

L-2010-077 10 CFR 50.36b

U. S. Nuclear Regulatory Commission

Attn: Document Control Desk Washington, D.C. 20555-00001

Re:

Turkey Point Units 3 and 4

Docket Nos. 50-250 and 50-251

2009 Annual Radiological

Environmental Operating Report

Enclosed is the 2009 Annual Radiological Environmental Operating Report for Turkey Point Units 3 and 4, as required by Technical Specification 6.9.1.3.

Should there be any questions or comments regarding this information, please contact Robert J. Tomonto at (305) 246-7327.

Sincerely,

Michael W. Kiley Vice President

Turkey Point Nuclear Plant

SM

Enclosure

CC:

Regional Administrator, Region II, USNRC

Senior Resident Inspector, USNRC, Turkey Point Plant

LE25 NRR

2009

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

TURKEY POINT PLANT

UNITS 3 & 4

LICENSE NOS. DPR-31, DPR-41

DOCKET NOS. 50-250, 50-251

Data Submitted by: Florida DOH

Prepared by: 1401

Reviewed by:

TABLE OF CONTENTS

DESCRIPTION	<u>PAGE</u>
Introduction	1
Radiological Environmental Monitoring Program	1
Discussion and Interpretation of Results	4
Environmental Radiological Monitoring Program Annual Summary	TABLE 1
Deviations / Missing Data	TABLE 1A
Analyses with LLDs Above Required Detection Capabilities	TABLE 1B
Land Use Census	TABLE 2
Key to Sample Locations	ATTACHMENT A
Radiological Surveillance of Florida Power and Light Company's Turkey Point Site	ATTACHMENT B
First Quarter, 2009	
Second Quarter, 2009	
Third Quarter, 2009	
Fourth Quarter, 2009	
Results from the Interlaboratory Comparison Program, 2009	ATTACHMENT C
Ground Water Protection, Industry Initiative	ATTACHMENT D

2009

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT – UNITS 3 & 4 EXECUTIVE SUMMARY

The data obtained through the Turkey Point Radiological Environmental Monitoring Program verifies that the levels of radiation and concentrations of radioactive materials in environmental samples are not increasing. These measurements verify that the dose or dose commitment to members of the public, due to operation of Turkey Point Units 3 & 4, during the surveillance year, is well within the limits established by 10 CFR 50, Appendix I. The sampling period was from January 1, 2009 to December 31, 2009.

Additionally, supplemental samples collected by the State of Florida, DOH, do not indicate adverse trends in the radiological environment.

I. INTRODUCTION

This report is submitted pursuant to Specification 6.9 of Turkey Point Units 3 and 4 Technical Specifications. The Annual Radiological Environmental Operating Report provides information, summaries and analytical results pertaining to the Radiological Environmental Monitoring Program for the calendar year indicated. This report covers surveillance activities described in the Offsite Dose Calculation Manual (ODCM) meeting the requirements of Turkey Point Units 3 and 4 Technical Specifications.

II. RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

A. <u>Purpose</u>

The purpose of the Radiological Environmental Monitoring Program is to provide representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures of members of the public resulting from station operation. The Radiological Environmental Monitoring Program also supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways.

B. Program Description

The Radiological Environmental Monitoring Program (REMP) for the Turkey Point Plant is conducted pursuant to Control 5.1 of Turkey Point Unit 3 & 4 ODCM.

- 1. Sample Locations, Types and Frequencies:
 - a. Direct radiation gamma exposure rate is monitored continuously at 22 locations by thermoluminescent dosimeters (TLDs). TLDs are collected and analyzed quarterly.
 - b. Airborne radioiodine and particulate samplers are operated continuously at five locations. Samples are collected and analyzed weekly. Analyses include lodine-131, gross beta, and gamma isotopic measurements.
 - c. Surface water samples are collected from three locations. Samples are collected and analyzed monthly. Analyses include gamma isotopic and tritium measurements.

2009

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT – UNITS 3 & 4

- d. Shoreline sediment samples are collected from three locations coinciding with the locations for surface water samples. Samples are collected and analyzed semi-annually. Sediment samples are analyzed by gamma isotopic measurements.
- e. Fish and invertebrate samples are collected from two locations coinciding with two of the locations for surface water samples. Samples are collected and analyzed semi-annually. Fish and invertebrate samples are analyzed by gamma isotopic measurements.
- f. Broad leaf vegetation samples are collected from three locations. Samples are collected and analyzed monthly. Broad leaf vegetation samples are analyzed by gamma isotopic measurements.

Attachment A provides specific information pertaining to sample locations, types and frequencies.

Note: Ground Water Protection, NEI Initiative: The program and results are described in Attachment D

2. Analytical Responsibility:

Radiological environmental monitoring for the Turkey Point Plant is conducted by the State of Florida, Department of Health (DOH). Samples are collected and analyzed by DOH personnel.

Samples are analyzed at the DOH Environmental Radiation Control Laboratory in Orlando, Florida.

Note: The State is not involved in the (Industry Initiative) ground water monitoring program.

C. Analytical Results

Table 1, Environmental Radiological Monitoring Program Annual Summary provides a summary for all specified samples collected during the referenced surveillance period. Deviations from the sample schedule, missing data and/or samples not meeting the specified "A PRIORI" LLD, if any, are noted and explained in Tables 1A and 1B respectively. Analysis data for all specified samples analyzed during the surveillance period is provided in Attachment B.

D. Land Use Census

A land use census out to a distance of 5 miles radius from the Turkey Point Plant is conducted annually to determine the location of the nearest milk animal, residence, and garden producing broad leaf vegetation, in each of the sixteen meteorological sectors. A summary of the land use census for the surveillance year is provided in <u>Table 2</u>, Land Use Census Summary.

E. Interlaboratory Comparison Program

The intercomparison program consists of participating in the DOE Mixed Analyte Performance Evaluation Program (MAPEP).

This program provides similar testing (matrices, nuclides, and levels) as the former EPA Interlaboratory Comparison Program and is referred to as the Mixed Analyte Performance Evaluation Program (MAPEP).

The samples are analyzed using the methods applicable to the REMP (gamma spectroscopy, Gross Beta, and Tritium for water).

From the MAPEP handbook:

Acceptance criteria were developed from a review of precision and accuracy data compiled by other performance evaluation programs (PEPs), the analytical methods literature, from several MAPEP pilot studies, and from what is considered reasonable, acceptable, and achievable for routine analyses among the more experienced laboratories.

The results for nuclides associated with the REMP are listed in ATTACHMENT C, RESULTS FROM THE INTERLABORATORY COMPARISON PROGRAM.

III. DISCUSSION AND INTERPRETATION OF RESULTS

A. Reporting of Results

The Annual Radiological Environmental Operating Report contains the summaries, interpretations and information required by Control 1.4 of ODCM. Table 1 provides a summary of the measurements made for the nuclides required by ODCM Table 5.1-2, for all samples specified by Table 5.1-1. In addition, summaries are provided for other nuclides identified in the specified samples, including those not related to station operation. These include nuclides such as K-40, Th-232, Ra-226, and Be-7 which are common in the Florida environment.

B. Interpretation of Results

1. Direct Radiation:

The results of direct radiation monitoring are consistent with past measurements for the specified locations.

The exposure rate data shows no indication of any trends attributed to effluents from the plant. The measured exposure rates are consistent with exposure rates that were observed during the pre-operational surveillance program. Direct radiation monitoring results are summarized in Table 1.

2. Air Particulates/Radioiodine:

The results for radioactive air particulate and radioiodine monitoring are consistent with past measurements and indicate no trends attributed to plant effluents. All samples for radioiodine yielded no detectable I-131. Gamma isotopic measurements yielded no indication of any nuclides attributed to station operation. The results for air particulate/radioiodine samples are consistent with measurements that were made during the pre-operational surveillance program. Air particulate and radioiodine monitoring results are summarized in Table 1.

3. Waterborne, Surface Water:

The results of radioactivity measurements in surface water samples are consistent with past measurements. Tritium was reported as present in seven of 24 indicator location and two of 12 control location surface water samples collected. These results are consistent with the known subsurface interchange that occurs between the closed cooling canal and its surrounding waters, and the pressure gradients caused by the flow of aquifer subsurface waters in South Florida. The highest reported tritium is less than 14% of the required detection level specified by ODCM Table 5.1-3.

4. Waterborne, Sediment:

Cs-137 was detected as present in one indicator location and the control location. The highest level seen was at the Control location and was less than 16% of the required detection level specified by ODCM Table 5.1-3. No other fission products were detected.

2009

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT – UNITS 3 & 4

5. Waterborne, Food Products:

The results are consistent with past measurements. Cs-137 was detected in the indicator location samples. The highest concentration was less than 19% of the required detection level specified by ODCM Table 5.1-3. No other fission products were detected.

6. Broad Leaf Vegetation

The results of radioactivity measurements are consistent with past measurements. Cs-137 was detected, as in the past, in samples collected from the indicator and control locations. The maximum concentration reported was less than 9% of the reporting level specified by ODCM Table 5.1-2. No other fission products were detected.

7. Land Use Census

There were no additions to the land use relative to last year's report.

No locations yielding a calculated dose or dose commitment greater than the values currently being calculated were identified by the land use census.

No locations yielding a calculated dose or dose commitment (via the same exposure pathway) 20% greater than locations currently being sampled in the radiological environmental monitoring program were identified by the land use census.

8. Interlaboratory Comparison Program

The State laboratory participated in MAPEP 20 and 21.

In MAPEP 20, the results for Water, Air Filter Gross Beta, mixed gamma emitters in Air Filters, Soil and Vegetation matrices for those nuclides associated with nuclear power plant operation and using analytical methods used in the REMP are acceptable.

In MAPEP 21, the results for Water, Air Filter Gross Beta, mixed gamma emitters in Air Filters, Soil and Vegetation matrices for those nuclides associated with nuclear power plant operation and using analytical methods used in the REMP are acceptable.

The results are listed in Attachment C.

2009

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT – UNITS 3 & 4

C. Conclusions

The data obtained through the Turkey Point Plant Radiological Environmental Monitoring Program verifies that the levels of radiation and concentrations of radioactive materials in environmental samples, representing the highest potential exposure pathways to members of the public, are not being increased.

Additionally, supplemental to the ODCM program, sampling of the direct exposure, inhalation, and ingestion pathways, performed by DOH, does not show adverse trends in levels of radiation and radioactive materials in unrestricted areas. The measurements verify that the dose or dose commitment to members of the public, due to operation of Turkey Point Units 3 & 4, during the surveillance year, are well within "as low as reasonably achievable (ALARA)" criteria established by 10 CFR 50, Appendix I.

