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ABSTRACT

A RHRP (Reduced-Height and Reduced-Pressure) lIST (Institute of Nuclear Energy Research
Integral System Test) facility has been established in 1992 for safety studies of the
Westinghouse three-loop PWR (Pressurized Water Reactor) NPP (Nuclear Power Plant). The
research purposes of the lIST facility are as follows: (a) to enhance the understanding of
thermal hydraulics phenomena during the accidents, (b) to contribute to evaluate and develop
the safety computer codes, and (c) to validate the emergency operating procedure (EOP) during
the accidents of PWR. The scaling factors of the lIST facility for height and volume of the
reactor coolant system (RCS) are approximately 1/4 and 1/400, respectively. The maximum
operating pressure of the lIST facility is 2.1 MPa. The lIST facility has three loops as well as all
the systems which are about studying Westinghouse PWR plant system transients. The
experiment of the lIST facility was finished which simulated a 2% cold-leg-break loss-of-coolant
accident (LOCA) with total high-pressure injection (HPI) failure. This break was located in loop 2
of lIST facility, which is one of the two loops that do not have a pressurizer. Besides, three
cooldown experiments of lIST facility were also performed. In this research, the lIST facility
experiments data and RELAP5 analysis results of lIST facility experiments are used to verify
and establish the TRACE (TRAC/RELAP Advanced Computational Engine) lIST facility models.
Comparing steady state results, it can be concluded that the steady state results of TRACE
calculations are in agreement with those of lIST facility experiments data and RELAP5 analysis
results of lIST facility experiments. On the other hand, comparing the transient results, it also
indicates that they are in reasonable consistency. The verified results of TRACE lIST facility
models reveal that there is respectable accuracy in the analysis of the 2% cold-leg-break LOCA
and cooldown experiments.
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FOREWORD

The US NRC (United States Nuclear Regulatory Commission) is developing an advanced
thermal hydraulic code named TRACE for nuclear power plant safety analysis. The
development of TRACE is based on TRAC, integrating RELAP5 and other programs. NRC has
determined that in the future, TRACE will be the main code used in thermal hydraulic safety
analysis, and no further development of other thermal hydraulic codes such as RELAP5 and
TRAC will be continued. A graphic user interface program, SNAP (Symbolic Nuclear Analysis
Program) which processes inputs and outputs for TRACE is also under development. One of
the features of TRACE is its capacity to model the reactor vessel with 3-D geometry. It can
support a more accurate and detailed safety analysis of nuclear power plants. TRACE has a
greater simulation capability than the other old codes, especially for events like LOCA.
Taiwan and the United States have signed an agreement on CAMP ( Code Applications and

Maintenance Program ) which includes the development and maintenance of TRACE. INER
(Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) is the organization in
Taiwan responsible for the application of TRACE in thermal hydraulic safety analysis, for
recording users' experiences of it, and providing suggestions for its development. To meet this
responsibility, the TRACE models of lIST facility have been built. In this report, the 2%
cold-leg-break LOCA experiment and cooldown experiments data of lIST facility were utilized
and conducted to confirm the accuracy of the TRACE models.
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EXECUTIVE SUMMARY

An agreement in 2004 which includes the development and maintenance of TRACE has been
signed between Taiwan and USA on CAMP. INER is the organization in Taiwan responsible for
applying TRACE to thermal hydraulic safety analysis in order to provide users' experiences
and development suggestions. To fulfill this responsibility, the TRACE models of lIST facility
were developed by INER.

A RHRP lIST facility has been established for safety studies of the Westinghouse three loops
PWR. The research purposes of the lIST facility are as follows: (a) to enhance the
understanding of thermal hydraulics phenomena during the accidents(1 )(3 ), (b) to contribute to
evaluate and develop the safety computer codes 4 )(5 ), and (c) to validate the EOP during the
accidents of PWR(6). The scaling factors of the lIST facility for height and volume in the RCS are
approximately 1/4 and 1/400, respectively. The maximum operating pressure of the lIST facility
is 2.1 MPa. The lIST facility has three loops as well as all the systems which are about studying
Westinghouse PWR plant system transients. An experiment of the lIST facility was finished
which simulated a 2% cold-leg-break LOCA with total HPI failure(7). This break was located in
loop 2 of lIST facility, which is one of the two loops that do not have a pressurizer. Besides,
three cooldown experiments of lIST facility were also performed(8 ).

