

Environmental, Inc. Midwest Laboratory an Allegheny Technologies Co.

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

XCEL ENERGY CORPORATION

MONTICELLO NÜCLEAR GENERATING PLANT DOCKET NO. 50-263 LICENSE NO. DPR-22

ANNUAL REPORT TO THE UNITED STATES NUCLEAR REGULATORY COMMISSION

Radiological Environmental Monitoring Program

January 1 to December 31, 2009

Prepared under Contract by

ENVIRONMENTAL, Inc. Midwest Laboratory

Project No. 8010

Approved:

Bionia Grob, M.S. Laboratory Manager

The staff of Environmental, Inc., Midwest Laboratory was responsible for the acquisition of data presented in this report. Samples were collected by personnel of the Monticello Nuclear Generating Plant, operated by Northern States Power Co. -Minnesota for XCEL Energy Corporation. This report was prepared by Environmental, Inc., Midwest Laboratory.

ii

(

PREFACE

TABLE OF CONTENTS

	<u>No.</u>		Page
		Preface	ii
		List of Tables	iv
		List of Figures	v
	1.0	INTRODUCTION	1
	2.0	SUMMARY	2
	3.0	 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP) 3.1 Program Design and Data Interpretation 3.2 Program Description 3.3 Program Execution 3.4 Laboratory Procedures 3.5 Program Modifications 3.6 Land Use Census 	3
•	4.0	RESULTS AND DISCUSSION4.1Atmospheric Nuclear Detonations and Nuclear Accidents4.2Summary of Preoperational Data4.3Program Findings	7 7
	5.0	FIGURES AND TABLES	12
	6.0	REFERENCES	25
<u>APF</u>	<u>ENDICE</u>	<u></u>	
	Α	Interlaboratory Comparison Program Results	A-1
	B	Data Reporting Conventions	B-1
	. C	Maximum Permissible Concentrations of Radioactivity in Air and Water Above Natural Background in Unrestricted Area	
•	D.	Sampling Location Maps	D-1

iii

LIST OF TABLES

<u>No.</u>	Title	<u>Page</u>
5.1	Sample Collection and Analysis Program	13
5.2	Sampling Locations	14
5.3	Missed Collections and Analyses	17
5.4	Radiation Environmental Monitoring Program Summary	20

The following tables are in the Appendices:

Appendix A

A-1	Interlaboratory Comparison Program Results	A1-1
A-2	Thermoluminescent dosimeters (TLDs)	A2-1
A-3	In-house Spiked Samples	A3-1
A-4	In-house "Blank" Samples	A4-1
A-5	In-house "Duplicate" Samples	: A5-1
A-6	Department of Energy MAPEP comparison results	A6-1
A-7	Environmental Resources Associates, Crosscheck Program Results (EML study replacement)	

Appendix C

C-1

Maximum Permissible Concentrations of Radioactivity in air and water above background in unrestricted areasC-2

LIST OF FIGURES

<u>No</u> .	Title	Page
5-1	Offsite Ambient Radiation (TLDs), inner versus outer ring locations	18
5-2	Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location	19
Арр	endix D	×
D-1	Sample collection and analysis program: TLD locations, Inner Ring	D-2
D-2	Sample collection and analysis program: TLD locations, Outer Ring	D-3
D-3	Sample collection and analysis program: TLD locations, Controls	D-4
D-4	Sample collection and analysis program: Radiation Environmental Monitoring Program, Milk sampling locations	D-5
D-5	Sample collection and analysis program: Radiation Environmental Monitoring Program, Milk, Sludge, Ground water and Shoreline sampling locations	D-6
D-6	Sample collection and analysis program: Radiation Environmental Monitoring Program, Ground water, On-site monitoring well locations	D-7

1.0 INTRODUCTION

This report summarizes and interprets results of the Radiological Environmental Monitoring Program (REMP) conducted by Environmental, Inc., Midwest Laboratory for the Monticello Nuclear Generating Plant, Monticello, Minnesota, during the period January - December, 2009. This Program monitors the levels of radioactivity in the air, terrestrial, and aquatic environments in order to assess the impact of the Plant on its surroundings.

Tabulation of the individual analyses made during the year are not included in this report. These data are included in a reference document (Environmental, Inc., Midwest Laboratory, 2010a) available at the Monticello Nuclear Generating Plant, Chemistry and Radiation Protection Department.

The Monticello Nuclear Generating Plant is a boiling water reactor with a nominal generating capacity of 620 MWe. It is located on the Mississippi River in Wright County, Minnesota, owned by Xcel Energy Corporation and operated by Northern States Power Co.-Minnesota. Initial criticality was achieved on December 10, 1970. Full power was achieved March 5, 1971 and commercial operation began on June 30, 1971.

2.0 SUMMARY

The Radiological Environmental Monitoring Program (REMP) required by the U.S. Nuclear Regulatory Commission (NRC) Technical Specifications and the Offsite Dose Calculation Manual (ODCM) for the Monticello Nuclear Generating Plant is described. Results for the year 2009 are summarized and discussed.

Program findings show background levels of radioactivity in the environmental samples collected in the vicinity of the Monticello Nuclear Generating Plant.

3.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

3.1 Program Design and Data Interpretation

The purpose of the Radiological Environmental Monitoring Program (REMP) at the Monticello Nuclear Generating Plant is to assess the impact of the Plant on its environment. For this purpose, samples are collected from the air, terrestrial, and aquatic environments and analyzed for radioactive content. In addition, ambient gamma radiation levels are monitored by thermoluminescent dosimeters (TLD's).

Sources of environmental radiation include the following:

- (1) Natural background radiation arising from cosmic rays and primordial radionuclides;
- (2) Fallout from atmospheric nuclear detonations;
- (3) Releases from nuclear power plants;
- (4) Industrial and medical radioactive waste; and
- (5) Fallout from nuclear accidents.

In interpreting the data, effects due to the Plant must be distinguished from those due to other sources.

A major interpretive aid in assessment of these effects is the design of the monitoring program at the Monticello Plant which is based on the indicator-control concept. Most types of samples are collected both at indicator locations (nearby, downwind, or downstream) and at control locations (distant, upwind, or upstream). A plant effect would be indicated if the radiation level at an indicator location was significantly larger than that at the control location. The difference would have to be greater than could be accounted for by typical fluctuations in radiation levels arising from other sources.

An additional interpretive technique involves analyses for specific radionuclides present in environmental samples collected from the Plant site. The Plant's monitoring program includes analyses for tritium and iodine-131. Most samples are also analyzed for gamma-emitting isotopes with results for the following groups quantified: zirconium-95, cesium-137, cerium-144, beryllium-7, and potassium-40. The first three gamma-emitting isotopes were selected as radiological impact indicators because of the different characteristic proportions in which they appear in the fission product mix produced by a nuclear reactor and that produced by a nuclear detonation. Each of the three isotopes is produced in roughly equivalent amounts by a reactor: each constitutes about 10% of the total activity of fission products 10 days after reactor shutdown. On the other hand, 10 days after a nuclear explosion, the contributions of zirconium-95, cerium-144, and cesium-137 to the activity of the resulting debris are in the approximate ratio 4:1:0.03 (Eisenbud, 1963). Beryllium-7 is of cosmogenic origin and potassium-40 is a naturally-occurring isotope. They were chosen as calibration monitors and should not be considered as radiological impact indicators. The other group quantified consists of niobium-95, ruthenium-103 and -106, cesium-134, barium-lanthanum-140, and cerium-141. These isotopes are released in small guantities by nuclear power plants, but to date their major source of injection into the general environment has been atmospheric nuclear testing. Nuclides of the final group, manganese-54, iron-59, cobalt-58 and -60, and zinc-65, are activation products and arise from activation of corrosion products. They are typical components of a nuclear power plant's effluents, but are not produced in significant quantities by nuclear detonations.

Program Design and Data Interpretation (continued)

Other means of distinguishing sources of environmental radiation are employed in interpreting the data. Current radiation levels are compared with previous levels, including those measured before the plant became operational. Results of the Plant's Monitoring Program can be related to those obtained in other parts of the world. Finally, results can be related to events known to cause elevated levels of radiation in the environment, e.g., atmospheric nuclear detonations.

3.2 Program Description

1.54

The sampling and analysis schedule for the Radiological Environmental Monitoring Program (REMP) at the Monticello Plant is summarized in Table 5.1 and briefly reviewed below. Table 5.2 defines the sampling location codes used in Table 5.1 and specifies for each location its type (indicator or control) and its distance, direction, and sector relative to the plant site. To assure that sampling is carried out in a reproducible manner, detailed sampling procedures have been prescribed (Monticello Generating Plant REMP Surveillances, Current Revision). Maps of sampling locations are included in Appendix D.

To monitor the air environment, airborne particulates are collected on membrane filters by continuous pumping at five locations. Also, airborne iodine is collected by continuous pumping through charcoal filters at all of these locations. Filters are changed and counted weekly. Particulate filters are analyzed for gross beta activity and charcoal filters for iodine-131. Quarterly composites of particulate filters from each location are determined by gamma spectroscopy. One of the five locations is a control (M-1), and four are indicators (M-2, M-3, M-4, M-5). One of the indicators is located in the geographical sector expected to be most susceptible to any atmospheric emissions from the Plant (highest D/Q sector).

Ambient gamma radiation is monitored at forty locations, using $CaSO_4$:Dy dosimeters with four sensitive areas at each location: fourteen in an inner ring in the general area of the site boundary, sixteen in the outer ring within 4-5 mile radius, six at special interest locations and four control locations, outside a 10 mile radius from the plant. They are replaced and measured guarterly.

The last local dairy went out of business in April, 2008. In September, 2008, triannual collections of pasture grass and vegetation were added to the program. Samples from locations M-41, M-42 and M-43 (C) were analyzed for iodine-131 and other gamma emitting isotopes, as substitute for dairy sampling.

Leafy green vegetables (cabbage) are collected annually from the highest D/Q garden and a control location and analyzed for iodine-131. Corn and potatoes are collected annually only if the field is irrigated by water in which liquid radioactive effluent has been discharged. Analysis is for gamma-emitting isotopes.

Ground water is monitored by quarterly collections from three off-site locations (one control and two indicators) and one on-site Plant well. To monitor possible sources of groundwater contamination due to plant operations, sixteen on-site wells were established as part of the REMP. The samples are analyzed for tritium and gamma emitting isotopes.

In 2009, six previously drilled temporary wells were filled in. A tritium characterization study was conducted on core samples. Results are detailed in Part II, Appendix A.

Quarterly collections of storm water runoff were added to monitor another possible pathway to the groundwater aquifer.

River water is collected weekly at two locations, one upstream of the plant and one downstream. Monthly composites are analyzed for gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

Program Description (continued)

Drinking water is collected weekly from the City of Minneapolis water supply, which is taken from the Mississippi River downstream of the Plant. Monthly composites are analyzed for gross beta, iodine-131, and gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

The aquatic environment is also monitored by semi-annual upstream and downstream collections of fish, invertebrates, and shoreline sediments. Shoreline sediment is also collected semi-annually from one downstream recreational location. All samples are analyzed for gamma-emitting isotopes.

3.3 Program Execution

The Program was executed as described in the preceding section with the following exceptions:

(1) Air Particulates / Air lodine:

No air particulate / air iodine samples were available from location M-1 for the week ending December 9, 2009. The sampler pump failed due to a faulty timer.

(2) <u>Thermoluminescent Dosimeters:</u>

The TLD for location M-01B was missing in the field for the second quarter, 2009.

(3) Surface Water:

Surface water was not collected at location M-08 during the months of January and February, 2009, due to unsafe ice conditions.

Two weeks were missed from the March, 2009 composite water sample. Surface water could not be collected at location M-08 for the weeks ending March 4, 2009 and March 11, 2009, due to unsafe ice conditions.

Four weeks were missed from the December, 2009 composite water sample Surface water could not be collected at location M-08 for the weeks ending December 9, 16, 23 and 30, 2009, due to unsafe ice conditions.

(4) <u>Well Water:</u>

Well water was not collected at location M-12 for the third quarter, 2009. The well was out of service.

Deviations from the program are summarized in Table 5.3.

3.4 Laboratory Procedures

The iodine-131 analyses in milk and drinking water were made using a sensitive radiochemical procedure which involves separation of the iodine using an ion-exchange method and solvent extraction and subsequent beta counting.

Gamma-spectroscopic analyses are performed using high-purity germanium (HPGe) detectors. Levels of iodine-131 in cabbage and natural vegetation and concentrations of airborne iodine-131 in charcoal samples were determined by gamma spectroscopy.

Tritium concentrations are determined by liquid scintillation.

Analytical Procedures used by Environmental, Inc. are on file and are available for inspection. Procedures are based on those prescribed by the Health and Safety Laboratory of the U.S. Dep't of Energy, Edition 28, 1997, U.S. Environmental Protection Agency for Measurement of Radioactivity in Drinking Water, 1980, and the U.S. Environmental Protection Agency, EERF, Radiochemical Procedures Manual, 1984.

Environmental, Inc., Midwest Laboratory has a comprehensive quality control/quality assurance program designed to assure the reliability of data obtained. Details of the QA Program are presented elsewhere (Environmental, Inc., Midwest Laboratory, 2009). The QA Program includes participation in Interlaboratory Comparison (crosscheck) Programs. Results obtained in the crosscheck programs are presented in Appendix A.

Program Modifications

3.5

3.6

Storm water runoff collections were added to the program in 2009. The samples are collected quarterly and analyzed for tritium and gamma emitting isotopes.

Four additional on-site monitoring wells were added to the permanent REMP in 2009. The samples are collected guarterly and analyzed for tritium and gamma emitting isotopes.

Land Use Census

In accordance with the MNGP Chemistry Manual, Procedure I.05.41, "Annual Land Use Census and Critical Receptor Identification", a land use census shall be conducted and shall identify the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than 500 ft² producing fresh leafy vegetables, in each of the 16 meteorological sectors within a distance of 5 miles. The census shall also identify the locations of all milk animals and all 500 ft² or greater gardens producing broad leaf vegetation in each of the meteorological sectors within a distance of three miles. This census shall be conducted at least once per year between the dates of May 1 and October 31. New locations shall be added to the radiation environmental monitoring program within 30 days and sampling locations having lower calculated doses or a lower dose commitment may be deleted from this monitoring program after October 31 of the year in which the land use census was conducted.

The 2009 land use census was conducted between September 21 and September 25, 2009. There was one sector (NNW) in which the highest D/Q value for nearest garden increased by greater than 20%. No changes to the sampling procedures were required.

There are no longer any dairy farms in the area of the Monticello Nuclear Plant. A few farms raise goats, but none for milk. Vegetation sampling was implemented in 2008 to replace the milk sampling requirement. The highest D/Q locations for nearest resident and garden animal did not change from the 2008 census.

Details of the land use census are contained in the Land Use Census and Critical Receptor Report, Monticello Nuclear Generating Plant, Chemistry and Radiation Protection Department.

4.0 RESULTS AND DISCUSSION

All of the scheduled collections and analyses were made except those listed in Table 5.3.

All results are summarized in Table 5.4 in a format recommended by the Nuclear Regulatory Commission in Regulatory Guide 4.8. For each type of analysis of each sampled medium, this table lists the mean and range for all indicator locations and for all control locations. The locations with the highest mean and range are also shown.

4.1 Atmospheric Nuclear Detonations and Nuclear Accidents

There were no reported accidents at nuclear facilities and no atmospheric nuclear tests conducted in the year 2000. The last reported test was made by the People's Republic of China on October 16, 1980.

4.2 <u>Summary of Preoperational Data</u>

The following constitutes a summary of preoperational studies conducted at the Monticello Nuclear Generating Plant during the years 1968 to 1970, to determine background levels expected in the environment, and provided, where applicable, as a means for comparison with present day levels. Strict comparisons, however, are difficult to make, since background levels of radiation were much higher in these years due to radioactive fallout from the atmosphere. Gross beta measurements in fallout averaged 20,600 pCi/m² in 1969 and 12,000 pCi/m² in 1970. These levels are reflected throughout the various media tested.

In the air environment, ambient gamma radiation (TLDs) averaged 9.1 mRem/4 weeks during preoperational studies (1970). Gross beta in air particulates in 1969 and 1970 averaged 0.20 pCi/m³. Present day levels have stabilized at around 0.025 pCi/m³. Airborne radioiodine remained below detection levels.

