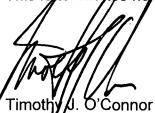


Monticello Nuclear Generating Plant 2807 W County Road 75 Monticello, MN 55362

May 12, 2011

L-MT-11-020 Technical Specification 5.6.1

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001


Monticello Nuclear Generating Plant Docket 50-263 Renewed Facility Operating License No. DPR-22

2010 Annual Radiological Environmental Operating Report

In accordance with the Monticello Nuclear Generating Plant Technical Specification 5.6.1, the Northern States Power Company, a Minnesota corporation is submitting the Annual Radiological Environmental Operating Report for the year 2010.

Summary of Commitments

This letter makes no new commitments and no revisions to existing commitments.

Site Vice President, Monticello Nuclear Generating Plant Northern States Power Company - Minnesota

Enclosure

cc: Administrator, Region III, USNRC Project Manager, Monticello, USNRC Resident Inspector, Monticello, USNRC Minnesota Department of Commerce

ENCLOSURE 1

Annual Report to the United States Nuclear Regulatory Commission

Radiological Environmental Monitoring Program

January 1, 2010 through December 31, 2010

XCEL ENERGY CORPORATION

MONTICELLO NUCLEAR GENERATING PLANT DOCKET NO. 50-263 LICENSE NO. DPR-22

ANNUAL REPORT TO THE UNITED STATES NUCLEAR REGULATORY COMMISSION

Radiological Environmental Monitoring Program

January 1 to December 31, 2010

Prepared under Contract by

ENVIRONMENTAL, Inc. Midwest Laboratory

Project No. 8010

Bronia Grab, M.S. Laboratory Manager

Approved:

PREFACE

The staff of Environmental, Inc., Midwest Laboratory was responsible for the acquisition of data presented in this report. Samples were collected by personnel of the Monticello Nuclear Generating Plant, operated by Northern States Power Co. -Minnesota for XCEL Energy Corporation. This report was prepared by Environmental, Inc., Midwest Laboratory.

ŗ

TABLE OF CONTENTS

<u>No.</u>	Page
	Prefaceii
	List of Tablesiv
	List of Figuresv
1.0	INTRODUCTION1
2.0	SUMMARY2
3.0	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)3.1Program Design and Data Interpretation3.2Program Description3.3Program Execution3.4Laboratory Procedures3.5Program Modifications3.6Land Use Census6
4.0	RESULTS AND DISCUSSION 7 4.1 Atmospheric Nuclear Detonations and Nuclear Accidents 7 4.2 Summary of Preoperational Data 7 4.3 Program Findings 8
5.0	FIGURES AND TABLES
6.0	REFERENCES
APPENDICES	
А	Interlaboratory Comparison Program ResultsA-1
В	Data Reporting ConventionsB-1
С	Maximum Permissible Concentrations of Radioactivity in Air and Water Above Natural Background in Unrestricted AreaC-1
D	Sampling Location MapsD-1
E	Ground Water Monitoring Well SamplesE-1

LIST OF TABLES

<u>No.</u>	Title	Page
5.1	Sample Collection and Analysis Program	13
5.2	Sampling Locations	14
5.3	Missed Collections and Analyses	17
5.4	Radiation Environmental Monitoring Program Summary	20

The following tables are in the Appendices:

Appendix A

A-1	Interlaboratory Comparison Program Results	A1-1
A-2	Thermoluminescent dosimeters (TLDs)	A2-1
A-3	In-house Spiked Samples	A3-1
A-4	In-house "Blank" Samples	A4-1
A-5	In-house "Duplicate" Samples	A5-1
A-6	Department of Energy MAPEP comparison results	A6-1
A-7	Environmental Resources Associates, Crosscheck Program Results (EML study replacement)	A7-1
	Attachment A: Acceptance criteria for spiked samples	A2

Appendix C

C-1	Maximum Permissible Concentrations of Radioactivity in air and water
	above background in unrestricted areas C-2

Appendix E

E-1	Sample Collection and Analysis Program, Ground Water,	E-6
E-2	Sampling Locations for Ground Water Monitoring Wells	E-6
E-3	Ground Water Monitoring Program Summary	E-7

LIST OF FIGURES

<u>No</u> .	Title	<u>Page</u>
5-1	Offsite Ambient Radiation (TLDs), inner versus outer ring locations	18
5-2	Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location	19

The following figures are located in the Appendices:

Appendix D

D-1	Sample collection and analysis program: TLD locations, Inner Ring	D-2
D-2	Sample collection and analysis program: TLD locations, Outer Ring	D-3
D-3	Sample collection and analysis program: TLD locations, Controls	D-4
D-4	Sample collection and analysis program: Radiation Environmental Monitoring Program, Milk sampling locations	D-5
D-5	Sample collection and analysis program: Radiation Environmental Monitoring Program, Milk, Sludge, Ground water and Shoreline sampling locations	D-6

Appendix E

E-1	Sample collection and analysis program:	
	Ground water, On-site monitoring well locations E-	-8

v

1.0 INTRODUCTION

This report summarizes and interprets results of the Radiological Environmental Monitoring Program (REMP) conducted by Environmental, Inc., Midwest Laboratory for the Monticello Nuclear Generating Plant, Monticello, Minnesota, during the period January - December, 2010. This Program monitors the levels of radioactivity in the air, terrestrial, and aquatic environments in order to assess the impact of the Plant on its surroundings.

Tabulation of the individual analyses made during the year are not included in this report. These data are included in a reference document (Environmental, Inc., Midwest Laboratory, 2010a) available at the Monticello Nuclear Generating Plant, Chemistry and Radiation Protection Department.

The Monticello Nuclear Generating Plant is a boiling water reactor with a nominal generating capacity of 600 MWe. It is located on the Mississippi River in Wright County, Minnesota, owned by Xcel Energy Corporation and operated by Northern States Power Co.-Minnesota. Initial criticality was achieved on December 10, 1970. Full power was achieved March 5, 1971 and commercial operation began on June 30, 1971.

2.0 SUMMARY

The Radiological Environmental Monitoring Program (REMP) required by the U.S. Nuclear Regulatory Commission (NRC) Technical Specifications and the Offsite Dose Calculation Manual (ODCM) for the Monticello Nuclear Generating Plant is described. Results for the year 2010 are summarized and discussed.

Program findings show background levels of radioactivity in the environmental samples collected in the vicinity of the Monticello Nuclear Generating Plant.

3.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

3.1 Program Design and Data Interpretation

The purpose of the Radiological Environmental Monitoring Program (REMP) at the Monticello Nuclear Generating Plant is to assess the impact of the Plant on its environment. For this purpose, samples are collected from the air, terrestrial, and aquatic environments and analyzed for radioactive content. In addition, ambient gamma radiation levels are monitored by thermoluminescent dosimeters (TLD's).

Sources of environmental radiation include the following:

- (1) Natural background radiation arising from cosmic rays and primordial radionuclides;
- (2) Fallout from atmospheric nuclear detonations;
- (3) Releases from nuclear power plants;
- (4) Industrial and medical radioactive waste; and
- (5) Fallout from nuclear accidents.

In interpreting the data, effects due to the Plant must be distinguished from those due to other sources.

A major interpretive aid in assessment of these effects is the design of the monitoring program at the Monticello Plant which is based on the indicator-control concept. Most types of samples are collected both at indicator locations (nearby, downwind, or downstream) and at control locations (distant, upwind, or upstream). A plant effect would be indicated if the radiation level at an indicator location was significantly larger than that at the control location. The difference would have to be greater than could be accounted for by typical fluctuations in radiation levels arising from other sources.

An additional interpretive technique involves analyses for specific radionuclides present in environmental samples collected from the Plant site. The Plant's monitoring program includes analyses for tritium and iodine-131. Most samples are also analyzed for gamma-emitting isotopes with results for the following groups quantified: zirconium-95, cesium-137, cerium-144, beryllium-7, and potassium-40. The first three gamma-emitting isotopes were selected as radiological impact indicators because of the different characteristic proportions in which they appear in the fission product mix produced by a nuclear reactor and that produced by a nuclear detonation. Each of the three isotopes is produced in roughly equivalent amounts by a reactor: each constitutes about 10% of the total activity of fission products 10 days after reactor shutdown. On the other hand, 10 days after a nuclear explosion, the contributions of zirconium-95, cerium-144, and cesium-137 to the activity of the resulting debris are in the approximate ratio 4:1:0:03 (Eisenbud, 1963). Beryllium-7 is of cosmogenic origin and potassium-40 is a naturally-occurring isotope. They were chosen as calibration monitors and should not be considered as radiological impact indicators. The other group quantified consists of niobium-95, ruthenium-103 and -106, cesium-134, barium-lanthanum-140, and cerium-141. These isotopes are released in small quantities by nuclear power plants, but to date their major source of injection into the general environment has been atmospheric nuclear testing. Nuclides of the final group, manganese-54, iron-59, cobalt-58 and -60, and zinc-65, are activation products and arise from activation of corrosion products. They are typical components of a nuclear power plant's effluents, but are not produced in significant quantities by nuclear detonations.

Other means of distinguishing sources of environmental radiation are employed in interpreting the data. Current radiation levels are compared with previous levels, including those measured before the plant became operational. Results of the Plant's Monitoring Program can be related to those obtained in other parts of the world. Finally, results can be related to events known to cause elevated levels of radiation in the environment, e.g., atmospheric nuclear detonations.

3.2 Program Description

The sampling and analysis schedule for the Radiological Environmental Monitoring Program (REMP) at the Monticello Plant is summarized in Table 5.1 and briefly reviewed below. Table 5.2 defines the sampling location codes used in Table 5.1 and specifies for each location its type (indicator or control) and its distance, direction, and sector relative to the plant site. To assure that sampling is carried out in a reproducible manner, detailed sampling procedures have been prescribed (Monticello Generating Plant REMP Surveillances, Current Revision). Maps of sampling locations are included in Appendix D.

To monitor the air environment, airborne particulates are collected on membrane filters by continuous pumping at five locations. Also, airborne iodine is collected by continuous pumping through charcoal filters at all of these locations. Filters are changed and counted weekly. Particulate filters are analyzed for gross beta activity and charcoal filters for iodine-131. Quarterly composites of particulate filters from each location are determined by gamma spectroscopy. One of the five locations is a control (M-1), and four are indicators (M-2, M-3, M-4, M-5). One of the indicators is located in the geographical sector expected to be most susceptible to any atmospheric emissions from the Plant (highest D/Q sector).

Ambient gamma radiation is monitored at forty locations, using CaSO₄:Dy dosimeters with four sensitive areas at each location: fourteen in an inner ring in the general area of the site boundary, sixteen in the outer ring within 4-5 mile radius, six at special interest locations and four control locations, outside a 10 mile radius from the plant. They are replaced and measured quarterly.

Milk sampling from two goat farms (one indicator and one control), was added to the program in the fourth quarter of 2010. Samples are collected monthly from November through April and biweekly during the growing season (May - October), when animals may be on pasture. The samples are analyzed for iodine-131 and gamma-emitting isotopes. In addition, pasture grass and vegetation are collected from locations M-41, M-42 and M-43 (C) and analyzed for iodine-131 and other gamma emitting isotopes, as substitute for dairy sampling.

Leafy green vegetables (cabbage) are collected annually from the highest D/Q garden and a control location and analyzed for iodine-131. Corn and potatoes are collected annually only if the field is irrigated by water in which liquid radioactive effluent has been discharged. Analysis is for gamma-emitting isotopes.

Ground water is monitored by quarterly collections from three off-site locations (one control and two indicators) and one on-site Plant well. To check possible sources of groundwater contamination due to plant operations, samples from sixteen on-site monitoring wells are collected and analyzed for tritium and gamma emitting isotopes. An additional on-site well was added in September, 2010.

Quarterly collections of storm water runoff were added to monitor another possible pathway to the groundwater aquifer. The samples are analyzed for tritium and gamma emitting isotopes.

River water is collected weekly at two locations, one upstream of the plant and one downstream. Monthly composites are analyzed for gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

Drinking water is collected weekly from the City of Minneapolis water supply, which is taken from the Mississippi River downstream of the Plant. Monthly composites are analyzed for gross beta, iodine-131, and gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

The aquatic environment is also monitored by semi-annual upstream and downstream collections of fish, invertebrates, and shoreline sediments. Shoreline sediment is also collected from one downstream recreational location. All samples are analyzed for gamma-emitting isotopes.

3.3 Program Execution

The Program was executed as described in the preceding section with the following exceptions:

(1) Air Particulates / Air Iodine:

No air particulate / air iodine sample was available from location M-03 for the week ending February 24, 2010. The particulate filter was not positioned correctly.

No air particulate/air iodine sample was available from location M-04 for the weeks ending July 21, 2010 and August 18, 2010. There was no power, due to an open fuse.

No air particulate / air iodine sample was available from location M-05 for the week ending October 28, 2010. There was no power to the sampler, due to an open fuse.

(2) Thermoluminescent Dosimeters:

The TLD for location M-05B was missing in the field for the second quarter, 2010.

TLDs for locations M-07A, M-10A, M-11A, M-12A and M-01S were missing in the field for the fourth quarter, 2010.

(3) Surface Water:

Surface water was not collected at location M-08 during the months of January, February and December, 2010, due to unsafe ice conditions.

(4) Well Water:

Well water was not collected at location M-10 for the fourth quarter, 2010. The location was discontinued and replaced with a collection at M-43.

Well water was collected on October 18, 2010, but the shipment was lost in transit to the laboratory. Affected locations were MW-1, 4, 5, 8, 13A.

(5) <u>Milk</u>

Milk was not available from location M-17 for November and December, 2010 and from location M-16 in December, 2010. The dairies stopped milking for the winter.

(6) Invertebrates

Bottom organisms were not collected in the Spring or Fall of 2010, due to high river levels.

Deviations from the program are summarized in Table 5.3.

3.4 Laboratory Procedures

The iodine-131 analyses in milk and drinking water were made using a sensitive radiochemical procedure which involves separation of the iodine using an ion-exchange method and solvent extraction and subsequent beta counting.

Gamma-spectroscopic analyses are performed using high-purity germanium (HPGe) detectors. Levels of iodine-131 in cabbage and natural vegetation and concentrations of airborne iodine-131 in charcoal samples were determined by gamma spectroscopy.

3.4 Laboratory Procedures (continued)

Tritium concentrations are determined by liquid scintillation.

Analytical Procedures used by Environmental, Inc. are on file and are available for inspection. Procedures are based on those prescribed by the Health and Safety Laboratory of the U.S. Dep't of Energy, Edition 28, 1997, U.S. Environmental Protection Agency for Measurement of Radioactivity in Drinking Water, 1980, and the U.S. Environmental Protection Agency, EERF, Radiochemical Procedures Manual, 1984.

Environmental, Inc., Midwest Laboratory has a comprehensive quality control/quality assurance program designed to assure the reliability of data obtained. Details of the QA Program are presented elsewhere (Environmental, Inc., Midwest Laboratory, 2011). The QA Program includes participation in Interlaboratory Comparison (crosscheck) Programs. Results obtained in the crosscheck programs are presented in Appendix A.

3.5 Program Modifications

One additional on-site monitoring well site, #14 (M-52) was added to the REMP in 2010. Samples were collected quarterly and analyzed for tritium and gamma emitting isotopes.

Ground water collections were discontinued at M-10 (Campbell) in the fourth quarter of 2010, sampling was replaced with collections from M-43 (Imholte Farm) in October, 2010.

Two commercial goat farms were identified during the 2010 land use census and added to the REMP. Milk sampling began in October, 2010 at M-16 (Kitzman Farm) and at the control location M-17 (Greninger Farm).

3.6 Land Use Census

In accordance with the MNGP Chemistry Manual, Procedure I.05.41, "Annual Land Use Census and Critical Receptor Identification", a land use census shall be conducted and shall identify the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than 500 ft² producing fresh leafy vegetables, in each of the 16 meteorological sectors within a distance of 5 miles. The census shall also identify the locations of all milk animals and all 500 ft² or greater gardens producing broad leaf vegetation in each of the meteorological sectors within a distance of three miles. This census shall be conducted at least once per year between the dates of May 1 and October 31. New locations shall be added to the radiation environmental monitoring program within 30 days and sampling locations having lower calculated doses or a lower dose commitment may be deleted from this monitoring program after October 31 of the year in which the land use census was conducted.

The 2010 land use census was conducted between September 21 and October 19, 2010. There was one sector (E) in which the highest D/Q value for nearest garden increased by greater than 20%. No changes to the sampling procedures were required.

Two commercial goat farms were identified during the 2010 land use census and milk sampling has been added to the REMP. The highest D/Q locations for nearest resident and garden animal did not change from the 2009 census.

Details of the land use census are contained in the Land Use Census and Critical Receptor Report, Monticello Nuclear Generating Plant, Chemistry and Radiation Protection Department. All of the scheduled collections and analyses were made except those listed in Table 5.3.

All results are summarized in Table 5.4 in a format recommended by the Nuclear Regulatory Commission in Regulatory Guide 4.8. For each type of analysis of each sampled medium, this table lists the mean and range for all indicator locations and for all control locations. The locations with the highest mean and range are also shown.

4.1 <u>Atmospheric Nuclear Detonations and Nuclear Accidents</u>

There were no reported accidents at nuclear facilities and no atmospheric nuclear tests conducted in the year 2000. The last reported test was made by the People's Republic of China on October 16, 1980.

4.2 <u>Summary of Preoperational Data</u>

The following constitutes a summary of preoperational studies conducted at the Monticello Nuclear Generating Plant during the years 1968 to 1970, to determine background levels expected in the environment, and provided, where applicable, as a means for comparison with present day levels. Strict comparisons, however, are difficult to make, since background levels of radiation were much higher in these years due to radioactive fallout from the atmosphere. Gross beta measurements in fallout averaged 20,600 pCi/m² in 1969 and 12,000 pCi/m² in 1970. These levels are reflected throughout the various media tested.

