

Technical Specification Section 6.9.1.7 (Salem) Technical Specification Section 6.9.1.6 (Hope Creek)

APR 1 5 2009

LR-N09-0095

١

United States Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

> Hope Creek Generating Station Facility Operating License No. NPF-57 NRC Docket No. 50-354

Salem Nuclear Generating Station, Unit Nos. 1and 2 Facility Operating License Nos. DPR-70 and DPR-75 NRC Docket Nos. 50-272 and 50-311

Subject:

2008 Annual Radiological Environmental Operating Report

As required by Section 6.9.1.7 of Appendix A to Facility Operating Licenses DPR-70 and DPR-75 for Salem Generating Station Unit Nos. 1 and 2, and Section 6.9.1.6 of Appendix A to the Operating License NPF-57 for Hope Creek Generating Station, PSEG Nuclear hereby transmits one copy of the 2008 Annual Radiological Environmental Operating Report. This report summarizes the results of the radiological environmental surveillance program for 2008 in the vicinity of the Salem and Hope Creek Generating Stations. The result of this program for 2008 was specifically compared to the result of the pre-operational program.

There are no regulatory commitments contained in this correspondence.

Document Control Desk LR-N09-0095 Page 2

If you have any questions or comments on this transmittal, please contact Jon Sears at (856) 339-1773.

Sincerely,

John F. Perry V Plant Manager – Hope Creek

Jeorge Gellich

George H. Gellrich Plant Manager - Salem

Attachment - 2008 Annual Radiological Environmental Operating Report

Document Control Desk LR-N09-0095 Page 3

Mr. S. Collins, Administrator – Region 1
U. S. Nuclear Regulatory Commission
475 Allendale Road
King of Prussia, PA 19406

Mr. R. Ennis, Project Manager Salem & Hope Creek U. S. Nuclear Regulatory Commission One White Flint North Mail Stop O8 B1A 11555 Rockville Pike Rockville, MD 20852

Mr. Joseph T. Furia, NRC Inspector - Region 1 U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406

USNRC Senior Resident Inspector - Hope Creek (X24)

USNRC Senior Resident Inspector - Salem (X24)

Mr. P. Mulligan, Manager IV Bureau of Nuclear Engineering PO Box 415 Trenton, New Jersey 08625

Ms. J. Chomiszak Delaware Emergency Management Agency 165 Brick Store Landing Road Smyrna, DE 19977

Hope Creek Commitment Tracking Coordinator (H02)

Salem Commitment Tracking Coordinator (X25)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

For

Salem Generating Station, Unit 1: Docket No. 50-272 Salem Generating Station, Unit 2: Docket No. 50-311 Hope Creek Generating Station : Docket No. 50-354

2008 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT JANUARY 1 TO DECEMBER 31, 2008

Prepared by PSEG POWER LLC MAPLEWOOD TESTING SERVICES APRIL 2009

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SALEM & HOPE CREEK GENERATING STATIONS

2008 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

JANUARY 1 TO DECEMBER 31, 2008

TABLE OF CONTENTS

PAGE

SUMMARY	1
THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	4
Objectives	5
Data Interpretation	7
Quality Assurance Program	8
Results and Discussion	10
Atmospheric	11
Direct Radiation	13
Terrestrial	14
Aquatic	21
Program Deviations	27
Hope Creek Technical Specification Limits for Primary Water Iodine Concentrations	28
Conclusions	28
REFERENCES	40
APPENDIX A - PROGRAM SUMMARY	43
APPENDIX B - SAMPLE DESIGNATION AND LOCATIONS	49
APPENDIX C - DATA TABLES	57
APPENDIX D - SUMMARY OF RESULTS FROM ANALYTICS, ENVIRONMENTAL RESOURCE ASSOCIATES, AREVA E-LAB INTERLABORATORY COMPARISON PROGRAMS	87
APPENDIX E - SYNOPSIS OF LAND USE CENSUS	97
APPENDIX F – RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM	101

i

LIST OF TABLES

NUMBER	TABLE DESCRIPTION PAGE
1.	Salem and Hope Creek Generating Stations' Radiological Environmental Monitoring Program
4	and the second secon
· · · · · ·	The state was a stability of the state of th
	n su se l'in le délining perfinent per la present d'active de la complete de la complete de la complete de la c
· .	
FIGURE	
	FIGURE DESCRIPTION PAGE
1.	Gross Beta Activity in Air Particulate 1988 through 2008 (Quarterly)
2.	Ambient Radiation - Off-site vs Control Station 1988 through 2008 (Quarterly)
3.	Iodine-131 Activity in Milk 1988 through 2008 (Quarterly)
4.	Gross Beta Activity in Surface Water 1988 through 2008 (Quarterly)
5.	Tritium Activity in Surface Water 1988 through 2008 (Quarterly)
6.	Cesium-137 and Cobalt-60 Activity in Aquatic Sediment 1988 through 2008 (Semi-Annual)
1	
	en en la state de la seconda de la second
· ·	
· · · · ·	

SUMMARY

During normal operations of a nuclear power generating station there are releases of small amounts of radioactive material to the environment. To monitor and determine the effects of these releases a Radiological Environmental Monitoring Program (REMP) has been established for the environment around Artificial Island where the Salem Generating Station (SGS) and Hope Creek Generating Station (HCGS) are located. The results of the REMP are published annually, providing a summary and interpretation of the data collected [10].

PSEG's Maplewood Testing Services (MTS) has been responsible for the collection and analysis of environmental samples during the period of January 1, 2008, through December 31, 2008, and the results are discussed in this report. The REMP was conducted in accordance with the SGS and HCGS Technical Specifications (TS) and Offsite Dose Calculation Manual (ODCM) [14,15]. The Lower Limit of Detection (LLD) values required by the Technical Specifications and ODCM were achieved for the 2008 reporting period. The REMP objectives were also met during this period. The data that was collected in 2008 assists in demonstrating that SGS and HCGS were operated in compliance with Technical Specifications and ODCM.

Most of the radioactive materials noted in this report are normally present in the environment, either naturally, such as potassium-40, or as a result of non-nuclear generating station activity, such as nuclear bomb testing. Measurements made in the vicinity of SGS/HCGS were compared to background or control measurements and the preoperational REMP study performed before Salem Unit 1 became operational. Samples of air particulates; air iodine; milk; surface, ground and drinking water; vegetables; fodder crops; fish; crabs; and sediment were collected and analyzed. External radiation dose measurements were also made in the vicinity of SGS/HCGS using thermoluminescent dosimeters (TLD).

From the results obtained, it can be concluded that the levels and fluctuations of radioactivity in environmental samples were as expected for an estuarine environment.

The concentration of radioactive material in the environment that could be attributable to Salem and Hope Creeks stations operations was only a small fraction of the concentration of naturally occurring and man-made radioactivity. Since these results were comparable to the results obtained during the preoperational phase of the program [7,8,9], and with historical results collected since commercial operation [10], we can conclude that the operation of SGS and HCGS had no significant radiological impact on the environment.

To demonstrate compliance with Technical Specifications and ODCM (Sections 3/4.12.1 & 6.8.4.h –1,2,3) [14,15], samples were analyzed for one or more of the following: gamma emitting isotopes, tritium (H-3), iodine-131 (I-131), gross beta and gross alpha. The results of these analyses were used to assess the environmental impact of SGS and HCGS operations, thereby demonstrating compliance with Technical Specifications and ODCM (Section 3/4.11) and applicable Federal and State regulations [19,20,21], and to verify the adequacy of radioactive effluent control systems. The results provided in this report are summarized below.

- There were a total of 1221 analyses on 865 environmental samples during 2008. Direct radiation dose measurements were made using 196 thermoluminescent dosimeters (TLDs).
- In addition to the detection of naturally occurring isotopes (i.e. Be-7, K-40, Radium and Th-232) trace levels of H-3 were also detected in surface water. The tritium concentration in these surface water samples was slightly above minimum detectable concentrations.
- Dose measurements made with quarterly TLDs at offsite locations around the SGS/HCGS site averaged 52 millirems for the year 2008. The average of the dose measurements at the control locations (background) was 54 millirems for the year. This was comparable to the levels prior to station operation which had an average of 55 millirems per year for 1973 to 1976.

Appendix F contains the annual report on the status of the Radiological Groundwater Protection program (RGPP) conducted at Salem and Hope Creek Stations. The RGPP was initiated by PSEG to determine whether groundwater at and in the vicinity of Salem and Hope Creek Stations had been adversely impacted by any release of radionuclides that was not previously identified. The RGPP is being implemented by PSEG in conjunction with a nuclear industry initiative and associated guidance.

ur sarahan sur

Salem

The 2008 results of the laboratory analysis indicated that tritium was detected in five of thirteen RGPP monitoring wells at Salem and all results were less than 1000 pCi/L.

品。除了一些的中国。我们还会和中国的公司,如此自己的C的合物通过的通行,并且是不是。

1999年1月1日,1999年1月1日,1999年1月1日,1999年1日,199

while of Shield water dealers be added to

Hope Creek

• The 2008 results of the laboratory analysis indicated that tritium was detected in six of thirteen RGPP monitoring wells at Hope Creek and all results were less than 1000 pCi/L.

The results are shown in Appendix F, in Tables 4A and 4B. The tritium concentrations measured in the onsite monitoring wells were below the U.S. Nuclear Regulatory Commission Reporting Levels.

PSEG Nuclear is continuing remedial actions for tritium identified in shallow groundwater at Salem Station, conducted in accordance with a Remedial Action Work Plan that was approved by the New Jersey Department of Environmental Protection – Bureau of Nuclear Engineering (NJDEP-BNE) in November 2004. The Groundwater Recovery System (GRS) is in operation, providing hydraulic control of the plume and effectively removing tritium contaminated groundwater. The tritium contaminated groundwater is disposed of in accordance with Salem Station's liquid radioactive waste disposal program. There is no evidence or indication that tritium contaminated water above Ground Water Quality Criteria (GWQC) levels [GWQC is <20,000 pCi/L] has migrated to the station boundary or the Delaware River.

·3

THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Lower Alloways Creek Township, Salem County, New Jersey is the site of Salem (SGS) and Hope Creek (HCGS) Generating Stations. SGS consists of two operating pressurized water nuclear power reactors. Salem Unit One has a net rating of 1195 megawatt electric(MWe) and Salem Unit Two has a net rating of 1196 MWe. The licensed core power for both units is 3459 megawatt thermal (MWt). HCGS is a boiling water nuclear power reactor, which has a net rating of 1265 MWe (3840 MWt).

SGS/HCGS are located on a man-made peninsula on the east bank of the Delaware River. It was created by the deposition of hydraulic fill from dredging operations. The environment surrounding SGS/HCGS is characterized mainly by the Delaware River Estuary and Bay, extensive tidal marshlands, and low-lying meadowlands. These land types make up approximately 85% of the land area within five miles of the site. Most of the remaining land is used for agriculture [1,2]. More specific information on the demography, hydrology, meteorology, and land use of the area may be found in the Environmental Reports [1,2], Environmental Statements [3,4], and the Updated Final Safety Analysis Reports for SGS and HCGS [5,6].

Since 1968, a radiological environmental monitoring program (REMP) has been conducted at the SGS/HCGS Site. Starting in December, 1972, more extensive radiological monitoring programs were initiated [7,8,9]. The operational REMP was initiated in December, 1976, when Salem Unit 1 achieved criticality. PSEG's Maplewood Testing Services (MTS) has been involved in the REMP since its inception. MTS is responsible for the collection of all radiological environmental samples and, from 1973 through June, 1983, conducted a quality assurance program in which duplicates of a portion of those samples analyzed by the primary laboratory were also analyzed by MTS.

From January, 1973, through June, 1983, Radiation Management Corporation (RMC) had primary responsibility for the analysis of all samples under the SGS/HCGS REMP and annual reporting of results.

RMC reports for the preoperational and operational phase of the program are referenced in this report [7-9]. On July 1, 1983, MTS assumed primary responsibility for the analysis of all samples (except TLDs) and the reporting of results. Teledyne Brown Engineering Environmental Services (TBE), assumed responsibility for third-party QA analyses and TLDs. An additional vendor, Controls for Environmental Pollution Inc. (CEP), was retained to provide third-party QA analyses and certain non-routine analyses from May, 1988, until June 1, 1992. Currently, AREVA NP, Inc. Environmental Laboratory (AREVA) is the third party QA vendor and the laboratory which performs the TLD analyses. MTS reports for the operational phase from 1983 to 2007 are referenced in this report [10].

An overview of the 2008 REMP is provided in Table 1, Salem and Hope Creek Generating Stations Radiological Environmental Monitoring Program. Radioanalytical data from samples collected under this program were compared with results from the preoperational phase. Differences between these periods were examined statistically to determine the effects of station operations. This report presents the results from January 1 through December 31, 2008, for the SGS/HCGS REMP

OBJECTIVES

LE STI BO VALLER

a har the the take street and har

an new years of the second second second

State in the pedmersed in print in the second seco second sec

The objectives of the operational REMP are server (server) and a strong to the server of the server

- To fulfill the requirements of the Radiological Surveillance sections of the Technical Specifications and ODCM for SGS/HCGS
- To determine whether any significant increase occurred in the concentration of radionuclides in critical pathways.
- To determine if SGS or HCGS has caused an increase in the radioactive inventory of long-lived radionuclides.

- To detect any change in ambient gamma radiation levels.
- To verify that SGS and HCGS operations have no detrimental effects on the health and safety of the public or on the environment.

This report, as required by Section 6.9.1.7 of the Salem Technical Specifications [12] and ODCM [14] and Section 6.9.1.6 of the Hope Creek Technical Specifications [13] and ODCM [15], summarizes the findings of the 2008 REMP. Results from the formal 1973 through 1976 preoperational program were summarized by RMC and have been used for comparison with subsequent operational reports [8].

In order to meet the objectives, an operational REMP was developed. Samples of various media were selected for monitoring due to the radiological dose impact to human and other organisms. The selection of samples was based on: (1), established critical pathways for the transfer of radionuclides through the environment to man, and, (2), experience gained during the preoperational phase. Sampling locations were determined based on site meteorology, Delaware estuarine hydrology, local demography, and land uses.

Sampling locations were divided into two classes, indicator and control. Indicator stations are those which are expected to manifest station effects. Control samples are collected at locations which are believed to be unaffected by station operations, usually at 15 to 30 kilometers distance. Fluctuations in the levels of radionuclides and direct radiation at indicator stations are evaluated with respect to analogous fluctuations at control stations. Indicator and control station data are also evaluated relative to preoperational data.

Appendix A, Program Summary, describes and summarizes the analytical results in accordance with Section 6.9.1.7 of the Salem TS and Section 6.9.1.6 of the Hope Creek TS [25,26,27]. Appendix B, Sample Designation, describes the coding system which identifies sample type and location. Table B-1 On-site Sampling Locations lists the station codes, stations location, latitude, longitude, and the types of samples collected at each station.

These sampling stations are indicated on Maps B-1, Onsite Sampling Locations and B-2, Offsite Sampling Locations.

DATA INTERPRETATION

Results of analyses are grouped according to sample type and presented in Appendix C, Data Tables. All results above the Lower Limit of Detection (LLD) are at a confidence level of 2 sigma. This represents the range of values into which 95% of repeated analyses of the same sample should fall. As defined in U.S. Nuclear Regulatory Commission Regulatory Guide 4.8, LLD is the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability, with only 5% probability of falsely concluding that a blank observation represents a "real signal". LLD is normally calculated as 4.66 times the standard deviation of the background counting rate, or of the blank sample count, as appropriate, divided by counting efficiency, sample size, 2.22 (dpm per picocurie), the radiochemical yield when applicable, the radioactive decay constant and the elapsed time between sample collection and time of counting. The Minimum Detectable Concentration (MDC) is defined as the smallest concentration of radioactive material that can be detected at a given confidence level. The MDC differs from the LLD in that the MDC takes into consideration the interference caused by the presence of other nuclides while the LLD does not. Se ve be beits, black is hevere a s

The grouped data were averaged and standard deviations calculated in accordance with Appendix B of Reference 16. Thus, the 2 sigma deviations of the averaged data represent sample and not analytical variability. For reporting and calculation of averages, any result occurring at or below the LLD is considered to be at that level. When a group of data was composed of 50% or more LLD values, averages were not calculated.

