LaSalle Generating Station 2601 North 21st Road Marseilles, IL 61341-9757 www.exeloncorp.com

Nuclear

10 CFR 50 Appendix I

RA10-021

May 12, 2010

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555

LaSalle County Station, Units 1 and 2
Facility Operating License Nos. NPF-11 and NPF-18
NRC Docket Nos. 50-373 and 50-374

Subject:

2009 Annual Radiological Environmental Operating Report

Enclosed is the Exelon Generation Company, LLC, LaSalle County Station 2009 Annual Radiological Environmental Operating Report, submitted in accordance with Technical Specification 5.6.2, "Annual Radiological Environmental Operating Report." This report contains the results of the Radiological Environmental and Meteorological Monitoring Programs. This report is enclosed as an attachment.

In addition, this attachment contains the results of groundwater monitoring conducted in accordance with Exelon's Radiological Groundwater Protection Program, which is a voluntary program implemented in 2006. This information is being reported in accordance with a nuclear industry initiative.

Should you have any questions concerning this letter, please contact Mr. Terrence W. Simpkin, Regulatory Assurance Manager, at (815) 415-2800.

Respectfully,

David B. Wozniak Site Vice President LaSalle County Station

Attachment

cc: Regional Administrator - NRC Region III

NRC Senior Resident Inspector - LaSalle County Station

Docket No: 50-373 50-374

LASALLE COUNTY STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

1 January Through 31 December 2009

Prepared By

Teledyne Brown Engineering Environmental Services

LaSalle County Station Marseilles, IL 61341

May 2010

Table Of Contents

Summary and Conclusions	1
Introduction	2
Due was Due what's a	_
Results and Discussion	8
A. Aquatic Environment	
1. Surface Water	
E. Summary of Results – Inter-laboratory Comparison Program.	
	B. Implementation of the Objectives. Program Description A. Sample Collection B. Sample Analysis C. Data Interpretation D. Program Exceptions E. Program Changes Results and Discussion A. Aquatic Environment 1. Surface Water 2. Ground/well Water 3. Fish 4. Sediment. B. Atmospheric Environment 1. Airborne a. Air Particulates b. Airborne Iodine 2. Terrestrial a. Milk b. Food Products C. Ambient Gamma Radiation D. Land Use Survey

Appendices

Appendix A	Radiological Environmental Monitoring Report Annual Summary
<u>Tables</u>	
Table A-1	Radiological Environmental Monitoring Program Annual Summary for the LaSalle County Station, 2009
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
<u>Tables</u>	
Table B-1:	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, LaSalle County Station, 2009
Table B-2:	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, LaSalle County Station, 2009
<u>Figures</u>	
Figure B-1:	Inner Ring TLD Locations of the LaSalle County Station, 2009
Figure B-2:	Outer Ring TLD Locations of the LaSalle County Station, 2009
Figure B-3:	Fixed Air Sampling Locations of the LaSalle County Station, 2009
Figure B-4:	Ingestion and Waterborne Exposure Pathway Sample Locations of the LaSalle County Station, 2009
Appendix C	Data Tables and Figures - Primary Laboratory
<u>Tables</u>	
Table C-I.1	Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2009.
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2009.
Table C-I.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2009.
Table C-II.1	Concentrations of Tritium in Ground/Well Water Samples Collected in the Vicinity of LaSalle County Station, 2009

Concentrations of Gamma Emitters in Ground/Well Water Samples Table C-II.2 Collected in the Vicinity of LaSalle County Station, 2009. Concentrations of Gamma Emitters in Fish Samples Collected in the Table C-III.1 Vicinity of LaSalle County Station, 2009. Table C-IV.1 Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of LaSalle County Station, 2009. Concentrations of Gross Beta in Air Particulate Samples Collected in Table C-V.1 the Vicinity of LaSalle County Station, 2009. Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 Table C-V.2 pCi/cu meter) in Air Particulate Samples Collected in the Vicinity of LaSalle County Station, 2009. Concentrations of Gamma Emitters in Air Particulate Samples Table C-V.3 Collected in the Vicinity of LaSalle County Station, 2009. Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity Table C-VI.1 of LaSalle County Station, 2009. Concentrations of I-131 in Milk Samples Collected in the Vicinity of Table C-VII.1 LaSalle County Station, 2009. Concentrations of Gamma Emitters in Milk Samples Collected in the Table C-VII.2 Vicinity of LaSalle County Station, 2009. Table C-VIII.1 Concentrations of Gamma Emitters in Vegetation Samples Collected in the Vicinity of LaSalle County Station, 2009. Table C-IX.1 Quarterly TLD Results for LaSalle County Station, 2009. Mean Quarterly TLD Results for the Inner Ring, Outer Ring, Other and Table C-IX.2 Control Locations for LaSalle County Station, 2009. Summary of the Ambient Dosimetry Program for LaSalle County Table C-IX.3 Station, 2009. **Figures** Figure C-1 Surface Water - Gross Beta – Stations L-21 (C) and L-40 Collected in the Vicinity of LCS, 2000 - 2009. Surface Water - Tritium - Stations L-21 (C) and L-40 Collected in the Figure C-2 Vicinity of LCS, 2000 - 2009. Air Particulate - Gross Beta - Stations L-01 and L-03 Collected in the Figure C-3 Vicinity of LCS, 2000 - 2009. Air Particulate - Gross Beta - Stations L-05 and L-06 Collected in the Figure C-4 Vicinity of LCS, 2000 - 2009. Air Particulate - Gross Beta - Station L-10 (C) Collected in the Vicinity Figure C-5 of LCS, 2000 - 2009.

Figure C-6 Air Particulate - Gross Beta - Stations L-04 and L-07 Collected in the Vicinity of LCS, 2005 - 2009. Figure C-7 Air Particulate - Gross Beta - Stations L-08 and L-11 Collected in the Vicinity of LCS, 2005 - 2009. Appendix D Inter-Laboratory Comparison Program <u>Tables</u> Analytics Environmental Radioactivity Cross Check Program Table D-1 Teledyne Brown Engineering, 2009 Table D-2 ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2009 Table D-3 DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2009 Table D-4 ERA Statistical Summary Proficiency Testing Program Environmental, Inc., 2009 Table D-5 DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Environmental, Inc., 2009 Appendix E **Effluent Data** Appendix F Meteorological Data Appendix G Annual Radiological Groundwater Protection Program Report (ARGPPR)

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program conducted for the LaSalle County Station (LCS) by Exelon covers the period 1 January 2009 through 31 December 2009. During that time period, 1,454 analyses were performed on 1,355 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of LCS had no adverse radiological impact on the environment.

Surface water samples were analyzed for concentrations of gross beta, tritium and gamma emitting nuclides. Ground/well water samples were analyzed for concentrations of tritium and gamma emitting nuclides. No fission or activation products were detected. Gross beta and tritium activities detected were consistent with those detected in previous years.

Fish (commercially and recreationally important species) and sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected in fish or sediment. Sediment samples had Cs-137 concentrations consistent with levels observed during the preoperational years. No plant produced fission or activation products were found in sediment.

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. No fission or activation products were detected.

High sensitivity I-131 analyses were performed on weekly air samples. All results were less than the minimum detectable activity.

Cow milk samples were analyzed for concentrations of I-131 and gamma emitting nuclides. All I-131 results were below the minimum detectable activity. Concentrations of naturally occurring K-40 were consistent with those detected in previous years. No fission or activation products were found.

Food product samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using thermoluminescent dosimeters. Levels detected were consistent with those observed in previous years.

II. Introduction

The LaSalle County Station (LCS), consisting of two boiling water reactors, each rated for 3489 MWt, owned and operated by Exelon Corporation, is located in LaSalle County, Illinois. Unit No. 1 went critical on 16 March 1982. Unit No. 2 went critical on 02 December 1983. The site is located in northern Illinois, approximately 75 miles southwest of Chicago, Illinois.

A Radiological Environmental Monitoring Program (REMP) for LCS was initiated in 1982. (The preoperational period for most media covers the periods 1 January 1979 through 26 December 1981 and was summarized in a separate report.) This report covers those analyses performed by Teledyne Brown Engineering (TBE), Global Dosimetry, and Environmental Inc. (Midwest Labs) on samples collected during the period 1 January 2009 through 31 December 2009.

A. Objectives of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.

B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.

III. Program Description

A. Sample Collection

Samples for the LCS REMP were collected for Exelon Nuclear by Environmental Inc. (Midwest Labs). This section describes the general

collection methods used by Environmental Inc. (Midwest Labs) to obtain environmental samples for the LCS REMP in 2009. Sample locations and descriptions can be found in Tables B–1 and B–2, and Figures B–1 through B–4, Appendix B.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, ground/well water, fish, and sediment. Two gallon water samples were collected weekly from two surface water locations (L-21 and L-40) and composited for monthly and quarterly required analyses. Control location was L-21. Two ground/well water locations (L-27 and L-28) were also grab sampled quarterly. All samples were collected in new unused plastic bottles, which were rinsed with source water prior to collection. Fish samples comprising the flesh of local representative species were collected semiannually at three locations, L-34, L-35 and L-36 (Control). Sediment samples composed of recently deposited substrate were collected at three locations semiannually, L-21 (Control), L-40 and L-41.

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, milk and food products. Airborne iodine and particulate samples were collected and analyzed weekly at nine locations (L-01, L-03, L-04, L-05, L-06, L-07, L-08, L-10 and L-11). The control location was L-10. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The air filters and air iodine samples were replaced weekly and sent to the laboratory for analysis.

Milk samples were collected biweekly at one location (L-42) from May through October, and monthly from November through April. The control location was L-42. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Food products were collected annually in September at five locations (L-Quad C, L-Quad 1, L-Quad 2, L-Quad 3, and L-Quad 4). The control location was L-Quad C. Various types of samples were collected and placed in new unused plastic bags, and sent to the laboratory for analysis.

Ambient Gamma Radiation

Direct radiation measurements were made using CaF₂ thermoluminescent dosimeters (TLD). Each location consisted of 2 TLD sets. The TLD locations were placed on and around the LCS site as follows:

An <u>inner ring</u> consisting of 16 locations (L-101, L-102, L-103, L-104, L-105, L-106, L-107, L-108, L-109, L-110, L-111B, L-112, L-113A, L-114, L-115 and L-116) near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off—site doses) from LCS release.

An <u>outer ring</u> consisting of 16 locations (L-201, L-202, L-203, L-204, L-205, L-206, L-207, L-208, L-209, L-210, L-211, L-212, L-213, L-214, L-215 and L-216) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

An other set consisting of eight locations (L-01, L-03, L-04, L-05, L-06, L-07, L-08 and L-11).

The balance of one location (L-10) representing the control area.

The specific TLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- 2. Site meteorological data taking into account distance and elevation for each of the sixteen–22 1/2 degree sectors around the site, where estimated annual dose from LCS, if any, would be most significant;
- 3. On hills free from local obstructions and within sight of the vents (where practical);
- 4. And near the closest dwelling to the vents in the prevailing downwind direction.

(Two TLDs – each comprised of two CaF₂ thermoluminescent phosphors enclosed in plastic – were placed at each location approximately six feet above ground level. The TLDs were exchanged quarterly and sent to Global Dosimetry for analysis.)

B. Sample Analysis

This section describes the general analytical methodologies used by TBE and Environmental Inc (Midwest Labs) to analyze the environmental

samples for radioactivity for the LCS REMP in 2009. The analytical procedures used by the laboratories are listed in Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in surface water and air particulates.
- 2. Concentrations of gamma emitters in ground/well and surface water, air particulates, milk, fish, sediment and vegetation.
- 3. Concentrations of tritium in ground/well and surface water.
- 4. Concentrations of I-131 in air and milk.
- 5. Ambient gamma radiation levels at various site environs.

C. Data Interpretation

The radiological and direct radiation data collected prior to LaSalle County Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, LaSalle County Station was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required LCS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity effecting a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface water and food product 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For ground/well water, fish, sediment, air particulate and milk 11 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, Cs-134, Cs-137, Ba-140, and La-140 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2009 the LCS REMP had a sample recovery rate in excess of 99%. Sample anomalies and missed samples are listed in the tables below:

Table D-1 LISTING OF SAMPLE ANOMALIES

Sample Type	Location Code	Collection Date	Reason
A/I	L-08	01/22/09	No apparent reason for low reading of 162.1 hours.
A/I	L-05	03/05/09	No apparent reason for low reading of 89.7 hours.
A/I	L-10	03/05/09	No apparent reason for low reading of 159.5 hours.
A/I	L-05	03/19/09	No apparent reason for low reading of 139.1 hours.

Table D-1 LISTING OF SAMPLE ANOMALIES (continued)

Sample Type	Location Code	Collection Date	Reason
A/I	L-05	03/26/09	No apparent reason for low reading of 147.2 hours. Collector will monitor timer for possible replacement.
A/I	L-05	04/02/09	Estimated reading of 169.0 hours; collector placed new timer.
A/I	L-03	06/11/09	Low reading of 141.3 hours due to planned power outage.
A/I	L-03	06/18/09	Low reading of 71.0 hours due to recent power restoration.
A/I	L-03	07/02/09	No apparent reason for low reading of 168.3 hours (8-day run).
A/I	L-03	07/09/09	Low reading of 157.4 hours possibly due to construction in area.
A/I	L-05	07/09/09	Low reading of 158.4 hours possibly due to construction in area.
A/I	L-03	07/16/09	Low reading of 147.8 hours possibly due to construction in area.
A/I	L-05	07/16/09	Low reading of 150.1 hours possibly due to construction in area.
A/I	L-03	07/23/09	Low reading of 155.5 hours possibly due to construction in area.
A/I	L-05	07/23/09	Low reading of 149.0 hours possibly due to construction in area.
A/I	L-03	07/30/09	Low reading of 155.5 hours possibly due to construction in area.
A/I	L-06	11/19/09	No apparent reason for low reading of 162.0 hours.
A/I	L-01	12/03/09	No apparent reason for low reading of 174.2 hours (8-day run).

Table D-1 <u>LISTING OF SAMPLE ANOMALIES (continued)</u>

Sample	Location	Collection	Reason
Type	Code	Date	
A/I	L-06	12/23/09	No apparent reason for low reading of 71.5 hours.

Table D-2 <u>LISTING OF MISSED SAMPLES</u>

Sample Type	Location Code	Collection Date	Reason
ww	L-27	01/08/09	Collector will obtain well water on 01/15/09.
ww	L-28	01/08/09	Well #6 out of service; collector will obtain well water on 01/15/09.
sw	L-21	01/15/09	No sample; water frozen.
SW	L-40	01/15/09	No sample; water frozen.
ww	L-27	01/15/09	Collector will obtain well water on 01/22/09.
ww	L-28	01/15/09	Well #6 out of service; collector will obtain well water on 01/22/09.

Each program exception was reviewed to understand the causes of the program exception. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

There were no program changes in 2009.

IV. Results and Discussion

A. Aquatic Environment

1. Surface Water

Samples were taken weekly and composited monthly at two

locations (L-21 and L-40). Of these locations only L-40 located downstream, could be affected by LaSalle's effluent releases. The following analyses were performed.

Gross Beta

Samples from all locations were analyzed for concentrations of gross beta (Table C–I.1, Appendix C). Gross beta was detected in all samples with a range of 5.6 to 10.2 pCi/l. Concentrations detected were consistent with those detected in previous years (Figure C–1, Appendix C). The required LLD was met.

<u>Tritium</u>

Quarterly composites of weekly collections were analyzed for tritium activity (Table C–I.2, Appendix C). Tritium was detected in two of eight samples with a range of 164 to 180 pCi/l. Concentrations detected were consistent with those detected in previous years (Figure C–2, Appendix C). The 2000 pCi/L OCDM and contractually required 200 pCi/L LLDs were met.

Gamma Spectrometry

Samples from both locations were analyzed for gamma emitting nuclides (Table C–I.3, Appendix C). No nuclides were detected, and all required LLDs were met.

2. Ground/well Water

Quarterly grab samples were collected at two locations (L-27 and L-28). Wells 4, 5, 6 are associated with L-28. L-27 and L-28 well 6 could be affected by LaSalle's effluent releases. The following analyses were performed:

Tritium

Quarterly grab samples from the locations were analyzed for tritium activity (Table C–II.1, Appendix C). No tritium was detected and the 2000 pCi/L OCDM and contractually required 200 pCi/L LLDs were met.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–II.2, Appendix C). No nuclides were detected, and all required LLDs were met.

3. Fish

Fish samples comprising the flesh of local representative species were collected at three locations (L-34, L-35 and L-36) semiannually. Locations L-34 and L-35 could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C–III.1, Appendix C). Naturally occurring K-40 was found at all sample locations and ranged from 2,130 to 4,530 pCi/kg wet. No fission or activation products were found.

4. Sediment

Aquatic sediment samples were collected at three locations (L-21, L-40 and L-41) semiannually. Locations L-40 and L-41, located downstream, could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from all sediment sample locations were analyzed for gamma emitting nuclides (Table C–IV.1, Appendix C). Nuclides detected were naturally occurring K-40 and Cs-137.

Potassium-40 was found at all sample locations and ranged from 11,800 to 17,900 pCi/kg dry. Cs-137 was found in one sample at a concentration of 86 pCi/kg dry. The activity detected was consistent with those detected in previous years and is likely due to fallout from above-ground nuclear weapons testing. No LaSalle fission or activation products were found.

B. Atmospheric Environment

1. Airborne

a. Air Particulates

Continuous air particulate samples were collected from nine locations on a weekly basis. The nine locations were separated into four groups: Group I (onsite) represents locations within the LCS site boundary (L-03 and L-05), Group II (near site) represents the locations near the LCS

site (L-01 and L-06), Group III (far field) represents the control location at an intermediate distance from LCS (L-04, L-07, L-08 and L-11) and Group IV (Control) represents the control location at a remote distance (L-10). The following analyses were performed:

Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C-V.1 and C-V.2, Appendix C). Detectable gross beta activity was observed at all locations. Comparison of results among the four groups aid in determining the effects, if any, resulting from the operation of LCS. The results from the OnSite locations (Group I) ranged from 8 to 39 E-3 pCi/m³ with a mean of 20 E-3 pCi/m³. The results from the near site location (Group II) ranged from 8 to 58 E-3 pCi/m³ with a mean of 20 E-3 pCi/m³. The results from the far field locations (Group III) ranged from 8 to 49 E-3 pCi/m³ with a mean of 21 E-3 pCi/m³. The results from the Control location (Group IV) ranged from 8 to 44 E-3 pCi/m³ with a mean of 21 E-3 pCi/m³. Comparison of the 2009 air particulate data with previous years data indicate no effects from the operation of LCS (Figures C-3 through C-7, Appendix C). In addition a comparison of the weekly mean values for 2009 indicate no notable differences among the three groups.

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–V.3, Appendix C). Naturally occurring Be-7 due to cosmic ray activity was detected in 33 of 36 samples. These values ranged from 66 to 218 E–3 pCi/m³. Naturally occurring K-40 was detected in three of 36 samples and ranged from 5.5 to 6.7 E–3 pCi/m³. All other nuclides were less than the MDC.

b. Airborne lodine

Continuous air samples were collected from nine locations (L-01, L-03, L-04, L-05, L-06, L-07, L-08, L-10, and L-11) and analyzed weekly for l-131 (Table C–VI.1, Appendix C). No nuclides were detected, and all required LLDs were met.

2. Terrestrial

a. Milk

Samples were collected from one location (L-42) biweekly May through October and monthly November through April. The following analyses were performed:

lodine-131

Milk samples from the location were analyzed for concentrations of I-131 (Table C–VII.1, Appendix C). No nuclides were detected, and all required LLDs were met.

Gamma Spectrometry

Each milk sample was analyzed for concentrations of gamma emitting nuclides (Table C–VII.2, Appendix C).

Naturally occurring K-40 activity was found in all samples and ranged from 1,100 to 1,370 pCi/l. No other nuclides were detected, and all required LLDs were met.

b. Food Products

Food product samples were collected at five locations (L-Quad C, L-Quad 1, L-Quad 2, L-Quad 3 and L-Quad 4) when available. Four locations, (L-Quad 1, L-Quad 2, L-Quad 3 and L-Quad 4) could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–VIII.1, Appendix C). No nuclides were detected, and all required LLDs were met.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing Panasonic 814 (CaF₂) thermoluminescent dosimeters. Forty-one TLD locations were established around the site. Results of TLD measurements are listed in Tables C–IX.1 to C–IX.3, Appendix C.

Most TLD measurements were below 30 mR/standard month, with a range of 19 to 35 mR/quarter. A comparison of the Inner Ring, Outer

Ring, and Other data to the Control Location data, indicate that the ambient gamma radiation levels from the Control Location L-10 were comparable.

D. Land Use Survey

A Land Use Survey conducted during the August 2009 growing season around the LaSalle County Station (LCS) was performed by Environmental Inc. (Midwest Labs) for Exelon Nuclear to comply with Radiological Effluent Control 12.5.2 of the LaSalle's Offsite Dose Calculation Manual. The purpose of the survey was to document the nearest resident, milk producing animal and garden of greater than 500 ft² in each of the sixteen 22 ½ degree sectors around the site. The distance and direction of all locations from the LCS reactor buildings were positioned using Global Positioning System (GPS) technology. There were no changes required to the LCS REMP, as a result of this survey. The results of this survey are summarized below.

Dista	nce in Miles from t	the LCS Reactor B	uildings
Sector	Residence	Livestock	Milk Farm
	Miles	Miles	Miles
AN	3.9	4.0	•
B NNE	1.6	1.7	-
C NE	2.1	3.5	-
D ENE	3.3	3.8	-
ΕE	3.2	-	12.6
F ESE	1.4	-	-
G SE	1.7	4.7	-
H SSE	1.8	4.7	-
JS	1.5	4.7	-
K SSW	0.7	-	-
L SW	1.0	5.8	•
MWSW	1.5	1.5	-
NW	1.5	3.0	-
P WNW	0.9	3.0	-
Q NW	1.8	4.0	-
R NNW	1.7	4.6	-

E. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices (Appendix D). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is \pm 20% of the reference value. Performance is acceptable with warning when a mean result falls in the range from \pm 20% to \pm 30% of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the primary laboratory, 17 out of 18 analytes met the specified acceptance criteria. One sample did not meet the specified acceptance criteria for the following reason:

1. Teledyne Brown Engineering's Analytics June 2009 Zn-65 in AP result of 137 pCi/L was higher than the known value of 101 pCi/L, resulting in a found to known ratio of 1.36. NCR 09-23 was initiated to investigate this failure. The failure appears to be a result of a slightly high bias on Detector 7. A recount on Detector 17 resulted in a Zn-65 result of 101 pCi/L. The detector has been tagged out-of-service until a recalibration can be performed. Detector 7 is not used for client samples.

For the secondary laboratory, Environmental, Inc., 11 out of 14 analytes met the specified acceptance criteria. Four samples did not meet the specified acceptance criteria for the following reasons:

- Environmental Inc.'s ERA April 2009 Cs-137 in water result of 147.7 pCi/L exceeded the lower control limit of 151.0 pCi/L. All gamma emitters showed a low bias. A large plastic burr found on the base of the Marinelli kept the beaker from sitting directly on the detector. Recounting in a different beaker gave an acceptable result of 155.33 ± 14.55 pCi/L.
- 2. Environmental Inc.'s ERA April 2009 H-3 in water result of 22819 pCi/L exceeded the upper control limit of 22300 pCi/L. A recount of the original vials averaged 23,009 pCi/L. Reanalysis results were acceptable at 19,170 pCi/L. No cause could be found for the failure.
- 3. Environmental Inc.'s MAPEP January 2009 Sr-90 in AP result of 0.93 exceeded the upper control limit of 0.83. Reanalysis results were acceptable at 0.54 ± 0.12 Bq/filter. No cause could be found for the failure.
- 4. Environmental Inc.'s MAPEP July 2009 Sr-90 in soil result of 310.5 Bq/kg exceeded the lower control limit of 319 Bq/kg. Reanalysis results were acceptable at 363.3 Bq/kg. Incomplete separation of strontium from calcium could result in a higher recovery percentage and consequently lower reported activity.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

	NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES I			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	(M)
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	SURFACE WATER (PCI/LITER)	GR-B	24	4	7.2 (12/12) (5.6/8.9)	7 (12/12) (5.6/10.2)	7.2 (12/12) (5.6/8.9)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
		Н-3	∞	200	180 (1/4)	164 (1/4)	180 (1/4)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
A-1		GAMMA MN-54	24	15	<pre></pre>	<pre></pre>			0
		CO-58		15	· CTTD	<tr></tr>	1		0
		FE-59		30	Column</td <td><lld< td=""><td></td><td></td><td>0</td></lld<></td>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		09-00		15	<ptd< td=""><td><lld< td=""><td>ı</td><td></td><td>0</td></lld<></td></ptd<>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0
		ZN-65		30	TD</td <td><lld< td=""><td>•</td><td></td><td>0</td></lld<></td>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
22 of 1		NB-95		15	Column</td <td><pp></pp></td> <td></td> <td></td> <td>0</td>	<pp></pp>			0
87	SURFACE WATER	ZR-95		30	<lld< td=""><td><lld< td=""><td>ı</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0
		* THE MI FRACTION O	EAN AND 2 STAN IF DETECTABLE	* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)	N VALUES ARE C	SALCULATED US OCATIONS IS II	SING THE POSIT NDICATED IN P/	IVE VALUES RRENTHESES (F)	

A-1 22 of 187

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

τ ,	NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	N (M)
. .	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
•	(PC/LLTER)								
		1-131		. 15	<lld< td=""><td><lld< td=""><td>1</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>1</td><td></td><td>0</td></lld<>	1		0
,		CS-134		15	<lld< td=""><td><lld< td=""><td>ı</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0
_2		CS-137		81	<lld< td=""><td><pre></pre></td><td></td><td></td><td>0</td></lld<>	<pre></pre>			0
		BA-140		09	<ttd< td=""><td><pre></pre></td><td></td><td></td><td>0</td></ttd<>	<pre></pre>			0
		LA-140		15	<ttd< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></ttd<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	GROUND WATER (PCI/LITER)	Н-3	12	200	<lld< td=""><td><lld< td=""><td>ı</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0
23 of		GAMMA MN-54	12	15	<ttd< td=""><td><lld< td=""><td>1</td><td></td><td>0</td></lld<></td></ttd<>	<lld< td=""><td>1</td><td></td><td>0</td></lld<>	1		0
	GROUND WATER (PCI/LITER)	CO-58	1	[5]	- CLLD <lld si<="" td=""><td><lld< td=""><td>L C C C C C C C C C C C C C C C C C C C</td><td>CLI TOWN</td><td>0</td></lld<></td></lld>	<lld< td=""><td>L C C C C C C C C C C C C C C C C C C C</td><td>CLI TOWN</td><td>0</td></lld<>	L C C C C C C C C C C C C C C C C C C C	CLI TOWN	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

	NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES IL	,		DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTR	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	W
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE		MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
		FE-59		30	<lld< td=""><td><lld< td=""><td>ı</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0
		09-00		15	qTT>	d⊥.>	1		0
A-3		ZN-65		30	CLLD	<tr></tr>	,		0
		NB-95		15	<ttd< td=""><td>QTΓ></td><td></td><td></td><td>0</td></ttd<>	QTΓ>			0
		ZR-95		30	d⊥⊳	<tr></tr>	1		0
		CS-134		15	d⊥.	<ttd< td=""><td></td><td></td><td>0</td></ttd<>			0
24		CS-137		18	d⊥.>	CTTD	1		0
4 of 187	GROUND WATER (PCI/LITER)	BA-140		09	<pre></pre>	QTT>			0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

	NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	N (M)
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
		LA-140		15	4LD	d∐⊳	,		0
	FISH (PCVKG WET)	GAMMA MN-54	12	130	<pre></pre>	σπ⊳			0
A-4		CO-58		130	<ttd< td=""><td>ď∏></td><td></td><td></td><td>0</td></ttd<>	ď∏>			0
		FE-59		260	<lld< td=""><td>QTT></td><td>1</td><td></td><td>0</td></lld<>	QTT>	1		0
		09-02		130	dll>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
		ZN-65		260	d⊥.	CLLD			0
2		NB-95		NA	QTT>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
25 of 187	FISH (PCI/KG WET)	ZR-95		NA	<pre></pre>	d∏⊳	1		0

