

A subsidiary of Pinnacle West Capital Corporation

Palo Verde Nuclear **Generating Station**

Thomas N. Weber Department Leader Regulatory Affairs

Tel. 623-393-5764 Fax 623-393-5442 Mail Station 7636 PO Box 52034 Phoenix, Arizona 85072-2034

102-05996-TNW/KAR April 24, 2009

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Dear Sir:

Subject:

Palo Verde Nuclear Generating Station (PVNGS)

Units 1, 2, and 3

Docket Nos. STN 50-528/529/530

Annual Radiological Environmental Operating Report 2008

In accordance with PVNGS Technical Specification (TS) 5.6.2, enclosed please find the Annual Radiological Environmental Operating Report for 2008.

No commitments are being made to the NRC in this letter. Should you need further information regarding this submittal, please contact Russell A. Stroud, Licensing Section Leader, at (623) 393-5111.

Long d' W&M ...

TNW/RAS/KAR/gat

Enclosure

E. E. Collins Jr. CC:

NRC Region IV Regional Administrator

J. R. Hall

NRC NRR Project Manager

R. I. Treadway A. V. Godwin

NRC Senior Resident Inspector for PVNGS

Arizona Radiation Regulatory Agency (ARRA)

T. Morales

Arizona Radiation Regulatory Agency (ARRA)

A member of the STARS (Strategic Teaming and Resource Sharing) Alliance

ENCLOSURE

Units 1, 2, and 3

Annual Radiological Environmental Operating Report 2008

NUCLEAR GENERATING STATION

ANNUAL RADIOLOGICAL ENVIRONMENTAL **OPERATING REPORT** 2008

(Reference: RCTSAI 1643, Legacy Item No. 036843.01)

Drinovsky, Louis Digitally signed by Drinovsky, Louis J(Z33699)

J(Z33699)
Prepared by:

Gray, Thomas

Reviewed by: S(Z99610)

Approved by:

Caffney, John Digitally signed by Gaffney, John P (Z36459)

P(Z36459)

Director, Radiation Protection

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	DESCRIPTION OF THE MONITORING PROGRAM	3
2.1 2.2 2.3 2.4	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM CHANGES FOR 2008	3 4
3.	SAMPLE COLLECTION PROGRAM	
3.1 3.2 3.3 3.4 3.5	VEGETATION	12 12 12
4.	ANALYTICAL PROCEDURES	13
4.1 4.2 4.3 4.4 4.5 4.6 4.7	AIRBORNE RADIOIODINE MILK VEGETATION SLUDGE/SEDIMENT WATER	13 14 14
5.	NUCLEAR INSTRUMENTATION	
5.1. 5.2. 5.3.	LIQUID SCINTILLATION SPECTROMETER	15
6.	ISOTOPIC DETECTION LIMITS AND REPORTING CRITERIA	16
6.1. 6.2. 6.3.	DATA REPORTING CRITERIA	16
7.	INTERLABORATORY COMPARISON PROGRAM	
7.1. 7.2.		
8.	DATA INTERPRETATIONS AND CONCLUSIONS	25
8.1. 8.2. 8.3. 8.4. 8.5.	AIRBORNE RADIOIODINE	26 26 26
8.6.	GROUND WATER	26

TABLE OF CONTENTS

8.7		
8.8	8. SLUDGE AND SEDIMENT	27
8.9	9. Data Trends	28
9.	THERMOLUMINESCENT DOSIMETER (TLD) RESULTS AND DATA	51
10.	LAND USE CENSUS	57
10	0.1. Introduction	57
10	0.2. Census Results	57
11.	SUMMARY AND CONCLUSIONS	59
12.	REFERENCES	64

LIST OF TABLES

TABLE 2.1 SAMPLE COLLECTION LOCATIONS	6
TABLE 2.2 SAMPLE COLLECTION SCHEDULE	7
TABLE 2.3 SUMMARIES OF REMP DEVIATIONS/ABNORMAL EVENTS	8
TABLE 6.1 ODCM REQUIRED LOWER LIMITS OF DETECTION (A PRIORI)	19
TABLE 6.2 ODCM REQUIRED REPORTING LEVELS	20
TABLE 6.3 TYPICAL MDA VALUES	21
TABLE 7.1 INTERLABORATORY COMPARISON RESULTS	23
TABLE 8.1 PARTICULATE GROSS BETA IN AIR 1ST - 2ND QUARTER	29
TABLE 8.2 PARTICULATE GROSS BETA IN AIR 3RD - 4TH QUARTER	30
TABLE 8.3 GAMMA IN AIR FILTER COMPOSITES	31
TABLE 8.4 RADIOIODINE IN AIR 1ST - 2ND QUARTER	32
TABLE 8.5 RADIOIODINE IN AIR 3RD - 4TH QUARTER	33
TABLE 8.6 VEGETATION	34
TABLE 8.7 MILK	35
TABLE 8.8 DRINKING WATER	36
TABLE 8.9 GROUND WATER	
TABLE 8.10 SURFACE WATER	
TABLE 8.11 SLUDGE/SEDIMENT	43
TABLE 9.1 TLD SITE LOCATIONS	52
TABLE 9.2 2008 ENVIRONMENTAL TLD RESULTS	54
TABLE 10.1 2008 LAND USE CENSUS	58
TARLE 11 1 ENVIRONMENTAL PADIOLOGICAL MONITORING PROGRAM ANNUAL SLIMMARY	60

LIST OF FIGURES

FIGURE 2.1 REMP SAMPLE	SITES - MAP (0-10 miles)	. 10
FIGURE 2.2 REMP SAMPLE	SITES - MAP (10-35 miles)	. 11
FIGURE 8.1 HISTORICAL GR	OSS BETA IN AIR (WEEKLY SYSTEM AVERAGES)	. 46
FIGURE 8.2 HISTORICAL GRO	OSS BETA IN AIR (ANNUAL SITE TO SITE COMPARISONS)	
COMPARED TO PRE-OP		. 47
FIGURE 8.3 GROSS BETA IN	DRINKING WATER	. 48
FIGURE 8.4 EVAPORATION	POND TRITIUM ACTIVITY	. 49
FIGURE 8.5 SEDIMENTATIO	N BASIN #2 Cs-137	. 50
FIGURE 9.1 NETWORK ENVI	RONMENTAL TLD EXPOSURE RATES	. 55
FIGURE 9.2 ENVIRONMENT	AL TLD COMPARISON - PRE-OPERATIONAL VS 2008	. 56

ABSTRACT

The Radiological Environmental Monitoring Program (REMP) is an ongoing program conducted by Arizona Public Service Company (APS) for the Palo Verde Nuclear Generating Station (PVNGS). Various types of environmental samples are collected near PVNGS and analyzed for plant related radionuclide concentrations.

During 2008, the following categories of samples were collected by APS:

- Broad leaf vegetation
- Ground water
- Drinking water
- Surface water
- Airborne particulate and radioiodine
- Goat milk
- Sludge and sediment

Thermoluminescent dosimeters (TLDs) were used to measure environmental gamma radiation. The Environmental TLD program is also conducted by APS.

The Arizona Radiation Regulatory Agency (ARRA) performs radiochemistry analyses on various duplicate samples provided to them by APS. Samples analyzed by ARRA include onsite samples from the Reservoirs, Evaporation Ponds, and two (2) deep wells. Offsite samples analyzed by ARRA include two (2) local resident wells. ARRA also performs air sampling at seven (7) offsite locations identical to APS and maintains approximately fifty (50) environmental TLD monitoring locations, eighteen (18) of which are duplicates of APS locations.

A comparison of pre-operational and operational data indicates no changes to environmental radiation levels.

Low level tritium was discovered in subsurface water onsite (not considered potable) in February 2006 at Units 2 and 3. A significant investigation was initiated to determine the source of the water, the extent of the condition, and corrective actions to protect ground water. See Section 2.4 for further discussion.

(NOTE: Reference to APS throughout this report refers to PVNGS personnel)

OPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

1. Introduction

This report presents the results of the operational radiological environmental monitoring program conducted by Arizona Public Service Company (APS). The Radiological Environmental Monitoring Program (REMP) was established for the Palo Verde Nuclear Generating Station (PVNGS) by APS in 1979. The REMP is performed in accordance with the federal requirements to provide a complete environmental monitoring program for nuclear reactors, and with concern for maintaining the quality of the local environment. The program complies with the requirements of 10 CFR 50, Appendix I, PVNGS Technical Specifications, and with the guidance provided by the US Nuclear Regulatory Commission (USNRC) in their Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979 (incorporated into NUREG 1301).

This report contains the measurements and findings for 2008. All references are specifically identified in Section 12.

The objectives of the REMP are as follows: 1) to determine baseline radiation levels in the environs prior to plant operation and to compare the findings with measurements obtained during reactor operations; 2) to monitor potential radiological exposure pathways to the public; and 3) to determine radiological impacts on the environment caused by the operation of PVNGS.

Results from the REMP help to evaluate sources of elevated levels of radioactivity in the environment (e.g., atmospheric nuclear detonations or abnormal plant releases).

Results of the PVNGS pre-operational environmental monitoring program are presented in Reference 1.

The initial criticality of Unit 1 occurred May 25, 1985. Initial criticality for Units 2 and 3 were April 18, 1986, and October 25, 1987, respectively. PVNGS operational findings (historical) are presented in Reference 2.

2. Description of the Monitoring Program

APS and vendor organizations performed the pre-operational radiological environmental monitoring program, which began in 1979. APS and vendors continued the program into the operational phase.

2.1. 2008 PVNGS Radiological Environmental Monitoring Program

The assessment program consists of routine measurements of environmental gamma radiation and of radionuclide concentrations in media such as air, ground water, drinking water, surface water, vegetation, milk, sludge, and sediment.

Samples were collected by APS at the monitoring sites shown in Figures 2.1 and 2.2. The specific sample types, sampling locations, and sampling frequencies, as set forth in the PVNGS Offsite Dose Calculation Manual (ODCM), Reference 4, are presented in Tables 2.1, 2.2 and 9.1. Additional onsite sampling (outside the scope of the ODCM) is performed to supplement the REMP. All results are included in this report. Sample analyses were performed by APS at the PVNGS Central Chemistry Laboratory. This laboratory is licensed by the Arizona Department of Health Services (ADHS) to perform radiological analyses.

Environmental gamma radiation measurements were performed by APS using TLDs at fifty (50) locations near PVNGS. The PVNGS Dosimetry Department is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) to perform ionizing radiation dosimeter analyses.

In addition to monitoring environmental media, a land use census is performed annually to identify the nearest milk animals, residents, and gardens. This information is used to evaluate the potential dose to members of the public for those exposure pathways that are indicated.

2.2. Radiological Environmental Monitoring Program Changes for 2008

NOTE: All changes listed below were implemented by ODCM Rev. 23, effective 7-11-08.

- The vegetation sample location at Site #47 (Garden of Eatin', NNE3) became permanently unavailable and was replaced in July (Lahti residence, N3). This was documented in the Corrective Action Program by CRDR #3133845 and CRAI #3136750.
- ➤ The goat milk sample location at Site #51 (Painter residence, NE4) became permanently unavailable and was deleted. No replacement location was identified. This was documented in the Corrective Action Program by CRDR #3161377 and CRAI #3161378.

- ➤ The sample and analysis frequencies for all Evaporation Ponds and Reservoirs were changed from weekly/monthly/quarterly to quarterly. This change was processed after a review of more than 20 years of historical data and implements ODCM Revision 23.
- ➤ Added new Evaporation Pond #3 to the REMP.
- ➤ Added sample Site #43, Winters Well School TLD, to the REMP (ACT #3119292).

Refer to Table 2.1 for a description of all current sample locations (except TLDs).

2.3. REMP Deviations/Abnormal Events Summary

During calendar year 2008, there were eight (8) deviations/abnormal events with regard to the monitoring program. Refer to Table 2.3 for more detail and any corrective actions taken.

- The vegetation sample location at Site #47 (Garden of Eatin', NNE3) became permanently unavailable
- The goat milk sample location at Site #51 (Painter residence, NE4) became permanently unavailable.
- The air samples at Site #15 were invalid from 8/20 through 9/2
- The air samples at Site #4 were invalid from 9/23 through 9/30
- The air samples at Site #35 were invalid from 10/21 through 10/28
- Evaporation Pond #2 was emptied for liner replacement
- TLDs at Site #2 were missing in the 4th quarter
- TLDs at Site #36 were missing in the 1st and 2nd quarter

2.4. Significant Investigation Regarding Ground Water Protection

(Follow-Up from 2007 AREOR)

NOTE:

Although not part of the REMP, this information is being provided due to the identification of low level tritium in the onsite environs (within the Radiological Controlled Area) and heightened sensitivity to communicate the potential to affect ground water.

On February 15, 2006 Palo Verde personnel observed water leakage into the Unit 2 Essential Pipe Density Tunnel through the 'B' Spray Pond (SP) supply line penetration seal (documented on Significant CRDR No. 2869959). Low level tritium was identified in this water. It has been determined that the water was not the result of leakage from a plant system, but more likely due to previous operating conditions combined with precipitation. The investigation revealed that Unit 3 had a similar situation.

Several monitoring wells have been installed to monitor the subsurface water and shallow aquifer at Units 1, 2, and 3. These wells are sampled monthly and quarterly for chemical and radiological parameters. The State of Arizona Area-Wide Aquifer Protection Permit No. P-100388 (APP) provides agreed upon monitoring parameters and reporting thresholds. Sample results are reported in the PVNGS Annual Radioactive Effluent Release Report (ARERR).

PVNGS has implemented a ground water protection program initiated by the Nuclear Energy Institute (NEI). This initiative, NEI 07-07 (Industry Ground Water Protection Initiative – Final Guidance Document, August 2007), provides added assurance that ground water will not be adversely affected by PVNGS operations. The State of Arizona APP provides specific regulatory criteria for ground water protection.

Table 2.1 SAMPLE COLLECTION LOCATIONS

SAMPLE: SITE #	SAMPLE TYPE	LOCATION (a)	<u>LOCATION DESCRIPTION</u>
4	air	E16	APS Office
6A*	air	SSE13	Old US 80
7A	air	ESE3	Arlington School
14A	air	NNE2	371st Ave. and Buckeye-Salome Rd.
15	air	NE2	NE Site Boundary
17A	air	$-E3$ for a function ϵ	351 st Ave.
21	air	S3	S Site Boundary
29	air	$\{w_l,\dots,w_r\}$	W Site Boundary
35	air	NNW8	Tonopah
40	air	N2	Transmission Rd
46	drinking water	NNW8	Wirth residence
47.	vegetation	N3 (b)	Lahti residence (new, replaced Garden of
			Eatin' as of July)
48	drinking water	SW1	Berryman residence
49	drinking water	N2	Sandoval residence
51 %	milk	NE4 (b)	Deleted as of July
52	vegetation	ENE3	Wright residence
53*	milk	NE30 :	Martin residence- goats
54	milk	NNE4	Hernandez residence-goats
55	drinking water	SW3	Gavette residence
	(supplemental)		·
57	ground water	ONSITE	Well 27ddc
58	ground water	ONSITE	Well 34abb
59	surface water	ONSITE	Evaporation Pond #1
60	surface water	ONSITE	85 acre Reservoir
61	surface water	ONSITE	45 acre Reservoir
62*	vegetation	ENE26	Duncan Family Farms
63	surface water	ONSITE	Evaporation Pond #2
64	surface water	ONSITE (b)	Evaporation Pond #3 (new)

- * Designates a control site
- (a) Distances and direction are from the center-line of Unit 2 containment and rounded to the nearest mile
- (b) Denotes a change in location or a new sample location

Air sample sites designated with the letter 'A' are sites that have the same site number as a TLD location, but are not in the same location (e.g. site #6 TLD location is different from site #6A air sample location; site #4 TLD location is the same as site #4 air sample location)

Table 2.2 SAMPLE COLLECTION SCHEDULE

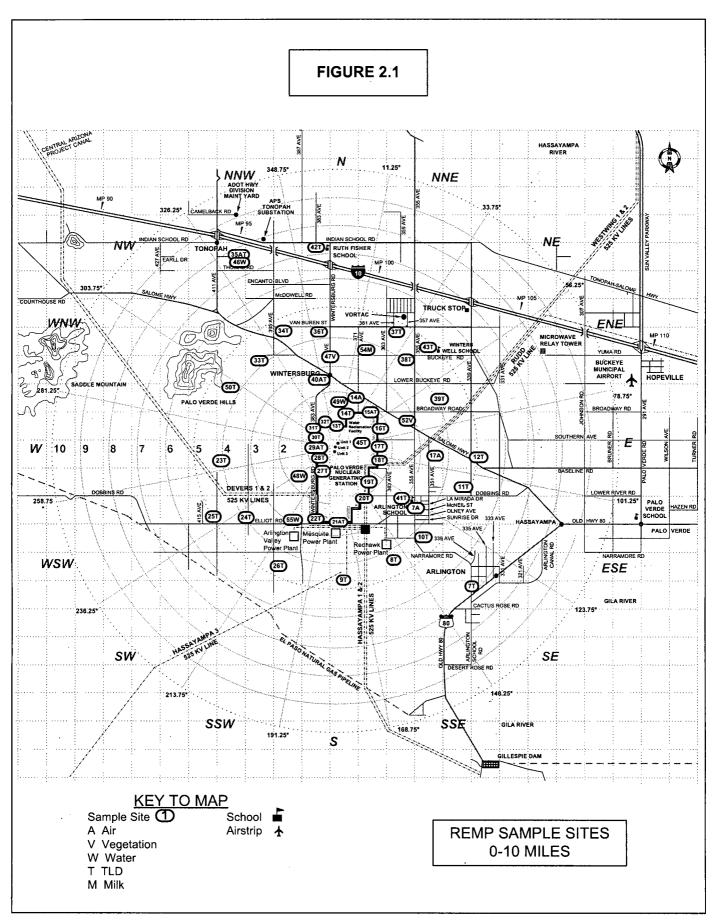
SAMPLE	AIR		AIRBORNE		GROUND	DRINKING	SURFACE
<i>SITE #</i> 4	<i>PARTICULATE</i> W	MILK	<i>RADIOIODINE</i> W	VEGETATION	WATER	WATER	WATER
6A	W		W				
7A	W		W				
14A	W		· W				
15	W		W		A. C.		
17A	W		W				
21	W		W				
29	W		W				
35	w		W				
40	W		W				
46						W	
47				M/AA			
48			Annual			W	
49						. W	
51 DELETED 7-08		M/AA		,			
52				M/AA			
53		M/AA					
54		M/AA		·			
55	,		tika dalah sebil sebija bija kelah perkanyan bandi densahi nya sebagai sebijan menengan melangan melangan mela			W	
57			MARAMETRA (A A A A A A A A A A A A A A A A A A		Q		
58					Q		
59							W/Q
60							W/Q
61							W/Q
62			•	M/AA			
63							W/Q
· 64	***************************************						NEW

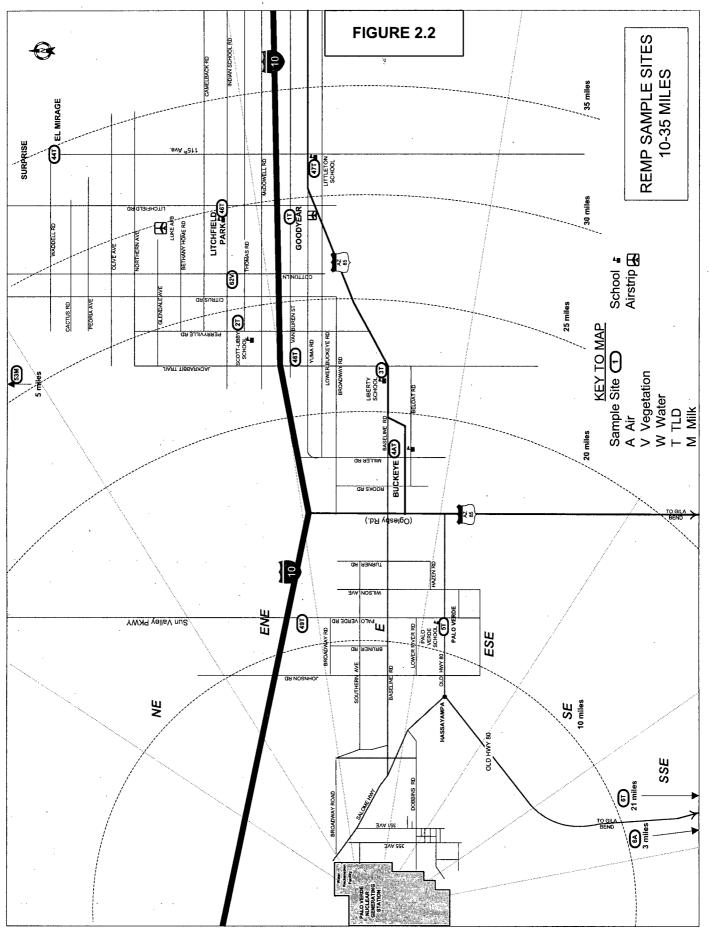
W = WEEKLY M/AA = MONTHLY AS AVAILABLE Q = QUARTERLY

TABLE 2.3 SUMMARIES OF REMP DEVIATIONS/ABNORMAL EVENTS

Deviation/Abnormal Event

- 1. The vegetation sample location at Site #47 (Garden of Eatin', NNE3) became permanently unavailable.
- 2. The goat milk sample location at Site #51 (Painter residence, NE4) became permanently unavailable.


