
< U .S.NRC NUREG/CR-7039, Vol. 6

United Stares Nuclear Regulatory Commission

Protecting People and the Environment

Systems Analysis Programs
for Hands-on Integrated
Reliability Evaluations
(SAPHIRE) Version 8

Volume 6: Quality
Assurance

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-seres publications and other NRC records at
NRC's Public Electronic Reading Room at
http:/Iwww.nrc.qov/readinq-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office
Mail Stop SSOP
Washington, DC 20402-0001
Intemet bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250

2. The National Technical Information Service
Springfield, VA 22161-0002
www. ntis.gov
1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: U.S. Nuclear Regulatory Commission

Office of Administration
Publications Branch
Washington, DC 20555-0001

E-mail: DISTRIBUTION.RESOURCE@NRC.GOV
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
httD:/lwww.nrc.aovlreadina-rmldoc-collectionslnureas

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at-

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from-

American National Standards Institute
11 West 4 2nd Street
New York, NY 10036-8002
www.ansi.org
212-642-4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series are
not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors'
decisions under Section 2.206 of NRC's regulations
(NUREG-0750).

are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was accessed,
the material available on the date cited may
subsequently be removed from the site.

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any
information, apparatus, product, or process disclosed in this publication, or represents that its use by such third
party would not infringe privately owned rights.

*U.S.NRC
United States Nuclear Regulatory Commission

NUREG/CR-7039, Vol. 6

Protecting People and the Environment

Systems Analysis Programs for
Hands-on Integrated Reliability
Evaluations (SAPHIRE) Version 8

Volume 6: Quality Assurance

Manuscript Completed: March 2011
Date Published: June 2011

Prepared by
C.L Smith, S.T. Wood

Idaho National Laboratory
Battelle Energy Alliance
Idaho Falls, ID 83415.

D. O'Neal, NRC Project Manager

NRC Job Code N6423

Office of Nuclear Regulatory Research

PREVIOUS REPORTS

S. T. Wood, C. L. Smith, K. J. Kvarfordt, S. T. Beck, Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) Vol. 1 Summary Manual, NUREG/CR-6952,
August 2008.

C. L. Smith, S. T. Wood, W. J. Galyean, J. A. Schroeder, S. T. Beck, M. B. Sattison, Systems
Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Vol. 2 Technical
Reference, NUREG/CR-6952, August 2008.

K. J. Kvarfordt, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Vol. 3 Code Reference Manual, NUREG/CR-6952, August
2008.

S. T. Beck, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Vol. 4 Tutorial, NUREG/CR-6952, August 2008.

C. L. Smith, J. Schroeder, S. T. Beck, Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Vol. 5 GEM Manual, NUREG/CR-6952, August 2008.

C. L. Smith, R. Nims, K. J. Kvarfordt, C. Wharton, Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) Vol. 6 Quality Assurance Manual, NUREG/CR-
6952, August 2008.

K. J. Kvarfordt, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Vol. 7 Data Loading, NUREG/CR-6952, August 2008.

Smith, C. L., et al., Testing, Verifying, and Validating SAPHIRE Versions 6.0 and 7.0,
NUREG/CR-6688, October 2000.

K. D. Russell, et al. Systems Analysis Programs for Hands-on Reliability Evaluations
(SAPHIRE) Version 6.0- System Overview Manual, NUREG/CR-6532, May 1999.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 5. 0,
Volume 2- Reference Manual, NUREG/CR-6116, EGG-2716, July 1994.

K. D. Russell et al., Verification and Validation (V&V), Volume 9 - Reference Manual,
NUREG/CR-6116, EGG-2716, July 1994.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 4.0,

Volume 1 - Reference Manual, NUREG/CR-5813, EGG-2664, January 1992.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 2.5
Reference Manual, NUREG/CR-5300, EGG-2613, March 1991.

K. D. Russell, M. B. Sattison, D. M. Rasmuson, Integrated Reliability and Risk Analysis System
(IRRAS) - Version 2.0 User's Guide, NUREG/CR-51 11, EGG-2535, manuscript completed
March 1989, published June 1990.

K. D. Russell, D. M. Snider, M. B. Sattison, H. D. Stewart, S.D. Matthews, K. L. Wagner,
Integrated Reliability and Risk Analysis System (IRRAS) User's Guide - Version 1.0 (DRAFT),
NUREG/CR-4844, EGG-2495, June 1987.

ii

ABSTRACT

The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations
(SAPHIRE) Version 8 is a software application developed for performing a
complete probabilistic risk assessment using a personal computer running the
Microsoft Windows TM operating system. SAPHIRE 8 is funded by the U.S.
Nuclear Regulatory Commission (NRC). The role of the INL in this project is that
of software developer and tester. This development takes place using formal
software development procedures and is subject to quality assurance (QA)
processes. The purpose of this document is to describe how the SAPHIRE
software QA is performed for Version 8, what constitutes its parts, and limitations
of those processes. In addition, this document describes the Independent
Verification and Validation that was conducted for Version 8 as part of an overall
QA process.

iii

FOREWORD

The U.S. Nuclear Regulatory Commission (NRC) has developed the Systems Analysis
Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) software that is used to
perform probabilistic risk assessments (PRAs) on a personal computer. SAPHIRE enables
users to supply basic event data, create and solve fault and event trees, perform uncertainty
analyses, and generate reports. In that way, analysts can perform PRAs for any complex
system, facility, or process.

For nuclear power plant PRAs, SAPHIRE can be used to model a plant's response to initiating
events, quantify core damage frequencies, and identify important contributors to core damage
(Level 1 PRA). The program also can be used to evaluate containment failure and release
models for severe accident conditions given that core damage has occurred (Level 2 PRA). In
so doing, the analyst could build the PRA model assuming that the reactor is initially at full
power, low power, or shutdown. In addition, SAPHIRE can be used to analyze both internal and
external events and, in a limited manner, to quantify the frequency of release consequences
(Level 3 PRA). Because this software is a very detailed technical tool, users should be familiar
with PRA concepts and methods used to perform such analyses.

SAPHIRE has evolved with advances in computer technology and users' needs. Starting with
Version 5, SAPHIRE operated in the Microsoft WindowsTM environment. Versions 6 and 7
included features and capabilities for developing and using larger, more complex models.
SAPHIRE Version 8 includes significant new features and capabilities to meet user needs for
NRC risk-informed programs. In general, these include:

Improved user interfaces supporting NRC's Significance Determination Process, event and

condition assessments, and more detailed types of PRA analyses.

Development and use of NRC's Standardized Plant Analysis Risk models,

New and improved solving algorithms.

Support features for user-friendliness.

This NUREG-series report comprises seven volumes as outlined below and incorporates new
features and capabilities of Version 8.

Volume 1, "Overview and Summary"

Volume 1 provides an overview of the functions and features available in SAPHIRE Version 8
and presents general instructions for using the software.

Volume 2, "Technical Reference"

Volume 2 summarizes the fundamental mathematical concepts of sets and logic, fault trees, and
probability. It then describes the algorithms used to construct a fault tree and to obtain the
minimal cut sets. This report presents the formulas used to obtain the probability of the top
event from the minimal cut sets and the formulas for probabilities that apply for various
assumptions concerning reparability and mission time. In addition, it defines the measures of
basic event importance that SAPHIRE can calculate. This volume also gives an overview of
uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling and states

v

the algorithms used by this program to generate random basic event probabilities from various
distributions. Finally, this report discusses enhanced and new capabilities such as post-
processing rules, integrated model solving using model types, and workspace analysis routines.

Volume 3, "Users' Guide"

Volume 3 provides a brief discussion of the purpose and history of the software as well as
general information such as installation instructions, starting and stopping the program, and
some pointers on how to get around inside the program. Next, it discusses database concepts
and structure. The following nine sections (one for each of the menu options on the SAPHIRE
main menu) furnish the purpose and general capabilities for each option. Finally, Volume 3
provides the capabilities and limitations of the software.

Volume 4, "Tutorial"

Volume 4 provides a series of lessons that guide the user through basic steps common to most
analyses performed with SAPHIRE.

Volume 5, "Workspaces"

Volume 5 describes the functionality and process behind SAPHIRE Version 8 workspaces.
Workspaces provide an area in which a PRA model can be analyzed to obtain risk insights for a
given initiating event or condition. Workspaces replace the "Graphical Evaluation Module" in
earlier SAPHIRE versions.

Volume 6, "Quality Assurance"

Volume 6 is designed to describe how the SAPHIRE software quality assurance (QA) is
performed for Version 8, what constitutes its parts, and the limitations of those processes. In
addition, this report describes the Independent Verification and Validation that was conducted
for Version 8 as part of an overall QA process.

Volume 7, "Data Loadingq"

Volume 7 is designed to guide the user through the basic procedures necessary to enter PRA
data into the SAPHIRE program using SAPHIRE's MAR-D ASCII-text (or "flat file") data formats.
In addition, this manual covers loading data through the new Accident Sequence Matrix and
discusses the .Project Integrate interfaces with SAPHIRE.

Christiana H. Lui, Director

Division of Risk Analysis

Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission

vi

CONTENTS

Section Paqe

PREVIO US REPORTS .. ii

A B S T R A C T ... iii

F O R E W O R D .. v

LIST OF FIG URES .. viii

EXECUTIVE SUM MARY ... ix

ACKNOW LEDG EM ENTS .. xiii

A C R O N Y M S ... x v

1. SAPHIRE Quality Assurance Processes .. 1

1.1 Background ... 1

1.2 Sum m ary of the SAPHIRE Quality Assurance .. 3

1.2.1 Project Scope and Organization 5
1.2.2 Managem ent .. 6
1.2.3 Tasks and Responsibilities .. 7
1.2.4 Change Design and Testing Procedure ... 7
1.2.5 Approach to Bug Fixes and New Features .. 9
1.2.6 Configuration Management and Control .. 9
1.2.7 Acceptance Testing/Autom ated Testing .. 11

1 .3 R e v ie w s .. 1 5

1.4 Independent Verification and Validation .. 16

1.4.1 Version Control ... 17
1.4.2 QA Standards and Practices ... 17
1.4.3 Documentation ... 18

2. Testing Approach... 21

2.1 Features to be tested .. 21

2.2 Features Not Tested .. 23

2.3 Test Descriptions .. 23

3. CONCLUSIONS .. 41

4. REFERENCES .. 43

Appendix A - SAPHIRE Salient Features List A-1

Appendix B - SAPHIRE QA Process Checklist and Change Forms B-1

Appendix C - SAPHIRE/GEM Test Suite Summ ary Report ... C-1

vii

LIST OF FIGURES

Figure Page

Figure 1. SAPHIRE quality assurance process ... 4

Figure 2. SAPHIRE Test W itness Monitor Form ... 13

Figure 3. SAPHIRE release management process .. 14

Figure 4. Types of testing used during the SAPHIRE development process 15

viii

EXECUTIVE SUMMARY

Product quality is a key component of SAPHIRE Version 8. The SAPHIRE QA processes
documented in the report provides the basis for setting quality objectives, progress, and the
necessary framework for quality improvements. A majority of the changes within the SAPHIRE
software occur because the end user has identified characteristics that provide "new potential",
thus resulting in SAPHIRE evolving as each new feature is discovered and implemented.
Therefore, the majority of software maintenance comes about not because of deficiencies in the
code, but because it was modified to embrace improved methods for risk and reliability
assessment.

Quality assurance for Version 8 has increased in a number of ways over the process described
in NUREG/CR - 6688, "Testing, Verifying, and Validating SAPHIRE Versions 6.0 and 7.0,"
September 2000. Early versions of SAPHIRE had utilized software guidance in some ways
more rigorously than that used for Versions 6.0 and 7.0. However, this resulted in labor and
time intensive testing and documentation practices. With the expansion of computer
capabilities, automated testing for SAPHIRE significantly increased the number of tests which
could be performed. The testing, verification, and validation process for Versions 6.0 and 7.0,
therefore, emphasized automated testing, with decreased emphasis on maintaining formal
documentation. Version 8 quality assurance effectively not only increases the test suite for its
new features and capabilities, but also increases the formal documentation to ensure a quality
product. Version 8 has also benefited from an independent verification and validation and
extensive beta testing.

Version 8 follows guidance in NUREG/BR-0167, "Software Quality Assurance Program and
Guidelines," February 1993 and IEEE Std 1 0 1 0 TM- 2 0 0 4 , "IEEE Standard for Software
Verification and Validation." Per the guidance in NUREG/BR-0167, SAPHIRE is classified as
"Level 1 ." Level 1 software corresponds to technical application software used in a safety
decision. The IEEE Standard utilizes software integrity levels in its requirements, and SAPHIRE
was assigned an integrity level of "1." This is the lowest level on a scale corresponding to the
likelihood of occurrence of an operating state that contributes an error and an error
consequence. The NRC periodically conducts a SAPHIRE audit against NUREG/BR-0167.

Documentation INL generated and maintains for Version 8 over earlier versions include:

* Software Verification and Validation Plan, including an associated requirements traceability
matrix

" Design documents

* Software Project Plan

" System Test Plan

* Acceptance Test Plan

" Quality Assurance Plan

ix

0 Configuration Management Plan

In order to ensure the quality of the SAPHIRE software, the Idaho National Laboratory (INL)
uses a variety of software development methods, including:

" Controlling software versions for both the formally released SAPHIRE versions, as well as
for source code.

* Following a standard approach to bug fixes, implementing new features, and a release
protocol.

" Developing design documents to control implementation of features.

* Using a cyclical design process to prototype changes.

" Performing acceptance tests that the software must pass prior to official release.

" Code walkthroughs and peer reviews.

The source code version control library requires that individual programmers "check-out" all files
that they intend to modify. Prior to "check-in", programmers must explain any changes made. A
record is kept of all changes, both as explained by the developer, and as individual copies of
each version of a file. At any time, the developer can retrieve past versions intact, if necessary.
Since the SAPHIRE software program is continually modified, the version control procedure
ensures a methodical approach to tracking and releasing these changes.

As new features and bug fixes are designed and implemented, the INL developers follow a
standard approach to integrating these items into SAPHIRE. For bug fixes, the developers take
notes from the user describing the general context of the bug, as well as step-by-step actions to
reproduce the bugs. This bug information includes acquiring a copy of the user's database,
when necessary. Then, the bug is classified and prioritized according to severity. A bug is
considered "minor" if it inconveniences the user, but a workaround exists to produce a correct
answer. A bug is "major" if it prevents the user from obtaining the correct answer. Software
enhancements follow much the same approach as bug fixes. Enhancements are prioritized and
implemented, with intermediate testing by the developer and often by the requestor. Once the
process and results appear acceptable, the feature is added to the next official release.

The level of effort for the software design process corresponds to the size and complexity of the
proposed change. Developers use a cyclical prototyping design methodology as a means to
clarify and refine the change. The prototyping process involves the requestor throughout
development. The developers will interact with the requestor(s) both initially and throughout the
design and development process to ensure the change accomplishes the expected goal.

Prior to any official SAPHIRE release of version 8, the software is run through a series of
automated tests. The tests simulate user input to the computer through a test script, and results
are captured and compared to expected results. This ensures that given a static input PRA file,
the risk or reliability results from SAPHIRE will be consistent from one release to the next.

x

These acceptance tests were developed by first identifying the critical tasks performed in a
PRA. Then these tasks were mapped to the SAPHIRE functions that perform these tasks. The
critical functions were determined to include the following:

1. Fault tree analysis

2. Event tree and sequence analysis

3. End state analysis

4. Importance measures analysis

5. Uncertainty analysis

6. Change sets

7. Data utility functions

8. Workspace module functionality

Identification of tests is also assisted by learning from experience in using the software and
finding bugs as well as reviewing the requirements specifications.

A change is not considered complete until the results have been tested and found reasonable.
Developers and key users will test to see that the change works as expected and is free of
defects. Prior to official release of a version, SAPHIRE's automated test suite must complete
successfully. The success of the suite is a good indicator that the new change does not
adversely affect other areas of the code.

xi

ACKNOWLEDGEMENTS

We would like to specifically acknowledge Mr. Dan O'Neal of the U.S. Nuclear Regulatory
Commission for his contribution to the development this report.

xii

ACRONYMS

CDF core damage frequency

DOE Department of Energy

EF error factor

FEP Fault Tree, Event Tree, and Piping and Instrumentation Diagram

GEM Graphical Evaluation Module

HRA human reliability analysis

INL Idaho National Laboratory

IRRAS Integrated Reliability and Risk Analysis System

IV&V Independent Verification and Validation

LHS Latin Hypercube Sampling

MAR-D Models and Results Database

NRC Nuclear Regulatory Commission

PC personal computer

PRA probabilistic risk analysis

SAPHIRE Systems Analysis Programs for Hands-on Integrated Reliability Evaluations

SARA System Analysis and Risk Assessment

SPAR Standardized Plant Analysis Risk

V&V Verification and Validation

xiii

Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Version 8

Volume 6 Quality Assurance

1. SAPHIRE QUALITY ASSURANCE PROCESSES

1.1 Background

The U.S. Nuclear Regulatory Commission (NRC) has.developed a powerful personal computer
(PC) software application for performing probabilistic risk assessments (PRAs), called Systems
Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 8.

Using SAPHIRE 8 on a PC, an analyst can perform a PRA for any complex system, facility, or
process. Regarding nuclear power plants, SAPHIRE can be used to model a plant's response to
initiating events, quantify associated core damage frequencies, and identify important
contributors to core damage (Level 1 PRA). It can also be used to evaluate containment failure
and release models for severe accident conditions, given that core damage has occurred (Level
2 PRA). It can be used for a PRA assuming that the reactor is at full power, at low power, or at
shutdown conditions. Furthermore, it can be used to analyze both internal and external initiating
events, and it has special features for transforming models built for internal event analysis to
models for external event analysis. It can also be used in a limited manner to quantify risk for
release consequences to both the public and the environment (Level 3 PRA). For all of these
models, SAPHIRE can evaluate the uncertainty inherent in the probabilistic models.

SAPHIRE development and maintenance has been undertaken by the Idaho National
Laboratory (INL). The INL began development of a PRA software application on a PC in the mid
1980s when the enormous potential of PC applications started being recognized. The initial
version, Integrated Risk and Reliability Analysis System (IRRAS), was released by the Idaho
National Engineering Laboratory (now Idaho National Laboratory) in February 1987. IRRAS was
an immediate success, because it clearly demonstrated the feasibility of performing reliability
and risk assessments on a PC and because of its tremendous need (Russell 1987).
Development of IRRAS continued over the following years. However, limitations to the state of
the-art during those initial stages led to the development of several independent modules to
complement IRRAS capabilities (Russell 1990; 1991; 1992; 1994). These modules were known
as Models and Results Database (MAR-D), System Analysis and Risk Assessment (SARA),
and Fault Tree, Event Tree, and Piping and Instrumentation Diagram (FEP).