TABLE 1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Units 3 & 4</u>, Docket No(s). <u>50-250 & 50-251</u>
Location of Facility <u>Miami-Dade, Florida</u>, Reporting Period <u>January 1 - December 31, 2009</u>
(County, State)

PATHWAY: DIRECT RADIATION SAMPLES COLLECTED: TLD

UNITS: micro-R/hr

			Location with High	Location with Highest Annual Mean		
			Name ^c	Mean (f) ^b		
Type and Total Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) ^b Range	Distance & Direction	Range	Control Locations Mean (f) ^b Range	
Exposure Rate,88 ^d		5.1 (84/84) 4.0 - 7.9	NW-10 10 mi., NW	7.4 (4/4) 6.9 - 7.9	5.6 (4/4) 5.2 - 5.8	

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Units 3 & 4</u>, Docket No(s). <u>50-250 & 50-251</u> Location of Facility <u>Miami-Dade, Florida</u>, Reporting Period <u>January 1 - December 31, 2009</u> (County, State)

PATHWAY: AIRBORNE

SAMPLES COLLECTED: RADIOIODINE AND PARTICULATES

UNITS: pCi/m³

			Location with Hig	hest Annual Mean	
			Name ^c	Mean (f) ^b	
Type and Total Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) ^b Range	Distance & Direction	Range	Control Locations Mean (f) ^b Range
¹³¹ I, 260	0.024	< MDA			< MDA
Gross Beta, 259	0.0025	0.014 (206/207) 0.005 - 0.027	T-51 2 mi., NNW	0.014 (51/51) 0.005 - 0.025	0.014 (52/52) 0.005 - 0.027
Composite Gamma Isotopic, 20					
⁷ Be 、	0.0052	0.1534 (20/20) 0.0942 - 0.2841	T-72 < 1 mi., WSW	0.1642(4/4) 0.1141 - 0.2841	0.1543(4/4) 0.0942 - 0.2671
⁴⁰ K		< MDA		 .	< MDA
¹³⁴ Cs	0.00069	< MDA			< MDA
¹³⁷ Cs	0.00066	< MDA			< MDA
²¹⁰ Pb		0.0181 (10/20) 0.0110 - 0.0352	T-51 2 mi., NNW	0.0207 (4/4) 0.0132 – 0.0352	0.0138 (2/4) 0.0121 – 0.0154

TABLE 1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Units 3 & 4</u>, Docket No(s). <u>50-250 & 50-251</u> Location of Facility <u>Miami-Dade, Florida</u>, Reporting Period <u>January 1 - December 31, 2009</u> (County, State)

PATHWAY: WATERBORNE

SAMPLES COLLECTED: SURFACE WATER

UNITS: pCi/L

	i.		Location with Hig	hest Annual Mean	
			Name ^c	Mean (f) ^b	
J 1	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) ^b Range	Distance & Direction	Range	Control Locations Mean (f) ^b Range
Tritium, 36	172	165 (7/24) 112 - 405	T-81 6 mi., S	172 (6/12) 112 - 405	99 (2/12) 92 - 105
Gamma Isotopic, 36					
⁴⁰ K	60	305 (24/24) 239 - 460	T-81 6 mi., S	319 (12/12) 239 - 460	227 (12/12) 107 - 379
⁵⁴ Mn	4	< MDA			< MDA
⁵⁹ Fe	8	< MDA			< MDA
⁵⁸ Co	4	< MDA			< MDA
⁶⁰ Co	4	< MDA			< MDA
⁶⁵ Zn	8	< MDA			< MDA
⁹⁵ Zr-Nb	7	< MDA			< MDA
131	5	< MDA			< MDA
¹³⁴ Cs	5	< MDA			< MDA
¹³⁷ Cs	5	< MDA			< MDA
¹⁴⁰ Ba-La	11	< MDA			< MDA

TABLE 1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Units 3 & 4</u>, Docket No(s). <u>50-250 & 50-251</u> Location of Facility <u>Miami-Dade, Florida</u>, Reporting Period <u>January 1 - December 31, 2009</u> (County, State)

PATHWAY: WATERBORNE

SAMPLES COLLECTED: SHORELINE SEDIMENT

UNITS: pCi/kg, DRY

			Location with Highe		
			Name ^c	Mean (f) ^b	_
Type and Total Number of Lower Limit of Analyses Performed Detection ^a (LLD)		All Indicator Locations Mean (f) ^b Range	Distance & Direction	Range	Control Locations Mean (f) ^b Range
Gamma Isotopic, 6		A			
⁷ Be	100	250 (1/2)	T-81 6 mi., S	250 (1/2)	136 (1/2)
⁴⁰ K	140	260 (3/4) 251 - 269	T-81 6 mi., S	264 (2/2) 259 – 269	252 (2/2) 152 - 353
⁵⁸ Co	9	<mda< td=""><td></td><td></td><td>< MDA</td></mda<>			< MDA
⁶⁰ Co	12	<mda< td=""><td></td><td></td><td>< MDA</td></mda<>			< MDA
¹³⁴ Cs	14	<mda< td=""><td></td><td></td><td>< MDA</td></mda<>			< MDA
¹³⁷ Cs	12	28 (1/2)	T-42 < 1 mi., ENE	28 (1/2)	16 (2/2) 12 - 19
²¹⁰ Pb		<mda< td=""><td></td><td></td><td>301 (1/2)</td></mda<>			301 (1/2)
²²⁶ Ra	49	1180 (4/4) 544 - 1546	T-81 6 mi., S	1543 (2/2) 1540 - 1546	663 (2/2) 577 - 749
²³⁵ U		<mda< td=""><td></td><td></td><td>61 (1/2)A</td></mda<>			61 (1/2)A
²³⁸ U		809 (3/4) 741 - 871	T-81 6 mi., S	871 (1/2)	239 (1/2)

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Units 3 & 4</u>, Docket No(s). <u>50-250 & 50-251</u> Location of Facility <u>Miami-Dade, Florida</u>, Reporting Period <u>January 1 - December 31, 2009</u> (County, State)

PATHWAY: INGESTION

SAMPLES COLLECTED: CRUSTACEA

UNITS: pCi/kg, WET

			Location with Hig	hest Annual Mean	
			Name ^c	Mean (f) ^b	_
Type and Total Number Lower Limit of of Analyses Performed Detection ^a (LLD)		All Indicator Locations Mean (f) Range	Distance & Direction	Range	Control Locations Mean (f) ^b Range
Gamma Isotopic, 2					
. ⁴⁰ K	130	1189 (1/2)	T-81 6 mi., S	1189 (1/2)	559 (1/2)
²²⁶ Ra	20	752 (1/2)	T-81 6 mi., S	752 (1/2)	< MDA
⁵⁴ Mn	9	< MDA			< MDA
⁵⁹ Fe	16	< MDA			< MDA
⁵⁸ Co	9	< MDA		· · · ·	< MDA
⁶⁰ Co	19	< MDA			< MDA
⁶⁵ Zn	17	< MDA			< MDA
¹³⁴ Cs	9	< MDA			< MDA
¹³⁷ Cs	9	< MDA	·	 ·	< MDA

TABLE 1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Units 3 & 4</u>, Docket No(s). <u>50-250 & 50-251</u> Location of Facility <u>Miami-Dade, Florida</u>, Reporting Period <u>January 1 - December 31, 2009</u> (County, State)

PATHWAY: INGESTION

SAMPLES COLLECTED: FISH

UNITS: pCi/kg, WET

			Location with Higl	nest Annual Mean	
			Name ^c	Mean (f) ^b	_
Type and Total Number Lower Limit of of Analyses Performed Detection ^a (LLD)		Distance & Direction	Range	Control Locations Mean (f) ^b Range	
Gamma Isotopic, 4			. 1890.77		
⁷ Be		<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
⁴⁰ K	130	2274 (2/2) 1765- 2783	T-81 6 mi., S	2274 (2/2) 1765- 2783	2047 (2/2) 1780 - 2314
⁵⁴ Mn	9	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
⁵⁹ Fe	16	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
⁵⁸ Co	9	<mda< td=""><td>·</td><td></td><td><mda< td=""></mda<></td></mda<>	·		<mda< td=""></mda<>
⁶⁰ Co	10	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
⁶⁵ Zn	17	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
¹³⁴ Cs	9	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
¹³⁷ Cs	9	16 (2/2) 4 - 28	T-81 6 mi., S	16 (2/2) 4 - 28	<mda< td=""></mda<>
²²⁶ Ra	20	217 (2/2) 99 - 335	T-81 6 mi., S	217 (2/2) 99 - 335	<mda< td=""></mda<>
²³⁸ U		<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Units 3 & 4</u>, Docket No(s). <u>50-250 & 50-251</u> Location of Facility <u>Miami-Dade, Florida</u>, Reporting Period <u>January 1 - December 31, 2009</u> (County, State)

PATHWAY: INGESTION

SAMPLES COLLECTED: BROAD LEAF VEGETATION

UNITS: pCi/kg, WET

			Location with Higl	nest Annual Mean	
			Name ^c	Mean (f) ^b	
Type and Total Number of Analyses Performed Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f)Range	Distance & Range Direction	Control Locations Mean (f) ^b Range		
Gamma Isotopic, 36					
⁷ Be	71	1714 (24/24) 409 <i>-</i> 3266	T-40 3 mi., W	1740 (12/12) 465 - 3266	1292 (12/12) 605 - 2206
⁴⁰ K	100	4687 (24/24) 2826 - 7342	T-41 2 mi., W/NW	5766 (12/12) 3838 - 7342	3881 (12/12) 2192 - 6305
⁵⁸ Co	9	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
⁶⁰ Co	10	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
¹³¹	9 .	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
¹³⁴ Cs	8	<mda< td=""><td></td><td></td><td><mda< td=""></mda<></td></mda<>			<mda< td=""></mda<>
¹³⁷ Cs	8	49 (23/24) 17 - 164	T-41 2 mi., W/NW	50 (12/12) 18 - 90	51 (1/12)
²¹⁰ Pb		319 (7/24) 199 – 388	T-40 3 mi., W	365 (3/12) 345 - 388	308 (2/12) 270 - 345
²²⁶ Ra		427 (3/24) 49 - 740	^ Т-40 3 mi., W	493 (1/12)	319 (3/12) 160 - 516

£ 30

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Units 3 & 4</u>, Docket No(s). <u>50-250 & 50-251</u>
Location of Facility <u>Miami-Dade, Florida</u>, Reporting Period <u>January 1 - December 31, 2009</u>
(County, State)

NOTES

- a. The LLD is an "a priori" lower limit of detection which establishes the smallest concentration of radioactive material in a sample that will yield a net count above system background that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a real signal.
 - LLDs in this column are at time of measurement. The MDAs reported in Attachment B for the individual samples have been corrected to the time of sample collection.
- b. Mean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (f).
- c. Specific identifying information for each sample location is provided in Attachment A.
- d. Results were based upon the average net response of three elements in a TLD. (Thermoluminescent Dosimeter).