12

.7

QUALITY ASSURANCE PROGRAM

MTS has a quality assurance program designed to ensure confidence in the analytical program. Approximately 10 -15% of the total analytical effort is spent on quality control, including process quality control, instrument quality control, interlaboratory cross-check analyses, and data review/evaluation.

The quality of the results obtained by MTS is ensured by the implementation of the Quality Assurance Program as described in the Maplewood Testing Services Quality Assurance Plan [11a], the Maplewood Testing Services Mechanical Division Quality Assurance Plan [11b], and the Maplewood Testing Services Mechanical Division Environmental/Radiological Group Procedure Manual [11c].

The internal quality control activity of MTS includes the quality control of instrumentation, equipment and reagents, the use of reference standards in calibration, documentation of established procedures and computer programs, analysis of blank samples, and analysis of duplicate samples. The external quality control activity is implemented through participation in the Analytics Environmental Cross Check (ECC), AREVA and the Environmental Resource Associates (ERA) Interlaboratory Comparison Programs. MTS's internal QC results are evaluated in accordance with the NRC Resolution Criteria [18]. This criteria is also used for the Analytics Environmental Crosscheck Program results. ERA's RadCheM[™] Proficiency Testing (PT) studies have been evaluated by comparing MTS results to the acceptance limits and evaluation criteria contained in the NELAC standards, National Environmental Laboratory Accreditation Conference (NELAC) PT Field of Testing list (October 2007). (The results of these three Interlaboratory Comparison Programs are listed in Tables D-1 through D-4 in Appendix D).

A total of 89 analysis results were obtained in the Cross Check, Interlaboratory Comparison and Proficiency Testing programs. Eighty-four (84) passed the applicable criteria, this translates to a 94% acceptance rate.

The five medias and analysis which disagreed with the criteria were: water/gross beta, water/gross alpha, air particulate/ Cr-51 Gamma Spec, air particulate/ Mn-54 Gamma Spec and air particulate/ Fe-59 Gamma Spec. The cause for these disagreements and the corrective actions are provided below.

The result disagreement for the gross beta analysis and gross alpha analysis for the Analytics ECC water was attributed to intermittent count (data) reproducibility problems with our Series 5XLB gas proportional counter. A field service technician was called in. The resolution, a new computer model was installed with the latest version (v3.1.2) of the Eclipse LB software and firmware.

The results disagreement for the gamma spec results on the Analytics air filter are attributable to a combination of uneven mixed standard distribution on the calibration filter prepared by MTS, and geometry differences in the active area on Analytics ECC air filter. The MTS resolution is to have Analytics prepare both a mixed gamma APT filter standard and the ECC filter for analysis in the same 47 mm geometry used by MTS.

The Quality Assurance program for environmental TLDs includes independent third party performance testing by the Pacific Northwest National Laboratory and internal performance testing conducted by the AREVA Laboratory Quality Assurance Officer.

Under these programs, sets of six dosimeters are irradiated to ANSLN545, Performance Testing and Procedural Specifications for Thermoluminescent Dosimetry (Environmental) [29], and submitted for processing as "unknowns.". The bias and precision of TLD processing is measured against the guidance in U. S. Nuclear Regulatory Commission Regulatory Guide 4.13 Performance, Testing, and Procedural Specifications for Thermoluminescence Dosimetry: Environmental Applications [23] and is trended over time to indicate changes in TLD processing performance.

The AREVA Lab conducted internal performance tests in 2008. These tests were conducted on fifteen separate sets of six environmental dosimeters. All of the fifteen TLD test sets passed the mean bias criteria of $\pm 20.1\%$.

;9

Of the ninety individual measurements, all of the individual dosimeter evaluations met the E-LAB Internal Acceptance Criteria for bias (±20.1%) and precision (±12.8) (see Table D-5).

The Pacific Northwest National Laboratory performed third party performance tests for the AREVA Lab. The third party dosimeters were irradiated and analyzed along with second and fourth quarter client dosimeters. Both sets of six dosimeters passed the mean bias criteria of ±20.1%. All twelve dosimeter evaluations met the E-LAB individual acceptance criteria for bias $(\pm 20.1\%)$ and precision (± 12.8) (see Table D-6).

RESULTS AND DISCUSSION 化乙酸 化可能定理 化过程分子 化过程

the management of the second second

The analytical results of the 2008 REMP samples are divided into categories based on exposure pathways: atmospheric, direct, terrestrial, and aquatic. The analytical results for the 2008 REMP are summarized in Appendix A, Program Summary. The data for individual samples are presented in Appendix C, Data Tables. The data are compared to the formal pre-operational environmental monitoring program data (1973-1976) and to historical data. The data collected demonstrates that the SGS and HCGS REMP was conducted in compliance with the Technical Specifications and ODCM. 11 J. (C.

The state of the state of the

The REMP for the SGS/HCGS Site has historically included samples and analyses not specifically required by these Stations' Technical Specifications and ODCM. These analyses are referenced throughout the report as Management Audit samples. MTS continues to collect and analyze these samples in order to maintain personnel proficiency in performing these non-routine analyses. The summary tables in this report include these additional samples and analyses.

4.1.

te e e

and a star and a star a st

计学员 网络人名法博尔内姓氏人

10

and the second state of the second state of the

ATMOSPHERIC

Air particulates were collected on Schleicher-Schuell No. 25 glass fiber filters with lowvolume air samplers.

lodine was collected from the air by adsorption on triethylene-diamine (TEDA) impregnated charcoal cartridges connected in series after the air particulate filters. Air sample volumes were measured with calibrated dry-gas meters. The displayed volumes were corrected to standard temperature and pressure.

Air Particulates (Tables C-1, C-2)

Air particulate samples were collected weekly, at 6 locations. Each of the samples (see Program Deviations) collected for the year were analyzed for gross beta. Quarterly composites of the weekly samples from each station were analyzed for specific gamma emitters. Total air sampler availability for the 6 sampling stations in 2008 was 98.7 percent.

- Gross beta activity was detected in all of the indicator station samples collected at concentrations ranging from 7.0 x 10⁻³ to 57 x 10⁻³ pCi/m³ and in all of the control station samples from 8.9 x 10⁻³ to 51 x 10⁻³ pCi/m³. The average for both the indicator and control station samples was 22 x 10⁻³ pCi/m³. The maximum preoperational level detected was 920 x 10⁻³ pCi/m³, with an average of 74 x 10⁻³ pCi/m³. Results for gross beta analysis from 1988 to current year are plotted on Figure 1 as quarterly averages. Included along with this plot, for purposes of comparison, is an inset depicting a continuation of this plot from the current year all the way back to 1973.
- Gamma spectroscopy, performed on each of the 24 quarterly composite samples analyzed, indicated the presence of the naturally-occurring radionuclides Be-7, K-40 and RA-NAT. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.

- Beryllium-7, attributed to cosmic ray activity in the atmosphere, was detected in all 20 indicator station composites that were analyzed, at concentrations ranging from 63 x 10⁻³ to 102 x 10⁻³ pCi/m³, with an average of 81 x 10⁻³ pCi/m³. It was detected in the 4 control station composites ranging from 62 x 10⁻³ to 95 x 10⁻³ pCi/m³, with an average of 80 x 10⁻³ pCi/m³. The maximum preoperational level detected was 330 x 10⁻³ pCi/m³, with an average of 109 x 10⁻³ pCi/m³.
- Potassium-40 activity was detected in all 20 of the indicator station samples, with concentrations ranging from 8.0 x 10⁻³ to 17 x 10⁻³ pCi/m³, and an average of 11 x 10⁻³ pCi/m³. K-40 was also detected in all 4 control station samples, at concentrations of 8.0 X 10⁻³ to 11 x 10⁻³ and an average of 10 X 10⁻³. No preoperational data is available for comparison.
- RA-NAT was only detected in 3 indicator station samples at concentrations ranging from 0.8 to 1.1×10^{-3} pCi/L, with an average of 1×10^{-3} pCi/L. It was not detected in any of the control station samples. No preoperational data is available for comparison.

Air Iodine (Table C-3)

Iodine in filtered air samples was collected weekly, at 6 locations. Each of the samples collected (see Program Deviations) for the year was analyzed for I-131.

「個時的時間」と語いた。ひていたが、

lodine-131 was not detected above minimum detectable concentrations in any of the weekly samples analyzed. Minimum detectable concentrations for all the stations, both indicator and control, ranged from $<1.0 \times 10^{-3}$ to $<8.5 \times 10^{-3}$ pCi/m³. The maximum preoperational level detected was 42 x 10⁻³ pCi/m³.

DIRECT RADIATION

Ambient radiation levels in the environs were measured with a pair of Panasonic thermoluminescent dosimeters (TLDs) supplied and read by AREVA NP E-Lab. Packets containing TLDs for quarterly exposure were placed in the owner-controlled area and around the Site at various distances and in each land based meteorological sector. Emphasis was placed on special interest areas such as population centers, nearby residences, and schools.

Direct Radiation (Table C-4)

A total of 49 locations were monitored for direct radiation during 2008, including 12 on-site locations, 31 off-site locations within the 10 mile zone, and 6 control locations beyond 10 miles.

急がに 読みたい きたいな 繰り入せい

er en en trefert

人名布特德德德 化氯化物 化合物物 感觉 法分支人

Each location gets a pair of Panasonic TLDS packaged together. This pair consist of 1 UD-801 TLD which contains 2 lithium and 2 calcium elements and 1 UD-814 TLD which contains 1 lithium and 3 calcium elements. To calculate the stations exposure, AREVA averages the 5 calcium elements to obtain a more statistically valid result. Then they perform a T test to identify any outliers. These outliers are removed and would reduce the number of elements used. For these measurements, the rad is considered equivalent to the rem, in accordance with 10CFR20.1004.

The average dose rate for the 31 quarterly off-site indicator TLDs was 4.3 millirads per standard month, while the on-site average was 4.2 millirads per standard month. The average control rate was similar at 4.5 millirads per standard month. The preoperational average for the guarterly TLD readings was 4.4 millirads per standard month.

In Figure 2, the quarterly average radiation levels of the off-site indicator stations versus the control stations, are plotted for the period 1988 through 2008, with an inset graph depicting the current year back to 1973.

The results of the direct radiation measurements for 2008 confirmed that the radiation levels in the vicinity of the Salem and Hope Creek Generating Stations were similar to previous years.

TERRESTRIAL

Milk samples were taken semi-monthly when cows were on pasture and monthly when cows were not grazing on open pasture. Animals are considered on pasture from April to November of each year. Samples were collected in polyethylene containers and transported in ice chests with no preservatives added to the milk.

A well water sample was collected monthly. Separate raw and treated potable water samples were composited daily at the City of Salem Water and Sewer Department. All samples were collected in new polyethylene containers.

Locally grown vegetable and fodder crops were collected at the time of harvest with the exception of ornamental cabbage. MTS personnel planted, maintained and harvested this broad leaf crop in the fall from three locations on site and one across the river. All samples were weighed and packed in plastic bags.

Milk (Table C-5)

Milk samples were collected at 4 local dairy farms (2 farms in NJ and 2 in Delaware). Each sample was analyzed for I-131 and gamma emitters.

 Iodine-131 was not detected above minimum detectable concentration in any of the 80 samples analyzed. LLD's for both the indicator and the control station samples ranged from <0.1 to 0.3 pCi/L. The maximum preoperational level detected was 65 pCi/L which occurred following a period of atmospheric nuclear weapons tests. Results from 1988 to 2008 are plotted on Figure 3, with an inset graph depicting the current year back to 1973.

- Gamma spectroscopy performed on each of the 80 samples indicated the presence of the naturally-occurring radionuclides K-40 and RA-NAT. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.
 - Potassium-40 was detected in all 80 samples. Concentrations for the 60 indicator station samples ranged from 1120 to 1470 pCi/L, with an average of 1340 pCi/L. The 20 control station sample concentrations ranged from 1200 to 1390 pCi/L, with an average of 1290 pCi/L. The maximum preoperational level detected was 2000 pCi/L, with an average of 1437 pCi/L.
 - RA-NAT was detected in only one of the indicator station samples at a concentration of 113 pCi/L. It was not detected above the minimum detectable concentration in any of the control station samples. The preoperational had an average of 3.8 pCi/L and a range of 1.5 to 11 pCi/L.

山楂 推进的 网络小小属 动力的

Well Water (Ground Water) (Tables C-6, C-7)

Although wells in the vicinity of SGS/HCGS are not directly affected by plant operations, water samples were collected monthly from one farm's well (3E1) during January through December of the year. This well is located upgradient of the stations aquifer. Each management audit sample was analyzed for gross alpha, gross beta, tritium, and gamma emitters.

н <u>г</u>

- Gross alpha activity was detected in one of the well water samples at a concentration of 1 pCi/L. LLD's ranged from <0.5 to 1.2 pCi/L. The maximum preoperational level detected was 9.6 pCi/L. There was no preoperational average determined for this analysis.
- Gross beta activity was detected in all 12 well water samples. Concentrations for the samples ranged from 8.4 to 12 pCi/L, with an average of 10 pCi/L. The 2008 gross beta results are comparable with the preoperational results which ranged from <2.1 to 38 pCi/L, with an average value of 9 pCi/L.

经济资产 网络黑衣 前收于 网络红萝卜

- Tritium activity was not detected above the minimum detectable concentration in any of the well water samples. The MDC ranged from <134 to <155 pCi/L. The maximum preoperational level detected was 380 pCi/L. There was no preoperational average determined for this analysis.
 - Gamma spectroscopy performed on each of the 12 well water samples indicated the presence of the naturally-occurring radionuclides K-40 and RA-NAT. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.
 - president for eller explored and realized and the president press of the second states of the

the test for

新加加 撬 行力 化铁合合体物 法所庭 网络发生的动物 白

 RA-NAT was detected in all 12 of the well water samples at concentrations ranging from 66 to 254 pCi/L with an average of 138 pCi/L. The maximum preoperational level detected was 2.0 pCi/L. There was no preoperational average determined for this analysis.

These values are similar to those found in the past 19 years. However, as with the 1989 through 2007 results, they are higher than those found in the preoperational program. These results are due to a procedural change instituted in 1989 for water sample preparation.

This change results in less removal of radon (and its daughter products) from the sample, which causes the higher numbers we are recording. It is reasonable to conclude that values currently observed are typical for this region. [28]

Potassium-40 was detected in 2 of the samples at concentrations of 48 and 61 pCi/L. The maximum preoperational level detected was 30 pCi/L. There was no preoperational average determined for this analysis.

a state and the set of the second of

Potable Water (Drinking Water) (Tables C-8, C-9)

Both raw and treated potable water samples were collected and composited by The City of Salem Water and Sewer Department personnel. Each sample consisted of daily aliquots composited into a monthly sample. The raw water source for this plant is Laurel Lake and its adjacent wells. These are management audit samples as no liquid effluents discharged from SGS/HCGS will directly affect this pathway. Each of the 24 individual samples was analyzed for gross alpha, gross beta, tritium, iodine-131 and gamma emitters.

Gross alpha activity was detected in 3 raw water samples at concentrations of 0.4 to 0.6 pCi/L. It was not detected in any of the treated water samples. Minimum detectable concentrations for the remaining 21 samples (both treated and raw) ranged from <0.4 to <0.6 pCi/L. The maximum preoperational level detected was 2.7 pCi/L. There was no preoperational average determined for this analysis.

and the production of the second of the

无可见 网络花叶 网络白色 禁止 计开始分析 的

Gross beta activity was detected in all 24 of the raw and treated water samples. The raw samples were at concentrations ranging from 2 to 3.2 pCi/L. Concentrations for the treated water ranged from 1.9 to 3.5 pCi/L. The average concentration for both raw and treated was 2.7 pCi/L. The maximum preoperational level detected was 9.0 pCi/L, with an average of 4.2 pCi/L.

- Tritium activity was not detected above minimum detectable concentration in any of the raw or treated potable water samples. MDC's for the raw and treated samples ranged from <139 to <155 pCi/L. The maximum preoperational level detected was 350 pCi/L, with an average of 179 pCi/L.
- Iodine-131 measurements were performed to an LLD of 1.0 pCi/L, even though the drinking water supplies are not affected by discharges from the Site. Additionally, the receiving water body (Delaware River) is brackish and therefore the water is not used for human consumption.