IRRAS was developed primarily for performing a Level 1 PRA. It contained functions for creating
event trees and fault trees, defining accident sequences and basic event failure data, solving
system fault trees and accident sequence event trees, quantifying cut sets, performing
sensitivity and uncertainty analyses, documenting the results, and generating reports.

MAR-D provided the means for loading and unloading PRA data from the IRRAS relational
database. MAR-D used a simple ASCII data format. This format allowed interchange of data

1

between PRAs performed with different types of software; data of PRAs performed by different
codes could be converted into the data format appropriate for IRRAS, and vice-versa.

SARA provided the capability to access PRA data and results (descriptive facility information,
failure data, event trees, fault trees, plant system model diagrams, and dominant accident
sequences) stored in MAR-D. With SARA, a user could review and compare results of existing
PRAs. It also provided the capability for performing limited sensitivity analyses. SARA was
intended to provide easier access to PRA results to users that did not have the level of
sophistication required to use IRRAS.

FEP provided common access to the suite of graphical editors. The fault tree and event tree
editors were accessible through FEP as well as through IRRAS, whereas the piping and
instrumentation diagram (P&ID) editor was only accessible through FEP. With these editors an
analyst could construct from scratch as well as modify fault tree, event tree, and plant drawing
graphical figures needed in a PRA.

Previous versions of SAPHIRE consisted of the suite of these modules. Taking advantage of the
Windows 95 (or Windows NT) environment, all of these modules were integrated into SAPHIRE
Version 6; more features were added; and the user interface was simplified. With the release of
SAPHIRE versions 5 and 6, INL included a separate module called the Graphical Evaluation
Module (GEM). GEM provides a highly specialized user interface with SAPHIRE, automating
SAPHIRE process steps for evaluating operational events at commercial nuclear power plants.
GEM has been superseded in SAPHIRE Version 8 by way using customized Workspaces that
provide specific kinds of analyses.

The development of the new SAPHIRE Version 8 includes new features and capabilities. These
features and capabilities are related to working with larger, more complex models and improving
the user-friendliness of SAPHIRE's interfaces while retaining key functionality of Version 7.

Version 8 is being developed to support NRC PRA models and to run them as an integrated
model (e.g., Level 1 with external events). The graphical user interface has also improved from
SAPHIRE 7 to support NRC programs such as the Significance Determination Process (SDP)
and the Accident Sequence Precursor (ASP). A tailored interface for the SDP and the ASP
programs has been developed. The interfaces for the SDP, ASP, and general analysis
introduce the concept of a "workspace" in which the analyst may run and save different
analyses. The use of workspaces enables the user to separate the model construction from the
model analysis, thereby improving the quality of analysis being performed when using
SAPHIRE.

The SAPHIRE Quality Assurance (QA) Manual provides the details to identify the methodology
used to provide a planned and systematic approach required to guarantee the quality of the
SAPHIRE software. To ensure the required quality is satisfied, the SAPHIRE development
team applies the methodology needed to verify the design quality and to validate the software
quality into the SAPHIRE software product. In addition, this document provides an overview
into the general SAPHIRE QA process. Specifically, the report first outlines and describes the
key part of the process. Second, the report discusses processes which address "building-in"
quality assurance, and the formal testing program that is used to ensure software quality during
the development cycle. Lastly, it concludes the report by reviewing the topics addressed.

2

In order to provide context to the complexity of a modern analysis code such as SAPHIRE (and
its associated implications on testing), a list of salient features found in the software is provided
in Appendix A. The combination of breadth and depth in these features shows the potential
complexity that may be found in software as extensive as SAPHIRE.

Appendix B provides a template for a QA Checklist that is used to perform periodic inspections
to monitor the SAPHIRE product quality. The checklist provides the identification for each
inspection topic, an indication if the inspection, passed, failed, or was not applicable, as well as
a column that may be used to insert specific comments regarding the inspection topic. Options
for methods used to conduct the evaluation are random sampling, interviews, and observations.
Assessment techniques can be modified to use more than one approach or a different approach
than suggested in the checklist. The decision to use one or more techniques is conducted at the
option of the evaluator.

In order to ensure quality of SAPHIRE, the important SAPHIRE features must be identified.
Once these features are known, tests can be generated that would evaluate each feature. The
results of these tests are described in Appendix C.

1.2 Summary of the SAPHIRE Quality Assurance

The SAPHIRE QA process encompasses several activities the INL uses to ensure quality
throughout the development cycle. These activities are illustrated in Figure 1 and are described
in this report.

3

Figure 1. SAPHIRE quality assurance process

As part of the overall QA process, the SAPHIRE TV&V process and results were previously
documented in NUREG/CR-6688, Testing, Verifying, and Validating SAPHIRE Versions 6.0 and
7.0 (Smith et al, 2000) and NUREG/CR-6952, Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) Vol. 6 Quality Assurance Manual (Smith et al,
2008). Within these documents, the existing TV&V was shown to depart from older V&V efforts
(e.g., for versions 4 and 5) by focusing on the development and execution of a set of automated
test scripts. For SAPHIRE 6.0 and 7.0, the TV&V process was expanded and automated so
that the validity of the core functionality of SAPHIRE can be verified on an ongoing basis with
each incremental release. For SAPHIRE 8, quality assurance activities not only included a
significantly augmented test suite, but additional activities for compliance with applicable
software guidance. These activities correspond to "Level 1" in NUREG/BR-0167, "Software
Quality Assurance Program and Guidelines," February 1993, the primary guidance document
for SAPHIRE, and to some software integrity level "1" activities in IEEE Std 1010-2004, "IEEE
Standard for Software Verification and Validation. Releases of SAPHIRE will have to pass the
acceptance tests given in the Acceptance Test Plan.

4

A released version of SAPHIRE represents an incremental version of the "current release" that
is made generally available. Note that at times, significant enhancements and additions were
introduced as part of these released versions, so while existing bugs may be fixed, it is possible
that new bugs are introduced via these new features. Nonetheless, for each incremental
version, the SAPHIRE software must pass an extensive automated test process to ensure that
existing calculation features are not compromised. Definitions of the software release terms
used by the SAPHIRE development team include:

Beta The "beta" version of SAPHIRE is that numbered version (e.g., 8.x) that is
currently under development at the INL. This version is used to add new
features and to make significant modifications to either the analysis or
user interface portions of the software. Since this version is in
development, it is possible that features are incomplete or modification
may leave the software in an unstable state. In addition, the software
documentation may not be available specific to this version of the
software. This version is not available for general release.

Current Release The "current release" version of SAPHIRE is the most recent numbered
version of the software that is "frozen." The term "frozen" indicates that
the analysis and user interface portions of the software will not be
modified, with the exception of needed changes related to programming
errors or limitations. Typically, the current release is the version that
undergoes the largest amount of use, and consequently, has the highest
degree of testing.

N-1 Release The "N-1 release" version of SAPHIRE is the second-to-last released
"frozen" version.

Note that for all versions of SAPHIRE, transfer of the software or related information (in
electronic or hardcopy format) is prohibited unless prior approval is obtained since the software
is subject to U.S. export control regulations.

For the SAPHIRE QA, a variety of techniques is used to assure the integrity of the SAPHIRE
software, including:

• Design changes
* Tests
* Documentation
* Version control
* Bug fixes

1.2.1 Project Scope and Organization

All NRC work assigned to a DOE national lab is governed by NRC Management Directive 11.7,
NRC Procedures for Placement and Monitoring of Work with the Department of Energy. The
NRC assigns each project a unique Job Code Number (JCN), is funded separately, and is

5

assigned a NRC Project Manager and NRC Technical Monitor. NRC Management Directive
11.7 establishes a controlled and monitored process for requesting services of a national lab,
work planning, work authorization and initiation, work progress monitoring, reporting, work
termination and project closeout.

The organizational structure of the SAPHIRE software development team influences and
controls the software quality. Roles and responsibilities within the organizational structure
provide the development team with the freedom, flexibility and objectivity to evaluate and
monitor the software quality as well as verify problem resolutions. This structure enables the
development team to tailor the maintenance and development activities, techniques, and
methodologies for problem identification, reporting and resolution, testing, records retention, and
configuration management.

For the INL, Software Quality Assurance (SQA) requirements are contract driven and
interpreted from DOE Order 414.1C, "Quality Assurance", 10 CFR 830 Subpart A, "Nuclear
Safety Management", and ASME NQA-1-2000, "Quality Assurance Requirements for Nuclear
Facility Applications."

INL will follow NRC Management Directive 11.7 "Procedures for Placement and Monitoring of
Work with the Department of Energy" related to software development. This directive suggests
that "all software development, modification, or maintenance tasks shall follow general guidance
provided in NUREG/BR-0167 "Software Quality Assurance Program and Guidance." SAPHIRE
8 will follow the requirements for Level 1 software defined in Section 1.2 of NUREG/BR-0167.
The NRC performs an audit of the software QA implementation once a year against the
requirement of NUREG/BR-0167.

1.2.2 Management

The organizational structure of the SAPHIRE software development team influences and
controls the software quality. Roles and responsibilities within the organizational structure
provide the development team with the freedom, flexibility and objectivity to evaluate and
monitor the software quality as well as verify problem resolutions. This structure enables the
development team to tailor the maintenance and development activities, techniques, and
methodologies for problem. identification, reporting and resolution, testing, records retention, and
configuration management.

As SAPHIRE is currently in the operations and maintenance phase of the software development
lifecycle, software development procedures and supporting standards are tailored to provide an
appropriate level of quality, based upon a graded approach. The graded approach integrates
the following INL software management processes, standard, and procedures:

" Software Management which identifies responsibilities, development methodologies, tools,
and deliverables

" Quality Assurance activities to assure that the final software application meets the customer
needs for quality and timeliness

6

* Configuration Management and Change Control to monitor and uniquely identify baselines,
changes that are requested, evaluated, approved, and tested, as well as backup and
recovery actions

" Software defect reporting and resolution for promptly addressing and resolving software
errors

* Maintenance of the software to remove latent errors (corrective maintenance), respond to
new or revised requirements (preventive maintenance), and to adapt to software changes in
the operating environment (adaptive maintenance)

* Requirements and Design activities identified in contract documents

* Testing activities, including automated test scripts and results identified in the SAPHIRE
Acceptance Test Plan. These test procedures demonstrate the adherence to the
requirements specified in the NRC forms.

* Recording and implementing lessons learned

1.2.3 Tasks and Responsibilities

Management provides oversight activities as well as monthly status reports, draft reports, and a
final report of the TV&V activities that are performed. The SAPHIRE principal investigator
directs the roles, responsibilities, and tasks of the software development team. Many of the
quality management tasks and activities are conducted by product teams but are also reviewed
by the principal investigator.

1.2.4 Change Design and Testing Procedure

Software developers follow the SAPHIRE Change Design and Testing Procedure when adding
a new feature or revising an existing capability. This procedure first describes the general
approach to changes, and then describes processes that are more specific. The process stages
include design and development, testing, and documentation. The initial design effort
corresponds to the size and complexity of the change. Developers use a cyclical prototyping
design methodology as a means to clarify and refine the change. The prototyping process
involves the requestor throughout development. The developers will interact with the
requestor(s) both initially and throughout the design and development process to ensure the
change accomplishes the expected goal.

Changes and additions to the software vary from very small bug fixes to significant
enhancements and new capabilities. The complexity of a change or addition also varies by
item. Therefore, the developers use a graded approach to design. They spend more time and
effort on larger and/or more complex changes than on relatively simple items. Areas of changes
or bugs also dictate the level of effort. For example, problems in cut set generating are much
more important than problems in report areas. Enhancements to cut set generation are
researched much more carefully than enhancements to reports.

7

The frequency and formality of communications with the requestor also corresponds to the size
and complexity of the change. This ensures that time and money is spent wisely.

The SAPHIRE developers utilize a cyclical, or whirlpool, prototyping software development
methodology. The developers prepare prototypes of a proposed change or system, which can
then be evaluated by both the developer and requestor, resulting in the development of a more
refined prototype. This iteration process helps to clarify requirements, identify weak areas, and
evolve and refine the design. Pictorially, the iteration process resembles a spiraling whirlpool or
a target, where with each iteration, the cycle becomes smaller and tighter, until the final goal is
achieved.

The cyclical prototyping methodology requires a starting point, which entails a reasonably clear
definition of the initial problem and a general solution. When this has been achieved, the
iterative development cycle begins.

The first step in designing a change to SAPHIRE requires that the developers and requestors
define and discuss the problem and propose a solution. The developer should gain a broad
understanding of the goal of the change, and the requestor should understand in general terms
how the proposed solution will accomplish the goal.

At this point in the process, the change will be summarized in a SAPHIRE Change Request
Form (see Appendix B), where the problem will be summarized and categorized. Once a clear
definition of the change has been identified, additional items are considered, including:

* When applicable, define the necessary inputs and expected outputs.
* Determine the approximate complexity and level of effort required to accomplish the task.
" Consider how existing code functionality can be leveraged to help accomplish the task.
* Consider potential effects on other parts of SAPHIRE.

The next step is to prove the concept. This means developing key internal functions as well as
a rudimentary interface to access and test those functions. This step serves to test the
feasibility of the solution, and helps the designers understand the problem. The results of this
step are used for further discussion between the developer and the requestor. This is
considered the first iteration of the prototype. Depending upon the results, the design may be
modified and refined. The prototype will be modified or rewritten to reflect the information
learned.

An iteration of the software should improve the functionality of the change to bring it closer to its
goal. Successive passes, as the design and prototype stabilize, will incorporate more and more
of the following items:

* Additional supporting functions
* Refined and more complete user interface
* Integration into the SAPHIRE user interface
" Auxiliary functions to facilitate ease of use

8

Auxiliary functions are niceties that contribute to ease of use. They vary according to the task,
but may generally include such things as customizing, sorting, and/or saving data, generating
reports, loading and extracting data between projects, toolbar short-cuts, and individual and bulk
processing of data. These types of auxiliary functions are added as time and budget permit.
Depending on the scope and complexity of the task, the requestor and the developer maintain
contact throughout the development process. Specifically, the requestor or a designated group
of users will be given the opportunity to see, try, and comment upon prototypes at logical points.

As a prototype is refined, it approaches a point where satisfies the solution requirements. At
this point, the SAPHIRE Change Design and Testing Checklist is completed. Completing this
checklist will help assure that a standard list of coding issues have been addressed.

1.2.5 Approach to Bug Fixes and New Features

As new features and bug fixes are made, the INL developers follow a standard approach to
integrating these items into SAPHIRE. For bug fixes, notes are taken from the reporting user
describing the general context of the bug, as well as systematic actions to reproduce the bugs.
This bug information includes acquiring a copy of the user's database, when necessary.
Reporting problems or suggesting features can be done using the SAPHIRE web site
(http://saphire.inl.gov) through the change request function. (See Appendix B for additional
information)

A software problem is classified and prioritized according to severity. A bug is considered
"minor" if it inconveniences the user, but a workaround exists to produce a correct answer. A
bug is "major" if it prevents the user from obtaining the correct answer. Problems in more
commonly used features are considered a higher priority than those found in less used features.
User deadlines are also considered.

Bug fixes are tested in the environment in which they were reported, as well as other places if
possible side effects are suspected. Sometimes, a release candidate is made available to the
reporting user or group of users to ensure that the problem has been satisfactorily fixed. Once
a bug has been resolved, it is added to the list of changes for the next official version, which
must pass the set of acceptance tests described in the next section.

Software enhancements follow much the same approach as bug fixes. Enhancements are
prioritized and implemented, with intermediate testing by the developer and often by the
requestor. Once the process and results appear acceptable, the feature is added to the next
official release.

1.2.6 Configuration Management and Control

Quality assurance reviews configuration management and control processes to ensure that only
authorized changes are made to the software. All software modules that have been tested,
documented, and approved for inclusion into the next release of the software are baselined.
The software/system database "librarian" controls the baselined source code. Copies of current
build routines needed to construct the software, including all copies of all build routines used in
all prior releases are also under the librarian control.

9

SAPHIRE uses a configuration management database as a control library for all information
related to the development of software fixes, enhances, baselines, and subsequent releases.
Processes are in place to uniquely identify all components, modules, documentation, error
reports, test suites, and test results through the establishment of a configuration control tracking
number. The control library is kept on a server, where back-ups are regularly made. (Individual
developers/programmers machines are periodically backed up as well). Controls are in place to
preclude multiple users from simultaneously accessing the same information. A source code
version control library requires that individual programmers "check-out" all files that they intend
to modify. Prior to "check-in", programmers must explain any changes made. A record is kept
of all changes, both as explained by the developer, and as individual copies of each version of a
file. At any time, the developer can retrieve past versions intact, if necessary. The SAPHIRE
software program is continually modified, in response to user reported bugs and suggestions,
and contractually specified enhancements. The version control procedure ensures a methodical
approach to tracking and releasing these changes.

Bug fixes and all supporting documentation are placed under configuration control. Notes from
the reporting user are obtained describing the general context of the bug, as well as step-by-
step actions to reproduce the bugs. This includes acquiring a copy of the user's database,
when necessary. The bug is classified and prioritized according to severity. A bug is
considered "minor" if it inconveniences the user, but a workaround exists to produce a correct
answer. A bug is "major" if it prevents the user from obtaining the correct answer. Bugs found in
more commonly used features are considered a higher priority than those found in less used
features. User deadlines are also considered. Bug fixes are tested in the environment in which
they were reported, as well as other places if possible side effects are suspected. Sometimes,
a release candidate is made available to the reporting user or group of users to ensure that the
problem has been satisfactorily fixed. Once a bug has been resolved, it is added to the list of
changes for the next official version, which must pass the set of acceptance tests described in
the next section.

Software enhancements and supporting requirements and documentation are also placed under
configuration control. Enhancements are prioritized and implemented, with intermediate testing
by the developer and often by the requestor. Once the process and results appear acceptable,
the feature is added to the next official release.

SAPHIRE uses a configuration management database as a control library for all information
related to the development of software fixes, enhances, baselines, and subsequent releases.
Processes are in place to uniquely identify all components, modules, documentation, error
reports, test suites, and test results through the establishment of a configuration control tracking
number.

Bug fixes and all supporting documentation are placed under configuration control. Notes from
the reporting user are obtained describing the general context of the bug, as well as step-by-
step actions to reproduce the bugs. This includes acquiring a copy of the user's database,
when necessary. The bug is classified and prioritized according to severity. A bug is
considered "minor" if it inconveniences the user, but a workaround exists to produce a correct
answer. A bug is "major" if it prevents the user from obtaining the correct answer. Bugs found in
more commonly used features are considered a higher priority than those found in less used

10

features. User deadlines are also considered. Bug fixes are tested in the environment in which
they were reported, as well as other places if possible side effects are suspected. Sometimes,
a release candidate is made available to the reporting user or group of users to ensure that the
problem has been satisfactorily fixed. Once a bug has been resolved, it is added to the list of
changes for the next official version, which must pass the set of acceptance tests described in
the next section.

Software enhancements and supporting requirements and documentation are also placed under
configuration control. Enhancements are prioritized and implemented, with intermediate testing
by the developer and often by the requestor. Once the process and results appear acceptable,
the feature is added to the next official release.

