B USNRC ~ wesorsone

United States Nuclear Regulatory Commission

Protecting People and the Environment

Symbolic Nuclear
Analysis Package
(SNAP)

Common Application Framework for

Engineering Analysis (CAFEAN)
Preprocessor Plug-in Application

Programming Interface

Main Report

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS ‘
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
http://www.nre.govireading-rm.himl. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC.correspondence and internal memoranda; .
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office

Mail Stop SSOP

Washington, DC 20402-0001

Internet; bookstore.gpo.gov

Telephone: 202-512-1800

Fax: 202-512-2250
2. The National Technical Information Service

Springfield, VA 22161-0002

www.ntis.gov-

1-800--553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is

“available free, to the extent of supply, upon written

request as follows:

Address Office of Administration
Reproduction and Mail Services Branch
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

E-mail: DISTRIBUTION@nrc.gov

Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
http./iwww.nre.govireading-rm/doc-collections/nuredgs
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was accessed,
the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library

Two White Flint North

11545 Rockville Pike

Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from—

American National Standards Institute

11 West 42™ Street

New York, NY 10036-8002

www.ansi.org -

212-642-4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series are
not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors’
decisions under Section 2.206 of NRC's regulations
(NUREG-0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any
information, apparatus, product, or process disclosed in this publication, or represents that its use by such third

party would not infringe privately owned rights.v

S USNRC o

United States Nuclear Regulatory Commission

Protecting People and the Environment

Symbolic Nuclear
Analysis Package
(SNAP)

Common Application Framework for
Engineering Analysis (CAFEAN)
Preprocessor Plug-in Application
Programming Interface

Main Report

Manuscript Completed: June 2008
Date Published: June 2009

Prepared by
K. Jones, J. Rothe, W. Dunsford

Applied Programming Technology, Inc.
Bloomsburg, PA 17815

C. Gingrich, NRC Project Manager

NRC Job Code Y6851

Office of Nuclear Regulatory Research

ABSTRACT

Many of the analytical codes developed by the Office of Nuclear Regulatory Research (RES) rely on a
text based input file to specify model parameters and computational options. The formats of the text
based input files are often quite complex and usually require careful study before a user can create an
input model that functions correctly. The Symbolic Nuclear Analysis Package (SNAP) is primarily a-
graphical user interface that was developed to simplify the analyst’s task of creating input files for the
analytic codes as well as helping to visualize code results. SNAP is a Java based computer application
that runs on the most popular computer platforms including Windows XP and Vista, LINUX based
systems, and Mac OS X. The code architecture used in SNAP is “plug-in” based and very flexible.
Third party developers can implement their own user interfaces under SNAP without breaking the
interfaces developed by other developers. The application programming interface (API) that is described
in this document provides a short tutorial and some guidelines for developing a custom plug-in that works
in the SNAP framework. This document also includes the actual API method and data-structure
definitions needed to create such a custom interface.

il

FOREWORD

This document is intended for code developers interested in creating applications or “plug-ins” that work
with the Symbolic Nuclear Analysis Package (SNAP).

The code architecture used in the Symbolic Nuclear Analysis Package (SNAP) is plug-in based and very
flexible. Third party developers can implement their own user interfaces under SNAP by carefully
following the application programming interface (API) that is described in this document. The “Main
Report” of this document provides a simple tutorial and some guidelines for developing a custom plug-in
that works with SNAP. The SNAP application and its plug-ins are based on the Common Application
Framework for Engineering Analysis (CAFEAN) Java-based API. Appendix A of this document is
automatically generated directly from the CAFEAN Java code by the JavaDoc application.

The CAFEAN API is still in development and, therefore, the information in this document is likely to
change relatively frequently, perhaps as often as once per year. Code developers should make sure that
they have the most up-to-date version of this document when using the CAFEAN APL

Table of Contents

ABSTRACT ..ottt sttt ettt sttt st s b e s te s b et et ese s st esebasaestestaen e s s e aseeas et s entesbesteabessssenes il
FOREWORD ..ottt sttt sttt b e st bbbt ea et sbeer et reebesaneneanostenees v
PREFACE L.t iiiiiiiiiinteaiaeaoreaeteneeaeessestaasssssasasaassessessessssnsansasssessessessns ettt nas ix
L. INEEOQUCHION 1ttt e e et s ae e sae e so bt e e st e e et e e snn e e smeesineeabe e 1-1
2. Preprocessor Plug-in Implementationcccvveeiuiieiieneineee e see st sbe s seee e 2-1
2.1 Plug-in INterface ClasSES....c.cereiivieiriuiiveeriieiiiiereisseessersresesresineeseessinssnesssesenssesseeessesssesacs 2-2
2.2 Plugin Interface Operations......cocciiiiiiiiieiii et e seeenn s 2-4
2.2.1 Processing Batch Commandscccccvreieiiniiniiecneieie s 2-4
2.2.2 Adding Menu IEEmS.cocieisloe ittt stretetesre st eee st veseba e e snaesaeseeeneesne 2-4
2.2.3 SUDMILHNG JODS ..e.eieiiiriiiiriicirieiec ettt et 2-4
2.2.4 PlUgIn PreferenCes. .ottt e st sa et e e et e s san e e 2-4
2.2.4.1 Loading and Saving Preferences..........cc.ccveviieiinieneiinienenc e 2-4
2.2.4.2 Editing PIEfErCNCESoovviviriiciiiieiccees et 2-5

2.2.5 Essential Core Classes for a Code PIug-In.......cocoveiiiiioiiiiiee e 2-5
2.3 The Multi-View ATCHIECIUIEooeiiirieiiiic ettt s e e seeeabene s 29
2.4 Creating @ Model ... 2-11
2.4.1 Component CALEZOTIESu.eieerertieiinierieiireste et ertesaeeesrresseeseeeseesteemeeseeesaresaneseeennenes 2-11
2.4.2 Foreign Key Relationshipscoocoooiiiiiiiiiie e 2-11
2.4.3 Methods 10 IMPIEMENToevoiiiiiiiiiicc e 2-12
2.4.4 Model Options..........ccocvevierieencrsrerenans ettt e nrees (RO 2-14
2.4.5 ROOt COMPONENLS.....cueiiiiiiriiiiitierierenie sttt eees e eresiense s sbe bt sees e eaeeeneenesaeeisanes 2-15
2.4.6 Component NUMDET GIOUPScccceviiiirieuieiiieeenriseee e e eeeertenseraeneeneesree e saessses 2-15
2.5 Creating Bean Based COMPONENLSccoiueriiiiiiiiiiieeeeceeiaete e neessess e stesrneseeseesnenees 2-17
2.5.1 Methods to IMPLEMENtcc.veiviriiiirieii et 2-17
2.5.1.1 Useful Utility Methods......cocuoiiiiiiriiiiicceie et 2-20

2.5.2 The ComponentListener Interface..........coeevoveeiveieiiinniecicecee e 2-20
2.5.2.1 AbstractComponent Methods............cc.cvevvereanen. teer et et sae e nre e 2-20
2.5.2.2 ComponentListener Methodsccooivieiiiiniiiieiceeceeeee st 2-21

2.6 Creating CONMNECHONSvveieceeresiretesstissete s caesesestesesassessesesesssbesens s sssensssasesesenassseesseses 2-22
2.6.1 Methods to IMPlementcccvvveiiieeiiiieieiie et s s e eree e 2-22
2.6.2 Connection DIawingcccoeveviiieiimnirninnneniscere e erereeeens e et 2-23
2.7 MOdElEditor DOCUINENLScveiuiruiireriereieeticteseseerceneeessessesssressessensesaseessesseesenneenaennen 2-25
2.7.1 The PIB FOIMAaL........ccccoiiiiiiiiiiiriccnce ettt e 2-25
2.7.2 L0ading @ MOlcccoviiiiiiiiiiiicce et 2-26
2.7.3 SavINg @ MOAEL ..ot e e et s 2-26
2.7.4 PibFile Load/Save EXample ..ot et evs s 2-27
2.7.5 Model Load/Save EXample ..ottt et e 2-29
2.8UNd0 and REdO.....c.ioieiiieiiiie et e ae e 2-31
2.9 Creating Connectible COMPONENLS.........ccovriiiiiiire ittt eree e svesnesee e 2-32
2.9.1 Methods to ImMPIEMENtcoceeieiiiiiiieieeciicce e e 2-33
2.10 Plugin-Specific UnIt TYPES ..cccooiiiiieiiiiiiert ettt ccr e sre et et ere st sae e 2-36
2.10.1 Supporting Units in the Model.........c.ccoiiniiiiiiniir s ses s 2-36
2.10.2 Units Classes............. ket e et e e ae e e b e e b s ra e bt e bt e reesabeeabe e e eesreranreens 2-37
2.11 Model Validation......c.ccooiiveieeiiiieniiirice ettt ccv st et ve s ne e sae b e ane e 2-39
2.11.1 ValidationTest Implementation...........c.cccevueveieieiniiiiieeseereeeee e 2-39
2.11.2 ValidationTest Methods in the Model............cocovniniine i 2-40
2.12 Using the PrOPerty VIEWcociiiiiiiiiiiiiiiii ittt eeteveeessre e sae vt enveevsseveseebeanteeveannens 2-41
2.12.1 The PropertyController Interfacecccovevveeiiericieiececcece e 2-41

vii

Table of Contents

2.12.1.1 Disabled and Optional...........ccccooeierrerrrerinienientiniieniine e 2-41
2.12.1.2 RE-S1ZADIC....ceicriiiieee e s 2-41
2.12.1.3 Attribute OTdering........cccoivrereveeriniiniiieiciie s 2-42

2.12.2 AUITBULE GIOUPS. .ovviiveieeeieriei ettt et s b b 2-42

2.13 Using Registered DIBlOES..........ccoriveriiiriirrenecececninis e 2-43
2.14 Customizing the 2D VIEW ..ottt e ene e 2-44
2.14.1 Adding TOOIDALS.......c.cc.icceiierecicie ettt sre e eebesreereernnae s 2-44
2.14.2 Insertion Handlers and the Insertable Interface.........ccocviienincinininiiinicnnnee, 2-44
2.14.3 Creating Custom Mouse Handlerscccovvrveivenieniieneninenneene e 2-45
2,15 Useful UtIItY ClaSSES . uiuiiiiiriiiriireriiiriiteseesvesste st s sreereesanee s baessbesobesnesneeeeenseneesras 2-46
2. 15.1 Interfaces . ..ccocviiniiniicieriier e Lbreeeerre e e e e e e bt e e s e e ees 2-46
2.15.2 Bean EdItOrS ...c.cocuiiiiieiicincrr e 2-47
2.15.3 GUI ULHEEScveevectirieie sttt ettt ettt e e s sas s 2-48

3. Packaging @ PLUZ-iN....cooiiiiiiiiniiiicisc et ie e e sttt e sae e st e b e 3-1
4. Preprocessor Python SCIIPHNEco.eeieiiii ettt 4-1
4.1 Built-in Python Methodsc.cociriiiiiiiiniicicnii et 4-2
4.2 Core CAFEAN Cla85€Suiuiiieiiiiienieiiiieieie ettt s sa s s 4-3
4. 2.1 REALICLaSS ..ottt ettt ettt s 4-3
4.2.2 AbstractComponent AbSLract Classccuvvieriverieereniieenieenresire e seesreesireneeeveraaens 4-3

4.3 TRACE Plug-in Examplesc........... vttt e ettt e et e e bbbt e ener e bt 4-5
4.3.1 Hydraulic COMPONENLS.......cccovirriiieirierierriientecceseen ettt eb e s erserens s 4-5
4.3.1.1 EXamPIe SCIIPLS ..eoeviviiieiiieiriincrtcter ettt ettt sttt st 4-6
Example 1: Pipe Component- General Data ACCESS.c.eoevrvirrierieriniinneir e, 4-6

Example 2: Calculation of Total Volume for a Pipe Componentccovecn... 4-6

Example 3: Display of Edge Data for Pipe Component.ccccooevercenncninnnnes 4-7

Example 4: Calculation of Total Volume for a Tee Componentc.cceeveurnnee 4-7

4.3.1.2 3D Vessel COMPONENL ..occverericieiierrieiieiresinnsee st eseeennesiseesseessesssesesaesseesnenns 4-7
Example 5: Vessel Component General Data ACCeSsS........coecvveeererieereveeniecinneneene 4-7

4.3.1.3 Heat StIUCIUTES ...o.eeiiiieieriereeeneereneesie st eereree s nsns vttt et ses e bt sene s snn st seenans 4-8
Example 6: Heat Structure General Data ACCESS.......cocovvviriiiniiienieeenrececiiiieneen 4-8

Appendix A: JavaDoc for the CAFEAN APL........cooiiiiiiiiirriece e e A-1
ADPPENAIX A PAIT A oottt s e e bbb st e be e e b e sae s A-1
Appendix A: Part B et e et e e e s s ennea A-399
CAPPENAIX A INACK c.coviiiiiiiecesct e b A-913

viii

PREFACE

This document is divided into several volumes. The first volume contains the “Main Report”; a general
overview of the application programming interface (API) used by the Symbolic Nuclear Analysis
Package (SNAP) and providing simple guidance on how to use the SNAP API. The remaining volumes
of this document contain “Appendix A,” the actual API specification and documentation. Except for its
front matter, Appendix A is the direct output from the standard JAVA documentation program known as
“JavaDoc”. Appendix A is split into multiple volumes due to its large size.

