Exelon Generation Company, LLC Braidwood Station 35100 South Route 53, Suite 84 Braceville, IL 60407-9619 www.exeloncorp.com



May 14, 2009 BW090043

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D.C. 20555-0001

> Braidwood Station, Units 1 and 2 Facility Operating License Nos. NPF-72 and NPF-77 NRC Docket Nos. STN 50-456 and STN 50-457

Subject: 2008 Annual Radiological Environmental Operating Report

Attached is the 2008 Annual Radiological Environmental Operating Report for Braidwood Station. This report is being submitted in accordance with Technical Specification 5.6.2, "Annual Radiological Environmental Operating Report." This report contains information associated with the station's radiological environmental and meteorological monitoring programs. This information is consistent with the objectives described in the Offsite Dose Calculation Manual and 10 CFR 50, Appendix I, "Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion 'As Low as is Reasonably Achievable' for Radioactive Material In Light-Water-Cooled Nuclear Power Reactor Effluents," Sections IV.B.2, and IV.B.3. Technical Specification 5.6.2 requires the Annual Radiological Environmental Operating Report to be submitted by May 15 of each year.

If you have any questions regarding this information, please contact Mr. David Gullott, Regulatory Assurance Manager, at (815) 417-2800.

Respectfull

ame Bryan Hanson Site Vice President Braidwood Station

m M fr nident

Attachment: 2008 Annual Radiological Environmental Operating Report

Docket No: 50-456 50-457

# BRAIDWOOD STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

1 January Through 31 December 2008

## **Prepared By**

Teledyne Brown Engineering Environmental Services



Nuclear Braidwood Station Braceville, IL 60407

May 2009

## Table Of Contents

| I. Summa    | ary and Conclusions                                      | 1 |
|-------------|----------------------------------------------------------|---|
| II. Introdu | iction                                                   | 3 |
| А.          | Objectives of the REMP                                   | 3 |
| В.          | Implementation of the Objectives                         | 3 |
| III Progra  | am Description                                           | ર |
|             | Sample Collection                                        | 3 |
| R R         | Sample Analysis                                          | 5 |
| C.          | Data Interpretation                                      | 6 |
| D.          | Program Exceptions                                       | 7 |
| E.          | Program Changes                                          | 9 |
|             |                                                          | Ţ |
| IV. Resul   | ts and Discussion                                        | 9 |
| А.          | Aquatic Environment                                      | 9 |
|             | 1. Surface Water                                         | 9 |
|             | 2. Public Water 1                                        | 0 |
|             | 3. Ground/well Water 1                                   | 0 |
|             | 4. Fish 1                                                | 1 |
|             | 5. Sediment 1                                            | 1 |
| В.          | Atmospheric Environment 1                                | 2 |
|             | 1. Airborne                                              | 2 |
|             | a. Air Particulates1                                     | 2 |
|             | b. Airborne lodine 1                                     | 3 |
|             | 2. I errestrial                                          | 3 |
|             | a. Milk 1                                                | 3 |
| ~           | D. FOOD Products                                         | 3 |
| C.          | Amplent Gamma Radiation                                  | 4 |
| D.          | Land Use Survey                                          | 4 |
| 上.          | Summary of Results – Inter-laboratory Comparison Program | 5 |

## Appendices

| Appendix A    | Radiological Environmental Monitoring Report Summary                                                                         |
|---------------|------------------------------------------------------------------------------------------------------------------------------|
| Tables        |                                                                                                                              |
| Table A-1     | Radiological Environmental Monitoring Program Summary for the Braidwood Station, 2008                                        |
| Appendix B    | Location Designation, Distance & Direction, and Sample Collection & Analytical Methods                                       |
| <u>Tables</u> |                                                                                                                              |
| Table B-1:    | Radiological Environmental Monitoring Program - Sampling Locations,<br>Distance and Direction, Braidwood Station, 2008       |
| Table B-2:    | Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, Braidwood Station, 2008 |
| Figures       |                                                                                                                              |
| Figure B-1:   | Inner Ring TLD Locations of the Braidwood Station, 2008                                                                      |
| Figure B-2:   | Fixed Air Sampling and Outer Ring TLD Locations of the Braidwood Station, 2008                                               |
| Figure B-3:   | Ingestion and Waterborne Exposure Pathway Sample Locations of the Braidwood Station, 2008                                    |
| Appendix C    | Data Tables and Figures - Primary Laboratory                                                                                 |
| <u>Tables</u> |                                                                                                                              |
| Table C-I.1   | Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of Braidwood Station, 2008.                  |
| Table C-I.2   | Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Braidwood Station, 2008.                     |
| Table C-I.3   | Concentrations of Gamma Emitters in Surface Water Samples<br>Collected in the Vicinity of Braidwood Station, 2008.           |
| Table C-II.1  | Concentrations of Gross Beta in Public Water Samples Collected in the Vicinity of Braidwood Station, 2008.                   |

| Table C-II.2   | Concentrations of Tritium in Public Water Samples Collected in the Vicinity of Braidwood Station, 2008.                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table C-II.3   | Concentrations of Gamma Emitters in Public Water Samples Collected in the Vicinity of Braidwood Station, 2008.                                                  |
| Table C-III.1  | Concentrations of Tritium in Ground/well Water Samples Collected in the Vicinity of Braidwood Station, 2008.                                                    |
| Table C-III.2  | Concentrations of Gamma Emitters in Ground/well Water Samples Collected in the Vicinity of Braidwood Station, 2008.                                             |
| Table C-IV.1   | Concentrations of Gamma Emitters in Fish Samples Collected in the Vicinity of Braidwood Station, 2008.                                                          |
| Table C-V.1    | Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Braidwood Station, 2008.                                                      |
| Table C-VI.1   | Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Braidwood Station, 2008.                                                   |
| Table C-VI.2   | Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 pCi/cu meter) in Air Particulate Samples Collected in the Vicinity of Braidwood Station, 2008. |
| Table C-VI.3   | Concentrations of Gamma Emitters in Air Particulate Samples<br>Collected in the Vicinity of Braidwood Station, 2008.                                            |
| Table C-VII.1  | Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Braidwood Station, 2008.                                                             |
| Table C-VIII.1 | Concentrations of I-131 in Milk Samples Collected in the Vicinity of Braidwood Station, 2008.                                                                   |
| Table C-VIII.2 | Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Braidwood Station, 2008.                                                          |
| Table C-IX.1   | Concentrations of Gamma Emitters in Vegetation Samples Collected in the Vicinity of Braidwood Station, 2008.                                                    |
| Table C-X.1    | Quarterly TLD Results for Braidwood Station, 2008.                                                                                                              |
| Table C-X.2    | Mean Quarterly TLD Results for the Site Boundary, Middle and Control Locations for Braidwood Station, 2008.                                                     |
| Table C-X.3    | Summary of the Ambient Dosimetry Program for Braidwood Station, 2008.                                                                                           |
| Figures_       |                                                                                                                                                                 |
| Figure C-1     | Surface Water - Gross Beta – Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2000 - 2008.                                          |
| Figure C-2     | Surface Water - Gross Beta – Stations BD-38 and BD-40 Collected in the Vicinity of Braidwood Station, 2000 - 2008.                                              |
|                |                                                                                                                                                                 |

| Figure C-3                  | Surface Water - Gross Beta – Stations BD-55 and BD-56 Collected in the Vicinity of Braidwood Station, 2008.              |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Figure C-4                  | Surface Water - Tritium – Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2000 - 2008.      |
| Figure C-5                  | Surface Water - Tritium – Stations BD-38 and BD-40 Collected in the Vicinity of Braidwood Station, 2000 - 2008.          |
| Figure C-6                  | Surface Water - Tritium – Stations BD-55 and BD-56 Collected in the Vicinity of Braidwood Station, 2008.                 |
| Figure C-7                  | Public Water - Gross Beta – Station BD-22 Collected in the Vicinity of Braidwood Station, 2000 - 2008.                   |
| Figure C-8                  | Public Water - Tritium – Station BD-22 Collected in the Vicinity of Braidwood Station, 2000 - 2008.                      |
| Figure C-9                  | Well Water - Tritium – Stations BD-13 and BD-34 Collected in the Vicinity of Braidwood Station, 2000 - 2008.             |
| Figure C-10                 | Well Water - Tritium – Stations BD-35 and BD-36 Collected in the Vicinity of Braidwood Station, 2000 - 2008.             |
| Figure C-11                 | Well Water - Tritium – Station BD-37 Collected in the Vicinity of Braidwood Station, 2000 - 2008.                        |
| Figure C-12                 | Well Water – Tritium – Stations BD-50 and BD-51 Collected in the Vicinity of Braidwood Station, 2008.                    |
| Figure C-13                 | Well Water – Tritium – Stations BD-53 and BD-54 Collected in the Vicinity of Braidwood Station, 2008.                    |
| Figure C-14                 | Air Particulate - Gross Beta – Stations BD-03 (C) and BD-06 Collected in the Vicinity of Braidwood Station, 2000 - 2008. |
| Figure C-15                 | Air Particulate - Gross Beta – Stations BD-19 and BD-20 Collected in the Vicinity of Braidwood Station, 2000 - 2008.     |
| Figure C-16                 | Air Particulate - Gross Beta – Station BD-21 Collected in the Vicinity of Braidwood Station, 2000 - 2008.                |
| Figure C-17                 | Air Particulate - Gross Beta – Station BD-02 and BD-04 Collected in the Vicinity of Braidwood Station, 2008.             |
| Figure C-18                 | Air Particulate - Gross Beta – Station BD-05 Collected in the Vicinity of Braidwood Station, 2008.                       |
| Appendix D<br><u>Tables</u> | Inter-Laboratory Comparison Program                                                                                      |
| Table D-1                   | Analytics Environmental Radioactivity Cross Check Program<br>Teledyne Brown Engineering, 2008                            |

| Table D-2  | ERA Environmental Radioactivity Cross Check Program<br>Teledyne Brown Engineering, 2008        |
|------------|------------------------------------------------------------------------------------------------|
| Table D-3  | DOE's Mixed Analyte Performance Evaluation Program (MAPEP)<br>Teledyne Brown Engineering, 2008 |
| Table D-4  | ERA Statistical Summary Proficiency Testing Program for<br>Environmental, Inc., 2008           |
| Table D-5  | DOE's Mixed Analyte Performance Evaluation Program (MAPEP)<br>Environmental, Inc., 2008        |
| Appendix E | Effluent Report                                                                                |
| Appendix F | Meteorological Data                                                                            |
| Appendix G | Annual Radiological Groundwater Protection Program Report<br>(ARGPPR)                          |

#### I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program conducted for the Braidwood Station by Exelon covers the period 1 January 2008 through 31 December 2008. During that time period, 1,550 analyses were performed on 1329 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of Braidwood Station had no adverse radiological impact on the environment.

Surface, public and ground/well water samples were analyzed for concentrations of tritium and gamma emitting nuclides. Surface water and public water samples were also analyzed for concentrations of gross beta. No fission or activation products were detected. No tritium was detected in surface water. Gross beta activities detected were consistent with those detected in previous years.

Fish (commercially and/or recreationally important species) and sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected in fish. Sediment samples had Cesium-137 concentrations consistent with levels observed during the preoperational years. No plant produced fission or activation products were found in sediment.

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. No fission or activation products were detected.

High sensitivity I-131 analyses were performed on weekly air samples. All results were less than the minimum detectable activity.

Cow milk samples were analyzed for concentrations of I-131 and gamma emitting nuclides. All I-131 results were below the minimum detectable activity. Concentrations of naturally occurring K-40 were detected. No fission or activation products were found.

Food Product samples were analyzed for concentrations of gamma emitting nuclides. No plant produced fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using thermoluminescent dosimeters. Levels detected were consistent with those observed in previous years.

Intentionally left blank

#### II. Introduction

The Braidwood Station, consisting of two 3587 MWt pressurized water reactors owned and operated by Exelon Corporation, is located in Will County, Illinois. Unit No. 1 went critical on 29 May 1987. Unit No. 2 went critical on 08 March 1988. The site is located in northeastern Illinois, 15 miles south-southwest of Joliet, Illinois, 60 miles southwest of Chicago, and southwest of the Kankakee River.

This report covers those analyses performed by Teledyne Brown Engineering (TBE), Global Dosimetry, and Environmental Inc. (Midwest Labs) on samples collected during the period 1 January 2008 through 31 December 2008.

A. Objective of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.
- III. Program Description
  - A. Sample Collection

Samples for the Braidwood Station REMP were collected for Exelon Nuclear by Environmental Inc. (Midwest Labs). This section describes the general collection methods used by Environmental Inc. (Midwest Labs) to obtain environmental samples for the Braidwood Station REMP in 2008. Sample locations and descriptions can be found in Table B–1 and Figures B–1 through B–3, Appendix B. The collection procedures used by Environmental Inc. are listed in Table B-2.

#### Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, public water, well water, fish, and sediment. Two gallon water samples were collected weekly from six surface water locations (BD-10, BD-25 [control], BD-38, BD-40, BD-55 and BD-56) and one weekly composite sample of public drinking water location (BD-22) and ground/well water samples collected quarterly from eight locations (BD-13, BD-34, BD-35, BD-36, BD-37, BD-51, BD-53 and BD-54). All samples were collected in new unused plastic bottles, which were rinsed with source water prior to collection. Fish samples comprising the flesh of largemouth bass, smallmouth bass, golden redhorse, channel catfish, quillback, walleye, and carp were collected semiannually at three locations, BD-25 (control), BD-28, and BD-41. Sediment samples composed of recently deposited substrate were collected at two locations semiannually, BD-10 and BD-57.

#### Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, and milk. Air particulate samples were collected and analyzed weekly at eight locations (BD-02, BD-03, BD-04, BD-05, BD-06, BD-19, BD-20, and BD-21). The control location was BD-03. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The air filters and air iodine samples were replaced weekly and sent to the laboratory for analysis.

Milk samples were collected biweekly at two locations (BD-17 and BD-18) from May through October, and monthly from November through April. The control location was BD-18. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory. Food products were collected annually in September at five locations (BD-Control, BD-Quad 1, BD-Quad 2, BD-Quad 3, and BD-Quad 4). The control location was BD-Control. Various types of samples were collected and placed in new unused plastic bags, and sent to the laboratory for analysis.

#### Ambient Gamma Radiation

Direct radiation measurements were made using dual calcium fluoride and lithium flouride thermoluminescent dosimeters (TLD). Each location consisted of 2 TLD sets. The TLDs were exchanged quarterly and sent to Global Dosimetry for analysis. The TLDs were placed at locations on and around the Braidwood Station site as follows:

An <u>inner ring</u> (site boundary) consisting of 16 locations (BD-101, BD-102, BD-103, BD-104, BD-105, BD-106, BD-107, BD-108, BD-109, BD-110, BD-111a, BD-112, BD-113a, BD-114, BD-115 and BD-116) near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off--site doses) from Braidwood Station release.

An <u>outer ring</u> (intermediate distance) consisting of 16 locations (BD-201, BD-202, BD-203, BD-204, BD-205, BD-206, BD-207, BD-208, BD-209, BD-210, BD-211, BD-212, BD-213, BD-214, BD-215, BD-216) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

An <u>other</u> set consisting of seven locations (BD-02, BD-04, BD-05, BD-06, BD-19, BD-20 and BD-21.

The balance of one location (BD-03) representing the control area.

The specific TLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- 2. Site meteorological data taking into account distance and elevation for each of the sixteen–22 1/2 degree sectors around the site, where estimated annual dose from Braidwood Station, if any, would be most significant;
- B. Sample Analysis

This section describes the general analytical methodologies used by TBE and Environmental Inc. (Midwest Labs) to analyze the environmental samples for radioactivity for the Braidwood Station REMP in 2008. The analytical procedures used by the laboratories are listed in Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in public and surface water and air particulates.
- 2. Concentrations of gamma emitters in public, ground/well and surface water, air particulates, milk, fish, sediment and food products.
- 3. Concentrations of tritium in public, ground/well and surface water.
- 4. Concentrations of I-131 in air and milk.
- 5. Ambient gamma radiation levels at various site environs.
- C. Data Interpretation

The radiological and direct radiation data collected prior to Braidwood Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Braidwood Station was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required Braidwood Station detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity effecting a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface, public and ground/well water 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For fish, sediment, air particulate, milk and vegetation 11 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140, and La-140 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2008 the Braidwood Station REMP had a sample recovery rate in excess of 99%. Sample anomalies and missed samples are listed in the tables below:

| Sample<br>Type | Location<br>Code | Collection<br>Date | Reason                                                                   |
|----------------|------------------|--------------------|--------------------------------------------------------------------------|
| A/I            | BD-19            | 02/14/08           | No apparent reason for low timer reading: possible power outage.         |
| A/I            | BD-03, BD-04     | 06/19/08           | No apparent reason for low timer reading; possible power outage in area. |
| A/I            | BD-04            | 07/24/08           | Low reading due to pump malfunction.                                     |
| A/I            | BD-03, BD-21     | 08/07/08           | Low timer reading possibly due to severe weather.                        |
| A/I            | BD-05            | 12/24/08           | No apparent reason for low timer reading: possible power outage in area. |

#### Table D-1 LISTING OF SAMPLE ANOMALIES

| Sample | Location              | Collection | Reason                                              |
|--------|-----------------------|------------|-----------------------------------------------------|
| туре   | Code                  | Dale       |                                                     |
| WT     | BD-55, BD-56          | 01/03/08   | No sample. Water frozen.                            |
| WG     | BD-50                 | 01/10/08   | No sample. Water Homeowner no longer participating. |
| WG     | BD-34, BD-35          | 01/11/08   | No sample. Water Homeowner away.                    |
| WT     | BD-56                 | 01/17/08   | No sample. Water frozen.                            |
| WT     | BD-25, BD-55<br>BD-56 | 01/24/08   | No samples. Water frozen.                           |
| WT     | BD-38, BD-55<br>BD-56 | 01/31/08   | No samples. Water frozen.                           |
| WT     | BD-55, BD-56          | 02/07/08   | No samples. Water Frozen                            |
| WT     | BD-25, BD-55<br>BD-56 | 02/14/08   | No samples. Water Frozen                            |
| WT     | BD-25, BD-55<br>BD-56 | 02/21/08   | No samples. Water frozen.                           |
| WT     | BD-55, BD-56          | 02/28/08   | No samples. Water Frozen                            |
| ΝT     | BD-55, BD-56          | 03/06/08   | No samples. Water frozen.                           |
| NT     | BD-55                 | 03/06/08   | No sample. Water frozen.                            |
| NG     | BD-50                 | 04/10/08   | No sample. Water Homeowner no longer participating. |
| WG     | BD-50                 | 07/10/08   | No sample. Water Homeowner no longer participating. |
| NG     | BD-50                 | 10/09/08   | No sample. Water Homeowner no longer participating. |
| МТ     | BD-55, BD-56          | 12/11/08   | No samples. Water frozen.                           |
| NT     | BD-38, BD-55<br>BD-56 | 12/18/08   | No samples. Water frozen.                           |

## Table D-2 LISTING OF MISSED SAMPLES

| Sample<br>Type | Location<br>Code      | Collection<br>Date | Reason                   | - |
|----------------|-----------------------|--------------------|--------------------------|---|
| WT             | BD-38, BD-55<br>BD-56 | 12/24/08           | No samples. Water Frozen | - |

#### Table D-2 LISTING OF MISSED SAMPLES

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent recurrence. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

### E. Program Changes

Groundwater station BD-50 did not have a sample collection in 2008 because the homeowner is no longer participating. This sample collection will be removed from the REMP at the next ODCM change.

#### IV. Results and Discussion

#### A. Aquatic Environment

1. Surface Water

Samples were taken weekly and composited monthly at six locations (BD-10, BD-25, BD-38, BD-40, BD-55 and BD-56). Of these locations, only BD-10, BD-38, and BD-40 could be affected by Braidwood Station's effluent releases. The following analyses were performed.

#### Gross Beta

Samples from all locations were analyzed for concentrations of gross beta (Table C–I.1, Appendix C). Gross beta was detected in 66 of 70 samples. The values ranged from 2.9 to 15 pCi/l. Concentrations detected were consistent with those detected in previous years (Figures C–1 through C-3, Appendix C).

#### <u>Tritium</u>

Quarterly composites of weekly collections were analyzed for tritium activity (Table C–I.2, Appendix C). No tritium activity was detected. (Figures C–4 through C-6, Appendix C).

#### Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–I.3, Appendix C). No nuclides were detected, and all required LLDs were met.

2. Public Water

Monthly composite of weekly samples were collected at one location (BD-22). This location could be affected by Braidwood Station's effluent releases. The following analyses were performed:

#### Gross Beta

Samples from the location were analyzed for concentrations of gross beta (Tables C–II.1, Appendix C). Gross beta was detected in all samples. The values ranged from 2.9 to 5.6 pCi/I. Concentrations detected were consistent with those detected in previous years (Figure C–7, Appendix C).

#### <u>Tritium</u>

Monthly composites of weekly samples from the location were analyzed for tritium activity (Table C–II.2, Appendix C). Tritium was detected in three of 12 samples. The values ranged from 291 to 524 pCi/I. Concentrations detected were consistent with those detected in previous years (Figure C–8, Appendix C).

#### Gamma Spectrometry

Samples from the location were analyzed for gamma emitting nuclides (Table C–II.3, Appendix C). No nuclides were detected, and all required LLDs were met.

3. Ground/well Water

Quarterly samples were collected at eight locations (BD-13, BD-34, BD-35, BD-36, BD-37, BD-51, BD-53 and BD-54). The following analyses were performed:

#### <u>Tritium</u>

Quarterly grab samples from the locations were analyzed for tritium activity (Table C–III.1, Appendix C). Tritium was detected in two of 31 samples. The values ranged from 162 to 230 pCi/l. Concentrations detected were consistent with those detected in previous years (Figures C–9 through C–13, Appendix C).

#### Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–III.2, Appendix C). No nuclides were detected, and all required LLDs were met.

4. Fish

Fish samples comprised of largemouth bass, smallmouth bass, golden redhorse, channel catfish, walleye, quillback, and common carp were collected at three locations (BD-25, BD-28, and BD-41) semiannually. Locations BD-28 and BD-41 could be affected by Braidwood Station's effluent releases. The following analysis was performed:

#### **Gamma Spectrometry**

The edible portion of fish samples from all three locations was analyzed for gamma emitting nuclides (Table C–IV.1, Appendix C). No fission or activation products were found. No nuclides were detected, and all required LLDs were met.

5. Sediment

Aquatic sediment samples were collected at two locations (BD-10 and BD-57) semiannually. The locations, at the Braidwood Station outfall to the Kanakakee River and downstream of the outfall, could be affected by the Braidwood Station's effluent releases. The following analysis was performed:

#### Gamma Spectrometry

Sediment samples from the location were analyzed for gamma emitting nuclides (Table C–V.1, Appendix C).

Concentrations of the fission product Cs-137 were found at both stations in three of four samples. The values ranged from 54 to

171 pCi/kg dry. The activity detected was consistent with those detected in previous years (29 pCi/kg to 260 pCi/kg from 1995 to 2006). No other Braidwood fission or activation products were found and all required LLDs were met.

- B. Atmospheric Environment
  - 1. Airborne
    - a. Air Particulates

Continuous air particulate samples were collected from eight locations on a weekly basis. The eight locations were separated into three groups: Near field samplers (BD-06, BD-19, BD-20 and BD-21), far field samplers within 10 km of the site (BD-02, BD-04 and BD-05) and the Control sampler between 10 and 30 km from the site (BD-03). Far field samples are analyzed when the respective near field sample results are inconsistent with previous measurements and radioactivity is confirmed as having its origin in airborne effluents from the station, or at the discretion of the REMP Program Owner. The following analyses were performed:

### Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C–VI.1 and C-VI.2, Appendix C).

Detectable gross beta activity was observed at all locations. Comparison of results among the three groups aid in determining the effects, if any, resulting from the operation of Braidwood Station. The results from the near field (Group I) ranged from 10 to 43 E–3 pCi/m<sup>3</sup> with a mean of 20 E–3 pCi/m<sup>3</sup>. The results from the far field (Group II) ranged from 7 to 41 E–3 pCi/m<sup>3</sup> with a mean of 20 E–3 pCi/m<sup>3</sup>. The results from the Control location (Group III) ranged from 7 to 40 E–3 pCi/m<sup>3</sup> with a mean of 19 E–3 pCi/m<sup>3</sup>. Comparison of the 2008 air particulate data with previous years data indicate no effects from the operation of Braidwood Station. In addition a comparison of the weekly mean values for 2008 indicate no notable differences among the three groups (Figures C–14 through C-18, Appendix C).

### Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–VI.3, Appendix C). No nuclides were detected, and all required LLDs were met.

b. Airborne lodine

Continuous air samples were collected from eight locations (BD-02, BD-03, BD-04, BD-05, BD-06, BD19, BD-20, and BD-21) and analyzed weekly for I-131 (Table C–VII.1, Appendix C). I-131 was not detected, and the required LLD was met.

- 2. Terrestrial
  - a. Milk

Samples were collected from two locations (BD-17 and BD-18) biweekly May through October and monthly November through April. The following analyses were performed:

### <u>lodine-131</u>

Milk samples from all locations were analyzed for concentrations of I-131 (Table C–VIII.1, Appendix C). No I-131 was detected, and all required LLDs were met.

### Gamma Spectrometry

Each milk sample was analyzed for concentrations of gamma emitting nuclides (Table C–VIII.2, Appendix C). No nuclides were detected, and all required LLDs were met.

b. Food Products

Food product samples were collected at five locations (BD-Control, BD-Quad 1, BD-Quad 2, BD-Quad 3 and BD-Quad 4) when available. Four locations, (located downstream, BD-Quad 1, BD-Quad 2, BD-Quad 3 and BD-Quad 4) could be affected by Braidwood Station's effluent releases. The following analysis was performed:

### Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–IX.1, Appendix C). No nuclides were detected, and all required LLDs were met.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing dual element calcium fluoride and lithium fluoride thermoluminescent dosimeters (TLD). Eighty TLD locations were established around the site. Results of TLD measurements are listed in Tables C–X.1 to C–X.3, Appendix C.

Most TLD measurements were below 30 mR/quarter, with a range of 13 to 30 mR/quarter. A comparison of the Inner Ring, Outer Ring and Other data to the Control Location data, indicate that the ambient gamma radiation levels from all locations were similar.

D. Land Use Survey

A Land Use Survey conducted during August 2008 around the Braidwood Station was performed by Environmental Inc. (Midwest Labs) for Exelon Nuclear to comply with section 12.5.2 of the Braidwood Station's Offsite Dose Calculation Manual. The purpose of the survey was to document the nearest resident, milk producing animal and garden of greater than 500 ft<sup>2</sup> in each of the sixteen 22 ½ degree sectors around the site. There were no changes required to the Braidwood Station REMP, as a result of this survey. The results of this survey are summarized below.

| Distance in | Distance in Miles from the Braidwood Station Reactor Buildings |           |           |  |  |  |  |  |
|-------------|----------------------------------------------------------------|-----------|-----------|--|--|--|--|--|
| Sector      | Residence                                                      | Livestock | Milk Farm |  |  |  |  |  |
|             | Miles                                                          | Miles     | Miles     |  |  |  |  |  |
| AN          | 0.5                                                            | 2.6       | -         |  |  |  |  |  |
| B NNE       | 1.8                                                            | -         |           |  |  |  |  |  |
| C NE        | 0.7                                                            | 0.9       |           |  |  |  |  |  |
| D ENE       | 0.8                                                            | 3.3       | -         |  |  |  |  |  |
| ΕE          | 0.8                                                            | 2.3       | -         |  |  |  |  |  |
| F ESE       | 2.2                                                            | 2.3       | -         |  |  |  |  |  |
| G SE        | 2.7                                                            | 2.7       | 11.2      |  |  |  |  |  |
| H SSE       | 4.5                                                            | -         | -         |  |  |  |  |  |
| JS          | 4.2                                                            | 4.8       | -         |  |  |  |  |  |
| K SSW       | 1.3                                                            | 5.3       | 5.6       |  |  |  |  |  |
| L SW        | 0.4                                                            | 1.2       | -         |  |  |  |  |  |
| M WSW       | 0.5                                                            | -         | -         |  |  |  |  |  |
| NW          | 0.4                                                            | 1.6       | 8.7       |  |  |  |  |  |
| P WNW       | 0.4                                                            | 5.4       | -         |  |  |  |  |  |
| Q NW        | 0.4                                                            | -         | -         |  |  |  |  |  |
| R NNW       | 0.4                                                            | -         | -         |  |  |  |  |  |

E. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices (Appendix D). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

### 3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is  $\pm 20\%$  of the reference value. Performance is acceptable with warning when a mean result falls in the range from  $\pm 20\%$  to  $\pm 30\%$  of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the primary laboratory, 16 out of 18 analytes met the specified acceptance criteria. Two samples did not meet the specified acceptance criteria for the following reasons:

- 1. Teledyne Brown Engineering's Analytics December 2008 Sr-89 in milk result of 18.0 pCi/L was higher than the known value of 12.6 pCi/L, resulting in a found to known ratio of 1.43. NCR 09-02 was initiated to investigate this failure.
- Teledyne Brown Engineering's Analytics' ERA Quik Response water sample January 2008 Sr-89 result of 37.33 pCi/L exceeded the upper acceptance limit of 25.2 pCi/L. No cause could be found for the failure. Studies bracketing these results, RAD 71 and RAD 72 had acceptable Sr-89 results. NCR 08-03 was initiated to investigate this failure.

For the secondary laboratory, all of the 15 analytes met the specified acceptance criteria.

Intentionally left blank

# **APPENDIX A**

## RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT QUARTERLY AND ANNUAL SUMMARY

| Name of Facility: BRAIDWOOD<br>Location of Facility: BRACEVILLE, IL |                                   |                                    |                                                  |                                                                              | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING PERIOD: ANNUAL 2008 |                                       |                                                                             |                                                     |
|---------------------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT)            | TYPES OF<br>ANALYSIS<br>PERFORMED | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | INDICATOR<br>LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                            | CONTROL<br>LOCATION<br>MEAN(M)<br>(F)<br>RANGE                  | LOCATION M<br>MEAN(M)<br>(F)<br>RANGE | WITH HIGHEST ANNUAL MEAN (M)<br>STATION #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
| SURFACE WATER<br>(PCI/LITER)                                        | GR-B                              | 70                                 | 4                                                | 6.9<br>(54/58)<br>(2.9/14.7)                                                 | 7<br>(12/12)<br>(3.3/11.9)                                      | 11.6<br>(12/12)<br>(8.1/14.7)         | BD-40 INDICATOR<br>BRAIDWOOD STATION COOLING<br>ONSITE                      | 0<br>LAKE                                           |
|                                                                     | H-3                               | 24                                 | 200                                              | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | GAMMA<br>MN-54                    | 70                                 | 15                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | CO-58                             |                                    | 15                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | FE-59                             |                                    | 30                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | CO-60                             |                                    | 15                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | ZN-65                             |                                    | 30                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | NB-95                             |                                    | 15                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |

| Name of Facility: BRAIDWOOD<br>Location of Facility: BRACEVILLE, IL |                                   |                                    |                                                  |                                                                              | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING PERIOD: ANNUAL 2008 |                                       |                                                                             |                                                     |
|---------------------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT)            | TYPES OF<br>ANALYSIS<br>PERFORMED | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | INDICATOR<br>LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                            | CONTROL<br>LOCATION<br>MEAN(M)<br>(F)<br>RANGE                  | LOCATION W<br>MEAN(M)<br>(F)<br>RANGE | WITH HIGHEST ANNUAL MEAN (M)<br>STATION #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
| SURFACE WATER<br>(PCI/LITER)                                        | ZR-95                             |                                    | 30                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | I-131                             |                                    | 15                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | CS-134                            |                                    | 15                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | CS-137                            |                                    | 18                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | BA-140                            |                                    | 60                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
|                                                                     | LA-140                            |                                    | 15                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                     |                                                                             | 0                                                   |
| PUBLIC WATER<br>(PCI/LITER)                                         | GR-B                              | 12                                 | 4                                                | 4.7<br>(12/12)<br>(2.9/5.6)                                                  | NA                                                              | 4.7<br>(12/12)<br>(2.9/5.6)           | BD-22 INDICATOR<br>WILMINGTON<br>6.0 MILES NE OF SITE                       | 0                                                   |
|                                                                     | H-3                               | 12                                 | 200                                              | 373<br>(3/12)<br>(291/524)                                                   | NA                                                              | 373<br>(3/12)<br>(291/524)            | BD-22 INDICATOR<br>WILMINGTON<br>6.0 MILES NE OF SITE                       | 0                                                   |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

| Name of Facility: BRAIDWOOD<br>Location of Facility: BRACEVILLE, IL |                                   |                                    | INDICATOR                                        | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING PERIOD: ANNUAL 2008<br>CONTROL LOCATION WITH HIGHEST ANNUAL MEAN (M) |                                     |                         | <b></b>                                     |                                                     |
|---------------------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|---------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT)            | TYPES OF<br>ANALYSIS<br>PERFORMED | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                                                                             | LOCATION<br>MEAN(M)<br>(F)<br>RANGE | MEAN(M)<br>(F)<br>RANGE | STATION #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
| PUBLIC WATER<br>(PCI/LITER)                                         | GAMMA<br>MN-54                    | 12                                 | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                      | NA                                  | -                       |                                             | 0                                                   |
|                                                                     | CO-58                             |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                      | NA                                  | -                       |                                             | 0                                                   |
|                                                                     | FE-59                             |                                    | 30                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                      | NA                                  | -                       |                                             | 0                                                   |
|                                                                     | CO-60                             |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                      | NA                                  | -                       |                                             | 0                                                   |
|                                                                     | ZN-65                             |                                    | 30                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                      | NA                                  | -                       |                                             | 0                                                   |
|                                                                     | NB-95                             |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                      | NA                                  | -                       |                                             | 0                                                   |
|                                                                     | ZR-95                             |                                    | 30                                               | <lld< td=""><td>NA</td><td>_</td><td></td><td>0</td></lld<>                                                      | NA                                  | _                       |                                             | 0                                                   |
|                                                                     | I-131                             |                                    | 15                                               | <lld< td=""><td>NA</td><td></td><td></td><td>0</td></lld<>                                                       | NA                                  |                         |                                             | 0                                                   |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

| Name of Fac<br>Location of Fac                           | ility: BRAIDWOOD<br>ility: BRACEVILLE, ] | IL                                 |                                                  | INDICATOR                                                   | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING PERIOD: ANNUAL 2008<br>CONTROL LOCATION WITH HIGHEST ANNUAL MEAN (M) |                           |                                                       |                                                     |  |
|----------------------------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|-----------------------------------------------------|--|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED        | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                        | LOCATION<br>MEAN(M)<br>(F)<br>RANGE                                                                              | MEAN(M)<br>(F)<br>RANGE   | STATION #<br>NAME<br>DISTANCE AND DIRECTION           | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |  |
| PUBLIC WATER<br>(PCI/LITER)                              | CS-134                                   |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                                                                                               | -                         |                                                       | 0                                                   |  |
|                                                          | CS-137                                   |                                    | 18                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                                                                                               | -                         |                                                       | 0                                                   |  |
|                                                          | BA-140                                   |                                    | 60                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                                                                                               | -                         |                                                       | 0                                                   |  |
|                                                          | LA-140                                   |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                                                                                               | -                         |                                                       | 0                                                   |  |
| GROUND WATER<br>(PCI/LITER)                              | Н-3                                      | 31                                 | 200                                              | 196<br>(2/31)<br>(162/230)                                  | NA                                                                                                               | 196<br>(2/4)<br>(162/230) | BD-36 INDICATOR<br>HUTTON WELL<br>4.7 MILES E OF SITE | 0                                                   |  |
|                                                          | GAMMA<br>MN-54                           | 31                                 | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                                                                                               | -                         |                                                       | 0                                                   |  |
|                                                          | CO-58                                    |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                                                                                               | -                         |                                                       | 0                                                   |  |
|                                                          | FE-59                                    |                                    | 30                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                                                                                               | -                         |                                                       | 0                                                   |  |

| Name of Fac<br>Location of Fac                           | ility: BRAIDWOOD<br>ility: BRACEVILLE, | IL                                 |                                                  | INDICATOR                                                                                                                                                      | DOCKET NU<br>REPORTING<br>CONTROL   | ·                       |                                                                                                     |                                                     |
|----------------------------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED      | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                                                                                                                           | LOCATION<br>MEAN(M)<br>(F)<br>RANGE | MEAN(M)<br>(F)<br>RANGE | STATION #<br>NAME<br>DISTANCE AND DIRECTION                                                         | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
| GROUND WATER<br>(PCI/LITER)                              | CO-60                                  |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td>ananan ya shasa shiyiyiya a shasana da sa da ya ya ya shasha da da</td><td>0</td></lld<> | NA                                  | -                       | ananan ya shasa shiyiyiya a shasana da sa da ya ya ya shasha da | 0                                                   |
|                                                          | ZN-65                                  |                                    | 30                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                                                                    | NA                                  | -                       |                                                                                                     | 0                                                   |
|                                                          | NB-95                                  |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                                                                    | NA                                  | -                       |                                                                                                     | 0                                                   |
|                                                          | ZR-95                                  |                                    | 30                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                                                                    | NA                                  | -                       |                                                                                                     | 0                                                   |
|                                                          | 1-131                                  |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                                                                    | NA                                  | -                       |                                                                                                     | 0                                                   |
|                                                          | CS-134                                 |                                    | 15                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                                                                    | NA                                  | -                       |                                                                                                     | 0                                                   |
|                                                          | CS-137                                 |                                    | 18                                               | <lld< td=""><td>NA</td><td>-</td><td>·</td><td>0</td></lld<>                                                                                                   | NA                                  | -                       | ·                                                                                                   | 0                                                   |
|                                                          | BA-140                                 |                                    | 60                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                                                                                                    | NA                                  | -                       |                                                                                                     | 0                                                   |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

| Name of Fac<br>Location of Fac                           | cility: BRAIDWOOD<br>cility: BRACEVILLE, | IL                                 | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>     |                                                                              | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING PERIOD: ANNUAL 2008 |                                  |                                                                            |                                                           |  |
|----------------------------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|--|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED        | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | INDICATOR<br>LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                            | CONTROL<br>LOCATION<br>MEAN(M)<br>(F)<br>RANGE                  | LOCATION MEAN(M)<br>(F)<br>RANGE | WITH HIGHEST ANNUAL MEAN (M<br>STATION #<br>NAME<br>DISTANCE AND DIRECTION | I)<br>NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |  |
| GROUND WATER<br>(PCI/LITER)                              | LA-140                                   | <u></u>                            | 15                                               | <lld< td=""><td>NA</td><td></td><td></td><td>0</td></lld<>                   | NA                                                              |                                  |                                                                            | 0                                                         |  |
| FISH<br>(PCI/KG WET)                                     | GAMMA<br>MN-54                           | 12                                 | 130                                              | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                |                                                                            | 0                                                         |  |
|                                                          | CO-58                                    |                                    | 130                                              | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                |                                                                            | 0                                                         |  |
|                                                          | FE-59                                    |                                    | 260                                              | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                |                                                                            | 0                                                         |  |
|                                                          | CO-60                                    |                                    | 130                                              | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                |                                                                            | 0                                                         |  |
|                                                          | ZN-65                                    |                                    | 260                                              | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                |                                                                            | 0                                                         |  |
|                                                          | NB-95                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                |                                                                            | 0                                                         |  |
|                                                          | ZR-95                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                                |                                                                            | 0                                                         |  |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

| Name of Fac<br>Location of Fac                           | ility: BRAIDWOOD<br>ility: BRACEVILLE, | IL                                 |                                                  | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING PERIOD: ANNUAL 2008              |                                                  |                                       |                                                                             |                                                     |
|----------------------------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED      | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | INDICATOR<br>LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                            | CONTROL<br>LOCATION<br>MEAN(M)<br>(F)<br>RANGE   | LOCATION M<br>MEAN(M)<br>(F)<br>RANGE | WITH HIGHEST ANNUAL MEAN (M)<br>STATION #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
| FISH<br>(PCI/KG WET)                                     | I-131                                  |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                                     |                                                                             | 0                                                   |
|                                                          | CS-134                                 |                                    | 130                                              | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                                     |                                                                             | 0                                                   |
|                                                          | CS-137                                 |                                    | 150                                              | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                                     |                                                                             | 0                                                   |
|                                                          | BA-140                                 |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                                     |                                                                             | 0                                                   |
|                                                          | LA-140                                 |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                                     |                                                                             | 0                                                   |
| SEDIMENT<br>(PCI/KG DRY)                                 | GAMMA<br>MN-54                         | 4                                  | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                  | NA                                               | -                                     |                                                                             | 0                                                   |
|                                                          | CO-58                                  |                                    | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                  | NA                                               | -                                     |                                                                             | 0                                                   |
|                                                          | FE-59                                  |                                    | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>                  | NA                                               | -                                     |                                                                             | 0                                                   |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

| Name of Fac                                              | ility: BRAIDWOOD                  |                                    |                                                  | DOCKET NUMBER: 50-456 & 50-457                              |                                     |                                               |                                                                      |                                                     |
|----------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|-------------------------------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|
| Location of Fachicy. DRACE VILLE, IL                     |                                   |                                    |                                                  |                                                             | CONTROL                             | CONTROL LOCATION WITH HIGHEST ANNUAL MEAN (M) |                                                                      |                                                     |
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                        | LOCATION<br>MEAN(M)<br>(F)<br>RANGE | MEAN(M)<br>(F)<br>RANGE                       | STATION #<br>NAME<br>DISTANCE AND DIRECTION                          | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
| SEDIMENT<br>(PCI/KG DRY)                                 | CO-60                             |                                    | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                  | -                                             |                                                                      | 0                                                   |
|                                                          | ZN-65                             |                                    | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                  | -                                             |                                                                      | 0                                                   |
|                                                          | NB-95                             |                                    | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                  | -                                             |                                                                      | 0                                                   |
|                                                          | ZR-95                             |                                    | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                  | -                                             |                                                                      | 0                                                   |
|                                                          | CS-134                            |                                    | 150                                              | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                  | -                                             |                                                                      | 0                                                   |
|                                                          | CS-137                            |                                    | 180                                              | 104<br>(3/4)<br>(54/171)                                    | NA                                  | 171<br>(1/2)                                  | BD-10 INDICATOR<br>KANKAKEE RIVER DOWNSTREAM<br>5.4 MILES NE OF SITE | 0                                                   |
|                                                          | BA-140                            |                                    | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                  | -                                             |                                                                      | 0                                                   |
|                                                          | LA-140                            |                                    | NA                                               | <lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<> | NA                                  | -                                             |                                                                      | 0                                                   |

-

| Name of Fac<br>Location of Fac                           | ility: BRAIDWOOD<br>ility: BRACEVILLE, 1 | IL                                 |                                                  | INDICATOR                                                                                | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING PERIOD: ANNUAL 2008<br>CONTROL - LOCATION WITH HIGHEST ANNUAL MEAN (20) |                                                  |                                                       |                                                     |   |
|----------------------------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|---|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED        | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | INDICATOR<br>LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                                        | LOCATION<br>MEAN(M)<br>(F)<br>RANGE                                                                                 | MEAN(M)<br>(F)<br>RANGE                          | STATION #<br>NAME<br>DISTANCE AND DIRECTION           | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |   |
| AIR PARTICULATE<br>(E-3 PCI/CU.METER)                    | GR-B                                     | 415                                | 10                                               | 20<br>(362/363)<br>(6/43)                                                                | 19<br>(51/52)<br>(7/40)                                                                                             | 20<br>(52/52)<br>(7/39)                          | BD-02 INDICATOR<br>CUSTER PARK<br>5.0 MILES E OF SITE | 0                                                   |   |
|                                                          | GAMMA<br>MN-54                           | 32                                 | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>             | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                                                                    | -                                                |                                                       | 0                                                   |   |
|                                                          | CO-58                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>             | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                                                                    | -                                                |                                                       | 0                                                   |   |
|                                                          | FE-59                                    |                                    |                                                  | NA                                                                                       | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>                                        | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                                                     |                                                     | 0 |
|                                                          | CO-60                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td rowspan="2"></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td rowspan="2"></td><td>0</td></lld<>                                                        | -                                                |                                                       | 0                                                   |   |
|                                                          | ZN-65                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td>0</td></lld<></td></lld<>                      | <lld< td=""><td>-</td><td>0</td></lld<>                                                                             | -                                                |                                                       | 0                                                   |   |
|                                                          | NB-95                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>             | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                                                                    | -                                                |                                                       | 0                                                   |   |
|                                                          | ZR-95                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>             | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                                                                    | -                                                |                                                       | 0                                                   |   |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)
| Name of Fac<br>Location of Fac                           | ility: BRAIDWOOD<br>ility: BRACEVILLE | TT.                                |                                                  |                                                                              | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING PERIOD: ANNUAL 2008 |                         |                                             |                                                     |  |  |  |
|----------------------------------------------------------|---------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------------------------|-----------------------------------------------------|--|--|--|
|                                                          |                                       |                                    |                                                  | INDICATOR                                                                    | CONTROL                                                         | LOCATION                | WITH HIGHEST ANNUAL MEAN (M                 | )                                                   |  |  |  |
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED     | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | MEAN(M)<br>(F)<br>RANGE                                                      | EOCATION<br>MEAN(M)<br>(F)<br>RANGE                             | MEAN(M)<br>(F)<br>RANGE | STATION #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |  |  |  |
| AIR PARTICULATE<br>(E-3 PCI/CU.METER)                    | CS-134                                |                                    | 50                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | CS-137                                |                                    | 60                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | BA-140                                |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | LA-140                                |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
| AIR IODINE<br>(E-3 PCI/CU.METER)                         | GAMMA<br>I-131                        | 415                                | 70                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
| MILK<br>(PCI/LITER)                                      | I-131                                 | 40                                 | 1                                                | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | GAMMA<br>MN-54                        | 40                                 | NA                                               | <lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>  | <lld< td=""><td></td><td></td><td>0</td></lld<>                 |                         |                                             | 0                                                   |  |  |  |
|                                                          | CO-58                                 |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |

| Name of Fac<br>Location of Fac                           | cility: BRAIDWOOD<br>cility: BRACEVILLE, | IL.                                |                                                  | INDICATOR                                                                    | DOCKET NU<br>REPORTING                           |                         |                                             |                                                     |
|----------------------------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|---------------------------------------------|-----------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED        | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                                         | LOCATION<br>MEAN(M)<br>(F)<br>RANGE              | MEAN(M)<br>(F)<br>RANGE | STATION #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |
| MILK<br>(PCI/LITER)                                      | FE-59                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                       |                                             | 0                                                   |
|                                                          | CO-60                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                       |                                             | 0                                                   |
|                                                          | ZN-65                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                       |                                             | 0                                                   |
|                                                          | NB-95                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                       |                                             | 0                                                   |
|                                                          | ZR-95                                    |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                       |                                             | 0                                                   |
|                                                          | CS-134                                   |                                    | 15                                               | <lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>  | <lld< td=""><td></td><td></td><td>0</td></lld<>  |                         |                                             | 0                                                   |
|                                                          | CS-137                                   |                                    | 18                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                       |                                             | 0                                                   |
|                                                          | BA-140                                   |                                    | 60                                               | <lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>  | <lld< td=""><td></td><td></td><td>0</td></lld<>  |                         |                                             | 0                                                   |

| Name of Fac                                              | ility: BRAIDWOOD                  | Π                                  |                                                  |                                                                              | DOCKET NUMBER: 50-456 & 50-457<br>REPORTING REPIOD: ANNUAL 2008 |                         |                                             |                                                     |  |  |  |
|----------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------------------------|-----------------------------------------------------|--|--|--|
| Location of Fac                                          | mty. DRACE VILLE,                 |                                    |                                                  | INDICATOR                                                                    | CONTROL                                                         | LOCATION V              | WITH HIGHEST ANNUAL MEAN (M)                |                                                     |  |  |  |
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                                         | LOCATION<br>MEAN(M)<br>(F)<br>RANGE                             | MEAN(M)<br>(F)<br>RANGE | STATION #<br>NAME<br>DISTANCE AND DIRECTION | NUMBER OF<br>NONROUTINE<br>REPORTED<br>MEASUREMENTS |  |  |  |
| MILK<br>(PCI/LITER)                                      | LA-140                            |                                    | 15                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
| VEGETATION<br>(PCI/KG WET)                               | GAMMA<br>MN-54                    | 10                                 | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | CO-58                             |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | FE-59                             |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | CO-60                             |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | ZN-65                             |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | NB-95                             |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |
|                                                          | ZR-95                             |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<>                | -                       |                                             | 0                                                   |  |  |  |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

| Name of Facili<br>Location of Facili                     | ity: BRAIDWOOD<br>ity: BRACEVILLE, II |                                    |                                                  |                                                                              | DOCKET NU<br>REPORTING                           |                          |                                            |                                                                 |
|----------------------------------------------------------|---------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------|-----------------------------------------------------------------|
| MEDIUM OR<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPES OF<br>ANALYSIS<br>PERFORMED     | NUMBER OF<br>ANALYSIS<br>PERFORMED | REQUIRED<br>LOWER LIMIT<br>OF DETECTION<br>(LLD) | INDICATOR<br>LOCATIONS<br>MEAN(M)<br>(F)<br>RANGE                            | CONTROL<br>LOCATION<br>MEAN(M)<br>(F)<br>RANGE   | MEAN(M)<br>(F)<br>RANGE  | STATION #<br>NAME<br>DISTANCE AND DIRECTIO | AN (M)<br>NUMBER OF<br>NONROUTINE<br>N REPORTED<br>MEASUREMENTS |
| VEGETATION<br>(PCI/KG WET)                               | CS-134                                |                                    | 60                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                        |                                            | 0                                                               |
|                                                          | CS-137                                |                                    | 80                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                        |                                            | 0                                                               |
|                                                          | BA-140                                |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                        |                                            | 0                                                               |
|                                                          | LA-140                                |                                    | NA                                               | <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<> | <lld< td=""><td>-</td><td></td><td>0</td></lld<> | -                        |                                            | 0                                                               |
| DIRECT RADIATION<br>(MILLI-ROENTGEN/QTR.)                | TLD-QUARTERLY                         | 320                                | NA                                               | 19.1<br>(312/312)<br>(13/30)                                                 | 19.8<br>(8/8)<br>(16/24)                         | 24.8<br>(4/4)<br>(21/30) | BD-209-2 INDICATOR<br>4.8 MILES S          | 0                                                               |

Intentionally left blank

### **APPENDIX B**

### LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

·

.

| Location       |             | Location Description                             | Distance & Direction<br>From Site     |
|----------------|-------------|--------------------------------------------------|---------------------------------------|
| <u>A.</u>      | Surface W   | later                                            |                                       |
| BD-10          |             | Kankakee River Downstream (indicator)            | 5.4 miles NF                          |
| BD-25          |             | Kankakee River Unstream (control)                | 96 miles E                            |
| BD_38          |             | Main Drainage Ditch (indicator)                  | 1.5 miles SW                          |
| BD-40          |             | Braidwood Station Cooling Lake (indicator)       | Oncite                                |
|                |             | North Dand Eatlan Site (Indicator)               |                                       |
| BD-55<br>BD-56 |             | South Pond Fatlan Site (indicator)               | 0.6 miles NE                          |
| R              | Drinkina (F | Potable) Water                                   | · · · · · · · · · · · · · · · · · · · |
| <u> </u>       | Dimining (I |                                                  |                                       |
| BD-22          |             | Wilmington (indicator)                           | 6.0 miles NE                          |
| <u>C.</u>      | Ground/W    | ell Water                                        |                                       |
| BD-13          |             | Braidwood City Hall Well (indicator)             | 1.7 miles NNE                         |
| BD-34          |             | Gibson Well (indicator)                          | 4.7 miles E                           |
| BD-35          |             | Joly Well (indicator)                            | 4.7 miles E                           |
| BD-36          |             | Hutton Well (indicator)                          | 4 7 miles E                           |
| BD-37          |             | Nurczyk Well (indicator)                         | 4 7 miles E                           |
| BD-50          |             | Skole Well (indicator)                           | 4.7 miles E                           |
| BD-50          |             | Eatlan Well (indicator)                          | 4.7 miles L                           |
| DD-51          |             | Pholos Well (Indicator)                          |                                       |
| BD-55<br>BD-54 |             | Cash Woll (indicator)                            | 0.7 miles E                           |
| 00-04          |             |                                                  | 0.9 miles NE                          |
| D,             | Milk - bi-w | eekly / monthly                                  |                                       |
| BD-17          |             | Halpin's Dairy (indicator)                       | 5.5 miles SSW                         |
| BD-18          |             | Biros' Farm (control)                            | 8.7 miles W                           |
| <u>E.</u>      | Air Particu | lates / Air Iodine                               |                                       |
| BD-02          |             | Custer Park (indicator)                          | 5.0 miles E                           |
| BD-03          |             | County Line Road (control)                       | 6.2 miles ESE                         |
| BD-04          |             | Essex (indicator)                                | 4.8 miles SSE                         |
| BD-05          |             | Gardner (indicator)                              | 5.5 miles SW                          |
| BD-06          |             | Godley (indicator)                               | 0.5 miles WSW                         |
| BD-19          |             | Nearsite NW (indicator)                          | 0.3 miles NW                          |
| BD-20          |             | Nearsite N (indicator)                           | 0.6 miles N                           |
| BD-21          |             | Nearsite NE (indicator)                          | 0.5 miles NE                          |
| E <u>.</u>     | Fish        |                                                  |                                       |
| BD-25          |             | Kankakee River (Instream (control)               | 5.0 miles F                           |
| BD-28          |             | Kankakee River, Discharge (indicator)            | 5.4 miles E                           |
| BD-41          |             | Cooling Lake (indicator)                         | 1.0 mile E                            |
| G.             | Sediment    |                                                  |                                       |
|                |             |                                                  |                                       |
| BD-10          |             | Kankakee River, Downstream (indicator)           | 5.4 miles NE                          |
| 3D-57          |             | Circulating Water Blowdown Discharge (indicator) | 5.4 miles E                           |

### TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Braidwood Station, 2008

| Location                                                                                                                                                                                                                                                                                                             | Location Description                                                                                                                                                      | Distance & Direction<br>From Site                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H. Food Produ                                                                                                                                                                                                                                                                                                        | cts                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                       |
| Quadrant 1<br>Quadrant 2<br>Quadrant 3<br>Quadrant 4<br>Control                                                                                                                                                                                                                                                      | Clark Farm<br>W.F. Soltwisch<br>Terri Schultz<br>Bruce Sinkular<br>Gorman Farm                                                                                            | 3.8 miles ENE<br>4.5 miles SSE<br>4.8 miles SSW<br>1.9 miles NNW<br>9.0 miles NE                                                                                                                                                                                                                                                                      |
| I. Environmer                                                                                                                                                                                                                                                                                                        | ntal Dosimetry - TLD                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                       |
| Site Boundary                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       |
| BD-101-3 and -4<br>BD-102-1 and -2<br>BD-103-1 and -2<br>BD-105-1 and -2<br>BD-105-1 and -2<br>BD-106-1 and -2<br>BD-107-1 and -2<br>BD-109-1 and -2<br>BD-110-1 and -2<br>BD-111a-1 and -2<br>BD-111a-1 and -2<br>BD-113a-1 and -2<br>BD-115-1 and -2<br>BD-115-1 and -2<br>BD-115-1 and -2<br>BD-116-1<br>BD-116-2 |                                                                                                                                                                           | 0.5 miles N<br>1.1 miles NNE<br>1.0 miles NE<br>0.7 miles ENE<br>2.2 miles ESE<br>3.2 miles SE<br>3.2 miles SSE<br>3.8 miles SSW<br>1.4 miles SW<br>0.7 miles WSW<br>0.5 miles WNW<br>0.3 miles NWW<br>0.4 miles NNW<br>0.5 miles NNW                                                                                                                 |
| Intermediate Distance                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       |
| BD-201-1 and -2<br>BD-202-1 and -2<br>BD-203-1 and -2<br>BD-203-1 and -2<br>BD-205-1 and -2<br>BD-205-1 and -2<br>BD-207-1 and -2<br>BD-208-1 and -2<br>BD-210-1 and -2<br>BD-210-1 and -2<br>BD-212-3 and -4<br>BD-212-3 and -4<br>BD-214-1 and -2<br>BD-215-1 and -2<br>BD-216-1 and -2                            |                                                                                                                                                                           | <ul> <li>4.2 miles N</li> <li>4.8 miles NNE</li> <li>4.9 miles NE</li> <li>4.3 miles ENE</li> <li>4.0 miles E</li> <li>4.5 miles ESE</li> <li>4.5 miles SE</li> <li>4.5 miles SSE</li> <li>4.8 miles SW</li> <li>5.0 miles WSW</li> <li>4.8 miles W</li> <li>4.3 miles W</li> <li>4.3 miles NW</li> <li>4.0 miles NW</li> <li>4.0 miles NW</li> </ul> |
| Other                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       |
| BD-02-1 and -2<br>BD-04-1 and -2<br>BD-05-1 and -2<br>BD-06-1 and -2<br>BD-19-1 and -2<br>BD-20-1 and -2<br>BD-21-1 and -2                                                                                                                                                                                           | Custer Park (indicator)<br>Essex (indicator)<br>Gardner (indicator)<br>Godley (indicator)<br>Nearsite NW (indicator)<br>Nearsite N (indicator)<br>Nearsite NE (indicator) | 5.0 miles E<br>4.8 miles SSE<br>5.5 miles SW<br>0.5 miles WSW<br>0.3 miles NW<br>0.6 miles N<br>0.5 miles NE                                                                                                                                                                                                                                          |

### TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Braidwood Station, 2008

#### TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Braidwood Station, 2008

Location

Distance & Direction From Site

I. Environmental Dosimetry – TLD (cont'd)

Location Description

Control and Special Interest

BD-03-1 and -2 Onsite 2

0.3 miles NE

# TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Braidwood Station, 2008

| Sample<br>Medium     | Analysis           | Sampling<br>Method                                                                | Analytical Procedure Number                                                                                                                                                                          |
|----------------------|--------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface Water        | Gamma Spectroscopy | Monthly composite<br>from weekly grab                                             | TBE, TBE-2007 Gamma emitting radioisotope analysis                                                                                                                                                   |
| ··· · · ···          |                    | samples.                                                                          | Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy                                                                                                                               |
| Surface Water        | Gross Beta         | Monthly composite<br>from weekly grab<br>samples.                                 | TBE, TBE-2008 Gross Alpha and/or gross beta activity<br>in various matrices<br>Env. Inc., W(DS)-01 Determination of gross alpha<br>and/or gross beta in water (dissolved solids or total<br>residue) |
| Surface Water        | Tritium            | Quarterly<br>composite from<br>weekly grab<br>samples.                            | TBE, TBE-2011 Tritium analysis in drinking water by<br>liquid scintillation<br>Env. Inc., T-02 Determination of tritium in water (direct<br>method)                                                  |
| Drinking Water       | Gross Beta         | Monthly composite<br>from weekly grab<br>samples.                                 | TBE, TBE-2008 Gross Alpha and/or gross beta activity<br>in various matrices<br>Env. Inc., W(DS)-01 Determination of gross alpha<br>and/or gross beta in water (dissolved solids or total<br>residue) |
| Drinking Water       | Gamma Spectroscopy | Monthly composite<br>from weekly grab<br>samples.                                 | TBE, TBE-2007 Gamma emitting radioisotope analysis<br>Env. Inc., GS-01 Determination of gamma emitters by<br>gamma spectroscopy                                                                      |
| Drinking Water       | Tritium            | Quarterly<br>composite from<br>weekly grab<br>samples.                            | TBE, TBE-2011 Tritium analysis in drinking water by<br>liquid scintillation<br>Env. Inc., T-02 Determination of tritium in water (direct<br>method)                                                  |
| Drinking Water       | Gamma Spectroscopy | Quarterly grab<br>samples.                                                        | TBE, TBE-2007 Gamma emitting radioisotope analysis<br>Env. Inc., GS-01 Determination of gamma emitters by<br>gamma spectroscopy                                                                      |
| Ground/well<br>Water | Tritium            | Quarterly grab<br>samples.                                                        | TBE, TBE-2011 Tritium analysis in drinking water by<br>liquid scintillation<br>Env. Inc., T-02 Determination of tritium in water (direct<br>method)                                                  |
| Fish                 | Gamma Spectroscopy | Samples collected<br>twice annually via<br>electroshocking or<br>other techniques | TBE-2007 Gamma emitting radioisotope analysis<br>Env. Inc., GS-01 Determination of gamma emitters by<br>gamma spectroscopy                                                                           |

# TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Braidwood Station, 2008

| Sample<br>Medium | Analysis                        | Sampling<br>Method                                                                   | Analytical Procedure Number                                                                                                     |
|------------------|---------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Air Particulates | Gross Beta                      | One-week<br>composite of                                                             | TBE, TBE-2008 Gross Alpha and/or gross beta activity<br>in various matrices                                                     |
|                  |                                 | continuous air<br>sampling through<br>glass fiber filter<br>paper                    | Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters                                      |
| Air Particulates | Gamma Spectroscopy              | Quarterly<br>composite of each<br>station                                            | TBE, TBE-2007 Gamma emitting radioisotope analysis<br>Env. Inc., GS-01 Determination of gamma emitters by<br>gamma spectroscopy |
| Air Iodine       | Gamma Spectroscopy              | Weekly composite<br>of continuous air<br>sampling through<br>charcoal filter         | TBE, TBE-2007 Gamma emitting radioisotope analysis<br>Env. Inc., GS-01 Determination of gamma emitters by<br>gamma spectroscopy |
| Milk             | 1-131                           | Bi-weekly grab<br>sample May<br>through October.<br>Monthly all other<br>times       | TBE, TBE-2012 Radioiodine in various matrices<br>Env. Inc., I-131-01 Determination of I-131 in milk by<br>anion exchange        |
| Milk             | Gamma Spectroscopy              | Bi-weekly grab<br>sample May<br>through October.<br>Monthly all other<br>times       | TBE, TBE-2007 Gamma emitting radioisotope analysis<br>Env. Inc., GS-01 Determination of gamma emitters by<br>gamma spectroscopy |
| Food Products    | Gamma Spectroscopy              | Annual grab<br>samples.                                                              | TBE, TBE-2007 Gamma emitting radioisotope analysis<br>Env. Inc., GS-01 Determination of gamma emitters by<br>gamma spectroscopy |
| TLD              | Thermoluminescence<br>Dosimetry | Quarterly TLDs<br>comprised of two<br>Global Dosimetry<br>CaF <sub>2</sub> elements. | Global Dosimetry                                                                                                                |



Figure B-1 Inner Ring TLD Locations of the Braidwood Station, 2008



Figure B-2 Fixed Air Sampling and Outer Ring TLD Locations of the Braidwood Station, 2008



Figure B-3 Ingestion and Waterborne Exposure Pathway Sample Locations of the Braidwood Station, 2008

**APPENDIX C** 

### DATA TABLES AND FIGURES PRIMARY LABORATORY

### TABLE C-I.1CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| COLLECTION<br>PERIOD | BD-10         | BD-25         | BD-38         | BD-40          | BD-55         | BD-56         |  |
|----------------------|---------------|---------------|---------------|----------------|---------------|---------------|--|
| 01/10/08 - 01/10/08  | 6.1 ± 2.0     | 8.9 ± 2.5     | 5.5 ± 2.4     | 10.9 ± 2.7     | < 2.3         | 3.1 ± 1.9     |  |
| 02/07/08 - 02/28/08  | 6.1 ± 2.1     | $12 \pm 3.5$  | 4.1 ± 2.6     | $11.2 \pm 3.0$ | (1)           | (1)           |  |
| 03/13/08 - 03/27/08  | $4.0 \pm 2.0$ | $6.3 \pm 2.4$ | 4.2 ± 2.3     | 11.8 ± 2.8     | < 2.4         | < 3.0         |  |
| 04/03/08 - 04/24/08  | 4.4 ± 1.8     | $4.0 \pm 1.8$ | 6.4 ± 2.2     | $12.4 \pm 2.6$ | $3.7 \pm 1.7$ | $3.9 \pm 2.3$ |  |
| 05/01/08 - 05/29/08  | 2.9 ± 1.9     | $3.8 \pm 2.0$ | 5.1 ± 2.3     | 8.1 ± 2.4      | < 2.5         | $3.8 \pm 2.3$ |  |
| 06/05/08 - 06/26/08  | 6.2 ± 2.1     | 7.4 ± 2.3     | $5.9 \pm 2.5$ | 13.1 ± 2.7     | 3.1 ± 1.8     | $5.5 \pm 2.5$ |  |
| 07/03/08 - 07/31/08  | 4.6 ± 1.9     | 6.1 ± 2.1     | 9.9 ± 2.7     | 14.7 ± 2.8     | $3.6 \pm 1.7$ | 5.1 ± 2.2     |  |
| 08/07/08 - 08/28/08  | 6.8 ± 2.2     | 5.5 ± 2.1     | 7.8 ± 2.7     | 12 ± 2.8       | $3.5 \pm 2.0$ | $6.4 \pm 2.4$ |  |
| 09/04/08 - 09/25/08  | $5.8 \pm 2.0$ | $3.3 \pm 1.9$ | 9.0 ± 2.6     | 8.7 ± 2.5      | 4.6 ± 1.9     | $4.5 \pm 2.2$ |  |
| 10/02/08 - 10/30/08  | 7.0 ± 2.1     | 7.4 ± 2.1     | 9.3 ± 2.6     | 11.2 ± 2.6     | 4.4 ± 1.7     | $6.3 \pm 2.2$ |  |
| 11/06/08 - 11/26/08  | 4.3 ± 1.9     | 8.1 ± 2.2     | 8.3 ± 2.4     | 12.6 ± 2.6     | 4.7 ± 1.7     | $6.8 \pm 2.3$ |  |
| 12/04/08 - 12/04/08  | $6.3 \pm 2.0$ | 11 ± 2.2      | 8.8 ± 2.5     | 12.2 ± 2.5     | 5.7 ± 1.7     | 7.7 ± 2.2     |  |
|                      |               |               |               |                |               |               |  |
| MEAN                 | 5.4 ± 2.6     | $7.0 \pm 5.5$ | 7.0 ± 4.1     | $11.6 \pm 3.6$ | 4.2 ± 1.7     | $5.3 \pm 2.9$ |  |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

## TABLE C-I.2CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

#### **RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA**

| COLLECTION<br>PERIOD | BD-10 | BD-25 | BD-38 | BD-40 | BD-55 | BD-56 |  |
|----------------------|-------|-------|-------|-------|-------|-------|--|
| 01/10/08 - 03/27/08  | < 170 | < 167 | < 177 | < 165 | < 172 | < 173 |  |
| 04/03/08 - 06/26/08  | < 190 | < 190 | < 188 | < 192 | < 188 | < 193 |  |
| 07/03/08 - 09/25/08  | < 141 | < 135 | < 132 | < 145 | < 145 | < 143 |  |
| 10/02/08 - 12/04/08  | < 152 | < 154 | < 170 | < 155 | < 160 | < 151 |  |
|                      |       |       |       |       |       |       |  |
| MEAN                 | -     | -     | -     | -     | ~     | -     |  |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

## TABLE C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION          | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
|       | PERIOD              |       |       |       |       |       |       |       |       |        |        |        |        |
| BD-10 | 01/03/08 - 01/31/08 | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 13  | < 1    | < 1    | < 20   | < 7    |
|       | 02/07/08 - 02/28/08 | < 3   | < 3   | < 8   | < 3   | < 6   | < 4   | < 6   | < 13  | < 3    | < 4    | < 26   | < 7    |
|       | 03/06/08 - 03/27/08 | < 4   | < 4   | < 9   | < 4   | < 8   | < 4   | < 7   | < 9   | < 3    | < 4    | < 24   | < 7    |
|       | 04/03/08 - 04/24/08 | < 3   | < 5   | < 9   | < 4   | < 7   | < 4   | < 7   | < 10  | < 4    | < 4    | < 29   | < 8    |
|       | 05/01/08 - 05/29/08 | < 2   | < 2   | < 4   | < 2   | < 4   | < 2   | < 4   | < 5   | < 2    | < 2    | < 13   | < 4    |
|       | 06/05/08 - 06/26/08 | < 2   | < 2   | < 4   | < 2   | < 4   | < 2   | < 4   | < 13  | < 2    | < 2    | < 21   | < 7    |
|       | 07/03/08 - 07/31/08 | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 15  | < 1    | < 1    | < 18   | < 6    |
|       | 08/07/08 - 08/28/08 | < 1   | < 1   | < 4   | < 1   | < 3   | < 2   | < 3   | < 14  | < 1    | < 1    | < 19   | < 6    |
|       | 09/04/08 - 09/25/08 | < 1   | < 1   | < 2   | < 1   | < 1   | < 1   | < 2   | < 12  | < 1    | < 1    | < 15   | < 5    |
|       | 10/02/08 - 10/30/08 | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 9   | < 1    | < 1    | < 41   | < 13   |
|       | 11/06/08 - 11/26/08 | < 2   | < 2   | < 6   | < 3   | < 5   | < 3   | < 5   | < 15  | < 2    | < 2    | < 24   | < 9    |
|       | 12/04/08 - 12/24/08 | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 12  | < 1    | < 1    | < 18   | < 6    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      |        | -      | -      |
| BD-25 | 01/03/08 - 01/31/08 | < 1   | < 1   | < 3   | < 1   | < 3   | < 1   | < 2   | < 13  | < 1    | < 1    | < 17   | < 6    |
|       | 02/07/08 - 02/28/08 | < 2   | < 2   | < 4   | < 2   | < 4   | < 2   | < 3   | < 8   | < 2    | < 2    | < 15   | < 5    |
|       | 03/06/08 - 03/27/08 | < 4   | < 4   | < 9   | < 4   | < 8   | < 4   | < 8   | < 10  | < 4    | < 4    | < 25   | < 8    |
|       | 04/03/08 - 04/24/08 | < 4   | < 5   | < 12  | < 5   | < 9   | < 5   | < 9   | < 14  | < 4    | < 5    | < 27   | < 10   |
|       | 05/01/08 - 05/29/08 | < 2   | < 2   | < 4   | < 2   | < 3   | < 2   | < 3   | < 5   | < 2    | < 2    | < 12   | < 3    |
|       | 06/05/08 - 06/26/08 | < 1   | < 1   | < 4   | < 1   | < 3   | < 2   | < 3   | < 11  | < 1    | < 2    | < 17   | < 5    |
|       | 07/03/08 - 07/31/08 | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 14  | < 1    | < 1    | < 17   | < 6    |
|       | 08/07/08 - 08/28/08 | < 1   | < 2   | < 4   | < 2   | < 3   | < 2   | < 3   | < 13  | < 1    | < 1    | < 19   | < 7    |
|       | 09/04/08 - 09/25/08 | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 12  | < 1    | < 1    | < 14   | < 4    |
|       | 10/02/08 - 10/30/08 | < 1   | < 2   | < 5   | < 1   | < 3   | < 2   | < 4   | < 9   | < 1    | < 1    | < 49   | < 15   |
|       | 11/06/08 - 11/26/08 | < 3   | < 3   | < 7   | < 3   | < 6   | < 3   | < 5   | < 15  | < 2    | < 3    | < 29   | < 9    |
|       | 12/04/08 - 12/24/08 | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 12  | < 1    | < 1    | < 18   | < 6    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |

## TABLE C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131    | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|----------|--------|--------|--------|--------|
| BD-38 | 01/03/08 - 01/24/08  | < 2   | < 2   | < 4   | < 2   | < 3   | < 3   | < 4   | < 13     | < 2    | < 2    | < 38   | < 11   |
|       | 02/07/08 - 02/28/08  | < 3   | < 3   | < 7   | < 3   | < 6   | < 3   | < 5   | < 12     | < 3    | < 3    | < 24   | < 8    |
|       | 03/06/08 - 03/27/08  | < 2   | < 2   | < 4   | < 2   | < 4   | < 2   | < 4   | < 6      | < 2    | < 2    | < 14   | < 4    |
|       | 04/03/08 - 04/24/08  | < 6   | < 5   | < 12  | < 5   | < 9   | < 4   | < 10  | < 15     | < 4    | < 5    | < 34   | < 12   |
|       | 05/01/08 - 05/29/08  | < 2   | < 2   | < 5   | < 2   | < 3   | < 2   | < 4   | < 5      | < 2    | < 2    | < 13   | < 4    |
|       | 06/05/08 - 06/26/08  | < 2   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 14     | < 2    | < 2    | < 22   | < 7    |
|       | 07/03/08 - 07/31/08  | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 14     | < 1    | < 1    | < 17   | < 5    |
|       | 08/07/08 - 08/28/08  | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 15     | < 1    | < 2    | < 22   | < 7    |
|       | 09/04/08 - 09/25/08  | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 14     | < 1    | < 1    | < 16   | < 5    |
|       | 10/02/08 - 10/30/08  | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 3   | < 10     | < 1    | < 1    | < 37   | < 9    |
|       | 11/06/08 - 11/26/08  | < 2   | < 2   | < 5   | < 2   | < 5   | < 4   | < 4   | < 14     | < 2    | < 2    | < 28   | < 9    |
|       | 12/04/08 - 12/11/08  | < 1   | < 2   | < 4   | < 2   | < 3   | < 2   | < 3   | < 36 (1) | < 1    | < 2    | < 37   | < 13   |
|       | MEAN                 | -     | -     | -     | -     | -     | ~     | -     | -        | -      | -      |        | -      |
| BD-40 | 01/03/08 - 01/31/08  | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 3   | < 12     | < 1    | < 1    | < 17   | < 4    |
|       | 02/07/08 - 02/28/08  | < 2   | < 3   | < 5   | < 2   | < 5   | < 3   | < 4   | < 11     | < 2    | < 2    | < 20   | < 6    |
|       | 03/06/08 - 03/27/08  | < 4   | < 5   | < 9   | < 4   | < 8   | < 4   | < 8   | < 12     | < 4    | < 4    | < 29   | < 9    |
|       | 04/03/08 - 04/24/08  | < 5   | < 5   | < 12  | < 6   | < 9   | < 5   | < 9   | < 13     | < 4    | < 5    | < 33   | < 12   |
|       | 05/01/08 - 05/29/08  | < 2   | < 2   | < 5   | < 2   | < 4   | < 2   | < 4   | < 5      | < 2    | < 2    | < 12   | < 4    |
|       | 06/05/08 - 06/26/08  | < 2   | < 2   | < 4   | < 2   | < 3   | < 2   | < 3   | < 14     | < 2    | < 2    | < 21   | < 7    |
|       | 07/03/08 - 07/31/08  | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 14     | < 1    | < 1    | < 18   | < 5    |
|       | 08/07/08 - 08/28/08  | < 2   | < 2   | < 4   | < 2   | < 3   | < 2   | < 3   | < 15     | < 2    | < 2    | < 24   | < 8    |
|       | 09/04/08 - 09/25/08  | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 13     | < 1    | < 1    | < 15   | < 5    |
|       | 10/02/08 - 10/30/08  | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 4   | < 8      | < 1    | < 1    | < 44   | < 15   |
|       | 11/06/08 - 11/26/08  | < 2   | < 3   | < 6   | < 3   | < 5   | < 3   | < 5   | < 14     | < 2    | < 3    | < 26   | < 7    |
|       | 12/04/08 - 12/24/08  | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 12     | < 1    | < 2    | < 20   | < 6    |
|       | MEAN                 | -     |       | -     | -     | -     | -     | -     | -        | -      | -      | -      | -      |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

## TABLE C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION          | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131    | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|---------------------|-------|-------|-------|-------|-------|-------|-------|----------|--------|--------|--------|--------|
|       | PERIOD              |       |       |       |       |       |       |       |          |        |        |        |        |
| BD-55 | 01/10/08 - 01/17/08 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 12     | < 1    | < 1    | < 33   | < 9    |
|       | 02/07/08 - 02/28/08 | (1)   |       |       |       |       |       |       |          |        |        |        |        |
|       | 03/13/08 - 03/27/08 | < 3   | < 3   | < 7   | < 3   | < 6   | < 3   | < 6   | < 9      | < 3    | < 3    | < 22   | < 6    |
|       | 04/03/08 - 04/24/08 | < 5   | < 5   | < 13  | < 6   | < 9   | < 6   | < 10  | < 15     | < 5    | < 6    | < 38   | < 11   |
|       | 05/01/08 - 05/29/08 | < 1   | < 2   | < 3   | < 1   | < 3   | < 2   | < 3   | < 5      | < 1    | < 2    | < 10   | < 3    |
|       | 06/05/08 - 06/26/08 | < 1   | < 2   | < 4   | < 2   | < 3   | < 2   | < 3   | < 13     | < 1    | < 1    | < 21   | < 7    |
|       | 07/03/08 - 07/31/08 | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 14     | < 1    | < 1    | < 17   | < 5    |
|       | 08/07/08 - 08/28/08 | < 1   | < 1   | < 3   | < 1   | < 2   | < 2   | < 3   | < 14     | < 1    | < 1    | < 20   | < 6    |
|       | 09/04/08 - 09/25/08 | < 1   | < 1   | < 2   | < 1   | < 1   | < 1   | < 1   | < 11     | < 1    | < 1    | < 14   | < 4    |
|       | 10/02/08 - 10/30/08 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 3   | < 11     | < 1    | < 1    | < 35   | < 12   |
|       | 11/06/08 - 11/26/08 | < 2   | < 2   | < 3   | < 1   | < 4   | < 2   | < 3   | < 14     | < 2    | < 2    | < 20   | < 4    |
|       | 12/04/08 - 12/04/08 | < 1   | < 2   | < 5   | < 1   | < 3   | < 2   | < 3   | < 62 (1) | < 1    | < 1    | < 51   | < 15   |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -        | -      | -      | -      | -      |
| BD-56 | 01/10/08 - 01/10/08 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 63     | < 1    | < 1    | < 45   | < 14   |
|       | 02/07/08 - 02/28/08 | (1)   |       |       |       |       |       |       |          |        |        |        |        |
|       | 03/13/08 - 03/27/08 | < 3   | < 3   | < 7   | < 4   | < 6   | < 3   | < 5   | < 8      | < 3    | < 3    | < 20   | < 7    |
|       | 04/03/08 - 04/24/08 | < 3   | < 4   | < 7   | < 4   | < 6   | < 3   | < 6   | < 11     | < 3    | < 3    | < 22   | < 6    |
|       | 05/01/08 - 05/29/08 | < 3   | < 3   | < 6   | < 3   | < 5   | < 3   | < 5   | < 8      | < 3    | < 3    | < 19   | < 6    |
|       | 06/05/08 - 06/26/08 | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 14     | < 1    | < 2    | < 21   | < 7    |
|       | 07/03/08 - 07/31/08 | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 15     | < 1    | < 1    | < 18   | < 5    |
|       | 08/07/08 - 08/28/08 | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 15     | < 1    | < 1    | < 21   | < 7    |
|       | 09/04/08 - 09/25/08 | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 15     | < 1    | < 1    | < 16   | < 5    |
|       | 10/02/08 - 10/30/08 | < 1   | < 1   | < 4   | < 1   | < 2   | < 2   | < 3   | < 12     | < 1    | < 1    | < 41   | < 13   |
|       | 11/06/08 - 11/26/08 | < 2   | < 2   | < 4   | < 2   | < 3   | < 2   | < 4   | < 15     | < 1    | < 2    | < 20   | < 7    |
|       | 12/04/08 - 12/04/08 | < 2   | < 2   | < 5   | < 1   | < 3   | < 2   | < 4   | < 71 (1) | < 1    | < 1    | < 58   | < 15   |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -        | -      | -      | -      | -      |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

### TABLE C-II.1CONCENTRATIONS OF GROSS BETA IN PUBLIC WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

| COLLECTION<br>PERIOD | BD-22         |  |
|----------------------|---------------|--|
| 01/03/08 - 01/31/08  | 5.6 ± 1.9     |  |
| 01/31/08 - 02/28/08  | $4.8 \pm 1.8$ |  |
| 02/28/08 - 03/27/08  | $3.6 \pm 1.6$ |  |
| 04/03/08 - 05/01/08  | 2.9 ± 1.6     |  |
| 05/01/08 - 05/29/08  | $4.4 \pm 2.3$ |  |
| 05/29/08 - 06/26/08  | $4.0 \pm 1.6$ |  |
| 07/03/08 - 07/31/08  | 5.5 ± 1.9     |  |
| 07/31/08 - 08/28/08  | $5.0 \pm 1.8$ |  |
| 08/28/08 - 10/02/08  | 5.2 ± 1.7     |  |
| 10/02/08 - 10/30/08  | 4.5 ± 1.7     |  |
| 10/30/08 - 11/26/08  | 5.6 ± 1.7     |  |
| 11/26/08 - 01/01/09  | 5.2 ± 1.7     |  |
|                      |               |  |
| MEAN                 | 5.1 ± 3.7     |  |

### TABLE C-II.2CONCENTRATIONS OF TRITIUM IN PUBLIC WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

| COLLECTION<br>PERIOD | BD-22         |
|----------------------|---------------|
| 01/03/08 - 01/31/08  | < 157         |
| 01/31/08 - 02/28/08  | < 166         |
| 02/28/08 - 03/27/08  | < 192         |
| 04/03/08 - 05/01/08  | $303 \pm 120$ |
| 05/01/08 - 05/29/08  | $524 \pm 146$ |
| 05/29/08 - 06/26/08  | < 177         |
| 07/03/08 - 07/31/08  | < 131         |
| 07/31/08 - 08/28/08  | < 157         |
| 08/28/08 - 10/02/08  | < 171         |
| 10/02/08 - 10/30/08  | < 180         |
| 10/30/08 - 11/26/08  | < 192         |
| 11/26/08 - 01/01/09  | 291 ± 118     |
|                      |               |
| MEAN                 | $373 \pm 262$ |

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

## TABLE C-II.3CONCENTRATIONS OF GAMMA EMITTERS IN PUBLIC WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| BD-22 | 01/03/08 - 01/31/08  | < 2   | < 3   | < 6   | < 2   | < 5   | < 3   | < 4   | < 13  | < 2    | < 2    | < 23   | < 8    |
|       | 01/31/08 - 02/28/08  | < 1   | < 2   | < 3   | < 1   | < 3   | < 2   | < 3   | < 14  | < 1    | < 1    | < 21   | < 6    |
|       | 02/28/08 - 03/27/08  | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 9   | < 1    | < 1    | < 27   | < 7    |
|       | 04/03/08 - 05/01/08  | < 1   | < 1   | < 3   | < 1   | < 2   | < 2   | < 3   | < 7   | < 1    | < 1    | < 26   | < 10   |
|       | 05/01/08 - 05/29/08  | < 4   | < 4   | < 12  | < 5   | < 8   | < 4   | < 7   | < 13  | < 4    | < 4    | < 30   | < 9    |
|       | 05/29/08 - 06/26/08  | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 11  | < 1    | < 1    | < 46   | < 13   |
|       | 07/03/08 - 07/31/08  | < 1   | < 2   | < 3   | < 1   | < 2   | < 2   | < 3   | < 11  | < 1    | < 1    | < 45   | < 15   |
|       | 07/31/08 - 08/28/08  | < 2   | < 2   | < 4   | < 2   | < 3   | < 2   | < 3   | < 8   | < 2    | < 2    | < 15   | < 4    |
|       | 08/28/08 - 10/02/08  | < 1   | < 1   | < 2   | < 1   | < 1   | < 1   | < 1   | < 15  | < 1    | < 1    | < 15   | < 4    |
|       | 10/02/08 - 10/30/08  | < 1   | < 2   | < 5   | < 1   | < 3   | < 2   | < 3   | < 7   | < 1    | < 1    | < 39   | < 11   |
|       | 10/30/08 - 11/26/08  | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 10  | < 1    | < 1    | < 42   | < 12   |
|       | 11/26/08 - 01/01/09  | < 3   | < 3   | < 7   | < 3   | < 6   | < 3   | < 5   | < 14  | < 3    | < 3    | < 28   | < 8    |
|       | MEAN                 |       | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |

### TABLE C-III.1CONCENTRATIONS OF TRITIUM IN GROUND/WELL WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| COLLECTION<br>PERIOD | BD-13 | BD-34 | BD-35 | BD-36     | BD-37 | BD-50 | BD-51 | BD-53 | BD-54 |
|----------------------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|
| 01/11/08 - 01/11/08  | < 152 | < 175 | (1)   | 230 ± 131 | < 155 | (1)   | < 154 | < 156 | < 154 |
| 04/17/08 - 04/17/08  | < 171 | < 172 | < 184 | < 193     | < 169 |       | < 166 | < 167 | < 166 |
| 07/10/08 - 07/10/08  | < 168 | < 161 | < 168 | < 170     | < 166 |       | < 172 | < 167 | < 160 |
| 10/09/08 - 10/09/08  | < 141 | < 151 | < 152 | 162 ± 94  | < 151 |       | < 153 | < 152 | < 147 |
| MEAN                 | -     | -     | -     | 212 ± 87  | -     |       | 75    | -     | -     |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

# TABLE C-III.2CONCENTRATIONS OF GAMMA EMITTERS IN GROUND/WELL WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION          | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
|       | PERIOD              |       |       |       |       |       |       |       |       |        |        |        |        |
| BD-13 | 01/10/08 - 01/10/08 | < 4   | < 4   | < 8   | < 4   | < 8   | < 4   | < 8   | < 10  | < 4    | < 4    | < 25   | < 8    |
|       | 04/03/08 - 04/03/08 | < 7   | < 8   | < 17  | < 7   | < 16  | < 8   | < 13  | < 12  | < 6    | < 8    | < 35   | < 11   |
|       | 07/10/08 - 07/10/08 | < 2   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 9   | < 2    | < 2    | < 17   | < 5    |
|       | 10/09/08 - 10/09/08 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 13  | < 1    | < 1    | < 18   | < 6    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-34 | 03/20/08 - 03/20/08 | < 5   | < 5   | < 10  | < 5   | < 10  | < 6   | < 10  | < 15  | < 5    | < 6    | < 35   | < 12   |
|       | 04/03/08 - 04/03/08 | < 7   | < 6   | < 13  | < 6   | < 14  | < 8   | < 13  | < 14  | < 6    | < 7    | < 36   | < 10   |
|       | 07/10/08 - 07/10/08 | < 2   | < 3   | < 5   | < 2   | < 6   | < 3   | < 5   | < 13  | < 2    | < 3    | < 24   | < 8    |
|       | 10/09/08 - 10/09/08 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 3   | < 15  | < 1    | < 1    | < 20   | < 6    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-35 | 01/11/08 - 01/11/08 | (1)   | )     |       |       |       |       |       |       |        |        |        |        |
|       | 04/17/08 - 04/17/08 | < 3   | < 3   | < 6   | < 3   | < 6   | < 3   | < 6   | < 9   | < 3    | < 3    | < 21   | < 6    |
|       | 07/10/08 - 07/10/08 | < 2   | < 2   | < 5   | < 3   | < 4   | < 2   | < 3   | < 10  | < 2    | < 2    | < 19   | < 5    |
|       | 10/09/08 - 10/09/08 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 15  | < 1    | < 1    | < 17   | < 6    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      | -      | ÷      | -      |
| BD-36 | 01/11/08 - 01/11/08 | < 5   | < 5   | < 12  | < 6   | < 11  | < 6   | < 9   | < 11  | < 5    | < 6    | < 29   | < 10   |
|       | 04/03/08 - 04/03/08 | < 6   | < 6   | < 13  | < 6   | < 11  | < 7   | < 13  | < 12  | < 6    | < 6    | < 32   | < 10   |
|       | 07/10/08 - 07/10/08 | < 2   | < 3   | < 6   | < 2   | < 5   | < 3   | < 5   | < 12  | < 2    | < 2    | < 22   | < 7    |
|       | 10/09/08 - 10/09/08 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 13  | < 1    | < 1    | < 20   | < 5    |
|       | MEAN                | -     | -     | -     | ~     | -     | -     | -     | -     | -      | -      | -      | -      |

#### RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

# TABLE C-III.2CONCENTRATIONS OF GAMMA EMITTERS IN GROUND/WELL WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION          | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
|       | PERIOD              |       |       |       |       |       |       |       |       |        |        |        |        |
| BD-37 | 01/11/08 - 01/11/08 | < 5   | < 5   | < 10  | < 5   | < 11  | < 6   | < 10  | < 11  | < 5    | < 5    | < 28   | < 10   |
|       | 04/03/08 - 04/03/08 | < 7   | < 7   | < 15  | < 9   | < 15  | < 8   | < 14  | < 12  | < 7    | < 8    | < 36   | < 14   |
|       | 07/10/08 - 07/10/08 | < 2   | < 2   | < 4   | < 2   | < 4   | < 2   | < 3   | < 9   | < 2    | < 2    | < 18   | < 6    |
|       | 10/09/08 - 10/09/08 | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 15  | < 1    | < 1    | < 16   | < 5    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-51 | 01/10/08 - 01/10/08 | < 6   | < 5   | < 11  | < 6   | < 12  | < 6   | < 10  | < 14  | < 5    | < 6    | < 34   | < 11   |
|       | 04/03/08 - 04/03/08 | < 8   | < 7   | < 14  | < 8   | < 16  | < 8   | < 13  | < 14  | < 7    | < 8    | < 36   | < 14   |
|       | 07/10/08 - 07/10/08 | < 2   | < 2   | < 5   | < 2   | < 4   | < 2   | < 4   | < 10  | < 2    | < 2    | < 21   | < 6    |
|       | 10/09/08 - 10/09/08 | < 1   | < 1   | < 2   | < 1   | < 1   | < 1   | < 2   | < 14  | < 1    | < 1    | < 16   | < 5    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-53 | 01/10/08 - 01/10/08 | < 5   | < 5   | < 12  | < 5   | < 11  | < 6   | < 10  | < 13  | < 5    | < 6    | < 31   | < 10   |
|       | 04/03/08 - 04/03/08 | < 7   | < 8   | < 15  | < 8   | < 14  | < 7   | < 13  | < 14  | < 7    | < 8    | < 38   | < 13   |
|       | 07/10/08 - 07/10/08 | < 2   | < 3   | < 6   | < 3   | < 5   | < 3   | < 5   | < 13  | < 2    | < 3    | < 24   | < 7    |
|       | 10/09/08 - 10/09/08 | < 1   | < 1   | < 2   | < 1   | < 2   | < 1   | < 2   | < 15  | < 1    | < 1    | < 17   | < 5    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-54 | 01/10/08 - 01/10/08 | < 4   | < 5   | < 9   | < 4   | < 9   | < 4   | < 8   | < 9   | < 4    | < 4    | < 25   | < 8    |
|       | 04/03/08 - 04/03/08 | < 8   | < 7   | < 15  | < 7   | < 14  | < 8   | < 12  | < 14  | < 7    | < 7    | < 39   | < 12   |
|       | 07/10/08 - 07/10/08 | < 2   | < 2   | < 4   | < 2   | < 4   | < 2   | < 4   | < 10  | < 2    | < 2    | < 19   | < 6    |
|       | 10/09/08 - 10/09/08 | < 1   | < 1   | < 2   | < 1   | < 1   | < 1   | < 2   | < 14  | < 1    | < 1    | < 15   | < 5    |
|       | MEAN                | -     | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |

# TABLE C-IV.1CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

#### RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

| STC   | COLLECTION<br>PERIOD     | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131  | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|--------------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| BD-25 | 5                        |       |       |       |       |       |       |       |        |        |        |        |        |
|       | 05/22/08 Golden Redhorse | < 32  | < 38  | < 86  | < 34  | < 60  | < 50  | < 73  | < 906  | < 32   | < 35   | < 913  | < 222  |
|       | 05/22/08 Walleye         | < 54  | < 69  | < 163 | < 47  | < 94  | < 58  | < 110 | < 1260 | < 45   | < 46   | < 964  | < 296  |
|       | 10/15/08 Golden Redhorse | < 39  | < 56  | < 149 | < 55  | < 102 | < 56  | < 100 | < 1010 | < 39   | < 35   | < 1000 | < 316  |
|       | 10/15/08 Smallmouth Bass | < 38  | < 45  | < 132 | < 42  | < 77  | < 40  | < 78  | < 674  | < 30   | < 35   | < 694  | < 280  |
|       | MEAN                     | -     | -     |       | -     | -     | -     | -     | -      | -      | -      | -      | -      |
| BD-28 | 3                        |       |       |       |       |       |       |       |        |        |        |        |        |
|       | 05/22/08 Channel Catfish | < 51  | < 83  | < 222 | < 59  | < 137 | < 79  | < 146 | < 1430 | < 71   | < 59   | < 1440 | < 431  |
|       | 05/22/08 Quillback       | < 48  | < 64  | < 154 | < 50  | < 118 | < 69  | < 137 | < 1130 | < 42   | < 49   | < 1450 | < 366  |
|       | 10/15/08 Channel Catfish | < 49  | < 69  | < 158 | < 50  | < 97  | < 57  | < 114 | < 1010 | < 48   | < 59   | < 1240 | < 188  |
|       | 10/15/08 Largemouth Bass | < 37  | < 51  | < 119 | < 34  | < 84  | < 51  | < 84  | < 746  | < 36   | < 41   | < 811  | < 289  |
|       | MEAN                     | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      | **     |
| BD-41 |                          |       |       |       |       |       |       |       |        |        |        |        |        |
|       | 05/22/08 Channel Catfish | < 38  | < 51  | < 119 | < 34  | < 73  | < 58  | < 82  | < 1120 | < 38   | < 34   | < 1110 | < 326  |
|       | 05/22/08 Largemouth Bass | < 55  | < 55  | < 181 | < 48  | < 85  | < 60  | < 104 | < 1240 | < 43   | < 52   | < 1230 | < 336  |
|       | 10/14/08 Common Carp     | < 38  | < 49  | < 116 | < 32  | < 93  | < 54  | < 89  | < 902  | < 34   | < 28   | < 802  | < 287  |
|       | 10/14/08 Largemouth Bass | < 36  | < 49  | < 90  | < 39  | < 82  | < 45  | < 89  | < 829  | < 32   | < 34   | < 972  | < 249  |
|       | MEAN                     | -     | -     | -     | -     | -     | -     | -     | -      | -      | _      | -      | -      |

## TABLE C-V.1CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | Cs-134 | Cs-137   | Ba-140 | La-140 |
|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|----------|--------|--------|
| BD-10 | 05/15/08             | < 94  | < 104 | < 256 | < 99  | < 195 | < 113 | < 200 | < 88   | 171 ± 75 | < 838  | < 201  |
|       | 10/02/08             | < 95  | < 111 | < 244 | < 82  | < 229 | < 145 | < 229 | < 92   | < 135    | < 2290 | < 421  |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | 171 ± 0  | -      | -      |
| BD-57 | 05/15/08             | < 43  | < 58  | < 179 | < 42  | < 119 | < 73  | < 105 | < 43   | 54 ± 39  | < 1150 | < 355  |
|       | 10/02/08             | < 57  | < 75  | < 171 | < 66  | < 144 | < 84  | < 123 | < 54   | 87 ± 45  | < 1290 | < 406  |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | 71 ± 46  | -      | -      |

#### RESULTS IN UNITS OF PCI/KG DRY ± 2 SIGMA

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

### TABLE C-VI.1CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

|                     |            | GR         | OUPI       | 1          |            | GROUP II   |            | GROUP III  |
|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| COLLECTION          |            |            | ********** | *****      |            |            |            |            |
| PERIOD              | BD-06      | BD-19      | BD-20      | BD-21      | BD-02      | BD-04      | BD-05      | BD-03      |
| 01/03/08 - 01/10/08 | 16 ± 4     | 23 ± 5     | $17 \pm 4$ | 20 ± 4     | $22 \pm 4$ | 20 ± 4     | 22 ± 5     | 15 ± 4     |
| 01/10/08 - 01/17/08 | $32 \pm 5$ | 29 ± 5     | $33 \pm 5$ | 29 ± 5     | 32 ± 5     | $30 \pm 5$ | 39 ± 6     | 27 ± 5     |
| 01/17/08 - 01/24/08 | 28 ± 5     | 33 ± 5     | $30 \pm 5$ | 27 ± 5     | 28 ± 5     | 26 ± 5     | 32 ± 5     | $27 \pm 5$ |
| 01/24/08 - 01/31/08 | $30 \pm 5$ | 32 ± 5     | 29 ± 5     | 18 ± 4     | $33 \pm 5$ | 22 ± 5     | 28 ± 5     | 25 ± 5     |
| 01/31/08 - 02/07/08 | 16 ± 4     | 16 ± 4     | $14 \pm 4$ | $14 \pm 4$ | $14 \pm 4$ | 15 ± 4     | 14 ± 4     | $14 \pm 4$ |
| 02/07/08 - 02/14/08 | 38 ± 6     | 28 ± 5     | $30 \pm 5$ | 31 ± 5     | 31 ± 5     | 31 ± 5     | 33 ± 5     | 26 ± 5     |
| 02/14/08 - 02/21/08 | 25 ± 5     | 22 ± 4     | 25 ± 5     | 27 ± 5     | 26 ± 5     | 26 ± 5     | 28 ± 5     | 26 ± 5     |
| 02/21/08 - 02/28/08 | $12 \pm 4$ | 16 ± 5     | $14 \pm 4$ | $15 \pm 4$ | 11 ± 4     | $14 \pm 4$ | 16 ± 4     | 13 ± 4     |
| 02/28/08 - 03/06/08 | 19 ± 4     | 18 ± 4     | 18 ± 4     | 24 ± 5     | 19 ± 4     | 19 ± 4     | 17 ± 4     | $20 \pm 4$ |
| 03/06/08 - 03/13/08 | 32 ± 5     | 26 ± 5     | 28 ± 5     | 24 ± 5     | 27 ± 5     | 24 ± 5     | $31 \pm 5$ | 21 ± 5     |
| 03/13/08 - 03/20/08 | $14 \pm 4$ | 15 ± 4     | 13 ± 4     | 12 ± 4     | $11 \pm 4$ | 17 ± 4     | 16 ± 4     | $12 \pm 4$ |
| 03/20/08 - 03/27/08 | 15 ± 4     | 14 ± 4     | 15 ± 4     | 16 ± 4     | $13 \pm 4$ | $13 \pm 4$ | 18 ± 4     | $14 \pm 4$ |
| 03/27/08 - 04/03/08 | 15 ± 4     | 16 ± 4     | $10 \pm 4$ | 11 ± 4     | 17 ± 4     | $11 \pm 4$ | 16 ± 4     | 11 ± 4     |
| 04/03/08 - 04/10/08 | 20 ± 4     | 16 ± 4     | 17 ± 4     | 16 ± 4     | 21 ± 4     | 19 ± 4     | 17 ± 4     | < 4        |
| 04/10/08 - 04/17/08 | 11 ± 3     | $14 \pm 4$ | 13 ± 4     | 11 ± 4     | $11 \pm 3$ | $12 \pm 4$ | 10 ± 3     | 29 ± 5     |
| 04/17/08 - 04/24/08 | 20 ± 5     | 20 ± 4     | 19 ± 4     | 18 ± 4     | $25 \pm 5$ | 18 ± 4     | 19 ± 4     | 20 ± 5     |
| 04/24/08 - 05/01/08 | $14 \pm 4$ | 20 ± 5     | 18 ± 5     | $15 \pm 4$ | 21 ± 5     | 16 ± 4     | 16 ± 4     | 16 ± 4     |
| 05/01/08 - 05/08/08 | 17 ± 4     | 17 ± 4     | 15 ± 4     | 21 ± 4     | 20 ± 4     | 19 ± 4     | 17 ± 4     | 17 ± 4     |
| 05/08/08 - 05/15/08 | 11 ± 4     | 9±4        | $12 \pm 4$ | 7 ± 3      | 14 ± 4     | 8 ± 4      | 12 ± 4     | 9 ± 4      |
| 05/15/08 - 05/22/08 | 7 ± 4      | 9±4        | < 5        | $10 \pm 4$ | 7 ± 4      | 7 ± 4      | $10 \pm 4$ | 7 ± 4      |
| 05/22/08 - 05/29/08 | 6 ± 3      | 7 ± 3      | 7 ± 3      | 8 ± 3      | 8 ± 4      | $10 \pm 4$ | 8 ± 4      | 9 ± 4      |
| 05/29/08 - 06/05/08 | 18 ± 4     | 20 ± 4     | $16 \pm 4$ | 19 ± 4     | $20 \pm 4$ | 16 ± 4     | 19 ± 4     | 15 ± 4     |
| 06/05/08 - 06/12/08 | 13 ± 4     | 14 ± 4     | $12 \pm 4$ | $16 \pm 4$ | 13 ± 4     | 13 ± 4     | 11 ± 4     | 13 ± 4     |
| 06/12/08 - 06/19/08 | 17 ± 4     | $15 \pm 4$ | 16 ± 4     | 13 ± 4     | 12 ± 4     | 8 ± 3      | $15 \pm 4$ | 16 ± 4     |
| 06/19/08 - 06/26/08 | 17 ± 4     | 15 ± 4     | $13 \pm 4$ | 17 ± 4     | $14 \pm 4$ | $14 \pm 4$ | $14 \pm 4$ | 16 ± 4     |
| 06/26/08 - 07/03/08 | $14 \pm 4$ | 14 ± 4     | $13 \pm 4$ | 16 ± 4     | 11 ± 4     | $15 \pm 4$ | $10 \pm 4$ | 14 ± 4     |
| 07/03/08 - 07/10/08 | $14 \pm 4$ | 15 ± 4     | $12 \pm 4$ | $14 \pm 4$ | $14 \pm 4$ | 17 ± 4     | $14 \pm 4$ | $15 \pm 4$ |
| 07/10/08 - 07/17/08 | 18 ± 4     | 16 ± 4     | 18 ± 4     | 17 ± 4     | $23 \pm 5$ | 18 ± 4     | 19 ± 4     | 19 ± 4     |
| 07/17/08 - 07/24/08 | 18 ± 4     | 23 ± 4     | $13 \pm 4$ | $20 \pm 4$ | 18 ± 4     | (1)        | 19 ± 4     | $17 \pm 4$ |
| 07/24/08 - 07/31/08 | 17 ± 4     | 20 ± 5     | $16 \pm 4$ | $17 \pm 4$ | $19 \pm 4$ | $21 \pm 5$ | $16 \pm 4$ | $16 \pm 4$ |
| 07/31/08 - 08/07/08 | $19 \pm 4$ | $20 \pm 4$ | $20 \pm 4$ | 18 ± 5     | $24 \pm 4$ | $20 \pm 4$ | $24 \pm 4$ | $23 \pm 5$ |
| 08/07/08 - 08/14/08 | $11 \pm 4$ | $15 \pm 4$ | $13 \pm 4$ | $13 \pm 4$ | $15 \pm 4$ | 18 ± 4     | $15 \pm 4$ | $13 \pm 4$ |
| 08/14/08 - 08/21/08 | $23 \pm 5$ | 24 ± 5     | 25 ± 5     | $23 \pm 5$ | $24 \pm 5$ | 26 ± 5     | 21 ± 5     | $24 \pm 5$ |
| 08/21/08 - 08/28/08 | $12 \pm 4$ | $12 \pm 4$ | $15 \pm 5$ | $15 \pm 5$ | $14 \pm 5$ | $19 \pm 5$ | $17 \pm 5$ | $18 \pm 5$ |
| 08/28/08 - 09/04/08 | $25 \pm 5$ | $33 \pm 5$ | $26 \pm 5$ | $30 \pm 5$ | $33 \pm 5$ | $26 \pm 5$ | $34 \pm 5$ | 27 ± 5     |
| 09/04/08 - 09/11/08 | $16 \pm 4$ | $22 \pm 5$ | $21 \pm 5$ | $19 \pm 4$ | $22 \pm 5$ | 19 ± 4     | $19 \pm 4$ | $20 \pm 5$ |
| 09/11/08 - 09/18/08 | $14 \pm 4$ | 18 ± 4     | $14 \pm 4$ | $16 \pm 4$ | $14 \pm 4$ | $14 \pm 4$ | $16 \pm 4$ | $14 \pm 4$ |
| 09/18/08 - 09/25/08 | $40 \pm 6$ | $43 \pm 6$ | $38 \pm 6$ | $37 \pm 5$ | $37 \pm 6$ | $32 \pm 5$ | $41 \pm 6$ | $36 \pm 5$ |
| 09/25/08 - 10/02/08 | $31 \pm 5$ | $32 \pm 5$ | $28 \pm 5$ | $28 \pm 5$ | $30 \pm 5$ | $26 \pm 5$ | $27 \pm 5$ | $24 \pm 5$ |
| 10/02/08 - 10/09/08 | $17 \pm 4$ | $20 \pm 5$ | $16 \pm 4$ | $19 \pm 5$ | $18 \pm 5$ | $16 \pm 4$ | $22 \pm 5$ | $15 \pm 4$ |
| 10/09/08 - 10/16/08 | $19 \pm 4$ | $23 \pm 5$ | $26 \pm 5$ | $20 \pm 4$ | $22 \pm 5$ | $22 \pm 4$ | $20 \pm 4$ | $22 \pm 4$ |
| 10/16/08 - 10/23/08 | $21 \pm 4$ | $17 \pm 4$ | $18 \pm 4$ | $16 \pm 4$ | $15 \pm 4$ | $16 \pm 3$ | $17 \pm 4$ | $14 \pm 3$ |
| 10/23/08 - 10/30/08 | $16 \pm 4$ | $16 \pm 4$ | $1/\pm 4$  | $16 \pm 4$ | $20 \pm 5$ | $17 \pm 4$ | $13 \pm 4$ | $20 \pm 5$ |
| 10/30/08 - 11/06/08 | 38 ± 6     | 41 ± 6     | $38 \pm 6$ | $34 \pm 5$ | $39 \pm 6$ | $37 \pm 5$ | $35 \pm 5$ | $40 \pm 6$ |
| 11/06/08 - 11/13/08 | $14 \pm 4$ | $16 \pm 4$ | $20 \pm 4$ | $14 \pm 4$ | $21 \pm 4$ | $16 \pm 4$ | $17 \pm 4$ | $15 \pm 4$ |
| 11/13/08 - 11/20/08 | $16 \pm 4$ | $21 \pm 4$ | $20 \pm 4$ | $20 \pm 4$ | $22 \pm 4$ | $22 \pm 4$ | $25 \pm 5$ | 19 ± 4     |
| 11/20/08 - 11/26/08 | $20 \pm 5$ | $24 \pm 5$ | $16 \pm 4$ | $20 \pm 5$ | $20 \pm 5$ | $18 \pm 5$ | $22 \pm 5$ | $15 \pm 4$ |
| 11/26/08 - 12/04/08 | $25 \pm 4$ | $18 \pm 4$ | $22 \pm 4$ | $23 \pm 4$ | $22 \pm 4$ | $19 \pm 4$ | $23 \pm 4$ | $19 \pm 4$ |
| 12/04/08 - 12/11/08 | $14 \pm 4$ | $1/\pm 5$  | $15 \pm 4$ | $22 \pm 5$ | $18 \pm 5$ | $11 \pm 5$ | $18 \pm 5$ | $19 \pm 5$ |
| 12/11/08 - 12/18/08 | $33 \pm 5$ | $29 \pm 5$ | $28 \pm 5$ | $33 \pm 5$ | $32 \pm 5$ | $30 \pm 5$ | 29 ± 5     | $30 \pm 5$ |
| 12/18/08 - 12/24/08 | $28 \pm 5$ | $21 \pm 5$ | $23 \pm 5$ | $21 \pm 5$ | $22 \pm 5$ | $22 \pm 5$ | $22 \pm 5$ | $28 \pm 5$ |
| 12/24/08 - 01/01/09 | $30 \pm 5$ | $25 \pm 4$ | $30 \pm 5$ | 21 ± 5     | $21 \pm 4$ | 29 ± 5     | 33 ± 5     | 29 ± 5     |
| MEAN                | 20 ± 16    | 20 ± 15    | 19 ± 14    | 19 ± 14    | 20 ± 15    | 19 ± 13    | 20 ± 15    | 19 ± 14    |

#### RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

### TABLE C-VI.2MONTHLY AND YEARLY VALUES OF GROSS BETA CONCENTRATIONS IN AIR<br/>PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| GROUP I - NEAR FIELD LOCATIONS |     |     | IONS           | GROUP II - FAR       | FIELD | LOCAT | ONS            | GROUP III - CONTROL LOCATIONS |      |     |                |  |
|--------------------------------|-----|-----|----------------|----------------------|-------|-------|----------------|-------------------------------|------|-----|----------------|--|
| COLLECTION<br>PERIOD           | MIN | MAX | MEAN* ±<br>2SD | COLLECTION<br>PERIOD | MIN   | MAX   | MEAN* ±<br>2SD | COLLECTION<br>PERIOD          | MIN  | MAX | MEAN* ±<br>2SD |  |
| 01/03/08 - 01/31/08            | 16  | 33  | 27 ± 12        | 01/03/08 - 01/31/08  | 20    | 39    | 28 ± 11        | 01/03/08 - 01/31/08           | 15   | 27  | 24 ± 11        |  |
| 01/31/08 - 02/28/08            | 12  | 38  | 21 ± 16        | 01/31/08 - 02/28/08  | 11    | 33    | 22 ± 17        | 01/31/08 - 02/28/08           | . 13 | 26  | 20 ± 14        |  |
| 02/28/08 - 04/03/08            | 10  | 32  | 18 ± 12        | 02/28/08 - 04/03/08  | 11    | 31    | 18 ± 11        | 02/28/08 - 04/03/08           | 11   | 21  | $15 \pm 9$     |  |
| 04/03/08 - 05/01/08            | 11  | 20  | 16 ± 6         | 04/03/08 - 05/01/08  | 10    | 25    | 17 ± 9         | 04/03/08 - 05/01/08 <         | < 4  | 29  | 22 ± 13        |  |
| 05/01/08 - 05/29/08            | < 5 | 21  | 11 ± 9         | 05/01/08 - 05/29/08  | 7     | 20    | 12 ± 9         | 05/01/08 - 05/29/08           | 7    | 17  | 10 ± 9         |  |
| 05/29/08 - 07/03/08            | 12  | 20  | 15 ± 4         | 05/29/08 - 07/03/08  | 8     | 20    | $14 \pm 6$     | 05/29/08 - 07/03/08           | 13   | 16  | 15 ± 3         |  |
| 07/03/08 - 07/31/08            | 12  | 23  | 17 ± 6         | 07/03/08 - 07/31/08  | 14    | 23    | 18 ± 5         | 07/03/08 - 07/31/08           | 15   | 19  | 17 ± 4         |  |
| 07/31/08 - 08/28/08            | 11  | 25  | 17 ± 10        | 07/31/08 - 08/28/08  | 14    | 26    | 20 ± 8         | 07/31/08 - 08/28/08           | 13   | 24  | $19 \pm 10$    |  |
| 08/28/08 - 10/02/08            | 14  | 43  | 27 ± 18        | 08/28/08 - 10/02/08  | 14    | 41    | 26 ± 17        | 08/28/08 - 10/02/08           | 14   | 36  | 24 ± 17        |  |
| 10/02/08 - 10/30/08            | 16  | 26  | $18 \pm 6$     | 10/02/08 - 10/30/08  | 13    | 22    | 18 ± 6         | 10/02/08 - 10/30/08           | 14   | 22  | 18 ± 7         |  |
| 10/30/08 - 12/04/08            | 14  | 41  | 23 ± 16        | 10/30/08 - 12/04/08  | 16    | 39    | 24 ± 14        | 10/30/08 - 12/04/08           | 15   | 40  | 22 ± 21        |  |
| 12/04/08 - 01/01/09            | 14  | 33  | 25 ± 12        | 12/04/08 - 01/01/09  | 17    | 33    | 25 ± 11        | 12/04/08 - 01/01/09           | 19   | 30  | 26 ± 11        |  |
| 01/03/08 - 01/01/09            | < 5 | 43  | 20 ± 15        | 01/03/08 - 01/01/09  | 7     | 41    | 20 ± 14        | 01/03/08 - 01/01/09           | < 4  | 40  | 19 ± 14        |  |

#### RESULTS IN UNITS OF E-3 PCI.CU METER ± 2 SIGMA

\* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

## TABLE C-VI.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | Cs-134 | Cs-137 | Ba-140   | La-140  |
|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|----------|---------|
| BD-02 | 01/03/08 - 04/03/08  | < 2   | < 3   | < 6   | < 3   | < 5   | < 2   | < 4   | < 2    | < 2    | < 48     | < 15    |
|       | 04/03/08 - 07/03/08  | < 4   | < 10  | < 79  | < 2   | < 9   | < 21  | < 27  | < 3    | < 3    | < 304000 | < 96900 |
|       | 07/03/08 - 10/02/08  | < 3   | < 7   | < 30  | < 3   | < 9   | < 8   | < 15  | < 4    | < 3    | < 3290   | < 875   |
|       | 10/02/08 - 01/01/09  | < 2   | < 3   | < 8   | < 2   | < 6   | < 4   | < 8   | < 4    | < 3    | < 41     | < 10    |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -        | -       |
| BD-03 | 01/03/08 - 04/03/08  | < 3   | < 5   | < 10  | < 4   | < 9   | < 5   | < 9   | < 4    | < 3    | < 77     | < 31    |
|       | 04/03/08 - 07/03/08  | < 4   | < 17  | < 123 | < 3   | < 11  | < 25  | < 38  | < 3    | < 3    | < 370000 | < 78300 |
|       | 07/03/08 - 10/02/08  | < 4   | < 9   | < 22  | < 3   | < 11  | < 9   | < 18  | < 4    | < 3    | < 4070   | < 951   |
|       | 10/02/08 - 01/01/09  | < 3   | < 3   | < 8   | < 3   | < 7   | < 3   | < 5   | < 3    | < 2    | < 24     | < 15    |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -        | -       |
| BD-04 | 01/03/08 - 04/03/08  | < 3   | < 4   | < 8   | < 4   | < 7   | < 5   | < 8   | < 3    | < 2    | < 63     | < 26    |
|       | 04/03/08 - 07/03/08  | < 4   | < 16  | < 75  | < 2   | < 10  | < 18  | < 30  | < 2    | < 2    | < 253000 | < 60200 |
|       | 07/03/08 - 10/02/08  | < 3   | < 7   | < 27  | < 3   | < 8   | < 8   | < 15  | < 3    | < 2    | < 3020   | < 1270  |
|       | 10/02/08 - 01/01/09  | < 3   | < 3   | < 8   | < 3   | < 9   | < 4   | < 6   | < 4    | < 4    | < 47     | < 15    |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -        | -       |
| BD-05 | 01/03/08 - 04/03/08  | < 3   | < 4   | < 8   | < 3   | < 5   | < 3   | < 5   | < 2    | < 2    | < 50     | < 21    |
|       | 04/03/08 - 07/03/08  | < 3   | < 17  | < 100 | < 4   | < 10  | < 22  | < 39  | < 4    | < 3    | < 310000 | < 78100 |
|       | 07/03/08 - 10/02/08  | < 4   | < 9   | < 35  | < 3   | < 8   | < 9   | < 15  | < 4    | < 2    | < 4110   | < 1570  |
|       | 10/02/08 - 01/01/09  | < 2   | < 2   | < 7   | < 3   | < 6   | < 3   | < 5   | < 3    | < 3    | < 30     | < 5     |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -        | -       |

#### RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

## TABLE C-VI.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | Cs-134 | Cs-137 | Ba-140   | La-140   |
|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|----------|----------|
| BD-06 | 01/03/08 - 04/03/08  | < 2   | < 2   | < 8   | < 1   | < 7   | < 3   | < 6   | < 2    | < 2    | < 47     | < 31     |
|       | 04/03/08 - 07/03/08  | < 3   | < 11  | < 82  | < 3   | < 14  | < 21  | < 31  | < 3    | < 3    | < 303000 | < 96600  |
|       | 07/03/08 - 10/02/08  | < 4   | < 7   | < 24  | < 2   | < 9   | < 9   | < 14  | < 4    | < 3    | < 3460   | < 1390   |
|       | 10/02/08 - 01/01/09  | < 3   | < 3   | < 8   | < 2   | < 7   | < 3   | < 5   | < 3    | < 2    | < 26     | < 15     |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     |        | -      | -        | -        |
| BD-19 | 01/03/08 - 04/03/08  | < 3   | < 5   | < 10  | < 3   | < 8   | < 4   | < 6   | < 3    | < 3    | < 56     | < 19     |
|       | 04/03/08 - 07/03/08  | < 4   | < 23  | < 117 | < 4   | < 12  | < 21  | < 50  | < 3    | < 3    | < 389000 | < 158000 |
|       | 07/03/08 - 10/02/08  | < 4   | < 8   | < 36  | < 3   | < 11  | < 10  | < 15  | < 3    | < 3    | < 3930   | < 1310   |
|       | 10/02/08 - 01/01/09  | < 3   | < 4   | < 6   | < 4   | < 7   | < 5   | < 7   | < 4    | < 3    | < 39     | < 11     |
|       | MEAN                 | -     | ~     | -     | -     | -     | -     | -     | -      | -      | -        | ~        |
| BD-20 | 01/03/08 - 04/03/08  | < 2   | < 3   | < 8   | < 2   | < 5   | < 3   | < 5   | < 2    | < 3    | < 45     | < 20     |
|       | 04/03/08 - 07/03/08  | < 2   | < 16  | < 71  | < 2   | < 8   | < 19  | < 27  | < 2    | < 2    | < 238000 | < 149000 |
|       | 07/03/08 - 10/02/08  | < 3   | < 6   | < 31  | < 3   | < 9   | < 8   | < 14  | < 3    | < 2    | < 2770   | < 1010   |
|       | 10/02/08 - 01/01/09  | < 2   | < 3   | < 7   | < 3   | < 7   | < 3   | < 5   | < 2    | < 3    | < 31     | < 15     |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -        | -        |
| BD-21 | 01/03/08 - 04/03/08  | < 4   | < 3   | < 9   | < 3   | < 9   | < 2   | < 8   | < 3    | < 3    | < 55     | < 27     |
|       | 04/03/08 - 07/03/08  | < 4   | < 18  | < 122 | < 4   | < 12  | < 23  | < 38  | < 4    | < 3    | < 318000 | < 147000 |
|       | 07/03/08 - 10/02/08  | < 4   | < 9   | < 35  | < 4   | < 11  | < 10  | < 21  | < 4    | < 3    | < 3690   | < 1230   |
|       | 10/02/08 - 01/01/09  | < 3   | < 3   | < 7   | < 2   | < 8   | < 5   | < 7   | < 4    | < 3    | < 37     | < 13     |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -        | -        |

#### RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

### TABLE C-VII.1CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN<br/>THE VICINITY OF BRAIDWOOD STATION, 2008

| -                    |       | G     | ROUPI |              |       | GROUP III |       |       |
|----------------------|-------|-------|-------|--------------|-------|-----------|-------|-------|
| COLLECTION<br>PERIOD | BD-06 | BD-19 | BD-20 | BD-21        | BD-02 | BD-04     | BD-05 | BD-03 |
| 01/03/08 - 01/10/08  | < 38  | < 40  | < 38  | < 38.4       | < 24  | < 25      | < 26  | < 25  |
| 01/10/08 - 01/17/08  | < 46  | < 50  | < 49  | < 49.5       | < 28  | < 46      | < 46  | < 46  |
| 01/17/08 - 01/24/08  | < 14  | < 14  | < 14  | < 14.2       | < 21  | < 21      | < 20  | < 21  |
| 01/24/08 - 01/31/08  | < 42  | < 45  | < 45  | < 45.5       | < 42  | < 40      | < 42  | < 23  |
| 01/31/08 - 02/07/08  | < 25  | < 25  | < 25  | < 24.6       | < 38  | < 38      | < 42  | < 38  |
| 02/07/08 - 02/14/08  | < 49  | < 55  | < 52  | < 52.2       | < 49  | < 32      | < 49  | < 49  |
| 02/14/08 - 02/21/08  | < 20  | < 19  | < 19  | < 19.2       | < 19  | < 19      | < 15  | < 19  |
| 02/21/08 - 02/28/08  | < 30  | < 30  | < 30  | < 29.7       | < 35  | < 35      | < 34  | < 35  |
| 02/28/08 - 03/06/08  | < 19  | < 31  | < 31  | < 31.3       | < 24  | < 24      | < 24  | < 24  |
| 03/06/08 - 03/13/08  | < 21  | < 21  | < 21  | < 20.7       | < 21  | < 21      | < 21  | < 21  |
| 03/13/08 - 03/20/08  | < 42  | < 42  | < 42  | < 40.4       | < 43  | < 43      | < 43  | < 43  |
| 03/20/08 - 03/27/08  | < 56  | < 56  | < 56  | < 55.9       | < 59  | < 59      | < 59  | < 59  |
| 03/27/08 - 04/03/08  | < 21  | < 22  | < 21  | < 10.8       | < 14  | < 14      | < 21  | < 14  |
| 04/03/08 - 04/10/08  | < 49  | < 50  | < 50  | < 49.6       | < 47  | < 47      | < 47  | < 47  |
| 04/10/08 - 04/17/08  | < 56  | < 34  | < 56  | < 56.4       | < 57  | < 57      | < 57  | < 57  |
| 04/17/08 - 04/24/08  | < 38  | < 37  | < 37  | < 37.3       | < 52  | < 52      | < 52  | < 52  |
| 04/24/08 - 05/01/08  | < 36  | < 36  | < 20  | < 36.1       | < 46  | < 46      | < 46  | < 46  |
| 05/01/08 - 05/08/08  | < 33  | < 33  | < 33  | < 32.8       | < 29  | < 28      | < 29  | < 29  |
| 05/08/08 - 05/15/08  | < 11  | < 11  | < 11  | < 10.8       | < 9   | < 9       | < 9   | < 9   |
| 05/15/08 - 05/22/08  | < 19  | < 19  | < 19  | < 19         | < 27  | < 27      | < 27  | < 27  |
| 05/22/08 - 05/29/08  | < 26  | < 26  | < 61  | < 24.8       | < 45  | < 45      | < 45  | < 45  |
| 05/29/08 - 06/05/08  | < 39  | < 39  | < 40  | < 39.5       | < 47  | < 48      | < 49  | < 48  |
| 06/05/08 - 06/12/08  | < 11  | < 11  | < 11  | < 11.1       | < 11  | < 11      | < 11  | < 11  |
| 06/12/08 - 06/19/08  | < 61  | < 53  | < 54  | < 53.4       | < 33  | < 61      | < 61  | < 62  |
| 06/19/08 - 06/26/08  | < 42  | < 42  | < 43  | < 42.5       | < 47  | < 47      | < 47  | < 48  |
| 06/26/08 - 07/03/08  | < 65  | < 65  | < 65  | < 65         | < 63  | < 63      | < 63  | < 63  |
| 07/03/08 - 07/10/08  | < 36  | < 36  | < 37  | < 34.2       | < 44  | < 45      | < 45  | < 45  |
| 07/10/08 - 07/17/08  | < 43  | < 43  | < 43  | < 43.2       | < 44  | < 44      | < 44  | < 44  |
| 07/17/08 - 07/24/08  | < 13  | < 15  | < 15  | < 14.6       | < 12  | (1)       | < 13  | < 12  |
| 07/24/08 - 07/31/08  | < 25  | < 25  | < 26  | < 25.3       | < 23  | < 23      | < 23  | < 23  |
| 07/31/08 - 08/07/08  | < 43  | < 43  | < 43  | < 61.9       | < 61  | < 62      | < 62  | < 66  |
| 08/07/08 - 08/14/08  | < 51  | < 51  | < 51  | < 50.9       | < 47  | < 47      | < 47  | < 47  |
| 08/14/08 - 08/21/08  | < 50  | < 50  | < 50  | < 49.7       | < 47  | < 47      | < 48  | < 47  |
| 08/21/08 - 08/28/08  | < 59  | < 59  | < 59  | < 59.3       | < 68  | < 68      | < 68  | < 68  |
| 08/28/08 - 09/04/08  | < 08  | < 00  | < 68  | < 69         | < 53  | < 53      | < 53  | < 53  |
| 09/04/08 - 09/11/08  | < 40  | < 40  | < 40  | < 40<br>< 45 | < 50  | < 50      | < 51  | < 50  |
| 09/11/08 - 09/16/08  | < 40  | < 40  | < 40  | < 52         | < 42  | < 13      | < 43  | < 13  |
| 09/16/06 ~ 09/25/08  | < 18  | < 18  | < 18  | < 18         | < 62  | < 43      | < 63  | < 63  |
| 10/02/08 - 10/02/08  | < 40  | < 40  | < 40  | < 40         | < 67  | < 67      | < 67  | < 67  |
| 10/09/08 - 10/16/08  | < 59  | < 59  | < 59  | < 59         | < 40  | < 37      | < 40  | < 38  |
| 10/16/08 - 10/23/08  | < 22  | < 22  | < 23  | < 23         | < 14  | < 24      | < 26  | < 24  |
| 10/23/08 - 10/20/08  | < 62  | < 62  | < 62  | < 63         | < 54  | < 54      | < 54  | < 54  |
| 10/30/08 - 11/06/08  | < 57  | < 57  | < 57  | < 57         | < 60  | < 60      | < 60  | < 60  |
| 11/06/08 - 11/13/08  | < 59  | < 59  | < 59  | < 59         | < 66  | < 68      | < 66  | < 66  |
| 11/13/08 - 11/20/08  | < 47  | < 47  | < 47  | < 47         | < 49  | < 49      | < 49  | < 48  |
| 11/20/08 - 11/26/08  | < 53  | < 53  | < 53  | < 53.2       | < 62  | < 62      | < 62  | < 62  |
| 11/26/08 - 12/04/08  | < 58  | < 54  | < 58  | < 58.1       | < 57  | < 57      | < 57  | < 57  |
| 12/04/08 - 12/11/08  | < 66  | < 66  | < 66  | < 66.5       | < 67  | < 67      | < 67  | < 67  |
| 12/11/08 - 12/18/08  | < 45  | < 45  | < 45  | < 45.4       | < 43  | < 43      | < 43  | < 43  |
| 12/18/08 - 12/24/08  | < 45  | < 45  | < 47  | < 45         | < 53  | < 53      | < 59  | < 50  |
| 12/24/08 - 01/01/09  | < 40  | < 40  | < 40  | < 40.5       | < 42  | < 42      | < 42  | < 42  |
| MEAN                 | -     | -     | -     | -            | -     | ~         | -     | -     |

#### RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

# TABLE C-VIII.1CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN<br/>THE VICINITY OF BRAIDWOOD STATION, 2008

|                      | CONTROL FARM | INDICATOR FARM |
|----------------------|--------------|----------------|
| COLLECTION<br>PERIOD | BD-18        | BD-17          |
| 01/03/08             | < 0.6        | < 0.5          |
| 02/01/08             | < 0.8        | < 0.8          |
| 03/06/08             | < 0.5        | < 0.4          |
| 04/03/08             | < 0.8        | < 0.7          |
| 05/01/08             | < 0.7        | < 0.7          |
| 05/15/08             | < 0.7        | < 0.8          |
| 05/29/08             | < 0.8        | < 0.8          |
| 06/12/08             | < 0.7        | < 0.7          |
| 06/26/08             | < 0.7        | < 0.7          |
| 07/10/08             | < 0.7        | < 0.7          |
| 07/24/08             | < 0.7        | < 0.6          |
| 08/07/08             | < 0.8        | < 0.8          |
| 08/21/08             | < 0.8        | < 0.8          |
| 09/04/08             | < 0.7        | < 0.7          |
| 09/18/08             | < 0.9        | < 0.6          |
| 10/02/08             | < 0.8        | < 0.9          |
| 10/16/08             | < 0.8        | < 0.8          |
| 10/30/08             | < 0.9        | < 0.9          |
| 11/13/08             | < 0.7        | < 0.8          |
| 12/04/08             | < 0.9        | < 0.8          |
|                      |              |                |
| MEAN                 | -            | -              |

## TABLE C-VIII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| BD-17 | 01/03/08             | < 7   | < 7   | < 15  | < 8   | < 14  | < 7   | < 12  | < 6    | < 7    | < 26   | < 10   |
|       | 02/01/08             | < 4   | < 5   | < 12  | < 4   | < 10  | < 4   | < 8   | < 4    | < 4    | < 25   | < 6    |
|       | 03/06/08             | < 6   | < 6   | < 18  | < 8   | < 14  | < 7   | < 12  | < 5    | < 5    | < 32   | < 10   |
|       | 04/03/08             | < 8   | < 7   | < 13  | < 6   | < 17  | < 7   | < 12  | < 7    | < 8    | < 29   | < 10   |
|       | 05/01/08             | < 7   | < 7   | < 16  | < 6   | < 18  | < 8   | < 12  | < 7    | < 6    | < 38   | < 10   |
|       | 05/15/08             | < 4   | < 4   | < 11  | < 5   | < 10  | < 5   | < 7   | < 4    | < 4    | < 28   | < 10   |
|       | 05/29/08             | < 7   | < 6   | < 16  | < 7   | < 14  | < 7   | < 11  | < 6    | < 7    | < 41   | < 14   |
|       | 06/12/08             | < 5   | < 5   | < 13  | < 5   | < 13  | < 6   | < 10  | < 5    | < 5    | < 33   | < 10   |
|       | 06/26/08             | < 5   | < 4   | < 15  | < 7   | < 14  | < 6   | < 10  | < 4    | < 6    | < 34   | < 13   |
|       | 07/10/08             | < 6   | < 7   | < 15  | < 6   | < 15  | < 6   | < 10  | < 5    | < 6    | < 41   | < 11   |
|       | 07/24/08             | < 3   | < 4   | < 10  | < 3   | < 9   | < 4   | < 7   | < 3    | < 3    | < 44   | < 15   |
|       | 08/07/08             | < 7   | < 5   | < 18  | < 6   | < 16  | < 7   | < 13  | < 5    | < 7    | < 38   | < 11   |
|       | 08/21/08             | < 5   | < 5   | < 13  | < 6   | < 11  | < 5   | < 9   | < 5    | < 5    | < 30   | < 12   |
|       | 09/04/08             | < 6   | < 6   | < 17  | < 5   | < 13  | < 7   | < 10  | < 5    | < 5    | < 56   | < 14   |
|       | 09/18/08             | < 4   | < 5   | < 11  | < 4   | < 9   | < 4   | < 9   | < 3    | < 4    | < 37   | < 13   |
|       | 10/02/08             | < 3   | < 3   | < 8   | < 2   | < 6   | < 3   | < 6   | < 2    | < 2    | < 47   | < 15   |
|       | 10/16/08             | < 3   | < 4   | < 9   | < 3   | < 8   | < 3   | < 6   | < 3    | < 3    | < 27   | < 8    |
|       | 10/30/08             | < 1   | < 2   | < 6   | < 1   | < 4   | < 2   | < 3   | < 1    | < 1    | < 45   | < 12   |
|       | 11/13/08             | < 1   | < 2   | < 5   | < 1   | < 3   | < 2   | < 3   | < 1    | < 1    | < 45   | < 13   |
|       | 12/04/08             | < 6   | < 4   | < 12  | < 7   | < 11  | < 5   | < 8   | < 5    | < 5    | < 28   | < 7    |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |

# TABLE C-VIII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC   | COLLECTION<br>PERIOD | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
|       |                      |       |       |       |       |       |       |       |        |        |        |        |
| BD-18 | 01/03/08             | < 7   | < 7   | < 13  | < 7   | < 18  | < 9   | < 14  | < 6    | < 9    | < 31   | < 10   |
|       | 02/01/08             | < 5   | < 5   | < 12  | < 7   | < 13  | < 6   | < 10  | < 5    | < 6    | < 34   | < 12   |
|       | 03/06/08             | < 5   | < 5   | < 12  | < 6   | < 12  | < 6   | < 7   | < 5    | < 6    | < 26   | < 9    |
|       | 04/03/08             | < 5   | < 5   | < 12  | < 5   | < 13  | < 5   | < 8   | < 5    | < 5    | < 24   | < 8    |
|       | 05/01/08             | < 6   | < 7   | < 16  | < 8   | < 17  | < 7   | < 12  | < 8    | < 7    | < 43   | < 11   |
|       | 05/15/08             | < 7   | < 7   | < 15  | < 6   | < 15  | < 6   | < 12  | < 6    | < 6    | < 37   | < 13   |
|       | 05/29/08             | < 4   | < 5   | < 11  | < 4   | < 10  | < 5   | < 9   | < 5    | < 5    | < 34   | < 9    |
|       | 06/12/08             | < 6   | < 7   | < 16  | < 6   | < 16  | < 6   | < 12  | < 6    | < 6    | < 40   | < 12   |
|       | 06/26/08             | < 4   | < 5   | < 11  | < 5   | < 11  | < 5   | < 9   | < 4    | < 5    | < 33   | < 10   |
|       | 07/10/08             | < 7   | < 7   | < 16  | < 6   | < 17  | < 7   | < 14  | < 6    | < 7    | < 37   | < 13   |
|       | 07/24/08             | < 3   | < 3   | < 8   | < 3   | < 6   | < 4   | < 6   | < 3    | < 3    | < 43   | < 10   |
|       | 08/06/08             | < 7   | < 7   | < 17  | < 6   | < 16  | < 6   | < 13  | < 5    | < 7    | < 46   | < 9    |
|       | 08/21/08             | < 4   | < 4   | < 9   | < 5   | < 9   | < 5   | < 8   | < 3    | < 4    | < 24   | < 6    |
|       | 09/04/08             | < 6   | < 7   | < 17  | < 6   | < 12  | < 7   | < 13  | < 5    | < 6    | < 52   | < 15   |
|       | 09/18/08             | < 5   | < 5   | < 14  | < 4   | < 11  | < 6   | < 9   | < 4    | < 4    | < 46   | < 12   |
|       | 10/02/08             | < 2   | < 3   | < 8   | < 2   | < 5   | < 3   | < 6   | < 2    | < 2    | < 51   | < 14   |
|       | 10/16/08             | < 4   | < 5   | < 10  | < 5   | < 10  | < 5   | < 9   | < 4    | < 5    | < 44   | < 13   |
|       | 10/30/08             | < 2   | < 2   | < 6   | < 2   | < 3   | < 2   | < 4   | < 1    | < 2    | < 46   | < 15   |
|       | 11/13/08             | < 1   | < 2   | < 5   | < 1   | < 3   | < 2   | < 3   | < 1    | < 1    | < 47   | < 13   |
|       | 12/04/08             | < 6   | < 6   | < 14  | < 5   | < 11  | < 6   | < 9   | < 5    | < 5    | < 31   | < 4    |
|       | MEAN                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
#### CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

#### RESULTS IN UNITS OF PC/KG WET ± 2 SIGMA

| STC               |          | N               | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|-------------------|----------|-----------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| <b>BD-CONTROL</b> | 09/13/08 | Cabbage         | < 15  | < 14  | < 35  | < 13  | < 29  | < 17  | < 23  | < 12   | < 15   | < 114  | < 25   |
|                   | 09/13/08 | Potatoes        | < 10  | < 10  | < 30  | < 7   | < 24  | < 12  | < 22  | < 7    | < 10   | < 70   | < 19   |
|                   | MEAN     |                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-QUAD 1         | 09/13/08 | Cabbage         | < 9   | < 8   | < 27  | < 11  | < 27  | < 12  | < 21  | < 9    | < 11   | < 79   | < 16   |
|                   | 09/13/08 | Onions          | < 10  | < 10  | < 21  | < 11  | < 20  | < 12  | < 16  | < 10   | < 12   | < 78   | < 22   |
|                   | MEAN     |                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-QUAD 2         | 09/13/08 | Cabbage         | < 12  | < 12  | < 32  | < 13  | < 28  | < 13  | < 24  | < 10   | < 13   | < 95   | < 19   |
|                   | 09/13/08 | Potatoes        | < 8   | < 8   | < 22  | < 8   | < 20  | < 10  | < 17  | < 8    | < 10   | < 66   | < 25   |
|                   | MEAN     |                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-QUAD 3         | 09/13/08 | Beets           | < 10  | < 13  | < 24  | < 10  | < 22  | < 10  | < 18  | < 9    | < 12   | < 73   | < 24   |
|                   | 09/13/08 | Brussel sprouts | < 11  | < 11  | < 28  | < 10  | < 21  | < 11  | < 19  | < 9    | < 11   | < 72   | < 19   |
|                   | MEAN     |                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |
| BD-QUAD 4         | 09/13/08 | Cabbage         | < 10  | < 11  | < 29  | < 11  | < 22  | < 12  | < 20  | < 9    | < 10   | < 81   | < 21   |
|                   | 09/13/08 | Potatoes        | < 14  | < 15  | < 35  | < 13  | < 33  | < 17  | < 24  | < 14   | < 16   | < 109  | < 28   |
|                   | MEAN     |                 | -     | -     | -     | -     | -     | -     | -     | -      | -      | -      | -      |

\* THE MEAN AND 2 STARDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-IX.1

#### TABLE C-X.1 QUARTERLY TLD RESULTS FOR BRAIDWOOD STATION, 2008

| STATION  | MEAN           | JAN - MAR | APR - JUN | JUL - SEP | OCT - DEC |
|----------|----------------|-----------|-----------|-----------|-----------|
|          | 19.0 + 5.2     | 21        | 15        | 17        | 10        |
| BD-02-1  | $10.0 \pm 5.2$ | 21        | 16        | 16        | 18        |
| BD-02-2  | 10.0 ± 5.7     | 22        | 10        | 18        | 22        |
| BD-03-1  | 19.0 ± 0.0     | 23        | 10        | 19        | 20        |
| BD-03-2  | 19.0 ± 0.2     | 24        | 17        | 17        | 19        |
| BD-04-1  | $10.5 \pm 7.7$ | 24        | 10        | 17        | 10        |
| BD-04-2  | $18.5 \pm 0.8$ | 23        | 15        | 17        | 19        |
| BD-05-1  | 19.8 ± 8.7     | 26        | 10        | 10        | 19        |
| BD-05-2  | 19.8 ± 11      | 27        | 15        | 17        | 20        |
| BD-06-1  | 18.5 ± 7.4     | 24        | 16        | 17        | 17        |
| BD-06-2  | 17.8 ± 5.7     | 21        | 14        | 18        | 18        |
| BD-19-1  | $19.0 \pm 5.9$ | 23        | 16        | 18        | 19        |
| BD-19-2  | 19.5 ± 5.8     | 23        | 16        | 19        | 20        |
| BD-20-1  | 18.3 ± 6.0     | 22        | 15        | 17        | 19        |
| BD-20-2  | $19.0 \pm 7.1$ | 24        | 16        | 17        | 19        |
| BD-21-1  | 18.3 ± 7.0     | 22        | 14        | 17        | 20        |
| BD-21-2  | $18.8 \pm 6.0$ | 22        | 15        | 18        | 20        |
| BD-101-3 | $19.0 \pm 6.5$ | 23        | 15        | 19        | 19        |
| BD-101-4 | 18.8 ± 7.7     | 24        | 15        | 17        | 19        |
| BD-102-1 | 17.3 ± 6.6     | 21        | 13        | 17        | 18        |
| BD-102-2 | $18.8 \pm 5.0$ | 22        | 16        | 18        | 19        |
| BD-103-1 | $19.3 \pm 6.0$ | 23        | 16        | 18        | 20        |
| BD-103-2 | $20.3 \pm 8.4$ | 26        | 16        | 19        | 20        |
| BD-104-1 | 17.0 ± 6.7     | 21        | 13        | 16        | 18        |
| BD-104-2 | 17.5 ± 6.2     | 22        | 15        | 16        | 17        |
| BD-105-1 | 17.0 ± 6.7     | 21        | 13        | 16        | 18        |
| BD-105-2 | 18.5 ± 6.2     | 23        | 16        | 17        | 18        |
| BD-106-1 | 17.5 ± 5.8     | 21        | 14        | 17        | 18        |
| BD-106-2 | 18.0 ± 5.9     | 21        | 14        | 19        | 18        |
| BD-107-1 | $19.3 \pm 8.4$ | 25        | 15        | 18        | 19        |
| BD-107-2 | 18.0 + 7.5     | 23        | 14        | 17        | 18        |
| BD-108-1 | 18.5 + 8.4     | 24        | 14        | 17        | 19        |
| BD-108-2 | $180 \pm 67$   | 22        | 14        | 17        | 19        |
| BD-109-1 | $21.3 \pm 8.4$ | 27        | 17        | 20        | 21        |
| BD-109-7 | $213 \pm 91$   | 26        | 16        | 19        | 24        |
| BD-110-1 | 193 + 50       | 22        | 16        | 20        | 19        |
| DD-110-1 | 18.0 + 7.5     | 23        | 14        | 17        | 18        |
| DD-110-2 | 18.0 ± 6.3     | 23        | 15        | 16        | 19        |
| DD-112-1 | 17.0 ± 0.5     | 22        | 13        | 17        | 18        |
| DD-112-2 | 17.0 ± 0.0     | 22        | 14        | 10        | 10        |
|          | 19.0 ± 0.0     | 20        | 10        | 17        | 10        |
| DU-114-2 | 10.U ± 0./     | 22        | 14        | 10        | 19        |
| BD-115-1 | 10.0 ± 0.0     | 22        | 15        | 10        | 19        |
| BD-115-2 | 19.3 ± 9.6     | 25        | 14        | 17        | 21        |
| BD-110-1 | 19.5 ± 9.0     | 25        | 14        | 20        | 19        |
| BD-116-2 | $19.3 \pm 9.4$ | 26        | 15        | 18        | 18        |

#### RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS

#### TABLE C-X.1 QUARTERLY TLD RESULTS FOR BRAIDWOOD STATION, 2008

| STATION<br>CODE | MEAN<br>2 S.D. | JAN - MAR | APR - JUN | JUL - SEP | OCT - DEC |
|-----------------|----------------|-----------|-----------|-----------|-----------|
| BD-201-1        | 23.8 ± 10      | 29        | 17        | 24        | 25        |
| BD-201-2        | 19.8 ± 7.7     | 25        | 16        | 18        | 20        |
| BD-202-1        | 18.8 ± 7.2     | 21        | 14        | 18        | 22        |
| BD-202-2        | 19.8 ± 11      | 27        | 15        | 17        | 20        |
| BD-203-1        | 21.3 ± 9.1     | 24        | 16        | 26        | 19        |
| BD-203-2        | 19.0 ± 7.8     | 24        | 15        | 17        | 20        |
| BD-204-1        | 17.0 ± 7.8     | 22        | 13        | 15        | 18        |
| BD-204-2        | $17.3 \pm 7.0$ | 21        | 13        | 16        | 19        |
| BD-205-1        | $17.3 \pm 5.0$ | 20        | 14        | 17        | 18        |
| BD-205-2        | $18.3 \pm 9.0$ | 24        | 13        | 18        | 18        |
| BD-206-1        | $19.8 \pm 7.0$ | 21        | 16        | 18        | 24        |
| BD-206-2        | 19.3 ± 7.5     | 24        | 15        | 18        | 20        |
| BD-207-1        | $18.3 \pm 6.0$ | 21        | 14        | 19        | 19        |
| BD-207-2        | $17.8 \pm 6.0$ | 21        | 14        | 17        | 19        |
| BD-208-1        | $17.5 \pm 5.8$ | 21        | 14        | 17        | 18        |
| BD-208-2        | $17.8 \pm 6.0$ | 21        | 14        | 17        | 19        |
| BD-209-1        | 22.0 ± 9.1     | 28        | 17        | 21        | 22        |
| BD-209-2        | 24.8 ± 7.7     | 30        | 21        | 25        | 23        |
| BD-210-1        | $21.3 \pm 6.6$ | 25        | 17        | 22        | 21        |
| BD-210-2        | 19.3 ± 5.7     | 23        | 16        | 19        | 19        |
| BD-211-1        | $23.3 \pm 7.7$ | 26        | 19        | 21        | 27        |
| BD-211-2        | $23.8 \pm 6.6$ | 26        | 19        | 24        | 26        |
| BD-212-3        | 19.8 ± 8.5     | 25        | 15        | 18        | 21        |
| BD-212-4        | $24.0 \pm 10$  | 29        | 17        | 24        | 26        |
| BD-213-3        | 18.8 ± 7.9     | 22        | 14        | 17        | 22        |
| BD-213-4        | 17.8 ± 7.7     | 23        | 14        | 16        | 18        |
| BD-214-1        | $19.5 \pm 7.4$ | 23        | 15        | 18        | 22        |
| BD-214-2        | $21.3 \pm 7.0$ | 25        | 17        | 20        | 23        |
| BD-215-1        | $18.3 \pm 8.4$ | 24        | 14        | 17        | 18        |
| BD-215-2        | $18.0 \pm 7.5$ | 23        | 14        | 17        | 18        |
| BD-216-1        | $20.5 \pm 9.0$ | 27        | 17        | 18        | 20        |
| BD-216-2        | 21.8 ± 9.1     | 27        | 16        | 21        | 23        |
| BD-111A-1       | $18.3 \pm 6.0$ | 22        | 15        | 17        | 19        |
| BD-111A-2       | 19.0 ± 5.9     | 23        | 16        | 18        | 19        |
| BD-113A-1       | $19.3 \pm 6.6$ | 24        | 17        | 17        | 19        |
| BD-113A-2       | $18.0 \pm 5.2$ | 21        | 15        | 17        | 19        |

#### RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS

# TABLE C-X.2MEAN QUARTLY TLD RESULTS FOR THE INNER RING, OUTER RING,<br/>OTHER AND CONTROL LOCATIONS FOR BRAIDWOOD STATION, 2008

RESULTS IN UNITS OF MILLI-ROENTGENS/QUARTER ± 2 STANDARD DEVIATIONS OF THE STATION DATA

| COLLECTION<br>PERIOD | SITE BOUNDARY INTI<br>± 2 S.D. | ERMEDIATE DISTANCE | OTHER      | CONTROL        |
|----------------------|--------------------------------|--------------------|------------|----------------|
| JAN-MAR              | 23.0 ± 3.4                     | 24.1 ± 5.5         | 23.1 ± 3.5 | 23.5 ± 1.4     |
| APR-JUN              | 14.8 ± 2.2                     | 15.5 ± 3.8         | 15.3 ± 1.5 | 16.5 ± 1.4     |
| JUL-SEP              | 17.7 ± 2.4                     | 19.1 ± 5.8         | 17.4 ± 1.5 | $18.0 \pm 0.0$ |
| OCT-DEC              | $19.0 \pm 2.5$                 | $20.8 \pm 5.3$     | 18.9 ± 1.8 | 21.0 ± 2.8     |

# TABLE C-X.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR<br/>BRAIDWOOD STATION, 2008

#### **RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER**

| LOCATION              | SAMPLES  | PERIOD  | PERIOD  | PERIOD MEAN    |
|-----------------------|----------|---------|---------|----------------|
|                       | ANALYZED | MINIMUM | MAXIMUM | ± 2 S.D.       |
| SITE BOUNDARY         | 128      | 13.0    | 27.0    | 18.6 ± 6.5     |
| INTERMEDIATE DISTANCE | 128      | 13.0    | 30.0    | 19.9 ± 8.1     |
| OTHER                 | 56       | 14.0    | 27.0    | 18.7 ± 6.2     |
| CONTROL               | 8        | 16.0    | 24.0    | $19.8 \pm 5.9$ |

SITE BOUNDARY STATIONS - BD-101-3, BD-101-4, BD-102-1, BD-102-2, BD-103-1, BD-103-2, BD-104-1, BD-104-2, BD-105-1, BD-105-2, BD-106-1, BD-106-2, BD-107-1, BD-107-2, BD-108-1, BD-108-2, BD-109-1, BD-109-2, BD-110-1, BD-110-2, BD-111A-1, BD-111A-2, BD-112-1, BD-112-2, BD-113A-1, BD-113A-2, BD-114-1, BD-114-2, BD-115-1, BD-115-2, BD-116-1, BD-116-2

INTERMEDIATE DISTANCE STATIONS - BD-201-1, BD-201-2, BD-202-1, BD-202-2, BD-203-1, BD-203-2, BD-204-1, BD-204-2, BD-205-1, BD-205-2, BD-206-1, BD-206-2, BD-207-1, BD-207-2, BD-208-1, BD-208-2, BD-209-1, BD-209-2, BD-210-1, BD-210-2, BD-211-1, BD-211-2, BD-212-3, BD-212-4, BD-213-3, BD-213-4, BD-214-1, BD-214-2, BD-215-1, BD-215-2, BD-216-1, BD-216-2

OTHER STATIONS - BD-02-1, BD-02-2, BD-04-1, BD-04-2, BD-05-1, BD-05-2, BD-06-1, BD-06-2, BD-19-1, BD-19-2, BD-20-1, BD-20-2, BD-21-1, BD-21-2

CONTROL STATIONS - BD-03-1, BD-03-2

## FIGURE C-1 Surface Water - Gross Beta - Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2000 - 2004





## FIGURE C-1 (cont.) Surface Water - Gross Beta - Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2005 - 2008



**BD-10 Kankaee River, Downstream** 

BD-25 (C) Kankakee River, Upstream



DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

#### FIGURE C-2 Surface Water - Gross Beta - Stations BD-38 and BD-40 Collected in the Vicinity of Braidwood Station, 2007 - 2008

**BD-38 Main Drainage Ditch** 



**BD-40 Braidwood Station Cooling Lake** 



NEW STATION BD-40 ADDED ON 10/05/06 NEW STATION BD-38 ADDED ON 01/25/07

#### FIGURE C-3 Surface Water - Gross Beta - Stations BD-55 and BD-56 Collected in the Vicinity of Braidwood Station, 2007 - 2008

**BD-55 North Pond Fatlan Site** 



**BD-56 South Pond Fatlan Site** 



NEW STATIONS BD-55 AND BD-56 ADDED ON 01/04/07

#### FIGURE C-4 Surface Water - Tritium - Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2000 - 2004







## FIGURE C-4 (cont.) Surface Water - Tritium - Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2005 - 2008

**BD-10 Kankakee River, Downstream** 



BD-25 (C) Kankakee River, Upstream



DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

#### FIGURE C-5 Surface Water - Tritium - Stations BD-38 and BD-40 Collected in the Vicinity of Braidwood Station, 2006 - 2008

**BD-38 Main Drainage Ditch** 



**BD-40 Braidwood Station Cooling Lake** 



NEW STATIONS BD-38 AND BD-40 ADDED IN 2006

#### FIGURE C-6 Surface Water - Tritium - Stations BD-55 and BD-56 Collected in the Vicinity of Braidwood Station, 2007 - 2008

**BD-55 North Pond Fatlan Site** 



**BD-56 South Pond Fatlan Site** 



NEW STATIONS BD-55 AND BD-56 ADDED IN 2007

FIGURE C-7 Public Water - Gross Beta - Station BD-22 Collected in the Vicinity of Braidwood Station, 2000 - 2004





### FIGURE C-7 (cont.) Public Water - Gross Beta - Station BD-22 Collected in the Vicinity of Braidwood Station, 2005 - 2008

**BD-22 Wilmington** 



DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

FIGURE C-8 Public Water - Tritium - Station BD-22 Collected in the Vicinity of Braidwood Station, 2000 - 2004

**BD-22** Wilmington



### FIGURE C-8 (cont.) Public Water - Tritium - Station BD-22 Collected in the Vicinity of Braidwood Station, 2005 - 2008

**BD-22 Wilmington** 



DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

#### FIGURE C-9 Ground/Well Water - Tritium - Stations BD-13 and BD-34 Collected in the Vicinity of Braidwood Station, 2000 - 2004



### FIGURE C-9 (cont.) Ground/Well Water - Tritium - Stations BD-13 and BD-34 Collected in the Vicinity of Braidwood Station, 2005 - 2008

**BD-13 Braidwood City Hall Well** 



**BD-34 Gibson Well** 



DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

### FIGURE C-10 Ground/Well Water - Tritium - Stations BD-35 and BD-36 Collected in the Vicinity of Braidwood Station, 2000 - 2004



**BD-36 Hutton Well** 



### FIGURE C-10 (cont.) Ground/Well Water - Tritium - Stations BD-35 and BD-36 Collected in the Vicinity of Braidwood Station, 2005 - 2008

**BD-35 Joly Well** 



**BD-36 Hutton Well** 



DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

## FIGURE C-11 Ground/Well Water - Tritium - Station BD-37 Collected in the Vicinity of Braidwood Station, 2000 - 2004

BD-37 Nurczyk Well



### FIGURE C-11 (cont.) Ground/Well Water - Tritium - Station BD-37 Collected in the Vicinity of Braidwood Station, 2005 - 2008

**BD-37 Nurczyk Well** 



DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE AND MDC VALUES JULY THROUGH DECEMBER

#### FIGURE C-12 Ground/Well Water - Tritium - Station BD-50 and BD-51 Collected in the Vicinity of Braidwood Station, 2007-2008



**BD-50 Skole Well** 

**BD-51 Fatlan Well** 



NEW STATIONS BD-50 AND BD-51 ADDED IN 2007 NEW STATION BD-50 DISCONTINUED 10/18/07

### FIGURE C-13 Ground/Well Water - Tritium - Station BD-53 and BD-54 Collected in the Vicinity of Braidwood Station, 2007 - 2008



**BD-53 Phelps Well** 

**BD-54 Cash Well** 



NEW STATIONS BD-53 AND BD-54 ADDED IN 2007



NEW







### FIGURE C-14 (cont.) Air Particulates - Gross Beta- Stations BD-03 (C) and BD-06 Collected in the Vicinity of Braidwood Station, 2005 - 2008

BD-03 (C) County Line Road



**BD-06 Godley** 



DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3





**BD-20** Nearsite, N



FIGURE C-15 (cont.) Air Particulates - Gross Beta- Stations BD-19 and BD-20 Collected in the Vicinity of Braidwood Station, 2005 - 2008



**BD-19 Nearsite, NW** 

**BD-20 Nearsite, N** 



DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-16 Air Particulates - Gross Beta- Station BD-21 Collected in the Vicinity of Braidwood Station, 2000 - 2004



### FIGURE C-16 (cont.) Air Particulates - Gross Beta- Station BD-21 Collected in the Vicinity of Braidwood Station, 2005 - 2008



**BD-21 Nearsite, NE** 

DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-17 Air Particulates - Gross Beta- Stations BD-02 and BD-04 Collected in the Vicinity of Braidwood Station, 2005 - 2008

**BD-02 Nearsite, NW** 

 $\begin{array}{c} 50.0 \\ 40.0 \\ 30.0 \\ 20.0 \\ 10.0 \\ 0.7 - 07 - 05 \end{array} \begin{array}{c} 01 - 05 - 06 \end{array} \begin{array}{c} 07 - 06 - 06 \end{array} \begin{array}{c} 01 - 04 - 07 \end{array} \begin{array}{c} 07 - 05 - 07 \end{array} \begin{array}{c} 01 - 03 - 08 \end{array} \begin{array}{c} 07 - 03 - 08 \end{array} \begin{array}{c} 07 - 03 - 08 \end{array} \begin{array}{c} 01 - 01 - 09 \end{array} \end{array}$ 

**BD-04 Nearsite**, N



DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

#### FIGURE C-18 Air Particulates - Gross Beta- Station BD-05 Collected in the Vicinity of Braidwood Station, 2005 - 2008

**BD-05 Nearsite, NE** 



DUE TO VENDOR CHANGE, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

Intentionally left blank

## **APPENDIX D**

# INTER-LABORATORY COMPARISON PROGRAM

#### TABLE D-1

#### ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2008

(PAGE 1 OF 3)

|             | Identification | • • · ·  |         | t E            | Reported  | Known     | Ratio (c)     | Evoluction |
|-------------|----------------|----------|---------|----------------|-----------|-----------|---------------|------------|
| Month/Year  | Number         | Matrix   | NUCIIDE | Units          | value (a) | Value (b) | IBE/Analytics |            |
| March 2008  | E5847-396      | Milk     | Sr-89   | nCi/l          | 83.5      | 95.8      | 0.87          | А          |
| 11010112000 | 20047 000      | TV/IIIX  | Sr-90   | pCi/L          | 13.9      | 12.9      | 1.08          | A          |
|             |                |          |         | In case of the |           |           |               |            |
|             | E5848-396      | Milk     | I-131   | pCi/L          | 57.3      | 60.0      | 0.96          | А          |
|             |                |          | Ce-141  | pCi/L          | 229       | 249       | 0.92          | А          |
|             |                |          | Cr-51   | pCi/L          | 336       | 359       | 0.94          | А          |
|             |                |          | Cs-134  | pCi/L          | 106       | 125       | 0.85          | A          |
|             |                |          | Cs-137  | pCi/L          | 141       | 146       | 0.97          | A          |
|             |                |          | Co-58   | pCi/L          | 71.8      | 70.8      | 1.01          | A          |
|             |                |          | Mn-54   | pCi/L          | 98.1      | 94.2      | 1.04          | A          |
|             |                |          | Fe-59   | pCi/L          | 102       | 102       | 1.00          | A          |
|             |                |          | Zn-65   | pCi/L          | 135       | 137       | 0.99          | A          |
|             |                |          | Co-60   | pCI/L          | 230       | 236       | 0.97          | A          |
|             | E5850A-396     | AP       | Ce-141  | nCi            | 163       | 157       | 1.04          | А          |
|             |                | ,        | Cr-51   | pCi            | 233       | 227       | 1.03          | A          |
|             |                |          | Cs-134  | pCi            | 72.6      | 79.0      | 0.92          | A          |
|             |                |          | Cs-137  | pCi            | 98.3      | 92.0      | 1.07          | А          |
|             |                |          | Co-58   | pCi            | 46.7      | 44.7      | 1.04          | А          |
|             |                |          | Mn-54   | pCi            | 69.8      | 59.4      | 1.18          | А          |
|             |                |          | Fe-59   | pCi            | 72.2      | 64.5      | 1.12          | А          |
|             |                |          | Zn-65   | pCi            | 106       | 86.4      | 1.23          | W          |
|             |                |          | Co-60   | pCi            | 156       | 149       | 1.05          | A          |
|             | E5849-396      | Charcoal | I-131   | pCi            | 65.5      | 60.1      | 1.09          | А          |
| June 2008   | E5971-396      | Milk     | Sr-89   | pCi/L          | 83.9      | 85.0      | 0.99          | А          |
|             |                |          | Sr-90   | pCi/L          | 14.4      | 15.8      | 0.91          | А          |
|             | E5072 206      | MIL      | 1 1 2 1 |                | 70.0      | 71 4      | 0.00          | ٨          |
|             | LJ972-390      | WIIIN    | Ce-141  | pCi/L          | 157       | 174       | 0.99          | Δ          |
|             |                |          | Cr-51   | pCi/L          | 159       | 138       | 1 15          | A          |
|             |                |          | Cs-134  | nCi/l          | 69.7      | 76 7      | 0.91          | A          |
|             |                |          | Cs-137  | pCi/L          | 115       | 116       | 0.99          | A          |
|             |                |          | Co-58   | pCi/L          | 59.1      | 61.9      | 0.95          | A          |
|             |                |          | Mn-54   | pCi/L          | 139       | 135       | 1.03          | А          |
|             |                |          | Fe-59   | pCi/L          | 98.4      | 91.7      | 1.07          | А          |
|             |                |          | Zn-65   | pCi/L          | 129       | 127       | 1.02          | А          |
|             |                |          | Co-60   | pCi/L          | 101       | 104       | 0.97          | А          |
|             | E5974-396      | ΔP       | Ce-141  | nCi            | 206       | 207       | 1.00          | Δ          |
|             | 20014-000      | 7.4      | Cr-51   | nCi            | 173       | 164       | 1.00          | A          |
|             |                |          | Cs-134  | pCi            | 95.9      | 91.0      | 1.05          | A          |
|             |                |          | Cs-137  | pCi            | 142.0     | 138.0     | 1.03          | A          |
|             |                |          | Co-58   | pCi            | 72.0      | 73.4      | 0.98          | A          |
|             |                |          | Mn-54   | pCi            | 180       | 160.0     | 1.13          | A          |
|             |                |          | Fe-59   | pCi            | 108.0     | 109.0     | 0.99          | А          |
|             |                |          | Zn-65   | pCi            | 159       | 150       | 1.06          | А          |
|             |                |          | Co-60   | pCi            | 129       | 124       | 1.04          | А          |
## ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2008

(PAGE 2 OF 3)

| 199 <u></u>    | Identification |                |                 |            | Reported    | Known       | Ratio (c)     |                |
|----------------|----------------|----------------|-----------------|------------|-------------|-------------|---------------|----------------|
| Month/Year     | Number         | Matrix         | Nuclide         | Units      | Value (a)   | Value (b)   | TBE/Analytics | Evaluation (d) |
| lune 2008      | E5073-396      | Charcoal       | 1-131           | nCi        | 73.8        | 84 1        | 0.88          | Δ              |
| Build 2000     | 20010-000      | onaroour       | 1101            | por        | 10.0        | 04.1        | 0.00          |                |
| September 2008 | E6284-396      | Milk           | Sr-89           | pCi/L      | 76.2        | 73.9        | 1.03          | A              |
|                |                |                | Sr-90           | pCi/L      | 12.3        | 11.0        | 1.12          | А              |
|                | F0005 000      | <b>8 8</b> *11 | 1 404           | 01/        | 05.7        | 07.0        | 0.07          |                |
|                | E6285-396      | IVIIIK         | I-131<br>Co 141 | pCi/L      | 05.7<br>145 | 67.9<br>161 | 0.97          | A              |
|                |                |                | Ce-141          | pCi/L      | 145         | 101         | 0.90          | A<br>          |
|                |                |                | Cs-134          | pCi/L      | 196         | 232         | 0.30          | Δ              |
|                |                |                | Cs-137          | pCi/L      | 147         | 162         | 0.91          | A              |
|                |                |                | Co-58           | pCi/L      | 167         | 179         | 0.93          | A              |
|                |                |                | Mn-54           | pCi/L      | 165         | 166         | 0.99          | A              |
|                |                |                | Fe-59           | pCi/L      | 161         | 144         | 1.12          | А              |
|                |                |                | Zn-65           | pCi/L      | 305         | 319         | 0.96          | А              |
|                |                |                | Co-60           | pCi/L      | 218         | 234         | 0.93          | А              |
|                | E6207 206      | ٨٥             | Co 141          | nCi        | 70.5        | 76.3        | 1.04          | ٨              |
|                | LU207-390      | AF             | Cr-51           | pCi<br>nCi | 208         | 199         | 1.04          | Δ              |
|                |                |                | Cs-134          | nCi        | 106         | 110         | 0.96          | A              |
|                |                |                | Cs-137          | pCi        | 79.3        | 76.7        | 1.03          | A              |
|                |                |                | Co-58           | pCi        | 87.7        | 84.4        | 1.04          | A              |
|                |                |                | Mn-54           | pCi        | 90.3        | 78.6        | 1.15          | A              |
|                |                |                | Fe-59           | pCi        | 81.7        | 68.3        | 1.20          | А              |
|                |                |                | Zn-65           | pCi        | 144         | 151         | 0.95          | А              |
|                |                |                | Co-60           | рСі        | 111         | 111         | 1.00          | A              |
|                | E6286-396      | Charcoal       | I-131           | pCi        | 93.2        | 90.0        | 1.04          | Α              |
| December 2008  | E6415-396      | Milk           | Sr-89           | pCi/L      | 98.4        | 91.9        | 1.07          | А              |
|                |                |                | Sr-90           | pCi/L      | 18.0        | 12.6        | 1.43          | N (1)          |
|                | E6/16-306      | Mile           | 1.131           | nCi/l      | 60.2        | 70.0        | 0.87          | ۸              |
|                | L0410-330      | WIIK           | Ce-141          | nCi/l      | 177         | 191         | 0.93          | A              |
|                |                |                | Cr-51           | pCi/L      | 231         | 246         | 0.94          | A              |
|                |                |                | Cs-134          | pCi/L      | 117         | 134         | 0.87          | A              |
|                |                |                | Cs-137          | pCi/L      | 119         | 120         | 0.99          | А              |
|                |                |                | Co-58           | pCi/L      | 104         | 104         | 1.00          | Α              |
|                |                |                | Mn-54           | pCi/L      | 153         | 152         | 1.01          | А              |
|                |                |                | Fe-59           | pCi/L      | 99.6        | 100         | 1.00          | A              |
|                |                |                | Zn-65           | pCi/L      | 177         | 183         | 0.97          | А              |
|                |                |                | Co-60           | pCi/L      | 133         | 133         | 1.00          | A              |
|                | E6418-396      | AP             | Ce-141          | pCi        | 148         | 146         | 1.01          | А              |
|                |                |                | Cr-51           | pCi        | 202         | 187         | 1.08          | А              |
|                |                |                | Cs-134          | pCi        | 103         | 102         | 1.01          | А              |
|                |                |                | Cs-137          | pCi        | 95.4        | 91.2        | 1.05          | А              |
|                |                |                | Co-58           | pCi        | 81.4        | 79.2        | 1.03          | А              |
|                |                |                | Mn-54           | pCi        | 113         | 116.0       | 0.97          | A              |
|                |                |                | Fe-59           | pCi        | 76.5        | 76.4        | 1.00          | A              |
|                |                |                | ∠n-65           | pCi        | 122         | 139         | 0.88          | A              |
|                |                |                | Co-60           | pCi        | 108         | 101         | 1.07          | A              |

# TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2008

(PAGE 3 OF 3)

| Month/Year    | Identification<br>Number | Matrix   | Nuclide | Units | Reported<br>Value (a) | Known<br>Value (b) | Ratio (c)<br>TBE/Analytics | Evaluation (d) |
|---------------|--------------------------|----------|---------|-------|-----------------------|--------------------|----------------------------|----------------|
| December 2008 | E6417-396                | Charcoal | I-131   | pCi   | 65.8                  | 74.1               | 0.89                       | А              |

(1) NCR 09-02 initiated to investigate the failure.