1.2.7 Acceptance Testing/Automated Testing

Prior to any official SAPHIRE release of Version 8, the software is run through a series of
automated tests. The tests simulate user input to the computer through a test script, and results
are captured and compared to expected results. This ensures that given a static input PRA file,
the risk or reliability results from SAPHIRE will be consistent from one release to the next.

These tests were developed by first identifying the critical tasks performed in a PRA. Then
these tasks were mapped to the SAPHIRE functions that perform these tasks (Appendix C
contains additional detail). The critical functions were determined to include the following:

* Fault tree analysis
* Event tree and sequence analysis
* End state analysis
* Importance measures analysis
* Uncertainty analysis
* Change sets
* Data utility functions
* Workspace functionality

Next, a variety of models are selected, with varying degrees of size and complexity, based on
suitability for adequately testing one or more critical functions. These models mainly consist of
actual PRA models developed by experienced analysts.

Test scripts were developed to exercise essential SAPHIRE functions, with a quantitative
emphasis. The test scripts mimic actions taken by an analyst, such as starting SAPHIRE and
navigating the user interface by selecting menu options, clicking buttons and typing information.
Results are saved and compared against expected results. A summary and a detailed report of
the results of the tests are produced, so that an overview of the results can quickly be
determined, and any failures (or successes) can be traced in more detail.

A change is not considered complete until the results have been tested and found reasonable.
Developers and key users will test to see that the change works as expected and is free of
defects. Changes and new capabilities will not be released until the results are deemed

11

satisfactory and correct. When the change has been accepted, the SAPHIRE Change Form will
be updated to document the completion of development.

Prior to official release of a version, SAPHIRE's automated test suite must complete
successfully (100% of all tests). The success of the suite is a good indicator that the new
change does not adversely affect other areas of the code. Rarely do changes and bug fixes
change the acceptable results of the test. On the unusual occasion when this happens, the
target test results are modified to match the new accepted results for future runs. The reasons
for the results modification are documented and cleared by an authority on the subject matter.

When the tests produce expected results, the correctness and stability of SAPHIRE is validated.
The tests exercise various features on assorted databases, with substantial overlap on key
features to provide added confidence.

Quality is not "built-in" through the testing process, rather, quality is implemented throughout the
lifecycle, beginning with the examination of the requirements, design, lessons learned from
previous releases and reviews of software defect reports.

A Software Verification and Validation Plan (SVVP) was developed to make sure that all
requirements specifications in the requirements traceability matrix (RTM) are implemented and
those new features do not affect existing code functionality or design. The SWP is a
consolidated document used in conjunction with the RTM and design documentation, for
tracking the software development, testing and implementation. Testing of new features
implemented for each release of the software is done in accordance with the Acceptance Test
Plan. The SWP, ATP, and design documentation is updated, as necessary, for each release of
SAPHIRE by the development team.

Models, with varying degrees of size and complexity, based on suitability for adequately testing
one or more critical functions are then selected. These models mainly consist of actual PRA
models developed by experienced analysts. Test scripts have been developed to exercise
essential SAPHIRE functions, with a quantitative emphasis. New test scripts are developed for
software enhancements, as needed. These test scripts mimic actions taken by an analyst, such
as starting SAPHIRE and navigating the user interface by selecting menu options, clicking
buttons and typing information. Results are saved and compared against expected results. A
summary and a detailed report of the results of the tests are produced, so that an overview of
the results can quickly be determined, and any failures (or successes) can be traced in more
detail.

The test suite is evaluated against significant changes and new features. New tests are
developed to check a new feature when the developer and customer agree that it is appropriate.
To develop a new test, a suitable test scenario with a database and validated correct answers
must be determined.

SAPHIRE testing also utilizes a test witness monitor form as shown in Figure 2.

12

Revision 2

SAPHIRE Test Witness Monitor Form

Name of Witness:

Signature of Witness:

Date:

Time:

Software Version being
tested:

(Name and Build Number
Version)

PRE-TEST ACTIVITIES STATUS

Test Schedule Established YES [] No[] N/A [

Test Procedures Reviewed YES [] No[) N/A []

Test Environment setup in YES [] No[] N/A [I
accordance with Test
Procedures

Test Activities

Test Procedures are used YES [] No[[N/A[]

Test Environment used YES [] No[] N/A

Test Deviations documented YES [I No] N/A

Test Nonconformance YES [3 No[] N/A [
documented

Post Test Activities

Verify Test Deviations YES [] No [] N/A []
Documented

Test Deviations Corrected YES [S No[] N/A []

Additional Comments

Software Test Procedure(s)
used:

i

(Name and Version)

Test Platfonn(s) Used:

Test type: Automated [I Manual []

Test Results: Pass [3 Fail [I

Figure 2. SAPHIRE Test Witness Monitor Form

Each new version of SAPHIRE undergoes NRC review and beta testing before its release as
shown in the release management flow diagram in Figure 3. Beta testing helps to ensure that
the results produced by the new version are correct and that the software is user-friendly and
functional. Beta testers are analysts experienced with PRA methods and terminology and
typically are familiar with earlier versions of SAPHIRE.

13

Revision 6

SAPHIRE Release Management
- NRC•P•`I`TM A•thorizes New Version* >g-.

*SAPHIRE eso hne ouls E ouetto o
Software Changes il Are Checked Back Changed Modules

- Are Complete -1 Into RCS-- -Are Reviewed by- -

'~ F F -A Not Ok II
Compiled SAPHIRE
Version x Tested via

Not Ok Acceptance Test Plan
(and Witness form)

Not OkEl

ie Build 'Read Me" Change
RCS Check install Log Documenting
stone -and uninstall Modifications

laor In]Complete

*Release decision predicated on:
(1) Milestones in INRC requirements documents or,
(2) INL/NRC evaluate and NRC approves when a new version

should be released based on severity (critical) or quantity of bug
fixes and improvements.

Completed By:

Date: Version #:

Figure 3. SAPHIRE release management process

In addition to the automated testing employed by the SAPHIRE quality assurance, the
development team utilizes a multi-faceted approach to testing. This approach, illustrated in
Figure 4, is comprised of three items: internal testing, external testing, and automated testing.
"Internal" testing (or developmental testing) includes those checks performed by the
development team itself to ensure quality during the development process. External testing are
those evaluations performed by risk and reliability end-users using, in many cases, "real world"
models. Lastly, the automated testing are those tests that are used to ensure quality for each
incremental SAPHIRE release and are described in Appendix C of this report.

14

Figure 4. Types of testing used during the SAPHIRE development process

1.3 Reviews

As part of the SAPHIRE 8 development, the team will perform and document, as appropriate,
periodic peer reviews and code walkthroughs, including reviews of preliminary and critical
designs proposals. Since non-conformances are reported and logged through the SAPHIRE
Change Request tracking system, medium and high priority reports will be reviewed (and the
review documented).

Peer reviews and code walkthroughs will be reviewed independently when possible by IV&V
members. NRC performed an internal peer review, and not an external peer review for the first
release of SAPHIRE 8. The NRC SAPHIRE users also test and comment on SAPHIRE code
modifications. In addition, NRC performs audits against NUREG/BR-0167 for SAPHIRE.

Reviews that have been completed include:

* Preliminary design review by INL on SDP interface
* Preliminary design review by INL human factors department
* Preliminary design review by INL
* Preliminary design review by the NRC on SAPHIRE

15

* Preliminary design review by the NRC on the SDP module
* Design review by the NRC as part of the internal peer review
* Design review by INL

To help in design of the software, INL has also consulted experts within INL (e.g., human factors
experts in the design of a user interface).

The NRC also performs periodic reviews of the SAPHIRE quality assurance against the
guidance in NUREG/BR-0167, "Software Quality Assurance Program and Guidelines," February
1993.

1.4 Independent Verification and Validation

The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the
SAPHIRE development is to assess the activities that results in the specification,
documentation, and review of the requirements that the software product must satisfy, including
functionality, performance, design constraints, attributes and external interfaces. The IV&V for
SAPHIRE 8 started after the software engineering and software development of SAPHIRE had
already been in development. Consequently, the IV&V reviewed the requirements specified in
the NRC requirements documents to verify these requirements were being followed. As part of
the IV&V, the traceability of requirements is of concern. Requirements traceability is essential
to all software development activities. Without a well documented way to trace requirements,
design components may be overlooked, and test cases missed.

For the IV&V team to properly evaluate the requirements, it had to obtain requirements from the
NRC requirements documents. In addition, the NUREG/BR-0167, Software Quality Assurance
Program and Guidelines, requires the development of Software Requirements Documentation
that specifies the requirements that the software to be developed/maintained must meet. An
item can be called a software requirement only if its achievement can be verified and validated.
It is important that each software requirement be traceable throughout the stages of the
software life cycle.

The IV&V team provided status, interim reports, and a final report to the SAPHIRE development
team. The IV&V Software Requirements Documentation is intended to provide the
specification, documentation, and review of the requirements to meet the contractual
commitments prepared by the sponsor, the Nuclear Regulatory Commission. Further, IV&V
evaluates and assesses the processes and products developed during each phase of the
software life cycle. The SAPHIRE 8 development team is implementing a "spiral" rapid
application approach to the product development. One of the roles that IV&V performs,
regardless of the development methodology, is to analyze products developed throughout the
development process. The intent is to provide a level of confidence to the sponsor that the
quality of the software product and supporting documentation is built into the software, not
tested in. Evaluating the supporting documentation for each product is one aspect of providing
this level of confidence.

16

IV&V supports and is complementary to the QA activities. To achieve this support, IV&V must
also evaluate the processes identified in the documentation to ensure that the development
team is implementing the processes and methodology that ensures a high-level software
product. Feedback from the IV&V team was used to improve the quality of SAPHIRE 8 as it
neared its final release.

1.4.1 Version Control

The INL software developers use version control for both the formally released SAPHIRE
versions, as well as for source code. For each formal release of the software, the developers
perform an acceptance test: the software must pass a suite of automated tests prior to official
release.

Each official release of SAPHIRE is assigned a unique version identifier. The release is
bundled into a standard installation package for easy and consistent set-up by individual users.
Included in the release is a list of bug fixes and new features for the current release, as well as
a history of those items for past releases. Each formal release of SAPHIRE will have passed an
acceptance test described in the Acceptance Test Plan provided in Appendix C (the Acceptance
Test Plan, however, will be updated as necessary).

In addition to assignment of a unique version identifier for an official software release, each
source code file is kept in a controlled library. (Source code is a collection of all the computer
instructions written by developers to create the finished product.) The library is kept on a server,
where back-ups are regularly made. (Individual developers/programmers machines are
periodically backed up as well.)

The source code version control library requires that individual programmers "check-out" all files
that they intend to modify. Prior to "check-in", programmers must explain any changes made.
A record is kept of all changes, both as explained by the developer, and as individual copies of
each version of a file. At any time, the developer can retrieve past versions intact, if necessary.

The SAPHIRE software program is continually modified, in response to user reported bugs and
suggestions, and contractually specified enhancements. The version control procedure
described above ensures a methodical approach to tracking and releasing these changes.

1.4.2 QA Standards and Practices

.Since INL follows NRC Management Directive 11.7 "Procedures for Placement and Monitoring
of Work with the Department of Energy" related to software development, INL also follows
general guidance provided in NUREG/BR-0167 "Software Quality Assurance Program and
Guidance." SAPHIRE 8 will follow the requirements for Level 1 software defined in Section 1.2
of NUREG/BR-0167.

The content of all QA standards, processes and procedures as well as documentation and
coding conventions that are utilized are assessed to ensure the quality of the SAPHIRE code
and supporting information used to construct the software release. Quality functions include the
reviews of the basic design and programming activities involved. Information under the
cognizance of the quality review includes, but is not limited to the following:

17

" Documentation standards
* Design standards
• Coding standards
* Commenting standards
* Testing standards

To assess these items, QA reviews of software requirement specifications, design
specifications, verification and validation plans, test documentation, and configuration
management processes. Methods used to assess these items include functional audits to
ensure that all requirements are being implemented, physical audits to verify the consistency,
completeness, and correctness of the software, software documentation and its readiness for
release, and in-process audits to verify the consistency of the design.

Many of these activities for SAPHIRE are conducted as identified in the Software Acceptance
Test Plan. This includes reviews of the contract documents, which provide the basic
requirements for maintaining the SAPHIRE software. As stated above, the development team
conducts automated testing to assure that all requirements have been implemented correctly.

Metrics are an integral part of tracking quality of the software development process and
products. While numerous possible metrics exist, the SAPHIRE project will focus on using the
metrics of:

• Earned Value to track cost and schedule variances. This metric as measured by variances
will be reported monthly to the NRC.

* Trending of calculation errors as reported in the Change Request tracking system.

Other metrics derived from source code, such as McCabe's complexity measure, may be
considered for future use.

In addition to formal reviews, INL also conducts code review and inspections when legacy code
is ported over to the new development environment.

1.4.3 Documentation

As changes to SAPHIRE are finalized, a description of the change is documented in several
places. The developers describe the change when they check-in the altered source code into
the version control library. Upon official release, the change is noted in a "read me" text file that
is distributed with SAPHIRE.

SAPHIRE has a help reference and training manuals, including one specific for the SAPHIRE
Version 8 user interface "Significance Determination Process." These documents are
maintained as necessary to reflect new features and capabilities.

Documentation is traditionally developed and implemented to govern and provide quality
assurance oversight of the requirements implementation, product design, code development
and testing, verification, validation and maintenance of software. As the SAPHIRE product is

18

currently in an operations and maintenance mode, the focus is primarily on providing
enhancements and minor bug fixes. As such, a graded approach is applied to provide a tailored
method for document generation. The development team obtains and retains change request
information and documents lessons learned from previous development efforts. Materials for
new releases are developed to provide the end user with documents that identify the SAPHIRE
product's key functional area, the cut-solving algorithm. These documents provide the
mechanism for the product team to perform internal quality reviews to ensure that all
requirements for product enhancement and/or bug fixes have been implemented.

User documentation includes the SAPHIRE Advanced Training Manual, the SAPHIRE User's
Manual, and the SAPHIRE Technical Reference Manual. These manuals are updated as
necessary to reflect changes in the software.

Each release of SAPHIRE is bundled into a standard installation package for easy and
consistent set-up by individual users. Included in the release is a list of bug fixes and new
features for the current release, as well as a history of those items for past releases.

19

2. TESTING APPROACH

The test approach used for SAPHIRE Version 8 will be based upon the test approach for
previous releases of the SAPHIRE tool. Taking into consideration lessons learned from the
SAPHIRE V&V efforts, where applicable, actual tests and test specifications from the older
testing were used. Additional tests were developed specifically for the newer QA process,
primarily due to the fact that the test could be automated. This automation aspect of testing
allows the testing team to rerun a battery of calculations as many times as they wish, regardless
of the complexity of the test. In order to decide which tests were to be used and why, a test plan
was developed. This plan followed the general procedures used in the earlier V&V efforts, but
was modified to take advantage of unique features found when performing automated testing.
Thus, the updated testing plan for the QA includes the following steps:

* Determining the areas requiring testing. This step is similar to the V&V process of identifying
vital and non-vital functions. Additional features are checked in the current V&V process
then were tested in the previous V&V efforts.

" Developing the test model, including the identification of available SAPHIRE PRA databases
that would adequately test SAPHIRE functions.

Availability of a variety of different plant data models enhances the viability of the test suite.
Core features are exercised repeatedly across tests (and their associated models) in the
process of performing each test's specific analysis task. Use of different plant and database
models, from the simple DEMO database to the SPAR Revision 2QA, SPAR 3i models to
NUREG-1 150 models, provides quality and reliability assurance that any variations among
models are appropriately handled by any released version of SAPHIRE. While the current tests
do not address every feature within SAPHIRE, they do cover the important calculational parts of
the software. Also, some specific PRA areas are tested using only a single test case.

Models and test cases are added as needed to the test suite to improve the overall coverage of
testing vital functions in SAPHIRE.

2.1 Features to be tested

To determine the SAPHIRE features most important to be tested, the critical tasks performed in
a PRA (e.g., fault tree analysis, event tree analysis, sensitivity analysis) were identified. Then
the SAPHIRE functions needed to accomplish each of these tasks were determined. The review
process produces a list of items to be tested, which PRA analysis experts using SAPHIRE
reviewed and revised. In summary, the following SAPHIRE functions are tested:

* Fault Tree Analysis, including cut set generation and quantification, application of recovery
rules (i.e., modifications made to the cut set results after they are generated), and the
capability to perform the analysis on a single fault tree or on multiple fault trees

21

" Event Tree and Sequence Analysis, including event tree sequence generation, sequence
cut set generation, quantification, application of recovery rules, application of partition rules
(i.e., steps to move particular cut sets to a specified end state category), and the capability
of performing the analysis on a single event tree/sequence or on multiple event
trees/sequences

* End State Analysis, including gathering cut sets by sequence end-state designation,
gathering of cut sets by partitioning rules, quantification, and the capability of performing the
analysis on a single end state oron multiple end states

* Importance Measures Analysis, for options available to quantify importance measures

* Uncertainty Analysis, for individual fault trees, using either Latin Hypercube or the Monte
Carlo sampling methods

* Uncertainty Analysis, for individual sequences or groups of sequences, using either Latin
Hypercube or the Monte Carlo sampling methods

" Change Sets, and other similar features, providing the capability to perform sensitivity
analyses (change sets contain user-defined modifications to basic event probabilities)

* Data Utility Functions intended to facilitate data handling and manipulation

" Mapping of systems, components, failure modes to basic events and then using them in
sequence analysis

" Linking event trees with the "Generate cut set" option checked used for the "large event
tree" PRA methodology

" Transformations, which are generally used only for fire or flooding analyses. Note that
version 8 does not currently allow for editing transformations, but they can be tested and
called through macros

" Seismic analysis

* Stress testing (record count up to 2 million sequences)

" Verification of the new user interface

" Significance Determination Process, Event and Condition Analysis, and General Analysis
workspaces

" External Event Model Results

* Shutdown Model Results

To test the above SAPHIRE functions, a variety of models were selected, with varying degrees
of size and complexity, based on their suitability for adequately testing the selected functions.

22

The intent of this effort was to acquire basic assurance that new updates or changes have not
compromised any existing capabilities. Size and boundary conditions of the PRA models were
not major issues. Databases of typical size and complexity were selected from among the
available models. A decision was made to test more features with less complex models than to
test fewer features with complex models. Generally, actual PRA models developed by
experienced analysts for analyzing nuclear power plants were used for the tests. Several tests,
including uncertainty distributions, importance measures and change sets were conducted on
artificial plant models. At a minimum, each feature tested was evaluated with at least two PRA
models. Further, many of the basic features (e.g., basic event probability generation, and
minimal cut set solving) were tested, by almost all the PRA models owing to the need to perform
these basic functions as part of a more complex calculation.

