Omaha Public Power District Fort Calhoun Nuclear Station

2009 Radiological Environmental Operating Report

•

ŏ

OMAHA PUBLIC POWER DISTRICT FORT CALHOUN STATION RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TECHNICAL SPECIFICATION 5.9.4.b

January 01, 2009 – December 31, 2009

Annual Radiological Environmental Operating Report

This report is submitted in accordance with Section 5.9.4.b of the Technical Specifications of Fort Calhoun Station Unit No. 1, Facility Operating License DPR-40 for the period January 01, 2009 through December 31, 2009.

In addition, this report provides any observations and anomalies that occurred during the monitoring period.

Reviewed by:

Supervisor-System Chemistry

Approved by:

Manager-Chemistry

Annual Radiological Environmental Operating Report

In accordance with Technical Specification 5.9.4.b, herein is the Fort Calhoun Station (FCS) Annual Radiological Environmental Operating Report for year 2009. The data provided is consistent with the objectives as specified in Section 5.2.2 of the Offsite Dose Calculation Manual (ODCM), "Annual Radiological Environmental Operating Report." The report is presented as follows:

- 1) An introductory discussion of the implementation of the Radiological Environmental Monitoring Program (REMP), including program observations and environmental impact relevant to the operation of FCS.
- 2) The sample class, sample collection frequency, number of sample locations, and the number of samples collected this reporting period for each parameter is delineated in Table 1.0.
- 3) A statistical evaluation of REMP data is summarized in Table 2.0, in accordance with Regulatory Guide 4.8, Table 1. For each type of sample media and analysis, Table 2.0 presents data separately for all indicator locations, all control (background) locations, and the location having the highest annual mean result. For each of these classes, Table 2.0 specifies the following:
 - a. The total number of analyses
 - b. The fraction of analyses yielding detectable results (i.e., results above the highest Lower Limit of Detection (LLD) for this period
 - c. The maximum, minimum, and average results
 - d. Locations with the highest annual mean are specified by code, name, and by distance and direction from the center of plant reactor containment building.
- 4) Table 3.0 is a listing of missed samples and explanations
- 5) Table 4.0 is the 2008 Land Use Survey
- 6) Review of Environmental Inc. Quality Assurance Program
- 7) Appendix A describes the Interlaboratory Comparison Program
- 8) Appendix B describes the vendor Data Reporting Conventions utilized
- 9) Appendix C reports the information required when primary coolant specific activity has exceeded the limits of Technical Specification 2.1.3
- 10) Appendix D is the Sample Location Maps

INTRODUCTION

Radiological Environmental Monitoring Program (REMP) - 2009

This report gives the results of the Radiological Environmental Monitoring Program (REMP) for the year 2009. The REMP is a requirement of the Fort Calhoun Station (FCS) operating license. It was initiated prior to plant operation in 1973.

The main purpose of the REMP is to ensure public safety by monitoring plant discharges and assessing the effect, if any, of plant operations, on the environment. Samples are collected that would account for various exposure pathways such as ingestion, inhalation, adsorption and direct exposure. Samples collected on a regular basis include: air, surface water, ground water, milk, vegetation, fish, sediment, and food crops. Direct radiation is measured by thermoluminescent dosimeters (TLDs). These samples and TLDs are sent to an independent vendor laboratory for analysis. The vendor uses analytical methods that are sensitive enough to detect a level of activity far below that which would be considered harmful. Locations for sample collection are based on radiological and meteorological data from the Annual Effluent Release Report and information obtained from the Environmental Land Use Survey.

Most samples, particularly indicator samples, are collected in a circular area within a five-mile radius of plant containment. (However, control locations are usually outside of five miles.) This circle is divided into sixteen equal sectors, each assigned an identification letter "A" through "R" (note: letters "I" and "O" are not used, as they may be mistaken for the numbers "1" and "0"). Sector "A" is centered on North or zero degrees. Sectors are also given directional labels such as "West-Southwest" ("WSW"). Sample locations are listed by number along with their respective distances and direction from plant containment, in the Offsite Dose Calculation Manual (ODCM).

When assessing sample results, data from indicator locations (those most likely to be effected by plant operations) are compared to those from control locations (those least or not likely to be effected). Results from an indicator location which were significantly higher than those from a control location, could indicate a plant-attributable effect, and could require additional investigation.

The results of the sample analyses, as required by the FCS Offsite Dose Calculation Manual (ODCM), are presented in the attached statistical tables in accordance with Table 1 of Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants." Sample collection was conducted by plant chemistry/environmental staff. A contract vendor (Environmental Inc., Northbrook, Illinois) performed sample analyses, preparation of monthly reports and the statistical evaluation of sample results. All vendor analysis techniques met the sensitivity requirements as stated in the ODCM.

Results for 2009 were within expected ranges and compared closely with historical results. The following is a review of specific sample results.

1) Ambient Gamma Radiation

Ambient gamma radiation is measured by thermoluminescent dosimeters (TLDs) provided by the vendor laboratory. These dosimeters contain calcium sulfate phosphors and are processed quarterly.

All sample results are within the range of historical data and displayed less than 10% difference when compared to historical averages. No discrepancy between released effluents and resultant radiation dose measured was observed. No changes in plant operation/procedures are required based upon observed impacts to the environment to date.

Location	Avg. Dose (mr/week)	2009 Avg. Dose (mr/week)
Α	1.38	1.40
В	1.48	1.45
С	1.46	1.48
D	1.24	1.20
F	1.42	1.43
G	1.32	1.38
H	1.47	1.48
1	1.56	1.53
J	1.60	1.55
K	1.53	1.45
N*	1.39	1.38
O*	1.36	1.40
P*	1.42	1.43
S*	1.45	1.45
L (Control)	1.26	1.30

10-Year Trend Comparison of TLD Locations

* At least 5-Year comparison due to data availability

2) <u>Milk/Pasture</u>

Milk samples are collected every two weeks from the beginning of May through September. Indicator samples are collected from a herd of milk goats at a family farm located approximately 0.7 miles from the plant in Sector K (South-Southwest). The control samples are collected from a commercial dairy cow herd located approximately 9.9 miles from the plant in Sector J (South). These locations are unchanged from last year.

All milk sample results for lodine-131, Cesium-134, Cesium-137 and other gammas were at the LLD for both indicator and control locations. No plant-related effects were observed.

3) <u>Fish</u>

Fish are collected on an annual basis. Control samples are collected at a location approximately twenty miles upstream of the plant (river miles 665 - 667). Indicator samples are collected in the immediate vicinity of the power plant (river miles 644 - 646). Several species of fish, important to commercial and recreational interest, representing all levels of the aquatic food chain are collected at both locations.

All sample results are within the range of historical data. Results from both control and indicator locations were less than LLD for all gamma emitters, indicating no plant-related effects.

4) <u>Food Crop</u>

Based on the results of the biennial Land Use Survey, the nearest high deposition pathway for food crops is the Alvin Pechnik Farm in Sector H (0.94 miles, 163°). Accordingly, vegetable samples were collected at Alvin Pechnik Farm for the purposes of the 2009 REMP.

Samples were comparable with historical results and within the range of results reported from the control location garden at Mohr Dairy.

All results were at the LLD for all non-naturally occurring radionuclides. No plant-related effects were observed.

5) <u>Sediment</u>

River sediment samples are collected twice a year at an upstream control location and a downstream indicator location.

All results were at the LLD for all non-naturally occurring radionuclides. No plant-related effects were observed.

6) <u>Air Monitoring</u>

Air sample results for 2009 were well within historical limits for all locations. Additionally, all indicator locations showed results very similar to the control locations.

All sample results are within the range of historical data. All indicator locations displayed less than 10% difference when compared to historical average (the control location varied by 14%).

Results from both control and indicator locations were less than LLD for gamma emitters and iodine. No discrepancy between released effluents and resultant radiation dose measured was observed. No changes in plant

operation/procedures are required based upon observed impacts to the environment to date.

Location	Avg. Beta (pCi/m³)	2009 Avg. Beta (pCi/m ³)
Sector B	0.030	.030
Sector D	0.029	.029
Sector I*	0.026	.026
Sector J*	0.028	.027
Sector K*	0.027	.028
Sector F (Control)	0.029	.030

10-Year Trend Comparison of Air Sampling Locations

* At least a 5-Year comparison due to data availability

7) <u>Surface Water</u>

Water samples are collected upstream of the plant (control location) as well as half-mile downstream, and at a municipal water treatment plant on the north edge of Omaha.

Results for Cs-134, Cs-137, and other gammas were all less than LLD. Tritium results were also less than LLD. No plant-related effects were detected.

8) Ground Water

Quarterly residential well water samples are collected at the following locations: Station No. 15, Smith Farm, Station No. 20, Mohr Dairy, Station No. 33, Bansen Farm and Station No. 40, Herber Acreage. All sample results to date have been at the LLD except gross beta due to naturally occurring radionuclides. Gross beta results have ranged from a low of 3.0 pCi/liter to a high of 28.6 pCi/liter, with an average gross beta for the year of 10.7 pCi/liter. Strontium-90 analysis is being conducted on wells as part of the station's groundwater protection program.

Table 1.0 Sample collection program

Sample Class	Collection Frequency	Number of Sample Locations	Number of Samples Collected This Period
Background Radiation (TLDs)	Quarterly	15	60
Air Particulates	Weekly	6	312
Airborne lodine	Weekly	6	312
Milk	Semimonthly	2	22
Surface Water	Monthly	3	36
Ground Water	Quarterly	4	16
Fish	Annually	2	5
Sediment	Semiannually	2	4
Food Crops	Annually	2	9

TOTAL

776

 Table 2.0
 Radiological Environmental Monitoring Program Summary

Reporting Period

January-December, 2009

 Name of Facility
 Fort Calhoun Nuclear Power Station - Unit 1
 Docket No.
 50-295

 Location of Facility
 Washington, Nebraska
 (County, State)

