VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261

April 30, 2010

Attention: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D. C. 20555-0001
 Serial No.
 10-206

 SS&L/TJN
 R0

 Docket Nos.
 50-280

 50-281
 72-2

 72-55
 DPR-32

 DPR-37
 SNM-2501

Gentlemen:

VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION UNITS 1 AND 2 INDEPENDENT SPENT FUEL STORAGE INSTALLATION ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

Surry Units 1 and 2 Technical Specification 6.6.B.2 requires the submittal of an Annual Radiological Environmental Operating Report (AREOR) for Surry Power Station. Surry Independent Spent Fuel Storage Installation (ISFSI) Technical Specification Appendix C, Item 1.3.1 requires that the Surry ISFSI be included in the environmental monitoring for the Surry Power Station. Accordingly, enclosed is the Surry Power Station AREOR for the period of January 1, 2009 through December 31, 2009, which includes environmental monitoring for the Surry ISFSI.

If you have any questions or require additional information, please contact Paul Harris at 757-365-2692.

Sincerely,

B. L. Stanley Director Station Safety and Licensing Surry Power Station

Attachment

Commitments made in this letter: None

TÉOB NMSSOI NM NMSS

Serial No. 10-206 Docket Nos.: 50-280 50-281 72-2 72-55

copy: United States Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Ave., NE Suite 1200 Atlanta, GA 30303-1257

> Director, Nuclear Material Safety and Safeguards U. S. Nuclear Regulatory Commission Washington, D. C. 20555-0001

NRC Senior Resident Inspector Surry Power Station

Director Division of Radiological Health 109 Governor Street, Room 730 Richmond, Virginia 23219

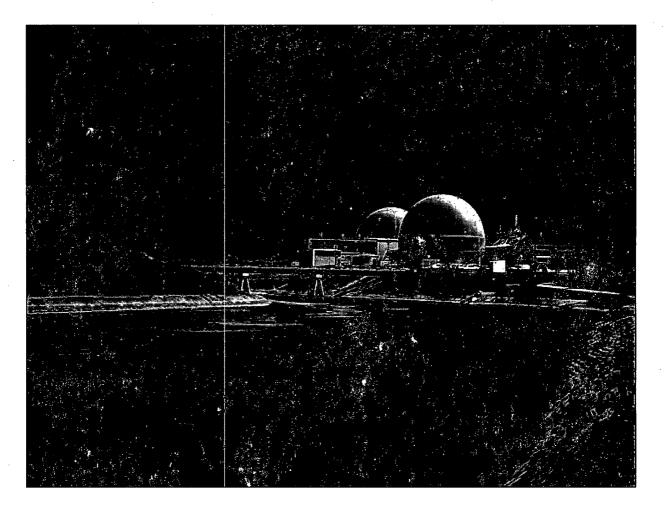
Serial No. 10-206 Docket Nos.: 50-280 50-281 72-2 72-55

Attachment 1

11

2009 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

SURRY POWER STATION UNITS 1 AND 2 INDEPENDENT SPENT FUEL STORAGE INSTALLATION VIRGINIA ELECTRIC AND POWER COMPANY


Surry Power Station

Î

R

R

R

2009 Annual Radiological Environmental Operating Report

Dominion

 $\{R_{i}\}_{i=1}^{n}$

Ì

ţ**I**

Surry Power Station

Radiological Environmental Monitoring Program

January 1, 2009 to December 31, 2009

Annual Radiological Environmental Operating Report

Surry Power Station

January 1, 2009 to December 31, 2009

- 10 10

P. F. Blount Health Physicist

Prepared by: _

.

.R

Reviewed by:

P. R. Harris Supervisor Radiological Analysis

•

Reviewed by: ____

Beth a. =

B. A. Hilt Supervisor Health Physics Technical Services

Approved by:

J. W. Eggart

Manager Radiological Protection and Chemistry

Table of Contents

. ...

l

-

PREFACE	4
1. EXECUTIVE SUMMARY	5
2. PROGRAM DESCRIPTION	7
2.1 Introduction	7
2.2 Sampling and Analysis Program	8
3. ANALYTICAL RESULTS	20
3.1 Summary of Results	
3.2 Analytical Results of 2009 REMP Samples	
4. DISCUSSION OF RESULTS	
4.1 Gamma Exposure Rate	49
4.2 Airborne Gross Beta	50
4.3 Airborne Radioiodine	52
4.4 Air Particulate Gamma	52
4.5 Cow Milk	52
4.6 Food Products	53
4.7 Well Water	53
4.8 River Water	53
4.9 Silt	53
4.10 Shoreline Sediment	55
4.11 Fish	55
4.12 Oysters	56
4.13 Clams	
4.14 Crabs	56
5. PROGRAM EXCEPTIONS	57
6. CONCLUSIONS	58
REFERENCES	
APPENDICES	
APPENDIX A: LAND USE CENSUS	
APPENDIX B: SUMMARY OF INTERLABORATORY COMPARISONS	65

PREFACE

ļ

This report is submitted as required by Technical Specification 6.6.B.2, Annual Radiological Environmental Operating Report, for Surry, Units 1 and 2, Virginia Electric and Power Company Docket Nos. 50-280 and 50-281.

1. EXECUTIVE SUMMARY

This document is a detailed report of the 2009 Surry Power Station Radiological Environmental Monitoring Program (REMP). Radioactivity levels from January 1 through December 31, 2009, in air, water, silt, shoreline sediment, milk, aquatic biota, food products and direct exposure pathways have been analyzed, evaluated and summarized. The REMP is designed to confirm that radiological effluent releases are As Low As is Reasonably Achievable (ALARA), no undue environmental effects occur and the health and safety of the public are protected. The program also detects any unexpected environmental processes that could allow radiation accumulations in the environment or food pathway chains.

Radiation and radioactivity in the environment are monitored within a 20-mile radius of the station. Surry Power Station personnel collect a variety of samples within this area. A number of sampling locations for each medium are selected using available meteorological, land use, and water use data. Two types of samples are obtained. The first type, control samples, is collected from areas that are beyond the measurable influence of Surry Power Station or any other nuclear facility. These samples are used as reference data. Normal background radiation levels, or radiation present due to causes other than Surry Power Station, can be compared to the environment surrounding the station. Indicator samples are the second sample type obtained. These samples show how much radiation is contributed to the environment by the station. Indicator samples are taken from areas close to the station where any station contribution will be at the highest concentration.

Prior to station operation, samples were collected and analyzed to determine the amount of radioactivity present in the area. The resulting values are used as a "pre-operational baseline." Analysis results from the indicator samples are compared to control sample values and the pre-operational baseline to determine if changes in radioactivity levels are attributable to station operations, or causes such as the Chernobyl accident or natural variation.

GEL Laboratories LLC and Teledyne Brown Engineering, Inc. provide radioanalyses for this program and Global Dosimetry Solutions, Inc. provides thermoluminescent dosimetry (TLD) services. Participation in an Interlaboratory Comparison Program provides an independent check of sample measurement precision and accuracy. Typically, radioactivity levels in the environment are so low that analysis values frequently fall below the minimum detection limits of state-of-the-art measurement methods. Because of this, the United States Nuclear Regulatory Commission (USNRC) requires that equipment used for radiological environmental monitoring must be able to detect specified minimum Lower Limits of Detection (LLDs). This ensures that analyses are as accurate as

possible. The USNRC also mandates a reporting level for radionuclides. Licensed nuclear facilities must report the radionuclide activities in those environmental samples that are equal to or greater than the specified reporting level. Environmental radiation levels are sometimes referred to as a percent of the reporting level.

Analytical results are reported for all possible radiation exposure pathways to man. These pathways include airborne, aquatic, terrestrial and direct radiation exposure. The airborne exposure pathway includes radioactive airborne iodine and particulates. The 2009 airborne results were similar to previous years. No station related radioactivity was detected and natural radioactivity levels remained at levels consistent with past years' results. Aquatic exposure pathway samples include well and river water, silt and shoreline sediments, crabs, fish, clams and oysters. Naturally occurring potassium-40 was detected at average environmental levels. No man-made radionuclides were detected in well water. This trend is consistent throughout the operational environmental monitoring program. No man-made radionuclides were detected in river water. Silt samples indicated the presence of cesium-137 and naturally occurring radionuclides. The cesium-137 activity was present in the control and indicator locations and is attributable to global fallout from past nuclear weapons testing and nuclear accidents such as Chernobyl. Shoreline sediment, which may provide a direct exposure pathway, contained no station related radionuclides. Naturally occurring potassium-40 and thorium-228 were detected at average environmental levels. The terrestrial exposure pathway includes milk and food products. Iodine-131 was not detected in any 2009 milk samples and has not been detected in milk prior to or since the 1986 Chernobyl accident. Strontium-90 was again detected in milk and this activity is attributable to past atmospheric nuclear weapons testing. No manmade radionuclides were detected in food product samples. Consistent with historical data, naturally occurring potassium-40 was detected in milk and food products. The direct exposure pathway measures environmental radiation doses using TLDs. TLD results have remained relatively constant over the years.

During 2009, as in previous years, the operation of Surry Power Station has created no adverse environmental effects or health hazards. The maximum total body dose calculated for a hypothetical individual at the station site boundary due to liquid and gaseous effluents released from the station during 2009 was 0.001 millirem. For reference, this dose may be compared to the 620 millirem average annual exposure to every person in the United States from natural and man-made sources. Natural sources in the environment provide approximately 50% of radiation exposure to man, while nuclear power contributes less than 0.1%. These results demonstrate compliance with federal and state regulations and also demonstrate the adequacy of radioactive effluent controls at Surry Power Station.

2. PROGRAM DESCRIPTION

2.1 Introduction

174

This report documents the 2009 Surry Power Station operational Radiological Environmental Monitoring Program (REMP). The Dominion Surry Power Station is located on the Gravel Neck peninsula adjacent to the James River, approximately 25 miles upstream of the Chesapeake Bay. The site consists of two units, each with a pressurized water reactor (PWR) nuclear steam supply system and turbine generator furnished by Westinghouse Electric Corporation. Each unit is designed with a gross electrical output of 855 megawatts electric (MWe). Unit 1 achieved commercial operation on December 22, 1972, and Unit 2 on May 1, 1973.

The United States Nuclear Regulatory Commission regulations (10CFR50.34a) require that nuclear power plants be designed, constructed and operated to keep levels of radioactive material in effluents to unrestricted areas As Low As is Reasonably Achievable. To ensure these criteria are met, the operating license for Surry Power Station includes Technical Specifications that address the release of radioactive effluents. In-plant monitoring is used to ensure that these release limits are not exceeded. As a precaution against unexpected or undefined environmental processes which might allow undue accumulation of radioactivity in the environment, a program for monitoring the station environs is also included in Surry Power Station Technical Specifications.

Dominion personnel are responsible for collecting the various indicator and control environmental samples. Global Dosimetry Solutions Incorporated is responsible for processing the TLDs. GEL Laboratories LLC and Teledyne Brown Engineering are responsible for sample analyses. The results of the analyses are used to determine if changes in radioactivity levels may be attributable to station operations. Measured values are compared with control values, which vary with time due to external events, such as cosmic ray bombardment, nuclear weapons test fallout and seasonal variations of naturally occurring radionuclides. Data collected prior to station operation is used to indicate the degree of natural variation to be expected. This pre-operational data is compared with data collected during the operational phase to assist in evaluating any radiological impact of station operation.

Occasionally, samples of environmental media may show the presence of manmade radionuclides. As a method of referencing the measured radionuclide concentrations in the sample media to a dose consequence to man, the data is compared to the reporting level concentrations listed in the USNRC Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants", (December, 1975) and VPAP-2103S, Offsite Dose Calculation Manual (Surry).

These concentrations are based upon the annual dose commitment recommended by 10CFR50, Appendix I, to meet the criterion of "As Low As is Reasonably Achievable."

This report documents the results of the REMP for 2009 and satisfies the following objectives of the program:

- > To provide measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of the maximum exposed member of the public resulting from station operations.
- > To supplement the radiological effluent monitoring program by verifying that radioactive effluents are within allowable limits.
- > To identify changes in radioactivity in the environment.
- > To verify that station operations have no detrimental effect on the health and safety of the public.

2.2 Sampling and Analysis Program

119

Table 2-1 summarizes the 2009 sampling program for Surry Power Station. All samples listed in Table 2-1 are taken at indicator locations except those labeled "control." Dominion personnel collect all samples listed in Table 2-1.

Table 2-2 summarizes the analysis program conducted by GEL Laboratories LLC, Teledyne Brown Engineering and Global Dosimetry Solutions for Surry Power Station. All samples, with the exception of the TLDs, are shipped to GEL Laboratories LLC, located in Charleston, SC, or Teledyne Brown Engineering, located in Knoxville, TN, for analysis. The TLDs are shipped to Global Dosimetry Solutions, located in Costa Mesa, CA, for processing.

The Surry Radiological Monitoring Locations maps (Figures 1 - 5) denote sample locations for Surry Power Station. The locations are color coded to designate sample types.

72

Table 2-1 SURRY - 2009 RADIOLOGICAL SAMPLING STATIONS DISTANCE AND DIRECTION FROM UNIT NO. 1

			Distance			Collection	
Sample Media	Location	Station	Miles	Direction	Degrees	Frequency	Remarks
17	Control	(00)				Osserterler	Onsite (Stored in a lead shield outside the protected
Environmental	Control	(00)	-		-	Quarterly	area) Sita Dava dama
TLDs	West North West	(02)	0.2	WNW	293°	Quarterly	Site Boundary
	Surry Station Discharge	(03)	0.4	NW	321°	Quarterly	Site Boundary
	North North West	(04)	0.2	NNW	329°	Quarterly	Site Boundary
	North	(05)	0.3	N	4°	Quarterly	Site Boundary
	North North East	(06)	0.3	NNE	28°	Quarterly	Site Boundary
	North East	(07)	0.3	NE	44°	Quarterly	Site Boundary
	East North East	(08)	0.4	ENE	67°	Quarterly	Site Boundary
	East	(09)	0.3	E	89°	Quarterly	Site Boundary
	West	(10)	0.1	W	271°	Quarterly	Site Boundary
	West South West	(11)	0.4	WSW	252°	Quarterly	Site Boundary
	South West	(12)	0.3	SW	228°	Quarterly	Site Boundary
	South South West	(13)	0.3	SSW	201°	Quarterly	Site Boundary
	South	(14)	0.4	S	182°	Quarterly	Site Boundary
	South South East	(15)	0.6	SSE	157°	Quarterly	Site Boundary
	South East	(16)	0.9	SE	135°	Quarterly	Site Boundary
	Station Intake	(18)	1.6	ESE	115°	Quarterly	Site Boundary
	Hog Island Reserve	(19)	2.0	NNE	26°	Quarterly	Near Resident
	Bacon's Castle	(20)	4.5	SSW	202°	Quarterly	Apx. 5 mile
	Route 633	(21)	4.9	SW	227°	Quarterly	Apx. 5 mile
	Alliance	(22)	5.1	WSW	247°	Quarterly	Apx. 5 mile
	Surry	(23)	7.7	WSW	256°	Quarterly	Population Center
	Route 636 and 637	(24)	4.0	W	270°	Quarterly	Apx. 5 mile
	Scotland Wharf	(25)	5.0	WNW	284°	Quarterly	Apx. 5 mile
	Jamestown	(26)	6.3	NW	308°	Quarterly	Apx. 5 mile
	Colonial Parkway	(27)	3.8	NNW	333°	Quarterly	Apx. 5 mile
	Route 617 and 618	(28)	4.9	NNW	340°	Quarterly	Apx. 5 mile
	Kingsmill	(29)	4.6	Ν	2°	Quarterly	Apx. 5 mile
	Williamsburg	(30)	7.8	Ν	0°	Quarterly	Population Center
	Kingsmill North	(31)	5.5	NNE	12°	Quarterly	Apx. 5 mile
	Budweiser	(32)	5.8	NNE	27°	Quarterly	Population Center
,	Water Plant	(33)	5.0	NE	46°	Quarterly	Apx. 5 mile

Table 2-1SURRY - 2009RADIOLOGICAL SAMPLING STATIONSDISTANCE AND DIRECTION FROM UNIT NO. 1

			Distance			Collection	
Sample Media	Location	Station	Miles	Direction	Degrees	Frequency	Remarks
Environmental	BASF	(34)	5.1	ENE	70°	Quarterly	Apx. 5 mile
TLDs	Lee Hall	(35)	7.1	ENE	75°	Quarterly	Population Center
	Goose Island	(36)	5.1	Е	90°	Quarterly	Apx. 5 mile
	Fort Eustis	(37)	4.9	ESE	104°	Quarterly	Apx. 5 mile
	Newport News	(38)	19.3	SE	130°	Quarterly	Population Center
	James River Bridge	(39)	17.1	SE	142°	Quarterly	Control Location
	Benn's Church	(40)	17.0	SSE	159°	Quarterly	Control Location
	Smithfield	(41)	13.4	SSE	167°	Quarterly	Control Location
	Rushmere	(42)	5.3	SSE	156°	Quarterly	Apx. 5 mile
	Route 628	(43)	5.1	S	177°	Quarterly	Apx. 5 mile
Air Charcoal	Surry Station	(SS)	0.3	NNE	18°	Weekly	Site boundary location with highest D/Q
and Particulate	Hog Island Reserve	(HIR)	2.0	NNE	26°	Weekly	
	Bacon's Castle	(BC)	4.5	SSW	202°	Weekly	
	Alliance	(ALL)	5.1	WSW	247°	Weekly	
	Colonial Parkway	(CP)	3.8	NNW	333°	Weekly	
	BASF	(BASF)	5.1	ENE	70°	Weekly	
	Fort Eustis	(FE)	4.9	ESE	104°	Weekly	
	Newport News	(NN)	19.3	SE	130°	Weekly	Control Location
River Water	Surry Station Discharge	(SD)	0.4	NW	323°	Monthly	
	Scotland Wharf	(SW)	4.9	WNW	284°	Monthly	Control Location
Well Water	Surry Station	(SS)	0.1	SW	227°	Quarterly	Onsite
	Hog Island Reserve	(HIR)	2.0	NNE	28°	Quarterly	
	Construction Site	(CS)	0.3	Ε	87°	Quarterly	
Shoreline	Hog Island Reserve	(HIR)	0.6	Ν	7°	Semi-Annually	
Sediment	Chickahominy River	(CHIC)	11.2	WNW	301°	Semi-Annually	Control Location
Silt	Chickahominy River	(CHIC)	11.2	WNW	300°	•	Control Location
	Surry Station Discharge	(SD)	1.3	NNW	341°	Semi-Annually	

Table 2-1 SURRY - 2009 RADIOLOGICAL SAMPLING STATIONS DISTANCE AND DIRECTION FROM UNIT NO. 1

			Distance			Collection	
Sample Media	Location	Station	Miles	Direction	Degrees	Frequency	Remarks
Milk	Colonial Parkway	(CP)	3.7	NNW	336°	Monthly	
	Williams	(WMS)	27.5	S	175°	Monthly	Control Location
	Epps	(EPPS)	4.8	SSW	200°	Monthly	
Oysters	Point of Shoals	(POS)	6.4	SSE	157°	Semi-Annually	
	Mulberry Point	(MP)	4.9	ESE	124°	Semi-Annually	
Clams	Chickahominy River	(CHIC)	11.2	WNW	300°	Semi-Annually	Control Location
	Surry Station Discharge	(SD)	1.3	NNW	341°	Semi-Annually	
	Hog Island Point	(HIP)	2.4	NE	52°	Semi-Annually	
	Lawne's Creek	(LC)	2.4	SE	131°	Semi-Annually	
	Jamestown Island	(JI)	3.9	NNW	324°	Semi-Annually	
Fish	Surry Station Discharge	(SD)	1.3	NNW	341°	Semi-Annually	
Crabs	Surry Station Discharge	(SD)	1.3	NNW	. 341°	Annually	
Crops	Brock's Farm	(BROCK)	3.8	S	183°	Annually	
(Corn, Peanuts Soybeans)	, Slade's Farm	(SLADE)	3.2	S	179°	Annually	

Table 2-2 SURRY - 2009

SAMPLE ANALYSIS PROGRAM

SAMPLE MEDIA	FREQUENCY	ANALYSIS	LLD*	REPORT UNITS
Thermoluminescent Dosimetry (TLD)	Quarterly	Gamma Dose	2	mR/Std. Month
Air Iodine	Weekly	I-131	0.07	pCi/m ³
Air Particulate	Weekly	Gross Beta	0.01	pCi/m ³
	Quarterly (a)	Gamma Isotopic	x	pCi/m ³
		Cs-134	0.05	
		Cs-137	0.06	
River Water	Quarterly Composite of monthly sample	Tritium (H-3)	2000	pCi/L
	Monthly	I-131	10	pCi/L
		Gamma Isotopic		pCi/L
		Mn-54	15	
		Fe-59	30	
		Co-58	15	
		Co-60	15	
		Zn-65	30	
		Zr-95	30	
		Nb-95	15	ſ
		Cs-134	15	
		Cs-137	18	:
		Ba-140	60	
		. La-140	15	
Well Water	Quarterly	Tritium (H-3)	2000	pCi/L
		I-131	1	
		Gamma Isotopic		pCi/L
		Mn-54	15	
		Fe-59	30	
		Co-58	15	
		Co-60	15	
		Zn-65	30	
		Zr-95	30	
		Nb-95	15	
		Cs-134	15	
		Cs-137	18	
		Ba-140	60	
		La-140	15	

Footnotes located at end of table.

