOL 16, PP 68-73 (1965)021890 2", /, " L L BENNETT WIRECOMMENDED FISSION PRODUCT CHAINS FOR USE IN 021900 3REACTOR EVALUATION STUDIES ORNL-TM-1658 (SERT 1966)") 021910 FISSION PRODUCT YIELDS", /, M E MEEK AND B F RIDER, ""021920 9014 FORMAT(" 1SUMMARY OF FISSION PRUDUCT YIELDS FOR U-235, U-238, PU-239, AND PU021930 2-241 AT THERMAL, FISSION SPECTRUM AND"/" 14 MEV NEUTRON ENERGIO21940 3ES ... APED-5398-A (REV.), (051, 1968) ... S KATCOLF ... FISSION PRODUCT021950 4YIELDS FRUM NEUTRON INDUCED FISSION" NUCLEONICS, VOL 18, NO 11, 021960 5(NOV 1960) "/" N D DUDEY "" REVIEW OF LOW-MASS ATOM PRODUCTION IN F021970 021980 6AST REACTORS ... ANL-7424, (BPRIL 1968) ") 9016 FORMAT (1H0, 20X, "LIGHT ELEMENTS, MATERIALS OF CONSTRUCTION; AND ACTO22030 FP1 FΡ 0.00640 1IVATTION PRODUCTS 11 ", /, "O NUCL DLAW SIGNG FNG1 FN2N1" 000650 2"FP1 SIGN2N FT FA FG ABUNDANCE") 000660 3" SIGNP 6 SIGNA 9018 FORMAT (1H0, 10X, "THERMS "F10.5, 5X, "RES "F10.5, 5X, "FAST= "F10.5, 022090 1//,1x, "NEUTRON SOURCE; "5(110;5X);5X, "NLIPE= "13) 022100 FORMAT (1H0, 36X, "FISSINN PRODUCTS" //, "O NUCL DLAM 000690 9019 FNG1 .. 000700 FT SIGNG Y23 **#FB1** FP FP1 1 ¥2₿ FG") 000710 Y49 Q **!!Y2**5 Y02 S FORMAT (1H0,36X, "FISSION PRODUCTS", /, "O NUCL DLAM F81 " 000720 9020 FP1 Y28" SIGNG FNG1 Y2≯ 000730 IFP FT 1 FG") 000740 Y49 ... Q 2 000750 FURMAT (1H , A2, I3, A1, 1PE10 . 2, 0P4F7, 3, 1PE10 . 2, 0PF7, 3, 9021 000760 1P5510.2,0P2F7.3) 1 000770 9022 FURMAT(1H ,A2,I3,A1,14E10.2,04F7.3,14E10.2, 000780 0PF7,3,1P3E10.2,0P217.3) 1 9024 FORMAT (1H0, 32X, "ACTINIDED AND THEIR DAUGHTERS", // 055550 1" FP FTH 008000 NUCL FP1 DLAM F81 FNG21 SIGF" 2" SIGNG 000810 FΔ FSF E+6 FG") 000820 SIGN2N SIGNAN 3" Q 9026 FORMAT(1H +42,13,A1,17E10.2,0P5F7.3,6PF10.1,17E10.2, 000830 1 0PF7.3,1P3E10.2,0PF0.3,F6.2) 9027 FURMAT ("OSUM OF YIELDS OF ALL FISSION PROPUCTS =",15x,1P3E9.2) 000840 055500 3-54