The Main Report as well as Appendix A was written primarily by Ken Jones, John Rothe, and William
Dunsford, of Applied Programming Technology, Inc.. (APT, Inc). APT, Inc, is the primary developer of
the Symbolic Nuclear Analysis Package (SNAP) and associated Common Application Framework for
Engineering Analysis (CAFEAN).

1. Introduction

Applied Programming Technology, Inc. (APT) has developed the Symbolic Nuclear
Analysis Package (SNAP) software under funding from the United States Nuclear
Regulatory Commission (USNRC). SNAP is built on a highly flexible framework for
creating and editing input for engineering analysis codes as well as extensive
functionality for submitting, monitoring, and interacting with the analysis codes. This
framework known as the Common Application Framework for Engineering Analysis
(CAFEAN) provides a standardized application programming interface (API) used to
create modular plug-in's for engineering analysis codes. The modular plug-in design of
the software allows functionality to be tailored to the specific requirements of each
analysis code.

This framework is essential to SNAP's Multi-View capability. The multi-view design
permits several views of a component's data to be displayed simultaneously. These views
can include 2D & 3D representations, editors, or displays of the analysis code ASCII
input. Each of these views update automatically as the component data is modified. 2D
views may also be embedded within other 2D views to provide a "Drill-Down"
capability. CAFEAN also provides a framework to manage the complex
interconnections that may exist between a model's components. This is accomplished by
using a primary-foreign key relational mapping to manage component interconnections.
By avoiding direct references between components, this approach provides the robust
architectural base needed to support several of CAFEAN's more advanced features such
as multi-step undo/redo, component duplication and cut&paste operations between
models.

This document is intended to provide instructions for programmers who wish to extend
the capabilities of SNAP by creating new plug-ins to support additional analysis codes
and/or add new features to the user interface. Documentation of CAFEAN's python
scripting capability which is useful for automating operations performed on models is
also provided. Section 2 provides a detailed description of the implementation
requirements for a Plug-in. Section 3 documents the packaging of a plug-in. Section 4
documents the scripting support available to the preprocessor client via a Python
interpreter.

Who This Documentation is for

This API programmer’s guide is designed for someone with a working knowledge of
Java™, Javabeans™, and the CAFEAN Preprocessor. The intention is for developers to
be able to implement new analysis codes or feature operations for the Preprocessor
without requiring modification of the primary source tree.

Why Make a Plug-in

The CAFEAN Preprocessor plug-in architecture provides a core functionality for the
visual editing and manipulation of analysis code input files. All analysis code specific

1-1

functionality is implemented using plug-ins. This approach allows support for new
analysis codes to be developed independently of each other, allowing developers to
immediately implement necessary functionality without waiting for the primary source to
be updated. '

What Kind of Plug-in

The first task when developing a CAFEAN plug-in is to determine which type of plug-in
to develop. The CAFEAN preprocessor plug-in architecture supports two basic types of
plug-ins: code plug-ins and feature plug-ins. In general, if the new functionality includes
new components, or provides support for a new analysis code, then it should be a code
plug-in. If the plug-in manipulates existing components or models it is a feature plug-in.

2. Preprocessor Plug-in Implementation

This section provides an overview of the implementation requirements for a Preprocessor
plug-in. The com.cafean.CodePlugins package contains the interfaces and abstract
classes needed to develop plug-ins for the CAFEAN pre-processor, runtime and post-
processor. Only those portions related to Preprocessor plug-ins are discussed here.

+pluginLoaded(plugin:Object): void
+pluginException(ex: Exception): void

/'

N

MainFrame

+getModel(label: String): AbstractM odel
+addExportitem(item: JMenultem): void
+addimportitem(item: JM enultem}: void
+addMenultem(item:JMenuitem,name: String): void
+getPluginCount(): int

+getPluginAt(index:int): MERlugin
+findPlugin{name:String): MEPlugin
+getCodePlugins(): MECodePlugin(]
+getvalidkey(String key): String
+getFeaturePlugins(model: AbstractModel): MEF eaturePlugin[]
+getFeaturePlugins(): MEF eaturePlugin[}

g

!

MEPugin

/

+init(): void

+getPluginid(): String

+getPiluginType(): int

+getVersion(): String
+getPluginPrereqs(): String]]
+getPlugininfo(): String
+loadM ainM enuitemns(): void
+loadViewMenuitems(view:DrawnView): void
+loadSettings(config:Configurator). void
+saveSettings(config: Configurator): void
+processCommand{cmdVect: Vector): void

A
e

+createN ewModel(): AbstractModel
+open(dFile:File): AbstractMode!

+getSamPackage(): String
+submitModel(model AbstractM odel): void

\

(oo) | [anian)

[esnsn]

o—{ oo |
I MEPluginData

+getPluginClass(): String
+gett abel(): String
+getVersion(): String
+getPluginPrereqs(): String(]
+getClassPrereqgs(): String(]
+loadPlugin(): MEPlugin

A
| l
RelapSPiuginData TracePluginRata

MEFeatyrePlugin

+load({loadedM odel: AbstractM odel, file:PibFile); void
+save(savedModel: AbstractModel.file:PibFie): void
+modelRemoved(model AbstractModel): void
+isAssodated(model: AbstractM odel): boolean

Figure 1: Plug-in Architecture UML

2-1

2.1 Plug-in Interface Classes

Preprocessor plug-ins are created by extending the abstract classes: MEPluginData,
MEPlugin, MECodePlugin and MEFeaturePlugin contained in the nrcsnap.CodePlugins
package.

MEPIuginData Abstract Class

MEPluginData is the first class loaded by the plug-in manager is used to load the
MEPlugin itself. MEPluginData contains methods for retrieving static information about
all of the important values that define a plug-in. These values are: plugin-id, plug-in
class, version, plug-in prerequisites, and class prerequisites.

o The plugin-id is the short name used to reference this plug-in.

« Plugin class is a String containing the absolute path of the plug-in class name
including package names.

« Version is a String representing the current version of the plug-in.

 Plugin prerequisites are an array of strings that indicates which plug-ins need
to be loaded for this plug-in to successfully load. Each of these strings contains
the plugin-id and version of the plug-in it depends on, separated by a colon.

« The class prerequisites are the list of Java™ class packages that need to be
installed on the users system for the plug-in to work properly.

MEPIugin Abstract Class

MEPlugin has several abstract methods that must be defined in any extending class.
Some of this functionality has been implemented by MEFeaturePlugin and
MECodePlugin, others must be defined by the plug-in.

There is some correlation between methods in MEPlugin and MEPIluginData. Several
methods are simply wrapper functions for methods in MEPluginData. This allows access
to the requirements and information about a given plug-in after the plug-in has been
loaded.

« getPluginld() should return the plug-in data's plugin-id.
« getVersion() should return the version. '

« getPluginPrereqs() should return the plug-in prerequisites in the form [Plug-in
ID]:<Version>. The version (and accompanying colon) is optional.

 getPluginlnfo() should return a description of the plug-in. Plug-in info is used
inside the AboutPluginsDialog for describing plug-ins to the user. It should be
either unformatted text, or conservatively formatted HTML suitable for
inserting into an existing HTML document.

2-2

MECodePlugin Abstract Class

MECodePlugins are the implementation of support for an analysis code in the
ModelEditor. This implies a new AbstractModel extension, with its own set of
components.

When the user wishes to create a new model in the ModelEditor, they are prompted to
choose the type of model (by plugin-id) they want to create. createNewModel is called
on the chosen plug-in and the model is added to the list of currently open models in the
Mainframe and Navigator.

It is recommended that plug-ins store their models in ModelEditor Document (MED)
files in a platform independent binary file format. For more information on loading and
saving models refer to the ModelEditor Documents section.

MEFeaturePlugin Abstract Class

There are five methods that are needed by every MEFeaturePlugin: load, save,
modelRemoved, modelAdded, and isAssociated. MEFeaturePlugins may store data
inside the MED file produced by another model in the ModelEditor. This is done in such
a way that the model can still be retrieved from the MED file even on a machine that
doesn't have the MEFeaturePlugin.

Feature Plug-ins may have data related to a particular open model. When this
relationship exists, isAssociated should return true for that model. When a model
associated with a MEFeaturePlugin is saved to a local file, that plug-in is notified by the
Mainframe through the save function. That save function is passed the model that is
being stored, and the PibFile that is being written out. This allows the plug-in to write
whatever blocks it needs into the MED file.

Similarly, when an MECodePlugin is reading in an MED file, at the end of it's parse
cycle, it may encounter information from a MEFeaturePlugin. When it does, the
MEFeaturePlugin is informed through the load function. The load function is given the
AbstractModel that has just been read in, and the PibFile. This allows the plug-in to load
its model specific data back into the ModelEditor.

Since MEFeaturePlugins may use data that is specific to individual AbstractModels,
these plug-ins are notified whenever an AbstractModel is added or removed from the
ModelEditor. This allows the plug-in to dispose of any local data, or to create new local
data as appropriate. :

2.2 Plugin Interface Operations

Most of the user accessible functionality for a plug-in is implemented through toolbars
on the MainFrame and DrawnViews and the batch command processor.

2.2.1 Processing Batch Commands

Commands are parsed by white space and converted to a vector of words prior to being
sent to the batch command processor. Batch commands that contain a plug-in ID as the
first word are forwarded to the respective plug-in's processCommand method. In this
case, the plug-in ID element is removed from the vector prior to being sent to the plug-in.

2.2.2 Adding Menu Items

Menu items can be inserted by a plug-in into the Mainframe (in loadMainMenultems) or
the DrawnView (in loadViewMenultems). For the DrawnView, addMenultem is used to
add items to the Tools menu.

MainFrame's addMenultem allows JMenultems to be inserted into any of the main

. menus, which are selected by name. The name of the menu is the word that appears in
the main toolbar for that menu: File, Edit, View, Window, Tools, and Help are the valid
names. Menu items are inserted in the order the plug-ins are read in from the directory.

MainFrame's addImportMenultem and MEPlugin's addCurrentExportltems allows the
plug-ins to specify their import and export functionality. If there is more than one way to
import a model, it is preferred for a JMenu to be added (with the plugin-id as the text),
that contains all of the import operations for that plug-in. All menu items may make use
of Mainframe's getCurrentModel to obtain the model that currently has editing focus.
This allows the plug-in to determine whether the plug-in item should affect the current
model, and respond accordingly.

DrawnView's addMenultem appends a menu item to the Tools menu that appears on
every DrawnView. The DrawnView has a method for obtaining the model it represents,
so it is easy to ensure that only certain types of models get plug-in menu items.

2.2.3 Submitting Jobs

When an AbstractModel is ready to be submitted to the Calculation Server, it is the
MECodePlugin's responsibility to get it there. A detailed example of submitModel is
provided in the class documentation of MECodePlugin. Additional information can be
found in the documentation for LocalSubmitDialog.

2.2.4 Plugin Preferences

2.2.4.1 Loading and Saving Preferences

Each plug-in may store settings information into the program settings file. Before the
plug-in gets an opportunity to load or store its settings, the Configurator switches to a

2-4

. module with the plugin-id as its name. This prevents any possible overwriting of data in
the user settings for different plug-ins. The plug-in can then start directly loading and
storing values in the Configurator. The settings file is written in XML format, so all
values ultimately get stored and read as strings, but there are some convenience methods
for storing specific types of data such as fonts and colors.

2.2.4.2 Editing Preferences

Plug-in preferences can be made editable by building a JavaBean™ that contains
properties for each of the editable preferences. This bean is then returned by the plug-in's
getPluginPreferences method and edited in the Preferences Dialog in the same manner as
other JavaBean™ type objects and components.

2.2.5 Essential Core Classes for a Code Plug-in

AbstractModel Abstract Class

The AbstractModel is the heart of a MECodePlugin. The model contains all of the
components, connections, and objects that are needed to model a simulation. All of the
AbstractComponents inside a model are organized by Category inside of
ComponentLists. Access to a component can be by its primary key (called the ident),
component (cc) number, or by a secondary temporary key called the db_id.

The AbstractModel controls all of the model level operations. It starts save and load
routines for the whole model, as well as initiates imports and exports.

AbstractComponent Abstract Class

Any object for an analysis code that can be displayed in a view or the Navigator should
be an AbstractComponent. This number is usually unique within the components
immediate category. Many analysis codes organize their components solely by
component number. ComponentListeners are objects, or components that are notified
whenever a change occurs with a given component or its connections.

GenericObject Abstract Class

Anything inside a model that is not a component, but needs a global primary key, is a
GenericObject. A single ElementList and its accessors is provided by AbstractModel and
can be used by subclasses to store any GenericObjects that may be needed for the model.