 11^{a}

Į

í

Table 2-2

SURRY - 2009

SAMP	LEAL	NALYSI	S PRO	GRAM

SAMPLE MEDIA	FREQUENCY	ANALYSIS	LLD*	REPORT UNITS
Shoreline Sediment	Semi-Annually	Gamma Isotopic		pCi/kg - dry
		Cs-134	150	
		Cs-137	180	
Silt	Semi-Annually	Gamma Isotopic		pCi/kg - dry
		Cs-134	150	
		Cs-137	180	
Milk	Monthly	I-131	1	pCi/L
		Gamma Isotopic	•	pCi/L
		Cs-134	15	
		Cs-137	18	
		Ba-140	60	
		La-140	15	
	Quarterly	Sr-89	NA	pCi/L
	Composite of CP	Sr-90	NA	
	monthly sample	. •	1 .	
Oysters	Semi-Annually	Gamma Isotopic		pCi/kg - wet
		Mn-54	130	
		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
		Cs-134	130	
		Cs-137	150	
Clams	Semi-Annually	Gamma Isotopic		pCi/kg - wet
		Mn-54	130	
		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
		Cs-134	130	
		Cs-137	150	
Crabs	Annually	Gamma Isotopic		pCi/kg - wet
		Mn-54	130	
		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
		Cs-134	130	

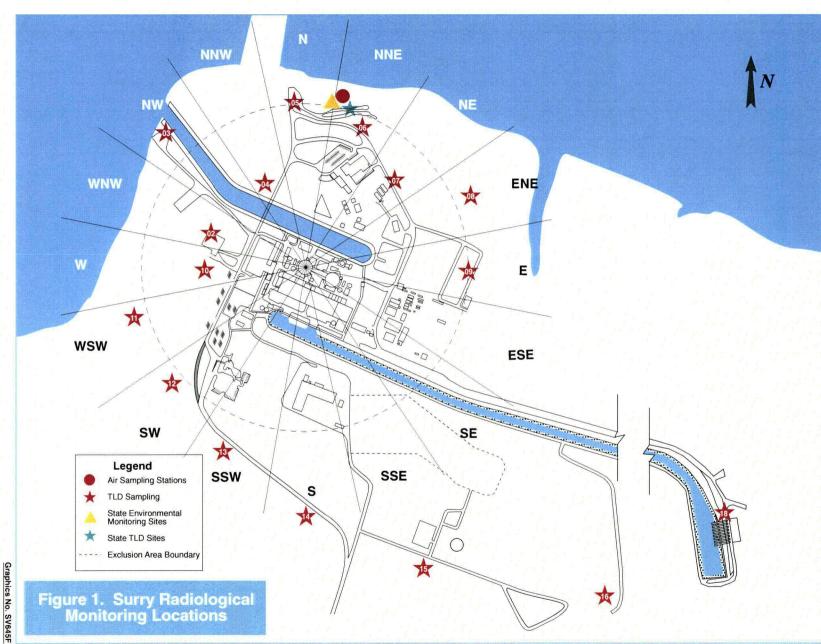
Footnotes located at end of table.

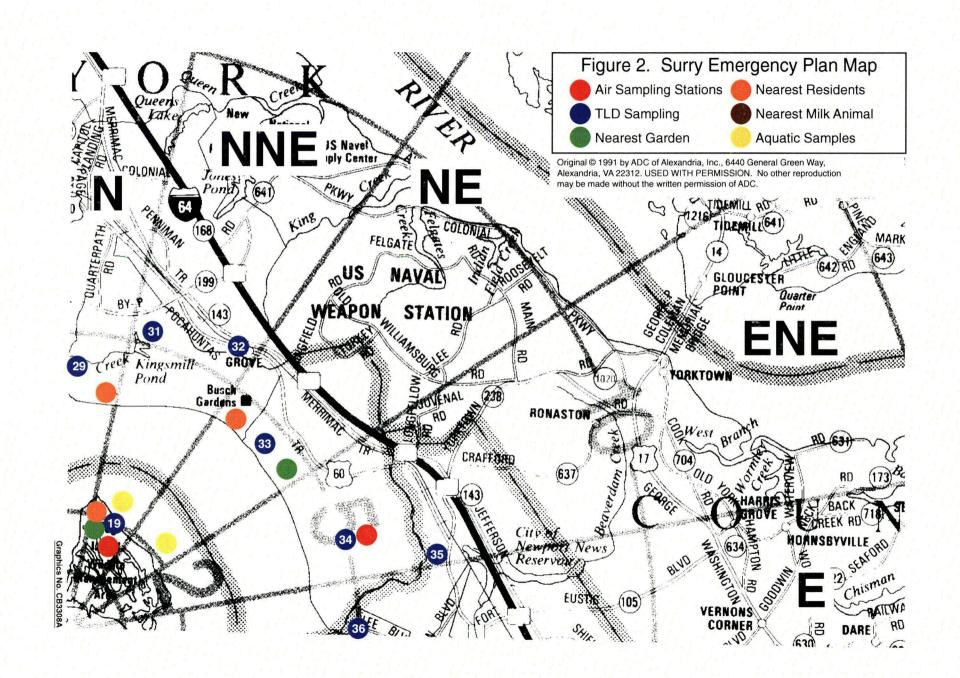
14.4

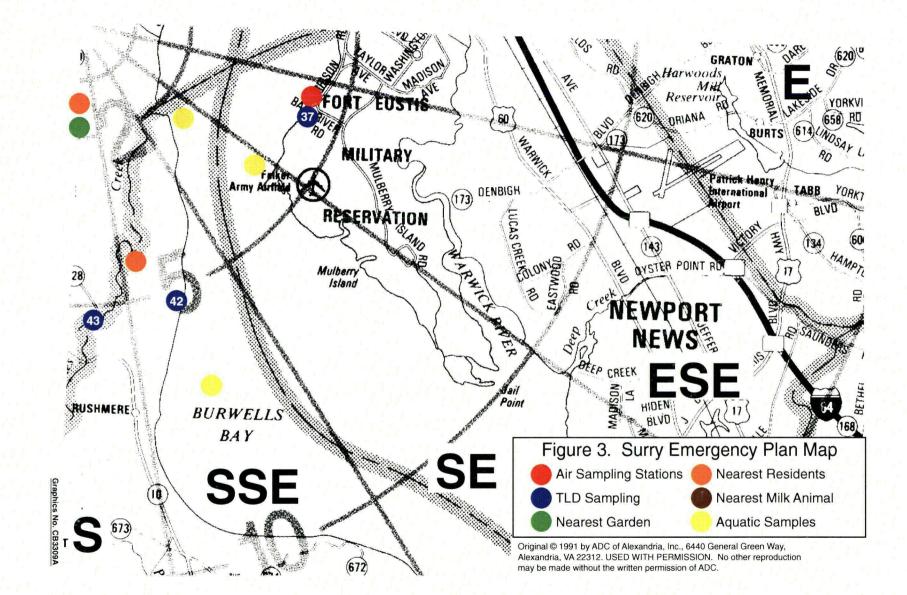
A DESCRIPTION OF

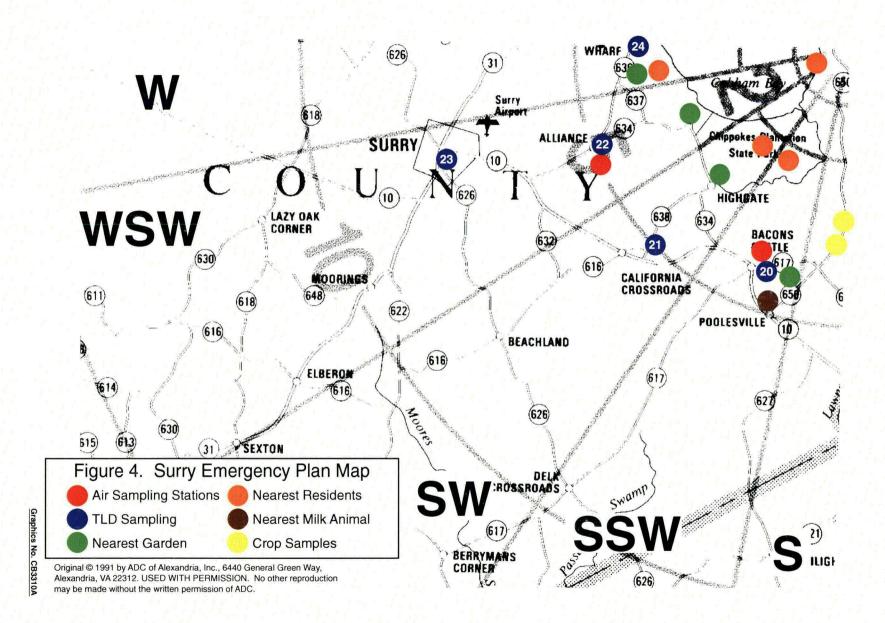
Table 2-2

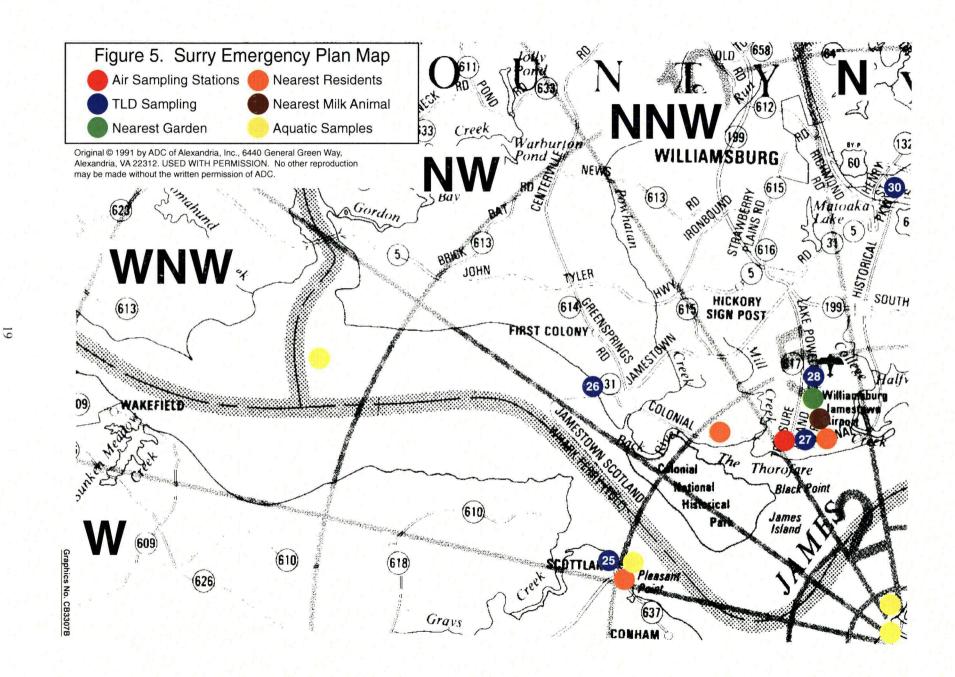
SURRY - 2009 SAMPLE ANALYSIS PROGRAM


SAMPLE MEDIA	FREQUENCY	ANALYSIS	LLD*	REPORT UNITS
Fish	Semi-Annually	Gamma Isotopic		pCi/kg - wet
		Mn-54	130	
		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
		Cs-134	130	
		Cs-137	150	
Food Products	Annually	Gamma Isotopic		pCi/kg - wet
		I-131	60	
		Cs-134	60	
		Cs-137	80	


Note: This table is not a complete listing of nuclides that can be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, are also identified and reported.


ſ


* LLD is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Monitoring Program, Revision 1, November 1979. LLDs indicate those concentrations to which environmental samples are required to be analyzed. Actual analysis of samples may be lower than these listed values.


(a) Quarterly composites of each location's weekly air particulate samples are analyzed for gamma emitters. NA None assigned

3. ANALYTICAL RESULTS

3.1 Summary of Results

5

i i

In accordance with the Surry Offsite Dose Calculation Manual (ODCM), a summary table of the analytical results has been prepared and is presented in Table 3-1. This data is presented in accordance with the format of the USNRC Branch Technical Position, "Acceptable Radiological Environmental Monitoring Program", Revision 1, November 1979. A more detailed analysis of the data is given in Section 4.

- GL + P

-

1. A 200. 200

10 M

111

Surry Power Station, Surry County, Virginia - 2009 Docket No. 50-280-281 Page 1 of 7

Medium or Pathway	Analy	sis		Indicator Locations	Locati	on with Hig	ghest Mean	Control Locations	Non-Routine
Sampled		Total		Mean		Distance	Mean	Mean	Reported
(Units) Direct Radiation TLD (mR/ Std Month)	Gamma	_ No. ∴ 164	2	Range 3.3 (152/152) (1.2 - 6.2)	Name STA-9	Direction 0.3 mi E	Range 5.6 (4/4) (4.7 - 6.2)	Range 3.7 (12/12) (1.8 - 6.5)	Measurements
Air Particulate	Gross Beta	416	10	23.9 (364/364) (7.1 - 60.2)	ALL	5.1 mi WSW	27.4 (52/52) (8.2 - 60.2)	23.2 (52/52) (10.1 - 47.2)	0
(1E-3 pCi/m3)	Gamma	32						······	
	Be-7	32		144 (28/28) (106 - 197)	ALL	5.1 mi WSW	165 (4/4) (134 - 197)	139 (4/4) (114 - 164)	0
	Cs-134	32	50	< LLĐ	N/A		< LLD	< LLD	0
	Cs-137	32	60	< LLD	N/A		< LLD	< LLD	0
Air lodine (1E-3 pCi/m3)	I-131	416	70	< LLD	N/A		< LLD	< LLD	0
Milk (pCi/Liter)	Strontium	4		io 220 do 12 <i>0</i> 17 92 0 27 99 92 2 92	2222 5 22 45 22 5 22				
(poi/Liter)	Sr-89	4		< LLD	N/A		< LLD	< LLD	0
	Sr-90	4		1.12 (1/4) (1.12 - 1.12)	СР	3.7 mi NNW	1.12 (1/4) (1.12 - 1.12)	N/A	0
	Gamma	36							
	K-40	36		1360 (24/24) (1220 - 1510)	СР	3.7 mi NNW	1397 (12/12) (1260 - 1510)	1308 (12/12) (1150 - 1420)	0
	Th-228	36		< LLD	N/A		< LLD	13.0 (1/12) (13.0 - 13.0)	0
	I-131	36	1	< LLD	N/A		< LLD	< LLD	0
	Cs-134	36	15	< LLD	N/A		< LLD	< LLD	0
	Cs-137	36	18	< LLD	N/A		< LLD	< LLD	0

 (\cdot)

10 mm

Contract on the second

Medium or				Indicator			1	Control	· ·
Pathway	Analy	/sis		Locations	Locat	ion with Hi	ghest Mean	Locations	Non-Routine
Sampled	· · · ·	Total		Mean		Distance	Mean	Mean	Reported
(Units)	Туре	No.	LLD	Range	Name	Direction	Range	Range	Measurements
Milk (pCi/Liter)	Gamma	36							
0	Ba-140	36	60	< LLD	N/A		< LLD	< LLD	0
	La-140	36	15	< LLD	N/A		< LLD	< LLD	0
Food Products	Gamma	3							
(pCi/kg wet)	K-40	3		8097 (3/3) (3190 - 14800)	Slade	3.2 mi S	8995 (2/2) (3190-14800)	N/A	0
	Th-228	3		10.4 (1/3) (10.4 - 10.4)	Slade	3.2 mi S	10.4 (1/2) (10.4 - 10.4)	N/A	
	I-13 1	3	60	< LLD	`` N/A		< LLD	N/A	0
	Cs-134	3	60	< LLD	N/A	•	< LLD	N/A	0
	Cs-137	3	80	< LLD	N/A		< LLD	N/A	0
Well Water	H-3	12	2000	< LLD	N/A	· • • • • • • • • • • • • • • • • • • •	< LLD	N/A	0
(pCi/Liter)	Gamma	12			τ				
	K-40	12		37.5 (1/12) (37.5 - 37.5)	SS	0.1 mi SW	37.5 (1/12) (37.5 - 37.5)	N/A	0
	Ac-228	12		15.4 (1/12) (15.4 - 15.4)	CS	0.3 mi E	15.4 (1/12) (15.4 - 15.4)	N/A	0
	Mn-54	12	15	< LLD	N/A		< LLD	N/A	0
	Co-58	12	15	< LLD	N/A		< LLD	N/A	0
	Fe-59	12	30	< LLD	N/A		< LLD	N/A	0
	Co-60	12	15	< LLD	N/A		< LLD	N/A	0

Surry Power Station, Surry County, Virginia - 2009 Docket No. 50-280-281 Page 2 of 7

•

.

. . . .

13 6

Medium or				Indicator			who of Moon	Control	Non Routino
Pathway Sampled	Analy	sis Total		Locations Mean	Locat	Distance	ghest Mean Mean	Locations Mean	Non-Routine Reported
(Units)	Туре	No.	LLD	Range	Name	Direction	Range	Range	Measurements
Well Water (pCi/Liter)	Zn-65	12	30	< LLD	N/A		< LLD	N/A	0
(powener)	Nb-95	12	15	< LLD	N/A		< LLD	N/A	0
	Zr-95	12	30	< LLD	N/A		< LLD	N/A	0
	I-131	12	1	< LLD	N/A		< LLD	N/A	. 0
	Cs-134	12	15	< LLD	N/A		< LLD	N/A	0
	Cs-137	12	18	< LLD	N/A		< LLD	N/A	0
	Ba-140	12	60	< LLD	N/A		< LLD	N/A	0
	La-140	12	15	< LLD	N/A		< LLD	N/A	0
River Water	H-3	8	2000	< LLD	N/A		< LLD	N/A	0
(pCi/Liter)	Gamma	24					······································		
	K-40	24		138.4 (4/12) (75.7 - 188)	SD	0.4 mi NW	138.4 (4/12) (75.7 - 188)	105.9 (5/12) (27.2 - 167)	0
	Th-228	24	·	< LLD	SW	4.9 mi WNW	5.52 (1/12) (5.52 - 5.52)	5.52 (1/12) (5.52 - 5.52)	0
	Ra-226	24		< LLD	sw	4.9 mi WNW	34.6 (1/12) (34.6 - 34.6)	34.6 (1/12) (34.6 - 34.6)	0
	Mn-54	24	15	< LLD	N/A		< LLD	< LLD	0
	Co-58	24	15	< LLD	N/A		< LLD	< LLD	0
	Fe-59	24	30	< LLD	N/A		< LLD	< LLD	0

Surry Power Station, Surry County, Virginia - 2009 Docket No. 50-280-281 Page 3 of 7

' (j 📑

1. A. 2.

1.5

Medium or				Indicator				Control	
Pathway	Analy			Locations	Locat		ghest Mean	Locations	Non-Routine
Sampled	_	Total		Mean		Distance		Mean	Reported
(Units)	Туре	No.	LLD	Range	Name	Direction	Range	Range	Measurements
River Water	Co-60	24	15	< LLD	N/A		< LLD	< LLD	0
(pCi/Liter)	Zn-65	24	30	< LLD	N/A		< LLD	< LLD	0
	Nb-95	24	15	< LLD	N/A		< LLD	< LLD	0
	Zr-95	24	30	< LLD	N/A		< LLD	< LLD	0
	I-131	24	10	< LLD	N/A		< LLD	< LLD	0
	Cs-134	24	15	< LLD	N/A		< LLD	< LLD	0
	Cs-137	24	18	< LLD	N/A		< LLD	< LLD	0.
	Ba-140	24	60	< LLD	N/A	,	< LLD	< LLD	0
	La-140	24	15	< LLD	N/A		< LLD	< LLD	0
Silt	Gamma	4					· .		
(pCi/kg dry)	K-40	4		14700 (2/2) (14000-15400)	CHIC	11.2 mi WNW	16550 (2/2) (16100-17000)	16550 (2/2) (16100-17000)	0
	Cs-134	4	150	< LLD	N/A		< LLD	< LLD	0
	Cs-137	4	180	214 (2/2) (154 - 274)	SD	1.3 mi NNW	214 (2/2) (154 - 274)	184 (2/2) (182 - 186)	0
	Th-228	4		1080 (2/2) (1010 - 1150)	CHIC	11.2 mi WNW	1295 (2/2) (1210 - 1380)	1295 (2/2) (1210 - 1380)	0
	Th-230	4		644 (1/2) (644 - 644)	СНІС	11.2 mi WNW	1310 (1/2) (1310 - 1310)	1310 (1/2) (1310 - 1310)	0
	Th-232	4		1030 (1/2) (1030 - 1030)	CHIC	11.2 mi WNW	1180 (2/2) (1020 - 1340)	1180 (2/2) (1020 - 1340)	0

Surry Power Station, Surry County, Virginia - 2009 Docket No. 50-280-281 Page 4 of 7

1.1

k

Medium or				Indicator		Control			
Pathway	Analysis			Locations	Location with Highest Mean			Locations	Non-Routine
Sampled	—	Total		Mean	Distance Name Direction		Mean	Mean	Reported
(Units)	Туре	No.	LLD	Range	Name	Direction	Range	Range	Measurements
Silt (pCi/kg dry)	П-208	4		231 (1/2) (231 - 231)	СНІС	11.2 mi WNW	418 (1/2) (418 - 418)	418 (1/2) (418 - 418)	0
	Pb-212	4		1010 (1/2) (1010 - 1010)	CHIC	11.2 mi WNW	1380 (1/2) (1380 - 1380)	1380 (1/2) (1380 - 1380)	· 0
	Pb-214	4		874 (1/2) (874 - 874)	СНІС	11.2 mi WNW	1250 (1/2) (1250 - 1250)	1250 (1/2) (1250 - 1250)	0
	Bi-214	4		644 (1/2) (644 - 644)	СНІС	11.2 mi WNW	1310 (1/2) (1310 - 1310)	1310 (1/2) (1310 - 1310)	0
	Ra-226	4		2192 (2/2) (644 - 3740)	SD	1.3 mi NNW	2192 (2/2) (644 - 3740)	1435 (2/2) (1310 - 1560)	0
	Ra-228	4	•	< LLD	CHIC	11.2 mi WNW	1340 (1/2) (1340 - 1340)	1340 (1/2) (1340 - 1340)	0
	Ac-228	4		< LLD	CHIC	11.2 mi WNW	1340 (1/2) (1340 - 1340)	1340 (1/2) (1340 - 1340)	0
	U-234	4		644 (1/2) (644 - 644)	SD	1.3 mi NNW	644 (1/2) (644 - 644)	< LLD	. 0
Shoreline Sediment	Gamma	4							
(pCi/kg dry)	K-40	4		5735 (2/2) (5290 - 6180)	HIR	0.6 mi N	5735 (2/2) (5290 - 6180)	4140 (2/2) (2160 - 6120)	0
^	Cs-134	4	150 ·	< LLD	N/A		< LLD	< LLD	0
	Cs-137	4	180	< LLD	N/A		< LLD	< LLD	0
	Th-228	4	Ŧ	< LLD	CHIC	11.2 mi WNW	103 (1/2) (103 - 103)	103 (1/2) (103 - 103)	0
Fish (pCi/kg wet)	Gamma	4							
(PCINY WEI)	K-40	4		2163 (3/4) (2060 - 2230)	SD	1.3 mi NNW	2163 (3/4) (2060 - 2230)	N/A	0
	Mn-54	4	130	< LLD	N/A		< LLD	N/A	0
	Co-58	4	130	< LLD	N/A		< LLD	N/A	0

Surry Power Station, Surry County, Virginia - 2009 Docket No. 50-280-281 Page 5 of 7

.