- 3. The air samples at Site #15 were invalid from 8/20/08 through 9/2/08.
- 4. The air samples at Site #4 were invalid from 9/23/08 through 9/30/08.
- 5. The air samples at Site #35 were invalid from 10/21/08 through 10/28/08.
- 6. Evaporation Pond #2 was emptied for liner replacement.


Actions taken

- 1. Site #47 became permanently unavailable and was replaced in July (Lahti residence, N3). This was documented in the Corrective Action Program by CRDR #3133845 and CRAI #3136750. No further actions are needed.
- 2. The goat milk sample location at Site #51 residence, (Painter NE4) became permanently unavailable and was deleted. No replacement location was identified. The 30 day sample location replacement criterion from ODCM requirement 6.1, Action c., was not met since the Land Use Census was used to determine the best possible replacement sample location. The Land Use Census was completed beyond 30 days from the time the current sample location became unavailable. This was documented in the Corrective Action Program by CRDRs #3133845 and #3161377, and CRAIs #3136750, #3137782, and #3161378. No further actions are needed.
- 3. Site #15 was not accessible for the two week period due to insect infestation. This was a one time situation at this one location. No further actions are needed.
- 4. Power was out at the sample location. The samples were invalidated as the sample volume was indeterminate. Subsequent sample results the following week were acceptable. No further actions are needed.
- 5. The air sample pump was seized. The samples were invalidated as the sample volume was indeterminate. Subsequent sample results the following week were acceptable. No further actions are needed.
- 6. The liner in Evaporation Pond #2 has deteriorated to the point that it needs repair/replacement. Evaporation Pond #2 was pumped dry to allow for liner repair/replacement. The normal sampling regimen will start after it is placed back in service.

TABLE 2.3 SUMMARIES OF REMP DEVIATIONS/ABNORMAL EVENTS

Deviation/Abnormal Event (continued) Actions taken (continued) 7. The TLDs at Site #2 were missing in the 4th 7. Historically, there has not been a recurring quarter. issue with TLDs missing at this location. TLDs were placed at Site #2 for monitoring the 1st quarter 2009 period. If TLDs are missing when they are changed out for the 1st quarter, consideration will be given to relocation. No other actions are needed. 8. TLDs at Site #36 were missing in the 1st and 2nd 8. Since these TLDs were missing in two quarter. consecutive quarters, they were relocated across the road from their original location. The TLDs were retrievable in the 3rd and 4th quarters. No further actions are needed at this time.

3. Sample Collection Program

APS personnel using PVNGS procedures collected all samples.

3.1. Water

Weekly/Monthly/Quarterly samples were collected from the (45 and 85 acre) Reservoirs, Evaporation Pond #1, Evaporation Pond #2, and four (4) residence wells. Samples were collected in one-gallon containers and 500 ml glass bottles. The samples were analyzed for gamma emitting radionuclides and tritium. Resident wells were also analyzed for gross beta.

Quarterly grab samples were collected from onsite wells 34abb and 27ddc. Samples were collected in one-gallon containers and 500 ml glass bottles. Samples were analyzed for gamma emitting radionuclides and tritium.

Treated sewage effluent from the City of Phoenix was sampled as a weekly composite at the onsite Water Reclamation Facility (WRF), and analyzed for gamma emitting radionuclides. A monthly composite was analyzed for tritium.

3.2. Vegetation

Vegetation samples were collected monthly, as available, and were analyzed for gamma emitting radionuclides.

3.3. Milk

Goat milk samples were collected monthly, as available, and were analyzed for gamma emitting radionuclides, including low level I-131.

3.4. Air

Air particulate filters and charcoal cartridges were collected at ten (10) sites on a weekly basis. Particulate filters were analyzed for gross beta. Charcoal cartridges were analyzed for I-131. Particulate filters were composited quarterly, by location, and analyzed for gamma emitting radionuclides.

3.5. Sludge and Sediment

Sludge samples were obtained weekly from the WRF waste centrifuge (whenever the plant was operational) and analyzed for gamma emitting radionuclides.

Cooling tower sludge was analyzed for gamma emitting radionuclides prior to disposal in the WRF sludge landfill.

Bottom sediment/sludge samples were obtained from Evaporation Pond #1 and Evaporation Pond #2 and analyzed for gamma emitting radionuclides.

Bottom sediment samples were obtained from Sedimentation Basin #2 and analyzed for gamma emitting radionuclides.

4. Analytical Procedures

The procedures described in this report are those used by APS to routinely analyze samples.

4.1. Air Particulate

4.1.1. Gross Beta

A glass fiber filter sample is placed in a stainless steel planchet and counted for gross beta activity utilizing a low background gas flow proportional counter.

4.1.2. Gamma Spectroscopy

The glass fiber filters are counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.2. Airborne Radioiodine

The charcoal cartridge is counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for I-131.

4.3. Milk

4.3.1. Gamma Spectroscopy

The sample is placed in a plastic marinelli beaker and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.4. Vegetation

4.4.1. Gamma Spectroscopy

The sample is pureed in a food processor, placed in a one liter plastic marinelli beaker, weighed, and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.5. Sludge/Sediment

4.5.1. Gamma Spectroscopy

The wet sample is placed in a one-liter plastic marinelli beaker, weighed, and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.6. Water

4.6.1. Gamma Spectroscopy

The sample is placed in a one-liter plastic marinelli beaker and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

4.6.2. Tritium

The sample is evaluated to determine the appropriate method of preparation prior to counting. If the sample contains suspended solids or is turbid, it may be filtered, distilled, and/or de-ionized, as appropriate. Eight (8) milliliters of sample are mixed with fifteen (15) milliliters of liquid scintillation cocktail. The mixture is dark adapted and counted for tritium activity using a liquid scintillation counting system.

4.6.3. Gross Beta

A 200-250 milliliter sample is placed in a beaker. Five (5) milliliters of concentrated nitric (HNO₃) acid is added and the sample is evaporated down to about twenty (20) milliliters. The remaining sample is transferred to a stainless steel planchet. The sample is heated to dryness and counted for gross beta in a gas flow proportional counter.

4.7. Soil

4.7.1. Gamma Spectroscopy

The samples are sieved, placed in a one-liter plastic marinelli beaker, and weighed. The samples are then counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides.

5. Nuclear Instrumentation

5.1. Gamma Spectrometer

The Canberra Gamma Spectrometer consists of a Canberra System equipped with HPGe detectors having resolutions of 1.73 keV and 1.88 keV (as determined by full width half max with an energy of 0.5 keV per channel) and respective efficiencies of 21.5% and 38.4% (as determined by the manufacturer with Co-60). The Canberra System is used for all gamma counting. The system uses Canberra developed software to search, identify, and quantify the peaks of interest.

5.2. Liquid Scintillation Spectrometer

A Beckman LS-6500 Liquid Scintillation Counter is used for tritium determinations. The system background averages approximately 15-17 cpm with a counting efficiency of approximately 40% using a quenched standard.

5.3. Gas Flow Proportional Counter

The Tennelec S5E is a low background gas flow proportional counter for gross beta analysis. The system contains an automatic sample changer capable of counting 50 samples in succession. Average beta background count rate is about 1-2 cpm with a beta efficiency of approximately 30% for Cs-137.

6. Isotopic Detection Limits and Reporting Criteria

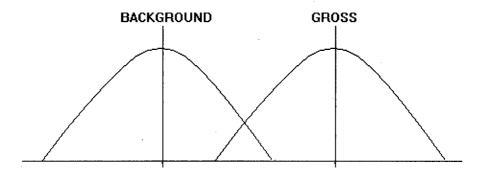
6.1. Lower Limits of Detection

The lower limits of detection (LLD) and the method for calculation are specified in the PVNGS ODCM, Reference 4. The ODCM required *a priori* LLDs are presented in Table 6.1. For reference, *a priori* LLDs are indicated at the top of data tables for samples having required LLD values.

6.2. Data Reporting Criteria

All results that are greater than the Minimum Detectable Activity (MDA) (a posteriori LLD) are reported as positive activity with its associated 2σ counting error. All results that are less than the MDA are reported as less than values at the associated MDA. For example, if the MDA is 12 pCi/liter, the value is reported as <12.

Typical MDA values are presented in Table 6.3.


Occasionally, the PVNGS ODCM a priori LLDs may not be achieved as a result of:

- Background fluctuations
- Unavoidably small sample sizes
- The presence of interfering radionuclides
- Self absorption corrections
- Decay corrections for short half-life radionuclides
- Other uncontrollable circumstances

In these instances, the contributing factors will be noted in the table where the data are presented. A summary of deviations/abnormal events is presented in Table 2.3 and includes a description of any sample results that did not meet *a priori* LLD requirements.

6.3. LLD and Reporting Criteria Overview

Making a reasonable estimate of the limits of detection for a counting procedure or a radiochemical method is usually complicated by the presence of significant background. It must be considered that the background or blank is not a fixed value but that a series of replicates would be normally distributed. The desired net activity is the difference between the gross and background activity distributions. The interpretation of this difference becomes a problem if the two distributions intersect as indicated in the diagram.

If a sufficient number of replicate analyses are run, it is expected that the results would fall in a normal Gaussian distribution. Standard statistics allow an estimate of the probability of any particular deviation from the mean value. It is common practice to report the mean \pm one or two standard deviations as the result. In routine analysis, such replication is not carried out, and it is not possible to report a Gaussian standard deviation. With counting procedures, however, it is possible to estimate a Poisson standard deviation directly from the count. Data are commonly reported as the measured value \pm one or two Poisson standard deviations. The reported values are then considered to give some indication of the range in which the true value might be expected to occur.

A LLD is the smallest amount of sample activity that will yield a net count for which there is confidence at a predetermined level that activity is present. LLDs are calculated values for individual radionuclides based on a number of different factors including sample size, counting efficiency and background count rate of the instrument, the background and sample counting time, the decay time, and the chemical recovery of the analytical procedures. A minimum detectable activity value (MDA) is the smallest amount of activity that can be detected in an actual sample and uses the values obtained from the instrument and outcome of the analytical process. Therefore, the MDA values may differ from the calculated LLD values if the sample size and chemical recovery, decay values, or the instrument efficiency, background, or count time differed from those used in the LLD calculation.

The factors governing the calculation of the LLD and MDA values are discussed below:

1. Sample Size

2. Counting Efficiency

The fundamental quantity in the measurement of a radioactive substance is the number of disintegrations per unit time. As with most physical measurements in analytical chemistry, an absolute measurement of the disintegration rate is seldom possible, rather it is necessary to compare the sample with one or more standards. The standards determine the counter efficiency that may then be used to convert sample counts per minute (cpm) to disintegrations per minute (dpm).

3. Background Count Rate

Any counter will show a certain counting rate without a sample in position. This background counting rate comes from several sources: 1) natural environmental radiation from the surrounding materials, 2) cosmic radiation, and 3) the natural radioactivity in the counter material itself. The background counting rate will depend on the amounts of these types of radiation and the sensitivity of the counter to the radiation.

4. Background and Sample Counting Time

The amount of time devoted to the counting of the background depends on the level of activity being measured. In general, with low level samples, this time should be about equal to that devoted to counting a sample.

5. Time Interval between Sample Collection and Counting

Decay measurements are useful in identifying certain short-lived nuclides. The disintegration constant is one of the basic characteristics of a specific radionuclide and is readily determined, if the half-life is sufficiently short. To ensure the required LLDs are achieved, appropriate decay correction values are used to account for radioactive decay during transit time and sample processing.

Table 6.1 ODCM REQUIRED LOWER LIMITS OF DETECTION (a priori)

ANALYSIS/ NUCLIDE	WATER (pCi/liter)	AIRBORNE PARTICULATE or GAS (pCi/m ³)	MILK (pCi/liter)	VEGETATION (pCi/kg, wet)
Gross Beta	4	0.01		
H-3	2000*			
Mn-54	15			
Fe-59	30			
Co-58, 60	15			
Zn-65	30			
Zr-95	30			
Nb-95	15			
I-131	1**	0.07	1	60
Cs-134	15	0.05	15	60
Cs-137	18	0.06	18	80
Ba-140	60		60	
La-140	15		15	

- * If no drinking water pathway exists, a value of 3000 pCi/liter may be used.
- ** If no drinking water pathway exists, a value of 15 pCi/liter may be used.

This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

Table 6.2 ODCM REQUIRED REPORTING LEVELS

ANALYSIS/ NUCLIDE	WATER (pCi/liter)	AIRBORNE PARTÍCULATE or GAS (pCi/m ³)	MILK (pCi/liter)	VEGETATION (pCi/kg, wet)
H-3	20,000*			
Mn-54	1,000			
Fe-59	400			
Co-58	1,000			
Co-60	300			
Zn-65	300			
Zr/Nb-95	400			
I-131	2**	0.9	3	100
Cs-134	30	10	60	1,000
Cs-137	50	20	70	2,000
Ba/La-140	200		300	

- * For drinking water samples. This is a 40CFR141 value. If no drinking water pathway exists, a value of 30,000 pCi/liter may be used.
- ** If no drinking water pathway exists, a reporting level of 20 pCi/liter may be used.

The values in this table are (calendar) quarterly average values, as stated in the ODCM.

Table 6.3 TYPICAL MDA VALUES

ANALYSIS/ NUCLIDE	WATER (pCi/liter)	MILK (pCi/liter)	AIRBORNE PARTICULATE or GAS (pCi/m ³)	VEGETATION (pCi/kg, wet)
Gross Beta	2.4		0.003	
H-3	268			
Mn-54	12			
Fe-59	24			
Co-58	11			
Co-60	13			
Zn-65	25			
Zr-95	20			
Nb-95	12			
I-131	11 a	1	0.06 b	32
Cs-134	12	1	0.04 b	34
Cs-137	13	1	0.05 ^b	39
Ba-140	39	4		
La-140	13	1		

a - low level I-131 is not required since there is no drinking water pathway b - Based on 433 m³ volume

7. Interlaboratory Comparison Program

7.1. Quality Control Program

APS maintains an extensive QA/QC Program to provide assurance that samples are collected, handled, tracked, and analyzed to specified requirements. This program includes appropriate elements of USNRC Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment, Rev. 1. Included in the program are procedures for sample collection, preparation and tracking, sample analysis, equipment calibration and checks, and ongoing participation in an interlaboratory comparison program. Duplicate/replicate samples are analyzed to verify analytical precision and sample methodology. Comprehensive data reviews are performed including trending of data where appropriate.

During 2008, APS analyzed the following sample types under the interlaboratory comparison program;

- Beta/Gamma/ in Air Filter
- I-131 in Air
- Beta in Water
- Gamma in Water
- Tritium in Water
- Gamma in Milk

7.2. Intercomparison Results

APS participates in a crosscheck program using vendor supplied blind radionuclide samples. Results for the interlaboratory comparison program are presented in Table 7.1.

TABLE 7.1 INTERLABORATORY COMPARISON RESULTS

Sample Type	Analysis Type	Nuclide	Known Value	PVNGS Value	1 sigma Error	Resolution *	Ratio	Accept/Reject
Water	Mixed Gamma	Ce-141	224	222	12	19	0.99	Accept
l water	E6372-111	Cr-51	288	334	44	8	1.16	Accept
	203/2 111	Cs-134	157	140	8	18	0.89	Accept
		Cs-137	140	135	8	17	0.96	Accept
		Co-58	122	115	8	14	0.94	Accept
		Mn-54	178	176	10	18	0.99	Accept
		Fe-59	117	127	12	11	1.08	Accept
		Zn-65	214	208	14	15	0.97	Accept
		Co-60	156	161	9	18	1.03	Accept
		I-131	64.1	86	15	6	1.34	Accept
	Tritium	H-3	11300	9277	140	66	0.82	Accept
, '	E6429-111							
	Gross Beta	gbeta	130	137	2	69	1.05	Accept
	E6430-111							
Air	Gross Beta	gbeta	182	218	2	109	1.20	Accept
	E6336-111							
	Iodine Cart	I-131	53.4	46	5	9	0.86	Accept
	E6373-111							·
	Iodine Cart	I-131	93.8	95	6	16	1.01	Accept
	E6338-111							•
	Mixed					,		
	Gamma	Ce-141	76.5	79	4	20	1.03	Accept
	E6339-111	Cr-51	200	200	17	12	1.00	Accept
		Cs-134	110	105	7	15	0.95	Accept
		Cs-137	76.9	85	6	14	1.11	Accept
		Co-58	84.7	92	· 6	15	1.09	Accept
		Mn-54	78.8	92	6	15	1.17	Accept
		Fe-59	68.5	76	7	11	1.11	Accept
:		Zn-65	151	168	11	15	1.11	Accept
		Co-60	111	122	6	20	1.10	Accept

TABLE 7.1 INTERLABORATORY COMPARISON RESULTS

Sample Type	Analysis Type	Nuclide	Known Value	PVNGS Value	1 sigma Error	Resolution *	Ratio	Accept/Reject
	Mixed				,			
Milk	Gamma	I-131	67.9	69	4	17	1.02	Accept
	E6337-111	Ce-141	161	. 165	8	21	1.02	Accept
		Cr-51	421	413	26	16	0.98	Accept
		Cs-134	232	218	12	18	0.94	Accept
		Cs-137	162	167	9	19	1.03	Accept
		Co-58	179	183	10	18	1.03	Accept
		Mn-54	166	178	10	18	1.07	Accept
		Fe-59	144	142	9	16	0.98	Accept
		Zn-65	319	321	17	19	1.01	Accept
		Co-60	234	233	11	21	0.99	Accept

^{*} calculated from PVNGS value/1 sigma error value

Acceptance Criteria **	
Resolution	Ratio
<4	
4-7	0.5-2.0
8-15	0.6-1.66
16-50	0.75-1.33
51-200	0.80-1.25
>200	0.85-1.18

^{**}From NRC Inspection Manual, Inspection Procedure 84750, "Radioactive Waste Treatment, And Effluent And Environmental Monitoring"

Sample Type	Analysis Type	Nuclide	PVNGS Value	Certified Value ¹	PT Acceptance Limit ²	Results
Water	Gamma	I-131	25.5	28.1	23.4-33.0	Accept
•	Tritium	H-3	1938	2220	1830-2460	Accept
	Gross Beta		39.4	38.0	25.1-45.5	Accept
ERA RAD-75 PT	Γ Study Results					
Filter	Gross Beta		44.8	36.2	22.3-52.9	Accept
•	Gamma	Am-241	71.8	67.3	39.4-92.3	Accept
		Cs-134	633.5	623	406-771	Accept
		Cs-137	858.8	761	572-1000	Accept
		Co-60	479.6	425	329-531	Accept
		Zn-65	538.6	452	313-626	Accept

¹ The certified values are verified to meet criteria as established by NIST NVLAP in Handbooks 150 and 150-19 and the USEPA in National Standards for Water Proficiency Testing Studies Criteria Document (December 30, 1998).

² "Acceptance Limits" have been calculated per the requirements of the USEPA in National Standards for Water Proficiency Testing Studies Criteria Document (December 30, 1998).

8. Data Interpretations and Conclusions

Associated with the analytical process are potential random and systematic errors. Systematic errors can be caused by instrument malfunctions, incomplete precipitation, back scattering, and self-absorption. Random errors are beyond the control of the analyst.

Efforts are made to minimize both systematic and random errors in the data reported. Systematic errors are minimized by performing reviews throughout the analysis. For example, instruments are checked routinely with radioactive sources, and recovery and self-absorption factors based on individual sample analyses are incorporated into the calculation equations where necessary. Random errors are reduced by comparing all data to historical data for the same site and performing comparisons between analytical results when available. In addition, when data do not appear to match historical results, analyses may be rerun on a separate aliquot of the sample to verify the presence of the activity. The acceptance of data is dependent upon the results of quality control samples and is part of the data review process for all analytical results.

The "plus or minus value" reported with each analytical result represents the counting error associated with the result and gives the 95% confidence (2σ) interval around the data.

