

A subsidiary of Pinnacle West Capital Corporation

Palo Verde Nuclear **Generating Station**

Thomas N. Weber Department Leader Regulatory Affairs

Tel. 623-393-5764 Fax 623-393-5442 Mail Station 7636 PO Box 52034 Phoenix, Arizona 85072-2034

102-06184-TNW/KAR April 30, 2010

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Dear Sir:

Subject:

Palo Verde Nuclear Generating Station (PVNGS)

Units 1, 2, and 3

Docket Nos. STN 50-528/529/530

Annual Radioactive Effluent Release Report 2009

In accordance with PVNGS Technical Specification (TS) 5.6.3, enclosed please find the Annual Radioactive Effluent Release Report for 2009. In accordance with PVNGS TS 5.5.1, the enclosed report also includes Revision 24 of the Offsite Dose Calculation Manual (ODCM), which was implemented in 2009.

No commitments are being made to the NRC in this letter. Should you need further information regarding this submittal, please contact Russell A. Stroud, Licensing Section Leader, at (623)393-5111.

Sincerely,

Zuma 1. Wabon - -

TNW/RAS/KAR/gat

Enclosure: 2009 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

E. E. Collins Jr. CC:

NRC Region IV Regional Administrator

J. R. Hall

NRC NRR Project Manager

L. K. Gibson

NRC NRR Project Manager

R. I. Treadway

NRC Senior Resident Inspector for PVNGS

A. V. Godwin

Arizona Radiation Regulatory Agency (ARRA)

T. Morales

Arizona Radiation Regulatory Agency (ARRA)

A member of the STARS (Strategic Teaming and Resource Sharing) Alliance

ENCLOSURE

2009 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

PALO VERDE NUCLEAR GENERATING STATION **UNITS 1, 2 AND 3**

2009

ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

USNRC Docket No. STN 50-528/529/530 RCTSAI 1566

Kutner, Kevin (Z58001)

W(Z58001)

Reviewed by:

Prepared by:

Bungard, James P. (218012)
P(Z18012)
DN: cn=Bungard, James P(Z18012)
Paeson: I have reviewed this documer Date: 2010.04.09 18:14:52-07'00'

Approved by: Gaffney, John Digitally signed by Gaffney, John P (Z36459)
P(Z36459)
P(Z36459)
P(Z36459)
P(Z36459)
P(Z36459)
P(Z36459)
P(Z36459)
P(Z36459)
P(Z36459)

TABLE OF CONTENTS

SE	CTION	PAGE
	INTRODUCTION	5
	BIBLIOGRAPHY	6
	APPENDIX A SOURCE TERMS AND EFFLUENT AND WASTE DISPOSAL REPORTS	7
	APPENDIX B METEOROLOGY	59
	APPENDIX C DOSE CALCULATIONS	82
	APPENDIX D NEI 07-07 Groundwater Protection Initiative Sampling	91 °
	APPENDIX E OFFSITE DOSE CALCULATION MANUAL Revision 24	100
	APPENDIX F Changes to the PCP	203
	LIST OF TABLES	
TABLI	E	PAGE
1	Evaporation Pond Data	16
2	Batch Release Data	16
3	Units 1, 2 & 3 Gaseous Effluents Average Lower Limit Of Detection	17
4	Unit 1 Gaseous Effluents - Summation Of All Releases	18
5	Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and Iodines	19
6	Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Particulates	20
7	Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines	21
8	Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Particulates	22
9	Unit 1 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines	23
10	Unit 1 Gaseous Effluents - Continuous and Batch - Particulates	24
11	Unit 1 Radiation Doses At And Beyond The Site Boundary	25

LIST OF TABLES

TABL	<u>.E</u>	PAGE
12	Unit 2 Gaseous Effluents - Summation Of All Releases	26
13	Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and Iodines	27
14	Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Particulates	28
15	Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines	29
16	Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Particulates	30
17	Unit 2 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines	31
18	-Unit 2 Gaseous Effluents - Continuous and Batch - Particulates	32
19	Unit 2 Radiation Doses At And Beyond The Site Boundary	33
20	Unit 3 Gaseous Effluents - Summation Of All Releases	34
21	Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and Iodines	35
22	Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Particulates	36
23	Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines	37
24	Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Particulates	38
25	Unit 3 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines	39
26	Unit 3 Gaseous Effluents - Continuous and Batch - Particulates	40
27	Unit 3 Radiation Doses At And Beyond The Site Boundary	41

LIST OF TABLES

TΑ	LE .	PAGE
2	Units 1, 2, and 3 Gaseous Effluents - Continuous - Fission Gases and Iodines - Total By Quarter	42
2	Units 1, 2, and 3 Gaseous Effluents - Continuous - Particulates - Total By Quarter	43
3	Units 1, 2, and 3 Gaseous Effluents - Batch - Fission Gases and Iodines - Total By Quarter	44
3	Units 1, 2, and 3 Gaseous Effluents - Batch - Particulates - Total By Quarter	45
3	Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines - Total By Qu	arter 46
3	Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Quarter	47
3	Units 1, 2 and 3 Gaseous Effluents- Continuous - Fission Gases and Iodine - Total By Unit	48
3	Units 1, 2 and 3 Gaseous Effluents- Continuous - Particulates - Total By Unit	49
3	Units 1, 2 and 3 Gaseous Effluents- Batch - Fission Gases and Iodine - Total By Unit	50
3	Units 1, 2 and 3 Gaseous Effluents- Batch - Particulates - Total By Unit	51
3	Units 1, 2 and 3 Gaseous Effluents- Continuous and Batch - Fission Gases and Iodine - Total By Unit.	52
3	Units 1, 2 and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Unit	53
4	Estimation of Total Percent Error	54
4	Effluent Monitoring Instrumentation Out Of Service Greater Than 30 Days	55
4	Solid Waste Summary	56
4	Doses To Special Locations For 2009	85
4	Integrated Population Dose for 2009	86
4	Summary of Individual Doses for 2009	90

INTRODUCTION

This report summarizes effluent and waste disposal source term data, meteorological data and doses from radioactive effluents for the Palo Verde Nuclear Generating Station (PVNGS) for the period of January through December 2009. The data presented meets the reporting requirements of Regulatory Guide 1.21 (Revision 1, June 1974) of the U.S. Nuclear Regulatory Commission and the PVNGS Technical Specifications.

BIBLIOGRAPHY

- U.S. Nuclear Regulatory Commission, Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, 1974.
- U.S. Nuclear Regulatory Commission, Regulatory Guide 1.23 (Safety Guide 23), "Onsite Meteorological Programs," 1972.
- U.S. Nuclear Regulatory Commission, NUREG/CR-2919, "XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," 1982.
- U.S. Nuclear Regulatory Commission, NUREG-0579, "Users Guide to GASPAR Code," June 1980.
- U.S. Nuclear Regulatory Commission, Regulatory Guide 1.109, "Calculations of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR 50, Appendix I," Revision 1, 1977.
- U.S. Nuclear Regulatory Commission, NUREG-0172, "Age-specific Radiation Dose Commitment Factors for a One-Year Chronic Intake," 1977.
- U.S. Nuclear Regulatory Commission, NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," 1978.

Technical Specifications, Palo Verde Nuclear Generating Station, Units 1, 2 and 3, Docket No. 50-528/529/530.

Bechtel Power Corp., "Cooling Tower Blowdown System Solar Evaporation Pond," Sept. 1980.

Generation Engineering, "Geotechnical Exploration for Evaporation Pond #2," Oct. 1986

Letter No. 212-00789-WFQ/RHM, "1989 PVNGS Evaporation Pan Data," Jan. 1989.

Offsite Dose Calculation Manual Palo Verde Nuclear Generating Station Units 1, 2 and 3, Rev. 23.

NEI 07-07, Nuclear Energy Institute, Industry Ground Water Protection Initiative – Final Guidance Document, August 2007.

APPENDIX A

SOURCE TERMS AND EFFLUENT AND WASTE DISPOSAL REPORTS

Supplemental Information

1.0 REGULATORY LIMITS

1.1 Liquid Releases

1.1.1 PVNGS ODCM Requirement 3.2

The concentration of radioactive material discharged from secondary system liquid waste to the circulating water system shall be limited to:

 $5.0E-07 \mu Ci/ml$ for the principal gamma emitters (except Ce-144)

3.0E-06 µCi/ml for Ce-144

 $1.0E-06 \mu Ci/ml$ for I-131.

 $1.0E-03 \mu Ci/ml$ for H-3

The concentration of radioactive material discharged from secondary system liquid waste to the onsite evaporation ponds shall be limited to:

 $2.0E-06 \mu Ci/ml$ for Cs-134

 $2.0E-06 \mu Ci/ml$ for Cs-137

The concentrations specified in 10 CFR Part 20.1001-20.2402, Appendix B, Table 2, Column 2, for all other isotopes

1.1.2 PVNGS ODCM Requirement 4.4

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited:

- a. During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
- b. During any calendar year to less than or equal to 3 mrems to the total body and to less than or equal to 10 mrems to any organ.

1.2 Gaseous Releases

1.2.1 PVNGS ODCM Requirement 3.1

The dose rate due to radioactive materials released in gaseous effluents from the site shall be limited to the following:

- a. For noble gases: Less than or equal to 500 mrems/yr to the total body and less than or equal to 3000 mrems/yr to the skin, and
- b. For I-131 and I-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ.

1.2.2 PVNGS ODCM Requirement 4.1

The air dose due to noble gases released in gaseous effluents, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation and,
- b. During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

1.2.3 PVNGS ODCM Requirement 4.2

The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 7.5 mrems to any organ and,
- b. During any calendar year: Less than or equal to 15 mrems to any organ.

1.2.4 PVNGS ODCM Requirement 4.3

The GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases, from each reactor unit, from the site, when averaged over 31 days, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases, from each reactor unit, to areas at and beyond the SITE BOUNDARY when averaged over 31 days, would exceed 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

1.3 Total Dose

1.3.1 PVNGS ODCM Requirement 5.1

The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to direct radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

2.0 MAXIMUM PERMISSIBLE CONCENTRATIONS

Air: Release Concentrations are limited to dose rate limits described in section 1.2.1 of this report.

3.0 AVERAGE ENERGY

The average energy (\overline{E}) of the radionuclide mixture in releases of fission and activation gases is not applicable to PVNGS.

4.0 MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY IN GASEOUS EFFLUENTS

For continuous releases, sampling is in accordance with PVNGS ODCM Table 3-1. Particulate and iodine radionuclides are sampled continuously at the Plant Vent and Fuel Building exhaust points. The particulate filters and charcoal cartridges are exchanged for analysis at least four times per month. Noble gas and tritium are sampled at least once per 31 days. The hourly average Radiation Monitoring System (RMS) effluent monitor readings are used, when available, to account for increases and decreases in noble gas concentrations between noble gas grab samples. The tritium concentration is assumed constant between sampling periods.

For batch releases, sampling is also in accordance with PVNGS ODCM Table 3-1. For containment purges, the noble gas concentration may be adjusted to account for decreases or increases in concentration during the purge using RMS readings. The volume of air released during the purge is determined using the exhaust fan rated flow rate. For Waste Gas Decay Tank releases, the volume released is corrected to standard pressure.

Effective January 1, 2004, Containment Purge release permits are updated by removing the permit pre-release particulate and iodine activity. This eliminates double accounting for the Containment Purge particulate and iodine activity at the Plant Vent but allows the particulate and iodine activity to be included in the Containment Purge pre-release dose projection.

The Lower Limit of Detection (LLD) of a measurement system is defined in Table 3 - 1 of the PVNGS ODCM. An average LLD for each radionuclide is provided in Table 3.

5.0 BATCH RELEASES

5.1 Gaseous.

Batch release durations are presented in Table 2.

5.2 Liquid

None.

6.0 ABNORMAL RELEASES

None.

7.0 OFFSITE DOSE CALCULATION MANUAL AND PROCESS CONTROL PROGRAM (PCP) REVISIONS

- 7.1 ODCM, Revision 24, effective September 10, 2009, contains changes associated with the implementation of the Radioactive Environmental Monitoring Program (REMP). The ODCM revision is included as Appendix E.
- 7.2 There were no revisions to the Process Control Program (PCP) in 2009. However, a change made to procedure 76RP-0RW79, CD-600 System Operation, Revision 4, effective June 24, 2008, was determined to be a reportable change to the PCP (Reference CRAI 3337792) and should have been included in the 2008 ARERR. 76RP-0RW79, Revision 4, is included in Appendix F.

8.0 EFFLÜENTS AND SOLID WASTES

8.1 Gaseous Effluents

Gaseous effluent information is presented in Table 1 through Table 41. Included in these tables are summaries of the effluents and estimated total error.

8.2 Liquid Effluents

There were no liquid effluent releases beyond the Site Boundary from PVNGS.

8.3 Solid Waste

Solid waste shipments are summarized in Table 42.

9.0 MISCELLANEOUS INFORMATION

9.1 EVAPORATION PONDS

Releases made to the Evaporation Ponds are limited to the concentrations specified in PVNGS ODCM Requirement 3.2. The Evaporation Ponds were monitored in accordance with PVNGS ODCM Requirement 6.1.

The average historical evaporation is approximately 12 inches, per pond, for each of the first and fourth quarters, and 33 inches, per pond, for each of the second and third quarters. Evaporation Pond One is approximately 250 acres. This equates to 3.08E+11 cc evaporated from Pond One for each of the first and fourth quarters and 8.48E+11 cc evaporated from Pond One for each of the second and third quarters. Evaporation Pond Two is approximately 235 acres. The amount evaporated from Pond Two is 2.90E+11 cc for each of the first and fourth quarters and 7.97E+11 cc for each of the second and third quarters.

Evaporation Pond Three is constructed of two smaller ponds of 90 acres each (3A and 3B). The amount evaporated from each section of Pond Three is 1.11E+11 cc for each of the first and fourth quarters and 3.05E+11 cc for each of the second and third quarters.

Evaporation Pond 2 was empty for maintenance for the entire year. Evaporation Pond 3B was empty during quarters one and two.

Using a site boundary X/Q of 5.0E-05 sec/m³ for the evaporation ponds and equation 4-3 from the ODCM, the dose from the evaporation ponds to a hypothetical individual at the site boundary, for all pathways, is summarized in Table 1.

9.2 RADIATION MONITORING SYSTEM SETPOINT VERIFICATION

Current effluent monitor noble gas channel alert alarm setpoints are based on an assumed one per cent failed fuel source term. The current setpoints are more conservative than setpoints calculated using the actual noble gas source term presented in Table 38.

9.3 RCS RADIOIODINE (TRM T5.0.600)

There were no cases where primary coolant specific activity exceeded the Technical Specification 3.4.17 limits during the reporting period.

9.4 INDEPENDENT SPENT FUEL STORAGE INSTALLATION (ISFSI)

There are no radioactive effluents from the NAC-UMS System. Direct dose at the Site Boundary is reported in the Annual Radiological Environmental Operating Report.

9.5 MAJOR CHANGES TO THE RADIOACTIVE WASTE SYSTEMS (liquid, gaseous, and solid).

Licensee-initiated major changes to the radioactive waste systems (liquid, gaseous, and solid) are submitted as part of the FSAR update (TRM T5.0.500.4.a).

9.6 SAMPLES RESULTS FROM GROUNDWATER WELLS THAT ARE NOT DESCRIBED IN THE ODCM AS PART OF THE REMP (NEI 07-07, Industry Groundwater Protection Initiative, August 2007), are included in Appendix D. This initiative provides added assurance that ground water will not be adversely affected by PVNGS operations.

There were no NEI 07-07, reportable leaks or spills.

There were no positive sample results.

9.7 REPORT ADDENDUM

Refer to Section 7.2, Change to the Process Control Program (PCP).

9.8 Land Use Census Information (reference CRAI 3339605)

The Offsite Dose Calculation Manual (ODCM), Section 6.2.a, requires identifying location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in ODCM Section 4.2.1, in the next Annual Radioactive Effluent Release Report, pursuant to ODCM, Section 7.1.

There were two locations identified in the 2009 Land Use Census that met this criteria. These are new locations with milk animals. Location 1 is located 2.05 miles NNE of Unit 2. Location 2 is located 1.95 miles ESE of Unit 2. Location 2 is also the location identified in Table 45 with the highest organ dose.

10.0 DISCUSSION

10.1 Unit One

Unit One operated without a refueling outage.

Maintenance outages:

None.

Estim	Estimated number of fuel defects (source: INPO, CDE)											
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									Dec			
0	0 0 0 0 0 0 0 0 0 0											

10.2 Unit Two

Unit Two operated with a refueling outage (U2R15) from October 3, 2009 to December 2, 2009.

Estim	Estimated number of fuel defects (source: INPO, CDE)											
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec										Dec		
0 0 0 0 0 0 0 0 0 N/A 0											0	

10.3 Unit Three

Unit Three operated with a refueling outage (U3R14) from April 4, 2009 to May 28, 2009.

Maintenance outages: U3M15A, 12-03-09 to 12-09-09

	Estimated number of fuel defects (source: INPO, CDE)											
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov D										Dec		
	0	0	0	0	N/A	0	0	0	0	0	0	0

10.4 General

PVNGS does not have a liquid release pathway. Removal of tritium is performed by operation of the Boric Acid Concentrator (BAC) in the release mode. Comparison of PVNGS annual tritium curies released to other utilities should be made only after summing both liquid and gaseous tritium curies released.

10.5 Summary

Dose for 2009 was primarily due to the release of tritium. Tritium production is approximately 1000 curies per Reactor Unit per year. In order to control plant tritium concentrations, tritium releases should match tritium production. For 2009, PVNGS released a total of 1590 curies of tritium (see Table 39).

Total dose due to releases from all three Units for the year 2009 were slightly higher than year 2008, primarily due to changes in the Land Use Census identifying a closer resident with milk goats.

Tabl	Table 1: Evaporation Pond Data										
Evaporation Pond 1	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year						
Historical volume of water evaporated (ml)	3.08E+11	8.48E+11	8.48E+11	3.08E+11							
Tritium Concentration (uCi/cc)	8.25E-07	9.57E-07	1.22E-06	6.97E-07							
Tritium Curies	2.54E-01	8.12E-01	1.04E+00	2.15E-01	2.32E+00						
Evaporation Pond 2	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year						
Historical volume of water evaporated (ml)	2.90E+11	7.97E+11	7.97E+11	2.90E+11							
Tritium Concentration (uCi/cc)	N/A	N/A	N/A	N/A							
Tritium curies	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Evaporation Pond 3	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year						
Historical volume of water evaporated (ml)	1.11E+11	3.05E+11	3.05E+11	1.11E+11							
3A Tritium Concentration (uCi/cc)	9.91E-07	9.89E-07	7.86E-07	6.28E-07	1						
3A Tritium curies	1.10E-01	3.02E-01	2.40E-01	6.97E-02	7.21E-01						
3B Tritium Concentration (uCi/cc)	N/A	N/A	7.07E-07	7.78E-07							
3B Tritium curies	0.00E+00	0.00E+00	2.16E-01	8.64E-02	3.02E-01						
Dose (mRem)	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year						
Pond 1	3.52E-03	1.13E-02	1.44E-02	2.98E-03	3.22E-02						
Pond 2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Pond 3	1.53E-03	4.18E-03	6.32E-03	2.16E-03	1.42E-02						
Total	5.05E-03	1.54E-02	2.07E-02	5.14E-03	4.63E-02						

Table 2: Batch Release Data									
All times are in hours	Unit 1	Unit 2	Unit 3						
January - June		*							
Number of batch releases	23	29	47						
Total time period for batch releases	516.97	69.37	2222.32						
Maximum time period for a batch release	162.50	21.00	168.00						
Average time period for a batch release	22.48	2.39	47.28						
Minimum time period for a batch release	0.90	0.05	0.05						
July - December									
Number of batch releases	21	41	18						
Total time period for batch releases	154.83	1979.61	52.23						
Maximum time period for a batch release	129.90	168.00	23.12						
Average time period for a batch release	7.37	48.28	2.90						
Minimum time period for a batch release	0.29	0.1	1.07						
January - December									
Number of batch releases	44	70	65						
Total time period for batch releases	671.80	2048.98	2274.55						
Maximum time period for a batch release	162.50	168.00	168.00						
Average time period for a batch release	15.27	29.27	34.99						
Minimum time period for a batch release	0.29	0.05	0.05						

Table 3: Units 1, 2 & 3 Gaseous Effluents Average Lower Limit Of Detection

<u> </u>		· μ(Ci/cc		
Nuclide	Continuous	Batch	Nuclide	Continuous	Batch
Antimony-122	2.20E-13	1.90E-11	Argon-41	4.50E-08	4.50E-08
Antimony-124	8.40E-14	1.70E-11	Krypton-85	7.40E-06	7.40E-06
Barium-140	3.40E-13	5.70E-11	Krypton-85m	2.20E-08	2.20E-08
Bromine-82	3.30E-13	1.40E-11	Krypton-87	5.70E-08	5.70E-08
Cerium-141	8.70E-14	3.10E-11	Krypton-88	7.40E-08	7.40E-08
Cerium-144	3.60E-13	6.50E-11	Xenon-125	2.20E-08	2.20E-08
Cesium-134	1.00E-13	2.60E-11	Xenon-127	2.10E-08	2.10E-08
Cesium-137	8.10E-14	1.70E-11	Xenon-131m	9.10E-07	9.10E-07
Cesium-138	5.20E-10	7.30E-10	Xenon-133	6.30E-08	6.30E-08
Chromium-51	6.90E-13	1.40E-10	Xenon-133m	1.90E-07	1.90E-07
Cobalt-58	8.50E-14	1.70E-11	Xenon-135	2.00E-08	2.00E-08
Cobalt-60	1.00E-13	1.90E-11	Xenon-135m	8.90E-08	8.90E-08
Iron-59	1.70E-13	3.20E-11	Xenon-138	2.00E-07	2.00E-07
Lanthanum-140	2.80E-13	2.10E-11	lodine-131	8.00E-14	7.00E-12
Manganese-54	8.30E-14	1.70E-11	lodine-132	6.60E-12	1.90E-11
Molybdenum-99	2.40E-13	2.80E-11	lodine-133	4.70E-13	1.10E-11
Niobium-95	8.70E-14	1.80E-11	lodine-134	5.90E-11	8.20E-11
Rubidium-88	1.90E-08	1.90E-08	lodine-135	7.00E-12	5.50E-11
Ruthenium-103	7.40E-14	1.50E-11			
Strontium-89	2.15E-15	(1)			
Strontium-90	5.60E-16	(1)			
Tellurium-123m	6.60E-14	1.50E-11			
Tritium	3.80E-07	3.80E-07			
Zinc-65	1.90E-13	3.80E-11			
Zirconium-95	1.80E-13	4.10E-11			
Gross Alpha	3.60E-15	(1)			
(1) Not required fo	r batch releases.				

Table 4: Unit 1 Gaseous Effluents - Summation Of All Releases										
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total For Year	Est. Total Error % (1)			
A. Fission & activation gases			· · · · · · · · · · · · · · · · · · ·							
1. Total release	Ci	3.51E+00	5.52E+00	7.92E-02	8.19E-01	9.92E+00	3.54E+01			
2. Average release rate for period	μCi/sec	4.51E-01	7.02E-01	9.96E-03	1.03E-01	3.15E-01				
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
B. lodine 131										
1. Total lodine 131	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	3.32E+01			
2. Average release rate for period	μCi/sec	< LLD	< LLD	< LLD	< LLD	< LLD				
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
C. Particulates										
1. Particulates with half- lives > 8 days	Ci	< LLD	< LLD	1.00E-07	< LLD	1.00E-07	3.43E+01			
2. Average release rate for period	μCi/sec	< LLD	< LLD	1.26E-08	< LLD	3.18E-09				
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
4. Gross Alpha radioactivity	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
D. Tritium		•	•	•	•	•				
1. Total release	Ci	6.48E+01	1.21E+02	1.09E+01	1.14E+02	3.11E+02	3.85E+01			
2. Average release rate for period	μCi/sec	8.33E+00	1.54E+01	1.37E+00	1.43E+01	9.86E+00				
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)				
(1) Estimated total error methodology is	presented	in Table 40.								
(2) See Table 11 for percent of ODCM R	equiremer	t limits.			.,					

			Table 5:							
Gaseous Eff	fluants .	. Ground Level	Unit 1	ntinuous - Fiss	sion Gases and	Indines				
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
1. Fission gases										
Ar-41	Ci	3.22E+00	4.73E+00	< LLD ~	7.34E-01	8.69E+00				
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLĎ				
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-133	Ci	< LLD	2.18E-01	< LLD	< LLD	2.18E-01				
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-135	Ci	2.30E-01	4.93E-01	< LLD	< LLD	7.23E-01				
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Total	Ci	3.45E+00	5.44E+00	< LLD	7.34E-01	9.63E+00				
2. lodines		•								
I-131	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-132	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Total	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				

Table 6: Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Particulates									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3.Particulates									
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Br-82	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-58	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-60	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cr-51	Ci .	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Nb-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sr-89	Ci	< LLD	< LLD	7.90E-08 s	< LLD	7.90E-08			
Sr-90	Ci	< LLD	< LLD	2.13E-08	< LLD	2.13E-08			
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zr-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Total	Ci	< LLD	< LLD	1.00E-07	< LLD	1.00E-07			
4.Tritium									
H-3	Ci	2.11E+01	9.30E+00	1.09E+01	1.78E+01	5.91E+01			

			Table 7: Unit 1							
Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines										
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
1. Fission gases	1. Fission gases									
Ar-41	Ci	5.35E-02	7.61E-02	7.92E-02	8.44E-02	2.93E-01				
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-133	Ci	< LLD	1.76E-04	< LLD	1.93E-04	3.68E-04				
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
Total	Ci	5.35E-02	7.62E-02	7.92E-02	8.46E-02	2.94E-01				
2. lodines		•			•	•				
I-131	Ci	< LLD	< LLD	< LLD	< LLD	< LLD .				
I-132	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-133	Ci	. < LLD	< LLD	< LLD	< LLD	< LLD				
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				
I-135	Ci	< LLD	< LLD .	< LLD	< LLD	< LLD				
Total	Ci	< LLD	< LLD	< LLD	< LLD	< LLD				

Gas	Table 8: Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Particulates								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3. Particulates	<u> </u>			<u> </u>		<u></u>			
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Br-82	Ci	< LLD	< LLD	3.19E-07	< LLD	3.19E-07			
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-58	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-60	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cr-51	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Fe-59	Ci ·	< LLD	< LLD	< LLD	< LLD	< LLD			
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Nb-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-106	. Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	Note 1			
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	Note 1			
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zr-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Total	Ci	< LLD	< LLD	3.19E-07	< LLD	3.19E-07			
4.Tritium									
H-3	Ci	4.37E+01	1.11E+02	8.47E-03	9.65E+01	2.51E+02			
Note 1 - Not required	for bate	ch releases							

Table 9: Unit 1 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases									
Ar-41	Ci	3.28E+00	4.81E+00	7.92E-02	8.19E-01	8.98E+00			
Kr-83m	·Ci	< LLD							
Kr-85	Ci	< LLD							
Kr-85m	Ci	< LLD							
Kr-87	Ci	< LLD							
Kr-88	Ci	< LLD							
Kr-89	Ci	< LLD							
Kr-90	Ci	< LLD							
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD.			
Xe-133	Ci	< LLD	2.18E-01	< LLD	1.93E-04	2.18E-01			
Xe-133m	Ci	< LLD							
Xe-135	Ci	2.30E-01	4.93E-01	< LLD	< LLD	7.23E-01			
Xe-135m	Ci	< LLD							
Xe-137	Ci	< LLD							
Xe-138	Ci	< LLD							
Total	Ci	3.51E+00	5.52E+00	7.92E-02	8.19E-01	9.92E+00			
2. lodines									
I-131	Ci	< LLD							
I-132	Ci	< LLD							
I-133	Ci	< LLD							
I-134	Ci	< LLD							
I-135	Ci	< LLD							
Total	Ci	< LLD							

	Table 10: Unit 1 Gaseous Effluents - Continuous and Batch - Particulates								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3. Particulates	1								
Ag-110m	Ci	< LLD							
Ba-140	Ci	< LLD							
Br-82	Ci	< LLD	< LLD	3.19E-07	< LLD	3.19E-07			
Ce-141	Ci	< LLD							
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD '			
Co-57	Ci	< LLD							
Co-58	Ci	< LLD							
Co-60	Ci	< LLD							
Cr-51	Ci	< LLD .	< LLD	< LLD	< LLD	< LLD			
Cs-134	Ci	< LLD							
Cs-136	Ci	< LLD							
Cs-137	Ci	< LLD							
Cs-138	Ci	< LLD							
Fe-59	Ci	< LLD							
La-140	Ci	< LLD							
Mn-54	Ci	< LLD							
Mo-99	Ci	< LLD							
Nb-95	Ci	< LLD							
Os-191	Ci	< LLD							
Rb-88	Ci	< LLD							
Ru-103	Ci	< LLD							
Ru-106	Ci	< LLD							
Sb-122	Ci	< LLD							
Sb-124	Ci	< LLD							
Sb-125	Ci	< LLD							
Se-75	Ci	< LLD							
Sn-113m	Ci	< LLD							
Sr-89	Ci	< LLD	< LLD	7.90E-08	< LLD	7.90E-08			
Sr-90	Ci	< LLD	< LLD	2.13E-08	< LLD	2.13E-08			
Tc-99m	Ci	< LLD							
Te-123m	Ci	< LLD							
Zn-65	Ci	< LLD	< ĽLD	< LLD	< LLD	< LLD			
Zr-95	Ci	< LLD							
Total	Ci	< LLD	< LLD	4.20E-07	< LLD	4.20E-07			
Total > 8 days	Ci	< LLD	< LLD	1.00E-07	< LLD	1.00E-07			
4.Tritium									
H-3	Ci	6.48E+01	1.21E+02	1.09E+01	1.14E+02	3.11E+02			

Table 11: Unit 1 Radiation Doses At And Beyond The Site Boundary									
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
Gamma Air Dose	mrad	8.73E-03	1.29E-02	2.08E-04	2.15E-03	2.40E-02			
ODCM Req 4.1 Limit	mrad	5.00E+00	5.00E+00	5.00E+00	5.00E+00	1.00E+01			
% ODCM Limit	%	1.75E-01	2.58E-01	4.16E-03	4.30E-02	2.40E-01			
Beta Air Dose	mrad	3.20E-03	4.86E-03	7.34E-05	7.59E-04	8.89E-03			
ODCM Req 4.1 Limit	mrad	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01			
% ODCM Limit	%	3.20E-02	4.86E-02	7.34E-04	7.59E-03	4.45E-02			
Maximum Organ Dose (excluding skin)	mrem	2.32E-02	4.32E-02	3.92E-03	4.10E-02	1.11E-01			
Age		Teen	Teen	Teen	Teen	Teen			
Organ		(1)	(1)	W Body	(1)	W Body			
ODCM Req. 4.2 Limit	mrem	7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01			
% ODCM Limit	%	3.09E-01	5.76E-01	5.23E-02	5.47E-01	7.40E-01			

Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Note 1 - All organs except Bone.

Table 12: Unit 2 Gaseous Effluents - Summation Of All Releases										
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total For Year	Est. Total Error % (1)			
A. Fission & activation gases										
1. Total release	Ci	1.17E-01	1.46E-01	1.41E-01	1.29E+00	1.69E+00	3.54E+01			
2. Average release rate for period	μCi/sec	1.50E-02	1.86E-02	1.77E-02	1.62E-01	5.36E-02				
3. Percent of ODCM Requirement limit	%	NA (2)								
B. lodine 131	•									
1. Total lodine 131	Ci	< LLD	< LLD	< LLD	2.10E-05	2.10E-05	3.32E+01			
2. Average release rate for period	μCi/sec	< LLD	< LLD	< LLD	2.64E-06	6.66E-07				
3. Percent of ODCM Requirement limit	%	NA (2)								
C. Particulates							,			
1. Particulates with half- lives > 8 days	Ci	< LLD	< LLD	< LLD	8.02E-05	8.02E-05	3.43E+01			
2. Average release rate for period	μCi/sec	< LLD	< LLD	< LLD	1.01E-05	2.54E-06				
3. Percent of ODCM Requirement limit	%	NA (2)	·							
4. Gross Alpha radioactivity	Ci	< LLD								
D. Tritium	•									
1. Total release	Ci	2.10E+01	2.37E+01	4.71E+02	1.61E+02	6.77E+02	3.85E+01			
2. Average release rate for period	μCi/sec	2.70E+00	3.01E+00	5.93E+01	2.03E+01	2.15E+01				
3. Percent of ODCM Requirement limit	%	NA (2)								
(1) Estimated total error methodology is p	resented ir	Table 40.								
(2) See Table 19 for percent of ODCM Re	quirement	limits.								

			Table 13:			<u> </u>			
C	Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and Iodines								
	r	1	1	1	T	1			
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases									
Ar-41	Ci	< LLD							
Kr-83m	Ci	< LLD							
Kr-85	Ci	< LLD							
Kr-85m	Ci	< LLD							
Kr-87	Ci	< LLD							
Kr-88	Ci	< LLD							
Kr-89	Ci	< LLD							
Kr-90	Ci	< LLD							
Xe-131m	Ci	< LLD							
Xe-133	Ci	< LLD							
Xe-133m	Ci	< LLD							
Xe-135	Ci	< LLD							
Xe-135m	Ci	< LLD							
Xe-137	Ci	< LLD							
Xe-138	Ci	< LLD							
Total	Ci	< LLD							
2. lodines						•			
I-131	Ci	< LLD	< LLD	< LLD	1.89E-05	1.89E-05			
I-132	Ci	< LLD	< LLD	< LLD	4.85E-05	4.85E-05			
I-133	Ci	< LLD							
I-134	Ci	< LLD	< LLD .	< LLD	< LLD	< LLD			
I-135	Ci	< LLD							
Total	Ci	< LLD	< LLD	< LLD	6.74E-05	6.74E-05			

Table 14: Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Particulates									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3. Particulates									
Ag-110m	Ci	< LLD							
Ba-140	Ci	< LLD							
Br-82	·Ci	< LLD							
Ce-141	Ci	< LLD							
Ce-144	Ci	< LLD							
Co-57	Ci	< LLD							
Co-58	Ci	< LLD	< LLD	< LLD	5.71E-05	5.71E-05			
Co-60	Ci	< LLD	< LLD	< LLD	2.23E-06	2.23E-06			
Cr-51	Ci	< LLD	< LLD	< LLD	5.32E-06	5.32E-06			
Cs-134	Ci	< LLD							
Cs-136	Ci	< LLD							
Cs-137	Ci	< LLD							
Cs-138	Ci	< LLD							
Fe-59	Ci	< LLD							
La-140	Ci.	< LLD							
Mn-54	Cį	< LLD							
Mo-99	Ci	< LLD							
Nb-95	Ci	< LLD.	< LLD	< LLD	< LLD	< LLD			
Os-191	Ci	< LLD	< LLD	< LLD	4.42E-06	4.42E-06			
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD .	< LLD			
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD .	< LLD			
Ru-106	Ci	< LLD	< LLD	< LLD .	< LLD	< LLD			
Sb-122	Ci	< LLD							
Sb-124	Ci	< LLD							
Sb-125	Ci	< LLD							
Se-75 ;	Ci	< LLD							
Sn-113m	Ci	< LLD							
Sr-89	Ci	< LLD							
Sr-90	Ci	< LLD							
Tc-99m ,	Ci	< LLD							
Te-123m	Ci	< LLD							
Zn-65	Ci	< LLD							
Žr-95	Ci	< LLD							
Total	Ci	< LLD	< LLD	< LLD	6.90E-05	6.90E-05			
4. Tritium		-							
H-3	Ci	2.10E+01	2.36E+01	3.86E+01	2.82E+01	1.11E+02			

			Table 15:						
	Unit 2								
Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases									
Ar-41	Ci	1.14E-01	9.49E-02	1.30E-01	5.76E-01	9.15E-01			
Kr-83m	Ci	< LLD							
Kr-85	Ci	< LLD	4.77E-02	7.64E-03	1.13E-01	1.69E-01			
Kr-85m	Ci	< LLD							
Kr-87	Ci	< LLD							
Kr-88	Ci	< LLD							
Kr-89	Ci	< LLD							
Kr-90	Ci	< LLD							
Xe-131m	Ci	< LLD	< LLD	< LLD	1.89E-03	1.89E-03			
Xe-133	Ci	2.38E-03	3.09E-03	3.37E-03	5.98E-01	6.07E-01			
Xe-133m	Ci	< LLD	< LLD	< LLD	1.56E-03	1.56E-03			
Xe-135	Ci	< LLD							
Xe-135m	Ci	< LLD							
Xe-137	Ci	< LLD							
Xe-138	Ci	< LLD							
Total	Ci	1.17E-01	1.46E-01	1.41E-01	1.29E+00	1.69E+00			
2. lodines									
I-131	Ci	< LLD	< LLD	< LLD	2.12E-06	2.12E-06			
I-132	Ci	< LLD	< LLD	< LLD	8.20E-06	8.20E-06			
I-133	Ci	< LLD							
I-134	Ci	< LLD							
I-135	Ci	< LLD							
Total	Ci	< LLD	< LLD	< LLD	1.03E-05	1.03E-05			

Table 16: Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Particulates								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
3. Particulates								
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Br-82	Ci	< LLD	< LLD	< LLD	1.55E-05	1.55E-05		
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-58	Ci	< LLD	< LLD	< LLD	9.25E-06	9.25E-06		
Co-60	Ci	< LLD	< LLD	< LLD	1.63E-06	1.63E-06		
Cr-51	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Mn-54	Ci	< LLD	< LLD	< LLD	2.91E-07	2.91E-07		
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Nb-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	Note 1		
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	Note 1		
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zr-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Total	Ci	< LLD	< LLD	< LLD	2.66E-05	2.66E-05		
4. Tritium	<u> </u>	1	-1	1	1			
H-3	Ci	6.67E+01	8.61E-03	4.33E+02	1.33E+02	6.32E+02		
Note 1 - Not required	for bate	ch releases						

			Table 17: Unit 2			ı			
Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines									
Nuclides Released	Unit.	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases									
Ar-41	Ci	1.14E-01	9.49E-02	1.30E-01	5.76E-01	9.15E-01			
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Kr-85	Ci	< LLD	4.77E-02	7.64E-03	1.13E-01	1.69E-01			
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Xe-131m	Ci	< LLD	< LLD	< LLD	1.89E-03	1.89E-03			
Xe-133	Ci	2.38E-03	3.09E-03	3.37E-03	5.98E-01	6.07E-01			
Xe-133m	Ci	< LLD	< LLD	< LLD	1.56E-03	1.56E-03			
Xe-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Total	Ci	1.17E-01	1.46E-01	1.41E-01	1.29E+00	1.69E+00			
2. lodines									
I-131	Ci	< LLD	< LLD	< LLD	2.10E-05	2.10E-05			
I-132	Ci	< LLD	< LLD	< LLD	5.67E-05	5.67E-05			
I-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Total	Ci	< LLD	< LLD	< LLD	7.77E-05	7.77E-05			

	Table 18:								
	Gaseo	us Effluents -	Unit 2 Continuous ar	nd Batch - Pari	ticulates				
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3. Particulates									
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Br-82	Ci	< LLD	< LLD	< LLD	1.55E-05	1.55E-05			
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Co-58	Ci	< LLD	< LLD	< LLD	6.63E-05	6.63E-05			
Co-60	Ci	< LLD	< LLD	< LLD	3.86E-06	3.86E-06			
Cr-51	Ci	< LLD	< LLD	< LLD	5.32E-06	5.32E-06			
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-136	Ci	< LLD	< LLD	< LLD	'< LLD	< LLD			
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Mn-54	Ci	< LLD	< LLD	< LLD	2.91E-07	2.91E-07			
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Nb-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Os-191	Ci	< LLD	< LLD	< LLD	4.42E-06	4.42E-06			
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD .			
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Sr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Zr-95	Ci	< LLD	< LLD	< LLD	< LLD	< LLD			
Total	Ci	< LLD	< LLD	< LLD	9.57E-05	9.57E-05			
Total > 8 days	Ci	< LLD	< LLD	< LLD	8.02E-05	8.02E-05			
4. Tritium			•		***************************************				
H-3	Ci	8.77E+01	2.37E+01	4.71E+02	1.61E+02	7.43E+02			

Table 19: Unit 2 Radiation Doses At And Beyond The Site Boundary										
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total				
Gamma Air Dose	mrad	3.00E-04	2.50E-04	3.41E-04	1.57E-03	2.46E-03				
ODCM Req 4.1 Limit	mrad	5.00E+00	5.00E+00	5.00E+00	5.00E+00	1.00E+01				
% ODCM Limit	%	6.00E-03	5.00E-03	6.82E-03	3.14E-02	2.46E-02				
Beta Air Dose	mrad	1.07E-04	1.15E-04	1.25E-04	7.75E-04	1.12E-03				
ODCM Req 4.1 Limit	mrad	1.00E+01	1.00E+01	.1.00E+01	1.00E+01	2.00E+01				
% ODCM Limit	%	1.07E-03	1.15E-03	1.25E-03	7.75E-03	5.60E-03				
Maximum Organ Dose (excluding skin)	mrem	7.52E-03	8.49E-03	1.69E-01	5.80E-02	2.43E-01				
Age		Teen	Teen	Teen	Teen	Teen				
Organ		(1)	(1)	(1)	Thyroid	Thyroid				
ODCM Req. 4.2 Limit	mrem	7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01				
% ODCM Limit	%	1.00E-01	1.13E-01	2.25E+00	7.73E-01	1.62E+00				

Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Note 1 - All organs except Bone.

Table 20: Unit 3 Gaseous Effluents - Summation Of All Releases											
•	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total For Year	Est. Total Error % (1)				
A. Fission & activation gases						-					
1. Total release	Ci	2.67E-01	2.31E+01	6.54E-02	5.72E-02	2.34E+01	3.54E+01				
2. Average release rate for period	μCi/sec	3.43E-02	2.94E+00	8.23E-03	7.20E-03	7.42E-01					
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)					
B. lodine 131											
1. Total lodine 131	Ci	2.46E-06	2.70E-05	< LLD	< LLD	2.95E-05	3.32E+01				
2. Average release rate for period	μCi/sec	3.16E-07	3.43E-06	< LLD	< LLD	9.35E-07					
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)					
C. Particulates											
1. Particulates with half- lives > 8 days	Ci	5.48E-07	1.11E-04	1.54E-06	< LLD	1.13E-04	3.43E+01				
2. Average release rate for period	μCi/sec	7.05E-08	1.42E-05	1.94E-07	< LLD	3.60E-06					
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	NA (2)	NA (2)					
4. Gross Alpha radioactivity	Ci	< LLD	< LLD	< LLD	< LLD	< LLD					
D. Tritium											
1. Total release	Ci	1.57E+02	3.39E+02	2.30E+01	1.57E+01	5.35E+02	3.85E+01				
2. Average release rate for period	-μCi/sec	2.02E+01	4.31E+01	2.89E+00	1.98E+00	1.70E+01					
3. Percent of ODCM Requirement limit	%	NA (2)	NA (2)	NA (2)	ÑA (2)	NA (2)					
(1) Estimated total error methodology is	oresented in	n Table 40.			-						
(2) See Table 27 for percent of ODCM R	equirement	limits.									

