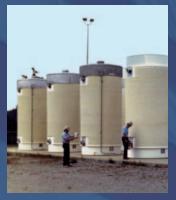


Information Digest

ONE WHITE FLINT NORTH


UNITED STATES NUCLEAR REGULATORY COMMISSION

WWW.MRC.GOV

2010-2011 Information Digest

ONE **WHITE FLINT** ORTH

NUREG-1350, Volume 22 Manuscript Completed: August 2010 Date Published: August 2010

U.S. Nuclear Regulatory Commission Office of Public Affairs Washington, DC 20555-0001

www.nrc.gov

Front Cover: (from left to right)

- 1. Gamma Knife® used for treating brain tumors. (Photo courtesy of Nordion)
- 2. NRC Headquarters in Rockville, MD.
- 3. Control room at a nuclear power plant.

Back Cover: (from left to right)

- 1. Gamma Knife® headframe used for treating brain tumors with focused radiation beams. (Photo courtesy of Elekta)
- 2. Blood irradiator. (Photo courtesy of IAEA)
- 3. Commercial irradiator.

Inside Cover: (from left to right)

- 1. NRC staff participating in an advisory committee meeting.
- 2. Pilgrim nuclear power plant at dawn. (Photo courtesy of Entergy Nuclear)
- 3. Spent fuel dry cask located onsite at a nuclear power plant.

ABSTRACT

The U.S. Nuclear Regulatory Commission (NRC) 2010–2011 Information Digest provides a summary of information about the NRC and the industry it regulates. It describes the agency's regulatory responsibilities and licensing activities and also provides general information on nuclear-related topics. It is updated annually.

The Information Digest includes NRC- and industry-related data in a quick reference format. Data include activities through 2009 or the most current data available at manuscript completion. The Web Link Index provides URL addresses for more information on major topics. The Digest also includes a tear out reference sheet, the NRC Facts at a Glance.

The NRC reviewed information from industry and international sources but did not perform an independent verification. In this edition, adjustments were made to previous year preliminary figures. All information is final unless otherwise noted.

The NRC is the source for all photographs, graphics, and tables unless otherwise noted.

The agency welcomes comments or suggestions on the Information Digest. Please contact Ivonne Couret by mail at the Office of Public Affairs, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 or by e-mail at OPA.Resource@nrc.gov.

iv • U.S. NRC Protecting People and the Environment

Contents

ABSTRACT	iii
NRC: An independent Regulatory Agency	1
Mission Major Activities Organizations and Functions Budget	2 3 4 12
U.S. and Worldwide Nuclear Energy	15
U.S. Electricity Capacity and Generation Average Production Expenses U.S. Electricity Generated by Commercial Nuclear Power Worldwide Electricity Generated by Commercial Nuclear Power Worldwide Nuclear Production International Activities	16 18 23 23 26
Nuclear Reactors	31
U.S. Commercial Nuclear Power Reactors Oversight of U.S. Commercial Nuclear Power Reactors New Commercial Nuclear Power Reactor Licensing Reactor License Renewal Research and Test Reactors Nuclear Regulatory Research	32 38 43 50 54 55
Nuclear Materials	59
Materials Licenses Medical and Academic Industrial Material Security Uranium Recovery Fuel Cycle Facilities	60 61 63 65 66 70
Radioactive Waste	75
Low-Level Radioactive Waste Disposal High-Level Radioactive Waste Management Transportation Decommissioning	76 78 86 87
Security and Emergency Preparedness	89
Overview Facility Security Cyber Security Materials Security Emergency Preparedness Incident Response	90 90 91 91 91 92

Appendic	es		95
ABBREVIAT APPENDIX APPENDIX	A:	5 USED IN APPENDICES U.S. Commercial Nuclear Power Reactors U.S. Commercial Nuclear Power Reactors	96 98
APPENDIX APPENDIX	C:	Permanently Shut Down—Formerly Licensed To Operate Canceled U.S. Commercial Nuclear Power Reactors U.S. Commercial Nuclear Power Reactors by	113 115
APPENDIX		Parent Company Operating U.S. Nuclear Research and Test Reactors	121
APPENDIX		Regulated by the NRC U.S. Nuclear Research and Test Reactors Under	123
APPENDIX		Decommissioning Regulated by the NRC Industry Performance indicators: Annual industry	125
APPENDIX		Averages, FYs 2000–2009 Dry Spent Fuel Storage Designs: NRC-Approved for	126
APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	l: J: K: L: M:	Use by General Licensees Dry Spent Fuel Storage Licensees Nuclear Power Units by Nation Nuclear Power Units by Reactor Type, Worldwide Top 50 Reactors by Capacity Factor, Worldwide Top 50 Reactors by Generation, Worldwide Tribes Physically Located Within Fifty Miles of a	127 128 132 133 134 136
APPENDIX APPENDIX	0:	Nuclear Power Plant	138 139 140
WEB LINK I INDEX	INDE	BREVIATIONS AND TERMS DEFINED) X A GLANCE	143 170 176 179
FIGURES			
NRC: An I	nde	pendent Regulatory Agency	1
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7.	NRC Hov NRC NRC Dist	Nuclear Regulatory Commission Organizational Chart Regions VWe Regulate Budget Authority, FY 2000–2010 Personnel Ceiling, FY 2000–2010 ribution of NRC FY 2010 Budget Authority and Staff overy of NRC Budget, FY 2010	6 9 10 12 12 13 14
U.S. and \	Wor	ldwide Nuclear Energy	15
Figure 8. Figure 9. Figure 10. Figure 11. Figure 12.	Pow Proj U.S.	Electric Existing Capacity by Energy Source, 2008 Ver Uprates: Past, Current, and Future ected Electric Capacity Dependent on License Renewals Electric Net Generation by Energy Source, 2009 Electricity Generated in Each State by Nuclear Power	16 17 17 18 19

	U.S. Net Electric Generation by Energy Source, 1999–2009	20
Figure 14.	U.S. Average Nuclear Reactor and Fossil-Steam Plant Production Expenses, 1998–2008	21
	Operating Nuclear Power Plants Worldwide	24
Figure 16.	Gross Nuclear Electric Power as a Percent of World Nuclear	24
Figure 17.	Generation, 2009 Total Domestic Electricity Generation, 2009	24
Nuclear R	-	31
Figure 18	U.S. Operating Commercial Nuclear Power Reactors	33
	Typical Pressurized-Water Reactor	34
	Typical Boiling-Water Reactor	35
Figure 21.	U.S. Commercial Nuclear Power Reactor Operating Licenses— Issued by Year	36
Figure 22	NRC Inspection Effort at Operating Reactors, 2009	37
	Industry Performance Indicators: Annual Industry Averages	57
5	FY 2000–2009—for 104 Plants	39
	New Reactor Licensing Process	43
	New Reactor Licensing Schedule of Applications by Design	44
	Location of Applied-for New Nuclear Power Reactors	46
Figure 27.	License Renewal Granted for Operating Nuclear Power Reactors	50
Figure 28	U.S. Commercial Nuclear Power Reactors—	50
rigure 20.	Years of Operation by the End of 2010	51
Figure 29.	U.S. Commercial Nuclear Power Reactor Operating Licenses—	
	Expiring by Year	52
	License Renewal Process	53
	U.S. Nuclear Research and Test Reactors	54
-	NRC Research Funding, FY 2010	57
Nuclear N		59
	Agreement States	60
	Moisture Density Gauge	64
	Commercial Irradiator Life Cycle Approach to Source Security	65 66
	The Nuclear Fuel Cycle	67
	The In Situ Uranium Recovery Process	68
	Locations of NRC-Licensed Uranium Recovery Facility Sites	69
	Locations of Fuel Cycle Facilities	71
Figure 41.	Enrichment Processes	72
Figure 42.	Simplified Fuel Fabrication Process	73
0	Fuel Pellets	73
Radioacti		75
0	Low-Level Waste Disposal	76
	Storage of Commercial Spent Fuel by State through 2009	78
	Spent Fuel Generation and Storage after Use Dry Storage of Spent Nuclear Fuel	80 82
		22

	Licensed/Operating Independent	0.2
Figure 49.	Spent Fuel Storage Installations by State Independent Spent Fuel Storage Installation Trends Ensuring Safe Spent Fuel Shipping Containers	83 84 86
Security a	and Emergency Preparedness	89
	Industry Performance Indicators: Annual Industry Percentages, FY 2000–2009—for 104 Plants	93
TABLES		
U.S. and	Worldwide Nuclear Energy	15
Table 1. Table 2.	U.S. Net Electric Generation by Energy Source, 1999–2009 U.S. Average Nuclear Reactor and Fossil-Steam Plant	20
Table 3.	Production Expenses, 1998–2008 U.S. Nuclear Power Reactor Average Net Capacity Factor and	21
	Net Generation, 1999–2009	22
Table 4.	U.S. Commercial Nuclear Power Reactor Average Capacity Factor by Reactor Type, 2007–2009	22
Table 5.	Commercial Nuclear Power Reactor Average Gross Capacity Factor and Gross Generation by Selected Country, 2009	23
Table 6.	Commercial Nuclear Power Reactor Average Gross Capacity Factor by Selected Country, 2000–2009	25
Table 7.	Bilateral Information Exchange and Cooperation Agreements with the U.S. Nuclear Regulatory Commission	27
Nuclear R	leactors	31
Table 8.	U.S. Commercial Nuclear Power Reactor Operating Licenses—	26
Table 9. Table 10.	Issued by Year Expected New Nuclear Power Plant Applications U.S. Commercial Nuclear Power Reactor Operating Licenses—	36 45
	Expiration by Year, 2010–2049	52
Nuclear N	Лaterials	59
Table 11. Table 12. Table 13.	U.S. Materials Licenses by State Locations of NRC-Licensed Uranium Recovery Facilities Major U.S. Fuel Cycle Facility Sites	61 69 71
Radioacti	ve Waste	75
Table 14. Table 15.	U.S. Low-Level Radioactive Waste Compacts NRC-Regulated Complex Material Sites Undergoing	77
	Decommissioning	88

NRC: An Independent Regulatory Agency

Left: Public Commission meeting with licensee. Middle: The NRC Chairman and Commissioners. Right: Nuclear power plant control room. 11555

UNITED STATE NUCLEAR REC COMMISSION

WWW.NRC.GO

MISSION

The U.S. Nuclear Regulatory Commission (NRC) is an independent agency created by Congress. The mission of the NRC is to license and regulate the Nation's civilian use of byproduct, source, and special nuclear materials in order to protect public health and safety, promote the common defense and security, and protect the environment.

The NRC's regulations are designed to protect both the public and workers against radiation hazards from industries that use radioactive materials.

The NRC's scope of responsibility includes regulation of commercial nuclear power plants; research, test, and training reactors; nuclear fuel cycle facilities; medical, academic, and industrial uses of radioactive materials; and the transport, storage, and disposal of radioactive materials and wastes.

In addition, the NRC licenses the import and export of radioactive materials and works to enhance nuclear safety and security throughout the world.

Values

The NRC adheres to the principles of good regulation—independence, openness, efficiency, clarity, and reliability. The agency puts these principles into practice with effective, realistic, and timely regulatory actions.

Strategic Goals

Safety: Ensure adequate protection of public health and safety and the environment.

Security: Ensure adequate protection in the secure use and management of radioactive materials.

Strategic Outcomes

- Prevent the occurrence of any nuclear reactor accidents.
- Prevent the occurrence of any inadvertent criticality events.
- Prevent the occurrence of any acute radiation exposures resulting in fatalities.
- Prevent the occurrence of any releases of radioactive materials that result in significant radiation exposures.
- Prevent the occurrence of any releases of radioactive materials that cause significant adverse environmental impacts.
- Prevent any instances where licensed radioactive materials are used domestically in a manner hostile to the United States.

Statutory Authority

The NRC was established by the Energy Reorganization Act of 1974 to oversee the commercial nuclear industry. The agency took over regulation formerly carried out by the Atomic Energy Commission and began operations on January 18, 1975. As noted earlier, it is the NRC's job to regulate the civilian commercial, industrial, academic, and medical uses of nuclear materials. Effective regulation enables the Nation to use radioactive materials for beneficial civilian purposes while protecting the American people and their environment.

The NRC's regulations are contained in Title 10 of the *Code of Federal Regulations* (10 CFR). The following principal statutory authorities govern the NRC's work and can be found on the NRC website (see the Web Link Index):

- Atomic Energy Act of 1954, as Amended (Pub. L. 83–703)
- Energy Reorganization Act of 1974, as Amended (Pub. L. 93–438)
- Uranium Mill Tailings Radiation Control Act of 1978, as Amended (Pub. L. 95–604)
- Nuclear Non-Proliferation Act of 1978 (Pub. L. 95–242)
- West Valley Demonstration Project Act of 1980 (Pub. L. 96–368)
- Nuclear Waste Policy Act of 1982, as Amended (Pub. L. 97–425)
- Low-Level Radioactive Waste Policy Amendments Act of 1985 (Pub. L. 99–240)
- Diplomatic Security and Anti-Terrorism Act of 1986 (Pub. L. 107–56)
- Solar, Wind, Waste, and Geothermal Power Production Incentives Act of 1990
- Energy Policy Act of 1992
- Energy Policy Act of 2005

The NRC, licensees (those licensed by the NRC to use radioactive materials), and the Agreement States (States that assume regulatory authority over their own use of certain nuclear materials) share a common responsibility to protect public health and safety and the environment. Federal regulations and the NRC regulatory program are important elements in the protection of the public. However, because licensees are the ones using radioactive material, they bear the primary responsibility for safely handling these materials.

MAJOR ACTIVITIES

The NRC fulfills its responsibilities through the following licensing and regulatory activities:

- Licenses the design, construction, operation, and decommissioning of nuclear plants and other nuclear facilities, such as uranium enrichment facilities and research and test reactors.
- Licenses the possession, use, processing, handling, and importing and exporting of nuclear materials.
- Licenses the siting, design, construction, operation, and closure of low-level radioactive waste disposal sites under NRC jurisdiction and the construction, operation, and closure of a proposed geologic repository for high-level radioactive waste.
- Licenses the operators of civilian nuclear reactors.
- Inspects licensed and certified facilities and activities.
- Certifies privatized uranium enrichment facilities.
- Conducts light-water reactor safety

research, using independent research, data, and expertise, to develop regulations and anticipate potential safety problems.

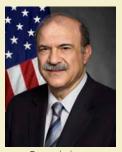
- Collects, analyzes, and disseminates information about the operational safety of commercial nuclear power reactors and certain nonreactor activities.
- Establishes safety and security policies, goals, rules, regulations, and orders that govern licensed nuclear activities and interacts with other Federal agencies, including the U.S. Department of Homeland Security, on safety and security issues.
- Investigates nuclear incidents and allegations concerning any matter regulated by the NRC.
- Enforces NRC regulations and the conditions of the NRC licenses and levies fines for violations.
- Conducts public hearings on matters of nuclear and radiological safety,

The NRC hosts an annual Regulatory Information Conference attended by more than 2,300 people including representatives from more than 25 foreign countries, the nuclear industry, and congressional staff.

environmental concern, and common defense and security.

- Develops effective working relationships with State and Tribal Governments regarding reactor operations and the regulation of nuclear materials.
- Directs the NRC program for response to incidents involving licensees and conducts a program of emergency preparedness and response for licensed nuclear facilities.
- Provides opportunities for public involvement in the regulatory process that include the following: holding open meetings, conferences, and workshops; soliciting public comments on petitions, proposed regulations and guidance documents, and draft technical reports; responding to requests for NRC documents under the Freedom of Information Act; reporting safety concerns; and providing access to thousands of NRC documents through the NRC website.

ORGANIZATIONS AND FUNCTIONS

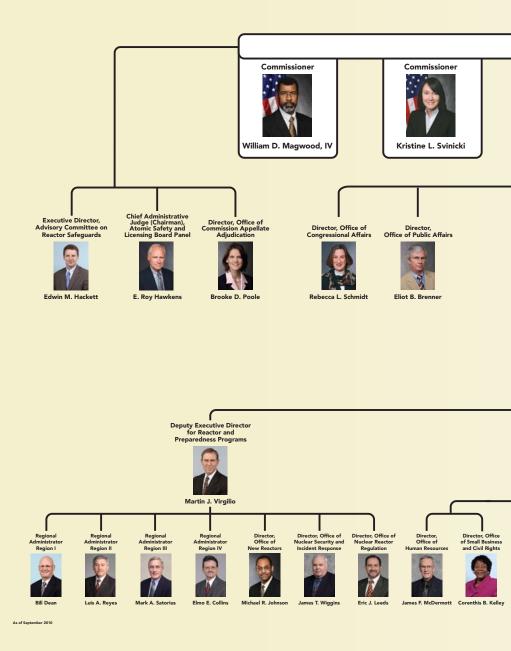

The NRC's Commission consists of five members nominated by the President and confirmed by the U.S. Senate for a 5-year term. The President designates one member to serve as Chairman, principal executive officer, and spokesperson of the Commission. The members' terms are staggered so that one Commissioner's term expires on June 30 every year. No more than three Commissioners can

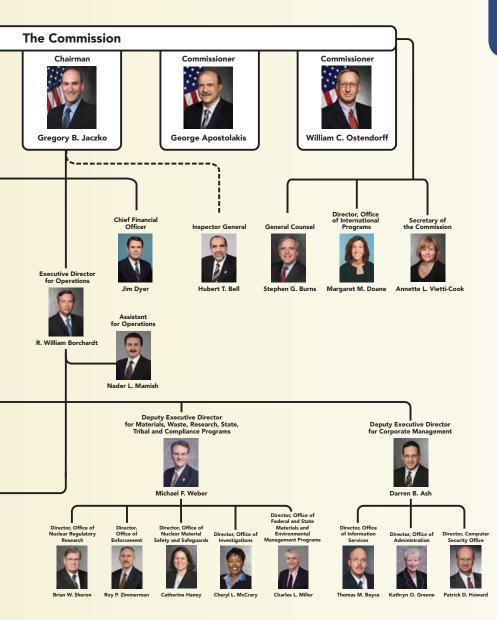
Chairman Gregory B. Jaczko

Commissioner Kristine L. Svinicki

Commissioner George Apostolakis

Commissioner William D. Magwood, IV


Commissioner William C. Ostendorff


Commissioner Term Expiration

Expiration of Term
June 30, 2013
June 30, 2012
June 30, 2014
June 30, 2015
June 30, 2011

belong to the same political party. The members of the Commission are shown above. The Commission as a whole formulates policies and regulations governing nuclear reactor and materials safety, issues orders to licensees, and adjudicates legal matters brought before it. The Executive Director for Operations carries out the policies and decisions of the Commission and directs the activities of the program and regional offices (see Figures 1 and 2).

Figure 1. U.S. Nuclear Regulatory Commission Organizational Chart

Headquarters*: U.S. Nuclear Regulatory Commission Rockville, MD 301-415-7000 1-800-368-5642

One White Flint North 11555 Rockville Pike	Two White Flint North 11545 Rockville Pike	Executive Boulevard Building 6003 Executive Boulevard
Gateway Building	Twinbrook Building	Church Street Building
7201 Wisconsin Ave	12300 Twinbrook Parkway	21 Church Street

* The six-building Headquarters complex houses NRC Headquarters staff and the Public Document Room. Five buildings are in Rockville, MD. The Gateway building is in Bethesda, MD.

Operations Center: Rockville, MD 301-816-5100

The NRC maintains an operations center that coordinates NRC communications with its licensees, State agencies, and other Federal agencies concerning operating events in commercial nuclear facilities. NRC operations officers staff the operations center 24 hours a day.

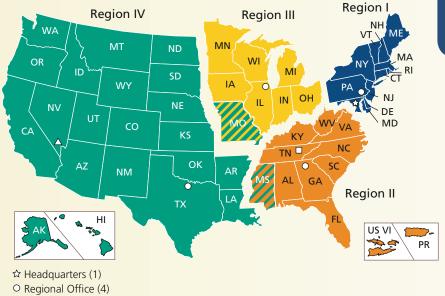
Regional Offices:

The NRC has four regional offices and one High-Level Waste Management Office.

Region I King of Prussia, PA 610-337-5000

Region II Atlanta, GA 404-997-4000 Region III Lisle, IL 630-829-9500

Region IV Arlington, TX 817-860-8100 High-Level Waste Management Office Las Vegas, NV 702-794-5048


Training and Professional Development:

Technical Training Center Chattanooga, TN 423-855-6500 Professional Development Center Bethesda, MD 301-492-2000

Resident Sites:

At least two NRC resident inspectors who report to the appropriate regional office are located at each nuclear power plant site.

Figure 2. NRC Regions

- □ Technical Training Center (1)
- \triangle High-Level Waste Management Office (1)

Nuclear Power Plants

• Each regional office oversees the plants in its region except the Grand Gulf plant in Mississippi and the Callaway plant in Missouri, which Region IV oversees.

Material Licensees

- Region I oversees licensees and Federal facilities located geographically in Region I and Region II.
- Region III oversees licensees and Federal facilities located geographically in Region III.
- Region IV oversees licensees and Federal facilities located geographically in Region IV.

Nuclear Fuel Processing Facilities

- Region II oversees all the fuel processing facilities in the region and those in Illinois, New Mexico, and Washington.
- In addition, Region II handles all construction inspectors' activities for new nuclear power plants and fuel cycle facilities in all regions.

Figure 3. How We Regulate

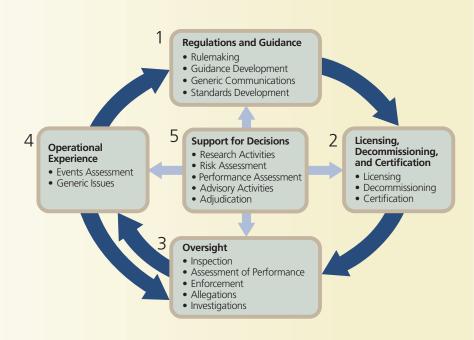


Figure 3 provides an overview of the NRC's regulatory process, which has five main components:

- 1. Developing regulations and guidance for applicants and licensees.
- 2. Licensing or certifying applicants to use nuclear materials, operate nuclear facilities, and decommission facilities.
- 3. Inspecting and assessing licensee operations and facilities to ensure that licensees comply with NRC requirements and taking appropriate followup or enforcement actions when necessary.
- 4. Evaluating operational experience of licensed facilities and activities.
- Conducting research, holding hearings, and obtaining independent reviews to support regulatory decisions.

Source: U.S. Nuclear Regulatory Commission

The NRC's major program offices are as follows:

Office of Nuclear Reactor Regulation

Handles all licensing and inspection activities associated with the operation of existing nuclear power reactors and research and test reactors.

Office of New Reactors

Provides safety oversight of the design, siting, licensing, and construction of new commercial nuclear power reactors.

Office of Nuclear Material Safety and Safeguards

Regulates activities that provide for the safe and secure production of nuclear fuel used in commercial nuclear reactors; the safe storage, transportation, and disposal of high-level radioactive waste and spent nuclear fuel; and the transportation of radioactive materials regulated under the Atomic Energy Act of 1954, as amended.

Office of Federal and State Materials and Environmental Management Programs

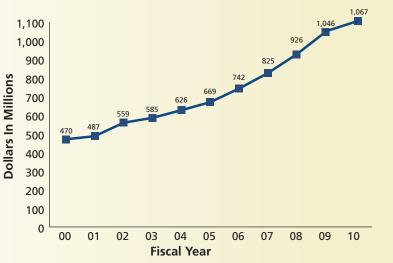
Develops and oversees the regulatory framework for the safe and secure use of nuclear materials, medical, industrial, academic, and commercial applications, uranium recovery activities, low-level radioactive waste sites, and the decommissioning of previously operating nuclear facilities and power plants. Works with Federal agencies, States, and Tribal and local governments on regulatory matters.

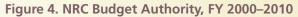
Office of Nuclear Regulatory Research

Provides independent expertise and information for making timely regulatory judgments, anticipating problems of potential safety significance, and resolving safety issues. Helps develop technical regulations and standards and collects, analyzes, and disseminates information about the operational safety of commercial nuclear power plants and certain nuclear materials activities.

Office of Nuclear Security and Incident Response

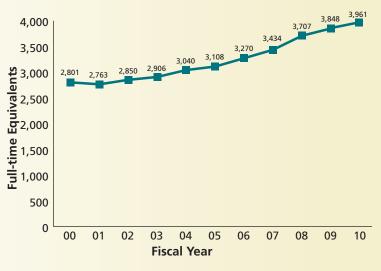
Oversees agency security policy for nuclear facilities and for users of radioactive material. Provides a safeguards and security interface with other Federal agencies and maintains the agency emergency preparedness and incident response program.


Regional Offices

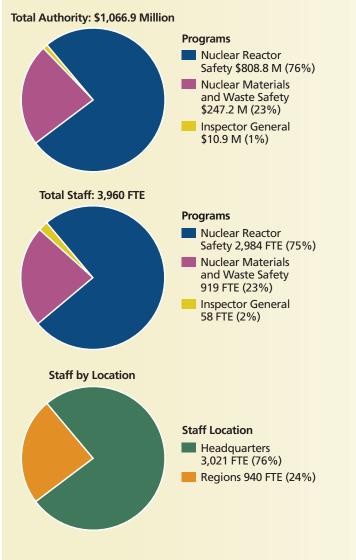

Conduct inspection, enforcement, investigation, licensing, and emergency response programs for nuclear reactors, fuel facilities, and materials licensees.

BUDGET


For fiscal year (FY) 2010 (October 1, 2009–September 30, 2010), Congress appropriated \$1.067 billion to


the NRC. The NRC's FY 2010 personnel ceiling is 3,961 full-time equivalent (FTE) staff (see Figures 4 and 5).

Note: Dollars are rounded to the nearest million.



The Office of the Inspector General received its own appropriation of \$10.9 million. The amount is included

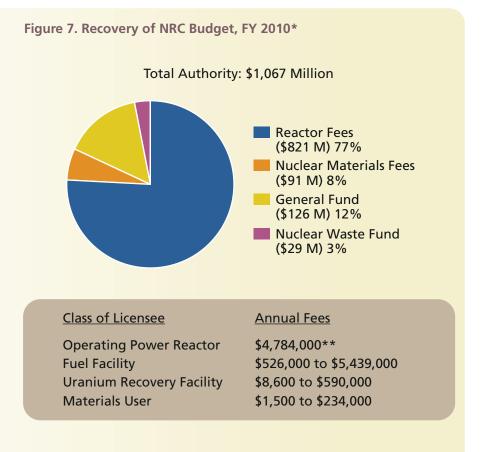

in the total NRC budget. The breakdown of the budget is shown in Figure 6.

Figure 6. Distribution of NRC FY 2010 Budget Authority and Staff (Dollars in Millions)

Note: Dollars and percentages are rounded to the nearest whole number.

By law, the NRC must recover, through fees billed to licensees, approximately 90 percent of its budget authority for FY 2010, less the amounts appropriated from the Nuclear Waste Fund for highlevel radioactive waste activities and from general funds for wasteincidental-to-reprocessing and generic homeland security activities. The NRC collects fees each year by September 30 and tranfers them to the U.S. Treasury (see Figure 7). The total budget amount to be recovered by the NRC in FY 2010 is approximately \$912.2 million.

* Based on the final FY 2010 fee rule (75 FR 35219; June 16, 2010).

** Includes spent fuel storage/reactor decommissioning FY 2010 annual fee of \$148,000. Note: Percentages are rounded to the nearest whole number.

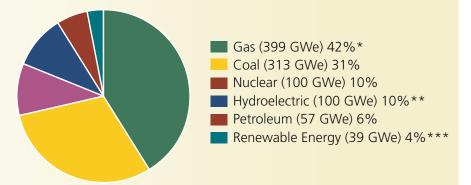
U.S. and Worldwide Nuclear Energy

10 年 5 月 24 日 -May 24 - 25, 2010

Left: The NRC participates in the annual International Conference for the International Atomic Energy Agency (IAEA) in Vienna, Austria. (Photo courtesy of IAEA)

Middle: NRC Chairman Gregory Jaczko signs an agreement strengthening U.S.-China nuclear safety cooperation at the Strategic and Economic Dialogue in China with Treasury Secretary Timothy Geithner and Secretary of State Hillary Rodham Clinton (left to right). (Pool Photo by Saul Loeb/AFP, via Getty Images)

Right: Building and flag of the International Atomic Energy Agency in Vienna, Austria. (Photo courtesy of IAEA)

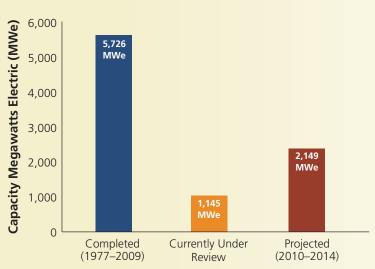

U.S. ELECTRICITY CAPACITY AND GENERATION

U.S. electric generating capacity totaled approximately 1,010 gigawatts in 2008 (see Figure 8), down slightly from 2007 (1,088 gigawatts). In 2008, the existing nuclear generating capacity totaled 100 gigawatts, which translates to 10 percent of total electric capacity. Since the 1970s, the Nation's utilities have used power uprates as a way to generate more electricity from existing nuclear plants. By January 2010, the NRC had approved 124 power uprates, resulting in a gain of approximately 5,726 megawatts electric (MWe) at existing plants. Collectively, these uprates have added the equivalent of five new reactors worth of electrical generation at existing plants. The NRC is reviewing or anticipating uprate applications totaling another 3,564 MWe (see Figure 9). In addition, license renewals will also add to projected electric capacity as shown in Figure 10.

As of April 2010, the 104 nuclear reactors licensed to operate accounted for approximately 20.2 percent of U.S. net electric generation at 799 billion kilowatthours (kWh) (see Figure 11).

As of April 2009, four States (New Jersey, South Carolina, Connecticut, and

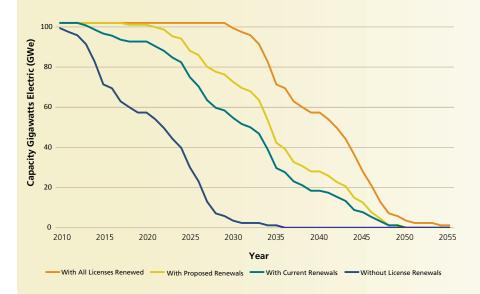
Figure 8. U.S. Electric Existing Capacity by Energy Source, 2008

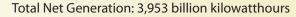

Total Existing Capacity: 1,010 Gigawatts Electric (GWe)

* Gas includes natural gas, blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuel. ** Hydroelectric includes conventional hydroelectric and hydroelectric pumped storage.

*** Renewable energy includes geothermal, wood and nonwood waste, wind, solar energy, and miscellaneous technologies.


Note: Totals may not equal sum of components because of independent rounding. The amounts in parentheses are measured in gigawatts (a gigawatt is equal to 1,000 million watts), and the data used is summer existing capacity.


Source: U.S. Department of Energy/Energy Information Administration (DOE/EIA), "Electric Power Annual," Table 1.2, "Existing Capacity by Energy Source, 2008," January 21, 2010, www.eia.doe.gov


Figure 9. Power Uprates: Past, Current, and Future

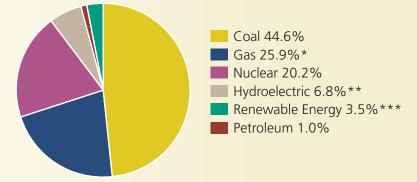

Note: Power uprates have added the equivalent of five new reactors to the U.S. power grid. Source: December 2009 survey of NRC Licenses.

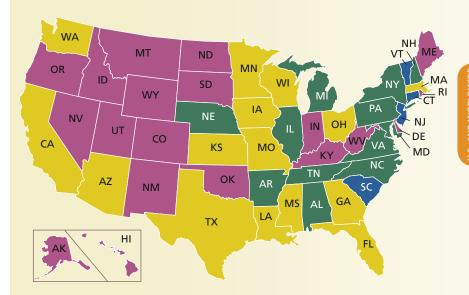
Figure 11. U.S. Electric Net Generation by Energy Source, 2009

* Gas includes natural gas, blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuel. ** Hydroelectric includes conventional hydroelectric and hydroelectric pumped storage.

*** Renewable energy includes geothermal, wood and nonwood waste, wind, and solar energy. Note: Percentages are rounded to the nearest whole number. Totals may not equal sum of components because of independent rounding.

Source: DOE/EIA, "Monthly Energy Review," data from April 2009, www.eia.doe.gov/mer/

Vermont) relied on nuclear power for more than 50 percent of their electricity. The percentages cited reflect the percentages of the total net generation in these States that were from nuclear sources. An additional 12 States relied on nuclear power for 25 to 50 percent of their electricity (see Figure 12).


Since 1999, net nuclear electric generation has increased by 9.7 percent, and coal-fired electric generation has decreased by 6.2 percent (see Figure 13 and Table 1). All other electricitygenerating sources have increased by 36.6 percent.

AVERAGE PRODUCTION EXPENSES

The production expense data presented in Table 2 and Figure 14 include all nuclear and fossil utility-owned steam electric plants. In 2008, production expenses averaged \$21.16 each megawatthour for nuclear power plants and \$35.67 each megawatthour for fossil fuel plants.

U.S. ELECTRICITY GENERATED BY COMMERCIAL NUCLEAR POWER

In 2009, net nuclear-based electric generation in the United States produced a total of 799 billion kilowatthours (see Table 3). In 2009, the average U.S. net capacity factor was 90.5 percent. Average U.S. net capacity factor—the ratio of electricity generated to the amount of energy that could have been generated—has increased by approximately 16 percent since 1998. In 2009, 98 percent of U.S. commercial nuclear reactors operated above an average net capacity factor of 70 percent (see Table 4).

Figure 12. Net Electricity Generated in Each State by Nuclear Power

Percent Net Generation from Nuclear Sources

None (19)			1% to 24% (16)		25% to 50% (12	2)		More than 50%	. (4)	
State	Net Capacity	Net Gener- ation	State	, Net Capacity	Net Gener- ation	State	Net Capacity	Net Gener- ation	State	Net Capacity	Net Gener- ation
Alaska	0	0	Arizona	15	24	Alabama	16	27	Connecticut	26	51
Colorado	0	0	California	7	16	Arkansas	12	26	New Jersey	22	51
Delaware	0	0	Florida	7	15	Illinois	26	48	South Carolina	27	51
Hawaii	0	0	Georgia	11	23	Maryland	14	31	Vermont	55	72
Idaho	0	0	lowa	4	10	Michigan	13	27			
Indiana	0	0	Kansas	10	18	Nebraska	18	29			
Kentucky	0	0	Louisiana	8	17	New Hampshire	30	41			
Maine	0	0	Massachusetts	5	14	New York	14	31			
Montana	0	0	Minnesota	12	24	North Carolina	18	32			
Nevada	0	0	Mississippi	8	19	Pennsylvania	21	35			
North Dakota	0	0	Missouri	6	10	Tennessee	16	30			
New Mexico	0	0	Ohio	6	11	Virginia	14	38			
Oklahoma	0	0	Texas	5	10						
Oregon	0	0	Washington	4	8						
Rhode Island	0	0	Wisconsin	9	19						
South Dakota	0	0									
Utah	0	0									
West Virginia	0	0									
Wyoming	0	0									

Note: Percentages are rounded to the nearest whole number. Units measured are in megawatts. Source: DOE/EIA, "State Electricity Profiles," data from April 2010, www.eia.doe.gov NUCLEAR ENERG

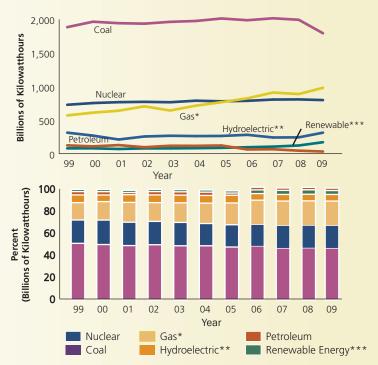
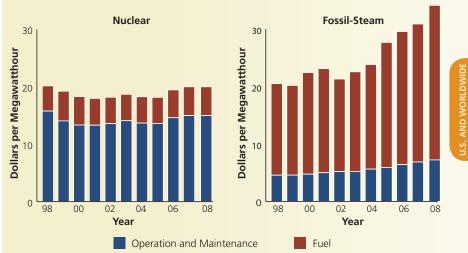


Figure 13. U.S. Net Electric Generation by Energy Source, 1999–2009

* Gas includes natural gas, blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuel. ** Hydroelectric includes conventional hydroelectric and hydroelectric pumped storage.

*** Renewable energy includes geothermal, wood and nonwood waste, wind, and solar energy.


Source: DOE/EIA, "Monthly Energy Review," Table 7.2a, April 2010, www.eia.doe.gov

	(Billion H	Cilowatthour	s)		33		
Year	Coal	Petroleum	Gas*	Hyd	roelectric**	Nuclear	Renewable Energy***

Table 1.	U.S.	Net	Electric	Generatio	n by	Energy	Source,	1999–2009
	(Bill	ion k	Kilowatt	hours)				

Year	Coal	Petroleum	Gas*	Hydroelectric**	Nuclear	Renewable Energy***
1999	1,881	118	570	313	728	79
2000	1,966	111	614	270	754	81
2001	1,904	125	648	208	769	71
2002	1,933	95	702	256	780	79
2003	1,973	119	665	267	764	79
2004	1,977	120	726	260	788	83
2005	2,013	122	774	264	782	87
2006	1,990	64	829	283	787	96
2007	2,016	66	910	241	806	105
2008	1,986	46	895	248	806	126
2009†	1,764	39	1,027	268	799	141

Note: See footnotes for Figure 12. † Based on preliminary data. Source: DOE/EIA, "Monthly Energy Review," Table 7.2a, April 2010, www.eia.doe.gov

Figure 14. U.S. Average Nuclear Reactor and Fossil-Steam Plant Production Expenses, 1998–2008

Source: Federal Energy Regulatory Commission, FERC Form 1, "Annual Report of Major Electric Utilities, Licensees and Others"; DOE/EIA, "Electric Power Annual," January 21, 2010, www.eia.doe.gov

Table 2. U.S. Average Nuclear Reactor and Fossil-Steam Plant Production Expenses, 1998–2008 (Dollars per Megawatthour)

Year	Operation and Maintenance	Fuel	Total Production Expenses	Year	Operation and Maintenance	Fuel	Total Production Expenses
Nuclear				Fossil-St	eam*		
1998	15.77	5.39	21.16	1998	4.58	15.94	20.52
1999	14.06	5.17	19.23	1999	4.59	15.62	20.22
2000	13.34	4.95	18.28	2000	4.76	17.69	22.44
2001	13.31	4.67	17.98	2001	5.01	18.13	23.14
2002	13.58	4.60	18.18	2002	5.22	16.11	21.32
2003	14.09	4.60	18.69	2003	5.23	17.35	22.59
2004	13.68	4.58	18.26	2004	5.64	18.21	23.85
2005	13.62	4.54	18.16	2005	5.93	21.77	27.69
2006	14.61	4.85	19.46	2006	6.42	23.17	29.59
2007	14.99	5.01	20.00	2007	6.88	24.02	30.89
2008	15.88	5.29	21.16	2008	7.24	28.43	35.67

* Includes coal and fossil fuel. Plant production expenses are no longer available exclusively for coal-fired fuel.

Note: Expenses are average expenses weighted by net generation. Totals may not equal sum of components because of independent rounding.

Source: Federal Energy Regulatory Commission, FERC Form 1, "Annual Report of Major Electric Utilities, Licensees and Others," DOE/EIA, "Electric Power Annual," January 21, 2010, www.eia.doe.gov

Table 3. U.S. Nuclear Power Reactor Average Net Capacity Factor and Net Generation, 1999–2009

	Number of	Average Net	Net Generatio	on of Electricity
Year	Operating Reactors	Capacity Factor (Percent)	Billions of Kilowatthours	Percent of Total U.S. Capacity
1999	104	85	728	19.7
2000	104	88	754	19.8
2001	104	89	769	20.6
2002	104	90	780	20.2
2003	104	88	764	19.7
2004	104	90	788	19.9
2005	104	89	782	19.3
2006	104	90	787	19.4
2007	104	92	806	19.4
2008	104	91	806	19.6
2009*	104	90	799	20.2

* Based on preliminary data.

Note: Average net capacity factor is based on net maximum dependable capacity. See Glossary for definition. Source: Based on DOE/EIA, "Monthly Energy Review," Table 8.1, April 2010, www.eia.doe.gov, and licensee data as compiled by the U.S. Nuclear Regulatory Commission

Table 4. U.S. Commercial Nuclear Power Reactor Average Capacity Factor by Reactor Type, 2007–2009

		ear Power ised To Op			Percent of Net Nuclear Generated			
Capacity Factor	2007	2008	2009*	2007	2008	2009*		
Above 70 Percent	101	101	99	98	98	97		
50 to 70 Percent	2	3	4	1	2	3		
Below 50 Percent	1	0	1	<1	0	<1		

		ar Power ised To Op		Averag	Average Capacity Factor (Percent)			
Reactor Type	2007	2008	2009*	2007	2008	2009*		
Boiling-Water Reactor	35	35	35	90	93	90		
Pressurized-Water Reactor	69	69	69	93	91	90		
Total	104	104	104	N/A	N/A	N/A		

*Based on preliminary data.

Note: Average capacity factor is based on net maximum dependable capacity. See Glossary for definition. Refer to Appendix A for the 2007–2009 average capacity factors for each reactor. Percentages are rounded to the nearest whole number. Source: Licensee data as compiled by the U.S. Nuclear Regulatory Commission

WORLDWIDE ELECTRICITY GENERATED BY COMMERCIAL NUCLEAR POWER

As of 2010, there were 438 operating reactors in 30 countries and Taiwan with a total installed capacity of 373,006 gigawatts electric (GWe) (see Figure 15). In addition, five nuclear power plants were in long-term shutdown, and 54 nuclear power plants were under construction.

See Appendix J for a list of the number of nuclear power reactors by nation and Appendix K for nuclear power units by reactor type, worldwide.