	- <u>T</u>				<u> </u>			
Comple	Tune	n d			Location with	Highest	Control	Number
Sample	Number	lu of	пр _р	Mean (F) ^c	Annuariv	Mean (E) ^c	Locations Mean (E) ^c	Non-
(Units)	Analyse	es ^a	220	Range ^c	Location ^d	Range ^c	Range ^c	Results
	 				I			
Background	Gamma	60	0.5	1,4 (56/56)	OTD-J-(I)	1.6 (4/4)	1 3 (4/4)	0
Radiation				(1.2-1.6)	Ellis	(1.5-1.6)	(1.2-1.4)	Ū
(TLD)					0.7 mi. @ 180 °			
(mR/week)								
Ainhanna		212	0.005	0.028 (260/260)		0.020 (50/50)	0.000 (50/50)	
Particulates	GB	312	0.005	(0.028 (260/260)	Old Plant Access Rd	0.030 (52/52)	0.030 (52/52)	U
(pCi/m ³)	GS	24		(0.010-0.073)	0.6 mi. @ 207 °	(0.013-0.073)	(0.014-0.002)	
u ,	Cs-134		0.001	< LLD	-	-	< LLD	0
	Cs-137		0.001	< LLD	-	-	< LLD	0
	Other Gan	nmas	0.001	< LLD	-	-	< LLD	0
Airborne	L131	312	0.07			_		0
Iodine (pCi/m3)		012	0.01			_		Ű
Milk	I-131	22	0.5	< LLD	-	-	< LLD	0
(pCi/L)	<u> </u>	22						
	K-40	22	150	1237 (11/11)	OFM-D-(C)	1351 (11/11)	1351 (11/11)	0
			100	(1011-1457)	Mohr Dairy	(1221-1453)	(1221-1453)	Ŭ
				(9.8 mi. @ 187°	((,	
	Cs-134		15	< LLD	-	· -	< LLD	0
	Cs-137		15	< LLD	-	-	< LLD	0
	Other Gam	imas	15	< LLD	-	-	< LLD	0
Ground Water	GB	16		10.7 (12/12)	OGW-A-(I)	20,1 (4/4)	5.8 (12/12)	0
(pCi/L)				(3.0-28.6)	Smith Farm	(17.1-28.6)	(3.7-8.1)	
					1.9 mi. @ 133°			
	н-з	16	300	< LLD	-	-	< LLD	0
	Sr-90	16	0.9	< LLD	-	-	< LLD	0
	GS	16						
(pCi/L)	Cs-134		15	< LLD	-	-	< LLD	0
	Cs-137		18	< LLD	-	-	< LLD	0
	Other Gam	imas	15	< LLD	-	-	< LLD	0
Surface Water	GS	36						
(pCi/L)	Cs-134	1	15	< LLD	-	~	< LLD	0
	Cs-137		18	< LLD	-	-	< LLD	0
	Other Gam	imas	15	< LLD	-	-	< LLD	0
	H-3	12	300	< LLD	-	-	< LLD	0

0

0

0

0

< LLD

< LLD

< LLD

< LLD

-	Table 2.0 Radiolo	ogical Environmen	tal Monito	ring Program Summ	ary	Reporting Period	January-Dece	mber, 2009
	Name	of Facility	Fort Call	noun Nuclear Power	Station - Unit 1	Docket No	. 50-295	
	Locatio	on of Facility	Washing	ton, Nebraska		•		
		-	((County, State)				
F				Indicator	Location with	Highest	Control	Number
	Sample	Type and		Locations	Annual N	lean	Locations	Non-
I	Type	Number of	LLD [⊳]	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
	(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
	Fich	CS 5						
	(nCi(nut)	Mn 54	0.019					
	(pol/g wei)	1VIII-54 Co 58	0.010		-	-		
		Co-50	0.021		-	-		
		C0-60	0.010		-	-		
		70.65	0.000		-	-		
		ZII-03	0.042		-	-		
		Ru-103	0.020		-	-		
		Cs-134	0.019		-	-		
L		CS-137	0.021		-	-		<u> </u>
	Sediment	GS 4						
	pCi/a drv	Mn-54	0.028	< LLD	-	_	< LLD	0
	P=-99	Co-58	0.024	< LLD	· _		< LLD	0
		Co-60	0.024	< LLD	-	-	< LLD	0
		Fe-59	0.059	<lld< td=""><td>-</td><td>-</td><td><11D</td><td>0</td></lld<>	-	-	<11D	0
		Zn-65	0.064	< LLD	-	-	< LLD	0
ľ		Cs-134	0.018	<lld< td=""><td>-</td><td>_</td><td>< LLD</td><td>0</td></lld<>	-	_	< LLD	0
		Cs-137	0.022	<11D	-	_	<11D	0
ł								1
	Food Crops	GS 9						
	(pCi/g wet)	Mn-54	0.012	< LLD	-		< LLD	0
		Co-58	0.013	< LLD	-	- 1	< LLD	0
		Co-60	0.011	< LLD	-	-	< LLD	0
		Fe-59	0.024	< LLD	-	-	< LLD	0
		Zn-65	0.024	< LLD	-	-	< LLD	0

^a GB = gross beta, GS = gamma scan.

Zr-Nb-95

Cs-134

Cs-137

Ba-La-140

^b LLD = nominal lower limit of detection based on a 95% confidence level.

0.012

0.012

0.011

0.016

^c Mean and range are based on detectable measurements only (i.e., >LLD) Fraction of detectable measurements at specified locations is indicated in parentheses (F).

< LLD

< LLD

< LLD

< LLD

^d Locations are specified: (1) by code, (2) by name, and (3) by distance and direction relative to the Reactor Containment Building.

^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds the typical pre-operational value for the medium or location.

 Table 3.0
 Listing of Missed Samples (samples scheduled but not collected)

Sample Type	Date	

Location

Reason

All required samples for the REMP were collected as scheduled for 2009.

	Ü		۲					۲				۲				۲	۲						

Table 4.0	Environmental.	Land Use Survey
-----------	----------------	-----------------

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group ⁽¹⁾	Remarks
	Nearest Residence	Wright	4.36 / 351	Interview	Adult, Child	
	Milk Animal	None	None	None	None	
A	Meat Animal	None	None	None	None	
	Vegetable Garden	None	None	None	None	
	Groundwater	Cottonwood	4.57 / 349	Interview	None	
	Nearest Residence	J. Rand	1.93 / 12	Mail Survey	Adult	
	Milk Animal	None	None	None	None	
В	Meat Animal	None	None	None	None	
	Vegetable Garden	None	None	None	None	
	Groundwater	J. Rand	1.93 / 12	Mail Survey	Adult	
	Nearest Residence	M. Hansen	1.52 / 42	Mail Survey	Adult, Child	
	Milk Animal	None	None	None	None	
С	Meat Animal	None	None	None	None	
	Vegetable Garden	Thiele	1.59 / 52	Interview	Adult, Child	
	Groundwater	M. Hansen	1.52 / 42	Mail Survey	Adult, Child	
	Nearest Residence	G. Meade	4.79 / 63	Interview	Adult	
	Milk Animal	None	None	None	None	
D	Meat Animal	None	None	None	None	
	Vegetable Garden	G. Meade	4.79 / 63	Interview	Adult	
	Groundwater	G. Meade	4.79 / 63	Interview	Adult	

(1) Approximate age categories in receptor deck for evaluating dose commitment:
 Infant 0-1 Yr.
 Child 1-11 Yrs.
 Teen 12-17 Yrs.
 Adult Over 17 Yrs.

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group ⁽¹⁾	Remarks
	Nearest Residence	B. Herman	4.67 / 89	City Register	Adult	
	Milk Animal	None	None	None	None	
E .	Meat Animal	D. Brothers	4.91 / 90	City Register	Adult	
	Vegetable Garden	B. Herman	4.67 / 89	City Register	Adult	
	Groundwater	B. Herman	4.67 / 89	City Register	Adult	
	Nearest Residence	Wilson Island	4.22 / 121	Interview	Adult	
	Milk Animal	None	None	None	None	
F	Meat Animal	Watts	5.00 / 112	City Register	Adult	
	Vegetable Garden	Watts	5.00 / 112	City Register	Adult	
	Groundwater	Wilson Island	4.22 / 121	Interview	Adult	
	Nearest Residence	T. Carter	1.67 / 145	Interview	Adult	
	Milk Animal	None	None	None	None	
G	Meat Animal	None	None	None	None	
	Vegetable Garden	W. Kalin	1.74 / 145	Interview	Adult	
	Groundwater	Smith	1.99 / 134	Interview	Adult	
	Nearest Residence	S. Herber	0.65 / 163	Interview	Adult, Teen	
	Milk Animal	None	None	None	None	
Н	Meat Animal	None	None	None	None	
	Vegetable Garden	A. Pechnik	0.94 / 163	Interview	Adult	
-	Groundwater	S. Herber	0.65 / 163	Interview	Adult, Teen	

Table 4.0 Environmental Land Use Survey

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

Child 1-11 Yrs.

12-17 Yrs. Teen

Over 17 Yrs. Adult

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group ⁽¹⁾	Remarks
	Nearest Residence	Dowler	0.73 / 175	Interview	Adult, Teen	
-	Milk Animal	Stangl	3.44 / 169	Mail Survey	Adult, Teen, Child, Infant	
J	Meat Animal	L. Dickes	2.60 / 170	Interview	Adult	
	Vegetable Garden	Dowler	0.73 / 175	Interview	Adult, Teen	
	Groundwater	Dowler	0.73 / 175	Interview	Adult, Teen	
	Nearest Residence	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
	Milk Animal	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
к	Meat Animal	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
	Vegetable Garden	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
	Groundwater	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
	Nearest Residence	D. Robertson	0.73 / 224	Interview	Adult	
	Milk Animal	None	None	None	None	
L	Meat Animal	D. Robertson	0.73 / 224	Interview	Adult	
	Vegetable Garden	Stratman	0.75 / 232	Interview	Adult	
	Groundwater	D. Robertson	0.73 / 224	Interview	Adult	
	Nearest Residence	M. Bensen	1.06 / 257	City Register	Adult	
	Milk Animal	None	None	None	None	
м	Meat Animal	B. Wrich	2.42 / 250	City Register	Adult, Teen	
	Vegetable Garden	D. Russell	1.21 / 246	Mail Survey	Adult	
	Groundwater	M. Bensen	1.06 / 257	City Register	Adult	

Environmental Land Use Survey Table 4.0

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

Child 1-11 Yrs.

12-17 Yrs. Teen

Over 17 Yrs. Adult

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group ⁽¹⁾	Remarks
	Nearest Residence	D. Nielsen	1.20 / 263	Mail Survey	Adult	
	Milk Animal	None	None	None	None	
N	Meat Animal	J. Anderson	3.25 / 281	City Register	Adult	
	Vegetable Garden	D. Nielsen	1.20 / 263	Mail Survey	Adult	
	Groundwater	R. Anderson	1.30 / 277	Interview	Adult	
	Nearest Residence	G. Wachter	2.27 / 302	City Register	Adult, Child	
	Milk Animal	None	None	None	None	
P	Meat Animal	G. Wachter	2.27 / 302	City Register	Adult, Child	
	Vegetable Garden	G. Wachter	2.27 / 302	City Register	Adult, Child	
	Groundwater	G. Wachter	2.27 / 302	City Register	Adult, Child	
	Nearest Residence	R. Hansen	2.40 / 318	City Register	Adult	
	Milk Animal	None	None	None	None	
Q	Meat Animal	None	None	None	None	
	Vegetable Garden	R. Hansen	2.40 / 318	City Register	Adult	
	Groundwater	R. Hansen	2.40 / 318	City Register	Adult	
	Nearest Residence	K. Kelley	2.08 / 330	Interview	Adult	
	Milk Animal	None	None	None	None	
R	Meat Animal	None	None	None	None	
	Vegetable Garden	S. Sorensen	4.01 / 329	Mail Survey	Adult, Teen	
	Groundwater	Sonderup	3.73 / 328	City Register	Adult	

Table 4.0 Environmental Land Use Survey

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

Child 1-11 Yrs.