MDA refers to minimum detectable activity.

TABLE 1A

DEVIATIONS / MISSING DATA

A) Pathway:

Airborne - Particulates and iodines

Location:

T-57, 4 miles NW

Dates:

2-Mar-09 to 10-Mar-09

Deviation:

Failure to provide continuous monitoring.

Description of

Intermittent power failure during sampling period; estimated run

Problem:

time of 139 hours of the 164 hour sampling period.

Corrective

Action

Verified equipment as operable; no repairs needed.

B) Pathway:

Airborne - Particulates and iodines

Location:

T-51, 2 miles NW

Dates:

2-Mar-09 to 10-Mar-09

Deviation:

Failure to provide continuous monitoring.

Description of

Problem:

Particulate filter found missing during collection; iodine filter

intact.

Corrective

Action

Verified operability of particulate filter holder.

C) Pathway

Ingestion - Crustacea

Location:

T-81, 6 miles S

Dates:

Second half 2009

Deviation:

Failure to collect sample specified in ODCM

Description of

Problem:

Lack of crustacean sample. Repeated sampling yielded insufficient

sample to perform an assay.

Crustaceans may be over harvested, even local vendors, used to supplement the sampling program, can not provide material at

reasonable cost.

Corrective Action

Continue attempts to collect sufficient sample mass.

TABLE 1B

ANALYSIS WITH LLDs ABOVE ODCM TABLE 5.1-3 DETECTION CAPABILITIES 1/1/2009 - 12/31/2009

The values specified in ODCM Table 5.1-3, Detection Capabilities, were achieved for all samples.

TABLE 2

LAND USE CENSUS

Distance to Nearest (a, b)

Sector	8/09 Milk (c) Animal	8/09 Residence (g)	8/09 Garden (d)
N	L (e)	2.0 / 354	L
NNE	O (f)	0	0
NE	0	0	0
ENE	0	0	0
Е	0	0	0
ESE	0	0	0
SE	0	0	Ο
SSE	0	0	0
S	L .	L	L
SSW	L	L.	L
SW	L	L	L
WSW	L	L	L
W	L	L	L
WNW	L [3.7 / 302	4.5 / 303
NW	L	3.7 / 311	L
NNW	L	L	4.6 / 327

TABLE 2

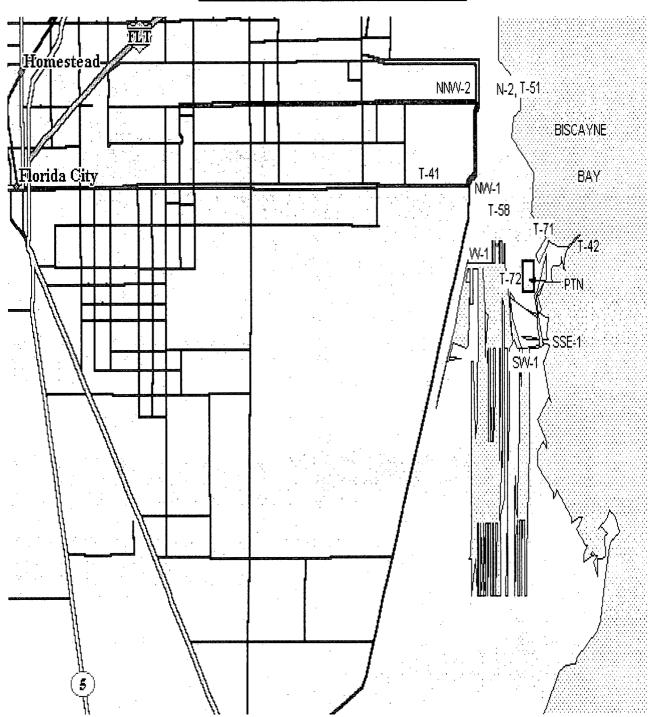
LAND USE CENSUS

NOTES

- a. All categories surveyed out to 5 miles radius from the Turkey Point Plant.
- b. The following format is used to denote the location:

distance (miles)/bearing (degrees)

For example, a residence located in the north sector at a distance of 2.0 miles bearing 354 degrees is recorded as 2.0 / 354.


- c. Potential milk animal locations.
- d. Gardens with an estimated growing area of 500 square feet or more.
- e. L denotes that the sector area is predominantly a land area unoccupied by the category type.
- f. O denotes that the sector area is predominantly an ocean area.
- g. Non-residential occupied buildings in these sectors include the following:

Sector	<u>Distance</u>	Description
N	1.9 / 349	24-hour Security Staff Building
NNW	1.9 / 349	Security booth at park entrance
NNW	4.6 / 327	Livable house, does not appear to be occupied.


ATTACHMENT A

KEY TO SAMPLE LOCATIONS

NEAR SITE SAMPLING LOCATIONS

DISTANT REMP SAMPLING LOCATIONS

ATTACHMENT A

PAGE 1 OF 4

PATHWAY: DIRECT RADIATION SAMPLES COLLECTED: TLD

SAMPLE COLLECTION FREQUENCY: QUARTERLY

Location ^(a) Name	Description
N-2	Convey Point, Parking Area
N-7	Black Point Marina Parking Lot
N-10	Old Cutler Rd. approx. 196th Street
NNW-2	East End North Canal Road
NNW-10	Bailes Road & U.S. #1
NW-1	Turkey Point Entrance Road
NW-5	Mowry Drive & 117th Avenue
NW-10	Newton Road, North of Coconut Palm Drive
WNW-10	Homestead Middle School
W-1	On-Site, North Side of Discharge Canal
W-5	Palm Drive & Tallahassee Road
W-9	Card Sound Road, 0.6 mile from U.S. #1
WSW-8	Card Sound Road, 3.4 miles from U.S. #1
SW-1	On-Site near Land Utilization Offices
SW-8	Card Sound Road, 5 miles from U.S. #1
SSW-5	On-Site, Southwest Corner of Cooling Canals
SSW-10	Card Sound Road, west side of Toll Plaza
S-5	On-Site, South East Corner of Cooling Canals
S-10	Card Sound Road at Steamboat Creek
SSE-1	Turtle Point
SSE-10	Ocean Reef
Control	
NNE-22	Natoma Substation, 2475 SW 16 Ct.

^aThe location name is the direction sector - approximate distance (miles)

ATTACHMENT A

Page 2 of 4

PATHWAY: AIRBORNE

SAMPLES COLLECTED: RADIOIODINE AND PARTICULATES

SAMPLE COLLECTION FREQUENCY: WEEKLY

Location <u>Name</u>	Direction <u>Sector</u>	Approximate Distance (miles)	<u>Description</u>
T-51	NNW	2	Entrance Area to Biscayne National Park
T-57	NW	4	SW 107th Avenue at Mowry Canal
T-58	NW	1	Turkey Point Entrance Road
T-52	W	9	Supplemental location used to compensate, per ODCM, for temporary loss of T-57.
T-72	wsw	<1	Just before entrance to Land Utilization's access gate.
Control:			
T-64	NNE	22	Natoma Substation , 2475 SW 16 Ct.

ATTACHMENT A

Page 3 of 4

PATHWAY: WATERBORNE

SAMPLES COLLECTED: SURFACE WATER (OCEAN) SAMPLE COLLECTION FREQUENCY: MONTHLY

Location Name	Direction Sector	Approximate Distance (miles)	Description
T-42	ENE	<1	Biscayne Bay at Turkey Point
T-81	S	6	Card Sound, near Mouth of Old Discharge Canal
Control:			
T-67	N, NNE	13-18	Near Biscayne Bay, Vicinity of Cutler Plant, North to Matheson Hammock Park

SAMPLES COLLECTED: SHORELINE SEDIMENT SAMPLE COLLECTION FREQUENCY: SEMI-ANNUALLY

Location Name	Direction Sector	Approximate Distance (miles)	<u>Description</u>
T-42	ENE	<1	Biscayne Bay at Turkey Point
T-81	S	6	Card Sound, near Mouth of Old Discharge Canal
Control:			
T-67	N, NNE	13-18	Near Biscayne Bay, Vicinity of Cutler Plant, North to Matheson Hammock Park

ATTACHMENT A

Page 4 of 4

PATHWAY: INGESTION

SAMPLES COLLECTED: CRUSTACEA AND FISH

SAMPLE COLLECTION FREQUENCY: SEMI-ANNUALLY

Location <u>Name</u>	Direction <u>Sector</u>	Approximate Distance (miles)	<u>Description</u>
T-81	S	6	Card Sound Vicinity of Turkey Point Facility
Control:			
T-67	N, NNE	13-18	Near Biscayne Bay, Vicinity of Cutler Plant, North to Matheson Hammock Park

SAMPLES COLLECTED: BROAD LEAF VEGETATION SAMPLE COLLECTION FREQUENCY: MONTHLY

Location <u>Name</u>	Direction Sector	Approximate Distance (miles)	<u>Description</u>
T-40	W	3	South of Palm Dr. on S.W. 117th Street Extension
T-41	WNW	2	Palm Dr., West of Old Missile Site near Plant Site Boundary
Control:			
T-67	N, NNE	13-18	Near Biscayne Bay, Vicinity of Cutler Plant, North to Matheson Hammock Park

ATTACHMENT B

RADIOLOGICAL SURVEILLANCE OF FLORIDA POWER AND LIGHT COMPANY'S

TURKEY POINT SITE

2009

First Quarter, 2009

Second Quarter, 2009

Third Quarter, 2009

Fourth Quarter, 2009

TURKEY POINT SITE

Offsite Dose Calculation Manual Sampling

First Quarter, 2009

Sample Type	Collection Frequency	Locations Sampled	Number of Samples
1. Direct Radiation	Quarterly	22	22
2. Airborne			
2.a. Air Iodines	Weekly	5	65
2.b. Air Particulates	Weekly	5	65
3. Waterborne			
3.a. Surface Water	Monthly	3	9
3.b. Shoreline Sediment	Semiannually	3	3
4. Ingestion4.a. Fish and Invertebrates			
4.a.1. Crustacea	Semiannually	2	2
4.a.2. Fish	Semiannually	2	. 2
4.b. Broadleaf Vegetation	Monthly	3	9
	•		r . 1 . 1 <i>00</i>

Total: 177

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

The marine fauna listed in this report were collected in part, under Florida FWC SAL030.