WORLDWIDE NUCLEAR PRODUCTION

The United States produced approximately 27 percent of the world's gross nuclear-generated electricity in 2009 (see Figure 16). France was the next highest producer at 17 percent. Based on preliminary data in 2009, France had the highest nuclear portion (75 percent) of total domestic energy generated. In the United States, nuclear energy accounted for 20 percent of the domestic energy generated (see Figure 17).

Countries with the highest average gross capacity factor for nuclear reactors in 2009 include South Korea at 90 percent, the United States at 89 percent, Russia at 73 percent, and France at 71 percent (see Table 5).

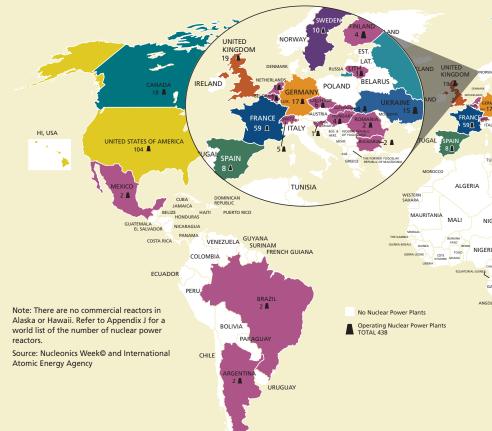
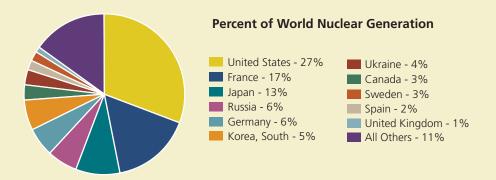
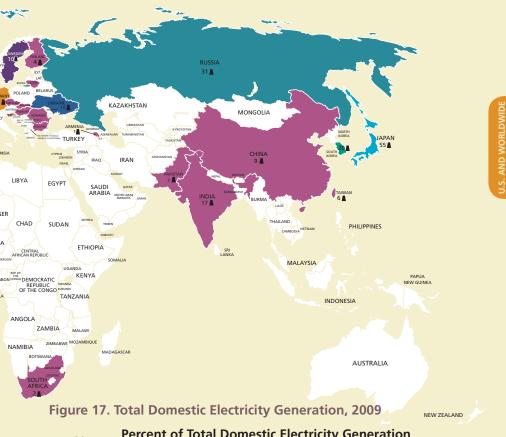
Factor and Gross Generation by Selected Country, 2009								
Country	Number of Operating Reactors	Average Gross Capacity Factor (in percent)	Total Gross Nuclear Generation (in billions of KWh)	Number of Operating Reactors in Top 50 by Capacity Factor	Number of Operating Reactors in Top 50 by Generation			
Canada	21	65	91	0	0			
France	58	71	410	0	9			
Germany	17	69	135	0	10			
Japan	56	65	272	8	2			
Korea, South	20	90	147	5	0			
Russia	31	73	163	0	0			
Sweden	10	64	52	0	0			
Ukraine	15	66	82	0	0			
United States	104	89	833	27	26			

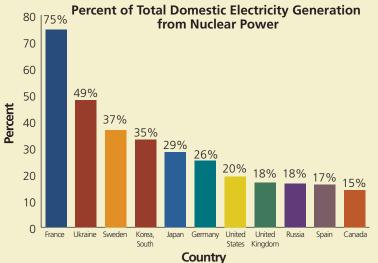
Table 5. Commercial Nuclear Power Reactor Average Gross Capacity Factor and Gross Generation by Selected Country, 2009

Note: The U.S. gross capacity factor and generation include estimates based on net MWh for 4 of the 104 U.S. units. The country's short-form name is used.

Source: Excerpted from Nucleonics Week©, 2010, by McGraw-Hill, Inc. Reproduced by permission.

Figure 15. Operating Nuclear Power Plants Worldwide


Figure 16. Gross Nuclear Electric Power as a Percent of World Nuclear Generation, 2009

Note: Because of independent rounding, the figures may not add up to the total percentage. The country's shortform name is used.

Source: International Atomic Energy Association, Power Reactor Information System, as of May 6, 2010

Note: The country's short-form name is used.

Source: International Atomic Energy Association, Power Reactor Information System, as of May 6, 2010

IUCLEAR ENERG

Table 6. Commercial Nuclear Power Reactor Average Gross Capacity Factor by Selected Country, 2000–2009

Country	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009*
Canada	50	53	53	54	64	66	71	67	67	66
France	72	73	75	75	77	78	77	76	76	74
Germany	87	87	83	84	87	86	89	73	77	73
Japan	79	79	77	59	70	69	70	64	59	62
Korea, South	90	93	93	94	92	95	93	88	93	90
Russia	67	67	67	70	68	66	70	71	73	72
Sweden	66	84	75	77	89	87	82	80	78	74
Ukraine	69	74	75	78	76	72	74	75	73	71
United States	87	88	89	87	90	87	88	91	90	90

Annual Gross Average Capacity Factor (Percent)

* 2009 based on preliminary data.

Note: Percentages are rounded to the nearest whole number. The country's short-form name is used. Source: Excerpted from Nucleonics Week©, March 5, 2009, by McGraw-Hill, Inc. Reproduced by permission. Further reproduction prohibited. Licensee data as compiled by the U.S. Nuclear Regulatory Commission.

Reactors in the United States had the greatest gross nuclear generation at 842 billion kilowatthours. France was the next highest producer at 410 billion kilowatthours (see Table 5).

See Appendix L for a list of the top 50 reactors by gross capacity factor worldwide, and refer to Appendix M for a list of the top 50 reactors by gross generation worldwide.

Over the past 10 years, the average annual gross capacity factor has increased 3.5 percent in the United States and 2.7 percent in France. In the same period, the average annual gross capacity factor has decreased 21.5 percent in Japan and 16 percent in Germany (see Table 6).

INTERNATIONAL ACTIVITIES

The NRC must perform certain legislatively mandated international duties. These include licensing the import and export of nuclear materials and equipment and participating in activities supporting U.S. Government compliance with international treaties and agreement obligations. The NRC has bilateral programs of assistance or cooperation with 40 countries and Taiwan (see Table 7). The NRC has also supported U.S. Government nuclear safety initiatives with countries in Europe, Africa, Asia, and Latin America. In addition, the NRC actively cooperates with multinational

organizations, such as the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency (NEA), a part of the Organisation for Economic Co-operation and Development. The NRC also has a robust international cooperative research program.

Since its inception, the agency has hosted over 300 foreign nationals in on-the-job training assignments at NRC Headquarters and the regional offices. The NRC's Foreign Assignee Program helps instill regulatory awareness, capabilities, and commitments in foreign assignees. It also helps to enhance the regulatory expertise of both foreign assignees and NRC staff. Additionally, the program improves international channels of communication through interaction with the international nuclear community and development of relationships with key personnel in foreign regulatory agencies.

Table 7. Bilateral Information Exchange and Cooperation Agreements with the U.S. Nuclear Regulatory Commission

Agreement Country	Renewal Date	Agreement Countr
rgentina	2012	Kazakhstan
Armenia	2012	Korea, South
Australia	2013	Lithuania
Belgium	2014	Mexico
razil	2014	Netherlands
ulgaria	2011	Peru
inada	2012	Philippines
nina	2013	Poland*
roatia	2013	Romania
zech Republic	2014	Russia
ypt	1991	Slovakia
RATOM	2014	Slovenia
and	2011	South Africa
ince	2013	Spain
ermany	2012	Sweden
reece	2013	Switzerland
ungary	2012	Ukraine
donesia	2013	United Arab Emirates*
rael	2010	United Kingdom
aly	2010	Vietnam
apan	2012	

* In negotiation

Note: The NRC also provides support to the American Institute in Taiwan. Egypt's agreement has been deferred until its regulatory body requests reinstatement. Russia's agreement is still in negotiation. The country's short-form name is used. EURATOM—The European Atomic Energy Community

Through its export/import authority, the NRC upholds the U.S. Government goals of limiting the proliferation of materials that could be used in weapons and supports the safe and secure use of civilian nuclear and radioactive materials worldwide. In addition to its direct export/import licensing role, the NRC consults with other U.S. Government agencies on international nuclear commerce activities falling under their authority. The NRC continues to work to strengthen the export/import regulations of nuclear equipment and materials, and to improve communication between domestic and international stakeholders.

The NRC assists in implementing the U.S. Government's international nuclear policies through developing legal instruments that address nuclear nonproliferation, safety, international safeguards, physical protection, emergency notification and assistance, spent fuel and waste management, and liability. The NRC also participates in the negotiation and implementation of U.S. bilateral agreements for peaceful nuclear cooperation under Section 123 of the U.S. Atomic Energy Act of 1954, as amended. The NRC also ensures licensee compliance with the U.S. Voluntary Safeguards Offer agreement with IAEA. This agreement was amended on December 31, 2008, when the United States signed the "Protocol Additional to the U.S.-International Atomic Energy Agency Agreement for the Application of Safeguards in the United States." The Additional Protocol entered into force on January 6, 2009, and the United States submitted its first annual declaration to IAEA in July 2009.

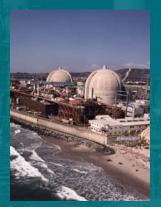
The NRC also participates in a wide range of mutually beneficial international exchange programs that enhance the safety and security of peaceful nuclear activities worldwide. These low-cost, high-impact programs provide joint cooperative activities and assistance to other countries to develop and improve regulatory organizations. The NRC engages in the following activities:

- Cooperates with countries with mature nuclear programs to ensure the timely exchange of applicable nuclear safety and security information relating to operating reactors and consults with these countries on new reactor-related activities.
- Ensures prompt notification to foreign partners of U.S. safety issues, notifies NRC program offices about foreign safety issues, and shares security information with selected countries.
- Initiates bilateral discussions in such regulatory areas as licensing, inspection, and enforcement with countries that have recently built facilities or have vendors of equipment that may be imported to the United States during the anticipated construction of new nuclear power plants.
- Participates in the Multinational Design Evaluation Program, which leverages the resources of interested regulatory authorities to review new designs of nuclear power reactors.
- Assists other countries to develop and improve regulatory programs through training, workshops, peer

review of regulatory documents, working group meetings, and exchanges of technical information and specialists.

- Assists countries to ensure regulatory control over radioactive sources through development of standards and provision of training and workshops through a pilot program begun in 2008.
- Participates in the multinational programs of IAEA and NEA concerned with safety research and regulatory matters, radiation protection, risk assessment, emergency preparedness, waste management, transportation, safeguards, physical protection, security, standards development, training, technical assistance, and communications.
- Participates in the International Nuclear Regulators Association meetings to influence and enhance nuclear safety from the regulatory

perspective. Its members are the most senior officials of well-established independent national nuclear regulatory organizations. Current members are Canada, France, Germany, Japan, South Korea, Spain, Sweden, the United Kingdom, and the United States.


- Meets through the NRC's Advisory Committee on Reactor Safeguards with other international advisory committees every 4 years to exchange information.
- Participates in joint cooperative research programs through approximately 100 multilateral agreements with 23 countries to leverage access to foreign test facilities not otherwise available to the United States. Access to foreign test facilities expands the NRC's knowledge base and contributes to the efficient and effective use of the NRC's resources in conducting research on high-priority safety issues.

NRC staff participates in an international exchange seminar to learn about the construction experience of the Finnish regulatory agency.

• **U.S. NRC** Protecting People and the Environment

Nuclear Reactors

Left: San Onofre Nuclear Generating Station, located near San Clemente, CA. (Courtesy SoCal Edison) Middle: Commissioner Ostendorff visiting the Braidwood plant in Illinois with others in the control room. Right: Inspection by NRC resident inspectors at the Byron Station Unit 2, in Illinois.

U.S. COMMERCIAL NUCLEAR POWER REACTORS

As of August 2010, 104 commercial nuclear power reactors were licensed to operate in 31 States (see Figure 18). Characteristics of the reactors are the following:

- 4 different reactor vendors
- 26 operating companies
- 80 different designs
- 65 sites

See Appendix A for a listing of reactors and their general licensing information and Appendix N for Tribes located near nuclear power plants.

Diversity

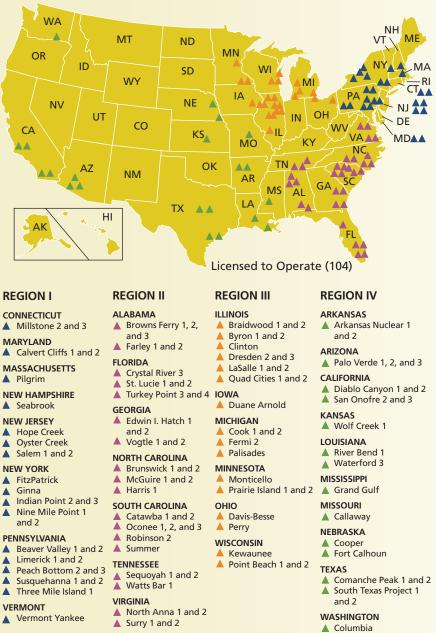
Although there are many similarities, each reactor design can be considered unique. Figure 19 shows a typical pressurized-water reactor (PWR), and Figure 20 shows a typical boiling-water reactor (BWR).

Experience

By the end of 2009, U.S. reactors accumulated nearly 2,900 years of operational experience (see Figure 21 and Table 8).

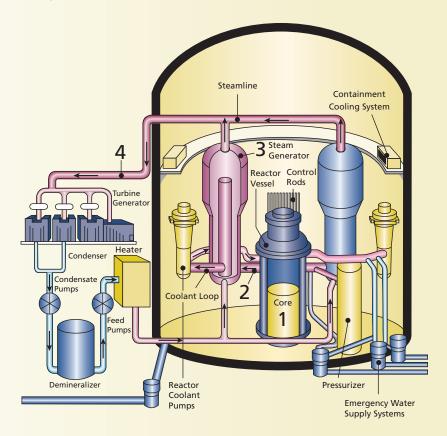
Prairie Island Nuclear Power Plant, located near Minneapolis, MN.

Vermont Yankee Nuclear Power Plant, located near Brattleboro, VT.



South Texas Project nuclear plant, located near Bay City, TX.

Indian Point Energy Center, located near New York City, NY.

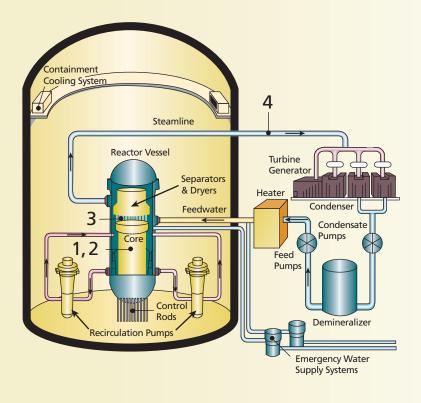

Figure 19. Typical Pressurized-Water Reactor

How Nuclear Reactors Work

In a typical commercial pressurized-water reactor (PWR), the following process occurs:

- 1. The core inside the reactor vessel creates heat.
- 2. Pressurized water in the primary coolant loop carries the heat to the steam generator.
- 3. Inside the steam generator, heat from the primary coolant loop vaporizes the water in a secondary loop, producing steam.
- 4. The steamline directs the steam to the main turbine, causing it to turn the turbine generator, which produces electricity.

The unused steam is exhausted to the condenser, where it is condensed into water. The resulting water is pumped out of the condenser with a series of pumps, reheated, and pumped back to the steam generator. The reactor's core contains fuel assemblies that are cooled by water circulated using electrically powered pumps. These pumps and other operating systems in the plant receive their power from the electrical grid. If offsite power is lost, emergency cooling water is supplied by other pumps, which can be powered by onsite diesel generators. Other safety systems, such as the containment cooling system, also need electric power. PWRs contain between 150–200 fuel assemblies.


Figure 20. Typical Boiling-Water Reactor

How Nuclear Reactors Work

In a typical commercial boiling-water reactor (BWR),

- 1. The core inside the reactor vessel creates heat.
- 2. A steam-water mixture is produced when very pure water (reactor coolant) moves upward through the core, absorbing heat.
- 3. The steam-water mixture leaves the top of the core and enters the two stages of moisture separation where water droplets are removed before the steam is allowed to enter the steamline.
- 4. The steamline directs the steam to the main turbine, causing it to turn the turbine generator, which produces electricity.

The unused steam is exhausted to the condenser, where it is condensed into water. The resulting water is pumped out of the condenser with a series of pumps, reheated, and pumped back to the reactor vessel. The reactor's core contains fuel assemblies that are cooled by water circulated using electrically powered pumps. These pumps and other operating systems in the plant receive their power from the electrical grid. If offsite power is lost, emergency cooling water is supplied by other pumps, which can be powered by onsite diesel generators. Other safety systems, such as the containment cooling system, also need electric power. BWRs contain between 370–800 fuel assemblies.

Figure 21. U.S. Commercial Nuclear Power Reactor Operating Licenses—Issued by Year

Note: No licenses were issued after 1996.

Table 8. U.S. Commercial Nuclear Power Reactor Operating Licenses—Issued by Year

1969	Dresden 2	1974	Arkansas Nuclear 1	1978	Arkansas Nuclear 2		Palo Verde 1
	Ginna		Browns Ferry 2	_	Edwin I. Hatch 2		River Bend 1
	Nine Mile Point 1	_	Brunswick 2		North Anna 1		Waterford 3
	Oyster Creek		Calvert Cliffs 1	1980	North Anna 2		Wolf Creek 1
1970	Robinson 2		Cooper		Sequoyah 1	1986	Catawba 2
	Point Beach 1		Cook 1	1981	Farley 2		Hope Creek 1
1971	Dresden 3		Duane Arnold		McGuire 1		Millstone 3
	Monticello		Hatch 1		Salem 2		Palo Verde 2
1972	Palisades		FitzPatrick		Sequoyah 2		Perry 1
	Pilgrim		Oconee 3	1982	LaSalle 1	1987	Beaver Valley 2
	Quad Cities 1		Peach Bottom 3		San Onofre 2		Braidwood 1
	Quad Cities 2		Prairie Island 1		Summer		Byron 2
	Surry 1		Prairie Island 2		Susquehanna 1		Clinton
	Turkey Point 3		Three Mile Island 1	1983	McGuire 2		Nine Mile Point 2
1973	Browns Ferry 1	1975	Millstone 2		San Onofre 3		Palo Verde 3
	Fort Calhoun	1976	Beaver Valley 1		St. Lucie 2		Harris 1
	Indian Point 2		Browns Ferry 3	1984	Callaway		Vogtle 1
	Kewaunee		Brunswick 1		Diablo Canyon 1	1988	Braidwood 2
	Oconee 1		Calvert Cliffs 2		Grand Gulf 1		South Texas Project 1
	Oconee 2		Indian Point 3		LaSalle 2	1989	Limerick 2
	Peach Bottom 2		Salem 1		Susquehanna 2		South Texas Project 2
	Point Beach 2		St. Lucie 1		Columbia		Vogtle 2
	Surry 2	1977	Crystal River 3	1985	Byron 1	1990	Comanche Peak 1
	Turkey Point 4		Davis-Besse		Catawba 1		Seabrook 1
	Vermont Yankee		D.C. Cook 2		Diablo Canyon 2	1993	Comanche Peak 2
			Joseph M. Farley 1		Fermi 2	1996	Watts Bar 1
					Limerick 1		

Note: Limited to reactors licensed to operate. Year is based on the date the initial full-power operating license was issued. NRC-abbreviated reactor names listed.

Permanently shutdown reactors account for an additional 385 years of experience.

Principal Licensing and Inspection Activities

The NRC conducts a variety of licensing and inspection activities.

- The NRC is reviewing an operating license application from the Tennessee Valley Authority for the Watts Bar 2 reactor under construction near Spring City, TN.
- Typically, about 10 separate license changes are requested per power reactor each year. The NRC completed more than 1,000 separate reviews in FY 2009.
- Currently, there are approximately 4,600 NRC-licensed reactor operators.

Each operator must requalify every 2 years and apply for license renewal every 6 years.

- On average, the NRC expended approximately 6,160 hours of inspection effort at each operating reactor site during 2009 (see Figure 22).
- The NRC reviews applications for proposed new reactors and is developing an inspection program to oversee construction.
- The NRC reviews approximately 3,000 operating experience items from licensed facilities annually.
- The NRC oversees the decommissioning of nuclear power reactors.

See Appendix B for permanently shutdown and decommissioning reactors.

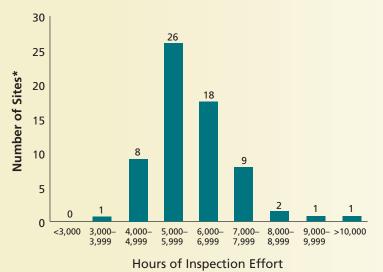


Figure 22. NRC Inspection Effort at Operating Reactors, 2009

Note: Data include calendar year 2009 hours for all activities related to baseline, plant-specific, generic safety issues, and allegation inspections.

* 66 total sites (Indian Point 2 and 3 are treated as separate sites for inspection effort).

 The Advisory Committee on Reactor Safeguards (ACRS), an independent body of nuclear, engineering, and safety experts appointed by the Commission, reviewed numerous safety issues for existing or proposed reactors and provided independent technical advice to the Commission. The ACRS held 10 full Committee meetings and approximately 60 subcommittee meetings during 2009.

OVERSIGHT OF U.S. COMMERCIAL NUCLEAR POWER REACTORS

The NRC does not operate nuclear power plants. Rather, it regulates the operation of the Nation's 104 nuclear power plants by establishing regulatory requirements for their design, construction, and operation. To ensure that the plants are operated safely within these requirements, the NRC licenses the plants to operate, licenses the plant operators, establishes technical specifications for the operation of each plant, and inspects plants daily.

Reactor Oversight Process

The NRC provides continuous oversight of plants through its Reactor Oversight Process (ROP) to verify that they are being operated in accordance with NRC rules, regulations, and license requirements. The NRC has full authority to take action to protect public health and safety. It may demand immediate licensee action, up to and including shutting the plant down.

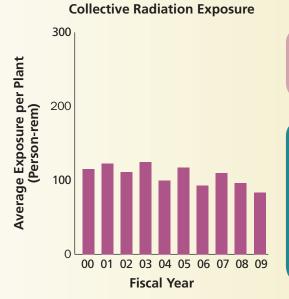
In general terms, the ROP uses both NRC inspection findings and performance indicators from licensees to assess the safety performance of each plant. The ROP recognizes that issues of very low safety significance can occur, and plants are expected to address these issues effectively. The NRC performs very detailed baseline-level inspections at each plant. If plant problems arise, NRC oversight increases. The agency may perform supplemental inspections and take additional actions to ensure that significant performance issues are addressed. The latest plant-specific inspection findings and performance indicator information can be found on the NRC's website (see the Web Link Index).

The ROP takes into account improvements in the performance of the nuclear industry over the past 30 years and improved approaches to inspecting and evaluating the safety performance of NRC-licensed plants. The improvements in plant performance can be attributed both to successful regulatory oversight and to efforts within the nuclear industry.

The ROP is described on the NRC's website and in NUREG-1649, Revision 4, "Reactor Oversight Process," issued December 2006.

Industry Performance Indicators

In addition to evaluating the performance of each individual plant, the NRC compiles data on overall reactor industry performance using various industry-level performance indicators (see Figure 23).


See Appendix G for the industry performance indicators, which provide additional data for assessing trends in overall industry performance.

Resident Inspectors

There are at least two full-time NRC inspectors at each nuclear power plant site to ensure that facilities are meeting NRC regulations.

Figure 23. Industry Performance Indicators: Annual Industry Averages FY 2000–2009—for 104 Plants

This indicator monitors the total radiation dose accumulated by plant personnel.

Further Explanation:

In 2009, those workers receiving a measurable dose of radiation received an average of about 0.1 rem. For comparison purposes, the average U.S. citizen receives 0.3 rem of radiation each year from natural sources (i.e., the everyday environment). See "Exposure" section in the Glossary .

Note: Data represent annual industry averages, with plants in extended shutdown excluded. Data are rounded for display purposes. These data may differ slightly from previously published data as a result of refinements in data quality.

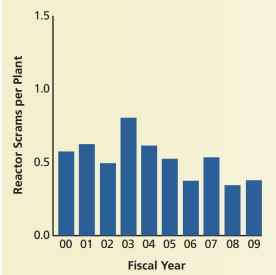
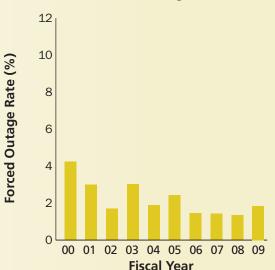

Source: Licensee data as compiled by the U.S. Nuclear Regulatory Commission

Figure 23. Industry Performance Indicators: Annual Industry Averages FY 2000–2009—for 104 Plants (Continued)

⁴⁰ • **U.S. NRC** Protecting People and the Environment

Figure 23. Industry Performance Indicators: Annual Industry Averages FY 2000–2009—for 104 Plants (Continued)

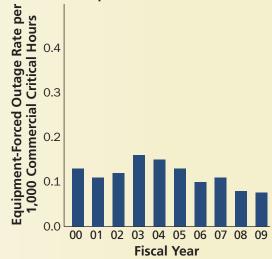
Automatic Scrams While Critical


A reactor is said to be "critical" when it achieves a self-sustaining nuclear chain reaction such as when the reactor is operating. The sudden shutting down of a nuclear reactor by rapid insertion of control rods, either automatically or manually by the reactor operator, is referred to as a "scram." This indicator measures the number of unplanned automatic scrams that occurred while the reactor was critical.

Safety System Actuations

Safety system actuations are certain manual or automatic actions taken to start emergency core cooling systems or emergency power systems. These systems are specifically designed to either remove heat from the reactor fuel rods if the normal core cooling system fails or provide emergency electrical power if the normal electrical systems fail.

Figure 23. Industry Performance Indicators: Annual Industry Averages FY 2000–2009—for 104 Plants (Continued)

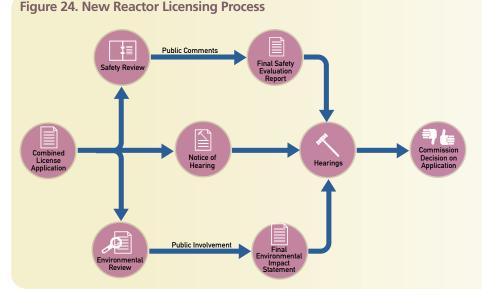

The forced outage rate is the number of hours that the plant is unable to operate (forced outage hours) divided by the sum of the hours that the plant is generating and transmitting electricity (unit service hours) and the hours that the plant is unable to operate (forced outage hours).

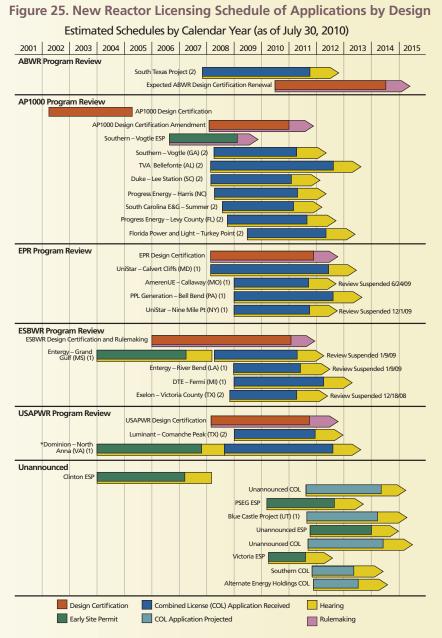
Forced Outage Rate

Equipment-Forced Outages per 1,000 Critical Hours

This indicator is the number of times the plant is forced to shut down because of equipment failures for every 1,000 hours that the plant is in operation and transmitting electricity.

NUCLEAR REACTORS


NEW COMMERCIAL NUCLEAR POWER REACTOR LICENSING


The NRC is reviewing new reactor applications using a licensing process that substantially improved the system used through the 1990s (see Figure 24). The NRC expects to review 21 combined construction and operating license (called a combined license or COL) applications for approximately 30 new reactors over the next several years and has in place the infrastructure and staff to support the necessary technical work (see Figure 25, Table 9, and the Web Link Index). Figure 26 shows the location of the expected new reactor sites.

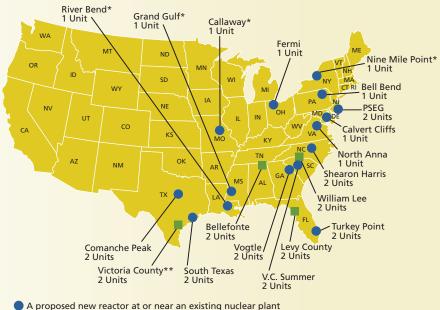
Construction and Operating License Applications

As of June 30, 2010, the NRC has received 18 COL applications for 28 new reactor units:

- Calvert Cliffs (MD)
- South Texas Project (TX)
- Bellefonte (AL)
- North Anna (VA)
- William States Lee III (SC)
- Shearon Harris (NC)
- Grand Gulf (MS)
- Vogtle (GA)
- V.C. Summer (SC)
- Callaway (MO)
- Levy County (FL)
- Victoria County Station (TX)
- Fermi (MI)
- Comanche Peak (TX)
- River Bend (LA)
- Nine Mile Point (NY)
- Bell Bend (PA)
- Turkey Point (FL)

Note: Projected applications are based on potential applicants' information and are subject to change. Schedules depicted for future activities represent nominal assumed review durations based on submittal timeframes in letters of intent from prospective applicants. Numbers in () next to the COL name indicate number of units per site. The acceptance review is included at the beginning of the COL review. The rules in 10 CFR Part 2, "Rules of Practice for Domestic Licensing Proceedings and Issuance of Orders," govern hearings on COLs.

* Design technology changed by applicant on 6/28/2010.


Table 9. Expected New Nuclear Power Plant Applications (as of July 30, 2010)

Company (Project/Docket#)	Date of Application	Design	Date Accepted	Site Under Consideration	State	Existing Op. Plant
	Calend	dar Year (C)	() 2007 Appli	cations		
NRG Energy (52-012/013)	9/20/07	ABWR	11/29/07	South Texas Project (2 units)	ΤХ	Y
NuStart Energy (52-014/015)	10/30/07	AP1000	1/18/08	Bellefonte (2 units)	AL	N
UNISTAR (52-016)	7/13/07 (Env.), 3/13/08 (Safety)	EPR	1/25/08 6/03/08	Calvert Cliffs (1 unit)	MD	Y
Dominion (52-017)*	11/27/07	USAPWR	1/28/08	North Anna (1 unit)	VA	Y
Duke (52-018/019)	12/13/07	AP1000	2/25/08	William Lee Nuclear Station (2 units)	SC	N
2007 TOTA	NUMBER OF	APPLICATIO	NS = 5	TOTAL NUMBER OF UNITS = 8		
		CY 2008	3 Application	s		
Progress Energy (52-022/023)	2/19/08	AP1000	4/17/08	Harris (2 units)	NC	Y
NuStart Energy (52-024)	2/27/08	ESBWR	4/17/08	Grand Gulf (1 unit)	MS	Y
Southern Nuclear Operating Co. (52-025/026)	3/31/08	AP1000	5/30/08	Vogtle (2 units)	GA	Y
South Carolina Electric & Gas (52-027/028)	3/31/08	AP1000	7/31/08	Summer (2 units)	SC	Y
Progress Energy (52-029/030)	7/30/08	AP1000	10/6/08	Levy County (2 units)	FL	N
Detroit Edison (52-033)	9/18/08	ESBWR	11/25/08	Fermi (1 unit)	MI	Y
Luminant Power (52-034/035)	9/19/08	USAPWR	12/2/08	Comanche Peak (2 units)	TX	Y
Entergy (52-036)	9/25/08	ESBWR	12/4/08	River Bend (1 unit)	LA	Y
AmerenUE (52-037)	7/24/08	EPR	12/12/08	Callaway (1 unit)	MO	Y
UNISTAR (52-038)	9/30/08	EPR	12/12/08	Nine Mile Point (1 unit)	NY	Y
PPL Generation (52-039)	10/10/08	EPR	12/19/08	Bell Bend (1 unit)	PA	Y
2008 TOTAL	NUMBER OF A	PPLICATION	IS = 11	TOTAL NUMBER OF UNITS = 16		
		CY 2009	Application	S		
Florida Power and Light	6/30/09	AP1000	9/04/09	Turkey Point (2 units)	FL	Y
2008 TOTAI	NUMBER OF	APPLICATIO	NS = 1	TOTAL NUMBER OF UNITS = 2		
		CY 2010) Application	s		
No letters of intent have been rec	eived from app			plans to submit new COL application TOTAL NUMBER OF UNITS = 0	ations in	CY 2010.
2010101A			Application			
Blue Castle Project		TBD		Utah	UT	N
Southern		TBD		TBD	01	TBD
AEHI		TBD		Payette, ID	TBD	N
Unnamed		TBD		TBD	100	TBD
Unnamed		TBD		TBD		TBD
	L NUMBER OF		NIS – 5	TOTAL NUMBER OF UNITS = 5		100
2007–2011 TOTA		_	_	TOTAL NUMBER OF UNITS = 5	31	
2007-2011101		ATLICAT	0145 - 22		51	

– Accepted/Docketed

Note: Application updates in this table do not show all projects previously mentioned due to change of intent status or conversion to early site permit from COL application.

* Design technology changed by applicant on 6/28/2010.

Figure 26. Location of Applied-for New Nuclear Power Reactors

A proposed new reactor at or near an existing nuclear plant
 A proposed reactor at a site that has not previously produced nuclear power

*Review suspended.

**COL application amended by applicant to ESP on 03/25/2010. Note: Data as of July 30, 2010.

The NRC suspended five COL application reviews at the request of the licensees (Grand Gulf, Callaway, Nine Mile Point, River Bend, and Victoria County Station). As of June 2010, the NRC had 13 COL applications for 22 units under active review.

The staff expects to receive two additional COL applications by the end of 2012. For the current review schedule for reactor licensing applications, consult the NRC public website (see the Web Link Index).

Public Involvement

The NRC's new reactor licensing process offers many opportunities for public participation. Before it receives an application, the agency talks through public meetings to residents in the community near the location where a proposed new reactor may be built to explain how the NRC reviews an application and how the public may participate in the process. Next, the NRC listens to comments on which factors should be considered in the agency's environmental review of the application. The public may then comment on the NRC's draft environmental evaluation

NUCLEAR REACTORS

that is posted to the agency's website. In addition, the public is afforded the opportunity to legally challenge a license application through Atomic Safety and Licensing Board hearings that are announced in press releases and posted on the NRC website.

Review Efficiencies

The NRC has tailored its new reactor licensing activities to review new applications effectively and efficiently. These activities include the following:

- Revised regulations governing COL applications in NRC regulations that cover early site permits (ESPs), standard design approvals, standard design certifications (DCs), COLs, and manufacturing licenses.
- Adopted an optimized approach for reviewing applications through a design-centered licensing review.
- Revised limited work authority regulations to allow some preconstruction activities without NRC approval, such as site clearing, road building, and transmission line routing.
- Developed Regulatory Guide 1.206, "Combined License Applications for Nuclear Power Plants (LWR Edition)," to clarify the contents of license applications.
- Gained insights from the Multinational Design Evaluation Program, in which the NRC participates with the regulators of nine other countries that are undertaking or considering new reactors. Members of the program benefit from enhanced cooperation

and shared experience and research as they strive for convergence on acceptance of technical requirements, reciprocity on oversight, and other activities.

Early Site Permits

An ESP provides for early resolution of site safety, environmental protection, and emergency preparedness issues independent of a specific nuclear plant review. The Advisory Committee for Reactor Safeguards reviews those portions of the ESP application that concern safety. Mandatory adjudicatory hearings associated with the ESPs are conducted after the completion of the NRC staff's technical review.

The NRC has issued ESPs to the following applicants:

- System Energy Resources, Inc. (Entergy), for the Grand Gulf site in Mississippi
- Exelon Generation Company, LLC, for the Clinton site in Illinois
- Dominion Nuclear North Anna, LLC, for the North Anna site in Virginia
- Southern Nuclear Operating Company, for the Vogtle site in Georgia (includes a limited work authorization)

On March 25, 2010, Exelon Nuclear Texas Holdings (Exelon) submitted an ESP application for the Victoria County Station site located in Victoria County, TX. The ESP application does not include a request for limited work authorization at this time. Exelon previously submitted a COL application for the Victoria County Station site on September 2, 2008, and requested that the COL application be withdrawn when the Victoria County Station ESP application has formally been accepted by the NRC.

PSEG Power, LLC, and PSEG Nuclear, LLC (PSEG), submitted an ESP application in May 2010 on a site located near the Hope Creek/Salem site. The NRC expects to receive two additional ESP applications by 2012.

Design Certifications

The NRC has issued DCs for four reactor designs that can be referenced in an application for a nuclear power plant. A DC is valid for 15 years from the date of issuance, but can be

NRC staff conducts a vendor inspection at the Tioga Pipe Supply Co., Inc., plant.

NRC staff participates in site inspection of the proposed new plant in Levy County.

renewed for an additional 15 years. The new reactor designs incorporate new elements such as passive safety systems and simplified system designs. These designs include the following:

- General Electric-Hitachi Nuclear Energy's (GEH's) Advanced Boiling-Water Reactor (ABWR)
- Westinghouse's System 80+
- Westinghouse's AP600
- Westinghouse's AP1000

The NRC is currently reviewing the following DC applications:

- GEH's Economic Simplified Boiling-Water Reactor (ESBWR)
- Westinghouse's AP1000 DC amendment
- AREVA's U.S. Evolutionary Power Reactor (US EPR)
- Mitsubishi Heavy Industries' U.S. Advanced Pressurized-Water Reactor (US-APWR)
- STP Nuclear Operating Company's ABWR DC amendment to address the aircraft impact rule

Design Certification Renewals

The NRC expects to receive DC renewal applications for the ABWR from GEH and Toshiba before the end of 2010. Renewals are good for 15 years.

Advanced Reactor Designs

In addition, a range of advanced reactor designs and technologies have emerged that may be submitted to the NRC within the next several years. These technologies include small- and medium-sized light-water reactors, liquid-metal reactors, and high-

NUCLEAR REACTORS

temperature gas-cooled reactors. The NRC will focus its advanced reactor efforts on ensuring that the agency is prepared to address the multiple new technologies being proposed. The NRC has begun identifying and developing plans for policy and key technical issues associated with various reactor technologies and designs.

New Reactor Construction Inspections

The NRC established a special construction inspection organization in Region II in Atlanta, GA, to inspect licensee construction to ensure that it is performed in compliance with NRC-issued licenses and applicable regulations and to ensure that the as-built facility conforms to its COL. The NRC staff will examine the licensee's operational programs, such as security, radiation protection, and operator training and qualification, to ensure that the licensee is ready to operate the plant once it is built. The agency's construction site inspectors will verify a licensee's completion of inspections, tests, analyses, and acceptance criteria. The NRC will use these direct inspections and other methods to confirm that the licensee has completed these actions and has met the acceptance criteria included in a COL before allowing startup of the plant.

Starting with the new resident inspectors at the Vogtle site in April, 2010, the NRC will place several full-time inspectors at a site for the duration of the construction phase to oversee day-to-day activities of the licensee and its contractors.

On March 8, 2010, Southern Nuclear Operating Company began site construction at Vogtle Unit 3 under the limited work authorization issued August 2009. Site activities authorized under the limited work authorization include preliminary construction activities.

The agency also inspects vendor facilities to ensure that products and services furnished to new U.S. reactors meet quality and other regulatory requirements. The NRC has a vendor and quality assurance program and performs quality assurance inspections to ensure that licensees and their contractors meet the regulatory guidelines. To verify compliance with applicable regulations, the NRC inspects domestic and foreign vendors as well as the activities of applicants and licensees.

urtesy: Southern Compa

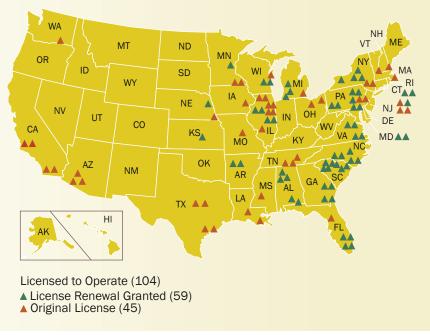
Preconstruction activity on limited work authorized at the Vogtle new reactor site.

urtesy: Southern Compan

Artist's rendering of the current plant with proposed new reactors on constructed Vogle site.

More information on the NRC's new reactor licensing activities is available on the NRC website (see the Web Link Index).

REACTOR LICENSE RENEWAL

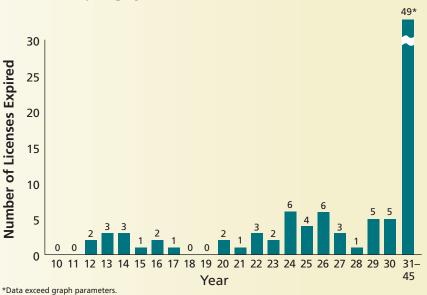

Based on the Atomic Energy Act of 1954, as amended, the NRC issues licenses for commercial power reactors to operate for 40 years. Under current regulations, licensees may renew their licenses for up to 20 years.

Economic and antitrust considerations, not limitations of nuclear technology, determined the original 40-year term for reactor licenses. However, because of this selected time period, some systems, structures, and components may have been engineered on the basis of an expected 40-year service life.

As of June 2010, approximately threequarters of the 104 licensed reactor units either have received or are under review for license renewal. Of these, 59 units (at 34 sites) have received renewed licenses (see Figure 27). Figure 28 illustrates the years of commercial operation of operating power reactors. Figure 29 and Table 10 show the expiration dates of operating commercial nuclear licenses.

The decision to seek license renewal rests entirely with nuclear power plant owners and typically is based on the plant's economic situation and on whether it can meet NRC requirements.

Figure 28. U.S. Commercial Nuclear Power Reactors— Years of Operation by the End of 2010


Note: Ages have been rounded up to the end of the year.

The license renewal review process provides continued assurance that the current licensing basis will maintain an acceptable level of safety for the period of extended operation.

The NRC will renew a license only if it determines that a currently operating plant will continue to maintain the required level of safety.