The codes used in this research are SNAP v 1.1.8 and TRACE v 5.Opl. By referring to the
RELAP5 lIST facility model and lIST facility experiments data 7 )(8 ), the TRACE lIST facility
model (named model A) was developed. The TRACE lIST facility model has three loops. Each
of the three loops includes the simulation of the hot-leg, SG (Steam Generator) inlet plenum, SG
U-tubes, SG outlet plenum, crossover leg, reactor coolant pump, and cold-leg. The pressurizer
located in loop 1, the break valve located in loop 2, and several pipe components were used to
simulate the lIST pressure vessel. The models of the three SG secondaries were identical. The
secondary models can be subdivided into the downcomer, boiling section, and steam dome.
The feedwater line was simulated using a time-dependent junction. The steam line was
simulated by a break component, which simulated the pressure of steam line during the lIST
experiment. The break flow area was simulated using a specific valve with the critical flow
option. The heat source of lIST facility was simulated by a power component of TRACE, which
used the power table option to simulate the power varying during the experiments. Besides,
another TRACE lIST facility model (named model B) was developed in order to use the TRACE
3D component-vessel instead of pipe components.

Effectiveness of the proposed models were verified with the lIST facility 2% cold-leg-break
LOCA experiment data, lIST facility cooldown experiments data, and the RELAP5 analysis
results data of these experiments. The analytical results of TRACE lIST facility models
indicate that the TRACE lIST facility models predict not only the behaviors of important
parameters in consistent trends with experiments data, but also their numerical values with
respectable accuracy.
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1. INTRODUCTION

The US NRC is developing an advanced thermal hydraulic code named TRACE for safety
analyses of NPPs. The development of TRACE is based on TRAC and integrating with RELAP5
and other programs. NRC has ensured that TRACE will be the main code used in thermal
hydraulic safety analysis, without further development of other thermal hydraulic codes such as
RELAP5 and TRAC in the future. SNAP, a program with graphic user interface, which
processes the inputs and outputs of TRACE is also underdeveloped. One of the features of
TRACE is its capacity to model the reactor vessel with 3-D geometry. It can support a more
accurate and detailed safety analysis of NPPs. TRACE has a greater simulation capability than
the other old codes, especially for events like LOCA.

A RHRP lIST facility has been established for safety studies of the Westinghouse three loops
PWR since 1992. The research purposes of the lIST facility are as follows: (a) to enhance the
understanding of thermal hydraulics phenomena during the accidents(1 )(3 ), (b) to contribute to
evaluate and develop the safety computer codes 4 H5 ), and (c) to validate the EOP during the
accidents of PWR(6). The scaling factors of the lIST facility for height and volume in the RCS are
approximately 1/4 and 1/400, respectively. The maximum operating pressure of the lIST facility
is 2.1 MPa. The lIST facility has three loops as well as all the systems which are about studying
Westinghouse PWR plant system transients. An experiment of the lIST facility was finished
which simulated a 2% cold-leg-break LOCA with total HPI failure(7). This break was located in
loop 2 of lIST facility, which is one of the two loops that do not have a pressurizer. Besides,
three cooldown experiments of lIST facility were also performed(a).

In this research, according to the greater LOCA simulation capability of TRACE, the lIST facility
TRACE models are established and are verified with the 2% cold-leg-break LOCA experiment
data of lIST facility and the RELAP5 analysis results of this experiment(7). Besides, the
cooldown experiments data of lIST facility and the RELAP5 analysis results of these
experiments are also used to establish and verify the TRACE models(8).
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2. lIST facility and experiments

Fig. 2.1 shows the schema of the lIST facility. lIST facility is established in order to simulate the
thermal hydraulics phenomena of Maanshan NPP which is a Westinghouse three loops PWR.
Maanshan NPP is the only Westinghouse-PWR in Taiwan. The rated core thermal power is
2775 MW. The reactor coolant system has three loops, each of which includes a reactor coolant
pump and a SG. The pressurizer is connected to the hot-leg piping in loop 2.

The lIST facility consists of a pressure vessel and three loops. Each loop has a SG and a
coolant pump. Except that there is a pressurizer in the loop 1, the three loops are identical. The
scaling factors of height and volume in the RCS are approximately 1/4 and 1/400, respectively.
Scaled safety injection systems (include HPI and accumulators) inject cooling water into the
cold-leg of each loop. During the SBLOCA (Small Break LOCA) experiment, a catch tank is
simulated to collect and measure the effluent from the simulated break. The comparison of
major parameters between lIST facility and the Maanshan NPP is shown in Table 2.1.

The data acquisition system of the lIST facility records data from more than 200 instruments
which include K-type thermocouples, venturi flowmeters, pressure transducers, and differential
pressure transducers in order to measure temperature, flow rate, pressure, and differential
pressure, respectively. The accuracies of the instruments are as follows(7): (1) Thermocouple
accuracies are 2.2 K or 0.75% of the full scale. (2) Venturi flowmeters located in the downflow
section of the crossover leg (the loop seals) are used to measure the loop flow rate which the
accuracy is 1.66% of the range. (3) Pressure and pressure difference transducers are used to
measure the system pressure and the local pressure drop in the loops. The accuracies of
pressure and pressure difference are 0.25 and 0.77% of the ranges, respectively. (4) The
collapsed liquid levels are calculated based on the differential pressures and temperatures for
regions of the system when the local velocities are low. The accuracy of the collapsed liquid
level is 1.8% of the range. (5) The break flow is discharged to the catch tank during the
simulation of the LOCA experiments. So, the break flow rate is calculated from the multiplication
of the liquid level rising rate, flow area, and liquid density in the catch tank. The accuracy of the
break flow rate is 1.8% of the range. The detail description of the above instruments are listed in
the INER report(9) and Table 2.2 shows some data of instruments which include the calculation
range, location, and function.