1. DIRECT RADIATION - TLDs - (µR/hour)

Sample Site	Deployment 16-Dec-08 Collection 10-Mar-09	Sample Site	Deployment 16-Dec-08 Collection 10-Mar-09
N-2	5.4 ± 0.5	WSW-8	4.8 ± 0.3
N-7	4.3 ± 0.4		
N-10	5.2 ± 0.8	SW-1	4.6 ± 0.4
		SW-8	5.3 ± 0.4
NNW-2	4.0 ± 0.5		
NNW-10	5.6 ± 0.6	SSW-5	4.5 ± 0.4
		SSW-10	4.8 ± 0.5
NW-1	6.3 ± 0.6		
NW-5	4.4 ± 0.4	S-5	4.5 ± 0.3
NW-10	7.9 ± 0.9	S-10	5.4 ± 0.4
WNW-10	6.6 ± 0.5	SSE-1	4.4 ± 0.4
		SSE-10	5.2 ± 0.5
W-1	6.4 ± 0.6		
W-5	4.8 ± 0.3	NNE-22	5.6 ± 0.3
W-9	4.8 ± 0.4		

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection Date	T51	T57	T58	<u>T64</u>	T72
06-Jan-09	<0.02	< 0.02	< 0.02	<0.02	< 0.02
12-Jan-09	< 0.03	< 0.03	< 0.03	< 0.02	< 0.03
20-Jan-09	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01
26-Jan-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
02-Feb-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
09-Feb-09	< 0.03	< 0.03	< 0.02	< 0.02	< 0.03
16-Feb-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
24-Feb-09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
02-Mar-09	< 0.04	< 0.03	< 0.03	< 0.03	<0.04
10-Mar-09	< 0.02	<0.03(A)	< 0.02	< 0.02	< 0.02
18-Mar-09	< 0.03	< 0.03	< 0.02	< 0.03	< 0.02
24-Mar-09	< 0.03	< 0.03	< 0.03	<0.02	< 0.03
31-Mar-09	< 0.02	< 0.02	< 0.02	< 0.03	< 0.02

⁽A) Estimated run time 138.6 out of 163.7 hours. No explanation for reduced run time.

2.b.1. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection Date	T51	T57	T58	T64	T72
06-Jan-09	0.012 ± 0.002	0.017 ± 0.002	0.017 ± 0.002	0.018 ± 0.002	0.015 ± 0.002
12-Jan-09	0.016 ± 0.002	0.016 ± 0.002	0.013 ± 0.002	0.021 ± 0.002	0.014 ± 0.002
20-Jan-09	0.020 ± 0.002	0.018 ± 0.002	0.019 ± 0.002	0.016 ± 0.002	0.014 ± 0.002
26-Jan-09	0.023 ± 0.003	0.020 ± 0.003	0.020 ± 0.003	0.019 ± 0.002	0.016 ± 0.002
02-Feb-09	0.016 ± 0.002	0.013 ± 0.002	0.013 ± 0.002	0.016 ± 0.002	0.014 ± 0.002
09-Feb-09	0.021 ± 0.002	0.023 ± 0.002	0.019 ± 0.002	0.019 ± 0.002	0.017 ± 0.002
16-Feb-09	0.014 ± 0.002	0.011 ± 0.002	0.013 ± 0.002	0.015 ± 0.002	0.015 ± 0.002
24-Feb-09	0.017 ± 0.002	0.027 ± 0.002	0.021 ± 0.002	0.027 ± 0.002	0.024 ± 0.002
02-Mar-09	0.017 ± 0.002	0.018 ± 0.002	0.018 ± 0.002	0.012 ± 0.002	0.018 ± 0.002
10-Mar-09	0.025 ± 0.002	$0.024 \pm 0.003(A)$	0.020 ± 0.002	0.019 ± 0.002	0.019 ± 0.002
18-Mar-09	0.019 ± 0.002	0.015 ± 0.002	0.018 ± 0.002	0.020 ± 0.002	0.020 ± 0.002
24-Mar-09	0.016 ± 0.002	0.010 ± 0.002	0.012 ± 0.002	0.010 ± 0.002	0.014 ± 0.002
31-Mar-09	0.015 ± 0.002	0.014 ± 0.002	0.015 ± 0.002	0.017 ± 0.002	0.016 ± 0.002
Average:	0.018 ± 0.001	0.017 ± 0.001	0.017 ± 0.001	0.018 ± 0.001	0.017 ± 0.001

(A) Estimated run time 138.6 out of 163.7 hours. No explanation for reduced run time.

2.b.2. AIR PARTICULATES GAMMA ANALYSIS OF QUARTERLY COMPOSITES (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
T51	0.2764 ± 0.0276	< 0.0170	< 0.0020	< 0.0014	0.0188 ± 0.0027
T57	0.2639 ± 0.0160	< 0.0202	< 0.0016	< 0.0007	0.0256 ± 0.0049
T58	0.2591 ± 0.0172	< 0.0252	< 0.0019	< 0.0014	< 0.0501
T64	0.2671 ± 0.0153	< 0.0230	< 0.0014	< 0.0011	< 0.0453
T72	0.2841 ± 0.0161	< 0.0247	< 0.0017	< 0.0016	< 0.0491

3.a. SURFACE WATER - (pCi/L)

Sample Site	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
T42	20-Jan-09	<143	255 ± 45	<6	<5	<10	<6	<13	<9	<9	<6	<8	<8
	16-Feb-09	<131	276 ± 73	<4	<3	<7	<4	<8	<6	<6	<4	<4	<5
	11-Mar-09	<131	394 ± 37	<4	<3	<8	<4	<9	<7	<6	<4	<4	<6
T67	20-Jan-09	<143	248 ± 30	<4	<3	<7	<5	<9	<6	<6	<5	<4	<6
	17-Feb-09	<131	379 ± 30	<3	<3	<9	<4	<7	<7	<7	<5	<4	<6
	11-Mar-09	<131	250 ± 31	<4	<4	<8	<4	<8	<7	<6	<5	<4	<5
T81	20-Jan-09	<143	318 ± 33	<3	<3	<5	<3	<6	<5	<4	<3	<3	<4
	16-Feb-09	<131	460 ± 34	<3	<4	<10	<5	<9	<7	<8	<5	<4	<4
	09-Mar-09	<131	321 ± 22	<3	<4	<7	<3	<8	<6	<6	<4	<3	<5

⁽A) These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLDs.

⁽B) These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT (pCi/kg, dry weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	<u>Th-232</u>	<u>U-235</u>	<u>U-238</u>
T42	21-Jan-09	<142	<259	<12	<16	<14	28 ± 7	<1113	544 ± 154	<69	<101	814 ± 112
T67	22-Jan-09	136 ± 24	353 ± 45	<6	<7	<6	19 ± 3	<469	577 ± 67	<29	61 ± 23	477 ± 50
T81	21-Jan-09	<118	269 ± 61	<11	<11	<12	<10	<785	1540 ± 184	<45	<116	<747

4.a.1. CRUSTACEA - Blue Crab (pCi/kg, wet weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
T67	28-Jan-09	599 ± 51	<9	<11	<24	<9	<18	<10	<8	<155	<34
T81	10-Jan-09	1189 ± 96	<10	<11	<24	<11	<23	<12	<11	752 ± 87	<46

4.a.2. FISH - Mixed Species (pCi/kg, wet weight)

Sample	Collection										
Site	<u>Date</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
T67	04-Feb-09	1170 ± 60	<15	<16	<36	<16	<30	<17	<14	<298	<47
T81	02-Feb-09	1765 ± 109	<13	<15	<36	<19	<32	<16	28 ± 7	335 ± 134	<55

4.b. BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample Site	Collection Date	Be-7	K-40	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Pb-210	Ra-226	Ra-228
T40	20-Jan-09	1006 ± 95	3825 ± 221	<26	<18	54 ± 13	<2472	<339	<64
	17-Feb-09	999 ± 65	3852 ± 162	<21	<12	42 ± 7	<825	<285	<37
	09-Mar-09	1133 ± 101	3650 ± 215	<27	<21	47 ± 7	<2402	<373	<78
T41	20-Jan-09	1361 ± 79	5429 ± 221	<23	<18	32 ± 8	<1913	<295	<59
	17-Feb-09	1110 ± 89	5234 ± 301	<18	<12	18 ± 2	303 ± 41	<248	<40
	09-Mar-09	879 ± 151	6773 ± 312	<33	<25	72 ± 11	<3040	<424	<84
T67	20-Jan-09	952 ± 88	2938 ± 141	<20	<13	51 ± 7	<944	<286	<46
	17-Feb-09	777 ± 70	2192 ± 142	<19	<15	<14	<1964	<271	<52
	11-Mar-09	605 ± 35	2421 ± 111	<15	<11	<11	270 ± 39	160 ± 35	<41

TURKEY POINT SITE

Offsite Dose Calculation Manual Sampling

Second Quarter, 2009

Sample Type	Collection Frequency	Locations Sampled	Number of <u>Samples</u>
1. Direct Radiation	Quarterly	22	22
2. Airborne	·	•	4
2.a. Air Iodines	Weekly	5	65
2.b. Air Particulates	Weekly	5	64
3. Waterborne			
3.a. Surface Water	Monthly	3	9
3.b. Shoreline Sediment	Semiannually	3	0
4. Ingestion4.a. Fish and Invertebrates			
4.a.1. Crustacea	Semiannually	2	0
4.a.2. Fish	Semiannually	2	0
4.b. Broadleaf Vegetation	Monthly	. 3	9
			Total: 169

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background and with greater than a 50% error term are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

The marine fauna listed in this report were collected in part, under Florida FWC SAL030.