For example, cells contained within thermal-hydraulic components commonly extend the
GenericObject class. This allows cells to be accessed using primary-foreign key
relationships, eliminating the pitfalls associated with direct references and simplifying
processes such as renodalization.

Connection Abstract Class

Connections are special AbstractComponents that connect two other
AbstractComponents together. The generic form has only two primary key references,
and two Categories. Since Connection itself is an abstract class, appropriate extensions to
the Connection must be implemented.

Connections are stored in a ComponentList in the AbstractModel. When a connection is
completed, the Connection object created is added to both Components with their
respective addConection methods. Each AbstractComponent has a ConnectionList,
which essentially is a list of foreign key references to the Connections stored in the
AbstractModel. All Connections involving a component can be retrieved with its
getConnections method and are normally stored in an instance of ConnectionList within
that component.

ConnectionData Abstract Class

A ConnectionData object is transient data that is generated either by the
DrawnComponent when it is building its ConnectingPt objects or by a Connection when
it is determining the nature of the connections on either side. Two ConnectionData
objects can be used to initiate a connection between two components as well, using the
AbstractComponent's connectTo method.

ConnectionData represents the actual location information on a component for a given
connection. For example, for a HydroConnection between two pipes, the
HydroConnectionData includes the cell index, the face number on the target component,
the edge index, and face number on the source component.

Category Class

Categories provide the primary source of component organization within a model. They
form a hierarchical representation in that a Category may be a subset or superset of other
Categories. For example, the Category for all hydraulic components would be the
superset for the Category for pipes as well as the Category for pumps. Each category
contains the icon for display in the navigator, the URL of the image for the Toolbox, the
name of the category, and whether the category represents visual components. Parent
categories and non-visual components do not need a URL for their toolbox image, and
non-visual components do not need an icon for the navigator.

AbstractModel contains predefined categories for views and connections. They are
publicly defined in AbstractModel as CAT VIEW and CAT_CONNECTION,
respectively. These Categories and their lists are handled by AbstractModel and need not
be handled by derivative models.

NOTE: Categories must be compared by isSubset, isSuperset or equals, not with
reference equivalence.

2-6

ComponentList Class

The ComponentList is a list of AbstractComponents sorted by their primary key.
ComponentList does not allow duplicate keys but will allow a single object to be added

multiple times. All searches on this component list by that key are done using a binary
search algorithm.

DrawnView Class

The DrawnView is the dialog that contains the actual View. Within this dialog the
ZoomablePanel maintains a zoomed view of its contained BeanBox. The BeanBox in
turn, contains and displays the DrawnComponents.

Menu items can be added to a DrawnView's Tools menu from a plug-in's
loadViewMenultems method by using DrawnView's addMenultem method.

DrawnComponent Abstract Class

Most AbstractComponents can be rendered in a DrawnView. Each AbstractComponent
has its own implementation of createDrawnComponent(). This returns a
DrawnComponent capable of rendering the AbstractComponent that created it. The
DrawnComponent is the rendering engine for the component in the two dimensional
DrawnView. The DrawnComponent also contains ConnectingPts, which are locations on
the drawn icon where a connection can be started or completed. The local information of
what that ConnectingPt actually represents in the component (such as cell number or face
value) is stored in that ConnectingPt's ConnectionData object.

If a ConnectingPt represents multiple internal locations that the user must choose
between when a connection is completed, a SpecialConnectionData object should be
used instead. When a connection is completed by the user, each component gets the
opportunity to modify the ConnectionData object obtained from the ConnectingPt on it's
DrawnComponent with the createTargetData and createSourceData methods.

When a connection is rendered using a DrawnConnection, it is drawn between two

ConnectingPts. This is done by comparing all of the ConnectingPt's ConnectionData
objects until a match is found using ConnectionData's equals method.

2-7

ConnectingPt Class

A ConnectingPt is a point on a DrawnComponent that can be the source or target of a
Connection. They are created with DrawnComponent's createConnectionPt and used by
the connection tool to find potential connection beginnings and endings as well as by
DrawnConnections to find the location of their end points.

Each ConnectingPt has a ConnectionData object that describes the correlation between
its location on the DrawnComponent and the Component it represents. It also has a Pad
object that defines the ConnectingPt's position and the orientation of any lines exiting the
DrawnComponent at this point.

2.3 The Multi-View Architecture

Figure 2 illustrates the ModelEditor's Multi-View architecture and component
management features. In the ModelEditor all components are AbstractComponents, and

MainFrame
+modelList: AbstractModel{]
mo&List

/ Abstract Model

+connectionList: ComponentList

+navigator: Navigator

+views: ComponentList

+objectAdded(object: GenericObject, assignident:boolean)

+getCategories(). Category(l

+createComponent{category.Category) DrawnView

4 +addComponent(comp:AbstractComponent)
+removeComponent(componeént:AbstractComponent): boolean

+findComponentByident(ident:int): AbstractComponent T

+findComponentByDB_ID(dbid:int): AbstractComponent

+getComponentCount(); int

+getComponentCount(category:Category) BeanBox

+getComponentiterator(category.Category): Iterator +components: Component(]

QetComponents(categoryCategory): AbstractComponent[]/
L 2

¢

AbstractComponent

+listeners:Vector
+addConnection(connection:Connection):void
+getConnections(): Connection[]
+connectTo(Target tData,sData): boolean
+createDrawnComponent()
+fireComponentChanged():void g
+fireComponentDeleted():void listeners
+fireComponentConnected(connection:Connection):void components
+fireComponentDisconnected(connection.Connection):void
+getCategory: Category

+getGroupedConnections(): Connection{l]]
\+popupDataDiang(parem:window. modal:boolean) /

Connection [: Componentlistener]

+leftComp: ident
+rightComp: ident ’

+name: String |
DrawnComponent
A | +component: AbstractComponent

i

[]
ControlConnection i
-DrawnConnection] Erawn\ﬁewComgon enﬂ

+targetPoint: int
DrawnBranch

HydroConnection
+fromEdge: int

+fromFace: int
+toCell: int

+toF ace: int
+toAngle: Angle

+sourcePoint; int

HeatConnection

+face: int

Figure 2: Multi-View Architecture UML
' 2-9

all AbstractComponents are stored in ComponentLists in the model. These components
are then referred to by a unique id called an ident.

Models also have a hierarchy of categories which each AbstractComponent falls into. For
each component type there is a Category, and these component categories are grouped
into other categories.

For instance: A TRACE pipe is in the Pipes category, which is in the /D Components
category, which is part of the Hydraulic Components category. When other 1D and
hydraulic components are taken into account a very organized hierarchy of categories
results. These Category objects are used for searching for, iterating through or retrieving
all of particular groupings of components. They also determine the structure shown in the
Navigator.

2-10

2.4 Creating a Model

The model is the central data structure for any Code plug-in. It handles the creation,
loading and saving its contained components. As a result, a plug-in's AbstractModel
extension requires a significant amount of customization to be fully functional. The
following is a discussion of the structures, concepts and methods required for a complete
model.

2.4.1 Component Categories

Components in the CAFEAN preprocessor are organized into a hierarchical set of groups
called categories. Each category is represented by an instance of the Category class.
Each Category can have a parent and a set of child Categories. With this system, each
component type should have it's own Category instance. Take note, however, that a
Category that represents an actual component cannot have child Categories.

The Categories made available by a model are used in various places in the Ul to
organize and select components. For example: The Navigator's tree structure is
determined almost entirely by the Category instances returned by the model's
getCategories() method. Also, a component's Category is used to create instances of that
component from the Navigator via the model's createComponent() method.

Note that if user defined numerics or views are to be included in the Navigator's listing of
components for a model, these categories (CAT_NUMERICS & CAT_VIEW) must be
included in the array returned by getCategories().

Refer to the Source Code Documentation of the Category class for more information and
detailed examples of the creation and use of Categories.

2.4.2 Foreign Key Relationships

Each component in the CAFEAN preprocessor contains a unique primary key called an
ident. Foreign key references to these idents are used for all component-to-component
references in the ModelEditor. For simple one-way references, a single foreign key
reference is used. For two-way references or references that must be rendered as lines in
a DrawnView, a Connection object is used that contains foreign key references to both
components.

In all cases the ident reference value 0 indicates an invalid reference (i.e. NULL) thus no
search is required to determine the component referred to. All non-zero ident reference
values are considered valid and require a search to determine the component referred to.
Note that a non-zero ident reference does not necessarily mean that the referred to
component exists or is available.

Refer to the Source Code Documentation of the AbstractModel class for more .
information of the handling of foreign key references.

2.4.3 Methods to Implement

AbstractModel contains a set of abstract methods that must be overridden. It also
contains a larger set of methods that may also need to be overridden for particular Code.
Plug-ins. The following is a list of the methods that must be overridden and their purpose
as well as a list of optional methods that are commonly used in Code Plug-ins.

The following methods must be implemented by every model. Some are required before
the resulting class will compile; others are implemented to handle the components stored
in AbstractModel and must be extended to handle the new model's components.

GetPluginid Method

This method is a simple accessor for the the model's Plugin-ID. It should return the same
value as the MEPluginData included with that plug-in.

saveModel Method

A version of this method is provided both with and without a showProgress parameter.
This parameter indicated whether or not a progress dialog should be shown during the
save process.

loadRestartData Method

This method is used to retrieve data from the CAFEAN Calculation Server in order to
initialize the current model with a set of restart data. This data normally consists of initial
conditions for submitting a restart.

checkModel Method

This method should perform a set of checks on the model and its' component's current
state. This method normally utilizes AbstractComponent's isOkayForExport methods and
may optionally add error and/or warning messages to the MessageWindow.

For more information on checkModel, refer to the Mode!l Validation Section.

getCategories Method

This method retrieves the complete set of Categories available for this model and should
be overridden to include any new Categories defined by the model. The ordering of these
Categories is used by the Navigator to determine it's tree-node ordering.

Note: This set should include the categories defined by AbstractModel that will be used
in this plug-in. (e.g. CAT_NUMERICS, CAT_VIEW)

2-12

getComponents Method

This method must be overridden to handle any new Categories. This method should be
able to handle a parent Category by calling getComponents with each of it's children.
Note that Categories defined in AbstractModel should be passed to AbstractModel's
implementation of getComponents.

findComponentByldent / findComponentB‘yDB_ID Methods

These methods retrieve a component by the ident or DB_ID (and optionally Category)
given. Only the version with a Category parameter should be overridden. These methods,
like getComponents, must be overridden to handle any new Categories in this model.

For more detailed information on either of these methods, see the Source Code
Documentation.

addComponent Method

This method adds a component to the appropriate internal ComponentList and ensures
that i1t-has an appropriate ident. The default implementation of addComponent handles
those Categories defined in AbstractModel.

This method must be overridden to store new component types into an appropriate
ComponentList (defined in the model) and to handle updatmg the 1dent of the added
component with a call to objectAdded.

Note: Plug-ins with a small number of component instances (hundreds) may choose to
use a single ComponentList instance to hold all components.

createComponent Method

This simple method takes a Category and creates an appropriate component instance
using that component's default constructor. This must be overridden to. handle new
Categories and should call the default implementation for those Categories defined in

AbstractModel. The model may be set on the component but the component should not
be added to the model.

removeComponent Method

This method removes a component from the ComponentList it is stored in and calls
firecComponentDeleted on that component. This must be overridden to handle new
Categories and should call the default implementation for those Categories defined in
AbstractModel.

getComponentliterator Method

This creates an Iterator for use in traversing a subset of the components in the model. The

2-13

default implementation uses the ComponentList method iterator() for the appropriate
ComponentList. The Iterator created will traverse the components that are part of the

Category given in ident order. This must be overridden to handle new Categories and
should call the default implementation for those Categories defined in AbstractModel.

Note: The current Iterator creation strategy cannot span multiple ComponentList
instances.

getComponentCount Method

This method returns the number of components in the model who's Category is a subset
of the given Category. This, much like removeComponent, must be overridden to handle
new Categories.

reconnectldentReferences Method

This method calls reconnectldentReferences on every foreign key holder in the model.
The default implementation handles only the ComponentList instances defined in
AbstractModel. This must be overridden to handle any new ComponentList instances as
well as the model's options object if it contains foreign keys.

For more information on reconnectldentReferences, see the Source Code Documentation
for AbstractModel.

clearDblds Method

This method clears the DB_IDs of all components in the model. It must be overridden,
like reconnectIdentReferences, to handle any new ComponentLists.

getModelOptions Method

This retrieves a plugin-specific model options object that is assumed to be a JavaBean™.

- If this method returns null then the options node will not appear. The default
implementation returns null and does not necessarily need to be overridden. See Model
Options below.

layoutComponents Method

This method is used to organize and layout DrawnComponent instances in a View. This
is a plugin-specific method intended only to determine appropriate X,y locations in the
View for each DrawingComponent given.