9028	FURMAT(15,2X,1PE10.3,3X,E10.3,5(2X,E10.3,3X,I>)/(30X,5(2X)E10.3,	022300
	1 3x.15)))	022310
9029	FORMAT ("INON-ZERO MATHIX ELEMENTS AND THEIR LUCATIONS"/	022320
	$1^{H} I DIS(I) CAP(I) A(I,J) J A(I,J)$	022330 022340
		022340
	FORMAT (63HOSUM OF YIELDS WE ALL FISSION PHODULTS	
0035	1	000860
	- $ -$	000870
0094	1 OPF7,3,1P2E10,2,0P2C7,3,F8,3) EURMAT(17,F9,3,11,5F5,3,1RE9,2,0P2F5,3,F7,3,2E6,0)	022420
9034	FORMAT (7X, F9, 2, 3F5, 3, F9, 2, 2F5, 3, F9, 2, 3F5, 3, 5, 11)	022430
	FORMAT (2044)	022440
9037	FORMAT (7X, 2F9, 2, F5, 3, 4F9, 2, F4, 1, F9, 2, I1)	000890
9038	FURMAT (7X, 2F9, 2, F5, 3, 3F9, 2, 4X, 11)	022460
9039	FORMAT(") WARNING, MUUT OF RANGE IN NUDATA, =" I5)	022470
9040	FORMAT 7X.F9.2.3F8.6.F6.2.2F3.1.F9.2.3F5.3.5X,I1)	022480.
9041	FURMAT ("O NON HAS EXCLEDED 2500, EQUAL TO "210)	022490
	END	022200
#DECK	COLLECT	022510
	SUBROUTINE COLLECT (TMP, CWASTE, ITOT)	
	CUMMON/EW/XTEMP(800), XNEW(10,800), B(800), P(800)	
	DIMENSION CWASTE (800)	022550
	IF (TMB LT.1) RETURN	022560
	DO 10 I=1, ITOT	022570 022580
• •	B(I) = CWASTE(I)	022590
10	XTEMP(I)=0.0 CALL DECAY(1,TMB.ITOT)	072600
	CALL TERM(TMB,1,ITOT)	
	CALL EQUIL (1, ITOT)	025620
	UU 20 I=1,I OT	022630
20	CWASTE(I) = XNEW(1,I)/TMB	022640
	RETURN	022650
	END	022660
#DECK	STORAG	055620
	SUBROUTINE_STORAG(TMB1CWASTE,ITOT) CUMMON/EQ/XTEMP(800),XNEW(10,800),B(800),P(800)	
	DIMENSION CWASTE (ITOT)	022710
	IF (TMB'LT.1) RETURN	022720
	DELT=TMB	022730
	00 10 I=1,ITOT	022740
	B(I)=0,0	022750
10	XTEMP(I)=CWASTE(I)	022760
	CALL DECAY(1,DELT,ITO])	022770
	CALL TERM(TMB,1,ITOT)	
	CALL EQUIL(1,ITOT)	022790
	00 20 I=1,ITOT	022800
20	CWASTE(I) = XNEW(1,I)	022810
	RETURN	022820 022830
KDE OK		022840
	BLKDATI BROGRAM BLOCK DATA	022850
С	PROGRAM BLOCK DATA Block data blkdat1	022860
	INTEGERELE (99) + STA(2)	022870
	COMMONZLABELZ FLESTA	022880
	DATA ELEZU HULUHEN, ULIUAUBEN, U BUAU CUAU NUAU OUAU EUAUNEU, UNAU, U	4022890
	16"."ALU."SIN.N PN.N SN."CLN.NAR"." KN.NCA"."SCN.NTI"." VN'SNCRN."M	N022900
	2", "FE", "CO", "NI", "CU", "ZN", "GA", "GE", "AS", "SE", "BR", "KR", "RB", "SR"	072910
:	3," YH,HZR", "NBH, MOH, "TCH, MRU", MRHH, MPDH, MAG", MCDH, MINH, MSNH, MSB"	•022920
	4#TE#,#_1#,#XE#,#CS#,#BA#,#LA#,#CE#,#PR#,#ND#,"PM#,#SM#,#EU#,#GD#, 5TB#,#DY#,#H0#,#ER#,#TM#,#YB#,#LU#,#HF#,#TA#,#_W#,#RE#,#OS#,#IR#,#	022430 P0-2940
I	5T8#,#DY#,#HO#,#ER#,#TM#,#T8#,#LU#,#HF#,#TA#,#"A##,#A#,#C#,#US#,#TA#,# 6T#,#AU#,#HG#,#TL#,#PB#,#BI#,#P0#,#AT#,#RN",#FK#,#RA#,#AC#,#TH#,#P/	4032950
	6T#,"AU#,"HG#,"TL#,"PB","B1","PO","AT#,"RN","FX","RA#,"AC","TR","F7 7#,#_U#,"NP#,"PU#,"AM","AC","B1","BN#,"CF","ES"/	022950
		022970