Most samples contain radioactivity associated with natural background/cosmic radioactivity (e.g. K-40, Th-234, and Be-7). Gross beta results for drinking water and air are due to natural background. Gamma emitting radionuclides, which can be attributed to natural background sources, are not indicated in this report.

Results and interpretation of the data for all of the samples analyzed during 2008 are presented in the following sections. Assessment of pre-operational and operational data revealed no changes to environmental radiation levels. The only measurable impact on the environment in 2008 was the low level tritium discovered in subsurface water onsite in the RCA in 2006. See Section 2.4 for specific information.

8.1. Air Particulates

Weekly gross beta results, in quarterly format, are presented in Tables 8.1 and 8.2. Gross beta activity at indicator locations ranged from 0.016 to 0.067 pCi/m³. The associated counting error ranged from 0.001 to 0.004 pCi/m³. Mean quarterly activity is normally calculated using weekly activity over a thirteen (13) week period. Also presented in the tables are the weekly mean values of all the sites as well as the percent relative standard deviation (RSD %) for the data. The findings are consistent with pre-operational baseline and previous operational results. The results are summarized in Table 11.1.

Table 8.3 displays the results of gamma spectroscopy on the quarterly composites. No Cs-134 or Cs-137 was observed.

8.2. Airborne Radioiodine

Tables 8.4 and 8.5 present the quarterly radioiodine results. No airborne radioiodine was observed in any of the samples.

8.3. Vegetation

Table 8.6 presents gamma isotopic data for the vegetation samples. No gamma emitting radionuclides were observed in any of the samples.

8.4. Milk

Table 8.7 presents gamma isotopic data for the goat milk samples. No gamma emitting radionuclides were observed in any of the samples.

8.5. Drinking Water

Samples were analyzed for gross beta, tritium, and gamma emitting radionuclides. Results of these analyses are presented in Table 8.8. No tritium or gamma emitting radionuclides were detected in any samples. Gross beta activity ranged from less than detectable to a high of 7.8 pCi/liter (Gavette residence, December composite).

8.6. Ground Water

Ground water samples were analyzed for tritium and gamma emitting radionuclides. Results obtained from the analysis of the samples are presented in Table 8.9.

No tritium or gamma emitting radionuclides were observed in any of the samples.

8.7. Surface Water

Surface water samples from the Reservoirs and Evaporation Ponds were analyzed for tritium and gamma emitting radionuclides. The two Reservoirs contain processed sewage water from the City of Phoenix and are approximately 45 and 85 acres in size. The three Evaporation Ponds receive mostly circulating water from main turbine condenser cooling and are about 200-250 acres each. Evaporation Pond #3 was constructed in 2008 to allow for re-lining of the older ponds. Evaporation Pond #2 is being pumped into Evaporation Pond #3 and will be relined first. Results are presented in Table 8.10. I-131 was observed in the Evaporation Ponds in three (3) of the monthly composite samples (11-19 pCi/liter) and four (4) of the Reservoir monthly composite samples (13 to 31 pCi/liter). I-131 is a result of radiopharmaceutical I-131 in the Phoenix sewage effluent.

Tritium was routinely observed in the Evaporation Ponds. The highest concentration in Evaporation Pond #1 was 1111 pCi/liter and the highest concentration in Evaporation Pond #2 was 1028 pCi/liter. Tritium was not identified in the Reservoirs. The tritium

identified in the Evaporation Ponds has been attributed to permitted plant gaseous effluent releases and secondary plant liquid discharges.

WRF Influent (Phoenix sewage effluent containing radiopharmaceutical I-131) samples collected by the WRF were analyzed for gamma emitting radionuclides and tritium. The results, presented in Table 8.10, demonstrate that I-131 was observed routinely. The highest I-131 concentration was 86 pCi/liter. None of the samples analyzed indicated the presence of tritium.

Table 8.10 also presents gamma spectroscopy and tritium measurements of samples collected from Sedimentation Basin #2. This basin collects rain water from site runoff and was dry for most of the year. No gamma emitting radionuclides were observed in any of the samples. Tritium was detected at very low concentrations in 3 of 7 samples, within the range of 319 to 577 pCi/liter. These values are consistent with historical tritium data and are attributed to plant vent releases during precipitation.

8.8. Sludge and Sediment

8.8.1. WRF Centrifuge waste sludge

Sludge samples were obtained from the WRF centrifuge and analyzed by gamma spectroscopy. I-131 activity in the sludge is consistent with historical values and, as previously discussed, is due to radiopharmaceuticals in the WRF Influent. I-131 was present in all fifty-one (51) samples ranging from 180 to 2249 pCi/kg. The highest value corresponded to the dates associated with the highest weekly I-131 activity in the source water supply (WRF Influent).

In-111 was also identified in the sludge in 12 of the 51 samples. The highest concentration was 91 pCi/kg. It was previously established that In-111 is also used in the Phoenix area as a radiopharmaceutical. The frequency of In-111 detection has increased from the 2007 calendar year, when only 4 samples indicated In-111 activity.

Results for WRF centrifuge waste sludge can be found in Table 8.11.

8.8.2. Evaporation Ponds #1 and #2 sediment

A set of seven (7) Evaporation Pond sediment samples indicated low levels of Cs-137 ranging from <MDA to 79 pCi/kg. One sample from Evaporation Pond #1 indicated I-131 (non-licensed radioactive material) at a concentration of 18 pCi/kg. These results are consistent with previous samples. Sample results can be found in Table 8.11.

8.8.3. Cooling Tower sludge

Sludge/sediment originating from the Unit 3 Cooling Towers and/or Circulating Water canals was disposed of in the WRF sludge landfill during 2008. Sample results can be found in Table 8.11.

8.8.4. Sedimentation Basin #2 sediment

Sedimentation Basin #2 receives storm runoff and provides an onsite collection area. Two (2) bottom sediment samples were collected and analyzed for gamma emitting radionuclides. Cs-137 was detected in both samples at 45 and 47 pCi/kg. This is below the pre-operational onsite average soil Cs-137 concentration of 238 pCi/kg and consistent with historical data. Refer to Table 8.11.

8.9. Data Trends

Figures 8.1-8.5 present data in graphical format. Historical data are displayed for comparison where practical.

TABLE 8.1 PARTICULATE GROSS BETA IN AIR 1st - 2nd QUARTER

ODCM required samples denoted by *

• 4		a 3
units	are	pCi/m ³

						1st Qu	arter				ya ya			
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site	2 1 2 mm 2 1 4 4 4 mm 2 1 1 4 mm 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RSD
Week#	DATE	DATE	4	6A*	7 A	14A*	15*	17A	21	29*	35	40*	Mean	(%)
1	26-Dec-07	2-Jan-08	0.023	0.026	0.026	0.026	0.025	0.025	0.024	0.025	0.023	0.024	0.025	4.7
2	2-Jan-08	8-Jan-08	0.025	0.026	0.024	0.025	0.028	0.026	0.025	0.027	0.026	0.026	0.026	4.4
3	8-Jan-08	15-Jan-08	0.025	0.030	0.027	0.025	0.027	0.025	0.026	0.026	0.024	0.025	0.026	6.5
4	15-Jan-08	22-Jan-08	0.033	0.039	0.036	0.033	0.035	0.032	0.034	0.032	0.033	0.034	0.034	6.3
5	22-Jan-08	29-Jan-08	0.023	0.026	0.025	0.023	0.025	0.026	0.026	0.026	0.024	0.024	0.025	5.0
6	29-Jan-08	5-Feb-08	0.018	0.020	0.018	0.018	0.019	0.018	0.018	0.017	0.018	0.018	0.018	4.3
7	5-Feb-08	12-Feb-08	0.029	0.033	0.030	0.027	0.030	0.027	0.029	0.031	0.029	0.028	0.029	6.2
8	12-Feb-08	20-Feb-08	0.031	0.035	0.031	0.030	0.034	0.030	0.030	0.033	0.032	0.033	0.032	5.6
9	20-Feb-08	26-Feb-08	0.017	0.020	0.021	0.017	0.018	0.018	0.017	0.017	0.019	0.017	0.018	8.0
10	26-Feb-08	4-Mar-08	0.026	0.027	0.027	0.024	0.025	0.024	0.021	0.026	0.022	0.023	0.025	8.4
11	4-Mar-08	11-Mar-08	0.029	0.032	0.029	0.027	0.032	0.025	0.027	0.028	0.026	0.027	0.028	8.3
12	11-Mar-08	18-Mar-08	0.031	0.031	0.029	0.028	0.032	0.030	0.028	0.029	0.029	0.031	0.030	4.7
13	18-Mar-08	24-Mar-08	0.036	0.038	0.035	0.033	0.037	0.033	0.033	0.033	0.030	0.033	0.034	7.0
M	1ean	manager has a series of the second manager has a	0.027	0.029	0.028	0.026	0.028	0.026	0.026	0.027	0.026	0.026	0.027	4.5
				200.00	The state of the s		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	**		A 15 TO 15		ିହିଲିନିକ କ୍ୟାୟକ୍ତି	100	To 12 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
deservice.		Adam dali	. 1 . 5.1 .	عند في المناسبة	ing and the same of the same o	2nd Qu	uarter			الساعفللة المساسس				
Mar All.	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site		RSD
Week#			Site 4		Site 7A			Site 17A	Site 21	Site 29*	Site 35		Mean	
14	START DATE 24-Mar-08	STOP DATE 1-Apr-08	4 0.025	Site	7A 0.026	Site	Site					Site	Mean 0.027	RSD
14 15	START DATE 24-Mar-08 1-Apr-08	STOP DATE 1-Apr-08 8-Apr-08	4 0.025 0.026	Site 6A*	7A 0.026 0.030	Site 14A* 0.027 0.028	Site 15*	17A	21	29*	35	Site 40*		RSD (%)
14 15 16	START DATE 24-Mar-08 1-Apr-08 8-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08	4 0.025 0.026 0.027	Site 6A* 0.030 0.028 0.028	7A 0.026 0.030 0.028	Site 14A* 0.027 0.028 0.027	Site 15* 0.028	17A 0.029	21 0.026	29* 0.027	35 0.028	Site 40* 0.028	0.027	RSD (%) 5.5
14 15 16 17	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08	4 0.025 0.026 0.027 0.036	Site 6A* 0.030 0.028 0.028 0.038	7A 0.026 0.030 0.028 0.037	Site 14A* 0.027 0.028 0.027 0.037	Site 15* 0.028 0.030 0.027 0.037	17A 0.029 0.028	0.026 0.029	29* 0.027 0.030	0.028 0.030	Site 40* 0.028 0.028	0.027 0.029	RSD (%) 5.5 4.7
14 15 16 17 18	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08	4 0.025 0.026 0.027 0.036 0.038	Site 6A* 0.030 0.028 0.028 0.038 0.038	7A 0.026 0.030 0.028 0.037 0.039	Site 14A* 0.027 0.028 0.027 0.037 0.036	Site 15* 0.028 0.030 0.027 0.037 0.039	17A 0.029 0.028 0.027 0.037 0.038	0.026 0.029 0.025	29* 0.027 0.030 0.028 0.036 0.041	35 0.028 0.030 0.029 0.038 0.040	Site 40* 0.028 0.028 0.026	0.027 0.029 0.027 0.037 0.038	RSD (%) 5.5 4.7 4.2 2.7 4.5
14 15 16 17 18 19	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08	4 0.025 0.026 0.027 0.036 0.038 0.030	Site 6A* 0.030 0.028 0.028 0.038 0.038 0.034	7A 0.026 0.030 0.028 0.037 0.039 0.034	Site 14A* 0.027 0.028 0.027 0.037 0.036 0.032	Site 15* 0.028 0.030 0.027 0.037 0.039 0.032	17A 0.029 0.028 0.027 0.037 0.038 0.029	0.026 0.029 0.025 0.035 0.036 0.030	29* 0.027 0.030 0.028 0.036 0.041 0.032	35 0.028 0.030 0.029 0.038 0.040 0.032	Site 40* 0.028 0.028 0.026 0.038	0.027 0.029 0.027 0.037 0.038 0.032	RSD (%) 5.5 4.7 4.2 2.7 4.5 5.2
14 15 16 17 18	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08	4 0.025 0.026 0.027 0.036 0.038	Site 6A* 0.030 0.028 0.028 0.038 0.038	7A 0.026 0.030 0.028 0.037 0.039	Site 14A* 0.027 0.028 0.027 0.037 0.036	Site 15* 0.028 0.030 0.027 0.037 0.039	17A 0.029 0.028 0.027 0.037 0.038	21 0.026 0.029 0.025 0.035 0.036	29* 0.027 0.030 0.028 0.036 0.041	35 0.028 0.030 0.029 0.038 0.040	Site 40* 0.028 0.028 0.026 0.038 0.036	0.027 0.029 0.027 0.037 0.038	RSD (%) 5.5 4.7 4.2 2.7 4.5
14 15 16 17 18 19	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08	4 0.025 0.026 0.027 0.036 0.038 0.030	Site 6A* 0.030 0.028 0.028 0.038 0.038 0.034	7A 0.026 0.030 0.028 0.037 0.039 0.034	Site 14A* 0.027 0.028 0.027 0.037 0.036 0.032	Site 15* 0.028 0.030 0.027 0.037 0.039 0.032	17A 0.029 0.028 0.027 0.037 0.038 0.029	0.026 0.029 0.025 0.035 0.036 0.030	29* 0.027 0.030 0.028 0.036 0.041 0.032	35 0.028 0.030 0.029 0.038 0.040 0.032	Site 40* 0.028 0.028 0.026 0.038 0.036 0.031	0.027 0.029 0.027 0.037 0.038 0.032	RSD (%) 5.5 4.7 4.2 2.7 4.5 5.2
14 15 16 17 18 19 20	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08	4 0.025 0.026 0.027 0.036 0.038 0.030 0.037	Site 6A* 0.030 0.028 0.028 0.038 0.038 0.034 0.039	7A 0.026 0.030 0.028 0.037 0.039 0.034 0.040	Site 14A* 0.027 0.028 0.027 0.037 0.036 0.032 0.037	Site 15* 0.028 0.030 0.027 0.037 0.039 0.032 0.040	17A 0.029 0.028 0.027 0.037 0.038 0.029 0.037	21 0.026 0.029 0.025 0.035 0.036 0.030 0.040	29* 0.027 0.030 0.028 0.036 0.041 0.032 0.036	35 0.028 0.030 0.029 0.038 0.040 0.032 0.037	Site 40* 0.028 0.028 0.026 0.038 0.036 0.031 0.038	0.027 0.029 0.027 0.037 0.038 0.032 0.038	RSD (%) 5.5 4.7 4.2 2.7 4.5 5.2 4.0
14 15 16 17 18 19 20 21	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08	4 0.025 0.026 0.027 0.036 0.038 0.030 0.037	Site 6A* 0.030 0.028 0.028 0.038 0.038 0.034 0.039 0.032	7A 0.026 0.030 0.028 0.037 0.039 0.034 0.040	Site 14A* 0.027 0.028 0.027 0.037 0.036 0.032 0.037 0.025	Site 15* 0.028 0.030 0.027 0.037 0.039 0.032 0.040 0.028	17A 0.029 0.028 0.027 0.037 0.038 0.029 0.037 0.028	0.026 0.029 0.025 0.035 0.036 0.030 0.040 0.029	29* 0.027 0.030 0.028 0.036 0.041 0.032 0.036 0.027	35 0.028 0.030 0.029 0.038 0.040 0.032 0.037 0.028	Site 40* 0.028 0.028 0.026 0.038 0.036 0.031 0.038 0.026	0.027 0.029 0.027 0.037 0.038 0.032 0.038 0.028	RSD (%) 5.5 4.7 4.2 2.7 4.5 5.2 4.0 6.7
14 15 16 17 18 19 20 21	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08	4 0.025 0.026 0.027 0.036 0.038 0.030 0.037 0.028 0.025	Site 6A* 0.030 0.028 0.028 0.038 0.038 0.034 0.039 0.032 0.028	7A 0.026 0.030 0.028 0.037 0.039 0.034 0.040 0.029 0.021	Site 14A* 0.027 0.028 0.027 0.037 0.036 0.032 0.037 0.025 0.023	Site 15* 0.028 0.030 0.027 0.037 0.039 0.032 0.040 0.028 0.024	17A 0.029 0.028 0.027 0.037 0.038 0.029 0.037 0.028 0.022	21 0.026 0.029 0.025 0.035 0.036 0.030 0.040 0.029 0.021	29* 0.027 0.030 0.028 0.036 0.041 0.032 0.036 0.027 0.022	35 0.028 0.030 0.029 0.038 0.040 0.032 0.037 0.028 0.025	Site 40* 0.028 0.028 0.026 0.038 0.036 0.031 0.038 0.026 0.023	0.027 0.029 0.027 0.037 0.038 0.032 0.038 0.028 0.023	RSD (%) 5.5 4.7 4.2 2.7 4.5 5.2 4.0 6.7 9.3
14 15 16 17 18 19 20 21 22 23	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08 4-Jun-08	4 0.025 0.026 0.027 0.036 0.038 0.030 0.037 0.028 0.025 0.032	Site 6A* 0.030 0.028 0.028 0.038 0.038 0.034 0.039 0.032 0.028 0.039	7A 0.026 0.030 0.028 0.037 0.039 0.034 0.040 0.029 0.021 0.036	Site 14A* 0.027 0.028 0.027 0.037 0.036 0.032 0.037 0.025 0.023 0.032	Site 15* 0.028 0.030 0.027 0.037 0.039 0.032 0.040 0.028 0.024 0.034	17A 0.029 0.028 0.027 0.037 0.038 0.029 0.037 0.028 0.022 0.034	21 0.026 0.029 0.025 0.035 0.036 0.030 0.040 0.029 0.021 0.034	29* 0.027 0.030 0.028 0.036 0.041 0.032 0.036 0.027 0.022 0.034	35 0.028 0.030 0.029 0.038 0.040 0.032 0.037 0.028 0.025 0.033	Site 40* 0.028 0.028 0.026 0.038 0.036 0.031 0.038 0.026 0.023 0.023	0.027 0.029 0.027 0.037 0.038 0.032 0.038 0.028 0.023 0.034	RSD (%) 5.5 4.7 4.2 2.7 4.5 5.2 4.0 6.7 9.3 6.0
14 15 16 17 18 19 20 21 22 23 24	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08 4-Jun-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08 4-Jun-08 10-Jun-08	4 0.025 0.026 0.027 0.036 0.038 0.030 0.037 0.028 0.025 0.032 0.031	Site 6A* 0.030 0.028 0.028 0.038 0.038 0.034 0.039 0.032 0.028 0.039 0.029	7A 0.026 0.030 0.028 0.037 0.039 0.034 0.040 0.029 0.021 0.036 0.030	Site 14A* 0.027 0.028 0.027 0.037 0.036 0.032 0.037 0.025 0.023 0.032 0.030	Site 15* 0.028 0.030 0.027 0.037 0.039 0.032 0.040 0.028 0.024 0.034 0.033	0.029 0.028 0.027 0.037 0.038 0.029 0.037 0.028 0.022 0.034 0.032	0.026 0.029 0.025 0.035 0.036 0.030 0.040 0.029 0.021 0.034 0.031	29* 0.027 0.030 0.028 0.036 0.041 0.032 0.036 0.027 0.022 0.034 0.029	35 0.028 0.030 0.029 0.038 0.040 0.032 0.037 0.028 0.025 0.033 0.030	Site 40* 0.028 0.028 0.026 0.038 0.036 0.031 0.038 0.026 0.023 0.035 0.031	0.027 0.029 0.027 0.037 0.038 0.032 0.038 0.028 0.023 0.034 0.031	RSD (%) 5.5 4.7 4.2 2.7 4.5 5.2 4.0 6.7 9.3 6.0 4.1