			Table 21: Unit 3			
Gaseous Efflu Nuclides Released	ents - G	Ground Level F Quarter 1	Releases - Con Quarter 2	Quarter 3	ion Gases and Quarter 4	Year total
	l Ollik	Quarter	Quarter 2	Quarter 5	Quarter 4	Teal total
1. Fission gases		Y		·	·	·
Ar-41	Ci	< LLD	< LLD	< LLD ·	< LLD	< LLD
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Total	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
2. lodines						
I-131	Ci	2.46E-06	1.41E-05	< LLD	< LLD	1.66E-05
I-132	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
I-133	Ci	5.29E-06	< LLD	< LLD	< LLD	5.29E-06
I-134	Çi	< LLD	< LLD	< LLD	< LLD	< LLD
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Total	Ci	7.75E-06	1.41E-05	< LLD	< LLD	2.19E-05

Table 22: Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Particulates									
	т		т	T	1	T			
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
3. Particulates	3. Particulates								
Ag-110m	Ci	< LLD							
Ba-140	Ci	< LLD							
Br-82	Ci	< LLD							
Ce-141	Ci	< LLD	< LLD	3.49E-07	< LLD	3.49E-07			
Ce-144	Ci	< LLD	< LLD	< LĻD	< LLD	< LLD			
Co-57	Ci	< LLD							
Co-58	Ci	5.48E-07	5.88E-05	1.17E-06	< LLD	6.05E-05			
Co-60	Ci	< LLD	6.50E-06	< LLD	< LLD	6.50E-06			
Cr-51	Ci	< LLD	6.10E-06	< LLD	< LLD	6.10E-06			
Cs-134	Ci	< LLD							
Cs-136	Ci	< LLD							
Cs-137	Ci	< LLD							
Cs-138	Ci	< LLD							
Fe-59	Ci	< LLD							
La-140	Ci	< LLD							
Mn-54	Ci	< LLD							
Mo-99	Ci	< LLD							
Nb-95	Ci	< LLD	4.97E-06	< LLD	< LLD	4.97E-06			
Os-191	Ci	< LLD	5.03E-06	< LLD	< LLD	5.03E-06			
Rb-88	Ci	< LLD							
Ru-103	Ci	< LLD							
Ru-106	Ci	< LLD							
Sb-122	Ci	< LLD							
Sb-124	Ci	< LLD							
Sb-125	Ci	< LLD							
Se-75	Ci	< LLD							
Sn-113m	Ci	< LLD							
Sr-89	Ci	< LLD							
Sr-90	Ci	< LLD	< LLD	1.95E-08	< LLD	1.95E-08			
Tc-99m	Ci	< LLD							
Te-123m	Ci	< LLD							
Zn-65	Ci	< LLD							
Zr-95	Ci	< LLD	3.27E-06	< LLD	< LLD	3.27E-06			
Total	Ci	5.48E-07	8.47E-05	1.54E-06	< LLD	8.68E-05			
4. Tritium									
H-3	Ci	1.04E+01	2.76E+01	2.30E+01	1.57E+01	7.66E+01			

Table 23: Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and Iodines								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
1. Fission gases				•	•	· · · · · · · · · · · · · · · · · · ·		
Ar-41	Ci	2.67E-01	6.72E-01	6.54E-02	5.72E-02	1.06E+00		
Kr-83m	Ci	< LLD						
Kr-85	Ci	< LLD						
Kr-85m	Ci	< LLD	1.22E-01	< LLD	< LLD	1.22E-01		
Kr-87	Ci	< LLD	< LLD	< LLD	、< LLD	< LLD		
Kr-88	Ci	< LLD						
Kr-89	Ci	< LLD						
Kr-90	Ci	< LLD						
Xe-131m	Ci	< LLD	1.08E-03	< LLD	< LLD	1.08E-03		
Xe-133	Ci	1.11E-06	1.64E+01	< LLD	< LLD	1.64E+01		
Xe-133m	Ci	< LLD	6.33E-04	< LLD	< LLD	6.33E-04		
Xe-135	Ci	5.70E-08	5.87E+00	< LLD	< LLD	5.87E+00		
Xe-135m	Ci	< LLD						
Xe-137	Ci	< LLD						
Xe-138	Ci	< LLD						
Total	Ci	2.67E-01	2.31E+01	6.54E-02	5.72E-02	2.34E+01		
2. lodines								
I-131	Ci	< LLD	1.29E-05	< LLD	< LLD	1.29E-05		
I-132	Ci	< LLD	2.51E-05	< LLD	< LLD	2.51E-05		
I-133	Ci	< LLD						
I-134	Ci	< LLD						
I-135	Ci	< LLD						
Total	Ci	< LLD	3.79E-05	< LLD	< LLD	3.79E-05		

Table 24: Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Particulates								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
3. Particulates								
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Br-82	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-58	Ci	< LLD	2.23E-05	< LLD	< LLD	2.23E-05		
Co-60	Ci	< LLD	4.49E-07	< LLD	< LLD	4.49E-07		
Cr-51	Ci	< LLD	3.40E-07	< LLD	< LLD	3.40E-07		
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-137	Ci	< LLD	1.13E-06	< LLD	< LLD	1.13E-06		
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Mn-54	Ci	< LLD	3.10E-08	< LLD	< LLD	3.10E-08		
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Nb-95	Ci	< LLD	2.06E-06	< LLD	< LLD	2.06E-06		
Os-191	Ci	< LLD .	< LLD	< LLD	< LLD	< LLD		
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-106	Ci	< LLD	< LLD ,	< LLD	< LLD	< LLD		
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	Note 1		
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	Note 1		
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zr-95	Ci	< LLD	3.93E-07	< LLD	< LLD	3.93E-07		
Total	Ci	< LLD	2.67E-05	< LLD	< LLD	2.67E-05		
4. Tritium								
H-3	Ci	1.46E+02	3.12E+02	1.21E-02	1.56E-02	4.58E+02		
Note 1 - Not required	d for bate	ch releases						

Table 25: Unit 3 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases	1. Fission gases								
Ar-41	Ci	2.67E-01	6.72E-01	6.54E-02	5.72E-02	1.06E+00			
Kr-83m	Ci	< LLD							
Kr-85	Ci	< LLD							
Kr-85m	Ci	< LLD	1.22E-01	< LLD	< LLD	1.22E-01			
Kr-87	Ci	< LLD							
Kr-88	Ci	< LLD							
Kr-89	Ci	< LLD							
Kr-90	Ci	< LLD							
Xe-131m	Ci	< LLD	1.08E-03	< LLD	< LLD	1.08E-03			
Xe-133	Ci	1.11E-06	1.64E+01	< LLD	< LLD	1.64E+01			
Xe-133m	Ci	< LLD	6.33E-04	< LLD	< LLD	6.33E-04			
Xe-135	Ci	5.70E-08	5.87E+00	< LLD	< LLD	5.87E+00			
Xe-135m	Ci	< LLD							
Xe-137	Ci	< LLD							
Xe-138	Ci	< LLD							
Total	Ci	2.67E-01	2.31E+01	6.54E-02	5.72E-02	2.34E+01			
2. lodines									
I-131	Ci	2.46E-06	2.70E-05	< LLD	< LLD	2.95E-05			
I-132	Ci	< LLD	2.51E-05	< LLD	< LLD	2.51E-05			
I-133	Ci	5.29E-06	< LLD	< LLD	< LLD	5.29E-06			
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD .			
I-135	Ci	< LLD							
Total	Ci	7.75E-06	5.21E-05	< LLD	< LLD	5.98E-05			

Table 26:							
			Unit 3				
Gaseous Effluents - Continuous and Batch - Particulates							
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total	
3. Particulates	•						
Ag-110m	Ci	< LLD					
Ba-140	Ci	< LLD	< LLD ·	< LLD	< LLD	< LLD	
Br-82	Ci	< LLD					
Ce-141	Ci	< LLD	< LLD	3.49E-07	< LLD	3.49E-07	
Ce-144	Ci	< LLD					
Co-57	Ci	< LLD					
Co-58	Ci	5.48E-07	8.11E-05	1.17E-06	< LLD	8.28E-05	
Co-60	Ci	< LLD	6.95E-06	< LLD	< LLD	6.95E-06	
Cr-51	Ci	< LLD	6.44E-06	< LLD	< LLD	6.44E-06	
Cs-134	Ci	< LLD					
Cs-136	Ci	< LLD					
Cs-137	Ci	< LLD	1.13E-06	< LLD	< LLD	1.13E-06	
Cs-138	Ci	< LLD					
Fe-59	Ci	< LLD					
La-140	Ci	< LLD					
Mn-54	Ci	< LLD	3.10E-08	< LLD	< LLD	3.10E-08	
Mo-99	Ci	< LLD					
Nb-95	Ci	< LLD	7.03E-06	< LLD	< LLD	7.03E-06	
Os-191	Ci	< LLD'	5.03E-06	< LLD	< LLD	5.03E-06	
Rb-88	Ci	< LLD					
Ru-103	Ci	< LLD					
Ru-106	Ci	< LLD					
Sb-122	Ci	< LLD					
Sb-124	Ci	< LLD					
Sb-125	Ci	< LLD					
Se-75	Ci	< LLD					
Sn-113m	Ci	< LLD					
Sr-89	Ci	< LLD					
Sr-90	Ci	< LLD	< LLD	1.95E-08	< LLD	1.95E-08	
Tc-99m	Ci	< LLD					
Te-123m	Ci	< LLD					
Zn-65	Ci	< LLD					
Zr-95	Ci	< LLD	3.67E-06	< LLD	< LLD	3.67E-06	
Total	Ci	5.48E-07	1.11E-04	1.54E-06	< LLD	1.13E-04	
Total > 8 days	Ci	5.48E-07	1.11E-04	1.54E-06	< LLD	1.13E-04	
4. Tritium							
H-3	Ci	1.57E+02	3.39E+02	2.30E+01	1.57E+01	5.35E+02	

Table 27: Unit 3 Radiation Doses At And Beyond The Site Boundary								
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
Gamma Air Dose	mrad	7.02E-04	6.63E-03	1.72E-04	1.50E-04	7.65E-03		
ODCM Req 4.1 Limit	mrad	5.00E+00	5.00E+00	5.00E+00	5.00E+00	1.00E+01		
% ODCM Limit	%	1.40E-02	1.33E-01	3.44E-03	3.00E-03	7.65E-02		
Beta Air Dose	mrad	2.48E-04	9.63E-03	6.06E-05	5.30E-05	9.99E-03		
ODCM Req 4.1 Limit	mrad	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01		
% ODCM Limit	%	2.48E-03	9.63E-02	6.06E-04	5.30E-04	5.00E-02		
Maximum Organ Dose (excluding skin)	mrem	5.63E-02	1.22E-01	8.25E-03	5.64E-03	1.92E-01		
Age		Teen	Teen	Teen	Teen	Teen		
Organ		Thyroid	Thyroid	Lung	(1)	Thyroid		
ODCM Req. 4.2 Limit	mrem	7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01		
% ODCM Limit	%	7.51E-01	1.63E+00	1.10E-01	7.52E-02	1.28E+00		

Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Note 1 - All organs except Bone

Table 28: Units 1, 2, and 3 Gaseous Effluents - Continuous - Fission Gases and Iodines Total By Quarter

Total By Quarter								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
1. Fission gases								
Ar-41	Ci	3.22E+00	4.73E+00	< LLD	7.34E-01	8.69E+00		
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-133	Ci	< LLD	2.18E-01	< LLD	< LLD	2.18E-01		
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-135	Ci	2.30E-01	4.93E-01	< LLD	< LLD	7.23E-01		
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD .		
Total	Ci	3.45E+00	5.44E+00	< LLD	7.34E-01	9.63E+00		
2. lodines								
I-131	Ci	2.46E-06	1.41E-05	< LLD	1.89E-05	3.55E-05		
I-132	Ci	< LLD	< LLD	< LLD	4.85E-05	4.85E-05		
I-133	Ci	5.29E-06	< LLD	< LLD	< LLD	5.29E-06		
I-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
I-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Total	Ci	7.75E-06	1.41E-05	< LLD	6.74E-05	8.93E-05		

Table 29: Units 1, 2, and 3 Gaseous Effluents - Continuous - Particulates -Total By Quarter

Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total
	l Olik	Quality 1	Guarter 2	Quarter 0	Gaditor 4	Tour total
3. Particulates	,	T	,	·		·
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Br-82	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ce-141	Ci	< LLD	< LLD	3.49E-07	< LLD	3.49E-07
Ce-144	Çi	< LLD	< LLD	< LLD	< LLD	< LLD
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Co-58	Ci	5.48E-07	·5.88E-05	1.17E-06	5.71E-05	1.18E-04
Co-60	Ci	< LLD	6.50E-06	< LLD	2.23E-06	8.73E-06
Cr-51	Ci	< LLD	6.10E-06	< LLD	5.32E-06	1.14E-05
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Nb-95	Ci	< LLD	4.97E-06	< LLD	< LLD ·	4.97E-06
Os-191	Ci	< LLD	5.03E-06	< LLD	4.42E-06	9.45E-06
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sr-89	Ci	< LLD	< LLD	7.90E-08	< LLD	7.90E-08
Sr-90	Ci	< LLD	< LLD	4.08E-08	< LLD	4.08E-08
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Zr-95	Ci	< LLD	3.27E-06	< LLD	< LLD	3.27E-06
Total	Ci	5.48E-07	8.47E-05	1.64E-06	6.90E-05	1.56E-04
4. Tritium	<u> </u>					
H-3	Ci	5.24E+01	6.05E+01	7.25E+01	6.17E+01	2.47E+02
^ 		- 1				

Table 30: Units 1, 2, and 3 Gaseous Effluents - Batch - Fission Gases and Iodines -Total By Quarter

Total By Quarter									
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total			
1. Fission gases	1. Fission gases								
Ar-41	Ci	4.35E-01	8.43E-01	2.74E-01	7.17E-01	2.27E+00			
Kr-83m	Ci	< LLD							
Kr-85	Ci	< LLD	4.77E-02	7.64E-03	1.13E-01	1.69E-01			
Kr-85m	Ci	< LLD	1.22E-01	< LLD	< LLD	1.22E-01			
Kr-87	Ci	< LLD							
Kr-88	Ci	< LLD							
Kr-89	Ci	< LLD	< LLD	< LLD	< LĻD	< LLD			
Kr-90	Ci	< LLD							
Xe-131m	Ci	< LLD	1.08E-03	< LLD	1.89E-03	2.97E-03			
Xe-133	Ci	2.38E-03	1.64E+01	3.37E-03	5.98E-01	1.70E+01			
Xe-133m	Ci	< LLD	6.33E-04	< LLD	1.56E-03	2.19E-03			
Xe-135	Ci	5.70E-08	5.87E+00	< LLD	< LLD	5.87E+00			
Xe-135m	Ci	< LLD							
Xe-137	Ci	< LLD							
Xe-138	Ci	< LLD							
Total	Ci	4.37E-01	2.33E+01	2.85E-01	1.43E+00	2.54E+01			
2. lodines									
1-131	Ci	< LLD	1.29E-05	< LLD	2.12E-06	1.50E-05			
I-132	Ci	< LLD	2.51E-05	< LLD	8.20E-06	3.33E-05			
I-133	Ci	< LLD							
I-134	Ci	< LLD							
I-135	·Ci	< LLD							
Total	Ci -	< LLD	3.79E-05	< LLD	1.03E-05	4.83E-05			

Table 31: Units 1, 2, and 3 Gaseous Effluents - Batch - Particulates -Total By Quarter

lotal By Quarter								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
3. Particulates								
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Br-82	Ci	< LLD	< LLD	3.19E-07	1.55E-05	1.58E-05		
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Co-58	Ci	< LLD	2.23E-05	< LLD	9.25E-06	3.15E-05		
Co-60	Ci	< LLD	4.49E-07	< LLD	1.63E-06	2.08E-06		
Cr-51	Ci	< LLD	3.40E-07	< LLD	< LLD	3.40E-07		
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD .		
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Cs-137	Ci	< LLD	1.13E-06	< LLD	< LLD	1.13E-06		
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Mn-54	Ci	< LLD	3.10E-08	< LLD	2.91E-07	3.22E-07		
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Nb-95	Ci	< LLD	2.06E-06	< LLD	< LLD	2.06E-06		
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	Note 1		
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	Note 1		
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD		
Zr-95	Ci	< LLD	3.93E-07	< LLD	< LLD	3.93E-07		
Total	Ci	< LLD	2.67E-05	3.19E-07	2.66E-05	5.37E-05		
4. Tritium				,				
H-3	Ci	2.57E+02	4.23E+02	4.33E+02	2.29E+02	1.34E+03		
Note 1 - Not required	d for bat	ch releases						

Table 32: Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Fission Gases and Iodines Total By Quarter

Total By Quarter								
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
1. Fission gases								
Ar-41	Ci	3.66E+00	5.57E+00	2.74E-01	1.45E+00	1.10E+01		
Kr-83m	Ci	< LLD						
Kr-85	Ci	< LLD	4.77E-02	7.64E-03	1.13E-01	1.69E-01		
Kr-85m	Ci	< LLD	1.22E-01	< LLD	< LLD	1.22E-01		
Kr-87	Ci	< LLD						
Kr-88	Ci	< LLD						
Kr-89	Ci	< LLD						
Kr-90	Ci	< LLD						
Xe-131m	Ci	< LLD	1.08E-03	< LLD	1.89E-03	2.97E-03		
Xe-133	Ci	2.38E-03	1.66E+01	3.37E-03	5.98E-01	1.72E+01		
Xe-133m	Ci	< LLD	6.33E-04	< LLD	1.56E-03	2.19E-03		
Xe-135	Ci	2.30E-01	6.37E+00	< LLD	< LLD	6.60E+00		
Xe-135m	Ci	< LLD						
Xe-137	Ci	< LLD						
Xe-138	Ci	< LLD						
Total	Ci	3.89E+00	2.87E+01	2.85E-01	2.17E+00	3.51E+01		
2. lodines								
I-131	Ci	2.46E-06	2.70E-05	< LLD	2.10E-05	5.05E-05		
I-132	Ci	< LLD	2.51E-05	< LLD	5.67E-05	8.18E-05		
I-133	Ci	5.29E-06	< LLD	< LLD	< LLD	5.29E-06		
I-134	Ci	< LLD						
I-135	Ci	< LLD						
Total	Ci	7.75E-06	5.21E-05	< LLD	7.77E-05	1.38E-04		

Table 33: Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Particulates Total By Quarter

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Total By Quart	er	· · · · · · · · · · · · · · · · · · ·	γ
Nuclides Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total
3. Particulates						
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Br-82	Ci	< LLD	< LLD	3.19E-07	1.55E-05	1.58E-05
Ce-141	Ci	< LLD	< LLD	3.49E-07	< LLD	3.49E-07
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Co-57	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Co-58	Ci	5.48E-07	8.11E-05	1.17E-06	6.63E-05	1.49E-04
Co-60	Ci	< LLD	6.95E-06	< LLD	3.86E-06	1.08E-05
Cr-51	Ci	< LLD	6.44E-06	< LLD	5.32E-06	1.18E-05
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Cs-137	Ci	< LLD	1.13E-06	< LLD	< LLD	1.13E-06
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
La-140	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Mn-54	Ci	< LLD	3.10E-08	< LLD	2.91E-07	3.22E-07
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Nb-95	Ci	< LLD	7.03E-06	< LLD	< LLD	7.03E-06
Os-191	Ci	< LLD	5.03E-06	< LLD	4.42E-06	9.45E-06
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sb-124	Ci	<'LLD	< LLD	< LLD	< LLD	< LLD
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Sr-89	Ci	< LLD	< LLD	7.90E-08	< LLD	7.90E-08
Sr-90	Ci	< LLD	< LLD	4.08E-08	< LLD	4.08E-08
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	< LLD
Zr-95	Ci	< LLD	3.67E-06	< LLD	< LLD	3.67E-06
Total	Ci	5.48E-07	1.11E-04	1.96E-06	9.57E-05	2.10E-04
Total > 8 days	Ci	5.48E-07	1.11E-04	1.64E-06	8.02E-05	1.94E-04
4. Tritium					,	•
H-3	Ci	3.09E+02	4.83E+02	5.05E+02	2.91E+02	1.59E+03

Table 34: Units 1, 2 and 3 Gaseous Effluents- Continuous - Fission Gases and Iodine Total By Unit

Total By Unit								
Nuclides Released	Unit	Unit 1	Unit 2	Unit 3	Total Units 1, 2 and 3			
1. Fission gases	1. Fission gases							
Ar-41	Ci	8.69E+00	< LLD	< LLD	8.69E+00			
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD			
Kr-85	Ci	< LLD	< LLD	< LLD	< LLD			
Kr-85m	Ci	< LLD	< LLD	< LLD	< LLD			
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD			
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD			
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD			
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD			
Xe-131m	Ci	< LLD	< LLD	< LLD	< LLD			
Xe-133	Ci	2.18E-01	< LLD	< LLD	2.18E-01			
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD			
Xe-135	Ci	7.23E-01	< LLD	< LLD	7.23E-01			
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD			
Xe-137	Ci	< LLD	< LLD	< LLD	< LLD			
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD			
Total	Ci	9.63E+00	< LLD	< LLD	9.63E+00			
2. lodines								
I-131	Ci	< LLD	1.89E-05	1.66E-05	3.55E-05			
1-132	Ci	< LLD	4.85E-05	< LLD	4.85E-05			
I-133	Ci	< LLD	< LLD	5.29E-06	5.29E-06			
I-134	Ci	< LLD	< LLD	< LLD	< LLD			
I-135	Ci	< LLD	< LLD	< LLD	< LLD			
Total	Ci	< LLD	6.74E-05	2.19E-05	8.93E-05			

Table 35: Units 1, 2 and 3 Gaseous Effluents- Continuous - Particulates -					
	Saseous		ntinuous - Parl By Unit	ticulates -	
Nuclides Released	Unit	Unit 1	Unit 2	Unit 3	Total Units 1, 2 and 3
3. Particulates		 			
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD
Br-82	Ci	< LLD	< LLD	< LLD	< LLD
Ce-141	Ci	< LLD	< LLD	3.49E-07	3.49E-07
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD
Co-57	Ci	< LLD	< LLD	< LLD	< LLD
Co-58	Ci	< LLD	5.71E-05	6.05E-05	1.18E-04
Co-60	Ci	< LLD	2.23E-06	6.50E-06	8.73E-06
Cr-51	Ci	< LLD	5.32E-06	6.10E-06	1.14E-05
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD
La-140	Ci	< LLD	< LLD	< LLD	< LLD
Mn-54	Ci	< LLD	< LLD	< LLD	< LLD
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD
Nb-95	Ci	< LLD	< LLD	4.97E-06	4.97E-06
Os-191	Ci	< LLD	4.42E-06	5.03E-06	9.45E-06
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD
Se-75	Ci	< LLD	< LLD	< LLD	< LLD
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD
Sr-89	Ci	7.90E-08	< LLD	< LLD	7.90E-08
Sr-90	Ci	2.13E-08	< LLD	1.95E-08	4.08E-08
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD ·
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD
Zr-95	Ci	< LLD	< LLD	3.27E-06	3.27E-06
Total	Ci	1.00E-07	6.90E-05	8.68E-05	1.56E-04
4. Tritium					
H-3	Ci	5.91E+01	1.11E+02	7.66E+01	2.47E+02

Table 36: Units 1, 2 and 3 Gaseous Effluents- Batch - Fission Gases and Iodine -**Total By Unit** Total Units Unit 3 **Nuclides Released** Unit Unit 1 Unit 2 1, 2 and 3 1. Fission gases 1.06E+00 2.27E+00 Ar-41 · Ci 2.93E-01 9.15E-01 Kr-83m Ci < LLD < LLD < LLD < LLD Kr-85 Ci < LLD 1.69E-01 < LLD 1.69E-01 Kr-85m Ci < LLD < LLD 1.22E-01 1.22E-01 Kr-87 Ci < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD Ci < LLD Kr-89 < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD 1.89E-03 1.08E-03 2.97E-03 Xe-131m Ci 1.70E+01 Xe-133 Ci 3.68E-04 6.07E-01 1.64E+01 Ci Xe-133m < LLD 1.56E-03 6.33E-04 2.19E-03 Ci Xe-135 < LLD < LLD 5.87E+00 5.87E+00 Xe-135m Ci < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD Total Ci 2.94E-01 1.69E+00 2.34E+01 2.54E+01 2. lodines I-131 Ci < LLD 2.12E-06 1.29E-05 1.50E-05 I-132 Ci 8.20E-06 2.51E-05 3.33E-05 < LLD I-133 Ci < LLD < LLD < LLD < LLD I-134 Ci < LLD < LLD < LLD < LLD I-135 Ci < LLD < LLD < LLD < LLD < LLD 1.03E-05 3.79E-05 4.83E-05 Total Ci

Table 37: Units 1, 2 and 3 Gaseous Effluents- Batch - Particulates -Total By Unit

Total By Unit						
Nuclides Released	. Unit	Unit 1	Unit 2	Unit 3	Total Units 1,2 and 3	
3. Particulates						
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD	
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD	
Br-82	Ci	3.19E-07	1.55E-05	< LLD	1.58E-05	
Ce-141	Ci	< LLD	< LLD	< LLD	< LLD	
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD	
Co-57	Ci	< LLD	< LLD ,	< LLD	< LLD	
Co-58	Ci	< LLD	9.25E-06	2.23E-05	3.15E-05	
Co-60	Ci	< LLD	1.63E-06	4.49E-07	2.08E-06	
Cr-51	Ci	< LLD	< LLD	3.40E-07	3.40E-07	
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	
Cs-137	Ci	< LLD	< LLD	1.13E-06	1.13E-06	
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD	
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD	
La-140	Ci	< LLD	< LLD	< LLD	< LLD	
Mn-54	Ci	< LLD	2.91E-07	3.10E-08	3.22E-07	
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD	
Nb-95	Ci	< LLD	< LLD	2.06E-06	2.06E-06	
Os-191	Ci	< LLD	< LLD	< LLD	< LLD	
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD	
Ru-103	Ci	< LLD	< LLD ,	< LLD	< LLD	
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD	
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	
Se-75	Ci	< LLD	< LLD	< LLD	< LLD	
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD	
Sr-89	Ci	Note 1	Note 1	Note 1	Note 1	
Sr-90	Ci	Note 1	Note 1	Note 1	Note 1	
Tc-99m	Ci	< LLD	< LLD	< LLD	<'LLD	
Te-123m ^C	Ci	< LLD	< LLD	< LLD	< LLD _	
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD	
Zr-95	Ci	< LLD	< LLD	3.93E-07	3.93E-07	
Total	Ci	3.19E-07	2.66E-05	2.67E-05	5.37E-05	
4. Tritium						
H-3	Ci	2.51E+02	6.32E+02	4.58E+02	1.34E+03	
Note 1 - Not required	for batc	h releases				

Table 38: Units 1, 2 and 3 Gaseous Effluents- Continuous and Batch - Fission Gases and Iodine - Total By Unit						
Nuclides Released	Unit	Unit 1	Unit 2	Unit 3	Total Units 1, 2 and 3	
1. Fission gases	· · · · · · · · · · · · · · · · · · ·					
Ar-41	Ci	8.98E+00	9.15E-01	1.06E+00	1.10E+01	
Kr-83m	Ci	< LLD	< LLD	< LLD	< LLD	
Kr-85	Ci	< LLD	1.69E-01	< LLD	1.69E-01	
Kr-85m	Ci	< LLD	< LLD	1.22E-01	1.22E-01	
Kr-87	Ci	< LLD	< LLD	< LLD	< LLD	
Kr-88	Ci	< LLD	< LLD	< LLD	< LLD	
Kr-89	Ci	< LLD	< LLD	< LLD	< LLD	
Kr-90	Ci	< LLD	< LLD	< LLD	< LLD	
Xe-131m	Ci	< LLD	1.89E-03	1.08E-03	2.97E-03	
Xe-133	Ci	2.18E-01	6.07E-01	1.64E+01	1.72E+01	
Xe-133m	Ci	< LLD	1.56E-03	6.33E-04	2.19E-03	
Xe-135	Ci	7.23E-01	< LLD	5.87E+00	6.60E+00	
Xe-135m	Ci	< LLD	< LLD	< LLD	< LLD ·	
Xe-137	Ci	< LLD	< LLD	< LLD	<.LLD	
Xe-138	Ci	< LLD	< LLD	< LLD	< LLD	
Total	Ci	9.92E+00	1.69E+00	2.34E+01	3.51E+01	
2. lodines						
I-131	Ci	< LLD	2.10E-05	2.95E-05	5.05E-05	
I-132	Ci	< LLD	5.67E-05	2.51E-05	8.18E-05	
I-133	Ci	< LLD	< LLD	5.29E-06	5.29E-06	
I-134	Ci	< LLD	< LLD	< LLD	< LLD	
I-135	Ci	< LLD	< LLD	< LLD	< LLD	
Total	Ci	< LLD	7.77E-05	5.98E-05	1.38E-04	

Table 39: Units 1, 2 and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Unit					
Nuclides Released	Unit	Unit 1	Unit 2	Unit 3	Total Units 1, 2 and 3
3. Particulates					
Ag-110m	Ci	< LLD	< LLD	< LLD	< LLD
Ba-140	Ci	< LLD	< LLD	< LLD	< LLD
Br-82	Ci	3.19E-07	1.55E-05	< LLD	1.58E-05
Ce-141	Ci	< LLD	< LLD	3.49E-07	3.49E-07
Ce-144	Ci	< LLD	< LLD	< LLD	< LLD
Co-57	Ci	< LLD	< LLD	< LLD	< LLD
Co-58	Ci	< LLD	6.63E-05	8.28E-05	1.49E-04
Co-60	Ci	< LLD	3.86E-06	6.95E-06	1.08E-05
Cr-51	Ci	< LLD	5.32E-06	6.44E-06	1.18E-05
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD
Cs-137	Ci	< LLD	< LLD	1.13E-06	1.13E-06
Cs-138	Ci	< LLD	< LLD	< LLD	< LLD
Fe-59	Ci	< LLD	< LLD	< LLD	< LLD
La-140	Ci	< LLD	< LLD	< LLD	< LLD
Mn-54	Ci	< LLD	2.91E-07	3.10E-08	3.22E-07
Mo-99	Ci	< LLD	< LLD	< LLD	< LLD
Nb-95	Ci	< LLD	< LLD	7.03E-06	7.03E-06
Os-191	Ci	< LLD	4.42E-06	5.03E-06	9.45E-06
Rb-88	Ci	< LLD	< LLD	< LLD	< LLD
Ru-103	Ci	< LLD	< LLD	< LLD	< LLD
Ru-106	Ci	< LLD	< LLD	< LLD	< LLD
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD
Se-75	Ci	< LLD	< LLD	< LLD	< LLD
Sn-113m	Ci	< LLD	< LLD	< LLD	< LLD
Sr-89	Ci	7.90E-08	< LLD	< LLD	7.90E-08
Sr-90	Ci	2.13E-08	< LLD	1.95E-08	4.08E-08
Tc-99m	Ci	< LLD	< LLD	< LLD	< LLD
Te-123m	Ci	< LLD	< LLD	< LLD	< LLD
Zn-65	Ci	< LLD	< LLD	< LLD	< LLD
² Zr-95	Ci	< LLD	< LLD	3.67E-06	3.67E-06
Total	Ci	4.20E-07	9.57E-05	1.13E-04	2.10E-04
Total > 8 days	Ci	1.00E-07	8.02E-05	1.13E-04	1.94E-04
4. Tritium					
H-3	Ci	3.11E+02	7.43E+02	5.35E+02	1.59E+03

53

Table 40: Estimation of Total Percent Error

The estimated total error is calculated as follows:

Total Percent Error =
$$(E_1^2 + E_2^2 + E_3^2 + ... + E_n^2)^{1/2}$$

Where E_n = Percent error associated with each contributing parameter.

Parameters contributing to errors in the measurement of gaseous effluents; process flow rates, sample collection, analytical counting and tank volumes.

The following values (%) were used for error calculations.

Fission & Act gases	I-131	Particulates	Tritium		
25	25	25	25	Sample counting error	
10	10	10	10	Counting system calibration error	
5	5	5	5	Counting system source error	
20	N/A	N/A	N/A	Temperature/volume correction error	
10	10	10	10	Process flow measuring device (1)	
N/A	15	15	15	Sample flow measuring device	
N/A	5	N/A	.N/A	lodine collection efficiency error	
N/A	N/A	10	N/A	Plateout error	
N/A	N/A	N/A	20	Bubbler collection efficiency error	
N/A	N/A	N/A	2	Sample volume transfer error (pipette)	
N/A	N/A	N/A	2	Sample volume error (graduate)	
Note 1 - % of full scale					

Table 41: Effluent Monitoring Instrumentation Out Of Service Greater Than 30 Days						
Unit	Instrument	Date span of inoperability	Cause of inoperability	Explanation		
			>-	•		
			NONE			
				·		

Table 42: Solid Waste Summary

A. Solid Waste Shipped Offsite For Burial Or Disposal (not irradiated fuel)

1.0 Type of Waste	Unit	Jan-Dec	estimated total error %
1.a. Spent resin, filters, sludges, evaporator		0.00E+00	N/A
bottoms, etc.	Ci	0.00E+00	2.50E+01
1.b. Dry compressible waste, contaminated	m ³	7.63E+02	N/A
equipment, etc.	Ci	2.22E-01	2.50E+01
1.c. Irradiated components, control rods, etc.	m ³	0.00E+00	N/A
1	Ci	0.00E+00	2.50E+01
1.d. Other	m ³	0.00E+00	N/A
	Ci	0.00E+00	2.50E+01

2.0 Principal Radionuclides

2.a Estimate of major nuclide concentrations for spent resins, filters, sludges, evaporator bottoms, etc. NONE.

2.b Estimate of major nuclide concentrations for dry compressible waste, contaminated equipment, etc.							
Waste Class	Nuclide Name	Percent / Abundance	Curies				
Α.	Fe-55	5.33E+01	1.18E-01				
Α	Co-58	3.07E+01	6.81E-02				
Α	Co-60	4.49E+00	9.95E-03				
A	Ni-63	2.45E+00	5.44E-03				
Α	Cr-51	2.40E+00	5.33E-03				
Α	Zr-95	1.47E+00	3.25E-03				
Α	Nb-95	1.46E+00	3.24E-03				
Α	Fe-59	1.46E+00	3.23E-03				
Α	Mn-54	7.01E-01	1.56E-03				
Α	H-3	5.32E-01	1.18E-03				
A	C-14	3.61E-01	8.00E-04				
Α	Sb-125	1.64E-01 ′	3.64E-04				
A	Co-57	1.49E-01	3.30E-04				
Α	Sn-113	1.09E-01	2.42E-04				
A	Sb-124	5.11E-02	1.13E-04				
Α	Ni-59	4.24E-02	9.40E-05				
Α	Ag-110m	3.22E-02	7.15E-05				
Α	Ce-144	2.33E-02	5.18E-05				
Α	Pu-241	1.71E-02	3.79E-05				
Α	Te-123m	1.18E-02	2.62E-05				
Α	Ru-103	1.05E-02	2.33E-05				
Α	Hf-181	4.30E-03	9.55E-06				
Α	Cs-137	4.00E-03	8.87E-06				
Α	Am-241	2.70E-03	5.98E-06				
Α	Ce-141	2.36E-03	5.23E-06				
Α	Pu-239	2.35E-03	5.21E-06				
Α	Cs-134	2.04E-03	4.52E-06				
Α	Sr-89	1.17E-03	2.60E-06				
Α	Sr-90	1.02E-03	2.27E-06				
Α	Zn-65	7.31E-04	1.62E-06				
	Total 2.22E-01						

2.c Estimate of major nuclide concentrations for irradiated components, control rods, etc.

None

2.d Other - None

3.0 Solid Waste Disposition

3.a

Shipments	Mode Of Transportation	Destination
19	Truck	EnergySolutions, UT (Bulk)

3.b Irradiated Fuel Shipments: None

3.c Supplemental Information:

Number of Containers	Container Volume ft ³	Type of Waste	Container Type	Solidification Agent
1	161.6	Dry Active Waste	45 Mil Wrap	None `
3	1031.3	Dry Active Waste	20' Intermodal	None
28	1360	Dry Active Waste	20' Sealand	None

APPENDIX B
METEOROLOGY

JOINT FREQUENCY DISTRIBUTION TABLES

The tables presented in this section are results obtained from processing the hourly meteorological data collected at the Palo Verde Nuclear Generating Station for the period of January - December 2009. The joint frequency distribution (JFD) tables represent the frequency, in terms of the number of observations, that a particular wind speed, wind direction, and stability category occurred simultaneously. On a quarterly, semiannual and annual basis, the JFDs were produced for 35-foot wind speed and wind direction by atmospheric stability class corresponding to the seven Pasquill stability categories, and for wind speed and wind direction for all stability classes combined. Atmospheric stability was classified per Regulatory Guide 1.23, using the 200-foot to 35-foot temperature difference (delta T).

In accordance with NUREG-0133, the batch releases for the year were considered as "long term," since the batch releases are sufficiently random in both time of day and duration. Consequently, the JFDs for the batch releases for all quarters are the same as for the continuous releases.

Discussion

A summary of 2009 Joint Frequency Distribution (JFD) shows a somewhat typical, but variable year. Of the 8760 hours available, only 5 hours of data were lost for an effective 100% data recovery.

The average 35 foot wind speed was 6.6 mph. Distribution of directions was spread over the compass with a predominant direction (3 sectors of 22.5 degrees each) centered on southwest. (34.7%) A secondary maximum of three sectors centered on the north contained 26.4% of the total. Southwesterly flow winds averaged higher speeds with the most frequent speed at 7.5 mph. With the northerly directions, the highest frequency occurred at 4.0 mph.

Stability class summary:

Stability class E, F, G, (stable categories) 58.1%. Stability class G, (extremely stable) 25.5%. Stability class A, B, C, (unstable categories) 24.8%. Stability class D, (neutral category) 17.1%.

Overall stable conditions (E,F,G) existed for the year.

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 3/31/2009

STABILITY CLASS A

STABILITY CLASS A
STABILITY BASED ON: DELTA T
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET
SPEED

SPEED																	
(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM										1			·				0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
1.51- 2.50	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	Ô	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.51- 5.50	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
5.51- 6.50	0	0	0	0	0	0	0	0	0	0	0	1	0	, 0	0	0	1
6.51- 8.50	0	0	1	0	0	. 0	0	2	0	3	4	2	2	0	0	0	14
8.51-11.50	0	3	0	0	0	1	0	0	0	4	4	3	3	2	0	0	20
11.51-14.50	0	0	0	0	0	0	0	0	0	3	6	4	4	5	0	1	23
14.51-20.50	0	0	0	0	0	0	0	0	0	4	7	1 .	1	4	0	1	18
>20.50	0	0	0	0	0	0	0	0	0	1	3	1	0	1	0	0	. 6
TOTAL		3	1	0	0	1	0	2	0	15	24	12	10	13	0	2	83

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
4.51- 5.50	1	0	0	1	0	0	0	0	1	4	2	0	4	0	0	0	13
5.51- 6.50	1	3	4	0	0	1	0	0	4	3	2	3	0	0	0	0	21
6.51- 8.50	0	3	5	4	2	5	0	1	3	5	0	3 .	1	1	1	0	34
8.51-11.50	1	0	1	0	0	0	0	0	0	4	5	1	2	2	1	0	17
11.51-14.50	0	0	0	0	0	0	0	0	2	0	5	2	2	1	0	0	12
14.51-20.50	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
>20.50	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	3	6	10		2	6	0	1	10	17	14	9 —	9	4	2	0	98

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	wsw	W	WNW	NW	NNW	TOTAL
CALM														•			
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	2	0	0	1	0	0	0	0	2	0	0	0	0	0	5
4.51- 5.50	0	3	0	0	0	1	0	2	0	9	4	2	0	0	0	0	21
5.51- 6.50	1	5	4	0	0	0	0	1	5	6	6	8	0	0	.0	0	36
6.51- 8.50	1	4	9	3	2	1.	2	2	6	1	9	2	1	0	0	0	43
8.51-11.50	0	0	2	4	2	1	0	0	1	2	4	1	1	2	2	1	23
11.51-14.50	1	0	0	0	0	0	0	0	1	1	2	0	1	2	0	1	9
14.51-20.50	0	0	0	0	1	0	0	0	0	0	2	0	0	0	0	1	4
>20.50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	2
TOTAL	3	12	17	7 -	5	4		5	13	19	29	14		4	3	3	143

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 3/31/2009

*** 1ST QRTR ***

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED															,		
(MPH)	N	NNE	NE	ENE	Ē	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	2	2	3	1	1	0	3	2	2	4	3	4	1	0	1	29
2.51- 3.50	1	1	5	3	0	6	1	2	7	11	15	9	5	2	5	7	80
3.51- 4.50	4	3	5	0	3	0	4	2	13	17	13	7	4	3	4	5	87
4.51- 5.50	6	3	6	3	0	1	0	1	7	11	9	0	3	2	4	2	58
5.51- 6.50	1	1	4	3	1	0	1	0	4	6	2	6	0	1	3	1	34
6.51- 8.50	2	4	9	5	3	4	5	0	8	3	5	4	1	1	0	1	55
8.51-11.50	0	0	0	. 5	5	2	3	1	1	1	4	1	1	4	3	0	31
11.51-14.50	0	0	0	9	13	0	0	0	1	3	5	1	1	1	1	0	35
14.51-20.50	0	. 0	0	1	6	0	0	0	1	4	4	0	0	1	0	2	19
>20.50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	0	3
TOTAL	14	14	31	32	32	14	14	9	44	58	61	32	19	16	22	19	431

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	U
.76- 1.50	0	0	1	0	0	0	0	0	0	0	0	0	2	0	0	0	3
1.51- 2.50	2	0	0	0	0	0	0	1	2	2	2	1	3	2	1	2	18
2.51- 3.50 \	4	2	0	1	1	0	0	0	1	2	8	3	2	6	8	0	38
3.51- 4.50	1	7	1	1	1	0	0	1	1	4	5	. 5	2	5	2	4	40
4.51- 5.50	1	3	2	2	0	0	0	0	1	5	4	1	3	0	6	1	29
5.51~ 6.50	0	0	3	1	0	0	0	1	3	1	5	2	1	3	0	1	21
6.51- 8.50	1	1	5	2	1	0	1	3	7	5	7	5	1	6	2	2	49
8.51-11.50	2	0	1	4	1	0	0	0	1	10	13	2	1	7	11	0	53
11.51-14.50	0	0	0	2	7	2	0	0	0	6	6	5	2	6	0	2	38
14.51-20.50	0	2	0	1	9	0	0	0	0	3	5	4	0	1	0	5	30
. >20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL		15	13	14	20	2	1	6	16	38	55	28	17	36	30	17	319

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
1.51- 2.50	3	2	2	1	0	0	1	0	0	2	1	5	1	3	8	4	33
2.51- 3.50	7	2	3	0	1	0	0	0	1	1	0	. 6	5	7	8	7	48
3.51~ 4.50	6	1	2	2	0	0	0	1	0	4	0	1	10	10	6	12	55
4.51- 5.50	5	0	2	1	0	0	0	0	0	1	6	3	1	3	7	8	37
5.51- 6.50	1	2	2	0	0	0	0	2	0.	1	9	5	0	2	3	6	33
6.51- 8.50	1	1	1	1	1	0	0	0	1	8	7	10	3	3	6	9	52
8.51-11.50	0	1	0	0	0	0	0	0	0	1	9	5	1	1	0	2	20
11.51-14.50	3	0	0	0	1	0	0	0	0	0	1	0	0	0	0	3	8
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	26	9	12	5	3		1	3	2	18	33	35	21	29	38	51	287

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 3/31/2009

STABILITY CLASS G

STABILITY BASED ON: DELTA T

BETWEEN 200.0 AND 35.0 FEET

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET
SPEED

N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
	2	۸	1	•	0	0	2	٥	0	۸	1	2	1	۸	Δ.	11
	3	U		1	-	U	2	-	U	U	1	2	1	-	-	
8	4	5	2	1	2	1	0	0	2	2	1	13	7	13	16	77
35	17	7	1	1	1	0	0	2	. 5	4	5	9	18	33	35	173
57	16	` 4	1	0	0	1	0	0	0	1	3	7	10	30	68	198
56	20	3	3	0	1	0	0	0	1	2	1	0	4	6	49	146
41	21	0	1	0	0	0	0	0	0	3	4	1	0	6	20	97
26	25	0	0	0	0	0	0	0	0	4	0	0	1	0	7	63
19	8	1	0	0	0	0	0	0	0	0	0	0	0	0	3	31
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
244	114	20	9 -		4				8 -	16	15	32	41	88	199	799
	0 8 35 57 56 41 26 19 2	0 3 8 4 35 17 57 16 56 20 41 21 26 25 19 8 2 0 0 0	0 3 0 8 4 5 35 17 7 57 16 4 56 20 3 41 21 0 26 25 0 19 8 1 2 0 0 0 0 0	0 3 0 1 8 4 5 2 35 17 7 1 57 16 4 1 56 20 3 3 41 21 0 1 26 25 0 0 19 8 1 0 2 0 0 0 0 0 0 0	0 3 0 1 1 8 4 5 2 1 35 17 7 1 1 57 16 4 1 0 56 20 3 3 3 0 41 21 0 1 0 26 25 0 0 0 0 19 8 1 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 8 4 5 2 1 2 35 17 7 1 1 1 1 57 16 4 1 0 0 56 20 3 3 0 1 41 21 0 1 0 0 26 25 0 0 0 0 0 19 8 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 0 0 8 4 5 2 1 2 1 35 17 7 1 1 1 0 0 1 1 56 20 3 3 0 1 0 0 1 56 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 0 2 8 4 5 2 1 2 1 0 35 17 7 1 1 1 0 0 1 57 16 4 1 0 0 1 56 20 3 3 0 1 0 0 41 21 0 1 0 0 0 0 26 25 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 0 2 0 8 4 5 2 1 2 1 0 0 35 17 7 1 1 1 0 0 2 57 16 4 1 0 0 1 0 0 56 20 3 3 0 1 0 0 0 41 21 0 1 0 0 0 0 0 0 26 25 0 0 0 0 0 0 0 0 0 19 8 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 0 2 0 0 2 3 3 5 17 7 1 1 1 1 0 0 0 2 5 5 5 7 16 4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 0 2 0 0 0 0 8 4 5 2 1 2 1 0 0 0 2 5 4 57 16 4 1 0 0 0 1 0 0 0 1 2 5 4 57 16 4 1 0 0 0 1 0 0 0 1 2 5 4 57 16 20 3 3 0 1 0 0 0 0 0 1 2 41 21 0 1 0 0 0 0 0 1 2 41 21 0 1 0 0 0 0 0 0 0 0 0 0 3 26 25 0 0 0 0 0 0 0 0 0 0 0 0 0 3 26 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 0 2 0 0 0 1 1 8 4 5 2 1 2 1 0 0 2 2 1 3 5 17 7 1 1 1 1 0 0 0 2 5 4 5 5 7 16 4 1 0 0 0 1 0 0 0 1 3 5 6 20 3 3 0 1 0 0 0 0 1 2 1 4 1 2 1 0 1 0 0 0 0 1 2 1 4 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 0 2 0 0 0 1 2 8 4 5 2 1 2 1 0 0 2 2 1 13 35 17 7 1 1 1 1 0 0 2 2 5 4 5 9 57 16 4 1 0 0 1 0 0 0 1 3 7 56 20 3 3 0 1 0 0 0 0 1 2 1 0 41 21 0 1 0 0 0 0 0 1 2 1 0 41 21 0 0 1 0 0 0 0 0 0 3 4 1 26 25 0 0 0 0 0 0 0 0 0 0 3 4 1 26 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 8 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0	0 3 0 1 1 0 0 2 0 0 0 1 2 1 8 4 5 2 1 2 1 0 0 2 2 1 13 7 35 17 7 1 1 1 1 0 0 2 5 4 5 9 18 57 16 4 1 0 0 1 0 0 0 1 3 7 10 56 20 3 3 0 1 0 0 0 1 2 1 0 4 41 21 0 1 0 0 0 0 0 1 2 1 0 4 41 21 0 0 1 0 0 0 0 0 0 3 4 1 0 26 25 0 0 0 0 0 0 0 0 0 0 3 4 1 0 26 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0	0 3 0 1 1 0 0 2 0 0 0 1 2 1 0 8 4 5 2 1 2 1 0 0 0 2 5 4 5 9 18 33 57 16 4 1 0 0 1 0 0 1 0 0 1 3 7 10 30 56 20 3 3 0 1 0 0 0 0 1 2 1 0 0 4 6 41 21 0 1 0 0 0 0 1 2 1 0 0 4 6 41 21 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 1 1 0 0 2 0 0 1 2 1 0 0 0 8 4 5 2 1 2 1 0 0 0 2 5 4 5 9 18 33 35 57 16 4 1 0 0 1 0 0 1 0 0 1 3 7 10 30 68 56 20 3 3 0 1 0 0 0 0 1 2 1 0 0 4 6 49 41 21 0 1 0 0 0 0 0 1 2 1 0 0 4 6 49 41 21 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	3	1	1	1	1	0	2	0	0	0	1	4	1	0	0	15
1.51- 2.50	13	8	9	6	2	3	2	4	4	8	. 9	- 10	21	13	22	23	157
2.51- 3.50	47	22	15	5	3	7	1	2	11	19	27	23	21	33	54	49	339
3.51- 4.50	68	27	14	4	4	1	5	4	14	25	21	16	23	28	42	89	385
4.51- 5.50	69	29	13	10	0	3	0	3	9	31	27	7	11	10	23	60	305
5.51- 6.50	45	32	17	5	1	1	1	4	16	17	27	29	2	6	12	28	243
6.51- 8.50	31	38	30	15	9	10	8	8	25	25	36	26	9	12	9	19	310
8.51-11.50	22	12	5	13	8	4	3	1	3	22	39	13	9	18	17	6	195
11.51-14.50	6	0	0	11	21	2	0	0	4	1.3	25	12	10	15	1	8	128
14.51-20.50	0	2	0	2	16	0	0	0	1	12	18	5	1	6	0	9	72
>20.50	0	0	. 0	0	0	0	0	0	0	1	3	3	0	1	3	0	11
TOTAL	301	173	104	72	65	32	20	28	87	173	232	145	111	143	183	291	2160

TOTAL NUMBER OF OBSERVATIONS: 2160
TOTAL NUMBER OF VALID OBSERVATIONS: 2160
TOTAL NUMBER OF MISSING OBSERVATIONS: 0
PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 %
MEAN WIND SPEED FOR THIS PERIOD: 6.2 MPH
TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

 PERCENTAGE
 OCCURRENCE
 OF
 STABILITY
 CLASSES

 B
 C
 D
 E
 F

 4.54
 6.62
 19.95
 14.77
 13.
 36.99

					DISTR	IBUTION	OF WIN	DIREC'	rion vs	STABIL	JTY.						
	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
Α	0	3	1	0	0	1	0	2	0	15	24	12	10	13	0	2	0
В	3	6	10	5	2	6	Û	1	10	17	14	9	9	4	2	0	0.
С	3	12	17	7	5	4	à	5	13	19	29	14	3	4	3	3	0
D	14	14	31	32	32	14	14	9	44	58	61	32	19	16	22	19	0
E	11	15	13	14	20	2	1	6	16	38	55	28	17	36	30	17	0
F	26	9	12	5	3	1	1	3	2	18	33	35	21	29	38	51	0
G	244	114	20	9	3	4	2	2	2	8	16	15	32	41	88	199	0
TOTAL	301	173	104	72	65	32	20	28	87	.173	232	145	111	143	183	291	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2009 TO 6/30/2009

CILD	RTI	TTV	CLASS	ž,

						STABILITY	CLAS	S A
STABILITY BASED	ON: DELTA	T	BETWEEN	200.0	AND 35.	0 FEET		
WIND MEASURED	AT: 35.0	FEET						`
WIND THRESHOLD	AT: .75	MPH						
JOINT FREQUENCY SPEED	DISTRIBUT	ION OF	WIND SPEE	D AND	DIRECTIO	N IN HOURS	S AT	35.00 FEE

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
			_	•			_				_	_			_		0
v .76- 1.50	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	U
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.51- 5.50	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	3
5.51- 6.50	0	0	0	0	0	0	2	4	2	11	1	5	1	0	2	0	28
6.51- 8.50	0	0	1	0	1	2	4	5	26	1.8	33	12	4	1	2	1	110
8.51-11.50	0	0	0	0	2	6	3	4	17	35	40	~18	14	2	0	0	141
11.51-14.50	0	0	0	1	0	0	0	0	5	18	33	10	12	4	1	0	84
14.51-20.50	0	0	0	0	0	0	0	0	4	8	14	5	2	4	3	0	40
>20.50	0	0	0	0	0	0	. 0	0	0	2	6	1	0	0	0	0	9
TOTAL	0			1	3	8 -		14	54	92	128	51	33		9 -	1	415

STABILITY CLASS B

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	MNM	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0	4
4.51~ 5.50	0	0	1	0	3	1	0	3	5	3	3	1	0	0	0	0	20
5.51÷ 6.50	1	. 0	0	0	2	0	1	12	14	7	8	1	0	2	0	0	48
6.51- 8.50	0	0	2	0	4	1	4	4	14	8	11	. 5	5	0	1 .	2	61
8.51-11.50	1	0	0	2	2	1	0	2	1	0	13	5	2	1	0	0	30
11.51-14.50	0	0	0	0	3	0	0	0	1	0	10	2	1	0	1	0	18
14.51-20.50	0	0	0	0	2	0	0	0	0	4	2	1	2	0	2	0	13
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	2	1	3		1.6		5	22	36	22	48	15	10	3	4	2	194