In the air environment, ambient gamma radiation (TLDs) averaged 9.1 mRem/4 weeks during preoperational studies (1970). Gross beta in air particulates in 1969 and 1970 averaged 0.20 pCi/m³. Present day levels have stabilized at around 0.025 pCi/m³. Airborne radioiodine remained below detection levels.

In the terrestrial environment of 1968 to 1970, milk, agricultural crops, and soil were monitored. In milk samples, low levels of Cs-137 and Sr-90 were detected. Cs-137 levels averaged 16.7 pCi/L. Soybean crop measurements in 1969 averaged 35.5 pCi/g for gross beta and 0.3 pCi/g for Cs-137. Gross beta measured in soil averaged 51.7 pCi/g. Present day measurements for cesium-137 are below detection levels in milk and agricultural crops.

The aqueous environment was monitored by testing of river water, bottom sediments, fish, aquatic vegetation, and periphyton. Specific location comparison of drinking, river, and well water concentrations for tritium and gross beta are not possible. However, tritium background levels, measured at seven separate locations from 1968 to 1970, averaged 970 pCi/L. Present day environmental samples measure below detection levels. Values for gross beta, measured from 1968 to 1970, averaged 9.8 pCi/L in upstream and downstream Mississippi River water, 4.4 pCi/L for well waters, and 18.6 pCi/L for lake waters. Gamma emitters were below the lower limit of detection (LLD). In shoreline sediments, gross beta background levels in 1970 averaged 49.8 pCi/g for both upstream and downstream samples. Cs-137 activity averaged 0.10 pCi/g for both upstream and downstream samples. Low levels of Cs-137, occasionally observed today can still be attributed to residual activity from atmospheric fallout. Gross beta levels in fish flesh averaged 5.3 pCi/g in 1968 and 1969. Cs-137, measured in 1969 and 1970, averaged 0.044 pCi/g. Gross beta background levels, in 1970, for aquatic vegetation, algae, and periphyton samples measured 86.7 pCi/g, 76.5 pCi/g, and 28.1 pCi/g respectively.

4.3 Program Findings

Results obtained show background levels of radioactivity in environmental samples collected outside of the Site Protected Area in 2010. The trace levels of strontium-90 and cesium-137, still measurable in soil and sediment samples, are generally attributed to deposition of fallout from previous decades.

Tritium was identified in some groundwater samples collected within the site Protected Area.

Ambient Radiation (TLD's)

Ambient radiation was measured in the general area of the site boundary, at an outer ring 4 - 5 mi. distant from the Plant, at special interest areas and at four control locations. The means were similar for both inner and outer rings (14.7 and 14.3 mRem/91 days, respectively). The mean for special interest locations was 14.0 mRem/91 days and the mean for the control locations was 15.2 mRem/91 days. Dose rates measured at the inner and outer ring locations were similar to those observed from 1995 through 2009 and are tabulated below. No plant effect on ambient gamma radiation is indicated (Figure 5-1).

Year	Inner Ring	Outer Ring	
	Dose rate (mRem/91 days)		
1995	14.4	13.6	
1996	14.0	13.5	
1997	13.3	12.8	
1998	15.0	14.4	
1999	15.1	14.3	
2000	15.1	14.5	
2001	14.3	13.7	
2002	15.9	14.8	
2003	15.6	15.0	
2004	16.0	15.4	
2005	15.6	15.2	
2006	16.5	15.6	
2007	16.1	15.1	
2008	15.2	14.6	
2009	14.9	14.4	
2010	14.7	14.3	

Ambient gamma radiation as measured by thermoluminescent dosimetry. Average quarterly dose rates, Inner vs. Outer Ring locations

Airborne Particulates

The average annual gross beta concentrations in airborne particulates were identical at both indicator and control locations (0.026 pCi/m^3), similar to levels observed from 1995 through 2009. The results are tabulated below.

Year	Indicators	Control		
<u>Concentration (pCi/m</u> ³)				
1995	0.024	0.025		
1996	0.023	0.023		
1997	0.023	0.023		
1998	0.023	0.023		
1999	0.023	0.025		
2000	0.027	0.026		
2001	0.027	0.026		
2002	0.028	0.028		
2003	0.027	0.027		
2004	0.024	0.024		
2005	0.025	0.025		
2006	0.024	0.025		
2007	0.027	0.028		
2008	0.028	0.029		
2009	0.029	0.030		
2010	0.026	0.026		

Average annual gross beta concentrations in airborne particulates.

Typically, the highest average readings occur during the months of January and December, and the first and fourth quarters, as observed in 1995 through 2010.

Gamma spectroscopic analysis of quarterly composites of air particulate filters yielded similar results for indicator and control locations. Beryllium-7, which is produced continuously in the upper atmosphere by cosmic radiation (Arnold and Al-Salih, 1955) was detected in all samples, with an average activity of 0.076 pCi/m³ for all locations. All other gamma-emitting isotopes were below their respective LLD limits.

Airborne lodine

Weekly levels of airborne iodine-131 were below the lower limit of detection (LLD) of 0.03 pCi/m³ in all samples.

River Water and Drinking Water

Tritium activity measured below the LLD of 500 pCi/L in all samples. Gross beta activity in Minneapolis drinking water averaged 2.9 pCi/L and was similar to average levels observed from 1995 through 2009. Gross beta averages are tabulated below.

Year	Gross Beta (pCi/L)	Year	Gross Beta (pCi/L)
1995	2.3	2003	3.0
1996	2.1	2004	2.7
1997	2.3	2005	2.8
1998	2.4	2006	2.1
1999	2.2	2007	2.8
2000	2.5	2008	2.1
2001	2.5	2009	2.3
2002	2.9	2010	2.9

Average annual concentrations; Gross beta in drinking water.

Comparisons with data reported by the USEPA for Minneapolis drinking water samples collected from 1980 through 2005 indicate that concentrations of these nuclides are remaining fairly constant. Gamma-emitting isotopes were below detection limits in all surface water samples. There was no indication of a plant effect.

Well Water

At the four indicator and control locations, tritium measured below the required 500 pCi/L limit in all samples. Gamma isotopic results were below detection limits. The data for 2010 were consistent with previous years results and no plant operational effects were indicated.

Monitoring Wells (on-site)

Measurable tritium above 500 pCi/L was detected in 20 of 152 samples collected from fourteen on-site monitoring wells. The activities ranged from 609 to 21,127 pCi/L, almost identical to concentrations seen in 2009. The highest activities were observed at well MW-9A.

Gamma isotopic results were below detection limits.

Stormwater Run-off (on-site)

Six stormwater runoff samples from three on-site locations, were submitted for analysis in 2010. No tritium activity above 500 pCi/L was measured in any of the samples. Gamma isotopic results were below detection limits.

<u>Goat Milk</u>

Milk collections restarted in October, 2010 with the addition of two new dairies to the REMP.

lodine-131 activity measured below the detection limit of 0.5 pCi/L in all samples. No gammaemitting isotopes, excepting naturally-occurring potassium-40, were detected.

In summary, the goat milk data for 2010 show no radiological effects of the plant operation.

Pasture Grass

Pasture grass was collected in July, August and September, 2010. I-131 concentrations measured below 0.051 pCi/g wet weight in all samples. With the exceptions of naturally-occurring beryllium-7 and potassium-40, no other gamma-emitting isotopes were detected.

Crops

Cabbage was collected in September from two locations and analyzed for iodine-131. Levels of I-131 measured below 0.028 pCi/g wet weight in both samples. With the exceptions of naturally-occurring beryllium-7 and potassium-40, no other gamma-emitting isotopes were detected.

No crops within five miles of the plant, were found using irrigation water from the Mississippi River. There was no indication of any plant effect.

Fish

Fish samples were collected in May and October. Flesh was separated from the bones and analyzed by gamma spectroscopy. Naturally-occurring potassium-40 was found to be similar in upstream and downstream samples (2.94 and 2.91 pCi/g wet weight, respectively). All gamma-emitting isotopes were below their respective LLD levels. There was no indication of a plant effect.

Shoreline Sediments

Upstream, downstream and downstream recreational area shoreline sediment collections were made in June and November of 2010 and analyzed for gamma-emitting isotopes. Low levels of cesium-137 were detected in three of four downstream samples, averaging 0.089 pCi/g dry weight. Similar levels of activity and distribution have been observed since 1978, and are indicative of the influence of fallout deposition. The only other gamma-emitting isotopes detected were naturally-occurring beryllium-7 and potassium-40. There was no indication of a plant effect.

5.0 FIGURES AND TABLES

¢

		Location	Collection Type and	Analysis Type and
Medium	No.	Codes (and Type) ^a	Frequency ^b	Frequency ^c
Ambient radiation (TLDs)	40	M-01A - M-14A, M-01B - M-16B M-01S - M-06S, M-01C - M-04C	C/Q	Ambient gamma
Airborne Particulates	5	M-1(C), M-2, M-3, M-4, M-5	C/W	GB, GS (QC of each location)
Airborne Iodine	5	M-1(C), M-2, M-3, M-4, M-5	C/W	I-131
Milk Pasture grass, Vegetation ^d	2 3	M-16, M-17 (C) M-41, M-42, M-43(C)	G/M 3x/year	Í-131, GS GS
Surface water	2	M-8(C), M-9	G/W	GS(MC), H-3(QC)
Drinking water	1	M-14	G/W	GB(MC), I-131(MC GS (MC), H-3 (QC)
Well water On-site monitoring wells	4 17	M-10(C), M-11, M-12, M-27, M-43(C) M-33 to M-40, M-44 to M-52	G/Q	H-3, GS
Edible cultivated crops -				
Corn ^e ∟eafy Vegetable	1 2	M-19 M-27, Available Producer (C)	Ġ/A G/A	GS I-131
Potatoes ^e	1	M-21	G/A	GS
Fish one species, edible portion)	2	M-8(C), M-9	G/SA	GS
^D eriphyton or invertebrates	2	M-8(C), M-9	G/SA	GS
Shoreline sediment	3	M-8(C), M-9, M-15	G/SA	GS

Table 5.1. Sample collection and analysis program, Monticello Nuclear Generating Plant.

^a Location codes are defined in Table 5.2. Control stations are indicated by (C). All other stations are indicators.

^b Collection type is coded as follows: C/ = continuous, G/ = grab. Collection frequency is coded as follows:

W= weekly, M = monthly, Q = quarterly, SA = semiannually, A = annually.

^c Analysis type is coded as follows: GB = gross beta, GS = gamma spectroscopy, H-3 = tritium, I-131 = iodine-131.

Analysis frequency is coded as follows: MC = monthly composite, QC = quarterly composite.

^d Pasture grass and vegetation collections added to supplement dairy sampling.

^e Collected only if the plant discharges radioactive effluent into the river, then only from river irrigated fields.

Code	Type ^a	Collection Site	Sample Type ^b	Distance and Direction from Reactor
M-1	С	Air Station M-1	AP, AI	11.0: @ 2073//////
M-2	C	Air Station M-2	AP, Al	11.0 mi @ 307°/NW
M-3		Air Station M-3	AP, AI	0.8 mi@ 140°/SE
M-3 M-4		Air Station M-4	AP, Al	0.6 mi @ 104°/ESE
M-4 M-5		Air Station M-5	AP, AI	0.8 mi @ 147°/SSE
M-8	С	Upstream of Plant Intake	SW, SS, BO, F	2.6 mi @ 134°/SE
M-9	U	Downstream of Plant Discharge	SW, SS, BO, F SW, SS, BO, F	> 1000' upstream < 1000' downstream
M-9 M-10	С	Campbell Farm	3W, 33, 60, г WW	
M-10 M-11	C	City of Monticello	ww	10.6 mi @ 357°/N
M-12		Plant Well #1	ww	3.3 mi @ 127°/SE
M-12 M-14			DW	0.26 mi @ 252°/WSW
M-14 M-15		City of Minneapolis Montissippi Park	SS	37.0 mi @ 132°/SE
M-15 M-16		Kitzman Farm		1.27 mi @ 114°/ESE
M-18 M-17	С	Greninger Farm	M	3.0 mi @ 165°/SSE
M-17 M-19	C	River Irrigated Corn Field ^c	Μ	7.8 mi @ 250°/WSW
M-21		River Irrigated Potato Field ^c		
M-27				0.04
141-27		Wise residence (Highest D/Q Garden)	VE, WW	0.64 mi @ 207°/SSW
M 22		a. Available Producer	VE	> 10.0 mi
M-33		Monitoring Well #1	WW	593' @ 299°/WNW
M-34		Monitoring Well #2	WW	749' @ 301°/WNW
M-35		Monitoring Well #3	WW	770' @ 304°/NW
M-36		Monitoring Well #4	WW	0.1 mi @ 25°/NNE
M-37		Monitoring Well #5	WW	0.1 mi @ 253°/WSW
M-38		Monitoring Well #6	WW	229' @ 228°/SW
M-39		Monitoring Well #7	WW	0.2 mi @ 66°/ENE
M-40		Monitoring Well #8	WW	0.3 mi @ 150°/SSE
M-41		Training Center	VE	0.8 mi @ 151°/SSE
M-42	-	Biology Station Road	VE	0.6 mi @ 134°/SE
M-43	С	Imholte Farm	VE, WW	12.3 mi @ 313°/NW
M-44	•	Monitoring Well #9	WW	0.1 mi @ 310°/NW
M-45		Monitoring Well #10	WW	0.1 mi @ 292°/WNW
M-46		Monitoring Well #11	WW	0.1 mi @ 283°/WNW
M-47	••	Monitoring Well #12A	WW	0.1 mi @ 330°/NW
M-48		Monitoring Well #12B	WW	0.1 mi @ 326°/NW
M-49		Monitoring Well #13A	WW	0.12 mi @ 316°/NW
M-50		Monitoring Well #13B	WW	0.12 mi @ 316°/NW
M-51		Monitoring Well #9B	WW	0.1 mi @ 310°/NW
M-52		Monitoring Well #14	WW	0.17 mi @ 306°/NW
		Storm water Runoff		0.1 mi @ 27°/NE

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

Code	Typeª	Collection Site	Sample Type [⊳]	Distance and Direction from Reactor
General Ar	ea of the Site B	oundary		
M-01A		Sherburne Ave. So.	TLD	0.75 mi @ 353°/N
M-02A		Sherburne Ave. So.	TLD	0.79 mi @ 23°/NNE
M-03A		Sherburne Ave. So.	TLD	1.29 mi @ 55°/NE
M-04A		Biology Station Road	TLD	0.5 mi @ 86°/E
M-05A		Biology Station Road	TLD	0.48 mi @ 118°/ESE
M-06A		Biology Station Road	TLD	0.54 mi@ 135°/SE
M-07A		County Road 75	TLD	0.5 mi @ 155°/SSE
M-08A		County Road 75	TLD	0.48 mi @ 172°/S
M-09A		County Road 75	TLD	0.38 mi @ 209°/SSW
M-10A		County Road 75	TLD	0.38 mi @ 226°/SW
M-11A		County Road 75	TLD	0.4 mi @ 239°/WSW
M-12A		County Road 75	TLD	0.5 mi @ 262°/W
M-13A	-	North Boundary Road	TLD	0.89 mi @ 324°/NW
		North Boundary Road	TLD	0.78 mi @ 334°/NNW
M-14A				
	tely 4 to 5 miles	Distant from the Plant		
Approxima M-01B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station	TLD	•
Approxima M-01B M-02B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11	TLD	4.66 mi @ 02°/N 4.4 mi @ 18°/NNE
Approxima M-01B M-02B M-03B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81	TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE
Approxima M-01B M-02B M-03B M-04B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.)	TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE
Approxima M-01B M-02B M-03B M-04B M-05B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake	TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E
Approxima M-01B M-02B M-03B M-04B M-05B M-05B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St.	TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE
Approxima M-01B M-02B M-03B M-04B M-05B M-05B M-06B M-07B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive	TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE
Approxima M-01B M-02B M-03B M-04B M-05B M-05B M-06B M-07B M-08B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive Residence, Hwy 25 & Davidson Ave.	TLD TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE
Approxima M-01B M-02B M-03B M-04B M-05B M-05B M-06B M-07B M-08B M-09B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm	TLD TLD TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S
Approxima M-01B M-02B M-03B M-04B M-05B M-05B M-06B M-07B M-08B M-09B M-09B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave.	TLD TLD TLD TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S
Approxima M-01B M-02B M-03B M-04B M-05B M-05B M-06B M-07B M-08B M-09B M-09B M-10B M-11B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave.	TLD TLD TLD TLD TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW
Approxima M-01B M-02B M-03B M-04B M-05B M-05B M-05B M-08B M-09B M-09B M-10B M-10B M-11B M-12B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave. Lake Maria State Park	TLD TLD TLD TLD TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW
Approxima M-01B M-02B M-03B M-04B M-05B M-06B M-06B M-07B M-08B M-09B M-10B M-10B M-11B M-11B M-12B M-13B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave. Lake Maria State Park Bridgewater Station	TLD TLD TLD TLD TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW 4.2 mi @ 254°/WSW 4.1 mi @ 270°/W
Approxima M-01B M-02B M-03B M-04B M-05B M-05B M-06B M-07B M-08B M-09B M-10B M-10B M-11B M-12B M-13B M-13B M-14B	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave. Lake Maria State Park Bridgewater Station Anderson Residence, Cty Rd. 111	TLD TLD TLD TLD TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW 4.2 mi @ 254°/WSW 4.1 mi @ 270°/W
	tely 4 to 5 miles	Distant from the Plant Sherco #1 Air Station County Road 11 County Road 73 & 81 County Road 73 (196th St.) City of Big Lake County Road 14 and 196th St. Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave. Lake Maria State Park Bridgewater Station	TLD TLD TLD TLD TLD TLD TLD TLD TLD TLD	4.4 mi @ 18°/NNE 4.3 mi @ 51°/NE 4.2 mi @ 67°/ENE 4.3 mi @ 89°/E 4.3 mi @ 117°/ESE 4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW 4.2 mi @ 254°/WSW 4.1 mi @ 270°/W