1. DIRECT RADIATION - TLDs - (µR/hour)

Sample Site	Deployment 10-Mar-09 Collection 15-June-09	Sample Site	Deployment 10-Mar-09 Collection 15-June-09
N-2	5.0 ± 0.5	WSW-8	5.3 ± 0.5
N-7	4.0 ± 0.6		
N-10	5.0 ± 0.4	SW-1	4.7 ± 0.3
		' SW-8	5.1 ± 0.5
NNW-2	4.3 ± 0.4		
NNW-10	5.1 ± 0.4	SSW-5	4.6 ± 0.4
		SSW-10	4.7 ± 0.5
NW-1	6.0 ± 0.4		
NW-5	4.1 ± 0.4	S-5	4.3 ± 0.4
NW-10	7.7 ± 0.8	S-10	5.5 ± 0.6
WNW-10	6.2 ± 0.6	SSE-1	4.6 ± 0.4
		SSE-10	5.2 ± 0.4
W-1	6.4 ± 0.5		
W-5	5.0 ± 0.5	NNE-22	5.2 ± 0.6
W-9	5.2 ± 0.5		

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection Date	T51	T57	T58	T64	T72
08-Apr-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
14-Apr-09	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
21-Apr-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
29-Apr-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
06-May-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
12-May-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
18-May-09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
26-May-09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
03-Jun-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
10-Jun-09	< 0.03	< 0.02	< 0.03	< 0.02	< 0.03
17-Jun-09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
24-Jun-09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
29-Jun-09	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03

2.b.1. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection Date	T51	T57	T58	T64	T72
08-Apr-09	0.012 ± 0.002	0.011 ± 0.002	0.012 ± 0.002	0.014 ± 0.002	0.012 ± 0.002
14-Apr-09	0.024 ± 0.003	0.020 ± 0.003	0.022 ± 0.003	0.022 ± 0.003	0.020 ± 0.003
21-Apr-09	0.011 ± 0.002	0.014 ± 0.002	0.010 ± 0.002	0.010 ± 0.002	0.017 ± 0.002
29-Apr-09	0.023 ± 0.002	0.020 ± 0.002	0.018 ± 0.002	0.017 ± 0.002	0.017 ± 0.002
06-May-09	0.014 ± 0.002	0.014 ± 0.002	0.015 ± 0.002	0.017 ± 0.002	0.012 ± 0.002
12-May-09	0.009 ± 0.002	0.006 ± 0.002	0.010 ± 0.002	0.009 ± 0.002	0.008 ± 0.002
18-May-09	0.011 ± 0.002	0.011 ± 0.002	0.008 ± 0.002	0.006 ± 0.002	0.005 ± 0.002
26-May-09	0.008 ± 0.002	0.006 ± 0.001	0.008 ± 0.002	0.006 ± 0.001	0.009 ± 0.002
03-Jun-09	0.016 ± 0.002	0.015 ± 0.002	0.009 ± 0.002	0.010 ± 0.002	0.017 ± 0.002
10-Jun-09	0.009 ± 0.002	0.011 ± 0.002	0.007 ± 0.002	0.010 ± 0.002	0.007 ± 0.002
17-Jun-09	(A)	0.017 ± 0.002	0.017 ± 0.002	0.017 ± 0.002	0.018 ± 0.002
24-Jun-09	0.014 ± 0.002	0.019 ± 0.002	0.020 ± 0.002	0.022 ± 0.003	0.018 ± 0.002
29-Jun-09	0.015 ± 0.003	0.016 ± 0.003	0.013 ± 0.003	0.011 ± 0.002	0.007 ± 0.002
Average:	0.014 ± 0.001	0.018 ± 0.001	0.016 ± 0.001	0.016 ± 0.001	0.012 ± 0.001

⁽A) Air particulate filter missing at time of collection; appeared to be tampered with; no data available.

2.b. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
T51	0.0950 ± 0.0121	< 0.0295	< 0.0029	< 0.0022	0.0132 ± 0.0037
T57	0.0996 ± 0.0120	< 0.0359	< 0.0030	< 0.0027	0.0110 ± 0.0034
T58	0.1164 ± 0.0159	< 0.0384	< 0.0021	< 0.0021	< 0.0158
T64	0.1154 ± 0.0082	< 0.0194	< 0.0020	< 0.0016	0.0121 ± 0.0023
T72	0.1170 ± 0.0131	< 0.0371	< 0.0032	< 0.0018	0.0160 ± 0.0039

3.a. SURFACE WATER - (pCi/L)

Sample Site	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
T42	14-Apr-09	<143	346 ± 23	<4	<3	<7	<4	<10	<6	<4	<4	<4	<8
	11-May-09	<154	330 ± 14	<1	<1	<3	<2	<3	<2	<2	<1	<2	<3
•	16-Jun-09	<146	280 ± 11	<1	<1	<3	<2	<3	<2	<2	<2	<2	<4
T67	14-Apr-09	<143	376 ± 32	<3	<4	<8	<4	<8	<7	<5	<4	<4	<8
	11-May-09	105 ± 44	205 ± 18	<3	<3	<6	<4	<8	<5	<4	<4	<4	<6
	16-Jun-09	<146	109 ± 13	<3	<3	<7	<4	<10	<6	<4	<4	<3	<8
T81	13-Apr-09	118 ± 46	444 ± 37	<4	<4	<8	<4	<8	<7	<6	<4	<3	<5
	11-May-09	115 ± 45	418 ± 39	<3	<3	<8	<4	. <8	<7	<6	<5	<5	<5
	15-Jun-09	<146	247 ± 20	<3	<3	<8	<4	<9	<6	<4	<3	<3	<7

- (A) These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLDs.
- (B) These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample Collection

Site Date Be-7 K-40 Co-58 Co-60 Cs-134 Cs-137 Pb-210 Ra-226 Th-232

These samples were previously collected.

4.a.1. CRUSTACEA - Blue Crab - (pCi/kg, wet weight)

Collection

Sample

<u>Site</u> <u>Date</u> <u>K-40</u> <u>Mn-54 Co-58 Fe-59 Co-60 Zn-65 Cs-134 Cs-137 Ra-226 Ra-228</u>

This sample was previously collected.

This sample was previously collected.

4.a.2. FISH - Mixed Species - (pCi/kg, wet weight)

Sample Collection

<u>Site</u> <u>Date</u> <u>K-40</u> <u>Mn-54</u> <u>Co-58</u> <u>Fe-59</u> <u>Co-60</u> <u>Zn-65</u> <u>Cs-134</u> <u>Cs-137</u> <u>Ra-226</u> <u>Ra-228</u>

This sample was previously collected.

T81 This sample was previously collected.

4.b. BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Pb-212</u>	<u>Ra-226</u>	<u>Ra-228</u>
T40	15-Apr-09	1672 ± 55	3454 ± 107	<9	<10	25 ± 6	<1233	<44	<196	<37
	12-May-09	465 ± 102	3926 ± 207	<21	<24	<29	<1958	<95	<388	<88
	16-Jun-09	2242 ± 75	3100 ± 128	<11	<10	20 ± 2	363 ± 40	<18	<233	<34
T41	15-Apr-09	1625 ± 46	4643 ± 161	<6	<6	19 ± 1	364 ± 24	<10	49 ± 15	<20
	12-May-09	409 ± 45	7210 ± 132	<9	<11	80 ± 6	<816	<41	<177	<37
	16-Jun-09	1607 ± 43	5735 ± 194	<5	<5	65 ± 2	274 ± 19	<9	<107	<17
Т67	14-Apr-09	878 ± 85	6305 ± 270	<18	<20	<20	<2113	<80	281 ± 124	<66
	11-May-09	1048 ± 83	3397 ± 209	<18	<23	<21	<1663	<86	<374	<73
	16-Jun-09	2206 ± 104	3369 ± 158	<15	<15	<13	<833	<109	<312	<56

TURKEY POINT SITE

Offsite Dose Calculation Manual Sampling

Third Quarter, 2009

Sample Type	Collection Frequency	Locations Sampled	Number of <u>Samples</u>
1. Direct Radiation	Quarterly	22	22
2. Airborne			
2.a. Air Iodines	Weekly	5	65
2.b. Air Particulates	Weekly	5	65
3. Waterborne			
3.a. Surface Water	Monthly	3	9
3.b. Shoreline Sediment	Semiannually	3	3
4. Ingestion4.a. Fish and Invertebrates			
4.a.1. Crustacea	Semiannually	2	0
4.a.2. Fish	Semiannually	2	2
4.b. Broadleaf Vegetation	Monthly	3	9
			Total: 175

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

The marine fauna listed in this report were collected in part, under Florida FWC SAL030.

1. DIRECT RADIATION - TLDs - (µR/hour)

Sample Site	Deployment 15-Jun-09 Collection 23-Sep-09	Sample Site	Deployment 15-Jun-09 Collection 23-Sep-09
N-2	4.8 ± 0.6	WSW-8	4.9 ± 0.6
N-7	4.2 ± 0.4		•
N-10	4.8 ± 0.5	SW-1	4.9 ± 0.5
	•	SW-8	5.1 ± 0.6
NNW-2	4.0 ± 0.4		
NNW-10	4.9 ± 0.4	SSW-5	4.7 ± 0.4
		SSW-10	4.6 ± 0.4
NW-1	5.9 ± 0.6		
NW-5	4.2 ± 0.4	S-5	4.2 ± 0.5
NW-10	7.2 ± 0.9	S-10	5.2 ± 0.5
WNW-10	6.1 ± 0.5	SSE-1	4.4 ± 0.4
		SSE-10	5.5 ± 0.6
W-1	6.4 ± 0.8		
W-5	4.8 ± 0.5	NNE-22	5.8 ± 0.6
W-9	4.4 ± 0.5		

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection Date	T51	T57	T58	T64	T72
08-Jul-09	< 0.02	< 0.02	<0.02	< 0.02	< 0.02
14-Jul-09	< 0.03	< 0.02	< 0.03	< 0.02	< 0.03
21-Jul-09	< 0.02	< 0.03	< 0.02	< 0.03	< 0.02
28-Jul-09	< 0.03	< 0.02	< 0.02	< 0.03	<0.02
04-Aug-09	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
10-Aug-09	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
17-Aug-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
24-Aug-09	< 0.02	< 0.02	< 0.02	<0.01	< 0.02
01-Sep-09	< 0.02	< 0.02	< 0.02	< 0.03	< 0.02
09-Sep-09	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
15-Sep-09	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
22-Sep-09	< 0.03	< 0.02	< 0.03	< 0.02	< 0.02
29-Sep-09	< 0.03	< 0.03	< 0.02	< 0.02	< 0.03