12-17 Yrs. Teen

Over 17 Yrs. Adult

Review of Environmental Inc., Quality Assurance Program

Fort Calhoun Station contracts with Environmental Inc., Midwest Laboratory (vendor lab) to perform radioanalysis of environmental samples. Environmental Inc. participates in interlaboratory comparison (cross-check) programs as part of its quality control program. These programs are operated by such agencies as the Department of Energy, which supply blind-spike samples such as milk or water containing concentrations of radionuclides unknown to the testing laboratory. This type of program provides an independent check of the analytical laboratory's procedures and processes, and provides indication of possible weaknesses. In addition, Environmental Inc. has its own in-house QA program of blind-spike and duplicate analyses.

Vendor in-house spike sampling was performed without a failure and in-house blank analyses were performed within acceptable ranges.

Three samples from the Department of Energy's Mixed Analyte Performance Evaluation Program experienced failures. Air sample STAP-1174 had erroneously high results for Am-241 (0.29 pCi/filter). The acceptable range for these results was 0.14 - 0.27 pCi/filter. One of the four results experienced low sample recovery. An average of the three remaining results with proper recovery was within specification (0.025 pCi/filter). The same sample had Sr-90 determined high outside the acceptable range. A reanalysis of the sample produced acceptable results.

Soil sample STSO-1188 had low result (310.5 pCi/kg) for an acceptable range of 319-512 pCi/kg. An incompletion separation of strontium from calcium resulted in a high recovery value causing the low bias. The result was re-performed with a satisfactory recovery value with satisfactory results (363 pCi/kg).

STW-1170 failed high for an Am-241 test. Insufficient sample existed to perform a reanalysis. A similar test was performed satisfactory during the second cycle of testing. None of the identified isotopic analyses which had failures associated with it are part of Fort Calhoun Environmental analytical processes. No station analytical results were impacted by these failures. All Quality Assurance testing associated with elements contained in the station's required analytical suites were performed satisfactorily. These results indicate the vendor's ability to self-identify and correct any deviations from acceptable or expected results. The test results had no impact on Fort Calhoun samples and were documented as such by the vendor.

Two failures from QA samples performed as part of the Environmental Resource Associates Inter-laboratory Comparison Cross-check Program. Water sample STW-1182 experienced a low result (147.7 pCi) for Cs-137 whose acceptance range was 151 – 187 pCi. All gamma results were found to contain a low bias (5 results still passed). A large plastic burr was discovered on the base of the marinelli. Recount in another marinelli was performed with acceptable results. A review of gamma isotopic results of FCS environmental samples was conducted. K-40 is the only gamma emitter identified in the FCS REMP program; its results did not show a low bias. FCS results have not been impacted by this vendor identified issue. Gamma testing was satisfactorily performed during the second round of testing.

STW-1186 failed high for H-3 analysis (22819 pCi/L) for an acceptable range of 17800 – 22300 pCi/L. Samples were recounted confirming the high value. No reason for the failure was listed. The analysis was re-performed with acceptable results. Tritium testing was satisfactorily performed during the second round of testing. A review of tritium results of FCS environmental samples was conducted. No tritium was identified in any REMP samples; therefore no meaningful high bias could be examined.

These results indicate the vendor's ability to self-identify and correct any deviations from acceptable or expected results. The test results had no impact on Fort Calhoun samples and were documented as such by the vendor.

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE:

"Newson"

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2009 through December, 2009

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

Table A-2 lists results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 lists REMP specific analytical results from the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Complete analytical data for duplicate analyses is available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Results in Table A-7 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML).

Attachment A lists the laboratory precision at the 1 sigma level for various analyses. The acceptance criteria in Table A-3 is set at ± 2 sigma.

Out-of-limit results are explained directly below the result.

ì

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES^a

Analysis	l evel	One standard deviation
<u> </u>		
Gamma Emitters	5 to 100 pCi/liter or kg	5.0 pCi/liter
	> 100 pCi/liter or kg	5% of known value
	_	
Strontium-89 ^b	5 to 50 pCi/liter or kg	5.0 pCi/liter
	> 50 pCi/liter or kg	10% of known value
L		
Strontium-90°	2 to 30 pCi/liter or kg	5.0 pCi/liter
	> 30 pCi/liter or kg	10% of known value
Potossium 40	> 0.1 a/liter or ka	5% of known value
Folassiumit		
Gross alpha	≤ 20 pCi/liter	5.0 pCi/liter
	> 20 pCi/liter	25% of known value
Gross beta	≤ 100 pCi/liter	5.0 pCi/liter
	> 100 pCi/liter	5% of known value
Traite and	< 1 000 - 0://iter	
៖ ពងបកា	≤ 4,000 pC//iter	$\pm 10^{\circ} =$
	> 4 000 pCi/liter	10% of known value
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value
Plutonium	≥ 0.1 pCi/liter, gram, or sample	10% of known value
Iodine-131,	≤ 55 pCi/liter	6 pCi/liter
Iodine-129°	> 55 pCi/liter	10% of known value
Uranium-238	< 35 pCi/liter	6 pCi/liter
Nickel-63 ^b	> 35 pCi/liter	15% of known value
Technetium-99 ^b		
redincium 00		
Iron-55 ^b	50 to 100 pCi/liter	10 pCi/liter
	> 100 pCi/liter	10% of known value
Other Analyses "		20% of known value

* From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies

Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

}

)

		Concentration (pCi/L)							
Lab Code	Date	Analysis	Laboratory	ERA	Control	·····			
			Result ^b	Result ^c	Limits	Acceptance			
STW-1181	04/06/09	Sr-89	41.0 ± 5.8	48.3	37.8 - 55.7	Pass			
STW-1181	04/06/09	Sr-90	32.4 ± 2.4	31.4	22.9 - 36.4	Pass			
STW-1182	04/06/09	Ba-133	44.6 ± 3.1	52.7	43.4 - 58.3	Pass			
STW-1182	04/06/09	Co-60	81.0 ± 3.1	88.9	80.0 - 100.0	Pass			
STW-1182	04/06/09	Cs-134	65.6 ± 5.2	72.9	59.5 - 80.2	Pass			
STW-1182 °	04/06/09	Cs-137	147.7 ± 5.3	168.0	151.0 - 187.0	Fail			
STW-1182	04/06/09	Zn-65	79.8 ± 7.5	84.4	76.0 - 101.0	Pass			
STW-1183	04/06/09	Gr. Alpha	47.6 ± 2.1	54.2	28.3 - 67.7	Pass			
STW-1183	04/06/09	Gr. Beta	38.5 ± 1.3	43.5	29.1 - 50.8	Pass			
STW-1184	04/06/09	I-131	24.4 ± 2.5	26.1	21.7 - 30.8	Pass			
STW-1185	04/06/09	Ra-226	14.0 ± 0.7	15.1	11.2 - 17.3	Pass			
STW-1185	04/06/09	Ra-228	14.3 ± 2.1	13.6	9.0 - 16.6	Pass			
STW-1185	04/06/09	Uranium	25.0 ± 0.2	25.7	20.6 - 28.8	Pass			
STW-1186 ^e	04/06/09	H-3	22819.0 ± 453.0	20300.0	17800.0 - 22300.0	Fail			
STW-1193	10/05/09	Sr-89	53.0 ± 6.0	62.2	50.2 - 70.1	Pass			
STW-1193	10/05/09	Sr-90	31.1 ± 2.2	30.7	22.4 - 35.6	Pass			
STW-1194	10/05/09	Ba-133	82.5 ± 3.5	92.9	78.3 - 102.0	Pass			
STW-1194	10/05/09	Co-60	116.8 ± 3.3	117.0	105.0 - 131.0	Pass			
STW-1194	10/05/09	Cs-134	78.8 ± 5.7	78.8	65.0 - 87.3	Pass			
STW-1194	10/05/09	Cs-137	54.2 ± 3.7	54.6	49.1 - 62.9	Pass			
STW-1194	10/05/09	Zn-65	102.5 ± 6.2	99.5	89.6 - 119.0	Pass			
STW-1195	10/05/09	Gr. Alpha	20.3 ± 2.0	23.2	11.6 - 31.1	Pass			
STW-1195	10/05/09	Gr. Beta	23.7 ± 1.4	26.0	16.2 - 33.9	Pass			
STW-1196	10/05/09	l-131	22.4 ± 1.4	22.2	18.4 - 26.5	Pass			
STW-1197	10/05/09	Ra-226	15.0 ± 0.7	13.9	10.4 - 16.0	Pass			
STW-1197	10/05/09	Ra-228	17.4 ± 2.0	14.9	10.0 - 18.0	Pass			
STW-1197	10/05/09	Uranium	32.5 ± 0.4	33.8	27.3 - 37.8	Pass			
STW-1198	10/05/09	H-3	17228.0 ± 694.0	16400.0	14300.0 - 18000.0	Pass			

-

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.
 ^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d All gamma -emitters showed a low bias. A large plastic burr found on the base of the Marinelli kept the beaker from sitting directly on the detector. Result of recount in a different beaker, Cs-137, 155.33 ± 14.55 pCi/L.

^e Samples were recounted and also reanalyzed. A recount of the original vials averaged 23,009 pCi/L. Reanalysis results were acceptable, 19,170 pCi/L.

				mR		
Lab Code	Date		Known	Lab Result	Control	
		Description	Value	±2 sigma	Limits	Acceptance
<u>Environment</u>	al, Inc.					
2009-1	7/6/2009	40 cm.	41.82	45.43 ± 3.66	29.27 - 54.37	Pass
2009-1	7/6/2009	50 cm.	26.76	32.17 ± 1.52	18.73 - 34.79	Pass
2009-1	7/6/2009	60 cm.	18.58	20.23 ± 1.60	13.01 - 24.15	Pass
2009-1	7/6/2009	70 cm.	13.65	15.28 ± 0.79	9.56 - 17.75	Pass
2009-1	7/6/2009	90 cm.	8.26	7.97 ± 0.40	5.78 - 10.74	Pass
2009-1	7/6/2009	90 cm.	8.26	7.37 ± 0.49	5.78 - 10.74	Pass
2009-1	7/6/2009	100 cm.	6.69	6.16 ± 0.64	4.68 - 8.70	Pass
2009-1	7/6/2009	110 cm.	5.53	4.38 ± 0.24	3.87 - 7.19	Pass
2009-1	7/6/2009	120 cm.	4.65	4.34 ± 0.23	3.26 - 6.05	Pass
2009-1	7/6/2009	150 cm.	2.97	2.92 ± 0.25	2.08 - 3.86	Pass
Environment	tal, Inc.					
2009-2	12/27/2009	40 cm.	44.83	51.38 ± 2.69	31.38 - 58.28	Pass
2009-2	12/27/2009	50 cm.	28.69	31.65 ± 2.81	20.08 - 37.30	Pass
2009-2	12/27/2009	60 cm.	19.92	21.38 ± 1.19	13.94 - 25.90	Pass
2009-2	12/27/2009	60 cm.	19.92	22.30 ± 0.50	13.94 - 25.90	Pass
2009-2	12/27/2009	75 cm.	12.75	13.48 ± 1.02	8.93 - 16.58	Pass
2009-2	12/27/2009	90 cm.	8.85	9.62 ± 0.74	6.20 - 11.51	Pass
2009-2	12/27/2009	90 cm.	8.85	8.39 ± 0.86	6.20 - 11.51	Pass
2009-2	12/27/2009	100 cm.	7.17	6.65 ± 0.96	5.02 - 9.32	Pass
2009-2	12/27/2009	120 cm.	4.98	4.89 ± 0.53	3.49 - 6.47	Pass
2009-2	12/27/2009	120 cm.	4.98	4.92 ± 0.58	3.49 - 6.47	Pass
2009-2	12/27/2009	150 cm.	3.19	2.74 ± 0.39	2.23 - 4.15	Pass
2000-2	12/27/2009	180 cm.	2.21	1.65 ± 0.33	1.55 - 2.87	Pass
2003-2						

]

)

TABLE A-2. Crosscheck program results; Thermoluminescent Dosimetry, (TLD, CaSO₄: Dy Cards).