Besides, there are 50 view ports in the lIST facility in order to see the thermal hydraulics
phenomena and thus enhance understanding of two-phase phenomena in the pressure vessel,
hot-legs, SG inlet and outlet plenums, SG secondary sides, crossover legs, cold-legs, and
pressurizer. However, a total of 13 video cameras are located at selected view ports to record
the key thermal hydraulics phenomena during the lIST facility experiments.
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Table 2.1 The comparison of major parameters between lIST facility and the Maanshan
Npp(7)

Maanshan
Parameter lIST PWR IIST/PWR

Design pressture (MPa) 2.1 15.6 1.35 X 10--
Maximum core power (MWV) 0.45 2775 1.62 X 10-4

Primary system volume (in 3 ) 5.37 X 10-1 2.15 X 102 2.50 x 10-1
Number of loops 3 3 1.0

Core
Height (in) 1.0 3.6 2.77 X 10-1
Hydraulic diameter (in) 1.08 X 10-A 1.22 x 10-1 8.85
Bypass area (m

2
) 7.2 X 10-5 1.54 X 10-2 4.67 X 10-3

Hot leg
Inner diameter. D (W) 5.25 X 10-2 7.35 x 10-' 7.13 x 10-2
Length. L (in) 2.0 7.28 2.75 × 10-'
L/D (in 0°) 8.72 8.48 1.03

U-tube in one SG
Number 30 5626 5.33 X 10'
Average length (in) 4.08 16.85 2.24 X 10-1
Inner diameter (nmn) 15.4 15.4 1.0
Vohlwn (mi ) 2.28 X 10-2 18.44 1.23 X 10-3

Cold leg
Inner diameter D (in) 5.25 X 10-2 7.87 X 10-1 6.67 X 10-2
Length L (in) 5.0 15.7 3.18 XI10-'
L/4D (m-' ) 21.8 17.69 1.22

Downcomer
Flow area (in2) 0.0185 2.63 7.03 X 10--
Hydraulic diameter (in) 4.12 X 10-' 4.8 X 10-1 8.58 X 10-2

Pressurizer
Volume (11') 9.32 X 10-2 39.64 2.35 X 10-'
Surge-line flow area (i 2 ) 3.44 X 10-4 6.38 X 10-2 5.39 X 10-'
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Table 2.2 The instruments data of lIST facility(9 )
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2.1 lIST facility SBLOCA experiment'7 )

The experiment of lIST facility was performed in order to simulate a 2% cold-leg break (the
break area is 2% of the scaled cold-leg cross-section area) with total HPI failure. A horizontal
break nozzle was installed in the cold-leg of loop 2. In this experiment, the core power decay
and pump coastdown during the SBLOCA experiment were not simulated. The initial condition
of the experiment is showed in Table 2.3.

The SBLOCA experiment started from the break occurred at time zero, the primary pressure of
lIST facility dropped until it became only a little higher than the secondary-side pressure of lIST
facility. Besides, the primary pressure decreased slowly because the energy content of the
liquid discharged through the break was a little larger than the core energy generation. The air
flowed through the hot-leg into the SG-1 U-tubes after emptying of the pressurizer at 128 sec.
After 164 sec of the break, the loop 1 flow rate suddenly dropped to near zero, which means the
decrease of the heat removal capability of SG-1. The effects of noncondensable air caused
obviously slowed the rising temperatures in both the primary and secondary sides of SG-1 and
the suddenly decrease of the natural-circulation flow rate in loop 1. An asymmetric coolant
inventory distribution was observed in the three SGs during the two-phase natural-circulation
and reflux condensation. In SG-1, the liquid holdup in the inlet plenum was not observed
because the steam flowed into SG-1 which caused no flooding phenomena occurred during the
reflux condensation. However, in SG-2 and SG-3, liquid holdup was shown in the upflow-side
U-tubes and the inlet plenum resulting from the occurrence of flooding phenomena at the inlet of
the SG U-tubes and hot-legs. The collapsed liquid level of core decreased sharply after the
break occurred because of the subcooled liquid discharge in the time period between 0 to 146
sec. Then, the collapsed liquid level of core decreased slowly, when the break flow became a
two-phase mixture from 146 to 400 sec. Finally, because of no coolant makeup, the core was
uncovered with heatup at 1734 sec.
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Table 2.3 The initial condition of the lIST facility SBLOCA experiment(7 )

