L-2010-033

ENCLOSURE B C-200, OFFSITE DOSE CALCULATION MANUAL REVISION 32 (230 PAGES) AND C-200, OFFSITE DOSE CALCULATION MANUAL REVISIONS 31B MARKED UP PAGES (5 PAGES)

FP	

ST. LUCIE PLANT

CHEMISTRY OPERATING PROCEDURE

SAFETY RELATED

REFERENCE USE

Procedure No. C-200 Current Revision No. 32 Effective Date

08/26/09

Title:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

Responsible Department: CHEMISTRY

REVISION SUMMARY:

Revision 32 - Incorporated PCR 09-2349 to add four Site Boundary Groundwater Wells to the remp. (Author: Bruce Vogel)

Revision 31B - Incorporated PCR 08-5161 to correct typo on page 227. (Bruce Vogel, 10/03/08)

AND

Incorporated PCR 08-4568 to reflect change of title of COP-05.02. (Bruce Vogel, 09/10/08)

Revision 31A - Incorporated MC 08-2706 for CR 08-18187 for minor correction to Table 4.11-2 for clarification. (Bruce Vogel, 06/04/08)

Revision 31 - Incorporated PCR 08-0367 for CR 07-42134 to make changes due to NP-922 cancellation (EV-AA-01 is replacement) and add 6 perimeter wells to program. (Bruce Vogel, 04/29/08)

Revision 30 - Incorporated PCR 08-0180 to add surveillance of Cask Handling Facility (CHF) exhaust vent. (Glenn Adams, 02/12/08)

AND

Incorporated PCR 07-4244 to add surveillance of Cask Handling Facility (CHF) exhaust vent. (Glenn Adams, 12/13/07)

Revision 0	FRG Review Date 04/22/82	Approved By C. M. Wethy	Approval Date 04/27/82	S_ DATE	OPS
		Plant General Manager		DOCT	PROCEDURE
Revision	FRG Review Date	Approved By	Approval Date	DOCN	C-200
32	08/07/09	Bob Hughes	08/10/09	SYS	
		Plant General Manager		СОМ	COMPLETED
		Alan Day	06/22/09	ITM	32
		Authorized Approver	······································		
		N/A			
		Authorized Approver (Minor Correction)			

FOR INFORMATION ONLY Before use, verify revision and change documentation (if applicable) with a controlled index or document. DATE VERIFIED INITIAL

REVISIO	N NO.:	PROCEDURE TITLE:	PAGE
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	2 of 230
PROCED	URE NO.:		
	C-200	ST. LUCIE PLANT	
		INDEX	
	SECTION		<u>PA</u>
INTRO	DUCTION		
CONT	ROLS SECTI	ON	
			<u></u>
DEFIN	ITTONS FOR	CONTROLS SECTION	
1.1 1.4		ALIBRATION	
1.4 1.5	CHANNEL C		
1.6	CHANNEL F	UNCTIONAL TEST	
1.10		VALENT I-131	
1.13			
1.17 1.18) OF THE PUBLIC SE CALCULATION MANUAL	
1.19		- OPERABILITY	
1.20		IAL MODE - MODE	
1.24		RGING	
1.25		RMAL POWER	
1.27			
1.30 1.31		DARY IECK	
1.33		OWER	
1.33		D RELEASE	
1.35			
1.39	VENTILATIO	N EXHAUST TREATMENT SYSTEM	
1.40	VENTING		
1.41	WASTE GAS	S HOLDUP SYSTEM	
3/4	CONTROLS	AND SURVEILLANCE REQUIREMENTS	
3/4.0	APPLICABIL	ITY	
INSTR	RUMENTATIC	<u>DN</u>	
RADIC	DACTIVE LIQ	UID EFFLUENT MONITORING INSTRUMENTATION.	
RADIC	DACTIVE GAS	SEOUS EFFLUENT MONITORING INSTRUMENTATION	ΟN

REVISION NO	D.:	PROCEDURE TITLE:	PAGE
PROCEDURE	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	3 of 230
	200	ST. LUCIE PLANT	
c		INDEX (continued)	PAGE
		RVEILLANCE STATEMENTS FOR CONTROLS SECT	
<u>3/4.11</u>	RADIOAC	TIVE EFFLUENTS	
3/4.11.1	CO DO	D EFFLUENTS NCENTRATION SE QUID RADWASTE TREATMENT SYSTEM	
3/4.11.2	DO DO DO	OUS EFFLUENTS SE RATE SE - NOBLE GASES SE - IODINE-131, IODINE-133, TRITIUM AND RADIO MATERIAL IN PARTICULATE FORM SEOUS RADWASTE TREATMENT SYSTEM.	
3/4.11.3	(NOT	USED)	
3/4.11.4	ΤΟΤΑΙ	DOSE	
3/4.11.5		R CHANGES TO RADIOACTIVE LIQUID, GASEOUS A E TREATMENT SYSTEMS ADMINISTRATIVE CONTR	r
3/4.11.6		AL RADIOACTIVE EFFLUENT RELEASE REPORT TO IISSION ADMINISTRATIVE CONTROLS	D THE 51
3/4.12	RADIOLC	GICAL ENVIRONMENTAL MONITORING	
3/4.12.1	MONI	ORING PROGRAM	55
3/4.12.2	LAND	USE CENSUS	63
3/4.12.3	INTER	LABORATORY COMPARISON PROGRAM	
3/4.12.4		AL RADIOLOGICAL ENVIRONMENTAL OPERATING DR) ADMINISTRATIVE CONTROLS	

REVISION NO.: 32		PROCEDURE TITLE: OFFSITE DOSE CALCULATION MANUAL (ODCM)	PAGE:
PROCEDURE NO.:		OFFSITE DOSE CALCULATION MANDAL (ODCIN)	4 of 230
C-200		ST. LUCIE PLANT	
		INDEX (continued)	
<u>SEC</u>	TION		PAG
BASES FOR	CONT	ROLS SECTION	
<u>3/4.11 RA</u>		TIVE EFFLUENTS	
3.3.3.9	INSTR	UMENTATION	69
3/4.11.1	LIQUI	DEFFLUENTS	70
3/4.11.2	GASE	OUS EFFLUENTS	72
3/4.11.3	NOT U	JSED	75
3/4.11.4	ΤΟΤΑΙ	DOSE	75
<u>3/4.12 RA</u>	DIOLO	GICAL ENVIRONMENTAL MONITORING	
3/4.12.1		FORING PROGRAM	77
3/4.12.2	LAND	USE CENSUS	77
3/4.12.3	INTER	LABORATORY COMPARISON PROGRAM	78
<u>FIGURES</u>			
FIGURE 1-1	SITE	AREA MAP & ENVIRONMENTAL SAMPLE LOCATIO	NS 225
FIGURE 1-2	ENV	IRONMENTAL SAMPLE LOCATIONS (10 MILES)	226
FIGURE 1-3		IOLOGICAL ENVIRONMENTAL SAMPLING LOCATIO PORT OF THE INDUSTRY INITIATIVE	
	·		

REVISION N		з.
	32 OFFSITE DOSE CALCULATION MANUAL (ODCM)	२२ २ २ - १ - २
PROCEDUR	-200 ST. LUCIE PLANT	
	ST. LUCIE FLANT	
	INDEX	ممتر م
	(continued) PAG	GE
	DLS SECTION	
	TABLES FOR CONTROLS SECTION	
TABLE		
1-1	FREQUENCY NOTATION	5
3.3-12	RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION 1	7
3.3-13	RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION	2
3.3-14	RADIOACTIVE EFFLUENT MONITORING SETPOINT BASIS	5
3.12-1	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	3
3.12-2	REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES	6
4.3-8	RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS	0
4.3-9	RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS	9
4.11-1	RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM . 32	2
4.11-2	RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM	8
4.12-1	DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS LOWER LIMIT OF DETECTION (LLD)	7
	- ·	

,

KEVI3ION	NO.:	PROCEDURE TITLE: PAGE:	
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	of 230
	URE NO.:		. 200
	C-200	ST. LUCIE PLANT	ا
		INDEX) T
	SECTI	(continued)	P
METH	ODOLOC	GY SECTION	
0	<i>.</i>		
Glossa	•	ethodology Section	
1.0	LIQUIE	D RELEASES METHODOLOGY	
	1.1	Radioactive Liquid Effluent Model Assumptions	
	1.2	Determining the Fraction (F) of 10 CFR Part 20 Effluent	
		Concentration Limits (ECL) for a Liquid Release Source	•••••
	1.3	Determining Setpoints for Radioactive Liquid Effluent Monitors	
	1.4	Determining the Dose for Radioactive Liquid Releases	
	1.5	Projecting Dose for Radioactive Liquid Effluents	
2.0	RADIC	ACTIVE RELEASES OF GASEOUS EFFLUENTS	
	2.1	Gaseous Effluent Model Assumptions	
	2.2	Determining the Total Body and Skin Dose Rates for Noble Gas	
	£.£	Releases and Establishing Setpoints for Effluent Monitors	•••••
	2.3	Determining the Radioiodine and Particulate Dose Rate to Any	
		Organ From Gaseous Releases	····· ′
		2.3.1 Inhalation	••••••
· .		2.3.2 Ground Plane	····· <i>'</i>
		2.3.3 Milk	
		2.3.4 Tritium	····· '
		2.3.5 Total Dose Rate by Release Source	,

REVISION	NO.:	F	ROCEDURE TITLE:	PAGE
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	7 of 230
PROCED	URE NO.:			
	C-200		ST. LUCIE PLANT	
			INDEX (continued)	
	<u>SECTIC</u>	<u> </u>		PAGE
МЕТН	ODOLOG	Y SE	CTION	
Glossa	ary for Me	thodo	logy Section (continued)	
2.0	RADIO/	ACTIN	/E RELEASES OF GASEOUS EFFLUENTS (continue	ed)
	2.4		ermining the Gamma Air Dose for Radioactive Noble G ases	
	2.5		ermining the Beta Air Dose for Radioactive Noble Gas	117
	2.6		rmining the Radioiodine and Particulate Dose to Any a up's Organ From Cumulative Releases	•
		2.6.1	Inhalation	121
		2.6.2	2 Ground Plane	122
		2.6.3	3 Milk	123
		2.6.4	1 Meat	124
		2.6.5	5 Vegetation	126
		2.6.6	S Tritium (All pathways)	127
		2.6.7	7 Total Organ Dose	129
	2.7	Proje	ecting Dose for Radioactive Gaseous Effluents	130
3.0	40 CFR	190	DOSE EVALUATION	130
4.0	ANNUA	LRE	PORT FORMAT	132

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	1 - Carlos
PROCEDURE NO .:		8 of 230
C-200	ST. LUCIE PLANT	
	INDEX (continued)	
SECTIO		PA
METHODOLOG	Y SECTION	
APPENDIXES		
APPENDIX A	ECL, Dose Factor and Historical Meteorological Tables	1
APPENDIX B	RADIOLOGICAL ENVIRONMENTAL SURVEILLANCE	2
APPENDIX B-1	SUPPLEMENTAL REMP SAMPLING LOCATIONS	2
APPENDIX B-2	Radiological Environmental Sampling In Support of the INDUSTRY INITIATIVE	2
APPENDIX C	Description of Meteorological Dispersion Formulas Utilized Historical Data and Methodology for Determining Actual M Data	ET
APPENDIX D	Description of the Interlaboratory Comparison Program	2
i I		

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	0 of 230
PROCEDURE NO.:		5 01 230
C-200	ST. LUCIE PLANT	

INTRODUCTION

The ODCM consists of the Controls Section followed by the Methodology Section.

The Controls Section provides the Control Statements, Limits, ACTION Statements, Surveillance Requirements and BASES for ensuring that Radioactive Liquid and Gaseous Effluents released to UNRESTRICTED AREAS and/or the SITE BOUNDARY will be maintained within the requirements of 10 CFR Part 20, 40 CFR Part 190, 10 CFR Part 72, 10 CFR 50.36.a and 10 CFR Part 50 Appendix-I radioactive release criteria. All Control Statements and most Administrative Control Statements in the ODCM are directly tied to and reference the Plant Technical Specification (TS) Administrative Section. The Administrative Control for Major Changes to Radioactive Liquid, Gaseous and Solid Treatment Systems is as per the guidance of NUREG-1301, April 1991, Supplement No. 1 to NRC Generic Letter 89-01. The numbering sequences of Control Statements also follow the guidance of NUREG-1301 as applicable, to minimize differences. Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) -Effluent Streams and the Environment, 6.3.1 and 6.3.2, provide the background for the need to maintain Quality Assurance programs for effluent releases and radiological environmental monitoring.

The Methodology Section uses the models suggested by NUREG-0133, November, 1978 and Regulatory Guide 1.109 to provide calculation methods and parameters for determining results in compliance with the Controls Section of the ODCM. Simplifying assumptions have been applied where applicable to provide a more workable document for implementing the Control requirements. Alternate calculation methods may be used from those presented as long as the overall methodology does not change or as long as most up-to-date revisions of the Regulatory Guide 1.109 dose conversion factors and environmental transfer factors are substituted for those currently included and used in this document.

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	10 of 230
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
		ار با المربع المربع المربع المربع

RECORDS AND NOTIFICATIONS

All records of reviews performed for changes to the ODCM shall be maintained in accordance with QI-17-PSL-1. All FRG approved changes to the ODCM, with required documentation of the changes per TS 6.14, shall be submitted to the NRC in the Annual Effluent Release Report. Procedures that directly implement, administer or supplement the requirements of the ODCM Controls and Surveillances are:

- COP-01.05, Processing Aerated Liquid Waste
- COP-01.06, Processing Gaseous Wastes
- COP-05.02, Met Tower Data Processing
- COP-05.04, Chemistry Department Surveillances and Parameters
- COP-07.05, Process Monitor Setpoints
- The Radiological Environmental Monitoring Program is performed by the State of Florida as per FPL Juno Nuclear Plant Services Corporate Environmental Procedure Number NPSS-HP-WP-002.
- The licensee also performs environmental monitoring per EV-AA-01, Fleet Groundwater Protection Program, in order to meet the objectives of the Nuclear Energy Institute's Industry Initiative.

]	REVISION NO .:	PROCEDURE TITLE:	PAGE
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
	PROCEDURE NO.:		
	C-200	ST. LUCIE PLANT	
		72	
		CONTROLS	
		SURVEILLANCE REQUIREMENTS	
		: E	

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	12 of 230
PROCEDURE NO .:		
C-200	ST. LUCIE PLANT	

1.0 DEFINITIONS for CONTROLS SECTION OF ODCM

The defined terms of this section appear in capitalized type and are applicable throughout these Controls.

<u>ACTION</u>

1.1 ACTION shall be that part of a Control that prescribes remedial measures required under designated conditions.

CHANNEL CALIBRATION

1.4 CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions and shall include the CHANNEL FUNCTIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

CHANNEL CHECK

1.5 CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

CHANNEL FUNCTIONAL TEST

1.6 A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and / or trip functions.

DOSE EQUIVALENT I-131

1.10 DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microCurie/gram) which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134 and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be the thyroid dose conversion factors listed in Federal Guidance Report 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion.

REVISIO	DN NO.:	PROCEDURE TITLE:	PAGE:		
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	13 of 230		
PROCE	DURE NO.:				
	C-200	ST. LUCIE PLANT			
1.0	DEFINITION	S for CONTROLS SECTION OF ODCM (continued)			
FREC	QUENCY NOT	ATION			
1.13		ENCY NOTATION specified for the performance of Surs shall correspond to the intervals defined in Table 1.1.			
INDU	STRY INITIAT	IVE			
1.14	Radiological	gy Institute Initiative on Managing Situations Involving I Releases into Groundwater (The industry initiative has Nuclear Policy EV-AA-01, Fleet Groundwater Protectio	been adopted		
<u>MEM</u>	<u>BER (S) OF TI</u>	HE PUBLIC			
1.17	MEMBER OF THE PUBLIC means an individual in a controlled or unrestricted area. However, an individual is not a member of the public during any period in which the individual receives an occupational dose.				
<u>OFFS</u>	SITE DOSE CA	LCULATION MANUAL			
1.18	methodology radioactive ga effluent moni Radiological Radioactive I Programs rec should be inc	E DOSE CALCULATION MANUAL (ODCM) shall conta and parameters used in the calculation of offsite doses aseous and liquid effluents, in the calculation of gaseou toring Alarm/Trip Setpoints and in the conduct of the Er Monitoring Program. The ODCM shall also contain (1) Effluent Controls and Radiological Environmental Monit quired by TS section 6.8.4 and (2) descriptions of the in luded in the Annual Radiological Environmental Opera- pactive Effluent Release Reports required by TS 6.9.1.7	s resulting from is and liquid ivironmental the oring formation that ting and		
OPEF	RABLE - OPEF	ABILITY			
1.19	OPERABILIT all necessary water, lubrica subsystem, tr	bsystem, train, component or device shall be OPERAB Y when it is capable of performing its specified functior attendant instrumentation, controls, electrical power, c tion or other auxiliary equipment that are required for th rain, component or device to perform its function(s) are their related support function(s).	n(s) and when ooling or seal ne system,		
OPEF	RATIONAL MC	DE - MODE	. · ·		
1.20	combination	ONAL MODE (i.e., MODE) shall correspond to any one of core reactivity condition, power level and average reaspecified in Table 1.2 of the St. Lucie Plant TS.			

REVISION NO.:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	14 of 220
PROCEDURE NO.:		14 01 230
C-200	ST. LUCIE PLANT	

1.0 DEFINITIONS for CONTROLS SECTION OF ODCM (continued)

PURGE - PURGING

1.24 PURGE or PURGING shall be any controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

RATED THERMAL POWER

1.25 RATED THERMAL POWER shall be a total reactor core heat transfer rate to the reactor coolant of 2700 MWt.

REPORTABLE EVENT

1.27 A REPORTABLE EVENT shall be any of those conditions specified in Section 50.73 of 10 CFR Part 50.

SITE BOUNDARY

1.30 SITE BOUNDARY means that line beyond which the land or property is not owned, leased or otherwise controlled by the licensee.

SOURCE CHECK

1.31 A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a radioactive source.

THERMAL POWER

1.33 THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

UNPLANNED RELEASE

1.34 **UNPLANNED RELEASE** is the unintended discharge of a volume of liquid or airborne radioactivity to the environment. The following guidance is presented to classify differences between unplanned releases and other releases that are not considered as an **UNPLANNED RELEASE**:

Is an UNPLANNED RELEASE if:

1. The wrong waste gas decay tank or liquid radwaste release tank is released off site.

REVISIO	ON NO.:		PROCEDURE TITLE:	PAGE			
32			OFFSITE DOSE CALCULATION MANUAL (ODCM)	15 of 230			
PROCEDURE NO.:							
	C-200		ST. LUCIE PLANT				
1.0	DEFIN						
1.34	(contir	nued)					
	2.	radioa	e of process system to automatically divert a process st ctive treatment system upon radioactivity being present detection level or at a certain level of activity, and the re rge off site occurs.	t in the process			
	3.	of radi	losses from unexpected pipe or valve leaks where the poactive material to off site such that a 10 CFR Part 50.7 R Part 50.73 report is required.				
	4.	4. For Gas Decay Tank, if a Gas Decay Tank loses greater than 2 psig per 8 hours for 9 consecutive shifts, or 18 psig in 72 hours, AND the losses were determined to be to the Reactor Auxiliary Building Atmosphere, then declare the losses as an UNPLANNED RELEASE (reference CR 00-2039).					
	ls not	an UNF	PLANNED RELEASE if:				
	1.	It cannot be shown that the release went off site, i.e., gas went to another part of the system(s) that contained the loss.					
			I losses through the Plant Vent due to valve and pipe lo g activities to make the system safe for maintenance a				
UNRE	ESTRIC	TED A	REA				
1.35	35 UNRESTRICTED AREA means an area, access to which is neither limited nor controlled by the licensee.						
VENT	TILATIC	<u>N EXH</u>	AUST TREATMENT SYSTEM				
1.39	9 A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal absorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment. Such a system is not considered to have any effect on noble gas effluents. Engineered Safety Features Atmospheric Cleanup Systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.						

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	16 of 230
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	

1.0 DEFINITIONS for CONTROLS SECTION OF ODCM (continued)

VENTING

1.40 VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

WASTE GAS HOLDUP SYSTEM

1.41 A WASTE GAS HOLDUP SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting Reactor Coolant System offgases from the Reactor Coolant System and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

REVISION NO.:	PROCEDURE TITLE: PAGE
32 PROCEDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)
C-200	ST. LUCIE PLANT
	TABLE 1.1 FREQUENCY NOTATION (Page 1 of 1)
NOTATION	FREQUENCY
S	At least once per 12 hours.
D	At least once per 24 hours.
W	At least once per 7 days.
4/M*	At least 4 per month at intervals of no greater than 9 days and minimum of 48 per year.
Μ	At least once per 31 days.
Q	At lease once per 92 days.
SA	At least once per 184 days.
R	At least once per 18 months.
S/U	Prior to each reactor startup.
N.A.	Not Applicable.
P**	Completed prior to each release
1/DSC	Once per Dry Shielded Canister (DSC) loading and unloading operation when DSC is in the Cask Handling Facility (CHF) and DSC is loaded with Spent Fuel.
	e Effluent Sampling e Batch Releases Only

REVISIO	N NO.:		PROCEDURE TITLE:	PAGE
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCE	DURE NO.:			18 of 230
	C-200		ST. LUCIE PLANT	
<u>3/4</u>	CONTRO	LS .	AND SURVEILLANCE REQUIREMENTS	
<u>3/4.0</u>	AP	PLI	CABILITY	
СОИТ	TROLS			
3.0.1	during the	e coi	vith the Controls contained in the succeeding controls nditions specified therein; except that upon failure to m issociated ACTION requirements shall be met.	
3.0.2	associate the Contro	d A(ol is	ce with a Control shall exist when the requirements of CTION requirements are not met within the specified ti restored prior to expiration of the specified time interv N requirements is not required.	ime intervals. If
SURV	/EILLANCE	ERE	EQUIREMENTS	
4.0.1		Co	Requirements shall be met during the conditions speci ntrols unless otherwise stated in an individual Surveilla	
4.0.2	Each Sur interval w		ance Requirement shall be performed within the speci	fied time
	-	nax erva	imum allowable extension not to exceed 25% of the su	urveillance
			······································	

•

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	19' of 230
PROCEDURE NO.:		13 01 200
C-200	ST. LUCIE PLANT	
INSTRUMENTATIO	<u>N</u>	
RADIOACTIVE LIQ	UID EFFLUENT MONITORING INSTRUMENTATION	
CONTROLS		
monitoring OPERABI Control 3. shall be d	ance with St. Lucie Plant TS 6.8.4.f.1), the radioactive lig instrumentation channels shown in Table 3.3-12 shall LE with their Alarm/Trip Setpoints set to ensure that the 11.1.1 are not exceeded. The Alarm/Trip Setpoints of etermined and adjusted in accordance with the method rs in the OFFSITE DOSE CALCULATION MANUAL (O	be limits of these channels ology and
APPLICABILITY:	At all times.	
ACTION:		
Setpoint less suspend the	ctive liquid effluent monitoring instrumentation channel conservative than required by the above control, imme release of radioactive liquid effluents monitored by the eclare the channel inoperable or change the setpoint so onservative.	diately affected
instrumentati Restore the in unsuccessful	n the minimum number of radioactive liquid effluent mo on channels OPERABLE, take the ACTION shown in T noperable instrumentation to OPERABLE status within , explain in the next Annual Radioactive Effluent Releas ility was not corrected in a timely manner.	able 3.3-12. 30 days and, if
c. Report all dev	iations in the Annual Radioactive Effluent Release Rep	ort.
SURVEILLANCE RI	EQUIREMENTS	
demonstra SOURCE	oactive liquid effluent monitoring instrumentation channated OPERABLE by performance of the CHANNEL CH CHECK, CHANNEL CALIBRATION and CHANNEL FU he frequencies shown in Table 4.3-8.	ECK,

REVIS	ION NO.:	PROCEDURE TITLE:		PAGE
	32	OFFSITE DOSE CALCULATIO	N MANUAL (ODCM)	20 of 230
PROC	EDURE NO.:			20 01 230
	ANT			
	RADIOAC	TABLE 3.3-12 TIVE LIQUID EFFLUENT MONIT (Page 1 of 2)		ATION
		INSTRUMENT	MINIMUM CHANNELS OPERABLE	ACTION
1.	Radioactivity M Termination of	lonitors Providing Alarm and Automatic Release		
	a) Liquid Rad	dwaste Effluent Line	<u>,</u> 1	35
	b) Steam Ge	nerator Blowdown Effluent Line	1/SG	36, 37
2.	Flow Rate Mea	surement Devices		
	a) Liquid Rad	dwaste Effluent Line	N.A	38
	b) Discharge		N.A	38
	c) Steam Ge	nerator Blowdown Effluent Lines	N.A	38

SG - Denotes Steam Generator

ACTION STATEMENTS

ACTION 35 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may continue provided that prior to initiating a release:

a. At least two independent samples are analyzed in accordance with the Surveillance Requirement for concentration limit of Control 4.11.1.1.

AND

b. At least two technically qualified members of the Facility Staff independently verify the release rate calculations and discharge line valving.

Otherwise, suspend release of radioactive effluents via this pathway.

ACTION 36 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided grab samples are analyzed for gross radioactivity (beta or gamma) at a limit of detection of at least 2.E-07 micro-Curie/ml:

a. At least once per 8 hours⁽¹⁾ when the specific activity of the secondary coolant is greater than 0.01 micro-Curies/gram DOSE EQUIVALENT I-131

OR

b. At least once per 24 hours⁽¹⁾ when the specific activity of the secondary coolant is less than or equal to 0.01 micro-Curies/gram DOSE EQUIVALENT I-131.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	

32 PROCEDURE NO.:

ST. LUCIE PLANT

21 of	230
	200
3027-1	11 11

C-200

TABLE 3.3-12 <u>RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION</u>

(Page 2 of 2)

ACTION STATEMENTS (continued)

ACTION 37 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, isotopic grab samples shall be obtained and analyzed at a Lower Limit of Detection for I-131, Co-58, Co-60, Cs-134, and Cs-137 to achieve detection sensitivity capable of detecting a primary-to-secondary leak rate of 5 gallons per day, provided that the Reactor Coolant System has sufficient activity present.

The applicable frequency shall be:

In MODES 1, 2, 3, 4

a. At least once per day⁽¹⁾ for isotopic activity on the affected Steam Generator, provided that the Air Ejector Gas Activity Monitor is OPERABLE,

OR

b. At least every 8 hours⁽¹⁾ for isotopic activity on the affected Steam Generator, if the Air Ejector Gas Activity Monitor is INOPERABLE.

This requirement is intended to meet EPRI PWR Primary-to-Secondary Leak Guidelines (TR-104788-R2) per reference PMAI 00-08-109.

ACTION 38 - Minimum system design flow of required running pumps shall be utilized for ECL calculations for discharge canal flow and maximum system design flow be utilized for ECL calculations for effluent line flow.

TABLE 3.3-12 Notation

(1) - The initial sample shall be completed prior to the frequency interval specified. Subsequent samples (of the same INOPERABLE condition) may be performed per ODCM surveillance requirement 4.0.2 (a maximum allowable extension not to exceed 25% of the surveillance interval).

REVI	SION	I NO.:	PROCEDURE TITLE:			Р	AGE:
RO	CEDL	32 JRE NO.:	OFFSITE DOSE CAI	LCULATION	I MANUA	L (ODCM)	22 of 230
		C-200	ST.	LUCIE PLA	NT		
		RADIOAC	TIVE LIQUID EFFLUE				ATION
		IN	STRUMENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST
1.			nitors Providing Alarm and nation of Release				
	a)	Liquid Radw	vaste Effluent Line	D	Р	R (2)	Q (1)
	b)	Steam Gene Line	erator Blowdown Effluent	D	м	R (2)	Q (1)
2.			urement Devices				
	a)		vaste Effluent Line	D (3)	N.A.	R	Q
	b) c)	Discharge C Steam Gene Line	erator Blowdown Effluent	D (3)	N.A. N.A.	R	Q
1)	:	pathway and 1. Instru 2. Circu 3. Instru	EL FUNCTIONAL TEST s control room alarm annur iment indicates measured it failure or iment indicates a downsca	nciation occur levels above nle failure or	nonstrate a r if any of t the alarm	he following co	onditions exist:
2)		The initial CH reference sta or using stan These standa and rate capa	Iment controls not set in op HANNEL CALIBRATION s andards traceable to the N Idards that have been calif ards should permit calibrat abilities that are typical of DN, button sources that ha	hall be perfor ational Institu orated agains ting the syste normal plant	med using ite of Stan it standard m over its operation.	dards & Techr ls certified by t intended rang For subseque	ology (NIST) he NIST. e of energy ent CHANNEL
3)	(CHANNEL C	HECK shall consist of ver HECK shall be made at le periodic or batch releases	ast once per			
4)		The requirem	nents to perform the surve	illances is no	t applicabl	e, if Table 3.3-	12 list the

0.:	PROCEDURE TITLE:	PAGE:
	OFFSITE DOSE CALCULATION MANUAL (ODCM)	23 of 230
	ST LLICIE DI ANT	
-200	ST. LOUIL FLANT	
MENTATIO	N	
CTIVE GAS	SEOUS EFFLUENT MONITORING INSTRUMENTATIO	<u>DN</u>
OLS		
effluent m OPERABI Control 3. shall be de	onitoring instrumentation channels shown in Table 3.3- _E with their Alarm/Trip Setpoints set to ensure that the 11.2.1.are not exceeded. The Alarm/Trip Setpoints of t etermined and adjusted in accordance with the method	13 shall be limits of hese channels
ABILITY:	As shown in Table 3.3-13	
<u>:</u>		
etpoint less uspend the r nannel or de	conservative than required by the above control, immede release of radioactive gaseous effluents monitored by the eclare the channel inoperable or change the setpoint so	diately ne affected
strumentation estore the ir nsuccessful,	on channels OPERABLE, take the ACTION shown in Tanoperable instrumentation to OPERABLE status within a explain in the next Annual Radioactive Effluent Released	able 3.3-13. 30 days and, if
eport all dev	viations in the Annual Radioactive Effluent Release Rep	port.
LLANCE RE	EQUIREMENTS	
demonstra SOURCE	ated OPERABLE by performance of the CHANNEL CH CHECK, CHANNEL CALIBRATION and CHANNEL FU	ECK,
	32 IE NO.: -200 MENTATIO CTIVE GAS OLS In accorda effluent m OPERABI Control 3. shall be de parameter ABILITY: ////////////////////////////////////	32 OFFSITE DOSE CALCULATION MANUAL (ODCM) -200 ST. LUCIE PLANT MENTATION MENTATION CTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION OLS In accordance with St. Lucie Plant TS 6.8.4.f.1), the radioactive g OPERABLE with their Alarm/Trip Setpoints set to ensure that the Control 3.11.2.1 are not exceeded. The Alarm/Trip Setpoints of t Shall be determined and adjusted in accordance with the method parameters in the ODCM. ABILITY: As shown in Table 3.3-13 //th a radioactive gaseous effluent monitoring instrumentation channel supend the release of radioactive gaseous effluents monitored by the anonel or declare the channel inoperable or change the setpoint so cceptably conservative. //th less than the minimum number of radioactive gaseous effluent is strumentation channels OPERABLE, take the ACTION shown in Table strumentation channels OPERABLE, take the ACTION shown in the setore the inoperable instrumentation to OPERABLE status within insuccessful, explain in the next Annual Radioactive Effluent Release is inoperablity was not corrected in a timely manner. eport all deviations in the Annual Radioactive Effluent Release Rep LLANCE REQUIREMENTS

REVIS	SION N	O.:	PROCEDURE TITLE:		PAG	E		
		32	OFFSITE DOSE	E CALCULATION MANU	IAL (ODCM)			
PROC	EDUR	E NO.:	1			24 of 230		
	C	-200		ST. LUCIE PLANT				
			1			<u>a s s com</u> S S A a A		
				TABLE 3.3-13	۲,			
	<u>R</u>	ADIOACTI	VE GASEOUS EF	FLUENT MONITORING	INSTRUMENTA	TION		
				(Page 1 of 3)				
		INSTRU	MENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION		
1.	Was	ste Gas Holdu	p System					
	a)	Noble Gas A	ctivity Monitor -					
			arm and Automatic	1/Rx	*	45		
		Termination		· · · · · · · · · · · · · · · · · · ·				
2.			ation System	1/Rx	**	47		
	a)	Noble Gas A	ctivity Monitor	I/KX	Modes 1, 2, 3, 4	47		
3.	Plan	nt Vent Systen	n		WIDUES 1, 2, 3, 4	40		
<u> </u>	a)	Noble Gas A	ctivity Monitor	4 (D)	*	47		
		(Low Range)		1/Rx		47		
	b)	Iodine Samp		1/Rx	*	51		
	C)	Particulate S		1/Rx	*	51		
	d)	Flow Rate M		N.A. (3)	*	53		
	<u>e)</u>	Sampler Flov	w Rate Monitor	1/Rx	*	46		
4.		Storage Area	a Ventilation					
	Syst							
	a)	(Low Range)	ctivity Monitor	1/Rx	*	47		
	b)	Iodine Samp		1/Rx	*	51		
	C)	Particulate S		1/Rx	*	51		
	d)	Flow Rate M		N.A. (3)	*	53		
	e)		w Rate Monitor	1/Rx	*	46		
5.			Blowdown Building					
	Ven							
	a)		ctivity Monitor	1	*	47		
		(Low Range)			*			
	<u>b)</u>	Iodine Samp		1	*	51		
	<u>c)</u>	Particulate S		1	*	51		
	<u>d)</u>	Flow Rate M		N.A. (3)	*	53		
	<u>e)</u>	Sampler Flo	w Rate Monitor	1	<u> </u>	46		

* - At all times while making releases via this pathway

** - At all times when air ejector exhaust is not directed to plant vent.

Rx - Denotes reactor

ACTION STATEMENTS

ACTION 45 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be released to the environment provided that prior to initiating a release:

a. At least two independent samples of the tank's contents are analyzed and

b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup.

Otherwise, suspend release of radioactive effluents via this pathway.

]	REVISIO	N NO.:	PROCEDURE TITLE:	PAGE:				
	5	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	25 of 230				
	PROCED	URE NO.:						
		C-200	ST. LUCIE PLANT					
			TABLE 3.3-13					
		RADIOACTI	(Page 2 of 3)	NTATION				
		(Fage 2 of 3)						
	r		ACTION STATEMENTS (continued)					
	Chann	els OPERABL	ne number of channels OPERABLE less than required LE requirement, effluent releases via this pathway may the flow rate is estimated at least once per 4 hours.					
	Minim		he number of channels OPERABLE less than required OPERABLE, effluent releases via this pathway may co	3				
	а.		perability is due to loss of activity indication, <u>Then</u> grab once per 8 hours ⁽¹⁾ and these samples are analyzed fo 24 hours.					
	-		OR					
	b.	discovered du following reas	perability is due to loss of Control Room alarm annunc uring a channel functional test because of any one or m sons listed, <u>Then</u> channel checks are performed once p indication and current assigned setpoints are NOT exc	nore of the per hour ⁽¹⁾ to				
		1. Failure	to annunciate when testing alarm/trip setpoints.					
	u .	2. Circuit	failure.					
		3. Downs	cale failure.					
			Is NOT set in OPERATE mode.					
	Chanr analyz achiev	DN 48 - With th nels OPERABI ced at a Lower re detection se	ne number of channels OPERABLE less than required E requirement, noble gas isotopic grab samples shall Limit of Detection for Ar-41, Kr-88, Xe-133, Xe-133m, ensitivity capable of detecting a primary-to-secondary le rovided that the Reactor Coolant System has sufficient	be obtained and and Xe-135 to eak rate of				
	The ap							
	a.		per 12 hours ^{(1),(2)} for noble gas isotopic activity on the <i>i</i> ided that <u>each</u> affected Unit's Steam Generator Blowdo					
			OR					
	b.		per 8 hours ^{(1),(2)} for noble gas isotopic activity on the A <u>ner</u> of the affected Unit's Steam Generator Blowdown N E.					

REVISIO	N NO.:	PROCEDURE TITLE:	PAGE:						
BBOCED	32 DURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	26 of 230						
FROCED	C-200	ST. LUCIE PLANT							
TABLE 3.3-13 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION (Page 3 of 3)									
		ACTION STATEMENTS (continued)							
ACTIC	ON 48 (continu	led)							
(TR-10	04788-R2), the	intended to meet EPRI PWR Primary-to-Secondary Lea erefore grab samples shall be taken regardless of the A while in Modes 1, 2, 3, 4. (Reference PMAI 00-08-109.	lignment of the						
Chann contini	nels OPERABL	ne number of channels OPERABLE less than required LE requirement, effluent releases via the affected pathw days provided samples are continuously collected with as required in Table 4.11-2.	vay may						
		um system flows shall be utilized in the determination on see monitor alarm setpoint.	of the						
TABLE	<u>= 3.13-13 NO</u> T	<u>TATION</u>							
(1) -	Subsequent s ODCM survei	mple shall be completed prior to the frequency interval s samples (of the same INOPERABLE condition) may be illance requirement 4.0.2 (a maximum allowable extens ercent of the surveillance interval).	performed per						
(2) -	Then the sam ejector shall t	steam flow to the air ejector nozzles while the Reactor in the may be omitted, but the steam flow condition (statu be reverified once per 8 hours to initiate grab samples in the nozzles is established.	us) to the air						
(3) -		monitors are not functional. Vent flow is based on des nd values in the UFSAR. EPIP-09 contains the correct							

REVISION NO .: PROCEDURE TITLE: PAGE: 32 OFFSITE DOSE CALCULATION MANUAL (ODCM) 27 of 230 PROCEDURE NO .: ST. LUCIE PLANT C-200 **TABLE 3.3-14** RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS (Page 1 of 4) CHANNEL BASIS ALERT HIGH **ODCM Effluent Gas Channels** DOCUMENT SETPOINT^e SETPOINT ID 5 x Bkg.^q **1PV LOW RANGE GAS** 01-05 C-200^a Allotted % Of Site Limit^g **1FHB LOW RANGE GAS** 04-05 C-200^a 5 x Bkg.^q Allotted % Of Site Limit⁹ 2A PV PIG LOW RANGE GAS 423 C-200^a 5 x Bkg.^q Allotted % Of Site Limit⁹ For Plant 2B PV PIG LOW RANGE GAS 433 C-200^a 5 x Bkg. Vent #2 2FHB LOW RANGE GAS C-200^a Allotted % Of Site 413 5 x Bkg. Limit^g SGBDB LOW RANGE GAS C-200^a Allotted % Of Site 45-6 5 x Bkg. Limit^g 2 x Bkg.^b 1 CONDENSER AIR EJECTOR 35 C-200 3 x Bkg. 2 x Bkg.^b 2 CONDENSER AIR EJECTOR 403 C-200 3 x Bkg. As Per COP-01.06 As Per COP-01.06^{a,h} **1 BATCH GAS EFFLUENT** 42 C-200^a 2 BATCH GAS EFFLUENT 203 C-200^a As Per COP-01.06 As Per COP-01.06^{a,h}

2PV WRGM Chan Low Range Gas 621 Allotted % Of Site 5 x Bkg.^P uCi/sec 624^P C-200^a Limit^P uCi/sec Mid Range Gas 622 High Range Gas 623 2A ECCS WRGM Chan Low Range Gas 601 0.75 x High^P Allotted % Of Site 604^P C-200^a uCi/sec Limit^P uCi/sec Mid Range Gas 602 High Range Gas 603 2B ECCS WRGM Chan Low Range Gas 611 0.75 x High^P Allotted % Of Site 614^P C-200^a Limit^P uCi/sec uCi/sec Mid Range Gas 612 High Range Gas 613

ODCM Related Particulate Channels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT ^e	HIGH SETPOINT [®]
1PV PARTICULATE	01-01	FUSAR	5000 CPM	10,000 CPM ^c
1FHB PARTICULATE	04-01	FUSAR & TS ^d	5000 CPM	10,000 CPM ^c
2A PV PIG PARTICULATE	421	FUSAR	5000 CPM	10,000 CPM ^c
2B PV PIG PARTICULATE	431	FUSAR	5000 CPM	10,000 CPM ^c
2FHB PARTICULATE	411	FUSAR & TS ^d	5000 CPM	10,000 CPM ^c
SGBDB PARTICULATE	45-4	FUSAR	5000 CPM	10,000 CPM ^c

REVISION NO.:

PROCEDURE TITLE:

32 PROCEDURE NO.:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

PAGE:

28 of 230

C-200

ST. LUCIE PLANT

TABLE 3.3-14 RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS

(Page 2 of 4)

ODCM Related Iodine Channels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT [®]	HIGH SETPOINT [®]
1PV IODINE	01-03	FUSAR	5000 CPM	10,000 CPM ^c
1FHB IODINE	04-03	FUSAR	5000 CPM	10,000 CPM ^c
2A PV PIG IODINE	422	FUSAR	5000 CPM	10,000 CPM ^c
2B PV PIG IODINE	432	FUSAR	5000 CPM	10,000 CPM ^c
2FHB IODINE	412	FUSAR	5000 CPM	10,000 CPM ^c
SGBDB IODINE	45-5	FUSAR	5000 CPM	10,000 CPM ^c

ODCM Related Liquid Channels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT [®]	HIGH SETPOINT ^e
1A S/G BLOWDOWN	44	C-200	2 x Bkg.	2.E-04 uCi/ml ^{f,m}
1B S/G BLOWDOWN	45	C-200	2 x Bkg.	2.E-04 uCi/ml ^{f,m}
2A S/G BLOWDOWN	121	C-200	2 x Bkg.	2.E-04 uCi/ml ^m
2B S/G BLOWDOWN	122	C-200	2 x Bkg.	2.E-04 uCi/ml ^m
1 BATCH LIQUID EFFLUENT	R6627	C-200	As Per COP-01.05	As Per COP-01.05 ⁿ
2 BATCH LIQUID EFFLUENT	301	C-200	As Per COP-01.05	As Per COP-01.05 ⁿ

Monitor channels not listed are covered per COP-07.05

TABLE NOTATIONS

- a ODCM Control 3.11.2.1a
- b ODCM Table 4.11-1 Note (7)
- c ODCM Control 3.11.2.1.b
- d TS Table 3.3-6 required instrument 2.a.ii with setpoint per ODCM
- e Setpoints may be rounded for analog and digital display input limitations.
- f The channel setpoint to be in cpm equivalent to this activity
- g per ODCM Methodology Step 2.2.2
- Batch Gaseous Release Rate and Maximum activity limits shall be used such that Plant Vent (PV) Release HIGH setpoints should not be exceeded.

i, j, k, and I not used in notation for clarity

REVIS	ION NO.:	PROCEDURE TITLE:	PAGE							
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	29 of 230							
PROCI	EDURE NO.:									
	C-200	ST. LUCIE PLANT								
	TABLE 3.3-14 RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS (Page 3 of 4)									
<u>TAB</u>	LE NOTATION	<u>S</u> (continued)								
m -	Continuous Liq	uid setpoint methodology per ODCM 1.3.2								
n -	Batch liquid set	point methodology per ODCM 1.3.1								
o -	Note "oscar" is	not used in this table notation								
р-	The individual	Channel 621, 622 and 623 (Plant Vent No. 2)								
		Channel 601, 602 and 603 (ECCS 2A)								
	and	Channel 611, 612 and 613 (ECCS 2B)								
	After the first A locked in if the internal control will not reset ar respective Skic Alarm" and "Hig information on!	Only the Skid's Effluent Channel Setpoint provides an a lert and High Effluent Channel Alarms are received the release is increasing to higher activity levels. Transfer to Effluent Channel input from the Mid or High Range of alarm, nor provide additional alarms. The Effluent Ch has to be reset to new Setpoints by I&C. References gh Alarm' settings for the Low Mid and High Channels y. This is why Table 3.3-14 only list Channel 624, 604 Alarm Setpoints. These are the respective Skid's Alarm	y will stay of Skid Gas Channels annel on the to "Alert are for display and 614 as the							
	channels for E0 each have a sin ft3/minute exha set to zero sinc uCi/sec value in	mber 604 and 614 are the uCi/sec indication and ALER CCS 2A and ECCS 2B respectively. The ECCS exhau- ngle fan. Their Skid's Monitor Item #059 will be set per aust rate. Their Skid's Monitor Item #060 (Accident Flov there is only one flow rate possible for these ECCS p ndicated on ECCS skids should be valid regardless of I tions.	st pathways the measured w rate) will be pathways. The							
Accident conditions. The Channel ID number 624 (generically called the Plant Vent 2 Skid's Channel 4) is the uCi/sec and Control Room active ALERT/HIGH Alarm that is Common (shared by) to the Low (621), Mid (622), and High (623) Range Gas Channels. The Plant Vent 2's skid Monitor Item #059 will be set for the maximum ft3/minute flow rate that could occur under all circumstances. The Plant Vent 2 Channel 624's actual uCi/sec is dependent what is set in Monitor Item #059 and Monitor Item #060 as follows:										

PROCEDURE TITLE:

32 PROCEDURE NO.:

REVISION NO.:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

C-200

ST. LUCIE PLANT

PAGE: 30 of 230

TABLE 3.3-14 RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS

(Page 4 of 4)

TABLE NOTATIONS (continued)

p - (continued)

The NORMAL value for the Common Channel 624 uCi/sec indication and ALERT/High Alarms should be based on the equivalent uCi/sec of the 5 x Bkg (use COP-07.05) uCi/cc of the Low Range Channel #621 and RIM 26-90 Monitor Item #059 (the MAXIMUM process ft3/minute flow rate that could occur in the Unit 2 Plant Vent.

The ACCIDENT value for the Common Channel 624's uCi/sec is based on the Skid switching (at a preset activity value) input from the Low Range Channel to calculate / display a uCi/sec value based on receiving activity uCi/cc input from either the Mid Range Channel 622 (OR from the High Range Channel 623) and RIM 26-90 Monitor Item #060 6,600 ft3/minute (use COP-07.05) flow rate that is expected during a LOCA Safety Injection sequence.

During an ACCIDENT you have to access the running status of 2-HVE-6A, 2-HVE-6B, 2-HVE-7A, 2-HVE-7B, 2-HVE-8A, 2-HVE-8B, 2-HVE-10A and 2-HVE-10B to determine actual Plant Vent exhaust flow rate ft3/minute. This is the flow rate that should be inserted into Plant Vent #2 Skid's Monitor Item #060 with new Setpoints for Alert and High Alarms in units of uCi/sec calculated by using the actual Plant Vent exhaust flow during the Accident. If fan operating status changes, the Effluent Channel 624 uCi/sec indication and existing Alert and High Alarm Setpoints will not be valid for a new flow rate. This is the reason that EPIP-09 does not utilize Channel 624 indication for calculating off-site dose.

- q During an outage, the Low Range gas activity ALERT Alarm Setpoint may be set to slightly above outage anticipated activity levels, but shall always be set to a value less than the High Alarm Setpoint. Examples of outage activities are initiating a Containment Main Purge and venting the S/G primary side bowls.
- FUSAR Channel listed FUSAR, but not required by ODCM Control 3.3.10 Table 3.3-13. The setpoints are used to provide alarm well before exceeding ODCM Control 3.11.2.1.b Site Dose Rate Limit. The inoperability of a FUSAR channel above does not involve an ACTION statement unless TS (Technical Specification) is noted.
- 2 x Bkg., 3 x Bkg., 5 x Bkg. etc., denotes the number of times the normal channel reading is the appropriate Alarm Setting. These type of setpoints should be periodically evaluated to insure alarm sensitivity is maintained as per COP-07.05.

REVI	SION NO.:	PROCEDURE T					GE:	
	32	OFFSITE	DOSE CA	LCULAT	ION MANUAL	(ODCM)	31 of 230	
PRO	CEDURE NO.:							
	C-200		ST. LUCIE PLANT					
	RADIOACTI		JS EFFLU		NITORING IN		ATION	
		<u>SURV</u>		E REQU age 1 of 2	IREMENTS (4 2)	·)		
	INSTRUME	ENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	Modes in which surveillanc required	
1.	Waste Gas Holdup	System	· · · · · · · · · · · · · · · · · · ·					
	a) Noble Gas Ac Providing Alar Automatic Ter Release	tivity Monitor - m and mination of	Р	Ρ	R (3)	Q (1)	*	
2.	Condenser Evacua	tion System						
	a) Noble Gas Ac	tivity Monitor	D	M	R (3)	Q (2)	**	
3.	Plant Vent System							
	a) Noble Gas Ac	tivity Monitor	D	М	R (3)	Q (2)	*	
	b) Iodine Sample	er	W	N.A.	N.A.	N.A.	*	
	c) Particulate Sa	mpler	W	N.A.	N.A.	N.A.	*	
	e) Sampler Flow	Rate	D	N.A.	R	N.A.	*	
4.	Fuel Storage Area System	Ventilation						
	a) Noble Gas Ac	tivity Monitor	D	М	R (3)	Q (2)	*	
	b) Iodine Sample	er	W	N.A.	N.A.	N.A.	*	
	c) Particulate Sa	mpler	W	N.A.	N.A.	N.A.	*	
	e) Sampler Flow	Rate Monitor	D	N.A.	R	N.A.	*	
5.	Steam Generator E Building Vent							
	a) Noble Gas Ac	tivity Monitor	D	M	R (3)	Q (2)	*	
	b) Iodine Sample	er	W	N.A.	N.A.	N.A.	*	
	c) Particulate Sa		W	N.A.	N.A.	N.A.	*	
		Rate Monitor	D	N.A.	R	N.A.	*	
6.	Cask Handling Fac							
	a) Sampler Flow	Rate Monitor	D	N.A.	Annual	N.A	***	

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:					
PROCE	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	32 of 230					
	C-200							
	RAD	TABLE 4.3-9 IOACTIVE GASEOUS EFFLUENT MONITORING INSTRUME SURVEILLANCE REQUIREMENTS (4) (Page 2 of 2)	<u>NTATION</u>					
		TABLE NOTATIONS						
* -	At all	times when making releases via this pathway.						
** _	At all	times when air ejector exhaust is not directed to plant vent.						
*** -	At all	times when Cask Handling Vent (CHF) is operative.						
(1)	this p	CHANNEL FUNCTIONAL TEST shall also demonstrate automa athway and control room alarm annunciation occurs if any of th tions exist:						
	1.	Instrument indicates measured levels above the alarm/trip se	tpoint or					
	2.	2. Circuit failure or						
	3.	3. Instrument indicates a downscale failure or						
	4.	Instrument controls not set in operate mode.						
(2)	The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exist:							
	1.	1. Instrument indicates measured levels above the alarm/trip setpoint or						
	2.	Circuit failure or						
	3.	3. Instrument indicates a downscale failure or						
	4.	Instrument controls not set in operate mode.						
(3)	refere (NIST the N range subse	nitial CHANNEL CALIBRATION shall be performed using one of ence standards traceable to the National Institute of Standards () or using standards that have been calibrated against standard (IST. These standards should permit calibrating the system ov- e of energy and rate capabilities that are typical of normal plant equent CHANNEL CALIBRATION, button sources that have be calibration may be used.	& Technology rds certified by er its intended operation. For					
(4)	the IN	equirements to perform the surveillances is not applicable, if T NSTRUMENT MINIMUM CHANNELS OPERABLE as not appli Prence CR 99-0361, PMAI 99-04-106).						

REVISION NO.: 32 PROCEDURE NO).:	OFFSITE DOSE CALCULATION MANUAL	(ODCM)	PAGE: 33 of 230
C-200	D	ST. LUCIE PLANT		
3/4.11	RADIC	ACTIVE EFFLUENTS		
3/4.11.1	LIQUID	EFFLUENTS		
CONCENTE	RATION			
CONTROLS	; 			
ra (so in ra en	dioactive ee TS Fi 10 CFR dionuclio ntrained	nce with the St. Lucie Plant TS 6.8.4.f.2) and material released in liquid effluents to UNRE gure 5.1-1) shall be limited to ten times the c Part 20.1001-20.2401, Appendix B, Table 2, les other than dissolved or entrained noble g noble gases, the concentration shall be limite e/ml total activity.	ESTRICTE oncentrati Column 2 ases. For	ED AREAS ons specified 2 for dissolved or
APPLICABIL	<u>_ITY:</u>	At all times.		
ACTION:				
UNRE	ESTRIC [®]	entration of radioactive material released in li ED AREAS exceeding the above limits, imm to within the above limits.		
SURVEILLA	NCE RE	QUIREMENTS		
4.11.1.1.1		ctive liquid wastes shall be sampled and ana ng and analysis program of Table 4.11-1.	lyzed acc	ording to the
4.11.1.1.2	the me	sults of the radioactivity analyses shall be use thodology and parameters in the ODCM to a trations at the point of release are maintained 3.11.1.1.	ssure that	the
4.11.1.1.3	perforn post-re ODCM	lease analyses of samples composited from ned in accordance with Table 4.11-1 and resu lease analyses shall be used with the calcula to assure that the concentrations at the poin ned within the limits of Control 3.11.1.1.	ults of the ational me	previous thods in the

REVI	SION NO.:	PROCEDURE	TITLE:	PAGE		
	32	OFESITE	DOSE CAL		ANUAL (ODCM)	
	CEDURE NO.:			34 of 230		
FRU					_	
	C-200		ST. I		Г	
	RADIOACT		<u>D WASTE S</u>		ND ANALYSIS PR	OGRAM
			(Pa	ge 1 of 4)		
	Liquid Release	Туре	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection LLD (1) (µCi/ml)
A .	Batch Waste Release	se Tanks (2)	P	Each Batch	P.G.E. (3)	5.E-07
			Each Batch		I-131	1.E-06
			P One Batch/M	M	Dissolved and Entrained Gases (Gamma Emitters)	1.E-05
			Р	M	H-3	1.E-05
			Each Batch	Composite (4)	Gross Alpha	1.E-07
			P	Q	Sr-89, Sr-90	5.E-08
		(= -)	Each Batch	Composite (4)	C-14, Fe-55, Ni-63	1.E-06
В.	Continuous Release	es (5, 6)	Daily	4/M	P.G.E.(3)	5.E-07
				Composite	I-131	1.E-06
			Daily Grab Sample	4/M Composite	Dissolved and Entrained Gases (Gamma Emitters)	1.E-05
			Daily	М	H-3	1.E-05
			Daily	Composite	Gross Alpha	1.E-07
			Daily	Q Composite	Sr-89, Sr-90	5.E-08
					C-14, Fe-55, Ni-63	. 1.E-06
С.	Settling Basin (7)		W	w	P.G.E. (3)	5.E-07
			Grab Sample		I-131	1.E-06
D.	Settling Basin as a		_		P.G.E. (3)	5.E-07
	Release Pathway. (P		I-131	1.E-06
	(Reference CR 99- 99-08-084 PMAI-01		Each Batch (8)	Each Batch	Dissolved and Entrained Gases (Gamma Emitters)	1.E-05
					H-3	1.E-05
			Cook Dotat	Fach Datate	Gross Alpha	1.E-07
			Each Batch	Each Batch	Sr-89, Sr-90	5.E-08
					C-14, Fe-55, Ni-63	1.E-06
E.	Groundwater Dewa		W (11)	W (11)	H-3	1E-05
	Batch Releases (10))	••(11)	••(11)	P.G.E. (3)	5.E-07
					H-3	1E-05
			Р		P.G.E. (3)	5.E-07
		Each Batch	Each Batch	Gross Alpha	1.E-07	
			(8)		Sr-89, Sr-90	5.E-08
			(-)		C-14, Fe-55, Ni-63	1.E-06

P.G.E. - Denotes Principal Gamma Emitter

REVISI	ON NO.:			PAGE:
	32	_	OFFSITE DOSE CALCULATION MANUAL (ODCM)	35 of 230
FROCE	C-200		ST. LUCIE PLANT	
			TABLE 4.11-1 <u>/E LIQUID WASTE SAMPLING AND ANALYSIS PR</u> (Page 2 of 4)	ROGRAM
			TABLE NOTATIONS	
(1)	The LLD is defined for purposes of these controls, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a real signal.			
	For a partic	cular	measurement system, which may include radiochem	nical separation
	$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot \exp(-\lambda \cdot \Delta T)}$			
	Where:			
	LLD	=	 the a priori lower limit of detection (micro-Curie per unit mass or volume), 	
	Sb	=	the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute),	
	E	=	the counting efficiency (counts per disintegration),	
	V	=	the sample size (units of mass or volume),	
	2.22E+06	=	the number of disintegrations per minute per micro-Curie.,	
	Y	=	the fractional radiochemical yield, when applicable,	
	λ	=	the radioactive decay constant for the particular radionuclide (secand	
	ΔΤ	=	the elapsed time between the midpoint of sample collection and the time of counting (sec).	
	Typical values of E, V, Y and ΔT should be used in the calculation.			
	It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.			