2.4.4 Model Options

A model's options object is intended as a place to store properties that are specific to a
particular model but not complex or large enough to justify their own component.
Properties such as a model's name, description comments should be stored here. This

2-14

object is assumed to be a JavaBean™ and should extend AbstractBeanComponent to
ensure that ComponentChanged events are generated when it is edited.

The Model Options node will appear as the first sub-node of the model in the Navigator.
This node's string and icon representation will be taken directly from the BeanlInfo of the
options object. This is essentially the same functionality offered by using Root
Component with much smaller implementation requirements.

2.4.5 Root Components

The root components feature is intended to handle cases where there is only a single
instance of a particular component in a model. Root components are displayed in the
Navigator just below Model Options (if present) using the same node type as other
components. The component's toString method is used as the name of the node and its
Category decides its icon. Root components will appear in the Navigator in the same
order as they are returned from getRootComponents.

Plug-in’s requiring root components must override AbstractModel's getRootComponents
method and handle reconnecting any foreign key references contained in those
components. -

2.4.6 Component Number Groups

Component number groups are used to allocate component numbers to new components,
to determine if any existing numbers are invalid or duplicated and to renumber sets of
components within a specified range.

To use component number groups in a code plugin, the getComponentGroups method
must be overridden to return appropriate groups for the available component types.

For each group the following must be defined:

o the initial component number

This is the first number available in the group. The first component created in
this group will receive this number.

Note: This number is not necessarily smaller or lower than the maximum.
« the maximum component number

This is the last component number available in the group. This is not
necessarily higher than the initial number.

« the increment quantity

This is the amount added to the last used number to determine the next
allocated number. To creates a group that begins at -1 and goes to -1000 set the
initial to -1, maximum -1000 and increment to -1. (or any negative integer)

« the Categories included in the group

2-15

This is the set component Categories that will be included in any checks and
renumbering performed with this group. These Categories will also be used to
determine which group a particular component is part of when allocating a new
component number. Note that a group may have one or more Categories.

2.5 Creating Bean Based Components

Components are the basic data structures for all existing code plug-ins. With this in
mind, care must be taken when determining what analysis code structures map to
components. In general, if there can be more than one of a particular object and/or that
object is referred to by other components then that object should be a component. Often
if there is only one of a given component it maps well to a root component. Root
components and non-root components-are both components and thus the following
section applies equally to both.

To be a component in the CAFEAN pre-processor, an object must extend
AbstractComponent or AbstractBeanComponent. Components in a JavaBean™ based
model should extend AbstractBeanComponent to enable access to the more modern bean
based editors and undo available in CAFEAN. In addition, appropriate BeanInfo classes
must be provided for each component to allow proper display of properties for that
component in the Property View.

All new plug-in development should follow the JavaBean™ architecture and use the
bean based CAFEAN functionality. The creation of non-JavaBean™ plug-ins is not
recommended.

2.5.1 Methods to Implement

label Method (Required)

This simple method should return the name of this component's type. For example:
"Pipe" or "Pump". The default toString method for AbstractComponent uses this method,
the component number and the component name to create a simple string representation.

The default implementation of this method uses the class name as the label.

getCategory Method (Required)

This returns a reference to the Category this component is part of. The Category will be
used for foreign key searches and adding this component to a model. This is the only
abstract method in AbstractComponent and is essential. See the discussion of Categories
in the model creation section as well as the Source Code Documentation for Category for
more information on the use and creation of Categories.

clone Method (Required)

GenericObject (the ultimate parent of AbstractComponent) is a Cloneable class, therefore
all components and their sub-components must have proper clone methods defined.
Refer to the Java documentation for more information on how to properly implement
clone. '

storeState / restoreState Methods (Required)

The CAFEAN pre-processor undo system assumes that all objects being edited are
JavaBeans™ and that all beans are StateEditable. Because of this, proper storeState and
restoreState methods must be implemented for all components and sub-components.
Improperly implemented storeState and restoreState methods can cause errors that are
difficult to diagnose. Refer to the Java documentation for more information on how to
properly implement storeState and restoreState.

complete Method (Optional)

This method is used to properly initialize components after they've been created either
via the Navigator or the Insert Tool. A call to this method implies that the user has
created a new component and that the created component has been added to the model.

Completion operations that do not require user input can be freely executed here. If
completion requires GUI interaction (such as using an OptionPane), a SwingWorker
must be used to avoid a deadlock on the Swing Event thread. Refer to the Source Code
Documentation of com.cafean.utils.SwingWorker for more information on Ul interaction
using the SwingWorker.

isOkayForExport Method (Optional)

This method determines if the component has valid data for export. If the prompt
parameter to this method is true, the method should add error or warning messages (via
addMessage) for each of the problems found during the validation. This method should
be called on each componerit from the model's checkModel method.

See the Source Code Documentation for MainFrame for more information on
addMessage.

getCustomPopupltems Method (Optional)

This method and the following getCustomPopupActions can be used to customize the
popup menus that are created for a particular component. This should return a Vector of
JMenultems, JMenus, and JSeparators representing the complete pop-up menu for this
component.

The default implementation includes:

1. The Show ASCII item for Writeable objects.

This creates an AsciiViewer to display the written representation of the
component. See the Useful Utility Classes section for more information on the
Writeable interface and its use.

2. The Reference Docs menu.

See the Reference Document Links section for more information on how to
define and use Reference Documentation.

3. The Special menu.

This menu is built by creating items and separators from the actions returned
by getCustomPopupActions.

4. The Properties item.

This item creates a Mini-Navigator for the selected object (In this case a
component) that can be used to edit the object's properties. This dialog acts in
most ways like the Navigator and Property View.

Additional menus and menu items can be inserted into the vector by component
extensions.

getCustomPopupActions Method (Optional)

This method returns an array of Action objects that are used by getCustomPopupltems to
create it's Special menu. The Special menu is intended to contain operations that can be
performed on a component that are used rarely or in special situations. Placing less used
operations here can greatly shorten and simplify the component's popup menu.

The Action array returned may contain null entries to indicate separators.

removeVerify Method (Optional)

This method is called by the Ul to verify that the user may remove the component from

- its model without unforeseen side effects. For example: Removing a shared geometry
object used by a dozen heat structures. Returning true from this method implies that the
component removal should be allowed. '

This method may request verification from the user via OptionPanes or dialogs.

getOrder/setOrder Methods (Optional)

These methods are accessors for a relative ordering value. This can be used to ensure a
particular sorting order for a set of components. This is the primary attribute used in
sorting when using the Comparator returned by getOrderComparator. This has primarily
been used by plug-ins to preserve the relative ordering of components in imported decks
by setting this value on import and using the order comparator to sort the components
before exporting them.

toString Method (Optional) .

This method returns a string representation of the component. The default
implementation returns a string in the form: <label> <component number> (<name>).

2-19

2.5.1.1 Useful Utility Methods

writeName Method

This method returns a string with its surrounding whitespace removed. If the resulting
string is "unnamed" (the default name) then an empty string is returned instead. This was
intended for use in an ASCII export of a component.

popupDataDialog Method

This method creates and shows an editing dialog for the component. For JavaBean™
based components a Mini-Navigator will be created with a Property View on the bottom.
This Property View acts identically to the main Property View and the two can be used
interchangeably. This method may be overridden to create a different editing dialog for a
particular component.

2.5.2 The ComponentListener Interface

Various structures and views in the CAFEAN ModelEditor use the ComponentListener
interface to appropriately respond to changes to components. The Property View in
particular uses this interface to ensure that the properties displayed reflect what is stored
in the component.

2.5.2.1 AbstractComponent Methods

The following AbstractComponent methods relate directly to the ComponentListener
interface. Any or all may be overridden if necessary but the default implementation must
be called from the overriding method.

addComponentListener Method

This adds a structure to be notified when this component is changed, deleted, connected
or disconnected. The given listener will be compared to the current list to ensure that
each is added only once. ’

removeComponentListener Method

This removes an existing listener from the list of structures to be notified. Attempting to
remove a structure that is not currently a listener will not cause an error.

fireComponentChanged Method

This method notifies all structures listening to the component (ComponentListeners) that
its data has changed in some way and should be reloaded or refreshed. This method is
called by the Property View, the undo system and various other operations.

2-20

fireComponentDeleted Method

Much like fireComponentChanged, this method notifies all listeners that this component
has been deleted. This indicates that views of this component should be closed or
cleared, Navigator nodes removed, etc.

fireComponentConnected / fireComponentConnected Methods

Like the previous two methods, notifications are sent of connection and disconnection.
Often the disconnection also causes a deleted event to be sent for the Connection. The
connection affected should be passed to this method to allow listeners to update
appropriately.

2.5.2.2 ComponentListener Methods

To use the ComponentListener interface to track changes in a component, the following
methods must be implemented. Refer to the Source Code Documentation for the
ComponentListener interface for more information.

componentChanged Method

This is a notification that the component described in the given event has changed. The
event itself may describe the change in more detail. See the Source Code Documentation
for ComponentChangedEvent for more information on available extensions. Plug-in-

specific extensions of this event may be created and used to describe other types of
changes.

componentDeleted Method

This is a notification that this component has been deleted and views must update and/or
close themselves. This is particularly useful for such things as ASCII views and editing
dialogs for components.

componentConnected / componentDisconnected Methods

This is a notification that the Connection given has been connected or disconnected. This
has been used to update data related directly to connections, to update DrawnComponent
decorations and to update ASCII views.

2-21

2.6 Creating Connections

A connection is any object that extends ConnectionBean and is used to represent an
association or connection between two other components. In essence it's an encapsulation
of two ident references with an object describing each reference. Since connections are
also components, much of the section on creating components also applies to
connections.

An important decision when determining if an object should be mapped to a connection
is whether that object can exist in a View without the components it connects to.
Currently, connections will only be included in a view (if the components on either end
are included. This enables connections to be represented as lines drawn between the
DrawnComponents representing the components on each end.

2.6.1 Methods to Implement

The following methods are important to the implementation of a Connection object. Of
the methods listed, only the first two must be implemented to create a functional
Connection. .

Refer to the Source Code Documentation for Connection and ConnectionBean for more
detailed information on the methods available for overriding.

getLeftConnectionData / getRightConnectionData Methods (Required)

These methods retrieve the data object for each side of the connection. These connection
data objects describe the relationship of this connection to the component on each side.
For some connections there may be no need of this descriptive data; the connection itself
may be enough. In these cases an empty ConnectionData extension can be returned. In
most cases, however, a more complete ConnectionData object is required.

ConnectionData objects are used by DrawnConnection when drawing or relocating to
find the appropriate target ConnectingPt on a DrawnComponent for each end point. This
process uses the ConnectionData.equals(Object) to compare the data for the available
ConnectingPts with the data in each side of the connection. If equals return true, the data
objects are assumed to be describing the same connection and the ConnectingPt will be
chosen. ‘

Refer to the Source Code Documentation for more detailed information on use an
creation of ConnectionData objects.

IsindependentComponent Method (Optional)

This method is used to determine whether the connection can exist without the
components at either end. Non-Independent connections are disconnected and removed if
and when their surrounding components are no longer available. If the connection type

2-22

has enough data to justify its existence without being connected then it should return true
here. '

label Method (Optional)

Connection overrides label to return the string "Connection.” If this is appropriate for the
connection in question then this method does not need to be overridden.

getDocDescription Method (Optional)

This method is used primarily by the ConnectionSetPanel to build an HTML description

of this connection, the components on either end and the connection data describing each
side.

getCustomPopupltems Method (Optional)

This method is used the same way as it is in AbstractComponent derivatives. The default
implementation in AbstractComponent has been overridden here to include only the
Disconnect item.

userDisconnect Method (Optional)

This method is called by the UI to disconnect this connection. This may be overridden by
connection types that require user interaction or additional processing to be completed
when the user disconnects a connection instead of a programmatic disconnection. The
default implementation simply calls disconnect.

2.6.2 Connection Drawing

By default, a visual connection will be represented in a View by a DrawnConnection
object. DrawnConnection uses the following methods to determine the appearance of the
line drawn between the connected components.

isVisual Method (Optional)

This method is used to determine if a DrawnConnection will be created for this
connection if both sides of the connection are present in a View. The default
implementation returns true.

getConnectionColor / getConnectionStroke Methods (Optional)

This is used by DrawnConnection to get the color and stroke to use when drawing this
connection. By default, the color used is the "Connection Color" in global preferences
and the stroke is a new instance of BasicStroke.

2-23

createDrawnComponent Method (Optional)

This method creates a new DrawnConnection configured for drawing this connection.
Extensions may override this method to alter the appearance of the connection. See the

section on creating DrawnComponents for more information on how to create and use
DrawnComponents.

2-24

2.7 ModelEditor Documents

It is recommended that plug-ins store their models in a platform independent binary
ModelEditor Document (MED) file format. The remainder of Section 2.7 details the the
implementation of loading and saving logic for a model using a PIB based MED format.