Parameter lIST test data

Primary coolant system

Core power (kW) 126

Pressurizer pressure (MPa) 0.958

Pressurizer water level (mm) 1459

Loop flow rate (kg/s)

Loop1 0.210

Loop2 0.217

Loop3 0.217

Hot-leg temperature (K)

Loopl 450

Loop2 449

Loop3 451

Cold-leg temperature (K)

Loopl 409

Loop2 408

Loop3 409

Secondary coolant system

Secondary-side pressure (MPa)

SG-1 0.301

SG-2 0.295

SG-3 0.295

Secondary-side fluid temperature (K)

SG-1 407

SG-2 407

SG-3 407
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2.2 lIST facility cooldown experiments(8 )

In 1996, a break of pressurizer venting tube occurred at Maanshan NPP, which result in the
coolant release to the containment and the action of cooldown and depressurization process in
RCS. In this accident, the leakage was estimated that could be greater than 50 gpm. However,
the RCS collapsed liquid level shrinks and decreases due to cooldown and depressurization
which may lead to overprediction the leakage rate and misjudgment of the proper actions in
accident management. Therefore, a series of lIST facility cooldown experiments were
performed in order to study the shrink effect in the RCS and the verification of theoretical
approach of leakage evaluation model. Besides, the lIST facility cooldown experiments results
were also used for the assessment of RELAP5 lIST facility model.

There are three cooldown experiments of lIST facility (C61128, C61210, and C70122) and the
initial conditions are listed in Table 2.4. The cooldown experiments were divided two steps. The
first step (0-1000 sec) was the intital primary pressure maintaining by regulating the power of
the pressurizer heater and the secondary side pressure controlling by adjusting the opening of a
control valve (located at the header of steam lines). The second step (after 1000 sec) was the
relief valve (RV) of the steam generator which opens at 1000 sec and the core power was
adjusted in decreasing rate of 1.75 kW every 50 seconds which resulted in cooldown in the
RCS and depressurization in the secondary side. These cooldown experiments were performed
with the cooldown rates ranging from 0.9 to 1.2 K/min, which were within the limitation of
Maanshan NPP.

Table 2.4 The initial condition of the lIST facility cooldown experiments(8)

C61128 C61210 C70122

Pressurizer pressure (MPa) 0.972 0.979 1.82

Pressurizer water level (mm) 1241 1269 1771

Core power (kW) 100.4 120 100.3

Hot-leg temperature (K) 442.1 448.8 468.5

Cold-leg temperature (K) 410.3 412.2 436.1

SG pressure (MPa) 0.286 0.283 0.62

SG water level (mm) 2230 2264 2293

SG fluid temperature (K) 405 0.979 435
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3. The RELAP5 and TRACE lIST model description

The RELAP5 lIST facility model was including 172 volumes connected by 175 junctions and 141
heat structures, had been developed to simulate the lIST facility. The detail description of
RELAP5 lIST facility models were in INER's previous study(7 )'8 ).

By referring to the RELAP5 lIST facility models and lIST experiments data 7 )(8 ), the TRACE lIST
facility model was developed. The SNAP v 1.1.8 and TRACE v 5.0pl were employed in this
research. The TRACE lIST facility model (named model A) is showed in Fig. 3.1. It shows that
the TRACE lIST facility model has three loops: loop 1 (pipe components 110 to 197, shown in
Fig.3.1 (b)), loop 2 (pipe components 210 to 297, shown in Fig.3.1 (c)), and loop 3 (pipe
components 310 to 397, shown in Fig.3.1 (d)). Each of the three loops includes the simulation of
the hot-leg, SG inlet plenum, SG U-tubes, SG outlet plenum, crossover leg, coolant pump, and
cold-leg. The pressurizer (pipe component 720, shown in Fig.3.1 (b)) located in loop 1, the
break valve (valve component 805, shown in Fig.3.1 (c)) located in loop 2, and pipe components
3-19 were used to simulate the pressure vessel of lIST facility (shown in Fig.3.1 (e)). The
models of the three SG secondaries (pipe components 410 through 430, 510 through 530, and
610 through 630, respectively) were identical. The secondary models can be subdivided into the
downcomer, boiling section, and steam dome. The steam line was simulated by a break
component, which simulated the pressure of steam line during the lIST facility experiments. The
break flow area was simulated using a specific valve with the critical flow option. Besides,
another TRACE lIST facility model (named model B) was developed in order to use the TRACE
3D component-vessel instead of pipe 3-19. The TRACE lIST facility model B is shown in Fig.
3.2.