.

Todine-131 measurements for all 24 samples were below the minimum detectable concentration. These values ranged from <0.1 to <0.3 pCi/L. There was no preoperational data available for comparison.

网络小银属 动物的 神经

- Gamma spectroscopy performed on each of the 24 monthly water samples indicated the presence of the naturally-occurring radionuclides K-40 and RA-NAT. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.
- The radionuclide K-40 was detected in 6 of the treated potable waters at concentrations ranging from 28 to 57 pCi/L. It was detected in 9 of the raw potable water samples at concentrations from 8.0 to 57 pCi/L. The average for both raw and treated results was 33 pCi/L. LLD's for the remaining 9 potable water samples were <10 to <16 pCi/L. There was no preoperational data available for comparison.
 - RA-NAT was detected in 4 of the treated potable waters at concentrations ranging from 3.0 to 24 pCi/L. It was detected in 1 of the raw potable water samples at a concentration of 9.0 pCi/L. LLD's for the remaining 19 samples were <1.5 to <4.2 pCi/L. The maximum preoperational level detected was 1.4 pCi/L.

There was no preoperational average determined for this analysis. The higher results in the three measurable samples are due to the procedural change for sample preparation, as discussed in the Well Water section.

All a set to such as a

s of the multiplice. When yes " underface of

Vegetables (Table C-10)

the Constant of Berneher of the Arminetter of the

Although vegetables in the region are not irrigated with water into which liquid plant effluents have been discharged, a variety of food products grown in the area for human consumption were sampled at 5 indicator stations (14 samples) and 5 control stations (13 samples). These vegetables, collected as management audit samples, were analyzed for gamma emitters and included asparagus, cabbage, sweet corn, peppers, and tomatoes.

Gamma spectroscopy performed on each of the 27 samples indicated the presence of the naturally-occurring radionuclide K-40. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.

Potassium-40 was detected in all 27 samples. Concentrations for the 14 indicator station samples ranged from 1370 to 2620 pCi/kg-wet and averaged 1950 pCi/kg-wet. Concentrations for the 13 control station samples ranged from 1380 to 2240 pCi/kg-wet, and averaged 1920 pCi/kg-wet. The average concentration detected for all samples, both indicator and control, was 1940 pCi/kg-wet. The maximum preoperational level detected was 4800 pCi/kg-wet, with an average of 2140 pCi/kg-wet.

Fodder Crops (Table C-11)

Although not required by the SGS or HCGS Technical Specifications and ODCM, 6 samples of crops normally used as cattle feed (silage and soybeans) were collected from four indicator stations (4 samples) and one control station (2 samples). It was determined that these products may be a significant element in the food-chain pathway. These fodder crops are collected as management audit samples and analyzed for gamma emitters. All four locations from which samples were collected this year are milk sampling stations.

In addition to the silage and soybean, ornamental cabbage was planted and maintained by MTS personnel at 3 locations on site and 1 in Delaware, at 3.9 miles. These samples were harvested in December. These broad leaf vegetation samples were deemed necessary since there are no longer any milk farms operating within the 5 km radius of SGS/HCGS. The closest milk farm we have is located in Odessa, DE at 4.9 miles (7.88 km).

Gamma spectroscopy performed on each of the 10 samples indicated the presence of the naturally-occurring radionuclides Be-7, K-40 plus RA-NAT in one sample. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.

 $(1, \dots, n_{n-1}) \in \mathbb{N}$

na de especial processes a la

- Beryllium-7, attributed to cosmic ray activity in the atmosphere, was detected in 3 of the indicator silage samples at concentrations from 142 to 255 pCi/kg-wet. It was detected in the control station silage sample at 137 pCi/kg-wet. The maximum preoperational level detected for silage was 4700 pCi/kg-wet, with an average of 2000 pCi/kg-wet. Be-7 was not detected in either the indicator nor control station soybean samples. The maximum preoperational level detected for soybean samples was 9300 pCi/kg-dry. Be-7 was detected in 1 of the ornamental cabbage samples at a concentration of 167 pCi/kg-wet. There was no preoperational data available for comparison with this type of samples.
- Potassium-40 was detected in all 10 of the vegetation station samples. The combined average for the indicator station samples was 4430 pCi/kg-wet. The average for the 2 control station vegetation samples was 7570 pCi/kg-wet. The average concentration detected for the silage samples (both indicator and control) was 2770 pCi/kg-wet. Preoperational results averaged 7000 pci/kg-wet. Results for the soybean samples (indicator and control) was 14700 pCi/kg-wet.

Preoperational soybean results averaged 22000 pCi/kg-dry. The average concentration of K-40 for the 4 ornamental cabbage samples was 2740 pCi/kg-wet. There was no preoperational data available for comparison with these samples.

78 - George 1973 - 198

RA-NAT was detected in 1 of the control soybean samples at a concentration of 11 pCi/kg-wet. MDC's for all the remaining vegetation samples, both indicator and control, ranged from <3.6 to <12 pCi/L. There was no preoperational average available for comparison and the second second

おきかい せきに パール・モディー

THE BOBBER OF STREET

AQUATIC

Environmental Consulting Services, Inc (EGSI) collected all aquatic samples (with the exception of the 6S2 shoreline sediment) and the second state and the

Surface water samples were collected in new polyethylene containers that were rinsed twice with the sample medium prior to collection.

Edible fish are taken by gill nets while crabs are caught in commercial traps. These samples are then processed where the flesh is separated from the bone and shell. The flesh is placed in sealed containers and frozen before being transported in ice chests to MTS for analysis.

Sediment samples collected by ECSI were taken with a bottom grab sampler and frozen in sealed polyethylene containers before being transported in ice chests to MTS. Personnel from MTS collect location 6S2 shoreline sediment on the beach behind the parking area for the Helicopter Pad. A square area, measuring 1 meter on each side is staked out and then divided into a grid of 9 smaller boxes, 3 per side. A 1 inch deep scoop from the center of each of the small grids is taken. All the aliquots are combined and the total sample transported in the ice chest to MTS.

Surface Water (Tables C-12, C-13, C-14)

Surface water samples were collected monthly at 4 indicator stations and one control station in the Delaware estuary. One location (11A1) is at the outfall area (which is the area where liquid radioactive effluents from the Salem Station are allowed to be discharged into the Delaware River), another is downstream from the outfall area (7E1), and another is directly west of the outfail area at the mouth of the Appoquinimink River (12C1). Two upstream locations are in the Delaware River (1F2) and at the mouth of the Chesapeake and Delaware Canal (16F1), the latter being sampled when the flow is from the Canal into the river. Station 12C1, directly west, at the mouth of the Appoquinimink River, serves as the operational control. Location 12C1 was chosen because the physical characteristics of this station more closely resemble those of the outfall area than do those at the farther upstream location (1F2). As discussed in the pre-operational summary report, due to the tidal nature of this Delaware-River-Bay estuary, there are flow rate variations. The further the distance from the boundary between the Delaware River and the Delaware Bay (Liston Point), the lower the background levels, the lower the salinity, lower K-40(as determined by Atomic Absorption) and lower concentrations of soluble gross beta emitters. All surface water samples were analyzed monthly for gross beta, tritium and gamma emitters.

いっちょう かい かいほんしょり 日子 静脉 回路 調査 しいとう

- Gross beta activity was detected in all 48 of the indicator station samples ranging from 8.4 to 330 pCi/L, with an average of 97 pCi/L. Beta activity was detected in all 12 of the control station samples with concentrations ranging from 24 to 158 pCi/L, with an average of 73 pCi/L. The maximum preoperational level detected was 110 pCi/L, with an average of 32 pCi/L. Quarterly results for all locations are plotted on Figure 4, for the years 1988 to 2008, with an inset graph depicting the current year back to 1973.
- Tritium activity was detected in 1 of the control station samples at a concentration of 210 pCi/L. It was detected in 2 of the indicator station samples at concentrations of 140 and 150 pCi/L.

These levels were slightly above the minimum detectable concentration range. Minimum detectable concentrations for the remaining station samples, both indicator and control, ranged from <130 to <150 pCi/L. The maximum preoperational level detected was 600 pCi/L, with an average of 210 pCi/L. Positive results from 1988 to 2008 are plotted on Figure 5, with an inset graph depicting the current year back to 1973.

- Gamma spectroscopy performed on each of the 48 indicator station and 12 control station surface water samples indicated the presence of the naturally-occurring radionuclides K-40 and RA-NAT. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.
 - Potassium-40 was detected in all 48 samples of the indicator stations at concentrations ranging from 51 to 186 pCi/L and in all 12 of the control station samples ranging from 49 to 115 pCi/L. The average for the indicator station locations was 97 pCi/L, while the average for the control station locations was 80 pCi/L. The maximum preoperational level detected was 200 pCi/L, with an average of 48 pCi/L.

to part and state with the to the set of a second state with

• RA-NAT was detected in 1 of the indicator stations at a concentration of 6.4 pCi/L. It was detected in only 1 of the control location samples at 6.1 pCi/L. MDC's for the remaining station samples, both indicator and control, ranged from <1.5 to <6.6 pCi/L. The maximum preoperational level detected was 4 pCi/L with no average determined.</p>

16 1

Fish (Table C-15)

Edible species of fish were collected semi-annually at 3 locations, 2 indicator (7E1, 11A1) and 1 control (12C1), and analyzed for gamma emitters in flesh.

Samples included channel catfish, white catfish, bluefish, white perch, flounder and striped bass. (See explanation of controls in the surface water section). The 4 indicator and 2 control station samples from both semi-annual collections, indicated the presence of the naturally-occurring radionuclide K-40. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.

Potassium-40 was detected in all 4 samples from the indicator stations at concentrations ranging from 3320 to 3730 pCi/kg-wet for an average of 3590 pCi/kg-wet. K-40 was detected in both samples from the control location at 3540 and 3770 pCi/kg-wet. The average for the control samples was 3660 pCi/kg-wet. The maximum preoperational level detected was 13000 pCi/kg-wet, with an average of 2900 pCi/kg-wet.

化化学学 建油油的 医肌肉的 化合金

Blue Crab (Table C-16)

a 111 的复数正式

ng ang ang bina ang baga

Blue crab samples were collected twice during the season at 2 locations, 1 indicator and 1 control, and the edible portions were analyzed for gamma emitters. (See explanation of controls in the surface water section).

- Gamma spectroscopy performed on the flesh of the indicator station samples and the control station samples indicated the presence of the naturally-occurring radionuclides K-40 and RA-NAT. All other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.
 - Potassium-40 was detected in both indicator station samples at concentrations of 2460 and 2600 pCi/kg-wet. It was detected in both control station samples at 2530 and 2690 pCi/kg-wet. The average for both the indicator and control station samples was 2570 pCi/kg-wet. The maximum preoperational level detected was 12000 pCi/kg-wet, with an average of 2835 pCi/kg-wet.

RA-NAT was detected in 1 of the indicator stations at a concentration of 16 pCi/kgwet. It was detected in only 1 of the control location samples at 24 pCi/kg-wet. Minimum detectable concentrations for the remaining station samples, both indicator and control, ranged from <7.8 to <8.0 pCi/kg-wet. The maximum preoperational level detected was 33 pCi/kg-wet with no average determined.

Sediment (Table C-17)

Sediment samples were collected semi-annually from 7 locations, including 6 indicator stations and 1 control station. (Location 6S2 is the only shoreline sediment and it is directly affected by tidal fluctuations) Each of the 14 samples was analyzed for gamma emitters. Only the naturally-occurring radionuclides K-40, Be-7, Th-232 and RA-NAT were detected in this years sediment samples. (See explanation of controls in the surface water section)

- Gamma spectroscopy was performed on each of the 12 indicator station samples and 2 control station samples. Except for the radionuclides listed above, all other gamma emitters searched for in the nuclide library used by nuclear plants were below the minimum detectable concentration.
- Cesium-137 was not detected in any of the indicator nor the control station samples this year. Minimum detectable concentrations for the 14 samples, both indicator and control, ranged from <3.8 to <27 pCi/kg-dry. Positive results from 1988 to 2008 are plotted on Figure 6, with an inset graph depicting the current year back to 1977.
- Cobalt-60 was not detected in any of the sediment samples. Minimum detectable concentrations for the 14 samples, indicator and control, ranged from <2.9 to <29 pCi/kg-dry. Results of all the positive values from 1988 to 2008 are plotted on Figure 6, with an inset graph depicting the current year back to 1977.

- Beryllium-7 was detected in 3 of the indicator station samples at concentrations of 157 to 308 pCi/kg-dry and an average of 233 pCi/kg-dry. It was not detected in either control location above minimum detectable concentration. The maximum preoperational level detected was 2300 pCi/kg-dry. There was no preoperational average determined for this nuclide.
- Potassium-40 was detected in all 12 indicator station samples at concentrations ranging from 1830 to 12400 pCi/kg-dry, with an average of 5946 pCi/kg-dry. Concentrations detected in both of the control station samples were at 7230 and 11700 pCi/kg-dry. The average for the control station samples was 9465 pCi/kg-dry. The maximum preoperational level detected was 21000 pCi/kg-dry, with an average of 15000 pCi/kg-dry.
- RA-NAT was detected in all 12 indicator station samples at concentrations ranging from 121 to 813 pCi/kg-dry, with an average of 420 pCi/kg-dry. Concentrations detected in both of the control station samples were at 246 and 667 pCi/kg-dry, with an average of 460 pCi/kg-dry. The grand average for both the indicator and control station samples was 430 pCi/kg-dry. The maximum pre-operational level detected was 1200 pCi/kg-dry, with an average of 760 pCi/kg-dry.
- Thorium-232 was detected in all 12 indicator station samples at concentrations ranging from 277 to 958 pCi/kg-dry, with an average of 546 pCi/kg-dry. Concentrations detected in both of the control station samples were at 443 and 8970 pCi/kg-dry, with an average of 4707 pCi/kg-dry. The grand average for both the indicator and control station samples was 1140 pCi/kg-dry. The maximum preoperational level detected was 1300 pCi/kg-dry, with an average of 840 pCi/kg-dry.

26

Location 2F6 (7.3 miles NNE of vent) experienced an equipment malfunction the week of January 8 through 14, 2008. The quick disconnect fitting failed causing the APT/AIO assembly to separate from the air sampler. Both the APT and AIO samples were invalid for this week due to low sample volume. Although this had not happened before, MTS decided to replace all the brass fittings with new stainless steel ones at all the air sampler locations.

Due to power losses the 5S1 air sampler station had air particulate and iodine samples with insufficient volumes on the following dates:

the better a set of a set of the set of the set of the

<u>STATION</u> 5S1	LOCATION 1.0 mi. E of vent	HOURS UNAVAILABLE, 124.4	<u>DATES</u> 3/3-10/08	
5S1	1.0 mi. E of vent	121.2	12/8-15/08	
5S1	1.0 mi. E of vent	107.2	12/22-29/08	

Both air particulate and air iodine samples were considered invalid due to an unplanned power outage on three separate occasions. The loss of these three air samples resulted in 96% availability on this sample station. This is greater than the 90% availability goal for sampler availability. This sampler is located along the site access road and its power line is subjected to high winds and icing, causing the frequent power losses during inclement weather. Corrective actions are being taken. Site services will be relocating this sampler across the road. The new power supply is the underground feed for the PSEG Security Check Point. This feed has a back-up diesel generator, which will supply emergency power in the unlikely event of a loss of power.

On July 1st, 2008 Location 14F4 milk farm experienced an electrical fire which destroyed its milk barn and hay loft. The farmer relocated his 100+ milk animals to other farms in the area until he could rebuild. In the interim, he gave us the name and location of the closest milk farm to him, Location 14G3 (13.7 miles WNW of the vent). We then collected milk from this location for the remainder of the year. No milk samples were missed during 2008.

HOPE CREEK TECHNICAL SPECIFICATION LIMIT FOR PRIMARY WATER IODINE CONCENTRATIONS

The Hope Creek primary water chemistry results for 2008 were reviewed. The specific activity of the primary coolant did not exceed 0.2 microcuries per gram Dose Equivalent I-131. Therefore, the iodine concentrations in the primary coolant did not exceed the Tech Spec limit specified in section 3.4.5.