2.2 Features Not Tested

Like most software-development projects, time and budget constraints prohibited exhaustive
testing. The verification effort focused on quantitative aspects of SAPHIRE. While the tests and
acceptance criteria address a large part of the calculative functionality within SAPHIRE, the
tests do not cover 100% of SAPHIRE capabilities. For example, the current test suite did not
encompass every possible way of modifying cut sets after generation. Users can manipulate cut
sets after generation (e.g., "post-processing") by manually editing them, using "recovery rules,"
using the "prune" option, and performing a cut set update. However, if a modification is made to
SAPHIRE, for example, to update the recovery rule algorithm, the existing test suite will ensure
the modification did not change test results through regression testing. But the test suite does
test the most commonly used mechanisms of performing tasks in SAPHIRE. Other calculative
aspects not tested include the following:

* Event probability cut off (not frequently used due to the calculation speed of modern
computers and software such as SAPHIRE)

" Solving sequences without fault trees (an obsolete calculation technique that may be
removed from future versions of the software)

* Starting gate name (generally used only during development)

2.3 Test Descriptions

This section contains a complete list of test descriptions, referenced by one or more test
scenarios in the report. Note that, unless otherwise specified, SAPHIRE Version 8 test results
were compared with results from SAPHIRE Version 7 test results. Each test may be performed
on multiple PRA models.

Workspaces provide areas to analyze working copies of the models without affecting the models
themselves. There are three workspaces that provide different functionalities, Significance

23

Determination Process (SDP), Events and Condition Assessment (ECA), and General Analysis
(GA). If the workspace is not noted in the test description, the test is actually impacting the
baseline model. The interaction with the baseline model is usually defined as the Standard
Analysis interface. Note, for each test below, the Standard Analysis interface is tested unless a
specific Workspace (e.g., Events and Condition Assessment) is specified in the test title.

2.3.1.1 Test-01, Solve Fault Trees

Scenarios generate basic event data (with no change sets), solve (with cut set probability cutoff)
and quantify fault tree minimal cut sets, and recovery rules. The alternate case min cut upper
bound, base case min cut upper bound, and cut set totals are verified for each fault tree.

2.3.1.2 Test-02, Core Damage Frequency

Scenarios generate basic event data (with no change sets), solve (with cut set probability cutoff)
and quantify sequence minimal cut sets, and recovery rules. The alternate case min cut upper
bound, base case min cut upper bound, and cut set totals are verified for each sequence.

2.3.1.3 Test-03, Events and Condition Assessment: Auxiliary Feed Water out of
service for 72 hours

Scenarios exercise all aspects of operational event analysis including removal of equipment
from service and automated processing of all steps. These steps include basic event generation
with change sets; and generation, quantification, and recovery of cut sets. The number of
sequences; total CCDP; total core damage probability (CDP); total importance; and CCDP,
CDP, and importance for each sequence are verified.

2.3.1.4 Test-04, Events and Condition Assessment: Emergency Diesel Generator out
of service for three months

Scenarios exercise all aspects of operational event analysis, including removal of equipment
from service and automated processing of all steps. These steps include basic event generation
with change sets, and generation, quantification, and recovery of cut sets. The number of
sequences, total CCDP, total core damage probability (CDP), total importance, and CCDP,
CDP, and importance for each sequence are verified.

2.3.1.5 Test-05, Initiating Event Assessment: Transient with no other failures

Scenarios exercise the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated
steps performed for initiating event assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets.

2.3.1.6 Test-06, Initiating Event Assessment: Small Loss of Coolant Accident (SLOCA)
with no other failures

Scenarios exercise the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated

24

steps performed for initiating event assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets.

2.3.1.7 Test-07, Initiating Event Assessment: Steam Generator Tube Rupture with no
other failures

Scenarios exercise the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated
steps performed for initiating event assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets.

2.3.1.8 Test-08, Initiating Event Assessment: Grid-Related Loss of Off-Site Power
(LOOP) with no other failures

Scenarios exercise the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated
steps performed for initiating event assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets.

2.3.1.9 Test-09, Initiating Event Assessment: Plant-Centered LOOP with no other
failures

Scenarios exercise the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated
steps performed for initiating event assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets.

2.3.1.10 Test-lO, Initiating Event Assessment: Severe Weather LOOP with no other
failures

Scenarios exercise the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated
steps performed for initiating event assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets.

2.3.1.11 Test-11, Initiating Event Assessment: Extreme Severe Weather LOOP with no
other failures

Scenarios exercise the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated
steps performed for initiating event assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets.

2.3.1.12 Test-12, Initiating Event Assessment: Transient with AFW Failed

Scenarios exercise the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated

25

steps performed for initiating event assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets.

2.3.1.13 Test-13, Dominant Sequence Frequencies and Core Damage Frequency
Uncertainty

This scenario continues the tracking with an automated test script. Cut sets generated with cut
set probability cutoff and cut set size cutoff. Recovery rules are applied without cutoff. Cut set
update performed with no truncation. Project level Monte Carlo uncertainty performed on results
using 5000 samples.

2.3.1.14 Test-14, Fault Tree Uncertainty: Monte Carlo Method/Log Normal Distribution

This scenario consists of six variations that test uncertainty using the Monte Carlo simulation
technique for the log normal distribution type. The six variations use fault trees that consists of
an OR gate with a single basic event as its input. Each variation uses differing basic event
nominal probabilities and error factors. The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000 samples (simulated values) and a
random number seed of 4,321 for each test.

2.3.1.15 Test-15, Fault Tree Uncertainty: Monte Carlo Method/Normal Distribution

This scenario consists of variations that test uncertainty using the Monte Carlo simulation
technique for the normal distribution type. Two fault trees are used that consist of an OR gate
with a single basic event as its input, with differing basic event nominal probabilities and
standard deviation values. Fault tree combinations of five sample sizes and two seed values are
used for a total of ten tests for each tree. The 5th percentile, 50th percentile, 95th percentile,
and standard deviation results are verified.

2.3.1.16 Test-16, Fault Tree Uncertainty: Monte Carlo Method/Beta Distribution

This scenario consists of ten variations that test uncertainty using the Monte Carlo simulation
technique for the beta distribution type. The ten variations use fault trees that consists of an OR
gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and uncertainty values. The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000 samples and a seed of 4,321 for each
test.

2.3.1.17 Test- 17, Fault Tree Uncertainty: Monte Carlo Method/Chi Squared Distribution

This scenario consists of twelve variations that test uncertainty using the Monte Carlo simulation
technique for the chi-square distribution type. For ten of the variations, ten fault trees are used
that consists of an OR gate with a single basic event as its input. Each basic event has a
different nominal probability and uncertainty value (degrees of freedom). The 5th percentile,
50th percentile, 95th percentile, and standard deviation results are verified based on 5,000
samples and a seed of 4,321 for each test. For the other variations two fault trees are used that
consist of an OR gate with a single basic event as its input with differing basic event nominal
probabilities and uncertainty values. For each of these fault trees, four different sample sizes

26

and seed of 4,321 are used. The 5th percentile, 50th percentile, 95th percentile, and standard
deviation results are verified.

2.3.1.18 Test-18, Fault Tree Uncertainty: Monte Carlo Method/Exponential Distribution

This scenario consists of eight variations that test uncertainty using the Monte Carlo simulation
technique for the exponential distribution type. The eight variations use fault trees that consists
of an OR gate with a single basic event as its input. Each variation uses differing basic event
nominal probabilities. The 5th percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples and a seed of 4,321 for each test.

2.3.1.19 Test-19, Fault Tree Uncertainty: Monte Carlo Method/Uniform Distribution

This scenario consists of four variations that test uncertainty using the Monte Carlo simulation
technique for the uniform distribution type. The four variations use fault trees that consists of an
OR gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and upper end uncertainty values. The 5th percentile, 50th percentile, 95th
percentile, and standard deviation results are verified based on 5,000 samples and a seed of
4,321 for each test.

2.3.1.20 Test-20, Fault Tree Uncertainty: Monte Carlo Method/Gamma Distribution

This scenario consists of six variations that test uncertainty using the Monte Carlo simulation
technique for the gamma distribution type. The six variations use fault trees that consists of an
OR gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and uncertainty values (r). The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000 samples and a seed of 4,321 for each
test.

2.3.1.21 Test-21, Fault Tree Uncertainty: Monte Carlo Method/Maximum Entropy
Distribution

This scenario consists of seven variations that test uncertainty using the Monte Carlo simulation
technique for the maximum entropy distribution type. The seven variations use fault trees that
consists of an OR gate with a single basic event as its input. Each variation uses differing basic
event nominal probabilities and upper end and lower end uncertainty values. The 5th percentile,
50th percentile, 95th percentile, and standard deviation results are verified based on 5,000
samples and a seed of 4,321 for each test.

2.3.1.22 Test-22, Sequence Uncertainty: Monte Carlo Method! Dirichlet Distribution

This test scenario consists of four variations that test uncertainty analyses using the Monte
Carlo simulation technique for the Dirichlet distribution type. The first three variations each use a
three-branch event tree with differing failure probabilities and parameter values. The fourth
variation uses a 121-branch event tree. Change sets are used to correlate the basic events. The
5th percentile, 50th percentile, 95th percentile, and standard deviation results are verified.

27

2.3.1.23 Test-23, Fault Tree Uncertainty: Monte Carlo Method/Seismic Distribution

This scenario consists of four variations that test uncertainty using the Monte Carlo simulation
technique for the seismic distribution type. The four variations use fault trees that consists of an
OR gate with a single basic event as its input. Each variation uses differing basic event median
failure acceleration, screening G-level, Beta-R and Beta-U values. Uncertainty analysis is
performed using the Seismic analysis type. The 5th percentile, 50th percentile, 95th percentile,
and standard deviation results are verified based on 10,000 samples and a seed of 4,321 for
each test.

2.3.1.24 Test-24, Fault Tree and Sequence Uncertainty: Monte Carlo
Method/Constrained Noninformative Distribution

This scenario consists of five variations that test uncertainty using the Monte Carlo simulation
techniques for the Constrained Noninformative distribution type. The three variations involving
fault trees use fault trees that consists of an OR gate with a single basic event as its input with
differing basic event nominal probabilities. The two variations involving sequences use event
trees with differing initiating event nominal frequencies. The 5th percentile, 50th percentile, 95th
percentile, and standard deviation results are verified based on 10,000 simulated values for
each test.

2.3.1.25 Test-25, Fault Tree Uncertainty: Latin Hypercube Method/Log Normal
Distribution

This scenario consists of six variations that test uncertainty using the Latin Hypercube
simulation technique for the log normal distribution type. The six variations use fault trees that
consists of an OR gate with a single basic event as its input. Each variation uses differing basic
event nominal probabilities and error factors. The 5th percentile, 50th percentile, 95th percentile,
and standard deviation results are verified based on 5,000 samples (simulated values) and a
random number seed of 4,321 for each test.

2.3.1.26 Test-26, Fault Tree Uncertainty: Latin Hypercube Method/Normal Distribution

This scenario consists of variations that test uncertainty using the Latin Hypercube simulation
technique for the normal distribution type. Two fault trees are used that consist of an OR gate
with a single basic event as its input, with differing basic event nominal probabilities and
standard deviation values. Fault tree combinations of five sample sizes and two seed values are
used for a total of ten tests for each tree. The 5th percentile, 50th percentile, 95th percentile,
and standard deviation results are verified.

2.3.1.27 Test-27, Fault Tree Uncertainty: Latin Hypercube Method/Beta Distribution

This scenario consists of ten variations that test uncertainty using the Monte Carlo simulation
technique for the beta distribution type. The ten variations use fault trees that consists of an OR
gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and uncertainty values. The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000 samples and a seed of 4,321 for each
test.

28

2.3.1.28 Test-28, Fault Tree Uncertainty: Latin Hypercube Method/Chi Squared
Distribution

This scenario consists of twelve variations that test uncertainty using the Monte Carlo simulation
technique for the chi-square distribution type. For ten of the variations, ten fault trees are used
that consists of an OR gate with a single basic event as its input. Each basic event has a
different nominal probability and uncertainty value (degrees of freedom). The 5th percentile,
50th percentile, 95th percentile, and standard deviation results are verified based on 5,000
samples and a seed of 4,321 for each test. For the other variations two fault trees are used that
consist of an OR gate with a single basic event as its input with differing basic event nominal
probabilities and uncertainty values. For each of these fault trees, four different sample sizes
and seed of 4,321 are used. The 5th percentile, 50th percentile, 95th percentile, and standard
deviation results are verified.

2.3.1.29 Test-29, Fault Tree Uncertainty: Latin Hypercube Method/Exponential
Distribution

This scenario consists of eight variations that test uncertainty using the Monte Carlo simulation
technique for the exponential distribution type. The eight variations use fault trees that consists
of an OR gate with a single basic event as its input. Each variation uses differing basic event
nominal probabilities. The 5th percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples and a seed of 4,321 for each test.

2.3.1.30 Test-30, Fault Tree Uncertainty: Latin Hypercube Method/Uniform Distribution

This scenario consists of four variations that test uncertainty using the Monte Carlo simulation
technique for the uniform distribution type. The four variations use fault trees that consists of an
OR gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and upper end uncertainty values. The 5th percentile, 50th percentile, 95th
percentile, and standard deviation results are verified based on 5,000 samples and a seed of
4,321 for each test.

2.3.1.31 Test-31, Fault Tree Uncertainty: Latin Hypercube Method/Gamma Distribution

This scenario consists of six variations that test uncertainty using the Monte Carlo simulation
technique for the gamma distribution type. The six variations use fault trees that consists of an
OR gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and uncertainty values (r). The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000 samples and a seed of 4,321 for each
test.

2.3.1.32 Test-32, Sequence Uncertainty: Latin Hypercube Method/Maximum Entropy
Distribution

This scenario consists of seven variations that test uncertainty using the Monte Carlo simulation
technique for the maximum entropy distribution type. The seven variations use fault trees that
consists of an OR gate with a single basic event as its input. Each variation uses differing basic
event nominal probabilities and upper end and lower end uncertainty values. The 5th percentile,

29

50th percentile, 95th percentile, and standard deviation results are verified based on 5,000
samples and a seed of 4,321 for each test.

2.3.1.33 Test-33, Sequence Uncertainty: Latin Hypercube Method/Dirichlet Distribution

This test scenario consists of four variations that test uncertainty analyses using the Monte
Carlo simulation technique for the Dirichlet distribution type. The first three variations each use a
three-branch event tree with differing failure probabilities and parameter values. The fourth
variation uses a 121-branch event tree. Change sets are used to correlate the basic events. The
5th percentile, 50th percentile, 95th percentile, and standard deviation results are verified. Since
this distribution type was not available in version 5, version 6 results have been inspected for
acceptance and are used for comparison against subsequent incremental releases.

2.3.1.34 Test-34, Fault Tree Uncertainty: Latin Hypercube Method/Seismic Distribution

This scenario consists of four variations that test uncertainty using the Monte Carlo simulation
technique for the seismic distribution type. The four variations use fault trees that consists of an
OR gate with a single basic event as its input. Each variation uses differing basic event median
failure acceleration, screening G-level, Beta-R and Beta-U values. Uncertainty analysis is
performed using the Seismic analysis type. The 5th percentile, 50th percentile, 95th percentile,
and standard deviation results are verified based on 10,000 samples and a seed of 4,321 for
each test.

2.3.1.35 Test-35, Fault Tree and Sequence Uncertainty: Latin Hypercube Method!
Constrained Noninformative Distribution

This scenario consists of five variations that test uncertainty using the Monte Carlo simulation
techniques for the Constrained Noninformative distribution type. The three variations involving
fault trees use fault trees that consists of an OR gate with a single basic event as its input with
differing basic event nominal probabilities. The two variations involving sequences use event
trees with differing initiating event nominal frequencies. The 5th percentile, 50th percentile, 95th
percentile, and standard deviation results are verified based on 10,000 simulated values for
each test.

2.3.1.36 Test-36, Fault Tree Uncertainty: Monte Carlo Method/Histogram Distribution

This scenario consists of four variations that test uncertainty using the Monte Carlo simulation
technique for the histogram distribution type. The four variations use fault trees that consists of
an OR gate with a single basic event as its input. Each variation uses differing basic event
nominal probabilities and histograms (of percentage, area, and range types). The 5th percentile,
50th percentile, 95th percentile, and standard deviation results are verified based on 5,000
samples and a seed of 4,321 for each test.

2.3.1.37 Test-37, Fault Tree Uncertainty: Latin Hypercube Method/Histogram
Distribution

This scenario consists of four variations that test uncertainty using the Latin Hypercube
simulation technique for the histogram distribution type. The four variations use fault trees that

30

consists of an OR gate with a single basic event as its input. Each variation uses differing basic
event nominal probabilities and histograms (of percentage, area, and range types). The 5th
percentile, 50th percentile, 95th percentile, and standard deviation results are verified based on
5,000 samples and a seed of 4,321 for each test.

2.3.1.38 Test-38, Gathering of End States

This scenario generates basic event data (with no change sets) and gathers the end states
(without cut set probability cutoff, by sequence end state). The alternate case min-cut upper
bound and the number of cut sets are verified for each end state.

2.3.1.39 Test-39, End State Uncertainty: Monte Carlo Method

These scenarios perform multiple event sampling on all sequences that belong to a particular
end state (single uncertainty), as well as the collection of all end states (group uncertainty). The
mean, 5th percentile, median, 95th percentile, and standard deviation results are verified based
on 3,000 simulated values for each test.

2.3.1.40 Test-40, End State Uncertainty: Latin Hypercube Method

These scenarios perform multiple event sampling on all sequences that belong to a particular
end state (single uncertainty), as well as the collection of all end states (group uncertainty) . The
mean, 5th percentile, median, 95th percentile, and standard deviation results are verified based
on 3,000 simulated values for each test.

2.3.1.41 Test-41, Cut Set Verification

This test case consists of scenarios that compare cut sets from selected fault trees, sequences,
and end states. The cut set frequency, percent contribution to the total, and basic events in the
cut set are verified. Cut sets are solved and /or gathered with truncation, auto-recovered, and
updated. Sequences and fault trees are solved with and without their default flag sets. Also,
fault tree editing is briefly tested. This is done by opening the alphanumeric logic editor, saving
and converting logic to graphics, then pulling up the graphical editor and saving the graphics.
This test does not test specific editing features but it does verify that the original logic is
correctly loaded and saved. Failure of the logic to be preserved correctly would be detected with
incorrect cut set results.

2.3.1.42 Test-42, Link Small Event Tree

This scenario uses the Surry Large Early Release Frequency (LERF) Level 2/3 model
(SLERF) to link event trees using the small event tree methodology. Prior to link, each event
tree is loaded into the graphical editor and saved to ensure that the correct logic is preserved.
The sequences are then solved with cutoff. The alternate case min cut upper bound and
number of cut sets is verified for each Level 1 sequence.