TABLE A-3. In-House "Spike" Samples

}

)

)

		Concentration (pCi/L) ^a							
Lab Code ^b	Date	Analysis	Laboratory results	Known	Control				
			2s, n=1 °	Activity	Limits ^d	Acceptance			
	4/00/0000	D . 000							
W-12009	1/20/2009	Ra-226	12.88 ± 0.41	12.69	8.88 - 16.50	Pass			
W-12009	1/27/2009	Gr. Alpha	20.20 ± 0.40	20.08	10.04 - 30.12	Pass			
W-12709	1/27/2009	Gr. Beta	46.26 ± 0.42	45.60	35.60 - 55.60	Pass			
SPW-5553	1/27/2009	Ra-228	29.11 ± 2.53	28.66	20.06 - 37.26	Pass			
SPW-217	1/29/2009	U-238	44.98 ± 2.30	41.70	29.19 - 54.21	Pass			
SPW-539	2/24/2009	NI-63	167.93 ± 3.79	211.00	147.70 - 274.30	Pass			
SPW-718	3/6/2009	C-14	4893.50 ± 21.69	4740.20	2844.12 - 6636.28	Pass			
SPMI-814	3/16/2009	Cs-134	34.91 ± 3.85	35.70	25.70 - 45.70	Pass			
SPMI-814	3/16/2009	Cs-137	59.17 ± 6.70	55.60	45.60 - 65.60	Pass			
SPMI-814	3/16/2009	Sr-90	40.82 ± 1.59	44.07	35.26 - 52.88	Pass			
SPMI-815	3/16/2009	1-131	70.99 ± 0.62	69.60	55.68 - 83.52	Pass			
SPMI-815	3/16/2009	I-131(G)	63.08 ± 7.12	69.60	59.60 - 79.60	Pass			
SPW-817	3/16/2009	1-131	62.11 ± 0.59	69.60	55.68 - 83.52	Pass			
SPW-817	3/16/2009	l-131(G)	64.55 ± 8.32	69.60	59.60 - 79.60	Pass			
SPW-818	3/16/2009	Co-60	50.84 ± 4.70	51.99	41.99 - 61.99	Pass			
SPW-818	3/16/2009	Cs-134	33.78 ± 3.42	35.70	25.70 - 45.70	Pass			
SPW-818	3/16/2009	Cs-137	61.27 ± 7.18	55.64	45.64 <i>-</i> 65.64	Pass			
SPW-818	3/16/2009	Sr-90	47.26 ± 1.89	44.07	35.26 - 52.88	Pass			
SPAP-903	3/23/2009	Cs-134	13.29 ± 2.89	14.19	4.19 - 24.19	Pass			
SPAP-903	3/23/2009	Cs-137	103.24 ± 7.54	111.23	100.11 - 122.35	Pass			
SPCH-916	3/24/2009	l-131(G)	0.22 ± 0.02	0.22	0.13 - 0.31	Pass			
SPVE-888	4/1/2009	l-131(G)	0.40 ± 0.08	0.35	0.21 - 0.49	Pass			
SPF-820	4/7/2009	Cs-134	0.58 ± 0.02	0.56	0.34 - 0.78	Pass			
W-40909	4/9/2009	Gr. Alpha	19.26 ± 0.40	20.08	10.04 - 30.12	Pass			
W-40909	4/9/2009	Gr. Beta	48.04 ± 0.42	45.60	35.60 - 55.60	Pass			
SPW-12641	4/10/2009	Ra-228	40.06 ± 2.79	40.54	28.38 - 52.70	Pass			
SPW-1267	4/10/2009	U-238	41.71 ± 2.25	41.70	29.19 - 54.21	Pass			
TWW-2124	4/21/2009	H-3	7932.00 ± 279.00	7063.00	5650.40 - 8475.60	Pass			
W-42809	4/28/2009	Ra-226	14.49 ± 0.53	16.78	11.75 - 21.81	Pass			
SPMI-2186	5/12/2009	Cs-134	32.55 ± 1.26	33.89	23.89 - 43.89	Pass			
SPMI-2186	5/12/2009	Cs-137	54.27 ± 2.60	55.60	45.60 - 65.60	Pass			
SPMI-2186	5/12/2009	l-131	60.81 ± 0.63	52.40	40.40 - 64.40	Pass			
SPMI-2186	5/12/2009	I-131(G)	56.89 ± 2.56	52.40	42.40 - 62.40	Pass			
SPMI-2186	5/12/2009	Sr-90	43.88 ± 1.68	52.40	41.92 - 62.88	Pass			
SPW-2497	5/27/2009	Fe-55	2472.37 ± 10.76	2106.35	1685.08 - 2527.62	Pass			
SPW-3448	7/14/2009	Cs-137	171.06 ± 9.21	166.10	149.49 - 182.71	Pass			
SPW-3497	7/15/2009	Ni-63	179.99 ± 3.06	210.40	147.28 - 273.52	Pass			
SPW-3499	7/15/2009	Tc-99	29.61 ± 0.81	32.34	20.34 - 44.34	Pass			
SPMI-3582	7/17/2009	Cs-134	32.86 ± 3.72	31.89	21.89 - 41.89	Pass			
SPMI-3582	7/17/2009	Cs-137	182.49 ± 10.54	166.10	149,49 - 182,71	Pass			
SPAP-3595	7/17/2009	Cs-134	13.01 ± 3.00	12.75	2.75 - 22.75	Pass			
SPAP-3595	7/17/2009	Cs-137	110.63 ± 6.58	110.73	99.66 - 121.80	Paee			
0.7			. 10100 ± 0.00	110.70	00.00 - 121.00	1.032			

A3-1

TABLE A-3. In-House "Spike" Samples

		Concentration (pCi/L) ^a					
Lab Code ^b	Date	Analysis	Laboratory results 2s, n=1	Known Activity	Control Limits ^c	Acceptance	
SPF-3597	7/17/2009	Cs-134	0.53 ± 0.03	0.51	0.31 - 0.71	Pass	
SPF-3597	7/17/2009	Cs-137	2.43 ± 0.05	2.22	1.33 - 3.10	Pass	
SPW-3599	7/17/2009	H-3	63246.00 ± 725.00	62495.00	49996.00 - 74994.00	Pass	
SPW-12643	8/3/2009	Ra-228	38.18 ± 2.72	40.54	28.38 - 52.70	Pass	
W-80709	8/7/2009	Ra-226	16.28 ± 0.41	16.77	11.74 - 21.80	Pass	
W-81009	8/10/2009	Gr. Alpha	20.58 ± 0.44	20.08	10.04 - 30.12	Pass	
W-81009	8/10/2009	Gr. Beta	44.44 ± 0.40	45.60	35.60 - 55.60	Pass	
W-100109	10/1/2009	Ra-226	15.68 ± 0.41	16.77	11.74 - 21.80	Pass	
W-102709	10/27/2009	Gr. Alpha	21.50 ± 0.43	20.08	10.04 - 30.12	Pass	
W-102709	10/27/2009	Gr. Beta	44.83 ± 0.40	45.60	35.60 - 55.60	Pass	
SPW-5964	10/28/2009	U-238	40.20 ± 1.87	41.70	29.19 - 54.21	Pass	
SPW-12647	11/6/2009	Ra-228	44.49 ± 3.33	40.54	28.38 - 52.70	Pass	
SPAP-6769	12/14/2009	Gr. Beta	45.43 ± 0.11	49.48	29.69 - 69.27	Pass	
SPAP-6774	12/14/2009	Cs-134	10.32 ± 0.83	11.11	1.11 - 21.11	Pass	
SPAP-6774	12/14/2009	Cs-137	106.58 ± 2.51	109.70	98.73 - 120.67	Pass	
SPF-6776	12/14/2009	Cs-134	0.43 ± 0.02	0.44	0.26 - 0.62	Pass	
SPF-6776	12/14/2009	Cs-137	2.33 ± 0.05	2.19	1.31 - 3.07	Pass	
SPW-6780	12/14/2009	Tc-99	30.71 ± 1.09	32.34	20.34 - 44.34	Pass	
SPMI-6782	12/14/2009	Co-60	74.30 ± 5.41	72.81	62.81 - 82.81	Pass	
SPMI-6782	12/14/2009	Cs-134	58.82 ± 3.75	55.54	45.54 - 65.54	Pass	
SPMI-6782	12/14/2009	Cs-137	178.18 ± 9.68	164.55	148.10 - 181.01	Pass	
SPW-6784	12/14/2009	Co-60	74.03 ± 4.64	72.81	62.81 - 82.81	Pass	
SPW-6784	12/14/2009	Cs-134	54.84 ± 3.83	55.54	45.54 - 65.54	Pass	
SPW-6784	12/14/2009	Cs-137	180.06 ± 8.81	164.55	148.10 - 181.01	Pass	

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/m³), and solid samples (pCi/g).

^b Laboratory codes as follows: W (water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish).

^cResults are based on single determinations.

}

-

^d Control limits are established from the precision values listed in Attachment A of this report, adjusted to ± 2σ.

^e Control limits based on the laboratory limit, Attachment A ("Other Analyses").

NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

TABLE A-4. In-House "Blank" Samples

i

)

)

6

					Concentration (pCi/L) ^a			
Lab Code	Sample	Date	Analysis ^b	Laborator	y results (4.66σ)	Acceptance		
	Туре			LLD	Activity ^c	Criteria (4.66 σ)		
W-12009	Water	1/20/2009	Ra-226	0.05	0.06 ± 0.04	1		
SPW-5554	Water	1/27/2009	Ra-228	0.08	0.17 ± 0.40	2		
W-12709	Water	1/27/2009	Gr. Alpha	0.35	0.22 ± 0.27	1		
W-12709	Water	1/27/2009	Gr. Beta	0.74	-0.08 ± 0.51	3.2		
SPW-218	Water	1/29/2009	U-238	0.19	-0.06 ± 0.09	1		
SPW-538	Water	2/24/2009	Ni-63	7.91	4.96 ± 4.93	20		
SPW-717	Water	3/6/2009	C-14	7.66	3.03 ± 4.71	200		
SPMI-816	Milk	3/16/2009	Cs-134	3.24	-	10		
SPMI-816	Milk	3/16/2009	Cs-137	3.38	-	10		
SPMI-816	Milk	3/16/2009	I-131	0.31	0.04 ± 0.17	0.5		
SPMI-816	Milk	3/16/2009	I-131(G)	3.65	-	20		
SPMI-816	Milk	3/16/2009	Sr-90	0.48	0.41 ± 0.27	1		
SPW-819	Water	3/16/2009	Co-60	3.02	-	10		
SPW-819	Water	3/16/2009	Cs-134	2.25	-	10		
SPW-819	Water	3/16/2009	Cs-137	2.03	-	10		
SPW-819	Water	3/16/2009	l-131	0.42	-0.06 ± 0.19	0.5		
SPW-819	Water	3/16/2009	l-131(G)	3.02	-	20		
SPW-819	Water	3/16/2009	Sr-90	1.10	-0.63 ± 0.44	1		
SPAP-902	Air Filter	3/23/2009	Gr. Beta	0.003	0.006 ± 0.002	3.2		
SPAP-904	Air Filter	3/23/2009	Cs-134	1.68	-	100		
SPAP-904	Air Filter	3/23/2009	Cs-137	2.62	· -	100		
SPW-32709	Water	3/23/2009	Ni-63	2.84	1.37 ± 1.75	20		
SPF-821	Fish	4/7/2009	Cs-134	3.12	-	100		
SPF-821	Fish	4/7/2009	Cs-137	3.93	-	100		
W-40909	Water	4/9/2009	Gr. Alpha	0.40	-0.25 ± 0.26	1		
W-40909	Water	4/9/2009	Gr. Beta	0.77	-0.30 ± 0.53	3.2		
SPW-12651	Water	4/10/2009	Ra-228	0.77	0.77 ± 0.45	2		
SPW-1268	Water	4/10/2009	U-238	0.11	0.24 ± 0.17	1		
W-42809	Water	4/28/2009	Ra-226	0.04	0.09 ± 0.04	1		
SPMI-2186	Milk	5/12/2009	Sr-90	0.43	0.52 ± 0.26	1		
SPMI-2187	Milk	5/12/2009	Cs-134	3.61	-	10		
SPMI-2187	Milk	5/12/2009	Cs-137	3.13	-	10		
SPMI-2187	Milk	5/12/2009	l-131	0.15	-0.02 ± 0.10	0.5		
SPMI-2187	Milk	5/12/2009	l-131(G)	3.77	-	20		
SPW-2498	Water	5/27/2009	Ni-63	1.60	0.00 ± 0.97	20		

TABLE A-4. In-House "Blank" Samples

)

ŏ

•)

		- <u></u>		Concentration (pCi/L) ^a			
Lab Code	Sample	Date	Analysis ^b	Laboratory	/ results (4.66σ)	Acceptance	
	Туре			LLD	Activity ^c	 Criteria (4.66 σ)	
SPW-3497	Water	7/15/2009	Ni-63	1.55	-0.24 ± 0.94	20	
SPW-3500	Water	7/15/2009	Tc-99	0.90	-1.71 ± 0.53	10	
SPMI-3589	Milk	7/17/2009	I-131(G)	5.75	-	20	
SPAP-3594	Air Filter	7/17/2009	Cs-134	1.14	-	100	
SPAP-3594	Air Filter	7/17/2009	Cs-137	2.47	-	100	
SPF-3596	Fish	7/17/2009	Co-60	5.00	-	100	
SPF-3596	Fish	7/17/2009	Cs-134	8.00	-	100	
SPF-3596	Fish	7/17/2009	Cs-137	11.50	-	100	
SPW-3598	Water	7/17/2009	H-3	148.40	0.69 ± 73.60	200	
SPW-12653	Water	8/3/2009	Ra-228	0.76	1.46 ± 0.51	2	
W-80709	Water	8/7/2009	Ra-226	0.04	0.08 ± 0.03	1	
W-81009	Water	8/10/2009	Gr. Alpha	0.44	0.08 ± 0.31	1	
W-81009	Water	8/10/2009	Gr. Beta	0.75	-0.31 ± 0.52	3.2	
W-100109	Water	10/1/2009	Ra-226	0.04	0.09 ± 0.03	1	
W-102709	Water	10/27/2009	Gr. Alpha	0.38	0.33 ± 0.30	1	
W-102709	Water	10/27/2009	Gr. Beta	0.81	-0.59 ± 0.55	3.2	
SPW-5965	Water	10/28/2009	U-238	0.15	0.09 ± 0.13	1	
SPW-12657	Water	11/6/2009	Ra-228	0.86	0.80 ± 0.50	2	
SPAP-6769	Air Filter	12/14/2009	Gr. Beta	0.003	0.010 ± 0.002	3.2	
SPAP-6773	Air Filter	12/14/2009	Cs-137	1.31	-	100	
SPF-6775	Fish	12/14/2009	Cs-134	5.70	-	100	
SPF-6775	Fish	12/14/2009	Cs-137	4.18	-	100	
SPW-6777	Water	12/14/2009	Ni-63	2.29	0.25 ± 1.38	20	
SPW-6779	Water	12/14/2009	Tc-99	1.16	-0.98 ± 0.69	10	
SPMI-6781	Milk	12/14/2009	Cs-134	2.62	-	10	
SPMI-6781	Milk	12/14/2009	Cs-137	3.29	-	10	
SPMI-6781	Milk	12/14/2009	I-131(G)	2.65	-	20	
SPW-6783	Water	12/14/2009	Cs-134	2.18	-	10	
SPW-6783	Water	12/14/2009	Cs-137	2.90	-	10	
SPW-6783	Water	12/14/2009	I-131(G)	2.30	-	20	
			• •				

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.

^c Activity reported is a net activity result. For gamma spectroscopic analysis, activity detected below the LLD value is not reported.

TABLE A-5. In-House "Duplicate" Samples

۲

)

			c	Concentration (pCi/L) ^a		
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
AP-7464, 7465	1/1/2009	Be-7	0.063 ± 0.012	0.065 ± 0.010	0.064 ± 0.008	Pass
E-20, 21	1/5/2009	K-40	1.34 ± 0.21	1.13 ± 0.13	1.24 ± 0.12	Pass
CF-67, 68	1/5/2009	Be-7	0.34 ± 0.12	0.39 ± 0.08	0.37 ± 0.07	Pass
CF-67, 68	1/5/2009	Gr. Beta	4.34 ± 0.11	4.38 ± 0.12	4.36 ± 0.08	Pass
CF-67, 68	1/5/2009	K-40	3.16 ± 0.26	3.00 ± 0.16	3.08 ± 0.15	Pass
DW-90010, 90011	1/9/2009	Ra-226	2.97 ± 0.22	2.76 ± 0.21	2.87 ± 0.15	Pass
DW-90010, 90011	1/9/2009	Ra-228	3.13 ± 0.71	3.55 ± 0.81	3.34 ± 0.54	Pass
SG-198, 199	1/23/2009	Gr. Alpha	101.90 ± 6.50	101.70 ± 6.10	101.80 ± 4.46	Pass
SG-198, 199	1/23/2009	Gr. Beta	97.80 ± 3.50	94.00 ± 3.20	95.90 ± 2.37	Pass
SW-308, 309	1/27/2009	Gr. Beta	1.43 ± 0.58	1.41 ± 0.54	1.42 ± 0.40	Pass
LW-330, 331	1/27/2009	Gr. Beta	2.09 ± 0.58	2.33 ± 0.63	2.21 ± 0.43	Pass
SW-308, 309	1/29/2009	Gr. Beta	1.51 ± 0.56	1.61 ± 0.57	1.56 ± 0.40	Pass
DW-375, 376	2/4/2009	Gr. Beta	2.72 ± 0.65	3.06 ± 0.69	2.89 ± 0.47	Pass
SWU-606, 607	2/24/2009	Gr. Beta	2.66 ± 0.68	2.16 ± 0.67	2.41 ± 0.48	Pass
U-651, 652	2/27/2009	Beta-K40	3.90 ± 2.30	1.70 ± 2.50	2.80 ± 1.70	Pass
U-651, 652	2/27/2009	H-3	597.00 ± 292.00	507.00 ± 288.00	552.00 ± 205.07	Pass
SG-739, 740	3/2/2009	Ra-226	8.20 ± 0.20	8.30 ± 0.20	8.25 ± 0.14	Pass
MI-875, 876	3/17/2009	K-40	1286.50 ± 111.60	1471.70 ± 111.50	1379.10 ± 78.88	Pass
MI-875, 876	3/17/2009	Sr-90	0.67 ± 0.31	0.36 ± 0.36	0.52 ± 0.24	Pass
WW-970, 971	3/24/2009	Gr. Beta	13.59 ± 2.32	17.33 ± 2.69	15.46 ± 1.78	Pass
XWW-980, 981	3/24/2009	H-3	7143.00 ± 262.00	7262.00 ± 264.00	7202.50 ± 185.97	Pass
AP-1441, 1442	3/30/2009	Be-7	0.076 ± 0.012	0.075 ± 0.014	0.076 ± 0.009	Pass
SWT-1123, 1124	3/31/2009	Gr. Beta	1.40 ± 0.55	1.86 ± 0.62	1.63 ± 0.41	Pass
WW-1102, 1103	4/1/2009	Gr. Beta	2.13 ± 1.34	2.30 ± 1.32	2.22 ± 0.94	Pass
XWW-1174, 1175	4/1/2009	H-3	2814 ± 176	2787 ± 176	2801 ± 124	Pass
AP-1462, 1463	4/2/2009	Be-7	0.085 ± 0.014	0.10 ± 0.016	0.091 ± 0.011	Pass
SL-2024, 2025	5/4/2009	Be-7	0.80 ± 0.18	0.82 ± 0.13	0.81 ± 0.11	Pass
SL-2024, 2025	5/4/2009	Gr. Beta	2.41 ± 0.19	2.68 ± 0.21	2.55 ± 0.14	Pass
SL-2024, 2025	5/4/2009	K-40	1.20 ± 0.21	1.30 ± 0.15	1.25 ± 0.13	Pass
SO-2045, 2046	5/4/2009	Gr. Alpha	6.22 ± 2.87	6.50 ± 3.26	6.36 ± 2.17	Pass
SO-2045, 2046	5/4/2009	Gr. Beta	28.85 ± 3.15	30.39 ± 3.34	29.62 ± 2.30	Pass
SO-2045, 2046	5/4/2009	Sr-90	0.036 ± 0.010	0.024 ± 0.010	0.030 ± 0.007	Pass
mi-2251, 2252	5/14/2009	K-40	1220.60 ± 155.10	1455.50 ± 118.20	1338.05 ± 97.50	Pass
mi-2381, 2382	5/19/2009	K-40	1472.50 ± 122.90	1412.80 ± 117.40	1442.65 ± 84.98	Pass
SWT-2534, 2535	5/26/2009	Gr. Beta	1.12 ± 0.57	1.66 ± 0.58	1.39 ± 0.41	Pass
G-2626, 2627	5/28/2009	Gr. Beta	6.32 ± 0.19	6.18 ± 0.19	6.25 ± 0.13	Pass
G-2626, 2627	5/28/2009	K-40	4.13 ± 0.35	4.05 ± 0.34	4.09 ± 0.24	Pass
WW-2732, 2733	6/1/2009	H-3	240.73 ± 93.21	190.39 ± 90.81	215.56 ± 65.07	Pass