Over the plant's life, this level of safety is enhanced through maintenance of the licensing basis, with appropriate adjustments to address new information from industry operating experience. The NRC has issued regulations establishing clear requirements for license renewal to ensure safe plant operation for extended plant life codified in 10 CFR Part 54, "Requirements for Renewal of Operating Licenses for Nuclear Power Plants." Environmental protection requirements for license renewal are contained in 10 CFR Part 51, "Environmental Protection Regulations for Domestic Licensing and Related Regulatory Functions."

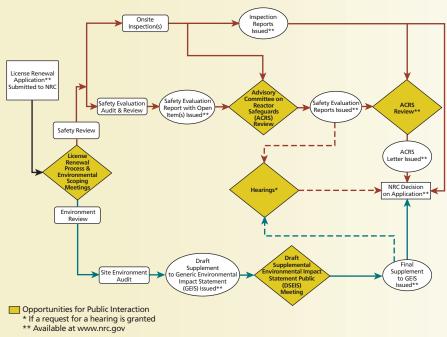
The review of a renewal application proceeds along two paths—one for the review of safety issues and the

Figure 29. U.S. Commercial Nuclear Power Reactor Operating Licenses—Expiring by Year

Table 10. U.S. Commercial Nuclear Power Reactor Operating Licenses— Expiration by Year, 2010–2049

2012	Pilgrim		Fermi 2		Surry 1		St. Lucie 1
	Vermont Yankee		Palo Verde 1		Turkey Point 3	2037	Cook 2
2013	Indian Point 2		River Bend 1	2033	Browns Ferry 1		Farley 1
	Kewaunee	2026	Braidwood 1		Comanche Peak 2	2038	Arkansas Nuclear 2
	Prairie Island 1		Byron 2		Fort Calhoun		Hatch 2
2014	Cooper		Clinton		Oconee 1		North Anna 1
	Duane Arnold		Palo Verde 2		Oconee 2	2040	North Anna 2
	Prairie Island 2		Hope Creek		Peach Bottom 2	2041	Farley 2
2015	Indian Point 3		Perry		Point Beach 2		McGuire 1
2016	Crystal River 3	2027	Braidwood 2		Surry 2	2042	Summer
	Salem 1		Palo Verde 3		Turkey Point 4		Susquehanna 1
2017	Davis-Besse		South Texas Project 1	2034	Arkansas Nuclear 1	2043	Catawba 1
2020	Salem 2	2028	South Texas Project 2		Browns Ferry 2		Catawba 2
	Sequoyah 1	2029	Dresden 2		Brunswick 2		McGuire 2
2021	Sequoyah 2		Ginna		Calvert Cliffs 1		St. Lucie 2
2022	LaSalle 1		Limerick 2		Cook 1	2044	Susquehanna 2
	San Onofre 2		Nine Mile Point 1		Hatch 1	2045	Millstone 3
	San Onofre 3		Oyster Creek		FitzPatrick		Wolf Creek 1
2023	Columbia	2030	Comanche Peak 1		Oconee 3	2046	Nine Mile Point 2
	LaSalle 2		Monticello		Peach Bottom 3		Harris 1
2024	Byron 1	_	Point Beach 1		Three Mile Island 1	2047	Beaver Valley 2
	Callaway		Robinson 2	2035	Millstone 2		Vogtle 1
	Diablo Canyon 1		Seabrook		Watts Bar 1	2049	Vogtle 2
	Grand Gulf 1	2031	Dresden 3	2036	Beaver Valley 1		
	Limerick 1		Palisades		Browns Ferry 3		
	Waterford 3	2032	Quad Cities 1		Brunswick 1		
2025	Diablo Canyon 2		Quad Cities 2		Calvert Cliffs 2		

Note: Limited to reactors licensed to operate. NRC-abbreviated reactor names listed. Data as of June 2010.


other for environmental issues (see Figure 30). An applicant must provide the NRC with an evaluation that addresses the technical aspects of plant aging and describes the ways those effects will be managed. The applicant must also prepare an evaluation of the potential impact on the environment if the plant operates for up to an additional 20 years. The NRC reviews the application and verifies the safety evaluation through onsite inspections.

Public Involvement

Public participation is an important part of the license renewal process. Members of the public have several opportunities to question how aging will be managed during the period of extended operation. The NRC makes available to the public information provided by the applicant. The NRC holds a number of public meetings. The agency fully documents all of its technical and environmental review results and makes them publicly available. In addition, the Advisory Committee on Reactor Safeguards holds public meetings to discuss technical or safety issues related to plant designs or a particular plant or site. Stakeholder concerns may be litigated in an adjudicatory hearing if any party that would be affected requests a hearing and submits an admissible contention.

For more information, visit the NRC website (see the Web Link Index).

Figure 30. License Renewal Process

RESEARCH AND TEST REACTORS

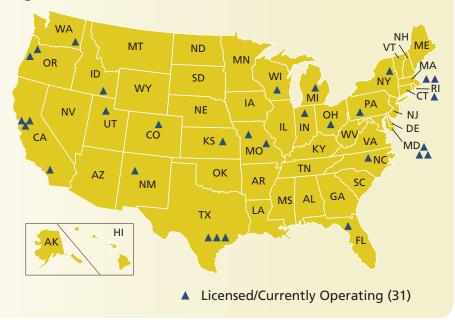
Nuclear research and test reactors (RTRs) are designed and used for research, testing, and education in physics, chemistry, biology, anthropology, medicine, materials sciences, and related fields. These reactors do not produce commercial electricity, but they help prepare people for nuclear-related careers in the fields of electric power, national defense, health services, research, and education.

The largest U.S. RTR (at 20 megawatts thermal) is 75 times smaller than the smallest U.S. commercial power nuclear reactor (at 1,500 megawatts thermal). There are 43 licensed RTRs:

• 31 RTRs operating in 22 States (see Figure 31)

• 12 reactors shut down and in various stages of decommissioning

See Appendix E for a list of the 31 operating RTRs regulated by the NRC.


RTRs licensed to operate at a power level of 2 megawatts or greater are inspected annually. RTRs licensed to operate at power levels below 2 megawatts are inspected every 2 years.

Since 1958, 82 licensed RTRs have been decommissioned.

See Appendix F for a list of the 12 RTRs regulated by the NRC that are in the process of decommissioning.

Principal licensing and inspection activities include the following:

• Licensing approximately 92 RTR operators.

Figure 31. U.S. Nuclear Research and Test Reactors

Public Participation in Regulatory Activities

The NRC conducts over 900 public meetings annually and provides opportunities for public involvement in the regulatory process by holding open meetings, conferences, and workshops and issuing rules, regulations, petitions, and technical reports for public comment.

- Requalifying each operator before renewal of his or her 6-year license.
- Conducting approximately 36 RTR inspections each year.

NUCLEAR REGULATORY RESEARCH

The NRC's research program supports the agency's regulatory mission by providing technical advice, tools, and information to identify and resolve safety issues, make regulatory decisions, and promulgate regulations and guidance. This includes conducting confirmatory experiments and analyses; developing technical bases that support the NRC's safety decisions; and preparing the agency for the future by evaluating the safety aspects of new technologies and designs for nuclear reactors, materials, waste, and security. The research program focuses on challenges as the industry continues to evolve, including potential new safety issues, management of aging and material degradation issues, technical issues associated with the deployment of new technologies and reactor designs, and retention of technical skills as experienced staff retires.

In the near term, research supports oversight of operating light-water reactors, the technology currently used in the United States. However, recent applications for advanced light-water reactors and preapplication activity regarding nonlight-water reactor vendors have prompted the agency to consider longer term research needs.

The NRC ensures protection of public health, safety, and the environment through research programs that do the following:

- Examine technical areas such as-
 - material degradation (e.g., stress corrosion cracking, aging management, degradation mitigation technologies, boric acid corrosion, and embrittlement)
 - » new and evolving technologies (e.g., new reactor technology, mixed oxide fuel performance, digital instrumentation and control, and safety critical software)
 - » experience gained from operating reactors
 - » probabilistic risk assessment methods
 - » seismic and geotechnical hazards
 - » ability of equipment to function in a harsh environment (e.g., heat, radiation, humidity)
 - » structural integrity assessments of reactor component degradation (e.g., nondestructive evaluation techniques and protocols)
- Examine human factors issues, including safety culture and computerization and automation of control rooms.

- Develop and improve computer codes as computational abilities expand and additional experimental and operational data allow for more realistic simulation. These computer codes analyze a wide spectrum of technical areas, including severe accidents, radionuclide transport through the environment, health effects of radioactive releases, nuclear criticality, fire conditions in nuclear facilities, thermal-hydraulic performance of reactors, reactor fuel performance, and nuclear power plant risk assessment.
- Ensure the secure use and management of nuclear facilities and radioactive materials by investigating potential security vulnerabilities and possible compensatory actions.

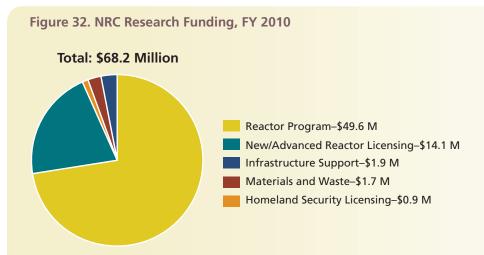
NUREG-1925, "Research Activities 2009," issued September 2009, summarizes the NRC's research programs currently in progress.

The NRC dedicates about 7 percent of its personnel and about 15 percent of its contracting funds to research. This research enables the NRC's highly skilled, experienced experts to formulate sound technical solutions based on science and to support timely and realistic regulatory decisions.

The NRC research budget for FY 2010 is approximately \$68 million. This includes contracts with national laboratories, universities, and other research organizations for greater expertise and access to research facilities. Figure 32 illustrates the primary areas of research. The NRC directs about three-fourths of the research program toward maintaining the safety of existing operating reactors. The agency is also directing research in support of new and advanced reactors.

Radioactive waste programs and security are additional focus areas for research. Infrastructure support includes information technology and human resources.

The NRC also has cooperative agreements with universities and nonprofit organizations to research specific areas of interest to the agency.


See Appendix O for a list of cooperative agreements.

The NRC recently requested the National Academies to perform a study on the cancer risk for populations surrounding nuclear power facilities. The NRC expects the study to begin in the summer of 2010. The State-

A blue glow of radiation, known as the "Cerenkov effect," from nuclear fuel in the Ohio State Research/Test Reactor.

of-the-Art Consequence Analysis (SOARCA) research project currently underway will develop realistic estimates of potential health effects from nuclear power plant accident scenarios that could release radioactive material into the environment. SOARCA improves methods and

Note: Totals may not equal sum of components because of independent rounding.

models for realistically evaluating plant responses during a severe accident.

The NRC collaborates with the international research community on both light-water and nonlightwater reactor technologies. These collaborations help the agency initiate activities focused on evolutionary advances in existing technologies and determine the safety implications of new technologies, and enable the agency to better leverage its resources. Collaboration is aided by the agency's leadership role in the standing committees and senior advisory groups of international organizations, such as the International Atomic Energy Agency and the Nuclear Energy Agency.

The NRC also has research agreements with foreign governments for international cooperative research. The NRC currently is engaged in 100 cooperative research agreements with more than two dozen countries and the Nuclear Energy Agency that include the following projects:

- Halden Reactor Project in Norway. For over 50 years, this collaboration has allowed for research and development of fuel, reactor internals, plant control and monitoring, human factors, and human reliability analysis.
- International Steam Generator Tube Integrity Program with Japan, South Korea, Canada, and others. This longstanding program, which models and predicts the impact of the aging and materials degradation process on tubing, allows each participant to benefit from the others' test results and data.

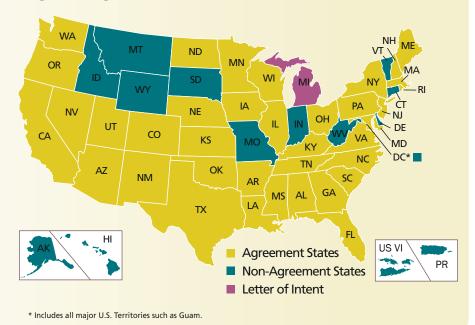
Demonstration of the Full-Scale Cracked Pipe Experiment

These photos present a sample of the full-scale cracked pipe experiments conducted for the NRC as validation of the fracture response of nuclear-grade piping subjected to BWR and PWR operating conditions. The effects of primary, secondary, and simulated seismic loading were considered. The data generated from these experiments led to the development and validation of more realistic models for determination of stability for nuclear piping materials with flaws.

Nuclear Materials

Left: A Leskel Gamma Knife® headframe uses radiation beams to treat people with brain cancer. Middle: NRC staff participates in providing training materials to radiographers at industry event. Right: NRC-licensed teletherapy unit provides treatment to patient. The NRC regulates nuclear materials for use in medical, industrial, and academic applications. It also regulates the phases of the nuclear fuel cycle, which begins with the uranium recovery and enrichment facilities that produce nuclear fuel for power plants.

MATERIALS LICENSES


Through agreements with the NRC, many States have assumed regulatory authority over radioactive materials, with the exception of nuclear reactors, fuel facilities, and certain quantities of special nuclear material. These States are called Agreement States, as shown in gold in Figure 33.

The NRC and Agreement States have issued approximately 22,500 licenses

for general use of nuclear materials (see Figure 33 and Table 11).

- The NRC administers approximately 3,000 licenses.
- 37 Agreement States administer approximately 19,600 licenses.

Reactor- and accelerator-produced radionuclides are used extensively throughout the United States for civilian and military industrial applications; basic and applied research; manufacture of consumer products; academic studies; and medical diagnosis, treatment, and research. The NRC and Agreement State regulatory programs are designed to ensure that licensees safely use these materials and do not endanger public health and safety or cause damage to the environment.

Figure 33. Agreement States

Table 11. U.S. Materials Licenses by State

	Number o	fliconcoc	-	Number
	Number o			Number
State	NRC	Agreement States	State	NRC
Alabama	18	464	Montana	90
			Nebraska	90 5
Alaska	59	0		
Arizona	11	389	Nevada	4
Arkansas	6	227	New Hampshire	6
California	50	2,003	New Jersey	41
Colorado	21	356	New Mexico	14
Connecticut	182	0	New York	27
Delaware	60	0	North Carolina	17
District of Columbia	43	0	North Dakota	10
Florida	17	1,741	Ohio	43
Georgia	16	512	Oklahoma	19
Hawaii	61	0	Oregon	5
Idaho	85	0	Pennsylvania	59
Illinois	34	796	Rhode Island	1
Indiana	289	0	South Carolina	16
lowa	4	174	South Dakota	44
Kansas	10	305	Tennessee	18
Kentucky	10	457	Texas	47
Louisiana	12	524	Utah	10
Maine	2	124	Vermont	38
Maryland	76	626	Virginia	66
Massachusetts	27	507	Washington	19
Michigan	519	0	West Virginia	181
Minnesota	13	180	Wisconsin	20
Mississippi	6	332	Wyoming	83
Missouri	299	0	Others*	162
			Total	2,975

Agreement State

* Others include major U.S. territories.

Note: The NRC and Agreement States data are the latest available as of April 2010.

MEDICAL AND ACADEMIC

In both medical and academic settings, the NRC reviews the facilities, personnel, program controls, and equipment to ensure the safety of the public, patients, and workers who might be exposed to radiation.

Medical

The NRC and Agreement States issue licenses to hospitals and physicians for the use of radioactive materials in medical treatments. In addition, the NRC develops guidance and regulations for use by licensees and maintains a committee of medical experts to obtain advice about the use of byproduct materials in medicine. The NRC regulations require that physicians and physicists have special training and experience to practice radiation medicine. The training emphasizes safe operation of nuclear-related equipment and accurate recordkeeping. The Advisory Committee on the Courtesy: Nordion

Gamma Knife[®] used for treating brain tumors.

Medical Uses of Isotopes comprises physicians, scientists, and other health care professionals who advise the NRC staff on initiatives in the medical uses of radioactive materials.

Nuclear Medicine

About one-third of all patients admitted to hospitals are diagnosed or treated using radioactive materials. This branch of medicine is known as nuclear medicine, and the radioactive materials for treatment are called radiopharmaceuticals. Doctors of nuclear medicine use radiopharmaceuticals to diagnose patients through in vivo tests (direct administration of radiopharmaceuticals to patients) or in vitro tests (the addition of radioactive materials to lab samples taken from patients). Doctors also use radiopharmaceuticals and radiation-producing devices to treat conditions such as hyperthyroidism and certain forms of cancer and to ease pain caused by bone cancer. In the past

decade, the use of nuclear medicine for treatment and diagnoses has increased significantly.

Diagnostic Procedures

For most diagnostic procedures in nuclear medicine, a small amount of radioactive material is administered, either by injection, inhalation, or oral administration. The radiopharmaceutical collects in the organ or area being evaluated, where it emits photons. These photons can be detected by a device known as a gamma camera, which produces images that provide information about the organ function and composition.

Radiation Therapy

The primary objective of radiation therapy is to deliver an accurately prescribed dose of radiation to the target site while minimizing the radiation dose to surrounding healthy tissue. Radiation therapy can be used to treat cancer or to relieve symptoms associated with certain diseases, such as cancer. Treatments often involve multiple exposures spaced over a period of time for maximum therapeutic effect. When used to treat malignant diseases, radiation therapy is often delivered in combination with surgery or chemotherapy.

There are three main categories of radiation therapy:

 External beam therapy (also called teletherapy) is a beam of radiation directed to the target tissue. There are several different categories of external beam therapy units. The type of treatment machine that is

NUCLEAR MATERIALS

regulated by the NRC contains a high-activity radioactive source (usually cobalt-60) that emits photons to treat the target site.

- 2. In brachytherapy treatments, sealed radioactive sources are permanently or temporarily placed near or on a body surface, in a body cavity, directly on a surface within a cavity, or directly on the cancerous tissue. The radiation dose is delivered at a distance of up to an inch (a few centimeters) from the target area.
- 3. Therapeutic radiopharmaceuticals are quantities of unsealed radioactive materials that localize in a specific region or organ system to deliver a large radiation dose.

Academic

The NRC issues licenses to academic institutions for educational and research purposes. For example, qualified instructors use radioactive materials in classroom demonstrations. Scientists in a wide variety of disciplines use radioactive materials for laboratory research.

INDUSTRIAL

The NRC and Agreement States license users of radioactive material for the specific type, quantity, and location of material that may be used. Radionuclides are used in industrial and commercial applications, including industrial radiography, gauges, welllogging, and manufacturing. For example, radiography uses radiation sources to find structural defects in metallic materials and welds. Gauges use radiation sources to determine

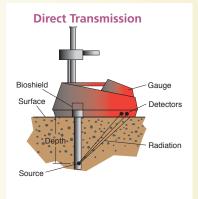
the thickness of paper products, fluid levels in oil and chemical tanks, and the moisture and density of soils and material at construction sites. For example, gauges are used to monitor and control the thickness of sheet metal, textiles, aluminum foil, newspaper, copier paper, and plastic as they are manufactured. Gas chromatography uses low-energy radiation sources for identifying the chemical elements in an unknown substance. Gas chromatography can determine the components of complex mixtures, such as petroleum products, smog, and cigarette smoke, and can be used in biological and medical research to identify the components of complex proteins and enzymes. Well-logging devices use a radioactive source and detection equipment to make a record of geological formations down a bore hole. This process is used extensively for oil, gas, coal, and mineral exploration.

Nuclear Gauges

Nuclear gauges are used as nondestructive devices to measure the physical properties of products and industrial processes as a part of quality control. There are fixed and portable gauges.

A fixed gauge consists of a radioactive source that is contained in a source holder. When the user opens the container's shutter, a controlled beam of radiation hits the material or product being processed or controlled. A detector mounted opposite the source measures the radiation passing through the product. The gauge readout or computer monitor shows the measurement. The material and process being monitored dictate the selection of the type, energy, and strength of radiation.

Fixed fluid gauges are installed on a pipe that is used by the beverage, food, plastics, and chemical industries to measure the densities, flow rates, levels, thickness, and weights of a wide variety of materials and surfaces.

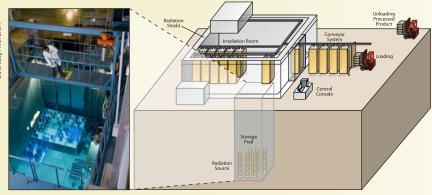

The diagram on this page shows a portable gauge where the gamma source is placed under the surface of the ground through a tube. Radiation is than transmitted directly to the detector on the bottom of the gauge, allowing accurate measurements of compaction (see Figure 34). Construction industries use such gauges to monitor the structural integrity of roads, buildings, and bridges; explore for oil, gas, and minerals; and airport security uses gauges to detect explosives in luggage at airports.

A portable gauge is a radioactive source and detector mounted together in a portable shielded device. The device is placed on the object to be measured, and the source is either inserted into the object or the gauge relies on a reflection of radiation from the source to bounce back to the bottom of the gauge. The detector in the gauge measures the radiation, either directly from the inserted source or from the reflected radiation.

The radiation measurement indicates the thickness, density, moisture content, or some other property that is displayed on a gauge readout or on a computer monitor. The top of the gauge has sufficient shielding to protect the operator while the source is exposed. When the measuring process is completed, the source is retracted or a shutter closes, minimizing exposure from the source.

Commercial Irradiators

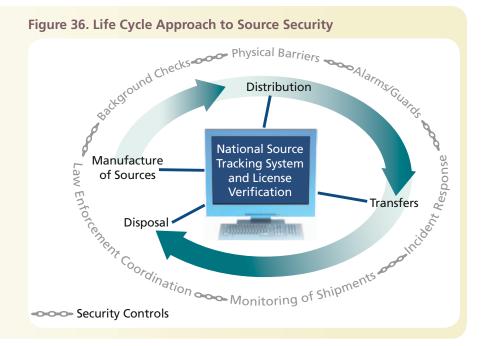
Commercial irradiators expose products such as food, food containers, spices, medical supplies, and wood flooring to radiation to eliminate


Figure 34. Moisture Density Gauge

A moisture density gauge indicates if a foundation is suitable for constructing a building or roadway.

Figure 35. Commercial Irradiator

harmful bacteria, germs, and insects, or for hardening or other purposes (see Figure 35). The gamma radiation does not leave any radioactive residue or cause any of the treated products to become radioactive themselves. The source of that radiation can be radioactive materials (e.g., cobalt-60), an x-ray tube, or an electron beam.


The NRC and Agreement States license approximately 50 commercial irradiators nationwide. For the past 40 years, the U.S. Food and Drug Administration and other agencies have approved the irradiation of meat and poultry, as well as other foods, including fresh fruits, vegetables, and spices. The amount of radioactive material in the devices can range from 1 curie to 10 million curies. Regulations protect workers and the public from radiation involved in irradiation operations.

Generally, two types of commercial irradiators are in operation in the United States: underwater and wet-source-storage panoramic models. In the case of underwater irradiators, the sealed sources (radioactive material encased inside a capsule) that provide the radiation remain in the water at all times, providing shielding for workers and the public. The product to be irradiated is placed in a watertight container, lowered into the pool, irradiated, and then removed.

With wet-source-storage panoramic irradiators, the radioactive sealed sources are also stored in the water, but they are raised into the air to irradiate products that are automatically moved in and out of the room on a conveyor system. Sources are then lowered back to the bottom of the pool. For this type of irradiator, thick concrete walls or steel protects workers and the public when the sources are lifted from the pool.

MATERIAL SECURITY

In January 2009, the NRC deployed its National Source Tracking System (NSTS), by which the agency and its Agreement States track the

manufacture, distribution, and ownership of the most high-risk sources. Licensees use the NSTS, a secure Web-based system, to enter up-to-date information on the receipt or transfer of tracked radioactive sources (see Figure 36).

Over the past several years, the NRC and the Agreement States have increased the controls they have imposed on the most sensitive radioactive materials, including physical security requirements and limited personnel access to the materials. Working with other Federal agencies, such as the U.S. Department of Homeland Security, the NRC has also implemented a voluntary program of additional security improvements. Together, these activities will make potentially dangerous radioactive sources even more secure and less vulnerable to terrorists.

Principal Licensing and Inspection Activities

Each year, the NRC issues approximately 2,700 new licenses, license renewals, and amendments for existing material licenses.

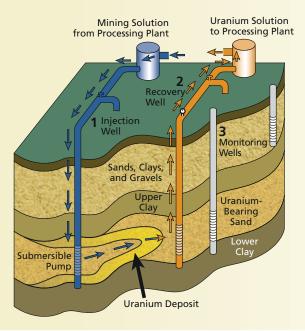
The NRC conducts approximately 1,250 health and safety and security inspections of its nuclear materials licensees each year.

URANIUM RECOVERY

Figure 37 illustrates the nuclear fuel cycle, which begins with the uranium recovery and enrichment facilities that produce nuclear fuel for power plants. To make fuel for reactors, uranium is recovered or extracted from the ore, converted, and enriched into fuel pellets.

The NRC does not regulate traditional mining, but it does regulate the processing of uranium ore. It has jurisdiction over uranium recovery facilities such as conventional mills and in situ recovery facilities.

The NRC has a well-established regulatory framework for ensuring that uranium recovery facilities are appropriately licensed, operated, decommissioned, and monitored to protect public health and safety.

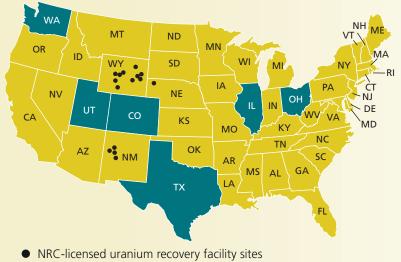

Conventional Uranium Mill

A conventional uranium mill is a chemical plant that extracts uranium

from mined ore. Conventional mills are typically located in areas of low population density, within about 50 kilometers (30 miles) of a uranium mine. The mined ore is transported to the mill, where it is crushed. Sulfuric acid then dissolves the soluble components, including 90 to 95 percent of the uranium, from the ore. The uranium is then separated from the solution, concentrated, and dried to form yellowcake (yellow uranium oxide powder). Of the four remaining conventional mills in the United States, one is operating, while three are in standby status with the potential to restart in the future.

NUCLEAR

Figure 38. The In Situ Uranium Recovery Process



Injection wells (1) pump a chemical solution—typically sodium bicarbonate, hydrogen peroxide, and oxygen— into the layer of earth containing uranium ore. The solution dissolves the uranium from the deposit in the ground and is then pumped back to the surface through recovery wells (2) and sent to the processing plant to be converted into uranium yellowcake. Monitoring wells (3) are checked regularly to ensure that uranium and chemicals are not escaping from the drilling area.

In Situ Recovery

In situ recovery (ISR) is another means of extracting uranium—this time from underground ore. ISR facilities recover uranium from ores for which recovery may not be economically viable by other methods. In this process, a solution of native ground water typically mixed with oxygen or hydrogen peroxide and sodium bicarbonate or carbon dioxide is injected through wells into the ore to dissolve the uranium. The resulting solution is pumped from the rock formation, and the uranium is then separated from the solution in the same way as a conventional mill, to form yellowcake (see Figure 38). About 12 such ISR facilities exist in the United States. Of these facilities, the NRC licenses four, and Agreement States license the rest (see Figure 39).

Because of the resurgence of interest in the construction of new nuclear power plants, the agency anticipates as many as 25 applications for new uranium recovery facilities and expansions or restarts of existing facilities in the next few years. As of June 2010, the agency had received six applications for new facilities and three applications to expand or restart an existing facility. The current status of applications can be found on the NRC's website (see the Web Link Index). Existing facilities and new potential sites are located in Wyoming, New Mexico, Nebraska, South Dakota, and Arizona, and in the Agreement States of Texas, Colorado, and Utah (see Figure 39 and Table 12). The NRC works closely with stakeholders, including Native American Tribal Governments, to

Figure 39. Locations of NRC-Licensed Uranium Recovery Facility Sites

- States with authority to license uranium recovery facility sites
- States where the NRC has retained authority to license uranium recovery facilities

Table 12. Locations of NRC-Licensed Uranium Recovery Facilities

LICENSEE	SITE NAME, LOCATION
In Situ Recovery Facilities	
Cogema Mining, Inc.°	Irigaray/Christensen Ranch, WY
Crow Butte Resources, Inc.	Crow Butte, NE*
Hydro Resources, Inc.°	Crownpoint, NM
Power Resources, Inc.	Smith Ranch and Highlands, WY*
Conventional Uranium Recovery Facili	ties
American Nuclear Corp. ⁺	Gas Hills, WY
Bear Creek Uranium Co. ⁺	Bear Creek, WY
Exxon Mobil Corp. ⁺	Highlands, WY
Homestake Mining Co. ⁺	Homestake, NM
Kennecott Uranium Corp.°	Sweetwater, WY
Pathfinder Mines Corp. ⁺	Lucky Mc, WY
Pathfinder Mines Corp. ⁺	Shirley Basin, WY
Rio Algom Mining, LLC ⁺	Ambrosia Lake, NM
Umetco Minerals Corp. ⁺	Gas Hills, WY
United Nuclear Corp. ⁺	Church Rock, NM
Western Nuclear, Inc. ⁺	Split Rock, WY

Note: The facilities listed are under the authority of the NRC. For current details on uranium recovery facility applications in review and applications, restarts, and expansions, see Web Link Index.

* Satellite facilities are located within the State.

† Sites undergoing decommissioning

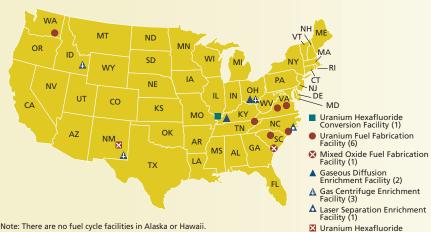
^o Cogema has an operating license. Although it is not currently producing, it intends to begin production in 2011. Kennecott has an operating license, but is in "stand by" mode. Hydro has operating an license, but facility has not yet been constructed. address concerns with the licensing of new uranium recovery facilities.

The NRC is also responsible for the following:

- Inspecting and overseeing both active and inactive uranium recovery facilities.
- Ensuring that siting and design features of tailings (waste) impoundments minimize disturbance of tailings by natural forces and minimize the release of radon (see Glossary).
- Developing comprehensive reclamation and decommissioning requirements to ensure adequate cleanup of active and formerly active uranium recovery facilities.
- Formulating stringent financial requirements to ensure funds are available for decommissioning.
- Monitoring adherence to requirements for below-grade disposal of mill tailings and liners for tailings impoundments (see Glossary).
- Monitoring to prevent ground water contamination.
- Long-term monitoring and oversight of decommissioned facilities.

FUEL CYCLE FACILITIES

The basic fuel cycle is the process of turning uranium from the ground into fuel for nuclear reactors. This process includes conversion of the uranium "yellowcake" into uranium hexafluoride (UF₆), enrichment of the uranium in the isotope uranium-235, and fabrication of ceramic fuel pellets. The NRC licenses and inspects all commercial nuclear


fuel facilities involved in conversion, enrichment, and fuel fabrication (see Figures 40–42 and Table 13).

Fabrication is the final step in the process used to produce uranium fuel. Fuel fabrication facilities mechanically and chemically process the enriched uranium into nuclear reactor fuel.

Fabrication begins with the conversion of enriched UF₆ gas to a uranium dioxide (UO2) solid. Nuclear fuel is made to maintain both its chemical and physical properties under the extreme conditions of heat and radiation present inside an operating reactor vessel. After the UF_6 is chemically converted to UO₂, the powder is blended, milled, and pressed into ceramic fuel pellets about the size of a fingertip. The pellets are stacked into tubes about 14 feet (2.6 meters) long made of material called "cladding" (such as zirconium alloys). After careful inspection, the resulting fuel rods are bundled into fuel assemblies for use in reactors. The assemblies are washed, inspected, and stored in a special rack until ready for shipment to a nuclear power plant site. The NRC inspects this operation at every step of the process.

The NRC regulates the following:

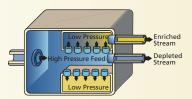
- One conversion facility
- Four enrichment facilities (one operating, one in cold standby, one operating with further construction, and one under construction)
- Six fuel fabrication facilities
- One mixed oxide fuel fabrication facility (under construction and review)

Figure 40. Locations of Fuel Cycle Facilities

Note: There are no fuel cycle facilities in Alaska or Hawaii.

Table 13. Major U.S. Fuel Cycle Facility Sites

Licensee	Location	Status	
Uranium Hexafluoride Conversion Facility			
Honeywell International, Inc.	Metropolis, IL	active	
Uranium Fuel Fabrication Facilities			
Global Nuclear Fuels-Americas, LLC	Wilmington, NC	active	
Westinghouse Electric Company, LLC Columbia Fuel Fabrication Facility	Columbia, SC	active	
Nuclear Fuel Services, Inc.	Erwin, TN	active	
AREVA NP, Inc. Mt. Athos Road Facility	Lynchburg, VA	active	
B&W Nuclear Operations Group	Lynchburg, VA	active	
AREVA NP, Inc.	Richland, WA	active	
Mixed Oxide Fuel Fabrication Facilities			
Shaw AREVA MOX Services, LLC	Aiken, SC	in construction, operating license under review	
Gaseous Diffusion Uranium Enrichment Facilities			
USEC Inc.	Paducah, KY	active	
USEC Inc.	Piketon, OH*	in cold standby	
Gas Centrifuge Uranium Enrichment Facilities			
USEC Inc.	Piketon, OH	in construction	
Louisiana Energy Services (LES-URENCO)	Eunice, NM	active**	
AREVA Enrichment Services	Idaho Falls, ID	under review	
Laser Separation Enrichment Facility			
GE-Hitachi	Wilmington, NC	under review	
Uranium Hexafluoride Deconversion Facility			
International Isotopes	Hobbes, NM	under review	


* Currently in cold shutdown and not used for enrichment.

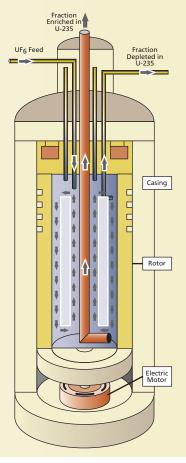
** Partially operating and producing enriched uranium while undergoing further phases of construction. Note: The NRC regulates nine other facilities that possess significant quantities of special nuclear material (other than reactors) or process source material (other than uranium recovery facilities). Data as of July 2010.

Deconversion Facility (1)

Figure 41. Enrichment Processes

A. Gaseous Diffusion Process

A. The gaseous diffusion process uses molecular diffusion to separate a gas from a two-gas mixture. The isotopic separation is accomplished by diffusing uranium, which has been combined with fluorine to form uranium hexafluoride (UF_6) gas, through a porous membrane (barrier) and using the different molecular velocities of the two isotopes to achieve separation.


B. The gas centrifuge process uses a large number of rotating cylinders in series and parallel configurations. Gas is introduced and rotated at high speed, concentrating the component of higher molecular weight towards the outer wall of the cylinder and the lower molecular weight component toward the center. The enriched and the depleted gases are removed by scoops.

The NRC is also reviewing applications for two enrichment plants and a deconversion facility. The deconversion facility, if approved, would process the depleted uranium from an enrichment facility and convert the material into a uranium oxide and commercially resalable products.

Domestic Safeguards Program

The NRC's domestic safeguards program for fuel cycle facilities and

B. Gas Centrifuge Process

transportation is aimed at ensuring that special nuclear material (such as plutonium or enriched uranium) is not stolen for possible malevolent uses. The program also works to ensure that such material does not pose an unreasonable risk to the public from radiological sabotage.

The NRC verifies through licensing and inspection activities that licensees apply safeguards to protect special nuclear material. Additionally,

Figure 42. Simplified Fuel Fabrication Process 3 UO₂ Incomina Powder Fuel Rod/ Transport to UF UF₆ Powder Processing/Pellet Bundle/Assembly/ Nuclear Vaporization Cylinders Production Manufacturing **Quality Check** Reactors

Fabrication of commercial light-water reactor fuel consists of the following three basic steps:

- (1) the chemical conversion of UF_6 to UO_2 powder
- (2) a ceramic process that converts UO₂ powder to small ceramic pellets
- (3) a mechanical process that loads the fuel pellets into rods and constructs finished fuel assemblies

Figure 43. Fuel Pellets

(Left) Small ceramic fuel pellets. (Right) Fuel pellets being assembled into fuel rods.

the NRC and U.S. Department of Energy (DOE) developed the Nuclear Materials Management and Safeguards System (NMMSS) to track transfers and inventories of special nuclear material, source material from abroad, and other material.

The NRC has issued licenses to approximately 180 facilities authorizing them to possess special nuclear material in quantities ranging from a single kilogram to multiple tons. These licensees verify and document their inventories in the NMMSS database. The NRC or State governments license several hundred additional sites that possess special nuclear material in smaller quantities (typically ranging from one gram to tens of grams). Licensees that possess small amounts of special nuclear material are now required to confirm their inventory annually in the NMMSS database. Previously, those licensees reported transfers of material but not annual inventories.

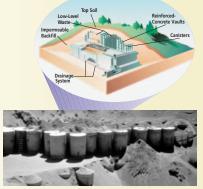
Principal Licensing and Inspection Activities

On average, the NRC completes approximately 80 new licenses, license renewals, license amendments, and safety and safeguards reviews for fuel cycle facilities annually.

The NRC routinely conducts safety, safeguards, and environmental protection inspections at all fuel cycle facilities.

74 • U.S. NRC Protecting People and the Environment

Radioactive Waste


Left: Spent fuel pool at a nuclear plant. Middle: The NRC holds public meetings to gather input from shareholders on waste issues. Right: NRC inspectors examine container to determine if it meets NRC standards.

LOW-LEVEL RADIOACTIVE WASTE DISPOSAL

Low-level radioactive waste (LLW) includes items that have become contaminated with radioactive material or have become radioactive through exposure to neutron radiation. This waste typically consists of contaminated protective shoe covers and clothing, wiping rags, mops, filters, reactor water treatment residues, equipment and tools, medical tubes, swabs, injection needles, syringes, and laboratory animal carcasses and tissue.

The radioactivity can range from just-above-background levels found in nature to very high levels from the parts inside the reactor vessel in a nuclear power plant. Licensees store lower level radioactive waste onsite until it has decayed and lost its radioactivity. Then it can be disposed of as ordinary trash. Waste that does not decay fairly quickly is stored until amounts are large enough for shipment to an LLW disposal site in containers approved by the U.S. Department of Transportation (DOT) or the NRC.

Figure 44. Low-Level Waste Disposal

This LLW disposal site accepts waste from the compact States.

Commercial LLW is disposed of in facilities licensed by either the NRC or Agreement States in accordance with health and safety requirements. The facilities are designed, constructed, and operated to meet safety standards. The operator of the facility also extensively characterizes the site on which the facility is located and analyzes how the facility will perform in the future.

Current LLW disposal uses shallow land disposal sites with or without concrete vaults. The LLW will sit there safely for thousands of years.

The NRC has developed a classification system for LLW based on its potential hazards. It has specified disposal and waste requirements for each of the three classes of waste-Class A, B, and C-that are acceptable for disposal in near-surface facilities. These classes have progressively higher levels of concentrations of radioactive material, with A having the lowest and C having the highest level. Class A waste accounts for approximately 96 percent of the total volume of LLW. Determination of the classification of waste is a complex process. A fourth class of LLW, greater than Class C, is not generally acceptable for near-surface, shallow-depth disposal.

The volume and radioactivity of waste vary from year to year based on the types and quantities of waste shipped each year. Waste volumes currently include several million cubic feet each year from reactor facilities undergoing decommissioning and cleanup of contaminated sites.

The Low-Level Radioactive Waste Policy Amendments Act of 1985 gave the States responsibility for the disposal of LLW. The Act authorized States to do the following:

- Form 10 regional compacts, with each compact to establish an LLW disposal site (see Table 14).
- Exclude waste generated outside a compact.

The States have licensed four active LLW disposal facilities:

- Barnwell, located in Barnwell, SC
 —Previously, Barnwell accepted waste
 from all U.S. generators. As of July
 2008, Barnwell accepts waste only
 from the Atlantic Compact States
 (Connecticut, New Jersey, and South
 Carolina). South Carolina licenses
 Barnwell to receive all classes of
 LLW.
- EnergySolutions, located in Clive, UT—EnergySolutions accepts waste from all regions of the United States. Utah licenses EnergySolutions for Class A waste only.

- Hanford, located in Hanford, WA —Hanford accepts waste from the Northwest and Rocky Mountain Compacts. The State of Washington licenses Hanford to receive all classes of LLW.
- Waste Control Specialist (WCS), located in Andrews, TX—Texas licensed WCS in 2009 to receive all classes of LLW from the Texas Compact, which consists of Texas and Vermont. WCS is expected to begin receiving LLW in late 2011.

Closed LLW disposal facilities licensed by the NRC are the following:

- Beatty, NV, closed 1993
- Sheffield, IL, closed 1978
- Maxey Flats, KY, closed 1977
- West Valley, NY, closed 1975

Table 14. U.S. Low-Level Radioactive Waste Compacts

Appalachian

Delaware Maryland Pennsylvania West Virginia

Atlantic

Connecticut New Jersey South Carolina*

Central

Arkansas Kansas Louisiana Oklahoma

Central Midwest

Illinois Kentucky

Midwest

Indiana Iowa Minnesota Missouri Ohio Wisconsin

Northwest

Alaska Hawaii Idaho Montana Oregon Utah* Washington* Wyoming

Rocky Mountain

(Northwest accepts Rocky Mountain waste as agreed between compacts)

Colorado Nevada New Mexico

Southeast

Alabama Florida Georgia Mississippi Tennessee Virginia

Southwestern

Arizona California North Dakota South Dakota

Texas

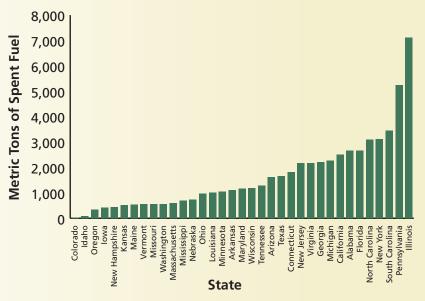
Texas Vermont

Unaffiliated

District of Columbia Maine Massachusetts Michigan Nebraska New Hampshire New York North Carolina Puerto Rico Rhode Island

Note: Data as of June 2010. *Site of an active LLW disposal facility.