31

2.3.1.43 Test-43, Partition Sequence Cut Sets

This scenario applies event tree partition rules to the sequences generated in scenario
reference number Test-42. These partition rules assign Plant Damage States (PDSs) to all
sequences with cut sets. These end states are then gathered by cut set partition. The alternate
case min cut upper bound and number of cut sets is verified for each PDS.

2.3.1.44 Test-44, Link Large Event Tree

This scenario uses the results from scenario reference number Test-43. The PDS event trees
created by the partition rules are linked using the large event tree methodology and create
sequence logic cut sets. The LERF end states are then gathered by sequence end state and re-
quantified using the Rare Event approximation. The alternate case min-cut upper bound and
number of cut sets are verified for each LERF end state.

2.3.1.45 Test-45, Fault Tree Importance Measures

This test case consists of scenarios that test importance measures calculations with fault trees
for each of the importance measures: ratio, difference, and uncertainty. For each event, the
name, number of occurrences, probability, Fussell-Vesely (or Birnbaum or uncertainty
importance), risk reduction ratio (or difference), risk increase ratio (or difference) results are
verified.

2.3.1.46 Test-46, Sequence Importance Measures

This test case consists of scenarios that test Sequence importance measures calculations for
each of the importance measures: ratio, difference, and uncertainty. For each event, the name,
number of occurrences, probability, Fussell-Vesely (or Birnbaum or uncertainty importance), risk
reduction ratio (or difference), risk increase ratio (or difference) results are verified.

2.3.1.47 Test-47, Sequence Group Importance Measures

This test case consists of scenarios that test Sequence Group importance measures
calculations for each of the importance measures: ratio, difference, and uncertainty. For each
event, the name, number of occurrences, probability, Fussell-Vesely (or Birnbaum or uncertainty
importance), risk reduction ratio (or difference), risk increase ratio (or difference) results are
verified.

2.3.1.48 Test-48, End State Importance Measures

This test case consists of scenarios that test End State importance measure calculations for
each of the importance measures: ratio, difference, and uncertainty. For each event, the name,
number of occurrences, probability, Fussell-Vesely (or Birnbaum or uncertainty importance), risk
reduction ratio (or difference), risk increase ratio (or difference) results are verified.

32

2.3.1.49 Test-49, End State Group Importance

This test case consists of scenarios that test End State Group importance measures
calculations for each of the importance measures: ratio, difference, and uncertainty. For each
event, the name, number of occurrences, probability, Fussell-Vesely (or Birnbaum or uncertainty
importance), risk reduction ratio (or difference), risk increase ratio (or difference) results are
verified.

2.3.1.50 Test-50, Change Set Processing: Single

This test case consists of scenarios that test the effects of basic event changes, via change
sets, on sequence cut set results. In these scenarios, single basic event changes are made in a
change set. The change set is then marked and the basic event data is generated. An affected
sequence is then selected and cut set results are verified.

2.3.1.51 Test-51 Change Set Processing: Class

This test case consists of scenarios that test the effects of basic event changes, via change
sets, on sequence cut set results. In these scenarios, class basic event changes are made in a
change set. The change set is then marked and the basic event data is generated. An affected
sequence is then selected and cut set results are verified.

2.3.1.52 Test-52, Change Set Processing: Marked Order

This test case consists of scenarios that test the effects of basic event changes, via change
sets, on sequence cut set results. In these scenarios, the change sets created in Test-50 and
Test-51 are used. Multiple change sets are marked and the basic event data is generated. An
affected sequence is then selected and cut set results are validated. This test verifies that the
changed basic events are processed correctly based on the marked order of the change sets.

2.3.1.53 Test-53, Extract, Delete, Load, Solve: Fault Trees and Basic Events

This test consists of scenarios that exercise utility functions associated with the database for
loading plant models, end state data or other information to be analyzed with the tool set.

2.3.1.54 Test-54, Fault Tree Utility Functions: Auto page, Solve, Save Cut Sets to End
States

SAPHIRE provides several utilities maintain fault trees. These tests verify that the use of these
features does not introduce errors into the database. The auto-page scenario breaks up a large
fault tree into manageable smaller fault trees with transfer information. An auto-page is
performed on a large fault tree, and then the modified tree is solved to verify the cut set results
are not altered with the paging operation. Another scenario copies a fault tree cut sets to an end
state, and then verifies that the cut sets in the end state match the cut sets in the fault tree.

33

2,3.1.55 Test-55, Event Tree Linkage (including rules)

The event tree linking rules are tested using several different databases. The databases are the
Surry LERF model, Wolf Creek Revision 302, and Peach Bottom Revision 302. The Surry LERF
model links the Level 1 event tree sequences together prior to solving the accident sequences,
then performs an end state gather. The end states then become Level 2 event trees, which are
linked together using the large event tree method. These Level 2 sequences are then gathered
into the final end states for LERF, NO-LERF, etc. The Wolf Creek and Peach Bottom models
have no accident sequences at the beginning. The test has the sequences being generated
using dynamic flag sets for the accident sequences, and then evaluates the sequences. The
sequences are evaluated using the developed dynamic flag sets and then with no flag sets.

2.3.1.56 Test-56, End-State Gathering

The end state gathering process is tested using the Surry LERF model and the Beaver Valley
NUREG 1150 model. Both models have the sequences gathered into end states. The Surry
LERF model uses partition rules, while the Beaver Valley model uses the end state name.

2.3.1.57 Test-57, Compound Event Plug-ins

The compound event plug-in is being tested for both the common cause module, utility module
(i.e. add, multiply), and load-capacity. The scenarios include testing the utility module and load-
capacity, testing the add and multiply functions in order to calculate the probability of the
compound event. Then change sets are created to affect the compound event and the final
probability. The results are verified to make sure the probability is correct. Also tested is the
load-capacity plug-in. The values are input and the probability is calculated along with
performing an uncertainty calculation. The input values are also modified using a change set
and then a new probability along with uncertainty evaluation is performed and verified to be
correct.

2.3.1.58 Test-58, Base Case Update

All models have fault tree results and accident sequences cut sets copied to the base case (this
is still the case in SAPHIRE 8). This "scenario is for fault tree cut sets copied to the base case for
comparison to the current case using change sets.

2.3.1.59 Test-59, Calculation Types

The calculation types are tested. The "TRUE" calculation type is tested. The "TRUE, FALSE,
and IGNORE" calculation types are tested. Fault trees are developed to verify the different
calculation types are being changed in the change sets and the results are correct. The other
calculation types (i.e., 3, 5, and 7) are also being checked in the simple database using change
sets.

34

2.3.1.60 Test-60 Application of Change Sets

Change sets are used in numerous databases. Both class and single event change sets are
developed and tested. The change sets test both probability changes and calculation type
changes.

2.3.1.61 Test-61, Uncertainty Distributions

All of the uncertainty distribution types are tested.

2.3.1.62 Test-62, N of M Gates

The N/M gates are tested using the simple database (SIMPLE-FT) plant model, The N/M gate
has multiple N/M gates feeding into it. The N/M gate is evaluated using all of the inputs and also
with inputs affected by change sets.

2.3.1.63 Test-63, Sequence Stress Testing

Several scenarios test sequence stress (i.e., numerous sequences being generated). An event
tree links over and over in order to test the ability to generate numerous sequences correctly.

2.3.1.64 Test-64, Calculations on the Common-Cause Plug-in

Use of the common-cause plug-ins is verified. Basic events are tested by using change sets.
One set of the inputs is set TRUE. This requires SAPHIRE to re-calculate the Common Cause
Failure (CCF) plug-in basic event for evaluation. The final probability is manually calculated and
checked to the probability calculated for final verification.

2.3.1.65 Test-65, Event Transformations

Use the event transformations to ensure that the various model types of the basic event are
represented in the cut sets. This would be a cut set level review. Note that this feature is still
tested even though the option does not appear in SAPHIRE 8 and may be formally deprecated
in future releases of Version 8.

2.3.1.66 Test-66, Wrong Results

This test verifies the output of results. The output from the test is compared to known incorrect
results to verify that the comparison function worked correctly. A LOSP scenario is executed for
comparison.

2.3.1.67 Test-67, Event and Condition Analysis-initiating Event Assessment:
Switchyard-Related Loss of Off-Site Power (LOOP) with other failures and conditions on
the Oyster Creek 345 model

Scenarios exercise Event and Condition Analysis workspace analysis in the following areas: the
number of sequences; total CCDP; total core damage probability (CDP); total importance; and
CCDP, CDP, and importance for each sequence are verified. Automated steps performed for
initiating event assessments include basic event generation with change sets; and generation,

35

quantification, and recovery of cut sets. One of the scenarios will test the T&M left in the model
and the other will test with the T&M events removed.

2.3.1.68 Test 68, Event and Condition Analysis-Condition Event Assessment: Blue Max
SBO Diesel out for four days on the Susquehanna Unit I and 2 model

Scenarios exercise Event and Condition Analysis workspace analysis in the following areas: the
number of sequences; total CCDP; total core damage probability (CDP); total importance; and
CCDP, CDP, and importance for each sequence are verified. Automated steps performed for
condition assessments include basic event generation with change sets; and generation,
quantification, and recovery of cut sets. One of the scenarios will test the single pass option and
another will test the multiple pass option. The test will need to verify that the CCF probability
for a group of N was recalculated to be a CCF probability of group N-1 when a test and
maintenance basic event is set to TRUE.

2.3,1.69 Test 69, Significance Determination Process -Blue Max SBO Diesel out for four
days on the Susquehanna Unit I and 2 model

Scenarios exercise Significance Determination Process workspace analysis in the following
areas: the number of sequences; total CCDP; total core damage probability (CDP); total
importance; and CCDP, CDP, and importance for each sequence are verified. Automated steps
performed for Significance Determination Process assessments include basic event generation
with change sets; and generation, quantification, and recovery of cut sets. One of the scenarios
will test the single pass option and another will test the multiple pass option.

2.3,1.70 Test 70, General Analysis-Blue Max SBO Diesel out for four days on the
Susquehanna Unit 1 and 2 model

Scenarios exercise General Analysis workspace analysis in the following areas: the number of
sequences; total CCDP; total core damage probability (CDP); total importance; and CCDP,
CDP, and importance for each sequence are verified. Automated steps performed for
Significance Determination Process assessments include basic event generation with change
sets; and generation, quantification, and recovery of cut sets. One of the scenarios will test the
single pass option and another will test the multiple pass option.

2.3.1.71 Test 71, 'N' Calculation type

When all projects are upgraded to version 8, all initiating events calculation types are changed
from calculation type '1' to calculation type N'. Scenarios compare results in a project to prove
that the N' calculation type upgrade has not changed results.

2.3.1.72 Test 72, RASP Common Cause Failure (CCF) validation

Scenarios compare results (in Standard Analysis) in a project to prove that the RASP-CCF 'R'
calculation type upgrade works properly and provides expected results with both rolled-up and
expanded output. These test results will need to be verified by an expert in the RASP CCF field.
Make sure the flag set adjustment is validated.

36

2.3.1.73 Test 73, External Event Models - Solve Event Trees

Scenarios link external event model event trees, generate basic event data (with no change
sets), solve (with cut set probability cutoff) and quantify sequence minimal cut sets, and
recovery rules. The current case min cut upper bound, base case min cut upper bound, and cut
set totals are verified for each sequence.

2.3.1.74 Test 74, Shutdown Models - Solve Event Trees

Scenarios link shutdown model event trees, generate basic event data (with no change sets),
solve (with cut set probability cutoff) and quantify sequence minimal cut sets, and recovery
rules. The current case min cut upper bound, base case min cut upper bound, and cut set totals
are verified for each sequence.

2.3.1.75 Test 75, Workspace model independence

Scenarios ensure that databases move properly into the workspace and that workspace
information remains independent from other workspaces and do not impact the base model.

2.3.1.76 Test 76, Repetition of critical calculations over N times

Scenarios ensure that cut set solving and recovery when done N times in a row calculate the
same cut sets and quantification values. Do for Standard Analysis, Event and Condition
Analysis, Significance Determination Process, and General Analysis.

2.3.1.77 Test 77, Significance Determination Process -LERF multiplier calculations

Scenarios ensure that Significance Determination Process -LERF multipliers are being used
properly to calculate Screening LERF values.

2.3.1.78 Test 78, Accident Sequence Matrix - Solve Event Trees

Scenarios link event trees after an Accident Sequence Matrix has been loaded, generate basic
event data (with no change sets), solve (with cut set probability cutoff) and quantify sequence
minimal cut sets, and recovery rules. The current case min cut upper bound, base case min cut
upper bound, and cut set totals are verified for each sequence.

2.3.1.79 Test 79, Multiple pass algorithm test (True and 1.0)

Scenarios set one or more basic events to 1.0 and validate the generated cut sets to ensure
proper cut set creation (both in Standard Analysis and ECA). They also will set one or more
basic events to TRUE and validate the generated cut sets to ensure proper cut set creation.

2.3.1.80 Test 80, Multiple pass algorithm test (False and Ignore)

Scenarios set one or more basic events to False and validate the generated cut sets to ensure
proper cut set creation. They also will set one or more basic events to Ignore and validate the
generated cut sets to ensure proper cut set creation.

37

2.3.1.81 Test 81, Min-Max test on Demo-EE model for Standard Analysis and General
Analysis interfaces

Scenarios quantify all the Demo-EE sequences using the min/max or inclusion/exclusion
method to ensure the validity of the frequencies. One scenario will test it for the Standard
Analysis and another scenario will test it for a General Analysis,

2.3.1.82 Test 82, Single pass algorithm tests on Event and Condition Analysis and
General Analysis

Scenarios exercise Event and Condition Analysis and General Analysis workspace analysis in
the following areas: the number of sequences; total CCDP; total core damage probability (CDP);
total importance; and CCDP, CDP, and importance for each sequence are verified. Automated
steps performed for condition assessments include basic event generation with change sets;
and generation, quantification, and recovery of cut sets. One of the scenarios will test the Event
and Condition Analysis interface and another will test the General Analysis interface.

2.3.1.83 Test 83, Cross-referencing is validated

Scenarios will exercise the various cross referencing capabilities.

2.3.1.84 Test 84, Verify database recovery works

Scenarios will exercise the database recovery capabilities.

2.3.1.85 Test 85, Verify event tree/fault tree transfers function correctly (Manual tests)

Scenarios will exercise the transfer functions.

2.3.1.86 Test 86, Gather End States on a demo model with multiple phases

Scenarios will exercise the end state gathering on a demo model with multiple phases.

2.3.1.87 Test 87, Large Early Release Frequency (LERF) model functionality

Scenario opens an existing LERF model and exercises the Standard Analysis interface. The
LERF model will be one of the models created in SAPHIRE 7 to calculate LERF results (Peach
Bottom or Surry).

2.3.1.88 Test 88, Event Tree, Fault Tree Creation in a new project.

Scenarios builds in the Standard Analysis interface a demonstration sized model with 3 phases
and two model types from scratch and save the new project.

2.3.1.89 Test 89, Menu Navigation

Scenario tests the Significance Determination Process and the Event and Condition Analysis
interfaces. The buttons for moving back and forth between screens, canceling, and saving will
be tested.

38

2.3.1.90 Test 90, Fault Tree View Expanded

Scenario verifies that in the Standard Analysis interface the fault tree feature "View Expand" is
working.

2.3.1.91 Test 91, Workspace to Standard Analysis Interface Independence

Scenarios create and save new Significance Determination Process, Event and Condition
Analysis, and General Analysis workspaces. Standard Analysis should never see any impact
from workspace activity other than noting any saved workspaces in the workspace window.
Test on Significance Determination Process, Event and Condition Analysis, General Analysis.

2.3.1.92 Test 92, Standard Analysis Interface to Workspace Independence

Scenarios run a change set in the Standard Analysis interface and visually verify that running
this change set does not alter existing workspaces. Test on Significance Determination
Process, Event and Condition Analysis, General Analysis workspaces.

2.3.1.93 Test 93, Workspace to Workspace Independence

Verify that addition of a new workspace or editing existing (e.g., logic changes) workspaces do
not impact other workspaces. Tests should verify that changes made to Standard Analysis
after the creation of a workspace should not reflect that change. Test on Significance
Determination Process, Event and Condition Analysis, General Analysis workspaces.

2.3.1.94 Test 94, Project to Project Independence

Scenarios verify that opening up a project does not include anything from a previously opened
project database. Examine database to ensure previous database (different from the one just
opened) information is not present.

2.3.1.95 Test 95, Workspace to Workspace Independence

Scenarios verify that information from a previous case run in a workspace is not showing up in
the next created case.

2.3.1.96 Test 96, Integrated Models

Scenarios verify that Demo-EE model produces expected results in the Standard Analysis, the
Event and Condition Analysis, and the General Analysis interfaces.

2.3.1.97 Test 97, Event Tree Linking and Unlink in integrated models (External Events
and Shutdown)

Scenarios verify that the event tree linking and unlinking functions work properly for selected
integrated models with External Events and Shutdown information.

39

2.3.1.98 Test 98, Verification of cut set view path

Scenarios verify all cut set path features work. The initial test will be visually verified with
reports produced. Subsequent tests will compare reports to verified reports.

2.3.1.99 Test 99, Verification Rule layering works

Scenarios verify linkage, post- processing, partitioning, and slice rule layering works.

2.3.1.100 Test 100, Verification Rule Nesting works

Scenarios verify linkage, post- processing, partitioning, and slice rule nesting works.

2.3,1.101 Test 101, All reports produce expected reports

Scenarios exercise the production of key reports available in all the workspaces and interfaces.
Initially key reports will be produced and validated and then key future tests will compare freshly
produced reports to the validated ones.

2.3.1.102 Test 102, Significance Determination Process Interface testing of basic event
changes

Scenarios exercise Significance Determination Process basic event testing. Ensure that
choosing "True" performs a CCF probability calculation correctly and choosing "True"
automatically handles T&M basic events correctly.

2.3,1.103 Test 103, Significance Determination Process Interface testing of Figure 111-D
(Change in delta core damage frequency CDF as a function of duration) point estimate
checks

Scenarios exercise Significance Determination Process workspace output. Figure IIl-D Change
in delta CDF as a function of duration) is based upon a one hour value expanded to a full year
outage. Test to determine that these point estimates are correct.

2.3,1.104 Test 104, Event and Condition Analysis uncertainty calculations

Scenarios exercise Event and Condition Analysis workspace uncertainty calculations and
corresponding graph of the Importance = CCDP - CDP.

2.3.1.105 Test 105, SPAR-H worksheet calculations

The SPAR-H calculation type X will be check to ensure the correct probability is being
produced. The basic events from a SPAR model that use this calculation type will be used for
the test, and will include diagnosis, action, and dependency calculations.