TABLE 8.2 PARTICULATE GROSS BETA IN AIR 3rd - 4th QUARTER

ODCM required samples denoted by *

units are pCi/m³
3rd Quarter

	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site		RSD
Week#	DATE	DATE	4	6A*	7 A	14A*	15*	17A	21	29*	35	40*	Mean	(%)
27	24-Jun-08	1-Jul-08	0.038	0.041	0.039	0.038	0.043	0.038	0.039	0.039	0.039	0.037	0.039	4.4
28	1-Jul-08	8-Jul-08	0.032	0.034	0.034	0.035	0.036	0.035	0.034	0.033	0.036	0.036	0.035	3.9
29	8-Jul-08	16-Jul-08	0.029	0.028	0.027	0.027	0.029	0.027	0.027	0.025	0.029	0.031	0.028	6.0
30	16-Jul-08	22-Jul-08	0.037	0.037	0.037	0.036	0.036	0.038	0.033	0.037	0.039	0.037	0.037	4.3
31	22-Jul-08	29-Jul-08	0.033	0.034	0.029	0.031	0.034	0.035	0.031	0.035	0.038	0.034	0.033	7.6
32	29-Jul-08	5-Aug-08	0.033	0.031	0.034	0.032	0.033	0.034	0.032	0.033	0.036	0.033	0.033	4.1
33	5-Aug-08	12-Aug-08	0.040	0.044	0.036	0.037	0.039	0.037	0.036	0.035	0.042	0.041	0.039	7.7
34	12-Aug-08	20-Aug-08	0.037	0.040	0.036	0.039	0.039	0.035	0.037	0.036	0.042	0.035	0.038	6.2
35	20-Aug-08	26-Aug-08	0.034	0.035	0.035	0.031	invalid a	0.034	0.035	0.035	0.034	0.035	0.034	3.8
36	26-Aug-08	2-Sep-08	0.023	0.022	0.021	0.023	invalid ^a	0.020	0.018	0.021	0.024	0.023	0.022	8.6
37	2-Sep-08	9-Sep-08	0.045	0.046	0.046	0.046	0.046	0.046	0.043	0.041	0.046	0.043	0.045	4.0
38	9-Sep-08	17-Sep-08	0.031	0.038	0.035	0.034	0.031	0.035	0.031	0.030	0.033	0.036	0.033	7.9
39	17-Sep-08	23-Sep-08.	0.040	0.040	0.039	0.042	0.041	0.040	0.039	0.041	0.041	0.042	0.041	2.7
N	1ean		0.035	0.036	0.034	0.035	0.037	0.035	0.033	0.034	0.037	0.036	0.035	3.4
						4th Qu	iarter							
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site		RSD
	SIAKI	5101	Site	Ditt	Ditt	Ditt	Ditt	Ditt	Sitt	Site	Ditt	Sitt		KSD
Week#	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*	Mean	(%)
Week #													Mean 0.040	
	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*		(%)
40	DATE 23-Sep-08	DATE 30-Sep-08	4 invalid ^b	6A* 0.042	7A 0.040	14A* 0.040	15* 0.041	17A 0.039	21 0.040	29* 0.042	35 0.040	40* 0.033	0.040	(%) 6.8
40 41	23-Sep-08 30-Sep-08	DATE 30-Sep-08 7-Oct-08	invalid ^b 0.040	0.042 0.040	7A 0.040 0.040	14A* 0.040 0.039	0.041 0.039	17A 0.039 0.039	0.040 0.037	29* 0.042 0.041	35 0.040 0.039	40* 0.033 0.042	0.040 0.040	6.8 3.4
40 41 42	23-Sep-08 30-Sep-08 7-Oct-08	DATE 30-Sep-08 7-Oct-08 14-Oct-08	invalid ^b 0.040 0.030	6A* 0.042 0.040 0.041	7A 0.040 0.040 0.041	0.040 0.039 0.036	0.041 0.039 0.039	0.039 0.039 0.041	0.040 0.037 0.039	29* 0.042 0.041 0.043	35 0.040 0.039 0.042	40* 0.033 0.042 0.038	0.040 0.040 0.039	(%) 6.8 3.4 9.7
40 41 42 43	DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08	DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08	invalid ^b 0.040 0.030 0.048	6A* 0.042 0.040 0.041 0.049	7A 0.040 0.040 0.041 0.052	0.040 0.039 0.036 0.049	0.041 0.039 0.039 0.046	17A 0.039 0.039 0.041 0.048	0.040 0.037 0.039 0.051	29* 0.042 0.041 0.043 0.051	35 0.040 0.039 0.042 0.048	0.033 0.042 0.038 0.048	0.040 0.040 0.039 0.049	6.8 3.4 9.7 3.7
40 41 42 43 44	DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08	DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08	invalid ^b 0.040 0.030 0.048 0.044	6A* 0.042 0.040 0.041 0.049 0.047	7A 0.040 0.040 0.041 0.052 0.045	14A* 0.040 0.039 0.036 0.049 0.039	15* 0.041 0.039 0.039 0.046 0.044	17A 0.039 0.039 0.041 0.048 0.042	21 0.040 0.037 0.039 0.051 0.043	29* 0.042 0.041 0.043 0.051 0.043	35 0.040 0.039 0.042 0.048 invalid °	40* 0.033 0.042 0.038 0.048 0.042	0.040 0.040 0.039 0.049 0.043	6.8 3.4 9.7 3.7 5.1
40 41 42 43 44 45	23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08	DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08	4 invalid ^b 0.040 0.030 0.048 0.044 0.055	6A* 0.042 0.040 0.041 0.049 0.047 0.057	7A 0.040 0.040 0.041 0.052 0.045 0.058	0.040 0.039 0.036 0.049 0.039 0.054	15* 0.041 0.039 0.039 0.046 0.044 0.063	17A 0.039 0.039 0.041 0.048 0.042 0.057	21 0.040 0.037 0.039 0.051 0.043 0.058	29* 0.042 0.041 0.043 0.051 0.043 0.061	35 0.040 0.039 0.042 0.048 invalid c 0.055	40* 0.033 0.042 0.038 0.048 0.042 0.059	0.040 0.040 0.039 0.049 0.043 0.058	6.8 3.4 9.7 3.7 5.1 4.8
40 41 42 43 44 45 46	23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08	DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08	4 invalid ^b 0.040 0.030 0.048 0.044 0.055 0.024	6A* 0.042 0.040 0.041 0.049 0.047 0.057 0.027	7A 0.040 0.040 0.041 0.052 0.045 0.058 0.023	0.040 0.039 0.036 0.049 0.039 0.054 0.023	15* 0.041 0.039 0.039 0.046 0.044 0.063 0.024	17A 0.039 0.039 0.041 0.048 0.042 0.057 0.022	21 0.040 0.037 0.039 0.051 0.043 0.058 0.023	29* 0.042 0.041 0.043 0.051 0.043 0.061 0.023	35 0.040 0.039 0.042 0.048 invalid ° 0.055 0.023	40* 0.033 0.042 0.038 0.048 0.042 0.059 0.022	0.040 0.040 0.039 0.049 0.043 0.058 0.023	6.8 3.4 9.7 3.7 5.1 4.8 6.1
40 41 42 43 44 45 46 47	23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08	4 invalid ^b 0.040 0.030 0.048 0.044 0.055 0.024 0.038	6A* 0.042 0.040 0.041 0.049 0.047 0.057 0.027 0.041	7A 0.040 0.040 0.041 0.052 0.045 0.058 0.023 0.035	14A* 0.040 0.039 0.036 0.049 0.039 0.054 0.023 0.035	15* 0.041 0.039 0.039 0.046 0.044 0.063 0.024 0.038	17A 0.039 0.039 0.041 0.048 0.042 0.057 0.022 0.035	21 0.040 0.037 0.039 0.051 0.043 0.058 0.023 0.035	29* 0.042 0.041 0.043 0.051 0.043 0.061 0.023 0.035	35 0.040 0.039 0.042 0.048 invalid c 0.055 0.023 0.036	40* 0.033 0.042 0.038 0.048 0.042 0.059 0.022 0.037	0.040 0.040 0.039 0.049 0.043 0.058 0.023 0.037	(%) 6.8 3.4 9.7 3.7 5.1 4.8 6.1 5.5
40 41 42 43 44 45 46 47 48	23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 18-Nov-08 24-Nov-08	4 invalid ^b 0.040 0.030 0.048 0.044 0.055 0.024 0.038 0.065	6A* 0.042 0.040 0.041 0.049 0.047 0.057 0.027 0.041 0.073	7A 0.040 0.040 0.041 0.052 0.045 0.058 0.023 0.035 0.067	0.040 0.039 0.036 0.049 0.039 0.054 0.023 0.035 0.063	15* 0.041 0.039 0.039 0.046 0.044 0.063 0.024 0.038 0.062	17A 0.039 0.039 0.041 0.048 0.042 0.057 0.022 0.035 0.065	21 0.040 0.037 0.039 0.051 0.043 0.058 0.023 0.035 0.060	29* 0.042 0.041 0.043 0.051 0.043 0.061 0.023 0.035 0.056	35 0.040 0.039 0.042 0.048 invalid colors 0.055 0.023 0.036 0.066	40* 0.033 0.042 0.038 0.048 0.042 0.059 0.022 0.037 0.052	0.040 0.040 0.039 0.049 0.043 0.058 0.023 0.037 0.063	(%) 6.8 3.4 9.7 3.7 5.1 4.8 6.1 5.5 9.4
40 41 42 43 44 45 46 47 48 49	23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 18-Nov-08 24-Nov-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 18-Nov-08 24-Nov-08 2-Dec-08	4 invalid b 0.040 0.030 0.048 0.044 0.055 0.024 0.038 0.065 0.052	6A* 0.042 0.040 0.041 0.049 0.047 0.057 0.027 0.041 0.073 0.052	7A 0.040 0.040 0.041 0.052 0.045 0.058 0.023 0.035 0.067 0.046	0.040 0.039 0.036 0.049 0.039 0.054 0.023 0.035 0.063 0.042	15* 0.041 0.039 0.039 0.046 0.044 0.063 0.024 0.038 0.062 0.049	0.039 0.039 0.041 0.048 0.042 0.057 0.022 0.035 0.065 0.046	21 0.040 0.037 0.039 0.051 0.043 0.058 0.023 0.035 0.060 0.047	29* 0.042 0.041 0.043 0.051 0.043 0.061 0.023 0.035 0.056 0.045	35 0.040 0.039 0.042 0.048 invalid colors 0.055 0.023 0.036 0.066 0.048	0.033 0.042 0.038 0.048 0.042 0.059 0.022 0.037 0.052 0.044	0.040 0.040 0.039 0.049 0.043 0.058 0.023 0.037 0.063 0.047	(%) 6.8 3.4 9.7 3.7 5.1 4.8 6.1 5.5 9.4 6.9
40 41 42 43 44 45 46 47 48 49 50	23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 18-Nov-08 24-Nov-08 2-Dec-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 24-Nov-08 2-Dec-08	4 invalid ^b 0.040 0.030 0.048 0.044 0.055 0.024 0.038 0.065 0.052 0.053	6A* 0.042 0.040 0.041 0.049 0.047 0.057 0.027 0.041 0.073 0.052 0.053	7A 0.040 0.040 0.041 0.052 0.045 0.058 0.023 0.035 0.067 0.046 0.049	0.040 0.039 0.036 0.049 0.039 0.054 0.023 0.035 0.063 0.042 0.041	0.041 0.039 0.039 0.046 0.044 0.063 0.024 0.038 0.062 0.049	0.039 0.039 0.041 0.048 0.042 0.057 0.022 0.035 0.065 0.046	21 0.040 0.037 0.039 0.051 0.043 0.058 0.023 0.035 0.060 0.047 0.049	29* 0.042 0.041 0.043 0.051 0.043 0.061 0.023 0.035 0.056 0.045 0.047	35 0.040 0.039 0.042 0.048 invalid colors of the color of the col	0.033 0.042 0.038 0.048 0.042 0.059 0.022 0.037 0.052 0.044 0.048	0.040 0.040 0.039 0.049 0.043 0.058 0.023 0.037 0.063 0.047 0.048	(%) 6.8 3.4 9.7 3.7 5.1 4.8 6.1 5.5 9.4 6.9 7.4
40 41 42 43 44 45 46 47 48 49 50 51	23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 12-Nov-08 24-Nov-08 2-Dec-08 10-Dec-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 24-Nov-08 2-Dec-08 10-Dec-08 16-Dec-08	4 invalid b 0.040 0.030 0.048 0.044 0.055 0.024 0.038 0.065 0.052 0.053 0.037	0.042 0.040 0.041 0.049 0.047 0.057 0.027 0.041 0.073 0.052 0.053 0.037	7A 0.040 0.040 0.041 0.052 0.045 0.058 0.023 0.035 0.067 0.046 0.049 0.033	0.040 0.039 0.036 0.049 0.039 0.054 0.023 0.035 0.063 0.042 0.041	0.041 0.039 0.039 0.046 0.044 0.063 0.024 0.038 0.062 0.049 0.046 0.033	0.039 0.039 0.041 0.048 0.042 0.057 0.022 0.035 0.065 0.046 0.046	21 0.040 0.037 0.039 0.051 0.043 0.058 0.023 0.035 0.060 0.047 0.049 0.035	29* 0.042 0.041 0.043 0.051 0.043 0.061 0.023 0.035 0.056 0.045 0.047 0.034	35 0.040 0.039 0.042 0.048 invalid colors of the color of the col	0.033 0.042 0.038 0.048 0.042 0.059 0.022 0.037 0.052 0.044 0.048	0.040 0.040 0.039 0.049 0.043 0.058 0.023 0.037 0.063 0.047 0.048	(%) 6.8 3.4 9.7 3.7 5.1 4.8 6.1 5.5 9.4 6.9 7.4 5.3
40 41 42 43 44 45 46 47 48 49 50 51 52 53	23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 24-Nov-08 2-Dec-08 10-Dec-08 16-Dec-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 24-Nov-08 2-Dec-08 10-Dec-08 16-Dec-08 22-Dec-08	4 invalid b 0.040 0.030 0.048 0.044 0.055 0.024 0.038 0.065 0.052 0.053 0.037 0.021	0.042 0.040 0.041 0.049 0.047 0.057 0.027 0.041 0.073 0.052 0.053 0.037 0.022	7A 0.040 0.040 0.041 0.052 0.045 0.058 0.023 0.035 0.067 0.046 0.049 0.033 0.019	0.040 0.039 0.036 0.049 0.039 0.054 0.023 0.035 0.063 0.042 0.041 0.031 0.016	15* 0.041 0.039 0.039 0.046 0.044 0.063 0.024 0.038 0.062 0.049 0.046 0.033 0.019	0.039 0.039 0.041 0.048 0.042 0.057 0.022 0.035 0.065 0.046 0.046 0.034 0.020	21 0.040 0.037 0.039 0.051 0.043 0.058 0.023 0.035 0.060 0.047 0.049 0.035 0.016	29* 0.042 0.041 0.043 0.051 0.043 0.061 0.023 0.035 0.056 0.045 0.047 0.034 0.019	35 0.040 0.039 0.042 0.048 invalid colors of the colo	0.033 0.042 0.038 0.048 0.042 0.059 0.022 0.037 0.052 0.044 0.048 0.034 0.017	0.040 0.040 0.039 0.049 0.043 0.058 0.023 0.037 0.063 0.047 0.048 0.034 0.019	(%) 6.8 3.4 9.7 3.7 5.1 4.8 6.1 5.5 9.4 6.9 7.4 5.3 10.7

^a Sample not accessible due to insect infestation. ^b Power was out at sample location, sample invalid. ^c Sample pump was seized, sample invalid.

TABLE 8.3 GAMMA IN AIR FILTER COMPOSITES

ODCM required samples denoted by * units are pCi/m³

QUARTER		Site									
ENDPOINT	NUCLIDE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*
24-Mar-08	Cs-134	< 0.0009	< 0.0029	< 0.0009	< 0.0034	< 0.0038	< 0.0045	< 0.0042	< 0.0029	< 0.0029	< 0.0029
	Cs-137	< 0.0037	< 0.0052	< 0.0051	< 0.0041	< 0.0043	< 0.0039	< 0.0047	< 0.0044	< 0.0044	< 0.0049
24-Jun-08	Cs-134	< 0.0039	< 0.0035	< 0.0029	< 0.0030	< 0.0024	< 0.0041	< 0.0040	< 0.0035	< 0.0038	< 0.0029
	Cs-137	< 0.0029	< 0.0011	< 0.0042	< 0.0042	< 0.0048	< 0.0036	< 0.0041	< 0.0037	< 0.0053	< 0.0042
30-Sep-08	Cs-134	< 0.0042	< 0.0023	< 0.0032	< 0.0038	< 0.0024	< 0.0035	< 0.0035	< 0.0022	< 0.0032	< 0.0022
	Cs-137	< 0.0048	< 0.0045	< 0.0036	< 0.0037	< 0.0044	< 0.0034	< 0.0031	< 0.0039	< 0.0039	< 0.0039
29-Dec-08	Cs-134	< 0.0046	< 0.0042	< 0.0029	< 0.0034	< 0.0015	< 0.0030	< 0.0024	< 0.0038	< 0.0050	< 0.0038
	Cs-137	< 0.0011	< 0.0039	< 0.0036	< 0.0029	< 0.0011	< 0.0043	< 0.0042	< 0.0038	< 0.0040	< 0.0053