		0229A0
*DECK		022990
	SUBROUTINE HALF (A.I)	023000
С	SUBROUTINE HALF CONVERTS DALF-LIFE TO DECAY CUNSTANT (1/SEC)	023010
	DIMENSION C(9)	023020
	DATA C/6.9315E-01,1.1552E-02,1.9254E-04,8.022bE-06,2.1965E-08,0.0	,023030
	1 2.1965E-11,2.1965E-14,2.1965E-17/	023040
	IF (A,GT.0.0) GO TO 10	023050
	IF(I_EQ_6) GO TO 20	023060
	A=9.99	023070
	RETURN	023080
10	A=C(I)/A	023090
	RETURN	023100
20	A=0.0	023110
	RETURN	023120
	END	023130
*DECK	МОАН	023140
	SUBROUTINE NOAH (NUCLIINAMS)	023150
С	SUBROUTINE NOAH CONVERTS SIX DIGIT IDENTIFIER TO ALPHAMERIC SYMBO	L023160
	INTEGERNAME (3)	023170
	INTEGERELE(99),STA(2)	023180
	COMMON/LAUEL/ ELE, STA	023100
	IS=MOD (NUCLI,10)+1	023200
	NZ = NUCLI/10000	053510
	MW=NUCLI/10-NZ *1000	023550
	NAME $(1) = ELE(NZ)$	0 53530
	NAME (2) = MW	023240
	NAME (3)=STA(IS)	023250
	RETURN	023560
	END	023270

CHAPTER 4. DATA FOR RADIOACTIVE SOURCE TERM CALCULATIONS FOR PRESSURIZED WATER REACTORS (PWR's)

This chapter lists the information needed to generate source terms for PWR's. The information is provided by the applicant and is consistent with the contents for the Safety Analysis Report (SAR) and the Environmental Report (ER) of the proposed pressurized water reactor. This information constitutes the basic data required in calculating the releases of radioactive material in liquid and gaseous effluents (the source terms). All data are on a per-reactor basis.

4.1 GENERAL

- 1. The maximum core thermal power (MWt) evaluated for safety considerations in the SAR.
 - Note: All the information required in calculating the releases should be adjusted to this power level.
- The quantity of tritium released in liquid and gaseous effluents (Ci/yr per reactor).

4.2 PRIMARY SYSTEM

- 1. The total mass (lb) of coolant in the primary system, excluding the pressurizer and primary coolant purification system, at full power.
- 2. The average primary system letdown rate (gal/min) to the primary coolant purification system.
- 3. The average flow rate (gal/min) through the primary coolant purification system cation demineralizers.

Note: The letdown rate should include the fraction of time the cation demineralizers are in service.

4. The average shim bleed flow rate (gal/min).

4.3 SECONDARY SYSTEM

- 1. The number and type of steam generators and the carryover factor used in the evaluation for iodine and nonvolatiles.
- 2. The total steam flow rate (lb/hr) in the secondary system.
- 3. The mass of liquid in each steam generator (lb) at full power.
- 4. The primary-to-secondary system leakage rate (lb/day) used in the evaluation.

- Description of the steam generator blowdown purification system. The average steam generator blowdown rate (lb/hr) used in the evaluation.
- 6. The fraction of the steam generator feedwater processed through the condensate demineralizers and the DF's used in the evaluation for the condensate demineralizer system.
- 7. Condensate demineralizers
 - a. Average flow rate (lb/hr);
 - b. Demineralizer type (deep bed or powdered resin);
 - c. Number and size (ft³) of demineralizers;
 - d. Regeneration frequency;
 - e. Indication whether ultrasonic resin cleaning is used and the waste liquid volume associated with its use; and
 - f. Regenerant volume (gal/event) and activity.