The heat source of lIST facility was simulated by a power component of TRACE (power
component 32000), which used the power table (option 6) to simulate the power varying during
the experiments, as shown in Fig. 3.3. Besides, the main heat exchange simulation of lIST
facility TRACE models were as follows: (1) the heat exchange in the primary-side and the
secondary-side of the SGs, shown in Fig. 3.4, (2) the internal heat exchange of the pressure
vessel, shown in Fig. 3.5. The feedwater line was simulated using a time-dependent junction, as
shown in Fig. 3.6. In all break components of lIST facility TRACE models, the break type used
option 4 in order to use the tables to simulate the boundary conditions of lIST facility
experiments (shown in Fig. 3.7). Finally, the timestep range (0.01_1X10"8 sec) of lIST facility
TRACE models were used in the calculation process (shown in Fig. 3.8).
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(a) overall region
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(c) Loop 2 region

(d) Loop 3 region
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(e) Pressure vessel region
Fig. 3.1 The TRACE lIST facility model (model A)
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Fig. 3.2 The TRACE lIST facility model (model B)
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Fig. 3.3 The power component simulation of lIST facility TRACE model
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Fig. 3.4 The SG heat exchange simulation of lIST facility TRACE model
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Fig. 3.5 The pressure vessel heat exchange simulation of lIST facility TRACE model
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Fig. 3.6 The feedwater simulation of lIST facility TRACE model
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Fig. 3.7 The break simulation of lIST facility TRACE model
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Fig. 3.8 The timestep data of lIST facility TRACE model
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4. Results and discussions

4.1 lIST facility SBLOCA exDeriment

Table 4.1 shows the comparison of initial condition among lIST facility, RELAP5, TRACE. The
TRACE analysis results are in good agreement with the lIST facility and RELAP5 data. Fig. 4.1
shows the comparison of primary system pressure among lIST facility, RELAP5, TRACE. Fig.
4.2 shows the comparison of break flow rate among lIST facility, RELAP5, TRACE. The primary
system pressure and break flow rate trends of TRACE are similar with the lIST facility and
RELAP5 data. Besides, it also shows that the TRACE model A overpredicted the primary
system pressure during 100-600 sec. From the data of lIST facility SBLOCA experiment and
RELAP5 analysis 7 ), it shows three periods: (1) subcooled liquid break flow from 0 to 320 sec,
(2) low-quality two-phase break flow from 320 to 620 sec, and (3) high-quality two-phase break
flow after 620 sec. The above data also described that RELAP5 underpredicted the primary
system pressure during the subcooled break flow period, and it overpredicted pressure during
the low-quality two-phase break flow period. The differences of the primary system pressure
between lIST facility and RELAP5 were caused by overprediction of the subcooled break flow
period, underprediction of the low-quality two-phase break flow period, compared with the lIST
facility data, as shown in Fig. 4.2. Therefore, the TRACE model A overpredicted the primary
system pressure during the subcooled break flow and the low-quality two-phase break flow
periods. It was due to underprediction of break flow rate during the subcooled break flow and
the low-quality two-phase break flow, compared with the lIST facility data, as shown in Fig. 4.2.

Asymmetric natural-circulation flow rates were observed in the three loops during the lIST
facility SBLOCA experiment, but TRACE was unable to simulate these phenomena, which was
shown in Fig. 4.3 and Fig. 4.4. According to the previous paper 7 ), the above trend is also
observed in the results of RELAP5 (shown in Fig. 4.3 and Fig. 4.4) and this paper described the
difference generated from the inadequate simulation of the effect of noncondensable air in
RELAP5 after emptying of the pressurizer. Hence, in this parameter analyses, the above results
shows that there is the same defect in TRACE.

Fig. 4.5 and Fig. 4.6 show the differential pressures of lIST facility, RELAP5, and TRACE in the
upflow and downflow sides of the U-tubes for SG-2. The TRACE model A and RELAP5
predicted more liquid holdup in both sides of the U-tubes. However, the TRACE model B
predicted the similar result with the lIST facility data. The main difference in TRACE model A
and model B is the simulation of lIST facility pressure vessel. Therefore, it may be the reason
which caused the difference between analyses result of TRACE model A and model B in this
parameter.

For loop 1, the lIST facility data show the inlet and outlet plenum of SG-1 to empty after 500
sec, as shown in Fig. 4.7 and Fig. 4.8. However, the TRACE and RELAP5 overpredicted liquid
holdup in the SG-1 inlet and outlet plenum. The difference among lIST facility, RELAP5, and
TRACE were caused by the reason which happened in Fig. 4.3.

Fig. 4.9 shows the comparison of the liquid holdup in the SG-2 inlet plenum among lIST facility,
RELAP5, and TRACE. There are the similar trends in this parameter. However, the value of
TRACE is lower than lIST facility and RELAP5 after 400 sec. Fig. 4.10 shows the comparison of
outlet plenum liquid level of SG-3 among lIST facility, RELAP5, and TRACE. The trends of their
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curves are generally consistent in 0-1000 sec. For the TRACE model B, it underpredicted after
1000sec. Besides, RELAP5 also underpredicted after 1300sec.