CONCLUSIONS

The Radiological Environmental Monitoring Program for Salem and Hope Creek Generating Stations was conducted during 2008 in accordance with the SGS and HCGS Technical Specifications and ODCM. The LLD values required by the Technical Specifications and ODCM were achieved for this reporting period (See Appendix A and Appendix C). The objectives of the program were also met during this period. The data collected assists in demonstrating that SGS and HCGS were operated in compliance with Technical Specifications and ODCM requirements.

From the results obtained, it can be concluded that the levels and fluctuations of radioactivity in environmental samples were as expected for an estuarine environment. The concentration of radioactive material in the environment that could be attributable to Salem and Hope Creeks stations operations was only a small fraction of the concentration of naturally occurring and man-made radioactivity. Since these results were comparable to the results obtained during the preoperational phase of the program, which ran from 1973 to 1976, and with historical results collected since commercial operation, we can conclude that the operation of the Salem and Hope Creek Stations had no significant radiological impact on the environment.

TABLE 1

SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (Program Overview)

EXPOSURE PATHWAY AND/(SAMPLE	OR NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS	SAMPLING AND COLLECTION FREQUENCY		TYPE/FREQUENCY* OF ANALYSIS
				· · · ·
1. DIRECT RADIATION	Forty-nine routine monitoring stations			
	with two or more dosimeters placed as	Quarterly	Gai	nma dose/ quarterly
Thermoluminescent	follows:		· .	
Dosimeters				
	An inner ring of stations, one in each		÷ •	
	land based meteorological sector (not		•	
	bounded by water) in the general area		· · · ·	· · ·
	of the site boundary: 1S1, 2S2, 2S4,			
	381, 481, 581, 682, 781, 1081, 1181	يبين ا	n na series La companya de la com	· · · · · · · · · · · · · · · · · · ·
i'r	1551, 1651 🦉 🔅 🖗 👘 👘		1997 - 1998 1997 - 1998	
	[19] 2월 2월 1월 2월 2011 - 12 2월 2일 2월			
· · · ·	An outer ring of stations, one in each		1. 1.	
	land-based meteorological sector in the			
	5 - 11 km range (3.12 - 6.88 miles)			
	from the site (not bounded by or over	the state of the second second		
	water): 4D2, 5D1, 10D1, 14D1, 15D1,		- es []	<i>*</i>
	2E1, 3E1, 11E2, 12E1, 13E1, 16E1, 1F1,			
	3F2, 4F2, 5F1, 6F1, 9F1, 10F2, 11F1;			
	13F2, 14F2, 15F3.		-	
	The balance of the stations to be		• •	
	placed in special interest areas such		e de la composición de	
and the second	as population centers, nearby			
	residences, and schools: 2F2, 2F5, 2F6,		· · · ·	·
	3F3, 7F2, 12F1, 13F3, 13F4, 16F2, 1G3,			
	10G1, 16G1, 3H1. and in two areas to		• •	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
	serve as control stations: 3G1, 14G1.			
•			-	
		· · · · · · · · · · · · · · · · · · ·		
			,	
		· · · ·		
			i .	· · · · · · · · · · · · · · · · · · ·
· · ·				· · · · · ·
SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Stand of the State of the state of the state of the

그는 것 같은 것 같	FREQUENCY	TYPE/FREQUENCY* OF ANALYSIS	
n an	_	· · · · · · · · · · · · · · · · · · ·	
Samples from 6 locations:			
1 sample from close to the Site Boundary : 581 3 Samples in different land based sectors:	Continuous sampler operation with sample collection	Gross Beta / weekly Gamma isotopic analysis / quarterly composite	
1F1, 2F6, 5D1	weekly or more		
1 Sample from the vicinity of a community: 16E1.	frequently if required by dust loading	Iodine-131 / weekly	
1 Sample from a control location, as for example 15-30 km distant and in the least prevalent wind direction: 14G1.	n an		
Samples from milking animals in 3 locations within 5 km distance. If there	N		
are none, then, 1 sample from milking animals in each of 3 areas between 5 - 8	Semi-monthly (when animals are on	Gamma scan / semi- monthly	
χ (3.12 - 5 miles) distant: 13E3, 14F4, 2G3. (1)	pasture)	Ioding-131 / semi- monthly	
and the second product of the second se	M		
1 Sample from milking animals at a control	Montary	Gamma scan / monthly	
location 15 - 30 km distant (9.38 - 18.75	(when animals are	Todine-131 / monthly	
miles). SGI.	not on pasture,	Tourne-ISI / montairy	
Samples from one or two sources only if likely to be affected. (Although wells in the vicinity of SGS/HCGS are not directly affected by plant operations, we sample 3E1 farm's well, as management audit)	Monthly	Gamma Scan / monthly Gross alpha / monthly Gross beta / monthly	
	<pre>Samples from 6 locations: 1 sample from close to the Site Boundary : 5S1 3 Samples in different land based sectors: 1F1, 2F6, 5D1. 1 Sample from the vicinity of a community: 16E1. 1 Sample from a control location, as for example 15-30 km distant and in the least prevalent wind direction: 14G1. Samples from milking animals in 3 locations within 5 km distance. If there are none, then, 1 sample from milking animals in each of 3 areas between 5 - 8 km (3.12 - 5 miles) distant: 13E3, 14F4, 2G3. 1 Sample from milking animals at a control location 15 - 30 km distant (9.38 - 18.75 miles): 3G1. Samples from one or two sources only if likely to be affected. (Although wells in the vicinity of SGS/HCGS are not directly affected by plant operations, we sample 3E1 farm's well, as management audit)</pre>	 Samples from 6 locations: 1 sample from close to the Site Boundary : 581 3 Samples in different land based sectors: 1F1, 2F6, 5D1. 1 Sample from the vicinity of a community: 16E1. 1 Sample from a control location, as for oxampla 15-30 km distant and in the least prevalent wind direction: 14G1. Samples from milking animals in 3 locations within 5 km distance. If there are none, then, 1 sample from milking animals in each of 3 areas between 5 - 8 km (3.12 - 5 miles) distant: 13E3, 14F4; 2G3. 4. Samples from one or two sources only if likely to be affected. (Although wells in the vicinity of SGS/HCGS are not directly affected by plant operations, we sample 3E1 farm's well, as management audit) Continuous sampler operation with samples from 6 location is an on the sample from milking animals in 3 horden to the sample from milking animals at a control weekly or more frequently if required by dust location for a control for a sample from milking animals are not on pasture) 	

30

SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

۰.

EXPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS	SAMPLING AND COLLECTION FREQUENCY	TYPE/FREQUENCY* OF ANALYSIS
c. Potable Water (Drinking Water)	One sample of the nearest water supply affected by its discharge (No potable water samples are required as liquid effluents discharged from SGS/HCGS do not directly affect this pathway) However, for <u>management audit</u> , one raw and one treated sample from a public water supply (City of Salem Water and Sewer Department) is collected: 2F3	Monthly (composited daily)	Gross alpha / monthly Gross beta / monthly Tritium / monthly Gamma scan / monthly Iodine-131 / monthly
d. Vegetables	One sample of each principal class of food products from area that is irrigated by water in which liquid plant wastes have been discharged (The Delaware River at the location of SGS/HCGS is a brackish water source and is not used for irrigation of food products). <u>Management audit samples</u> are collected from various locations during harvest: 2F9, 3F7, 2G2, 9G1, 3H5, 2F10, 3F6, 9G2, 15F4, 2G4.	Annually (at harvest)	Gamma scan/on collection
e. Fodder Crops	Broad leaf vegetation (ornamental cabbage) was planted & collected in lieu of having a milk farm within 5 km of the Site ⁽¹⁾ : 10D1, 1S1, 15S1, 16S1. Although not required by SGS/HCGS ODCM, samples of crops normally used as cattle feed (silage-soybeans) were collected as management audit samples 14F4, 3G1, 2G3, 13E3, 14G3.	Annually (at harvest)	Gamma scan/on collection

SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

EXPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS	SAMPLING AND COLLECTION FREQUENCY	TYPE/FREQUENCY* OF ANALYSIS
d. Sediment	One sample from downstream area: 7E1 One sample from cross-stream area/One sample from a control location: 12C1 ⁽²⁾ One sample from a witfall area: 11A1	Semi- annually	Gamma scan/on collection
	One sample from the Grand area: 1181 One sample from shoreline area: 682 One sample from cooling Tower Blowdown: 15A1		a ta parte de la companya de la comp
	And an additional location of south storm drain discharge line: 16A1		· · · · · · · · · · · · · · · · · · ·
	್ಷಿ ಮಾರ್ಗಾಟ್ ಕಾರ್ಟ್ ವಿಶ್ವೇ ತಿಲ್ಲಿ ಹಾಗೂ ಮತ್ತು ಪ್ರಾಥಿಸಿದ್ದು. ಬ್ಲೋಟ್ ಬಹ್ಮ ವಿಶ್ವೇತ್ ಕಾರ್ಡ್ ವಿಶ್ವೇ ಕಾರ್ಡ್ ಗ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ ಪ್ರದರ್ಶನ ಸ್ಥಾನಕ್ಕೆ ತೆಲ್ಲಿ ಮತ್ತು ಕಾರ್ಡ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್		
* Except for TLDs, th	to analysis discoverses (many) of the context of a composit a quarterly analysis is performed on a composit	ce of individual sampl	es collected during the
quarter. ** Tech Specs and ODCM surface waters on a	a monthly basis for tritium.	tium leak at Salem, it	was decided to analyze
Since broad leaf ve ornamental cabbage	egetation is acceptable in lieu of milk collect (Brassica oleracea) at three locations on Site	ions, MTS personnel p (151, 1551, 1651) and	lanted and harvested i one across the river
 (2) Station 12C1 was most of this station most originally chosen. 	ade the operational control (1975) for aquatic re closely resemble those of the outfall area t This is due to the distance from Liston Point,	samples since the phy han do those at the up which is the boundary	sical characteristics pstream location y between the Delaware
River and Delaware locations further w	Bay. As discussed extensively in the SGS/HCGS in pstream show significantly lower background le	Pre-operational reportional velocities due to estuarine	ts, the sampling tidal flow.
	an an an Anna an Anna Anna an Anna an Anna an Anna an	n ann an Airtean an Air Anns an Airtean Airtean Airtean Airtean Airtean	
	en en la companya de la companya de La companya de la comp	No seria, Li soli	

. Ω 3

FIGURE 6 CESIUM-137 & COBALT-60 ACTIVITY IN AQUATIC SEDIMENT 1988 THROUGH 2008

REFERENCES

a state and a state of the state of the

- [1] Public Service Enterprise Group. "Environmental Report, Operating License Stage - Salem Nuclear Generating Station Units 1 and 2". 1971.
- [2] Public Service Enterprise Group. "Environmental Report, Operating License Stage - Hope Creek Generating Station". 1983.
- [3] United States Atomic Energy Commission. "Final Environmental Statement -Salem Nuclear Generating Station, Units 1 and 2". Docket No. 50-272 and 50-311. 1973.
- [4] United States Atomic Energy Commission. "Final Environmental Statement -Hope Creek Generating Station", Docket No. 50-354. 1983.
- [5] Public Service Enterprise Group. "Updated Final Safety Analysis Report Salem Nuclear Generating Station, Units 1 and 2".
- [6] Public Service Enterprise Group. "Updated Final Safety Analysis Report Hope Creek Generating Station.
- [7] Radiation Management Corporation. "Artificial Island Radiological Environmental Monitoring Program - Annual Reports 1973 through 1982".
- [8] Radiation Management Corporation. "Artificial Island Radiological Environmental Monitoring Program - Preoperation Summary - 1973 through 1976". RMC-TR-77-03, 1978.
- [9] Radiation Management Corporation: "Artificial Island Radiological Environmental Monitoring Program - December 11 to December 31, 1976". RMC-TR-77-02, 1977.
- [10] Maplewood Testing Services. "Salem and Hope Creek Generating Stations' Radiological Environmental Monitoring Program - Annual Reports 1983 through 2007".
- [11a] Maplewood Testing Services: "Quality Assurance Fian." February 2004
- [11b] Maplewood Testing Services. Mechanical Division "Quality Assurance Plan". September 2003.
- [11c] Maplewood Testing Services. Mechanical Division Environmental/Radiological Group "Procedures Manual". October 2008.
- [12] Public Service Enterprise Group. "Salem Nuclear Generating Station Technical Specifications", Appendix A to Operating License No. DPR-70, 1976, Sections 6.8.4.h - 1,2,3 and 6.9.1.7.

REFERENCES (cont'd)

[13]	Public Service Enterprise Group "Hope Creek Generating Station Technical Specifications", Appendix A to Facility Operating License No. NPF-57, 1986, Sections 6.8.4 h = 1,2,3 and 6,9,1,6, approximately of the section	
[14]	Public Service Enterprise Group. "Offsite Dose Calculation Manual"-Salem	e san é
[15]	Public Service Enterprise Group. "Offsite Dose Calculation Manual"- Hope, Creek Generating Station. Revision 22.	en j
[16]	U.S. Environmental Protection Agency, "Prescribed Procedures for Measurement of Radioactivity in Drinking Water." EPA-600/4-80-032, August 1980.	187
[17]	U.S. Nuclear Regulatory Commission. "Environmental Technical Specifications" For Nuclear Power Plants." Regulatory Guide 4.8, December 1975.	
[18]	U.S. Nuclear Regulatory Commission : "NRC Inspection Manual" Inspection Procedure 84750, Issue Date 3/15/94.	
[19]	U.S. Nuclear Regulatory Commission: Code of Federal Regulations, Little 10 Part 20.1301 Standards for Protection Against Radiation.	(*** <u>*</u>
[20]	U.S. Nuclear Regulatory Commission; Code of Federal Regulations, Title 10 Part 5 Appendix A, General Design Criterion 64, Monitoring Radioactivity Releases	0,
[21]	U.S. Nuclear Regulatory Commission: Code of Federal Regulations, Title 10, Part 5 Appendix I, "Numerical Guides for Design Objectives and Limiting Conditions for Operations to meet the Criterion 'As Low As Is Reasonably Achievable' for Radioactive Material in Light Water Cooled Nuclear Power Reactor Effluents"	60, _[♥]
[22]	U.S. Nuclear Regulatory Commission, Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants; Regulatory Guide 4.1, Rev 11: oT boomerasid	ioret.
[23]	U.S. Nuclear Regulatory Commission: Performance, Testing, and Procedural Specifications for Thermoluminescence Dosimetry: Environmental Applications, Regulatory Guide 4.13, Rev. 1.	
[24]	U.S. Nuclear Regulatory Commission: Quality Assurance for Radiological Monitorir Programs (Normal Operations) Effluent Streams and Environment, Regulatory Gui	ng de
• . • .	4.15, Rev. 1. and a system of set of a set of a set of a system of a set of	
		1

REFERENCES (cont'd)

- [25] U.S. Nuclear Regulatory Commission: Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Boiling Water Reactors, NUREG -1302, April 1991.
- [26] U.S. Nuclear Regulatory Commission: Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors, NUREG – 1301, April 1991.
- [27] U.S. Nuclear Regulatory Commission: Radiological Assessment Branch Technical Position, Revision 1, November 1979.
- [28] NJDEP : "A South Jersey Homeowner's Guide to Radioactivity in Drinking Water: Radium" Revised April 2004.
- [29] American Nuclear Standards Institute, ANSI N545-1975, Performance Testing and Procedural Specification for Thermoluminescent Dosimetry (Environmental).

APPENDIX A

Planthouse I SHITS END WAREN .

PROGRAM SUMMARY

. . . .