25 of 187

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

LOCATION OF FACILITY:	CILITY: MARSEILLES IL	3 IL		REPORTING PERIOD: INDICATOR CONTR	PERIOD: CONTROL	ANNUAL 2009 LOCATION W	ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	JN (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	CS-134		130	<lld< td=""><td><pre></pre></td><td>1</td><td></td><td>0</td></lld<>	<pre></pre>	1		0
	CS-137		150	<lld< td=""><td><ptd <<="" td=""><td></td><td></td><td>0</td></ptd></td></lld<>	<ptd <<="" td=""><td></td><td></td><td>0</td></ptd>			0
A-:	BA-140		NA	<ud< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></ud<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
5	LA-140		NA	<lld< td=""><td><ttd< td=""><td></td><td></td><td>0</td></ttd<></td></lld<>	<ttd< td=""><td></td><td></td><td>0</td></ttd<>			0
SEDIMENT (PCI/KG DRY)	GAMMA MN-54	9	NA	d⊥.	<pre></pre>	ı		0
	CO-58		NA	<lld< td=""><td><tr></tr></td><td>ı</td><td></td><td>0</td></lld<>	<tr></tr>	ı		0
	FE-59		NA	<lld< td=""><td><ttd< td=""><td>,</td><td></td><td>0</td></ttd<></td></lld<>	<ttd< td=""><td>,</td><td></td><td>0</td></ttd<>	,		0
SEDIMENT (PCI/KG DRY)	09-00		NA	<lld< td=""><td>dJ/></td><td></td><td></td><td>0</td></lld<>	dJ/>			0
87	ZN-65		NA	<lld< td=""><td>d∏></td><td>ı</td><td></td><td>0</td></lld<>	d∏>	ı		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE ITY: MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTR	JMBER: S PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	N (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	NB-95		χ	<ud< td=""><td>cLLD</td><td>,</td><td></td><td>0</td></ud<>	cLLD	,		0
	ZR-95		N	<lld< td=""><td><pre></pre></td><td>ı</td><td></td><td>0</td></lld<>	<pre></pre>	ı		0
A-6	CS-134		150	TD</td <td><pre></pre></td> <td>1</td> <td></td> <td>0</td>	<pre></pre>	1		0
	CS-137		180	QTT>	86 (1/2)	86 (1/2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTREAM	0 STREAM
	BA-140		NA	<lld< td=""><td>d⊥</td><td>1</td><td>4.0 MILES NE OF SITE</td><td>0</td></lld<>	d⊥	1	4.0 MILES NE OF SITE	0
	LA-140		NA	TTD</td <td>dT1></td> <td>1</td> <td></td> <td>0</td>	dT1>	1		0
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	468	01	20 (416/416) (8/58)	21 (52/52) (8/44)	21 (52/52) (9/42)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
187	GAMMA MN-54	36	NA	<lld< td=""><td><!--TD</td--><td></td><td></td><td>0</td></td></lld<>	TD</td <td></td> <td></td> <td>0</td>			0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE: MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	N (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	85-00		N A	<lld< td=""><td>ďπ⊳</td><td>·</td><td></td><td>,</td></lld<>	ďπ⊳	·		,
	FE-59		NA	<pre></pre>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0
	09-02		۲X	<lld< td=""><td><ttd< td=""><td>ı</td><td></td><td>0</td></ttd<></td></lld<>	<ttd< td=""><td>ı</td><td></td><td>0</td></ttd<>	ı		0
	ZN-65		NA	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	NB-95		N A	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	ZR-95		Ϋ́	<pre></pre>	ΩTT>	ı		0
AIR PARTICULATE (E-3 PCI/CU.METER)	CS-134		50	TD</td <td><!--TD</td--><td></td><td></td><td>0</td></td>	TD</td <td></td> <td></td> <td>0</td>			0
0 6107	CS-137		09	<ttd< td=""><td><lld< td=""><td>ı</td><td></td><td>0</td></lld<></td></ttd<>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES II			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	M (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	BA-140		NA	<lld< td=""><td><lld< td=""><td>,</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>,</td><td></td><td>0</td></lld<>	,		0
	LA-140		Y Z	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
AIR IODINE (E-3 PCI/CU.METER)	GAMMA I-131	468	70	<lld< td=""><td><lld< td=""><td>ï</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>ï</td><td></td><td>0</td></lld<>	ï		0
MILK (PCVLITER)	1-131	19		V V	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	GAMMA MN-54	19	NA	V V	<ud< td=""><td>ı</td><td></td><td>0</td></ud<>	ı		0
	CO-58		NA	Y.	CTT>	ı		0
MILK (PCI/LITER)	FE-59		NA	NA	TD</td <td></td> <td></td> <td>0</td>			0
	09-00		NA	NA	<ttd< td=""><td>1</td><td></td><td>0</td></ttd<>	1		0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

	NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD; INDICATOR CONTR	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	(M)
	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
		ZN-65		NA	N.A.	<lld< td=""><td>į.</td><td></td><td>0</td></lld<>	į.		0
		NB-95		NA	NA	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
A-9		ZR-95		NA	NA	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
)		CS-134		15	NA	<lld< td=""><td>1</td><td></td><td>0</td></lld<>	1		0
		CS-137		18	NA	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		BA-140		09	NA	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	MILK (PCVLITER)	LA-140		15	N A	QT7>	ı		0
30 of 187	VEGETATION (PCI/KG WET)	GAMMA MN-54	01	Z Y	The content of t</td <td>du></td> <td></td> <td></td> <td>0</td>	du>			0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	N (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	CO-58		NA	√LLD	<lld< td=""><td>,</td><td></td><td>0</td></lld<>	,		0
	FE-59		NA	TD</td <td><lld< td=""><td></td><td></td><td>0</td></lld<></td>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	09-00		NA	TD</td <td><lld< td=""><td></td><td></td><td>0</td></lld<></td>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	S9-NZ		NA	TD</td <td><ttd< td=""><td></td><td></td><td>0</td></ttd<></td>	<ttd< td=""><td></td><td></td><td>0</td></ttd<>			0
	NB-95		NA	<pre></pre>	</td <td></td> <td></td> <td>0</td>			0
	ZR-95		Ϋ́	Column</td <td><lld< td=""><td>ı</td><td></td><td>0</td></lld<></td>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0
VEGETATION (PCI/KG WET)	1-131		09	<ttd< td=""><td><pre></pre></td><td>ı</td><td></td><td>0</td></ttd<>	<pre></pre>	ı		0
	CS-134		09	TD</td <td><lld< td=""><td>1</td><td></td><td>0</td></lld<></td>	<lld< td=""><td>1</td><td></td><td>0</td></lld<>	1		0
	CS-137		80	<lld< td=""><td><lld< td=""><td>ı</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>ı</td><td></td><td>0</td></lld<>	ı		0

A-10 31 of 187

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2009

NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE : MARSEILLES II			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL	MBER: PERIOD: CONTROL	50-373 & 50-374 ANNUAL 2009 LOCATION WI	50-373 & 50-374 ANNUAL 2009 LOCATION WITH HIGHEST ANNUAL MEAN (M)	AN (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	BA-140		N A	TTD	<lld< td=""><td>,</td><td></td><td>0</td></lld<>	,		0
	LA-140		NA	<tr></tr>		1		0
DIRECT RADIATION (MILLI-ROENTGEN/QTR.)	TLD-QUARTERLY	336	Y.	25.6 (328/328) (19/35)	22.8 (8/8) (19/28)	29 (4/4) (25/33)	L-211-1 INDICATOR 4.5 MILES WSW	0

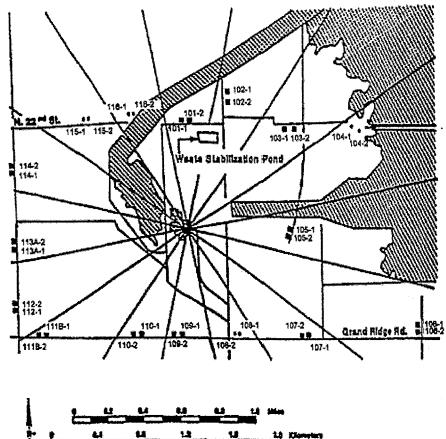
* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

A-11 32 of 187

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

	adiological Environmental Monitoring Program - Sampling L aSalle County Station, 2009	ocations, Distance and Direction,
Location	Location Description	Distance & Direction From Site
A. Surface Wa	ater	
L-21 L-40	Illinois River at Seneca, Upstream (control) Illinois River, Downstream (indicator)	4.0 miles NE 5.2 miles NNW
B. Ground/We	<u>ell Water</u>	
L-27 L-28-W4 L-28-W5 L-28-W6	LSCS Onsite Well (indicator) Marseilles Well (control) Marseilles Well (control) Marseilles Well (indicator)	0 miles at station 7.0 miles NW 6.7 miles NW 4.1 miles NNE
C. Milk - bi-we	eekly / monthly	
L-42	Biros Farm (control)	14.2 miles E
D. Air Particul	ates / Air lodine	
L-01 L-03 L-04 L-05 L-06 L-07 L-08 L-10	Nearsite 1 (indicator) Onsite 3 (indicator) Rte. 170 (indicator) Onsite 5 (indicator) Nearsite 6 (indicator) Seneca (indicator) Marseilles (indicator) Streator (control) Ransom (indicator)	1.5 miles NNW 1.0 miles ENE 3.2 miles E 0.3 miles ESE 0.4 miles WSW 5.2 miles NNE 6.0 miles NNW 13.5 miles SW 6.0 miles S
E. Fish		
L-34 L-35 L-36	LaSalle Cooling Lake (indicator) Marseilles Pool of Illinois River, Downstream (indicator) Illinois River, Upstream of Discharge (control)	2.0 miles E 6.5 miles NW 4.3 miles NNE
F. Sediment		
L-21 L-40 L-41	Illinois River at Seneca, Upstream (control) Illinois River, Downstream (indicator) Illinois River, Downstream (indicator)	4.0 miles NE 5.2 miles NNW 4.6 miles NNW
G. Food Produ	<u>ucts</u>	
Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 Control	Diane Partridge Mike and Gina Welbourne Michael Olson Robert Eisers Eugene Clements	4.5 miles NE 3.8 miles ESE 1.5 miles WSW 4.5 miles NW 10.0 miles NW


TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, LaSalle County Station, 2009

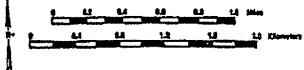

Location	Location Description	Distance & Direction From Site
H. Environm	ental Dosimetry - TLD	
Inner Ring		
L-101-1 and -2 L-102-1 and -2 L-103-1 and -2 L-104-1 and -2 L-106-1 and -2 L-107-1 and -2 L-108-1 and -2 L-109-1 and -2 L-110-1 and -2 L-111b-1 and -2 L-112-1 and -2		0.5 miles N 0.6 miles NNE 0.7 miles NE 0.8 miles ENE 0.7 miles E 1.4 miles ESE 0.8 miles SE 0.5 miles SSE 0.6 miles S 0.6 miles SW 0.8 miles SW
L-113a-1 and -2 L-114-1 and -2 L-115-1 and -2 L-116-1 and -2		0.8 miles W 0.9 miles WNW 0.7 miles NW 0.6 miles NNW
Outer Ring		
L-201-3 and -4 L-202-3 and -4 L-203-1 and -2 L-204-1 and -2 L-205-1 and -2 L-205-3 and -4 L-206-1 and -2 L-207-1 and -2 L-208-1 and -2 L-209-1 and -2 L-210-1 and -2 L-211-1 and -2 L-212-1 and -2 L-213-3 and -4 L-214-3 and -4 L-215-3 and -4		4.0 miles N 3.6 miles NNE 4.0 miles NE 3.2 miles ENE 3.2 miles ESE 5.1 miles E 4.3 miles SE 4.5 miles SSE 4.5 miles SSW 3.3 miles SW 4.5 miles WSW 4.0 miles WSW 4.0 miles WSW 5.1 miles WNW 5.0 miles NW
Other		
L-01-1 and -2 L-03-1 and -2 L-04-1 and -2 L-05-1 and -2 L-06-1 and -2 L-07-1 and -2 L-08-1 and -2 L-11-1 and -2	Nearsite 1 (indicator) Onsite 3 (indicator) Rte. 170 (indicator) Onsite 5 (indicator) Nearsite 6 (indicator) Seneca (indicator) Marseilles (indicator) Ransom	1.5 miles NNW 1.0 miles ENE 3.2 miles E 0.3 miles ESE 0.4 miles WSW 5.2 miles NNE 6.0 miles NNW 6.0 miles S
Control and Special	<u>Interest</u>	
L-10-1 and -2	Streator	13.5 miles SW

TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, LaSalle County Station, 2009

Analysis	Sampling Method	Analytical Procedure Number
Gamma Spectroscopy	Monthly composite from weekly grab	TBE, TBE-2007 Gamma emitting radioisotope analysis
		Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Gross Beta	from weekly grab	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices
		Env. Inc., W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue)
Tritium	Quarterly composite from weekly grab samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
		Env. Inc., T-02 Determination of tritium in water (direct method)
Gamma Spectroscopy	Quarterly grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis
		Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Tritium	Quarterly grab samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
		Env. Inc., T-02 Determination of tritium in water (direct method)
Gamma Spectroscopy	Semi-annual samples collected via	TBE-2007 Gamma emitting radioisotope analysis
	electroshocking or other techniques	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Gamma Spectroscopy	Semi-annual grab samples	TBE, TBE-2007 Gamma emitting radioisotope analysis
		Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Gross Beta	One-week composite of continuous air sampling through glass	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices
	fiber filter paper	Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters
Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2007 Gamma emitting radioisotope analysis
		Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Gamma Spectroscopy	Bi-weekly composite of continuous air	TBE, TBE-2007 Gamma emitting radioisotope analysis
	sampling through charcoal filter	Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method)
1-131	Bi-weekly grab sample when cows are on	TBE, TBE-2012 Radioiodine in various matrices
	pasture. Monthly all other times	Env. Inc., I-131-01 Determination of I-131 in milk by anion exchange
Gamma Spectroscopy	Bi-weekly grab sample when cows are on	TBE, TBE-2007 Gamma emitting radioisotope analysis
	pasture. Monthly all other times	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Gamma Spectroscopy	Annual grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis
		Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Thermoluminescence Dosimetry	Quarterly TLDs comprised of two	Global Dosimetry
	Gamma Spectroscopy Gross Beta Tritium Gamma Spectroscopy Gamma Spectroscopy Gross Beta Gamma Spectroscopy Gamma Spectroscopy I-131 Gamma Spectroscopy Gamma Spectroscopy	Gamma Spectroscopy Gamma Spectroscopy Gross Beta Monthly composite from weekly grab samples. Monthly composite from weekly grab samples. Tritium Quarterly composite from weekly grab samples. Gamma Spectroscopy Gamma Spectroscopy Gamma Spectroscopy Gross Beta One-week composite of continuous air sampling through glass fiber filter paper Gamma Spectroscopy Annual grab samples.

B-3 36 of 187

TLD Location

Figure B-1 Inner Ring TLD Locations of the LaSalle County Station, 2009

37 of 187 B-4

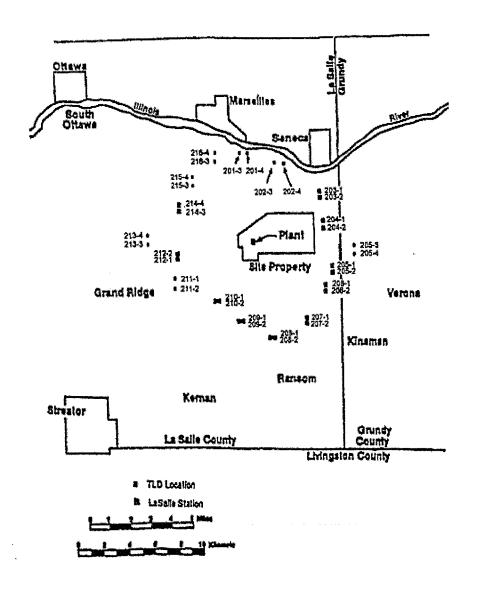


Figure B-2 Outer Ring TLD Locations of the LaSalle County Station, 2009

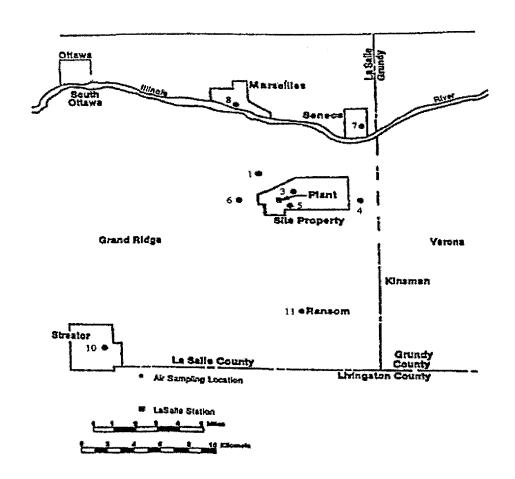


Figure B-3 Fixed Air Sampling Locations of the LaSalle County Station, 2009

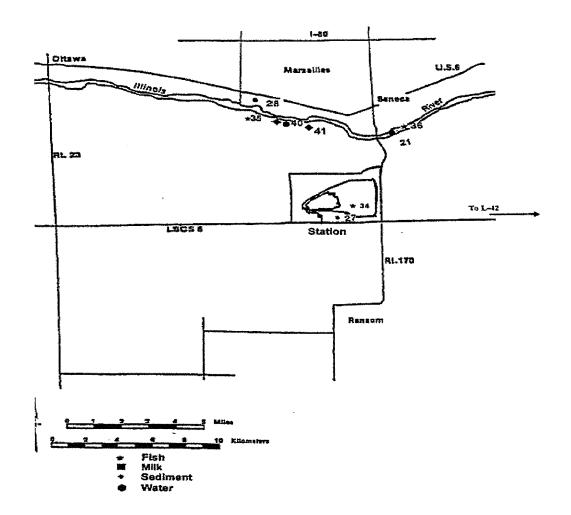


Figure B-4
Ingestion and Waterborne Exposure Pathway Sample Locations of the LaSalle County Station, 2009

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

TABLE C-I.1 CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION	L-21	L-40	
PERIOD			_
01/08/09 - 01/29/09	10 ± 2.4 (1)	8.7 ± 2.3	(1)
02/05/09 - 02/26/09	6.7 ± 2.3	8.9 ± 2.5	
03/05/09 - 03/26/09	7.9 ± 2.3	8.4 ± 2.4	
04/02/09 - 04/30/09	8.7 ± 2.4	6.9 ± 2.3	
05/07/09 - 05/28/09	5.6 ± 2.3	5.6 ± 2.3	
06/04/09 - 06/24/09	7.4 ± 2.3	7.2 ± 2.3	
07/02/09 - 07/30/09	6.5 ± 2.4	7.3 ± 2.4	
08/06/09 - 08/27/09	6.7 ± 2.3	7.8 ± 2.4	
09/03/09 - 09/24/09	6.6 ± 2.3	5.6 ± 2.3	
10/01/09 - 10/29/09	6.1 ± 2.3	6.3 ± 2.5	
11/05/09 - 11/25/09	5.9 ± 2.2	6.7 ± 2.2	
12/03/09 - 12/30/09	5.9 ± 2.3	7.0 ± 2.4	
MEAN	7.0 ± 2.7	7.2 ± 2.2	

TABLE C-1.2 CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	L-21	L-40
01/08/09 - 03/26/09	< 179 (1)	< 179 (1)
04/02/09 - 06/24/09	164 ± 98	< 142
07/02/09 - 09/24/09	< 167	< 174
10/01/09 - 12/30/09	< 174	180 ± 113
MEAN	164 ± 0	180 ± 0

C-1 42 of 187

^{*} MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-1.3

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES

TAB	TABLE C-1.3	CO CO	CENTR	ATIONS IN THE	CONCENTRATIONS OF GAMMA EMITTERS COLLECTED IN THE VICINITY OF LASALLE	MAEMI Y OF LA	TTERS II	N SURF	IN SURFACE WATER SA COUNTY STATION, 2009	CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLE COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009	PLES		
		RESI	ULTS IN	UNITS (RESULTS IN UNITS OF PCI/LITER ±2 SIGMA	ITER ± 2	SIGMA						
STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	1-131	Cs-134	Cs-137	Ba-140	La-140
L-21	01/08/09 - 01/29/09	< 1 (1)	< 2	< 4 4	< 1 1	< 3	< 2	< 3	< 12	< 1	< 1	< 17	< 5
	02/05/09 - 02/26/09	< 5	< 2	۸ 4	< 2	დ V	< 2	ر ع	< 13	< 2	< 2	< 21	9 >
	03/05/09 - 03/26/09	^ 1	^	< 2	^	^	^ 1	^ 1	ნ >	^ 1	۰ ۲	< 27	ნ V
	04/02/09 - 04/30/09	^	^	< 2	^ 1	^	^ 1	^	< 12	^	۰ ۲	> 14	۸ 4
	05/07/09 - 05/28/09	^	۰ ۲	< 2	^ 1	< 2	^ 1	< 2	< 13	^	^	< 15	< 5
	t	^	<u>-</u>	რ V	^ 1	დ V	< 2	რ V	< 10	^ 1	^	< 15	< 5
	١	< 2	< 2	۸ 4	< 2	۸ 4	< 2	რ V	× 11	< 2	< 2	< 18	9 >
	08/06/09 - 08/27/09	^	^	< 2	^	^	^	< 2	< 13	^ 1	^	< 16	۸ 4
	09/03/09 - 09/24/09	< 2	დ V	۸ 4	< 2	۸ 4	რ V	۸ 4	< 14	< 2	< 2	< 25	9 >
	10/01/09 - 10/29/09	^	^	რ V	^	< 2	^	< 2	∞ ∨	^	^ 1	< 13	۸ 4
	•	^		< 2	<u>۲</u>	۰ ۲	^	< 2	ი v		^	< 12	۸ 4
	12/03/09 - 12/30/09	^	^ _	რ V	۸ <u>۲</u>	< 2	^ _	< 2	< 7	^ _	^ 	< 23	& V
	MEAN		t	1	ı	t	ı	ı	1	ŧ	1	ı	t
L40	01/08/09 - 01/29/09		٧		< 2	4 >			< 15	< 2		< 23	& V
	02/02/09 - 02/26/09	7	٧	۸ 4	< 2	დ V	< 2		< 13	< 2	< 2	< 21	9 >
	03/05/09 - 03/26/09		^		^	^ 1	^		6 >	\ -	^ _	< 37	< 12
	04/02/09 - 04/30/09	۰ ۲	^		^	< 2	^ _	< 2	> 14	^	۰ ۲	> 16	v 2
	02/01/09 - 02/28/09	^	^		^	< 2	^		< 13	^ 1	<u>۲</u>	< 15	v 2
	06/04/09 - 06/24/09	۲ >	< 2		^	د >	< 2		× 11	<u>۲</u>	^	< 17	v 2
	07/02/09 - 07/30/09	< 2	د >		× 3	< 5	٧ ع		< 15	< 2	د >	< 26	< 10
	08/06/09 - 08/27/09	۰ ۲	< 2		^	< 3	< 2		< 12	^	<u>^</u>	< 27	% V
	09/03/09 - 09/24/09	< 2	< 2	< 5	< 2	4 ×	< 2		< 13	< 2	< 2	< 22	< 7
	10/01/09 - 10/29/09	^	< 2		^	د ۷	< 2		ი v	^	^	< 16	v 2
	11/05/09 - 11/25/09	۰ ۲	^	< 2	^	< 2		^	ი v	^	^ 1	< 12	۸ 4
	12/03/09 - 12/30/09	۸ <u>۲</u>	^		^	v 2	^ -	რ V	< 7	^	^ 	< 27	ი v
	MEAN	ı	•	ı	ı		ı		ı	ı	1	ı	,

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-II.1 CONCENTRATIONS OF TRITIUM IN GROUND/WELL WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	L-27	L-28-W4*	L-28-W5*	L-28-W6*
01/22/09 - 01/22/09	< 181 (1)		< 179 (1)	< 180 (1)
04/09/09 - 04/09/09	< 184	< 185		< 182
07/09/09 - 07/09/09	< 124		< 123	< 124
10/08/09 - 10/08/09	< 176	< 167		< 175
MEAN	-	-	-	•

C-3

44 of 187

^{*} THERE ARE THREE WELLS ASSOCIATED WITH LOCATION L-28 (1) SEE PROGRAM EXCEPTIONS SECTIONS FOR EXPLANATION

TABLE C-II.2

CONCENTRATIONS OF GAMMA EMITTERS IN GROUND/WELL WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009

		RES	RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA	VITS OF P	CI/LITER±	: 2 SIGMA						
STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134		Ba-140	La-140
L-27	01/22/09 - 01/22/09	< 3		9 >	< 3	< 5	< 3	< 5	< 2	< 3	< 24	6 >
	04/09/09 - 04/09/09	< 2		۸ 4	< 2	დ V	< 2	۸ 4	^ _	< 2	< 21	< 7
	60/60/20 - 60/60/20	< 2	< 2	۸ ئ	< 2		< 2	۸ 4	< 2	< 2	< 23	< 7
	10/08/09 - 10/08/09	٧		& V	^ 4	∞ v	4 ^	< 7	დ V	4 ^	< 26	ω ν
	MEAN	ı	ţ	ı	1	1	ı	ı	1	ı	ı	ı
L-28-W4*	L-28-W4* 04/09/09 - 04/09/09	< 2	< 2	۸ ئ	^	ა ა	< 2	რ V	< 2	< 2	< 22	< 7
	10/08/09 - 10/08/09	^	۸ 4	ნ v	v 2	& V	^	∞ ∨	4 ^	4 ^	< 24	6 V
	MEAN		ı	1	1	1		,		•	•	•
L-28-W5*	01/22/09 - 01/22/09 (1)	< 2		დ V	< 2	۷ دی	ر د ع	v 5	< 2	< 2	< 23	ω ∨
	60/60/20 - 60/60/20	< 2	< 2	۷ ک	ო v	۸ 4	< 2	۸ 4	< 2	< 2	< 21	< 7
	MEAN	ı	ı	1		1	1	•	•	·	•	1
L-28-W6*	01/22/09 - 01/22/09 (1)	რ V	რ V	۸ ئ	< 2	v 5	ر د ا	v 2	< 2	ر ا	< 28	< 10
		^	^	ر ۷	^ 1	e V	^ 1	< 3	^ _	^ _	< 19	v 2
	60/60/20 - 60/60/20	< 2		< 5	< 2	4 ^	< 2	e v	< 2	< 2	< 19	< 7
	10/08/09 - 10/08/09	4 >	۸ ۸	& V	v 2	6 >	v 2	& V	4 ^	4 ^	< 31	& V
	MEAN	1	ı	1	1	ı	,		1	,	ı	•

* THERE ARE THREE WELLS ASSOCIATED WITH LOCATION L-28 (1) SEE PROGRAM EXCEPTIONS SECTIONS FOR EXPLANATION

TABLE C-III.1		CONC	CENTRAT E VICINIT	CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009	GAMMA E	MITTERS UNTY STA	IN FISH S ATION, 200	AMPLES (COLLECT	a		
		RESL	JLTS IN U	RESULTS IN UNITS OF PC/KG WET ±2 SIGMA	°C/KG WE	T±2SIG	MA					
STC	COLLECTION	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Np-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
L-34						And the second s						
Channel Catfish	60/90/50	< 57	> 76	< 259	< 65	< 120	96 >	< 158	< 59	<i>></i> 67	< 2640	< 576
Largemouth Bass	60/90/50	< 61	< 80	< 198	< 42	< 150	< 77	< 129	< 57	< 56	< 2530	< 641
Blue Catfish	10/13/09	< 49	< 52	< 156	2 < 6 < 7	< 138	< 72	< 113	> 56	< 52	< 1020	< 381
Common Carp	10/13/09	< 45	< 73	< 157	< 59	< 91	< 70	< 124	< 51	< 47	< 1050	< 331
	MEAN	1	1	1	1	1	•		1	ı	t	1
L-35												
Channel Catfish	60/90/50	< 47	< 55	< 178	< 42	< 108	< 61	< 114	< 28	< 45	< 1980	< 447
Freshwater Drum	60/90/50	< 43	< 52	< 128	< 28	> 98	< 61	< 106	> 36	< 42	< 1810	< 535
Channel Catfish	10/13/09	> 54	< 71	< 163	< 62	< 138	< 72	< 112	< 53	< 54	< 947	< 219
Smallmouth Buffalo	10/13/09	> 88	< 97	< 247	< 87	< 168	< 114	< 183	06 >	< 97	< 1620	< 457
	MEAN	1	ı	1	1	t	1	ı	1	1	1	1
P-36												
Freshwater Drum	60/90/50	< 41	< 48	< 106	< 46	> 98	< 32	< 101	< 41	< 39	< 1480	< 406
Smallmouth Buffalo	60/90/50	< 52	< 65	< 181	< 52	< 116	< 82	< 114	< 42	< 52	< 1950	< 594
Largemouth Bass	10/13/09	< 49	> 68	< 143	> 60	< 111	< 85	< 137	< 53	< 53	< 1240	< 274
Smallmouth Buffalo	10/13/09	< 63	< 85	< 157	<i>2</i> 9 >	< 141	66 >	< 147	< 63	< 63	< 1160	< 238
	MEAN	ı	1	•	1	1	•	•	t	1	ı	1

CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009 TABLE C-IV.1

RESULTS IN UNITS OF PC/KG DRY ± 2 SIGMA

La-140	< 292 < 158	1	< 248	91	1	< 134	115	
La-	v v		V	V				
Ba-140	< 1210 < 594	1	< 885	< 438	ı	< 746	< 597	:
Cs-137	< 66 86 ± 45	86 ± 0	< 52	99 >	1	< 42		ı
Cs-134	< 51 < 66	1	< 37	< 54 4	i	< 36	< 84	
Zr-95	< 132 < 155	ı	< 106	< 102	ı	< 82	< 176	1
NP-95	< 75 < 90	i	< 65	99 >	•	< 52	< 115	ŧ
Zn-65	< 124 < 161	i	< 111	× 144	1	< 87	< 197	ı
Co-60	< 53 < 82	ı	< 48	< 61	i	< 32	< 77	•
Fe-59	< 170 < 178	1	< 145	< 136	1	< 102	< 261	1
Co-58	< 80 < 92	1	< 57	< 62	ı	< 47	< 73	•
Mn-54	< 54 < 79	1	< 46	< 61	ı	< 36	< 108	ı
STC COLLECTION Mn-54 PERIOD	21 05/07/09 10/08/09	MEAN	L-40 05/07/09	10/08/09	MEAN	L-41 05/07/09	10/08/09	MEAN
STC	L-21		L-40			1 4		

* MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION	GROUP I	GROUP II		GROU	JP III	Ig	ROUP IV
PERIOD	L-03 L-05	L-01 L-06	L-04	L-07	L-08	L-11	L-10
12/31/08 - 01/08/09	26 ± 5 27 ± 5	27 ± 5 30 ± 5	30 ± 5	30 ± 5	40 ± 5 ((1) 30 ± 5	29 ± 5
01/08/09 - 01/15/09	27 ± 5 28 ± 5	27 ± 5 27 ± 5	29 ± 5	24 ± 5	28 ± 5	28 ± 5	30 ± 5
01/15/09 - 01/22/09	31 ± 5 35 ± 5	30 ± 5 35 ± 5	37 ± 5	35 ± 5	39 ± 6	39 ± 5	37 ± 5
01/22/09 - 01/29/09	31 ± 5 35 ± 5	35 ± 5 35 ± 5	40 ± 6	34 ± 5	36 ± 5	30 ± 5	33 ± 5
01/29/09 - 02/05/09	17 ± 4 21 ± 4	20 ± 4 20 ± 4	21 ± 4	21 ± 4	21 ± 4	17 ± 4	20 ± 4
02/05/09 - 02/12/09	31 ± 5 26 ± 5	26 ± 5 27 ± 5	49 ± 6	20 ± 4	32 ± 5	32 ± 5	27 ± 5
02/12/09 - 02/19/09	18 ± 4 20 ± 4	19 ± 4 23 ± 4	18 ± 4	22 ± 4	21 ± 4	21 ± 4	20 ± 4
02/19/09 - 02/26/09	31 ± 5 27 ± 5	27 ± 5 31 ± 5	26 ± 5	33 ± 5	31 ± 5	27 ± 5	32 ± 5
02/26/09 - 03/05/09	$20 \pm 4 \qquad 37 \pm 8$	(1) 23 ± 5 23 ± 5	29 ± 5	21 ± 4	22 ± 4	20 ± 4	26 ± 5 (1)
03/05/09 - 03/12/09	20 ± 5 19 ± 5	18 ± 5 17 ± 4	13 ± 4	19 ± 5	16 ± 4	13 ± 4	14 ± 4
03/12/09 - 03/19/09	22 ± 5 31 ± 6	(1) 25 ± 5 24 ± 5	22 ± 5	29 ± 5	22 ± 5	23 ± 5	26 ± 5
03/19/09 - 03/26/09	18 ± 4 20 ± 5	(1) 23 ± 5 21 ± 5	19 ± 4	18 ± 4	21 ± 5	20 ± 4	22 ± 5
03/26/09 - 04/02/09	11 ± 4 13 ± 4	(1) 14 ± 4 15 ± 4	13 ± 4	16 ± 4	18 ± 4	12 ± 4	14 ± 4
04/02/09 - 04/09/09	14 ± 4 15 ± 4	18 ± 4 16 ± 4	13 ± 4	16 ± 4	17 ± 4	16 ± 4	19 ± 4
04/09/09 - 04/16/09	16 ± 4 12 ± 4	16 ± 4 14 ± 4	18 ± 5	15 ± 4	15 ± 4	15 ± 4	17 ± 4
04/16/09 - 04/22/09	18 ± 4 16 ± 4	14 ± 4 13 ± 4	20 ± 5	21 ± 5	18 ± 4	17 ± 4	19 ± 4
04/22/09 - 04/30/09	13 ± 4 13 ± 4	10 ± 3 11 ± 4	12 ± 4 25 ± 5	13 ± 4	15 ± 4 26 ± 5	15 ± 4	12 ± 4
04/30/09 - 05/07/09	22 ± 5 25 ± 5 9 ± 4 9 ± 4	22 ± 5 23 ± 5 10 ± 4 14 ± 4	25 ± 5 10 ± 4	18 ± 4 12 ± 4	20 ± 5 11 ± 4	18 ± 4 10 ± 4	22 ± 5 13 ± 4
05/07/09 - 05/14/09 05/14/09 - 05/20/09	10 ± 4 15 ± 5	10 ± 4 14 ± 4 14 ± 4	10 ± 4	12 ± 4 11 ± 4	11 ± 4 14 ± 4	10 ± 4 12 ± 4	8 ± 4
05/14/09 - 05/20/09 05/20/09 - 05/28/09	16 ± 4 11 ± 4	18 ± 4 13 ± 4	16 ± 4	17 ± 4	19 ± 4	12 ± 4	16 ± 4
05/28/09 - 06/05/09	13 ± 4 15 ± 4	14 ± 4 16 ± 4	15 ± 4	15 ± 4	13 ± 4	13 ± 4	12 ± 4
06/04/09 - 06/11/09	15 ± 3 (1) 11 ± 3	14 ± 3 14 ± 3	13 ± 3	17 ± 3	16 ± 3	15 ± 3	14 ± 3
06/11/09 - 06/18/09	18 ± 5 (1) 11 ± 4	9 ± 4 12 ± 4	13 ± 4	11 ± 4	13 ± 4	11 ± 4	10 ± 4
06/18/09 - 06/24/09	18 ± 4 36 ± 6	17 ± 5 18 ± 5	17 ± 4	21 ± 5	22 ± 5	21 ± 5	23 ± 5
06/24/09 - 07/02/09	11 ± 4 (1) 16 ± 4	13 ± 4 11 ± 4	12 ± 4	11 ± 4	15 ± 4	12 ± 4	14 ± 4
07/02/09 - 07/09/09	10 ± 4 (1) 16 ± 5		13 ± 4	14 ± 4	10 ± 4	14 ± 4	13 ± 4
07/09/09 - 07/16/09	18 ± 5 (1) 22 ± 5	(1) 23 ± 5 18 ± 4	18 ± 4	22 ± 5	21 ± 5	21 ± 5	22 ± 5
07/16/09 - 07/23/09	14 ± 4 (1) 15 ± 5	(1) 17 ± 4 15 ± 4	23 ± 5	16 ± 4	17 ± 4	16 ± 4	17 ± 4
07/23/09 - 07/30/09	19 ± 5 (1) 25 ± 5	22 ± 5 24 ± 5	21 ± 5	27 ± 5	30 ± 5	17 ± 4	35 ± 5
07/30/09 - 08/06/09	12 ± 4 14 ± 4	19 ± 5 17 ± 5	12 ± 4	16 ± 5	14 ± 4	16 ± 5	12 ± 4
08/06/09 - 08/12/09	19 ± 5 20 ± 5	17 ± 5 19 ± 5	19 ± 5	20 ± 5	19 ± 5	19 ± 5	22 ± 5
08/12/09 - 08/19/09	23 ± 5 25 ± 5	13 ± 4 26 ± 5	21 ± 5	25 ± 5	21 ± 5	23 ± 5	15 ± 4
08/19/09 - 08/27/09	13 ± 4 12 ± 4	8 ± 3 10 ± 3	15 ± 4	17 ± 4	14 ± 4	11 ± 3	10 ± 3
08/27/09 - 09/03/09	13 ± 4 17 ± 4	13 ± 4 13 ± 4	20 ± 4	11 ± 4	13 ± 4	16 ± 4	18 ± 4
09/03/09 - 09/10/09	34 ± 5 30 ± 5	27 ± 5 37 ± 5	30 ± 5	31 ± 5	33 ± 5	36 ± 5	30 ± 5
09/10/09 - 09/17/09	28 ± 6 26 ± 5	33 ± 6 29 ± 6	28 ± 6	24 ± 5	31 ± 6	25 ± 5	30 ± 6
09/17/09 - 09/24/09	21 ± 5 23 ± 5	31 ± 5 25 ± 5	22 ± 5	23 ± 5	24 ± 5	24 ± 5	28 ± 5
09/24/09 - 09/30/09	21 ± 5 15 ± 5	15 ± 5 20 ± 5	14 ± 5	15 ± 5	18 ± 5	17 ± 5	17 ± 5
09/30/09 - 10/08/09	10 ± 4 8 ± 4	10 ± 4 9 ± 4	8 ± 4	8 ± 4	9 ± 4	8 ± 4	10 ± 4
10/08/09 - 10/15/09	15 ± 4 15 ± 4	17 ± 4 12 ± 4	17 ± 4	15 ± 4	16 ± 4	17 ± 4	16 ± 4
10/15/09 - 10/21/09	17 ± 5 15 ± 5	17 ± 5 16 ± 5	18 ± 5	20 ± 5	16 ± 5	20 ± 5	11 ± 4
10/21/09 - 10/29/09	15 ± 4 21 ± 4		15 ± 4	17 ± 4	20 ± 4	15 ± 4	19 ± 4
10/29/09 - 11/05/09	22 ± 5 18 ± 4		19 ± 4	18 ± 4	18 ± 4	18 ± 4	14 ± 4
11/05/09 - 11/12/09	24 ± 5 20 ± 5		22 ± 5	23 ± 5	24 ± 5	15 ± 5	21 ± 5
11/12/09 - 11/19/09	17 ± 4 13 ± 4		(1) 14 ± 4	18 ± 4	15 ± 4	19 ± 4	18 ± 4
11/19/09 - 11/25/09	25 ± 5 18 ± 5		20 ± 5	23 ± 5	21 ± 5	20 ± 5	22 ± 5
11/25/09 - 12/03/09	24 ± 4 23 ± 4	, ,	21 ± 4	22 ± 4	23 ± 4	25 ± 4	27 ± 5
12/03/09 - 12/10/09	14 ± 4 17 ± 5		11 ± 4	16 ± 4	20 ± 5	17 ± 5	21 ± 5
12/10/09 - 12/17/09	38 ± 4 39 ± 5		33 ± 4	43 ± 5	42 ± 5	38 ± 5	44 ± 5
12/17/09 - 12/23/09	35 ± 6 34 ± 6		(1) 35 ± 6	40 ± 6 29 ± 4	41 ± 6 26 ± 4	39 ± 6 25 ± 4	37 ± 6 25 ± 4
12/23/09 - 12/30/09	28 ± 4 31 ± 4	31 ± 4 27 ± 4	25 ± 4	43 I 4	20 I 4	20 I 4	ZJ 1. 4
MEAN	20 ± 14 21 ± 16	6 20 ± 15 20 ± 18	20 ± 17	21 ± 15	21 ± 16	20 ± 15	21 ± 16

 $^{^{\}star}$ MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

C-7 48 of 187

⁽¹⁾ SEE PROGRAM EXCEPTIONS SECTIONS FOR EXPLANATION

MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009 TABLE C-V.2

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

GROUP I - NEAR-SITE LOCATIONS	SITE LOCA	TIONS	GROUP II - FAR-FI	AR-FIELD LOCATIONS	TIONS	GROUP III - FAR-FIELD LOCATIONS	FAR-FIEI	DLO	SATIONS	GROU	GROUP IV - CONTROL LOCATION	IROL LC	SATION	z
COLLECTION	MIN MAX	MIN MAX MEAN±	COLLECTION	MIN MAX	Σ	COLLECTION	_	MIN MAX	Σ	COLLE	COLLECTION	MIN MAX		MEAN ±
PERIOD		2SD	PERIOD		2SD	PERIOD			2SD	PEF	PERIOD		1	2SD
12/31/08 - 01/29/09	26 35	30 ± 7	12/31/08 - 01/29/09	27 35	31 ± 8	12/31/08 - 01/29/09	60/6	24 4	$0 33 \pm 10$		12/31/08 - 01/29/09	29 3	7 32	32 ± 7
01/29/09 - 02/26/09	17 31	24 ± 11	01/29/09 - 02/26/09	19 31	24 ± 9	01/29/09 - 02/26/09	60/97	17 4	9 26 ± 16	_	01/29/09 - 02/26/09	20 3	2 2	25 ± 11
02/26/09 - 04/02/09	11 37	21 ± 15	02/26/09 - 04/02/09	14 25	20 ± 8	02/26/09 - 04/02/09	60/7	12 2	9 19 ± 10	02/26/09	02/26/09 - 04/02/09	14 2	6 2,	1 ± 12
04/02/09 - 04/30/09	12 18	15 ± 4	04/02/09 - 04/30/09	10 18	14 ± 5	04/02/09 - 04/30/09	60/08	12 2	1 16 ± 5	04/02/09	04/02/09 - 04/30/09	12 1	9	7 ± 7
04/30/09 - 05/28/09	9 25	15 ± 12	04/30/09 - 05/28/09	10 23	15 ± 9	04/30/09 - 05/28/09	60/87	10 2	6 15 ± 10	Ŭ	04/30/09 - 05/28/09	8	2 15	15 ± 12
05/28/09 - 07/02/09	11 36	16 ± 15	05/28/09 - 07/02/09	9 18	14 ± 6	05/28/09 - 07/0	02/05/09	11 2	2 15 ± 7	05/28/09	02/28/09 - 07/02/09	10 2	3 1	15 ± 10
07/02/09 - 07/30/09	10 25	17 ± 10	07/02/09 - 07/30/09	15 24	19 ± 7	07/02/09 - 07/3	60/08/20	10 3	$0 + 19 \pm 10$	Ŭ	01/02/09 - 01/30/09	13 3	5	22 ± 19
02/30/06 - 09/03/06	12 25	17 ± 9	60/20/60 - 60/02/20	8 26	15 ± 10	60/20/60 - 60/02/20	3/09	11 2	25 17 ± 8	60/30/00	60/20/60 - 60/02/20	10 2	22 16	16 ± 10
60/02/60 - 60/20/60	15 34	25 ± 12	60/08/60 - 60/80/60	15 37	27 ± 15	60/08/60 - 60/80/60	60/08	14 3	36 25 ± 13	_	60/08/60 - 60/80/60	17 3	0	26 ± 13
09/30/09 - 10/29/09	8 21	15 ± 8	09/30/09 - 10/29/09	9 18	15 ± 7	09/30/09 - 10/29/09	60/67	8 2	20 15 ± 9	60/30/60	9/30/09 - 10/29/09	10 1	19 14	+ + + +
10/29/09 - 12/03/09	13 25	20 ± 8	10/29/09 - 12/03/09	13 22	19 ± 6	10/29/09 - 12/0	12/03/09	14 2	25 20 ± 7	10/29/09	0/29/09 - 12/03/09	14 2	7 20	0 ± 10
12/03/09 - 12/30/09	14 39	29 ± 19	12/03/09 - 12/30/09	19 58	33 ± 24	12/03/09 - 12/3	12/30/09	11 4	3 30 ± 21	12/03/09	- 12/30/09	21 4	4 32	2 ± 21
12/31/08 - 12/30/09	8 39	20 ± 15	12/31/08 - 12/30/09	8 58	20 ± 16	12/31/08 - 12/30/09	60/08	8	49 21 ± 16	•	12/31/08 - 12/30/09	8	44 2	21 ± 16

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABI	TABLE C-V.3	COL	CENTRAI LECTED I	TIONS OF N THE VIC	CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009	EMITTER: LASALL	S IN AIR E COUNT	PARTICU FY STATI	LATE SAI ON, 2009	MPLES		
		RES	ULTS IN U	INITS OF	RESULTS IN UNITS OF E-3 PCI/CU METER ±2 SIGMA	U METER	t ± 2 SIGN	ΨV				
STC	COLLECTION	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
L-01	12/31/08 - 04/02/09	د م	< 5	< 21	< 3	<i>L</i> >	< 7	< 11	< 3	< 2	< 933	< 470
	04/02/09 - 07/02/09	۰ ۲	რ ა	< 15	< 0.4	^	< 3	< 5	< 0.4	< 0.4	< 55600	< 17600
	01/02/09 - 09/30/09	< 2	9 >	< 29	< 2	9 >	8 >	< 11	< 2	< 2	< 9910	< 2490
	09/30/09 - 12/30/09	e v	۷ ک	< 16	დ V	× 11	9 >	< 10	4 ^	რ V	> 560	< 220
	MEAN	ı	1	1	1	1	ı	ı	ı	ı	ì	1
F-03	12/31/08 - 04/02/09	რ V	9	< 16	რ V	<i>L</i> >	> 5	ნ V	ო V	۸ 2	< 780	< 238
	04/02/09 - 07/02/09	< 0.5	< 2	< 12	< 0.4	^ 1	< 2	۸ 4	< 0.3	< 0.3	< 43900	< 16300
	07/02/09 - 09/30/09	^	< 10	< 50	4	< 13	< 13	< 21	۸ 4	< 3	< 15000	< 4850
	09/30/09 - 12/30/09	v 2	۷ ک	< 21	v რ	& V	6 >	< 10	< 2	^ _	969 >	< 318
	MEAN	ι	ı	1	1	ı	1	ı	1	1	ı	
L-04	12/31/08 - 04/02/09	რ V	9 v	< 17	რ V	∞ ∨	< 7	< 13	რ V	e ,	> 860	< 410
	04/02/09 - 07/02/09	^ _	< 2	< 14	< 0.4	^ 1	۳ ۷	< 5	< 0.4	< 0.4	< 57700	< 21400
	07/02/09 - 09/30/09	< 2	< 7	< 27	< 2	<i>L</i> >	< 7	< 13	< 2	< 2	< 7950	< 3370
	09/30/09 - 12/30/09	^ 4	< 10	< 28	9 v	< 13	ი v	× 11	۸ 4	< 5	< 875	< 527
	MEAN	ı	1	1		1	1	ı	1	1	ı	1
L-05	12/31/08 - 04/02/09	ر د د	<i>L</i> >	< 20	რ V	7 >	9 >	> 10	v ع	დ V	< 1040	< 408
	04/02/09 - 07/02/09	- × 1	< 2	< 13	> 0.4	^	_د د	v 2	< 0.4	< 0.4	< 49100	< 20000
	07/02/09 - 09/30/09	< 5	< 12	< 50	4 >	< 10	< 10	< 21	რ V	د >	< 13000	< 3760
	09/30/09 - 12/30/09	4 ^	< 7	< 18	4	× 11	< 7	41	۸ 4	4 ^	< 957	< 275
	MEAN	•	1	ı	1	1	1	ı	1	,	1	ı

C-9 50 of 187

TABI	TABLE C-V.3	000	CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009	TIONS OF N THE VIC	GAMMA I	EMITTER : LASALL	S IN AIR	PARTICU IY STATI	ILATE SAI ON, 2009	MPLES		
		RES	RESULTS IN UNITS OF E-3 PCI/CU METER ±2 SIGMA	INITS OF	E-3 PCI/C	U METER	t ± 2 SIGN	ΙĄ				
STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
90-T	12/31/08 - 04/02/09	09 < 4	4 >	< 12	< 3	8 >	9 >	< 12	< 3	< 3	< 1080	< 360
	04/02/09 - 07/02/09	٧	< 2	< 12	< 0.3	^	< 2	4 ^	< 0.3	< 0.3	< 44000	< 16400
	07/02/09 - 09/30/09	09 < 3	< 7	< 33	< 3	6 >	< 10	< 17	ر د ک	< 2	< 6910	< 5110
	09/30/09 - 12/30/09	09 < 2	۸ 4	< 16	^ _	რ V	4 ^	<i>L</i> >	< × 2	v 2	< 551	< 131
	MEAN	1	1		ı	ı	ı	ı	ı	ı	•	
L-07	12/31/08 - 04/02/09	09 < 2	۸ 4	< 17	۸ 4	9 >	9 >	< 10	დ V	< 2	< 838	< 250
	04/02/09 - 07/02/09	09 < 0.2	^	9 >	< 0.2	^	^	< 2	< 0.2	< 0.2	< 22400	< 8130
	07/02/09 - 09/30/09	09 < 5	× 11	> 54	< 2	× 11	< 16	< 28	< 5	4 >	< 18200	> 6000
	09/30/09 - 12/30/09	9 > 60	& V	< 27	۸ 4	< 13	& V	< 16	> 2	4 ^	< 865	< 371
	MEAN	ı	ı	ı	ı	ı	ı	ı	1	ı		1
F-08	12/31/08 - 04/02/09	09 < 3	9 >	< 29	۸ 4	< 12	ω ν	^ 1	4 ^	۸ 4	< 1500	< 411
	04/02/09 - 07/02/09	09 < 0.4	< 2	< 10	< 0.3	۸ <u>۲</u>	< 2	4 >	< 0.3	< 0.3	< 39100	< 14700
	07/02/09 - 09/30/09	09 < 3	< 11	< 49	< 5	< 7	< 13	< 17	4 >	4 ^	< 12500	< 3690
	09/30/09 - 12/30/09	9 > 60	< 10	< 27	۸ 4	× 11	6 V	< 17	v 5	< 5	< 859	< 302
	MEAN	ı	ı		ı		ı	1	ı	ı	1	ı
-	12/31/08 - 04/02/09	۰ ۷	œ V	> 24	° v	α	ν (v 10	er V	رب ۷	< 1050	< 484
2	00/00/20 00/00/00	'\) (, ,		· /	· ·	2 -		, c	< 42000	< 16800
	04/02/09 - 01/02/0		V	7 0	†.	- 1	7 1	r •) ; ;) ; , ,	40000	0.000
	07/02/09 - 09/30/09	09 < 3	∞ V	36 ×		<i>\</i> >	<u> </u>	< 14	m V	v V	< 10900	< 33.10
	09/30/09 - 12/30/09	09 < 5	< 7	< 22	4 ^	< 12	/ >	< 12	۸ 4	4 >	< 929	< 248
	MEAN	•	ı	ı	ı	ı	1	ı	1	ı	ı	

C-10 51 of 187

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES	COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009
LE C-V.3	

TABI	TABLE C-V.3	COL	CENTRAT .ECTED II	TONS OF N THE VIC	CENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SA LECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009	EMITTER : LASALL	S IN AIR E COUNT	PARTICU 'Y STATI	CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009	MPLES		
		RESU	JLTS IN U	NITS OF	RESULTS IN UNITS OF E-3 PCI/CU METER ±2 SIGMA	U METER	₹ 2 SIGN	Ą				
STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65		Nb-95 Zr-95	Cs-134	Cs-137	Ba-140	La-140
L-11	12/31/08 - 04/02/09	< 3	9 >	< 16	< 2	9 >	< 5	< 10	< 3	< 3	< 1010	< 224
	04/02/09 - 07/02/09	< 0.4	< 2	< 11	< 0.4	^ 1	< 2	۸ 4	< 0.3	< 0.3	< 46100	< 18500
	07/02/09 - 09/30/09	< 5	< 12	< 53	۶ >	× 11	< 16	< 23	4 >	ზ V	< 14800	< 5290
	09/30/09 - 12/30/09	< 2	۸ 4	8 v	< 2	რ V	۸ 4	9 >	< 2	, 1	< 395	< 79
	MEAN	1	1	1	1	1	•	1	1	,	ı	•

TABLE C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION	G	ROUP I	0	ROUP II	1	GI	ROUP III		GROUP IV
PERIOD	L-03	L-05	L-01	L-06	L-04	L-07	L-08	L-11	L-10
12/31/08 - 01/08/09	< 39	< 39	< 21	< 39	< 39	< 63	< 63 (1)	< 63	< 63
01/08/09 - 01/15/09	< 42	< 42	< 21	< 42	< 42	< 36	< 36	< 36	< 36
01/15/09 - 01/22/09	< 11	< 20	< 20	< 20	< 20	< 18	< 19	< 18	< 18
01/22/09 - 01/29/09	< 61	< 62	< 34	< 61	< 61	< 57	< 58	< 58	< 58
01/29/09 - 02/05/09	< 57	< 59	< 60	< 60	< 36	< 61	< 61	< 63	< 63
02/05/09 - 02/12/09	< 36	< 36	< 18	< 36	< 34	< 35	< 34	< 33	< 34
02/12/09 - 02/19/09	< 16	< 9	< 16	< 16	< 17	< 24	< 24	< 23	< 24
02/19/09 - 02/26/09	< 41	< 41	< 20	< 41	< 41	< 39	< 39	< 39	< 38
02/26/09 - 03/05/09	< 14	< 26 (1)	< 14	< 8	< 14	< 14	< 13	< 13	< 14 (1)
03/05/09 - 03/12/09	< 16	< 16	< 9	< 16	< 16	< 13	< 13	< 13	< 13
03/12/09 - 03/19/09	< 46	< 57 (1)	< 47	< 47	< 47	< 32	< 48	< 48	< 48
03/19/09 - 03/26/09	< 40	< 46 (1)	< 22	< 40	< 40	< 49	< 50	< 50	< 50
03/26/09 - 04/02/09	< 23	< 23 (1)	< 23	< 66	< 23	< 68	< 41	< 67	< 67
04/02/09 - 04/09/09	< 69	< 69	< 43	< 68	< 68	< 63	< 61	< 63	< 61
04/09/09 - 04/16/09	< 45	< 45	< 45	< 41	< 45	< 42	< 42	< 41	< 23
04/16/09 - 04/22/09	< 61	< 61	< 34	< 61	< 61	< 63	< 62	< 62	< 62
04/22/09 - 04/30/09	< 66	< 66	< 66	< 64	< 66	< 57	< 57	< 45	< 57
04/22/09 - 04/30/09	< 68	< 68	< 38	< 67	< 67	< 63	< 60	< 62	< 62
05/07/09 - 05/14/09	< 57	< 58	< 45	< 57	< 57	< 68		< 68	
05/14/09 - 05/20/09	< 51	< 51	< 41	< 48	< 51	< 62	< 68 < 61		< 68
05/20/09 - 05/28/09		< 65		< 65				< 61	< 61
	< 36		< 65		< 65	< 59	< 59	< 58	< 58
05/28/09 - 06/05/09	< 59	< 60	< 25	< 59	< 59	< 37	< 38	< 64	< 38
06/04/09 - 06/11/09	< 66 (1	•	< 55	< 34	< 30	< 51	< 51	< 50	< 50
06/11/09 - 06/18/09	< 67 (1	•	< 47	< 23	< 46	< 38	< 39	< 38	< 39
06/18/09 - 06/24/09	< 62	< 28	< 62	< 62	< 34	< 62	< 67	< 67	< 67
06/24/09 - 07/02/09 07/02/09 - 07/09/09	< 36 (1 < 59 (1	•	< 67	< 66	< 67	< 34	< 34	< 34	< 34
07/02/09 - 07/09/09			< 55	< 30 < 44	< 55 < 45	< 55	< 54	< 54	< 54
07/16/09 - 07/23/09	•		< 45 < 51	< 51	< 51	< 44 < 29	< 44	< 24	< 44
07/10/09 - 07/23/09 07/23/09 - 07/30/09	•		< 33	< 33		< 45	< 69	< 68	< 69
07/30/09 - 08/06/09	< 19 (1 < 25	/ < 25	< 25	< 34	< 33 < 25	< 18	< 45 < 35	< 44 < 35	< 44
08/06/09 - 08/12/09	< 65	< 65	< 36	< 65	< 65	< 55	< 70	< 70	< 35
08/12/09 - 08/19/09	< 47	< 47	< 47	< 50	< 47	< 50	< 50		< 70
08/12/09 - 08/13/09	< 54	< 55	< 55	< 57	< 55	< 25	< 58	< 50 < 58	< 27
08/27/09 - 09/03/09	< 30	< 55	< 55	< 55	< 55	< 57	< 57		< 58
09/03/09 - 09/10/09	< 31	< 31	< 31	< 24	< 31	< 26	< 14	< 24 < 25	< 57
09/10/09 - 09/17/09	< 48	< 48	< 27	< 47	< 49	< 62	< 62	< 62	< 25
09/17/09 - 09/24/09	< 63	< 64	< 64	< 64	< 36	< 70	< 69		< 62
09/24/09 - 09/30/09	< 19	< 35	< 35	< 34	< 35	< 58	< 58	< 69 < 57	< 69
09/30/09 - 10/08/09	< 21	< 21	< 21	< 39	< 21	< 17	< 39	< 39	< 57
10/08/09 - 10/15/09	< 29	< 29	< 29	< 29	< 29	< 41	< 41		< 39
	< 45	< 45	< 25	< 45	< 45			< 41	< 41
10/15/09 - 10/21/09 10/21/09 - 10/29/09	< 48	< 26	< 47			< 68	< 68	< 68	< 68
	< 45	< 44	< 19	< 47	< 47	< 39	< 39	< 39	< 39
10/29/09 - 11/05/09				< 45	< 44	< 57	< 56	< 56	< 56
11/05/09 - 11/12/09	< 46	< 47	< 46	< 25	< 46	< 67	< 67	< 66	< 67
11/12/09 - 11/19/09	< 17	< 17	< 17	< 13 (1)	< 17	< 38	< 38	< 38	< 38
11/19/09 - 11/25/09	< 52	< 52	< 52	< 56	< 52	< 31	< 56	< 56	< 56
11/25/09 - 12/03/09	< 61	< 61	< 29 (1)	< 62	< 60	< 46	< 46	< 45	< 45
12/03/09 - 12/10/09	< 58	< 59	< 59	< 60	< 58	< 61	< 34	< 61	< 61
12/10/09 - 12/17/09	< 65	< 28	< 65	< 65	< 65	< 51	< 51	< 51	< 51
12/17/09 - 12/23/09	< 61	< 61	< 60	< 52 (1)	< 60	< 42	< 42	< 41	< 41
12/23/09 - 12/30/09	< 63	< 66	< 66	< 65	< 40	< 43	< 45	< 45	< 45
MEAN	-	-	-	-	-	-	-	-	•

C-12

⁽¹⁾ SEE PROGRAM EXCEPTIONS SECTIONS FOR EXPLANATION

TABLE C-VII.1 CONCENTRATIONS OF I-131 IN MILK SAMPLES IN THE VICINITY OF LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	CONTROL
	FARM
COLLECTION	L-42
PERIOD	
01/01/09	< 0.8
02/05/09	< 0.8
03/05/09	< 0.6
04/02/09	< 0.6
05/07/09	< 0.6
05/20/09	< 0.4
06/04/09	< 0.8
06/18/09	< 0.8
07/02/09	< 0.5
07/16/09	< 0.7
07/30/09	< 0.7
08/12/09	< 0.4
08/27/09	< 0.6
09/10/09	< 0.8
09/24/09	< 0.7
10/08/09	< 0.6
10/21/09	< 0.7
11/05/09	< 0.6
12/03/09	< 0.5
MEAN	_

C-13 54 of 187

CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009 TABLE C-VII.2

		RES	SULTS IN	UNITS O	F PCI/LITI	RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA	SMA					
STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
L-42	01/01/09	4 >	< 5	< 13	< 5	< 10	< 5	< 8	4 ^	4 >	< 43	< 12
	02/02/09	< 2	<.2	9 >	< 2	۸ 4	< 2	4 ^	< 2	< 2	< 19	9 >
	03/02/09	< 7	< 7	< 17	< 7	< 17	/ >	< 13	<i>L</i> >	9 >	< 48	< 11
	04/02/09	۸ ۸	< 5	< 13	< 5	× 11	۸ 5	6 >	4 ^	< 5	< 38	< 13
	02/01/09	< 2	۷ ع	< 7	< 2	< 5	۳	۸ 4	< 2	< 2	< 43	> 14
	05/20/09	< 7	8 ×	< 15	9 >	< 15	8 >	< 10	9 >	< 7	< 54	< 15
	06/04/09	د ۸	د >	2 >	< 3	2 >	رد م	< 5	< 3	× ع	< 22	9 >
	06/18/09	۸ 4	4 ^	< 12	4 ^	< 10	< 5	8 ×	4 >	۸ 4	< 40	< 10
	02/07/0	۸ 4	< 5	< 11	4 >	6 >	< 5	6 >	4 >	۸ 4	< 39	× 11
	02/16/09	۸ 4	4 ^	< 11	4 >	8 >	4 ×	8	٧ >	۸ 4	< 25	6 >
	02/30/09	۸ 4	< 5	< 12	< 5	< 10	< 5	6 >	4 >	۸ 4	< 43	< 10
	08/12/09	۸ 4	4	6 >	× 3	6 >	۸ ۸	< 5	< 2	× 3	< 24	× 11
	08/27/09	9 >	9 >	< 15	< 7	< 14 41	2 >	< 10	9 >	2 >	< 30	6 >
	09/10/09	9	< 7	< 15	< 7	< 17	2 >	< 12	9 >	<i>L</i> >	< 28	< 10
	09/24/09	v 5	< 5	< 11	< 5	< 12	9 >	< 10	< 5	9 >	< 30	<i>L</i> >
	10/08/09	۸ 4	9 >	> 14	9 >	< 12	< 7	< 11	< 5	< 5	< 35	< 13
	10/21/09	۸ 4	< 5	< 10	v 5	< 10	4 ^	8 V	4 ^	< 5	< 22	<i>L</i> >
	11/05/09	< 7	& V	< 18	< 10	< 15	8 V	< 15	L >	8 >	< 46	41
	12/03/09	۷ د	> 5	4	v 5	< 12	9 >	< 10	< 5	< 5	< 45	< 13
	MEAN	1	1	ı	1		,	1	,			1

C-14 55 of 187

CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCT SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009 TABLE C-VIII.1

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

La-140	< 22 < 19		2833	•		< 21 -	< 23	< 25	^	1
Ba-140	< 72 < 76	ı	< 120 < 89		88 >	68 . V	< 85	< 105	> 69 64	,
Cs-137	< 12 < 13	,	1714	1	< 15	, 16	> 16	, 16 16	× 11 10	1
Cs-134	101111	•	 < 18 < 13	,	< 13	· 15	< 12	^ 4 .	თ დ V V	•
1-131	< 31 < 36	1	< 54 < 39		^ 41	< 42	> 36	46	< 30 < 25	•
Zr-95	< 23 < 22	ı	< 24 < 26	,	< 34	< 28	< 29	> 30	< 21 < 16	1
Nb-95	< 13 < 15		< 21 < 15	1	< 18	, 18 ,	< 17	< 20	× 11 10	1
Zn-65	< 22 < 31		< 37 < 32	1	< 31	< 40	> 34	< 32	< 27 < 21	,
Co-60	< 10 < 10	,	< 22 < 15	1	< 19	× 18	< 15	< 15	, v 13	1
Fe-59	< 27 < 33		< 40 < 36	,	< 41	96 ,	< 33	< 31	< 26 < 22 < 22 < 22 < 23 < 24 < 25 < 25 < 25 < 25 < 25 < 25 < 25	1
Co-58	1312	•	1741	1	× 18	v 16	< 13	> 16	1210	1
Mn-54	^ + + + + + + + + + + + + + + + + + + +	,	4 187 16	ı	< 13	, 16	< 15	< 15	^ ^ 9 1	1
COLLECTION Mn-54 PERIOD	09/12/09 09/12/09	MEAN	09/10/09 09/10/09	MEAN	09/10/09	09/10/09 MEAN	09/12/09	09/12/09 MEAN	09/12/09 09/12/09	MEAN
STC	L-CONTROL Cabbage Onions		L-QUAD 1 Broccoli Cabbage		L-QUAD 2 Cabbage	Horseradish	L-QUAD 3 Broccoli	Cabbage	L-QUAD 4 Cabbage Onions	

C-15 56 of 187

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF MILLI-ROETGEN/QUARTER ± 2 STANDARD DEVIATIONS

STATION	MEAN	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE					
L-01-1	26.0 ± 7.1	28	23	23	30
L-01-2	26.3 ± 5.0	27	23	26	29
L-03-1	25.5 ± 6.2	25	23	24	30
L-03-2	25.3 ± 5.5	27	24	22	28
L-04-1	23.3 ± 5.0	24	23	20	26
L-04-2	24.0 ± 7.5	24	23	20	29
L-05-1	24.3 ± 4.7	24	26	21	26
L-05-2	23.8 ± 4.1	24	24	21	26
L-06-1	27.0 ± 6.7	28	26	23	31
L-06-2	25.0 ± 8.5	24	24	21	31
L-07-1	24.0 ± 3.7	25	22	23	26
L-07-2	24.3 ± 6.8	23	24	21	29
L-08-1	24.3 ± 6.2	26	24	20	27
L-08-2	25.3 ± 7.9	24	22	24	31
L-10-1	23.5 ± 7.4	23	24	19	28
L-10-2	22.0 ± 7.1	22	20	19	27
L-11-1	22.3 ± 4.1	22	20	22	25
L-11-2	21.5 ± 5.3	22	20	19	25
L-101-1	28.0 ± 5.9	27	32	25	28
L-101-2	27.0 ± 4.3	25	27	26	30
L-102-1	28.0 ± 10	29	24	24	35
L-102-2	26.3 ± 5.7	27	24	24	30
L-103-1	25.8 ± 5.7	25	24	24	30
L-103-2	26.5 ± 5.3	25	27	24	30
L-104-1	25.0 ± 5.4	27	26	21	26
L-104-2	24.8 ± 5.7	25	25	21	28
L-105-1	28.3 ± 6.6	30	26	25	32
L-105-2	26.3 ± 6.2	26	28	22	29
L-106-1	25.8 ± 7.2	25	23	24	31
L-106-2	25.3 ± 6.6	26	25	21	29
L-107-1	26.8 ± 6.2	27	24	25	31
L-107-2	25.8 ± 7.2	25	23	24	31
L-108-1	25.8 ± 7.7	28	23	22	30
L-108-2	23.0 ± 7.1	26	21	19	26
L-109-1	25.5 ± 5.3	25	27	22	28
L-109-2	27.0 ± 7.1	27	24	25	32
L-110-1	26.8 ± 4.4	26	24	29	28
L-110-2	26.8 ± 6.0	28	26	23	30
L-112-1	24.8 ± 7.2	23	24	22	30
L-112-2	25.5 ± 5.0	25	23	25	29
L-114-1	25.8 ± 6.0	25	27	22	29
L-114-2	26.5 ± 3.5	28	25	25	28
L-115-1	23.8 ± 4.7	24	22	22	27
L-115-2	25.0 ± 8.2	28	22	21	29
L-116-1	24.0 ± 4.3	24	23	22	27
L-116-2	23.5 ± 5.8	24	23	20	27
L-201-3	21.8 ± 3.4	22	21	20	24
L-201-4	24.8 ± 2.5	25	25	23	26
L-202-3	24.0 ± 7.1	24	21	22	29
L-202-4	23.8 ± 7.7	22	20	24	29
L-203-1	25.3 ± 8.4	24	25	21	31
L-203-1 L-203-2	25.5 ± 4.8	24	25 25	24	29
L-200-2	20.0 ± 4.0			⊤	57 of 187
		C-1	U		3/0110/

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF MILLI-ROETGEN/QUARTER ± 2 STANDARD DEVIATIONS

STATION	MEAN	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE					
L-204-1	27.0 ± 5.9	27	26	24	31
L-204-2	25.5 ± 5.8	25	26	22	29
L-205-1	25.3 ± 2.5	24	25	25	27
L-205-2	27.0 ± 7.8	25	28	23	32
L-205-3	26.0 ± 3.3	26	26	24	28
L-205-4	25.0 ± 8.5	25	22	22	31
L-206-1	26.0 ± 6.7	25	27	22	30
L-206-2	26.0 ± 2.8	25	26	25	28
L-207-1	25.8 ± 5.7	24	24	25	30
L-207-2	25.0 ± 7.7	22	26	22	30
L-208-1	25.8 ± 8.5	25	23	23	32
L-208-2	27.8 ± 4.7	26	28	26	31
L-209-1	26.3 ± 7.0	25	28	22	30
L-209-2	25.3 ± 7.9	24	24	22	31
L-210-1	27.8 ± 6.6	28	24	27	32
L-210-2	27.5 ± 6.6	25	25	28	32
L-211-1	29.0 ± 6.5	29	25	29	33
L-211-2	28.8 ± 6.0	28	28	26	33
L-212-1	24.8 ± 5.0	25	24	22	28
L-212-2	26.3 ± 4.4	25	27	24	29
L-213-3	25.0 ± 2.8	24	25	24	27
L-213-4	25.0 ± 1.6	24	26	25	25
L-214-3	24.5 ± 3.5	24	24	23	27
L-214-4	24.3 ± 5.7	24	24	21	28
L-215-3	27.3 ± 8.7	28	25	23	33
L-215-4	27.5 ± 5.3	26	28	25	31
L-216-3	27.3 ± 1.9	28	28	27	26
L-216-4	25.3 ± 6.8	25	24	22	30
L-111B-1	26.8 ± 4.7	25	25	27	30
L-111B-2	27.3 ± 6.6	27	25	25	32
L-113A-1	27.0 ± 8.8	25	29	22	32
L-113A-2	27.0 ± 6.7	26	28	23	31

C-17 58 of 187

TABLE C-IX.2 MEAN QUARTERLY TLD RESULTS FOR THE INNER RING, OUTER RING, OTHER AND CONTROL LOCATIONS FOR LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF MILLI-ROETGEN/QUARTER ± 2 STANDARD DEVIATIONS OF THE STATION DATA

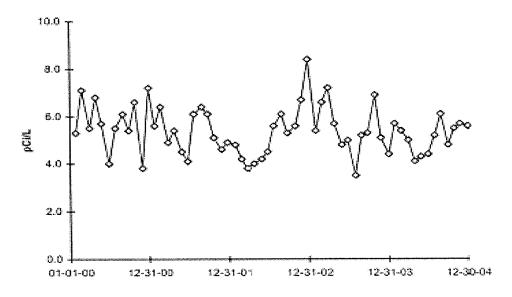
COLLECTION PERIOD	INNER RING ± 2 S.D.	OUTER RING	OTHER	CONTROL
JAN-MAR	26.0 ± 3.2	25.1 ± 3.4	24.8 ± 3.8	22.5 ± 1.4
APR-JUN	25.0 ± 4.6	25.1 ± 4.2	23.2 ± 3.4	22.0 ± 5.7
JUL-SEP	23.3 ± 4.3	23.7 ± 4.2	21.9 ± 3.7	19.0 ± 0.0
OCT-DEC	29.5 ± 4.0	29.5 ± 4.7	28.1 ± 4.4	27.5 ± 1.4

TABLE C-IX.3 SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER

LOCATION	SAMPLES	PERIOD	PERIOD	PERIOD MEAN
	ANALYZED	MINIMUM	MAXIMUM	± 2 S.D.
INNER RING	128	19	35	26.0 ± 6.1
OUTER RING	136	20	33	25.8 ± 6.0
OTHER	64	19	31	24.5 ± 6.0
CONTROL	8	19	28	22.8 ± 6.9

INNER RING STATIONS - L-101-1, L-101-2, L-102-1, L-102-2, L-103-1, L-103-2, L-104-1, L-104-2, L-105-1, L-105-2, L-106-1, L-106-2, L-107-1, L-107-2, L-108-1, L-108-2, L-109-1, L-109-2, L-110-1, L-110-2, L-111B-1, L-111B-2, L-112-1, L-112-2, L-113A-1, L-113A-2, L-114-1, L-114-2, L-115-1, L-115-2, L-116-1, L-116-2


OUTER RING STATIONS - L-201-3, L-201-4, L-202-3, L-202-4, L-203-1, L-203-2, L-204-1, L-204-2, L-205-1, L-205-2, L-205-3, L-205-4, L-206-1, L-206-2, L-207-1, L-207-2, L-208-1, L-208-2, L-209-1, L-209-2, L-210-1, L-210-2, L-211-1, L-211-2, L-212-1, L-212-2, L-213-3, L-213-4, L-214-3, L-214-4, L-215-3, L-215-4, L-216-3, L-216-4

OTHER STATIONS - L-01-1, L-01-2, L-03-1, L-03-2, L-04-1, L-04-2, L-05-1, L-05-2, L-06-1, L-06-2, L-07-1, L-07-2, L-08-1, L-08-2, L-11-1, L-11-2

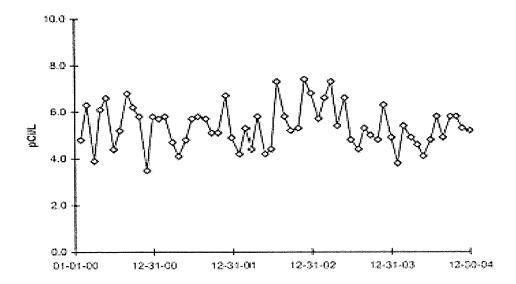
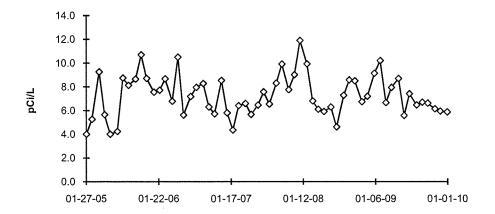

CONTROL STATIONS - L-10-1, L-10-2

FIGURE C-1
Surface Water - Gross Beta - Stations L-21 (C) and L-40
Collected in the Vicinity of LCS, 2000 - 2004

L-21 (C) Illinois River at Seneca


L-40 Illinois River Downstream

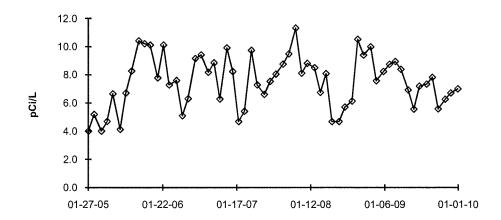
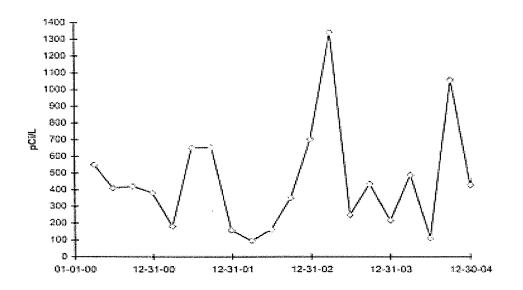

C-19 60 of 187

FIGURE C-1 (cont.)
Surface Water - Gross Beta - Stations L-21 (C) and L-40
Collected in the Vicinity of LCS, 2005 - 2009

L-21 (C) Illinois River at Seneca

L-40 Illinois River Downstream



DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

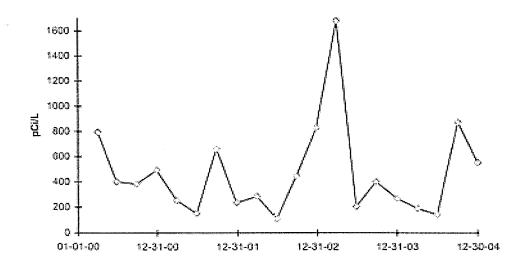
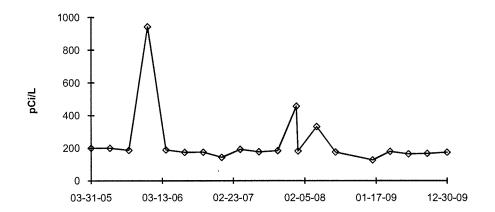

C-20 61 of 187

FIGURE C-2
Surface Water - Tritium - Stations L-21 (C) and L-40
Collected in the Vicinity of LCS, 2000 - 2004

L-21(C) Illinois River at Seneca


L-40 Illinois River Downstream

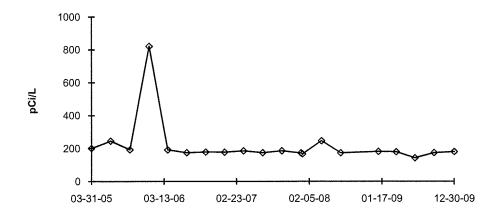
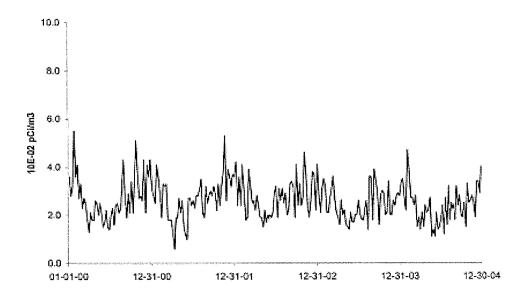

C-21 62 of 187

FIGURE C-2 (cont.) Surface Water - Tritium - Stations L-21 (C) and L-40 Collected in the Vicinity of LCS, 2005 - 2009

L-21 Illinois River at Seneca

L-40 Illinois River Downstream



DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

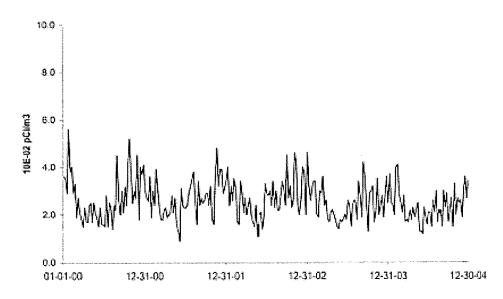
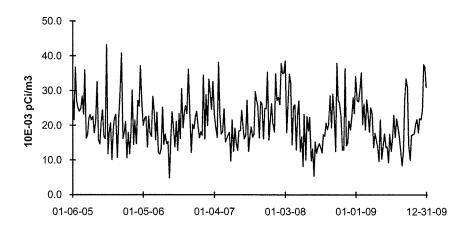

C-22 63 of 187

FIGURE C-3
Air Particulate - Gross Beta - Stations L-01 and L-03
Collected in the Vicinity of LCS, 2000 - 2004

L-01 Nearsite No. 1


L-03 Onsite No. 3

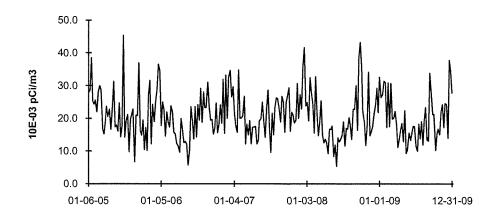
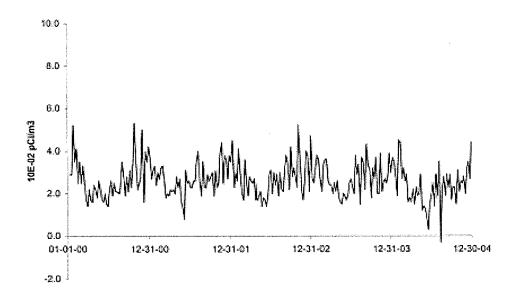
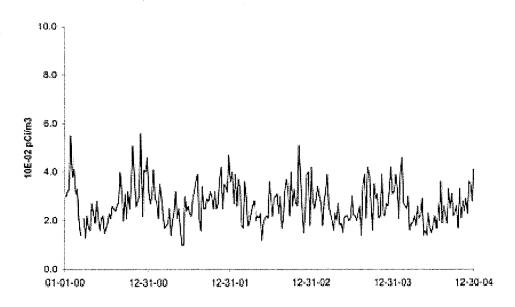

C-23 64 of 187

FIGURE C-3 (cont.)
Air Particulate - Gross Beta - Stations L-01 and L-03
Collected in the Vicinity of LCS, 2005 - 2009

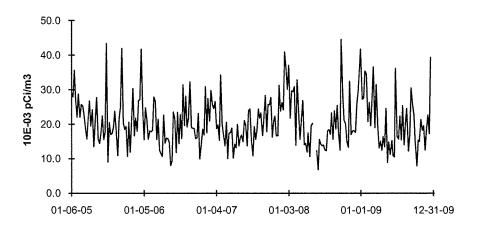
L-01 Nearsite No. 1


L-03 Onsite No. 3


DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

C-24 65 of 187

FIGURE C-4
Air Particulate - Gross Beta - Stations L-05 and L-06
Collected in the Vicinity of LCS, 2000 - 2004
L-05 Onsite No. 5


L-06 Nearsite No. 6

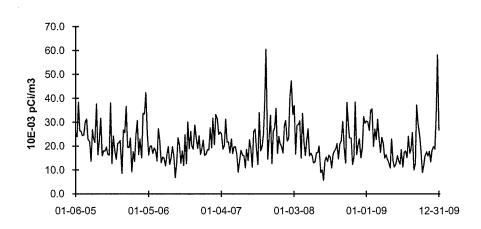
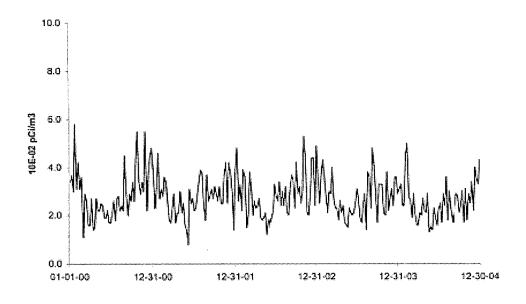

C-25 66 of 187

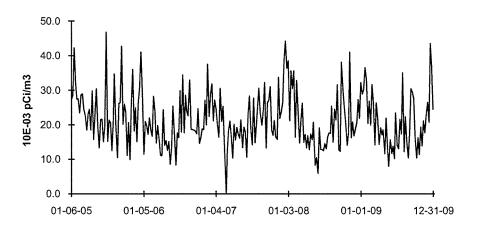
FIGURE C-4 (cont.)
Air Particulate - Gross Beta - Stations L-05 and L-06
Collected in the Vicinity of LCS, 2005 - 2009

L-05 Onsite No. 5


L-06 Nearsite No. 6

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

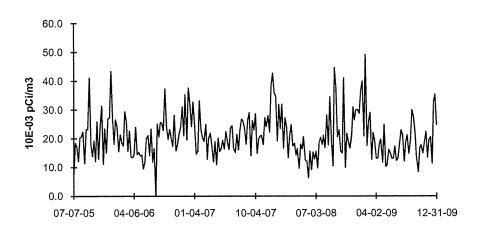
C-26 67 of 187


FIGURE C-5
Air Particulate - Gross Beta - Station L-10 (C)
Collected in the Vicinity of LCS, 2000 - 2004
L-10 (C) Streator

C-27 68 of 187

FIGURE C-5 (cont.)
Air Particulate - Gross Beta - Station L-10 (C)
Collected in the Vicinity of LCS, 2005 - 2009

L-10 (C) Streator



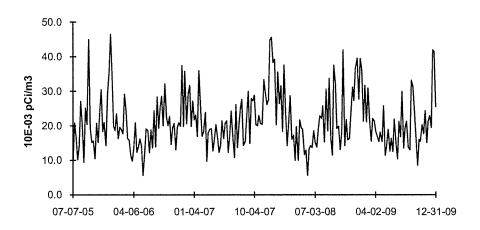
DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

C-28 69 of 187

FIGURE C-6
Air Particulate - Gross Beta - Stations L-04 and L-07
Collected in the Vicinity of LCS, 2005 - 2009

L-04 Rte. 170

L-07 Seneca


DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

AIR PARTICULATE GROSS BETA ANALYSES OF FAR FIELD LOCATIONS STARTED IN JULY 2005

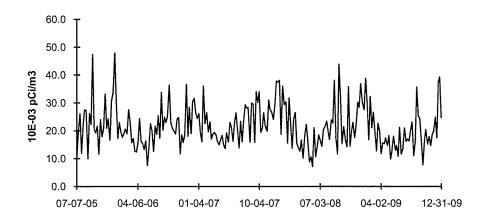

C-29 70 of 187

FIGURE C-7
Air Particulate - Gross Beta - Stations L-08 and L-11
Collected in the Vicinity of LCS, 2005 - 2009

L-08 Marseilles

L-11 Ransom

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

AIR PARTICULATE GROSS BETA ANALYSES OF FAR FIELD LOCATIONS STARTED IN JULY 2005

C-30 71 of 187

APPENDIX D

INTER-LABORATORY COMPARISON PROGRAM

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2009

(PAGE 1 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
Marrala 2000	E0522 200	N A SUL	000	- C:/I	400	07.7	4.04	٨
March 2009	E6533-396	Milk	Sr-89 Sr-90	pCi/L pCi/L	102 14.9	97.7 15.6	1.04 0.96	A A
	E6534-396	Milk	I-131	pCi/L	66.7	79.3	0.84	А
			Ce-141	pCi/L	87.5	94.9	0.92	Α
			Cr-51	pCi/L	275	305	0.90	Α
			Cs-134	pCi/L	82.0	93.7	0.88	Α
			Cs-137	pCi/L	111	111	1.00	Α
			Co-58	pCi/L	114	119	0.96	A
			Mn-54	pCi/L	136	128	1.06	A
			Fe-59	pCi/L	112	99.9	1.12	A
			Zn-65	pCi/L	160	156	1.03	A
			Co-60	pCi/L	142	142	1.00	Α
	E6536-396	AP	Ce-141	pCi	120	115	1.04	A
			Cr-51	pCi	385	371	1.04	A
			Cs-134	pCi	113	114	0.99	A
			Cs-137	pCi nCi	149	135	1.10	A
			Co-58	pCi nCi	153 155	145 155	1.06 1.00	A
			Mn-54 Fe-59	pCi pCi	155 118	121	0.98	A A
			Zn-65	pCi pCi	195	189	1.03	A
			Co-60	рСі	190	173	1.10	Ä
	E6535-396	Charcoal	I-131	pCi	82.8	79.4	1.04	Α
June 2009	E6742-396	Milk	Sr-89	pCi/L	107	112	0.96	Α
			Sr-90	pCi/L	19.0	16.7	1.14	Α
	E6743-396	Milk	I-13 1	pCi/L	98.1	102.0	0.96	Α
			Ce-141	pCi/L	260	284	0.92	Α
			Cr-51	pCi/L	389	400	0.97	Α
			Cs-134	pCi/L	144.0	166	0.87	Α
			Cs-137	pCi/L	185	192	0.96	Α
			Co-58	pCi/L	86.9	91.9	0.95	A
			Mn-54	pCi/L	133	137	0.97	A
			Fe-59	pCi/L	126	122	1.03	A
			Zn-65 Co-60	pCi/L pCi/L	173 298	175 312	0.99 0.96	A A
	E0745 000	4.5	0-444					
	E6745-396	AP	Ce-141	pCi ~Ci	186	163	1.14	A
			Cr-51	pCi ~Ci	262	231	1.13	A
			Cs-134 Cs-137	pCi pCi	101 135	95 111	1.06	A \\\
			Cs-137 Co-58	pCi pCi	135 61	111 53	1.22 1.16	W A
			Mn-54	pCi pCi	83.1	55 79	1.05	A
			Fe-59	pCi pCi	84	79 70	1.19	A
			Zn-65	pCi	137	101	1.36	N (1)
			Co-60	pCi	202	180	1.12	Α
	E6744-396	Charcoal	I-131	pCi	92.2	95.8	0.96	Α

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2009

(PAGE 2 OF 3)

Manth (V)	Identification	Matric	Nivalia a	11:-!4-	Reported Value (a)	Known Value (b)	Ratio (c)	Evaluation (d)
Month/Year	Number	Matrix	Nuclide	Units	value (a)	value (b)	TBE/Analytics	Evaluation (0
September 2009	E6897-396	Milk	Sr-89	pCi/L	113	107	1.06	Α
·			Sr-90	pCi/L	17.4	18.8	0.93	Α
	E6898-396	Milk	I-131	pCi/L	89.2	98.6	0.90	Α
			Ce-141	pCi/L	249	275	0.91	Α
			Cr-51	pCi/L	213	221	0.96	Α
			Cs-134	pCi/L	104.0	123	0.85	Α
			Cs-137	pCi/L	172	185	0.93	Α
			Co-58	pCi/L	96.3	99.4	0.97	Α
			Mn-54	pCi/L	201	206	0.98	Α
			Fe-59	pCi/L	154	147	1.05	Α
			Zn-65	pCi/L	213	204	1.04	A
			Co-60	pCi/L	154	160	0.96	Α
	E6900-396	AP	Ce-141	pCi	181	161	1.12	Α
			Cr-51	pCi	145	130	1.12	Α
			Cs-134	pCi	71.8	72	0.99	Α
			Cs-137	pCi	115	109	1.06	A
			Co-58	pCi	62	58	1.06	A
			Mn-54	pCi	129	121	1.07	A
			Fe-59	pCi	97	98	0.98	A
			Zn-65	pCi	110	120	0.92	A
			Co-60	pCi	98.7	94.1	1.05	Α
	E6899-396	Charcoal	I-131	pCi	89.5	92.3	0.97	Α
December 2009	E6946-396	Milk	Sr-89	pCi/L	131	131	1.00	Α
			Sr-90	pCi/L	19.3	17.9	1.08	Α
	E6947-396	Milk	I-131	pCi/L	79.2	87.3	0.91	Α
			Ce-141	pCi/L	193	202	0.96	Α
			Cr-51	pCi/L	512	548	0.93	Α
			Cs-134	pCi/L	222	253	0.88	Α
			Cs-137	pCi/L	163	179	0.91	A
			Co-58	pCi/L	200	211	0.95	A
			Mn-54	pCi/L	178	178	1.00	A
			Fe-59	pCi/L	176	178	0.99	A
			Zn-65	pCi/L	326	345	0.94	A
			Co-60	pCi/L	240	256	0.94	Α
	E6949-396	AP	Ce-141	pCi	103	103	1.00	A
			Cr-51	pCi	290	280	1.04	A
			Cs-134	pCi	116	129	0.90	A
			Cs-137	pCi	93.4	91.5	1.02	A
			Co-58	pCi O'	111	108	1.03	A
			Mn-54	pCi	8 1 .0	90.8	0.89	A
			Fe-59	pCi	106	90.8	1.17	A
			Zn-65	pCi	155 105	176	0.88	A
			Co-60	pCi	135	131	1.03	Α

D-2 74 of 187

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2009

(PAGE 3 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
December 2009	E6948-396	Charcoal	I-131	pCi	93.3	93.9	0.99	Α

D-3 75 of 187

⁽¹⁾ Detector 7 appears to have a slightly high bias. Detector 7 was removed from service until it can be recalibrated. NCR 09-23

⁽a) Teledyne Brown Engineering reported result.

⁽b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) Ratio of Teledyne Brown Engineering to Analytics results.

⁽d) Analytics evaluation based on TBE internal QC limits: A= Acceptable. Reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

TABLE D-2 ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2009

(PAGE 1 OF 1)

Month/Year	ldentification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Control Limits	Evaluation (c)
April 2009	RAD 77	Water	Sr-89	pCi/L	57.4	48.3	37.8 - 55.7	N (1)
•			Sr-90	pCi/L	30.6	31.4	22.9 - 36.4	A
			Ba-133	pCi/L	55.2	52.7	43.4 - 58.3	Α
			Cs-134	pCi/L	65.8	72.9	59.5 - 80.2	Α
			Cs-137	pCi/L	157	168	151 - 187	Α
			Co-60	pCi/L	86.4	88.9	80.0 - 100	Α
			Zn-65	pCi/L	85.5	84.4	76.0 - 101	Α
			Gr-A	pCi/L	47.7	54.2	28.3 - 67.7	Α
			Gr-B	pCi/L	45.2	43.5	29.1 - 50.8	Α
			I-131	pCi/L	25.2	26.1	21.7 - 30.8	Α
			H - 3	pCi/L	19733	20300	17800 - 22300	Α
October 2009	RAD 79	Water	Sr-89	pCi/L	64.75	62.2	50.2 - 70.1	Α
			Sr-90	pCi/L	30.30	30.7	22.4 - 35.6	Α
			Ba-133	pCi/L	97.9	92.9	78.3 - 102	Α
			Cs-134	pCi/L	76.8	79.4	65.0 - 87.3	Α
			Cs-137	pCi/L	59.9	54.6	49.1 - 62.9	Α
			Co-60	pCi/L	121	117	105 - 131	Α
			Zn-65	pCi/L	115	99.5	89.6 - 119	Α
			Gr-A	pCi/L	19.6	23.2	11.6 - 31.1	Α
			Gr-B	pCi/L	28.5	26.0	16.2 - 33.9	Α
			I-131	pCi/L	22.1	22.2	18.4 - 26.5	Α
			H-3	pCi/L	16133	16400	14300 - 18000	Α

⁽¹⁾ Calculation did not allow for Y-90 ingrowth on the Sr-89 mount. NCR 09-14

⁽a) Teledyne Brown Engineering reported result.

⁽b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

TABLE D-3

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)

TELEDYNE BROWN ENGINEERING, 2009

(PAGE 1 OF 2)

Month/Year	ldentification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
March 2009	09-MaW20	Water	Cs-134	Bq/L	18.8	22.5	18.5 - 29.3	А
			Cs-137	Bq/L	0.0601		(1)	A
			Co-57	Bq/L	17.0	18.9	13.2 - 24.6	A
			Co-60	Bq/L	16.1	17.21	12.05 - 22.37	A
			H-3	Bq/L	332	330.9	231.6 - 430.2	A
			Mn-54	Bq/L	13.8	14.7	10.26 - 19.06	A
			Sr-90	Bq/L	6.88	7.21	5.05- 9.37	A
			Zn-65	Bq/L	13.2	13.6	9.5 - 17.7	A
	09-GrW20	Water	Gr-A	Bq/L	0.529	0.635	>0.0 - 1.270	Α
			Gr-B	Bq/L	1.87	1.27	0.64 - 1.91	Α
	09-MaS20	Soil	Cs-134	Bq/kg	433	467	327 - 607	Α
			Cs-137	Bq/kg	649	605	424 - 787	Α
			Co-57	Bq/kg	-0.120		(1)	Α
			Co-60	Bq/kg	3.91	4.113	(2)	Α
			Mn-54	Bq/kg	339	307	215 - 399	Α
			K-40	Bq/kg	644	570	399 - 741	Α
			Sr-90	Bq/kg	245	257	180 - 334	Α
			Zn-65	Bq/kg	272	242	169 - 315	Α
	09-RdF20	AP	Cs-134	Bq/sample	2.77	2.93	2.05 - 3.81	Α
			Cs-137	Bq/sample	1.41	1.52	1.06 - 1.98	Α
			Co-57	Bq/sample		1.30	0.91 - 1.69	Α
			Co-60	Bq/sample		1.22	0.85 - 1.59	Α
			Mn-54	Bq/sample	2.42	2.2709	1.5898 - 2.9522	
			Sr-90	Bq/sample	0.713	0.64	0.448 - 0.832	Α
			Zn-65	Bq/sample	1.30	1.36	0.95 - 1.77	Α
	09-GrF20	AP	Gr-A	Bq/sample	0.188	0.348	>0.0 - 0.696	Α
			Gr-B	Bq/sample	0.313	0.279	0.140 - 0.419	Α
March 2009	09-RdV20	Vegetation		Bq/sample	3.48	3.40	2.38 - 4.42	Α
			Cs-137	Bq/sample	1.15	0.93	0.65 - 1.21	W
			Co-57	Bq/sample	3.12	2.36	1.65 - 3.07	N (3)
			Co-60	Bq/sample	-0.0105		(1)	Α
			Mn-54	Bq/sample	2.98	2.3	1.61 - 2.99	W
			K-40	Bq/sample	64.1		(4)	
			Sr-90	Bq/sample	1.09	1.260	0.882 - 1.638	Α
			Zn-65	Bq/sample	1.73	1.3540	0.948 - 1.760	W
September 2009	09-MaW21	Water	Cs-134	Bq/L	26.5	32.2	22.5 - 41.9	Α
			Cs-137	Bq/L	37.2	41.2	28.8 - 53.6	Α
			Co-57	Bq/L	32.2	36.6	25.6 - 47.6	Α
			Co-60	Bq/L	14.0	15.40	10.8 - 20.0	A
			H-3	Bq/L	705	634.1	443.9 - 824.3	Α
			Mn-54	Bq/L	-0.1015		(1)	A
			Sr-90	Bq/L	13.9	12.99	9.09- 16.89	A
			Zn-65	Bq/L	26.2	26.9	18.8 - 35.0	Α
	09-GrW21	Water	Gr-A	Bq/L	1.27	1.047	>0.0 - 2.094	Α
			Gr-B	Bq/L	9.70	7.53	3.77 - 11.30	Α

TABLE D-3 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)
TELEDYNE BROWN ENGINEERING, 2009
(PAGE 2 OF 2)

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
September 2009	09-MaS21	Soil	Am-241	Bq/kg	74.7	89.8	62.9 - 116.7	А
Geptember 2003	03-Ma02 I	ÇOII	Cs-134	Bq/kg Bg/kg	0.554	09.0	(1)	A
			Cs-137	Bq/kg Bq/kg	706	669	468 - 870	Ä
			Co-57	Bq/kg	606	586	410 - 762	A
			Co-60	Bq/kg	350	327.000	229 - 425	A
			Mn-54	Bq/kg	876	796	557 - 1035	A
			K-40	Bq/kg	425	375	263 - 488	Ä
			Sr-90	Bq/kg	505	455	319 - 592	A
			Zn-65	Bq/kg	1370	1178	825 - 1531	A
	09-RdF21	AP	Cs-134	Bq/sample	-0.02		(1)	Α
			Cs-137	Bq/sample	1.4	1.4	0.98 - 1.82	Α
			Co-57	Bq/sample	5.98	6.48	4.54 - 8.42	Α
			Co-60	Bq/sample	1.01	1.03	0.72 - 1.34	Α
			Mn-54	Bq/sample	5.16	5.49	3.84 - 7.14	Α
			Sr-90	Bq/sample	0.925	0.0835	0.585 - 1.086	Α
			Zn-65	Bq/sample	4.39	3.93	2.75 - 5.11	Α
	09-GrF21	AP	Gr-A	Bq/sample	0.357	0.659	>0.0 - 1.318	Α
			Gr-B	Bq/sample	1.403	1.320	0.66 - 1.98	Α
	09-RdV21	Vegetation	Cs-134	Bq/sample	-0.0027		(1)	Α
			Cs-137	Bq/sample	2.36	2.43	1.70 - 3.16	Α
			Co-60	Bq/sample	2.58	2.57	1.80 - 3.34	Α
			Mn-54	Bq/sample	8.36	7.9	5.5 - 10.3	Α
			K-40	Bq/sample	57.8		(4)	
			Sr-90	Bq/sample	1.73	1.78	1.25 - 2.31	Α
			Zn-65	Bq/sample	-0.59		(1)	Α

D-6 78 of 187

⁽¹⁾ False positive test.

⁽²⁾ Sensativity evaluation.

⁽³⁾ Homogeniety problem. MAPEP requires using entire sample but due to geometry limitations we can only use part of the sample. NCR 09-13

⁽⁴⁾ Not evaluated by MAPEP.

⁽a) Teledyne Brown Engineering reported result.

⁽b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

TABLE D-4 ERA (a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2009

(Page 1 of 1)

			Coi	ncentration (pCi/L)	
Lab Code	Date	Analysis	Laboratory	ERA	Control	
			Result ^b	Result ^c	Limits	Acceptance
STW-1181	04/06/09	Sr-89	41.0 ± 5.8	48.3	37.8 - 55.7	Pass
STW-1181	04/06/09	Sr-90	32.4 ± 2.4	31.4	22.9 - 36.4	Pass
STW-1182	04/06/09	Ba-133	44.6 ± 3.1	52.7	43.4 - 58.3	Pass
STW-1182	04/06/09	Co-60	81.0 ± 3.1	88.9	80.0 - 100.0	Pass
STW-1182	04/06/09	Cs-134	65.6 ± 5.2	72.9	59.5 - 80.2	Pass
STW-1182 ^a	04/06/09	Cs-137	147.7 ± 5.3	168.0	151.0 - 187.0	Fail
STW-1182	04/06/09	Zn-65	79.8 ± 7.5	84.4	76.0 - 101.0	Pass
STW-1183	04/06/09	Gr. Alpha	47.6 ± 2.1	54.2	28.3 - 67.7	Pass
STW-1183	04/06/09	Gr. Beta	38.5 ± 1.3	43.5	29.1 - 50.8	Pass
STW-1184	04/06/09	I-131	24.4 ± 2.5	26.1	21.7 - 30.8	Pass
STW-1186 ^e	04/06/09	H-3	22819.0 ± 453.0	20300.0	17800.0 - 22300.0	Fail
07114400	40/05/00		50.0 0.0	20.0	50.0 70.4	_
STW-1193	10/05/09	Sr-89	53.0 ± 6.0	62.2	50.2 - 70.1	Pass
STW-1193	10/05/09	Sr-90	31.1 ± 2.2	30.7	22.4 - 35.6	Pass
STW-1194	10/05/09	Ba-133	82.5 ± 3.5	92.9	78.3 - 102.0	Pass
STW-1194	10/05/09	Co-60	116.8 ± 3.3	117.0	105.0 - 131.0	Pass
STW-1194	10/05/09	Cs-134	78.8 ± 5.7	78.8	65.0 - 87.3	Pass
STW-1194	10/05/09	Cs-137	54.2 ± 3.7	54.6	49.1 - 62.9	Pass
STW-1194	10/05/09	Zn-65	102.5 ± 6.2	99.5	89.6 - 119.0	Pass
STW-1195	10/05/09	Gr. Alpha	20.3 ± 2.0	23.2	11.6 - 31.1	Pass
STW-1195	10/05/09	Gr. Beta	23.7 ± 1.4	26.0	16.2 - 33.9	Pass
STW-1196	10/05/09	I-131	22.4 ± 1.4	22.2	18.4 - 26.5	Pass
STW-1198	10/05/09	H-3	17228.0 ± 694.0	16400.0	14300.0 - 18000.0	Pass

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d All gamma -emitters showed a low bias. A large plastic burr found on the base of the Marinelli kept the beaker from sitting directly on the detector. Result of recount in a different beaker, Cs-137, 155.33 ± 14.55 pCi/L.

^e Samples were recounted and also reanalyzed. A recount of the original vials averaged 23,009 pCi/L. Reanalysis results were acceptable, 19,170 pCi/L.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)² ENVIRONMENTAL, INC., 2009 (Page 1 of 2)

		Concentration ^b							
				Known	Control				
1 -1- O - 1 - °	0.4	A b !-	1 -11		Limits d	A t			
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits	Acceptance			
STW-1170	01/01/09	Co-57	19.60 ± 0.40	18.90	13.20 - 24.60	Pass			
STW-1170	01/01/09	Co-60	16.60 ± 0.30	17.21	12.05 - 22.37	Pass			
STW-1170	01/01/09	Cs-134	20.40 ± 0.50	22.50	15.80 - 29.30	Pass			
STW-1170 ^e	01/01/09	Cs-137	0.10 ± 0.20	0.00	0.00 - 1.00	Pass			
STW-1170	01/01/09	H-3	359.90 ± 33.90	330.90	231.60 - 430.20	Pass			
STW-1170	01/01/09	Mn-54	15.00 ± 0.40	14.66	10.26 - 19.06	Pass			
STW-1170	01/01/09	Sr-90	7.87 ± 1.39	7.21	5.05 - 9.37	Pass			
STW-1170	01/01/09	Zn-65	14.00 ± 0.70	13.60	9.50 - 17.70	Pass			
01111110	01/01/00	211 00	11.00 2 0.70	10.00	0.00	. 400			
STW-1171	01/01/09	Gr. Alpha	0.56 ± 0.06	0.64	0.00 - 1.27	Pass			
STW-1171	01/01/09	Gr. Beta	1.29 ± 0.05	1.27	0.64 - 1.91	Pass			
STSO-1172 °	01/01/09	Co-57	0.00 ± 0.00	0.00	0.00 - 1.00	Pass			
STSO-1172	01/01/09	Cs-134	458.60 ± 7.40	467.00	327.00 - 607.00	Pass			
STSO-1172	01/01/09	Cs-137	652.30 ± 3.50	605.00	424.00 - 787.00	Pass			
STSO-1172	01/01/09	K-40	636.40 ± 9.50	570.00	360.40 - 669.40	Pass			
STSO-1172	01/01/09	Mn-54	346.40 ± 3.10	307.00	215.00 - 399.00	Pass			
STSO-1172	01/01/09	Sr-90	180.60 ± 12.10	257.00	180.00 - 334.00	Pass			
STSO-1172	01/01/09	Zn-65	268.30 ± 4.00	242.00	169.00 - 315.00	Pass			
0100-1172	01/01/03	211 00	200.00 1 4.00	2-12.00	100.00 010.00	1 400			
STVE-1173	01/01/09	Co-57	2.75 ± 0.11	2.36	1.65 - 3.07	Pass			
STVE-1173 ^e	01/01/09	Co-60	0.06 ± 0.09	0.00	0.00 - 1.00	Pass			
STVE-1173	01/01/09	Cs-134	3.49 ± 0.22	3.40	2.38 - 4.42	Pass			
STVE-1173	01/01/09	Cs-137	1.01 ± 0.11	0.93	0.65 - 1.21	Pass			
STVE-1173	01/01/09	Mn-54	2.52 ± 0.14	2.30	1.61 - 2.99	Pass			
STVE-1173	01/01/09	Zn-65	1.52 ± 0.18	1.35	0.95 - 1.76	Pass			
STAP-1174	01/01/09	Co-57	1.25 ± 0.05	1.30	0.91 - 1.69	Pass			
STAP-1174	01/01/09	Co-60	1.17 ± 0.06	1.22	0.85 - 1.59	Pass			
STAP-1174	01/01/09	Cs-134	2.67 ± 0.14	2.93	2.05 - 3.81	Pass			
STAP-1174	01/01/09	Cs-137	1.53 ± 0.08	1.52	1.06 - 1.98	Pass			
STAP-1174	01/01/09	Mn-54	2.34 ± 0.09	2.27	1.59 - 2.95	Pass			
STAP-1174 [†]		Sr-90	0.93 ± 0.14	0.64	0.45 - 0.83	Fail			
STAP-1174	01/01/09	Zn-65	1.44 ± 0.14	1.36	0.95 - 1.77	Pass			
CTAD 1175	01/01/09	Cr Alpha	0.33 ± 0.03	0.35	0.00 - 0.70	Pass			
STAP-1175 STAP-1175	01/01/09	Gr. Alpha Gr. Beta	0.22 ± 0.03 0.36 ± 0.04	0.33	0.14 - 0.42	Pass			
31AF-1173	01/01/09	Oi. Dela	0.30 1 0.04	0.20	0.14 - 0.42	1 055			
STW-1192	07/01/09	Co-57	37.20 ± 1.50	36.60	25.60 - 47.60	Pass			
STW-1192	07/01/09	Co-60	15.10 ± 0.90	15.40	10.80 - 20.00	Pass			
STW-1192	07/01/09	Cs-134	30.30 ± 2.10	32.20	22.50 - 41.90	Pass			
STW-1192	07/01/09	Cs-137	41.90 ± 1.80	41.20	28.80 - 53.60	Pass			
STW-1192	07/01/09	H-3	680.30 ± 33.60	634.10	443.90 - 824.30	Pass			
STW-1192 ^e	07/01/09	Mn-54	0.01 ± 0.26	0.00	0.00 - 1.00	Pass			
STW-1192	07/01/09	Sr-90	12.90 ± 1.70	12.99	9.09 - 16.89	Pass			
STW-1192	07/01/09	Zn-65	28.50 ± 2.40	26.90	18.80 - 35.00	Pass			

TABLE D-5 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)^a ENVIRONMENTAL, INC., 2009

(Page 2 of 2)

		***************************************		Concentratio	ın ^b	
				Known	Control	
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STW-1191	07/01/09	Gr. Alpha	0.88 ± 0.07	1.05	0.00 - 2.09	Pass
STW-1191	07/01/09	Gr. Beta	7.29 ± 0.10	7.53	3.77 - 11.30	Pass
STSO-1188	07/01/09	Co-57	674.60 ± 9.00	586.00	410.00 - 762.00	Pass
STSO-1188	07/01/09	Co-60	356.40 ± 6.30	327.00	229.00 - 425.00	Pass
STSO-1188	07/01/09	Cs-134	0.20 ± 1.90	0.00	0.00 - 1.00	Pass
STSO-1188	07/01/09	Cs-137	767.50 ± 12.00	669.00	468.00 - 870.00	Pass
STSO-1188	07/01/09	K-40	433.00 ± 37.20	375.00	263.00 - 488.00	Pass
STSO-1188	07/01/09	Mn-54	931.60 ± 14.10	796.00	557.00 - 1035.00	Pass
STSO-1188 ⁹	9 07/01/09	Sr-90	310.50 ± 12.20	455.00	319.00 - 592.00	Fail
STSO-1188	07/01/09	Zn-65	1433.90 ± 25.20	1178.00	825.00 - 1531.00	Pass
STVE-1190	07/01/09	Co-57	8.90 ± 0.60	8.00	5.60 - 10.40	Pass
STVE-1190	07/01/09	Co-60	2.50 ± 0.36	2.57	1.80 - 3.34	Pass
STVE-1190	07/01/09	Cs-134	0.01 ± 0.11	0.00	0.00 - 0.10	Pass
STVE-1190	07/01/09	Cs-137	2.42 ± 0.16	2.43	1.70 - 3.16	Pass
STVE-1190	07/01/09	Mn-54	8.35 ± 0.70	7.90	5.50 - 10.30	Pass
STVE-1190	07/01/09	Zn-65	0.01 ± 0.26	0.00	0.00 - 0.10	Pass
STAP-1189	07/01/09	Gr. Alpha	0.33 ± 0.04	0.66	0.00 - 1.32	Pass
STAP-1189	07/01/09	Gr. Beta	1.57 ± 0.07	1.32	0.66 - 1.98	Pass
STAP-1190	07/01/09	Co-57	6.78 ± 0.27	6.48	4.54 - 8.42	Pass
STAP-1190	07/01/09	Co-60	1.06 ± 0.18	1.03	0.72 - 1.34	Pass
STAP-1190	07/01/09	Cs-134	0.01 ± 0.06	0.00	0.01 - 0.05	Pass
STAP-1190	07/01/09	Cs-137	1.49 ± 0.27	1.40	0.98 - 1.82	Pass
STAP-1190	07/01/09	Mn-54	6.00 ± 0.45	5.49	3.84 - 7.14	Pass
STAP-1190	07/01/09	Sr-90	0.79 ± 0.13	0.84	0.59 - 1.09	Pass
STAP-1190	07/01/09	Zn-65	4.55 ± 0.66	3.93	2.75 - 5.11	Pass

D-9 81 of 187

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

^e Included in the testing series as a "false positive".

[†] No reason was determined for the initial high results. The analysis was repeated; result of reanalysis; 0.54 ± 0.12 Bg/filter.

Incomplete separation of strontium from calcium could result in a higher recovery percentage and consequently lower reported activity. The analysis was repeated; result of reanalysis 363.3 ± 28.6 Bg/kg.

APPENDIX E

EFFLUENT DATA

TABLE OF CONTENTS

INTRODUCTION	1
SUMMARY	2
1.0. EFFLUENTS	3
1.1. Gaseous Effluents to the Atmosphere	
1.2. Liquids Released to Illinois River	3
2.0. SOLID RADIOACTIVE WASTE	3
3.0. DOSE TO MAN	
3.1. Gaseous Effluent Pathways	3
3.1.1. Noble Gases	
3.1.1.1. Gamma Dose Rates	3
3.1.1.2. Beta Air and Skin Dose Rate	
3.1.2. Radioactive lodine	4
3.1.2.1. Dose to Thyroid	
3.2. Liquid Effluent Pathways	
3.3. Assessment of Dose to Member of Public	5
4.0. SITE METEOROLOGY	6

Table of Contents (cont.)

APPENDIX E-1 DAT	A TABLES AND FIGURES	E-1.1
Station Release	es	
Table 1.1-1	Gaseous Effluents Summation of all Releases	E-1.2
Table 1.2-1	Liquid Effluents Summation of all Releases	E-1.3
Table 2.0-1	Solid Radwaste Annual Report	E-1.4
Table 3.1-1	Maximum Doses Resulting from Airborne Releases	E-1.5
Table 3.2-1	Maximum Doses Resulting from Liquid Effluents	E-1.9
Table 3.3.1	10CFR20 Compliance Assessment	E-1.13
Table 3.4-1	Maximum Doses Resulting from Airborne Releases Based	
	On Concurrent Meteorological Data	E-1.17

INTRODUCTION

LaSalle County Station, a two-unit BWR station, is located near Marseilles, Illinois in LaSalle county, 3.5 miles south the Illinois River. Both units are rated for 3489 MWt. Unit 1 loaded fuel in March 1982. Unit 2 loaded fuel in late December 1983. The station has been designed to keep releases to the environment at levels below those specified in the regulations.

Liquid effluents, while no longer released from LaSalle County Station, were designed to be released to the Illinois River in controlled batches after radioassay of each batch. Gaseous effluents are released to the atmosphere after delay to permit decay of short-lived (noble) gases. Releases to the atmosphere are calculated on the basis of analyses of routine grab samples of noble gases and tritium as well as continuously collected composite samples of iodine and particulate radioactivity sampled during the course of the year. The results of effluent analyses are summarized on a monthly basis and reported to the Nuclear Regulatory Commission as required per Technical Specifications. Airborne concentrations of noble gases, tritium, I-131, and particulate radioactivity in offsite areas are calculated using effluent and meteorological data.

Environmental monitoring is conducted by sampling at indicator and control (background) locations in the vicinity of LaSalle County Station to measure changes in radiation or radioactivity levels that may be attributable to station operations. If significant changes attributable to LaSalle County Station are measured, these changes are correlated with effluent releases. External gamma radiation exposure from noble gases and internal dose from I-131 in milk are the critical pathways at this site; however, an environmental monitoring program is conducted which also includes these and many other pathways which are less significant in terms of radiation protection.

SUMMARY

Gaseous effluents for the period contributed to only a small fraction of the LaSalle County Station Radiological Effluent Controls Limits. Liquid effluents had no contribution to offsite dose, as no liquid radioactive discharges were conducted. Calculations of environmental concentrations based on effluent, Illinois River flow, and meteorological data for the period indicate that consumption by the public of radionuclides attributable to LaSalle County Station does not exceed regulatory limits. Radiation exposure from radionuclides releases to the atmosphere represented the critical pathway for the period with a maximum individual total dose estimated to be 7.69E-02 mrem for the year, where a shielding and occupancy factor of 0.7 is assumed. The assessment of radiation doses is performed in accordance with the Offsite Dose Calculation Manual (ODCM), specifically, a comparison of preoperational studies with operational controls or with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. Control locations are basis for "preoperational data." Yearly data comparisons are provided in Sections 5.1 and 5.2; five-year graphical trend data is provided in Appendix III, Section 7.0. The results of analysis confirm that the station is operating in compliance with 10CFR50 Appendix I, 10CFR20 and 40CFR190.

1.0 EFFLUENTS

1.1 Gaseous Effluents to the Atmosphere

Measured concentrations of noble gases, radioiodine, and particulate radioactivity released to the atmosphere during the year, are listed in Table 1.1-1. A total of 4.01E+03 curies of fission and activation gases were released with an average release rate of $1.26E+02~\mu\text{Ci/sec}$.

A total of 5.28E-02 curies of 1-131 was released during the year with an average release rate of 1.68E-03 µCi/sec.

A total of 1.62E-02 curies of beta-gamma emitters was released as airborne particulate matter with an average release rate of 5.11E-04 μ Ci/sec. Alpha-emitting radionuclides were below the lower limit of detection (LLD).

A total of 5.90E+01 curies of tritium was released with an average release rate of 1.86E+00 µCi/sec.

1.2 <u>Liquids Released to Illinois River</u>

There were no liquid batch releases in 2009. Continuous release path activity was below applicable Lower Limits of Detection.

2.0 SOLID RADIOACTIVE WASTE

Solid radioactive wastes were shipped by truck to the Envirocare Disposal Facility or to a waste processor. For further detail, refer the LaSalle 2009 Radioactive Effluent Release Report. The submittal date of this report was April 28, 2010.

3.0 DOSE TO MAN

3.1 Gaseous Effluent Pathways

Table 3.1-1 summarizes the doses resulting from releases of airborne radioactivity via the different exposure pathways.

3.1.1 Noble Gases

3.1.1.1 Gamma Dose Rates

Unit 1 and Unit 2 gaseous releases at LaSalle

County Station are reported as Unit 1 releases due to a single station vent stack (SVS) release point. Offsite Gamma air and whole body dose rates are shown in Table 3.1-1 and were calculated based on measured release rates. isotopic composition of the noble gases, and average meteorological data for the period. Doses based on concurrent meteorological data are shown in Table 3.4-1. Based on measured effluents and meteorological data, the maximum total body dose to an individual would be 4.58E-02 mrem (Table 3.1-1) for the year, with an occupancy or shielding factor of 0.7 included. The maximum total body dose based on measured effluents and concurrent meteorological data would be 1.31E-02 mrem. (Table 3.4-1).

The maximum gamma air dose was 6.06E-02 mrad (Table 3.1-1) and 5.48E-02 mrad based on concurrent meteorological data (Table 3.4-1).

3.1.1.2 Beta Air and Skin Rates

The range of beta particles in air is relatively small (on the order of a few meters or less); consequently, plumes of gaseous effluents may be considered "infinite" for purpose of calculating the dose from beta radiation incident on the skin. However, the actual dose to sensitive skin tissues is difficult to calculate due to the effect of the beta particle energies, thickness of inert skin and clothing covering sensitive tissues. For purposes of this report the skin is taken to have a thickness of 7.0 mg/cm² and an occupancy factor of 1.0 is used. The skin dose from beta and gamma radiation for the year was 4.83E-02 (Table 3.1-1) and 1.68E-02 mrem (Table 3.4-1) based on concurrent meteorological data. The maximum offsite beta dose for the year was 2.25E-03 mrad (Table 3.1-1) and 4.67E-03 mrad (Table 3.4-1) based on concurrent meteorological data.

3.1.2 Radioactive lodine

The human thyroid exhibits a significant capacity to

concentrate ingested or inhaled iodine. The radioiodine, I-131, released during routing operation of the plant, may be made available to man resulting in a dose to the thyroid. The principal pathway of interest for this radionuclide in ingestion of radioiodine in milk.

3.1.2.1 Dose to Thyroid

The hypothetical thyroid dose to a maximum exposed individual living near the station via ingestion of milk was calculated. The radionuclide considered was I-131 and the source of milk was taken to be the nearest dairy farm with the cows pastured from May through October. The maximum thyroid does due to I-131 was 7.69E-02 mrem (child) for the year (Table 3.1-1).

3.2 Liquid Effluent Pathways

The three principal pathways through the aquatic environment for potential doses to man from liquid waste are ingestion of potable water, eating aquatic foods, and exposure while on the shoreline. Not all of these pathways are significant or applicable at a given time but a reasonable approximation of the dose can be made by adjusting the dose formula for season of the year or type and degree of use of the aquatic environment. NRC developed equations* were used to calculate the doses to the whole body, lower gastro-intestinal tracts, thyroid, bone and skin; specific parameters for use in the equations are given in the Offsite Dose Calculation Manual. The maximum whole body dose was 0.00E+00 mrem and organ dose was 0.00E+00 for the year mrem (Table 3.2-1).

3.3 Assessment of Dose to Member of Public

During the period January to December, 2009, LaSalle County Station did not exceed these limits as shown in Table 3.1-1 and Table 3.2-1 (based on annual average meteorological data), and As shown in Table 3.3-1:

 The Radiological Effluent Technical Standards (RETS) limits on dose or dose commitment to an individual due to radioactive materials in liquid effluents from each reactor unit (1.5 mrem to the whole body or 5 mrem to any organ during any calendar year; 3 mrem to the whole body or 10 mrem to any organ during the calendar year).

- The RETS limits on air dose in noble gases released in gaseous effluents to a member of the public from each reactor unit (5 mrad for gamma radiation or 10 mrad for beta radiation during any calendar quarter; 10 mrads for gamma radiation or 20 mrad for beta radiation during a calendar year).
- The RETS limits on dose to a member of the public due to iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from each reactor unit (7.5 mrem to any organ during any calendar quarter; 15 mrem to any organ during any calendar year).
- The 10CFR20 limit on Total Effective Dose Equivalent to individual members of the public (100 mrem).

4.0 SITE METEOROLOGY

A summary of the site meteorological measurements taken during each calendar quarter of the year is given in Appendix F. The data are presented as cumulative joint frequency distributions of the wind direction for the 375' level and wind speed class by atmospheric stability class determined from the temperature difference between the 375' and 33' levels. Data recovery for these measurements was 99.6% during 2009.

^{*}Nuclear Regulatory Commission, Regulatory Guide 1.109 (Rev. 1)

APPENDIX E-1

DATA TABLES AND FIGURES

E - 1.1 91 of 187

Table 1.1-1

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2009) UNITS ONE AND TWO

DOCKET NUMBERS 50-373 AND 50-374 GASSEOUS EFFLENTS SUMMATION OF ALL RELEASES

					Estimated
Units	1st Qtr	2nd Qtr	3rd Qtr	4 th Qtr	Total Error %

A. Fission and Activation Gas Releases

Total Release Activity	Ci	7.48E+02	4.58E+02	1.03E+03	1.77E+03	2.50E+01
2. Average Release Rate	uCi/sec	9.51E+01	5.83E+01	1.30E+02	2.22E+02	
3. Percent of Technical Specification Limit	%	*	*	*	*	

B. Iodine Releases

1. Total I-131 Activity	Ci	2.03E-02	8.49E-03	1.20E-02	1.20E-02	1.50E+01
2. Average Release Rate	uCi/sec	2.59E-03	1.08E-03	1.52E-03	1.51E-03	
3. Percent of Technical Specification Limit	%	*	*	*	*	

C. Particulate (> 8 day half-life) Releases

1. Gross Activity	Ci	1.67E-03	1.14E-03	3.05E-03	1.03E-02	3.50E+01
2. Average Release Rate	uCi/sec	2.12E-04	1.46E-04	3.84E-04	1.30E-03	
3. Percent of Technical Specification Limit	%	*	*	*	*	
3. Gross Alpha Activity	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	

D. Tritium Releases

1. Total Release Activity	Ci	1.14E+01	1.64E+01	1.31E+01	1.81E+01	1.50E+01
2. Average Release Rate	uCi/sec	1.45E+00	2.08E+00	1.64E+00	2.28E+00	
3. Percent of Technical Specification Limit	%	*	*	*	*	

[&]quot;*" This information is contained in the Radiological Impact on Man section of the report.

E-1.2 92 of 187

[&]quot;<" Indicates activity of sample is less than LLD given in uCi/ml

Table 1.2-1

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2009) LIQUID RELEASES UNIT 1 AND UNIT 2 SUMMATION OF ALL LIQUID RELEASES

					Estimated
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total Error %

A. Fission and Activation Products

1. Total Activity Released	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average Concentration Released	uCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of Applicable Limit	%	*	*	*	*	

B. Tritium

1. Total Activity Released	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average Concentration Released	uCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of Applicable Limit	%	*	*	*	*	

C. Dissolved Noble Gases

1. Total Activity Released	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average Concentration Released	uCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of Applicable Limit	%	*	*	*	*	

D. Gross Alpha

1. Total Activity Released (estimate)	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average Concentration Released	uCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of Applicable Limit	%	*	*	*	*	:

E. Volume of Liquid Waste to Discharge	liters	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
F. Volume of Dilution Water	liters	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A

[&]quot;*" This information is contained in the Radiological Impact on Man section of the report.

E-1.3 93 of 187

[&]quot;<" Indicates activity of sample is less than LLD given in uCi/ml

Table 2.1-1

SOLID RADWASTE ANNUAL REPORT

LaSalle County Station

Table 2.1-1 deliberately deleted. For solid waste disposal detail, refer to the LaSalle County Station 2009 Effluent Report.

E-1.4 94 of 187

Table 3.1-1

LASALLE STATION UNIT ONE

ACTUAL 2009

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/09 TO 12/31/09 CALCULATED 04/01/10 INFANT RECEPTOR

TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	9.66E-03 (WSW) 4.23E-04 (ESE) 7.30E-03 (WSW) 7.74E-03 (WSW) 1.40E-03 (ESE)	8.88E-03 (WSW) 2.43E-04 (ESE) 6.71E-03 (WSW) 7.03E-03 (WSW) 1.96E-02 (ESE)	1.44E-02 (WSW) 5.16E-04 (ESE) 1.09E-02 (WSW) 1.14E-02 (WSW) 3.03E-02 (ESE)	2.77E-02 (WSW) 1.07E-03 (ESE) 2.10E-02 (WSW) 2.21E-02 (WSW) 1.43E-02 (ESE)	6.06E-02 (WSW) 2.25E-03 (ESE) 4.58E-02 (WSW) 4.83E-02 (WSW) 6.56E-02 (ESE)
	THYROID	THYROID	THYROID	THYROID	THYROID

THIS IS A REPORT FOR THE CALENDAR YEAR 2009

COMPLIANCE STATUS - 10CFR 50 APP. I INFANT RECEPTOR

----- % OF APP I. -----

	QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-DEC	YRLY OBJ	% OF APP. I
GAMMA AIR (MRAD)	5.0	0.19	0.18	0.29	0.55	10.0	0.61
BETA AIR (MRAD)	10.0	0.00	0.00	0.01	0.01	20.0	0.01
TOT. BODY (MREM)	2.5	0.29	0.27	0.43	0.84	5.0	0.92
SKIN (MREM)	7.5	0.10	0.09	0.15	0.30	15.0	0.32
ORGAN (MREM)	7.5	0.02	0.26	0.40	0.19	15.0	0.44
		THYROID	THYROID	THYROID	THYROID		THYROID

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

E-1.5 95 of 187

Table 3.1-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2009

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/09 TO 12/31/09 CALCULATED 04/01/10 CHILD RECEPTOR

TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	9.66E-03 (WSW) 4.23E-04 (ESE) 7.30E-03 (WSW) 7.74E-03 (WSW) 1.21E-03 (NNE)	8.88E-03 (WSW) 2.43E-04 (ESE) 6.71E-03 (WSW) 7.03E-03 (WSW) 2.38E-02 (NNE)	1.44E-02 (WSW) 5.16E-04 (ESE) 1.09E-02 (WSW) 1.14E-02 (WSW) 3.48E-02 (NNE)	2.77E-02 (WSW) 1.07E-03 (ESE) 2.10E-02 (WSW) 2.21E-02 (WSW) 1.71E-02 (NNE)	6.06E-02 (WSW) 2.25E-03 (ESE) 4.58E-02 (WSW) 4.83E-02 (WSW) 7.69E-02 (NNE)
	THYROID	THYROID	THYROID	THYROID	THYROID

THIS IS A REPORT FOR THE CALENDAR YEAR 2009

COMPLIANCE STATUS - 10CFR 50 APP. I CHILD RECEPTOR

----- % OF APP I. -----

	QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-DEC	YRLY OBJ	% OF APP. I
GAMMA AIR (MRAD)	5.0	0.19	0.18	0.29	0.55	10.0	0.61
BETA AIR (MRAD)	10.0	0.00	0.00	0.01	0.01	20.0	0.01
TOT. BODY (MREM)	2.5	0.29	0.27	0.43	0.84	5.0	0.92
SKIN (MREM)	7.5	0.10	0.09	0.15	0.30	15.0	0.32
ORGAN (MREM)	7.5	0.02	0.32	0.46	0.23	15.0	0.51
		THYROID	THYROID	THYROID	THYROID		THYROID

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

E-1.6 96 of 187

Table 3.1-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2009

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/09 TO 12/31/09 CALCULATED 04/01/10 TEENAGER RECEPTOR

TYPE	1st QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	9.66E-03 (WSW) 4.23E-04 (ESE) 7.30E-03 (WSW) 7.74E-03 (WSW) 9.51E-04 (NNE)	8.88E-03 (WSW) 2.43E-04 (ESE) 6.71E-03 (WSW) 7.03E-03 (WSW) 1.49E-02 (NNE)	1.44E-02 (WSW) 5.16E-04 (ESE) 1.09E-02 (WSW) 1.14E-02 (WSW) 2.16E-02 (NNE)	2.77E-02 (WSW) 1.07E-03 (ESE) 2.10E-02 (WSW) 2.21E-02 (WSW) 1.10E-02 (NNE)	6.06E-02 (WSW) 2.25E-03 (ESE) 4.58E-02 (WSW) 4.83E-02 (WSW) 4.84E-02 (NNE)
	THYROID	THYROID	THYROID	THYROID	THYROID

THIS IS A REPORT FOR THE CALENDAR YEAR 2009

COMPLIANCE STATUS - 10CFR 50 APP. I TEENAGER RECEPTOR

----- % OF APP I. -----

GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	QTRLY OBJ 5.0 10.0 2.5 7.5	1ST QTR JAN-MAR 0.19 0.00 0.29 0.10 0.01	2ND QTR APR-JUN 0.18 0.00 0.27 0.09 0.20	3RD QTR JUL-SEP 0.29 0.01 0.43 0.15 0.29	4TH QTR OCT-DEC 0.55 0.01 0.84 0.30 0.15	YRLY OBJ 10.0 20.0 5.0 15.0	% OF APP. I 0.61 0.01 0.92 0.32 0.32
,		THYROID	THYROID	THYROID	THYROID		THYROID

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

Table 3.1-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2009

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/09 TO 12/31/09 CALCULATED 04/01/10 ADULT RECEPTOR

TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	9.66E-03 (WSW) 4.23E-04 (ESE) 7.30E-03 (WSW) 7.74E-03 (WSW) 1.02E-03 (NNE)	8.88E-03 (WSW) 2.43E-04 (ESE) 6.71E-03 (WSW) 7.03E-03 (WSW) 1.51E-02 (NNE)	1.44E-02 (WSW) 5.16E-04 (ESE) 1.09E-02 (WSW) 1.14E-02 (WSW) 2.20E-02 (NNE)	2.77E-02 (WSW) 1.07E-03 (ESE) 2.10E-02 (WSW) 2.21E-02 (WSW) 1.12E-02 (NNE)	6.06E-02 (WSW) 2.25E-03 (ESE) 4.58E-02 (WSW) 4.83E-02 (WSW) 4.93E-02 (NNE)
	THYROID	THYROID	THYROID	THYROID	THYROID

THIS IS A REPORT FOR THE CALENDAR YEAR 2009

COMPLIANCE STATUS - 10CFR 50 APP. I ADULT RECEPTOR

----- % OF APP I. -----

GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	OTRLY OBJ 5.0 10.0 2.5 7.5 7.5	1ST QTR JAN-MAR 0.19 0.00 0.29 0.10 0.01	2ND QTR APR-JUN 0.18 0.00 0.27 0.09 0.20	3RD QTR JUL-SEP 0.29 0.01 0.43 0.15 0.29	4TH QTR OCT-DEC 0.55 0.01 0.84 0.30 0.15	YRLY OBJ 10.0 20.0 5.0 15.0 15.0	% OF APP. I 0.61 0.01 0.92 0.32 0.33
		THYROID	THYROID	THYROID	THYROID		THYROID

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

E-1.8 98 of 187

Table 3.2-1

LASALLE STATION UNIT ONE

ACTUAL 2009

MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS
PERIOD OF RELEASE - 01/01/09 TO 12/31/09 CALCULATED 04/01/10
INFANT RECEPTOR

DOSE TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL BODY	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
INTERNAL ORGAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

THIS IS A REPORT FOR THE CALENDAR YEAR 2009

COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

		(~	~	~	3RD QTR JUL-SEP	~		% OF APP. I
TOTAL	BODY	(MREM)	1.5	0.00	0.00	0.00	0.00	3.0	0.00
CRIT.	ORGAN	(MREM)	5.0	0.00	0.00	0.00	0.00	10.0	0.00

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

E-1.9 99 of 187

Table 3.2-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2009

MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS
PERIOD OF RELEASE - 01/01/09 TO 12/31/09 CALCULATED 04/01/10
CHILD RECEPTOR

DOSE TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL BODY	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
INTERNAL ORGAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

THIS IS A REPORT FOR THE CALENDAR YEAR 2009

COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

	QTRLY OBJ	~	2ND QTR APR-JUN		_		% OF APP. I
TOTAL BODY (MREM)	1.5	0.00	0.00	0.00	0.00	3.0	0.00
CRIT. ORGAN (MREM)	5.0	0.00	0.00	0.00	0.00	10.0	0.00

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

Table 3.2-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2009

MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/09 TO 12/31/09 CALCULATED 04/01/10 TEENAGER RECEPTOR

DOSE TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL BODY	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
INTERNAL ORGAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

THIS IS A REPORT FOR THE CALENDAR YEAR 2009

COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

	QTRLY OBJ	~	2ND QTR APR-JUN	~	~		% OF APP. I
TOTAL BODY (MREM)	1.5	0.00	0.00	0.00	0.00	3.0	0.00
CRIT. ORGAN (MREM)	5.0	0.00	0.00	0.00	0.00	10.0	0.00

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

Table 3.2-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2009

MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS
PERIOD OF RELEASE - 01/01/09 TO 12/31/09 CALCULATED 04/01/10
ADULT RECEPTOR

DOSE TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL BODY	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
INTERNAL ORGAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

THIS IS A REPORT FOR THE CALENDAR YEAR 2009

COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

	QTRLY OBJ	~	2ND QTR APR-JUN	3RD QTR JUL-SEP	~		% OF APP. I
TOTAL BODY (MREM)	1.5	0.00	0.00	0.00	0.00	3.0	0.00
CRIT. ORGAN (MREM)	5.0	0.00	0.00	0.00	0.00	10.0	0.00

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

E-1.12 102 of 187

Table 3.3-1

LASALLE STATION UNIT ONE

10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/09 TO 12/31/09

CALCULATED 04/06/10

1. 10 CFR 20.1301 (a)(1) Compliance

4.00E-01	mrem/yr	Eqivalent,	Dose	. Effective	Total
100.0	mrem/yr	limit	(a) (1)	FR 20.1301	10 CF
0.40	of limit	90			

Compliance Summary - 10CFR20

	1st	2nd	3rd	4th	% of
	Qtr	Qtr	Qtr	Qtr	Limit
TEDE	9.59E-02	9.24E-02	9.77E-02	1.14E-01	0.40

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001
ODCM SOFTWARE VERSION 1.1 January 1995
ODCM DATABASE VERSION 1.1 January 1995

Table 3.3-1 (continued)

LASALLE STATION UNIT ONE

10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/09 TO 12/31/09

CALCULATED 04/06/10

2. 10 CFR 20.1301 (d)/40 CFR 190 Compliance

		Dose (mrem)	Limit (mrem)	% of Limit
Whole Body	Plume	4.58E-02		
(DDE)	Skyshine	3.44E-01		
	Ground	1.76E-03		
	Total	3.92E-01	25.0	1.57
Organ Dose	Thyroid	4.14E-02	75.0	0.06
(CDE)	Gonads	7.25E-03	25.0	0.03
	Breast	7.22E-03	25.0	0.03
	Lung	7.22E-03	25.0	0.03
	Marrow	7.29E-03	25.0	0.03
	Bone	7.32E-03	25.0	0.03
	Remainder	7.38E-03	25.0	0.03
	CEDE	8.31E-03		
	TEDE	4.00E-01	100.0	0.40

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001
ODCM SOFTWARE VERSION 1.1 January 1995
ODCM DATABASE VERSION 1.1 January 1995

Table 3.3-1 (continued)

LASALLE STATION UNIT TWO

10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/09 TO 12/31/09

CALCULATED 04/01/10

1. 10 CFR 20.1301 (a)(1) Compliance

Total Effective	Dose	Eqivalent,	mrem/yr	3.23E-01
10 CFR 20.1301	(a) (1)) limit	mrem/yr	100.0
		96	of limit	0.32

Compliance Summary - 10CFR20

	1st	2nd	3rd	4th	% of
	Qtr	Qtr	Qtr	Qtr	Limit
TEDE	6.35E-02	8.83E-02	8.40E-02	8.69E-02	0.32

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

Table 3.3-1 (continued)

LASALLE STATION UNIT TWO

10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/09 TO 12/31/09

CALCULATED 04/01/10

2. 10 CFR 20.1301 (d)/40 CFR 190 Compliance

		Dose (mrem)	Limit (mrem)	% of Limit
Whole Body	Plume	0.00E+00		
(DDE)	Skyshine	3.23E-01		
	Ground	0.00E+00		
	Total	3.23E-01	25.0	1.29
Organ Dose	Thyroid	0.00E+00	75.0	0.00
(CDE)	Gonads	0.00E+00	25.0	0.00
	Breast	0.00E+00	25.0	0.00
	Lung	0.00E+00	25.0	0.00
	Marrow	0.00E+00	25.0	0.00
	Bone	0.00E+00	25.0	0.00
	Remainder	0.00E+00	25.0	0.00
	CEDE	0.00E+00		
	TEDE	3.23E-01	100.0	0.32

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001

E-1.16

ODCM SOFTWARE VERSION 1.1 January 1995

ODCM DATABASE VERSION 1.1 January 1995

Table 3.4-1

LaSalle Station - Unit 1

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2009

TYPE OF DOSE	FIRST QUARTER	SECOND QUARTER	THIRD QUARTER	FOURTH QUARTER	ANNUAL
GAMMA AIR (mrad) BETA AIR (mrad) WHOLE BODY (mrem) SKIN (mrem) ORGAN (mrem)	6.550E-03(SE) 1.160E-03(ESE) 2.505E-03(ESE) 3.680E-03(ESE) 2.815E-04(ESE)	3.195E-03(SW) 4.030E-03(SW)	2.530E-02 (WSW) 1.755E-03 (WSW) 6.000E-03 (SW) 7.500E-03 (SW) 2.225E-04 (WSW)	1.875E-02 (WSW) 2.850E-03 (E) 4.775E-03 (NE) 7.250E-03 (NE) 2.290E-04 (E)	5.479E-02 (WSW) 4.671E-03 (E) 1.314E-02 (SW) 1.684E-02 (SW) 6.765E-04 (ESE)
CRITICAL PERSON CRITICAL ORGAN	Child Thyroid	Child Thyroid	Child Thyroid	Child Thyroid	Child Thyroid

COMPLIANCE STATUS

10 CFR 50 APP.	. I	10 CFR 50 APP	.I
QUARTERLY OBJECTIVE	% OF APP. I	YEARLY OBJECTIVE % (OF APP. I
5.0	0.51	10.0	0.55
10.0	0.03	20.0	0.02
2.5	0.24	5.0	0.26
7.5	0.10	15.0	0.11
7.5	0.00	15.0	0.00
	Child Thyroid		Child Thyroid
	QUARTERLY OBJECTIVE 5.0 10.0 2.5 7.5	10.0 0.03 2.5 0.24 7.5 0.10 7.5 0.00	QUARTERLY OBJECTIVE % OF APP. I YEARLY OBJECTIVE % (5.0 0.51 10.0 10.0 0.03 20.0 2.5 0.24 5.0 7.5 0.10 15.0 7.5 0.00 15.0 Child

Calculation used release data from the following: Unit 0 - Chimney $% \left(1\right) =\left(1\right) +\left(1\right)$

Date of calculation: 4/13/2010

E-1.17 107 of 187

Table 3.4-1 (continued)

LaSalle Station - Unit 2

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2009

TYPE OF DOSE	FIRST QUARTER	SECOND QUARTER	THIRD QUARTER	FOURTH QUARTER	ANNUAL
GAMMA AIR (mrad) BETA AIR (mrad) WHOLE BODY (mrem) SKIN (mrem) ORGAN (mrem)	6.550E-03(SE) 1.160E-03(ESE) 2.505E-03(ESE) 3.680E-03(ESE) 2.815E-04(ESE)	3.195E-03(SW) 4.030E-03(SW)	1.755E-03(WSW) 6.000E-03(SW) 7.500E-03(SW)	2.850E-03(E) 4.775E-03(NE)	5.479E-02(WSW) 4.671E-03(E) 1.314E-02(SW) 1.684E-02(SW) 6.765E-04(ESE)
CRITICAL PERSON CRITICAL ORGAN	Child Thyroid	Child Thyroid	Child Thyroid	Child Thyroid	Child Thyroid

COMPLIANCE STATUS

	10 CFR 50	APP. I	10 CFR 50 APP.I			
TYPE OF DOSE	QUARTERLY OBJEC	TIVE % OF APP. I	YEARLY OBJECTI	VE % OF APP. I		
GAMMA AIR (mrad)	5.0	0.51	10.0	0.55		
BETA AIR (mrad)	10.0	0.03	20.0	0.02		
WHOLE BODY (mrem)	2.5	0.24	5.0	0.26		
SKIN (mrem)	7.5	0.10	15.0	0.11		
ORGAN (mrem)	7.5	0.00	15.0	0.00		
CRITICAL PERSON		Child		Child		
CRITICAL ORGAN		Thyroid		Thyroid		

Calculation used release data from the following: Unit 0 - Chimney $% \left(1\right) =\left(1\right) +\left(1\right)$

Date of calculation: 4/13/2010

E-1.18 108 of 187

APPENDIX F

METEOROLOGICAL DATA

Period of Record: January - March 2009
Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	3	8	15	0	0	26
NNE	0	3	14	4	0	0	21
NE	0	2	7	7	0	0	16
ENE	0	0	6	8	0	0	14
E	0	0	6	4	0	0	10
ESE	1	0	6	5	0	0	12
SE	2	1	4	8	0	0	15
SSE	0	3	1	1	0	0	5
S	0	0	5	7	2	0	14
SSW	0	2	3	1	0	0	6
SW	1	0	2	1	0	0	4
WSW	0	0	0	1	0	1	2
M	0	2	1	3	1	0	7
WNW	0	2	4	11	6	1	24
NW	0	0	3	2	7	0	12
NNW	0	1	2	13	3	2	21
Variable	0	0	0	0	0	0	0
Total	4	19	72	91	19	4	209

Hours of calm in this stability class: 0

F-1 110 of 187

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

Period of Record: January - March 2009
Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

tata a	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	2	1	0	0	3	
NNE	0	2	4	1	0	0	7	
NE	0	1	2	4	0	0	7	
ENE	0	0	1	1	0	0	2	
E	0	1	1	0	0	0	2	
ESE	0	3	7	4	0	0	14	
SE	0	1	4	1	1	0	7	
SSE	0	0	4	0	2	0	6	
S	0	1	3	7	4	1	16	
SSW	0	1	3	1	3	0	8	
SW	0	0	1	0	4	0	5	
WSW	0	0	1	1	1	0	3	
W	0	1	3	0	3	2	9	
WNW	0	0	4	5	8	0	17	
NM	0	0	1	1	0	0	2	
NNW	0	2	3	6	2	0	13	
Variable	0	0	0	0	0	0	0	
Total	0	13	44	33	28	3	121	

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-2 111 of 187

Period of Record: January - March 2009
Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	1	6	2	0	0	9			
NNE	0	1	9	3	0	0	13			
NE	0	0	7	8	3	0	18			
ENE	0	0	0	7	0	0	7			
E	0	0	2	0	1	0	3			
ESE	0	7	6	5	0	0	18			
SE	1	1	2	6	0	0	10			
SSE	0	0	2	7	1	0	10			
S	0	0	2	2	1	0	5			
SSW	0	0	1	1	5	0	7			
SW	0	5	7	1	3	0	16			
WSW	0	3	0	2	1	0	6			
W	1	2	1	3	1	1	9			
WNW	0	1	11	11	9	1	33			
NM	0	1	3	13	4	0	21			
MNM	0	0	13	7	2	0	22			
Variable	0	0	0	0	0	0	0			
Total	2	22	72	78	31	2	207			

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes:

112 of 187

F-3

Period of Record: January - March 2009
Stability Class - Neutral - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed	(in	mph)
------------	-----	------

Wind			-		·		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	12	46	5	0	0	63
NNE	1	7	3	6	0	0	17
NE	1	1	11	21	3	0	37
ENE	0	4	9	6	0	0	19
E	0	4	16	4	7	0	31
ESE	0	7	12	13	13	1	46
SE	0	4	8	0	5	0	17
SSE	0	2	14	10	3	2	31
S	0	2	4	14	11	3	34
SSW	0	8	5	9	8	1	31
SW	1	8	7	12	12	1	41
WSW	3	14	5	10	4	0	36
W	0	12	16	12	5	6	51
WNW	1	8	44	55	20	6	134
NW	0	9	45	31	3	0	88
NNW	2	15	42	26	27	0	112
Variable	0	0	0	0	0	0	0
Total	9	117	287	234	121	20	788

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 3

Period of Record: January - March 2009
Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	10	2	0	0	0	12
NNE	0	10	3	0	0	0	13
NE	1	3	1	0	0	0	5
ENE	1	3	6	2	0	0	12
E	0	7	14	5	0	0	26
ESE	0	5	6	6	7	2	26
SE	0	11	10	3	9	2	35
SSE	1	7	13	5	2	0	28
S	2	6	17	10	6	3	44
SSW	0.	3	5	18	12	0	38
SW	0	3	8	22	9	0	42
WSW	1	3	9	11	1	0	25
W	0	7	17	13	6	5	48
WNW	2	13	27	27	10	6	85
NW	3	13	28	5	0	0	49
NNW	0	12	12	5	0	0	29
Variable	0	0	0	0	0	0	0
Total	11	116	178	132	62	18	517

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes: 9

F-5 114 of 187

Period of Record: January - March 2009 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	2	0	0	0	0	2
NNE	0	1	0	0	0	0	1
NE	0	0	0	0	0	0	0
ENE	0	0	2	0	0	0	2
E	0	1	5	0	0	0	6
ESE	1	9	4	0	0	0	14
SE	1	9	5	0	0	0	15
SSE	0	9	10	0	0	0	19
S	0	7	10	3	0	0	20
SSW	1	3	8	1	0	0	13
SW	1	2	5	7	3 .	0	18
WSW	0	4	10	2	1	0	17
W	0	6	20	17	0	0	43
WNW	1	6	15	2	2	0	26
NW	0	1	2	0	0	0	3
NNW	0	1	0	0	0	0	1
Variable	0	0	0	0	0	0	0
Total	5	61	96	32	6	0	200

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: January - March 2009
Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	2	1	0	0	0	3		
ESE	0	6	0	0	0	0	6		
SE	1	13	4	0	0	0	18		
SSE	0	9	5	0	0	0	14		
S	0	4	. 7	0	0	0	11		
SSW	0	3	18	1	0	0	22		
SW	0	2	4	3	0	0	9		
WSW	0	1	6	4	0	0	11		
W	0	3	3	0	0	0	6		
WNW	0	2	2	0	0	0	4		
NM	0	1	1	0	0	0	2		
MNM	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	1	46	51	8	0	0	106		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes:

F-7 116 of 187

Period of Record: January - March 2009 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	0	0	0	0		
SW	0	0	0	0	0	0	0		
WSW	0	0	0	0	0	0	0		
W	0	0	0	0	0	0	0		
WNW	0	0	0	0	0	1	1		
NW	0	0	0	0	2	4	6		
NNW	0	0	0	0	2	3	5		
Variable	0	0	0	0	0	0	0		
Total	0	0	0	0	4	8	12		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-8 117 of 187

Period of Record: January - March 2009 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	3	5	2	10
NNE	0	0	0	5	2	0	7
NE	0	0	0	3	4	0	7
ENE	0	0	0	0	5	0	5
E	0	0	0	0	0	0	0
ESE	0	0	0	2	0	0	2
SE	0	0	0	0	0	0	0
SSE	0	, 0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
MNM	0	0	0	0	0	5	5
NM	0	0	0	0	0	3	3
NNW	0	0	0	0	0	2	2
Variable	0	0	0	0	0	0	0
Total	0	0	0	13	16	12	41

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0
Hours of missing stability measurements in all stability classes:

F-9 118 of 187

Period of Record: January - March 2009
Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	2	7	3	1	13
NNE	0	0	3	8	0	1	12
NE	0	1	2	2	2	0	7
ENE	0	0	1	0	1	0	2
E	0	0	0	3	1	0	4
ESE	0	0	3	5	0	0	8
SE	1	0	1	4	0	0	6
SSE	2	2	2	0	0	0	6
S	0	1	1	3	0	2	7
SSW	0	1	0	4	0	0	5
SW	0	1	0	0	0	0	1
WSW	0	0	0	0	0	0	0
M	0	0	0	1	1	0	2
WNW	0	0	0	4	2	2	8
NM	0	0	0	0	1	1	2
NNW	0	0	0	3	4	2	9
Variable	0	0	0	0	0	0	0
Total	3	6	15	44	15	9	92

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: January - March 2009
Stability Class - Neutral - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

FaT of the cold	Speed	1	mmh1
พากต	Speed	(11)	moni

		mind opeda (in mpi)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	11	25	34	13	0	83			
NNE	0	3	9	16	8	12	48			
NE	0	2	5	18	26	5	56			
ENE	0	3	6	8	17	0	34			
E	0	6	8	5	7	6	32			
ESE	0	8	10	10	15	24	67			
SE	0	1	11	5	9	11	37			
SSE	1	1	7	20	16	10	55			
S	0	2	7	9	14	35	67			
SSW	0	5	9	1	9	22	46			
SW	1	10	15	7	12	19	64			
WSW	1	6	10	2	11	12	42			
W	1	4	19	10	12	26	72			
WNW	1	5	25	40	52	52	175			
NW	1	5	26	54	45	35	166			
NNW	0	13	14	40	13	21	101			
Variable	0	0	0	0	0	0	0			
Total	6	85	206	279	279	290	1145			

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class:

Period of Record: January - March 2009 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind			ı	` -	•		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
				tings trips trips trips			
N	0	0	7	7	8	3	25
NNE	1	2	2	7	2	0	14
NE	0	0	7	5	1	0	13
ENE	0	2	5	4	2	0	13
E	0	3	1	6	7	4	21
ESE	0	3	4	7	5	16	35
SE	0	3	4	6	18	17	48
SSE	0	4	2	8	15	10	39
S	0	3	4	8	14	24	53
SSW	1	2	4	4	12	3,6	59
SW	.0	1	5	6	9	27	48
WSW	0	5	5	9	5	10	34
W	0	3	2	15	23	20	63
WNW	0	2	2	24	34	32	94
ИM	1	2	13	12	11	10	49
NNW	1	2	4	13	9	13	42
Variable	0	0	0	0	0	0	0
Total	4	37	71	141	175	222	650

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: January - March 2009
Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

	Wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
И	0	0	0	1	0	0	1		
NNE	0	0	1	2	0	0	3		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	1	2	3		
ESE	0	1	0	2	1	2	6		
SE	1	0	0	1	6	2	10		
SSE	0	0	3	. 8	8	7	26		
S	0	0	2	6	2	7	17		
SSW	0	0	2	5	2	5	14		
SW	0	0	1	4	1	15	21		
WSW	0	0	2	2	1	4	9		
W	0	0	3	8	2	4	17		
WNW	0	0	2	7	6	6	21		
NM	0	1	0	1	2	0	4		
MNM	0	0	0	2	1	0	3		
Variable	0	0	0	0	0	0	0		
Total	1	2	16	49	33	54	155		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes:

F-13 122 of 187

Period of Record: January - March 2009
Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind		,, <u> </u>								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	1	1	2			
SSE	0	1	2	4	0	0	7			
S	0	0	1	0	0	3	4			
SSW	0	0	2	5	5	5	17			
SW	0	0	5	5	0	9	19			
WSW	0	0	0	0	0	0	0			
M	0	0	1	1	0	0	2			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	2	2	0	4			
NNW	0	0	0	0	0	0	0			
Variable	0	0	0	0	0	0	0			
Total	0	1	11	17	8	18	55			

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

123 of 187

Period of Record: April - June 2009
Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	6	0	0	6		
SW	0	0	0	2	0	0	2		
WSW	0	0	0	0	4	0	4		
W	0	0	0	0	0	0	0		
MNM	0	0	1	0	0	0	1		
NM	0	0	0	0	0	0	0		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	1	8	4	0	13		

Hours of calm in this stability class: 0

F-15 124 of 187

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

Period of Record: April - June 2009
Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind			•				
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	1	0	0	0	1
NE	0	0	0	0	0	0	0
ENE	0	0	1	0	0	0	1
E	0	0	0	0	0	0	.0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	. 1	0	0	1
S	0	0	1	4	0	0	5
SSW	0	0	0	4	2	0	6
SW	0	1	1	5	0	1	8
WSW	0	0	0	2	5	0	7
W	0	0	1	3	0	1	5
WNW	0	0	5	1	0	0	6
NW	0	0	0	1	3	0	4
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	1	10	21	10	2	44

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes: 1

F-16 125 of 187

Period of Record: April - June 2009
Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

mm 1 3	Wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	1	1	2	0	0	4		
NNE	0	0	4	1	0	0	5		
NE	0	1	23	9	3	0	36		
ENE	0	0	1	1	1	0	3		
E	0	0	6 ·	1	0	0	7		
ESE	0	0	0	3	0	0	3		
SE	0	0	0	0	2	0	2		
SSE	0	0	0	2	0	0	2		
S	0	0	0	7	0	0	7		
SSW	0	0	3	2	2	1	8		
SW	0	0	1	5	1	0	7		
WSW	0	1	2	4	1	0	8		
W	0	1	13	8	1	0	23		
WNW	0	0	9	7	3	0	19		
NW	0	1	2	5	7	0	15		
NNW	0	3	1	4	0	0	8		
Variable	0	0	0	0	0	0	0		
Total	0	8	66	61	21	1	157		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: April - June 2009 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind opeca (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	2	20	18	9	2	0	51		
NNE	0	33	29	9	0	0	71		
NE	1	19	69	38	10	0	137		
ENE	1	16	28	21	33	3	102		
E	2	10	28	20	7	0	67		
ESE	1	8	12	13	3	0	37		
SE	2	9	11	5	8	0	35		
SSE	0	6	5	6	2	2	21		
S	1	10	19	15	2	0	47		
SSW	2	10	10	6	7	0	35		
SW	1	7	9	13	4	0	34		
WSW	1	15	15	9	4	1	45		
W	2	8	26	22	0	1	59		
MNM	0	27	46	34	24	0	131		
NM	0	12	28	26	8	1	75		
NNW	1	10	13	42	5	0	71		
Variable	0	0	0	0	0	0	0		
Total	17	220	366	288	119	8	1018		

Hours of calm in this stability class:

Hours of missing wind measurements in this stability class: 5 Hours of missing stability measurements in all stability classes: 1

F-18 127 of 187

Period of Record: April - June 2009
Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	15	7	0	0	0	22
NNE	1	27	12	0	0	0	40
NE	0	13	22	4	0	0	39
ENE	0	7	33	9	1	0	50
E	1	10	31	6	4	0	52
ESE	0	5	9	2	1	0	17
SE	1	7	8	3	2	0	21
SSE	0	2	3	7	1	0	13
S	2	3	18	4	1	0	28
SSW	0	8	13	16	16	0	53
SW	3	7	13	2	2	0	27
WSW	2	5	8	7	2	0	24
W	1	15	18	3	3	0	40
WNW	3	14	22	9	12	0	60
NW	1	5	15	2	0	0	23
NNW	0	5	15	9	0	0	29
Variable	0	0	0	0	0	0	0
Total	15	148	247	83	45	0	538

Hours of calm in this stability class: 1

Hours of missing wind measurements in this stability class: 0

Period of Record: April - June 2009
Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

	Wind Speed (in mpn)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	1	6	0	0	0	0	7	
NNE	0	4	0	0	0	0	4	
NE	0	0	0	0	0	0	0	
ENE	0	2	1	0	0	0	3	
E	0	10	24	0	0	0	34	
ESE	1	8	4	0	0	0	13	
SE	0	18	4	1	0	0	23	
SSE	0	7	4	0	0	0	11	
S	1	5	6	5	1	0	18	
SSW	0	4	10	3	0	0	17	
SW	1	9	8	1	0	0	19	
WSW	1	10	18	1	0	0	30	
W	3	13	17	2	0	0	35	
WNW	1	12	8	0	0	0	21	
NM	1	8	1	0	0	0	10	
MNM	0	3	4	0	0	0	7	
Variable	0	0	0	0	0	0	0	
Total	10	119	109	13	1	0	252	

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: April - June 2009
Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	0	0	0	0	1
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	2	2	0	0	0	4
ESE	0	8	1	0	0	0	9
SE	1	12	1	0	0	0	14
SSE	0	12	2	0	0	0	14
S	0	13	13	0	0	0	26
SSW	0	4	16	0	0	0	20
SW	0	4	2	1	0	0	7
WSW	0	3	18	0	0	0	21
W	0	12	12	0	0	0	24
WNW	0	10	1	0	0	0	11
NM	0	2	0	0	0	0	2
NNW	0	1	1	0	0	0	2
Variable	0	0	0	0	0	0	0
· · · · · · · · · · · · · · · · · ·	4	0.4	60	4	0	0	1.5.5
Total	1	84	69	1	0	0	155

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes: 1

F-21 130 of 187

Period of Record: April - June 2009
Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

ra to ca	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	0	0	0	0	0	0	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
E	0	0	0	0	0	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	0	0	0	0	0	0	
SSE	0	0	0	0	0	0	0	
S	0	0	0	0	0	0	0	
SSW	0	0	0	0	0	0	0	
SW	0	0	0	0	0	0	0	
WSW	0	0	0	0	0	0	0	
M	0	0	0	0	0	0	0	
MNM	0	0	0	0	0	0	0	
ИМ	0	0	0	0	0	0	0	
MNM	0	0	0	0	0	0	0	
Variable	0	0	0	0	0	0	0	
Total	0	0	0	0	0	0	0	

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-22 131 of 187

Period of Record: April - June 2009 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind			-	•			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
MNM	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

Period of Record: April - June 2009 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind			-		•		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	1	0	0	1
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	1	0	1
S	0	0	0	1	2	0	3
SSW	0	0	0	1	8	0	9
SW	0	0	0	1	4	1	6
WSW	0	0	0	1	0	5	6
W	0	0	0	0	1	0	1
MNM	0	0	0	0	0	0	0
NM	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	5	16	6	27

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-24 133 of 187

Period of Record: April - June 2009
Stability Class - Neutral - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	11	17	12	4	8	53
NNE	1	14	26	28	11	9	89
NE	2	16	34	82	37	19	190
ENE	1	13	8	39	12	40	113
E	0	4	16	25	13	5	63
ESE	0	6	11	9	9	3	38
SE	1	2	10	5	1	14	33
SSE	1	5	5	6	4	7	28
S	2	7	14	16	10	11	60
SSW	0	5	10	7	12	16	50
SW	1	8	12	12	14	9	56
WSW	1	9	7	10	10	10	47
M	0	6	25	31	17	2	81
MNM	0	11	21	43	30	33	138
NM	1	7	21	41	25	33	128
NNM	1	3	16	10	24	9	63
Variable	0	0	0	0	0	0	0
Total	13	127	253	376	233	228	1230

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: April - June 2009
Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	7	4	2	0	13	
NNE	0	3	10	18	7	0	38	
NE	0	3	7	25	7	0	42	
ENE	0	0	7	30	1	0	38	
E	1	0	4	21	26	2	54	
ESE	1	3	1	8	9	4	26	
SE	0	1	4	4	7	7	23	
SSE	1	3	3	4	5	6	22	
S	0	4	4	6	12	11	37	
SSW	0	1	5	8	11	30	55	
SW	1	2	5	13	14	6	41	
WSW	0	1	2	6	5	4	18	
M	0	2	9	11	18	5	45	
WNW	2	7	11	19	17	16	72	
ИМ	0	9	2	19	12	4	46	
MNM	0	1	4	12	8	6	31	
Variable	0	0	0	0	0	0	0	
Total	6	40	85	208	161	101	601	

Hours of calm in this stability class: 1

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-26 135 of 187

Period of Record: April - June 2009
Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
И	0	4	0	10	4	1	19
NNE	0	0	0	0	0	0	0
NE	0	2	2	0	0	0	4
ENE	1	2	2	0	0	0	5
E	0	0	2	7	6	1	16
ESE	0	1	5	4	5	3	18
SE	0	2	0	7	15	2	26
SSE	1	3	2	7	5	2	20
S	0	1	3	12	5	6	27
SSW	0	1	2	3	8	23	37
SW	0	0	0	3	3	3	9
WSW	0	1	3	9	7	0	20
W	0	1	6	10	7	4	28
WNW	0	0	5	17	11	2	35
ИМ	0	2	3	2	0	0	7
NNW	0	2	5	4	0	0	11
Variable	0	0	0	0	0	0	0
Total	2	22	40	95	76	47	282

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: April - June 2009 Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind		1 <u>r</u> 1 - 1									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	0	0	0	0	0	0				
NNE	0	0	0	0	0	0	0				
NE	0	0	0	0	0	0	0				
ENE	0	0	0	0	0	0	0				
E	0	0	0	0	0	0	0				
ESE	0	0	1	0	0	0	1				
SE	0	0	0	3	1	1	5				
SSE	0	1	0	2	0	2	5				
S	0	0	1	8	5	0	14				
SSW	0	0	3	4	0	2	9				
SW	0	0	0	0	0	1	1				
WSW	0	0	2	0	0	0	2				
W	0	0	1	0	1	1	3				
WNW	0	0	0	0	0	0	0				
NW	0	0	0	0	0	0	0				
NNW	0	0	0	2	0	0	2				
Variable	0	0	0	0	0	0	0				
Total	0	1	8	19	7	7	42				

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes:

F-28 137 of 187

Period of Record: July - September 2009
Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind			2 12	10.10	1001	2.4	
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	1	2	0	0	3
WSW	0	0	0	1	0	0	1
W	0	0	3	0	0	0	3
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	4	3	0	0	7

Hours of calm in this stability class: 0

Period of Record: July - September 2009 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

E73	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	0	0	0	0	0	0	
NE	0	0	1	1	0	0	2	
ENE	0	0	0	0	0	0	0	
E	0	0	0	0	0	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	0	0	0	0	0	0	
SSE	0	0	0	0	0	0	0	
S	0	0	2	0	0	0	2	
SSW	0	2	7	1	0	0	10	
SW	0	0	5	3	0	0	8	
WSW	0	0	5	3	0	0	8	
W	0	0	10	4	0	0	14	
WNW	0	0	8	3	0	0	11	
NW	0	0	0	0	0	0	0	
NNW	0	0	0	0	0	0	0	
Variable	0	0	0	0	0	0	0	
Total	0	2	38	15	0	0	55	

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

F-30 139 of 187

Hours of missing stability measurements in all stability classes: 0

Period of Record: July - September 2009 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
\.	^									
N	0	3	3	0	0	0	6			
NNE	0	0	0	0	0	0	0			
NE	0	0	3	0	0	0	3			
ENE	0	0	2	2	0	0	4			
E	0	0	1	0	0	0	1			
ESE	0	0	0	1	0	0	1			
SE	0	0	3	0	0	0	3			
SSE	0	2	0	0	0	0	2			
S	0	1	3	0	0	0	4			
SSW	0	5	2	2	0	0	9			
SW	0	2	9	5	0	0	16			
WSW	0	0	9	3	0	0	12			
W	0	1	15	1	0	0	17			
WNW	0	0	18	5	0	0	23			
NM	0	2	11	0	0	0	13			
MNM	0	0	3	4	0	0	7			
Variable	0	0	0	0	0	0	0			
Total	0	16	82	23	0	0	121			

Hours of calm in this stability class:

Hours of missing wind measurements in this stability class:

Hours of missing stability measurements in all stability classes:

F-31 140 of 187

Period of Record: July - September 2009
Stability Class - Neutral - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

*** J J	mind opood (in mpin)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	1	41	17	0	0	0	59			
NNE	5	45	3	1	0	0	54			
NE	0	49	27	12	0	0	88			
ENE	3	33	55	24	3	0	118			
E	1	44	33	7	1	0	86			
ESE	1	26	17	5	0	0	49			
SE	5	12	18	3	0	0	38			
SSE	2	3	14	1	0	0	20			
S	0	8	6	1	0	0	15			
SSW	3	6	18	7	0	0	34			
SW	3	9	16	9	0	0	37			
WSW	0	23	18	8	0	0	49			
W	2	21	10	6	0	0	39			
WNW	2	14	39	12	1	0	68			
NM	1	20	41	7	0	0	69			
NNW	4	14	57	8	0	0	83			
Variable	0	0	0	0	0	0	0			
Total	33	368	389	111	5	0	906			

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-32 141 of 187

Period of Record: July - September 2009
Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	4	38	0	0	0	0	42
NNE	3	41	4	0	0	0	48
NE	3	17	11	0	0	0	31
ENE	0	19	32	1	0	0	52
E	2	29	31	0	0	0	62
ESE	1	12	6	0	0	0	19
SE	1	10	14	0	0	0	25
SSE	1	8	10	2	0	0	21
S	1	11	8	2	1	0	23
SSW	3	9	24	6	0	0	42
SW	1	9	22	3	0	0	35
WSW	3	11	6	1	0	0	21
W	3	14	11	1	7	3	39
WNW	2	29	7	1	8	3	50
NW	4	12	4	0	1	0	21
NNW	5	18	4	0	0	0	27
Variable	0	0	0	0	0	0	0
Total	37	287	194	17	17	6	558

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: July - September 2009
Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	2	13	0	0	0	0	15		
NNE	2	9	0	0	0	0	11		
NE	2	2	0	0	0	0	4		
ENE	1	9	2	0	0	0	12		
E	2	48	19	0	0	0	69		
ESE	4	16	0	0	0	0	20		
SE	3	9	4	0	0	0	16		
SSE	2	12	2	0	0	0	16		
S	2	11	2	0	0	0	15		
SSW	1	10	10	0	0	0	21		
SW	0	15	2	0	0	0	17		
WSW	1	18	1	0	0	0	20		
M	3	15	17	0	0	0	35		
WNW	5	29	2	0	0	0	36		
NM	5	6	1	0	0	0	12		
NNW	3	15	0	0	0	0	18		
Variable	0	0	0	0	0	0	0		
Total	38	237	62	0	0	0	337		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: July - September 2009
Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

Wind			-				
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	3	0	0	0	0	3
			0		0		
NNE	0	0		0		0	0
NE	0	1	0	0	0	0	1
ENE	0	0	0	0	0	0	0
E	0	10	1	0	0	0	11
ESE	0	18	0	0	0	0	18
SE	3	18	0	0	0	0	21
SSE	1	22	0	0	0	0	23
S	2	21	0	0	0	0	23
SSW	1	30	7	0	0	0	38
SW	0	16	3	0	0	0	19
WSW	1	19	1	0	0	0	21
W	1	12	0	0	0	0	13
WNW	0	23	0	0	0	0	23
NW	1	2	0	0	0	0	3
NNW	0	6	1	0	0	0	7
Variable	0	0	0	0	0	0	0
				•	_	_	
Total	10	201	13	0	0	0	224

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0
Hours of missing stability measurements in all stability classes:

F-35 144 of 187

Period of Record: July - September 2009 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

	wina Speea (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	0	0	0	0		
SW	0	0	0	0	0	0	0		
WSW	0	0	0	0	0	0	0		
W	0	0	0	0	0	0	0		
WNW	0	0	0	0	0	0	0		
NW	0	0	0	0	0	0	0		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	0	0	0	0	0		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-36 145 of 187

Period of Record: July - September 2009 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

## f		Willia opoda (III mpi)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	0	0	0	0	0	0				
NNE	0	0	0	0	0	0	0				
NE	0	0	0	0	0	0	0				
ENE	0	0	0	0	0	0	0				
E	0	0	0	0	0	0	0				
ESE	0	0	0	0	0	0	0				
SE	0	. 0	0	0	0	0	0				
SSE	0	0	0	0	0	0	0				
S	0	0	0	0	0	0	0				
SSW	0	0	0	0	0	0	0				
SW	0	0	0	0	0	0	0				
WSW	0	0	0	0	0	0	0				
W	0	0	0	0	0	0	0				
WNW	0	0	0	0	0	0	0				
NM	0	0	0	0	0	0	0				
NNW	0	0	0	0	0	0	0				
Variable	0	0	0	0	0	0	0				
Total	0	0	0	0	0	0	0				

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-37 146 of 187

Period of Record: July - September 2009
Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind			-	•			
Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	1	0	0	1
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	3	1	0	4
SW	0	0	1	0	4	0	5
WSW	0	0	1	2	1	0	4
W	0	0	2	3	0	0	5
WNW	0	0	2	1	0	0	3
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	6	10	6	0	22

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class:

Hours of missing stability measurements in all stability classes: 0

F-38 147 of 187

Period of Record: July - September 2009
Stability Class - Neutral - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	21	25	9	1	0	56
NNE	1	21	26	0	1	1	50
NE	4	30	36	25	9	0	104
ENE	0	24	49	47	15	4	139
E	2	22	33	14	8	2	81
ESE	1	13	12	13	2	0	41
SE	0	5	10	14	5	0	34
SSE	1	4	9	10	5	0	29
S	1	7	11	5	1	0	25
SSW	1	5	11	17	10	3	47
SW	1	9	17	20	15	3	65
WSW	0	10	24	19	10	2	65
W	2	7	27	12	7	0	55
WNW	1	10	30	30	10	1	82
NW	0	10	50	39	11	5	115
NNW	2	10	36	30	3	0	81
Variable	0	0	0	0	0	0	0
Total	17	208	406	304	113	21	1069

Hours of calm in this stability class: 1

Hours of missing wind measurements in this stability class: 0

Period of Record: July - September 2009
Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	2	4	8	6	4	0	24		
NNE	0	2	18	6	5	0	31		
NE	1	13	21	29	6	0	70		
ENE	0	6	37	58	11	0	112		
E	1	7	25	26	9	0	68		
ESE	0	5	4	12	8	1	30		
SE	1	4	6	4	14	0	29		
SSE	1	1	1	2	6	5	16		
S	0	1	4	9	7	4	25		
SSW	3	2	5	16	12	11	49		
SW	1	2	4	9	22	7	45		
WSW	1	4	6	9	8	0	28		
W	2	3	15	12	4	5	41		
WNW	2	3	6	22	14	17	64		
NW	2	7	14	23	6	2	54		
NNW	0	7	19	4	5	0	35		
Variable	0	0	0	0	0	0	0		
Total	17	71	193	247	141	52	721		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-40 149 of 187

Period of Record: July - September 2009
Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	3	11	8	0	0	23
NNE	0	1	2	1	0	0	4
NE	2	4	8	2	0	0	16
ENE	0	6	4	10	1	0	21
E	0	2	6	8	3	1	20
ESE	0	3	3	7	12	3	28
SE	1	4	7	6	4	4	26
SSE	0	1	5	5	4	1	16
S	0	1	9	11	10	6	37
SSW	0	3	9	6	3	6	27
SW	0	2	10	8	13	4	37
WSW	1	0	10	6	1	0	18
W	0	1	14	6	1	1	23
WNW	1	2	3	11	6	1	24
NW	0	1	9	10	3	0	23
NNW	0	1	1	5	1	0	8
Variable	0	0	0	0	0	0	0
Total	6	35	111	110	62	27	351

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: July - September 2009
Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

Wind			-	, _	,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	4	0	0	4
NNE	0	0	0	0	0	0	0
NE	0	0	1	0	0	0	1
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	2	0	4	6
SE	0	0	1	1	1	2	5
SSE	0	1	3	1	6	0	11
S	0	0	0	2	2	3	7
SSW	0	0	0	5	0	0	5
SW	0	0	0	1	1	0	2
WSW	0	0	0	1	0	0	1
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	. 0	0
ИМ	0	0	1	0	0	0	1
NNW	0	0	1	0	0	0	1
Variable	0	0	0	0	0	0	0
Total	0	1	7	17	10	9	44

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-42 151 of 187

Period of Record: October - December 2009
Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

	Wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	0	0	0	0		
SW	0	0	0	0	0	0	0		
WSW	0	0	0	0	0	0	0		
W	0	0	0	0	0	0	0		
WNW	0	0	0	0	0	0	0		
ИМ	0	0	0	0	0	0	0		
МИИ	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	0	0	0	0	0		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

F-43 152 of 187

Period of Record: October - December 2009

Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F)

Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	0	0	0	0	0	0	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
E	0	0	0	0	0	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	0	0	0	0	0	0	
SSE	0	0	0	0	0	0	0	
S	0	0	0	0	0	0	0	
SSW	0	0	0	1	0	0	1	
SW	0	0	0	3	0	0	3	
WSW	0	0	0	0	0	0	0	
W	0	0	0	0	0	0	0	
WNW	0	2	0	0	0	0	2	
NW	0	0	0	0	0	0	0	
NNW	0	0	0	0	0	0	0	
Variable	0	0	0	0	0	0	0	
Total	0	2	0	4	0	0	6	

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: October - December 2009 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind	* * * * * * * * * * * * * * * * * * * *								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	1	0	0	0	1		
NE	0	0	1	0	0	0	1		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	1	0	0	0	1		
SSE	0	0	2	0	0	0	2		
S	0	0	2	1	3	0	6		
SSW	0	0	2	2	0	0	4		
SW	0	0	0	1	1	0	2		
WSW	0	0	0	3	0	0	3		
W	0	1	2	2	1	0	6		
WNW	0	1	2	0	0	0	3		
NM	0	0	1	0	0	0	1		
NNM	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	2	14	9	5	0	30		

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: October - December 2009

Stability Class - Neutral - 200Ft-33Ft Delta-T (F)

Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	21	27	6	0	0	55
NNE	0	8	30	1	0	0	39
NE	0	8	13	16	8	0	45
ENE	0	8	19	39	27	6	99
E	1	7	36	43	33	10	130
ESE	3	13	21	8	0	3	48
SE	3	10	23	10	3	1	50
SSE	1	11	20	7	1	0	40
S	0	10	23	19	1	0	53
SSW	4	18	42	18	4	0	86
SW	4	20	42	19	11	0	96
WSW	4	15	48	41	4	7	119
W	1	19	53	47	17	5	142
WNW	0	12	50	48	11	0	121
NM	0	5	13	18	0	0	36
NNW	1	11	46	31	1	0	90
Variable	0	0	0	0	0	0	0
Total	23	196	506	371	121	32	1249

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: October - December 2009
Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

		wind Speed (in mpn)					
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	6	0	0	0	0	6
NNE	0	8	13	0	0	0	21
NE	0	1	6	3	0	0	10
ENE	0	3	14	5	0	0	22
E	0	12	14	1	0	0	27
ESE	0	23	9	4	0	0	36
SE	2	15	14	2	1	0	34
SSE	1	19	22	14	2	0	58
S	1	13	19	10	0	0	43
SSW	0	10	35	16	0	0	61
SW	2	7	14	17	0	0	40
WSW	0	9	23	16	2	0	50
W	3	7	14	7	14	6	51
WNW	1	14	8	7	4	1	35
NW	1	3	10	0	0	0	14
NNW	0	2	6	0	0	0	8
Variable	0	0	0	0	0	0	0
Total	11	152	221	102	23	7	516

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class:

Period of Record: October - December 2009
Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F)
Winds Measured at 33 Feet

Wind Speed (in mph)

		M	ind Speed	d (in mph	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ñ	0	1	0	0	0	0	1
NNE	0	1	0	0	0	0	1
NE	0	2	0	0	0	0	2
ENE	0	0	1	0	0	0	1
E	0	10	5	0	0	0	15
ESE	0	16	1	0	0	0	17
SE	0	12	6	0	0	0	18
SSE	0	7	10	0	0	0	17
S	0	5	7	0	0	0	12
SSW	0	12	37	12	0	0	61
SW	1	3	11	4	0	0	19
WSW	1	9	10	1	0	0	21
W	0	6	4	0	0	0	10
WNW	0	21	12	0	0	0	33
NW	0	3	2	0	0	0	5
NNW	0	1	2	0	0	0	3
Variable	0	0	0	0	0	0	0
Total	2	109	108	17	0	0	236

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class:

Hours of missing stability measurements in all stability classes:

F-48 157 of 187

Period of Record: October - December 2009

Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F)

Winds Measured at 33 Feet

Wind Speed (in mph)

Wind			-				
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	1	0	0	0	0	0	1
ENE	0	0	0	0	0	0	0
E	1	9	6	0	0	0	16
ESE	1	20	6	0	0	0	27
SE	0	26	6	0	0	0	32
SSE	0	8	1	0	0	0	9
S	1	12	3	0	0	0	16
SSW	0	18	9	1	0	0	28
SW	1	12	7	0	0	0	20
WSW	0	8	0	0	0	0	8
W	0	8	0	0	0	0	8
WNW	0	5	0	0	0	0	5
NW	0	0	0	0	0	0	0
NNM	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	5	126	38	1	0	0	170

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Period of Record: October - December 2009 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind			-	_			
Direction	1-3	4-7	8-12	13-18 	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NM	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes: 1

F-50 159 of 187

Period of Record: October - December 2009

Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F)

Winds Measured at 375 Feet

Wind Speed (in mph)

Wind			_		,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0 -	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class:

Hours of missing stability measurements in all stability classes:

Period of Record: October - December 2009 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

***		W	ind Speed	d (in mp)	n)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	1	0	1
WSW	0	0	0	0	0	0	0
W	0	0	0	1	0	0	1
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	1	1	0	2

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

Period of Record: October - December 2009

Stability Class - Neutral - 375Ft-33Ft Delta-T (F)

Winds Measured at 375 Feet

Wind Speed (in mph)

		W	ind Speed	d (in mph	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
И	0	8	7	27	14	0	56
NNE	0	1	27	19	2	0	49
NE	1	5	7	14	16	5	48
ENE	0	8	13	29	27	43	120
E	1	1	13	21	22	12	70
ESE	0	3	12	13	10	4	42
SE	1	2	11	11	11	15	51
SSE	1	4	21	10	5	1	42
S	2	4	21	12	10	7	56
SSW	0	10	10	27	12	6	65
SW	1	5	26	38	19	13	102
WSW	0	7	17	39	22	19	104
W	1	12	24	41	36	29	143
WNW	1	0	16	46	31	8	102
NW	0	4	15	28	30	10	87
NNW	0	4	1	33	18	3	59
Variable	0	0	0	0	0	0	0
Total	9	78	241	408	285	175	1196

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 130

Hours of missing stability measurements in all stability classes:

F-53 162 of 187

Period of Record: October - December 2009
Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F)
Winds Measured at 375 Feet

Wind Speed (in mph)

		W:	ind Speed	d (in mp	ר)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	2	1	6	1	0	11
NNE	0	0	1	0	0	0	1
NE	0	0	1	6	6	4	17
ENE	0	0	4	6	6	2	18
E	0	0	7	11	1	1	20
ESE	0	5	3	8	4	1	21
SE	1	4	2	12	10	4	33
SSE	0	3	11	22	9	8	53
S	1	4	11	16	23	17	72
SSW	0	1	12	14	28	27	82
SW	1	2	5	14	35	21	78
WSW	0	1	9	6	8	13	37
M	1	4	3	15	19	17	59
WNW	0	0	2	12	6	11	31
NW	0	0	9	9	6	0	24
NNW	1	2	5	1	4	0	13
Variable	0	0	0	0	0	0	0
Total	6	28	86	158	166	126	570

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 31

Period of Record: October - December 2009

Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F)

Winds Measured at 375 Feet

Wind Speed (in mph)

Wind	1 2	4 "7	0 10	13-18	10 04	> 24	Total
Direction	1-3	4-7	8-12	13-18	19-24 		
N	0	0	3	1	0	0	4
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	1	0	0	1	1	3
ESE	0	1	0	2	9	10	22
SE	0	2	6	9	3	0	20
SSE	0	1	1	5	8	5	20
S	0	1	2	6	6	1	16
SSW	0	1	9	3	7	12	32
SW	0	3	7	11	14	11	46
WSW	0	1	2	3	0	1	7
W	0	5	1	0	0	0	6
WNW	0	5	2	6	0	0	13
NW	0	1	2	4	7	1	15
NNW	0	0	2	9	0	0	11
Variable	0	0	0	0	0	0	0
Total	0	22	37	59	55	42	215

Hours of calm in this stability class: 0

Hours of missing wind measurements in this stability class: 5

Hours of missing stability measurements in all stability classes:

Period of Record: October - December 2009

Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F)

Winds Measured at 375 Feet

Wind Speed (in mph)

	Wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	1	0	0	0	0	0	1		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	1	0	1		
SE	0	0	0	0	2	0	2		
SSE	0	1	1	6	5	0	13		
S	1	0	1	8	7	6	23		
SSW	0	2	1	0	2	0	5		
SW	0	3	1	0	3	1	8		
WSW	0	0	0	1	1	0	2		
W	0	1	0	0	0	0	1		
WNW	0	0	0	0	0	0	0		
NW	0	0	0	0	0	0	0		
NNW	2	0	0	0	0	0	2		
Variable	0	0	0	0	0	0	0		
Total	4	7	4	15	21	7	58		

Hours of calm in this stability class: 0

F-56 165 of 187

Hours of missing wind measurements in this stability class: 0

Hours of missing stability measurements in all stability classes:

APPENDIX G

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

Docket No: 50-373 50-374

LASALLE COUNTY STATION UNITS 1 and 2

Annual Radiological
Groundwater Protection Program Report

1 January Through 31 December 2009

Prepared By

Teledyne Brown Engineering Environmental Services

LaSalle County Station Marseilles, IL 61341

May 2010

Table Of Contents

١.	Summa	ary and Conclusions	1
11.	Introdu	uction	2
•••	Α.	Objectives of the RGPP	2
		Implementation of the Objectives	
	C	Program Description	3
	D.	Characteristics of Tritium (H-3)	3
		Onaracionado or maam (11 o)	•
III.	Progra	am Description	4
		Sample Analysis	
		Data Interpretation	
		Background Analysis	
		1. Background Concentrations of Tritium	6
		·	
			_
IV		lts and Discussion	
		Groundwater Results	
		Surface Water Results	
	C.	Drinking Water Well Survey	g
		Summary of Results - Inter-laboratory Comparison Program	
		Leaks, Spills, and Releases	
	F.	Trends	g
	G.	Investigations	, <u>e</u>
	H.	Actions Taken	ç

Appendices

Appendix A Location Designation & Distance

Tables

Table A-1 LaSalle County Station Groundwater Monitoring Sample Point List

Figures

Figure A-1 LaSalle County Station Map of Groundwater Monitoring Sample

Locations.

Appendix B Data Tables

<u>Tables</u>

Table B-I.1 Concentrations of Tritium in Groundwater Samples Collected in the

Vicinity of LaSalle County Station, 2009.

Table B-II.1 Concentrations of Tritium in Surface Water Samples Collected in the

Vicinity of LaSalle County Station, 2009.

I. Summary and Conclusions

In 2006, Exelon instituted a comprehensive program to evaluate the impact of station operations on groundwater and surface water in the vicinity of LaSalle County Station. This evaluation involved numerous station personnel and contractor support personnel. Baseline sampling efforts included the use of six surface water locations, two of which were already included in LaSalle's REMP sampling program, and seventeen groundwater well sampling locations. Following baseline sampling and subsequent recommendations, LaSalle's RGPP program now consists of the six surface water and nine groundwater well sampling locations. The results for LaSalle's RGPP sampling efforts in 2009 are included in this report.

This is the fourth in a series of annual reports on the status of the Radiological Groundwater Protection Program (RGPP) conducted at LaSalle County Station. This report covers groundwater and surface water samples, collected from the environment, both on and off station property in 2009. During that time period, 30 analyses were performed on 30 samples from 15 locations, (6 surface water and 9 ground water wells. The monitoring was conducted by Station personnel

In assessing all the data gathered for this report, it was concluded that the operation of LaSalle County Station had no adverse radiological impact on the environment, and there are no known active releases into the groundwater at LaSalle County Station.

The Station's on-going monitoring program consists of analyzing for tritium semiannually, with gamma emitters and Strontium-89/90 analyzed on a biennial basis.

In the case of tritium, Exelon specified that its laboratories achieve a lower limit of detection 10 times lower than that required by federal regulation.

Tritium was not detected in any of the groundwater or surface water samples at concentrations greater than the United States Environmental Protection Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission Reporting Limit) of 20,000 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L in 1 of 9 groundwater monitoring locations. The tritium concentrations ranged from <LLD to 510 \pm 117 pCi/L. No tritium was detected in the six surface water samples above the specified LLD. Elevated tritium levels (> 200 pCi/L) observed in the single well location are believed to be associated with the 2001 CY tank rupture as documented in the stations 10CFR50.75(g) report.

Introduction

The LaSalle County Station (LCS), consisting of two boiling water reactors, each rated for 3489 MWt, owned and operated by Exelon Corporation, is located in LaSalle County, Illinois. Unit No. 1 went critical on 16 March 1982. Unit No. 2 went critical on 02 December 1983. The site is located in northern Illinois, approximately 75 miles southwest of Chicago, Illinois.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) on samples collected in 2009.

A. Objectives of the RGPP

The long-term objectives of the RGPP are as follows:

- 1. Identify suitable locations to monitor and evaluate potential impacts from station operations before significant radiological impact to the environment and potential drinking water sources.
- 2. Understand the local hydrogeologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface.
- 3. Perform routine water sampling and radiological analysis of water from selected locations.
- 4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner.
- 5. Regularly assess analytical results to identify adverse trends.
- 6. Take necessary corrective actions to protect groundwater resources.

B. Implementation of the Objectives

The objectives identified have been implemented at LaSalle County Station as discussed below:

Exelon and its consultant identified locations as described in the 2006 Phase 1 study. Phase 1 studies were conducted by Conestoga Rovers and Associates (CRA) and the results and conclusions were made available to state and federal regulators.

1. The LaSalle County Station reports describe the local hydrogeologic regime. Periodically, the flow patterns on the

surface and shallow subsurface are updated based on ongoing measurements.

- 2. LaSalle County Station will continue to perform routine sampling and radiological analysis of water from selected locations.
- 3. LaSalle County Station has implemented procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner.
- 4. LaSalle County Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends.

C. Program Description

1. Sample Collection

Sample locations can be found in Table A–1, Appendix A.

Groundwater and Surface Water

Samples of water are collected, managed, transported and analyzed in accordance with approved procedures following EPA methods. Both groundwater and surface samples water are collected. Sample locations, sample collection frequencies and analytical frequencies are controlled in accordance with approved station procedures. Contractor and/or station personnel are trained in the collection, preservation management, and shipment of samples, as well as in documentation of sampling events. Analytical laboratories are subject to internal quality assurance programs, industry cross-check programs, as well as nuclear industry audits. Station personnel review and evaluate all analytical data deliverables as data are received.

Analytical data results are reviewed by both station personnel and an independent hydrogeologist for adverse trends or changes to hydrogeologic conditions.

D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking

water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion, essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non-tritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (3He). This radioactive decay releases a beta particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

III. Program Description

A. Sample Analysis

This section describes the general analytical methodologies used by TBE to analyze the environmental samples for radioactivity for the LaSalle County Station RGPP in 2009.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of gamma emitters in groundwater and surface water. (Biennially)
- 2. Concentrations of strontium in groundwater and surface water. (Biennially)
- 3. Concentrations of tritium in groundwater and surface water. (Semi-annually)

B. Data Interpretation

The radiological data collected prior to LaSalle County Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, LaSalle County Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. <u>Lower Limit of Detection and Minimum Detectable Concentration</u>

The lower limit of detection (LLD) is specified by federal regulation as a minimum sensitivity value that must be achieved routinely by the analytical parameter.

2. Laboratory Measurements Uncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus ± the estimated sample standard deviation, as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

C. Background Analysis

A pre-operational radiological environmental monitoring program (pre-operational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, precipitation, marine life, and foodstuffs. The results of the monitoring were detailed in the report entitled, Environmental Radiological Monitoring for LaSalle County Nuclear Power Station, Commonwealth Edison Company, Annual Reports

for the years 1979 and 1981. The pre-operational REMP contained analytical results from samples collected from the surface water and groundwater.

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others. Additional detail may be found by consulting references (CRA 2006).

a. Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and strontium-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s, and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected world wide from 1960 to 2006.

RadNet provides tritium precipitation concentration data for samples collected at stations through out the U.S. from 1960 up to and including 2006. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L since around 1980. LaSalle's 1979 or 1981 pre-operational REMP showed precipitation tritium concentrations >300 pCi/L. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above. Water from previous years and decades is naturally captured in groundwater, so some well water sources today are affected by the surface water from the 1960s that was elevated in tritium.

Surface Water Data

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Illinois surface water data were typically less than 100 pCi/L. Illinois River H3 results have shown >200 pCi/L, as evidenced in LaSalle's REMP program sample results. This could be attributable to release for Braidwood and Dresden upstream

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a ± 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately ± 70 to 100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40-240 pCi/L or 140 ± 100 pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

IV. Results and Discussion

A. Groundwater Results

Groundwater

Samples were collected from on -site wells throughout the year in accordance with the station radiological groundwater protection program. Analytical results and anomalies are discussed below.

Tritium

Samples from nine locations were analyzed for tritium activity (Table B–I.1, Appendix B). Tritium values ranged from <LLD to 510 pCi/L at well MW-LS-105s. Based on the hyrogeological study conducted at LaSalle, there is no feasible pathway into a drinking water supply. Based on established aquifer flow paths the location most representative of potential offsite release into groundwater was also less than the detection limit.

Strontium

No Sr-90 analyses were performed in 2009.

Gamma Emitters

No gamma analyses were performed in 2009.

B. Surface Water Results

Surface Water

Samples were collected from on and off-site surface water locations throughout the year in accordance with the station radiological groundwater protection program. Analytical results and anomalies are discussed below.

Tritium

Samples from six locations were analyzed for tritium activity (Table B–II.1, Appendix B). All surface water samples were <LLD. Based on the hyrogeological study conducted at LaSalle, there is no feasible pathway into a drinking water supply. Based on established aquifer flow paths the location most representative of potential offsite release into groundwater was also less than the detection limit.

Strontium

No Sr-90 analyses were performed in 2009.

Gamma Emitters

No Gamma analyses were performed in 2009.

C. Drinking Water Well Survey

A drinking water well survey was conducted during the summer 2006 by CRA (CRA 2006) around the LaSalle County Station. This survey concluded that no residents in the vicinity of the plant utilize the shallow water aquifer as a drinking water supply. Site hydrological studies of aquifer flow and permeation rates from the shallow aquifer to the deep aquifer concluded that there is no feasible dose receptor via a ground water pathway at LaSalle.

D. Summary of Results – Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE and Environmental Inc. (Midwest Labs) are presented in the AREOR.

E. Leaks, Spills, and Releases

No new leaks or spills were discovered through efforts conducted at LaSalle Station. Historical spills were captured in the CSA report as well as the Station's 10CFR75(g) reports.

F. Trends

Baseline data established at LaSalle revealed no current ground water issues. On-going monitoring through the RGPP will allow for early detection of any potential threats to groundwater on and around the site.

G. Investigations

There were no anomalous result investigations conducted at for LaSalle RGPP sample results in 2009

H. Actions Taken

1. Compensatory Actions

There were no required compensatory actions as a result of RGPP monitoring at LaSalle in 2009.

2. Installation of Monitoring Wells

No new monitoring wells were added beyond the initial phase for LaSalle in 2009.

3. Actions to Recover/Reverse Plumes

2009 LaSalle RGPP efforts resulted in no required actions.

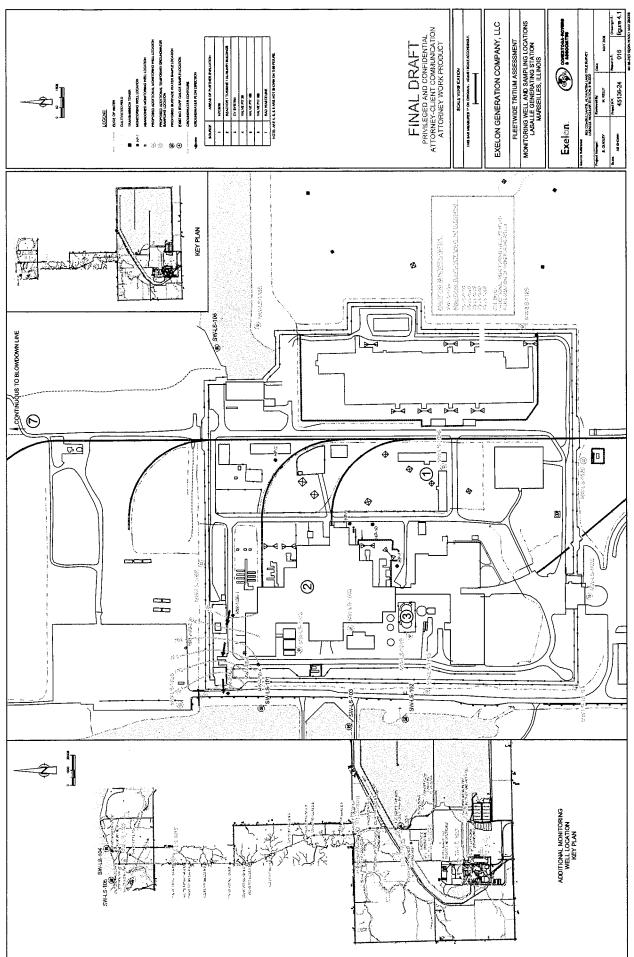
APPENDIX A LOCATION DESIGNATION & DISTANCE

Table A-1
LaSalle County Station Groundwater Monitoring Sample Point List

Sample No.	Location	Current Well Status
SW-LS-101	North Storm Water Pond	Active
SW-LS-102	South Storm Water Pond	Active
SW-LS-103	Circ Water Discharge Canal	Active
SW-LS-104	Illinois River Upstream at Seneca (Boondocks)	Active
SW-LS-105	Illinois River Downstream at Marseilles (Illini State Park Boat Ramp)	Active
SW-LS-106	Circ Water Intake Bay	Active
MW-LS-101S	SW Corner of Perimiter Road	Inactive
MW-LS-102S	OLD Parking Lot West (Lake) Side	Inactive
MW-LS-103S	MAF South Centerline	Inactive
MW-LS-104S	CY Storage Tanks	Active
MW-LS-105S	Behind IRSF	Active
MW-LS-106S	MW-LS-106S Spare Transformer Area – Back Toward Security Fence	
MW-LS-107S	Old Service Building – Near Outage Trailers	Active

Wells with an 'active' status are sampled and analyzed for radionuclide activity, wells with an 'inactive' status are not. This is based on the original baseline study as well risk associated with well location. Should radionuclide activity be detected in sampled wells, all well statuses would be reassessed.

A-1 181 of 187


Sample No.	Location	Current Well Status
MW-LS-108S	Near 12 KV Swithchyard	Inactive
MW-LS-109S	Near BDG 33	Inactive
MW-LS-110S	RSH Area by Valve Pit 16B	Active
MW-LS-111S	West Perimeter Road before pad mounted transformer (right hand side)	Active
MW-LS-112S	Between perimeter security fences near SE corner. (Access via security gate east of 12 KV switchyard)	Inactive
MW-LS-113S	Between perimeter security fences near CW intake bay. (Access via security gate east of 12 KV switchyard)	Inactive
HP-2	North of tracks near Nuclear Fuel Lay-down Area	Active
HP-5	Near VQ LN2 Storage Tanks	Active
HP-7	Near UAT's	Active
HP-10	Near VQ LN2 Storage Tanks, South of HP-5	Active

Wells with an 'active' status are sampled and analyzed for radionuclide activity, wells with an 'inactive' status are not. This is based on the original baseline study as well risk associated with well location. Should radionuclide activity be detected in sampled wells, all well statuses would be reassessed.

A-2 182 of 187

APPENDIX A-1

LASALLE COUNTY STATION MAP OF GROUNDWATER MONITORING SAMPLE LOCATIONS

APPENDIX B

DATA TABLES

TABLE B-I.1 CONCENTRATIONS OF TRITIUM IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION

	COLLECTION	
SITE	DATE	H-3
HP-10	04/13/09	< 156
HP-10	09/29/09	< 168
HP-2	04/13/09	< 156
HP-2	09/30/09	< 163
HP-5	04/14/09	< 157
HP-5	09/30/09	< 166
HP-7	04/14/09	< 158
HP-7	09/29/09	< 164
MW-LS-104S	04/17/09	< 155
MW-LS-104S	10/13/09	< 177
MW-LS-105S	04/14/09	510 ± 117
MW-LS-105S	10/02/09	199 ± 118
MW-LS-106S	04/16/09	< 157
MW-LS-106S	10/01/09	< 176
MW-LS-107S	04/14/09	< 182
MW-LS-107S	09/30/09	< 160
MW-LS-110S	10/26/09	< 166
MW-LS-111S	04/16/09	< 157
MW-LS-111S	10/06/09	< 170

B-1 186 of 187

TABLE B-II.1 CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2009

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION

SITE	DATE	H-3
SW-LS-101	04/16/09	< 155
SW-LS-101	10/01/09	< 170
SW-LS-102	04/16/09	< 156
SW-LS-102	10/01/09	< 172
SW-LS-103	04/16/09	< 155
SW-LS-103	10/01/09	< 177
SW-LS-104	04/16/09	< 159
SW-LS-104	10/01/09	< 174
SW-LS-105	04/15/09	< 160
SW-LS-105	10/01/09	< 168
SW-LS-106	04/14/09	< 159
SW-LS-106	10/02/09	< 173

B-2 187 of 187