40

3. CONCLUSIONS

Product quality is a key component of SAPHIRE. The SAPHIRE QA processes documented in
the report provides the basis for setting quality objectives, progress, and the necessary
framework for quality improvements. The QA plan will evolve as the SAPHIRE product is
enhanced to provide.the end user with solutions to their technical problems and cost-effectively
meet user expectations. A majority of the changes within the SAPHIRE software occur because
the end user has identified characteristics that provide "new potential," thus resulting in
SAPHIRE evolving as each new feature is discovered and implemented. Therefore, the
majority of software maintenance comes about not because of deficiencies in the code, but
because it was modified to embrace improved methods for risk and reliability assessment or to
take advantage of changes in software development practices.

SAPHIRE implements the key components needed to assure product quality. Management
enables the software development team to apply a graded approach to effectively tailor
activities, techniques, and methodologies to provide for:

* Configuration Management and Change Control

* Software defect reporting

* Software evolution and enhancement

* Corrective, preventive, and adaptive maintenance

" Deriving detailed requirements from the requirements and design direction obtained from
contract documents.

" Development of test cases and scenarios and their implementation into an automated test
suite used for comprehensive testing to assure that requirements are validated

* Recording and implementing lessons learned

These factors provide the necessary assurance that quality is "built-in" to the SAPHIRE
software, not "tested in." Quality must be planned, designed, implemented and verified before it
can be validated through the testing process. SAPHIRE will continue to be evaluated for quality
as it evolves. As such, this quality plan will also evolve as the needs and goals of the user and
customer evolve to ensure the dimensions of quality are established and assessed.

41

4. REFERENCES

Bolander, T. W. et al., (1994) Verification and Validation of the SAPHIRE Version 4.0 PRA
Software Package, NUREG/CR-6145, February.

Jones, J. L. et al., (1995) Systems Analysis Programs for Hands-On Integrated Reliability
Evaluations (SAPHIRE) Version 5.0 Verification and Validation (V&V) Manual, NUREG/CR-
6116, February.

Smith, C.L. et al, (2000) Testing, Verifying, and Validating SAPHIRE Versions 6.0 and 7.0,
NUREG-CR/6688, September.

Smith, C. L., R. Nims, K. J. Kvarfordt, C. Wharton, Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) Vol. 6 Quality Assurance Manual, NUREG/CR-
6952, August 2008.

US NRC, (1993) Software Quality Assurance Program and Guidelines, NUREG/BR-0167,
February.

43

Appendix A

SAPHIRE Salient Features List

A-1

Appendix A

SAPHIRE Salient Features List

In order to provide additional context to the complexity of a modem analysis code such as
SAPHIRE (and its associated implications on testing) included is the list of salient features
found in the software in Table A-1.

Table A-1 SAPHIRE Salient Features as a Function of the Version Number

Item Description of Feature Version 7..x Version 8.,x

A Cut Set Sequence Generation

A. 1 Rule-based Fault Tree Linking X X

A.2 Linking of Small Tree Events X X

A.3 Linking of Large Tree Events X X

A.4 Sequence Capacity 2 million 2 million

B Cut.Set Generation:

B. 1 Fault Trees X X

B.2 Event Trees X X

C Cut Set Gathering

C. 1 Sequence End States X X

C.2 Sequence End State Cut Sets X X
D • .Cut: Set Partitioning

D. 1 End State Definition by rules X X

E Cut Set Slice....

E. 1 By Event X X

E.2 By Probability X X

A-2

Item~

E-3

E.4

E.5

F

F. 1

F.2

F.3

G

G.1

G.2

G.3

H

H.1

H.2

H.3

H.4

H.5

H.6

I1

1.2

11ecrption of Feature - - -- Version7.

By Rules X

Multiple sequential slices

Enhanced cut set slice viewer

Cut. S .. et .. Postprocessing .(Recovery)

Event Trees X

Fault Trees X

Ability to layer rule application

Change Sets

(Selected subset of Basic Events for temporary analysis)

Single event selection X

Multiple event selection X

Group event selection X

Flag Sets

(Selected subset of Basic EventsAwith logic changes only).

Cut Set with Static Flag Sets X

Cut Set with Dynamic Flag Sets (linkage X
rules)

Applicable to Fault Trees X

Applicable to Sequences X

Applicable to Fault Trees within Sequences X

Flag sets can affect common-cause events

Cut Set:Quantification.:Methods

Minimal cut set upper-bound X

Min-Max X

V--\ersion 8.x -

X

X

X

X

X

X

X

X

X

X

X
x

X

X

X

A-3

Item-

1.3

1.4

1.5

J. 1

J.2

J.3

J.4

J.5

J.6

K

K. 1

K.2

K.3

L. 1

L.1.1

L.1.2

L.1.3

L.1.4

L. 1.5

L.1.6

Descrption of Feature -

Rare Event

Split Fraction (sequences only)

Binary Decision Diagram (fault trees)

Cut Set Analysis

Cut Set Verification - cut sets solved,
gathered, with truncation by size or
probability, auto recovery

Cut Set path tracing

Cut Set comparison

Fault Tree

Event Trees / Sequences

End States

Bas ic Event Management

Basic Events - Generation

Basic Event - Templates

Multiple basic event editing at the same time

Basic-Event Caiculations

Compound Events
Common-cause plug-in modules

Common-cause alpha-factor module

Common-cause beta-factor module

Common-cause capacity load module

Common-cause multiple Greek letter module

Common-cause multiple group module

Common-cause alpha-staggered module

Version

x

x

7.x Version 8.x

x

x

x

x x

•.•..:::/.:::

A-4

Item D-Description, of Feature. -. Vrio x Wersion8x

L. 1.7 Common-cause RASP expanded module X

L. 1.8 Loss-of-offsite power module X X

L. 1.9 Time series module X X

L.1.10 General calculation module X X

L.2 Failure Probability on Demand X X

L.3 Failure Probability to Run X X

L.4 Value input (for any value) X X

L.5 Failure Probability to Run w/ repair X X

L.6 Failure Probability to Run X X

L.7 House Event True (Prob = 1.0), i.e. failed X X

L.8 House Event False (Prob = 0.0), i.e. success X X

L.9 House Event Ignore X X

L.10 Compound Event X X

L. 11 Human Factor Event X X

L.12 Fault tree Min Cut Upper Bound Value X X

L.13 End State Min Cut Upper Bound Value X X

L. 14 Ground Acceleration Value X X

L.15 Hazard Curve X X

M Importan.e Measures

M. 1 Fussell-Vesely Importance Measure X X

M.2 Birnbaum Importance Measure X X

M.3 Risk increase ratio importance measure X X

M4 Risk reduction ratio importance measure X X

A-5

M.5

M.6

M.7

M.8

N

N.1

N.2

N.3

NA

N.5

N.6

N.7

N.7.1

N.7.2

N.7.3

N.7.4

N.7.5

N.7.6

N.8

N.9

N.11

N.12

N.12.1

RDescrIpsion of Feature

Risk increase interval importance measure

Risk reduction interval importance measure

Group importance measure

Uncertainty determination on Importance
Measures

M6del Creation

Fire and flooding capability

Fault Tree text editor

Drag-and-drop Fault Tree graphical editor

Event Tree text editor

Event Tree graphical editor

Drag-and-drop Event Tree editor

Basic Load / Extract Data Models

Extract All

Load All

Extract All File types

Load All / Group

Fault Tree Logic

Designate output folder location

Graphical Export to Windows metafiles

Graphical Export to JPEG

Database Recovery

Database MAR-D Load and Extract

Event Tree MAR-D

-Version 7A Version.x

X X

X X

X X

x x

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

A-6

Item Description of Feature

N.12.2 Fault Tree MAR-D

N.12.3 Basic Event MAR-D

N.13 Macro manager

N. 14 Alternate names and descriptions for all
database objects (for multilingual use)

N.15 Model Version Upgrade (backward
compatible)

N.16 Integrate two projects into single project

N,17 Creation of external events model via
Accident Sequence Matrix file

N. 18 Phase-aware basic events and event trees

N,19 User definable grouping of event trees

Version 7.x Version 8.x

X x

X X

X

X X

X X

X

X

X

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P

P.1

P.2

.Mdel Creation Logic Gate Types
(Maximu•m inputs 256:unlessoth erwise specified)

AND)

OR

N of M (Max N=98, Max M=99))

NAND (Not AND))

NOR (Not OR))

Transfer Gate >

Inhibit gate >

(

(

(

C

C

X

X

X

X

X

X.

Uncertainty Calculations
(Monte Carlo and Latin Hyper Cube Sampling)

None (or Point Value only)

Normal Distribution

X

X

X

X

A-7

P.3

P.4

P.5

P.6

P.7

P.8

P.9

P.10

P.11

P.12

P.13

P.14

Q

0.1

Q.2

Q.3

R

R. 1

RI2

R.3

R.4

R.5

R.6

•,

Description of Feature

Lognormal Distribution

Beta Distribution

Chi Squared Distribution

Exponential Distribution

Uniform Distribution

Constrained non-informative Distribution

Gamma Distribution

Maximum Entropy Distribution

Dirichlet Distribution

Seismic Log Normal analysis

Histogram Distribution

Triangular Distribution

Uncertainty.Calculations (Parameter Settings)

Seed

Sample Size

Built in cumulative and density plots

General Support Features

Sensitivity Wizard

Importance Measures Wizard

Embedded Macro capability

Editing User Information

Page numbering control on graphic format

Conversion from alpha to graphic format

Version

X

X

x

x

x

x

x

X

x

x

7.x Version 8.x

x

x

x

x

x

x

x

x

x

......

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

n/a

A-8

Item Desicription of Feature Version 7.x Version 8.x

R.7 On-line Context Sensitive help X X

R.8 User customizable icons calling analysis icons x

R.9 Multiple editing and reporting windows open at x
the same time

R.10 Project Check X

R. 11 Project-wide search ability X

R.12 Bookmarking of object lists X

R.13 Drag-and-drop flag and change set creation X

R.14 Support for opening and creating compressed x
(zip) project files

S.General Sup portFeature (Report Generation)

S.1 Project Reports X X

S.2 Attributes X X

S.3 Basic Event X X

S.4 Fault Tree X X

S,5 Event Tree X X

S.6 End State x x

S.7 Sequence X X

S.8 Change Set X X

S.9 Flag Set x x

S.10 Gate X X

S.11 Histogram X X

S.12 Slice X X

S.13 User Info X X

A-9

Item~

S.14

T

T. 1

T.2

T. 3

T.4

U

U,2

U.3

U.4

U.4.2

U.4.3

U.5

V

V.1

V.2

V.3

.w

W.1

W.2

W.3

Description of Feature

Cross Reference Reports

Report Format Types

ASCII

RTF

HTML

AcrobatTM PDF

Ge•6ra•l Analysis Types::

Initiating Event Analysis

Condition Assessment Analysis

Accident Sequence Precursor

General analysis types

Load-capacity calculation module

Significance Determination Process

Application Program Interface......

Microsoft Visual BasicTM and VBA interface

Microsoft Visual C\C++TM interface

Borland Delphi TM

Version 7.x Version 8.x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Windows XP TM

Windows Vista TM

Window 7 TM

Operating System.s

x

x

x

x

x

x

A-10

Appendix B

SAPHIRE QA Process Checklist and Change Forms

B-1

APPENDIX B - SAPHIRE QA Process Checklist and Change
Forms

The project manager provides monthly reports, draft reports, and final TV&V report to
the SAPHIRE sponsor of completed and pending maintenance tasks.

OK Comments:

Discrepancy

N/A

The development team obtains and retains change request information.

OK Comments:

Discrepancy

N/A

The development team obtains and reviews documented lessons learned from previous
development efforts.

OK Comments:

Discrepancy

N/A

Requirements derived from NRC requirements documents are verified and validated for
implementation into automated test scripts.

OK Comments:

Discrepancy

N/A

B-2

NRC requirements documents provide the requirements needed for software
enhancements. Questions regarding any requirement specified by these forms are
obtained from the appropriate NRC representative and the clarification of any
requirement is documented and placed under configuration control.

OK Comments:

Discrepancy

N/A

Detailed requirements are derived from the higher-level requirements provided within the

NRC forms.

OK Comments:

Discrepancy

N/A

Detailed requirements and the code, test scripts, and test results are validated to ensure
that all requirements were implemented and tested.

OK Comments:

Discrepancy

N/A

The designated QA inspector reviews completed and pending tasks for compliance to

requested enhancements or other maintenance activities, such as bug fixes.

OK Comments:

Discrepancy

N/A

A TV&V document is developed and includes implemented requirements, new features,
bug fixes and test results.

B-3

OK Comments:

Discrepancy

N/A

Prior to an official release, software is processed through a series of automated test
scripts.

OK Comments:

Discrepancy

N/A

Test scripts simulate typical user input.

OK Comments:

Discrepancy

N/A

Models suitable for testing one or more critical functions consist of actual PRA models.

OK Comments:

Discrepancy

N/A

Test results are saved and compared against expected results.

OK Comments:

Discrepancy

N/A

B-4

User documentation is updated upon completion of each new release.

OK Comments:

Discrepancy

N/A

Software releases are bundled into a software installation package for use in set-up.

OK Comments:

Discrepancy

N/A

Software releases include list of bug fixes, new features, and historical information.

OK Comments:

Discrepancy

N/A

Only authorized changes are made to the software release.

OK Comments:

Discrepancy

N/A

Software and supporting documentation is baselined and placed under configuration
control.

B-5

N/A I

The software librarian (or designee) places all baselined data, including builds generated
during development, software fixes and enhancements, and software releases under
configuration control via the configuration management database.

OK Comments:

Discrepancy

N/A

The configuration management database precludes users from simultaneously
accessing the same information.

OK Comments:

Discrepancy

N/A

Prior to check in of information obtain from the configuration library database, users
provide an explanation of any changes made.

OK Comments:

Discrepancy

N/A

Step-by-step instructions obtained from end users reporting bugs/defects are used to
reproduce the process that generated the bug. This information is placed under
configuration control.

OK Comments:

Discrepancy

N/A

B-6

Bugs are categorized by severity,

OK Comments:

Discrepancy

N/A

Change requests and bug fixes are placed under configuration control.

OK Comments:

Discrepancy

N/A

Version control software tracks changes by author and time.

OK Comments:

Discrepancy

N/A

The automated software process generates a summary report, detail report, test
identification number, description, and pass/fail indicator.

OK Comments:

Discrepancy

N/A

Generation of new test scripts include obtaining information solicited/received from
experienced users and are examined to determine importance and testability.

B-7

IN/A I

Test scripts are reviewed to ensure that requirements are tested adequately, completely,
and correctly.

OK Comments:

Discrepancy

N/A

When a bug is reported, the user should gather and record the relevant information
about the bug on the change request form (see below). General information should
include bug reporter contact information and program version information.

System environment information such as operating system and available memory and
disk information should be collected as well, when it appears this information may be a
factor into the error.

The problem should be described in sufficient detail as to allow the programmer to
reproduce the error. The programmer may request that the bug reporter isolate the
problem as much as possible. When necessary, a database should be provided with
step by step instructions on how to reproduce the bug.

B3-8

Change. Design Form

T it-le • ured)_.,

Description #~equired),

T~yj~es i
Calculation Bug :_

AffHected Pro•
SAPHIRE V

Recommended PriorityHigh

Version Number

How Discovered-...
....

Project. Database Name (if a.ppiicable)
S...:.....:.....

........# :b :•..~

PC Information (operating system. RAM. hard disk spaces- etc-I

..:.

Sub•mitChange Reqyest

As the change information is collected, the problem should be categorized as a major
bug, minor bug, improvement, or new feature:

" A major bug is defined as an error that stops the user from completing a task and/or
adversely affects the core calculation ability of SAPHIRE.

* A minor bug is defined as an error for which a work around is available, or something
that affects less essential areas of SAPHIRE, such as a slight user interface
malfunction.

* The improvement category is defined as a change that will represent added
convenient to the user. For this category, the change is not significant enough to be
considered a new feature. Examples of improvements are minor report
enhancements, and replacing or adding smoother user interface options.

" A new feature is defined as a significant additional capability to be added. The
scope of a new feature is greater than that of an improvement to an existing feature.

B-9

Examples of new features include new calculation or uncertainty types, new wizards,
and new plug-ins.

The priority of a change will generally correlate with the category of the change. Major
bugs are generally the highest priority. Minor bugs and suggested improvements are
medium to low priority, depending on the pervasiveness of the problem. Customers and
project management together prioritize new features.

B-10

Appendix C

SAPHIREIGEM Test Suite Summary Report

C-1

APPENDIX C - SAPHIRE/GEM Test Suite Summary Report

The tests that are in the SAPHIRE TV&V automated test suite are listed in Table C-1. The
status of each test, on a pass/fail basis, is reported in this table. Problems associated with
failures, if any, are investigated and corrected prior to a release of the software.

Table C-1. SAPHIRE TV&V Automated Tests

Test # Test Name Description Pass or
Fail?

Test-Ol Solve Fault Trees Scenarios generate basic event data (with no change Pass
sets) solve (with cut set probability cutoff) and quantify
fault tree minimal cut sets and recovery rules. The base
case min cut upper bound, alternate case min cut upper
bound, and cut set totals are verified for each fault tree.

Test-02 Core Damage Scenarios generate basic event data (with no change Pass
Frequency sets), solve (with cut set probability cutoff) and quantify

sequence minimal cut sets, and recovery rules. The
alternate case min cut upper bound, base case min cut
upper bound, and cut set totals are verified for each
sequence.

Test-03 Events and Scenarios exercise all aspects of operational event Pass
Condition analysis including removal of equipment from service and
Assessment: automated processing of all steps. These steps include
Auxiliary Feed basic event generation with change sets; and generation,
Water out of quantification, and recovery of cut sets. The number of
service for 72 sequences; total CCDP; total core damage probability
hours (CDP); total importance; and CCDP, CDP, and

importance for each sequence are verified.
Test-04 Events and Scenarios exercise all aspects of operational event Pass

Condition analysis, including removal of equipment from service and
Assessment: automated processing of all steps. These steps include
Emergency Diesel basic event generation with change sets, and generation,
Generator out of quantification, and recovery of cut sets. The number of
service for three sequences, total CCDP, total core damage probability
months (CDP), total importance, and CCDP, CDP, and

importance for each sequence are verified.
Test-05 Initiating Event Scenarios exercise the number of sequences; total Pass

Assessment: CCDP; total core damage probability (CDP); total
Transient with no importance; and CCDP, CDP, and importance for each
other failures sequence are verified. Automated steps performed for

initiating event assessments include basic event
generation with change sets; and generation,
quantification, and recovery of cut sets.

C-2

Test # Test Name Description Pass or
Fail?