2.7.1 The PIB Format

Platform Independent Binary (PIB) files consist of a file header section followed by a
series of named blocks. The header section consists of three 80 character strings written
in XDR encoded format:

File Header Section:
File Type Identifier - 80 Character String
Version Identifier - 80 Character String
Description - 80 Character String

The first string consists of the file type identifier which should correspond to the name of
the PibFile class that wrote the file. This class name (with its full package path) is
compared to the result of the getSamPackage function of each MECodePlugin. The file is
processed by the first MECodePlugin that matches this string using that plug-in's open
method. '

Although the format of the remainder of the file could be written in any format that can
be understood by the plug-in, it is recommended that only named blocks or "PibBlock
records" be stored in the file. These records each consist of a data block header followed
by the actual data values.

Data Block Header:
Block Type Identifier - 24 Character String

Block Size - Integer containing the size of the block in bytes.
(including this header)

Block Compression Flag - Integer

Block Version - Integer

It is also recommended that where possible, all plug-in specific components should
implement PibBlock directly. Where this is not possible or practical it is recommended
that a uniformly named method (such as "store”) be added to the component that returns
an appropriately configured PibBlock instance.

Please Note: PibTool, which is available at http://www.appliedprog.com/PibTool is a
software development tool that can be used to generate source code used to create
platform independent binary, (PIB) files.

2-25

2.7.2 Loading a Model

The recommended procedure for opening an MED file is as follows:

Create the new model.

Read each PibBlock

For each component block, create a component and add it to the model
Reconnect any foreign key references in component blocks by calling
reconnectldentReferences at the AbstractModel level.

halb ol bl

The entire process is broken down into a single while loop around repeated calls to
getNextBlock. This method retrieves the name and version information for the next block
in the file. This information can then be used to determine what PibBlock class is
required to read the next component record from the current position. Usually the block
name is compared to an expected set of names to determine the appropriate class.

When loading a model, there are several CAFEAN core object types that must be
handled differently: user defined numerics, view components, drawn components and
annotations. The PibBlocks for these components and methods for loading them have
been defined in the CAFEAN Core. These components, if used by a plug-in, should be
loaded by the core MEDReader class using code similar to that shown in PibFile
Example below.

ViewComponents, DrawnComponents and Annotations should be loaded using the
loadVisualComponents method inside MEDReader. This method accepts a Vector of
drawing records, a Vector of ViewComponent records and a model reference. The
drawing records Vector should include DrawnComponent records
(DrawnComponentRec), annotation records (DrawnAnnotationRec and
DrawnlmageAnnotationRec) and drawn user defined numerics records
(DrawnNumericRec).

Note that loadVisualComponents should be called only once per model loaded and
should be passed all drawing and view records.

2.7.3 Saving a Model

Model saving is handled by the plug-in's implementation of the AbstractModel method
saveModel. This method handles the entire save process including file selection,
overwrite prevention, access permissions checks, etc. '

The recommended procedure for saving an MED file is as follows:

Create and the PibFile instance and open the file
Write the plug-in's package header

Store the plug-in's global model options

Store the plug-in specific components

el ol a e

2-26

5. Store ModelEditor core components

More detailed information about this process can be found in the following two
examples.

2.7.4 PibFile Load/Save Example

The following is an example of a PibFile implementation for a plugin called "Example."
This was not intended as fully working implementation but more as a starting point for
developing a new plug-in. This example and the AbstractModel example in the next
section are intended to be examined together as a model for implementing load/save
logic in a code plug-in.

Plug-in specific components should be handled similarly to SomeComponent below. In
this example it is assumed that SomeComponent implements the "store" method
described above to return a SomeComponentRec instance. It is also assumed that
SomeComponent has a constructor defined that takes a SomeComponentRec as its only
parameter. In this way the component can be easily read from the MED file with only a
few lines of code.

This example uses a very simplistic mapping of PibBlock names to component types. It
is recommended that more sophisticated approaches be evaluated for plug-ins with a
large number of components. A lookup table or standard naming scheme could be used
to implement this mapping and simplify the block loading loop.

public class ExampleMedFile
extends com.example.Example_file // &xtend the generated PibPFile
{
/%% Loads z model £rom tha given £ile nams., **/
public AbstractModel loadModel (String fname, boolean prompt)
{
Vector viewBlocks = new Vector();
Vector drawingBlocks = new Vector{);
try {
int return_flag = OpenImportFile (fname);
if{return_flag != 0) {
if(return_flag == 3 || return_flag == 2) {
MainFrame.addMessage("Incorrect format for a ModelEditor document file.",
MessageWindow.UserErrorMsg);
}
return null;
}
} carch(Exception e) {
return null;
}
MainFrame.addMessage("Loading " + fname + " please wait...",
MessageWindow. InfoMsg) ;
ExampleModel model = new ExampleModel();
MainFrame.instance.setCurrentModel(model };

String[] blockname = new String(1l];

int{] blockparm = new int[3];
try |

while (getNextBlock (blockname, blockparm}) {
if (blockname (0] .equals ("EOF")) {
break;

2-27

. } else if(blockparm{0] < 1) {
i MainFrame.addMessage ("Error reading block["t+blockname[0]+"}] from "+fname+".",
MessageWindow.InternalErrMsg);
break;)
} else if(blockname(0].equals("UserConstantRec") }{
UserConstantRec rec = new UserConstantRec(this, blockparm };
UserDefinedConstant con = MEDReader.loadUserConstant(rec, model }:
if{ con == null){
MainFrame.addMessage ("Load failed reading user defined constant record.",
MessageWindow. InternalErrMsg);
} else {
model .addComponent { con, false);
}
} else if(blockname([0].equals("UserVariableRec")) {
UserVariableRec rec = new UserVariableRec{ this, blockparm };
UserDefinedVariable var = MEDReader.loadUserVariable(rec, model);
if(var == null }{
MainFrame.addMessage ("Load failed reading user defined variable record.",
MessageWindow.InternalErrMsg) ;
} else {
model.addComponent (var, false);
}
} else if(blockname{0}.equals("UserFunctionRec"” } } {
UserFunctionRec rec = new UserFunctionRec{ this, blockparm):;
UserDefinedFunction func = MEDReader.loadUserFunction(rec, model };
if(func == null }{
MainFrame.addMessage("Load failed reading user defined function record.",
MessageWindow.InternalErrMsgq);
} else |
model .addComponent (func, false):
}
} else if(blockname[0).equals{"ViewCompRec")) {
ViewCompRec ¢ = new ViewCompRec(this,blockparm);
viewBlocks.add(¢ };
} else

with Drawn

fFosetn ar .
PibBlock block = MEDReader.readDrawingBlock(this, blockname{[0], blockparm };
if(block !'= null) {

drawingBlocks.add(block):

}
else if (blockname[0}.equals (*SomeComponeritRec")) {

r

ecific

s

me oliow t axample w

I componrent. block e 5 OVl ze .
SomeComponentRec someRec = new SomeComponentRec (this,blockparm);
SomeComponent some = new SomeComponent (someRec);
/f pzss false for the second parameter as the compenent already has an ident
model.addComponent { some, false);

} else {

SkipBlock (blockparm(0]);

}
model.validateAllComponents () ;
MEDReader.loadVisualComponents(drawingBlocks, viewBlocks, model);
model .reconnectIdentReferences(false, false);
model.clearDbIds({};
} cactch{Exception ex) {
ex.printStackTrace ()
}

returnr model;

erame Lo store a mod

ares the given

:bowlean prepareStore (String fileName)

try |
i OpenExportFile(fileName);

2-28

1l blockname[0]).startsWith{"Drawing”)) |

) catch(Exception e) {
MainFrame.addMessage ("Failed to open file for save: " + fileName);
e.printStackTrace ()
return false;

}

MainFrame.addMessage {"Saving " + fileName + ", please wait...",

MessageWindow. InfoMsg) ;
return true;

)

2.7.5 Model Load/Save Example

The following is an example implementation of the load/save portion of AbstractModel
for a plug-in called Example. Note the use of writePackageHeader to separate plug-in
specific records from the core component records and the use of MEDReader utility
methods to store user defined variables, constants and functions.

This plug-in uses a block called ExampleOptions as its global options object. In this case
ExampleOptions implements PibBlock and thus can be written to the file directly. For
some plug-ins it may be necessary to copy the global options data into a separate
PibBlock instance before storing. Similar logic must be followed when storing plug-in
specific components that do not implement PibBlock directly.

public class ExampleModel
extends AbstractModel
{
* This m
v Hsee
nay
public void saveModel () {
ExampleMedFile file = null;
try {
file = new ExampleMedFile();
file.preparestore(getsaveFile().getAbsolutePath(), showProgress) ;

/¢ write the packags nam2 and PibFlle name for use in opening the Fils iater

oo an MED fils using it's current save Tile.

file.writePackageHeader("com.example”, "Example_file”,
ExamplePluginData.LABEL);

/{ store the model's global options sbject (whioh is a Fi

ExampleOptions opts = (ExampleOptions)getModelOptions();

opts.writeBlock (file);

crk Liself)

/7 store each component in this model
storeComponents(file };
MainFrame.addMessage ("Save Complete.");
} catch(Exception ex) {
MainFrame.addMessage (“Save Failed."“, MessageWindow,InternalErrMsqg);
ex.printStackTrace();
} finally {
file.Close (true);
]
}
/** writes each oomponent in this medal to the given Exampl
private void storeComponents(ExampleMedFile file) {
Category[] categories = getFullCategories();
for(int i = 0; i < categories.length; ++i)} {

;

/ views and numerics are stored below

if(categories(i] == AbstractModel.CAT_VIEW
|| categories[i] == AbstractModel.CAT_NUMERICS } {
continue;
}

2-29

/7 store each
Iterator it = getComponentlterator(categories{i]);
while(it.hasNext(}) {

{AbstractComponent)it.next{);

store it di

PibBlock block = {PibBlock)comp;
block.writeBlock(file, false);

} else {

F/1f the coupo

nase

that the
[/ oof 1 2

file.writePackageHeader ("com.cafean.client.io.med”, "MED_file"”, "ModelEditor"):

/ mponents.,

vore each view using uhe ViewComponent's store({...) method
Iterator it = getComponentlIterator(AbstractModel.CAT_VIEW)
wnile(it.hasNext())} {

((ViewComponent)it.next()).store(file);

}
I € red numeric sing the MEDPead
it getComponentIterator(AbstractModel.CAT_NUMERICS)
while(it.hasNext ())} {
AbstractComponent comp = (AbstractComponent)it.next();
if(comp instanceof UserDefinedFunction){
MEDReader.storeUserFunction((UserDefinedFunction)comp }.writeBlock(file, false);
} else if(comp instanceof UserDefinedConstant) {
MEDReader.storeUserConstant ((UserDefinedConstant)comp }.writeBlock(file, false);
} else if(comp instanceof UserDefinedVariable) {
MEDReader.storeUserVariable((UserDefinedVariable)comp }.writeBlock(file, false);

s outil menhods

re the user defd

2-30

2.8 Undo and Redo

The ModelEditor supports a single undo/redo stack that can be added to by any plug-in
or operation. Undo of single modifications us supported by creating a StateEdit and
adding it to the undo stack as shown below.

StateEdit edit = new StateEdit (component,"Single Modification");
/4 { modify the gomponent here |

edit.end();// complete the edit

/7 post the undo event to the unde stack

UndoableEditEvent event = new UndoableEditEvent (this,edit);
MainFrame.instance.getUndoManager () .undoableEditHappened {event);

Undo of multiple modifications is supported by creating multiple edits (of any kind) and
appending adding them to a CompoundEdit before posting the event.

CompoundEdit compound = new CompoundEdit ();
StateEdit editl = new StateEdit (componentl,"Modification 1");
StateEdit edit2 = new StateEdit (component2,"Modification 2");

/{ U modify componaent 1 here |

/7] modify cemponent 2 here |
editl.end();// ¢
compound.addEdit (editl);// add edit i to the compound undeaple edit
edit2.end();// complete edit 2

compound.addEdit (edit2);// add adit 2 to the compound undeadle edit
compound.end () ;// complete the compound edit

/7 post the undo event to the undo s
UndoableEditEvent event = new UndoableEditEvent (this, compound);
MainFrame.instance.getUndoManager () .undoableEditHappened{event);

ete odit I

Note that the above examples assume that the object(s) and/or component(s) being edited
is a StateEditable object with properly implemented storeState and restoreState methods.
Undo/redo for Ob_]CCtS that are not properly StateEditable can only be accomphshed by
the use of plug-in specific custom undo objects.

2-31

2.9 Creating Connectible Components

A connectible component is one that can have connections between it and another
component. Connections are necessary for a component when 2-way foreign key
relationships are required; the relationship is to be represented in Views with a
DrawnConnection, or when the connection itself has data values.

connections V connections

ConnectionBean

+getLeftComponent: AbstractComponent
+getRightComponent: AbstractComponent

Teft
} AbstractComponent
+addConnectlon(Connect|on) void +addConnection(Connection):void
+getConnections(): Connection[] L= +getConnections(): Connection[]
+connectTo(target.tData,sData): boolean +connectTo(target tData,sData): boolean
+getCategory: Category +getCategory: Category
T
left data
ggﬂrﬁgmm

HeatConnection
Heatstructure HydroComponent ’
+face: int

hsComponent

hydroComponent

HydroConnection
+fromEdge: int

lf HydroComponent j< :Igz:'g::?i;?: int >{j HydroComponent TI

+toFace: int
+toAngle: Angle

hydroComponent hydroComponent

source target

ControlConnection

+targetPoint; int
+sourcePoint: int

Figure 3: Connection Class UML

2-32

Each connectible component must keep track of the connections referring to it for editing
and drawing reasons. The ConnectionList is recommended for use in holding these
connection ident references at runtime. See the Source Code Documentation for more
information on the ConnectionList class and its use.