	ON NO.:	PROCEDURE	TITLE:				PAGE:
	32	OFFSIT	E DOSE (CALCULATIC	N MANUAL (OD	CM)	36 of 230
PROCI	EDURE NO.:						
	C-200			T. LUCIE PL			
	RADIOAC		ID WAST	ABLE 4.11-1 E SAMPLING (Page 3 of 4)	AND ANALYS	IS PR	<u>OGRAM</u>
			<u>TAB</u>	LE NOTATIC (continued)	DNS		
(2)	sampling for	or analyses,	each batc	h shall be iso	es of a discrete v lated and then the presentative san	noroug	hly mixed by
(3)	following ra Cs-137 and are to be co of the abov Radioactive	adionuclides: d Ce-141 and onsidered. (ve nuclides, s e Effluent Re	Mn-54, I d Ce-144. Other gam shall also elease Re	Fe-59, Co-58 This list doe ma peaks tha be analyzed a port pursuant	D control applies, Co-60, Zn-65, M s not mean that at are identifiable and reported in th to Control 3.11.3 8, Revision 1, Jun	No-99, only th e, toge he Anr 2.6 in t	Cs-134, nese nuclides ther with thos nual the format
(4)	the quantity	y of liquid wa	aste disch	arged and in	ity of liquid samp which the metho entative of the liq	d of sa	ampling
(5)					wastes of a non put flow during th		
(6)	activity on less than o	the Intake Co r equal to 2.1	ooling Wa E-07 μCi/i	iter System o ml LLD limit.	5 μCi/ml, perform utlet to ensure th If ICW is >2.E-0 is Release on thi	ie activ 7 μCi/ι	vity level is ml, perform
(7)		dicated by th			med primary to s dicating greater t		
(8)	requiremer	nt for concen embers of th	tration lim	nit of control 4	ed in accordance .11.1.1.1 and at dently verify the r	least t	wo technicall
					tivity per the guid lless of the abser		

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE
00007	32 DURE NO.:	OFFSITE DOSE CALCULATION MANUAL	(ODCM) 37 of 230
PROCE	C-200	ST. LUCIE PLANT	
	RADIOAC	TIVE LIQUID WASTE SAMPLING AND ANAL (Page 4 of 4)	TSIS PROGRAM
		TABLE NOTATIONS (continued)	
(10)	Protected A levels. This samples that in the dewa dewatering groundwate (e.g., IVWV for these re established shall be rec	proundwater dewatering discharges from location area where radiological contamination is not exp expectation may be a judgment based on loca at indicate radiological contaminant levels below tering pump's zone of influence. These sample pump well samples (taken by small-volume samples r samples, and upgradient samples taken from percolation basins) within the zone of influence. leases shall be precautionary in nature. A cons in the discharge permit for the effluent activity; conciled with actual activity concentrations ascent the actual effluent.	bected at significant and peripheral withe LLD from sources es may include mple pumps), upgradient surface waters . The sampling protocol servative value shall be however, the permit
(11)	frequency d has not yet reached its wells of an	I shall be sampled at some point in the discharg lescribed herein. Any outfall that includes a we achieved its steady state flow rate (indicating th steady state zone of influence) shall be sample outfall reaches steady state, the sampling and a d to monthly.	II (or well point) that nat it has not yet d weekly. After the

REVISION NO	D.:	PROCEDURE TITLE:	PAGE:
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	38 of 230
PROCEDURE			
C-	200	ST. LUCIE PLANT	
RADIOA	CTIVE EFF	LUENTS	
DOSE			
CONTRO	DLS		
3.11.1.2	commitme liquid efflu	ance with St. Lucie Plant TS 6.8.4.f.4) and 6.8.4.f.5), the ent to a MEMBER OF THE PUBLIC from radioactive ma ients released, from each unit, to UNRESTRICTED AR -1) shall be limited:	aterials in
		ring any calendar quarter to less than or equal to 1.5 m ole body and to less than or equal to 5 mrems to any or	
		ring any calendar year to less than or equal to 3 mrems dy and to less than or equal to 10 mrems to any organ.	to the whole
APPLICA	BILITY:	At all times.	
ACTION:			
ex da ex rec	ceeding an lys, pursual ceeding the duce the re	ulated dose from the release of radioactive materials in by of the above limits, prepare and submit to the Commi nt to Plant TS 6.9.2, a Special Report that identifies the e limit(s) and defines the corrective actions that have be leases and the proposed corrective actions to be taken eleases will be in compliance with the above limits.	ssion within 30 cause(s) for een taken to
SURVEIL	LANCE RI	EQUIREMENTS	
4.11.1.2	quarter ar	re dose contributions from liquid effluents for the curren nd the current calendar year shall be determined in acco odology and parameters in the ODCM at least once per	ordance with

	ION NO.: 32		t i PR
PROC	EDURE NO		39 of 230
	C-20	DO ST. LUCIE PLANT	
RAD	IOACT	<u>TIVE EFFLUENTS</u>	
LIQU	JID RA	DWASTE TREATMENT SYSTEM	
CON	ITROL	S	
3.11	T si to F	n accordance with St. Lucie Plant TS 6.8.4.f.6), the Liquid Radwaste Freatment System shall be OPERABLE and appropriate portions of t shall be used to reduce releases of radioactivity when the projected o o the liquid effluent, from each unit, to UNRESTRICTED AREAS (se Figure 5.1-1) would exceed 0.06 mrem to the whole body or 0.2 mre organ in a 31-day period.	he syste doses du e TS
APP	LICABI	ILITY: At all times.	
ACT	<u>10N:</u>		
a.	the a oper	radioactive liquid waste being discharged without treatment and in above limits and any portion of the Liquid Radwaste Treatment Syst ration, prepare and submit to the Commission within 30 days, pursus 5.9.2, a Special Report that includes the following information:	em not in
	1.	Explanation of why liquid radwaste was being discharged without identification of any inoperable equipment or subsystems and the the inoperability,	
	2.	Action(s) taken to restore the inoperable equipment to OPERABL and	E status
	3.	Summary description of action(s) taken to prevent a recurrence.	
SUF	VEILL	ANCE REQUIREMENTS	
4.11	.1.3.1	Doses due to liquid releases from each unit to UNRESTRICTED shall be projected at least once per 31 days in accordance with th methodology and parameters in the ODCM when Liquid Radwast Treatment Systems are not being fully utilized.	ne
4.11	.1.3.2	The installed Liquid Radwaste Treatment System shall be demor OPERABLE by operating the liquid radwaste treatment system er for at least 30 minutes at least once per 92 days unless the liquid system has been utilized to process radioactive liquid effluents du	quipment radwast

REVISION NO).:	PROCEDURE TITLE:	PAGE
3	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	40 of 230
PROCEDURE	NO.:		40 01 230
C-2	200	ST. LUCIE PLANT	
RADIOAC	CTIVE EFF	LUENTS	
3/4.11.2	GASE	OUS EFFLUENTS	r
DOSE RA	<u>ATE</u>		
CONTRO	LS		
3.11.2.1	from radio	ance with St. Lucie Plant TS 6.8.4.f.3) and 7), the dose bactive materials released in gaseous effluents to areas BOUNDARY (see TS Figure 5.1-1) shall be limited to th	at or beyond
		r noble gases: Less than or equal to 500 mrems/yr to th d less than or equal to 3000 mrems/yr to the skin and	ne total body
	pai	r lodine-131, for lodine-133, for tritium and for all radion ticulate form with half-lives greater than 8 days: Less t 00 mrems/yr to any organ	
APPLICA	BILITY:	At all times.	
ACTION:			
		e rate(s) exceeding the above limits, immediately restor the above limit(s).	e the release
SURVEIL	LANCE R	EQUIREMENTS	
4.11.2.1.1	to be v	ose rate due to noble gases in gaseous effluents shall b vithin the above limits in accordance with the methodolo eters in the ODCM.	
4.11.2.1.2	particu be det metho sample	ose rate due to lodine-131, lodine-133, tritium and all ra late form with half-lives greater than 8 days in gaseous ermined to be within the above limits in accordance with dology and parameters in the ODCM by obtaining repre- es and performing analyses in accordance with the sam is program specified in Table 4.11-2.	effluents shall h the esentative

REV	ISION NO.:	PROCEDURE	TITLE:			PAGE:
	32	OFFSITE	E DOSE CALC	CULATION M	ANUAL (ODCM)	41 of 230
RC	CEDURE NO.:					
	C-200		ST. L	UCIE PLANT		
	RADIOACTIV	E GASEO	US WASTE S	.E 4.11-2 SAMPLING A e 1 of 3)	ND ANALYSIS P	<u>ROGRAM</u>
	Gaseous Release	е Туре	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection LLD (1) (µCi/ml)
1.	Waste Gas Storage	Tank	P Each Tank Grab Sample	P Each Tank	Noble Gas P.G.E. (2)	1.E-04
2.	Containment Purge		P Each Purge (6)	P Each Purge (6)	Noble Gas P.G.E. (2)	1.E-04
			Grab Sample	(7)	H-3	1.E-06
3.	Vents: a. Plant		4/M Grab Sample (8)	4/M (7)	Noble Gas P.G.E. (2)	1.E-04
	 a. Plant b. Fuel Bldg (5) c. S/G Blowdowr 	n Bldg.	(0)		H-3	1.E-06
4.	All Release Types a above	is listed in 3.	Continuous (3) (8)	4/M Charcoal Sample (4)	I-131	1.E-12
				4/M Particulate Sample (4)	P.G.E.	1.E-11
				4/M Particulate Sample	Gross Alpha	1.E-11
				Q Composite Particulate Sample	Sr-89, Sr-90	1.E-11
				Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1.E-06
5.	Cask Handling Faci	lity Vent (8)	W Grab Sample	W	Noble Gas P.G.E. (2)	1. E-04
			(8)		H-3	1.E-06
				W Charcoal Sample	I-131	1.E-12
				W Particulate Sample	P.G.E.	1.E-11
			Continuous (8)	W Particulate Sample	Gross Alpha	1.E-11
				Q Composite Particulate Sample	Sr-89, Sr-90	1.E-11

	ON NO.:	F	PROCEDURE TITLE: PAGE: 1000
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM) 42 of 230
ROCE	EDURE NO.: C-200		ST. LUCIE PLANT
			TABLE 4.11-2 E GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM (Page 2 of 3)
			TABLE NOTATIONS
1)	radioactive backgroun	e ma d, th	fined for purposes of these controls, as the smallest concentration of iterial in a sample that will yield a net count, above system nat will be detected with 95% probability with only 5% probability of ling that a blank observation represents a real signal.
	For a partie	cula	r measurement system, which may include radiochemical separation
			$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot exp(-\lambda \cdot \Delta T)}$
	Where:		
	LLD	=	the a priori lower limit of detection (micro-Curie per unit mass or volume),
	LLD	=	the a priori lower limit of detection (micro-Curie per unit mass or volume),
	Sb	=	the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute)
	Е	=	the counting efficiency (counts per disintegration),
	V	=	the sample size (units of mass or volume),
	2.22E+06	=	the number of disintegrations per minute per micro-Curie.,
	Y	=	the fractional radiochemical yield, when applicable,
	λ	=	the radioactive decay constant for the particular radionuclide (sec ⁻¹) and
	ΔΤ	=	the elapsed time between the midpoint of sample collection and the time of counting (sec).
	Typical val	ues	of E, V, Y and ΔT should be used in the calculation.
	representir	ng th	cognized that the LLD is defined as an <u>a priori</u> (before the fact) limit ne capability of a measurement system and not as an <u>a posteriori</u> limit for a particular measurement.

REVISION NO.: 32 PROCEDURE NO.: C-200 <u>RADIOA</u>		PROCEDURE TITLE:	PAGE
PROCE		OFFSITE DOSE CALCULATION MANUAL (ODCM)	43 of 230
PROCE		ST. LUCIE PLANT	
	RADIOAC	TABLE 4.11-2 TIVE GASEOUS WASTE SAMPLING AND ANALYSIS P (Page 3 of 3)	ROGRAM
		TABLE NOTATIONS (continued)	
(2)	following ra noble gas Cs-137, Ce mean that identifiable reported in Control 3.1	bal gamma emitters for which the LLD control applies inclu adionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135 and releases and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, e-141 and Ce-144 in lodine and particulate releases. This only these nuclides are to be considered. Other gamma p e, together with those of the above nuclides, shall also be a the Annual Radioactive Effluent Release Report pursuan 11.2.6 in the format outlined in Regulatory Guide 1.21, App , June 1974.	d Xe-138 in I-131, Cs-134 list does not beaks that are analyzed and t to
(3)	for the time	of the sample flow rate to the sampled stream flow rate sha e period covered by each dose or dose rate calculation ma e with Controls 3.11.2.1, 3.11.2.2 and 3.11.2.3.	
(4)	completed Sampling s following e of RATED completed are analyze requirement I-131 conc 3; and (2)	hall be changed at least four times per month and analyse within 48 hours after changing or after removal from same shall also be performed at least once per 24 hours for at le each shutdown, startup or THERMAL POWER change exc THERMAL POWER within a 1-hour period and analyses s within 48 hours of changing. When samples collected for ed, the corresponding LLDs may be increased by a factor int does not apply if: (1) analysis shows that the DOSE EC entration in the reactor coolant has not increased more that the noble gas monitor shows that effluent activity has not a factor of 3.	oler. east 7 days eeding 15% shall be 24 hours of 10. This QUIVALENT an a factor of
(5)	•	b samples shall be taken at least 4/M from the ventilation fuel pool area, whenever spent fuel is in the spent fuel poo	
(6)	THERMAL 1 hour unle in the prim	and analysis shall also be performed following shutdown, s POWER change exceeding 15% of RATED THERMAL F ess (1) analysis shows that the DOSE EQUIVALENT I-13 ary coolant has not increased more than a factor of 3; and y monitor shows that effluent activity has not increased by	OWER within I concentration I (2) the noble
(7)	Tritium ana new counti	alysis may be delayed for up to 14 days if the LLD is still a ing time.	ttainable at the
(8)	Frequencie	es applicable only when the ventilation system is operating	N

REVISION NO	D.:	PROCEDURE TITLE:	PAGE
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	44 of 230
PROCEDURE	E NO.:		44 01 230
C-	200	ST. LUCIE PLANT	and and a set of the s
RADIOA	CTIVE EFF	LUENTS	
DOSE - I	NOBLE GA	SES	
CONTRO	DLS		
3.11.2.2	noble gas	ance with St. Lucie Plant TS 6.8.4.f.5) and 8), the air do es released in gaseous effluents, from each unit, to are le SITE BOUNDARY (see TS Figure 5.1-1) shall be limi	as at and
		ring any calendar quarter: Less than or equal to 5 mrac liation and less than or equal to 10 mrads for beta radia	
		ring any calendar year: Less than or equal to 10 mrads liation and less than or equal to 20 mrads for beta radia	
APPLICA	BILITY:	At all times.	
ACTION:			
ex da ex	ceeding an ys, pursua ceeding the	ulated air dose from radioactive noble gases in gaseous by of the above limits, prepare and submit to the Commi nt to Plant TS 6.9.2, a Special Report that identifies the e limit(s) and defines the corrective actions that have be ubsequent releases will be in compliance with the above	ssion within 30 cause(s) for en taken to
SURVEIL	LANCE RI	EQUIREMENTS	
4.11.2.2	calendar y	re dose contributions for the current calendar quarter an year for noble gases shall be determined in accordance ogy and parameters in the ODCM at least once per 31 c	with the

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32 PROCEDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	45 of 230
C-200	ST. LUCIE PLANT	
RADIOACTIVE EFF	LUENTS	
	I, IODINE-133, TRITIUM AND RADIOACTIVE MATERI	AL IN
	ATE FORM	
CONTROLS		
OF THE F particulate released,	ance with St. Lucie Plant TS 6.8.4.f.5) and 9), the dose PUBLIC from lodine-131, lodine-133, tritium and all radio form with half-lives greater than 8 days in gaseous eff from each unit, to areas at and beyond the SITE BOUN 5.1-1) shall be limited to the following:	onuclides in luents
	ring any calendar quarter: Less than or equal to 7.5 mr an and,	ems to any
b. Du	ring any calendar year: Less than or equal to 15 mrems	s to any organ.
APPLICABILITY:	At all times.	
ACTION:		
radionuclides effluents exce within 30 day cause(s) for e	ulated dose from the release of lodine-131, lodine-133, in particulate form with half-lives greater than 8 days, in eeding any of the above limits, prepare and submit to th s, pursuant to Plant TS 6.9.2, a Special Report that iden exceeding the limit(s) and defines the corrective actions b assure that subsequent releases will be in compliance	n gaseous le Commission ntifies the that have
SURVEILLANCE RE	EQUIREMENTS	
calendar y form with	e dose contributions for the current calendar quarter an year for lodine-131, lodine-133, tritium and radionuclide half-lives greater than 8 days shall be determined in ac idology and parameters in the ODCM at least once per	s in particulate cordance with

REVISIO	N NO	:	PROCEDURE TITLE:	PAGE.
	3	2	OFFSITE DOSE CALCULATION MANUAL (ODCM)	46 of 230
PROCED	DURE	NO.:		
	C-2	200	ST. LUCIE PLANT	
RADIO	OAC	TIVE EFF	LUENTS	
GASE	OU	<u>S RADWA</u>	STE TREATMENT SYSTEM	
	rro	LS		
3.11.2	2.4	Treatmen OPERAB releases o effluent re	ance with St. Lucie Plant TS 6.8.4.f.6), the VENTILATION t System and the WASTE GAS HOLDUP SYSTEM sha LE and appropriate portions of the system shall be used of radioactivity when the projected doses in 31 days due eleases, from each unit, to areas at and beyond the SIT figure 5.1-1) would exceed:	III be d to reduce e to gaseous
		a. 0.2	e mrad to air from gamma radiation or	
		b. 0.4	mrad to air from beta radiation or	
		c. 0.3	mrem to any organ.	
APPL	ICA	<u>BILITY:</u>	At all times.	
ACTIO	<u> 2N:</u>			
a.	of t pui	the above	tive gaseous waste being discharged without treatment limits, prepare and submit to the Commission within 30 Plant TS 6.9.2, a Special Report that includes the follow	days,
	1.		ication of any inoperable equipment or subsystems and operability,	I the reason for
	2.	Action and	(s) taken to restore the inoperable equipment to OPER	ABLE status
	3.	Summ	nary description of action(s) taken to prevent a recurrent	ce.
l I				

32 PROCEDURE NO			
	D.:	OFFSITE DOSE CALCULATION MANUAL (ODC	/ ^{IVI}) 47 of 23
C-20		ST LUCIE PLANT	
RADIOACT			
<u>GASEOUS</u>	RADWAS	STE TREATMENT SYSTEM (continued)	
SURVEILLA	ANCE RE	QUIREMENTS	
4.11.2.4.1	SITE B accorda	due to gaseous releases from each unit to areas a OUNDARY shall be projected at least once per 31 ance with the methodology and parameters in the 0 us Radwaste Treatment Systems are not being full	days in ODCM when
4.11.2.4.2	WASTE operatie VENTII minutes	talled VENTILATION EXHAUST TREATMENT SY E GAS HOLDUP SYSTEM* shall be demonstrated ing the WASTE GAS HOLDUP SYSTEM equipmer ATION EXHAUST TREATMENT SYSTEM equipris, at least once per 92 days unless the appropriate to process radioactive gaseous effluents during th	OPERABLE by nt and ment for at leas system has be
FUN perfo	WASTE CTIONAL	GAS HOLDUP SYSTEM is not being fully utilized, TEST on the WASTE GAS HOLDUP SYSTEM sh addition to the requirements of 4.11.2.4.2's "at leas ays, by performing the following:	nall also be
FUN perfo	WASTE CTIONAL prmed (in per 92 d	. TEST on the WASTE GAS HOLDUP SYSTEM sh addition to the requirements of 4.11.2.4.2's "at leas	nall also be st 30 minutes")
FUN perfo once	WASTE CTIONAL prmed (in per 92 d Place a	. TEST on the WASTE GAS HOLDUP SYSTEM sh addition to the requirements of 4.11.2.4.2's "at leas ays, by performing the following: a Gas Decay Tank (containing less than 30 psi) in s Waste Gas Compressor, charge the Gas Decay Ta	nall also be st 30 minutes") service.
FUN perfo once 1)	WASTE CTIONAL per 92 d Place a With a 150 psi Followi Decay	. TEST on the WASTE GAS HOLDUP SYSTEM sh addition to the requirements of 4.11.2.4.2's "at leas ays, by performing the following: a Gas Decay Tank (containing less than 30 psi) in s Waste Gas Compressor, charge the Gas Decay Ta	hall also be st 30 minutes") service. ank to at least ease the Gas

REVISION NO.:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	48 of 230
PROCEDURE NO .:		
· C-200	ST. LUCIE PLANT	
RADIOACTIVE E	FLUENTS	

3/4.11.4 TOTAL DOSE

CONTROLS

3.11.4 In accordance with St. Lucie Plant TS 6.8.4.f.10), the annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

APPLICABILITY: At all times.

ACTION:

With the calculated doses from the release of radioactive materials in liquid or a. gaseous effluents exceeding twice the limits of Control 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a or 3.11.2.3.b, calculations shall be made including direct radiation contributions from the units (including outside storage tanks etc.) to determine whether the above limits of Control 3.11.4 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in Subpart M of 10 CFR Part 20, shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits and if the release condition resulting in violation of 40 Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request and a variance is granted until staff action on the request is complete.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	49 of 230
PROCEDURE NO.:		49 01 230
C-200	ST. LUCIE PLANT	
RADIOACTIVE EFF	LUENTS	
<u>3/4.11.4 TOTA</u>	L DOSE (continued)	

SURVEILLANCE REQUIREMENTS

- 4.11.4.1 Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with Controls 4.11.1.2, 4.11.2.2 and 4.11.2.3 and in accordance with the methodology and parameters in the ODCM.
- 4.11.4.2 Cumulative dose contributions from direct radiation from the units (including outside storage tanks etc.) and Independent Spent Fuel Storage Installation (ISFSI) shall be determined in accordance with the methodology and parameters in the ODCM. This requirement is applicable only under conditions set forth in ACTION a. of Control 3.11.4.

REVISION NO .:		PROCEDURE TITLE:	PAGE					
32		OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE	NO.:		50 of 230					
C-	200	ST. LUCIE PLANT						
RADIOACTIVE EFFLUENTS								
<u>3/4.11.5</u>								
WASTE TREATMENT SYSTEMS*								
ADMINIS	ADMINISTRATIVE CONTROLS							
			i					
3.11.2.5		initiated major changes to the radioactive waste system and solid):	s (liquid,					
	R	nall be reported to the Commission in the Annual Radioa elease Report for the period in which the evaluation was	reviewed by					
	th	e Facility Review Group (FRG). The discussion of each	shall contain:					
	aj	A summary of the evaluation that led to the determi change could be made in accordance with 10 CFR						
	b	Sufficient detailed information to totally support the change without benefit of additional or supplementation						
	C)	A detailed description of the equipment, component processes involved and the interfaces with other pla						
	d)	An evaluation of the change which shows the predic of radioactive materials in liquid and gaseous efflue quantity of solid waste that differ from those previou in the license application and amendments thereto;	nts and/or					
	e	An evaluation of the change which shows the expect exposure to individuals in the UNRESTRICTED AR general population that differ from those previously the license application and amendments thereto;	EA and to the					
	f)	A comparison of the predicted releases of radioactive liquid and gaseous effluents and in solid waste, to the releases for the period when the changes are to be	he actual					
	g)	An estimate of the exposure to plant operating pers result of the change; and	onnel as a					
	h)	Documentation of the fact that the change was revie found acceptable by the FRG.	ewed and					
	2) S	nall become effective upon review and acceptance by the	e FRG.					

REVISION NO .:		PROCEDURE TITLE:	PAGE:			
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)				
PROCEDUR			51 of 230			
C.	-200	ST. LUCIE PLANT				
	200					
RADIOACTIVE EFFLUENTS						
<u>3/4.11.6</u>		AL RADIOACTIVE EFFLUENT RELEASE REPORT TO	<u>) THE</u>			
		/ISSION*				
ADMINIS	STRATIVE	CONTROLS				
3.11.2.6	Report co operation report sha gaseous o provided through f)	echnical Specification 6.9.1.7, a Annual Radioactive Efflu overing the operation of each unit during the previous 12 shall be submitted within 60 days after January 1 of each all include a summary of the quantities of radioactive lique effluents and solid waste released from each unit. The shall be (1) consistent with the objectives outlined in by below, using the example report format in the ODCM a nce with 10 CFR 50.36a and Section IV.B.1 of Appendix	2 months of ch year. The uid and material items a) ind (2) be in			
	the rel Ev Ra Co su	e Radioactive Effluent Release Reports shall include a sequantities of radioactive liquid and gaseous effluents a eased from the unit as outlined in Regulatory Guide 1.2 aluating and Reporting Radioactivity in Solid Wastes an dioactive Materials in Liquid and Gaseous Effluents fror oled Nuclear Power Plants, Revision 1, June 1974, with mmarized on a quarterly basis following the format of Agereof.	nd solid waste 1, Measuring, d Releases of n Light-Water- n data			
	aft me sui ma pre of rep rac	e Radioactive Effluent Release Report to be submitted ver January 1 of each year shall include an annual summeteorological data collected over the previous year. This mmary may be either in the form of an hour-by-hour listingnetic tape of wind speed, wind direction, atmospheric ecipitation (if measured) or in the form of joint frequency wind speed, wind direction and atmospheric stability.** bort shall include an assessment of the radiation doses a dioactive liquid and gaseous effluents released from the ring the previous calendar year.	hary of hourly s annual ng on stability and distributions This same due to the			
	combine th units with s	bmittal may be made for a multiple unit station. The sub ose sections that are common to all units at the station; eparate radwaste systems, the submittal shall specify th material from each unit.	however, for			
	has the opt	bmission with the Radioactive Effluent Release Report, ion of retaining this summary of required meteorological t shall be provided to the NRC upon request.				

00.40.00		1		
REVISION NO.:				PAGE
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	52 of 230
PROCEDURE NO.:				
C-200			ST. LUCIE PLANT	
RADIOA	CTIVE	EFF	LUENTS	and the second s
3/4.11.6	А	NNU	AL RADIOACTIVE EFFLUENT RELEASE REPORT TO	O THE
0/11.11.0			1ISSION* (continued)	
ADMINIS			CONTROLS	
3.11.2.6	(cont	inuer	4)	
5.11.2.0	(COIII	muet	1)	
	b.	(co	ntinued)	
	C.	fror PU Fig the sha cor effl be and me in a	s same report shall also include an assessment of the m radioactive liquid and gaseous effluents to MEMBER BLIC due to their activities inside the SITE BOUNDAR ure 5.1-1) during the report period. All assumptions us se assessments, i.e., specific activity, exposure time an all be included in these reports. The meteorological cor- neurrent with the time of release of radioactive materials uents, as determined by sampling frequency and meas used for determining the gaseous pathway doses, or a d conservative method used in lieu of actual meteorolog asurements. The assessment of radiation doses shall accordance with the methodology and parameters in the ery 2 years using the previous 6 months release history	S OF THE Y (see TS ed in making nd location, nditions s in gaseous urement, shall n approximate gical be performed e ODCM. Y for isotopes,
		usii out gro OD	ermine the controlling age group for liquid pathways. E ng the previous 1 year or longer interval (to include a re age) and historical meteorological data determine the o up for gaseous pathways. If changed from current sub ICM to reflect new tables for these groups and use the osequent dose calculations.	efueling controlling age mit change to
	d.	Jar dos rea cal	e Radioactive Effluent Release Report to be submitted nuary 1 of each year shall also include an assessment of ses to the likely most exposed MEMBER OF THE PUB ictor releases for the previous calendar year. Acceptab culating the dose contribution from liquid and gaseous en in Regulatory Guide 1.109 March 1976.	of radiation LIC from ble methods for

REVISION NO	<u>.</u>		PROCEDURE TITLE: PAGE A TRANSPORT			
32 PROCEDURE NO.:			OFFSITE DOSE CALCULATION MANUAL (ODCM)			
C-200			ST. LUCIE PLANT			
RADIOACTIVE EFFLUENTS						
<u>3/4.11.6</u>			AL RADIOACTIVE EFFLUENT RELEASE REPORT TO THE IISSION* (continued)			
ADMINIS	TRATI	VE (CONTROLS			
3.11.2.6	(conti	nued	l)			
	e.	info	e Radioactive Effluent Release Reports shall include the following ormation for each class of solid waste (as defined by 10 CFR Part 61) oped offsite during the report period:			
		1.	Volume			
		2.	Total Curie quantity (specify whether determined by measurement or estimate)			
		3.	Principal radionuclides (specify whether determined by measurement or estimate)			
		4.	Type of waste (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms)			
		5.	Type of container (e.g., LSA, Type A, Type B, Large Quantity) and			
		6.	Solidification agent or absorbent (e.g., cement, urea formaldehyde).			
	f.	des ARI	e Radioactive Effluent Release Reports shall include a list and cription of unplanned releases from the site to UNRESTRICTED EAS of radioactive materials in gaseous and liquid effluents made ing the reporting period.			
	g.	mac PR MA calc	e Radioactive Effluent Release Reports shall include any changes de during the reporting period to the PROCESS CONTROL OGRAM (PCP) and to the OFFSITE DOSE CALCULATION NUAL (ODCM), as well as a listing of new locations for dose culations and/or environmental monitoring identified by the Land Use nsus of ODCM Control 3.12.2.			
	h.	pro in a sinc met	e format for an Annual Radioactive Effluent Release Report is vided in ODCM Methodology Section 4.0. The information contained in annual report shall not apply to any ODCM Control Dose Limit(s) ce the methodology for the annual report is based on actual teorological data, instead of historical conditions that the ODCM ntrols and Control required calculations are based on.			

REVISION NO	D.:		PROCEDURE TITLE: PAGE				
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	and the second second			
PROCEDURE NO.:			54	of 230			
C-200			ST. LUCIE PLANT				
	200						
RADIOA	CTIVE	EFF	LUENTS				
3/4.11.6	3/4.11.6 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT TO THE						
0/ 1. 1 1.0			IISSION* (continued)				
			······································				
ADMINIS	TRATI	VE C	CONTROLS				
3.11.2.6	(conti	nued	1)				
	i.	Rec	ginning with the report due within 60 days after January 1, 200	7 the			
		Rad	dioactive Effluent Release Report shall include the following prmation for the previous year:	7, the			
		a.	A listing with descriptions of any leaks or spills that have b	oon			
		a.	communicated to State and Local officials in accordance w INDUSTRY INITIATIVE.				
		b.	Groundwater sample results that have been taken in support the INDUSTRY INITIATIVE, unless they are from locations				
			are described in the Radiological Environmental Monitoring Program and will therefore be reported in the Annual Radio Environmental Operating Report (AREOR).	g			

VISION NO.:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	55 of 230
ROCEDURE NO.:		55 01 230
C-200	ST. LUCIE PLANT	
ADIOLOGICAL EN	VIRONMENTAL MONITORING	
4.12.1 MONI	TORING PROGRAM	
ONTROLS		
	ance with St. Lucie Plant TS 6.8.4.g.1), the Radiologica g Program shall be conducted as specified in Table 3.1	

<u>APPLICABILITY:</u> At all times.

<u>ACTION:</u>

- a. With the Radiological Environmental Monitoring Program not being conducted as specified in Table 3.12-1, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report required by Control 3.12.4, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- b. With the confirmed* level of radioactivity as the result of plant effluents in an environmental sampling medium at a location specified in Appendix B-1 exceeding the reporting levels of Table 3.12-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report*** that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose** to a MEMBER OF THE PUBLIC is less than the calendar year limit of Controls 3.11.1.2, 3.11.2.2 or 3.11.2.3. When more than one of the radionuclides in Table 3.12-2 are detected in the sampling medium, this report shall be submitted if:

 $\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + > \text{ or } = 1.01$

** The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.

*** A copy of the 30-day Special Report shall be provided to the Radiation Protection Manager (or designee) so that it can be sent to State and Local Officials in TABLE-1 of HPP-101 concurrent with its submittal to the commission.

^{*} A confirmatory reanalysis of the original, a duplicate or a new sample may be desirable, as appropriate. The results of the confirmatory analysis shall be completed at the earliest time consistent with the analysis but in any case within 30 days.

REVIS	ION NO.:	PROCEDURE TITLE:	PAGE
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	56 of 230
PROC	EDURE NO.:		
	C-200	ST. LUCIE PLANT	
RAD	DIOLOGICAL EN	VIRONMENTAL MONITORING	
<u>3/4.1</u>	12.1 MONI	TORING PROGRAM	
Cont	trols (continued)		
ACT	<u>10N:</u>		
b.	(continued)		
	result of plant to a MEMBEI the calendar required if the however, in s	uclides other than those in Table 3.12-2 are detected a t effluents, this report shall be submitted if the potential R OF THE PUBLIC from all radionuclides is equal to or year limits of Control 3.11.1.2, 3.11.2.2 or 3.11.2.3. Th e measured level of radioactivity was not the result of p uch an event, the condition shall be reported and desc ological Environmental Operating Report required by Co	annual dose, greater than is report is not lant effluents; ribed in the
C.	sample locati replacement Environmenta from which sa program. Pu Effluent Relea revised figure supporting int	broad leaf vegetation samples unavailable from one or is ons required by Table 3.12-1, identify specific locations samples and add them within 30 days to the Radiologic al Monitoring Program given in the ODCM. The specific amples were unavailable may then be deleted from the rsuant to Control 3.11.2.6, submit in the next Annual Ra ase Report documentation for a change in the ODCM is e(s) and table for the ODCM reflecting the new location formation identifying the cause of the unavailability of s selection of the new location(s) for obtaining samples.	s for obtaining cal c locations monitoring adioactive ncluding a (s) with
SUR	VEILLANCE RI	EQUIREMENTS	

4.12.1 The radiological environmental monitoring samples shall be collected pursuant to Table 3.12-1 from the specific locations given in the table and figure(s) in the ODCM and shall be analyzed pursuant to the requirements of Table 3.12-1 and the detection capabilities required by Table 4.12-1.

	TABLE	3.12-1	
RADIOL	OGICAL ENVIRONMEN	TAL MONITORING PI 1 of 3)	ROGRAM ^{a)}
EXPOSURE PATHWA and/or SAMPLE	NUMBER OF Y REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ^{b) c)}	SAMPLING AND COLLECTION FREQUENCY ^{d)}	TYPE AND FREQUENCY OF ANALYSIS
1. Direct Radiation ^{e)}	27 Monitoring Locations	Continuous monitoring with sample collection quarterly ⁿ	Gamma exposure ra quarterly
2. Airborne Radioiodin and Particulates	e 5 Locations	Continuous sampler operation with sample collection weekly or more frequently if required by dust loading	Radioiodine filter: I-131 analysis weekt Particulate Filter: Gross beta radioacti analysis ≥24 hours following a filter chan Gamma isotopic ^{h)} analysis of composit (by location) quarter
3. Waterborne			
a. Surface ^{k)}	1 Location ^{m)}	Weekly	Gamma isotopic ^{h)} & tritium analyses wee
	1 Location ⁿ⁾	Monthly	Gamma isotopic ^{h)} & tritium analyses mor
b. Sediment from shoreline	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannua
4. Ingestion			
a. Fish and Invertebrates			
1. Crustacea	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannua
2. Fish	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannua
b. Food Products			
1. Broad leaf	3 Locations ^{p)}	Monthly when available	Gamma isotopic ^{h)} an I-131 analyses mont

.

REVIS	ON NO.:	PRC	CEDURE TITLE:	PAGE:				
	32	0	FFSITE DOSE CALCULATION MANUAL (ODCM)	58 of 230				
PROCI	EDURE NO .:			50 01 2.50				
	C-200		ST. LUCIE PLANT					
	TABLE 3.12-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ^{a)} (Page 2 of 3)							
			TABLE NOTATIONS					
a.	Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment or other legitimate reasons. If specimens are unobtainable due to sampling equipment malfunction, corrective action shall be taken prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.							
b.	reactor and a	ddit	ers of distance and direction sector from the center ional description where pertinent, shall be provided required by Table 3.12-1, in Appendix-B and applica	for each				
C.	At times, it may not be possible or practicable to continue to obtain samples of the media of choice at the most desired location or time. In these instances suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the radiological environmental monitoring program.							
d.	The following	def	finition of frequencies shall apply to Table 3.12-1 on	ly:				
	Weekly	-	Not less than once per calendar week. A maximum 11 days is allowed between the collection of any two consecutive samples.					
	Semi-Monthly	. –	Not less than 2 times per calendar month with an interval of 24 days is allowed between collection or consecutive samples.	A maximum				
	Monthly	-	Not less than once per calendar month with an inte less than 10 days between sample collections.	erval of not				
	Quarterly	-	Not less than once per calendar quarter.					
	Semiannually	-	One sample each between calendar dates (Januar and (July 1 - December 31). An interval of not less will be provided between sample collections.					
	The frequency	y∘of	analyses is to be consistent with the sample collec	tion frequency.				

REVIS	ION NO.:	PROCEDURE TITLE:	PAGE				
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	59 of 230				
PROCE	EDURE NO.:						
	C-200	ST. LUCIE PLANT					
	TABLE 3.12-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ^{a)} (Page 3 of 3)						
		TABLE NOTATIONS (continued)					
e.	e. One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of or in addition to, integrating dosimeters. For purposes of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor; two or more phosphors in a packet are considered as two or more dosimeters.						
f.	Refers to nor when condition	mal collection frequency. More frequent sample collect	ion is permitted				
g.	or more after the requirement also required	iculate sample filters are analyzed for gross beta radioa sampling to allow for radon and thoron daughter decay ent for a gamma isotopic on a composite sample a gam for each sample having a gross beta radioactivity which ters and which is also >10 times that of the most recent	. In addition to ma isotopic is h is >1.0 pCi				
h.		pic analysis means the identification and quantification nuclides that may be attributable to the effluents from t					
k.	Discharges fr pathways.	om the St. Lucie Plant do not influence drinking water o	or ground water				
m.		n, in the vicinity of the public beaches along the eastern sland near the St. Lucie Plant (grab sample)	n shore of				
n.	Atlantic Ocea	n, at a location beyond influence from plant effluents (g	rab sample).				
р.	locations of h similar broad	road leaf vegetation grown nearest each of two differen ighest predicted annual average ground level D/Q and leaf vegetation at an available location 15-30 kilometer nt wind direction based upon historical data in the ODC	one sample of s distant in the				
[i, j, I	(lower case) ar	nd o are not used on notation for clarity reasons]					

ISION NO .:	PROCEDURI	E TITLE:			PAGE	
32 DCEDURE NO.:	OFFSIT	E DOSE CALCU	LATION MANU	JAL (ODCM)	60 of 230	
C-200						
0-200		01.200				
REP		TABLE ELS FOR RADIO	DACTIVITY CO		IONS	
		(Page 1	1 of 1)			
		REPORTING	<u>G LEVELS</u>			
ANALYSIS	WATER pCi/l	AIRBORNE PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCTS pCi/kg, wet	
H-3	30,000*					
Mn-54	1,000		30,000			
Fe-59	400		10,000			
Co-58	1,000		30,000			
Co-60	300		10,000			
Zn-65	300		20,000			
Zr- Nb-95***	400					
I-131	2**	0.9		3	100	
Cs-134	30	10	1,000	60	1,000	
Cs-137	50 ·	20	2,000	70	2,000	
Ba- La-140***	200			300		

 Since no drinking water pathway exists, a value of 30,000 pCi/l is used. For drinking water samples, a value of 20,000 pCi/l is used; this is 40 CFR Part 141 value.

** - Applies to drinking water pathway exists, 2 pCi/l is the limit for drinking water.

*** - An equilibrium mixture of the parent daughter isotopes which corresponds to the reporting value of the parent isotope.

REVISION NO.:

32 PROCEDURE NO.:

PROCEDURE TITLE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

PAGE: 61/ of 230

C-200

ST. LUCIE PLANT

TABLE 4.12-1 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS (1)(2)

(Page 1 of 2)

LOWER LIMIT OF DETECTION (LLD) (3)

ANALYSIS	WATER pCi/l	AIRBORNE PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCTS pCi/kg, wet	SEDIMENT pCi/kg, dry
Gross Beta	4	0.01				
H-3	3000*					
Mn-54	15		130			
Fe-59	30		260			
Co-58, Co-60	15		130			
Zn-65	30		260			
Zr-95, Nb-95 ⁽⁴⁾	15					
I-131	1**	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-140, La-140 ⁽⁴⁾	15			15		

No drinking water pathway exists, a value of 2000 pCi/l is for drinking water.

* LLD for drinking water samples. If no drinking water pathway exists, a value of 15 pCi/l may be used.

TABLE NOTATIONS

(1) This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.

(2) Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13.

REVIS	ON NO.:		PROCEDURE TITLE: PAGE:
ļ	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)
PROCE			
	C-20	0	ST. LUCIE PLANT
	DETEC	CTIC	TABLE 4.12-1 DN CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS (Page 2 of 2)
			TABLE NOTATIONS (continued)
(3)	radio backę	activ grou	is defined for purposes of these controls, as the smallest concentration o ve material in a sample that will yield a net count, above system und, that will be detected with 95% probability with only 5% probability of oncluding that a blank observation represents a real signal.
	For a	par	rticular measurement system, which may include radiochemical separatio
			$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22 \cdot Y \cdot exp(-\lambda \cdot \Delta T)}$
١	Where:		$E \bullet V \bullet 2.22 \bullet I \bullet \exp(-\Lambda \bullet \Delta I)$
	LLD	=	the a priori lower limit of detection (pico-Curie per unit mass or volume),
	S⊳	=	the standard deviation of the background counting rate or of the countin rate of a blank sample as appropriate (counts per minute),
	Е	=	the counting efficiency (counts per disintegration),
	V	=	the sample size (units of mass or volume),
	2.22	=	the number of disintegrations per minute per pico-Curie,
	Y	=	the fractional radiochemical yield, when applicable,
	λ	=	the radioactive decay constant for the particular radionuclide (sec ⁻¹) and
	ΔТ	=	the elapsed time between the midpoint of sample collection and the time of counting (sec).
7	Typical [•]	valu	ues of E, V, Y and ΔT should be used in the calculation.
	repre (after such Occa prese these identi	sen the a m sior ence LL ified	be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit ating the capability of a measurement system and not as an <u>a posteriori</u> a fact) limit for a particular measurement. Analyses shall be performed in manner that the stated LLDs will be achieved under routine conditions. The particulations, unavoidable small sample sizes, the e of interfering nuclides or other uncontrollable circumstances may render Ds unachievable. In such cases, the contributing factors shall be and described in the Annual Radiological Environmental Operating ursuant to Control 3.12.4.
(4)			brium mixture of the parent and daughter isotopes which corresponds to iter of the parent isotope.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	63 of 230
PROCEDURE NO .:		
C-200	ST. LUCIE PLANT	
RADIOLOGICAL E	NVIRONMENTAL MONITORING	

3/4.12.2 LAND USE CENSUS

CONTROLS

3.12.2 In accordance with St. Lucie Plant TS 6.8.4.g.2), a Land Use Census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence and the nearest garden* of greater than 50 square meters (500 square feet) producing broad leaf vegetation.

APPLICABILITY: At all times.

ACTION:

- With a Land Use Census identifying a location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in Control 4.11.2.3, pursuant to Control 3.11.2.6, identify the new location(s) in the next Annual Radioactive Effluent Release Report.
- b. With a Land Use Census identifying a location(s) that yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with Control 3.12.1, add the new location(s) within 30 days to the Radiological Environmental Monitoring Program given in the ODCM. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may be deleted from this monitoring program after October 31 of the year in which this Land Use Census was conducted. Pursuant to TS 6.14, submit in the next Annual Radioactive Effluent Release Report documentation for a change in the ODCM including a revised figure(s) and table(s) for the ODCM reflecting the new location(s) with information supporting the change in sampling locations.

^{*} Broad leaf vegetation sampling may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Controls for broad leaf vegetation sampling in Table 3.12-1, Part 4.b., shall be followed, including analysis of control samples.

REVISION N	Ю.:	PROCEDURE TITLE:	PAGE
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDUR	E NO.:		64 of 230
С	-200	ST. LUCIE PLANT	
RADIOL	OGICAL EN	VIRONMENTAL MONITORING	
3/4.12.2	LAND	USE CENSUS (continued)	
SURVEI		EQUIREMENTS	
4.12.2	once per such as b agriculture	Use Census shall be conducted during the growing sea 12 months using that information that will provide the be y a door-to-door survey, aerial survey or by consulting l authorities. The results of the Land Use Census shall I Radiological Environmental Operating Report pursual	est results, local I be included in

•

-

. 、

REVISION NO.:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	65 of 230
PROCEDURE NO .:	· · · · · · · · · · · · · · · · · · ·	
C-200	ST. LUCIE PLANT	
RADIOLOGICAL	ENVIRONMENTAL MONITORING	

3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

CONTROLS

3.12.3 In accordance with St. Lucie Plant TS 6.8.4.g.3), analyses shall be performed on all radioactive materials, supplied as part of an Interlaboratory Comparison Program that correspond to samples required by Table 3.12-1.

<u>APPLICABILITY:</u> At all times.

<u>ACTION:</u>

a. With analyses not being performed as required above, report the corrective action taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.

SURVEILLANCE REQUIREMENTS

4.12.3 A summary of the results obtained as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4. If the Interlaboratory Comparison Program is other than the program conducted by the EPA, then the Interlaboratory Comparison Program shall be described in the ODCM.

REVISION NO .:	PROCEDURE TITLE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

C-200

PROCEDURE NO .:

32

ST. LUCIE PLANT

PAGE

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.4 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT (AREOR)*

ADMINISTRATIVE CONTROLS

3.12.4 In accordance with St. Lucie Plant TS 6.9.1.8, an Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations and information based on trend analysis of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided in the AREOR shall be consistent with the objectives outlined below and with Sections IV.B.2, IV.B.3 and IV.C of Appendix I to 10 CFR Part 50.

The Annual Radiological Environmental Operating Reports shall include summaries, interpretations and information based on trend analysis of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use census required by Control 3.12.2.

The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the ODCM, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

The Annual Radiological Environmental Operating Report shall also include the results of the analyses for all samples that have been added to the Radiological Environmental Monitoring Program in support of the INDUSTRY INITIATIVE - Appendix B-2.

* - A single submittal may be made for multiple unit station.

REVISION NO .:	PROCEDURE TITLE:	PAGE.
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	67 of 23
PROCEDURE NO.:		67 01 23
C-200	ST. LUCIE PLANT	
	ENVIRONMENTAL MONITORING	
	······	
	NUAL RADIOLOGICAL ENVIRONMENTAL OPERATING	<u> 3 REPORT</u>
<u>(AR</u>	<u>EOR)*</u> (continued)	
ADMINISTRATIV	E CONTROLS	
The sevente chall		na dia la aira l
	also include the following: a summary description of the onitoring program; at least two legible maps** covering a	
	o a table giving distances and directions from the centerl	
	Interlaboratory Comparison Program, required by Control	
	deviations from the sampling schedule of Table 3.12-1; a	
	nich the LLD required by Table 4.12-1 was not achievable	
•		
•	·	
🔺 - A single su	ubmittal may be made for multiple unit station.	
** One map s	shall cover stations near the SITE BOUNDARY; a secon	d shall includ
	nt stations.	
		•

REVISION NO .:	PROCEDURE TITLE: PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)
PROCEDURE NO.:	- OFF SITE DOSE CALCOLATION MANUAL (ODCM)
C-200	ST. LUCIE PLANT
	BASES
	FOR THE
	CONTROLS
	AND
	SURVEILLANCE REQUIREMENTS
	NOTE
The BASE	S contained in succeeding pages summarize the reasons for the
Controls in	Section 3.0 and 4.0, but are not part of these Controls.
L	

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	69 of 230
PROCEDURE NO .:		09 01 230
C-200	ST. LUCIE PLANT	
INSTRUMENTATI	<u>ON</u>	
BASES		
3.3.3.9 RAD	OACTIVE LIQUID EFFLUENT MONITORING INSTRUM	MENTATION
	uid effluent instrumentation is provided to monitor and co ases of radioactive materials in liquid effluent during act	

applicable, the releases of radioactive materials in liquid effluent during actual or potential releases of liquid effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50.

3.3.3.10 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases of gaseous effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50.

REVISION NO.:	PROCEDURE TITLE:	PAGE.
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	70 - + 220
PROCEDURE NO .:		70 of 230
C-200	ST. LUCIE PLANT	
3/4.11 RADIO	ACTIVE EFFLUENTS	
BASES		

3/4.11.1 LIQUID EFFLUENTS

3/4.11.1.1 CONCENTRATION

This control is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to UNRESTRICTED AREAS will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table 2, Column 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water in UNRESTRICTED AREAS will result in exposures within: (1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC and (2) the limits of 10 CFR Part 20. The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its ECL in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2.

This control applies to the release of radioactive materials in liquid effluents from all units at the site.

The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD and other detection limits can be found in Currie, L.A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

<u>3/4.11.1.2 DOSE</u>

This control is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	71 4 220
PROCEDURE NO.:		71 of 230
C-200	ST. LUCIE PLANT	
3/4.11 RADIO	DACTIVE EFFLUENTS (Continued)	
BASES		
3/4.11.1 LIQUI	<u>D EFFLUENTS</u> (Continued)	
<u>3/4.11.1.2</u> DOSE	(Continued)	
rates of radioactive provided in Regulat Releases of Reacto Part 50, Appendix I,	ified in the ODCM for calculating the doses due to the a materials in liquid effluents are consistent with the meth ory Guide 1.109, Calculation of Annual Doses to Man fr r Effluents for the Purpose of Evaluating Compliance w Revision 1, October 1977 and Regulatory Guide 1.113 of Effluents from Accidental and Routine Reactor Relea	nodology rom Routine ith 10 CFR 8, Estimating

This control applies to the release of radioactive materials in liquid effluents from each unit at the site. For units with shared Radwaste Systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.

3/4.11.1.3 LIQUID RADWASTE TREATMENT SYSTEM

Purpose of Implementing Appendix I, April 1977.

The OPERABILITY of the Liquid Radwaste Treatment System ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the Liquid Radwaste Treatment System were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50 for liquid effluents.

This control applies to the release of radioactive materials in liquid effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	72 of 230
PROCEDURE NO.:		12 01 230
C-200	ST. LUCIE PLANT	

RADIOACTIVE EFFLUENTS

BASES

3/4.11.2 GASEOUS EFFLUENTS

3/4.11.2.1 DOSE RATE

This control is provided to ensure that the dose at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20 to UNRESTRICTED AREAS. The annual dose limits are the doses associated with the concentration of 10 CFR Part 20, Appendix B, Table 2, Column I. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRICTED AREA, either within or outside the SITE BOUNDARY, to an annual average concentration exceeding the limits specified in Appendix B, Table 2 of 10 CFR Part 20 (Subpart D of 10 CFR Part 20). For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrem/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/vear.

This control applies to the release of radioactive materials in gaseous effluents from all units at the site.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	72 - 6 220
PROCEDURE NO.:		1 7 3 01 2 3 0
C-200	ST. LUCIE PLANT	

RADIOACTIVE EFFLUENTS

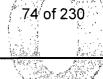
BASES

3/4.11.2.1 DOSE - NOBLE GASES

This control is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The control implements the guides set forth in Section I.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors, Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are to be proportioned among the units sharing that system.