TABLE 8.4 RADIOIODINE IN AIR 1st - 2nd QUARTER

ODCM required samples denoted by *

units are pCi/m³

units are pC/m 1st Quarter													
1 2 1000	START	STOP	Site	Site	-		C!4						
Week#	DATE	DATE	4	6A*	Site	Site	Site	Site	Site	Site	Site	Site	
- vveek#		·			7A	14A*	15*	17A	21	29*	35	40*	
1	26-Dec-07	2-Jan-08	< 0.068	< 0.065	< 0.047	< 0.060	< 0.045	< 0.052	< 0.043	<0.014	< 0.030	< 0.047	
2	2-Jan-08	8-Jan-08	< 0.050	< 0.068	< 0.066	< 0.048	< 0.051	< 0.056	< 0.060	< 0.041	< 0.068	< 0.047	
3	8-Jan-08	15-Jan-08	< 0.044	< 0.038	< 0.040	< 0.042	< 0.049	< 0.040	< 0.038	< 0.035	< 0.043	< 0.042	
4	15-Jan-08	22-Jan-08	< 0.054	< 0.050	< 0.059	< 0.050	< 0.036	< 0.047	< 0.055	< 0.040	< 0.052	< 0.052	
5	22-Jan-08	29-Jan-08	< 0.042	< 0.069	< 0.069	< 0.039	< 0.064	< 0.054	< 0.064	< 0.047	< 0.049	< 0.042	
6	29-Jan-08	5-Feb-08	< 0.049	< 0.035	< 0.045	< 0.038	< 0.051	< 0.048	< 0.048	< 0.042	< 0.045	< 0.046	
7	5-Feb-08	12-Feb-08	< 0.032	< 0.038	< 0.051	< 0.042	< 0.038	< 0.047	< 0.042	< 0.042	< 0.048	< 0.052	
8	12-Feb-08	20-Feb-08	< 0.052	< 0.059	< 0.062	< 0.040	< 0.052	< 0.052	< 0.068	< 0.051	< 0.040	< 0.061	
9	20-Feb-08	26-Feb-08	< 0.070	< 0.068	< 0.068	< 0.069	< 0.068	< 0.069	< 0.069	< 0.068	< 0.069	< 0.069	
10	26-Feb-08	4-Mar-08	< 0.037	< 0.059	< 0.065	< 0.045	< 0.045	< 0.034	< 0.067	< 0.053	< 0.065	< 0.041	
11	4-Mar-08	11-Mar-08	< 0.037	< 0.066	< 0.066	< 0.035	< 0.038	< 0.039	< 0.060	< 0.035	< 0.047	< 0.043	
12	11-Mar-08	18-Mar-08	< 0.068	< 0.048	< 0.048	< 0.056	< 0.063	< 0.068	< 0.070	< 0.063	< 0.063	< 0.048	
13	18-Mar-08	24-Mar-08	< 0.068	< 0.039	< 0.063	< 0.057	< 0.062	< 0.066	< 0.050	< 0.052	< 0.053	< 0.053	
					2nd Qua	arter							
	START		Site	Site	2nd Qua	arter Site	Site	Site	Site	Site	Site	Site	
Week#				عششارة أأأملك			Site 15*	Site 17A	Site 21				
Week #	START	STOP	Site	Site	Site	Site				Site	Site	Site	
	START DATE	STOP DATE	Site 4	Site 6A*	Site 7A	Site 14A*	15*	17A	21	Site 29*	Site 35	Site 40*	
14	START DATE 24-Mar-08	STOP DATE 1-Apr-08	Site 4 <0.044	Site 6A* <0.049	Site 7A <0.030	Site 14A* <0.038	15* <0.030	17A <0.047	21 <0.061	Site 29*	Site 35 <0.042	Site 40* <0.057	
14 15	START DATE 24-Mar-08 1-Apr-08	STOP DATE 1-Apr-08 8-Apr-08	Site 4 <0.044 <0.062	Site 6A* <0.049 <0.014	Site 7A <0.030 <0.053	Site 14A* <0.038 <0.036	15* <0.030 <0.069	17A <0.047 <0.046	<0.061 <0.060	Site 29* <0.040 <0.046	Site 35 <0.042 <0.054	Site 40* <0.057 <0.054	
14 15 16	START DATE 24-Mar-08 1-Apr-08 8-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08	Site 4 <0.044 <0.062 <0.055	Site 6A* <0.049 <0.014 <0.062	Site 7A <0.030 <0.053 <0.049	Site 14A* <0.038 <0.036 <0.034	15* <0.030 <0.069 <0.049	17A <0.047 <0.046 <0.034	<pre>21 <0.061 <0.060 <0.034</pre>	Site 29* <0.040 <0.046 <0.056	Site 35 <0.042 <0.054 <0.043	Site 40* <0.057 <0.054 <0.054	
14 15 16 17	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08	Site 4 <0.044 <0.062 <0.055 <0.047	Site 6A* <0.049 <0.014 <0.062 <0.067	Site 7A <0.030 <0.053 <0.049 <0.047	Site 14A* <0.038 <0.036 <0.034 <0.036	15* <0.030 <0.069 <0.049 <0.066	<0.047 <0.046 <0.034 <0.047	<0.061 <0.060 <0.034 <0.045	Site 29* <0.040 <0.046 <0.056 <0.055	Site 35 <0.042 <0.054 <0.043 <0.055	Site 40* <0.057 <0.054 <0.054 <0.048	
14 15 16 17 18	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08	Site 4 <0.044 <0.062 <0.055 <0.047 <0.064	Site 6A* <0.049 <0.014 <0.062 <0.067 <0.056	Site 7A <0.030 <0.053 <0.049 <0.047 <0.066	Site 14A* <0.038 <0.036 <0.034 <0.036 <0.055	15* <0.030 <0.069 <0.049 <0.066 <0.047	17A <0.047 <0.046 <0.034 <0.047 <0.055	21 <0.061 <0.060 <0.034 <0.045 <0.068	Site 29* <0.040 <0.046 <0.056 <0.055 <0.068	Site 35 <0.042 <0.054 <0.043 <0.055 <0.039	Site 40* <0.057 <0.054 <0.054 <0.048 <0.070	
14 15 16 17 18 19	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08	Site 4 <0.044 <0.062 <0.055 <0.047 <0.064 <0.049	Site 6A* <0.049 <0.014 <0.062 <0.067 <0.056 <0.059	Site 7A <0.030 <0.053 <0.049 <0.047 <0.066 <0.049	Site 14A* <0.038 <0.036 <0.034 <0.036 <0.055 <0.055	15* <0.030 <0.069 <0.049 <0.066 <0.047 <0.055	17A <0.047 <0.046 <0.034 <0.047 <0.055 <0.060	21 <0.061 <0.060 <0.034 <0.045 <0.068 <0.050	Site 29* <0.040 <0.046 <0.056 <0.055 <0.068 <0.034	Site 35 <0.042 <0.054 <0.043 <0.055 <0.039 <0.050	Site 40* <0.057 <0.054 <0.054 <0.048 <0.070 <0.052	
14 15 16 17 18 19 20	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08	Site 4 <0.044 <0.062 <0.055 <0.047 <0.064 <0.049 <0.043	Site 6A* <0.049 <0.014 <0.062 <0.067 <0.056 <0.059	Site 7A <0.030 <0.053 <0.049 <0.047 <0.066 <0.049 <0.057	Site 14A* <0.038 <0.036 <0.034 <0.036 <0.055 <0.055 <0.062	15* <0.030 <0.069 <0.049 <0.066 <0.047 <0.055 <0.066	<pre>17A <0.047 <0.046 <0.034 <0.047 <0.055 <0.060 <0.060</pre>	21 <0.061 <0.060 <0.034 <0.045 <0.068 <0.050 <0.045	Site 29* <0.040 <0.046 <0.056 <0.055 <0.068 <0.034 <0.045	Site 35 <0.042 <0.054 <0.043 <0.055 <0.039 <0.050 <0.053	Site 40* <0.057 <0.054 <0.054 <0.048 <0.070 <0.052 <0.066 <0.055	
14 15 16 17 18 19 20 21	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08	Site 4 <0.044 <0.062 <0.055 <0.047 <0.064 <0.049 <0.043 <0.066	Site 6A* <0.049 <0.014 <0.062 <0.067 <0.056 <0.059 <0.059 <0.063	Site 7A <0.030 <0.053 <0.049 <0.047 <0.066 <0.049 <0.057 <0.069	Site 14A* <0.038 <0.036 <0.034 <0.036 <0.055 <0.055 <0.062 <0.054	15* <0.030 <0.069 <0.049 <0.066 <0.047 <0.055 <0.066 <0.066	<pre>17A <0.047 <0.046 <0.034 <0.047 <0.055 <0.060 <0.060 <0.047</pre>	21 <0.061 <0.060 <0.034 <0.045 <0.068 <0.050 <0.045 <0.059	Site 29* <0.040 <0.046 <0.056 <0.055 <0.068 <0.034 <0.045 <0.037	Site 35 <0.042 <0.054 <0.043 <0.055 <0.039 <0.050 <0.053 <0.048	Site 40* <0.057 <0.054 <0.054 <0.048 <0.070 <0.052 <0.066	
14 15 16 17 18 19 20 21	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08	Site 4 <0.044 <0.062 <0.055 <0.047 <0.064 <0.049 <0.043 <0.066 <0.039	Site 6A* <0.049 <0.014 <0.062 <0.067 <0.056 <0.059 <0.063 <0.063	Site 7A <0.030 <0.053 <0.049 <0.047 <0.066 <0.049 <0.057 <0.069 <0.058	Site 14A* <0.038 <0.036 <0.034 <0.036 <0.055 <0.055 <0.062 <0.054 <0.063	15* <0.030 <0.069 <0.049 <0.066 <0.047 <0.055 <0.066 <0.060 <0.057	17A <0.047 <0.046 <0.034 <0.055 <0.060 <0.060 <0.047 <0.039	21 <0.061 <0.060 <0.034 <0.045 <0.068 <0.050 <0.045 <0.059 <0.057	Site 29* <0.040 <0.046 <0.056 <0.055 <0.068 <0.034 <0.045 <0.037 <0.057	Site 35 <0.042 <0.054 <0.043 <0.055 <0.039 <0.050 <0.053 <0.048 <0.063	Site 40* <0.057 <0.054 <0.054 <0.048 <0.070 <0.052 <0.066 <0.055 <0.057	
14 15 16 17 18 19 20 21 22 23	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08 4-Jun-08	Site 4 <0.044 <0.062 <0.055 <0.047 <0.064 <0.049 <0.043 <0.066 <0.039 <0.058	Site 6A* <0.049 <0.014 <0.062 <0.067 <0.056 <0.059 <0.063 <0.063 <0.063	Site 7A <0.030 <0.053 <0.049 <0.047 <0.066 <0.049 <0.057 <0.069 <0.058 <0.030	Site 14A* <0.038 <0.036 <0.034 <0.055 <0.055 <0.055 <0.062 <0.063 <0.049	15* <0.030 <0.069 <0.049 <0.047 <0.055 <0.066 <0.066 <0.057 <0.057	17A <0.047 <0.046 <0.034 <0.055 <0.060 <0.060 <0.047 <0.039 <0.053	21 <0.061 <0.060 <0.034 <0.045 <0.068 <0.050 <0.045 <0.059 <0.057 <0.040	Site 29* <0.040 <0.046 <0.056 <0.055 <0.068 <0.034 <0.045 <0.037 <0.057 <0.062	Site 35 <0.042 <0.054 <0.043 <0.055 <0.039 <0.050 <0.053 <0.048 <0.063 <0.049	Site 40* <0.057 <0.054 <0.054 <0.048 <0.070 <0.052 <0.066 <0.055 <0.057 <0.054	
14 15 16 17 18 19 20 21 22 23 24	START DATE 24-Mar-08 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08 4-Jun-08	STOP DATE 1-Apr-08 8-Apr-08 15-Apr-08 22-Apr-08 29-Apr-08 6-May-08 13-May-08 20-May-08 27-May-08 4-Jun-08 10-Jun-08	Site 4 <0.044 <0.062 <0.055 <0.047 <0.064 <0.049 <0.043 <0.066 <0.039 <0.058 <0.052	Site 6A* <0.049 <0.014 <0.062 <0.067 <0.056 <0.059 <0.063 <0.063 <0.063 <0.058 <0.054	Site 7A <0.030 <0.053 <0.047 <0.066 <0.049 <0.057 <0.069 <0.058 <0.030 <0.067	Site 14A* <0.038 <0.036 <0.034 <0.055 <0.055 <0.055 <0.062 <0.054 <0.063 <0.049 <0.064	15* <0.030 <0.069 <0.049 <0.047 <0.055 <0.066 <0.060 <0.057 <0.038 <0.067	17A <0.047 <0.046 <0.034 <0.055 <0.060 <0.060 <0.047 <0.039 <0.053 <0.065	21 <0.061 <0.060 <0.034 <0.045 <0.068 <0.050 <0.045 <0.059 <0.057 <0.040 <0.063	Site 29* <0.040 <0.046 <0.056 <0.055 <0.068 <0.034 <0.045 <0.037 <0.062 <0.044	Site 35 <0.042 <0.054 <0.043 <0.055 <0.039 <0.050 <0.053 <0.048 <0.063 <0.049 <0.061	Site 40* <0.057 <0.054 <0.054 <0.048 <0.070 <0.052 <0.066 <0.055 <0.057 <0.054 <0.066	

TABLE 8.5 RADIOIODINE IN AIR 3rd - 4th QUARTER

ODCM required samples denoted by *

units are pCi/m³

					3rd Qu	arter		75 T S				
	START	STOP	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site
Week #	DATE	DATE	4	6A*	7A	14A*	15*	17A	21	29*	35	40*
27	24-Jun-08	1-Jul-08	< 0.064	< 0.063	< 0.047	< 0.037	< 0.068	< 0.055	< 0.067	< 0.055	< 0.064	< 0.066
28	1-Jul-08	8-Jul-08	< 0.050	< 0.034	< 0.043	< 0.044	< 0.057	< 0.035	< 0.051	< 0.044	< 0.051	< 0.063
29	8-Jul-08	16-Jul-08	< 0.043	< 0.048	< 0.043	< 0.036	< 0.064	< 0.049	< 0.031	< 0.065	< 0.046	< 0.068
30	16-Jul-08	22-Jul-08	< 0.068	< 0.069	< 0.069	< 0.070	< 0.038	< 0.064	< 0.067	< 0.060	< 0.066	< 0.059
31	22-Jul-08	29-Jul-08	< 0.065	< 0.065	< 0.064	< 0.050	< 0.069	< 0.065	< 0.039	< 0.058	< 0.051	< 0.040
32	29-Jul-08	5-Aug-08	< 0.064	< 0.070	< 0.014	< 0.049	< 0.039	< 0.050	< 0.070	< 0.065	< 0.040	< 0.052
33	5-Aug-08	12-Aug-08	< 0.063	< 0.069	< 0.045	< 0.054	< 0.037	< 0.054	< 0.065	< 0.068	< 0.041	< 0.057
34	12-Aug-08	20-Aug-08	< 0.046	< 0.039	< 0.049	< 0.029	< 0.056	< 0.053	< 0.029	< 0.030	< 0.041	< 0.047
35	20-Aug-08	26-Aug-08	< 0.060	< 0.066	< 0.050	< 0.069	invalid a	< 0.062	< 0.069	< 0.067	< 0.067	< 0.068
36	26-Aug-08	2-Sep-08	< 0.037	< 0.068	< 0.036	< 0.063	invalid a	< 0.060	< 0.070	< 0.065	< 0.047	< 0.061
37	2-Sep-08	9-Sep-08	< 0.052	< 0.034	< 0.063	< 0.060	< 0.056	< 0.043	< 0.042	< 0.043	< 0.049	< 0.013
38	9-Sep-08	17-Sep-08	< 0.053	< 0.068	< 0.032	< 0.057	< 0.051	< 0.054	< 0.039	< 0.047	< 0.036	< 0.048
39	17-Sep-08	23-Sep-08	< 0.015	< 0.062	< 0.060	< 0.053	< 0.062	< 0.063	< 0.061	< 0.070	< 0.069	< 0.068
	MAD AT PERMIT			图2557 共享 1960					建筑		A ALAN A MATER TO	
				ne Licite	4th Qua	arter	en de le la		aara ce	A 30 M.	THARRE	in deleto
	START	STOP	Site	Site	4th Qua Site	arter Site	Site			Site	Site	Site
Week #			4	Site 6A*	man . Vin common — Donald	ACCURATION AND ADDRESS OF THE PARTY OF THE P					Trunches E	in deleth
Week #	START DATE 23-Sep-08	STOP DATE 30-Sep-08	4 invalid ^b	6A* <0.037	Site	Site	Site	Site	Site	Site	Site	Site
Week # 40 41	START DATE 23-Sep-08 30-Sep-08	STOP DATE 30-Sep-08 7-Oct-08	4	6A*	Site 7A <0.060 <0.065	Site 14A*	Site 15*	Site 17A	Site 21	Site 29*	Site 35	Site 40*
Week # 40 41 42	START DATE 23-Sep-08 30-Sep-08 7-Oct-08	STOP DATE 30-Sep-08 7-Oct-08 14-Oct-08	invalid b <0.038 <0.035	6A* <0.037	Site 7A <0.060 <0.065 <0.045	Site 14A* <0.047	Site 15* <0.060	Site 17A <0.037	Site 21 <0.037	Site 29* <0.063	Site 35 <0.056	Site 40* <0.037
Week # 40 41 42 43	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08	STOP DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08	invalid ^b <0.038	6A* <0.037 <0.038	Site 7A <0.060 <0.065	Site 14A* <0.047 <0.038	Site 15* <0.060 <0.055	Site 17A <0.037 <0.062	Site 21 <0.037 <0.054	Site 29* <0.063 <0.054	Site 35 <0.056 <0.069	Site 40* <0.037 <0.065
Week # 40 41 42 43 44	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08	STOP DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08	invalid b <0.038 <0.035	6A* <0.037 <0.038 <0.068	Site 7A <0.060 <0.065 <0.045	Site 14A* <0.047 <0.038 <0.064	Site 15* <0.060 <0.055 <0.052	Site 17A <0.037 <0.062 <0.045	Site 21 <0.037 <0.054 <0.063	Site 29* <0.063 <0.054 <0.053	Site 35 <0.056 <0.069 <0.046	Site 40* <0.037 <0.065 <0.070
Week # 40 41 42 43	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08	STOP DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08	4 invalid b <0.038 <0.035 <0.070	6A* <0.037 <0.038 <0.068 <0.064	Site 7A <0.060 <0.065 <0.045 <0.061	Site 14A* <0.047 <0.038 <0.064 <0.058	Site 15* <0.060 <0.055 <0.052 <0.051 <0.051 <0.037	Site 17A <0.037 <0.062 <0.045 <0.049	Site 21 <0.037 <0.054 <0.063 <0.054	Site 29* <0.063 <0.054 <0.053 <0.055	Site 35 <0.056 <0.069 <0.046 <0.038	Site 40* <0.037 <0.065 <0.070 <0.056
Week # 40 41 42 43 44 45 46	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08	STOP DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08	4 invalid b <0.038 <0.035 <0.070 <0.070	6A* <0.037 <0.038 <0.068 <0.064 <0.066	Site 7A <0.060 <0.065 <0.045 <0.061 <0.065	Site 14A* <0.047 <0.038 <0.064 <0.058 <0.052	Site 15* <0.060 <0.055 <0.052 <0.051 <0.051 <0.037 <0.040	Site 17A <0.037 <0.062 <0.045 <0.049 <0.050	Site 21 <0.037 <0.054 <0.063 <0.054 <0.060	Site 29* <0.063 <0.054 <0.053 <0.055 <0.061	Site 35 <0.056 <0.069 <0.046 <0.038 invalid c	Site 40* <0.037 <0.065 <0.070 <0.056 <0.063
Week # 40 41 42 43 44 45 46 47	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08	4 invalid b < 0.038 < 0.035 < 0.070 < 0.070 < 0.048	6A* <0.037 <0.038 <0.068 <0.064 <0.066 <0.066	Site 7A <0.060 <0.065 <0.045 <0.061 <0.065 <0.046	Site 14A* <0.047 <0.038 <0.064 <0.058 <0.052 <0.066	Site 15* <0.060 <0.055 <0.052 <0.051 <0.051 <0.037	Site 17A <0.037 <0.062 <0.045 <0.049 <0.050 <0.038	Site 21 <0.037 <0.054 <0.063 <0.054 <0.060 <0.060	Site 29* <0.063 <0.054 <0.053 <0.055 <0.061 <0.065	Site 35 <0.056 <0.069 <0.046 <0.038 invalid colored co	Site 40* <0.037 <0.065 <0.070 <0.056 <0.063 <0.067
Week # 40 41 42 43 44 45 46 47 48	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08	STOP DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08	4 invalid b <0.038 <0.035 <0.070 <0.070 <0.048 <0.058 <0.043 <0.065	6A* <0.037 <0.038 <0.064 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.063	Site 7A <0.060 <0.065 <0.045 <0.061 <0.065 <0.046 <0.046 <0.046 <0.063 <0.067	Site 14A* <0.047 <0.038 <0.064 <0.058 <0.052 <0.066 <0.032 <0.066 <0.068	Site 15* <0.060 <0.055 <0.052 <0.051 <0.037 <0.040 <0.070 <0.054	Site 17A <0.037 <0.062 <0.045 <0.049 <0.050 <0.038 <0.052	Site 21 <0.037 <0.054 <0.063 <0.054 <0.060 <0.060 <0.040	Site 29* <0.063 <0.054 <0.053 <0.055 <0.061 <0.065 <0.032	Site 35 <0.056 <0.069 <0.046 <0.038 invalid colored co	Site 40* <0.037 <0.065 <0.070 <0.056 <0.063 <0.067 <0.047
Week # 40 41 42 43 44 45 46 47 48 49	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 12-Nov-08 24-Nov-08	4 invalid b <0.038 <0.035 <0.070 <0.070 <0.048 <0.058 <0.043	6A* <0.037 <0.038 <0.068 <0.064 <0.066 <0.066 <0.052 <0.063 <0.064	Site 7A <0.060 <0.065 <0.045 <0.061 <0.065 <0.046 <0.046 <0.046 <0.063 <0.067 <0.046	Site 14A* <0.047 <0.038 <0.064 <0.058 <0.052 <0.066 <0.032 <0.066 <0.068 <0.055	Site 15* <0.060 <0.055 <0.052 <0.051 <0.051 <0.037 <0.040 <0.070 <0.054 <0.066	Site 17A <0.037 <0.062 <0.045 <0.049 <0.050 <0.038 <0.052 <0.043 <0.065 <0.039	Site 21 <0.037 <0.054 <0.063 <0.054 <0.060 <0.060 <0.040 <0.040 <0.069	Site 29* <0.063 <0.054 <0.053 <0.055 <0.061 <0.065 <0.032 <0.016	Site 35 <0.056 <0.069 <0.046 <0.038 invalid colored <0.069 <0.032 <0.062	Site 40* <0.037 <0.065 <0.070 <0.056 <0.063 <0.067 <0.047 <0.067
Week # 40 41 42 43 44 45 46 47 48 49 50	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 18-Nov-08 24-Nov-08 2-Dec-08	STOP DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 12-Nov-08 24-Nov-08 2-Dec-08 10-Dec-08	4 invalid b < 0.038 < 0.035 < 0.070 < 0.070 < 0.048 < 0.058 < 0.043 < 0.065 < 0.011 < 0.052	6A* <0.037 <0.038 <0.068 <0.064 <0.066 <0.066 <0.052 <0.066 <0.063 <0.064 <0.040	Site 7A <0.060 <0.065 <0.045 <0.061 <0.065 <0.046 <0.046 <0.046 <0.063 <0.067	Site 14A* <0.047 <0.038 <0.064 <0.058 <0.052 <0.066 <0.032 <0.066 <0.068 <0.055 <0.046	Site 15* <0.060 <0.055 <0.052 <0.051 <0.051 <0.037 <0.040 <0.070 <0.054 <0.066 <0.032	Site 17A <0.037 <0.062 <0.045 <0.049 <0.050 <0.038 <0.052 <0.043 <0.065 <0.039 <0.061	Site 21 <0.037 <0.054 <0.063 <0.054 <0.060 <0.060 <0.040 <0.069 <0.063	Site 29* <0.063 <0.054 <0.053 <0.055 <0.061 <0.065 <0.032 <0.016 <0.068	Site 35 <0.056 <0.069 <0.046 <0.038 invalid colored <0.069 <0.032 <0.062 <0.047	Site 40* <0.037 <0.065 <0.070 <0.056 <0.063 <0.067 <0.047 <0.067 <0.067
Week # 40 41 42 43 44 45 46 47 48 49 50 51	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 4-Nov-08 12-Nov-08 12-Nov-08 24-Nov-08 21-Dec-08 10-Dec-08	30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 12-Nov-08 24-Nov-08 24-Dec-08 10-Dec-08 16-Dec-08	4 invalid b < 0.038 < 0.035 < 0.070 < 0.070 < 0.048 < 0.058 < 0.043 < 0.065 < 0.011	6A* <0.037 <0.038 <0.068 <0.064 <0.066 <0.052 <0.066 <0.063 <0.064 <0.040 <0.066	Site 7A <0.060 <0.065 <0.045 <0.065 <0.046 <0.046 <0.046 <0.063 <0.067 <0.046 <0.051 <0.065	Site 14A* <0.047 <0.038 <0.064 <0.058 <0.052 <0.066 <0.032 <0.066 <0.068 <0.055 <0.046 <0.065	Site 15* <0.060 <0.055 <0.052 <0.051 <0.037 <0.040 <0.070 <0.054 <0.066 <0.032 <0.046	Site 17A <0.037 <0.062 <0.045 <0.049 <0.050 <0.038 <0.052 <0.043 <0.065 <0.039	Site 21 <0.037 <0.054 <0.063 <0.060 <0.060 <0.060 <0.040 <0.069 <0.063 <0.051	Site 29* <0.063 <0.054 <0.053 <0.061 <0.065 <0.032 <0.016 <0.068 <0.061	Site 35 <0.056 <0.069 <0.046 <0.038 invalid colored co	Site 40* <0.037 <0.065 <0.070 <0.056 <0.063 <0.067 <0.047 <0.067 <0.067 <0.052
Week # 40 41 42 43 44 45 46 47 48 49 50	START DATE 23-Sep-08 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 18-Nov-08 24-Nov-08 2-Dec-08	STOP DATE 30-Sep-08 7-Oct-08 14-Oct-08 21-Oct-08 28-Oct-08 4-Nov-08 12-Nov-08 12-Nov-08 24-Nov-08 2-Dec-08 10-Dec-08	4 invalid b < 0.038 < 0.035 < 0.070 < 0.070 < 0.048 < 0.058 < 0.043 < 0.065 < 0.011 < 0.052	6A* <0.037 <0.038 <0.068 <0.064 <0.066 <0.066 <0.052 <0.066 <0.063 <0.064 <0.040	Site 7A <0.060 <0.065 <0.045 <0.061 <0.065 <0.046 <0.046 <0.063 <0.067 <0.046 <0.051	Site 14A* <0.047 <0.038 <0.064 <0.058 <0.052 <0.066 <0.032 <0.066 <0.068 <0.055 <0.046	Site 15* <0.060 <0.055 <0.052 <0.051 <0.051 <0.037 <0.040 <0.070 <0.054 <0.066 <0.032	Site 17A <0.037 <0.062 <0.045 <0.049 <0.050 <0.038 <0.052 <0.043 <0.065 <0.039 <0.061	Site 21 <0.037 <0.054 <0.063 <0.054 <0.060 <0.060 <0.040 <0.069 <0.063 <0.051 <0.046	Site 29* <0.063 <0.054 <0.053 <0.055 <0.061 <0.065 <0.032 <0.016 <0.068 <0.061 <0.039	Site 35 <0.056 <0.069 <0.046 <0.038 invalid colored c	Site 40* <0.037 <0.065 <0.070 <0.056 <0.063 <0.067 <0.047 <0.067 <0.067 <0.067 <0.039