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

Code	Type ^a	Collection Site	Sample	Distance and Type ^b Direction from Reactor
Special Interest	Locations			
M-01S		Osowski Fun Market	TLD	0.66 mi @ 242°/WSW
M-02S		Krone Residence	TLÐ	0.5 mi @ 224°/SW
M-03S		Big Oaks Park	TLD	1.53 mi @ 102°/ESE
M-04S		Pinewood School	TLD	2.3 mi @ 131°/SE
M-05S		Rivercrest Christian Academy	TLD	3.0 mi @ 118°/ESE
M-06S		Monte Public Works	TLD	2.6 mi @ 134°/SE
M-01C	C	Kirchenbauer Farm	TLÐ	11.5 mi @ 323°/NW
M-02C	С	County Roads 4 and 15	TLD	11.2 mi @ 47°/NE
M-03C	С	County Rd 19 and Jason Ave.	TLD	11.6 mi @ 130°/SE
M-04C	C	Maple Lake Water Tower	TLD	10.3 mi @ 226°/ SW
Protected Area	7			
ISFSI-1		ISFSI-1 (neutron) and I-01 (gamma)	TLD	NE corner of ISFSI
ISFSI-2		ISFSI-2 (neutron) and I-02 (gamma)	TLD	North side of ISFSI, center
ISFSI-3		ISFSI-3 (neutron) and I-03 (gamma)	TLD	NW corner of ISFS
ISFSI-4		ISFSI-4 (neutron) and I-04 (gamma)	TLD	West side of ISFSI, middle
ISFSI-5		ISFSI-5 (neutron) and I-05 (gamma)	TLD	West side of ISFSI, at center of array
ISFSI-6		ISFSI-6 (neutron) and I-06 (gamma)	TLD	SW corner of ISFS
ISFSI-7		ISFSI-7 (neutron) and I-07 (gamma)	TLD	South side of ISFSI, center
ISFSI-8		ISFSI-8 (neutron) and I-08 (gamma)	TLD	SE corner of ISFS
ISFSI-9		ISFSI-9 (neutron) and I-09 (gamma)	TLD	East side of ISFSI, at center of array
ISFSI-10		ISFSI-10 (neutron) and I-10 (gamma)	TLD	East side of ISFSI, middle
ISFSI-11		ISFSI-11 (neutron) and I-11 (gamma)	TLD	OCA fence south, on exit road
ISFSI-12		ISFSI-12 (neutron) and I-12 (gamma)	TLD	OCA fence middle, on exit road
ISFSI-13		ISFSI-13 (neutron) and I-13 (gamma)	TLD	OCA fence north, on exit road
ISFSI-14		ISFSI-14 (neutron)	TLD	Posted with TLD M12A
ISFSI-15		ISFSI-15 (neutron)	TLD	Posted with TLD M10A
ISFSI-16		ISFSI-16 (neutron)	TLD	Posted with TLD M02S
Neutron Control	A C		TLD	Posted with TLD M03C
Neutron Control			TLD	Posted with TLD M04C
Neutron Control			TLD	Posted with TLD M02C
Neutron Control			TLD	Posted with TLD M01C
^a "C" denotes co	ntrol locati	on. All other locations are indicators.		
^o Sample Codes	s: A	P Airborne particulates	F	Fish
	A	Airborne Iodine	SW	River Water
	В	S Bottom (river) sediments	SS	Shoreline Sediments
			T I D	

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

BS Bottom (river) sediments BO Bottom organisms DW Drinking Water

TLD Thermoluminescent Dosimeter VE

Vegetation / vegetables ww

Well Water

^c Collected only if the plant discharges radioactive effluent into the river, then only from river irrigated fields.

.

				r	
Sample Type	Analysis	Location	Collection Date or Period	Reason for not conducting REMP as required	Plans for Preventing Recurrence
sw	Gamma	M-08	January	Water frozen.	None Required
ww	Gamma	M-12	1/27/2010	Well No. 1 inoperable	Sampled Well No. 2, repaired Well No. 1.
AP/I	Beta, I-131	M-03	02-24-10	Mispositioned particulate filter	None Required
sw	Gamma	M-08	February	Water frozen.	None Required
во	Gamma	M-08, M-09	Spring, 2010	High water levels in river.	None
AP/I	Beta, I-131	M-03	06-30-10	Power lost for 21 hrs.	Restored power.
TLD	Gamma	M-05B	2nd Quarter	Missing in field.	Replaced, vandalism
AP/I	Beta, I-131	M-04	7/21/2010	Open Fuse.	Fuse replaced.
AP/I	Beta, I-131	M-04	8/18/2010	Open Fuse.	Fuse replaced.
во	Gamma	M-08, M-09	Fall, 2010	High water levels in river.	None
ww	Gamma, H-3	M-10	10/20/2010	Location discontinued.	Replaced by M-43
ww	Gamma, H-3	MW-1, 4, 5, 8, 13A	10/18/2010	Samples lost in transit.	Resampled
AP/I	Beta, I-131	 M-05	10/28/2010	Open Fuse.	Fuse replaced.
MI	Gamma, I- 131	M-17	11/24/2010	Milking finished for the year.	None Required
МІ	Gamma, I-131	M-16	12/22/2010	Milking finished for the year.	None Required
sw	Gamma	M-008	December	Water frozen.	None Required
TLD	Gamma	M-7A, 10A, 11A, 12A, 1S	4th Quarter	Missing in field.	Knocked over and covered by snow plow

Table 5.3. MISSED COLLECTIONS AND ANALYSES

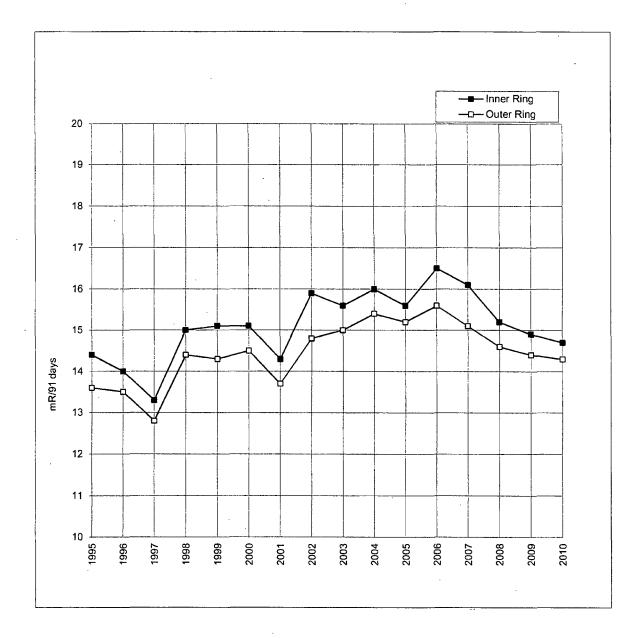


Figure 5-1. Offsite Ambient Radiation (TLDs); Inner Ring versus Outer Ring locations.

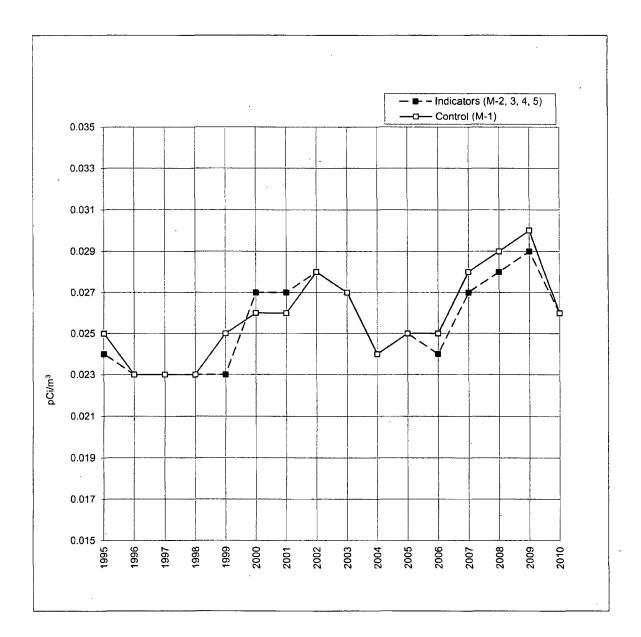


Figure 5-2. Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location.

Monticello Nuclear Generating Plant

Name of Facility

	on of Facility		vinnesota		Reporting Period	January-Decemb	er. 2010
	,			y, State)			
	· · · ·						
			Indicator	Location with Highest		Control	Number
Sample	Type and		Locations	Annual Me		Locations	Non-
Туре	Number of	LLD⁰	Mean (F) ^c	d	Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location	Range ^c	Range ^c	Results ^e
TLD (Inner Ring, General Area at Site Boundary) mRem/91 days)	Gamma 52	3.0	14.7 (52/52) (11.1-17.0)	M-11A, County Rd 75, 0.4 mi @ 250°/WSW	15.9 (3 /3) (14.9-17.0)	(See Control below.)	0
TLD (Outer Ring, 4-5 mi. distant) mRem/91 days)	Gamma 63	3.0	14.3 (63/63) (11.1-16.5)	M-07B 4.4 mi @ 135°/SE	15.6 (4 /4) (14.9-16.2)	(See Control below.)	0
TLD (Special Interest Areas) mRem/91 days)	Gamma 23	3.0	14.0 (23/23) (10.5-16.9)	M-06S, Mont. Pub. Wks. 2.7 mi @ 136°/SE	16.4 (4 /4) (15.9-16.9)	(See Control below.)	0
TLD (Control) mRem/91 days)	Gamma 16	3.0	None	M-03C, Rte. 19 & Jason, 11.6 mi @ 130°/SE	16.1 (4 /4) (14.8-16.9)	15.2 (16/16) (13.3-16.9)	0
Airborne Particulates (pCi/m ³)	GB 256	0.002	0.026 (204/204) (0.005-0.061)	M-4, Air Station 0.8 mi @ 147°/SSE	0.027 (50 /50) (0.006-0.060)	0.026 (52/52) (0.003-0.062)	0
	GS 20 Be-7	0.015	0.076 (16/16) (0.059-0.097)	M-4, Air Station 0.8 mi @ 147°/SSE	0.084 (4/4) (0.067-0.096)	0.077 (4/4) (0.071-0.087)	0
	Mn-54	0.0006	< LLD	-	-	< LLD	0
	Co-58	0.0008	< LLD	-	-	< LLD	0
	Co-60	0.0009	< LLD	-	-	< LLD	0
	Zn-65	0.0011	< LLD	-	. -	< LLD	0
	Zr-Nb-95	0.0012	. <lld< td=""><td>- ·</td><td>-</td><td>< LLD</td><td>0</td></lld<>	- ·	-	< LLD	0
	Ru-103	0.0014	< LLD	-	-	< LLD	0
Į.	Ru-106	0.0072	< LLD	-	-	< LLD	0
	Cs-134	0.0008	< LLD	-	-	< LLD	0
	Cs-137	0.0010	< LLD		-	< LLD	0
	Ba-La-140	0.0025	< LLD	-	-	< LLD	0
	Ce-141	0.0020	< LLD	-	-	< LLD	0
	Ce-144	0.0056	< LLD	-	-	< LLD	0
Airborne lodine (pCi/m ³)	I-131 256	0.03	< LLD	-		< LLD	0

Docket No. Reporting Period 50-263

Name of Facility Location of Facility				o Nuclear Genera		Docket No. Reporting Period	50-263 January-December, 2010	
Localio		нту	Wright, Minnesota (County, State)			Reporting Feriou	January-December, 2010	
				(occarity	, 61210 /	_		
				Indicator	Location with H	Highest	Control	Number
Sample	Туре	and		Locations	Annual Me	•	Locations	Non-
Туре	Numb	er of	LLD⁰	Mean (F) ^c	Mean (F) ^c		Mean (F) ^c	Routine
(Units)	Analy	ses ^a	·	Range ^c	Location	Range ^c	Range ^c	Results ^e
Milk								
(pCi/L)	1-131	3	0.5	< LLD	-	-	< LLD	0
	GS	3						
	K-40) .	200	1788 (1/1)	M-16, Kitzman	1788 (1 /1)	1762 (2/2)	0
					3.0 mi. SSE		(1644-1879)	
	Cs-1	34	5	< LLD	-	-	< LLD	0
	Cs-1	37	5	< LLD	-	-	< LLD	0
	Ba-L	.a-140	5	< LLD	-	-	< LLD	0
River Water				•				
(pCi/L)	н-3	8	500	< LLD	-	-	< LLD	0
	GS	21						
	Mn-5	54	10	< LLD			< LLD	
	Fe-5		30	< LLD	-	-		0
	Co-5		10	< LLD	•	-	< LLD	0
	Co-6		1		-	-		1 1
	1		10	< LLD	-	-	< LLD	0
	Zn-6		30	< LLD	-	-	< LLD	0
		lb-95	15	< LLD	-	-	< LLD	0
	Cs-1		10	< LLD	-	-	< LLD	0
• .	Cs-1		10	< LLD	-	-	< LLD	0
	1	.a-140	15	< LLD	-	-	< LLD	0
	Ce-1	44	40	< LLD	-	-	< LLD	0
••••••••••••••••••••••••••••••••••••••								
Drinking Water	GB	12	1.0	2.9 (9/12)	M-14, Minneapolis	2.9 (9/12)	None	0
(pCi/L)				(1.8-3.5)	37.0 mi. @ 132° /SE	(1.8-3.5)		
. ,	-131	12	1.0	< LLD	. •	-	None	0
	· .							
	н-з	4	500	< LLD	_	-	None	0
								Ĭ
	GS	12		:				
	Mn-		10	< LLD	-	-	None	0
	Fe-5		30	< LLD	-	-	None	0
	Co-5		10	< LLD	-	_	None	0
	Co-6		10	< LLD	·	-	None	0
	Zn-6		30	< LLD	· · ·	-	None	0
	Zr-N		15	< LLD	-	-	None	o
	Cs-1		10	< LLD	_ ·	· -	None	0
	Cs-1		10	< LLD	· _	-	None	0
		.a-140	15	< LLD	_	_	None	0
	Ce-1		38	< LLD		-	None	0
						_		

Name of Facility		Monticell	o Nuclear Genera	ting Plant	Docket No.	50-263	
Location of Facility		Wright, Minnesota			Reporting Period	January-Decemb	er, 2010
			(County	y, State)			
			Indicator	Location with I	lighest	Control	Number
Sample	Type and		Locations	Annual Me	อก	Locations	Non-
Туре	Number of	LLD [®]	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
				······			
Well Water	H-3 16	500	< LLD	-	-	< LLD	0
(pCi/L)	GS 16						
	Mn-54	10 ·	< LLD	-	-	< LLD	0
	Fe-59	30	< LLD	· -	-	· < LLD	0
	Co-58	10	< LLD	-	-	< LLD	0
	Co-60	10	< LLD	-	-	< LLD	0
-	Zn-65	30	< LLD	-	-	< LLD	0
	Zr-Nb-95	15	< LLD	-	-	< LLD	0
	Cs-134	10	< LLD	-	-	< LLD	0
	Cs-137	10	< LLD	-	-	< LLD	0
	Ba-La-140	15	< LLD	-	-	< LLD	0
	Ce-144	46	< LLD	-	-	< LLD	0
Crops - Cabbage	GS 2						
(pCi/gwet)	Į					ļ	
	Mn-54	0.006	< LLD	-	-	< LLD	0
	Fe-59	0.020	< LLD	-	-	< LLD	0
	Co-58	0.009	< LLD	-	-	< LLD	0
	Co-60	0.008	< LLD	•	-	< LLD	0
	Zn-65	0.017	< LLD	-	-	< LLD	0
	Nb-95	0.007	< LLD	-	-	< LLD	0
	1-131	0.028	< LLD	- ·	-	< LLD	0
	Cs-134	0.010	< LLD	-	-	< LLD	0
	Cs-137	0.011	< LLD	-	-	< LLD	0
Vegetation	GS 9						
(Pasture Grass,							1
Weeds, Leaves)	Mn-54	0.021	< LLD	-	-	< LLD	0
	Fe-59	0.039	< LLD	-	-	< LLD	0
	Co-58	0.025	< LLD	-	-	< LLD	0
(pCi/gwet)	Co-60	0.021	< LLD	-	-	< LLD	0
	Zn-65	0.043	< LLD	-	-	< LLD	0
	Nb-95	0.028	< LLD	-	-	< LLD	0
	1-131	0.051	< LLD	-	· -	< LLD	0
	Cs-134	0.020	< LLD	-	-	< LLD	0
	Cs-137	0.027	< LLD	-	-	< LLD	0
	-				·		

Name of Facility		Monticello Nuclear Generating Plant			Docket No.	50-263	
Location of Facility		Wright, Minnesota		Reporting Period	January-December, 2010		
			(Count	y, State)			
		Indicator		Location with Highest		Control	Number
Sample	Type and		Locations	Annual Me	ean	Locations	Non-
Туре	Number of	LLD⁵	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
Fish	GS 6						
(pCi/g wet)	К-40 К-40	0.10	2.91 (3/3)	M-08, Upstream	2.94 (3/3)	2.94 (3/3)	0
(poing weit)	11-40	0.10	(2.67-3.15)	< 1000' of discharge	(2.69-3.09)	(2.69-3.09)	
	Mn-54	0.021	(2.07-3.13) < LLD	< 1000 of discharge	(2.09-3.09)	(2.69-3.09) < LLD	0
	Fe-59	0.021	< LLD	-	-	< LLD	0
	Co-58	0.072	< LLD	-	_	< LLD	0
	Co-60	0.023	< LLD	-	_	< LLD	0
	Zn-65	0.043	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.045	< LLD	-	-	< LLD	o
	Cs-134	0.029	< LLD	-			0
	Cs-134 Cs-137	0.022	< LLD	-	-	- < LLD	0
	Ba-La-140	0.101	< LLD	-	-	< LLD	0
	Ce-144	0.101	< LLD < LLD	-	-	1	0
	08-144	0.13		-	-	< LLD	
Shoreline	GS 6						
Sediments	Be-7	0.25	0.48 (1/4)	M-09, downstream	0.48 (1/2)	0.43 (1/2)	0
(pCi/g dry)				of discharge, < 1000'			
	K-40	0.10	10.79 (4/4)	M-15, Montissippi Park	11.04 (2/2)	10.03 (2/2)	0
			(9.87-11.83)	1.27 mi @ 114°/ESE	(10.24-11.83)	(9.67-10.38)	
	Mn-54	0.026	< LLD	-	-	< LLD	0
	Fe-59	0.053	<pre><lld< pre=""></lld<></pre>	-	-	< LLD	0
	Co-58	0.029	< LLD	•	-	< LLD	0
	Co-60	0.024	< LLD	-	-	< LLD	0
	Zn-65	0.073	< LLD	-		< LLD	0
1	Nb-95	0.037	< LLD	-	-	< LLD	0
	Zr-95	0.049	< LLD	-	-	< LLD	0
	Ru-103	0.027	< LLD	-	-	< LLD	0
· ·	Ru-106	0.17	< LLD	-	-	< LLD	0
1	Cs-134	0.023	< LLD	-	-	· < LLD	0.
	Cs-137	0.031	0.089 (3/4)	M-15, Montissippi Park	0.096 (1/2)	< LLD	0
			(0.038-0.126)	1.27 mi @ 114°/ESE		-	
	Ba-La-140	0.025	< LLD	•	-	< LLD	0
	Ce-144	0.14	< LLD	-	-	< LLD	0
L	L	Į				1	L

^a GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 4.66 sigma counting error for background sample.