 ^{+}a

Contract in the second

11

Medium or				Indicator				Control	
Pathway	Analy			Locations	Location with Highest Mean			Locations	Non-Routine
Sampled (Units)	Туре	Total No.	LLD	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measurements
Fish (pCi/kg wet)	Fe-59	4	260	< LLD	N/A		< LLD	N/A	0
	Co-60	4	130	< LLD	N/A		< LLD	N/A	0
	Zn-65	4	260	< LLD	N/A		< LLD	N/A	. 0
	Cs-134	4	130	< LLD	N/A		< LLD	N/A	0
	Cs-137	4	150	< LLD	N/A		< LLD	N/A	0
Oysters	Gamma	4							
(pCi/kg wet)	K-40	4		1050 (1/4) (1050 - 1050)	POS	6.4 mi SSE	1050 (1/4) (1050 - 1050)	N/A	0
	Mn-54	4	130	< LLD	N/A		< LLD	N/A	0
	Fe-59	4	260	< LLD	N/A		< LLD	N/A	0
	Co-58	4	130	< LLD	N/A		< LLD	N/A	0
	Co-60	4	130	< LLD	N/A	X	< LLD	N/A	0
	Zn-65	4	260	< LLD	N/A		< LLD	N/A	0
	Cs-134	4	130	< LLD	N/A		< LLD	N/A	0
	Cs-137	4	150	< LLD	N/A		< LLD	N/A	0
Clams (pCi/kg wet)	Gamma	8							
in owing not	K-40	8		445 (2/6) (431 - 458)	LC	2.4 mi SE	458 (1/2) (458 - 458)	851 (1/2) (851 - 851)	0
	Th-228	8		< LLD	СНІС	11.2 mi WNW	164 (1/2) (164 - 164)	164 (1/2) (164 - 164)	0

Surry Power Station, Surry County, Virginia - 2009 Docket No. 50-280-281 Page 6 of 7

.

 $j(\theta)$

Medium or	r	1		Indicator			1	Control	1
Pathway	Analy	sis		Locations	Locati	ion with Hi	ghest Mean	Locations	Non-Routine
Sampled		Total		Mean		Distance	Mean	Mean	Reported
(Units)	Туре	No.	LLD	Range	Name	Direction	Range	Range	Measurements
Clams (pCi/kg wet)	Mn-54	8	130	< LLD	N/A		< LLD	< LLD	0
	Co-58	8	130	< LLD	N/A		< LLD	< LLD	0
	Fe-59	8	260	< LLD	N/A		< LLD	< LLD	0
	Co-60	8	130	< LLD	N/A		< LLD	< LLD	0
	Zn-65	8	260	< LLD	N/A		< LLD	< LLD	0
	Cs-134	8	130	< LLD	N/A		< LLD	< LLD	0
	Cs-137	8	150	< LLD	N/A		< LLD	< LLD	0
Crabs	Gamma	1			₹ #2 ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩				
(pCi/kg wet)	K-40	1		1590 (1/1) (1590 - 1590)	SD	1.3 mi NNW	1590 (1/1) (1590 - 1590)	N/A	0
	Mn-54	1	130	< LLD	N/A	·	< LLD	N/A	0
	Co-58	1	130	< LLD	N/A		< LLD	N/A	0
	Fe-59	1	260	< LLD	N/A		< LLD	N/A	0
	Co-60	1	130	< LLD	N/A		< LLD	N/A	0
	Zn-65	1	260	< LLD	N/A		< LLD	N/A	0
	Cs-134	1	130	< LLD	N/A		< LLD	N/A	0
	Cs-137	1	150	< LLD	N/A		< LLD	N/A	0

Surry Power Station, Surry County, Virginia - 2009 Docket No. 50-280-281 Page 7 of 7

3.2 Analytical Results of 2009 REMP Samples

Radiological analyses of environmental media characteristically approach and frequently fall below the detection limits of state-of-the-art measurement methods. The reported error is two times the standard deviation (2σ) of the net activity. Unless otherwise noted, the overall error (counting, sample size, chemistry, errors, etc.) is estimated to be 2 to 5 times that listed. Results are considered positive when the measured value exceeds 2σ uncertainty.

GEL Laboratories LLC and Teledyne Brown Engineering analytical methods meet the Lower Limit of Detection (LLD) requirements given in Table 2 of the USNRC Branch Technical Position, "An Acceptable Radiological Environmental Monitoring Program", (November 1979, Revision 1) and the Surry ODCM.

Data are given according to sample type as indicated below.

- 1. Gamma Exposure Rate
- 2. Air Particulates, Weekly Gross Beta Radioactivity
- 3. Air Particulates, Weekly I-131
- 4. Air Particulates, Quarterly Gamma Spectroscopy
- 5. Cow Milk
- 6. Food Products
- 7. Well Water
- 8. River Water
- 9. Silt
- 10. Shoreline Sediment
- 11. Fish
- 12. Oysters
- 13. Clams
- 14. Crabs

TABLE 3-2: GAMMA EXPOSURE RATE

. 1

17.2

*

4

mR/Std	Month ± 2 Sigma			Page 1 of	1
STATION	FIRST	SECOND	THIRD	FOURTH	AVERAGE
NUMBER	QUARTER	QUARTER	QUARTER	QUARTER	± 2 SIGMA
	2.0.1.0.5	0.0.1.0.5	47.44	54.04	
02	3.9 ± 0.5	3.6 ± 0.5	4.7 ± 1.1	5.1 ± 0.4	4.3 ± 1.4
03	4.2 ± 1.2	4.0 ± 0.4	4.0 ± 0.6	5.1 ± 0.2	4.3 ± 1.1
04	3.0 ± 0.6	3.5 ± 0.2	4.1 ± 0.7	4.1 ± 0.3	3.7 ± 1.1
05	3.7 ± 1.1	3.0 ± 0.2	3.8 ± 0.5	4.6 ± 0.9	3.8 ± 1.3
06	3.3 ± 0.5	3.9 ± 0.9	5.2 ± 1.6	4.6 ± 0.7	4.3 ± 1.7
07	3.9 ± 1.4	3.4 ± 0.5	4.0 ± 0.9	4.4 ± 0.7	3.9 ± 0.8
08	3.5 ± 1.0	2.9 ± 0.7	3.7 ± 0.7	3.9 ± 0.3	3.5 ± 0.9
09	6.2 ± 0.7	4.7 ± 0.5	5.3 ± 0.5	6.2 ± 0.3	5.6 ± 1.5
10	4.5 ± 0.7	3.7 ± 1.7	4.1 ± 0.5	5.1 ± 1.1	4.4 ± 1.2
11	2.0 ± 0.1	2.8 ± 0.8	2.7 ± 0.1	2.7 ± 0.3	2.6 ± 0.7
12	3.8 ± 0.8	2.8 ± 0.7	3.5 ± 1.2	3.8 ± 0.8	3.5 ± 0.9
13	3.3 ± 1.2	3.6 ± 0.6	3.6 ± 0.9	3.8 ± 0.7	3.6 ± 0.4
14	3.4 ± 1.4	3.2 ± 0.2	3.8 ± 0.6	4.2 ± 0.3	3.7 ± 0.9
15	4.9 ± 0.9	3.2 ± 0.4	4.4 ± 0.6	4.6 ± 0.7	4.3 ± 1.5
16	4.3 ± 0.2	3.2 ± 1.0	3.4 ± 0.2	4.6 ± 0.4	3.9 ± 1.4
18	2.0 ± 0.3	2.0 ± 0.7	2.0 ± 2.9	2.5 ± 0.9	2.1 ± 0.5
19	2.7 ± 1.0	2.1 ± 0.3	2.9 ± 0.3	2.8 ± 0.5	2.6 ± 0.7
20	2.3 ± 1.0	2.1 ± 0.6	2.9 ± 1.3	2.4 ± 1.7	2.4 ± 0.7
21	2.8 ± 1.6	2.1 ± 0.4	2.9 ± 0.5	2.9 ± 1.2	2.7 ± 0.8
22	1.4 ± 0.4	1.7 ± 0.4	1.9 ± 0.5	2.2 ± 1.8	1.8 ± 0.7
23	4.5 ± 0.3	3.1 ± 0.7	3.8 ± 0.9	4.1 ± 1.8	3.9 ± 1.2
24	2.7 ± 1.5	3.1 ± 0.8	2.8 ± 0.5	3.1 ± 0.5	2.9 ± 0.4
25	2.7 ± 0.4	2.5 ± 0.4	3.6 ± 0.4	4.3 ± 2.0	3.3 ± 1.7
26	4.1 ± 1.1	2.8 ± 0.2	3.9 ± 0.4	4.0 ± 1.0	3.7 ± 1.2
27	2.2 ± 0.4	2.2 ± 0.4	2.5 ± 0.8	2.9 ± 0.2	2.5 ± 0.7
28	2.3 ± 0.4	1.8 ± 0.4	2.7 ± 0.8	2.8 ± 0.4	2.4 ± 0.9
29	2.0 ± 0.9	1.6 ± 0.2	2.3 ± 0.4	2.1 ± 0.3	2.0 ± 0.6
30	2.2 ± 1.1	1.7 ± 0.3	2.6 ± 0.4	2.7 ± 0.3	2.3 ± 0.9
31	1.2 ± 0.3	1.5 ± 0.4	2.1 ± 0.9	2.5 ± 0.4	1.8 ± 1.2
32	2.4 ± 0.7	2.3 ± 0.8	2.7 ± 1.2	2.3 ± 0.1	2.4 ± 0.4
33	3.5 ± 0.3	2.5 ± 0.3	3.0 ± 0.6	3.0 ± 0.4	3.0 ± 0.8
34	2.5 ± 0.6	2.4 ± 0.4	2.8 ± 0.5	3.3 ± 0.6	2.8 ± 0.8
35	4.7 ± 1.2	3.2 ± 0.4	3.7 ± 0.6	4.0 ± 0.6	3.9 ± 1.3
36	3.2 ± 0.3	3.5 ± 0.8	3.7 ± 0.2	5.1 ± 0.3	3.9 ± 1.7
37	3.0 ± 1.7	2.4 ± 0.9	3.1 ± 0.7		2.9 ± 0.7
38	4.7 ± 0.4	4.5 ± 0.4	4.9 ± 1.0	6.0 ± 2.4	5.0 ± 0.7
39-C	2.3 ± 1.3	1.8 ± 0.5	4.3 ± 1.0 2.7 ± 0.4	3.0 ± 1.0	2.5 ± 1.0
40-C	3.8 ± 0.6	2.6 ± 0.9	3.1 ± 0.9	3.6 ± 0.9	3.3 ± 1.1
40-C 41-C	5.5 ± 0.0 5.5 ± 1.5	4.4 ± 0.3	5.6 ± 1.4	6.5 ± 0.6	5.5 ± 1.7
41-0	2.5 ± 0.4	4.4 ± 0.3 2.4 ± 0.2	3.2 ± 0.2	3.2 ± 1.1	3.5 ± 1.7 2.8 ± 0.9
43	2.3 ± 0.4 2.4 ± 0.2	2.4 ± 0.2 2.1 ± 0.5	3.2 ± 0.2 2.3 ± 3.6	2.6 ± 0.3	2.8 ± 0.9 2.4 ± 0.4
40	2.4 I U.Z	2.1 £ 0.5	2.5 ± 3.0	2.0 £ 0.3	2.4 I U.4

Surry Power Station, Surry County, Virginia - 2009

.

TABLE 3-3: GROSS BETA CONCENTRATION IN FILTERED AIR

Surry Power Station, Surry County, Virginia - 2009

1.0E-3 pCi	/m3 ± 2 Sigma				-		Page 1 o	f 2
COLLECTION	,			SAMPLING	LOCATIONS		8	
DATE	SS	HIR	BC	ALL	CP	BASF	FE	NN-C
January 06	44.7 ± 9.3	36.8 ± 9.1	47.8 ± 9.5	41.5 ± 9.3	39.9 ± 9.4	40.0 ± 9.2	39.4 ± 9.1	32.4 ± 9.0
January 13	37.9 ± 13.0	30.9 ± 12.9	39.1 ± 12.4	39.1 ± 12.0	40.9 ± 12.1	37.5 ± 11.9	34.6 ± 11.7	35.3 ± 11.7
-	∠47.5 ± 10.0	40.1 ± 9.8	40.4 ± 9.7	48.8 ± 10.3	39.8 ± 10.0	46.1 ± 10.0	40.6 ± 10.0	47.2 ± 10.1
January 27	58.1 ± 10.3	46.3 ± 9.9	48.8 ± 10.0	51.5 ± 10.4	43.6 ± 9.9	51.1 ± 10.2	52.4 ± 10.2	46.6 ± 10.0
February 03	43.6 ± 11.4	31.5 ± 11.0	39.4 ± 11.2	55.5 ± 11.8	35.9 ± 11.2	33.3 ± 11.1	39.4 ± 11.1	42.2 ± 11.2
February 10	44.4 ± 9.3	37.9 ± 9.0	37.0 ± 9.0	60.2 ± 9.8	37.5 ± 9.0	46.0 ± 9.3	43.5 ± 9.3	44.6 ± 9.2
February 17	36.2 ± 11.0	31.4 ± 10.5	36.7 ± 10.6	38.4 ± 11.4	26.8 ± 10.6	35.5 ± 10.9	29.2 ± 10.7	32.6 ± 10.9
February 24	33.1 ± 11.7	30.5 ± 11.4	30.7 ± 11.4	45.7 ± 12.3	26.6 ± 11.4	33.6 ± 11.7	39.9 ± 11.8	33.4 ± 11.8
March 04	35.3 ± 11.3	30.0 ± 10.8	29.0 ± 10.7	39.1 ± 11.4	28.4 ± 10.8	31.0 ± 10.9	28.0 ± 10.9	28.9 ± 11.1
March 10	47.2 ± 12.1	47.1 ± 11.8	34.9 ± 11.5	54.9 ± 12.4	33.6 ± 11.5	48.8 ± 12.1	38.8 ± 11.9	43.3 ± 11.9
March 17	31.0 ± 9.6	26.8 ± 9.3	30.6 ± 9.5	38.9 ± 10.1	25.3 ± 9.3	32.9 ± 9.6	30.3 ± 9.6	39.8 ± 9.7
March 24	37.8 ± 13.6	26.3 ± 13.1	31.9 ± 13.2	$39.4^{\circ} \pm 13.6^{\circ}$	34.9 ± 13.2	36.2 ± 13.4	29.5 ± 13.3	35.0 ± 13.3
March 31	23.9 ± 9.7	19.0 ± 9.5	26.1 ± 9.6	31.2 ± 9.9	24.8 ± 9.7	29.4 ± 9.8	24.2 ± 9.8	22.7 ± 9.7
Qtr. Avg. ± 2 s.d.	40.1 ± 17.5	33.4 ± 16.0	36.3 ± 13.7	44.9 ± 17.1	33.7 ± 13.2	38.6 ± 14.4	36.1 ± 15.5	37.2 ± 14.8
April 07	28.5 ± 10.9	17.2 ± 10.5	27.1 ± 10.7	29.1 ± 11.0	18.1 ± 10.5	23.6 ± 10.7	20.6 ± 10.6	22.0 ± 10.5
April 14	35.7 ± 12.9	33.4 ± 12.8	38.7 ± 12.9	40.5 ± 13.6	25.7 ± 12.7	34.6 ± 13.2	28.6 ± 13.0	31.9 ± 12.9
April 21	34.8 ± 11.5	27.5 ± 11.2	37.4 ± 11.3	34.8 ± 11.8	28.1 ± 11.2	33.1 ± 11.4	29.4 ± 11.4	29.1 ± 11.4
April 28	35.2 ± 12.5	28.4 ± 12.0	41.0 ± 12.3	40.6 ± 12.8	35.2 ± 12.1	38.0 ± 12.2	34.1 ± 12.3	35.4 ± 12.4
May 05	30.2 ± 10.4	27.8 ± 10.1	40.6 ± 10.4	34.6 ± 10.7	25.7 ± 10.1	33.3 ± 10.3	28.3 ± 10.3	26.9 ± 10.1
May 12	19.9 ± 10.1	17.4 ± 9.8	22.1 ± 9.9	25.2 ± 10.4	17.5 ± 9.8	17.3 ± 9.9	18.3 ± 10.0	20.6 ± 9.9
May 19	29.3 ± 3.4	26.2 ± 3.2	33.5 ± 3.7	31.8 ± 3.7	26.2 ± 3.2	27.1 ± 3.4	26.4 ± 3.3	27.3 ± 3.3
May 26	15.7 ± 9.9	13.6 ± 9.9	17.5 ± 9.9	16.5 ± 10.4	13.3 ± 9.9	13.0 ± 10.0	14.3 ± 10.1	11.6 ± 9.9
June 02	19.4 ± 10.6	15.4 ± 10.5	25.2 ± 10.6	23.1 ± 11.0	20.0 ± 10.6	16.7 ± 10.6	18.8 ± 10.6	17.3 ± 10.5
June 08	22.4 ± 12.0	21.0 ± 11.9	31.4 ± 12.2	29.8 ± 12.6	21.4 ± 11.7	27.0 ± 12.1	23.4 ± 12.1	22.6 ± 12.2
June 16	25.1 ± 10.5	19.7 ± 10.3	31.3 ± 10.6	23.9 ± 10.7	17.5 ± 10.2	20.1 ± 10.3	20.0 ± 10.2	21.6 ± 10.0
June 22	21.3 ± 14.0	18.5 ± 14.0	37.1 ± 14.4	32.8 ± 14.9	21.2 ± 13.9	24.0 ± 14.2	23.5 ± 14.1	20.8 ± 14.0
June 30	27.9 ± 8.3	23.6 ± 8.3	40.9 ± 8.8	35.3 ± 8.9	24.7 ± 8.3	30.4 ± 8.4	26.7 ± 8.4	28.4 ± 8.3
Qtr. Avg. ± 2 s.d.	26.6 ± 13.1	22.3 ± 12.0	32.6 ± 15.4	30.6 ± 14.0	22.7 ± 11.5	26.0 ± 15.5	24.0 ± 11.0	24.3 ± 12.8