HIGH-LEVEL RADIOACTIVE WASTE MANAGEMENT


Spent Nuclear Fuel Storage

Commercial spent nuclear fuel, although highly radioactive, is safe and securely stored in 35 States (see Figure 45). This includes 31 States with operating nuclear power reactors, where spent fuel is safely stored onsite in spent fuel pools and in dry casks. The remaining four States— Colorado, Idaho, Maine, and Oregon—do not have operating power reactors but are safely storing spent fuel at storage facilities. Waste can be stored safely in pools or casks for a hundred years or more.

As of January 2010, the amount of commercial spent fuel in safe storage at commercial nuclear power plants was an estimated 63,000 metric tons. The amount of spent fuel in storage at individual commercial nuclear power plants is expected to increase at a rate of approximately 2,000 metric tons per year. The NRC licenses and regulates the storage of spent fuel, both at commercial nuclear power plants and at storage facilities located away from reactors.

Most reactor facilities were not designed to store the full amount of spent fuel that the reactor would generate during its operational life. Facilities originally planned to store spent fuel temporarily in deep pools of continuously circulating water that cools the spent fuel assemblies and provides shielding from radiation. After a few years, the facilities expected to send the spent fuel to a

Figure 45. Storage of Commercial Spent Fuel by State through 2009

Note: Idaho is holding used fuel from Three Mile Island, Unit 2. Data are rounded up to the nearest 10 tons. Source: ACI Nuclear Energy Solutions and U.S. Department of Energy (updated May 2010) recycling plant. However, the Federal Government declared a moratorium on recycling spent fuel in 1977. Although the ban was later lifted, recycling has not been pursued. To cope with the spent fuel they were generating, facilities expanded their storage capacity by using high-density storage racks in their spent fuel pools (see Figure 46). However, spent fuel pools are not a permanent storage solution.

To provide supplemental storage, a portion of spent fuel inventories is stored in dry casks on site. These facilities are called independent spent fuel storage installations (ISFSIs) and are licensed by the NRC. These large casks are typically made of leak-tight, welded, and bolted steel and concrete surrounded by another layer of steel or concrete. The spent fuel sits in the center of the nested canisters in an inert gas. Dry cask storage shields people and the environment from radiation and keeps the spent fuel inside dry and nonreactive (see Figure 46).

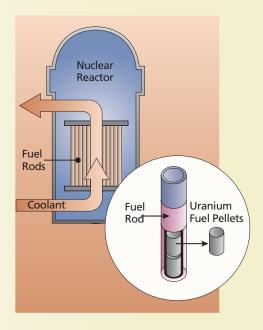
Currently, there are 55 licensed ISFSIs in the United States (see Figure 47). As of 2010, NRC-licensed ISFSIs were storing spent fuel in over 1,220 loaded dry casks (see Figure 48).

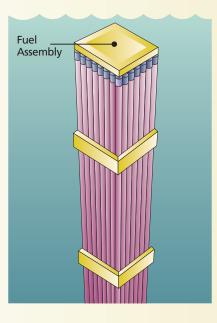
The NRC authorizes storage of spent fuel at an ISFSI under two licensing options:

- 1. site-specific licensing
- 2. general licensing

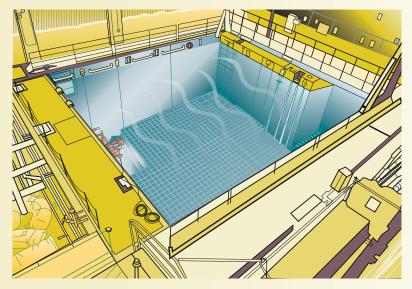
Site-specific licenses granted by the NRC, after a safety review, contain technical requirements and operating conditions for the ISFSI and specify what the licensee is authorized to store at the site. The license term for an ISFSI is 20 years from the date of issuance. However, the NRC is in the process of amending its regulations to allow for license terms and renewals of up to 40 years.

A general license from the NRC authorizes a licensee who operates a nuclear power reactor to store spent fuel onsite in dry storage casks. The NRC documents its approval by issuing a certificate of compliance to the cask vendor through rulemaking. Several dry storage cask designs have received certificates.

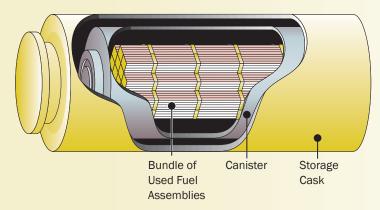

See Appendix H for a list of dry spent fuel storage systems that are approved for use with a general license. See Appendix I for lists of dry spent fuel storage licensees.


The general license terminates 20 years after the date that the cask is first used for storage. If the NRC renews the cask's certificate, the general license terminates 20 years afterwards. Thirty days before the certificate expiration date, the cask vendor may apply for reapproval. If the cask vendor does not apply for reapproval, a general licensee may apply for reapproval. The NRC is in the process of amending its regulations to allow cask certificates to remain valid for up to 40 years.

Before using the cask, general licensees must certify that the cask meets the conditions in the certificate, that the concrete pads under the casks can adequately support the loads, and that the levels of radiation from the casks meet NRC standards.


Figure 46. Spent Fuel Generation and Storage after Use

A nuclear reactor is powered by enriched uranium-235 fuel. Fission (splitting of atoms) generates heat, which produces steam that turns turbines to produce electricity. A reactor rated at several hundred megawatts may contain 100 or more tons of fuel in the form of bullet-sized pellets loaded into long metal rods that are bundled together into fuel assemblies. Pressurized-water reactors (PWRs) contain between 150–200 fuel assemblies. Boiling-water reactors (BWRs) contain between 370-800 fuel assemblies



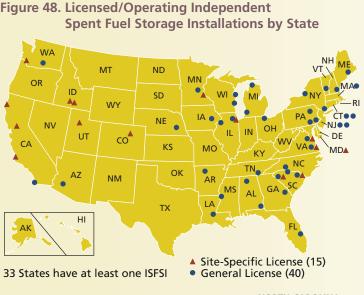
2 After about 6 years, spent fuel assemblies—typically 14 feet (4.3 meters) long and containing nearly 200 fuel rods for PWRs and 80–100 fuel rods for BWRs—are removed from the reactor and allowed to cool in storage pools for a few years. At this point, the 900-pound (40.8 kilogram) assemblies contain only about one-fifth the original amount of uranium-235.

Commercial light-water nuclear reactors store spent radioactive fuel in a steellined, seismically designed concrete pool under about 40 feet (12.2 meters) of water that provides shielding from radiation. Water pumps supply continuously flowing water to cool the spent fuel. Extra water for the pool is provided by other pumps that can be powered from an onsite emergency diesel generator. Support features, such as water-level monitors and radiation detectors, are also in the pool. Spent fuel is stored in the pool until it can be transferred to dry casks onsite (as shown in Figure 47) or transported offsite to a high-level radioactive waste disposal site.


Source: U.S. Department of Energy and the Nuclear Energy Institute

Figure 47. Dry Storage of Spent Nuclear Fuel


At some nuclear reactors across the country, spent fuel is kept onsite, typically above ground, in systems basically similar to the ones shown here.


1 Once the spent fuel has cooled, it is loaded into special canisters that are designed to hold nuclear fuel assemblies. Water and air are removed. The canister is filled with inert gas, welded shut, and rigorously tested for leaks. It is then placed in a cask for storage or transportation. The NRC has approved the storage of up to 40 PWR assemblies and up to 68 BWR assemblies in each canister. The dry casks are then loaded onto concrete pads.

2 The canisters can also be stored in above ground concrete bunkers, each of which is about the size of a one-car garage.

ALABAMA

- Browns Ferry
- Farley

ARIZONA

Palo Verde

ARKANSAS

Arkansas Nuclear

CALIFORNIA

- Diablo Canyon
- A Rancho Seco
 San Onofre
- Humboldt Bay

COLORADO

Fort St. Vrain

CONNECTICUT

- Haddam Neck
- Millstone

FLORIDA

- St. Lucie
- GEORGIA
- Hatch

IDAHO

- DOE: TMI-2 (Fuel Debris)
- Idaho Spent Fuel Facility

ILLINOIS

- GE Morris (Wet)
- Dresden
- Quad Cities

Note: Data are current as of July 2010. NRC-abbreviated unit names used.

IOWA

Duane Arnold

LOUISIANA River Bend

- MAINE
- Maine Yankee

MARYLAND

- Calvert Cliffs
- MASSACHUSETTS • Yankee Rowe
- Turikee nowe

MICHIGAN

Big Rock Point
 Palisades

MINNESOTA

- Monticello
- A Prairie Island
- MISSISSIPPI
- Grand Gulf

NEBRASKA

• Ft. Calhoun

NEW HAMPSHIRE

Seabrook

NEW JERSEY

Hope Creek/SalemOyster Creek

NEW YORK

Indian Point

FitzPatrick

NORTH CAROLINA • McGuire

- Micdu
- OHIO
 Davis-Besse

OREGON

- ▲ Trojan

PENNSYLVANIA

- Limerick
- Susquehanna
 Peach Bottom

SOUTH CAROLINA

- A Oconee
- A Robinson
- Catawba

TENNESSEE

Sequoyah

UTAH

Private Fuel Storage

RADIOACTIVE WASTE

VERMONT

Vermont Yankee

VIRGINIA

- Surry
- North Anna

Columbia

- WISCONSIN
- Point Beach
- Kewaunee

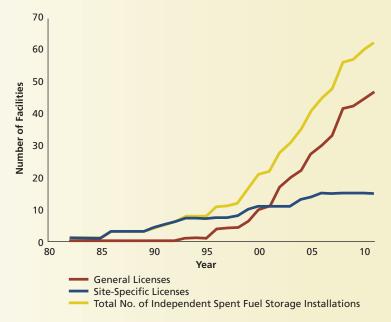


Figure 49. Independent Spent Fuel Storage Installation Trends

Public Involvement

The public can participate in decisions about spent fuel storage, as it can in many licensing and rulemaking decisions. The Atomic Energy Act of 1954, as amended, and the NRC's own regulations, provide the opportunity for public hearings for site-specific licensing actions and allow for public comments on certificate rulemakings. Interested members of the public may also file petitions for rulemaking.

Additional information on ISFSIs is available on the NRC website (see the Web Link Index).

Spent Nuclear Fuel Disposal

The current U.S. policy governing permanent disposal of high-level radioactive waste is defined by the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992. These acts specify that high-level radioactive waste will be disposed of underground, in a deep geologic repository. The Nuclear Waste Policy Act of 1982, amended in 1987, names Yucca Mountain, a high ridge in the Nevada desert, as the single candidate site for this potential geologic repository.

Three Federal agencies are involved in the disposal of spent nuclear fuel and other high-level waste (HLW):

- 1. DOE is charged with constructing and operating a repository for spent fuel and other HLW.
- The U.S. Environmental Protection Agency (EPA) issues environmental standards that the NRC will use to evaluate the safety of a geologic repository.
- 3. The NRC issues regulations that implement EPA's standards. It also reviews the DOE application and decides whether to license the proposed repository. If the NRC grants the license, it must ensure that DOE safely constructs, operates, and eventually closes the repository.

DOE submitted its license application to the NRC on June 3, 2008. The NRC formally accepted it for review in September 2008 and began the detailed technical review and associated adjudicatory activities. In 2009, President Barack Obama announced that the administration would terminate the Yucca Mountain program while developing a disposal alternative.

On January 29, 2010, the President created a Blue Ribbon Commission on America's Nuclear Future to reassess the national policy on HLW disposal. The task of the Blue Ribbon Commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." In light of these developments, the NRC began reassessing its management of spent fuel regulations to position the agency to quickly adapt to changes in national policy. The three key areas in this effort are the nuclear fuel cycle, spent fuel storage and transportation, and HLW disposal.

On March 3, 2010, DOE filed a motion to withdraw the license application. While the decision to grant DOE's motion to withdraw the license application is pending, the agency is continuing the technical review required by the Nuclear Waste Policy Act of 1982.

Information on HLW can be found on the NRC website (see the Web Link Index).

Recycling

In the United States, spent nuclear fuel is stored securely either at a nuclear power plant or at a safe and secure storage facility away from a plant. Some countries reprocess their spent nuclear fuel to recover fissile material and use it to generate more energy. Although an application for a reprocessing facility has not been received, in preparation the NRC has completed an initial analysis of the existing regulatory framework to identify any gaps and possibly develop new regulations for reprocessing and identified areas where regulations were lacking or needed enhancement. The NRC is developing the technical basis for a possible revision of the regulations to ensure that a potential commercial reprocessing facility can be licensed efficiently and effectively and operate safely.

TRANSPORTATION

About 3 million packages of radioactive materials are shipped each year in the United States, either by road, rail, air, or water. This represents less than 1 percent of the Nation's yearly hazardous material shipments. Regulating the safety of commercial radioactive material shipments is the joint responsibility of the NRC and DOT.

Empty storage transport container on a semi tractor-trailer rig.

The vast majority of these shipments consists of small amounts of radioactive materials used in industry, research, and medicine. The NRC requires such materials to be shipped in accordance with DOT's hazardous materials transportation safety regulations. The NRC is also involved in the transportation of spent nuclear fuel. It establishes safety criteria for spent fuel shipping casks and certifies cask designs. Casks are designed to meet the following safety criteria under both normal and accident conditions:

- Prevent the loss or dispersion of radioactive contents.
- Provide shielding and heat dissipation.
- Prevent nuclear criticality (a self-sustaining nuclear chain reaction).

Spent fuel shipping casks must be designed to survive a sequence of tests, including a 9-meter (30-foot) drop onto an unyielding surface, a puncture test, and a fully engulfing fire of 802 Celsius (1,475 degrees Fahrenheit) for 30 minutes. This is a very severe test sequence, akin to the cask striking a concrete pillar along a highway at a high speed and being engulfed in a very severe and long-lasting fire, and simulates conditions more severe than 99 percent of vehicle accidents (see Figure 50).

Figure 50. Ensuring Safe Spent Fuel Shipping Containers

The impact (free drop and puncture), fire, and water-immersion tests are considered in sequence to determine their cumulative effects on a given package.

Principal Licensing and Inspection Activities

The NRC regulates spent fuel transportation through a combination of safety and security requirements, certification of transportation casks, inspections, and a system of monitoring to ensure that requirements are being met. Specifically, each year, the NRC does the following:

- Conducts about 1,000 transportation safety inspections of fuel, reactor, and materials licensees.
- Reviews, evaluates, and certifies approximately 80 new, renewal, or amended transport package design applications.
- Inspects about 20 dry storage and transport package licensees.
- Reviews and evaluates approximately 150 license applications for the import or export of nuclear materials.

Additional information on materials transportation is available on the NRC website (see the Web Link Index).

DECOMMISSIONING

Decommissioning is the safe removal of a nuclear facility from service and the reduction of residual radioactivity to a level that permits release of the property and termination of the license. The NRC rules establish site-release criteria and provide for unrestricted and, under certain conditions, restricted release of a site.

The NRC regulates the decontamination and decommissioning of materials and fuel cycle facilities,

nuclear power plants, research and test reactors, and uranium recovery facilities, with the ultimate goal of license termination. The NRC terminates approximately 200 materials licenses each year. Most of these license terminations are routine, and the sites require little, if any, remediation to meet the NRC's release criteria for unrestricted access. The decommissioning program focuses on the termination of licenses that are not routine because the sites involve more complex decommissioning activities.

As of April 2010, the following decommissioning facilities were either in safe storage under NRC jurisdiction, or under general license with DOE:

- 12 nuclear power early demonstration reactors
- 12 research and test reactors
- 15 complex decommissioning materials facilities (see Table 15)
- 1 fuel cycle facility
- 11 uranium recovery facilities

See Appendices B and F for lists of complex decommissioning sites and permanently shutdown and decommissioning nuclear power, research, and test reactors.

The 2009 annual report

NUREG-1814, Revision 2, "Status of the NRC Decommissioning Program," provides additional information on the decommissioning programs of the NRC and Agreement States. More information is on the NRC website (see the Web Link Index).

Table 15. NRC-Regulated Complex Material SitesUndergoing Decommissioning

Company	Location		
AAR Manufacturing, Inc. (Brooks & Perkins)	Livonia, MI		
ABB, Inc.	Windsor, CT		
ABC Labs	Columbia, MO		
Army, Department of, Jefferson Proving Ground	Madison, IN		
Babcock & Wilcox SLDA	Vandergrift, PA		
Beltsville Agricultural Research Center	Beltsville, MD		
FMRI	Muskogee, OK		
Kerr-McGee	Cimarron, OK		
Mallinckrodt Chemical, Inc.	St. Louis, MO		
NWI Breckenridge	Breckenridge, MI		
Sigma Aldrich	Maryland Heights, MO		
Stepan Chemical Corporation	Maywood, NJ		
UNC Naval Products	New Haven, CT		
West Valley Demonstration Project	West Valley, NY		
Westinghouse Electric Corporation—Hematite	Festus, MO		

Security and Emergency Preparedness

Left: NRC Chairman Jaczko and staff participating in St. Lucie nuclear power plant's emergency preparedness exercise.

Middle: Nuclear power plant security officers don special equipment for a mock attack drill.

Right: The NRC's Operation Center during Three Mile Island nuclear power plant's emergency preparedness exercise.

OVERVIEW

Nuclear security is a high priority for the NRC. For the last several decades, effective NRC regulation and strong partnerships with a variety of Federal, State, Tribal, and local authorities have ensured effective implementation of security programs at nuclear power plants across the country. In fact, nuclear power plants are likely the best protected private sector facilities in the United States. However, given today's threat environment, the agency recognizes the need for continued vigilance and high levels of security.

In recent years, the NRC has made many enhancements to bolster the security of the Nation's nuclear facilities and radioactive materials. Because nuclear power plants are inherently robust structures, these additional security upgrades largely focus on the following improvements:

- Well-trained and armed security officers
- High-tech equipment and physical barriers
- Greater standoff distances for vehicle checks
- Intrusion detection and surveillance systems
- Tested emergency preparedness and response plans
- Restrictive site access control, including background checks and fingerprinting

Additional layers of security are provided by coordinating and sharing

threat information among the U.S. Department of Homeland Security, the U.S. Federal Bureau of Investigation, intelligence agencies, the U.S. Department of Defense, and local law enforcement.

FACILITY SECURITY

Nuclear power plants and Category I fuel facilities must be able to defend successfully against a set of hypothetical threats that the agency calls the designbasis threat (DBT). This includes threats that challenge a plant's physical security, personnel security, and cyber security. The NRC does not make details of the DBT public because of security concerns. However, the agency continuously evaluates this set of hypothetical threats against real-world intelligence to ensure that the DBT remains current.

To test the adequacy of a nuclear power plant licensee's defenses against the DBT, the NRC conducts rigorous "force-on-force" inspections. During these inspections, exercises are conducted in which a highly trained mock adversary force "attacks" a nuclear facility. Beginning in 2004, the NRC began conducting more challenging and realistic force-on-force exercises that also occur more frequently.

To ensure that facilities meet their security requirements, the NRC inspects nuclear power plants and fuel fabrication facilities. NRC inspectors spend about 8,000 hours a year scrutinizing nuclear power plant and fuel fabrication facility security (excluding force-on-force inspections). Publicly available portions of security-related inspection reports can be found on the NRC website (see the Web Link Index).

CYBER SECURITY

Nuclear facilities use digital and analog systems to monitor, control, and run various types of equipment, and to obtain and store vital information. Protecting these systems and the information they contain from sabotage or malicious use is called "cyber security." All nuclear power plants licensed by the NRC must have a cyber security program. A new cyber security rule, issued in 2009, significantly enhances existing cyber security requirements. The new regulation requires each nuclear power facility to submit a new cyber security plan and implementation timeline for NRC approval. Once the licensee has fully implemented its program, the NRC will conduct a comprehensive inspection on site.

The NRC has formed a cyber security team that includes technology and threat experts who constantly evaluate and identify emerging cyber-related issues that could affect plant systems. This team makes recommendations to other NRC offices and programs on cyber security issues.

MATERIALS SECURITY

The security of radioactive materials is important for a number of reasons. For example, terrorists could use radioactive materials to make a radiological dispersal device such as a dirty bomb. The NRC works with its Agreement States, other Federal agencies, the International Atomic Energy Agency, and licensees to protect radioactive material from theft or diversion. The agency has made improvements and upgrades to the joint NRC-DOE database that tracks the movement and location of certain forms and

Well-trained and armed security officer at a nuclear power plant facility.

quantities of special nuclear material. In early 2009, the NRC deployed its new National Source Tracking System, designed to track the most risk-sensitive sources on a continuous basis. Other improvements allow U.S. Customs and Border Protection agents to promptly validate whether radioactive materials coming into the United States are properly licensed by the NRC.

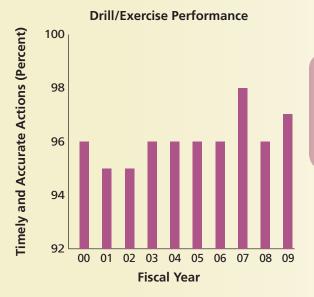
EMERGENCY PREPAREDNESS

Well-developed and practical emergency preparedness plans ensure that a nuclear power plant operator can protect public health and safety in the unlikely event of an emergency.

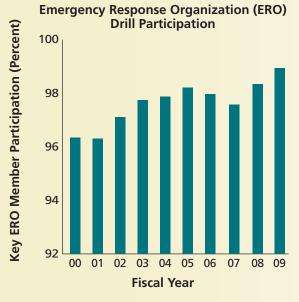
The NRC staff participates in emergency preparedness exercises, some of which include security and terrorism-based scenarios. To form a coordinated system of emergency preparedness and response, as part of these exercises, the NRC works with licensees; Federal agencies; State, Tribal, and local officials; and first responders. This system includes public information, preparations for evacuation, instructions for sheltering, and other actions to protect the residents near nuclear power plants in the event of a serious incident. As a condition of their license, operators of nuclear facilities develop and maintain effective emergency plans and procedures. The NRC inspects licensees to ensure that they are meeting emergency preparedness requirements and evaluate their implementation of those requirements. In addition, the agency monitors performance indicators related to emergency preparedness. (see Figure 51).

The NRC assesses the ability of nuclear power plant operators to protect the public by conducting emergency preparedness exercises. For nuclear power plants, operators are required to conduct full-scale exercises with the NRC, the Federal Emergency Management Agency (FEMA), and State and local officials at least once every 2 years. These exercises test and maintain the skills of the emergency responders and identify and correct any weaknesses. The NRC and FEMA evaluate these exercises. Between these 2-year exercises, nuclear power plant operators self-test their emergency plans in drills that NRC inspectors evaluate.

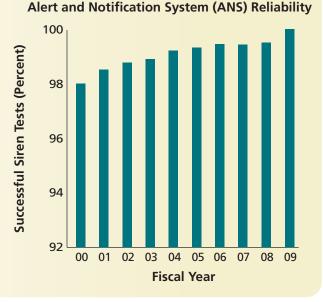
Additional information on emergency preparedness is available on the NRC website (see the Web Link Index).


INCIDENT RESPONSE

Sharing information quickly among the NRC, other Federal agencies, and the nuclear industry is critical to responding promptly to any incident. The NRC staff supports several important Federal incident response centers that coordinate assessments of event-related information. The NRC Headquarters Operations Center, located in the agency's headquarters in Rockville, MD, is staffed around the clock to disseminate information and coordinate response activities. To ensure the timely distribution of threat information, the NRC reviews intelligence reports and assesses suspicious activity.


As described in the Federal National Response Framework, the NRC is the coordinating agency for events occurring at NRC-licensed facilities. In this role, the NRC has technical leadership for the Federal Government's response to an event. As the severity of an event worsens, the U.S. Department of Homeland Security coordinates the overall Federal response to the event.

In response to an incident involving possible releases of radioactive materials, the NRC activates its incident response program at its Headquarters Operations Center and one of its four regional incident response centers. Teams of specialists assemble at the centers to evaluate event information and independently assess the potential impact on public health and safety. The NRC staff provides expert consultation, support, and assistance to State and local public safety officials and keeps the public informed of agency actions. Scientists and engineers at the operations centers analyze the event and evaluate possible recovery strategies. Meanwhile, other NRC experts evaluate the effectiveness of protective actions that the licensee has recommended that State and local officials implement. If needed, the NRC will dispatch a team of technical experts from the responsible regional office to



The percentage of timely and accurate actions taken by plant personnel (emergency classifications, Protective Action Recommendations, and notification to offsite authorities) in drills and actual events during the previous 2 years.

The percentage of participation by key plant personnel in drills or actual events in the previous 2 years, indicating proficiency and readiness to respond to emergencies.

Figure 51. Industry Performance Indicators: Annual Industry Percentages, FY 2000–2009—for 104 Plants (Continued)

The percentage of ANS sirens that successfully operated during periodic tests in the previous year. The result is an indicator of the reliability of the ANS to alert the public in an emergency.

Exercise Participation at NRC Headquarters Operations Center

Once every 2 years, each nuclear power plant performs a full-scale emergency exercise at the plant site. NRC Headquarters participates in about four of these exercises a year.

the site of the incident. Augmenting the NRC's resident inspectors, who work onsite, the team serves as the agency's onsite eyes and ears, allowing a firsthand assessment and face-to-face communications with all participants. The Headquarters Operations Center continues to provide around-the-clock Federal communications, logistical support, and technical analysis throughout the response.

Additional information on incident response is available in NUREG-0728, Revision 4, "NRC Incident Response Plan," issued April 2005 (see the Web Link Index).

Appendices

Left: NRC staff discussing a project within the current research program. Middle: The NRC's Operation Center during an emergency exercise. Right: The NRC conducts a knowledge management initiative throughout the agency to collaborate, capture, and share knowledge to build organizational memory.

ABBRE\ APPEND	/IATIONS USED IN	FW FY	Foster Wheeler fiscal year
/		G&H	Gibbs & Hill
AC	Allis Chalmers	GA	General Atomic
AE	Architect-Engineer	GCR	gas-cooled reactor
AEC	Atomic Energy Commission	GE	General Electric
	(U.S.)	GETR	General Electric Test
AI	Atomics International		Reactor
B&R	Burns & Roe	GHDR	Gibbs & Hill & Durham &
B&W	Babcock & Wilcox		Richardson
BECH	Bechtel	GIL	Gilbert Associates
BLH	Baldwin Lima Hamilton	GPC	Georgia Power Company
BRRT	Brown & Root	HTG	high-temperature, gas
BWR	boiling-water reactor		(reactor)
CE	Combustion Engineering	HWR	pressurized heavy-water
COMM. OP.	date of commercial		reactor
	operation	INEEL	Idaho National
CON TYPE	containment type		Engineering and
DRYAMB	dry, ambient pressure		Environmental Laboratory
DRYSUB	dry, subatmospheric	ISFSI	Independent Spent Fuel
HTG	high-temperature		Storage Installation
	gas-cooled	JONES	J.A. Jones
ICECND	wet, ice condenser	KAIS	Kaiser Engineers
LMFB	liquid metal fast breeder	kW	Kilowatt
MARK 1		LLP	B&W Lowered Loop
MARK 2	wet, Mark II	LMFB	liquid metal fast breeder
MARK 3	wet, Mark III	LR ISSUED	License Renewal Issued
СР	construction permit	LWGR	graphite-moderated
CP ISSUED	date of construction permit		light-water reactor
	issuance	MHI	Mitsubishi Heavy Industries,
CVTR	Carolinas-Virginia Tube		Ltd.
	Reactor	MW	megawatts
CWE	Commonwealth Edison	MWe	megawatts electrical
	Company	MWh	megawatthour
DANI	Daniel International	MWt	megawatts thermal
DBDB	Duke & Bechtel	NIAG	Niagara Mohawk Power
DOE	Department of Energy		Corporation
DPR	demonstration power	NPF	nuclear power facility
	reactor	NRC	U.S. Nuclear Regulatory
DUKE	Duke Power Company		Commission
EIA	Energy Information	NSP	Northern States Power
	Administration (DOE)		Company
EBSO	Ebasco	NSSS	nuclear steam system
ERO	Emergency Response		supplier & design type
	Organization	GE 1	GE Type 1
EVESR	ESADA (Empire States	GE 2	GE Type 2
	Atomic Development	GE 3	GE Type 3
	Associates)	GE 4	GE Type 4
	Vallecitos Experimental	GE 5	GE Type 5
	Superheat Reactor	GE 6	GE Type 6
EXP. DATE	expiration date of		P Westinghouse Two-Loop
	operating license		P Westinghouse Three-Loop
FBR	fast breeder reactor	WEST 4L	P Westinghouse Four-Loop
FLUR	Fluor Pioneer	ОСМ	organically cooled and
FR	Federal Register		moderated

OL OL ISSUED	operating license date of latest full power	SCGM	sodium-cooled, graphite-moderated
OL-FP	operating license operating license—full power	SI	système internationale (d'unités) (International System of Units)
OL-LP	operating license—low power	SSI	Southern Services Incorporated
PG&E	Pacific Gas & Electric	STP	South Texas Project
	Company	TNPG	The Nuclear Power Group
PHWR	pressurized heavy-water-	TRIGA	Training Reactor and
	moderated and cooled		Isotopes Production,
PSE	Pioneer Services &		General Atomics
	Engineering	TVA	Tennessee Valley Authority
PSEG	Public Service Electric and	UE&C	United Engineers &
	Gas Company		Constructors
PTHW	pressure tube heavy water	USEC	U.S. Enrichment Corporation
PUBS	Public Service Electric & Gas Company	VBWR	Vallecitos Boiling-Water Reactor
PWR	pressurized-water reactor	WDCO	Westinghouse Development
RLP	B&W Raised Loop		Corporation
S&L	Sargent & Lundy	WEST	Westinghouse Electric
S&W	Stone & Webster	WMT	waste management tank
SCF	sodium-cooled fast (reactor)		

State and Territory Abbreviations

State/Possession	Abbreviation	State/Possession	Abbreviation
Alabama	AL	Montana	MT
Alaska	AK	Nebraska	NE
Arizona	AZ	Nevada	NV
Arkansas	AR	New Hampshire	NH
California	CA	New Jersey	NJ
Colorado	CO	New Mexico	NM
Connecticut	CT	New York	NY
Delaware	DE	North Carolina	NC
District of Columbia	DC	North Dakota	ND
Florida	FL	Ohio	OH
Georgia	GA	Oklahoma	OK
Guam	GU	Oregon	OR
Hawaii	HI	Pennsylvania	PA
Idaho	ID	Puerto Rico	PR
Illinois	IL	Rhode Island	RI
Indiana	IN	South Carolina	SC
lowa	IA	South Dakota	SD
Kansas	KS	Tennessee	TN
Kentucky	KY	Texas	TX
Louisiana	LA	Utah	UT
Maine	ME	Vermont	VT
Maryland	MD	Virgin Islands	VI
Massachusetts	MA	Virginia	VA
Michigan	MI	Washington	WA
Minnesota	MN	West Virginia	WV
Mississippi	MS	Wisconsin	WI
Missouri	MO	Wyoming	WY

APPENDIX A U.S. Commercial Nuclear Power Reactors

Operating Reactors

		5	Licensed		
Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Arkansas Nuclear One, Unit 1 Entergy Operations, Inc. London, AR (6 miles WNW of Russellville, AR) 050-00313 www.nrc.gov/info-finder/reactor/ano1.htm	IV nl	PWR-DRYAMB B&W LLP BECH BECH	2,568 843	12/06/1968 05/21/1974 12/19/1974 06/20/2001 05/20/2034	92 78 102 94 83 99
Arkansas Nuclear One, Unit 2 Entergy Operations, Inc. London, AR (6 miles WNW of Russellville, AR) 050-00368 www.nrc.gov/info-finder/reactor/ano2.htm	IV	PWR-DRYAMB CE BECH BECH	3,026 995	12/06/1972 09/01/1978 03/26/1980 06/30/2005 07/17/2038	99 91 90 99 91 90
Beaver Valley Power Station, Unit 1 FirstEnergy Nuclear Operating Co. Shippingport, PA (17 miles W of McCandless, PA) 050-00334 www.nrc.gov/info-finder/reactor/bv1.html	I	PWR-DRYAMB WEST 3LP S&W S&W	2,900 940	06/26/1970 07/02/1976 10/01/1976 11/05/2009 01/29/2036	93 101 78 95 101 92
Beaver Valley Power Station, Unit 2 FirstEnergy Nuclear Operating Co. Shippingport, PA (17 miles W of McCandless, PA) 050-00412 www.nrc.gov/info-finder/reactor/bv2.html	I	PWR-DRYAMB WEST 3LP S&W S&W	2,900 940	05/03/1974 08/14/1987 11/17/1987 11/05/2009 05/27/2047	100 93 87 103 87 84
Braidwood Station, Unit 1 Exelon Generation Co., LLC Braceville, IL (20 miles SSW of Joilet, IL) 050-00456 www.nrc.gov/info-finder/reactor/brai1.htm	III nl	PWR-DRYAMB WEST 4LP S&L CWE	3,586.6 1,178	12/31/1975 07/02/1987 07/29/1988 N/A 10/17/2026	95 100 96 92 101 95
Braidwood Station, Unit 2 Exelon Generation Co., LLC Braceville, IL (20 miles SSW of Joilet, IL) 050-00457 www.nrc.gov/info-finder/reactor/brai2.htm	III nl	PWR-DRYAMB WEST 4LP S&L CWE	3,586.6 1,152	12/31/1975 05/20/1988 10/17/1988 N/A 12/18/2027	101 94 95 100 92 93
Browns Ferry Nuclear Plant, Unit 1 Tennessee Valley Authority Athens, AL (32 miles W of Huntsville, AL) 050-00259 www.nrc.gov/info-finder/reactor/bf1.html	II	BWR-MARK 1 GE 4 TVA TVA	3,458 1,065	05/10/1967 12/20/1973 08/01/1974 05/04/2006 12/20/2033	- - 49 88 94

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Browns Ferry Nuclear Plant, Unit 2 Tennessee Valley Authority [†] Athens, AL (32 miles W of Huntsville, AL) 050-00260 www.nrc.gov/info-finder/reactor/bf2.htm	11	BWR-MARK 1 GE 4 TVA TVA	3,458 1,104	05/10/1967 08/02/1974 03/01/1975 05/04/2006 06/28/2034	100 90 94 78 98 94
Browns Ferry Nuclear Plant, Unit 3 Tennessee Valley Authority [†] Athens, AL (32 miles W of Huntsville, AL) 050-00296 www.nrc.gov/info-finder/reactor/bf3.htm	11	BWR-MARK 1 GE 4 TVA TVA	3,458 1,115	07/31/1968 08/18/1976 03/01/1977 05/04/2006 07/02/2036	89 94 89 93 81 95
Brunswick Steam Electric Plant, Unit 1 Carolina Power & Light Co. Southport, NC (40 miles S of Wilmington, NC) 050-00325 www.nrc.gov/info-finder/reactor/bru1.htr	ll nl	BWR-MARK 1 GE 4 UE&C BRRT	2,923 938	02/07/1970 09/08/1976 03/18/1977 06/26/2006 09/08/2036	86 94 87 96 85 98
Brunswick Steam Electric Plant, Unit 2 Carolina Power & Light Co. Southport, NC (40 miles S of Wilmington, NC) 050-00324 www.nrc.gov/info-finder/reactor/bru2.htr	ll nl	BWR-MARK 1 GE 4 UE&C BRRT	2,923 937	02/07/1970 12/27/1974 11/03/1975 06/26/2006 12/27/2034	98 86 90 87 95 80
Byron Station, Unit 1 Exelon Generation Co., LLC Byron, IL (17 miles SW of Rockford, IL) 050-00454 www.nrc.gov/info-finder/reactor/byro1.ht	III :ml	PWR-DRYAMB WEST 4LP S&L CWE	3,586.6 1,164	12/31/1975 02/14/1985 09/16/1985 N/A 10/31/2024	102 94 91 98 95 94
Byron Station, Unit 2 Exelon Generation Co., LLC Byron, IL (17 miles SW of Rockford, IL) 050-00455 www.nrc.gov/info-finder/reactor/byro2.ht	III :ml	PWR-DRYAMB WEST 4LP S&L CWE	3,586.6 1,136	12/31/1975 01/30/1987 08/02/1987 N/A 11/06/2026	96 96 102 89 96 102
Callaway Plant Union Electric Co. Fulton, MO (25 miles ENE of Jefferson City, MO) 050-00483 www.nrc.gov/info-finder/reactor/call.htm	IV	PWR-DRYAMB WEST 4LP BECH DANI	3,565 1,236	04/16/1976 10/18/1984 12/19/1984 N/A 10/18/2024	78 77 97 90 90 98

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Regior	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Calvert Cliffs Nuclear Power Plant, Unit Calvert Cliffs Nuclear Power Plant Inc. Lusby, MD (40 miles S of Annapolis, MD) 050-00317 www.nrc.gov/info-finder/reactor/calv1.k		PWR-DRYAMB CE BECH BECH	2,737 867	07/07/1969 07/31/1974 05/08/1975 03/23/2000 07/31/2034	92 100 84 99 93 98
Calvert Cliffs Nuclear Power Plant, Unit Calvert Cliffs Nuclear Power Plant Inc. Lusby, MD (40 miles S of Annapolis, MD) 050-00318 www.nrc.gov/info-finder/reactor/calv2.f		PWR-DRYAMB CE BECH BECH	2,737 867	07/07/1969 08/13/1976 04/01/1977 03/23/2000 08/13/2036	100 94 98 90 99 93
Catawba Nuclear Station, Unit 1 Duke Energy Carolinas, LLC York, SC (18 miles S of Charlotte, NC) 050-00413 www.nrc.gov/info-finder/reactor/cat1.h	li tml	PWR-ICECND WEST 4LP DUKE DUKE	3,411 1,129	08/07/1975 01/17/1985 06/29/1985 12/05/2003 12/05/2043	98 93 82 102 89 91
Catawba Nuclear Station, Unit 2 Duke Energy Carolinas, LLC York, SC (18 miles S of Charlotte, NC) 050-00414 www.nrc.gov/info-finder/reactor/cat2.h	ll tml	PWR-ICECND WEST 4LP DUKE DUKE	3,411 1,129	08/07/1975 05/15/1986 08/19/1986 12/05/2003 12/05/2043	89 102 89 84 103 90
Clinton Power Station, Unit 1 Exelon Generation Co., LLC Clinton, IL (23 miles SSE of Bloomington, IL) 050-00461 www.nrc.gov/info-finder/reactor/clin.ht	III ml	BWR-MARK 3 GE 6 S&L BALD	3,473 1,065	02/24/1976 04/17/1987 11/24/1987 N/A 09/29/2026	88 94 90 101 99 97
Columbia Generating Station Energy Northwest Richland, WA (20 miles NNE of Pasco, WA) 050-00397 www.nrc.gov/info-finder/reactor/wash2	IV html	BWR-MARK 2 GE 5 B&R BECH	3,486 1,190	03/19/1973 04/13/1984 12/13/1984 N/A 12/20/2023	91 83 94 82 93 67
Comanche Peak Steam Electric Station, Uni Luminant Generation Co., LLC Glen Rose, TX (40 miles SW of Fort Worth, TX) 050-00445 www.nrc.gov/info-finder/reactor/cp1.ht		PWR-DRYAMB WEST 4LP G&H BRRT	3,612 1,200	12/19/1974 04/17/1990 08/13/1990 N/A 02/08/2030	90 92 102 185 96 100

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer r Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Comanche Peak Steam Electric Station, Unit 2 Luminant Generation Company, LLC Glen Rose, TX (40 miles SW of Fort Worth, TX) 050-00446 www.nrc.gov/info-finder/reactor/cp2.html		PWR-DRYAMB WEST 4LP BECH BRRT	3,458 1,150	12/19/1974 04/06/1993 08/03/1993 N/A 02/02/2033	99 92 95 102 95 94
Cooper Nuclear Station Nebraska Public Power District Brownville, NE (23 miles S of Nebraska City, NE) 050-00298 www.nrc.gov/info-finder/reactor/cns.html	IV	BWR-MARK 1 GE 4 B&R B&R	2,419 830	06/04/1968 01/18/1974 07/01/1974 N/A 01/18/2014	93 89 89 100 90 72
Crystal River Nuclear Generating Plant, Unit Florida Power Corp. Crystal River, FL (80 miles N of Tampa, FL) 050-00302 www.nrc.gov/info-finder/reactor/cr3.html		PWR-DRYAMB B&W LLP GIL JONES	2,609 838	09/25/1968 12/03/1976 03/13/1977 N/A 12/03/2016	90 99 87 95 91 95
Davis-Besse Nuclear Power Station, Unit 1 FirstEnergy Nuclear Operating Co. Oak Harbor, OH (21 miles ESE of Toledo, OH) 050-00346 www.nrc.gov/info-finder/reactor/davi.htm		PWR-DRYAMB B&W LLP BECH	2,817 893	03/24/1971 04/22/1977 07/31/1978 N/A 04/22/2017	75 94 82 99 97 99
Diablo Canyon Nuclear Power Plant, Unit Pacific Gas & Electric Co. Avila Beach, CA (12 miles WSW of San Luis Obispo, CA) 050-00275 www.nrc.gov/info-finder/reactor/diab1.html		PWR-DRYAMB WEST 4LP PG&E PG&E	3,411 1,151	04/23/1968 11/02/1984 05/07/1985 N/A 11/02/2024	76 87 101 90 98 84
Diablo Canyon Nuclear Power Plant, Unit Pacific Gas & Electric Co. Avila Beach, CA 12 miles WSW of San Luis Obispo, CA) 050-00323 www.nrc.gov/info-finder/reactor/diab2.html		PWR-DRYAMB WEST 4LP PG&E PG&E	3,411 1,149	12/09/1970 08/26/1985 03/13/1986 N/A 08/26/2025	84 99 87 99 74 84
Donald C. Cook Nuclear Plant, Unit 1 Indiana Michigan Power Co. Bridgman, MI (13 miles S of Benton Harbor, MI) 050-00315 www.nrc.gov/info-finder/reactor/cook1.ht	III tml	PWR-ICECND WEST 4LP AEP AEP	3,304 1,009	03/25/1969 10/25/1974 08/28/1975 08/30/2005 10/25/2034	99 91 81 103 64 3

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Donald C. Cook Nuclear Plant, Unit 2 Indiana Michigan Power Co. Bridgman, MI (13 miles S of Benton Harbor, MI) 050-00316 www.nrc.gov/info-finder/reactor/cook2	III .html	PWR-ICECND WEST 4LP AEP AEP	3,468 1,060	03/25/1969 12/23/1977 07/01/1978 08/30/2005 12/23/2037	84 100 89 86 101 87
Dresden Nuclear Power Station, Unit 2 Exelon Generation Co., LLC Morris, IL (25 miles SW of Joliet II) 050-00237 www.nrc.gov/info-finder/reactor/dres2.	III html	BWR-MARK 1 GE 3 S&L UE&C	2,957 867	01/10/1966 02/20/1991 ^A 06/09/1970 10/28/2004 12/22/2029	78 87 96 92 98 91
Dresden Nuclear Power Station, Unit 3 Exelon Generation Co., LLC Morris, IL (25 miles SW of Joliet II) 050-00249 www.nrc.gov/info-finder/reactor/dres3.	III html	BWR-MARK 1 GE 3 S&L UE&C	2,957 867	10/14/1966 01/12/1971 11/16/1971 10/28/2004 01/12/2031	85 93 94 100 93 97
Duane Arnold Energy Center NextEra Energy Duane Arnold, LLC Palo, IA (8 miles NW of Cedar Rapids, IA) 050-00331 www.nrc.gov/info-finder/reactor/duan.	III html	BWR-MARK 1 GE 4 BECH BECH BECH	1,912 640	06/22/1970 02/22/1974 02/01/1975 N/A 02/21/2014	100 89 100 89 103 92
Edwin I. Hatch Nuclear Plant, Unit 1 Southern Nuclear Operating Co. Baxley, GA (20 miles S of Vidalia, GA) 050-00321 www.nrc.gov/info-finder/reactor/hat1.h	ll Itml	BWR-MARK 1 GE 4 BECH GPC	2,804 876	09/30/1969 10/13/1974 12/31/1975 01/15/2002 08/06/2034	90 91 84 98 84 94
Edwin I. Hatch Nuclear Plant, Unit 2 Southern Nuclear Operating Co. Baxley, GA (20 miles S of Vidalia, GA) 050-00366 www.nrc.gov/info-finder/reactor/hat2.h	II	BWR-MARK 1 GE 4 BECH GPC	2,804 883	12/27/1972 06/13/1978 09/05/1979 01/15/2002 06/13/2038	97 87 99 87 96 67
Fermi, Unit 2 The Detroit Edison Co. Newport, MI (25 miles NE of Toledo, OH) 050-00341 www.nrc.gov/info-finder/reactor/ferm2	III .html	BWR-MARK 1 GE 4 S&L DANI	3,430 1,122	09/26/1972 07/15/1985 01/23/1988 N/A 03/20/2025	87 90 76 85 98 75

A: AEC issued a provisional OL on 12/22/1969 allowing commercial operation. The NRC issued a full-term OL on 02/20/1991.