\*35

- (a) Teledyne Brown Engineering reported result.
- (b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.
- (c) Ratio of Teledyne Brown Engineering to Analytics results.

(d) Analytics evaluation based on TBE internal QC limits: A= Acceptable. Reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

#### ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2008

(PAGE 1 OF 1)

|              | Identification              |       |         |            | Reported  | Known     |                |                |
|--------------|-----------------------------|-------|---------|------------|-----------|-----------|----------------|----------------|
| Month/Year   | Number                      | Media | Nuclide | Units      | Value (a) | Value (b) | Control Limits | Evaluation (c) |
|              |                             |       |         |            |           |           |                |                |
| January 2008 | Quik <sup>tm</sup> Response | Water | Sr-89   | pCi/L      | 37.33     | 19.0      | 11.8 - 25.2    | N (1)          |
|              |                             |       | Sr-90   | pCi/L      | 40.40     | 42.7      | 31.5 - 49.0    | А              |
|              |                             |       | Ba-133  | pCi/L      | 87.8      | 90.5      | 76.2 - 99.6    | А              |
|              |                             |       | Cs-134  | pCi/L      | 80.67     | 88.9      | 72.9 - 97.8    | А              |
|              |                             |       | Cs-137  | pCi/L      | 222.33    | 231       | 208 - 256      | A              |
|              |                             |       | Co-60   | pCi/L      | 98.9      | 101.0     | 90.9 - 113     | А              |
|              |                             |       | Zn-65   | pCi/L      | 352       | 350       | 315 - 408      | А              |
|              |                             |       | Gr-A    | pCi/L      | 13.0      | 12.7      | 6.02 - 18.7    | А              |
|              |                             |       | Gr-B    | pCi/L      | 32.7      | 36.2      | 23.8 - 43.8    | А              |
|              |                             |       | H-3     | pCi/L      | 11100     | 11300     | 9840 - 12400   | А              |
| January 2008 | RAD 72                      | Water | Sr-89   | pCi/L      | 69.0      | 65.3      | 53.0 - 73.4    | А              |
|              |                             |       | Sr-90   | ,<br>pCi/L | 35.6      | 41.4      | 30.5 - 47.6    | А              |
|              |                             |       | Ba-133  | pCi/L      | 25.9      | 25.7      | 20.0 - 29.5    | А              |
|              |                             |       | Cs-134  | ,<br>pCi/L | 86.5      | 92.6      | 76.0 - 102     | А              |
|              |                             |       | Cs-137  | pCi/L      | 155       | 158       | 142 - 176      | А              |
|              |                             |       | Co-60   | pCi/L      | 16.0      | 14.4      | 11.4 - 18.7    | А              |
|              |                             |       | Zn-65   | pCi/L      | 214       | 204       | 184 - 240      | А              |
|              |                             |       | Gr-A    | pCi/L      | 13.3      | 14.8      | 7.15 - 21.2    | А              |
|              |                             |       | Gr-B    | pCi/L      | 21.2      | 22.5      | 13.7 - 30.6    | А              |
|              |                             |       | I-131   | pCi/L      | 22.8      | 23.6      | 19.6 - 28.0    | А              |
|              |                             |       | H-3     | pCi/L      | 3390      | 3540      | 3000 - 3910    | А              |
| April 2008   | Rad 73                      | Water | Sr-89   | pCi/L      | 65.47     | 60.4      | 48.6 - 68.2    | А              |
| •            |                             |       | Sr-90   | pCi/L      | 39.80     | 39.2      | 28.8 - 45.1    | А              |
|              |                             |       | Ba-133  | pCi/L      | 59.63     | 58.3      | 48.3 - 64.3    | А              |
|              |                             |       | Cs-134  | ,<br>pCi/L | 45.00     | 46.6      | 37.4 - 51.3    | А              |
|              |                             |       | Cs-137  | pCi/L      | 97.97     | 102       | 91.8 - 115     | А              |
|              |                             |       | Co-60   | pCi/L      | 75.47     | 76.6      | 68.9 - 86.7    | А              |
|              |                             |       | Zn-65   | pCi/L      | 109       | 106       | 95.4 - 126     | А              |
|              |                             |       | Gr-A    | pCi/L      | 41.03     | 50.8      | 26.5 - 63.7    | А              |
|              |                             |       | Gr-B    | pCi/L      | 50.20     | 51.4      | 35.0 - 58.4    | А              |
|              |                             |       | I-131   | pCi/L      | 26.67     | 28.7      | 23.9 - 33.6    | Α              |
|              |                             |       | H-3     | pCi/L      | 11633     | 12000     | 10400 - 13200  | А              |

(1) Could find no cause for Sr-89 failure. Sample sent to outside lab for verification, but the outside laboratory was unable to confirm our numbers or ERA numbers. Studies bracketing these results, RAD 71 and RAD 72, had acceptable Sr-89 results. NCR 08-03

- (a) Teledyne Brown Engineering reported result.
- (b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.
- (c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

## DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2008

(PAGE 1 OF 2)

| Month/Year   | Identification<br>Number | Media      | Nuclide       | Units     | Reported<br>Value (a) | Known<br>Value (b) | Acceptance<br>Range | Evaluation (c) |
|--------------|--------------------------|------------|---------------|-----------|-----------------------|--------------------|---------------------|----------------|
|              |                          |            |               |           | A                     |                    |                     |                |
| January 2008 | 07-MaW18                 | Water      | Cs-134        | Bq/L      | -0.26                 |                    | (1)                 | A              |
|              |                          |            | Cs-137        | Bq/L      | 0.029                 |                    | (1)                 | A              |
|              |                          |            | Co-57         | Bq/L      | 21                    | 22.8               | 16.0 - 29.6         | A              |
|              |                          |            | Co-60         | Bq/L      | 8.2                   | 8.40               | 5.88 - 10.92        | A              |
|              |                          |            | H-3           | Bq/L      | 473                   | 472                | 330 - 614           | A              |
|              |                          |            | Mn-54         | Bq/L      | 12                    | 12.1               | 8.5 - 15.7          | A              |
|              |                          |            | Sr-90         | Bq/L      | 10.70                 | 11.4               | 7.98- 14.82         | A              |
|              |                          |            | Zn-65         | Bq/L      | 15.6                  | 16.3               | 11.4 - 21.2         | A              |
|              | 07-GrW18                 | Water      | Gr-A          | Bq/L      | 1.4                   | 1.399              | >0.0 - 2.798        | А              |
|              |                          |            | Gr-B          | Bq/L      | 3.06                  | 2.43               | 1.22 - 3.65         | A              |
|              | 07-MaS18                 | Soil       | Cs-134        | Ba/ka     | 790                   | 854.0              | 598 - 1110          | А              |
|              |                          |            | Cs-137        | Ba/kg     | 568                   | 545                | 382 - 709           | А              |
|              |                          |            | Co-57         | Ba/ka     | 424                   | 421                | 295 - 547           | А              |
|              |                          |            | Co-60         | Ba/ka     | 2.307                 | 2.9                | (2)                 | А              |
|              |                          |            | Mn-54         | Ba/ka     | 611                   | 570                | 399 - 741           | А              |
|              |                          |            | K-40          | Ba/ka     | 6.09                  | 571                | 400 - 742           | A              |
|              |                          |            | Sr-90         | Ba/ka     | 454                   | 493.0              | 345 - 641           | A              |
|              |                          |            | Zn-65         | Bq/kg     | 0.162                 |                    | (1)                 | A              |
|              | 07-RdF18                 | AP         | Cs-134        | Ba/sample | 2 73                  | 2 5200             | 176-328             | Δ              |
|              |                          | 7.1        | Cs-137        | Bg/sample | 2.70                  | 2.0200             | 1.89 - 3.51         | Δ              |
|              |                          |            | Co-57         | Bg/sample | 3 493                 | 3 55               | 2 49 - 4 62         | A              |
|              |                          |            | Co-60         | Ba/sample | 1 357                 | 1 31               | 0.92 - 1.70         | Δ              |
|              |                          |            | Mn-54         | Ba/sample | 0.006                 | 1.01               | (1)                 | Δ              |
|              |                          |            | Sr-90         | Ba/sample | 1.61                  | 1 548              | 1 084 - 2 012       | Δ              |
|              |                          |            | Zn-65         | Bq/sample | 2.59                  | 2.04               | 1.43 - 2.65         | A              |
|              | 07-GrE18                 | ۸Þ         | Gr-A          | Ba/sample | 0 131                 | 0.348              | >0.0                | ۸              |
|              | 07-01110                 | Ar         | Gr-B          | Bq/sample | 0.261                 | 0.286              | 0.143 - 0.429       | A              |
| January 2008 |                          | Vocatation | Co 124        | Ba/comple | 5 25                  | 6.00               | 110 910             | ۸              |
| January 2000 | 07-110/10                | vegetation | Cc 137        | Bq/sample | 0.20                  | 0.20               | 4.40 - 0.10         | A<br>          |
|              |                          |            | Co 57         | Balcomple | 0.10<br>6.027         | 5.41               | 2.39 - 4.43         | A<br>          |
|              |                          |            | Co-57         | Bq/sample | 0.037                 | 0.09               | 4.02 - 0.90         | A<br>          |
|              |                          |            | C0-00         | Bq/sample | 2.44<br>1.15          | 2.11               | 1.94 ~ 3.00         | A              |
|              |                          |            | WIII-04       | Bq/sample | 4.40                  | 4.74               | 3.32 - 0.10         | A              |
|              |                          |            | R-40<br>Sr 00 | Bq/sample | 01.0                  | 1 070              | (1)                 | ۸              |
|              |                          |            | Zn-65         | Bq/sample | 0.085                 | 1.275              | (1)                 | A              |
| August 2008  | 00 100/010               | Mater      | 0- 121        | D=/4      | 474                   | 10 5               | 407 054             |                |
| August 2008  | 00-1419                  | water      | US-134        | Bq/L      | 17.1                  | 19.5               | 13.7 - 25.4         | A              |
|              |                          |            | US-13/        | Bd/L      | 21.4                  | 23.6               | 16.5 - 30.7         | A              |
|              |                          |            | Co-57         | Bd/L      | -0.044                | 44.5               | (1)                 | A              |
|              |                          |            | Co-60         | Bd/L      | 10.8                  | 11.6               | 8.1 - 15.1          | A              |
|              |                          |            | H-3           | Bq/L      | 334                   | 341                | 239 - 443           | A              |
|              |                          |            | Mn-54         | Bd/L      | 13.0                  | 13.7               | 9.6 - 17.8          | A              |
|              |                          |            | Sr-90         | Bd/L      | 6.55                  | 6.45               | 4.52-8.39           | A              |
|              |                          |            | ∠n-65         | Bq/L      | 16.5                  | 17.1               | 12.0 - 22.2         | A              |

#### DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2008

(PAGE 2 OF 2)

| Month/Year   | Identification<br>Number | Media      | Nuclide | Units     | Reported<br>Value (a) | Known<br>Value (b) | Acceptance<br>Range | Evaluation (c) |
|--------------|--------------------------|------------|---------|-----------|-----------------------|--------------------|---------------------|----------------|
| August 2008  | 08-GrW19                 | Water      | Gr-A    | Ba/L      | 0.0612                | <0.56              | (3)                 | А              |
| , agaot 2000 |                          |            | Gr-B    | Bq/L      | 0.222                 | <1.85              | (3)                 | A              |
|              | 08-MaS19                 | Soil       | Cs-134  | Bq/kg     | 546                   | 581                | 407 - 755           | А              |
|              |                          |            | Cs-137  | Bq/kg     | 2.52                  | 2.8                | (2)                 | А              |
|              |                          |            | Co-57   | Bq/kg     | 340                   | 333                | 233 - 433           | А              |
|              |                          |            | Co-60   | Bg/kg     | 157                   | 145.0              | 102 - 189           | А              |
|              |                          |            | Mn-54   | Bq/kg     | 460                   | 415                | 291 - 540           | А              |
|              |                          |            | K-40    | Bq/kg     | 650                   | 571                | 399 - 741           | А              |
|              |                          |            | Sr-90   | Bq/kg     | 1.40                  |                    | (1)                 | А              |
|              |                          |            | Zn-65   | Bq/kg     | -1.53                 |                    | (1)                 | А              |
|              | 08-RdF19                 | AP         | Cs-134  | Bq/sample | 2.46                  | 2.6300             | 1.84 - 3.42         | А              |
|              |                          |            | Cs-137  | Bq/sample | 0.0063                |                    | (1)                 | А              |
|              |                          |            | Co-57   | Bq/sample | 1.36                  | 1.50               | 1.05 - 1.95         | А              |
|              |                          |            | Co-60   | Bq/sample | 0.0143                |                    | (1)                 | А              |
|              |                          |            | Mn-54   | Bq/sample | 2.70                  | 2.64               | 1.85 - 3.43         | А              |
|              |                          |            | Sr-90   | Bq/sample | 1.42                  | 1.12               | 0.78 - 1.46         | W              |
|              |                          |            | Zn-65   | Bq/sample | 0.975                 | 0.94               | 0.66 - 1.22         | A              |
|              | 08-GrF19                 | AP         | Gr-A    | Bq/sample | -0.0037               |                    | (4)                 | А              |
|              |                          |            | Gr-B    | Bq/sample | 0.540                 | 0.525              | 0.263 - 0.788       | А              |
|              | 08-RdV19                 | Vegetation | Cs-134  | Bq/sample | 4.36                  | 5.5                | 3.9 - 7.2           | W              |
|              |                          |            | Cs-137  | Bq/sample | -0.03                 |                    | (1)                 | А              |
|              |                          |            | Co-57   | Bq/sample | 6.72                  | 7.1                | 5.0 - 9.2           | А              |
|              |                          |            | Co-60   | Bq/sample | 4.04                  | 4.70               | 3.3 - 6.1           | A              |
|              |                          |            | Mn-54   | Bq/sample | 5.22                  | 5.8                | 4.1 - 7.5           | А              |
|              |                          |            | K-40    | Bq/sample | 64.4                  |                    | (1)                 |                |
|              |                          |            | Sr-90   | Bq/sample | 1.62                  | 1.9                | 1.3 - 2.5           | А              |
|              |                          |            | Zn-65   | Bq/sample | 6.160                 | 6.9                | 4.8 - 9.0           | Α              |

(1) Not evaluated by MAPEP.

(2) Reported a statistically zero result.

(3) Designed to test the Safe Drinking Water screening levels. Labs reporting values less than ref values were found to be acceptable.

(4) False positive test.

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

## ERA (a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2008

(Page 1 of 1)

|                        |          |          | Cor                 | centration (        | pCi/L)            |            |
|------------------------|----------|----------|---------------------|---------------------|-------------------|------------|
| Lab Code <sup>b</sup>  | Date     | Analysis | Laboratory          | ERA                 | Control           |            |
|                        |          |          | Result <sup>c</sup> | Result <sup>d</sup> | Limits            | Acceptance |
| STAP-1143              | 03/24/08 | Co-60    | 650.72 ± 3.00       | 730.0               | 565.0 - 912.0     | Pass       |
| STAP-1143              | 03/24/08 | Cs-134   | 467.50 ± 5.53       | 523.0               | 341.0 - 647.0     | Pass       |
| STAP-1143              | 03/24/08 | Cs-137   | 1375.90 ± 25.41     | 1450.0              | 1090.0 - 1900.0   | Pass       |
| STAP-1143 <sup>e</sup> | 03/24/08 | Mn-54    | $0.00 \pm 0.00$     | 0.0                 | 0.0 - 10.0        | Pass       |
| STAP-1143              | 03/24/08 | Sr-90    | 157.60 ± 7.70       | 152.0               | 66.9 - 236.0      | Pass       |
| STAP-1143              | 03/24/08 | Zn-65    | 889.90 ± 15.90      | 872.0               | 604.0 - 1210.0    | Pass       |
| STAP-1144              | 03/24/08 | Gr. Beta | 99.90 ± 3.09        | 92.2                | 56.80 - 135.0     | Pass       |
| STSO-1145              | 03/24/08 | Ac-228   | 1269.02 ± 36.81     | 1180.0              | 757.0 - 1660.0    | Pass       |
| STSO-1145              | 03/24/08 | Bi-212   | 1407.10 ± 56.64     | 1360.0              | 357.0 - 2030.0    | Pass       |
| STSO-1145              | 03/24/08 | Co-60    | 5219.70 ± 90.30     | 5130.0              | 3730.0 - 6890.0   | Pass       |
| STSO-1145              | 03/24/08 | Cs-134   | 5427.30 ± 102.94    | 5640.0              | 3630.0 - 6790.0   | Pass       |
| STSO-1145              | 03/24/08 | Cs-137   | 6346.60 ± 201.80    | 6010.0              | 4600.0 - 7810.0   | Pass       |
| STSO-1145              | 03/24/08 | K-40     | 11052.70 ± 181.80   | 11000.0             | 7980.0 - 14900.0  | Pass       |
| STSO-1145 °            | 03/24/08 | Mn-54    | $0.00 \pm 0.00$     | 0.0                 | 0.0 - 10.0        | Pass       |
| STSO-1145              | 03/24/08 | Pb-212   | 1198.20 ± 96.58     | 1080.0              | 697.0 - 1520.0    | Pass       |
| STSO-1145              | 03/24/08 | Pb-214   | 2253.30 ± 291.60    | 2020.0              | 1210.0 - 3010.0   | Pass       |
| STSO-1145              | 03/24/08 | Sr-90    | 6407.00 ± 277.00    | 5360.0              | 1940.0 - 8750.0   | Pass       |
| STSO-1145              | 03/24/08 | Th-234   | 2421.80 ± 321.00    | 2030.0              | 644.0 - 3870.0    | Pass       |
| STSO-1145              | 03/24/08 | Zn-65    | 2936.20 ± 73.50     | 2660.0              | 2110.0 - 3570.0   | Pass       |
| STVE-1146              | 03/24/08 | Co-60    | 912.41 ± 13.59      | 888.0               | 600.0 - 1280.0    | Pass       |
| STVE-1146              | 03/24/08 | Cs-134   | 1547.70 ± 38.81     | 1540.0              | 882.0 - 2130.0    | Pass       |
| STVE-1146              | 03/24/08 | Cs-137   | 1163.80 ± 20.62     | 1100.0              | 807.0 - 1530.0    | Pass       |
| STVE-1146              | 03/24/08 | K-40     | 22186.00 ± 339.40   | 24600.0             | 17700.0 - 34800.0 | Pass       |
| STVE-1146 <sup>e</sup> | 03/24/08 | Mn-54    | $0.00 \pm 0.00$     | 0.0                 | 0.0 - 10.0        | Pass       |
| STVE-1146              | 03/24/08 | Sr-90    | 3825.90 ± 140.66    | 4130.0              | 2310.0 - 5480.0   | Pass       |
| STVE-1146              | 03/24/08 | Zn-65    | 1676.80 ± 43.00     | 1430.0              | 1030.0 - 1960.0   | Pass       |
| STW-1147               | 03/24/08 | Co-60    | 1430.00 ± 33.33     | 1420.0              | 1240.0 - 1680.0   | Pass       |
| STW-1147               | 03/24/08 | Cs-134   | 730.18 ± 33.39      | 751.0               | 555.0 - 862.0     | Pass       |
| STW-1147               | 03/24/08 | Cs-137   | 1947.80 ± 13.80     | 1990.0              | 1690.0 - 2380.0   | Pass       |
| STW-1147 <sup>e</sup>  | 03/24/08 | Mn-54    | $0.00 \pm 0.00$     | 0.0                 | 0.0 - 10.0        | Pass       |
| STW-1147               | 03/24/08 | Sr-90    | 512.03 ± 43.37      | 512.0               | 325.0 - 684.0     | Pass       |
| STW-1147               | 03/24/08 | Zn-65    | 708.90 ± 29.00      | 694.0               | 588.0 - 865.0     | Pass       |
| STW-1120               | 03/19/07 | Zn-65    | 2009.00 ± 36.40     | 1910.0              | 1600.0 - 2410.0   | Pass       |

<sup>a</sup> Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted

previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

<sup>b</sup> Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

 $^{\circ}\,$  Unless otherwise indicated, the laboratory result is given as the mean  $\pm$  standard deviation  $\,$  for three determinations.

<sup>d</sup> Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

<sup>e</sup> Included in the testing series as a "false positive". No activity expected.

# DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)<sup>a</sup> ENVIRONMENTAL, INC., 2008

(Page 1 of 2)

|                       |          |          | Concentration <sup>v</sup> |          |                     |            |  |  |  |
|-----------------------|----------|----------|----------------------------|----------|---------------------|------------|--|--|--|
|                       |          |          |                            | Known    | Control             |            |  |  |  |
| Lab Code <sup>c</sup> | Date     | Analysis | Laboratory result          | Activity | Limits <sup>d</sup> | Acceptance |  |  |  |
| STW-1137              | 01/01/08 | Co-57    | $23.80 \pm 0.60$           | 22.80    | 16.00 - 29.60       | Pass       |  |  |  |
| STW-1137              | 01/01/08 | Co-60    | $8.60 \pm 0.50$            | 8.40     | 5.88 - 10.92        | Pass       |  |  |  |
| STW-1137              | 01/01/08 | Cs-134   | -0.021 ± 0.10              | 0.00     | -1.00 - 1.00        | Pass       |  |  |  |
| STW-1137              | 01/01/08 | Cs-137   | $0.00 \pm 0.10$            | 0.00     | -1.00 - 1.00        | Pass       |  |  |  |
| STW-1137              | 01/01/08 | H-3      | 515.10 ± 12.70             | 472.00   | 330.00 - 614.00     | Pass       |  |  |  |
| STW-1137              | 01/01/08 | Mn-54    | 12.90 ± 0.80               | 12.10    | 8.50 - 15.70        | Pass       |  |  |  |
| STW-1137              | 01/01/08 | Sr-90    | 12.00 ± 1.50               | 11.40    | 7.98 - 14.82        | Pass       |  |  |  |
| STW-1137              | 01/01/08 | Zn-65    | $16.90 \pm 1.40$           | 16.30    | 11.40 - 21.20       | Pass       |  |  |  |
| STW-1138              | 01/01/08 | Gr. Beta | 2.30 ± 0.15                | 2.43     | 1.22 - 3.65         | Pass       |  |  |  |
| STAP-1139             | 01/01/08 | Co-57    | $3.90 \pm 0.07$            | 3.55     | 2.49 - 4.62         | Pass       |  |  |  |
| STAP-1139             | 01/01/08 | Co-60    | $1.43 \pm 0.07$            | 1.31     | 0.92 - 1.70         | Pass       |  |  |  |
| STAP-1139             | 01/01/08 | Cs-134   | $2.59 \pm 0.16$            | 2.52     | 1.76 - 3.28         | Pass       |  |  |  |
| STAP-1139             | 01/01/08 | Cs-137   | $3.05 \pm 0.12$            | 2.70     | 1.89 - 3.51         | Pass       |  |  |  |
| STAP-1139             | 01/01/08 | Mn-54    | $0.43 \pm 0.58$            | 0.00     | 0.00 - 1.00         | Pass       |  |  |  |
| STAP-1139             | 01/01/08 | Sr-90    | $1.30 \pm 0.27$            | 1.55     | 1.08 - 2.01         | Pass       |  |  |  |
| STAP-1139             | 01/01/08 | Zn-65    | 2.36 ± 0.18                | 2.04     | 1.43 - 2.65         | Pass       |  |  |  |
| STAP-1140             | 01/01/08 | Gr. Beta | $0.34 \pm 0.04$            | 0.29     | 0.14 - 0.43         | Pass       |  |  |  |
| STVE-1141             | 01/01/08 | Co-57    | 8.30 ± 0.18                | 6.89     | 4.82 - 8.96         | Pass       |  |  |  |
| STVE-1141             | 01/01/08 | Co-60    | 3.03 ± 0.13                | 2.77     | 1.94 - 3.60         | Pass       |  |  |  |
| STVE-1141             | 01/01/08 | Cs-134   | $6.53 \pm 0.29$            | 6.28     | 4.40 - 8.16         | Pass       |  |  |  |
| STVE-1141             | 01/01/08 | Cs-137   | $3.90 \pm 0.19$            | 3.41     | 2.39 - 4.43         | Pass       |  |  |  |
| STVE-1141             | 01/01/08 | Mn-54    | 5.43 ± 0.21                | 4.74     | 3.32 - 6.16         | Pass       |  |  |  |
| STVE-1141             | 01/01/08 | Zn-65    | 0.033 ± 0.10               | 0.00     | 0.00 - 1.00         | Pass       |  |  |  |
| STSO-1142             | 01/01/08 | Co-57    | 483.00 ± 3.00              | 421.00   | 295.00 - 547.00     | Pass       |  |  |  |
| STSO-1142             | 01/01/08 | Co-60    | $3.00 \pm 0.80$            | 2.90     | 0.00 - 5.00         | Pass       |  |  |  |
| STSO-1142             | 01/01/08 | Cs-134   | 896.50 ± 7.40              | 854.00   | 598.00 - 1110.00    | Pass       |  |  |  |
| STSO-1142             | 01/01/08 | Cs-137   | 624.40 ± 4.10              | 545.00   | 382.00 - 709.00     | Pass       |  |  |  |
| STSO-1142             | 01/01/08 | Mn-54    | 667.20 ± 3.80              | 570.00   | 399.00 - 741.00     | Pass       |  |  |  |
| STSO-1142             | 01/01/08 | Zn-65    | 0.093 ± 0.91               | 0.00     | 0.00 - 1.00         | Pass       |  |  |  |
| STSO-1158             | 08/01/08 | Co-57    | 353.02 ± 2.01              | 333.00   | 233.00 - 433.00     | Pass       |  |  |  |
| STSO-1158             | 08/01/08 | Co-60    | 151.99 ± 1.58              | 145.00   | 102.00 - 189.00     | Pass       |  |  |  |
| STSO-1158             | 08/01/08 | Cs-134   | 499.72 ± 2.65              | 581.00   | 407.00 - 755.00     | Pass       |  |  |  |
| STSO-1158             | 08/01/08 | Cs-137   | $2.54 \pm 0.25$            | 2.80     | 0.00 - 5.00         | Pass       |  |  |  |
| STSO-1158             | 08/01/08 | K-40     | 643.94 ± 15.50             | 570.00   | 399.00 - 741.00     | Pass       |  |  |  |
| STSO-1158             | 08/01/08 | Mn-54    | 452.14 ± 2.96              | 415.00   | 291.00 - 540.00     | Pass       |  |  |  |
| STSO-1158             | 08/01/08 | Sr-90    | $1.95 \pm 2.04$            | 0.00     | 0.00 - 5.00         | Pass       |  |  |  |
| STSO-1158             | 08/01/08 | Zn-65    | $0.10 \pm 2.04$            | 0.00     | 0.00 - 5.00         | Pass       |  |  |  |

STW-1163

08/01/08

Gr. Beta

## DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)<sup>a</sup> ENVIRONMENTAL, INC., 2008

|                       | Concentration <sup>b</sup> |          |                   |          |                     |            |  |  |  |
|-----------------------|----------------------------|----------|-------------------|----------|---------------------|------------|--|--|--|
|                       |                            |          |                   | Known    | Control             |            |  |  |  |
| Lab Code <sup>c</sup> | Date                       | Analysis | Laboratory result | Activity | Limits <sup>d</sup> | Acceptance |  |  |  |
| STVE-1159             | 08/01/08                   | Co-57    | 8.52 ± 0.23       | 7.10     | 5.00 - 9.20         | Pass       |  |  |  |
| STVE-1159             | 08/01/08                   | Co-60    | 5.08 ± 0.19       | 4.70     | 3.30 - 6.10         | Pass       |  |  |  |
| STVE-1159             | 08/01/08                   | Cs-134   | 5.26 ± 0.18       | 5.50     | 3.90 - 7.20         | Pass       |  |  |  |
| STVE-1159             | 08/01/08                   | Cs-137   | $0.01 \pm 0.14$   | 0.00     | 0.00 - 1.00         | Pass       |  |  |  |
| STVE-1159             | 08/01/08                   | Mn-54    | 6.39 ± 0.28       | 5.80     | 4.10 - 7.50         | Pass       |  |  |  |
| STVE-1159             | 08/01/08                   | Zn-65    | 7.73 ± 0.45       | 6.90     | 4.80 - 9.00         | Pass       |  |  |  |
| STW-1162              | 08/01/08                   | Co-57    | 0.03 ± 0.16       | 0.00     | 0.00 - 5.00         | Pass       |  |  |  |
| STW-1162              | 08/01/08                   | Co-60    | 11.27 ± 0.23      | 11.60    | 8.10 - 15.10        | Pass       |  |  |  |
| STW-1162              | 08/01/08                   | Cs-134   | 17.93 ± 0.52      | 19.50    | 13.70 - 25.40       | Pass       |  |  |  |
| STW-1162              | 08/01/08                   | Cs-137   | 23.72 ± 0.43      | 23.60    | 16.50 - 30.70       | Pass       |  |  |  |
| STW-1162              | 08/01/08                   | H-3      | 385.15 ± 8.93     | 341.00   | 239.00 - 443.00     | Pass       |  |  |  |
| STW-1162              | 08/01/08                   | Mn-54    | 13.87 ± 0.37      | 13.70    | 9.60 - 17.80        | Pass       |  |  |  |
| STW-1162              | 08/01/08                   | Sr-90    | 6.49 ± 1.12       | 6.45     | 4.52 - 8.39         | Pass       |  |  |  |
| STW-1162              | 08/01/08                   | Zn-65    | 17.64 ± 0.61      | 17.10    | 12.00 - 22.20       | Pass       |  |  |  |

 $0.12 \pm 0.05$ 

0.00

0.00 - 1.85

Pass

(Page 2 of 2)

<sup>a</sup> Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's

Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

<sup>b</sup> Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

<sup>c</sup> Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

<sup>d</sup> MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

Intentionally left blank

# **APPENDIX E**

# **EFFLUENT DATA**

Ł Ł 1 1 Ł Ł ł ł Ł 1 1 I. Ł ł ł ł 1 I. ł. 1 Ł ł.

# TABLE OF CONTENTS

|    | INTRODUCTION                                | 1 |
|----|---------------------------------------------|---|
|    | SUMMARY                                     | 2 |
| e. | 1.0. EFFLUENTS                              | 3 |
|    | 1.1. Gaseous Effluents to the Atmosphere    | 3 |
|    | 1.2. Liquids Released to Kankakee River     | 3 |
|    | 2.0. SOLID RADIOACTIVE WASTE                | 3 |
|    | 3.0. DOSE TO MAN                            | 4 |
|    | 3.1. Gaseous Effluent Pathways              | 4 |
|    | 3.1.1. Noble Gases                          | 4 |
|    | 3.1.1.1. Gamma Dose Rates                   | 4 |
|    | 3.1.1.2. Beta Air and Skin Dose Rate        | 4 |
|    | 3.1.2. Radioactive lodine                   | 5 |
|    | 3.1.2.1. Dose to Thyroid                    | 5 |
|    | 3.2. Liquid Effluent Pathways               | 5 |
|    | 3.3. Assessment of Dose to Member of Public | 6 |
|    | 4.0. SITE METEOROLOGY                       | 6 |

# Table of Contents (cont.)

| APPENDIX E-1 | DATA TABLES AND FIGURES                                       | E-1.1  |
|--------------|---------------------------------------------------------------|--------|
| Station Rel  | leases                                                        |        |
| Tab          | ble 1.1-1 Gaseous Effluents Summation of all Releases         | E-1.2  |
| Tab          | le 1.2-1 Liquid Effluents Summation of all Releases           | E-1.4  |
| Tab          | le 3.1-1 Maximum Doses Resulting from Airborne Releases       | E-1.6  |
| Tab          | le 3.2-1 Maximum Doses Resulting from Liquid Effluents        | E-1.10 |
| Tab          | le 3.3-1 10CFR20 Compliance Assessment                        | E-1.12 |
| Tab          | le 3.4-1 Maximum Doses Resulting from Airborne Releases Based |        |
|              | On Concurrent Meteorological Data                             | E-1.14 |

#### INTRODUCTION

Braidwood Station, a two-unit PWR station, is located in Will County, Illinois, fifteen (15) miles south-southwest of Joliet, Illinois. Each reactor is designed to have a capacity of 3586.6 thermal megawatts. Units No. 1 went critical on May 29, 1987, and unit No. 2 went critical on March 8, 1988. The station has been designed to keep releases to the environment at levels below those specified in the regulations.

Liquid effluents from Braidwood Station are released to the Kankakee River in controlled batches after radioassay of each batch. Gaseous effluents are released to the atmosphere and are calculated on the basis of analyses of grab samples of noble gases and tritium, as well as continuously collected composite samples of iodine and particulate activity sampled during the course of the year. The results of effluent analyses are summarized on a monthly basis. Airborne concentrations of noble gases, I-131, and particulate radioactivity in offsite areas are calculated using effluent and meteorological data.

Environmental monitoring is conducted by sampling at indicator and control (background) locations in the vicinity of Braidwood Station to measure changes in radiation or radioactivity levels that may be attributable to station operations. If significant changes attributable to Braidwood Station are measured, these changes are correlated with effluent releases. External gamma radiation exposure from noble gases and internal dose from I-131 in milk are the critical pathways at this site; however, an environmental monitoring program is conducted which also includes other pathways.

#### **SUMMARY**

Calculations based on gaseous and liquid effluents, Kankakee River Flow and meteorological data indicate that public dose due to radioactive material attributable to Braidwood Station during the period does not exceed regulatory or Offsite Dose Calculation Manual (ODCM) limits.

The Total Effective Dose Equivalent (TEDE) due to licensed activities at Braidwood Station calculated for the maximally exposed individual for the period is 3.48E+00 mrem. The annual limit on TEDE is 100 mrem.

The assessment of radiation doses to the public is performed in accordance with the ODCM. The results of these analyses confirm that the station is operating in compliance with 10CFR50 Appendix I, 10CFR20 and 40CFR190.

#### 1.0 EFFLUENTS

#### 1.1 Gaseous Effluents to the Atmosphere

Measured concentrations of noble gases, radioiodine, and particulate radioactivity released to the atmosphere during the year, are listed in Table 1.1-1.

A total of 4.00E+02 curies of fission and activation gases were released with a maximum quarterly average release rate of  $3.71E+00 \ \mu$ Ci/sec at Unit 1 and  $3.55E+01 \ \mu$ Ci/sec at Unit 2.

A total of 2.50E-03 curies of 1-131 were released during the year with a maximum average quarterly release rate of  $1.50E-04 \ \mu Ci/sec$  for Unit 1 and  $1.68E-04 \ \mu Ci/sec$  for Unit 2.

A total of 9.39E-06 curies of beta-gamma emitters were released as airborne particulate matter with a maximum average release rate of 5.71E-07  $\mu$ Ci/sec at Unit 1 and 4.91E-07  $\mu$ Ci/sec at Unit 2. Alpha-emitting radionuclides were below the lower limit of detection (LLD) for the year.

A total of 1.26E+02 curies of tritium were released with a maximum average quarterly release rate of 3.46E+00 uCi/sec at Unit 1 and 7.36E-00 uCi/sec at Unit 2.

### 1.2 Liquids Released to Kankakee River

A total of 2.53E+06 liters of radioactive liquid wastes (prior to dilution) containing 1.03E-01 curies (excluding tritium, noble gases and alpha) were discharged from the station. These wastes were released at a maximum quarterly diluted average concentration of 1.01E-08  $\mu$ Ci/ml. Alpha-emitting radionuclides were less than the LLD for the year. A total of 1.41E+03 curies of tritium was released from the station. Quarterly release activities are given in Table 1.2-1.

# 2.0 SOLID RADIOACTIVE WASTE

Solid radioactive wastes were shipped by truck to the Envirocare of Utah disposal facility; the Barnwell, South Carolina disposal facility and various waste processors. For detail, refer the Braidwood Station 2008 Radioactive Effluent Release Report.

## 3.0 DOSE TO MAN

#### 3.1 Gaseous Effluent Pathways

Table 3.1-1 summarizes the doses resulting from releases of airborne radioactivity via the different exposure pathways.

#### 3.1.1 Noble Gases

#### 3.1.1.1 Gamma Dose Rates

Offsite Gamma air and total body dose rates are shown in Table 3.1-1 and were calculated based on measured effluents and average meteorological data. Based on measured effluents and average meteorological data, the maximum total body dose to an individual would be 2.91E-02 mrem for the year (Table 3.1-1) with an occupancy or shielding factor of 0.7 used. The maximum total body dose based on measured effluents and concurrent meteorological data would be 1.80E-02 mrem (Table 3.4-1). The maximum gamma air dose was 3.24E-02 mrad (Table 3.1-1) based on measured effluents and average meteorological data and 3.17E-02 mrad based on concurrent meteorological date (Table 3.4-1).

#### 3.1.1.2 Beta Air and Skin Dose Rates

The range of beta particles in air is relatively small (on the order of a few meters or less); consequently, plumes of gaseous effluents may be considered "infinite" for purpose of calculating the dose from beta radiation incident on the skin. However, the actual dose to sensitive skin tissues is difficult to calculate due to the effect of the beta particle energies, thickness of inert skin and clothing covering sensitive tissues. For purposes of this report the skin is taken to have a thickness of 7.0 mg/cm<sup>2</sup> and an occupancy factor of 1.0 is used. The skin dose from beta and gamma radiation for the year was 6.09E-02 mrem based on concurrent meteorological data (Table 3.4-1). The maximum offsite beta air dose for the year was 2.20E-02 mrad (Table 3.1-1) based on measured effluents and average meteorological data and 6.69E-02 mrad based on concurrent meteorological data (Table 3.4-1).

## 3.1.2 Radioactive lodine

The human thyroid exhibits a significant capacity to concentrate ingested or inhaled iodine and the radionuclide I-131. Minimal levels of radioiodine released during routine operation of the station may be made available to man, thus resulting in a dose to the thyroid. The principal pathway of interest for this radionuclide is ingestion of radioiodine in milk. Calculations performed in 2008 and previous years indicate that contributions to doses from inhalation of I-131 and I-133, and ingestion of I-133 in milk are negligible.

## 3.1.2.1 Dose to Thyroid

The hypothetical thyroid dose to the maximum exposed individual living near the station via ingestion of milk was calculated. The radionuclide considered was I-131 and the source of milk was taken to be the nearest dairy farm with the cows pastured from May through October. The maximum thyroid dose did not exceed 3.04E+00 mrem during the year (Table 3.1-1[infant]).

## 3.2 Liquid Effluent Pathways

The three principal pathways through the aquatic environment for potential doses to man from liquid waste are ingestion of potable water, eating aquatic foods, and exposure while on the shoreline. Not all of these pathways are significant or applicable at a given time or station but a reasonable approximation of the dose can be made by adjusting the dose formula for season of the year or type and degree of use of the aquatic environment. NRC developed equations\* were used to calculate the doses to the whole body, lower GI tracts, thyroid, bone and skin; specific parameters for use in the equations are given in the Exelon Offsite Dose Calculation Manual. The maximum whole body dose for the year was 1.32E-01 mrem and no organ dose exceeded 2.18E-01 mrem (Table 3.2-1 [child]).

# 3.3 Assessment of Dose to Member of Public

During the period January to December, 2008, Braidwood Station did not exceed the following limits as shown in Table 3.1-1 and Table 3.2-1 (based on annual average meteorological data), Figure 3.1-1 (based on concurrent meteorological data), and Table 3.3-1:

- The RETS limits on dose or dose commitment to an individual due to radioactive materials in liquid effluents from each reactor unit (1.5 mrem to the whole body or 5 mrem to any organ during any calendar year; 3 mrem to the whole body or 10 mrem to any organ during the calendar year).
- The RETS limits on air dose in noble gases released in gaseous effluents to a member of the public from each reactor unit (5 mrads for gamma radiation or 10 mrad for beta radiation during any calendar quarter; 10 mrad for gamma radiation or 20 mrad for beta radiation during a calendar year).
- The RETS limits on dose to a member of the public due to iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from each reactor unit (7.5 mrem to any organ during any calendar quarter; 15 mrem to any organ during any calendar year).
- The 10CFR20 limit on Total Effective Dose Equivalent to individual members of the public (100 mrem) during any calendar year.

# 4.0 SITE METEOROLOGY

A summary of the site meteorological measurements taken during each calendar quarter of the year is given in Appendix E. The data are presented as cumulative joint frequency distributions of the wind direction for the 203' level and wind speed class by atmospheric stability class determined from the temperature difference between the 199' and 30' levels. Data recovery for these measurements was 99.3% during 2008.

<sup>\*</sup>Nuclear Regulatory Commission, Regulatory Guide 1.109 (Rev. 1)

# **APPENDIX E-1**

# DATA TABLES AND FIGURES

#### BRAIDWOOD NUCLEAR POWER STATION ANNUAL EFFLUENT REPORT FOR 2008 GAS RELEASES UNIT 1 (Docket Number 50-456) SUMMATION OF ALL RELEASES

| Units | 1st Qtr | 2nd Qtr | 3rd Qtr | 4th Qtr | Est. Total<br>Error% |  |
|-------|---------|---------|---------|---------|----------------------|--|
|-------|---------|---------|---------|---------|----------------------|--|

## A. Fission and Activation Gas Releases

| 1. Total Release Activity        | Ci      | 1.17E+00 | 2.92E+01 | 7.01E-03 | 6.89E-03 | 7.59 |
|----------------------------------|---------|----------|----------|----------|----------|------|
| 2. Average Release Rate          | uCi/sec | 1.50E-01 | 3.71E+00 | 8.82E-04 | 8.67E-04 |      |
| 3. Percent of ODCM Limit - gamma | %       | 5.70E-05 | 5.07E-03 | 1.12E-06 | 2.04E-07 |      |
| 4. Percent of ODCM Limit - beta  | %       | 7.32E-04 | 1.27E-02 | 2.71E-06 | 4.69E-06 |      |

### **B.** Iodine Releases

| 1. Total I-131 Activity          | Ci      | 1.90E-06 | 1.18E-03 | <lld< th=""><th><lld< th=""><th>33.20</th></lld<></th></lld<> | <lld< th=""><th>33.20</th></lld<> | 33.20 |
|----------------------------------|---------|----------|----------|---------------------------------------------------------------|-----------------------------------|-------|
| 2. Average Release Rate          | uCi/sec | 2.44E-07 | 1.50E-04 | 0.00E+00                                                      | 0.00E+00                          |       |
| 3. Percent of ODCM Limit - gamma | %       | 3.17E-02 | 1.91E+01 | 0.00E+00                                                      | 0.00E+00                          |       |

### C. Particulate (> 8 day half-life) Releases

| 1. Gross Activity        | Ci      | <lld< th=""><th><lld< th=""><th>4.54E-06</th><th><lld< th=""><th>19.80</th></lld<></th></lld<></th></lld<>       | <lld< th=""><th>4.54E-06</th><th><lld< th=""><th>19.80</th></lld<></th></lld<>       | 4.54E-06                                                 | <lld< th=""><th>19.80</th></lld<> | 19.80 |
|--------------------------|---------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-------|
| 2. Average Release Rate  | uCi/sec | 0.00E+00                                                                                                         | 0.00E+00                                                                             | 5.71E-07                                                 | 0.00E+00                          |       |
| 3. Percent of ODCM Limit | %       | 0.00E+00                                                                                                         | 0.00E+00                                                                             | 1.68E-02                                                 | 0.00E+00                          |       |
| 4. Gross Alpha Activity  | Ci      | <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""><td></td></lld<></td></lld<> | <lld< td=""><td></td></lld<>      |       |

### D. Tritium Releases

| 1. Total Release Activity | Ci      | 4.85E-01 | 2.72E+01 | 5.90E+00 | 5.74E-01 | 8.07 |
|---------------------------|---------|----------|----------|----------|----------|------|
| 2. Average Release Rate   | uCi/sec | 6.24E-02 | 3.46E+00 | 7.42E-01 | 7.22E-02 |      |
| 3. Percent of ODCM Limit  | %       | 3.17E-02 | 1.91E+01 | 1.68E-02 | 1.63E-03 |      |

Note: LLD Values are included in Appendix A of this report.

#### BRAIDWOOD NUCLEAR POWER STATION ANNUAL EFFLUENT REPORT FOR 2008 GAS RELEASES UNIT 2 (Docket Number 50-457) SUMMATION OF ALL RELEASES

| Units 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Est. 1otal |
|--------------------------------------------------|
|--------------------------------------------------|

## A. Fission and Activation Gas Releases

| 1. Total Activity Released       | Ci      | 1.29E+00 | 2.79E+02 | 8.92E+01 | 3.05E-02 | 7.59 |
|----------------------------------|---------|----------|----------|----------|----------|------|
| 2. Average Release Rate          | uCi/sec | 1.66E-01 | 3.55E+01 | 1.12E+01 | 3.84E-03 |      |
| 3. Percent of ODCM Limit - gamma | %       | 7.60E-05 | 4.49E-02 | 5.97E-01 | 2.06E-05 |      |
| 4. Percent of ODCM Limit - beta  | %       | 7.78E-04 | 1.09E-01 | 9.57E-02 | 2.60E-05 |      |

### **B.** Iodine Releases

| 1. Total I-131 Activity  | Ci      | 4.41E-07 | 1.32E-03 | <lld< th=""><th><lld< th=""><th>33.20</th></lld<></th></lld<> | <lld< th=""><th>33.20</th></lld<> | 33.20 |
|--------------------------|---------|----------|----------|---------------------------------------------------------------|-----------------------------------|-------|
| 2. Average Release Rate  | uCi/sec | 5.67E-08 | 1.68E-04 | 0.00E+00                                                      | 0.00E+00                          |       |
| 3. Percent of ODCM Limit | %       | 1.85E-02 | 2.12E+01 | 0.00E+00                                                      | 0.00E+00                          |       |

# C. Particulate (> 8 day half-life) Releases

| 1. Gross Activity        | Ci      | <lld< th=""><th>9.50E-07</th><th><lld< th=""><th>3.90E-06</th><th>19.80</th></lld<></th></lld<>                  | 9.50E-07                                                                             | <lld< th=""><th>3.90E-06</th><th>19.80</th></lld<>       | 3.90E-06                     | 19.80 |
|--------------------------|---------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|-------|
| 2. Average Release Rate  | uCi/sec | 0.00E+00                                                                                                         | 1.22E-07                                                                             | 0.00E+00                                                 | 4.91E-07                     |       |
| 3. Percent of OCDM Limit | %       | 0.00E+00                                                                                                         | 2.12E+01                                                                             | 0.00E+00                                                 | 1.08E-02                     |       |
| 4. Gross Alpha Activity  | Ci      | <lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<> | <lld< td=""><td><lld< td=""><td></td></lld<></td></lld<> | <lld< td=""><td></td></lld<> |       |

### D. Tritium Releases

| 1. Total Release Activity | Ci      | 5.15E+00 | 2.39E+01 | 5.85E+01 | 3.80E+00 | 8.07 |
|---------------------------|---------|----------|----------|----------|----------|------|
| 2. Average Release Rate   | uCi/sec | 6.62E-01 | 3.04E+00 | 7.36E+00 | 4.78E-01 |      |
| 3. Percent of ODCM Limit  | %       | 1.85E-02 | 2.12E+01 | 1.66E-01 | 1.08E-02 |      |

Note: LLD Values are included in Appendix A of this report.

#### BRAIDWOOD NUCLEAR POWER STATION ANNUAL EFFLUENT REPORT FOR 2008 LIQUID RELEASES UNIT 1 (Docket Number 50-456) SUMMATION OF ALL RELEASES

| Units 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Error % | Units | 1st Qtr | 2nd Qtr | 3rd Qtr | 4th Qtr | Est. Total<br>Error % |
|-----------------------------------------------|-------|---------|---------|---------|---------|-----------------------|
|-----------------------------------------------|-------|---------|---------|---------|---------|-----------------------|

#### **A. Fission and Activation Products**

| 1. Total Activity Released        | Ci     | 9.38E-04 | 3.40E-02 | 5.47E-03 | 1.12E-02 | 2.64 |
|-----------------------------------|--------|----------|----------|----------|----------|------|
| 2. Average Concentration Released | uCi/ml | 2.72E-10 | 1.01E-08 | 1.76E-09 | 2.26E-09 |      |
| 3. Percent of limit               | %      | *        | *        | *        | *        |      |

#### **B.** Tritium

| 1. Total Activity Released        | Ci     | 1.09E+02 | 4.77E+02 | 3.12E+01 | 8.78E+01 | 5.85 |
|-----------------------------------|--------|----------|----------|----------|----------|------|
| 2. Average Concentration Released | uCi/ml | 3.16E-05 | 1.42E-04 | 1.01E-05 | 1.77E-05 |      |
| 3. % of Limit (1E-2 uCi/ml)       | %      | 3.16E-01 | 1.42E+00 | 1.01E-01 | 1.77E-01 |      |

#### C. Dissolved Noble Gases

| 1. Total Activity Released        | Ci     | <lld< th=""><th>7.44E-06</th><th><lld< th=""><th><lld< th=""><th>2.64</th></lld<></th></lld<></th></lld<> | 7.44E-06 | <lld< th=""><th><lld< th=""><th>2.64</th></lld<></th></lld<> | <lld< th=""><th>2.64</th></lld<> | 2.64 |
|-----------------------------------|--------|-----------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|----------------------------------|------|
| 2. Average Concentration Released | uCi/ml | 0.00E+00                                                                                                  | 2.22E-12 | 0.00E+00                                                     | 0.00E+00                         |      |
| 3. % of Limit (2E-4 uCi/ml)       | %      | 0.00E+00                                                                                                  | 1.11E-06 | 0.00E+00                                                     | 0.00E+00                         |      |

### D. Gross Alpha

| 1. Total Activity Released        | Ci     | 3.60E-07 | 4.85E-05 | 1.39E-05 | 5.38E-05 | 14.70 |
|-----------------------------------|--------|----------|----------|----------|----------|-------|
| 2. Average Concentration Released | uCi/ml | 1.04E-13 | 1.45E-11 | 4.48E-12 | 1.09E-11 |       |

#### E. Volume of Releases

| 1. Volume of Liquid Waste to Discharge | liters | 2.13E+05 | 7.15E+05 | 7.51E+04 | 2.64E+05 |
|----------------------------------------|--------|----------|----------|----------|----------|
| 2. Volume of Dilution Water            | liters | 3.45E+09 | 3.35E+09 | 3.10E+09 | 4.95E+09 |

Note: LLD Values are included in Appendix A of this report.

Note: % Limit Values are included in Appendix B of this report.

\*This limit is equal to 10 times the concentration values in Appendix B, Table 2, Column 2 to 10CFR20.1001-20.2402.

#### BRAIDWOOD NUCLEAR POWER STATION ANNUAL EFFLUENT REPORT FOR 2008 LIQUID RELEASES UNIT 2 (Docket Number 50-457) SUMMATION OF ALL RELEASES

| Units | 1st Qtr | 2nd Qtr | 3rd Qtr | 4th Qtr | Est. Total<br>Error % |
|-------|---------|---------|---------|---------|-----------------------|
|-------|---------|---------|---------|---------|-----------------------|

### A. Fission and Activation Products

| 1. Total Activity Released        | Ci     | 9.38E-04 | 3.40E-02 | 5.47E-03 | 1.12E-02 | 2.64 |
|-----------------------------------|--------|----------|----------|----------|----------|------|
| 2. Average Concentration Released | uCi/ml | 2.72E-10 | 1.01E-08 | 1.76E-09 | 2.26E-09 |      |
| 3. Percent of Limit               | %      | *        | *        | *        | *        |      |

#### **B.** Tritium

| 1. Total Activity Released        | Ci     | 1.09E+02 | 4.77E+02 | 3.12E+01 | 8.78E+01 | 5.85 |
|-----------------------------------|--------|----------|----------|----------|----------|------|
| 2. Average Concentration Released | uCi/ml | 3.16E-05 | 1.42E-04 | 1.01E-05 | 1.77E-05 |      |
| 3. % of Limit (1E-3 uCi/ml)       | %      | 3.16E-01 | 1.42E+00 | 1.01E-01 | 1.77E-01 |      |

## C. Dissolved Noble Gases

| 1. Total Activity Released        | Ci     | <lld< th=""><th>7.44E-06</th><th><lld< th=""><th><lld< th=""><th>2.64</th></lld<></th></lld<></th></lld<> | 7.44E-06  | <lld< th=""><th><lld< th=""><th>2.64</th></lld<></th></lld<> | <lld< th=""><th>2.64</th></lld<> | 2.64 |
|-----------------------------------|--------|-----------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------|----------------------------------|------|
| 2. Average Concentration Released | uCi/ml | 0.00E+00                                                                                                  | 2.22E- 12 | 0.00E+00                                                     | 0.00E+00                         |      |
| 3. % of Limit (2E-4 uCi/ml)       | %      | 0.00E+00                                                                                                  | 1.11E-06  | 0.00E+00                                                     | 0.00E+00                         |      |

#### **D. Gross Alpha**

| 1. Total Activity Released        | Ci     | 3.60E-07 | 4.85E-05 | 1.39E-05 | 5.38E-05 | 14.70 |
|-----------------------------------|--------|----------|----------|----------|----------|-------|
| 2. Average Concentration Released | uCi/ml | 1.04E-13 | 1.45E-11 | 4.48E-12 | 1.09E-11 |       |

#### E. Volume of Releases

| 1. Volume of Liquid Waste to Discharge | liters | 2.13E+05 | 7.15E+05 | 7.51E+04 | 2.64E+05 |
|----------------------------------------|--------|----------|----------|----------|----------|
| 2. Volume of Dilution Water            | liters | 3.45E+09 | 3.35E+09 | 3.10E+09 | 4.95E+09 |

Note: LLD Values are included in Appendix A of this report.