^a Sample not accessible due to insect infestation. ^b Power was out at sample location, sample invalid. ^c Sample pump was seized, sample invalid.

TABLE 8.6 VEGETATION

LOCATION	ТҮРЕ	DATE COLLECTED	<60 I-131	<60 Cs-134	<80 Cs-137
WRIGHT RESIDENCE (Site #52)*		NO SAMPLES AVAI	LABLE		
DUNCAN FAMILY	green cabbage red cabbage green cabbage red cabbage	11-Jan-08 11-Jan-08 15-Feb-08 15-Feb-08	<58 <60 <53 <55	<56 <54 <47 <46	<79 <69 <63 <67
FARMS (Site #62)*	savoy cabbage	15-Feb-08 15-Mar-08	<54 <38	<57 <45	<57 <64
(8200 // 03)	green cabbage green cabbage	11-Apr-08 16-May-08	<37 <41	<49 <38	<60 <45
	green cabbage green cabbage green cabbage red cabbage	17-Oct-08 14-Nov-08 12-Dec-08	<30 <29 <33	<30 <36 <43	<44 <36 <30
GARDEN OF EATIN' RESIDENCE (Site #47)* LAHTI RESIDENCE	· ·	NO SAMPLES AVAI (Lahti replaced Garden of		<26	<44

TABLE 8.7 MILK

ODCM required samples denoted by * units are pCi/liter

SAMPLE LOCATION	DATE COLLECTED	<1 I-131	<15 Cs-134	<18 Cs-137	<60 Ba-140	<15 La-140
PAINTER GOATS (Site #51)*	N	IO SAMI	PLES AV	AILABL	E	
	26-Feb-08	<1	<1	<1	<3	<1
	21-Mar-08	<1	<1	<1	<3	<1
•	18-Apr-08	<1	<1	<1	<3	<1
MARTIN	23-May-08	<1	<1	<1	<3	<1
GOATS	20-Jun-08	<1	<1	<1	<3	<1
(Site #53)*	25-Jul-08	<1	<1	<1	<3	<1
,	22-Aug-08	<1	<1	<1	<3	<1
	26-Sep-08	<1	<1	<1	<3	<1
	24-Oct-08	<1	<1	<1	<3	<1
	21-Nov-08	<1	<1	<1	<3	<1
	18-Dec-08	<1	<1	<1	<3	<1
	11-Jan-08	<1	<1	<1	<3	<1
	15-Feb-08	<1	<1	<1	<3	<1
HERNANDEZ	14-Mar-08	<1	<1	<1	<3	<1
GOATS	11-Apr-08	<1	<1	<1	<3	<1
(Site #54)	16-May-08	<1	<1	<1	<3	<1
	11-Jul-08	<1	<1	<1	<3	<1
	15-Aug-08	<1	<1	<1	<3	<1
	19-Sep-08	<1	<1	<1	<3	<1
•	14-Nov-08	<1	<1	<1	<3	<1
	12-Dec-08	<1	<1	<1	<3	<1

Site #51 was no longer available as of March. The Land Use Census did not identify a replacement, so the location was deleted effective 7-11-08.

TABLE 8.8 DRINKING WATER

														<2000	
SAMPLE	MONTH	<15	<15	<30	<15	<30	<15	<30	<15	<15	<18	<60	<15	QTRLY	<4.0
LOCATION	ENDPOINT	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140	H-3	Gross Beta
	29-Jan-08	<13	<13	<24	<13	<30	<12	<23	<12	<12	<14	<41	<13		4.5 ± 1.7
	26-Feb-08	<14	<14	<30	<14	<27	<15	<22	<13	<13	<13	<46	<14		<3.3
	24-Mar-08	<12	<12	<20	<13	<28	<11	<21	<9	<10	<11	<37	<13	<275	<3.1
	29-Apr-08	<13	<11	<25	<14	<30	<11	<22	<11	<11	<10	<36	<12		4.0 ± 1.9
BERRYMAN	27-May-08	<13	<12	<27	<13	<29	<14	<21	<13	<12	<14	<47	<13		4.4 ± 1.8
RESIDENCE	′ 24-Jun-08	<10	<9	<17	<10	<21	<9	<16	<8 ·	<9	<10	<32	<15	<282	< 3.0
(SITE #48)*	29-Jul-08	<13	<13	<25	<14	<27	<13	<22	<12	<11	<14	<37	<13	uis e	<2.9
	26-Aug-08	<10	<12	<30	<15	<29	<13	<20	<12	<11	<13	<47	<9		4.5 ± 2.0
	30-Sep-08	<9	<10	<21	<11	<26	<12	<21	<12	<9	<11	<39	<13	<275	6.4 ± 1.5
	28-Oct-08	<13	<15	<25	<15	<26	<10	<24	<13	<12	<14	<44	<15		3.0 ± 1.8
	24-Nov-08	<11	<10	<17	<12	<23	<12	<18	<9	<9	<10	<37	<15		3.6 ± 1.9
	29-Dec-08	<11	<9	<22	<11	<25	<9	<18	<9	<9	<11	<36	<14	<273	7.1 ± 1.8
	29-Jan-08	<12	<14	<28	<15	<28	<13	<27	<11	<12	<14	<42	<15		5.3 ± 1.5
	26-Feb-08	<13	<14	<27	<13	<29	<13	<23	<12	<12	<15	<45	<15	9	<2.5
	24-Mar-08	<12	<9	<25	<12	<26	<11	<21	<10	<8	<11	<32	<15	<285	< 2.5
	29-Apr-08	<13	<12	<23	<15	<27	<13	<24	<13	<11	<13	<37	<11		3.9 ± 1.6
GAVETTE	27-May-08	<10	<11	<24	<15	<26	<12	<20	<12	<11	<13	<41	<12		3.8 ± 1.5
RESIDENCE	24-Jun-08	<13	<14	<22	<12	<27	<14	<21	<13	<13	<14	< 50	<14	<279	<2.4
(SITE #55)	29-Jul-08	<14	<15	<28	<15	<29	<13	<22	<14	<10	<13	<43	<13		4.4 ± 1.5
	26-Aug-08	<10	<12	<16	<13	<25	<11	<17	<10	<10	<10	<34	<14		4.7 ± 1.5
	30-Sep-08	<12	<13	<25	<12	<30	<13	<18	<12	<11	<14	<47	<12	<272	5.8 ± 1.2
	28-Oct-08	<12	<13	<25	<15	<29	<13	<25	<10	<10	<14	<45	<15		3.6 ± 1.6
	24-Nov-08	<10	<10	<22	<10	<22	<10	<17	<9	<8	<10	<37	<15		3.5 ± 1.6
	29-Dec-08	<13	<12	<21	<12	<23	<12	<22	<11	<12	<12	<41	<15	<273	7.8 ± 1.6

TABLE 8.8 DRINKING WATER

	_													<2000	
SAMPLE	MONTH	<15	<15	<30	<15	<30	<15	<30	<15	<15	<18	<60	<15	QTRLY	<4.0
LOCATION	ENDPOINT	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140		Gross Beta
	29-Jan-08	<12	<13	<28	<14	<30	<13	<24	<13	<12	<13	<46	<13		3.6 ± 1.4
·	26-Feb-08	<11	<11	<20	<12	<30	<14	<24	<13	<13	<13	<52	<14		2.6 ± 1.6
	24-Mar-08	<13	<12	<25	<15	<30	<13	<25	<13	<10	<12	<40	<14	<285	< 2.6
	29-Apr-08	<11	<14	<21	<13	<30	<14	<16	<13	<12	<14	<44	<13		2.5 ± 1.5
WIRTH	27-May-08	<13	<11	<25	<14	<29	<13	<24	<13	<10	<11	<45	<15		3.0 ± 1.4
RESIDENCE	24-Jun-08	<12	<10	<25	<14	<30	<12	<22	<13	<10	<14	<40	<13	<281	3.4 ± 1.6
(SITE #46)*	29-Jul-08	<12	<11	<24	<13	<27	<12	<21	<10	<11	<13	<38	<15		3.6 ± 1.5
	26-Aug-08	<13	<13	<27	<12	<29	<15	<21	<12	<12	<15	<43	<12		4.7 ± 1.5
	30-Sep-08	<11	<11	<23	<12	<23	<13	<21	<12	<9	<11	<42	<15	<274	5.6 ± 1.3
	28-Oct-08	<13	<12	<22	<14	<29	<14	<23	<11	<13	<15	<47	<14		4.6 ± 1.6
	24-Nov-08	<13	<13	<24	<14	<27	<13	<21	<15	<13	<12	<58	<13		<2.4
	29-Dec-08	<15	<14	<23	<11	<28	<10	<20	<13	<13	<12	<43	<13	<274	4.8 ± 1.4
	29-Jan-08	<12	<11	<24	<14	<20	<11	<20	<11	<11	<12	<33	<15		<1.9
	26-Feb-08	<11	<10	<24	<11	<27	<12	<22	<12	<11	<12	<44	<15		<2.4
	24-Mar-08	<12	<13	<27	<13	<30	<13	<19	<12	<11	<14	<49	<13	<284	<2.4
	29-Apr-08	<9	<10	<19	<13	<20	<10	<19	<9	<9	<11	<29	<15		<2.1
SANDOVAL	27-May-08	<13	<14	<28	<13	<30	<15	<24	<15	<13	<14	<51	<14		<2.0
RESIDENCE	24-Jun-08	<11	<11	<22	<15	<22	<12	<19	<12	<9	<12	<40	<13	<279	<2.3
(SITE #49) *	29-Jul-08	<14	<14	<30	<14	<25	<15	<23	<14	<12	<14	<48	<13		<2.1
	26-Aug-08	<12	<11	<30	<13	<24	<12	<20	<13	<12	<13	<39	<12		<2.0
	30-Sep-08	<10	<11	<17	<14	<21	<12	<16	<9	<8	<11	<39	<15	<271	4.7 ± 1.1
	28-Oct-08	<13	<13	<29	<15	<29	<15	<26	<13	<11	<15	<44	<14		<2.2
	24-Nov-08	<13	<13	<29	<15	<26	<14	<21	<15	<12	<14	< 50	<12		<2.2
	29-Dec-08	<11	<11	<21	<15	<26	<12	<19	<11	<9	<10	<35	<12	<272	3.6 ± 1.3

TABLE 8.9 GROUND WATER

SAMPLE	DATE	<15	<15	<30	<15	<30	<15	<30	<15	<15	<18	<60	<15	<2000
LOCATION	COLLECTED	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140	H-3
WELL	29-Jan-08	<12	<13	<25	<13	<29	<15	<20	<14	<12	<12	<45	<15	<230
27ddc	29-Apr-08	<14	<12	<26	<14	<27	<15	<22	<13	<11	<14	<43	<14	<277
(Site #57)*	30-Jul-08	<14	<15	<23	<14	<26	<13	<19	<11	<10	<14	<42	<11	<283
	28-Oct-08	<9	<10	<25	<13	<28	<11	<19	<10	<10	<12	<51	<15	<282
WELL	29-Jan-08	<10	<10	<19	<12	<26	<11	<16	<9	<9	<10	<36	<15	<281
34abb	29-Apr-08	<11	<11	<26	<15	<29	<14	<22	<14	<11	<13	<44	<13	<282
(Site #58)*	30-Jul-08	<13	<11	<23	<13	<28	<14	<25	<13	<12	<12	<42	<15	<283
	28-Oct-08	<9	<10	<21	<10	<28	<11	<18	<11	<10	<10	<39	<15	<279

ODCM required samples denoted by * units are pCi/liter

SAMPLE LOCATION	MONTH ENDPOINT	<15 Mn-54	<15 Co-58	<30 Fe-59	<15 Co-60	<30 Zn-65	<15 Nb-95	<30 Zr-95	<15 I-131	<15 Cs-134	<18 Cs-137	<60 Ba-140	<15 La-140	<3000 H-3
	29-Jan-08	<8	<11	<20	<11.	<21	<9	<16	13 ± 8	<9	<13	<36	<15	
•	26-Feb-08	<14	<12	<23	<14	<27	<13	<23	31 ± 14	<11	<12	<41	<13	
45 ACRE	24-Mar-08	<15	<12	<26	<8	<30	<12	<24	14 ± 10	<12	<15	<45	<13	<279
RESERVOIR	29-Apr-08	<12	<11	<23	<13	<26	<12	<20	<14	<11	<12	<33	<15	
(Site #61) *	27-May-08	<13	<11	<23	<13	<25	<13	<23	15 ± 14	<12	<15	<46	<14	
(24-Jun-08	<11	<10	<23	<11	<25	<11	<20	<14	<9	<12	<38	<15	<283
	22-Jul-08	<12	<11	<27	<12	<26	<12	<18	<15	<12	<12	<39	<14	<279
	28-Oct-08	<11	<12	<18	<13	<18	<9	<17	<10	<10	<8	<33	<15	<282
	29-Apr-08	<8	<9	<17	<8	<15	<8	<13	<9	<7	<7	<27	<11	
85 ACRE	27-May-08	<14	<12	<24	<14	< 30	<11	<24	<12	<11	<13	<42	<11	
RESERVOIR	24-Jun-08	<12	<11	<22	<14	<23	<12	<17	<11	<11	<13	<33	<15	<283
(Site #60) *	22-Jul-08	<12	<11	<21	<12	<30	<10	<20	<12	<11	<12	<32	<10	<279
	28-Oct-08	<12	<10	<21	<12	<25	<10	<19	<12	<9	<12	<40	<15	<282
	29-Jan-08	<11	<11	<22	<11	<30	<10	<20	<10	<9	<11	<34	<12	建度的数据 数据
	26-Feb-08	<14	<12	<29	<14	<30	<13	<22	15 ± 11	<11	<15	<45	<11	
	24-Mar-08	<12	<12	<29	<15	<26	<12	<20	19 ± 10	<8	<13	<38	<13	913 ± 184
EVAP POND 1	29-Apr-08	<12	<13	<26	<15	<28	<12	<22	<15	<12	<15	<44	<13	
(Site #59) *	27-May-08	<11	<13	<21	<15	<26	<11	<20	<12	<10	<12	<39	<14	
	24-Jun-08	<12	<13	<25	<11	<30	<11	<21	<13	<10	<14	<32	<14	1107 ± 186
	29-Jul-08	<12	<11	<26	<14 <12	<30	<11	<19	<13	<11	<13	<40	<13	
	26-Aug-08 30-Sep-08	<11 <9	<10 <10	<29 <23	<12 <14	<29 <30	<12 <11	<22 <16	<10 <10	<11 <10	<14 <12	<37 <31	<14 <11	049 + 174
	28-Oct-08	<9 <9	<10	<24	<11	<29	<10	<21	<10 <9	<10 <9	<12	<31 <32	<11 <10	948 ± 174
	24-Nov-08	<12	<11	<29	<11	<30	<12	<21	11 ± 11	<12	<14	<36	<11	
	29-Dec-08	<13	<11	<26	<13	<28	<13	<21	<15	<11	<14	<43	<12	1111 ± 168
	29-Jan-08	<14	<12	<30	<15	<30	<13	<24	<13	<12	<16	<47	<11	
	26-Feb-08	<12	<12	<28	<12	<29	<12	<22	<13	<10	<13	<46	<15	
	24-Mar-08	<11	<10	<24	<12	< 30	<11	<21	<11	<10	<12	<45	<10	1028 ± 188
	29-Apr-08	<12	<11	<30	<14	<27	<12	<19	<12	<11	<15	<41	<13	
EVAP POND 2	27-May-08	<13	<12	<28	<13	<30	<12	<23	<12	<11	<14	<48	<14	
(Site #63) *	24-Jun-08	<12	<10	<26	<14	<30	<11	<20	<11	<11	<14	<38	<10	785 ± 182
	29-Jul-08	<12	<12	<27	<13	<30	<11	<21	<12	<11	<13	<41	<14	
	26-Aug-08	<13	<10	<27	<12	<17	<12	<20	<13	<10	<13	<41	<12	
	30-Sep-08	<12	<14	<30	<12	<30	<12	<18	<12	<10	<16	<43	<13	783 ± 173
	28-Oct-08	<12	<11.	<26	<13	<30	<11	<21	<10	<10	<14	<42	<8	903 ± 179
	empty for re-	-lining												

The 85 acre Reservoir was out of service for re-lining from July 2007 to April 2008. Reservoir and Evap Pond sample frequency was changed to quarterly in August. Evap Ponds were still sampled and analyzed more frequently to meet Aquifer Protection Permit requirements.

					u.	iiits are	PCBHC	•						
SAMPLE	DATE													
LOCATION	COLLECTED	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140	<u> Tritium</u>
	1-Jan-08	<11	<12	<22	<13	<25	<11	<20	43 ± 12	<10	<11	<36	<13	
	8-Jan-08	<11	<12	<23	<13	<27	<11	<21	18 ± 11	<12	<12	<37	<13	
	15-Jan-08	<13	<12	<24	<12	<30	<13	<22	38 ± 13	<11	<14	<44	<13	
	22-Jan-08	<11	<11	<22	<13	<22	<12	<19	$41 \pm 14^{\circ}$	<11	<12	<38	<12	
	29-Jan-08	<11	<9	<23.	<14	<21	<11	<18	38 ± 11	<10	<12	<33	<15	<229
	4-Feb-08	<12	<9	<21	<14	<27	<12	< 20	50 ± 13	<10	<11	<37	<14	
	12-Feb-08	<13	<12	<25	<14	<27	<14	<23	11 ± 11	<14	<14	<43	<15	
	17-Feb-08	<12	<9	<21	<12	< 20	<12	<21	41 ± 12	<10	<13	<47	<15	
WRF	26-Feb-08	<13	<11	<28	<14	<30	<13	<20	37 ± 13	<10	<13	<45	<12	<285
INFLUENT	2-Mar-08	<13	<10	<23	<13	<24	<11	<21	12 ± 12	<8	<10	<38	<15	
	11-Mar-08	<13	<12	<25	<12	<30	<13	<22	6 ± 15	<12	<14	<47	<14	
	17-Mar-08	<8	<9	<24	<9	<20	<9	<15	34 ± 11	<8	<10	<31	<12	
	25-Mar-08	<11	<10	<26	<13	<24.	<11	<17	26 ± 10	<11	<10	<32	<11	<294
	1-Apr-08	<13	<13	<30	<13	<28	<13	<20	34 ± 12	<9	<14	<41	<12	
	8-Apr-08	<13	<10	<29	<14	<28	<13	<23	20 ± 14	<11	<15	<41	<15	
	14-Apr-08	<12	<12	<25	<12	<28	<10	<18	29 ± 12	<10	<12	<39	<13	
	WRF down for m	naintenan	ce											
	29-Apr-08	<15	<14	<29	<15	<29	<14	<25	75 ± 20	<12	<15	<46	<12	<286
	6-May-08	<11	<12	<27	<13	<30	<13	<22	71 ± 20	<13	<13	<44	<15	
	13-May-08	<12	<12	<25	<13	<27	<11	<20	68 ± 19	<11	<12	<42	<15	
	20-May-08	<10	<8	<19	<9	<19	<9	<19	33 ± 11	<10	<10	<32	<15	
	27-May-08	<11	<10	<20	<11	<30	<11	<18	44 ± 13	<10	<12	<39	<10	<291
	3-Jun-08	<13	<11	<27	<15	<26	<13	<21	57 ± 19	<11	<12	<41	<13	
	10-Jun-08	<11	<13	<26	<15	<26	<11	<19	23 ± 12	<12	<14	<40	<13	
	17-Jun-08	<13	<13	<25	<15	<30	<14	<23	30 ± 14	<11	<14	<46	<14	
	24-Jun-08	<11	<14	<27	<14	<30	<11	<25	35 ± 13	<10	<11	<39	<9	<290
	1-Jul-08	<12	<12	<25	<14	<28	<12	<21	23 ± 13	<13	<14	<41	<12	
	8-Jul-08	<12	<11	<24	<13	<29	<11	<19	34 ± 10	<10	<11	<35	<15	
	16-Jul-08	<13	<9	<22	<15	<25	<14	<21	17 ± 8	<11	<14	<44	<14	Clear b

						F								
SAMPLE	DATE													
LOCATION	COLLECTED	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140	Tritium
	22-Jul-08	<10	<11	<21	<12	<24	<10	<17	<13	<10	<10	<35	<14	
	29-Jul-08	<10	<9	<19	<12	<15	<8	<14	<10	<9	<10	<30	<11	<287
	5-Aug-08	<11	<11	<23	<13	<26	<11	<18	21 ± 12	<11	<11	<44	<15	
	12-Aug-08	<13	<9	<20	<15	<22	<13	<21	<11	<10	<11	<39	<11	
	19-Aug-08	<12	<10	<20	<13	<24	<10	<19	<15	<10	<13	<41	<12	
	26-Aug-08	<12	<9	<28	<12	<27	<10	<22	26 ± 10	<9	<15	<39	<15	<281
	2-Sep-08	<10	<14	<29	<12	<21	<15	<21	<13	<11	<16	<44	<14	
	9-Sep-08	<10	<11	<28	<15	<29	<13	<21	<15	<13	<15	<49	<13	
	16-Sep-08	<13	<12	<27	<14	<30	<13	<19	25 ± 15	<10	<12	<43	<14	
	23-Sep-08	<14	<12	<24	<12	<29	<13	<28	23 ± 12	<10	<13	<48	<15	
WRF	30-Sep-08	<13	<14	<24	<12	<30	<12	<25	55 ± 14	<13	<15	<34	<14	<268
INFLUENT	7-Oct-08	<12	<10	<27	<14	<30	<15	<22	25 ± 15	<14	<16	<46	<14	
	14-Oct-08	<15	<12	<30	<13	<30	<13	<23	27 ± 15	<15	<15	<47	<12	<272
	WRF down for m	aintenance												[42] Maria [4]
	4-Nov-08	<12	<11	<23	<13	<25	<12	<21	22 ± 10	<10	<12	<41	<13	
	12-Nov-08	<12	<13	<30	<11	<27	<15	<22	54 ± 19	<13	<13	<48	<14	
	18-Nov-08	<11	<9	<28	<12	<25	<11	<15	86 ± 16	<8	<12	<32	<11	
	24-Nov-08	<14	<12	<21	<14	<29	<12	<25	56 ± 15	<11	<13	<37	<14	<280
	2-Dec-08	<13	<12	<25	<15	<26	<12	<21	29 ± 12	<10	<12	<44	<14	
	9-Dec-08	<11	<12	<24	<13	<27	<12	<17	16 ± 11	<8	<12	<41	<15	
	16-Dec-08	<11	<10	<16	<14	<23	<11	<19	23 ± 10	<10	<11	<31	<13	
	22-Dec-08	<13	<13	<24	<15	<29	<13	<21	29 ± 14	<12	<15	<44	<13	
	29-Dec-08	<11	<13	<25	<13	<29	<11	<20	75 ± 21	<11	<11	<41	<11	<280

SAMPLE LOCATION	DATE COLLECTED	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140	Tritium
	8-Jan-08	<10	<13	<22	<14	<25	<12	<19	<8	<11	<12	<42	<15	577 ± 178
	29-Jan-08	<14	<10	<23	<15	<27	<12	<22	<11	<12	<13	<43	<13	319 ± 145
SEDIMENT.	5-Feb-08	<14	<14	<26	<10	<28	<14	<25	<13	<10	<14	<42	<15	<237
BASIN #2	12-Feb-08	<12	<11	<22	<11	<24	<10	<17	<10	<10	<13	<30	<13	<241
	20-Feb-08	<12	<12	<26	<15	<29	<14	<21	<12	<13	<15	<44	<13	319 ± 147
,	26-Feb-08	<11	<10	<17	<11	<24	<11	<19	<10	<10	<10	<34	<15	<283
	26-Aug-08	<7	<11	<23	<13	<19	<10	<16	<9	<9	<11	<32	<14	<292
												_		

TABLE 8.11 SLUDGE/SEDIMENT

SAMPLE	DATE				
LOCATION	COLLECTED	I-131	Cs-134	Cs-137	In-111
	1-Jan-08	1658 ± 231	<34	<33	
	8-Jan-08	1120 ± 144	<17	<33	40 ± 31
	15-Jan-08	686 ± 117	<30	<37	
	22-Jan-08	930 ± 124	<26	<33	21 ± 19
	29-Jan-08	1071 ± 140	<23	<30	
	4-Feb-08	1098 ± 163	<33	<31	
	12-Feb-08	905 ± 139	<35	<46	
	18-Feb-08	683 ± 101	<22	<35	
	25-Feb-08	979 ± 155	<22	<47	
	3-Mar-08	863 ± 134	<22	<35	
	10-Mar-08	602 ± 94	<24	<20	
	17-Mar-08	578 ± 92	<17	<26	
	25-Mar-08	701 ± 103	<28	<26	25 ± 28
WRF	1-Apr-08	471 ± 110	<26	<22	
CENTRIFUGE	8-Apr-08	528 ± 110	<25	<32	
WASTE SLUDGE	15-Apr-08	428 ± 71	<29	<25	
•	16-Apr-08	557 ± 114	<32	<30	
	WRF down for mainter	nance		,	
	29-Apr-08	180 ± 41	<24	<20	
	6-May-08	591 ± 131	<18	<23	
•	13-May-08	609 ± 92	<20	<36	
	20-May-08	907 ± 119	<19	<21	40 ± 24
	27-May-08	849 ± 126	<17	<32	91 ± 44
	3-Jun-08	797 ± 109	<34	<23	37 ± 22
	10-Jun-08	932 ± 124	<22	<28	
	17-Jun-08	695 ± 105	<21	<37	
	24-Jun-08	825 ± 112	<15	<38	
	1-Jul-08	1054 ± 221	<24	<29	71 ± 42
	8-Jul-08	1061 ± 223	<19	<26	
	16-Jul-08	921 ± 194	<24	<22	
	22-Jul-08	784 ± 169	<22	<21	35 ± 25
	29-Jul-08	705 ± 102	<30	<25	
	5-Aug-08	1288 ± 270	<23	<19	

TABLE 8.11 SLUDGE/SEDIMENT

SAMPLE	DATE				
LOCATION	COLLECTED	I-131	Cs-134	Cs-137	In-111
	12-Aug-08	887 ± 119	<30	<19	
	19-Aug-08	573 ± 88	<26	<33	30 ± 23
	26-Aug-08	646 ± 98	<29	<30	
	2-Sep-08	1057 ± 221	<22	<21	35 ± 19
	9-Sep-08	693 ± 97	<25	<11	
WRF	16-Sep-08	760 ± 165	<15	<29	
CENTRIFUGE	23-Sep-08	968 ± 128	<26	<20	
WASTE SLUDGE	30-Sep-08	1378 ± 168	<31	<31	
	7-Oct-08	1245 ± 156	<29	<27	
	14-Oct-08	1321 ± 165	<27	<33	
	WRF down for main	tenance			
	4-Nov-08	314 ± 75	<19	<22	
	12-Nov-08	661 ± 145	<23	<25	
	18-Nov-08	2099 ± 244	<29	<31	60 ± 34
	24-Nov-08	2249 ± 262	<29	<20	83 ± 42
	2-Dec-08	1490 ± 186	<18	<21	
	9-Dec-08	1137 ± 240	<24	<29	
	16-Dec-08	864 ± 186	<32	<30	
	22-Dec-08	1337 ± 169	<24	<8	
•	29-Dec-08	1758 ± 351	<28	<31	

TABLE 8.11 SLUDGE/SEDIMENT

ODCM required samples denoted by * Units are pCi/kg, wet

SAMPLE	DATE			
LOCATION	COLLECTED	I-131	Cs-134	Cs-137
(N)	20-Nov-08	18 ± 9	<10	13 ± 8
(E)	20-Nov-08	<13	<11	<17
EVAP POND 1 (W)	20-Nov-08	<13	<13	<16
		_		
(N)	7-Nov-08	<9	<11	15 ± 13
(E)	7-Nov-08	<11	<12	20 ± 13
EVAP POND 2 (W)	7-Nov-08	<12	<11	35 ± 15
(S)	7-Nov-08	<10	<10	79 ± 15
SED. BASIN #2 (N)	20-Nov-08	<12	<11	47 ± 11
, ,				
SED. BASIN #2 (S)	20-Nov-08	<11	<11	45 ± 12

COOLING TOWER SLUDGE

UNIT CYCLE	APPROXIMATE VOLUME (yd³)	ISOTOPE	ACTIVITY RANGE (uCi/ml)	SAMPLE TYPE	FRACTION OF SAMPLES ABOVE MDA
U3R13	290	Co-60	<mda 3.54e-07<="" td="" to=""><td>tower/canal sludge</td><td>26 of 32</td></mda>	tower/canal sludge	26 of 32
		Cs-137	<mda 1.49e-07<="" td="" to=""><td>tower/cariar studge</td><td>16 of 32</td></mda>	tower/cariar studge	16 of 32
U2R14	234	Co-60	<mda 1.60e-07<="" td="" to=""><td>towar/oppol aludgo</td><td>29 of 32</td></mda>	towar/oppol aludgo	29 of 32
		Cs-137	<mda 1.40e-07<="" td="" to=""><td>tower/canal sludge</td><td>32 of 32</td></mda>	tower/canal sludge	32 of 32

FIGURE 8.1 HISTORICAL GROSS BETA IN AIR (WEEKLY SYSTEM AVERAGES)

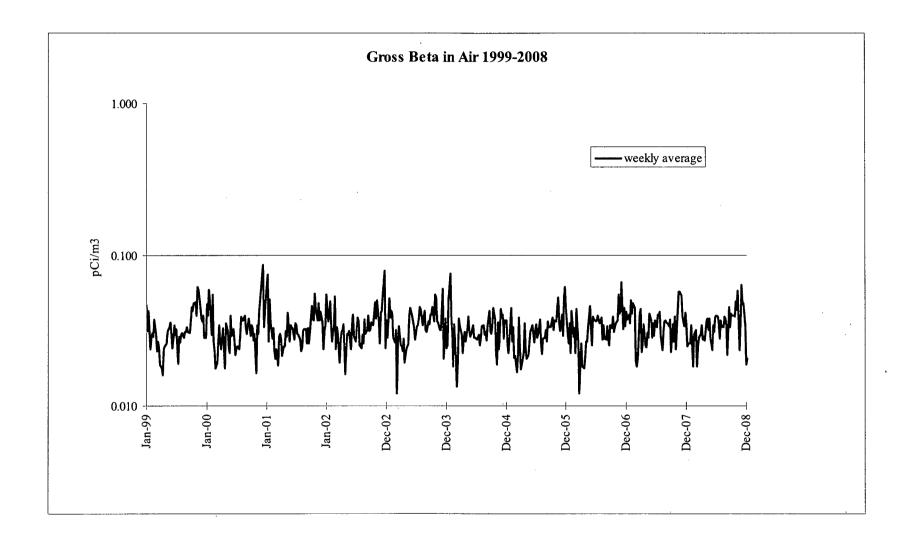
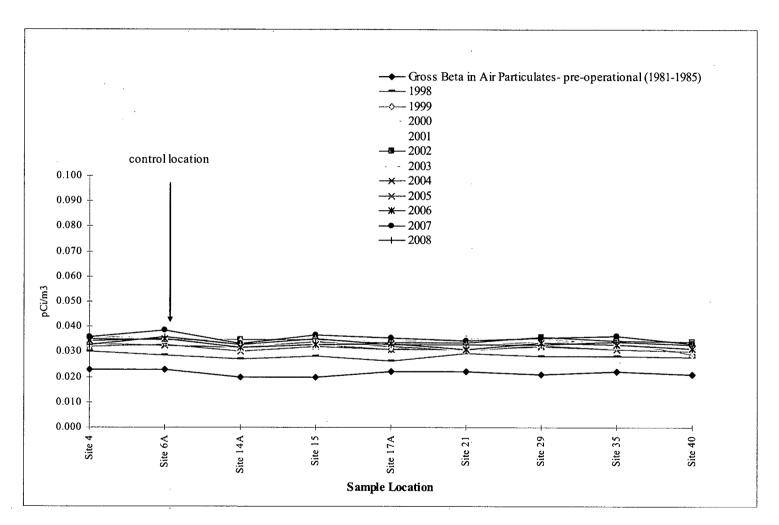
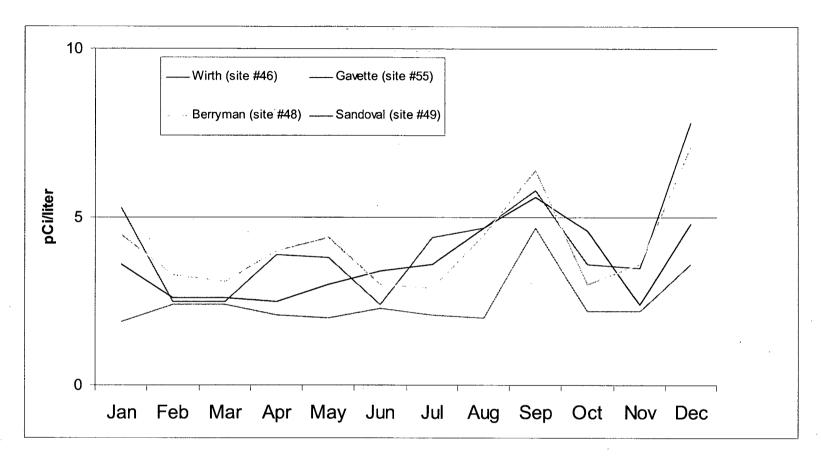




FIGURE 8.2 HISTORICAL GROSS BETA IN AIR (ANNUAL SITE TO SITE COMPARISONS) COMPARED TO PRE-OP

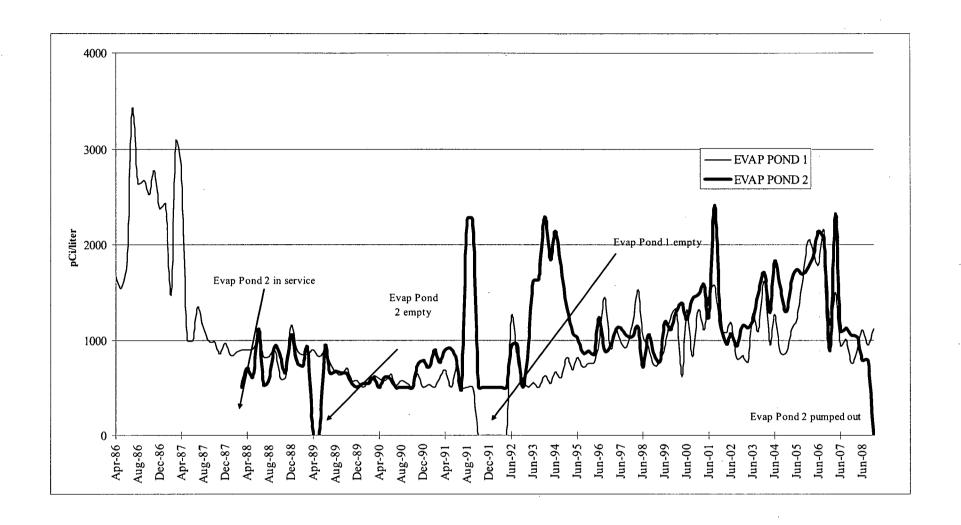
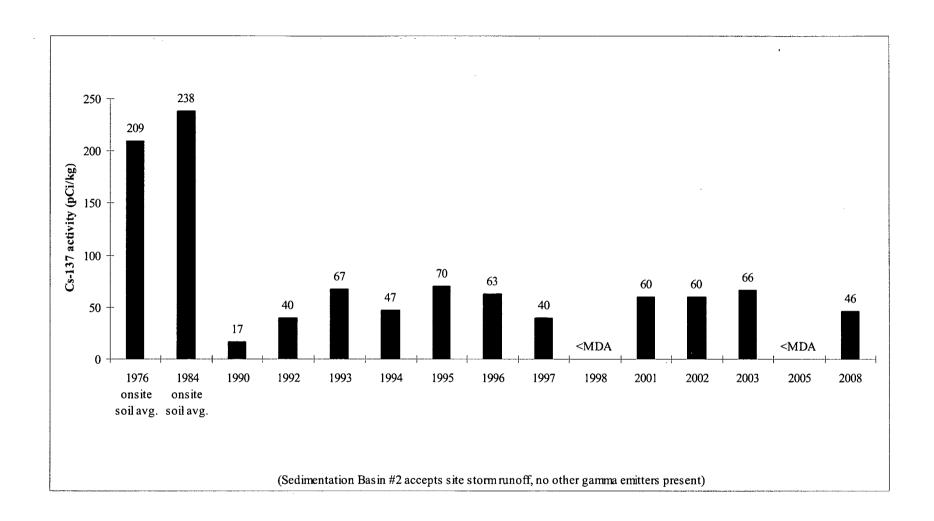

Site 7A is not included since the location changed since the pre-operational period A known high bias has occurred in gross beta data since the onsite laboratory began analysis in 1994

FIGURE 8.3 GROSS BETA IN DRINKING WATER



NOTES: MDA values plotted as activity (e.g. <2.3 is plotted as 2.3)

FIGURE 8.4 EVAPORATION POND TRITIUM ACTIVITY

FIGURE 8.5 SEDIMENTATION BASIN #2 Cs-137

9. Thermoluminescent Dosimeter (TLD) Results and Data

The environmental TLD used at PVNGS is the Panasonic Model 812 Dosimeter. The Model 812 is a multi-element dosimeter combining two elements of lithium borate and two elements of calcium sulfate under various filters.

TLDs were placed in forty-nine locations from one to thirty-five miles from the PVNGS. TLD locations are shown in Figures 2.1 and 2.2 and are described in Table 9.1. TLD results for 2008 are presented in Table 9.2. Historical environmental gamma radiation results for 1985 through 2008 are presented in graphical form on Figure 9.1 (excluding transit control TLD #45).

Figure 9.2 depicts the environmental TLD results from 2008 as compared to the pre-operational TLD results (excluding sites #41, #43, and #46-50 as they were deleted (and later assigned to a new location) or had no pre-op TLD at the location for comparison). The site to site comparisons indicate a direct correlation with respect to pre-operational results. It is evident that the offsite dose, as measured by TLDs, has not changed since Palo Verde became operational.