Fig. 4.11 and Fig. 4.12 show the fluid temperatures of the hot-leg and cold-leg in loop 3. The
TRACE and RELAP5 predicted the loop 3 fluid temperature to be in good agreement with the
lIST facility experiment data.

Fig. 4.13 shows the comparison of the core liquid level among lIST facility, RELAP5, and
TRACE. The trends of their curves are the similar. The core liquid level of RELAP5 was slightly
lower than lIST facility. However, the TRACE results data are better than RELAP5. Besides, the
TRACE and RELAP5 can well predict the time to reach the core uncover which caused the
cladding temperature increase, as shown in Fig. 4.14.

Overall, the TRACE analyses results are roughly consistent with the lIST facility and RELAP5
data. Besides, the TRACE model B has better prediction than model A in the primary system
pressure, break flow, SG2-inlet tube top differential pressure, and SG2-outlet tube top
differential pressure.
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Table 4.1 The comparison of SBLOCA experiment initial condition among lIST facility,
RELAP5, TRACE

Parameter lIST facility RELAP5 TRACE(model A) TRACE(model B)
/error (°o /error M%)

Primary coolant system
Core power (kW) 126 126 126 126

Pressurizer pressure (MPa) 0.958 0.958 0.964/0.6 0.964/0.6
Pressurizer water level 1459 1413 1463/0.3 1394/4.5

(mm)
Loop flow rate (kg/s)

Loopl 0.210 0.227 0.219/4.3 0.204/2.9
Loop2 0.217 0.227 0.219/0.9 0.198/8.8
Loop3 0.217 0.227 0.219/0.9 0.198/8.8

Hot-leg temperature (K)
Loopi 450 445 448.7/0.3 446.1/0.9
Loop2 449 445 448.7/0.1 446.1/0.6
Loop3 451 445 448.7/0.5 446.1/1.1

Cold-leg temperature (K)
Loop1 409 409 409.5/0.1 409.5/0.1
Loop2 408 409 409.5/0.4 409.5/0.4
Loop3 409 409 409.5/0.1 409.5/0.1

Secondary coolant
system

Secondary-side pressure
(MPa)
SG-1 0.301 0.301 0.303/0.7 0.303/0.7
SG-2 0.295 0.301 0.299/1.4 0.299/1.4
SG-3 0.295 0.301 0.299/1.4 0.299/1.4

Secondary-side fluid
temperature (K)

SG-1 407 407 406.1/0.2 406.0/0.2
SG-2 407 407 405.6/0.3 405.6/0.3
SG-3 407 407 405.6/0.3 405.6/0.3
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4.2 lIST cooldown experiments

In this section, Table 4.2, Table 4.3, and Table 4.4 show the comparison of initial condition
among lIST facility, RELAP5, TRACE for the cooldown experimentsW8 ). The TRACE analysis
results are in agreement with the lIST facility and RELAP5 data.

Table 4.2 The comparison of C61128 cooldown experiment initial condition among lIST
facility, RELAP5, TRACE(8)

lIST facility RELAP5 TRACE (model A) TRACE (model

/error(%) B)

/error(%)

Pressurizer pressure (MPa) 0.972 0.953 0.981/0.9 0.961/1.1

Pressurizer water level 1241 1225 1237/0.3 1277/2.9

(mm)

Core power (kW) 100.4 100.4 100.4 100.4

Hot leg temperature (K) 442.1 438.6 444.8/0.6 440.3/0.4

Cold leg temperature (K) 410.3 410.4 411.4/0.3 411.0/0.2

SG pressure (MPa) 0.286 0.286 0.281/1.7 0.286/0.0

SG water level (mm) 2230 2198 2258/1.3 2244/0.6

Table 4.3 The comparison of C61210 cooldown experiment initial condition among lIST
facility, RELAP5, TRACE(8)

lIST facility RELAP5 TRACE (model A) TRACE (model

/error(%) B)

/error(%)

Pressurizer pressure (MPa)

Pressurizer water level (mm)

Core power (kW)

Hot leg temperature (K)

Cold leg temperature (K)

0.979

1269

120

448.8

412.2

0.979

1342

120

444.6

412.2

0.953/2.7

1335/5.2

120

448.7/0.02

411.3/0.2

0.944/3.6

1316/3.7

120

448.1/0.2

412.5/0.1
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SG pressure (MPa)

SG water level (mm)

0.283

2264

0.289

2282

0.287/1.4

2249/0.7

0.286/1.1

2229/1.5

Table 4.4 The comparison of C70122 cooldown experiment Initial condition among lIST
facility, RELAP5, TRACE(e)
lIST RELAP5 TRACE (model A) TRACE (model

facility /error(%) B)