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM AND RADIOACTIVE MATERIAL IN PARTICULATE FORM


This control is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Controls are the guides set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. The ODCM calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	74-4000

PROCEDURE NO .:

C-200

ST. LUCIE PLANT

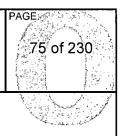
RADIOACTIVE EFFLUENTS

BASES

3/4.11.2.1 DOSE - NOBLE GASES (Continued)

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM AND RADIOACTIVE MATERIAL IN PARTICULATE FORM (Continued)

The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject material are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors, Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate controls for lodine-131, lodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of the calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man and (4) deposition on the ground with subsequent exposure of man.


This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are proportioned among the units sharing that system. **REVISION NO.:**

32 OFFSITE DOSE CALCULATION MANUAL (ODCM)

PROCEDURE NO .:

C-200

ST. LUCIE PLANT

RADIOACTIVE EFFLUENTS

BASES

3/4.11.2.4 GASEOUS RADWASTE TREATMENT SYSTEM

PROCEDURE TITLE:

The OPERABILITY of the WASTE GAS HOLDUP SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensure that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Section II.B and II.C of Appendix I, 10 CFR Part 50 for gaseous effluents.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

3/4.11.2.5 NOT USED

3/4.11.2.6 NOT USED

3/4.11.3 NOT USED

3/4.11.4 TOTAL DOSE

This control is provided to meet the dose limitations of 10 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 FR 18525. The control requires the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the units (including outside storage tanks, etc.) are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits.

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	76 of 230
PROCEDURE NO.:	· ·	
C-200	ST. LUCIE PLANT	
RADIOACTIVE EFF	LUENTS	
BASES		

3/4.11.4 TOTAL DOSE (Continued)

For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 kilometers must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and Subpart M of 10 CFR Part 20, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Controls 3.11.1.1 and 3.11.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	77 of 230
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
<u>3/4.12 RADIO</u>	DLOGICAL ENVIRONMENTAL MONITORING	
BASES		

3/4.12.1 MONITORING PROGRAM

The Radiological Environmental Monitoring Program required by this control provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of MEMBERS OF THE PUBLIC resulting from the plant operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the Radiological Effluent Monitoring Program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979. The initially specified monitoring program will be effective for at least the first three years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by Table 4.12-1 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

3/4.12.2 LAND USE CENSUS

This control is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the Radiological Environmental Monitoring Program given in the ODCM are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	78 of 230
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
RADIOLOGICAL EN	VIRONMENTAL MONITORING	

RADIOLOGICAL ENVIRONMENTAL MONITORING

BASES

3/4.12.2 LAND USE CENSUS (Continued)

This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 square meters provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kilograms/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage) and (2) a vegetation yield of 2 kilograms per square meter.

3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

This requirement for participation in an approved Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive materials in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

32 OFFSITE DOSE CALCULATION MANUAL (ODCM) PROCEDURE NO: C-200 C-200 ST. LUCIE PLANT METHODOLOGY SECTION METHODOLOGY SECTION METHODOLOGY for the CONTROLS AND SURVEILLANCE REQUIREMENTS	79 of 23
C-200 ST. LUCIE PLANT METHODOLOGY SECTION METHODOLOGY for the CONTROLS AND	
METHODOLOGY METHODOLOGY for the CONTROLS AND	
METHODOLOGY for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
for the CONTROLS AND	
CONTROLS AND	
AND	

REVISION NO .:		PROCEDURE TITLE: PAGE:
32		OFFSITE DOSE CALCULATION MANUAL (ODCM) 80 of 230
PROCEDURE NO.:		
C-200		ST. LUCIE PLANT
GLOSSA	RY	METHODOLOGY SECTION OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 1 of 3)
D _B	-	Dose from Beta Radiation
CC or cc	-	Cubic centimeter
Ci	-	Curies - a unit of radioactivity see μ Ci
Ci	-	Activity or concentration of a nuclide in the release source. Units of μ Ci, μ Ci/cc or μ Ci/ml
CFR	-	Code of Federal Regulations
Control(s)	-	Regulations for operating, controlling, monitoring and reporting radioactive effluent related activity as indicated by the Controls Section of the ODCM.
Dose	-	The exposure, in mrem or mrad, the organ or the individual receives from radioactive effluents
Dose Factor	-	Normally, a factor that converts the effect of ingesting radioactive material into the body, to dose to a specific organ. Body elimination, radioactive decay and organ uptake are some of the factors that determine a dose factor for a given nuclide
Dose Pathway	-	A specific path that radioactive material physically travels through prior to exposing an individual to radiation. The Grass-Cow-Milk-Infant is a dose pathway
Dose Rate	-	The dose received per unit time
(D/Q)	-	A long term D over Q - a factor with units of $1/m^2$ which describes the deposition of particulate matter from a plume at a point downrange from the source. It can be thought of as what part of the cloud is going to fallout and deposit over one square meter of ground. (See Appendix C).
ECL	-	Effluent Concentration Limit
FUSAR	-	Final Updated Safety Analysis Report.
Y	-	A gamma photon - The dose from Gammas in air, etc.

REVISION NO .:		PROCEDURE TITLE: PAGE
32		OFFSITE DOSE CALCULATION MANUAL (ODCM)
PROCEDURE NO.:		81 of 230
C-200		ST. LUCIE PLANT
GLOSSA	RY	METHODOLOGY SECTION OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 2 of 3)
Ground Plane		Radioactive material deposited uniformly over the ground emits radiation that produces an exposure pathway when an individual is standing, sitting, etc., in the area. It is assumed that an adult receives the same exposure as an infant, regardless of the physical height differences. Only the whole body is considered for the ODCM.
Н-3	-	Hydrogen-3 or Tritium, a weak Beta emitter
I&8DP	-	Radioiodines and particulates with half-lives greater than 8 days
m ³	-	Cubic Meters
m²	-	Square Meters
nuclide		For the purposes of this manual, a radioactive isotope. Nuclide (i) signifies a specific nuclide, the 1st, 2nd, 3rd one under consideration. If nuclide (i) is I-131, then the Mi (dose factor) under consideration should be M_{I-131} for example.
Organ		For the ODCM either the bone, liver, thyroid, kidney, lung, GI-LLI or the Whole Body. Whole Body is considered an organ for ease of writing the methodology in the ODCM.
pCi	-	1 pico-Curie = 1.E-12 Curies.
(Q Dot) _i	-	(Q Dot) _i - Denotes a release rate in μ Ci/sec for nuclide (i).
Qi	-	Denotes μ Ci of nuclide (i) released over a specified time interval.
Radioiodines	-	Iodine-131 and Iodine I-133 for gaseous release pathways.
Receptor		The individual receiving the exposure in a given location or who ingests food products from an animal for example. A receptor can receive dose from one or more pathways.
Release Source	(s)	 A subsystem, tank or vent where radioactive material can be released independently of other radioactive release points.
тѕ		- The St. Lucie Plant Standard Technical Specifications
Total Body		- Same as Whole Body in Control Statements
μCi		- micro Curies. 1 μ Ci = 10 ⁻⁶ Curies. The μ Ci is the standard unit of radioactivity for all dose calculations in the ODCM.

REVISION NO .:	PROCEDURE TITLE: PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)
PROCEDURE NO.:	
C-200	ST. LUCIE PLANT
GLOSSAR	METHODOLOGY SECTION Y OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3)
(X/Q)	 A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Noble Gases are inert, they do not tend to settle out on the ground. (See Appendix C).
(X/Q) _D	- A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) on the ground, the (X/Q) _D represents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix C).
dt, Δt or delta t	 A specific delta time interval that corresponds with the release interval data etc.

REVISIO	DN NO.:	PROCEDURE TITLE:	PAGE:
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	83 of 230
PROCE	DURE NO.: C-200	ST. LUCIE PLANT	
		· · · · · · · · · · · · · · · · · · ·	
		METHODOLOGY SECTION	
1.0	LIQUID RELE	EASES METHODOLOGY	
1.1	Radioactive L	iquid Effluent Model Assumptions	
		contains the official description of the site characteristic at follows is a brief summary for dose calculation purpo	
	Atlantie Norma Circula approx for sub of radie wind a are su	Lucie Plant is located on an island surrounded on two c Ocean and the Indian River, an estuary of the Atlantic Ily, all radioactive liquid releases enter the Atlantic Oce ating Water Discharge Pipe terminates on the ocean flo simately 1200 feet offshore (Figure 1-1 Point "L"). No c psequent mixing of the discharge flume with the ocean. Doactive material into the ocean is dependent on the cor nd some eddy currents caused by the Gulf Stream. The fficiently random enough to distribute the discharges ov the concentrating effects are assumed.	c Ocean. ean where the or at a point redit is taken The diffusion nditions of tide, he conditions
	or sour Indian to prov Water No rad the Int discha source constru second that wo	are no direct discharge paths for liquid effluents to eithe th private property boundary lines. The Big Mud Creek River) does connect to a normally locked shut dam, that ride an emergency supply of circulating water to the Inta Canal in the event a Hurricane causes blockage of the lioactive water from plant systems could be discharged ake Cooling Water Canal because all plant piping is rou- rge canal and no back flow can occur. However, dilute is from such outfalls as the industrial wastewater system uction dewatering may be pumped to the Intake Canal. dary sources would be secured under the extraordinary build precede opening the dam. Consult the FUSAR for ption of characteristics of the water bodies surrounding	(part of the at is intended ake Cooling Intake Canal. directly into uted to the secondary m and These conditions a detailed
1		nose nuclides that appear in the Liquid Dose Factor Tal ered for dose calculation.	bles will be

	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	84 of 230
PROCE	DURE NO.:			< 84 0I Z3
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
1.2	<u>Determ</u> Source		g the Fraction F of 10 CFR Part 20 ECLs Limits for A Liqui	<u>d Release</u>
	liquid w procedu unrestri Part 20 provide adequa determi source. summa 20 ECL	vaste ures icteo , Ap s in te n inati Th tion Ti	- Control 3.11.1.1 requires that the sampling and analysis e (prior to discharge) be used with calculation methods in the to assure that the concentration of liquid radioactive mate d areas will not exceed ten times the concentrations specific pendix B, Table 2. COP-01.05, Processing Aerated Liquid struction for ensuring batch release tanks will be sampled a nixing. This section presents the calculation method to be ion. This method only addresses the calculation for a speci- ne in-plant procedures will provide instructions for determining of each release source's F values do not exceed the site's he values for release rate, dilution rate, etc., will also have om in-plant procedures. The basic equation is:	he in-plant rial in the ied in 10 CF d Waste, after used for thi ific release ing that the a 10 CFR Pa
	0.010.110	u		
			$F_{L} = \frac{R}{D} \sum_{i=1}^{H} \frac{C_{i}}{(ECL)_{i}}$	
	Where:			
	Where: F _L		the fraction of 10 CFR Part 20 ECL that would result if the source was discharged under the conditions specified.	e release
		=		
	FL	=	source was discharged under the conditions specified. The undiluted release rate in gpm of the release source. Liquid Rad Waste = 170 gpm for Waste Monitor Tank Steam Generator = 125 gpm/Steam Generator Liquid Rad Waste = 60 gpm for AWST #2	/2B
	FL R	=	source was discharged under the conditions specified. The undiluted release rate in gpm of the release source. Liquid Rad Waste = 170 gpm for Waste Monitor Tank Steam Generator = 125 gpm/Steam Generator Liquid Rad Waste = 60 gpm for AWST #2 Liquid Rad Waste = 60 gpm for Laundry Drain Pumps 2A The dilution flow in gpm of Intake Cooling Water or Circula Pumps Intake Cooling flow is 14,500 gpm/pump	/2B ating Water

REVISIO	ON NO.:		PROCEDURE TITLE:	PAGE
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	85 of 230
PROCE	DURE NO	.:		
	C-200)	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
1.2		mining (<u>e</u> (conti	the Fraction F of 10 CFR Part 20 ECLs Limits for A Liqu nued)	uid Release
	nuclid cumu 3 X 10 cumu gross conce calcul	le-by-nι lative ac 0 ⁻⁸ μCi/r lative co concen entration lation is ollowing	of the 10 CFR Part 20 ECL limit may be determined by aclide evaluation or for purposes of simplifying the calculativity evaluation. If the simplified method is used, the volume of the substituted for (Example of the substituted for (Example of the substituted for Cincentration (sum of all identified radionuclide concentration should be substituted for Ci. As long as the dilute (C _{total} R/D) is less than 3 X 10 ⁻⁸ μ Ci/mI, the nuclide-by-not required to demonstrate compliance with the 10 CF section provides a step-by-step procedure for determine	Ilation by a value of CL) _i and the ations) or the ted -nuclide FR Part 20 ECL.
	1.	Calcul	ation Process for Solids	
		A.	Obtain from the in-plant procedures, the release rate v gpm for the release source.	alue (R) in
		В.	Obtain from the in-plant procedures, the dilution rate (I credit is taken for any dilution beyond the discharge ca	
		C.	Obtain (C_i) , the undiluted assay value of nuclide (i), in simplified method is used, the cumulative concentration used.	
		D.	From Table L-1, obtain the corresponding (ECL) for nu μ Ci/ml. The value of 3 X 10 ⁻⁸ μ Ci/ml should be used for method.	clide (i) in or the simplified
		E.	Divide C_i by (ECL) _i and write down the quotient	
		F.	If the simplified method is used, proceed to the next ste determining the ECL fraction by the nuclide-by-nuclide repeat steps 1.2.1.C through 1.2.1.E for each nuclide r assay, for H ₃ from previous month composite and for S Fe55 from previous quarter composite with known resu	evaluation, eported in the \$R89/90 and

	ON NO.:		PROCEDURE TITLE: PAGE	
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	المراجع المراجع محمد المراجع الم محمد المراجع ال
ROCE	DURE NO	D.:		f 230
	C-20	0	ST. LUCIE PLANT	
·			METHODOLOGY SECTION	
1.2			the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Releant Itinued)	ase
	1.	Calcu	ulation Process for Solids (continued)	
		G.	Add each C _i /(ECL) quotient from step 1.2.1.E and solve for F_L a follows:	as
			$F_{L} = \frac{R}{D} \sum_{i=1}^{n} \frac{C_{i}}{(ECL)i}$	
			F_L = a unit-less value where:	
			the value of F_L could be \leq or >1. The purpose of the calculation determine what the initial value of F_L is for a given set of releas conditions.	
		H.	The F_L value just obtained is for one release pathway. The TS ODCM control 3.11.1.1 allow for a site limit of F_L less than or equal 10. Chemistry Procedure COP-01.05 administratively controls pathway's allocation. Compare your F_L result with the administ control for the release pathway in COP-01.05.	qual to each
	2.	Calcu	ulation Process for Gases in Liquid	×
		Α.	Sum the μ Ci/ml of each noble gas activity reported in the releas	se.
		Β.	The values of R and D from 1.2.1 above shall be used in the calculations below:	
			$F_g = \frac{(\text{sum of } 1.2.2.A) \mu\text{Ci/ml}}{1} X \frac{R}{D}$	
		C.	F_g shall be less than 2 X 10 ⁻⁴ μ Ci/ml for the site for all releases	in

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	87 of 230
PROCE	DURE NO.:		07 01 230
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
1.3	Determining	Setpoints for Radioactive Liquid Effluent Monitors	,
	301 or	nts for Batch Liquid Release Monitors channel numbers Table 3.3-14, Radioactive Effluent Monitor Setpoint Ba Liquid Effluent Monitors.	
	instrumentation radioactivity of concentration	Control 3.3.3.9 requires that the liquid effluent monitorin on alarm / trip setpoints be set to initiate an alarm or trip concentration in water in the unrestricted area does not of 10 CFR Part 20, Appendix B, Table 2 as a result of s (Control 3.11.1.1).	so that the exceed the
	Monitors base gross cpm and in the dischar reports was ut These concert discharge car 121,000 gpm	s. total liquid activity curves are available for Batch Liqu ed on a composite of real release data. A direct correla d the concentrations that would achieve 10 CFR Part 2 ge canal can be estimated. The 1978 liquid release da sed to determine the average undiluted release concer- ntrations were then projected to a diluted concentration hal assuming a 1 gpm release rate and a constant diluti from 1 circ. water pump. This diluted activity was divid bective 10 CFR Part 20 ECL value (Table L-1) to obtain hat follows:	ation between 0 ECL levels ata from annual ntration. in the on flow of led by the

REVISION NO .:	PROCEDURE	TITLE:	PAGE
32	OFESITE	DOSE CALCULATION MAN	
PROCEDURE NO.:			10AL (ODCW)
C-200		ST. LUCIE PLANT	
0-200			
		METHODOLOGY SECTION	l
1.3 <u>Determining</u>	Setpoints for	or Radioactive Liquid Effluent	t Monitors (continued)
NUCLIDE S	YMBOL	1978 UNDILUTED µCi/ml ¹	M _i ² (no units)
I-131		4.43 E-5	3.66 E-4
I-132	2	2.23 E-7	1.84 E-8
I-133	3	3.17 E-6	3.74 E-6
I-135	5	1.31 E-6	3.61 E-7
Na-2	4	1.72 E-7	2.84 E-8
Cr-5	1	2.51 E-5	4.15 E-7
Mn-5	4	5.64 E-6	1.55 E-6
Mn-5	6	1.11 E-9	1.31 E-10
Co-5	7	3.69 E-7	5.08 E-8
Co-5	8	1.51 E-4	6.24 E-5
Fe-5	9	2.92 E-6	2.41 E-6
Co-6	0	3.66 E-5	1.01 E-4
Zn-6	5	4.55 E-7	7.52 E-7
Ni-6	5	8.23 E-7	6.8 E-8
Ag-11	0	1.96 E-6	2.70 E-6
Sn-11	3	5.75 E-7	1.58 E-7
Sb-12	2	2.15 E-6	1.78 E-6
Sb-12	24	8.40 E-6	9.92 E-6
W-18	7	3.51 E-6	9.67 E-7
Np-23	9	1.57 E-7	6.49 E-8
Br-82	2	3.64 E-7	7.52 E-8
Zr-95	5	2.82 E-5	1.17 E-5
Zr-97	7	4.05 E-6	3.72 E-6
Mo-9	9	3.24 E-6	1.34 E-6
Ru-10)3	3.84 E-8	1.06 E-8
Sb-12	.5	2.26 E-6	6.23 E-7
Cs-13	4	2.14 E-5	1.97 E-4
Cs-13	6	7.82 E-7	1.08 E-6
Cs-13	57	4.85 E-5	4.01 E-4
Ba-14	0	6.44 E-7	6.65 E-7
Ce-14	1	3.04 E-8	8.38 E-9
Ce-14	4	2.37 E-6	6.53 E-6
A _{tot} =		4.01 E-4	
M _{Total}	=		1.18 E-3

(1) 1978 Undiluted Release Volume = 7 E 9 ml.

(2) $M_{i} = \frac{1978 \text{ Undil. Act Nuclide (i)}}{\text{ECL}_{i} \text{ (from Table L - 1)}} \times \frac{1 \text{ gpm (release rate)}}{121000 \text{ gpm (dil rate)}}$

REVISI	ION NO.:		PROCEDURE TITLE:	PAGE:
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	89 of 230
ROCE	EDURE NO .:			09 01 2 3 0
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	C. Aller
1.3	<u>Determ</u>	nining S	Setpoints for Radioactive Liquid Effluent Monitors (cont	inued)
	the frac A _{⊺ot} by equival dischar	ction of M _{Tot} y lent to rges.	al average μ Ci/ml concentration of the reference mixtur f the MPC of all nuclides for the release conditions specields A_{Max} , which is the maximum total activity concentr the ECL limit for the nuclide distribution typical of radw The Technical Specifications allow 10 times the ECL lin 0 times A_{Max} as follows:	cified. Dividing ation aste
		A	$_{Max} = \frac{A_{Tot}}{M_{Tot}} = \frac{4.01E - 4}{1.18E - 3} = 0.34 \mu\text{Ci/ml} = \text{ECL Limit}$	
	Site Lir	nit = 1	0 x A _{Max} = 10 x 0.34 = 3.4 µCi/ml	
	To prov as follo		onservative administrative control, A_{Max} of 0.34 $\mu\text{Ci/ml}$ s	hould be used
	l	cpm sł	effluent monitor requires counts per minute units, a (C_{max} nould be obtained for the A_{max} (0.34 μ Ci/ml) from the rective liquid effluent monitor curve of cpm vs. μ Ci/ml.	
			NOTE	
	This se flow.	etpoint	is for a specified release of 1 gpm into 121000 gpm dil	ution
		(or C _m (i.e., a contrib	tablishing the setpoint prior to liquid radwaste discharge ax) will be adjusted as needed to account for actual relectual design maximum discharge flow rate, dilution flow pution of dissolved and entrained Nobles Gas Activity to y Level).	ase conditions rate and the

REVISIO			PAGE
PROCE	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	90 of 2
111002	C-200	ST. LUCIE PLANT	
	0 200		
4.0	Determin	METHODOLOGY SECTION	
1.3		ing Setpoints for Radioactive Liquid Effluent Monitors (conti	nuea)
	1.3.2 Se	etpoints for Continuous Liquid Release Monitors	
	Mo Ge ex Sit be Wi OI of co rel for the	scussion - The activity mixture described in 1.3.1 for Liquid onitors cannot be used for Continuous Liquid Pathways since enerator (S/G) Blowdown Secondary Side is subject to what eactor Coolant System (RCS) activity and primary-to-second ist at any time. Although S/G blowdown is not normally alig te Liquid Radwaste Release Point (Figure 1-1), the monitor based on the ODCM maximum design S/G blowdown rate th 1 Circulating Water Pump (CWP) 121,000 gpm in operati DCM and COP-01.05, Processing Liquid Waste assume tha solids entering the Discharge Canal to the site release poin ntrolled less than or equal to 1.0, with batch release using 8 maining 20% allocated to continuous sources on site. The a solids is 10 times the concentration specified in 10 CFR Pa erefore a conservation factor of 10 is already included in the lministrative site limit.	e the Stea the curre lary leaka ned to the setpoints of 125 gp on. The t the fract t are 0% and the actual site art 20,
	mo ca (F _l Dis	nce source in-leakage to a S/G cannot be controlled, a High onitor setpoint is calculated based on one S/G releasing to t nal at design blowdown rate while attaining the 20 percent o L) assuming all the gross solid activity is I-131. The contribu ssolved and Entrained Gases is assumed to be zero with al seous activity going to the Steam Condenser and Air Ejecto	he dischai of the site ition from l of the
	۴ _L	at 20% = <u>0.2</u> = <u>Design blowdown rate</u> x <u>I-131 uCi/ml</u> 1 1 CWP Dilution rate I-131 uCi/ml (Tabl	
1	FL	at 20% = <u>0.2</u> = <u>125 gal/min</u> x <u>I-131 uCi/ml (S/C</u> 1 121,000 gal/min 1.E-06 uCi/ml (I-131 Tabl	<u>G)</u> e L-1ECL
	Sc	olving for the S/G High Alarm Setpoint I-131 Activity,	
		I-131 uCi/ml (S/G) = ~2E-04 uCi/ml I-131 is the maximum that could be allowed such that 20 percent of the administr discharge canal limit would not be exceeded.	
:		is S/G Monitor High Alarm Setpoint activity may be convert ing Liquid Monitor uC/ml to cpm conversion constants.	ed to cpm
	fac pu tha	is Setpoint is conservative given that the actual Liquid Site ctor of ten times higher than the administrative limit used for irposes, that I-131's ECL is conservative vs other isotope m at it is unlikely that more than one S/G would be allowed to gallon per day primary-to-secondary leak rate.	calculatio ixtures, an

REVISIO	ON NO.:		PROCI	EDURÉ TITLE:	PAGE:
	32		OFF	SITE DOSE CALCULATION MANUAL (ODCM)	91/ of 230
PROCE	DURE NO.:				
	C-200			ST. LUCIE PLANT	
				METHODOLOGY SECTION	
1.4	<u>Determ</u>	ining t	he Do	ose for Radioactive Liquid Releases	
	31 days excess calenda any org	s to ve of 1.5 ar quar jan dur	rify th mrer ter a ring a	ol 3.11.1.2 requires calculations be performed at l nat cumulative radioactive liquid effluents do not ca m to the whole body and 5 mrem to any organ dur nd not in excess of 3 mrem to the whole body and any calendar year. This section presents calculation rification.	ause a dose in ing any 10 mrem to
	NUREC both the pathwa can also are use at St. Li which a	G-0133 e fish a y for w o be ca d for th ucie si uge gro S.c). C	B Rev and s hich alcula he or nce t oup is	sed on the methodology suggested by sections 4.3 ision 1, November, 1978. The dose factors are a hellfish pathways so that the fish-shellfish pathway dose will be calculated. The dose for adult, child ated by this method provided that their appropriate gan of interest. An infant is excluded from Liquid hey do not eat fish-shellfish. The effluent supervise the controlling (most restrictive) age group (see of hose nuclides that appear in the Tables of this ma	composite of y is the only and teenager dose factors Dose Pathway sor will track control
	f t	or a gi ime in	ven a terva	d provides for a dose calculation to the whole body age group based on real release conditions during I for radioactive liquid release sources. The equat	a specified
	N N	Where	•	A - dt O	
	I	D _{1T}		$D_{1T} = \frac{A_{iT} dt_1 Q_{i1}}{(DF)_1}$	
			=	dose commitment in mrem received by organ T o (to be specified) during the release time interval	
	ļ	∆_{i⊤}	=	the composite dose factor for the fish-shellfish pa nuclide (i) for organ T of age group (to be specific values listed in the Tables in this manual are inde any site specific information and have the units	ed). The A _{iT}
				mrem - ml µCi - hr	
	c	dt1	=	the number of hours that the release occurs.	
	(ຊ _{il}	. =	The total quantity of nuclide (i) release during dt_1	(µCi)
	([DF)₁	=	The total volume of dilution that occurred during time period dt_1 (i.e., the circulating water flow time	

	ON NO.:		PROCEDURE TITLE:		PAGE
	32		OFFSITE DOSE CAL	CULATION MANUAL (ODCM)	92 of 230
PROCE	EDURE NO.:	:			92 01 230
	C-200		ST. L		
			METHODO	LOGY SECTION	
.4	Deterr	nining	the Dose for Radioactiv	<u>e Liquid Releases</u> (continued)	
	1.	(contir	nued)		
		the cu	mulative dose over a de	ich release may then be summe esired time period (e.g., sum all d, calendar quarter or a year).	•
			D _{total}	$_{T} = \Sigma D_{1T}$	
		Where):		
		$D_{\tau_{\tau}}$		ommitment to organ _⊤ due to all r d time interval (mrem)	releases
		Tab		IOTE compiling the dose accounting.	
	[
		Α.		erval dtı in hours that the release ose calculations dtı would be for	•
			and for annual dose ca	culations dt _i would be the hours i liculations dt _i would be the hours ours of duration of a single releas	s in the year. If
		B.	Obtain (DF) _I for the tim	e period dt _i from Liquid Waste M	1
			Records for the release	e source(s) of interest.	lanagement
		C.		e source(s) of interest.) for the time period dt ₁ from the	Ū
		C. D.	Obtain Q _i for nuclide (i) Management Records		Liquid Waste
			Obtain Q _i for nuclide (i) Management Records) for the time period dt_1 from the	Liquid Waste
			Obtain Q _i for nuclide (i) Management Records Obtain A _{i⊤} from the app) for the time period dt ₁ from the propriate Liquid Dose Factor Tab	Liquid Waste
			Obtain Q _i for nuclide (i) Management Records Obtain A _{iT} from the app Age Group) for the time period dt₁ from the propriate Liquid Dose Factor Tat Dose Factor Table	Liquid Waste
			Obtain Q _i for nuclide (i) Management Records Obtain A _{iT} from the app Age Group Infant) for the time period dt ₁ from the propriate Liquid Dose Factor Tab Dose Factor Table N/A	Liquid Waste

REVISION NO .:	PROCEDURE TITLE:	· · · ·	F	PAGE
32	OFFSITE DOSE CA	ALCULATION MAN	JAL (ODCM)	93 of 230
PROCEDURE NO .:		۰.		93 01 230
C-200	ST	LUCIE PLANT		
	METHOD	OLOGY SECTION		
1.4 Determining t	the Dose for Radioac	<u>tive Liquid Releases</u>	(continued)	
1. (contin	1	ABLE 1.4		
		HELLFISH PATHW		
	://	,		
TOTAL DILUTION VC AGE GROUP:	DLUME: ORGAN:	mls DOS	SE FACTOR TAE	3LE #:
NUCLIDE (i)	C _i (µCi)	A _{iT}	DOSE (i) mre	;m
		<u></u>		
		· · · · · · · · · · · · · · · · · · ·		
	1	TOTAL DOSE T =		mrem
E.	Solve for Dose (i)			
	Dose (i) =	$=\frac{Q_{i1}dt_1A_{iT}}{(DF)_1}$		
F.	For the age group(s) for each nuclide repo	•		rough 1.4.1.E
G.	For the age group(s) total dose to organ T			s to obtain the

REVISIO	ON NO.:		PROCEDURE TITLE:	PAGE
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	04 - 5 000
PROCE	DURE NO.	:		94 of 230
	C-200)	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
1.5	<u>Projec</u>	cting Do	se for Radioactive Liquid Effluents	
	radwa effluer UNRE whole metho	iste trea nts whe STRIC body o od is pro	Control 3.11.1.3 requires that appropriate subsystems of atment system be used to reduce radioactive material in n the projected doses due to the liquid effluent, from ea TED AREAS (see TS Figure 5.1-1) would exceed 0.06 r 0.2 mrem to any organ in a 31 day period. The follow ovided for performing this dose projection. The method lated in section 1.4 with the adult as the bases for projection	liquid ach unit, to mrem to the ing calculation is based on
	1.	calcula	e controlling age group obtain the latest result of the mo ation of the whole body dose and the highest organ dos can be obtained from the in-plant records.	
	2.		each dose by the number of days the reactor plant was the month.	s operational
	3.	project project neede	y the quotient of each dose by the number of days the ted to be operational during the next month. The produ ted dose for the next month. These values should be a d to account for any changes in failed fuel or other iden ing conditions that could significantly alter the actual re	icts are the djusted as tifiable
	4.	than Ó	projected dose is greater than 0.06 mrem to the whole the second second second second second second second second shall be used.	

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCE	DURE NO.:		95 of 230
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
2.0	<u>GASEOUS R</u>	ELEASES METHODOLOGY	
2.1	Gaseous Effl	uent Model Assumptions	
	characteristic purposes only sides by the A Private prope meteorologica are 16 sector tower is caliba A bearing of a and 11.25° de private prope calculation, th Unrestricted A over water ar O.W. (over w sector is O.W calculations u	<u>f Site</u> - (The FUSAR contains the official description of s. The description that follows is a brief summary for d (). The St. Lucie Plant is located on an island surround Atlantic Ocean and the Indian River, an estuary of the A rty adjoins the plant site in the north and south direction al tower is located north of the plant near the site prope s, for dose calculation purposes, divided into 22.5° eac rated such that a zero degree bearing coincides with TI zero degrees dissects the north sector such that bearin effine the boundaries of the north sector. The nearest d rty occurs in the north sector at approximately 0.97 mile his 0.97 mile radius is assumed in all directions, althoug Area Boundary is defined in Figure 5.1-1 of the TS. Do eas do not apply to Controls or the annual report and m ater) in lieu of performing calculations. The 0.97 mile radius but it was chosen as the worst sector for conservative using the historical MET data.	ose calculation led on two Atlantic Ocean. ns. A erty line. There h. The MET RUE NORTH. gs of 348.75° istance to es. For ease of the real ses calculated hay be listed as ange in the NW e dose
	from the St. L D.C. The me suggested by were also cal MET tables (⁻	<u>T Data</u> - MET data, between September 1, 1976 and A ucie MET Tower was analyzed by Dames & Moore of V thodology used by Dames & Moore was consistent with Regulatory Guide 1.111, Revision 1. Recirculation co- culated for the St. Lucie Site and are incorporated into Tables M5, M6 and M7) in Appendix A of this manual. nat these two years are representative data for this loca	Washington, h methods rrection factors the historical It was
	calculated us doses no low MET data fac annual report	tions - Dose calculations for Control dose limits are nor ing historical MET data and receptor location(s) which y er than the real location(s) experiencing the most exposi- tors are calculated and are normally used in dose calcu- s. Approximate and conservative methods may be use rological measurements.	yield calculated sure. Actual ulations for the
	manual. Hist used for ease limits may be dose calculat the annual re with Regulato	a and hour-by-hour dose calculations are beyond the s orical information and conservative receptor locations, of Control dose limit calculations. Dose calculations for performed using actual MET data and real receptor loc ions performed with actual data should note the source port. Actual MET data reduction should be performed in ory Guide 1.111, Revision 1 and should incorporate Rec actors from Table M-4 of this manual.	etc., are only or Control dose cations. Any of the data in in accordance

PROCEE 2.1 2.2	Dose Calcula The St. Lucie effluents. On tables will be lodine-131 ar included in de contribution of Census inform census was t	ST. LL <u>METHODOLO</u> uent Model Assumptions tions - (continued) site uses the long term of ly those radionuclides the considered in any dose of id I-133 for application to ose calculations for ease	ground release model for all ga at appear in the gaseous efflue calculations. Radioiodines are o Controls. Other nuclides of lo	ent dose <u>f</u> actor
2.1	C-200 Gaseous Effl Dose Calcula The St. Lucie effluents. On tables will be lodine-131 ar included in do contribution of Census inform census was t	<u>METHODOLO</u> uent Model Assumptions tions - (continued) site uses the long term g ly those radionuclides the considered in any dose o id I-133 for application to ose calculations for ease	OGY SECTION (continued) ground release model for all ga at appear in the gaseous efflue calculations. Radioiodines are o Controls. Other nuclides of lo	aseous ent dose factor
	Gaseous Effl Dose Calcula The St. Lucie effluents. On tables will be lodine-131 ar included in de contribution of Census inform census was t	<u>METHODOLO</u> uent Model Assumptions tions - (continued) site uses the long term g ly those radionuclides the considered in any dose o id I-133 for application to ose calculations for ease	OGY SECTION (continued) ground release model for all ga at appear in the gaseous efflue calculations. Radioiodines are o Controls. Other nuclides of lo	ent dose <u>f</u> actor
	Dose Calcula The St. Lucie effluents. On tables will be lodine-131 ar included in de contribution of Census inform census was t	<u>uent Model Assumptions</u> tions - (continued) site uses the long term g ly those radionuclides the considered in any dose o d I-133 for application to ose calculations for ease	(continued) ground release model for all ga at appear in the gaseous efflue calculations. Radioiodines are o Controls. Other nuclides of lo	ent dose <u>f</u> actor
	Dose Calcula The St. Lucie effluents. On tables will be lodine-131 ar included in de contribution of Census inform census was t	tions - (continued) site uses the long term g ly those radionuclides the considered in any dose o id I-133 for application to ose calculations for ease	ground release model for all ga at appear in the gaseous efflue calculations. Radioiodines are o Controls. Other nuclides of lo	ent dose <u>f</u> actor
2.2	The St. Lucie effluents. Or tables will be lodine-131 ar included in do contribution of Census inform census was t	site uses the long term g ly those radionuclides the considered in any dose o d I-133 for application to ose calculations for ease	at appear in the gaseous efflue calculations. Radioiodines are o Controls. Other nuclides of lo	ent dose <u>f</u> actor
2.2	effluents. On tables will be lodine-131 ar included in do contribution of Census inform census was t	ly those radionuclides the considered in any dose o d I-133 for application to ose calculations for ease	at appear in the gaseous efflue calculations. Radioiodines are o Controls. Other nuclides of lo	ent dose <u>f</u> actor
2.2			ded in the Control requirement alendar year following the year	odine may be t their dose is. Land
		he Total Body and Skin I Setpoints for Effluent Mor	Dose Rates for Noble Gas Rel nitors	eases And
	releases to < requires that operable with exceeded. T	500 mrem/yr - total body the gaseous radioactive alarm/trip setpoints set t ne results of the sampling	e dose rate from noble gases is and <3000 mrem/yr - skin. Co effluent monitoring instruments to ensure that these dose rate g and analysis program of Cor compliance with these limits.	ontrol 3.3.3.11 ation be limits are not
	total body an are based on releases on t release point The calculation	d skin from noble gases i the dose rate calculation he site but all releases m Only those noble gases	ovided for determining the dos in airborne releases. The alarn ns. The Controls apply to all a nay be treated as if discharged s appearing in Table G-2 will b n Sections 5.1 and 5.2 of NUR	m/trip setpoints irborne from a single e considered.
	For TOTAL E	ODY Dose Rate:		
	-	n DR _{TB} = Σ _{Ki} (X/Q)(C i	2DOT) _i	
	For TOTAL S	KIN Dose Rate:		
		n R _{skin} = Σ[L _i + 1.1 _{Mi}](X/Q) i	(Q DOT),	

REVISI	ION NO.:		PROCEDURE TITLE: PAGE
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM) 97 of 230
PROCE	EDURE NO.:		
	C-200		ST. LUCIE PLANT
			METHODOLOGY SECTION
2.2			he Total Body and Skin Dose Rates for Noble Gas Releases And Setpoints for Effluent Monitors (continued)
	Where:		
	DR _{TB}	=	total body dose rate from noble gases in airborne releases (mrem/yr)
	DR _{skin}	=	skin dose rate from noble gases in airborne releases (mrem/yr)
	ŗΣ	=	a mathematical symbol to signify the operations to the right of the symbol are to be performed for each noble gas nuclide (i) through (n) and the individual nuclide doses are summed to arrive at the total dose rate for the release source.
	K _i	=	the total body dose factor due to gamma emissions for each noble gas nuclide reported in the release source. (mrem-m³/μCi-yr)
	Li	=	the skin dose factor due to beta emissions for each noble gas nuclide (i) reported in the assay of the release source. (mrem-m ³ / μ Ci-yr)
	Mi	=	the air dose factor due to gamma emissions for each noble gas nuclide (i) reported in the assay of the release source. The constant 1.1 converts mrad to mrem since the units of M_i are in (mrad-m ³ /µCi-yr)
	(X/Q)	=	for ground level, the highest calculated annual long term historic relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m ³)
	(Q DOT) _i	=	The release rate of noble gas nuclide (i) in $\mu\mbox{Ci/sec}$ from the release source of interest

	ON NO.:				PAGE
32 PROCEDURE NO.:			OFFSITE DOSE CAL	98 of 230	
C-200			ST.		
			METHODO	LOGY SECTION	
.2			the Total Body and Skir Setpoints for Effluent M	n Dose Rates for Noble Gas Rel lonitors (continued)	eases And
	1.	Setpo	int Determination		
		Α.	established to ensure to exceed the ODCM Con the site. Using pre-OD determined to be more therefore the site releat mrem/yr has been dete being released from th equivalent of 100 perce may be allotted a porti- release point portions percent. The release p account the physical re- volume release rate ar point since uCi/sec is p release points and an Site Limit in Percent =		ogress do not rate limit for ody dose was a dose, ate of 500 +05 uCi/sec as the point on site the sum of all ual to 100 hall take into um expected gle release ODCM actual
			Site Limit in uCi/sec =		
			(Ը	xample)	
		<u>ODC</u>	<u>M Release Point</u>	Percent <u>Allotment</u>	
		Unit ECC ECC Unit ECC ECC Blow	S 1B 2 Plant Vent 2 Fuel Bldg. Vent S 2A	40 5 1 40 5 1 1 + 5 99 or 1 percent below the Site Limit	<u></u>

REVISIC	N NO.:		PROCED	URE TITLE:	PAGE
	32		OFFS	SITE DOSE CALCULATION MANUAL (ODCM)	99 of 230
PROCE	OURE NO	.:			99 01 230~
	C-200)		ST. LUCIE PLANT	
				METHODOLOGY SECTION	
2.2				al Body and Skin Dose Rates for Noble Gas Rel ts for Effluent Monitors (continued)	eases And
	1.	(contin	ued)		
		A.	(contin	ued)	
			sum of never l Auxilia points, short p Chemia Chemia calcula based percen engine	r less percentage may be used for a release por the total percent allocated to the above Release be allowed to exceed 100 percent. The ECCS F ry Building Exhaust are not ODCM required mor but a small percentage should be allotted to ear eriodic fan surveillance runs. This allocation is stry Procedure COP-07.05, Process Monitor Set stry Supervisor approval is required. COP-07.05 tion steps to calculate a Noble Gas Release Ra on the methodology steps described below. A r t allotment will be converted into the release poi ering unit of uCi/cc that will be equivalent to the of the site limit.	e Points shall Reactor hitored release ch to cover controlled per tpoints where 5 provides te Setpoint elease point's nt's indicating
				Obtain the release point's <u>maximum expected</u> p release rate (V) in Cubic Feet per Minute (cfm) t Effluent Supervisor.	
				Obtain the release point's percent of site limit al from the Chemistry Supervisor.	lotment (PA)
				Substitute the release point's V and PA values i equation(s) to obtain the Release Point's Setpoi desired engineering unit (uCi/cc or uCi/sec).	
-			SP = uCi/cc	<u>3.5E+05 uCi x 60 sec x min x ft3 x </u> sec min V ft3 28317 cc 1	^A 00%
			SP = uCi/cc	uCi/cc which is the TABLE 3.3-14 SETPOINT for ODCM Effli Channels that have a "Allo Limit" declared as their HIC	uent Gas itted % of Site
			SP = uCi/cc	<u>3.5E+05 uCi x</u> <u>PA</u> sec 100%	
			SP = uCi/cc	uCi/cc	

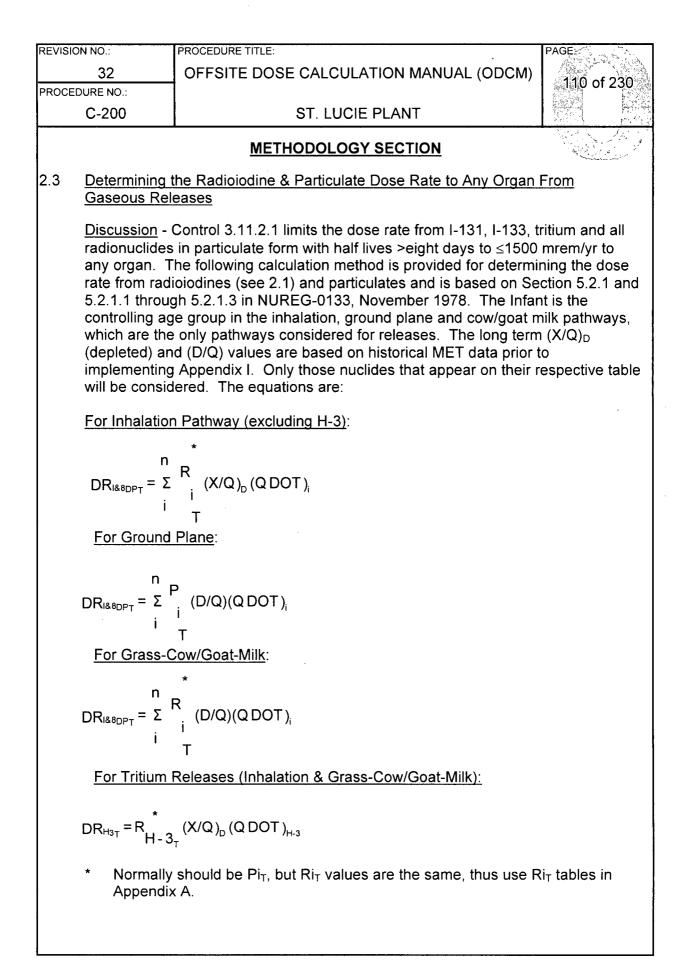
	32		OFFSITE	DOSE CALCULATION MANUAL (ODCM)	100 of 230
PROCE					
	C-20	0		ST. LUCIE PLANT	
			<u> </u>	METHODOLOGY SECTION	
2.2				dy and Skin Dose Rates for Noble Gas Re r Effluent Monitors (continued)	leases And
	1.	(contir	nued)		
		A.	(continued)		
			Channels M HIGH SETF GAS and 21 uCi/sec bas rate. Since	of Unit 2 Plant Vent there are 3 ODCM Eff Ionitoring the Plant Vent. The wide range POINT in uCi/sec is equivalent to 2A PV PI B PIG LOW RANGE GAS channel 624 use ed on the uCi/cc at the maximum expected they are monitoring the same release poir nels does not receive their own allotted % o	channel 624 G LOW RANGE is the equivalent d process flow it (i.e., each of
			"Allo discu	significance of an ODCM Effluent Gas Cha tted % of Site Limit" HIGH Setpoint require ussion (Mid and High Noble Gas Accident (of this discussion):	s further
			а.	For Plant Vent Release Points on each r "Allotted % of Site Limit" needs to be hig allow for Batch Releases from Gas Deca Containment Venting Operations, and at COP-01.06, Processing Gaseous Waste instruction for administratively controlling such that the radioactive concentration a will not be allowed to exceed the site lim	h enough to ay Tank and the same time shall provide Batch Release and release rate
			b.	The receipt of a valid HIGH Alarm on a r where the ODCM Low Range Gas Chan is approximately equal to the HIGH Alarr not mean the site limit has been exceed a concentration that is equivalent to the Site Limit".	nel's radioactivit n setpoint does ed, rather it is at
			setpoint in <u>ı</u>	UCi/cc V or Vmax ft3/minute vent flo	N
		uCi/se	SP = ec (equivaler	uCi x <u>28317 cc</u> x <u>Vmax ft3</u> cc ft3 minute	x <u>minute</u> 60 second
			SP = (uCi/sec)	<u>uCi</u> equivalent to a chann sec uCi/cc concentration a volume release rate o	assuming a
		(% of	SP = Site Limit)	$\frac{\text{uCi} \times 100}{(\text{above}) \text{ sec } 350,000 \text{ uCi/sec } of}$	% Site Limit

REVISI	ON NO.:		PROCE	EDURE TIT	LE:								PAGE:		and a second
32 PROCEDURE NO.: C-200			OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT							(10	101 of 230				
				N	IETI	HODOL									
2.2	Deter	minina (the Tr	tal Boo							o (Co	e Pol	20200	And	and and
2.2				ints for								5 11010	20505		
	1.	(contir	nued)												
		Α.	(cont	inued)											
			4.	(conti	nue	d)									
				C.	wh rac	e receij ere the lioactiv ly quick	OD0 ity is	CM Lo greate	w Ra er tha	ange (an the	Gas (HIG	Chanr H Alai	nel's	•	
			F _{SL} =	RP _{SL} +	(Su	ım of <u>a</u>	ll oth	<u>er</u> Rel	ease	Point	t's RF	S _{SL} on	site)		
			RP _{SL}	= Rel Cha uCi/	nnel	's x	Rel		x co	onv. o	x (time conv. const.	x 1/(s	site lir	nit)
			RP _{SL}	= <u>uCi</u> cc	× _	<u>V ft</u> ³ min	X	2 <u>8317</u> ft ₃	<u>cc</u>	x _m 60 s	in_ : sec	x 3.50	<u>sec</u> Ξ+05 ι	uCi	
				Wher	e:										
				F_{SL}	=	Fracti	ion o	f the S	Site L	imit					
				RP _{SL}	Ξ		Sum m all	of <u>all (</u> y less	othe	<u>r</u> Rele	ase F	Point's	s RP _{SL}	on s	site)
				V	=			the Re w rele			nt's a	ctual	proces	SS	

REVISIO	32			EDURE TI	DOSE CALCULATION MANUAL (ODCM)	PAGE:
PROCE	DURE NO				ST. LUCIE PLANT	
				<u>1</u>	METHODOLOGY SECTION	
2.2					dy and Skin Dose Rates for Noble Gas Re Effluent Monitors (continued)	leases And
	1.	(con	tinued)			
		Α.	(cont	tinued)		
			4.	(cont	inued)	
:				C.	(continued)	
				Site I Proce Point This	ue of $RP_{SL} > 1.0$ or a $F_{SL} > 1.0$ would be ex- Limit Based on the above <u>estimate</u> . Off No edure allow 1 hour to obtain a grab sample so that the actual site limit situation may be method is discussed in the following step.	ormal of the Releas oe evaluated.
			5.		uantify the Release Point's <u>actual Noble G</u> Ilowing would need to be performed:	as Dose Rate,
				a.	A Noble Gas Activity Grab Sample would and analyzed to determine each Noble G concentration.	
				b.	The results would be used to perform ca ODCM Step 2.2.2 for Noble Gas Total B and Skin Dose Rate.	
				C.	If the Release Point's HIGH Alarms were the Table 3.3-14 ODCM Related Particul lodine Channel, then ODCM Step 2.3 ca should be performed as soon as possible continuous collection medium(s) and a T can be pulled and analyzed to evaluate of ODCM Control 3.11.2.1.b.	ate and/or lculations e after the ritium Sample
					· · · · · · · · · · · · · · · · · · ·	

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO.:		103 of 230
C-200	ST. LUCIE PLANT	
	METHODOLOGY SECTION	
	the Total Body and Skin Dose Rates for Noble Gas Rel Setpoints for Effluent Monitors (continued)	eases And
1. (contir	nued)	
B	No Particulate or lodine Radioactivity Channels are red ODCM. Table 3.3-13 requires lodine and Particulate S Technical Specification Table 3.3-6 requires a Fuel Bu Particulate Channel (the bases for the setpoint on the I Vent Particulate Channel is described in 2.2.1.C). The describe Particulate and lodine Radioactivity Channels Channels are listed in ODCM Table 3.3-14 and ALERT Setpoints are provided. The intent of providing these s provide early warning that the effluent pathway condition increased such that a grab sample should be obtained Alarm Setpoint is reached or exceeded. The Particular HIGH Alarm Setpoint bases is that the collection media filter where continuing deposition of radioactivity would increase in the channel count rate up to the setpoint le resulting dose rate can be shown to be less than 1 per limit for ODCM Control 3.11.2.1.b for lodine-131, lodin- radionuclides in particulate from with half-lives greater that these channel detectors are gross activity monitor- scintillation type where the count rate is not dependent threshold) on the energy of the isotope entrained on th medium, and that these channels are qualitative trend since the channel count rate cannot be corrected for the sample collection volume. Plant historical trends have Noble Gas Activity may contribute to the count rate of Auxiliary Building (Plant) Vent Particulate and lodine C In this event the Noble Gas contribution may be added Table 3.3-14 Alert and High Setpoints for Plant Vents of The sampling mediums associated with the Particulate Channels in Table 3.3-14 are also controlled by the red ODCM Table 4.11-2 which requires 4/M Minimum Ana Frequency of the sampling mediums. These analysis is confirm and quantify the isotopic composition of the rad being monitored by these channels. The presence of I collection medium would be confirmed by these analysis is collection medium would be confirmed by these analysis is confirm and quantify the isotopic composition of the rad being monitored by these channels. The presence of	Samplers only. ilding Vent Fuel Building FUSAR does 5. These F and HIGH setpoints is to ons have if a HIGH te and Iodine ums are fixed I cause a vel(s), the cent of the site e-133, and all than 8 days, is s of the t (above e collection indicators he accrued shown that the Reactor channel(s). I to the ponly. and Iodine quirements of lysis are used to dioactivity Noble Gas on

PROCE	DURE NO	D.:	1	FSITE DOSE CALCULATION MANUAL (ODCM)	104 of 230
	C-20	0		ST. LUCIE PLANT	
				METHODOLOGY SECTION	All and a second
2.2				otal Body and Skin Dose Rates for Noble Gas Rel aints for Effluent Monitors (continued)	eases And
	1.	(conti	nued)		
		В.	(cont	tinued)	
			chan Alarr chan the n	alarm occurs, Channel Check(s) should be perfor nel(s), an ALERT Alarm should be investigated ar n shall require isotopic analysis of particulate and/ nel medium of the affected channel(s). The Isoto nedium shall be used to evaluate particulate and/o levels per the methodology of ODCM 2.3.	nd a HIGH ′or iodine pic analysis of
		C.	Moni with requi	omply with Technical Specification 3.3.3.1, Table 3 toring Instrumentation, "Instrument 2.a.ii. Particula Alarm/Trip Setpoint determined and set in accorda irements of the Offsite Dose Calculation Manual, t BASES for Fuel Building Particulate Channel High oints for Unit 1 and Unit 2:	ate Activity", ance with the he following is
			<u>Unit</u>	1 Fuel Building:	
			Expo Site to the base detee	10,000 cpm High Setpoint is based on an Infant's osed Organ Dose Rate (Liver) from Inhalation of C Boundary. The value of 10,000 cpm is very conse e site dose rate limit of 1500 mrem/yr. The metho d on measured particulate channel count rates wh ctor was calibrated with a known source activity of efault assumptions as follows:	s-137 at the ervative relative dology is nen the
			1.	The particulate channel read 32,385 ccpm when 7.67 uCi source of Cs-137.	n exposed to a
			2.	Assuming that 7.67 uCi of Cs-137 were collecte 1 hour of skid sample collection (fixed filter), the volume would yield ~3.3E+06 cc's. Greater that filter efficiency is assumed.	typical sample
			3.	The maximum building process flow exhaust is	~24,576 cfm.
			4.	Q(dot) for Cs-137 uCi/sec release rate is approx uCi/sec as follows:	kimately 27
		<u>7.67 u(</u> hour		<u>hour</u> x <u>28317 cc's</u> x <u>24576 ft3</u> x <u>min</u> 3E+06cc.s ft3 min 60 sec	= <u>27 uCi</u> sec


	SION NO.: 32			DURE TITLE: SITE DOSE (ON MANUAI		PAGE			
PROC		:									
_	C-200)		S	T. LUCIE P	LANT		and a second sec			
			-	METHO	DOLOGY S	ECTION	-				
2.2	Deter	minir	ng the To	tal Body and	Skin Dose R	ates for Nob	le Gas Rele	ases And			
	<u>Estab</u>	lishir	n <mark>g Setpoi</mark>	nts for Effluer	nt Monitors (continued)					
	1.	(coi	ntinued)								
		C.	(conti	nued)							
			5.			(Q)d for the w meters/sec.	vorst sector	(NW) at th			
			6.		ion 2.3 Inhal	nt to 10,000 d ation Dose F d.					
	Bone mrem/y 7.4E+00		Liver mrem/yr 7.9E+00	Thyroid mrem/yr 0.0E+00	Kidney mrem/yr 4.2E-01	Lung mrem/yr 1.0E+00	GI-LLI mrem/yr 1.5E-02	W.Body mrem/yi 4.8E-01			
			7.	1500 mrem/	yr. From the naximum ex	ose rate limit e preceding c posed organ	alculation th	ne Infant's			
			8.	conservative activity on a product pres sample colle adequate wa	e setpoint giv fixed filter, C ent at all tim ection interva arning respo eleased, i.e.	tpoint of 10,0 ven that this of Cs-137 is a ty nes with sper als shorter tha nse if signific , the above a -06 uCi/cc.	channel ana pical long-li nt fuel in the an 1 hour w ant particul	lyzes gros ved fission pool, and ould provic ate activity			
			9.	provide early rate calculat channel is ca compliance performed to with real high	/ detection/a ions are pro- apable of de with the OD(accurately h alarm ever	pm was adm larm of a pro vided to docu tection sensi CM site limit. calculate act nts as per the culations. (E	oblem. The ument that t tivities to ins Grab samp ual releases ODCM me	above dos he particula sure bles should s associate ethodology			