In the terrestrial environment of 1968 to 1970, milk, agricultural crops, and soil were monitored. In milk samples, low levels of Cs-137 and Sr-90 were detected. Cs-137 levels averaged 16.7 pCi/L. Soybean crop measurements in 1969 averaged 35.5 pCi/g for gross beta and 0.3 pCi/g for Cs-137. Gross beta measured in soil averaged 51.7 pCi/g. Present day measurements for cesium-137 are below detection levels in milk and agricultural crops.

The aqueous environment was monitored by testing of river water, bottom sediments, fish, aquatic vegetation, and periphyton. Specific location comparison of drinking, river, and well water concentrations for tritium and gross beta are not possible. However, tritium background levels, measured at seven separate locations from 1968 to 1970, averaged 970 pCi/L. Present day environmental samples measure below detection levels. Values for gross beta, measured from 1968 to 1970, averaged 9.8 pCi/L in upstream and downstream Mississippi River water, 4.4 pCi/L for well waters, and 18.6 pCi/L for lake waters. Gamma emitters were below the lower limit of detection (LLD). In shoreline sediments, gross beta background levels in 1970 averaged 49.8 pCi/g for both upstream and downstream samples. Cs-137 activity averaged 0.10 pCi/g for both upstream and downstream samples. Low levels of Cs-137, occasionally observed today can still be attributed to residual activity from atmospheric fallout. Gross beta levels in fish flesh averaged 5.3 pCi/g in 1968 and 1969. Cs-137, measured in 1969 and 1970, averaged 0.044 pCi/g. Gross beta background levels, in 1970, for aquatic vegetation, algae, and periphyton samples measured 86.7 pCi/g, 76.5 pCi/g, and 28.1 pCi/g respectively.

Results obtained show background levels of radioactivity in the environmental samples collected in the vicinity of the Monticello Nuclear Generating Plant.

Ambient Radiation (TLD's)

Ambient radiation was measured in the general area of the site boundary, at an outer ring 4 - 5 mi. distant from the Plant, at special interest areas and at four control locations. The means were similar for both inner and outer rings (14.9 and 14.4 mRem/91 days, respectively). The mean for special interest locations was 14.1 mRem/91 days and the mean for the control locations was 15.0 mRem/91 days. Dose rates measured at the inner and outer ring locations were similar to those observed from 1994 through 2008 and are tabulated below. No plant effect on ambient gamma radiation is indicated (Figure 5-1).

Year	Inner Ring	Outer Ring		
Dose rate (mRem/91 days)				
1994	14.6	14.0		
1995	14.4	13.6		
1996	14.0	13.5		
1997	13.3	12.8		
1998	15.0	14.4		
1999	15.1	14.3		
2000	15.1	14.5		
2001	14.3	13.7		
2002	15.9	14.8		
2003	15.6	15.0		
2004	16.0	15.4		
2005	15.6	15.2		
2006	16.5	15.6		
2007	16.1	15.1		
2008	15.2	14.6		
2009	14.9	14.4		
		· · · ·		

Ambient gamma radiation as measured by thermoluminescent dosimetry. Average quarterly dose rates, Inner vs. Outer Ring locations

Airborne Particulates

The average annual gross beta concentrations in airborne particulates were almost identical at indicator and control locations (0.029 and 0.030 pCi/m³, respectively) and similar to levels observed from 1994 through 2008. The results are tabulated below.

	·	
<u>Year</u>	Indicators	Control
	Concentration	n (pCi/m ³)
1994	0.023	0.024
1995	0.024	0.025
1996	0.023	0.023
1997	0.023	0.023
1998	0.023	0.023

·	Concentration	<u>(pu/m</u>)
1994	0.023	0.024
1995	0.024	0.025
1996	0.023	0.023
1997	0.023	0.023
1998	0.023	0.023
1999	0.023	0.025
2000	0.027	0.026
2001	0.027	0.026
2002	0.028	0.028
2003	0.027	0.027
2004	0.024	0.024
2005	0.025	0.025
2006	0.024	0.025
2007	0.027	0.028
2008	0.028	0.029
2009	0.029	0.030

Average annual gross beta concentrations in airborne particulates.

Typically, the highest average readings occur during the months of January and December, and the first and fourth quarters, as observed in 1994 through 2009.

Gamma spectroscopic analysis of quarterly composites of air particulate filters yielded similar results for indicator and control locations. Beryllium-7, which is produced continuously in the upper atmosphere by cosmic radiation (Arnold and Al-Salih, 1955) was detected in all samples, with an average activity of 0.082 pCi/m for all locations. All other gamma-emitting isotopes were below their respective LLD limits.

Airborne Iodine

Weekly levels of airborne iodine-131 were below the lower limit of detection (LLD) of 0.03 pCi/m³ in all samples.

River Water and Drinking Water

Tritium activity measured below the LLD of 500 pCi/L in all samples. Gross beta activity in Minneapolis drinking water averaged 2.3 pCi/L and was similar to average levels observed from 1994 through 2008. Gross beta averages are tabulated below.

Gross Beta (pCi/L)	Year	Gross Beta (pCi/L)
2.0	2002	2.9
2.3	2003	3.0
2.1	2004	2.7
2.3	2005	2.8
2.4	2006	2.1
2.2	2007	2.8
2.5	2008	2.1
2.5	2009	2.3
	2.0 2.3 2.1 2.3 2.4 2.2 2.5	2.020022.320032.120042.320052.420062.220072.52008

Average annual concentrations; Gross beta in drinking water.

Comparisons with data reported by the USEPA for Minneapolis drinking water samples collected from 1980 through 2005 indicate that concentrations of these nuclides are remaining fairly constant. Gamma-emitting isotopes were below detection limits in all surface water samples. There was no indication of a plant effect.

Well Water

At the four indicator and control locations, tritium measured below the LLD level of 500 pCi/L in all samples. Gamma isotopic results were below detection limits. The data for 2009 were consistent with previous years results and no plant operational effects were indicated.

Monitoring Wells (on-site)

Measurable tritium above the LLD level of 500 pCi/L was detected in 14 of 92 samples collected from thirteen on-site monitoring wells. The activities ranged from 502 to 21,727 pCi/L. The highest activities were observed at well MW-9A.

Gamma isotopic results were below detection limits.

Stormwater Run-off (on-site)

Stormwater runoff was sampled quarterly in 2009 and analyzed for tritium and gamma emitting isotopes. In the first quarter, 2009, measurable tritium above the LLD level of 500 pCi/L was detected at a level of 985 pCi/L.

Gamma isotopic results were below detection limits.

Pasture Grass

Three new locations for the sampling of grass and vegetation were established in 2008, as substitute for unavailable dairy farms. Pasture grass was collected in July, August and September, 2009. I-131 concentrations measured below 0.027 pCi/g wet weight in all samples. With the exceptions of naturally-occurring beryllium-7 and potassium-40, no other gamma-emitting isotopes were detected.

Crops

Cabbage was collected in September from two locations and analyzed for iodine-131. Levels of I-131 measured below 0.017 pCi/g wet weight in both samples. With the exceptions of naturally-occurring beryllium-7 and potassium-40, no other gamma-emitting isotopes were detected.

No crops within five miles of the plant, were found using irrigation water from the Mississippi River. There was no indication of any plant effect.

Fish

Fish samples were collected in May and October. Flesh was separated from the bones and analyzed by gamma spectroscopy. Naturally-occurring potassium-40 was found to be similar in upstream and downstream samples (3.23 and 2.92 pCi/g wet weight, respectively). All gamma-emitting isotopes were below their respective LLD levels. There was no indication of a plant effect.

Invertebrates

Samples were collected in June and September of 2009, and analyzed by gamma spectroscopy. All gamma-emitting isotopes were below detection limits. There was no indication of a plant effect.

Shoreline Sediments

Upstream, downstream and downstream recreational area shoreline sediment collections were made in June and September of 2009 and analyzed for gamma-emitting isotopes. Low levels of cesium-137 were detected in one downstream sample, measuring 0.037 pCi/g dry weight. Similar levels of activity and distribution have been observed since 1978, and are indicative of the influence of fallout deposition. The only other gamma-emitting isotopes detected were naturally-occurring beryllium-7 and potassium-40. There was no indication of a plant effect.

5.0 FIGURES AND TABLES

		Location	Collection Type and	Analysis Type and
Medium	No.	Codes (and Type) ^a	Frequency ^b	Frequency ^c
Ambient radiation (TLDs)	40	M-01A - M-14A, M-01B - M-16B M-01S - M-06S, M-01C - M-04C	C/Q	Ambient gamma
Airborne Particulates	5	M-1(C), M-2, M-3, M-4, M-5	C/W	GB, GS (QC of each location)
Airborne lodine	5	M-1(C), M-2, M-3, M-4, M-5	C/W	I-131
Pasture grass, Vegetation ^d	, 3	M-41, M-42, M-43(C)	3x/year	GS
Surface water	2	M-8(C), M-9	G/W	GS(MC), H-3(QC)
Drinking water	Ì	M-14	G/W	GB(MC), I-131(MC) GS (MC), H-3 (QC)
Nell water On-site monitoring wells	4 16	M-10(C), M-11, M-12, M-27 M-33 to M-40, M-44 to M-51	G/Q	H-3, GS
Edible cultivated crops -				
Com ^e	1	M-19	G/A	GS
eafy Vegetable	2	M-27, Available Producer (C)	G/A	I-131
Potatoes ^e	1	M-21	G/A	GS
ish one species, edible portion)	2	M-8(C), M-9	G/SA	GS
Periphyton or invertebrates	2	M-8(C), M-9	G/SA	GS
Shoreline sediment	3	M-8(C), M-9, M-15	G/SA	GS

Table 5.1. Sample collection and analysis program, Monticello Nuclear Generating Plant.

^a Location codes are defined in Table 5.2. Control stations are indicated by (C). All other stations are indicators.

^b Collection type is coded as follows: C/ = continuous, G/ = grab. Collection frequency is coded as follows:

W= weekly, M = monthly, Q = quarterly, SA = semiannually, A = annually.

^c Analysis type is coded as follows: GB = gross beta, GS = gamma spectroscopy, H-3 = tritium, I-131 = iodine 131. Analysis frequency is coded as follows: MC = monthly composite, QC = quarterly composite.

^d Pasture grass and vegetation collections added to supplement dairy sampling.

^e Collected only if the plant discharges radioactive effluent into the river, then only from river irrigated fields.

Code Type ^a	Collection Site	Sample Type ^b	Distance and Direction from Reactor
M-1 C	Air Station M-1	AP, AI	11.0 mi @ 307°/NW
M-2	Air Station M-2	AP, AI	0.8 mi @ 140°/SE
M-2	Air Station M-2	AP, AI	0.6 mi @ 104°/ESE
M-4	Air Station M-4	AP, Al	0.8 mi @ 147°/SSE
M-5	Air Station M-5	AP, Al	2.6 mi @ 134°/SE
M-8 C	Upstream of Plant Intake	SW, SS, BO, F	< 1000' upstream
M-9	Downstream of Plant Discharge	SW, SS, BO, F	< 1000 downstream
M-10 C	Campbell Farm	WW	10.6 mi @ 357°/N
M-11	City of Monticello	ww	-
M-12	Plant Well #1	WW	3.3 mi @ 127°/SE 0.26 mi @ 252°/SW
M-12 M-14	City of Minneapolis	DW	37.0 mi @ 132°/SE
M-14 M-15	Montissippi Park	SS	
M-19	River Irrigated Corn Field ^c	55	1.27 mi @ 114°/ESE
M-13 M-21	River Irrigated Potato Field ^c		
M-27	Wise residence (Highest D/Q Garden)	VE, WW	0.64 mi @ 207°/SSW
	a. Available Producer	VE	> 10.0 mi
M-33	Monitoring Well #1	ww	593' @ 299°/WNW
M-34	Monitoring Well #2	WW	749' @ 301°/WNW
M-35	Monitoring Well #3	ww	770' @ 304°/NW
M-36	Monitoring Well #4	ww	0.1 mi @ 25°/NNE
M-37	Monitoring Well #5	ww	0.1 mi @ 253°/WSW
M-38	Monitoring Well #6	ww	229' @ 228°/SW
M-39	Monitoring Well #7	ww	0.2 mi @ 66°/ENE
M-40	Monitoring Well #8	ww	0.3 mi @ 150°/SSE
M-41	Training Center	VE	0.8 mi @ 151°/SSE
M-42	Biology Station Road	VE	0.6 mi @ 134°/SE
M-43 C	Imholte Farm	VE	12.3 mi @ 313°/NW
M-44 .	Monitoring Well #9	ŴŴ	
M-45	Monitoring Well #10	WW	0.1 mi @ 310°/NW
M-46	Monitoring Well #11		0.1 mi @ 292°/WNW
M-47	-	WW	0.1 mi @ 283°/WNW
	Monitoring Well #12A	WW	0.1 mi @ 330°/NW
M-48 M-49	Monitoring Well #12B	WW	0.1 mi @ 326°/NW
M-49 M-50	Monitoring Well #13A	WW	0.12 mi @ 316°/NW
M-50 M-51	Monitoring Well #13B Monitoring Well #9B	WW WW	0.12 mi @ 316°/NW `0.1 mi @ 310°/NW
	Storm water Runoff		0.1 mi @ 27°/NE

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

Code Type ^a	Collection Site	Sample Type [⊳]	Distance and Direction from Reactor
General Area of the Site E	Boundary	·····	
M-01A	Sherburne Ave. So.	TLD	0.75 mi @ 353°/N
M-02A	Sherburne Ave. So.	TLD	0.79 mi @ 23°/NNE
M-03A	Sherburne Ave. So.	TLD	1.29 mi @ 55°/NE
M-04A	Biology Station Road	TLD	0.5 mi @ 86°/E
M-05A	Biology Station Road	TLD	0.48 mi @ 118°/ESE
M-06A	Biology Station Road	TLD .	0.54 mi @ 135°/SE
M-07A	County Road 75	TLD	0.5 mi @ 155°/SSE
M-08A	County Road 75	TLD	0.48 mi @ 172°/S
Approximately 4 to 5 mile	s Distant from the Plant		······································
M-09A	County Road 75	TLD	0.38 mi @ 209°/SSW
M-10A	County Road 75	TLD	0.38 mi @ 226°/SW
M-11A	County Road 75	TLD	0.4 mi @ 239°/WSW
M-12A	County Road 75	TLD	0.5 mi @ 262°/W
M-13A	North Boundary Road	TLD	0.89 mi @ 324°/NW
M-14A	North Boundary Road	TLD	0.78 mi @ 334°/NNW
M-01B	Sherco #1 Air Station	TLD	4.66 mi @ 02°/N
M-02B	County Road 11	TLD	4.4 mi @ 18°/NNE
M-03B	County Road 73 & 81	TLD	4.3 mi @ 57°/NE
M-04B	County Road 73 (196th St.)	TLD	4.2 mi @ 67°/ENE
	City of Big Lake	TLD	4.3 mi @ 89°/E
M-05B			4.3 mi @ 117°/ESE
	County Road 14 and 196th St.	TLD	
M-06B	County Road 14 and 196th St. Monte Industrial Drive	TLD TLD	
M-06B M-07B	Monte Industrial Drive	TLD	4.3 mi @ 136°/SE
M-06B M-07B M-08B	Monte Industrial Drive Residence, Hwy 25 & Davidson Ave.	TLD TLD	4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE
M-06B M-07B M-08B M-09B	Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm	TLD TLD TLD	4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S
M-06B M-07B M-08B M-09B M-10B	Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave.	TLD TLD TLD TLD	4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW
M-06B M-07B M-08B M-09B M-10B M-11B	Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave.	TLD TLD TLD TLD TLD	4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW
M-06B M-07B M-08B M-09B M-10B M-11B M-12B	Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave. Lake Maria State Park	TLD TLD TLD TLD TLD TLD	4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW 4.2 mi @ 254°/WSW
M-06B M-07B M-08B M-09B M-10B M-11B M-11B M-12B M-13B	Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave. Lake Maria State Park Bridgewater Station	TLD TLD TLD TLD TLD TLD TLD	4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW 4.2 mi @ 254°/WSW 4.1 mi @ 270°/W
M-05B M-06B M-07B M-08B M-09B M-10B M-11B M-11B M-12B M-13B M-14B M-15B	Monte Industrial Drive Residence, Hwy 25 & Davidson Ave. Weinand Farm Reisewitz Farm, Acacia Ave. Vanlith Farm, 97th Ave. Lake Maria State Park	TLD TLD TLD TLD TLD TLD	4.3 mi @ 136°/SE 4.6 mi @ 162°/SSE 4.7 mi @ 178°/S 4.2 mi @ 204°/SSW 4.0 mi @ 228°/SW 4.2 mi @ 254°/WSW 4.1 mi @ 270°/W 4.3 mi @ 289°/WNW 4.3 mi @ 309°/NW