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address		NRC Region	Con Type NSSS Architect Construc	Engineer	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Fort Calhoun Station, Unit 1 Omaha Public Power District Ft. Calhoun, NE (19 miles N of Omaha, NE) 050-00285 www.nrc.gov/info-finder/react	or/fcs.html	IV	PWR-D CE GHDR GHDR	RYAMB	1,500 482	06/07/1968 08/09/1973 09/26/1973 11/04/2003 08/09/2033	97 70 74 104 83 100
Grand Gulf Nuclear Station, Ur Entergy Operations, Inc. Port Gibson, MS (20 miles SW of Vicksburg, MS) 050-00416 www.nrc.gov/info-finder/react)	IV	BWR-M GE 6 BECH BECH	IARK 3	3,898 1,297	09/04/1974 11/01/1984 07/01/1985 N/A 11/01/2024	92 91 94 84 86 100
H.B. Robinson Steam Electric P Carolina Power & Light Co., Hartsville, SC (26 miles NW of Florence, SC) 050-00261 www.nrc.gov/info-finder/react			PWR-D WEST 3 EBSO EBSO	PRYAMB BLP	2,339 710	04/13/1967 07/31/1970 03/07/1971 04/19/2004 07/31/2030	92 93 104 92 87 104
Hope Creek Generating Station PSEG Nuclear, LLC Hancocks Bridge, NJ (18 miles SE of Wilmington, DE 050-00354 www.nrc.gov/info-finder/react	E)	l nl	BWR-N GE 4 BECH BECH	1ARK 1	3,840 1,061	11/04/1974 07/25/1986 12/20/1986 N/A 04/11/2026	65 86 92 87 108 95
Indian Point Nuclear Generatir Entergy Nuclear Operations, In Buchanan, NY (24 miles N of New York City, N 050-00247 www.nrc.gov/info-finder/react	NY)	I	PWR-D WEST 4 UE&C WDCO		3,216 1,020	10/14/1966 09/28/1973 08/01/1974 N/A 09/28/2013	88 99 89 99 91 98
Indian Point Nuclear Generatir Entergy Nuclear Operations, In Buchanan, NY (24 miles N of New York City, N 050-00286 www.nrc.gov/info-finder/react	NY)	I	PWR-D WEST 4 UE&C WDCO		3,216 1,025	08/13/1969 12/12/1975 08/30/1976 N/A 12/12/2015	101 90 100 87 107 85
James A. FitzPatrick Nuclear Po Entergy Nuclear Operations, In Scriba, NY (6 miles NE of Oswego, NY) 050-00333 www.nrc.gov/info-finder/react	nc.	I	BWR-M GE 4 S&W S&W	IARK 1	2,536 852	05/20/1970 10/17/1974 07/28/1975 09/08/2008 10/17/2034	87 95 91 93 89 99

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Joseph M. Farley Nuclear Plant, Unit 1 Southern Nuclear Operating Co. Columbia, AL (18 miles S of Dothan, AL) 050-00348 www.nrc.gov/info-finder/reactor/far1.html	11	PWR-DRYAMB WEST 3LP SSI DANI	2,775 851	08/16/1972 06/25/1977 12/01/1977 05/12/2005 06/25/2037	86 99 86 88 97 90
Joseph M. Farley Nuclear Plant, Unit 2 Southern Nuclear Operating Co. Columbia, AL (18 miles S of Dothan, AL) 050-00364 www.nrc.gov/info-finder/reactor/far2.html	11	PWR-DRYAMB WEST 3LP SSI BECH	2,775 860	08/16/1972 03/31/1981 07/30/1981 05/12/2005 03/31/2041	89 84 101 87 90 96
Kewaunee Power Station Dominion Energy Kewaunee, Inc. Kewaunee, WI (27 miles ESE of Green Bay, WI) 050-00305 www.nrc.gov/info-finder/reactor/kewa.htm	III nl	PWR-DRYAMB WEST 2LP PSE PSE	1,772 556	08/06/1968 12/21/1973 06/16/1974 N/A 12/21/2013	79 63 75 95 90 93
LaSalle County Station, Unit 1 Exelon Generation Co., LLC Marseilles, IL (11 miles SE of Ottawa, IL) 050-00373 www.nrc.gov/info-finder/reactor/lasa1.htm	III nl	BWR-MARK 2 GE 5 S&L CWE	3,489 1,118	09/10/1973 04/17/1982 01/01/1984 N/A 04/17/2022	92 100 93 99 100 99
LaSalle County Station, Unit 2 Exelon Generation Co., LLC Marseilles, IL (11 miles SE of Ottawa, IL) 050-00374 www.nrc.gov/info-finder/reactor/lasa2.htm	III nl	BWR-MARK 2 GE 5 S&L CWE	3,489 1,120	09/10/1973 12/16/1983 10/19/1984 N/A 12/16/2023	101 91 102 95 94 93
Limerick Generating Station, Unit 1 Exelon Generation Co., LLC Limerick, PA (21 miles NW of Philadelphia, PA) 050-00352 www.nrc.gov/info-finder/reactor/lim1.htm	1	BWR-MARK 2 GE 4 BECH BECH BECH	3,458 1,134	06/19/1974 08/08/1985 02/01/1986 N/A 10/26/2024	95 99 93 101 95 101
Limerick Generating Station, Unit 2 Exelon Generation Co., LLC Limerick, PA (21 miles NW of Philadelphia, PA) 050-00353 www.nrc.gov/info-finder/reactor/lim2.htm	1	BWR-MARK 2 GE 4 BECH BECH	3,458 1,134	06/19/1974 08/25/1989 01/08/1990 N/A 06/22/2029	99 91 100 91 101 94

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
McGuire Nuclear Station, Unit 1 Duke Energy Carolinas, LLC Huntsville, NC (17 miles N of Charlotte, NC) 050-00369 www.nrc.gov/info-finder/reactor/mo	ll :g1.html	PWR-ICECND WEST 4LP DUKE DUKE	3,411 1,100	02/23/1973 07/08/1981 12/01/1981 12/05/2003 06/12/2041	85 93 103 79 87 104
McGuire Nuclear Station, Unit 2 Duke Energy Carolinas, LLC Huntsville, NC (17 miles N of Charlotte, NC) 050-00370 www.nrc.gov/info-finder/reactor/mo	II :g2.html	PWR-ICECND WEST 4LP DUKE DUKE	3,411 1,100	02/23/1973 05/27/1983 03/01/1984 12/05/2003 03/03/2043	103 89 87 103 90 94
Millstone Power Station, Unit 2 Dominion Nuclear Connecticut, Inc. Waterford, CT (3.2 miles WSW of New London, CT) 050-00336 www.nrc.gov/info-finder/reactor/mi)	PWR-DRYAMB CE BECH BECH	2,700 884	12/11/1970 09/26/1975 12/26/1975 11/28/2005 07/31/2035	98 88 84 100 86 81
Millstone Power Station, Unit 3 Dominion Nuclear Connecticut, Inc. Waterford, CT (3.2 miles WSW of New London, CT) 050-00423 www.nrc.gov/info-finder/reactor/mi)	PWR-DRYSUB WEST 4LP S&W S&W	3,650 1,227	08/09/1974 01/31/1986 04/23/1986 11/28/2005 11/25/2045	88 86 100 86 88 105
Monticello Nuclear Generating Plan Northern States Power Company Monticello, MN (35 miles NW of Minneapolis, MN) 050-00263 www.nrc.gov/info-finder/reactor/mo		BWR-MARK 1 GE 3 BECH BECH	1,775 572	06/19/1967 01/09/1981 ^B 06/30/1971 11/08/2006 09/08/2030	101 89 101 84 97 83
Nine Mile Point Nuclear Station, Un Nine Mile Point Nuclear Station, LLC Scriba, NY (6 miles NE of Oswego, NY) 050-00220 www.nrc.gov/info-finder/reactor/nm	2	BWR-MARK 1 GE 2 NIAG S&W	1,850 621	04/12/1965 12/26/1974 12/01/1969 10/31/2006 08/22/2029	92 85 98 88 98 98 92
Nine Mile Point Nuclear Station, Un Nine Mile Point Nuclear Station, LLC Scriba, NY (6 miles NE of Oswego, NY) 050-00410 www.nrc.gov/info-finder/reactor/nn	2	BWR-MARK 2 GE 5 S&W S&W	3,467 1,140	06/24/1974 07/02/1987 03/11/1988 10/31/2006 10/31/2046	86 100 90 92 90 99

B: AEC issued a provisional OL on 09/08/1970 allowing commercial operation. The NRC issued a full-term OL on 01/09/1981.

C: AEC issued a provisional OL on 08/22/1969 allowing commercial operation. The NRC issued a full-term OL on 12/26/1974.

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*		2004- 2009** Capacity Factor (Percent)
North Anna Power Station, Unit 1 Virginia Electric & Power Co. Louisa, VA (40 miles NW of Richmond, VA) 050-00338 www.nrc.gov/info-finder/reactor/na1.ht	li tml	PWR-DRYSUB WEST 3LP S&W S&W	2,940 981	02/19/1971 04/01/1978 06/06/1978 03/20/2003 04/01/2038	91 95 88 89 101 92
North Anna Power Station, Unit 2 Virginia Electric & Power Co. Louisa, VA (40 miles NW of Richmond, VA) 050-00339 www.nrc.gov/info-finder/reactor/na2.ht	ll tml	PWR-DRYSUB WEST 3LP S&W S&W	2,940 973	02/19/1971 08/21/1980 12/14/1980 03/20/2003 08/21/2040	92 87 100 85 82 100
Oconee Nuclear Station, Unit 1 Duke Energy Carolinas, LLC Seneca, SC (30 miles W of Greenville, SC) 050-00269 www.nrc.gov/info-finder/reactor/oco1.k	ll ntml	PWR-DRYAMB B&W LLP DBDB DUKE	2,568 846	11/06/1967 02/06/1973 07/15/1973 05/23/2000 02/06/2033	98 91 79 99 84 85
Oconee Nuclear Station, Unit 2 Duke Energy Carolinas, LLC Seneca, SC (30 miles W of Greenville, SC) 050-00270 www.nrc.gov/info-finder/reactor/oco2.f	ll ntml	PWR-DRYAMB B&W LLP DBDB DUKE	2,568 846	11/06/1967 10/06/1973 09/09/1974 05/23/2000 10/06/2033	76 90 100 91 86 103
Oconee Nuclear Station, Unit 3 Duke Energy Carolinas, LLC Seneca, SC (30 miles W of Greenville, SC) 050-00287 www.nrc.gov/info-finder/reactor/oco3.h	ll ntml	PWR-DRYAMB B&W LLP DBDB DUKE	2,568 846	11/06/1967 07/19/1974 12/16/1974 05/23/2000 07/19/2034	77 98 91 87 102 94
Oyster Creek Nuclear Generating Static Exelon Generation Co., LLC Forked River, NJ (9 miles S of Toms River, NJ) 050-00219 www.nrc.gov/info-finder/reactor/oc.html	n I	BWR-MARK 1 GE 2 B&R B&R	1,930 619	12/15/1964 07/02/1991 ^D 12/01/1969 04/08/2009 04/09/2029	89 99 86 94 83 92
Palisades Nuclear Plant Entergy Nuclear Operations, Inc. Covert, MI (5 miles S of South Haven, MI) 050-00255 www.nrc.gov/info-finder/reactor/pali.ht	III	PWR-DRYAMB CE BECH BECH	2,565 778	03/14/1967 03/24/1971 12/31/1971 01/17/2007 03/24/2031	92 79 98 86 99 90

D: AEC issued a provisional OL on 04/09/1969 allowing commercial operation. The NRC issued a full-term OL on 12/01/1969.

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer r Capacity (MW)*		2004- 2009** Capacity Factor (Percent)
Palo Verde Nuclear Generating Station, Unit Arizona Public Service Company Wintersburg, AZ (50 miles W of Phoenix, AZ) 050-00528 www.nrc.gov/info-finder/reactor/palo1.html		PWR-DRYAMB CE80-2L BECH BECH	3,990 1,335	05/25/1976 06/01/1985 01/28/1986 N/A 06/01/2025	85 63 42 77 86 101
Palo Verde Nuclear Generating Station, Unit Arizona Public Service Company Wintersburg, AZ (50 miles W of Phoenix, AZ) 050-00529 www.nrc.gov/info-finder/reactor/palo2.html		PWR-DRYAMB CE80-2L BECH BECH	3,990 1,335	05/25/1976 04/24/1986 09/19/1986 N/A 04/24/2026	92 82 85 95 74 83
Palo Verde Nuclear Generating Station, Unit Arizona Public Service Company Wintersburg, AZ (50 miles W of Phoenix, AZ) 050-00530 www.nrc.gov/info-finder/reactor/palo3.h		PWR-DRYAMB COMB CE80-2L BECH BECH		05/25/1976 11/25/1987 01/08/1988 N/A 11/25/2027	75 84 86 64 97 83
Peach Bottom Atomic Power Station, Unit Exelon Generation Co., LLC Delta, PA (17.9 miles S of Lancaster, PA) 050-00277 www.nrc.gov/info-finder/reactor/pb2.htm		BWR-MARK 1 GE 4 BECH BECH	3,514 1,112	01/31/1968 10/25/1973 07/05/1974 05/07/2003 08/08/2033	91 98 93 101 89 102
Peach Bottom Atomic Power Station, Unit Exelon Generation Co., LLC Delta, PA (17.9 miles S of Lancaster, PA) 050-00278 www.nrc.gov/info-finder/reactor/pb3.htr		BWR-MARK 1 GE 4 BECH BECH	3,514 1,112	01/31/1968 07/02/1974 12/23/1974 05/07/2003 07/02/2034	102 91 102 93 93 89
Perry Nuclear Power Plant, Unit 1 FirstEnergy Nuclear Operating Co. Perry, OH (35 miles NE of Cleveland, OH) 050-00440 www.nrc.gov/info-finder/reactor/perr1.h	III 1tml	BWR-MARK 3 GE 6 GIL KAIS	3,758 1,261	05/03/1977 11/13/1986 11/18/1987 N/A 03/18/2026	94 71 97 75 98 67
Pilgrim Nuclear Power Station Entergy Nuclear Operations, Inc. Plymouth, MA (38 miles SE of Boston, MA) 050-00293 www.nrc.gov/info-finder/reactor/pilg.htr	l ml	BWR-MARK 1 GE 3 BECH BECH	2,028 685	08/26/1968 06/08/1972 12/01/1972 N/A 06/08/2012	99 91 97 85 97 90

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Point Beach Nuclear Plant, Unit 1 NextEra Energy Point Beach, LLC Two Rivers, WI (13 miles NNW of Manitowoc, WI) 050-00266 www.nrc.gov/info-finder/reactor/poin1	III .html	PWR-DRYAMB WEST 2LP BECH BECH	1,540 512	07/19/1967 10/05/1970 12/21/1970 12/22/2005 10/05/2030	81 81 100 85 87 98
Point Beach Nuclear Plant, Unit 2 NextEra Energy Point Beach, LLC Two Rivers, WI (13 miles NNW of Manitowoc, WI) 050-00301 www.nrc.gov/info-finder/reactor/poin2.	III .html	PWR-DRYAMB WEST 2LP BECH BECH	1,540 514	07/25/1968 03/08/1973 ^E 10/01/1972 12/22/2005 03/08/2033	97 72 91 99 89 84
Prairie Island Nuclear Generating Plant, Un Northern States Power Co.– Minnesota Welch, MN (28 miles SE of Minneapolis, MN) 050-00282 www.nrc.gov/info-finder/reactor/prai1.		PWR-DRYAMB WEST 2LP FLUR NSP	1,650 551	06/25/1968 04/05/1974 12/16/1973 N/A 08/09/2013	79 99 85 92 84 97
Prairie Island Nuclear Generating Plant, Un Northern States Power Co.– Minnesota Welch, MN (28 miles SE of Minneapolis, MN) 050-00306 www.nrc.gov/info-finder/reactor/prai2.		PWR-DRYAMB WEST 2LP FLUR NSP	1,650 545	06/25/1968 10/29/1974 12/21/1974 N/A 10/29/2014	102 84 84 93 85 97
Quad Cities Nuclear Power Station, Uni Exelon Generation Co., LLC Cordova, IL (20 miles NE of Moline, IL) 050-00254 www.nrc.gov/info-finder/reactor/quad1		BWR-MARK 1 GE 3 S&L UE&C	2,957 882	02/15/1967 12/14/1972 02/18/1973 10/28/2004 12/14/2032	85 83 89 92 96 82
Quad Cities Nuclear Power Station, Uni Exelon Generation Co., LLC Cordova, IL (20 miles NE of Moline, IL) 050-00265 www.nrc.gov/info-finder/reactor/quad2		BWR-MARK 1 GE 3 S&L UE&C	2,957 882	02/15/1967 12/14/1972 03/10/1973 10/28/2004 12/14/2032	81 93 86 99 86 91
River Bend Station, Unit 1 Entergy Operations, Inc. St. Francisville, LA (24 miles NNW of Baton Rouge, LA) 050-00458 www.nrc.gov/info-finder/reactor/rbs1.h	IV tml	BWR-MARK 3 GE 6 S&W S&W	3,091 989	03/25/1977 11/20/1985 06/16/1986 N/A 08/29/2025	87 93 88 85 82 113

E: AEC issued a provisional OL on 11/18/1971. The NRC issued a full-term OL on 03/08/1973.

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
R.E. Ginna Nuclear Power Plant R.E. Ginna Nuclear Power Plant, LLC Ontario, NY (20 miles NE of Rochester, NY) 050-00244 www.nrc.gov/info-finder/reactor/ginn.	l	PWR-DRYAMB WEST 2LP GIL BECH	1,775 498	04/25/1966 09/19/1969 07/01/1970 05/19/2004 09/18/2029	99 92 95 113 109 91
St. Lucie Plant, Unit 1 Florida Power & Light Co. Jensen Beach, FL (10 miles SE of Ft. Pierce, FL) 050-00335 www.nrc.gov/info-finder/reactor/stl1.h	ll Itml	PWR-DRYAMB CE EBSO EBSO	2,700 839	07/01/1970 03/01/1976 12/21/1976 10/02/2003 03/01/2036	86 83 102 85 91 100
St. Lucie Plant, Unit 2 Florida Power & Light Co. Jensen Beach, FL (10 miles SE of Ft. Pierce, FL) 050-00389 www.nrc.gov/info-finder/reactor/stl2.h	ll	PWR-DRYAMB CE EBSO EBSO	2,700 839	05/02/1977 06/10/1983 08/08/1983 10/02/2003 04/06/2043	92 86 82 70 99 80
Salem Nuclear Generating Station, Un PSEG Nuclear, LLC Hancocks Bridge, NJ (18 miles SE of Wilmington, DE) 050-00272 http://www.nrc.gov/info-finder/reactor		PWR-DRYAMB WEST 4LP PUBS UE&C	3,459 1,174	09/25/1968 12/01/1976 06/30/1977 N/A 08/13/2016	72 92 99 89 91 99
Salem Nuclear Generating Station, Un PSEG Nuclear, LLC Hancocks Bridge, NJ (18 miles SE of Wilmington, DE) 050-00311 http://www.nrc.gov/info-finder/reactor		PWR-DRYAMB WEST 4LP PUBS UE&C	3,459 1,130	09/25/1968 05/20/1981 10/13/1981 N/A 04/18/2020	88 90 92 98 83 93
San Onofre Nuclear Generating Station, L Southern California Edison Co. San Clemente, CA (45 miles SE of Long Beach, CA) 050-00361 www.nrc.gov/info-finder/reactor/sano.		PWR-DRYAMB CE BECH BECH	3,438 1,070	10/18/1973 02/16/1982 08/08/1983 N/A 02/16/2022	86 95 72 89 91 60
San Onofre Nuclear Generating Station, U Southern California Edison Co. San Clemente, CA (45 miles SE of Long Beach, CA) 050-00362 www.nrc.gov/info-finder/reactor/sano.		PWR-DRYAMB CE BECH BECH	3,438 1,080	10/18/1973 11/15/1982 04/01/1984 N/A 11/15/2022	74 100 72 94 69 104

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Seabrook Station, Unit 1 NextEra Energy Seabrook, LLC Seabrook, NH (13 miles S of Portsmouth, NH) 050-00443 www.nrc.gov/info-finder/reactor/seab1.ht	I :ml	PWR-DRYAMB WEST 4LP UE&C UE&C	3,648 1,295	07/07/1976 03/15/1990 08/19/1990 N/A 03/15/2030	100 89 86 99 89 81
Sequoyah Nuclear Plant, Unit 1 Tennessee Valley Authority Soddy-Daisy, TN (16 miles NE of Chattanooga, TN) 050-00327 www.nrc.gov/info-finder/reactor/seq1.htm	ll nl	PWR-ICECND WEST 4LP TVA TVA	3,455 1,148	05/27/1970 09/17/1980 07/01/1981 N/A 09/17/2020	92 100 90 87 101 89
Sequoyah Nuclear Plant, Unit 2 Tennessee Valley Authority Soddy-Daisy, TN (16 miles NE of Chattanooga, TN) 050-00328 www.nrc.gov/info-finder/reactor/seq2.htm	II nl	PWR-ICECND WEST 4LP TVA TVA	3,455 1,126	05/27/1970 09/15/1981 06/01/1982 N/A 09/15/2021	96 90 90 100 89 89
Shearon Harris Nuclear Power Plant, Unit Carolina Power & Light Co. New Hill, NC (20 miles SW of Raleigh, NC) 050-00400 www.nrc.gov/info-finder/reactor/har1.htm		PWR-DRYAMB WEST 3LP EBSO DANI	2,900 900	01/27/1978 10/24/1986 05/02/1987 12/17/2008 10/24/2046	89 101 89 94 99 94
South Texas Project, Unit 1 STP Nuclear Operating Co. Bay City, TX (90 miles SW of Houston, TX) 050-00498 www.nrc.gov/info-finder/reactor/stp1.htm	IV nl	PWR-DRYAMB WEST 4LP BECH EBSO	3,853 1,410	12/22/1975 03/22/1988 08/25/1988 N/A 08/20/2027	99 88 91 105 95 90
South Texas Project, Unit 2 STP Nuclear Operating Co. Bay City, TX (90 miles SW of Houston, TX) 050-00499 www.nrc.gov/info-finder/reactor/stp2.htm	IV 1	PWR-DRYAMB WEST 4LP BECH EBSO	3,853 1,410	12/22/1975 03/28/1989 06/19/1989 N/A 12/15/2028	92 89 100 93 95 101
Surry Power Station, Unit 1 Virginia Electric and Power Co. Surry, VA (17 miles NW of Newport News, VA) 050-00280 www.nrc.gov/info-finder/reactor/sur1.htm	II 1	PWR-DRYSUB WEST 3LP S&W S&W	2,546 799	06/25/1968 05/25/1972 12/22/1972 03/20/2003 05/25/2032	92 96 90 89 98 94
Surry Power Station, Unit 2 Virginia Electric and Power Co. Surry, VA (17 miles NW of Newport News, VA) 050-00281 www.nrc.gov/info-finder/reactor/sur2.htm	II 1	PWR-DRYSUB WEST 3LP S&W S&W	2,546 799	06/25/1968 01/29/1973 05/01/1973 03/20/2003 01/29/2033	101 93 88 101 94 92

110 • **U.S. NRC** Protecting People and the Environment

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engine Constructor	Licensed MWt/ Net Summer eer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Susquehanna Steam Electric Station, Unit PPL Susquehanna, LLC Salem Township, Luzerne County, PA (70 miles NE of Harrisburg, PA) 050-00387 www.nrc.gov/info-finder/reactor/susq1.ht		BWR-MARK : GE 4 BECH BECH	2 3,952 1,149	11/02/1973 07/17/1982 06/08/1983 11/24/2009 07/17/2042	80 95 86 95 89 101
Susquehanna Steam Electric Station, Unit PPL Susquehanna, LLC Salem Township, Luzerne County, PA (70 miles NE of Harrisburg, PA) 050-00388 www.nrc.gov/info-finder/reactor/susq2.ht		BWR-MARK 2 GE 4 BECH BECH	2 3,952 1,140	11/02/1973 03/23/1984 02/12/1985 11/24/2009 03/23/2044	100 89 93 88 100 90
Three Mile Island Nuclear Station, Unit 1 Exelon Generating Co., LLC Middletown, PA (10 miles SE of Harrisburg, PA) 050-00289 www.nrc.gov/info-finder/reactor/tmi1.htm	I	PWR-DRYAM B&W LLP GIL UE&C	B 2,568 786	05/18/1968 04/19/1974 09/02/1974 10/22/2009 04/19/2034	102 98 105 97 107 86
Turkey Point Nuclear Generating, Unit 3 Florida Power & Light Co. Homestead, FL (20 miles S of Miami, FL) 050-00250 www.nrc.gov/info-finder/reactor/tp3.html	11	PWR-DRYAM WEST 3LP BECH BECH	B 2,300 693	04/27/1967 07/19/1972 12/14/1972 06/06/2002 07/19/2032	78 96 92 97 101 86
Turkey Point Nuclear Generating, Unit 4 Florida Power & Light Co. Homestead, FL (20 miles S of Miami, FL) 050-00251 www.nrc.gov/info-finder/reactor/tp4.html	11	PWR-DRYAM WEST 3LP BECH BECH	B 2,300 693	04/27/1967 04/10/1973 09/07/1973 06/06/2002 04/10/2033	70 89 100 86 89 99
Vermont Yankee Nuclear Power Station Entergy Nuclear Operations, Inc. Vernon, VT (5 miles S of Brattleboro, VT) 050-00271 www.nrc.gov/info-finder/reactor/vy.html	I	BWR-MARK GE 4 EBSO EBSO	1 1,912 620	12/11/1967 03/21/1972 11/30/1972 N/A 03/21/2012	87 92 115 87 89 99
Virgil C. Summer Nuclear Station, Unit 1 South Carolina Electric & Gas Co. Jenkinsville, SC (26 miles NW of Columbia, SC) 050-00395 www.nrc.gov/info-finder/reactor/sum.htm	II 11	PWR-DRYAM WEST 3LP GIL DANI	B 2,900 966	03/21/1973 11/12/1982 01/01/1984 04/23/2004 08/06/2042	97 88 89 85 87 81
Vogtle Electric Generating Plant, Unit 1 Southern Nuclear Operating Co. Waynesboro, GA (26 miles SE of Augusta, GA) 050-00424 www.nrc.gov/info-finder/reactor/vog1.html	II nl	PWR-DRYAM WEST 4LP SBEC GPC	B 3,625 1,109	06/28/1974 03/16/1987 06/01/1987 06/03/2009 01/16/2047	100 91 86 99 93 91

Plant Name, Unit Number Licensee Location Docket Number NRC Web Page Address	NRC Region	Con Type NSSS Architect Engineer Constructor	Licensed MWt/ Net Summer Capacity (MW)*	CP Issued OL Issued Comm. Op. LR Issued Exp. Date	2004- 2009** Capacity Factor (Percent)
Vogtle Electric Generating Plant, Unit 2 Southern Nuclear Operating Co. Waynesboro, GA (26 miles SE of Augusta, GA) 050-00425 www.nrc.gov/info-finder/reactor/vog2.h		PWR-DRYAMB WEST 4LP SBEC GPC	3,625 1,127	06/28/1974 03/31/1989 05/20/1989 06/03/2009 02/09/2049	91 85 92 83 88 101
Waterford Steam Electric Station, Unit 2 Entergy Operations, Inc. Killona, LA (25 miles W of New Orleans, LA) 050-00382 www.nrc.gov/info-finder/reactor/wat3.h		PWR-DRYAMB COMB CE EBSO EBSO	3,716 1,157	11/14/1974 03/16/1985 09/24/1985 N/A 12/18/2024	101 78 92 98 89 87
Watts Bar Nuclear Plant, Unit 1 Tennessee Valley Authority Spring City, TN (60 miles SW of Knoxville, TN) 050-00390 www.nrc.gov/info-finder/reactor/wb1.h	ll tml	PWR-ICECND WEST 4LP TVA TVA	3,459 1,123	01/23/1973 02/07/1996 05/27/1996 N/A 11/09/2035	100 90 68 102 82 94
Wolf Creek Generating Station, Unit 1 Wolf Creek Nuclear Operating Corp. Burlington, KS (3.5 miles NE of Burlington, KS) 050-00482 www.nrc.gov/info-finder/reactor/wc.htm	IV nl	PWR-DRYAMB WEST 4LP BECH DANI	3,565 1,166	05/31/1977 06/04/1985 09/03/1985 11/20/2008 03/11/2045	99 86 92 102 83 86
Reactors Under Ac	tive Cons	truction or Defe	rred Policy	y	
Bellefonte Nuclear Power Station, Unit Tennessee Valley Authority (6 miles NE of Scottsboro, AL) 050-00438	1*** II	PWR-DRYAMB B&W 205 TVA TVA	3,763 1,235	12/24/1974	N/A
Bellefonte Nuclear Power Station, Unit Tennessee Valley Authority (6 miles NE of Scottsboro, AL) 050-00439	2*** II	PWR-DRYAMB B&W 205 TVA TVA	3,763 1,235	12/24/1974	N/A
Watts Bar Nuclear Plant, Unit 2**** Tennessee Valley Authority Spring City, TN (60 miles SW of Knoxville, TN) 050-00391	II	PWR-ICECND WEST 4LP TVA TVA	3,411 1,150	01/23/1973	

* Data calculations compiled by estimate for 2009 are not final. Plant names as identified on license as of April 15, 2010. ** Average capacity factor is listed in year order starting with 2004.

Bellefonte Units 1 & 2 are under Commission Policy Statement on Deferred Plants (52 FR 38077; October 14, 1987). *Watts Bar 2 is currently under active construction.

Source: NRC, with some data compiled from EIA/DOE

APPENDIX B

U.S. Commercial Nuclear Power Reactors Permanently Shut Down—Formerly Licensed To Operate

Unit Location	Reactor Type MWt	NSSS Vendor	OL Issued Shut Down	Decommissioning Alternative Selected Current Status
Big Rock Point	BWR	GE	05/01/1964	DECON
Charlevoix, MI	240		08/29/1997	DECON Completed
GE Bonus*	BWR	CE	04/02/1964	ENTOMB
Punta Higuera, PR	50		06/01/1968	ENTOMB
CVTR**	PTHW	WEST	11/27/1962	SAFSTOR
Parr, SC	65		01/01/1967	SAFSTOR
Dresden 1	BWR	GE	09/28/1959	SAFSTOR
Morris, IL	700		10/31/1978	SAFSTOR
Elk River*	BWR	AC/S&L	11/06/1962	DECON
Elk River, MN	58		02/01/1968	DECON Completed
Fermi 1	SCF	CE	05/10/1963	DECONs
Newport, MI	200		09/22/1972	DECON
Fort St. Vrain	HTG	GA	12/21/1973	DECON
Platteville, CO	842		08/18/1989	DECON Completed
GE VBWR	BWR	GE	08/31/1957	SAFSTOR
Sunol, CA	50		12/09/1963	SAFSTOR
Haddam Neck	PWR	WEST	12/27/1974	DECON
Meriden, CT	1,825		12/05/1996	DECON Completed
Hallam*	SCGM	BLH	01/02/1962	ENTOMB
Hallam, NE	256		09/01/1964	ENTOMB
NS Savannah	PWR	B&W	08/1965	SAFSTOR
Baltimore, MD	74		11/1970	SAFSTOR
Humboldt Bay 3	BWR	GE	08/28/1962	DECON
Eureka, CA	200		07/02/1976	DECON In Progress
Indian Point 1	PWR	B&W	03/26/1962	SAFSTOR
Buchanan, NY	615		10/31/1974	SAFSTOR
La Crosse	BWR	AC	07/03/1967	SAFSTOR
Genoa, WI	165		04/30/1987	SAFSTOR
Maine Yankee	PWR	CE	06/29/1973	DECON
Wiscasset, ME	2,700		12/06/1996	DECON Completed
Millstone 1	BWR	GE	10/31/1970	SAFSTOR
Waterford, CT	2,011		07/21/1998	SAFSTOR
Pathfinder	BWR	AC	03/12/1964	DECON
Sioux Falls, SD	190		09/16/1967	DECON Completed
Peach Bottom 1	HTG	GA	01/24/1966	SAFSTOR
Delta, PA	115		10/31/1974	SAFSTOR

APPENDIX B

U.S. Commercial Nuclear Power Reactors Permanently Shut Down—Formerly Licensed To Operate (continued)

Unit Location	Reactor Type MWt	NSSS Vendor	OL Issued Shut Down	Decommissioning Alternative Selected Current Status
Piqua*	OCM	AI	08/23/1962	ENTOMB
Piqua, OH	46		01/01/1966	ENTOMB
Rancho Seco	PWR	B&W	08/16/1974	DECON
Herald, CA	2,772		06/07/1989	DECON Completed
San Onofre 1	PWR	WEST	03/27/1967	DECON
San Cleme <mark>nte, CA</mark>	1,347		11/30/1992	DECON In Progress
Saxton	PWR	WEST	11/15/1961	DECON
Saxton, PA	23.5		05/01/1972	DECON Completed
Shippingport*	PWR	WEST	N/A	DECON
Shippingport, PA	236		1982	DECON Completed
Shoreham	BWR	GE	04/21/1989	DECON
Wading River, NY	2,436		06/28/1989	DECON Completed
Three Mile Island 2 Middletown, PA	PWR 2,770	B&W	02/08/1978 03/28/1979	(1)
Trojan	PWR	WEST	11/21/1975	DECON
Rainier, OR	3,411		11/09/1992	DECON Completed
Yankee-Rowe	PWR	WEST	12/24/1963	DECON
Rowe, MA	600		10/01/1991	DECON Completed
Zion 1	PWR	WEST	10/19/1973	SAFSTOR
Zion, IL	3,250		02/21/1997	SAFSTOR
Zion 2	PWR	WEST	11/14/1973	SAFSTOR
Zion, IL	3,250		09/19/1996	SAFSTOR

* AEC/DOE owned; not regulated by the U.S. Nuclear Regulatory Commission.

** Holds byproduct license from the State of South Carolina.

Notes: See Glossary for definitions of decommissioning alternatives.

(1) Three Mile Island 2 has been placed in a postdefueling monitored storage mode until Unit 1 permanently ceases operation, at which time both units are planned to be decommissioned.