4.4 LIQUID WASTE PROCESSING SYSTEMS

- 1. For each liquid waste processing system, including the shim bleed, steam generator blowdown, and detergent waste processing systems, provide in tabular form the following information:
 - Sources, flow rates (gal/day), and expected activities (fraction of primary coolant activity) for all inputs to each system.
 - b. Holdup times associated with collection, processing, and discharge of all liquid streams.
 - c. Capacities of all tanks (gal) and processing equipment (gal/day) considered in calculating holdup times.
 - d. Decontamination factors for each processing step.
 - e. Fraction of each processing stream expected to be discharged over the life of the plant.
 - f. For demineralizer regeneration, provide time between regenerations, regenerant volumes and activities, treatment of regenerants, and fraction of regenerant discharged. Include parameters used in making these determinations.
 - g. Liquid source term by radionuclide in Ci/yr for normal operation, including anticipated operational occurrences.

2. Provide piping and instrumentation diagrams (P&ID's) and process flow diagrams for the liquid radwaste systems along with all other systems influencing the source term calculations.

4.5 GASEOUS WASTE PROCESSING SYSTEM

For the waste gas processing system, provide the following:

- The method of stripping gases from the primary coolant, the volumes (ft³/yr) of gases stripped from the primary coolant, the bases for these volumes.
- Description of the process used to hold up gases stripped from the primary system during normal operations and reactor shutdown. If pressurized storage tanks are used, include a process flow diagram of the system indicating the capacities (ft³), number, and design and operating storage pressures for the storage tanks.
- 3. Describe the normal operation of the system, e.g., number of tanks held in reserve for back-to-back shutdown, fill time for tanks. Indicate the minimum holdup time used in the evaluation and the basis for this number.
- 4. If HEPA filters are used downstream of the pressurized storage tanks, provide the decontamination factor used in the evaluation.
- 5. If a charcoal delay system is used, describe this system and indicate the minimum holdup times for each radionuclide considered in the evaluation. List₃all parameters, including mass of charcoal (lb), flow rate ft³/min), operating and dew point temperatures, and the dynamic adsorption coefficients for Xe and Kr used in calculating holdup times.
- 6. Provide piping and instrumentation diagrams (P&ID's) and process flow diagrams for the gaseous radwaste systems along with other systems influencing the source term calculations.

4.6 VENTILATION AND EXHAUST SYSTEMS

For each building housing systems that contain radioactive materials, the steam generator blowdown system vent exhaust, gaseous waste processing system vent, and the main condenser air removal system, provide the following:

- 1. Provisions incorporated to reduce radioactivity releases through the ventilation or exhaust systems.
- 2. Decontamination factors assumed and the bases (include charcoal adsorbers, depth of charcoal beds, HEPA filters, and mechanical devices).
- 3. Release rates for radioiodine, noble gases, and radioactive particulates (Ci/yr), radioactive particulate size distribution, and the bases.

- 4. Release point description, including height above grade, height above relative location to adjacent structures, relative temperature difference between gaseous effluents and ambient air, flow rate, velocity, and size and shape of flow orifice.
- 5. For the containment building, the building free volume (ft³) and a thorough description of the internal recirculation system (if provided), including the recirculation rate, charcoal bed depth, operating time assumed, and mixing efficiency. Indicated the expected purge and venting frequencies and duration and continuous purge rate (if used).

APPENDIX A

LIQUID SOURCE TERM CALCULATIONAL PROCEDURE FOR REGENERANT WASTES FROM DEMINERALIZERS OTHER THAN CONDENSATE DEMINERALIZERS

Often in PWR radwaste systems, demineralizers other than the condensate demineralizers may undergo regeneration, for example, the radwaste demineralizer in the dirty waste system. The PWR-GALE Code can calculate the liquid effluent resulting from periodic regeneration of non-condensate demineralizers by following the procedure outlined below.