REVISIC	DN NO.:	PR	OCEDURE TITL	Ξ:				PAGE			
	32		OFFSITE DO	DSE CA	LCULATI	ON MANUAL	(ODCM)				
PROCE	DURE NO.:							106 of 230			
	C-200			ST.	LUCIE PI	ANT					
			<u>ME</u>		DLOGY S	ECTION		and the second s			
2.2			Total Body tpoints for E			<u>ates for Nob</u> continued)	le Gas Rel	eases And			
	1. (0	continue	:d)								
	C	C. (CC	ontinued)								
		<u>Ur</u>	nit 2 Fuel Bu	<u>uilding:</u>							
		Ex Sit to ba de	posed Orga te Boundary the site dos used on mea	an Dose v. The v se rate li asured p calibrate	Rate (Liv alue of 10 mit of 150 articulate ed with a k	0 mrem/yr. channel cou nown source	alation of C ery conser The metho nt rates wh	s-137 at the vative relative dology is			
		1.	 The particulate channel read 39,782 ccpm when exposed to a 7.59 uCi source of Cs-137 (decayed to June 19, 1996 data). 								
		2.	hour of volume	skid sa would y	mple colle yield ~5.32	of Cs-137 we ection (fixed f 2E+06 cc's. assumed.	ilter), the ty	pical sample			
		3.	The ma	aximum	building p	rocess flow e	exhaust is ·	~31,584 cfm.			
		4.		for Cs-1 /sec as f		c release rat	e is approx	kimately			
		<u>59 uCi</u> x nour	(<u>hour</u> 5.32E+06c		3 <u>317 cc's</u> ft3	x <u>31584 ft3</u> min	x <u>min</u> 60 sec				
		5.				Q)d for the w meters/sec.	orst sector	r (NW) at the			
		6.	ODCM	Section		nt to 10,000 c ation Dose R I					
	Bone nrem/yr I.8E+00	Live mrem 5.08E-	n/yr mrer	n/y <mark>r</mark> i	Kidney mrem/yr 2.7E-01	Lung mrem/yr 7.0E+01	GI-LLI mrem/yr 1.0E-02	W.Body mrem/yr 3.1E-01			

EVISION NO .:		PROC	EDURE TITLE:	PAGE:	
32		OF	SITE DOSE CALCULATION MANUAL (ODCM)		
ROCEDURE NO	D.:			107 of 230	
C-20	0		ST. LUCIE PLANT		
			METHODOLOGY SECTION		
			otal Body and Skin Dose Rates for Noble Gas Rel ints for Effluent Monitors (continued)	eases And	
1.	(conti	nued)	· · ·		
	C.	(cont	inued)		
		7.	The ODCM 3.11.2.1.b dose rate limit to any org mrem/yr. From the preceding calculation the In the maximum exposed organ at 0.34 percent of rate limit.	fant's Liver is	
	·	8.	A particulate channel setpoint of 10,000 cpm pro- conservative setpoint given that this channel an activity on a fixed filter, Cs-137 is a typical long- product present at all times with spent fuel in the sample collection intervals shorter than 1 hour v adequate warning response if significant particu- were being released, i.e., the above assumption Cs-137 activity of ~1.4E-06 uCi/cc.	alyzes gross lived fission e pool, and that vould provide late activity	
		9.	The setpoint of 10,000 cpm was administratively provide early detection/alarm of a problem. The rate calculations are provided to document that channel is capable of detection sensitivities to in compliance with the ODCM site limit. Grab sam performed to accurately calculate actual release with real high alarm events as per the ODCM m performing dose rate calculations.	e above dose the particulate nsure ples should be es associated	
	·				

REVISI	ION NO.:		PROCEDURE TITLE:	PAGE:
	. 32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCE	EDURE NO).:		108 of 230
	C-200	C	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.2			the Total Body and Skin Dose Rates for Noble Gas Rel Setpoints for Effluent Monitors (continued)	eases And
	2.	Total E	Body and Skin Nuclide Specific Dose Rate Calculations	
		body c compli	llowing outline provides a step-by-step explanation of h lose rate is calculated on a nuclide-by-nuclide basis to ance with Control 3.11.2.1. This method is only used it es exceed the value of 3.5 X 10 ⁵ μCi/sec.	evaluate
		Α.	The (X/Q) value =sec/m ³ and limiting sector at the exclusion area. (See Table M-1 for sector.)	is the most or value and
		В.	Enter the release rate in ft ³ /min of the release source a to:	ind convert it
			$= \frac{()\text{ft}^3}{\text{min}} X \frac{2.8317 X 10^4 \text{cc}}{\text{ft}^3} X \frac{\text{min}}{60 \text{sec}}$	
			= cc/sec volume release rate	
		C.	Solve for(Q DOT) _i for nuclide (i) by obtaining the μ Ci/co of the release source and multiplying it by the product above.	•
			(Q DOT) _i = (nuclide [i])	
			(assay) µCi cc X (2.2.2.B value) cc sec	
			$(Q DOT)_i = \mu Ci/sec \text{ for nuclide (i)}$	
		D.	To evaluate the total body dose rate obtain the $K_{\rm i}$ value from Table G-2.	e for nuclide (i)
		E.	Solve for DR _{TBi}	
			$DR_{TBi} = K_i (X/Q) (Q DOT)_i = \frac{mrem - m^3}{\mu Ci - yr} X \frac{sec}{m^3} X \frac{\mu Ci}{sec}$	
			$DR_{TBi} = \frac{mrem}{yr}$ total body dose from nuclide (i) for the release source	specified

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	109 of 230
PROCE	EDURE NO			
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.2			the Total Body and Skin Dose Rates for Noble Gas Rele Setpoints for Effluent Monitors (continued)	eases And
	2.	(contir	nued)	
		F.	To evaluate the skin dose rate, obtain the L_i and M_i val Table G-2 for nuclide (i).	ues from
		G.	Solve for DR _{skin i}	
			$DR_{skin i} = [L_i + 1.1 M_i] (X/Q)(Q DOT)_i$	
			$DR_{skin i} = \frac{mrem}{yr}$ skin dose from nuclide (i) for the specific	ied release
		H.	Repeat steps 2.2.2.D through 2.2.2.G for each noble g reported in the assay of the release source.	as nuclide (i)
		I.	The Dose Rate to the Total Body from radioactive nobl radiation from the specified release source is:	e gas gamma
			n	
			$DR_{TB} = \Sigma DR_{TBi}$	
			i	
		J.	The Dose Rate to the skin from noble gas radiation from release source is:	m the specified
			п	
			$DR_{skin} = \Sigma DR_{skin i}$	
			i	
			The dose rate contribution of this release source shall other gaseous release sources that are in progress at a interest. Refer to in-plant procedures and logs to deter Dose Rate to the Total Body and Skin from noble gas e	he time of mine the Total

EVISI	ON NO.:	PROCE	EDURE TITLE: PA	GE:			
ROCE	32		SITE DOSE CALCULATION MANUAL (ODCM)	111 of 230			
	C-200		ST. LUCIE PLANT				
			METHODOLOGY SECTION				
.3	<u>Determining</u> <u>Releases</u> (co		adioiodine & Particulate Dose Rate to Any Organ Fro	om Gaseous			
	For Total Do	se Ra	te from I & 8DP and H-3 To An Infant Organ T				
	$DR_{T} = \frac{\Sigma}{Z} [DR_{I\&BDPT} + DR_{H-3T}]$						
	Where:						
	Т	=	The organ of interest for the infant age group				
	z	Ξ	The applicable pathways				
	DR _{I&8DPT}	=	Dose Rate in mrem/yr to the organ T from iodines a particulates	and 8 day			
	DR _{H-3} T	=	Dose Rate in mrem/yr to organ T from Tritium				
	DR_{T}	=	Total Dose Rate in mrem/yr to organ T from all pat under consideration	hways			
	$\sum_{i}^{n} \Sigma$ = A mathematical symbol to signify the operations to the rig the symbol are to be performed for each nuclide (i) throug and the individual nuclide dose rates are summed to arriv the total dose rate from the pathway.						
	Σ Ζ	=	A mathematical symbol to indicate that the total do to organ T is the sum of each of the pathways dose				
	R _i	R _i = The dose factor for nuclide (i) for organ T for the pathway specified (units vary by pathway)					
	Pi	=	The dose factor for instantaneous ground plane pa units of <u>mrem-m² sec</u> µCi-yr	thway in			

	ON NO.:	PROCEDURE TITLE:	PAGE		
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)			
PROCE	DURE NO.:		112 of 230		
	C-200	ST. LUCIE PLANT			
		METHODOLOGY SECTION			
2.3	<u>Determinin</u> <u>Releases</u> (g the Radioiodine & Particulate Dose Rate to Any Organ I continued)	From Gaseous		
	grass-cow/ the infant's >90% of the contribute of compliance particulates radioiodine Section 2.3 used, the d pathways r	valuation of the radioactive releases and environmental pa goat-milk pathway has been identified as the most limiting thyroid being the critical organ. This pathway typically co e total dose received by the infant's thyroid and the radioi essentially all of this dose. Therefore, it is possible to den with the release rate limit of Control 3.11.2.1 for radioiod s by only evaluating the infant's thyroid dose for the release s via the grass-cow/goat-milk pathway. The calculation m 0.3 is used for this determination. If this limited analysis an lose calculations for other radioactive particulate matter an need not be performed. Only the calculations of Section 2 s need be performed to demonstrate compliance with the	p pathway with ontributes odine nonstrate ines and se of nethod of oproach is nd other 2.3.3 for the		
	The calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 may be omitted dose rate calculations as specified in these sections are included for com and are to be used only for evaluating unusual circumstances where rele particulate materials other than radioiodines in airborne releases are abn high. The calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will typical used to demonstrate compliance with the dose rate limit of Control 3.11.2 radioiodines and particulates when the measured releases of particulate (other than radioiodines and with half lives >8 days) are >10 times the marginal provide the test of test of the test of t				
	dose rate of and are to particulate high. The used to der radioiodine (other than	alculations as specified in these sections are included for be used only for evaluating unusual circumstances where materials other than radioiodines in airborne releases are calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will to monstrate compliance with the dose rate limit of Control 3 s and particulates when the measured releases of particul radioiodines and with half lives >8 days) are >10 times the	completeness releases of abnormally ypically be .11.2.1 for late material		
	dose rate of and are to particulate high. The used to der radioiodine (other than releases of	alculations as specified in these sections are included for be used only for evaluating unusual circumstances where materials other than radioiodines in airborne releases are calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will to monstrate compliance with the dose rate limit of Control 3 s and particulates when the measured releases of particul radioiodines and with half lives >8 days) are >10 times the	completeness releases of abnormally ypically be .11.2.1 for late material		
	dose rate of and are to particulate high. The used to der radioiodine (other than releases of	alculations as specified in these sections are included for be used only for evaluating unusual circumstances where materials other than radioiodines in airborne releases are calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will ty monstrate compliance with the dose rate limit of Control 3 s and particulates when the measured releases of particu- radioiodines and with half lives >8 days) are >10 times the radioiodines.	completeness releases of abnormally ypically be .11.2.1 for late material		
	dose rate of and are to particulate high. The used to der radioiodine (other than releases of	alculations as specified in these sections are included for be used only for evaluating unusual circumstances where materials other than radioiodines in airborne releases are calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will ty monstrate compliance with the dose rate limit of Control 3 s and particulates when the measured releases of particu- radioiodines and with half lives >8 days) are >10 times the radioiodines. Inhalation Dose Rate Method: <u>NOTE</u>	completeness releases of abnormally ypically be .11.2.1 for late material ne measured		
	dose rate of and are to particulate high. The used to der radioiodine (other than releases of 1. <u>The</u>	alculations as specified in these sections are included for be used only for evaluating unusual circumstances where materials other than radioiodines in airborne releases are calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will ty monstrate compliance with the dose rate limit of Control 3 s and particulates when the measured releases of particul radioiodines and with half lives >8 days) are >10 times the radioiodines. Inhalation Dose Rate Method: <u>NOTE</u> The H-3 dose is calculated as per 2.3.4. The controlling location is assumed to be an Infant local	completeness releases of abnormally ypically be .11.2.1 for late material ne measured ated in the le range. The his value is tor and range.)		
	dose rate of and are to particulate high. The used to der radioiodine (other than releases of 1. <u>The</u>	A controlling location is assumed to be an Infant loca <u>Sector at the</u>	completeness releases of abnormally ypically be .11.2.1 for late material ne measured ated in the le range. The his value is tor and range.)		

/ISIC	ON NO.:		PROCEDURE TITLE:	PAGE:	
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	113 of 230	
ROCEDURE NO.: C-200			ST. LUCIE PLANT		
			METHODOLOGY SECTION		
3			he Radioiodine & Particulate Dose Rate to Any Organ ntinued)	From Gaseous	
	1.	(contin	ued)		
		C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/c of the release source activity and multiplying it by the p 2.3.1.B above.	•	
			$(Q DOT)_i = \frac{(nuclide[i]assay) \mu Ci}{cc} X \frac{(Value 2.3.1.B) cc}{sec}$		
			$(Q DOT)_i = \mu Ci/sec$ for nuclide (i)		
		D.	Obtain the R_i value from Table G-5 for the organ T.		
		E.	Solve for DR _i		
			$DR_{iT} = R_{iT} (X/Q)_{D} (Q DOT)_{i} = \frac{mrem - m^{3}}{\mu Ci - yr} X \frac{sec}{m^{3}} X \frac{\mu Ci}{sec}$		
			DR _{iT} = <u>mrem</u> The Dose Rate to organ T from nuclide yr	e (i)	
		F.	Repeat steps 2.3.1.C through 2.3.1.E for each nuclide the assay of the release source.	(i) reported in	
		G.	The Dose Rate to the Infants organ T from the Inhalation	on Pathway is:	
			$DR_{Inhalation_T} = DR_1 + DR_2 + \dots + DR_n$		
			for all nuclides except H-3. This dose rate shall be add other pathways as per 2.3.5 - Total Organ Dose.	led to the	
	Steps Infant		<u>NOTE</u> C through 2.3.1.G need to be completed for each organ	T of the	

REVISI	ON NO.:	PROCEDURE TITLE: PAGE: TO THE P
	32	
PROCE	EDURE NO.:	T OFFSITE DOSE CALCOLATION MANUAL (ODCM) 114 of 230
	C-200	ST. LUCIE PLANT
		the state of the s
		METHODOLOGY SECTION
2.3	Determining	the Radioiodine & Particulate Dose Rate to Any Organ From Gaseous
	<u>Releases</u> (co	ontinued)
	2. <u>The C</u>	Ground Plane Dose Rate Method:
		<u>NOTE</u> Tritium dose via the ground plane is zero.
	Α.	The controlling location is assumed to be an Infant located in the sector at the mile range. The (D/Q) for this location is 1/m ² . This value is common to all nuclides. (See Table M-2 for sector, range and value.)
	В.	Enter the release rate in ft ³ /min of the release source and convert to cc/sec.
	= mir	$\frac{\text{ft}^3}{10} \times \frac{2.8317 \times 10^4 \text{ cc}}{\text{ft}^3} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/sec}$
	C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/cc assay value from the release source activity and multiplying it by the product of 2.3.2.B above.
	(Q DO	$(\text{nuclide}[i] \text{ assay}) \mu \text{Ci} \times \frac{(\text{Value 2.3.2.B}) \text{ cc}}{\text{sec}}$
	(Q DO	$\Gamma)_i = \mu Ci/sec$ for nuclide (i)
	D.	Obtain the P _i value from Table G-3
	E.	Solve for DR _i
	DR _i = F	P_{iT} (D/Q) (Q DOT) _i = $\frac{\text{mrem} - \text{m}^2 - \text{sec}}{\mu\text{Ci} - \text{yr}} \times \frac{1}{\text{m}^2} \times \frac{\mu\text{Ci}}{\text{sec}}$
	DR _i =	<u>mrem</u> The Dose Rate to organ T from nuclide (i) yr
	F.	Repeat steps 2.3.2.C through 2.3.2.E for each nuclide (i) reported in the assay of the release source.

			PROCEDURE TITLE: PAGE
32 PROCEDURE NO.:			OFFSITE DOSE CALCULATION MANUAL (ODCM)
ROOL	C-200		ST. LUCIE PLANT
			METHODOLOGY SECTION
	Data	rminina	and the second se
2.3			the Radioiodine & Particulate Dose Rate to Any Organ From Gaseous ontinued)
	2.	(conti	nued)
		G.	The Dose Rate to the Infant's Whole Body from the Ground Plane Pathway is:
			$DR_{GrPl} = DR_1 + DR_2 + \underline{\qquad} + DR_n$
			for all nuclides. This dose rate shall be added to the other pathways as per 2.3.5.
	3.	<u>The G</u>	Grass-Cow/Goat-Milk Dose Rate Method:
			NOTE
			H-3 dose is calculated as per 2.3.4.
		A.	The controlling animal was established as a located in the sector at miles. The (D/Q) for this location is 1/m ² . This value is common to all nuclides. (See Table M-3 for sector, range and value.)
		В.	Enter the anticipated release rate in ft ³ /min of the release source and convert to cc/sec.
		B.	Enter the anticipated release rate in ft ³ /min of the release source and
		B. C.	Enter the anticipated release rate in ft ³ /min of the release source and convert to cc/sec. = $-\frac{\text{ft}^3}{2.8317 \times 10^4 \text{ cc}} \times \frac{\text{min}}{1000} = \text{cc/se c}$
			Enter the anticipated release rate in ft ³ /min of the release source and convert to cc/sec. $= -\frac{\text{ft}^3}{\text{min}} \times \frac{2.8317 \times 10^4 \text{ cc}}{\text{ft}_3} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/se c}$ Solve for (Q DOT) _i for nuclide (i) by obtaining the µCi/cc assay value of the release source activity and multiplying it by the product of
			Enter the anticipated release rate in ft ³ /min of the release source and convert to cc/sec. $= -\frac{\text{ft}^3}{\text{min}} \times \frac{2.8317 \times 10^4 \text{ cc}}{\text{ft}_3} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/se c}$ Solve for (Q DOT) _i for nuclide (i) by obtaining the µCi/cc assay value of the release source activity and multiplying it by the product of 2.3.3.B above.
			Enter the anticipated release rate in ft ³ /min of the release source and convert to cc/sec. $= -\frac{ft^3}{min} \times \frac{2.8317 \times 10^4 \text{ cc}}{ft_3} \times \frac{min}{60 \text{ sec.}} = \text{cc/se c}$ Solve for (Q DOT) _i for nuclide (i) by obtaining the µCi/cc assay value of the release source activity and multiplying it by the product of 2.3.3.B above. $(Q DOT)_i = \frac{(\text{nuclide [i] assay)} \ \mu\text{Ci}}{cc} \times \frac{(\text{value } 2.3.3.B) \text{ cc}}{\text{sec}}$

	on No.:		PROCEDURE TITLE: PAGE:
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)
ROCE	DURE NO		ST. LUCIE PLANT
			METHODOLOGY SECTION
2.3			the Radioiodine & Particulate Dose Rate to Any Organ From Gaseous ntinued)
	3.	(contir	nued)
		E.	Solve for DR _{iT}
			$DR_{iT} = R_{iT} (D/Q) (Q DOT)_{i} = \frac{mrem - m^{2} - sec}{\mu Ci - yr} X \frac{1}{m^{2}} X \frac{\mu Ci}{sec}$
			DR _{iT} = <u>mrem</u> the Dose Rate to organ T from nuclide (i) yr
		F.	Repeat steps 2.3.3.C through 2.3.3.E for each nuclide (i) reported in the assay of the release source.
			Only the radioiodines need to be included if the limited analysis approach is being used.
		G.	The Dose Rate to the Infant's organ T from GrassMilk pathway is:
			DR_{grass} Milk _T = $DR_1 + DR_2 + $ + DR_n
			for all nuclides. This dose rate shall be added to the other pathways as per 2.3.5 - Total Organ Dose.
	Infan	t. Limit	<u>NOTE</u> C through 2.3.3.G need to be completed for each organ of the the calculation to the infant thyroid if the limited analysis being used.

.

REVISI	ON NO.:	<u></u>	PROCEDURE TITLE:		PAGE
	32		OFFSITE DOSE CALCU	LATION MANUAL (ODCM)	117 of 230
PROCE	EDURE NO	•			
	C-200)	ST. LUC		
			METHODOLOG	GY SECTION	in second se Second second second Second second
2.3			<u>he Radioiodine & Particula</u> ntinued)	te Dose Rate to Any Organ	From Gaseous
	4.	<u>The H</u>	-3 Dose Rate Method:		
		A.	The controlling locations a are:	nd their (X/Q) _D values for ea	ch pathway
			Inhalation - Infant at	range in the	sector.
			$(X/Q)_D = sec/m^3$ (S	ee Table M-2 for range, sec	tor and value)
			Ground Plane - Does not a	apply to H-3	
,			atmiles with an Infa sector drinking the milk. T $(X/Q)_D =sec/$	located in the nt at the exclusion area in th 'he $(X/Q)_D$ for the 'm ³ . (From Table M-6 at the e location of the Milk Animal	e location is range and
		B.	Enter the anticipated relea convert it to cc/sec.	se rate in ft ³ /min of the relea	se source and
			$= \frac{\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10^{4} \text{ cm}^{3}}{\text{ft}^{3}}$	$\frac{1}{60} \times \frac{\min}{60 \sec}$	
			= cc/sec volume r	elease rate	
		C.		ritium, by obtaining the μCi/c multiplying it by the product	
			$(Q \text{ DOT })_{H-3} = \frac{(H-3) \ \mu Ci}{cc} X$	(2.3.4.B value) cc sec	
			$(Q DOT)_{H-3} = \mu Ci/sec$	activity release rate	
		D.	Obtain the Tritium dose fac	ctor (R _i) for Infant organ T fro	om:
		r			
			PATH	TABLE #	
			Inhalation	G-5	

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:
ROCE	32 EDURE N		OFFSITE DOSE CALCULATION MANUAL (ODCM)	118 of 230
C-200		00	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.3			the Radioiodine & Particulate Dose Rate to Any Organ ontinued)	From Gaseous
	4.	(contir	nued)	
		Ε.	Solve for D_{H-3} (Inhalation) using the (X/Q) _D for inhalatic and R_{H-3} (Inhalation) from 2.3.4.D.	n from 2.3.4.A
			$DR_{H_{-3_{Inh_{T}}}} = R_{H_{-3}} (X/Q)_{D} (Q DOT)_{H_{-3}}$	
			$DR_{H-3_{InhT}} = mrem/yr from H - 3 Infant Inhalation for organ$	Т
		F.	Solve for D _{H-3} (GrassMilk) using the (X/C GrassMilk from 2.3.4.A and R _{H-3} (GrassMilk) from 2.3.4.D	2) _D for
			$DR_{H_{3G_{-}-M_{T}}} = R_{H_{3G_{-}-M_{T}}} (X/Q)_{D} (Q DOT)_{H_{3}}$	
			DR _{H-3GMT} = mrem/yr from H - 3 Infant	
		G.	Repeat steps 2.3.4.D through 2.3.4.F for each Infant of interest.	rgan T of
		H.	The individual organ dose rates from H-3 shall be adde organ pathway dose rates as per 2.3.5.	ed to the other

	ON NO.:	PROCEDURE TITLE:		PAGE:
PROCE	32 DURE NO.:	OFFSITE DOSE CA	LCULATION MANUAL (ODCM) 119 of 2
C-200		ST.	LUCIE PLANT	
		METHODO	OLOGY SECTION	
2.3	Determining Releases (co	the Radioiodine & Part	ticulate Dose Rate to An	γ Organ From Gased
		mining the Total Organ om Release Source(s)	Dose Rate from lodines	, 8D-Particulates, ar
	Α.	-	escribes all the pathways ose rate to an organ T:	that must be summe
		PATHWAY	DOSE RATE	STEP # REF.
		Inhalation (I&8DP)		2.3.1.G
	G	round Plane (I&8DP)	(Whole Body only)	2.3.2.G
	Gr-	Milk (I&8DP)		2.3.3.G
1		Inhalation (H-3)		2.3.4.E
1	Gr	Milk (H-3)		2.3.4.F
		DR _T =	(sum of above)	
	_			_
	В. С.	The DR _T above shall site that will be in prog	nmation for each Infant of be added to all other rele gress at any instant. Rel to determine the Total DI	ease sources on the fer to in-plant
2.4	C.	The DR _⊤ above shall site that will be in prog procedures and logs t	be added to all other rele gress at any instant. Ref	ease sources on the er to in-plant R⊤ to each organ.
2.4	C. <u>Determining</u> <u>Discussion</u> - effluents for e calendar yea noble gas ga November 19 equation may annual report	The DR _T above shall site that will be in prog procedures and logs t the Gamma Air Dose f Control 3.11.2.2 limits gamma radiation to <5 ir. The following calcul imma air dose and is b 978. The dose calcula y be used for Control d t or for projecting dose	be added to all other rele gress at any instant. Ref to determine the Total DI	ease sources on the fer to in-plant R _T to each organ. Is Release Source(s) ad to <10 mrads in an for determining the NUREG-0133, by age group. The e calculation for the priate value of (X/Q)
2.4	C. <u>Determining</u> <u>Discussion</u> - effluents for calendar yea noble gas ga November 19 equation may annual repor used as outli air dose is: n	The DR _T above shall site that will be in proc procedures and logs t the Gamma Air Dose f Control 3.11.2.2 limits gamma radiation to <5 ir. The following calcul imma air dose and is b 978. The dose calcula y be used for Control d t or for projecting dose ned in the detailed exp	be added to all other rele gress at any instant. Ref to determine the Total DI for Radioactive Noble Ga the air dose due to noble mrads for the quarter ar lation method is provided ased on section 5.3.1 of tion is independent of an lose calculation, the dose provided that the appro-	ease sources on the fer to in-plant R _T to each organ. Is Release Source(s) a gases in gaseous of to <10 mrads in an for determining the NUREG-0133, by age group. The e calculation for the priate value of (X/Q)
2.4	C. <u>Determining</u> <u>Discussion</u> - effluents for calendar yea noble gas ga November 19 equation may annual repor used as outli air dose is: n	The DR _T above shall site that will be in prog procedures and logs t the Gamma Air Dose f Control 3.11.2.2 limits gamma radiation to <5 ir. The following calcul imma air dose and is b 978. The dose calcula y be used for Control d t or for projecting dose	be added to all other rele gress at any instant. Ref to determine the Total DI for Radioactive Noble Ga the air dose due to noble mrads for the quarter ar lation method is provided ased on section 5.3.1 of tion is independent of an lose calculation, the dose provided that the appro-	ease sources on the fer to in-plant R _T to each organ. Is Release Source(s) a gases in gaseous of to <10 mrads in an for determining the NUREG-0133, by age group. The e calculation for the priate value of (X/Q)
2.4	C. <u>Determining</u> <u>Discussion</u> - effluents for calendar yea noble gas ga November 19 equation may annual repor used as outli air dose is: n	The DR _T above shall site that will be in proc procedures and logs t the Gamma Air Dose f Control 3.11.2.2 limits gamma radiation to <5 ir. The following calcul imma air dose and is b 978. The dose calcula y be used for Control d t or for projecting dose ned in the detailed exp	be added to all other rele gress at any instant. Ref to determine the Total DI for Radioactive Noble Ga the air dose due to noble mrads for the quarter ar lation method is provided ased on section 5.3.1 of tion is independent of an lose calculation, the dose provided that the appro-	ease sources on the fer to in-plant R _T to each organ. Is Release Source(s) e gases in gaseous of to <10 mrads in ar for determining the NUREG-0133, by age group. The e calculation for the priate value of (X/Q)
2.4	C. <u>Determining</u> <u>Discussion</u> - effluents for calendar yea noble gas ga November 19 equation may annual repor used as outli air dose is: n	The DR _T above shall site that will be in proc procedures and logs t the Gamma Air Dose f Control 3.11.2.2 limits gamma radiation to <5 ir. The following calcul imma air dose and is b 978. The dose calcula y be used for Control d t or for projecting dose ned in the detailed exp	be added to all other rele gress at any instant. Ref to determine the Total DI for Radioactive Noble Ga the air dose due to noble mrads for the quarter ar lation method is provided ased on section 5.3.1 of tion is independent of an lose calculation, the dose provided that the appro-	ease sources on the fer to in-plant R _T to each organ. Is Release Source(s) e gases in gaseous of to <10 mrads in ar for determining the NUREG-0133, by age group. The e calculation for the priate value of (X/Q)
2.4	C. <u>Determining</u> <u>Discussion</u> - effluents for calendar yea noble gas ga November 19 equation may annual repor used as outli air dose is: n	The DR _T above shall site that will be in proc procedures and logs t the Gamma Air Dose f Control 3.11.2.2 limits gamma radiation to <5 ir. The following calcul imma air dose and is b 978. The dose calcula y be used for Control d t or for projecting dose ned in the detailed exp	be added to all other rele gress at any instant. Ref to determine the Total DI for Radioactive Noble Ga the air dose due to noble mrads for the quarter ar lation method is provided ased on section 5.3.1 of tion is independent of an lose calculation, the dose provided that the appro-	ease sources on the fer to in-plant R _T to each organ. Is Release Source(s) e gases in gaseous of to <10 mrads in ar for determining the NUREG-0133, by age group. The e calculation for the priate value of (X/Q)

REVISI	ON NO.:	PR	OCEDURE TITLE:	PAGE:
	32		120 of 230	
PROCE	ROCEDURE NO.: C-200		ST. LUCIE PLANT	A second se
		1	METHODOLOGY SECTION	
2.4	<u>Determining</u> (continued)	the	Gamma Air Dose for Radioactive Noble Gas Relea	se Source(s)
	Where:			
	D _Y -air	=	gamma air dose in mrad from radioactive noble gas	ses.
	Σ	=	A mathematical symbol to signify the operations to of the symbol are to be performed for each nuclide and summed to arrive at the total dose, from all nuc during the interval. No units apply.	(i) through (n)
	3.17 X 10 ⁻⁸	=	the inverse of the number of seconds per year with year/sec.	units of
	Mi	=	the gamma air dose factor for radioactive noble gas units of $\frac{mrad-m^3}{\mu Ci-yr}$	s nuclide (i) in
	(X/Q)	=	the long term atmospheric dispersion factor for group releases in units of sec/m^3 . The value of (X/Q) is the nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control i etc.	(X/Q) does
	Qi	=	the number of micro-curies of nuclide (i) released (during the dose calculation exposure period. (e.g., or year)	

.

PROCEDURE NO.: C-200 ST. LUCIE PLANT I21 of A METHODOLOGY SECTION I22 of A I22 of A 2.4 Determining the Gamma Air Dose for Radioactive Noble Gas Release Source((continued) I24 of A The following steps provide a detailed explanation of how the radionuclide speed dose is calculated. I24 of A 1. To determine the applicable (X/Q) refer to Table M-1 to obtain the value the type of dose calculation being performed. (i.e., Quarterly Control or Dose Projection for examples). This value of (X/Q) applies to each nuclide (i). 2. Determine (M _i) the gamma air dose factor for nuclide (i) from Table G-2. 3. Obtain the micro-Curies of nuclide (i) from the in-plant radioactive gased		ON NO.: 32	PROCEDURE TITLE: OFFSITE DOSE CALCULATION MANUAL (ODCM)	PAGE:				
 METHODOLOGY SECTION 2.4 Determining the Gamma Air Dose for Radioactive Noble Gas Release Source((continued) The following steps provide a detailed explanation of how the radionuclide speedose is calculated. 1. To determine the applicable (X/Q) refer to Table M-1 to obtain the value the type of dose calculation being performed. (i.e., Quarterly Control or Dose Projection for examples). This value of (X/Q) applies to each nuclide (i). 2. Determine (M_i) the gamma air dose factor for nuclide (i) from Table G-2. 3. Obtain the micro-Curies of nuclide (i) from the in-plant radioactive gased waste management logs for the sources under consideration during the interval. 4. Solve for D_i as follows: D_i = 3.17 X 10⁻⁶ yr X Mimrad - m³/µCi - yr X (X/Q) sec / 1 D_i = mrad = the dose from nuclide (i) 5. Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. 6. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad 7. Refer to in-plant procedures for comparing the calculated dose to any 	PROCE	EDURE NO.:		121 of 2				
 2.4 Determining the Gamma Air Dose for Radioactive Noble Gas Release Source((continued) The following steps provide a detailed explanation of how the radionuclide speedose is calculated. 1. To determine the applicable (X/Q) refer to Table M-1 to obtain the value the type of dose calculation being performed. (i.e., Quarterly Control or Dose Projection for examples). This value of (X/Q) applies to each nuclide (i). 2. Determine (M_i) the gamma air dose factor for nuclide (i) from Table G-2. 3. Obtain the micro-Curies of nuclide (i) from the in-plant radioactive gased waste management logs for the sources under consideration during the interval. 4. Solve for D_i as follows: D_i = 3.17 X 10⁻⁶ yr × Mimrad - m³/µCi - yr × (X/Q) sec/m³ × Q_i µCi/1 D_i = mrad = the dose from nuclide (i) 5. Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. 6. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_v-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad 7. Refer to in-plant procedures for comparing the calculated dose to any 		C-200	ST. LUCIE PLANT					
 (continued) The following steps provide a detailed explanation of how the radionuclide speed dose is calculated. 1. To determine the applicable (X/Q) refer to Table M-1 to obtain the value the type of dose calculation being performed. (i.e., Quarterly Control or Dose Projection for examples). This value of (X/Q) applies to each nuclide (i). 2. Determine (M_i) the gamma air dose factor for nuclide (i) from Table G-2. 3. Obtain the micro-Curies of nuclide (i) from the in-plant radioactive gased waste management logs for the sources under consideration during the interval. 4. Solve for D_i as follows: D_i = 3.17 X 10⁻⁸ yr × M_imrad - m³ × (X/Q) sec / m³ × Q_i µCi / 1 D_i = mrad = the dose from nuclide (i) 5. Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. 6. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad 7. Refer to in-plant procedures for comparing the calculated dose to any 			METHODOLOGY SECTION					
 dose is calculated. 1. To determine the applicable (X/Q) refer to Table M-1 to obtain the value the type of dose calculation being performed. (i.e., Quarterly Control or Dose Projection for examples). This value of (X/Q) applies to each nuclide (i). 2. Determine (M_i) the gamma air dose factor for nuclide (i) from Table G-2. 3. Obtain the micro-Curies of nuclide (i) from the in-plant radioactive gased waste management logs for the sources under consideration during the interval. 4. Solve for D_i as follows: D_i = 3.17 X 10⁻⁸ yr / x Mi mrad - m³ / (X/Q) sec / m³ X Q_i µCi / 1 D_i = mrad = the dose from nuclide (i) 5. Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. 6. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad 7. Refer to in-plant procedures for comparing the calculated dose to any 	2.4			e Source(s				
 the type of dose calculation being performed. (i.e., Quarterly Control or Dose Projection for examples). This value of (X/Q) applies to each nuclide (i). Determine (M_i) the gamma air dose factor for nuclide (i) from Table G-2. Obtain the micro-Curies of nuclide (i) from the in-plant radioactive gased waste management logs for the sources under consideration during the interval. Solve for D_i as follows: D_i = 3.17 X 10⁻⁸ yr / x M_i mrad - m³ / (X/Q) sec / m³ × Q_i µCi / 1 D_i = mrad = the dose from nuclide (i) Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad Refer to in-plant procedures for comparing the calculated dose to any 				uclide spec				
 Obtain the micro-Curies of nuclide (i) from the in-plant radioactive gased waste management logs for the sources under consideration during the interval. Solve for D_i as follows: D_i = 3.17 X 10⁻⁸ yr / sec X M_i mrad - m³ / (X/Q) sec / m³ X Q_i µCi D_i = mrad = the dose from nuclide (i) Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. Che total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad Refer to in-plant procedures for comparing the calculated dose to any 		the Do	e type of dose calculation being performed. (i.e., Quarterly se Projection for examples). This value of (X/Q) applies to	Control or				
 waste management logs for the sources under consideration during the interval. Solve for D_i as follows: D_i = 3.17 X 10⁻⁸ yr / sec X M_imrad - m³ / µCi - yr X (X/Q) sec / m³ X Q_i µCi D_i = mrad = the dose from nuclide (i) Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad Refer to in-plant procedures for comparing the calculated dose to any 		2. De	termine (M _i) the gamma air dose factor for nuclide (i) from	Table G-2.				
$D_{i} = \frac{3.17 \times 10^{-8} \text{ yr}}{\text{sec}} \times \frac{\text{M}_{i} \text{ mrad} - \text{m}^{3}}{\mu \text{Ci} - \text{yr}} \times \frac{(X/Q) \text{sec}}{\text{m}^{3}} \times \frac{Q_{i}}{1} \frac{\mu \text{Ci}}{1}$ $D_{i} = \text{mrad} = \text{the dose from nuclide (i)}$ 5. Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. 6. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_{Y}-air dose. $D_{Y-air} = D_{1} + D_{2} + \underline{\qquad} + D_{n} = \text{mrad}$ 7. Refer to in-plant procedures for comparing the calculated dose to any		wa	waste management logs for the sources under consideration during the time					
 D_i = mrad = the dose from nuclide (i) 5. Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. 6. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad 7. Refer to in-plant procedures for comparing the calculated dose to any 		4. So	lve for D _i as follows:					
 5. Perform steps 2.4.2 through 2.4.4 for each nuclide (i) reported during the time interval in the source. 6. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad 7. Refer to in-plant procedures for comparing the calculated dose to any 		Di :	$= \frac{3.17 \times 10^{-8} \text{ yr}}{\text{sec}} \times \frac{\text{M}_{i} \text{ mrad} - \text{m}^{3}}{\mu \text{Ci} - \text{yr}} \times \frac{(\text{X}/\text{Q}) \text{ sec}}{\text{m}^{3}} \times \frac{\text{Q}_{i} \ \mu \text{Ci}}{1}$					
 time interval in the source. 6. The total gamma air dose for the pathway is determined by summing the dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad 7. Refer to in-plant procedures for comparing the calculated dose to any 		Di	= mrad = the dose from nuclide (i)					
 dose of each nuclide (i) to obtain D_Y-air dose. D_{Y-air} = D₁ + D₂ + + D_n = mrad 7. Refer to in-plant procedures for comparing the calculated dose to any 				during the				
7. Refer to in-plant procedures for comparing the calculated dose to any			• • • • •	umming the				
		Dy	$_{air} = D_1 + D_2 + + D_n = mrad$					
				e to any				
				·				

	NO.:	PRO	CEDURE TITLE:	PAGE:					
32		0	FFSITE DOSE CALCULATION MANUAL (ODCM)	122 of 230					
PROCE	DURE NO .:	1							
	C-200		ST. LUCIE PLANT						
			METHODOLOGY SECTION						
2.5	Determining the Beta Air Dose for Radioactive Noble Gas Releases								
	<u>Discussion</u> - Control 3.11.2.2 limits the quarterly air dose due to beta radiation from noble gases in gaseous effluents to <10 mrads in any calendar quarter and <20 mrads in any calendar year. The following calculation method is provided for determining the beta air dose and is based on Section 5.3.1 of NUREG-0133, November 1978. The dose calculation is independent of any age group. The equation may be used for Control dose calculation, dose calculation for annual reports or for projecting dose, provided that the appropriate value of (X/Q) is used as outlined in the detailed explanation that follows.								
	The equation	n for	beta air dose is:						
			n						
			$D_{B-air} \Sigma = 3.17 \times 10^{-8} N_i (X/Q) Q_i$						
			i						
	Where:								
	D _{B-air}	=	beta air dose in mrad from radioactive noble gases	i.					
	ïΣ	=	a mathematical symbol to signify the operations to of the symbol are to be performed for each nuclide (n) and summed to arrive at the total dose, from all reported during the interval. No units apply.	(i) through					
	3.17 X 10 ⁻⁸	=	the inverse of the number of seconds per year with year/sec.	units of					
	Ni	=	the beta air dose factor for radioactive noble gas munits of $\frac{mrad-m^3}{\mu Ci-yr}$	uclide (i) in					
	(X/Q)	=	the long term atmospheric dispersion factor for gro releases in units of sec/m^3 . The value of (X/Q) is the nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control i etc.	he same for all ^f (X/Q) does					
		=	the number of micro-Curies of nuclide (i) released	(or projected)					

REVISI	ION NO.:		PROCEDURE TITLE:	PAGE
32 PROCEDURE NO.:			OFFSITE DOSE CALCULATION MANUAL (ODCM)	123 of 230
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	NES J
2.5	<u>Deter</u>	rmining 1	the Beta Air Dose for Radioactive Noble Gas Releases	(continued)
	The f	ollowing	steps provide a detailed explanation of how the dose is	s calculated.
	1.	the typ	ermine the applicable (X/Q) refer to Table M-1 to obtain be of dose calculation being performed (i.e., quarterly C tion for examples). This value of (X/Q) applies to each	ontrol or Dose
	2.	Detern	nine (N_i) the beta air dose factor for nuclide (i) from Tab	ole G-2.
	3.		n the micro-curies of nuclide (i) from the in-plant radioac management logs for the source under consideration d al.	~
	4.	Solve	for D _i as follows:	
		$D_i = \frac{3}{2}$	$\frac{17 \text{ X } 10^{-8} \text{ yr}}{\text{sec}} \times \frac{\text{N}_{\text{i}} \text{mrad} - \text{m}^{3}}{\mu \text{Ci} - \text{yr}} \times \frac{(\text{X}/\text{Q}) \text{ sec}}{\text{M}^{3}} \times \frac{\text{Q}_{\text{i}} \mu \text{Ci}}{1}$	
		D _i = m	rad = the dose from nuclide (i)	
	5.		m steps 2.5.2 through 2.5.4 for each nuclide (i) reported aterval in the release source.	d during the
	6.		tal beta air dose for the pathway is determined by summer by each nuclide (i) to obtain D _{B-air} dose.	ming the D _i
		D _{B-air} =	= D ₁ + D ₂ + D _n = mrad	
	7.		to in-plant procedures for comparing the calculated dos able limits that might apply.	e to any

REVISIO	DN NO.:	PROCEDURE TITLE:	PAGE:
	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	124 of 230
PROCE	DURE NO.: C-200	ST. LUCIE PLANT	
	0 200		
		METHODOLOGY SECTION	
2.6		<u>he Radioiodine and Particulate Dose To Any Age Grou</u> <u>itive Releases</u>	ip's Organ
	resulting from days to ≤7.5 r year. The fol organ dose d Section 5.3.1 any age grou dose reflects Effluent Supe age group (se (X/Q) which is the loss of I& given distanc cloud that affe I&8DP and H and Tritium. included (see is to calculate age group. T pathways tha	Control 3.11.2.3 limits the dose to the whole body or an a the release of I-131, I-133, tritium and particulates with mrem during any calendar quarter and \leq 15 mrem durin- lowing calculation method is provided for determining the ue to releases of radioiodines and particulates and is b of NUREG-0133, November 1978. The equations can p provided that the appropriate dose factors are used a only those pathways that are applicable to the age grou- ervisor will track which age group is the controlling (mos- ec control 3.11.2.6.c). The (X/Q) _D symbol represents a s different from the Noble Gas (X/Q) in that (X/Q) _D take 8DP and H-3 from the plume as the semi-infinite cloud e. The (D/Q) dispersion factor represents the rate of fa- ects a square meter of ground at various distances from -3 notations refer to I-131, I-133 Particulates having ha For ease of calculations, dose from other Iodine nuclide 2.1). Tritium calculations are always based on (X/Q) _D the I&8DP and H-3 dose for each pathway that applie the total dose to an organ can then be determined by si- t apply to the receptor in the sector. The infant age grou- s-Cow-Meat or Vegetation pathway dose since they ar-	h half-lives >8 g any calendar he critical ased on be used for and the total up. The t restrictive) DEPLETED- s into account travels over a illout from the h the site. The lf-lives >8 days es may be . The first step s to a given umming the oup does not
	The equation	s are:	
	For Inhalatior n	n Pathway (excluding H-3):	
	D _{I&8DPT} = Σ3. i	17 X 10 ⁻⁸ R _i (X/Q) _D Q _i	
	For Ground F	Plane, Grass-Cow/Goat-Milk, Grass-Cow/Goat-Milk, or `	Vegetation
	n D _{I&8DPT} = Σ3. i	17 X 10 ⁻⁸ R _i (D/Q) Q _i	
	For each path	nway above (excluding Ground Plane) For Tritium:	
	D _{H-3T} = 3.	.17 Х 10 ⁻⁸ R _{H-зт} (X/Q) _D Q _i	

	ON NO.: 32		EDURE TITLE: FSITE DOSE CALCULATION MANUAL (ODCM)	PAGE:
PROCE	EDURE NO.:	1		125 of 23
	C-200		ST. LUCIE PLANT	No. 2 Mar Was
			METHODOLOGY SECTION	
2.6			adioiodine and Particulate Dose To Any Age Grou Releases (continued)	p's Organ
	For Total Dos group:	se froi	m Particulate Gaseous effluent to organ T of a spe	ecified age
	$D_{T} = \frac{\Sigma}{Z} [D_{1\&BDF}]$	• + Dн-	۶.	
	Where:			
	Т	=	the organ of interest of a specified age group	
	z	=	the applicable pathways for the age group of int	erest
	D _{1&8DP}	=	Dose in mrem to the organ T of a specified age radioiodines and 8D Particulates	group from
	D _{H-3}	=	Dose in mrem to the organ T of a specified age Tritium	group from
	DT	=	Total Dose in mrem to the organ T of a specified from Gaseous particulate Effluents	d age group
	'nΣ	=	A mathematical symbol to signify the operations the symbol are to be performed for each nuclide and the individual nuclide doses are summed to total dose from the pathway of interest to organ	e (i) through arrive at the
	Σ Ζ	=	A mathematical symbol to indicate that the total organ T is the sum of each of the pathway dose and H-3 from gaseous particulate effluents.	
	3.17 X 10 ⁻⁸	=	The inverse of the number of seconds per year year/sec.	with units of
	Ri	=	The dose factor for nuclide (i) (or H-3) for pathw T of the specified age group. The units are eith	
		mrer yr -	$\frac{m-m^3}{\mu Ci}$ for pathways μCi using (X/Q) _D OR $\frac{mrem-m^2-sec}{yr-\mu Ci}$ using (X/Q)	ways D/Q)

	ON NO.:	PROCEDURE TITLE:		PAGE:
	32			
PROCE	EDURE NO.:			
 	C-200		ST. LUCIE PLANT	
		MET	HODOLOGY SECTION	
2.6			and Particulate Dose To Any Age Grou	up's Organ
	From Cumu	<u>Ilative Releases</u> (c	ontinued)	
	(X/Q) _D		eted-(X/Q) value for a specific location s located (see discussion). The units	
	(D/Q)		sition value for a specific location wher I (see discussion). The units are 1/m ² s.	
	Qi		ber of micro-Curies of nuclide (i) releas) during the dose calculation exposure	•
	Q _{H-3}	= the numb	er of micro-Curies of H-3 released (or	projected)
		during the	e dose calculation exposure period.	
	1. <u>The In</u>	halation Dose Pat	hway Method:	
			NOTE	·····
		The H-3 dose s	hould be calculated as per 2.6.4.	
	Α.		pplicable $(X/Q)_D$ from Table M-2 for the tor is located. This value is common t	
	В.		up(s) of interest, determine the R _i facto and age group from the appropriate tak	
		Age Group	Inhalation Dose Factor Table Numb	ber
		Age Group Infant	Inhalation Dose Factor Table Numb G-5	Der
				ber
		Infant	G-5	ber
		Infant Child	G-5 G-8	ber
	C.	Infant Child Teen Adult Obtain the micro waste managem	G-5 G-8 G-13	ioactive gas
	C.	Infant Child Teen Adult Obtain the micro waste managem	G-5 G-8 G-13 G-18 D-Curies (Q _i) of nuclide (i) from the radi	ioactive gas
		Infant Child Teen Adult Obtain the micro waste managem consideration du	G-5 G-8 G-13 G-18 D-Curies (Q _i) of nuclide (i) from the radio thent logs for the release source(s) und uring the time interval.	ioactive gas

	ON NO.:		PROCEDURE TITLE:	
	32 EDURE N	<u> </u>	OFFSITE DOSE CALCULATION MANUAL (ODCM)	27 of 230
C-200			ST. LUCIE PLANT	
			METHODOLOGY SECTION	
.6			the Radioiodine and Particulate Dose To Any Age Group's (lative Releases (continued)	<u> Organ</u>
	1.	(conti	nued)	
		E.	Perform steps 2.6.1.B through 2.6.1.D for each nuclide (i) r during the time interval for each organ.	eported
		F.	The Inhalation dose to organ T of the specified age group is determined by summing the D _i Dose of each nuclide (i)	S
			$D_{inhalation} = D_1 + D_2 + \ + D_n = mrem$ (Age Group)	
			Refer to 2.6.5 to determine the total dose to organ T from radioiodines & 8D Particulates	
	2.	The Gr	round Plane Dose Pathway Method:	
			e via the ground plane is zero. The Whole Body is the only dered for the Ground Plane pathway dose.	
		Α.	Determine the applicable (D/Q) from Table M-2 for the loca the receptor is located. This (D/Q) value is common to eac (i)	
		В.	Determine the Ri factor of nuclide (i) for the whole body fro Table G-4. The ground plane pathway dose is the same fo groups.	
		C.	Obtain the micro-Curies (Q _i) of nuclide (i) from the radioact waste management logs for the source under consideration	-
		D.	Solve for D _I	
			$D_i = 3.17 \times 10^{-8} R_i (D/Q) Q_i$	
			$D_i = mrem for nuclide (i)$	

REVISI	ON NO.:		PROCEDURE TITLE:			PAGE:			
	32	2	OFFSITE DO	SE CALCULATION MA	NUAL (ODCM)	(128 of 230			
ROCE	ROCEDURE NO.:								
	C-2	00		ST. LUCIE PLANT					
			ME	THODOLOGY SECTIO	<u>N</u>				
2.6		Determining the Radioiodine and Particulate Dose To Any Age Group's From Cumulative Releases (continued)							
	2.								
		F.	The Ground Pla the Di Dose of	ane dose to the whole I each nuclide (i)	body is determine	ed by summing			
			D _{Gr.PlWBody} = D	₁ + D ₂ + + D _n =	mrem				
			Refer to step 2	.6.5 to calculate total de	ose to the Whole	Body			
	3.	The Gr	ass-Cow/Goat-N	<u> Ailk Dose Pathway Met</u>	<u>hod</u> :				
	L		Tritium dose is calculated as per 2.6.4.						
		В.	the sum of eac milk from only to determine whice For the age gro	t, will be the controlling h animal), as the huma he most restrictive anir h animal is controlling oup(s) of interest, deter organ T, from the appro- animal.	n receptor is ass mal. Refer to Tab based on its (D/C mine the dose fac	umed to drink ble M-3 to 2). ctor R _i for			
		A	ge Group	Cow Milk Dose Factor Table Number	Goat Milk Do Factor Table Nu				
			Infant	G-6	G-7				
			Child	G-9	G-10				
			Teen	G-14	G-15				
			Adult	G-19	G-20				
		_			. (i) frame the reali				
		C.		ro-Curies (Q _i) of nuclide ment logs for the releas interval.					
		C. D.	waste manage	ment logs for the releas					
			waste manager during the time	ment logs for the releas interval.					