TABLE 3-3: GROSS BETA CONCENTRATION IN FILTERED AIR

-12

	/m3 ± 2 Sigma						Page 2 o	<u>f2</u>
COLLECTION					LOCATIONS			
DATE	SS	HIR	BC	ALL	СР	BASF	FE	NN-C
July 07	11.4 ± 2.8	10.6 ± 2.8	13.4 ± 2.9	15.7 ± 3.1	10.1 ± 2.7	14.7 ± 3.0	13.5 ± 2.9	12.4 ± 2.8
July 14	12.3 ± 2.8	10.7 ± 2.7	11.3 ± 2.8	13.0 ± 2.9	11.5 ± 2.8	13.4 ± 2.9	10.3 ± 2.7	11.1 ± 2.8
July 21	16.2 ± 3.7	12.4 ± 3.5	17.4 ± 3.8	25.7 ± 4.2	17.8 ± 3.8	18.3 ± 3.8	16.1 ± 3.8	18.9 ± 3.8
July 28	22.8 ± 3.8	15.9 ± 3.5	26.4 ± 3.9	21.7 ± 3.8	22.1 ± 3.7	15.6 ± 3.5	18.8 ± 3.7	20.7 ± 3.7
August 03	10.8 ± 3.8	11.3 ± 3.8	23.9 ± 4.5	12.3 ± 4.0	7.7 ± 3.6	15.2 ± 4.0	12.4 ± 3.9	20.9 ± 4.3
August 11	20.4 ± 3.6	15.1 ± 3.4	26.8 ± 3.9	18.9 ± 3.6	14.1 ± 3.4	22.0 ± 3.7	19.8 ± 3.6	20.8 ± 3.6
August 18	17.7 ± 3.1	14.0 ± 2.9	26.0 ± 3.5	16.7 ± 3.1	18.5 ± 3.1	13.9 ± 2.9	17.1 ± 3.1	16.7 ± 3.0
August 25	13.6 ± 3.5	14.5 ± 3.5	15.9 ± 3.6	16.7 ± 3.7	12.3 ± 3.4	15.2 ± 3.5	13.4 ± 3.5	12.1 ± 3.3
September 01	21.5 ± 3.6	20.9 ± 3.6	28.0 ± 3.9	22.3 ± 3.7	18.1 ± 3.4	23.1 ± 3.7	20.6 ± 3.6	17.9 ± 3.4
September 09	19.1 ± 3.1	16.7 ± 3.0	22.9 ± 3.3	19.9 ± 3.3	21.1 ± 3.2	16.3 ± 3.0	21.1 ± 3.3	15.1 ± 3.0
September 15	13.2 ± 3.8	12.1 ± 3.8	20.0 ± 4.2	16.7 ± 4.2	14.4 ± 3.9	14.3 ± 4.0	15.9 ± 4.1	19.9 ± 4.2
September 22	14.9 ± 3.5	17.5 ± 3.6	23.3 ± 3.8	22.1 ± 3.8	16.6 ± 3.4	19.6 ± 3.6	19.4 ± 3.6	16.0 ± 3.5
September 29	8.2 ± 3.3	9.5 ± 3.3	13.6 ± 3.6	10.6 ± 3.5	9.4 ± 3.3	12.8 ± 3.5	11.2 ± 3.5	10.3 ± 3.4
Qtr. Avg. ± 2 s.d.	15.5 ± 9.0	13.9 ± 6.5	20.7 ± 11.5	17.9 ± 8.9	14.9 ± 9.1	16.5 ± 6.6	16.1 ± 7.4	16.4 ± 7.8
October 06	16.8 ± 3.7	12.7 ± 3.5	14.7 ± 3.7	16.1 ± 3.8	11.4 ± 3.4	14.2 ± 3.5	17.0 ± 3.7	12.1 ± 3.4
October 13	18.0 ± 3.7	14.8 ± 3.4	15.2 ± 3.6	14.4 ± 3.6	18.7 ± 3.6	16.0 ± 3.5	15.0 ± 3.5	14.7 ± 3.5
October 20	10.5 ± 2.8	7.9 ± 2.6	9.3 ± 2.7	8.2 ± 2.6	8.3 ± 2.6	7.1 ± 2.5	8.5 ± 2.6	10.1 ± 2.7
October 27	17.3 ± 3.5	15.9 ± 3.4	15.1 ± 3.5	21.2 ± 3.8	18.5 ± 3.6	19.2 ± 3.6	20.0 ± 3.7	16.4 ± 3.5
November 03	7.8 ± 2.5	9.7 ± 2.6	11.6 ± 2.8	11.5 ± 2.8	10.3 ± 2.6	10.1 ± 2.6	13.2 ± 2.8	11.1 ± 2.7
November 10	25.3 ± 3.3	18.5 ± 3.0	22.1 ± 3.3	26.4 ± 3.5	22.0 ± 3.1	20.9 ± 3.1	22.5 ± 3.2	20.4 ± 3.1
November 17	14.9 ± 3.3	20.6 ± 8.2	15.9 ± 3.4	17.2 ± 3.5	13.1 ± 3.2	24.4 ± 3.7	14.8 ± 3.3	15.7 ± 3.3
November 24	21.4 ± 3.2	16.1 ± 3.1	14.6 ± 3.0	17.6 ± 3.1	17.3 ± 3.0	15.4 ± 2.9	15.0 ± 2.9	15.9 ± 2.9
December 01	16.1 ± 3.5	9.6 ± 3.3	10.6 ± 3.3	12.6 ± 3.4	10.7 ± 3.2	9.6 ± 3.2	11.2 ± 3.3	14.3 ± 3.4
December 08	18.1 ± 3.6	10.1 ± 3.3	15.1 ± 3.6	11.2 ± 3.4	12.9 ± 3.3	17.1 ± 3.6	10.2 ± 3.3	10.8 ± 3.2
December 15	17.0 ± 3.0	14.9 ± 3.0	18.9 ± 3.2	18.4 ± 3.2	13.8 ± 2.8	17.7 ± 3.1	15.3 ± 3.0	15.3 ± 2.9
December 22	20.5 ± 3.4	16.2 ± 3.3	19.8 ± 3.5	22.2 ± 3.6	20.4 ± 3.4	19.5 ± 3.4	17.8 ± 3.4	21.0 ± 3.5
December 28	11.9 ± 3.7	10.6 ± 3.7	13.4 ± 3.9	12.7 ± 3.8	10.0 ± 3.6	11.1 ± 3.7	12.4 ± 3.8	15.4 ± 3.9
Qtr. Avg. ± 2 s.d.	16.6 ± 9.3	13.7 ± 7.8	15.1 ± 7.2	16.1 ± 10.2	14.4 ± 8.9	15.6 ± 10.0	14.8 ± 7.8	14.9 ± 6.7
nn. Avg. ± 2 s.d.	24.7 ± 23.4	20.8 ± 19.6	26.2 ± 21.1	27.4 ± 26.5	21.4 ± 18.9	24.2 ± 22.1	22.8 ± 20.1	23.2 ± 20.

Surry Power Station, Surry County, Virginia - 2009

TABLE 3-4: IODINE-131 CONCENTRATION IN FILTERED AIR

ci/m3 ± 2 Sigma					Page 1 of 2		
			SAMPLING	LOCATIONS			
SS	HIR	BC	ALL	СР	BASF	FE	NN-C
-32 + 72	-12+71	11+78	56+75	56+83	-42+69	09+55	0.0 ± 4.7
							-4.0 ± 5.5
							-6.8 ± 4.7
							-0.0 ± 4.7 1.5 ± 5.2
1.4 ± 4.9	-0.9 ± 4.7	1.0 1 4.2	2.0 ± 0.0	-3.2 ± 7.0	1.2 1 4.9	-4.1 ± 5.9	1.5 ± 5.2
-0.5 ± 5.3	4.7 ± 5.1	1.4 ± 5.3	0.7 ± 5.9	0.9 ± 4.9	0.1 ± 3.9	-0.3 ± 4.8	5.5 ± 6.8
-1.9 ± 6.4	-2.1 ± 6.9	1.5 ± 3.9	-2.0 ± 6.1	-2.2 ± 4.4	0.2 ± 4.2	-3.4 ± 4.7	-1.6 ± 3.6
-0.6 ± 6.9	1.5 ± 5.2	3.0 ± 7.4	5.0 ± 6.9	-3.3 ± 5.7	-0.5 ± 5.5	1.2 ± 6.1	4.2 ± 4.9
0.6 ± 4.4	-0.7 ± 4.2	-2.7 ± 5.8	-5.4 ± 5.4	0.1 ± 4.5	0.3 ± 4.5	-0.5 ± 4.2	-2.6 ± 4.5
							-1.8 ± 5.4
							-0.8 ± 7.5
12.2 ± 22.3	12.3 ± 13.3	-0.9 ± 15.6	3.9 ± 16.7	-6.9 ± 14.0	A CONTRACTOR OF	-4.1 ± 16.0	10.0 ± 18.2
-7.9 ± 18.1	0.6 ± 15.2	-10.1 ± 12.0	0.9 ± 14.7	13.2 ± 12.7	11.8 ± 16.4	0.9 ± 15.6	-0.7 ± 10.4
9.2 ± 7.2	1.2 ± 5.2	-1.4 ± 4.7	2.7 ± 4.2	-3.4 ± 7.7	8.8 ± 7.3	-6.8 ± 6.5	-1.1 ± 4.9
0.0 ± 4.7	1.4 ± 5.4	-0.7 ± 4.4	-2.7 ± 4.6	-0.9 ± 5.0	0.6 ± 6.3	0.1 ± 7.0	3.4 ± 4.2
							-0.4 ± 5.7
							4.3 ± 4.2
-4.5 ± 6.0	1.0 ± 4.7	1.1 ± 4.3	0.8 ± 6.2	-4.8 ± 5.6	-1.2 ± 3.9	1.1 ± 3.7	-2.2 ± 7.2
	,						
							3.2 ± 4.6
							-3.5 ± 4.4
							-2.5 ± 4.0
2.0 ± 4.6	2.2 ± 8.3	2.0 ± 4.4	1.7 ± 7.2	-0.2 ± 5.5	1.5 ± 7.8	1.4 ± 4.8	-1.4 ± 5.0
-1.5 ± 6.8	-3.7 ± 4.4	-2.4 ± 4.8	0.2 ± 4.6	-4.8 ± 5.7	-6.0 ± 5.3	-2,5 ± 6.3	-2.3 ± 6.1
							2.6 ± 4.8
							-1.4 ± 3.9
							-1.1 ± 4.8
0.4 ± 6.5	-1.2 ± 4.3	-2.5 ± 6.5	5.5 ± 3.9	-0.2 ± 4.9	-0.4 ± 5.0	-1.8 ± 5.6	0.8 ± 3.8
	SS -3.2 ± 7.2 3.4 ± 5.8 1.1 ± 4.7 1.4 ± 4.9 -0.5 ± 5.3 -1.9 ± 6.4 -0.6 ± 6.9 0.6 ± 4.4 -8.6 ± 7.4 -0.3 ± 4.5 12.2 ± 22.3 -7.9 ± 18.1 9.2 ± 7.2 0.0 ± 4.7 0.6 ± 6.1 0.8 ± 5.5 -4.5 ± 6.0 2.9 ± 5.0 0.4 ± 7.2 -0.5 ± 4.3 2.0 ± 4.6 -1.5 ± 6.8 -10.8 ± 7.1 0.3 ± 4.7 -0.8 ± 6.6	SSHIR -3.2 ± 7.2 -1.2 ± 7.1 3.4 ± 5.8 -0.7 ± 4.9 1.1 ± 4.7 -1.2 ± 4.6 1.4 ± 4.9 -0.9 ± 4.7 -0.5 ± 5.3 4.7 ± 5.1 -1.9 ± 6.4 -2.1 ± 6.9 -0.6 ± 6.9 1.5 ± 5.2 0.6 ± 6.9 1.5 ± 5.2 0.6 ± 4.4 -0.7 ± 4.2 -8.6 ± 7.4 0.1 ± 6.4 -0.3 ± 4.5 -6.4 ± 7.1 12.2 ± 22.3 12.3 ± 13.3 -7.9 ± 18.1 0.6 ± 15.2 9.2 ± 7.2 1.2 ± 5.2 0.0 ± 4.7 1.4 ± 5.4 0.6 ± 6.1 -0.5 ± 4.1 0.8 ± 5.5 2.1 ± 5.3 -4.5 ± 6.0 1.0 ± 4.7 2.9 ± 5.0 0.2 ± 6.5 0.4 ± 7.2 -0.4 ± 5.3 -0.5 ± 4.3 1.4 ± 4.5 2.0 ± 4.6 2.2 ± 8.3 -1.5 ± 6.8 -3.7 ± 4.4 -10.8 ± 7.1 -5.9 ± 5.2 0.3 ± 4.7 -1.4 ± 4.0 -0.8 ± 6.6 -2.4 ± 5.0	SSHIRBC -3.2 ± 7.2 -1.2 ± 7.1 1.1 ± 7.8 3.4 ± 5.8 -0.7 ± 4.9 1.4 ± 5.6 1.1 ± 4.7 -1.2 ± 4.6 -2.3 ± 3.1 1.4 ± 4.9 -0.9 ± 4.7 1.6 ± 4.2 -0.5 ± 5.3 4.7 ± 5.1 1.4 ± 5.3 -1.9 ± 6.4 -2.1 ± 6.9 1.5 ± 3.9 -0.6 ± 6.9 1.5 ± 5.2 3.0 ± 7.4 0.6 ± 6.9 1.5 ± 5.2 3.0 ± 7.4 0.6 ± 4.4 -0.7 ± 4.2 -2.7 ± 5.8 -8.6 ± 7.4 0.1 ± 6.4 -0.8 ± 6.5 -0.3 ± 4.5 -6.4 ± 7.1 -1.3 ± 5.4 12.2 ± 22.3 12.3 ± 13.3 -0.9 ± 15.6 -7.9 ± 18.1 0.6 ± 15.2 -10.1 ± 12.0 9.2 ± 7.2 1.2 ± 5.2 -1.4 ± 4.7 0.0 ± 4.7 1.4 ± 5.4 -0.7 ± 4.4 0.6 ± 6.1 -0.5 ± 4.1 -2.0 ± 5.2 0.8 ± 5.5 2.1 ± 5.3 0.7 ± 4.2 -4.5 ± 6.0 1.0 ± 4.7 1.1 ± 4.3 2.9 ± 5.0 0.2 ± 6.5 0.5 ± 6.4 0.4 ± 7.2 -0.4 ± 5.3 -1.6 ± 5.2 -0.5 ± 4.3 1.4 ± 4.5 -1.2 ± 4.7 2.0 ± 4.6 2.2 ± 8.3 2.0 ± 4.4 -1.5 ± 6.8 -3.7 ± 4.4 -2.4 ± 4.8 -10.8 ± 7.1 -5.9 ± 5.2 -1.8 ± 4.7 0.3 ± 4.7 -1.4 ± 4.0 9.0 ± 6.0 -0.8 ± 6.6 -2.4 ± 5.0 2.1 ± 7.1	SSHIRBCALL-3.2 \pm 7.2-1.2 \pm 7.11.1 \pm 7.85.6 \pm 7.53.4 \pm 5.8-0.7 \pm 4.91.4 \pm 5.60.0 \pm 5.11.1 \pm 4.7-1.2 \pm 4.6-2.3 \pm 3.1-0.5 \pm 4.51.4 \pm 4.9-0.9 \pm 4.71.6 \pm 4.22.0 \pm 5.5-0.5 \pm 5.34.7 \pm 5.11.4 \pm 5.30.7 \pm 5.9-1.9 \pm 6.4-2.1 \pm 6.91.5 \pm 3.9-2.0 \pm 6.1-0.6 \pm 6.91.5 \pm 5.23.0 \pm 7.45.0 \pm 6.90.6 \pm 4.4-0.7 \pm 4.2-2.7 \pm 5.8-5.4 \pm 5.4-8.6 \pm 7.40.1 \pm 6.4-0.8 \pm 6.54.7 \pm 5.0-0.3 \pm 4.5-6.4 \pm 7.1-1.3 \pm 5.48.3 \pm 8.912.2 \pm 22.312.3 \pm 13.3-0.9 \pm 15.63.9 \pm 16.7-7.9 \pm 18.10.6 \pm 15.2-10.1 \pm 12.00.9 \pm 14.79.2 \pm 7.21.2 \pm 5.2-1.4 \pm 4.72.7 \pm 4.20.0 \pm 4.71.4 \pm 5.4-0.7 \pm 4.4-2.7 \pm 4.60.6 \pm 6.1-0.5 \pm 4.1-2.0 \pm 5.26.1 \pm 4.10.8 \pm 5.52.1 \pm 5.30.7 \pm 4.4-2.7 \pm 4.60.6 \pm 6.1-0.5 \pm 4.1-2.0 \pm 5.26.1 \pm 4.10.8 \pm 5.52.1 \pm 5.30.7 \pm 4.4-2.7 \pm 4.60.6 \pm 6.1-0.5 \pm 4.1-2.0 \pm 5.25.9-0.5 \pm 4.31.4 \pm 4.5-1.2 \pm 4.7-3.1 \pm 4.82.0 \pm 4.62.2 \pm 8.32.0 \pm 4.41.7 \pm 7.2-1.5 \pm 6.8-3.7 \pm 4.4-2.4 \pm 4.80.	SSHIRBCSAMPLING LOCATIONS ALL-3.2 \pm 7.2-1.2 \pm 7.11.1 \pm 7.85.6 \pm 7.55.6 \pm 8.33.4 \pm 5.80.7 \pm 4.91.4 \pm 5.60.0 \pm 5.16.0 \pm 6.71.1 \pm 4.7-1.2 \pm 4.6-2.3 \pm 3.1-0.5 \pm 4.51.2 \pm 6.91.4 \pm 4.9-0.9 \pm 4.71.6 \pm 4.22.0 \pm 5.5-5.2 \pm 7.0-0.5 \pm 5.34.7 \pm 5.11.4 \pm 5.30.7 \pm 5.90.9 \pm 4.9-1.9 \pm 6.4-2.1 \pm 6.91.5 \pm 3.9-2.0 \pm 6.1-2.2 \pm 4.4-0.6 \pm 6.91.5 \pm 5.23.0 \pm 7.45.0 \pm 6.9-3.3 \pm 5.70.6 \pm 4.4-0.7 \pm 4.2-2.7 \pm 5.8-5.4 \pm 5.40.1 \pm 4.5-8.6 \pm 7.40.1 \pm 6.4-0.8 \pm 6.54.7 \pm 5.40.1 \pm 4.5-8.6 \pm 7.40.1 \pm 6.4-0.8 \pm 6.54.7 \pm 5.02.2 \pm 5.2-0.3 \pm 4.5-6.4 \pm 7.1-1.3 \pm 5.48.3 \pm 8.90.3 \pm 5.312.2 \pm 22.312.3 \pm 13.3-0.9 \pm 15.63.9 \pm 16.76.9 \pm 14.0-7.9 \pm 18.10.6 \pm 15.2-10.1 \pm 12.00.9 \pm 14.713.2 \pm 12.79.2 \pm 7.21.2 \pm 5.2-1.4 \pm 4.72.7 \pm 4.6-0.9 \pm 5.00.6 \pm 6.1-0.5 \pm 4.1-2.0 \pm 5.26.1 \pm 4.10.3 \pm 4.10.8 \pm 5.52.1 \pm 5.30.7 \pm 4.4-0.5 \pm 4.34.5 \pm 6.01.0 \pm 4.71.1 \pm 4.72.7 \pm 4.6-0.9 \pm 5.00.6 \pm 6.1-0.5 \pm 4.1-2.0 \pm 5.26.1 \pm 4	SSHIRBCALLCPBASF-3.2 \pm 7.2-1.2 \pm 7.11.1 \pm 7.85.6 \pm 7.55.6 \pm 8.3-4.2 \pm 6.93.4 \pm 5.8-0.7 \pm 4.91.4 \pm 5.60.0 \pm 5.16.0 \pm 6.70.4 \pm 4.61.1 \pm 4.7-1.2 \pm 4.6-2.3 \pm 3.1-0.5 \pm 4.51.2 \pm 6.90.4 \pm 4.61.4 \pm 4.9-0.9 \pm 4.71.6 \pm 4.22.0 \pm 5.5-5.2 \pm 7.01.2 \pm 4.9-0.5 \pm 5.34.7 \pm 5.11.4 \pm 5.30.7 \pm 5.90.9 \pm 4.90.1 \pm 3.9-1.9 \pm 6.4-2.1 \pm 6.91.5 \pm 3.9-2.0 \pm 6.1-2.2 \pm 4.40.2 \pm 4.2-0.6 \pm 6.91.5 \pm 5.23.0 \pm 7.45.0 \pm 6.9-3.3 \pm 5.7-0.5 \pm 5.50.6 \pm 4.4-0.7 \pm 4.2-2.7 \pm 5.8-5.4 \pm 5.40.1 \pm 4.50.3 \pm 4.5-8.6 \pm 7.40.1 \pm 6.4-0.8 \pm 6.54.7 \pm 5.02.2 \pm 5.2-1.8 \pm 7.8-3.3 \pm 4.5-6.4 \pm 7.1-1.3 \pm 5.48.3 \pm 8.90.3 \pm 5.30.9 \pm 5.912.2 \pm 22.312.3 \pm 13.3-0.9 \pm 15.63.9 \pm 16.7-6.9 \pm 14.02.2 \pm 12.6-7.9 \pm 18.10.6 \pm 15.2-10.1 \pm 12.00.9 \pm 14.713.2 \pm 12.711.8 \pm 16.49.2 \pm 7.21.2 \pm 5.2-1.4 \pm 4.72.7 \pm 4.6-0.9 \pm 5.00.6 \pm 6.30.6 \pm 6.1-0.5 \pm 4.1-2.0 \pm 5.26.1 \pm 4.4-0.5 \pm 4.3-3.1 \pm 6.44.5 \pm 6.01.0 \pm 4.71.1 \pm 4.72.7 \pm 4.6-0.9 \pm 5.	SSHIRBCALLCPBASFFE-3.2 \pm 7.2-1.2 \pm 7.11.1 \pm 7.85.6 \pm 7.55.6 \pm 8.3-4.2 \pm 6.90.9 \pm 5.53.4 \pm 5.8-0.7 \pm 4.91.4 \pm 5.60.0 \pm 5.16.0 \pm 6.70.4 \pm 4.62.0 \pm 4.91.1 \pm 4.7-1.2 \pm 4.6-2.3 \pm 3.1-0.5 \pm 4.51.2 \pm 6.90.4 \pm 4.62.0 \pm 4.91.4 \pm 4.9-0.9 \pm 4.71.6 \pm 4.22.0 \pm 5.5-5.2 \pm 7.01.2 \pm 4.9-4.1 \pm 5.9-0.5 \pm 5.34.7 \pm 5.11.4 \pm 5.30.7 \pm 5.90.9 \pm 4.90.1 \pm 3.9-0.3 \pm 4.8-1.9 \pm 6.4-2.1 \pm 6.91.5 \pm 3.9-2.0 \pm 6.1-2.2 \pm 4.40.2 \pm 4.2-3.4 \pm 4.7-0.6 \pm 6.91.5 \pm 5.23.0 \pm 7.45.0 \pm 6.9-3.3 \pm 5.7-0.5 \pm 5.51.2 \pm 6.10.6 \pm 4.4-0.7 \pm 4.2-2.7 \pm 5.8-5.4 \pm 5.40.1 \pm 4.5-0.5 \pm 4.2-8.6 \pm 7.40.1 \pm 6.4-0.8 \pm 6.54.7 \pm 5.02.2 \pm 5.2-1.8 \pm 7.82.4 \pm 8.6-0.3 \pm 4.5-6.4 \pm 7.1-1.3 \pm 5.48.3 \pm 8.90.3 \pm 5.30.9 \pm 5.9-2.5 \pm 5.912.2 \pm 2.2.312.3 \pm 13.3-0.9 \pm 15.63.9 \pm 16.7-6.9 \pm 14.02.2 \pm 12.6-4.1 \pm 16.0-7.9 \pm 18.10.6 \pm 15.2-10.1 \pm 12.00.9 \pm 14.713.2 \pm 12.711.8 \pm 16.40.9 \pm 15.69.2 \pm 7.21.2 \pm 5.2-1.4 \pm 4.72.7 \pm 4.6-0.9 \pm 5.00.6 \pm 6.3 </td