1. Input to Cards 1-11 and Cards 27-42

A separate computer run for calculating the regeneration waste effluent from non-condensate demineralizers is required. Cards 1-11 should be filled out as indicated for the specific plant in Sections 1.5.2.1 through 1.5.2.11 of this report. Also Cards 27 through 41 may be left blank (except that values of 1.0 must be entered for Card 28 entries). Card 42 should be left blank.

2. Input to Cards 12-26

The only liquid source term data cards completed (Cards 12-26) should be the three card sets used in the input data for the stream in which the demineralizer to be regenerated is located. The remaining card sets should have a zero entered for the input flow rate.

a. Input Flow and Activity (Card 12, 15, 18, 21 or 24)

The input flow rate and input activity should be the average daily input flow rate and input activity processed through the demineralizer to be regenerated. For example, if the demineralizer to be regenerated is used to process a shim bleed waste stream, the total input flow rate might be 1440 gallons per day.

Note that it is <u>not</u> the flow rate and activity which is due to the regenerant waste which is entered, it is the normal flow rate and activity through the component to be regenerated which is entered.

b. Regeneration Frequency (Card 14, 17, 20, 23 or 26)

Enter the time between regenerations in days as the "collection time." If a regeneration frequency is stated by the applicant, it may be used; otherwise the following frequency may be used:

TABLE A-1

Demineralizer Service	Regeneration Frequency	
Primary Coolant Letdown	180 days	
Boron Recovery System	180 days	
Equipment Drain Wastes	*	
Floor Drain Wastes	*	
Steam Generator Blowdown	90 days	

* Regeneration frequency is calculated by dividing the waste quantity (gallons) by the waste flow rate in gallons per day. The waste quantity is 25000 gal/ft³ times the volume in ft³ of resin for equipment drain waste and 2000 gal/ft³ times the volume in ft³ of resin for floor drain waste. The calculated values of 25,000 and 2,000 gal/ft³ of resin for the waste are based on 12,000 g CaCO₃ ion exchange capacity per ft³ of resin and 5 μ mho/cm and 50 μ mho/cm average conductivity for equipment and floor drain liquid wastes.

By inputting the normal flow rate and activity in Item a and the regeneration frequency as the collection time in Item b the PWR-GALE Code will accumulate <u>all</u> of the activity processed through the demineralizer during its normal operation and decay the activity as a function of the time over which it was collected.

c. Process Time and Fraction Discharged

Use the same "process time" and "fraction discharged" as indicated for the stream in which the regeneration wastes are processed as indicated in Section 1.5.2.12.4 of this document.

d. Decontamination Factors (Card 13, 16, 19, 22 or 25)

The decontamination factors entered should consider radionuclide removal by the equipment used to process the regenerant wastes using the normal source term procedures of 1.5.2.12.2. In addition, the decontamination factors entered should be used to adjust the source term for the fraction of the activity in the process stream flowing through the demineralizer during normal operation which is not removed by the demineralizer.

e. Sample Case

A demineralizer is used to process shim bleed waste and is to be regenerated. The normal flow rate for the demineralizer is 1440 gpd and the activity is calculated in the PWR-GALE Code. The regenerant wastes will be processed through an evaporator and discharged.

Fill in the Cards 12-14 in the following manner:

Card 12

Spaces 18-41 enter - shim bleed demin regen Spaces 42-49 enter - 1440.0

Card 13

The wastes will be processed through an evaporator which will provide the following DF's according to Table 1-4 of Section 1.5.2.12.2.

 $I = 10^2$ Cs, Rb = 10^3 Others = 10^3

While in operation, referring to Table 1-4 of Section 1.5.2.12.2 demineralizer DF's are:

I - 10 Cs, Rb - 2 Others - 10

Therefore, for "I" and "Others," 90% of the activity processed through the demineralizer is removed by the resins and no adjustment is needed. Only 50% of the Cs and Rb in the waste stream is removed by the resins, however, so the DF entered for Cs should be adjusted. Thus, the DF's entered on Card 13 would be:

```
I - 100.0
Cs, Rb - 2000.0
Others - 1000.0
```

Card 14

Spaces 29-33 "Collection Time." Using the value from Table A-1 of 180 days for the regeneration frequency

Enter 180.0 days in spaces 29-33.