	ON NO.:		PROCEDURE TITLE: P/	AGE				
PROCE	32 ROCEDURE NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCM)	129 of 230				
	C-200		ST. LUCIE PLANT					
			METHODOLOGY SECTION	N. S. M. S.				
2.6			the Radioiodine and Particulate Dose To Any Age Group' ative Releases (continued)	<u>s Organ</u>				
	3.	3. (continued)						
		Ε.	Perform steps 2.6.3.B through 2.6.3.D for each nuclide (i during the time interval. Only the radioiodines need to be the limited analysis approach is used.					
		F.	The Grass-Cow-Milk (or Grass-Goat-Milk) pathway dose is determined by summing the Di dose of each nuclide(i)					
			$D_{G-C-M} (or D_{G-G-M}) = D_1 + D_2 + \ + D_n = mrem$					
	4.	The Cr	The dose to each organ should be calculated in the same with steps 2.6.3.B through 2.6.3.F. Refer to step 2.6.5 to the total dose to organ T from radioiodines &8D Particula limited analysis approach is being used the infant thyroid grass-cow(goat)-milk pathway is the only dose that need determined. Section 2.6.5 can be omitted.	o determine ates. If the I dose via the				
		The Gr	ass-Cow/Goat-Meat Dose Pathway method:					
			<u>NOTE</u> Tritium dose is calculated as per 2.6.6.					
		A.	NOTE					
			<u>NOTE</u> Tritium dose is calculated as per 2.6.6.	ector				
			NOTE Tritium dose is calculated as per 2.6.6. Determine the controlling herd location by: 1. For dose calculations (other than the annual report historical herd was determined to be located in Set at miles. This herd shall be used for at	ector all ODCM the Land on will be the or example) e) and will The real				

	ON NO.:		PROCEDURE TITLE:		PAGE:
	32		OFFSITE DO	SE CALCULATION MANUAL (ODCM)	130 of 2
PROCE					
C-200		10		ST. LUCIE PLANT	<u>king</u> t
			MET	THODOLOGY SECTION	
2.6				and Particulate Dose To Any Age Grou	up's Organ
	From	<u>n Cumu</u>	lative Releases (continued)	
	4.	(cont	inued)		
		C.	Determine the or Table specified	dose factor Ri for nuclide (i) for organ ta below:	au from the
			Age	Meat Dose Factor Table No.	
			Infant	N/A *	
			Child	G-11	
			Teen	G-16	
			Adult	G-21	
		D.	waste manager	o-Curies (Qi) of nuclide (i) from the rad ment logs (for projected doses - the mic	ro-Curies o
		D.	waste manager nuclide (i) to be consideration d from a single re		cro-Curies o nder be calculated CM Control
		D. E.	waste manager nuclide (i) to be consideration d from a single re	ment logs (for projected doses - the mic projected) for the release source(s) un uring the time interval. The dose can b lease source, but the total dose for OD	cro-Curies o nder be calculated CM Control
			waste manager nuclide (i) to be consideration d from a single re Limits or annua	ment logs (for projected doses - the mid projected) for the release source(s) un uring the time interval. The dose can b elease source, but the total dose for OD Il reports shall be from all gaseous relea	cro-Curies o nder be calculated CM Control
			waste manager nuclide (i) to be consideration d from a single re Limits or annua Solve for Di	ment logs (for projected doses - the mid projected) for the release source(s) un uring the time interval. The dose can b elease source, but the total dose for OD Il reports shall be from all gaseous relea	cro-Curies o nder be calculated CM Control
			waste manager nuclide (i) to be consideration d from a single re Limits or annua Solve for Di Di = 3.17 X 10 Di =	ment logs (for projected doses - the mide projected) for the release source(s) un uring the time interval. The dose can be elease source, but the total dose for OD il reports shall be from all gaseous relea Ri (D/Q) Qi mrem from nuclide (i) 2.6.4.C through 2.8.4.E for each nuclide	cro-Curies o oder be calculate CM Control ase sources
		E.	<pre>waste manager nuclide (i) to be consideration d from a single re Limits or annua Solve for Di Di = 3.17 X 10 Di = Perform Steps during the time The Grass-Cow</pre>	ment logs (for projected doses - the mide projected) for the release source(s) un uring the time interval. The dose can be elease source, but the total dose for OD il reports shall be from all gaseous relea Ri (D/Q) Qi mrem from nuclide (i) 2.6.4.C through 2.8.4.E for each nuclide	e (i) reporte
		E. F.	<pre>waste manager nuclide (i) to be consideration d from a single re Limits or annua Solve for Di Di = 3.17 X 10 Di = Perform Steps during the time The Grass-Cow</pre>	ment logs (for projected doses - the mide projected) for the release source(s) un uring the time interval. The dose can be elease source, but the total dose for OD il reports shall be from all gaseous relea Ri (D/Q) Qi mrem from nuclide (i) 2.6.4.C through 2.8.4.E for each nuclide interval.	e (i) reporte

.

	ON NO.: 32			E CALCULATION MANUAL (ODCM)	PAGE
PROCI).:		E CALCOLATION MANDAE (ODCM)	131 of 230
	C-200		ST. LUCIE PLANT		
			MET	HODOLOGY SECTION	
2.6			the Radioiodine a ative Releases (c	and Particulate Dose To Any Age Grou ontinued)	up's Organ
	5.	The Ve	getation (Garden) Dose Pathway method:	
		A.	Determine the c	ontrolling garden location by:	
			garden w	calculations (other than annual report as determined to be located in Sector miles. This garden shall be used for ose calculations.	at
			having the reporting example) and will lo (D/Q) will	al report dose calculations the Land C e highest real (D/Q) at its location will garden. The Land Use Census for 19 shall apply to the calendar year 1979 ocate the nearest garden in each secto be determined from actual met data the reporting period.	be the 78 (for (for example) or. The real
		В.		pplicable (D/Q) from Table M-3 for the determined above.	location(s) of
		C.	Determine the d Table specified I	ose factor Ri for nuclide (i) for organ ta below:	au from the
			Age	Vegetation Dose Factor Table No.	
		Γ	Infant	N/A *	
			Child	G-12	
			Teen	G-17	
		-	Adult	G-22	
		_	not apply to	e infant does not eat vegetation and th o this pathway.	
		D.	waste managem nuclide (i) to be consideration du from a single rel	p-Curies (Qi) of nuclide (i) from the rad nent logs (for projected doses - the mic projected) for the release source(s) ur uring the time interval. The dose can be ease source, but the total dose for OE reports shall be from all gaseous relea	cro-Curies of oder be calculated CM Control

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)	132 of 230
PROCE	DURE NO			
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.6			the Radioiodine and Particulate Dose To Any Age Grou ative Releases (continued)	ip's Organ
	5.	(contir	nued)	
		E.	Solve for Di	
			Di = 3.17 X 10 ⁻⁸ Ri (D/Q) Qi	
			Di = mrem from nuclide (i)	
		F.	Perform Steps 2.6.5.C through 2.6.5.E for each nuclide during the time interval.	e (i) reported
		G.	The Vegetation pathway dose to organ tau is determin summing the Di dose of each nuclide (i).	ed by
			Dose = D1 + D2 + D3 + + Dn =	mrem
			Vegetation (Excluding Tritium) (Child, Teen, or Adult)	
	6.	<u>The G</u>	aseous Tritium Dose (Each Pathway) Method:	
		Α.	The controlling locations for the pathway(s) has alread determined by:	y been
			Inhalation-as per 2.6.1.AGround Plane-not applicable for H-3Grass-Cow/Goat-Milk-as per 2.6.3.AGrass-Cow/Goat-Milk-as per 2.6.4.AVegetation (Garden)-as per 2.6.5.A	
		В.	Tritium dose calculations use the depleted $(X/Q)_D$ inste Table M-2 describes where the $(X/Q)_D$ value should be from.	

REVISION NO .:			PROCEDURE T	ITLE:	· . '`` <u></u>	PAGE			
	32		OFFSITE	DCM) 133 of 230					
PROCE	DURE NO.								
C-200 ST. LUCIE PLANT									
				METHODOLOGY SECTION					
2.6	6 <u>Determining the Radioiodine and Particulate Dose To Any Age Group's Organ</u> <u>From Cumulative Releases</u> (continued)								
	6.	(contir	nued)						
		C.	For the age group(s) of interest, determine the Pathway Tritium dose factor (R_{H-3}) for the organ T of interest from the Table specified below:						
				INHALATION	MIL	<			
			AGE	INHALATION	COW	GOAT			
			Infant	G-5	G-6	G-7			
			Child	G-8	G-9	G-10			
			Teen	G-13	G-14	G-15			
			Adult	G-18	G-19	G-20			
		D.	manageme (i) to be pro during the t release sou	ent logs (for projectojected) for the release time interval. The urce, but the total of		ated from a single its or quarterly			
		E.	Solve for D	⁹ H-3					
			D _{H-3} = 3.17	7 X 10 ⁻⁸ R _{H-3} (X/Q) _ℓ	Q				
			D _{H-3} =	mrem from Tritiur the specified age	• •	athway for organ T of			

REVISION NO .:	PROCEDURE	TITLE:		PAGE		
32 PROCEDURE NO.:	OFFSITE	DOSE CALCULAT	M) 134 of 230			
C-200		ST. LUCIE F	PLANT			
		METHODOLOGY	SECTION			
		odine and Particulate ses (continued)	e Dose To Any Age G	Broup's Organ		
Control dose from the rea			dose from all release	e sources		
Α.	organ T fro release so	om a release source urces:	be summed to arrive a or if applicable to Co			
•	NT CHILI IVER TH	D TEEN ADUL YROID KIDNEY		VHOLE BODY		
PATHWA	Y	DOSE	Reference to STEP No.	Remark		
Inhalation (I&	8DP)		2.6.1.F			
Inhalation (Tri	tium)		2.6.6.E			
Ground Plane (2.6.2.F			
GrassM	ilk (I&8DP)		2.6.3.F			
GrassM	ilk (Tritium)		2.6.6.E			
GrassMe	eat (I&8DP)		2.6.4.G	N/A for INFANT		
GrassMe	eat (Tritium)		2.6.6.E	N/A for INFANT		
Vegetable Garder	n (I&8DP)		2.6.5.G	N/A for INFANT		
Vegetable Garder			2.6.6.E	N/A for INFANT		
Dose _T =		(sum of above)				
B.	The dose calculated	••	able age group's OR	GANS shall be		
	BONE, LIV	/ER, THYROID, KIE	NEY, LUNG, WHOL	E BODY, & GI-LLI		
			g the highest exposur			

The age group organ receiving the highest exposure relative to its Control Limit is the most critical organ for that age group resulting from the radioiodine & 8D Particulates gaseous effluents.

REVISION NO .:	PROCEDURE TITLE:	PAGE:					
32	OFFSITE DOSE CALCULATION MANUAL (ODC	⁽¹⁾ 135 of 230					
PROCEDURE NO.: C-200	ST. LUCIE PLANT						
	METHODOLOGY SECTION						
2.7 <u>Project</u>	ng Dose for Radioactive Gaseous Effluents						
to redu gaseou BOUNI and 0.4 determ	tion - Control 3.11.2.4 requires that the waste gas holdup ce releases of radioactivity when the projected doses in 31 s effluent releases, from each unit, to areas at and beyond DARY (see TS Figure 5-1-1) would exceed 0.2 mrad for ga mrad for beta radiation. The following calculation method ning the projected doses. This method is based on using ions performed in Sections 2.4 and 2.5.	I days due to d the SITE amma radiation d is provided for					
	Obtain the latest results of the monthly calculations of the g Section 2.4) and the beta air dose if performed (Section 2 can be obtained from the in-plant records.						
	2. Divide these doses by the number of days the plant was operational during the month.						
	Multiply the quotient by the number of days the plant is properational during the next month. The product is the project month. The value should be adjusted as needed to a changes in failed-fuel or other identifiable operating condition is properly alter the actual releases.	ected dose for the ccount for any					
i	f the projected doses are >0.2 mrads gamma air dose or > air dose, the appropriate subsystems of the waste gas hold be used.						
3.0 <u>40 CFF</u>	40 CFR 190 Dose Evaluation						
cycle s thyroid The fol	tion - Dose or dose commitment to a real individual from a burces be limited to \leq 25 mrem to the whole body or any or which is limited to \leq 75 mrem) over a period of 12 consectoring approach should be used to demonstrate compliance the transformation. This approach is based on NUREG-0133, Section 3.	rgan (except utive months. ce with these					
3.1 <u>Evalua</u>	Evaluation Bases						
be perf twice th 3.11.2. whole b gamma from ra	valuations to demonstrate compliance with the above dose ormed if the quarterly doses calculated in Sections 1.4, 2.4 e dose limits of Controls 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2a, 3a and 3.11.2.3b respectively; i.e., quarterly doses exceed ody (liquid releases), 10 mrem to any organ (liquid release air dose, 20 mrads beta air dose or 15 mrem to the thyroi dioiodines and particulates (atmospheric releases). Other ons are required and the remainder of this section can be	4 and 2.6 exceed 3.1.2.2b, ling 3 mrem to the es), 10 mrads id or any organ wise, no					

REVICI	ON NO.:	PROCEDURE TITLE:	PAGE
NEVIOI	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCE		OFFSITE DOSE CALCOLATION MANDAE (ODCM)	136 of 230
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
3.2	Doses From	Liquid Releases	
	calculation m realistic assu shellfish by ir Radiological more realistic	ation of doses to real individuals from liquid releases, the ethod as employed in Section 1.4 will be used. Howev mptions will be made concerning the dilution and inges adividuals who live and fish in the area. Also, the result Environmental Monitoring program will be included in d dose to these real people by providing data on actual t related radionuclides in the environment.	er, more tion of fish and s of the etermining
3.3	Doses From	Atmospheric Releases	
	same calcula Section 2.4, t dose factor (I sequence ap the actual loc consumption (Control 3.12 the results of in determining	ation of doses to real individuals from the atmospheric tion methods as employed in Section 2.4 and 2.6 will b he total body dose factor (K _i) should be substituted for M _i) to determine the total body dose. Otherwise the sar plies. However, more realistic assumptions will be mad- ation of real individuals, the meteorological conditions a of food (e.g., milk). Data obtained from the latest land .2) should be used to determine locations for evaluating the Radiological Environmental Monitoring program wi g more realistic doses to these real people by providing vels of radioactivity and radiation at locations of interest	e used. In the gamma air ne calculation le concerning and the use census g doses. Also, I be included data on actual

REVISION NO.:			PROCEDURE TITLE: PAGE:				
	32		OFFSITE DOSE CALCULATION MANUAL (ODCM)				
PROCE							
	C-200	0	ST. LUCIE PLANT				
	METHODOLOGY SECTION						
4.0	<u>Annu</u>	al Radio	active Effluent Report				
	Discussion - The information contained in a annual report shall not apply to any Control. The reported values are based on actual release conditions instead of historical conditions that the Control dose calculations are based on. The Contro dose limits are therefore included in item 1 of the report, for information only. The ECLs in item 2 of the report shall be those listed in Tables L-1 and G-1 of this manual. The average energy in item 3 of the report is not applicable to the St. Lucie Plant. The format, order of nuclides and any values shown as an example in Tables 3.3 through 3.8 are samples only. Other formats are acceptable if they contain equivalent information. A table of contents should also accompany the report. The following format should be used:						
		RADIO	ACTIVE EFFLUENTS - SUPPLEMENTAL INFORMATION				
	1.	Regula	atory Limits:				
		1.1	For Radioactive liquid waste effluents:				
			a. The concentration of radioactive material released from the site (see TS Figure 5.1-1) shall be limited to ten times the concentrations specified in 10 CFR Part 20.1001-20.2401, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to $2 \times 10^{-4} \mu$ Ci/ml total activity.				
			b. The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released from each reactor unit to unrestricted areas (See TS Fig. 5.1-1) shall be limited during any calendar quarter to ≤1.5 mrem to the whole body and to ≤5 mrem to any organ and ≤3 mrem to the whole body and ≤10 mrem to any organ during any calendar year.				
		1.2	For Radioactive Gaseous Waste Effluents:				
			a. The dose rate resulting from radioactive materials released in gaseous effluents to areas at or beyond the SITE BOUNDARY (See TS Figure 5.1-1) shall be limited to the following values:				
			The dose rate limit for noble gases shall be \leq 500 mrem/yr to the total body and \leq 3000 mrem/yr to the skin and				
			The dose rate limit from I-131, I-133, Tritium and particulates with half-lives >8 days shall be \leq 1500 mrem/yr to any organ.				

REVISI	REVISION NO .:		PROCE	DURE TITLE:	PAGE			
	32		OFF	SITE DOSE CALCULATION MANUAL (ODCM)	138 of 230			
PROCE	ROCEDURE NO.: C-200			ST. LUCIE PLANT				
				METHODOLOGY SECTION				
4.0	<u>Annu</u>	ial Radio	bactive	Effluent Report (continued)				
	1.	(contir	nued)					
		1.2	(conti	nued)				
			b.	The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reactor at and beyond the SITE BOUNDARY shall be lifellowing:	or unit, to areas			
				During any calendar quarter, to ≤ 5 mrad for gar and ≤ 10 mrad for beta radiation and during any to ≤ 10 mrad for gamma radiation and ≤ 20 mrad radiation	calendar year			
			C.	The dose to a MEMBER OF THE PUBLIC from Tritium and all radionuclide in particulate form, v >8 days in gaseous effluents released from eac to areas at and beyond the SITE BOUNDARY (1 in the TS-A) shall be limited to the following:	with half-lives th reactor unit			
				During any calendar quarter to \leq 7.5 mrem to ar during any calendar year to \leq 15 mrem to any or				
	2.	Efflue	nt Limi	iting Concentrations:				
		Air - a	s per a	attached Table G-1				
		Water	r - as per attached Table L-1					
	3.		-	ergy of fission and activation gases in gaseous ef the St. Lucie Plant.	fluents is not			

	ON NO.:	PROCEDURE TIT	ΓLE:				PAGE	and the second se
ROCE	32 DURE NO.:	OFFSITE [DOSE CA	ALCULA	TION MAN	UAL (OD(CM)	39 of 230
	C-200		ST. LUCIE PLANT					
		V	<u>/IETHOD</u>	OLOGY	SECTION		No. of the second se	
4.0	Annual Radio	active Efflue	nt Repor	<u>t (</u> contin	ued)			
	4. Measu	rements and	l Approxi	mations	of Total Ra	adioactivity	/ :	
	A sum	mary of liqui	d effluent	t accoun	ting metho	ds is desc	ribed in Ta	able 3.1.
	A sum Table 3	mary of gase 3.2.	eous efflu	ient acco	ounting me	thods is de	escribed i	า
	Estima	te of Errors:						
				LIQ	UID	GASE	OUS	
	Erroi	⁻ Topic	_	Avg. %	Max. %	Avg. %	Max. %	
	Release P	oint Mixing		2	5	NA	NA	
	Sampling			1	5	2	5	
	Sample Pr	eparation		1	5	1	5	
	Sample A	nalysis		3	10	3	10	
	Release V	olume		2	5	4	15	
			Total %	9	30	10	35	
				(above	e values ar	e example	s only)	

REVISION NO .:	PROCEDURE TITLE:		PAGE:			
32	OFFSITE DOSE CALC	CULATION MANUAL (ODCM)	140 of 230			
PROCEDURE NO .:						
C-200	C-200 ST. LUCIE PLANT					
	OGY SECTION					
4.0 <u>Annual Ra</u>	dioactive Effluent Report (o	continued)				
4. (cor	ntinued)					
		<u>BLE 3.1</u> IENT SAMPLING AND ANALY	SIS			
SOURCE	SAMPLING FREQUENCY	TYPE OF ANALYSIS	ANALYSIS			
	EACH BATCH	PRINCIPAL GAMMA EMITTERS	p.h.a.			
MONITOR TANK		TRITIUM	L.S.			
RELEASES	MONTHLY COMPOSITE	GROSS ALPHA	A.I.C.			
	QUARTERLY COMPOSITE	Sr-89, Sr-90, Fe-55	C.S.			
STEAM	FOUR PER MONTH	PRINCIPAL GAMMA EMITTERS AND DISSOLVED GASES	p.h.a.			
GENERATOR BLOWDOWN		TRITIUM	L.S.			
RELEASES	MONTHLY COMPOSITE	GROSS ALPHA	A.I.C.			
	QUARTERLY COMPOSITE	Sr-89, Sr-90, Fe-55	C.S.			
TABLE NOTATIO	DN:					

p.h.a. - gamma spectrum pulse height analysis using Lithium Germanium detectors. All peaks are identified and quantified.

L.S. - Liquid Scintillation counting

C.S. - Chemical Separation

A.I.C. - Air Ion Chamber

REVISION NO .:	PROCEDURE TITLE:		PAGE:
32	OFFSITE DOSE CAL	CULATION MANUAL (ODC	M) 141 of 230
PROCEDURE NO .:			
C-200			
	METHODO	LOGY SECTION	
4.0 <u>Annual Radi</u>	oactive Effluent Report	(continued)	
4. (conti	inued)		
RADIC		<u>BLE 3.2</u> ASTE SAMPLING AND AN	ALYSIS
GASEOUS SOURCE	SAMPLING FREQUENCY	TYPE OF ANALYSIS	METHOD OF ANALYSIS
Waste Gas Decay Tank Releases	Each Tank	Principal Gamma Emitters	G, p.h.a.
Containment	Each Purge	Principal Gamma Emitters	G, p.h.a.
Purge Releases		H-3	L.S.
	Four per Month	Principal Gamma Emitters	(G, C, P) - p.h.a.
		H-3	L.S.
Plant Vent	Monthly Composite (Particulates)	Gross Alpha	P - A.I.C.
	Quarterly Composite (Particulates)	Sr-90 Sr-89	C.S.
	\ \ /1.b	Principal Gamma Emitters	(G, C, P) - p.h.a.
	Weekly	H-3	L.S.
Cask Handling	Monthly Composite	Gross	
Facility Vent	(Particulate)	Alpha	P - A.I.C.
	Quarterly Composite	Sr-90	
	(Particulate)	Sr-89	C.S.

TABLE NOTATION:

- G Gaseous Grab Sample
- C Charcoal Filter Sample
- P Particulate Filter Sample
- L.S. Liquid Scintillation Counting
- C.S. Chemical Separation
- p.h.a. Gamma spectrum pulse height analysis using Lithium Germanium detectors. All peaks are identified and quantified.
- A.I.C. Air Ion Chamber

REVISI	ON NO.:		PROCE	EDURE TITLE:	PAGE
PROCE	32		OFF	SITE DOSE CALCULATION MANUAL (ODCM)	142 of 230
FRUCE	C-200 ST. LUCIE PLANT				
				METHODOLOGY SECTION	
4.0	<u>Annu</u>	al Radic	active	e Effluent Report (continued)	
	5.	Batch	Relea	ases	
		A.	Liquio	d	
			1.	Number of batch releases:	<u> </u>
			2.	Total time period of batch releases:	minutes
			3.	Maximum time period for a batch release:	minutes
			4.	Average time period for a batch release:	minutes
			5.	Minimum time period for a batch release:	minutes
			6.	Average dilution stream flow during the period (see Note 1 on Table 3.3):	GPM
			А	Il liquid releases are summarized in tables	
		В.	Gase	eous	
			1.	Number of batch releases:	<u> </u>
			2.	Total time period for batch releases:	minutes
			3.	Maximum time period for a batch release:	minutes
			4.	Average time period for batch releases:	minutes
			5.	Minimum time period for a batch release:	minutes
		A	All gas	seous waste releases are summarized in tables	

	PROCEDURE TITLE:	PAGE:
2	OFFSITE DOSE CALCULATION MANUAL (ODCM)	143 of 230
NO.: 00	ST. LUCIE PLANT	
	METHODOLOGY SECTION	
ual Radio	active Effluent Report (continued)	
Unpla	ned Releases	
Α.	Liquid	
	1. Number of releases:	
	2. Total activity releases:	Curies
В.	Gaseous	
	1. Number of releases:	
	2. Total activity released:	Curies
C.	See attachments (if applicable) for:	
	1. A description of the event and equipment involve	ed.
	2. Cause(s) for the unplanned release.	
	3. Actions taken to prevent a recurrence	
	4. Consequences of the unplanned release	
	ctive effluents eported on the	
	dose calculation manual revisions initiated during this See Control 3.11.2.6 for required attachments to the	
	aste and irradiated fuel shipments as per requirements 3.11.2.6.	s of
Proce	s Control Program (PCP) revisions as per requirement	s of TS 6.13.
		ste Treatment
during	the previous calendar year that have not been incorpor	
	Major o System Results during	Process Control Program (PCP) revisions as per requirement Major changes to Radioactive Liquid, Gaseous and Solid Was Systems as per requirements of Control 3.11.2.5. Results of water samples taken in support of the INDUSTRY during the previous calendar year that have not been incorpor Radiological Environmental Monitoring Program.

REVIS	ION NO.:		PAGE:			
	32		OFFSITE DOSE CALCULATIO	N MANUA	L (ODCM)	144 of 230
PROC	EDURE NO.	:				144 01 230
	C-200		ST. LUCIE PL	ANT		
			METHODOLOGY SE	CTION		
:			FLORIDA POWER & LIGH		NY	
			ST. LUCIE UNIT #_			
	ŀ	ANNUA	L REPORT// TI	HROUGH	//	
	TA	BLE 3.	3: LIQUID EFFLUENTS - SUMM	IATION OF	F ALL RELE	EASES
А.	Fissio	n and A	Activation Products	<u>UNIT</u>	QUARTER	# QUARTER #
	1.	Total F	Release - (Not including Tritium,			
			, Alpha)	Ci	E	ΕΕ
	2.		ge Diluted Concentration During			
		Period		μCi/ml	E	ΕΕ
В.	Tritiun	n				
	1.	Total F	Release	Ci	E	ΞΕ
	2.		ge Diluted Concentration During			
		Period		μCi/ml	E	ΞΕ
C.	Dissol	ved an	d Entrained Gases			
	1.	Total F	Release	Ci	E	ΞΕ
	2.	Avera	ge Diluted Concentration During			
		Period		μCi/ml	E	ΕΕ
D.	Gross	Alpha	Radioactivity			
	1.	Total F	Release	Ci	E	ΞΕ
E.	Volum	ne of W	aste Released			
	(Prior	to Dilut	ion)	LITERS	E	EE
F.			lution Water		F	- r
	Used	During	Period ¹	LITERS	E	ΕΕ
1 -			ported should be for the entire int			
			intervals. This volume should als flow during the period.	so be used	i to calculate	e average

REVISION NO.:	PROCEDUR	E TITLE:			PA	AGE:
32	OFFSIT	E DOSE	CALCULATI	ON MANUAL		
PROCEDURE NO.:						145 of 230
C-200			ST. LUCIE PI	LANT		
		METH	ODOLOGY S	ECTION		
		•			\ <i>\</i>	
	FLC		OWER & LIGH		Y	
		ST. I	UCIE UNIT #	<u> </u>		
ANNUA	L REPOF	RT	_//٦	THROUGH _	//	
TA	BLE 3.4:	LIQUID	EFFLUENTS	(EXAMPLE	FORMAT)	
NUCLIDES RELE		UNIT	CONTINUC	OUS MODE	BATCH	MODE
	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #
I-131		CI	E	E	E	E
I-133		CI	E	E	E	E
I-135		CI	E	E	· E	Е
NA-24		CI	E	E	E	E
CR-51		CI	E	E	E	E
MN-54		CI	E	E	E	E
CO-57		CI	E	E	E	E
CO-58		CI	E	E	E	E
FE-59		CI	E	E	E	E
CO-60		CI	E	E	E	E
ZN-65		CI	E	E	E	E
NI-65		CI	E	E	E	E
AG-110		CI	E	E	E	E
SN-113		CI	E	E	E	E
SB-122		CI	E	E	E	E
SB-124		CI	E	E	E	E
W-187		CI	E	E	E	E '
NP-239		CI	E	E	E	E
ZR-95		CI	E	E	E	E
MO-99		ÇI	E	E	E	E
RU-103		CI	E	E	E	E
CS-134		CI	E	E	E	E
CS-136		CI	E	E	E	E
CS-137		CI	E	E	E	E
BA-140		CI	E	E	Е	E
CE-141		CI	E	E	E	E
BR-82		CI	E	E	E	E
ZR-97		CI	E	E	E	E
SB-125		CI	E	E	E	E

All nuclides that were detected should be added to the partial list of the example format.

REVISION NO .:	PROCEDUR	E TITLE:		<u></u>	PA	GE:
32	OFFSIT	E DOSE	CALCULATI	ON MANUAL	. (ODCM)	146 of 230
PROCEDURE NO .:				·		
C-200			ST. LUCIE PI	ANT		
		METHO	DDOLOGY S	ECTION		
TAE	BLE 3.4:	LIQUID E	EFFLUENTS (continued)	(EXAMPLE	FORMAT)	
NUCLIDES RELE		UNIT	CONTINUC	OUS MODE	BATCH	MODE
NUCLIDES RELE	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #
CE-144		CI	E	E	E	Е
SR-89		CI	E	E	E	E
SR-90		CI	E	E	E	E
UNIDENTIFIE	Ð	CI	E	Е	E	E
TOTAL FOR PE (ABOVE)	TOTAL FOR PERIOD (ABOVE)		E	Е	E	E
			1			
NUCLIDES RELE	ASED	UNIT		DUS MODE		MODE
						QUARTER #
AR-41		CI	E	E	E	E
KR-85		CI	E	E	E	E
XE-131M		CI	E	E	E	E
XE-133		CI	E	E	E	E
XE-133M		CI	E	E .	E	E
XE-135		CI	E	E	E	E

REVISION NO .:	PROCEDURE TITLE:		PAGE				
32	OFFSITE DOSE CALCU	LATION MANUAL (ODCM)	147 of 230				
PROCEDURE NO.:							
C-200	ST. LUC	IE PLANT					
	METHODOLOG	SY SECTION	and the second sec				
	FLORIDA POWER &	LIGHT COMPANY					
	ST. LUCIE UI	NIT #					
T.	ABLE 3.5: LIQUID EFFLUE	NTS - DOSE SUMMATION					
A	ge Group: Lo	ocation:					
Exposure Interval: From Through							
Fish	& Shellfish Pathway to Organ	CALENDAR YEAR DOSE (n	nrem)				
	BONE						
	LIVER						
	THYROID						
	KIDNEY						
	LUNG						
	GI-LLI						
	WHOLE BODY						

REVIS	SION NO.:		PROCEDURE TITLE:	· · · · · · · · · · · · · · · · · · ·		PAGE
	32		OFFSITE DOSE CALCULAT	TION MANUAL	(ODCM)	148 of 230
PROC						
	C-20	00	ST. LUCIE I			
			METHODOLOGY	SECTION		and a start of the
			FLORIDA POWER & LIC	GHT COMPAN	Y	
			ST. LUCIE UNIT	#		
			JAL REPORT//			
	-	TABLE 3.	6: GASEOUS EFFLUENTS -	SUMMATION	of all re	ELEASES
A.	Fiss	ion and A	Activation Gases	<u>UNIT</u> <u>C</u>		# QUARTER #
,	1.			Ci	-	Е
			Release		E	
	2.	Averaç	ge Release Rate For Period	μCi/SEC	E	E
В.	lodiı	nes				
	1.	Total I	odine-131	Ci	E	E
	2.	Avera	ge Release Rate for Period	μCi/SEC	E	E
C.	Part	iculates				
	1.	Particu	ulates T-1/2 > 8 Days	Ci	E	E
	2.	Avera	ge Release Rate for Period	μCi/SEC	E	E
	3.	Gross	Alpha Radioactivity	Ci	E	E
D.	Triti	um				
	1.	Total F	Release	Ci	E	E
	2.	Avera	ge Release Rate for Period	μCi/SEC	E	E
:						
					•	
1						

32 PROCEDURE NO. C-200 OFFSITE DOSE CALCULATION MANUAL (ODCM) 149 of 230 ST. LUCIE PLANT METHODOLOGY SECTION 149 of 230 METHODOLOGY SECTION FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT # ANNUAL REPORT/ THROUGH/ / CONTINUOUS MODE BATCH MODE NUCLIDES RELEASED* UNIT CONTINUOUS MODE BATCH MODE AR-41 CI E E E AR-41 CI E E E AR-41 CI E E E KR-85 CI E E E XE-133 CI E E E XE-133 CI E E E XE-1336 CI E <	REVIS	ION NO.:	PROCEDUR	E TITLE:			PA	GE
PROCEEDURE NO.: ST. LUCIE PLANT METHODOLOGY SECTION FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT # ANNUAL REPORT/ THROUGH/ TABLE 3.7: GASEOUS EFFLUENTS - GROUND LEVEL RELEASES NUCLIDES RELEASED* UNIT CONTINUOUS MODE BATCH MODE NUCLIDES RELEASED* UNIT CONTINUOUS MODE BATCH MODE QUARTER # QUARTER # QUARTER # QUARTER # I. Fission Gases E E AR-41 CI E E E E KR-85 CI E E E E KR-85 CI E E E E KR-87 CI E E E E XE-131M CI E E E E XE-133 CI E E E E XE-135 CI E E E E XE-135 CI E E E E VIDENTIFIED CI E E E		32	OFFSIT	E DOSE	CALCULATI	ON MANUAL	. (ODCM) 📔	1/10 of 220
METHODOLOGY SECTION FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT # ANNUAL REPORT / _ / _ THROUGH _ / _ / TABLE 3.7: GASEOUS EFFLUENTS - GROUND LEVEL RELEASES (EXAMPLE FORMAT) NUCLIDES RELEASED* UNIT CONTINUOUS MODE BATCH MODE MUCLIDES RELEASED* UNIT CONTINUOUS MODE BATCH MODE AR-41 CI E E E AR-411 CI E E E KR-85 CI E E E KR-85 CI E E E E KR-87 CI E E E E KR-87 CI E E E E XE-131M CI E E E E XE-133M CI E E E E XE-135M CI E E E E VEI-133M CI E E E E	PROC	EDURE NO.:					Å IV	
FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT #		C-200			ST. LUCIE P	LANT	and the second se	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			_	METH	ODOLOGY S	ECTION		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			FLC		OWER & LIGI	HT COMPAN	Y	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				ST I	UCIE UNIT #	ŧ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ΔΝΙΝΗ					, ,	
$(EXAMPLE FORMAT)$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$						-		
NUCLIDES RELEASED*UNITQUARTER #QUARTER #QUARTER #QUARTER #QUARTER #1. Fission GasesAR-41CIEEEEKR-85CIEEEEKR-85MCIEEEEKR-87CIEEEEKR-88CIEEEEXE-131MCIEEEEXE-133CIEEEEXE-133CIEEEEXE-135CIEEEEXE-135CIEEEEXE-138CIEEEEVIDENTIFIEDCIEEEETOTAL FOR PERIOD (ABOVE)CIEEEE1-131CIEEEE1-133CIEEEE3. ParticulatesCIEEEE3. ParticulatesCIEEEESR-89CIEEEEE		TABLE 3.	.7: GASE				VEL RELEAS	ies I
QUARTER # QUARTER #1. Fission Gases $AR-41$ CIEEEEAR-41CIEEEEEKR-85CIEEEEEKR-85MCIEEEEEKR-87CIEEEEEKR-88CIEEEEEXE-131MCIEEEEEXE-133CIEEEEEXE-133MCIEEEEEXE-135CIEEEEEXE-138CIEEEEEUNIDENTIFIEDCIEEEEE1-131CIEEEEE1-133CIEEEEE1-135CIEEEEE1-135CIEEEEE3. ParticulatesCIEEEEE3. ParticulatesCIEEEEESR-89CIEEEEE					CONTINUC	OUS MODE	BATCH	MODE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		NUCLIDES RELE	ASED*	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.	Fission Gases		L	· · · · · · · · · · · · · · · · · · ·	I	I	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		AR-41		CI	E	E	E	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		KR-85		CI	E	E	E	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		KR-85M		CI	E	E	E	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		KR-87		CI	E	E	E	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		KR-88		CI	E	E	E	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		XE-131M		CI	E	E	E	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		XE-133		CI	E	E	E	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		XE-133M		CI	E	E	E	E
XE-138CIEEEEUNIDENTIFIEDCIEEEEETOTAL FOR PERIOD (ABOVE)CIEEEEE2. lodines1-131CIEEEE1-133CIEEEE1-135CIEEEETOTAL FOR PERIOD (ABOVE)CIEEEE3. ParticulatesCIEEEESR-89CIEEEE		XE-135		CI	E	E	E	E
UNIDENTIFIEDCIEEEETOTAL FOR PERIOD (ABOVE)CIEEEE2. lodines1-131CIEEEE1-133CIEEEE1-135CIEEEE1-135CIEEEETOTAL FOR PERIOD (ABOVE)CIEEEE3. ParticulatesCIEEEESR-89CIEEEE		XE-135M		CI	E	E	E	E
TOTAL FOR PERIOD (ABOVE)CIEEEE2. lodinesI-131CIEEEEI-133CIEEEEI-135CIEEEEI-135CIEEEETOTAL FOR PERIOD (ABOVE)CIEEE3. ParticulatesCIEEECO-58CIEEESR-89CIEEE		XE-138		CI	E	E	E	E
(ABOVE)CIEEEE2. lodinesI-131CIEEEEI-133CIEEEEI-135CIEEEEI-135CIEEEETOTAL FOR PERIOD (ABOVE)CIEEEE3. ParticulatesCIEEEESR-89CIEEEE		UNIDENTIFI	ED	CI	E	E	E	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				CI	E	E	E	E
I-133CIEEEI-135CIEEEETOTAL FOR PERIOD (ABOVE)CIEEEE3. ParticulatesCIEEEECO-58CIEEEESR-89CIEEEE	2.	lodines				· · · · · · · · · · · · · · · · · · ·	,	
I-135CIEEETOTAL FOR PERIOD (ABOVE)CIEEEE3. ParticulatesCO-58CIEEESR-89CIEEE		I-131		CI	E	E	E	E
TOTAL FOR PERIOD (ABOVE)CIEEE3. ParticulatesCO-58CIEEESR-89CIEEE		I-133		CI	E	E	E	E
(ABOVE)CIEEE3. ParticulatesCO-58CIEEESR-89CIEEE				CI	E	E	E	E
CO-58 CI E E E SR-89 CI E E E			RIOD	CI	E	E	E	E
SR-89 CI E E E	3.	Particulates				/		
		CO-58		CI	E		E	E
SR-90 CI E E E E		SR-89		CI	E	E	E	E
		SR-90		CI	E	E	E	E

* All nuclides that were detected should be added to the partial list of the example format.

REVISION NO.:	PROCEDURE TI	TLE:						PAGE:	
32		C	FFSITE DOS	SE CALCULA		JAL (ODCM)		450	6 0 0 0
PROCEDURE NO .:	1								of 230
C-200				ST. LUCIE	PLANT				
			MET	HODOLOG	SECTION			and the second	an a
			FLORIDA	POWER & L	IGHT COMP	ANY			
			ST	LUCIE UNI	Т#				
	TABI	LE 3.8: GAS	EOUS EFFLI	JENTS - DOS	SE SUMMAT	ION - CALEN	IDAR YEAR		
ļ A	AGE GROUF	: INFANT	EXPOSUR	E INTERVAL	.: FROM	THF	ROUGH		
PAT	HWAY	BONE (mrem)	LIVER (mrem)	THYROID (mrem)	KIDNEY (mrem)	LUNG (mrem)	GI-LLI (mrem)	WHOLE BODY (mrem)	
Ground Pla	ne (A)	, , , , , , , , , , , , , , , , , , ,							
	-Milk (B)								
Inhalation	(A)								
TOTAL					l				
A) SECT	A) SECTOR: RANGE: miles (B) COW / GOAT SECTOR: RANG							IGE: miles	
		NOBLE GA	SES	CALEND	AR YEAR (n	nrad)			
		Gamma Air	Dose		· · · · · ·				
		Beta Air De	ose						
	Sector:			Range:			0.97 mile	s	
		ues above w with MET dat			l meteorolog	ical data durir arch 1976.	ng the specifi	ed	
			•						

.

32 OFFSITE DOSE CALCULATION MANUAL (ODCM) 151 o PROCEDURE NO.: ST. LUCIE PLANT 151 o C-200 ST. LUCIE PLANT 151 o APPENDIX A ECL, DOSE FACTOR AND HISTORICAL METEOROLOGICAL TABLES	PROCEDURE NO.: C-200 ST. LUCIE PLANT	PROCEDURE NO.: C-200 ST. LUCIE PLANT	REVISION NO.:	PROCEDURE TITLE:	PAGE:
C-200 ST. LUCIE PLANT	PROCEDURE NO.: C-200 ST. LUCIE PLANT	APPENDIX A ECL, DOSE FACTOR AND HISTORICAL METEOROLOGICAL TABLES	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
APPENDIX A ECL, DOSE FACTOR AND	APPENDIX A ECL, DOSE FACTOR AND	APPENDIX A ECL, DOSE FACTOR AND HISTORICAL METEOROLOGICAL TABLES	PROCEDURE NO.:		151.0
ECL, DOSE FACTOR AND	ECL, DOSE FACTOR AND	ECL, DOSE FACTOR AND HISTORICAL METEOROLOGICAL TABLES	C-200	ST. LUCIE PLANT	
ECL, DOSE FACTOR AND	ECL, DOSE FACTOR AND	ECL, DOSE FACTOR AND HISTORICAL METEOROLOGICAL TABLES			
				ECL, DOSE FACTOR AND	

REVISION NO .:	PROCEDURE	PROCEDURE TITLE:					
32	OFFSITE	DOSE CALCI	JLATION MAN	UAL (ODCM)	450 -6000		
PROCEDURE NO .:			•		152 of 230		
C-200		ST. LU	CIE PLANT		And the second sec		
	•	TADI	.E L-1				
EFFLUEN				UNRESTRICT	ED AREAS		
[+J_1+14 - 4	î		
	ide is not listed t Concentrations		10 CFR Part 20				
listed for	r the nuclide.						
Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml)	Nuclide	ECL (μCi/ml)		
H-3	1 E-3	Sr-92	4 E-5	Te-129	4 E-4		
C-14	3 E-5	Y-90	7 E-6	Te-131m	8 E-6		
Na-24	5 E-5	Y-91m	2 E-3	Te-131	8 E-5		
P-32	9 E-6	Y-91	8 E-6	Te-132	9 E-6		
Cr-51	5 E-4	Y-92	4 E-5	I-130	2 E-5		
Mn-54	3 E-5	Y-93	2 E-5	I-131	1 E-6		
Mn-56	7 E-5	Zr-95	2 E-5	I-132	1 E-4		
Fe-55	1 E-4	Zr-97	9 E-6	I-133	7 E-6		
Fe-59	1 E-5	Nb-95	3 E-5	I-134	4 E-4		
Co-57	6 E-5	Nb-97	3 E-4	I-135	3 E-5		
Co-58	2 E-5	Mo-99	2 E-5	Cs-134	9 E-7		
Co-60	3 E-6	Tc-99m	1 E-3	Cs-136	6 E-6		
Ni-63	1 E-4	Tc-101	2 E-3	Cs-137	1 E-6		
Ni-65	1 E-4	Ru-103	3 E-5	Cs-138	4 E-4		
Cu-64	2 E-4	Ru-105	7 E-5	Ba-139	2 E-4		
Zn-65	5 E-6	Ru-106	3 E-6	Ba-140	8 E-6		
Zn-69	8 E-4	Ag-110	6 E-6	Ba-141	3 E-4		
Br-82	4 E-5	Sn-113	3 E-5	Ba-142	7 E-4		
Br-83	9 E-4	In-113m	7 E-4	La-140	9 E-6		
Br-84	4 E-4	Sb-122	1 E-5	La-142	1 E-4		
Rb-86	7 E-6	Sb-124	7 E-6	Ce-141	3 E-5		
Rb-88	4 E-4	Sb-125	3 E-5	Ce-143	2 E-5		
Rb-89	9 E-4	Te-125m	2 E-5	Ce-144	3 E-6		
Sr-89	8 E-6	Te-127m	9 E-6	Pr-144	6 E-4		
Sr-90	5 E-7	Te-127	1 E-4	W-187	3 E-5		
Sr-91	2 E-5	Te-129m	7 E-6	Np-239	2 E-5		

REVISION NO .:	PROCEDURE TITLE:		· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·		PAGE:
32	_	OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		153 of 23
C-200			STIU	ICIE PLANT			
0-200						<u> </u>	King
			TAB	LE L-2			
				RSION FACTO			
	PATHW		ER FISH AND		AGE GROUP	- ADULT	
		ORGAN E	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	3.60E-01	3.60E-01	3.60E-01	3.60E-01	3.60E-01	3.60E-01
C-14	1.45E+04	2.91E+03	2.91E+03	2.91E+03	2.91E+03	2.91E+03	2.91E+03
NA-24	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01
P-32	1.67E+07	1.05E+06	0.	0.	0.	1.88E+06	6.47E+05
CR-51	0.	0.	3.34E+00	1.23E+00	7.42E+00	1.41E+03	5.59E+00
MN-54	0.	7.07E+03	0.	2.10E+03	0.	2.17E+04	1.35E+03
MN-56	0.	1.78E+02	0.	2.26E+02	0.	5.68E+03	3.17E+01
FE-55	1.15E+05	5.19E+05	0.	0.	6.01E+05	2.03E+05	1.36E+05
FE-59	8.08E+04	1.92E+05	0.	0.	5.32E+04	6.33E+05	7.29E+04
CO-57	0.	1.42E+02	0.	0.	0.	3.60E+03	2.36E+02
CO-58	0.	6.05E+02	0.	0.	0.	1.22E+04	1.35E+03
CO-60	0.	1.74E+03	0.	0.	0.	3.26E+04	3.83E+03
Ni-63	4.97E+04	3.45E+03	0.	0.	0.	7.19E+02	1.67E+03
NI-65	2.02E+02	2.63E+01	0.	0.	0.	6.65E+02	1.20E+01
CU-64	0.	2.15E+02	0.	5.41E+02	0.	1.83E+04	1.01E+02
ZN-65	1.62E+05	5.13E+05	0.	3.43E+05	0.	3.23E+05	2.32E+05
ZN-69	3.43E+02	6.60E+02	0.	4.27E+02	0.	9.87E+01	4.57E+01

EVISION NO .:	PROCEDURE TITLE:						PAGE:
32 PROCEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		154 of 230
C-200			ST. LU	ICIE PLANT			
	ENVIRONMEN			LE L-2 ERSION FACTO		D DISCHARGES	
		AY - SALT WAT		SHELLFISH	AGE GROUP		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
BR-82	0.	0.	0.	0.	0.	4.68E+00	4.08E+00
BR-83	0.	0.	0.	0.	0.	1.05E-01	7.26E-02
BR-84	0.	0.	0.	0.	0.	7.38E-07	9.42E-02
BR-85	0.	0.	0.	0.	0.	0.	3.86E-03
RB-86	0.	6.25E+02	0.	0.	0.	1.23E+02	2.91E+02
RB-88	0.	1.79E+00	0.	0.	0.	0.	9.50E-01
RB-89	0.	1.19E+00	0.	0.	0.	0.	8.38E-01
SR-89	5.01E+03	0.	0.	0.	0.	8.01E+02	1.44E+02
SR-90	1.23E+05	0.	0.	0.	0.	1.65E+03	3.02E+04
SR-91	9.43E+01	0.	0.	0.	0.	4.75E+02	4.15E+00
SR-92	3.50E+01	0.	0.	0.	0.	6.91E+02	1.51E+00
Y-90	6.07E+00	0.	0.	0.	0.	6.43E+04	1.63E-01
Y-91M	5.74E-02	0.	0.	0.	0.	1.68E-01	2.23E-03
Y-91	8.89E+01	0.	0.	0.	0.	4.89E+04	2.38E+00
Y-92	5.34E-01	0.	0.	0.	0.	9.33E+03	1.56E-02

REVISION NO .:	PROCEDURE TITLE						PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		
ROCEDURE NO.:							155 of 23
C-200			ST. LU	ICIE PLANT			
			TAB	LE L-2			
	ENVIRONMEN		Y-DOSE CONVE		RS FOR LIQUID	DISCHARGES	Contraction of the second s
			TER FISH AND		AGE GROUP		
			DOSE FACTOR	•••••••		////	
		•••••••		(
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BOD
Y-93	1.69E+00	0.	0.	0.	0.	5.36E+04	4.67E-02
ZR-95	1.60E+01	5.13E+00	0.	8.09E+00	0.	1.59E+04	3.47E+00
ZR-97	8.82E-01	1.78E-01	0.	2.69E-01	0.	5.51E+04	8.19E-02
NB-95	4.48E+02	2.49E+02	0.	2.47E+02	0.	1.51E+06	9.79E+01
NB-97	3.76E+00	9.50E-01	0.	1.11E+00	0.	3.51E+03	3.47E-01
MO-99	0.	1.28E+02	0.	2.90E+02	0.	2.97E+02	2.43E+01
TC-99M	1.30E-02	3.67E-02	0.	5.57E-01	1.80E-02	2.17E+01	4.67E-01
TC-101	1.33E-02	1.93E-02	0.	3.47E-01	9.82E-03	0.	1.89E-01
RU-103	1.07E+02	0.	0.	4.09E+02	0.	1.25E+04	4.61E+01
RU-105	8.90E+00	0.	0.	1.15E+02	0.	5.44E+03	3.51E+00
RU-106	1.59E+03	0.	0.	3.08E+03	0.	1.03E+05	2.01E+02
AG-110	1.57E+03	1.45E+03	0.	2.85E+03	0.	5.92E+05	8.62E+02
SB-124	2.78E+02	5.23E+00	6.71E-01	0.	2.15E+02	7.85E+03	1.10E+02
SB-125	2.20E+02	2.37E+00	1.96E-01	0.	2.30E+04	1.95E+03	4.42E+01
TE-125M	2.17E+02	7.89E+01	6.54E+01	8.83E+02	0.	8.67E+02	2.91E+01

REVISION NO .:	PROCEDURE TITLE:	:					PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		156 of 230
PROCEDURE NO .:							
C-200			ST. LU	ICIE PLANT			
			TAR	LE L-2	· · · · · · · · · · · · · · · · · · ·		
	ENVIRONMEN				RS FOR LIQUID	DISCHARGES	and the state of the
			ER FISH AND		AGE GROUP		
			DOSE FACTOR		ER μCi/ML)		
prints-10			y				1
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
TE-127M	5.50E+02	1.92E+02	1.40E+02	2.23E+03	0.	1.84E+03	6.70E+01
TE-127	8.92E+00	3.20E+00	6.61E+00	3.63E+01	0.	7.04E+02	1.93E+00
TE-129M	9.32E+02	3.49E+02	3.20E+02	3.89E+03	0.	4.69E+03	1.48E+02
TE-129	2.55E+00	9.65E-01	1.95E+00	1.07E+01	0.	1.92E+00	6.21E-01
TE-131M	1.41E+02	6.87E+01	1.09E+02	6.95E+02	0.	6.81E+03	5.72E+01
TE-131	1.60E+00	6.68E-01	1.31E+00	7.00E+00	0.	2.39E-01	5.04E-01
TE-132	2.05E+03	1.33E+02	1.46E+02	1.28E+03	0.	6.25E+03	1.24E+02
I-130	3.98E+01	1.18E+02	1.50E+04	1.83E+02	0.	1.01E+02	4.63E+01
I-131	2.18E+02	3.13E+02	1.02E+05	5.36E+02	0.	8.24E+01	1.79E+02
I-132	1.07E+01	2.85E+01	3.76E+03	4.55E+01	0.	5.36E+00	1.01E+01
I-133	7.51E+01	1.30E+02	2.51E+04	2.27E+02	0.	1.15E+02	3.98E+01
I-134	5.57E+00	1.51E+01	1.96E+03	2.41E+01	0.	1.32E-02	5.41E+00
I-135	2.33E+01	6.14E+01	8.03E+03	9.77E+01	0.	6.88E+01	2.25E+01
CS-134	6.85E+03	1.63E+04	0.	5.29E+03	1.75E+03	2.85E+02	1.33E+04
CS-136	7.17E+02	2.83E+03	0.	1.58E+03	2.16E+02	3.22E+02	2.04E+03

.