TABLE 9.1 TLD SITE LOCATIONS

(distances and directions are relative to Unit 2 in miles)

TLD SITE	LOCATION	LOCATION DESCRIPTION
1	E30	Goodyear
. 2	ENE24	Scott-Libby School
3	E21	Liberty School
4	E16	Buckeye
5	ESE11	Palo Verde School
6*	SSE31	APS Gila Bend substation
7	SE7	Old US 80 and Arlington School Rd
8	SSE4	Southern Pacific Pipeline Rd.
9	S5	Southern Pacific Pipeline Rd.
10	SE5	355 th Ave. and Elliot Rd.
11	ESE5	339 th Ave. and Dobbins Rd.
12	E5	339 th Ave. and Buckeye-Salome Rd.
13	N1	N site boundary
14	NNE2	NNE site boundary
15	NE2	NE site boundary, WRF access road
16	ENE2	ENE site boundary
17	E2	E site boundary
18	ESE2	ESE site boundary
19	SE2	SE site boundary
20	SSE2	SSE site boundary
21	S3	S site boundary
22	SSW3	SSW site boundary
23	W5	N of Elliot Rd
24	SW4	N of Elliot Rd
25	WSW5	N of Elliot Rd
26	SSW4	S of Elliot Rd
27	SW1	SW site boundary
28	WSW1	WSW site boundary
29	W1	W site boundary
30	WNW1	WNW site boundary
31	NW1	NW site boundary
32	NNW1	NNW site boundary
33	NW4	S of Buckeye Rd
34	NNW5	395 th Ave. and Van Buren St.
35	NNW8	Tonopah
3.6	N5	Wintersburg Rd. and Van Buren St.
37	NNE5	363 rd Ave. and Van Buren St.
38	NE5	355 th Ave. and Buckeye Rd.
39	ENE5	343 rd Ave. N of Broadway Rd.
40	N2	Wintersburg
41	ESE3	Arlington School
42	N8	Ruth Fisher School

TABLE 9.1 TLD SITE LOCATIONS

(distances and directions are relative to Unit 2 in miles)

TLD SITE	LOCATION	LOCATION DESCRIPTION	
43	NE5	Winters Well School	
44*	ENE35	El Mirage	
45**	Onsite	Central Laboratory (lead pig)	
46	ENE30	Litchfield Park School	
47	E35	Littleton School	
48	E24	Jackrabbit Trail	
49	ENE11	Palo Verde Rd.	
50	WNW5	S of Buckeye-Salome Rd.	

^{*} Site #6 and site #44 are the control locations.
** Site #45 is the transit control TLD (stored in lead pig).

TABLE 9.2 2008 ENVIRONMENTAL TLD RESULTS

Units are mrem/std qtr

CONTINUE OF A MANAGEMENT	STATE OF STATE	Units are mr		ALL OF THE	X40.8X44.232.23
TLD Site #					
1	19.9	25.3	18.0	21.9	21.3
2	18.4	22.6	16.6	missing	19.2
3	18.7	21.8	16.9	21.5	19.7
4	20.0	24.0	18.1	21.0	20.8
5	18.5	23.4	16.7	20.9	19.9
6 (control)	22.8	27.5	20.7	25.1	24.0
7	22.0	25.8	20.0	23.3	22.8
8	20.2	25.0	18.3	22.7	21.6
9	24.6	28.9	22.4	25.7	25.4
10	20.9	24.8	19.0	22.3	21.8
11	21.4	26.1	19.4	23.4	22.6
12	19.3	24.2	17.5	22.6	20.9
13	21.8	24.2	19.9	24.3	23.1
14	21.8	26.3	19.8	23.9	23.0
15	20.3	24.7	18.4	22.2	21.4
16	18.5	23.2	16.7	21.0	19.9
17	21.4	26.1	19.5	23.9	22.7
18	20.8	24.4	18.9	21.8	21.5
19	21.3	26.5	19.4	24.3	22.9
20	21.7	25.6	19.7	23.3	22.6
21	22.0	27.1	20.0	23.6	23.2
22	22.8	27.3	20.8	24.4	23.8
23	19.8	23.8	17.9	21.4	20.7
24	19.3	22.6	17.5	21.3	20.2
25	20.1	24.9	18.2	22.6	21.5
26	23.4	26.9	21.3	27.7	24.8
27	24.0	27.2	21.9	27.5	25.2
28	23.4	25.4	21.3	25.4	23.9
29	21.2	23.9	19.3	24.1	22.1
30	22.0	25.3	20.0	24.6	23.0
31	20.7	23.4	18.8	22.5	21.4
32	22.1	24.9	20.1	24.4	22.9
33	22.1	25.2	20.1	24.4	23.0
34		27.7	20.1	26.3	
	24.2				25.1
35	27.2	29.9	24.9	29.1	27.8
36	missing	missing	19.4	23.5	21.5
37	20.5	23.9	18.6	23.0	21.5
38	24.0	27.5	21.8	27.0	25.1
39	21.2	23.6	19.2	23.6	21.9
40	21.9	24.5	19.9	24.5	22.7
41	20.3	22.3	18.4	25.1	21.5
42	24.8	29.2	22.6	28.8	26.4
43	23.6	26.8	21.5	26.8	24.7
44 (control)	17.4	19.7	15.7	19.8	18.2
45 (transit control)	5.2	6.1	4.4	5.3	5.3
46	22.4	26.1	20.4	25.4	23.6
47	19.9	21.8	18.0	22.4	20.5
48	20.2	23.8	18.3	22.5	21.2
49	19.9	21.9	18.1	20.4	20.1
50	17.0	19.2	15.9	23.8	19.0
L					• •

FIGURE 9.1 NETWORK ENVIRONMENTAL TLD EXPOSURE RATES

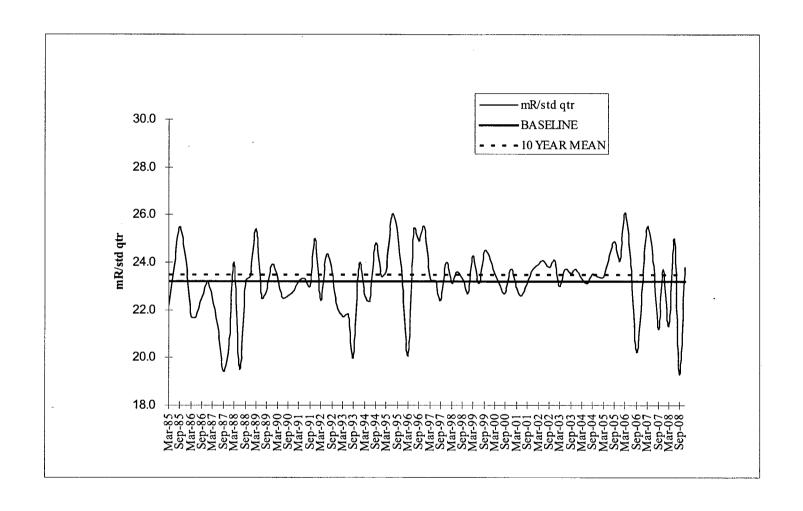
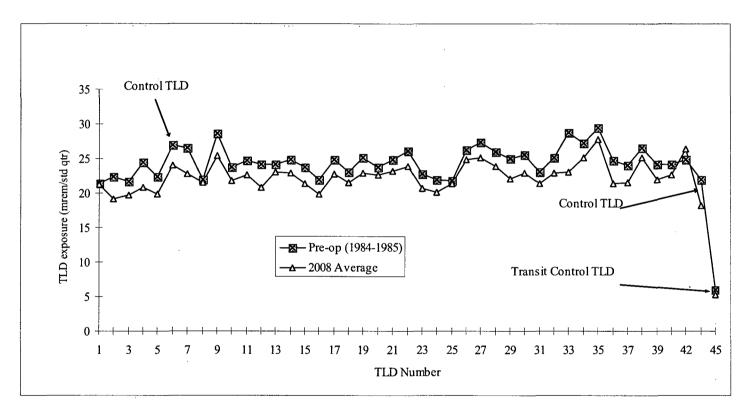



FIGURE 9.2 ENVIRONMENTAL TLD COMPARISON - PRE-OPERATIONAL VS 2008

The following TLDs are not included on this graph;

TLD #41 monitoring location was deleted in June, 2000 due to school closing (this TLD was placed at new school in 2004)

TLD #43 monitoring location was deleted in 1994 due to school closing (this TLD was placed at a new school in 2007)

TLDs #46-50 are not included since they were not included in the pre-op monitoring program

10. Land Use Census

10.1. Introduction

In accordance with the PVNGS ODCM, Section 6.2, the annual Land Use Census was performed within five miles of Unit 2 containment in March-April 2008.

Observations were made in each of the 16 meteorological sectors to determine the nearest milking animals, residences, and gardens of greater than 500 square feet. This census was completed by driving the roads and speaking with residents.

The results of the Land Use Census are presented in Table 10.1 and discussed below. The directions and distances listed are in sectors and miles from the Unit 2 containment.

10.2. Census Results

Nearest Resident

There were no changes in nearest resident status. Dose calculations indicated the highest dose to be 0.167 mrem.

Milk Animal

There was one (1) change in milk animal status. Dose calculations indicated the highest dose to be 0.337 mrem.

Vegetable Gardens

There were no changes in nearest garden status. Dose calculations indicated the highest dose to be 0.323 mrem.

See Table 10.1 for a summary of the specific results and Table 2.1 for current sample locations.

TABLE 10.1 2008 LAND USE CENSUS

(Distances and directions are relative to Unit 2 in miles)

· · · · · · · · · · · · · · · · · · ·				1		
	NEAREST	NEAREST	NEAREST	CALCULA	ATED DOSE	
SECTOR	RESIDENT	GARDEN	MILK ANIMAL	(m	rem)	CHANGE
			(COW/GOAT)			FROM 2007
N	1.55	3.10	NONE	Resident	4.50E-02	
				Garden	9.41E-02	
NNE	1.52	3.30	3.85	Resident	7.13E-02	MILK
				Garden	1.77E-01	
				Milk	1.61E-01	
NE	2.16	NONE	3.91	Resident	1.27E-01	
				Milk	3.37E-01	
ENE	2.16	2.63	4.84	Resident	8.98E-02	
				Garden	3.23E-01	
				Milk	1.35E-01	
E	2.81	NONE	NONE	Resident	6.84E-02	,
ESE	1.89	NONE	NONE	Resident	1.24E-01	
SE	3.36	NONE	NONE	Resident	8.80E-02	
SSE	NONE	NONE	NONE	NA		
S	NONE	NONE	NONE	NA		
SSW	NONE	NONE	NONE	NA		
SW	1.39	NONE	NONE	Resident	1.67E-01	
WSW	0.75	NONE	NONE	Resident	1.02E-01	
W	0.70	NONE	NONE	Resident	6.56E-02	
WNW	2.67	NONE	NONE	Resident	1.36E-02	
NW	0.93	NONE	NONE	Resident	5.14E-02	
NNW	1.30	NONE	NONE	Resident	4.57E-02	

COMMENTS:

Dose calculations were performed using the GASPAR code and 2007 meteorological data and source term. Dose reported for each location is the total for all three PVNGS Units and is the highest individual dose identified (organ, bone, total body, or skin).

11. Summary and Conclusions

The conclusions are based on a review of the radio assay results and environmental gamma radiation measurements for the 2008 calendar year. Where possible, the data were compared to pre-operational sample data.

All sample results for 2008 are presented in Tables 8.1-8.11 and <u>do not include observations of naturally occurring radionuclides</u>, with the exception of gross beta in air and gross beta in <u>drinking water</u>. Table 11.1 summarizes the ODCM required samples and is in the format required by the NRC BTP on Environmental Monitoring.

I-131 concentrations identified on occasion in the Evaporation Ponds, WRF Influent, WRF Centrifuge sludge, and Reservoirs is the result of offsite sources and appears in the effluent sewage from Phoenix. The levels of I-131 detected in these locations are consistent with levels identified in previous years.

Tritium concentrations identified in surface water onsite have been attributed to PVNGS permitted gaseous effluent releases and secondary plant releases. These concentrations are consistent with historical values.

Environmental radiation levels are consistent with measurements reported in previous Preoperational and Operational Radiological Environmental annual reports, References 1 and 2.

The only measurable impact on the environment in 2008 was the low level tritium discovered in subsurface water onsite in the Radiological Controlled Area in 2006. See Section 2.4 for specific information.

TABLE 11.1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Palo Verde Nuclear Generating Station Maricopa County, Arizona Docket Nos. STN 50-528/529/530 Calendar Year 2008

Sampled Number of (LLD) Name Mean (f) Nonro	ber of outine orted rements 0
Cunit of Analyses (from Table Mean (f) Distance and Range Mean (f) Range Measurement	orted rements
Measurement Performed Measurement Measurement Measurement Performed Measurement Measurement Measurement Performed Measurement Measurem	o
Direct Radiation TLD - 197 NA 22.4 (185/185) Site #35 27.8 (4/4) 21.1 (8/8)	0
Direct Radiation (mrem/std. qtr.) NA 22.4 (185/185) Site #35 27.8 (4/4) 21.1 (8/8) 15.9 - 29.9 8 miles 330° 24.9 - 29.9 15.7 - 27.5 Air Particulates Gross Beta - 526 0.010 0.033 (473/473) Site #15 0.035 (51/51) 0.036 (53/53) (pCi/m³) 0.016 - 0.067 2 miles 55° 0.018 - 0.063 0.020 - 0.073 Gamma Spec. Composite - 40 Cs-134 0.05 <lld <lld="" <lld<="" na="" td=""><td></td></lld>	
(mrem/std. qtr.) 15.9 - 29.9 8 miles 330° 24.9 - 29.9 15.7 - 27.5 Air Particulates (pCi/m³) Gross Beta - 526 0.010 0.033 (473/473) Site #15 0.035 (51/51) 0.036 (53/53) 0.016 - 0.067 2 miles 55° 0.018 - 0.063 0.020 - 0.073 Gamma Spec. Composite - 40 Cs-134 0.05 <lld< td=""> NA <lld< td=""> <lld< td=""></lld<></lld<></lld<>	
(mrem/std. qtr.) 15.9 - 29.9 8 miles 330° 24.9 - 29.9 15.7 - 27.5 Air Particulates (pCi/m³) Gross Beta - 526 0.010 0.033 (473/473) Site #15 0.035 (51/51) 0.036 (53/53) 0.016 - 0.067 2 miles 55° 0.018 - 0.063 0.020 - 0.073 Gamma Spec. Composite - 40 Cs-134 0.05 <lld< td=""> NA <lld< td=""> <lld< td=""></lld<></lld<></lld<>	
Air Particulates Gross Beta – 526 0.010 0.033 (473/473) Site #15 0.035 (51/51) 0.036 (53/53) (pCi/m³) 0.016 - 0.067 2 miles 55° 0.018 - 0.063 0.020 - 0.073 Gamma Spec. Composite - 40 Cs-134 0.05 <lld <lld="" <lld<="" na="" td=""><td>0</td></lld>	0
(pCi/m³) 0.016 - 0.067 2 miles 55° 0.018 - 0.063 0.020 - 0.073 Gamma Spec. Composite - 40 Cs-134 0.05 <lld <lld="" <lld<="" na="" td=""><td>0</td></lld>	0
(pCi/m³) 0.016 - 0.067 2 miles 55° 0.018 - 0.063 0.020 - 0.073 Gamma Spec. Composite - 40 Cs-134 0.05 <lld <lld="" <lld<="" na="" td=""><td></td></lld>	
Gamma Spec. Composite - 40 Cs-134 0.05 <lld< td=""> NA <lld< td=""> <lld< td=""></lld<></lld<></lld<>	
Composite - 40 Cs-134 0.05 < LLD NA < LLD < LLD	
0.44	0
Cs-137	0
Air Radioiodine Gamma Spec 526	
(pCi/m^3) I-131 0.07 <lld <lld="" <lld<="" na="" td=""><td>0</td></lld>	0
Broadleaf Gamma Spec 12	
	0
· · · · · · · · · · · · · · · · · · ·	0
	0
Ground Water H-3 – 8 2000 <lld <lld="" na="" na<="" td=""><td>0</td></lld>	0
(pCi/liter)	
Gamma Spec 8	
	٥
	0
	0
	0
	0
	0

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT - 2008

TABLE 11.1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Palo Verde Nuclear Generating Station Maricopa County, Arizona Docket Nos. STN 50-528/529/530 Calendar Year 2008

Medium or	T 1 T 1	Lower Limit of	All Indicator	Location with Hi	ghest Annual Mean	Control	Number of
Pathway	Type and Total	Detection	Locations	3.7	14 (08	Locations	Nonroutine
Sampled	Number of	(LLD)		Name	Mean (f) ^a		Reported
(Unit of	Analyses	(from Table	Mean (f) ^a	Distance and	Range	Mean (f) ^a	Measurements
Measurement)	Performed	6.1)	Range	Direction		Range	Ivicasurcincins
	Nb-95	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
Ground Water	I-131	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
(pCi/liter)	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
-continued-	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Gross Beta – 48	4.0	4.4 (29/48)	Site #55	4.8 (9/12)	NA	0
			2.5 - 7.8	3 miles 210°	3.5 - 7.8		
	H-3 – 16	2000	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Gamma Spec. – 48						
Drinking Water	Mn-54	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
(pCi/liter)	Fe-59	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
-	Co-58	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-60	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zn-65	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zr-95	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Nb-95	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	I-131	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0

TABLE 11.1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Palo Verde Nuclear Generating Station Maricopa County, Arizona

Docket Nos. STN 50-528/529/530 Calendar Year 2008

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection (LLD)	All Indicator Locations	Name	ghest Annual Mean Mean (f) ^a	Control Locations	Number of Nonroutine Reported
(Unit of	Analyses	(from Table	Mean (f) ^a	Distance and	Range	Mean (f) ^a	Measurements
Measurement)	Performed	6.1)	Range	Direction		Range	
	Gamma Spec. – 8						_
	I-131	1.0	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
Milk	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
(pCi/liter)	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	<u>La-140</u>	15	<lld_< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>00</td></lld<></td></lld<></td></lld_<>	NA	<lld< td=""><td><lld< td=""><td>00</td></lld<></td></lld<>	<lld< td=""><td>00</td></lld<>	00
	Gamma Spec 35 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-95 Nb-95	15 30 15 15 30 30 15	<lld <lld <lld <lld <lld <lld< th=""><th>NA NA NA NA NA NA</th><th><lld <lld="" <lld<="" th=""><th>NA NA NA NA NA NA</th><th>0 0 0 0 0 0</th></lld></th></lld<></lld </lld </lld </lld </lld 	NA NA NA NA NA NA	<lld <lld="" <lld<="" th=""><th>NA NA NA NA NA NA</th><th>0 0 0 0 0 0</th></lld>	NA NA NA NA NA NA	0 0 0 0 0 0
Surface Water (pCi/liter)	I-131	15	17 (7/35) 11 - 31	Site #61 Onsite 67°	18 (4/8) 14 - 31	NA	. 0
	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
Ţ	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0

TABLE 11.1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Palo Verde Nuclear Generating Station Maricopa County, Arizona

Docket Nos. STN 50-528/529/530 Calendar Year 2008

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection (LLD)	All Indicator Locations	Location with Hig	Mean (f) ^a	Control Locations	Number of Nonroutine Reported
(Unit of Measurement)	Analyses Performed	(from Table 6.1)	Mean (f) ^a Range	Distance and Direction	Range	Mean (f) ^a Range	Measurements
Surface Water (pCi/liter) -continued-	Н-3 - 15	3000	947 (8/15) 783 - 1111	Site #59 Onsite 180°	1020 (4/4) 913 - 1111	NA	0

(a) Mean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)

NOTE: Miscellaneous samples that are not listed on Tables 2.1 and 9.1 (not ODCM required) are not included on this table.

12. References

- 1. Pre-Operational Radiological Monitoring Program, Summary Report 1979-1985
- 2. 1985-2007 Annual Radiological Environmental Operating Reports, Palo Verde Nuclear Generating Station
- 3. Palo Verde Nuclear Generating Station Technical Specifications and Technical Reference Manual
- 4. Offsite Dose Calculation Manual, PVNGS Units 1, 2, and 3
- 5. Regulatory Guide 4.1, Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants
- 6. Regulatory Guide 4.8, Environmental Technical Specifications for Nuclear Power Plants
- 7. NRC Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979 (Incorporated into NUREG-1301)
- 8. NEI 07-07, Nuclear Energy Institute, Industry Ground Water Protection Initiative Final Guidance Document, August 2007