Source: DOE Integrated Database for 1990; U.S. Spent Fuel and Radioactive Waste, Inventories, Projections, and Characteristics (DOE/RW-0006, Rev. 6), and U.S. Nuclear Regulatory Commission, Nuclear Power Plants in the World, Edition #6

APPENDIX C Canceled U.S. Commercial Nuclear Power Reactors

Unit Utility Location	Con Type MWe per Unit	Canceled Date Status
Allens Creek 1 Houston Lighting & Power Company 4 miles NW of Wallis, TX	BWR 1,150	1982 Under CP Review
Allens Creek 2 Houston Lighting & Power Company 4 miles NW of Wallis, TX	BWR 1,150	1976 Under CP Review
Atlantic 1 & 2 Public Service Electric & Gas Company Floating Plants off the Coast of NJ	PWR 1,150	1978 Under CP Review
Bailly 1 Northern Indiana Public Service Company 12 miles NNE of Gary, IN	BWR 645	1981 With CP
Barton 1 & 2 Alabama Power & Light 15 miles SE of Clanton, AL	BWR 1,159	1977 Under CP Review
Barton 3 & 4 Alabama Power & Light 15 miles SE of Clanton, AL	BWR 1,159	1975 Under CP Review
Black Fox 1 & 2 Public Service Company of Oklahoma 3.5 miles S of Inola, OK	BWR 1,150	1982 Under CP Review
Blue Hills 1 & 2 Gulf States Utilities Company SW tip of Toledo Bend Reservoir, TX	PWR 918	1978 Under CP Review
Callaway 2 Union Electric Company 25 miles ENE of Jefferson City, MO	PWR 1,150	1981 With CP
Cherokee 1 Duke Power Company 6 miles SSW of Blacksburg, SC	PWR 1,280	1983 With CP
Cherokee 2 & 3 Duke Power Company 6 miles SSW of Blacksburg, SC	PWR 1,280	1982 With CP
Clinch River Project Management Corp., DOE, TVA 23 miles W of Knoxville, in Oak Ridge, TN	LMFB 350	1983 Under CP Review

Unit Utility Location	Con Type MWe per Unit	Canceled Date Status
Clinton 2 Illinois Power Company 6 miles E of Clinton, IL	BWR 933	1983 With CP
Davis-Besse 2 & 3 Toledo Edison Company 21 miles ESE of Toledo, OH	PWR 906	1981 Under CP Review
Douglas Point 1 & 2 Potomac Electric Power Company Charles County, MD	BWR 1,146	1977 Under CP Review
Erie 1 & 2 Ohio Edison Company Berlin, OH	PWR 1,260	1980 Under CP Review
Forked River 1 Jersey Central Power & Light Company 2 miles S of Forked River, NJ	PWR 1,070	1980 With CP
Fort Calhoun 2 Omaha Public Power District 19 miles N of Omaha, NE	PWR 1,136	1977 Under CP Review
Fulton 1 & 2 Philadelphia Electric Company 17 miles S of Lancaster, PA	HTG 1,160	1975 Under CP Review
Grand Gulf 2 Entergy Nuclear Operations, Inc. 20 miles SW of Vicksburg, MS	BWR 1,250	1990 With CP
Greene County Power Authority of the State of NY 20 miles N of Kingston, NY	PWR 1,191	1980 Under CP Review
Greenwood 2 & 3 Detroit Edison Company Greenwood Township, MI	PWR 1,200	1980 Under CP Review
Hartsville A1 & A2 Tennessee Valley Authority 5 miles SE of Hartsville, TN	BWR 1,233	1984 With CP
Hartsville B1 & B2 Tennessee Valley Authority 5 miles SE of Hartsville, TN	BWR 1,233	1982 With CP

Unit Utility Location	Con Type MWe per Unit	Canceled Date Status
Haven 1 (formerly Koshkonong) Wisconsin Electric Power Company 4.2 miles SSW of Fort Atkinson, WI	PWR 900	1980 Under CP Review
Haven 2 (formerly Koshkonong) Wisconsin Electric Power Company 4.2 miles SSW of Fort Atkinson, WI	PWR 900	1978 Under CP Review
Hope Creek 2 Public Service Electric & Gas Company 18 miles SE of Wilmington, DE	BWR 1,067	1981 With CP
Jamesport 1 & 2 Long Island Lighting Company 65 miles E of New York City, NY	PWR 1,150	1980 With CP
Marble Hill 1 & 2 Public Service of Indiana 6 miles NE of New Washington, IN	PWR 1,130	1985 With CP
Midland 1 Consumers Power Company S of City of Midland, MI	PWR 492	1986 With CP
Midland 2 Consumers Power Company S of City of Midland, MI	PWR 818	1986 With CP
Montague 1 & 2 Northeast Nuclear Energy Company 1.2 miles SSE of Turners Falls, MA	BWR 1,150	1980 Under CP Review
New England 1 & 2 New England Power Company 8.5 miles E of Westerly, RI	PWR 1,194	1979 Under CP Review
New Haven 1 & 2 New York State Electric & Gas Corporation 3 miles NW of New Haven, NY	PWR 1,250	1980 Under CP Review
North Anna 3 Virginia Electric & Power Company 40 miles NW of Richmond, VA	PWR 907	1982 With CP
North Anna 4 Virginia Electric & Power Company 40 miles NW of Richmond, VA	PWR 907	1980 With CP

Unit Utility Location	Con Type MWe per Unit	Canceled Date Status
North Coast 1 Puerto Rico Water Resources Authority 4.7 miles ESE of Salinas, PR	PWR 583	1978 Under CP Review
Palo Verde 4 & 5 Arizona Public Service Company 36 miles W of Phoenix, AZ	PWR 1,270	1979 Under CP Review
Pebble Springs 1 & 2 Portland General Electric Company 55 miles WSW of Tri Cities (Kenewick-Pasco-Richland, WA), OR	PWR 1,260	1982 Under CP Review
Perkins 1, 2, & 3 Duke Power Company 10 miles N of Salisbury, NC	PWR 1,280	1982 Under CP Review
Perry 2 Cleveland Electric Illuminating Co. 35 miles NE of Cleveland, OH	BWR 1,205	1994 Under CP Review
Phipps Bend 1 & 2 Tennessee Valley Authority 15 miles SW of Kingsport, TN	BWR 1,220	1982 With CP
Pilgrim 2 Boston Edison Company 4 miles SE of Plymouth, MA	PWR 1,180	1981 Under CP Review
Pilgrim 3 Boston Edison Company 4 miles SE of Plymouth, MA	PWR 1,180	1974 Under CP Review
Quanicassee 1 & 2 Consumers Power Company 6 miles E of Essexville, MI	PWR 1,150	1974 Under CP Review
River Bend 2 Gulf States Utilities Company 24 miles NNW of Baton Rouge, LA	BWR 934	1984 With CP
Seabrook 2 Public Service Co. of New Hampshire 13 miles S of Portsmouth, NH	PWR 1,198	1988 With CP
Shearon Harris 2 Carolina Power & Light Company 20 miles SW of Raleigh, NC	PWR 900	1983 With CP

Unit Utility Location	Con Type MWe per Unit	Canceled Date Status
Shearon Harris 3 & 4 Carolina Power & Light Company 20 miles SW of Raleigh, NC	PWR 900	1981 With CP
Skagit/Hanford 1 & 2 Puget Sound Power & Light Company 23 miles SE of Bellingham, WA	PWR 1,277	1983 Under CP Review
Sterling Rochester Gas & Electric Corporation 50 miles E of Rochester, NY	PWR 1,150	1980 With CP
Summit 1 & 2 Delmarva Power & Light Company 15 miles SSW of Wilmington, DE	HTG 1,200	1975 Under CP Review
Sundesert 1 & 2 San Diego Gas & Electric Company 16 miles SW of Blythe, CA	PWR 974	1978 Under CP Review
Surry 3 & 4 Virginia Electric & Power Company 17 miles NW of Newport News, VA	PWR 882	1977 With CP
Tyrone 1 Northern States Power Company 8 miles NE of Durond, WI	PWR 1,150	1981 Under CP Review
Tyrone 2 Northern States Power Company 8 miles NE of Durond, WI	PWR 1,150	1974 With CP
Vogtle 3 & 4 Georgia Power Company 26 miles SE of Augusta, GA	PWR 1,113	1974 With CP
Washington Nuclear 1 Energy Northwest 10 miles E of Aberdeen, WA	PWR 1,266	1995 With CP
Washington Nuclear 3 Energy Northwest 16 miles E of Aberdeen, WA	PWR 1,242	1995 With CP
Washington Nuclear 4 Energy Northwest 10 miles E of Aberdeen, WA	PWR 1,218	1982 With CP

Unit Utility Location	Con Type MWe per Unit	Canceled Date Status
Washington Nuclear 5 Energy Northwest 16 miles E of Aberdeen, WA	PWR 1,242	1982 With CP
Yellow Creek 1 & 2 Tennessee Valley Authority 15 miles E of Corinth, MS	BWR 1,285	1984 With CP
Zimmer 1 Cincinnati Gas & Electric Company 25 miles SE of Cincinnati, OH	BWR 810	1984 With CP

Note: Cancellation is defined as public announcement of cancellation or written notification to the NRC. Only NRC-docketed applications are included. Status is the status of the application at the time of cancellation. Source: DOE/EIA Commercial Nuclear Power 1991 (DOE/EIA-0438 (91)), Appendix E (page 105) and and U.S. Nuclear Regulatory Commission.

APPENDIX D U.S. Commercial Nuclear Power Reactors by Parent Company

Utility	NRC-Abbreviated Reactor Unit Name
AmerenUE www.ameren.com	Callaway*
Arizona Public Service Company www.aps.com	Palo Verde 1, 2, & 3*
Constellation Energy www.constellation.com	Calvert Cliffs 1 & 2 Ginna Nine Mile Point 1 & 2
Detroit Edison Company www.dteenergy.com	Fermi 2
Dominion Generation www.dom.com	Kewaunee Millstone 2 & 3 North Anna 1 & 2 Surry 1 & 2
Duke Energy Carolinas, LLC www.duke-energy.com	Catawba 1 & 2 McGuire 1 & 2 Oconee 1, 2, & 3
Energy Northwest www.energy-northwest.com	Columbia
Entergy Nuclear Operations, Inc. www.entergy-nuclear.com	Arkansas Nuclear One 1 & 2 FitzPatrick Grand Gulf 1 Indian Point 2 & 3 Palisades Pilgrim 1 River Bend 1 Vermont Yankee Waterford 3
Exelon Corporation, LLC www.exeloncorp.com	Braidwood 1 & 2 Byron 1 & 2 Clinton Dresden 2 & 3 LaSalle 1 & 2 Limerick 1 & 2 Oyster Creek Peach Bottom 2 & 3 Quad Cities 1 & 2 Three Mile Island 1
FirstEnergy Nuclear Generating Corp. www.firstenergycorp.com	Beaver Valley 1 & 2 Davis-Besse Perry 1

APPENDIX D U.S. Commercial Nuclear Power Reactors by Parent Company (continued)

Utility	NRC-Abbreviated Reactor Unit Name
FPL Group, Inc. www.fplgroup.com	Duane Arnold Point Beach 1 & 2 Seabrook 1 St. Lucie 1 & 2 Turkey Point 3 & 4
Indiana Michigan Power Company www.indianamichiganpower.com	Cook 1 & 2
Luminant Generation Company, LLC www.luminant.com	Comanche Peak 1 & 2*
Nebraska Public Power District www.nppd.com	Cooper
Northern States Power Company www.nmcco.com	Monticello Prairie Island 1 & 2
Omaha Public Power District www.oppd.com	Fort Calhoun
Pacific Gas & Electric Company www.pge.com	Diablo Canyon 1 & 2*
PPL Susquehanna, LLC www.pplweb.com	Susquehanna 1 & 2
Progress Energy www.progress-energy.com	Brunswick 1 & 2 Crystal River 3 Robinson 2 Harris 1
PSEG Nuclear, LLC www.pseg.com	Hope Creek 1 Salem 1 & 2
South Carolina Electric & Gas Company www.sceg.com	Summer
Southern California Edison Company www.sce.com	San Onofre 2 & 3
Southern Nuclear Operating Company www.southerncompany.com	Hatch 1 & 2 Farley 1 & 2 Vogtle 1 & 2
STP Nuclear Operating Company www.stpnoc.com	South Texas Project 1 & 2*
Tennessee Valley Authority www.tva.gov	Browns Ferry 1, 2, & 3 Sequoyah 1 & 2 Watts Bar 1
Wolf Creek Nuclear Operating Corporation www.wcnoc.com	Wolf Creek 1*

*These plants have a joint program called the Strategic Teaming and Resource Sharing (STARS) group. They share resources for refueling outages and to develop some shared licensing applications.

APPENDIX E Operating U.S. Nuclear Research and Test Reactors Regulated by the NRC

Licensee	Reactor Type	Power Level	Licensee Number
Location	OL Issued	(kW)	Docket Number
Aerotest	TRIGA (Indus)	250	R-98
San Ramon, CA	07/02/1965		50-228
Armed Forces Radiobiology Research Institute Bethesda, MD	TRIGA 06/26/1962	1,100	R-84 50-170
Dow Chemical Company	TRIGA	300	R-108
Midland, MI	07/03/1967		50-264
General Electric Company	Nuclear Test	100	R-33
Sunol, CA	10/31/1957		50-73
Idaho State University	AGN-201 #103	0.005	R-110
Pocatello, ID	10/11/1967		50-284
Kansas State University	TRIGA	250	R-88
Manhattan, KS	10/16/1962		50-188
Massachusetts Institute of Technology Cambridge, MA	HWR Reflected 06/09/1958	5,000	R-37 50-20
National Institute of Standards & Technology Gaithersburg, MD	Nuclear Test 05/21/1970	20,000	TR-5 50-184
North Carolina State University	Pulstar	1,000	R-120
Raleigh, NC	08/25/1972		50-297
Ohio State University	Pool	500	R-75
Columbus, OH	02/24/1961		50-150
Oregon State University	TRIGA Mark II	1,100	R-106
Corvallis, OR	03/07/1967		50-243
Pennsylvania State University	TRIGA	1,100	R-2
State College, PA	07/08/1955		50-5
Purdue University	Lockheed	1	R-87
West Lafayette, IN	08/16/1962		50-182
Reed College	TRIGA Mark I	250	R-112
Portland, OR	07/02/1968		50-288
Rensselaer Polytechnic Institute	Critical Assembly	0.1	CX-22
Troy, NY	07/03/1964		50-225
Rhode Island Atomic Energy Commission Narragansett, RI	GE Pool 07/23/1964	2,000	R-95 50-193

APPENDIX E

Operating U.S. Nuclear Research and Test Reactors Regulated by the NRC (continued)

Licensee	Reactor Type	Power Level	Licensee Number
Location	OL Issued	(kW)	Docket Number
Texas A&M University	AGN-201M #106	0.005	R-23
College Station, TX	08/26/1957		50-59
Texas A&M University	TRIGA	1,000	R-128
College Station, TX	12/07/1961		50-128
U.S. Geological Survey	TRIGA Mark I	1,000	R-113
Denver, CO	02/24/1969		50-274
University of California/Davis	TRIGA	2,300	R-130
Sacramento, CA	08/13/1998		50-607
University of California/Irvine	TRIGA Mark I	250	R-116
Irvine, CA	11/24/1969		50-326
University of Florida	Argonaut	100	R-56
Gainesville, FL	05/21/1959		50-83
University of Maryland	TRIGA	250	R-70
College Park, MD	10/14/1960		50-166
University of Massachusetts/Lowell	GE Pool	1,000	R-125
Lowell, MA	12/24/1974		50-223
University of Missouri/Columbia	Tank	10,000	R-103
Columbia, MO	10/11/1966		50-186
University of Missouri/Rolla	Pool	200	R-79
Rolla, MO	11/21/1961		50-123
University of New Mexico	AGN-201M #112	0.005	R-102
Albuquerque, NM	09/17/1966		50-252
University of Texas	TRIGA Mark II	1,100	R-92
Austin, TX	01/17/1992		50-602
University of Utah	TRIGA Mark I	100	R-126
Salt Lake City, UT	09/30/1975		50-407
University of Wisconsin	TRIGA	1,000	R-74
Madison, WI	11/23/1960		50-156
Washington State University	TRIGA	1,000	R-76
Pullman, WA	03/06/1961		50-27

APPENDIX F

U.S. Nuclear Research and Test Reactors Under Decommissioning Regulated by the NRC

Licensee Location	Reactor Type Power Level (kW)	OL Issued Shutdown	Decommissioning Alternative Selected Current Status
General Atomics	TRIGA Mark F	07/01/60	DECON
San Diego, CA	1,500	09/07/94	SAFSTOR
General Atomics	TRIGA Mark I	05/03/58	DECON
San Diego, CA	250	12/17/96	SAFSTOR
General Electric Company	GETR (Tank)	01/07/59	SAFSTOR
Sunol, CA	50,000	06/26/85	SAFSTOR
General Electric Company	VESR	11/12/63	SAFSTOR
Sunol, CA	17,000	02/01/67	SAFSTOR
National Aeronautics and Space Administration Sandusky, OH	Test 60,000	05/02/62 07/07/73	DECON DECON In Progress
National Aeronautics and Space Administration Sandusky, OH	Mockup 100	06/14/61 07/07/73	DECON DECON In Progress
University of Buffalo	Pulstar	03/24/61	DECON
Buffalo, NY	2,000	07/23/96	SAFSTOR
University of Illinois	TRIGA	07/22/69	SAFSTOR
Urbana-Champaign, IL	1,500	04/12/99	DECON In Progress
University of Michigan	Pool	09/13/57	DECON
Ann Arbor, MI	2,000	01/29/04	DECON In Progress
Veterans Administration	TRIGA	06/26/59	DECON
Omaha, NE	20	11/05/01	SAFSTOR
Worcester Polytechnic Institute	e GE	12/16/59	DECON
Worcester, MA	10	06/30/07	DECON Pending
University of Arizona	TRIGA Mark I	12/05/58	DECON
Tucson, AZ	110	05/18/10	SAFSTOR

APPENDIX G

Industry Performance Indicators: Annual Industry Averages, FYs 2000–2009

Indicator	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Automatic Scrams	0.52	0.57	0.44	0.75	0.56	0.47	0.32	0.48	0.29	0.36
Safety System Actuations	0.29	0.19	0.18	0.41	0.24	0.38	0.22	0.25	0.14	0.23
Significant Events	0.04	0.07	0.05	0.07	0.04	0.05	0.03	0.02	0.02	0.00
Safety System Failures	1.40	0.82	0.88	0.96	0.78	0.99	0.59	0.68	0.69	0.67
Forced Outage Rate	4.24	3.00	1.70	3.04	1.88	2.44	1.47	1.43	1.34	2.21
Equipment-Forced Outage Rate	0.13	0.11	0.12	0.16	0.15	0.13	0.10	0.11	0.08	0.09
Collective Radiation Exposure	n 115	123	111	125	100	117	93	110	96	88
Drill/Exercise Performance	96	95	95	96	96	96	96	98	96	97
ERO Drill Participation	96	96	97	98	98	98	98	98	98	99
Alert and Notificatic System Reliability	on 98	99	99	99	99	99	99	99	100	100

Note: Drills and exercises were piloted in 1999 and became standard practice for all plants in 2000.

APPENDIX H Dry Spent Fuel Storage Designs: NRC-Approved for Use by General Licensees

Vendor	Docket #	Storage Design Model
General Nuclear Systems, Inc.	72-1000	CASTOR V/21
NAC International, Inc.	72-1002	NAC S/T
	72-1003	NAC-C28 S/T
	72-1015	NAC-UMS
	72-1025	NAC-MPC
	72-1031	Magnastor
Holtec International	72-1008	HI-STAR 100
	72-1014	HI-STORM 100
BNG Fuel Solutions Corporation	72-1007	VSC-24
	72-1026	Fuel Solutions [™] (WSNF-220, -221, -223)
		W-150 Storage Cask
		W-100 Transfer Cask
		W-21, W-74 Canisters
Transnuclear, Inc.	72-1005	TN-24
	72-1027	TN-68
	72-1021	TN-32, 32A, 32B
	72-1004	Standardized NUHOMS [®] -24P, -24PHB, -24PTH,
		-32PT, -32PTH1, -52B, -61BT, -61BTH
	72-1029	Standardized Advanced NUHOMS [®] -24PT1, -24PT4
	72-1030	NUHOMS [®] HD-32PTH
Data as of July 2010		

APPENDIX I Dry Spent Fuel Storage Licensees

Name Licensee	License Type	Date Issued	Vendor	Storage Model	Docket #
Surry Virginia Electric & Power Company (Dominion Gen.)	SL	07/02/1986	General Nuclear Systems, Inc. Transnuclear, Inc. NAC International, Inc. Westinghouse, Inc.	CASTOR V/21 TN-32 NAC-128 CASTOR X/33 MC-10	72-2
	GL	08/06/2007	Transnuclear, Inc.	NUHOMS [®] -HD	72-55
H.B. Robinson Carolina Power & Light Company	SL GL	08/13/1986 09/06/2005	Transnuclear, Inc. Transnuclear, Inc.	NUHOMS®-7P NUHOMS®-24P	72-3 72-60
Oconee	SL	01/29/1990	Transnuclear, Inc.	NUHOMS [®] -24P	72-4
Duke Energy Compa	iny GL	03/05/1999	Transnuclear, Inc.	NUHOMS [®] -24P	72-40
Fort St. Vrain* U.S. Department of	SL Energy	11/04/1991	FW Energy Applications, Inc.	Modular Vault Dry Store	72-9
Calvert Cliffs Calvert Cliffs Nuclea Power Plant, Inc.	SL r	11/25/1992	Transnuclear, Inc.	NUHOMS [®] -24P NUHOMS [®] -32P	72-8
Palisades Entergy Nuclear Operations, Inc.	GL	05/11/1993	BNG Fuel Solutions Transnuclear, Inc.	VSC-24 NUHOMS [®] -32PT	72-7
Prairie Island Northern States Pov Co., a Minnesota Co		10/19/1993	Transnuclear, Inc.	TN-40	72-10
Point Beach FLP Energy Point Beach, LLC	GL	05/26/1996	BNG Fuel Solutions Transnuclear, Inc.	VSC-24 NUHOMS®-32PT	72-5
Davis-Besse FirstEnergy Nuclear Operating Company	GL	01/01/1996	Transnuclear, Inc.	NUHOMS [®] -24P	72-14
Arkansas Nuclear Entergy Nuclear Operations, Inc.	GL	12/17/1996	BNG Fuel Solutions Holtec International	VSC-24 HI-STORM 100	72-13
North Anna Virginia Electric & Power Company (Dominion Gen.)	SL GL	06/30/1998 03/10/2008	Transnuclear, Inc. Transnuclear, Inc.	TN-32 NUHOMS®-HD	72-16 72-56
Trojan Portland General Electric Corp.	SL	03/31/1999	Holtec International	HI-STORM 100	72-17

APPENDIX I Dry Spent Fuel Storage Licensees (continued)

Name Licensee	License Type	Date Issued	Vendor	Storage Model	Docket #
Idaho National Lab TMI-2 Fuel Debris, U.S. Department of En	SL ergy	03/19/1999	Transnuclear, Inc.	NUHOMS [®] -12T	72-20
Susquehanna PPL Susquehanna, LLC	GL	10/18/1999	Transnuclear, Inc.	NUHOMS [®] -52B NUHOMS [®] -61BT	72-28
Peach Bottom Exelon Generation Company, LLC	GL	06/12/2000	Transnuclear, Inc.	TN-68	72-29
Hatch Southern Nuclear Operating, Inc.	GL	07/06/2000	Holtec International	HI-STAR 100 HI-STORM 100	72-36
Dresden Exelon Generation Company, LLC	GL	07/10/2000	Holtec International	HI-STAR 100 HI-STORM 100	72-37
Rancho Seco Sacramento Municipal Utility District	SL	06/30/2000	Transnuclear, Inc.	NUHOMS®-24P	72-11
McGuire Duke Energy, LLC	GL	02/01/2001	Transnuclear, Inc.	TN-32	72-38
Big Rock Point Entergy Nuclear Operations, Inc.	GL	11/18/2002	BNG Fuel Solutions	Fuel Solutions™ W74	72-43
James A. FitzPatrick Entergy Nuclear Operations, Inc.	GL	04/25/2002	Holtec International	HI-STORM 100	72-12
Maine Yankee Maine Yankee Atomic Power Company	GL	08/24/2002	NAC International, Inc.	NAC-UMS	72-30
Columbia Generating Station Energy Northwest	GL	09/02/2002	Holtec International	HI-STORM 100	72-35
Oyster Creek AmerGen Energy Company, LLC.	GL	04/11/2002	Transnuclear, Inc.	NUHOMS®-61BT	72-15
Yankee Rowe Yankee Atomic Electric	GL	06/26/2002	NAC International, Inc.	NAC-MPC	72-31
Duane Arnold Next Era Energy Duane Arnold, LLC.	GL	09/01/2003	Transnuclear, Inc.	NUHOMS®-61BT	72-32

APPENDIX I Dry Spent Fuel Storage Licensees (continued)

Name Licensee	License Type	Date Issued	Vendor	Storage Model	Docket #
Palo Verde Arizona Public Servi Company	GL	03/15/2003	NAC International, Inc.	NAC-UMS	72-44
San Onofre Southern California Edison Company	GL	10/03/2003	Transnuclear, Inc.	NUHOMS [®] -24PT	72-41
Diablo Canyon Pacific Gas & Electric	SL : Co.	03/22/2004	Holtec International	HI-STORM 100	72-26
Haddam Neck CT Yankee Atomic P	GL ower	05/21/2004	NAC International, Inc.	NAC-MPC	72-39
Sequoyah Tennessee Valley Au	GL thority	07/13/2004	Holtec International	HI-STORM 100	72-34
Idaho Spent Fuel Fa	cility SL	11/30/2004	Foster Wheeler Environmental Corp.	Concrete Vault	72-25
Humboldt Bay Pacific Gas & Electric	SL : Co.	11/30/2005	Holtec International	HI-STORM 100HB	72-27
Private Fuel Storage Facility	SL	02/21/2006	Holtec International	HI-STORM 100	72-22
Browns Ferry Tennessee Valley Au	GL thority	08/21/2005	Holtec International	HI-STORM 100S	72-52
Joseph M. Farley Southern Nuclear Operating Co.	GL	08/25/2005	Transnuclear, Inc.	NUHOMS [®] -32PT	72-42
Millstone Dominion Generatio	GL	02/15/2005	Transnuclear, Inc.	NUHOMS®-32PT	72-47
Quad Cities Exelon Generation Company, LLC	GL	12/02/2005	Holtec International	HI-STORM 100S	72-53
River Bend Entergy Nuclear Operations, Inc.	GL	12/29/2005	Holtec International	HI-STORM 100S	72-49
Fort Calhoun Omaha Public Power District	GL	07/29/2006	Transnuclear, Inc.	NUHOMS [®] -32PT	72-54
Hope Creek/Salem PSEG, Nuclear, LLC	GL	11/10/2006	Holtec International	HI-STORM 100	72-48
Grand Gulf Entergy Nuclear Operations, Inc.	GL	11/18/2006	Holtec International	HI-STORM 100S	72-50

APPENDIX I Dry Spent Fuel Storage Licensees (continued)

Name Licensee	License Type	Date Issued	Vendor	Storage Model	Docket #
Catawba Duke Energy Carolinas, LLC	GL	07/30/2007	NAC International, Inc.	NAC-UMS	72-45
Indian Point Entergy Nuclear Operations, Inc.	GL	01/11/2008	Holtec International	HI-STORM 100	72-51
St. Lucie Florida Power and Light Company	GL	03/14/2008	Transnuclear, Inc.	NUHOMS®-HD	72-61
Vermont Yankee Entergy Nuclear Operations, Inc.	GL	05/25/2008	Transnuclear, Inc.	HI-STORM100	72-59
Limerick Exelon Generation Co., LLC	GL	08/01/2008	Transnuclear, Inc.	NUHOMS [®] -61BT	72-65
Seabrook FPL Energy	GL	08/07/2008	Transnuclear, Inc.	NUHOMS [®] -HD-3PTM	72-61
Monticello Northern States Power Co.	GL	09/17/2008	Transnuclear, Inc.	NUHOMS [®] -61BT	72-58
Kewaunee Northern States Power Co.	GL	09/11/2009	Transnuclear, Inc.	NUHOMS®-39PT	72-64

*Fort St. Vrain is undergoing decommissioning and was transferred to DOE on June 4, 1999.

Note: NRC-abbreviated unit names

APPENDIX J Nuclear Power Units by Nation

	In Op	eration	Under Constr Order as of Dece	uction, or or ember 31, 20	n 09*	
Country	Number of Units	Capacity MWe Gross	Number s of Units	Capacity Net	Total MWh Gross 2009	Shutdown
Argentina	2	1,005	1	692	8,161,689	0
Armenia	1	408	0	0	2,493,701	1 ^P
Belgium	7	6,207	0	0	47,221,692	1 ^P
Brazil	2	2,007	0	0	12,975,089	0
Bulgaria*	2	2,000	2	1,906	15,255,798	4 ^P
Canada*	21	15,367	0	0	90,851,077	3° & 4L
China*	11	9,014	21	5,220	42,562,618	0
Taiwan	6	5,144	2	2,600	41,571,137	0
Czech Republic	6	3,876	0	0	27,112,409	0
Finland	4	2,800	1	1,600	23,525,817	0
France	58	65,880	1	1,330	410,033,172	12 ^p
Germany	17	21,497	0	0	134,893,041	19 [⊳]
Hungary	4	2,000	0	0	15,427,199	0
India	17	4,120	5	2,708	17,020,000	0
Iran	0	0	1	915	0	0
Italy	0	0	0	0	0	4 ^P
Japan	56	50,492	1	866	272,314,061	5°& 1∟
Kazakhstan	0	0	0	0	0	1
Korea, South	20	18,453	6	5,180	13,251,629	0
Lithuania	1	1,300	0	0	11,598,200	2 ^p
Mexico	2	1,364	0	0	10,501,079	0
Netherlands	1	515	0	0	4,248,227	1 ^P
Pakistan	2	462	1	300	2,854,348	0
Romania	2	1,412	0	0	11,752,720	0
Russia	31	23,242	8	4,789	163,279,720	5°
Slovakia	4	1,894	2	816	6,272,000	3°
Slovenia	1	727	0	0	5,738,808	0
South Africa	2	1,930	0	0	12,119,759	0
Spain	8	7,735	0	0	52,890,087	2 ^p
Sweden	10	9,685	0	0	52,274,683	3
Switzerland	5	3,370	0	0	27,517,589	0

APPENDIX J Nuclear Power Units by Nation (continued)

	<u>In Op</u>	eration <u>O</u>	eration Order Construction, or on Order as of December 31, 2009*			
Country	Number of Units	Capacity MWe Gross	Number of Units	Capacity Net	Total MWh Gross 2009	Shutdown
Ukraine	15	13,880	2	900	82,164,342	4 ^P
United Kingdom	19	12,540	0	0	9,441,000	26
United States	104	107,023	1	1,165	833,580,234	28

*Construction information from International Atomic Energy Agency—Power Reactor Information System.

P = Permanent Shutdown

L = Long-term Shutdown

Note: Operable, under construction, or on order as of December 31, 2009. Country's short-form name used. Source: Nucleonics Week[®] and International Atomic Energy Agency analysis compiled by the U.S. Nuclear Regulatory Commission.

Operation generation data are from Nucleonics Week[®], March 11, 2010.

APPENDIX K Nuclear Power Units by Reactor Type, Worldwide

	<u>In Op</u>	peration
Reactor Type	Number of Units	Net MWe
Pressurized light-water reactors	266	245,477
Boiling light-water reactors	92	83,689
Heavy-water reactors, all types	46	22,840
Graphite-moderated light-water reactors	15	10,219
Gas-cooled reactors, all types	18	8,949
Liquid metal cooled fast-breeder reactors	1	560
Total	438	371,734

Note: MWe values rounded to the nearest whole number.

Source: International Atomic Energy Agency–Power Reactor Information System Database, www.iaea.org. Data as compiled by the U.S. Nuclear Regulatory Commission. Data available as of March 2010.

APPENDIX L Top 50 Reactors by Capacity Factor, Worldwide

Nation	Unit	Reactor Type	Vendor	2009 Gross Generation (MWh)	2009 Gross Capacity Factor (Percent)
United States	Calvert Cliffs-2	PWR	CE	7,835,619	101.37
United States	Catawba-2	PWR	West.	10,728,440	101.36
Japan	Ohi-2	PWR	West.	10,444,137	101.18
Japan	Fukushima II-1	BWR	Tosh.	9,771,906	101.12
Korea, South	Yonggwang-1	PWR	West.	8,737,294	100.97
United States	Sequoyah-1	PWR	West.	10,500,842	100.80
Korea, South	Ulchin-4	PWR	KHIC-CE	9,236,080	100.61
Japan	Fukushima I-3	BWR	Tosh.	6,924,798	100.54
Korea, South	Ulchin-5	PWR	KHIC-CE	9,234,124	100.30
United States	Indian Point-3	PWR	West.	9,468,174	100.03
Taiwan	Kuosheng-1	BWR	GE	8,648,583	99.95
United States	Braidwood-1	PWR	West.	10,896,382	99.87
Spain	Almaraz-2	PWR	West.	8,614,991	99.81
United States	Beaver Valley-1	PWR	West.	8,394,530	99.68
United States	LaSalle-2	BWR	GE	10,313,636	99.67
China	Daya Bay-1	PWR	Fram.	8,609,848	99.61
Canada	Darlington-3	PHWR	AECL	8,154,496	99.38
U.S.	Three Mile Island-1	PWR	BWX	7,768,614	99.37
Russia	Balakovo-4	PWR	MAE	8,699,650	99.04
Korea, South	Ulchin-1	PWR	Fram.	8,560,877	98.93
United States	Oconee-3	PWR	B&W	7,901,935	98.75
Taiwan	Maanshan-1	PWR	West.	8,253,002	98.70
United States	Quad Cities-1	BWR	GE	7,893,023	98.53
Canada	Darlington-2	PHWR	AECL	8,079,104	98.46
United States	Shearon-Harris	PWR	West.	8,301,637	98.45
Germany	lsar-1	BWR	KWU	7,884,456	98.42
United States	Diablo Canyon-1	PWR	West.	10,343,923	98.38
United States	Limerick-2	BWR	GE	10,043,110	98.31
United States	North Anna-1	PWR	West.	8,427,710	98.30
United States	Dresden-2	BWR	GE	7,845,352	98.26
Spain	Garona	BWR	GE	4,020,958	98.23
Slovenia	Krsko	PWR	West.	6,272,000	98.22

APPENDIX L Top 50 Reactors by Capacity Factor, Worldwide (continued)

Nation	Unit	Reactor Type	Vendor	2009 Gross Generation (MWh)	2009 Gross Capacity Factor (Percent)
United States	Duane Arnold	BWR	GE	5,578,571	98.14
Canada	Darlington-4	PHWR	AECL	8,028,800	97.85
United States	Surry-1	PWR	West.	7,253,555	97.44
United States	Nine Mile Point-1	BWR	GE	5,476,785	97.42
Korea, South	Kori-4	PWR	West.	8,602,688	97.34
United States	Farley-1	PWR	West.	7,649,954	97.31
United States	Peach Bottom-3	BWR	GE	10,099,600	97.27
Mexico	Laguna Verde-2	BWR	GE	6,826,718	97.19
Japan	Hamaoka-4	BWR	Tosh.	9,696,012	97.07
United States	Palisades	PWR	CE	7,192,847	96.91
Finland	Oikiluoto-2	BWR	Asea	7,575,760	96.90
Romania	Cernavoda-2	PHWR	AECL	5,997,832	96.72
United States	St. Lucie-2	PWR	CE	7,472,330	96.45
United States	Turkey Point-3	PWR	West.	6,435,284	96.40
United States	Hope Creek	BWR	GE	10,406,890	96.39
United States	Hatch-2	BWR	GE	7,810,154	96.23
India	Tarapur-2	BWR	GE	1,351,000	96.12
Germany	Biblis B	PWR	KWU	10,975,041	<mark>96.11</mark>

Source: Excerpted from Nucleonics Week[®], March 5, 2010, by McGraw Hill, Inc. Reproduced by permission. Further reproduction prohibited.

APPENDIX M Top 50 Reactors by Generation, Worldwide

Nation	Unit	Reactor Type	Vendor	2009 Gross Generation (MWh)	2009 Gross Capacity Factor (Percent)
United States	Palo Verde-1	PWR	CE	12,240,806	97.85
Germany	lsar-2	PWR	KWU	12,126,709	93.85
Germany	Brokdorf	PWR	KWU	12,050,356	92.95
United States	South Texas-2	PWR	West.	11,868,334	95.88
Lithuania	Ignalina-2	RBMK	MAE	11,598,200	101.83
Germany	Philippsburg-2	PWR	KWU	11,582,804	90.69
Germany	Neckar-2	PWR	KWU	11,515,750	93.93
Germany	Grohnde	PWR	KWU	11,505,159	91.84
United States	Grand Gulf-1	BWR	GE	11,437,955	98.92
Germany	Emsland	PWR	KWU	11,429,673	93.20
Germany	Grafenrheinfeld	PWR	KWU	11,056,120	93.84
United States	Comanche Peak-1	PWR	West.	11,022,673	103.56
Germany	Gundremmingen-B	BWR	KWU	10,936,400	92.89
United States	Susquehanna-1	BWR	GE	10,875,525	103.29
United States	Millstone-3	PWR	West.	10,840,563	102.61
France	Belleville-1	PWR	Fram.	10,839,431	90.78
Germany	Gundremmingen-C	BWR	KWU	10,773,975	91.51
France	Civaux-2	PWR	Fram.	10,746,648	78.59
United States	Callaway	PWR	West.	10,710,371	95.61
United States	Byron-2	PWR	West.	10,690,001	100.85
United States	Salem-1	PWR	West.	10,637,285	96.83
United States	Vogtle-2	PWR	West.	10,622,727	98.67
United States	South Texas-1	PWR	West.	10,579,709	85.47
Germany	Unterweser	PWR	KWU	10,542,432	85.35
France	Cattenom-4	PWR	Fram.	10,519,541	88.17
Japan	Ohi-4	PWR	MHI	10,498,543	101.55
France	Golfech-2	PWR	Fram.	10,387,608	87.00
United States	Limerick-1	BWR	GE	10,337,108	101.86
United States	McGuire-1	PWR	West.	10,363,608	96.58
United States	San Onofre-3	PWR	CE	10,283,101	104.16
United States	Braidwood-1	PWR	West.	10,275,970	94.45
United States	Peach Bottom-2	BWR	GE	10,248,600	98.98

APPENDIX M Top 50 Reactors by Generation, Worldwide (continued)

Nation	Unit	Reactor Type	Vendor	2009 Gross Generation (MWh)	2009 Gross Capacity Factor (Percent)
Brazil	Angra-2	PWR	KWU	10,153,595	85.85
United States	Byron-1	PWR	West.	10,152,796	93.32
United States	Palo Verde-3	PWR	CE	10,119,512	80.45
United States	Hope Creek	BWR	GE	10,109,400	88.81
France	Golfech-1	PWR	Fram.	10,055,220	84.22
United States	LaSalle-1	BWR	GE	10,019,751	98.10
United States	Palo Verde-2	PWR	CE	10,010,324	80.02
France	Civaux-1	PWR	Fram.	9,972,512	72.93
France	Flamanville-2	PWR	Fram.	9,949,068	82.18
France	Cattenom-2	PWR	Fram.	9,927,288	83.20
United States	Comanche Peak-2	PWR	West.	9,886,263	92.89
United States	Braidwood-2	PWR	West.	9,872,635	93.11
Switzerland	Leibstadt	BWR	GE	9,837,374	93.58
United States	Salem-2	PWR	West.	9,819,189	90.98
France	Paluel-4	PWR	Fram.	9,765,400	80.66
Japan	Fukushima II-3	BWR	Tosh.	9,702,910	100.68
United States	Watts Bar-1	PWR	West.	9,657,587	91.11
United States	Limerick-2	BWR	GE	9,657,426	94.79

Note: Country's short-form name used.

Source: Excerpted from Nucleonics Week[®], April 1, 2010, by McGraw Hill, Inc. Reproduced by permission. Further reproduction prohibited. Abbreviated unit names listed.

APPENDIX N Tribes Physically Located Within Fifty Miles of a Nuclear Power Plant

ARIZONA

Palo Verde Ak-Chin Indian Community Tohono O'odham Trust Land Gila River Reservation Maricopa Reserve

CALIFORNIA

San Onofre Pechanga Reservation

of Luiseño Indians Pala Reservation Pauma & Yuima Reserve Rincon Reservation San Pasqual Reservation La Jolla Reservation Cahuilla Reservation Soboba Reservation Santa Ysabel Mesa Grande Reservation Barona Reservation

CONNECTICUT Millstone

Mohegan Reservation Mashantucket Pequot Reservation Narragansett Reservation

FLORIDA

St. Lucie Brighton Reservation (Seminole Tribes of Florida) Fort Pierce Reservation

Turkey Point

Miccosukee Reservation Hollywood Reservation (Seminole Tribes of Florida)

IOWA

Duane Arnold Sac & Fox Trust Land Sac & Fox Reserve

LOUISIANA River Bend Tunica-Biloxi Reservation

MASSACHUSETTS

Pilgrim Wampanoag Tribe of Grey Head (Aquinnah) Trust Land

MINNESOTA Monticello

Shakopee Community Shakopee Trust Land Mille Lacs Reservation

Prairie Island

Prairie Island Community Prairie Island Trust Land Shakopee Community Shakopee Trust Land

NEBRASKA

Cooper Sac & Fox Trust Land Sac & Fox Reservation Kickapoo

Fort Calhoun

Winnebago Trust Land Omaha Reservation Winnebago Reservation

NEW YORK

FitzPatrick Onondaga Reservation Oneida Reservation

Nine Mile Point Onondaga Reservation Oneida Reservation

NORTH CAROLINA McGuire Catawba Reservation

SOUTH CAROLINA Catawba

Catawba Reservation

Oconee Eastern Cherokee Reservation

Summer Catawba Reservation

WASHINGTON

Columbia Yakama Reservation Yakama Trust

WISCONSIN

Kewaunee Oneida Trust Land Oneida Reservation

Point Beach Oneida Trust Land Oneida Reservation

Note: NRC-abbreviated reactor names and Tribal land names listed.

APPENDIX O

Regulatory Research Cooperative Agreements and Grants

Organization	Agreement or Grant Description
Electric Power Research Institute	Research on central and eastern United States seismic hazards, fire risk, improved probabilistic risk assessment techniques, and aging management
Pennsylvania State University	Assistance with a multinational research program, coordinated by the Nuclear Energy Agency, to benchmark thermal hydraulic computer calculations against experimental data
University of Tennessee	Research on the Tennessee Seismic Zone
Oregon State University	Research on high-temperature gas reactors
Massachusetts Institute of Technology	Research on advanced methods for probabilistic risk assessment (PRA)
University of Maryland	Research on improved human reliability analysis methodologies for application to nuclear power plant PRAs
Virginia Polytechnic Institute and State University	Evaluation of faults near the epicenter of the 1886 Charleston earthquake
University of California-Berkeley	Work on ground motion prediction models for central and eastern North America
University of South Carolina	Research on aging electric cables in nuclear power plants
University of Wisconsin	Research on advanced gas-cooled reactors
National Academies	Geological and geotechnical engineering work
American Nuclear Society	Research on PRA consensus standards
ASME Standards Technology, LLC	Support in the following areas: PRA training, updating codes for advanced reactor high- temperature metallic materials, nuclear risk management, updating codes for high-temperature gas reactors
National Academies	To perform a study on the cancer risk for populations surrounding nuclear power plant facilities

APPENDIX P Quick-Reference Metric Conversion Tables

	SPACE AND I		
Quantity	From Inch-Pound Units	To Metric Units	Multiply by
Length	mi (statute)	km	1.609 347
	yd	m	*0.914 4
	ft (int)	m	*0.304 8
	in	cm	*2.54
Area	mi ²	km²	2.589 998
	acre	m ²	4 046.873
	yd ²	m ²	0.836 127 4
	ft²	m ²	*0.092 903 04
	in ²	cm ²	*6.451 6
Volume	acre foot	m ³	1 233.489
	yd ³	m ³	0.764 554 9
	ft ³	m ³	0.028 316 85
	ft ³	L	28.316 85
	gal	L	3.785 412
	fl oz	mL	29.573 53
	in ³	cm ³	16.387 06
Velocity	mi/h	km/h	1.609 347
	ft/s	m/s	*0.304 8
Acceleration	ft/s ²	m/s ²	*0.304 8

SPACE AND TIME

NUCLEAR REACTION AND IONIZING RADIATION From Inch-Pound Units Quantity To Metric Units Multiply by Activity (of a radionuclide) curie (Ci) MBq *37,000.0 Becquerel (Bq) dpm 0.016 667 Absorbed dose rad Gray (Gy) *0.01 rad *1.0 cGy Dose equivalent rem Sievert (Sv) *0.01 rem mSv *10.0 mSv *0.01 mrem *10.0 mrem μSv Exposure roentgen (R) C/kg (coulomb) 0.000 258 (X-rays and gamma rays)

APPENDIX P Quick-Reference Metric Conversion Tables (continued)

HEAT					
Quantity	From Inch-Pound Units	To Metric Units	Multiply by		
Thermodynamic temperature	°F	К	*K = (°F + 59.67)/1.8		
Celsius temperature	°F	°C	*°C = (°F–32)/1.8		
Linear expansion coefficient	1/°F	1/K or 1/°C	*1.8		
Thermal conductivity	(Btu • in)/(ft² • h • °F)	W/(m • °C)	0.144 227 9		
Coefficient of heat transfer	Btu / (ft² • h • °F)	W/(m² ● °C)	5.678 263		
Heat capacity	Btu/°F	kJ/°C	1.899 108		
Specific heat capacity	Btu/(lb • °F)	kJ/(kg ∙ °C)	*4.186 8		
Entropy	Btu/°F	kJ/°C	1.899 108		
Specific entropy	Btu/(lb • °F)	kJ/(kg ∙ °C)	*4.186 8		
Specific internal energy	Btu/lb	kJ/kg	*2.326		

MECHANICS					
Quantity	From Inch-Pound Units	To Metric Units	Multiply by		
Mass (weight)	ton (short) lb (avdp)	t (metric ton) kg	*0.907 184 74 *0.453 592 37		
Moment of mass	lb • ft	kg ∙ m	0.138 255		
Density	ton (short)/yd³ lb/ft³	t/m³ g/m³	1.186 553 16.018 46		
Concentration (mass)	lb/gal	g/L	119.826 4		
Momentum	lb • ft/s	kg ∙ m/s	0.138 255		
Angular momentum	lb • ft²/s	kg • m²/s	0.042 140 11		
Moment of inertia	lb • ft ²	kg ∙ m²	0.042 140 11		
Force	kip (kilopound) lbf	kN (kilonewton) N (newton)	4.448 222 4.448 222		
Moment of force, torque	lbf • ft	<mark>N</mark> ● m	1.355 818		
	lbf • in	N ● m	0.122 984 8		
Pressure	atm (std) bar lbf/in ² (formerly psi) inHg (32 °F) ftH ₂ O (39.2 °F) inH ₂ O (60 °F) mmHg (0 °C)	kPa (kilopascal) kPa kPa kPa kPa kPa kPa	*101.325 *100.0 6.894 757 3.386 38 2.988 98 0.248 84 0.133 322		

APPENDIX P Quick-Reference Metric Conversion Tables (continued)

		Jinnueu)	
Quantity	From Inch-Pound Units	To Metric Units	Multiply by
Stress	kip/in² (formerly ksi)	MPa	6.894 757
	lbf/in ² (formerly psi)	MPa	0.006 894 757
	lbf/in ² (formerly psi)	kPa	6.894 757
	lbf/ft ²	kPa	0.047 880 26
Energy, work	kWh	MJ	*3.6
	cal th	J (joule)	*4.184
	Btu	kJ	1.055 056
	ft • lbf	J	1.355 818
	therm (US)	MJ	105.480 4
Power	Btu/s	kW	1.055 056
	hp (electric)	kW	*0.746
	Btu/h	W	0.293 071 1

MECHANICS (continued)

Note: The information contained in this table is intended to familiarize NRC personnel with commonly used SI units and provide a quick reference to aid in the understanding of documents containing SI units. The conversion factors provided have not been approved as NRC guidelines for the development of licensing actions, regulations, or policy.