REVISION NO.:	PROCEDURE TITLE						PAGE
32		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		157 of 230
PROCEDURE NO.:							
C-200			ST. LL	ICIE PLANT			
				LE L-2			
		AY - SALT WA			RS FOR LIQUID AGE GROUP		•
	FAINW		DOSE FACTOR				
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
CS-137	8.79E+03	1.20E+04	0.	4.09E+03	1.36E+03	2.31E+02	7.88E+03
CS-138	6.08E+00	1.20E+01	0.	8.84E+00	8.73E-01	5.12E-05	5.96E+00
BA-139	7.87E+00	5.61E-03	0.	5.24E-03	3.18E-03	1.39E+01	2.30E-01
BA-140	1.65E+03	2.07E+00	Ó.	7.04E-01	1.18E+00	3.39E+03	1.09E+02
BA-141	0.	2.89E-03	0.	2.68E-03	1.64E-03	1.80E-09	1.29E-01
BA-142	1.73E+00	1.78E-03	0.	1.50E-03	1.01E-03	0.	1.09E-01
LA-140	1.58E+00	7.95E-01	0.	0.	0.	5.83E+04	2.11E-01
LA-142	8.07E-02	3.67E-02	0.	0.	0.	2.68E+02	9.15E-03
CE-141	3.43E+00	2.32E+00	0.	1.08E+00	0.	8.87E+03	2.63E-01
CE-143	6.05E-01	4.47E+02	0.	1.97E-01	0.	1.67E+04	4.95E-02
CE-144	1.79E+02	7.48E+01	0.	4.43E+01	0.	6.05E+04	9.60E+00
PR-144	1.91E-02	7.88E-03	0.	4.45E-03	0.	2.73E-09	9.65E-04
W-187	9.17E+00	7.68E+00	0.	0.	0.	2.51E+03	2.69E+00
NP-239	3.56E-02	3.50E-03	0.	1.08E-02	0.	7.12E+02	1.92E-03

REVISION NO.:	PROCEDURE TITLE	•					PAGE:
32 PROCEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		158 of 230
C-200			ST. LU	ICIE PLANT			
			TAB	LE L-3			
	ENVIRONMEN	TAL PATHWA			RS FOR LIQUID	DISCHARGES	and the second
		- SALT WATE			AGE GROUP - 1		-
		ORGAN E	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.17E-01	2.17E-01	2.74E-01	2.17E-01	2.17E-01	2.17E-01
C-14	2.94E+03	2.94E+03	2.94E+03	2.22E+03	2.94E+03	2.94E+03	2.94E+03
NA24	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01
P32	1.27E+07	7.98E+05	0.	0.	0.	1.43E+06	4.93E+05
CR51	0.	0.	2.54E+00	9.38E-01	5.64E+00	1.07E+03	4.25E+00
MN54	0.	5.38E+03	0.	1.60E+03	0.	1.65E+04	1.03E+03
MN56	0.	1.36E+02	0.	1.72E+02	0.	4.32E+03	2.42E+01
FE55	8.78E+04	3.95E+05	0.	0.	4.57E+05	1.54E+05	1.04E+05
FE59	6.14E+04	1.46E+05	0.	0.	4.05E+04	4.81E+05	5.55E+04
CO57	0.	1.08E+02	0.	0.	0.	2.74E+03	1.79E+02
CO-58	0.	6.12E+02	0.	0.	0.	8.26E+03	1.39E+03
CO-60	0.	1.70E+03	0.	0.	0.	2.04E+04	3.88E+03
Ni-63	3.78E+04	2.63E+03	0.	0.	0.	5.47E+02	1.27E+03
NI65	1.54E+02	2.00E+01	0.	0.	0.	5.07E+02	9.11E+00
CU64	0.	1.64E+02	0.	4.12E+02	0.	1.39E+04	7.69E+01
ZN65	1.23E+05	3.90E+05	0.	2.61E+05	0.	2.46E+05	1.77E+05
ZN69	2.61E+02	5.02E+02	0.	3.24E+02	0.	7.50E+01	3.47E+01
BR82	0.	0.	0.	0.	0.	3.55E+00	3.10E+00
BR83	0.	0.	0.	0.	0.	7.95E-02	5.52E-02
BR84	0.	0.	0.	0.	0.	5.61E-07	7.16E-02
BR85	0.	0.	0.	0.	0.	0.	2.94E-03

REVISION NO.:	PROCEDURE TITLE:						PAGE:
32 PROCEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		159 of 230
C-200							
			Y-DOSE CONVI	LE L-3 ERSION FACTO			
	PATHWAY	SALT WATE I ORGAN E		(MREM/HR P	AGE GROUP - ER μCi/ML)	IEENAGER	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RB86	0.	4.76E+02	0.	0.	0.	9.37E+01	2.22E+02
RB88	0.	1.37E+00	0.	0.	0.	0.	7.23E-01
RB89	0.	9.04E-01	0.	0.	0.	0.	6.38E-01
SR89	5.67E+03	0.	0.	0.	0.	6.15E+02	1.63E+02
SR90	1.28E+05	0.	0.	0.	0.	2.71E+03	3.17E+04
SR91	7.18E+01	0.	0.	0.	0.	3.61E+02	3.16E+00
SR92	2.66E+01	0.	0.	0.	0.	5.25E+02	1.15E+00
Y90	1.58E+01	0.	0.	0.	1.80E+04	5.23E+04	4.25E-01
Y91M	4.36E-02	0.	0.	0.	0.	1.28E-01	1.69E-03
Y91	9.40E+01	0.	0.	0.	0.	3.61E+04	2.51E+00
Y92	4.06E-01	0.	0.	0.	0.	7.10E+03	1.18E-02
Y93	1.29E+00	0.	0.	0.	0.	4.08E+04	3.55E-02
ZR95	1.49E+01	4.96E+00	0.	6.16E+00	0.	1.07E+04	3.46E+00
ZR97	6.72E-01	1.36E-01	0.	2.05E-01	0.	4.20E+04	6.24E-02
NB95	3.97E+02	2.39E+02	0.	1.88E+02	0.	9.76E+05	1.35E+02
NB97	2.87E+00	7.24E-01	0.	8.45E-01	0.	2.67E+03	2.64E-01
MO99	0.	9.74E+01	0.	2.21E+02	0.	2.26E+02	1.85+01
TC-99M	9.87E-03	2.79E-02	0.	4.24E-01	1.37E-02	1.65E+01	3.56E-01
TC-101	1.02E-02	1.47E-02	0.	2.64E-01	7.47E-03	0.	1.44E-01

REVISION NO.:	PROCEDURE TITLE						PAGE:		
32		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		160 of 230		
PROCEDURE NO .:									
C-200	ST. LUCIE PLANT								
			TAB	LE L-3					
	ENVIRONMEN	TAL PATHWA		ERSION FACTO	RS FOR LIQUID	DISCHARGES	The same and been		
	PATHWAY	- SALT WATE	R FISH AND SH	ELLFISH	AGE GROUP - "	TEENAGER			
		ORGAN E	OSE FACTOR	(MREM/HR PE	ER μCi/ML)				
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY		
RU-103	1.04E+02	0.	0.	3.11E+02	0.	8.13E+03	4.66E+01		
RU-105	6.77E+00	0.	0.	8.74E+01	0.	4.14E+03	2.67E+00		
RU-106	1.76E+03	0.	0.	2.34E+03	0.	7.95E+04	2.21E+02		
AG110	1.19E+03	1.10E+03	0.	2.17E+03	0.	4.51E+05	6.56E+02		
SB-124	2.11E+02	3.99E+00	5.11E-01	0.	1.64E+02	5.98E+03	8.35E+01		
SB-125	1.68E+02	1.81E+00	1.49E-01	0.	1.75E+04	1.48E+03	3.37E+01		
TE 125M	2.36E+02	8.45E+01	6.66E+01	6.72E+02	0.	6.60E+02	3.13E+01		
TE 127M	4.18E+02	1.46E+02	1.07E+02	1.70E+03	0.	1.40E+03	5.09E+01		
TE-127	9.31E+00	3.28E+00	6.35E+00	2.76E+01	0.	7.52E+02	1.99E+00		
TE 129M	1.02E+03	3.79E+02	3.27E+02	2.96E+03	0.	3.58E+03	1.61E+02		
TE-129	1.94E+00	7.34E-01	1.49E+00	8.14E+00	0.	1.46E+00	4.72E-01		
TE 131M	1.07E+02	5.22E+01	8.26E+01	5.29E+02	0.	5.18E+03	4.35E+01		
TE-131	1.21E+00	5.08E-01	9.99E-01	5.33E+00	0.	1.82E-01	3.83E-01		
TE-132	2.19E+02	1.37E+02	1.46E+02	9.74E+02	0.	4.93E+03	1.30E+02		
I130	3.03E+01	8.95E+01	1.14E+04	1.39E+02	0.	7.67E+01	3.52E+01		
I131	2.23E+02	3.14E+02	9.07E+04	4.08E+02	0.	5.95E+01	1.87E+02		
I132	8.11E+00	2.17E+01	2.86E+03	3.46E+01	0.	4.08E+00	7.71E+00		
I133	8.11E+01	1.37E+02	2.50E+04	1.73E+02	0.	9.99E+01	4.24E+01		
I134	4.24E+00	1.15E+01	1.49E+03	1.83E+01	0.	1.00E-02	4.12E+00		

REVISION NO.:	PROCEDURE TITLE:			· · ·		··········	PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		161 of 230
ROCEDURE NO .:							
C-200			ST. LU	JCIE PLANT			
	ENVIRONMEN			LE L-3 ERSION FACTO	RS FOR LIQUID	DISCHARGES	
	PATHWAY	' - SALT WATEI ORGAN E		IELLFISH (MREM/HR PI	AGE GROUP - ΄ ER μCi/ML)	FEENAGER	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
I135	1.77E+01	4.68E+01	6.11E+03	7.43E+01	0.	5.23E+01	1.71E+01
CS-134	6.75E+03	1.63E+04	0.	4.03E+03	1.97E+03	1.88E+02	7.60E+03
CS-136	5.46E+02	2.16E+03	0.	1.20E+03	1.65E+02	2.45E+02	1.55E+03
CS-137	8.98E+03	1.21E+04	0.	3.11E+03	1.60E+03	1.61E+02	4.24E+03
CS-138	4.63E+00	9.15E+00	0.	6.73E+00	6.65E-01	3.90E-05	4.54E+00
BA-139	5.99E+00	4.27E-03	0.	3.99E-03	2.42E-03	1.06E+01	1.75E-01
BA-140	1.75E+03	2.15E+00	0.	5.35E-01	1.44E+00	2.55E+02	1.12E+02
BA-141	0.	2.20E-03	0.	2.04E-03	1.25E-03	1.37E-09	9.80E-02
BA-142	1.31E+00	1.35E-03	0.	1.14E-03	7.64E-04	0.	8.26E-02
LA-140	1.67E+00	8.25E-01	0.	0.	0.	4.55E+04	2.18E-01
LA-142	6.14E-02	2.79E-02	0.	0.	0.	2.04E+02	6.95E-03
CE-141	3.51E+00	2.36E+00	0.	8.19E-01	0.	6.38E+03	2.70E-01
CE-143	4.60E-01	3.40E+02	0.	1.50E-01	0.	1.27E+04	3.76E-02
CE-144	2.01E+02	8.25E+01	0.	3.37E+01	0.	4.74E+04	1.07E+01
PR-144	1.45E-02	5.99E-03	0.	3.39E-03	0.	2.08E-09	7.34E-04
W187	6.98E+00	5.85E+00	0.	0.	0.	1.91E+03	2.05E+00
NP-239	2.71E-02	2.67E-03	0.	8.25E-03	0.	5.43E+02	1.46E-03

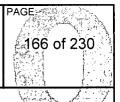
REVISION NO.:	PROCEDURE TITLE						PAGE:
32		OFFSI	FE DOSE CALC	ULATION MANU	JAL (ODCM)		162 of 230
PROCEDURE NO .:							102 01 230
C-200							
	-		TAD	LE L-4			and the second secon
	ENVIRONMEN	TAL PATHWA		ERSION FACTO	RS FOR LIQUID	DISCHARGES	
	4	AY - SALT WA			AGE GROUP		-
		ORGAN E	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.81E-01	1.81E-01	1.19E-01	1.81E-01	1.81E-01	1.81E-01
C-14	3.82E+03	3.82E+03	3.82E+03	9.61E+02	3.82E+03	3.82E+03	3.82E+03
NA24	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01
P32	5.53E+06	3.47E+05	0.	0.	0.	6.22E+05	2.14E+05
CR51	0.	0.	1.12E+00	4.13E-01	2.48E+00	4.70E+02	1.87E+00
MN54	0.	2.34E+03	0.	6.95E+02	0.	7.15E+03	4.46E+02
MN56	0.	5.88E+01	0.	7.46E+01	0.	1.88E+03	1.05E+01
FE55	3.87E+04	1.74E+05	0.	0.	2.02E+05	6.81E+04	4.58E+04
FE59	2.71E+04	6.43E+04	0.	0.	1.79E+04	2.12E+05	2.45E+04
CO57	0.	4.78E+01	0.	0.	0.	1.21E+03	7.94E+01
CO58	0.	5.05E+02	0.	0.	0.	3.00E+03	1.52E+03
CO60	0.	1.41E+03	0.	0.	0.	7.80E+03	4.23E+03
Ni-63	1.66E+04	1.15E+03	0.	0.	0.	2.39E+02	5.55E+02
NI65	6.73E+01	8.74E+00	0.	0.	0.	2.22E+02	3.98E+00
CU64	0.	7.15E+01	0.	1.80E+02	0.	6.09E+03	3.36E+01
ZN65	5.47E+04	1.74E+05	0.	1.16E+05	0.	1.09E+05	7.86E+04
ZN69	1.16E+02	2.23E+02	0	1.44E+02	0.	3.34E+01	1.55E+01
BR82	0.	0.	0.	0.	0.	1.59E+00	1.39E+00
BR83	0.	0.	0.	0.	0.	3.55E-02	2.47E-02
BR84	0.	0.	0.	0.	0.	2.51E-07	3.20E-02
BR85	0.	0.	0.	0.	0.	0.	1.31E-03

REVISION NO.:	PROCEDURE TITLE	•					PAGE:	
32 PROCEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		163 of 230	
C-200	ST. LUCIE PLANT							
	·····		Y-DOSE CONVE	LE L-4 ERSION FACTO				
	PATHW	AY - SALT WA ORGAN [TER FISH AND DOSE FACTOR		AGE GROUF ER μCi/ML)	- CHILD		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY	
RB86	0.	2.08E+02	0.	0.	0.	4.09E+01	9.68E+01	
RB88	0.	5.96E-01	0.	0.	0.	0.	3.16E-01	
RB89	0.	3.95E-01	0.	0.	0.	0.	2.78E-01	
SR89	7.53E+03	0.	0.	0.	0.	2.81E+02	2.16E+02	
SR90	9.39E+04	0.	0.	0.	0.	1.25E+03	2.38E+04	
SR91	3.18E+01	0.	0.	0.	0.	1.60E+02	1.40E+00	
SR92	1.18E+01	0.	0.	0.	0.	2.33E+02	5.08E-01	
Y90	9.00E+00	0.	0.	0.	0.	2.57E+04	2.42E-01	
Y91M	1.95E-02	0.	0.	0.	0.	5.71E-02	7.55E-04	
Y91	1.25E+02	0.	0.	0.	0.	1.66E+04	3.34E+00	
Y92	1.81E-01	0.	0.	0.	0.	3.16E+03	5.28E-03	
Y93	5.73E-01	0.	0.	0.	0.	1.82E+04	1.58E-02	
ZR95	1.80E+01	4.19E+00	0.	2.67E+00	0.	4.33E+03	3.81E+00	
ZR97	2.91E-01	5.87E-02	0.	8.86E-02	0.	1.82E+04	2.70E-02	
NB95	4.61E+02	1.97E+02	0.	8.11E+01	0.	3.41E+05	1.45E+02	
NB97	1.24E+00	3.12E-01	0.	3.64E-01	0.	1.15E+03	1.14E-01	
MO99	0.	4.23E+01	0.	9.59E+01	0.	9.81E+01	8.05E+00	
TC-99M	4.34E-03	1.23E-02	0.	1.86E-01	6.01E-03	7.26E+00	1.57E-01	
TC-101	4.47E-03	6.45E-03	0.	1.16E-01	3.29E-03	0.	6.33E-02	

.

REVISION NO .:	PROCEDURE TITLE						PAGE:
32 PROCEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		164 of 230
C-200			ST. LU	JCIE PLANT			
			ТАВ	LE L-4			
	ENVIRONMEN	ITAL PATHWA	Y-DOSE CONVE	ERSION FACTO	RS FOR LIQUID	DISCHARGES	and the second
	PATHW	AY - SALT WA	TER FISH AND	SHELLFISH	AGE GROUP	P - CHILD	
		ORGAN [DOSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RU-103	1.33E+02	0.	0.	1.39E+02	0.	3.50E+03	5.38E+01
RU-105	3.03E+00	0.	0.	3.91E+01	0.	1.85E+03	1.19E+00
RU-106	2.34E+03	0.	0.	1.05E+03	0.	3.63E+04	2.91E+02
AG110	5.18E+02	4.80E+02	0.	9.43E+02	0.	1.96E+05	2.85E+02
SB-124	9.13E+01	1.72E+00	2.21E-01	0.	7.08E+01	2.58E+03	3.61E+01
SB-125	7.24E+01	7.80E-01	6.43E-02	0.	7.57E+03	6.40E+02	1.46E+01
TE 125M	3.11E+02	8.43E+01	8.73E+01	2.97E+02	0.	3.00E+02	4.15E+01
TE 127M	1.85E+02	6.47E+01	4.72E+01	7.50E+02	0.	6.19E+02	2.25E+01
TE-127	1.23E+01	3.27E+00	8.46E+00	1.22E+01	0.	5.24E+02	2.63E+00
TE129M	1.35E+03	3.77E+02	4.31E+02	1.31E+03	0.	1.63E+03	2.09E+02
TE-129	8.59E-01	3.25E-01	6.58E-01	3.60E+00	0.	6.47E-01	2.09E-01
TE131M	4.75E+01	2.31E+01	3.66E+01	2.34E+02	0.	2.29E+03	1.93E+01
TE-131	5.38E-01	2.25E-01	4.42E-01	2.36E+00	0.	8.05E-02	1.70E-01
TE-132	2.78E+02	1.23E+02	1.81E+02	4.31E+02	0.	2.15E+03	1.48E+02
I130	1.33E+01	3.94E+01	5.01E+03	6.12E+01	0.	3.38E+01	1.55E+01
I131	2.87E+02	2.94E+02	9.55E+04	1.79E+02	0.	2.51E+01	2.22E+02
I132	3.57E+00	9.55E+00	1.26E+03	1.52E+01	0.	1.79E+00	3.39E+00
I133	1.05E+02	1.30E+02	3.13E+04	7.61E+01	0.	5.26E+01	5.10E+01
I134	1.86E+00	5.06E+00	6.58E+02	8.07E+00	0.	4.41E-03	1.81E+00

REVISION NO.:	PROCEDURE TITLE	:		· · · · · · · · · · · · · · · · · · ·			PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		165 of 230
PROCEDURE NO.:							
C-200							
	ENVIRONMEN			LE L-4 ERSION FACTO	RS FOR LIQUID	DISCHARGES	
		AY - SALT WA		SHELLFISH	AGE GROUF		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
I135	7.79E+00	2.06E+01	2.69E+03	3.27E+01	0.	2.30E+01	7.54E+00
CS-134	8.14E+03	1.37E+04	0.	1.75E+03	1.52E+03	7.42E+01	2.92E+03
CS-136	2.37E+02	9.34E+02	0.	5.20E+02	7.13E+01	1.06E+02	6.73E+02
CS-137	1.13E+04	1.10E+04	0.	1.35E+03	1.29E+03	6.69E+01	1.64E+03
CS-138	2.01E+00	3.96E+00	0.	2.92E+00	2.88E-01	1.69E-05	1.97E+00
BA-139	2.65E+00	1.89E-03	0.	1.77E-03	1.07E-03	4.69E+00	7.75E-02
BA-140	2.25E+03	1.98E+00	0.	2.37E-01	1.18E+00	1.15E+02	1.32E+02
BA-141	0.	9.71E-04	0.	9.03E-04	5.51E-04	6.06E-10	4.34E-02
BA-142	5.81E-01	5.98E-04	0.	5.05E-04	3.38E-04	0.	3.66E-02
LA-140	2.16E+00	7.52E-01	0.	0.	0.	2.14E+04	2.54E-01
LA-142	2.74E-02	1.24E-02	0.	0.	0.	9.09E+01	3.10E-03
CE-141	4.67E+00	2.34E+00	0.	3.66E-01	0.	2.93E+03	3.48E-01
CE-143	2.05E-01	1.52E+02	0.	6.69E-02	0.	5.67E+03	1.68E-02
CE-144	2.66E+02	8.33E+01	0.	1.50E+01	0.	2.16E+04	1.42E+01
PR-144	6.46E-03	2.67E-03	0.	1.51E-03	0.	9.26E-10	3.27E-04
W187	3.03E+00	2.54E+00	0.	0.	0.	8.31E+02	8.90E-01
NP-239	1.18E-02	1.16E-03	0.	3.58E-03	0.	2.36E+02	6.34E-04


REVISION NO .:

32

PROCEDURE NO.:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

PROCEDURE TITLE:

C-200

ST. LUCIE PLANT

TABLE G-1 EFFLUENT CONCENTRATION LIMITS IN AIR IN UNRESTRICTED AREAS

NOTE

If a nuclide is not listed below, refer to 10 CFR Part 20, Appendix B, Table 2 Effluent Concentrations Column 1 and use the most conservative ECL listed for the nuclide.

	· · · · · · · · · · · · · · · · · · ·		·····		· · · · · · · · · · · · · · · · · · ·
Nuclide	ECL (µCi/ml)	Nuclide	ECL (μCi/ml)	Nuclide	ECL (µCi/ml)
Ar-41	1 E-8	Co-57	9 E-10	Sb-124	3 E-10
Kr-83m	5 E-5	Co-58	1 E-9	Sb-125	7 E-10
Kr-85m	1 E-7	Fe-59	5 E-10	Te-125m	1 E-9
Kr-85	7 E-7	Co-60	5 E-11	Te-127m	4 E-10
Kr-87	2 E-8	Zn-65	4 E-10	Te-129m	3 E-10
Kr-88	9 E-9	Rb-86	1 E-9	I-130	3 E-9
Kr-89	None	Rb-88	9 E-8	I-131	2 E-10
Kr-90	None	Sr-89	2 E-10	I-132	2 E-8
Xe-131m	2 E-6	Sr-90	6 E-12	I-133	1 E-9
Xe-133m	6 E-7	Y-91	2 E-10	I-134	6 E-8
Xe-133	5 E-7	Zr-95	4 E-10	I-135	6 E-9
Xe-135m	4 E-8	Nb-95	2 E-9	Cs-134	2 E-10
Xe-135	7 E-8	Ru-103	9 E-10	Cs-136	9 E-10
Xe-137	None	Ru-106	2 E-11	Cs-137	2 E-10
Xe-138	2 E-8	Ag-110	1 E-10	Ba-140	2 E-9
H-3	1 E-7	Sn-113	8 E-10	La-140	2 E-9
P-32	1 E-9	In-113m	2 E-7	Ce-141	8 E-10
Cr-51	3 E-8	Sn-123	2 E-10	Ce-144	2 E-11
Mn-54	1 E-9	Sn-126	8 E-11		

VISION NO.: 32	PROCEDUF		DOSE CALCULATION MA	NUAL (ODCM)	PAGE 167 of 230
C-200			ST. LUCIE PLANT		
	I	DOSE I	TABLE G-2 FACTORS FOR NOBLE C	SASES*	
RADIONUC	LIDE	TOTAL BODY DOSE FACTOR K _i (mrem/yr per μCi/m ³)	SKIN DOSE FACTOR L _i (mrem/yr per μCi/m ³)	GAMMA AIR DOSE FACTOR M _i (mrad/yr per μCi/m³)	BETA AIR DOSE FACTOR Ν _ι (mrad/yr per μCi/m³)
Kr-83m	·····	7.56E-02**		1.93E+01	2.88E+02
Kr-85m		1.17E+03	1.46E+03	1.23E+03	1.97E+03
Kr-85		1.61E+01	1.34E+03	1.72E+01	1.95E+03
Kr-87		5.92E+03	9.73E+03	6.17E+03	1.03E+04
Kr-88		1.47E+04	2.37E+03	1.52E+04	2.93E+03
Kr-89		1.66E+04	1.01E+04	1.73E+04	1.06E+04
Kr-90		1.56E+04	7.29E+03	1.63E+04	7.83E+03
Xe-131	n	9.15E+01	4.76E+02	1.56E+02	1.11E+03
Xe-133r	n	2.51E+02	9.94E+02	3.27E+02	1.48E+03
Xe-133		2.94E+02	3.06E+02	3.53E+02	1.05E+03
Xe-135	n	3.12E+03	7.11E+02	3.36E+03	7.39E+02
Xe-135		1.81E+03	1.86E+03	1.92E+03	2.46E+03
Xe-137		1.42E+03	1.22E+04	1.51E+03	1.27E+04
Xe-138		8.83E+03	4.13E+03	9.21E+03	4.75E+03
Ar-41		8.84E+03	2.69E+03	9.30E+03	3.28E+03

* The listed dose factors are for radionuclides that may be detected in gaseous effluents.

** 7.56E-02 = 7.56 X 10⁻²

32		FFSITE DOSE CALC	CULATION MANUAL	(ODCM)	168 of 2
PROCEDURE NO.:					
C-200		ST. LU	JCIE PLANT		
		ТАВ	LE G-3		
E	NVIRONMENTAL PATHWA			FOR GASEOUS DISCH	ARGES
-		OUND PLANE DEP		GROUP - INFANT	
	ORGAN DO	SE FACTOR (SQ.	METER - MREM/YR	R PER μCi/Sec)	
				-1	
		NUCLIDE	WHOLE BODY	_	
		H-3	0.	_	
		CR-51	6.68E+06		
		MN-54	1.10E+09		
		FE-59	3.92E+08		
		CO-57	1.64E+08		
		CO-58	5.27E+08		
		CO-60	4.40E+09		
		ZN-65	6.87E+08		
		RB-86	1.29E+07		
	·	SR-89	3.07E+04		
		SR-90	5.94E+05		
		Y-91	1.53E+06		• .
		ZR-95	6.94E+08	-	
		NB-95	1.95E+08		
		RU-103	1.57E+08		
		RU-106	2.99E+08	-	
		AG-110	3.18E+09		
Based	on 1 μ Ci/sec release rate of	each isotone in and a	a Value of 1 for X/O	depleted X/O and Relativ	e Denosition

•

REVISION NO .:	PROCEDURE TITLE:		·	<u> </u>	PAGE:
32	OF	FSITE DOSE CALC	ULATION MANUAL	(ODCM)	100 -1000
PROCEDURE NO.:					169 of 230
C-200		ST. LU	JCIE PLANT		
Ē		Y-DOSE CONVERSI		FOR GASEOUS DISCHARG	<u>ES</u>
·	ORGAN DOS	SEFACTOR (SQ.	METER - MREM/YR	PER µCI/Sec)	
		NUCLIDE	WHOLE BODY		
		SN-126	4.80E+09		
		SB-124	8.42E+08		
		SB-125	7.56E+08		
		TE-125M	2.19E+06		
		TE-127M	1.15E+06		
		TE-129M	5.49E+07		
		I-130	7.90E+06		
		I-131	2.46E+07		
		I-132	1.78E+06		
		I-133	3.54E+06		
		I-134	6.43E+05		
		I-135	3.66E+06		
		CS-134	2.82E+09		
		CS-136	2.13E+08		
		CS-137	1.15E+09		
		BA-140	2.39E+08].	
		CE-141	1.95E+07]	
		CE-144	9.52E+07	1	

PROCEDURE TITLE:				PAGE:
OF	FSITE DOSE CALC	ULATION MANUAL	(ODCM)	R.C.S.
-1			(,	170 of 230
	ST. LU	JCIE PLANT		
	TAD			
				Contraction of the second s
			FOR GASEOUS DISCHARGE	<u>></u> T
				•
OKGAN DO	SLIACION (SQ.		Γ Ε Γ μΟΙ/δευ	
	NUCLIDE	WHOLE BODY	7	
	H-3	0.		
	CR-51	4.68E+06		
	MN-54	1.38E+09		
	FE-59	2.75E+08		
	CO-57	1.89E+08	-	
	CO-58	3.80E+08		
	CO-60	2.15E+10		
	ZN-65	7.43E+08		
	RB-86	9.01E+06		
	SR-89	2.17E+04		
	SR-90	5.35E+06		
	Y-91	1.08E+06		
	ZR-95	5.01E+08		
	NB-95	1.36E+08		
	RU-103	1.10E+08		
	RU-106	4.19E+08		
	AG-110	3.58E+09		
	OF	OFFSITE DOSE CALC ST. LL ST. ST. ST. ST. ST. ST. ST. ST. ST. ST.	OFFSITE DOSE CALCULATION MANUAL ST. LUCIE PLANT TABLE G-4 INVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R (I) PATHWAY - GROUND PLANE DEPOSITION AGE GROUP - CI ORGAN DOSE FACTOR (SQ. METER - MREM/YR NUCLIDE WHOLE BODY H-3 0. CR-51 4.68E+06 MN-54 1.38E+09 FE-59 2.75E+08 CO-57 1.89E+08 CO-60 2.15E+10 ZN-65 7.43E+08 RB-86 9.01E+06 SR-89 2.17E+04 SR-90 5.35E+06 Y-91 1.08E+06 ZR-95 5.01E+08 NB-95 1.36E+08 RU-103 1.10E+08 RU-106 4.19E+08	OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT TABLE G-4 INVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R (I) FOR GASEOUS DISCHARGE ATHWAY - GROUND PLANE DEPOSITION AGE GROUP - CHILD - TEEN-ADULT & INFAN ORGAN DOSE FACTOR (SQ. METER - MREM/YR PER μCi/Sec) NUCLIDE WHOLE BODY H-3 0. CR-51 4.68E+06 MN-54 1.38E+09 FE-59 2.75E+08 CO-57 1.89E+08 CO-58 3.80E+08 CO-60 2.15E+10 ZN-65 7.43E+08 RB-86 9.01E+06 SR-89 2.17E+04 SR-90 5.35E+06 Y-91 1.08E+06 ZR-95 5.01E+08 RB-95 1.36E+08 RU-103 1.10E+08 RU-106 4.19E+08

REVISION NO .:	PROCEDURE TITLE:			· · · · · · · · · · · · · · · · · · ·	PAGE:
32	OF	FSITE DOSE CALC	JLATION MANUAL	(ODCM)	171 of 230
PROCEDURE NO .:					0 171 01 230 g
C-200		ST. LU	CIE PLANT		
	-		.E G-4		
	ENVIRONMENTAL PATHWAY				
	PATHWAY - GROUND PLANE			IILD - TEEN-ADULT & INFANT	
	ORGAN DOS	E FACTOR (SQ.)	METER - MREM/YR	PER μCi/Sec)	
		NUCLIDE	WHOLE BODY]	
		SN-126	5.16E+10		
		SB-124	5.98E+08		
		SB-125	2.30E+09		
		TE-125M	1.55E+06		
		TE-127M	8.79E+05		
		TE-129M	3.85E+07		
		I-130	5.53E+06		
		I-131	1.72E+07		
		I-132	1.25E+06		
		I-133	2.48E+06]	
		I-134	4.50E+05		
		I-135	2.56E+06		
		CS-134	6.99E+09		
		CS-136	1.49E+08	_	
1		CS-137	1.03E+10	_	
		BA-140	1.68E+08		
		CE-141	1.37E+07		
		CE-144	1.13E+08		

REVISION NO.:	PROCEDURE TITLE						PAGE
32 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	CULATION MANU	IAL (ODCM)		172 of 230
C-200			ST. L	UCIE PLANT			
EN\	/IRONMENTAL I	PATHWAY-DOS		BLE G-5 DN FACTORS R(I)/P(I) FOR GAS	EOUS DISCHA	RGES
			- INHALATION		UP - INFANT		
				(MREM/YR PER			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	4.30E+02	4.30E+02	1.88E+02	4.30E+02	4.30E+02	4.30E+02
P-32	2.31E+05	1.35E+04	0.	0.	0.	1.51E+04	8.78E+03
CR-51	0.	0.	1.40E+01	3.99E+00	2.52E+03	5.81E+02	1.75E+01
MN-54	0.	6.93E+03	0.	1.72E+03	2.45E+05	1.35E+04	1.10E+03
FE-59	2.06E+03	4.86E+06	0.	0.	1.78E+05	3.29E+04	1.85E+03
CO-57	0.	1.21E+02	0.	0.	6.47E+04	5.50E+03	1.18E+02
CO-58	0.	1.18E+02	0.	0.	8.79E+05	1.21E+04	1.68E+02
CO-60	0.	8.40E+02	0.	0.	5.57E+06	3.28E+04	1.17E+03
ZN-65	5.67E+03	1.81E+04	0.	1.21E+04	1.53E+05	9.35E+03	8.15E+03
RB-86	0.	2.37E+04	0.	0.	0.	2.91E+03	1.03E+04
SR-89	4.31E+04	0.	0.	0.	2.31E+06	6.80E+04	1.24E+03
SR-90	1.32E+07	0.	0.	0.	1.53E+07	1.39E+05	8.06E+05
Y-91	5.98E+04	0.	0.	0.	2.63E+06	7.17E+04	1.60E+03
ZR-95	1.08E+04	2.73E+03	0.	9.48E+03	1.81E+06	1.41E+04	1.95E+03
NB-95	1.28E+03	5.75E+02	0.	1.35E+03	4.77E+05	1.21E+04	3.37E+02
RU-103	1.69E+02	0.	0.	1.02E+03	5.66E+05	1.58E+04	5.85E+01
RU-106	9.31E+03	0.	0.	2.34E+04	1.50E+07	1.76E+05	1.14E+03
AG-110	1.89E+03	1.75E+03	0.	3.44E+03	8.12E+05	5.29E+04	1.04E+03

REVISION NO.:	PROCEDURE TITLE	•					PAGE.
32		OFFSI	FE DOSE CALC	ULATION MANU	JAL (ODCM)		173 of 230
ROCEDURE NO.:							
C-200			ST. LU	JCIE PLANT			
			τΔΒ	LE G-5			
EN		PATHWAY-DOS			I)/P(I) FOR GAS	EOUS DISCHA	RGES
<u></u>			- INHALATION		UP - INFANT		
		ORGAN DOS	SE FACTOR	(MREM/YR PER	μCi/Cu Meter)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	3.11E+04	6.45E+02	6.45E+02	0.	3.61E+06	5.99E+04	1.02E+03
SN-126	2.21E+05	5.85E+03	1.72E+03	0.	1.64E+06	2.23E+04	8.40E+03
SB-124	5.46E+03	1.03E+02	1.32E+01	0.	4.34E+05	7.11E+04	2.17E+03
SB-125	1.16E+04	1.25E+02	1.03E+01	0.	3.85E+05	1.76E+04	2.32E+03
TE-125M	4.54E+02	1.95E+02	1.53E+02	2.17E+03	4.96E+05	1.36E+04	6.16E+01
TE-127M	2.21E+03	9.83E+02	5.75E+02	8.01E+03	1.68E+05	2.62E+04	2.74E+02
TE-129M	1.32E+03	5.80E+02	5.08E+02	6.40E+03	1.83E+06	7.32E+04	2.06E+02
I-130	8.02E+02	2.35E+03	3.05E+05	3.65E+03	0.	1.35E+03	9.25E+02
I-131	3.63E+04	4.27E+04	1.41E+07	1.07E+04	0.	1.07E+03	2.51E+04
I-132	2.03E+02	5.70E+02	7.67E+04	9.09E+02	0.	7.11E+01	2.03E+02
I-133	1.34E+04	1.93E+04	4.66E+06	4.55E+03	0.	2.28E+03	5.87E+03
I-134	1.13E+02	3.02E+02	4.02E+04	4.82E+02	0.	1.76E-01	1.08E+02
I-135	4.70E+02	1.22E+03	1.64E+05	1.95E+03	0.	9.18E+02	4.51E+02
CS-134	4.80E+05	8.25E+05	0.	5.04E+04	1.01E+05	1.37E+03	7.32E+04
CS-136	6.85E+03	2.56E+04	0.	1.50E+04	2.10E+03	2.04E+03	1.95E+04
CS-137	6.86E+05	7.31E+05	0.	3.89E+04	9.45E+04	1.32E+03	4.41E+04
BA-140	5.70E+03	4.27E+00	0.	2.93E+00	1.64E+06	3.88E+03	2.95E+02
CE-141	2.52E+03	1.55E+03	0.	1.10E+03	5.24E+05	2.06E+04	1.81E+02
CE-144	4.68E+05	1.82E+05	0.	1.48E+05	1.27E+07	1.61E+05	2.49E+04

EVISION NO.:	PROCEDURE TITLE	:					PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		174 of 23
ROCEDURE NO .:							
C-200			ST. LU	CIE PLANT			
			ТАРІ	_E G-6			
FNI	IRONMENTAL					FOUS DISCHA	RGES
<u>L_144</u>				ED FORAGE)			
			•	METER - MREN			
						0)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	2.37E+03	2.37E+03	1.04E+03	2.37E+03	2.37E+03	2.37E+03
P-32	1.82E+10	1.14E+09	0.	0.	0.	2.05E+09	7.05E+08
CR-51	0.	0.	1.82E+04	6.72E+03	4.04E+04	7.66E+06	3.05E+04
MN-54	0.	8.96E+06	0.	2.67E+06	0.	2.74E+07	1.71E+06
FE-59	3.17E+07	7.52E+07	0.	0.	2.09E+07	2.48E+08	2.86E+07
CO-57	0.	1.36E+06	0.	0.	0.	3.46E+07	2.27E+06
CO-58	0.	2.55E+07	0.	0.	0.	6.60E+07	6.24E+07
CO-60	0.	8.73E+07	0.	0.	0.	2.16E+08	2.09E+08
ZN-65	1.46E+09	4.65E+09	0.	3.11E+09	0.	2.93E+09	2.10E+09
RB-86	0.	2.77E+09	0.	0.	0.	5.45E+08	1.29E+09
SR-89	1.47E+10	0.	0.	0.	0.	2.75E+08	4.22E+08
SR-90	1.65E+11	0.	0.	0.	0.	1.61E+09	4.21E+10
Y-91	8.12E+04	0.	0.	0.	0.	5.37E+06	2.16E+03
ZR-95	2.12E+05	9.41E+04	0.	1.86E+04	0.	7.47E+07	5.56E+04
NB-95	5.49E+05	2.47E+05	0.	4.84E+04	0.	1.98E+08	1.45E+05
RU-103	8.30E+03	0.	0.	4.16E+03	0.	1.04E+05	2.86E+03
RU-106	2.01E+05	0.	0.	4.20E+04	0.	1.56E+06	2.46E+04
AG-110	6.21E+07	5.75E+07	0.	1.13E+08	0.	2.35E+10	3.42E+07

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu \text{Ci/Cu}.$ Meter)

EVISION NO.: 32 ROCEDURE NO.:	PROCEDURE TITLE:		TE DOSE CALCU	JLATION MANU	AL (ODCM)		PAGE 175 of 230
C-200			ST. LU	CIE PLANT			
EN	/IRONMENTAL F	PATHWAY-DOS		.E G-6 N FACTORS R(I)/P(I) FOR GASE	EOUS DISCHA	RGES
	PATHWAY	- COWS MILK	(CONTAMINATE	ED FORAGE)	AGE GROU	P - INFANT	
			ACTOR (SQ. I		/YR PER µCi/Se	c)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-126	1.75E+09	3.48E+07	1.01E+07	0.	4.97E+06	1.16E+09	5.25E+07
SB-124	2.75E+07	5.19E+05	6.64E+04	0.	2.13E+07	7.78E+08	1.09E+07
SB-125	3.59E+07	3.27E+06	2.93E+06	3.96E+06	2.83E+09	2.43E+08	6.62E+06
TE-125M	1.57E+08	5.30E+07	5.18E+07	7.05E+07	0.	7.57E+07	2.10E+07
TE-127M	5.54E+07	1.93E+07	1.79E+07	2.00E+08	0.	3.24E+08	7.38E+06
TE-129M	5.87E+08	2.02E+08	2.21E+08	2.70E+08	0.	3.54E+08	8.95E+07
I-130	4.54E+05	1.35E+06	1.71E+08	2.09E+06	0.	1.15E+06	5.29E+05
I-131	2.59E+09	3.09E+09	9.94E+11	7.24E+08	0.	1.16E+08	1.81E+09
I-132	1.78E-01	4.76E-01	6.26E+01	7.58E-01	0.	8.93E-02	1.69E-01
I-133	3.75E+07	5.48E+07	1.30E+10	1.29E+07	0.	9.74E+06	1.66E+07
I-134	0.	0.	1.06E-09	0.	0.	0.	0.
I-135	1.49E+04	3.94E+04	5.15E+06	6.26E+04	8.07E-02	4.41E+04	1.44E+04
CS-134	4.43E+10	7.97E+10	0.	4.65E+09	9.12E+09	1.90E+08	6.75E+09
CS-136	2.78E+08	1.10E+09	0.	6.11E+08	8.37E+07	1.25E+08	7.90E+08
CS-137	6.44E+10	7.21E+10	0.	3.66E+09	8.69E+09	1.86E+08	4.14E+09
BA-140	2.45E+08	2.47E+05	0.	1.22E+04	1.51E+05	8.13E+06	1.27E+07
CE-141	2.65E+05	1.62E+05	0.	9.72E+03	0.	7.87E+07	1.90E+04
CE-144	2.10E+07	8.29E+06	0.	5.67E+05	0.	8.66E+08	1.13E+06

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu \text{Ci/Cu}.$ Meter)

EVISION NO .:	PROCEDURE TITLE						PAGE:
32 ROCEDURE NO.:	-	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		176 of 23
C-200			ST. LU	CIE PLANT			
ENV		- GOATS MILK		ED FORAGE)	AGE GROL	JP - INFANT	RGES
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	4.84E+03	4.84E+03	2.11E+03	4.84E+03	4.84E+03	4.84E+03
P-32	2.19E+10	1.37E+09	0.	0.	0.	2.46E+09	8.46E+08
CR-51	0.	0.	2.19E+03	8.07E+02	4.85E+03	9.19E+05	3.66E+03
MN-54	0.	1.08E+06	0.	3.20E+05	0.	3.29E+06	2.05E+05
FE-59	4.12E+05	9.78E+05	0.	0.	2.72E+05	3.23E+06	3.72E+05
CO-57	0.	1.64E+05	0.	0.	0.	4.15E+06	2.72E+05
CO-58	0.	3.06E+06	0.	0.	0.	7.92E+06	7.49E+06
CO-60	0.	1.05E+07	0.	0.	0.	2.59E+07	2.51E+07
ZN-65	1.76E+08	5.57E+08	0.	3.73E+08	0.	3.51E+08	2.52E+08
RB-86	0.	3.32E+08	0.	0.	0.	6.54E+07	1.55E+08
SR-89	3.09E+10	0.	0.	0.	0.	5.77E+08	8.87E+08
SR-90	3.46E+11	0.	0.	0.	0.	3.35E+09	8.83E+10
Y-91	9.74E+03	0.	0.	0.	0.	6.45E+05	2.60E+02
ZR-95	2.54E+04	1.13E+04	0.	2.23E+03	0.	8.95E+06	6.67E+03
NB-95	6.59E+04	2.97E+04	0.	5.81E+03	0.	2.37E+07	1.75E+04
RU-103	9.96E+02	0.	0.	4.99E+02	0.	1.24E+04	3.43E+02
RU-106	2.41E+04	0.	0.	5.04E+03	0.	1.87E+05	2.96E+03
AG-110	7.45E+06	6.90E+06	0.	1.36E+07	0.	2.81E+09	4.10E+06

Note: The units for C-14 and H-3 are (MREM/YR Per μ Ci/Cu. Meter)

REVISION NO.:	PROCEDURE TITLE:						PAGE:
32		OFFSI	E DOSE CALC	JLATION MANU	AL (ODCM)		177 of 230
ROCEDURE NO .:							
C-200			ST. LU	CIE PLANT			
			TARI	.E G-7			
ENV	IRONMENTAL F	ATHWAY-DOS)/P(I) FOR GAS	EOUS DISCHA	RGES
			(CONTAMINAT			JP - INFANT	
				METER - MRÉM	/YR PER µCi/Se	c)	
	T						1
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-126	2.10E+08	4.17E+06	1.22E+06	0.	5.97E+05	1.40E+08	6.30E+06
SB-124	3.30E+06	6.22E+04	7.97E+03	0.	2.56E+06	9.33E+07	1.30E+06
SB-125	4.31E+06	3.92E+05	3.52E+05	4.76E+05	3.40E+08	2.92E+07	7.94E+05
TE-125M	1.89E+07	6.36E+06	6.21E+06	8.46E+06	0.	9.09E+06	2.52E+06
TE-127M	6.64E+06	2.31E+06	2.15E+06	2.40E+07	0.	3.88E+07	8.85E+05
TE-129M	7.05E+07	2.42E+07	2.66E+07	3.23E+07	0.	4.25E+07	1.07E+07
I-130	5.45E+05	1.61E+06	2.05E+08	2.51E+06	0.	1.38E+06	6.35E+05
I-131	3.11E+09	3.70E+09	1.19E+12	9.28E+08	0.	1.39E+08	2.17E+09
I-132	2.13E-01	5.71E-01	7.51E+01	9.10E-01	0.	1.07E-01	2.03E-01
I-133	4.50E+07	6.57E+07	1.55E+10	1.55E+07	0.	1.17E+07	1.99E+07
I-134	0.	0.	1.27E-09	0.	0.	0.	0.
I-135	1.79E+04	4.72E+04	6.18E+06	7.51E+04	2.42E-01	5.29E+04	1.73E+04
CS-134	1.33E+11	2.39E+11	0.	1.39E+10	2.74E+10	5.69E+08	2.02E+10
CS-136	8.34E+08	3.29E+09	0.	1.83E+09	2.51E+08	3.74E+08	2.37E+09
CS-137	1.93E+11	2.16E+11	0.	1.10E+10	2.61E+10	5.59E+08	1.24E+10
BA-140	2.95E+07	2.96E+04	0.	1.47E+03	1.81E+04	9.76E+05	1.52E+06
CE-141	3.17E+04	1.95E+04	0.	1.17E+03	0.	9.44+06	2.28E+03
CE-144	2.52E+06	9.95E+05	0.	6.80E+04	0.	1.04E+08	1.36E+05

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu Ci/Cu.$ Meter)

REVISION NO.:	PROCEDURE TITLE:						PAGE:
32 PROCEDURE NO.:		OFFSI	TE DOSE CALCI	JLATION MANU	AL (ODCM)		178 of 230
C-200			ST. LU	CIE PLANT			
E	NVIRONMENTAI				(I) FOR GASEC	OUS DISCHAR	GES
		ORGAN DOSE		REM/YR PER μ(
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	7.51E+02	7.51E+02	4.96E+02	7.51E+02	7.51E+02	7.51E+02
P32	6.11E+05	3.57E+04	0.	0.	0.	4.00E+04	2.32E+04
CR51	0.	0.	2.75E+01	1.06E+01	6.66E+03	1.54E+03	4.63E+01
MN54	0.	1.83E+04	0.	4.55E+03	6.48E+05	3.58E+04	2.91E+03
F.E59	5.44E+03	1.28E+07	0.	0.	4.70E+05	8.70E+04	4.88E+03
CO57	0.	3.20E+02	0.	0.	1.71E+05	1.45E+04	3.10E+02
CO58	0.	1.52E+02	0.	0.	1.13E+06	3.62E+04	2.68E+02
CO60	0.	1.07E+03	0.	0.	6.92E+06	9.36E+04	1.88E+03
ZN65	1.50E+04	4.77E+04	0.	3.19E+04	4.03E+05	2.47E+04	2.15E+04
RB86	0.	6.25E+04	0.	0.	0.	7.70E+03	2.73E+04
SR89	5.37E+04	0.	0.	0.	2.24E+06	1.69E+05	1.54E+03
SR90	1.64E+07	0.	0.	0.	1.48E+07	3.45E+05	9.99E+05
Y91	7.44E+04	0.	0.	0.	2.55E+06	1.78E+05	1.98E+03
ZR95	1.41E+04	3.28E+03	0.	2.51E+04	2.12E+06	5.74E+04	2.98E+03
NB95	1.70E+03	7.25E+02	0.	3.58E+03	5.85E+05	3.32E+04	5.33E+02
RU-103	2.16E+02	0.	0.	2.70E+03	6.33E+05	4.22E+04	8.73E+01
RU-106	1.15E+04	0.	0.	6.18E+04	1.45E+07	4.37E+05	1.44E+03
AG110	5.00E+03	4.63E+03	0.	9.10E+03	2.15E+06	1.40E+05	2.75E+03

.

.

REVISION NO.: 32	PROCEDURE TITLE						PAGE:
PROCEDURE NO.:	-	01101					179 of 230
C-200			ST. LU	CIE PLANT			
El		L PATHWAY-DO		E G-8 ON FACTORS I	R(I) FOR GASEC	OUS DISCHAR	GES
		PATHWAY -	INHALATION	AGE GF	ROUP - CHILD		
		ORGAN DOSE	EFACTOR (M	REM/YR PER μ	Ci/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	3.85E+04	6.44E+02	6.81E+02	0.	3.50E+06	1.49E+05	1.27E+03
SN-126	5.85E+05	1.55E+04	4.55E+03	0.	4.33E+06	5.88E+04	2.22E+04
SB-124	1.44E+04	2.72E+02	3.49E+01	0.	1.15E+06	1.88E+05	5.74E+03
SB-125	3.06E+04	3.30E+02	2.72E+01	0.	1.02E+06	4.66E+04	6.14E+03
TE 125M	5.62E+02	1.94E+02	1.61E+02	5.74E+03	4.81E+05	3.38E+04	7.62E+01
TE 127M	5.85E+03	2.60E+03	1.52E+03	2.12E+04	4.44E+05	6.92E+04	7.25E+02
TE 129M	1.64E+03	5.85E+02	5.40E+02	1.69E+04	1.80E+06	1.82E+05	2.60E+02
I130	2.12E+03	6.22E+03	8.07E+05	9.66E+03	0.	3.56E+03	2.45E+03
I131	4.55E+04	4.63E+04	1.54E+07	2.84E+04	0.	2.65E+03	3.50E+04
I132	5.37E+02	1.51E+03	2.03E+05	2.40E+03	0.	1.88E+02	5.37E+02
I133	1.68E+04	2.05E+04	5.03E+06	1.20E+04	0.	5.55E+03	8.03E+03
I134	2.98E+02	7.99E+02	1.06E+05	1.27E+03	0.	4.66E-01	2.85E+02
1135	1.24E+03	3.23E+03	4.33E+05	5.14E+03	0.	2.43E+03	1.19E+03
CS-134	6.22E+05	9.95E+05	0.	1.33E+05	1.19E+05	3.77E+03	2.23E+05
CS-136	1.81E+04	6.77E+04	0.	3.96E+04	5.55E+03	5.40E+03	5.14E+04
CS-137	8.66E+05	7.99E+05	0.	1.03E+05	1.00E+05	3.41E+03	1.25E+05
BA-140	7.14E+03	4.66E+00	0.	7.73E+00	1.74E+06	9.92E+03	4.22E+02
CE-141	3.13E+03	1.57E+03	0.	2.90E+03	5.14E+05	5.44E+04	2.33E+02
CE-144	5.81E+05	1.82E+05	0.	3.92E+05	1.23E+07	4.00E+05	3.10E+04

EVISION NO .:	PROCEDURE TITLE	:	=				PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANL	IAL (ODCM)		180 of 230
ROCEDURE NO .:							
C-200			ST. LU	JCIE PLANT			
EI		L PATHWAY-DO		LE G-9 ION FACTORS I	R(I) FOR GASE	OUS DISCHAR	GES
	PATHWAY	- COWS MILK (CONTAMINATE		AGE GR	OUP - CHILD	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.57E+03	1.57E+03	1.04E+03	1.57E+03	1.57E+03	1.57E+03
P32	1.82E+10	1.14E+09	0.	0.	0.	2.05E+09	7.05E+08
CR51	0.	0.	1.82E+04	6.72E+03	4.04E+04	7.66E+06	3.05E+04
MN54	0.	8.96E+06	0.	2.67E+06	0.	2.74E+07	1.71E+06
FE59	3.17E+07	7.52E+07	0.	0.	2.09E+07	2.48E+08	2.86E+07
CO57	0.	1.36E+06	0.	0.	0.	3.46E+07	2.27E+06
CO58	0.	1.25E+07	0.	0.	0.	7.41E+07	3.76E+07
CO60	0.	4.22E+07	· 0.	0.	0.	2.33E+08	1.27E+08
ZN65	1.46E+09	4.65E+09	0.	3.11E+09	0.	2.93E+09	2.10E+09
RB-86	0.	2.77E+09	0.	0.	0.	5.45E+08	1.29E+09
SR89	6.92E+09	0.	0.	0.	0.	2.58E+08	1.98E+08
SR-90	1.13E+11	0.	0.	0.	0.	1.52E+09	2.87E+10
Y91	3.80E+04	0.	0.	0.	0.	5.05E+06	1.01E+03
ZR95	1.06E+05	4.47E+04	0.	1.86E+04	0.	7.68E+07	3.29E+04
NB95	2.75E+05	1.18E+05	0.	4.84E+04	0.	2.03E+08	8.63E+04
RU-103	3.99E+03	0.	0.	4.16E+03	0.	1.05E+05	1.61E+03
RU-106	9.39E+04	0.	0.	4.20E+04	0.	1.46E+06	1.17E+04
AG110	6.21E+07	5.75E+07	0.	1.13E+08	0.	2.35E+10	3.42E+07

EVISION NO.: 32	PROCEDURE TITLE:		E DOSE CALCU	JLATION MANU	AL (ODCM)		PAGE: 230			
ROCEDURE NO.: C-200		ST. LUCIE PLANT								
<u></u>		- COWS MILK (TABL	E G-9 ON FACTORS F D FORAGE)	AGE GRO	DUP - CHILD	<u>ies</u>			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY			
SN-123	0.	0.	0.	0.	0.	0.	0.			
SN-126	1.75E+09	3.48E+07	1.01E+07	0.	4.97E+06	1.16E+09	5.25E+07			
SB-124	2.75E+07	5.19E+05	6.64E+04	0.	2.13E+07	7.78E+08	1.09E+07			
SB-125	3.13E+07	1.41E+06	1.18E+06	3.96E+06	2.83E+09	2.43E+08	5.99E+06			
TE 125M	7.38E+07	2.00E+07	2.07E+07	7.05E+07	0.	7.12E+07	9.84E+06			
TE 127M	5.18E+07	1.78E+07	1.46E+07	2.00E+08	0.	2.99E+08	6.60E+06			
TE 129M	2.77E+08	7.73E+07	8.85E+07	2.70E+08	0.	3.33E+08	4.28E+07			
I130	4.54E+05	1.35E+06	1.71E+08	2.09E+06	0.	1.15E+06	5.29E+05			
I131	1.24E+09	1.27E+09	4.12E+11	7.74E+08	0.	1.09E+08	9.56E+08			
I132	1.78E-01	4.76E-01	6.26E+01	7.58E-01	0.	8.93E-02	1.69E-01			
I133	1.78E+07	2.20E+07	5.30E+09	1.29E+07	0.	8.90E+06	8.63E+06			
I134	0.	0.	1.06E-09	0.	0.	0.	0.			
I135	1.49E+04	3.94E+04	5.15E+06	6.26E+04	8.07E-02	4.41E+04	1.44E+04			
CS-134	2.17E+10	3.65E+10	0.	4.65E+09	4.06E+09	1.97E+08	7.76E+09			
CS-136	2.78E+08	1.10E+09	0.	6.11E+08	8.37E+07	1.25E+08	7.90E+08			
CS-137	3.08E+10	2.98E+10	0.	3.66E+09	3.49E+09	1.81E+08	4.44E+09			
BA-140	1.17E+08	1.02E+05	0.	1.22E+04	6.09E+04	7.75E+06	6.84E+06			
CE-141	1.24E+05	6.22E+04	0.	9.72E+03	0.	7.80E+07	9.26E+03			
CE-144	1.00E+07	3.14E+06	0.	5.67E+05	0.	8.15E+08	5.34E+05			

)

Based on 1 μ Ci/sec release rate of each isotope in and a value of 1. for X/Q, depleted X/Q and relative deposition

REVISION NO.:	PROCEDURE TITLE						PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		182 of 230
ROCEDURE NO .:							
C-200			ST. LU	CIE PLANT			
			ТАРІ	E G-10			
FI						OUS DISCHAR	SES
<u></u>			(CONTAMINATE			OUP - CHILD	
			ACTOR (SQ.				
			(- /	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	3.20E+03	3.20E+03	2.11E+03	3.20E+03	3.20E+03	3.20E+03
P32	2.19E+10	1.37E+09	0.	0.	0.	2.46E+09	8.46E+08
CR51	0.	0.	2.19E+03	8.07E+02	4.85E+03	9.19E+05	3.66E+03
MN54	0.	1.08E+06	0.	3.20E+05	0.	3.29E+06	2.05E+05
FE59	4.12E+05	9.78E+05	0.	0.	2.72E+05	3.23E+06	3.72E+05
CO57	0.	1.64E+05	0.	0.	0.	4.15E+06	2.72E+05
CO58	0.	1.50E+06	0.	0.	0.	8.90E+06	4.51E+06
CO60	0.	5.06E+06	0.	0.	0.	2.80E+07	1.52E+07
ZN65	1.76E+08	5.57E+08	0.	3.73E+08	0.	3.51E+08	2.52E+08
RB86	0.	3.32E+08	0.	0.	0.	6.54E+07	1.55E+08
SR89	1.45E+10	0.	0.	0.	0.	5.43E+08	4.16E+08
SR-90	2.37E+11	0.	0.	0.	0.	3.16E+09	6.02E+10
Y91	4.56E+03	0.	0.	0.	0.	6.06E+05	1.22E+02
ZR95	1.27E+04	5.37E+03	0.	2.23E+03	0.	9.22E+06	3.96E+03
NB-95	3.30E+04	1.41E+04	0.	5.81E+03	0.	2.44E+07	1.04E+04
RU-103	4.79E+02	0.	0.	4.99E+02	0.	1.26E+04	1.94E+02
RU-106	1.13E+04	0.	0.	5.04E+03	0.	1.75E+05	1.40E+03
AG110	7.45E+06	6.90E+06	0.	1.36E+07	0.	2.81E+09	4.10E+06

REVISION NO.: 32	PROCEDURE TITLE:		E DOSE CALCU	JLATION MANU	AL (ODCM)		PAGE:
PROCEDURE NO .:							
C-200			ST. LU	CIE PLANT			
E	NVIRONMENTAL		SE CONVERSI				GES
			CONTAMINATE ACTOR (SQ. I			DUP - CHILD C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.10E+08	4.17E+06	1.22E+06	0.	5.97E+05	1.40E+08	6.30E+06
SB-124	3.30E+06	6.22E+04	7.97E+03	0.	2.56E+06	9.33E+07	1.30E+06
SB-125	3.75E+06	1.70E+05	1.43E+05	4.76E+05	3.40E+08	2.92E+07	7.19E+05
TE 125M	8.85E+06	2.40E+06	2.49E+06	8.46E+06	0.	8.54E+06	1.18E+06
TE 127M	6.21E+06	2.14E+06	1.75E+06	2.40E+07	0.	3.58E+07	7.92E+05
TE 129M	3.32E+07	9.27E+06	1.06E+07	3.23E+07	0.	4.00E+07	5.15E+06
I130	5.45E+05	1.61E+06	2.05E+08	2.51E+06	0.	1.38E+06	6.35E+05
I131	1.48E+09	1.52E+09	4.94E+11	9.28E+08	0.	1.30E+08	1.15E+09
I132	2.13E-01	5.71E-01	7.51E+01	9:10E-01	0.	1.07E-01	2.03E-01
I133	2.14E+07	2.64E+07	6.36E+09	1.55E+07	0.	1.07E+07	1.04E+07
I134	0.	0.	1.27E-09	0.	0.	0.	0.
I135	1.79E+04	4.72E+04	6.18E+06	7.51E+04	2.42E-01	5.29E+04	1.73E+04
CS-134	6.50E+10	1.10E+11	0.	1.39E+10	1.22E+10	5.92E+08	2.33E+10
CS-136	8.34E+08	3.29E+09	0.	1.83E+09	2.51E+08	3.74E+08	2.37E+09
CS-137	9.23E+10	8.93E+10	0.	1.10E+10	1.05E+10	5.44E+08	1.33E+10
BA-140	1.40E+07	1.23E+04	0.	1.47E+03	7.31E+03	9.30E+05	8.21E+05
CE-141	1.49E+04	7.46E+03	0.	1.17E+03	0.	9.36E+06	1.11E+03
CE-144	1.20E+06	3.76E+05	0.	6.80E+04	0.	9.78E+07	6.41E+04

Note - the units for C---14 and H----3 are (mrem/yr per μ Ci/cu. meter)

.