/error(%)

Pressurizer pressure (MPa) 1.82 1.82 1.81/0.5 1.82/0.0

Pressurizer water level (mm) 1771 1748 1742/1.6 1800/1.6

Core power (kW) 100.3 100.3 100.3 100.3

Hot leg temperature (K) 468.5 462.4 466.6/0.4 468.4/0.02

Cold leg temperature (K) 436.1 435.7 434.5/0.4 436.6/0.1

SG pressure (MPa) 0.62 0.63 0.61/1.6 0.64/3.2

SG water level (mm) 2293 2288 2298/0.2 2388/4.1
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4.2.1 Test C61128

According to the C61128 experiment dataO8), it is high inlet subcooling (9.6K) and the cooldown
rate is approximately equal to 0.9 K/min within the limitation range (9 1.85 K/min) of Maanshan
NPP. Fig. 4.15 shows the comparison of Primary system pressure among lIST facility, RELAP5,
TRACE. The TRACE was overpredicted in this parameter during 0-1500 and 2500-3800 sec.
However, RELAP5 was also overpredicted in this parameter during 0-4000 sec. At 1000 sec,
the core power was adjusted in decreasing rate of 1.75 kW every 50 seconds and the RVs of
the SGs opened which resulted in cooldown effect in the RCS. Therefore, the trends of curves
decreased after 1000 sec. Fig. 4.16 shows the comparison of SG1 secondary side pressure
among lIST facility, RELAP5, TRACE. The trends of TRACE were roughly consistent with the
lIST facility and RELAP5 data. The SG secondary pressure keeps constant during 0 to 1000 sec.
The RVs of SGs opens at 1000 sec and the pressure decreases; finally it remains at
atmospheric pressure.

Fig. 4.17, Fig. 4.18, and Fig. 4.19 show that the SG secondary side, pressurizer, and core
collapsed liquid levels of TRACE are consistent with the lIST facility and RELAP5 data. As the
RVs open at 1000 sec, the collapsed liquid levels of SG secondary side and pressurizer
decrease. However, the core collapsed liquid level is nearly the same during the overall time
interval.

Fig. 4.20 and 4.21 show the comparison of loop 1 hot-leg and cold-leg temperatures among
lIST facility, RELAP5, TRACE. The TRACE predict the hot-leg and cold-leg temperatures in
good agreement with the lIST facility experiment and RELAP5 data.

Overall, the TRACE analyses results are roughly consistent with the lIST facility and RELAP5
data. In the comparison of analysis results of the TRACE model A and B, they are similar in all
parameters.
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4.2.2 Test C61210

According to the C61210 experiment data(8), it is low inlet subcooling (3K) and the cooldown rate

is approximately equal to 1 K/min within the limitation range (9 1.85 K/min) of Maanshan NPR

Fig. 4.22 shows the primary system pressures of the lIST facility, RELAP5, TRACE. In this
parameter, the trends of TRACE were roughly similar with the lIST facility data. Besides, TRACE
was overpredicted in this parameter after 1500 sec. However, RELAP5 was also overpredicted
in this parameter during the overall time interval. Besides, the value of RELAP5 was higher than
TRACE. At 1000 sec, the core power was adjusted in decreasing rate of 1.75 kW every 50
seconds and the RVs of the SGs opened which resulted in cooldown effect in the RCS.
Therefore, the primary system pressures of the lIST facility, RELAP5, and TRACE decreased
after 1000 sec. Fig. 4.23 shows the comparison of SG1 secondary side pressure among lIST
facility, RELAP5, TRACE. The trends of TRACE were in agreement with the lIST facility and
RELAP5 data. The SG secondary pressure keeps constant during 0 to 1000 sec. The RVs of
SGs opens at 1000 sec and the pressure decreases; finally it remains at atmospheric pressure.

Fig. 4.24 shows the SG1 secondary side collapsed liquid levels of the lIST facility, RELAP5,
TRACE. In this parameter, TRACE was underpredicted after 1000 sec but the trends of TRACE
were roughly consistent with the lIST facility and RELAP5 data. Fig. 4.25 and Fig. 4.26 show
that the pressurizer and core collapsed liquid levels of TRACE are consistent with the lIST
facility and RELAP5 data. Besides, comparing Fig. 4.25 and Fig. 4.26, it can found as the
pressurizer collapsed liquid levels of TRACE are lower than lIST facility and RELAP5; the core
collapsed liquid levels of TRACE are higher than lIST facility and RELAP5. As the RVs open at
1000 sec, the collapsed liquid levels of SG secondary side and pressurizer decrease. However,
the core collapsed liquid level is nearly the same during the overall time interval.