In some small cases it may be enough for the connection related method to query the
model for this component's connection related info. In most cases, however, the lookups
in this query would be too expensive to be used in drawing code.

Figure 4 illustrates the use of Connection classes and how they connect components in
the TRACE plug-in. Of the above classes, only Connection and AbstractComponent are
part of the CAFEAN core. The remaining classes are presented only as an example. .
Additional connection types can be easily added by a plug-in by creating extensions of
ConnectionBean and ConnectionData.

2.9.1 Methods to Implement

The following methods are important in the implementation of a connectible component.
Additional method overrides and modifications may be necessary to implement a
particular component but the following are sufficient in most cases. Refer to the Source
Code Documentation of AbstractComponent for more information on available methods.

canConnectTo Method (Required)

This method is used to determine if this component can connect to a given component.
This is used by the Connect Tool to enable or disable drop-zones on the target drawn
component during a connection operation. The default implementation returns false for
all components and thus must be overridden if connections are required.

getConnectionCount Method (Required)

This method should return the number of connections connected to this component. This
method is used to dimension connection arrays and to determine if this component has
connections. Normally this simply returns the size of the connection list object contained
in the component or 0 if no connections are supported.

One notable exception to this is a connection such as a TRACE pipe's jun! reference.
This connection (as well as jun2 and jun3) must be treated separately from those in the
connection list for very plug-in-specific reasons. In this case the special connections must
be counted explicitly. This sort of connection handling is more error prone and should be
avoided where possible.

getConnections Method (Required)

This method builds an array of references to all the Connections connected to this
component. The default implementation simply returns an empty array. The order of the

2-33

returned array is considered arbitrary by the CAFEAN core and is assumed only to be
consistent from call to call.

addConnection Method (Required)

This adds the given connection to the component's list of connections. The default
implementation simply calls fireComponentConnected. When overriding this method,
ensure that firecComponentConnected is called only once.

clearConnections Method (Required)

This method removes all connection references from this component. This does not
disconnect the connections, nor does it remove them from the model. This simply clears
the component's list of connections.

This method is normally used in undo and copy / paste.

disconnect Method (Required)

This method is used by connections to remove themselves from a given component. This
method should only be called by Connection itself to ensure a one way path of
disconnection. Calling this method from other places could cause an infinite loop of calls
to Connection.disconnect and the component's disconnect.

createSourceData Method (Required)

This ensures that the given ConnectionData is suitable for a connection from this
component. This is normally used by the default implementation of connectTo to create
custom ConnectionData objects from SpecialConnectionData objects when connection
via the Connection Tool.

GUTI user interaction can be used within this method to request more detailed connection
~ information from the user before making the connection. Returning null from this
method will cancel the connection.

The default implementation of this method returns the ConnectionData passed to it.

createTargetData Method (Required)

This method is identical to createSourceData above with the exception that the
connection in question is to this component.

getGroupedConnections Method (Optional)

This method returns all the connections to this component grouped by type with each
type in a separate array. The CAFEAN pre-processor does not currently make use of this
method though it is in use in several specialized plug-in-specific editors.

2-34

getConnectionName Method (Optional)

This method is used to display connections from the perspective of this component. The
default implementation returns the label of the connection and the toString of the
component on the other side. The default implementation is appropriate for most

situations but in some cases there may be a more appropriate name. (For example: /nlet
Junction from Pipe 101)

2-35

2.10 Plugin-Specific Unit Types

Units in the CAFEAN pre-processor are extension of Real and represent a value in SI
units and it's conversion between SI and British units.

For some code plug-ins (such as CONTAIN) the analysis code will accept only SI units
and the British units are available only for editing and display. For other codes (such as
TRACE or RELAPS) the model may be exported in either SI or British based on the
user's request. With this in mind, all code plug-ins should support both SI and British
units where possible.

2.10.1 Supporting Units in the Model

Supporting plug-in-specific units in the model is a matter of implementing a set of
methods for mapping unit classes to their SI unit strings.

getUnitsDisplay Method (Requireq)

This method is intended for use in a selection dialog for selecting the desired unit for a
particular value. The units editor for UserDefinedNumerics uses this method in particular
to allow the user to choose the type of the generated value.

The returned array should include one unit per line and be in a similar form to:

< unit name > (<unit string>) or Temperature(K)

findReal Method (Required)

This method retrieves a new instance of the plug-in-specific unit that corresponds to the
given SI unit string. The given string is assumed to be identical to the string given by the
unit's getSI_Units method and in most cases will be the same string.

getRealByindex Method (Réquired)

This method retrieves a new instance of the plug-in-specific unit that appears in the units
display at the given index. This method is generally used directly after a unit type is
chosen from the units display given by getUnitsDisplay.

getUnitlndex Method (Required)

This pair of methods find the units display index of the Real type or SI unit string given
as a parameter. This is often used to provide an initial selection for a unit selection dialog
using the units display given by getUnitsDisplay.

2-36

getDimensionless Method (Required)

This method should return a new instance of the plugin-specific unit that this plug-in
uses for its dimensionless values. This unit is used as a default value for any unit
references.

getExportUnits Method (Optional)

This method need only be implemented if the model must be export in a particular unit
set (SI or British). Some analysis codes(such as CONTAIN) support input in only a
single unit set and must be export in that set regardless of the current display units for the
model.

2.10.2 Units Classes

Each unit is an-extension of Real that includes a conversion factor for converting from SI
to British units. The SI and British units strings are also included (such as K or m”3).
(Note: In some cases a m”3 will be converted to #’ by the UI for readability.)

Creating each unit class is a very simple matter of extending Real, registering the
appropriate editors and implementing a few methods. Because there is no additional
properties needed in the extension Beanlnfo classes are not needed for each unit.

In addition to implementing the following methods, each unit should register a bean
editor for itself in the following manner illustrated by Energy: ‘

import com.cafean.client.ui.beans.RealBeanEditor;

import com.cafean.client.ui.beans.RealArrayEditor;

static { _

// Register the defined bean editor.

PropertyEditorManager.registerEditor(Energy.class,
RealBeanEditor.class)

/7 Register the defined array hean editor.

PropertyEditorManager.registerEditor(Energy({].class,
RealArrayEditor.class)

getConversionFactor Method (Required)

This returns the factor to multiply by to convert this unit type from SI to British. The
reverse conversion (as performed by convert and getDisplayValue) is performed by
dividing by the same factor.

getSl_Units Method (Required)

This method returns the SI unit string for this unit. For example: Temperature could be
K, Length m, area m"2, volume m"3.

2-37

getENG_Units Method (Required)

This method returns the British unit string for this unit. For example: Temperature could
be F, Length f#, area fi"2, volume fi"3.

getUnitName Method (Optiona/)

This returns the name of this unit as a single word. Often this is the same as the class
name and as such the default implementation uses the base class name as the unit name.

getDisplayName Method (Required)

This returns the unit name in a more human readable form. This is used in various Real
editors for default column names and defaults to an empty string.

2-38

2.11 Model Validation

Model validation for a plug-in is handled by the checkModel method in AbstractModel
and by the use of ValidationTests. checkModel should perform a set of checks on the
model and its component's current state. This method normally utilizes
AbstractComponent's isOkayForExport methods and may optionally add error and/or
warning messages to the MessageWindow.

To use Validation Tests in a plug-in extend ValidationTest (overriding the methods listed
below) and Implement both getValiationTests and getValidationOptions in the model.
The checkModel implementation in AbstractModel will execute any available (enabled)
ValidationTests. -

2.11.1 ValidationTest Implementation

ValidationTest is the base class for model level validation tests that can be executed,
enabled, disabled and configured. These tests are assumed to be full JavaBeans that can
be edited directly in a PropertyView.

When creating a ValidationTest, the following methods must be overridden.

String getDisplayName (Required)

This is a short, human readable name displayed to the user when executing the test. This
name does not necessarily need to be unique. Using the same display name for multiple
tests is one way to separate variations of a test but hide the separation of implementation
from the user.

String getShortDescription (Required)

This returns a long, detailed description of this validation test, its user options, and
background information. This method is used by plug-ins as the pop-up help text when
editing the properties of a ValidationTest.

boolean runValidation (Required)

This method is the actual validation test. If this returns false, the model will be
considered to have failed. Error and warning messages should only be printed to the
Message Window if the printErrors parameter is true. Before export this method will be
called silently to determine if there are errors that require user intervention.

String getName (Required)

The short name of the test used when loading and storing the properties of the test. This
name must be unique amongst a plug-ins validation tests.

2-39

2.11.2 ValidationTest Methods in the Model

To use ValidationTest in a plug-in, the following AbstractModel methods must be
overridden.

ValidationTest[] getValidationTests (Required)

This retrieves the set of tests (both enabled and disabled) from the model. When called
from checkModel the tests are assumed to be properly configured and ready to be
executed. '

ValidationOptions getValidationOptions (Required)

This method retrieves an options object that contains all the configured properties of the
model's ValidationTests. ValidationOptions itself is a wrapper object for name/value
pairs. This options object may be extended to include load and store methods for saving
these options to the model's MED file.

2-40

2.12 Using the Property View

The CAFEAN pre-processor Property View is a JavaBeans™ based property editing
panel. It uses Java's Introspector class and the plugin-supplied Beanlnfo classes to
instantiate a set of PropertyEditors for the current target beans.

No special code or configuration is required to use the Property View for editing of
component or sub-component objects. By default, the ModelEditor will use the Property
View for all bean-based models. Also, if the target is a ComponentElement, no special
code is required to refresh the properties shown as the Property View is a
ComponentListener and will be updated automatically. .

The Property View bean handling has been expanded to include handling for additional
optional interfaces and methods to allow more detailed customization of the UI by the
target beans. The following sections explain in detail the capabilities available to plug-in
authors to tailor a more responsive and organized set of PropertyEditors for a bean.

Note: Because this is a JavaBeans™ based system, to be properly represented all objects
edited must conform to the JavaBeans™ architecture specification.

2.12.1 The PropertyController Interface

PropertyController is an interface describing an object that has methods to determine if
its properties are currently enabled, active, required, etc. This interface is essential for the
more complex components and can come in handy for even the simplest bean.

2.12.1.1 Disabled and Optional

The Property View always includes two check-boxes: one for showing Optional
properties and the other for showing Disabled properties. The logic behind these two
check-boxes is actually reversed from the check-box labels.

The Property View uses the method isPropertyEnabled to determine if a property is
enabled or disabled and isPropertyRequired to determine if it is optional or required.
These checks are made each time the view is refreshed.

To be able to support proper editing of a restart, the isRestartEditable method was added.
This method is checked if the containing model is currently editing a restart.

Refer to the Source Code Documentation of PropertyController for more detailed
information on the implementation of isPropertyEnabled and isPropertyRequired.

2.12.1.2 Re-sizable

Various codes have tables and arrays that can be altered but cannot be resized. For some
codes this condition holds true only for editing a restart. To handle these situations the
isResizable and isRestartResizable methods were added. Currently the RealArrayEditor

2-41

handles these methods. New plugin-specific editors must implement support for this
feature where it is appropriate.

2.12.1.3 Attribute Ordering

In most code plug-ins the relative order of properties is an important part of their
presentation to the user. Since the JavaBeans™ architecture does not provide a means for
ordering properties beyond the Preferred attribute of a PropertyDescriptor, this
functionality has been added to the Property View.

To implement attribute ordering for an object the getAttributeIndex method must be
implemented. This method returns a relative index for the property name given.
Normally the returned value is the index of the given property in a statically defined
array. A large integer (such as 999) should be returned in most cases for properties that
have no attribute index defined.

2.12.2 Attribute Groups

Attribute Groups are a convenient way of breaking up a large number of properties into
logical groupings. Each group appears as table of properties in the Property View with its
own expansion icon and group label. Property editors are not instantiated or refreshed for
groups that are not expanded.

To support Attribute Groups in a bean, a mapping between attribute names and attribute
groups must be implemented using the following three static methods.

getAttributeGroups Method

This returns an array of the Attribute Group names available in this object. This is a static
method and normally returns a static final array.

Note that the General group should not be included in this array. The General group is
made up of those properties that do not appear in any other Attribute Group.

getAttributeGroup Method

This returns the name of the Attribute Group that the given property is part of. If the
property should appear in the General group then null should be returned.

getAttributesForGroup Method

This method returns an array of the property names that are included in the given
Attribute Group. An empty array should be returned for groups that do not exist or are

empty.