Test-06 Initiating Event Scenarios exercise the number of sequences; total Pass
Assessment: CCDP; total core damage probability (CDP); total
Small Loss of importance; and CCDP, CDP, and importance for each
Coolant Accident sequence are verified. Automated steps performed for
(SLOCA) with no initiating event assessments include basic event
other failures generation with change sets; and generation,

quantification, and recovery of cut sets
Test-07 Initiating Event Scenarios exercise the number of sequences; total Pass

Assessment: CCDP; total core damage probability (CDP); total

Steam Generator importance; and CCDP, CDP, and importance for each
Tube Rupture with sequence are verified. Automated steps performed for
no other failures initiating event assessments include basic event

generation with change sets; and generation,
quantification, and recovery of cut sets

Test-08 Initiating Event Scenarios exercise the number of sequences; total Pass
Assessment: Grid- CCDP; total core damage probability (CDP); total (old LOOP

Related Loss of importance; and CCDP, CDP, and importance for each tests are
Off-Site Power sequence are verified. Automated steps performed for deprecate

(LOOP) with no initiating event assessments include basic event d)
other failures generation with change sets; and generation,

quantification, and recovery of cut sets.
Test-09 Initiating Event Scenarios exercise the number of sequences; total Pass

Assessment: CCDP; total core damage probability (CDP); total (old LOOP
Plant-Centered importance; and CCDP, CDP, and importance for each tests are
LOOP with no sequence are verified. Automated steps performed for deprecate
other failures initiating event assessments include basic event d)

generation with change sets; and generation,
quantification, and recovery of cut sets.

Test-10 Initiating Event Scenarios exercise the number of sequences; total Pass

Assessment: CCDP; total core damage probability (CDP); total (old LOOP
Severe Weather importance; and CCDP, CDP, and importance for each tests are
LOOP with no sequence are verified. Automated steps performed for deprecate
other failures initiating event assessments include basic event d)

generation with change sets; and generation,
quantification, and recovery of cut sets.

Test-1 1 Initiating Event Scenarios exercise the number of sequences; total Pass
Assessment: CCDP; total core damage probability (CDP); total (old LOOP
Extreme Severe importance; and CCDP, CDP, and importance for each tests are
Weather LOOP sequence are verified. Automated steps performed for deprecate
with no other initiating event assessments include basic event d)
failures generation with change sets; and generation,

quantification, and recovery of cut sets.

Test-12 Initiating Event Scenarios exercise the number of sequences; total Pass
Assessment: CCDP; total core damage probability (CDP); total
Transient with importance; and CCDP, CDP, and importance for each
AFW Failed sequence are verified. Automated steps performed for

initiating event assessments include basic event

generation with change sets; and generation,

C-3

Test # Test Name Description Pass or
Fail?

quantification, and recovery of cut sets.

Test-13 Dominant This scenario continues the tracking with an automated Pass
Sequence test script. Cut sets generated with cut set probability
Frequencies and cutoff and cut set size cutoff. Recovery rules are applied
Core Damage without cutoff. Cut set update performed with no
Frequency truncation. Project level Monte Carlo uncertainty
Uncertainty performed on results using 5000 samples.

Test-14 Fault Tree This scenario consists of six variations that test Pass
Uncertainty: uncertainty using the Monte Carlo simulation technique for
Monte Carlo the log normal distribution type. The six variations use
Method/Log fault trees that consists of an OR gate with a single basic
Normal event as its input. Each variation uses differing basic
Distribution event nominal probabilities and error factors. The 5th

percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples
(simulated values) and a random number seed of 4,321
for each test.

Test-15 Fault Tree This scenario consists of variations that test uncertainty Pass
Uncertainty: Monte using the Monte Carlo simulation technique for the normal
Carlo distribution type. Two fault trees are used that consist of
Method/Normal an OR gate with a single basic event as its input, with
Distribution differing basic event nominal probabilities and standard

deviation values. Fault tree combinations of five sample
sizes and two seed values are used for a total of ten tests
for each tree. The 5th percentile, 50th percentile, 95th
percentile, and standard deviation results are verified.

Test-16 Fault Tree This scenario consists of ten variations that test Pass
Uncertainty: Monte uncertainty using the Monte Carlo simulation technique for
Carlo Method/Beta the beta distribution type. The ten variations use fault
Distribution trees that consists of an OR gate with a single basic event

as its input. Each variation uses differing basic event
nominal probabilities and uncertainty values. The 5th
percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples and
a seed of 4,321 for each test.

C-4

Test # Test Name Description Pass or
Fail?

Test-1 7 Fault Tree This scenario consists of twelve variations that test Pass
Uncertainty: Monte uncertainty using the Monte Carlo simulation technique for
Carlo Method/Chi the chi-square distribution type. For ten of the variations,
Squared ten fault trees are used that consists of an OR gate with a
Distribution single basic event as its input. Each basic event has a

different nominal probability and uncertainty value
(degrees of freedom). The 5th percentile, 50th percentile,
95th percentile, and standard deviation results are verified
based on 5,000 samples and a seed of 4,321 for each
test. For the other variations two fault trees are used that
consist of an OR gate with a single basic event as its input
with differing basic event nominal probabilities and
uncertainty values. For each of these fault trees, four
different sample sizes and seed of 4,321 are used. The
5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified.

Test-18 Fault Tree This scenaro consists of eight variations that test Pass
Uncertainty: Monte uncertainty using the Monte Carlo simulation technique for
Carlo the exponential distribution type. The eight variations use
Method/Exponenti fault trees that consists of an OR gate with a single basic
al Distribution event as its input. Each variation uses differing basic

event nominal probabilities. The 5th percentile, 50th
percentile, 95th percentile, and standard deviation results
are verified based on 5,000 samples and a seed of 4,321
for each test.

Test-1 9 Fault Tree This scenario consists of four variations that test Pass
Uncertainty: Monte uncertainty using the Monte Carlo simulation technique for
Carlo the uniform distribution type. The four variations use fault
Method/Uniform trees that consists of an OR gate with a single basic event
Distnbution as its input. Each variation uses differing basic event

nominal probabilities and upper end uncertainty values.
The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000
samples and a seed of 4,321 for each test.

Test-20 Fault Tree This scenario consists of six variations that test Pass
Uncertainty: uncertainty using the Monte Carlo simulation technique for
Monte Carlo the gamma distribution type. The six variations use fault
Method/Gamma trees that consists of an OR gate with a single basic event
Distribution as its input. Each variation uses differing basic event

nominal probabilities and uncertainty values (r). The 5th
percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples and
a seed of 4,321 for each test.

C-5

Test # Test Name Description Pass or
Fail?

Test-21 Fault Tree This scenario consists of seven variations that test Pass
Uncertainty: Monte uncertainty using the Monte Carlo simulation technique for
Carlo the maximum entropy distribution type. The seven
Method/Maximum variations use fault trees that consists of an OR gate with
Entropy a single basic event as its input. Each variation uses
Distribution differing basic event nominal probabilities and upper end

and lower end uncertainty values. The 5th percentile, 50th
percentile, 95th percentile, and standard deviation results
are verified based on 5,000 samples and a seed of 4,321
for each test.

Test-22 Sequence This test scenario consists of four variations that test Pass
Uncertainty: Monte uncertainty analyses using the Monte Carlo simulation
Carlo Method / technique for the Dirichlet distribution type. The first three
Dirichlet variations each use a three-branch event tree with
Distribution differing failure probabilities and parameter values. The

fourth variation uses a 121-branch event tree. Change
sets are used to correlate the basic events. The 5th
percentile, 50th percentile, 95th percentile, and standard
deviation results are verified.

Test-23 Fault Tree This scenario consists of four variations that test Pass
Uncertainty: Monte uncertainty using the Monte Carlo simulation technique for
Carlo the seismic distribution type. The four variations use fault
Method/Seismic trees that consists of an OR gate with a single basic event
Distribution as its input. Each variation uses differing basic event

median failure acceleration, screening G-level, Beta-R
and Beta-U values. Uncertainty analysis is performed
using the Seismic analysis type. The 5th percentile, 50th
percentile, 95th percentile, and standard deviation results
are verified based on 10,000 samples and a seed of 4,321
for each test.

Test-24 Fault Tree and This scenario consists of five variations that test Pass
Sequence uncertainty using the Monte Carlo simulation techniques
Uncertainty: Monte for the Constrained Noninformative distribution type. The
Carlo three variations involving fault trees use fault trees that
Method/Constraine consists of an OR gate with a single basic event as its
d Noninformative input with differing basic event nominal probabilities. The
Distribution two variations involving sequences use event trees with

differing initiating event nominal frequencies. The 5th
percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 10,000 simulated
values for each test.

Test-25 Fault Tree This scenario consists of six variations that test Pass
Uncertainty: Latin uncertainty using the Latin Hypercube simulation
Hypercube technique for the log normal distribution type. The six
Method/Log variations use fault trees that consists of an OR gate with
Normal a single basic event as its input. Each variation uses
Distribution differing basic event nominal probabilities and error

factors. The 5th percentile, 50th percentile, 95th

C-6

Test # Test Name Description Pass or
Fail?

percentile, and standard deviation results are verified
based on 5,000 samples (simulated values) and a random
number seed of 4,321 for each test.

Test-26 Fault Tree This scenario consists of variations that test uncertainty Pass
Uncertainty: Latin using the Latin Hypercube simulation technique for the
Hypercube normal distribution type. Two fault trees are used that
Method/Normal consist of an OR gate with a single basic event as its
Distribution input, with differing basic event nominal probabilities and

standard deviation values. Fault tree combinations of five
sample sizes and two seed values are used for a total of
ten tests for each tree. The 5th percentile, 50th percentile,
95th percentile, and standard deviation results are
verified.

Test-27 Fault Tree This scenario consists of ten variations that test Pass
Uncertainty: Latin uncertainty using the Monte Carlo simulation technique for
Hypercube the beta distribution type. The ten variations use fault
Method/Beta trees that consists of an OR gate with a single basic event
Distribution as its input. Each variation uses differing basic event

nominal probabilities and uncertainty values. The 5th
percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples and
a seed of 4,321 for each test.

Test-28 Fault Tree This scenario consists of twelve variations that test Pass
Uncertainty: Latin uncertainty using the Monte Carlo simulation technique for
Hypercube the chi-square distribution type. For ten of the variations,
Method/Chi ten fault trees are used that consists of an OR gate with a
Squared single basic event as its input. Each basic event has a
Distribution different nominal probability and uncertainty value

(degrees of freedom). The 5th percentile, 50th percentile,
95th percentile, and standard deviation results are verified
based on 5,000 samples and a seed of 4,321 for each
test. For the other variations two fault trees are used that
consist of an OR gate with a single basic event as its input
with differing basic event nominal probabilities and
uncertainty values. For each of these fault trees, four
different sample sizes and seed of 4,321 are used. The
5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified.

Test-29 Fault Tree This scenario consists of eight variations that test Pass
Uncertainty: Latin uncertainty using the Monte Carlo simulation technique for
Hypercube the exponential distribution type. The eight variations use
Method/Exponenti fault trees that consists of an OR gate with a single basic
al Distribution event as its input. Each variation uses differing basic

event nominal probabilities. The 5th percentile, 50th

C-7

Test # Test Name Description Pass or
Fail?

percentile, 95th percentile, and standard deviation results
are verified based on 5,000 samples and a seed of 4,321
for each test.

Test-30 Fault Tree This scenario consists of four variations that test Pass
Uncertainty: Latin uncertainty using the Monte Carlo simulation technique for
Hypercube the uniform distribution type. The four variations use fault
Method/Uniform trees that consists of an OR gate with a single basic event
Distribution as its input. Each variation uses differing basic event

nominal probabilities and upper end uncertainty values.
The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000
samples and a seed of 4,321 for each test.

Test-31 Fault Tree This scenario consists of six variations that test Pass
Uncertainty: Latin uncertainty using the Monte Carlo simulation technique for
Hypercube the gamma distribution type. The six variations use fault
Method/Gamma trees that consists of an OR gate with a single basic event
Distribution as its input. Each variation uses differing basic event

nominal probabilities and uncertainty values (r). The 5th
percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples and
a seed of 4,321 for each test.

Test-32 Sequence This scenario consists of seven variations that test Pass
Uncertainty: Latin uncertainty using the Monte Carlo simulation technique for
Hypercube the maximum entropy distribution type. The seven
Method/Maximum variations use fault trees that consists of an OR gate with
Entropy a single basic event as its input. Each variation uses
Distribution differing basic event nominal probabilities and upper end

and lower end uncertainty values. The 5th percentile, 50th
percentile, 95th percentile, and standard deviation results
are verified based on 5,000 samples and a seed of 4,321
for each test.

Test-33 Sequence This test scenario consists of four variations that test Pass
Uncertainty: Latin uncertainty analyses using the Monte Carlo simulation
Hypercube technique for the Dirichlet distribution type. The first three
Method/Dirichlet variations each use a three-branch event tree with
Distribution differing failure probabilities and parameter values. The

fourth variation uses a 121-branch event tree. Change
sets are used to correlate the basic events. The 5th
percentile, 50th percentile, 95th percentile, and standard
deviation results are verified. Since this distribution type
was not available in version 5, version 6 results have
been inspected for acceptance and are used for
comparison against subsequent incremental releases.

C-8

Test # Test Name Description Pass or
Fail?

Test-34 Fault Tree This scenario consists of four variations that test Pass
Uncertainty: Latin uncertainty using the Monte Carlo simulation technique for
Hypercube the seismic distribution type. The four variations use fault
Method/Seismic trees that consists of an OR gate with a single basic event
Distribution as its input. Each variation uses differing basic event

median failure acceleration, screening G-level, Beta-R
and Beta-U values. Uncertainty analysis is performed
using the Seismic analysis type. The 5th percentile, 50th
percentile, 95th percentile, and standard deviation results
are verified based on 10,000 samples and a seed of 4,321
for each test.

Test-35 Fault Tree and This scenario consists of five variations that test Pass
Sequence uncertainty using the Monte Carlo simulation techniques
Uncertainty: Latin for the Constrained Noninformative distribution type. The
Hypercube three variations involving fault trees use fault trees that
Method/ consists of an OR gate with a single basic event as its
Constrained input with differing basic event nominal probabilities. The
Noninformative two variations involving sequences use event trees with
Distribution differing initiating event nominal frequencies. The 5th

percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 10,000 simulated
values for each test.

Test-36 Fault Tree This scenario consists of four variations that test Pass
Uncertainty: Monte uncertainty using the Monte Carlo simulation technique for
Carlo the histogram distribution type. The four variations use
Method/Histogram fault trees that consists of an OR gate with a single basic
Distribution event as its input. Each variation uses differing basic

event nominal probabilities and histograms (of
percentage, area, and range types). The 5th percentile,
50th percentile, 95th percentile, and standard deviation
results are verified based on 5,000 samples and a seed of
4,321 for each test.

Test-37 Fault Tree This scenario consists of four variations that test Pass
Uncertainty: Latin uncertainty using the Latin Hypercube simulation
Hypercube technique for the histogram distribution type. The four
Method/Histogram variations use fault trees that consists of an OR gate with
Distribution a single basic event as its input. Each variation uses

differing basic event nominal probabilities and histograms
(of percentage, area, and range types). The 5th
percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples and
a seed of 4,321 for each test.

Test-38 Gathering of This scenario generates basic event data (with no change Pass
End States sets) and gathers the end states (without cut set

probability cutoff, by sequence end state). The alternate
case min-cut upper bound and the number of cut sets are
verified for each end state.

C-9

Test # Test Name Description Pass or
Fail?

Test-39 End State These scenarios perform multiple event sampling on all Pass
Uncertainty: Monte sequences that belong to a particular end state (single
Carlo Method uncertainty), as well as the collection of all end states

(group uncertainty). The mean, 5th percentile, median,
95th percentile, and standard deviation results are verified
based on 3,000 simulated values for each test.

Test-40 End State These scenarios perform multiple event sampling on all Pass
Uncertainty: Latin sequences that belong to a particular end state (single
Hypercube Method uncertainty), as well as the collection of all end states

(group uncertainty) . The mean, 5th percentile, median,
95th percentile, and standard deviation results are verified
based on 3,000 simulated values for each test.

Test-41 Cut Set This test case consists of scenarios that compare cut sets Pass
Verification from selected fault trees, sequences, and end states. The

cut set frequency, percent contribution to the total, and
basic events in the cut set are verified. Cut sets are
solved and /or gathered with truncation, auto-recovered,
and updated. Sequences and fault trees are solved with
and without their default flag sets. Also, fault tree editing is
briefly tested. This is done by opening the alphanumeric
logic editor, saving and converting logic to graphics, then
pulling up the graphical editor and saving the graphics.
This test does not test specific editing features but it does
verify that the original logic is correctly loaded and saved.
Failure of the logic to be preserved correctly would be
detected with incorrect cut set results

Test-42 Link Small This scenario uses the Surry Large Early Release Pass
Event Tree Frequency (LERF) Level 2/3 model (SLERF) to link

event trees using the small event tree methodology. Prior
to link, each event tree is loaded into the graphical editor
and saved to ensure that the correct logic is preserved.
The sequences are then solved with cutoff. The alternate
case min cut upper bound and number of cut sets is
verified for each Level 1 sequence.

Test-43 Partition This scenario applies event tree partition rules to the Pass
Sequence Cut sequences generated in scenario reference number Test-
Sets 42. These partition rules assign Plant Damage States

(PDSs) to all sequences with cut sets. These end states
are then gathered by cut set partition. The alternate case
min cut upper bound and number of cut sets is verified for
each PDS.

Test-44 Link Large This scenario uses the results from scenario reference Pass
Event Tree number Test-43. The PDS event trees created by the

partition rules are linked using the large event tree
methodology and create sequence logic cut sets. The
LERF end states are then gathered by sequence end
state and re-quantified using the Rare Event
approximation. The alternate case min-cut upper bound

C-10

Test # Test Name Description Pass or
Fail?

and number of cut sets are verified for each LERF end
state.

Test-45 Fault Tree This test case consists of scenarios that test importance Pass
Importance measures calculations with fault trees for each of the
Measures importance measures: ratio, difference, and uncertainty.

For each event, the name, number of occurrences,
probability, Fussell-Vesely (or Birnbaum or uncertainty
importance), risk reduction ratio (or difference), risk
increase ratio (or difference) results are verified.

Test-46 Sequence This test case consists of scenarios that test Sequence Pass
Importance importance measures calculations for each of the
Measures importance measures: ratio, difference, and uncertainty.

For each event, the name, number of occurrences,
probability, Fussell-Vesely (or Birnbaum or uncertainty
importance), risk reduction ratio (or difference), risk
increase ratio (or difference) results are verified.

Test-47 Sequence This test case consists of scenarios that test Sequence Pass
Group Importance Group importance measures calculations for each of the
Measures importance measures: ratio, difference, and uncertainty.

For each event, the name, number of occurrences,
probability, Fussell-Vesely (or Birnbaum or uncertainty
importance), risk reduction ratio (or difference), risk
increase ratio (or difference) results are verified.

Test-48 End State This test case consists of scenarios that test End State Pass
Importance importance measure calculations for each of the
Measures importance measures: ratio, difference, and uncertainty.

For each event, the name, number of occurrences,
probability, Fussell-Vesely (or Bimbaum or uncertainty
importance), risk reduction ratio (or difference), risk
increase ratio (or difference) results are verified.