Surry Power Station, Surry County, Virginia - 2009

TABLE 3-4: IODINE-131 CONCENTRATION IN FILTERED AIR

Surry Power Station, Surry County, Virginia - 2009

1.0E-3 pC	i/m3 ± 2 Sigma		·	· .			Page 2 c	of 2
COLLECTION				SAMPLING	LOCATIONS			*******
DATE	SS	HIR	BC	ALL	СР	BASF	FE	NN-C
July 07	-2.5 ± 14.9	-2.5 ± 14.8	-2.5 ± 14.8	-1.9 ± 11.5	-5.2 ± 17.4	-5.1 ± 17.3	-5.2 ± 17.4	-2.1 ± 7.2
July 14	-6.0 ± 27.9	-6.0 ± 27.6	-6.0 ± 27.6	-6.2 ± 28.9	-13.2 ± 20.5	-13.4 ± 20.8	-13.4 ± 20.8	-13.1 ± 20.4
July 21	-37.7 ± 24.1	-37.5 ± 24.0	-37.4 ± 23.9	-39.2 ± 25.1	19.3 ± 36.3	19.5 ± 36.7		3.9 ± 42.7
July 28	-8.6 ± 15.8	-8.6 ± 15.7	-8.7 ± 15.9	-8.9 ± 16.3	-6.6 ± 18.6	-6.7 ± 18.7	-6.7 ± 19.0	-6.6 ± 18.5
August 03	-2.9 ± 16.3	-2.9 ± 16.1	-2.9 ± 16.6	-3.0 ± 16.8	-13.2 ± 21.0	-13.2 ± 21.1	-13.4 ± 21.3	-13.2 ± 21.0
August 11	-6.2 ± 19.1	-6.1 ± 18.9	-6.2 ± 19.4	-6.4 ± 19.7	-9.7 ± 31.7	-9.7 ± 31.7		-9.7 ± 31.5
August 18	-4.6 ± 12.9	-4.6 ± 12.7	-4.7 ± 13.1	-4.7 ± 13.2	-4.0 ± 15.9	-4.0 ± 16.1	-4.1 ± 16.2	-4.0 ± 15.9
August 25	7.3 ± 13.8	7.2 ± 13.6	7.4 ± 14.0	7.5 ± 14.2	-0.3 ± 12.2	-0.3 ± 12.3	-0.3 ± 12.4	-0.3 ± 12.1
September 01	-0.2 ± 9.2	-0.2 ± 9.1	-0.2 ± 9.4	-0.2 ± 9.5	-1.6 ± 10.5	-1.6 ± 10.6	-1.6 ± 10.8	-1.5 ± 10.5
September 09	1.6 ± 26.2	1.6 ± 26.5	1.7 ± 27.7	1.7 ± 28.4	-4.7 ± 30.8	-4.8 ± 31.1	-4.8 ± 31.5	-4.7 ± 30.5
September 15	-13.5 ± 25.9	-13.5 ± 26.0	-14.2 ± 27.3	-14.6 ± 28.2	7.9 ± 14.3	8.0 ± 14.4	8.1 ± 14.7	7.8 ± 14.2
September 22	-6.4 ± 29.3	-6.3 ± 28.9	-6.2 ± 28.8	-6.4 ± 29.4	-1.5 ± 25.7	-1.5 ± 26.0	-1.5 ± 26.2	-1.5 ± 26.0
September 29	-11.6 ± 15.0	-11.4 ± 14.8	-11.6 ± 15.0	-11.9 ± 15.4	-0.4 ± 13.8	-0.4 ± 13.9	-0.4 ± 14.1	-0.4 ± 13.8
October 06	-4.8 ± 25.8	-4.7 ± 25.4 :	-4.9 ± 26.2	-4.9 ± 26.4	6.4 ± 22.6	6.4 ± 22.5	6.5 ± 22.8	6.3 ± 22.1
October 13	3.0 ± 22.3	3.0 ± 21.7	3.0 ± 22.4	3.1 ± 22.7	-0.4 ± 19.7	-0.4 ± 19.8	-0.4 ± 20.1	-0.4 ± 19.9
October 20	-12.1 ± 32.7	-11.8 ± 31.9	-12.3 ± 33.2	-12.2 ± 33.0	0.1 ± 39.8	0.1 ± 39.9	0.1 ± 40.4	0.1 ± 39.5
October 27	1.9 ± 20.4	1.9 ± 20.1	2.0 ± 20.8	2.0 ± 20.9	-12.7 ± 32.8	-12.8 ± 33.2	-12.8 ± 33.3	-12.5 ± 32.4
November 03	2.7 ± 35.8	2.7 ± 35.3	2.7 ± 36.6	2.8 ± 36.7	-53.5 ± 45.0	-53.9 ± 45.4	-54.4 ± 45.8	-53.6 ± 45.1
November 10	10.2 ± 28.8	10.0 ± 28.2	10.6 ± 29.7	10.5 ± 29.4	9.0 ± 33.1	9.0 ± 33.2	9.2 ± 33.6	9.2 ± 33.7
November 17	-1.0 ± 22.5	28.7 ± 41.1	-1.0 ± 22.8	-1.0 ± 22.9	8.4 ± 15.2	8.4 ± 15.4	8.5 ± 15.5	8.3 ± 15.2
November 24	-2.3 ± 14.9	-2.5 ± 15.7	-2.4 ± 15.3	-2.4 ± 15.3	3.1 ± 18.1	3.1 ± 18.2	3.1 ± 18.4	3.1 ± 18.1
December 01	6.5 ± 33.7	6.7 ± 34.3	6.7 ± 34.3	6.7 ± 34.4	0.4 ± 44.1	0.4 ± 44.2	0.5 ± 44.7	0.4 ± 43.8
December 08	16.0 ± 21.8	16.2 ± 22.1	16.4 ± 22.4	16.5 ± 22.5	3.6 ± 14.2	3.7 ± 14.6	3.6 ± 14.4	3.5 ± 14.0
December 15	10.1 ± 17.0	10.4 ± 17.5	10.4 ± 17.5	10.6 ± 17.8	9.0 ± 17.9	9.2 ± 18.3	9.1 ± 18.1	9.0 ± 17.9
December 22	-3.6 ± 17.9	-3.7 ± 18.4	-3.8 ± 18.7	-3.8 ± 18.7	4.2 ± 27.6	4.2 ± 28.0	4.2 ± 27.9	4.2 ± 28.0
December 28	0.4 ± 21.7	0.4 ± 22.2	0.4 ± 22.1	0.4 ± 22.1	-13.7 ± 37.7	-13.7 ± 37.8	-13.9 ± 38.3	-13.8 ± 38.0

TABLE 3-5: GAMMA EMITTER CONCENTRATION IN FILTERED AIR

(

լդս

Ð

10.00 m

	1.0E-3 pCi/m3				Page 1 o	
SAMPLING		FIRST	SECOND	THIRD	FOURTH	AVERAGE
LOCATIONS	NUCLIDE	QUARTER	QUARTER	QUARTER	QUARTER	± 2 SIGMA
SS	Cs-134	-0.04 ± 0.1	5 0.19 ± 0.20	0.00 ± 0.71	3.22 ± 1.77	
00	Cs-137	-0.10 ± 0.1		-0.57 ± 0.65	-0.06 ± 1.23	
	Be-7	139 ± 14.		-0.07 ± 0.03 194 ± 30.2	124 ± 38.2	152 ± 60
	De-7	139 I 14.	5 149 ± 10.1	194 I JU.Z	124 I 30.2	152 ± 00
HIR	Cs-134	-0.04 ± 0.1	6 0.21 ± 0.23	0.26 ± 0.88	-0.27 ± 0.93	
	Cs-137	0.08 ± 0.1		0.62 ± 0.74	-0.46 ± 0.99	
	Be-7	112 ± 12.		139 ± 35.4	118 ± 38.6	122 ± 24
50	0- 404	0.00 + 0.4	- 0.40 - 0.04	0.40 + 4.00	4.00 + 4.55	
BC	Cs-134	-0.03 ± 0.1		-0.42 ± 1.03	1.98 ± 1.55	
	Cs-137	0.14 ± 0.1		-0.79 ± 1.00	-0.15 ± 1.20	450 . 70
	Be-7	118 ± 12.	7 181 ± 19.2	190 ± 39.9	119 ± 30.4	152 ± 78
ALL	Cs-134	0.00 ± 0.1	9 -0.06 ± 0.24	0.74 ± 1.28	1.09 ± 1.30	
	Cs-137	0.03 ± 0.1	3 0.00 ± 0.21	-0.41 ± 1.25	-0.71 ± 1.21	
	Be-7	153 ± 15.	1 _ 177 ± 18.9	197 ± 42.4	134 ± 42.5	165 ± 55
СР	Cs-134	0.16 ± 0.1	8 0.11 ± 0.23	-0.03 ± 0.79	0.46 ± 1.16	
	Cs-137	-0.21 ± 0.1		0.38 ± 0.69	0.04 ± 0.86	
	Be-7	106 ± 11.		153 ± 32.0	164 ± 34.5	142 ± 50
	0 404	0.07 . 0.4			0.40	
BASF	Cs-134	-0.07 ± 0.1		0.36 ± 0.94	-0.43 ± 0.97	
	Cs-137	0.02 ± 0.1		-0.04 ± 0.62	0.59 ± 0.91	
	Be-7	114 ± 12.	2 158 ± 16.9	151 ± 36.2	110 ± 33.0	133 ± 50
FE	Cs-134	0.01 ± 0.2	2 -0.02 ± 0.18	1.60 ± 1.35	-1.35 ± 0.90	
_	Cs-137	0.04 ± 0.1		0.47 ± 1.14	0.56 ± 0.69	
	Be-7	114 ± 13.		174 ± 40.5	126 ± 29.6	140 ± 53
NN-C	Cs-134	-0.02 ± 0.1	8 0.12 ± 0.23	0.40 ± 1.04	0.12 ± 1.26	
(1)1 ⁻ V	Cs-137	0.02 ± 0.1		0.00 ± 0.95		
	Be-7	114 ± 13.		127 ± 36.5	164 ± 34.4	139 ± 45
	DG-1	114 I 13.	5 151. ± 15.9	121 I 30.3	104 I 04.4	108 ± 40

Surry Power Station, Surry County, Virginia - 2009

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK

741 3

Construction of the

وجوالات المروح

	pCi/Liter ±2 Sigma		Page 1 of 3
		COLONIAL	
NUCLIDE	EPPS	PARKWAY	WILLIAMS-C
JANUARY			
Cs-134	0.85 ± 1.22	0.00 ± 1.34	-1.61 ± 2.04
Cs-137	0.91 ± 1.09	-0.46 ± 1.66	0.37 ± 2.38
Ba-140	0.64 ± 3.95	2.49 ± 5.31	-0.60 ± 5.89
La-140	0.16 ± 1.32	-1.90 ± 1.76	-0.40 ± 1.86
I-131	-0.07 ± 0.32	0.17 ± 0.41	0.31 ± 0.40
K-40	1440 ± 96.5	1470 ± 107	1370 ± 122
FEBRUARY			
Cs-134	0.83 ± 1.58	-0.09 ± 1.56	-0.06 ± 2.09
Cs-137	0.51 ± 1.30	0.31 ± 1.35	-1.05 ± 1.41
Ba-140	1.72 ± 4.33	-0.34 ± 4.69	-2.06 ± 5.43
La-140	-0.62 ± 1.43	0.16 ± 1.70	-0.09 ± 1.61
I-131	-0.15 ± 0.26	-0.05 ± 0.29	0.01 ± 0.23
K-40	1410 ± 107	1510 ± 126	1400 ± 113
MARCH			
Cs-134	-0.05 ± 1.34	2.98 ± 1.62	-0.42 ± 1.86
Cs-137	0.02 ± 1.17	0.45 ± 1.34	-0.15 ± 1.27
Ba-140	2.59 ± 4.74	-2.68 ± 6.07	4.28 ± 5.42
La-140	-0.47 ± 1.47	-0.90 ± 1.68	0.30 ± 1.72
I-131	0.29 ± 0.37	0.11 ± 0.24	0.32 ± 0.25
K-40	1420 ± 120	1510 ± 121	1340 ± 101
Sr-89		0.01 ± 0.71	
Sr-90		0.74 ± 0.40	
APRIL	,		
Cs-134	0.15 ± 1.75	1.09 ± 1.55	-0.04 ± 1.68
Cs-137	0.31 ± 1.54	0.02 ± 1.44	1.88 ± 1.49
Ba-140	6.19 ± 6.08	4.41 ± 5.56	1.42 ± 5.56
La-140	0.02 ± 1.71	0.40 ± 1.59	0.96 ± 1.56
I-131	-0.18 ± 0.25	0.10 ± 0.30	0.05 ± 0.28
K-40	1410 ± 124	1510 ± 116	1400 ± 111

Surry Power Station, Surry County, Virginia - 2009

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK

11...

]	pCi/Liter ±2Sigma		Page 2 of 3
		COLONIAL	
NUCLIDE	EPPS	PARKWAY	WILLIAMS-C
MAX			
<u>MAY</u> Cs-134	-0.01 ± 1.40	0.52 ± 1.35	1.05 ± 1.61
Cs-134 Cs-137	-0.07 ± 1.40	0.32 ± 1.33 0.94 ± 1.23	0.48 ± 1.30
Ba-140	2.51 ± 4.87	0.82 ± 4.46	1.68 ± 5.02
La-140	-0.51 ± 1.29	-0.30 ± 1.43	-1.55 ± 1.83
I-131	0.20 ± 0.45	0.09 ± 0.24	-0.11 ± 0.20
K-40	1410 ± 109	1490 ± 113	1420 ± 119
JUNE			
Cs-134	0.67 ± 1.64	-0.86 ± 1.75	-0.89 ± 2.17
Cs-137	1.16 ± 1.42	0.42 ± 1.50	0.58 ± 3.05
Ba-140	-1.40 ± 5.39	-0.76 ± 5.98	1.50 ± 4.93
La-140	-0.27 ± 1.71	-1.79 ± 1.69	-0.52 ± 1.54
I-131	0.53 ± 0.36	0.02 ± 0.41	-0.10 ± 0.37
K-40	1290 ± 109	1450 ± 115	1390 ± 121
Sr-89		-0.47 ± 0.81	
Sr-90		-0.01 ± 0.69	
JULY			
Cs-134	0.86 ± 1.32	-0.80 ± 0.79	-0.14 ± 1.21
Cs-137	1.76 ± 1.29	0.67 ± 0.90	0.40 ± 1.08
Ba-140	-0.37 ± 9.63	-3.12 ± 6.40	2.60 ± 8.70
La-140	-0.37 ± 9.03 -1.31 ± 2.63	-0.60 ± 1.59	-1.45 ± 2.33
I-131	0.07 ± 0.39	-0.00 ± 1.09 0.06 ± 0.43	-1.45 ± 2.35 0.14 ± 0.38
K-40	1230 ± 52.9	1300 ± 56.2	1250 ± 52.8
AUGUST			
Cs-134	-1.72 ± 3.90	0.39 ± 3.78	-5.79 ± 4.21
Cs-137	0.71 ± 4.24	3.24 ± 3.49	-0.47 ± 3.66
Ba-140	-9.66 ± 19.3	7.05 ± 15.5	-8.04 ± 18.4
La-140	-1.43 ± 4.53	-1.06 ± 4.74	2.47 ± 6.04
I-131	0.14 ± 0.49	0.29 ± 0.31	0.16 ± 0.55
K-40	1220 ± 140	1290 ± 124	1270 ± 143

Surry Power Station, Surry County, Virginia - 2009

(

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK

محمد المرتبة

с² — С.). 1984, мися

	pCi/Liter ±2 Sigma		Page 3 of 3
		COLONIAL	
NUCLIDE	EPPS	PARKWAY	WILLIAMS-C
050754050			
SEPTEMBER	0.67 . 0.70	2.42 4.25	4.07 . 0.00
Cs-134	-2.67 ± 2.76	-3.43 ± 4.35	1.07 ± 3.32
Cs-137	1.71 ± 3.01	-0.52 ± 3.99	-3.29 ± 3.27
Ba-140	7.76 ± 13.5	2.94 ± 20.2	-0.33 ± 18.3
La-140	-2.70 ± 4.53	0.45 ± 4.48	-0.72 ± 5.81
I-131	-0.08 ± 0.42	-0.10 ± 0.40	-0.11 ± 0.35
K-40	1250 ± 110	1260 ± 144	1230 ± 132
Th-228			13.0 ± 9.95
Sr-89	ι.	1.31 ± 2.59	
Sr-90		1.12 ± 0.68	
OCTOBER			
Cs-134	0.45 ± 2.28	-1.00 ± 3.74	2.58 ± 2.85
Cs-137	1.51 ± 2.11	-1.63 ± 3.93	1.36 ± 3.22
Ba-140	-10.1 ± 8.88	1.66 ± 18.3	-7.80 ± 15.7
La-140	-0.45 ± 2.83	3.36 ± 4.70	-0.97 ± 3.72
I-131	0.10 ± 0.14	0.06 ± 0.35	-0.15 ± 0.40
K-40	1230 ± 86.5	1370 ± 143	1150 ± 129
NOVEMBER			
Cs-134	2.17 ± 4.11	-2.20 ± 4.52	-0.43 ± 4.09
Cs-137	-0.93 ± 4.57	-0.36 ± 4.03	1.38 ± 4.07
Ba-140	-8.26 ± 23.1	-13.1 ± 21.7	-4.37 ± 21.7
La-140	1.28 ± 7.38	-0.92 ± 6.51	-1.40 ± 6.88
I-131	0.18 ± 0.45	0.03 ± 0.43	0.12 ± 0.41
K-40	1300 ± 171	1300 ± 146	1240 ± 147
DECEMBER			
Cs-134	1.40 ± 4.96	-4.05 ± 4.41	1.00 ± 3.84
Cs-137	-3.61 ± 4.38	2.60 ± 4.01	-0.07 ± 4.00
Ba-140	-1.41 ± 19.7	3.04 ± 18.9	-3.00 ± 19.9
La-140	3.45 ± 5.77	1.37 ± 5.46	-1.42 ± 5.08
I-131	0.06 ± 0.21	0.00 ± 0.18	0.02 ± 0.20
K-40	1270 ± 167	1300 ± 141	1240 ± 136
Sr-89		0.76 ± 2.70	
Sr-90		0.43 ± 0.44	
- •••			