2

TABLE A-5. In-House "Duplicate" Samples

)

)

			(Concentration (pCi/L) ^a		
		-			Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
CO 2141 2142	612212000	۵c-228	1.07 + 0.06	1.06 + 0.05	107 + 0.04	Page
50-3141, 3142	6/22/2009	AC-220 Bo 7	1.07 ± 0.00	1.00 ± 0.00	0.50 ± 0.04	Pass
50-3141, 3142	6/22/2009	Bi 212	0.00 ± 0.14	1.14 ± 0.16	1.15 ± 0.12	Pass
50-3141, 3142	6/22/2009	DI-212 DI-214	0.06 ± 0.03	1.14 ± 0.10	1.15 ± 0.12	Pass
SU-3141, 3142	6/22/2009	DF2 14	0.30 ± 0.03	1.01 ± 0.03	0.33 ± 0.02	Pass
50-3141, 3142	6/22/2009	Db.212	1.00 ± 0.02	1.03 ± 0.02	0.74 ± 0.03	Pass
SU-3141, 3142	6/22/2009	PU-212	1.00 ± 0.02	1.03 ± 0.02	1.02 ± 0.01	Pass
SO-3141, 3142	6/22/2009	FU-214	1.01 ± 0.03	1.04 ± 0.00	1.03 ± 0.02	Pass
SO-3141, 3142	6/22/2009	PU-239/40	0.022 ± 0.000	0.030 ± 0.009	0.020 ± 0.000	Pass
SO-3141, 3142	6/22/2009	TI 209	0.51 ± 0.04	0.46 ± 0.03	0.30 ± 0.03	Pass
SO-3141, 3142	6/22/2009	11-200	0.35 ± 0.02	0.30 ± 0.02	0.30 ± 0.01	Pass
SO-3141, 3142	6/22/2009	U-233/4	0.16 ± 0.02	0.10 ± 0.02	0.17 ± 0.01	Pass
SO-3141, 3142	6/22/2009	0-238	0.14 ± 0.02	0.18 ± 0.03	0.16 ± 0.02	Pass
SG-3187, 3188	6/25/2009	AC-228	11.07 ± 0.33	10.88 ± 0.33	10.97 ± 0.24	Pass
SG-3187, 3188	6/25/2009	PD-214	26.54 ± 0.23	26.17 ± 0.25	20.36 ± 0.17	Pass
SL-3297, 3298	7/1/2009	Be-7	1.15 ± 0.13	1.15 ± 0.12	1.15 ± 0.09	Pass
SL-3297, 3298	7/1/2009	Gr. Beta	3.38 ± 0.23	3.37 ± 0.12	3.38 ± 0.13	Pass
SL-3297, 3298	7/1/2009	K-40	1.43 ± 0.18	1.50 ± 0.19	1.47 ± 0.13	Pass
AP-3944, 3945	7/1/2009	Be-7	0.064 ± 0.009	0.068 ± 0.010	0.066 ± 0.007	Pass
DW-90222, 90223	7/15/2009	Ra-226	5.36 ± 0.60	4.62 ± 0.51	4.99 ± 0.39	Pass
DW-90222, 90223	7/15/2009	Ra-228	2.91 ± 0.73	2.80 ± 0.70	2.86 ± 0.51	Pass
DW-90237, 90238	7/17/2009	Gr. Alpha	3.54 ± 0.99	4.22 ± 1.09	3.88 ± 0.74	Pass
F-3790, 3791	7/21/2009	K-40	1.10 ± 0.35	1.41 ± 0.44	1.26 ± 0.28	Pass
DW-90250, 90251	7/22/2009	Ra-226	14.58 ± 0.39	15.13 ± 0.40	14.86 ± 0.28	Pass
DW-90250, 90251	7/22/2009	Ra-228	6.71 ± 1.05	6.10 ± 1.01	6.41 ± 0.73	Pass
VE-3965, 3966	7/28/2009	K-40	1.48 ± 0.16	1.56 ± 0.19	1.52 ± 0.13	Pass
VE-4098, 4099	8/3/2009	Be-7	0.54 ± 0.16	0.58 ± 0.16	0.56 ± 0.11	Pass
VE-4098, 4099	8/3/2009	Gr. Beta	5.15 ± 0.17	5.07 ± 0.18	5.11 ± 0.12	Pass
VE-4098, 4099	8/3/2009	K-40	4.91 ± 0.49	5.17 ± 0.15	5.04 ± 0.26	Pass
SO-4325, 4326	8/14/2009	Be-7	0.59 ± 0.21	0.68 ± 0.28	0.64 ± 0.18	Pass
SO-4325, 4326	8/14/2009	Cs-137	0.29 ± 0.05	0.28 ± 0.05	0.28 ± 0.03	Pass
SO-4325, 4326	8/14/2009	K-40	13.41 ± 0.77	13.46 ± 0.80	13.43 ± 0.56	Pass
SG-4283, 4284	8/17/2009	Ac-228	7.16 ± 0.28	7.10 ± 0.26	7.13 ± 0.19	Pass
SG-4283, 4284	8/17/2009	Pb-214	6.27 ± 0.13	6.21 ± 0.13	6.24 ± 0.09	Pass
VE-4436, 4437	8/25/2009	K-40	2.28 ± 0.28	2.67 ± 0.26	2.48 ± 0.19	Pass
SL-4589. 4590	9/1/2009	Be-7	1.25 ± 0.22	1.25 ± 0.16	1.25 ± 0.14	Pass
SL-4589. 4590	9/1/2009	K-40	2.96 ± 0.30	2.70 ± 0.27	2.83 ± 0.20	Pass
AV-4882. 4883	9/8/2009	Be-7	0.93 ± 0.18	0.95 ± 0.17	0.94 ± 0.12	Pass
AV-4882, 4883	9/8/2009	K-40	2.50 ± 0.26	2.47 ± 0.29	2.49 ± 0.20	Pass
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		a an'				

TABLE A-5. In-House "Duplicate" Samples

No. of Concession, Name

				Concentration (pCi/L)	a	
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
WW-4721, 4722	9/9/2009	H-3	19191.00 ± 404.00	18677.00 ± 399.00	18934.00 ± 283.91	Pass
WW-4903, 4904	9/11/2009	H-3	1075.00 ± 130.00	1281.00 ± 136.00	1178.00 ± 94.07	Pass
BS-5119, 5120	9/16/2009	Be-7	2067.50 ± 327.90	2225.40 ± 371.10	2146.45 ± 247.61	Pass
BS-5119, 5120	9/16/2009	Cs-137	86.24 ± 35.40	145.10 ± 31.54	115.67 ± 23.71	Pass
BS-5119, 5120	9/16/2009	K-40	16.85 ± 0.90	17.27 ± 0.79	17.06 ± 0.60	Pass
SS-5188, 5189	9/23/2009	Be-7	1.02 ± 0.31	1.04 ± 0.43	1.03 ± 0.26	Pass
SS-5188, 5189	9/23/2009	K-40	10.21 ± 0.65	9.94 ± 0.93	10.07 ± 0.57	Pass
AP-3944, 3945	9/29/2009	Be-7	0.09 ± 0.02	0.09 ± 0.02	0.09 ± 0.01	Pass
E 5054 5050	10/1/2000	Gr Bota	2 20 ± 0 10	2 10 ± 0 10	2 20 + 0 07	Base
E-5251, 5252	10/1/2009	Gr. Deta	2.30 ± 0.10	2.10 ± 0.10	2.20 ± 0.07	Pass
E-5251, 5252	10/1/2009	R-40	1.10 ± 0.24	1.13 ± 0.10	1.17 ± 0.13	Pass
G-5272, 5273	10/1/2009	De-/	3.31 ± 0.29	3.00 ± 0.20	3.40 ± 0.19	Pass
G-5272, 5273	10/1/2009	Gr. Alpha	19.01 I U.00	21.10 ± 0.74	20.46 ± 0.54	Pass
G-5272, 5273	10/1/2009	N-40	10.47 ± 0.75	17.00 ± 0.74	16.74 ± 0.53	Pass
F-5690, 5691	10/15/2009	H-3	8895.00 ± 250.00	9051.00 ± 252.00	8973.00 ± 177.49	Pass
F-5690, 5691	10/15/2009	K-40	3.62 ± 0.40	3.09 ± 0.48	3.36 ± 0.31	Pass
DW-90396, 90397	10/16/2009	Ra-226	0.54 ± 0.09	0.42 ± 0.08	0.48 ± 0.06	Pass
DW-90396, 90397	10/16/2009	Ra-228	1.44 ± 0.56	0.94 ± 0.51	1.19 ± 0.38	Pass
DW-90408, 90409	10/19/2009	Ra-226	0.99 ± 0.12	1.10 ± 0.14	1.05 ± 0.09	Pass
DW-90408, 90409	10/19/2009	Ra-228	2.76 ± 0.66	1.38 ± 0.92	2.07 ± 0.57	Pass
DW-90420, 90421	10/21/2009	Ra-226	1.95 ± 0.17	1.77 ± 0.15	1.86 ± 0.11	Pass
DW-90420, 90421	10/21/2009	Ra-228	3.10 ± 0.73	3.32 ± 0.80	3.21 ± 0.54	Pass
SG-5962, 5963	10/22/2009	Ac-228	16.39 ± 0.79	16.51 ± 0.63	16.45 ± 0.51	Pass
SG-5962, 5963	10/22/2009	Pb-214	18.03 ± 0.41	17.74 ± 0.42	17.89 ± 0.29	Pass
DW-90423, 90424	10/27/2009	Gr. Alpha	12.04 ± 1.68	15.28 ± 1.97	13.66 ± 1.29	Pass
ME-6116, 6117	11/3/2009	Gr. Beta	0.86 ± 0.03	0.83 ± 0.03	0.85 ± 0.02	Pass
ME-6116, 6117	11/3/2009	K-40	2.57 ± 0.08	2.65 ± 0.08	2.61 ± 0.06	Pass
F-6567, 6568	11/6/2009	Gr. Beta	2.72 ± 1.05	3.04 ± 0.92	2.88 ± 0.70	Pass
F-6567, 6568	11/6/2009	Sr-90	0.09 ± 0.03	0.12 ± 0.04	0.11 ± 0.02	Pass
W-6495, 6496	11/8/2009	H-3	2638.00 ± 173.00	2451.00 ± 168.00	2544.50 ± 120.57	Pass
WW-6313, 6314	11/9/2009	H-3	1514.00 ± 137.00	1483.00 ± 136.00	1498.50 ± 96.52	Pass
SWU-6611, 6612	11/24/2009	Gr. Beta	1.88 ± 0.60	1.67 ± 0.59	1.78 ± 0.42	Pass
DW-90446, 90447	12/30/2009	Ra-226	0.30 ± 0.10	0.54 ± 0.14	0.42 ± 0.09	Pass
DW-90446, 90447	12/30/2009	Ra-228	2.60 ± 0.64	2.65 ± 0.65	2.63 ± 0.46	Pass

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

^a Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g).