^c Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by name, and/or station code (Table 2) and (2) by distance (miles) and direction relative to reactor site.

^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten time the typical preoperational value for the medium or location.

6.0 <u>REFERENCES CITED</u>

Arnold, J. R. and H. A. Al-Salih. 1955. Beryllium-7 Produced by Cosmic Rays. Science 121: 451-453.

Eisenbud, M. 1963. Environmental Radioactivity, McGraw-Hill, New York, New York, pp. 213, 275, 276.

Environmental, Inc., Midwest Laboratory.

_____ 2001a through 2011a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January-December, 2000 through 2010.

_____ 2001b through 2011b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 2000 through 2010.

_____ 1984a to 2000a. (formerly Teledyne Brown Engineering Environmental Services, Midwest Laboratory) Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

__ 1984b to 2000b. (formerly Teledyne Brown Engineering Environmental Services, Midwest Laboratory) Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

____ 1979a to 1983a. (formerly Hazleton Environmental Sciences Corporation) Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1978 through 1982.

_____ 1979b to 1983b. (formerly Hazleton Environmental Sciences Corporation) Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January -December, 1978 through 1982.

- _____ 2009. Quality Assurance Program Manual, Rev. 2, 10 November 2009.
- ____ 2009. Quality Control Procedures Manual, Rev. 2, 08 July 2009.

____2009. Quality Control Program, Rev. 2, 12 November 2009.

Gold, S., H.W. Barkhau, B. Shlein, and B. Kahn, 1964. Measurement of Naturally Occurring Radionuclides in Air, in the Natural Environment, University of Chicago Press, Illinois, 369-382.

National Center for Radiological Health, 1968. Radiological Health and Data Reports, Vol. 9, Number 12, 730-746.

Northern States Power Company.

____ 1969 through 1971. Monticello Nuclear Generating Plant, Environmental Radiation Monitoring Program, Annual Report, June 18, 1968 to December 31, 1968, 1969, 1970. Minneapolis, Minnesota.

_ 1978 through 2008. Monticello Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1, to December 31, 1977 through 2007.

6.0 <u>REFERENCES CITED (continued)</u>

U.S. Dep't of Energy 1997 HASL-300, Edition 28, Procedures Manual, Environmental Measurements Laboratory, New York, NY.

U.S. Environmental Protection Agency .

_____ 1980. Prescribed Procedures for Measurement of Radioactivity in Drinking Water, Cincinnati, Ohio (EPA-600/4-80-032).

_____ 1984. Eastern Environmental Radiation Facility, Radiochemistry Procedures Manual, Montgomery, Alabama (EPA-520/5-84-006).

____ 2007. RadNet, formerly Environmental Radiation Ambient Monitoring System, Gross Beta in Air, Gross Beta in Drinking Water (MN) 1981– 2005.

Wilson, D. W., G. M. Ward and J. E. Johnson. 1969. In Environmental Contamination by Radioactive Materials, International Atomic Energy Agency. p.125.

Xcel Energy Corporation.

2009 to 2011. Monticello Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2008 through 2010. Minneapolis, Minnesota.

__ 2009 to 2011. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2008 through 2010. Minneapolis, Minnesota. TOD Lendwerk Road • Northbrock. IL 60062-2310 phone (847) 564-0700 • fax (847) 564-4517

NOTE:

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

January, 2010 through December, 2010

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

Table A-2 lists results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 lists REMP specific analytical results from the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Complete analytical data for duplicate analyses is available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Results in Table A-7 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML).

Attachment A lists the laboratory precision at the 1 sigma level for various analyses. The acceptance criteria in Table A-3 is set at ± 2 sigma.

Out-of-limit results are explained directly below the result.

. Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES^a

Analysis	Level	One standard deviation for single determination
Gamma Emitters	5 to 100 pCi/liter or kg > 100 pCi/liter or kg	5.0 pCi/liter 5% of known value
Strontium-89 ^b	5 to 50 pCi/liter or kg > 50 pCi/liter or kg	5.0 pCi/liter 10% of known value
Strontium-90 ^b	2 to 30 pCi/liter or kg > 30 pCi/liter or kg	5.0 pCi/liter 10% of known value
Potassium-40	≥ 0.1 g/liter or kg	5% of known value
Gross alpha	≤ 20 pCi/liter > 20 pCi/liter	5.0 pCi/liter 25% of known value
Gross beta	≤ 100 pCi/liter > 100 pCi/liter	5.0 pCi/liter 5% of known value
Tritium	≤ 4,000 pCi/liter	± 1σ = 169.85 x (known) ^{0.0933}
	> 4,000 pCi/liter	10% of known value
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value
Plutonium	≥ 0.1 pCi/liter, gram, or sample	10% of known value
lodine-131, Iodine-129 ⁶	≤ 55 pCi/liter > 55 pCi/liter	6 pCi/liter 10% of known value
Uranium-238, Nickel-63 ^b Technetium-99 ^b	≤ 35 pCi/liter > 35 pCi/liter	6 pCi/liter 15% of known value
Iron-55 ^b	50 to 100 pCi/liter > 100 pCi/liter	10 pCi/liter 10% of known value
Other Analyses ^b		20% of known value

* From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies

Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

		Concentration (pCi/L)						
Lab Code	Date	Analysis	Laboratory	ERA	Control			
· · · · · · · · · · · · · · · · · · ·			Result [⊳]	Result ^c	Limits	Acceptance		
STW-1205	04/05/10	Sr-89	63.0 ± 5.7	60.4	48.6 - 68.2	Pass		
STW-1205	04/05/10	Sr-90	37.4 ± 2.4	41.3	30.4 - 47.4	Pass		
STW-1206	04/05/10	Ba-133	63.6 ± 3.3	65.9	54.9 - 72.5	Pass		
STW-1206	04/05/10	Co-60	83.3 ± 2.9	84.5	76.0 - 95.3	Pass		
STW-1206	04/05/10	Cs-134	71.0 ± 3.4	71.6	58.4 - 78.8	Pass		
STW-1206	04/05/10	Cs-137	145.5 ± 5.1	146.0	131.0 - 163.0	Pass		
STW-1206	04/05/10	Zn-65	194.9 ± 7.8	186.0	167.0 - 219.0	Pass		
STW-1207	04/05/10	Gr. Alpha	26.5 ± 1.7	32.9	16.9 - 42.6	Pass		
STW-1207	04/05/10	Gr. Beta	34.5 ± 1.6	37.5	24.7 - 45.0	Pass		
STW-1208	04/05/10	I- 1 31	22.7 ± 0.8	26.4	21.9 - 31.1	Pass		
STW-1209	04/05/10	Ra-226	15.2 ± 0.7	14.6	10.9 - 16.8	Pass		
STW-1209	04/05/10	Ra-228	15.6 ± 1.8	15.1	10.1 - 18.3	Pass		
STW-1209	04/05/10	Uranium	59.5 ± 0.7	62.3	50.7 - 69.1	Pass		
STW-1210	04/05/10	H-3	12955 ± 332	12400.0	10800 - 13600	Pass		
STW-1224	10/04/10	Sr-89	65.3 ± 5.7	68.5	55.8 - 76.7	Pass		
STW-1224	10/04/10	Sr-90	39.9 ± 2.3	43.0	31.7 - 49.3	Pass		
STW-1225	10/04/10	Ba-133	67.2 ± 4.3	68.9	57.5 - 75.8	Pass		
STW-1225	10/04/10	Co-60	53.2 ± 3.3	53.4	48.1 - 61.3	Pass		
STW-1225	10/04/10	Cs-134	47.3 ± 5.1	43.2	34.5 - 47.5	Pass		
STW-1225	10/04/10	Cs-137	118.0 ± 5.9	123.0	111.0 - 138.0	Pass		
STW-1225	10/04/10	Zn-65	107.0 ± 8.7	102.0	91.8 - 122.0	Pass		
STW-1226	10/04/10	Gr. Alpha	30.7 ± 2.9	42.3	21.9 - 53.7	Pass		
STW-1226	10/04/10	Gr. Beta	32.7 ± 0.8	36.6	24.0 - 44.2	Pass		
STW-1227	10/04/10	I-131	28.6 ± 1.1	27.5	22.9 - 32.3	Pass		
STW-1228	10/04/10	Ra-226	11.8 ± 0.6	11.4	8.5 - 13.2	Pass		
STW-1228	10/04/10	Ra-228	12.0 ± 1.8	9.9	6.4 - 12.3	Pass		
STW-1228	10/04/10	Uranium	34.8 ± 0.4	36.8	29.8 - 41.0	Pass		
STW-1229	10/04/10	H-3	13682 ± 352	12900.0	11200 - 14200	Pass		

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

Lab Code	Date		Known	mR Lab Result	Control	
	Date	Description	Value			A
	·	Description	value	± 2 sigma	Limits	Acceptance
Environment	tal, Inc.					
2010-1	6/8/2010	30 cm.	75.07	90.78 ± 3.60	52.55 - 97.59	Pass
2010-1	6/8/2010	40 cm.	42.23	50.88 ± 3.59	29.56 - 54.90	Pass
2010-1	6/8/2010	50 cm.	27.03	32.12 ± 1.90	18.92 - 35.14	Pass
2010-1	6/8/2010	60 cm.	18.77	21.80 ± 0.90	13.14 - 24.40	Pass
2010-1	6/8/2010	70 cm.	13.79	15.38 ± 1.39	9.65 - 17.93	Pass
2010-1	6/8/2010	75 cm.	12.01	11.30 ± 1.07	8.41 - 15.61	Pass
2010-1	6/8/2010	80 cm.	10.56	10.90 ± 0.61	7.39 - 13.73	Pass
2010-1	6/8/2010	90 cm.	8.34	7.84 ± 0.83	5.84 - 10.84	Pass
2010-1	6/8/2010	100 cm.	6.76	6.61 ± 0.52	4.73 - 8.79	Pass
2010-1	6/8/2010	110 cm.	5.58	4.29 ± 0.55	3.91 - 7.25	Pass
2010-1	6/8/2010	120 cm.	4.69	3.64 ± 0.33	3.28 - 6.10	Pass
2010-1	6/8/2010	150 cm.	3.00	2.82 ± 0.84	2.10 - 3.90	Pass
2010-1	6/8/2010	180 cm.	2.09	1.55 ± 0.23	1.46 - 2.72	Pass
Environment	tal, Inc.				v	
2010-2	12/13/2010	100 cm.	4.94	4.65 ± 0.57	3.46 - 6.42	Pass
2010-2	12/13/2010	110 cm.	4.09	3.50 ± 0.74	2.86 - 5.32	Pass
2010-2	12/13/2010	120 cm.	3.43	2.68 ± 0.36	2.40 - 4.46	Pass
2010-2	12/13/2010	150 cm.	2.2	1.75 ± 0.42	1.54 - 2.86	Pass
2010-2	12/13/2010	180 cm.	1.53	1.32 ± 0.52	1.07 - 1.99	Pass
2010-2	12/13/2010	40 cm.	30.89	38.56 ± 2.11	21.62 - 40.16	Pass
2010-2	12/13/2010	50 cm.	19.77	23.35 ± 1.82	13.84 - 25.70	Pass
2010-2	12/13/2010	60 cm.	13.73	14.53 ± 1.24	9.61 - 17.85	Pass
2010-2	12/13/2010	60 cm.	13.73	15.84 ± 1.53	9.61 - 17.85	Pass
2010-2	12/13/2010	80 cm.	7.72	8.33 ± 0.74	5.40 - 10.04	Pass
2010-2	12/13/2010	90 cm.	6.1	5.93 ± 0.73	4.27 - 7.93	Pass

TABLE A-2. Crosscheck program results; Thermoluminescent Dosimetry, (TLD, CaSO₄: Dy Cards).

TABLE A-3. In-House "Spike" Samples

		Concentration (pCi/L) ^a						
Lab Code ^b	Date	Analysis	Laboratory results 2s, n=1 ^c	Known Activity	Control Limits ^d	Acceptanc		
·								
SPW-12648	1/20/2010	Ra-228	40.04 ± 2.99	40.54	28.38 - 52.70	Pass		
SPW-279	1/27/2010	U-238	4.52 ± 0.22	4.17	0.00 - 16.17	Pass		
SPW-391	2/4/2010	Ni-63	179.70 ± 2.96	209.62	146.73 - 272.51	Pass		
W-21210	2/12/2010	Ra-226	16.05 ± 0.39	16.77	11.74 - 21.80	Pass		
W-21710	2/17/2010	Gr. Alpha	17.54 ± 0.37	20.00	10.00 - 30.00	Pass		
W-21710	2/17/2010	Gr. Beta	42.47 ± 0.39	45.20	35.20 - 55.20	Pass		
SPAP-669	2/25/2010	Gr. Beta	45.78 ± 0.11	49.24	29.54 - 68.94	Pass		
SPAP-671	2/25/2010	Cs-134	10.56 ± 3.15	10.38	0.38 - 20.38	Pass		
SPAP-671	2/25/2010	Cs-137	105.36 ± 3.15	109.20	98.28 - 120.12	Pass		
SPMI-674	2/25/2010	Co-60	67.38 ± 5.65	68.79	58.79 - 78.79	Pass		
SPMI-674	2/25/2010	Cs-134	60.61 ± 6.28	51.91	41.91 - 61.91	Pass		
SPMI-674	2/25/2010	Cs-137	173.80 ± 10.30	163.80	147.42 - 180.18	Pass		
SPW-676	2/25/2010	Co-60	66.13 ± 5.22	68.79	58.79 - 78.79	Pass		
SPW-676	2/25/2010	Cs-134	51.54 ± 5.97	51.91	41.91 - 61.91	Pass		
SPW-676	2/25/2010	Cs-137	179.30 ± 9.95	163.80	147.42 - 180.18	Pass		
SPW-678	2/25/2010	H-3	59213.70 ± 709.90	60407.70	48326.16 - 72489.24	Pass		
SPF-680	2/25/2010	Cs-134	402.56 ± 22.40	415.00	373.50 - 456.50	Pass		
SPF-680	2/25/2010	Cs-137	2267.90 ± 75.60	2180.00	1962.00 - 2398.00	Pass		
SPW-682	2/25/2010	Tc-99	29.70 ± 1.51	32.34	20.34 - 44.34	Pass		
SPW-2871	4/5/2010	Ra-228	33.91 ± 2.85	36.80	25.76 - 47.84	Pass		
W-40510	4/5/2010	Gr. Alpha	20.65 ± 0.42	20.00	10.00 - 30.00	Pass		
W-40510	4/5/2010	Gr. Beta	44.72 ± 0.40	45.20	35.20 - 55.20	Pass		
SPW-2083	4/28/2010	U-238	4.20 ± 0.32	4.17	0.00 - 16.17	Pass		
W-51310	5/13/2010	Ra-226	17.04 ± 0.50	16.77	11.74 - 21.80	Pass		
SPW-3181	6/17/2010	Tc-99	29.87 ± 1.09	32.34	20.34 - 44.34	Pass		
SPW-3272	6/25/2010	H-3	5489.00 ± 224.00	5928.00	4742.40 - 7113.60	Pass		
SPW-3278	6/25/2010	Fe-55	17054.00 ± 348.00	19614.00	15691.20 - 23536.80	Pass		
SPW-3280	6/25/2010	C-14	3410.60 ± 9.75	4738.00	2842.80 - 6633.20	Pass		
SPAP-3270	6/28/2010	Cs-134	12.24 ± 3.13	10.38	0.38 - 20.38	Pass		
SPAP-3270	6/28/2010	Cs-137	103.92 ± 7.14	109.20	98.28 - 120.12	Pass		
SPW-3274	6/28/2010	Co-60	67.48 ± 5.53	65.84	55.84 - 75.84	Pass		
SPW-3274	6/28/2010	Cs-134	49.55 ± 6.11	46.38	36.38 - 56.38	Pass		
SPW-3274	6/28/2010	Cs-137	58.85 ± 6.54	54.17	44.17 - 64.17	Pass		
SPW-3274	6/28/2010	Sr-90	41.59 ± 1.83	42.72	34.18 - 51.26	Pass		
SPMI-3276	6/28/2010	Co-60	66.80 ± 5.25	65.84	55.84 - 75.84	Pass		
SPMI-3276	6/28/2010	Cs-134	48.20 ± 3.88	46.38	36.38 - 56.38	Pass		
SPMI-3276	6/28/2010	Cs-137	62.46 ± 6.33	54.17	44.17 - 64.17	Pass		
SPMI-3276	6/28/2010	Sr-90	43.32 ± 1.63	42.72	34.18 - 51.26	Pass		

A3-1

TABLE A-3. In-House "Spike" Samples

Lab Code ^b	Date	Analysis	Laboratory results 2s, n=1	Known Activity	Control Limits ^c	Acceptance
SPW-5081	9/9/2010	Tc-99	30.22 ± 1.06	32.34	20.34 - 44.34	Pass
W-90910	9/9/2010	Gr. Alpha	20.95 ± 0.43	20.00	10.00 - 30.00	Pass
W-90910	9/9/2010	Gr. Beta	45.20 ± 0.41	45.20	35.20 - 55.20	Pass
W-91010	9/10/2010	Ra-226	17.48 ± 0.50	16.77	11.74 - 21.80	Pass
SPW-2874	9/23/2010	Ra-228	34.60 ± 2.68	36.80	25.76 - 47.84	Pass
XWW-5302	10/6/2010	Ba-133	154.13 ± 8.90	155.21	139.69 - 170.73	Pass
XWW-5302	10/6/2010	Co-60	24.65 ± 4.11	23.28	13.28 - 33.28	Pass
XWW-5302	10/6/2010	Cs-134	14.03 ± 3.87	13.95	3.95 - 23.95	Pass
XWW-5302	10/6/2010	Cs-137	61.16 ± 6.08	59.22	49.22 - 69.22	Pass
SPW-6035	10/21/2010	U-238	4.52 ± 0.20	4.17	0.00 - 16.17	Pass
W-120110	12/1/2010	Gr. Alpha	20.27 ± 0.41	20.00	10.00 - 30.00	Pass
W-120110	12/1/2010	Gr. Beta	46.75 ± 0.41	45.20	35.20 - 55.20	Pass
W-121610	12/16/2010	Ra-226	17.99 ± 0.43	16.77	11.74 - 21.80	Pass

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/m³), and solid samples (pCi/g).