Fig. 4.27 and 4.28 show the loop 1 hot-leg and cold-leg temperatures of lIST facility, RELAP5,
TRACE. The hot-leg and cold-leg temperatures prediction of TRACE were the similar with the
lIST facility experiment and RELAP5 data.

Overall, the TRACE analyses results are roughly consistent with the lIST facility and RELAP5
data. In the comparison of analysis results of the TRACE model A and B, they are similar in all
parameters. However, in primary system pressure, the result of the TRACE model B is better
than model A.
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4.2.3 Test C70122

According to the C70122 experiment data(8 ), it is high inlet subcooling (12.1K) and the cooldown
rate is approximately equal to 1.2 K/min within the limitation range (_i 1.85 K/min) of Maanshan
NPP. Fig. 4.29 shows the comparison of primary system pressure among lIST facility, RELAP5,
TRACE. The TRACE model A and RELAP5 were overpredicted in this parameter during the
overall time interval. Besides, the value of TRACE model A was roughly the similar with
RELAP5. However, the result of the TRACE model B is better than TRACE model A and
RELAP5. At 1000 sec, the core power was adjusted in decreasing rate of 1.75 kW every 50
seconds and the RVs of the SGs opened which resulted in cooldown effect in the RCS.
Therefore, the primary system pressures of the lIST facility, RELAP5, and TRACE decreased
after 1000 sec. Fig. 4.30 shows the SG1 secondary side pressures of lIST facility, RELAP5, and
TRACE. The trends of TRACE were nearly the same with the lIST facility and RELAP5 data.
The SG secondary pressure keeps constant during 0 to 1000 sec. The RVs of SGs opens at
1000 sec and the pressure decreases; finally it remains at atmospheric pressure.

Fig. 4.31 shows the comparison of SG1 secondary side collapsed liquid levels among lIST
facility, RELAP5, TRACE. In this parameter, the trends of TRACE were roughly consistent with
the lIST facility and RELAP5 data, but the TRACE model B was underpredicted after 1000 sec.
Fig. 4.32 shows the pressurizer collapsed liquid levels of the lIST facility, RELAP5, and TRACE.
Their trends were roughly the silimar, but the TRACE and RELAP5 were underpredicted after
1000 sec. Fig. 4.33 shows the comparison of the core collapsed liquid levels among lIST facility,
RELAP5, TRACE. The TRACE results were in agreement the lIST facility and RELAP5 data. As
the RVs open at 1000 sec, the collapsed liquid levels of SG secondary side and pressurizer
decrease. However, the core collapsed liquid level is nearly the same during the overall time
interval.

Fig. 4.34 and 4.35 show the comparison of loop 1 hot-leg and cold-leg temperatures among
lIST facility, RELAP5, and TRACE. The TRACE predict the hot-leg and cold-leg temperatures in
good agreement with the lIST facility experiment and RELAP5 data.

Overall, the TRACE analyses results are roughly similar with the lIST facility and RELAP5 data.
In the comparison of analysis results of the TRACE model A and B, there are bigger difference
in the primary system pressure and SG1 secondary side collapsed liquid level.

Furthermore, the animation of the TRACE model is presented using the animation function of
SNAP/TRACE interface with the TRACE analysis results. The animation model of lIST facility is
shown in Fig. 4.36.
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5. CONCLUSIONS

By using SNAP/TRACE, this study developed the TRACE models of the lIST facility.
Effectiveness of the proposed models were verified with the 2% cold-leg-break LOCA lIST
facility experiment data, lIST facility cooldown experiments data, and the RELAP5 analyses
results data. In this research, the following results can be obtained:
1. By referring to the RELAP5 lIST facility models and lIST experiments data(7 )(8), two kinds of

TRACE lIST facility models were developed success. The main difference in two kinds of
TRACE lIST facility models is the simulation of the lIST facility pressure vessel. The
TRACE lIST facility model A simulated the lIST facility pressure vessel by pipe
components. However, the TRACE lIST facility model B simulated the lIST facility pressure
vessel by TRACE 3D component-vessel.

2. In the 2% cold-leg-break LOCA lIST facility experiment, overall, the TRACE analyses
results are roughly in agreement with the lIST facility and RELAP5 data. Besides, the
TRACE model B has better prediction than model A in the primary system pressure, break
flow, SG2-inlet tube top differential pressure, and SG2-outlet tube top differential pressure.

3. In the lIST facility cooldown experiments, the TRACE analyses results are roughly
consistent with the lIST facility and RELAP5 data. In the comparison of analysis results of
the TRACE model A and B, they are similar in all parameters. However, in primary system
pressure, the analysis result of the TRACE model B is better than model A.

4. Finally, the analytical results of TRACE lIST facility models indicate that the TRACE lIST
facility models predict not only the behaviors of important parameters in consistent trends
with experiment data, but also their numerical values with respectable accuracy.
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