REVISION NO	PROCEDURE TITLE:						PAGE:
32		OFFSI	TE DOSE CALC	JLATION MANU	AL (ODCM)		184 of 230
PROCEDURE NO.:							104 01 200
C-200			ST. LU	CIE PLANT			
			TABL	E G-11			
<u>El</u>	NVIRONMENTAL						ES
			NTAMINATED F		AGE GROUF		
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.33E+02	2.33E+02	1.54E+02	2.33E+02	2.33E+02	2.33E+02
P32	1.74E+09	1.09E+08	0.	0.	0.	1.96E+08	6.73E+07
CR51	0.	0.	1.58E+03	5.82E+02	3.50E+03	6.63E+05	2.64E+03
MN54	0.	3.42E+06	0.	1.02E+06	0.	1.05E+07	6.54E+05
FE59	9.95E+07	2.36E+08	0.	0.	6.55E+07	7.79E+08	8.98E+07
CO57	0.	2.10E+06	0.	0.	0.	5.33E+07	3.50E+06
CO58	0.	1.69E+07	0.	0.	0.	1.00E+08	5.10E+07
CO60	0.	6.77E+07	0.	0.	0.	3.75E+08	2.03E+08
ZN65	1.33E+08	4.22E+08	0.	2.82E+08	0.	2.66E+08	1.91E+08
RB86	0.	1.82E+08	0.	0.	0.	3.59E+07	8.50E+07
SR89	5.04E+08	0.	0.	0.	0.	1.88E+07	1.44E+07
SR90	1.05E+10	0.	0.	0.	0.	7.02E+08	2.67E+09
Y91	1.76E+06	0.	0.	0.	0.	2.33E+08	4.69E+04
ZR95	4.62E+06	1.51E+06	0.	7.47E+05	0.	2.22E+09	1.20E+06
NB95	2.68E+06	1.15E+06	0.	4.72E+05	0.	1.98E+09	8.41E+05
RU-103	1.45E+08	0.	0.	1.51E+08	0.	3.81E+09	5.87E+07
RU-106	4.51E+09	0.	0.	2.02E+09	0.	7.01E+10	5.61E+08
AG110	2.50E+06	2.31E+06	0.	4.55E+06	0.	9.44E+08	1.38E+06

REVISION NO.:	PROCEDURE TITLE:						PAGE
32		OFFSIT	E DOSE CALCI	JLATION MANU	AL (ODCM)		185 of 230
ROCEDURE NO.:							105 01 230
C-200			ST. LU	CIE PLANT			
E		AY - MEAT (COI	SE CONVERSI		AGE GROUP	- CHILD	ES
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	6.92E+09	1.37E+08	4.02E+07	0.	2.41E+06	2.31E+09	1.98E+08
SB-124	7.40E+06	1.40E+05	1.79E+04	0.	5.74E+06	2.10E+08	2.93E+06
SB-125	7.66E+07	1.84E+07	1.90E+07	6.47E+07	9.26E+08	1.44E+08	1.08E+07
TE 125M	5.69E+08	1.54E+08	1.60E+08	5.44E+08	0.	5.49E+08	7.59E+07
TE 127M	4.40E+08	1.51E+08	1.24E+08	1.70E+09	0.	2.54E+09	5.61E+07
TE 129M	1.84E+09	5.12E+08	5.87E+08	1.78E+09	0.	2.21E+09	2.84E+08
I130	8.87E-07	2.63E-06	3.34E-04	4.08E-06	0.	2.25E-06	1.03E-06
I131	1.58E+07	1.62E+07	5.25E+09	9.86E+06	0.	1.38E+06	1.22E+07
I132	0.	0.	0.	0.	0.	0.	0.
I133	6.86E-01	8.47E-01	2.04E+02	4.97E-01	0.	3.43E-01	3.33E-01
I134	0.	0.	0.	0.	0.	0.	0.
I135	3.21E-02	2.96E-02	0.	1.12E-02	3.37E-03	6.92E-04	1.32E-02
CS-134	8.83E+08	1.49E+09	0.	1.89E+08	1.65E+08	8.04E+06	3.16E+08
CS-136	4.41E+06	1.74E+07	0.	9.69E+06	1.33E+06	1.98E+06	1.25E+07
CS-137	1.27E+09	1.23E+09	0.	1.51E+08	1.44E+08	7.50E+06	1.84E+08
BA-140	4.37E+07	3.84E+04	0.	4.59E+03	2.29E+04	6.03E+06	2.57E+06
CE-141	2.10E+04	1.05E+04	0.	1.65E+03	0.	1.32E+07	1.57E+03
CE-144	2.38E+06	7.46E+05	0.	1.35E+05	0.	1.94E+08	1.27E+05

REVISION NO .:	PROCEDURE TITLE:						PAGE:
32		OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		186 of 230
ROCEDURE NO .:							
C-200			ST. LU	CIE PLANT			and the second se
EN	VIRONMENTAL	- PATHWAY-DO		E G-12 ON FACTORS F			GES
	PATHWA	Y - FRESH FRU	JITS AND VEGE ACTOR (SQ. I	TABLES	AGE GROUP	P - CHILD	
	0					()	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.47E+02	2.47E+02	1.63E+02	2.47E+02	2.47E+02	2.47E+02
P32	4.22E+08	2.64E+07	0.	0.	0.	4.74E+07	1.63E+07
CR51	0.	0.	4.68E+03	1.73E+03	1.04E+04	1.97E+06	7.83E+03
MN54	0.	1.98E+07	0.	5.89E+06	0.	6.07E+07	3.78E+06
FE59	1.48E+07	3.51E+07	0.	0.	9.75E+06	1.16E+08	1.34E+07
CO57	0.	7.53E+05	0.	0.	0.	1.91E+07	1.25E+06
CO58	0.	6.94E+06	0.	0.	0.	4.13E+07	2.09E+07
CO60	0.	2.33E+07	0.	0.	0.	1.29E+08	6.98E+07
ZN65	2.08E+07	6.59E+07	0.	4.41E+07	0.	4.15E+07	2.98E+07
RB86	0.	5.28E+07	0.	0.	0.	1.04E+07	2.46E+07
SR89	4.84E+09	0.	0.	0.	0.	1.81E+08	1.39E+08
SR90	7.79E+10	0.	0.	0.	0.	1.52E+09	1.98E+10
Y91	2.12E+06	0.	0.	0.	0.	2.82E+08	5.65E+04
ZR95	4.06E+05	9.87E+04	0.	6.07E+04	0.	1.08E+08	8.81E+04
NB95	6.20E+04	2.64E+04	0.	1.09E+04	0.	4.58E+07	1.94E+04
RU-103	2.24E+06	0.	0.	2.34E+06	0.	5.88E+07	9.05E+05
RU-106	5.19E+07	0.	0.	2.32E+07	0.	8.07E+08	6.46E+06
AG110	6.87E+05	6.36E+05	0.	1.25E+06	0.	2.59E+08	3.78E+05

REVISION NO .:	PROCEDURE TITLE	:				-	PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		187 of 230
PROCEDURE NO .:							
C-200			ST. LU	ICIE PLANT			
FN				E G-12 ON FACTORS F			GES
		AY - FRESH FR			AGE GROUP	· · · · · · · · · · · · · · · · · · ·	010
				METER-MREM/			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	1.71E-05	2.14E-07	2.26E-07	0.	0.	8.50E-06	4.21E-07
SN-126	3.87E+08	7.68E+06	2.25E+06	0.	1.75E+06	3.44E+08	1.19E+07
SB-124	1.02E+07	1.93E+05	2.47E+04	0.	7.93E+06	2.89E+08	4.04E+06
SB-125	1.22E+07	6.99E+05	6.22E+05	2.09E+06	1.04E+09	9.02E+07	2.29E+06
TE 125M	4.12E+07	1.12E+07	1.16E+07	3.94E+07	0.	3.97E+07	5.49E+06
TE 127M	2.88E+07	9.90E+06	8.09E+06	1.11E+08	0.	1.65E+08	3.67E+06
TE 129M	1.56E+08	4.35E+07	4.99E+07	1.51E+08	0.	1.88E+08	2.41E+07
I130	1.60E+05	4.73E+05	6.02E+07	7.35E+05	0.	4.05E+05	1.86E+05
I131	1.24E+08	1.27E+08	4.13E+10	7.75E+07	0.	1.09E+07	9.58E+07
I132	2.26E+01	6.05E+01	7.97E+03	9.65E+01	0.	1.14E+01	2.15E+01
I133	3.61E+06	4.46E+06	1.08E+09	2.62E+06	0.	1.81E+06	1.75E+06
I134	4.18E-05	1.14E-04	1.47E-02	1.81E-04	0.	9.89E-08	4.06E-05
I135	1.64E+04	4.33E+04	5.67E+06	6.89E+04	3.51E-03	4.85E+04	1.59E+04
CS-134	9.97E+08	1.68E+09	0.	2.14E+08	1.87E+08	9.08E+06	3.57E+08
CS-136	1.35E+07	5.32E+07	0.	2.96E+07	4.06E+06	6.05E+06	3.83E+07
CS-137	1.41E+09	1.37E+09	0.	1.68E+08	1.60E+08	8.34E+06	2.04E+08
BA-140	1.70E+08	1.56E+05	0.	1.78E+04	8.87E+04	2.08E+08	9.96E+06
CE-141	1.17E+05	5.84E+04	0.	9.13E+03	0.	7.33E+07	8.69E+03
CE-144	9.23E+06	2.89E+06	0.	5.22E+05	0.	7.51E+08	4.92E+05

REVISION NO.:	PROCEDURE TITLE	:					PAGE:
32		OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		188 of 230
PROCEDURE NO.:							100 01 200
C-200			ST. LU	CIE PLANT			
EI		L PATHWAY-DO	TABL	E G-13 ON FACTORS F	R(I) FOR GASEC		GES
		PATHWAY - IN	HALATION	AGE GROU	JP - TEENAGER	2	
		ORGAN DOSE	EFACTOR (M	REM/YR PER μ0	CI/CU. METER)		
NUCLIDE	DONE		TUMPOID			GI-LLI	WHOLE BODY
NUCLIDE	BONE		THYROID	KIDNEY	LUNG		
H3	0.	8.48E+02	8.48E+02	1.07E+03	8.48E+02	8.48E+02	8.48E+02
P32	1.32E+06	7.72E+04	0.	0.	0.	8.64E+04	5.02E+04
CR51	0.	0.	5.95E+01	2.28E+01	1.44E+04	3.32E+03	1.00E+02
MN54	0.	3.96E+04	0.	9.84E+03	1.40E+06	7.74E+04	6.30E+03
FE59	1.18E+04	2.78E+07	0.	0.	1.02E+06	1.88E+05	1.06E+04
CO57	0.	6.92E+02	0.	0.	3.70E+05	3.14E+04	6.71E+02
CO58	0.	1.76E+02	0.	0.	1.37E+06	9.52E+04	2.34E+02
CO60	0.	1.24E+03	0.	0.	8.56E+06	2.35E+05	1.65E+03
ZN65	3.24E+04	1.03E+05	0.	6.90E+04	8.72E+05	5.34E+04	4.66E+04
RB86	0.	1.35E+05	0.	0.	0.	1.66E+04	5.90E+04
SR89	3.87E+04	0.	0.	0.	2.50E+06	3.54E+05	1.11E+03
SR90	1.18E+07	0.	0.	0.	1.66E+07	7.24E+05	7.23E+05
Y91	5.38E+04	0.	0.	0.	2.86E+06	3.74E+05	1.44E+03
ZR95	1.09E+04	3.63E+03	0.	5.42E+04	2.56E+06	1.33E+05	2.54E+03
NB95	1.36E+03	8.24E+02	0.	7.74E+03	7.17E+05	8.80E+04	4.62E+02
RU-103	1.63E+02	0.	0.	5.83E+03	7.51E+05	9.44E+04	7.32E+01
RU-106	8.40E+03	0.	0.	1.34E+05	1.64E+07	9.28E+05	1.06E+03
AG110	1.08E+04	1.00E+04	0.	1.97E+04	4.64E+06	3.02E+05	5.94E+03

REVISION NO.:	PROCEDURE TITLE	•			··· ·		PAGE:
32		OFFSIT	E DOSE CALCU	JLATION MANU	IAL (ODCM)		189 of 230
ROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
				E G-13			
<u>E</u> 1			· · · · · · ·		<u>R(I) FOR GASEC</u> JP - TEENAGER		GES
		PATHWAY - INI				ξ.	
		ORGAN DOSE	FACTOR (M	REM/YR PER μ	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	2.79E+04	6.14E+02	4.92E+02	0.	3.91E+06	3.13E+05	9.20E+02
SN-126	1.26E+06	3.34E+04	9.84E+03	0.	9.36E+06	1.27E+05	4.80E+04
SB-124	3.12E+04	5.89E+02	7.55E+01	0.	2.48E+06	4.06E+05	1.24E+04
SB-125	6.61E+04	7.13E+02	5.87E+01	0.	2.20E+06	1.01E+05	1.33E+04
TE 125M	4.07E+02	1.86E+02	1.17E+02	1.24E+04	5.36E+05	7.08E+04	5.53E+01
TE 127M	1.26E+04	5.62E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05	1.57E+03
TE 129M	1.19E+03	5.64E+02	3.90E+02	3.66E+04	2.03E+06	3.84E+05	1.92E+02
I130	4.58E+03	1.34E+04	1.74E+06	2.09E+04	0.	7.69E+03	5.29E+03
I131	3.37E+04	4.72E+04	1.39E+07	6.14E+04	0.	5.96E+03	2.82E+04
I132	1.16E+03	3.26E+03	4.38E+05	5.19E+03	0.	4.06E+02	1.16E+03
I133	1.23E+04	2.06E+04	3.83E+06	2.60E+04	0.	1.00E+04	6.34E+03
I134	6.45E+02	1.73E+03	2.30E+05	2.75E+03	0.	1.01E+00	6.16E+02
I135	2.69E+03	6.99E+03	9.36E+05	1.11E+04	0.	5.25E+03	2.58E+03
CS-134	4.83E+05	1.10E+06	0.	2.88E+05	1.44E+05	8.96E+03	5.44E+05
CS-136	3.91E+04	1.46E+05	0.	8.56E+04	1.20E+04	1.17E+04	1.11E+05
CS-137	6.42E+05	8.24E+05	0.	2.22E+05	1.18E+05	7.68E+03	3.03E+05
BA-140	5.30E+03	4.85E+00	0.	1.67E+01	2.02E+06	2.12E+04	3.42E+02
CE-141	2.27E+03	1.52E+03	0.	6.26E+03	5.83E+05	1.14E+05	1.74E+02
CE-144	4.19E+05	1.74E+05	0.	8.48E+05	1.38E+07	8.40E+05	2.24E+04

EVISION NO.: 32	PROCEDURE TITLE:		TE DOSE CALCI	JLATION MANU	AL (ODCM)		PAGE:
ROCEDURE NO .:							190 of 230
C-200			ST. LU	CIE PLANT			
EI	NVIRONMENTAL	_ PATHWAY-DO		E G-14 ON FACTORS F		OUS DISCHAR	GES
_		•	ACTOR (SQ. I	-		P - TEENAGER C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	9.93E+02	9.93E+02	1.26E+03	9.93E+02	9.93E+02	9.93E+02
P32	2.21E+10	1.38E+09	0.	0.	0.	2.48E+09	8.54E+08
CR51	0.	0.	2.21E+04	8.15E+03	4.90E+04	9.29E+06	3.69E+04
MN54	0.	1.09E+07	0.	3.23E+06	0.	3.33E+07	2.07E+06
FE59	3.84E+07	9.12E+07	0.	0.	2.53E+07	3.01E+08	3.47E+07
CO57	0.	1.65E+06	0.	0.	0.	4.19E+07	2.75E+06
CO58	0.	8.10E+06	0.	0.	0.	1.10E+08	1.85E+07
CO60	0.	2.73E+07	0.	0.	0.	3.27E+08	6.23E+07
ZN65	1.77E+09	5.63E+09	0.	3.77E+09	0.	3.55E+09	2.55E+09
RB86	0.	3.35E+09	0.	0.	0.	6.61E+08	1.56E+09
SR-89	2.80E+09	0.	0.	0.	0.	3.03E+08	8.03E+07
SR-90	8.29E+10	0.	0.	0.	3.38E+06	1.76E+09	2.05E+10
Y91	1.54E+04	0.	0.	0.	0.	5.93E+06	4.12E+02
ZR95	4.78E+04	2.84E+04	0.	2.25E+04	0.	1.15E+08	1.60E+04
NB95	1.24E+05	7.46E+04	0.	5.87E+04	0.	3.05E+08	4.21E+04
RU-103	1.69E+03	0.	0.	5.04E+03	0.	1.32E+05	7.56E+02
RU-106	3.83E+04	0.	0.	5.09E+04	0.	1.73E+06	4.81E+03
AG-110	7.53E+07	6.97E+07	0.	1.37E+08	0.	2.84E+10	4.14E+07

REVISION NO .:	PROCEDURE TITLE:						PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANL	JAL (ODCM)		191 of 23
ROCEDURE NO.:							1310120
C-200			ST. LU	ICIE PLANT			
E				E G-14			~=e
	NVIRONMENTAL		DISE CONVERSIONTAMINATED			P - TEENAGER	
		•		•	YR PER µCI/SE		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.12E+09	4.21E+07	1.24E+07	0.	6.03E+06	1.41E+09	6.37E+07
SB-124	3.33E+07	6.29E+05	8.05E+04	0.	2.59E+07	9.43E+08	1.32E+07
SB-125	3.45E+07	9.58E+05	5.05E+05	4.80E+06	3.43E+09	2.95E+08	6.82E+06
TE 125M	3.00E+07	1.08E+07	8.47E+06	8.55E+07	0.	8.39E+07	3.98E+06
TE 127M	6.02E+07	2.11E+07	1.59E+07	2.43E+08	0.	3.02E+08	7.45E+06
TE 129M	1.13E+08	4.18E+07	3.61E+07	3:27E+08	0.	3.93E+08	1.78E+07
I130	5.51E+05	1.63E+06	2.07E+08	2.53E+06	0.	1.40E+06	6.41E+05
I131	5.12E+08	7.24E+08	2.09E+11	9.38E+08	0.	1.37E+08	4.31E+08
I132	2:16E-01	5.76E-01	7.59E+01	9.19E-01	0.	1.08E-01	2.05E-01
I133	7.33E+06	1.24E+07	2.26E+09	1.56E+07	0.	9.02E+06	3.83E+06
I134	0.	0.	1.29E-09	0.	0.	0.	0
I135	1.81E+04	4.77E+04	6.24E+06	7.58E+04	9.79E-02	5.34E+04	1.75E+04
CS-134	9.44E+09	2.28E+10	0.	5.63E+09	2.76E+09	2.63E+08	1.06E+10
CS-136	3.37E+08	1.33E+09	0.	7.41E+08	1.02E+08	1.51E+08	9.58E+08
CS-137	1.28E+10	1.72E+10	0.	4.43E+09	2.28E+09	2.29E+08	6.04E+09
BA-140	4.84E+07	5.95E+04	0.	1.48E+04	3.98E+04	9.16E+06	3.11E+06
CE-141	5.05E+04	3.39E+04	0.	1.18E+04	0.	9.18E+07	3.89E+03
CE-144	4.10E+06	1.68E+06	0.	6.87E+05	0.	9.65E+08	2.17E+05

EVISION NO.:	PROCEDURE TITLE						PAGE:			
32		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		192 of 23			
ROCEDURE NO .:										
C-200		ST. LUCIE PLANT								
<u>E</u>			DSE CONVERS							
		•	ACTOR (SQ.	FORAGE) METER-MREM/		J P - TEENAGE F C)	र			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY			
H3	0.	2.03E+03	2.03E+03	2.56E+03	2.03E+03	2.03E+03	2.03E+03			
P32	2.65E+10	1.66E+09	0.	0.	0.	2.98E+09	1.03E+09			
CR51	0.	0.	2.65E+03	9.78E+02	5.88E+03	1.11E+06	4.43E+03			
MN54	0.	1.30E+06	0.	3.88E+05	0.	3.99E+06	2.49E+05			
FE59	4.99E+05	1.19E+06	0.	0.	3.29E+05	3.91E+06	4.51E+05			
CO57	0.	1.98E+05	0.	0.	0.	5.03E+06	3.30E+05			
CO58	0.	9.72E+05	0.	0.	0.	1.31E+07	2.22E+06			
CO60	0.	3.28E+06	0.	0.	0.	3.93E+07	7.48E+06			
ZN65	2.13E+08	6.76E+08	0.	4.52E+08	0.	4.26E+08	3.06E+08			
RB86	0.	4.02E+08	0.	0.	0.	7.93E+07	1.88E+08			
SR89	5.87E+09	0.	0.	0.	0.	6.37E+08	1.69E+08			
SR90	1.74E+11	0.	0.	0.	4.05E+05	3.68E+09	4.30E+10			
Y91	1.85E+03	0.	0.	0.	0.	7.11E+05	4.94E+01			
ZR95	5.74E+03	3.41E+03	0.	2.70E+03	0.	1.38E+07	1.93E+03			
NB95	1.49E+04	8.96E+03	0.	7.05E+03	0.	3.66E+07	5.05E+03			
RU-103	2.03E+02	0.	0.	6.05E+02	0.	1.58E+04	9.08E+01			
RU-106	4.59E+03	0.	0.	6.11E+03	0.	2.08E+05	5.78E+02			
AG110	9.04E+06	8.36E+06	0.	1.64E+07	0.	3.41E+09	4.97E+06			

REVISION NO.:	PROCEDURE TITLE						PAGE:
32 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODC M)		193 of 230
C-200			ST. LL	ICIE PLANT			
Ē	NVIRONMENTA		OSE CONVERS				
			ONTAMINATED ACTOR (SQ.			JP - TEENAGE C)	R
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.54E+08	5.05E+06	1.48E+06	0.	7.23E+05	1.69E+08	7.64E+06
SB-124	4.00E+06	7.54E+04	9.66E+03	0.	3.10E+06	1.13E+08	1.58E+06
SB-125	4.14E+06	1.15E+05	6.06E+04	5.77E+05	4.12E+08	3.54E+07	8.19E+05
TE 125M	3.61E+06	1.29E+06	1.02E+06	1.03E+07	0.	1.01E+07	4.78E+05
TE 127M	7.23E+06	2.52E+06	1.91E+06	2.92E+07	0.	3.63E+07	8.94E+05
TE 129M	1.35E+07	5.02E+06	4.34E+06	3.92E+07	0.	4.72E+07	2.13E+06
I130	6.61E+05	1.96E+06	2.49E+08	3.04E+06	0.	1.68E+06	7.69E+05
I131	6.15E+08	8.68E+08	2.50E+11	1.13E+09	0.	1.64E+08	5.17E+08
I132	2.59E-01	6.92E-01	9.11E+01	1.10E+00	0.	1.30E-01	2.46E-01
I133	8.79E+06	1.49E+07	2.71E+09	1.88E+07	0.	1.08E+07	4.59E+06
I134	0.	0.	1.55E-09	0.	0.	0.	0. ·
I135	2.17E+04	5.73E+04	7.49E+06	9.10E+04	2.94E-01	6.41E+04	2.10E+04
CS-134	2.83E+10	6.83E+10	0.	1.69E+10	8.27E+09	7.88E+08	3.19E+10
CS-136	1.01E+09	3.99E+09	0.	2.22E+09	3.05E+08	4.54E+08	2.87E+09
CS-137	3.84E+10	5.16E+10	0.	1.33E+10	6.85E+09	6.88E+08	1.81E+10
BA-140	5.81E+06	7.14E+03	0.	1.78E+03	4.78E+03	1.10E+06	3.73E+05
CE-141	6.06E+03	4.07E+03	0.	1.41E+03	0.	1.10E+07	4.66E+02
CE-144	4.92E+05	2.02E+05	0.	8.24E+04	0.	1.16E+08	2.61E+04

REVISION NO .:	PROCEDURE TITLE						PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		194 of 230
PROCEDURE NO .:							194 01 230
C-200			ST. LU	CIE PLANT			
<u>E</u>	NVIRONMENTA		DSE CONVERSI				<u>SES</u>
		•	AMINATED FOI ACTOR (SQ.	RAGE) METER-MREM/	AGE GROUP - YR PER μCI/SE		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.93E+02	1.93E+02	2.44E+02	1.93E+02	1.93E+02	1.93E+02
P32	2.76E+09	1.73E+08	0.	0.	0.	3.10E+08	1.07E+08
CR51	0.	0.	2.50E+03	9.22E+02	5.55E+03	1.05E+06	4.18E+03
MN54	0.	5.42E+06	0.	1.61E+06	0.	1.66E+07	1.04E+06
FE59	1.58E+08	3.74E+08	0.	0.	1.04E+08	1.24E+09	1.42E+08
CO57	0.	3.33E+06	0.	0.	0.	8.45E+07	5.54E+06
CO58	0.	1.44E+07	0.	0.	0.	1.94E+08	3.27E+07
CO60	0.	5.73E+07	0.	0.	0.	6.87E+08	1.31E+08
ZN65	2.11E+08	6.69E+08	0.	4.47E+08	0.	4.21E+08	3.03E+08
RB86	0.	2.89E+08	0.	0.	0.	5.69E+07	1.35E+08
SR89	2.66E+08	0.	0.	0.	0.	2.89E+07	7.64E+06
SR90	1.01E+10	0.	0.	0.	2.79E+08	1.02E+09	2.49E+09,
Y91	9.34E+05	0.	0.	0.	0.	3.59E+08	2.49E+04
ZR95	2.67E+06	1.24E+06	0.	1.18E+06	0.	4.20E+09	7.61E+05
NB95	1.58E+06	9.51E+05	0.	7.48E+05	0.	3.88E+09	5.37E+05
RU-103	8.05E+07	0.	0.	2.40E+08	0.	6.28E+09	3.60E+07
RU-106	2.40E+09	0.	0.	3.20E+09	0.	1.09E+11	3.02E+08
AG110	3.97E+06	3.67E+06	0.	7.21E+06	0.	1.50E+09	2.18E+06

REVISION NO .:	PROCEDURE TITLE:				· · ·		PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		195 of 230
PROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
E	NVIRONMENTAL	_ PATHWAY-DO		E G-16 ON FACTORS F	R(I) FOR GASEC	OUS DISCHAR	GES
			AMINATED FO		AGE GROUP -		
				METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.10E+10	2.18E+08	6.38E+07	0.	3.82E+06	3.66E+09	3.14E+08
SB-124	1.17E+07	2.21E+05	2.84E+04	0.	9.11E+06	3.32E+08	4.64E+06
SB-125	5.01E+07	1.31E+07	1.02E+07	1.03E+08	1.47E+09	2.25E+08	7.60E+06
TE 125M	3.03E+08	1.08E+08	8.55E+07	8.63E+08	0.	8.47E+08	4.02E+07
TE 127M	6.68E+08	2.34E+08	1.77E+08	2.69E+09	0.	3.35E+09	8.28E+07
TE 129M	9.78E+08	3.63E+08	3.13E+08	2.83E+09	0.	3.41E+09	1.53E+08
I130	1.41E-06	4.16E-06	5.30E-04	6.47E-06	0.	3.57E-06	1.64E-06
I131	8.54E+06	1.21E+07	3.48E+09	1.56E+07	0.	2.28E+06	7.19E+06
I132	0.	0.	0.	0.	0.	0.	0.
I133	3.69E-01	6.26E-01	1.14E+02	7.88E-01	0.	4.55E-01	1.93E-01
I134	0.	0.	0.	0.	0.	0.	0.
I135	5.08E-02	4.69E-02	0.	1.78E-02	5.34E-03	1.10E-03	2.08E-02
CS-134	5.03E+08	1.21E+09	0.	3.00E+08	1.47E+08	1.40E+07	5.66E+08
CS-136	6.99E+06	2.76E+07	0.	1.54E+07	2.11E+06	3.14E+06	1.99E+07
CS-137	6.92E+08	9.31E+08	0.	2.40E+08	1.24E+08	1.24E+07	3.27E+08
BA-140	2.37E+07	2.93E+04	0.	7.28E+03	1.95E+04	9.19E+06	1.53E+06
CE-141	1.12E+04	7.51E+03	0.	2.61E+03	0.	2.03E+07	8.61E+02
CE-144	1.28E+06	5.23E+05	0.	2.14E+05	0.	3.00E+08	6.76E+04

REVISION NO .:	PROCEDURE TITLE:						PAGE:
32		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		196 of 230
PROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
E	NVIRONMENTAL	PATHWAY-DO		E G-17 ON FACTORS F			SES
			S AND VEGET		AGE GROUP -		
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
	,		· · · · · · · · · · · · · · · · · · ·				, · · · · · · · · · · · · · · · · · · ·
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.09E+02	2.09E+02	2.64E+02	2.09E+02	2.09E+02	2.09E+02
P32	6.81E+08	4.27E+07	0.	0.	0.	7.66E+07	2.64E+07
CR51	0.	0.	7.56E+03	2.79E+03	1.68E+04	3.18E+06	1.27E+04
MN54	0.	3.20E+07	0.	9.52E+06	0.	9.80E+07	6.11E+06
FE59	2.39E+07	5.67E+07	0.1	0.	1.57E+07	1.87E+08	2.16E+07
CO57	0.	1.22E+06	0.	0.	0.	3.09E+07	2.02E+06
CO58	0.	6.01E+06	0.	0.	0.	8.12E+07	1.37E+07
CO60	0.	2.01E+07	0.	0.	0.	2.41E+08	4.58E+07
ZN65	3.35E+07	1.06E+08	0.	7.12E+07	0.	6.70E+07	4.82E+07
RB86	0.	8.52E+07	0.	0.	0.	1.68E+07	3.97E+07
SR89	2.61E+09	0.	0.	0.	0.	2.83E+08	7.48E+07
SR-90	7.61E+10	0.	0.	0.	2.41E+08	2.31E+09	1.88E+10
Y91	1.15E+06	0.	0.	0.	0.	4.41E+08	3.06E+04
ZR95	2.35E+05	8.19E+04	0.	9.81E+04	0.	1.92E+08	5.61E+04
NB95	3.72E+04	2.24E+04	0.	1.76E+04	0.	9.14E+07	1.26E+04
RU-103	1.27E+06	0.	0.	3.77E+06	0.	9.87E+07	5.66E+05
RU-106	2.82E+07	0.	0.	3.75E+07	0.	1.28E+09	3.54E+06
AG110	1.11E+06	1.03E+06	0.	2.02E+06	0.	4.19E+08	6.10E+05

EVISION NO.: 32	PROCEDURE TITLE		TE DOSE CALC	ULATION MANU	JAL (ODCM)		PAGE: 197 of 230
ROCEDURE NO.: C-200			ST I U	ICIE PLANT			
	PATHWAY	- FRESH FRUIT	TABL DSE CONVERSI S AND VEGET	E G-17 ION FACTORS I ABLES	R(I) FOR GASEC AGE GROUP - YR PER μCI/SE	TEENAGER	GES
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	9.25E-06	1.53E-07	1.22E-07	0.	0.	1.33E-05	2.28E-07
SN-126	6.25E+08	·1.24E+07	3.64E+06	0.	2.83E+06	5.55E+08	1.94E+07
SB-124	1.65E+07	3.12E+05	3.99E+04	0.	1.28E+07	4.67E+08	6.53E+06
SB-125	1.73E+07	5.97E+05	3.48E+05	3.38E+06	1.68E+09	1.45E+08	3.40E+06
TE 125M	2.23E+07	7.99E+06	6.30E+06	6.36E+07	0.	6.24E+07	2.96E+06
TE 127M	4.46E+07	1.55E+07	1.18E+07	1.80E+08	0.	2.23E+08	5.51E+06
TE 129M	8.46E+07	3.14E+07	2.71E+07	2.45E+08	0.	2.95E+08	1.33E+07
I130	2.58E+05	7.64E+05	9.72E+07	1.19E+06	0.	6.55E+05	3.00E+05
I131	6.84E+07	9.66E+07	2.79E+10	1.25E+08	0.	1.83E+07	5.76E+07
I132	3.65E+01	9.77E+01	1.29E+04	1.56E+02	0.	1.84E+01	3.47E+01
I133	1.98E+06	3.36E+06	6.10E+08	4.23E+06	0.	2.44E+06	1.04E+06
I134	6.75E-05	1.83E-04	2.38E-02	2.92E-04	0.	1.60E-07	6.56E-05
I135	2.65E+04	7.00E+04	9.15E+06	1.11E+05	5.67E-03	7.84E+04	2.57E+04
CS-134	5.79E+08	1.40E+09	0.	3.45E+08	1.69E+08	1.61E+07	6.52E+08
CS-136	2.18E+07	8.60E+07	0.	4.78E+07	6.56E+06	9.77E+06	6.19E+07
CS-137	7.83E+08	1.05E+09	0.	2.72E+08	1.40E+08	1.41E+07	3.70E+08
BA-140	9.38E+07	1.21E+05	0.	2.88E+04	7.73E+04	3.19E+08	6.04E+06
CE-141	6.32E+04	4.24E+04	0.	1.47E+04	0.	1.15E+08	4.86E+03
CE-144	5.03E+06	2.06E+06	0.	8.43E+05	0.	1.19E+09	2.67E+05

REVISION NO.:	PROCEDURE TITLE	:					PAGE:
32 ROCEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		198 of 23
C-200			ST. LU	CIE PLANT			
<u>E</u> I	NVIRONMENTA		DSE CONVERSI			US DISCHAR	GES
		PATHWAY - ORGAN DOSE	INHALATION EFACTOR (M	AGE GR REM/YR PER μ0	OUP - ADULT CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.07E+03	1.07E+03	1.07E+03	1.07E+03	1.07E+03	1.07E+03
P32	1.32E+06	7.72E+04	0.	0.	0.	8.64E+04	5.02E+04
CR51	0.	0.	5.95E+01	2.28E+01	1.44E+04	3.32E+03	1.00E+02
MN54	0.	3.96E+04	0.	9.84E+03	1.40E+06	7.74E+04	6.30E+03
FE59	1.18E+04	2.78E+07	0.	0.	1.02E+06	1.88E+05	1.06E+04
CO57	0.	6.92E+02	0.	0.	3.70E+05	3.14E+04	6.71E+02
CO58	0.	1.58E+03	0.	0.	9.28E+05	1.06E+05	2.07E+03
CO60	0.	1.15E+04	0.	0.	5.98E+06	2.85E+05	1.48E+04
ZN65	3.24E+04	1.03E+05	0.	6.90E+04	8.72E+05	5.34E+04	4.66E+04
RB86	0.	1.35E+05	0.	0.	0.	1.66E+04	5.90E+04
SR89	3.04E+05	0.	0.	0.	1.40E+06	3.50E+05	8.72E+03
SR90	9.92E+07	0.	0.	0.	9.60E+06	7.22E+05.	6.10E+06
Y91	4.62E+05	0.	0.	0.	1.70E+06	3.85E+05	1.24E+04
ZR95	1.07E+05	3.44E+04	0.	5.42E+04	1.78E+06	1.50E+05	2.33E+04
NB95	1.41E+04	7.82E+03	0.	7.74E+03	5.06E+05	1.04E+05	4.21E+03
RU-103	1.53E+03	0.	0.	5.83E+03	5.06E+05	1.10E+05	6.58E+02
RU-106	6.91E+04	0.	0.	1.34E+05	9.44E+06	9.12E+05	8.72E+03
AG110	1.08E+04	1.00E+04	0.	1.97E+04	4.64E+06	3.02E+05	5.94E+03

REVISION NO.:	PROCEDURE TITLE						PAGE:
32 ROCEDURE NO.:		OFFSIT	E DOSE CALC	ULATION MANU	IAL (ODCM)		199 of 230
			OT 111				
C-200			ST. LU	CIE PLANT			
E	NVIRONMENTA	L PATHWAY-DO		E G-18 ON FACTORS I	R(I) FOR GASEC	US DISCHAR	GES
		PATHWAY -			OUP - ADULT		
		ORGAN DOSE		REM/YR PER μ			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	2.42E+05	5.33E+03	4.53E+03	0.	2.30E+06	3.14E+05	7.86E+03
SN-126	1.26E+06	3.34E+04	9.84E+03	0.	9.36E+06	1.27E+05	4.80E+04
SB-124	3.12E+04	5.89E+02	7.55E+01	0.	2.48E+06	4.06E+05	1.24E+04
SB-125	6.61E+04	7.13E+02	5.87E+01	0.	2.20E+06	1.01E+05	1.33E+04
TE 125M	3.42E+03	1.58E+03	1.05E+03	1.24E+04	3.14E+05	7.06E+04	4.67E+02
TE 127M	1.26E+04	5.62E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05	1.57E+03
TE 129M	9.76E+03	4.67E+03	3.44E+03	3.66E+04	1.16E+06	3.83E+05	1.58E+03
I130	4.58E+03	1.34E+04	1.74E+06	2.09E+04	0.	7.69E+03	5.29E+03
I131	2.52E+04	3.58E+04	1.19E+07	6.14E+04	0.	6.28E+03	2.05E+04
I132	1.16E+03	3.26E+03	4.38E+05	5.19E+03	0.	4.06E+02	1.16E+03
I133	8.64E+03	1.49E+04	2.93E+06	2.60E+04	0.	8.72E+03	4.54E+03
I134	6.45E+02	1.73E+03	2.30E+05	2.75E+03	0.	1.01E+00	6.16E+02
I135	2.69E+03	6.99E+03	9.36E+05	1.11E+04	0.	5.25E+03	2.58E+03
CS-134	3.74E+05	8.48E+05	0.	2.88E+05	9.76E+04	1.04E+04	7.29E+05
CS-136	3.91E+04	1.46E+05	0.	8.56E+04	1.20E+04	1.17E+04	1.11E+05
CS-137	4.78E+05	6.22E+05	0.	2.22E+05	7.53E+04	8.40E+03	4.29E+05
BA-140	3.90E+04	4.90E+01	0.	1.67E+01	1.27E+06	2.18E+05	2.57E+03
CE-141	1.99E+04	1.35E+04	0.	6.26E+03	3.62E+05	1.20E+05	1.53E+03
CE-144	3.43E+06	1.43E+06	0.	8.48E+05	7.78E+06	8.16E+05	1.84E+05

EVISION NO.:	PROCEDURE TITLE						PAGE:
32 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		200 of 23
C-200			ST. LU	CIE PLANT			
<u>E</u> I						DUS DISCHAR	GES
			ACTOR (SQ.				
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	9.73E+02	9.73E+02	9.73E+02	9.73E+02	9.73E+02	9.73E+02
P32	1.71E+10	1.07E+09	0.	0.	0.	1.92E+09	6.62E+08
CR51	0.	0.	1.71E+04	6.32E+03	3.80E+04	7.20E+06	2.86E+04
MN54	0.	8.41E+06	0.	2.50E+06	0.	2.58E+07	1.61E+06
FE59	2.98E+07	7.06E+07	0.	0.	1.96E+07	2.33E+08	2.69E+07
CO57	0.	1.28E+06	0.	0.	0.	3.25E+07	2.13E+06
CO58	0.	4.72E+06	0.	0.	0.	9.56E+07	1.06E+07
CO60	0.	1.65E+07	0.	0.	0.	3.08E+08	3.62E+07
ZN65	1.37E+09	4.36E+09	0.	2.92E+09	0.	2.75E+09	1.98E+09
RB86	0.	2.60E+09	0.	0.	0.	5.12E+08	1.21E+09
SR89	1.46E+09	0.	0.	0.	0.	2.33E+08	4.17E+07
SR90	4.70E+10	0.	0.	0.	0.	6.37E+08	1.15E+10
Y91	8.60E+03	0.	0.	0.	0.	4.73E+06	2.31E+02
ZR95	3.18E+04	1.75E+04	0.	1.75E+04	0.	1.05E+08	6.95E+03
NB95	8.26E+04	4.59E+04	0.	4.55E+04	0.	2.79E+08	1.80E+04
RU-103	1.02E+03	0.	0.	3.91E+03	0.	1.19E+05	4.41E+02
RU-106	2.04E+04	0.	0.	3.95E+04	0.	1.32E+06	2.58E+03
AG110	5.84E+07	5.40E+07	0.	1.06E+08	0.	2.20E+10	3.21E+07

REVISION NO.:	PROCEDURE TITLE:						PAGE:
32 PROCEDURE NO.:	-	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		201 of 230
C-200			ST. LU	CIE PLANT			
<u>E1</u>			SE CONVERSI			DUS DISCHAR	<u>SES</u>
		•	CONTAMINATEI ACTOR (SQ. I		YR PER µCI/SE		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.65E+09	3.27E+07	9.56E+06	0.	4.67E+06	1.09E+09	4.94E+07
SB-124	2.58E+07	4.87E+05	6.24E+04	0.	2.00E+07	7.31E+08	1.02E+07
SB-125	2.64E+07	6.06E+05	2.99E+05	3.72E+06	2.66E+09	2.29E+08	5.23E+06
TE 125M	1.63E+07	5.91E+06	4.91E+06	6.63E+07	0.	6.50E+07	2.18E+06
TE 127M	4.63E+07	1.63E+07	1.21E+07	1.88E+08	0.	2.11E+08	5.72E+06
TE 129M	6.06E+07	2.27E+07	2.09E+07	2.53E+08	0.	3.04E+08	9.61E+06
I130	4.27E+05	1.26E+06	1.61E+08	1.96E+06	0.	1.08E+06	4.97E+05
I131	2.96E+08	4.25E+08	1.39E+11	7.27E+08	0.	1.12E+08	2.43E+08
I132	1.67E-01	4.47E-01	5.88E+01	7.12E-01	0.	8.39E-02	1.59E-01
I133	4.00E+06	6.94E+06	1.33E+09	1.21E+07	0.	6.10E+06	2.12E+06
I134	0.	0.	9.98E-10	0.	0.	0.	0.
I135	1.40E+04	3.70E+04	4.84E+06	5.88E+04	7.58E-02	4.14E+04	1.36E+04
CS-134	5.66E+09	1.35E+10	0.	4.36E+09	1.45E+09	2.36E+08	1.10E+10
CS-136	2.61E+08	1.03E+09	0.	5.74E+08	7.87E+07	1.17E+08	7.43E+08
CS-137	7.39E+09	1.01E+10	0.	3.44E+09	1.14E+09	1.95E+08	6.62E+09
BA-140	2.69E+07	3.38E+04	0.	1.15E+04	1.93E+04	5.70E+07	1.78E+06
CE-141	2.91E+04	1.97E+04	0.	9.13E+03	0.	7.52E+07	2.23E+03
CE-144	2.15E+06	8.97E+05	0.	5.32E+05	0.	7.26E+08	1.15E+05

EVISION NO .:	PROCEDURE TITLE:	:					PAGE:
32 ROCEDURE NO.:		OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		202 of 230
C-200			ST. LU				
F	NVIRONMENTAI					OUS DISCHAR	GFS
			CONTAMINATE			DUP - ADULT	
		•	ACTOR (SQ. I		YR PER μCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.99E+03	1.99E+03	1.99E+03	1.99E+03	1.99E+03	1.99E+03
P32	2.05E+10	1.29E+09	0.	0.	0.	2.31E+09	7.94E+08
CR51	0.	0.	2.05E+03	7.58E+02	4.56E+03	8.64E+05	3.43E+03
MN54	0.	1.01E+06	· 0.	3.00E+05	0.	3.09E+06	1.93E+05
FE59	3.87E+05	9.18E+05	0.	0.	2.55E+05	3.03E+06	3.50E+05
CO57	0.	1.54E+05	0.	0.	0.	3.90E+06	2.55E+05
CO58	0.	5.67E+05	0.	0.	0.	1.15E+07	1.27E+06
CO60	0.	1.98E+06	0.	0.	0.	3.70E+07	4.34E+06
ZN65	1.65E+08	5.24E+08	0.	3.50E+08	0.	3.30E+08	2.37E+08
RB86	0.	3.12E+08	0.	0.	0.	6.15E+07	1.45E+08
SR89	3.06E+09	0.	0.	0.	0.	4.89E+08	8.76E+07
SR-90	9.87E+10	0.	0.	0.	0.	1.32E+09	2.41E+10
Y91	1.03E+03	0.	0.	0.	0.	5.68E+05	2.77E+01
ZR95	3.82E+03	2.10E+03	0.	2.10E+03	0.	1.26E+07	8.34E+02
NB-95	9.92E+03	5.51E+03	0.	5.46E+03	0.	3.34E+07	2.17E+03
RU-103	1.23E+02	0.	0.	4.69E+02	0.	1.43E+04	5.30E+01
RU-106	2.45E+03	0.	0.	4.73E+03	0.	1.58E+05	3.10E+02
AG110	7.00E+06	6.48E+06	0.	1,27E+07	0.	2.64E+09	3.85E+06

REVISION NO.:	PROCEDURE TITLE						PAGE:
32 PROCEDURE NO.:		OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		203 of 23
C-200			ST. LU	ICIE PLANT			
E	NVIRONMENTA	L PATHWAY-DO		E G-20 ION FACTORS F	R(I) FOR GASE	OUS DISCHAR	<u>GES</u>
		GOATS MILK (OUP - ADULT	
	Ċ	DRGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.97E+08	3.92E+06	1.15E+06	0.	5.61E+05	1.31E+08	5.92E+06
SB-124	3.10E+06	5.85E+04	7.49E+03	0.	2.40E+06	8.77E+07	1.22E+06
SB-125	3.16E+06	7.28E+04	3.58E+04	4.47E+05	3.19E+08	2.74E+07	6.29E+05
TE 125M	1.96E+06	7.10E+05	5.89E+05	7.95E+06	0.	7.81E+06	2.62E+05
TE 127M	.5.57E+06	1.94E+06	1.47E+06	2.26E+07	0.	2.52E+07	6.86E+05
TE 129M	7.27E+06	2.72E+06	2.51E+06	3.04E+07	0.	3.65E+07	1.15E+06
I130	5.12E+05	1.52E+06	1.93E+08	2.36E+06	0.	1.30E+06	5.96E+05
I131	3.56E+08	5.10E+08	1.67E+11	8.72E+08	0.	1.34E+08	2.92E+08
I132	2.00E-01	5.36E-01	7.06E+01	8.55E-01	0.	1.01E-01	1.91E-01
I133	4.80E+06	8.32E+06	1.60E+09	1.45E+07	0.	7.32E+06	2.54E+06
I134	0.	0.	1.20E-09	0.	0.	0.	0.
I135	1.68E+04	4.44E+04	5.80E+06	7.05E+04	2.28E-01	4.97E+04	1.63E+04
CS-134	1.70E+10	4.04E+10	0.	1.31E+10	4.34E+09	7.06E+08	3.30E+10
CS-136	7.84E+08	3.09E+09	0.	1.72E+09	2.36E+08	3.52E+08	2.23E+09
CS-137	2.22E+10	3.03E+10	0.	1.03E+10	3.42E+09	5.83E+08	1.99E+10
BA-140	3.23E+06	4.05E+03	0.	1.38E+03	2.32E+03	6.84E+06	2.13E+05
CE-141	3.49E+03	2.36E+03	0.	1.10E+03	0.	9.02E+06	2.68E+02
CE-144	2.58E+05	1.08E+05	0.	6.39E+04	0.	8.71E+07	1.38E+04

REVISION NO .:	PROCEDURE TITLE:						PAGE:
32		OFFSI	E DOSE CALC	JLATION MANU	IAL (ODCM)		004 -5 000
PROCEDURE NO.:					. ,		204 of 230
C-200			ST. LU	CIE PLANT			
E	NVIRONMENTAI	L PATHWAY-DO		E G-21 ON FACTORS F	R(I) FOR GASE	OUS DISCHAR	GES
			NTAMINATED F		AGE GROUP		
		•		METER-MREM/			
			, .		•	,	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	4.13E+02	4.13E+02	4.13E+02	4.13E+02	4.13E+02	4.13E+02
P32	4.67E+09	2.93E+08	0.	0.	0.	5.25E+08	1.81E+08
CR51	0.	0.	4.23E+03	1.56E+03	9.38E+03	1.78E+06	7.07E+03
MN54	0.	9.18E+06	0.	2.73E+06	0.	2.81E+07	1.75E+06
FE59	2.67E+08	6.33E+08	0.	0.	1.76E+08	2.09E+09	2.41E+08
CO57	0.	5.64E+06	0.	0.	0.	1.43E+08	9.38E+06
CO58	0.	1.83E+07	0.	0.	0.	3.70E+08	4.09E+07
CO60	0.	7.55E+07	0.	0.	0.	1.41E+09	1.66E+08
ZN65	3.56E+08	1.13E+09	0.	7.57E+08	0.	7.13E+08	5.12E+08
RB86	0.	4.89E+08	0.	0.	0.	9.64E+07	2.28E+08
SR89	3.03E+08	0.	0.	0.	0.	4.84E+07	8.67E+06
SR90	1.25E+10	0.	0.	0.	0.	1.45E+09	3.05E+09
Y91	1.14E+06	0.	0.	0.	0.	6.26E+08	3.05E+04
ZR95	3.78E+06	1.67E+06	0.	2.01E+06	0.	8.30E+09	8.26E+05
NB95	2.30E+06	1.28E+06	0.	1.27E+06	0.	7.75E+09	5.02E+05
RU-103	1.06E+08	0.	0.	4.06E+08	0.	1.24E+10	4.59E+07
RU-106	2.80E+09	0.	0.	5.41E+09	0.	1.81E+11	3.54E+08
AG110	6.71E+06	6.21E+06	0.	1.22E+07	0.	2.53E+09	3.69E+06

REVISION NO .:	PROCEDURE TITLE:				- ·=• ·		PAGE:					
32		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		205 of 230					
ROCEDURE NO.:												
C-200		ST. LUCIE PLANT										
E		PATHWAY-DO		E G-21 ON FACTORS I	R(I) FOR GASE	DUS DISCHAR	GES					
<u></u>	PATHWA	AY - MEAT (CO	NTAMINATED F	ORAGE)	AGE GROUP YR PER μCI/SE	- ADULT	<u></u>					
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY					
SN-123	0.	0.	0.	0.	0.	0.	0.					
SN-126	1.86E+10	3.69E+08	1.08E+08	0.	6.46E+06	6.19E+09	5.33E+08					
SB-124	1.99E+07	3.75E+05	4.80E+04	0.	1.54E+07	5.62E+08	7.85E+06					
SB-125	6.65E+07	1.58E+07	1.29E+07	1.74E+08	2.49E+09	3.80E+08	1.05E+07					
TE 125M	3.59E+08	1.30E+08	1.08E+08	1.46E+09	0.	1.43E+09	4.81E+07					
TE 127M	1.13E+09	3.93E+08	2.96E+08	4.56E+09	0.	5.11E+09	1.39E+08					
TE 129M	1.14E+09	4.29E+08	3.95E+08	4.79E+09	0.	5.76E+09	1.82E+08					
I130	2.38E-06	7.05E-06	8.96E-04	1.10E-05	0.	6.04E-06	2.77E-06					
I131	1.08E+07	1.55E+07	5.06E+09	2.65E+07	0.	4.07E+06	8.85E+06					
I132	0.	0.	0.	0.	0.	0.	0.					
I133	4.40E-01	7.63E-01	1.47E+02	1.33E+00	0.	6.71E-01	2.33E-01					
I134	0.	0.	0.	0.	0.	0.	0.					
I135	8.60E-02	7.94E-02	0.	3.01E-02	9.04E-03	1.86E-03	3.53E-02					
CS-134	6.58E+08	1.57E+09	0.	5.08E+08	1.68E+08	2.74E+07	1.28E+09					
CS-136	1.18E+07	4.67E+07	0.	2.60E+07	3.56E+06	5.31E+06	3.36E+07					
CS-137	8.73E+08	1.19E+09	0.	4.06E+08	1.35E+08	2.30E+07	7.82E+08					
BA-140	2.88E+07	3.63E+04	0.	1.23E+04	2.07E+04	6.87E+07	1.90E+06					
CE-141	1.41E+04	9.52E+03	0.	4.41E+03	0.	3.63E+07	1.08E+03					
CE-144	1.46E+06	6.10E+05	0.	3.62E+05	0.	4.93E+08	7.83E+04					

VISION NO.:	PROCEDURE TITLE:						PAGE:
32 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		206 of 23
C-200			ST. LU	CIE PLANT			
<u>E1</u>		Y - FRESH FRU	DSE CONVERSI		AGE GROUP	P - ADULT	GES
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	4.02E+02	4.02E+02	4.02E+02	4.02E+02	4.02E+02	4.02E+02
P32	1.04E+09	6.51E+07	0.	0.	0.	1.17E+08	4.02E+07
CR51	0.	0.	1.15E+04	4.25E+03	2.56E+04	4.85E+06	1.93E+04
MN54	0.	4.87E+07	0.	1.45E+07	0.	1.49E+08	9.31E+06
FE59	3.64E+07	8.64E+07	0.	0.	2.40E+07	2.85E+08	3.29E+07
CO57	0.	1.85E+06	0.	0.	0.	4.70E+07	3.08E+06
CO58	0.	6.89E+06	0.	0.	0.	1.40E+08	1.54E+07
CO60	0.	2.38E+07	0.	0.	0.	4.46E+08	5.23E+07
ZN65	5.11E+07	1.62E+08	0.	1.09E+08	0.	1.02E+08	7.34E+07
RB86	0.	1.30E+08	0.	0.	0.	2.56E+07	6.06E+07
SR89	2.67E+09	0.	0.	0.	0.	4.26E+08	7.64E+07
SR90	8.49E+10	0.	0.	0.	0.	2.14E+09	2.07E+10
Y91	1.26E+06	0.	0.	0.	0.	6.92E+08	3.37E+04
ZR95	2.93E+05	9.82E+04	0.	1.49E+05	0.	3.34E+08	6.38E+04
NB95	4.87E+04	2.71E+04	0.	2.68E+04	0.	1.64E+08	1.06E+04
RU-103	1.50E+06	0.	0.	5.75E+06	0.	1.76E+08	6.49E+05
RU-106	2.95E+07	0.	0.	5.71E+07	0.	1.91E+09	3.74E+06
AG110	1.69E+06	1.56E+06	0.	3.08E+06	0.	6.38E+08	9.30E+05

REVISION NO.:	PROCEDURE TITLE:				, , , , , , , , , , , , , , , , , , , 		PAGE:					
32		OFFSI	TE DOSE CALCU	JLATION MANU	IAL (ODCM)		207 of 230					
ROCEDURE NO.:												
C-200		ST. LUCIE PLANT										
<u>El</u>		. PATHWAY-DO		E G-22 ON FACTORS F	R(I) FOR GASEC	US DISCHAR	GES					
			J ITS AND VEGE ACTOR (SQ. 1		AGE GROUP YR PER μCI/SE							
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY					
SN-123	1.00E-05	1.66E-07	1.41E-07	0.	0.	2.04E-05	2.45E-07					
SN-126	9.52E+08	1.89E+07	5.54E+06	0.	4.31E+06	8.46E+08	2.94E+07					
SB-124	2.52E+07	4.75E+05	6.08E+04	0.	1.95E+07	7.12E+08	9.94E+06					
SB-125	2.58E+07	7.23E+05	4.03E+05	5.14E+06	2.56E+09	2.22E+08	5.10E+06					
TE 125M	2.38E+07	8.65E+06	7.17E+06	9.69E+07	0.	9.51E+07	3.19E+06					
TE 127M	6.75E+07	2.36E+07	1.77E+07	2.73E+08	0.	3.06E+08	8.32E+06					
TE 129M	8.93E+07	3.34E+07	3.08E+07	3.73E+08	0.	4.49E+08	1.42E+07					
I130	3.93E+05	1.16E+06	1.48E+08	1.81E+06	0.	9.98E+05	4.58E+05					
I131	7.78E+07	1.12E+08	3.65E+10	1.91E+08	0.	2.94E+07	6.38E+07					
I132	5.57E+01	1.49E+02	1.96E+04	2.38E+02	0.	2.80E+01	5.29E+01					
I133	2.13E+06	3.69E+06	7.10E+08	6.44E+06	0.	3.24E+06	1.13E+06					
I134	1.03E-04	2.79E-04	3.63E-02	4.45E-04	0.	2.43E-07	9.99E-05					
I135	4.04E+04	1.07E+05	1.40E+07	1.70E+05	8.65E-03	1.19E+05	3.91E+04					
CS-134	6.82E+08	1.62E+09	0.	5.26E+08	1.74E+08	2.84E+07	1.33E+09					
CS-136	3.32E+07	1.31E+08	0.	7.29E+07	9.99E+06	1.49E+07	9.43E+07					
CS-137	8.90E+08	1.22E+09	0.	4.14E+08	1.37E+08	2.34E+07	7.98E+08					
BA-140	1.03E+08	1.35E+05	0.	4.39E+04	7.38E+04	6.65E+08	6.77E+06					
CE-141	7.16E+04	4.85E+04	0.	2.25E+04	0.	1.85E+08	5.49E+03					
CE-144	5.19E+06	2.17E+06	0.	1.29E+06	0.	1.75E+09	2.78E+05					

REVISION NO .:	PROCEDURE TITLE:		PAGE
32	OFFSITE DOSE CALCU	JLATION MANUAL (DDCM) 208 of 230
PROCEDURE NO .:			
C-200	ST. LUC		
	TABL	E M-1	
Selecting the Appro	opriate Long Term (X/Q) for	r Dose Calculations Ir	nvolving Noble Gases
(1) Total Body	dose from instantaneous r	eleases	
(2) Skin dose f	rom instantaneous release	S	
(3) Gamma air	dose (cumulative)		
(4) Beta air do	se (cumulative)		
(4) Beta air do TYPE OF DOS CALCULATIC		LIMITING Sector	(X/Q) VALUE sec/m³
TYPE OF DOS	SE LIMITING RANGE N (miles)		
TYPE OF DOS CALCULATIC	SE LIMITING RANGE N (miles)	Sector NW	sec/m ³ 1.6 X 10 ⁻⁶
TYPE OF DOS CALCULATIC Instantaneou	SE LIMITING RANGE N (miles) s 0.97	Sector NW 1. Normally (X/Q) =	sec/m ³ 1.6 X 10 ⁻⁶ 1.6 X 10 ⁻⁶ sec/m ³
TYPE OF DOS CALCULATIO Instantaneou 1/31 days Quarterly	SE LIMITING RANGE (miles) s 0.97 0.97 0.97	Sector NW 1. Normally (X/Q) =	$\frac{\text{sec/m}^3}{1.6 \times 10^{-6}}$ 1.6 X 10 ⁻⁶ sec/m ³ of actual meteorological

The (X/Q) has to be calculated based on actual meteorological data that occurred during the period of interest. The sector of interest is N/A because the limiting (X/Q) will be determined from the actual meteorological data and may occur in any sector.