To convert from metric units to inch-pound units, divide the metric unit by the conversion factor.

* Exact conversion factors

Source: Federal Standard 376B (January 27, 1993), "Preferred Metric Units for General Use by the Federal Government"; and International Commission on Radiation Units and Measurements, ICRU Report 33 (1980), "Radiation Quantities and Units"

GLOSSARY (ABBREVIATIONS AND TERMS DEFINED)

Agreement State

A State that has signed an agreement with the NRC authorizing the State to regulate certain uses of radioactive materials within the State.

Atomic energy

The energy that is released through a nuclear reaction or radioactive decay process. Of particular interest is the process known as fission, which occurs in a nuclear reactor and produces energy usually in the form of heat. In a nuclear power plant, this heat is used to boil water in order to produce steam that can be used to drive large turbines. This, in turn, activates generators to produce electrical power. Atomic energy is more correctly called nuclear energy.

Background radiation

The natural radiation that is always present in the environment. It includes cosmic radiation which comes from the sun and stars, terrestrial radiation which comes from the Earth, and internal radiation which exists in all living things. The typical average individual exposure in the United States from natural background sources is about 300 millirems per year.

Boiling-water reactor (BWR)

A common nuclear power reactor design in which water flows upward through the core, where it is heated by fission and allowed to boil in the reactor vessel. The resulting steam then drives turbines, which activate generators to produce electrical power. BWRs operate similarly to electrical plants using fossil fuel, except that the BWRs are powered by 370-800 nuclear fuel assemblies in the reactor core.

Brachytherapy

A nuclear medicine procedure during which a sealed radioactive source is implanted directly into a person being treated for cancer (usually of the mouth, breast, lung, prostate, ovaries, or uterus). The radioactive implant may be temporary or permanent, and the radiation attacks the tumor as long as the device remains in place. Brachytherapy uses radioisotopes, such as iridium-192 or iodine-125, which are regulated by the NRC and its Agreement States.

Byproduct material

As defined by NRC regulations includes any radioactive material (except enriched uranium or plutonium) produced by a nuclear reactor. It also includes the tailings or wastes produced by the extraction or concentration of uranium or thorium or the fabrication of fuel for nuclear reactors. Additionally, it is any material that has been made radioactive through the use of a particle accelerator or any discrete source of radium-226 used for a commercial, medical, or research activity. In addition, the NRC, in consultation with the EPA, DOE, DHS and others, can designate as byproduct material any source of naturally-occurring radioactive material, other than source material, that it determines would pose a threat to public health and safety or the common defense and security of the United States.

Canister

See Dry cask storage.

Capability

The maximum load that a generating unit, generating station, or other electrical apparatus can carry under specified conditions for a given period of time without exceeding approved limits of temperature and stress.

Capacity

The amount of electric power that a generating unit can produce. The amount of electric power that a manufacturer rates its generator, turbine transformer, transmission, circuit, or system, is able to produce.

Capacity charge

One of two elements in a two-part pricing method used in capacity transactions (the other element is the energy charge). The capacity charge, sometimes called the demand charge, is assessed on the capacity (amount of electric power) being purchased.

Capacity factor

The ratio of the available capacity (the amount of electrical power actually produced by a generating unit) to the theoretical capacity (the amount of electrical power that could theoretically have been produced if the generating unit had operated continuously at full power) during a given time period.

Capacity utilization

A percentage representing the extent to which a generating unit fulfilled its capacity in generating electric power over a given time period. This percentage is defined as the margin between the unit's available capacity (the amount of electrical power the unit actually produced) and its theoretical capacity (the amount of electrical power that could have been produced if the unit had operated continuously at full power) during a certain time period. Capacity utilization is computed by dividing the amount actually produced by the theoretical capacity, and multiplying by 100.

Cask

A heavily shielded container used for the dry storage or shipment (or both) of radioactive materials such as spent nuclear fuel or other high-level radioactive waste. Casks are often made from lead, concrete, or steel. Casks must meet regulatory requirements and are not intended for long-term disposal in a repository.

Classified information

Information that could be used by an adversary to harm the U.S. or its allies and thus must be protected. The NRC has two types of classified information. The first type, known as national security information, is information that is classified by an Executive Order. Its release would damage national security to some degree. The second type, known as restricted data, is information that is classified by the Atomic Energy Act. It would assist individuals or organizations in designing, manufacturing, or using nuclear weapons. Access to both types of information is restricted to authorized persons who have been properly cleared and have a "need to know" the information for their official duties.

144 • U.S. NRC Protecting People and the Environment

Combined license (COL)

An NRC-issued license that authorizes a licensee to construct and (with certain specified conditions) operate a nuclear power plant at a specific site, in accordance with established laws and regulations. A COL is valid for 40 years (with the possibility of a 20-year renewal).

Commercial sector (energy users)

Generally, nonmanufacturing business establishments, including hotels, motels, and restaurants; wholesalers and retail stores; and health, social, and educational institutions. However, utilities may categorize commercial service as all consumers whose demand or annual usage exceeds some specified limit that is categorized as residential service.

Compact

A group of two or more States that have formed business alliances to dispose of low-level radioactive waste on a regional basis.

Construction recapture

The maximum number of years that could be added to a facility's license expiration date to recapture the period between the date the NRC issued the facility's construction permit to the date it granted an operating license. A licensee must submit an application to request this extension.

Containment structure

A gas-tight shell or other enclosure around a nuclear reactor to confine fission products that otherwise might be released to the atmosphere in the event of an accident. Such enclosures are usually dome-shaped and made of steel-reinforced concrete.

Contamination

Undesirable radiological, chemical, or biological material (with a potentially harmful effect) that is either airborne, or deposited in (or on the surface of) structures, objects, soil, water, or living organisms in a concentration that makes the medium unfit for its next intended use.

Criticality

The normal operating condition of a reactor, in which nuclear fuel sustains a fission chain reaction. A reactor achieves criticality (and is said to be critical) when each fission event releases a sufficient number of neutrons to sustain an ongoing series of reactions.

Decommissioning

The process of safely closing a nuclear power plant (or other facility where nuclear materials are handled) to retire it from service after its useful life has ended. This process primarily involves decontaminating the facility to reduce residual radioactivity and then releasing the property for unrestricted or (under certain conditions) restricted use. This often includes dismantling the facility or dedicating it to other purposes. Decommissioning begins after the nuclear fuel, coolant, and radioactive waste are removed.

Decon

A method of decommissioning, in which structures, systems, and components that contain radioactive contamination are removed from a site and safely disposed at a commercially operated low-level waste disposal facility, or decontaminated to a level that permits the site to be released for unrestricted use shortly after it ceases operation.

Decontamination

A process used to reduce, remove, or neutralize radiological, chemical, or biological contamination to reduce the risk of exposure. Decontamination may be accomplished by cleaning or treating surfaces to reduce or remove the contamination; filtering contaminated air or water; subjecting contamination to evaporation and precipitation; or covering the contamination to shield or absorb the radiation. The process can also simply allow adequate time for natural radioactive decay to decrease the radioactivity.

Defense-in-depth

An approach to designing and operating nuclear facilities that prevents and mitigates accidents that release radiation or hazardous materials. The key is creating multiple independent and redundant layers of defense to compensate for potential human and mechanical failures so that no single layer, no matter how robust, is exclusively relied upon. Defense-in-depth includes the use of access controls, physical barriers, redundant and diverse key safety functions, and emergency response measures.

Depleted uranium

Uranium with a percentage of uranium-235 lower than the 0.7 percent (by mass) contained in natural uranium. (The normal residual U-235 content in depleted uranium is 0.2–0.3 percent, with U-238 comprising the remaining 98.7–98.8 percent.) Depleted uranium is produced during uranium isotope separation and is typically found in spent fuel elements or byproduct tailings or residues. Depleted uranium can be blended with highly-enriched uranium, such as that from weapons, to make reactor fuel.

Design-basis threat (DBT)

A profile of the type, composition, and capabilities of an adversary. The NRC uses the DBT as a basis for designing safeguards systems to protect against acts of radiological sabotage and to prevent the theft of special nuclear material. Nuclear facility licensees are expected to demonstrate they can defend against the DBT.

Design certification

Certification and approval by the NRC of a standard nuclear power plant design independent of a specific site or an application to construct or operate a plant. A design certification is valid for 15 years from the date of issuance but can be renewed for an additional 10 to 15 years.

Dry cask storage

A method for storing spent nuclear fuel above ground in special containers known as casks. After fuel has been cooled in a spent fuel pool for at least 1 year, dry cask storage allows approximately one to six dozen spent fuel assemblies to be sealed

146 • U.S. NRC Protecting People and the Environment

in casks and surrounded by inert gas. The casks are large, rugged cylinders, made of steel or steel-reinforced concrete (18 or more inches thick or 45.72 or more centimeters). They are welded or bolted closed, and each cask is surrounded by steel, concrete, lead, or other material to provide leak-tight containment and radiation shielding. The casks may be placed horizontally in aboveground concrete bunkers, or vertically in concrete vaults or on concrete pads.

Early site permit (ESP)

A permit through which the NRC resolves site safety, environmental protection, and emergency preparedness issues, in order to approve one or more proposed sites for a nuclear power facility, independent of a specific nuclear plant design or an application for a construction permit or combined license. An ESP is valid for 10 to 20 years, but can be renewed for an additional 10 to 20 years.

Economic Simplified Boiling-Water Reactor (ESBWR)

A 4,500-MWt nuclear reactor design, which has passive safety features and uses natural circulation (with no recirculation pumps or associated piping) for normal operation. GE-Hitachi Nuclear Energy (GEH) submitted an application for final design approval and standard design certification for the ESBWR on August 24, 2005.

Efficiency, plant

The percentage of the total energy content of a power plant's fuel that is converted into electricity. The remaining energy is lost to the environment as heat.

Electric power grid

A system of synchronized power providers and consumers, connected by transmission and distribution lines and operated by one or more control centers. In the continental United States, the electric power grid consists of three systems—the Eastern Interconnect, the Western Interconnect, and the Texas Interconnect. In Alaska and Hawaii, several systems encompass areas smaller than the State.

Electric utility

A corporation, agency, authority, person, or other legal entity that owns and/or operates facilities within the United States, its territories, or Puerto Rico for the generation, transmission, distribution, or sale of electric power (primarily for use by the public). Facilities that qualify as cogenerators or small power producers under the Public Utility Regulatory Policies Act (PURPA) are not considered electric utilities.

Emergency classifications

Sets of plant conditions that indicate various levels of risk to the public and which might require response by an offsite emergency response organization to protect citizens near the site.

Both nuclear power plants and research and test reactors use the following emergency classifications:

• *Notification of Unusual Event*—Events that indicate potential degradation in the level of safety of the plant are in progress or have occurred. No release of radioactive material requiring offsite response or monitoring is expected unless further degradation occurs.

- *Alert*—Events that involve an actual or potential substantial degradation in the level of plant safety are in progress or have occurred. Any releases of radioactive material are expected to be limited to a small fraction of the limits set forth by the EPA.
- *Site Area Emergency*—Events that may result in actual or likely major failures of plant functions needed to protect the public are in progress or have occurred. Any releases of radioactive material are not expected to exceed the limits set forth by the EPA except near the site boundary.
- *General Emergency*—Events that involve actual or imminent substantial core damage or melting of reactor fuel with the potential for loss of containment integrity are in progress or have occurred. Radioactive releases can be expected to exceed the limits set forth by the EPA for more than the immediate site area.

Nuclear materials and fuel cycle facility licensees use the following emergency classifications:

- *Alert*—Events that could lead to a release of radioactive materials are in progress or have occurred. The release is not expected to but the release is not expected to require a response by an offsite response organization to protect citizens near the site.
- *Site Area Emergency*—Events that could lead to a significant release of radioactive materials are in progress or have occurred. The release could require a response by offsite response organizations to protect citizens near the site.

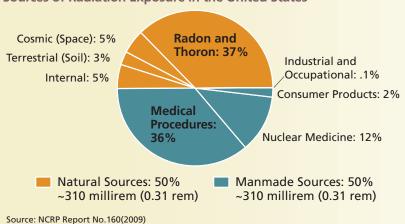
Emergency preparedness (EP)

The programs, plans, training, exercises, and resources necessary to prepare emergency personnel to rapidly identify, evaluate, and react to emergencies, including those arising from terrorism or natural events such as hurricanes. EP strives to ensure that nuclear power plant operators can implement measures to protect public health and safety in the event of a radiological emergency. Plant operators, as a condition of their licenses, must develop and maintain EP plans that meet NRC requirements.

Energy Information Administration (EIA)

The agency, within the U.S. Department of Energy, that provides policy-neutral statistical data, forecasts, and analyses to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment.

Entomb


A method of decommissioning, in which radioactive contaminants are encased in a structurally long-lived material, such as concrete. The entombed structure is maintained and surveillance is continued until the entombed radioactive waste decays to a level permitting termination of the license and unrestricted release of the property. During the entombment period, the licensee maintains the license previously issued by the NRC.

Event Notification (EN) System

An automated event tracking system used internally by the NRC's Headquarters Operations Center to track incoming notifications of significant nuclear events with an actual or potential effect on the health and safety of the public and the environment. Significant events are reported to the Operations Center by the NRC's licensees, Agreement States, other Federal agencies, the public, and other stakeholders.

Exposure

Absorption of ionizing radiation or ingestion of a radioisotope. Acute exposure is a large exposure received over a short period of time. Chronic exposure is exposure received over a long period of time, such as during a lifetime. The National Council on Radiation Protection and Measurements (NCRP) estimates that an average person in the United States receives a total annual dose of about 0.62 rem (620 millirem) from all radiations sources, a level that has not been shown to cause humans any harm. Of this total, natural background sources of radiation—including radon and thoron gas, natural radiation from soil and rocks, radiation from space and radiation sources that are found naturally within the human body—account for approximately 50 percent. Medical procedures such as computed tomography (CT scans) and nuclear medicine account approximately for another 48 percent. Other small contributors of exposure to the U.S. population includes consumer products and activities, industrial and research uses, and occupational tasks. The maximum permissible yearly dose for a person working with or around nuclear material is 5 rem.

Sources of Radiation Exposure in the United States

Full report is available on the NCRP website at www.NCRPpublications.org.

Federal Emergency Management Agency (FEMA)

A component of U.S. Department of Homeland Security responsible for protecting the nation and reducing the loss of life and property from all hazards, such as natural disasters and acts of terrorism. FEMA leads and supports a risk-based, comprehensive emergency management system of preparedness, protection, response, recovery, and mitigation. FEMA also administers the National Flood Insurance Program.

Federal Energy Regulatory Commission (FERC)

An independent agency that regulates the interstate transmission of electricity, natural gas, and oil. FERC also regulates and oversees hydropower projects, and the construction of liquefied natural gas terminals and interstate natural gas pipelines. FERC protects the economic, environmental, and safety interests of the American public, while working abundant, reliable energy in a fair, competitive market.

Fiscal year (FY)

The 12-month period from October 1 through September 30 used by the Federal Government for budget formulation and execution. The fiscal year is designated by the calendar year in which it ends; for example, FY 2009 runs from October 1, 2008, through September 30, 2009.

Fissile material

A nuclide that is capable of undergoing fission after capturing low-energy thermal (slow) neutrons. Although sometimes used as a synonym for fissionable material, this term has acquired its more-restrictive interpretation with the limitation that the nuclide must be fissionable by *thermal neutrons*. With that interpretation, the three primary fissile materials are uranium-233, uranium-235, and plutonium-239. This definition excludes natural uranium and depleted uranium that have not been irradiated, or have only been irradiated in thermal reactors.

Fission (fissioning)

The splitting of an atom, which releases a considerable amount of energy (usually in the form of heat) that can be used to produce electricity. Fission may be spontaneous, but is usually caused by the nucleus of an atom becoming unstable (or "heavy") after capturing or absorbing a neutron. During fission, the heavy nucleus splits into roughly equal parts, producing the nuclei of at least two lighter elements. In addition to energy, this reaction usually releases gamma radiation and two or more daughter neutrons.

Force-on-Force (FOF)

Inspections designed to evaluate and improve the effectiveness of a licensee's security force and ability to defend a nuclear power plant and other nuclear facilities against a design-basis threat. An essential part of the security program instituted by the NRC, a full force-on-force inspection spans 2 weeks and includes tabletop drills and multiple simulated combat exercises between a mock commando-type adversary force and the plant's security force.

Foreign Assignee Program

An on-the-job training program, sponsored by the NRC for assignees from other countries, usually under bilateral information exchange arrangements with their respective regulatory organizations.

Freedom of Information Act (FOIA)

A Federal law that requires Federal agencies to provide, upon written request, access to records or information. Some material is exempt from FOIA, and FOIA does not apply to records that are maintained by State and local governments, or Federal contractors, grantees or private organizations or businesses.

Fuel assembly (fuel bundle, fuel element)

A structured group of fuel rods (long, slender, metal tubes containing pellets of fissionable material, which provide fuel for nuclear reactors). Depending on the design, each reactor vessel may have dozens of fuel assemblies (also known as fuel bundles), each of which may contain 200 or more fuel rods.

Fuel cycle

The series of steps involved in supplying fuel for nuclear power reactors include the following:

- Uranium recovery to extract (or mine) uranium ore, and concentrate (or mill) the ore to produce "yellowcake"
- Conversion of yellowcake into uranium hexafluoride (UF₆)
- Enrichment to increase the concentration of uranium-235 (U-235) in UF₆
- Fuel fabrication to convert enriched UF₆ into fuel for nuclear reactors
- Use of the fuel in reactors (nuclear power, research, or naval propulsion)
- Interim storage of spent nuclear fuel
- Reprocessing of high-level waste to recover the fissionable material remaining in the spent fuel (currently not done in the United States)
- Final disposition (disposal) of high-level waste

The NRC regulates these processes, as well as the fabrication of mixed oxide nuclear fuel, which is a combination of uranium and plutonium oxides.

Fuel reprocessing (recycling)

The processing of reactor fuel to separate the unused fissionable material from waste material. Reprocessing extracts isotopes from spent nuclear fuel so they can be used again as reactor fuel. Commercial reprocessing is not practiced in the U.S., although it has been practiced in the past. However, the U.S. Department of Defense oversees reprocessing programs at DOE facilities such as in Hanford, WA, and Savannah River, SC. These wastes as well as those wastes at a formerly operating commercial reprocessing facility at West Valley, NY are not regulated by the NRC.

Fuel rod

A long, slender, zirconium metal tube containing pellets of fissionable material, which provide fuel for nuclear reactors. Fuel rods are assembled into bundles called fuel assemblies, which are loaded individually into the reactor core.

Full-time equivalent

A human resources measurement equal to one staff person working full-time for one year.

Gas centrifuge

A uranium enrichment process used to prepare uranium for use in fabricating fuel for nuclear reactors by separating its isotopes (as gases) based on their slight difference in mass. This process uses a large number of interconnected centrifuge machines (rapidly spinning cylinders). No commercial gas centrifuge plants are operating in the United States; however, both Louisiana Energy Services (LES) and United States Enrichment Corporation (USEC) have received licenses to construct and operate such facilities, and both facilities are under construction.

Gas chromatography

A way of separating chemical substances from a mixed sample by passing the sample, carried by a moving stream of gas, through a tube packed with a finely divided solid that may be coated with a liquid film. Gas chromatography devices are used to analyze air pollutants, blood alcohol content, essential oils, and food products.

Gaseous diffusion

A uranium enrichment process used to prepare uranium for use in fabricating fuel for nuclear reactors by separating its isotopes (as gases) based on their slight difference in velocity. (Lighter isotopes diffuse faster through a porous membrane or vessel than do heavier isotopes.) This process involves filtering uranium hexafluoride (UF₆) gas to separate uranium-234 and uranium-235 from uranium-238, in order to increase the percentage of uranium-235 from 1 to 3 percent. The only gaseous diffusion plant in operation in the United States is in Paducah, KY. A similar plant near Piketon, OH, was closed in March 2001. Both plants are leased by the United States Enrichment Corporation (USEC) from the DOE and regulated by the NRC since March 4, 1997.

Gauging devices

Devices used to measure, monitor, and control the thickness of sheet metal, textiles, paper napkins, newspaper, plastics, photographic film, and other products as they are manufactured. Gauges mounted in fixed locations are designed for measuring or controlling material density, flow, level, thickness, or weight. The gauges contain sealed sources that radiate through the substance being measured to a readout or controlling device. Portable gauging devices, such as moisture density gauges, are used at field locations. These gauges contain a gamma-emitting sealed source, usually cesium-137, or a sealed neutron source, usually americium-241 or beryllium.

Generation (gross)

The total amount of electric energy produced by a generating station, as measured at the generator terminals.

Generation (net)

The gross amount of electric energy produced by a generating station, minus the amount used to operate the station. Net generation is usually measured in watthours (Wh).

Generator capacity

The maximum amount of electric energy that a generator can produce (from the mechanical energy of the turbine), adjusted for ambient conditions. Generator capacity is commonly expressed in megawatts (MW).

Generator nameplate capacity

The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is usually expressed in kilovolt-amperes (kVA) and kilowatts (kW), as indicated on a nameplate that is physically attached to the generator.

Geological repository

An excavated, underground facility that is designed, constructed, and operated for safe and secure permanent disposal of high-level radioactive waste. A geological repository uses an engineered barrier system and a portion of the site's natural geology, hydrology, and geochemical systems to isolate the radioactivity of the waste. The Nuclear Waste Policy Act of 1982, as amended, specifies that this waste will be disposed of in a deep geologic repository, and that Yucca Mountain, NV, will be the single candidate site for such a repository. On June 3, 2008, DOE submitted a license application to the NRC seeking authorization to construct the Yucca Mountain repository.

Gigawatt (GW)

A unit of power equivalent to one billion watts.

Gigawatthour (GWh)

One billion watthours.

Grid

See Electric Power Grid.

Half-life (radiological)

The time required for half the atoms of a particular radioisotope to decay into another isotope that has half the activity of the original radioisotope. A specific halflife is a characteristic property of each radioisotope. Measured half-lives range from millionths of a second to billions of years, depending on the stability of the nucleus. Radiological half-life is related to, but different from, the biological half-life and the effective half-life.

Health physics

The science concerned with recognizing and evaluating the effects of ionizing radiation on the health and safety of people and the environment, monitoring radiation exposure, and controlling the associated health risks and environmental hazards to permit the safe use of technologies that produce ionizing radiation.

High-level radioactive waste (HLW)

The highly radioactive materials produced as byproducts of fuel reprocessing or of the reactions that occur inside nuclear reactors. HLW includes:

- Irradiated spent nuclear fuel discharged from commercial nuclear power reactors
- The highly radioactive liquid and solid materials resulting from the reprocessing of spent nuclear fuel, which contain fission products in concentration (this includes some reprocessed HLW from defense activities and a small quantity of reprocessed commercial HLW)
- Other highly radioactive materials that the Commission may determine require permanent isolation

Highly (or High-) enriched uranium

Uranium enriched to at least 20 percent uranium-235 (a higher concentration than exists in natural uranium ore).

In situ recovery (ISR)

One of the two primary recovery methods that are currently used to extract uranium from ore bodies where they are normally found underground (in other words, in situ), without physical excavation. Also known as "solution mining" or in situ leaching.

Incident response (IR)

Activities that address the short-term, direct effects of a natural or human-caused event and require an emergency response to protect life or property.

Independent spent fuel storage installation (ISFSI)

A complex designed and constructed for the interim storage of spent nuclear fuel; solid, reactor-related, greater than Class C waste; and other associated radioactive materials. A spent fuel storage facility may be considered independent, even if it is located on the site of another NRC-licensed facility.

International Atomic Energy Agency (IAEA)

The center of worldwide cooperation in the nuclear field, through which member countries and multiple international partners work together to promote the safe, secure, and peaceful use of nuclear technologies. The United Nations established the IAEA in 1957 as "Atoms for Peace."

International Nuclear Regulators Association (INRA)

An association established in January 1997 to give international nuclear regulators a forum to discuss nuclear safety. Countries represented include Canada, France, Japan, Spain, South Korea, Sweden, the United Kingdom, and the United States.

Irradiation

Exposure to ionizing radiation. Irradiation may be intentional, such as in cancer treatments or in sterilizing medical instruments. Irradiation may also be accidental, such as being exposed to an unshielded source. Irradiation does not usually result in radioactive contamination, but damage can occur, depending on the dose received.

Isotope

Two or more forms (or atomic configurations) of a given element that have identical atomic numbers (the same number of protons in their nuclei) and the same or very similar chemical properties but different atomic masses (different numbers of neutrons in their nuclei) and distinct physical properties. Thus, carbon-12, carbon-13, and carbon-14 are isotopes of the element carbon, and the numbers denote the approximate atomic masses. Among their distinct physical properties, some isotopes (known as radioisotopes) are radioactive because their nuclei emit radiation as they strive toward a more stable nuclear configuration. For example, carbon-12 and carbon-13 are stable, but carbon-14 is unstable and radioactive.

Kilowatt (KW)

A unit of power equivalent to one thousand watts.

Licensed material

Source material, byproduct material, or special nuclear material that is received, possessed, used, transferred, or disposed of under a general or specific license issued by the NRC or Agreement States.

Licensee

A company, organization, institution, or other entity to which the NRC has granted a general or specific license to construct or operate a nuclear facility, or to receive, possess, use, transfer, or dispose of source, byproduct, or special nuclear material.

Licensing basis

The collection of documents or technical criteria that provides the basis upon which the NRC issues a license to construct or operate a nuclear facility; to conduct operations involving the emission of radiation; or to receive, possess, use, transfer, or dispose of source, byproduct, or special nuclear material.

Light-water reactor

A term used to describe reactors using ordinary water as a coolant, including boilingwater reactors (BWRs) and pressurized-water reactors (PWRs), the most common types used in the United States.

Low-level radioactive waste (LLW)

A general term for a wide range of items that have become contaminated with radioactive material or have become radioactive through exposure to neutron radiation. A variety of industries, hospitals and medical institutions, educational and research institutions, private or government laboratories, and nuclear fuel cycle facilities generate LLW as part of their day-to-day use of radioactive materials. Some examples include radioactively contaminated protective shoe covers and clothing; cleaning rags, mops, filters, and reactor water treatment residues; equipment and tools; medical tubes, swabs, and hypodermic syringes; and carcasses and tissues from laboratory animals. The radioactivity in these wastes can range from just above natural background levels to much higher levels, such as seen in parts from inside the reactor vessel in a nuclear power plant. Low-level waste is typically stored onsite by licensees, either until it has decayed away and can be disposed of as ordinary trash, or until the accumulated amount becomes large enough to warrant shipment to a low-level waste disposal site.

Maximum dependable capacity (gross)

The maximum amount of electricity that the main generating unit of a nuclear power reactor can reliably produce during the summer or winter (usually summer, but whichever represents the most restrictive seasonal conditions, with the least electrical output). The dependable capacity varies during the year because temperature variations in cooling water affect the unit's efficiency. Thus, this is the gross electrical output as measured (in watts unless otherwise noted) at the output terminals of the turbine generator.

Maximum dependable capacity (net)

The gross maximum dependable capacity of the main generating unit in a nuclear power reactor, minus the amount used to operate the station. Net maximum dependable capacity is measured in watts unless otherwise noted.

Megawatt (MW)

A unit of power equivalent to one million watts.

Megawatthour (MWh)

One million watthours.

Metric ton

Approximately 2,200 pounds.

Mill tailings

Primarily, the sandy process waste material from a conventional uranium recovery facility. This naturally radioactive ore residue contains the radioactive decay products from the uranium chains (mainly the U-238 chain) and heavy metals. Although the milling process recovers about 93 percent of the uranium, the residues (known as "tailings") contain several naturally occurring radioactive elements, including uranium, thorium, radium, polonium, and radon.

Mixed oxide (MOX) fuel

A type of nuclear reactor fuel (often called "MOX") that contains plutonium oxide mixed with either natural or depleted uranium oxide, in ceramic pellet form. (This differs from conventional nuclear fuel, which is made of pure uranium oxide.) Using plutonium reduces the amount of highly enriched uranium needed to produce a controlled reaction in commercial light-water reactors. However, plutonium exists only in trace amounts in nature and, therefore, must be produced by neutron irradiation of uranium-238 or obtained from other manufactured sources. As directed by Congress, the NRC regulates the fabrication of MOX fuel by DOE, a program that is intended to dispose of plutonium from international nuclear disarmament agreements.

Monitoring of radiation

Periodic or continuous determination of the amount of ionizing radiation or radioactive contamination in a region. Radiation monitoring is a safety measure to protect the health and safety of the public and the environment through the use of bioassay, alpha scans, and other radiological survey methods to monitor air, surface water and ground water, soil and sediment, equipment surfaces, and personnel.

National Response Framework (NRF)

The guiding principles, roles, and structures that enable all domestic incident response partners to prepare for and provide a unified national response to disasters and emergencies. It describes how the Federal Government, States, Tribes, communities, and the private sector work together to coordinate a national response. The framework, which became effective March 22, 2008, builds upon the National Incident Management System, which provides a template for managing incidents.

National Source Tracking System (NSTS)

A secure, Web-based data system that helps the NRC and its Agreement States track and regulate the medical, industrial, and academic uses of certain nuclear materials, from the time they are manufactured or imported to the time of their disposal or exportation. This information enhances the ability of the NRC and Agreement States to conduct inspections and investigations, communicate information to other government agencies, and verify the ownership and use of nationally tracked sources.

Natural uranium

Uranium containing the relative concentrations of isotopes found in nature (0.7 percent uranium-235, 99.3 percent uranium-238, and a trace amount of uranium-234 by mass). In terms of radioactivity, however, natural uranium contains approximately

2.2 percent uranium-235, 48.6 percent uranium-238, and 49.2 percent uranium-234. Natural uranium can be used as fuel in nuclear reactors.

Net electric generation

The gross amount of electric energy produced by a generating station, minus the amount used to operate the station. Note: Electricity required for pumping at pumped-storage plants is regarded as electricity for station operation and is deducted from gross generation. Net electric generation is measured in watthours (Wh), except as otherwise noted.

Net summer capacity

The steady hourly output that generating equipment is expected to supply to system load, exclusive of auxiliary power, as demonstrated by measurements at the time of peak demand (summer). Net summer capacity is measured in watts unless otherwise noted.

Nonpower reactor (research and test reactor)

A nuclear reactor that is used for research, training, or development purposes (which may include producing radioisotopes for medical and industrial uses) but has no role in producing electrical power. These reactors, which are also known as research and test reactors, contribute to almost every field of science, including physics, chemistry, biology, medicine, geology, archeology, and ecology.

NRC Operations Center

The primary center of communication and coordination among the NRC, its licensees, State and Tribal agencies, and other Federal agencies, regarding operating events involving nuclear reactors or materials. Located in Rockville, MD, the Operations Center is staffed 24 hours a day by employees trained to receive and evaluate event reports and coordinate incident response activities.

Nuclear energy

See Atomic energy.

Nuclear Energy Agency (NEA)

A specialized agency within the Organisation for Economic Co-operation and Development, which was created to assist its Member countries in maintaining and further developing the scientific, technological, and legal bases for safe, environmentally friendly, and economical use of nuclear energy for peaceful purposes. The NEA's current membership consists of 28 countries in Europe, North America, and the Asia-Pacific region, which account for approximately 85 percent of the world's installed nuclear capacity.

Nuclear fuel

Fissionable material that has been enriched to a composition that will support a self-sustaining fission chain reaction when used to fuel a nuclear reactor, thereby producing energy (usually in the form of heat or useful radiation) for use in other processes.

Nuclear materials

See Special nuclear material, Source material, and Byproduct material.

Nuclear Material Management and Safeguards System (NMMSS)

A centralized U.S. Government database used to track and account for source and special nuclear material, to ensure that it has not been stolen or diverted to unauthorized users. The system contains current and historical data on the possession, use, and shipment of source and special nuclear material within the United States, as well as all exports and imports of such material. The database is jointly funded by the NRC and DOE and is operated under a DOE contract.

Nuclear poison (or neutron poison)

In reactor physics, a substance (other than fissionable material) that has a large capacity for absorbing neutrons in the vicinity of the reactor core. This effect may be undesirable in some reactor applications because it may prevent or disrupt the fission chain reaction, thereby affecting normal operation. However, neutron-absorbing materials (commonly known as "poisons") are intentionally inserted into some types of reactors to decrease the reactivity of their initial fresh fuel load. (Adding poisons, such as control rods or boron, is described as adding "negative reactivity" to the reactor.)

Nuclear power plant

A thermal power plant, in which the energy (heat) released by the fissioning of nuclear fuel is used to boil water to produce steam. The steam spins the propellerlike blades of a turbine that turns the shaft of a generator to produce electricity. Of the various nuclear power plant designs, only pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) are in commercial operation in the United States. These facilities generate about 21 percent of U.S. electrical power.

Nuclear/Radiological Incident Annex

An annex to the National Response Framework, which provides for a timely, coordinated response by Federal agencies to nuclear or radiological accidents or incidents within the United States. This annex covers radiological dispersal devices and improvised nuclear devices, as well as accidents involving commercial reactors or weapons production facilities, lost radioactive sources, transportation accidents involving radioactive material, and foreign accidents involving nuclear or radioactive material.

Nuclear reactor

The heart of a nuclear power plant or nonpower reactor, in which nuclear fission may be initiated and controlled in a self-sustaining chain reaction to generate energy or produce useful radiation. Although there are many types of nuclear reactors, they all incorporate certain essential features, including the use of fissionable material as fuel, a moderator (such as water) to increase the likelihood of fission (unless reactor operation relies on fast neutrons), a reflector to conserve escaping neutrons, coolant provisions for heat removal, instruments for monitoring and controlling reactor operation, and protective devices (such as control rods and shielding).

Nuclear waste

A subset of radioactive waste that includes unusable byproducts produced during the various stages of the nuclear fuel cycle, including extraction, conversion, and enrichment of uranium; fuel fabrication; and use of the fuel in nuclear reactors. Specifically, these stages produce a variety of nuclear waste materials, including uranium mill tailings, depleted uranium, and spent (depleted) fuel, all of which are regulated by the NRC. (By contrast, "radioactive waste" is a broader term, which includes all wastes that contain radioactivity, regardless of how they are produced. It is not considered "nuclear waste" because it is not produced through the nuclear fuel cycle and is generally not regulated by the NRC.)

Occupational dose

The internal and external dose of ionizing radiation received by workers in the course of employment in such areas as fuel cycle facilities, industrial radiography, nuclear medicine, and nuclear power plants. These workers are exposed to varying amounts of radiation, depending on their jobs and the sources with which they work. The NRC requires its licensees to limit occupational exposure to 5,000 mrem (50 mSv) per year. Occupational dose does not include the dose received from natural background sources, doses received as a medical patient or participant in medical research programs, or "second-hand doses" received through exposure to individuals treated with radioactive materials.

Organisation for Economic Co-operation and Development (OECD)

An intergovernmental organization (based in Paris, France) which provides a forum for discussion and cooperation among the governments of industrialized countries committed to democracy and the market economy. The primary goal of the OECD and its member countries is to support sustainable economic growth, boost employment, raise living standards, maintain financial stability, assist other countries' economic development, and contribute to growth in world trade. In addition, the OECD is a reliable source of comparable statistics and economic and social data. The OECD also monitors trends, analyzes and forecasts economic developments, and researches social changes and evolving patterns in trade, environment, agriculture, technology, taxation, and other areas.

Orphan sources (unwanted radioactive material)

Sealed sources of radioactive material contained in a small volume (but not radioactively contaminated soils and bulk metals) in any one or more of the following conditions:

- An uncontrolled condition that requires removal to protect public health and safety from a radiological threat.
- A controlled or uncontrolled condition, for which a responsible party cannot be readily identified.
- A controlled condition, compromised by an inability to ensure the continued safety of the material (e.g., the licensee may have few or no options to provide for safe disposition of the material).
- An uncontrolled condition, in which the material is in the possession of a person who did not seek, and is not licensed, to possess it.
- An uncontrolled condition, in which the material is in the possession of a State radiological protection program solely to mitigate a radiological threat resulting from one of the above conditions, and for which the State does not have the necessary means to provide for the appropriate disposition of the material.

Outage

The period during which a generating unit, transmission line, or other facility is out of service. Outages may be forced or scheduled, and full or partial.

Outage (forced)

The shutdown of a generating unit, transmission line, or other facility for emergency reasons, or a condition in which the equipment is unavailable as a result of an unanticipated breakdown. An outage (whether full, partial, or attributable to a failed start) is considered "forced" if it could not reasonably be delayed beyond 48 hours from identification of the problem, if there had been a strong commercial desire to do so. In particular, the following problems may result in forced outages:

- Any failure of mechanical, fuel handling, or electrical equipment or controls within the generator's ownership or direct responsibility (i.e., from the point the generator is responsible for the fuel through to the electrical connection point)
- A failure of a mine or fuel transport system dedicated to that power station with a resulting fuel shortage that cannot be economically managed
- Inadvertent or operator error
- Limitations caused by fuel quality

Forced outages do not include scheduled outages for inspection, maintenance, or refueling.

Outage (full forced)

A forced outage that causes a generating unit to be removed from the Committed state (when the unit is electrically connected and generating or pumping) or the Available state (when the unit is available for dispatch as a generator or pump but is not electrically connected and not generating or pumping). Full-forced outages do not include failed starts.

Outage (scheduled)

The shutdown of a generating unit, transmission line, or other facility for inspection, maintenance, or refueling, which is scheduled well in advance (even if the schedule changes). Scheduled outages do not include forced outages and could be deferred if there were a strong commercial reason to do so.

Pellet, fuel

A thimble-sized ceramic cylinder (approximately 3/8-inch in diameter and 5/8-inch in length), consisting of uranium (typically uranium oxide, UO₂), which has been enriched to increase the concentration of uranium-235 (U-235) to fuel a nuclear reactor. Modern reactor cores in pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) may contain up to 10 million pellets, stacked in the fuel rods that form fuel assemblies.

Performance-based regulation

A regulatory approach that focuses on desired, measurable outcomes, rather than prescriptive processes, techniques, or procedures. Performance-based regulation leads to defined results without specific direction regarding how those results are to be obtained. At the NRC, performance-based regulatory actions focus on identifying performance measures that ensure an adequate safety margin and offer incentives for licensees to improve safety without formal regulatory intervention by the agency.

Performance indicator

A quantitative measure of a particular attribute of licensee performance that shows how well a plant is performing when measured against established thresholds. Licensees submit their data quarterly; the NRC regularly conducts inspections to verify the submittals and then uses its own inspection data plus the licensees' submittals to assess each plant's performance.

Possession-only license

A license, issued by the NRC, that authorizes the licensee to possess specific nuclear material but does not authorize its use or the operation of a nuclear facility.

Power uprate

The process of increasing the maximum power level a commercial nuclear power plant may operate. This power level, regulated by the NRC, is included in the plant's operating license and technical specifications. A licensee may only change its maximum power output after the NRC approves an uprate application. The NRC analyses must demonstrate that the plant could continue to operate safely with its proposed new configuration. When all requisite conditions are fulfilled, the NRC may grant the power uprate by amending the plant's operating license and technical specifications.

Pressurized-water reactor (PWR)

A common nuclear power reactor design in which very pure water is heated to a very high temperature by fission, kept under high pressure (to prevent it from boiling), and converted to steam by a steam generator (rather than by boiling, as in a boiling-water reactor). The resulting steam is used to drive turbines, which activate generators to produce electrical power. A pressurized-water reactor (PWR) essentially operates like a pressure cooker, where a lid is tightly placed over a pot of heated water, causing the pressure inside to increase as the temperature increases (because the steam cannot escape) but keeping the water from boiling at the usual 212°F (100°C). About two-thirds of the operating nuclear reactor power plants in the United States are PWRs.

Probabilistic risk assessment (PRA)

A systematic method for assessing three questions that the NRC uses to define "risk." These questions consider (1) what can go wrong, (2) how likely it is, and (3) what its consequences might be. These questions allow the NRC to understand likely outcomes, sensitivities, areas of importance, system interactions, and areas of uncertainty, which the staff can use to identify risk-significant scenarios. The NRC uses PRA to determine a numeric estimate of risk to provide insights into the strengths and weaknesses of the design and operation of a nuclear power plant.