Note: % Limit Values are included in Appendix B of this report.

\*This limit is equal to 10 times the concentration values in Appendix B, Table 2, Column 2 to 10CFR20.1001-2402.

GASEOUS RELEASE AND DOSE SUMMARY REPORT - BY UNIT (Composite Critical Receptor - Limited Analysis) Release ID..... 1 All Gas Release Types Period Start Date...: 01/01/2008 00:00 Period End Date....: 01/01/2009 00:00 Period Duration (min): 5.270E+05 Coefficient Type....: Historical Unit..... 1 Receptor..... 5 Composite Crit. Receptor - IP Distance (meters) ....: 0.0 Compass Point..... 0.0 Dose Age , Dose Limit Admin Admin % T.Spec % Period Group Organ (mrem) Period Limit of Limit Limit of Limit Strt->End INFANT THYROID 1.44E+00 31-day 2.25E-01 6.38E+02 3.00E-01 4.78E+02 Qrtr->End INFANT THYROID 1.44E+00 Quarter 5.63E+00 2.55E+01 7.50E+00 1.91E+01 Year->End INFANT THYROID 1.44E+00 Annual 1.13E+01 1.28E+01 1.50E+01 9.57E+00 Critical Pathway..... 3 Grs/Goat/Milk (GMILK) Major Contributors....: 0.0 % or greater to total Nuclide Percentage H-3 3.94E-01 I-131 9.96E+01 1.20E-04T-132 I-133 3.84E-02 ND-147 1.40E-06 Dose Age Dose Limit Admin Admin % T.Spec T.Spec % Period Group Organ (mrem) Period Limit of Limit Limit of Limit Strt->End CHILDTBODY8.35E-0331-day1.50E-015.57E+002.00E-014.18E+00Qrtr->End CHILDTBODY8.35E-03Quarter5.25E+001.59E-017.50E+001.11E-01Year->End CHILDTBODY8.35E-03Annual1.05E+017.95E-021.50E+015.57E-02 Critical Pathway..... 2 Vegetation (VEG) Major Contributors....: 0.0 % or greater to total Nuclide Percentage H-3 8.71E+01 I-131 1.29E+01 I-132 2.14E-03 I-133 6.90E-03 ND-147 2.42E-04

GASEOUS RELEASE AND DOSE SUMMARY REPORT - BY UNIT (Composite Critical Receptor - Limited Analysis) Release ID..... 1 All Gas Release Types Period Start Date...: 01/01/2008 00:00 Period End Date....: 01/01/2009 00:00 Period Duration (min): 5.270E+05 Coefficient Type....: Historical Unit..... 1 Distance (meters)....: 0.0 Compass Point..... 0.0 Dose Limit Admin Admin % T.Spec % (mrad) Period Limit of Limit Limit of Limit Dose Period Dose Type (mrad) Period Limit of Limit Limit of Limit 2.56E-04 31-day 1.50E-01 1.71E-01 2.00E-01 1.28E-01 Strt->End Gamma 

 2.56E-04
 Quarter 3.75E+00
 6.84E-03
 5.00E+00
 5.13E-03

 2.56E-04
 Annual
 7.50E+00
 3.42E-03
 1.00E+01
 2.56E-03

 Ortr->End Gamma Year->End Gamma Major Contributors....: 0.0 % or greater to total Nuclide Percentage \_\_\_\_\_ AR-41 1.97E-01 KR-85M 1.47E-01 4.87E-01 KR-85 XE-133M 1.07E+00 XE-131M 4.65E-01 XE-135 1.90E+01 XE-133 7.86E+01 Dose Limit Admin Admin % T.Spec % Dose Period Dose Type (mrad) Period Limit of Limit of Limit 1.35E-0331-day3.00E-014.49E-014.00E-013.36E-011.35E-03Quarter7.50E+001.79E-021.00E+011.35E-021.35E-03Annual1.50E+018.97E-032.00E+016.73E-03 Strt->End Beta Qrtr->End Beta Year->End Beta Major Contributors.....: 0.0 % or greater to total Nuclide Percentage -----AR-41 2.16E-02 KR-85M 7.31E-02 1,71E+01 KR-85 1.50E+00 XE-133M 1.03E+00 XE-131M XE-135 7.57E+00 XE-133 7.27E+01

GASEOUS RELEASE AND DOSE SUMMARY REPORT - BY UNIT (Composite Critical Receptor - Limited Analysis) Release ID..... 1 All Gas Release Types Period Start Date...: 01/01/2008 00:00 Period End Date....: 01/01/2009 00:00 Period Duration (min): 5.270E+05 Coefficient Type....: Historical Unit..... 2 Receptor..... 5 Composite Crit. Receptor - IP Distance (meters)....: 0.0 Compass Point....: 0.0 Dose Limit Admin Admin % T.Spec % Dose Age Period Group Organ (mrem) Period Limit of Limit Limit of Limit Strt->End INFANT THYROID 1.60E+00 31-day 2.25E-01 7.13E+02 3.00E-01 5.35E+02 Qrtr->End INFANT THYROID 1.60E+00 Quarter 5.63E+00 2.85E+01 7.50E+00 2.14E+01 Year->End INFANT THYROID 1.60E+00 Annual 1.13E+01 1.43E+01 1.50E+01 1.07E+01 Critical Pathway...... 3 Grs/Goat/Milk (GMILK) Major Contributors....: 0.0 % or greater to total Nuclide Percentage Н-3 9.47E-01 6.60E-07 TE-132 9.91E+01 I-131 I-132 8.22E-05 8.10E-02 I-133 Dose Limit Admin Admin % T.Spec % Dose Age Period Group Organ (mrem) Period Limit of Limit Limit of Limit Strt->End CHILDTBODY2.07E-0231-day1.50E-011.38E+012.00E-011.03E+01Qrtr->End CHILDTBODY2.07E-02Quarter5.25E+003.94E-017.50E+002.76E-01Year->End CHILDTBODY2.07E-02Annual1.05E+011.97E-011.50E+011.38E-01 Critical Pathway..... 2 Vegetation (VEG) Major Contributors....: 0.0 % or greater to total Nuclide Percentage H-3 9.43E+01 TE-132 3.64E-05 I-131 5.80E+00 I-132 6.67E-04 I-133 6.53E-03

GASEOUS RELEASE AND DOSE SUMMARY REPORT - BY UNIT (Composite Critical Receptor - Limited Analysis) Release ID.....: 1 All Gas Release Types Period Start Date...: 01/01/2008 00:00 Period End Date....: 01/01/2009 00:00 Period Duration (min): 5.270E+05 Coefficient Type....: Historical Unit..... 2 Receptor...... 4 Composite Crit. Receptor - NG Distance (meters) ....: 0.0 Compass Point..... 0.0 Dose Limit Admin Admin % T.Spec % Dose Period Dose Type (mrad) Period Limit of Limit Limit of Limit 3.21E-02 31-day 1.50E-01 2.14E+01 2.00E-01 1.61E+01 Strt->End Gamma 3.21E-02Quarter3.75E+008.56E-015.00E+006.42E-013.21E-02Annual7.50E+004.28E-011.00E+013.21E-01 Ortr->End Gamma Year->End Gamma Major Contributors....: 0.0 % or greater to total Nuclide Percentage AR-41 1.58E-03 1.17E-03 KR-85M 3.88E-03 KR-85 XE-133M 8.52E-03 KR-88 9.27E+01 XE-131M 3.71E-03 XE-135 4.80E-01 XE-133 6.83E+00 Dose Limit Admin Admin % T.Spec % Dose Period Dose Type (mrad) Period Limit of Limit Limit of Limit Strt->End Beta 2.06E-02 31-day 3.00E-01 6.86E+00 4.00E-01 5.15E+00 Ortr->End Beta 2.06E-02 Quarter 7.50E+00 2.74E-01 1.00E+01 2.06E-01 
 Qrtr->End Beta
 2.06E-02
 Quarter
 7.50E+00
 2.74E-01
 1.00E+01
 2.06E-01

 Year->End Beta
 2.06E-02
 Annual
 1.50E+01
 1.37E-01
 2.00E+01
 1.03E-01
 Major Contributors.....: 0.0 % or greater to total Nuclide Percentage 1.41E-03 4.78E-03 AR-41 KR-85M 1.12E+00 KR-85 9.81E-02 XE-133M 4.55E+01 KR-88 6.72E-02 XE-131M XE-135 1.56E+00 5.17E+01 XE-133

Date/Time: 04/15/2009 10:16

LAST Page - 5

|                                                                                                                                                              |                                                                                                                              | LIQUI                                                                                                                              | D RELEASE<br>- (PERIOD                                     | AND DOSE<br>BASIS -                   | SUMMARY I<br>BY UNIT)            | REPORT                           |                                  |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Release I<br>Period Sta<br>Period End<br>Period Du<br>Unit<br>Receptor.                                                                                      | D<br>art Dat<br>d Date.<br>ration                                                                                            | : 1<br>e: 0<br>(mins): 5<br>: 1<br>: 0                                                                                             | All Liqu<br>1/01/2008<br>1/01/2009<br>.270E+05<br>Liquid R | id Relea<br>00:00<br>00:00<br>eceptor | se Types                         |                                  |                                  |                                  |
| === MAXIM<br>Dose<br>Period                                                                                                                                  | JM PERI<br>Age<br>Group                                                                                                      | OD DOSE T(<br>Organ                                                                                                                | O LIMIT (A<br>Dose<br>(mrem)                               | ny Organ<br>Limit<br>Period           | ) =======<br>Admin<br>Limit      | Admin %<br>of Limit              | T.Spec<br>Limit                  | T.Spec %<br>of Limit             |
| Strt->End<br>Qrtr->End<br>Year->End                                                                                                                          | ADULT<br>ADULT<br>ADULT                                                                                                      | GILLI<br>GILLI<br>GILLI                                                                                                            | 1.09E-01<br>1.09E-01<br>1.09E-01                           | 31-day<br>Quarter<br>Annual           | 1.50E-01<br>3.75E+00<br>7.50E+00 | 7.24E+01<br>2.90E+00<br>1.45E+00 | 2.00E-01<br>5.00E+00<br>1.00E+01 | 5.43E+01<br>2.17E+00<br>1.09E+00 |
| Critical I<br>Major Cont<br>Nuclide                                                                                                                          | Pathway<br>tributo<br>Perc                                                                                                   | rs<br>entage                                                                                                                       | 1 Fresh<br>0.0 % or                                        | Water Fi.<br>greater                  | sh - Spor<br>to total            | t (FFSP)                         |                                  |                                  |
| H-3<br>CR-51<br>MN-54<br>FE-55<br>FE-59<br>CO-58<br>CO-60<br>ZN-65<br>ZR-95<br>NB-95<br>RU-103<br>TE-132<br>I-131<br>I-132<br>CS-134<br>CS-137<br>=== MAXIMU | 3.13<br>7.39<br>1.79<br>1.04<br>1.24<br>8.28<br>8.43<br>1.12<br>1.00<br>6.57<br>2.27<br>1.99<br>7.74<br>5.97<br>4.16<br>2.86 | E+01<br>E-02<br>E-01<br>E-01<br>E-01<br>E-01<br>E-02<br>E-02<br>E+01<br>E-03<br>E-02<br>E-04<br>E-07<br>E-01<br>E-01<br>OD DOSE TO | ) LIMIT (T                                                 | ot Body);                             | ) =========                      |                                  |                                  |                                  |
| Dose<br>Period                                                                                                                                               | Age<br>Group                                                                                                                 | Organ                                                                                                                              | Dose<br>(mrem)                                             | Limit<br>Period                       | Admin<br>Limit                   | Admin %<br>of Limit              | T.Spec<br>Limit                  | T.Spec %<br>of Limit             |
| Strt->End<br>Qrtr->End<br>Year->End                                                                                                                          | ADULT<br>ADULT<br>ADULT                                                                                                      | TBODY<br>TBODY<br>TBODY                                                                                                            | 6.60E-02<br>6.60E-02<br>6.60E-02                           | 31-day<br>Quarter<br>Annual           | 4.50E-02<br>1.13E+00<br>2.25E+00 | 1.47E+02<br>5.87E+00<br>2.93E+00 | 6.00E-02<br>1.50E+00<br>3.00E+00 | 1.10E+02<br>4.40E+00<br>2.20E+00 |
| Major Cont<br>Nuclide                                                                                                                                        | ributo<br>Perc                                                                                                               | rs<br>entage                                                                                                                       | 0.0 % or                                                   | greater                               | to total                         | (ITOE)                           |                                  |                                  |
| H-3<br>CR-51                                                                                                                                                 | 5.15                                                                                                                         | E+01<br>E-04                                                                                                                       |                                                            |                                       |                                  |                                  |                                  |                                  |

#### LIQUID RELEASE AND DOSE SUMMARY REPORT ----- (PERIOD BASIS - BY UNIT) -----

Release ID..... 1 All Liquid Release Types Period Start Date....: 01/01/2008 00:00 Period End Date.....: 01/01/2009 00:00 Period Duration (mins): 5.270E+05

| MIN-54 | 1.000-02 |
|--------|----------|
| FE-55  | 6.99E-02 |
| FE-59  | 2.36E-02 |
| CO-58  | 1.51E-01 |
| CO-60  | 1.64E-01 |
| ZN-65  | 1.33E-02 |
| ZR-95  | 3.52E-06 |
| NB-95  | 9.59E-03 |
| RU-103 | 1.38E-05 |
| TE-132 | 6.49E-04 |
| I-131  | 2.77E-03 |
| I-132  | 1.83E-06 |
| CS-134 | 3.20E+01 |
| CS-137 | 1.59E+01 |

LIQUID RELEASE AND DOSE SUMMARY REPORT ----- (PERIOD BASIS - BY UNIT) -----Release ID..... 1 All Liquid Release Types Period Start Date....: 01/01/2008 00:00 Period End Date....: 01/01/2009 00:00 Period Duration (mins): 5.270E+05 Unit..... 2 Receptor.....: 0 Liquid Receptor Dose Aqe Dose Limit Admin Admin % T.Spec % Period Limit of Limit Limit of Limit Period Group Organ (mrem) \_\_\_\_\_ Strt->End ADULT GILLI 1.09E-01 31-day 1.50E-01 7.24E+01 2.00E-01 5.43E+01 

 Qrtr->End ADULT GILLI
 1.09E-01
 Quarter 3.75E+00
 2.90E+00
 5.00E+00
 2.17E+00

 Year->End ADULT GILLI
 1.09E-01
 Annual
 7.50E+00
 1.45E+00
 1.00E+01
 1.09E+00

 Critical Pathway.....: 1 Fresh Water Fish - Sport (FFSP) Major Contributors....: 0.0 % or greater to total Nuclide Percentage H-3 3.13E+01 CR-51 7.39E-02 MN-54 1.79E-01 1.04E-01 FE-55 1.24E-01 FE-59 CO-58 8.28E-01 CO-60 8.43E-01 ZN-65 1.12E-02 ZR-95 1.00E-02 NB-95 6.57E+01 2.27E-03 RU-103 1.99E-02 TE-132 7.74E-04 I-131 I-132 5.97E-07 CS-134 4.16E-01 CS-137 2.86E-01 Dose Limit Admin Admin % T.Spec % Dose Age (mrem) Period Limit of Limit Limit of Limit Period Group Organ · · · Strt->End ADULT TBODY 6.60E-02 31-day 4.50E-02 1.47E+02 6.00E-02 1.10E+02 Qrtr->End ADULT TBODY 6.60E-02 Quarter 1.13E+00 5.87E+00 1.50E+00 4.40E+00 Year->End ADULT TBODY 6.60E-02 Annual 2.25E+00 2.93E+00 3.00E+00 2.20E+00 Critical Pathway..... 1 Fresh Water Fish - Sport (FFSP) Major Contributors....: 0.0 % or greater to total Nuclide Percentage \_\_\_\_\_ H-3 5.15E+01 CR-51 4.85E-04

LIQUID RELEASE AND DOSE SUMMARY REPORT ----- (PERIOD BASIS - BY UNIT) -----Release ID..... 1 All Liquid Release Types Period Start Date....: 01/01/2008 00:00 Period End Date....: 01/01/2009 00:00 Period Duration (mins): 5.270E+05 Major Contributors.....: 0.0 % or greater to total Nuclide Percentage MN-54 1.83E-02 FE-55 6.99E-02 FE-59 2.36E-02 , CO-58 1.51E-01 1.64E-01 CO-60 ZN-65 1.33E-02 3.52E-06 ZR-95 9.59E-03 NB-95 
 RU-103
 1.38E-05

 TE-132
 6.49E-04

 I-131
 2.77E-03
 I-131 2.77E-03 I-132 1.83E-06 CS-134 3.20E+01 CS-137 1.59E+01

## Table 3.3-1

# **10CFR20 COMPLIANCE ASSESSMENT**

Braidwood Nuclear Station

# Unit 1

# 10 CFR 20 Compliance Assessment

Period of Assessment: 1/1/08 through 12/31/08 Calculated 5/5/09

# <u>10 CFR 20.1301(a)(1) Compliance</u>

| Total Effective Dose Equivalent (TEDE) | mrem/year  | 1.63E+00 |
|----------------------------------------|------------|----------|
| 10 CFR 20.1301(a)(1) limit             | mrem/year  | 100.00   |
|                                        | % of limit | 1.63     |

# Compliance Summary

|             | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | Total    |
|-------------|---------------------|---------------------|---------------------|---------------------|----------|
| TEDE (mrem) | 1.62E-02            | 1.52E+00            | 5.16E-02            | 3.39E-02            | 1.62E+00 |

# Table 3.3-1 (continued)

# 10CFR20 COMPLIANCE ASSESSMENT

Braidwood Nuclear Station

## Unit 2

# 10 CFR 20 Compliance Assessment

Period of Assessment: 1/1/08 through 12/31/08 Calculated 5/5/09

| Total Effective Dose Equivalent (TEDE) | mrem/year  | 1.85E+00 |
|----------------------------------------|------------|----------|
| 10 CFR 20.1301(a)(1) limit             | mrem/year  | 100.00   |
|                                        | % of limit | 1.85     |

**Compliance Summary** 

|             | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | Total    |
|-------------|---------------------|---------------------|---------------------|---------------------|----------|
| TEDE (mrem) | 1.52E-02            | 1.70E+00            | 1.02E-01            | 3.46E-02            | 1.85E+00 |

# Table 3.4-1

#### Braidwood Station - Unit 1

#### MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2008

| TYPE OF DOSE      | FIRST QUARTER | SECOND QUARTER | THIRD QUARTER  | FOURTH QUARTER | ANNUAL       |
|-------------------|---------------|----------------|----------------|----------------|--------------|
| GAMMA AIR (mrad)  | 3.480E-06(N)  | 3.210E-04(W)   | 9.170E-08( W ) | 1.590E-08( N ) | 3.231E-04(W) |
| BETA AIR (mrad)   | 1.410E-04(N)  | 3.520E-03(W)   | 9.300E-07( W ) | 1.120E-06( N ) | 3.583E-03(W) |
| WHOLE BODY (mrem) | 1.250E-06(N)  | 1.650E-04(W)   | 6.680E-08( W ) | 5.040E-09( N ) | 1.659E-04(W) |
| SKIN (mrem)       | 6.260E-05(N)  | 1.450E-03(W)   | 3.350E-07( W ) | 5.120E-07( N ) | 1.483E-03(W) |
| ORGAN (mrem)      | 2.290E-05(N)  | 2.670E-03(W)   | 4.830E-04( W ) | 3.240E-05( N.) | 3.191E-03(W) |
| CRITICAL PERSON   | Teenager      | Teenager       | Teenager       | Teenager       | Teenager     |
| CRITICAL ORGAN    | Thyroid       | Thyroid        | Liver          | Liver          | Thyroid      |

#### COMPLIANCE STATUS

|                   | 10 CFR 50 APP. I    |             | 10 CFR 50 APP.I  |             |
|-------------------|---------------------|-------------|------------------|-------------|
| TYPE OF DOSE      | QUARTERLY OBJECTIVE | % OF APP. I | YEARLY OBJECTIVE | % OF APP. I |
| GAMMA AIR (mrad)  | 5.0                 | 0.01        | 10.0             | 0.00        |
| BETA AIR (mrad)   | 10.0                | 0.04        | 20.0             | 0.02        |
| WHOLE BODY (mrem) | 2.5                 | 0.01        | 5.0              | 0.00        |
| SKIN (mrem)       | 7.5                 | 0.02        | 15.0             | 0.01        |
| ORGAN (mrem)      | 7.5                 | 0.04        | 15.0             | 0.02        |
| CRITICAL PERSON   |                     | Teenager    |                  | Teenager    |
| CRITICAL ORGAN    |                     | Thyroid     |                  | Thyroid     |

Calculation used release data from the following: Unit 1 - Vent

Date of calculation: 4/9/2009

# Table 3.4-1 (continued)

Braidwood Station - Unit 2

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2008

| TYPE OF DOSE             | FIRST QUARTER  | SECOND QUARTER | THIRD QUARTER  | FOURTH QUARTER | ANNUAL     |
|--------------------------|----------------|----------------|----------------|----------------|------------|
| GAMMA AIR (mrad)         | 4.590E-06( N ) | 2.960E-03(W)   | 2.840E-02(W)   | 1.260E-06( N ) | 3.136E-02( |
| BETA AIR (mrad)<br>W )   | 1.500E-04(N)   | 3.030E-02( W ) | 3.290E-02( W ) | 6.240E-06( N ) | 6.327E-02( |
| WHOLE BODY (mrem)<br>W ) | 1.720E-06( N ) | 1.460E-03( W ) | 1.640E-02( W ) | 6.200E-07( N ) | 1.786E-02( |
| SKIN (mrem)<br>W )       | 6.540E-05(N)   | 1.060E-02( W ) | 4.880E-02(W)   | 4.290E-06( N ) | 5.944E-02( |
| ORGAN (mrem)<br>W )      | 2.330E-04( N ) | 2.570E-03( W ) | 4.790E-03( W ) | 2.150E-04( N ) | 7.644E-03( |
| CRITICAL PERSON          | Teenager       | Teenager       | Teenager       | Teenager       |            |
| CRITICAL ORGAN           | Liver          | Thyroid        | Liver          | Liver          | Thyroid    |

#### COMPLIANCE STATUS

| TYPE OF DOSE      | 10 CFR 50 APP. I<br>QUARTERLY OBJECTIVE | % OF APP. I | 10 CFR 50 APP.I<br>YEARLY OBJECTIVE | % OF APP. I |
|-------------------|-----------------------------------------|-------------|-------------------------------------|-------------|
| GAMMA AIR (mrad)  | 5.0                                     | 0.57        | 10.0                                | 0.31        |
| BETA AIR (mrad)   | 10.0                                    | 0.33        | 20.0                                | 0.32        |
| WHOLE BODY (mrem) | 2.5                                     | 0.66        | 5.0                                 | 0.36        |
| SKIN (mrem)       | 7.5                                     | 0.65        | 15.0                                | 0.40        |
| ORGAN (mrem)      | 7.5                                     | 0.06        | 15.0                                | 0.05        |
| CRITICAL PERSON   |                                         | Teenager    |                                     | Teenager    |
| CRITICAL ORGAN    |                                         | Liver       |                                     | Thyroid     |

Calculation used release data from the following: Unit 2 - Vent

Date of calculation: 4/9/2009
Intentionally left blank

# **APPENDIX F**

# METEOROLOGICAL

Period of Record: January - March 2008 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind<br>Direction                     | 1-3 | 4-7 | 8-12                    | 13-18                    | 19-24                         | > 24                        | Total                 |
|---------------------------------------|-----|-----|-------------------------|--------------------------|-------------------------------|-----------------------------|-----------------------|
| aan ama aala aala aan ann wor aad aan |     |     | utan ann uuu sati siin. | anan daan ahan aaaa daab | 2005. 5299. viens, 4005. anna | where game lively work from | 000 and was 1000 from |
| Ν                                     | 0   | 0   | 0                       | 0                        | 0                             | 0                           | 0                     |
| NNE                                   | 0   | 0   | 8                       | 0                        | 0                             | 0                           | 8                     |
| NE                                    | 0   | 1   | 3                       | 0                        | 0                             | 0                           | 4                     |
| ENE                                   | 0   | 1   | 0                       | 0                        | 0                             | 0                           | 1                     |
| Е                                     | 0   | 1   | 3                       | 0                        | 0                             | 0                           | 4                     |
| ESE                                   | 0   | 0   | 3                       | 0                        | 0                             | 0                           | 3                     |
| SE                                    | 0   | 0   | 2                       | 0                        | 0                             | 0                           | 2                     |
| SSE                                   | 0   | 0   | 0                       | 0                        | 0                             | 0                           | 0                     |
| S                                     | 0   | 0   | 0                       | 0                        | 0                             | 0                           | 0                     |
| SSW                                   | 0   | 0   | 0                       | 2                        | 0                             | 0                           | 2                     |
| SW                                    | 0   | 1   | 3                       | 2                        | 0                             | 0                           | 6                     |
| WSW                                   | 0   | 0   | 2                       | 0                        | 1                             | 0                           | 3                     |
| W                                     | 0   | 2   | 4                       | 4                        | 6                             | 0                           | 16                    |
| WNW                                   | 0   | 6   | 15                      | 5                        | 0                             | 0                           | 26                    |
| NW                                    | 0   | 5   | 9                       | 0                        | 0                             | 0                           | 14                    |
| NNW                                   | 0   | 2   | 6                       | 0                        | 0                             | 0                           | 8                     |
| Variable                              | 0   | 0   | 0                       | 0                        | 0                             | 0                           | 0                     |
| Total                                 | 0   | 19  | 58                      | 13                       | 7                             | 0                           | 97                    |

Wind Speed (in mph)

Period of Record: January - March 2008 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind      |     |       |      |       |       |      |       |  |  |  |
|-----------|-----|-------|------|-------|-------|------|-------|--|--|--|
| Direction | 1-3 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |  |  |  |
| N         | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |  |
| NNE       | 0   | 0     | 3    | 2     | 0     | 0    | 5     |  |  |  |
| NE        | 0   | 2     | 0    | 1     | 0     | 0    | 3     |  |  |  |
| ENE       | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |  |
| Е         | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |  |
| ESE       | 0   | 1     | 1    | 0     | 0     | 0    | 2     |  |  |  |
| SE        | 0   | 0     | 1    | 0     | 0     | 0    | 1     |  |  |  |
| SSE       | 0   | 0     | 1    | 1     | 0     | 0    | 2     |  |  |  |
| S         | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |  |
| SSW       | 0   | 1     | 0    | 1     | 0     | 0    | 2     |  |  |  |
| SW        | Ø   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |  |
| WSW       | 0   | 1     | 2    | 1     | 0     | 0    | 4     |  |  |  |
| W         | 0   | 3     | 6    | 0     | 0     | 0    | 9     |  |  |  |
| WNW       | 0   | 4     | 3    | 2     | 0     | 0    | 9     |  |  |  |
| NW        | 0   | 5     | 1    | 0     | 0     | 0    | 6     |  |  |  |
| NNW       | 0   | 0     | 5    | 0     | 0     | 0    | 5     |  |  |  |
| Variable  | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |  |
| Total     | 0   | 17    | 23   | 8     | 0     | 0    | 48    |  |  |  |

Wind Speed (in mph)

Period of Record: January - March 2008 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind<br>Direction | 1-3 | 4 - 7 | 8-12  | 13-18 | 19-24 | > 24 | Total |
|-------------------|-----|-------|-------|-------|-------|------|-------|
| N                 |     | 1     | <br>C |       | 0     |      | <br>A |
|                   | 0   | ±     | ~     | ية.   | 0     | °,   | T     |
| NNE               | 0   | 0     | 5     | T     | 0     | 0    | 6     |
| NE                | 0   | 2     | 1     | 0     | 0     | 0    | 3     |
| ENE               | 0   | 1     | 0     | 0     | 0     | 0    | 1     |
| Ε                 | 0   | 0     | 3     | 0     | 0     | 0    | 3     |
| ESE               | 0   | 3     | 2     | 0     | 0     | 0    | 5     |
| SE                | 0   | 0     | 3     | 0     | 0     | 0    | 3     |
| SSE               | 0   | 1     | 5     | 0     | 0     | 0    | 6     |
| S                 | 0   | 0     | 0     | 4     | 0     | 0    | 4     |
| SSW               | 0   | 2     | 4     | 2     | 1     | 0    | 9     |
| SW                | 0   | 2     | 3     | 0     | 1     | 0    | 6     |
| WSW               | 0   | 4     | 5     | 0     | 1     | 0    | 10    |
| W                 | 0   | 7     | 6     | 2     | 1     | 0    | 16    |
| WNW               | 0   | 5     | 7     | 2     | 0     | 0    | 14    |
| NW                | 0   | 1     | 2     | 0     | 0     | 0    | 3     |
| NNW               | 0   | 0     | 3     | 2     | 0     | 0    | 5     |
| Variable          | 0   | 0     | 0     | 0     | 0     | 0    | 0     |
| Total             | 0   | 29    | 51    | 14    | 4     | 0    | 98    |
|                   |     |       |       |       |       |      |       |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 20

F-3

Period of Record: January - March 2008 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind<br>Direction                                    | 1-3 | 4-7               | 8-12 | 13-18                       | 19-24 | > 24 | Total |
|------------------------------------------------------|-----|-------------------|------|-----------------------------|-------|------|-------|
| مرید میں ہوتے ہوتے ہوتے ہوتے ہیں ہوتے ہوتے ہوتے ہیں۔ |     | 1997 ayu ayu 1995 |      | عملية يجهون حادث معتم عماير |       | ·    |       |
| N                                                    | 0   | 15                | 40   | 4                           | 0     | 0    | ,59   |
| NNE                                                  | 5   | 24                | 30   | ġ                           | 0     | 0    | 62    |
| NE                                                   | 9   | 24                | 39   | 5                           | 0     | 0    | 77    |
| ENE                                                  | 10  | 47                | 18   | 0                           | 0     | 0    | 75    |
| Е                                                    | 3   | 42                | 7    | 0                           | 0     | 0    | 52    |
| ESE                                                  | 1   | 18                | 24   | 0                           | 0     | 0    | 43    |
| SE                                                   | 0   | 12                | 21   | 2                           | 0     | 0    | 35    |
| SSE                                                  | 0   | 15                | 54   | 11                          | 0     | 0    | 80    |
| S                                                    | 0   | 6                 | 48   | 68                          | 7     | 0    | 129   |
| SSW                                                  | 0   | 11                | 28   | 29                          | 6     | 0    | 74    |
| SW                                                   | 1   | 18                | 33   | 10                          | 5     | 0    | 67    |
| WSW                                                  | 1   | 32                | 21   | 1                           | 0     | 0    | 55    |
| W                                                    | 5   | 36                | 56   | 32                          | 11    | 0    | 140   |
| WNW                                                  | 3   | 30                | 94   | 31                          | 5     | 0    | 163   |
| NW                                                   | 2   | 29                | 28   | 5                           | 0     | 0    | 64    |
| NNW                                                  | 0   | 21                | 28   | 8                           | 0     | 0    | 57    |
| Variable                                             | 0   | 0                 | Ó    | 0                           | 0     | 0    | 0     |
| Total                                                | 40  | 380               | 569  | 209                         | 34    | 0    | 1232  |

Wind Speed (in mph)

Period of Record: January - March 2008 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind      | 1 7 | 4 17  | - 10 | 10 10 | 10.04 | 0.4  | m - t 7 |
|-----------|-----|-------|------|-------|-------|------|---------|
| Direction |     | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total   |
| N         | 5   | 12    | 0    | 0     | 0     | 0    | 17      |
| NNE       | 3   | 13    | 7    | 0     | 0     | 0    | 23      |
| NE        | 6   | 6     | 2    | 5     | 0     | 0    | 19      |
| ENE       | 7   | 7     | 3    | 2     | 0     | 0    | 19      |
| E         | 8   | 18    | 2    | 0     | 0     | 0    | 28      |
| ESE       | 5   | 17    | 6    | 0     | 0     | 0    | 28      |
| SE        | 3   | 11    | 17   | 1     | 0     | 0    | 32      |
| SSE       | 3   | 14    | 25   | 1     | 2     | 0    | 45      |
| S         | 1   | 8     | 35   | 21    | 1     | 0    | 66      |
| SSW       | 1   | 10    | 14   | 10    | 4     | 0    | 39      |
| SW        | 5   | 6     | 7    | 0     | 0     | 0    | 18      |
| WSW       | 4   | 21    | 13   | 0     | 0     | 0    | 38      |
| W         | 11  | 13    | 7    | 5     | 0     | 0    | 36      |
| WNW       | 20  | 23    | 12   | 1     | 0     | 0    | 56      |
| NW        | 16  | 29    | 3    | 0     | 0     | 0    | 48      |
| NNW       | 8   | 13    | 8    | 0     | 0     | 0    | 29      |
| Variable  | 0   | 0     | 0    | 0     | 0     | 0    | 0       |
| Total     | 106 | 221   | 161  | 46    | 7     | 0    | 541     |

#### Wind Speed (in mph)

|             | Wi  | nds Measu | ured at  | 34 Feet | :     |      | ,     |
|-------------|-----|-----------|----------|---------|-------|------|-------|
| 177 d an 13 |     | Win       | nd Speed | (in mph | 1)    |      |       |
| Direction   | 1-3 | 4-7       | 8-12     | 13-18   | 19-24 | > 24 | Total |
| N           | 1   | 1         | 0        | 0       | 0     | 0    | 2     |
| NNE         | 1   | 2         | 0        | 0       | 0     | 0    | 3     |
| NE          | 2   | 0         | 0        | 0       | 0     | 0    | 2     |
| ENE         | 4   | 0         | 0        | 0       | 0     | 0    | 4     |
| E           | 2   | 0         | 0        | 0       | 0     | 0    | 2     |
| ESE         | 1   | 2         | 0        | 0       | 0     | 0    | 3     |
| SE          | 0   | 4         | 0        | 0       | 0     | 0    | 4     |
| SSE         | 0   | 0         | 0        | 0       | 0     | 0    | 0     |
| S           | 0   | 2         | 0        | 0       | 0     | 0    | 2     |
| SSW         | 3   | 3         | 1        | 0       | 0     | 0    | 7     |
| SW          | 3   | 1         | 0        | 0       | 0     | 0    | 4     |
| WSW         | 2   | 15        | 0        | 0       | 0     | 0    | 17    |
| W           | 19  | 7         | 0        | 0       | 0     | 0    | 26    |
| WNW         | 14  | 5         | 0        | 0       | 0     | 0    | 19    |
| NW          | 2   | 2         | 0        | 0       | 0     | 0    | 4     |
| NNW         | 2   | 0         | 0        | 0       | 0     | 0    | 2     |
| Variable    | 0   | 0         | 0        | 0       | 0     | 0    | 0     |
| Total       | 56  | 44        | 1        | 0       | 0     | 0    | 101   |

Period of Record: January - March 2008 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

|           |       | WILLOS M            | easureu | al 34 r | eet    |        |       |  |  |  |
|-----------|-------|---------------------|---------|---------|--------|--------|-------|--|--|--|
| 17 d J    |       | Wind Speed (in mph) |         |         |        |        |       |  |  |  |
| Direction | n 1-3 | 3 4-7               | 8-1     | 2 13-1  | 8 19-2 | 4 > 24 | Total |  |  |  |
| N         | 1     | 0                   | 0       | 0       | 0      | 0      | 1     |  |  |  |
| NNE       | 0     | . 0                 | 0       | 0       | 0      | 0      | 0     |  |  |  |
| NE        | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| ENE       | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| Е         | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| ESE       | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| SE        | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| SSE       | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| S         | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| SSW       | 0     | 2                   | 0       | 0       | 0      | 0      | 2     |  |  |  |
| SW        | 3     | 0                   | 0       | 0       | 0      | 0      | 3     |  |  |  |
| WSW       | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| W         | 1     | 0                   | 0       | 0       | 0      | 0      | 1     |  |  |  |
| WNW       | 2     | 0                   | 0       | 0       | 0      | 0      | 2     |  |  |  |
| NW        | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| NNW       | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| Variable  | 0     | 0                   | 0       | 0       | 0      | 0      | 0     |  |  |  |
| Total     | 7     | 2                   | 0       | 0       | 0      | 0      | 9     |  |  |  |

Period of Record: January - March 2008 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Period of Record: January - March 2008 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3 | 4 - 7 | 8-12                | 13-18 | 19-24 | > 24 | Total |
|-------------------|-----|-------|---------------------|-------|-------|------|-------|
|                   |     |       | نعت علي علي محد محد |       |       |      |       |
| N                 | 0   | 0     | 0                   | 1     | 0     | 0    | 1     |
| NNE               | 0   | 0     | 0                   | 1     | 0     | 0    | 1     |
| NE                | 0   | 0     | 8                   | 3     | 0     | 0    | 11    |
| ENE               | 0   | 0     | 1                   | 0     | 0     | 0    | 1     |
| Е                 | 0   | 0     | 0                   | 0     | 0     | 0    | 0     |
| ESE               | 0   | 0     | 1                   | 5     | 0     | 0    | 6     |
| SE                | 0   | 0     | 3                   | 0     | 0     | 0    | 3     |
| SSE               | 0   | 0     | 0                   | 0     | 0     | 0    | 0     |
| S                 | 0   | 0     | 0                   | 0     | 0     | 0    | 0     |
| SSW               | 0   | 1     | 0                   | 0     | 1     | 0    | 2     |
| SW                | 0   | 0     | 1                   | 2     | 2     | 0    | 5     |
| WSW               | 0   | 0     | 0                   | 0     | 0     | 1    | 1     |
| W                 | 0   | 1     | 1                   | 6     | 0     | 7    | 15    |
| WNW               | 0   | 1     | 9                   | 11    | 0     | 5    | 26    |
| NW                | 0   | 0     | 12                  | 6     | 0     | 0    | 18    |
| NNW               | 0   | 0     | 4                   | 3     | 0     | 0    | 7     |
| Variable          | 0   | 0     | 0                   | 0     | 0     | 0    | 0     |
| Total             | 0   | 3     | 40                  | 38    | 3     | 13   | 97    |

Wind Speed (in mph)

Period of Record: January - March 2008 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |
|-------------------|-----|-------|------|-------|-------|------|-------|
|                   | 0   | 0     |      |       |       |      |       |
| IN                | U   | 0     | U    | Ņ     | 0.    | 0    | 0     |
| NNE               | 0   | 0     | 1    | 0     | 0     | 0    | 1     |
| NE                | 0   | 0     | 4    | 0     | 3     | 0    | 7     |
| ENE               | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| Е                 | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| ESE               | 0   | 0     | 1    | 0     | 0     | 0    | 1     |
| SE                | 0   | 0     | 1    | 1     | 0     | 0    | 2     |
| SSE               | 0   | 0     | 1    | 0     | 0     | 0    | 1     |
| S                 | 0   | 0     | 0    | 0     | 0     | 1    | 1     |
| SSW               | 0   | 0     | 1    | 0     | 0     | 0    | 1     |
| SW                | 0   | Ö     | 0    | 0     | 1     | 0    | 1     |
| WSW               | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| W                 | 0   | 2     | 3    | 5     | 0     | 1    | 11    |
| WNW               | 0   | 1     | 3    | 2     | 0     | 2    | 8     |
| NW                | 0   | 3     | 5    | 0     | 0     | 0    | 8     |
| NNW               | 0   | 1     | 3    | 2     | 0     | 0    | 6     |
| Variable          | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| Total             | 0   | 7     | 23   | 10    | 4     | 4    | 48    |

Wind Speed (in mph)

Period of Record: January - March 2008 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind     | 1-3             | 4 - 7   | 8-12 | 13-18 | 19-24 | > 24 | Total |
|----------|-----------------|---------|------|-------|-------|------|-------|
|          | الاست الملحة ال | · 36 /· |      |       |       |      |       |
| N        | 0               | 1       | 1    | 3     | 0     | 0    | 5     |
| NNE      | 0               | 0       | 0    | 0     | 0     | 0    | 0     |
| NE       | 0               | 0       | 3    | 4     | 1     | 0    | 8     |
| ENE      | Ó               | 0       | 1    | 0     | 0     | 0    | 1     |
| E        | 0               | 0       | 1    | 0     | 0     | 0    | 1     |
| ESE      | 0               | 0       | 1    | 1     | 3     | 0    | 5     |
| SE       | 0               | 0       | 3    | 2     | 1     | 0    | 6     |
| SSE      | 0               | 1       | 2    | 3     | 0     | 0    | 6     |
| S        | 0               | 0       | 0    | 0     | 4     | 0    | 4     |
| SSW      | 0               | 1       | 0    | 2     | 2     | 1    | 6     |
| SW       | 0               | 0       | 5    | 2     | 0     | 1    | 8     |
| WSW      | 0               | 2       | 3    | 2     | 0     | 0    | 7     |
| W        | 0               | 5       | 4    | 7     | 0     | 3    | 19    |
| WNW      | 0               | 1       | 4    | 5     | 0     | 1    | 11    |
| NW       | 0               | 1       | 5    | 2     | 0     | 1    | 9     |
| NNW      | 0               | 0       | 1    | 1     | 0     | 0    | 2     |
| Variable | 0               | 0       | 0    | 0     | 0     | 0    | 0     |
| Total    | 0               | 12      | 34   | 34    | 11    | 7    | 98    |
|          |                 |         |      |       |       |      |       |

Wind Speed (in mph)

Period of Record: January - March 2008 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind      |    | 4 57 | 0 10 | 10 10 | 10 04 | 24   | m 1   |
|-----------|----|------|------|-------|-------|------|-------|
| Direction |    | 4-/  | 8-12 | 13-18 | 19-24 | > 24 | Total |
| N         | 0  | 6    | 18   | 25    | 0     | 0    | 49    |
| NNE       | 1  | 7    | 25   | 26    | 5     | 0    | 64    |
| NE        | 4  | 9    | 20   | 34    | 13    | 0    | 80    |
| ENE       | 1  | 14   | 20   | 16    | 0     | 0    | 51    |
| Е         | 1  | 10   | 36   | 12    | 0     | 0    | 59    |
| ESE       | 0  | 4    | 19   | 24    | 10    | 0    | 57    |
| SE        | 0  | 2    | 11   | 24    | 5     | 2    | 44    |
| SSE       | 0  | 0    | 16   | 26    | 11    | 0    | 53    |
| S         | 0  | 1    | 18   | 37    | 63    | 25   | 144   |
| SSW       | 0  | 5    | 6    | 21    | 27    | 16   | 75    |
| SW        | 0  | 9    | 19   | 27    | 4     | 8    | 67    |
| WSW       | 1  | 22   | 21   | 10    | 1     | 3    | 58    |
| W         | 0  | 17   | 20   | 33    | 24    | 9    | 103   |
| WNW       | 2  | 9    | 23   | 80    | 52    | 26   | 192   |
| NW        | 2  | 7    | 24   | 30    | 15    | 4    | 82    |
| NNW       | 0  | 9    | 15   | 26    | 4     | 0    | 54    |
| Variable  | 0  | 0    | 0    | 0     | 0     | 0    | 0     |
| Total     | 12 | 131  | 311  | 451   | 234   | 93   | 1232  |

Wind Speed (in mph)

| winds Measured at 203 Feet |     |       |           |           |       |      |       |  |  |  |
|----------------------------|-----|-------|-----------|-----------|-------|------|-------|--|--|--|
| Wind                       |     | W     | ind Speed | d (in mpl | n)    |      |       |  |  |  |
| Direction                  | 1-3 | 4 - 7 | 8-12      | 13-18     | 19-24 | > 24 | Total |  |  |  |
| N                          | 4   | 5     | 12        | 1         | 0     | 0    | 22    |  |  |  |
| NNE                        | 1   | 1     | 16        | 6         | 0     | 0    | 24    |  |  |  |
| NE                         | 0   | 5     | 7         | 3         | 4     | 1    | 20    |  |  |  |
| ENE                        | 2   | 3     | 8         | 2         | 2     | 1    | 18    |  |  |  |
| E                          | 0   | 6     | 13        | 4         | 0     | 0    | 23    |  |  |  |
| ESE                        | 0   | 0     | 6         | 20        | 3     | 0    | 29    |  |  |  |
| SE                         | 0   | 3     | 11        | 5         | 9     | 0    | 28    |  |  |  |
| SSE                        | 0   | 3     | 10        | 25        | 8     | 0    | 46    |  |  |  |
| S                          | 0   | 2     | 5         | 20        | 21    | 13   | 61    |  |  |  |
| SSW                        | 0   | 5     | 8         | 15        | 10    | 13   | 51    |  |  |  |
| SW                         | 2   | 5     | 5         | 7         | 2     | 0    | 21    |  |  |  |
| WSW                        | 0   | 7     | 13        | 7         | 0     | 0    | 27    |  |  |  |
| W                          | 2   | 4     | 14        | 15        | 4     | 0    | 39    |  |  |  |
| WNW                        | 3   | 3     | 14        | 15        | 3     | 4    | 42    |  |  |  |
| NW                         | 3   | 10    | 36        | 18        | 2     | 0    | 69    |  |  |  |
| NNW                        | 0   | 2     | 20        | 11        | 0     | 0    | 33    |  |  |  |
| Variable                   | 0   | 0     | 0         | 0         | 0     | 0    | 0     |  |  |  |
| Total                      | 17  | 64    | 198       | 174       | 68    | 32   | 553   |  |  |  |

Period of Record: January - March 2008 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

|             | 71 A | nub nouc | urca ac  | 200 1000  |       |      |       |
|-------------|------|----------|----------|-----------|-------|------|-------|
| tut - un al |      | Wi       | nd Speed | d (in mp) | n)    |      |       |
| Direction   | 1-3  | 4 - 7    | 8-12     | 13-18     | 19-24 | > 24 | Total |
| N           | 0    | 1        | 2        | 0         | 0     | 0    | 3     |
| NNE         | 0    | 0        | 4        | 0         | 0     | 0    | 4     |
| NE          | 2    | 0        | 2        | 1         | 0     | 0    | 5     |
| ENE         | 0    | 3        | 1        | 0         | 0     | 0    | 4     |
| Е           | 0    | 3        | 0        | 0         | 0     | 0    | 3     |
| ESE         | 0    | 0        | 2        | 0         | 0     | 0    | 2     |
| SE          | 1    | 1        | 0        | 0         | 0     | 0    | 2     |
| SSE         | 1    | 1        | 1        | 5         | 0     | 0    | 8     |
| S           | 1    | 0        | 0        | 1         | 0     | 0    | 2     |
| SSW         | 0    | 1        | 1        | 1         | 0     | 0    | 3     |
| SW          | 0    | 0        | 1        | 0         | 0     | 0    | 1     |
| WSW         | 1    | 1        | 7        | 3         | 0     | 0    | 12    |
| W           | 0    | 1        | 7        | 2         | 0     | 0    | 10    |
| WNW         | 1    | 4        | 25       | 1         | 0     | 0    | 31    |
| NW          | 0    | 2        | 15       | 6         | 0     | 0    | 23    |
| NNW         | 0    | 0        | 5        | 0         | 0     | 0    | 5     |
| Variable    | 0    | 0        | 0        | 0         | 0     | 0    | 0     |
| Total       | 7    | 18       | 73       | 20        | 0     | 0    | 118   |

Period of Record: January - March 2008 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Period of Record: January - March 2008 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind     | 1-3                  | 4 - 7 | ÷<br>8-12 | 13-19 | 19-24 | > 24           | Total |
|----------|----------------------|-------|-----------|-------|-------|----------------|-------|
|          | الى نىل.<br>سەمەمەمە |       |           |       |       |                |       |
| N        | 0                    | 0     | 0         | 0     | 0     | 0              | 0     |
| NNE      | 0                    | 0     | 1         | 0     | 0     | <sup>6</sup> 0 | 1     |
| NE       | 0                    | 0     | 0         | 0     | 0     | 0              | 0     |
| ENE      | O                    | 0     | 0         | 0     | 0     | 0              | 0     |
| Е        | 0                    | 0     | 0         | 0     | 0     | 0              | 0     |
| ESE      | 1                    | 0     | 0         | 0     | 0     | 0              | 1     |
| SE       | 0                    | 0     | 0         | 0     | 0     | 0              | 0     |
| SSE      | 0                    | 0     | 0         | 0     | 0     | 0              | 0     |
| S        | 1                    | 0     | 0         | 0     | 0     | 0              | 1     |
| SSW      | 0                    | 0     | 1         | 0     | 0     | 0              | 1     |
| SW       | 0                    | 0     | 2         | 0     | 0     | 0              | 2     |
| WSW      | 0                    | 0     | 1         | 0     | 0     | 0              | 1     |
| W        | 0                    | 1     | 0         | 0     | 0     | 0              | 1     |
| WNW      | 0                    | 0     | 0         | 0     | 0     | 0              | 0     |
| NW       | 0                    | 1     | 1         | 0     | 0     | 0              | 2     |
| NNW      | 0                    | 2     | 1         | 0     | 0     | 0              | 3     |
| Variable | 0                    | 0     | 0         | 0     | 0     | 0              | 0     |
| Total    | 2                    | 4     | 7         | 0     | 0     | 0              | 13    |

#### Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind | Speed | (in | mph) |  |
|------|-------|-----|------|--|
|------|-------|-----|------|--|

| Wind      |     |       |      |       |       |      |       |  |
|-----------|-----|-------|------|-------|-------|------|-------|--|
| Direction | 1-3 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |  |
| N         | 0   | 1     | 1    | 0     | 0     | 0    | 2     |  |
| NNE       | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |
| NE        | 0   | 5     | 3    | 0     | 0     | 0    | 8     |  |
| ENE       | 1   | 4     | 4    | 0     | 0     | 0    | 9     |  |
| Е         | 0   | 2     | 2    | 0     | 0     | 0    | 4     |  |
| ESE       | 0   | 3     | 2    | 0     | 0     | 0    | 5     |  |
| SE        | 0   | 3     | 8    | 1     | 0     | 0    | 12    |  |
| SSE       | 0   | 1     | 5    | 3     | 0     | 0    | 9     |  |
| S         | 0   | 0     | 1    | 3     | 4     | 0    | 8     |  |
| SSW       | 0   | 2     | 2    | 8     | 1     | 0    | 13    |  |
| SW        | 0   | 0     | 2    | 1     | 0     | 0    | 3     |  |
| WSW       | 0   | 2     | 8    | 9     | 0     | 0    | 19    |  |
| W         | 0   | 6     | 13   | 7     | 1     | 0    | 27    |  |
| WNW       | 0   | 4     | 12   | 0     | 0     | 0    | 16    |  |
| NW        | 0   | 6     | 19   | 0     | 0     | 0    | 25    |  |
| NNW       | 0   | 7     | 20   | 1     | 0     | 0    | 28    |  |
| Variable  | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |
| Total     | 1   | 46    | 102  | 33    | 6     | 0    | 188   |  |