0.97 miles Corresponds to the minimum site boundary distance in the north direction and 0.97 miles was chosen for all other sectors for ease of calculations when the averaging is done for quarterly reports.

REVISION NO.:	PROCEDURE TITLE:			PAGE:
32	OFFSITE DOSE	E CALCULATION MA	NUAL (ODCM)	209 of 230
PROCEDURE NO.:				
C-200		ST. LUCIE PLANT		
		TABLE M-2		
Selecting the Approp	oriate Long Term	(X/Q) _D or (D/Q) for De	ose	
Calculations Involvir	ng Radioiodines &	8 D Particulates for:		
(1) Inhalation				
(2) Tritium (All g	jas pathways)			
(3) Ground Plar	ne			
TYPE OF DOSE CALCULATION	LIMITING RANGE (miles)	LIMITING SECTOR (OL)	(X/Q) _D sec/m ³	(D/Q) 1/m ²
Instantaneous	0.97	NW	B 1.3 X 10 ⁻⁶	
		WNW		8.2 X 10 ⁻⁹
Annual Denert	0.97	Α	A, B	
Annual Report	0.97	A		A
1/31 days, Qtr. yearly,	0.97	NW	B 1.3 X 10 ⁻⁶	
Annual Total Dose	0.97	WNW		8.2 X 10 ⁻⁹

(OL) Over land areas only

(A) To be determined by reduction of actual met data occurring during each quarter

(B) For Tritium in the Milk Animal Pathway, the (X/Q)_D value should be that of the respective controlling sector and range where the Milk Animal is located as per Table M-3. Example: If a cow was located at 4.25 miles in NW sector, use the (X/Q)_D for 4.25 miles NW.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	210 of 220
PROCEDURE NO .:		
C-200	ST. LUCIE PLANT	

TABLE M-3

Selecting the Appropriate Long Term (D/Q) for Dose Calculations Involving Radioiodines and 8D Particulates for Grass-Cow-Milk or Grass-Goat-Milk:

TYPE OF DOSE CALCULATION	LIMITING RANGE	LIMITING SECTOR	(D/Q) Value 1/m²
Release Rate	А	A	A
1/31 Days	В	В	В
Quarterly - Yearly	В	В	В
Annual (Calendar Year)	В	В	В
Annual Report	С	С	С

A. The worst cow or goat as per locations from land census. If no milk animal in any sector, assume a cow at 4.25 miles in the highest (D/Q) sector over land.

- B. The historical (D/Q) of all land sectors with the worst cow or goat from each sector as reported in the Land Census. A 4.25 mile cow should be assumed in the worst sector over land when no milk animal is reported.
- C. The highest (D/Q) at a milk animal location of all milk animals reported in the Land Census Report. (If no milk animals within 5 miles a 4.25 mile cow should be assumed in the sector having the highest (D/Q) at 4.25 miles over land). Actual Met Data should be used for the selection of the worst case milk animal and for the dose calculations. If both goat and milk animals are reported inside 5 miles, dose calculations should be performed on each animal and the higher dose animal contribution should be used.

The historical wind frequency fractions for each sector are listed in Table M-8.

REVISION	NO.: Pf	ROCEDURE TITLE:										PAGE:
	32		C	OFFSITE	DOSE C	ALULATIO	ON MANU	JAL (ODC	CM)			011 -600
ROCEDUR	RE NO.:							•	·			211 of 23
C	2-200				ST.	LUCIE F	LANT					
							<u> </u>					
				TERF		ABLE M-	4 N FACTO	<u>DRS</u>				and a second second Second second second Second second
F	lorida Power &	& Light Compa	nv									
	St. Lucie Unit 1					Terra	n Correc	tion Facto	ors (PUFF	/ STRAI	GHT LINI	E)
	lutchinson Isla		da Terrain Correction Factors (PUFF / STRAIGHT LINE da Period of Record: 8/29/77 to 8/31/78									-
		ore Job No: 4	598 - 112			Base	Distance	in Miles/H	Kilometer	s		
ſ	AFFECTED	DESIGN										
	SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
		MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
	NNE	0.	1.906	1.576	1.465	1.404	1.338	1.318	1.334	1.386	1.346	1.338
	NE	0.	1.887	1.581	1.461	1.391	1.310	1.259	1.164	1.128	1.101	1.116
	ENE	0.	1.452	1.230	1.122	1.081	1.047	1.033	.941	.941	.906	.902
	E	0.	1.662	1.425	1.277	1.193	1.151	1.123	1.097	1.121	1.123	1.122
	ESE	0.	1.690	1.483	1.328	1.260	1.246	1.190	1.134	1.094	1.032	.968
	SE	0.	1.818	1.691	1.470	1.427	1.435	1.361	1.366	1.331	1.279	1.239
	SSE	0.	1.812	1.586	1.370	1.302	1.270	1.263	1.229	1.193	1.171	1.151
ſ	S	0.	1.398	1.321	1.125	1.083	1.108	1.127	1.073	1.063	1.047	1.024
-	SSW	0.	1.534	1.411	1.296	1.192	1.205	1.132	1.135	1.116	1.077	1.060
	SW	0.	1.685	1.492	1.294	1.233	1.200	1.222	1.160	1.160	1.198	1.196
Ī	WSW	0.	1.620	1.333	1.210	1.173	1.082	1.091	1.099	1.056	1.034	1.004
	W	0.	1.651	1.415	1.290	1.218	1.154	1.099	1.081	1.067	1.093	1.083
	WNW	. 0.	1.720	1.430	1.267	1.185	1.150	1.133	1.125	1.085	1.033	1.045
	NW	0.	1.681	1.407	1.257	1.173	1.119	1.078	1.063	.995	.998	.978
	NNW	0.	1.739	1.488	1.316	1.212	1.172	1.122	1.135	1.080	1.099	1.091
				1.524	1.389	1.285		1.263	1.285	1.267	1.231	1.213

Note 1: Any interpolations between stated mileages will be done by log-log

REVISION NO.:	PROCEDURE	TITLE:						R A \		PA	GE:
32 PROCEDURE NO.:			06631	IE DOSE	CALULAT			·IVI)		- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	212 of 230
				- -						15	
C-200				č	ST. LUCIE	PLANT				بار ا	
		HIS	TORICAL	LONG TI	TABLE M ERM - (X/C		encv corre	cted)		ì	
	Т	errain / Re					OQ9 Ver		8/76		
Elorida De	ower & Light Co	ompany		-	-						
St. Lucie		Jinpany					al Relative	Concentr	ation (sec	cubic met	or)
	on Island, Florid	ta l					ord: 9/1/76				
	nd Moore Job N		8 - 112				in Miles/K		0		
Dames a		10. 1.4000			Das	Distance					
AFFECTED	DESIGN	T									
SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
	MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
NNE	0.	1.1E-05	1.7E-06	7.8E-07	4.5E-07	3.1E-07	2.2E-07	1.7E-07	1.5E-07	1.2E-07	1.0E-07
NE	0.	1.3E-05	2.1E-06	8.9E-07	5.1E-07	3.4E-07	2.4E-07	1.7E-07	1.4E-07	1.1E-07	9.8E-08
ENE	0.	9.3E-06	1.4E-06	6.2E-07	3.7E-07	2.5E-07	1.9E-07	1.3E-07	1.1E-07	8.8E-08	7.5E-08
E	0.	9.8E-06	1.6E-06	6.5E-07	3.7E-07	2.5E-07	1.8E-07	1.4E-07	1.2E-07	9.9E-08	8.4E-08
ESE	0.	1.2E-05	1.9E-06	8.1E-07	4.8E-07	3.2E-07	2.4E-07	1.8E-07	1.4E-07	1.1E-07	9.0E-08
SE	0.	1.4E-05	2.4E-06	9.7E-07	5.7E-07	4.0E-07	2.9E-07	2.3E-07	1.9E-07	1.4E-07	1.2E-07
SSE	0.	1.1E-05	1.7E-06	7.3E-07	4.3E-07	2.9E-07	2.1E-07	1.6E-07	1.3E-07	1.1E-07	9.1E-08
S	0.	6.2E-06	1.0E-06	4.2E-07	2.5E-07	1.8E-07	1.4E-07	1.0E-07	8.0E-08	6.6E-08	5.5E-08
SSW	0.	5.7E-06	9.0E-07	4.0E-07	2.3E-07	1.6E-07	1.1E-07	8.9E-08	7.0E-08	5.7E-08	4.8E-08
SW	0.	6.1E-06	9.4E-07	3.9E-07	2.2E-07	1.6E-07	1.1E-07	8.6E-08	7.0E-08	6.0E-08	5.1E-08
WSW	0.	7.3E-06	1.1E-06	4.6E-07	2.7E-07	1.7E-07	1.3E-07	1.0E-07	8.0E-08	6.5E-08	5.4E-08
W	0.	7.6E-06	1.2E-06	5.2E-07	2.9E-07	2.0E-07	1.3E-07	1.0E-07	8.4E-08	7.2E-08	6.1E-08
WNW	0.	1.4E-05	2.1E-06	9.1E-07	5.2E-07	3.4E-07	2.6E-07	2.0E-07	1.5E-07	1.2E-07	1.0E-07
NW	0.	1.6E-05	2.4E-06	1.0E-06	5.9E-07	3.9E-07	2.8E-07	2.1E-07	1.7E-07	1.4E-07	1.2E-07
NNW	0.	1.5E-05	2.2E-06	9.6E-07	5.5E-07	3.6E-07	2.6E-07	2.0E-07	1.6E-07	1.3E-07	1.2E-07
ININAA	0.	9.1E-06	1.4E-06	6.3E-07	3.6E-07	2.4E-07	1.8E-07	1.4E-07	1.2E-07	9.4E-08	7.9E-08

213 of 23	1.00		M)	JAL (ODC	ION MANI	OFFSI		-32 OFFSIT							
		ST. LUCIE PLANT									C-200				
	-----	ed)	/ correcte	requency		TABLE M EPLETED		AL LONG	HISTORIC						
		8/76	sion - 11/1	OQ9 Vers	am ANNX	Prog	Adjusted	circulation	errain / Red	Те					
						-	-		mpany	ver & Light Co	Florida Pov				
cubic meter)	ec/cubic	epleted (se	entration D	tive Conce	nual Rela	verage Ar	A			•	St. Lucie U				
,						Period of R			а	Island, Florid					
						Base Dista		112		Moore Job N					
	4.25 6.84	3.75 6.03	3.25 5.23	2.75 4.42	2.25 3.62	1.75 2.82	1.25 2.01	.75 1.21	.25 .40	DESIGN DISTANCE MILES	AFFECTED SECTOR				
	9.2E-08	1.1E-07	1.3E-07	1.7E-07	2.4E-07	3.8E-07	6.6E-07	1.6E-06	1.1E-05	0.	NNE				
	8.6E-08	1.1E-07	1.4E-07	1.9E-07	2.8E-07	4.3E-07	7.6E-07	1.7E-06	1.2E-05	0.	NE				
	6.6E-08	8.4E-08	1.0E-07	1.4E-07	2.0E-07	3.0E-07	5.3E-07	1.2E-06	8.9E-06	0.	ENE				
	7.5E-08	9.1E-08	1.1E-07	1.5E-07	2.1E-07	3.1E-07	5.6E-07	1.3E-06	9.1E-06	0.	E				
.5E-08 6.7E-08	8.5E-08	1.1E-07	1.4E-07	1.9E-07	2.6E-07	3.9E-07	6.9E-07	1.6E-06	1.2E-05	0.	ESE				
.1E-07 9.0E-08	1.1E-07	1.3E-07	1.8E-07	2.3E-07	3.3E-07	4.7E-07	8.2E-07	2.0E-06	1.3E-05	0.	SE				
.2E-08 6.8E-08	8.2E-08	1.0E-07	1.4E-07	1.8E-07	2.4E-07	3.5E-07	6.3E-07	1.6E-06	1.1E-05	0.	SSE				
.0E-08 4.1E-08	5.0E-08	6.2E-08	7.7E-08	1.1E-07	1.4E-07	2.1E-07	3.6E-07	9.1E-07	5.9E-06	0.	S				
.3E-08 3.6E-08	4.3E-08	5.5E-08	6.9E-08	8.9E-08	1.3E-07	1.9E-07	3.4E-07	8.0E-07	5.4E-06	0.	SSW				
.6E-08 3.8E-08	4.6E-08	5.3E-08	6.7E-08	9.2E-08	1.2E-07	1.8E-07	3.4E-07	8.4E-07	5.7E-06	0.	SW				
.0E-08 4.0E-08	5.0E-08	6.1E-08	8.0E-08	1.0E-07	1.4E-07	2.2E-07	4.0E-07	9.6E-07	7.0E-06	0.	WSW				
.5E-08 4.4E-08	5.5E-08	6.4E-08	8.2E-08	1.1E-07	1.6E-07	2.4E-07	4.4E-07	1.1E-06	7.3E-06	0.	W				
.3E-08 7.8E-08	9.3E-08	1.2E-07	1.6E-07	2.0E-07	2.9E-07	4.4E-07	7.9E-07	1.9E-06	1.3E-05	0.	WNW				
.0E-07 8.5E-08	1.0E-07	1.3E-07	1.7E-07	2.3E-07	3.1E-07	4.9E-07	8.9E-07	2.1E-06	1.5E-05	0.	NW				
.0E-07 8.6E-08	1.0E-07	1.2E-07	1.6E-07	2.0E-07	2.9E-07	4.5E-07	8.3E-07	2.1E-06	1.4E-05	0.	NNW				
.0E-08 5.8E-08	7.0E-08	8.9E-08	1.1E-07	1.4E-07	2.0E-07	3.0E-07	5.4E-07	1.3E-06	8.7E-06	0.	N				
-			1.1E-07 = 95	1.4E-07 ver Level =	2.0E-07 Calms Lov Calms Upp	3.0E-07 Jumber of Jumber of	5.4E-07 N N	1.3E-06 7135 385	8.7E-06 ations = 1 vations = 3		N Number of Number of				

.

REV	ISION NO.:	PROCEDURE 1	TITLE:								PA	GE:
	32			OFFSI	TE DOSE	CALULAT	ION MAN	UAL (ODC	CM)		1994 1995 1996	214 of 230
RC	CEDURE NO.:											214 01 230
	C-200				S	T. LUCIE	PLANT					
			HIS	TORICAL	LONG TE	TABLE M ERM - (D/C		ency corre	ected)			
		TERRAIN	/ RECIRC	ULATION	ADJUSTE	D Pl	ROGRAM	ANNXOQ	9 VERSIC	DN - 11/18	/76	
	Florida Pov	ver & Light Co	mnany									
	St. Lucie U		mpany	•		Δνοι		al Relative	Denositic	n Rato (sc	nuaro moto	or - 1)
		Island, Florid	la					ord: $9/1/76$			quale mete	51 - 1)
		Moore Job N		112				in Miles/K		0		
	Durneo ane		10. 4000	112		Dust						
	AFFEATED	DESIGN										T
	AFFECTED SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
		MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
	NNE	0.	6.5E-08	9.3E-09	3.7E-09	2.1E-09	1.3E-09	9.0E-10	6.8E-10	5.5E-10	4.3E-10	3.5E-10
	NE	0.	6.0E-08	8.9E-09	3.5E-09	1.9E-09	1.2E-09	8.1E-10	5.6E-10	4.3E-10	3.3E-10	2.8E-10
	ENE	0.	3.2E-08	4.8E-09	1.9E-09	1.0E-09	6.6E-10	4.6E-10	3.2E-10	2.4E-10	1.9E-10	1.5E-10
	E	0.	3.0E-08	4.6E-09	1.8E-09	9.5E-10	6.0E-10	4.2E-10	3.1E-10	2.5E-10	2.0E-10	1.6E-10
	ESE	0.	3.7E-08	5.8E-09	2.3E-09	1.2E-09	8.0E-10	5.4E-10	3.9E-10	3.0E-10	2.2E-10	1.7E-10
	SE	0.	6.4E-08	1.0E-08	4.0E-09	2.1E-09	1.4E-09	9.7E-10	7.2E-10	5.6E-10	4.3E-10	3.5E-10
	SSE	0.	6.2E-08	9.5E-09	3.6E-09	2.0E-09	1.2E-09	8.7E-10	6.4E-10	4.9E-10	3.9E-10	3.1E-10
	S	0.	4.2E-08	7.0E-09	2.6E-09	1.4E-09	9.5E-10	6.9E-10	4.9E-10	3.8E-10	3.0E-10	2.5E-10
	SSW	0.	3.4E-08	5.4E-09	2.2E-09	1.1E-09	7.5E-10	5.0E-10	3.7E-10	2.9E-10	2.3E-10	1.8E-10
	SW	0.	4.5E-08	7.0E-09	2.6E-09	1.5E-09	9.0E-10	6.6E-10	4.6E-10	3.6E-10	3.0E-10	2.5E-10
	1	0.	5.3E-08	7.7E-09	3.0E-09	1.6E-09	1.0E-09	7.3E-10	5.5E-10	4.1E-10	3.3E-10	2.6E-10
	WSW			7.55.00	3.0E-09	1.6E-09	9.8E-10	6.7E-10	5.0E-10	. 3.8E-10	3.2E-10	2.6E-10
:	WSW W	0.	5.0E-08	7.5E-09	3.0⊏-09	1.00 00						• • • • • • • • • • • • • • • • • • • •
		0. 0.	5.0E-08 8.8E-08	1.3E-09	4.9E-09	2.6E-09	1.7E-09	1.1E-09	8.7E-10	6.6E-10	5.1E-10	4.2E-10
	W						1.7E-09 1.6E-09	1.1E-09 1.1E-09	8.7E-10 7.9E-10	6.6E-10 5.8E-10	5.1E-10 4.7E-10	4.2E-10 3.8E-10
	W WNW	0.	8.8E-08	1.3E-08	4.9E-09	2.6E-09						· · · · · · · · · · · · · · · · · · ·

Number of Invalid Observations = 385Number of Calms Upper Level = 0Note 1 - Any interpolations between stated mileages will be done by log-log

REVISION NO .:		PROCEDURE TITLE: PAGE						
32		OFFSITE DOSE CALCULATION MANUAL (ODCM)						5 of 230
ROCEDURE NO	D.:				•			01200
C-200		ST. LUCIE PLANT						
					-8			
pint Wind Fi	requency	Distributio				er 1, 1976	- August 31	, 1978
ll Winds				St.	Lucie Unit 2	2		
ata Source:					chinson Isla			
/ind Sensor					ida Power			
able Genera	ated: 12/						o: 4598 - 1	12 - 27
		Wind	Speed Cat	egories (M	eters per S	econd)		
WIND	0.0-	1.5-	3.0-	5.0-	7.5-	>10.0	TOTAL ¹	MEAN
SECTOR	1.5	3.0	5.0	7.5	10.0	<u>.</u>		SPEED
NNE	71 .43	206 1.25	318 1.92	71 .43	3 .02	0 0.00	669 4.05	3.32
NE	62	292	385	128	0	0.00	4.05	3.43
	.38	1.77	2.33	.77	0.00	0.00	5.25	
ENE	60	334	505	158	0	0	1057	3.51
	.36	2.02	3.06	.96	0.00	0.00	6.40	
Е	69	355	510	76	0	0	1010	3.25
ESE	.42	2.15	3.09	.46	0.00	0.00	6.11	3.04
	115 .70	684 4.14	744 4.50	72 .44	1 .01	0.00	1616 9.78	
SE	183	660	749	28	0	0.00	1620	2.88
	1.11	3.99	4.53	.17	0.00	0.00	9.81	
SSE	129	579	656	93	1	0	1458	3.10
	.78	3.50	3.97	.56	.01	0.00	8.82	
S	72	310	407	99	8		897	3.36
	.44 84	1.88 372	2.46 446	.60 105	.05 33	.01 4	5.43 1044	
SSW	.51	2.25	2.70	.64	.20	.02	6.32	3.48
SW	129	440	336	106	14	0	1025	3.10
	.78	2.66	2.03	.64	.08	0.00	6.20	
WSW	155	320	186	29	5	0	695	2.59
	.94	1.94	1.13	.18	.03	0.00	4.21	
W WNW	174	267	119	37	2		599	2.43
	1.05 203	1.62 304	.72 172	.22	010	0.00	3.63 696	
	1.23	1.84	1.04	.10	0.00	0.00	4.21	2.34
NW	143	518	424	50	0.00	0.00	1135	2.85
	.87	3.14	2.57	.30	0.00	0.00	6.87	
NNW	85	379	535	70	1	0	1070	3.22
	.51	2.29	3.24	.42	.01	0.00	6.46	
N	91 55	194	531	148	5		969	3.69
CALM	.55 95	1.17	3.21	.90	.03	0.00	5.86 95	
	.57						.57	CALM
TOTAL	1920	6214	7023	1287	73	5	16522	3.10
	11.62	37.61	42.51	7.79	.44	.03	100.00	

NUMBER OF VALID OBSERVATIONS16522NUMBER OF INVALID OBSERVATIONS988TOTAL NUMBER OF OBSERVATIONS17520

94.30 PCT. 5.70 PCT. 100.00 PCT. XXX Number of Occurrences XXX Percent Occurrences

¹ - Totals below are given in <u>hours</u> & percent for wind frequency by sectors

END OF APPENDIX A

/ISION NO.: 32	PROCEDURE TIT		ON MANUAL	(ODCM)		PAGE:
DCEDURE NO.:				(,		216 of 230
C-200		ST. LUCIE PI	ANT			
		APPENDIX E RADIOLOGICAL ENVIRONMEN (Page 1 of 4	AL SURVEIL	LANCE		
		ST. LUCIE PLA Key to Sample Loo				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Direct Radiation	N-1	North of Blind Creek	TLD	Quarterly	1	N
Direct Radiation	NNW-5	Frederick Douglas Beach Entrance	TLD	Quarterly	4.8	NNW
Direct Radiation	NNW-10	Coast Guard Station	TLD	Quarterly	8.7	NNW
Direct Radiation	NW-5	Indian River Drive at Rio Vista Drive	TLD	Quarterly	5.4	NW
Direct Radiation	NW-10	Intersection of SR 68 and 33rd St	TLD	Quarterly	9.6	NW
Direct Radiation	WNW-2	Cemetery South of 7107 Indian River Drive	TLD	Quarterly	2.3	. WNW
Direct Radiation	WNW-5	US-1 at SR 712	TLD	Quarterly	5.1	WNW
Direct Radiation	WNW-10	SR 70, Just West of I-95	TLD	Quarterly	[·] 10	WNW
Direct Radiation	W-2	Power Line - 77609 Indian River Drive	TLD	Quarterly	2	W
Direct Radiation	W-5	Oleander and Sager Streets	TLD	Quarterly	5.4	W
Direct Radiation	W-10	I-95 and SR 709	TLD .	Quarterly	10.3	W
Direct Radiation	WSW-2	8503 Indian River Drive	TLD	Quarterly	1.8	WSW
Direct Radiation	WSW-5	Prima Vista Blvd. at Yacht Club	TLD	Quarterly	5.6	WSW
Direct Radiation	WSW-10	Del Rio and Davis Streets	TLD	Quarterly	10	WSW
Direct Radiation	SW-2	9205 Indian River Drive	TLD	Quarterly	2	SW
Direct Radiation	SW-5	FPL Walton Svc Ctr	TLD	Quarterly	4.5	SW
Direct Radiation	SW-10	Port St. Lucie Blvd. and Cairo Road	TLD	Quarterly	10.2	SW
Direct Radiation	SSW-2	10307 Indian River Drive	TLD	Quarterly	2.6	SSW

VISION NO.:	PROCEDURE TIT	LE:				PAGE:
32		OFFSITE DOSE CALCULATI	ON MANUAL	(ODCM)		217 of 23
OCEDURE NO.:						
C-200		ST. LUCIE P	LANT			
		APPENDIX I RADIOLOGICAL ENVIRONMEN (Page 2 of 4	TAL SURVEIL	LANCE		
		ST. LUCIE PLA Key to Sample Loo				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Direct Radiation	SSW-5	Port St. Lucie Blvd. and US 1	TLD	Quarterly	6	SSW
Direct Radiation	SSW-10	Pine Valley and Westmoreland Roads	TLD	Quarterly	8	SSW
Direct Radiation	S-5	13189 Indian River Drive	TLD	Quarterly	5.2	S
Direct Radiation	S-10	US 1 and Palm City Ave	TLD	Quarterly	10.8	S
Direct Radiation	S/SSE-10	Indian River Drive and Quail Run Lane	TLD	Quarterly	9.9	SSE
Direct Radiation	SSE-5	North of Entrance to Miramar	TLD	Quarterly	5.1	SSE
Direct Radiation	SSE-10	Elliot Museum	TLD	Quarterly	10.2	SSE
Direct Radiation	SE-1	South of Cooling Canal	TLD	Quarterly	1	SE
Direct Radiation	*H-32	U. of Florida - 1FAS Entomology Lab Vero Beach	TLD	Quarterly	18.1	NNW
Airborne	H08	FPL Substation - Weatherbee Road	Radioiodine & Particulates	Weekly	6	WNW
Airborne	*H12	FPL Substation - SR 76, Stuart	Radioiodine & Particulates	Weekly	12	S
Airborne	H14	Onsite - near south property line	Radioiodine & Particulates	Weekly	1	SE
Airborne	H30	Power Line - 7609 Indian River Drive	Radioiodine & Particulates	Weekly	2	W

* Denotes Control Sample

REVISION NO.:	PROCEDURE	E TITLE:			PA	ĢE:
32 PROCEDURE NO.:		OFFSITE DOSE CALCULATIO	ON MANUAL (C	DCM)		218 of 230
C-200		ST. LUCIE PL	ANT			
		APPENDIX E RADIOLOGICAL ENVIRONMENT (Page 3 of 4)	AL SURVEILL	ANCE		
		ST. LUCIE PLA Key to Sample Loc				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Airborne	H34	Onsite - At Meteorological Tower	Radioiodine & Particulates	Weekly	0.5	Ν
Waterborne	H15	Atlantic Ocean vicinity of public beaches east side of Route A1A	Surface Water (ocean) Sediment from shoreline	Weekly Semi-Annually	< 1	ENE/E/ESE
Waterborne	*H59	Near south end of Hutchinson Island	Surface Water (ocean) Sediment from shoreline	Monthly Semi-Annually	10-20	S/SSE
Food Products	H15	Ocean side vicinity of St. Lucie Plant (NOTE 1)	Crustacea Fish	Semi-Annually Semi-Annually	<1	ENE/E/ESE
Food Products	H51	Offsite near north property line	Broad Leaf vegetation	Monthly (when available)	1	N/NNW

* Denotes Control Sample

.

EVISION NO.: 32 ROCEDURE NO.: C-200	PROCEDURE	OFFSITE DOSE CALCU	ILATION MANUAL (C	DCM)	P/ · · · · · · · · · · · · · · · · · · ·	AGE: 219 of 230
0-200		APPEN RADIOLOGICAL ENVIRON (Page 4	IDIX B MENTAL SURVEILL	ANCE		
		ST. LUCII Key to Samp				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Food Products	H52	Offsite near south property line	Broad leaf vegetation	Monthly (when available)	1	S/SSE
Food Products	*H59	Near south end of Hutchinson Island	Crustacea Fish Broad leaf vegetation	Semi-Annually Semi-Annually Monthly	10-20	S/SSE

* Denotes control sample

It is the policy of Florida Power & Light Company (FPL) that the St. Lucie 1 & 2 Radiological Environmental Monitoring Programs are conducted by the State of Florida Department of Health (DOH) and Bureau of Radiation Control (BRC), pursuant to an Agreement between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Program Controls are the responsibility of the Nuclear Plant Support Services Department.

<u>NOTE 1</u>

These samples may be collected from or supplemented by samples collected from the plant intake canal if the required analyses are unable to be performed due to unavailability or inadequate quantity of sample from the ocean side location.

END OF APPENDIX B

Name	Sector	Distance *	Descriptio	n
Sampling	and Coll	ection Frequen	icy: Quarterly Collection	
Pathway:	Direct Exp	posure via TLD		
<u>* A</u>	pproxima	te Distance from	n plant in miles	
			NOTE	
			(Page 1 of 3)	
		ST. LUCIE SU	PPLEMENTAL REMP SAMPLIN	IG
			APPENDIX B-1	
C-2	00		ST. LUCIE PLANT	
PROCEDURE N	NO.:			220 of 230
32	2	OFFSITE DO	SE CALCULATION MANUAL (OI	
REVISION NO .:	,	PROCEDURE TITLE:		PAGE

e Sector	Distance *	Description
WNW	6	FPL Substation (White City Sub), Weatherbee Rd
SSW	7	FPL Substation (Jensen Sub), US-1 South of St.
		Lucie County Line
S	12	FPL Substation (Stuart Sub), SR-76, West of Stuart
		by High School
SE	1	South Site Property Line
ESE	<1	On-site, North of Intake Canal, West of Dunes
N	0.5	On-site, Meteorology Tower
NE	<1	Utility Pole, A1A, East of TAB
& SW	<1	Canal Dredging Spoils Mound
	SSW S SE ESE N NE	WNW 6 SSW 7 S 12 SE 1 ESE <1

Pathway: Airborne Radioiodines and Particulates

Sampling and Collection Frequency: Samples Collected Weekly; 1. lodine - Gamma-Spec Analysis 2. Particulate - Gross Beta and Composite

- - Gamma-Spec Analysis

Name	Sector	Distance *	Description
H-09	SSW	7	FPL Substation (Jensen Sub), US-1 South of St.
			Lucie County Line
H-32	NNW	19	HRS Entomology Lab., East of US-1, Vero Beach
H-33	ESE	<1	On-site, North of Intake Canal, West of Dunes

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODCM)	221 -5 220
PROCEDURE NO.:		221 of 230
C-200	ST. LUCIE PLANT	
	APPENDIX B-1 ST. LUCIE SUPPLEMENTAL REMP SAMPLING (Page 2 of 3)	
	NOTE	
* Approx	imate Distance from plant in miles.	

Pathway: Waterborne, Surface Water

Sampling and Collection Frequency: Monthly Collection; Gamma-Spec and Tritium Analysis

Name	Sector	Distance *	Description
H-13	NNW/N	<1	On-site, North Bank of Big Mud Creek, Between
			Pump Station and Meteorology Tower
H-36	NE/ENE	<1	On-site, Discharge Canal, West Side A1A 5/6/96
			On-site, Discharge Canal, Near Bridge

Pathway: Waterborne, Sediment

Sampling and Collection Frequency: Semi-Annual Collection and Gamma-Spec Analysis

Name	Sector	Distance *	Description
H-13	NNW/N	<1	On-site, North Bank of Big Mud Creek, Between
			Pump Station and Meteorology Tower
H-16	N	1	Ocean Covered Sand, Beach Opposite Blind
			Creek, North of Discharge Canal
H-19	SE	1	Ocean Covered Sand, Beach South of Intake
			Canal
H-36	NE/ENE	<1	On-site, Discharge Canal, West Side A1A

Pathway: Waterborne, Beach Sand

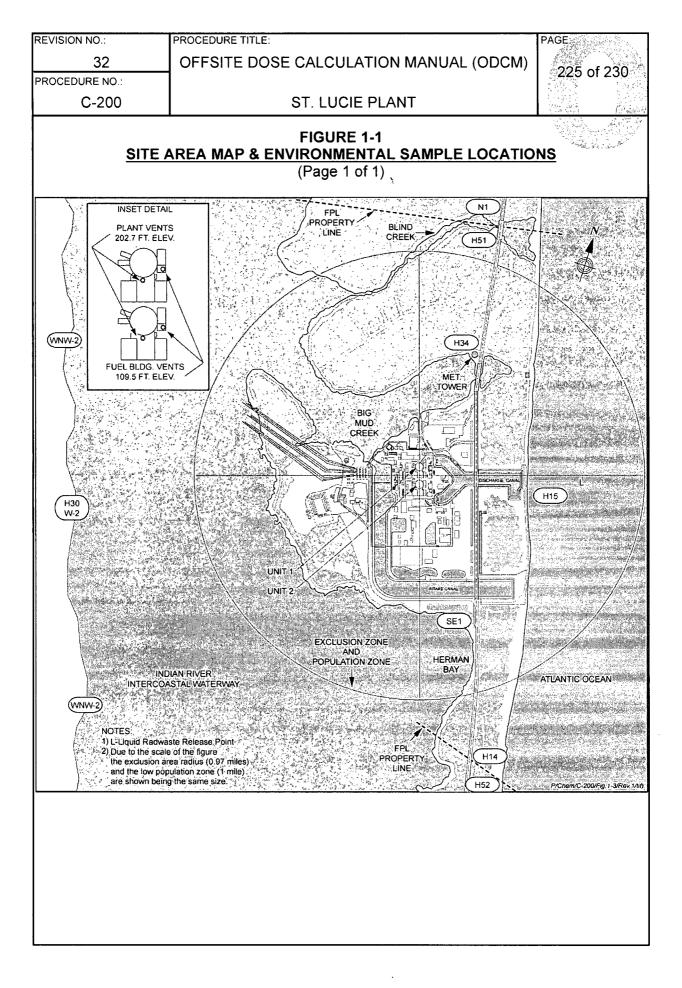
Sampling and Collection Frequency: Semi-Annual Collection and Gamma-Spec Analysis

Name	Sector	Distance *	Description
H-15	NE/ENE/E	<1	On-site, Beach Near Discharge Structure
H-16	N	1	Ocean Covered Sand, Beach Opposite Blind
			Creek, North of Discharge Canal
H-19	SE	1	Ocean Covered Sand, Beach South of Intake
			Canal

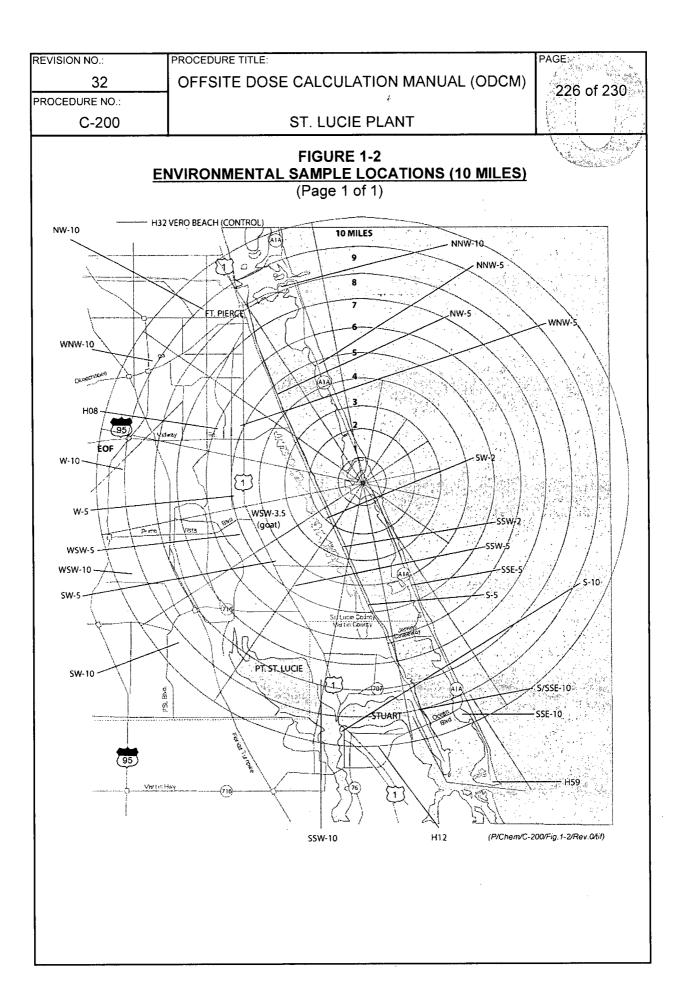
32	C	FFSITE DOS	E CALCULATION MANUAL (ODCM)	222 0
PROCEDURE NO	D.:			
C-20	0		ST. LUCIE PLANT	
	<u>s</u> -	T. LUCIE SUP	APPENDIX B-1 PLEMENTAL REMP SAMPLING (Page 3 of 3)	
* A	pproximate	Distance from	NOTE n plant in miles.	
· ·	-		is the same, the locations can vary wi	ith
Pathway: I	-	arden Crop	:y: Annual Collection and Gamma-Sp	ec Analys
Pathway: I	ngestion, G	arden Crop i on Frequenc		ec Analys
Pathway: I	ngestion, G	arden Crop	:y: Annual Collection and Gamma-Sp Description Private Residence, Indian River Dr.	ec Analys
Pathway: In Sampling a Name # H-41 Pathway: In	ngestion, G and Collect Sector W ngestion, Ci	arden Crop ion Frequenc Distance * 2	Description	
Pathway: In Sampling a Name # H-41 Pathway: In Sampling a	ngestion, G Ind Collect Sector W ngestion, Ci Ind Collect	arden Crop ion Frequenc Distance * 2 itrus ion Frequenc	Description Private Residence, Indian River Dr.	
Pathway: In Sampling a Name # H-41 Pathway: In Sampling a	ngestion, G and Collect Sector W ngestion, Ci and Collect Sector	arden Crop ion Frequenc Distance * 2 itrus ion Frequenc Distance *	Description Private Residence, Indian River Dr. cy: Annual Collection and Gamma-Sp Description	

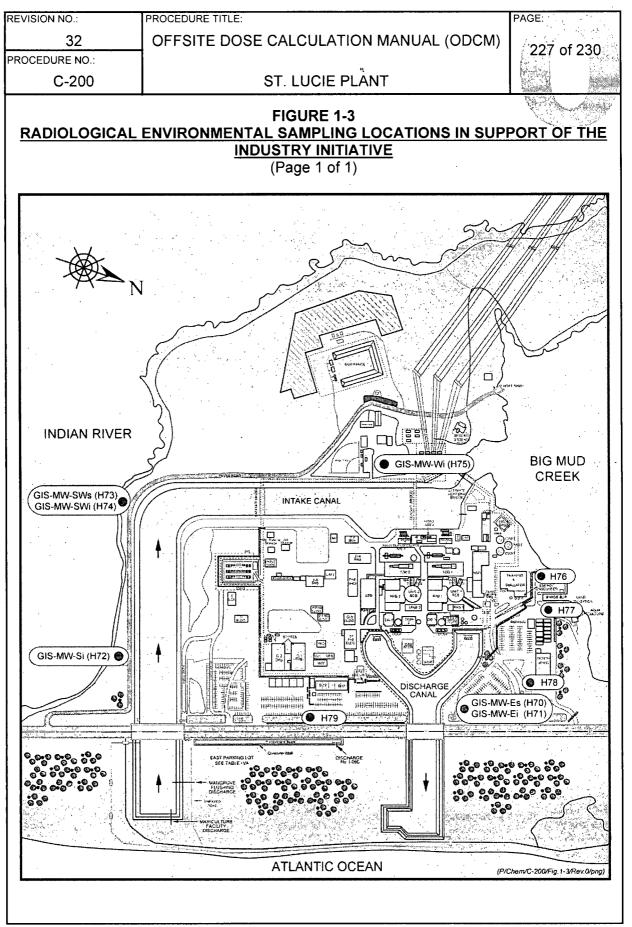
•

4


EVISION NO .:	PROCE	PROCEDURE TITLE:				
32	2	OFFSITE DOSE CALCULATION MANUAL (ODCM)				
ROCEDURE	NO.:					
C-200		ST. LUCIE PLANT				
	RADIC		IENTAL SAMPLIN	IDIX B-2		
			(Page	e 1 of 2)		
			STILLO	IE PLANT		
				ple Locations		
			,,			
STATE	PSL ID	SAMPLES	SAMPLE	LOCATION DESCRIPTION		
STATE ID	PSL ID	SAMPLES COLLECTED	SAMPLE FREQUENCY	LOCATION DESCRIPTION		
	PSL ID GIS-MW-ES	COLLECTED		LOCATION DESCRIPTION West of A1A; between the discharge canal and Gate "B"		
ID		COLLECTED	FREQUENCY			
ID H70	GIS-MW-ES	COLLECTED Tritium / Gamma	FREQUENCY Quarterly	West of A1A; between the discharge canal and Gate "B"		
ID H70 H71	GIS-MW-ES GIS-MW-EI	COLLECTED Tritium / Gamma Tritium / Gamma Tritium / Gamma	FREQUENCY Quarterly Quarterly	West of A1A; between the discharge canal and Gate "B" West of A1A; between the discharge canal and Gate "B"		
ID H70 H71 H72	GIS-MW-ES GIS-MW-EI GIS-MW-SI	COLLECTED Tritium / Gamma Tritium / Gamma Tritium / Gamma S Tritium / Gamma	FREQUENCY Quarterly Quarterly Quarterly	West of A1A; between the discharge canal and Gate "B" West of A1A; between the discharge canal and Gate "B" South of Intake canal and the adjacent access road		
ID H70 H71 H72 H73	GIS-MW-ES GIS-MW-EI GIS-MW-SI GIS-MW-SW	COLLECTED Tritium / Gamma Tritium / Gamma Tritium / Gamma S Tritium / Gamma	FREQUENCY Quarterly Quarterly Quarterly Quarterly	West of A1A; between the discharge canal and Gate "B" West of A1A; between the discharge canal and Gate "B" South of Intake canal and the adjacent access road S/W corner of Intake canal and the adjacent access road		
ID H70 H71 H72 H73 H74	GIS-MW-ES GIS-MW-EI GIS-MW-SI GIS-MW-SW GIS-MW-SW	COLLECTEDTritium / GammaTritium / GammaTritium / GammaSTritium / GammaITritium / Gamma	FREQUENCY Quarterly Quarterly Quarterly Quarterly Quarterly	West of A1A; between the discharge canal and Gate "B" West of A1A; between the discharge canal and Gate "B" South of Intake canal and the adjacent access road S/W corner of Intake canal and the adjacent access road S/W corner of Intake canal and the adjacent access road		
ID H70 H71 H72 H73 H74 H75	GIS-MW-ES GIS-MW-EI GIS-MW-SI GIS-MW-SW GIS-MW-SW GIS-MW-WI	COLLECTEDTritium / GammaTritium / GammaTritium / GammaSTritium / GammaTritium / GammaTritium / GammaTritium / Gamma	FREQUENCY Quarterly Quarterly Quarterly Quarterly Quarterly Quarterly	West of A1A; between the discharge canal and Gate "B" West of A1A; between the discharge canal and Gate "B" South of Intake canal and the adjacent access road S/W corner of Intake canal and the adjacent access road S/W corner of Intake canal and the adjacent access road West of plant site and intake canal; South of switchyard		
ID H70 H71 H72 H73 H74 H75 H76	GIS-MW-ES GIS-MW-EI GIS-MW-SI GIS-MW-SW GIS-MW-SW GIS-MW-WI H76	COLLECTEDTritium / GammaTritium / GammaTritium / GammaSTritium / GammaTritium / GammaTritium / GammaTritium / GammaTritium / GammaTritium / Gamma	FREQUENCY Quarterly Quarterly Quarterly Quarterly Quarterly Quarterly Quarterly	West of A1A; between the discharge canal and Gate "B" West of A1A; between the discharge canal and Gate "B" South of Intake canal and the adjacent access road S/W corner of Intake canal and the adjacent access road S/W corner of Intake canal and the adjacent access road West of plant site and intake canal; South of switchyard North of Simulator; South of Big Mud Creek		

It is the policy of Florida Power & Light Company (FPL) that the St. Lucie 1 & 2 Radiological Environmental Monitoring Programs are conducted by the State of Florida Department of Health (DOH) and Bureau of Radiation Control (BRC), pursuant to an Agreement between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Program Controls are the responsibility of the Nuclear Plant Support Services Department.


/R32


REVISION NO.:	PROCEDURE TITLE:	PAGE:
32 PROCEDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	224 of 230
C-200	ST. LUCIE PLANT	
RADIOLOGICA	APPENDIX B-2 L ENVIRONMENTAL SAMPLING IN SUPPORT OF TH INITIATIVE (Page 2 of 2)	E INDUSTRY
	ations and sampling periodicity shall be determined at a ent data to make a location determination.	later date after
	sample collection points, sampling periodicity, and analert of the INDUSTRY INITIATIVE NEI 07-07 shall be at the ager.	
	END OF APPENDIX B-2	


/R32

- - - -

	32	OFFSITE DOSE CALCULATION MANUAL (ODCM)				
PROCI	EDURE NO					
	C-20	0 ST. LUCIE PLANT				
	DESCF	APPENDIX D RIPTION OF THE INTERLABORATORY COMPARISON PROGRAM (IC (Page 1 of 2)				
		f Florida, Department of Health-Bureau of Radiation Control (BRC) Labor pate in an INTERLABORATORY COMPARISON PROGRAM.				
1.	The sample matrices and analytical methods shall be:					
	A. Gamma isotopic on a filter sample simulating airborne radioiodine and particulate collection.					
	В.	B. Gamma isotopic on a water sample simulating a surface water grab samp				
	C.	C. Gamma isotopic on either sediment (or soil) or broad leaf vegetation.				
	_	Steps D, E and F reference NRC IR 99-04, PMAI 99-0716.				
	D.	Gross Beta on an Air Filter matrix.				
	E.	Tritium in water, using method employed in REMP.				
	F.	Gamma isotopic on a water sample (above) is used for milk matrix if m samples are being obtained per land use census identified milk animal within 5 miles of the plant site.				
2.	The	source of samples for this program:				
	Α.	A Federal Government Laboratory Program (e.g., DOE-LAP, EPA Safe Drinking Water Program)				
	Β.	A State, Federal, or private (commercial) laboratory capable of providing NIST traceable samples. To be eligible, a Commercial Laboratory shall meet the FPL Quality Assurance criteria of "Quality Related".				
	C.	For Gamma Analysis only, a FPL Nuclear Site Laboratory may prepare sample matrices using known quantities of radioactivity from isotopes provided by a FPL Contract Laboratory currently approved as PC-1 Le vendor. These prepared matrices may be prepared by the vendor, or the FPL personnel, but shall not exceed the participant(s) form and/or licer quantities for allowed radioactivity.				
3.	Anal	ysis of Matrix samples shall be capable of achieving ODCM Table 4.12-1 cribed LLDs on a blank sample.				

REVISION NO .:	PROCEDURE TITLE:	PAGE
32	OFFSITE DOSE CALCULATION MANUAL (ODC	M)
PROCEDURE NO.:		"" 230 of 230
C-200	ST. LUCIE PLANT	
DESCRIPTION	APPENDIX D I OF THE INTERLABORATORY COMPARISON P (Page 2 of 2)	ROGRAM (ICP)
exceeding 20 performed to	n 20% of expected shall be considered acceptable. 0% but within 35% require a description of probable bring the analysis into conformance. Results exce lot Acceptable; the Matrix shall be replaced and rea	cause and action eding 35% are
	cy for performing the interlaboratory comparison pro a maximum of 15 months between comparisons of	
	·	