· ·

وكالمحدث الأراد and the second . e .e. a transfer to and the

and the second

网络拉克斯特尔人名 化分离流行 医神经管静脉 化合金剂 化增强化合金 t ter i NOR A PRINT ۰. the Alexandre attraction and a service NA TABLES AN AND DEPENDENCES OF THE REAL DEPARTMENT OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART

SALEM GENERATING STATION HOPE CREEK GENERATING STATION

DOCKET 50-272/-311 DOCKET NO. 50-354

SALEM COUNTY, NEW JERSEY JANUARY 1, 2008 to DECEMBER 31, 2008

MEDIUM OR PATHWAY SAMPLE (UNIT OF MEASUREMEN	Analysis Total Nu T, of Anal Perfor	is And Lower <u>All Indicator Locations Location with Highest Mea</u> lumber Limit of <u>Mean</u> Name alyses Detection (Range) Distance and Direction rmed (LLD)*		nalysis And Lower All Indicator Locations Location with Highest Mean stal Number Limit of Mean Name Mean f Analyses Detection (Range) Distance and Direction (Range) Performed (LLD)* **		Analysis And Lower Total Number Limit of of Analyses Detectio Performed (LLD)*		Mean (Range)	Control Location Mean (Range)	Number of Nonroutine Reported Measurements
I. AIRBORNE Air Particulates (10 ⁻³ pCi/m ³)	IE lates Beta 314 1 ³)		6.0	22 (261 /265) (7-57)	1F1 5.8 mi N 2F6 7.3 mi NNE	23 (53 /53) (8-54) 23 (52 /53) (9-57)	22(53 /53) (9-51)	0		
	Gamma Be7	24	2.0	81 (20 /20) (63-102)	2F6 7.3 mi NNE	86 (4 /4) (65-101)	80 (4 /4) (62-95)	0		
:	K-40	24	9.0	11 (20/20) (8-17)	2F6 7.3 mi NNE	13 (4 /4) (8-10)	10(4 /4) (8-11)	0		
	RANAT	24	1.1	1 (3 /20) (0.8-1.1)	2F6 7.3 mi NNE	1.1 (1 /4) (1-1.1)	<lld< td=""><td></td></lld<>			
Air Iodine (10 ⁻³ pCi/m ³)	I-131	314	8.5	<lld< td=""><td>-</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	-	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0		
· · · · · · · · · · · · · · · · · · ·						,				
II DIRECT Direct Radiation (mrad/std. month)	Quarterly Badges	196	-	4.3(172 /172) (2.6-6.3)	1F1 5.8 mi N	5.8 (4 /4) (5.1-6.3)	4.5 (24/24) (3.3-5.8)	0		
	.,	• * *								
Milk (pCi/L)	I-131	80	0.3	<lld< td=""><td>- -</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	- -	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0		
· · · · · ·	Gamma K-40	80	32	1340 (60 /60) (1120-1470)	13E3 4.9 mi W	1360 (20 /20) (1270-1450)) 1290 (20/20) (1200-1390)	Ö		
· · · ·	RA-NAT	80	5.1	11 (1 /60) (11-11)	2G3 12 mi NNE	.11 (1 /20) (11-11)	<lld< td=""><td>0</td></lld<>	0		

SALEM GENERATING STATION HOPE CREEK GENERATING STATION DOCKET 50-272/-311 DOCKET NO. 50-354

SALEM COUNTY, NEW JERSEY JANUARY 1, 2008 to DECEMBER 31, 2008

				• •	and the second			· .
MEDIUM OR PATHWAY SAMPLE (UNIT OF MEASUREMENT	Analysis Total Nu of Anal Perforr	s And Imber yses ned	Lower Limit of Detection (LLD)*	All Indicator Locations Mean (Range)	Location with Highest Mean Name Distance and Direction	Mean (Range)	Control Location Mean (Range)	Number of Nonroutine Reported Measurements
	,			· · · · · · · · · · · · · · · · · · ·				2
III TERRESTRIAL Well Water (pCi/L)	Alpha	. 12,	1.2	1 (1 /12) (1-1)	3E1 4.1 mi NE	1 (1 /12) (1-1)	No Control Location	0
* <i>* *</i>	Beta	12	1.0***	10(12/12) (8.4-12)	3E1 4.1 mi NE	10(12 /12) (8.4-12)	No Control Location	0
	H-3 [']	12	155	<lld< td=""><td>-</td><td><lld< td=""><td>No Control Location</td><td>0</td></lld<></td></lld<>	-	<lld< td=""><td>No Control Location</td><td>0</td></lld<>	No Control Location	0
	Gamma K-40	12	34	55 (2/12) (48-61)	3E1 4.1mi NE	55 (2712) (48-61)	No Control Location	0
·	RA-NAT	12	6.6	138 (12 /12) (66-254)	3E1 4.1mi NE	138 (12 /12) (66-254)	No Control Location	0
	e -		•		· · · · ·		•	•. •
Potable Water (pCi/L)	Alpha	24	0.6	0.5 (3/24) (0.4-0.6)	2F3 8.0 mi NNE	0.5 (3 /24) (0.4-0.6)	No Control Location	0
	Beta	24	1.0***	2.7 (24 /24) (1.9-3.6)	2F3 8.0 mi NNE	2.7 [°] (24 <i>i</i> 24) (1.9-3.6)	No Control Location	0
	H-3	24	155	<lld< td=""><td></td><td><lld< td=""><td>No Control Location</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>No Control Location</td><td>0</td></lld<>	No Control Location	0
in a construction of the second secon	Gamma K-40	. 24	~ 34	44 (15/24)	~ 2F3 8.0 mi NNE	44 (15 /24)	No Control	0
	I- 1 31	24	0.3	(8-57) <lld< td=""><td></td><td>(8-57) <lld< td=""><td>No Control</td><td>0</td></lld<></td></lld<>		(8-57) <lld< td=""><td>No Control</td><td>0</td></lld<>	No Control	0
· · · · · ·	RA-NAT	24	6.6	12 (5 /24) (3-24)	2F3 8.0 mi NNE	12 (5 /24) (3-24)	No Control Location	0
Émit 9	Commo			• •	and the second sec			
Vegetables (pCi/Kg-wet)	Gamma K-40	27	70	1950(14 /14) (1370-2620)	15F4 7.0 mi NW	2150 (2 /2) (2020-2270)	1920(13 /13) (1380-2240)	0
		•	,		3F6 6.5 mi NE	2150 (2 /2) (2090-2210)		

SALEM GENERATING STATION HOPE CREEK GENERATING STATION

DOCKET 50-272/-311 DOCKET NO. 50-354

SALEM COUNTY, NEW JERSEY JANUARY 1, 2008 to DECEMBER 31, 2008

MEDIUM OR PATHWAY SAMPLE (UNIT OF MEASUREMENT,	Analysis A Total Numb of Analyse Performed	nd Lower ber Limit of S Detection d (LLD)*	All Indicator Locations Mean (Range)	Location with Highest Mean Name Distance and Direction	Mean (Range)	Control Location Mean (Range)	Number of Nonroutine Reported Measurements
		······································					
III TERRESTRIAL	Commo		· · · · · ·				•
(nCi/Ka-wet)	Be-7	10 75	199 (4 /8)	2G3 12 mi NNF	255 (1/1)	137 (1/2)	0
(pourty-met)		10 10	(137-255)		(255)	(137-137)	U
	K-40	10 32	4430 (8/8)	14F4 7.6 mi WNW	16200 (1/1)	7570 (2/2)	0
	e Na strate	•	(1970-16200)	an a	(16200-16200)	(2030-13100)	
	RA-NAT	10 12	11 (1/8)	3G1 17 mi NE	11 (1/2)	11 *	· 0
•	• •	1. Sec. 1.	(11-11)		(11-11)	(11-11)	
- · · ·		•	in the				
	÷		21월 44 54 55		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
Surface Water	Beta	60 97	97 (48 /48)	7E1 4 5 mi SE	161 (12/12)	73 (12/12)	
(nCi/L)	Deta	00 5.7	(8 4-330)		(78-330)	(24-158)	
(P = " =)	H-3	60 150	150 (2/48)	12C1 2.5 mi. WSW	210 (1 /12)	210	0
			(140-150)		(210-210)	1.0 0% 04	
	Gamma					de la	
	K-40	60 34	97 (48 / 48)	7E1 4.5 mi SE	118 (12/12)	80 (12/12)	0
an a	(, ,	54 - 1945	(51-186)	4 · • • · · · · · · · · · · · · · · · ·	(89-160)	(49-115)	
•	RA-NAT	60 6.6	6.4 (1/48)	7E1 4.5 mi SE	6.4 (1/12)	6 1 (1/12)	0
and the second			(6.4-6.4)		(6.4-6.4)	(6.1-6.1)	۰.
Dhua Quala	·		·				*
Blue Grabs	Gamma	A		12C1 2 52 mi \N/S\N/	2610 (2 (2)		•
(povikg-wei)	K-4 0	4 33	(2460-2600)	1201 2.32 mil. WOW	(2530-2690)	(2530-2690)	nan sana s u s a Nanging sa sa sa sa sa sa
	RA-NAT	4 24	16 (1/2)	12C1 2 52 mi WSW	24 (1/2)	24 (1 /2)	14 C 0 14
		Ē	(16-16)	States - Anna	(24-24)	(24-24)	
	e est sources	e (Nei	and the second states	그 학교는 너 실험을 가지는 관련 전체 문제			ι, ^{**}
Edible Fish	Gamma 👾	e a construction and the	ديني بوري المراجع الهيامات	n an	ما درسان بخرستهمر به ۲۳ و بردیو نماد ر	an the second second	
(pCi/kg-wet)	K-40	6 55	3593 (4 /4)	7E1 4.5 mi. SE	3665 (2/2)	3655 (2/2)	0
•		eren orden en en er	(3320-3730)	in a state of the second s	(3600-3730)	(3540-3770)	
O a dime a st		 A second control de la control de la control de la control de la control de la contro	and the best and the bar	4 - 프로그램 이 이는 그는 사람이 가지 가지 않는 것이 있다. 가지 않는 것을 가 있다. 		.*	
Seament	Commo	n tin tin serai k			1917 - X		
(porkg-ary)	Gamma Ro.7	14 100 -		692 0 2 mi ESE	308 (1 (2))		o i
-	06-1	14 120	(157 209)	002 0.2 mi. ESE	· 300 (172)		U

SALEM GENERATING STATION HOPE CREEK GENERATING STATION

DOCKET 50-272/-311 DOCKET NO. 50-354

SALEM COUNTY, NEW JERSEY JANUARY 1, 2008 to DECEMBER 31, 2008

MEDIUM OR PATHWAY SAMPLE (UNIT OF MEASUREMENT,	Analysis Total Nu of Anal Perforr	s And Imber yses ned	Lower Limit of Detection (LLD)*	All Indicator Locations Mean (Range)	Location with Highest Mean Name Distance and Direction	Mean (Range)	Control Location Mean (Range)	Number of Nonroutine Reported Measurements
IV AQUATIC Sediment	K-40	14	55	5946 (12 /12) (1830-12400)	7E1 4.5 mi. SE	12100 (2 /2) (15500-17300)	9565 (2 /2) (7230-11900)	0
(pCi/kg-dry)	Co-60	14	29	<lld< td=""><td>-</td><td>· · ·</td><td>, <lld< td=""><td>0</td></lld<></td></lld<>	-	· · ·	, <lld< td=""><td>0</td></lld<>	0
· · · · ·	Cs-137	14	27	<lld< td=""><td><u>-</u></td><td></td><td><pre>Content of the second sec</pre></td><td>0</td></lld<>	<u>-</u>		<pre>Content of the second sec</pre>	0
	RA-NAT	14	5.0	420 (12 /12) (121-813)	16A1 0.7 mi. NNW	ິ690 (2 /2) ⁻(574-813)	460 (2 /2) (246-670)	0
	Th-232	14	8.1	546 (12 /12) (277-958)	7E1 4.5 mi. SE	849 (2 /2) (338-859)	670 (2 /2) (443-897)	0
					· · · ·			
÷		•		· ·		i y y y y y y y y y y y y y y y y y y y		

* LLD listed is the lower limit of detection which we endeavored to achieve during this reporting period. In some instances nuclides were detected

at concentrations above/below the LLD values shown.

** Mean calculated using values above LLD only. Fraction of measurements above LLD are in parentheses.

*** Typical LLD values.

APPENDIX B

SAMPLE DESIGNATION

AND LOCATIONS

APPENDIX B

SAMPLE DESIGNATION

The PSEG's Maplewood Testing Services identifies samples by a three part code. The first two letters are the program identification code. Because of the proximity of the Salem and Hope Creek Stations a common environmental surveillance program is being conducted. The identification code, "SA", has been applied to Salem and Hope Creek stations. The next three letters are for the media sampled.

AIO = A	ir Iodine	IDM =	Immersion Dose (TLD)
APT = A	ir Particulate	MLK =	Milk
ECH = H	lard Shell Blue Crab	PWR =	Potable Water (Raw)
ESF = E	dible Fish	PWT =	Potable Water (Treated)
ESS = S	ediment	SOL =	Soil
FPL = G	Freen Leaf Vegetables	SWA =	Surface Water
FPV = V	egetables (Various)	VGT =	Fodder Crops (Various)
GAM= G	ame (Muskrat)	WWA=	Well Water

The last four symbols are a location code based on direction and distance from a standard reference point. The reference point is located at the midpoint between the center of the Salem 1 and Salem 2 containments. Of these, the first two represent each of the sixteen angular sectors of 22.5 degrees centered about the reactor site. Sector one is divided evenly by the north axis and other sectors are numbered in a clockwise direction as follows:

1 = N9 = S 13 = W 5 = E 10 = SSW14 = WNW2 = NNE 6 = ESE3 = NE 7 = SE 11 = SW 15 = NW4 = ENE8 = SSE 12 = WSW16 = NNW

The next digit is a letter which represents the radial distance from the reference point:

S	=	On-site location		•••	Е	=	4-5 miles off-site
Α	_ =	0-1 miles off-site		• ·	F	÷	5-10 miles off-site
В	. =	1-2 miles off-site	·.	:	G	. =	10-20 miles off-site
С	=	2-3 miles off-site			Н	=	>20 miles off-site
D	` =	3-4 miles off-site	•	•		· .	

The last number is the station numerical designation within each sector and zone; e.g., 1,2,3,... For example, the designation SA-WWA-3E1 would indicate a sample in the Salem and Hope Creek program (SA), consisting of well water (WWA), which had been collected in sector number 3, centered at 45 degrees (north east) with respect to the midpoint between Salem 1 and 2 containments at a radial distance of 4 to 5 miles offsite, (therefore, radial distance E). The number 1 indicates that this is sampling station #1 in that particular sector.

TABLE B-1 SAMPLING LOCATIONS

Specific information about the individual sampling locations are given in Table B-1. Maps B-1 and B-2 show the locations of sampling stations with respect to the Site. A Portable Global Positioning System (GPS) was used to provide the coordinates of sampling locations. The Datum used was WGS 84.