Use the same "Process time" and "fraction discharged" as is indicated for the stream in which the regeneration wastes are processed as indicated in Section 1.5.2.12.4 of this report.

Note: If there is more than one stream for which non-condensate regenerant demineralizer is used, follow the same procedures explained under item A2 for the other stream or streams.

3. Components in Service

- a. If the waste is processed through a component other than a regenerable demineralizer prior to processing by the regenerable demineralizer, the activity in the steam entering the demineralizer will be less than the activity entered as described above. To compensate for this difference, the DF's for the regenerant waste calculation should be adjusted in a manner similar to that described above. The product of the DF's should be used.
- b. If two regenerable demineralizers are used in series, follow the procedure in a above. Adjust the DF for nuclides removed from the waste stream, by using the product of the DF's for two demineralizers in series, i.e., consider the two demineralizers as one larger demineralizer.

4. Use of Computer Calculated Result

Combine the values printed out in the individual liquid source term columns for the system in which the demineralizer is being regenerated (not the adjusted total value) with the normal liquid source term run values. Do not use the adjusted total value from the right hand column since the source term run to which the regenerant waste run will be added has already been adjusted.

REFERENCES

- American National Standards Source Term Specification, ANSI N237-1976, American National Standards Institute.
- Regulatory Guide 1.140, "Design, Testing, and Maintenance Criteria for Normal Ventilation Exhaust System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants," March 1978, Office of Standards Development, U. S. Nuclear Regulatory Commission.
- 3. Letter from H. Till, Electric Power Research Institute, to J. Collins, NRC, March 8, 1978.
- 4. NUREG/CR-0140, "In-Plant Source Term Measurements at Ft. Calhoun Station, Unit 1," July 1978.
- NUREG/CR-0715, "In-Plant Source Term Measurements at Zion Station," May, 1979.
- 6. NUREG/CR-1629, "In-Plant Source Term Measurements at Turkey Point Station Unit 3 and 4," September, 1980.
- 7. Electric Power Research Institute Report EPRI NP-939, "Sources of Radioiodine at Pressurized Water Reactors," November, 1978.
- 8. Westinghouse Electric Corporation, WCAP-8253, "Source Term Data for Westinghouse Pressurized Water Reactors," July, 1975.
- 9. Letter from T. M. Anderson, Westinghouse Electric Corp. to J. Collins, NRC, April 17, 1979.
- Combustion Engineering, CENPD-67, Rev. 1, "Iodine Decontamination Factors During PWR Steam Generation and Steam Venting," J. A. Martucci, November, 1974.
- 11. Combustion Engineering, CENPD-67, Addendum 1P, "Iodine Decontamination Factors During PWR Steam Generation and Steam Venting," November 1974.
- Westinghouse Electric Corporation, WCAP-8215, "Steam Side Iodine Transport Study at Point Beach Unit No. 1 of Wisconsin Electric Power Company," October 1973.
- General Electric Company, Figure 5 of Draft Report, "Fission Product Transport Measurements at Brunswick - 2," C. Lin and H. Kenitzer (to be published).
- NUREG-0017, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE Code)," April 1976.