Note: Returning null from this method could cause errors.

2-42

2.13 Using Registered Dialogs

A Registered Dialog is any dialog that has been added to the MainFrame's list of
registered child dialogs. Registering a dialog enables the following functionality:

e Registered dialogs appear in the Windows menu.

e Using MainFrame's setWindowLocation for a registered dialog will offset the
dialog's location to avoid directly overlapping (and hiding) another registered
dialog.

e Dialogs registered with a model will be hidden when that model is closed.

e Registered dialogs that implement the RefreshableDialog interface will have their
unitsChanged method called from MainFrame.resetAllUnits and their refresh
method called after undo or redo.

In addition to the above use of the registered dialog list allows plug-ins to implement
features such as:

e Ensuring that only one of a particular editing dialog is open at a time.
e Bringing a registered editing dialog to the foreground.

® ctc.

addRegisteredDialog Method

This static method adds the given dialog to the list of registered dialogs. If the model
parameter is not null, the dialog will be assumed to be related to the given model and will
be closed when the model is closed. If the model parameter given is null the dialog will
be assumed to be unrelated to any model.

getRegisteredDialogs Method

This static method returns an Iterator into an unmodifiable List of the registered dialogs.
If the optional AbstractModel parameter is given, only those dialogs related to the given
model will be retrieved.

removeRegisteredDialog Method

This static method removes the given dialog from the list of registered child dialogs. If
the dialog was previously associated with a model then that model should be provided
when removing the dialog from the list.

2-43

2.14 Customizing the 2D View

Current 2D View customizations include adding plug-in specific toolbars and mouse -
handlers as well as display element specific insertion handlers.

2.14.1 Adding Toolbars

A set of standard toolbars are available in every 2D View, regardless of the plug-in that
includes: '

e Main — Select, Pan, Zoom, Connect and Insert tools.

e Clipboard — Cut, Copy, Paste, Paste Special and Find.

e Annotation — Ellipse, Image, Line, Polygon, Rectangle and Text Annotations.
e Numerics — User Defined Variables and Constants.

In addition to those above, toolbars are automatically created for each of the visual parent
Categories returned by the model's getCategories method. The buttons included on these
toolbars are shortcuts buttons for the Insertion Tool. For most current plug-ins these
toolbars are sufficient as most additional user interaction can be accomplished via pop-up
menu items.

Plug-ins requiring additional toolbars add them using the DrawnView method
addToolbar. It is reccommended that toolbars be added from within the MEPIugin
method loadViewMenultems.

Note that the toolbar's name will be shown in the pop-up menu to show or hide the
toolbar. Refer to the Source Code Documentation of addToolbar for more tailed
information on its use.

2.14.2 Insertion Handlers and the Insertable Interface

Some visual elements require an insertion procedure that is more complex than the
simple behavior provided by the Insert Tool. To customize this behavior, a more
advanced Insertion Handler can be created for the element.

Currently there are two advanced handlers available:

e RectangularInsertHandler — Allows rectangular bounds selection before insertion.
This handler is used by the Rectangular Annotation and by all Display Beans.

e AbstractPathHandler — Allows path point selection before insertion. This handler
is used by the Line Annotation and the Polygon.

To use either of the handlers above for a visual element, simply implement the Insertable
interface for that element and define getNewInsertHandler to return a new instance of the
handler. So, for the rectangular handler, define getNewlInsertHandler to return a new
instance of RectangularlnsertHandler.

2-44

To use the path handler, a subclass must be created that extends AbstractPathHandler and
implements the following methods. Note that when creating this extension, the path
handler must maintain a reference to the element being inserted. This reference is
essential when completing the insert and determining the closure point.

finishinsert

This method completes the insertion by retrieving the current path of points from the
handler and setting them on the element. For a line annotation, this method simply places
line points at each point and segments between them.

isClosurePoint

This method must determine if left-clicking on the given point should cause the
completion of the insert. For line annotations this simply determines if the left-click is on
the last point in the path.

2.14.3 Creating Custom Mouse Handlers

The mouse interaction with visual elements can be intricately controlled with
MouseListener and MouseMotionListener methods implemented directly in drawn
components or display beans. In some cases, however, these methods are insufficient and
an entirely new tool is required. In these cases a new custom MouseHandler extension
can be created and added to the view.

Custom mouse handlers can be added and removed from a View by using the
ZoomablePanel methods addMouseHandler and removeMouseHandler. It is
reccommended that mouse handlers be added from within the MEPlugin method
loadViewMenultems.

The following steps are required to create a custom MouseHandler extension.

e C(reate a new class that extends MouseHandler
O Override the MouseListener methods required (mousePressed, etc.)
O Override the MouseMotionListener methods required (mouseDragged, etc.)

O Override activate and deactivate to properly initialize and dispose of the
handler's listeners and resources.

O Override getCurrentCursor to return an appropriate cursor for the handler.

o Add the handler to the view's toolbar from within loadViewMenultems with
ZoomablePanel's addMouseHandler method.

Refer to the Source Code Documentation for the MouseHandler class for more detailed
information on the implementation and management of mouse handlers.

2-45

2.15 Useful Utility Classes

The following section details a list of classes and interfaces that are likely to be used in
the UI portion of any code plug-in. Subsequent versions of this manual may include
additional classes as they mature.

2.15.1 Interfaces

The following interfaces may be used to enable additional functionality for a particular
object or editor.

Writeable Interface

This interface is used primarily by the AsciiViewer to determine what components can
‘be viewed and how to view them. It specifies a single method, write, which writes an
ASCII representation of the object to the given PrintWriter.

Implementing this method for a code plug-in allows the user the convenience of being
able to examine the ASCII representation of a component or object directly as it is being
modified without having to export the entire model to a file between modifications.

ModelElement / ComponentElement Interfaces

These interfaces indicate an object that maintains a reference to it's model and/or
AbstractComponent parent. ComponentElement is a direct extension of ModelElement
and is implemented by AbstractComponent.

It is recommended that all sub-components implement ComponentElement and maintain
a reference to their direct parent in the reference hierarchy. This allows the CAFEAN
property editing and undo architectures to properly store the state of and update the
views of any objects and components being edited.

ModelDependent Interface

This interface is similar to ModelElement in that it includes an accessor for the object's

model but in this case the interface is intended for use by PropertyEditors that require a

model reference to edit a given value. The ComponentSelectionEditor mentioned below
is a good example of a model dependent editor.

BoxSelectionListener Interface

This interface describes a listener for selection changes in a particular BeanBox. Each
BeanBox has its own list of listeners accessable via addBoxSelectionListener and
removeBoxSelectionListener. For more detailed information refer to the Source Code
Documentation for BoxSelectionListener and BeanBox.

2-46

2.15.2 Bean Editors

The following editors are provided to simplify the creation of new code plug-ins. Special
attention should be paid to the first three (ComponentSelectionEditor, RealBeanEditor
and NamedIntEditor) as they are likely to be used in every code plug-in.

ComponentSelectionEditor Class

Also called an "Ident Editor”, this ModelDependent editor is used to edit an integer that
is a foreign key reference to a component. This editor includes a label displaying the
toString of the target component (or none) and a Select button to choose the component
ident to use.

Note that this editor is not necessarily intended to be used directly. Direct use implies
that any component from any Category can be selected. This is rarely the case. Normally,
extensions are created that pass a particular Category to the constructor of
ComponentSelectionEditor to narrow the selection range to a given set of components. In
some cases the Category may be created specifically for use in the editor extension.

RealBeanEditor Class

This editor used to edit Real values. Plugin-specific units must register themselves with
this PropertyEditor directly. Refer to the section on plugin-specific units for more
information on this registration.

NamedintEditor Class

Also known as an Enumeration Editor, the NamedIntEditor is used to edit an integer that
is an enumerated set with a description for each value. For instance: a OffOnSelEditor
would edit an integer with value 0 (Off) and 1 (On). Values that fall outside of the
defined range are allowed if set from outside the editor but once changed can only be
reset to the original value with undo.

This editor is never used directly as the values and descriptions cannot be determined at
run time. To use this editor, create an extended class that passes the possible integer
values and their string descriptions to the NamedIntEditor constructor.

Note: Extensions requiring the Namelist functionality of the NamedIntEditor should
instead extend the NamelistNamedIntEditor class described below.

Refer to the Source Code Documentation for more information on how to extend and use
a NamedIntEditor.

NamelistEditor Class

This interface describes an editor for a property that conforms to the Namelist variable
concept in which a property is actually a combination of a property and a boolean

2-47

activation state. Editors of this type assume that setPropertyActive is defined in the
object containing the property.

The following similarly named editors support the NamelistEditor interface. Refer to the
Source Code Documentation for more detailed implementation details for the
NamelistEditor interface. '

NamelistintEditor Class

This is an editor used for integers that conform to the Namelist variable concept as
defined by NamelistEditor. This editor may be used directly.

NamelistBooleanEditor Class

This is an editor used for boolean values that conform to the Namelist variable concept as
defined by NamelistEditor. This editor may be used directly.

NamelistRealEditor Class

This editor is an extension of RealBeanEditor used to edit Reals that conform to the
Namelist variable concept as defined by NamelistEditor. This editor may be used
directly.

NamelistNamedintEditor Class

This is an extension of NamedIntEditor used for enumerated integers that can be
activated and deactivated as defined by NamelistEditor. Like NamedIntEditor, this editor
cannot be used directly but instead must be extended to include values and descriptions.
2.15.3 GUI Utilities

The following GUI utility classes have been used extensively in existing code plug-ins
“and are likely to be of use in the development of any plug-in.

TableSorter Class

This is a sorting wrapper for TableModel instances to allow sorting the displayed table
by a user-selected column. TableSorter includes a method to add an appropriate mouse
listener to the table header for choosing the column to sort by.

Refer to the Source Code Documentation for TableSorter for more detailed
implementation information.

OptionPane Class

This is an encapsulation of JOptionPane that should be used for all option panes in the
CAFEAN pre-processor. This class handles the centering of option panes on the screen
rather than the MainFrame (if it is the parent) for single window arrangement.

2-48

3. Packaging a Plug-in

All of the class and resource files that comprise a plug-in should be placed in a jar file
located in SNAP's plug-in directory. The plug-in jar file's manifest should include a
MEPluginData-Class entry that indicates the location of the plug-in's MEPluginData
class extension. The jar file may also include the runtime and post-processor plug-ins.
For example, the manifest for the TRACE plug-in is:

Manifest-Version: 1.0

Plugin-Class: nrcsnap.trace.TraceCodePlugin
ClientPlugin-Class: nrcsnap.trace.TraceClientCodePlugin
MEPluginData-Class: nrcsnap.trace.TracePluginData

In this case, the jar file includes the preprocessor, runtime and post-processor plug-ins.

The MEPluginData- Class entry identifies the class nrcsnap.trace. TracePluginData as an
extension of MEPluginData.

3-1

4. Preprocessor Python Scripting

“Scripting support in the preprocessor client is available via a Python interpreter. Scripts
can be run from batch mode with the MACRO batch command. Using this scripting
interface gives the user direct access to the internal structures of the ModelEditor. It is
important to note that in some cases this direct access may have unintended affects on the
structures being accessed.

A discussion of the facilities and classes available to support scripting is provided below

along with several examples. Though some examples in this document use the TRACE
plug-in, the methodology should apply equally well to any JavaBean™ based plug-in.

4-1

4.1 Built-in Python Methods

The following Python methods have been provided to assist in accessing desired
components and outputting messages to the user:

addMessage (message)

This method is used to print messages to the user as Message Window notices. Note
that multiple line messages in the Message Window may not appear properly. In these
cases it is recommended that multiple addMessage calls be used.

Example:
addMessage (“Script beginning.”)

addError (message)

This method is used to print messages to the user as Message Window internal errors.
As with addMessage, multiple line messages in the Message Window may not appear
properly and should use multiple addError calls instead.

Example:
addError (“Script failed.”)

getModel ()

This method is used to retrieve the current model for the scripf executing. The current
model in batch mode is either the last model imported/opened or the model specified
in the MACRO batch command.

Example:
addMessage (“"Script running with model: %s”\
% (getModel () .getName ()))

findComponent (catName, number)

This method is used to retrieve a given component by it's component number and
category name from the script's current model. The category names are identical to
those used by the Navigator. £indComponent uses getModel internally to call
findComponentBycc on the current model. Scripts which deal with multiple models
simultaneously will need to call £indComponentBycc directly for each component
required.

Example:

addMessage (“Found pipe: %s”\
% (findComponent (“Pipes”, 2).toString()))

42

4.2 Core CAFEAN Classes

Familiarity with parts of the following core CAFEAN classes is important when writing
more advanced Python scripts. As a minimum the user should be familiar with Real class
presented below.