		<u> </u>	·····	Concentration	b	
<u> </u>				Known	Control	
Lab Codo ^C	Data	Analysis	Laboratory regult	Activity	Limite ^d	A
		Analysis	Laboratory result	Activity		Acceptance
ample const						
STW-1170	01/01/09	Am-241	1.15 ± 0.06	0.64	0.45 - 0.83	Fail
STW-1170	01/01/09	Co-57	19.60 ± 0.40	18.90	13.20 - 24.60	Pass
STW-1170	01/01/09	Co-60	16.60 ± 0.30	17.21	12.05 - 22.37	Pass
STW-1170	01/01/09	Cs-134	20.40 ± 0.50	22.50	15.80 - 29.30	Pass
STW-1170 °	01/01/09	Cs-137	0.10 ± 0.20	0.00	0.00 - 1.00	Pass
STW-1170	01/01/09	Fe-55	51.60 ± 20.60	48.20	33.70 - 62.70	Pass
STW-1170	01/01/09	H-3	359.90 ± 33.90	330.90	231.60 - 430.20	Pass
STW-1170	01/01/09	Mn-54	15.00 ± 0.40	14.66	10.26 - 19.06	Pass
STW-1170	01/01/09	Ni-63	50.50 ± 3.25	53.50	37.45 - 69.55	Pass
STW-1170	01/01/09	Pu-238	1.17 ± 0.04	1.18	0.83 - 1.53	Pass
STW-1170	01/01/09	Pu-239/40	0.74 ± 0.03	0.85	0.60 - 1.11	Pass
STW-1170	01/01/09	Sr-90	7.87 ± 1.39	7.21	5.05 - 9.37	Pass
STW-1170	01/01/09	Tc-99	12.70 ± 0.80	14.46	10.12 - 18.80	Pass
STW-1170	01/01/09	U-233/4	2.78 ± 0.07	2.77	1.94 - 3.60	Pass
STW-1170	01/01/09	U-238	2.87 ± 0.07	2.88	2.02 - 3.74	Pass
STW-1170	01/01/09	Zn-65	14.00 ± 0.70	13.60	9.50 - 17.70	Pass
STW-1171	01/01/09	Gr. Alpha	0.56 ± 0.06	0.64	0.00 - 1.27	Pass
STW-1171	01/01/09	Gr. Beta	1.29 ± 0.05	1.27	0.64 - 1.91	Pass
STSO-1172 °	01/01/09	Co-57	0.00 ± 0.00	0.00	0.00 - 1.00	Pass
STSO-1172	01/01/09	Cs-134	458.60 ± 7.40	467.00	327.00 - 607.00	Pass
STSO-1172	01/01/09	Cs-137	652.30 ± 3.50	605.00	424.00 - 787.00	Pass
STSO-1172	01/01/09	K-40	636.40 ± 9.50	570.00	360.40 - 669.40	Pass
STSO-1172	01/01/09	Mn-54	346.40 ± 3.10	307.00	215.00 - 399.00	Pass
STSO-1172	01/01/09	Pu-238	28.60 ± 2.20	25.30	17.70 - 32.90	Pass
STSO-1172*	01/01/09	Pu-239/40	0.50 ± 0.40	0.00	0.00 - 1.00	Pass
STSO-1172	01/01/09	Sr-90	180.60 ± 12.10	257.00	180.00 - 334.00	Pass
STSO-1172	01/01/09	U-233/4	152.20 ± 4.30	149.00	104.00 - 194.00	Pass
STSO-1172	01/01/09	U-238	154.90 ± 4.40	155.00	109.00 - 202.00	Pass
STSO-1172	01/01/09	Zn-65	268.30 ± 4.00	242.00	169.00 - 315.00	Pass
STVE-1173	01/01/09	Co-57	2.75 ± 0.11	2.36	1.65 - 3.07	Pass
STVE-1173 °	01/01/09	Co-60	0.06 ± 0.09	0.00	0.00 - 1.00	Pass
STVE-1173	01/01/09	Cs-134	3.49 ± 0.22	3.40	2.38 - 4.42	Pass
STVE-1173	01/01/09	Cs-137	1.01 ± 0.11	0.93	0.65 - 1.21	Pass
STVE-1173	01/01/09	Mn-54	2.52 ± 0.14	2.30	1.61 - 2.99	Pass
STVE-1173	01/01/09	Zn-65	1.52 ± 0.18	1.35	0.95 - 1.76	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

ļ

)

2

6

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

				Concentration ^b		
				Known	Control	
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STAP-1174 9	01/01/09	Am-241	0.29 + 0.03	0.21	0.14 0.07	F _11
STAP-1174	01/01/09	Co-57	1.25 ± 0.05	1 20	0.14 - 0.27	Fail
STAP-1174	01/01/09	Co-60	1.25 ± 0.05 1 17 + 0.06	1.30	0.91 ~ 1.09	Pass
STAP_1174	01/01/09	Cs-134	2.67 ± 0.00	2.02	0.05 - 1.59	Pass
STAP-1174	01/01/03	Cs-137	1 53 + 0.08	2.90	2.05 - 3.01	Pass
GTAP-1174	01/01/09	Mn-54	2.34 ± 0.00	1.02	1.00 - 1.90	Pass
STAP-1174 h	01/01/00	Sr-90	0.93 + 0.14	2.21	1.59 - 2.95	Pass
STAP-1174	01/01/09	Zn-65	1.44 ± 0.14	1.36	0.95 - 1.77	Pass
STAP-1175	01/01/09	Gr. Alpha	0.22 ± 0.03	0.35	0.00 - 0.70	Pass
STAP-1175	01/01/09	Gr. Beta	0.36 ± 0.04	0.28	0.14 - 0.42	Pass
STSO-1188	07/01/09	Co-57	674.60 ± 9.00	586.00	410.00 - 762.00	Pass
STSO-1188	07/01/09	Co-60	356.40 ± 6.30	327.00	229.00 - 425.00	Pass
STSO-1188	07/01/09	Cs-134	0.20 ± 1.90	0.00	0.00 - 1.00	Pass
STSO-1188	07/01/09	Cs-137	767.50 ± 12.00	669.00	468.00 - 870.00	Pass
STSO-1188	07/01/09	K-40	433.00 ± 37.20	375.00	263.00 - 488.00	Pass
STSO-1188	07/01/09	Mn-54	931.60 ± 14.10	796.00	557.00 - 1035.00	Pass
STSO-1188	07/01/09	Pu-238	53.10 ± 9.00	63.20	44.20 - 82.20	Pass
STSO-1188	07/01/09	Pu-239/40	107.10 ± 12.60	116.30	81.40 - 151.20	Pass
STSO-1188 '	07/01/09	Sr-90	310.50 ± 12.20	455.00	319.00 - 592.00	Fail
STSO-1188	07/01/09	U-233/4	188.20 ± 11.90	209.00	146.00 - 272.00	Pass
STSO-1188	07/01/09	U-238	197.40 ± 12.20	217.00	152.00 - 282.00	Pass
STSO-1188	07/01/09	Zn-65	1433.90 ± 25.20	1178.00	825.00 - 1531.00	Pass
STAP-1189	07/01/09	Gr. Alpha	0.33 ± 0.04	0.66	0.00 - 1.32	Pass
STAP-1189	07/01/09	Gr. Beta	1.57 ± 0.07	1.32	0.66 - 1.98	Pass
STAP-1190	07/01/09	Am-241	0.01 ± 0.02	0.00	0.01 - 0.05	Pass
STAP-1190	07/01/09	C0-57	6.78 ± 0.27	6.48	4.54 - 8.42	Pass
STAP-1190	07/01/09	Co-60	1.06 ± 0.18	1.03	0.72 - 1.34	Pass
STAP-1190	07/01/09	CS-134	0.01 ± 0.06	0.00	0.01 - 0.05	Pass ·
STAP-1190	07/01/09	US-137	1.49 ± 0.27	1.40	0.98 - 1.82	Pass
STAP-1190	07/01/09	Nin-54	0.00 ± 0.45	5.49	3.84 - 7.14	Pass
STAP-1190	07/01/09	Sr-90	0.79 ± 0.13	0.84	0.59 - 1.09	Pass
STAP-1190	07/01/09	20-00	4.55 ± 0.66	3.93	2.75 - 5.11	Pass
SIVE-1190	07/01/09		0.90 ± 0.00	8.00	5.60 - 10.40	Pass
SIVE-1190	07/01/09	Co-00	2.30 ± 0.30	2.57	1.80 - 3.34	Pass
SIVE-1190	07/01/09	05-104	0.01 ± 0.11	0.00	0.00 - 0.10	Pass
SIVE-1190	07/01/09	US-137 Mo-54	2.42 ± 0.10 8.35 ± 0.70	2.43	1.70 - 3.16	Pass
STVE-1190	07/01/09	7n-65	0.00 ± 0.70 0.01 ± 0.26	0.00	0.00 - 10.30	Pass
31VE-1190	0//01/08	211-00	0.01 ± 0.20	0.00	0.00 - 0.10	Pass

)

)

		Concentration ^b					
				Known	Control		
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits d/	Acceptance	
STW-1191	07/01/09	Gr. Alpha	0.88 ± 0.07	1.05	0.00 - 2.09	Pass	
STW-1191	07/01/09	Gr. Beta	7.29 ± 0.10	7.53	3.77 - 11.30	Pass	
STW-1192	07/01/09	Am-241	0.88 ± 0.08	1.04	0.73 - 1.35	Pass	
STW-1192	07/01/09	Co-57	37.20 ± 1.50	36.60	25.60 - 47.60	Pass	
STW-1192	07/01/09	Co-60	15.10 ± 0.90	15.40	10.80 - 20.00	Pass	
STW-1192	07/01/09	Cs-134	30.30 ± 2.10	32.20	22.50 - 41.90	Pass	
STW-1192	07/01/09	Cs-137	41.90 ± 1.80	41.20	28.80 - 53.60	Pass	
STW-1192	07/01/09	Fe-55	54.50 ± 15.50	60.80	42.60 - 79.00	Pass	
STW-1192	07/01/09	H-3	680.30 ± 33.60	634.10	443.90 - 824.30	Pass	
STW-1192 °	07/01/09	Mn-54	0.01 ± 0.26	0.00	0.00 - 1.00	Pass	
STW-1192	07/01/09	Ni-63	38.70 ± 2.60	44.20	30.90 - 57.50	Pass	
STW-1192	07/01/09	Pu-238	0.02 ± 0.01	0.02	0.00 - 0.05	Pass	
STW-1192	07/01/09	Pu-239/40	1.70 ± 0.10	1.64	1.15 - 2.13	Pass	
STW-1192	07/01/09	Sr-90	12.90 ± 1.70	12.99	9.09 - 16.89	Pass	
STW-1192	07/01/09	Tc-99	7.60 ± 0.40	10.00	7.00 - 13.00	Pass	
STW-1192	07/01/09	Tc-99	7.60 ± 0.40	10.00	7.00 - 13.00	Pass	
STW-1192	07/01/09	U-233/4	2.90 ± 0.10	2.96	2.07 - 3.85	Pass	
STW-1192	07/01/09	U-238	3.00 ± 0.10	3.03	2.12 - 3.94	Pass	
STW-1192	07/01/09	Zn-65	28.50 ± 2.40	26.90	18.80 - 35.00	Pass	

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's

Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

* Included in the testing series as a "false positive".