Surry Power Station, Surry County, Virginia - 2009

. 37

TABLE 3-7: GAMMA EMITTER CONCENTRATION IN FOOD PRODUCTS

1

	$pCi/kg (wet) \pm 2.8$	Sigma			Page 1 c	of 1	
SAMPLING LOCATIONS	COLLECTION DATE	SAMPLE TYPE	Cs-134	Cs-137	I-131	K-40	Th-228
SLADE FARM	11/17/2009 11/17/2009	Com Soybeans	-0.39 ± 3.26 -5.03 ± 4.63	1.42 ± 2.85 8.23 ± 4.40	7.04 ± 20.7 -1.79 ± 31.5	3190 ± 126 14800 ± 249	10.4 ± 7.46 -1.16 ± 7.61
BROCK FARM	. 11/18/2009	Peanuts	1.33 ± 5.19	2.33 ± 5.12	2.37 ± 33.2	6300 ± 231	6.07 ± 14.2

TABLE 3-8: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN WELL WATER

e nilea e Statio

	pCi/Liter ± 2 Sig	ma			Page 1 c	of 2
SAMPLING	COLLECTION		-			
LOCATIONS	DATE			ISOTOPE		
		Mn-54	Fe-59	Co-58	Co-60	Zn-65
SS	03/10/2009	-0.02 ± 0.95	0.18 ± 2.17	0.55 ± 0.98	1.41 ± 1.09	-0.95 ± 2.56
·	06/01/2009	-0.32 ± 1.12	1.49 ± 1.92	0.43 ± 1.00	0.23 ± 1.03	0.54 ± 2.25
	09/01/2009	-0.17 ± 1.26	1.75 ± 3.27	0.58 ± 1.44	0.76 ± 1.23	0.12 ± 3.25
	12/08/2009	-0.72 ± 1.79	-3.08 ± 4.45	0.27 ± 1.74	0.58 ± 2.14	-4.21 ± 4.22
		Zr-95	Nb-95	I-131	Cs-134	Cs-137
	03/10/2009	-0.47 ± 1.70	-1.55 ± 2.46	-0.02 ± 0.26	0.07 ± 1.19	-0.17 ± 1.00
	06/01/2009	0.93 ± 1.83	0.30 ± 0.99	0.06 ± 0.27	0.18 ± 1.31	-0.26 ± 1.09
	09/01/2009	1.41 ± 2.60	1.92 ± 1.48	-0.37 ± 0.40	0.22 ± 1.43	0.36 ± 1.27
	12/08/2009	-2.81 ± 3.42	1.16 ± 1.94	0.19 ± 0.48	1.20 ± 2.26	-1.10 ± 1.91
		Ba-140	La-140	H-3	K-40	
	03/10/2009	0.57 ± 4.01	0.48 ± 1.44	-113 ± 284		
	06/01/2009	0.78 ± 4.33	0.27 ± 1.70	-29.1 ± 123		
	09/01/2009	-7.76 ± 15.20	3.03 ± 4.58	277 ± 594	37.5 ± 24.0	
	12/08/2009	-1.90 ± 12.60	0.50 ± 3.98	0.00 ± 400	••	
		Mn-54	Fe-59	Co-58	Co-60	Zn-65
HIR	03/10/2009	0.03 ± 0.90	1.14 ± 1.84	-0.37 ± 0.87	0.32 ± 0.93	-5.48 ± 2.27
	06/01/2009	-0.44 ± 1.16	1.28 ± 2.26	0.11 ± 1.05	0.81 ± 1.16	-2.71 ± 2.51
	09/01/2009	-0.03 ± 1.26	1.17 ± 3.37	0.85 ± 1.48	0.73 ± 1.31	-3.19 ± 2.94
	12/08/2009	0.23 ± 0.55	0.45 ± 1.94	-0.26 ± 0.64	-0.05 ± 0.72	0.41 ± 1.13
		Zr-95	Nb-95	I-131	Cs-134	Cs-137
	03/10/2009	-0.28 ± 1.60	-0.84 ± 1.03	-0.04 ± 0.30	0.37 ± 1.15	0.05 ± 0.98
	06/01/2009	-0.51 ± 1.90	0.12 ± 1.15	-0.15 ± 0.32	0.03 ± 1.37	0.17 ± 1.16
	09/01/2009	2.44 ± 2.68	2.29 ± 1.55	-0.01 ± 0.41	0.24 ± 1.43	-0.08 ± 1.33
	12/08/2009	0.10 ± 1.28	-0.05 ± 0.72	0.58 ± 0.55	0.19 ± 0.49	-0.01 ± 0.57
		Ba-140	La-140	H-3		
	03/10/2009	1.71 ± 3.95	-0.48 ± 1.35	-275 ± 262		
	06/01/2009	-2.36 ± 4.91	-0.47 ± 1.69	143 ± 159		
	09/01/2009	1.03 ± 15.2	0.41 ± 4.96	376 ± 455		
	12/08/2009	-0.44 ± 7.22	-1.83 ± 2.96	442 ± 437		
	12/00/2003	V.77 ± 1.22	1.00 ± 2.00	TT4 + TV1		

TABLE 3-8: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN WELL WATER

11 1

j

	pCi/Liter ± 2 Sig	ma			Page 2 c	of 2
SAMPLING LOCATIONS	COLLECTION DATE			ISOTOPE		
		Mn-54	Fe-59	Co-58	Co-60	Zn-65
CS	03/10/2009	0.25 ± 1.04	0.42 ± 2.09	-0.31 ± 0.98	-0.38 ± 1.09	-1.72 ± 2.65
	06/01/2009	-0.20 ± 1.12	-0.91 ± 2.39	-1.65 ± 1.17	0.57 ± 1.21	1.58 ± 2.67
	09/01/2009	-1.33 ± 1.17	0.47 ± 2.87	-0.11 ± 1.29	0.48 ± 1.06	-1.82 ± 2.74
	12/08/2009	0.36 ± 0.45	0.31 ± 1.29	0.41 ± 0.56	0.14 ± 0.41	-0.52 ± 0.93
		Zr-95	Nb-95	i-131	Cs-134	Cs-137
	03/10/2009	-1.06 ± 1.69	-0.29 ± 1.13	-0.03 ± 0.20	-1.57 ± 1.31	0.46 ± 1.10
	06/01/2009	0.79 ± 1.98	-0.71 ± 1.26	0.05 ± 0.48	-0.53 ± 1.37	-0.10 ± 1.23
	09/01/2009	-0.02 ± 2.43	0.85 ± 1.47	0.23 ± 0.46	-0.24 ± 1.24	0.85 ± 1.18
	12/08/2009	0.53 ± 0.95	-0.37 ± 0.57	0.63 ± 0.54	0.01 ± 0.41	0.18 ± 0.47
		Ba-140	La-140	H-3	Ac-228	
	03/10/2009	2.07 ± 4.44	-0.52 ± 1.43	34.5 ± 298		
۱. ۲	06/01/2009	2.71 ± 5.29	-0.64 ± 1.74	-97.7 ± 98.7		
	09/01/2009	-2.20 ± 12.90	-0.73 ± 3.86	231 ± 438	15.4 ± 10.4	
	12/08/2009	-2.96 ± 6.34	-0.41 ± 2.01	-115 ± 388		

TABLE 3-9: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN RIVER WATER

1.1.4.

÷

	pCi/Liter ± 2 Sig	ma			Page 1 c	of 2
LOCATIONS	DATE			ISOTOPE		
		Mn-54	Fe-59	Co-58	Co-60	Zn-65
SD	01/13/2009	0.05 ± 0.90	0.07 ± 1.76	-0.32 ± 0.90	-0.97 ± 1.64	-1.66 ± 1.89
	02/10/2009	-0.75 ± 1.22	-1.91 ± 2.49	-0.13 ± 1.20	0.25 ± 1.19	1.80 ± 2.99
	03/10/2009	-0.82 ± 0.92	-0.21 ± 1.84	0.23 ± 0.88	0.24 ± 1.02	-0.24 ± 2.42
	04/14/2009	0.37 ± 1.12	-0.05 ± 2.03	-0.09 ± 1.09	0.61 ± 1.24	-1.18 ± 2.45
	05/19/2009	0.28 ± 1.21	0.99 ± 2.48	0.09 ± 1.25	0.34 ± 1.30	-4.69 ± 2.71
	06/16/2009	0.43 ± 0.94	1.60 ± 1.93	0.15 ± 0.97	0.06 ± 1.06	-2.02 ± 2.16
	07/14/2009	0.15 ± 1.57	-1.36 ± 3.56	-0.17 ± 1.49	-0.31 ± 1.52	-0.43 ± 3.74
	08/25/2009	0.77 ± 2.88	-3.08 ± 5.99	-2.29 ± 2.58	-0.62 ± 3.16	0.07 ± 6.75
	09/09/2009	1.46 ± 2.77	-0.56 ± 5.90	-2.82 ± 2.61	-2.79 ± 2.78	2.06 ± 5.48
	10/13/2009	-1.92 ± 3.03	4.53 ± 7.69	-1.44 ± 3.26	2.28 ± 3.19	-11.5 ± 7.43
	11/10/2009	-1.51 ± 3.10	-1.12 ± 6.64	-1.05 ± 3.31	-0.19 ± 3.10	-0.19 ± 7.79
•	12/15/2009	0.15 ± 1.44	0.04 ± 3.80	0.33 ± 1.89	-0.02 ± 1.67	-4.33 ± 3.56
		Zr-95	Nb-95	I-131	Cs-134	Cs-137
	01/12/2000				,	
	01/13/2009	-0.31 ± 1.52	1.26 ± 0.99	-0.61 ± 1.37	0.11 ± 1.11	-0.56 ± 1.47 0.87 ± 1.30
	02/10/2009	-1.94 ± 2.14	-0.15 ± 1.63	0.58 ± 1.71	0.55 ± 1.54	
	03/10/2009 04/14/2009	-0.25 ± 2.47	0.57 ± 1.07 0.03 ± 2.13	-0.81 ± 1.24 0.87 ± 1.51	2.07 ± 1.17 -0.03 ± 1.37	-0.78 ± 1.05 0.15 ± 1.18
		0.87 ± 1.87 0.29 ± 2.26				0.15 ± 1.18 0.16 ± 1.38
	05/19/2009		-0.14 ± 1.36 0.32 ± 1.10		1.09 ± 1.49 0.60 ± 1.31	0.16 ± 1.36 0.44 ± 1.07
	06/16/2009 07/14/2009	-0.26 ± 1.75 -0.53 ± 3.39	0.32 ± 1.10 -0.04 ± 1.59	-0.32 ± 1.43 -0.59 ± 5.50	1.41 ± 1.75	-0.58 ± 1.78
	07/14/2009 08/25/2009		-0.04 ± 1.39 0.46 ± 3.41	-0.39 ± 5.30 -2.39 ± 5.24	-1.10 ± 3.00	1.41 ± 3.57
	08/25/2009	4.40 ± 5.87 1.71 ± 4.94	1.71 ± 3.91	-2.39 ± 5.24 -1.86 ± 4.90	1.56 ± 2.76	1.41 ± 3.37 1.06 ± 3.18
	10/13/2009		$-0.41 \pm .3.46$	-1.37 ± 6.02	-8.47 ± 3.69	0.64 ± 3.10
•	11/10/2009	5.22 ± 6.31 -5.72 ± 5.70	0.49 ± 3.41	-0.90 ± 5.66	-0.47 ± 0.09 -1.51 ± 4.00	-0.98 ± 3.62
	12/15/2009	2.06 ± 3.37	1.17 ± 1.91	3.09 ± 5.47	0.29 ± 1.75	-0.83 ± 0.02
	01/13/2009	Ba-140 0.86 ± 3.75	La-140 -0.94 ± 1.29	H-3	K-40	*
	01/13/2009	-2.00 ± 5.00	-0.94 ± 1.29 -1.27 ± 1.87			
	02/10/2009	-2.33 ± 3.86	-0.42 ± 1.17	140 ± 285	75.7 ± 25.7	
	03/10/2009	-2.33 ± 3.80 0.92 ± 4.70	-0.42 ± 1.17 1.29 ± 1.76	170 1 200	10.1 ± 20.1	
	04/14/2009	-8.82 ± 7.98	0.24 ± 1.83			
	05/19/2009	-0.25 ± 4.06	1.33 ± 1.50	159 ± 326		
	07/14/2009	-0.25 ± 4.00 -3.92 ± 11.8	1.33 ± 1.30 0.58 ± 3.25	108 I 020		·
	07/14/2009	-3.92 ± 11.8 3.12 ± 13.1	-1.62 ± 4.91		188 ± 73.0	
· ·		3.12 ± 13.1 10.2 ± 14.0	-0.01 ± 4.05	_827 ± 000	154 ± 44.5	
	09/09/2009 10/13/2009	10.2 ± 14.0 1.61 ± 15.8	-3.35 ± 5.14	-82.7 ± 999	134 ± 44.5 136 ± 61.6	
	10/13/2009	1.01 ± 15.8 22.2 ± 16.0	-3.35 ± 5.14 3.95 ± 5.98		130 E 01.0	
	12/15/2009	-1.86 ± 13.2	-0.24 ± 4.13	-417 ± 1170	4	
		- IOD + L1/				

TABLE 3-9: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN RIVER WATER

ļ

State of Low State of Low State

	pCi/Liter ± 2 Sig	ma			Page 2 c	of 2
SAMPLING LOCATIONS	COLLECTION DATE			ISOTOPES		
LOCATIONS	DAIL					
		Mn-54	Fe-59	Co-58	Co-60	Zn-65
SW-C	01/13/2009	-0.38 ± 0.82	0.16 ± 1.68	-0.48 ± 0.81	-0.03 ± 0.86	-1.36 ± 1.84
	02/10/2009	-0.55 ± 1.02	-2.93 ± 3.57	-0.25 ± 1.19	-0.11 ± 1.13	-1.10 ± 2.48
	03/10/2009	-0.23 ± 1.07	0.81 ± 2.09	-1.70 ± 1.38	-0.80 ± 1.23	-1.45 ± 2.29
	04/14/2009	0.07 ± 0.89	0.04 ± 1.70	-0.34 ± 0.86	-0.73 ± 0.96	-1.85 ± 2.02
	05/19/2009	0.25 ± 1.17	0.16 ± 2.17	0.09 ± 1.17	-0.82 ± 1.20	-2.48 ± 2.51
	06/16/2009	0.06 ± 0.73	0.75 ± 1.51	0.21 ± 0.73	0.31 ± 0.84	-0.15 ± 1.70
	07/14/2009	0.07 ± 0.77	-0.08 ± 1.78	-0.77 ± 0.82	0.67 ± 0.72	-1.12 ± 1.82
•	08/25/2009	0.54 ± 3.20	-6.26 ± 7.76	-0.88 ± 3.42	0.48 ± 3.20	5.51 ± 4.93
	09/09/2009	1.93 ± 2.76	-5.77 ± 6.95	-1.99 ± 3.03	-2.77 ± 3.49	-0.68 ± 7.46
	10/13/2009	0.20 ± 2.59	-3.19 ± 6.01	0.37 ± 2.99	1.26 ± 2.94	-4.02 ± 6.90
	11/10/2009	0.20 ± 2.39 0.21 ± 3.14	-3.68 ± 5.85	0.57 ± 2.99 0.52 ± 3.08	0.35 ± 2.33	-6.61 ± 6.98
	12/15/2009	-0.08 ± 0.36	-0.81 ± 0.98	-0.19 ± 0.44	-0.20 ± 0.38	0.06 ± 0.72
		Zr-95	Nb-95	I-131	Cs-134	Cs-137
	01/13/2009	0.42 ± 1.44	-0.04 ± 1.23	-0.17 ± 1.13	0.65 ± 0.99	0.09 ± 0.86
	02/10/2009	-1.18 ± 2.03	-1.07 ± 1.58	-0.88 ± 1.45	0.32 ± 1.39	-1.53 ± 1.83
	03/10/2009	-0.46 ± 1.91	0.91 ± 1.13	-0.54 ± 1.41	0.02 ± 1.30	-0.37 ± 1.14
	04/14/2009	-0.57 ± 1.58	1.09 ± 0.99	-0.37 ± 1.83	0.55 ± 1.05	0.64 ± 1.01
	05/19/2009	0.47 ± 2.00	-1.61 ± 1.80	0.68 ± 1.56	0.61 ± 1.37	-1.17 ± 1.19
	06/16/2009	0.38 ± 1.29	0.25 ± 0.81	-0.26 ± 1.12	-0.19 ± 0.88	0.87 ± 0.79
	07/14/2009	-1.02 ± 1.54	-0.03 ± 0.87	1.19 ± 4.64	-0.27 ± 0.83	0.23 ± 0.77
	08/25/2009	2.19 ± 6.37	0.05 ± 0.07	2.85 ± 5.51	-2.20 ± 3.07	-1.11 ± 3.14
	09/09/2009	0.32 ± 5.68	0.06 ± 3.62	3.74 ± 5.43	-2.03 ± 3.59	0.42 ± 3.47
	10/13/2009	2.41 ± 4.92	0.00 ± 3.02 0.99 ± 3.12	-0.74 ± 5.63	0.69 ± 2.85	2.78 ± 2.88
			0.39 ± 3.12 0.17 ± 3.28	-0.74 ± 5.03 -1.63 ± 5.76	-1.18 ± 3.30	-1.75 ± 3.00
	11/10/2009	-2.12 ± 5.24				
	12/15/2009	-0.08 ± 0.73	-0.09 ± 0.47	3.59 ± 3.63	-0.21 ± 0.33	-0.28 ± 0.37
		Ba-140	La-140	H-3	K-40	
	01/13/2009	-0.31 ± 3.42	-1.26 ± 1.21		•	
	02/10/2009	-1.32 ± 4.32	-0.14 ± 1.64			
	03/10/2009	2.44 ± 4.59	-0.53 ± 1.57	-95.8 ± 263		•
	04/14/2009	-0.01 ± 3.79	1.04 ± 1.38			
	05/19/2009	-2.02 ± 6.56	-1.01 ± 1.79			
	06/16/2009	0.86 ± 3.47	0.15 ± 1.13	-183 ± 302		
	07/14/2009	6.61 ± 8.39	-1.01 ± 2.70		27.2 ± 18.1	
	08/25/2009	-16.8 ± 14.5	-4.48 ± 7.12		98.2 ± 77.6	
	09/09/2009	10.3 ± 13.7	-1.43 ± 4.83	-227 ± 982	167 ± 66.7	
	10/13/2009	8.00 ± 15.1	1.98 ± 5.08		108 ± 69.5	
	11/10/2009	1.70 ± 15.4	1.16 ± 4.84		129 ± 61.1	
	12/15/2009	0.57 ± 5.07	-0.41 ± 1.81	-266 ± 1180	.20 2 01	×
		T I 000	D - 000			
	12/15/2009*	Th-228 5.52 ± 2.47	Ra-226 34.6 ± 32.9			

Surry Power Station, Surry County, Virginia - 2009

* Th-228 and Ra-226 were identified only in the December sample for 2009

TABLE 3-10: GAMMA EMITTER CONCENTRATIONS IN SILT

134 (

.