- NUREG-0016, Rev. 1, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Boiling Water Reactors (BWR-GALE Code)," January 1979.
- Pilgrim 2 Preliminary Safety Analysis Report (PSAR) (Docket No. 50-471), Appendix 11E, Amendment 12, November 1974.
- Letter from K. Seyfrit, Technical Assistance Branch, AEC, Regulatory Operations, to G. Lainas, Containment Systems Branch, AEC, Licensing "PWR Purging and Venting Experience," September 3, 1974.
- NUREG-75/087, "U. S. Nuclear Regulatory Commission Standard Review Plan," Section 6.2.4, "Containment Isolation System," Rev. 1, November 1978.
- Rochester Gas and Electric Corporation, "Radioactivity in the Containment Building Atmosphere of Ginna Station," A. R. Piccot, 1971.
- Nuclear Containment Systems, Incorporated, NCS-1101, "Dynamic Adsorption Coefficient and Its Application for Krypton-Xenon Delay Bed Design," J. L. Kovach, Draft, November 1971.
- 21. L. R. Michaels and N. R. Horton, "Improved BWR Offgas Systems," 12th Air Cleaning Conference, San Jose, California, August 1972.
- 22. W. E. Browning et al., "Removal of Fission Product Gases from Reactor Offgas Streams by Adsorption," ORNL Central Files Number 59-6-47, June 11, 1959.
- H. J. Schroeder et al., "Offgas Facility at the Gundremmingen Nuclear Power Plant," <u>Journal for Nuclear Engineers and Scientists</u>," No. 5, May 1971, pp. 205-213.
- 24. Letter from Kerndraftwerk Lingen GMBH to Peter Lang, North American Carbon, "Gas Delay System at KWL," December 30, 1970.
- 25. General Electric Company, NEDO-10751, "Experimental and Operational Confirmation of Offgas System Design Parameters," C. W. Miller, proprietary report, October 1972.
- Letter from J. L. Kovach, Nuclear Containment Systems, Inc., to
 V. Benaroya, AEC, "Gas Delay Systems," December 1, 1971.
- D. P. Siegwarth et al., "Measurement of Dynamic Adsorption Coefficients for Noble Gases on Activated Carbon," 12th Air Cleaning Conference, August 1972.
- General Electric Co., NEDO-20116, "Experimental and Operational Confirmation of Offgas System Design Parameters," C. W. Miller, October 1973.

- 29. ANSI/ANS 55.6-1979, "American National Standard Liquid Radioactive Waste Processing System for Light Water Reactor Plants," American National Standards Institute, April 1979.
- 30. NWT 133-1, "OTSG Secondary Water Chemistry Study," Nuclear Water and Waste Technology, March 1978.
- 31. NWT 133-2, "OTSG Secondary Water Chemistry Study," Nuclear Water and Waste Technology, June 1978.
- 32. NUREG/CR-0143, "The Use of Ion Exchange to Treat Radioactive Liquids in Light-Water-Cooled Nuclear Power Plants," August 1978.
- 33. NUREG/CR-0142, "The Use of Evaporation to Treat Radioactive Liquids in Light-Water-Cooled Nuclear Power Plants," September, 1978.
- 34. NUREG/CR-0141, "The Use of Filtration to Treat Radioactive Liquids in Light-Water-Cooled Nuclear Power Plants," September 1978.
- 35. "A Study of Reverse Osmosis Applicability to Light Water Reactor Radwaste Processing," J. Markind, T. Van Tran, November 1978.
- 36. W. R. Greenway et al., "Treatment of Radioactive Steam Generator Blowdown," 33rd Annual Meeting, International Water Conference of the Engineers' Society of Western Pennsylvania, October 24-26, 1972.
- 37. C. Kunz et al., "C-14 Gaseous Effluent From Pressurized Water Reactors," CONF-741018, Symposium on Population Exposures, Proceedings of the Eighth Midyear Topical Symposium of Health Physics Society, Knoxville, Tennessee, October 21-24, 1974, pp. 229-234.
- 38. Westinghouse Electric Corporation, WCAP-7702, "Interim Report on Study of Iodine Transport in PWR Steam Systems," May, 1971.
- Letter from T. M. Anderson, Westinghouse Electric Corp., to R. Bangart, NRC, November 8, 1979.
- 40. Letter from J. J. Barton, Metropolitan Edison Co., to J. Collins, NRC, December 4, 1979.
- 41. U.S.E.P.A., EPA-520/5-76-003, "Radiological Surveillance Studies at the Oyster Creek BWR Nuclear Generating Station," June 1976.
- 42. "In-Plant Source Term Measurements at Prairie Island Nuclear Generating Station." To be published as a NUREG document.
- 43. "In-Plant Source Term Measurements at Rancho Seco Station," NUREG/ CR-2348, October 1981.