STATION		2001 - An 1990 - An		
CODE	STATION LOCATION	LATITUDINAL	LONGITUDINAL	SAMPLE TYPE
		DEG. MIN. SEC	DEG. MIN. SEC	
181	0.55ml. N	39 - 28 - 16	/5 - 32 - 13	IDM, VGI
252	0.4 mi. NNE; Lamp Pole 65 Near HC Switch Yard	39 - 28 - 07	75 - 32 - 00	IDM
254	0.59 mi. NNE	39 - 28 - 18	75 - 31 - 54	IDM
351	0.58 mi. NE	39 - 28 - 08	75 - 31 - 41	IDM
451	0.60 mi. ENE	39 - 28 - 02	75 - 31 - 33	IDM
551	1.0 mi. E; site access road	39 - 27 - 38	75 - 31 - 08	AIO, APT, IDM
6S2	0.23mi. ESE; area around Helicopter Pad	39 - 27 - 43	75 - 31 - 55	IDM, SOL, ESS
751	0.12 mi. SE: station personnel gate	39 - 27 - 44	75 - 32 - 03	IDM
1051	0.14 mi. SSW; inlet cooling water bldg.	39 - 27 - 41	75 - 32 - 10	IDM
1151	0.09 mi. SW; service water inlet bldg.	39 - 27 - 43	75 - 32 - 12	IDM
1551	0.57 mi. NW	39 - 28 - 10	75 - 32 - 32	IDM, VGT
1651	0.54 mi. NNW	39 - 28 - 13	75 - 32 - 26	IDM, VGT
11 A 1	0.2 mi. SW; outfall area	39 - 27 - 59	75 - 32 - 25	ECH, ESF, ESS, SWA
11A1A	0.15 mi. SE; Located at the plant barge slip	39 - 27 - 41	75 - 32 - 02	Alternate SWA
15A1	0.65 mi. NNW; cooling tower blowdown discharge line outfall	39 - 27 - 67	75 - 32 - 19	ESS
16A1	0.24 mi. NW; south storm drain discharge line	39 - 28 - 24	75 - 32 - 58	ESS
12C1	2.5 mi. WSW; west bank of Delaware River	39 - 27 - 22	75 - 34 - 08	ECH, ESF, ESS, SWA
12C1A	3.7 mi. WSW; Located at the tip of Augustine Beach Boat Ramp	3930 - 17	75 - 34 - 48	Alternate SWA
4D2	3.7 mi. ENE; Alloway Creek Neck Road	39 - 29 - 18	75 - 32 - 11	IDM
5D1	3.5 mi. E; local farm	39 - 28 - 24	75 - 28 - 22	AIO, APT, IDM
10D1	3.9 mi. SSW; Taylor's Bridge Spur	39 - 24 - 37	75 - 33 - 44	IDM, SOL, VGT
14D1	3.4 mi. WNW; Bay View, Delaware	39 - 29 - 02	75 - 35 - 31	IDM
15D1	3.8 mi. NW; Rt. 9, Augustine Beach	39 - 30 - 08	75 - 35 - 02	IDM

	STATION	STATION LOCATION	LATITUDINAL	LONGITUDINAL	SAMPLE TYPE
			DEG. MIN. SEC	DEG. MIN. SEC	· ·
	2E1	4.4 mi. NNE; local farm	39 - 31 - 23	75 - 30 - 26	IDM
	3E1	4.1 mi. NE; local farm	. 39 - 30 - 0 7	75 - 28 - 41	IDM, WWA
	7E1	4.5 mi. SE; 1 mi. W of Mad Horse Creek	39 - 25 - 08	75 - 28 - 64	ESF, ESS, SWA
	7E1A	8.87 mi. SE; Located at the end of Bayside Road	39 - 22 - 57	75 - 24 - 24	Alternate SWA
	11E2	5.0 mi. SW; Rt. 9	39 - 24 - 20	75 - 35 - 33	IDM
	12E1	4.4 mi. WSW; Thomas Landing	39 - 26 - 52	75 - 36 - 59	IDM
· ·	13E1	4.2 mi. W; Diehl House Lab	39 - 27 - 59	75 - 36 - 44	IDM
	13E3	4.9 mi. W; Local Farm, Odessa, DE	39 - 27 - 17	75 - 37 - 30	MLK, VGT, SOL
•	16E1	4.1 mi. NNW; Port Penn	39 - 30 - 47	75 - 34 - 34	AIO, APT, IDM, SOL
	1F1	5.8 mi. N; Fort Elfsborg	39 - 32 - 43	75 - 31 - 05	AIO, APT, IDM
	1F2	7.1 mi. N; midpoint of Delaware River	39 - 33 - 08	75 - 32 - 54	SWA
	2F2	8.7 mi. NNE; Pole at Corner of 5 th & Howell, Salem	39 - 34 - 38	75 - 28 - 04	IDM
•	2F3	8.0 mi. NNE; Salem Water Company,	39 - 33 - 40	75 - 27 - 18	PWR, PWT
	2F5	7.4 mi. NNE; Salem High School and prove	39 - 33 - 27	75 - 28 - 31	IDM
, C	2F6	7.3 mi. NNE; Southern Training Center	39 - 33 - 43	75 - 28 - 48	AIO, APT, IDM
	2F9	7.5 mi. NNE; Local Farm , Tilbury Rd, Salem	39 - 33 - 55	75 - 29 - 30	FPV, FPL, SOL
•	2F10	9.2 mi. NNE; Local Farm, South Broadway (Rt. 49) Pennsville	39 - 35 - 35	75 - 29 - 35	FPV, FPL
	3F2.	5.1 mi. NE;Hancocks Bridge Municipal Bld	39 - 30 - 25	75 - 27 - 36	IDM
	3F3	8.6 mi. NE; Quinton Township School	39 - 32 - 38	75 - 24 - 45	IDM
	3F6	6.5 mi. NE; Local Farm, Salem/Hancocks Bridge	39 - 32 - 03	75 - 28 - 00	FPV, FPL
•	3F7	7.2 mi. NE; Local Farm, Beasley Neck Road, RD#3	39 - 32 - 07	75 - 25 - 46	FPV, FPL
	4F2	6.0 mi. ENE; Mays Lane, Harmersville	39 - 29 - 58	75 - 26 - 03	IDM
	5F1	6.5 mi. E; Canton Classic Contraction	39 - 28 - 22	.75 - 24 - 59	IDM, SOL
	6F1	6.4 mi. ESE; Stow Neck Road	39 - 26 - 24	75 - 25 - 09	IDM
	7F2	9.1 mi. SE; Bayside, New Jersey	39 - 22 - 56	75 - 24 - 17	IDM
	9F1	5.3 mi. S; D.P.A.L. 48912-30217	39 - 23 - 03	75 - 32 - 32	IDM
	10F2	5.8 mi. SSW; Rt. 9 an alegar of balance in the set	39 - 23, - 01	75 - 34 - 09	IDM
-	11F1	6.2 mi. SW; Taylor's Bridge Delaware	39 - 24 - 44	75 - 37 - 37	IDM
•	12F1	9.4 mi. WSW; Townsend Elementary School	39 - 23 - 47	75 - 41 - 18	IDM
	13F2	6.5 mi. W; Odessa, Delaware	39 - 27 - 18	75 - 39 - 21	IDM

. /

17

STATION				
CODE	STATION LOCATION	LATITUDINAL	LONGITUDINAL	SAMPLE TYPE
		DEG. MIN. SEC	DEG. MIN. SEC	TDM
13F3	9.3 mi. W; Redding Middle School, Middletowa,	39 - 27 - 14	/5 - 42 - 32	TDM
13F4	9.8 mi. W; Middletown, Delaware	39 - 26 - 51	75 - 43 - 07	IDM
14F2	6.6 mi, WNW; Boyds Corner	39 - 30 - 00	े7्5 - 38 - 59	IDM
14F4	7.6 mi. WNW; local farm	-39 - 30 - 44	75 - 40 - 52	MLK, VGT, ŠÕL
15F3	5.4 mi. NW	39 - 30 - 58	75 - 36 - 36	IDM
15F4	7.0 mi. NW; local farm; Port Penn Road; Delaware	39 - 31 - 21	75 - 38 - 31	FPV 🔇 🚍
16F1	6.9 mi. NNW; C&D Canal	39 - 33 - 55	75 - 34 - 25	ESS, SMA 🔄 🐎
16F1A 🦯 📝	6.84 mi. NNW; Located at the C&D Canal tip	39 - 33 - 34	75 - 33 - 56	Alternate SWA
16F2	8.1 mi. NNW; Delaware City Public School	39 - 34 - 18	75 - 35 - 25	IDM
1G3	19 mi. N; N. Church St. Wilmington, Del (Old Swedish Church Yard Park)	39 - 44 - 16	75 - 32 - 31	IDM
1G4	10.8 mi. N; Local Farm, Rté. 49, South Broadway,	39 - 37 - 54	75 - 30 - 45	FPV 🌖
2G2	13.5 mi. NNE; Local Farm; Pointers Auburn Road (Rt. 540) Salem NJ 08079	39 - 38 - 19	75 - 26 - 10	. FPV
2G3	12 mi. NNE: Local Milk Farm, Corner of Routes 540 &	39 - 36 - 21	75 - 24 - 53	MLK, FOV, VGT, SOL
	45, Mannington, NJ	·	کې هي.	
2G4	11.3 mi. NNE; large family garden; Rt 45 & T	39 - 36 - 02	75 - 25 - 21	FPV
	Welchville Rd, Mannington, NJ		0	
3G1	17 mi. NE; Milk Farm; Daretown-Alloway Road; 1	39 - 35 - 56	75 - 16 - 47	IDM, MIR, VGT, SOL
961	10.3 mi S. Local Farm Woodland Beach Rd. Smyrna	39 - 18 - 47	75 - 33 - 50	FPV
JUI	Delaware	4 IO II.		
9G2	10.7 mi. S; Local Farm, Woodland Beach Road,	39 7 18 - 39	75 - 34 - 11	FPV,FPL
1001	Smyrna, Delaware	10	75 26 - 05	TDM
1061	12 mi. SSW; Smyrina, Deraware	33 ⁷ - 19 - 13 ⁷	75 - 30 - 705	
14G1	11.8 mi. WNW; Rte. 286/Bethel Church Road; Delaware	39 - 31 \- 18	75 - 46 - 30	AIO, APT, IDM
14G3	13.73 mi. WNW; Local Milk Farm; Frazier Road,	39 - 33 - 18	75 - 45 - 51	MLK, VGT
16G1	15 mi. NNW; Across from Greater Wilmington Airport	39 - 40 - 38	75 - 35 - 35	IDM
3H1	32 mi. NE; National Park, New Jersey	39 - 51 - 36	75 - 11 - 06	IDM
3H5	25 mi. NE: Farm Market, Rt 77	39 - 41 - 02	75 - 12 - 23	FPL, FPV
	,, _,, _	-		

NOTE: All station locations are referenced to the midpoint of the two Salem Units' Containments. The coordinates of this location are: Latitude N 39° - 27' - 46.5" and Longitude W 75° - 32' - 10.6".

All Game (GAM), Vegetables(FPV & FPL) and Vegetation (VGT), are management audit samples. They are not required by the Salem & Hope Creek Stations' Tech Specs nor listed in the Station's ODCM. Vegetable samples are not always collected in consecutive years from the same farmer since they rotate the type of crop they grow.

SALEM AND HOPE CREEK GENERATING STATIONS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ON-SITE SAMPLING LOCATIONS

MAP B-1

APPENDIX C

DATA TABLES

Appendix C presents the analytical results of the 2008 Radiological Environmental Monitoring Program for the period of January 1 to December 31, 2008.

NUMBER	TABLE DESCRIPTION	PAGE
н Н	ATMOSPHERIC ENVIRONMENT	
· · ·		
	AIR PARTICULATES	
C-1	2008 Concentrations of Gamma Emitters in Quarterly Composites of Air Particulates	63
C-2	2008 Concentrations of Gross Beta Emitters in Air Particulates	64
	AIR IODINE	
C-3	2008 Concentrations of Iodine-131 in Filtered Air	66
	DIRECT RADIATION	
		;
. ·	THERMOLUMINESCENT DOSIMETERS	
	2000 Direct Dediction Measurements - Outstark TI D Desults	60
<u> </u>	2008 Direct Radiation Measurements - Quarterly TLD Results	00
		۰.
	TERRESTRIAL ENVIRONMENT	
		а н. •
	MILK	
C-5	2008 Concentrations of Iodine-131 and Gamma Emitters in Milk	69
· .		
	WELLWATER	
- C-6	2008 Concentrations of Gross Alpha and Gross Beta Emitters	
	and Tritium in Well Water	71
C-7	2008 Concentrations of Gamma Emitters in Well Water	72

DATA TABLES (cont'd.)

TABLE NUMBER	TABLE DESCRIPTION	PAGE
•	TERRESTRIAL ENVIRONMENT (cont'd)	
	POTABLE WATER	
C-8	2008 Concentrations of Gross Alpha and Gross Beta Emitters, and Tritium in Raw and Treated Potable Waters	73
C-9	2008 Concentrations of lodine 131 and Gamma Emitters in Raw and Treated Potable Water	74
· · ·	FOOD PRODUCTS	•
C-10	2008 Concentrations of Gamma Emitters in Vegetables	75
	FODDER CROPS	
C-11	2008 Concentrations of Gamma Emitters in Fodder Crops	76
	AQUATIC ENVIRONMENT	
	SURFACE WATER	
C-12	2008 Concentrations of Gross Beta Emitters in Surface Water	77
C-13	2008 Concentrations of Gamma Emitters in Surface Water	78
C-14	2008 Concentrations of Tritium in Quarterly Composites of Surface Water	80

EDIBLE FISH

BLUE CRABS

C-16	2008 Concentrations of Gamma Emitters in Crabs	· 82

SEDIMENT

DATA TABLES (cont'd.)

•	TABLE
	NUMBER

TABLE DESCRIPTION

PAGE

84

SPECIAL TABLES

\mathbf{c}	10	

LLDs

2008 PSEG Maplewood Testing Services' LLDs for Gamma Spectroscopy

attas do Horage Brancista Santa Societa de Color de Color de Color Sector de Acordo Santa Sector de Acordo Santa Santa

en com a sa sarro de la secula de consta presadenca de 120 No

ા છે. તેમ પડીને કેઓરાંગ્લ હતે મરત જ સંતર્ભ માલ્ય વસ કેરી છે.

e de la seconda de la come d'an estre en la come de la seconda de la come de la seconda de la come de la come La come de la

Table C-1

2008 CONCENTRATIONS OF GAMMA EMITTERS* IN QUARTERLY COMPOSITES OF AIR PARTICULATES

STATION	Sampling Period			<> Gamma Emitters>			
ID	Start		Stop	Be-7	K-40	RANAT	
· · ·	· ·			······································	· · · · · ·	· · · ·	
SA-APT-5S1	12/26/2007	to	3/31/2008	70±4	10±2	<0.4	
SA-APT-1F1	12/26/2007	to	3/31/2008	71±4	10±3	<0.5	
SA-APT-2F6	12/26/2007	to	3/31/2008	75±4	16±3	<0.6	
SA-APT-5D1	12/26/2007	to (3/31/2008	74±4	12±3	<0.3 .	
SA-APT-16E1	12/26/2007	to	3/31/2008	65±4	14±4	<0.6	
SA-APT-14G1(C)	12/26/2007	to	3/31/2008	70±4	11±2	<0.4	
SA-APT-5S1	3/31/2008	to	6/30/2008	91±5	11±2	<0.3	
SA-APT-1F1	3/31/2008	to	6/30/2008	89±5	12±3	<0.5	
SA-APT-2F6	3/31/2008	to	6/30/2008	102±5	13±3	1.1±0.3	
SA-APT-5D1	3/31/2008	to	6/30/2008	92±5	13±3	0.8±0.3	
SA-APT-16E1	3/31/2008	to	6/30/2008	94±5	17±4	<0.6	
SA-APT-14G1(C)	3/31/2008	to	6/30/2008	95±5	10±2	<0.3	
SA-APT-5S1	6/30/2008	to	9/29/2008	101±5	8±3	<0.3	
SA-APT-1F1	6/30/2008	to	9/29/2008	88±5	11±2	<0.3	
SA-APT-2F6	6/30/2008	to	9/29/2008	101±5	12±3	<3.4	
SA-APT-5D1	6/30/2008	to	9/29/2008	87±5	8±3	<0.3	
SA-APT-16E1	6/30/2008	to.	9/29/2008	100±5	10±2	<0.3	
SA-APT-14G1(C)	6/30/2008	to	9/29/2008	94±5	11±3	<0.3	
SA-ADT-5S1	0/20/2000	to	12/29/2008	65+5	10+3	<0.3	
	9/29/2009	to	12/29/2008	64+4	8+2	<0.0	
SA_APT_2F6	9/29/2009	to to	12/29/2008	66+5	12+3	1+0.2	
SΔ_ΔΡΤ_5D1	9/29/2009	to	12/29/2008	63+4	12+3	<0.3	
SA-APT-16F1	9/29/2009	to	12/29/2008	63+4	9+3	<0.3	
	0/20/2000	tó	12/20/2000	62+4	8+2	<0.0	

Results in Units of 10⁻³ pCi/m³ +/- 2 sigma

AVERAGE

81±29

11±4

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-18. (C) Control Station

2008 CONCENTRATIONS OF GROSS BETA EMITTERS IN AIR PARTICULATES

Results in Units of 10⁻³ pCi/m³ +/- 2 sigma

.

. . . .