Period of Record: April - June 2008 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind      |     |     | The proof |       |       |      |       |  |  |  |  |  |  |
|-----------|-----|-----|-----------|-------|-------|------|-------|--|--|--|--|--|--|
| Direction | 1-3 | 4-7 | 8-12      | 13-18 | 19-24 | > 24 | Total |  |  |  |  |  |  |
| N         | 0   | 5   | 2         | 0     | 0     | 0    | 7     |  |  |  |  |  |  |
| NNE       | 0   | 4   | 1         | 0     | 0     | 0    | 5     |  |  |  |  |  |  |
| NE        | 0   | 1   | 3         | 0     | 0     | 0    | 4     |  |  |  |  |  |  |
| ENE       | 3   | 3   | 0         | 0     | 0     | 0    | 6     |  |  |  |  |  |  |
| Е         | 0   | 3   | 0         | 0     | 0     | 0    | 3     |  |  |  |  |  |  |
| ESE       | 0   | 5   | 1         | 0     | Ó     | 0    | 6     |  |  |  |  |  |  |
| SE        | 0   | 2   | 3         | 0     | 0     | 0    | 5     |  |  |  |  |  |  |
| SSE       | 0   | 3   | 6         | 2     | 0     | 0    | 11    |  |  |  |  |  |  |
| S         | 0   | 2   | 3         | 6     | 2     | 0    | 13    |  |  |  |  |  |  |
| SSW       | 0   | 0   | 3         | 3     | 5     | 0    | 11    |  |  |  |  |  |  |
| SW        | 0   | 2   | 4         | 2     | 1     | 0    | 9     |  |  |  |  |  |  |
| WSW       | 0   | 3   | 9         | 0     | 0     | 0    | 12    |  |  |  |  |  |  |
| W         | 0   | 3   | 6         | 4     | 0     | 0    | 13    |  |  |  |  |  |  |
| WNW       | 0   | 5   | 4         | 0     | 0     | 0    | 9     |  |  |  |  |  |  |
| NW        | 0   | 6   | 3         | 0     | 0     | 0    | 9     |  |  |  |  |  |  |
| NNW       | 0   | 6   | 5         | 0     | 0     | 0    | 11    |  |  |  |  |  |  |
| Variable  | 0   | 0   | 0         | 0     | 0     | 0    | 0     |  |  |  |  |  |  |
| Total     | 3   | 53  | 53        | 17    | 8     | 0    | 134   |  |  |  |  |  |  |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind<br>Direction           | 1-3                 | 4 - 7                  | 8-12 | 13-18               | 19-24    | > 24 | Total                     |
|-----------------------------|---------------------|------------------------|------|---------------------|----------|------|---------------------------|
| ana ana ana ana ana ana ana | ant and and raw nor | NOT your have give you |      | aan ana soo ang aas | 5-07 000 |      | مسور جانة جانة المان معود |
| N                           | 0                   | 3                      | 2    | 0                   | 0        | 0    | 5                         |
| NNE                         | 0                   | 4                      | 4    | 0                   | 0        | 0    | 8                         |
| NE                          | 0                   | 2                      | 4    | 0                   | 0        | 0    | 6                         |
| ENE                         | 0                   | 5                      | 0    | 0                   | 0        | 0    | 5                         |
| E                           | 1                   | 0                      | 0    | 0                   | 0        | 0    | 1                         |
| ESE                         | 1                   | 2                      | 0    | 0                   | 0        | 0    | 3                         |
| SE                          | 1                   | 7                      | 3    | 3                   | 0        | 0    | 14                        |
| SSE                         | 1                   | 5                      | 2    | 0                   | 0        | 0    | 8                         |
| S                           | 2                   | 1                      | 10   | 3                   | 1        | 0    | 17                        |
| SSW                         | 1                   | 2                      | 5    | 6                   | 0        | 1    | 15                        |
| SW                          | 0                   | 2                      | 5    | 2                   | 0        | 0    | 9                         |
| WSW                         | 0                   | 5                      | 7    | 2                   | 0        | 0    | 14                        |
| W                           | 0                   | 3                      | 4    | 0                   | 0        | 0    | 7                         |
| WNW                         | 0                   | 4                      | 5    | 0                   | 0        | 0    | 9                         |
| NW                          | 0                   | 5                      | 2    | 0                   | 0        | 0    | 7                         |
| NNW                         | 0                   | 5                      | 3    | 0                   | 0        | 0    | 8                         |
| Variable                    | 0                   | 0                      | 0    | 0                   | 0        | 0    | 0                         |
| Total                       | 7                   | 55                     | 56   | 16                  | 1        | 1    | 136                       |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind     | 1-3                      | 4-7    | 8-12  | 13-18 | 19-24 | > 24          | Total |
|----------|--------------------------|--------|-------|-------|-------|---------------|-------|
|          | میں مطلب میں میں میں میں | · 4. / | ~~~~~ |       |       | - <b>Ka</b> X |       |
| N        | 4                        | 7      | 15    | 3     | 1     | 0             | 30    |
| NNE      | 2                        | 20     | 35    | 4     | 3     | 0             | 64    |
| NE       | 1                        | 29     | 36    | 0     | 0     | 0             | 66    |
| ENE      | 5                        | 19     | 23    | 0     | 0     | 0             | 47    |
| Е        | 2                        | 11     | 5     | 0     | 0     | 0             | 18    |
| ESE      | 5                        | 3      | 2     | 5     | 0     | 0             | 15    |
| SE       | 5                        | 10     | 8     | 2     | 0     | 0             | 25    |
| SSE      | 1                        | 13     | 25    | 4     | 0     | 0             | 43    |
| S        | 0                        | 12     | 35    | 27    | 6     | 0             | 80    |
| SSW      | 2                        | 9      | 25    | 17    | 14    | 4             | 71    |
| SW       | 0                        | 15     | 32    | 18    | 1     | 0             | 66    |
| WSW      | 5                        | 10     | 30    | 9     | 0     | 0             | 54    |
| W        | 1                        | 14     | 20    | 21    | 2     | 0             | 58    |
| WNW      | 5                        | 13     | 18    | 7     | 0 ·   | 0             | 43    |
| NW       | 3                        | 20     | 18    | 1     | 0     | 0             | 42    |
| NNW      | 1                        | 17     | 16    | 2     | 0     | 0             | 36    |
| Variable | 0                        | 0      | 0     | 0     | 0     | 0             | 0     |
| Total    | 42                       | 222    | 343   | 120   | 27    | 4             | 758   |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind      |     |     |      |       |       |      |       |  |  |  |
|-----------|-----|-----|------|-------|-------|------|-------|--|--|--|
| Direction | 1-3 | 4-7 | 8-12 | 13-18 | 19-24 | > 24 | Total |  |  |  |
| N         | 6   | 14  | 3    | 0     | 0     | 0    | 23    |  |  |  |
| NNE       | 3   | 24  | 3    | 0     | 0     | 0    | 30    |  |  |  |
| NE        | 1.0 | 9   | 3    | 0     | 0     | 0    | 22    |  |  |  |
| ENE       | 19  | 13  | 1    | 0     | 0     | 0    | 33    |  |  |  |
| E         | 26  | 12  | 1    | 0     | 0     | 0    | 39    |  |  |  |
| ESE       | 12  | 33  | 10   | 5     | 0     | 0    | 60    |  |  |  |
| SE        | 8   | 42  | 23   | 4     | 0     | 0    | 77    |  |  |  |
| SSE       | 4   | 25  | 26   | 5     | 0     | 0    | 60    |  |  |  |
| S         | 3   | 15  | 59   | 23    | 0     | 0    | 100   |  |  |  |
| SSW       | 3   | 9   | 30   | 16    | 4     | 0    | 62    |  |  |  |
| SW        | 1   | 21  | 19   | 2     | 0     | 0    | 43    |  |  |  |
| WSW       | 4   | 39  | 7    | 0     | 0     | 0    | 50    |  |  |  |
| W         | 6   | 20  | 2    | 1     | 0     | 0    | 29    |  |  |  |
| WNW       | 9   | 14  | 1    | 0     | 0     | 0    | 24    |  |  |  |
| NW        | 5   | 12  | 2    | 0     | 0     | 0    | 19    |  |  |  |
| NNW       | 6   | 10  | 4    | 0     | 0     | 0    | 20    |  |  |  |
| Variable  | 0   | 0   | 0    | 0     | 0     | 0    | 0     |  |  |  |
| Total     | 125 | 312 | 194  | 56    | 4     | 0    | 691   |  |  |  |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind      |     |       |      |       |       |      |       |  |  |
|-----------|-----|-------|------|-------|-------|------|-------|--|--|
| Direction | 1-3 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |  |  |
| N         | 2   | 1     | 0    | 0     | 0     | 0    | 3     |  |  |
| NNE       | 4   | 0     | 0    | . 0   | 0     | 0    | 4     |  |  |
| NE        | 6   | 1     | 0    | 0     | 0     | 0    | 7     |  |  |
| ENE       | 6   | 1     | 0    | 0     | 0     | 0    | 7     |  |  |
| Ε         | 10  | 0     | 0    | 0     | 0     | 0    | 10    |  |  |
| ESE       | 11  | 7     | 0    | 0     | 0     | 0    | 18    |  |  |
| SE        | 8   | 3     | 0    | 0     | 0     | 0    | 11    |  |  |
| SSE       | 4   | 1     | 0    | 0     | 0     | 0    | 5     |  |  |
| S         | 0   | 2     | 0    | 0     | 0     | 0    | 2     |  |  |
| SSW       | l   | 5     | 4    | 0     | 0     | 0    | 10    |  |  |
| SW        | 4   | 7     | 1    | 0     | 0     | 0    | 12    |  |  |
| WSW       | 8   | 16    | 1    | 0     | 0     | 0    | 25    |  |  |
| W         | 24  | 8     | 0    | 0     | 0     | 0    | 32    |  |  |
| WNW       | 16  | 0     | 0    | 0     | 0     | 0    | 16    |  |  |
| NW        | 8   | 1     | 0    | 0     | 0     | 0    | 9     |  |  |
| NNW       | 3   | 1     | 0    | 0     | 0     | 0    | 4     |  |  |
| Variable  | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |
| Total     | 115 | 54    | 6    | 0     | 0     | 0    | 175   |  |  |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind<br>Direction              | 1-3                 | 4-7                               | 8-12 | 13-18 | 19-24                     | > 24                              | Total |
|--------------------------------|---------------------|-----------------------------------|------|-------|---------------------------|-----------------------------------|-------|
| مرید مید مید است است مید مید ا | محيط يعين فيبع المع | സാത് പ്രക്യ, മെട്ടിലെ മല്ലാം വേഷ് |      |       | 2000 - 2000 - 2000 - 2000 | Andre datase status, status enven |       |
| N                              | 3                   | 0                                 | 0    | 0     | 0                         | 0                                 | 3     |
| NNE                            | 1                   | 0                                 | 0    | 0     | 0                         | Ò                                 | 1     |
| NE                             | 1                   | 0                                 | 0    | 0     | 0                         | 0                                 | 1     |
| ENE                            | 4                   | Ó                                 | 0    | 0     | 0                         | 0                                 | 4     |
| Е                              | 7                   | 0                                 | 0    | 0     | 0                         | 0                                 | 7     |
| ESE                            | 2                   | 0                                 | 0    | 0     | 0                         | 0                                 | 2     |
| SE                             | 3                   | 0                                 | 0    | 0     | 0                         | 0                                 | 3     |
| SSE                            | 0                   | 0                                 | 0    | 0     | 0                         | 0                                 | 0     |
| S                              | 4                   | 0                                 | 0    | 0     | 0                         | 0                                 | 4     |
| SSW                            | 2                   | 1                                 | 0    | 0     | 0                         | 0                                 | 3     |
| SW                             | 1                   | 0                                 | 0    | 0     | 0                         | 0                                 | 1     |
| WSW                            | 7                   | 4                                 | 0    | 0     | 0                         | 0                                 | 11    |
| W                              | 12                  | 1                                 | 0    | 0     | 0                         | 0                                 | 13    |
| WNW                            | 7                   | 0                                 | 0    | 0     | 0                         | 0                                 | 7     |
| NW                             | 3                   | 0                                 | 0    | 0     | 0                         | 0                                 | 3     |
| NNW                            | 4                   | 0                                 | 0    | 0     | 0                         | 0                                 | 4     |
| Variable                       | 0                   | 0                                 | 0    | 0     | 0                         | 0                                 | 0     |
| Total                          | 61                  | 6                                 | 0    | 0     | 0                         | 0                                 | 67    |

Wind Speed (in mph)

|           | Period of Record: April -  | June 2008                |
|-----------|----------------------------|--------------------------|
| Stability | Class - Extremely Unstable | - 199Ft-30Ft Delta-T (F) |
|           | Winds Measured at 203      | Feet                     |

| Wind<br>Direction                  | 1-3   | 4-7      | 8-12  | 13-18 | 19-24 | > 24 | Total |
|------------------------------------|-------|----------|-------|-------|-------|------|-------|
| an an an an an ar ar an an ar an . | ~~~~~ | en en en | <br>A |       |       |      |       |
| IN                                 | U     | <b>.</b> | 4     | Ŧ     | U     | 0    | 6     |
| NNE                                | 0     | 0        | 1     | 0     | 0     | 0    | 1     |
| NE                                 | 0     | 1        | 1     | 1     | 0     | 0    | 3     |
| ENE                                | 0     | 0        | 9     | 2     | 0     | 0    | 11    |
| Е                                  | 0     | 0        | 3     | 0     | 0     | 0    | 3     |
| ESE                                | 0     | 1        | 2     | 4     | 0     | 0    | 7     |
| SE                                 | 0     | 1        | 1     | 7     | 0     | 1    | 10    |
| SSE                                | 0     | 1        | 2     | 4     | 0     | 0    | 7     |
| S                                  | 0     | 0        | 2     | l     | 3     | 2    | 8     |
| SSW                                | 0     | 0        | 0     | 0     | 4     | 9    | 13    |
| SW                                 | 0.    | 0        | 4     | 0     | 1     | 0    | 5     |
| WSW                                | 0     | 0        | 2     | 2     | 1     | 0    | 5     |
| W                                  | 0     | 1        | 8     | 8     | 10    | 2    | 29    |
| WNW                                | 0     | 2        | 5     | 12    | 4     | 0    | 23    |
| NW                                 | 0     | 2        | 5     | 15    | 3     | 0    | 25    |
| NNW                                | 0     | 2        | 10    | 15    | 3     | 0    | 30    |
| Variable                           | 0     | 0        | 0     | 0     | 0     | 0    | 0     |
| Total                              | 0     | 12       | 59    | 72    | 29    | 14   | 186   |
|                                    |       |          |       |       |       |      |       |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3 | 4 - 7 | 8-12 | 13-18                 | 19-24 | > 24 | Total                       |
|-------------------|-----|-------|------|-----------------------|-------|------|-----------------------------|
|                   |     |       |      | aut das entre aut uns |       |      | anan otari virti virti asas |
| N                 | 0   | 3     | 2    | 0                     | 0     | 0    | 5                           |
| NNE               | 0   | 1     | 2    | 1                     | 0     | 0    | 4                           |
| NE                | 0   | 2     | 1    | l                     | 0     | 0    | 4                           |
| ENE               | 0   | 0     | 2    | 3                     | 0     | 0    | 5                           |
| Е                 | 0   | 0     | 2    | 1                     | 0     | 0    | 3                           |
| ESE               | 0   | 0     | 1    | 1                     | 0     | 0    | 2                           |
| SE                | 1   | 1     | 3    | 2                     | 0     | 0    | 7                           |
| SSE               | 0   | 1     | 2    | 3                     | 0     | 0    | 6                           |
| S                 | 0   | 1     | 5    | 0                     | 2     | 3    | 11                          |
| SSW               | 0   | 0     | 3    | 2                     | 6     | 4    | 15                          |
| SW                | 0   | 1     | 1    | 2                     | 0     | 5    | 9                           |
| WSW               | 0   | 0     | 6    | 4                     | 0     | 0    | 10                          |
| W                 | 0   | 1     | 5    | 4                     | 1     | 0    | 11                          |
| WNW               | 0   | 3     | -3   | 3                     | 2     | 1    | 12                          |
| NW                | 0   | 3     | 4    | 5                     | 0     | 0    | 12                          |
| NNW               | 0   | 3     | 5    | 4                     | 0     | 0    | 12                          |
| Variable          | 0   | 0     | 0    | 0                     | 0     | 0    | 0                           |
| Total             | 1   | 20    | 47   | 36                    | 11    | 13   | 128                         |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |
|-------------------|-----|-------|------|-------|-------|------|-------|
| N                 | 0   | 0     | 3    | 1     | 0     | 0    | 4     |
| NNE               | 0   | 1     | 4    | 2     | 0     | 0    | 7     |
| NE                | 0   | 1     | 3    | 4     | 0     | 0    | 8     |
| ENE               | 0   | 0     | 2    | 1     | 0     | 0    | 3     |
| Е                 | 0   | 0     | 3    | 0     | 0     | 0    | 3     |
| ESE               | 0   | 3     | 0    | 0     | 0     | 0    | 3     |
| SE                | 0   | 2     | 3    | 1     | 0     | 3    | 9     |
| SSE               | 1   | 2     | 5    | 2     | 0     | 0    | 10    |
| S                 | 1   | 1     | 3    | 4     | 0     | 1    | 10    |
| SSW               | 0   | 0     | 3    | 4     | 6     | 0    | 13    |
| SW                | 0   | 2     | 4    | 1     | 2     | 5    | 14    |
| WSW               | 0   | 1     | 6    | 2     | 1     | 0    | 10    |
| W                 | 0   | 0     | 5    | 3     | 2     | 0    | 10    |
| WNW               | 0   | 4     | 1    | 6     | 0     | 0    | 11    |
| NW                | 0   | 3     | 3    | 3     | 1     | 0    | 10    |
| NNW               | 0   | 3     | 4    | 3     | 0     | 0    | 10    |
| Variable          | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| Total             | 2   | 23    | 52   | 37    | 12    | 9    | 135   |

#### Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |
|-------------------|-----|-------|------|-------|-------|------|-------|
| N                 | 1   | 8     | 10   | 8     | 2     | 2    | 31    |
| NNE               | 1   | 6     | 5    | 24    | 2     | 4    | 42    |
| NE                | 0   | 4     | 24   | 34    | 7     | 1    | 70    |
| ENE               | 1   | 4     | 16   | 31    | 3     | 0    | 55    |
| Е                 | 1   | 4     | 11   | 5     | 3     | 0    | 24    |
| ESE               | 1   | 0     | 6    | 1     | 2     | 0    | 10    |
| SE                | 1   | 6     | 1    | 4     | 2     | 6    | 20    |
| SSE               | 1   | 9     | 8    | 8     | 1     | 0    | 27    |
| S                 | 0   | 3     | 12   | 27    | 21    | 5    | 68    |
| SSW               | 1   | 8     | 9    | 15    | 20    | 24   | 77    |
| SW                | 1   | 4     | 7    | 26    | 8     | 16   | 62    |
| WSW               | 1   | 2     | 23   | 20    | 16    | 2    | 64    |
| W                 | 0   | 3     | 13   | 15    | 8     | 6    | 45    |
| WNW               | 1   | 8     | 14   | 16    | 17    | 4    | 60    |
| NW                | 0   | 11    | 14   | 23    | 7     | 1    | 56    |
| NNW               | 0   | 6     | 12   | 16    | 4     | 0    | 38    |
| Variable          | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| Total             | 11  | 86    | 185  | 273   | 123   | 71   | 749   |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction                 | 1-3                      | 4 - 7 | 8-12                        | 13-18                   | 19-24 | > 24 | Total |
|-----------------------------------|--------------------------|-------|-----------------------------|-------------------------|-------|------|-------|
| ann 1991 and ann ann 1996 ann ann | taka anal usur kasa seka |       | aang mana antar konte nagan | ana atan Alife ada iyan |       |      |       |
| N                                 | 0                        | 7     | 12                          | 3                       | 0     | 0    | 22    |
| NNE                               | 0                        | 4     | 14                          | 5                       | 0     | 0    | 23    |
| NE                                | 1                        | 2     | 24                          | 4                       | 0     | 0    | 31    |
| ENE                               | 1                        | 6     | 14                          | 5                       | 0     | 0    | 26    |
| E                                 | 0                        | 7     | 20                          | 1                       | 0     | 0    | 28    |
| ESE                               | 0                        | 1     | 14                          | 14                      | 2     | 3    | 34    |
| SE                                | 0                        | 3     | 23                          | 23                      | 4     | 8    | 61    |
| SSE                               | 1                        | 2     | 10                          | 42                      | 10    | 0    | 65    |
| S                                 | 1                        | 5     | 16                          | 30                      | 22    | 2    | 76    |
| SSW                               | 1                        | 3     | 11                          | 34                      | 39    | 11   | 99    |
| SW                                | 0                        | 3     | 4                           | 23                      | 19    | 3    | 52    |
| WSW                               | 0                        | 5     | 21                          | 15                      | 1     | 0    | 42    |
| W                                 | 0                        | 1     | 25                          | 14                      | 1     | 0    | 41    |
| WNW                               | 0                        | 2     | 17                          | 4                       | 0     | 0    | 23    |
| NW                                | 0                        | 6     | 21                          | 5                       | 1     | 0    | 33    |
| NNW                               | 0                        | 3     | 14                          | 4                       | 0     | 0    | 21    |
| Variable                          | 0                        | 0     | 0                           | 0                       | 0     | 0    | 0     |
| Total                             | 5                        | 60    | 260                         | 226                     | 99    | 27   | 677   |
|                                   |                          |       |                             |                         |       |      |       |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3                 | 4-7                   | 8-12 | 13-18 | 19-24 | > 24                     | Total |
|-------------------|---------------------|-----------------------|------|-------|-------|--------------------------|-------|
|                   | 200 100 gas can see | 1000 ann ann 1000 ann |      |       |       | 0000 and 2000 water mart |       |
| N                 | 0                   | 3                     | 5    | 2     | 0     | 0                        | 10    |
| NNE               | o                   | 3                     | 0    | 0     | 0     | 0                        | 3     |
| NE                | 0                   | 1                     | 1    | 1     | 0     | 0                        | 3     |
| ENE               | 3                   | 0                     | 5    | 1     | 0     | 0                        | 9     |
| E                 | 1                   | 2                     | 2    | 0     | 0     | 0                        | 5     |
| ESE               | 0                   | 2                     | 4    | 1     | 0     | 0                        | 7     |
| SE                | 0                   | 3                     | 7    | 6     | 0     | 0                        | 16    |
| SSE               | 0                   | 2                     | 6    | 2     | 0     | 0                        | 10    |
| S                 | 0                   | 3                     | 1    | 0     | 0     | 0                        | 4     |
| SSW               | 0                   | 1                     | 3    | 0     | 0     | 0                        | 4     |
| SW                | 0                   | 2                     | 3    | 2     | 0     | 0                        | 7     |
| WSW               | 0                   | 2                     | 4    | 9     | 0     | 0                        | 15    |
| W                 | 0                   | 2                     | 6    | 8     | 0     | 0                        | 16    |
| WNW               | 0                   | 4                     | 19   | 8     | 0     | 0                        | 31    |
| NW                | 0                   | 8                     | 17   | 4     | 0     | 0                        | 29    |
| NNW               | 0                   | 2                     | 7    | 0     | Q     | 0                        | 9     |
| Variable          | 0                   | 0                     | 0    | 0     | 0     | 0                        | 0     |
| Total             | 4                   | 40                    | 90   | 44    | 0     | 0                        | 178   |
|                   |                     |                       |      |       |       |                          |       |

Wind Speed (in mph)

Period of Record: April - June 2008 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind      |     |       |      |       |       |      |       |  |  |
|-----------|-----|-------|------|-------|-------|------|-------|--|--|
| Direction | 1-3 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |  |  |
| N         | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |
| NNE       | 0   | 0     | 3    | 0     | 0     | 0    | 3     |  |  |
| NE        | 0   | 0     | 4    | 0     | 0     | 0    | 4     |  |  |
| ENE       | 1   | 0     | 0    | 0     | 0     | 0    | 1     |  |  |
| Е         | 0   | 0     | 2    | 0     | 0     | 0    | 2     |  |  |
| ESE       | 0   | 1     | 2    | 0     | 0     | 0    | 3     |  |  |
| SE        | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |
| SSE       | 0   | 6     | 0    | 0     | 0     | 0    | 6     |  |  |
| S         | 0   | 1     | 0    | 0     | 0     | 0    | 1     |  |  |
| SSW       | 1   | 1     | 1    | 0     | 0     | 0    | 3     |  |  |
| SW        | 0   | 4     | 1    | 1     | 0     | 0    | 6     |  |  |
| WSW       | 1   | 2     | 1    | 0     | 0     | 0    | 4     |  |  |
| W         | 0   | 1     | 2    | 3     | 0     | 0    | 6     |  |  |
| WNW       | 0   | 4     | 4    | 6     | 0     | 0    | 14    |  |  |
| NW        | 0   | 4     | 6    | 2     | 0     | 0    | 12    |  |  |
| NNW       | 0   | 2     | 6    | 2     | 0     | 0    | 10    |  |  |
| Variable  | 0   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |
| Total     | 3   | 26    | 32   | 14    | 0     | 0    | 75    |  |  |

Wind Speed (in mph)

Period of Record: July - September 2008 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind | Speed | (in | mph) |
|------|-------|-----|------|
|------|-------|-----|------|

| Wind                                       |                       |       | <u>T</u>                | · · · · · · · · · |       |                    |       |
|--------------------------------------------|-----------------------|-------|-------------------------|-------------------|-------|--------------------|-------|
| Direction                                  | 1-3                   | 4 - 7 | 8-12                    | 13-18             | 19-24 | > 24               | Total |
| water their specie large after and and the | NAME OFFICE AND DATES |       | anat were case and care |                   |       | NAME COM LOCK MARK |       |
| N                                          | 0                     | 15    | 2                       | 0                 | 0     | 0                  | 17    |
| NNE                                        | 0                     | 13    | 6                       | 0                 | 0     | 0                  | 19    |
| NE                                         | 0                     | 20    | 16                      | 0                 | 0     | 0                  | 36    |
| ENE                                        | 2                     | 23    | 0                       | 0                 | 0     | 0                  | 25    |
| Е                                          | 1                     | 13    | 0                       | 0                 | 0     | 0                  | 14    |
| ESE                                        | 0                     | 7     | 0                       | 0                 | 0     | 0                  | 7     |
| SE                                         | 0                     | 16    | 2                       | 0                 | 0     | 0                  | 18    |
| SSE                                        | 0                     | 19    | 4                       | 0                 | 0     | 0                  | 23    |
| S                                          | 0                     | 12    | 13                      | 0                 | 0     | 0                  | 25    |
| SSW                                        | 0                     | 5     | 8                       | 3                 | 0     | 0                  | 16    |
| SW                                         | 0                     | 5     | 22                      | 5                 | 0     | 0                  | 32    |
| WSW                                        | 0                     | 22    | 18                      | 1                 | 0     | 0                  | 41    |
| W                                          | 0                     | 36    | 21                      | 0                 | 0     | 0                  | 57    |
| WNW                                        | 0                     | 14    | 4                       | 0                 | 0     | 0                  | 18    |
| NW                                         | 0                     | 15    | 6                       | 0                 | 0     | 0                  | 21    |
| NNW                                        | 0                     | 12    | 12                      | 0                 | 0     | 0                  | 24    |
| Variable                                   | 0                     | 0     | 0                       | 0                 | 0     | 0                  | 0     |
| Total                                      | 3                     | 247   | 134                     | 9                 | 0     | 0                  | 393   |

Period of Record: July - September 2008 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind<br>Direction | 1-3 | 4-7 | 8-12 | 13-18 | 19-24 | > 24 | Total |
|-------------------|-----|-----|------|-------|-------|------|-------|
| N                 | 0   | 8   | 0    | 0     | 0     | 0    | 8     |
| NNE               | 0   | 7   | 0    | 0     | 0     | 0    | 7     |
| NE                | 2   | 11  | 0    | 0     | 0     | 0    | 13    |
| ENE               | 4   | 3   | 0    | 0     | 0     | 0    | 7     |
| Е                 | 3   | 3   | 0    | 0     | 0     | 0    | 6     |
| ESE               | 0   | 7   | 0    | O     | 0     | 0    | 7     |
| SE                | 1   | 5   | 1    | 0     | 0     | 0    | 7     |
| SSE               | 0   | 5   | 1    | 0     | 0     | 0    | 6     |
| S                 | 1   | 6   | 5    | 0     | 0     | 0    | 12    |
| SSW               | 1   | 5   | 4    | 1     | 0     | 0    | 11    |
| SW                | 0   | 4   | 4    | 0     | 0     | 0    | 8     |
| WSW               | 0   | 2   | 6    | 0     | 0     | 0    | 8     |
| W                 | 0   | 12  | 7    | 0     | О     | 0    | 19    |
| WNW               | 1   | 4   | 0    | 0     | 0     | 0    | 5     |
| NW                | 1   | 2   | 0    | 0     | 0     | 0    | 3     |
| NNW               | 2   | 7   | 2    | 0     | 0     | 0    | 11    |
| Variable          | 0   | 0   | 0    | 0     | 0     | 0    | 0     |
| Total             | 16  | 91  | 30   | 1     | 0     | 0    | 138   |

#### Wind Speed (in mph)

|           | Period  | of Record  | 1: July - | Sep | tember 2  | 800  |         |     |
|-----------|---------|------------|-----------|-----|-----------|------|---------|-----|
| Stability | Class - | Slightly   | Unstable  |     | - 199Ft-1 | 30Ft | Delta-T | (F) |
|           | 7       | Winds Meas | sured at  | 34  | Feet      |      |         |     |

| Mitand    | Wind Speed (in mph) |       |      |       |       |      |       |  |  |
|-----------|---------------------|-------|------|-------|-------|------|-------|--|--|
| Direction | 1-3                 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |  |  |
| N         | 1                   | 3     | 0    | 0     | 0     | 0    | 4     |  |  |
| NNE       | 2                   | 4     | 3    | 0     | 0     | 0    | 9     |  |  |
| NE        | 0                   | 4     | 1    | 0     | 0     | 0    | 5     |  |  |
| ENE       | 1                   | 4     | 0    | 0     | 0     | 0    | 5     |  |  |
| Е         | 3                   | 3     | 0    | 0     | 0     | 0    | 6     |  |  |
| ESE       | 1                   | 3     | Ö    | 0     | 0     | 0    | 4     |  |  |
| SE        | 1                   | б     | 1    | 0     | 0     | 0    | 8     |  |  |
| SSE       | 0                   | 12    | 0    | 0     | 0     | 0    | 12    |  |  |
| S         | 0                   | 4     | l    | 0     | 0     | 0    | 5     |  |  |
| SSW       | 0                   | 2     | 0    | 2     | 0     | 0    | 4     |  |  |
| SW        | 0                   | 5     | 3    | 0     | 0     | 0    | 8     |  |  |
| WSW       | 0                   | 6     | 2    | l     | 0     | 0    | 9     |  |  |
| W         | 0                   | 6     | 1    | 0     | 0     | 0    | 7     |  |  |
| WNW       | 0                   | 1     | 1    | 0     | 0     | 0    | 2     |  |  |
| NW        | 1                   | 2     | 1    | 0     | 0     | 0    | 4     |  |  |
| NNW       | 1                   | 3     | 2    | 0     | 0     | 0    | 6     |  |  |
| Variable  | 0                   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |
| Total     | 11                  | 68    | 16   | 3     | 0     | 0    | 98    |  |  |

## Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

F-33

Period of Record: July - September 2008 - 199Ft-30Ft Delta-T (F) Stability Class - Neutral Winds Measured at 34 Feet

Wind Speed (in mph)
|                         | Stability                              | Class - S<br>Wi                     | lightly<br>nds Meas             | Stable<br>Sured at              | - 19<br>34 Feet         | 9 <b>Ft-30Ft</b><br>: | . Delta-T      | (F)   |
|-------------------------|----------------------------------------|-------------------------------------|---------------------------------|---------------------------------|-------------------------|-----------------------|----------------|-------|
|                         |                                        |                                     | W                               | ind Speed                       | (in mph                 | 1)                    |                |       |
|                         | Wind<br>Direction                      | 1-3                                 | 4-7                             | 8-12                            | 13-18                   | 19-24                 | > 24           | Total |
|                         | N                                      | 3                                   | 3                               | 1                               | 0                       | 0                     | 0              | 7     |
|                         | NNE                                    | 9                                   | 22                              | 1                               | 0                       | 0                     | 0              | 32    |
|                         | NE                                     | 18                                  | 15                              | 1                               | 0                       | 0                     | 0              | 34    |
|                         | ENE                                    | 30                                  | 13                              | 0                               | 0                       | 0                     | 0              | 43    |
|                         | Е                                      | 28                                  | 4                               | 0                               | 0                       | 0                     | 0              | 32    |
|                         | ESE                                    | 13                                  | 17                              | 0                               | 0                       | 0                     | 0              | 30    |
|                         | SE                                     | 9                                   | 25                              | 4                               | 0                       | 0                     | 0              | 38    |
|                         | SSE                                    | 5                                   | 30                              | 3                               | 0                       | 0                     | 0              | 38    |
|                         | S                                      | 3                                   | 27                              | 8                               | 0                       | 0                     | 0              | 3.8   |
|                         | SSW                                    | 2                                   | 20                              | 9                               | 0                       | 0                     | 0              | 31    |
|                         | SW                                     | 1                                   | 38                              | 3                               | 0                       | 0                     | 0              | 42    |
|                         | WSW                                    | 8                                   | 56                              | 1                               | 0                       | 0                     | 0              | 65    |
|                         | W                                      | 13                                  | 13                              | 1                               | 0                       | 0                     | 0              | 27    |
|                         | WNW                                    | 21                                  | 4                               | 0                               | 0                       | 0                     | 0              | 25    |
|                         | NW                                     | 13                                  | 10                              | 0                               | 0                       | 0                     | 0              | 23    |
|                         | NNW                                    | 7                                   | 14                              | 0                               | 1                       | 0                     | 0              | 22    |
|                         | Variable                               | 0                                   | 0                               | 0                               | 0                       | 0                     | 0              | 0     |
|                         | Total                                  | 183                                 | 311                             | 32                              | 1                       | 0                     | 0              | 527   |
| Hours<br>Hours<br>Hours | of calm in<br>of missing<br>of missing | this stab<br>wind meas<br>stability | ility cl<br>urements<br>measure | lass:<br>s in this<br>ements in | 4<br>stabili<br>all sta | ty class<br>bility c  | : 2<br>lasses: | 6     |

Period of Record: July - September 2008 ..... (m)

F-35

Period of Record: July - September 2008 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind      | Wind Speed (in mph) |       |      |       |       |      |       |
|-----------|---------------------|-------|------|-------|-------|------|-------|
| Direction | 1-3                 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |
| N         | 16                  | 2     | 0    | 0     | 0     | 0    | 18    |
| NNE       | 15                  | . 5   | 0    | 0     | 0     | 0    | 20    |
| NE        | 14                  | 0     | 0    | 0     | 0     | 0    | 14    |
| ENE       | 26                  | 0     | 1    | 0     | 0     | 0    | 27    |
| Е         | 42                  | 3     | 0    | 0     | 0     | 0    | 45    |
| ESE       | 29                  | 10    | 0    | 0     | 0     | 0    | 39    |
| SE        | 10                  | 6     | 0    | 0     | 0     | 0    | 16    |
| SSE       | 16                  | 6     | 0    | 0     | 0     | 0    | 22    |
| S         | 5                   | 5     | 0    | 0     | 0     | 0    | 10    |
| SSW       | 5                   | 13    | 0    | 0     | 0     | 0    | 18    |
| SW        | 5                   | 5     | 2    | 0     | 0     | 0    | 12    |
| WSW       | 9                   | 24    | 0    | 0     | 0     | 0    | 33    |
| W         | 20                  | 3     | 0    | Ó     | 0     | 0    | 23    |
| WNW       | 20                  | 2     | 0    | 0     | 0     | 0    | 22    |
| NW        | 16                  | 2     | 0    | 0     | 0     | 0    | 18    |
| NNW       | 11                  | 3     | 0    | 0     | 0     | 0    | 14    |
| Variable  | 0                   | 0     | 0    | 0     | 0     | 0    | 0     |
| Total     | 259                 | 89    | 3    | 0     | 0     | 0    | 351   |

Hours of calm in this stability class: 18 Hours of missing wind measurements in this stability class: 3 Hours of missing stability measurements in all stability classes: 6

Period of Record: July - September 2008 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| wind speed (in mpn | WING | speed | (11) | mpn. |
|--------------------|------|-------|------|------|
|--------------------|------|-------|------|------|

| Wind                                      |     |                        | T                            |       |                     |      |       |
|-------------------------------------------|-----|------------------------|------------------------------|-------|---------------------|------|-------|
| Direction                                 | 1-3 | 4 - 7                  | 8-12                         | 13-18 | 19-24               | > 24 | Total |
| tine tem tine was been also don' pagi may |     | with app our fort bill | ander Odok augus mengi annar |       | ucce agen some even |      |       |
| N                                         | 2   | 1                      | 0                            | 0     | 0                   | 0    | 3     |
| NNE                                       | 6   | 0                      | 0                            | 0     | 0                   | 0    | 6     |
| NE                                        | 7   | 0                      | 0                            | 0     | 0                   | 0    | 7     |
| ENE                                       | 8   | 0                      | 0                            | 0     | 0                   | 0    | 8     |
| E                                         | 23  | 0                      | 0                            | 0     | 0                   | 0    | 23    |
| ESE                                       | 11  | 0                      | 0                            | 0     | 0                   | 0    | 11    |
| SE                                        | 1   | 1                      | 0                            | 0     | 0                   | 0    | 2     |
| SSE                                       | 3   | 0                      | 0                            | 0     | 0                   | 0    | 3     |
| S                                         | 1   | 0                      | 0                            | 0     | 0                   | 0    | 1     |
| SSW                                       | 0   | 0                      | 0                            | 0     | 0                   | 0    | 0     |
| SW                                        | 1   | 0                      | 0                            | 0     | 0                   | 0    | 1     |
| WSW                                       | 9   | 1                      | 0                            | 0     | 0                   | 0    | 10    |
| W                                         | 21  | 0                      | 0                            | 0     | 0                   | 0    | 21    |
| WNW                                       | 20  | 0                      | 0                            | 0     | 0                   | 0    | 20    |
| NW                                        | 7   | 0                      | 0                            | 0     | 0                   | 0    | 7     |
| NNW                                       | 7   | 0                      | 0                            | 0     | 0                   | 0    | 7     |
| Variable                                  | 0   | 0                      | 0                            | 0     | 0                   | 0    | 0     |
| Total                                     | 127 | 3                      | 0                            | 0     | 0                   | 0    | 130   |

Hours of calm in this stability class: 39 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

Period of Record: July - September 2008 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3                 | 4-7 | 8-12                     | 13-18                  | 19-24 | > 24                    | Total |
|-------------------|---------------------|-----|--------------------------|------------------------|-------|-------------------------|-------|
|                   | ana tak yuu dan kas |     | alaa daab daar waxa goon | 9860 Guố 1000 ộng 1100 |       | -000 wayo cwa waar cowa |       |
| N                 | 0                   | 9   | 13                       | 0                      | 0     | 0                       | 22    |
| NNE               | 0                   | 7   | 3                        | 0                      | 0     | 0                       | 10    |
| NE                | 0                   | 8   | 14                       | 16                     | 0     | 0                       | 38    |
| ENE               | 0                   | 9   | 15                       | 0                      | 0     | 0                       | 24    |
| Е                 | 0                   | 8   | 8                        | 0                      | 0     | 0                       | 16    |
| ESE               | 0                   | 6   | 2                        | 0                      | 0     | 0                       | 8     |
| SE                | 0                   | 6   | 12                       | 1                      | 0     | 0                       | 19    |
| SSE               | 0                   | 7   | 13                       | 2                      | 0     | 0                       | 22    |
| S                 | 0                   | б   | 9                        | 6                      | 0     | 0                       | 21    |
| SSW               | 0                   | 1   | 5                        | 9                      | 1     | 0                       | 16    |
| SW                | 0                   | 1   | 15                       | 11                     | 4     | 0                       | 31    |
| WSW               | 0                   | 7   | 24                       | 6                      | 4     | 0                       | 41    |
| W                 | 0                   | 10  | 34                       | 10                     | 0     | 0                       | 54    |
| WNW               | 0                   | 5   | 9                        | 6                      | 4     | 0                       | 24    |
| NW                | 0                   | 8   | 13                       | 8                      | 0     | 0                       | 29    |
| NNW               | 0                   | 2   | 14                       | 1                      | 0     | 0                       | 17    |
| Variable          | 0                   | 0   | 0                        | 0                      | 0     | 0                       | 0     |
| Total             | 0                   | 100 | 203                      | 76                     | 13    | 0                       | 392   |
|                   |                     |     |                          |                        |       |                         |       |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 3 Hours of missing stability measurements in all stability classes: 6

Period of Record: July - September 2008 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind Speed | (in mph) | Ł |
|------------|----------|---|
|------------|----------|---|

| Wind      |                               |                       | T                    | , I                           | - ,                          |                         |       |
|-----------|-------------------------------|-----------------------|----------------------|-------------------------------|------------------------------|-------------------------|-------|
| Direction | 1-3                           | 4 - 7                 | 8-12                 | 13-18                         | 19-24                        | > 24                    | Total |
|           | ամենն հեռեռ այցոր օրդար նշում | 000 gay and 1000 1000 | ana dan any 1000 may | مېرىي تەتىر 1996- يېرىي مۇرىي | State Made Augus Jonai congo | ulana' anyan yangi anya |       |
| N         | 0                             | 0                     | 7                    | 0                             | 0                            | 0                       | 7     |
| NNE       | 2                             | 5                     | 1                    | 0                             | 0                            | 0                       | 8     |
| NE        | 1                             | 5                     | 7                    | 1                             | 0                            | 0                       | 14    |
| ENE       | 1                             | 2                     | 2                    | 0                             | 0                            | 0                       | 5     |
| E         | 1                             | 5                     | 1                    | 0                             | 0                            | 0                       | 7     |
| ESE       | 0                             | 4                     | 1                    | 0                             | 0                            | 0                       | 5     |
| SE        | 0                             | 5                     | 1                    | 1                             | 0                            | 0                       | 7     |
| SSE       | 0                             | 5                     | 4                    | 0                             | 0                            | 0                       | 9     |
| S         | 0                             | 0                     | 4                    | 4                             | 0                            | 0                       | 8     |
| SSW       | 0                             | 3                     | 3                    | 3                             | 0                            | 0                       | 9     |
| SW        | 0                             | 2                     | 7                    | 2                             | 1                            | 0                       | 12    |
| WSW       | 0                             | 2                     | 4                    | 3                             | 0                            | 0                       | 9     |
| W         | 0                             | 3                     | 12                   | 1                             | 0                            | 0                       | 16    |
| WNW       | 0                             | 3                     | 4                    | 0                             | 0                            | 0                       | 7     |
| NW        | 1                             | 3                     | 3                    | 1                             | 0                            | 0                       | 8     |
| NNW       | 0                             | 2                     | 3                    | 1                             | 0                            | 0                       | 6     |
| Variable  | 0                             | 0                     | 0                    | 0                             | 0                            | 0                       | 0     |
| Total     | 6                             | 49                    | 64                   | 17                            | 1                            | 0                       | 137   |
|           |                               |                       |                      |                               |                              |                         |       |

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 6

Period of Record: July - September 2008 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction                    | 1-3                  | 4-7                 | 8-12              | 13-18                   | 19-24              | > 24 | Total |
|--------------------------------------|----------------------|---------------------|-------------------|-------------------------|--------------------|------|-------|
| 1988 MAR ANN ANN ANN ANN ANN ANN ANN | -0.00° -0.00° -0.00° | anna anna anna anna | and the site of a | наа баат аййн улуу фунд | ana tan ana ata wa |      |       |
| N                                    | 1                    | 2                   | 2                 | 0                       | 0                  | 0    | 5     |
| NNE                                  | 1                    | 2                   | 2                 | 1                       | 0                  | 0    | 6     |
| NE                                   | 0                    | 2                   | 3                 | 2                       | 0                  | 0    | 7     |
| ENÉ                                  | 2                    | 3                   | 1                 | 0                       | 0                  | 0    | 6     |
| Е                                    | 0                    | 3                   | 1                 | 0                       | 0                  | 0    | 4     |
| ESE                                  | 1                    | 1                   | 2                 | 1                       | 0                  | 0    | 5     |
| SE                                   | 0                    | 5                   | 2                 | 0                       | 0                  | 0    | 7     |
| SSE                                  | 0                    | 9                   | 2                 | 0                       | 0                  | 0    | 11    |
| S                                    | 0                    | З                   | 2                 | 0                       | 1                  | 0    | 6     |
| SSW                                  | 0                    | 1                   | 1                 | 0                       | 1                  | 0    | 3     |
| SW                                   | 0                    | 3                   | 5                 | 2                       | 1                  | 0    | 11    |
| WSW                                  | 0                    | 1                   | 3                 | 1                       | l                  | Ō    | 6     |
| W                                    | 0                    | 4                   | 2                 | 1                       | 0                  | 0    | 7     |
| WNW                                  | 0                    | 1                   | 2                 | 2                       | 0                  | 0    | 5     |
| NW                                   | 0                    | 1                   | 1                 | 1                       | 0                  | 0    | 3     |
| NNW                                  | 0                    | 2                   | 4                 | 0                       | 0                  | 0    | 6     |
| Variable                             | 0                    | 0                   | 0                 | 0                       | 0                  | 0    | 0     |
| Total                                | 5                    | 43                  | 35                | 11                      | 4                  | 0    | 98    |
|                                      |                      |                     |                   |                         |                    |      |       |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

Period of Record: July - September 2008 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind | Speed | (in | mph) |
|------|-------|-----|------|
|      |       |     |      |

| Wind<br>Direction | 1-3                       | 4 - 7                                    | 8-12 | 13-18 | 19-24 | > 24 | Total |
|-------------------|---------------------------|------------------------------------------|------|-------|-------|------|-------|
|                   | ی کم<br>سر میں میں میں سو | י איש ייש ייש ייש ייש ייש ייש ייש ייש יי |      |       |       |      |       |
| N                 | 1                         | 7                                        | 12   | 5     | 3     | 0    | 28    |
| NNE               | 1                         | 6                                        | 9    | 10    | 0     | 0    | 26    |
| NE                | 2                         | 9                                        | 18   | 17    | 0     | 0    | 46    |
| ENE               | 3                         | 8                                        | 5    | 0     | 0     | 0    | 16    |
| Е                 | 2                         | 5                                        | 6    | 0     | 0     | 0    | 13    |
| ESE               | 2                         | 3                                        | 4    | 0     | 0     | 0    | 9     |
| SE                | 3                         | 6                                        | 11   | 1     | 0     | 0    | 21    |
| SSE               | 3                         | 5                                        | 20   | 11    | 0     | 0    | 39    |
| S                 | 0                         | 1                                        | 14   | 7     | 0     | 0    | 22    |
| SSW               | 1                         | 2                                        | 6    | 26    | 5     | 0    | 40    |
| SW                | 1                         | 4                                        | 26   | 18    | 7     | 0    | 56    |
| WSW               | 0                         | 9                                        | 20   | 6     | 1     | 0    | 36    |
| W                 | 3                         | 7                                        | 23   | 2     | 0     | 0    | 35    |
| WNW               | 1                         | . 9                                      | 17   | 11    | 1     | 0    | 39    |
| NW                | 1                         | 13                                       | 21   | 8     | 0     | 0    | 43    |
| NNW               | 1                         | 7                                        | 14   | 2     | 1     | 0    | 25    |
| Variable          | 0                         | 0                                        | 0    | 0     | 0     | 0    | 0     |
| Total             | 25                        | 101                                      | 226  | 124   | 18    | 0    | 494   |
| ~ ~ · · ·         |                           | 1. 1. 1. 1. 1. 1. 1. 1.                  |      | -     |       |      |       |

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 6

Period of Record: July - September 2008 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind     | 1-3              | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |
|----------|------------------|-------|------|-------|-------|------|-------|
|          | لات عد<br>مستسسس |       |      |       |       |      |       |
| N        | 0                | 7     | 2    | 1     | 0     | 0    | 10    |
| NNE      | 1                | 1     | 8    | 1     | 0     | 0    | 11    |
| NE       | 1                | 7     | 37   | 5     | 0     | 0    | 50    |
| ENE      | 1                | 10    | 29   | 2     | 0     | 0    | 42    |
| Е        | 0                | 7     | 30   | 3     | 0     | 0    | 40    |
| ESE      | 0                | 1     | 7    | 14    | 0     | 0    | 22    |
| SE       | 0                | 5     | 14   | 11    | 0     | 0    | 30    |
| SSE      | 0                | 8     | 19   | 7     | 2     | 0    | 36    |
| S        | 0                | 1     | 14   | 20    | 1     | 0    | 36    |
| SSW      | 0                | 3     | 10   | 23    | 1     | 0    | 37    |
| SW       | 0                | 6     | 33   | 9     | 0     | 0    | 48    |
| WSW      | 1                | 7     | 33   | 14    | 0     | 0    | 55    |
| W        | 2                | 5     | 17   | 6     | 0     | 0    | 30    |
| WNW      | 1                | 6     | 15   | 1     | 0     | 0    | 23    |
| NW       | 2                | 11    | 19   | 0     | 0     | 1    | 33    |
| NNW      | 0                | 5     | 19   | 2     | 0     | 0    | 26    |
| Variable | 0                | 0     | 0    | 0     | 0     | 0    | 0     |
| Total    | 9                | 90    | 306  | 119   | 4     | 1    | 529   |

Wind Speed (in mph)

Hours of calm in this stability class: 1 Hours of missing wind measurements in this stability class: 3 Hours of missing stability measurements in all stability classes: 6

Period of Record: July - September 2008 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction                         | 1-3                        | 4-7 | 8-12                    | 13-18 | 19-24                             | > 24 | Total |
|-------------------------------------------|----------------------------|-----|-------------------------|-------|-----------------------------------|------|-------|
| anan alam aaga kaan wan aga kan soo oon . | 1.000 \$600 1000 app; 2000 |     | lane line and also dive |       | ,<br>Appler acced solar vited and |      |       |
| N                                         | 1                          | 3   | 18                      | 0     | 0                                 | 0    | 22    |
| NNE                                       | 0                          | 5   | 18                      | 1     | 0                                 | 0    | 24    |
| NĖ                                        | 1                          | 5   | 11                      | 6     | 0                                 | 0    | 23    |
| ENE                                       | 1                          | 10  | 10                      | 0     | 0                                 | 0    | 21    |
| E                                         | 0                          | 3   | 19                      | 9     | 0                                 | 0    | 31    |
| ESE                                       | 1                          | 2   | 13                      | 25    | 0                                 | 0    | 41    |
| SE                                        | 0                          | 4   | 7                       | 9     | 0                                 | Ó    | 20    |
| SSE                                       | 0                          | 2   | 9                       | 2     | 0                                 | 0    | 13    |
| S                                         | 0                          | 8   | 20                      | 2     | 0                                 | 0    | 30    |
| SSW                                       | 1                          | 8   | 9                       | 2     | 0                                 | 0    | 20    |
| SW                                        | 0                          | 6   | 10                      | 5     | 0                                 | 0    | 21    |
| WSW                                       | 0                          | 6   | 7                       | 11    | 0                                 | 0    | 24    |
| W                                         | 2                          | 5   | 8                       | 11    | 0                                 | 0    | 26    |
| WNW                                       | 1                          | 3   | 9                       | 3     | 0                                 | 0    | 16    |
| NW                                        | 0                          | 8   | 13                      | 1     | 0                                 | 0    | 22    |
| NNW                                       | 0                          | 1   | 17                      | 0     | 0                                 | 0    | 18    |
| Variable                                  | 0                          | 0   | 0                       | 0     | 0.                                | 0    | 0     |
| Total                                     | 8                          | 79  | 198                     | 87    | 0                                 | 0    | 372   |
|                                           |                            |     |                         |       |                                   |      |       |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

Period of Record: July - September 2008 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction                  | 1-3                     | 4 - 7 | 8-12 | 13-18                         | 19-24                                    | > 24                   | Total |
|------------------------------------|-------------------------|-------|------|-------------------------------|------------------------------------------|------------------------|-------|
| ANN NGA MAG ANN "YA AN NGA MAT ANA | 6899 1000 TOT 2001 1997 |       |      | المرتبع والارام معامل المراجع | موري بينية <mark>معمد م</mark> عمد فيريد | مسلم منهم بهند هدي هين |       |
| N                                  | 0                       | 6     | 5    | 1                             | 0                                        | 0                      | 12    |
| NNE                                | 1                       | 1     | 3    | 0                             | 0                                        | 0                      | 5     |
| NE                                 | 1                       | 4     | 3    | 1                             | 0                                        | 0                      | 9     |
| ENE                                | 0                       | 10    | 2    | 0                             | 0                                        | 0                      | 12    |
| Ε                                  | 1                       | 8     | 5    | 3                             | 0                                        | 0                      | 17    |
| ESE                                | 0                       | 2     | 3    | 11                            | 0                                        | 0                      | 16    |
| SE                                 | 0                       | 2     | 1    | 2                             | 0                                        | 0                      | 5     |
| SSE                                | 1                       | 5     | 1    | 0                             | 0                                        | 0                      | 7     |
| S                                  | 1                       | 2     | 1    | 0                             | 0                                        | 0                      | 4     |
| SSW                                | 2                       | 5     | 1    | 0                             | 0                                        | 0                      | 8     |
| SW                                 | 2                       | 6     | 0    | 0                             | О                                        | 0                      | 8     |
| WSW                                | 1                       | 1     | 0    | 0                             | 0                                        | 0                      | 2     |
| W                                  | 1                       | 2     | 4    | 4                             | 0                                        | 0                      | 11    |
| WNW                                | 1                       | 3     | 17   | 3                             | 0                                        | 0                      | 24    |
| NW                                 | 0                       | 3     | 6    | 1                             | 0                                        | 0                      | 10    |
| NNW                                | 0                       | 8     | 6    | 2                             | 0                                        | 0                      | 16    |
| Variable                           | 0                       | 0     | 0    | 0                             | 0                                        | 0                      | 0     |
| Total                              | 12                      | 68    | 58   | 28                            | 0                                        | 0                      | 166   |

## Wind Speed (in mph)

Hours of calm in this stability class: 3 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