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

Code Type ^a	Collection Site	Sample T	Distance and Type ^b Direction from Reacto
Special Interest Locations			·
M-01S	Osowski Fun Market	TLD	0.66 mi @ 242°/WSW
M-02S	Krone Residence	TLD	0.5 mi @ 224°/SW
M-03S	Big Oaks Park	TLD	1.53 mi @ 102°/ESI
M-04S	Pinewood School	TLD	2.3 mi @ 131°/SI
M-05S	Rivercrest Christian Academy	TLD	3.0 mi @ 118°/ESI
M-06S	Monte Public Works	TLD	2.6 mi @ 134°/Si
M-01C C	Kirchenbauer Farm	TLD	11.5 mi @ 323°/NV
M-02C C	County Roads 4 and 15	TLD	11.2 mi @ 47°/N
M-03C C	County Rd 19 and Jason Ave.	TLD	11.6 mi @ 130°/Si
M-04C C	Maple Lake Water Tower	TLD	10.3 mi @ 226°/ SV
Protected Area			
ISFSI-1	ISFSI-1 (neutron) and I-01 (gamma)	TLD	NE corner of ISFS
ISFSI-2	ISFSI-2 (neutron) and I-02 (gamma)	TLD	North side of ISFSI, cent
ISFSI-3	ISFSI-3 (neutron) and I-03 (gamma)	TLD	NW corner of ISF
ISFSI-4	ISFSI-4 (neutron) and I-04 (gamma)	TLD	West side of ISFSI, midd
ISFSI-5	ISFSI-5 (neutron) and I-05 (gamma)	TLD	West side of ISFSI, at center of arra
ISFSI-6	ISFSI-6 (neutron) and I-06 (gamma)	TLD	SW corner of ISF
ISFSI-7	ISFSI-7 (neutron) and I-07 (gamma)	TLD	South side of ISFSI, cent
ISFSI-8	ISFSI-8 (neutron) and I-08 (gamma)	TLD	SE corner of ISFS
ISFSI-9	ISFSI-9 (neutron) and I-09 (gamma)	TLD	East side of ISFSI, at center of arra
ISFSI-10	ISFSI-10 (neutron) and I-10 (gamma)	TLD	East side of ISFSI, midd
ISFSI-11	ISFSI-11 (neutron) and I-11 (gamma)	TLD	OCA fence south, on exit roa
ISFSI-12	ISFSI-12 (neutron) and I-12 (gamma)	TLD	OCA fence middle, on exit roa
ISFSI-13	ISFSI-13 (neutron) and I-13 (gamma)	TLD	OCA fence north, on exit roa
ISFSI-14	ISFSI-14 (neutron)	TLD	Posted with TLD M12
ISFSI-15	ISFSI-15 (neutron)	TLD	Posted with TLD M10
ISFSI-16	ISFSI-16 (neutron)	TLD	Posted with TLD M02
Neutron Control A C		TLD	Posted with TLD M03
Neutron Control B C		TLD	Posted with TLD M04
Neutron Control C C		TLD	Posted with TLD M02
		TLD	Posted with TLD M01

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

Sample Codes:

1

- AP Airborne particulatesAl Airborne lodineBS Bottom (river) sedimentsBO Bottom organismsDW Drinking Water
- F Fish SW River Water SS Shoreline Se

SS Shoreline Sediments VE Vegetation / vegetables

WW Well Water

^c Collected only if the plant discharges radioactive effluent into the river, then only from river irrigated fields.

Table 5.3

MISSED COLLECTIONS AND ANALYSES

All required	l samples were col	lected and a	nalyzed as sche	duled with the following exceptions	5.
Sample Type	Analysis	Location	Collection Date or Period	Reason for not conducting REMP as required	Plans for Preventing Recurrence
SW	Gamma	M-08	Jan, 2009	Missed due to unsafe ice.	None required.
SW	Gamma	M-08	Feb, 2009	Missed due to unsafe ice.	None required.
SW	Gamma	M-08	3/4/2009 3/11/2009	Missed due to unsafe ice.	None required.
SW	Gamma	M-08	12/9/2009 12/16/2009 12/23/2009 12/30/2009	Missed due to unsafe ice.	None required.
TLD	Ambient Gamma	M-01B	2nd. Qtr. 2009	Missing in the field	New TLD installed.
ww	Gamma	M-12	3rd. Qtr. 2009	Well Out of Service	Initiated work request, sampled #12 well.
AP/AI	Gross Beta / I-131	M-01	12/9/2009	No sample due to faulty timer.	Replaced timer.

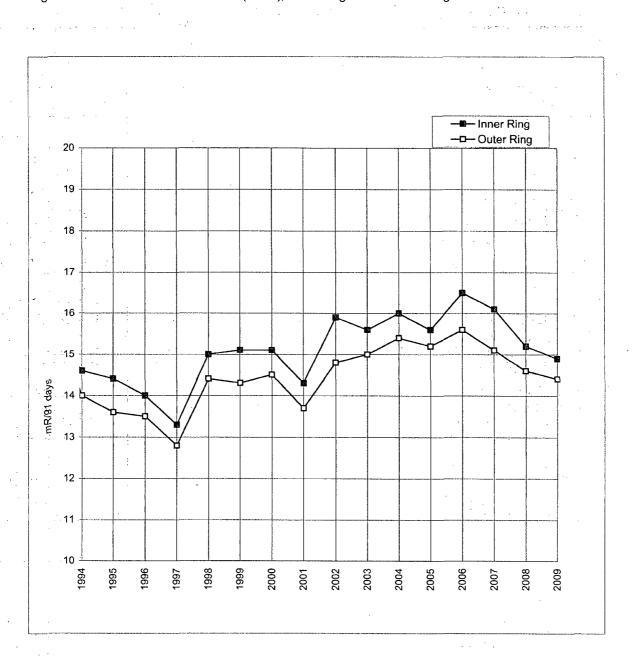
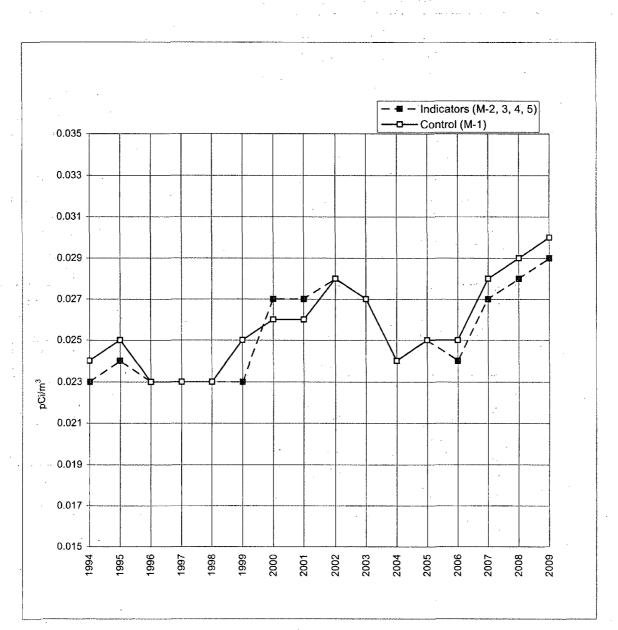
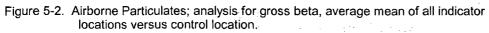




Figure 5-1. Offsite Ambient Radiation (TLDs); Inner Ring versus Outer Ring locations.

. . .

Name of Facility Location of Facility Monticello Nuclear Generating Plant Wright, Minnesota

ter y

(County, State)

Docket No. Reporting Period 50-263

January-December, 2009

	Sample	Type and		Indicator Locations	Location with F Annual Me	an	Control Locations	Number Non-
	Type (Units)	Number of Analyses ^a	LLD ^b	Mean (F) ^c Range ^c	Location ^d	Mean (F) ^c Range ^c	Mean (F) ^c Range ^c	Routine Results ^e
	TLD (Inner Ring, General Area at Site Boundary) mRem/91 days)	Gamma 56	3.0	14.9 (56/56) (11.2-17.4)	M-11A, County Rd 75, 0.4 mi @ 250°/WSW	15.8 (4 /4) (14.4-17.3)	(See Control below.)	0
and states (States of the states)	TLD (Outer Ring, 4-5 mi. distant) mRem/91 days)	Gamma 63	3.0	14.4 (63/63) (11.3-17.3)	M-05B, Big Lake, 4.4 mi @ 87°/ESE	15.6 (4 /4) (13.8-17.3)	(See Control below.)	0
e Standard Alfred State A	TLD (Special Interest Areas) mRem/91 days)	Gamma 24	3.0	14.1 (24/24) (9.8-17.0)	M-06S, Mont. Pub. Wks. 2.7 mi @ 136°/SE	16.3 (4 /4) (15.5-17.0)	(See Control below.)	0
e <u>19</u> 9 The elle	TLD (Control) mRem/91 days)	Gamma 16	3.0	None	M-03C, Rte. 19 & Jason, 11.6 mi. @ 130°/SE	15.0 (16/16) (12.8-16.2)	15.0 (16/16) (12.8-16.2)	0
	Airborne Particulates (pCi/m ³)	GB 259	0.005	0.029 (208/208) (0.008-0.076)	M-2, Air Station 0.8 mi @ 140°/SE	0.031 (52 /52) (0.009-0.075)	0.030 (51/51) (0.008-0.101)	0
		GS 20 Be-7	0.015	0.081 (16/16) (0.053-0.101)	M-1 (C), Air Station 11.0 mi @ 307°/NW	0.085 (4/4) (0.069-0.097)	0.085 (4/4) (0.069-0.097)	0
		Mn-54 Co-58 Co-60	0.0007 0.0008 0.0010	< LLD < LLD < LLD	-	-	< LLD < LLD < LLD	0 0 0
		Zn-65 Zr-Nb-95 Ru-103 Ru-106	0.0010 0.0010 0.0009 0.0074	< LLD < LLD < LLD < LLD	-	-	< LLD < LLD < LLD < LLD	0 0 0 0
		Cs-134 Cs-137 Ba-La-140	0.0006 0.0007 0.0024	< LLD < LLD < LLD	-	-	< LLD < LLD < LLD	0 0 0
· · · · · · · · · · · · · · · · · · ·		Ce-141 Ce-144	0.0014 0.0049	< LLD < LLD	-	-	< LLD < LLD	0 0
	Airborne lodine (pCi/m ³)	l-131 259	0.03	< LLD	-	-	< LLD	0

Name	of Facility		Monticel	o Nuclear Genera	ting Plant	Docket No.	50-263	
Locatio	on of Facilit	у .	Wright, N	Minnesota		Reporting Period	January-Decemb	er, 2009
				(Count	y, State)			
				Indicator ·	Location with I		Control	Number
Sample	Type a	nd		Locations	Annual Me		Locations	Non-
Туре	Numbe		LLD⁵	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyse	esª		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
River Water								
(pCi/L)	H-3	8	500	< LLD	•	_		0
(P =)				÷	· ·			
	GS	22					· ·	
					·			
	Mn-54		10	< LLD	-	-	< LLD	0
	Fe-59		30	< LLD	· •	-	< LLD	0
	Co-58		10	< LLD		-	< LLD	0
	Co-60		10	< LLD	-		< LLD	0
	Zn-65		30	< LLD	teres a 🗍	···	< LLD	0
	Zr-Nb		15	< LLD	1. T	-	< LLD	0
	Cs-13		10	< LLD		-	< LLD	0
	Cs-13		10	< LLD		- ·	< LLD	0
	Ba-La		15	< LLD		-	< LLD	0
	Ce-14	4	34	< LLD		-	< LLD	0
		,						
Drinking Water	GB	12	1.0	2.3 (12/12)	M-14, Minneapolis	2.3 (12/12)	None	0
(pCi/L)				(1.3-3.7)	37.0 mi. @ 132° /SE	(1.3-3.7)		
() () ()	1-131	12	1.0	< LLD		· · · ·	None	0
								Ů
	н-з	4	500	< LLD	_		None	0
		7	000				i tone	Ŭ
	GS	12				1		
	Mn-54		10	< LLD	_		None	0
	Fe-59		30	< LLD			None	0
	Co-58		10	< LLD		-	None	0
	Co-60		10	< LLD	•		None	0
					-	-	None	0
	Zn-65		30	< LLD < LLD	-	-	None	0
	Zr-Nb		15	< LLD < LLD		-	1	
	Cs-13		10		-		None	0
	Cs-13		10	< LLD	-	-	None	0
	Ba-La		15	< LLD < LLD		-	None	0
	Ce-14		36				None	U U

34-

Name	of Facility	Montice	lo Nuclear Genera	ting Plant	Docket No.	50-263	
Locatio	on of Facility	Wright, N	Minnesota		Reporting Period	January-December, 2009	
· · · ·	· .		· · · · · · · · · · · · · · · · · · ·	y, State)		· · · · · · · · · · · · · · · · · · ·	
Sample Type			Indicator Locations Mean (F) ^c	Location with I Annual Me		Control Locations Mean (F) ^c	Number Non- Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
					· · ·	<u> </u>	
		500		· .	··· · · · · · · · · · · · · · · · · ·		
Well Water	H-3 16	500	< LLD			< LLD	0
(pCi/L)	GS 16						
	Mn-54	10	< LLD	-		< LLD	0
	Fe-59	30	< LLD	-	-	< LLD	0
	Co-58	10	< LLD	-	, –	< LLD	0
· •	Co-60	10	< LLD	<u>_</u>	-	í < LLD	0
	Zn-65	30	< LLD		-	< LLD	0
	Zr-Nb-95	15	< LLD	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-134	10	< LLD	-	· -	< LLD	0
	Cs-137	10	< LLD		-	< LLD	0
· ·	Ba-La-140	15	< LLD	-	-	< LLD	0
· .	Ce-144	47	< LLD	· · · · -	-	< LLD	0
Groundwater	H-3 92	500	5721 (14/92)	MW-9A, Onsite,	12079 (6 /8)	none	5
Monitoring Wells			(502-21727)	0.1 mi @ 310°/NW	(2145-21727)	,	
, (pCi/L)	GS 92						
	Mn-54	10	< LLD	-	-	none	0
	Fe-59	30	< LLD	-	-	none	0
	Co-58	10	< LLD	•	•	none	· 0
	Co-60	10	< LLD			none	0
· ·	Zn-65	30	< LLD	· •	-	none	0
	* Zr-Nb-95	15	< LLD	-	-	none	0
	Cs-134	10	< LĻD	-	-	none	0
	Cs-137	10	< LLD	-	-	none	0
	Ba-La-140	15	< LLD	- '	-	none	0
	Ce-144	49	< LLD	~	1 -	none	0
Stormwater Runoff	H-3 4	500	985 (1/4)	On-site, 0.1 mi @ 27°/NE	985 (1/4)	none	0
(pCi/L)	GS 4				ļ	ļ	
(poinc)	Mn-54	10	< LLD	· ·		none	0
	Fe-59	30	< LLD			1 .	
	Co-58	10	< LLD	-		none	0
· · ·	Co-60	10	< LLD	_		none	0
	Zn-65	30	< LLD	-		none	0
	Zr-Nb-95	15	< LLD	-			0
	I-131	30	< LLD	-	.	none	1
				·		none	0
	Cs-134	10	<pre>LLD</pre>	•	-	none	0
1	Cs-137	10	< LLD	-	-	none	. 0
[]						
	Ba-La-140 Ce-144	15 43	< LLD < LLD	-	-	none	0

Name	of Facility	Monticel	lo Nuclear Genera	ating Plant	Docket No.	50-263	
Locatio	on of Facility	Wright, M	Vinnesota		Reporting Period	January-December, 20	
		(Çc	ounty, State)				· ·
Sample Type and			Indicator Locations	Location with Annual Me	-	Control Locations	Number Non-
Туре	Number of	LLD⁵	Mean (F) ^{c.}	Annual We	Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
(01113)	7 (10) 000		range	Location	Range	Trange	Results
Crops - Cabbage (pCi/gwet)	GS 2		• • • •				
	Mn-54	0.000	< LLD	-	-	< LLD	0
	Fe-59	0.000	< LLD	-	-	< LLD	0
	Co-58	0.000	< LLD	-	-	< LLD	0
	Co-60	0.000	< LLD	-	-	< LLD	0
	Zn-65	0.000	< LLD	-	-	< LLD	0
	Nb-95	0.000	< LLD	· _	-	< LLD	0
	I-131	0.000	< LLD	-	-	< LLD	0
	Cs-134	0.000	< LLD	-	-	< LLD	0
	Cs-137	0.000	. < LLD	· _	-	< LLD	0
Vegetation	GS 9						-
(Pasture Grass,		· ·	· · ·				
Weeds, Leaves)	Mn-54	0.016	< LLD	. · · ·	-	< LLD	0
	Fe-59	0.040	< LLD	• .	-	. < LLD	0
	Co-58	0.013	< LLD	-	-	< LLD	0
(pCi/gwet)	Co-60	0.013	< LLD	-	-	< LLD	0
	Zn-65	0.036	< LLD	· -	-	< LLD	0
	Nb-95	0.018	< LLD '	-	-	< LLD	0
	I-131	0.027	< LLD	-	-	< LLD	0
	Cs-134	0.014	< LLD	-	-	< LLD	0
	Cs-137	0.017	< LLD	-	-	< LLD	0
						:	
Fish	GS 4		· · · · · ·				
(pCi/g wet)	K-40	0.10	3.23 (2/2) (3.02-3.43)	M-09, Downstream < 1000' of discharge	3.23 (2/2) (3.02-3.43)	2.92 (2/2) [°] (2.73-3.11)	0
	Mn-54	0.025	< LLD	· ·		< LLD	0
	Fe-59	0.047	< LLD	-	8 <u>-</u> 1	< LLD	0
	Co-58	0.017	< LLD	-	- 1	< LLD	0
	Co-60	0.017	< LLD	·	-	< LLD	Ő
	Zn-65	0.026	< LLD	-	-	< LLD	o
	Zr-Nb-95	0.027	< LLD	- ·	-	< LLD	
	Cs-134	0.018	< LLD		-	< LLD	Ő
	Cs-137	0.020	< LLD		-	< LLD	Ö
	Ba-La-140	0.038	< LLD	-	-	< LLD	. 0
	Ce-144	0.13	< LLD	-		< LLD	0
							Ĭ

			lo Nuclear Genera	ting Plant	Docket No.	50-263	
Locati	on of Facility	Wright, N	Minnesota	<u> </u>	Reporting Period	January-December, 200	
			(Count	y, State)			
			Indicator	Location with	Highest	Control	Numbe
Sample	Type and		Locations	· Annual M	*	Locations	Non-
Туре	Number of	LLD⁵	Mean (F) ^c	· · · ·	Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range	Range ^c	Results
(01113)					i kungo		1 toound
Invertebrates	GS 2						
(pCi/g wet)	Be-7	0.64	< LLD		_	< LLD	0
. •	K-40	1.89	< LLD	-	-	< LLD	0
	Mn-54	0.070	< LLD	-	-	< LLD	0
	Fe-59	0.090	< LLD	· •	-	< LLD	0
	Co-58	0.070	< LLD	-	-	< LLD	0
	Co-60	0.070	< LLD	-	-	< LLD	o
	Zn-65	0.14	< LLD	-	-	< LLD	o
	Zr-Nb-95	0.090	< LLD	-		< LLD	0
•	Ru-103	0.070	< LLD	_	_	< LLD	o o
	Ru-106	0.45	< LLD	•		< LLD	0
	Cs-134	0.060	<lld< td=""><td>-</td><td></td><td>< LLD</td><td>0</td></lld<>	-		< LLD	0
	Cs-137	0.070	< LLD	-		< LLD	0
	Ba-La-140	0.070	< LLD	-			1
	Ce-144	0.17		-	-	< LLD	0
	Ce-144	0.37		-	-	< LLD	0
Shoreline	GS 6						
Sediments	Be-7	0.23	0.37 (1/4)	M-15, Montissippi Park	0.37 (1/2)	< LLD	0
(pCi/g dry)				1.27 mi @ 114°/ESE			
	K 40	0.40	0.57 (110)	_	0.74 (0/0)		
	K-40	0.10	9.57 (4/4)	M-15, Montissippi Park	9.74 (2/2)	9.40 (2/2)	0
-			(9.26-10.07)	1.27 mi @ 114°/ESE	(9.41-10.07)	(9.21-9.58)	
	Mn-54	0.028	< LLD	-	-	< LLD	0
	Fe-59	0.049	< LLD	-		< LLD	0
	Co-58	0.021	< LLD	-	-	< LLD	0
	Co-60	0.021	< LLD	-		< LLD	0
	Zn-65	0.057	< LLD	-		< LLD	0
	Nb-95	0.028	< LLD	• ·		< LLD	0
	Zr-95	0.048	< LLD			< LLD	0
	Ru-103	0.040	< LLD			< LLD	0
	Ru-105	0.024	< LLD	_		< LLD	0
	Cs-134	0.024	< LLD	-		< LLD	0
	03-134	0.024			-		
	Cs-137	0.032	0.039 (1/4)	M-15, Montissippi Park	0.039 (1/2)	< LLD	0
				1.27 mi @ 114°/ESE		-	
	Ba-La-140	0.018	< LLD	_		< LLD	0
		0.15		_		< LLD	0
	Ce-144	1 015	< LLD	-	-	1 < 110	1 11

^a GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 4.66 sigma counting error for background sample.

^c Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by name, and/or station code (Table 2) and (2) by distance (miles) and direction relative to reactor site.

^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the

result is considered non-routine if it exceeds ten time the typical preoperational value for the medium or location.

6.0 REFERENCES CITED

Arnold, J. R. and H. A. Al-Salih. 1955. Beryllium-7 Produced by Cosmic Rays. Science 121: 451-453.

Eisenbud, M. 1963. Environmental Radioactivity, McGraw-Hill, New York, New York, pp. 213, 275, 276.

Environmental, Inc., Midwest Laboratory.

_ 2001a through 2010a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January-December, 2000 through 2009.

2001b through 2010b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 2000 through 2009.

1984a to 2000a. (formerly Teledyne Brown Engineering Environmental Services, Midwest Laboratory) Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

1984b to 2000b. (formerly Teledyne Brown Engineering Environmental Services, Midwest Laboratory) Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

_ 1979a to 1983a. (formerly Hazleton Environmental Sciences Corporation) Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1978 through 1982.

__ 1979b to 1983b. (formerly Hazleton Environmental Sciences Corporation) Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January -December, 1978 through 1982.

_____2009. Quality Assurance Program Manual, Rev. 2, 10 November 2009.

2009. Quality Control Procedures Manual, Rev. 2, 08 July 2009.

2009.

Quality Control Program, Rev. 2, 12 November 2009.

Gold, S., H.W. Barkhau, B. Shlein, and B. Kahn, 1964. Measurement of Naturally Occurring Radionuclides in Air, in the Natural Environment, University of Chicago Press, Illinois, 369-382.

National Center for Radiological Health, 1968. Radiological Health and Data Reports, Vol. 9, Number 12, 730-746.

Northern States Power Company.

____ 1969 through 1971. Monticello Nuclear Generating Plant, Environmental Radiation Monitoring Program, Annual Report, June 18, 1968 to December 31, 1968, 1969, 1970. Minneapolis, Minnesota.

_ 1978 through 2008. Monticello Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1, to December 31, 1977 through 2007.

6.0 <u>REFERENCES CITED (continued)</u>

U.S. Dep't of Energy 1997 HASL-300, Edition 28, Procedures Manual, Environmental Measurements Laboratory, New York, NY.

U.S. Environmental Protection Agency .

_____ 1980. Prescribed Procedures for Measurement of Radioactivity in Drinking Water, Cincinnati, Ohio (EPA-600/4-80-032).

_____ 1984. Eastern Environmental Radiation Facility, Radiochemistry Procedures Manual, Montgomery, Alabama (EPA-520/5-84-006).

___ 2007. RadNet, formerly Environmental Radiation Ambient Monitoring System, Gross Beta in Air, Gross Beta in Drinking Water (MN) 1981– 2005.

Wilson, D. W., G. M. Ward and J. E. Johnson. 1969. In Environmental Contamination by Radioactive Materials, International Atomic Energy Agency. p.125.

Xcel Energy Corporation.

2009 to 2010. Monticello Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2008 and 2009. Minneapolis, Minnesota.

2009 to 2010. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2008 and 2009. Minneapolis, Minnesota. Environmental, Inc. Midwest Laboratory an Allegheny Technologies Co.

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE:

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2009 through December, 2009

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

Table A-2 lists results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 lists REMP specific analytical results from the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Complete analytical data for duplicate analyses is available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Results in Table A-7 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML).

Attachment A lists the laboratory precision at the 1 sigma level for various analyses. The acceptance criteria in Table A-3 is set at ± 2 sigma.

Out-of-limit results are explained directly below the result.

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES[®]

Analysis	Level	One standard deviation for single determination
Gamma Emitters	5 to 100 pCi/liter or kg	5.0 pCi/liter
	> 100 pCi/liter or kg	5% of known value
Strontium-89 ^b	5 to 50 pCi/liter or kg	5.0 pCi/liter
	> 50 pCi/liter or kg	10% of known value
Strontium-90 ^b	2 to 30 pCi/liter or kg	5.0 pCi/liter
	> 30 pCi/liter or kg	10% of known value
Potassium-40	≥ 0.1 g/liter or kg	5% of known value
Gross alpha	≤ 20 pCi/liter	5.0 pCi/liter
· · ·	> 20 pCi/liter	25% of known value
Gross beta	≤ 100 pCi/liter	5.0 pCi/liter
•	> 100 pCi/liter	5% of known value
Tritium	≤ 4,000 pCi/liter	± 1σ = 169.85 x (known) ^{0.0933}
	> 4,000 pCi/liter	10% of known value
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value
Plutonium	≥ 0.1 pCi/liter, gram, or sample	10% of known value
lodine-131,	≤ 55 pCi/liter	6 pCi/liter
Iodine-129 ^b	> 55 pCi/liter	10% of known value
Uranium-238,	≤ 35 pCi/liter	6 pCi/liter
Nickel-63 ^b Technetium-99 ^b	> 35 pCi/liter	15% of known value
Iron-55 ^b	50 to 100 pCi/liter	10 pCi/liter
	> 100 pCi/liter	10% of known value
Other Analyses ^b	·	20% of known value
· · ·		

^a From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

		Concentration (pCi/L)				
Lab Code	Date	Analysis	Laboratory	ERA	Control	
			Result ^b	Result ^c	Limits	Acceptance
· · ·			· · · · · ·			19 ·
STW-1181	04/06/09	Sr-89	41.0 ± 5.8	48.3	37.8 - 55.7	Pass
STW-1181	04/06/09	Sr-90	32.4 ± 2.4	31.4	22.9 - 36.4	Pass
STW-1182	04/06/09	Ba-133	44.6 ± 3.1	52.7	43.4 - 58.3	Pass
STW-1182	04/06/09	Co-60	81.0 ± 3.1	88.9	80.0 - 100.0	Pass
STW-1182	04/06/09	Cs-134	65.6 ± 5.2	72.9	59.5 - 80.2	Pass
STW-1182 °	04/06/09	Cs-137	147.7 ± 5.3	168.0	151.0 - 187.0	Fail
STW-1182	04/06/09	Zn-65	79.8 ± 7.5	84.4	76.0 - 101.0	Pass
STW-1183	04/06/09	Gr. Alpha	47.6 ± 2.1	54.2	28.3 - 67.7	Pass
STW-1183	04/06/09	Gr. Beta	38.5 ± 1.3	43.5	29.1 - 50.8	Pass
STW-1184	04/06/09	I-131	24.4 ± 2.5	26.1	21.7 - 30.8	Pass
STW-1185	04/06/09	Ra-226	14.0 ± 0.7	15.1	11.2 - 17.3	Pass
STW-1185	04/06/09	Ra-228	14.3 ± 2.1	13.6	9.0 - 16.6	Pass
STW-1185	04/06/09	Uranium	25.0 ± 0.2	25.7	20.6 - 28.8	Pass
STW-1186 *	04/06/09	H-3	22819.0 ± 453.0	20300.0	17800.0 - 22300.0	Fail
					·	• .
						· .
STW-1193	10/05/09	Sr-89	53.0 ± 6.0	62.2	50.2 - 70.1	Pass
STW-1193	10/05/09	Sr-90	31.1 ± 2.2	30.7	22.4 - 35.6	Pass
STW-1194	10/05/09	Ba-133	82.5 ± 3.5	92.9	78.3 - 102.0	Pass
STW-1194	10/05/09	Co-60	116.8 ± 3.3	117.0	105.0 - 131.0	Pass
STW-1194	10/05/09	Cs-134	78.8 ± 5.7	78.8	65.0 - 87.3	Pass
STW-1194	10/05/09	Cs-137	54.2 ± 3.7	54.6	49.1 - 62.9	Pass
STW-1194	10/05/09	Zn-65	102.5 ± 6.2	99.5	89.6 - 119.0	Pass
STW-1195	10/05/09	Gr. Alpha	20.3 ± 2.0	23.2	11.6 - 31.1	Pass
STW-1195	10/05/09	Gr. Beta	23.7 ± 1.4	26.0	16.2 - 33.9	Pass
STW-1196	10/05/09	I-131	22.4 ± 1.4	22.2	18.4 - 26.5	Pass
STW-1197	10/05/09	Ra-226	15.0 ± 0.7	13.9	10.4 - 16.0	Pass
STW-1197	10/05/09	Ra-228	17.4 ± 2.0	14.9	10.0 - 18.0	Pass
STW-1197	10/05/09	Uranium	32.5 ± 0.4	33.8	27.3 - 37.8	Pass
STW-1198	10/05/09	H-3	17228.0 ± 694.0	16400.0	14300.0 - 18000.0	Pass

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)⁸.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^cResults are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d All gamma -emitters showed a low bias. A large plastic burr found on the base of the Marinelli kept the beaker from sitting directly on the detector. Result of recount in a different beaker, Cs-137, 155.33 ± 14.55 pCi/L.

^e Samples were recounted and also reanalyzed. A recount of the original vials averaged 23,009 pCi/L. Reanalysis results were acceptable, 19,170 pCi/L.

Lab Code	ode Date Kno			mR Lab Result	Control	Control		
		Description	Value	± 2 sigma	Limits	Acceptance		
Environment	al, Inc.				, · ·	·		
2009-1	7/6/2009	40 cm.	41.82	45.43 ± 3.66	29.27 - 54.37	Pass		
2009-1	7/6/2009	50 cm.	26.76	32.17 ± 1.52	18.73 - 34.79	Pass		
2009-1	7/6/2009	60 cm.	18.58	20.23 ± 1.60	13.01 - 24.15	Pass		
2009-1	7/6/2009	70 cm.	13.65	15.28 ± 0.79	9.56 - 17.75	Pass		
2009-1	7/6/2009	90 cm.	8.26	7.97 ± 0.40	5.78 - 10.74	Pass		
2009-1	7/6/2009	90 cm.	8.26	7.37 ± 0.49	5.78 - 10.74	Pass		
2009-1	7/6/2009	100 cm.	6.69	6.16 ± 0.64	4.68 - 8.70	Pass		
2009-1	7/6/2009	110 cm.	5.53	4.38 ± 0.24	3.87 - 7.19	Pass		
2009-1	7/6/2009	120 cm.	4.65	4.34 ± 0.23	3.26 - 6.05	Pass		
2009-1	7/6/2009	150 cm.	2.97	2.92 ± 0.25	2.08 - 3.86	Pass		
.								
Environmen	tal, Inc.							
2009-2	12/27/2009	40 cm.	44.83	51.38 ± 2.69	31.38 - 58.28	Pass		
2009-2	12/27/2009	50 cm.	28.69	31.65 ± 2.81	20.08 - 37.30	Pass		
200 9 -2	12/27/2009	60 cm.	19.92	21.38 ± 1.19	13.94 - 25.90	Pass		
2009-2	12/27/2009	60 cm.	19.92	22.30 ± 0.50	13.94 - 25.90	Pass		
2009-2	12/27/2009	75 cm.	12.75	13.48 ± 1.02	8.93 - 16.58	Pass		
2009-2	12/27/2009	90 cm.	8.85	9.62 ± 0.74	6.20 - 11.51	Pass		
2009-2	12/27/2009	90 cm.	8.85	8.39 ± 0.86	6.20 - 11.51	Pass		
2009-2	12/27/2009	100 cm.	7.17	6.65 ± 0.96	5.02 ~ 9.32	Pass		
2009-2	12/27/2009	120 cm.	4.98	4.89 ± 0.53	3.49 - 6.47	Pass		
2009-2	12/27/2009	120 cm.	4.98	4.92 ± 0.58	3.49 - 6.47	Pass		
2009-2	12/27/2009	150 cm.	3.19	2.74 ± 0.39	2.23 - 4.15	Pass		
2009-2	12/27/2009	180 cm.	2.21	1.65 ± 0.33	1.55 - 2.87	Pass		
	12/27/2009		2.21	2.12 ± 0.69	1.55 - 2.87	Pass		

TABLE A-2. Crosscheck program results; Thermoluminescent Dosimetry, (TLD, CaSO₄; Dy Cards).

TABLE A-3. In-House "Spike" Samples

		Concentration (pCi/L) ^a					
Lab Code ^b	Date	Analysis	Laboratory results 2s, n=1 °	Known Activity	Control Limits ^d	Acceptanc	
W-12009	1/20/2009	Ra-226	12.88 ± 0.41	12.69	8.88 - 16.50	Pass	
W-12009	1/27/2009	Gr. Alpha	20.20 ± 0.40	20.08	10.04 - 30.12	Pass	
W-12003	1/27/2009	Gr. Beta	46.26 ± 0.42	45.60	35.60 - 55.60	Pass	
SPW-5553	1/27/2009	Ra-228	29.11 ± 2.53	28.66	20.06 - 37.26	Pass Pass	
SPW-3555 SPW-217	1/29/2009	U-238	44.98 ± 2.30	41.70			
SPW-217 SPW-539	2/24/2009	Ni-63	44.98 ± 2.30 167.93 ± 3.79		29.19 - 54.21	Pass	
SPW-539 SPW-718	3/6/2009	C-14		211.00	147.70 - 274.30	Pass	
	3/16/2009		4893.50 ± 21.69	4740.20	2844.12 - 6636.28	Pass	
SPMI-814		Cs-134	34.91 ± 3.85	35.70	25.70 - 45.70	Pass	
SPMI-814	3/16/2009	Cs-137	59.17 ± 6.70	55.60	45.60 - 65.60	Pass	
SPMI-814	3/16/2009	Sr-90	40.82 ± 1.59	44.07	35.26 - 52.88	Pass	
SPMI-815	3/16/2009	I-131	70.99 ± 0.62	69.60	55.68 - 83.52	Pass	
SPMI-815	3/16/2009	I-131(G)	63.08 ± 7.12	69.60	59.60 - 79.60	Pass	
SPW-817	3/16/2009	1-131	62.11 ± 0.59	69.60	55.68 - 83.52	Pass	
SPW-817	3/16/2009	l-131(G)	64.55 ± 8.32	69.60	59.60 - 79.60	Pass	
SPW-818	3/16/2009	Co-60	50.84 ± 4.70	51.99	41.99 - 61.99	Pass	
SPW-818	3/16/2009	Cs-134	33.78 ± 3.42	35.70	25.70 - 45.70	Pass	
SPW-818	3/16/2009	Cs-137	61.27 ± 7.18	55.64	45.64 - 65.64	Pass	
SPW-818	3/16/2009	Sr-90	47.26 ± 1.89	44.07	35.26 - 52.88	Pass	
SPAP-903	3/23/2009	Cs-134	13.29 ± 2.89	14.19	4.19 - 24.19	Pass	
SPAP-903	3/23/2009	Cs-137	103.24 ± 7.54	111.23	100.11 - 122.35	Pass	
SPCH-916	3/24/2009	I-131(G)	0.22 ± 0.02	0.22	0.13 - 0.31	Pass	
SPVE-888	4/1/2009	I-131(G)	0.40 ± 0.08	0.35	0.21 - 0.49	Pass	
SPF-820	4/7/2009	Cs-134	0.58 ± 0.02	0.56	0.34 - 0.78	Pass	
W-40909	4/9/2009	Gr. Alpha	19.26 ± 0.40	20.08	10.04 - 30.12	Pass	
W-40909	4/9/2009	Gr. Beta	48.04 ± 0.42	45.60	35.60 - 55.60	Pass	
SPW-12641	4/10/2009	Ra-228	40.06 ± 2.79	40.54	28.38 - 52.70	Pass	
SPW-1267	4/10/2009	U-238	41.71 ± 2.25	41.70	29.19 - 54.21	Pass	
TWW-2124	4/21/2009	H-3	7932.00 ± 279.00	7063.00	5650.40 - 8475.60	Pass	
W-42809	4/28/2009	Ra-226	14.49 ± 0.53	16.78	11.75 - 21.81	Pass	
SPMI-2186	5/12/2009	Cs-134	32.55 ± 1.26	33.89	23.89 - 43.89	Pass	
SPMI-2186	5/12/2009	Cs-137	54.27 ± 2.60	55.60	45.60 - 65.60	Pass	
SPMI-2186	5/12/2009	I-131	60.81 ± 0.63	52.40	40.40 - 64.40	Pass	
SPMI-2186	5/12/2009	I-131(G)	56.89 ± 2.56	52.40	42.40 - 62.40	-	
SPMI-2186	5/12/2009	Sr-90	43.88 ± 1.68	52.40 52.40	41.92 - 62.88	Pass	
SPW-2497	5/27/2009	Fe-55	2472.37 ± 10.76			Pass	
3710-2497	5/21/2009	Fe-55	2472.37 ± 10.70	2106.35	1685.08 - 2527.62	Pass	
SPW-3448	7/14/2009	Cs-137	171.06 ± 9.21	166.10	149.49 - 182.71	Pass	
SPW-3497	7/15/2009	Ni-63	179.99 ± 3.06	210.40	147.28 - 273.52	Pass	
SPW-3499	7/15/2009	Tc-99	29.61 ± 0.81	32.34	20.34 - 44.34	Pass	
SPMI-3582	7/17/2009	Cs-134	32.86 ± 3.72	31.89	21.89 - 41.89	Pass	
SPMI-3582	7/17/2009	Cs-137	182.49 ± 10.54	166.10	149.49 - 182.71	Pass	
SPAP-3595	7/17/2009	Cs-134	13.01 ± 3.00	12.75	2.75 - 22.75	Pass	
SPAP-3595	7/17/2009	Cs-137	110.63 ± 6.58	110.73	99.66 - 121.80	Pass	

A3-1

TABLE A-3. In-House "Spike" Samples

	·		Concentration (p	ation (pCi/L) ^a					
Lab Code ^b	Date	Analysis	Laboratory results 2s, n=1	Known Activity	Control Limits ^c	Acceptance			
SPF-3597	7/17/2009	Cs-134	0.53 ± 0.03	0.51	0.31 - 0.71	Pass			
SPF-3597	7/17/2009	Cs-137	2.43 ± 0.05	2.22	1.33 - 3.10	Pass			
SPW-3599	7/17/2009	H-3	63246.00 ± 725.00	62495.00	49996.00 - 74994.00	Pass			
SPW-12643	8/3/2009	Ra-228	38.18 ± 2.72	40.54	28.38 - 52.70	Pass			
W-80709	8/7/2009	Ra-226	16.28 ± 0.41	16.77	11.74 - 21.80	Pass			
W-81009	8/10/2009	Gr. Alpha	20.58 ± 0.44	20.08	10.04 - 30.12	Pass			
W-81009	8/10/2009	Gr. Beta	44.44 ± 0.40	45.60	35.60 - 55.60	Pass			
W-100109	10/1/2009	Ra-226	15.68 ± 0.41	16.77	11.74 - 21.80	Pass			
W-102709	10/27/2009	Gr. Alpha	21.50 ± 0.43	20.08	10.04 - 30.12	Pass			
W-102709	10/27/2009	Gr. Beta	44.83 ± 0.40	45.60	35.60 - 55.60	Pass			
SPW-5964	10/28/2009	U-238	40.20 ± 1.87	41.70	29.19 - 54.21	Pass			
SPW-12647	11/6/2009	Ra-228	44.49 ± 3.33	40.54	28.38 - 52.70	Pass			
SPAP-6769	12/14/2009	Gr. Beta	45.43 ± 0.11	49.48	29.69 - 69.27	Pass			
SPAP-6774	12/14/2009	Cs-134	10.32 ± 0.83	11.11	1.11 - 21.11	Pass			
SPAP-6774	12/14/2009	Cs-137	106.58 ± 2.51	109.70	98.73 - 120.67	Pass			
SPF-6776	12/14/2009	Cs-134	0.43 ± 0.02	0.44	0.26 - 0.62	Pass			
SPF-6776	12/14/2009	Cs-137	2.33 ± 0.05	2.19	1.31 - 3.07	Pass			
SPW-6780	12/14/2009	Tc-99	30.71 ± 1.09	32.34	20.34 - 44.34	Pass			
SPMI-6782	12/14/2009	Co-60	74.30 ± 5.41	72.81	62.81 - 82.81	Pass			
SPMI-6782	12/14/2009	Cs-134	58.82 ± 3.75	55.54	45.54 - 65.54	Pass			
SPMI-6782	12/14/2009	Cs-137	178.18 ± 9.68	164.55	148.10 - 181.01	Pass			
SPW-6784	12/14/2009	Co-60	74.03 ± 4.64	72.81	62.81 - 82.81	Pass			
SPW-6784	12/14/2009	Cs-134	54.84 ± 3.83	55.54	45.54 - 65.54	Pass			
SPW-6784	12/14/2009	Cs-137	180.06 ± 8.81	164.55	148.10 - 181.01	Pass			

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/m³), and solid samples (pCi/g).

^b Laboratory codes as follows: W (water), MI (milk), AP (air filter), SO (soil), VE (vegetation),

CH (charcoal canister), F (fish).

^cResults are based on single determinations.

^d Control limits are established from the precision values listed in Attachment A of this report, adjusted to ± 2σ.

^e Control limits based on the laboratory limit, Attachment A ("Other Analyses").

NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

TABLE A-4. In-House "Blank" Samples

			· <u></u>		Concentration (pCi/L	<u>.)°</u>
Lab Code	Sample	Date	Analysis ^⁵	Laboratory	results (4.66o)	Acceptance
	Туре	<u></u>		LLD	Activity ^c	Criteria (4.66 o
W-12009	Water	1/20/2009	Ra-226	0.05	0.06 ± 0.04	1
SPW-5554	Water	1/27/2009	Ra-228	0.08	0.17 ± 0.40	2
W-12709	Water	1/27/2009	Gr. Alpha	0.35	0.22 ± 0.27	1
W-12709	Water	1/27/2009	Gr. Beta	0.74	-0.08 ± 0.51	3.2
SPW-218	Water	1/29/2009	U-238	0.19	-0.06 ± 0.09	1
SPW-538	Water	2/24/2009	Ni-63	7.91	4.96 ± 4.93	20
SPW-717	Water	3/6/2009	C-14	7.66	3.03 ± 4.71	200
SPMI-816	Milk	3/16/2009	Cs-134	3.24	-	10
SPMI-816	Milk	3/16/2009	Cs-137	3.38	•	10
SPMI-816	Milk	3/16/2009	I-131	0.31	0.04 ± 0.17	0.5
SPMI-816	Milk	3/16/2009	I-131(G)	3.65	- ⁻	20
SPMI-816	Milk	3/16/2009	Sr-90	0.48	0.41 ± 0.27	1
SPW-819	Water	3/16/2009	Co-60	3.02	-	10
SPW-819	Water	3/16/2009	Cs-134	2.25	-	10
SPW-819	Water	3/16/2009	Cs-137	2.03	-	10
SPW-819	Water	3/16/2009	I-131	0.42	-0.06 ± 0.19	0.5
SPW-819	Water	3/16/2009	I-131(G)	3.02	-	20
SPW-819	Water	3/16/2009	Sr-90	1.10	-0.63 ± 0.44	1
SPAP-902	Air Filter	3/23/2009	Gr. Beta	0.003	0.006 ± 0.002	. 3.2
SPAP-904	Air Filter	3/23/2009	Cs-134	1.68	-	100
SPAP-904	Air Filter	3/23/2009	Cs-137	2.62	•	100
SPW-32709	Water	3/23/2009	Ni-63	2.84	1.37 ± 1.75	20
				· · ·		
SPF-821	Fish	4/7/2009	Cs-134	3.12	-	100
SPF-821	Fish	4/7/2009	Cs-137	3.93	-	100
W-40909	Water	4/9/2009	Gr. Alpha	0.40	-0.25 ± 0.26	1
W-40909	Water	4/9/2009	Gr. Beta	0.77	-0.30 ± 0.53	3.2
SPW-12651	Water	4/10/2009	Ra-228	0.77	0.77 ± 0.45	2
SPW-1268	Water	4/10/2009	U-238	0.11	0.24 ± 0.17	. 1
W-42809	Water	4/28/2009	Ra-226	0.04	0.09 ± 0.04	1
SPMI-2186	Milk	5/12/2009	Sr-90	0.43	0.52 ± 0.26	1
SPMI-2187	Milk	5/12/2009	Cs-134	3.61	-	10
SPMI-2187	Milk	5/12/2009	Cs-137	3.13	-	10
SPMI-2187	Milk	5/12/2009	I-131	0.15	-0.02 ± 0.10	0.5
SPMI-2187	Milk	5/12/2009	I-131(G)	3.77	-	20
SPW-2498	Water	5/27/2009	Ni-63	1.60	0.00 ± 0.97	20
•			- 			
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					<u>.</u> .	•

A4-1

TABLE A-4. Ir	n-House "B	llank" Sari	ples
---------------	------------	-------------	------

	~				Concentration (pCi/l) ^a
Lab Code	Sample	Date	Analysis ^b .	Laborator	y results (4.66σ)	Acceptance
	Туре		· · · · · · · · · · · · · · · · · · ·	LLD	Activity ^c	Criteria (4.66 o
SPW-3497	Water	7/15/2009	Ni-63	1.55	-0.24 ± 0.94	20
SPW-3500	Water	7/15/2009	Tc-99	0.90	-1.71 ± 0.53	10
SPMI-3589	Milk	7/17/2009	I-131(G)	5.75	-1.77 ± 0.00	20
SPAP-3594	Air Filter	7/17/2009	Cs-134	1.14	-	100
SPAP-3594	Air Filter	7/17/2009	Cs-137	2.47	-	100
SPF-3596	Fish	7/17/2009	Co-60	5.00	_	100
SPF-3596	Fish	7/17/2009	Cs-134	8.00	_	100
SPF-3596	Fish	7/17/2009	Cs-137	11.50	- -	100
SPW-3598	Water	7/17/2009	H-3	148.40	0.69 ± 73.60	200
SPW-12653	Water	8/3/2009	Ra-228	0.76	1.46 ± 0.51	2
W-80709	Water	8/7/2009	Ra-226	0.04	0.08 ± 0.03	- 1
W-81009	Water	8/10/2009	Gr. Alpha	0.44	0.08 ± 0.31	1
W-81009	Water	8/10/2009	Gr. Beta	0.75	-0.31 ± 0.52	3.2
		4014/0000	D			
W-100109	Water	10/1/2009	Ra-226	0.04	0.09 ± 0.03	1
W-102709	Water	10/27/2009	Gr. Alpha	0.38	0.33 ± 0.30	1
W-102709	Water	10/27/2009	Gr. Beta	0.81	-0.59 ± 0.55	3.2
SPW-5965	Water	10/28/2009	U-238	0.15	0.09 ± 0.13	1
SPW-12657	Water	11/6/2009	Ra-228	0.86	0.80 ± 0.50	2
SPAP-6769	Air Filter	12/14/2009	Gr. Beta	0.003	0.010 ± 0.002	. 3.2
SPAP-6773	Air Filter	12/14/2009	Cs-137	1.31	· •	100
SPF-6775	Fish	12/14/2009	Cs-134	5.70	-	100
SPF-6775	Fish	12/14/2009	Cs-137 Ni-63	4.18	0.05 + 4.00	100
SPW-6777	Water Water	12/14/2009		2.29 1.16	0.25 ± 1.38 -0.98 ± 0.69	20 10
SPW-6779	Milk	12/14/2009	Cs-134	2.62	-0.90 ± 0.09	
SPMI-6781 SPMI-6781	Milk	12/14/2009	Cs-134 Cs-137	2.62 3.29	-	_ 10 10
	Milk	12/14/2009	l-131(G)	3.29 2.65	-	20
SPMI-6781 SPW-6783	Water	12/14/2009	Cs-134	2.65	-	20 10
SPW-6783	Water	12/14/2009	Cs-134 Cs-137	2.18	-	10
SPW-6783	Water	12/14/2009	I-131(G)	2.30	-	20

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.

^c Activity reported is a net activity result. For gamma spectroscopic analysis, activity detected below the LLD value is not reported.

TABLE A-5. In-House "Duplicate" Samples

•			C	Concentration (pCi/L) ^a		
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
AP-7464, 7465	1/1/2009	Be-7	0.063 ± 0.012	0.065 ± 0.010	0.064 ± 0.008	Pass
E-20, 21	1/5/2009	K-40	1.34 ± 0.21	1.13 ± 0.13	1.24 ± 0.12	Pass
CF-67, 68	1/5/2009	Be-7	0.34 ± 0.12	0.39 ± 0.08	0.37 ± 0.07	Pass
CF-67, 68	1/5/2009	Gr. Beta	4.34 ± 0.11	4.38 ± 0.12	4.36 ± 0.08	Pass
CF-67, 68	1/5/2009	K-40	3.16 ± 0.26	3.00 ± 0.16	3.08 ± 0.15	Pass
DW-90010, 90011	1/9/2009	Ra-226	2.97 ± 0.22	2.76 ± 0.21	2.87 ± 0.15	Pass
DW-90010, 90011	1/9/2009	Ra-228	3.13 ± 0.71	3.55 ± 0.81	3.34 ± 0.54	Pass
SG-198, 199	1/23/2009	Gr. Alpha	101.90 ± 6.50	101.70 ± 6.10	101.80 ± 4.46	Pass
SG-198, 199	1/23/2009	Gr. Beta	97.80 ± 3.50	94.00 ± 3.20	95.90 ± 2.37	Pass
SW-308, 309	1/27/2009	Gr. Beta	1.43 ± 0.58	1.41 ± 0.54	1.42 ± 0.40	Pass
LW-330, 331	1/27/2009	Gr. Beta	2.09 ± 0.58	2.33 ± 0.63	2.21 ± 0.43	Pass
SW-308, 309	1/29/2009	Gr. Beta	1.51 ± 0.56	1.61 ± 0.57	1.56 ± 0.40	Pass
DW-375, 376	2/4/2009	Gr. Beta	2.72 ± 0.65	3.06 ± 0.69	2.89 ± 0.47	Pass
SWU-606, 607	2/24/2009	Gr. Beta	2.66 ± 0.68	2.16 ± 0.67	2.41 ± 0.48	Pass
U-651, 652	2/27/2009	Beta-K40	3.90 ± 2.30	1.70 ± 2.50	2.80 ± 1.70	Pass
U-651, 652	2/27/2009	H-3	597.00 ± 292.00	507.00 ± 288.00	552.00 ± 205.07	Pass
SG-739, 740	3/2/2009	Ra-226	8.20 ± 0.20	8.30 ± 0.20	8.25 ± 0.14	Pass
MI-875, 876	3/17/2009	K-40	1286.50 ± 111.60	1471.70 ± 111.50	1379.10 ± 78.88	Pass
MI-875, 876	3/17/2009	Sr-90	0.67 ± 0.31	0.36 ± 0.36	0.52 ± 0.24	Pass
WW-970, 971	3/24/2009	Gr. Beta	13.59 ± 2.32	17.33 ± 2.69	15.46 ± 1.78	Pass
XWW-980, 981	3/24/2009	H-3	7143.00 ± 262.00	7262.00 ± 264.00	7202.50 ± 185.97	
AP-1441, 1442	3/30/2009	Be-7	0.076 ± 0.012	0.075 ± 0.014	0.076 ± 0.009	Pass
SWT-1123, 1124	3/31/2009	Gr. Beta	1.40 ± 0.55	1.86 ± 0.62	1.63 ± 0.41	Pass
WW-1102, 1103	4/1/2009	. Gr. Beta	2.13 ± 1.34	2.30 ± 1.32	2.22 ± 0.94	Pass
XWW-1174, 1175	4/1/2009	H-3	2814 ± 176	2787 ± 176	2801 ± 124	Pass
AP-1462, 1463	4/2/2009	Be-7	0.085 ± 0.014	0.10 ± 0.016	0.091 ± 0.011	Pass
SL-2024, 2025	5/4/2009	Be-7	0.80 ± 0.18	0.82 ± 0.13	0.091 ± 0.011	Pass
SL-2024, 2025	5/4/2009	Gr. Beta	2.41 ± 0.19	2.68 ± 0.21	2.55 ± 0.14	Pass
SL-2024, 2025	5/4/2009	K-40	1.20 ± 0.21	1.30 ± 0.15	1.25 ± 0.13	Pass
SO-2045, 2046	5/4/2009	Gr. Alpha	6.22 ± 2.87	6.50 ± 3.26	6.36 ± 2.17	Pass
SO-2045, 2046	5/4/2009	Gr. Beta	28.85 ± 3.15	30.39 ± 3.34	29.62 ± 2.30	Pass
SO-2045, 2046	5/4/2009	Sr-90	0.036 ± 0.010	0.024 ± 0.010	0.030 ± 0.007	
mi-2251, 2252	5/14/2009	K-40	1220.60 ± 155.10	1455.50 ± 118.20	1338.05 ± 97.50	Pass
mi-2231, 2232 mi-2381, 2382	5/19/2009	K-40 K-40	1220.80 ± 133.10 1472.50 ± 122.90	1433.30 ± 118.20 1412.80 ± 117.40	1442.65 ± 84.98	Pass
SWT-2534, 2535	5/26/2009	Gr. Beta	1.12 ± 0.57	1.66 ± 0.58	1.39 ± 0.41	Pass
G-2626, 2627	5/28/2009	Gr. Beta Gr. Beta	6.32 ± 0.19	6.18 ± 0.19	6.25 ± 0.13	Pass
	5/28/2009	Gr. Deta K-40	4.13 ± 0.35	4.05 ± 0.34		Pass
G-2626, 2627	6/1/2009	H-3	4.13 ± 0.33 240.73 ± 93.21	190.39 ± 90.81	4.09 ± 0.24	Pass
WW-2732, 2733	0/1/2009	1-5	240.10 I JO.21	190.39 I 90.01	215.56 ± 65.07	Pass
			•	•		

A5-1

TABLE A-5. In-House "Duplicate" Samples

			Concentration (pCi/L) ^a					
		· · · ·	· · ·		Averaged	<u> </u>		
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance		
SO-3141, 3142	6/22/2009	Ac-228	1.07 ± 0.06	1.06 ± 0.05	1.07 ± 0.04	Pass		
SO-3141, 3142	6/22/2009	Be-7	0.55 ± 0.14	0.62 ± 0.08	0.59 ± 0.08	Pass		
SO-3141, 3142	6/22/2009	Bi-212	1.16 ± 0.17	1.14 ± 0.16	1.15 ± 0.12	Pass		
SO-3141, 3142	6/22/2009	Bi-214	0.96 ± 0.03	1.01 ± 0.03	0.99 ± 0.02	Pass		
SO-3141, 3142	6/22/2009	Cs-137	0.72 ± 0.07	0.76 ± 0.08	0.74 ± 0.05	Pass		
SO-3141, 3142	6/22/2009	Pb-212	1.00 ± 0.02	1.03 ± 0.02	1.02 ± 0.01	Pass		
SO-3141, 3142	6/22/2009	Pb-214	1.01 ± 0.03	1.04 ± 0.03	1.03 ± 0.02	Pass		
SO-3141, 3142	6/22/2009	Pu-239/40	0.022 ± 0.008	0.030 ± 0.009	0.026 ± 0.006	Pass		
SO-3141, 3142	6/22/2009	Th-232	0.51 ± 0.04	0.48 ± 0.05	0.50 ± 0.03	Pass		
SO-3141, 3142	6/22/2009	TI-208	0.35 ± 0.02	0.36 ± 0.02	0.36 ± 0.01	Pass		
SO-3141, 3142	6/22/2009	U-233/4	0.16 ± 0.02	0.18 ± 0.02	0.17 ± 0.01	Pass		
SO-3141, 3142	6/22/2009	U-238	0.14 ± 0.02	0.18 ± 0.03	0.16 ± 0.02	Pass		
SG-3187, 3188	6/25/2009	Ac-228	11.07 ± 0.33	10.88 ± 0.33	10.97 ± 0.24	Pass		
SG-3187, 3188	6/25/2009	Pb-214	26.54 ± 0.23	26.17 ± 0.25	26.36 ± 0.17	Pass		
SL-3297, 3298	7/1/2009	Be-7	1.15 ± 0.13	1.15 ± 0.12	1.15 ± 0.09	Pass		
SL-3297, 3298	7/1/2009	Gr. Beta	3.38 ± 0.23	3.37 ± 0.12	3.38 ± 0.13	Pass		
SL-3297, 3298	7/1/2009	K-40	1.43 ± 0.18	1.50 ± 0.19	1.47 ± 0.13	Pass		
AP-3944, 3945	7/1/2009	Be-7	0.064 ± 0.009	0.068 ± 0.010	0.066 ± 0.007	Pass		
DW-90222, 90223	7/15/2009	Ra-226	5.36 ± 0.60	4.62 ± 0.51	4.99 ± 0.39	Pass		
DW-90222, 90223	7/15/2009	Ra-228	2.91 ± 0.73	2.80 ± 0.70	2.86 ± 0.51	Pass		
DW-90237, 90238	7/17/2009	Gr. Alpha	3.54 ± 0.99	4.22 ± 1.09	3.88 ± 0.74	Pass		
F-3790, 3791	7/21/2009	K-40	1.10 ± 0.35	1.41 ± 0.44	1.26 ± 0.28	Pass		
DW-90250, 90251	7/22/2009	Ra-226	14.58 ± 0.39	15.13 ± 0.40	14.86 ± 0.28	Pass		
DW-90250, 90251	7/22/2009	Ra-228	6.71 ± 1.05	6.10 ± 1.01	6.41 ± 0.73	Pass		
VE-3965, 3966	7/28/2009	K-40	1.48 ± 0.16	$1.56' \pm 0.19$	1.52 ± 0.13	Pass		
VE-4098, 4099	8/3/2009	Be-7	0.54 ± 0.16	0.58 ± 0.16	0.56 ± 0.11	Pass		
VE-4098, 4099	8/3/2009	Gr. Beta	5.15 ± 0.17	5.07 ± 0.18	5.11 ± 0.12	Pass		
VE-4098, 4099	8/3/2009	K-40	4.91 ± 0.49	5.17 ± 0.15	5.04 ± 0.26	Pass		
SO-4325, 4326	8/14/2009	Be-7	0.59 ± 0.21	0.68 ± 0.28	0.64 ± 0.18	Pass		
SO-4325, 4326	8/14/2009	Cs-137	0.29 ± 0.05	0.28 ± 0.05	0.28 ± 0.03	Pass		
SO-4325, 4326	8/14/2009	K-40	13.41 ± 0.77	13.46 ± 0.80	13.43 ± 0.56	Pass		
SG-4283, 4284	8/17/2009	Ac-228	7.16 ± 0.28	7.10 ± 0.26	7.13 ± 0.19	Pass		
SG-4283, 4284	8/17/2009	Pb-214	6.27 ± 0.13	6.21 ± 0.13	6.24 ± 0.09	Pass		
VE-4436, 4437	8/25/2009	K-40	2.28 ± 0.28	2.67 ± 0.26	2.48 ± 0.19	Pass		
SL-4589, 4590	9/1/2009	Be-7	1.25 ± 0.22	1.25 ± 0.16	1.25 ± 0.14	Pass		
SL-4589, 4590	9/1/2009	K-40	2.96 ± 0.30	2.70 ± 0.27	2.83 ± 0.20	Pass		
AV-4882, 4883	9/8/2009	Be-7	0.93 ± 0.18	0.95 ± 0.17	0.94 ± 0.12	Pass		
AV-4882, 4883	9/8/2009	K-40	2.50 ± 0.26	2.47 ± 0.29	2.49 ± 0.20	Pass		

A5-2

TABLE A-5. In-House "Duplicate" Samples

				Concentration (pCi/L) ^é	3	1
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
			et 11			
WW-4721, 4722	9/9/2009	H-3	19191.00 ± 404.00	18677.00 ± 399.00	18934.00 ± 283.91	Pass
WW-4903, 4904	9/11/2009	H-3 .	1075.00 ± 130.00	1281.00 ± 136.00	1178.00 ± 94.07	Pass
BS-5119, 5120	9/16/2009	Be-7	2067.50 ± 327.90	2225.40 ± 371.10	2146.45 ± 247.61	Pass
BS-5119, 5120	9/16/2009	Cs-137	86.24 ± 35.40	145.10 ± 31.54	115.67 ± 23.71	Pass
BS-5119, 5120	9/16/2009	K-40	16.85 ± 0.90	17.27 ± 0.79	17.06 ± 0.60	Pass
SS-5188, 5189	9/23/2009	Be-7	1.02 ± 0.31	1.04 ± 0.43	1.03 ± 0.26	Pass
SS-5188, 5189	9/23/2009	K-40	10.21 ± 0.65	9.94 ± 0.93	10.07 ± 0.57	Pass
AP-3944, 3945	9/29/2009	Be-7	0.09 ± 0.02	0.09 ± 0.02	0.09 ± 0.01	Pass
E-5251, 5252	10/1/2009	Gr. Beta	2.30 ± 0.10	2.10 ± 0.10	2.20 ± 0.07	Pass
E-5251, 5252	10/1/2009	K-40	1.18 ± 0.24	1.15 ± 0.18	1.17 ± 0.15	Pass
G-5272, 5273	10/1/2009	Be-7	3.31 ± 0.29	- 3.60 ± 0.26	3.46 ± 0.19	Pass
G-5272, 5273	10/1/2009	Gr. Alpha	19.81 ± 0.80	21.10 ± 0.74	20.46 ± 0.54	Pass
G-5272, 5273	10/1/2009	K-40	16.47 ± 0.75	17.00 ± 0.74	16.74 ± 0.53	Pass
F-5690, 5691	10/15/2009	H-3	8895.00 ± 250.00	9051.00 ± 252.00	8973.00 ± 177.49	Pass
F-5690, 5691	10/15/2009	K-40	3.62 ± 0.40	3.09 ± 0.48	3.36 ± 0.31	Pass
DW-90396, 90397	10/16/2009	Ra-226	0.54 ± 0.09	0.42 ± 0.08	0.48 ± 0.06	Pass
DW-90396, 90397	10/16/2009	Ra-228	1.44 ± 0.56	0.94 ± 0.51	1.19 ± 0.38	Pass
DW-90408, 90409	10/19/2009	Ra-226	0.99 ± 0.12	1.10 ± 0.14	1.05 ± 0.09	Pass
DW-90408, 90409	10/19/2009	Ra-228	2.76 ± 0.66	1.38 ± 0.92	2.07 ± 0.57	Pass
DW-90420, 90421	10/21/2009	Ra-226	1.95 ± 0.17	1.77 ± 0.15	1.86 ± 0.11	Pass
DW-90420, 90421	10/21/2009	Ra-228	3.10 ± 0.73	3.32 ± 0.80	3.21 ± 0.54	Pass
SG-5962, 5963	10/22/2009	Ac-228	16.39 ± 0.79	16.51 ± 0.63	16.45 ± 0.51	Pass
SG-5962, 5963	10/22/2009	Pb-214	18.03 ± 0.41	17.74 ± 0.42	17.89 ± 0.29	Pass
DW-90423, 90424	10/27/2009	Gr. Alpha	12.04 ± 1.68	15.28 ± 1.97	13.66 ± 1.29	Pass
ME-6116, 6117	11/3/2009	Gr. Beta	0.86 ± 0.03	0.83 ± 0.03	0.85 ± 0.02	Pass
ME-6116, 6117	11/3/2009	K-40	2.57 ± 0.08	2.65 ± 0.08	2.61 ± 0.06	Pass
F-6567, 6568	11/6/2009	Gr. Beta	2.72 ± 1.05	3.04 ± 0.92	2.88 ± 0.70	Pass
F-6567, 6568	11/6/2009	Sr-90	0.09 ± 0.03	0.12 ± 0.04	0.11 ± 0.02	Pass
W-6495, 6496	11/8/2009	H-3	2638.00 ± 173.00	2451.00 ± 168.00	2544.50 ± 120.57	Pass
WW-6313, 6314	11/9/2009	H-3	1514.00 ± 137.00	1483.00 ± 136.00	1498.50 ± 96.52	Pass
SWU-6611, 6612	11/24/2009	Gr. Beta	1.88 ± 0.60	1.67 ± 0.59	1.78 ± 0.42	Pass
DW-90446, 90447	12/30/2009	Ra-226	0.30 ± 0.10	0.54 ± 0.14	0.42 ± 0.09	Pass
DW-90446, 90447	12/30/2009	Ra-228	2.60 ± 0.64	2.65 ± 0.65	2.63 ± 0.46	Pass

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

^a Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g).

				Concentration ^t		Acceptance Fail Pass Pass Pass Pass Pass Pass Pass Pas
•			•	Known	Control	•
ab Code °	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
			· ·	e.	•	
STW-11701	01/01/09	Am-241	1.15 ± 0.06	0.64	0.45 - 0.83	Fail
STW-1170	01/01/09	Co-57	19.60 ± 0.40	18.90	13.20 - 24.60	Pass
STW-1170	01/01/09	Co-60	16.60 ± 0.30	17.21	12.05 - 22.37	Pass
STW-1170	01/01/09	Cs-134	20.40 ± 0.50	22.50	15.80 - 29.30	Pass
STW-1170 °	01/01/09	Cs-137	0.10 ± 0.20	0.00	0.00 - 1.00	Pass
TW-1170	01/01/09	Fe-55	51.60 ± 20.60	48.20	33.70 - 62.70	Pass
STW-1170	01/01/09	H-3	359.90 ± 33.90	330.90	231.60 - 430.20	Pass
TW-1170 .	01/01/09	Mn-54	15.00 ± 0.40	14.66	10.26 - 19.06	Pass
STW-1170	01/01/09	Ni-63	50.50 ± 3.25	53.50	37.45 - 69.55	Pass
TW-1170	01/01/09	Pu-238	1.17 ± 0.04	1.18	0.83 - 1.53	Pass
TW-1170	01/01/09	Pu-239/40	0.74 ± 0.03	0.85	0.60 - 1.11	Pass
TW-1170	01/01/09	Sr-90	7.87 ± 1.39	7.21	5.05 - 9.37	Pass
STW-1170	01/01/09	Tc-99	12.70 ± 0.80	14.46	10.12 - 18.80	Pass
STW-1170	01/01/09	U-233/4	2.78 ± 0.07	2.77	1.94 - 3.60	Pass
STW-1170	01/01/09	U-238	2.87 ± 0.07	2.88	2.02 - 3.74	Pass
TW-1170	01/01/09	Zn-65	14.00 ± 0.70	13.60	9.50 - 17.70	Pass
					· · .	• • •
STW-1171	01/01/09	Gr. Alpha	0.56 ± 0.06	0.64	0.00 - 1.27	Pass
STW-1171	01/01/09	Gr. Beta	1.29 ± 0.05	1.27	0.64 - 1.91	Pass
	1971) 197		L		· .	
stso-1172 °	01/01/09	Co-57	0.00 ± 0.00	0.00	0.00 - 1.00	Pass
STSO-1172	01/01/09	Cs-134	458.60 ± 7.40	467.00	327.00 - 607.00	
STSO-1172	01/01/09	Cs-137	458.00 ± 7.40 652.30 ± 3.50	605.00	424.00 - 787.00	
STSO-1172	01/01/09	K-40	636.40 ± 9.50	570.00	360.40 - 669.40	Pass
STSO-1172	01/01/09	Mn-54	346.40 ± 3.10	307.00	215.00 - 399.00	Pass
STSO-1172	01/01/09	Pu-238	28.60 ± 2.20	25.30	17.70 - 32.90	Pass
STSO-1172 °	01/01/09	Pu-239/40	0.50 ± 0.40	0.00	0.00 - 1.00	Pass
STSO-1172	01/01/09	F 0-239/40 Sr-90	180.60 ± 12.10	257.00	180.00 - 334.00	Pass
STSO-1172	01/01/09	U-233/4	152.20 ± 4.30	149.00	104.00 - 194.00	Pass
	01/01/09	U-238	154.90 ± 4.40	149.00	109.00 - 202.00	Pass
STSO-1172 STSO-1172	01/01/09	Zn-65	268.30 ± 4.00	242.00	169.00 - 315.00	Pass
150-1172	01/01/09	211-05	200.30 ± 4.00	242.00	109.00 - 313.00	F 033
				.		÷ •
STVE-1173	01/01/09	Co-57	2.75 ± 0.11	2.36	1.65 - 3.07	Pass
STVE-1173 °	01/01/09	Co-60	0.06 ± 0.09	0.00	0.00 - 1.00	Pass
STVE-1173	01/01/09	Cs-134	3.49 ± 0.22	3.40	2.38 - 4.42	Pass
STVE-1173	01/01/09	Cs-137	1.01 ± 0.11	0.93	0.65 - 1.21	Pass
STVE-1173	01/01/09	Mn-54	2.52 ± 0.14	2.30	1.61 - 2.99	Pass
STVE-1173	01/01/09	Zn-65	1.52 ± 0.18	1.35	0.95 - 1.76	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

A6-1

	· · · ·			Concentration ^b		
				Known	Control	
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STAP-1174 ⁹	01/01/09	Am-241	0.29 ± 0.03	0.21	0.14 - 0.27	Fail
STAP-1174	01/01/09	Co-57	1.25 ± 0.05	1.30	0.91 - 1.69	Pass
STAP-1174	01/01/09	Co-60	1.17 ± 0.06	1.22	0.85 - 1.59	Pass
STAP-1174	01/01/09	Cs-134	2.67 ± 0.14	2.93	2.05 - 3.81	Pass
STAP-1174	01/01/09	Cs-137	1.53 ± 0.08	1.52	1.06 - 1.98	Pass
STAP-1174	01/01/09	Mn-54	2.34 ± 0.09	2.27	1.59 - 2.95	Pass
STAP-1174 ^h	01/01/09	Sr-90	0.93 ± 0.14	0.64	0.45 - 0.83	Fail
STAP-1174	01/01/09	Zn-65	1.44 ± 0.14	1.36	0.95 - 1.77	Pass
STAP-1175 .	01/01/09	Gr. Alpha	0.22 ± 0.03	0.35	0.00 - 0.70	Pass
STAP-1175	01/01/09	Gr. Beta	0.36 ± 0.04	0.28	0.14 - 0.42	Pass
					· .	
STSO-1188	07/01/09	Co-57	674.60 ± 9.00	586.00	410.00 - 762.00	Pass
STSO-1188	07/01/09	Co-60	356.40 ± 6.30	327.00	229.00 - 425.00	Pass
STSO-1188	07/01/09	Cs-134	0.20 ± 1.90	0.00	0.00 - 1.00	Pass
STSO-1188	07/01/09	Cs-137	767.50 ± 12.00	669.00	468.00 - 870.00	Pass
STSO-1188	07/01/09	K-40	433.00 ± 37.20	375.00	263.00 - 488.00	Pass Pass
STSO-1188	07/01/09	Mn-54	931.60 ± 14.10	796.00	557.00 - 1035.00	
STSO-1188	07/01/09	Pu-238	53.10 ± 9.00	63.20	44.20 - 82.20	Pass
STSO-1188	07/01/09	Pu-239/40	107.10 ± 12.60	116.30	81.40 - 151.20	Pass
STSO-1188 '	07/01/09	Sr-90	310.50 ± 12.20	455.00	319.00 - 592.00	Pass
STSO-1188	07/01/09	U-233/4	188.20 ± 11.90	209.00	146.00 - 272.00	Fail
STSO-1188	07/01/09	U-238	197.40 ± 12.20	217.00		Pass
STSO-1188	07/01/09	Zn-65	1433.90 ± 25.20	1178.00	152.00 - 282.00 825.00 - 1531.00	Pass
3130-1100	07/01/09	211-05	1433.90 ± 25.20	1178.00	825.00 - 1531.00	Pass
STAP-1189	07/01/09	Gr. Alpha	0.33 ± 0.04	0.66	0.00 - 1.32	Pass
STAP-1189	07/01/09	Gr. Beta	1.57 ± 0.07	1.32	0.66 ~ 1.98	Pass
STAP-1190	07/01/09	Am-241	0.01 ± 0.02	0.00	0.01 - 0.05	Pass
STAP-1190	07/01/09	Co-57	6.78 ± 0.27	6.48	4.54 - 8.42	Pass
STAP-1190	07/01/09	Co-60	1.06 ± 0.18	1.03	0.72 - 1.34	Pass
STAP-1190	07/01/09	Cs-134	0.01 ± 0.06	0.00	0.01 - 0.05	Pass
STAP-1190	07/01/09	Cs-137	1.49 ± 0.27	1.40	0.98 - 1.82	Pass
STAP-1190	07/01/09	Mn-54	6.00 ± 0.45	5.49	3.84 - 7.14	Pass
STAP-1190	07/01/09	Sr-90	0.79 ± 0.13	0.84	0.59 - 1.09	Pass
STAP-1190	07/01/09	Zn-65	4.55 ± 0.66	3.93	2.75 - 5.11	Pass
STVE-1190	07/01/09	Co-57	8.90 ± 0.60	8.00	5.60 - 10.40	Pass
STVE-1190	07/01/09	Co-60	2.50 ± 0.36	2.57	1.80 - 3.34	Pass
STVE-1190	07/01/09	Cs-134	0.01 ± 0.11	0.00	0.00 - 0.10	Pass
STVE-1190	07/01/09	Cs-137	2.42 ± 0.16	2.43	1.70 - 3.16	Pass
STVE-1190	07/01/09	Mn-54	8.35 ± 0.70	7.90	5.50 - 10.30	Pass
STVE-1190	07/01/09	Zn-65	0.01 ± 0.26	0.00	0.00 - 0.10	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

A6-2

·····				Concentration ¹) ,	
				Known	Control	,
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
· · ·	• • .					
STW-1191	07/01/09	Gr. Alpha	0.88 ± 0.07	1.05	0.00 - 2.09	Pass
STW-1191	07/01/09	Gr. Beta	7.29 ± 0.10	7.53	3.77 - 11.30	Pass
STW-1192	07/01/09	Am-241	0.88 ± 0.08	1.04	0.73 - 1.35	Pass
STW-1192	07/01/09	Co-57	37.20 ± 1.50	36.60	25.60 - 47.60	Pass
STW-1192	07/01/09	Co-60	,15.10 ± 0.90	15.40	10.80 - 20.00	Pass
STW-1192	07/01/09	Cs-134	30.30 [°] ± 2.10	32.20	22.50 - 41.90	Pass
STW-1192	07/01/09	Cs-137	41.90 ± 1.80	41.20	28.80 - 53.60	Pass
STW-1192	07/01/09	Fe-55	54.50 ± 15.50	60.80	42.60 - 79.00	Pass
STW-1192	07/01/09	H-3	680.30 ± 33.60	634.10	443.90 - 824.30	Pass
STW-1192 °	07/01/09	Mn-54	0.01 ± 0.26	0.00	0.00 - 1.00	Pass
STW-1192	07/01/09	Ni-63	38.70 ± 2.60	44.20	30.90 - 57.50	Pass
STW-1192	07/01/09	Pu-238	0.02 ± 0.01	0.02	0.00 - 0.05	Pass
STW-1192	07/01/09	Pu-239/40	1.70 ± 0.10	1.64	1.15 - 2.13	Pass
STW-1192	07/01/09	Sr-90	12.90 ± 1.70	12.99	9.09 - 16.89	Pass
STW-1192	07/01/09	Tc-99	7.60 ± 0.40	10.00	7.00 - 13.00	Pass
STW-1192	07/01/09	Tc-99	7.60 ± 0.40	10.00	7.00 - 13.00	Pass
STW-1192	07/01/09	U-233/4	2.90 ± 0.10	2.96	2.07 - 3.85	Pass
STW-1192	07/01/09	U-238	3.00 ± 0.10	3.03	2.12 - 3.94	Pass
STW-1192	07/01/09	Zn-65	28.50 ± 2.40	26.90	18.80 - 35.00	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

^e Included in the testing series as a "false positive".

^f No errors were found in procedure or calculation. There was not enough sample for a reanalysis. Americium-241 in water was included in the ERA studies (Tbl. A-7) and also in the second round of MAPEP testing. Both analysis results were acceptable.
 ^g One determination was eliminated from the average, due to poor recovery. Average of three determinations, 0.25 ± 0.03 pCi/filter.

^h No reason was determined for the initial high results. The analysis was repeated; result of reanalysis; 0.54 ± 0.12 Bq/filter.

Incomplete separation of strontium from calcium could result in a higher recovery percentage and consequently lower reported

activity. The analysis was repeated; result of reanalysis 363.3 ± 28.6 Bq/kg.

			Concentration (pC	Ci/L)		
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control	
<u> </u>	· ··	·	Result ^c	Result ^d	Limits	Acceptanc
	•					
STAP-1176	03/23/09	Am-241	47.20 ± 3.10	55.4	32.4 - 76.0	Pass
STAP-1176	03/23/09	Co-60	543.60 ± 8.90	490.0	379.0 - 612.0	Pass
STAP-1176	03/23/09	Cs-134	941.30 ± 30.70	865.0	563.0 - 1070.0	Pass
STAP-1176	03/23/09	Cs-137	850.60 ± 19.40	724.0	544.0 - 951.0	Pass
STAP-1176 e	03/23/09	Mn-54	0.00 ± 0.00	0.0	0.0 - 0.0	Pass
STAP-1176	03/23/09	Pu-238	64.50 ± 3.60	57.4	39.4 - 75.5	Pass
STAP-1176	03/23/09	Pu-239/40	88.50 ± 4.20	78.2	56.7 - 101.0	Pass
STAP-1176	03/23/09	Sr-90	93.90 ± 10.00	95.3	41.9 - 148.0	Pass
STAP-1176	03/23/09	U-233/4	50.00 ± 2.47	53.5	33.7 - 79.3	Pass
STAP-1176	03/23/09	U-238	50.40 ± 2.48	53.1	34.0 - 75.4	Pass
STAP-1176	03/23/09	Uranium	101.60 ± 5.30	109.0	55.7 - 173.0	Pass
STAP-1176	03/23/09	Zn-65	237.30 ± 23.70	185.0	128.0 - 256.0	Pass
STAP-1177	03/23/09	Gr. Aipha	76.30 ± 3.47	63.8	33.1 - 96.0	Pass
STAP-1177	03/23/09	Gr. Beta	98.50 ± 3.04	80.7	49.7 - 118.0	Pass
• (· · · ·	
						· .
STSO-1178	03/23/09	Ac-228	1370.00 ± 121.00	1330.0	860.0 - 1880.0	Pass
STSO-1178	.03/23/09	Am-241	1853.00 ± 185.50	1660.0	992.0 - 2130.0	Pass
STSO-1178	03/23/09	Bi-212	1449.00 ± 308.80	1550.0	406.0 - 2310.0	Pass
STSO-1178	.03/23/09	Bi-214	1355.00 ± 66.20	1420.0	872.0 - 2050.0	Pass
STSO-1178	03/23/09	Co-60	7475.00 ± 46.40	7520.0	5470.0 - 10100.0	Pass
STSO-1178	03/23/09	Cs-134	5073.00 ± 74.70	5170.0	3330.0 - 6220.0	Pass
STSO-1178	03/23/09	Cs-137	5040.00 ± 49.70	4970.0	3800.0 - 6460.0	Pass
STSO-1178	03/23/09	K-40	10884.00 ± 292.70	11200.0	8060.0 - 15100.0	Pass
STSO-1178	03/23/09	Mn-54	0.00 ± 0.00	0.0	0.0 - 20.0	Pass
STSO-1178	03/23/09	Pb-212	1259.00 ± 28.40	1260.0	820.0 - 1780.0	Pass
STSO-1178	03/23/09	Pb-214	1464.00 ± 56.80	1510.0	902.0 - 2260.0	Pass
STSO-1178	03/23/09	Pu-238	1853.00 ± 185.50	1590.0	910.0 - 2240.0	Pass
STSO-1178	03/23/09	Pu-239/40	1516.50 ± 168.30	1360.0	928.0 - 1800.0	Pass
STSO-1178	03/23/09	Sr-90	5270.90 ± 290.20	5750.0	2080.0 - 9380.0	Pass
STSO-1178	03/23/09	U-233/4	1452.30 ± 114.40	1600.0	1010.0 - 1990.0	Pass
STSO-1178	03/23/09	Uranium	3013.70 ± 131.10	3270.0	1860.0 - 4410.0	Pass
STSO-1178	03/23/09	Zn-65	2083.00 ± 59.00	1940.0	1540.0 - 2600.0	Pass

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

A7-1

	Concentration (pCi/L)							
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control			
			Result	Result ^d	Limits	Acceptance		
					· · · ·			
STVE-1179	03/23/09	Am-241	2849.70 ± 237.60	3660.0	2090.0 - 5030.0	Pass		
STVE-1179	03/23/09	Cm-244	808.00 ± 85.70	954.0	470.0 - 1480.0	Pass -		
STVE-1179	03/23/09	Co-60	1546.80 ± 31.60	1710.0	1160.0 - 2460.0	Pass		
STVE-1179	03/23/09	Cs-134	1706.00 ± 59.20	1880.0	1080.0 - 2600.0	Pass		
STVE-1179	03/23/09	Cs-137	1940.50 ± 44.80	1800.0	1320.0 - 2500.0	Pass		
STVE-1179	03/23/09	K-40	30107.30 ± 598.00	30800.0	22300.0 - 43700.0	Pass		
STVE-1179	03/23/09	Mn-54	0.00 ± 0.00	0.0	0.0 - 0.0	Pass		
STVE-1179	03/23/09	Sr-90	6604.80 ± 440.10	8860.0	4950.0 - 11800.0	Pass		
STVE-1179	03/23/09	U-233/4	1718.00 ± 128.90	2040.0	1400.0 - 2710.0	Pass		
STVE-1179	03/23/09	U-238	1718.30 ± 128.80	2020.0	1420.0 - 2550.0	Pass		
STVE-1179	03/23/09	Uranium	3499.40 ± 371.00	4150.0	2850.0 - 5360.0	Pass		
STVE-1179	03/23/09	Zn-65	869.40 ± 63.60	878.0	634.0 - 1200.0	Pass		
STW-1180	03/23/09	Am-241	127.50 ± 5.10	132.0	90.4 - 178.0	Pass		
STW-1180	03/23/09	Co-60	1174.10 ± 11.70	1230.0	1070.0 - 1450.0	Pass		
STW-1180	03/23/09	Cs-134	742.20 ± 18.30	790.0	584.0 - 907.0	Pass		
STW-1180	03/23/09	Cs-137	[,] 887.50 ± 14.00	913.0	776.0 - 1090.0	Pass		
STW-1180	03/23/09	Fe-55	323.00 ± 362.00	492.0	286.0 - 657.0	Pass		
STW-1180	03/23/09	Mn-54	0.00 ± 0.00	0.0	0.0 - 0.0	Pass		
STW-1180	03/23/09	Pu-238	96.60 ± 2.20	108.0	81.7 - 134.0	Pass		
STW-1180	03/23/09	Pu-239/40	89.50 ± 2.10	86.3	66.8 - 107.0	Pass		
STW-1180	03/23/09	Sr-90	763.20 ± 12.90	834.0	530.0 - 1120.0	Pass		
STW-1180	03/23/09	U-233/4	95.00 ± 1.80	96.6	72.8 - 124.0	Pass		
STW-1180	03/23/09	U-238	97.40 ± 1.80	95.8	73.2 - 119.0	Pass		
STW-1180	03/23/09	Uranium	195.50 ± 3.70	197.0	142.0 - 262.0	Pass		
STW-1180	03/23/09	Zn-65	653.10 ± 24.10	631.0	535.0 - 786.0	Pass		

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^e Included in the testing series as a "false positive". No activity expected.

[†] The analysis was repeated by leaching and total dissolution methods. Total dissolution yielded results within expected range. Results of the reanalysis: U-233,4, 1655 ± 95 pCi/kg. U-238 1805 ± 97 pCi/kg.

APPENDIX B

DATA REPORTING CONVENTIONS

B-1

Data Reporting Conventions

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

where:

Each single measurement is reported as follows: x = value of the measurement; x±s

 $s = 2\sigma$ counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: < L, where L = the lower limit of detection based on 4.66σ uncertainty for a background sample.

3.0. Duplicate analyses

If duplicate analyses are reported, the convention is as follows. :

3.1	Individual results:	For two analysis results; $x_1 \pm s_1$ and $x_2 \pm s_2$				
	Reported result:	$x \pm s$; where $x =$	$(1/2) (x_1 + x_2)$ and s =	$(1/2) \sqrt{s_1^2 + s_2^2}$		
3.2.	Individual results:	< L ₁ , < L ₂	Reported result: < L,	where L = lower of L_1 and L_2		
3.3.	Individual results:	x ± s, < L	Reported result:	$x \pm s$ if $x \ge L$; < L otherwise.		

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average x and standard deviation "s" of a set of n numbers x_1, x_2, \ldots, x_n are defined as follows:

$$\overline{x} = \frac{1}{n} \sum x$$
 $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$

4.2 Values below the highest lower limit of detection are not included in the average.

4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.

- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the number following those to be retained is less than 5, the number is dropped, and the retained numbers are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the number following those to be retained is equal to or greater than 5, the number is dropped and the last retained number is raised by 1. As an example, 11.445 is rounded off to 11.45.

APPENDIX C

ζ

Maximum Permissible Concentrations of Radioactivity in Air and Water Above Background in Unrestricted Areas Table C-1.

Maximum permissible concentrations of radioactivity in air and water above natural background in unrestricted areas

·	A second seco	1		
	Air (pCi/m ³)	Water (pCi/L)		
Gross alpha	1 x 10 ⁻³	Strontium-89	8,000	
Gross beta	1	Strontium-90	500	
lodine-131 ^b	2.8×10^{-1}	Cesium-137	1,000	
		Barium-140	8,000	
		lodine-131	1,000	
		Potassium-40 [°]	4,000	
		Gross alpha	2	
		Gross beta	10	
• .		Tritium	1 x 10 ⁶	

^a Taken from Table 2 of Appendix B to Code of Federal Regulations Title 10, Part 20, and appropriate footnotes. Concentrations may be averaged over a period not greater than one year.

Value adjusted by a factor of 700 to reduce the dose resulting from the air-grass-cow-milk-child pathway.

A natural radionuclide.

Sampling Location Maps

APPENDIX D

D-1

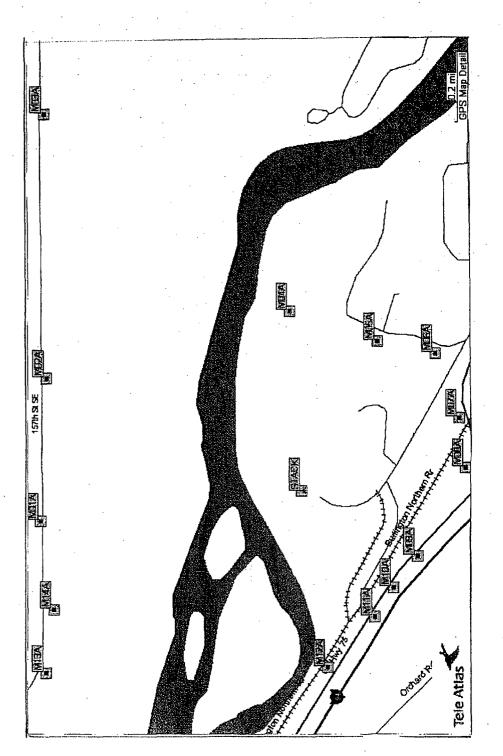


Figure D-1, Sample Collection and Analysis program: TLD locations, Inner ring (Table 5.2).

D-2

rce. All rights

1995-2002

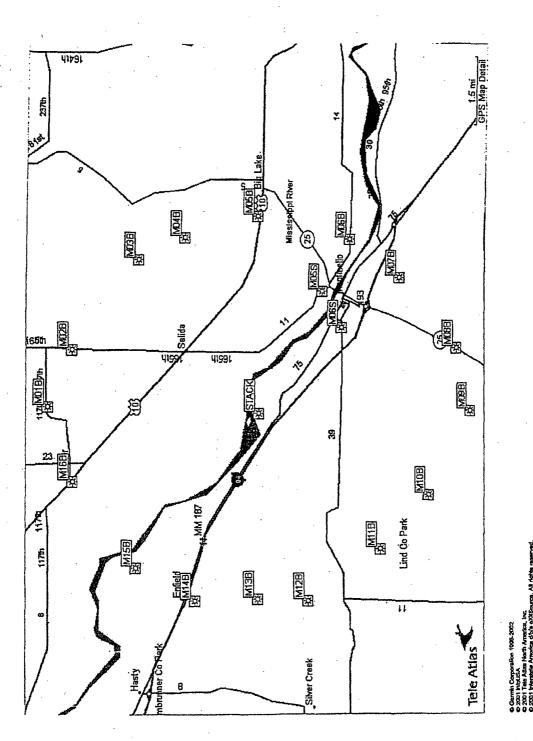


Figure D-2. Sample Collection and Analysis program: TLD locations, Outer ring (Table 5.2).

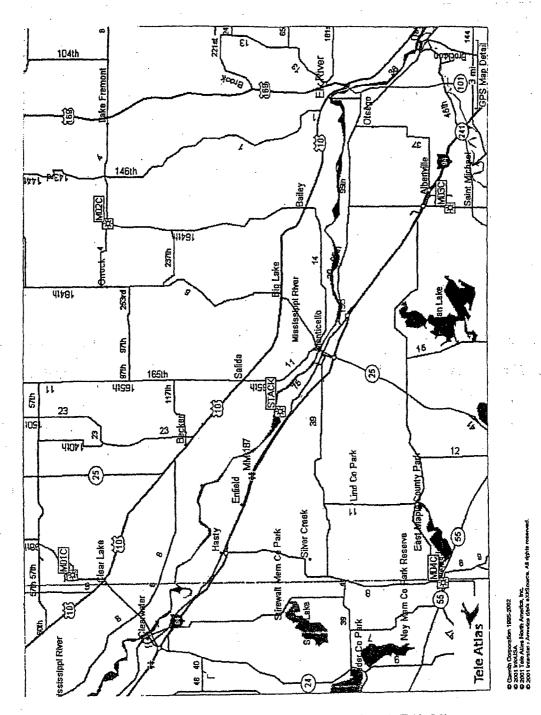


Figure D-3. Sample Collection and Analysis program: TLD locations, Controls (Table 5.2).

D-4

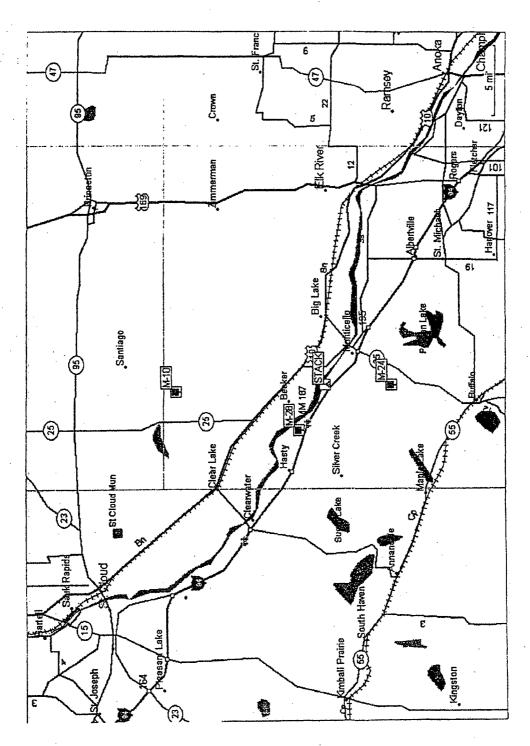


Figure D-4. Sample Collection and Analysis Program: Radiation Environmental Monitoring Program, Milk sampling locations. (Table 5.2)

© Gamin Corporation 1965-2002

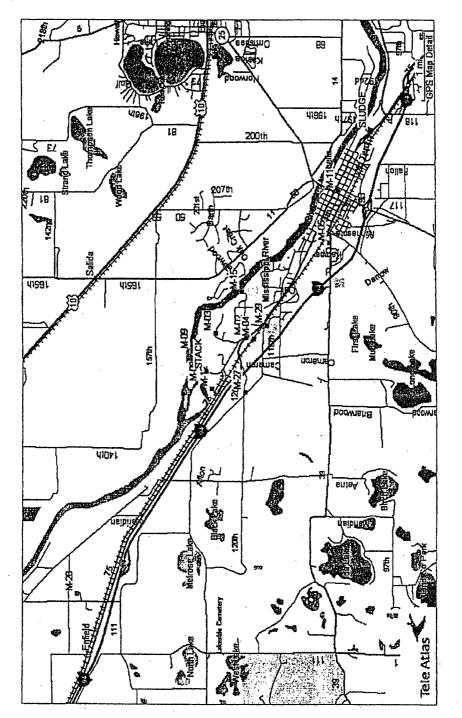
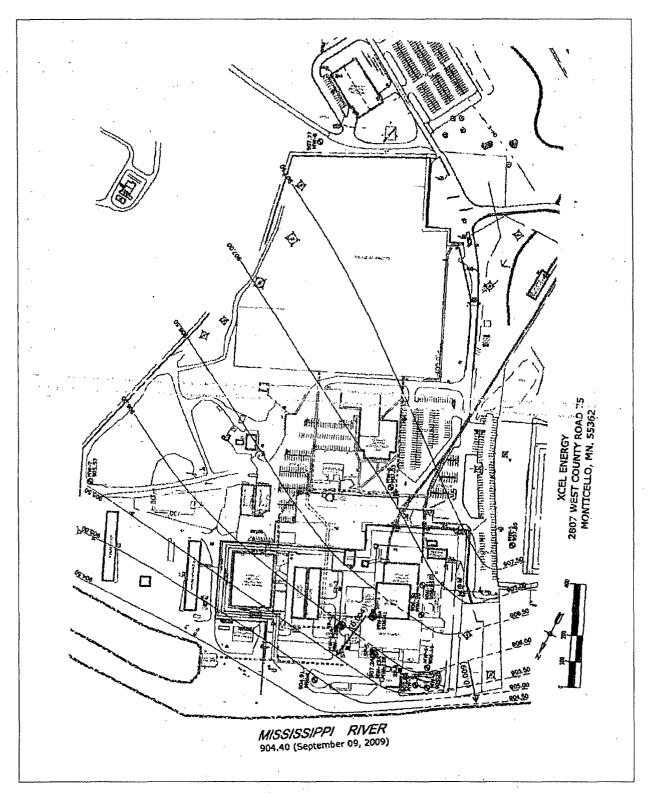



Figure D-5. Sample Collection and Analysis Program: Radiation Environmental Monitoring Program, Milk, Sludge, Ground Water and Shoreline sampling locations (Table 5-2.)

1995-2002 1 Amodes Inc

ł

Sample Collection and Analysis Program: Radiation Environmental Monitoring Program, Groundwater, Onsite monitoring well locations.