2.b.1. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection Date	T51	T57	T58	T64	T72
08-Jul-09	0.019 ± 0.002	0.016 ± 0.002	0.018 ± 0.002	0.014 ± 0.002	0.016 ± 0.002
14-Jul-09	0.020 ± 0.003	0.018 ± 0.002	0.021 ± 0.002	0.020 ± 0.002	0.020 ± 0.002
21-Jul-09	0.017 ± 0.002	0.014 ± 0.002	0.017 ± 0.002	0.016 ± 0.002	0.017 ± 0.002
28-Jul-09	0.009 ± 0.002	0.011 ± 0.002	0.008 ± 0.002	0.013 ± 0.002	0.011 ± 0.002
04-Aug-09	0.014 ± 0.002	0.016 ± 0.002	0.019 ± 0.002	0.015 ± 0.002	0.016 ± 0.002
10-Aug-09	0.018 ± 0.003	0.022 ± 0.003	0.020 ± 0.003	0.015 ± 0.002	0.017 ± 0.002
17-Aug-09	0.017 ± 0.002	0.021 ± 0.002	0.014 ± 0.002	0.016 ± 0.002	0.018 ± 0.002
24-Aug-09	0.017 ± 0.002	0.012 ± 0.002	0.011 ± 0.002	0.014 ± 0.002	0.013 ± 0.002
01-Sep-09	0.015 ± 0.002	0.012 ± 0.002	0.013 ± 0.002	0.016 ± 0.002	0.013 ± 0.002
09-Sep-09	0.009 ± 0.002	0.005 ± 0.001	0.009 ± 0.002	0.008 ± 0.002	0.009 ± 0.002
15-Sep-09	0.008 ± 0.002	0.008 ± 0.002	0.010 ± 0.002	0.007 ± 0.002	0.006 ± 0.002
22-Sep-09	0.013 ± 0.002	0.009 ± 0.002	0.011 ± 0.002	0.010 ± 0.002	0.011 ± 0.002
29-Sep-09	0.007 ± 0.002	< 0.008	0.007 ± 0.002	0.005 ± 0.002	0.007 ± 0.002
Average:	0.014 ± 0.001	< 0.013	0.014 ± 0.001	0.013 ± 0.001	0.013 ± 0.001

2.b. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
T51	0.1012 ± 0.0120	< 0.0247	< 0.0032	< 0.0027	0.0154 ± 0.0038
T57	0.0942 ± 0.0116	< 0.0299	< 0.0032	< 0.0023	0.0154 ± 0.0039
T58	0.0965 ± 0.0167	< 0.0282	< 0.0025	< 0.0019	< 0.0180
T64	0.0942 ± 0.0116	< 0.0299	< 0.0032	< 0.0023	0.0154 ± 0.0039
T72	0.1141 ± 0.0133	< 0.0290	< 0.0016	< 0.0012	< 0.0369

3.a. SURFACE WATER - (pCi/L)

Sample Site	Collection Date	H-3	K-40	Mn-54	Co.58	Fe 50	Co-60	7n-65	Zr-95 Nb-95	I-131	<u>Cs-134</u>	Ce-137	Ba-140 <u>La-140</u>
Site	Date	11-5	<u>IX-40</u>	<u>1VIII-34</u>	<u>C0-38</u>	<u>110-39</u>	<u>C0-00</u>	<u>ZII-05</u>	$\frac{140^293}{(A)}$	1-151	<u>C3-13-4</u>	<u>CS-137</u>	(B)
T42	15-Jul-09	<153	262 ± 11	<1	<1	<3	<2	<3	<2	<2	<1	<1	<3
	11-Aug-09	<159	291 ± 22	<4	<4	<7	<4	<8	<5	<4	<3	<4	<7
	23-Sep-09	<157	282 ± 26	<4	<4	<9	<4	<7	<6	<14	<4	<3	<7
T67	15-Jul-09	<153	107 ± 24	<3	<4	<7	<4	<8	<6	<5	<4	<4	<7
	11-Aug-09	<159	192 ± 26	<4 .	<4	<7	<4	<7	<6	<5	<5	<4	<7
	22-Sep-09	<157	187 ± 29	<4	<3	<7	<4	<9	<6	<5	<5	<5	<14
T81	14-Jul-09	149 ± 49	265 ± 20	<3	<3	<7	<3	<8	<6	<4	<4	<3	<6
	11-Aug-09	405 ± 59	280 ± 21	<3	<3	<7	<4	<8	<6	<4	<4	<3	<6
	23-Sep-09	<157	326 ± 34	<3	<3	<7	<4	<8	<6	<5	<5	<4	<13

⁽A) - These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLDs.

⁽B) - These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample	Collection					•					
Site	<u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u> .	<u>Ra-226</u>	<u>Th-232</u>	<u>U-238</u>
T42	15-Jul-09	<76	251 ± 39	<9	<9	<9	<8	<609	1088 ± 124	<35	741 ± 86
T67	15-Jul-09	<80	152 ± 22	<10	<9	<9	12 ± 2	301 ± 74	749 ± 73	<35	293 ± 19
T81	14-Jul-09	250 ± 44	259 ± 46	<8	<10	<10	<9	<676	1546 ± 194	<33	871 ± 105

4.a.1. CRUSTACEA - Blue Crab - (pCi/kg, wet weight)

Sample	Collection										
<u>Site</u>	<u>Date</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
T67	This samp	ole not yet colle	cted.								
T81	This samp	ole not yet colle	cted.								

4.a.2. FISH - Mixed Species - (pCi/kg, wet weight)

Sample	Collection										
Site	<u>Date</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
T67	24-Sep-09	2314 ± 158	<24	<22	<52	<27	<55	<29	<26	<501	<79
T.81	24-Sep-09	2783 ± 92	<10	<9	<20	<10	<22	<11	4 ± 1	99 ± 25	<33

4.b. BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample <u>Site</u>	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Pb-212</u>	<u>Ra-226</u>	<u>Ra-228</u>
T40	16-Jul-09	1681 ± 67	3124 ± 140	<13	<13	17 ± 3	388 ± 49	<24	<283	<44
	12-Aug-09	1602 ± 62	2826 ± 125	<11	<11	17 ± 2	345 ± 42	<19	<255	<38
	23-Sep-09	3266 ± 130	4389 ± 214	<17	<19	164 ± 14	<1986	<95	<346	<60
T41	16-Jul-09	2257 ± 98	7342 ± 227	<14	<14	40 ± 7	<896	<101	<308	<47
	12-Aug-09	1518 ± 59	3838 ± 152	<12	<12	36 ± 3	199 ± 36	<19	<250	<37
	23-Sep-09	3020 ± 140	5497 ± 229	<17	<17	47 ± 10	<2032	<86	<316	<66
T67	15-Jul-09	1709 ± 61	4736 ± 172	<10	<10	<9	345 ± 40	<17	<215	<33
	11-Aug-09	1728 ± 94	4899 ± 175	<14	<13	<12	<778	<91	<280	<46
•	22-Sep-09	1622 ± 99	4049 ± 199	<16	<13	<15	<1806	<81	<324	<58

TURKEY POINT SITE

Offsite Dose Calculation Manual Sampling

Fourth Quarter, 2009

Sample Type	Collection Frequency	Locations Sampled	Number of Samples
1. Direct Radiation	Quarterly	22	22
2. Airborne			
2.a. Air Iodines	Weekly	5	65
2.b. Air Particulates	Weekly	5	. 65
3. Waterborne			
3.a. Surface Water	Monthly	3	9
3.b. Shoreline Sediment	Semiannually	3	0
4. Ingestion4.a. Fish and Invertebrates			
4.a.1. Crustacea	Semiannually	2	0
4.a.2. Fish	Semiannually	2	0
4.b. Broadleaf Vegetation	Monthly	3	9
			Total: 170

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term. Measurement results that are <u>not</u> significantly above background are reported as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least

The marine fauna listed in this report were collected in part, under Florida FWC SAL030.

95% confidence) for the true activity in the sample.

1. DIRECT RADIATION - TLDs - (μR/hour)

Sample Site	Deployment 23-Sep-09 Collection 09-Dec-09	Sample Site	Deployment 23-Sep-09 Collection 09-Dec-09
N-2	4.9 ± 0.4	WSW-8	4.7 ± 0.4
N-7	4.0 ± 0.5	·	
N-10	4.7 ± 0.5	SW-1	4.7 ± 0.5
		SW-8	5.5 ± 0.6
NNW-2	4.0 ± 0.5		
NNW-10	5.3 ± 0.7	SSW-5	4.8 ± 0.5
		SSW-10	4.9 ± 0.5
NW-1	5.9 ± 0.6		
NW-5	4.3 ± 0.5	S-5	4.5 ± 0.5
NW-10	6.9 ± 0.8	S-10	5.5 ± 0.6
•			1
WNW-10	6.2 ± 0.5	SSE-1	4.6 ± 0.5
		SSE-10	5.4 ± 0.6
W-1	6.6 ± 0.5		
W-5	5.3 ± 0.6	NNE-22	5.6 ± 0.6
W-9	5.0 ± 0.6		

2.a. IODINE-131 IN WEEKLY AIR CARTRIDGES - (pCi/m³)

Collection Date	T51	T57	T58	T64	T72
06-Oct-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
13-Oct-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
19-Oct-09	< 0.03	< 0.03	< 0.03	< 0.02	< 0.03
27-Oct-09	< 0.02	< 0.02	< 0.03	< 0.03	< 0.02
04-Nov-09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
10-Nov-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
17-Nov-09	< 0.01	< 0.01	< 0.02	< 0.01	< 0.02
25-Nov-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
01-Dec-09	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
08-Dec-09	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01
15-Dec-09	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
22-Dec-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.03
29-Dec-09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02

2.b.1. AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection	•	•			
Date	T51	T57	T58	T64	T72
06-Oct-09	0.011 ± 0.002	0.011 ± 0.002	0.016 ± 0.002	0.016 ± 0.002	0.013 ± 0.002
13-Oct-09	0.012 ± 0.002	0.015 ± 0.002	0.013 ± 0.002	0.008 ± 0.002	0.012 ± 0.002
19-Oct-09	0.005 ± 0.002	0.013 ± 0.002	0.012 ± 0.002	0.016 ± 0.002	0.010 ± 0.002
27-Oct-09	0.010 ± 0.002	0.012 ± 0.002	0.007 ± 0.002	0.010 ± 0.002	0.008 ± 0.002
04-Nov-09	0.012 ± 0.002	0.009 ± 0.002	0.009 ± 0.002	0.007 ± 0.002	0.009 ± 0.002
10-Nov-09	0.016 ± 0.002	0.016 ± 0.002	0.019 ± 0.003	0.017 ± 0.002	0.016 ± 0.002
17-Nov-09	0.011 ± 0.002	0.006 ± 0.002	0.006 ± 0.002	0.011 ± 0.002	0.008 ± 0.002
25-Nov-09	0.008 ± 0.002	0.009 ± 0.002	0.011 ± 0.002	0.008 ± 0.002	0.010 ± 0.002
01-Dec-09	0.017 ± 0.002	0.017 ± 0.002	0.017 ± 0.002	0.019 ± 0.002	0.020 ± 0.002
08-Dec-09	0.014 ± 0.002	0.014 ± 0.002	0.012 ± 0.002	0.018 ± 0.002	0.017 ± 0.002
15-Dec-09	0.008 ± 0.002	0.006 ± 0.002	0.005 ± 0.002	0.011 ± 0.002	0.005 ± 0.002
22-Dec-09	0.013 ± 0.002	0.008 ± 0.002	0.013 ± 0.002	0.012 ± 0.002	0.012 ± 0.002
29-Dec-09	0.018 ± 0.002	0.018 ± 0.002	0.020 ± 0.002	0.024 ± 0.002	0.020 ± 0.002
Average:	0.012 ± 0.001	0.012 ± 0.001	0.012 ± 0.001	0.014 ± 0.001	0.012 ± 0.001

2.b. AIR PARTICULATES - GAMMA ANALYSIS OF QUARTERLY COMPOSITES - (pCi/m³)

Sample Site	<u>Be-7</u>	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
T51	0.1390 ± 0.0046	< 0.0083	< 0.0005	< 0.0004	0.0352 ± 0.0051
T57	0.1456 ± 0.0128	< 0.0212	< 0.0018	< 0.0014	< 0.0486
T58	0.1113 ± 0.0072	< 0.0180	< 0.0017	< 0.0015	0.0123 ± 0.0022
T64	0.1406 ± 0.0083	< 0.0147	< 0.0010	< 0.0007	< 0.0273
T72	0.1414 ± 0.0111	< 0.0180	< 0.0014	< 0.0010	0.0182 ± 0.0035

3.a. SURFACE WATER - (pCi/L)

Sample Site	Collection <u>Date</u>	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
T42	27-Oct-09	122 ± 49	261 ± 10	<1	<1	<3	<1	<3	<2	<2	<1	<1	<5
	16-Nov-09	<144	245 ± 19	<3	<3	<8	<4	<9	<5	<4	<4	<4	<13
	10-Dec-09	<137	253 ± 32	<3	<4	<8	<5	<8	<6	<4	<5	<4	<14
T67	19-Oct-09	<150	287 ± 29	<4	<3	<7	<5	<8	<7	<6	<4	<4	<15
	16-Nov-09	<144	271 ± 37	<4	<4	<8	<5	<7	<7	<6	<4	<5	<14
	09-Dec-09	92 ± 26	112 ± 34	<5	<6	<11	<5	<14	<10	<6	<7	<6	<12
T81	19-Oct-09	134 ± 49	265 ± 21	<4	<3	<8	<4	<8	<6	<5	<3	<3	<6
	16-Nov-09	<144	239 ± 19	<4	<3	<7	<4	<8	<6	<4	<4	<3	<14
	09-Dec-09	112 ± 26	250 ± 20	<3	<3	<7	<4	<9	<6	<4	<4	<3	<13

- (A) These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLDs.
- (B) These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b. SHORELINE SEDIMENT - (pCi/kg, dry weight)

Sample	Collection										
<u>Site</u>	<u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Ra-226</u>	Th-232	Others:
T42	This s	ample was	previously	collected.							
T67	This s	This sample was previously collected.									
T81	This s	ample was	previously	collected.							

4.a.1. CRUSTACEA - Blue Crab - (pCi/kg, wet weight)

Sample Collection
Site Date K-40 Mn-54 Co-58 Fe-59 Co-60 Zn-65 Cs-134 Cs-137 Ra-226 Ra-228

There was no sample available this quarter.

There was no sample available this quarter.

4.a.2. FISH - Mixed Species - (pCi/kg, wet weight)

Sample	Collection										
<u>Site</u>	<u>Date</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Co-58</u>	<u>Fe-59</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>	<u>Ra-228</u>
T67	This samp	ole was previous	ly collecte	ed.							
T81	This samp	ole was previous	sly collecte	d.							

4.b. BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample Site	Collection <u>Date</u>	<u>Be-7</u>	<u>K-40</u>	<u>I-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>	<u>Pb-212</u>	<u>Ra-226</u>	<u>Ra-228</u>
T40	21-Oct-09	1407 ± 101	3512 ± 211	<16	<21	80 ± 10	<1701	<93	493 ± 222	<62
	17-Nov-09	2121 ± 109	3850 ± 216	<14	<18	32 ± 7	<1934	<86	<347	<71
	09-Dec-09	3050 ± 124	3790 ± 162	<14	<12	32 ± 5	<784	<104	<353	<55
T41	21-Oct-09	2089 ± 134	5992 ± 276	<22	<21	38 ± 10	<2060	<111	740 ± 209	<81
	17-Nov-09	1738 ± 108	4985 ± 245	<18	<18	59 ± 8	<1822	<88	<304	<69
	08-Dec-09	2876 ± 126	6508 ± 267	<21	<21	90 ± 12	<1954	<94	<375	<81
T67	19-Oct-09	1518 ± 105	6299 ± 284	<23	<25	<21	<1878	<87	<358	<81
	16-Nov-09	1016 ± 81	3141 ± 196	<16	<13	<15	<1801	<84	<329	<66
	09-Dec-09	1450 ± 109	2822 ± 194	<17	<18	<16	<1475	<86	516 ± 115	<79

ATTACHMENT C

RESULTS FROM THE 2009
INTERLABORATORY COMPARISON PROGRAM
CONDUCTED BY
DEPARTMENT OF ENERGY

2009 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT – UNITS 3 & 4

Radionuclide Matrix: RdF Air Filter	Result Ba/filter	DOE-MA Ref. Value	APEP 20 RESUL Flag (Evaluation)	Acceptance Range
MN54	2.22	2.2709	Α	1.5896 – 2.9522
CO57	1.15	1.30	Α	0.91 - 1.69
CO60	1.14	1.22	Α	0.85 – 1.59
ZN65	1.34	1.36	Α	0.95 – 1.77
CS134	2.88	2.93	Α	2.05 – 3.81
CS137	1.45	1.52	Α	1.06 – 1.98
Matrix: GrF Air Filter I				
Gross Beta	1.54	1.27	Α	0.64 – 1.91
Matrix: MaS Soil Bq/	/kg			
K40	652.74	570	Α	399 - 741
MN54	347.54	307	Α	215 - 399
CO57	0.05		Α	Blank, no activity
CO60	4.48	4.113	Α	Performance assay
ZN65	278.17	242	Α	169 - 315
CS134	452.51	467	Α	327 - 607
CS137	660.6	605	Α	424 – 787
Matrix: MaW Water	Bq/L			
H3	344.72	330.9	Α	231.6 – 430.2
MN54	15.43	14.66	Α	10.06 — 19.06
CO57	18.04	18.9	Α	13.2 – 24.6
CO60	17.13	17.21	Α	12.05 – 22.37
NI63	44.57	53.50	Α	37.45 - 69.55
ZN65	14.7	13.6	Α	9.5 – 17.7
CS134	21.18	22.5	Α	15.8 – 29.3
CS137	-0.14		Α	Cs137 interference from Cs-134 test
Matrix: RdV Vegetatio	n, Bq/sample :			
MN54	2.19	2.30	Α	1.61 – 2.99
CO57	2.27	2.36	Α	1.65 – 3.07
CO60	0.08		Α	A lower delectability eval.
ZN65	1.33	1.354	. A	0.948 – 1.760
CS134	3.25	3.40	Α	2.38 – 4.42
CS137	0.9	0.93	Α	0.65 – 1.21

Evaluation: A = Acceptable, W = Acceptable with Warning, N = Not Acceptable

Ma	Radionuclide trix: RdF Air Filter E MN54 CO57 CO60 ZN65 CS134 CS137	Result 3q/filter 6.31 6.12 1.05 4.69 - 0.06 1.55	DOE-MA Ref. Value 5.49 6.48 1.03 3.93	PEP21 RESULTS Flag (Evaluation) A A A A A A A A	Acceptance Range 3.84 – 7.14 4.54 – 8.42 0.72 – 1.34 2.75 – 5.11 Blank, no activity 0.98 – 1.82
Mat	trix: GrF Air Filter B	la/filter			
	Gross Beta	1.484	1.32	Α	0.66 – 1.98
Mat	trix: MaS Soil Bq/k	q			
	K40	403.97	375	Α	263 - 488
	MN54	873.6	796	Α	557 - 1035
	CO57	632.79	586	Α	410 - 762
	CO60	343.70	327	Α	229 - 425
	ZN65	1354.41	1178	Α	825 - 1531
	CS134	2.32		A	Blank, no activity
	CS137	712.12	669	Α	468 - 870
Mat	trix: MaW Water B	g/L			
	H3	508.91	634.1	Α	443.9 - 824.3
	MN54	0.066		Α	Blank, no activity
	CO57	34.53	36.6	Α	25.6 - 47.6
	CO60	15.28	15.4	Α	10.8 - 20.0
	ZN65	29.79	26.9	Α	18.8 - 35.0
	SR90	14.2	12.99	Α	9.09 – 16.89
	CS134	29.44	32.2	Α	22.5 - 41.9
	CS137	41.88	41.2	Α	28.8 – 53.6
Mat	trix: RdV Vegetation	. Ba/sample :			
	MN54	7.10	7.9	Α	5.5 – 10.3
	CO57	7.39	8.0	A	5.6 – 10.4
	CO60	2.33	2.57	A	1.80 – 3.34
	ZN65	0.14		A	Blank, no activity
	CS134	-0.13		Α	Blank, no activity
	CS137	2.09	2.43	Α	1.7 – 3.16

Evaluation: A = Acceptable, W = Acceptable with Warning, N = Not Acceptable

ATTACHMENT D

Industry Initiative

Ground Water Protection Program

Tritium in Ground Water Monitoring

2009

A. Description of Program:

The Ground Water Protection Program, Industry Initiative, is described in the FPL EV-AA-100 series of procedures; site wells and sampling is described in site procedures 0-NCAP-103 and 0-NCSP-004.

The sampling frequency is quarterly; more often if conditions warrant.

Sample assay is performed by a private contractor. This contractor provides other radiological assay for the effluents & rad-waste program; this affords QA for the Industry Initiative monitoring program.

B. Discussion

The Turkey Point Nuclear site is surrounded on three sides by the closed cooling canal system. This canal system, in addition to being the source of tertiary cooling, is the body of water receiving permitted liquid radiological waste; the canal system tritium level averages about 4,000 pCi/L. This supports the expectation to see tritium in subsurface water collected either on-site or off-site close to the (within the Owner Controlled Area) cooling canal system.

38 wells in 22 locations were involved in 2009 monitoring program; some locations have multiple (two or three) depths.

Samples are analyzed for Tritium & Gamma emitters.

150 'routine' samples were collected; 14 non-routine samples were collected.

Six of the 14 non-routine samples were follow-ups to suspected cross-contamination or sample mislabeling, the results, from one cluster well with three depths, had atypically high results: two sets of follow-up sample were collected & analyzed. The results of the re-sampling were more in line with expectations.

The remaining eight non-routine samples, two from four wells, were collected when leakage from the U4 Spent Fuel Pool (SFP) Transfer Canal in to the Transfer Canal Liner was noted. The wells are down gradient from the SFP. No abnormal levels of tritium, or other fission products, were detected. The increased sample frequency was secured when the transfer canal was drained.

C. Results

Tritium was detected in those locations reasonably affected by the cooling canal. Range of results: 360 to 4360 pCi/L (77 of 162 samples). For reference, cooling canal varies Tritium values vary from 4,000 to 5,000 pCi/L.

Tabular results follow:

C. Results, continued

Turkey Point 2009 Well Sampling Results, pCi/L

Note: -- denotes less than detectable, Typical MDAs K-40: 90 pCi/L Cs-137: 7 pCi/L

Well number	First Quarter 2009		Second Quarter 2009			Third Quarter 2009			Fourth Quarter 2009			
	H-3	K-40	Cs- 137	H-3	K-40	Cs- 137	H-3	K-40	Cs- 137	H-3	K-40	Cs- 137
PTPED-1	710		15.8	630			600		11.7	<350		15.3
CD-1	830	176		760			550			<350	94	
P-94-2	770	118		740	{		760			<350	262	
P-94-4	440			760		6.4	<360			820		
11/24/09 liner leak					100740	100	5 - \$7 9 2	180		1100		
12/15/09 liner leak		1944		184 1	## 15 19 Z		e land trade		UM BESS	< 240		11.8
STP-1	560			440			<330			<350	71	
L-3 top	<350			<350			<330		_ 	<350		
L-3 bottom	4690	539		4500	558		4250	574		4330	522	
L-5 top	<360			<350			<330			<350		
L-5 bottom	3430	472		3480	472		3330	492		3510	488	
G-21 top	<360			<350			<330			<350		
G-21 bottom	<360			<350			<330			<350		
G-28 top	<360			<350			<330			<350		
G-28 bottom	370	149		460	132		<330	107		<350	132	
G-35 Top	PA 3				Well add	ed 3rd Q	<360			<350		
G-35 Bottom		Mark at	particular.		Well add	ed 3rd Q	<360			<350	76	
PTN-MW-1s	<350			<340			<330			<350		
PTN-MW-1i	440	304		<340	289		<330	280		<350	291	
PTN-MW-1d	1960	433		1820	456		1200	318		1690	411	
PTN-MW-2s	<350			<350			<330			<350		
PTN-MW-3s	<360			<340			<330			<350		
PTN-MW-4s	<360			440			<330			<350		
PTN-MW-4i	3160	436		3060	375		3300	347		3560	550	
PTN-MW-4d	3620	542		3880	493		3870	543		4150	566	

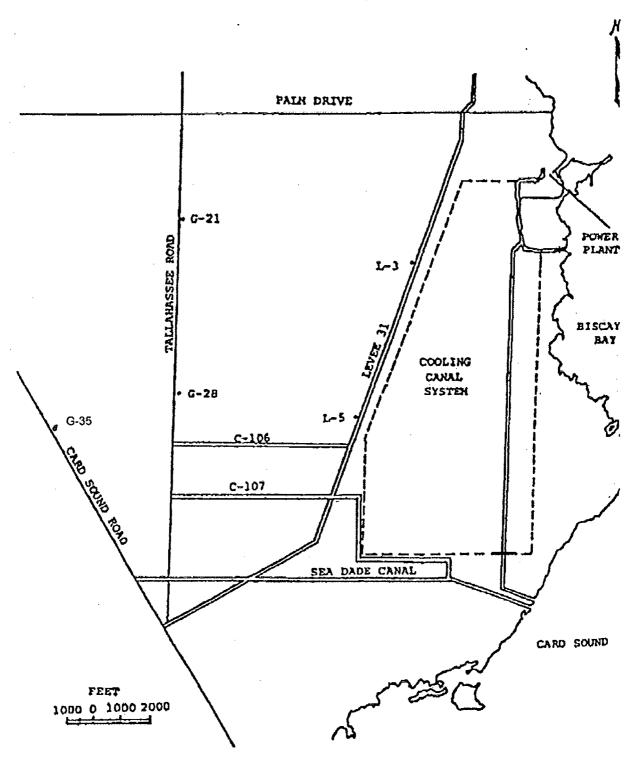
C. Results (continued)

Turkey Point 2009 Well Sampling Results, pCi/L

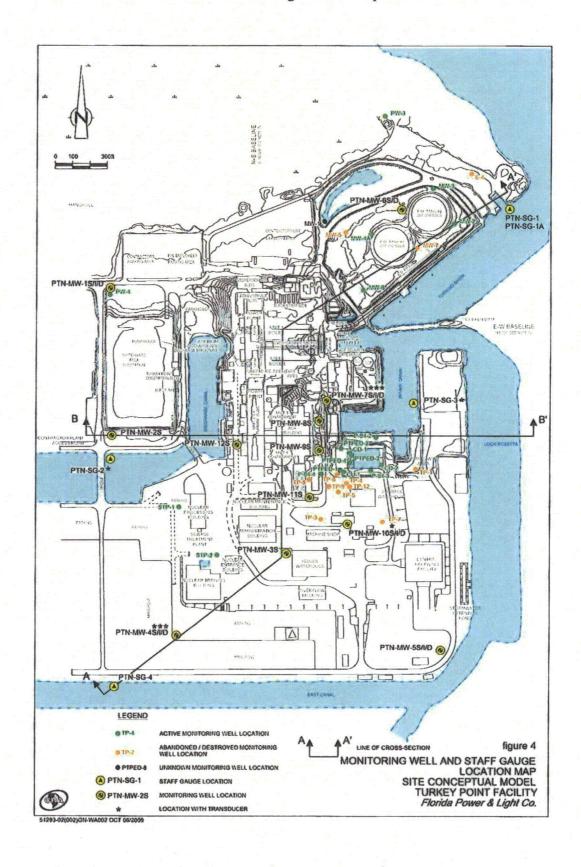
Note: -- denotes less than detectable, Typical MDAs K-40: 90 pCi/L Cs-137: 7 pCi/L

Note:		denotes	iess thai	n detectabl	e, i ypica	INDAS	K-40: 90	pCI/L C	JS-137: /	pÇI/L		
Well number	First Quarter 2009		Second Quarter 2009			Third Quarter 2009			Fourth Quarter 2009			
	H-3	K-40	Cs- 137	H-3	K-40	Cs- 137	H-3	K-40	Cs- 137	H-3	K-40	Cs- 137
PTN-MW-5s	<370	152	<u></u>	<350	119		<330	201		<350	338	
PTN-MW-5i	<360	290	<u></u>	380	431		<330	381		980	388	
PTN-MW-5d	2450 ′	329		3010	530		3050	599		2760	602	
PTN-MW-6s	<360	<u></u>		<330	*		<330			<350		
PTN-MW-6d	640	316		630	280		1010	437	<u></u>	1120	374	
PTN-MW-7s	<360			1370			380			450		
6/18/09 resample	e de l'englis and an			<350								
6/30/09 resample	REPORT OF THE PARTY			550				ALCOHOLD TO SERVE		STATE OF THE STATE	Silver 15 April	
PTN-MW-7i	800	131		400	247		1250	172		<350	257	
6/18/09 resample		1		1080	260			グルン・電子				
6/30/09 resample				1620			34.3					
PTN-MW-7d	930	419		<330			2180	414		1900	406	
6/18/09 resample		377,070297	1-1-1-1	2120	374			15 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				
6/30/09 resample		4.0	or of the second	1900				 ************************************				
PTN-MW-8s	<360	;		<340			<360			<350		
11/24/09 liner leak		- A (1)45%		*## # 50 D					- 1 - 1 - 1	560		
12/15/09 liner leak	was.	Later Control					574 N. A. A.	1.00		765		
PTN-MW-9s	Could	not acces	ss well	780			<360		2.63	<350		
11/24/09 liner leak			and the second	Mark and	ratio			140405664	能量 化香港床	490		
12/15/09 liner leak	(C1)				製造される	3.4		ile de la companya d		541		
PTN-MW-10s	<360	80	7.5	<330			<330			<350		
PTN-MW-10i	1820	256		1630	281		1660	249		1390	245	
PTN-MW-10d	1720	308	 	2330	405		3150	463		3230	382	
PTN-MW-11s	<360	 		580			<360			<350	64	
11/24/09 liner leak	1.04		30 ESE - ESA	65.86	and state of		Jan 1		40 m 25 m	560		
12/15/09 liner leak							25 (23 (23	Andrews	3	314		
PTN-MW-12s	<360			360			<330			560		

Description of Well locations follows:


D. List of wells and their locations

Well Name	Location
PTN-MW-1s PTN-MW-1i PTN-MW-1d	Northeast of Switch Yard, South of entrance road to Fossil Plant
PTN-MW-2s	South Switch Yard by parking lot
PTN-MW-3s	Northeast of new Issues Warehouse
PTN-MW-4s PTN-MW-4i PTN-MW-4d	SW corner of parking lot South of Training Bldg
PTN-MW-5s PTN-MW-5i PTN-MW-5d	SW of CRF, by canal
PTN-MW-6s PTN-MW-6d	NE of site in the berm for fossil oil tanks
PTN-MW-7s PTN-MW-7i PTN-MW-7d	NE of RCA, by Neutralization Tank
PTN-MW-8s	Near U3 RWST
PTN-MW-9s	Near U4 RWST
PTN-MW-10s PTN-MW-10i PTN-MW-10d	SE of Radwaste Bldg by S/G Bldg
PTN-MW-11s	South of truck entrance to Rad Waste Bldg
PTN-MW-12s	West of Condenser Polisher road
STP-1	West of Maintenance Bldg on corner or road into parking lot
P-94-4	East of Dressout Building, under delay fence
P-94-2	By Neutralization Basin, East of the RCA
CD-1	By Neutralization Basin, East of the RCA
PTPED-1	By Neutralization Basin, East of the RCA
L-3 (1)	On Levee 31 dike
L-5 (1)	On Levee 31 dike
G-21 (1)	On 137th Avenue
G-28 (1)	On 137th Avenue
G-35	Card Sound Road


Note: s, i and d refer to well depth: shallow - 20 ft., intermediate - 40 ft. and deep - 60 ft

Maps depicting the well locations and the back up well locations follow:

Offsite H3 Monitoring Wells

Onsite H3 Monitoring and Back Up Wells