	$pCi/kg (dry) \pm 2$	Sigma			Page 1 o	f1
	COLLECTION					ι
LOCATIONS	DATE			ISOTOPE		
		Cs-134	Cs-137	K-40	Th-232	Th-228
SD	03/10/2009	47.7 ± 60.3	274 ± 74.1	14000 ± 1760		1010 ± 140
	09/23/2009	18.0 ± 48.3	154 ± 97.1	15400 ± 1640	1030 ± 222	1150 ± 116
		Pb-212	TI-208	U-234	Th-230	Ra-226
	03/10/2009	1010 ± 140	231 ± 75.9	644 ± 169	644 ± 169	644 ± 169
	09/23/2009					3740 ± 1530
		Pb-214	Bi-214			
	03/10/2009	874 ± 178	644 ± 169			
	09/23/2009					
		Cs-134	Cs-137	K-40	Th-232	Ra-228
CHIC-C	03/10/2009	122 ± 63.2	182 ± 91.8	17000 ± 1910	1340 ± 378	1340 ± 378
	09/23/2009	1.75 ± 50.7	186 ± 63.5	16100 ± 1670	1020 ± 164	
		Ac-228	Th-228	Pb-212	TI-208	Th-230
	03/10/2009	1340 ± 378	1380 ± 167	1380 ± 167	418 ± 105	1310 ± 251
	09/23/2009		1210 ± 121			
		Ra-226	Pb-214	Bi-214		
	03/10/2009	1310 ± 251	1250 ± 215	1310 ± 251		
	09/23/2009	1560 ± 1520				

TABLE 3-11: GAMMA EMITTER CONCENTRATIONS IN SHORELINE SEDIMENT

 $\{\mathbf{i}\}$

х х х

	pCi/kg (dry) ± 2 §	Sigma	Page 1 of 1			
SAMPLING LOCATIONS	COLLECTION DATE	Cs-134	Cs-137	K-40	Th-228	•
HIR	02/10/2009 08/25/2009	6.23 ± 24.0 15.0 ± 21.0	-6.05 ± 23.4 3.63 ± 18.8	6180 ± 932 5290 ± 662		
CHIC-C	02/10/2009 08/25/2009	11.3 ± 24.0 -7.02 ± 24.8	6.60 ± 18.1 3.65 ± 22.0	2160 ± 487 6120 ± 767	103 ± 47.6	

TABLE 3-12: GAMMA EMITTER CONCENTRATION IN FISH

1

Цų

and the second

	pCi/kg (wet) ± 2	Sigma			Page 1 o	of 1
SAMPLING	COLLECTION	SAMPLE				
LOCATION	DATE	TYPE	<u>.</u>	ISO	ГОРЕ	
			K-40	Co-58	Co-60	Cs-134
SD	04/01/2009	Catfish	2060 ± 216	-0.91 ± 3.64	-0.69 ± 3.84	-1.41 ± 4.97
	04/01/2009	White Perch	2230 ± 253	-1.03 ± 5.96	0.82 ± 7.37	-1.20 ± 6.69
	10/07/2009	Catfish	2200 ± 788	14.5 ± 44.2	-15.1 ± 34.8	32.7 ± 46.4
	10/07/2009	White Perch		-3.61 ± 42.6	0.00 ± 0.00	-6.43 ± 47.7
			Cs-137	Fe-59	Mn-54	Zn-65
	04/01/2009	Catfish	4.15 ± 3.47	-8.02 ± 10.2	1.22 ± 3.83	-6.81 ± 9.51
	04/01/2009	White Perch	2.32 ± 6.16	-16.6 ± 16.6	1.48 ± 5.82	11.6 ± 14.3
	10/07/2009	Catfish	7.89 ± 39.5	-15.6 ± 91.2	-12.9 ± 36.8	-39.5 ± 94.3
	10/07/2009	White Perch	-13.5 ± 39.0	-38.9 ± 82.0	-1.80 ± 34.0	7.77 ± 93.7

TABLE 3-13: GAMMA EMITTER CONCENTRATIONS IN OYSTERS

18 1 1

2. (1991–1998) – A

L

	$pCi/kg (wet) \pm 2 S$	igma		Page 1 of	1				
SAMPLING	COLLECTION		· • • • • • • • • • • • • • • • • • • •						
LOCATIONS	DATE	ISOTOPE							
		Co-58	Co-60	Cs-134	Cs-137				
POS	03/10/2009	-1.31 ± 6.51	-9.40 ± 5.98	2.76 ± 5.41	5.41 ± 4.47				
	09/23/2009	-5.16 ± 29.5	14.3 ± 21.6	7.03 ± 24.8	7.31 ± 21.1				
		Fe-59	Mn-54	Zn-65	K-40				
	03/10/2009	7.50 ± 14.5	-5.84 ± 4.83	-4.29 ± 12.6					
	09/23/2009	-26.4 ± 59.6	-14.4 ± 21.6	-36.8 ± 58.6	1050 ± 396				
					·				
		Co-58	Co-60	Cs-134	Cs-137				
MP	03/10/2009	2.81 ± 6.19	1.61 ± 3.66	-1.98 ± 5.10	3.48 ± 4.16				
	09/23/2009	-17.1 ± 19.2	-8.10 ± 18.3	-0.82 ± 19.4	-12.0 ± 17.9				
		Fe-59	Mn-54	Zn-65					
	03/10/2009	-0.69 ± 12.9	3.70 ± 4.09	-0.59 ± 12.4					
	09/23/2009	10.3 ± 46.1	13.9 ± 15.5	25.7 ± 41.5					

TABLE 3-14: GAMMA EMITTER CONCENTRATIONS IN CLAMS

14.1

	$pCi/kg (wet) \pm 2 S$	Sigma		Page 1 of	£1 ·
SAMPLING	COLLECTION				
LOCATIONS	DATE		ISO	TOPE	
		Co-58	Co-60	Cs-134	Cs-137
JI	02/40/2000	-3.72 ± 6.00	0.48 ± 5.14	-1.27 ± 4.95	4.98 ± 3.83
JI	03/10/2009				
	09/23/2009	-15.0 ± 22.7	0.77 ± 22.1	-11.5 ± 23.1	-10.1 ± 19.8
		Fe-59	Mn-54	Zn-65	K-40
	03/10/2009	-2.52 ± 12.1	-1.78 ± 4.39	-6.14 ± 9.51	
	09/23/2009	-77.8 ± 47.9	-6.37 ± 20.5	-108 ± 55.6	431 ± 400
		Co-58	Co-60	Cs-134	Cs-137
SD	03/10/2009	-7.63 ± 6.41	0.03 ± 6.39	-1.54 ± 5.81	-0.64 ± 5.34
30	09/23/2009	-27.6 ± 37.9	-9.57 ± 20.8	11.5 ± 31.9	-40.2 ± 30.0
	09/23/2009	-21.0 ± 51.9	-9.57 ± 20.6	11.5 ± 51.9	-40.2 ± 30.0
		Fe-59	Mn-54	Zn-65	
	03/10/2009	6.24 ± 13.9	3.31 ± 5.22	-2.37 ± 10.6	
	09/23/2009	-0.30 ± 85.4	-13.2 ± 32.2	-61.4 ± 77.8	
		Co-58	Co-60	Cs-134	Cs-137
LC	03/10/2009	5.31 ± 6.22	-3.03 ± 5.72	2.06 ± 6.11	-3.21 ± 5.36
20	09/23/2009	-4.08 ± 38.5	12.4 ± 22.6	9.05 ± 32.6	-11.6 ± 31.4
	00,20,2000			0.00 - 0-0	
		Fe-59	Mn-54	Zn-65	K-40
	03/10/2009	-7.60 ± 16.1	-4.57 ± 5.98	-8.28 ± 13.8	458 ± 128
	09/23/2009	-43.0 ± 83.6	-9.45 ± 31.8	-4.06 ± 66.7	
		Co-58	Co-60	Cs-134	Cs-137
CHIC-C	03/10/2009	-1.28 ± 7.10	0.26 ± 7.53	2.23 ± 6.75	2.59 ± 5.94
	09/23/2009	17.3 ± 31.5	6.34 ± 25.3	-9.03 ± 26.7	-8.08 ± 27.6
	00,20,2000	11.0 2 01.0	0.04 2 20.0	0.00 ± 20.1	0.00 2 27.0
		Fe-59	Mn-54	Zn-65	K-40
	03/10/2009	4.84 ± 15.8	-0.89 ± 6.52	-3.10 ± 13.5	
	09/23/2009	-56.2 ± 66.5	-32.0 ± 24.4	-36.0 ± 70.7	851 ± 514
		The AAA			
	00/40/0000	Th-228			
	03/10/2009	404 - 746			
	09/23/2009	164 ± 74.8			

TABLE 3-15: GAMMA EMITTER CONCENTRATIONS IN CRABS

s ra 😷

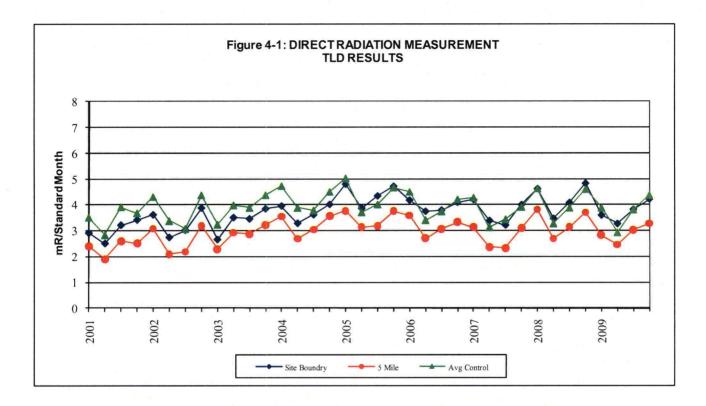
Name

4

	pCi/kg (wet) ± 2 S	gma Page 1 of 1								
SAMPLING LOCATIONS	COLLECTION DATE		ISOTOPE							
SD	06/24/2009	K-40 1590 ± 175	Co-58 -1.21 ± 3.85	Co-60 -1.26 ± 3.51	Cs-134 0.10 ± 3.97					
	• .	Cs-137 -1.84 ± 3.97	Fe-59 3.02 ± 9.45	Mn-54 -0.59 `± 3.35	Zn-65 -2.17 ± 8.12					

4. DISCUSSION OF RESULTS

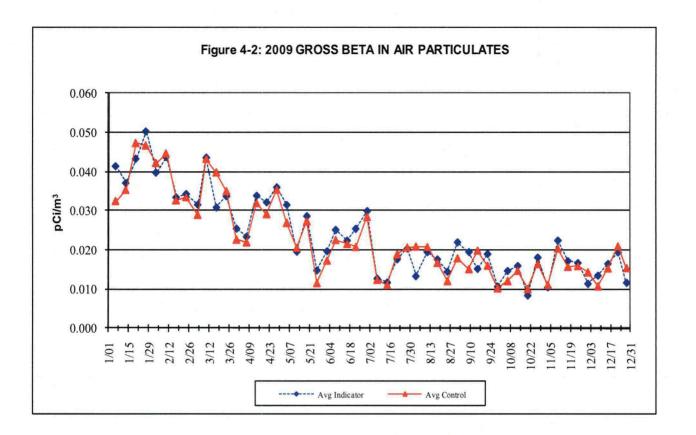
Data from the radiological analyses of environmental media collected during 2009 and tabulated in Section 3, are discussed below. The procedures and specifications followed in the laboratory for these analyses are as required in the GEL Laboratories LLC and the Teledyne Brown Engineering quality assurance manuals and laboratory procedures. In addition to internal quality control measures performed by the laboratories, they also participate in an Interlaboratory Comparison Program. Participation in this program ensures that independent checks on the precision and accuracy of the measurements of radioactive material in environmental samples are performed. The results of the Interlaboratory Comparison Program are provided in Appendix B.

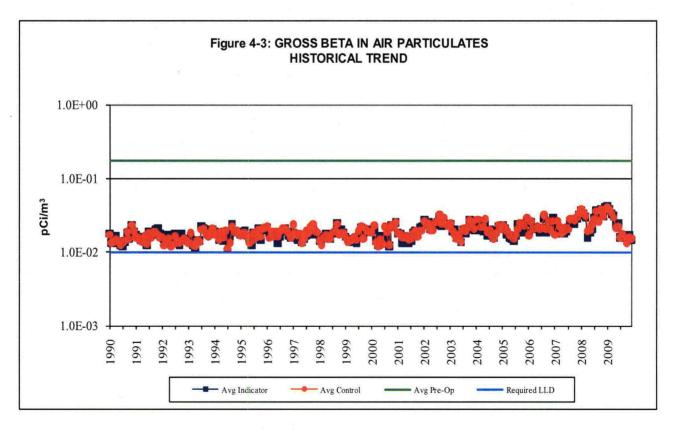

The predominant radioactivity detected throughout 2009 was from external sources, such as fallout from nuclear weapons tests (cesium-137, strontium-90) and naturally occurring radionuclides. Naturally occurring nuclides such as beryllium-7, potassium-40, and thorium-228 were detected in numerous samples.

The following is a discussion and summary of the results of the environmental measurements taken during the 2009 reporting period.

4.1 Gamma Exposure Rate

A thermoluminescent dosimeter (TLD) is an inorganic crystal used to detect ambient radiation. Two TLDs, made of CaF and LiF elements and specifically designed for environmental monitoring, are deployed at each sampling location. TLDs are placed in two concentric rings around the station. The inner ring is located in the vicinity of the site boundary, and the outer ring is located at approximately five miles from the station. TLDs are also placed in special interest areas, such as population centers and nearby residences. Additional TLDs serve as controls. Ambient radiation comes from naturally occurring radioisotopes in the air and soil, radiation from cosmic origin, fallout from nuclear weapons testing, station effluents and direct radiation from the station.


The results of the TLD analyses are presented in Table 3-2. Figure 4-1 shows a historical trend of TLD exposure rate measurements, comparing the average of indicator TLDs located near the site boundary and at 5 miles to the average of all control TLD locations. Control and indicator averages indicate a steady relationship.



4.2 Airborne Gross Beta

Air is continuously sampled by passing it through glass fiber particulate filters. The filters collect airborne particulate radionuclides. Once a week the samples are collected and analyzed for gross beta activity. Results of the weekly gross beta analyses are presented in Table 3-3. A review of the results from control and indicator locations continues to show no significant variation in measured activities (see Figure 4-2 and 4-3). This indicates that any station contribution is not measurable.

Gross beta activity found during the pre-operational and early operating period of Surry Power Station was higher because of nuclear weapons testing. During that time, nearly 740 nuclear weapons were tested worldwide. In 1985 weapons testing ceased, and with the exception of the Chernobyl accident in 1986, airborne gross beta results have remained steady.

4.3 Airborne Radioiodine

14

Air is also continuously sampled for radioiodines by passing it through charcoal cartridges. Once a week the charcoal cartridge samples are collected and analyzed. The results of the analyses are presented in Table 3-4. All results are below the lower limit of detection. No positive iodine-131 was detected. These results are similar to pre-operational data and the results of samples taken prior to and after the 1986 accident in the Soviet Union at Chernobyl.

4.4 Air Particulate Gamma

The air particulate filters from the weekly gross beta analyses are composited by location and analyzed quarterly by gamma spectroscopy. The results are listed in Table 3-5. The results indicate the presence of naturally occurring beryllium-7, which is produced by cosmic processes. No man-made radionuclides were identified. These analyses confirm the lack of station effects.

4.5 Cow Milk

Analysis of milk samples is generally the most sensitive indicator of fission product existence in the terrestrial environment. This, in combination with the fact that consumption of milk is significant, results in this pathway usually being the most critical from the plant release viewpoint. This pathway also shows measurable amounts of nuclear weapons testing fallout. Therefore, this media needs to be evaluated very carefully when trying to determine if there is any station effect.

Analysis results for cow milk are contained in Table 3-6. All results show a lack of detectable iodine-131 above the LLD of 1 pCi/L. Results of gamma spectroscopy indicate no other detectable station related radioactivity in the milk samples. In years past, cesium-137 has been detected sporadically. The occurrences were attributed to residual global fallout from past atmospheric weapons testing. Cs-137 was not detected at a level above the LLD in 2009.

At the request of the Commonwealth of Virginia, a quarterly composite sample is prepared from the monthly milk samples from the Colonial Parkway collection station. The composite samples are analyzed for strontium-89 and strontium-90. Sr-90 was detected in one of the four composites analyzed at a concentration of 1.12 pCi/L. The average Sr-90 concentration for the ten year period of 1999 to 2009 is 1.82 pCi/L. Sr-90 is not a component of the station radiological effluents. The Sr-90 detected is a product of nuclear weapons testing fallout which has been well documented.

4.6 Food Products

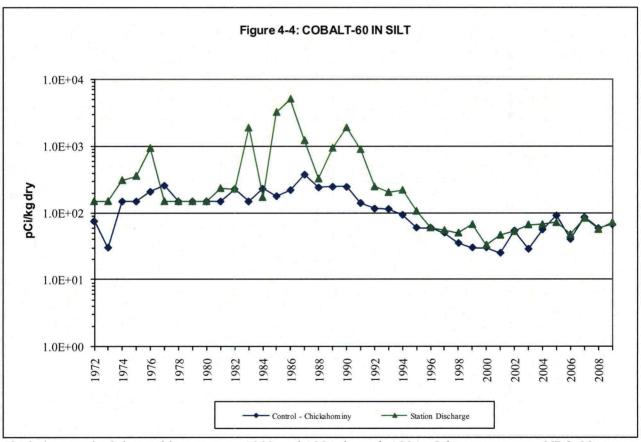
Three samples were collected and analyzed by gamma spectroscopy. The results of the analyses are presented in Table 3-7. As expected, naturally occurring potassium-40 was detected in all samples. The average concentration is consistent with that observed in previous years. Naturally occurring thorium-228 was also detected in one of three samples. No station related radioactivity was detected.

4.7 Well Water

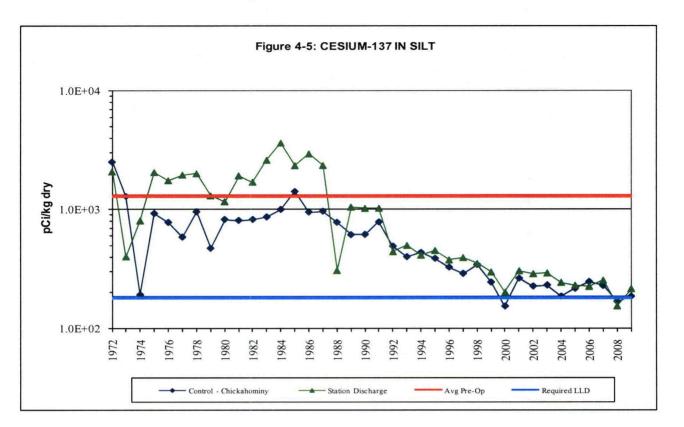
Well water is not considered to be affected by station operations because there are no discharges made to this pathway. However, Surry Power Station monitors well water quarterly at three indicator locations and analyzes for gamma radiation and for tritium. The results of these analyses are presented in Table 3-8. Consistent with past monitoring, no station related radioactivity was detected. Naturally occurring potassium-40 and actinium-228 were detected in one sample each. No gamma emitting isotopes were detected during the pre-operational period.

4.8 River Water

Samples of the James River water are collected monthly and the results are presented in Table 3-9. All samples are analyzed by gamma spectroscopy. The monthly samples are also composited and analyzed for tritium on a quarterly basis. Naturally occurring potassium-40, thorium-228 and radium-226 were detected in some samples. No station related radioactivity was detected.


4.9 Silt

Silt is sampled to evaluate any buildup of radionuclides in the environment due to the operation of the station. Sampling of this pathway provides a good indication of the dispersion effects of effluents to the river. Buildup of radionuclides in silt could indirectly lead to increasing radioactivity levels in clams, oysters, crabs and fish.


Samples of silt are collected from two locations, one upstream and one downstream of the station. The results of the gamma spectroscopy analyses are presented in Table 3-10. Trend graphs of cobalt-60 and cesium-137 in silt appear in Figures 4-4 and 4-5.

Historically, cobalt-60 has been detected in samples obtained from the indicator location (SD). Cobalt-60 has not been detected since 2003.

Cesium-137 was detected, as expected, in both the control and indicator samples. The levels detected indicate a continual decreasing trend seen for over a decade. The detection of cesium-137 in both the control and indicator samples and decreasing levels indicate that the presence of cesium-137 is the result of accumulation and runoff into the river of residual weapons testing fallout. Its global presence has been well documented. During the pre-operational period, cesium-137 was detected in most silt samples with an average concentration as indicated in Figure 4-5. In 2009, cesium-137 was detected with an average indicator location concentration of 214 pCi/kg and an average control location concentration of 184 pCi/kg. These activities continue to represent fallout from nuclear weapons testing. Both indicator and control cesium-137 activities trend closely as shown in Figure 4-5.

Chickahominy had detectable activity in 1982 and 1984 through 1994. Other years were <MDC, Minimum Detectable Concentration. Station Discharge was <MDC activity 1996 through 1998 and 2004 through 2009.

4.10 Shoreline Sediment

Shoreline sediment, unlike river silt, may provide a direct dose to humans. Buildup of radionuclides along the shoreline may provide a source of direct exposure for those using the area for commercial and recreational uses. The results are presented in Table 3-11.

The naturally occurring radionuclides potassium-40 and thorium-228 were detected at concentrations equivalent to normal background activities. The activities of these radionuclides indicate a steady trend. There were no radionuclides attributable to the operation of the station found in any shoreline sediment samples.

4.11 Fish

The radioactivity measured in fish sampled from the station discharge canal and analyzed by gamma spectroscopy is presented in Table 3-12. These results are the same as those seen over the last decade. No activity was observed in this media except for naturally occurring potassium-40.

4.12 Oysters

14

Oysters are collected from two different locations. The results of the oyster analyses are presented in Table 3-13.

There were no gamma emitting radionuclides detected in oysters sampled except for naturally occurring potassium-40. No station related radioactivity has been detected in this media since 1991. The absence of station related radionuclides is attributable to the replacement of steam generators in 1982 and past improvements made to liquid effluent treatment systems.

4.13 Clams

Clams are analyzed from four different locations. The results of the gamma spectroscopy analyses are presented in Table 3-14. Like oysters, no station related radioactivity was detected. Naturally occurring potassium-40 and thorium-228 were detected.

4.14 Crabs

A crab sample was collected in June from the station discharge canal and analyzed by gamma spectroscopy. The results of the analysis are presented in Table 3-15. Other than naturally occurring potassium-40, no other gamma emitting radionuclides were detected in the sample. This is consistent with preoperational data and data collected over the past decade.

5. PROGRAM EXCEPTIONS

444

There were four REMP exceptions for scheduled sampling and analysis during 2009.

The gross beta minimum detectable concentration (MDC) was $1.16E-02 \text{ pCi/m}^3$ for the November 17 Hog Island Reserve (HIR) air sample. This concentration is greater than the lower limit of detection (LLD) concentration of $1.00E-02 \text{ pCi/m}^3$. Although an MDC is a posteriori measurement, Surry Power Station requires that this value be less than or equal to the required LLD. This ensures that REMP samples are analyzed to required program elements. The cause for the higher MDC was a lower than normal sample volume due to loss of power at the HIR air sampling station. The loss of power resulted from a nor'easter that moved through the area during the sample period. Detection of gross beta activity in air samples is routine. Detectable gross beta activity was determined in this HIR air sample with the reduced volume and normal sample count time. Due to the detectable activity, the slightly elevated MDC was not requested.

The iodine-131 minimum detectable concentration (MDC) was 7.01E-02 pCi/m³ for the November 03 Fort Eustis (FE) air sample and 7.16E-02 pCi/m³ for the November 17 Hog Island Reserve (HIR) air sample. These concentrations are greater than the lower limit of detection (LLD) concentration of 7.00E-02 pCi/m³. For the second half of 2009, an efficiency correction factor normally used to determine the iodine-131 concentration in air samples was not applied. Upon discovery of this error, the correction factor was applied to all air samples for the second half of 2009. This resulted in the higher than normal MDCs for these two air samples. A reanalysis of the two samples was not performed due to the short half-life of iodine-131 and the extended time period between sample collection and discovery of the correction factor error.

During the March 2008 clam sampling campaign, clams were not found at the Hog Island Point sample location. An alternate sampling location, Jamestown Island, was selected and sampled throughout 2008. In 2009, clams continued to be sampled at the Jamestown Island location in place of the Hog Island Point location.

6. CONCLUSIONS

9

The results of the 2009 Radiological Environmental Monitoring Program for Surry Power Station have been presented in previous sections. This section presents conclusions for each pathway.

- Direct Radiation Exposure Pathway Control and indicator location averages continue to indicate a steady relationship and trend over the long term.
- Airborne Exposure Pathway Analysis of charcoal cartridge samples for radioiodines indicated no positive activity was detected. Quarterly gamma isotopic analyses of the composite particulate samples identified only naturally occurring beryllium-7. Air particulate gross beta concentrations at all of the indicator locations for 2009 trend well with the control location.
- Milk Milk samples are an important indicator measuring the effect of radioactive iodine and radionuclides in airborne releases. Cesium-137 and iodine-131 were not detected in any of the thirty-six samples. Naturally occurring potassium-40 was detected at a similar level when compared to the average of the previous year.

Strontium-90 was detected in one of four samples this year at a concentration of 1.12 pCi/L. Strontium-90 is not a component of station effluents, but rather, a product of nuclear weapons testing fallout.

- ➢ Food Products As expected, naturally occurring potassium-40 was detected in all three samples and naturally occurring thorium-228 was detected in one of three samples. In the past, cesium-137 has occasionally been detected in these samples and is attributable to global fallout from past nuclear weapons testing. Cesium-137 was not detected in any of the three samples collected in 2009.
- ➤ Well Water Well water samples were analyzed and the analyses indicated that there were no man-made radionuclides present. This trend is consistent throughout the monitoring period. No radioactivity attributable to the operation of the station was identified.
- River Water All river water samples were analyzed for gamma emitting radionuclides. Only the naturally occurring radionuclides potassium-40 thorium-228 and radium-226 were detected. Tritium was not detected at levels exceeding the lower limit of detection for any samples in 2009.
- Silt Cesium-137 was detected in both the control and indicator samples. The presence of cesium-137 is attributable to residual weapons testing fallout; its presence has been well documented. Cobalt-60 has not been

detected since 2003.

Shoreline Sediment - Naturally occurring radionuclides were detected at concentrations equivalent to normal background activities. There were no radionuclides attributable to the operation of Surry Power Station found in any sample.

Aquatic Biota

1.1

- ➢ Fish As expected, naturally occurring potassium-40 was detected. There were no other gamma emitting radionuclides detected in any of the fish samples.
- > **Oysters and Clams** Other than naturally occurring potassium-40 and thorium-228, there were no other gamma emitting radionuclides detected in any of the oyster or clam samples.
- Crabs Naturally occurring potassium-40 was detected. No other gamma emitting radionuclides were detected.

REFERENCES

,

121

4 - No. - 1448 - 3

ſ

References

111 .

1. NUREG-0472, "Radiological Effluent Technical Specifications for PWRs", Draft Rev. 3, March 1982.

 United States Nuclear Regulatory Commission, Regulatory Guide 1.109, Rev. 1, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR50, Appendix I", October 1977.

 United States Nuclear Regulatory Commission, Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants", December 1975.

- 4. United States Nuclear Regulatory Commission Branch Technical Position, "Acceptable Radiological Environmental Monitoring Program", Rev. 1, November 1979.
- 5. Dominion, Station Administrative Procedure, VPAP-2103S, "Offsite Dose Calculation Manual (Surry)".
- 6. Virginia Electric and Power Company, Surry Power Station Technical Specifications, Units 1 and 2.
- 7. HASL-300, Environmental Measurements Laboratory, "EML Procedures Manual," 27th Edition, Volume 1, February 1992.
- 8. NUREG/CR-4007, "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," September 1984.
- 9. NCRP Report No. 160, "Ionizing Radiation Exposure of the Population of the United States," March 2009.

APPENDICES

APPENDIX A: LAND USE CENSUS

a dal

Year 2009

63

.

LAND USE CENSUS*

Surry Power Station, Surry County, Virginia

January 1 to December 31, 2009

Page 1 of 1

Sector	Direction	Nearest Resident	Nearest Garden**	Nearest Cow	Nearest Goat
_		• • • • •		•	
А	Ν	4.1 @ 10°	(a) ·	(a)	(a)
В	NNE	1.9 @ 32°	(a)	(a)	(a)
C	NE	4.7 @ 35°	(a)	(a)	(a)
D	ENE	(a)	(a)	(a)	(a)
Е	Ε	(a)	(a)	(a)	(a)
F	ESE	(a)	(a)	(a)	(a)
G	SE	(a)	(a)	(a)	(a)
Н	SSE	3.1 @ 149°	(a)	(a)	(a)
J	S	1.7 @ 181°	1.9 @ 189°	(a)	(a)
K	SSW	2.3 @ 212°	4.3 @ 193°	4.8 @ 200°	(a)
L	SW	2.3 @ 221°	3.6 @ 223°	(a)	(a)
Μ	WSW	0.4 @ 244°	3.6 @ 245°	(a)	(a)
Ν	W	3.1 @ 260°	3.4 @ 260°	(a)	(a)
Р	WNW	4.9 @ 283°	(a)	(a)	(a)
Q	NW	4.6 @ 321°	(a)	(a)	(a)
R	NNW	3.8 @ 338°	4.4 @ 334°	3.7 @ 336°	(a)

* Locations are listed by miles and degrees heading relative to true north from center of Unit #1 Containment.

** Area greater than 50 m^2 and contains broadleaf vegetation.

(a) None

111

APPENDIX B: SUMMARY OF INTERLABORATORY COMPARISONS

17-1

, ,

ج

Year 2009

INTRODUCTION

This appendix covers the Interlaboratory Comparison Program (ICP) of GEL Laboratories LLC (GEL) and Teledyne Brown Engineering (TBE). GEL and TBE use QA/QC samples provided by Eckert & Ziegler Analytics, Inc., Environmental Resource Associates (ERA) and the Mixed Analyte Performance Evaluation Program (MAPEP) to monitor the quality of analytical processing associated with the REMP. Each provider has a documented Quality Assurance program and the capability to prepare Quality Control materials traceable to the National Institute of Standards and Technology (NIST). The providers supply the samples to GEL and TBE, and upon receipt, the laboratories perform the analyses in a normal manner. The results are then reported to the provider for evaluation. The suite of QA/QC samples is designed to provide sample media and radionuclide combinations that are offered by the providers and included in the REMP and typically includes:

- milk for gamma nuclides and low-level iodine-131 analyses,
- milk for Sr-89 and Sr-90 analyses,
- > water for gamma nuclides, low-level iodine-131, and gross beta analyses,
- ▶ water for tritium, Sr-89, and Sr-90 analyses,
- \triangleright cartridge for I-131 analyses,
- > air filter for gamma nuclide, gross beta, and Sr-90 analyses.

The accuracy of each result reported to Eckert & Ziegler Analytics, Inc. is measured by the ratio of GEL and TBE result to the known value. Accuracy for all other results is based on statistically derived acceptance ranges calculated by the providers. An investigation is undertaken whenever the ratio or reported result fell outside of the acceptance range.

RESULTS

The GEL and TBE ICP results are included in the following tables for the first through the fourth quarters of 2009. One result did not meet the acceptance criteria and is discussed as follows.

• 2nd quarter milk - The root cause of the Sr-90 failure was determined to be a batch quality control issue. The carrier yield for the second separation was greater than 100%. The elevated yield caused the Sr-90 result to be biased low.

	Identification				Reported	Known		
Quarter	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	Ratio (c)	Evaluation (d)
1st Quarter 2009	E6582-278	Charcoal	I-131	pCi	77.7	79.4	0.98	A
	E6584-278	Milk	l-131	pCi/L	79.7	79.3	1.01	А
			Ce-141	pCi/L	97.8	94.9	1.03	А
			Cr-51	pCi/L	297	305	0.97	А
			Cs-134	pCi/L	90.6	93.7	0.97	А
			Cs-137	pCi/L	116	111	1.04	А
			Co-58	pCi/L	123	119	1.03	А
			Mn-54	pCi/L	133	128	1.04	A
			Fe-59	pCi/L	116	99.9	1.16	А
•			Zn-65	pCi/L	172	156	1.10	А
			Co-60	pCi/L	150	142	1.06	A
	E6585-278	Water	I-131	pCi/L	75.5	69	1.09	A
			Ce-141	pCi/L	122	120	1.02	А
			Cr-51	pCi/L	392	387	1.01	А
			Cs-134	pCi/L	119	119	1.00	A
			Cs-137	pCi/L	144	141	1.02	А
			Co-58	pCi/L	159	151	1.05	А
			Mn-54	pCi/L	, 180	162	1.11	А
			Fe-59	pCi/L	128	127	1.01	A
			Zn-65	pCi/L	224	197	1.13	А
			Co-60	pCi/L	192	180	1.06	А

ECKERT & ZIEGLER ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM GEL LABORATORIES LLC

(PAGE 1 OF 2)

Footnotes are on page 2 of 2.

117

* 8

A Train to A

1. S.

	Identification				Reported	Known		
Quarter	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	Ratio (c)	Evaluation (d
2nd Quarter 2009	E6729-278	Charcoal	I-131	pCi	92.7	95.5	0.97	А
	E6730-278	Milk	Sr-89	pCi/L	85.1	112	0.76	А
			Sr-90	pCi/L	10.9	16.7	0.65	Ν
	E6731-278	Milk	I-131	pCi/L	89.8	102.0	0.88	Å
			Ce-141	pCi/L	284	284	1.00	А
			Cr-51	pCi/L	404	400	1.01	А
			Cs-134	pCi/L	158.0	166	0.95	А
			Cs-137	pCi/L	192	192	1.00	А
			Co-58	pCi/L	94.8	91.9	1.03	А
			Mn-54	pCi/L	142	137	1.04	А
			Fe-59	pCi/L	123	122	1.01	А
			Zn-65	pCi/L	179	175	1.02	А
		•	Co-60	pCi/L	315	312	1.01	А
	E6732-278	Water	I-131	pCi/L	85.2	88.3	0.97	А
			Ce-141	pCi/L	229	216	1.06	А
			Cr-51	pCi/L	311	304	1.02	А
			Cs-134	pCi/L	137	126	1.09	А
			Cs-137	pCi/L	151	146	1.04	А
			Co-58	pCi/L	72.1	70	1.03	А
			Mn-54	pCi/L	107	104	1.03	А
•			Fe-59	pCi/L	90.4	92.9	0.97	А
			Zn-65	pCi/L	138	133	1.04	A
			Co-60	pCi/L	242	237	1.02	А

ECKERT & ZIEGLER ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM GEL LABORATORIES LLC

(PAGE 2 OF 2)

(a) GEL reported result.

(b) Reference value.

9.2

(c) Ratio GEL to Eckert & Ziegler Analytics.

(d) Evaluation: A = Acceptable, N= Not Acceptable.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) GEL LABORATORIES LLC

(PAGE 1 OF 1)

,	Identification				Reported	Known	Acceptance	
Quarter	Number	Media	Nuclide	Units	Value (a)	Value (b)	Range	Evaluation (c)
2nd Quarter 2009	09-GrF20	Filter	Gr-Beta	Bq	0.297	0.28	0.140 - 0.419	А
			Gr-Alpha	Bq	0.069	0.35	>0.0 - 0.696	A
	09-RdF20	Filter	Co-57	Bq	1.347	1.30	0.91 - 1.69	А
			Co-60	Bq	1.413	1.22	0.89 - 1.59	А
			Cs-134	Bq	2.763	2.93	2.05 - 3.81	А
			Cs-137	Bq	1.487	1.52	1.06 - 1.98	А
			Mn-54	Bq	2.403	2.27	1.590 - 2.952	А
			Zn-65	Bq	1.613	1.36	0.95 - 1.77	А
			Sr-90	Bq	0.692	0.64	0.448 - 0.832	A .
	09-GrW20	Water	Gr-Beta	Bq/L	1.337	1.27	0.64 - 1.91	А
			Gr-Alpha	Bq/L	0.506	0.64	>0.0 - 1.270	Α
	09-MaW20	Water	Co-57	Bq/L	18.8	18.9	13.2 - 24.6	А
			Co-60	Bq/L	16.8	17.21	12.05 - 22.37	А
r.			Cs-134	Bq/L	21.9	22.5	15.8 - 29.3	А
			Cs-137	Bq/L	0.0	0	(1)	А
			Mn-54	Bq/L	15.1	14.66	10.26 - 19.06	А
			Sr-90	Bq/L	7.43	7.21	5.05 - 9.37	А
			Zn-65	Bq/L	14.6	13.6	9.5 - 17.7	А

(a) GEL reported result.

(b) Reference value.

 $10^{-\alpha}$

The second s

.....

-

(c) Evaluation: A = Acceptable, N = Not Acceptable.

(1) False positive test.

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM GEL LABORATORIES LLC

(PAGE 1 OF 1)

I	dentification				Reported	Known	Acceptance	
Quarter	Number	Media	Nuclide	Units	Value (a)	Value (b)	Range	Evaluation (c)
1st Quarter 2009	RAD-76	Water	Gr-Alpha	pCi/L	51.3	52.3	27.3 - 52.3	А
			Gr-Beta	pCi/L	41.9	46.1	31.0 - 53.3	А
			H-3	pCi/L	3760	4230	3610 - 4660	А
			I-131	pCi/L	25.1	22.2	18.4 - 26.5	А
			Sr-89	pCi/L	72.8	65	52.7 - 73.0	А
			Sr-90	pCi/L	36.5	41.9	30.8 - 48.1	А

(a) GEL reported result.

(b) Reference value.

23 **4**

(c) Evaluation: A = Acceptable, N = Not Acceptable.

	Identification				Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
September 2009	E6897-396	Milk	Sr-89	pCi/L	113	107	1.06	А
			Sr-90	pCi/L	17.4	18.8	0.93	A
	E6898-396	Milk	I-131	pCi/L	89.2	98.6	0.90	А
			Ce-141	pCi/L	249	275	0.91	А
			Cr-51	pCi/L	213	221	0.96	А
			Cs-134	pCi/L	104.0	123	0.85	А
			Cs-137	pCi/L	172	185	0.93	А
			Co-58	pCi/L	96.3	99.4	0.97	А
	x . 1		Mn-54	pCi/L	201	206	0.98	А
	·		Fe-59	pCi/L	154	147	1.05	А
			Zn-65	pCi/L	213	204	1.04	А
			Co-60	pCi/L	154	160	0.96	Α
	E6900-396	Filter	Ce-141	pCi	181	161	1.12	А
			Cr-51	pCi	145	130	1.12	A
			Cs-134	pCi	71.8	72	0.99	Â
			Cs-137	pCi	115	109	1.06	А
			Co-58	pCi	62	58	1.06	A
			Mn-54	pCi	129	121	1.07	А
			Fe-59	pCi	97	98	0.98	А
			Zn-65	pCi	110	120	0.92	А
			Co-60	· pCi	98.7	94.1	1.05	А
	E6899-396	Charcoal	I-131	pCi	89.5	92.3	0.97	A

ECKERT & ZIEGLER ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

(PAGE 1 OF 2)

Footnotes are on page 2 of 2.

1.11.1

į

1.

a na star a suado

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
December 2009	E6946-396	Milk	Sr-89	pCi/L	131	131	1.00	A
			Sr-90	pCi/L	19.3	17.9	1.08	А
	E6947-396	Milk	I-131	pCi/L	79.2	87.3	0.91	А
			Ce-141	pCi/L	193	202	0.96	А
			Cr-51	pCi/L	512	548	0.93	А
			Cs-134	pCi/L	222	253	0.88	А
			Cs-137	pCi/L	163	179	0.91	А
			Co-58	pCi/L	200	211	0.95	А
/			Mn-54	pCi/L	178	178	1.00	А
			Fe-59	pCi/L	176	178	0.99	А
			Zn-65	pCi/L	326	345	0.94	А
			Co-60	pCi/L	240	256	0.94	А
	E6949-396	Filter	Ce-141	pCi	103	103	1.00	А
			Cr-51	pCi	290	280	1.04	А
			Cs-134	pCi	116	129	0.90	А
			Cs-137	pCi	93.4	91.5	1.02	А
			Co-58	pCi	111	108	1.03	A
			Mn-54	pCi	81.0	90.8	0.89	A
			Fe-59	pCi	106	90.8	1.17	А
			Zn-65	pCi	155	176	0.88	А
			Co-60	pCi	__ 135	131	1.03	А
	E6948-396	Charcoal	I-131	pCi	93.3	93.9	0.99	А

ECKERT & ZIEGLER ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

(PAGE 2 OF 2)

(a) Teledyne Brown Engineering reported result.

(b) The Eckert & Ziegler Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) Ratio of Teledyne Brown Engineering to Eckert & Ziegler Analytics results.

(d) Eckert & Ziegler Analytics evaluation based on TBE internal QC limits: A = Acceptable. Reported result falls within ratio limits of 0.80-1.20. W = Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

(PAGE 1 OF 1)

	•			· ·				
Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c
September 2009	09-MaW21	Water	Cs-134	Bq/L	26.5	32.2	22.5 - 41.9	А
			Cs-137	Bq/L	37.2	41.2	28.8 - 53.6	А
			Co-57	Bq/L	32.2	36.6	25.6 - 47.6	А
		•	Co-60	Bq/L	14.0	15.40	10.8 - 20.0	А
			H-3	Bq/L	705	634.1	443.9 - 824.3	A
			Mn-54	Bq/L	-0.1015		(1)	А
			Sr-90	Bq/L	13.9	12.99	9.09- 16.89	А
		/	Tc-99	Bq/L	8.06	10.0	7.0 - 13.0	А
			Zn-65	Bq/L	26.2	26.9	18.8 - 35.0	А
	09-GrW21	Water	Gr-Alpha	Bq/L	1.27	1.047	>0.0 - 2.094	А
			Gr-Beta	Bq/L	9.70	7.53	3.77 - 11.30	А
	09-RdF21	Filter	Am-241	Bq/sample	-0.0040		(1)	A
			Cs-134	Bq/sample	-0.02		(1)	A A
		•	Cs-137	Bq/sample	1.4	1.4	0.98 - 1.82	А
			Co-57	Bq/sample	5.98	6.48	4.54 - 8.42	А
			Co-60	Bq/sample	1.01	1.03	0.72 - 1.34	А
			Mn-54	Bq/sample	5.16	5.49	3.84 - 7.14	А
			Sr-90	Bq/sample	0.925	0.0835	0.585 - 1.086	А
			Zn-65	Bq/sample	4.39	3.93	2.75 - 5.11	А
	09-GrF21	Filter	Gr-Alpha	Bq/sample	0.357	0.659	>0.0 - 1.318	А
			Gr-Beta	Bq/sample	1.403	1.320	0.66 - 1.98	А

(1) False positive test.

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A = Acceptable, W = Acceptable with warning, N = Not Acceptable.

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE QC SPIKE PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

(PAGE 1 OF 1)

	Identification				Reported	Known		
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Control Limits	Evaluation (c)
October 2009	RAD 79	Water	Sr-89	pCi/L	64.75	62.2	50.2 - 70.1	A
• • •			Sr-90	pCi/L	30.30	30.7	22.4 - 35.6	А
			Ba-133	pCi/L	97.9	92.9	78.3 - 102	А
			Cs-134	pCi/L	76.8	79.4	65.0 - 87.3	А
			Cs-137	pCi/L	59.9	54.6	49.1 - 62.9	А
			Co-60	pCi/L	121	117	105 - 131	А
			Zn-65	pCi/L	115	99.5	89.6 - 119	А
			Gr-Alpha	pCi/L	19.6	23.2	11.6 - 31.1	А
			Gr-Beta	pCi/L	28.5	26.0	16.2 - 33.9	А
			I-131	pCi/L	22.1	22.2	18.4 - 26.5	А
		•	H-3	pCi/L	16133	16400	14300 - 18000	А

(a) Teledyne Brown Engineering reported result.

1

ł

- (b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.
- (c) ERA evaluation: A = Acceptable. Reported result falls within the Warning Limits. NA = Not Acceptable. Reported result falls outside of the Control Limits. CE = Check for Error. Result falls within the Control Limits and outside of the Warning Limit.