F-45

Period of Record: October - December2008 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind     | 1-3 | 4 - 7 | 8-12 | 13-18                     | 19-24                | > 24 | Total |
|----------|-----|-------|------|---------------------------|----------------------|------|-------|
|          |     |       |      | udan nam other unit after | 1999 107 - 1998 1998 |      | ~~~~  |
| N        | 0   | 0     | 3    | 0                         | 0                    | 0    | 3     |
| NNE      | 0   | 0     | Ö    | 0                         | 0                    | 0    | Ó     |
| NE       | 0   | 4     | 0    | 0                         | 0                    | 0    | 4     |
| ENE      | 0   | 1     | 0    | 0                         | 0                    | 0    | 1     |
| Ε        | 0   | 5     | 1    | 0                         | 0                    | 0    | 6     |
| ESE      | 0   | 0     | 2    | 0                         | 0                    | 0    | 2     |
| SE       | 0   | 1     | 1    | 0                         | 0                    | 0    | 2     |
| SSE      | Ö   | 0     | 0    | 0                         | 0                    | 0    | 0     |
| S        | 0   | 0     | 3    | 1                         | 0                    | 0    | 4     |
| SSW      | 0   | 0     | 2    | 2                         | 0                    | 0    | 4     |
| SW       | 0   | 0     | 0    | 1                         | 0                    | 0    | 1     |
| WSW      | 0   | 1     | 1    | 0                         | Ö                    | 0    | 2     |
| W        | 0   | 3     | 3    | З                         | 1                    | 0    | 10    |
| WNW      | 0   | 5     | 12   | 0                         | 0                    | 0    | 17    |
| NW       | 0   | 7     | 14   | 0                         | 0                    | 0    | 21    |
| NNW      | 0   | 2     | 3    | 0                         | 0                    | 0    | 5     |
| Variable | 0   | 0     | 0    | 0                         | 0                    | 0    | 0     |
| Total    | 0   | 29    | 45   | 7                         | 1                    | 0    | 82    |
|          |     |       |      |                           |                      |      |       |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind      |     |       | • • • • |       | $1_{-3}$ $4_{-7}$ $8_{-12}$ $13_{-18}$ $18_{-24}$ $\sim 24$ Total |      |       |  |  |  |  |  |  |  |
|-----------|-----|-------|---------|-------|-------------------------------------------------------------------|------|-------|--|--|--|--|--|--|--|
| Direction | 1-3 | 4 - 7 | 8-12    | 13-18 | 19-24                                                             | > 24 | Total |  |  |  |  |  |  |  |
| N         | 0   | 1     | 0       | 0     | 0                                                                 | 0    | 1     |  |  |  |  |  |  |  |
| NNE       | 0   | 1     | 0       | 0     | 0                                                                 | 0    | 1     |  |  |  |  |  |  |  |
| NE        | 0   | 3     | 0       | 0     | 0                                                                 | 0    | 3     |  |  |  |  |  |  |  |
| ENE       | 0   | 2     | 0       | 0     | 0                                                                 | 0    | 2     |  |  |  |  |  |  |  |
| Е         | 0   | 0     | 0       | 0     | 0                                                                 | 0    | 0     |  |  |  |  |  |  |  |
| ESE       | 0   | 7     | 4       | 0     | 0                                                                 | 0    | 11    |  |  |  |  |  |  |  |
| SE        | 0   | 0     | l       | 0     | 0                                                                 | 0    | 1     |  |  |  |  |  |  |  |
| SSE       | 0   | 1     | 3       | 0     | 0                                                                 | 0    | 4     |  |  |  |  |  |  |  |
| S         | 0   | 0     | 3       | 4     | 0                                                                 | 0    | 7     |  |  |  |  |  |  |  |
| SSW       | 0   | 0     | 3       | 4     | 0                                                                 | 0    | 7     |  |  |  |  |  |  |  |
| SW        | 0   | 0     | 1       | 1     | 0                                                                 | 0    | 2     |  |  |  |  |  |  |  |
| WSW       | 0   | 2     | 7       | 3     | 0                                                                 | 0    | 12    |  |  |  |  |  |  |  |
| W         | 0   | 5     | 3       | 6     | 0                                                                 | 0    | 14    |  |  |  |  |  |  |  |
| WNW       | 0   | 4     | 5       | 1     | 0                                                                 | 0    | 10    |  |  |  |  |  |  |  |
| NW        | 0   | 4     | 4       | 0     | 0                                                                 | 0    | 8     |  |  |  |  |  |  |  |
| NNW       | 0   | 6     | 2       | 0     | 0                                                                 | 0    | 8     |  |  |  |  |  |  |  |
| Variable  | 0   | 0     | 0       | 0     | 0                                                                 | 0    | 0     |  |  |  |  |  |  |  |
| Total     | 0   | 36    | 36      | 19    | 0                                                                 | 0    | 91    |  |  |  |  |  |  |  |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 3 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind<br>Direction | 1-3 | 4 - 7       | 8-12 | 13-18            | 19-24 | > 24                | Total                         |
|-------------------|-----|-------------|------|------------------|-------|---------------------|-------------------------------|
|                   |     | معد يور معد |      | نین روپ ۱۹۵۵ مخت |       | aan aya waa mee dad | gegan spänn menne minne ausan |
| N                 | 0   | 5           | 2    | 0                | 0     | 0                   | 7                             |
| NNE               | 0   | 4           | 0    | 0                | 0     | 0                   | 4                             |
| NE                | 0   | 6           | 0    | 0                | 0     | 0                   | 6                             |
| ENE               | 0   | 5           | 0    | 0                | 0     | 0                   | 5                             |
| E                 | 1   | 2           | 0    | 0                | 0     | 0                   | 3                             |
| ESE               | 0   | 1           | l    | 0                | 0     | 0                   | 2                             |
| SE                | 0   | 3           | 2    | 1                | 0     | 0                   | 6                             |
| SSE               | 0   | 6           | 3    | 0                | 0     | 0                   | 9                             |
| S                 | 0   | 1           | 9    | 2                | 1     | 0                   | 13                            |
| SSW               | 0   | 2           | 2    | 2                | 0     | 0                   | 6                             |
| SW                | 0   | 0           | 3    | 1                | 0     | 0                   | 4                             |
| WSW               | 0   | 3           | 7    | 2                | 0     | 0                   | 12                            |
| W                 | 0   | 6           | 8    | 5                | 0     | 0                   | 19                            |
| WNW               | 0   | 3           | 1    | 0                | 0     | 0                   | 4                             |
| NW                | 0   | 1           | 3    | 0                | 0     | 0                   | 4                             |
| NNW               | 1   | 2           | 3    | 0                | 0     | 0                   | 6                             |
| Variable          | 0   | 0           | 0    | 0                | 0     | 0                   | 0                             |
| Total             | 2   | 50          | 44   | 13               | 1     | 0                   | 110                           |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| ToT of any off | warre Abacte (are more) |       |      |       |       |      |       |  |  |  |
|----------------|-------------------------|-------|------|-------|-------|------|-------|--|--|--|
| Direction      | 1-3                     | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |  |  |  |
| N              | 2                       | 15    | 14   | 6     | 0     | 0    | 37    |  |  |  |
| NNE            | 2                       | 5     | 3    | 3     | 0     | 0    | 13    |  |  |  |
| NE             | 2                       | 18    | 3    | 0     | 0     | 0    | 23    |  |  |  |
| ENE            | 6                       | 10    | 0    | 0     | 0     | 0    | 16    |  |  |  |
| Ε              | 1                       | 9     | 1    | 0     | 0     | 0    | 11    |  |  |  |
| ESE            | 2                       | 28    | 9    | 0     | 0     | 0    | 39    |  |  |  |
| SE             | 0                       | 29    | 33   | 0     | 0     | 0    | 62    |  |  |  |
| SSE            | 0                       | 21    | 19   | 18    | 0     | 0    | 58    |  |  |  |
| S              | 0                       | 12    | 53   | 51    | 11    | 0    | 127   |  |  |  |
| SSW            | 0                       | 4     | 31   | 27    | 4     | 0    | 66    |  |  |  |
| SW             | 0                       | 12    | 38   | 12    | 0     | 0    | 62    |  |  |  |
| WSW            | 1                       | 25    | 27   | 9     | 6     | 0    | 68    |  |  |  |
| W              | 1                       | 34    | 71   | 29    | 6     | 0    | 141   |  |  |  |
| WNW            | 6                       | 19    | 46   | 12    | 0     | 0    | 83    |  |  |  |
| NW             | 4                       | 23    | 35   | 1     | 0     | 0    | 63    |  |  |  |
| NNW            | 2                       | 25    | 70   | 24    | 1     | 0    | 122   |  |  |  |
| Variable       | 0.                      | 0     | 0    | 0     | 0     | 0    | 0     |  |  |  |
| Total          | 29                      | 289   | 453  | 192   | 28    | 0    | 991   |  |  |  |

## Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 51 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Wind      | 1.7 | 4 7                | 0 1 0 | 10 10 | 10.04 |      | Tetal |
|-----------|-----|--------------------|-------|-------|-------|------|-------|
| DIFECTION |     | <u>وم</u> مع مع مع | 0-12  | 12-10 | 19-24 | > 24 | 10ta1 |
| N         | 3   | 16                 | 1     | 0     | 0     | 0    | 20    |
| NNE       | 5   | 2                  | 0     | 0     | 0     | 0    | . 7   |
| NE        | 4   | 8                  | 0     | 0     | 0     | 0    | 12    |
| ENE       | 11  | 5                  | 0     | 0     | 0     | 0    | 16    |
| Ε         | 29  | 20                 | 0     | 0     | 0     | 0    | 49    |
| ESE       | 12  | 29                 | 7     | 0     | 0     | 0    | 48    |
| SE        | 3   | 28                 | 10    | 0     | 0     | 0    | 41    |
| SSE       | 2   | 34                 | 20    | 3     | 0     | 0    | 59    |
| S         | 0   | 39                 | 64    | 24    | 1     | 0    | 128   |
| SSW       | 0   | 6                  | 32    | 2     | 0     | 0    | 40    |
| SW        | 1   | 10                 | 11    | 3     | 0     | 0    | 25    |
| WSW       | 5   | 14                 | 1     | 1     | 0     | 0    | 21    |
| W         | 7   | 27                 | 4     | 1     | 0     | 0    | 39    |
| WNW       | 6   | 17                 | 4     | 1     | 1     | 0    | 29    |
| NW        | 15  | 25                 | 11    | 0     | 0     | 0    | 51    |
| NNW       | 4   | 14                 | 14    | 0     | 0     | 0    | 32    |
| Variable  | 0   | 0                  | 0     | 0.    | 0     | 0    | 0     |
| Total     | 107 | 294                | 179   | 35    | 2     | 0    | 617   |

#### Wind Speed (in mph)

Hours of calm in this stability class: 5 Hours of missing wind measurements in this stability class: 8 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

| Mind      | Wind Speed (in mph) |       |      |       |       |      |       |  |  |  |
|-----------|---------------------|-------|------|-------|-------|------|-------|--|--|--|
| Direction | 1-3                 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |  |  |  |
| N         | 6                   | 5     | 0    | 0     | 0     | 0    | 11    |  |  |  |
| NNE       | 8                   | 0     | 0    | 0     | 0     | 0    | 8     |  |  |  |
| NE        | 4                   | 0     | 0    | 0     | 0     | 0    | 4     |  |  |  |
| ENE       | 8                   | 0     | 0    | 0     | 0     | 0    | 8     |  |  |  |
| E         | 14                  | 3     | 0    | 0     | 0     | 0    | 17    |  |  |  |
| ESE       | 13                  | 5     | 0    | 0     | 0     | 0    | 18    |  |  |  |
| SE        | 1                   | 3     | 0    | 0     | 0     | 0    | 4     |  |  |  |
| SSE       | 1                   | 0     | 0    | 0     | 0     | 0    | 1     |  |  |  |
| S         | 2                   | 0     | 0    | 0     | 0     | 0    | 2     |  |  |  |
| SSW       | 1                   | 5     | 2    | 0     | 0     | 0    | 8     |  |  |  |
| SW        | 2                   | 5     | 0    | 0     | 0     | 0    | 7     |  |  |  |
| WSW       | 9                   | 29    | 0    | 0     | 0     | Ó    | 38    |  |  |  |
| W         | 17                  | 9     | 1    | 0     | 0     | 0    | 27    |  |  |  |
| WNW       | 5                   | 0     | 0    | 0     | 0     | 0    | 5     |  |  |  |
| NW        | 9                   | 0     | 0    | 0     | 0     | 0    | 9     |  |  |  |
| NNW       | 6                   | 1     | 0    | 0     | 0     | 0    | 7     |  |  |  |
| Variable  | 0                   | 0     | 0    | 0     | 0     | 0    | 0     |  |  |  |
| Total     | 106                 | 65    | 3    | 0     | 0     | 0    | 174   |  |  |  |

Hours of calm in this stability class: 5 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

F-51

Period of Record: October - December2008 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

#### Wind Speed (in mph)

| Wind<br>Direction                       | 1-3 | 4-7                       | 8-12 | 13-18 | 19-24                       | > 24                  | Total                   |
|-----------------------------------------|-----|---------------------------|------|-------|-----------------------------|-----------------------|-------------------------|
| uge ton dan inte tim take take take dan |     | 2009 - 2009 - 2009 - 2009 |      |       | ander ander ander dens sons | هنه کشم ساند میں اندو | agan war mud Wash assay |
| N                                       | 1   | 0                         | 0    | 0     | 0                           | 0                     | 1                       |
| NNE                                     | 1   | Ó                         | 0    | 0     | 0                           | 0                     | 1                       |
| NE                                      | 2   | 0                         | 0    | 0     | 0                           | 0                     | 2                       |
| ENE                                     | 2   | 0                         | 0    | 0     | 0                           | 0                     | 2                       |
| Ē                                       | 10  | 0                         | 0    | 0     | 0                           | 0                     | 10                      |
| ESE                                     | 5   | 0                         | 0    | 0     | 0                           | 0                     | 5                       |
| SE                                      | 4   | 0                         | 0    | 0     | 0                           | 0                     | 4                       |
| SSE                                     | 0   | 0                         | 0    | 0     | 0                           | 0                     | 0                       |
| S                                       | 0   | 0                         | 0    | 0     | 0                           | 0                     | 0                       |
| SSW                                     | 0   | 0                         | 0    | 0     | 0                           | 0                     | 0                       |
| SW                                      | 4   | 1                         | 0    | 0     | 0                           | 0                     | 5                       |
| WSW                                     | 3   | 11                        | 0    | 0     | 0                           | 0                     | 14                      |
| W                                       | l   | 1                         | 0    | 0     | 0                           | 0                     | 2                       |
| WNW                                     | 0   | 0                         | 0    | 0     | 0                           | 0                     | 0                       |
| NW                                      | 1   | 0                         | 0    | 0     | 0                           | 0                     | 1                       |
| NNW                                     | 6   | 0                         | 0    | 0     | 0                           | 0                     | 6                       |
| Variable                                | 0   | 0                         | 0    | 0     | 0                           | 0                     | 0                       |
| Total                                   | 40  | 13                        | 0    | 0     | 0                           | 0                     | 53                      |

Hours of calm in this stability class: 14 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

F-52

Period of Record: October - December2008 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3 | 4 - 7 | 8-12 | 13-18 | 19-24 | > 24 | Total |
|-------------------|-----|-------|------|-------|-------|------|-------|
| N                 | 0   | 0     | 0    | 2     | 0     | 0    | 2 2   |
| NNE               | 0   | 0     | 0    | 0     | · 0   | 0    | 0     |
| NE                | 0   | 2     | 1    | 0     | 0     | 0    | 3     |
| ENE               | 0   | 2     | 0    | 0     | 0     | 0    | 2     |
| Е                 | 0   | 1     | 3    | 0     | 2     | 0    | 6     |
| ESE               | 0   | 0     | 1    | 0     | 1     | 0    | 2     |
| SE                | 0   | 0     | 1    | 1     | 0     | 0    | 2     |
| SSE               | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| S                 | 0   | 0     | 0    | 3     | 1     | 1    | 5     |
| SSW               | 0   | 0     | 1    | 1     | 2     | 0    | 4     |
| SW                | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| WSW               | 0   | 0     | 1    | 0     | 0     | 0    | 1     |
| W                 | 0   | 1     | 1    | 3     | 0     | 1    | 6     |
| WNW               | 0   | 2     | 7    | 6     | 1     | 2    | 18    |
| NW                | 0   | 3     | 8    | 12    | 1     | 0    | 24    |
| NNW               | 0   | 1     | 1    | 2     | 0     | 0    | 4     |
| Variable          | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| Total             | 0   | 12    | 25   | 30    | 8     | 4    | 79    |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 3 Hours of missing stability measurements in all stability classes: 2

| تراج مرجا |     | Wi  | nd Speed | (in mph | 1)    |      |       |
|-----------|-----|-----|----------|---------|-------|------|-------|
| Direction | 1-3 | 4-7 | 8-12     | 13-18   | 19-24 | > 24 | Total |
| N         | 0   | 0   | 0        | 0       | 0     | 0    | 0     |
| NNE       | 0   | 0   | 0        | 0       | 0     | 0    | Ó     |
| NE        | 0   | 1   | 4        | 0       | 0     | 0    | 5     |
| ENE       | 0   | 3   | 0        | 0       | 0     | 0    | 3     |
| E         | 0   | 0   | 0        | 2       | 0     | 0    | 2     |
| ESE       | 0   | 1   | 3        | 2       | 3     | 0    | 9     |
| SE        | 0   | 0   | 1        | 1       | 0     | 0    | 2     |
| SSE       | 0   | 0   | 2        | 1       | 0     | 0    | 3     |
| S         | 0   | 0   | 0        | 3       | 5     | 1    | 9     |
| SSW       | 0   | 0   | 0        | 3       | 2     | 0    | 5     |
| SW        | 0   | 0   | 1        | 0       | 1     | 0    | 2     |
| WSW       | 0   | 1   | 2        | 3       | 3     | 0    | 9     |
| W         | 0   | 0   | б        | 3       | 0     | 0    | 9     |
| WNW       | 0   | 1   | 9        | 3       | 1     | 2    | 16    |
| NW        | 0   | 2   | 4        | 3       | 1     | 0    | 10    |
| NNW       | 0   | 0   | 6        | 2       | 0     | 0    | 8     |
| Variable  | 0   | 0   | 0        | 0       | 0     | 0    | 0     |
| Total     | 0   | 9   | 38       | 26      | 16    | 3    | 92    |

Period of Record: October - December2008 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind | Speed | (in | mph) |
|------|-------|-----|------|
|------|-------|-----|------|

| Wind      |       |     | 0.10 |       |       | ~ ~ ~ |       |
|-----------|-------|-----|------|-------|-------|-------|-------|
| Direction | 5-1-3 | 4-7 | 8-12 | 13-18 | 19-24 | > 24  | Total |
| N         | 0     | 2   | 4    | 1     | 0     | 0     | 7     |
| NNE       | 0     | 3   | 1    | 0     | 0     | 0     | 4     |
| NE        | 0     | 4   | 2    | 0     | 0     | 0     | 6     |
| ENE       | 0     | 5   | 0    | 0     | 0     | 0     | 5     |
| Ε         | 0     | 2   | 2    | 0     | 1     | 0     | 5     |
| ESE       | 0     | 1   | о    | 1     | 0     | 0     | 2     |
| SE        | 0     | 2   | 2    | 1     | 2     | 0     | 7     |
| SSE       | 0     | 5   | 2    | 2     | 0     | 0     | 9     |
| S         | 0     | 1   | 4    | 3     | 3     | 1     | 12    |
| SSW       | 0     | 0   | 4    | 1     | 1     | 1     | 7     |
| SW        | 0     | 0   | 0    | 3     | 0     | 0     | 3     |
| WSW       | 0     | 0   | 3    | 6     | 1     | 0     | 10    |
| W         | 0     | 4   | 3    | 6     | 2     | 1     | 16    |
| WNW       | 0     | 0   | 5    | 2     | 1     | 0     | 8     |
| NW        | 0     | 0   | 1    | 2     | 0     | 0     | 3     |
| NNW       | 0     | 2   | 3    | 1     | 0     | 0     | 6     |
| Variable  | 0     | 0   | 0    | 0     | 0     | 0     | 0     |
| Total     | 0     | 31  | 36   | 29    | 11    | 3     | 110   |

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 2 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind | Speed | (in | mph) |
|------|-------|-----|------|
|------|-------|-----|------|

| Wind                                           |     |                            |      |                          |       |                       |                           |  |  |
|------------------------------------------------|-----|----------------------------|------|--------------------------|-------|-----------------------|---------------------------|--|--|
| Direction                                      | 1-3 | 4-7                        | 8-12 | 13-18                    | 19-24 | > 24                  | Total                     |  |  |
| - Jone 1999 when were well with adde they also |     | olow and addition and boot |      | gand nata dina 800, 1960 |       | nga tita tita ana yan | Jana waxa Anno bank sajar |  |  |
| N                                              | 1   | 9                          | 7    | 13                       | 5     | 0                     | 35                        |  |  |
| NNE                                            | 0   | 5                          | 5    | 3                        | 3     | 0                     | 16                        |  |  |
| NE                                             | 1   | 5                          | 7    | 4                        | 0     | 0                     | 17                        |  |  |
| ENE                                            | 2   | 8                          | 8    | 2                        | 0     | 0                     | 20                        |  |  |
| Е                                              | 2   | 2                          | 7    | 5                        | 2     | 0                     | 18                        |  |  |
| ESE                                            | 0   | 6                          | 4    | 25                       | 3     | 0                     | 38                        |  |  |
| SE                                             | 0   | 5                          | 19   | 29                       | 4     | 0                     | 57                        |  |  |
| SSE                                            | 0   | 4                          | 22   | 16                       | 8     | 11                    | 61                        |  |  |
| S                                              | 0   | 3                          | 19   | 40                       | 25    | 43                    | 130                       |  |  |
| SSW                                            | 0   | 1                          | 5    | 35                       | 29    | 9                     | 79                        |  |  |
| SW                                             | 0   | 3                          | 13   | 28                       | 4     | 0                     | 48                        |  |  |
| WSW                                            | 0   | 8                          | 16   | 14                       | 6     | 3                     | 47                        |  |  |
| W                                              | 1   | 11                         | 22   | 47                       | 18    | 11                    | 110                       |  |  |
| WNW                                            | 1   | 1                          | 24   | 56                       | 30    | 8                     | 120                       |  |  |
| NW                                             | 1   | 8                          | 18   | 39                       | 17    | 0                     | 83                        |  |  |
| NNW                                            | 1   | 7                          | 21   | 59                       | 27    | 7                     | 122                       |  |  |
| Variable                                       | 0   | 0                          | 0    | 0                        | 0     | 0                     | 0                         |  |  |
| Total                                          | 10  | 86                         | 217  | 415                      | 181   | 92                    | 1001                      |  |  |

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 41 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction | 1-3 | 4-7   | 8-12 | 13-18 | 19-24 | > 24 | Total |
|-------------------|-----|-------|------|-------|-------|------|-------|
| N                 |     | <br>2 | 16   |       |       |      | 20    |
| IN                | U   | 2     | 10   | 4     | 0     | 0    | 20    |
| NNE               | 1   | 2     | 3    | 0     | 0     | 0    | 6     |
| NE                | 0   | 0     | 5    | 1     | 0     | 0    | 6     |
| ENE               | 2   | 4     | 9    | 2     | 0     | 0    | 17    |
| E                 | 1   | 4     | 18   | 17    | 2     | 0    | 42    |
| ESE               | 0   | 4     | 8    | 34    | 3     | 0    | 49    |
| SE                | 2   | 6     | 16   | 18    | 3     | 0    | 45    |
| SSE               | 1   | 3     | 18   | 18    | 15    | 0    | 55    |
| S                 | 1   | 0     | 18   | 66    | 31    | 14   | 130   |
| SSW               | 0   | 0     | 8    | 37    | 8     | 0    | 53    |
| SW                | 0   | 4     | 5    | 10    | 5     | 1    | 25    |
| WSW               | O   | 7     | 6    | 4     | 1     | 0    | 18    |
| W                 | 0   | 6     | 10   | 6     | 2     | 0    | 24    |
| WNW               | 0   | 2     | 15   | 17    | 3     | 1    | 38    |
| NW                | 1   | 5     | 24   | 25    | 1     | 0    | 56    |
| NNW               | 1   | 3     | 18   | 16    | 0     | 0    | 38    |
| Variable          | 0   | 0     | 0    | 0     | 0     | 0    | 0     |
| Total             | 10  | 52    | 197  | 273   | 74    | 16   | 622   |

## Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 8 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind      | 1-2 | 1 - 7 | 9_12 | 13_19 | 19-24     | > 24        | Total |
|-----------|-----|-------|------|-------|-----------|-------------|-------|
| DILECTION |     |       |      |       | 1)-24<br> | ~ ~ ~ ~ ~ ~ | TOCAL |
| N         | 0   | 2     | 8    | 2     | 0         | 0           | 12    |
| NNE       | 0   | 3     | 1    | 0     | 0         | 0           | 4     |
| NE        | 1   | 1     | 7    | 0     | 0         | 0           | 9     |
| ENE       | 0   | 0     | 1    | 0     | 0         | 0           | 1     |
| Е         | 2   | 1     | 8    | 2     | 0         | 0           | 13    |
| ESE       | 0   | 0     | 1    | 12    | 0         | 0           | 13    |
| SE        | 1   | 4     | 8    | 4     | 0         | 0           | 17    |
| SSE       | 1   | 0     | 3    | 3     | 0         | 0           | 7     |
| S         | 0   | 1     | 0    | 0     | 0         | 0           | 1     |
| SSW       | 0   | 0     | 1    | 3     | 1         | 0           | 5     |
| SW        | 0   | 2     | 5    | 1     | 0         | 0           | 8     |
| WSW       | 0   | Ó     | 5    | 5     | 0         | 0           | 10    |
| W         | 1   | 4     | 8    | 24    | 1         | 0           | 38    |
| WNW       | 0   | 2     | 13   | 5     | 0         | 0           | 20    |
| NW        | 0   | 3     | 7    | 0     | 0         | 0           | 10    |
| NNW       | 0   | 6     | 5    | 0     | 0         | 0           | 11    |
| Variable  | 0   | 0     | 0    | 0     | 0         | 0           | 0     |
| Total     | 6   | 29    | 81   | 61    | 2         | 0           | 179   |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

Period of Record: October - December2008 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

| Wind<br>Direction          | 1-3                    | 4 - 7                      | 8-12                     | 13-18                 | 19-24                   | > 24                      | Total |
|----------------------------|------------------------|----------------------------|--------------------------|-----------------------|-------------------------|---------------------------|-------|
| and any one and the set of | web and also were been | alaan iyyy unto astar hyan | with abol page point ang | NOT WHEN AND RULE AND | same and cont over when | ange ages staat moor hore |       |
| Ν                          | 0                      | 0                          | 4                        | 2                     | O <sup>1</sup>          | 0                         | 6     |
| NNE                        | 0                      | 3                          | 1                        | 0                     | 0                       | 0                         | 4     |
| NE                         | 2                      | 1                          | 3                        | 1                     | 0                       | 0                         | 7     |
| ENE                        | 0                      | 0                          | 0                        | 1                     | 0                       | 0                         | 1     |
| Е                          | 0                      | 0                          | 1                        | 3                     | 0                       | 0                         | 4     |
| ESE                        | 1                      | 2                          | 2                        | 2                     | 0                       | 0                         | 7     |
| SE                         | 0                      | 0                          | 1                        | 0                     | 0                       | 0                         | 1     |
| SSE                        | 0                      | 2                          | 2                        | 0                     | 0                       | 0                         | 4     |
| S                          | 0                      | 1                          | 0                        | 0                     | 0                       | 0                         | 1     |
| SSW                        | 0                      | 6                          | 0                        | 0                     | 0                       | 0                         | 6     |
| SW                         | 0                      | 2                          | 0                        | 0                     | 0                       | 0                         | 2     |
| WSW                        | 0                      | 2                          | 2                        | 3                     | 0                       | 0                         | 7     |
| W                          | 1                      | 0                          | 6                        | 4                     | 0                       | 0                         | 11    |
| WNW                        | 0                      | 1                          | 1                        | 0                     | 0                       | 0                         | 2     |
| NW                         | 0                      | 0                          | 0                        | 0                     | 0                       | 0                         | 0     |
| NNW                        | 0                      | 3                          | 1                        | 0                     | 0                       | 0                         | 4     |
| Variable                   | 0                      | 0                          | 0                        | 0                     | 0                       | 0                         | 0     |
| Total                      | 4                      | 23                         | 24                       | 16                    | 0                       | 0                         | 67    |
|                            |                        |                            |                          |                       |                         |                           |       |

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2 **APPENDIX G** 

# ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

Docket No: 50-456 50-457

# BRAIDWOOD STATION UNITS 1 and 2

Annual Radiological Groundwater Protection Program Report

1 January Through 31 December 2008

## **Prepared By**

Teledyne Brown Engineering Environmental Services



Nuclear Braidwood Station Braceville, IL 60407

May 2009

## Table Of Contents

| I.  | Summary and Conclusions                                                                                                                                                                                                                                              | 1                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 11. | Introduction<br>A. Objectives of the RGPP<br>B. Implementation of the Objectives<br>C. Program Description<br>D. Characteristics of Tritium (H-3)                                                                                                                    | 2<br>2<br>3<br>4                         |
|     | Program Description<br>A. Sample Analysis<br>B. Data Interpretation<br>C. Background Analysis<br>1. Background Concentrations of Tritium                                                                                                                             | 4<br>5<br>6<br>6                         |
| IV  | Results and Discussion<br>A. Groundwater Results<br>B. Surface Water Results<br>B. Drinking Water Well Survey<br>C. Summary of Results – Inter-laboratory Comparison Program<br>D. Leaks, Spills, and Releases<br>E. Trends<br>F. Investigations<br>G. Actions Taken | 8<br>9<br>9<br>9<br>10<br>10<br>10<br>10 |

## Appendices

| Appendix A     | Location Designation                                                                                                      |
|----------------|---------------------------------------------------------------------------------------------------------------------------|
| Tables         |                                                                                                                           |
| Table A-1:     | Radiological Groundwater Protection Program - Sampling Locations,<br>Braidwood Station, 2008                              |
| <u>Figures</u> |                                                                                                                           |
| Figure A-1:    | Sampling Locations Near the Site Boundary of the Braidwood Station, 2008                                                  |
| Figure A-2:    | Distant Sampling Locations of the Braidwood Station, 2008                                                                 |
| Appendix B     | Data Tables                                                                                                               |
| <u>Tables</u>  |                                                                                                                           |
| Table B-I.1    | Concentrations of Tritium and Strontium in Groundwater Samples<br>Collected in the Vicinity of Braidwood Station, 2008.   |
| Table B-I.2    | Concentrations of Gamma Emitters in Groundwater Samples Collected in the Vicinity of Braidwood Station, 2008.             |
| Table B-II.1   | Concentrations of Tritium and Strontium in Surface Water Samples<br>Collected in the Vicinity of Braidwood Station, 2008. |
| Table B-II.2   | Concentrations of Gamma Emitters in Surface Water Samples<br>Collected in the Vicinity of Braidwood Station, 2008.        |

## I. Summary and Conclusions

In 2008, Exelon continued a comprehensive program that evaluates the impact of station operations on groundwater and surface water in the vicinity of Braidwood Station. This evaluation involved numerous station personnel and contractor support personnel. This report covers groundwater and surface water samples, collected from the environment, both on and off station property in 2008. During that time period, 914 analyses were performed on 872 samples from 210 locations.

In assessing all the data gathered for this report, it was concluded that the operation of Braidwood Station had no adverse radiological impact on the environment.

Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) as specified in the Offsite Dose Calculation Manual (ODCM) in any of the groundwater or surface water samples except for Potassium-40. In the case of tritium, Exelon specified that it's laboratories achieve a lower limit of detection 10 times lower than that required by federal regulation.

Strontium-89/90 was not detected at a concentration greater than the LLD of 2.0 picoCuries per liter (pCi/L) in any of the groundwater or surface water samples tested.

No tritium was detected in the groundwater samples at concentrations greater than the United States Environmental Protection Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission Reporting Limit) of 20,000 pCi/L. Tritium was not detected in any surface water samples greater than 20,000 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L in 220 of 929 analyses. The tritium concentrations ranged from  $200 \pm 120$  pCi/L to  $18,200 \pm 1870$  pCi/L. The tritium that was detected in the groundwater is believed to be the result of isolated historical releases and/or background from external sources greater than 200 pCi/L. With ongoing investigation of the site groundwater, the Radiological Groundwater Protection Program (RGPP) will continue to expand as needed.

Intentionally left blank

## II. Introduction

The Braidwood Station, consisting of two 3587 MWt pressurized water reactors owned and operated by Exelon Corporation, is located in Will County, Illinois. Unit No. 1 went critical on 29 May 1987. Unit No. 2 went critical on 08 March 1988. The site is located in northeastern Illinois, 15 miles south-southwest of Joliet, Illinois and 60 miles southwest of Chicago and southwest of the Kankakee River.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) and Environmental Inc. Midwest Labs (EIML) on samples collected in 2008.

A. Objective of the RGPP

The long-term objectives of the RGPP are as follows:

- 1. Identify suitable locations to monitor and evaluate potential impacts from station operations before significant radiological impact to the environment and potential drinking water sources.
- 2. Understand the local hydrogeologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface.
- 3. Perform routine water sampling and radiological analysis of water from selected locations.
- 4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner.
- 5. Regularly assess analytical results to identify adverse trends.
- 6. Take necessary corrective actions to protect groundwater resources.
- B. Implementation of the Objectives

The objectives identified have been implemented at Braidwood Station as discussed below:

1. Exelon identified locations to monitor and evaluate potential impacts from station operations.

- 2. The Braidwood Station reports describe the local hydrogeologic regime. Periodically, the flow patterns on the surface and shallow subsurface are updated based on ongoing measurements.
- 3. Braidwood Station will continue to perform routine sampling and radiological analysis of water from selected locations.
- 4. Braidwood Station has implemented procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner.
- 5. Assessed results to monitor for adverse trends.
- 6. Braidwood Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends.
- C. Program Description
  - 1. Sample Collection

Sample locations can be found in Table A-1 and Figures A-1 through A-4, Appendix A.

## Groundwater and Surface Water

Samples of water are collected, managed, transported and analyzed in accordance with approved procedures following EPA methods. Both groundwater and surface water are collected. Sample locations, sample collection frequencies and analytical frequencies are controlled in accordance with approved station procedures. Contractor and/or station personnel are trained in the collection, preservation management, and shipment of samples, as well as in documentation of sampling events. Analytical laboratories are subject to internal quality assurance programs, industry cross-check programs, as well as nuclear industry audits. Station personnel review and evaluate all analytical data deliverables as data are received.

Analytical data results are reviewed by both station personnel and an independent hydro geologist for adverse trends or changes to hydrogeologic conditions. D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through the skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion, essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like nontritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (3He). This radioactive decay releases a beta particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

- III. Program Description
  - A. Sample Analysis

This section describes the general analytical methodologies used by Teledyne Brown Engineering (TBE) and Environmental Incorporated Midwest Laboratory (EIML) to analyze the environmental samples for radioactivity for the Braidwood Station RGPP in 2008.
In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of gamma emitters in groundwater and surface water.
- 2. Concentrations of strontium in groundwater and surface water.
- 3. Concentrations of tritium in groundwater and surface water.
- B. Data Interpretation

The radiological data collected prior to Braidwood Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Braidwood Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is specified by federal regulation as a minimum sensitivity value that must be achieved routinely by the analytical parameter.

2. Laboratory Measurements Uncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus (±) the estimated sample standard deviation, as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

Gamma spectroscopy results for each type of sample were grouped as follows:

For groundwater and surface water 14 nuclides, Be-7, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140 were reported.

C. Background Analysis

A pre-operational radiological environmental monitoring program (preoperational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, marine life, and foodstuffs. The results of the monitoring were detailed in the report entitled, Environmental Radiological Monitoring for Braidwood Nuclear Power Station, Commonwealth Edison Company, Annual Report 1986, May 1987.

The pre-operational REMP contained analytical results from samples collected from the surface water and groundwater.

At the upstream Kankakee River collection point, BD-7, monthly composites of weekly sample collections from all surface water locations indicated tritium concentrations were not detectable above the LLD (<200 pCi/L). Monthly composites of weekly sample collections from all surface water locations indicate strontium-89, strontium-90, cesium-134 and cesium-137 concentrations were less than their specified LLDs.

Groundwater was collected from one off-site well on a quarterly basis. Gamma isotopic, radiostrontium and tritium analyses were performed on all samples. Strontium-89, strontium-90, tritium and gamma emitters were below their respective LLDs.

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others.

#### a. Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and strontium-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s, and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

#### b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected world wide from 1960 to 2008. RadNet provides tritium precipitation concentration data for samples collected at stations through out the U.S. from 1960 up to and including 2008. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L

since around 1980. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above. Water from previous years and decades is naturally captured in groundwater, so some well water sources today are affected by the surface water from the 1960s that was elevated in tritium.

c. Surface Water Data

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Illinois surface water data were typically less than 100 pCi/L.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a  $\pm$ 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately  $\pm$  70 to 100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 - 240 pCi/L or  $140 \pm 100$  pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

#### IV. Results and Discussion

#### A. Groundwater Results

#### Groundwater

Samples were collected from on and off-site wells throughout the year in accordance with the station radiological groundwater protection program. All required LLDs were met. Analytical results and anomalies are discussed below.

#### <u>Tritium</u>

Samples from all locations were analyzed for tritium activity (Table B-I.1, Appendix B). Tritium values ranged from the detection limit

to 18,200 pCi/l. Some contamination still exists and monitoring is ongoing.

#### <u>Strontium</u>

Strontium-90 was analyzed for in 21 samples and was less than the required detection limit of 2.0 pCi/liter. (Table B-I.2, Appendix B).

#### Gamma Emitters

No gamma emitting nuclides were detected in any of the samples analyzed. (Table B–II.2, Appendix B)

B. Surface Water Results

#### Surface Water

Samples were collected from fourteen surface water locations throughout the year in accordance with the station radiological groundwater protection program. All required LLDs were met. Analytical results and anomalies are discussed below.

#### <u>Tritium</u>

Samples from all locations were analyzed for tritium activity (Table B-II.1, Appendix B). Tritium values ranged from the detection limit to 1,230 pCi/I.

#### <u>Strontium</u>

Strontium-90 was analyzed for in six samples and was less than the required detection limit of 2.0 pCi/liter. (Table B-II.1, Appendix B).

#### Gamma Emitters

Potassium-40 was detected in 2 of 21 samples. The concentration in the two samples were 170 and 189 pCi/L. No other gamma emitting nuclides were detected. (Table B-I.2, Appendix B).

C. Drinking Water Well Survey

Drinking water wells near Braidwood Station were sampled quarterly in 2008.

D. Summary of Results – Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE are presented in the AREOR.

E. Leaks, Spills, and Releases

Previously identified contaminated groundwater plumes are being addressed by the Braidwood Station tritium remediation activities.

There were no liquid leaks, spills, or releases in 2008 that affected groundwater.

F. Trends and Analyses

Monitoring of remediation activities indicate that tritium concentrations in affected areas are trending down. In June of 2008, samples were taken at VB-7-1. The sample for tritium analysis was not received by the offsite laboratory. Therefore, no tritium analysis was completed for June for VB-7-1. A separate sample for the same well was sent to another offsite laboratory for chemical analyses. Those analyses were completed as required with the results as expected. The July 2008 tritium samples for VB-7-1 were completed and the results were as expected.

G. Investigations

Investigation of historic spills and the groundwater contamination has resulted in groundwater remediation activities at Braidwood Station.

- H. Actions Taken
  - 1. Compensatory Actions

All Circulating Water Blowdown valve vaults were coated to prevent any leakage of water from the vaults to the groundwater. A remote leakage detection system has been installed which provides continuous monitoring of the vaults. Operations procedures are in place for actions to take in the event the leak detection system alarms. Walkdowns of the Circulating Water Blowdown pipeline and vaults were performed weekly.

2. Installation of Monitoring Wells

Exelon has installed a permanent monitoring well network that ensures that ground water will be appropriately monitored around the plant and at the various remediation sites. Monitoring well locations were based on the kind of up gradient potential contamination source, ground flow direction, and source concentration. Some monitoring points are not primarily used for sampling but rather to measure ground water elevation. Water elevation is used extensively around active remediation sites to verify that ground water is still flowing toward extraction wells.

3. Actions to Recover/Reverse Plumes

Vacuum Breaker 1 area: Three extraction wells have been installed in this area to remove contaminated ground water. Monitoring of this activity indicates the remediation is proceeding acceptably.

Vacuum Breaker 2 area: Two extraction wells have been installed in this area to remove contaminated ground water. These wells, which became operational in 2008, discharge to the Exelon Pond. The wells are in place to remediate a previously identified contamination plume and were not installed to remediate contamination from a new spill.

Vacuum Breakers 4, 6, & 7: Monitoring wells have been installed within and down gradient of these plumes which originated from vacuum breaker valves along the blowdown line. These sites are being remediated by monitored natural attenuation.

Exelon Pond area: The combination of groundwater sample monitoring and water level monitoring ensures that the active remedial pumping of Exelon Pond continues to capture the tritium that spilled from vacuum breakers 2 and 3 almost ten years ago. Monitoring to date has shown marked reduction in the most contaminated area and the station continues to monitor plume capture to determine whether adjustments are needed in the pumping rate.

### **APPENDIX A**

### LOCATION DESIGNATION

| Station Code         | Sample Description |
|----------------------|--------------------|
| BL-03                | Monitoring Well    |
| BL-06                | Monitoring Well    |
| BL-06D               | Monitoring Well    |
| BL-09D               | Monitoring Well    |
| BL-10D               | Monitoring Well    |
| BL-11                | Monitoring Well    |
| BL-11D               | Monitoring Well    |
| BL-12D               | Monitoring Well    |
| BL-13D               | Monitoring Well    |
| BL-14D               | Monitoring Well    |
| BL-15D               | Monitoring Well    |
| BL-16D               | Monitoring Well    |
| BL-17D               | Monitoring Well    |
| BL-18D               | Monitoring Well    |
| BL-19R               |                    |
| BL-20D               |                    |
| BL-21                | Monitoring Well    |
| BL-22                | Monitoring Well    |
| BL-23                | Monitoring Well    |
| BL-24                | Monitoring Well    |
| BL-25                |                    |
| BL-26                |                    |
| BL-27                | Monitoring Well    |
| C-1D                 | Monitoring Well    |
| C-2D                 | Monitoring Well    |
| CD-1D                | Monitoring Well    |
| D-2D                 | Monitoring Well    |
| D-3D                 | Monitoring Well    |
| DITCH (DS-2)         | Surface Water      |
| EXELON POND          | Surface Water      |
| F-1D                 | Monitoring Well    |
| F-3D                 | Monitoring Well    |
| F-4D                 | Monitoring Well    |
| F-5D                 | Monitoring Well    |
| F-6D                 | Monitoring Well    |
| F-7D                 | Monitoring Well    |
| F-8D                 | Monitoring Well    |
| F 0D                 | Monitoring Well    |
|                      | Surface Mater      |
|                      |                    |
| G-2D                 |                    |
| HDICH                |                    |
| LAKE DISCHARGE CANAL | Surface Water      |
| LAKE INTAKE          | Surface Water      |
| MW-102R              | Monitoring Well    |
| MW-103               | Monitoring Well    |
| MW-105               | Monitoring Well    |
| MW-105D              | Monitoring Well    |
| MW-106D              | Monitoring Well    |
| MW-109D              | Monitoring Well    |
|                      |                    |

| Station Code | Sample Description                     |  |
|--------------|----------------------------------------|--|
| MW-11        | Monitoring Well                        |  |
| MW-110       | Monitoring Well                        |  |
| MW-111DR     | Monitoring Well                        |  |
| MW-112D      | Monitoring Well                        |  |
| MW-113       | Monitoring Well                        |  |
| MW-113DR     | Monitoring Well                        |  |
| MW-13        | Monitoring Well                        |  |
| MW-130D      | Monitoring Well                        |  |
| MW-131D      | Monitoring Well                        |  |
| MW-132D      | Monitoring Well                        |  |
| MW-133D      | Monitoring Well                        |  |
| MW-134D      | Monitoring Well                        |  |
| MW-135D      | Monitoring Well                        |  |
| MW-136D      | Monitoring Well                        |  |
| MW-137D      | Monitoring Well                        |  |
| MW-138D      | Monitoring Well                        |  |
| MW-139D      | Monitoring Well                        |  |
| MW-14        | Monitoring Well                        |  |
| MW-140D      | Monitoring Well                        |  |
| MW-141D      | Monitoring Well                        |  |
| MW-142D      | Monitoring Well                        |  |
| MW-143D      | Monitoring Well                        |  |
| MW-144D      | Monitoring Well                        |  |
| MW-145D      | Monitoring Well                        |  |
| MW-148D      | Monitoring Well                        |  |
| MW-149D      | Monitoring Well                        |  |
| MW-150D      | Monitoring Well                        |  |
| MW-151D      | Monitoring Well                        |  |
| MW-154       | Monitoring Well                        |  |
| MW-155       | Monitoring Well                        |  |
| MW-156       | Monitoring Well                        |  |
| MW-157D      | Monitoring Well                        |  |
| MW-158D      | Monitoring Well                        |  |
| MW-159D      | Monitoring Well                        |  |
| MW-160       | Monitoring Well                        |  |
| MW-160D      | Monitoring Well                        |  |
| MW-161D      | Monitoring Well                        |  |
| MW-162D      | Monitoring Well                        |  |
| MW-16-D      | Monitoring Well                        |  |
| MW-2         | Monitoring Well                        |  |
| MW-22        | Monitoring Well                        |  |
| MW-301BD     | Monitoring Well                        |  |
| MW-302BD     | Monitoring Well                        |  |
| MW-4         | Monitoring Well                        |  |
| MW-5         | Monitoring Well                        |  |
| MW-6         | Monitoring Well                        |  |
| MW-7         | Monitoring Well                        |  |
| MW-9         | Monitoring Well                        |  |
| MW-BW-201BD  | Monitoring Well                        |  |
|              | ······································ |  |

| Station Code   | Sample Description |  |
|----------------|--------------------|--|
| MW-BW-2011     | Monitoring Well    |  |
| MW-BW-201S     | Monitoring Well    |  |
| MW-BW-2021     | Distant Well       |  |
| MW-BW-202S     | Distant Well       |  |
| MW-BW-2031     | Distant Well       |  |
| MW-BW-203S     | Distant Well       |  |
| MW-BW-2041     | Distant Well       |  |
| MW-BW-205I     | Distant Well       |  |
| MW-BW-2061     | Distant Well       |  |
| MW-BW-2071     | Distant Well       |  |
| MW-BW-208BD    | Distant Well       |  |
| MW-F-5D        | Monitoring Well    |  |
| P-2D           | Monitoring Well    |  |
| P-4D           | Monitoring Well    |  |
| P-5D           | Monitoring Well    |  |
| PW-001         | Monitoring Well    |  |
| PW-002         | Monitoring Well    |  |
| PW-003         | Monitoring Well    |  |
| PW-006         | Monitoring Well    |  |
| PW-006A        | Monitoring Well    |  |
| PW-006B        | Monitoring Well    |  |
| PW-006P        | Surface Water      |  |
| PW-011         | Monitoring Well    |  |
| PW-013         | Monitoring Well    |  |
| PW-014         | Monitoring Well    |  |
| PW-015         | Monitoring Well    |  |
| PW-016         | Monitoring Well    |  |
| PW-11          | Monitoring Well    |  |
| RW-10          | Monitoring Well    |  |
| RW-5           | Monitoring Well    |  |
| RW-6           | Monitoring Well    |  |
| RW-7           | Monitoring Well    |  |
| RW-9           | Monitoring Well    |  |
| S-1D           | Monitoring Well    |  |
| S-2D           | Monitoring Well    |  |
| S-4D           | Monitoring Well    |  |
| S-7D           | Monitoring Well    |  |
| S-8DR          | Monitoring Well    |  |
| SC-1D          | Monitoring Well    |  |
| SC-2D          | Monitoring Well    |  |
| SCAMEN POND    | Surface Water      |  |
| SG-BW-105      | Surface Water      |  |
| SW-05          | Surface Water      |  |
| SW-101         | Surface Water      |  |
| SW-102 C DITCH | Surface Water      |  |
| SW-103         | Surface Water      |  |
| SW-104 A DITCH | Surface Water      |  |
| TB-20          | Monitoring Well    |  |
| TB-20D         | Monitoring Well    |  |
|                |                    |  |

| Station Code | Sample Description |  |
|--------------|--------------------|--|
| TB-21        | Monitoring Well    |  |
| TB-21D       | Monitoring Well    |  |
| TB-22        | Monitoring Well    |  |
| TB-22D       | Monitoring Well    |  |
| TB-23        | Monitoring Well    |  |
| TB-23D       | Monitoring Well    |  |
| TB-24        | Monitoring Well    |  |
| TB-24D       | Monitoring Well    |  |
| TB-25        | Monitoring Well    |  |
| TB-25D       | Monitoring Well    |  |
| TB-26D       | Monitoring Well    |  |
| VB10-1       | Monitoring Well    |  |
| VB1-1        | Monitoring Well    |  |
| VB1-10D      | Monitoring Well    |  |
| VB11-1       | Monitoring Well    |  |
| VB1-11D      | Monitoring Well    |  |
| VB1-12D      | Monitoring Well    |  |
| VB1-2D       | Monitoring Well    |  |
| VB-13        | Monitoring Well    |  |
| VB-13D       | Monitoring Well    |  |
| VB1-3D       | Monitoring Well    |  |
| VB-14D       | Monitoring Well    |  |
| VB1-4D       | Monitoring Well    |  |
| VB1-5D       | Monitoring Well    |  |
| VB-1-7D      | Monitoring Well    |  |
| VB1-8D       | Monitoring Well    |  |
| VB1-9D       | Monitoring Well    |  |
| VB2-10       | Monitoring Well    |  |
| VB2-10D      | Monitoring Well    |  |
| VB2-11       | Monitoring Well    |  |
| VB2-11D      | Monitoring Well    |  |
| VB2-11P      | Monitoring Well    |  |
| VB2-12       | Monitoring Well    |  |
| VB2-12D      | Monitoring Well    |  |
| VB2-13       | Monitoring Well    |  |
| VB2-13D      |                    |  |
| VB2-14       | Monitoring Well    |  |
| VB2-14D      |                    |  |
| VB2-15       |                    |  |
| VB2-15D      |                    |  |
| VB2-10       |                    |  |
| VB2-10U      | Monitoring Well    |  |
| VD2-17       | Monitoring Well    |  |
| VD2-1/D      | Monitoring Well    |  |
|              | Monitoring Well    |  |
| VD2-0D       | Monitoring Well    |  |
|              | Monitoring Well    |  |
| VB3-10D      | Monitoring Well    |  |
| V D J-Z      | Morntoling wen     |  |

| Station Code | Sample Description | an a |
|--------------|--------------------|------------------------------------------|
| VB3-4D       | Monitoring Well    |                                          |
| VB3-7D       | Monitoring Well    |                                          |
| VB3-9D       | Monitoring Well    |                                          |
| VB4-1        | Monitoring Well    |                                          |
| VB4-5D       | Monitoring Well    |                                          |
| VB4-6D       | Monitoring Well    |                                          |
| VB5-2        | Monitoring Well    |                                          |
| VB6-1        | Monitoring Well    |                                          |
| VB7-1        | Monitoring Well    |                                          |
| VB8-2        | Monitoring Well    |                                          |
| VB9-1        | Monitoring Well    |                                          |
| WCFPD-1D     | Monitoring Well    |                                          |
| WCFPD-2DR    | Monitoring Well    |                                          |
| WELL D-1D    | Monitoring Well    |                                          |





16841-37(PRES038)GN-CO004 DEC 11/2007



### **APPENDIX B**

### DATA TABLES

|        | COLLECTION |                |       |
|--------|------------|----------------|-------|
| SITE   | DATE       | H-3            | SR-90 |
| BL-03  | 01/15/08   | < 160          |       |
| BL-03  | 02/12/08   | < 176          |       |
| BL-03  | 03/10/08   | < 174          |       |
| BL-03  | 04/15/08   | < 165          |       |
| BL-03  | 05/15/08   | < 164          |       |
| BL-03  | 06/11/08   | < 148          |       |
| BL-03  | 07/15/08   | < 168          |       |
| BL-03  | 08/13/08   | < 153          |       |
| BL-03  | 09/17/08   | < 159          |       |
| BL-03  | 10/15/08   | < 166          |       |
| BL-03  | 11/12/08   | < 176          |       |
| BL-03  | 12/16/08   | < 179          |       |
| BL-06  | 02/12/08   | 1800 ± 250     |       |
| BL-06  | 01/15/08   | 2180 ± 283     |       |
| BL-06  | 03/11/08   | 1340 ± 195     |       |
| BL-06  | 04/15/08   | 1070 ± 178     |       |
| BL-06  | 05/15/08   | 2880 ± 346     |       |
| BL-06  | 06/10/08   | 2520 ± 312     |       |
| BL-06  | 07/15/08   | 2620 ± 319     |       |
| BL-06  | 08/14/08   | 2970 ± 349     |       |
| BL-06  | 09/17/08   | 933 ± 151      |       |
| BL-06  | 10/15/08   | 1340 ± 207     |       |
| BL-06  | 11/12/08   | 587 ± 139      |       |
| BL-06  | 12/18/08   | 266 ± 111      |       |
| BL-06D | 03/11/08   | $4080 \pm 463$ |       |
| BL-06D | 06/10/08   | 2480 ± 307     |       |
| BL-06D | 09/18/08   | 502 ± 124      |       |
| BL-06D | 12/18/08   | 257 ± 112      |       |
| BL-09D | 09/17/08   | < 153          |       |
| BL-10D | 09/17/08   | < 144          |       |
| BL-11  | 01/15/08   | < 161          |       |
| BL-11  | 02/12/08   | < 179          |       |
| BL-11  | 03/11/08   | < 158          |       |
| BL-11  | 04/15/08   | < 158          |       |
| BL-11  | 05/14/08   | < 166          |       |
| BL-11  | 06/11/08   | < 162          |       |
| BL-11  | 07/15/08   | < 169          |       |
| BL-11  | 08/14/08   | < 156          |       |
| BL-11  | 09/17/08   | < 163          |       |
| BL-11  | 10/15/08   | < 184          |       |
| BL-11  | 11/11/08   | < 176          |       |
| BL-11  | 12/17/08   | < 190          |       |
| BL-11D | 09/18/08   | < 147          |       |
| BL-12D | 09/17/08   | < 154          |       |
| BL-13D | 09/17/08   | < 156          |       |
| BL-14D | 09/18/08   | < 150          |       |
| BL-15D | 09/18/08   | < 151          |       |
| BL-16D | 09/18/08   | < 156          |       |
| BL-17D | 09/17/08   | < 154          |       |
| BL-18D | 09/17/08   | < 164          |       |
| BL-19R | 01/16/08   | < 159          |       |
| BL-19R | 02/13/08   | < 181          |       |
| BL-19R | 03/12/08   | < 158          |       |

|                | COLLECTION |       |       |
|----------------|------------|-------|-------|
| SITE           | DATE       | H-3   | SR-90 |
| BL-19R         | 04/15/08   | < 167 |       |
| BL-19R         | 05/15/08   | < 166 |       |
| BL-19R         | 06/09/08   | < 176 |       |
| BL-19R         | 07/15/08   | < 164 |       |
| BL-19R         | 08/13/08   | < 155 |       |
| BI -19R        | 09/17/08   | < 162 |       |
| BL-19R         | 10/15/08   | < 184 |       |
| DL 10D         | 11/11/08   | < 103 |       |
| BL-19K         | 40/49/09   | < 153 |       |
| BL-19R         | 12/18/08   | < 154 |       |
| BL-20D         | 09/18/08   | < 147 |       |
| BL-21          | 01/16/08   | < 163 |       |
| BL-21          | 02/13/08   | < 168 |       |
| BL-21          | 03/11/08   | < 188 |       |
| BL-21          | 04/15/08   | < 158 |       |
| BL-21          | 05/15/08   | < 103 |       |
| BL-21          | 00/10/08   | < 1/1 |       |
| BL-21          | 00/12/08   | < 162 |       |
| DL-ZI          | 10/15/09   | < 185 |       |
| DL-ZI          | 11/13/00   | < 105 |       |
| BL-21          | 12/17/08   | < 156 |       |
| BL-21<br>BL-22 | 01/16/08   | < 159 |       |
| BL-22<br>BL-22 | 02/13/08   | < 165 |       |
|                | 02/10/08   | < 157 |       |
| BL-22          | 03/11/08   | < 159 |       |
| BL-22<br>BL-22 | 05/13/08   | < 165 |       |
| DL-22          | 06/11/08   | < 144 |       |
| DL-22          | 00/11/00   | < 154 |       |
| BL-22<br>BL-22 | 00/12/00   | < 165 |       |
| DL-22          | 10/44/08   | < 180 |       |
| BL-22          | 10/14/08   | < 102 |       |
| BL-22          | 10/17/09   | < 160 |       |
| DL-22          | 01/15/08   | < 161 |       |
| BL-23          | 03/13/08   | < 158 |       |
| BL-23          | 04/17/08   | < 185 |       |
| BL-23          | 05/14/08   | < 164 |       |
| BL-23          | 06/10/08   | < 171 |       |
| BL-23          | 08/12/08   | < 150 |       |
| BL-23          | 09/16/08   | < 174 |       |
| BL-23          | 10/14/08   | < 183 |       |
| BL-23          | 11/11/08   | < 194 |       |
| BL-23          | 12/16/08   | < 181 |       |
| BL-24          | 01/16/08   | < 161 |       |
| BL-24          | 02/13/08   | < 166 |       |
| BL-24          | 03/11/08   | < 157 |       |
| BL-24          | 04/15/08   | < 168 |       |
| BL-24          | 05/14/08   | < 168 |       |
| BL-24          | 06/10/08   | < 165 |       |
| BL-24          | 08/13/08   | < 156 |       |
| BL-24          | 09/18/08   | < 165 |       |
| BL-24          | 10/14/08   | < 186 |       |

|       | COLLECTION |                |       |
|-------|------------|----------------|-------|
| SITE  | DATE       | H-3            | SR-90 |
| BL-24 | 11/11/08   | < 195          |       |
| BL-24 | 12/16/08   | < 175          |       |
| BL-25 | 01/16/08   | < 158          |       |
| BL-25 | 02/12/08   | < 164          |       |
| BL-25 | 03/11/08   | < 153          |       |
| BL-25 | 04/15/08   | < 164          |       |
| BL-25 | 05/14/08   | < 163          |       |
| BL-25 | 06/10/08   | < 169          |       |
| BL-25 | 08/12/08   | < 155          |       |
| BL-25 | 09/18/08   | < 163          |       |
| BL-25 | 10/15/08   | < 185          |       |
| BL-25 | 11/11/08   | < 193          |       |
| BL-25 | 12/16/08   | < 177          |       |
| BL-26 | 01/15/08   | < 159          |       |
| BL-26 | 02/12/08   | < 180          |       |
| BL-26 | 03/10/08   | < 157          |       |
| BL-26 | 04/15/08   | < 165          |       |
| BL-26 | 05/13/08   | < 166          |       |
| BL-26 | 06/09/08   | < 169          |       |
| BL-26 | 07/15/08   | < 180          |       |
| BL-26 | 08/12/08   | < 159          |       |
| BL-26 | 09/15/08   | < 166          |       |
| BL-26 | 10/14/08   | < 150          |       |
| BL-26 | 11/11/08   | < 193          |       |
| BL-26 | 12/16/08   | < 191          |       |
| BL-27 | 01/16/08   | < 158          |       |
| BL-27 | 02/12/08   | < 184          |       |
| BL-27 | 03/10/08   | < 157          |       |
| BL-27 | 04/15/08   | < 167          |       |
| BL-27 | 05/14/08   | < 163          |       |
| BL-27 | 06/10/08   | < 170          |       |
| BL-27 | 08/13/08   | < 160          |       |
| BL-27 | 09/16/08   | < 167          |       |
| BL-27 | 10/14/08   | < 158          |       |
| BL-27 | 11/11/08   | < 191          |       |
| BL-27 | 12/16/08   | < 189          |       |
| C-1D  | 09/16/08   | < 173          |       |
| C-2D  | 09/16/08   | < 175          |       |
| CD-1D | 09/16/08   | < 167          |       |
| D-2D  | 09/15/08   | < 159          |       |
| D-3D  | 09/15/08   | 178 ± 110      |       |
| F-1D  | 09/16/08   | < 172          |       |
| F-3D  | 09/16/08   | 627 ± 144      |       |
| F-4D  | 09/16/08   | < 168          |       |
| F-5D  | 03/13/08   | 860 ± 162      |       |
| F-5D  | 06/11/08   | $1020 \pm 168$ |       |
| E-5D  | 12/17/08   | 854 ± 145      |       |

|         | COLLECTION |            |       |
|---------|------------|------------|-------|
| SITE    | DATE       | H-3        | SR-90 |
| F-6D    | 01/15/08   | 317 ± 112  |       |
| F-6D    | 02/13/08   | 287 ± 112  |       |
| F-6D    | 03/13/08   | 280 ± 124  |       |
| F-6D    | 04/17/08   | 200 ± 120  |       |
| F-6D    | 05/15/08   | 230 ± 105  |       |
| F-6D    | 06/11/08   | < 187      |       |
| F-6D    | 08/13/08   | < 158      |       |
| F-6D    | 09/16/08   | < 167      |       |
| F-6D    | 10/16/08   | < 162      |       |
| F-6D    | 11/12/08   | < 174      |       |
| F-6D    | 12/18/08   | < 159      |       |
| F-7D    | 09/16/08   | 790 ± 159  |       |
| F-8D    | 09/16/08   | 835 ± 161  |       |
| F-9D    | 01/16/08   | 1210 ± 187 |       |
| F-9D    | 03/13/08   | 1360 ± 206 |       |
| F-9D    | 04/17/08   | 1080 ± 187 |       |
| F-9D    | 05/15/08   | 945 ± 161  |       |
| F-9D    | 06/11/08   | 1010 ± 169 |       |
| F-9D    | 07/17/08   | 1220 ± 184 |       |
| F-9D    | 08/13/08   | 843 ± 146  |       |
| F-9D    | 09/16/08   | 764 ± 156  |       |
| F-9D    | 10/15/08   | 1090 ± 181 |       |
| F-9D    | 11/12/08   | 1060 ± 170 |       |
| F-9D    | 12/17/08   | 895 ± 170  |       |
| G-2D    | 09/16/08   | < 166      |       |
| MW-102R | 01/15/08   | < 162      |       |
| MW-102R | 02/12/08   | < 180      |       |
| MW-102R | 03/10/08   | < 179      |       |
| MW-102R | 04/14/08   | < 169      |       |
| MW-102R | 05/14/08   | < 166      |       |
| MW-102R | 06/11/08   | < 164      |       |
| MW-102R | 07/14/08   | < 167      |       |
| MW-102R | 08/14/08   | < 159      |       |
| MW-102R | 09/17/08   | < 150      |       |
| MW-102R | 10/15/08   | < 177      |       |
| MW-102R | 11/12/08   | < 173      |       |
| MW-102R | 12/16/08   | < 185      |       |
| MW-103  | 02/12/08   | < 172      |       |
| MW-103  | 03/13/08   | < 157      |       |
| MW-105  | 03/13/08   | < 161      |       |
| MW-105  | 06/11/08   | < 146      |       |
| MW-105  | 09/17/08   | < 151      |       |
| MW-105  | 12/17/08   | < 189      |       |
| MW-105D | 09/17/08   | < 164      |       |
| MW-106D | 09/18/08   | < 157      |       |
| MW-109D | 03/07/08   | < 177      |       |
| MW-109D | 05/09/08   | < 163      |       |

|          | COLLECTION |                |       |
|----------|------------|----------------|-------|
| SITE     | DATE       | H-3            | SR-90 |
| MW-109D  | 09/22/08   | < 159          |       |
| MW-109D  | 09/22/08   | < 184          |       |
| MW-109D  | 12/16/08   | < 179          |       |
| MW-11    | 05/06/08   | 226 ± 110      |       |
| MW-11    | 09/15/08   | < 167          |       |
| MW-11    | 09/15/08   | -              | < 1.2 |
| MW-110   | 03/13/08   | < 156          |       |
| MW-110   | 06/11/08   | 151 ± 96       |       |
| MW-110   | 09/17/08   | < 147          |       |
| MW-110   | 12/18/08   | < 160          |       |
| MW-111DR | 03/12/08   | < 159          |       |
| MW-111DR | 06/11/08   | < 151          |       |
| MW-111DR | 09/17/08   | < 155          |       |
| MW-111DR | 12/18/08   | < 160          |       |
| MW-112D  | 03/12/08   | < 163          |       |
| MW-112D  | 06/11/08   | < 146          |       |
| MW-112D  | 09/17/08   | < 150          |       |
| MW-112D  | 12/17/08   | < 189          |       |
| MW-113   | 03/12/08   | 1950 ± 257     |       |
| MW-113   | 06/09/08   | $3090 \pm 368$ |       |
| MW-113   | 09/17/08   | 850 ± 138      |       |
| MW-113   | 12/17/08   | $2010 \pm 275$ |       |
| MW-113DR | 03/12/08   | 713 ± 143      |       |
| MW-113DR | 06/09/08   | $1030 \pm 168$ |       |
| MW-113DR | 09/17/08   | 228 ± 109      |       |
| MW-113DR | 12/17/08   | 191 ± 120      |       |
| MW-13    | 01/15/08   | 824 ± 156      |       |
| MW-13    | 02/26/08   | $1060 \pm 178$ |       |
| MW-13    | 03/12/08   | 1430 ± 221     |       |
| MW-13    | 04/01/08   | 1090 ± 177     |       |
| MW-13    | 05/07/08   | 487 ± 126      |       |
| MW-13    | 06/20/08   | $543 \pm 126$  |       |
| MW-13    | 07/23/08   | 617 ± 150      |       |
| MW-13    | 08/27/08   | 718 ± 135      |       |
| MW-13    | 09/18/08   | 785 ± 151      |       |
| MW-13    | 09/18/08   | -              | < 1.5 |
| MW-13    | 10/26/08   | 467 ± 121      |       |
| MW-13    | 11/08/08   | 378 ± 126      |       |
| MW-13    | 12/05/08   | $525 \pm 132$  |       |
| MW-130D  | 03/07/08   | < 178          |       |
| MW-130D  | 05/09/08   | < 163          |       |
| MW-130D  | 09/22/08   | < 160          |       |
| MW-130D  | 09/22/08   | < 185          |       |
| MW-130D  | 12/16/08   | < 178          |       |
| MW-131D  | 03/12/08   | < 157          |       |
| MW-131D  | 06/11/08   | < 148          |       |
| MW-131D  | 09/17/08   | < 151          |       |

|         | COLLECTION |            |       |
|---------|------------|------------|-------|
| SITE    | DATE       | H-3        | SR-90 |
| MW-131D | 12/18/08   | < 161      |       |
| MW-132D | 03/12/08   | < 162      |       |
| MW-132D | 06/11/08   | < 149      |       |
| MW-132D | 09/17/08   | < 150      |       |
| MW-132D | 12/18/08   | < 160      |       |
| MW-133D | 03/13/08   | < 162      |       |
| MW-133D | 06/17/08   | < 164      |       |
| MW-133D | 09/16/08   | < 149      |       |
| MW-133D | 12/16/08   | < 174      |       |
| MW-134D | 03/13/08   | 1990 ± 265 |       |
| MW-134D | 05/15/08   | 1950 ± 257 |       |
| MW-134D | 06/17/08   | 1530 ± 214 |       |
| MW-134D | 09/16/08   | 1300 ± 200 |       |
| MW-134D | 12/16/08   | 1510 ± 214 |       |
| MW-135D | 03/12/08   | 2730 ± 331 |       |
| MW-135D | 06/09/08   | 1590 ± 221 |       |
| MW-135D | 09/16/08   | 714 ± 146  |       |
| MW-135D | 12/18/08   | 734 ± 143  |       |
| MW-136D | 03/12/08   | < 158      |       |
| MW-136D | 06/09/08   | < 171      |       |
| MW-136D | 09/16/08   | < 165      |       |
| MW-136D | 12/18/08   | < 161      |       |
| MW-137D | 03/12/08   | < 157      |       |
| MW-137D | 06/09/08   | < 182      |       |
| MW-137D | 09/16/08   | < 166      |       |
| MW-137D | 12/18/08   | < 159      |       |
| MW-138D | 03/12/08   | < 159      |       |
| MW-138D | 06/09/08   | < 181      |       |
| MW-138D | 09/16/08   | < 168      |       |
| MW-138D | 12/18/08   | < 158      |       |
| MW-139D | 03/12/08   | < 183      |       |
| MW-139D | 06/11/08   | < 188      |       |
| MW-139D | 09/17/08   | < 146      |       |
| MW-139D | 12/17/08   | < 179      |       |
| MW-14   | 06/20/08   | < 161      |       |
| MW-14   | 12/03/08   | 182 ± 119  |       |
| MW-140D | 03/13/08   | 443 ± 129  |       |
| MW-140D | 06/09/08   | 468 ± 134  |       |
| MW-140D | 09/17/08   | < 150      |       |
| MW-140D | 12/16/08   | < 185      |       |
| MW-141D | 02/27/08   | 418 ± 122  |       |
| MW-141D | 05/08/08   | 366 ± 117  |       |
| MW-141D | 08/27/08   | 529 ± 126  | < 1.8 |
| MW-141D | 11/08/08   | 402 ± 129  |       |
| MW-142D | 02/27/08   | 681 ± 145  |       |
| MW-142D | 05/06/08   | 663 ± 142  | . 1.0 |
| MW-142D | 08/18/08   | 643 ± 130  | < 1.9 |

|            | COLLECTION |                    |  |
|------------|------------|--------------------|--|
| SITE       | DATE       | H-3 SR-90          |  |
| MW-142D    | 11/08/08   | 699 ± 150          |  |
| MW-143D    | 02/27/08   | 167 ± 106          |  |
| MW-143D    | 05/05/08   | < 162              |  |
| MW-143D    | 08/27/08   | 564 ± 125 < 0.9    |  |
| MW-143D    | 11/08/08   | 253 ± 120          |  |
| MW-144D    | 02/27/08   | 461 ± 125          |  |
| MW-144D    | 05/05/08   | 679 ± 141          |  |
| MW-144D    | 08/19/08   | 767 ± 150 < 0.8    |  |
| MW-144D    | 11/08/08   | 1400 ± 210         |  |
| MW-145D    | 03/12/08   | 428 ± 132          |  |
| MW-145D    | 06/11/08   | 152 ± 101          |  |
| MW-145D    | 09/16/08   | 1940 ± 260         |  |
| MW-145D    | 12/17/08   | 1200 ± 177         |  |
| MW-148D    | 03/11/08   | < 157              |  |
| MW-148D    | 06/09/08   | < 170              |  |
| MW-148D    | 09/16/08   | < 171              |  |
| MW-148D    | 12/17/08   | < 182              |  |
| MW-149D    | 03/11/08   | 185 ± 104          |  |
| MW-149D    | 06/09/08   | < 168              |  |
| MW-149D    | 09/16/08   | < 174              |  |
| MW-149D    | 12/17/08   | < 162              |  |
| MW-150D    | 03/11/08   | < 159              |  |
| MW-150D    | 06/09/08   | < 168              |  |
| MW-150D    | 09/16/08   | < 174              |  |
| MW-150D    | 12/17/08   | < 175              |  |
| MW-151D    | 03/11/08   | 2370 ± 296         |  |
| MW-151D    | 06/09/08   | 1330 ± 194         |  |
| MW-151D    | 09/16/08   | 1080 ± 173         |  |
| MW-151D    | 12/16/08   | 1470 ± 211         |  |
| MW-154     | 02/22/08   | < 163              |  |
| MW-154     | 05/19/08   | 189 ± 105          |  |
| MW-154     | 08/28/08   | 240 ± 109 < 1.4    |  |
| MW-154     | 11/25/08   | < 183              |  |
| MW-155     | 02/22/08   | < 164              |  |
| MW-155     | 05/19/08   | < 158              |  |
| MW-155     | 08/28/08   | < 199 < 1.3        |  |
| NIV-155    | 11/20/08   | < 150              |  |
| WW-156     | 02/22/08   | < 159              |  |
| WW-156     | 05/19/08   |                    |  |
| WW-150     | 11/25/08   | < 179              |  |
|            | 11/23/06   | < 170<br>626 ± 144 |  |
| WW - 1570  | 05/12/08   | 020 I 144          |  |
| WW-1370    | 00/11/00   | 5720 + 632         |  |
|            | 12/18/09   | 5720 ± 032         |  |
|            | 12/10/00   | < 164              |  |
| WW-1000    | 01/13/00   | < 166              |  |
| 10100-1000 | 02/10/00   | × 100              |  |

|             | COLLECTION |            |       |
|-------------|------------|------------|-------|
| SITE        | DATE       | H-3        | SR-90 |
| MW-158D     | 03/12/08   | < 187      |       |
| MW-158D     | 04/15/08   | < 171      |       |
| MW-158D     | 05/14/08   | < 165      |       |
| MW-158D     | 06/09/08   | < 163      |       |
| MW-158D     | 08/13/08   | < 186      |       |
| MW-158D     | 09/17/08   | < 173      |       |
| MW-158D     | 10/15/08   | < 181      |       |
| MW-158D     | 11/12/08   | < 173      |       |
| MW-158D     | 12/17/08   | < 189      |       |
| MW-159D     | 02/26/08   | < 163      |       |
| MW-159D     | 05/07/08   | < 157      |       |
| MW-159D     | 08/27/08   | < 156      | < 0.8 |
| MW-159D     | 11/05/08   | < 172      |       |
| MW-160      | 11/05/08   | < 182      |       |
| MW-160D     | 02/27/08   | < 161      |       |
| MW-160D     | 05/07/08   | < 165      |       |
| MW-161D     | 06/20/08   | 370 ± 116  |       |
| MW-161D     | 12/03/08   | 478 ± 135  |       |
| MW-162D     | 06/20/08   | 387 ± 114  |       |
| MW-162D     | 12/10/08   | 448 ± 133  |       |
| MW-16-D     | 08/27/08   | < 152      | < 1.0 |
| MW-2        | 05/08/08   | 629 ± 134  |       |
| MW-2        | 09/16/08   | 604 ± 137  |       |
| MW-2        | 09/16/08   | ~          | < 1.7 |
| MW-22       | 05/05/08   | 554 ± 130  |       |
| MW-22       | 09/15/08   | 194 ± 114  |       |
| MW-22       | 09/15/08   | -          | < 0.8 |
| MW-301BD    | 02/06/08   | < 155      |       |
| MW-302BD    | 02/06/08   | < 155      |       |
| MW-4        | 06/20/08   | 808 ± 146  |       |
| MW-4        | 12/10/08   | 265 ± 122  |       |
| MW-5        | 05/06/08   | 751 ± 150  |       |
| MW-5        | 09/16/08   | 427 ± 129  |       |
| MW-5        | 09/16/08   |            | < 1.5 |
| MW-6        | 05/08/08   | 1070 ± 178 |       |
| MW-6        | 09/16/08   | 1100 ± 176 |       |
| MW-6        | 09/16/08   | -          | < 0.9 |
| MW-7        | 05/08/08   | 477 ± 125  |       |
| MW-7        | 09/16/08   | 562 ± 135  |       |
| MW-7        | 09/16/08   | -          | < 1.2 |
| MW-9        | 05/06/08   | 212 ± 110  |       |
| MW-9        | 09/15/08   | 336 ± 122  |       |
| MW-9        | 09/15/08   | -          | < 1.3 |
| MW-BW-201BD | 05/08/08   | < 162      |       |
| MW-BW-201BD | 07/23/08   | < 183      |       |
| MW-BW-2011  | 05/05/08   | < 162      |       |
| MW-BW-2011  | 07/23/08   | 189 ± 108  |       |

|             | COLLECTION |                |       |
|-------------|------------|----------------|-------|
| SITE        | DATE       | H-3            | SR-90 |
| MW-BW-201S  | 05/05/08   | < 158          |       |
| MW-BW-201S  | 07/23/08   | 234 ± 117      |       |
| MW-BW-2021  | 05/05/08   | < 163          |       |
| MW-BW-2021  | 07/23/08   | 243 ± 119      |       |
| MW-BW-202S  | 05/05/08   | < 159          |       |
| MW-BW-202S  | 07/23/08   | 294 ± 128      |       |
| MW-BW-203I  | 05/05/08   | < 164          |       |
| MW-BW-203I  | 07/23/08   | < 195          |       |
| MW-BW-203S  | 05/05/08   | < 166          |       |
| MW-BW-203S  | 07/23/08   | < 193          |       |
| MW-BW-2041  | 05/09/08   | 174 ± 103      |       |
| MW-BW-2041  | 10/26/08   | < 164          | < 1.5 |
| MW-BW-2051  | 05/09/08   | < 156          |       |
| MW-BW-205I  | 09/17/08   | < 157          |       |
| MW-BW-205I  | 09/17/08   | -              | < 1.5 |
| MW-BW-206I  | 05/09/08   | < 164          |       |
| MW-BW-206I  | 09/17/08   | < 160          |       |
| MW-BW-2061  | 09/17/08   | -              | < 0.6 |
| MW-BW-2071  | 05/07/08   | 1060 ± 179     |       |
| MW-BW-2071  | 09/18/08   | 1140 ± 181     |       |
| MW-BW-2071  | 09/18/08   | -              | < 0.9 |
| MW-BW-208BD | 05/07/08   | < 159          |       |
| MW-BW-208BD | 07/23/08   | < 195          |       |
| MW-F-5D     | 09/17/08   | 1090 ± 162     |       |
| P-2D        | 09/17/08   | 1370 ± 193     |       |
| P-4D        | 09/17/08   | $2280 \pm 280$ |       |
| P-5D        | 09/17/08   | < 161          |       |
| PW-001      | 01/14/08   | < 159          |       |
| PW-001      | 07/28/08   | < 197          |       |
| PW-001      | 10/16/08   | < 163          |       |
| PW-002      | 01/14/08   | < 160          |       |
| PW-002      | 07/28/08   | < 196          |       |
| PW-002      | 10/16/08   | < 158          |       |
| PW-003      | 01/14/08   | < 160          |       |
| PW-003      | 07/28/08   | < 193          |       |
| PW-003      | 10/16/08   | < 161          |       |
| PW-006      | 01/14/08   | < 160          |       |
| PW-006      | 07/28/08   | < 183          |       |
| PW-006      | 10/16/08   | < 163          |       |
| PW-006A     | 07/28/08   | < 174          |       |
| PW-006A     | 10/16/08   | < 161          |       |
| PW-006B     | 10/16/08   | < 162          |       |
| PW-011      | 07/28/08   | < 177          |       |
| PW-011      | 10/16/08   | < 160          |       |
| PW-013      | 07/28/08   | < 182          |       |
| PW-013      | 10/16/08   | < 154          |       |
| PW-014      | 01/14/08   | < 159          |       |

|        | COLLECTION |                |       |
|--------|------------|----------------|-------|
| SITE   | DATE       | H-3            | SR-90 |
| PW-014 | 07/28/08   | < 173          |       |
| PW-014 | 10/16/08   | < 164          |       |
| PW-015 | 01/14/08   | < 160          |       |
| PW-015 | 04/16/08   | < 173          |       |
| PW-015 | 07/28/08   | < 184          |       |
| PW-015 | 10/16/08   | < 167          |       |
| PW-016 | 07/28/08   | < 181          |       |
| PW-016 | 10/16/08   | < 160          |       |
| PW-11  | 02/13/08   | < 165          |       |
| RW-10  | 04/09/08   | 3120 ± 371     |       |
| RW-10  | 05/05/08   | 4280 ± 489     |       |
| RW-10  | 06/27/08   | $2450 \pm 300$ |       |
| RW-10  | 07/14/08   | 2240 ± 289     |       |
| RW-10  | 09/17/08   | < 161          |       |
| RW-10  | 09/18/08   | 1190 ± 175     |       |
| RW-10  | 12/10/08   | 780 ± 150      |       |
| RW-5   | 03/19/08   | 1050 ± 173     |       |
| RW-5   | 06/27/08   | 869 ± 153      |       |
| RW-5   | 09/29/08   | 744 ± 143      |       |
| RW-6   | 02/29/08   | 3270 ± 388     |       |
| RW-6   | 06/27/08   | 2750 ± 331     |       |
| RW-7   | 03/19/08   | 216 ± 107      |       |
| RW-7   | 06/27/08   | < 165          |       |
| RW-7   | 09/15/08   | < 165          |       |
| RW-7   | 09/29/08   | < 160          |       |
| RW-9   | 04/09/08   | 915 ± 161      |       |
| RW-9   | 05/05/08   | 1820 ± 247     |       |
| RW-9   | 06/27/08   | 2420 ± 299     |       |
| RW-9   | 07/14/08   | $2630 \pm 327$ |       |
| RW-9   | 09/17/08   | 1420 ± 209     |       |
| RW-9   | 09/18/08   | < 158          |       |
| S-1D   | 01/16/08   | 1130 ± 181     |       |
| S-1D   | 02/13/08   | 893 ± 166      |       |
| S-1D   | 03/12/08   | 1030 ± 174     |       |
| S-1D   | 04/17/08   | 950 ± 173      |       |
| S-1D   | 05/14/08   | 920 ± 164      |       |
| S-1D   | 06/11/08   | 920 ± 160      |       |
| S-1D   | 07/17/08   | 709 ± 143      |       |
| S-1D   | 08/13/08   | 674 ± 131      |       |
| S-1D   | 09/17/08   | 865 ± 164      |       |
| S-1D   | 10/15/08   | 790 ± 155      |       |
| S-1D   | 11/12/08   | $699 \pm 156$  |       |
| S-1D   | 12/17/08   | 557 ± 142      |       |
| S-2D   | 09/17/08   | < 172          |       |
| S-4D   | 09/17/08   | < 167          |       |
| S-7D   | 01/16/08   | < 157          |       |
| S-7D   | 02/13/08   | < 181          |       |

|        | COLLECTION |               |       |
|--------|------------|---------------|-------|
| SITE   | DATE       | H-3           | SR-90 |
| S-7D   | 03/12/08   | < 187         |       |
| S-7D   | 04/15/08   | < 175         |       |
| S-7D   | 05/14/08   | < 162         |       |
| S-7D   | 06/11/08   | < 187         |       |
| S-7D   | 07/17/08   | < 178         |       |
| S-7D   | 08/13/08   | < 159         |       |
| S-7D   | 09/17/08   | < 179         |       |
| S-7D   | 10/15/08   | < 170         |       |
| S-7D   | 11/12/08   | < 187         |       |
| S-7D   | 12/17/08   | < 161         |       |
| S-8DR  | 01/15/08   | < 156         |       |
| S-8DR  | 02/13/08   | < 165         |       |
| S-8DR  | 03/12/08   | < 182         |       |
| S-8DR  | 04/15/08   | < 171         |       |
| S-8DR  | 05/14/08   | < 163         |       |
| S-8DR  | 06/11/08   | < 187         |       |
| S-8DR  | 07/17/08   | < 174         |       |
| S-8DR  | 08/13/08   | < 160         |       |
| S-8DR  | 09/17/08   | < 172         |       |
| S-8DR  | 10/15/08   | < 182         |       |
| S-8DR  | 11/12/08   | < 174         |       |
| S-8DR  | 12/17/08   | < 159         |       |
| SC-1D  | 01/14/08   | < 158         |       |
| SC-2D  | 01/15/08   | < 160         |       |
| TB-20  | 01/14/08   | < 157         |       |
| TB-20  | 02/22/08   | < 163         |       |
| TB-20  | 03/12/08   | < 178         |       |
| TB-20  | 04/02/08   | < 164         |       |
| TB-20  | 05/06/08   | < 163         |       |
| TB-20  | 06/20/08   | 172 ± 109     |       |
| TB-20  | 07/10/08   | < 180         |       |
| TB-20  | 08/27/08   | < 159         |       |
| TB-20  | 09/18/08   | 307 ± 111     |       |
| TB-20  | 10/25/08   | 235 ± 113     |       |
| TB-20  | 11/05/08   | 217 ± 120     |       |
| TB-20  | 12/03/08   | < 181         |       |
| TB-20D | 01/14/08   | 584 ± 135     |       |
| TB-20D | 02/25/08   | 185 ± 108     |       |
| TB-20D | 04/02/08   | 495 ± 124     |       |
| TB-20D | 07/10/08   | < 187         |       |
| TB-20D | 10/25/08   | < 154         |       |
| TB-21  | 01/14/08   | < 163         |       |
| TB-21  | 02/25/08   | $255 \pm 109$ |       |
| TB-21  | 03/12/08   | 268 ± 119     |       |
| TB-21  | 04/15/08   | < 180         |       |
| TB-21  | 05/06/08   | < 166         |       |
| TB-21  | 06/20/08   | < 161         |       |

|        | COLLECTION |           |       |
|--------|------------|-----------|-------|
| SITE   | DATE       | H-3       | SR-90 |
| TB-21  | 07/10/08   | 212 ± 119 |       |
| TB-21  | 08/27/08   | < 158     |       |
| TB-21  | 09/18/08   | 191 ± 104 |       |
| TB-21  | 10/25/08   | < 143     |       |
| TB-21  | 11/05/08   | < 177     |       |
| TB-21  | 12/03/08   | < 176     |       |
| TB-21D | 01/15/08   | 174 ± 106 |       |
| TB-21D | 02/25/08   | < 168     |       |
| TB-21D | 04/15/08   | < 176     |       |
| TB-21D | 07/10/08   | < 179     |       |
| TB-21D | 10/25/08   | < 164     |       |
| TB-22  | 01/15/08   | < 161     |       |
| TB-22  | 02/26/08   | < 164     |       |
| TB-22  | 03/12/08   | < 179     |       |
| TB-22  | 04/15/08   | < 173     |       |
| TB-22  | 05/06/08   | < 162     |       |
| TB-22  | 06/20/08   | 321 ± 115 |       |
| TB-22  | 07/10/08   | < 188     |       |
| TB-22  | 08/27/08   | < 149     |       |
| TB-22  | 09/18/08   | < 162     |       |
| TB-22  | 10/25/08   | 512 ± 127 |       |
| TB-22  | 11/05/08   | 457 ± 130 |       |
| TB-22  | 12/03/08   | < 179     |       |
| TB-22D | 01/15/08   | < 166     |       |
| TB-22D | 02/26/08   | < 161     |       |
| TB-22D | 04/15/08   | < 181     |       |
| TB-22D | 07/11/08   | < 200     |       |
| TB-22D | 10/25/08   | < 144     |       |
| TB-23  | 01/15/08   | < 159     |       |
| TB-23  | 02/26/08   | < 160     |       |
| TB-23  | 03/12/08   | < 175     |       |
| TB-23  | 04/15/08   | 183 ± 114 |       |
| TB-23  | 04/15/08   | < 183     |       |
| TB-23  | 05/06/08   | < 163     |       |
| TB-23  | 06/20/08   | < 157     |       |
| TB-23  | 07/11/08   | < 195     |       |
| TB-23  | 08/27/08   | 233 ± 109 |       |
| TB-23  | 09/18/08   | 258 ± 106 |       |
| TB-23  | 10/26/08   | < 147     |       |
| TB-23  | 11/05/08   | 186 ± 118 |       |
| TB-23  | 12/03/08   | < 174     |       |
| TB-23D | 02/26/08   | < 159     |       |
| TB-23D | 07/11/08   | < 194     |       |
| TB-23D | 10/26/08   | < 158     |       |
| TB-24  | 05/19/08   | < 158     |       |
| TB-24D | 05/19/08   | < 156     |       |
| TB-25  | 05/19/08   | < 154     |       |

|          | COLLECTION |                |       |
|----------|------------|----------------|-------|
| SITE     | DATE       | H-3            | SR-90 |
| TB-25D   | 05/19/08   | < 155          |       |
| TB-26D   | 05/19/08   | < 159          |       |
| VB10-1   | 01/15/08   | < 160          |       |
| VB10-1   | 02/12/08   | < 180          |       |
| VB10-1   | 03/10/08   | < 156          |       |
| VB10-1   | 04/14/08   | < 169          |       |
| VB10-1   | 05/13/08   | < 167          |       |
| VB10-1   | 06/09/08   | 220 ± 112      |       |
| VB10-1   | 08/12/08   | < 152          |       |
| VB10-1   | 09/15/08   | < 168          |       |
| VB-10-1  | 07/15/08   | < 184          |       |
| VB10-1   | 10/14/08   | < 156          |       |
| VB10-1   | 11/11/08   | < 194          |       |
| VB10-1   | 12/16/08   | < 188          |       |
| VB1-1    | 01/16/08   | < 164          |       |
| VB1-1    | 02/13/08   | < 166          |       |
| VB1-1    | 03/07/08   | < 174          |       |
| VB1-1    | 04/02/08   | < 184          |       |
| VB1-1    | 05/09/08   | < 166          |       |
| VB1-1    | 06/11/08   | < 162          |       |
| VB1-1    | 07/17/08   | < 194          |       |
| VB1-1    | 08/12/08   | < 150          |       |
| VB1-1    | 09/16/08   | < 163          |       |
| VB1-1    | 10/26/08   | < 175          |       |
| VB1-1    | 11/12/08   | < 183          |       |
| VB1-1    | 12/16/08   | < 174          |       |
| VB1-10D  | 10/18/08   | < 161          |       |
| VB11-1   | 01/16/08   | < 165          |       |
| VB11-1   | 02/12/08   | < 180          |       |
| VB11-1   | 03/11/08   | < 157          |       |
| VB11-1   | 04/15/08   | < 168          |       |
| VB11-1   | 05/14/08   | < 170          |       |
| VB11-1   | 06/10/08   | < 174          |       |
| VB11-1   | 08/13/08   | < 156          |       |
| VB11-1   | 09/16/08   | < 162          |       |
| VB-11-1  | 10/14/08   | < 157          |       |
| VB-11-1  | 11/11/08   | < 196          |       |
| VB-11-1  | 12/16/08   | < 189          |       |
| VB1-11D  | 10/18/08   | < 162          |       |
| VB1-12D  | 03/13/08   | < 184          |       |
| VB1-12D  | 06/11/08   | < 151          |       |
| VB-1-12D | 09/18/08   | < 147          |       |
| VB-1-12D | 12/18/08   | < 157          |       |
| VB-1-2D  | 10/18/08   | < 151          |       |
| VB1-3D   | 10/18/08   | 450 ± 118      |       |
| VB1-4D   | 10/19/08   | < 163          |       |
| VB1-5D   | 01/17/08   | $1000 \pm 172$ |       |

|         | COLLECTION |                |       |
|---------|------------|----------------|-------|
| SITE    | DATE       | H-3            | SR-90 |
| VB1-5D  | 10/19/08   | 647 ± 135      |       |
| VB-1-7D | 09/15/08   | < 166          |       |
| VB1-8D  | 01/16/08   | < 160          |       |
| VB1-9D  | 03/12/08   | 8800 ± 947     |       |
| VB1-9D  | 05/09/08   | 5500 ± 613     |       |
| VB1-9D  | 09/17/08   | 5230 ± 583     |       |
| VB1-9D  | 12/16/08   | $3230 \pm 379$ |       |
| VB2-10  | 01/14/08   | < 162          |       |
| VB2-10  | 02/12/08   | < 173          |       |
| VB2-10  | 03/11/08   | < 175          |       |
| VB2-10  | 04/14/08   | < 165          |       |
| VB2-10  | 05/14/08   | < 162          |       |
| VB2-10  | 06/12/08   | < 188          |       |
| VB2-10  | 08/14/08   | < 153          |       |
| VB2-10  | 07/15/08   | < 165          |       |
| VB2-10  | 09/15/08   | < 146          |       |
| VB2-10  | 10/15/08   | < 180          |       |
| VB2-10  | 11/12/08   | < 173          |       |
| VB2-10  | 12/16/08   | < 191          |       |
| VB2-10D | 01/14/08   | < 161          |       |
| VB2-10D | 02/12/08   | < 171          |       |
| VB2-10D | 03/11/08   | < 173          |       |
| VB2-10D | 04/14/08   | < 163          |       |
| VB2-10D | 05/14/08   | < 161          |       |
| VB2-10D | 06/12/08   | < 162          |       |
| VB2-10D | 08/14/08   | < 158          |       |
| VB2-10D | 07/15/08   | < 163          |       |
| VB2-10D | 09/15/08   | < 159          |       |
| VB2-10D | 10/15/08   | < 178          |       |
| VB2-10D | 11/12/08   | < 177          |       |
| VB2-10D | 12/16/08   | < 191          |       |
| VB2-11  | 01/14/08   | < 159          |       |
| VB2-11  | 02/12/08   | < 168          |       |
| VB2-11  | 03/11/08   | < 178          |       |
| VB2-11  | 04/14/08   | < 167          |       |
| VB2-11  | 05/14/08   | < 153          |       |
| VB2-11  | 06/12/08   | < 196          |       |
| VB2-11  | 07/15/08   | < 178          |       |
| VB2-11  | 08/14/08   | < 155          |       |
| VB2-11  | 09/15/08   | < 150          |       |
| VB2-11  | 10/15/08   | < 181          |       |
| VB2-11  | 11/12/08   | < 173          |       |
| VB2-11  | 12/16/08   | < 191          |       |
| VB2-11D | 01/14/08   | < 160          |       |
| VB2-11D | 02/12/08   | < 170          |       |
| VB2-11D | 03/11/08   | < 179          |       |
| VB2-11D | 04/14/08   | < 160          |       |

|          | COLLECTION |                |       |
|----------|------------|----------------|-------|
| SITE     | DATE       | H-3            | SR-90 |
| VB2-11D  | 05/14/08   | < 155          |       |
| VB2-11D  | 06/12/08   | < 190          |       |
| VB2-11D  | 07/15/08   | < 183          |       |
| VB2-11D  | 08/14/08   | < 160          |       |
| VB2-11D  | 09/15/08   | < 142          |       |
| VB2-11D  | 10/15/08   | < 180          |       |
| VB2-11D  | 11/12/08   | < 171          |       |
| VB2-11P  | 12/16/08   | < 185          |       |
| VB2-12   | 01/15/08   | < 157          |       |
| VB2-12   | 02/11/08   | < 158          |       |
| VB2-12   | 03/11/08   | < 174          |       |
| VB2-12   | 04/15/08   | < 167          |       |
| VB2-12   | 05/14/08   | < 157          |       |
| VB2-12   | 06/12/08   | < 192          |       |
| VB2-12   | 07/15/08   | < 176          |       |
| VB2-12   | 08/14/08   | < 156          |       |
| VB2-12   | 09/15/08   | $166 \pm 100$  |       |
| VB2-12   | 10/16/08   | < 161          |       |
| VB2-12   | 11/12/08   | < 181          |       |
| VB2-12   | 12/16/08   | < 189          |       |
| VB2-12D  | 01/15/08   | < 163          |       |
| VB2-12D  | 02/12/08   | < 174          |       |
| VB2-12D  | 03/11/08   | < 153          |       |
| VB2-12D  | 04/15/08   | < 164          |       |
| VB2-12D  | 05/14/08   | < 155          |       |
| VB2-12D  | 06/12/08   | < 190          |       |
| VB2-12D  | 07/15/08   | < 177          |       |
| VB2-12D  | 08/14/08   | < 156          |       |
| VB2-12D  | 09/15/08   | < 166          |       |
| VB2-12D  | 10/16/08   | < 157          |       |
| VB2-12D  | 11/12/08   | < 1//          |       |
| VB2-12D  | 12/16/08   | $1030 \pm 186$ |       |
| VB2-12D  | 12/16/08   | 879 ± 159      |       |
| VB2-13   | 03/12/08   | 18200 ± 1870   |       |
| VB2-13   | 06/12/08   | 6250 ± 684     |       |
| VB2-13   | 09/18/08   | 1720 ± 239     |       |
| VB2-13   | 12/15/08   | 390 ± 132      |       |
| VB2-13D  | 03/12/08   | 2480 ± 316     |       |
| VB2-13D  | 06/12/08   | 2650 ± 328     |       |
| VB2-13D  | 09/18/08   | 110U ± 180     |       |
| VB2-13D  | 12/15/08   | 090 ± 101      |       |
| VB2-14   | 03/12/08   | $00/U \pm /20$ |       |
| VB2-14   | 06/12/08   | 220U ± 200     |       |
| VB2-14   | 09/18/08   | 1/4U ± 224     |       |
| VB2-14   | 12/15/08   | 2900 ± 308     |       |
| VB2-14U  | 03/12/08   | 2000 ± 200     |       |
| V DZ-14U | 00/12/08   | 3230 I 390     |       |

|         | COLLECTION |              |       |
|---------|------------|--------------|-------|
| SITE    | DATE       | H-3          | SR-90 |
| VB2-14D | 09/18/08   | 251 ± 109    |       |
| VB2-14D | 12/15/08   | < 190        |       |
| VB2-15  | 09/18/08   | 1100 ± 160   |       |
| VB2-15D | 03/13/08   | < 186        |       |
| VB2-15D | 06/12/08   | 4220 ± 479   |       |
| VB2-15D | 12/16/08   | 474 ± 138    |       |
| VB2-16  | 03/13/08   | < 180        |       |
| VB2-16  | 06/12/08   | < 161        |       |
| VB2-16  | 09/18/08   | < 160        |       |
| VB2-16  | 12/15/08   | < 190        |       |
| VB2-16D | 03/13/08   | < 186        |       |
| VB2-16D | 06/12/08   | < 163        |       |
| VB2-16D | 09/18/08   | < 163        |       |
| VB2-16D | 12/15/08   | < 189        |       |
| VB2-17  | 03/13/08   | < 187        |       |
| VB2-17  | 06/12/08   | < 163        |       |
| VB2-17  | 09/18/08   | < 164        |       |
| VB2-17  | 12/15/08   | < 188        |       |
| VB2-17D | 03/13/08   | 911 ± 162    |       |
| VB2-17D | 06/12/08   | 260 ± 110    |       |
| VB2-17D | 09/18/08   | 224 ± 109    |       |
| VB2-17D | 12/15/08   | < 190        |       |
| VB2-2D  | 09/19/08   | < 154        |       |
| VB2-5D  | 09/19/08   | 12200 ± 1260 |       |
| VB2-9D  | 09/19/08   | < 155        |       |
| VB3-10D | 09/18/08   | < 155        |       |
| VB3-2   | 01/14/08   | 167 ± 104    |       |
| VB3-2   | 02/13/08   | < 181        |       |
| VB3-2   | 03/11/08   | < 156        |       |
| VB3-2   | 04/15/08   | < 165        |       |
| VB3-2   | 05/15/08   | < 167        |       |
| VB3-2   | 06/09/08   | < 182        |       |
| VB3-2   | 07/14/08   | < 165        |       |
| VB3-2   | 08/14/08   | < 154        |       |
| VB3-2   | 09/17/08   | < 164        |       |
| VB3-2   | 10/15/08   | < 183        |       |
| VB3-2   | 11/11/08   | < 188        |       |
| VB3-2   | 12/17/08   | < 187        |       |
| VB3-4D  | 09/19/08   | 311 ± 114    |       |
| VB3-7D  | 09/18/08   | < 156        |       |
| VB3-9D  | 09/19/08   | < 154        |       |
| VB4-1   | 01/16/08   | < 159        |       |
| VB4-1   | 02/13/08   | < 170        |       |
| VB4-1   | 03/11/08   | < 186        |       |
| VB4-1   | 04/15/08   | < 167        |       |
| VB4-1   | 05/13/08   | < 161        |       |
| VB4-1   | 06/11/08   | < 147        |       |

|        | COLLECTION |                |       |
|--------|------------|----------------|-------|
| SITE   | DATE       | H-3            | SR-90 |
| VB4-1  | 08/13/08   | < 157          |       |
| VB4-1  | 09/16/08   | < 170          |       |
| VB4-1  | 10/14/08   | < 182          |       |
| VB4-1  | 11/11/08   | < 192          |       |
| VB4-1  | 12/17/08   | < 163          |       |
| VB4-5D | 03/11/08   | < 159          |       |
| VB4-5D | 06/10/08   | < 169          |       |
| VB4-5D | 09/16/08   | < 164          |       |
| VB4-5D | 12/18/08   | < 158          |       |
| VB4-6D | 03/11/08   | 2570 ± 318     |       |
| VB4-6D | 06/10/08   | $2430 \pm 303$ |       |
| VB4-6D | 09/16/08   | 2640 ± 329     |       |
| VB4-6D | 12/18/08   | $3590 \pm 406$ |       |
| VB5-2  | 01/16/08   | < 157          |       |
| VB5-2  | 02/13/08   | < 163          |       |
| VB5-2  | 03/11/08   | < 160          |       |
| VB5-2  | 04/15/08   | < 165          |       |
| VB5-2  | 05/15/08   | < 161          |       |
| VB5-2  | 06/10/08   | < 169          |       |
| VB5-2  | 08/12/08   | < 156          |       |
| VB5-2  | 09/16/08   | < 173          |       |
| VB5-2  | 10/15/08   | < 179          |       |
| VB5-2  | 11/12/08   | < 176          |       |
| VB5-2  | 12/18/08   | < 161          |       |
| VB6-1  | 01/15/08   | < 161          |       |
| VB6-1  | 02/13/08   | < 163          |       |
| VB6-1  | 03/11/08   | < 159          |       |
| VB6-1  | 04/17/08   | < 182          |       |
| VB6-1  | 05/13/08   | < 165          |       |
| VB6-1  | 06/09/08   | < 170          |       |
| VB6-1  | 08/12/08   | < 151          |       |
| VB6-1  | 09/16/08   | < 170          |       |
| VB6-1  | 10/14/08   | < 1//          |       |
| VB6-1  | 11/11/08   | < 190          |       |
| VB6-1  | 12/16/08   | < 1/4          |       |
| VB7-1  | 01/15/08   | 670 ± 142      |       |
| VB7-1  | 02/12/08   | 435 ± 122      |       |
| VB7-1  | 03/11/08   | 745 ± 143      |       |
| VB7-1  | 04/15/08   | 528 ± 134      |       |
| VB7-1  | 05/13/08   | 091 ± 141      |       |
| VB7-1  | 00/12/08   | 021 ± 120      |       |
| VB/-1  | 09/10/08   | 41/ ± 120      |       |
| VB/-1  | 10/14/08   | 314 ± 128      |       |
| VB/-1  | 11/11/08   | 300 ± 130      |       |
| VB/-1  | 12/10/08   | 310 ± 129      |       |
| VB8-2  | 01/15/08   | < 100<br>< 166 |       |
| VB8-2  | 02/12/08   | < 100          |       |
## TABLE B-I.1CONCENTRATIONS OF TRITIUM AND STRONTIUM IN GROUNDWATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

|           | COLLECTION |            |       |
|-----------|------------|------------|-------|
| SITE      | DATE       | H-3        | SR-90 |
| VB8-2     | 03/11/08   | < 160      |       |
| VB8-2     | 04/15/08   | < 166      |       |
| VB8-2     | 05/13/08   | < 165      |       |
| VB8-2     | 06/09/08   | < 169      |       |
| VB8-2     | 08/12/08   | < 155      |       |
| VB8-2     | 09/15/08   | < 168      |       |
| VB8-2     | 10/14/08   | < 153      |       |
| VB9-1     | 01/15/08   | < 160      |       |
| VB9-1     | 02/12/08   | < 180      |       |
| VB9-1     | 03/11/08   | < 159      |       |
| VB9-1     | 04/15/08   | < 169      |       |
| VB9-1     | 05/13/08   | < 167      |       |
| VB9-1     | 06/10/08   | < 171      |       |
| VB9-1     | 07/15/08   | < 182      |       |
| VB9-1     | 08/12/08   | < 156      |       |
| VB9-1     | 09/15/08   | < 160      |       |
| VB9-1     | 10/14/08   | 178 ± 107  |       |
| VB9-1     | 11/11/08   | < 192      |       |
| VB9-1     | 12/16/08   | < 187      |       |
| WCFPD-1D  | 03/11/08   | 1480 ± 211 |       |
| WCFPD-1D  | 06/10/08   | 406 ± 122  |       |
| WCFPD-1D  | 09/18/08   | 894 ± 151  |       |
| WCFPD-1D  | 12/16/08   | 485 ± 138  |       |
| WCFPD-2DR | 03/11/08   | < 158      |       |
| WCFPD-2DR | 06/10/08   | < 167      |       |
| WCFPD-2DR | 09/18/08   | < 163      |       |
| WCFPD-2DR | 12/16/08   | < 176      |       |
| WELL D-1D | 10/19/08   | < 164      |       |

# TABLE B-I.2CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC        | COLLECTION | Be-7 | K-40     | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|------------|------------|------|----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| PERIOD     |            |      |          |       |       |       |       |       |       |       |       |        |        |        |        |
| MW 144D    | 08/19/08   | < 18 | < 12     | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 44  | < 1    | < 1    | < 40   | < 12   |
| MW-11      | 09/15/08   | < 21 | < 10     | < 1   | < 2   | < 6   | < 1   | < 3   | < 2   | < 3   | < 421 | < 1    | < 1    | < 151  | < 51   |
| MW-13      | 09/18/08   | < 17 | < 24     | < 1   | < 1   | < 4   | < 1   | < 2   | < 2   | < 3   | < 252 | < 1    | < 1    | < 102  | < 28   |
| MW-141D    | 08/27/08   | < 17 | 170 ± 30 | < 1   | < 2   | < 5   | < 2   | < 3   | < 2   | < 3   | < 25  | < 1    | < 1    | < 30   | < 9    |
| MW-142D    | 08/18/08   | < 14 | 189 ± 28 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 35  | < 1    | < 1    | < 32   | < 9    |
| MW-143D    | 08/27/08   | < 20 | < 14     | < 2   | < 2   | < 5   | < 2   | < 3   | < 2   | < 4   | < 28  | < 1    | < 2    | < 32   | < 10   |
| MW-154     | 08/28/08   | < 16 | < 11     | < 1   | < 2   | < 3   | < 1   | < 2   | < 2   | < 3   | < 24  | < 1    | < 1    | < 26   | < 7    |
| MW-155     | 08/28/08   | < 19 | < 13     | < 2   | < 2   | < 5   | < 2   | < 3   | < 2   | < 4   | < 27  | < 1    | < 2    | < 34   | < 9    |
| MW-156     | 08/28/08   | < 16 | < 29     | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 23  | < 1    | < 1    | < 28   | < 9    |
| MW-159D    | 08/27/08   | < 16 | < 27     | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 24  | < 1    | < 1    | < 27   | < 9    |
| MW-16-D    | 08/27/08   | < 19 | < 15     | < 2   | < 2   | < 4   | < 1   | < 3   | < 2   | < 4   | < 29  | < 1    | < 2    | < 34   | < 11   |
| MW-2       | 09/16/08   | < 23 | < 9      | < 1   | < 2   | < 7   | < 1   | < 2   | < 2   | < 4   | < 350 | < 1    | < 1    | < 138  | < 49   |
| MW-22      | 09/15/08   | < 23 | < 11     | < 1   | < 2   | < 6   | < 1   | < 3   | < 3   | < 4   | < 479 | < 1    | < 1    | < 178  | < 56   |
| MW-5       | 09/16/08   | < 19 | < 8      | < 1   | < 1   | < 4   | < 1   | < 2   | < 2   | < 3   | < 342 | < 1    | < 1    | < 133  | < 39   |
| MW-6       | 09/16/08   | < 18 | < 9      | < 1   | < 2   | < 5   | < 1   | < 2   | < 2   | < 3   | < 346 | < 1    | < 1    | < 141  | < 39   |
| MW-7       | 09/16/08   | < 18 | < 23     | < 1   | < 1   | < 5   | < 1   | < 2   | < 2   | < 3   | < 344 | < 1    | < 1    | < 123  | < 40   |
| MW-9       | 09/15/08   | < 20 | < 24     | < 1   | < 2   | < 6   | < 1   | < 2   | < 2   | < 3   | < 352 | < 1    | < 1    | < 139  | < 44   |
| MW-BW-2041 | 10/26/08   | < 15 | < 27     | < 1   | < 1   | < 4   | < 1   | < 2   | < 2   | < 3   | < 34  | < 1    | < 1    | < 30   | < 10   |
| MW-BW-2051 | 09/17/08   | < 19 | < 8      | < 1   | < 1   | < 4   | < 1   | < 2   | < 2   | < 3   | < 297 | < 1    | < 1    | < 106  | < 37   |
| MW-BW-2061 | 09/17/08   | < 24 | < 11     | < 1   | < 2   | < 6   | < 1   | < 3   | < 2   | < 4   | < 425 | < 1    | < 1    | < 156  | < 50   |
| MW-BW-2071 | 09/18/08   | < 17 | < 8      | < 1   | < 2   | < 4   | < 1   | < 2   | < 2   | < 3   | < 283 | < 1    | < 1    | < 107  | < 32   |

## TABLE B-II.1CONCENTRATIONS OF TRITIUM AND STRONTIUM IN SURFACE WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

|                      | COLLECTION |               |       |
|----------------------|------------|---------------|-------|
| SITE                 | DATE       | H-3           | SR-90 |
| DITCH (DS-2) POINT F | 09/22/08   | 201 ± 105     |       |
| DITCH (DS-2) POINT F | 09/22/08   | < 185         |       |
| DITCH (DS-2)         | 03/11/08   | < 176         |       |
| DITCH (DS-2)         | 06/18/08   | < 166         |       |
| EXELON POND          | 03/07/08   | 776 ± 161     |       |
| EXELON POND          | 05/05/08   | 1170 ± 187    |       |
| EXELON POND          | 06/23/08   | 994 ± 164     |       |
| EXELON POND          | 09/17/08   | 818 ± 160     |       |
| EXELON POND          | 09/17/08   | 719 ± 145     |       |
| EXELON POND          | 12/10/08   | 696 ± 148     |       |
| EXELON POND GRAB     | 07/14/08   | 1230 ± 192    |       |
| FATLAN POND          | 09/16/08   | < 170         |       |
| H DITCH              | 02/06/08   | $178 \pm 109$ |       |
| HDITCH               | 04/11/08   | < 171         |       |
| H DITCH              | 09/11/08   | < 175         |       |
| LAKE DISCHARGE CANAL | 05/21/08   | < 159         |       |
| LAKE DISCHARGE CANAL | 10/27/08   | < 172         | < 1.3 |
| LAKE INTAKE          | 10/27/08   | < 166         | < 1.4 |
| PW-006P              | 01/14/08   | < 160         |       |
| PW-006P              | 07/28/08   | < 182         |       |
| PW-006P              | 10/16/08   | < 164         |       |
| SCAMEN POND          | 09/16/08   | < 170         |       |
| SG-BW-105            | 05/05/08   | < 159         |       |
| SW-05                | 10/16/08   | < 163         |       |
| SW-05                | 07/16/08   | 186 ± 115     |       |
| SW-101               | 05/21/08   | < 154         |       |
| SW-101               | 08/28/08   | < 156         | < 0.9 |
| SW-102               | 08/28/08   | < 157         | < 0.9 |
| SW-102 C DITCH       | 05/21/08   | < 158         |       |
| SW-103               | 05/21/08   | $173 \pm 103$ |       |
| SW-103               | 09/10/08   | 284 ± 110     |       |
| SW-103               | 09/10/08   | -             | < 1.2 |
| SW-104               | 09/10/08   | $166 \pm 105$ |       |
| SW-104               | 09/10/08   | -             | < 1.6 |
| SW-104 A DITCH       | 05/21/08   | < 157         |       |

## TABLE B-II.2CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES<br/>COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2008

| STC                  | COLLECTION<br>PERIOD | Be-7 | K-40 | Mn-54 | Co-58 | Fe-59 | Co-60 | Zn-65 | Nb-95 | Zr-95 | I-131 | Cs-134 | Cs-137 | Ba-140 | La-140 |
|----------------------|----------------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| LAKE DISCHARGE CANAL | 10/27/08             | < 13 | < 30 | < 1   | < 2   | < 4   | < 1   | < 2   | < 1   | < 3   | < 28  | < 1    | < 1    | < 28   | < 9    |
| LAKE INTAKE          | 10/27/08             | < 13 | < 25 | < 1   | < 1   | < 3   | < 1   | < 2   | < 1   | < 2   | < 26  | < 1    | < 1    | < 28   | < 9    |
| SW-101               | 08/28/08             | < 15 | < 11 | < 1   | < 2   | < 4   | < 1   | < 3   | < 2   | < 3   | < 21  | < 1    | < 1    | < 25   | < 7    |
| SW-102               | 08/28/08             | < 20 | < 42 | < 2   | < 2   | < 5   | < 2   | < 4   | < 2   | < 4   | < 30  | < 2    | < 2    | < 36   | < 11   |
| SW-103               | 09/10/08             | < 27 | < 33 | < 1   | < 3   | < 7   | < 1   | < 3   | < 3   | < 4   | < 724 | < 1    | < 1    | < 230  | < 71   |
| SW-104               | 09/10/08             | < 20 | < 9  | < 1   | < 2   | < 6   | < 1   | < 3   | < 2   | < 4   | < 622 | < 1    | < 1    | < 197  | < 60   |