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	Ε	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	3
3.51- 4.50	0	1	0	0	1	0	0	1	4	2	2	2	0	0	0	0	13
4.51- 5.50	0	1	1	0	1	2	4	11	. 9	10	4	0	2	0	0	1	46
5.51- 6.50	0	0	1	0	0	0	1	9	7	3	5	3	2	0	1	0	32
6.51- 8.50	0	0	1	1	0	1	3	1	2	3	6	6	0	0	1	1	26
8.51-11.50	0	1	1	1	1	0	0	0	2	3	11	2	2	3	0	0	27
11.51-14.50	1	0	0	2	1	0	0	0	1	1	4	1	1	1	0	0	13
14.51-20.50	0	0	.0	0	0	0	0	0	0	1	6	0	0	1	0	0	8
>20.50	0	0	0	0	1	0	0	0	0 "	0	0	1	0	0	0	0	2
TOTAL	1	3	4	4	5	3	9	23	25	23	38	15	7 -	5	2 -	3	170

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2009 TO 6/30/2009

STABILITY CLASS D

STABILITY CLASS D

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET

WIND MEASURED AT: 35.0 FEET

WIND THRESHOLD AT: .75 MPH

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED

SPEED																	
(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0 .	1	2	0	1	2	0	1	0	3	0	1	1	0	0	12
2.51- 3.50	0	0	3	1	5	1	2	2	2	4	3	1	3	5	0	0	32
3.51- 4.50	0	1	1	3	2	2	4	7	2	6	3	1	0	0	1	2	35
4.51~ 5.50	0	5	0	1	2	2	1	8	9	3	5	0	1	0	1	0	38
5.51- 6.50	0	2	1	0	1	1	0	5	4	3	4	2	1	0	1	0	25
6.51- 8.50	0	0	0	1	0	5	2	1	3	4	7	4	8	1	2	0	38
8.51-11.50	0	0	1	2	2	1	3	0	3	6	19	12	5	1	1	0	56
11.51-14.50	0	0	0	1	3	1	0	0	0	4	11	5	4	2	2	1	34
14.51-20.50	0	0	0	1	2	1	0	0	3	11	9	2	0	0	0	0	29
>20.50	0	0	0	1	0	0	0	0	0	7	0	1	0	0	0	0	9
TOTAL	0	8	7 -	13	17	15	14	23	27	48	64	28	23	10		3	308

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	ΝW	NNW	TOTAL
(Men)	14	ININE	INE	PIAE	ь.	263	36	335	٥	SOW	SW	NON	n	441/444	1444	141444	TOTAL
CALM																	0
.76- 1.50	1	. 0	0	0	0	0	0	0	1	0	0	0	1	0	. 0	0	3
1.51- 2.50	0	2	1	0	0	0	0	1	0	2	2	2	2	4	1	0	17
2.51- 3.50	7	0	1	0	0	0	1	1	1	0	3	3	0	3	2	4	26
3.51- 4.50	7	6	1	1	0	1	0	1	0	4	3	3	0	5	3	3	38
4.51- 5.50	2	2	1	1	0	0	0	1	1	6	9	4	1	2	0	1	31
5.51- 6.50	1	3	1	1	1	0	1	1	1	8	5	7	2	3	3	1	39
6.51- 8.50	1	3	3	1	2	0	0	0	5	19	16	15	9	5	3	2	84
8.51-11.50	0	1	2	1	0	1	0	3	5	26	37	32	11	2	3	0	124
11.51-14.50	1	0	0	1	3	3	1	0	0	17	14	6	1	2	1	0	50
14.51-20.50	0	0	0	0	1	0	0	0	1	5	3	2	1	5	0	1	19
>20.50	. 0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
TOTAL	20	17	10	6	7 -	5	3	8	15	88	92	74	28	31	16	12	432

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM						1											0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
1.51- 2.50	4	0	0	1	0	1	0	0	2	1	2	0	2	2	2	4	21
2.51- 3.50	4	6	3	0	1	2	0	2	5	1	7	7	6	9	5	7	65
3.51- 4.50	1	4	5	2	1	0	0	2	3	5	11	8	5	10	3	4	64
4.51- 5.50	4	4	1	0	0	0	0	0	1	11	20	10	4	3	5	5	68
5.51~ 6.50	1	1	1	0	0	0	1	2	0	7	12	7	3	5	2	0	42
6.51- 8.50	2	0	1	0	0	0	0	0	0	25	25	10	12	4	3	2	84
8.51~11.50	0	1	1	0	0	0	0	0	0	12	20	7	0	2	1	0	44
11.51-14.50	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0
TOTAL	16	16	12	3	2	3	1	6	11	62	98	49	33	35	21	22	390

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2009 TO 6/30/2009

STABILITY CLASS G
BETWEEN 200.0 AND 35.0 FEET

STABILITY CLASS G

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET

WIND MEASURED AT: 35.0 FEET

WIND THRESHOLD AT: .75 MPH

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

N	NNE	NE	ENE	Ε	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	2	0	2	0	0	1	2	0	0	1	0	4	1	6	22
11	7	0	3	3	0	1	0	0	0	1	4	6	3	3	13	55
24	5	1	1	1	1	0	0	0	0	4	6	2	3	6	19	73
19	13	1	0	0	0	1	0	0	0	1	0	0	1	10	12	58
11	7	1	1	0	0	0	1	0	0	3	0	2	1	0	3	30
7	. 4	3	0	0	0	0	0	0	0	2	2	1	0	1	5	25
6	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ο.	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
80	40	9 -	5	6					0	11	13	11	12	21	58	273
	0 2 11 24 19 11 7 6 0	0 0 0 2 1 111 7 24 5 19 13 11 7 7 .4 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 1 2 11 7 0 24 5 1 19 13 1 11 7 4 3 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 11 7 0 3 24 5 1 1 1 1 9 13 1 0 11 7 4 3 0 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 2 11 7 0 3 3 3 24 5 1 1 1 1 1 19 13 1 0 0 0 11 7 4 3 0 0 0 6 3 1 0 0 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 7 0 0 3 3 0 0 0 11 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 7 0 0 3 3 0 0 1 1 1 0 0 0 0 0 1 1 1 7 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 1 11 7 0 3 3 3 0 1 0 19 13 1 0 0 0 1 0 11 7 4 3 0 0 0 0 0 0 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	wsw	w	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	1	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	4
1.51- 2.50	6	3	4	3	2	2	2	2	5	3	7.	3	5	11	4	10	72
2.51- 3.50	22	13	7	4	9	3	5	6	8	. 5	14	15	15	20	10	25	181
3.51- 4.50	32	18	8	7	5	4	4	12	10	17	24	20	7	18	13	28	227
4.51- 5.50	25	25	5	2	6	5	6	24	25	33	43	15	8	6	17	19	264
5.51- 6.50	14	13	5	2	4	1	6	34	28	39	38	25	11	11	9	4	244
6.51- 8.50	10	7	11	3	7	9	13	11	50	77	100	54	39	11	13	13	428
8.51-11.50	7	6	6	6	7	9	6	9	28	82	140	76	34	11	5	0	432
11.51-14.50	2	0	0	5	10	4	1	0	7	40	73	24	19	9	5	1	200
14.51-20.50	0	0	0	1	5	1	0	0	8	29	34	10	5	10	5	1	109
>20.50	0	0	0	1	1	0	0	0	0	10	6	3	0	0	0	0	21
TOTAL	119	85	46	34	56	38	43	98	170	335	479	245	145	107	81	101	2182

TOTAL NUMBER OF OBSERVATIONS: 2184

TOTAL NUMBER OF VALID OBSERVATIONS: 2182

TOTAL NUMBER OF MISSING OBSERVATIONS: 2

PERCENT DATA RECOVERY FOR THIS PERIOD: 99.9 %

MEAN WIND SPEED FOR THIS PERIOD: 7.7 MPH

TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

 PERCENTAGE
 OCCURRENCE
 OF
 STABILITY
 CLASSES

 B
 C
 D
 E
 F

 8.89
 7.79
 14.12
 19.80
 17.87
 A 19.02 12.51

					DISTR	IBUTION	OF WINI	D DIREC	TION VS	STABIL	ITY.						
	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
Α	0	0	1	1	3	8	q	14	54	92	128	51	33	11	9	1	0
В	2	1	3	2	16	3	5	22	36	22	48	15	10	3	4	2	ŏ
С	1	3	4	4	5	3	9	23	25	23	38	15 .	7	5	2	3	0
D	0	8	7	13	17	15	14	23	27	48	64	28	23	10	8	3	0
E	20	17	10	6	7	5	3	8	15	88	92	74	28	31	16	12	0
F	16	16	12	3	2	3	1	6	11	62	98	49	33	35	21	22	0
G	80	40	9	5	6	1	2	2	2	0	11	13	11	12	21	58	0
TOTAL	119	85	46	.34	56	38	43	98	170	335	479	245	145	107	81	101	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 6/30/2009

*** 1ST SEMI ***

STABL	$r_{\text{T.I.A}}$	BASED	ON:	DELTA	T.
WIND	MEA	CIRRIC	AT.	35.0	FEET

BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

TOTAL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0 ′	0	0	0	0	0	0	0	0	0
4.51- 5.50	0	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	4
5.51- 6.50	0	0	0	0	0	0	2	4	2	11	1	6	1	0	. 2	0	29
6.51- 8.50	0	0	2	0	1	2	4	7	26	21	37	14	6	1	2	1	124
8.51-11.50	0	3	0	0	2	7	3	4	17	39	44	21	17	4	0	0	161
11.51-14.50	0	0	0	1	0	0	0	0	5	21	39	14	16	9	1	1	107
14.51-20.50	0	0	. 0	0	0	0	0	0	4	12	21	6	3	8	3	1	58
>20.50	0	0	, 0	0	. 0	0	0	0	0	3	9	2	0	1	0	0	15

STABILITY CLASS B

63

SPEED																	
(MPH) .	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																•	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0	4
4.51- 5.50	1	0	1	1	3	1	0	3	6	7	5	1	4	0	0	0	33
5.51- 6.50	2	3.	4	0	2	1	1	12	18	10	10	4	0	2	0	0	69
6.51- 8.50	0	3	7	4	6	6	4	5	17	13	11	8	6	1	2	2	95
8.51-11.50	2	0	1	2	2	1	0	2	1	4	18	6	4	3	1	0	47
11.51-14.50	0	0	0	0	3	0	0	0	3	0	15	4	3	1	1	0	30
14.51-20.50	0	0	0	0	2	0	0	0	0	5	2	1	2	0	2	0	14
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	5	7 -	13	7 -	18	9 -		23	46	39	62	24	19	7 -	· 6	2	292

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
2.51- 3.50	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	3
3.51- 4.50	0	1	2	0	1	1	0	1	4	2	4	2	0	0	0	0	18
4.51- 5.50	0	4	1	0	1	3	4	13	9	19	8	2	2	0	0	1	67
5.51- 6.50	1	5	5	0	0	0	1	10	12	9	11	11	2	0	1	0	68
6.51- 8.50	1	4	10	4	2	2	5	3	8	4	15	8	1	0	1	1	69
8.51-11.50	0	1	3	5	3	1	0	0	3	5	15	3	3	5	2	1	50
11.51-14.50	2	0	0	2	1	0	0	0	2	2	6	1	2	3	0	1	22
14.51-20.50	0	0	0	0	1	0	0	0	0	1	8	0	0	1	0	1	12
>20.50	0	0	0	0	1	0	0	0	0	0	0	2	0	0	1	0	4
TOTAL	4	15	21	11	10	7 -	11	28	38	42	67	29	10	9	5	6	313

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 6/30/2009

*** 1ST SEMI ***

STABILITY CLASS D

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	. W	WNW	NW	NNW	TOTAL
(MFN)	14	MME	NE	ENE	E	ESE	JE.	335	3	3311	311	non	. ***	*****	1111	14144	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	2	3	5	1	2	2	3	3	2	7	3	5	2	0	1	41
2.51- 3.50	1	1	8	4	5	7	3	4	9	15	18	10	8	7	5	7	112
3.51- 4.50	4	4	6	3	5	2	8	9	15	23	16	8	4	3	5 .	7	122
4.51- 5.50	6	8	6	4	2	3	1	9	16	14	14	0	4	2	5	2	96
5.51- 6.50	1	3	5	3	2	1	1	5	8	9	6	8	1	1	4	1	59
6.51- 8.50	2	4	9	6	3	9	7	1	11	7	12	8	9	2	. 2	1	93
8.51-11.50	0	0	1	7	7	3	6	1	4	7	23	13	6	5	4	0	87
11.51-14.50	0	0	0	10	16	1	0	0	1	7	16	6	5	3	3	1	69
14.51-20.50	0	0	0	2	8	1	0	0	4	15	13	2	0	1	0	2	48
>20.50	0	0	0	. 1	0	0	0	0	0	7	0	2	0	0	2	0	12
TOTAL	14	22	38	45	49	29	28	32	71	106	125	60	42	26	30	22	739

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	wsw	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	0	1	0	0	0	0	0	1	0	0	0	3	0	0	0	6
1.51- 2.50	2	2	1	0	0	0	0	2	2	4	4	3	5	6	2	2	35
2.51- 3.50	11	2	1	1	1	0	1	1	2	2	11	6	2	9	10	4	64
3.51- 4.50	8	13	2	2	1	1	0	2	1	8	8	8	2	10	5	7	78
4.51- 5.50	3	5	3	3	0	0	0	1	2	11	13	5	4	2	6	2	60
5.516.50	1	3	4	2	1	0	1	2	4	9	10	9	3	6	3	2	60
6.51- 8.50	2	4	8	3	3	0	1	3	12	24	23	20	10	11	5	4	133
8.51-11.50	2	1	3	5	1	1	0	3	6	36	50	34	12	9	14	0	177
11.51-14.50	1	0	0	3	10	5	1	0	0	23	20	11	3	8	1	2	88
14.51-20.50	0	2	0	1	10	0	0	0	1	8	8	6	1	6	0	6	49
>20.50	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
TOTAL	31	32	23	20	27	7	4	14	31	126	147	102	45	67	46	29	751

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	ΝW	NNW	TOTAL
			1														
CALM																	0
.76- 1.50	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2
1.51- 2.50	7	2	2	2	0	1	1	0	2	3	3	5	3	5	10	8	54
2.51- 3.50	11	8	6	0	2	2	0	2	6	2	7	13	11	16	13	14	113
3.51- 4.50	7	5	7	4	1	0	. 0	3	3	9	11	9	15	20	9	16	119
4.51- 5.50	9	4	3	1	0	0	0	0	1	12	26	13	5	6	12	13	105
5.51- 6.50	2	3	3	0	0	0	1	4	0	8	21	12	3	7	5	6	75
6.51- 8.50	3	1	2	1	1	0	0	0	1	33	32	20	15	7	9	11	136
8.51-11.50	0	2	1	0	0	0	0	0	0	13	29	12	1	3	1	2	64
11.51-14.50	3	0	0	0	1	0	0	0	0	0	2	0	0	0	0	3	9
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	42	25	24			4			13	80	131	84	54	64	59	73	677

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 6/30/2009

*** 1ST SEMI ***

STABILITY CLASS G

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET
SPEED

SPEED						,											
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	MNM	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	3	0	1	1	0	0	2	0	0	0	1	2	1	0	0	11
1.51- 2.50	10	5	7	2	3	2	1	1	2	2	2	2	13	11 .	14	22	99
2.51- 3.50	46	24	7	4	4	1	1	0	2	5	5	9	15	21	36	48	228
3.51- 4.50	81	21	5	2	1	1	1	0	0	0	5	9	9	13	36	87	271
4.51- 5.50	75	33	4	3	0	1	1	0	0	1	3	1	0	5	16	61	204
5.51- 6.50	52	28	1	2	0	0	0	1	0	0	6	4	3	1	6	23	127
6.51- 8.50	33	29	3	0	0	0	0	0	0	.0	6	2	1	1	1	12	88
8.51-11.50	25	11	2	0	0	0	0	0	0	0	0	0	0	. 0	0	3	41
11.51-14.50	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	324	154	29	14	9 -	5	4	4	4	. 8	27	28	43	53	109	257	1072

STABILITY CLASS ALL

SPEED																	
(MPH)	N	NNE	NE ·	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76~ 1.50	1	3	1	1	1	1	0	2	1	0	0	1	6	1	0	0	19
1.51- 2.50	19	11	13	9	4	5	4	6	9	11	16	13	26	24	26	33	229
2.51- 3.50	. 69	35	22	9	12	10	6	8	19	24	41	38	36	53	64	74	520
3.51- 4.50	100	45	22	11	9	5	9	16	24	42	45	36	30	46	55	117	612
4.51- 5.50	94	54	18	12	6	8	6	27	34	64	70	22	19	16	40	79	569
5.51- 6.50	59	45	22	7	5	2	7	38	44	56	65	54	13	17	21	32	487
6.51- 8.50	41	45	41	18	16	19	21	19	75	102	136	80	48	23	22	32	738
8.51-11.50	29	18	11	. 19	15	13	9	10	31	104	179	89	43	29	22	6	627
11.51-14.50	8	0	0	16	31	6	1	0	11	53	98	36	29	24	6	9	328
14.51-20.50	0	2	0	3	21	1	0 `	0	9	41	52	15	6	16	5	10	181
>20.50	0	0	0	1	1	0	0	0	0	11	9	6	0	1	3	0	32
TOTAL	420	258	150	106	121	70	63	126	257	508	711	390	256	250	264	392	4342

TOTAL NUMBER OF OBSERVATIONS: 4344
TOTAL NUMBER OF VALID OBSERVATIONS: 4342
TOTAL NUMBER OF MISSING OBSERVATIONS: 2
PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 %
MEAN WIND SPEED FOR THIS PERIOD: 6.9 MPH
TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

PERCENTAGE OCCURRENCE OF STABILITY CLASSES
B C D E F A 11.47 C 7.21 E 17.30 G 17.02 24.69 15.59

					DISTR	IBUTION	OF WIN	DIREC	TION VS		YTI						
	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
· A	0	3	2	1	3	. 9	9	16	54	107	152	63	43	24	. 9	3	0
В	5.	7	13	7	18	9	5	23	46	39	62	24	19	7	6	2	0
С	4	15	21	11	10	. 7	11	28	38	42	67	29	10	9	5	6	0
D	14	22	38	45	49	29	28	32	71	106	125	60	42	26	30	22	0
E	31	32	23	20	27	7	4	14	31	126	147	102	45	67	46	29	0
F	42	25	24	8.	5	4	2	9	13	80	131	84	54	64	59	73	0
G	324	154	29 -	14	9	5	4	4	4	8	27	28	43	53	109	257	0
TOTAL	420	258	150	106	121	70	63	126	257	508	711	390	256	250	264	392	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 9/30/2009

*** 3RD QRTR ***

STABILITY CLASS A BETWEEN 200.0 AND 35.0 FEET

STABILITY CLASS A
STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: ,75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET
SPEED

(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0 -	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	٥ ر	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.51- 5.50	0	0	0	0	0	0	0	1	5	2	4	_ 0	. 2	0	0	0	14
5.51- 6.50	0	1	3	1	0	1	1	3	7	9	12	· 6	1	0	1	0	46
6.51- 8.50	0	0	1	0	5	2	2	4	20	22	50	26	11	1	0	0	144
8.51-11.50	0	1	1	2	4	4	3	0	8	17	34	20	3	0	0	0	97
11.51-14.50	0	0	1	1	1	0	0	0	0	3	24	16	2	4	0	0	52
14.51-20.50	0	0	0	4	0	0	0	0	0	0	7	2	0	1	0	0	14
>20.50	. 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
TOTAL	0	2	6	8	10	7	6	8	40	53	132	70	19	6	1	0	368

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ő
1.51- 2.50	0	0	0	0	0	0	0	0	0	ō	0	Ō	0	Ó	0	ō	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0 -	0	0	0	0	0	0	0	3	1	0	2	1	2	0	0	9
4.51- 5.50	0	3	0	0	0	2	3	5	11	4	7	4	3	0	2	0	44
5.51- 6.50	0	0	2	1	1	1	0	6	16	8	5	3	2	0	1	0	46
6.51~ 8.50	0 ·	1	5	4	5	4	4	5	7	15	22	12	5	0	0	2	91
8.51-11.50	0	1	0	2	2	3	1	0	0	0	6	9	2	1	0	0	27
11.51-14.50	0	0	0	1	3	0	0	0	0	0	6	2	0	0	0	0	12
14.51-20.50	0 ·	0	0	0 ·	1	0	0	0	0	0	0	1	0	1	0	1	4
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	. 0	0	0
TOTAL	0	5	7	8	12	10	8	16	37	28	46	33	13	4	3	3	233

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	1.	0	0	0	0	1	1	1	1	0	1	0	0	1	7
3.51- 4.50	1	0	1	0	0	1	2	0	2	2	4	1	1	0	1	0	16
4.51- 5.50	4	2 .	4	0	2	0	0	3	7	5	8	3	2 .	2	1	. 0	43
5.51- 6.50	0	1	1	1	2	1	0	0	10	7	6	1	1	0	1	0	32
6.51- 8.50	0	0	2	1	1	1	3	0	4	0	10	8	1	0	0	1	32
8.51-11.50	0	1	1	0	1	1	3	0	0	0	0	6	1	0	0	0	14
11.51-14.50	0	0	1	0 .	5	0	0	0	0	0	2	0	0	0	0	0	8
14.51-20.50	0	0	0	2	2	0	0	0	0	0	3	1	0	0	0	0	8
>20.50	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	5	4	11	- 4	13	4	- 8	4	24	15	34	20	7 -	2 -	3	2	160

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 9/30/2009

*** 3RD QRTR ***

STABILITY CLASS D

STABILITY CLASS D

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET

WIND MEASURED AT: 35.0 FEET

WIND THRESHOLD AT: .75 MPH

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SEPET

(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1.51- 2.50	1	1	1	0	2	1	0	0	2	0	1	1	1	1	1	. 0	13
2.51- 3.50	3	1	5	4	0	0	0	0	6	5	5	1	2	1	2	1	36
3.51- 4.50	0	4	1	1	0	3	1	3	9	5	6	2	3	2	2	1	43
4.51- 5.50	3	0	4	2	0	1	1	1	4	4	5	8	2	2	2	2	41
5.51- 6.50	0	0	1	2	1	1	1	0	2	2	5	8	6	2	0	0	31
6.51- 8.50	0	2	2	3	0	2	3	1	1	2	5	12	2	1	.1	1	38
8.51-11.50	0	0	0	5	3	4	3	2	1	3	4	14	7	1	3	0	50
11.51-14.50	0	0	0	0	4	1	1	1	2	2	17	11	0	0	1	0	40
14.51-20.50	0	0	1	0	4	1	1	0	1	4	9	3	0	0	1	1	26
>20.50	0	1	0	0	0	0	0	0	1	0	1	0	0	0	1	0	4
TOTAL	7	10	15	17	14	14	11	. 8	29	27	58	60	23	10	14	6	323

STABILITY CLASS E

SPEED														·			
(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	0	0	0	0	0	0	. 0	0	1	0	0	0	0	0	0	2
1.51- 2.50	4	0	1	0	0	1	0	1	0	0	3	1	4	6	2	3	26
2.51- 3.50	5	1	1	1	0	0	0	2	0	2	5	1	5	4	2	5	34
3.51- 4.50	1	1	0	2	1	1	1	0	3	7	5	1	5 .	1	2	1	32
4.51- 5.50	5	6	3	0	2	0	0	0	2	2	14	8	4	4	2	1	53
5.51- 6.50	3	2	1	0	2	0	0	0	2	4	7	12	7	1	1	1	43
6.51- 8.50	0	5	5	3	2	3	3	1	4	12	32	37	10	0	2	2	121
8.51-11.50	0	1	1	2	5	1.0	4	3	1	13	23	25	8	0	2	1	99
11.51-14.50	0	0	1	4	11	6	2	0	0	8	25	8	2	0	3	0	70
14.51-20.50	0	1	2	0	10	2	0	0	0	1	7	0	1	1	0	0	25
>20.50	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
TOTAL	20	17	15	12	33	23	10	7	12	50	121	93	46	17	16	14	506

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	wsw .	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0	0
1.51- 2.50	3	2	1	0	0	0	0	- 0	1	1	2	2	2	2	1	0	17
2.51- 3.50	10	1	1	4	2	0	0	2	1	4	7	6	2	6	10	5	61
3.51- 4.50	5	6	3	0	1	1	0	0	3	7	11	4	10	10	6	8	75
4.51- 5.50	5	8	0	0	0	0	0	0	1	2	10	8	5	5	2	5	51
5.51- 6.50	6	1	0	3	0	0	1	0	1	4	12	3	7	2	3	3	46
6.51- 8.50	2	2	1	0	0	0	1	0	3	3	21	11	9	1	0	3	57
8.51-11.50	2	3	2	5	0	0	0	1	0	2	6	4	5	0	1	1	32
11.51-14.50	0	3	0	1	0	0	0	1	0	0	1	0	0	0	0	0	6
14.51-20.50	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	33	26	8	13	3	1	2	4.	10	25	70 .	38	40	26	23	25	347

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 9/30/2009

*** 3RD QRTR ***

STABILITY CLASS G

STABILITY CLASS G
STABILITY BASED ON: DELTA T
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	4	0	1	1	0	1	1	0	0	0	1	1	1	2	2	4	19
2.51- 3.50	14	4	4	1	1	0	0	0	0	0	4	1	4	7	5	8	53
3.51- 4.50	19	7	4	1	2	1	0	0	0	0	3	4	4	3	12	22	82
4.51- 5.50	18	11	2	2	0	0	0	1	0	1	4	2	2	4	0	10	57
5.51- 6.50	1.0	4	4	1	0	0	0	0	0	0	1	0	1	1	0	3	25
6.51-8.50	8	6	4	0	0	0	0	0	0	1	5	1	0	0	0	2	27
8.51-11.50	0	6	0	0	0	0	0	0	0	0	1	0	0	0	0	1	8
11.51-14.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	73	38	19	6	3		ı -	1	0	2	19	9	12	17	19	50	271

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	1	0	0	0	. 0	0	0	0	1	0	0	0	0	0	0	3
1.51- 2.50	12	3	4	1	2	3	1	1	3	1	7	5	8	11	6	7	75
2.51- 3.50	32	7	12	10	3	0	0	5	8	12	22	9	14	18	19	20	191
3.51- 4.50	26	18	9	4	4	7	4	3	20	22	29	14	24	18	23	32	257
4.51- 5.50	35	30	13	4	4	3	4	11	30	20	52	33	20	17	9	18	303
5.51- 6.50	19	9	12	9	6	4	3	9	38	34	48	33	25	6	7	7	269
6.51- 8.50	10	16	20	11	13	12	16	11	39	55	145	107	38	3	3	11	510
8.51-11.50	2	13	5	16	15	22	14	6	10	35	74	78	26	2	6	. 3	327
11.51-14.50	0	3	3	7	24	7	3	2	2	13	75	37	4	4	4	0	188
14.51-20.50	0	1	3	6	17	3	1	0	1	7	26	7	1	3	1	2	79
, >20.50	1	1	0	0	0	0	0	0	1	0	2	0	0	0	1	0	6
TOTAL	138	102	81	68	88	61	46	48	152	200	480	323	160	82	79	100	2208

TOTAL NUMBER OF OBSERVATIONS: 2208

TOTAL NUMBER OF VALID OBSERVATIONS: 2208

TOTAL NUMBER OF MISSING OBSERVATIONS: 0

PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 %

MEAN WIND SPEED FOR THIS PERIOD: 7.2 MPH

TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

 PERCENTAGE
 OCCURRENCE OF STABILITY CLASSES

 B
 C
 D
 E
 F

 10.55
 7.25
 14.63
 22.92
 15.72

						IBUTION			TION VS								
	N	NNE	NE	ENE	Ε	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM
Α	0	2	6	8	10	7	6	8	40	53	132	70	19	6	1	0	0
В	0	5	7	8	12	10	8	16	37	28	46	33	13	4	3	3	0
С	5	4	11	4	13	4	8	4	24	15 -	34	20	7	2	3	2	0
D	7	10	15	17	14	14	11	8	29	27	58	60	23	10	14	6	0
E	20	17	15	12	33	23	10	7	12	50	121	93	46	17	16	14	0
F	33	26	8	13	3	1	2	4	10	25	70	38	40	26	23	25	0
G	73	38	19	6	3	2	1	1	0	2	19	9	12	17	19	50	0
LATOT	138	102	81	68	88	61	46	48	152	200	480	323	160	82	79	100	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2009 TO 12/31/2009

*** 4TH QRTR ***

STABILITY CLASS A

The second secon

STABILITY CLASS A

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET

WIND MEASURED AT: 35.0 FEET

WIND THRESHOLD AT: .75 MPH

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED

(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	. SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.51- 5.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.51- 6.50	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
6.51- 8.50	0	0	0	0	0	0	0	0	2	3	1	3	1	0	0	0	10
8.51-11.50	0	0	0	0	0	2	0	0	1	1	4	1	0	4	0	0	13
11.51-14.50	0	0	0	0 د	1	0	0	0	0	0	0	0	1	3	1	0	6
14.51-20.50	0	0	0	0	0	0	0	0	0	2	1	1	2	6	0	0	12
>20.50	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	3
TOTAL	0				1	2	0	0	3	6	8	6	4	13	1	0	44

STABILITY CLASS B

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	. 0	1	0	2	0	1	0	1	0	5
4.51~ 5.50	0	0	0	. 0	0	1	1	2	2	2	2	3	0	1	0	0	14
5.51- 6.50	0	0	2	0	1	2	0	2	6	0	2	1	0	0	0	1	17
6.51- 8.50	0	0	0	1	8	5	0	0	4	2	5	3	2	1	0	0	31
8.51-11.50	0	1	0	2	1	1	0	0	1	4	4	1	1	1	0	0	17
11.51-14.50	0	0	1	1	3	0	0	0	0	0	2	0	0	1	0	0	8
14.51-20.50	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	3
>20.50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
TOTAL	0	1	3	4	13	9	1	4	14	9	17	10	4	4	2	1	96

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	Ô	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
2.51- 3.50	2	0	0	0	0	0	0	0	0	2	2	0	1	1	1	0	9
3.51- 4.50	1	2	2	0	1	1	0	3	4	1	4	3	0	0	0	1	23
4.51- 5.50	3	1	3	2	1	5	0	2	7	3	5	1	1	1	1	2	38
5.51- 6.50	2	1	7	1	2	3	0	2	3	2	3	2	3	0	2	1	34
6.51- 8.50	0	1	5	3	3	3	1	1	2	2	3	2	1	2	1	0	30
8.51-11.50	0	1	2	3	2	1	0	0	0	1	2 .	3	4	0	1	0	20
11.51-14.50	0	0	0	1	1	1	0	. 0	0	3	2	0	0	1	0	0	9
14.51-20.50	. 0	0	0	0	3	0	. 0	0	1	0	1	0	0	0	1	0	6
>20.50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
TOTAL	8	6	19	. 10	13	14	1	8	17	14	22	12	11	5	7	4	171

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2009 TO 12/31/2009

STABILITY CLASS D
BETWEEN 200.0 AND 35.0 FEET

STABILITY CLASS D

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET

WIND MEASURED AT: 35.0 FEET

WIND THRESHOLD AT: .75 MPH

JOINT PREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	1	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	. 0	1
1.51- 2.50	2	1	3	1	0	1	. 0	4	3	5	3	5	1	3	0	1	33
2.51- 3.50	2	3	5	6	8	4	4	11	13	13	14	8	6	4	4	4	109
3.51- 4.50	1	2	6	4	2	6	7	7	9	8	10	7	6	2	1	6	84
4.51- 5.50	1	6	3	10	8	4	1	1	8	3	6	3	2	2	1	1	60
5.51- 6.50	2	3	8	1	3	2	1	0	3	1	3	0	4	1	0	2	34
6.51- 8.50	3	2	6	3	4	2	0	1	1	3	13	4	2	1	0	1	46
8.51-11.50	2	0	1	2	4	5	0	1	1	1	6	2	3	5	2	0	35
11.51-14.50	0	0	0	0	4	2	0	0	0	0	3	0	0	2	0	1	12
14.51-20.50	0	0	1	0	2	0	0	0	0	1	3	. 1	0	4	4	1	17
>20.50	0	0	0.	0	0	0	0	0	0	0	0	0	1	0	1	1	3
TOTAL	14	17	33	27	35	26	13	25	38	35	61	30	25	24	13	18	434

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	ε	ESE	SE	SSE	s	SSW	SW	WSW	w	MMM	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
1.51- 2.50	3	2	0	2	2	1	1	. 0	3	4	4	6	2	2	1	4	37
2.51- 3.50	3	2	1	0	0	0	1	2	3	1	3	4	2	1	. 2	4	29
3.51- 4.50	3	2	3	1	1.	0	1	1	2	5	4	5	2	4	1	2.	37
4.51- 5.50	0	2	1	. 1	1	0	0	1	1	4	6	1	3	1	1	1	24
5.51- 6.50	1	1	0	2	0	0	1	0	0	1	4	3	4	1	2	2	22
6.51- 8.50	0	1	1	2	1	0	0	1	2	8	5	8	8	5	4	0	46
8.51-11.50	0	1	0	1	1	1	1	0	0	7	9	5	2	5	6	2	41
11.51-14.50	0	0	0	0	0	0	0	0	1	4	1	1	0	7	1	1	16
14.51-20.50	0	0	0	0 '	0	0	0	0	1	0	0	0	0	2	1	0	4
>20.50	0	0	0	0	0	0	0	0	3	0	1	3	2	0	0	0	9
TOTAL	10	11	6	9 -	6	2	5	5	16	34	37	36	25	28	19	17	266

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	Ε	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
1.51- 2.50	3	2	2	0	2	0	0	1	2	1	4	3	5	4	8	7	44
2.51- 3.50	13	6	2	1	0	1	0	0	1	1	3	4	7	8	5	15	67
3.51- 4.50	9	4	4	0	1	0	1	1	2	2	3	5	3	6	5	9	55
4.51- 5.50	7	0	2	0	0	1.	0	1	0	4	7	6	4	0	8	6	46
5.51- 6.50	4	3	1	0	0	0	0	1	0	1	2	1	5	0	4	6	28
6.51- 8.50	1	4	0	0	0	0	0	0	0	4	6	3	6	6	6	10	46
8.51-11.50	1	0	0	0	0	0	0	0	0	1	1	1	1	2	0	4	11
11.51-14.50	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	4
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	39	19	11	1	3	2	1	4	5	14	26	24	31	26	37	59	302

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2009 TO 12/31/2009

. *** 4TH QRTR ***

STABILITY CLASS G

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED									_								
(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	MMM	TOTAL
CALM						,											
.76- 1.50	0	1	0	0	0.	. 0	0	0	0	0	0	0	0	0	0	2	3
1.51- 2.50	26	19	7	3	3	3	0	3	3	3	4	5	11	12	8	24	134
2.\$1- 3.50	70	38	15	1	3	1	0	0	1	0	3	5	7	12	28	62	246
3.\$1- 4.50	96	48	9	1	1	1	0	0	0	0	1	4	1	3	23	45	233
4.\$1~ 5.50	61	29	5	0	0	1	0	0	0	0	1	0	3	4	6	25	135
5.51- 6.50	22	19	0	0	1	0	0	0	0	0	0	0	1	0	3	9	55
6.51- 8.50	29	22	5	0	0	0	0	0	0	1	0	1	0	0	1	13	72
8.51-11.50	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3	12
11.51-14.50	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	312	179	41	5	8	6	0	3	4	4	9	15	23	31	69	183	892

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM										•							0
76- 1.50	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	3	6
1.51- 2.50	34	24	12	6	7	5	. 1	8	11	13	15	19	20	21	17	36	249
2.51- 3.50	90	49	23	8	11 .	6	5	13	18	17	25	21	23	26	40	85	460
3.51- 4.50	110	58	24	6	6	[*] 8	9	12	18	16	24	24	13	15	31	63	437
4.51- 5.50	72	38	14	13	10	12	2	7	18	16	27	1.4	13	9	17	35	317
5.51- 6.50	31	27	18	4	7	7	2	5	12	5	14	7	17	2	11	21	190
6.51- 8.50	33	30	17	9	16	10	1	3	11	23	33	24	20	15	12	24	281
8.51-11.50	9	6	3	8	8	10	1	1	3 .	15	26	13	11	17	9	9	149
11.51-14.50	3	0	1	2	9	3	0	0	1	7	8	1	1	14	3	4	57
14.51-20.50	0	0	1	0	5	0	0 '	0	2	4	5	3	2	12	7	1	42
>20.50	0	0	0	0	0	0	0	0	3	0	3	6	3	0	1	1	17
TOTAL	383	233	113	56	79	61	21	49	97	116	180	133	123	131	148	282	2205

TOTAL NUMBER OF OBSERVATIONS: 2208
TOTAL NUMBER OF VALID OBSERVATIONS: 2205
TOTAL NUMBER OF MISSING OBSERVATIONS: 3
PERCENT DATA RECOVERY FOR THIS PERIOD: 99.9 %
MEAN WIND SPEED FOR THIS PERIOD: 5.4 MPH
TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

ii.

PERCENTAGE OCCURRENCE OF STABILITY CLASSES B C D E F 4.35 7.76 19.68 12.06 13. 13.70 40.45

					DISTR	IBUTION	OF WIN	D DIREC'	PION VS	STABIL							
	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	CALM
Α	0	0	0	0	1	2	0	0	3	6	8	6	4	13	1	0	0
В	0	1	3	4	13	9	1	4	14	9	17	10	4	4	2	1	0
C	8	6	19	10	13	14	1	8	17	14	22	12	11	5	7	4	0
D	14	17	33	27	35	26	13	25	38	35	61	30	25	24	13	18	0
E	10	11	6	9	6	2	5	5	16	34	37	36	25	28	19	17	0
F	39	19	11	1	3	2	1	4	5	14	26	24	31	26	37	59	0
G	312	179	41	5	8	6	0	3	4	4	9	15	23	31	69	183	0
TOTAL	383	233	113	56	79	61	21	49	97	116	180	133	123	131	148	282	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 12/31/2009

*** 2ND SEMI ***

STABILITY CLASS A
BETWEEN 200.0 AND 35.0 FEET

STABILITY CLASS A

STABILITY BASED ON: DELTA T
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED (MPH)	. N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM .																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.51- 5.50	0	0	0	0	0	0	0	1	5	2	4	0	2	0	0	0	14
5.51- 6.50	0	1	3	1	0	1.	1	3	7	. 9	12	6	1	0	1	0	46
6.51- 8.50	0	0	1	0	5	2	2	4	22	25	51	29	12	1	0	0	154
8.51-11.50	0	1	1	2	4	6	3	0	9	18	38	21	3	4	0	0	110
11.51-14.50	0	0	1	1	2	0	0	0	0	3	24	16	3	7	1	0	58
14.51-20.50	0	0	0	4	0	0	0	0	0	2	8	3	2	7	0	0	26
>20.50	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	0	4
TOTAL			6	8 -	11	9	6	8 -	43	59	140	76	23	19	2	0	412

STABILITY CLASS B

SPEED (MPH)	N	NNE	NE	ENE	. Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51~ 2.50	0	0	0	.0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	4	1	2	2	2	2	1	0	14
4.51- 5.50	0	3	0	0	0	3	4	7	13	6	9	7	3	1	2	0	. 58
5.51- 6.50	0	0	4	1	2	3	0	8	22	8	7	4	2	0	1	, 1	63
6.51- 8.50	0	1	5	5	13	9	4	5	11	17	27	15	7	1	0	2	122
8.51-11.50	0	2	0	4	3	4	1	0	1	4	10	10	3	2	0	0	44
11.51-14.50	0	0	1	2	6	0	0	0	0	Ó	8	2	0	1	0	0	20
14.51-20.50	0	0	0	0	1	0	0	0	0	1	0	2	0	1	1	1	7
>20.50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
TOTAL	0	6	10	12	25	19	9	20	51	37	63	43	17	8	5	4	329

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	∫ NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
2.51- 3.50	2	0	1.	0	0	0	0	1	1	3	3	0	2	1	1	1	16
3.51- 4.50	2	2	3	0	1	2	2	3	6	3	8	4	1	0	1	1	39
4.51- 5.50	7	3	7	2	3	5	0	5	14	8	13	4	. 3	3	2	2	81
5.51- 6.50	2	2	8	2	4	. 4	0	2	13	9	9	3	4	0	3	1	66
6.51- 8.50	0	1	7	4	4	4	4	1	6	2	13	10	2	2	1	1	62
8.51-11.50	0	2	3	3	3	2	3	0	0	1	2	9	5	0	1	0	34
11.51-14.50	0	0	1	1	6	1	0	0	` 0	3	4	0	0	1	0	0	17
14.51-20.50	0	0	0	2	5	0	0	0	1	0	4	1	0	0	1	0	14
>20.50	0	0	0	0	0	0	0	0	0	.0	0	1	0	0	0	0	1
TOTAL	13	10	30	14	26	18	9	12	41	29	56	32	18	7	10	6	331

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 12/31/2009

STABILITY CLASS D

STABILITY CLASS D

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET

WIND MEASURED AT: 35.0 FEET

WIND THRESHOLD AT: .75 MPH

JOINT PREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED

(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	· wsw	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	1	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
1.51- 2.50	3	2	4	1	2	2	0	4	5	5	4	6	. 2	4	1	1	46
2.51- 3.50	5	4	10	10	8	4	4	11	19	18	19	9	8	5	6	5	145
3.51- 4.50	1	6	7	5	2	9	8	10	18	13	16	9	9	4	3	7	127
4.51- 5.50	4	6	7	12	8	5	2	2	12	7	11	11	4	4	3	3	101
5.51- 6.50	2	3	9	3	4	3	2	0	5	3	8	8	10	3	0	2	65
6.51- 8.50	3	4	8	6	4	4	3	2	2	5	18	16	4	2	1	2	84
8.51-11.50	2	0	1	7	7	9	3	3	2	4	10	16	10	6	5	0	85
11.51-14.50	0	0	0	0	8	3 .	1	1	2	2	20	11	0	2	1	1	52
14.51-20.50	0	0	2	0	6	1	1	0	1	5	12	4	0	4	5	2	43
>20.50	0	1	0	0	0	0	0	0	1	0	1	0	1	0	2	1	7
TOTAL	21	27	48	44	49	40	24	33	67	62	119	90	48	34	27	24	757

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	3
1.51- 2.50	7	2	1	2	2	. 2	1	1	3	4	7	7	6	8	3	7	63
2.51- 3.50	8	3	2	1	0	0	1	4	3	3	8	5	7	5	4	9	63
3.51- 4.50	4	3	3	3	2	1	2	1	5	12	9	6	7	5	3	3	69
4.51- 5.50	5	8	4	1	3	0	0	1	3	6	20	9	7	5	3	2	77
5.51~ 6.50	4	3	1	2	2	0	1	0	2	5	11	15	11	2	3	3	65
6.51- 8.50	0	6	6	5	3	3	3	2	6	20	37	45	18	5	6	2	167
8.51-11.50	0	2	1	3	6	11	5	3	1	20	32	30	10	5	8	3	140
11.51-14.50	0	0	1	4	11	6	2	0	1	12	26	9	2	7	4	1	86
14.51-20.50	0	1	2	0	10	2	0	0	1	1	7	0	1	3	1	0	. 29
>20.50	1	0	0	0	0	0	0	. 0	3	0	1	3	2	0	0	0	10
TOTAL .	30	28	21	21	39	25	15	12	28	84	158	129	71	45	35	31	772

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	<u>_</u>
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
1.51- 2.50	6	4	3	0	2	0	0	1	3	2	6	5	7	6	9	7	61
2.51- 3.50	23	7	3	5	2	1	0	2	2	5	10	10	9	14	15	20	128
3.51- 4.50	14	10	7	0	2	1	1	1	5	9	14	9	13	16	11	17	130
4.51- 5.50	12	8	2	0	0	1	0	1	1	6	17	14	9	5	10	11	97
5.51- 6.50	10	4	1	3	0	0	1	1	1	5	14	4	12	2	7	9	74
6.51- 8.50	3	6	1	0	0	0	1	0	3	7	27	14	15	7	6	13	103
8.51-11.50	3	3	2	5	0	0	0	1	0	3	7	5	. 6	2	1	5	43
11.51-14.50	1	3	0	1	0	0	0	1	0	0	1	0	0	0	1	2	10
14.51-20.50	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	72	45	19	14			3	8	15	39	96	62	71	52	60	84	649

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 12/31/2009

*** 2ND SEMI ***

STABILITY CLASS G

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED									,								
(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
	•				•		^		^					^		•	9
.76- 1.50	0	1	0	0	0	0	U	0	U	0	U	U	U	U	0	2	3
1.51- 2.50	30	19	8	4	3	4	1	3	3	3	5	6	12	14	10	28	153
2.51- 3.50	84	42	19	2	4	1	0	0	1	0	7	6	11	19	33	70	299
3.51- 4.50	115	55	13	2	3	` 2	0	0	0	0	4	8	5	6	35	67	315
4.51- 5.50	79	40	7	2	0	1	0	1	0	1	5	2	5	8	6	35	192
5.51- 6.50	32	23	4	1	1	0	0	0	0	0	1	0	2	1	3	12	80
6.51- 8.50	37	28	9	0	0	0	0	0	0	2	5	2	0	0	1	15	99
8.51-11.50	6	9	0	0	0	0	0	0	0	0	1	0	0	0	0	4	20
11.51-14.50	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
14.51-20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	385	217	60	11	11	8	1	4	4	6	28	24	35	48	88	233	1163

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	2	2	0	0	0	0	0	0	0	1	0	1	0	0	0	3	9
1.51- 2.50	46	27	16	7	9	8	2	9	14	14	22	24	28	32	23	43	324
2.51- 3.50	122	56	35	18	14	6	5	18	26	29	47	30	37	44	59	105	651
3.51- 4.50	136	76	33	10	10	15	13	15	38	38	53	38	37	33	54	95	694
4.51- 5.50	107	68	27	17	14	15	6	18	48	36	79	47	33	26	26	53	620
5.51- 6.50	50	36	30	13	13	11	5	14	50	39	62	40	42	8	18	28	459
6.51-8.50	43	46 \	37	20	29	22	17	14	50	78	178	131	58	18	15	35	791
8.51-11.50	11	19	8	24	23	32	15	7	13	50	100	91	37	19	15	12	476
11.51-14.50	3	3 .	4	9	33	10	3	2	3	20	83	38	5	18	7	4	245
14.51-20.50	0	1	4	6	22	3	1	0	3	11	31	10	3	15	8	3	121
>20,50	1	1	0	0	0	0	0	0	4	0	5	6	3	0	2	1	23
TOTAL	521	335	194	124	167	122	67	97	249	316	660	456	283	213	227	382	4413

TOTAL NUMBER OF OBSERVATIONS: 4416
TOTAL NUMBER OF VALID OBSERVATIONS: 4413
TOTAL NUMBER OF MISSING OBSERVATIONS: 3
PERCENT DATA RECOVERY FOR THIS PERIOD: 99.9 %
MEAN WIND SPEED FOR THIS PERIOD: 6.3 MPH
TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

	PERCENTAGE	OCCURRENCE	OF S	STABILITY	CLASSES	
A	В	С	D	E	F	G
0.24	7 46	7 60 1	7 10	17 40	1 4 7 1	26 25

					DISTR	IBUTION	OF WIND	DIREC'	rion vs	STABIL	ITY						
	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	, MM	NNW	CALM
Α	0	2	6	8	11	9	6	8	43	59	140	76	23	19	2	0	0
В	0	6	10	12	25	19	9	20	51	37	63	43	17	, 8	5	4	0
С	13	10	30	14	26	18	9	12	41	29	56	32	18	7	10	6	0
D	21	27	48	44	49	40	24	33 .	67	62	119	90	48	34	27	24	0,
ε	30	28	21	21	39	25	15	12	28	84	158	129	71	45	35	31	oʻ
F	72	45	19	14	6	3	3	8	15	. 39	96	62	71	52	60	84	0
G	385	217	60	11	11	8	1	4	4	6	28	24	35	48	88	233	0
TOTAL	521	335	194	124	167	122	67	97	249	316	660	456	283	213	227	382	0