¹ No errors were found in procedure or calculation. There was not enough sample for a reanalysis. Americium-241 in water was included in the ERA studies (Tbl. A-7) and also in the second round of MAPEP testing. Both analysis results were acceptable.

⁹ One determination was eliminated from the average, due to poor recovery. Average of three determinations, 0.25 ± 0.03 pCi/filter.

^h No reason was determined for the initial high results. The analysis was repeated; result of reanalysis; 0.54 ± 0.12 Bq/filter.

¹ Incomplete separation of strontium from calcium could result in a higher recovery percentage and consequently lower reported activity. The analysis was repeated; result of reanalysis 363.3 ± 28.6 Bq/kg.

	Concentration (pCi/L)						
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control		
			Result ^c	Result ^d	Limits	Acceptance	
STAP-1176	03/23/09	Am-241	47.20 ± 3.10	55.4	32.4 - 76.0	Pass	
STAP-1176	03/23/09	Co-60	543.60 ± 8.90	490.0	379.0 - 612.0	Pass	
STAP-1176	03/23/09	Cs-134	941.30 ± 30.70	865.0	563.0 - 1070.0	Pass	
STAP-1176	03/23/09	Cs-137	850.60 ± 19.40	724.0	544.0 - 951.0	Pass	
STAP-1176 °	03/23/09	Mn-54	0.00 ± 0.00	0.0) 0.0 - 0.0	Pass	
STAP-1176	03/23/09	Pu-238	64.50 ± 3.60	57.4	39.4 - 75.5	Pass	
STAP-1176	03/23/09	Pu-239/40	88.50 ± 4.20	78.2	56.7 - 101.0	Pass	
STAP-1176	03/23/09	Sr-90	93.90 ± 10.00	95.3	41.9 - 148.0	Pass	
STAP-1176	03/23/09	U-233/4	50.00 ± 2.47	53.5	33.7 - 79.3	Pass	
STAP-1176	03/23/09	U-238	50.40 ± 2.48	53.1	34.0 - 75.4	Pass	
STAP-1176	03/23/09	Uranium	101.60 ± 5.30	109.0	55.7 - 173.0	Pass	
STAP-1176	03/23/09	Zn-65	237.30 ± 23.70	185.0	128.0 - 256.0	Pass	
STAP-1177	03/23/09	Gr. Alpha	76.30 ± 3.47	63.8	33.1 - 96.0	Pass	
STAP-1177	03/23/09	Gr. Beta	98.50 ± 3.04	80.7	49.7 - 118.0	Pass	
STSO-1178	03/23/09	Ac-228	1370.00 ± 121.00	1330.0	860.0 - 1880.0	Pass	
STSO-1178	03/23/09	Am-241	1853.00 ± 185.50	1660.0	992.0 - 2130.0	Pass	
STSO-1178	03/23/09	Bi-212	1449.00 ± 308.80	1550.0	406.0 - 2310.0	Pass	
STSO-1178	03/23/09	Bi-214	1355.00 ± 66.20	1420.0	872.0 - 2050.0	Pass	
STSO-1178	03/23/09	Co-60	7475.00 ± 46.40	7520.0	5470.0 - 10100.0	Pass	
STSO-1178	03/23/09	Cs-134	5073.00 ± 74.70	5170.0	3330.0 - 6220.0	Pass	
STSO-1178	03/23/09	Cs-137	5040.00 ± 49.70	4970.0	3800.0 - 6460.0	Pass	
STSO-1178	03/23/09	K-40	10884.00 ± 292.70	11200.0	8060.0 - 15100.0	Pass	
STSO-1178	03/23/09	Mn-54	0.00 ± 0.00	0.0	0.0 - 20.0	Pass	
STSO-1178	03/23/09	Pb-212	1259.00 ± 28.40	1260.0	820.0 - 1780.0	Pass	
STSO-1178	03/23/09	Pb-214	1464.00 ± 56.80	1510.0	902.0 - 2260.0	Pass	
STSO-1178	03/23/09	Pu-238	1853.00 ± 185.50	1590.0	910.0 - 2240.0	Pass	
STSO-1178	03/23/09	Pu-239/40	1516.50 ± 168.30	1360.0	928.0 - 1800.0	Pass	
STSO-1178	03/23/09	Sr-90	5270.90 ± 290.20	5750.0	2080.0 - 9380.0	Pass	
STSO-1178	03/23/09	U-233/4	1452.30 ± 114.40	1600.0	1010.0 - 1990.0	Pass	
STSO-1178	03/23/09	Uranium	3013.70 ± 131.10	3270.0	1860.0 - 4410.0	Pass	
STSO-1178	03/23/09	Zn-65	2083.00 ± 59.00	1940.0	1540.0 - 2600.0	Pass	

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

.

ş

)

Õ

Ì

	Concentration (pCi/L)						
Lab Code ^b	Date	Analysis	Laboratory Result ^c	ERA Result ^d	Control Limits	Acceptance	
STVE-1179	03/23/09	Am-241	2849.70 ± 237.60	3660.0	2090.0 - 5030.0	Pass	
STVE-1179	03/23/09	Cm-244	808.00 ± 85.70	954.0	470.0 - 1480.0	Pass	
STVE-1179	03/23/09	Co-60	1546.80 ± 31.60	1710.0	1160.0 - 2460.0	Pass	
STVE-1179	03/23/09	Cs-134	1706.00 ± 59.20	1880.0	1080.0 - 2600.0	Pass	
STVE-1179	03/23/09	Cs-137	1940.50 ± 44.80	1800.0	1320.0 - 2500.0	Pass	
STVE-1179	03/23/09	K-40	30107.30 ± 598.00	30800.0	22300.0 - 43700.0	Pass	
STVE-1179	03/23/09	Mn-54	0.00 ± 0.00	0.0	0.0 - 0.0	Pass	
STVE-1179	03/23/09	Sr-90	6604.80 ± 440.10	8860.0	4950.0 - 11800.0	Pass	
STVE-1179	03/23/09	U-233/4	1718.00 ± 128.90	2040.0	1400.0 - 2710.0	Pass	
STVE-1179	03/23/09	U-238	1718.30 ± 128.80	2020.0	1420.0 - 2550.0	Pass	
STVE-1179	03/23/09	Uranium	3499.40 ± 371.00	4150.0	2850.0 - 5360.0	Pass	
STVE-1179	Q3/23/09	Zn-65	869.40 ± 63.60	878.0	634.0 - 1200.0	Pass	
STW-1180	03/23/09	Am-241	127.50 ± 5.10	132.0	90.4 - 178.0	Pass	
STW-1180	03/23/09	Co-60	1174.10 ± 11.70	1230.0	1070.0 - 1450.0	Pass	
STW-1180	03/23/09	Cs-134 _	742.20 ± 18.30	790.0	584.0 - 907.0	Pass	
STW-1180	03/23/09	Cs-137	887.50 ± 14.00	913.0	776.0 - 1090.0	Pass	
STW-1180	03/23/09	Fe-55	323.00 ± 362.00	492.0	286.0 - 657.0	Pass	
STW-1180	03/23/09	Mn-54	0.00 ± 0.00	0.0	0.0 - 0.0	Pass	
STW-1180	03/23/09	Pu-238	96.60 ± 2.20	108.0	81.7 - 134.0	Pass	
STW-1180	03/23/09	Pu-239/40	89.50 ± 2.10	86.3	66.8 - 107.0	Pass	
STW-1180	03/23/09	Sr-90	763.20 ± 12.90	834.0	530.0 - 1120.0	Pass	
STW-1180	03/23/09	U-233/4	95.00 ± 1.80	96.6	72.8 - 124.0	Pass	
STW-1180	03/23/09	U-238	97.40 ± 1.80	95.8	73.2 - 119.0	Pass	
STW-1180	03/23/09	Uranium	195.50 ± 3.70	197.0	142.0 - 262.0	Pass	
STW-1180	03/23/09	Zn-65	653.10 ± 24.10	631.0	535.0 - 786.0	Pass	

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^e Included in the testing series as a "false positive". No activity expected.

^f The analysis was repeated by leaching and total dissolution methods. Total dissolution yielded results within expected range. Results of the reanalysis: U-233,4, 1655 ± 95 pCi/kg. U-238 1805 ± 97 pCi/kg.

APPENDIX B

DATA REPORTING CONVENTIONS

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

Each single measurement is reported as follows: x ± s

where: x = value of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: <L, where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

3.0. Duplicate analyses

- 3.1 <u>Individual results:</u> For two analysis results; $x_1 \pm s_1$ and $x_2 \pm s_2$ <u>Reported result:</u> $x \pm s$; where $x = (1/2)(x_1 + x_2)$ and $s = (1/2)\sqrt{s_1^2 + s_2^2}$
- 3.2. Individual results: $<L_1$, $<L_2$ Reported result: <L, where L = lower of L_1 and L_2
- 3.3. Individual results: $x \pm s$, <L Reported result: $x \pm s$ if $x \ge L$; <L otherwise.

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average \bar{x} and standard deviation s of a set of n numbers $x_1, x_2 \dots x_n$ are defined as follows:

$$\overline{x} = \frac{1}{n} \sum x$$
 $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the figure following those to be retained is equal to or greater than 5, the figure is dropped and the last retained figure is raised by 1. As an example, 11.445 is rounded off to 11.45.
- 4.6 Composite samples which overlap the next month or year are reported for the month or year in which most of the sample is collected.

APPENDIX C

TECHNICAL SPECIFICATION 2.1.3

REACTOR COOLANT DOSE EQUIVALENT IODINE ABOVE TECHNICAL SPECIFICATION LIMIT

During the 2009 reporting period, radioactivity of primary coolant did not exceed the limits of Technical Specification 2.1.3.

3

APPENDIX D

2

SAMPLE LOCATION MAPS

D-1

Sample locations within Site Boundary/Owner Controlled Area

Sample locations within 5-mile Area