^b Laboratory codes as follows: W (water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish).

^c Results are based on single determinations.

^d Control limits are established from the precision values listed in Attachment A of this report, adjusted to ± 2o.

NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

A3-2

TABLE A-4.	In-House	"Blank"	Samples
------------	----------	---------	---------

					Concentration (pCi/L)°
Lab Code	Sample	Date	Analysis ⁶	Laborato	ry results (4.66σ)	Acceptance
	Туре			LLD	Activity ^c	Criteria (4.66 o
SPW-12658.	Water	1/20/2010	Ra-228	0.79	0.61 ± 0.44	2
SPW-280	Water	1/27/2010	U-238	0.18	0.07 ± 0.13	1
SPW-392	Water	2/4/2010	Ni-63	15.90	-11.80 ± 9.40	20
W-21210	Water	2/12/2010	Ra-226	0.03	0.06 ± 0.02	1
W-21710	Water	2/17/2010	Gr. Alpha	0.41	0.09 ± 0.30	1
W-21710	Water	2/17/2010	Gr. Beta	0.73	0.23 ± 0.52	3.2
SPAP-668	Air Filter	2/25/2010	Gr. Beta	0.11	0.008 ± 0.002	3.2
SPAP-670	Air Filter	2/25/2010	Cs-134	1.87	-	100
SPAP-670	Air Filter	2/25/2010	Cs-137	2.31	-	. 100
SPMI-672	Milk	2/25/2010	Cs-137	3.52	-	10
SPMI-672	Milk	2/25/2010	I-131(G)	6.09	-	20
SPW-675	Water	2/25/2010	Co-60	1.55	-	10
SPW-675	Water	2/25/2010	Cs-137	2.69	-	10
SPW-675	Water	2/25/2010	I-131(G)	5.68	-	20
SPF-679	Fish	2/25/2010	Cs-134	10.94	-	100
SPF-679	Fish	2/25/2010	Cs-137	18.37	-	100
SPW-681	Water	2/25/2010	Tc-99	16.11	-10.75 ± 9.53	10
SPW-2881	Water	4/5/2010	Ra-228	0.89	0.22 ± 0.44	2
W-40510	Water	4/5/2010	Gr. Alpha	0.40	-0.20 ± 0.26	- 1
W-40510	Water	4/5/2010	Gr. Beta	0.75	-0.09 ± 0.52	3.2
SPW-2084	Water	4/28/2010	U-238	0.14	0.03 ± 0.10	1
W-51310	Water	5/13/2010	Ra-226	0.03	0.06 ± 0.02	1
SPW-3271	Water	6/25/2010	H-3	151.60	-58.10 ± 71.90	200
SPW-3278	Water	6/25/2010	Fe-55	634.50	256.80 ± 396.40	1000
SPW-3279	water	6/25/2010	C-14	8.57	-1.84 ± 5.18	200
SPAP-3269	Air Filter	6/28/2010	Cs-134	1.71	-	100
SPAP-3269	Air Filter	6/28/2010	Cs-137	2.42	-	100
SPW-3273	Water	6/28/2010	Co-60	1.64	-	10
SPW-3273	Water	6/28/2010	Cs-134	3.89	-	10
SPW-3273	Water	6/28/2010	Cs-137	4.29		10
SPW-3273	water	6/25/2010	Sr-90	0.50	-0.04 ± 0.22	1
SPMI-3275	Milk	6/28/2010	Cs-134	3.33	•	10
SPMI-3275	Milk	6/28/2010	Cs-137	3.82	•	10
SPMI-3275	Milk	6/28/2010	l-131(G)	3.71	-	20
SPMI-3275	Milk	6/28/2010	Sr-90	. 0.58	0.81 ± 0.36	1

A4-1

ĵ.

TABLE A-4. In-House "Blank" Samples

					Concentration (pCi/	L) ^a
Lab Code	Sample	Date	Analysis ^b	Laborator	y results (4.66σ)	Acceptance
	Туре			LLD	Activity ^c	Criteria (4.66 o
SPW-5080	Water	9/9/2010	Tc-99	2.15	-0.71 ± 1.29	10
W-90910	Water	9/9/2010	Gr. Alpha	0.39	0.10 ± 0.28	1
W-90910	Water	9/9/2010	Gr. Beta	0.78	-0.09 ± 0.55	3.2
W-91010	Water	9/10/2010	Ra-226	0.04	0.07 ± 0.03	1
SPW-2884	Water	9/23/2010	Ra-228	0.71	1.14 ± 0.46	2
SPW-6036	Water	10/21/2010	U-238	0.11	0.07 ± 0.10	1
W-120110	Water	12/1/2010	Gr. Alpha	0.43 ·	-0.05 ± 0.29	1
W-120110	Water	12/1/2010	Gr. Beta	0.75	-0.08 ± 0.53	3.2
W-121610	Water	12/16/2010	Ra-226	0.03	0.04 ± 0.02	1
BKW-120610	water	12/6/2010	Ba-133	5.66	-	10
BKW-120610	water	12/6/2010	Co-60	4.49	-	10
BKW-120610	water	12/6/2010	Cs-134	4.41	-	10
BKW-120610	water	12/6/2010	Cs-137	5.33	-	10
W-121610	Water	12/16/2010	Ra-226	0.03	0.04 ± 0.02	1

* Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.

^c Activity reported is a net activity result. For gamma spectroscopic analysis, activity detected below the LLD value is not reported.

.

			Concentration (pCi/L) ^a					
					Averaged			
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance		
CF-20, 21	1/4/2010	Gr. Beta	10.96 ± 0.27	11.30 ± 0.28	11.13 ± 0.19	Pass		
CF-20, 21	1/4/2010	K-40	8.88 ± 0.48	8.27 ± 0.78	8.58 ± 0.46	Pass		
CF-20, 21	1/4/2010	Sr-90	0.02 ± 0.01	0.02 ± 0.01	0.02 ± 0.00	Pass		
CF-41, 42	1/4/2010	Be-7	0.45 ± 0.11	0.41 ± 0.14	0.43 ± 0.09	Pass		
CF-41, 42	1/4/2010	Gr. Beta	3.26 ± 0.10	3.33 ± 0.11	3.30 ± 0.07	Pass		
CF-41, 42	1/4/2010	K-40	2.85 ± 0.36	3.04 ± 0.22	2.95 ± 0.21	Pass		
MI-111, 112	1/12/2010	K-40	1276.00 ± 98.96	1334.80 ± 105.00	1305.40 ± 72.14	Pass		
DW-10010, 10011	1/13/2010	Ra-226	0.48 ± 0.10	0.43 ± 0.10	0.46 ± 0.07	Pass		
DW-10010, 10011	1/13/2010	Ra-226	1.59 ± 0.61	1.13 ± 0.47	1.36 ± 0.39	Pass		
WW-215, 216	1/18/2010	H-3	211.16 ± 87.57	291.90 ± 91.31	251.53 ± 63.26	Pass		
DW-10022, 10023	1/21/2010	Ra-226	8.57 ± 0.91	10.20 ± 1.08	9.39 ± 0.71	Pass		
DW-10022, 10023	1/21/2010	Ra-228	5.68 ± 1.36	3.59 ± 1.17	4.64 ± 0.90	Pass		
WW-424, 425	1/28/2010	H-3	422.30 ± 95.90	484.20 ± 98.50	453.25 ± 68.74	Pass		
DW-10034, 10035	1/28/2010	Ra-226	0.93 ± 0.13	0.90 ± 0.11	0.92 ± 0.09	Pass		
DW-10034, 10035	1/28/2010	Ra-228	1.16 ± 0.62	1.29 ± 0.62	1.23 ± 0.44	Pass		
SW-382, 383	2/1/2010	Gr. Beta	2.22 ± 0.68	1.18 ± 0.71	1.70 ± 0.49	Pass		
DW-10046, 10047	2/2/2010	Ra-226	6.11 ± 0.91	7.88 ± 1.17	7.00 ± 0.74	Pass		
DW-10046, 10047	2/2/2010	Ra-228	5.84 ± 1.11	6.13 ± 1.14	5.99 ± 0.80	Pass		
WW-693, 694	2/23/2010	H-3	1458.00 ± 131.00	1531.00 ± 133.00	1494.50 ± 93.34	Pass		
SW-782, 783	3/1/2010	Gr. Beta	1.05 ± 0.42	1.60 ± 0.43	1.33 ± 0.30	Pass		
SW-782, 783	3/1/2010	K-40	1.50 ± 0.15	1.52 ± 0.15	1.51 ± 0.11	Pass		
MI-946, 947	3/9/2010	K-40	1485.00 ± 109.30	1347.40 ± 108.30	1416.20 ± 76.93	Pass		
W-1035, 1036	3/17/2010	Ra-226	11.78 ± 1.51	9.76 ± 1.26	10.77 ± 0.98	Pass		
W-1035, 1036	3/17/2010	Ra-228	5.31 ± 2.42	8.45 ± 2.78	6.88 ± 1.84	Pass		
SW-1285, 1286	3/17/2010	H-3	377.60 ± 104.50	282.70 ± 100.70	330.15 ± 72.56	Pass		
W-1103, 1104	3/18/2010	H-3	12690 ± 333	12679 ± 333	12685 ± 235	Pass		
WW-1193, 1194	3/18/2010	H-3	227.38 ± 95.19	251.81 ± 96.15	239.60 ± 67.65	Pass		
LW-1909, 1910	3/24/2010	H-3	1529.40 ± 144.60	1404.40 ± 140.80	1466.90 ± 100.91	Pass		
LW-1909, 1910	3/25/2010	H-3	2.40 ± 0.97	1.99 ± 1.03	2.20 ± 0.71	Pass		
DW-10068, 10069	3/25/2010	Gr. Alpha	1.08 ± 1.02	1.35 ± 1.05	1.22 ± 0.73	Pass		
DW-10070, 10071	3/29/2010	Ra-226	1.58 ± 0.17	1.69 ± 0.16	1.64 ± 0.12	Pass		
DW-10070, 10071	3/29/2010	Ra-228	1.16 ± 0.47	1.34 ± 0.49	1.25 ± 0.34	Pass		
AP-1729, 1730	3/30/2010	Be-7	0.08 ± 0.01	0.08 ± 0.01	0.08 ± 0.01	Pass		
AP-1782, 1783	3/30/2010	Be-7	0.08 ± 0.01	0.09 ± 0.01	0.09 ± 0.01	Pass		
		0.5.				-		
E-1392, 1393	4/1/2010	Gr. Beta	1.59 ± 0.07	1.66 ± 0.08	1.63 ± 0.05	Pass		
E-1392, 1393	4/1/2010	K-40	902.30 ± 179.00	1076.70 ± 202.90	989.50 ± 135.29			
WW-1422, 1423	4/1/2010	Gr. Beta	22.23 ± 1.58	19.42 ± 1.40	20.83 ± 1.06	Pass		
SW-1464, 1465	4/1/2010	H-3	262.06 ± 98.96	233.18 ± 97.75	247.62 ± 69.55	Pass		
XW-1666, 1667	4/1/2010	Fe-55	7.05 ± 0.71	7.25 ± 0.74	7.15 ± 0.51	Pass		
SG-1532, 1533	4/6/2010	Ac-228	19.45 ± 1.14	20.07 ± 1.19	19.76 ± 0.82	Pass		
SG-1532, 1533	4/6/2010	Pb-214	12.66 ± 0.52	13.32 ± 0.54	12.99 ± 0.38	Pass		

A5-1

.

			C	Concentration (pCi/L) ^a		
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
SG-1506, 1507	4/7/2010	Ac-228	1.28 ± 0.15	1.15 ± 0.14	1.22 ± 0.10	Pass
SG-1506, 1507	4/7/2010	Pb-214	1.24 ± 0.10	1.22 ± 0.09	1.23 ± 0.07	Pass
SW-1645, 1646	4/14/2010	H-3	312.00 ± 100.00	352.00 ± 102.00	332.00 ± 71.42	Pass
DW-10095, 10096	4/14/2010	Ra-226	4.87 ± 0.53	5.57 ± 0.61	5.22 ± 0.40	Pass
DW-10095, 10096	4/14/2010	Ra-228	2.49 ± 0.56	2.76 ± 0.60	2.63 ± 0.41	Pass
W-2013, 2014	4/16/2010	Gr. Alpha	33.45 ± 3.98	39.11 ± 4.54	36.28 ± 3.02	Pass
W-2013, 2014	4/16/2010	Gr. Beta	14.83 ± 0.96	16.07 ± 0.96	15.45 ± 0.68	Pass
WW-2431, 2432	4/19/2010	H-3	400.40 ± 98.10	377.70 ± 97.10	389.05 ± 69.01	Pass
SO-2037, 2038	4/22/2010	K-40	2.89 ± 0.40	2.89 ± 0.51	2.89 ± 0.32	Pass
W-2325, 2326	4/26/2010	H-3	399.00 ± 92.00	429.00 ± 94.00	414.00 ± 65.76	Pass
AP-2149, 2150	4/29/2010	Be-7	0.14 ± 0.08	0.26 ± 0.12	0.20 ± 0.07	Pass
LW-2191, 2192	4/29/2010	Gr. Beta	1.16 ± 0.56	0.79 ± 0.52	0.97 ± 0.38	Pass
G-2170, 2171	5/3/2010	Be-7	0.91 ± 0.32	0.86 ± 0.26	0.89 ± 0.21	Pass
G-2170, 2171	5/3/2010	Gr. Beta	8.73 ± 0.22	9.01 ± 0.23	8.87 ± 0.16	Pass
G-2170, 2171	5/3/2010	K-40	7.24 ± 0.44	7.48 ± 0.78	7.36 ± 0.45	Pass
SWT-2282, 2283	5/4/2010	Gr. Beta	0.73 ± 0.52	1.58 ± 0.57	1.16 ± 0.39	Pass
WW-2233, 2234	5/5/2010	Gr. Alpha	1.56 ± 1.47	2.27 ± 1.65	1.92 ± 1.10	Pass
WW-2233, 2234	5/5/2010	Gr. Beta	2.33 ± 1.14	4.08 ± 1.24	3.21 ± 0.84	Pass
TD-2410, 2411	5/10/2010	H-3	431.92 ± 96.50	403.05 ± 95.26	417.48 ± 67.80	Pass
SG-2347, 2348	5/13/2010	Ra-226	37.34 ± 0.42	37.91 ± 0.36	37.63 ± 0.28	Pass
F-2463, 2464	5/17/2010	K-40	2.69 ± 0.56	2.65 ± 0.38	2.67 ± 0.34	Pass
XW-2834, 2835	5/20/2010	H-3	209.53 ± 83.34	263.11 ± 85.95	236.32 ± 59.86	Pass
WW-2597, 2598	5/25/2010	H-3	288.10 ± 98.20	155.80 ± 93.40	221.95 ± 67.76	Pass
MI-2639, 2640	5/25/2010	K-40	1428.80 ± 110.60	1408.60 ± 107.40	1418.70 ± 77.08	Pass
SL-2771, 2772	6/1/2010	Gr. Beta	5.33 ± 0.18	5.30 ± 0.18	5.32 ± 0.13	Pass
SL-2771, 2772	6/1/2010	K-40	4.67 ± 0.46	4.88 ± 0.46	4.78 ± 0.33	Pass
SW-2879, 2880	6/1/2010	H-3	335.60 ± 92.60	356.40 ± 93.60	346.00 ± 65.83	Pass
SG-2904, 2905	6/7/2010	Gamma	5.20 ± 0.20	5.50 ± 0.10	5.35 ± 0.11	Pass
SO-3039, 3040	6/8/2010	Be-7	0.12 ± 0.03	0.13 ± 0.08	0.13 ± 0.04	Pass
SO-3039, 3040	6/8/2010	Cs-137	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	Pass
SO-3039, 3040	6/8/2010	Gr. Beta	22.80 ± 2.05	23.84 ± 2.44	23.32 ± 1.59	Pass
SO-3039, 3040	6/8/2010	K-40	11.30 ± 1.20	11.70 ± 1.20	11.50 ± 0.85	Pass
SO-3039, 3040	6/8/2010	U-233/4	0.12 ± 0.02	0.13 ± 0.01	0.13 ± 0.01	Pass
SO-3039, 3040	6/8/2010	U-238	0.12 ± 0.01	0.13 ± 0.01	0.13 ± 0.01	Pass
WW-3060, 3061	6/14/2010	Н-3	199.16 ± 95.13	203.59 ± 95.34	201.38 ± 67.34	Pass
VE-3351, 3352	6/21/2010	Be-7	1.86 ± 0.25	1.85 ± 0.27	1.85 ± 0.18	Pass
VE-3351, 3352	6/21/2010	K-40	6.10 ± 0.52	6.10 ± 0.57	6.10 ± 0.39	Pass
W-3469, 3470	6/25/2010	H-3	573.00 ± 110.00	525.00 ± 108.00	549.00 ± 77.08	Pass
SG-3539, 3540	6/29/2010	Ac-228	14.55 ± 0.51	14.57 ± 0.44	14.56 ± 0.34	Pass
SG-3539, 3540	6/29/2010	Pb-214	15.50 ± 1.56	16.80 ± 1.71	16.15 ± 1.16	Pass
AP-3743, 3744	6/30/2010	Be-7	0.07 ± 0.01	0.07 ± 0.01	0.07 ± 0.01	Pass