4.2.1 Real Class

Real is a base class for all floating point numbers in the ModelEditor. Its main purpose is
to centralize the handling of unit types and conversions for it's subclasses and to allow
the display and editing of values in either SI or British based on the user's current
preference. Each plug-in will have its own set of Real derivatives used to display various
types of values (such as length or temperature). Currently, the CAFEAN core has only
Time (seconds) and Angle (degrees) available as examples. Refer to the programmer's
documentation for each plug-in for more information on what unit types are available.
From a scripting perspective, the important methods to note for Real are:

e getDoublevalue ()
This method returns the current SI value of the Real. All floating point values are
stored as their SI value and converted to British only when requested by the model for
display.

e toString()
This method returns a formatted string representation of the Real's current value in the
model's current units (SI/British).

e toString(unitType)
This method returns a formatted string representation of the Real's current value using
the given unit type as either Real.SI or Real.BRITISH.

o getDisplayValue(unitType) .
This method returns the double value of the Real in the requested unit type. Unit type
is either Real.SI or Real.BRITISH. Note that any calculations performed with Real
values that assume British units requires that getbisplayvalue be used in place of
getDoubleValue.

4.2.2 AbstractComponent Abstract Class

AbstractComponent is the base class for all Components in the ModelEditor. Objects
such as TRACE's Pipes, Tees and Control Systems are all AbstractComponent
derivatives. Though nearly all script interaction with AbstractComponents will use
component-specific properties it is important to note the few things they have in
common:

* getComponentNumber ()

This method returns the component's number. What this number means can be very
plug-in and component specific. For most components this amounts to the

4-3

component's unique identifier in that model. In the TRACE plug-in this actually
corresponds to the component number input.

label ()

This method returns a string describing the type of the component. For a TRACE
pipe, “Pipe” is returned. This is usually similar but not necessarily the same as the
name of the Category for the component.

toString ()

This returns a human-readable string representation of the component. This is usually
of the form: “<label> <component number> (<name>)” butcan differ
significantly between component types. In most cases this is also the string displayed
in the Navigator node for the component.

getCategory ()

This returns the Category that the component is part of. This category can be used in
component lookups in the model (in place of the category name) or simply to display
the general grouping of a particular component.

4-4

4.3 TRACE Plug-in Examples

Below is a brief description of the general types of TRACE components, followed by a
set of examples, explanations and special cases that illustrate the use of the
ModelEditor's Python scripting capability within the context of the TRACE plug-in. It is
important to note that in general the TRACE plug-in variable naming convention
matches the TRACE input manual. Also, the accessor methods for all variables conform
to the Java™ language standard for JavaBean™ method names. Some exceptions to the
TRACE naming convention were required to handle special cases of input constraints
(foreign keys) and data organization (vessel axial levels). Refer to the programmer's
documentation for the TRACE plug-in for specific information on available values and
their data types.

4.3.1 Hydraulic Components

Hydraulic components fall into three general groupings: boundary condition components
such as Break or Fill, fluid components such as Pipe or Tee and the 3D Vessel. Each of
these groupings has a slightly different internal structure and must be treated differently.
As always, refer to the programmer's documentation for more specifics.

Boundary Components (Fill and Break) are the simplest of general groupings as they
contain only component-level data. The majority of the values contained in these
components will match the input manual names exactly. The following examples show
the retrieval of various values from a Fill component.

fill = findComponent("rills",8)
addMessage('* junl ifty iGff")
addMessage ("$13s %13d $13d"\

the junction number to which the FILL is connected
$(fill.getJunlCC(),\

FILL type

fill.getIfty(),\

FILL fluid state option

fill.getIoff()))

Fluid components are hydraulic components that have one or more fluid segments. A
fluid segment is a collection of cell and edge data and is normally referred to as main
tube or side tube in the TRACE input manual. In many cases the main tube is assumed
for the discussion of elements of a fluid component with a single fluid segment. Note that
in the TRACE plug-in there is no phantom cell. All phantom cell compensation is
handled in the ASCII export code.

The structure of the followmg classes is especially important when handling the data of a
fluid component:

« FluidComponent

This class is the base class for all fluid type components. It contains accessors for

4-5

retrieving it's FluidSegments, Cells(getcellat), and Edges(findEdgeat). It is
important to note that when 2 fluid components are connected, they share edge data
for the edge that is connected. In the TRACE input format, this data is entered for
both edges and assumed to be equivalent. To ensure that the proper edge data is being
retricved the findEdgeat method must be used instead of getEdgeat. Also, because
of this sharing of data, some values (such as fric and grav) will appear to be inverted if
two inlets or two outlets are connected. Another important set of methods are used to
retrieve the junction numbers for the inlet, outlet (and side) junctions of a fluid
component. getJun1CcC, getJun2cC and getJun3cc retrieve the inlet, outlet and side
tube junction numbers respectively.

+ FluidSegment

A FluidSegment is one tube of a hydraulic component. A Tee component contains two
FluidSegment, one main tube, one side tube. Each segment contains an array of Cells
and Edges that can be retrieved with getcells and getEdges respectively. In
addition, FluidSegments contain some fluid power. Refer to the programmer's
documentation for more information on additional FluidSegment variables.

4.3.1.1 Example Scripts

The two most important examples of fluid components are Pipe and Tee. The following
examples show the retrieval of various values from each type.

Example 1: Pipe Component General Data Access.

An example of general pipe data access
pipe = findComponent ("Pipes", 2)
addMessage("* ncells nodes junl jun2 epsw")
addMessage (" %d %d 3d %d FEUN\
%(pipe.getFluidSegment(0) .getCellsCount (), \
pipe.getNodes (), \
pipe.getJunlCC(), pipe.getJun2CC(),\
Note the use of getDoubleValue ()
pipe.getEpsw() .getDoubleValue()))
addMessage("* ncells nodes junl jun2 epsw”)
addMessage (" %d 3sd %d %d $£\
%(pipe.getFluidSegment (0).getCellsCount (), \
pipe.getNodes (), \
pipe.getJunlCC(), pipe.getJun2CC{),\
Note the use of getDoubleValue ()
pipe.getEpsw () .getDoubleValue()))

Example 2: Calculation of Total Volume for a Pipe Component .

This is an example of retrieving data directly from a pipe's cells in
order to calculate the pipe's total volume.
totalVolume = 0.0 # initial value of 0.0
idx = 0 # Current cell index.
Note that all indexes are in C notation {0 to (n-1)}
while idx < pipe.getCellCount():
getCellCount is the total number of cells in the component.
cell = pipe.getCellAt (idx)

4-6

totalVolume += cell.getVol().getDoubleValue ()
idx += 1 # next cell
addMessage("Total Volume: $1.3f m™3" % totalVolume)

Example 3: Display of Edge Data for Pipe Component.

This example shows retrieving data from a pipe's edges for
displaying each flow area
idx = 0 # Current edge index.
addMessage ("%4s %14s %14s 3%14s" \
% ("edge","flow area","hyd diam","grav"))

getEdgeCount is the total number of edges
while idx < pipe.getEdgeCount():

edge = pipe.findEdgeAt (idx)

addMessage ("%4d %14s %14s $14f" % \

((idx+1), \
edge.getFa() .toString (), \
edge.getHd () .toString (), \

edge.getGrav ()))
idx += 1 # next edge

Example 4: Calculation of Total Volume for a Tee Component .

This example shows retrieving volumes from a tee side-tube to
calculate the total volume.
ncellsl = tee.getFluidSegment (0).getCellsCount ()
ncells2 = tee.getFluidSegment (1) .getCellsCount ()
idx = 0 # Current cell index.
while idx < ncells2:
offset by ncellsl to get the proper index
cell = tee.getCellAt(ncellsl + idx)
totalLlength += cell.getDx().getDoubleValue ()
totalVolume += cell.getVol () .getDoubleValue ()}
idx += 1 # next cell

4.3.1.2 3D Vessel Component

The 3D Vessel component contains an array of VesselLayers, each with an array of Cells
and 3 arrays of Edges (1 per axis). The recommended method for retrieving Cells from a

Vessel component is getCellat (z,p), where z is the axial level and p is the planar cell

index. Edges are similarly retrieved with getEdgeat (p, z, face) where z and p are axial

level and planar cell respectively. The remaining Vessel data closely follows the TRACE
input manual for naming. Refer to the programmer's documentation for more information
on Vessel component data structures.

The following example shows how to retrieve and display the hydraulic diameter for
each cell of a Vessel.

Example 5: Vessel Component General Data Access.

nasx = vessel.getNasx () # Number of axial vessel levels
planars = vessel.getNrsx() * vessel.getNtsx(); # number of planar cells
addMessage ("%5s %6s %14s %14s %14s"% \

4-7

("axial","planar", "hdxrc","hdyt","hdz"))
level = 0 # current axial level
whiie level < nasx:
planar = 0 # current planar cell
while planar < planars:
addMessage ("%5d %6d %14s %14s %14s"% \
((level+l), (planar+l), \
vessel.getEdgeAt (planar, level,0).getHd () .toString (), \
vessel.getEdgeAt (planar, level,l) .getHd () .toString (), \
vessel.getEdgeAt (planar, level,2) .getHd () .toString()))
planar += 1 # next planar cell ‘
level += 1 # next axial level

4.3.1.3 Heat Structures

The properties of note for a Heat Structure are an array of HeatCells (cells), an array of
SupplimentalRods (nhot) and the MeshpointTable (mesh). Each HeatCell has an outer
and inner Surface that contains the boundary condition data for the cell. The
SupplementalRods contain the initial temperatures (r£tn) and the fuel burnup (burn)
array. Additional upper and lower boundary temperatures are stored in the heat structure
(average rod) and in each SupplementalRod. The remaining data closely follows that
specified in the TRACE input manual. Refer to the TRACE plug-in programmer's
documentation for further information.

Example 6: Heat Structure General Data Access.

This block shows an example of retrieving heat cell length
and surface heat flux for the inner and outer surfaces.
nzhstr = htstr.getCellsCount() # number of axial heat cells
nodes = htstr.getNodes () # number of radial nodes

addMessage ("Cell Length and Inner Surface Heat Flux")
addMessage("%6s %$14s %14s” % ("cell","length","inner flux"))
cell = 0 # current axial heat cell
while cell < nzhstr:
c = htstr.getCells(cell)
addMessage{ "%6s %14s %14s" \
%{ cell+l, \
c.getDhtstrz () .toString (), \
c.getInner().getQflxbc().toString())})
cell += 1

4-8

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION | 1. REPORT NUMBER
(9-2004) (Assigned by NRC, Add Vol.,, Supp., Rev,,
NRCMD 3.7) and Addendum Numbers, If any.)
BIBLIOGRAPHIC DATA SHEET
{See instructions on the reverse) ’ NUREG/ CR-6974, Vol. 1
2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED
Symbolic Nuclear Analysis Package (SNAP) _ MONTH YEAR
Common Application Framework for Engineering Analysis (CAFEAN) Preprocessor Plug-in
Application Programming Interface June 2009
Main Report v 4, FIN OR GRANT NUMBER
Y6851
5. AUTHOR(S) 6. TYPE OF REPORT
Ken Jones, John Rothe, Wiliiam Dunsford .
Technical
7. PERIOD COVERED (inclusive Dates)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (i NRC, provide Division, Office or Region,. U.S. Nuclear Regulatory Commission, and mailing address; if contractor,
provide name and mailing address.)

Applied Programming Technology, inc

240 Market St., Suite 208
Bloomsburg, PA 17815-1951

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission,
and mailing address.)

Division of System Analysis

Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission y
Washington DC 20555-0001

10. SUPPLEMENTARY NOTES
C. Gingrich, NRC Project Manager

11. ABSTRACT (200 words or fess)

Many of the analytical codes developed by the Office of Nuclear Regulatory Research (RES) rely on a text based input file to
specify model parameters and computational options. The formats of the text based input files are often quite complex and
usually require careful study before a user can create an input model that functions correctly. The Symbolic Nuclear Analysis
Package (SNAP) is primarily a graphical user interface that was developed to simplify the analyst's task of creating input files for
the analytic codes as well as helping to visualize code results. SNAP is a Java based computer application that runs on the
most popular computer platforms including Windows XP and Vista, LINUX based systems, and Mac OS X. The code
architecture used in SNAP is "plug-in" based and very flexible. Third party developers can implement their own user interfaces
under SNAP without breaking the interfaces developed by other developers. The application programming interface (API) that is
described in this document provides a short tutorial and some guidelines for developing a custom plug-in that works in the SNAP

framework. This document also includes the actual APl method and data-structure definitions needed to create such a custom
interface. ’

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT
Graphical User Interface, Analysis, Analytic Code, Computation Code, Computation, Symbolic Nuclear unlimited
Analysis Package, Graphical, User Interface, Java, plug-in, GU!, SNAP) 14. SECURITY CLASSIFICATION

(This Page)
unclassified

{This Report)
unclassified

15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (9-2004) PRINTED ON RECYCLED PAPER

Printed
an recycied
paper

Federa! Recycling Program

NUREG/CR-6974, Vol. 1 Symbolic Nuclear Analysis Package (SNAP): Common Application June 2009
Main Report Framework for Engineering Analysis (CAFEAN) Preprocessor Plug-in
‘Application Programming Interface

UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS