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 12/31/2009

*** ANNUAL ***

STABILITY CLASS A

STABILITY CLASS A

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET

WIND MEASURED AT: 35.0 FEET

WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED

35550																	
(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	MNM	NW	NNW	TOTAL
CALM																	U
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.51- 5.50	0	0	0	0	0	0	0	2	5	2	5	0	2	1	1	0	18
5.51- 6.50	0	1	3	1	0	1	3	7	9	20	13	12	2	0	3	0	75
6.51- 8.50	0	0	3	0	6	4	6	11	48	46	88	43	18	2	2	1	278
8.51-11.50	0	4	1	2	6	13	6	4	26	57	82	42	20	8	0	0	271
11.51-14.50	0	0	1	2	2	0	0	0	5	24	63	30	19	16	2	1	165
14.51-20.50	0	0	0	4	0	0	0	0	4	14	29	9	5	15	3	1	84
>20.50	0	0	0	0	0	0	0	0	0	3	12	3	0	1	0	0	19
TOTAL			8	9 -	14	18	15	24	97	166	292	139	66	43	11	3	910

STABILITY CLASS B

SPEED																	
(MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM													:				0
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.51- 3.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.51- 4.50	0	1	0	0	0	0	0	1	5	1	3	2	2	2	1	0	18
4.51- 5.50	1	3	1	1	3	4	4	10	19	13	14	8	7	1	2	0	91
5.51- 6.50	2	3	8	1	4	4	1	20	40	18	17	8	2	2	1	1	132
6.51- 8.50	0	4	12	9	19	15	8	10	28	30	38	23	13	2	2	4	217
8.51-11.50	2	2	1	6	5	5'	1	2	2	8	28	16	7	5	1	0	91
11.51-14.50	0	0	1	2	9	0	0	0	3	0	23	6	3	2	1	. 0	50
14.51-20.50	0	0	0	0	3	0	0	0	0	6	2	3	2	1	3	1	21
>20.50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	. 1
TOTAL	5	13	23	19	43	28	14	43	97	76	125	67	36	15	11	6	621

STABILITY CLASS C

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0
1.51- 2.50	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1.
2.51- 3.50	2	0	1	0	0	0	1	2	1	3	3	0	2	1	1	2	19
3.51- 4.50	2	3	5	0	2	3	2	4	10	5	12	6	1	0	1	1	57
4.51- 5.50	7	7	8	2	4	8	4	18	23	27	21	6	5	3	2	3	148
5.51- 6.50	3	7	13	2	4	4	1	12	25	18	20	14	6	0	4	1	134
6.51- 8.50	1	5	17	8	6	6	9	4	14	6	28	18	3	2	2	2	131
8.51-11.50	0	3	6	8	6	3	3	0	3	6	17	12	8	5	3	1	84
11.51-14.50	2	0	1	3	7	1	0	0	2	5	10	1	2	4	0	1	39
14.51-20.50	0	0	0	2	6	0	0	0	1	1	12	1	0	1	1	1	26
>20.50	0	0	0	0	1	0	0	0	0	0	0	3	0	0	1	0	5
TOTAL	17	25	51	25	36	25	20	40	79	71	123	61	28	16	15	12	644

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 12/31/2009

*** ANNUAL ***

STABILITY CLASS D

STABILITY CLASS D

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 PEET

WIND MEASURED AT: 35.0 FEET

WIND THRESHOLD AT: .75 MPH

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
1.51- 2.50	3	4	7	6	3 .	4	2	7	8	7	11	9	7	6	1	2	87
2.51- 3.50	6	5	18	14	13	11	7	15	28	33	37	19	16	12	11	12	257
3.51- 4.50	5	10	13	8	7	11	16	19	33	、 36	32	17	13	7	8	14	249
4.51- 5.50	10	14	13	16	10	8	3	11	28	21	25	11	8	6	8	5	197
5.51- 6.50	3	6	14	6	6	4	3	5	13	12	14	16	11	4	4	3	124
6.51- 8.50	5	8	17	12	7	13	10	3	13	12	30	24	13	4	3	3	177
8.51-11.50	2	0	2	14	14	12	9	4	6	11	33	29	16	11	9	0	172
11.51-14.50	0	0	0	10	24	4	1	1	3	9	36	17	5	5	4	2	121
14.51-20.50	0	0	2	2	14	2	1	0	5	20	25	6	0	5	5	4	91
>20.50	0	1	0	1	0	0	0	0	1	7	1	2	1	0	4	1	19
TOTAL	35	49	86	89	98	69	52	65	138	168	244	150	90	60	57	46	1496

STABILITY CLASS E

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	sw	WSW	W	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	2	0	1	0	0	0	0	0	1	1	0	0	3	0	0	1	9
1.51- 2.50	9	4	2	2	2	2	1	3	5	8	11	10	11	14	5	9	98
2.51- 3.50	19	5	3	2	1	0	2	5	5	5	19	11	9	14	14	13	127
3.51- 4.50	12	16	5	5	3	2	2	3	6	20	17	14	9	15	8	10	147
4.51- 5.50	8	13	7	4	3	0	0	2	5	17	33	14	11	7	9	4	137
5.51- 6.50	5	6	5	4	3	0	2	2	6	14	21	24	14	8	6	5	125
6.51- 8.50	2	10	14	8	6	3	4	5 .	18	44	60	65	28	16	11	6	300
8.51-11.50	2	3	4	8	7	12	5	6	7	56	82	64	22	14	22	3	317
11.51-14.50	1	0	1	7	21	11	3	0 .	1	35	46	20	5	15	5	3	174
14.51-20.50	0	3	2	1	20	2	0	0	2	9	15	6	2	9	1	6	78
>20.150	1	0	0	0	0	0	0	0	3	1	1	3	2	0	0	0	11
TOTAL	61	60	44	41	66	32	19	26	59	210	305	231	116	112	81	60	1523

STABILITY CLASS F

SPEED (MPH)	N	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	3
1.51- 2.50	13	6	5	2	2	1	1	1	5	5	9	10	10	11	19	15	115
2.51- 3.50	34	15	9	5	4	3	0	4	8	7	17	23	20	30	28	34	241
3.51- 4.50	21	15	14	4	3	1	1	4	8	18	25	18	28	36	20	33	249
4.51- 5.50	21	12	5	1	0	1	0	1	2	18	43	27	14	11	22	24	202
5.51- 6.50	12	7	4	3	0	0	2	5	1	13	35	16	15	9	12	15	149
6.51- 8.50	6	7	3	1	1	0	1	0	4	40	59	34	30	14	15	24	239
8.51-11.50	3	5	3	5	0	0	0	1	0	16	36	17	7	5	2	7	107
11.51-14.50	4	3	0	1	1	0	0	1	0	0	3	0	0	0	1	5	19
14.51-20.50	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
>20.50	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
TOTAL	114	70	43	22	11	7	5	17	28	119	227	146	125	116	119	157	1326

JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 12/31/2009

*** ANNUAL ***

STABILITY CLASS G

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET
WIND MEASURED AT: 35.0 FEET
WIND THRESHOLD AT: .75 MPH
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET

SPEED																	
(MPH)	N ·	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL
CALM																	0
.76- 1.50	0	4	0	1	1	0	0	2	0	0	0	1	2	1	0	2	14
1.51- 2.50	40	24	15	6	6	6	2	4	5	5	7	8	25	25	24	50	252
2.51- 3.50	130	66	26	6	8	2	1	0	3	5	12	15	26	40	69	118	527
3.51- 4.50	196	76	18	4	4	3	1	0	0	0	9	17	14	19	71	154	586
4.51- 5.50	154	73	11	5	0	2	1	1	0	2	8	3	5	13 .	22	96	396
5.51- 6.50	84	51	5	3	1	0	0	1	0	0	7	4	5	2	. 9	35	207
6.51- 8.50	70	57	12	0	0	0	0	0	0	2	11	. 4	1	1	2	27	187
8.51-11.50	31	20	2	0	0	0	0	0	0	0	1	0	0	0	0	7	61
11.51-14.50	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	. 5
14.51-20.50	0	0	0	0	0	0	0	0	0	0.	. 0	0	0	0	0	0	0
>20.50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	709	371	89	25	20	13	5	8	8	14	55	52	78	101	197	490	2235

STABILITY CLASS ALL

SPEED (MPH)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	wsw	w	WNW	NW	NNW	TOTAL
CALM																	
.76- 1.50	3	5	1	1	1	1	0	2	1	1	0	2	6	1	0	3	28
1.51- 2.50	65	38	29	16	13	13	6	15	23	25	38	37	54	56	49	76	553
2.51- 3.50	191	91	57	27	26	16	11	26	45	53	88	68	73	97	123	179	1171
3.51- 4.50	236	121	55	21	19	20	22	31	62	80	98	74	67	79	109	212	1306
4.51- 5.50	201	122	45	29	20	23	12	45	82	100	149	69	52	42	66	132	1189
5.51- 6.50	109	81	52	20	18	13	12	52	94	95	127	94	55	25	39	60	946
6.51- 8.50	84	91	78	38	45	41	38	33	125	180	314	211	106	41	37	67	1529
8.51-11.50	40	37	19	43	38	45	24	17	44	154	279	180	80	48	37	18	1103
11.51-14.50	11	3	4	25	64	16	4	2	14	73	181	74	34	42	13	13	573
14.51-20.50	0	3	4	9	43	4	1	0	12	52	83	25	9	31	13	13	302
>20.50	1	1	0	1	1	0	0	0	4	11	14	12	3	1	5	1	55
TOTAL	941	593	344	230	288	192	130	223	506	824	1371	846	539	463	491	774	8755

TOTAL NUMBER OF OBSERVATIONS: 8760
TOTAL NUMBER OF VALID OBSERVATIONS: 8755
TOTAL NUMBER OF MISSING OBSERVATIONS: 5
PERCENT DATA RECOVERY FOR THIS PERIOD: 99.9 %
MEAN WIND SPEED FOR THIS PERIOD: 6.6 MPH
TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

 PERCENTAGE
 OCCURRENCE OF STABILITY CLASSES

 B
 C
 D
 E
 F

 7.09
 7.36
 17.09
 17.40
 15.
 A 10.39 15.15 25.53

	N	NNE	NE	ENE	DISTR E	IBUTION ESE	OF WIN SE	D DIREC SSE	TION VS S	STABII SSW	LITY , SW	WSW	W	WNW	NW	NNW	CALM
A	0	5	8	9	14	18	15	24	97	166	292	139	66	43	11	3	0
В	5	13	23	19	43	28	14	43	97	76	125	67	36	15	11	6	0
С	17	25	51	25	36	25	20	40	79	71	123	61	28	16	15	12	0
D	35	49	86	89	98	69	52	65	138	168	244	150	90	60	57	46	0
Е	61	60	44	41	66	32	19	26	59	210	305	231	116	112	81	60	0
F	114	70	43	22	11	7	5	17	28	119	227	146	125	116	119	157	. 0
G	709	371	89	25	20	13	5	8	8	14	55	52	78	101	197	490	0
TOTAL	941	593	344	230	288	192	130	223	506	824	1371	846	539	463	491	774	0

APPENDIX C

DOSE CALCULATIONS

GASEOUS EFFLUENT DOSE CALCULATIONS

Doses to the maximum individual and the surrounding population resulting from the release of radioactive material in gaseous effluents from the Palo Verde Nuclear Generating Station were calculated using the GASPAR computer program. The radionuclides considered in the dose calculations were Tritium, Iodine-131, Iodine-132, Iodine-133, Iodine-135, all noble gases, and particulates having a half-life greater than eight days and for which dose factors are contained in NUREG-0172. Locations selected for individual dose calculations included for each sector, the site boundary, and within five miles, if present, the nearest residence, the nearest garden, and the nearest milk animal. GASPAR implements the radiological dose models of Regulatory Guide 1.109 to determine the radiation exposure to man from four principal atmospheric exposure pathways: plume, ground deposition, inhalation, and ingestion. Doses to the maximum individual and the population were calculated as a function of age group and pathway for significant body organs.

Table 43 presents the doses on a quarterly, semiannual and annual basis for the Energy Information Center. An occupancy factor of 1.0 (implying continuous occupancy over the entire year) was considered for the Energy Information Center and the exposure pathways considered to calculate its doses were plume, ground deposition, and inhalation.

Table 44 presents the population dose.

Table 45 summarizes the individual doses and compares the result to PVNGS ODCM Requirement limits. The site boundary and residence locations for which data are presented represent the highest annual doses.

Based on results obtained by placing TLDs on the site boundary in each sector, the net dose for this reporting period, from direct-radiation, (plume and ground deposition) from all three units was indistinguishable from preoperational values of $8 - 14 \mu R/hr$ (17 - 30 mR/Std Qtr).

There were no liquid effluents associated with the operation of this facility.

Dose Calculation Models

The GASPAR computer code was used to evaluate the radiological consequences of the routine release of gaseous effluents. GASPAR implements the dose calculational methodologies of Regulatory Guide 1.109, Revision 1.

Source terms for each quarter are combined with station-specific demographic data and each quarter's atmospheric diffusion estimates for gaseous dose calculations.

Atmospheric diffusion estimates are generated by the XOQDOQ computer code using onsite meteorological data as input. Additional input to GASPAR includes the following site-specific data:

0 to 5 mile nearest residence, milk animal and garden in each of the 16 compass sectors, based on the 2009 Land Use Census.

0 to 10 mile population distribution based on the Maricopa County Department of Emergency Management 2009 Population and Special Needs Survey Information.

The 10 to 50 mile population distribution from the PVNGS UFSAR, Figure 2.1-11.

The population distribution of metropolitan Phoenix greater than 50 miles from PVNGS, based on the 1980 federal census results, is conservatively included in the 40 to 50 mile sectors (NE=123; ENE=140,097; E=621,130; ESE=8,392).

Absolute humidity of 6.0 g/m³ from the PVNGS UFSAR, Table 2.3-16.

The fraction of the year that vegetables are grown (0.667) from the PVNGS ER-OL, Section 2.1.3.4, Table 2.1-8.

The fraction of daily feed derived from pasture while on pasture (0.35) and length of grazing season for milk animals beyond 5 miles (0.75) from the PVNGS ER-OL, Section 2.1.3.4.3.

The fraction of daily feed derived from pasture while on pasture (0.05) and length of grazing season for meat animals (0.25) from the PVNGS ER-OL, Section 2.1.3.4.4.

There were six (6) sectors containing milk animal (goat or cow) locations within five (5) miles. For calculational purposes these milk animals are assumed to be fed 100% on pasture grass during the year.

Other values used for input to GASPAR are default values from Regulatory Guide 1.109, Revision 1.

Table 43: Doses To Special Locations For 2009

ENERGY INFORMATION CENTER LOCATED ONSITE 0.45 MILE S FROM UNIT 1, 0.29 MILE SSE FROM UNIT 2 AND 0.20 MILE ESE FROM UNIT 3

	(MREM)	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
1 0 0	QUARTER	1.6001	GI-INACI	BONE	DIVER	KIDNEI	INIKOID .	LONG	SKIN
131	ADULT	2.97E-01	2.97E-01	1.65E-02	2.97E-01	2.97E-01	2.97E-01	2.97E-01	3.07E-01
	TEEN	2.98E-01	2.98E-01	1.65E-02	2.97E-01 2.98E-01	2.98E-01	2.98E-01	2.98E-01	3.07E-01
	CHILD	2.65E-01	2.65E-01	1.65E-02	2.65E-01	2.65E-01	2.65E-01	2.65E-01	2.75E-01
	INFANT	1.60E-01	1.60E-01	1.65E-02	1.60E-01	1.60E-01	1.60E-01	1.60E-01	1.70E-01
2 NID	QUARTER	1.005-01	1.00E-01	1.036-02	1.00E-01	I.00E-01	1.002-01	1.0-200.1	1.706-01
2111	ADULT	2.20E-01	2.20E-01	1.42E-02	2.20E-01	2.20E-01	2.20E-01	2.20E-01	2.33E-01
	TEEN	2.20E-01 2.21E-01	2.21E-01	1.42E-02	2.21E-01	2.20E-01 2.21E-01	2.21E-01	2.21E-01	2.34E-01
	CHILD	1.97E-01	1.97E-01	1.42E-02	1.97E-01	1.97E-01	1.97E-01	1.97E-01	2.09E-01
		1.19E-01	1.19E-01	1.42E-02	1.19E-01	1.19E-01	1.37E-01 1.19E-01	1.19E-01	1.32E-01
1.00	INFANT		1.196-01	1.426-02	1.196-01	1.19E-01	I.19E-01	1.196-01	1.326-01
151	SEMI-ANNU		E 16E 01	3 065 03	E 160 01	E 160 01	5.16E-01	5.16E-01	5.39E-01
	ADULT	5.16E-01	5.16E-01	3.06E-02	5.16E-01	5.16E-01			
	TEEN	5.19E-01	5.19E-01	3.06E-02	5.19E-01	5.19E-01	5.19E-01	5.19E-01	5.42E-01
-	CHILD	4.62E-01	4.62E-01	3.06E-02	4.62E-01	4.62E-01	4.62E-01	4.62E-01	4.85E-01
	INFANT	2.79E-01	2.79E-01	3.06E-02	2.79E-01	2.79E-01	2.79E-01	2.79E-01	3.02E-01
3RD	QUARTER								0 05- 04
	ADULT	2.04E-01	2.04E-01	5.39E-04	2.04E-01	2.04E-01	2.04E-01	2.04E-01	2.05E-01
	TEEN	2.06E-01	2.06E-01	5.39E-04	2.06E-01	2.06E-01	2.06E-01	2.06E-01	2.07E-01
•	CHILD	1.82E-01	1.82E-01	5.39E-04	1.82E-01	1.82E-01	1.82E-01	1.82E-01	1.82E-01
	INFANT	1.05E-01	1.05E-01	5.38E-04	1.05E-01	1.05E-01	1.05E-01	1.05E-01	1.05E-01
4TH	QUARTER								
	ADULT	4.06E-01	4.06E-01	9.69E-03	4.06E-01	4.06E-01	4.06E-01	4.06E-01	4.12E-01
	TEEN	4.08E-01	4.08E-01	9.69E-03	4.08E-01	4.08E-01	4.08E-01	4.08E-01	4.14E-01
	CHILD	3.62E-01	3.62E-01	9.69E-03	3.62E-01	3.62E-01	3.62E-01	3.62E-01	3.68E-01
	INFANT	2.12E-01	2.12E-01	9.69E-03	2.12E-01	2.12E-01	2.13E-01	2.12E-01	2.13E-01
2ND	SEMI-ANNU								
•	ADULT	6.10E-01	6.10E-01	1.02E-02	6.10E-01	6.10E-01	6.10E-01	6.10E-01	6.16E-01
	TEEN	6.14E-01	6.14E-01	1.02E-02	6.14E-01	6.14E-01	6.14E-01	6.14E-01	6.21E-01
	CHILD	5.44E-01	5.44E-01	1.02E-02	5.44E-01	5.44E-01	5.44E-01	5.44E-01	5.50E-01
	INFANT	3.17E-01	3.17E-01	1.02E-02	3.17E-01	3.17E-01	3.18E-01	3.17E-01	3.19E-01
ANN	JAL					•			
	ADULT	1.13E+00	1.13E+00	4.09E-02	1.13E+00	1.13E+00	1.13E+00	1.13E+00	1.16E+00
	TEEN	1.13E+00	1.13E+00	4.09E-02	1.13E+00	1.13E+00	1.13E+00	1.13E+00	1.16E+00
	CHILD	1.01E+00	1.01E+00	4.09E-02	1.01E+00	1.01E+00	1.01E+00	1.01E+00	1.03E+00
	INFANT	5.96E-01	5.96E-01	4.09E-02	5.96E-01	5.96E-01	5.97E-01	5.96E-01	6.20E-01

Table 44:
Integrated Population Dose for 2009

JAN - MAR

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	1.62E-03 .03%	1.62E-03 .03%	1.62E-03 99.97%	1.62E-03 .03%	1.62E-03 .03%			3.17E-03 .07%
GROUND	8.45E-08 .00%	8.45E-08 .00%	8.45E-08 .01%			8.45E-08 .00%		9.94E-08 .00%
INHAL	1.33E+00 27.80%	1.33E+00 27.80%	2.62E-07 .02%	1.33E+00 27.80%	1.33E+00 27.80%		1.33E+00 27.80%	
VEGET	2.88E+00 60.21%	2.88E+00 60.21%	1.54E-07 .01%		2.88E+00 60.21%		2.88E+00 60.21%	
COW MILK	4.34E-01 9.05%	4.34E-01 9.05%	2.08E-08 .00%		4.34E-01 9.05%	4.34E-01 9.05%	4.34E-01 9.05%	
MEAT	1.39E-01 2.90%	1.39E-01 2.90%	3.19E-11 .00%		•		1.39E-01 2.90%	
TOTAL	4.79E+00	4.79E+00	1.62E-03	4:79E+00	4.79E+00	4.79E+00	4.79E+00	4.79E+00
(1) PER CAPITA DOSE (REM)	2.45E-06	2.45E-06	8.27E-10	2.45E-06	2.45E-06	2.45E-06	2.45E-06	2.45E-06

APR - JUN

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	1.00E-02	3.00E-02						
	.32%	.32%	98.86%	.32%	.32%	.32%	.32%	.94%
GROUND	1.05E-04	1.24E-04						
	.00%	.00%	1.04%	.00%	.00%	.00%	`.00%	.00%
INHAL	9.80E-01	9.80E-01	1.96E-06	9.80E-01	9.80E-01	9.81E-01	9.80E-01	9.80E-01
	31.07%	31.07%	.02%	31.07%	31.07%	31.08%	31.08%	30.88%
VEGET	1.80E+00	1.80E+00	6.52E-06	1.80E+00	1.80E+00	1.80E+00	1.80E+00	1.80E+00
	56.97%	56.97%	.06%	56.97%	56.97%	56.97%	56.97%	56.61%
COM WILK	2.87E-01	2.87E-01	1.85E-06	2.87E-01	2.87E-01	2.88E-01	2.87E-01	2.87E-01
	9.11%	9.11%	.02%	9.11%	9.11%	9.11%	9.11%	9.05%
MEAT	7.97E-02	7.97E-02	5.34E-08	7.97E-02	7.97E-02	7.97E-02	7.97E-02	7.97E-02
	2.53%	2.53%	.00%	2.53%	2.53%	2.52%	2.52%	2.51%
TOTAL	3.15E+00	3.15E+00	1.01E-02	3.15E+00	3.15E+00	3.16E+00	3.15E+00	3.17E+00
(1) PER CAPITA DOSE (REM)	1.61E-06	1.61E-06	5.16E-09	1.61E-06	1.61E-06	1.61E-06	1.61E-06	1.62E-06

Table 44: (continued) Integrated Population Dose for 2009

JAN - JUN

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	skin	
PLUME	1.16E-02 .15%	1.16E-02 .15%		•	1.16E-02 .15%	1.16E-02 .15%	1.16E-02 .15%	3.31E-02 .42%	,
GROUND	1.06E-04 .00%	1.06E-04 .00%	1.06E-04 .90%	1.06E-04 .00%	1.06E-04 .00%	1.06E-04 .00%	1.06E-04 .00%	1.24E-04 .00%	
INHAL	2.31E+00 29.10%	2.31E+00 29.10%	2.22E-06 .02%	2.31E+00 29.10%	2.31E+00 29.10%	2.31E+00 29.10%	2.31E+00 29.10%	2.31E+00 29.02%	
VEGET	4.68E+00 58.93%	4.68E+00 58.93%	6.67E-06 .06%	4.68E+00 58.93%		4.68E+00 58.92%			
COM WILK	7.21E-01 9.08%	7.21E-01 9.08%				7.21E-01 9.08%	7.21E-01 9.08%		
MEAT	2.19E-01 2.75%	2.19E-01 2.75%	5.34E-08 .00%	2.19E-01 2.75%	,	2.19E-01 2.75%	2.19E-01 2.75%	2.19E-01 2.75%	
TOTAL	7.94E+00	7.94E+00	1.17E-02	7.94E+00	7.94E+00	7.94E+00	7.94E+00	7.96E+00	
(1) PER CAPITA DOSE (REM)	4.05E-06	4.05E-06	5.97E-09	 4.05E-06	 4.05E-06 	4.05E-06	4.05E-06	4.06E-06	

JUL - SEP

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	1.04E-04 .00%	1.04E-04 .00%	1.04E-04 84.06%	1.04E-04 .00%		1.04E-04 .00%		2.02E-04 .01%
GROUND	2.69E-07 .00%	2.69E-07 .00%	2.69E-07 .22%	2.69E-07 .00%		2.69E-07 .00%	2.69E-07 .00%	3.15E-07 .00%
INHAL	9.99E-01 31.07%	9.99E-01 31.07%	3.25E-06 2.64%	9.99E-01 31.07%			9.99E-01 31.07%	
VEGET	1.83E+00 56.86%	1.83E+00 56.86%	1.58E-05 12.80%	1.83E+00 56.86%		1.83E+00 56.86%		1.83E+00 56.86%
COM WILK	3.11E-01 9.66%	3.11E-01 9.66%	3.22E-07 .26%	3.11E-01 9.66%		3.11E-01 9.66%	3.11E-01 9.66%	, .
MEAT	7.71E-02 2.40%	7.71E-02 2.40%	2.71E-08 .02%	7.71E-02 2.40%	7.71E-02 2.40%	7.71E-02 2.40%	•	7.71E-02 2.40%
TOTAL	3.21E+00	3.21E+00	1.23E-04	3.21E+00	3.21E+00	3.21E+00	3.21E+00	3.21E+00
(1) PER CAPITA DOSE (REM)	1.64E-06	1.64E-06	6.28E-11	 1.64E-06	 1.64E-06 	 1.64E-06	 1.64E-06 	1.64E-06

Table 44: (continued) Integrated Population Dose for 2009

OCT - DEC

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	7.77E-04	2.18E-03						
	.02%	.02%	94.91%	.02%	.02%	.02%	.02%	.05%
GROUND	3.88E-05	4.56E-05						
	.00%	.00%	4.74%	.00%	.00%	.00%	.00%	.00%
INHAL	1.01E+00	1.01E+00	1.27E-06	1.01E+00	1.01E+00	1.01E+00	1.01E+00	1.01E+00
	23.36%	23.36%	.16%	23.36%	23.36%	23.37%	23.36%	23.35%
VEGET	2.86E+00	2.86E+00	1.39E-06	2.86E+00	2.86E+00	2.87E+00	2.86E+00	2.86E+00
	66.27%	66.27%	.17%	66.27%	66.27%	66.26%	66.27%	66.25%
COM WITK	3.16E-01	3.16E-01	1.84E-07	3.16E-01	3.16E-01	3.16E-01	3.16E-01	3.16E-01
	7.30%	7.30%	.02%	7.30%	7.30%	7.30%	7.30%	7.30%
MEAT	1.32E-01	1.32E-01	2.65E-10	1.32E-01	1.32E-01	1.32E-01	1.32E-01	1.32E-01
	3.05%	3.05%	.00%	3.05%	3.05%	3.05%	3.05%	3.05%
TOTAL	4.32E+00	4.32E+00	8.18E-04	4.32E+00	4.32E+00	4.32E+00	4.32E+00	4.32E+00
(1) PER CAPITA DOSE (REM)	2.21E-06	2.21E-06	4.18E-10	2.21E-06	2.21E-06	2.21E-06	2.21E-06	2.21E-06

JUL - DEC

PATHWAY	T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
PLUME	8.80E-04 .01%	8.80E-04 01%	8.80E-04 93.49%	8.80E-04 .01%	8.80E-04 .01%	8.80E-04 .01%	8.80E-04 .01%	2.38E-03 .03%
GROUND	3.91E-05 .00%	3.91E-05 .00%	3.91E-05 4.15%	3.91E-05 .00%	3.91E-05 .00%	3.91E-05 .00%	3.91E-05 .00%	4.59E-05 .00%
INHAL	2.01E+00 26.65%	2.01E+00 26.65%	4.52E-06 .48%	2.01E+00 26.65%	2.01E+00 26.65%	2.01E+00 26.65%	2.01E+00 26.65%	2.01E+00 26.65%
VEGET	4.69E+00 62.26%	4.69E+00 > 62.26%	1.72E-05 1.82%	4.69E+00 62.26%	4.69E+00 62.26%	4.69E+00 62.25%	4.69E+00 62.26%	4.69E+00 62.24%
COM WITK	6.26E-01 8.31%	6.26E-01 8.31%	5.06E-07	6.26E-01 8.31%	6.26E-01 8.31%	6.26E-01 8.31%		6.26E-01 8.31%
MEAT	2.09E-01 2.77%	2.09E-01 2.77%	2.74E-08 .00%	2.09E-01 2.77%			2.09E-01 2.77%	2.09E-01 2.77%
TOTAL	7.54E+00	7.54E+00	9.41E-04	7.54E+00	7.54E+00	7.54E+00	7.54E+00	7.54E+00
(1) PER CAPITA DOSE (REM)	3.85E-06	3.85E-06	4.80E-10	3.85E-06	3.85E-06	3.85E-06	3.85E-06	3.85E-06

Table 44: (continued) Integrated Population Dose for 2009

JAN - DEC

T.BODY	GI-TRACT	BONE	LIVER	KIDNEY	THYROID	LUNG	SKIN
1.25E-02 .08%	1.25E-02 .08%	1.25E-02 98.60%			1.25E-02 .08%	1.25E-02 .08%	3.55E-02 .23%
1.45E-04 .00%	1.45E-04 .00%	1.45E-04 1.14%	1.45E-04 .00%	1.45E-04 .00%	1.45E-04 .00%	1.45E-04 .00%	1.70E-04 .00%
4.32E+00 27.91%	4.32E+00 27.91%			4.32E+00 27.91%	4.32E+00 27.91%	4.32E+00 27.91%	4.32E+00 27.87%
9.37E+00 60.55%	9.37E+00 60.55%					9.37E+00 60.55%	9.37E+00 60.46%
1.35E+00 8.70%	1.35E+00 8.70%		•		1.35E+00 8.70%	1.35E+00 8.70%	1.35E+00 8.69%
4.28E-01 2.76%	4.28E-01 2.76%	8.08E-08 .00%	!	!	!	•	4.28E-01 2.76%
1.55E+01	1.55E+01	1.27E-02	1.55E+01	1.55E+01	1.55E+01	1.55E+01	1.55E+01
7.91E-06	7.91E-06	6.48E-09	7.91E-06	7.91E-06	7.91E-06	7.91E-06	7.91E-06
	1.25E-02 .08% 1.45E-04 .00% 4.32E+00 27.91% 9.37E+00 60.55% 1.35E+00 8.70% 4.28E-01 2.76%	1.25E-02 1.25E-02 .08% .08% .08% .08% .08% .08% .08% .00% .	1.25E-02 1.25E-02 1.25E-02 .08% .08% 98.60%	1.25E-02 1.25E-02 1.25E-02 1.25E-02 .08% .08% 98.60% .08% 1.45E-04 1.45E-04 1.45E-04 1.45E-04 .00% 1.14% .00% 4.32E+00 4.32E+00 6.74E-06 4.32E+00 27.91% 27.91% .05% 27.91% 9.37E+00 2.38E-05 9.37E+00 60.55% 60.55% .19% 60.55% 1.35E+00 1.35E+00 2.37E-06 1.35E+00 8.70% 8.70% .02% 8.70% 4.28E-01 4.28E-01 8.08E-08 4.28E-01 2.76% 2.76% .00% 2.76% 1.55E+01 1.55E+01 1.27E-02 1.55E+01	1.25E-02 1.25E-04 1.25E-04 <td< td=""><td>1.25E-02 1.25E-02 1.25E-04 <td< td=""><td>1.25E-02 1.25E-02 1.25E-04 <td< td=""></td<></td></td<></td></td<>	1.25E-02 1.25E-04 1.25E-04 <td< td=""><td>1.25E-02 1.25E-02 1.25E-04 <td< td=""></td<></td></td<>	1.25E-02 1.25E-04 1.25E-04 <td< td=""></td<>

Note 1: Personrem total divided by 50-mile population of 1,959,000

Table 45: Summary of Individual Doses for 2009								
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Year total		
Gamma Air Dose	mrad	8.30E-03	6.43E-03	1.96E-04	3.61E-03	1.74E-02		
ODCM Req. 4.1 Limit	mrad	5.00E+00	5.00E+00	5.00E+00	5.00E+00	1.00E+01		
% ODCM Limit	%	1.66E-01	1.29E-01	3.92E-03	7.22E-02	1.74E-01		
Beta Air Dose	mrad	3.05E-03	4.50E-03	7.05E-05	1.53E-03	8.97E-03		
ODCM Req. 4.1 Limit	mrad	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01		
% ODCM Limit	%	3.05E-02	4.50E-02	7.05E-04	1.53E-02	4.48E-02		
Maximum Individual								
Total Body	mrem	5.52E-03	4.23E-03	1.30E-04	2.39E-03	1.15E-02		
Skin	mrem	8.94E-03	7.67E-03	2.10E-04	3.94E-03	1.98E-02		
Site Boundary Location								
Unit 1	miles	1.70 SSE	1.70 SSE	1.37 NE	1.40 SSW	1.70 SSE		
Unit 2	miles	1.88 SSE	1.88 SSE	1.58 NE	1.14 SSW	1.88 SSE		
Unit 3	miles	1.73 SSE	1.73 SSE	1.71 NE	1.00 SSW	1.73 SSE		
Maximum Organ Dose	Age	Infant	Infant	Infant	Infant	Infant		
(excluding skin)	Organ	Thyroid ⁽²⁾	Thyroid ⁽²⁾	Thyroid ⁽²⁾	Thyroid	Thyroid		
}	mrem	1.97E-01	1.45E-01	1.50E-01	1.55E-01	6.48E-01		
ODCM Req. 4.2 Limit	mrem	7.50E+00	7.50E+00	7.50E+00	7.50E+00	1.50E+01		
% ODCM Limit (1)	%	2.63E+00	1.93E+00	2.00E+00	2.07E+00	4.32E+00		
Location								
Unit 1	miles	1.88 ESE	1.88 ESE	1.88 ESE	1.88 ESE	1.88 ESE		
Unit 2	miles	1.95 ESE	1.95 ESE	1.95 ESE	1.95 ESE	1.95 ESE		
Unit 3	miles	1.96 ESE	1.96 ESE	1.96 ESE	1.96 ESE	1.96 ESE		
Organ dose from tritium only for Unit 2 location above	mrem	1.96E-01	1.43E-01	1.50E-01	1.54E-01	6.43E-01		
Fraction of organ dose from tritium only for Unit 2 location above ⁽²⁾	%	99	99	100	99	99		
X/Q for Unit 2 location above	sec/m ³	2.77E-06	1.29E-06	1.30E-06	2.29E-06	1.91E-06		
D/Q for Unit 2 location above	m ⁻²	1.81E-09	1.34E-09	1.02E-09	1.63E-09	1.45E-09		

Note 1: ODCM Requirement 5.1 has higher limits than ODCM Requirement 4.2, therefore the percent of limits are more conservative based on ODCM Requirement 4.2 than on ODCM Requirement 5.1.

Note 2: All organs except bone

APPENDIX D

NEI 07-07 Groundwater Protection Initiative Sampling

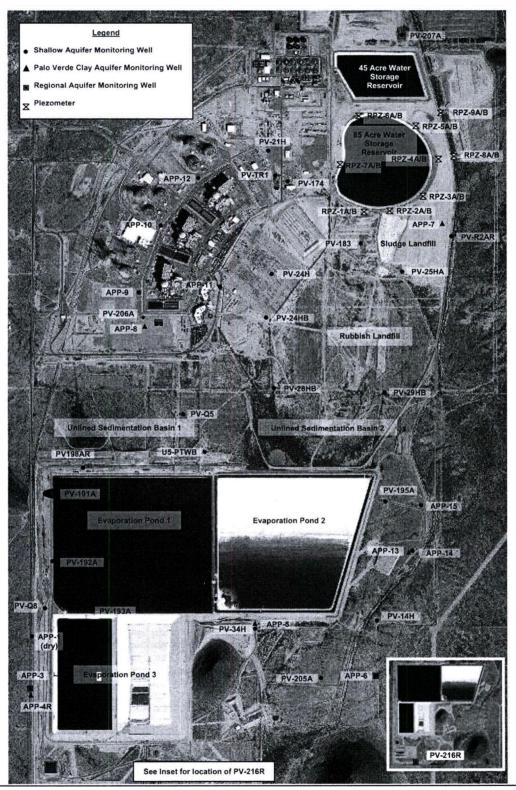


Figure APP Groundwater Monitoring Locations

Monitoring Well/			Conc	
Piezometer	Sample Date/Time	Analyte	(pCi/L)	Comment
APP-3	2/18/09 13:17	Cesium-134	<1.9	
APP-3	2/18/09 13:17	Cesium-137	<1.6	
APP-3	2/18/09 13:17	Colbalt-60	<1.9	
APP-3	2/18/09 13:17	lodine-131	<3.3	
APP-3	2/18/09 13:17	Tritium	<323	
APP-3	5/28/09 11:36	Cesium-134	<1.9	
APP-3	5/28/09 11:36	Cesium-137	<1.9	
APP-3	5/28/09 11:36	Colbalt-60	<1.8	
APP-3	5/28/09 11:36	lodine-131	<4.5	
APP-3	5/28/09 11:36	Tritium	<316	
APP-3	8/6/09 10:15	Cesium-134	<2.2	,
APP-3	8/6/09 10:15	Cesium-137	<1.9	
APP-3	8/6/09 10:15	Colbalt-60	<2.3	
APP-3	8/6/09 10:15	lodine-131	<3.4	
APP-3	8/6/09 10:15	Tritium	<493	
APP-3	10/29/09 13:40	Tritium	<480	,
APP-3	11/3/09 14:13	Cesium-134	<2.4	
APP-3	11/3/09 14:13	Cesium-137	<2.2	
APP-3	11/3/09 14:13	Colbalt-60	<2.2	
APP-3	11/3/09 14:13	lodine-131	<3.8	
APP-4R	2/19/09 12:38	Tritium	<323	
APP-4R	5/28/09 12:05	Cesium-134	<1.9	
APP-4R	5/28/09 12:05	Cesium-137	<1.8	
APP-4R	5/28/09 12:05	Colbalt-60	<2.1	
APP-4R	5/28/09 12:05	lodine-131	<3.5	
APP-4R	5/28/09 12:05	Tritium	<316	
APP-4R	8/6/09 13:00	Tritium	<493	
APP-4R APP-4R	10/29/09 13:55	Tritium	<480	
APP-4R-DUP	8/6/09 13:00	Tritium	<493	duplicate sample
APP-4R-DUP	2/27/09 12:27	Tritium	<317	Tuplicate sample
APP-5	6/10/09 12:27	Cesium-134	<2.2	
APP-5	6/10/09 11:05	Cesium-137	<2.2	
APP-5	6/10/09 11:05	Colbalt-60	<2.1	
	6/10/09 11:05		<3.8	
APP-5	6/10/09 11:05	lodine-131 Tritium	<3.8 <319	
APP-5				
APP-5	9/16/09 9:50	Tritium	<467	
APP-5	11/5/09 10:58	Tritium	<470	
APP-6	3/11/09 8:50	Tritium	<322	
APP-6	6/16/09 7:00	Cesium-134	<3.3	
APP-6	6/16/09 7:00	Cesium-137	<3.2	
APP-6	6/16/09 7:00	Colbalt-60	<3.4	<u> </u>
APP-6	6/16/09 7:00	lodine-131	<3.8	
APP-6	6/16/09 7:00	Tritium	<314	
APP-6	9/17/09 9:30	Tritium	<467	
APP-6	10/22/09 9:06	Tritium	<491	<u> </u>
APP-7	3/12/09 15:31	Tritium	<322	
APP-7	6/17/09 7:50	Cesium-134	<1.8	ļ
APP-7	6/17/09 7:50	Cesium-137	<1.8	
APP-7	6/17/09 7:50	Colbalt-60	<2.1	
APP-7	6/17/09 7:50	lodine-131	<4.5	

Monitoring Well/	T		Conc	T
Piezometer	Sample Date/Time	Analyte	(pCi/L)	Comment
· APP-7	6/17/09 7:50	Tritium	<314	Johnnen
APP-7	9/30/09 8:50	Tritium	<468	
APP-7	11/19/09 9:00	Tritium	<489	
APP-8	1/16/09 9:52	Tritium	<320	
APP-8	2/10/09 10:43	Tritium	<326	
APP-8	5/7/09 11:34	Cesium-134	<1.8	
APP-8	5/7/09 11:34	Cesium-137	<1.6	
APP-8	5/7/09 11:34	Colbait-60	<1.9	
APP-8	5/7/09 11:34	lodine-131	<3.2	
APP-8	5/7/09 11:34	Tritium	<314	
APP-8	7/23/09 11:00	Tritium	<491	
APP-8	10/28/09 9:32	Tritium	<480	
APP-9	1/15/09 11:38	Tritium	<320	
APP-9	5/7/09 10:43	Cesium-134	<2.1	
APP-9	5/7/09 10:43	Cesium-137	<2.2	
APP-9	5/7/09 10:43	Colbalt-60	<2.4	
APP-9	5/7/09 10:43	lodine-131	<3.9	
APP-9	5/7/09 10:43	Tritium	<314	
APP-9	7/9/09 7:55	Tritium	<471	
APP-9	10/22/09 11:50	Tritium	<491	
APP-9 Dupe	10/22/09 11:50	Tritium	<491	duplicate sample
APP-10	1/15/09 12:20	Tritium	<320	
APP-10	5/7/09 9:43	Cesium-134	<1.9	
APP-10	5/7/09 9:43	Cesium-137	<1.7	
APP-10	5/7/09 9:43	Colbalt-60	<1.9	
APP-10	5/7/09 9:43	lodine-131	<3.0	
APP-10	5/7/09 9:43	Tritium	<314	
APP-10	7/9/09 7:40	Tritium	<471	
APP-10	10/22/09 11:27	Tritium	<491	
APP-10 Dupe	10/22/09 11:27	Tritium	<491	duplicate sample
APP-12	1/15/09 13:18	Tritium	<320	
APP-12	5/7/09 9:10	Cesium-134	<2.2	
APP-12	5/7/09 9:10	Cesium-137	<2.1	
APP-12	5/7/09 9:10	Colbalt-60	<2.2	
APP-12	5/7/09 9:10	lodine-131	<3.5	
APP-12	5/7/09 9:10	Tritium	<314	
APP-12	7/9/09 7:15	Tritium	<471	
APP-12	10/22/09 10:55	Tritium	<491	
APP-12 Dupe	10/22/09 10:55	Tritium	<491	duplicate sample
APP-13	1/8/09 14:00	Cesium-134	<2.1	Ambient Monitoring
APP-13	1/8/09 14:00	Cesium-137	<2.2	Ambient Monitoring
APP-13	1/8/09 14:00	Colbalt-60	<2.2	Ambient Monitoring
APP-13	1/8/09 14:00	lodine-131	<3.4	Ambient Monitoring
APP-13	1/8/09 14:00	Tritium	<316	Ambient Monitoring
APP-13	2/5/09 10:14	Cesium-134	<1.9	Ambient Monitoring
APP-13	2/5/09 10:14	Cesium-137	<1.8	Ambient Monitoring
APP-13	2/5/09 10:14	Colbalt-60	<1.9	Ambient Monitoring
APP-13	2/5/09 10:14	lodine-131	<2.7	Ambient Monitoring
APP-13	2/5/09 10:14	Tritium	<327	Ambient Monitoring
· APP-13	3/6/09 10:00	Cesium-134	<2.0	Ambient Monitoring

Monitoring Well/			Conc	
Piezometer	Sample Date/Time	Analyte	(pCi/L)	Comment
APP-13	3/6/09 10:00	Cesium-137	<1.7	Ambient Monitoring
APP-13	3/6/09 10:00	Colbalt-60	<1.9	Ambient Monitoring
APP-13	3/6/09 10:00	lodine-131	. <3.6	Ambient Monitoring
APP-13	3/6/09 10:00	Tritium	<317	Ambient Monitoring
APP-13	4/30/09 10:34	Cesium-134	<1.9	Ambient Monitoring
APP-13	4/30/09 10:34	Cesium-137	<1.8	Ambient Monitoring
APP-13	4/30/09 10:34	Colbalt-60	<2.1	Ambient Monitoring
APP-13	4/30/09 10:34	lodine-131	<4.1	Ambient Monitoring
APP-13	4/30/09 10:34	Tritium	<317	Ambient Monitoring
APP-13	5/21/09 14:14	Cesium-134	<2.2	Ambient Monitoring
APP-13	5/21/09 14:14	Cesium-137	<2.2	Ambient Monitoring
APP-13	5/21/09 14:14	Colbalt-60	<2.2	Ambient Monitoring
APP-13	5/21/09 14:14	lodine-131	<3.3	Ambient Monitoring
APP-13	5/21/09 14:14	Tritium	<321	Ambient Monitoring
APP-13	6/5/09 7:55	Cesium-134	<1.9	Ambient Monitoring
APP-13	6/5/09 7:55	Cesium-137	<1.9	Ambient Monitoring
APP-13	6/5/09 7:55	Colbalt-60	<2.1	Ambient Monitoring
APP-13	6/5/09 7:55	lodine-131	<3.9	Ambient Monitoring
APP-13	6/5/09 7:55	Tritium	<315	Ambient Monitoring
APP-13	7/15/09 7:45	Cesium-134	<2.2	Ambient Monitoring
APP-13	7/15/09 7:45	Cesium-137	<2.2	Ambient Monitoring
APP-13	7/15/09 7:45	Colbalt-60	<2.2	Ambient Monitoring
APP-13	7/15/09 7:45	lodine-131	<2.7	Ambient Monitoring
APP-13	7/15/09 7:45	Tritium	<492	Ambient Monitoring
APP-13	8/20/09 9:15	Cesium-134	<1.8	Ambient Monitoring
APP-13	8/20/09 9:15	Cesium-137	<1.8	Ambient Monitoring
APP-13	8/20/09 9:15	Colbalt-60	<1.9	Ambient Monitoring
APP-13	8/20/09 9:15	lodine-131	<3.4	Ambient Monitoring
APP-13	8/20/09 9:15	Tritium	<478	Ambient Monitoring
APP-13	11/6/09 9:29	Tritium	<486	
APP-14	1/8/09 13:00	Cesium-134	<1.9	Ambient Monitoring
APP-14	1/8/09 13:00	Cesium-137	<1.9	Ambient Monitoring
APP-14	1/8/09 13:00	Colbalt-60	<2.0	Ambient Monitoring
APP-14	1/8/09 13:00	lodine-131	<2.9	Ambient Monitoring
APP-14	1/8/09 13:00	Tritium	<316	Ambient Monitoring
APP-14	2/5/09 11:14	Cesium-134	<2.2	Ambient Monitoring
APP-14	2/5/09 11:14	Cesium-137	<2.3	Ambient Monitoring
APP-14	2/5/09 11:14	Colbalt-60	<2.1	Ambient Monitoring
APP-14	2/5/09 11:14	lodine-131	<3.4	Ambient Monitoring
APP-14	2/5/09 11:14	Tritium	<327	Ambient Monitoring
APP-14	3/6/09 11:00	Cesium-134	<2.4	Ambient Monitoring
APP-14	3/6/09 11:00	Cesium-137	<2.2	Ambient Monitoring
APP-14	3/6/09 11:00	Colbalt-60	<2.1	Ambient Monitoring
APP-14	3/6/09 11:00	lodine-131	<4.2	Ambient Monitoring
APP-14	3/6/09 11:00	Tritium	<317	Ambient Monitoring
APP-14	4/30/09 10:11	Cesium-134	<2.3	Ambient Monitoring
APP-14	4/30/09 10:11	Cesium-137	<2.1	Ambient Monitoring
APP-14	4/30/09 10:11	Colbalt-60	<2.2	Ambient Monitoring
APP-14	4/30/09 10:11	lodine-131	<4.1	Ambient Monitoring
APP-14	4/30/09 10:11	Tritium	<317	Ambient Monitoring

Monitoring Well/	<u> </u>		Conc	
Piezometer	Sample Date/Time	Analyte	(pCi/L)	Comment
APP-14	5/21/09 14:24	Cesium-134	<1.8	Ambient Monitoring
APP-14	5/21/09 14:24	Cesium-137	<1.8	Ambient Monitoring
APP-14	5/21/09 14:24	Colbalt-60	<1.9	Ambient Monitoring
APP-14	5/21/09 14:24	Iodine-131	<4.5	Ambient Monitoring
APP-14	5/21/09 14:24	Tritium	<321	Ambient Monitoring
APP-14	6/5/09 8:20	Cesium-134	<1.9	Ambient Monitoring
APP-14	6/5/09 8:20	Cesium-137	<1.8	Ambient Monitoring
APP-14	6/5/09 8:20	Colbalt-60	<2.0	Ambient Monitoring
APP-14	6/5/09 8:20	lodine-131	<3.4	Ambient Monitoring
APP-14	6/5/09 8:20	Tritium	<315	Ambient Monitoring
APP-14	7/15/09 8:10	Cesium-134	<1.7	Ambient Monitoring
APP-14	7/15/09 8:10	Cesium-137	<1.8	Ambient Monitoring
APP-14	7/15/09 8:10	Colbalt-60	<2.0	Ambient Monitoring
APP-14	7/15/09 8:10	lodine-131	<3.3	Ambient Monitoring
APP-14	7/15/09 8:10	Tritium	<492	Ambient Monitoring
APP-14	8/20/09 9:35	Cesium-134	<1.9	Ambient Monitoring
APP-14	8/20/09 9:35	Cesium-137	<1.9	Ambient Monitoring
APP-14	8/20/09 9:35	Colbalt-60	<1.9	Ambient Monitoring
APP-14	8/20/09 9:35	lodine-131	<2.5	Ambient Monitoring
APP-14	8/20/09 9:35	Tritium	<478	Ambient Monitoring
APP-14	11/10/09 8:50	Tritium	<477	
APP-15	1/8/09 14:55	Cesium-134	<2.4	Ambient Monitoring
· APP-15	1/8/09 14:55	Cesium-137	<2.2	Ambient Monitoring
APP-15	1/8/09 14:55	Colbalt-60	<2.2	Ambient Monitoring
APP-15	1/8/09 14:55	lodine-131	<2.9	Ambient Monitoring
APP-15	1/8/09 14:55	Tritium	<316	Ambient Monitoring
APP-15	2/5/09 12:22	Cesium-134	<1.8	Ambient Monitoring
APP-15	2/5/09 12:22	Cesium-137	<1.9	Ambient Monitoring
APP-15	2/5/09 12:22	Colbalt-60	<2.0	Ambient Monitoring
APP-15	2/5/09 12:22	lodine-131	<2.7	Ambient Monitoring
APP-15	2/5/09 12:22	Tritium	<327	Ambient Monitoring
APP-15	3/6/09 12:00	Cesium-134	<2.3	Ambient Monitoring
APP-15	3/6/09 12:00	Cesium-137	<2.0	Ambient Monitoring
APP-15	3/6/09 12:00	Colbalt-60	<2.3	Ambient Monitoring
APP-15	3/6/09 12:00	lodine-131	<3.8	Ambient Monitoring
APP-15	3/6/09 12:00	Tritium	<317	Ambient Monitoring
APP-15	4/30/09 11:00	Cesium-134	<1.9	Ambient Monitoring
APP-15	4/30/09 11:00	Cesium-137	<1.9	Ambient Monitoring
APP-15	4/30/09 11:00	Colbalt-60	<1.9	Ambient Monitoring
APP-15	4/30/09 11:00	lodine-131	<4.9	Ambient Monitoring
APP-15	4/30/09 11:00	Tritium	<317	Ambient Monitoring
APP-15	5/21/09 13:56	Cesium-134	<1.8	Ambient Monitoring
APP-15	5/21/09 13:56	Cesium-137	<1.8	Ambient Monitoring
APP-15	5/21/09 13:56	Colbalt-60	<1.8	Ambient Monitoring
APP-15	5/21/09 13:56	lodine-131	<3.8	Ambient Monitoring
APP-15	5/21/09 13:56	Tritium	<321	Ambient Monitoring
APP-15	6/5/09 7:20	Cesium-134	<2.2	Ambient Monitoring
APP-15	6/5/09 7:20	Cesium-137	<2.2	Ambient Monitoring
APP-15	6/5/09 7:20	Colbalt-60	<2.3	Ambient Monitoring
APP-15	6/5/09 7:20	lodine-131	<3.1	Ambient Monitoring

Monitoring Well/		:	Conc	
Piezometer	Sample Date/Time	Analyte	(pCi/L)	Comment
APP-15	6/5/09 7:20	Tritium	<315	Ambient Monitoring
APP-15	7/16/09 7:40	Cesium-134	<1.9	Ambient Monitoring
APP-15	7/16/09 7:40	Cesium-137	<1.7	Ambient Monitoring
APP-15	7/16/09 7:40	Colbalt-60	<1.9	Ambient Monitoring
APP-15	7/16/09 7:40	lodine-131	<2.9	Ambient Monitoring
APP-15	7/16/09 7:40	Tritium	<492	Ambient Monitoring
APP-15	8/20/09 8:50	Cesium-134	<2.1	Ambient Monitoring
APP-15	8/20/09 8:50	Cesium-137	<2.2	Ambient Monitoring
APP-15	8/20/09 8:50	Colbalt-60	<2.1	Ambient Monitoring
APP-15	8/20/09 8:50	lodine-131	<2.8	Ambient Monitoring
APP-15	8/20/09 8:50	Tritium	<478	Ambient Monitoring
APP-15	11/10/09 9:07	Tritium	<477	
PV-14H	3/11/09 10:00	Cesium-134	<1.8	•
PV-14H	3/11/09 10:00	Cesium-137	<1.8	
PV-14H	3/11/09 10:00	Colbalt-60	<1.8	
PV-14H	3/11/09 10:00	lodine-131	<5.0	
PV-14H	3/11/09 10:00	Tritium	<322	
PV-14H	6/15/09 8:55	Cesium-134	<2.1	
PV-14H	6/15/09 8:55	Cesium-137	<2.1	
PV-14H	6/15/09 8:55	Colbalt-60	<2.2	
PV-14H	6/15/09 8:55	lodine-131	<4.6	
PV-14H	6/15/09 8:55	Tritium	<314	
PV-14H	9/17/09 10:20	Cesium-134	<1.9	
PV-14H	9/17/09 10:20	Cesium-137	<1.8	
PV-14H	9/17/09 10:20	Colbalt-60	<2.0	
PV-14H	9/17/09 10:20	lodine-131	<3.0	
PV-14H	9/17/09 10:20	Tritium	<467	
PV-14H	10/22/09 9:50	Cesium-134	<2.4	
PV-14H	10/22/09 9:50	Cesium-137	<2.2	
PV-14H	10/22/09 9:50	Colbalt-60	<2.2	
PV-14H	10/22/09 9:50	lodine-131	<2.8	
PV-14H	10/22/09 9:50	Tritium	<491	
PV-193A	2/27/09 10:30	Tritium	<317	
PV-193A	5/28/09 14:37	Cesium-134	<2.1	`
PV-193A	5/28/09 14:37	Cesium-137	<2.3	
PV-193A	5/28/09 14:37	Colbalt-60	<2.1	
PV-193A	5/28/09 14:37	lodine-131	<3.2	
PV-193A	5/28/09 14:37	Tritium	<316	
PV-193A	8/4/09 10:17	Tritium	<493	
PV-193A	10/28/09 14:35	Tritium	<480	
PV-195A	3/11/09 11:31	Cesium-134	<1.8	
PV-195A	3/11/09 11:31	Cesium-137	<1.8	
PV-195A	3/11/09 11:31	Colbalt-60	<1.9	
PV-195A	3/11/09 11:31	lodine-131	<3.9	
PV-195A	3/11/09 11:31	Tritium	<322	
PV-195A	6/10/09 12:00	Cesium-134	<1.8	1
PV-195A	6/10/09 12:00	Cesium-137	<1.7	
PV-195A PV-195A PV-195A	6/10/09 12:00 6/10/09 12:00 6/10/09 12:00	Colbalt-60 lodine-131 Tritium	<1.9 <4.2 <319	

Monitoring Well/			Conc	
Piezometer	Sample Date/Time	Analyte	(pCi/L)	Comment
PV-195A	9/17/09 14:25	Cesium-134	<2.2	
PV-195A	9/17/09 14:25	Cesium-137	<1.9	
PV-195A	9/17/09 14:25	Colbalt-60	<2.2	
PV-195A	9/17/09 14:25	lodine-131	<3.2	
PV-195A	9/17/09 14:25	Tritium	<467	
PV-195A	11/10/09 9:44	Cesium-134	<2.3	
PV-195A	11/10/09 9:44	Cesium-137	<2.3	
PV-195A	11/10/09 9:44	Colbalt-60	<2.3	
PV-195A	11/10/09 9:44	lodine-131	<4.1	
PV-195A	11/10/09 9:44	Tritium	<477	
PV-198AR	1/13/09 14:55	Tritium	<320	,
PV-198AR	2/11/09 15:20	Tritium	<326	
PV-198AR	5/27/09 10:03	Cesium-134	<1.8	
PV-198AR	5/27/09 10:03	Cesium-137	<1.8	
PV-198AR	5/27/09 10:03	Colbalt-60	<1.9	
PV-198AR	5/27/09 10:03	lodine-131	<4.2	
PV-198AR	5/27/09 10:03	Tritium	<316	
PV-198AR	7/22/09 11:20	Tritium	<491	
PV-198AR	10/15/09 11:40	Tritium	<484	
PV-198AR	11/4/09 10:06	Tritium	<472	
PV-198AR	12/1/09 10:55	Tritium	<494	•
PV-206A	2/11/09 10:00	Cesium-134	<2.3	
PV-206A	2/11/09 10:00	Cesium-137	<2.3	
PV-206A	2/11/09 10:00	Colbalt-60	<2.5	
PV-206A	2/11/09 10:00	lodine-131	<3.5	
PV-206A	2/11/09 10:00	Tritium	<326	
PV-206A	5/21/09 12:26	Cesium-134	<2.2	'
PV-206A	5/21/09 12:26	Cesium-137	<2.2	
PV-206A	5/21/09 12:26	Colbalt-60	<2.1	
PV-206A	5/21/09 12:26	lodine-131	<4.1	
PV-206A	5/21/09 12:26	Tritium	<321	
PV-206A	8/4/09 9:35	Cesium-134	<1.8	
PV-206A	8/4/09 9:35	Cesium-137	<1.9	
PV-206A	8/4/09 9:35	Colbalt-60	<1.9	
PV-206A	8/4/09 9:35	lodine-131	<3.6	
PV-206A	8/4/09 9:35	Tritium	<493	
PV-206A	10/29/09 9:45	Cesium-134	<2.3	
PV-206A	10/29/09 9:45	Cesium-137	<2.3	
PV-206A	10/29/09 9:45	Colbalt-60	<2.1	
PV-206A	10/29/09 9:45	lodine-131	<3.3	
PV-206A	10/29/09 9:45	Tritium	<480	
PV-34H	2/27/09 13:08	Tritium	<317	
PV-34H	6/10/09 11:30	Cesium-134	<1.8	
PV-34H	6/10/09 11:30	Cesium-137	<1.7	
PV-34H	6/10/09 11:30	Colbalt-60	<1.9	
PV-34H	6/10/09 11:30	lodine-131	<4.8	
PV-34H	6/10/09 11:30	Tritium	<319	
PV-34H	9/17/09 9:05	Tritium	<467	
PV-34H	11/6/09 9:38	Tritium	<470	
PV-Q8	2/11/09 16:39	Cesium-134	<2.2	

Monitoring Well/			Conc	
Piezometer	Sample Date/Time	Analyte	(pCi/L)	Comment
PV-Q8	2/11/09 16:39	Cesium-137	<2.1	
PV-Q8	2/11/09 16:39	Colbalt-60	<2.1	
PV-Q8	2/11/09 16:39	lodine-131	<4.3	
PV-Q8	2/11/09 16:39	Tritium	<326	
PV-Q8	5/28/09 10:10	Cesium-134	<2.2	
PV-Q8	5/28/09 10:10	Cesium-137	<2.1	
PV-Q8	5/28/09 10:10	Colbalt-60	<2.0	
PV-Q8	5/28/09 10:10	lodine-131	<4.3	
PV-Q8	5/28/09 10:10	Tritium	<316	
PV-Q8	8/6/09 9:00	Cesium-134	<1.9	
PV-Q8	8/6/09 9:00	Cesium-137	<2.0	
PV-Q8	8/6/09 9:00	Colbalt-60	<2.0	
PV-Q8	8/6/09 9:00	lodine-131	<3.0	
PV-Q8	8/6/09 9:00	Tritium	<493	
PV-Q8	10/29/09 12:25	Cesium-134	<2.2	
PV-Q8	10/29/09 12:25	Cesium-137	<2.3	
PV-Q8	10/29/09 12:25	Colbalt-60	<2.2	
PV-Q8	10/29/09 12:25	lodine-131	<3.2	
PV-Q8	10/29/09 12:25	Tritium	<480	
PV-Q8	12/2/09 9:00	Tritium	<494	
PV-R2AR	3/12/09 14:37	Tritium	<322	
PV-R2AR	6/17/09 7:10	Cesium-134	<2.3	
PV-R2AR	6/17/09 7:10	Cesium-137	<2.2	
PV-R2AR	6/17/09 7:10	Colbalt-60	<2.2	
PV-R2AR	6/17/09 7:10	lodine-131	<4.9	
PV-R2AR	6/17/09 7:10	Tritium	<314	
PV-R2AR	9/25/09 9:00	Tritium	<460	
PV-R2AR	11/19/09 8:35	Tritium	<489	
RPZ-2A	3/20/09 10:05	Tritium	<319	
RPZ-3B	3/20/09 10:48	Tritium	<319	
RPZ-6A	3/20/09 11:46	Tritium	<319	
RPZ-6B	3/20/09 12:13	Tritium	<319	
RPZ7B	3/20/09 13:00	lodine-131	<3.0	
RPZ7B	3/20/09 13:00	Tritium	<319	

APPENDIX E

OFFSITE DOSE CALCULATION MANUAL Revision 24

OFFSITE DOSE CALCULATION MANUAL PALO VERDE NUCLEAR GENERATING STATION UNITS 1, 2 AND 3

REVISION 24

Originator	Drinovsky, Louis J(Z33699)	Digitally signed by Drinovsky, Louis J (233699) DN: cn=Drinovsky, Louis J(233699) Reason: I am the author of this document Date: 2009.07.17 14:50:29 -07'00'
Technical Reviewer	Bungard, Jame P(Z18012)	Digitally signed by Bungard, James P (Z18012) DN: cn=Bungard, James P(Z18012) Reason: I have reviewed this document Date: 2009.07.17 15:10:52 -07'00'
Director, Radiation	Gaffney, John P(Z36459)	Digitally signed by Gaffney, John P(Z36459) DN: cn=Gaffney, John P(Z36459) Reason: I am approving this document Date: 2009.07.17 15:47:34 -07'00'
PRB	pete borchert	Digitally signed by pete borchert DN: cn=pete borchert, c=US, o=operations, ou=8201, email=Peter. Borchert@apsc.com Reason: I am approving this document Date: 2009.09.02 09:43:55 -07'00'

Effective Date: 9/10/2009

TABLE OF CONTENTS

	TIT	LE		PAGE
1.0	INT	RODUC	TION	1
	1.1	Liquid	Effluent Pathways	1
	1.2	_	us Effluent Pathways	2
	1.3	Nuisai	nce Pathways	2
	1.4	Meteo	rology	4
2.0	GAS	EOUS I	EFFLUENT MONITOR SETPOINTS	5
	2.1	Requi	rements: Gaseous Monitors	5
		2.1.1	Surveillance Requirements	5
		2.1.2	Implementation of the Requirements	12
			2.1.2.1 Equivalent Dose Factor Determination	13
			2.1.2.2 Site Release Rate Limit (Q _{SITE})	14
			2.1.2.3 Unit Release Rate Limits (Q _{UNIT})	15
			2.1.2.4 Setpoint Determination	15
			2.1.2.5 Monitor Calibration	16
3.0	GAS	SEOUS A	AND LIQUID EFFLUENT DOSE RATES	17
	3.1	Requi	rements: Gaseous Effluents	17
		3.1.1	Surveillance Requirements	. 17
		3.1.2	Implementation of the Requirements	18
	3.2	_	rements: Secondary System Liquid Waste Discharges To Onsite Evaporation P	onds or
			ating Water System - Concentration	26
	7	3.2.1	Surveillance Requirements	26
		3.2.2	Implementation of the Requirements	26
4.0	GAS	SEOUS &	& LIQUID EFFLUENTS - DOSE	31
	4.1	Requi	rements: Noble Gases	31
		4.1.1	Surveillance Requirements	31
		4.1.2	Implementation of the Requirement: Noble Gas	32
	4.2	^	rement: Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate	
			With Half-Lives Greater Than 8 Days	33
		4.2.1	Surveillance Requirements	33
		4.2.2	Implementation of the Requirement	34
	4.3	•	rements: Gaseous Radwaste Treatment	36
		4.3.1	Surveillance Requirements	36
		4.3.2	Implementation of the Requirement	37
	4.4		rements: Liquid Effluents	57
		4.4.1	Surveillance Requirements	57
		4.4.2	Implementation of the Requirements	57

TABLE OF CONTENTS

	TITL	Æ		PAGE
5.0	TOTA	AL DOS	SE AND DOSE TO PUBLIC ONSITE	58
	5.1	Requirement: Total Dose		
		5.1.1	Surveillance Requirements	58
		5.1.2	Implementation of the Requirement	58
6.0	RAD	IOLOG	ICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)	62
	6.1	Requir	rement: REMP	62
		6.1.1	Surveillance Requirements	63
		6.1.2	Implementation of the Requirements	63
	6.2	Requir	rement: Land Use Census	71
		6.2.1	Surveillance Requirements	71
		6.2.2	Implementation of the Requirements	71
	6.3	Requir	rement: Interlaboratory Comparison Program	72
		6.3.1	Surveillance Requirements	72
		6.3.2	Implementation of the Requirements	72
7.0	RAD	IOLOG	ICAL REPORTS	83
	7.1	Requir	rement: Annual Radioactive Effluent Release Report	83
	7.2	Requir	ement: Annual Radiological Environmental Operating Report	85
APPI	ENDIX	A D	DETERMINATION OF CONTROLLING LOCATION	86
APPI	ENDIX	В В	ASES FOR REQUIREMENTS	87
			2.1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION	1 87
			3.1 GASEOUS EFFLUENT - DOSE RATE	87
			3.2 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO	
			ONSITE EVAPORATION PONDS - CONCENTRATION	88
			4.1 GASEOUS EFFLUENT - DOSE, Noble Gases	88
			4.2 GASEOUS EFFLUENT - DOSE - Iodine-131, Iodine-133, Tritium,	
			and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Da	
			4.3 GASEOUS RADWASTE TREATMENT	89
			4.4 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO	
			ONSITE EVAPORATION PONDS - DOSE	90
			5.1 TOTAL DOSE AND DOSE TO PUBLIC ONSITE	90
			6.1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP	
			6.2 LAND USE CENSUS	91
			6.3 INTERLABORATORY COMPARISON PROGRAM	91
APPI	ENDIX	C I	DEFINITIONS	92
A PPI	ENDIX	D R	EFERENCES	96

LIST OF TABLES

TABLE	TITLE	PAGE
1-1	NUISANCE PATHWAYS	3
2-1	RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION	6
2-2	RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS	10
3-1	RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM	20
3-2	DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE SITE BOUNDARY	23
3-3	DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS	24
3-4	P _i VALUES FOR THE INHALATION PATHWAY	25
3-5	RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM	27
3-6	RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION	30
3-7	RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS	30
4-1	Ri DOSE CONVERSION FACTORS FOR THE GROUND PLANE PATHWAY	39
4-2	RI DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - ADULT RECEPTOR	40
4-3	Ri DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - TEEN RECEPTOR	41
4-4	Ri DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - CHILD RECEPTOR	42
4-5	Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - ADULT RECEPTOR	43
4-6	Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - TEEN RECEPTOR	44
4-7	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - CHILD RECEPTOR	45
4-8	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - ADULT RECEPTOR	46
4-9	Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - TEEN RECEPTOR	47
4-10	RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - CHILD RECEPTOR	48

LIST OF TABLES

]	TABLE	TITLE	PAGE
	4-11	Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - INFANT RECEPTOR	49
	4-12	Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - ADULT RECEPTOR	50
	4-13	RI DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - TEEN RECEPTOR	51
	4-14	Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - CHILD RECEPTOR	52
	4-15	Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - INFANT RECEPTOR	53
	4-16	PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT I	54
	4-17	PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 2	55
	4-18	PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 3	56
	6-1	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	64
	6-2	REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES	68
	6-3	DETECTION CAPABILITIES FOR ENVIRONMENTAL ANALYSIS	69
	6-4	RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS	73
	C-1	FREQUENCY NOTATION	95

LIST OF FIGURES

FIGURE	TITLE	PAGE
6-1	Radiological Environmental Monitoring Program Sample Sites 0 - 10 Miles	. 77
6-2	Radiological Environmental Monitoring Program Sample Sites 10 - 35 Miles	78
6-3	Radiological Environmental Monitoring Program Sample Sites 35 - 75 Miles DELETED	79
6-4	Site Exclusion Area Boundary DELETED	80
6-5	Gaseous Effluent Release Points	81
6-6	Low Population Zone DELETED	82

1.0 INTRODUCTION

The Offsite Dose Calculation Manual (ODCM) implements the program elements which are required by the Administrative Controls section of the Technical Specifications. The ODCM contains the operational requirements, the surveillance requirements, and actions required if the operational requirements are not met for the Radioactive Effluent Controls Program and the Radiological Environmental Monitoring Program to assure compliance with 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50. The Technical Specifications, Section 3.0, also apply to the ODCM. Substitute the word "Requirements" for "Limiting Condition for Operation." It should be noted that the hot and cold shutdown and operability requirements in Technical Specification 3.0.3 and 3.0.4 do not apply to any of the requirements contained in this ODCM. The ODCM also contains descriptions of the information that should be included in the Annual Radiological Environmental Operating Report and the Annual Radioactive Effluent Release Report required by the Technical Specifications.

The ODCM provides the parameters and methodology to be used in calculating offsite doses resulting from radioactive effluents, in the calculation of gaseous effluent monitor Alarm/Trip Setpoints, and in the conduct of the Radiological Environmental Monitoring Program. Included are methods for determining air, whole body, and organ dose at the controlling location due to plant effluents to assure compliance with the regulatory requirements detailed in the ODCM. Methods are included for performing dose projections to assure compliance with the gaseous treatment system operability sections of the ODCM. The ODCM utilizes information from NRC Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," October 1977, and NRC NUREG 0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," October 1978. NUREG 0133 utilizes some of the key information in Regulatory Guide 1.109 to provide methods which were used in the preparation of the radiological effluent Technical Specifications and which have now been transferred to the ODCM in accordance with NRC Generic Letter 89-01, "Implementation of Programmatic Controls for Radiological Effluent Technical Specifications in the Administrative Controls Section of the Technical Specifications and the Relocation of Procedural Details of RETS to the Offsite Dose Calculation Manual or to the Process Control Program," January 31, 1989, and NUREG 1301, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors," Generic Letter 89-01, Supplement No. 1, April 1991. Further guidance for the implementation of the new 10 CFR Part 20, effective January 1, 1994, was obtained from the Federal Register, Vol. 58, December 23, 1993. It is recognized that this is only draft guidance, however, it is the only guidance for referencing the new 10 CFR 20 in the ODCM.

1.1 Liquid Effluent Pathways

Dose calculation methodology for radioactive liquid effluents is not included in this manual due to the desert location of the plant, the hydrology of the area, and the fact that there are no liquid releases to areas at or beyond the SITE BOUNDARY during normal operation. All liquid discharges to the onsite evaporation ponds are controlled by Section 3.2. The impact of postulated accidental seepages on the groundwater system, and in particular on the existing wells located in the 5-mile zone around the site area has been calculated and analyzed in Section 2.4.13.3 of the PVNGS FSAR.

If plant operating conditions become such that the likelihood of a liquid effluent pathway is created, then dose calculation methodology for this pathway will be added to this manual.

1.2 Gaseous Effluent Pathways

All gaseous effluents are treated as ground level releases and are considered to be "long-term" as discussed in NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants." This includes the containment purge and Waste Gas Decay Tank releases as well as the normal ventilation system and condenser vacuum exhaust releases. All releases are either greater than 500 hours in duration or are made at random, not depending upon atmospheric conditions or time of day. The releases are lumped together and calculated as an entity. Historical annual average X/Q values are used throughout this manual for all gaseous effluent setpoint and dose calculations. Airborne releases are further subdivided into two subclasses:

1.2.1 Iodine-131, Iodine-133, Tritium and Radionuclides in Particulate Form with Half-lives Greater than Eight Days

In this model, a controlling location is identified for assessing the maximum exposure to a MEMBER OF THE PUBLIC for the various pathways and to critical organs. Infant exposure occurs through inhalation and any actual milk pathway. Child, teenager and adult exposure derives from inhalation, consumed vegetation pathways, and any actual milk and meat pathways. Dose to each of the seven organs listed in Regulatory Guide 1.109 (bone, liver, total body, thyroid, kidney, lung and GI-LLI) are computed from individual nuclide contributions in each sector. The largest of the organ doses in any sector is compared to 10 CFR 50, Appendix I design objectives. The release rates of these nuclides will be converted to instantaneous dose rates for comparison to the limits of 10 CFR 20.

1.2.2 Noble Gases

The air dose from both the beta and gamma radiation component of the noble gases will be assessed and compared to the 10 CFR 50, Appendix I design objectives. The noble gas release rate will be converted to instantaneous dose rates for comparison to the limits of 10 CFR 20.

Section 2.0 of this manual discusses the methodology to be used in determining effluent monitor alarm/trip setpoints to assure compliance with the 10 CFR Part 20 limits as implemented in Section 3.0. Section 4.0 discusses the methods to assure releases are As Low As Reasonably Achievable (ALARA) in accordance with Appendix I to 10 CFR Part 50. Methods are described in Section 5.0 for determining the annual cumulative dose to a MEMBER OF THE PUBLIC from gaseous effluents and direct radiation to assure compliance with 40 CFR Part 190.

The requirements for the Annual Radiological Effluent Release Report and the Radiological Environmental Monitoring Program, including the Annual Land Use Census and the Interlaboratory Comparison Program, and the Annual Environmental Report are described in Sections 6.0 and 7.0 of this manual.

1.3 Nuisance Pathways

This section addresses the potential release pathways which should not contribute more than 10% of the doses evaluated in this manual. Table 1-1 lists examples of potential release pathways. The ODCM methodology for calculation of doses will be applied to an applicable release pathway if a likely potential arises for contributing more than 10% of the doses evaluated in this manual.

TABLE 1-1 NUISANCE PATHWAYS

(EXAMPLES)

Evaporation Pond

Cooling Towers

Laundry/Decon Building Exhaust

Unmonitored Secondary System Steam Vents/Reliefs

Turbine Building Ventilation Exhaust

Unmonitored Tank Atmospheric Vents

Dry Active Waste Processing and Storage (DAWPS) Building

Respirator Cleaning Facility

Secondary Side Decontamination Equipment

Low Level Radioactive Material Storage Facility

1.4 Meteorology

Historical annual average atmospheric dispersion (X/Q) and deposition (D/Q) data, based on nine years of meteorological data, and given in Table 3-2 for each of the three nuclear generating units are used to demonstrate compliance with the ODCM Requirements. These Requirements include:

Section 2.0	Gaseous Effluent Monitor Setpoints;
Section 3.0	Gaseous and Liquid Effluent - Dose Rate
Section 4.0	Gaseous and Liquid Effluent - Dose
Section 5.0	Total Dose and Dose to Public Onsite

Sections 2.0 and 3.0 specify utilizing the highest X/Q or D/Q meteorological dispersion parameter at the Site Boundary for any of the three units as applicable. Using the highest dispersion parameter for any of the units provides a conservative assumption to assure compliance with the higher 10 CFR Part 20 limits.

Section 4.0 specifies utilizing the highest X/Q at the Site Boundary for the particular unit, from Table 3-2 for noble gases. The highest X/Q and D/Q are utilized for the particular unit's releases as applicable for gases other than noble gases (iodines, particulates, and tritium) for the controlling pathway's location (site boundary using Table 3-2 or other controlling locations using Table 4-16, 4-17, or 4-18).

Section 5.0 specifies utilizing the highest X/Q for the particular unit's releases at the controlling location from Table 4-16, 4-17, or 4-18, for noble gases. The highest X/Q and D/Q are utilized for the particular unit's releases as applicable for gases other than noble gases at the controlling pathway's location using Table 4-16, 4-17, or 4-18.

Section 7.0 requires that the meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses.

2.0 GASEOUS EFFLUENT MONITOR SETPOINTS

2.1 Requirements: Gaseous Monitors

The radioactive gaseous effluent monitoring instrumentation channels shown in Table 2-1 shall be OPERABLE with their alarm/trip setpoints set to ensure that the dose requirements in Section 3.0 are not exceeded. The alarm/trip setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in Section 2.1.2.

Applicability: As shown in Table 2-1.

Action:

- a. With the low range radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Requirement, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel, or declare the channel inoperable, or change the setpoint so it is acceptably conservative.
- b. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 2-1. Restore the inoperable instrumentation to OPERABLE status within 30 days or, if unsuccessful, explain in the next Annual Radioactive Effluent Release Report why this inoperability was not corrected within the time specified.

2.1.1 Surveillance Requirements

a. Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 2-2.

TABLE 2-1
RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

	INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
1.	GASEOUS RADWASTE SYSTEM			
	a. Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release #RU-12	1	#	35
	b. Flow Rate Monitor	1	#	36
2.	NOT USED			
3.	DELETED			. ~
4.	PLANT VENT SYSTEM		ć	
	A. Low Range Monitors			
	a. Noble Gas Activity Monitor #RU-143	1	*	37
	b. Iodine Sampler	1	*	40
	c. Particulate Sampler	.1	*	40
	d. Flow Rate Monitor	1	*	36
	e. Sampler Flow Rate Measuring Device	1	*	36
	B. High Range Monitors			
	a. Noble Gas Activity Monitor #RU-144	1	*	42*
_^	b. Iodine Sampler	1	*	42
	c. Particulate Sampler	1	*	42
	d. Sampler Flow Rate Measuring Device	1	*	42

TABLE 2-1 (Continued)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

			INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
5.	FU	EL B	BUILDING VENTILATION SYSTEM			
	A.	Lo	w Range Monitors			
		a.	Noble Gas Activity Monitor #RU-145	1	##	37, 41
		b.	Iodine Sampler	1	##	40
		c.	Particulate Sample	1	##	40
		d.	Flow Rate Monitor	1	##	36
		e.	Sampler Flow Rate Measuring Device	1	##	36
	В.	Hig	gh Range Monitors			
		a.	Noble Gas Activity Monitor #RU-146	1	##	42
		b.	Iodine Sampler	1	##	42
		c.	Particulate Sample	1	##	42
		d.	Sampler Flow Rate Measuring Device	1	##	42

Table 2-1 (Continued)

TABLE NOTATION

- * At all times.
- ** During GASEOUS RADWASTE SYSTEM operation
- *** Whenever the condenser air removal system is in operation, or whenever turbine glands are being supplied with steam from sources other than the auxiliary boiler(s).
- # During waste gas release.
- ## In MODES 1, 2, 3, and 4 or when irradiated fuel is in the fuel storage pool.
- ACTION 35 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be released to the environment provided that prior to initiating the release:
 - a. At least two independent samples of the tanks contents are analyzed, and
 - b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup;

Otherwise, suspend release of radioactive effluents via this pathway.

- ACTION 36 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the flow rate is estimated at least once per 4 hours.
- ACTION 37 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the actions of (a) or (b) or (c) are performed:
 - a. Initiate the Preplanned Alternate Sampling Program to monitor the appropriate parameter(s).
 - b. Place moveable air monitors in-line.
 - c. Either take grab samples at least once per 12 hours, OR obtain gas channel monitor readings locally at least once per 12 hours if the channel is functional locally but inoperable due to loss of communication with the minicomputer. The surveillance requirements of Section 2.1.1 must be performed at the required frequencies for the channel to be functional locally.
- ACTION 38 NOT USED
- ACTION 39 NOT USED
- ACTION 40 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via the effected pathway may continue provided samples are continuously collected with auxiliary sampling equipment as required in Table 3-1 within one hour after the channel has been declared inoperable.
- ACTION 41 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirements, comply with Technical Requirements Manual TLCO 3.3.108.

Table 2-1 (Continued)

TABLE NOTATION

- ACTION 42 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement restore the channel to OPERABLE status within 72 hours or:
 - a. Initiate the Preplanned Alternate Sampling Program to monitor the appropriate parameter(s) when it is needed.
 - b. Prepare and submit a Special Report to the Commission within 30 days following the event outlining the action(s) taken, the cause of the inoperability, and the plans and schedule for restoring the system to OPERABLE status.

ODCM Rev. 24

TABLE 2-2

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

		INSTRUMENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	MODE IN WHICH SURVEILLANCE IS REQUIRED
1.	GA	SEOUS RADWASTE SYSTEM	y.				
	a.	Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release RU-12	P	P(7)	R(3)	Q(1),(2),P###	#
	b.	Flow Rate Monitor	P	N.A.	R	Q,P###	#
2.	DE	LETED					
3.	DE	LETED					
4.		ANT VENT SYSTEM U-143 and RU-144)					
	a.	Noble Gas Activity Monitor	D(5)	M(7)	R(3)	Q(2)	*
	b.	Iodine Sampler	N.A.	N.A.	N.A.	N.A.	*
	c.	Particulate Sampler	N.A.	N.A.	N.A.	N.A.	*
	d.	Flow Rate Monitor	D(6)	N.A.	R	Q	*
	e.	Sampler Flow Rate Measuring Device	D(6)	N.A.	R	Q	*
5.		EL BUILDING VENTILATION SYSTEM U-145 and RU-146)					
	a.	Noble Gas Activity Monitor	D(5)	M(7)	R(3)	Q(2)	##
	b.	Iodine Sampler	N.A.	N.A.	N.A.	N.A.	##
	c.	Particulate Sample	N.A.	N.A.	N.A.	N.A.	##
	d.	Flow Rate Monitor	D(6)	N.A.	R	Q	##
	e.	Sampler Flow Rate Measuring Device	D(6)	N.A.	R	Q	##

Table 2-2 (Continued)

TABLE NOTATION

- * At all times.
- ** During GASEOUS RADWASTE SYSTEM operation
- *** Whenever the condenser air removal system is in operation, or whenever turbine glands are being supplied with steam from sources other than the auxiliary boiler(s).
- # During waste gas release.
- ## In MODES 1, 2, 3, and 4 or when irradiated fuel is in the fuel storage pool.
- ### Functional test should consist of, but not be limited to, a verification of system isolation capability by the insertion of a simulated alarm condition.
- (1) The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolation of this pathway occurs if the instrument indicates measured levels above the alarm/trip setpoint.
- (2) The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm setpoint.
 - Circuit failure.
 - 3. Instrument indicates a downscale failure.
 - 4. Instrument controls not set in operate mode.
- (3) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration may be used in lieu of the reference standards associated with the initial calibration.
- (4) NOT USED
- (5) The channel check for channels in standby status shall consist of verification that the channel is on-line and reachable.
- (6) Daily channel check not required for flow monitors in standby status.
- (7) LED may be utilized as the check source in lieu of a source of increased activity.

2.1.2 Implementation of the Requirements

The general methodology for establishing low range gaseous effluent monitor setpoints is based upon a site release rate limit in μ Ci/sec derived from site specific meteorological dispersion conditions, radioisotopic distribution, and whole body and skin dose factors. The high alarm of the low range monitors will alarm/trip when the release rate from an individual vent will result in exceeding the limits in Section 3.1. 80% of Section 3.1 limits is considered to be the site release rate limit. The site release rate limit will be allocated among the licensed units' release points. The unit release rate limit will then be utilized for the determination of gaseous effluent monitor setpoints. A fraction of the unit release rate limit is then allotted to each release point and its monitor alert setpoint (μ Ci/cc) is derived using actual or fan design flow rates.

Administrative values are used to reduce each setpoint to account for the potential activity in other releases. These administrative values shall be reviewed based on actual release data.

For the purpose of implementation of Section 2.1, the alarm setpoint levels for low range effluent noble gas monitors are established to ensure that personnel are alerted when the noble gas releases are at a rate such that if the releases would continue for the year they would approach the total body dose rate of 500 mrem/yr and 3000 mrem/yr skin dose in Section 3.1. The equations in Section 3.1 of this manual provide the methodology for calculating the gaseous effluent dose rate.

The evaluation of doses due to releases of radioactive material can be simplified by the use of equivalent dose factors as defined in Section 2.1.2.1.

The equivalent dose factors will be evaluated periodically to assure that the best information on isotopic distribution is being used for the dose equivalent value.

2.1.2.1 Equivalent Dose Factor Determination

The equivalent whole body dose factor is calculated as follows:

$$K_{eq} = \sum_{i} [(K_i)(f_i)]$$
 (2-1)

Where:

 K_{eq} = the equivalent whole body dose factor weighted by historical radionuclide distribution in releases in mrem/yr per μ Ci/m³.

 K_i = the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per μ Ci/m³ from Table 3-3.

f_i = the fraction of noble gas radionuclide i in the total noble gas radionuclide mix.

The equivalent skin dose factor is calculated as follows:

$$(L+1.1M)_{eq} = \sum_{i} [(L_{i}+1.1M_{i})(f_{i})]$$
 (2-2)

Where:

 $(L+1.1M)_{eq}$ = the equivalent skin dose factor due to beta and gamma emissions from all noble gases released, weighted by the historical radionuclide distribution in releases in mrem/yr per μ Ci/m³.

L_i = the skin dose factor due to the beta emissions for each identified noble gas radionuclide i, in mrem/yr per μ Ci/m³ from Table 3-3.

 M_i = the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per μ Ci/m³ from Table 3-3.

f_i = the fraction of noble gas radionuclide i in the total noble gas radionuclide mix.

1.1 = unit conversion constant of 1.1 mrem/mrad converts air dose to skin dose.

2.1.2.2 Site Release Rate Limit (Q_{SITE})

The release rates corresponding to 80% of the whole body (Q_{WB}) and skin (Q_{SK}) dose rate limits are calculated using the equivalent dose factors defined in Section 2.1.2.1. The site release rate limit (Q_{SITE}) is the lower of Q_{WB} or Q_{SK} , thus assuring that the more restrictive dose rate limit will not be exceeded.

The Q_{SITE} is established as follows:

$$Q_{SITE,WB} = \frac{(D_{WB})(0.8)}{(K_{eq})(X/Q)_{SITE}}$$
(2-3)

Where:

 $Q_{SITE,WB}$ = the site release rate, in μ Ci/sec, that would deliver a dose rate 80% of the whole body dose rate limit, D_{WB} .

 D_{WB} = whole body dose rate limit of 500 mrem/yr.

 K_{eq} = equivalent whole body dose factor, in mrem/yr per μ Ci/m³ weighted by the historical radionuclide distribution.

 $(X/Q)_{SITE}$ = \8.91E-06, the highest calculated annual average dispersion parameter, in sec/m³, at the Site Boundary for any of the 3 units, from Table 3-2.

0.8 = administrative factor to compensate for any unexpected variability in the radionuclide mix and to ensure that Site Boundary dose rate limits will not be exceeded.

$$Q_{SITE,SK} = \frac{(D_{SK})(0.8)}{(L+1.1M)_{eq}(X/Q)_{SITE}}$$
(2-4)

Where:

 $Q_{SITE,SK}$ = the site release rate limit, in μ Ci/sec, that would deliver a dose rate 80% of the skin dose rate limit, D_{SK} .

 D_{SK} = skin dose rate limit of 3000 mrem/yr.

 $(L+1.1M)_{eq}$ = equivalent skin dose factor, in mrem/yr per μ Ci/m³, weighted by the radionuclide distribution.

(X/Q)_{SITE} = 8.91E-06, the highest calculated annual average dispersion parameter, in sec/m³, at the Site Boundary for any of the three units, from Table 3-2.

0.8 = administrative factor to compensate for any unexpected variability in the radionuclide mix and to ensure that Site Boundary dose rate limits will not be exceeded.

After determination of the Q_{SITE} whole body and skin dose rates (equations 2-3 and 2-4, respectively), the most conservative result will be used as Q_{SITE} , the site release rate limit.

2.1.2.3 Unit Release Rate Limits (Q_{UNIT})

Typically Q_{SITE} will be divided equally among operating units. If operational history dictates a larger fraction of the Q_{SITE} be assigned to a specific unit then a weighted average of each unit's contribution to the Q_{SITE} will be utilized to determine the Q_{UNIT}

$$Q_{UNIT} = (f_{UNIT})(Q_{SITE})$$
 (2-5)

Where:

 Q_{UNIT} = unit release rate limit, in μ Ci/sec.

 f_{UNIT} = the fraction (≤ 1) of noble gas historically released from a specific operating unit to the total of all noble gas released from the site.

 Q_{SITE} = the site release rate limit, in μ Ci/sec determined in Section 2.1.2.2.

2.1.2.4 Setpoint Determination

To comply with the requirements in Section 2.1, the alarm/trip setpoints can now be established using the unit release rate limit (Q_{UNIT}) to ensure that the noble gas releases do not exceed the dose rate limits.

To allow for multiple sources of releases from different or common release points, the effluent monitor setpoint includes an administrative factor which allocates a percentage of the unit release rate limit to each of the release sources. Monitor setpoints will also be adjusted in accordance with Nuclear Administrative and Technical Manual procedures to account for monitor-specific characteristics.

Monitors RU-143 and RU-145

The alarm/trip setpoint for Monitors RU-143 and RU-145 is calculated as follows:

$$\frac{\text{Monitor}}{\text{Setpoint}} \le \frac{(Q_{\text{UNIT}})(a)}{(472)(\text{Flow Rate})}$$
(2-6)

Where:

Monitor

Setpoint = the setpoint for the effluent monitor, in μ Ci/cc, which provides a safe margin of assurance that the allowable dose rate limits will not be exceeded.

 Q_{UNIT} = unit release rate limit, in μ Ci/sec, as determined in Section 2.1.2.3.

Flow Rate = the flow rate, in cfm, from flow rate monitors or the fan design flow rate for the release source under consideration.

= conversion factor, cubic centimeter/second per cubic feet/minute.

a = fraction of Q_{UNIT} allocated for a specific release point. The sum of these administrative values shall be less than or equal to one.

Monitor RU-12

The alarm/trip setpoint for Monitor RU-12, the Waste Gas Decay Tank Monitor, is calculated as follows:

$$\frac{\text{Monitor}}{\text{setpoint}} \le \frac{[(Q_{\text{UNIT}})(a)(0.9) - (H)(PF)(472)]}{(Flow Rate)(472)}$$
(2-7)

Where:

Monitor

Setpoint = the setpoint for the monitor, in μ Ci/cc at STP, which provides a safe

margin of assurance that the allowable dose rate limits will not be

exceeded.

 Q_{UNIT} = unit release rate limit, in μ Ci/sec, as determined in Section 2.1.2.3.

Flow Rate = flow rate, in cfm at STP at which the tank will be released.

PF = the current process flow of the plant vent in CFM.

H = the current plant vent monitor concentration in μ Ci/cc.

a = fraction of Q_{UNIT} allocated for a specific release point. This

administrative value should be equal to or less than the administrative

value used for the Plant Vent.

0.9 = an administrative value to account for potential increases in activity

from other contributors to the same release point.

= conversion factor, cubic centimeter/second per cubic feet/minute.

If there is no release associated with this monitor, the monitor setpoint should be established as close as practical to background to prevent spurious alarms, and yet assure an alarm should an inadvertent release occur.

2.1.2.5 Monitor Calibration

The Radiation Level Conversion Factor (RLF) for each monitor is entered into the Radiation Monitoring System Database and may change whenever the monitor is calibrated. Calibration is performed in accordance with Nuclear Administrative and Technical Manual procedures.

3.0 GASEOUS AND LIQUID EFFLUENT DOSE RATES

3.1 Requirements: Gaseous Effluents

The dose rate due to radioactive materials released in gaseous effluents from the site (see Figure 6-4 and Figure 6-5) shall be limited to the following:

- **a.** For noble gases: Less than or equal to 500 mrems/yr to the total body and less than or equal to 3000 mrems/yr to the skin, and
- **b.** For I-131 and I-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ.

Applicability: At all times.

Action:

With the dose rate(s) exceeding the above limits, immediately decrease the release rate to within the above limits(s).

3.1.1 Surveillance Requirements

- a. The dose rate due to noble gases in gaseous effluents shall be determined to be within the above limits in accordance with the methods contained in Section 3.1.2.
- b. The dose rate due to I-131, I-133, tritium and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents shall be determined to be within the above limits in accordance with the methods contained in Section 3.1.2 by obtaining representative samples and performing analyses in accordance with the sampling and analysis program specified in Table 3-1.

3.1.2 Implementation of the Requirements

Noble Gases

Noble gas activity monitor setpoints are established at release rates which permit corrective action to be taken before exceeding the 10 CFR 20 annual dose limits as described in Section 2.0. The requirements for sampling and analysis of continuous and batch effluent releases are given in Table 3-1. The methods for sampling and analysis of continuous and batch effluent releases are given in the Nuclear Administrative and Technical Manual procedures. The dose rate in unrestricted areas shall be determined using the following equations.

For whole body dose rate:

$$D_{WB} = \sum_{i} [(K_{i})(X/Q)_{SITE}(Q_{i})]$$
 (3-1)

For skin dose rate:

$$D_{SK} = \sum_{i} [(L_{i} + 1.1M_{i})(X/Q)_{SITE}(Q_{i})]$$
 (3-2)

Where:

 K_i = the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per μCi/m³ from Table 3-3.

 Q_i = the release rate of radionuclide i, in μ Ci/sec.

 $(X/Q)_{SITE}$ = 8.91E-06, the highest calculated annual average dispersion parameter, in sec/m³, for any of the three units, from Table 3-2.

 D_{WB} = the annual whole body dose rate (mrem/yr.).

L_i = the skin dose factor due to the beta emissions for each identified noble gas radionuclide i, in mrem/yr per μ Ci/m³ from Table 3-3.

 M_i = the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per μ Ci/m³ from Table 3-3.

 D_{SK} = the annual skin dose rate (mrem/yr).

1.1 = unit conversion constant of 1.1 mrem/mrad converts air dose to skin dose.

I-131, I-133, tritium and radionuclides in particulate form with half-lives greater than 8 days

The methods for sampling and analysis of continuous and batch releases for I-131, I-133, tritium and radionuclides in particulate form with half-lives greater than 8 days, are given in the applicable Nuclear Administrative and Technical Manual procedures. Additional monthly and quarterly analyses shall be performed in accordance with Table 3-1. The total organ dose rate in unrestricted areas shall be determined by the following equation:

$$D_o = \sum_{i} [(P_i)(X/Q)_{SITE}(Q_i)]$$
(3-3)

Where:

 P_i = the dose factor, in mrem/yr per μ Ci/m³, for radionuclide i, for the inhalation pathway, from Table 3-4.

 $(X/Q)_{SITE}$ = 8.91E-06, the highest calculated annual average dispersion parameter, in sec/m³, at the Site Boundary, for any of the three units,

 Q_i = the release rate of radionuclide i, in μ Ci/sec

 D_0 = the total organ dose rate (mrem/yr).

TABLE 3-1
RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

GA	SEOUS RELEASE TYPE	SAMPLING FREQUENCY	MINIMUM ANALYSIS FREQUENCY	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT OF DETECTION (LLD) (μCi/ml) ^a
A.	Waste Gas Storage	P Each Tank Grab Sample	P Each Tank	Principal Gamma Emitters ^g	1.0E-04
В.	Containment Purge	P Each Purge ^{b,c}	P Each Purge ^{b,c}	Principal Gamma Emitters ^g	1.0E-04
		Grab Sample		H-3	1.0E-06
C.	1. DELETED 2. Plant Vent	M ^{b,e} Grab Sample	M ^b	Principal Gamma Emitters ^g	1.0E-04
	3. Fuel Bldg. Exhaust			H-3	1.0E-06
		Continuous ^f	4/M ^d Charcoal Sample	I-131	1.0E-12
				I-133	1.0E-10
		Continuous	4/M ^d Particulate Sample	Principal Gamma Emitters ^g (I-131, Others)	1.0E-11
		Continuous ^f	M Composite Particulate Sample	Gross Alpha	1.0E-11
		Continuous ^f	Q Composite Particulate Sample	Sr-89, Sr-90	1.0E-11
D.	All Radwaste Types as listed in A., B., and C., above.	Continuous ^f	Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1.0E-06

Table 3-1 (Continued)

TABLE NOTATION

The LLD is the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a real signal.

For a particular measurement system (which may include radiochemical separation):

LLD =
$$\frac{4.66 \text{ s}_{b}}{\text{E} * \text{V} * 2.22\text{E}6 * \text{Y} * \exp(-\lambda \Delta t)}$$

Where:

LLD is the a priori lower limit of detection as defined above (as μ Ci per unit mass or volume). Current literature defines the LLD as the detection capability for the instrumentation only and the MDC minimum detectable concentration, as the detection capability for a given instrument, procedure and type of sample.

s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting éfficiency (as counts per transformation),

V is the sample size (in units of mass or volume),

2.22E6 is the number of transformations per minute per microcurie,

Y is the fractional radiochemical yield (when applicable),

 λ is the radioactive decay constant for the particular radionuclide, and

 Δt is the elapsed time between the midpoint of sample collection and time of counting (for plant effluents, not environmental samples).

The value of s_b used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance. In calculating the LLD for a radionuclide determined by gamma-ray spectrometry the background should include the typical contributions of other radionuclides normally present in the samples. Typical values of E, V, Y, and Δt should be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

Table 3-1 (Continued)

TABLE NOTATION

- Analyses shall also be performed following SHUTDOWN, STARTUP, or a THERMAL POWER change exceeding 15% of the RATED THERMAL POWER within a 1-hour period if 1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the primary coolant has increased more than a factor of 3; and 2) the noble gas activity monitor on the plant vent shows that effluent activity has increased by more than a factor of 3. If the associated noble gas vent monitor is inoperable, samples must be obtained as soon as possible. Analyses shall be performed within a four-hour period. This requirement does not apply to the Fuel Building Exhaust.
- c Sampling and analyses shall also be performed at least once per 31 days when purging time exceeds 30 days continuous.
- d Samples shall be changed at least 4 times a month and analyses shall be completed within 48 hours after changing (or after removal from sampler). When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10.
- e Tritium grab samples shall be taken at least monthly from the ventilation exhaust from the spent fuel pool area, whenever spent fuel is in the spent fuel pool.
- The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with Requirements 3.1, 4.1 and 4.2 of the ODCM.
- The principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 for gaseous emissions and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides shall also be identified and reported in the Annual Radioactive Effluent Release Report.

ODCM Rev. 24

TABLE 3-2
DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES
AT THE SITE BOUNDARY

	DISTANCE	UNIT 1 X/Q	D/Q	UNIT 2 DISTANCE	X/Q	D/Q	UNIT 3 DISTANCE	X/Q	D/Q
<u>DIRECTION</u>	(METERS)	(SEC/m ³)	(m^{-2})	(METERS)	(SEC/m ³)	(m ⁻²)	(METERS)	(SEC/m ³)	(\mathbf{m}^{-2})
N	1037	4.93E-06	9.24E-09	1318	3.85E-06	6.17E-09	1661	3.54E-06	4.86E-09
NNE	1057	4.14E-06	1.19E-08	1342	3.18E-06	7.93E-09	1693	2.86E-06	6.23E-09
NE	2206	2.84E-06	6.84E-09	2545	2.42E-06	5.34E-09	2756	2.21E-06	4.65E-09
ENE	1967	2.51E-06	4.43E-09	2206	2.22E-06	3.64E-09	2337	2.08E-06	3.30E-09
E	1927	2.56E-06	3.24E-09	2163	2.27E-06	2.66E-09	2290	2.14E-06	2.41E-09
ESE	1967	2.61E-06	2.46E-09	2067	2.32E-06	2.11E-09	2023	2.37E-06	2.10E-09
SE	2049	3.56E-06	2.36E-09	2101	3.47E-06	2.26E-09	2256	3.24E-06	2.00E-09
SSE	2730	3.80E-06	1.58E-09	3026	3.43E-06	1.32E-09	2786	3.72E-06	1.52E-09
S	3006	5.07E-06	1.78E-09	2699	5.16E-06	1.97E-09	2346	5.90E-06	2.51E-09
SSW	2258	6.52E-06	3.20E-09	1836	7.90E-06	4.56E-09	1607	8.91E-06	5.73E-09
SW	1487	7.47E-06	5.65E-09	1208	7.72E-06	6.88E-09	1057	8.68E-06	8.61E-09
wsw	1251	4.52E-06	5.93E-09	1014	5.55E-06	8.44E-09	889	5.34E-06	8.83E-09
W	1225	4.73E-06	9.49E-09	993	5.86E-06	1.34E-08	871	6.72E-06	1.67E-08
WNW	1244	3.76E-06	6.76E-09	1010	4.67E-06	9.60E-09	885	5.37E-06	1.19E-08
NW	1254	3.43E-06	5.87E-09	1191	3.62E-06	6.40E-09	1045	4.17E-06	7.98E-09
NNW	1069	3.70E-06	7.26E-09	1342	2.85E-06	4.87E-09	1561	2.93E-06	4.58E-09

Reference: Distances are from the PVNGS ER-OL, Table 2.3-33. Dispersion and Deposition parameters are from a September, 1985, calculation by NUS Corporation based on 9 years of meteorological data; NUS Corporation letter NUS-ANPP-1386, dated October 4, 1985.

TABLE 3-3
DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS

	Whole Body Dose Factor K _i	Skin Dose Factor L _i	Gamma Air Dose Factor M _i	Beta Air Dose Factor N _i
Radionuclide	<u>mrem-m</u> ³ yr-μCi	<u>mrem-m</u> ³ yr-μCi	<u>mrad-m</u> ³ yr-μCi	<u>mrad-m</u> ³ yr-μCi
Kr-83m	7.56E-02		1.93E+01	2.88E+02
Kr-85m	1.17E+03	1.46E+03	1.23E+03	1.97E+03
Kr-85	1.61E+01	1.34E+03	1.72E+01	1.95E+03
Kr-87	5.92E+03	9.73E+03	6.17E+03	1.03E+04
Kr-88	1.47E+04	2.37E+03	1.52E+04	2.93E+03
Kr-89	1.66E+04	1.01E+04	1.73E+04	1.06E+04
Kr-90	1.56E+04	7.29E+03	1.63E+04	7.83E+03
Xe-13lm	9.15E+01	4.76E+02	1.56E+02	1.11E+03
Xe-133m	2,51E+02	9.94E+02	3.27E+02	1.48E+03
Xe-133	2.94E+02	3.06E+02	3.53E+02	1.05E+03
Xe-135m	3.12E+03	7.11E+02	3.36E+03	7.39E+02
Xe-135	1.81E+03	1.86E+03	1.92E+03	2.46E+03
Xe-137	1.42E+03	1.22E+04	1.51E+03	1.27E+04
Xe-138	8.83E+03	4.13E+03	9.21E+03	4.75E+03
Ar-41	8.84E+03	2.69E+03	9.30E+03	3.28E+03

Reference: Regulatory Guide 1.109, Table B-1.

 $\label{eq:table 3-4} \textbf{P}_{i} \, \text{VALUES FOR THE INHALATION PATHWAY}$

 $(mrem/yr/\mu Ci/m^3)$

NUCLIDE	Age Group	Organ	$P_{\mathbf{i}}$
H-3	TEEN	LIVER	1.27E+03
CR-51	TEEN	LUNG	2.10E+04
MN-54	TEEN	LUNG	1.98E+06
FE-59	TEEN	LUNG	1.53E+06
CO-58	TEEN	LUNG	1.34E+06
CO-60	TEEN	LUNG	8.72E+06
. ZN-65	TEEN	LUNG	1.24E+06
SR-89	TEEN	LUNG	2.42E+06
SR-90	TEEN	BONE	1.08E+08
ZR-95	TEEN	LUNG	2.69E+06
SB-124	TEEN	LUNG	3.85E+06
I-131	CHILD	THYROID	1.62E+07
I-133	CHILD	THYROID	3.85E+06
CS-134	TEEN	LIVER	1.13E+06
CS-137	CHILD	BONE	9.07E+05
BA-140	TEEN	LUNG	2.03E+06
CE-141	TEEN	LUNG	6.14E+05
CE-144	TEEN	LUNG	1.34E+07

3.2 Requirements: Secondary System Liquid Waste Discharges To Onsite Evaporation Ponds or Circulating Water System - Concentration

The concentration of radioactive material discharged from secondary system liquid waste to the circulating water system shall be limited to:

5.0E-07 µCi/ml for the principal gamma emitters (except Ce-144)

 $3.0E-06 \mu Ci/ml$ for Ce-144

1.0E-06 µCi/ml for I-131

1.0E-03 μCi/ml for H-3

The concentration of radioactive material discharged from secondary system liquid waste to the onsite evaporation ponds shall be limited to:

2.0E-06 μCi/ml for Cs-134

2.0E-06 μCi/ml for Cs-137

The concentrations specified in 10 CFR Part 20.1001-20.2402, Appendix B, Table 2, Column 2, for all other isotopes

Applicability: At all times.

Action:

When any secondary system liquid waste discharge pathway concentration determined in accordance with the surveillance requirements given below exceeds the above Requirements, divert that discharge pathway to the liquid radwaste system without delay or terminate the discharge.

3.2.1 Surveillance Requirements

a. Secondary system liquid wastes shall be sampled and analyzed according to the sampling and analysis program of Table 3-5.

3.2.2 Implementation of the Requirements

This requirement is implemented by Nuclear Administrative and Technical Manual procedures.

ODCM Rev. 24

TABLE 3-5
RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

Se	condary System Liquid Release Pathway	Destination	Sampling & Analysis Frequency	Notes	Type Of Activity Analysis	Lower Limit Of Detection (LLD) ^a (µCi/ml)
1.	Chemical Waste Neutralizer	Retention Tank	P Each Batch		Principal Gamma Emitters ^c	5.0E-07
	Tank (CWNT) ^b	liquid radwaste	N. A.		I-131	1.0E-06
					H-3	1.0E-05
2.	Steam Generator Blowdown	circ. water	P Each Batch	1	Principal Gamma Emitters ^c	5.0E-07
	Low TDS Sump ^b	CWNT	N. A.		I-131	1.0E-06
					H-3	1.0E-05
3.	Condensate		I was and	•		
	a. Condensate Polishing Low	circ. water	P Each Batch	3	Principal Gamma Emitters ^c	5.0E-07
	TDS Sump ^b	CWNT	N. A.		I-131	1.0E-06
					H-3	1.0E-05
	b. Initial Backwash	(low TDS sump) to	P Each Discharge		Principal Gamma Emitters ^c	5.0E-07
		circ. water		ļ	I-131	1.0E-06
		(low TDS sump) to CWNT	N. A		H-3	1.0E-05
	c. Pre-service rinse effluent	Retention Tank	P Each Discharge	2	Principal Gamma Emitters ^c	5.0E-07
		through SC-N-V069			I-131	1.0E-06
		condenser through SC-N-UV232	N. A.		H-3	1.0E-05
	d. Overboard condensate	circ water through	P Each Discharge		Principal Gamma Emitters ^c	5.0E-07
		CD-N-V194			I-131	1.0E-06
		Retention Tank through SC-N-V079	P Each Discharge	2	H-3	1.0E-05
4.	Turbine Building Sump ^d	Retention Tank	D Grab Sample	3	Principal Gamma Emitters ^c	5.0E-07
		CWNT	N. A		I-131 H-3 _.	1.0E-06 1.0E-05

ODCM Rev. 24

TABLE 3-5
RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

Sec	condary System Liquid Release Pathway	Destination	Sampling & Analysis Frequency	Notes	Type Of Activity Analysis	Lower Limit Of Detection (LLD) ^a (µCi/ml)
5.	North & South Condenser Area	Retention Tank	D Grab Sample	3	Principal Gamma Emitters ^c	5.0E-07
	Sumps ^d	CWNT	N.A.		I-131	1.0E-06
					H-3	1.0E-05
6.	Steam Generator Blowdown to	Retention Tank	P Each Discharge	2	Principal Gamma Emitters ^c	5.0E-07
	Retention Tank	through SC-N-V064			I-131	1.0E-06
					H-3	1.0E-05
7.	Retention Tank to Evaporation	evaporation pond	P Each Batch		Principal Gamma Emitters ^c	5.0E-07
	Pond				I-131	1.0E-06
					H-3	1.0E-05

Sampling and analysis are required only when concentration for chemical waste neutralizer tank or steam generator activity exceeds the requirement

2 RU-200 shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST at the frequencies shown in Table 3-6. The Alarm/Trip setpoints for RU-200 are set to ensure that the concentrations in the Retention Tanks do not exceed the Requirement

3 Sampling and analysis are required only when concentration for chemical waste neutralizer tank or condensate activity exceeds the requirement

TABLE NOTATION

a The LLD is defined as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system which may include radiochemical separation:

LLD =
$$\frac{4.66 \text{ s}_b}{\text{E * V * 2.22E6 * Y * exp}(-\lambda \Delta t)}$$

Where:

LLD is the "a priori" lower limit of detection as defined above as microcuries per unit mass or volume,

s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate as counts per minute,

E is the counting efficiency as counts per disintegration,

V is the sample size in units of mass or volume,

2.22E6 is the number of disintegrations per minute per microcurie,

Y is the fractional radiochemical yield when applicable,

 λ is the radioactive decay constant for the particular radionuclide, and

 Δt is the elapsed time between midpoint of sample collection and time of counting.

Typical values of E, V, Y, and Δt should be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

- b A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed to assure representative sampling.
- c The principal gamma emitters for which the LLD specification applies include the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, and Ce-141. Ce-144 shall also be measured, but with an LLD of 3.0E-06. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radioactive Effluent Release Report.
- d A continuous release is the discharge of liquid wastes of a nondiscrete volume, e.g., from a volume of a system that has an input flow during the continuous release

TABLE 3-6
RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

Instrument	Channel Check	Source Check	Channel Calibration	Channel Functional Test	Mode in which Surveillance is Required
RU-200	P	N. A.	R	Q	See Table 3-7

TABLE 3-7

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

SURVEILLANCE REQUIREMENTS

Secondary System Liquid Release Pathway	Mode in which Surveillance is Required	Action if RU-200 is inoperable
Pre-service rinse to Retention Tanks	At All Times	Obtain grab sample at least once per 12 hours and analyze in accordance with section 3.2
Condensate overboard to Retention Tanks	1-4	Obtain grab sample at least once per 12 hours and analyses in accordance with section 3.2
Steam Generator Blowdown/Drain to Retention Tanks	At All Times	Modes 1-4: Suspend the release Modes 5,6 & defueled: Obtain grab sample at least once per 12 hours and analyze in accordance with section 3.2

4.0 GASEOUS & LIQUID EFFLUENTS - DOSE

4.1 Requirements: Noble Gases

The air dose due to noble gases released in gaseous effluents, from each reactor unit to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-5) shall be limited to the following:

- **a.** During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation and,
- **b.** During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

Applicability: At all times.

Action:

With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.1.1 Surveillance Requirements

a. Cumulative dose contributions for the current calendar quarter and current calendar year for noble gases shall be determined in accordance with the methodology contained in Section 4.1.2 at least once per 31 days.

4.1.2 Implementation of the Requirement: Noble Gas

The air dose in unrestricted areas beyond the site boundary due to noble gases released in gaseous effluents from each unit during any specified time period shall be determined by the following equations:

For gamma radiation:

$$D \gamma_{ij} = (3.17E-08) \sum_{i} [(M_i) (X/Q)_{UNIT}(Q_i)]$$
 (4-1)

For beta radiation:

$$D \beta_{ij} = (3.17E-08) \sum_{i} [(N_i) (X/Q)_{UNIT}(Q_i)]$$
 (4-2)

Where:

 M_i = the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per μ Ci/m³ from Table 3-3.

 N_i = the air dose factor due to beta emissions for each identified noble gas radionuclide i, in mrad/yr per μ Ci/m³ from Table 3-3.

 $(X/Q)_{UNIT}$ = the highest calculated annual average dispersion parameter, in sec/m³, at the site boundary for the particular Unit, from Table 3-2. Optionally, the highest value may be used for any Unit calculation.

=7.47E-06 from Unit 1 =7.90E-06 from Unit 2 =8.91E-06 from Unit 3

D γ_u = the total gamma air dose, for the particular unit, in mrad, due to noble gases released in gaseous effluents for a specified time period at the SITE BOUNDARY.

D β_u = the total beta air dose, for the particular unit, in mrad, due to noble gases released in gaseous effluents for a specified time period at the SITE BOUNDARY.

 Q_i = the integrated release, from the particular unit, in μ Ci, of each identified noble gas radionuclide i, in gaseous effluents for a specified time period.

3.17E-08 = the inverse of seconds in a year (yr/sec).

The cumulative gamma air dose and beta air dose for a quarterly or annual evaluation shall be based on the calculated dose contribution from each specified time period occurring during the reporting time period.

4.2 Requirement: Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Days

The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-5) shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 7.5 mrems to any organ and,
- **b.** During any calendar year: Less than or equal to 15 mrems to any organ.

Applicability: At all times.

Action:

With the calculated dose from the release of iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.2.1 Surveillance Requirements

a. Cumulative dose contributions for the current calendar quarter and current calendar year for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days shall be determined in accordance with the methodology and parameters contained in Section 4.2.2 at least once per 31 days.

4.2.2 Implementation of the Requirement

The organ dose to an individual from I-131, I-133, tritium, and all radionuclides in particulate form, with half-lives greater than eight days, in gaseous effluents released to unrestricted areas from each reactor unit is calculated using the following expressions:

$$D_{ou} = (3.17E-08) \sum_{i} [\sum_{k} (R_{ik} W_{k}) (Qi)]$$
 (4-3)

Where:

D_{ou} = the total accumulated organ dose from gaseous effluents for a particular unit, to a MEMBER OF THE PUBLIC, in mrem, at the SITE BOUNDARY or at the controlling location.

 Q_i = the quantity of radionuclide i, in μ Ci, released in gaseous effluents from a particular unit.

R_{ik} = the dose factor for each identified radionuclide i, for pathway k (for the inhalation pathway in mrem/yr per μCi/m³ and for the food and ground plane pathways in m² - mrem/yr per μCi/sec, except H-3, which has units of mrem/yr per μCi/m³) at the controlling location. The R_{ik}'s for each age group are given in Tables 4-1 through 4-15.

3.17E-08 = the inverse of seconds per year (yr/sec).

W_k = the highest annual average dispersion or deposition parameter for the particular Unit, used for estimating the dose at the site boundary or to a MEMBER OF THE PUBLIC at the controlling location for the particular Unit. Optionally, the highest value may be used for any Unit calculation.

= (X/Q)_{UNIT}, in sec/m³ for the inhalation pathway and for all tritium calculations, for organ dose at the site boundary, from Table 3-2.

=7.47E-06 from Unit 1 =7.90E-06 from Unit 2

=8.91E-06 from Unit 3

= $(X/Q)_{UNIT}$, in sec/m³ for the inhalation pathway and for all tritium calculations, for organ dose at the controlling location, from Table 4-16, 4-17 or 4-18.

=2.92E-06 from Unit 1

=2.19E-06 from Unit 2

=2.31E-06 from Unit 3

= (D/Q)_{UNIT}, in m⁻², for the food and ground plane pathways, for organ dose at the site boundary, from Table 3-2.

=1.19E-08 from Unit 1

=1.34E-08 from Unit 2

=1.67E-08 from Unit 3

= $(D/Q)_{UNIT}$, in m⁻², for the food and ground plane pathways, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18.

=3.25E-09 from Unit 1

=3.88E-10 from Unit 2

=4.21E-10 from Unit 3

Residences, vegetable gardens and milk animals located within 5 miles of the site will be identified during the annual land use census. The controlling pathway and location will be identified and will be used for all MEMBER OF THE PUBLIC dose evaluations.

The R_i values were calculated in accordance with the methodologies in NUREG-0133. The following site specific information was used to calculate R_i :

	<u>Value</u>
The length of the grazing season for milk animals (f_s). Ref. ER-OL, Section 2.1.3.4.3	0.75
The length of the grazing season for meat animals (f_s) . Ref. ER-OL, Section 2.1.3.4.4	0.25
The fraction of daily feed derived from pasture while on pasture for milk animals (f _p). Ref. ER-OL, Section 2.1.3.4.3	0.35
The fraction of daily feed derived from pasture while on pasture for meat animals (f_p) . Ref. ER-OL, Section 2.1.3.4.3	0.05
The fraction of year vegetables are grown, (f ₁) approximation. Ref. ER-OL, Section 2.1.3.4, Table 2.1-8.	0.667
The annual absolute humidity (g/m ³), H, Ref. UFSAR, Table 2.3-16	6

4.3 Requirements: Gaseous Radwaste Treatment

The GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases, from each reactor unit, from the site (see Figure 6-4 and Figure 6-5) when averaged over 31 days, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases, from each reactor unit, to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-5) when averaged over 31 days would exceed 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

Applicability: At all times:

Action:

With radioactive gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days, a Special Report which includes the following information:

- a. Identification of the inoperable equipment or subsystems and the reason for inoperability,
- b. Action(s) taken to restore the inoperable equipment to OPERABLE status, and
- **c.** Summary description of action(s) taken to prevent a recurrence.

4.3.1 Surveillance Requirements

a. Doses due to gaseous releases from the site shall be projected at least once per 31 days, in accordance with the methodology and parameters in Section 4.3.2.

4.3.2 Implementation of the Requirement

Where possible, consideration for expected operational evolutions (i.e., outages, etc.) should be taken in the dose projections.

Dose Projection - Noble Gases

The air dose, in mrads is determined using the methodology described in Section 4.1.2 of this manual. This information is used to determine an air dose projection for the next 31 days using the following equations:

For gamma radiation:

$$31 day \gamma = D\gamma \pm CD\gamma \tag{4-4}$$

For beta radiation:

$$31 day \beta = D\beta \pm CD\beta \tag{4-5}$$

Where:

Dγ = the total gamma air dose in mrads at the site boundary due to noble gases released in gaseous effluents for the previous 31 days.

 $D\beta$ = the total beta air dose in mrads at the site boundary due to noble gases released in gaseous effluents for the previous 31 days.

CD γ = any current or projected change in gamma air dose, in mrads, due to noble gases released in gaseous effluents, which could have a significant impact on 31 day γ .

CD β = any current or projected change in beta air dose, in mrads, due to noble gases released in gaseous effluents, which could have a significant impact on 31 day β .

When performing the 31 day dose projection using the Gaseous Radioactive Effluent Tracking System (GRETS), D γ and D β will include the dose from any release permits that fall within the selected 31 day time period. As a result, the actual dose projection will often be based on the accumulated dose for a time period greater than 31 days.

37

<u>Dose Projection - I-131, I-133, tritium, and all radionuclides in particulate form with half-lives greater than eight days</u>

The organ dose, in mrem, is determined using the methodology described in Section 4.2.2 of this manual. This information is used to determine an organ dose projection for the next 31 days using the following equation:

$$31day_0 = D_0 \pm CD_0 \tag{4-6}$$

Where:

D_o = the total organ dose due to I-131, I-133, tritium, and all radionuclides in particulate form with half-lives greater than eight days in mrem, released in gaseous effluents for the previous 31 days.

CD_o = any current or projected change in organ dose, in mrem, which could have a significant impact on 31 day_o.

When performing the 31 day dose projection using the Gaseous Radioactive Effluent Tracking System (GRETS), D_0 will include the dose from any release permits that fall within the selected 31 day time period. As a result, the actual dose projection will often be based on the accumulated dose for a time period greater than 31 days.

TABLE 4-1
Ri DOSE CONVERSION FACTORS FOR THE GROUND PLANE PATHWAY

NUCLIDE	T. BODY	SKIN
H-3	0.00E+00	0.00E+00
CR-51	4.66E+06	5.51E+06
MN-54	1.39E+09	1.63E+09
FE-59	2.73E+08	3.21E+08
CO-58	3.79E+08	4.44E+08
CO-60	2.15E+10	2.53E+10
ZN-65	7.47E+08	8.59E+08
SR-89	2.16E+04	2.51E+04
SR-90	0.00E+00	0.00E+00
ZR-95	2.45E+08	2.84E+08
SB-124	5.98E+08	6.90E+08
I-131	1.72E+07	2.09E+07
I-133	2.45E+06	2.98E+06
CS-134	6.86E+09	8.00E+09
CS-137	1.03E+10	1.20E+10
BA-140	2.05E+07	2.35E+07
CE-141	1.37E+07	1.54E+07
CE-144	6.95E+07	8.04E+07

TABLE 4-2
RI DOSE CONVERSION FACTORS FOR THE VEGETATION
PATHWAY - ADULT RECEPTOR

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.87E+03	2.87E+03	2.87E+03	2.87E+03	2.87E+03	2.87E+03
CR-51	0.00E+00	0.00E+00	4.00E+04	2.39E+04	8.82E+03	5.31E+04	1.01E+07
MN-54	0.00E+00	2.97E+08	5.66E+07	0.00E+00	8.83E+07	0.00E+00	9.09E+08
FE-59	1.14E+08	2.68E+08	1.03E+08	0.00E+00	0.00E+00	7.49E+0 <u>7</u>	8.93E+08
CO-58	0.00E+00	2.84E+07	6.38E+07	0.00E+00	0.00E+00	0.00E+00	5.76E+08
CO-60	0.00E+00	1.59E+08	3.51E+08	0.00E+00	0.00E+00	0.00E+00	2.99E+09
ZN-65	3.00E+08	9.56E+08	4.32E+08	0.00E+00	6.39E+08	0.00E+00	6.02E+08
SR-89	9.08E+09	0.00E+00	2.61E+08	0.00E+00	0.00E+00	0.00E+00	1.46E+09
SR-90	5.76E+11	0.00E+00	1.41E+11	0.00E+00	0.00E+00	0.00E+00	1.67E+10
ZR-95	1.08E+06	3.47E+05	2.35E+05	0.00E+00	5.45E+05	0.00E+00	1.10E+09
SB-124	9.53E+07	1.80E+06	3.78E+07	2.31E+05	0.00E+00	7.42E+07	2.71E+09
I-131	5.49E+07	7.85E+07	4.50E+07	2.57E+10	1.35E+08	0.00E+00	2.07E+07
I-133	1.39E+06	2.42E+06	7.38E+05	3.56E+08	4.22E+06	0.00E+00	2.17E+06
CS-134	4.44E+09	1.06E+10	8.64E+09	0.00E+00	3.42E+09	1.13E+09	1.85E+08
CS-137	6.06E+09	8.29E+09	5.43E+09	0.00E+00	2.81E+09	9.36E+08	1.60E+08
BA-140	9.43E+07	1.19E+05	6.18E+06	0.00E+00	4.03E+04	6.78E+04	1.94E+08
CE-141	1.73E+05	1.17E+05	1.33E+04	0.00E+00	5.44E+04	0.00E+00	4.48E+08
CE-144	3.12E+07	1.30E+07	1.67E+06	0.00E+00	7.73E+06	0.00E+00	1.05E+10

TABLE 4-3
RI DOSE CONVERSION FACTORS FOR THE VEGETATION
PATHWAY - TEEN RECEPTOR

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	3.36E+03	3.36E+03	3.36E+03	3.36E+03	3.36E+03	3.36E+03
CR-51	0.00E+00	0.00E+00	5.60E+04	3.11E+04	1.23E+04	7.99E+04	9.41E+06
MN-54	0.00E+00	4.41E+08	8.74E+07	0.00E+00	1.31E+08	0.00E+00	9.04E+08
FE-59.	1.69E+08	3.94E+08	1.52E+08	0.00E+00	0.00E+00	1.24E+08	9.31E+08
CO-58	0.00E+00	4.16E+07	9.59E+07	0.00E+00	0.00E+00	0.00E+00	5.74E+08
CO-60	0.00E+00	2.42E+08	5.45E+08	0.00E+00	0.00E+00	0.00E+00	3.15E+09
ZN-65	4.11E+08	1.43E+09	6.65E+08	0.00E+00	9.12E+08	0.00E+00	6.04E+08
SR-89	1.43E+10	0.00E+00	4.10E+08	0.00E+00	0.00E+00	0.00E+00	1.70E+09
SR-90 -	7.30E+11	0.00E+00	1.80E+11	0.00E+00	0.00E+00	0.00E+00	2.05E+10
ZR-95	1.64E+06	5.17E+05	3.56E+05	0.00E+00	7.60E+05	0.00E+00	1.19E+09
SB-124	1.47E+08	2.70E+06	5.73E+07	3.33E+05	0.00E+00	1.28E+08	2.96E+09
I-131	5.29E+07	7.41E+07	3.98E+07	2.16E+10	1.28E+08	0.00E+00	1.47E+07
I-133	1.29E+06	2.19E+06	6.68E+05	3.06E+08	3.84E+06	0.00E+00	1.66E+06
CS-134	6.90E+09	1.62E+10	7.53E+09	0.00E+00	5.16E+09	1.97E+09	2.02E+08
CS-137	9.86E+09	1.31E+10	4.57E+09	0.00E+00	4.46E+09	1.73E+09	1.87E+08
BA-140	1.07E+08	1.31E+05	6.88E+06	0.00E+00	4.44E+04	8.80E+04	1.65E+08
CE-141	2.61E+05	1.74E+05	2.00E+04	0.00E+00	8.19E+04	0.00E+00	4.98E+08
CE-144	5.11E+07	2.12E+07	2.75E+06	0.00E+00	1:26E+07	0.00E+00	1.29E+10

TABLE 4-4
Ri DOSE CONVERSION FACTORS FOR THE VEGETATION
PATHWAY - CHILD RECEPTOR

NUCLIDES	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	5.23E+03	5.23E+03	5.23E+03	5.23E+03	5.23E+03	5.23E+03
CR-51	0.00E+00	0.00E+00	1.08E+05	6.02E+04	1.64E+04	1.10E+05	5.75E+06
MN-54	0.00E+00	6.49E+08	1.73E+08	0.00E+00	1.82E+08	0.00E+00	5.45E+08
FE-59	3.79E+08	6.13E+08	3.05E+08	0.00E+00	0.00E+00	1.78E+08	6.38E+08
CO-58	0.00E+00	6.21E+07	1.90E+08	0.00E+00	0.00E+00	0.00E+00	3.62E+08
CO-60	0.00E+00	3.70E+08	1.09E+09	0.00E+00	0.00E+00	0.00E+00	2.05E+09
ZN-65	7.93E+08	2.11E+09	1.31E+09	0.00E+00	1.33E+09	0.00E+00	3.71E+08
SR-89	3.44E+10	0.00E+00	9.83E+08	0.00E+00	0.00E+00	0.00E+00	1.33E+09
SR-90	1.22E+12	0.00E+00	3.09E+11	0.00E+00	0.00E+00	0.00E+00	1.64E+10
ZR-95	3.72E+06	8.17E+05	7.27E+05	0.00E+00	. 1.17E+06	0.00E+00	8.52E+08
SB-124	3.38E+08	4.39E+06	1.19E+08	7.47E+05	0.00E+00	1.88E+08	2.12E+09
I-131	9.95E+07	1.00E+08	5.68E+07	3.31E+10	1.64E+08	0.00E+00	8.90E+06
I-133	2.36E+06	2.91E+06	1.10E+06	5.41E+08	4.85E+06	0.00E+00	1.17E+06
CS-134	1.57E+10	2.57E+10	5.43E+09	0.00E+00	7.98E+09	2.86E+09	1.39E+08
CS-137	2.34E+10	2.24E+10	3.31E+09	0.00E+00	7.31E+09	2.63E+09	1.40E+08
BA-140	2.20E+08	1.93E+05	1.28E+07	0.00E+00	6.27E+04	1.15E+05	1.11 Ë+0 8
CE-141	6.15E+05	3.07E+05	4.55E+04	0.00E+00	1.34E+05	0.00E+00	3.83E+08
CE-144	1.24E+08	3.89E+07	6.62E+06	0.00E+00	2.15E+07	0.00E+00	1.01E+10

42

TABLE 4-5
RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT
PATHWAY - ADULT RECEPTOR

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	4.33E+02	4.33E+02	4.33E+02	4.33E+02	4.33E+02	4.33E+02
CR-51	0.00E+00	0.00E+00	3.44E+02	2.06E+02	7.58E+01	4.57E+02	8.65E+04
MN-54	0.00E+00	2.71E+06	5.18E+05	0.00E+00	8.08E+05	0.00E+00	8.31E+06
FE-59	2.60E+07	6.11E+07	2.34E+07	0.00E+00	0.00E+00	1.71E+07	2.04E+08
CO-58	0.00E+00	2.84E+06	6.36E+06	0.00E+00	0.00E+00	0.00E+00	5.75E+07
CO-60	0.00E+00	2.61E+07	5.76E+07	0.00E+00	0.00E+00	0.00E+00	4.90E+08
ZN-65	9.97E+07	3.17E+08	1.43E+08	0.00E+00	2.12E+08	0.00E+00	2.00E+08
SR-89	3.41E+07	0.00E+00	9.79E+05	0.00E+00	0.00E+00	0.00E+00	5.47E+06
SR-90	4.43E+09	0.00E+00	1.09E+09	0.00E+00	0.00E+00	0.00E+00	1.28E+08
ZR-95	2.68E+05	8.58E+04	5.81E+04	0.00E+00	1.35E+05	0.00E+00	2.72E+08
SB-124	2.67E+06	5.05E+04	1.06E+06	6.48E+03	0.00E+00	2.08E+06	7.59E+07
I-131	1.36E+05	1.94E+05	1.11E+05	6.37E+07	3.33E+05	0.00E+00	5.13E+04
I-133	4.56E-03	7.94E-03	2.42E-03	1.17E+00	1.39E-02	0.00E+00	7.14E-03
CS-134	2.17E+08	5.17E+08	4.23E+08	0.00E+00	1.67E+08	5.56E+07	9.05E+06
CS-137	3.11E+08	4.25E+08	2.78E+08	0.00E+00	1.44E+08	4.79E+07	8.22E+06
BA-140	4.35E+05	5.46E+02	2.85E+04	0.00E+00	1.86E+02	3.13E+02	8.95E+05
CE-141	8.87E+02	6.00E+02	6.80E+01	0.00E+00	2.79E+02	0.00E+00	2.29E+06
CE-144	4.23E+05	1.77E+05	2.27E+04	0.00E+00	1.05E+05	0.00E+00	1.43E+08

43

TABLE 4-6
RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT
PATHWAY - TEEN RECEPTOR

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.58E+02	2.58E+02	2.58E+02	2.58E+02	2.58E+02	2.58E+02
CR-51	0.00E+00	0.00E+00	2.75E+02	1.53E+02	6.03E+01	3.93E+02	4.62E+04
MN-54	0.00E+00	2.07E+06	4.11E+05	0.00E+00	6.18E+05	0.00E+00	4.25E+06
FE-59	2.08E+07	4.85E+07	1.87E+07	0.00E+00	0.00E+00	1.53E+07	1.15E+08
CO-58	0.00E+00	2.19E+06	5.04E+06	0.00E+00	0.00E+00	0.00E+00	3.02E+07
CO-60	0.00E+00	2.03E+07	4.56E+07	0.00E+00	0.00E+00	0.00E+00	2.64E+08
ZN-65	7.01E+07	2.43E+08	1.14E+08	0.00E+00	1.56E+08	0.00E+00	1.03E+08
SR-89	2.88E+07	0.00E+00	8.24E+05	0.00E+00	0.00E+00	0.00E+00	3.43E+06
SR-90	2.87E+09	0.00E+00	7.08E+08	0.00E+00	0.00E+00	0.00E+00	8.05E+07
ZR-95	2.14E+05	6.76E+04	4.65E+04	0.00E+00	9.93E+04	0.00E+00	1.56E+08
SB-124	2.18E+06	4.02E+04	8.52E+05	4.95E+03	0.00E+00	1.91E+06	4.40E+07
I-131	1.13E+05	1.58E+05	8.49E+04	4.61E+07	2.72E+05	0.00E+00	3.13E+04
I-133	3.82E-03	6.48E-03	1.98E-03	9.04E-01	1.14E-02	0.00E+00	4.90E-03
CS-134	1.73E+08	4.07E+08	1.89E+08	0.00E+00	1.29E+08	4.94E+07	5.06E+06
CS-137	2.58E+08	3.43E+08	1.20E+08	0.00E+00	1.17E+08	4.54E+07	4.88E+06
BA-140	3.59E+05	4.40E+02	2.31E+04	0.00E+00	1.49E+02	2.96E+02	5.54E+05
CE-141	7.45E+02	4.97E+02	5.71E+01	0.00E+00	2.34E+02	0.00E+00	1.42E+06
CE-144	3.56E+05	1.47E+05	1.91E+04	0.00E+00	8.80E+04	0.00E+00	8.96E+07

TABLE 4-7,
RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT
PATHWAY - CHILD RECEPTOR

NUCLIDES	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	3.12E+02	3.12E+02	3.12E+02	3.12E+02	3.12E+02	3.12E+02
CR-51	0.00E+00	0.00E+00	4.29E+02	2.38E+02	6.51E+01	4.35E+02	2.28E+04
MN-54	0.00E+00	2.37E+06	6.31E+05	0.00E+00	6.64E+05	0.00E+00	1.99E+06
FE-59	3.68E+07	5.96E+07	2.97E+07	0.00E+00	0.00E+00	1.73E+07	6.20E+07
CO-58	0.00E+00	2.55E+06	7.82E+06	0.00E+00	0.00E+00	0.00E+00	1.49E+07
CO-60	0.00E+00	2.40E+07	7.09E+07	0.00E+00	0.00E+00	0.00E+00	1.33E+08
ZN-65	1.05E+08	2.80E+08	1.74E+08	0.00E+00	1.77E+08	0.00E+00	4.92E+07
SR-89	5.45E+07	0.00E+00	1.56E+06	0.00E+00	0.00E+00	0.00E+00	2.11E+06
SR-90	3.70E+09	0.00E+00	9.39E+08	0.00E+00	0.00E+00	0.00E+00	4.99E+07
ZR-95	3.81E+05	8.36E+04	7.45E+04	0.00E+00	1.20E+05	0.00E+00	8.73E+07
SB-124	3.95E+06	5.12E+04	1.38E+06	8.72E+03	0.00E+00	2.19E+06	2.47E+07
I-131	2.09E+05	2.11E+05	1.20E+05	6.96E+07	3.46E+05	0.00E+00	1.87E+04
I-133	7.09E-03	8.77E-03	3.32E-03	1.63E+00	1.46E-02	0.00E+00	3.53E-03
CS-134	3.05E+08	5.00E+08	1.06E+08	0.00E+00	1.55E+08	5.56E+07	2.70E+06
CS-137	4.75E+08	4.55E+08	6.71E+07	0.00E+00	1.48E+08	5.33E+07	2.85E+06
BA-140	6.63E+05	5.81E+02	3.87E+04	0.00E+00	1.89E+02	3.46E+02	3.36E+05
CE-141	1.40E+03	6.99E+02	1.04E+02	0.00E+00	3.07E+02	0.00E+00	8.72E+05
CE-144	6.72E+05	2.11E+05	3.58E+04	0.00E+00	1.17E+05	0.00E+00	5.49E+07

TABLE 4-8
RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK
PATHWAY - ADULT RECEPTOR

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.02E+03	1.02E+03	1.02E+03	1.02E+03	1.02E+03	1.02E+03
CR-51	0.00E+00	0.00E+00	8.28E+03	4.95E+03	1.82E+03	1.10E+04	2.08E+06
MN-54	0.00E+00	3.99E+06	7.61E+05	0.00E+00	1.19E+06	0.00E+00	1.22E+07
FE-59	9.69E+06	2.28E+07	8.73E+06	0.00E+00	0.00E+00	6.36E+06	7.59E+07
CO-58	0.00E+00	1.74E+06	3.90E+06	0.00E+00	0.00E+00	0.00E+00	3.53E+07
CO-60	0.00E+00	8.41E+06	1.85E+07	0.00E+00	0.00E+00	0.00E+00	1.58E+08
ZN-65	6.34E+08	2.02E+09	9.12E+08	0.00E+00	1.35E+09	0.00E+00	1.27E+09
SR-89	4.90E+08	0.00E+00	1.41E+07	0.00E+00	0.00E+00	0.00E+00	7.86E+07
SR-90	2.43E+10	0.00E+00	5.96E+09	0.00E+00	0.00E+00	0.00E+00	7.02E+08
ZR-95	3.39E+02	1.09E+02	7.37E+01	0.00E+00	1.71E+02	0.00E+00	3.45E+05
SB-124	9.11E+06	1.72E+05	3.61E+06	2.21E+04	0.00E+00	7.09E+06	2.59E+08
I-131	7.77E+07	1.11E+08	6.37E+07	3.64E+10	1.91E+08	0.00E+00	2.93E+07
I-133	1.02E+06	1.77E+06	5.39E+05	2.60E+08	3.08E+06	0.00E+00	1.59E+06
CS-134	2.83E+09	6.73E+09	5.50E+09	0.00E+00	2.18E+09	7.23E+08	1.18E+08
CS-137	3.83E+09	5.24E+09	3.43E+09	0.00E+00	1.78E+09	5.91E+08	1.01E+08
BA-140	7.11E+06	8.93E+03	4.66E+05	0.00E+00	3.04E+03	5.11E+03	1.46E+07
CE-141	8.73E+03	5.90E+03	6.70E+02	0.00E+00	2.74E+03	0.00E+00	2.26E+07
CE-144	1.01E+06	4.21E+05	5.41E+04	0.00E+00	2.50E+05	0.00E+00	3.41E+08

TABLE 4-9
RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK
PATHWAY - TEEN RECEPTOR

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.33E+03	1.33E+03	1.33E+03	1.33E+03	1.33E+03	1.33E+03
CR-51	0.00E+00	0.00Ê+00	1.45E+04	8.03E+03	3.17E+03	2.06E+04	2.43E+06
MN-54	0.00E+00	6.64E+06	1.32E+06	0.00E+00	1.98E+06	0.00E+00	1.36E+07
FE-59	1.69E+07	3.95E+07	1.52E+07	0.00E+00	0.00E+00	1.24E+07	9.33E+07
CO-58	0.00E+00	2.93E+06	6.76E+06	0.00E+00	0.00E+00	0.00E+00	4.04E+07
CO-60	0.00E+00	1.42E+07	3.21E+07	0.00E+00	0.00E+00	0.00E+00	1.86E+08
ZN-65	9.74E+08	3.38E+09	1.58E+09	0.00E+00	2.17E+09	0.00E+00	1.43E+09
SR-89	9.03E+08	0.00E+00	2.59E+07	0.00E+00	0.00E+00	0.00E+00	1.08E+08
SR-90	3.43E+10	0.00E+00	8.48E+09	0.00E+00	0.00E+00	0.00E+00	9.64E+08
ZR-95	5.94E+02	1.87E+02	1.29E+02	0.00E+00	2.75É+02	0.00E+00	4.32E+05
SB-124	1.62E+07	2.99E+05	6.34E+06	3.69E+04	0.00E+00	1.42E+07	3.27E+08
I-131	1.41E+08	1.98E+08	1.06E+08	5.76E+10	3.40E+08	0.00E+00	3.91E+07
I-133	1.86E+06	3.15E+06	9.60E+05	4.39E+08	5.52E+06	0.00E+00	2.38E+06
CS-134	4.91E+09	1.16E+10	5.36E+09 [,]	0.00E+00	3.67E+09	1.40E+09	1.44E+08
CS-137	6.95E+09	9.24E+09	3.22E+09	0.00E+00	3.15E+09	1.22E+09	1.32E+08
BA-140	1.28E+07	1.57E+04	8.27E+05	0.00E+00	5.33E+03	1.06E+04	1.98E+07
CE-141	1.60E+04	1.07E+04	1.23E+03	0.00E+00	5.03E+03	0.00E+00	3.06E+07
CE-144	1.86E+06	7.68E+05	9.97E+04	0.00E+00	4.59E+05	0.00E+00	4.67E+08

TABLE 4-10
Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK
PATHWAY - CHILD RECEPTOR

NUCLIDES	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.09E+03	2.09E+03	2.09E+03	2.09E+03	2.09E+03	2.09E+03
CR-51	0.00E+00	0.00E+00	2.95E+04	1.64E+04	4.47E+03	2.99E+04	1.56E+06
MN-54	0.00E+00	9.94E+06	2.65E+06	0.00E+00	2.79E+06	0.00E+00	8.34E+06
FE-59	3.92E+07	6.35E+07	3.16E+07	0.00E+00	0.00E+00	1.84E+07	6.61E+07
CO-58	0.00E+00	4.48E+06	1.37E+07	0.00E+00	0.00E+00	0.00E+00	2.61E+07
CO-60	0.00E+00	2.21E+07	6.52E+07	0.00E+00	0.00E+00	0.00E+00	1.23E+08
ZN-65	1.91E+09	5.09E+09	3.17E+09	0.00E+00	3.21E+09	0.00E+00	8.95E+08
SR-89	2.23E+09	0.00E+00	6.38E+07	0.00E+00	0.00E+00	0.00E+00	8.65E+07
SR-90	5.80E+10	0.00E+00	1.47E+10	0.00E+00	0.00E+00	0.00E+00	7.81E+08
ZR-95	1.38E+03	3.03E+02	2.70E+02	0.00E+00	4.34E+02	0.00E+00	3.16E+05
SB-124	3.84E+07	4.99E+05	1.35E+07	8.49E+04	0.00E+00	2.13E+07	2.41E+08
I-131	3.42E+08	3.44E+08	1.96E+08	1.14E+11	5.65E+08	0.00E+00	3.06E+07
I-133	4.51E+06	5.57E+06	2.11E+06	1.04E+09	9.29E+06	0.00E+00	2.25E+06
CS-134	1.13E+10	1.86E+10	3.92E+09	0.00E+00	5.76E+09	2.07E+09	1.00E+08
CS-137	1.67E+10	1.60E+10	2.36E+09	0.00E+00	5.22E+09	1.88E+09	1.00E+08
BA-140	3.10E+07	2.71E+04	1.81E+06	0.00E+00	8.83E+03	1.62E+04	1.57E+07
CE-141	3.94E+04	1.97E+04	2.92E+03	0.00E+00	8.62E+03	0.00E+00	2.45E+07
CE-144	4.57E+06	1.43E+06	2.44E+05	0.00E+00	7.94E+05	0.00E+00	3.74E+08

TABLE 4-11

RI DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK

PATHWAY - INFANT RECEPTOR

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	3.18E+03	3.18E+03	3.18E+03	3.18E+03	3.18E+03	3.18E+03
CR-51	0.00E+00	0.00E+00	4.67E+04	3.05E+04	6.66E+03	5.93E+04	1.36E+06
MN-54	0.00E+00	1.85E+07	4.19E+06	0.00E+00	4.10E+06	0.00E+00	6.79E+06
FE-59	7.32E+07	1.28E+08	5.04E+07	0.00E+00	0.00E+00	3.78E+07	6.11E+07
CO-58	0.00E+00	8.96E+06	2.23E+07	0.00E+00	0.00E+00	0.00E+00	2.23E+07
CO-60	0.00E+00	4.52E+07	1.07E+08	0.00E+00	0.00E+00	0.00E+00	1.07E+08
ZN-65	2.57E+09	8.81E+09	4.06E+09	0.00E+00	4.27E+09	0.00E+00	7.44E+09
SR-89	4.25E+09	0.00E+00	1.22E+08	0.00E+00	0.00E+00	0.00E+00	8.74E+07
SR-90	6.31E+10	0.00E+00	1.61E+10	0.00E+00	0.00E+00	0.00E+00	7.88E+08
ZR-95	2.45E+03	5.97E+02	4.23E+02	0.00E+00	6.43E+02	0.00E+00	2.97E+05
SB-124	7.41E+07	1.09E+06	2.30E+07	1.97E+05	0.00E+00	4.64E+07	2.29E+08
I-131	7.14E+08	8.42E+08	3.70E+08	2.77E+11	9.83E+08	0.00E+00	3.00E+07
I-133	9.52E+06	1.39E+07	4.06E+06	2.52E+09	1.63E+07	0.00E+00	2.35E+06
CS-134	1.82E+10	3.40E+10	3.44E+09	0.00E+00	8.76E+09	3.59E+09	9.24E+07
CS-137	2.67E+10	3.13E+10	2.22E+09	0.00E+00	8.39E+09	3.40E+09	9.78E+07
BA-140	6.37E+07	6.37E+04	3.28E+06	0.00E+00	1.51E+04	3.91E+04	1.57E+07
CE-141	7.81E+04	4.77E+04	5.61E+03	0.00E+00	1.47E+04	0.00E+00	2.46E+07
CE-144	6.55E+06	2.68E+06	3.67E+05	0.00E+00	1.08E+06	0.00E+00	3.76E+08

49

ODCM Rev. 24

TABLE 4-12 $\label{eq:table_approx} \textbf{Ri DOSE CONVERSION FACTORS FOR THE INHALATION}$ PATHWAY - ADULT RECEPTOR