Production expense

Production expense is one component of the cost of generating electric power, which includes costs associated with fuel, as well as plant operation and maintenance.

Rad (radiation absorbed dose)

One of the two units used to measure the amount of radiation absorbed by an object or person, known as the "absorbed dose," which reflects the amount of energy that radioactive sources deposit in materials through which they pass. The radiationabsorbed dose (rad) is the amount of energy (from any type of ionizing radiation) deposited in any medium (e.g., water, tissue, air). An absorbed dose of 1 rad means that 1 gram of material absorbed 100 ergs of energy (a small but measurable amount) as a result of exposure to radiation. The related international system unit is the gray (Gy), where 1 Gy is equivalent to 100 rad.

Radiation, ionizing

A form of radiation, which includes alpha particles, beta particles, gamma rays and x-rays, neutrons, high-speed electrons, and high-speed protons. Compared to non-ionizing radiation, such as found in ultraviolet light or microwaves, ionizing radiation is considerably more energetic. When ionizing radiation passes through material such as air, water, or living tissue, it deposits enough energy to break molecular bonds and displace (or remove) electrons. This electron displacement may lead to changes in living cells. Given this ability, ionizing radiation has a number of beneficial uses, including treating cancer or sterilizing medical equipment. However, ionizing radiation is potentially harmful if not used correctly, and high doses may result in severe skin or tissue damage. It is for this reason that the NRC strictly regulates commercial and institutional uses of the various types of ionizing radiation.

Radiation, nuclear

Energy given off by matter in the form of tiny fast-moving particles (alpha particles, beta particles, and neutrons) or pulsating electromagnetic rays or waves (gamma rays) emitted from the nuclei of unstable radioactive atoms. All matter is composed of atoms, which are made up of various parts; the nucleus contains minute particles called protons and neutrons, and the atom's outer shell contains other particles called electrons. The nucleus carries a positive electrical charge, while the electrons carry a negative electrical charge. These forces work toward a strong, stable balance by getting rid of excess atomic energy (radioactivity). In that process, unstable radioactive nuclei may emit energy, and this spontaneous emission is called nuclear radiation. All types of nuclear radiation are also ionizing radiation, but the reverse is not necessarily true; for example, x-rays are a type of ionizing radiation, but they are not nuclear radiation because they do not originate from atomic nuclei. In addition, some elements are naturally radioactive, as their nuclei emit nuclear radiation as a result of radioactive decay, but others become radioactive by being irradiated in a reactor. Naturally occurring nuclear radiation is indistinguishable from induced radiation.

Radiation source

A radioactive material or byproduct that is specifically manufactured or obtained for the purpose of using the emitted radiation. Such sources are commonly used in teletherapy or industrial radiography; in various types of industrial gauges, irradiators, and gamma knives; and as power sources for batteries (such as those used in spacecraft). These sources usually consist of a known quantity of radioactive material, which is encased in a manmade capsule, sealed between layers of nonradioactive material, or firmly bonded to a nonradioactive substrate to prevent radiation leakage. Other radiation sources include devices such as accelerators and x-ray generators.

Radiation standards

Exposure limits; permissible concentrations; rules for safe handling; and regulations regarding receipt, possession, use, transportation, storage, disposal, and industrial control of radioactive material.

Radiation therapy (radiotherapy)

The therapeutic use of ionizing radiation to treat disease in patients. Although most radiotherapy procedures are intended to kill cancerous tissue or reduce the size of a tumor, therapeutic doses may also be used to reduce pain or treat benign conditions. For example, intervascular brachytherapy uses radiation to treat clogged blood vessels. Other common radiotherapy procedures include gamma stereotactic radiosurgery (gamma knife), teletherapy, and iodine treatment to correct an overactive thyroid gland. These procedures use radiation sources, regulated by the NRC and its Agreement States, that may be applied either inside or outside the body. In either case, the goal of radiotherapy is to deliver the required therapeutic or painrelieving dose of radiation with high precision and for the required length of time, while preserving the surrounding healthy tissue.

Radiation warning symbol

An officially prescribed magenta or black trefoil on a yellow background, which must be displayed where certain quantities of radioactive materials are present or where certain doses of radiation could be received.

Radioactive contamination

Undesirable radioactive material (with a potentially harmful effect) that is either airborne or deposited in (or on the surface of) structures, objects, soil, water, or living organisms (people, animals, or plants) in a concentration that may harm people, equipment, or the environment.

Radioactive decay

The spontaneous transformation of one radioisotope into one or more different isotopes (known as "decay products" or "daughter products"), accompanied by a decrease in radioactivity (compared to the parent material). This transformation takes place over a defined period of time (known as a "half-life"), as a result of electron capture; fission; or the emission of alpha particles, beta particles or photons (gamma radiation or x-rays) from the nucleus of an unstable atom. Each isotope in the sequence (known as a "decay chain") decays to the next until it forms a stable, less energetic end product. In addition, radioactive decay may refer to gamma-ray and conversion electron emission, which only reduces the excitation energy of the nucleus.

Radioactivity

The property possessed by some elements (such as uranium) of spontaneously emitting energy in the form of radiation as a result of the decay (or disintegration) of an unstable atom. Radioactivity is also the term used to describe the rate at which radioactive material emits radiation. Radioactivity is measured in units of Becquerels or disintegrations per second.

Radiography

The use of sealed sources of ionizing radiation for nondestructive examination of the structure of materials. When the radiation penetrates the material, it produces a shadow image by blackening a sheet of photographic film that has been placed behind the material, and the differences in blackening suggest flaws and unevenness in the material.

Radioisotope (Radionuclide)

An unstable isotope of an element that decays or disintegrates spontaneously, thereby emitting radiation. Approximately 5,000 natural and artificial radioisotopes have been identified.

Radiopharmaceutical

A pharmaceutical drug that emits radiation and is used in diagnostic or therapeutic medical procedures. Radioisotopes that have short half-lives are generally preferred to minimize the radiation dose to the patient and the risk of prolonged exposure. In most cases, these short-lived radioisotopes decay to stable elements within minutes, hours, or days, allowing patients to be released from the hospital in a relatively short time.

Reactor core

The central portion of a nuclear reactor, which contains the fuel assemblies, water, and control mechanisms, as well as the supporting structure. The reactor core is where fission takes place.

Reactor Oversight Process (ROP)

The process by which the NRC monitors and evaluates the performance of commercial nuclear power plants. Designed to focus on those plant activities that are most important to safety, the process uses inspection findings and performance indicators to assess each plant's safety performance.

Regulation

The governmental function of controlling or directing economic entities through the process of rulemaking and adjudication.

Regulatory Information Conference (RIC)

An annual NRC conference that brings together NRC staff, regulated utilities, materials users, and other interested stakeholders to discuss nuclear safety topics and significant and timely regulatory activities through informal dialogue to ensure an open regulatory process.

REM (Roentgen equivalent man)

One of the two standard units used to measure the dose equivalent (or effective dose), which combines the amount of energy (from any type of ionizing radiation) that is deposited in human tissue), along with the medical effects of the given type of radiation. For beta and gamma radiation, the dose equivalent is the same as the absorbed dose. By contrast, the dose equivalent is larger than the absorbed dose for alpha and neutron radiation, because these types of radiation are more damaging to the human body. Thus, the dose equivalent (in rems) is equal to the absorbed dose (in rads) multiplied by the quality factor of the type of radiation (Title 10 of the Code of Federal Regulations, Section 20.1004, "Units of Radiation Dose"). The related international system unit is the sievert (Sv), where 100 rem is equivalent to 1 Sv.

164 • U.S. NRC Protecting People and the Environment

Renewable resources

Natural, but limited, energy resources that can be replenished, including biomass, hydro, geothermal, solar, and wind. These resources are virtually inexhaustible but limited in the amount of energy that is available per unit of time. In the future, renewable resources could also include the use of ocean thermal, wave, and tidal action technologies. Utility renewable resource applications include bulk electricity generation, onsite electricity generation, distributed electricity generation, nongrid-connected generation, and demand-reduction (energy efficiency) technologies. The Information Digest has included conventional hydroelectric and storage hydroelectric in a separate category from other resources.

Risk

The combined answer to three questions that consider (1) what can go wrong, (2) how likely it is, and (3) what its consequences might be. These three questions allow the NRC to understand likely outcomes, sensitivities, areas of importance, system interactions, and areas of uncertainty, which can be used to identify risk-significant scenarios.

Risk-based decisionmaking

An approach to regulatory decisionmaking that considers only the results of a probabilistic risk assessment.

Risk-informed decisionmaking

An approach to regulatory decisionmaking, in which insights from probabilistic risk assessment are considered with other engineering insights.

Risk-informed regulation

An approach to regulation taken by the NRC, which incorporates an assessment of safety significance or relative risk. This approach ensures that the regulatory burden imposed by an individual regulation or process is appropriate to its importance in protecting the health and safety of the public and the environment.

Risk-significant

"Risk-significant" can refer to a facility's system, structure, component, or accident sequence that exceeds a predetermined limit for contributing to the risk associated with the facility. The term also describes a level of risk exceeding a predetermined "significance" level.

Safeguards

The use of material control and accounting programs to verify that all special nuclear material is properly controlled and accounted for, as well as the physical protection (or physical security) equipment and security forces. As used by the International Atomic Energy Agency, this term also means verifying that the peaceful use commitments made in binding nonproliferation agreements, both bilateral and multilateral, are honored.

Safeguards information (SGI)

A special category of sensitive unclassified information that must be protected. Safeguards information concerns the physical protection of operating power reactors, spent fuel shipments, strategic special nuclear material, or other radioactive material.

Safety-related

In the regulatory arena, this term applies to systems, structures, components, procedures, and controls (of a facility or process) that are relied upon to remain functional during and following design-basis events. Their functionality ensures that key regulatory criteria, such as levels of radioactivity released, are met. Examples of safety-related functions include shutting down a nuclear reactor and maintaining it in a safe-shutdown condition.

Safety-significant

When used to qualify an object, such as a system, structure, component, or accident sequence, this term identifies that object as having an impact on safety, whether determined through risk analysis or other means, that exceeds a predetermined significance criterion.

SAFSTOR

A method of decommissioning in which a nuclear facility is placed and maintained in a condition that allows the facility to be safely stored and subsequently decontaminated (deferred decontamination) to levels that permit release for unrestricted use.

Scram

The sudden shutting down of a nuclear reactor, usually by rapid insertion of control rods, either automatically or manually by the reactor operator. Also known as a "reactor trip," "scram" is actually an acronym for "safety control rod axe man," the worker assigned to insert the emergency rod on the first reactor (the Chicago Pile) in the United States.

Sensitive unclassified nonsafeguards information (SUNSI)

Information that is generally not publicly available and that encompasses a wide variety of categories, such as proprietary information, personal and private information, or information subject to attorney-client privilege.

Shutdown

A decrease in the rate of fission (and heat/energy production) in a reactor (usually by the insertion of control rods into the core).

Source material

Uranium or thorium, or any combination thereof, in any physical or chemical form, or ores that contain, by weight, one-twentieth of one percent (0.05 percent) or more of (1) uranium, (2) thorium, or (3) any combination thereof. Source material does not include special nuclear material.

Special nuclear material

Plutonium, uranium-233, or uranium enriched in the isotopes uranium-233 or uranium-235.

Spent fuel pool

An underwater storage and cooling facility for spent (depleted) fuel assemblies that have been removed from a reactor.

Spent (depleted or used) nuclear fuel

Nuclear reactor fuel that has been used to the extent that it can no longer effectively sustain a chain reaction.

Subcriticality

The condition of a nuclear reactor system, in which nuclear fuel no longer sustains a fission chain reaction (that is, the reaction fails to initiate its own repetition, as it would in a reactor's normal operating condition). A reactor becomes subcritical when its fission events fail to release a sufficient number of neutrons to sustain an ongoing series of reactions, possibly as a result of increased neutron leakage or poisons.

Teletherapy

Treatment in which the source of the therapeutic radiation is at a distance from the body. Because teletherapy is often used to treat malignant tumors deep within the body by bombarding them with a high-energy beam of gamma rays (from a radioisotope such as cobalt-60) projected from outside the body, it is often called "external beam radiotherapy."

Title 10 of the Code of Federal Regulations (10 CFR)

Four volumes of the *Code of Federal Regulations* (CFR) address energy-related topics. Parts 1 to 199 contain the regulations (or rules) established by the NRC. These regulations govern the transportation and storage of nuclear materials; use of radioactive materials at nuclear power plants, research and test reactors, uranium recovery facilities, fuel cycle facilities, waste repositories, and other nuclear facilities; and use of nuclear materials for medical, industrial, and academic purposes.

Transient

A change in the reactor coolant system temperature, pressure, or both, attributed to a change in the reactor's power output. Transients can be caused by (1) adding or removing neutron poisons, (2) increasing or decreasing electrical load on the turbine generator, or (3) accident conditions.

Transuranic waste

Material contaminated with transuranic elements—artificially made, radioactive elements, such as neptunium, plutonium, americium, and others—that have atomic numbers higher than uranium in the periodic table of elements. Transuranic waste is primarily produced from recycling spent fuel or using plutonium to fabricate nuclear weapons.

Tritium

A radioactive isotope of hydrogen. Because it is chemically identical to natural hydrogen, tritium can easily be taken into the body by any ingestion path. It decays by emitting beta particles and has a half-life of about 12.5 years.

Uprate

See Power uprate.

Uranium

A radioactive element with the atomic number 92 and, as found in natural ores, an atomic weight of approximately 238. The two principal natural isotopes are uranium-235 (which comprises 0.7 percent of natural uranium), which is fissile, and uranium-238 (99.3 percent of natural uranium), which is fissionable by fast neutrons and is fertile, meaning that it becomes fissile after absorbing one neutron. Natural uranium also includes a minute amount of uranium-234.

Uranium fuel fabrication facility

A facility that converts enriched uranium hexafluoride (UF_{o}) into fuel for commercial light-water power reactors, research and test reactors, and other nuclear reactors. The UF₆, in solid form in containers, is heated to a gaseous form and then chemically processed to form uranium dioxide (UO_2) powder. This powder is then processed into ceramic pellets and loaded into metal tubes, which are subsequently bundled into fuel assemblies. Fabrication also can involve Mixed oxide (MOX) fuel, which contains plutonium oxide mixed with either natural or depleted uranium oxide, in ceramic pellet form.

Uranium hexafluoride production facility (or uranium conversion facility)

A facility that receives natural uranium in the form of ore concentrate (known as "yellowcake") and converts it into uranium hexafluoride (UF_6) , in preparation for fabricating fuel for nuclear reactors.

U.S. Department of Energy (DOE)

The Federal agency established by Congress to advance the national, economic, and energy security of the United States, among other missions.

U.S. Department of Homeland Security (DHS)

The Federal agency responsible for leading the unified national effort to secure the U.S. against those who seek to disrupt the American way of life. DHS is also responsible for preparing for and responding to all hazards and disasters and includes the formerly separate Federal Emergency Management Agency, the Coast Guard, and the Secret Service.

U.S. Environmental Protection Agency (EPA)

The Federal agency responsible for protecting human health and safeguarding the environment. The EPA leads the Nation's environmental science, research, education, and assessment efforts to ensure that efforts to reduce environmental risk are based on the best available scientific information. The EPA also ensures that environmental protection is an integral consideration in U.S. policies.

Viability assessment

A decisionmaking process used by the DOE to assess the prospects for safe and secure permanent disposal of high-level radioactive waste in an excavated, underground facility, known as a geologic repository. This decisionmaking process is based on (1) specific design work on the critical elements of the repository and waste package, (2) a total system performance assessment that will describe the probable behavior of the repository, (3) a plan and cost estimate for the work required to complete the license application, and (4) an estimate of the costs to construct and operate the repository.

Waste, radioactive

Radioactive materials at the end of their useful life or in a product that is no longer useful and requires proper disposal.

Waste classification (classes of waste)

Classification of low-level radioactive waste according to its radiological hazard. The classes include Class A, B, and C, with Class A being the least hazardous and accounting for 96 percent of LLW. As the waste class and hazard increase, the regulations established by the NRC require progressively greater controls to protect the health and safety of the public and the environment.

Watt

A unit of power (in the international system of units) defined as the consumption or conversion of one joule of energy per second. In electricity, a watt is equal to current (in amperes) multiplied by voltage (in volts).

Watthour

An unit of energy equal to one watt of power steadily supplied to, or taken from, an electrical circuit for one hour (or exactly 3.6×10^3 J).

Well-logging

All operations involving the lowering and raising of measuring devices or tools that contain licensed nuclear material or are used to detect licensed nuclear materials in wells for the purpose of obtaining information about the well or adjacent formations that may be used in oil, gas, mineral, groundwater, or geological exploration.

Wheeling service

The movement of electricity from one system to another over transmission facilities of intervening systems. Wheeling service contracts can be established between two or more systems.

Yellowcake

The solid form of mixed uranium oxide, which is produced from uranium ore in the uranium recovery (milling) process. The material is a mixture of uranium oxides, which can vary in proportion and color from yellow to orange to dark green (blackish) depending on the temperature at which the material is dried (which affects the level of hydration and impurities), with higher drying temperatures producing a darker and less soluble material. (The yellowcake produced by most modern mills is actually brown or black, rather than yellow, but the name comes from the color and texture of the concentrates produced by early milling operations.) Yellowcake is commonly referred to as U_3O_8 , because that chemical compound comprises approximately 85 percent of the yellowcake produced by uranium recovery facilities, and that product is then transported to a uranium conversion facility, where it is transformed into uranium hexafluoride (UF₆), in preparation for fabricating fuel for nuclear reactors.

WEB LINK INDEX

NRC: An Independent Regulatory Agency

Mission, Goals, and Statutory Authority

Strategic Plan FY 2008-2013 www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1614/v4/sr1614v4.pdf

Statutory Authority www.nrc.gov/about-nrc/governing-laws.html

Major Activities

Public Involvement www.nrc.gov/public-involve.html

Freedom of Information Act (FOIA) www.nrc.gov/reading-rm/foia/foia-privacy.html

Agency Rulemaking Actions www.regulations.gov

Significant Enforcement Actions www.nrc.gov/reading-rm/doc-collections/enforcement/actions/

Organizations and Functions

Organization Chart www.nrc.gov/about-nrc/organization/nrcorg.pdf

The Commission www.nrc.gov/about-nrc/organization/commfuncdesc.html

Commission Direction-Setting and Policymaking Activities www.nrc.gov/about-nrc/policymaking.html

NRC Regions www.nrc.gov/about-nrc/locations.html

NRC Budget

Performance Budget: Fiscal Year 2009 (NUREG-1100, Vol. 24) www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1100/v24/

U.S. and Worldwide Energy

U.S. Electricity

Energy Information Administration Official Energy Statistics from the U.S. Government www.eia.doe.gov

Worldwide Electricity and Nuclear Power

International Atomic Energy Agency (IAEA) www.iaea.org

IAEA Power Reactor Information System (PRIS) www.iaea.org/programmes/a2

170 • U.S. NRC Protecting People and the Environment

Nuclear Energy Agency (NEA) www.nea.fr/

World Nuclear Association (WNA) www.world-nuclear.org/

World Nuclear Power Reactors 2006-08 and Uranium Requirements www.world-nuclear.org/info/reactors.html

WNA Reactor Database www.world-nuclear.org/reference/default.aspx

WNA Global Nuclear Reactors Map www.wano.org.uk/WANO_Documents/WANO_Map/WANO_Map.pdf

NRC Office of International Programs www.nrc.gov/about-nrc/organization/oipfuncdesc.html

NRC 20th Regulatory Information Conference (RIC) www.nrcric.org

International Activities

Treaties and Conventions www.nrc.gov/about-nrc/ip/treaties-conventions.html

Operating Nuclear Reactors

U.S. Commercial Nuclear Power Reactors

Commercial Reactors www.nrc.gov/info-finder/reactor/

Oversight of U.S. Commercial Nuclear Power Reactors

Reactor Oversight Process (ROP) www.nrc.gov/NRR/OVERSIGHT/ASSESS/index.html

NUREG-1649, "Reactor Oversight Process" www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1649/r4/

ROP Performance Indicators Summary www.nrc.gov/NRR/OVERSIGHT/ASSESS/pi_summary.html

Future U.S. Commercial Nuclear Power Reactor Licensing

New Reactor License Process www.nrc.gov/reactors/new-reactor-op-lic/licensing-process.html#licensing

New Reactors

New Reactor Licensing www.nrc.gov/reactors/new-reactor-licensing.html

Reactor License Renewal

Reactor License Renewal Process www.nrc.gov/reactors/operating/licensing/renewal/process.html 10 CFR Part 51, "Environmental Protection Regulations for Domestic Licensing and Related Regulatory Functions" www.nrc.gov/reading-rm/doc-collections/cfr/part051/

10 CFR Part 54, "Requirements for Renewal of Operating Licenses for Nuclear Power Plants" www.nrc.gov/reading-rm/doc-collections/cfr/part054/

Status of License Renewal Applications and Industry Activities www.nrc.gov/reactors/operating/licensing/renewal/applications.html

U.S. Nuclear Research and Test Reactors

Research and Test Reactors www.nrc.gov/reactors/non-power.html

Nuclear Regulatory Research

Nuclear Reactor Safety Research www.nrc.gov/about-nrc/regulatory/research/reactor-rsch.html

State-of-the-Art Reactor Consequence Analyses (SOARCA) www.nrc.gov/about-nrc/regulatory/research/soar.html

Risk Assessment in Regulation www.nrc.gov/about-nrc/regulatory/risk-informed.html

Digital Instrumentation and Controls www.nrc.gov/about-nrc/regulatory/research/digital.html

Computer Codes www.nrc.gov/about-nrc/regulatory/research/comp-codes.html

Generic Issues Program www.nrc.gov/about-nrc/regulatory/gen-issues.html

The Committee To Review Generic Requirements (CRGR) www.nrc.gov/about-nrc/regulatory/crgr.html

Nuclear Materials

U.S. Fuel Cycle Facilities

U.S. Fuel Cycle Facilities www.nrc.gov/info-finder/materials/fuel-cycle/

Uranium Recovery

Uranium Milling/Recovery www.nrc.gov/info-finder/materials/uranium/

U.S. Materials Licenses

Materials Licensees Toolkits www.nrc.gov/materials/miau/mat-toolkits.html

Medical Applications

Medical Applications www.nrc.gov/materials/medical.html

Medical Uses

Medical Uses www.nrc.gov/materials/miau/med-use.html

Nuclear Gauges and Commercial Product Irradiators

General Licenses Uses www.nrc.gov/materials/miau/general-use.html

Industrial Uses of Nuclear Material

Industrial Applications www.nrc.gov/materials/miau/industrial.html

Exempt Consumer Products www.nrc.gov/materials/miau/consumer-pdts.html

Radioactive Waste

U.S. Low-Level Radioactive Waste Disposal

Low-Level Radioactive Waste www.nrc.gov/waste/low-level-waste.html

U.S. High-Level Radioactive Waste Management: Disposal and Storage

High-Level Radioactive Waste www.nrc.gov/waste/high-level-waste.html

Spent Nuclear Fuel Storage

Spent Nuclear Fuel Storage www.nrc.gov/waste/spent-fuel-storage.html

U.S. Nuclear Materials Transportation

Nuclear Materials Transportation www.nrc.gov/materials/transportation.html

Decommissioning

Decommissioning www.nrc.gov/about-nrc/regulatory/decommissioning.html

Nuclear Security and Emergency Preparedness

Nuclear Security www.nrc.gov/security.html

Domestic Safeguards

Domestic Safeguards www.nrc.gov/security/domestic.html

Information Security

Information Security www.nrc.gov/security/info-security.html

Assuring the Security of Radioactive Material www.nrc.gov/security/byproduct.html

Emergency Preparedness and Response

Emergency Preparedness and Response www.nrc.gov/about-nrc/emerg-preparedness.html

Research and Test Reactor Emergency Preparedness

Research and Test Reactors www.nrc.gov/reactors/non-power.html

Stakeholder Meetings and Workshops

www.nrc.gov/public-involve/public-meetings/stakeholder-mtngs-wksps.html

Emergency Action Level Development

www.nrc.gov/about-nrc/emerg-preparedness/emerg-action-level-dev.html

Hostile Action Based Emergency Preparedness (EP) Drill

www.nrc.gov/about-nrc/emerg-preparedness/respond-to-emerg/hostile-action.html

Exercise Schedules

NRC Participation Exercise Schedule www.nrc.gov/about-nrc/emerg-preparedness/exercise-schedules.html

Biennial FEMA-Graded Exercise Schedule www.nrc.gov/about-nrc/emerg-preparedness/exercise-schedules/bi-annualex-schedule.html

Other Web Links

Employment Opportunities

NRC—A Great Place to Work www.nrc.gov/about-nrc/employment.html

Glossary

NRC Basic References www.nrc.gov/reading-rm/basic-ref/glossary/full-text.html

Glossary of Electricity Terms

www.eia.doe.gov/cneaf/electricity/epav1/glossary.html

Glossary of Security Terms

https://hseep.dhs.gov/DHSResource/Glossary.aspx

Public Involvement

Electronic Reading Room www.nrc.gov/reading-rm.html

Freedom of Information & Privacy Act www.nrc.gov/reading-rm/foia/foia-privacy.html

Agencywide Documents Access Management System (ADAMS) www.nrc.gov/reading-rm/adams.html

Public Document Room www.nrc.gov/reading-rm/pdr.html

Public Meeting Schedule www.nrc.gov/public-involve/public-meetings/index.cfm

Documents for Comments www.nrc.gov/public-involve/doc-comment.html

Small Business and Civil Rights

Contracting Opportunities for Small Businesses www.nrc.gov/about-nrc/contracting/small-business.html

Workplace Diversity www.nrc.gov/about-nrc/employment/diversity.html

Discrimination Complaint Activity www.nrc.gov/about-nrc/civil-rights.html

Equal Employment Opportunity Program www.nrc.gov/about-nrc/civil-rights/eeo.html

Limited English Proficiency www.nrc.gov/about-nrc/civil-rights/limited-english.html

Minority Serving Institutions Program www.nrc.gov/about-nrc/grants.html#msip

NRC Comprehensive Diversity Management Plan brochure www.nrc.gov/reading-rm/doc-collections/nuregs/brochures/br0316

NRC Mentoring Program www.nrc.gov/about-nrc/employment/diversity.html/

INDEX

Α

Academic 2, 3, 58, 61, 157, 168, 182

Appropriation 13

- Agreement States 3, 58, 59, 60, 61, 63, 64, 65, 66, 74, 88, 91, 143, 149, 155, 157, 163, 182
- Atomic Energy Act 3, 11, 29, 48, 79, 144, 181

B

Bilateral programs 28, 29, 30, 150, 166

Boiling-water reactor 23, 32, 47, 98, 143, 147, 158, 161, 162, 177

Byproduct 2, 59, 116, 143, 146, 155, 163, 175, 181

С

Capacity 16, 22, 23, 24, 25, 27, 77, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 134, 135, 136, 137, 138, 139, 141, 144, 153, 156, 157, 158, 182

Cask 77, 79, 129, 144, 177

Coal-fired 18, 21

D

Decommissioning 3, 11, 23, 24, 25, 27, 37, 52, 67, 68, 74, 77, 85, 87, 88, 115, 116, 127, 133, 141, 146, 148, 167, 174, 181, 182

Disposal 2, 3, 11, 68, 74, 75, 76, 84, 85, 144, 146, 151, 153, 155, 157, 163, 169, 174, 182

E

Energy Reorganization Act 2, 3, 181

Enrichment 69,99

Environmental issues 2, 4, 11, 43, 47, 49, 51, 72, 84, 147, 150, 153, 158, 169

F

Fabrication 68, 69, 71, 90, 99, 143, 151, 156, 159, 168, 182 Fuel facilities 11, 68, 69, 99 Fuel rods 69, 71, 99, 151, 161

G

Gaseous diffusion 69, 99, 152, 177 Gauges 61, 62, 69, 99, 152, 174, 177 Gross generation 25, 69, 99, 157

Η

Hexafluoride 68, 69, 99, 151, 152, 168, 169, 170, 182

High-level radioactive waste 3, 11, 14, 69, 84, 99, 144, 153, 169, 174, 182

I

Industrial 2, 3, 11, 58, 61, 62, 69, 99, 149, 157, 159, 163, 168, 174, 182

In situ leach 69, 99, 154

Inspection 11, 37, 38, 48, 52, 69, 70, 71, 72, 91, 99, 150, 157, 160, 161, 165, 181

L

Licensing 10, 37, 43, 46, 49, 52, 64, 69, 72, 85, 87, 99, 124, 155, 172, 173, 181, 182

Low-level radioactive waste 69, 74, 75, 99, 155, 174

Μ

- Materials 2, 3, 4, 5, 10, 11, 28, 29, 52, 53, 54, 58, 59, 60, 61, 62, 63, 64, 69, 76, 79, 86, 87, 90, 91, 94, 99, 143, 144, 145, 146, 148, 150, 153, 154, 155, 157, 158, 159, 162, 164, 165, 168, 169, 170, 173, 174, 181, 182
- Medical 2, 3, 11, 58, 59, 62, 63, 69, 74, 99, 143, 154, 155, 157, 159, 162, 164, 165, 168, 174, 182
- Milling 69, 99, 156, 170
- Mission 2, 54, 69, 99, 169, 171, 181
- Mixed oxide 53, 69, 99, 151, 182

Ν

Nuclear Waste Policy Act 3, 69, 84, 99, 153, 181, 182

0

Operating reactors 23, 53, 54, 69, 99, 181

Ρ

Personnel 12, 29, 54, 58, 64, 69, 90, 99, 142, 148, 156

Pressurized-water reactor 32, 69, 99

Probabilistic risk assessment 53, 56, 69, 99, 166

Public participation 43, 51, 69, 99

R

Radiation exposure 69, 99, 153

Radioactive waste 3, 11, 14, 29, 69, 73, 74, 84, 99, 144, 145, 148, 153, 155, 159, 169, 182

- Radionuclide 69, 99, 164, 178
- Reactor Oversight Process 38, 69, 90, 99, 165, 172, 178
- Rulemaking 69, 79, 99, 165, 181
- Rules 4, 38, 69, 87, 99, 163, 168

S

- Safety 2, 3, 4, 5, 11, 28, 29, 30, 37, 38, 45, 47, 48, 49, 51, 53, 54, 58, 64, 68, 69, 72, 74, 79, 84, 85, 86, 87, 91, 94, 99, 128, 143, 146, 147, 148, 149, 150, 153, 154, 156, 160, 161, 165, 166, 167, 169, 181, 182
- Security 2, 4, 11, 14, 30, 48, 53, 54, 55, 64, 69, 89, 90, 91, 99, 143, 144, 150, 166, 169, 174, 175, 181

Significant events 69, 99, 149

- Spent fuel 29, 69, 76, 77, 78, 79, 84, 86, 99, 146, 151, 154, 166, 168, 182
- Statutory authority 2, 69, 99, 171

U

Uranium 3, 67, 69, 78, 99, 146, 151, 154, 157, 167, 168, 169, 172, 173, 181, 182

W

Waste 3, 8, 14, 69, 74, 75, 76, 78, 84, 97, 99, 116, 153, 169, 174, 181, 182

Y

Yellowcake 65, 68, 69, 99, 151, 169, 170 Yucca Mountain 84, 85, 97, 153

IC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER 000) MD 3.7 (Assigned by NRC, Add Vol., Supp and Addendum Numbers, if any.)		dd Vol., Supp., Rev.,		
BIBLIOGRAPHIC DATA SHEET				
(See instructions on the reverse)	MUREG-1350, Vol. 22			
2. TITLE AND SUBTITLE	3. DATE REPO	RT PUBLISHED		
U.S. Nuclear Regulatory Commission	MONTH	YEAR		
Information Digest 2010-2011	August	22010		
4. FIN OR GRANT NUMBER				
	n	/a		
5. AUTHOR(S)	6. TYPE OF REPORT			
Ivonne Couret, et al.	Anr	nual		
	7. PERIOD COVERED			
		009		
 PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commi provide name and mailing address.) 	ission, and mailing address	; if contractor,		
Public Affairs Staff				
Office of Public Affairs				
U.S. Nuclear Regulatory Commission				
Washington, DC 20555-0001 9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or	Parian U.C. Mudan Par			
and mailing address.)	negion, o.s. Nuclear negi	natory commission,		
Same as 8, above				
10. SUPPLEMENTARY NOTES There may be a supplementary document with only the figures, tables and/or appendices up	dated prior to A	ugust 2011.		
11. ABSTRACT (200 words or less)				
The U.S. Nuclear Regulatory Commission (NRC) 2010–2011 Information Digest provides a about the NRC and the industry it regulates. It describes the agency's regulatory respons activities and also provides general information on nuclear-related topics. It is updated a	ibilities and licer			
The Information Digest includes NRC- and industry-related data in a quick reference format. Data include activities through 2009 or the most current data available at manuscript completion. The Web Link Index provides URL addresses for more information on major topics. The Digest also includes a tear out reference sheet, the NRC Facts at a Glance.				
The NRC reviewed information from industry and international sources but did not perform an independent verification. In this edition, adjustments were made to previous year preliminary figures. All information is final unless otherwise noted.				
The NRC is the source for all photographs, graphics, and tables unless otherwise noted.				
The agency welcomes comments or suggestions on the Information Digest. Please contact Ivonne Couret by mail at the Office of Public Affairs, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 or by e-mail at OPA. Resource@nrc.gov.				
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)	13. AVAILABI	LITY STATEMENT		
Information Digest		unlimited		
2010-2011 Edition NRC Facts	14. SECURIT (This Page)	Y CLASSIFICATION		
Nuclear Regulatory Commission	1	nclassified		
	(This Report)		
		nclassified		
15. NUMBER				
	16. PRICE			
NRC FORM 335 (9-2004)	PRINTEI	O ON RECYCLED PAPER		

J.S.NRC NRC FACTS AT A GLANCE AS OF JULY 31, 2010

MISSION

The mission of the U.S. Nuclear Regulatory Commission (NRC) is to license and regulate the Nation's civilian use of byproduct, source, and special nuclear materials to ensure adequate protection of public health and safety, to promote the common defense and security, and to protect the environment.

COMMISSION

Chairman Gregory B. Jaczko

- Term Ends June 30, 2013 Commissioner Kristine L. Svinicki
- Term Ends June 30, 2012 Commissioner George Apostolakis
- Term Ends: June 30, 2014
- Commissioner William D. Magwood, IV Term Ends: June 30, 2015
- Commissioner William C. Ostendorff Term Ends: June 30, 2011

NRC BUDGET

- Total authority: \$1,067 million
- Total staff: 3,961
- Budget amount expected to be recovered by annual fees to licensees: \$912.2 million
- NRC research program support: \$68.2 million
- NRC REGULATORY ACTIVITIES
- · Regulation and guidance-rulemaking
- · Policymaking
- · Licensing, decommissioning, and certification
- Research
- Oversight
- · Emergency preparedness and response
- · Support of Commission decisions

NRC GOVERNING LEGISLATION

The NRC was established by the Energy Reorganization Act of 1974. A summary of laws that govern the agency's operations is provided below. The text of other laws may be found in NUREG-0980, "Nuclear Regulatory Legislation."

FUNDAMENTAL LAWS GOVERNING CIVILIAN USES OF RADIOACTIVE MATERIALS

Nuclear Materials and Facilities

- · Atomic Energy Act of 1954, as amended
- Energy Reorganization Act of 1974

Radioactive Waste

- · Nuclear Waste Policy Act of 1982, as amended
- · Low-Level Radioactive Waste Policy Amendments Act of 1985
- · Uranium Mill Tailings Radiation Control Act of 1978

Non-Proliferation

Nuclear Non-Proliferation Act of 1978

FUNDAMENTAL LAWS GOVERNING THE PROCESSES OF REGULATORY AGENCIES

• Administrative Procedure Act (5 U.S.C. Chapters 5 through 8)

- · National Environmental Policy Act
- · Diplomatic Security and Anti-Terrorism Act of 1986
- · Solar, Wind, Waste, and Geothermal Power Production Incentives Act of 1990
- · Energy Policy Act of 1992 Provisions
- · Energy Policy Act of 2005

TREATIES AND AGREEMENTS

- Nuclear Non-Proliferation Treaty
- International Atomic Energy Agency/U.S. Safeguards Agreement
- · Convention on the Physical Protection of Nuclear Material
- · Convention on Early Notification of a Nuclear Accident
- · Convention on Assistance in Case of a Nuclear Accident and Radiological Emergency
- · Convention on Nuclear Safety
- · Convention on Supplemental Liability and Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

U.S. COMMERCIAL NUCLEAR POWER REACTORS

- · 20 percent of Nation's electricity is generated by nuclear power plants
- Operating in 31 states
- · 104 nuclear power plants licensed to operate in the United States
 - 69 pressurized-water reactors
- 35 boiling-water reactors
- · 4 reactor fuel vendors
- 26 parent companies
- · 80 different designs
- · 65 commercial reactor sites
- 14 decommissioning power reactors
- Total inspection hours: 6,055 in calendar year 2010 at operating reactors; approximately 3,000 source documents concerning events reviewed

REACTOR LICENSE RENEWAL

Commercial power reactor operating licenses are valid for 40 years and may be renewed for up to an additional 20 years.

- · 32 sites and 59 units with renewal licenses issued at operating nuclear plants
- · 14 sites with license renewal applications in review
- · 14 sites with letters of intent for renewal licenses applications

NEW REACTOR LICENSE PROCESS

Early Site Permit (ESP)

- 4 ESPs issued
- 2 ESP application in review

Combined License-Construction and Operating (COL)

· 18 COL applications received/docketed for 28 units, and of these, 13 applications are under active review

Reactor Design Certification (DC)

- 4 DCs issued
- 5 DCs in review

NRC FACTS AT A GLANCE (Continued) AS OF JULY 31, 2010

NUCLEAR RESEARCH AND TEST REACTORS

- 43 licensed research reactors and test reactors
 - 32 reactors operating in 22 States
 - 12 reactors permanently shut down and in various stages of decommissioning (since 1958, a total of 82 licensed research and test reactors have been decommissioned)

NUCLEAR SECURITY AND SAFEGUARDS

- Once every 2 years, each nuclear power plant performs full-scale emergency preparedness exercises.
- Plants also conduct additional emergency drills between full-scale exercises. The NRC evaluates all emergency exercises and drills.

NUCLEAR MATERIALS

- The NRC and the Agreement States issue approximately 22,500 licenses for medical, academic, industrial, and general uses of nuclear materials.
- The NRC administers approximately 3,000 licenses.
- 37 Agreement States administer approximately 19,600 licenses.

15 Uranium Recovery Sites Licensed by the NRC

- 4 in situ recovery
- 11 conventional recovery

15 Fuel Cycle Facilities

- 1 uranium hexafluoride production facility
- 6 uranium fuel fabrication facilities
- 2 gaseous diffusion uranium enrichment facilities (1 in cold standby)
- 3 gas centrifuge uranium enrichment facilities, (1 operating with further construction, 1 under construction, and 1 under review)
- 1 mixed oxide fuel fabrication facility (under construction and review)
- 1 laser separation enrichment facility (under review)
- 1 uranium, hexaflouride deconversion facility (under review)
- 180 NRC-licensed facilities authorized to possess plutonium and enriched uranium with inventory registered in the Nuclear Materials Management and Safeguards System database

RADIOACTIVE WASTE

Low-Level Radioactive Waste

- 10 regional compacts
- 3 active licensed disposal facilities, 1 expected to receive LLW in 2011
- 4 closed disposal facilities

HIGH-LEVEL RADIOACTIVE WASTE MANAGEMENT

Disposal and Storage

 On January 29, 2010, the President created a Blue Ribbon Commission on America's Nuclear Future to reassess the national policy on HLW disposal. The task of the Blue Ribbon Commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." In light of these developments, the NRC began reassessing its management of spent fuel regulations to position the agency to quickly adapt to changes in national policy. The three key areas in this effort are the nuclear fuel cycle, spent fuel storage and transportation, and HLW disposal.

 The Nuclear Waste Policy Act of 1982, as amended, defines the roles of the three Federal agencies responsible for nuclear waste. DOE is responsible for developing permanent disposal capacity for spent fuel and other high-level radioactive waste. The U.S. Environmental Protection Agency (EPA) is responsible for developing environmental standards to evaluate the safety of a geologic repository. The NRC is responsible for developing regulations to implement the EPA safety standards and for licensing the repository.

Spent Nuclear Fuel Storage

- 55 licensed/operating independent spent fuel storage installations
- 15 site-specific licenses
- 40 general licenses

Transportation—Principal Licensing and Inspection Activities

- The NRC examines transport-related safety during approximately 1,000 safety inspections of fuel, reactor, and materials licensees annually.
- The NRC reviews, evaluates, and certifies approximately 80 new, renewal, or amended container-design applications for the transport of nuclear materials annually.
- The NRC reviews and evaluates approximately 150 license applications for the import/export of nuclear materials from the United States annually.
- The NRC inspects about 20 dry storage and transport package licensees annually.

Decommissioning

Approximately 200 material licenses are terminated each year. The NRC's decommissioning program focuses on the termination of licenses that are not routine and that require complex activities.

- 29 nuclear power reactors are permanently shutdown or in the decommissioning process
- 12 research and test reactors
- 15 complex decommissioning materials facilities
- 1 fuel cycle facility (partial decommissioning)
- 11 uranium recovery facilities in safe storage under NRC jurisdiction

PUBLIC MEETINGS AND INVOLVEMENT

- · The NRC conducts 900 public meetings annually.
- The NRC hosts both the Regulatory Information Conference and the Fuel Cycle Information Exchange annually where participants discuss the latest technical issues.

NEWS AND INFORMATION

- NRC news releases are available through a free listserv subscription at <u>www.nrc.gov/public-involve/</u> <u>listserver.html</u>.
- Agency photos and videos available at <u>www.nrc.gov/</u> reading-rm/photo-gallery_

U.S. Nuclear Regulatory Commission NUREG-1350, Volume 22 August 2010