	:	<		STATION ID			-> 1.5
	Control				· · · · · ·		
MONTH	SA-APT-14G1	SA-APT-16E1	SA-APT-1F1	SA-APT-2F6	SA-APT-5D1	SA-APT-5S1	AVERAGE
January	32±2	29±2	28±2	26±2	24±2	31±2	28±7
	28±3	27±2	26±2	25±2	26±2	28±2	27±2
· .	14±2	15±2	14±2	(1)	13±2	14±2	14±1
· . •	23±2	23±2	23±2	24±2	20±2	23±2	23±3
	28±2	31±3	29±2	30±2	28±2	33±2	30±4
February	32±2	35±3	38±2	34±2	33±2	26±2	33±8
	23±2	20±2	22±2	21±2	18±2	23±2	21±4
	23 <u>+</u> 2	23±2	26±2	25±2	24±2	21±2	24±3
· · · · ·	15±2	21±2	22±2	21±2	19±2	20±2	20±5
March	22±2	19±2	25±2	22±2	21±2	24±2	22±4
	21±2	20±2	21±2	20±2	18±2	(2)	20 1 3
	51±4	51±4	50±4	53±4	51±4	7±7	44±36
	21±2	19±2	22±2	21+2	24±2	26±3	22±5
	21±2	24±2	24±2	23±2	24±2	25±2	24±3
April	14:2	14±2	12±2	13±2	15±2	14±2	13±2
	9±2	8±2.	10±2	9±2	7±2	8±2	9±2
	24±2	25±2	25±2	25±2	25±2	27±2	25±2
	24±2	23±2	27±2	25±2	23±2	24±2	24±3
Mav	22±2	20 ± 2	24±2	23±2	22±2	24±2	22±3
	16±2	19±2	22±2	19±2	16±2	20±2	19±5
	13±2	16 ±2	17±2	16±2	15±2	16±2	15±2
· · ·	13±2	· 14±2	15±2	12±2	11±2	17±2	13±4
	19±2	20±2	19±2	20±2	18±2	20±2	19±1
June	15±2	13±2	16±2	15±2	14±2	14±2	14±2
	29±2	23±2	29±2	27±2	25±2	25±2	26±5
and the second second	18±2	20±2	19±2	17±2	17±2	20±2	18±3
	23±2	22±2	23±3	26±3	20±2	24±3	23±4

δ

2008 CONCENTRATIONS OF GROSS BETA EMITTERS IN AIR PARTICULATES

Results in Units of 10⁻³ pCi/m³ +/- 2 sigma

· ·		<		STATI	ON ID		>
	Control	· .	·			•	
MONTH	SA-APT-14G1	SA-APT-16E1	SA-APT-1F1	SA-APT-2F6	SA-APT-5D1	SA-APT-5S1	AVERAGE
July	 19±2		19±2		16±2	18±2	18±2
	22 <u>+2</u>	20±2	21±2	19±2	18±2	24±2	21±5
	29±2	25±2	30±2	28±2	25±2	28±2	28±4
· · · ·	23±2	23±2	19±2	25±2	19±2	26±3	22±6
August	28±2	30±2	29±2	27±2	21±2	35±3	28±9
	23 £ 2	17±2 –	19±2	25±2	17±2	22±2	21±6
	26±2	24±2	24±2	26±2	22±2	27±2	25±3
-	25±2	21±2	23±2	27±2	21±2	25±2	23±5
	23 <u>+2</u>	19±2	21±2	23±2	20±2	21±2	21±3
September	22+2	26+3	24±3	26±3	20±2	26±3	24±5
	18+2	17+2	16 + 2	18±2	13±2	18±2	17±4
· .	16+2	18+2	22±2	22±2	16±2	23±2	19±6
1 . Le 19	15±2	15±2	19±2	21±2	16±2	17±2	17±5
October	20±2	22±2	23±2	26±2	21±2	28±2	23±6
	47±3	54±3	54±3	57±3	28±2	48±3	48±21
. ,	27±2	27±2	29±3	26±2	27±2	30±2	27±3
,	19±2	16±2	16±2	18±3	13±2	17±2	17±4
2	19±2	24±2	22±2	20±2	20±2	26±2	22±6
November	16±2	15±2	18±2	19±2	15±2	18±2	17±4
	.9±2	7±2	8±2	10±2	8±2	8±2	8±2
	29±2	17±2	19±2	24±2	16±2	19±2	21±10
	17±2	16±2	22±2	18±2	, 18±2	20±2	19±4
December	16±2	18±2	21±2	20±2	19±2	18±2	18±3
	15±2	15±2 (15±2	18±2	16±2	(2)	16±2
· .	15±2	15±2	15±2	🧧 🗵 18±2 🔅	16±2	17±2	16±3
	31±2	30±2	29±2	33±2	31±2	(2)	31±3
AVERAGE	22±16	22±16	177 1 23±16 . (1)	ુ ગલ⊎23±16 . ા	20±14	22±14	22±14
•	· · · ·				GRAND AVERA	GE	22±15

(1) Equipment malfunction; results not included in averages: See program deviations.(2) Power outage; results not included in averages. See program deviations.

2008 CONCENTRATIONS OF IODINE-131* IN FILTERED AIR Results in Units of 10⁻³ pCi/m³

	<>							
	Control	•						
MONTH	SA-AIO-14G1	SA-AIO-16E1	SA-AIO-1F1	SA-AIC-2F6	SA-AIO-5D1	SA-AIO-5S1		
January	<3.4	<3.8	<2.4	<7	<1.7	<3.5		
	<2.6	<2	<2.4	<8.2	<4.6	<2.2		
	<4.5	<4.8	<5.8	(1)	<1.5	<6.7		
	<1.8	<1.8	/ <3	<4.5	<4.5	<2.8		
	<3.9	<2.5	<2.2	<2.3	<6.3	<4.2		
— - 1								
February	<3.3	<2.8	<3.4	<5.4	<1.5	<2.4		
	<3.5	<2.2	. <2.8	<2	<2.6	<6		
	<2.3	<3.9	<1.3	<1.3	<1.7	<3.2		
	<2.7	<2.5	<4.1	<5.6	<3.6	<2.7		
March	<2.6	<3.5	<1.7	<4.4	<2	<1.3		
	<2.4	<1.6	<2.5	<3.6	<8.5	(2)		
	<1.8	<6.8	<2.9	<1.8	<4.2	<2.7		
	<4.5	<7.9	<3.5	<5.8	<3.1	<2		
	<3.7	<3.1	<5.9	<2.4	<5.3	<2.6		
April	~2.0	~2 n	-0	- 2 7	-10	~ <u>)</u> 0		
Арпі	< 3.9	< J.Z	~2	/ NJ.1	<4.9 <5.7	~2.0		
•	<1.1 	<.4 ~E	<0.7	<0.9	~0.7	<1.4 <0.0		
	<0.4 <4.4	<5 <2 4	<1.7	<0.1	<4./	<0.9		
•		-		- Car + J	2.0	0.2		
May	<7.9	<3.1	<3.3	<2.4	<2.7	<7		
.*	<2.4	<7.7	<5.3	<3.2	<2.1	<2.3		
,	<2.3	<2.7	<2.6	<2.4	<3.2	<4.8		
	<1.2	<1.8	<4.2	<4.8	<2.2	<2.1		
	<3.1	<4	<3.4	<3.2	<5.1	<3.7		
June	<1.4	<2.6	<2.9	<1.3	<4.3	<4.8		
	<3.9	<1.5	<2.5	<1.7	<1.5	<1.9		
	<4.5	<2.6	<2.7	<1.9	<1.6	<4.3		
·	<3	<1.5	<3.4	<5.7	<3.7	<2.4		

66

. .

2008 CONCENTRATIONS OF IODINE-131* IN FILTERED AIR Results in Units of 10⁻³ pCi/m³

	<		3 A		5 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	·		
MONTH	SA-AIO-14G1	SA-AIO-16E1	SA-AIO-1F1	SA-AIO-2F6	SA-AIO-5D1	SA-AIO-5S1		
July	<1	<3.9	<2	<4.9	<5.1	<2.2		
•	<6.7	. <2.6	<2.3	<3.8	<4.4	<3.4		
	<3.6	<2.7	<1.5	<3.6	<4.7	<4		
	<1.6	<2	<3.6	<2.7	<6.2	<3.4		
August	<6.9	<3.9	<2 9	<6.6	<3.4	<1.9		
/ agabt	<3.2	<29	<17	<2.5	<1.9	<3.8		
•	<2.5	<3.3	<3.3	<35	<3	<2.3		
	<4.5	<3.1	<19	<1.8	<2.4	<2.8		
•	<3.3	<3.1	<17	<21	<25	<1.6		
	-0.0	-0.1						
September	<2.6	<7.7	<5.2	<2.3	<3.7	<3.1		
	<2.7	<1.9	<3.7	<1.4	<2.3	<2.8		
	<3	<3.8	<2.6	<2.8	<2.4	<3.6		
	<2.7	<5.4	<1.7	<3.2	<1.7	<3		
			· · · ·			·		
October	<2.4	<4.1	<6.2	· <2.1	<4.8	<2.7		
	<1.4	<2.5	<6.1	<4.4	<1.6	<2.3		
	<1.9	<5.8	<6.4	<5.5	<2.2	<2.8		
	<5.1	<4.5	<2.8	<5.1	<5.7	<2.5		
	<1.8	<2.9	· <1 ∿	<1.6	<3	<2.5		
November	<3.3	<3.9	<4.4	<2.9	<3.8	<2		
	<2	<2.3	<2.6	<3.7	<3.2	<3.1		
	<2.2	<2.6	<5.1	<4.8	<3.5	<3.2		
	<7.9	<5	<5.6	<2.5	<3.1	<2.1		
December	<3.5	<2.6	<2.1	<2	<3	<2.5		
· · · · · · · · · · · · · · · · · · ·	<3	<1.9	<2.4	<3.3	<3.5	(2)		
	<6.1	<2.2	- <5.4	<4.2	<2.8	<3.3		
	<4	<1.8	<2.2	<3.9	<4.3	(2)		

* I-131 results are corrected for decay to sample stop date.
(1) Equipment malfunction: See program deviations.
(2) Power Outages: See program deviations.