A5-2

			Concentration (pCi/L) ^a					
					Averaged			
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance		
G-3427, 3428	7/1/2010	Be-7	1.18 ± 0.29	1.06 ± 0.25	1.12 ± 0.19	Pass		
G-3427, 3428	7/1/2010	K-40	8.79 ± 0.64	7.85 ± 0.65	8.32 ± 0.46	Pass		
SW-3512, 3513	7/6/2010	H-3	441.00 ± 103.00	423.00 ± 102.00	432.00 ± 72.48	Pass		
AP-3680, 3681	7/8/2010	Be-7	0.16 ± 0.08	0.13 ± 0.07	0.15 ± 0.05	Pass		
VE-3791, 3792	7/12/2010	K-40	4.37 ± 0.38	4.23 ± 0.35	4.30 ± 0.26	Pass		
WW-3934, 3935	7/12/2010	H-3	3091.00 ± 187.00	3242.00 ± 191.00	3166.50 ± 133.65	Pass		
DW-10135, 10136	7/13/2010	Ra-226	0.18 ± 0.07	0.26 ± 0.07	0.22 ± 0.05	Pass		
DW-10135, 10136	7/13/2010	Ra-228	0.76 ± 0.44	0.81 ± 0.41	0.79 ± 0.30	Pass		
W-4063, 4064	7/14/2010	H-3	469.00 ± 104.00	351.00 ± 99.00	410.00 ± 71.79	Pass		
DW-10143, 10144	7/19/2010	Gr. Alpha	2.84 ± 0.74	2.49 ± 0.73	2.67 ± 0.52	Pass		
DW-10148, 10149	7/23/2010	Ra-226	2.08 ± 0.39	2.97 ± 0.55	2.53 ± 0.34	Pass		
DW-10148, 10149	7/23/2010	Ra-228	1.90 ± 0.61	2.00 ± 0.61	1.95 ± 0.43	Pass		
DW-10159, 10160	7/23/2010	Ra-226	0.91 ± 0.14	0.79 ± 0.21	0.85 ± 0.13	Pass		
DW-10159, 10160	7/23/2010	Ra-228	1.41 ± 0.54	1.30 ± 0.53	1.36 ± 0.38	Pass		
SL-4106, 4107	8/2/2010	Be-7	2.05 ± 0.20	2.05 ± 0.18	2.05 ± 0.13	Pass		
SL-4106, 4107	8/2/2010	Gr. Beta	5.06 ± 0.32	4.62 ± 0.30	4.84 ± 0.22	Pass		
SL-4106, 4107	8/2/2010	K-40	1.89 ± 0.24	1.70 ± 0.17	1.80 ± 0.15	Pass		
SG-4085, 4086	8/3/2010	Ra-226	20.23 ± 2.04	21.45 ± 2.16	20.84 ± 1.49	Pass		
SG-4085, 4086	8/3/2010	Ra-228	15.88 ± 0.41	16.24 ± 0.36	16.06 ± 0.27	Pass		
SWT-4304, 4305	8/3/2010	Gr. Beta	2.08 ± 1.07	2.44 ± 0.98	2.26 ± 0.73	Pass		
BS-4398, 4399	8/10/2010	Cs-137	78.80 ± 33.50	94.30 ± 51.90	86.55 ± 30.89	Pass		
BS-4398, 4399	8/10/2010	K-40	13708 ± 795	12091 ± 1110	12900 ± 683	Pass		
VE-4531, 4532	8/11/2010	Gr. Beta	36.20 ± 0.90	35.80 ± 0.90	36.00 ± 0.64	Pass		
VE-4531, 4532	8/11/2010	K-40	27.31 ± 0.70	27.58 ± 0.62	27.45 ± 0.47	Pass		
VE-4531, 4532	8/11/2010	U-233/4	0.014 ± 0.003	0.014 ± 0.003	0.014 ± 0.002	Pass		
VE-4531, 4532	8/11/2010	U-238	0.012 ± 0.003	0.010 ± 0.002	0.011 ± 0.002	Pass		
DW-10170, 10171	8/13/2010	Ra-226	1.32 ± 0.14	1.26 ± 0.14	1.29 ± 0.10	Pass		
DW-10170, 10171	8/13/2010	Ra-228	2.55 ± 0.78	1.76 ± 0.71	2.16 ± 0.53	Pass		
AP-4766, 4767	8/26/2010	Be-7	0.18 ± 0.09	0.25 ± 0.13	0.22 ± 0.08	Pass		
DW-10182, 10183	8/27/2010	Ra-226	0.15 ± 0.08	0.11 ± 0.07	0.13 ± 0.05	Pass		
VE-4928, 4929	9/1/2010	K-40	2.99 ± 0.41	3.18 ± 0.28	3.09 ± 0.25	Pass		
SL-4883, 4884	9/1/2010	Gr. Beta	6.90 ± 0.20	7.10 ± 0.20	7.00 ± 0.14	Pass		
SL-4883, 4884 ^b	9/1/2010	K-40	7.15 ± 0.99	5.07 ± 0.51	6.11 ± 0.56	Fail		
W-5135, 5136	9/6/2010	H-3	658.60 ± 110.80	600.90 ± 108.50	629.75 ± 77.54	Pass		
SW-5071, 5072	9/13/2010	H-3	186.70 ± 101.10	267.30 ± 104.40	227.00 ± 72.66	Pass		
XWW-5246, 5247	9/14/2010 9/14/2010	H-3	1990.60 ± 157.70	1986.20 ± 157.60	1988.40 ± 111.48	Pass		

A5-3

.

				Concentration (pCi/L)	a		
			Averaged				
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptanc	
VE-5114, 5115	9/9/2010	Be-7	1.14 ± 0.35	1.48 ± 0.26	1.31 ± 0.22	Pass	
VE-5114, 5115	9/9/2010	Gr. Beta	34.72 ± 1.29	33.38 ± 1.23	34.05 ± 0.89	Pass	
VE-5114, 5115	9/9/2010	H-3	79367 ± 837	79421 ± 837	79394 ± 592	Pass	
VE-5114, 5115	9/9/2010	K-40	22.13 ± 0.67	21.93 ± 0.58	22.03 ± 0.44	Pass	
VE-5114, 5115	9/9/2010	U-233/4	0.08 ± 0.01	0.06 ± 0.01	0.07 ± 0.01	Pass	
MI-5267, 5268	9/20/2010	K-40	1281.10 ± 118.90	1218.60 ± 110.80	1249.85 ± 81.26	Pass	
SO-5357, 5358	9/23/2010	K-40	10894.00 ± 560.00	11175.00 ± 760.00	11034.50 ± 472.02	Pass	
AP-5357, 5358	9/23/2010	Be-7	0.11 ± 0.02	0.09 ± 0.02	0.10 ± 0.01	Pass	
DW-10194, 10195	9/23/2010	Ra-226	0.40 ± 0.10	0.20 ± 0.10	0.30 ± 0.07	Pass	
DW-10194, 10195	9/23/2010	Ra-228	1.61 ± 0.65	0.88 ± 0.47	1.25 ± 0.40	Pass	
WW-5442, 5443	9/29/2010	H-3	6706.00 ± 252.00	6510.00 ± 249.00	6608.00 ± 177.13	Pass	
VE-5469, 5470	9/29/2010	K-40	2.86 ± 0.38	2.57 ± 0.37	2.72 ± 0.26	Pass	
BS-5886, 5887	9/29/2010	Cs-137	83.36 ± 23.31	58.97 ± 21.16	71.17 ± 15.74	Pass	
BS-5886, 5887	9/29/2010	K-40	13913.00 ± 775.40	13582.00 ± 710.30	13747.50 ± 525.78	Pass	
G-5513, 5514	10/4/2010	Be-7	6.73 ± 0.40	6.36 ± 0.41	6.55 ± 0.29	Pass	
E-5492, 5493	10/4/2010	Gr. Beta	1.74 ± 0.05	1.77 ± 0.05	1.76 ± 0.04	Pass	
E-5492, 5493	10/4/2010	K-40	1.57 ± 0.17	1.55 ± 0.18	1.56 ± 0.12	Pass	
G-5512, 5513	10/4/2010	Gr. Beta	10.86 ± 0.44	10.39 ± 0.39	10.63 ± 0.29	Pass	
G-5512, 5513	10/4/2010	K-40	7.10 ± 0.54	7.41 ± 0.59	7.26 ± 0.40	Pass	
MI-5541, 5542	10/4/2010	K-40	1090.60 ± 106.70	1246.10 ± 102.60	1168.35 ± 74.01	Pass	
MI-5541, 5542	10/4/2010	Sr-90	1.44 ± 0.38	1.11 ± 0.35	1.27 ± 0.26	Pass	
F-6061, 6062	10/9/2010	H-3	7.64 ± 0.23	7.49 ± 0.23	7.57 ± 0.16	Pass	
F-6061, 6062	10/9/2010	K-40	2.81 ± 0.40	2.56 ± 0.50	2.68 ± 0.32	Pass	
VE-5740, 5741	10/10/2010	K-40	4.92 ± 0.53	4.61 ± 0.34	4.77 ± 0.32	Pass	
VE-5761, 5762	10/12/2010	Be-7	1.05 ± 0.29	0.69 ± 0.15	0.87 ± 0.16	Pass	
VE-5761, 5762	10/12/2010	K-40	3.45 ± 0.45	3.34 ± 0.29	3.40 ± 0.27	Pass	
AP-5910, 5911	10/14/2010	Be-7	0.23 ± 0.09	0.30 ± 0.12	0.26 ± 0.08	Pass	
WW-6294, 6295	10/18/2010	H-3	1681.49 ± 146.32	1637.41 ± 144.98	1659.45 ± 102.99		
P-6038, 6039	10/19/2010	H-3	2131.90 ± 159.50	2212.00 ± 161.70	2171.95 ± 113.56	Pass	
AP-6195, 6196	10/21/2010	Be-7	0.27 ± 0.11	0.26 ± 0.13	0.26 ± 0.09	Pass	
WW-6366, 6367	10/23/2010	H-3	477.28 ± 102.02	529.99 ± 104.27	503.64 ± 72.94	Pass	
SWU-6315, 6316	10/26/2010	Gr. Beta	1.85 ± 1.00	1.40 ± 0.90	1.62 ± 0.67	Pass	
SO-6336, 6337	10/28/2010	Cs-137	0.23 ± 0.03	0.23 ± 0.04	0.23 ± 0.02	Pass	
SO-6336, 6337	10/28/2010	Gr. Beta	26.36 ± 1.67	24.78 ± 1.52	25.57 ± 1.13	Pass	
SO-6336, 6337	10/28/2010	K-40	13.43 ± 0.76	13.73 ± 0.81	13.58 ± 0.56	Pass	
AP-6453, 6454	10/28/2010	Be-7	0.23 ± 0.12	0.30 ± 0.15	0.26 ± 0.10	Pass	
BS-6475, 6476	11/1/2010	Gr. Beta	13.13 ± 1.83	12.75 ± 1.67	12.94 ± 1.24	Pass	
F-6658, 6659	11/3/2010	K-40	2.79 ± 0.40	2.94 ± 0.44	2.86 ± 0.30	Pass	
F-6565, 6566	11/4/2010	Cs-137	0.06 ± 0.02	0.04 ± 0.01	0.05 ± 0.01	Pass	
F-6565, 6566	11/4/2010	Gr. Beta	3.90 ± 0.10	4.10 ± 0.10	3.96 ± 0.06	Pass	
F-6565, 6566	11/4/2010	K-40	2.63 ± 0.45	2.57 ± 0.35	2.60 ± 0.29	Pass	
SS-5761, 5762	11/16/2010	K-40	15.42 ± 1.57	15.87 ± 1.21	15.65 ± 0.99	Pass	
WW-7056, 7057	11/30/2010	Gr. Beta	2.09 ± 0.84	2.22 ± 0.80	2.16 ± 0.58	Pass	

.

A5-4

.

			Concentration (pCi/L) ^a				
Lab Code				Averaged	raged		
	Date	Analysis	First Result	Second Result	Result	Acceptance	
SO-7166, 7167	11/30/2010	Cs-137	0.12 ± 0.04	0.11 ± 0.03	0.11 ± 0.03	Pass	
SO-7166, 7167	11/30/2010	K-40	14.93 ± 0.88	14.49 ± 0.86	14.71 ± 0.61	Pass	
WW-7412, 7413	12/6/2010	H-3	469.78 ± 146.32	503.57 ± 93.96	486.68 ± 86.94	Pass	
MI-7187, 7188	12/8/2010	K-40	1495.10 ± 129.00	1398.40 ± 109.10	1446.75 ± 84.47	Pass	
MI-7187, 7188	12/8/2010	Sr-90	0.57 ± 0.31	0.66 ± 0.28	0.62 ± 0.21	Pass	
WW-7255, 7256	12/8/2010	H-3	243.46 ± 90.39	327.34 ± 94.11	285.40 ± 65.24	Pass	
AP-7276, 7277	12/9/2010	Be-7	0.13 ± 0.07	0.18 ± 0.10	0.16 ± 0.06	Pass	
XWW-7297, 7298	12/9/2010	H-3	686.00 ± 102.00	764.60 ± 105.00	725.30 ± 73.19	Pass	
AP-7344, 7345	12/16/2010	Be-7	0.16 ± 0.09	0.17 ± 0.09	0.16 ± 0.06	Pass	
SWT-7480, 7481	12/28/2010	Gr. Beta	0.90 ± 0.40	1.03 ± 0.41	0.97 ± 0.29	Pass	

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

^a Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g). ^b Analysis was repeated, result of reanalysis: 4.83 ± 0.29 pCi/L.

				Concentration	1 ^b	
				Known	Control	
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STVE-1199	03/01/10	Co-57	0.01 ± 0.03	0.00	-	Pass
STVE-1199	03/01/10	Co-60	3.39 ± 0.12	3.27	2.29 - 4.25	Pass
STVE-1199	03/01/10	Cs-134	4.74 ± 0.15	4.39	3.07 - 5.71	Pass
STVE-1199	03/01/10	Cs-137	3.32 ± 0.17	3.06	2.14 - 3.98	Pass
STVE-1199	03/01/10	Mn-54	0.01 ± 0.05	0.00	-	Pass
STVE-1199	03/01/10	Zn-65	8.03 ± 0.33	7.10	4.97 - 9.23	Pass
STW-1200	03/01/10	Gr. Alpha	0.40 ± 0.05	0.68	0.00 - 1.35	Pass
STW-1200	03/01/10	Gr. Beta	3.03 ± 0.07	3.09	1.55 - 4.64	Pass
STW-1201	03/01/10	Am-241	1.05 ± 0.08	1.30	0.91 - 1.69	Pass
STW-1201	03/01/10	Co-57	28.90 ± 0.40	28.30	19.80 - 36.80	Pass
STW-1201	03/01/10	Co-60	0.06 ± 0.05	0.00		Pass
STW-1201	03/01/10	Cs-134	-0.03 ± 0.09	0.00	-	Pass
STW-1201	03/01/10	Cs-137	60.60 ± 0.60	60.60	42.40 - 78.80	Pass
STW-1201	03/01/10	Fe-55	3.00 ± 14.40	0.00	-	Pass
STW-1201	03/01/10	H-3	93.20 ± 18.30	90.80	63.60 - 118.00	Pass
STW-1201	03/01/10	Mn-54	27.80 ± 0.40	26.90	18.80 - 35.00	Pass
STW-1201	03/01/10	Ni-63	49.10 ± 3.50	59.90	41.90 - 77.90	Pass
STW-1201	03/01/10	Sr-90	-0.10 ± 0.60	0.00	-	Pass
STW-1201	03/01/10	Tc-99	0.50 ± 0.50	0.00	-	Pass
STW-1201	03/01/10	U-233/4	1.21 ± 0.05	1.22	0.85 - 1.59	Pass
STW-1201	03/01/10	U-238	1.20 ± 0.05	1.25	0.88 - 1.63	Pass
STW-1201	03/01/10	Zn-65	42.70 ± 0.80	40.70	28.50 - 52.90	Pass
STSO-1202	03/01/10	Co-57	520.00 ± 10.80	522.00	365.00 - 679.00	Pass
STSO-1202	03/01/10	Co-60	599.10 ± 2.80	622.00	435.00 - 809.00	Pass
STSO-1202	03/01/10	Cs-134	666.10 ± 4.70	733.00	513.00 - 953.00	Pass
STSO-1202	03/01/10	Cs-137	774.40 ± 4.50	779.00	545.00 - 1013.00	Pass
STSO-1202	03/01/10	K-40	562.00 ± 15.30	559.00	391.00 - 727.00	Pass
STSO-1202	03/01/10	Mn-54	866.20 ± 4.60	849.00	594.00 - 1104.00	Pass
STSO-1202	03/01/10	Sr-90	225.50 ± 11.80	288.00	202.00 - 374.00	Pass
STSO-1202	03/01/10	U-233/4	59.90 ± 2.50	60.00	42.00 - 78.00	Pass
STSO-1202	03/01/10	U-238	62.10 ± 2.60	64.00	45.00 - 83.00	Pass
STSO-1202	03/01/10	Zn-65	-1.23 ± 1.96	0.00	-	Pass
STAP-1203	03/01/10	Am-241	0.10 ± 0.01	0.15	0.10 - 0.19	Pass
STAP-1203	03/01/10	Co-57	0.01 ± 0.02	0.00		Pass
STAP-1203	03/01/10	Co-60	2.63 ± 0.19	2.47	1.73 - 3.22	Pass
STAP-1203	03/01/10	Cs-134	2.21 ± 0.34	2.13	1.49 - 2.77	Pass
STAP-1203	03/01/10	Cs-137	1.66 ± 0.22	1.53	1.07 - 1.99	Pass
STAP-1203	03/01/10	Mn-54	3.42 ± 0.26	3.02	2.11 - 3.93	Pass
STAP-1203	03/01/10	Sr-90	0.02 ± 0.06	0.00		Pass
					-	Pass
STAP-1203	03/01/10	Zn-65	-0.05 ± 0.11	0.00	-	

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

A6-1

				Concentration	6	
				Known	Control	
ab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptanc
STAP-1204	03/01/10	Gr. Alpha	0.13 ± 0.03	0.43	0.00 - 0.85	Pass
STAP-1204	03/01/10	Gr. Beta	1.46 ± 0.07	1.29	0.65 - 1.94	Pass
STW-1211	08/01/10	Am-241	0.02 ± 0.02	0.00	-	Pass
STW-1211	08/01/10	Co-57	36.40 ± 4.80	36.00	25.20 - 46.80	Pass
STW-1211	08/01/10	Co-60	28.30 ± 1.00	28.30	19.80 - 36.80	Pass
STW-1211	08/01/10	Cs-134	29.30 ± 2.10	31.40	22.00 - 40.80	Pass
STW-1211	08/01/10	Cs-137	44.60 ± 1.80	44.20	30.90 - 57.50	Pass
STW-1211	08/01/10	Fe-55	48.50 ± 20.10	60.20	42.10 - 78.30	Pass
STW-1211	08/01/10	H-3	503.60 ± 12.80	453.40	317.40 - 589.40	Pass
STW-1211	08/01/10	K-40	38.50 ± 2.50	38.90	27.20 - 50.60	Pass
STW-1211	08/01/10	Mn-54	0.10 ± 0.30	0.00	-	Pass
STW-1211	08/01/10	Ni-63	49.30 ± 3.10	56.10	39.30 - 72.90	Pass
STW-1211	08/01/10	Pu-238	1.49 ± 0.15	1.81	1.27 - 2.35	Pass
STW-1211	08/01/10	Pu-239/40	1.20 ± 0.10	1.35	0.95 - 1.76	Pass
STW-1211	08/01/10	Sr-90	9.20 ± 1.30	8.30	5.80 - 10.80	Pass
STW-1211	08/01/10	Tc-99	28.10 ± 0.90	33.60	23.50 - 43.70	Pass
STW-1211	08/01/10	U-233/4	2.04 ± 0.14	2.01	1.41 - 2.61	Pass
STW-1211	08/01/10	U-238	2.05 ± 0.14	2.07	1.45 - 2.69	Pass
STW-1211	08/01/10	Zn-65	32.80 ± 3.00	31.00	21.70 - 40.30	Pass
STW-1212	08/01/10	Gr. Alpha	1.54 ± 0.09	1.92	0.58 - 3.26	Pass
STW-1212	08/01/10	Gr. Beta	4.13 ± 0.15	4.39	2.20 - 6.59	Pass
STVE-1213	08/01/10	Co-57	9.60 ± 0.54	8.27	5.79 - 10.75	Pass
STVE-1213	08/01/10	Co-60	0.05 ± 0.08	0.00	-	Pass
STVE-1213	08/01/10	Cs-134	4.83 ± 0.26	4.79	3.35 - 6.23	Pass
STVE-1213	08/01/10	Cs-137	6.45 ± 0.66	5.88	4.12 - 7.64	Pass
STVE-1213	08/01/10	Mn-54	7.12 ± 0.66	6.29	4.40 - 8.17	Pass
STVE-1213	08/01/10	Zn-65	6.05 ± 0.74	5.39	3.77 - 7.01	Pass
STSO-1214	08/01/10	Co-57	0.10 ± 1.60	0.00	-	Pass
STSO-1214	08/01/10	Co-60	370.00 ± 6.00	343.00	240.00 - 446.00	Pass
STSO-1214	08/01/10	Cs-134	1005.00 ± 21.00	940.00	658.00 - 1222.00	Pass
STSO-1214	08/01/10	Cs-137	755.00 ± 15.00	670.00	469.00 - 871.00	Pass
STSO-1214	08/01/10	K-40	783.00 ± 54.00	699.00	489.00 - 909.00	Pass
STSO-1214	08/01/10	Mn-54	942.00 ± 15.00	820.00	574.00 - 1066.00	Pass
STSO-1214	08/01/10	Pu-238	69.20 ± 6.20	64.00	45.00 - 83.00	Pass
STSO-1214	08/01/10	Pu-239/40	76.50 ± 6.20	71.00	50.00 - 92.00	Pass
STSO-1214	08/01/10	Sr-90	3.50 ± 8.00	0.00	-	Pass
STSO-1214	08/01/10	U-233/4	76.50 ± 6.20	71.00	50.00 - 92.00	Pass
STSO-1214	08/01/10	U-238	271.40 ± 9.00	289.00	202.00 - 376.00	Pass
STSO-1214	08/01/10	Zn-65	310.00 ± 18.00	265.00	186.00 - 345.00	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

				Concentration ^t)	
				Known	Control	
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STAP-1215	08/01/10	Co-57	4.47 ± 0.21	4.08	2.86 - 5.30	Pass
STAP-1215	08/01/10	Co-60	3.15 ± 0.30	2.92	2.04 - 3.80	Pass
STAP-1215	08/01/10	Cs-134	3.03 ± 0.17	2.98	2.09 - 3.87	Pass
STAP-1215	08/01/10	Cs-137	0.01 ± 0.05	0.00	-	Pass
STAP-1215	08/01/10	Mn-54	3.69 ± 0.39	3.18	2.23 - 4.13	Pass
STAP-1215	08/01/10	Sr-90	1.00 ± 0.12	1.01	0.71 - 1.31	Pass
STAP-1215	08/01/10	Zn-65	0.03 ± 0.15	0.00	-	Pass
STAP-1216	08/01/10	Gr. Alpha	0.01 ± 0.01	0.00	-	Pass
STAP-1216 ~	08/01/10	Gr. Beta	0.54 ± 0.05	0.50	0.25 - 0.75	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

			Concentration (pCi/L)						
Lab Code [⊳]	Date Analysis		Laboratory	Laboratory ERA					
			Result ^c	Result	Limits	Acceptance			
0740	00/20/40	A == 0.44	55 C + 0 O	744	40.0 400.ò	5			
STAP-1217	09/20/10	Am-241	55.6 ± 2.9	74.1	43.3 - 102.0	Pass			
STAP-1217	09/20/10	Co-60	517.1 ± 9.1	479.0	371.0 - 598.0	Pass			
STAP-1217	09/20/10	Cs-134	384.6 ± 33.7	388.0	253.0 - 480.0	Pass			
STAP-1217	09/20/10	Cs-137	589.4 ± 7.1	514.0	386.0 - 675.0	Pass			
STAP-1217	09/20/10	Mn-54	0.0 ± 0.0		•	Pass			
STAP-1217	09/20/10	Pu-238	76.5 ± 4.0	72.9	50.0 - 95.8	Pass			
STAP-1217	09/20/10	Pu-239/40	73.0 ± 3.8	69.6	50.5 - 90.1	Pass			
STAP-1217	09/20/10	Sr-90	172.9 ± 21.3	159.0	70.0 - 247.0	Pass			
STAP-1217	09/20/10	U-233/234	64.9 ± 3.9	71.8	45.2 - 106.0	Pass			
STAP-1217	09/20/10	U-238	68.0 ± 4.0	71.2	45.6 - 101.0	Pass			
STAP-1217	09/20/10	Uranium	135.5 ± 8.7	146.0	74.6 - 232.0	Pass			
STAP-1217	09/20/10	Zn-65	563.1 ± 15.3	465.0	322.0 - 644.0	Pass			
STAP-1218	09/20/10	Gr. Alpha	66.1 ± 3.2	52.3	27.1 - 78.7	Pass			
STAP-1218	09/20/10	Gr. Beta	69.9 ± 2.5	52.7	32.5 - 77.0	Pass			
STSO-1219	09/20/10	Ac-228	1632.0 ± 80.4	1830.0	1170.0 - 2580.0	Pass			
STSO-1219	09/20/10	Am-241	1063.0 ± 120.9	1120.0	669.0 - 1440.0	Pass			
STSO-1219	09/20/10	Bi-212	1752.0 ± 255.6	2070.0	543.0 - 3100.0	Pass			
STSO-1219	09/20/10	Bi-214	909.3 ± 38.9	983.0	603.0 - 1410.0	Pass			
STSO-1219	09/20/10	Co-60	4852.0 ± 153.5	4780.0	3480.0 - 6420.0	Pass			
STSO-1219	09/20/10	Cs-134	2190.0 ± 50.7	2240.0	1440.0 - 2700.0	Pass			
STSO-1219	09/20/10	Cs-137	3584.0 ± 42.5	3530.0	2700.0 - 4580.0	Pass			
STSO-1219	09/20/10	K-40	10017.0 ± 274.5	10700.0	7760.0 - 14500.0	Pass			
STSO-1219	09/20/10	Mn-54	0.0 ± 0.0	-	-	Pass			
STSO-1219	09/20/10	Pb-212	1573.0 ± 28.2	1640.0	1060.0 - 2310.0	Pass			
STSO-1219	09/20/10	Pb-214	999.0 ± 39.2	969.0	580.0 - 1440.0	Pass			
STSO-1219	09/20/10	Pu-238	1568.0 ± 155.0	1280.0	733.0 - 1800.0	Pass			
STSO-1219	09/20/10	Pu-239/40	1445.0 ± 142.9	1180.0	805.0 - 1570.0	Pass			
STSO-1219 °	09/20/10	U-233/234	599.4 ± 69.4	1360.0	862.0 - 1690.0	Fail			
STSO-1219 °	09/20/10	U-238	633.8 ± 71.3	1340.0	819.0 - 1700.0	Fail			
STSO-1219 °	09/20/10	Uranium.	1248.0 ± 152.7	2770.0	1580.0 - 3740.0	Fail			
STSO-1219	09/20/10	Zn-65	2447.0 ± 60.1	2300.0	1820.0 - 3080.0	Pass			
STVE-1220	09/20/10	Co-60	1108.0 ± 38.7	1010.0	683.0 - 1450.0	Pass			
STVE-1220	09/20/10	Cs-134	1161.0 ± 57.3	1010.0	595.0 - 1440.0	Pass			
STVE-1220 STVE-1220	09/20/10	Cs-134 Cs-137	1400.0 ± 43.0						
				1260.0	924.0 - 1750.0 16200 0 - 22000 0	Pass			
STVE-1220	09/20/10	K-40 Mp 54	27400.0 ± 683.4	22600.0	16200.0 - 32000.0	Pass			
STVE-1220	09/20/10	Mn-54	0.0 ± 0.0	-	-	Pass			

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

-

Lab Code ^b	Date	Analysis	Laboratory	ERA	Control	•	
			Result ^c	Result ^d	Limits	Acceptance	
STVE-1220	09/20/10	Am-241	4185.0 ± 180.0	4760.0	2710.0 - 6540.0	Pass	
STVE-1220	09/20/10	Cm-244	2329.0 ± 132.5	2740.0	1350.0 - 4270.0	Pass	
STVE-1220	09/20/10	Pu-238	4912.0 ± 194.0	4740.0	2560.0 - 6940.0	Pass	
STVE-1220	09/20/10	Pu-239/40	4765.0 ± 111.0	4470.0	2770.0 - 6100.0	Pass	
STVE-1220	09/20/10	Sr-90	7706.0 ± 583.9	7810.0	4360.0 - 10400.0	Pass	
STVE-1220	09/20/10	U-233/234	3862.0 ± 203.0	4010.0	2750.0 - 5320.0	Pass	
STVE-1220	09/20/10	U-238	3926.0 ± 205.3	3980.0	2800.0 - 5030.0	Pass	
STVE-1220	09/20/10	Uranium	7671.0 ± 201.2	8180.0	5620.0 - 10600.0	Pass	
STVE-1220	09/20/10	Zn-65	1443.0 ± 81.0	1210.0	874.0 - 1650.0	Pass	
STW-1221	09/20/10	Am-241	127.9 ± 4.2	176.0	120.0 - 238.0	Pass	
STW-1221	09/20/10	Co-60	697.8 ± 10.4	714.0	622.0 - 844.0	Pass	
STW-1221	09/20/10	Cs-134	437.5 ± 13.3	492.0	363.0 - 565.0	Pass	
STW-1221	09/20/10	Cs-137	612.8 ± 11.6	625.0	531.0 - 749.0	Pass	
STW-1221	09/20/10	Fe-55	936.8 ± 508.2	825.0	480.0 - 1100.0	Pass	
STW-1221	09/20/10	Mn-54	0.0 ± 0.0	-	-	Pass	
STW-1221	09/20/10	Pu-238	148.1 ± 6.0	162.0	122.0 - 201.0	Pass	
STW-1221	09/20/10	Pu-239/40	154.1 ± 6.2	148.0	114.0 - 183.0	Pass	
STW-1221	09/20/10	Sr-90	872.3 ± 13.4	921.0	585.0 - 1230.0	Pass	
STW-1221	09/20/10	U-233/234	99.1 ± 4.4	109.0	82.2 - 140.0	Pass	
STW-1221	09/20/10	U-238	103.7 ± 4.5	108.0	82.5 - 134.0	Pass	
STW-1221	09/20/10	Uranium	206.5 ± 9.8	221.0	159.0 - 294.0	Pass	
STW-1221	09/20/10	Zn-65	489.1 ± 16.2	489.0	414.0 - 610.0	Pass	
STW-1222	09/20/10	Gr. Alpha	110.6 ± 3.5	146.0	64.8 - 216.0	Pass	
STW-1222	09/20/10	Gr. Beta	134.6 ± 2.6	143.0	83.6 - 210.0	Pass	
STW-1223	09/20/10	H-3	23500.0 ± 1438.0	21600.0	14100.0 - 31900.0	Pass	

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". Control limits are not provided.

^e Analysis was repeated using total dissolution. Results of the reanalysis,

U-233/234: 1137 ± 254 pCi/kg, U-238: 1193 ± 116 pCi/kg, Total Uranium: 2379 ± 254 pCi/kg.

APPENDIX B

DATA REPORTING CONVENTIONS

Data Reporting Conventions

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

Each single measurement is reported as follows: where: x = value of the measurement; x±s

 $s = 2\sigma$ counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: < L, where L = the lower limit of detection based on 4.66σ uncertainty for a background sample.

3.0. Duplicate analyses

If duplicate analyses are reported, the convention is as follows. :

3.1	Individual results:	For two analysis re	sults; $x_1 \pm s_1$ and x_2 :	± s ₂
	Reported result:	x±s; where x=	$(1/2)(x_1 + x_2)$ and s =	$(1/2) \sqrt{s_1^2 + s_2^2}$
3.2.	Individual results:	< L ₁ , < L ₂	Reported result: < L,	where L = lower of L_1 and L_2
3.3.	Individual results:	x ± s, < L	Reported result:	$x \pm s$ if $x \ge L$; < L otherwise.

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average x and standard deviation "s" of a set of n numbers x₁, x₂...x_n are defined as follows:

$$\overline{x} = \frac{1}{n} \Sigma x$$
 $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$

4.2 Values below the highest lower limit of detection are not included in the average.

4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.

- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the number following those to be retained is less than 5, the number is dropped, and the retained numbers are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the number following those to be retained is equal to or greater than 5, the number is dropped and the last retained number is raised by 1. As an example, 11.445 is rounded off to 11.45.

APPENDIX C

Maximum Permissible Concentrations of Radioactivity in Air and Water Above Background in Unrestricted Areas

Table C-1. Maximum permissible concentrations of radioactivity in air and water above natural background in unrestricted areas^a.

	Air (pCi/m ³)	Water (pCi/L)		
Gross alpha	1 x 10 ⁻³	Strontium-89	8,000	
Gross beta	1	Strontium-90	500	
lodine-131 ^b	2.8 x 10 ⁻¹	Cesium-137	1,000	
		Barium-140	8,000	
		.lodine-131	1,000	
		Potassium-40 [°]	4,000	
		Gross alpha	2	
		Gross beta	10	
		Tritium	1 x 10 ⁶	

^a Taken from Table 2 of Appendix B to Code of Federal Regulations Title 10, Part 20, and appropriate footnotes. Concentrations may be averaged over a period not greater than one year.

Value adjusted by a factor of 700 to reduce the dose resulting from the air-grass-cow-milk-child pathway.

A natural radionuclide.

APPENDIX D

Sampling Location Maps

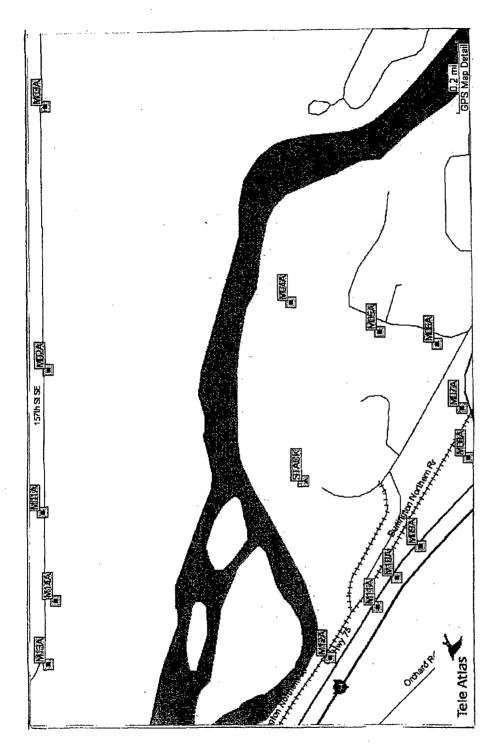


Figure D-1, Sample Collection and Analysis program: TLD locations, Inner ring (Table 5.2).

arruhi Corporation 1995-2002 001 infoUSA 001 Yeta North America, Inc.

D-2

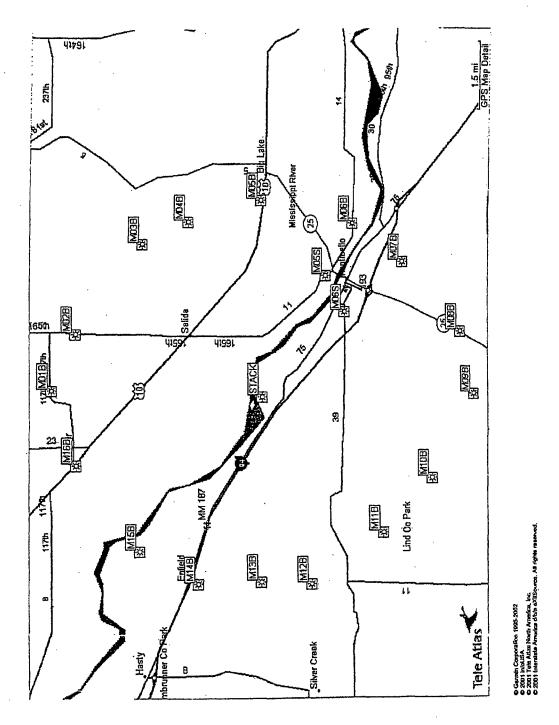


Figure D-2. Sample Collection and Analysis program: TLD locations, Outer ring (Table 5.2).

D-3

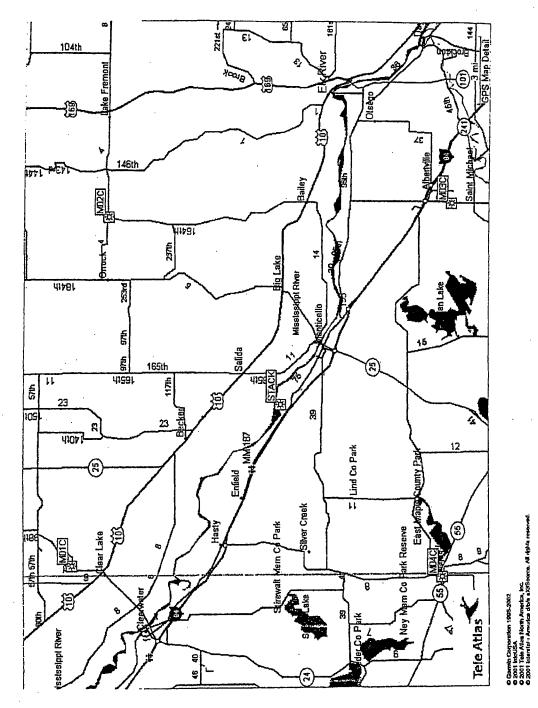


Figure D-3. Sample Collection and Analysis program: TLD locations, Controls (Table 5.2).

D-4

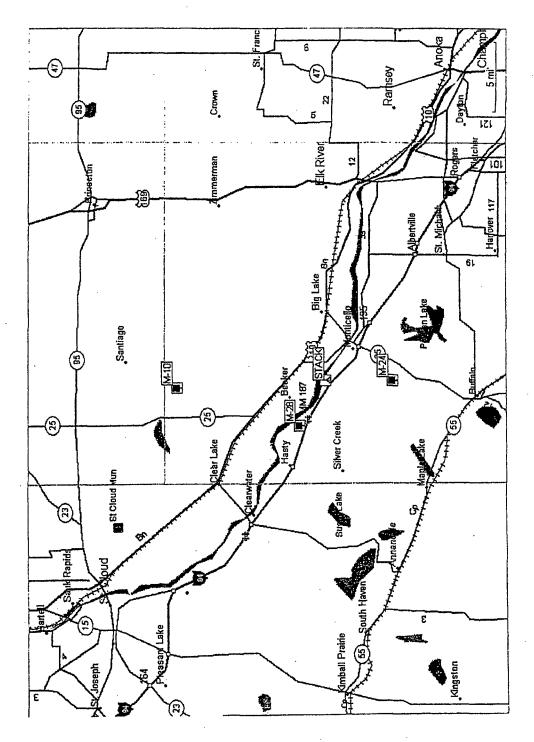


Figure D-4. Sample Collection and Analysis Program: Radiation Environmental Monitoring Program, Milk sampling locations. (Table 5.2)

C

© Gumbr Corporation 1985-2002

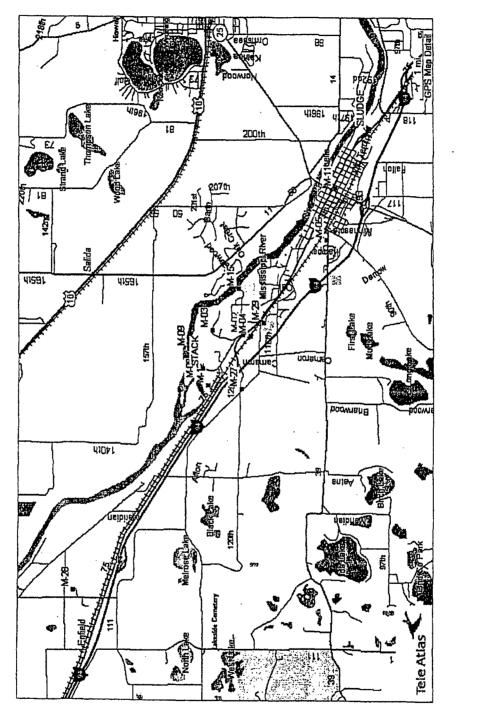


Figure D-5. Sample Collection and Analysis Program: Radiation Environmental Monitoring Program, Milk, Sludge, Ground Water and Shoreline sampling locations (Table 5-2.)

ş

5000

APPENDIX E

Ground Water Monitoring Well Samples

·

1.0 INTRODUCTION

This appendix to the Radiological Environmental Monitoring Program Annual Report to the United States Nuclear Regulatory Commission summarizes and interprets results of the Ground Water Monitoring Program samples taken at the Monticello Nuclear Plant, Monticello, Minnesota, during the period January – December 2010. This sampling program was established in October of 2006 following the industry initiative on ground water monitoring.

Complete data tables for each period and sampling location, are provided in a reference document, (Environmental, Inc., Midwest Laboratory, "Complete Analyses Data Tables, January – December, 2010") available at the Monticello Nuclear Generating Plant, Chemistry and Radiation Protection Department.

2.0 SUMMARY

The Ground Water Sampling Program was established following industry events where tritium was discovered in ground water surrounding commercial nuclear facilities. This program is described and the results for 2010 are summarized and discussed.

Program findings for 2010 detected low levels of tritium in monitoring wells located on the plant property at or near the expected natural background levels, with the exception of Monitoring Wells MW-9 and MW-10. The 2010 sample results (except for MW-9 and MW-10) ranged from <143 to 665 pCi/L. Storm water runoff samples ranged from 468 pCi/L to < LLD. All tritium results (with the exception of MW-9) are far below the Environmental Protection Agency's drinking water standard of 20,000 pCi/L and present no harm to any members of the public.

None of the samples monitored for gamma-emitting isotopes showed activity greater than the LLD.

A summation of the analytical data for both ground water monitoring wells and storm water runoff samples is provided in Table E-3.

3.0 Ground Water Sampling Program

3.1 Program Design and Data Interpretation

The purpose of this sampling program is to assess the impact of any tritium leaching into the environment (ground water system) from MNGP. For this purpose, water samples are collected and analyzed for tritium content.

3.2 Program Description

The sampling and analysis schedule for the Ground Water Monitoring Program is summarized in Table E-1 and briefly reviewed below. Table E-2 defines the additional sample locations and codes for the Ground Water Sampling Program.

Ground Water Monitoring Well samples were collected quarterly at 5 locations and monthly at 10 locations. In addition, Monitoring Well M-14 was installed in the fall of 2010 but only one sample has been collected due to inaccessibility of the well. This well will be sampled monthly in the future.

3.3 Program Execution

The Ground Water Monitoring Program was executed as described in the preceding section.

3.4 Program Modifications

Changes to the program include:

• The addition of Monitoring Well MW-14

1. L. J.

- The creation of this Appendix
- The stand pipe for MW-5 was cut off at the ground to create a parking lot
- A sample of MW-9 was analyzed for hard to detect nuclides in accordance with American Nuclear Insurers recommendations

3.5 Results and Discussions

Results obtained show tritium in ground water samples at or near expected natural background levels, with the exception of MW-9 and MW-10.

Except for MW-9 and MW-10, the 2010 sample results are within the range of expected background tritium levels in groundwater due to tritium concentrations measured in precipitation. Sampling points in North America have shown tritium concentrations in precipitation ranging from 5 pCi/L to 157 pCi/L (Environmental Isotope Data No. 10; World Survey of Isotope Concentration in Precipitation (1988-1991).

The higher level results in MW-9 and MW-10 have been addressed in an Apparent Cause Evaluation In 1981 there was a spill from the Condensate Storage Tanks that site groundwater studies have indicated infiltrated the surface and migrated to MW-9.

MW-14 was added to the program near the river bank to monitor for tritiated ground water reaching the river. All samples from MW-14 have been less than LLD.

None of the water samples monitored for gamma-emitting isotopes showed any activity greater than LLD.

Medium	Number	Sample Codes	Collection type	Analysis Type
Ground Water Quarterly	5	MW-4, MW-5, MW-6, MW-7, MW-8	Grab	H-3
Ground Water Monthly	12	MW-1, MW-2, MW-3, MW-9, MW-9A, MW-10, MW-11, MW-12A, MW-12B, MW-13A, MW-13B, MW-14	Grab	H-3

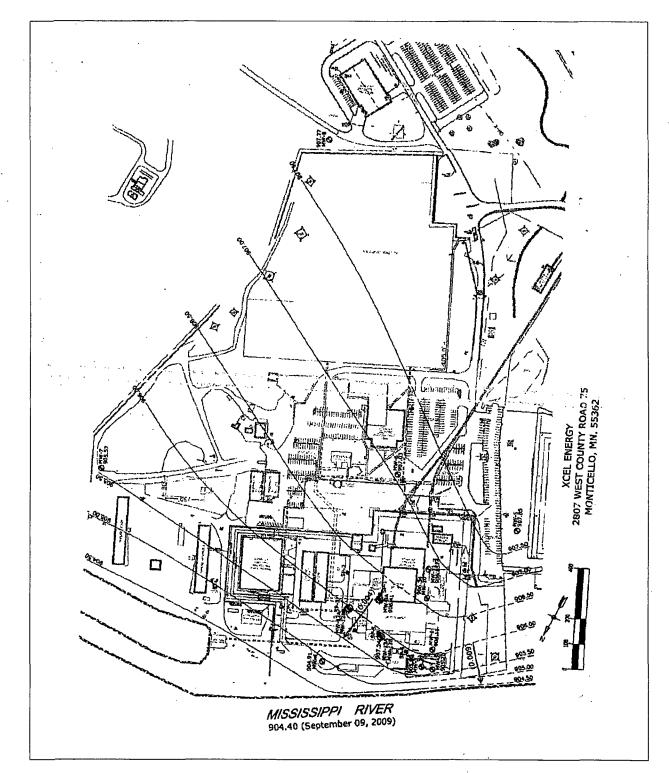
Table E-2. Sampling locations for Ground Water Monitoring Wells.

.....

Sample Type	Vendor Code	Well Number	Distance from Stack (miles)	Compass Heading from Stack	Sector
Ground Water	M-33	MW-1	0.11	299	WNW
Ground Water	M-34	MW-2	0.14	301	WNW
Ground Water	M-35	MW-3	0.15	305	NW
Ground Water	M-36	MW-4	0.1	25	NNE
Ground Water	M-37	MW-5	0.1	253	wsw
Ground Water	M-38	MW-6	229 Feet	228	SW
Ground Water	M-39	MW-7	0.2	66	ENE
Ground Water	M-40	MW-8	0.3	150	SSE
Ground Water	M-44	MW-9	0.1	310	NW
Ground Water	M-51	MW-9B	0.1	310	NW
Ground Water	M-45	MW-10	0.1	292	WNW
Ground Water	M-46	MW-11	0.1	283	WNW
Ground Water	M-47	MW-12A	0.1	330	NW
Ground Water	M-48	MW-12B	0.1	326	NW
Ground Water	M-49	MW-13A	0.12	316	NW
Ground Water	M-50	MW-13B	0.12	316	NW
Ground Water	M-52	MW-14	0.17	306	NW

Table E-3. Ground Water Monitoring Program Summary.

Name of Facility		Montice	lo Nuclear Genera	ting Plant	Docket No.	50-263	
Locatio	on of Facility	Wright, Minnesota			Reporting Period	January-December, 2010	
			(Count	y, State)			
	·····	T	Indicator	Location with I	lighest	Control	Number
Sample	Type and	LLD®	Locations	Annual Me	and a second	Locations	Non-
Туре			Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses*		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
Groundwater	H-3 15	2 500	3257 (20/152)	MW-9A, Onsite,	7633 (7/12)	none	4
Monitoring Wells			(609-21127)	0.1 mi @ 310°/NW	(629-21127)	1	
(pCi/L)	GS 15						
	Mn-54	10	< LLD	-	-	none	0
	Fe-59	30	< LLD	•	-	none	0
	Co-58	10	< LLD	-	-	none	0
	Co-60	10	< LLD	•	-	none	0
	Zn-65	30	< LLD	•	-	none	0
	Zr-Nb-95	15	< LLD	-	-	none	0
	Cs-134	10	< LLD	-	-	none	0
	Cs-137	10	< LLD	-	-	none	0
	Ba-La-140	15	< LLD		-	none	0
	Ce-144	52	< LLD	-	-	none	0
Stormwater Runoff	н-з б	500	< LLD	-	-	none	0
(pCi/L)	GS 3						
() = /	Mn-54	10	< LLD	-	-	none	0
	Fe-59	30	< LLD	-	-	попе	0
	Co-58	10	< LLD		-	none	0
	Co-60	10	< LLD	-	-	поле	0
	Zn-65	30	< LLD	-	-	none	o
	Zr-Nb-95	15	< LLD		-	none	0
	I-131	30	< LLD	-	-	none	0
	Cs-134	10	< LLD		i -	none	0
	Cs-137	10	< LLD		-	none	0
	Ba-La-140		< LLD	-	-	none	0
	Ce-144	41	< LLD	 -	- .	none	0
	<u> </u>						1


^a GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 4.66 sigma counting error for background sample.

^c Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by name, and/or station code (Table 2) and (2) by distance (miles) and direction relative to reactor site. ^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the

result is considered non-routine if it exceeds ten time the typical preoperational value for the medium or location.

SHIPPING DOCUMENT

NORTHERN STATES POWER -MN

Xcel Energy 2807 County Rd 75 Monticello MN 55362

Date: 5/12/11

Shipping Document Tracking Number:

11-0286

Ship To:

USNRC One White Flint North 11555 Rockville Pike Rockville, MD 20852

Attention Of: Document Control Desk

SHIPPING BY	SHIPMENT PACKAGING Pallet, Box, Etc.	SHIPMENT PO NUMBER:	RMA NO.:
Fed Ex		ORIGINAL PO NUMBER:	BUYER:
Town Run		, Dina ara an 'i grann a na san ar 286a.	
Motor Freight		FREIGHT TRACKING NO.	JDE NUMBER:
Vendor			
UPŠ	<u> </u>	Reason for shipment: Overnight S	Shipment to USNRC
Other			

Item No	o. Qty	. Unit	Description	Catalog ID / Q
1	1	Letter	2010 Annual Radiological Environmental Operating Report	
Chinan	mt Domu	····	CM/ID Making Chinmont	· · · · · ·

Shipment Requester	SWIP Making Shipment
Victoria Blomgren	

Use of this form as a procedural aid does not require retention as a quality record.