Test-49 End State This test case consists of scenarios that test End State Pass
Group Importance Group importance measures calculations for each of the

importance measures: ratio, difference, and uncertainty.
For each event, the name, number of occurrences,
probability, Fussell-Vesely (or Birnbaum or uncertainty
importance), risk reduction ratio (or difference), risk
increase ratio (or difference) results are verified.

Test-50 Change Set This test case consists of scenarios that test the effects of Pass
Processing: Single basic event changes, via change sets, on sequence cut

set results. In these scenarios, single basic event changes
are made in a change set. The change set is then marked
and the basic event data is generated. An affected
sequence is then selected and cut set results are verified.

C-II

Test # Test Name Description Pass or
Fail?

Test-51 Change Set This test case consists of scenarios that test the effects of Pass
Processing: Class basic event changes, via change sets, on sequence cut

set results. In these scenarios, class basic event changes
are made in a change set. The change set is then marked
and the basic event data is generated. An affected
sequence is then selected and cut set results are verified.

Test-52 Change Set This test case consists of scenarios that test the effects of Pass
Processing: basic event changes, via change sets, on sequence cut
Marked Order set results. In these scenarios, the change sets created in

Test-50 and Test-51 are used. Multiple change sets are
marked and the basic event data is generated. An
affected sequence is then selected and cut set results are
validated. This test verifies that the changed basic events
are processed correctly based on the marked order of the
change sets.

Test-53 Extract, Delete, This test consists of scenarios that exercise utility Pass
Load, Solve: Fault functions associated with the database for loading plant
Trees and Basic models, end state data or other information to be
Events analyzed with the tool set.

Test-54 Fault Tree Utility This scenario provides several utilities maintain fault Pass
Functions: Auto trees. These tests verify that the use of these features
page, Solve, Save does not introduce errors into the database. The auto-
Cut Sets to End page scenario breaks up a large fault tree into
States manageable smaller fault trees with transfer information.

An auto-page is performed on a large fault tree, and then
the modified tree is solved to verify the cut set results are
not altered with the paging operation. Another scenario
copies a fault tree cut sets to an end state, and then
verifies that the cut sets in the end state match the cut
sets in the fault tree.

Test-55 Event Tree This scenario tests event tree linking rules using several Pass
Linkage (including different databases. The databases are the Surry LERF
rules) model, Wolf Creek Revision 302, and Peach Bottom

Revision 302. The Surry LERF model links the Level 1
event tree sequences together prior to solving the
accident sequences, then performs an end state gather.
The end states then become Level 2 event trees, which
are linked together using the large event tree method.
These Level 2 sequences are then gathered into the final
end states for LERF, NO-LERF, etc. The Wolf Creek and
Peach Bottom models have no accident sequences at the
beginning. The test has the sequences being generated
using dynamic flag sets for the accident sequences, and
then evaluates the sequences. The sequences are
evaluated using the developed dynamic flag sets and then
with no flag sets.

C- 12

Test # Test Name Description Pass or
Fail?

Test-56 End State Scenario tests the end state gathering process using the Pass
Gathering Surry LERF model and the Beaver Valley NUREG 1150

model. Both models have the sequences gathered into
end states. The Surry LERF model uses partition rules,
while the Beaver Valley model uses the end state name.

Test-57 Compound Event This scenario tests compound event plug-in for the Pass
Plug-ins common cause module, utility module (i.e. add, multiply), (based

and load-capacity. The scenarios include testing the utility upon
module and load-capacity, testing the add and multiply manual
functions in order to calculate the probability of the check of
compound event. Then change sets are created to affect uncertaint
the compound event and the final probability. The results y results)
are verified to make sure the probability is correct. Also
tested is the load-capacity plug-in. The values are input
and the probability is calculated along with performing an
uncertainty calculation. The input values are also modified
using a change set and then a new probability along with
uncertainty evaluation is performed and verified to be
correct.

Test-58 Base Case Update This scenario tests models that have fault tree results and Pass
accident sequences cut sets copied to the base case (this
is still the case in SAPHIRE 8). This scenario is for fault
tree cut sets copied to the base case for comparison to
the current case using change sets.

Test-59 Calculation The calculation types are tested. The "TRUE" calculation Pass
Types type is tested. The "TRUE, FALSE, and IGNORE"

calculation types are tested. Fault trees are developed to
verify the different calculation types are being changed in
the change sets and the results are correct. The other
calculation types (i.e., 3, 5, and 7) are also being checked
in the simple database using change sets.

Test-60 Application of Change sets are used in numerous databases. Both class Pass
Change Sets and single event change sets are developed and tested.

The change sets test both probability changes and
calculation type changes.

Test-61 Uncertainty Various uncertainty distribution types are tested. Pass
Distributions

Test-62 N of M Gates N/M gates are tested using the simple database (SIMPLE- Pass
FT) plant model. The N/M gate has multiple N/M gates
feeding into it. The N/M gate is evaluated using all of the
inputs and also with inputs affected by change sets.

Test-63 Sequence These scenarios test sequence stress (i.e., numerous Pass
Stress Testing sequences being generated). An event tree links over and

over in order to test the ability to generate numerous
sequences correctly.

C-13

Test # Test Name Description Pass or
Fail?

Test-64 Calculations on The function of the common-cause plug-ins is verified. Pass
the Common Basic events are tested by using change sets. One set of
Cause Plug in the inputs is set TRUE. This requires SAPHIRE to re-

calculate the Common Cause Failure (CCF) plug-in basic
event for evaluation. The final probability is manually
calculated and checked to the probability calculated for
final verification.

Test-65 Event Tests the event transformations to ensure that the various Deprecate
Transformations model types of the basic event are represented in the cut d

sets. This would be a cut set level review. Note that this
feature is still tested even though the option does not
appear in SAPHIRE 8 and may be formally deprecated in
future releases of Version 8.

Test-66 Wrong Results This test verifies the output of results. The output from the Pass
test is compared to known incorrect results to verify that (test for
the comparison function worked correctly. A LOSP "false
scenario is executed for comparison, positive")

Test-67 Event and This test exercise Event and Condition Analysis Pass
Condition workspace analysis in the following areas: the number of
Analysis-Initiating sequences; total CCDP; total core damage probability
Event (CDP); total importance; and CCDP, CDP, and
Assessment: importance for each sequence are verified. Automated
Switchyard- steps performed for initiating event assessments include
Related Loss of basic event generation with change sets; and generation,
Off-Site Power quantification, and recovery of cut sets. One of the
(LOOP) with other scenarios will test the T&M left in the model and the other
failures and will test with the T&M events removed.
conditions on the
Oyster Creek 345
model

Test 68 Event and This test exercises Event and Condition Analysis Pass
Condition workspace analysis in the following areas: the number of
Analysis-Condition sequences; total CCDP; total core damage probability
Event (CDP); total importance; and CCDP, CDP, and
Assessment: Blue importance for each sequence are verified. Automated
Max SBO Diesel steps performed for condition assessments include basic
out for four days event generation with change sets; and generation,
on the quantification, and recovery of cut sets. One of the
Susquehanna Unit scenarios will test the single pass option and another will
1 and 2 model test the multiple pass option. The test will need to verify

that the CCF probability for a group of N was recalculated
to be a CCF probability of group N-1 when a test and
maintenance basic event is set to TRUE.

C-14

Test # Test Name Description Pass or
Fail?

Test 69 Significance This test exercises Significance Determination Process Pass
Determination workspace analysis in the following areas: the number of
Process -Blue Max sequences; total CCDP; total core damage probability
SBO Diesel out for (CDP); total importance; and CCDP, CDP, and
four days on the importance for each sequence are verified. Automated
Susquehanna Unit steps performed for Significance Determination Process
1 and 2 model assessments include basic event generation with change

sets; and generation, quantification, and recovery of cut
sets. One of the scenarios will test the single pass option
and another will test the multiple pass option.

Test 70 General This test exercises General Analysis workspace analysis Pass
Analysis-Blue Max in the following areas: the number of sequences; total
SBO Diesel out for CCDP; total core damage probability (CDP); total
four days on the importance; and CCDP, CDP, and importance for each
Susquehanna Unit sequence are verified. Automated steps performed for
1 and 2 model Significance Determination Process assessments include

basic event generation with change sets; and generation,
quantification, and recovery of cut sets. One of the
scenarios will test the single pass option and another will
test the multiple pass option.

Test 71 'N' Calculation This test ensures that all projects are upgraded to version Pass
type 8, all initiating events calculation types are changed from

calculation type '1' to calculation type 'N'. Scenarios
compare results in a project to prove that the 'N'
calculation type upgrade has not changed results.

Test 72 RASP Common This test compares results in a project to prove that the Pass
Cause Failure RASP-CCF 'R' calculation type upgrade works properly
(CCF) validation and provides expected results with both rolled-up and

expanded output. These test results will need to be
verified by an expert in the RASP CCF field. Make sure
the flag set adjustment is validated.

Test 73 External Event This test links external event model event trees, Pass
Models -" Solve generates basic event data (with no change sets), solves
Event Trees (with cut set probability cutoff) and quantifies sequence

minimal cut sets, and recovery rules. The current case
min cut upper bound, base case min cut upper bound,
and cut set totals are verified for each sequence.

Test 74 Shutdown Models This test links shutdown model event trees, generates Pass
- Solve Event basic event data (with no change sets), solves (with cut
Trees set probability cutoff) and quantifies sequence minimal cut

sets, and recovery rules. The current case min cut upper
bound, base case min cut upper bound, and cut set totals
are verified for each sequence.

Test 75 Workspace model This test ensures that databases move properly into the Pass
independence workspace and that workspace information remains

independent from other workspaces and do not impact the
base model.

C-15

Test # Test Name Description Pass or
Fail?

Test 76 Repetition of This test ensures that cut set solving and recovery when Pass
critical calculations done N times in a row calculate the same cut sets and
over N times quantification values for standard analysis. Do for

Standard analysis, Event and Condition Analysis,
Significance Determination Process , and General
Analysis.

Test 77 Significance This test ensures that Significance Determination Process Pass
Determination -LERF multipliers are being used properly to calculate
Process -LERF Screening LERF values.
multiplier
calculations

Test 78 Accident This test links event trees after an Accident Sequence Pass
Sequence Matrix - Matrix has been loaded, generate basic event data (with
Solve Event Trees no change sets), solve (with cut set probability cutoff) and

quantify sequence minimal cut sets, and recovery rules.
The current case min cut upper bound, base case min cut
upper bound, and cut set totals are verified for each
sequence.

Test 79 Multiple pass This test sets one or more basic events to 1.0 and Pass
algorithm test validates the generated cut sets to ensure proper cut set
(True and 1.0) creation. It will also set one or more basic events to
(See #1 ATP input TRUE and validate the generated cut sets to ensure
draft) proper cut set creation.

Test 80 Multiple pass this test sets one or more basic events to False and Pass
algorithm test validates the generated cut sets to ensure proper cut set
(False and Ignore) creation. It will also set one or more basic events to
(See #2 ATP input Ignore and validate the generated cut sets to ensure
draft) proper cut set creation.

Test 81 Min-Max test on This test will quantify all the DEMO-EE sequences using Fail
Demo-EE model the min/max method to ensure the validity of the (will test
for Event and frequencies. One scenario will test it for an Event and with a
Condition Analysis Condition Analysis condition assessment, another simpler
and General scenario will test it for an Event and Condition Analysis project)
Analysis interfaces Initiating Event Assessment, and another scenario will test
(See #3 ATP input it for a General Analysis.
draft)

Test 82 Single pass This test will exercise Event and Condition Analysis and Pass
algorithm tests on General Analysis workspace analysis in the following
Event and areas: the number of sequences; total CCDP; total core
Condition Analysis damage probability (CDP); total importance; and CCDP,
and General CDP, and importance for each sequence are verified.
Analysis (See #4 Automated steps performed for condition assessments
ATP input draft) include basic event generation with change sets; and

generation, quantification, and recovery of cut sets. One
of the scenarios will test the Event and Condition Analysis
interface and another will test the General Analysis
interface.

C-16

Test # Test Name Description Pass or
Fail?

Test 83 Cross-referencing This test will exercise the various cross referencing Pass
is validated (See capabilities.
#8 ATP input draft)

Test 84 Verify database This test will exercise the database recovery capabilities. Pass
recovery works
(See #11 ATP
input draft)

Test 85 Verify event This test will exercise the transfer functions. Pass
tree/fault tree
transfers function
correctly (Manual
tests) (See #12
ATP input draft)

Test 86 Gather End States I This test will exercise the end state gathering on a demo Fail
on a demo model model with multiple phases. (cut sets
with multiple can be
phases solved for

different
phases,
but end
state not
assigned
to them)

Test 87 Large Early This test opens an existing LERF model and exercises the Pass
Release Standard Analysis interface. The LERF model will be one (the Surry
Frequency (LERF) of the models created in SAPHIRE 7 to calculate LERF SLERF
model functionality results (Peach Bottom or Surry). model

passes)
Test 88 Event Tree This tests Event Tree Creation in a new project by Pass

building in the Standard Analysis interface a
demonstration sized model with 3 phases and two model
types from scratch and save the new project. A software
developer will review these results initially. Subsequent
tests will compare against verified output.

Test 89 Menu This tests the Significance Determination Process and the Pass
Navigation Event and Condition Analysis interfaces. The buttons for

moving back and forth between screens, canceling, and
saving will be tested.

Test 90 Fault Tree View These verifies that in the Standard Analysis interface the Pass
Expanded fault tree feature View Expand is working.

Test 91 Workspace to This test creates and saves new Significance Pass
Standard Analysis Determination Process, Event and Condition Analysis,
Interface and General Analysis workspaces. Standard Analysis
Independence should never see any impact from workspace activity

other than noting any saved workspaces in the workspace
window. Test on Significance Determination Process,
Event and Condition Analysis, General Analysis.

C-17

Test # Test Name Description Pass or
Fail?

Test 92 Standard This test runs a change set in the Standard Analysis Pass
Analysis Interface interface and visually verify that running this change set
to Workspace does not alter existing workspaces. Test on Significance
Independence Determination Process, Event and Condition Analysis,

General Analysis workspaces.
Test 93 Workspace to This tests the addition of a new workspace or editing Pass

Workspace existing workspaces do not impact other workspaces.
Independence Tests should verify that changes made to Standard

Analysis after the creation of a workspace should not
reflect that change. Test on Significance Determination
Process, Event and Condition Analysis, General Analysis
workspaces.

Test 94 Project to This test verifies that opening up a project does not Pass
Project include anything from a previously opened project
Independence database. Examine database to ensure previous

database (different from the one just opened) information
is not present.

Test 95 Workspace to This test verifies that information from a previous case run Pass
Workspace in a workspace is not showing up in the next created
Independence case.

Test 96 Integrated Models This test verifies that Demo-EE model produces expected Pass
results in the Standard Analysis, the Event and Condition
Analysis, and the General Analysis interfaces.

Test 97 Event Tree Linking This test verifies that the event tree linking and unlinking Pass
and Unlink in functions work properly for selected integrated models
integrated models with External Events and Shutdown information.
(External Events
and Shutdown)

Test 98 Verification of cut This test verifies all cut set path features work. The initial Pass
set view path test will be visually verified with reports produced.

Subsequent tests will compare reports to verified reports.
Especially test this capability in the advanced Significance
Determination Process report per cut set.

Test 99 Verification Rule This test verifies linkage, post- processing, partitioning, Fail
layering works and slice rule layering works.

Test 100 Verification Rule This test verifies linkage, post- processing, partitioning, Fail
Nesting works and slice rule nesting works.

Test 101 All reports produce This test verifies the production of all the reports available Pass
expected reports in all the workspaces and interfaces. Initially all the

reports will be produced and validated and then all future
tests will compare freshly produced reports to the
validated ones.

C-18

Test # Test Name Description Pass or

Fail?

Test 102 Significance This test exercises Significance Determination Process Pass
Determination basic event testing. Ensure that choosing True" performs
Process Interface a CCF probability calculation correctly and choosing
testing of basic "True" automatically handles T&M basic events correctly.
event changes

Test 103 Significance This test exercises Significance Determination Process Pass
Determination workspace output. Figure III-D Change in delta CDF as a
Process Interface function of duration) is based upon a one hour value
testing of Figure expanded to a full year outage. Test to determine that
III-D (Change in these point estimates are correct.
delta CDF as a
function of
duration) point
estimate checks

Test 104 Event and This test exercises Event and Condition Analysis Pass
Condition Analysis workspace uncertainty calculations and corresponding
uncertainty graph of the Importance = CCDP - CDP.
calculations

Test 105 HRA-Report- This test exercises HRA Event output via reports. Pass
Validate

C- 19

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(12-2010) (Assigned by NRC, Add Vol., Supp., Rev.,

NRCMD 3.7 and Addendum Numbers, if any.)

BIBLIOGRAPHIC DATA SHEET NUREG/CR-7039, Vol. 6
(See instructions on the reverse) INULEXT-09-17014

2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED

Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPH IRE) Version MONTH YEAR

June 2011
Volume 6: Quality Assurance 4. FIN OR GRANT NUMBER

N6423
5. AUTHOR(S) 6. TYPE OF REPORT

C. L. Smith, R. Nims, K. J. Kvarfordt Technical

7. PERIOD COVERED (0nclusive Dates)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS qtf NRC, provide Division. Office or Region U.S. Nuclear Regulatory Commission. and mailing address: if contractor.

provide name and mailing address.)

Idaho National Laboratory
Battelle Energy Alliance
P.O. Box 1625
Idaho Falls, ID 83415-3850

9. SPONSORING ORGANIZAT`ION - NAME AND ADDRESS (if NRC, type "Same as above", if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Cormmission.

and mailing address.)

Division of Risk Analysis

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, DC 20555-0001
10. SUPPLEMENTARY NOTES

D. O'Neal, NRC Project Manager
11. ABSTRACT (200 words or less)

The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 8 is a software application
developed for performing a complete probabilistic risk assessment using a perso nal computer running the Microsoft Windows TM

operating system. SAPHIRE 8 is funded by the U.S. Nuclear Regulatory Commissio n (NRC). The role of the INL in this project
is that of software developer and tester. This development takes place using formal software development procedures and is
subject to quality assurance (QA) processes. The purpose of this document is t o describe how the SAPHIRE software QA is
performed for Version 8, what constitutes its parts, and limitations of those p rocesses. In addition, this document describes the
Independent Verification and Validation that was conducted for Version 8 as part of an overall QA process.

12. KEY WORDSIDESCRIPTORS (Lst words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT

SAPHIRE 8, software, reliability, risk, safety, PRA, quality assurance unlimited
14. SECURITY CLASSIFICATION

(This Page)

unclassified
(This Report)

unclassified

15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 ('12-2010)

Feadral ROCyClIn ProgVUtm

NUREGICR-7039, Vol. 6
SYSTEMS ANALYSIS PROGRAMS FOR HANDS-ON INTEGRATED

RELIABILITY EVALUATIONS (SAPHIRE) VERSION 8
June 2011

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS