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.26E+03	1.26E+03	1.26E+03	1.26E+03	1.26E+03	1.26E+03
CR-51	0.00E+00	0.00E+00	1.00E+02	5.95E+01	2.28E+01	1.44E+04	3.32E+03
MN-54	0.00E+00	3.96E+04	6.30E+03	0.00E+00	9.84E+03	1.40E+06	7.74E+04
FE-59	1.18E+04	2.78E+04	1.06E+04	0.00E+00	0.00E+00	1.02E+06	1.88E+05
CO-58	0.00E+00	1.58E+03	2.07E+03	0.00E+00	0.00E+00	9.28E+05	1.06E+05
CO-60	0.00E+00	1.15E+04	1.48E+04	0.00E+00	0.00E+00	5.97E+06	2.85E+05
ZN-65	3.24E+04	1.03E+05	4.66E+04	0.00E+00	6.90E+04	8.64E+05	5.34E+04
SR-89	3.04E+05	0.00E+00	8.72E+03	0.00E+00	0.00E+00	1.40E+06	3.50E+05
SR-90	9.92E+07	0.00E+00	6.10E+06	0.00E+00	0.00E+00	9.60E+06	7.22E+05
ZR-95	1.07E+05	3.44E+04	2.33E+04	0.00E+00	5.42E+04	1.77E+06	1.50E+05
SB-124	3.12E+04	5.89E+02	1.24E+04	7.55E+01	0.00E+00	2.48E+06	4.06E+05
I-131	2.52E+04	3.58E+04	2.05E+04	1.19E+07	6.13E+04	0.00E+00	6.28E+03
I-133	8.64E+03	1.48E+04	4.52E+03	2.15E+06	2.58E+04	0.00E+00	8.88E+03
CS-134	3.73E+05	8.48E+05	7.28E+05	0.00E+00	2.87E+05	9.76E+04	1.04E+04
CS-137	4.78E+05	6.21E+05	4.28E+05	0.00E+00	2.22E+05	7.52E+04	8.40E+03
BA-140	3.90E+04	4.90E+01	2.57E+03	0.00E+00	1.67E+01	1.27E+06	2.18E+05
CE-141	1.99E+04	1.35E+04	1.53E+03	0.00E+00	6.26E+03	3.62E+05	1.20E+05
CE-144	3.43E+06	1.43E+06	1.84E+05	0.00E+00	8.48E+05	7.78E+06	8.16E+05

TABLE 4-13 $\mbox{Ri DOSE CONVERSION FACTORS FOR THE INHALATION } \\ \mbox{PATHWAY - TEEN RECEPTOR }$

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.27E+03	1.27E+03	1.27E+03	1.27E+03	1.27E+03	1.27E+03
CR-51	0.00E+00	0.00E+00	1.35E+02	7.50E+01	3.07E+01	2.10E+04	3.00E+03
MN-54	0.00E+00	5.11E+04	8.40E+03	0.00E+00	1.27E+04	1.98E+06	6.68E+04
FE-59	1.59E+04	3.70E+04	1.43E+04	0.00E+00	0.00E+00	1.53E+06	1.78E+05
CO-58	0.00E+00	2.07E+03	2.78E+03	0.00E+00	0.00E+00	1.34E+06	9.52E+04
CO-60	0.00E+00	1.51E+04	1.98E+04	0.00E+00	0.00E+00	8.72E+06	2.59E+05
ZN-65	3.86E+04	1.34E+05	6.24E+04	0.00E+00	8.64E+04	1.24E+06	4.66E+04
SR-89	4.34E+05	0.00E+00	1.25E+04	0.00E+00	0.00E+00	2.42E+06	3.71E+05
SR-90	1.08E+08	0.00E+00	6.68E+06	0.00E+00	0.00E+00	1.65E+07	7.65E+05
ZR-95	1.46E+05	4.58E+04	3.15E+04	0.00E+00	6.74E+04	2.69E+06	1.49E+05
SB-124	4.30E+04	7.94E+02	1.68E+04	9.76E+01	0.00E+00	3.85E+06	3.98E+05
I-131	3.54E+04	4.91E+04	2.64E+04	1.46E+07	8.40E+04	0.00E+00	6.49E+03
I-133	1.22E+04	2.05E+04	6.22E+03	2.92E+06	3.59E+04	0.00E+00	1.03E+04
CS-134	5.02E+05	1.13E+06	5.49E+05	0.00E+00	3.75E+05	1.46E+05	9.76E+03
CS-137	6.70E+05	8.48E+05	3.11E+05	0.00E+00	3.04E+05	1.21E+05	8.48E+03
BA-140	5.47E+04	6.70E+01	3.52E+03	0.00E+00	2.28E+01	2.03E+06	2.29E+05
CE-141	2.84E+04	1.90E+04	2.17E+03	0.00E+00	8.88E+03	6.14E+05	1.26E+05
CE-144	4.89E+06	2.02E+06	2.62E+05	0.00E+00	1.21E+06	1.34E+07	8.64E+05

TABLE 4-14 $\label{eq:table_eq} {\bf Ri~DOSE~CONVERSION~FACTORS~FOR~THE~INHALATION}$ ${\bf PATHWAY~CHILD~RECEPTOR}$

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.12E+03	1.12E+03	1.12E+03	1.12E+03	1.12E+03	1.12E+03
CR-51	0.00E+00	0.00E+00	1.54E+02	8.55E+01	2.43E+01	1.70E+04	1.08E+03
MN-54	0.00E+00	4.29E+04	9.51E+03	0.00E+00	1.00E+04	1.58E+06	2.29E+04
FE-59	2.07E+04	3.34E+04	1.67E+04	0.00E+00	0.00E+00	1.27E+06	7.07E+04
CO-58	0.00E+00	1.77E+03	3.16E+03	0.00E+00	0.00E+00	1.11E+06	3.44E+04
CO-60	0.00E+00	1.31E+04	2.26E+04	0.00E+00	0.00E+00	7.07E+06	9.62E+04
ZN-65	4.26E+04	1.13E+05	7.03E+04	0.00E+00	7.14E+04	9.95E+05	1.63E+04
SR-89	5.99E+05	0.00E+00	1.72E+04	0.00E+00	0.00E+00	2.16E+06	1.67E+05
SR-90	1.01E+08	0.00E+00	6.44E+06	0.00E+00	0.00E+00	1.48E+07	3.43E+05
ZR-95	1.90E+05	4.18E+04	3.70E+04	0.00E+00	5.96E+04	2.23E+06	6.11E+04
SB-124	5.74E+04	7.40E+02	2.00E+04	1.26E+02	0.00E+00	3.24E+06	1.64E+05
· I-131	4.81E+04	4.81E+04	2.73E+04	1.62E+07	7.88E+04	0.00E+00	2.84E+03
I-133	1.66E+04	2.03E+04	7.70E+03	3.85E+06	3.38E+04	0.00E+00	5.48E+03
CS-134	6.51E+05	1.01E+06	2.25E+05	0.00E+00	3.30E+05	1.21E+05	3.85E+03
CS-137	9.07E+05	8.25E+05	1.28E+05	0.00E+00	2.82E+05	1.04E+05	3.62E+03
BA-140	7.40E+04	6.48E+01	4.33E+03	0.00E+00	2.11E+01	1.74E+06	1.02E+05
CE-141	3.92E+04	1.95E+04	2.90E+03	0.00E+00	8.55E+03	5.44E+05	5.66E+04
CE-144	6.77E+06	2.12E+06	3.61E+05	0.00E+00	1.17E+06	1.20E+07	3.89E+05

TABLE 4-15 $\label{eq:table 4-15} {\bf Ri~DOSE~CONVERSION~FACTORS~FOR~THE~INHALATION}$ ${\bf PATHWAY~INFANT~RECEPTOR}$

NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	6.47E+02	6.47E+02	6.47E+02	6.47E+02	6.47E+02	6.47E+02
CR-51	0.00E+00	0.00E+00	8.95E+01	5.75E+01	1.32E+01	1.28E+04	3.57E+02
MN-54	0.00E+00	2.53E+04	4.98E+03	0.00E+00	4.98E+03	1.00E+06	7.06E+03
FE-59	1.36E+04	2.35E+04	9.48E+03	0.00E+00	0.00E+00	1.02E+06	2.48E+04
CO-58	0.00E+00	1.22E+03	1.82E+03	0.00E+00	0.00E+00	7.77E+05	1.11E+04
CO-60	0.00E+00	8.02E+03	1.18E+04	0.00E+00	0.00E+00	4.51E+06	3.19E+04
ZN-65	1.93E+04	6.26E+04	3.11E+04	0.00E+00	3.25E+04	6.47E+05 7	5.14E+04
SR-89	3.98E+05	0.00E+00	1.14E+04	0.00E+00	0.00E+00	2.03E+06	6.40E+04
SR-90	4.09E+07	0.00E+00	2.59E+06	0.00E+00	0.00E+00	1.12E+07	1.31E+05
ZR-95	1.15E+05	2.79E+04	2.03E+04	0.00E+00	3.11E+04	1.75E+06	2.17E+04
SB-124	3.79E+04	5.56E+02	1.20E+04	1.01E+02	0.00E+00	2.65E+06	5.91E+04
I-131	3.79E+04	4.44E+04	1.96E+04	1.48E+07	5.18E+04	0.00E+00	1.06E+03
I-133	1.32E+04	1.92E+04	5.60E+03	3.56E+06	2.24E+04	0.00E+00	2.16E+03
CS-134	3.96E+05	7.03E+05	7.45E+04	0.00E+00	1.90E+05	7.97E+04	1.33E+03
CS-137	5.49E+05	6.12E+05	4.55E+04	0.00E+00	1.72E+05	7.13E+04	1.33E+03
BA-140	5.60E+04	5.60E+01	2.90E+03	0.00E+00	1.34E+01	1.60E+06	3.84E+04
CE-141	2.77E+04	1.67E+04	1.99E+03	0.00E+00	5.25E+03	5.17E+05	2.16E+04
CE-144	3.19E+06	1.21E+06	1.76E+05	0.00E+00	5.38E+05	9.84E+06	1.48E+05

ODCM Rev. 24

TABLE 4-16

PALO VERDE NUCLEAR GENERATING STATION DISPERSION

AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES

AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 1

DIRECTION	X/Q (Sec/m ³)	RESIDENCE(b) Dist. Miles	D/Q (m·²)	X/Q (Sec/m ³)	GARDEN(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	MILK(b) Dist. Miles	D/Q (m ⁻²)
N	2.92E-06	1.4	3.25E-09	2.92E-06	1.4	3.25E-09	7.03E-07	(a)	3.48E-10
NNE	1.81E-06	1.8	2.88E-09	4.70E-07	(a)	4.04E-10	4.70E-07	(a)	4.04E-10
NE	1.95E-06	1.9	3.85E-09	1.76E-06	2.1	3.29E-09	5.77E-07	(a)	6.51E-10
ENE	1.03E-06	2.7	1.08E-09	1.03E-06	2.7	1.08E-09	3.86E-07	(a)	2.86E-10
Е	9.39E-07	2.8	6.68E-10	3.71E-07	(a)	1.87E-10	3.71E-07	(a)	1.87E-10
ESE	6.37E-07	3.7	2.84E-10	4.12E-07	4.6	1.60E-10	4.12E-07	4.6	1.60E-10 goat
. SE	8.83E-07	4.1	2.61E-10	8.83E-07	4.1	2.61E-10	5.84E-07	(a)	1.52E-10
SSE	1.27E-06	4.7	2.61E-10	1.09E-06	(a)	2.15E-10	1.09E-06	(a)	2.15E-10
. S	2.58E-06	4.6	4.85E-10	2.09E-06	5.2	3.59E-10	2.13E-06	5.1	3.71E-10 cow
SSW	3.26E-06	3.5	8.26E-10	2.28E-06	(a)	4.53E-10	2.28E-06	(a)	4.53E-10
SW	2.80E-06	2.9	9.10E-10	1.58E-06	(a)	3.56E-10	1.58E-06	(a)	3.56E-10
WSW	1.95E-06	2.6	1.09E-09	8.55E-07	(a)	3.18E-10	8.55E-07	(a)	3.18E-10
W	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10
WNW	6.03E-07	(a)	3.25E-10	6.03E-07	(a) .	3.25E-10	6.03E-07	(a)	3.25E-10
NW	8.24E-07	3.8	5.25E-10	7.55E-07	4.1	4.61E-10	6.02E-07	(a)	3.27E-10
NNW	1.46E-06	2.0	1.47E-09	5.20E-07	(a)	3.04E-10	5.20E-07	(a)	3.04E-10

⁽a) 5-mile value used since there is no pathway located within the sector up to five miles.

References: 1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

⁽b) Controlling locations are discussed in Appendix A.

TABLE 4-17

PALO VERDE NUCLEAR GENERATING STATION DISPERSION

AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES

AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 2

DIRECTION	X/Q (Sec/m ³)	RESIDENCE(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	GARDEN(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	MILK(b) Dist. Miles	D/Q (m ⁻²)
N	2.73E-06	1.5	2.92E-09	2.39E-06	1.7	2.35E-09	7.03E-07	(a)	3.48E-10
NNE	2.20E-06	1.5	3.87E-09	2.20E-06	1.5	3.87E-09	4.70E-07	(a)	4.04E-10
NE	1.85E-06	2.0	3.55E-09	1.57E-06	2.3	2.78E-09	5.77E-07	(a)	6.51E-10
ENE	1.03E-06	2.7	1.08E-09	1.03E-06	2.7	1.08E-09	3.86E-07	(a)	2.86E-10
E	8.80E-07	3.0	6.06E-10	3.71E-07	(a)	1.87E-10	3.71E-07	(a)	1.87E-10
ESE	6.25E-07	3.7	2.76E-10	3.96E-07	4.7	1.51E-10	3.96E-07	4.7	1.51E-10 goat
SE	9.06E-07	4.0	2.72E-10	9.06E-07	4.0	2.72E-10	5.84E-07	(a)	1.52E-10
SSE	1.34E-06	4.5	2.81E-10	1.09E-06	(a)	2.15E-10	1.09E-06	(a)	2.15E-10
S	2.63E-06	4.5	5.01E-10	2.19E-06	5.0	3.88E-10	2.19E-06	5.0	3.88E-10 cow
SSW	3.48E-06	3.2	9.19E-10	2.28E-06	(a)	4.53E-10	2.28E-06	(a)	4.53E-10
SW	2.93E-06	2.7	9.75E-10	1.58E-06	(a)	3.56E-10	1.58E-06	(a)	3.56E-10
WSW	2.01E-06	2.5	1.16E-09	8.55E-07	(a)	3.18E-10	8.55E-07	(a)	3.18E-10
W	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10
WNW	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10
NW	7.84E-07	4.0	4.88E-10	7.84E-07	4.0	4.88E-10	6.02E-07	(a)	3.27E-10
NNW	1.46E-06	2.0	1.47E-09	5.20E-07	5.0	3.04E-10	5.20E-07	(a)	3.04E-10

⁽a) 5-mile value used since there is no pathway located within the sector up to five miles.

References: 1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

⁽b) Controlling locations are discussed in Appendix A.

TABLE 4-18

PALO VERDE NUCLEAR GENERATING STATION DISPERSION
AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES
AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 3

DIRECTION	X/Q (Sec/m ³)	RESIDENCE(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	GARDEN(b) Dist. Miles	D/Q (m ⁻²)	X/Q (Sec/m ³)	MILK(b) Dist. Miles	D/Q (m ⁻²)
N	2.58E-06	1.8	2.47E-09	2.42E-06	1.9	2.22E-09	7.03E-07	. (a)	3.48E-10
NNE	1.85E-06	1.7	2.97E-09	1.85E-06	1.7	2.97E-09	4.70E-07	(a)	4.04E-10
NE	1.66E-06	2.2	3.00E-09	1.48E-06	2.4	2.54E-09	5.77E-07	(a)	6.51E-10
ENE	8.75E-07	2.9	8.86E-10	8.75E-07	2.9	8.86E-10	3.86E-07	(a)	2.86E-10
E	8.90E-07	3.0	6.17E-10	4.06E-07	4.6	2.15E-10	4.25E-07	4.5	2.31E-10 goat
ESE	6.37E-07	3.7	2.84E-10	5.80E-07	4.0	2.46E-10	3.73E-07	(a)	1.37E-10
SE	5.84E-07	(a)	1.52E-10	5.84E-07	(a)	1.52E-10	5.84E-07	(a)	1.52E-10
SSE	1.36E-06	4.4	2.88E-10	1.09E-06	(a)	2.15E-10	1.09E-06	(a)	2.15E-10
S	2.65E-06	4.2	5.25E-10	2.25E-06	4.9	4.06E-10	2.31E-06	4.8	4.21E-10 cow
SSW	3.64E-06	3.1	9.82E-10	2.28E-06	(a)	4.53E-10	2.28E-06	(a)	4.53E-10
SW	3.19E-06	2.5	1.11E-09	1.58E-06	(a)	3.56E-10	1.58E-06	(a)	3.56E-10
WSW	2.12E-06	2.4	1.26E-09	8.55E-07	(a)	3.18E-10	8.55E-07	(a)	3.18E-10
W	7.54E-07	(a)	4.44E-10	7.54E-07	(a)	4.44E-10	7.54E-10	(a)	4.44E-10
WNW	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10	6.03E-07	(a)	3.25E-10
NW	6.83E-07	4.3	4.05E-10	6.82E-07	4.3	4.05E-10	6.02E-07	(a)	3.27E-10
NNW	1.34E-06	2.2	1.26E-09	5.16E-07	5.0	3.01E-10	5.20E-07	(a)	3.04E-10

⁽a) 5-mile value used since there is no pathway located within the sector up to five miles.

References: 1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

⁽b) Controlling locations are discussed in Appendix A.

4.4 Requirements: Liquid Effluents

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY (See Figure 6-4 and Figure 6-5) shall be limited:

- a. During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
- **b.** During any calendar year to less than or equal to 3 mrems to the total body and to less than or equal to 10 mrems to any organ.

Applicability: At all times.

Action:

With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.4.1 Surveillance Requirements

Cumulative dose contributions from liquid effluents for the current calendar quarter and the current calendar year shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.

4.4.2 Implementation of the Requirements

This Requirement does not require implementation guidance. There are no offsite liquid effluent releases.

5.0 TOTAL DOSE AND DOSE TO PUBLIC ONSITE

5.1 Requirement: Total Dose

The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to direct radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

Applicability: At all times.

Action:

With the calculated doses from the release of radioactive materials in liquid and gaseous effluents exceeding twice the limits of Section 4.4a, 4.4b, 4.1a, 4.1b, 4.2a or 4.2b calculations shall be made including direct radiation contributions from the reactor units (including outside storage tanks, etc.) to determine whether the above limits of Section 5.1 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in 10 CFR 20.2203(a)(4), shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits, and if the release condition resulting in violation of 40 CFR Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report within 30 days is considered a timely request, and a variance is granted until staff action on the request is complete.

5.1.1 Surveillance Requirements

- a. Cumulative dose contributions from the gaseous effluents shall be determined in accordance with the surveillance requirements of Section 4.4.1, 4.1.1 and 4.2.1 and in accordance with the methodology and parameters contained in Section 5.1.2.
- b. Cumulative dose contributions from direct radiation from the reactor units and from radwaste storage tanks shall be determined in accordance with the methodology and parameters in Section 5.1.2. This requirement is applicable only under conditions set forth in Section 5.1, Action.

5.1.2 Implementation of the Requirement

Since all other uranium fuel cycle sources are greater than 20 miles away, only the PVNGS site need be considered.

The total dose to any MEMBER OF THE PUBLIC will be determined based on a sum of the doses from all three units' releases and doses from direct radiation from PVNGS.

This dose evaluation is performed annually and submitted with the Annual Radioactive Effluent Release Report to assure compliance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. NUREG-0543, Methods for Demonstrating LWR Compliance With the EPA Uranium Fuel Cycle Standard (40 CFR Part 190), February 1980, provides a discussion on compliance with 40 CFR Part 190 in relation to the Radiological Environmental Technical Specifications for sites of up to four nuclear power reactors. The NUREG concludes that as long as a nuclear plant site operates at a level below the 10 CFR Part 50, Appendix I reporting requirements, and there is no significant source of direct radiation from the site, no extra analysis is required to demonstrate compliance with 40 CFR Part 190. As a result, this dose evaluation will also be performed whenever calculated doses associated with effluent releases exceed twice the limits of Section 4.4a, 4.4b, 4.1a, 4.1b, 4.2a or 4.2b.

Dose Contribution from Liquid and Gaseous Effluents

The annual whole body dose accumulated by a MEMBER OF THE PUBLIC for the noble gases released in gaseous effluents is determined by using the following equation:

 $D_{WB} = (3.17E-08) \sum_{i} [(K_i) (X/Q)_{UNIT} (Q_i)]$ (5-1)

Where:

 K_i = the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per μ Ci/m³ from Table 3-3.

 Q_i = the integrated release of radionuclide i, in μ Ci for the previous calendar year.

(X/Q)_{UNIT} = the highest calculated annual average dispersion parameter, in sec/m³, for a particular unit, at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.

=2.92E-06 from Unit 1 =2.19E-06 from Unit 2 =2.31E-06 from Unit 3

D_{WB} = the annual whole body dose in mrem to a MEMBER OF THE PUBLIC at the controlling location due to noble gases released in gaseous effluents.

3.17E-08 = the inverse of seconds in a year (yr/sec).

The annual dose to any organ accumulated by a MEMBER OF THE PUBLIC for iodine-131, iodine-133, tritium and all radionuclides in particulate form with half-lives greater than 8 days released in gaseous effluents is determined by using the following equation:

$$D_{o} = (3.17E-08) \sum_{i} [\sum_{k} (R_{ik} W_{k}) (Q_{i})]$$
 (5-2)

Where:

D_o = the total annual organ dose from gaseous effluents to a MEMBER OF THE PUBLIC, in mrem, at the controlling location.

 Q_i = the integrated release of radionuclide i, in μ Ci, for the previous calendar year.

 R_{ik} = the dose factor for each identified radionuclide i, for pathway k (for the inhalation pathway in mrem/yr per μ Ci/m³ and for the food and ground plane pathways in m²-mrem/yr per μ Ci/sec) at the controlling location. The R_{ik} 's for each age group are given in Tables 4-1 through 4-15.

W_K = the highest annual average dispersion or deposition parameter for the particular unit, used for estimating the total annual organ dose to a MEMBER OF THE PUBLIC at the controlling location for the particular unit.

= (X/Q)_{UNIT}, in sec/m³ for the inhalation pathway and for all tritium calculations, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.

=2.92E-06 from Unit 1

=2.19E-06 from Unit 2

=2.31E-06 from Unit 3

= (D/Q)_{UNIT}, in m⁻², for the food and ground plane pathways, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.

=3.25E-09 from Unit 1

=3.88E-10 from Unit 2

=4.21E-10 from Unit 3

3.17E-08 = the inverse of seconds in a year (yr/sec).

Dose Due to Direct Radiation

The component of dose to a MEMBER OF THE PUBLIC due to direct radiation will be evaluated by first determining the direct radiation dose at the site boundary in each sector, and then extrapolating the site boundary dose to the controlling location by the inverse square law of distance.

Dose from Radioactive Liquid and Gaseous Effluents to MEMBERS OF THE PUBLIC due to their activities within the SITE BOUNDARY.

These activities have been determined to be limited to the vicinity of the Energy Information Center (EIC) located inside the SITE BOUNDARY. An assumption was made that no MEMBER OF THE PUBLIC would spend more than eight hours per year at this location. However this calculation has been historically performed assuming an occupancy factor of one (implying continuous occupancy over the entire year).

A X/Q, determined for the Energy Information Center, will be used for this assessment.

Equations 5-1 and 5-2 in Section 5.1.2 should be used for this assessment.

6.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

6.1 Requirement: REMP

The radiological environmental monitoring program shall be conducted as specified in Table 6-1, based on locations determined using data from the pre-operational monitoring period; and/or the operational monitoring period indicating a need to make changes in the program.

Applicability: At all times.

Action:

- a. With the radiological environmental monitoring program not being conducted as specified in Table 6-1, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report, as required by Section 7.2, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- b. With the level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeding the reporting levels of Table 6-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose* to A MEMBER OF THE PUBLIC is less than the calendar year limits of Section 4.4, 4.1 and 4.2. When more than one of the radionuclides in Table 6-2 are detected in the sampling medium, this report shall be submitted if:

$$\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + \dots \ge 1.0$$

When radionuclides other than those in Table 6-2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose* to a MEMBER OF THE PUBLIC is equal to or greater than the calendar year limits of Section 4.4, 4.1 and 4.2. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report.

- c. With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by Table 6-1, identify locations for obtaining replacement samples and add them to the Radiological Environmental Monitoring Program within 30 days. The specific locations from which samples were unavailable may then be deleted from the monitoring program.
- * The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.

6.1.1 Surveillance Requirements

a. The radiological environmental monitoring samples shall be collected pursuant to Table 6-1 from the specific locations given in Table 6-4 and Figure 6-1 and Figure 6-2 and shall be analyzed pursuant to the requirements of Table 6-1, and the detection capabilities required by Table 6-3.

6.1.2 Implementation of the Requirements

The results of the radiological environmental monitoring program are intended to supplement the results of the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected based on the effluent measurements and modeling of the environmental exposure pathways. Thus the specified environmental monitoring program provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures to individuals resulting from station operation.

This requirement is implemented by Nuclear Administrative and Technical Manual procedures.

TABLE 6-1
RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Exposure Pathway and/or Sample	Number of Representative Samples and Sample Locations ^a	Sampling and Collection Frequency ^a	Type and Frequency of Analysis ^d
Airborne Radioiodine and particulates	Samples from 5 locations: 4 samples at or near the SITE BOUNDARIES (#14A, 15, 29, 40) including 3 different sectors of the highest calculated annual average ground level D/Q.*	Continuous sampling collected weekly, or more frequently if required by dust loading.	Gross beta weekly ^c , I-131 weekly; gamma isotopic analysis of composite (by location) quarterly.
	1 sample (#40) from areas of special interest, which is from the vicinity of a community having the highest calculated annual average D/Q.		
	1 sample (#6A) from a control location 15-30 km (9-18 mi) distant and in the least prevalent wind direction. ^e		
Direct radiation ^b	Forty (40) routine monitoring stations (#5-40, #42, #44, #46, #50) either with two or more dosimeters or with one instrument for measuring and recording dose rate continuously, placed as follows:	Quarterly	Gamma dose quarterly.
	An inner ring of stations, one in each meteorological sector in the general area of the site boundary (16 locations);		
	An outer ring of stations, one in each meteorological sector in the 6-8 km (4-5 mi) range from the site (16 locations); and		
	The balance of the stations (8 locations) to be placed in special interest areas such as population centers, nearby residences, schools, and in one or two areas to serve as control stations.		
* D/Q refers to avera	ge annual relative ground deposition rat	e.	

ODCM Rev. 24

TABLE 6-1
RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Exposure Pathway and/or Sample	Number of Representative Samples and Sample Locations ^a	Sampling and Collection Frequency ^a	Type and Frequency of Analysis ^d
Waterborne			
Surface	85 acre Water storage reservoir (#60) 45 acre Water storage reservoir (#61) Evaporation pond #1 (#59) Evaporation pond #2 (#63) Evaporation pond #3 (#64)	Quarterly grab sample	Tritium and gamma isotopic analysis quarterly.
Ground	2 onsite wells ^f (#57, #58)	Quarterly grab sample	Tritium and gamma isotopic analysis quarterly.
Drinking (well)	3 wells from surrounding residences (#46, #48, #49) that would be affected by its discharge.	Composite sample of weekly grab samples over 2-week period when I-131 analysis is performed, monthly composite of weekly grab samples otherwise	I-131 analysis on each composite when the dose calculated for the consumption of the water is greater than 1 mrem per year. Composite for gross beta and gamma isotopic analyses monthly. Composite for tritium analysis quarterly.
Ingestion	Samples from milking animals in 3 locations within 5 km (3 mi) distant	Semimonthly for animals on pasture;	Gamma isotopic and I-131 analysis
Milk	(#51, #52) having the highest dose potential. If there are none, 1 sample from milking animals in each of three areas between 5 and 8 km (3-5 mi) distant where doses are calculated to be greater than 1 mrem per year. g One sample from milking animals at a control location 15 to 30 km (9-18 mi) distant (#53) and in the least prevalent wind direction. g	otherwise, monthly.	semimonthly when animals are on pasture or monthly at other times.

ODCM Rev. 24

TABLE 6-1
RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Exposure Pathway and/or Sample	Number of Representative Samples and Sample Locations ^a	Sampling and Collection Frequency ^a	Type and Frequency of Analysis ^d
Food Products *	2 samples (#47) of 3 types of broad leaf vegetation (as available) from locations identified per the criteria of Section 6.2b. of this manual.	Monthly during growing season.	Gamma isotopic analysis.
	1 control sample (#62) of 3 types of broad leaf vegetation (as available) grown 15 to 30 km (9-18 mi) distant in the least prevalent wind direction. ^e	Monthly during growing season.	Gamma isotopic analysis.

^{*} When broad leaf vegetation samples are not available, reports from 4 existing supplemental airborne radioiodine sample locations will be substituted.

TABLE 6-1 (Continued)

TABLE NOTATION

- The number, media, frequency, and location of sampling may vary from site to site. It is recognized that, at times, it may not be possible or practical to obtain samples of the media of choice at the most desired location or time. In these instances suitable alternative media and locations may be chosen for the particular pathway in question. Actual locations (distance and direction) from the site shall be provided in Table 6-4 and Figure 6-1 or Figure 6-2 in the ODCM. Refer to Regulatory Guide 4.1, "Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants."
- Regulatory Guide 4.13 provides guidance for thermoluminescence dosimetry (TLD) systems used for environmental monitoring. One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purposes of this table, a thermoluminescent dosimeter may be considered to be one phosphor, and two or more phosphors in a packet may be considered as two or more dosimeters. Film badges should not be used for measuring direct radiation.
- c Particulate sample filters shall be analyzed for gross beta 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air or water is greater than 10 times the yearly mean of control samples for any medium, gamma isotopic analysis should be performed on the individual samples.
- d Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.
- e The purpose of this sample is to obtain background information. If it is not practical to establish control locations in accordance with the wind direction and distance criteria, other sites that provide valid background data may be substituted.
- f Groundwater samples should be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.
- g The dose shall be calculated for the maximum organ and age group, using the methodology and parameters in the ODCM.

TABLE 6-2
REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN

ENVIRONMENTAL SAMPLES

Analysis	Water (pCi/l)	Airborne Particulate or Gas (pCi/m³)	Fresh Milk (pCi/l)	Food Products (pCi/kg, wet)
H-3	20,000 *			
Mn-54	1,000			
Fe-59	400			
Co-58	1,000			
Co-60	300			
Zn-65	300			
Zr-Nb-95	400			
I-131	2 **	0.9	3	100
Cs-134	30	10	60	1,000
Cs-137	50	20	70	2,000
Ba-La-140	200		300	

^{*} For drinking water samples. This is a 40 CFR 141 value. If no drinking water pathway exists, a value of 30,000 pCi/l may be used.

^{**} If no drinking water pathway exists, a reporting level of 20 pCi/l may be used.

TABLE 6-3

DETECTION CAPABILITIES FOR ENVIRONMENTAL ANALYSIS ^a

	Lower Limit of Detection (LLD) ^b							
Analysis	Water (pCi/l)	Airborne Particulate or Gas (pCi/m³)	Fresh Milk (pCi/l)	Food Products (pCi/kg, wet)				
Gross Beta	4	0.01						
H-3	2000*							
Mn-54	15							
Fe-59	30							
Co-58, -60	15		•					
Zn-65	30							
Zr-95	30	1						
Nb-95	15	1						
Í-131	1**	0.07	1	60				
Cs-134	15	0.05	15	60				
Cs-137	18	0.06	18	80				
Ba-140	60		60					
La-140	15		15 .					

NOTE: This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

^{*} If no drinking water pathway exists, a value of 3000 pCi/l may be used.

^{**} If no drinking water pathway exists, a value of 15 pCi/l may be used.

Table 6-3 (Continued)

TABLE NOTATION

- a Guidance for detection capabilities for thermoluminescent dosimeters used for environmental measurements is given in Regulatory Guide 4.13.
- Table 6-3 indicates acceptable detection capabilities for radioactive materials in environmental samples. These detection capabilities are tabulated in terms of the lower limits of detection (LLDs). The LLD is defined, for purposes of this guide, as the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

LLD =
$$\frac{4.66s_b}{E * V * 2.22 * Y * exp(-\lambda \Delta t)}$$

Where:

LLD is the a priori lower limit of detection as defined above (as pCi per unit mass or volume),

s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency (as counts per disintegration),

V is the sample size (in units of mass or volume),

2.22 is the number of disintegrations per minute per picocurie,

Y is the fractional radiochemical yield (when applicable),

 λ is the radioactive decay constant for the particular radionuclide, and

 Δt for environmental samples is the elapsed time between sample collection (or end of the sample collection period) and time of counting.

In calculating the LLD for a radionuclide determined by gamma-ray spectrometry the background should include the typical contributions of other radionuclides normally present in the samples (e.g., potassium-40 in milk samples). Typical values of E, V, Y, and Δt should be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report.

6.2 Requirement: Land Use Census

A land use census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence and the nearest garden* of greater than 50 m² (500 ft²) producing broad leaf vegetation.

Applicability: At all times.

Action:

- a. With a land use census identifying a location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in Section 4.2.1, identify the new location(s) in the next Annual Radioactive Effluent Release Report, pursuant to Section 7.1.
- b. With a land use census identifying a location(s) that yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with Section 6.1, add the new location(s) to the radiological environmental monitoring program within 30 days. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may then be deleted from the monitoring program.

6.2.1 Surveillance Requirements

a. The land use census shall be conducted during the growing season annually using that information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities. The results of the land use census shall be included in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.2.2 Implementation of the Requirements

The above Requirement is implemented by Nuclear Administrative and Technical Manual procedures.

* Broad Leaf vegetation sampling of at least three different kinds of vegetation may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Specifications for broad leaf vegetation sampling in Table 6-1 shall be followed, including analysis of control samples.

6.3 Requirement: Interlaboratory Comparison Program

Analyses shall be performed on radioactive materials supplied as part of an Interlaboratory Comparison Program that correspond to samples required by Table 6-1, as applicable.

Applicability: At all times.

Action:

a. With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.3.1 Surveillance Requirements

a. A summary of the results obtained as part of the above required Interlaboratory Comparison Program and in accordance with the methodology and parameters in this manual shall be included in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.3.2 Implementation of the Requirements

PVNGS laboratories or contract laboratories which perform analyses for the Radiological Environmental Monitoring Program (REMP) participate in an Interlaboratory Comparison Program. The participation includes all of the determinations (sample medium-radionuclide combinations) that are included in the monitoring program.

If deviation from specified limits is identified an investigation is made to determine the reason for the deviation and corrective actions are taken as necessary. The results of all analyses made under this program are included in the Annual Radiological Environmental Operating Report.

TABLE 6-4
RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS

SAMPLE SITE	SAMPLE TYPE	NOTE (d)	LOCATION DESIGNATION (a)	LOCATION DESCRIPTION (c)
1	TLD	SUP	E30	Goodyear
2	TLD	SUP	ENE24	Scott-Libby School
3	TLD	SUP	E21	Liberty School
4	TLD	SUP	E16	Buckeye
4	Air	SUP	E16	Same as TLD
5	TLD (b)	SP	ESE11	Palo Verde School
6	TLD (b)	Control	SSE31	APS Gila Bend substation
6A	Air (b)	Control	SSE13	Old US 80
7	TLD (b)	SP	SE7	Old US 80 and Arlington School Rd.
7A	Air	SUP	ESE3	Arlington School
8	TLD (b)	OR	SSE4	Southern Pacific Pipeline Rd.
9 .	TLD (b)	OR	S5	Southern Pacific Pipeline Rd.
10	TLD (b)	OR	SE5	355th Ave. and Elliot Rd.
11	TLD (b)	OR	ESE5	339th Ave. and Dobbins Rd.
12	TLD (b)	OR	E5	339th Ave. and Buckeye-Salome Rd.
13	TLD (b)	IR	N1	N site boundary
14	TLD (b)	IR	NNE2	NNE site boundary
14A	Air (b)		NNE2	371st Ave. and Buckeye-Salome Rd.
15	TLD (b)	IR	NE2	NE site boundary, WRF access road
15	Air (b)		NE2	Same as TLD
16	TLD (b)	IR	EŅE2	ENE site boundary
17	TLD (b)	IR	E2	E site boundary
17A	Air	SUP	E3	351st Ave.
18	TLD (b)	IR	ESE2	ESE site boundary
19	TLD (b)	IR	SE2	SE site boundary
20	TLD (b)	IR	SSE2	SSE site boundary

TABLE 6-4
RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS

SAMPLE SITE	SAMPLE TYPE	NOTE (d)	LOCATION DESIGNATION (a)	LOCATION DESCRIPTION (c)
21	TLD (b)	IR	S3	S site boundary
21	Air	SUP	S3	Same as TLD
22	TLD (b)	IR	SSW3	SSW site boundary
23	TLD (b)	OR	W5	N of Elliot Rd
24	TLD (b)	OR	SW4	N of Elliot Rd.
25	TLD (b)	OR	WSW5	N of Elliot Rd.
26	TLD (b)	OR	SSW4	Duke Property
27	TLD (b)	ʻIR	SW1	SW site boundary
28	TLD (b)	IR	WSW1	WSW site boundary
29	TLD (b)	IR	W1	W site boundary
. 29	. Air (b)		W1	Same as TLD
30	TLD (b)	· IR	WNW1	WNW site boundary
31	TLD (b)	IR	NW1	NW site boundary
32	TLD (b)	· IR 、	· NNW1	NNW site boundary
33	TLD (b)	OR	NW4	S of Buckeye Rd.
34	TLD (b)	OR	NNW5	395th Ave. and Van Buren St.
35	TLD (b)	SP	NNW8	Tonopah
35	· Air	SUP	NNW8	Same as TLD
36	TLD (b)	OR	N5	Wintersburg Rd. and Van Buren St.
37	TLD (b)	OR	NNE5	363rd Ave. and Van Buren St.
. 38	TLD (b)	OR	NE5	355th Ave. and Buckeye Rd.
39	· TLD (b)	OR	ENE5	343rd Ave. N of Broadway Rd.
40	TLD (b)	SP	N2	Wintersburg
40 .	Air (b)	`	N2	Same as TLD
41	TLD	SUP	ESE3	Arlington School
· 42	TLD (b)	SP	N8	Ruth Fisher School
43	TLD	SUP	NE5	Winters Well School

TABLE 6-4
RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS

SAMPLE SITE	SAMPLE TYPE	NOTE (d)	LOCATION DESIGNATION (a)	LOCATION DESCRIPTION (c)
44	TLD (b)	Control	ENE35	El Mirage
45	TLD	SUP Transit Control	ONSITE	Central lab, lead pig
46	TLD (b)	SP	ENE30	Litchfield Park School
46	Water (b)	WD	NNW8	Local residence
47	TLD .	SUP	E35	Littleton School
47	Vegetation (b)		NNE2	Local residence
48	TLD	SUP	E24	Jackrabbit Trail
48	Water (b)	WD	SW1	Local residence
49	TLD	SUP	ENE11	Palo Verde Rd.
49	Water (b)	WD	N2	Local residence
50	TLD (b)	OR	WNW5	S of Buckeye-Salome Rd.
51	Milk (b)		ESE2	Local residence (goats)
52	Milk (b)		ENE3	Local residence (goats)
53	Milk (b)	Control	NE30	Local residence (goats)
54	Milk	SUP	NNE4	Local residence (goats)
55	Water	WD SUP	SW3	Local residence
57	Ground Water (b)	WG	onsite	Well 27ddc
58	Ground Water (b)	WG	onsite	Well 34abb
59	Surface Water (b)	WS	onsite	Evaporation Pond #1
60	Surface Water (b)	ws	onsite	85 acre Water storage reservoir
61	Surface Water (b)	WS	onsite	45 acre Water storage reservoir
62	Vegetation (b)	Control	ENE26	Commercial produce company
63	Surface Water (b)	ws	onsite	Evaporation Pond #2
64	Surface Water (b)	ws	onsite	Evaporation Pond #3

| |

[

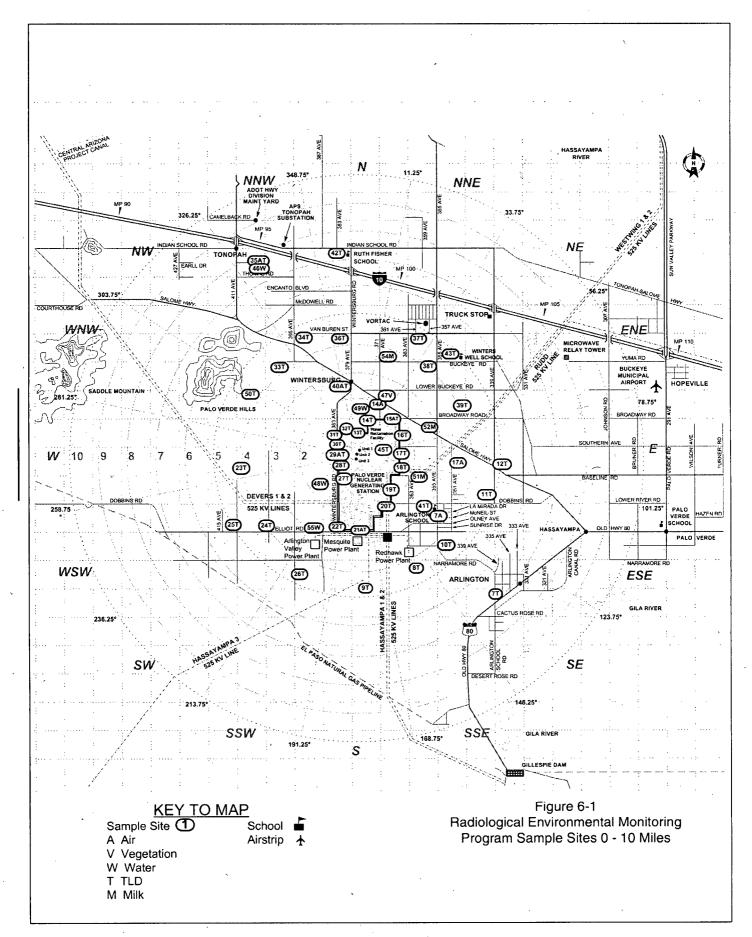
NOTES: (a) Distance and direction are relative to the Unit 2 containment, rounded to the nearest mile.

(b) These samples fulfill the requirements of the ODCM, Table 6-1.

(c) Refer to Figure 6-1 and Figure 6-2 for relative locations of sample sites.

(d) IR - inner ring

OR - outer ring


SP - school or population center

WS - waterborne surface

WG - waterborne ground

WD - waterborne drinking

SUP -designated supplemental sampling location

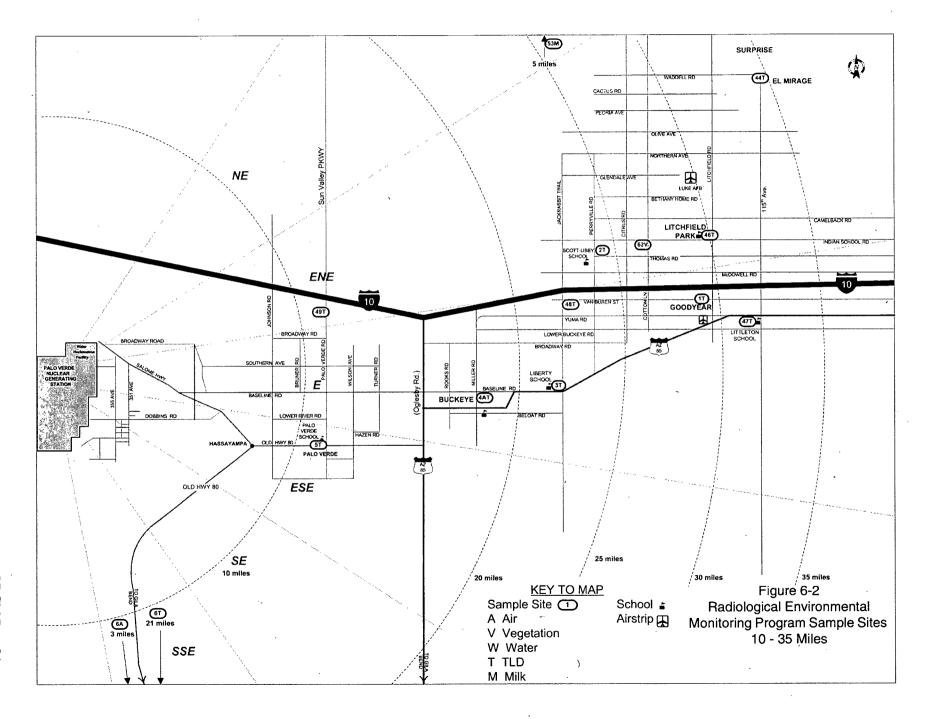


Figure 6-3
Radiological Environmental Monitoring Program
Sample Sites 35 - 75 Miles
DELETED

Figure 6-4 Site Exclusion Area Boundary DELETED

Refer to UFSAR Figure 2.1-4

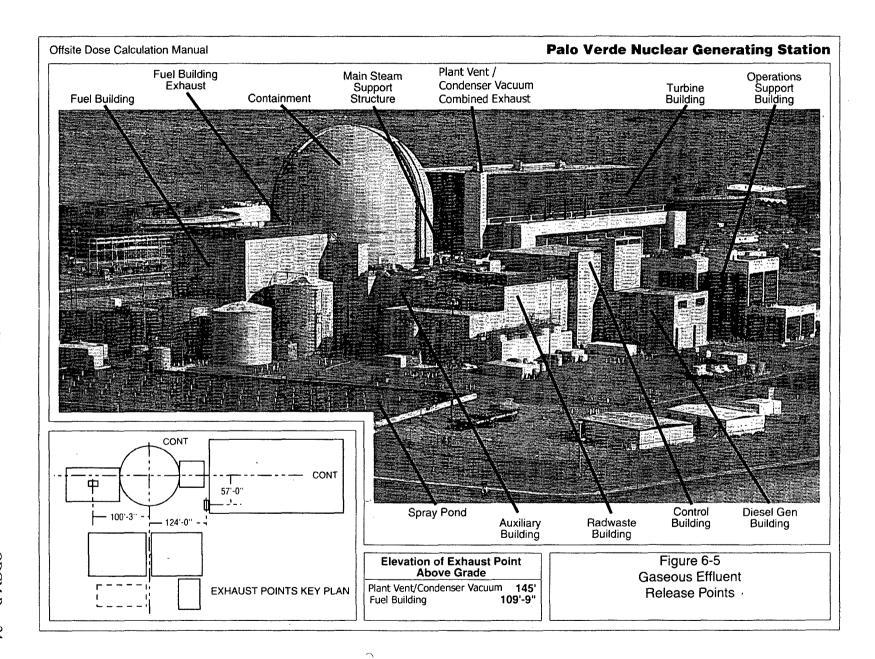


Figure 6-6 Low Population Zone DELETED

Refer to UFSAR Figure 2.1-15

7.0 RADIOLOGICAL REPORTS

7.1 Requirement: Annual Radioactive Effluent Release Report

Routine Annual Radioactive Effluent Release Reports covering the operation of the units during the previous calendar year shall be submitted in accordance with Technical Specification 5.6.3.

The Annual Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof.

The Annual Radioactive Effluent Release Report shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability**. This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. This same report shall also include an assessment of the radiation doses from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY (Figure 6-4) during the report period. All assumptions used in making these assessments, i.e., specific activity, exposure time and location, shall be included in these reports. The meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses. The assessment of radiation doses shall be performed in accordance with the methodology and parameters in the ODCM.

The Annual Radioactive Effluent Release Report shall also include an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year to show conformance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. Acceptable methods for calculating the dose contributions are given Section 5.0 and Regulatory Guide 1.109 Rev. 1, October 1977.

The Annual Radioactive Effluent Release Report shall also include information required by the Technical Requirements Manual, Section 5.0.600.1.

- * A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit.
- ** In lieu of submission with the Annual Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

The Annual Radioactive Effluent Release Reports shall include the following information for each class of solid waste (as defined by 10 CFR Part 61) shipped offsite during the report period:

- a. Container volume,
- b. Total curie quantity (specify whether determined by measurement or estimate),
- c. Principal radionuclides (specify whether determined by measurement or estimate),
- **d.** Source of waste and processing employed (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms),
- e. Type of container (e.g., LSA, Type A, Type B, Large Quantity), and
- f. Solidification agent or absorbent (e.g., cement, urea formaldehyde).

The Annual Radioactive Effluent Release Reports shall include a list and description of unplanned releases from the site to UNRESTRICTED AREAS of radioactive materials in gaseous and liquid effluents made during the reporting period.

Changes to the ODCM shall be submitted in the form of a complete, legible copy as part of or concurrent with the Annual Radioactive Effluent Release Report for the period of the report in which any change in the ODCM was made. Changes made to the Process Control Program shall be submitted with the Annual Radioactive Effluent Release Report for the period of the report in which any change in the Process Control Program was made.

7.2 Requirement: Annual Radiological Environmental Operating Report

Routine Annual Radiological Environmental Operating Reports covering the operation of the units during the previous calendar year shall be submitted by May 15 of each year in accordance with Technical Specification 5.6.2.

The Annual Radiological Environmental Operating Reports shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental surveillance activities for the report period, including a comparison with preoperational studies, with operational controls as appropriate, and with previous environmental surveillance reports, and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use censuses required by Section 6.2.

The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in Table 6-4 and Figure 6-1 and Figure 6-2 as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

The reports shall also include the following: a summary description of the radiological environmental monitoring program; at least two legible maps** covering all sampling locations keyed to a table giving distances and directions from the centerline of one reactor; the results of licensee participation in the Interlaboratory Comparison Program, required by Section 6.3; discussion of all deviations from the sampling schedule of Table 6-1; and discussion of all analyses in which the LLD required by Table 6-3 was not achievable.

- * A single submittal may be made for a multiple unit station.
- ** One map shall cover stations near the SITE BOUNDARY; a second shall include the more distant stations.

APPENDIX A DETERMINATION OF CONTROLLING LOCATION

The controlling location is the location of the MEMBER OF THE PUBLIC who receives the highest doses.

The determination of a controlling location for implementation of 10CFR50 for radioiodines and particulates is known to be a function of:

- (1) Isotopic release rates
- (2) Meteorology
- (3) Exposure pathway
- (4) Receptor's age

The incorporation of these parameters into Equation 5-2 results in the respective equations at the controlling location. The isotopic release rates are based upon the source terms calculated using the PVNGS Environmental Report, Operating License Stage, Table 3.5-12, without carbon.

All of the locations and exposure pathways, identified in the 1984 Land Use Census, have been evaluated. These include cow milk ingestion, goat milk ingestion, vegetable ingestion, inhalation, and ground plane exposure. An infant is assumed to be present at all milk pathway locations. A child is assumed to be present at all vegetable garden locations. The ground plane exposure pathway is only considered to be present where an infant is not present. Naturally, inhalation is present everywhere an individual is present.

For the determination of the controlling locations, the highest X/Q and D/Q values, based on the 9 year meteorological data base, for the vegetable garden, cow milk, and goat milk pathways, are selected for each unit. The receptor organ doses have been calculated at each of these locations. Based upon these calculations, it is determined that the controlling receptor pathway is a function of unit location. For Unit 1, the controlling receptor is a garden-child pathway; for releases from Unit 2 and Unit 3 the controlling receptor is a cow milk-infant pathway. These determinations are based upon Table 4-16, 4-17, or 4-18, which, in turn, is based upon the 1984 Land Use Census. Locations of the nearest residences, gardens and milk animals, as determined in the 1984 Land Use Census, are given in Table 4-16, 4-17, and 4-18.

APPENDIX B BASES FOR REQUIREMENTS

B-2.1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/trip setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, 64 of Appendix A to 10 CFR PART 50.

There are two separate radioactive gaseous effluent monitoring systems: the low range effluent monitors for normal plant radioactive gaseous effluents and the high range effluent monitors for post-accident plant radioactive gaseous effluents. The low range monitors operate at all times until the concentration of radioactivity in the effluent becomes too high during post-accident conditions. The high range monitors only operate when the concentration of radioactivity in the effluent is above the setpoint in the low range monitors.

B-3.1 GASEOUS EFFLUENT - DOSE RATE

This requirement provides reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRICTED AREA, either at or beyond the SITE BOUNDARY, in excess of the design objectives of Appendix I to 10 CFR part 50. This requirement is provided to ensure that gaseous effluents from all units on the site will be appropriately controlled. It provides operational flexibility for releasing gaseous effluents to satisfy the Section II.A and II.C design objectives of Appendix I to 10 CFR part 50. For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. Examples of calculations for such MEMBERS OF THE PUBLIC, with the appropriate occupancy factors, shall be given in the ODCM. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrems/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/year. This requirement does not affect the requirement to comply with the annual limitations of 10 CFR 20.1301(a).

This requirement applies to the release of radioactive materials in gaseous effluents from all reactor units at the site.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLD). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

B-3.2 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO ONSITE EVAPORATION PONDS - CONCENTRATION

This requirement is provided to ensure that the annual total effective dose equivalent to individual members of the public from the licensed operation does not exceed the requirements of 10 CFR Part 20, due to the accumulated activity in the evaporation ponds from the secondary system discharges.

Restricting the concentrations of the secondary liquid wastes discharged to the onsite evaporation ponds will restrict the quantity of radioactive material that can accumulate in the ponds. This, in turn, provides assurance that in the event of an uncontrolled release of the pond's contents to an UNRESTRICTED AREA, the resulting total effective dose equivalent to individual members of the public at the nearest exclusion area boundary will not exceed the requirements of 10 CFR Part 20.

This requirement applies to the secondary system liquid waste discharges of radioactive materials from all reactor units to the onsite evaporation ponds.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLD). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

B-4.1 GASEOUS EFFLUENT - DOSE, Noble Gases

This requirement is provided to implement Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. This requirement implements the guides set forth in Section II.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

B-4.2 GASEOUS EFFLUENT - DOSE - Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Days

This requirement is provided to implement the requirements of Sections II.C, III.A, IV.A of Appendix I, 10 CFR Part 50. This requirement is the guide set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The ODCM calculational methods specified in the surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1,111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases for Light-Water-Cooled Reactors," Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man, in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of these calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat-producing animals graze with consumption of the milk and meat by man, and (4) deposition on the ground with subsequent exposure of man.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

B-4.3 GASEOUS RADWASTE TREATMENT

The OPERABILITY of the GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensures that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as reasonably achievable." This requirement implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

The minimum analysis frequency of 4/M (i.e., at least 4 times per month at intervals no greater than 9 days and a minimum of 48 times a year) is used for certain radioactive gaseous waste sampling in Table 3-1. This will eliminate taking double samples when quarterly and weekly samples are required at the same time.

B-4.4 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO ONSITE EVAPORATION PONDS - DOSE

This requirement is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. This requirement implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.

This requirement applies to the release of liquid effluents from each reactor at the site. For units with shared radwaste treatment systems, the liquid effluents from the shared system are proportioned among the units sharing that system.

B-5.1 TOTAL DOSE AND DOSE TO PUBLIC ONSITE

This requirement is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR 20.1301(d). The requirement specifies the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. Even if a site was to contain up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the reactor units (including outside storage tanks, etc.) are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, submittal of the Special Report within 30 days with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR Part 190.11 and 10 CFR Part 20.2203(a)(4), is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to other requirements for dose limitation of 10 CFR Part 20, as addressed in Section 3.2 and 3.1 of the ODCM. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle. Demonstration of compliance with the limits of 40 CFR Part 190 or with the design objectives of Appendix I to 10 CFR Part 50 will be considered to demonstrate compliance with the 0.1 rem limit of 10 CFR 20.1301.

B-6.1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

The Radiological Environmental Monitoring Program required by this requirement provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of MEMBERS OF THE PUBLIC resulting from the station operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring. The initially specified monitoring program will be effective for at least the first 3 years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLD). The LLDs required by Table 6-3 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

B-6.2 LAND USE CENSUS

This requirement is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the radiological environmental monitoring program are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 m² provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and (2) a vegetation yield of 2 kg/m².

B-6.3 INTERLABORATORY COMPARISON PROGRAM

The requirement for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

APPENDIX C

DEFINITIONS

Note:

The following definitions were derived from the Palo Verde Nuclear Generating Station Technical Specifications. These selected definitions support those portions of the Technical Specifications which were transferred to the ODCM and have been incorporated into the Requirements sections of the ODCM.

Definitions:

The defined terms of this section appear in capitalized type and are applicable throughout the Requirements sections of this ODCM.

ACTION

ACTION shall be that part of a requirement which prescribes remedial measures required under designated conditions.

CHANNEL CALIBRATION

See the Technical Specification definition.

CHANNEL CHECK

See the Technical Specification definition.

CHANNEL FUNCTIONAL TEST

See the Technical Specification definition.

DOSE EOUIVALENT I-131

See the Technical Specification definition.

FREQUENCY NOTATION

The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table C-1.

GASEOUS RADWASTE SYSTEM

A GASEOUS RADWASTE SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

MEMBER(S) OF THE PUBLIC

MEMBER(S) OF THE PUBLIC shall include all persons who are not occupationally associated with the plant. This category does not include employees of the licensee, its contractors, or vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational, or other purposes not associated with the plant.

APPENDIX C

DEFINITIONS (Continued)

OPERABLE-OPERABILITY

A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s), and when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component or device to perform its function(s) are also capable of performing their related support function(s).

MODE

See the Technical Specification definition.

PROCESS CONTROL PROGRAM

The PROCESS CONTROL PROGRAM shall contain the current formulas, sampling, analyses, test, and determinations to be made to ensure that processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10 CFR Parts 20, 61, and 71, State regulations, burial ground requirements, and other requirements governing the disposal of solid radioactive waste.

PURGE-PURGING

PURGE or PURGING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

RATED THERMAL POWER

See the Technical Specification definition.

SITE BOUNDARY

The SITE BOUNDARY shall be that line beyond which the land is neither owned, nor leased, nor otherwise controlled by the licensee.

SOLIDIFICATION

SOLIDIFICATION shall be the conversion of radioactive wastes from liquid systems to a homogeneous (uniformly distributed), monolithic, immobilized solid with definite volume and shape, bounded by a stable surface of distinct outline on all sides (free-standing).

SOURCE CHECK

A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a source of increased radioactivity.

THERMAL POWER

THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

APPENDIX C

DEFINITIONS (Continued)

UNRESTRICTED AREA

An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY access to which is not controlled by the licensee for the purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the SITE BOUNDARY used for residential quarters or for industrial, commercial, institutional, and/or recreational purposes.

VENTILATION EXHAUST TREATMENT SYSTEM

A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal adsorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment. Such a system is not considered to have any effect on noble gas effluents. Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

VENTING

VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

TABLE C-1
FREQUENCY NOTATION

NOTATION	FREQUENCY
S	At least once per 12 hours.
D	At least once per 24 hours.
W	At least once per 7 days.
4/M	At least 4 times per month at intervals no greater than 9 days and a minimum of 48 times per year.
M	At least once per 31 days.
Q	At least once per 92 days.
SA	At least once per 184 days.
ANNUALLY	At least once per 365 days
R	At least once per 18 months.
P	Completed prior to each release.
S/U	Prior to reactor startup.
N.A.	Not Applicable.

APPENDIX D REFERENCES

- 1 Title 10, Code of Federal Regulations, Part 20, "Standards for Protection Against Radiation."
- 2 Title 10, Code of Federal Regulations, Part 50, "Domestic Licensing of Production and Utilization Facilities."
- 3 Title 40, Code of Federal Regulations, Part 190, Environmental Radiation Protection Standards for Nuclear Power Operations."
- 4 Federal Register, Vol. 58, No. 245, Thursday, December 23, 1993, Notices, pages 68170-68179.
- Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974.
- Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977.
- Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977.
- 8 Regulatory Guide 4.1, "Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants," Revision 1, April 1975.
- 9 NUREG-0133, Preparation of Radiological Effluent Technical Specifications For Nuclear Power Plants, Oct. 1978.
- NUREG 0841, "Final Environmental Statement Related to the Operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3", Section 5.9.1.4, February, 1982.
- NUREG-1301, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactor", Arpil 1991.
- 12 Environmental Report Operating License Stage, Palo Verde Nuclear Generating Station, December 1981.
- 13 PVNGS Updated Final Safety Analysis Report
- 14 Calculation 13-NC-ZY-252, "Annual Average Dose from Normal Operation Liquid Discharge from the Evaporation Pond", Rev 0.
- 15 Calculation 13-NC-ZY-253, "Annual Average Dose from Normal Operation Airborne Direct and Sky Shine from the Evaporation Pond", Rev 0.
- 16 Calculation 13-NC-ZY-254, "Radiation Dose Due to an Evaporation Pond Dike Failure During a Seismic Event", Rev. 0.

APPENDIX F

Changes to the PCP

CRAI 3337785

Tubman, Christopher J(Z07290) DN: cn=Tubman, Christopher J(Z07290) Reason: I am the author of this document

Date: 2009 09 04 16:49:28 -07:00

Evaluator

(print/sign)

(date)

DESCRIPTION

Present the change created by Revision 4 to the Plant Review Board in accordance with 76DP-0RP03, Radwaste Process Control Plan.

EVALUATION

76RP-0RW79, CD-600 System Operations, provides instruction for the Process Control Program (PCP). Revisions to procedures within the scope of the PCP must be evaluated to determine if the revision constitutes a reportable change under 76DP-0RP03, Radwaste Process Control Program. Under section 3.7, 'Process Control Program Revisions', section 3.7.1.1 I describes a reportable change as, 'Any change in processing parameters that could cause an alteration in the final waste product characteristics...'

76RP-0RW79, revision 4 added section 3.4.5.2, 'Salt Block Discharge' as an alternate waste discharge method, in addition to the 'Dry Discharge' method. The salt block discharge method uses different parameters, and parameter values, to determine when the material is discharged as a final waste form. This is a change to the processing parameters and the change affects the final waste product characteristics. Addition of section 3.4.5.2 is a reportable change in accordance with section 3.7.1.1 of the PCP procedure.

This report highlights the revision 4 change to the 'CD-600 System Operations' procedure as reportable and requires the review and acceptance of the Plant Review Board (PRB) in accordance with PCP procedure.

While the salt block discharge method is an addition to the CD-600 operating procedure, this discharge method has been employed at PVNGS as far back as November 14, 1995 as described in procedure 76CP-9NP31, Revision 01, 'CD-1000 Operation.' The CD-1000 equipment was used to process evaporator concentrates prior to the use of the CD-600 equipment. The CD-1000, and associated procedures, was evaluated prior to placing into service. The evaluated procedures included the section, salt block discharge, being added

to the CD-600 operating procedure. Company correspondence 115-02096-MAF dated July 8, 1996 provides evidence.

The CD-600 was placed in operation in September 2006 and is essentially a smaller version of the CD-1000. The transition from the CD-1000 to the CD-600 included new operating procedures. Absent from revision 0 through 3 of the CD-600 operating procedure was the salt block discharge method. This omission was not noted until the Unit 3 evaporator concentrates processing campaign. Revision 4 effectively reintroduced the salt block discharge method, and its processing parameters, into the PCP through the CD-600 procedure. As before, a note in the procedure indicates the dry discharge method is preferred and the use of the salt block discharge method must be approved.

CORRECTIVE ACTIONS & ENHANCEMENTS

There are no corrective actions, or enhancements, to implement concerning CRAI 3337785. This assignment is complete.

Radwaste Process Control Program

76DP-0RP03

Revision 6

Appendix A, Page 1 of 1

(Sample)

PCP Revision Notice

Date: _	09/01	/2009	Page $\underline{1}$ of $\underline{1}$
Origina	tor: _	Chris Tubman	Ext.: 4025
_		Revision: 1 3.4.5.2, Salt Block Discharge, to 76RP-0RW79, 'CD-600	System Operations.'
		n is NOT reportable - PRB review, R.P. Director approval, and tive Effluent Release Report are not required.	nd reporting in the annua
		n is reportable - Requires PRB review, R.P. Director approva	
Justifica	ation f	or Revision: (Ensure the following items are addressed) (UFSAR 13.5.2.2.E)	
. , 1		Sufficient information to support the change together with the evaluations justifying the change(s), and	ne appropriate analyses o
2		A determination that the change will maintain the overall conform product to existing requirements of Federal, State, or other applical	
Additi	on of	section 3.4.5.2, Salt Block Discharge, to procedure 76	RP-0RW79 corrects the
omissi	on of	this section during the transition from the CD-1000 ope	eration procedure to
the CD	-600 s	ystem operation procedure. The salt block discharge m	ethod, associated
parame	eters,	and the requirement for approval have been employed si	nce November, 1995.
Туріса	illy, U	nits 1 and 2 produce a dry granular salt material and	is discharged by the
dry di	scharg	e method. Historically, Unit 3 has a produced a mater	ial that requires the
salt b	lock d	ischarge method to transfer the material into waste con	itainers.
Compan	y corr	espondence identification number 115-02096-MAF, dated J	Tuly 8, 1996, indicates
the set	t up, 1	maintenance, and operating procedure, which includes th	e salt block discharge
were e	valuate	ed along with the EER ($\#91-SR-015$), and 50.59 ($\#1-90-SR$	-30) for the CD-1000
equipm	ent.		
Revisi	ion 4 d	of 76RP-0RW79 reincorporates a discharge method omitted	during the transition
from t	he CD-	1000 processing equipment to the CD-600 processing equ	ipment.
Approve	ed By:	McDonnell, James P(Z99501) Digitally signed by McDonnell, James P(Z99501) Div. cn=McDonnell, James P(Z99501) Reason: I am approving this document Date: 2009.09.04 15:41-40-0700'	Date:
		Radiological Services Department Leader	
Use additi	ional pa	ges as required.	76DP-0RP03, Appendix-A
NUCLEA	. D. 4 D.	MINISTRATIVE AND TECHNICAL MANUAL	Page 12 of 12

ELECTRONIC PROCEDURE CHANGE RECORD

1 PROCEDURE NO: 76F	<u>RP-0RW79</u> 2	REVISION NO: 004	CATEGORY 1	2 J 3 🗆 (3
4 TITLE CD-600 SYSTEM OPE	RATIONS	,			
5 PROCEDURE ACTION: REVISION	NEW SUPERSED	E CANCEL C	EXPEDITED? YES	NO NO	
7 MRL UPDATE? YES NO	8 FULL BASIS CHE	CK? YES NO	9 LEVEL OF US	E INFORMATIO	N_
10 DESCRIPTION OF CHANGE					
Added section 3.4.5.2 Salt Block [Discharge.				
The RMC Final Review was perform		6/24/2008.			
T(732986)	ed by Donnelly, Patrick T nelly, Patrick T(Z32986), k.Donnelly@aps.com 6.24 09:17:37 -07'00'				
TEXT DOES NOT AUTOMATICALL	Y ROLL TO CONTINUATION	SHEET 11 DESC	RIPTION - CONTINUA	TION YES	
12 REG. REVIEW 13 10CFR50.5	59/72.48 REQD? YES	NO 50.59/72.48	DOC NUMBER:		14)
In accordance with 93DP-0LC17, regulatory screening (i.e., 10CFR do not affect the way SSCs are do which is governed by the more sp Applicability Determination performe TEXT DOES NOT AUTOMATICALL	50.59). These steps excluesigned, operated or contrection ecific criteria contained in double by David Heckman	de administrative chai olled and changes to t 10CFR20.	nges to non-UFSAF he Radiation Protec	documents the	
EFFECTIVE DATE REQUIRED	PROCEDUR	E CHANGE RECO	ORD PACKAGE	CONTENTS	>
FOR PROCESSING	16 NAD REQUIRED? Y	ES 🗍 NO 📝 NA	D PAGE COUNT:		17)
06/24/2008 (22)	18 EPCR, OTHER DOCUM	IENTS, etc	PAGE COUNT:	2	19
EFFECTIVE TIME [OPTIONAL] (23)		PROCEDUR	E PAGE COUNT:	32	20
		TOTA	L PAGE COUNT:	34	(21)
	APPF	ROVALS			
D(701176)	tally signed by Williams, Scott 01176) .cn=Williams, Scott R(Z01176) e? 2008.06.24 09:25:28 -07'00'	Bungard, J P(Z18012)	ames (Z18012) Reason: I hav	ed by Bungard, James ard, James P(Z18012 re reviewed this 5.24 11:36:32 -07'00'	
PREPARER - SIGNATURE DENOTES TREADY FOR REVIEW AND APPROVAL	THAT DOCUMENT IS		RE DENOTES REVIEW C S PROCEDURE TECHNIC		25)
		DRR CONCUDERNCE I	IE BEOLIBEOL-SIGNATI	IRE DENOTES	(P)

PRB CONCURRENCE [IF REQUIRED] - SIGNATURE DENOTES
PRB CONCURS WITH REVISION

Gray, Thomas (Z99610)

S(Z99610)

Digitally signed by Gray, Thomas S (Z99610), email=Thomas Gray@aps.com
Reason: I am approving this document
Date: 2008.06.24 12:09:31 -07'00'

OWNER/DESIGNEE - DIGITAL SIGNATURE SECURES DOCUMENT FOR TRANSMITTAL AND USE

(28)

CONTINUATION SHEET - PROCEDURE CHANGE RECORD

This information is provide as an evaluation against the requirement for PRB review of recordable changes to the PCP. According to 76DP-0RP03, "Radwaste Process Control Program", step 3.7.1 so identifies reportable changes:

- 3.7.1 Reportable change(s) to the Process Control Program consist of the following: (CRDR 981853-05) 3.7.1.1 Any change in processing parameters that could cause an alteration in the final waste product characteristics (e.g., changing: minimum dewatering/drying times or temperatures, processing time or temperature for concentrate evaporation, vendors, or methods for processing liquid waste, etc.);
- 3.7.1.2 Any change to the purpose, scope, or intent of the PCP;
- 3.7.1.3 Any change to the PCP that might cause inconsistencies with the NRC Waste Form Technical Position Paper (Rev. 1, January 1991), or Branch Technical Position - Effluent Treatment Systems Branch 11-3, section II (Rev. 2, July 1981).

In evaluating the impact of these changes, all aspects of what constitutes a recordable change according to 76DP-0RP03 must be examined:

- 3.7.1.1 No change has been made to date that could cause an alteration in the final waste product characteristics. The section added to this procedure provides for the testing of equipment by creating a salt block to simulate a final waste product.
- 3.7.1.2 This change does not resulted in a change to the purpose, scope or intent of the PVNGS PCP. According to 76DP-0RP03, section 1.0, the scope of the PCP is specific to the processing of wet waste. Further, major changes to any (solid, liquid or gaseous) waste treatment system requires PRB review as per UFSAR 13.4.2.6 (h) and may be reportable in meeting the intent of Regulatory Guide 1.143, ""Standard for Low-Level Radioactive Waste Processing Systems." None of these thresholds have been met as a result of this change.
- 3.7.1.3 This change has no impact on meeting the relevant requirements set forth in NUREG 800 ETSB 11-3 section II, which established the assurance standards for solidification or dewatering. Those standards include impact on PCP (previously discussed) and free liquid detection. Since this change does provides for an equipment test that will not be used to create a waste product, the requirements for waste form and absence of free-standing liquids are not affected.

It is the conclusion of Radiological Engineering that a reportable change has not occurred resulting from this procedure change.

55 555 5 25 2	M OPERATIONS	76RP-0)RW79	Revision 4
3.4.5.1.8	Document the time and estimated on ATTACHMENT 9.5 OPERATION			charged
3.4.5.1.9	Document the height of the waster top, equivalent volume, weight (fro CONTAINER WASTE HEIGHT/W Chart), contact dose reading, date name on ATTACHMENT 9.5 OPER container is deemed to be full or pro-	om ATTACH ASTE VOL capped, and RATION LO	IMENT 9.6 UME - Conv RNC Techi GSHEET, c	version nician's
	NOTE -		_	•
who con	cessing. ALARA shall be considered scheduling the staging of the stainer(s). Block Discharge (SBD)	red	- ,	·
3.4.5.2.1	Chill water return temperature, That it is equal to $\pm 6^{\circ}$ F to the sup			point
3.4.5.2.2	Steam pressure is greater than 25	psig.		
3.4.5.2.3	The intervals of the blow down cyc minutes or greater.	les of the va	acuum skid	are 12
3.4.5.2.4	If possible, visual observation show by camera number one.	vs no free flo	owing water	as seen
3.4.5.2.5	Open DV-1 as required to discharg step 3.4.5.2.4 are complete in according through step 3.4.6.14.	_		-
3.4.5.2.6	step 3.4.5.2.4 are complete in accord	rdance with	step 3.4.6.1	
	step 3.4.5.2.4 are complete in according through step 3.4.6.14. Document the time and estimated	rdance with volume of the height of the lent volume	step 3.4.6.1 ne waste disc e waste in ir , weight, cor	charged nches ntact

Radwaste Process Control Program	76DP-0RP03	Revision 6

The purpose of this procedure is to describe the Process Control Program (PCP) used at Palo Verde Nuclear Generating Station (PVNGS) to process various radioactive "wet wastes", including resin slurries, evaporator bottoms, and filter cartridges. This procedure also describes the procedural controls governing revisions to the PCP, delineates criteria used to evaluate the reportability of changes made to the PCP, and describes the reporting requirements.

Procedure Level of Use is **Information**

76DP-0RP03

Revision 6

TABLE OF CONTENTS

Section	<u>on</u>		Page Number
1.0	PUR	POSE and SCOPE	. 3
	1.1	Purpose	3
*	1.2	Scope	. 3
2.0	RES	PONSIBILITIES	4
	2.1	The Vice President, Nuclear Production	4
	2.2	The Director, Radiation Protection	. 4
	2.3	Radiological Services Department Leader	. 4
3.0	PRO	CESS CONTROL PROGRAM	5
	3.1	Description	5
	3.2	Precautions and Prerequisites	6
	3.3	Process Parameters	. 7
	3.4	Vendors	7
	3.5	Waste Sampling	7
	3.6	Stability Requirement	8
	3.7	Process Control Program Revisions	8
	3.8	Record Retention	9
4.0	DEF	INITIONS and ABBREVIATIONS	10
	4.1	Definitions	10
	4.2	Abbreviations	11
5.0	REF	ERENCES	11
	5.1	Implementing	11
	5.2	Developmental	11
6.0	APP	ENDICES	12
	6.1	Appendix A – PCP Revision Notice	. 13

1.0 PURPOSE and SCOPE

1.1 **Purpose** (RCTS 032630-01)

- 1.1.1 This procedure describes the Process Control Program (PCP) at Palo Verde Nuclear Generating Station (PVNGS) for processing radioactive wet waste. This plant-specific PCP establishes a set of process parameters which provide boundary conditions within which reasonable assurance can be given that the processed waste will contain essentially zero free liquid and have appropriate waste form characteristics. (Branch Technical Position ETSB 11-3)
 - Technical Requirements Manual, section 5.0.500.17, states, "The purpose of the Process Control Program is to contain the current formulas, sampling, analyses, test, and determinations to be made to ensure that processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10 CFR Parts 20, 61, and 71, State regulations, burial ground requirements, and other requirements governing the disposal of solid radioactive waste."
- 1.1.2 Complete waste processing and absence of free liquid prior to shipment is assured by the implementation of a process control program consistent with the recommendations of Branch Technical Position ETSB 11-3. (UFSAR 11.4.2.3.1)
- 1.1.3 The program will comply with applicable federal and Arizona state regulations. Implementation of the PCP will be in accordance with applicable portions of the PVNGS Quality Assurance program.
- 1.1.4 This PCP should be implemented to maintain any potential radiation exposure to plant personnel to "as low as is reasonably achievable" (ALARA) levels, in accordance with 75DP-0RP03, "ALARA Program Overview."

1.2 Scope

- 1.2.1 This program applies to processing of radioactive wet waste using plant-installed systems, plant portable processing systems, and vendor provided portable processing systems at PVNGS.
- 1.2.2 The process control program does not apply to radioactive waste that is shipped off site for additional processing prior to disposal.

Radwaste Process Control Program	76DP-0RP03	Revision 6

2.0 RESPONSIBILITIES

2.1 The Vice President, Nuclear Production

Ensure the performance of a review by a qualified individual/organization of changes to the Process Control Program (PCP).

2.2 The Director, Radiation Protection

- 2.2.1 Review and approve any reportable changes to the Process Control Program. (UFSAR 13.5.2.2.E)
- 2.2.2 Ensure that reportable changes to the PCP are forwarded to the Plant Review Board (PRB) for review and acceptance prior to implementation. (UFSAR 13.4.2.6.h)

2.3 Radiological Services Department Leader (RSDL)

- 2.3.1 Implement the Radwaste Process Control Program.
- 2.3.2 Provide an independent review of proposed changes to the Process Control Program.
- 2.3.3 Make changes to the PCP as necessary to maintain compliance with State and Federal Regulations, Licensing commitments, and burial site requirements.
- 2.3.4 Report changes to the Process Control Program to the NRC in the Annual Radioactive Effluent Release Report for the period in which they were made. This submittal should contain: (UFSAR 13.5.2.2.E)
 - Sufficiently detailed information to totally support the rationale for the change without benefit of additional or supplemental information;
 - A determination that the change did not reduce the overall conformance of the processed waste product to existing criteria for solid wastes.
- 2.3.5 Monitoring the activities of vendor personnel to assure vendor compliance with the Process Control Program and the PVNGS Quality Assurance Program.

- 2.3.6 Review and approve vendor radioactive waste processing procedures through the PVNGS procedure approval process.
- 2.3.7 Ensuring personnel under his control are fully aware of, and operate equipment in compliance with, the Process Control Program.
- 2.3.8 Establish and maintain records documenting the PCP periodic reviews, revision technical reviews, records of the review and evaluation of changes to the PCP, and PCP implementing procedures.

3.0 PROCESS CONTROL PROGRAM

3.1 Description

The process control program (PCP) consists of the procedures and processes by which processing and packaging of low-level radioactive wet waste is accomplished and which provide reasonable assurance of compliance with low-level waste requirements. While other procedures may be used in the course of processing and packaging the affected waste types, only those identified in this procedure are considered to be within the scope of the PCP. (CRDR 981853-06)

3.1.1 PCP Procedures:

- 76DP-0RP03, Radwaste Process Control Program
- 76RP-0RW05, Packaging and Classification of Radioactive Waste
- 76RP-0RW08, High Integrity Container Setup and Closure
- 76RP-0RW09, Transfer, Storage, and Processing of Radioactive Filters
- 76RP-0RW12, PVNGS Resin Drying System
- 76RP-0RW78, CD-600 System Setup
- 76RP-0RW79, CD-600 System Operations
- Any vendor procedure used in processing or packaging wet waste

3.1.2 PCP Processes

- Dehydration (evaporation) or solidification, such as with evaporator concentrates
- Dewatering or drying, such as with bead resin
- Packaging any radioactive material in a High Integrity Container

3.1.3 Wet Waste Types

The various wet waste types within the scope of the PCP at PVNGS are:

- Evaporator concentrates from a forced recirculation evaporator.
- Radioactive bead resin waste.
- Radioactive spent filter cartridges.
- Radioactive sludge.
- Other miscellaneous wet wastes, as determined by R.P. supervision.

3.2 Precautions and Prerequisites

- 3.2.1 The radiological requirements necessary for implementing the Process Control Program are contained in 75DP-0RP01, "RP Program Overview" and the other procedures of the RP program. (RCTS 032648-01)
- All radioactive wet waste processing will be accomplished in accordance with approved procedures.
- 3.2.3 The final waste product of all wet waste processing evolutions must be verified by a PVNGS representative. (IEN 87-07)
- 3.2.4 Waste generators are allowed to stabilize Class B & C waste by placing waste in a High Integrity Container (HIC) provided there is an associated topical report that has been approved by the NRC or for which a Certificate of Compliance, or other State Approval document, has been issued. (IEN 89-27)
- 3.2.5 Waste generators who use polyethylene containers for the disposal of Class B and Class C waste should either: (IEN 89-27)
 - Place and ship the polyethylene container in an approved HIC, or
 - obtain assurance and documentation from the disposal site operator that structural stability consistent with Part 61 will be provided at the site.
- 3.2.6 When packaging wet waste in a HIC, the effects of transportation on the amount of drainable liquid that might be present should be considered. (BTP on Waste Form, Rev.1, 1/91)

3.3 Process Parameters (CRDR 981853-06)

- 3.3.1 Proper waste characteristics for Class A wet waste will be assured by adhering to the conditions prescribed in applicable procedure(s).
- For Class B and Class C waste, a portable processing system may be used in accordance with approved operating procedures and a 10 CFR 61 Topical Report approved by the NRC, the burial facility, or its regulating agency.
- 3.3.3 Evaporator Concentrates complete processing of the waste batch and absence of free liquid is assured by meeting the time and temperature requirements specified in operating procedures for the equipment used to process concentrates for burial.
- 3.3.4 Ion exchange resins may be dewatered in accordance with the Process Control Program and a 10 CFR 61 Topical Report approved by the NRC, the burial facility, or its regulating agency. The parameters specified in the topical report ensure the final waste product will have appropriate waste form characteristics.
- 3.3.5 Radioactive spent filters, and other appropriate radioactive material, may be placed in an approved High Integrity Container for disposal, in accordance with approved procedures and the container Certificate of Compliance (C of C).

3.4 Vendors

- 3.4.1 Vendor operating procedures will undergo the same review and approval process as PVNGS procedures.
- 3.4.2 Vendor activities will be monitored to assure vendor compliance with the Process Control Program and the PVNGS Quality Assurance Program
- 3.4.3 If vendor processing is utilized, a PVNGS representative will verify proper processing of the waste product in accordance with the PCP, the vendor's operating procedure, and a 10 CFR 61 Topical Report approved by the NRC, if applicable.

3.5 Waste Sampling

3.5.1 Sampling requirements for the various wet waste streams are contained in 76RP-0RW03, Waste Stream Sampling and Database Maintenance.

Page 7 of 13

3.6 Stability Requirement

The waste class of radioactive wet waste should be evaluated in accordance with 76RP-0RW05, "Packaging and Classification of Radioactive Waste," prior to packaging to ensure meeting the stability specifications of 10CFR61.56, "Waste characteristics," and the Branch Technical Position ETSB 11-3 (Revision 2, July 1981).

3.7 Process Control Program Revisions

- 3.7.1 Reportable change(s) to the Process Control Program consist of the following: (CRDR 981853-05)
 - 3.7.1.1 Any change in processing parameters that could cause an alteration in the final waste product characteristics (e.g., changing: minimum dewatering/drying times or temperatures, processing time or temperature for concentrate evaporation, vendors, or methods for processing liquid waste, etc.);
 - 3.7.1.2 Any change to the purpose, scope, or intent of the PCP;
 - 3.7.1.3 Any change to the PCP that might cause inconsistencies with the NRC Waste Form Technical Position Paper (Rev. 1, January 1991), or Branch Technical Position Effluent Treatment Systems Branch 11-3, section II (Rev. 2, July 1981).
- 3.7.2 The Radiological Services Department Leader will review proposed changes to Process Control Program processes, including the determination of reportability.
 - 3.7.2.1 If the proposed revision does not meet any of the criteria in step 3.7.1, then the change is not reportable. That determination will be documented in one of two ways. Either by:
 - placing a brief description on Appendix A, PCP Revision Notice, marking the appropriate box, and a signature by the RSDL, or
 - annotating in the procedure change record that the change is not reportable. The RSDL signature for approval of the procedure revision will indicate his concurrence that the revision is not reportable.

- 3.7.2.2 If the proposed revision is reportable, then Appendix A will be completed, with the appropriate box marked, and it will be signed by the RSDL to indicate his approval.
- 3.7.3 Document the evaluation of reportable changes to any affected process on Appendix A, "PCP Revision Notice," and attach to the change document (e.g., procedure, 50.59, etc.). Documentation for reportable changes to the PCP shall include the following:
 - 3.7.3.1 Sufficient details to totally support the rationale for the change;
 - 3.7.3.2 A determination that the change did not reduce the conformance of the final waste product to existing criteria for waste disposal.
- For changes that are determined to be reportable, forward the Process Control Program revision package to PRB for review and acceptance. (UFSAR 13.4.2.6.h)
 - 3.7.4.1 After receiving review and acceptance from the PRB, forward the package to the Director, Radiation Protection for approval of the revision. (UFSAR 13.5.2.2.E)
- 3.7.5 Copies of the following documents should be maintained on file by Radiological Engineering:
 - Appendix A, "PCP Revision Notice"
 - Cross-Discipline Reviews, if applicable
 - Any associated 10 CFR 50.59 reviews and evaluations

3.8 Record Retention

- 3.8.1 Records of reviews performed for changes made to the PCP shall be retained for the duration of the operating license, or the requirements of the insurer, whichever is greater. (UFSAR 17.2.6.4.1 (A)(14))
- 3.8.2 Turnover applicable records to NIRM in accordance with the appropriate turnover instructions.

4.0 DEFINITIONS and ABBREVIATIONS

4.1 Definitions

- 4.1.1 **Approved High Integrity Container** A container used to provide the long-term stability requirement of 10 CFR 61. Approval is verified by reviewing a copy of the "Certificate of Compliance" prior to the container's use and maintaining the C of C on file during and subsequent to the container's use.
- 4.1.2 **Batch** An isolated quantity of waste feed to be processed having essentially constant physical and chemical characteristics.
- 4.1.3 Certificate of Compliance (C of C) for containers, an approval document, normally issued by the burial state licensing authority, which approves the listed container for use as a burial container. It also prescribes handling requirements and conditions for use.

4.1.4 Low Level Radioactive Waste (LLW)

- 4.1.4.1 Those low-level radioactive wastes containing source, special nuclear, or by-product material that are acceptable for disposal in a near surface land disposal facility.
- 4.1.4.2 Radioactive waste that contains no hazardous materials as defined in RCRA.
- 4.1.4.3 Radioactive waste not classified as high-level radioactive waste, transuranic waste or spent nuclear fuel.
- 4.1.5 **Process Control Program** (PCP) A program that provides assurance that the methods used for processing wet low-level radioactive waste will result in a waste form that is acceptable for disposal at a licensed land disposal facility in accordance with 10 CFR 61 requirements.
- 4.1.6 **Reportable** For the purposes of this procedure, means that the change meets listed requirements; therefore, PRB review is required and reporting is mandated in the Annual Radioactive Effluent Release Report.
- 4.1.7 **Stability** As used in this document, "stability" means structural stability. A structurally stable waste form will generally maintain its physical dimensions and its form under expected disposal conditions. Stability can be provided by the waste form itself, processing the waste into a stable waste form, or placing the waste into a disposal container or structure that provides stability.
- 4.1.8 **Waste Form** usually refers to the stability of processed waste: stable waste form or unstable waste form. Also applied to physical state of waste (i.e., liquid, solid, gas).

4.2 Abbreviations

- 4.2.1 **ALARA** As Low As Reasonably Achievable
- 4.2.2 **BTP** Branch Technical Position
- 4.2.3 **HIC** High Integrity Container
- 4.2.4 **PCP** Process Control Program
- 4.2.5 **PRB** –Plant Review Board
- 4.2.6 **RCRA** Resource Conservation and Recovery Act
- 4.2.7 **RSDL** Radiological Services Department Leader

5.0 REFERENCES

5.1 Implementing

- 5.1.1 75DP-0RP01, RP Program Overview
- 5.1.2 75DP-0RP03, ALARA Program Overview (RCTS 032633-01)
- 5.1.3 76RP-0RW05, Packaging and Classification of Radioactive Waste
- 5.1.4 76RP-0RW03, Waste Stream Sampling and Database Maintenance
- 5.1.5 Palo Verde Nuclear Generating Station Technical Requirements Manual Section 5.0.500.17.
- 5.1.6 Palo Verde Nuclear Generating Station updated Final Safety Analysis Report, Sections 11.4, 12.1, 12.3, 13.4, 13.5, and 17.2. (RCTS 032632-01)
- 5.1.7 USNRC Branch Technical Position ETSB 11-3, Rev 2, July 1981 "Design Guidance for Solid Radioactive Waste Management Systems Installed in Light Water Cooled Nuclear Power Reactor Plants." (RCTS 032636-01)
- 5.1.8 NRC Technical Position on Waste Form, Rev 1, January 1991.
- 5.1.9 NRC Information Notice 89-27, "Limitations on the Use of Waste Forms and High Integrity Containers for the Disposal of Low-Level Radioactive Waste," March 8, 1989.
- 5.1.10 NRC Information Notice 87-07, 2/3/87, "Quality Control of Onsite Dewatering / Solidification Operations by Outside Contractors."

5.2 Developmental

- 5.2.1 93DP-0LC07, 10 CFR 50.59 and 72.48 Screenings and Evaluations
- 5.2.2 10 CFR 20, "Standards for Protection Against Radiation"

Radwaste Process Control Program	76DP-0RP03	Revision 6

- 5.2.3 10 CFR 61, "Licensing Requirements for Land Disposal of Radioactive Waste" (RCTS 032637-01)
- 5.2.4 10 CFR 71, "Packaging and Transportation of Radioactive Material"
- 5.2.5 49 CFR Subchapter C, "Hazardous Materials Regulations"
- 5.2.6 "Quality Assurance During The Operations Phase," UFSAR 17.2 (RCTS 032634-01)
- 5.2.7 NUREG-0472, Rev 2, July 1979, "Radiological Effluent Technical Specification for PWRs"
- 5.2.8 NUREG-1301, Rev.0, 4/91, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Control for Pressurized Water Reactors"
- 5.2.9 NUREG 0800, Rev 2, July 1981 U.S. NRC Standard Review Plan 11.4, "Solid Waste Management Systems," (RCTS 032635-01)
- 5.2.10 Reg Guide 1.2.1 Measuring, Evaluating and Reporting Radioactivity in Solid Waste and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water Nuclear Power Plants, Rev. 1.
- 5.2.11 IE Circular 80-18, 10 CFR 50.59, Safety Evaluation for Changes to Radioactive Waste Treatment Systems

5.2.12 Commitment Action Tracking System

<u>Partition</u>	Commitment <u>Number</u>	Action Number	Procedure Section
RCTS	032632	01	5.1.6
RCTS	032633	01	5.1.2
RCTS	032634	01	5.2.6
RCTS	032635	01	5.2.9
RCTS	032636	01	5.1.7
RCTS	032637	01	5.2.3
RCTS	032648	01	3.2.1
CRDR	981853	05	3.7.1
CRDR	981853	06	3.1, 3.3

6.0 APPENDICES

Appendix A – PCP Revision Notice

Radwaste Process Control Program	76DP-0RP03	Revision 6
Appendix A, Page 1 o	f 1 (Sample)	

PCP Revision Notice

Date	•	Page	of			
Originator:		Ext.:				
Desc	Description of Revision:					
	Revision is NOT reportable - PRB review, R.P. Director approva Radioactive Effluent Release Report are not required.	l, and reporting	in the annual			
	Revision is reportable - Requires PRB review, R.P. Director appr Radioactive Effluent Release Report, and a justification for the revi					
Justi	ification for Revision: (Ensure the following items are addressed) (UFSAR 13.5.2.	2.E)				
	1. Sufficient information to support the change together wit evaluations justifying the change(s), and	h the appropria	ite analyses or			
	2. A determination that the change will maintain the overall confunction product to existing requirements of Federal, State, or other app					
	N. 14					
			, de de			
			· ·			
Appr	roved By:	Date:				
Use a	dditional pages as required.	76DP-0RP03	, Appendix-A			
NUC	LEAR ADMINISTRATIVE AND TECHNICAL MANUAL	Page 1	3 of 13			

ELECTRONIC PROCEDURE CHANGE RECORD 76DP-0RP03 2 REVISION NO: 1) PROCEDURE NO: CATEGORY 1 2 3 3 Radwaste Process Control Program SUPERSEDE CANCEL 6 EXPEDITED? YES NO (5) PROCEDURE ACTION: REVISION . NEW 7) MRL UPDATE? YES (8) FULL BASIS CHECK? YES NO (9) LEVEL OF USE INFORMATION 10 DESCRIPTION OF CHANGE CD-600 Setup and Operating procedures added to the list of "PCP Procedures" in step 3.1.1. These procedures would have been considered part of the PCP as vendor procedures as they are "...used in processing or packaging wet waste." TEXT DOES NOT AUTOMATICALLY ROLL TO CONTINUATION SHEET (11) DESCRIPTION - CONTINUATION YES 12 REG. REVIEW (13) 10CFR50.59/72.48 REQD? YES 50.59/72.48 DOC NUMBER: __ S-06-0462 NO 🗌 A 10CFR50.59 Screening was performed IAW 93DP-0LC07, rev.14. It was determined that the use of the CD-600 does not require a full Evaluation per step 4.10.3. RMC review by Mark Fladager. Applicability Determination performed by David J. Heckman TEXT DOES NOT AUTOMATICALLY ROLL TO CONTINUATION SHEET. (15) APPLICABILITY - CONTINUATION YES PROCEDURE CHANGE RECORD PACKAGE CONTENTS EFFECTIVE DATE REQUIRED FOR PROCESSING (17) (16) NAD REQUIRED? YES NOV NAD PAGE COUNT: **EFFECTIVE DATE** (22) (18) EPCR, OTHER DOCUMENTS, etc...... PAGE COUNT: 10/19/2006 PROCEDURE PAGE COUNT: 13 **EFFECTIVE TIME [OPTIONAL]** 14 TOTAL PAGE COUNT: **APPROVALS**

PREPARER - SIGNATURE DENOTES THAT DOCUMENT IS READY FOR REVIEW AND APPROVAL

REVIEWER - SIGNATURE DENOTES REVIEW COMPLETION AND QUALIFIED IN SWMS AS PROCEDURE TECHNICAL REVIEWER

25

26 NAD REVIEWER [IF REQUIRED]

OWNER/DESIGNEE - DIGITAL SIGNATURE SECURES DOCUMENT FOR TRANSMITTAL AND USE

From:

Hautala, Daniel F(Z43874)

Sent:

Tuesday, September 22, 2009 3:57 PM

To:

Tubman, Christopher J(Z07290)

Cc:

O'Neill, Edward A(Z98979)

Subject:

Monthly PRB Meeting - September 17, 2009

As an action for CRAI 3337785, Mr. Tubman presented the changes to procedure 76RP-0RW79, "CD-600 System Operation, Rev.4," to the Plant Review Board in accordance with 76DP-0RP03, Radwaste Process Control Plan.

76RP-0RW79, CD-600 System Operations, provides instruction for the Process Control Program (PCP). Revisions to procedures within the scope of the PCP must be evaluated to determine if the revision constitutes a reportable change under 76DP-0RP03, Radwaste Process Control Program. Under section 3.7, 'Process Control Program Revisions', section 3.7.1.1.I states in part for reportable change as, "...Any change in processing parameters that could cause an alteration in the final waste product characteristics..." 76RP-0RW79, revision 4 added section 3.4.5.2, 'Salt Block Discharge' as an alternate waste discharge method, in addition to the 'Dry Discharge' method. The salt block discharge method uses different parameters, and parameter values, to determine when the material is discharged as a final waste form. This is a change to the processing parameters and the change affects the final waste product characteristics. Addition of section 3.4.5.2 is a reportable change in accordance with section 3.7.1.1 of the PCP procedure.

This report highlights the revision 4 change to the 'CD-600 System Operations' procedure as reportable and requires the review and acceptance of the Plant Review Board (PRB) in accordance with PCP procedure. While the salt block discharge method is an addition to the CD-600 operating procedure, this discharge method has been employed at PVNGS as far back as November 14, 1995 as described in procedure 76CP-9NP31, Revision 01, 'CD-1000 Operation.' The CD-1000 equipment was used to process evaporator concentrates prior to the use of the CD-600 equipment. The CD-1000, and associated procedures, was evaluated prior to placing into service. The evaluated procedures included the section, salt block discharge, being added to the CD-600 operating procedure. Company correspondence 115-02096-MAF dated July 8. 1996 provides evidence. The CD-600 was placed in operation in September 2006 and is essentially a smaller version of the CD-1000. The transition from the CD-1000 to the CD-600 included new operating procedures. Absent from revision 0 through 3 of the CD-600 operating procedure was the salt block discharge method. This omission was not noted until the Unit 3 evaporator concentrates processing campaign. Revision 4 effectively reintroduced the salt block discharge method, and its processing parameters, into the PCP through the CD-600 procedure. As before, a note in the procedure indicates the dry discharge method is preferred and the use of the salt block discharge method must be approved.

The Plant Review Board evaluated and approved the changes made to Revision 4, of 76RP-0RW79. One action was generated by Mr. Gaffney (PVAR 3380853) to evaluation why the initial procedure changes were misclassified such that the PRB approval was not obtained and to evaluate whether an update is required for the 2008 Palo Verde Annual Effluence Release Report.