2008 DIRECT RADIATION MEASUREMENTS - QUARTERLY TLD RESULTS

JAN APR JUL OCT QTR ID MAR JUN SEP DEC AVG SA-IDM-SS1 3.120.4 5.840.7 5.440.4 5.707.7 5.211.0 SA-IDM-SS2 5.060.7 5.240.4 5.240.5 5.840.5 5.840.5 5.840.6 5.840.7 SA-IDM-S22 5.060.7 5.240.4 5.240.5 5.840.5 5.840.7 5.340.7 SA-IDM-TS1 3.840.5 5.740.8 5.740.6 5.840.7 5.340.7 3.440.9 SA-IDM-1051 3.840.4 4.140.5 4.00.7 3.440.9 5.240.5 4.740.9 SA-IDM-1011 5.640.3 4.740.5 4.940.9 4.640.5 4.740.9 SA-IDM-1011 3.640.3 4.340.7 4.840.5 5.240.5 4.740.9 SA-IDM-1011 3.640.3 4.940.4 4.840.5 5.240.5 4.740.9 SA-IDM-1112 3.180.4 3.740.5 3.840.4 3.840.7 5.840.4 3.840.7 SA-IDM-1112 3.180.4 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>**</th></td<>						**
STATION to to to to to to to ELEMENTS D MAR JUN SEP DEC AVG AVG SA-IDM-S22 4.504.4 5.340.7 5.240.4 5.340.7 5.240.4 3.640.5 3.40.4 3.640.8 3.640.5 5.840.5 5.840.8 5.840.7 5.240.6 5.840.5 5.840.8 5.840.7 5.240.4 5.240.6 5.680.5 3.840.8 3.640.7 3.440.9 3.440.9 3.440.9 3.440.9 3.440.9 3.440.9 3.440.9 4.540.5 4.240.5 4.740.9 3.440.9 3.440.9 4.540.6 4.740.9 3.440.9 <		JAN	APR	JUL	ост	QTR
ID MAR JUN SEP DEC AVG SA-IDM-S22 4.540.4 5.340.7 5.440.4 5.740.7 5.241.0 SA-IDM-S21 3.140.4 3.640.4 3.540.5 5.340.5 5.340.7 SA-IDM-S21 5.160.5 5.740.8 5.740.5 5.840.6 5.640.7 SA-IDM-1051 3.340.5 3.740.4 3.860.5 3.340.4 4.020.7 3.440.9 SA-IDM-1021 4.140.3 4.640.4 4.80.5 4.880.5 4.140.9 SA-IDM-1021 4.140.3 4.740.5 4.840.5 5.240.5 4.740.9 SA-IDM-1011 4.180.3 4.740.5 4.840.5 5.240.5 4.740.9 SA-IDM-1501 4.240.5 4.740.5 4.840.5 5.240.5 4.740.9 SA-IDM-151 2.80.3 4.540.5 4.320.7 4.640.7 4.220.9 SA-IDM-151 4.80.3 4.70.5 4.840.5 5.240.5 4.730.9 SA-IDM-151 4.80.4 4.90.5 5.240.4 4.50.9 5.40.4 </th <th>STATION</th> <th>to</th> <th>to</th> <th>to</th> <th>to</th> <th>ELEMENTS</th>	STATION	to	to	to	to	ELEMENTS
SA-IDM-252 4 540.4 5 340.7 5 440.4 5 740.7 5 241.0 SA-IDM-851 3 140.4 3 640.4 3 540.5 4 140.4 3 640.8 SA-IDM-851 5 140.7 5 240.4 5 240.5 5 840.6 5 540.7 SA-IDM-751 5 140.5 5 740.8 5 740.8 5 740.5 5 940.6 5 640.7 SA-IDM-151 3 290.3 3 640.5 3 380.4 4 040.7 3 440.9 SA-IDM-101 3 580.5 4 140.3 4 640.4 4 580.5 4 140.9 SA-IDM-101 3 580.4 4 140.5 4 430.7 4 680.5 4 140.9 SA-IDM-101 3 580.4 4 380.7 4 580.5 4 780.8 5 240.5 4 780.9 SA-IDM-101 3 580.4 4 380.7 4 680.5 4 780.8 5 240.5 4 780.9 SA-IDM-101 3 580.4 4 380.7 4 680.6 4 780.4 3 580.4 3 580.4 3 580.7 SA-IDM-12E1 3 240.6 4 780.4 3 580.5 4 940.6 4 780.7 5 841.0	ID	MAR	JUN '	SEP	DEC	AVG
SA-IDM-SS1 3.1±0.4 3.6±0.4 3.5±0.5 4.1±0.4 3.6±0.8 SA-IDM-SS2 5.0±0.7 5.2±0.4 5.2±0.5 5.8±0.5 5.5±0.7 SA-IDM-TS1 5.1±0.5 5.7±0.8 5.7±0.5 5.9±0.6 5.6±0.7 SA-IDM-TS1 2.9±0.3 3.6±0.5 3.3±0.4 4.0±0.7 3.4±0.9 SA-IDM-D21 4.1±0.3 4.6±0.4 4.9±0.6 4.8±0.5 4.1±0.9 SA-IDM-D01 4.1±0.3 4.7±0.5 4.9±0.5 5.2±0.5 4.7±0.9 SA-IDM-TD1 3.5±0.4 4.1±0.5 4.9±0.5 5.2±0.5 4.7±0.9 SA-IDM-TD1 4.1±0.3 4.7±0.5 4.9±0.7 4.6±0.7 4.2±0.9 SA-IDM-TS1 3.8±0.3 4.5±0.5 4.3±0.4 3.9±0.4 4.6±0.7 4.7±0.8 SA-IDM-TS1 3.8±0.3 4.5±0.5 4.3±0.4 3.9±0.4 4.6±0.7 4.9±1.2 SA-IDM-TS1 3.8±0.4 4.9±0.4 5.9±0.5 4.9±0.8 4.7±0.7 SA-IDM-TS1 3.8±0.4 3.8±0.4 3.8	SA-IDM-2S2	4.5±0.4	5.3±0.7	5.4±0.4	5.7±0.7	5.2±1.0
SA-IDM-SS2 5 (bd) 7 5 (20) 4 5 (20) 5 5 (30) 5 5 (30) 7 5 (30) 7 SA-IDM-1051 3 (30) 5 3 (40) 3 3 (40) 5 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 3 (40) 7 4 (40) 7 3 (40) 7 5 (40) 7 5 (40) 7 5 (40) 7 5 (40) 7 5 (40) 7 5 (40) 7 5 (40) 7 5 (40) 7 <	SA-IDM-5S1	3.1±0.4	3.6±0.4	3.5±0.5	4.1±0.4	3.6±0.8
SA-IDM-751 5 1±0.5 5 7±0.8 5 7±0.5 5 9±0.6 5 6±0.7 SA-IDM-1051 2.9±0.3 3.6±0.5 3.2±0.4 4.0±0.7 3.4±0.9 SA-IDM-1051 3.5±0.4 4.1±0.3 4.6±0.4 4.5±0.5 4.8±0.5 4.1±0.9 SA-IDM-501 3.5±0.4 4.1±0.5 4.9±0.5 5.2±0.5 4.7±0.9 SA-IDM-1001 4.1±0.3 4.7±0.5 4.9±0.5 5.2±0.5 4.7±0.9 SA-IDM-1001 4.1±0.3 4.7±0.5 4.9±0.5 5.2±0.5 4.7±0.8 SA-IDM-101 4.2±0.5 4.7±0.4 4.8±0.5 5.2±0.5 4.7±0.8 SA-IDM-751 3.8±0.3 4.5±0.5 4.3±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.7 3.4±0.7 3.4±0.7 3.4±0.7 3.4±0.7 3.4±0.7 3.4±0.7 3.4±0.7 3.4±0.7 3.4±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.7 3.4±0.8 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.6	SA-IDM-6S2	5.0±0.7	5.2±0.4	5.2±0.5	5.8±0.5	5.3±0.7
SA-IDM-10S1 33:05 37:04 36:05 42:05 37:07 SA-IDM-10S1 29:03 36:40.5 33:04.4 40:07 34:09 SA-IDM-402 41:03 46:04 46:05 45:06 45:06 SA-IDM-101 41:03 47:05 42:05 52:05 47:09 SA-IDM-1011 35:03 43:04 43:07 46:07 42:09 SA-IDM-1011 35:03 43:04 43:07 46:07 42:09 SA-IDM-1011 42:05 47:04 48:05 52:05 47:08 SA-IDM-211 38:03 45:05 43:04 46:05 43:06 SA-IDM-311 31:04 37:05 36:04 51:06 45:07 49:12 SA-IDM-1121 41:04 46:06 47:04 51:06 45:07 49:12 SA-IDM-1211 31:04 37:04 36:05 41:05 37:06 SA-IDM-121 42:06 49:05 49:06 49:07 36:10 SA-IDM-121 40:04 45:05 49:06 49:07 36:10 SA-IDM-121 </td <td>SA-IDM-7S1</td> <td>5.1±0.5</td> <td>5.7±0.8</td> <td>5.7±0.5</td> <td>5.9±0.6</td> <td>5.6±0.7</td>	SA-IDM-7S1	5.1±0.5	5.7±0.8	5.7±0.5	5.9±0.6	5.6±0.7
SA-IDM-H1S1 2.9±0.3 3.6±0.5 3.3±0.4 4.0±0.7 3.4±0.9 SA-IDM-SD1 3.5±0.4 4.1±0.5 4.0±0.9 4.5±0.5 4.1±0.9 SA-IDM-SD1 3.5±0.4 4.1±0.5 4.0±0.9 4.5±0.5 4.1±0.9 SA-IDM-H011 4.1±0.3 4.7±0.5 4.9±0.5 5.2±0.5 4.7±0.9 SA-IDM-1011 4.2±0.5 4.7±0.4 4.8±0.5 5.2±0.5 4.7±0.8 SA-IDM-1511 4.2±0.5 4.7±0.4 4.8±0.5 5.2±0.5 4.7±0.8 SA-IDM-211 3.8±0.4 4.5±0.5 4.3±0.4 3.8±0.4 3.8±0.4 3.8±0.4 3.8±0.4 3.8±0.4 3.8±0.4 3.8±0.4 4.8±0.5 4.3±0.8 SA-IDM-2121 4.2±0.6 4.9±0.8 5.0±0.4 5.6±0.7 4.9±1.2 5.4±0.9 5.4±0.9 5.4±0.9 5.4±0.9 5.4±0.9 5.4±0.9 5.4±0.9 5.4±0.9 5.4±0.9 5.4±0.8 5.0±0.6 6±0.6 6±0.7 5.8±1.0 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8 5.4±0.8	SA-IDM-10S1	3.3±0.5	3.7±0.4	3.6±0.5	4.2±0.5	3.7±0.7
SA-IDM-DD2 4 1±0.3 4 6±0.4 4 5±0.6 4 8±0.5 4 5±0.6 SA-IDM-DD1 4 1±0.3 4 7±0.5 4 9±0.5 5 2±0.5 4 7±0.9 SA-IDM-10D1 4 1±0.3 4 7±0.5 4 9±0.5 5 2±0.5 4 7±0.8 SA-IDM-15D1 4 2±0.5 4 7±0.4 4 8±0.5 5 2±0.5 4 7±0.8 SA-IDM-2E1 3 8±0.3 4 5±0.5 4 3±0.4 4 9±0.5 5 2±0.5 4 7±0.8 SA-IDM-3E1 3 1±0.4 3 7±0.5 3 8±0.4 3 9±0.4 3 6±0.7 4 9±1.2 SA-IDM-11E2 4 1±0.4 4 6±0.6 4 7±0.4 5 1±0.6 4 6±0.7 4 9±1.2 SA-IDM-12E1 3 1±0.4 3 7±0.4 3 5±0.5 4 1±0.5 3 7±0.8 SA-IDM-12E1 4 1±0.4 4 7±0.6 5 0±0.5 4 9±0.5 4 5±0.7 SA-IDM-12E1 3 1±0.4 3 7±0.4 3 5±0.6 4 9±0.5 4 5±0.6 SA-IDM-12E1 4 9±0.5 3 4±0.4 3 5±0.6 4 9±0.5 4 5±0.6 SA-IDM-12E1 3 1±0.4 3 5±0.6 4 5±0.6 4 9±0.5 4 5±0.7 SA-IDM-12E1	SA-IDM-11S1	2.9±0.3	3.6±0.5	3.3±0.4	4.0±0.7	3.4±0.9
SA-IDM-SD1 3.5±0.4 4.1±0.5 4.0±0.9 4.6±0.5 4.1±0.9 SA-IDM-H01 4.1±0.3 4.7±0.5 4.9±0.5 5.2±0.5 4.7±0.9 SA-IDM-H01 3.5±0.3 4.3±0.4 4.3±0.7 4.6±0.7 4.2±0.9 SA-IDM-H01 3.5±0.3 4.5±0.5 4.3±0.4 4.6±0.5 4.3±0.8 SA-IDM-2E1 3.8±0.3 4.5±0.5 4.3±0.4 4.6±0.5 4.3±0.8 SA-IDM-2E1 3.8±0.4 4.5±0.6 4.7±0.4 5.1±0.6 4.5±0.9 SA-IDM-12E1 4.2±0.6 4.9±0.8 5.0±0.4 5.1±0.6 4.5±0.9 SA-IDM-12E1 4.2±0.4 4.7±0.6 5.0±0.5 4.9±0.6 4.7±0.7 SA-IDM-12E1 4.2±0.4 4.7±0.6 5.0±0.6 4.9±0.5 4.5±0.8 SA-IDM-12E1 4.0±0.4 4.5±0.5 6.0±0.6 6.3±0.7 5.6±1.0 SA-IDM-12E1 4.0±0.4 4.5±0.5 4.0±0.5 4.5±0.5 5.4±0.7 SA-IDM-2F6 3.7±0.3 4.1±0.4 4.0±0.3 4.5±0.4 4.1±0.5 SA-IDM-3F1 3.5±0.4 3.5±0.4 3.5±0.4	SA-IDM-4D2	4.1±0.3	4.6±0.4	4.5±0.6	4.8±0.5	4.5±0.6
SA-IDM-10D1 4.120.3 4.720.5 4.920.5 5.240.5 4.740.9 SA-IDM-15D1 3.240.3 4.340.4 4.340.7 4.640.7 4.240.9 SA-IDM-15D1 3.240.5 4.740.4 4.840.5 5.240.5 4.740.8 SA-IDM-3E1 3.140.4 3.740.5 3.640.4 3.940.4 4.640.7 SA-IDM-9F1 4.220.6 4.940.8 5.040.4 5.640.7 4.911.2 SA-IDM-11E2 4.140.4 4.640.6 4.740.4 5.140.6 4.740.7 SA-IDM-12E1 4.120.4 4.740.6 5.040.5 4.940.5 3.740.8 SA-IDM-12E1 4.120.4 4.740.6 5.040.5 4.940.5 3.740.8 SA-IDM-17E1 3.140.4 3.740.4 3.640.5 4.940.5 5.841.0 SA-IDM-17E1 4.040.4 4.540.5 4.940.5 4.540.8 5.841.0 SA-IDM-17E5 3.420.3 3.840.6 3.840.6 4.940.7 5.841.0 SA-IDM-275 3.420.3 3.840.6 3.840.5 4.340.7 5.841.0 SA-IDM-373 3.320.4 3.540.4 3.840.4	SA-IDM-5D1	3.5±0.4	4.1±0.5	4.0±0.9	4.6±0.5	4.1±0.9
SA-IDM-14D1 3.5±0.3. 4.3±0.4. 4.3±0.7. 4.6±0.7. 4.2±0.9. SA-IDM-2E1 3.8±0.3. 4.5±0.5. 4.3±0.4. 4.8±0.5. 5.2±0.5. 4.7±0.8. SA-IDM-2E1 3.8±0.3. 4.5±0.5. 4.3±0.4. 3.9±0.4. 3.6±0.7. SA-IDM-3E1 3.1±0.4. 3.7±0.5. 3.6±0.4. 3.9±0.4. 3.6±0.7. SA-IDM-12E1 4.2±0.6. 4.7±0.6. 5.7±0.5. 4.9±0.6. 4.7±0.7. SA-IDM-12E1 4.2±0.4. 4.7±0.6. 5.7±0.5. 4.9±0.5. 4.9±0.5. 4.9±0.5. SA-IDM-16E1 4.0±0.4 4.5±0.5. 4.9±0.5. 4.9±0.5. 4.9±0.5. 4.9±0.5. SA-IDM-17E1 5.1±0.4. 5.7±0.5. 6.0±0.6. 6.3±0.7. 5.8±10. SA-IDM-275 4.0±0.6 4.5±0.6. 4.5±0.6. 4.9±0.5. 4.5±0.7. SA-IDM-275 3.4±0.6 3.8±0.6 3.8±0.5 4.3±0.7. 5.4±0.7. SA-IDM-373 3.3±0.3 4.1±0.4 4.0±0.3 4.5±0.6 -9.4±0.5. 4.5±0.7. SA-IDM-375 3.4±0.3 3.8±0.4 3.8±0.4 3.8±0.4	SA-IDM-10D1	4.1±0.3	4.7±0.5	4.9±0.5	5.2±0.5	4.7±0.9
SA-IDM-15D1 4.2±0.5 4.7±0.4 4.8±0.5 5.2±0.5 4.7±0.8 SA-IDM-2E1 3.8±0.3 4.5±0.5 4.3±0.4 4.6±0.5 4.3±0.4 SA-IDM-3E1 3.1±0.4 3.7±0.5 3.6±0.4 5.6±0.7 4.9±1.2 SA-IDM-3E1 4.1±0.4 4.6±0.6 4.7±0.4 5.6±0.7 4.9±1.2 SA-IDM-1E2 4.1±0.4 4.6±0.6 4.7±0.4 5.1±0.6 4.6±0.9 SA-IDM-1E1 4.2±0.4 4.7±0.6 5.0±0.5 4.9±0.6 4.7±0.7 SA-IDM-1E1 4.0±0.4 4.5±0.5 4.5±0.6 4.9±0.5 4.5±0.8 SA-IDM-1F1 5.1±0.4 5.7±0.5 6.0±0.6 6.3±0.7 5±1.0 SA-IDM-2F2 3.4±0.3 3.8±0.6 3.8±0.6 4.9±0.5 4.5±0.4 SA-IDM-2F5 4.0±0.6 4.5±0.4 4.1±0.6 3.9±0.7 SA-IDM-2F5 SA-IDM-2F5 3.4±0.3 3.8±0.6 3.8±0.5 4.3±0.4 3.9±0.7 SA-IDM-3F2 3.4±0.3 3.5±0.4 4.1±0.4 4.9±0.5 4.3±0.4 4.0±0.7 SA-IDM-3F2 3.2±0.4 3.2±0.4 <t< td=""><td>SA-IDM-14D1</td><td>3.5±0.3</td><td>4.3±0.4</td><td>4.3±0.7</td><td>4.6±0.7</td><td>4.2±0.9</td></t<>	SA-IDM-14D1	3.5±0.3	4.3±0.4	4.3±0.7	4.6±0.7	4.2±0.9
SA-IDM-2E1 3 8±0.3 4 5±0.5 4 3±0.4 4 6±0.5 4 3±0.8 SA-IDM-3E1 3 1±0.4 3 7±0.5 3 6±0.4 3 9±0.4 3 6±0.7 SA-IDM-9F1 4 2±0.6 4 9±0.6 4 7±0.4 5 1±0.6 4 6±0.9 SA-IDM-11E2 4 1±0.4 4 6±0.6 4 7±0.4 5 1±0.6 4 6±0.9 SA-IDM-12E1 3 1±0.4 3 7±0.4 3 8±0.5 4 1±0.5 3 7±0.8 SA-IDM-15E1 3 1±0.4 3 7±0.4 3 8±0.5 4 1±0.5 3 7±0.8 SA-IDM-16E1 4 0±0.4 4 5±0.5 6 0±0.6 6 3±0.7 5 8±1.0 SA-IDM-2F2 3 4±0.5 3 8±0.6 4 9±0.5 4 5±0.7 5 8±1.0 SA-IDM-2F5 4 0±0.3 4 1±0.4 4 0±0.3 4 5±0.6 3 8±0.6 3 8±0.6 3 8±0.7 SA-IDM-3F2 3 4±0.3 3 8±0.4 3 7±0.4 4 0±0.7 3 8±0.6 3 8±0.7 5 8±10.7 SA-IDM-3F3 3 3±0.3 4 1±0.4 3 8±0.4 4 1±0.6 3 8±0.7 3 8±0.7 3 8±0.7 3 8±0.7 3 8±0.7 3 8±0.7 3 8±0.7 3 8±0.7 3 8±0.7	SA-IDM-15D1	4.2±0.5	4.7±0.4	4.8±0.5	5.2±0.5	4.7±0.8
SA-IDM-3E1 3.1±0.4 3.7±0.5 3.6±0.4 3.9±0.4 3.6±0.7 SA-IDM-1F1 4.2±0.6 4.9±0.8 5.0±0.4 5.6±0.7 4.9±1.2 SA-IDM-11E2 4.1±0.4 4.6±0.6 4.7±0.6 5.0±0.5 4.9±0.6 4.7±0.7 SA-IDM-13E1 3.1±0.4 3.7±0.4 3.8±0.5 4.1±0.5 3.7±0.8 SA-IDM-16E1 4.0±0.4 4.5±0.5 4.5±0.6 4.9±0.5 4.5±0.8 SA-IDM-1F1 5.1±0.4 5.7±0.5 6.0±0.6 6.3±0.7 5.8±1.0 SA-IDM-2F2 3.4±0.5 3.8±0.6 4.9±0.4 3.7±0.5 5.4±0.6 4.9±0.5 4.5±0.7 SA-IDM-2F5 4.0±0.6 4.5±0.6 4.9±0.5 4.5±0.7 5.8±1.0 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.6 3.9±0.7 5.8±1.0 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.6 3.9±0.7 5.8±0.7 SA-IDM-3F3 3.3±0.3 4.1±0.4 4.0±0.3 4.2±0.6 3.9±0.8 SA-IDM-3F1 3.9±0.4	SA-IDM-2E1	3.8±0.3	4.5±0.5	4.3±0.4	4.6±0.5	4.3±0.8
SA-IDM-9F1 4.2±0.6 4.9±0.8 5.0±0.4 5.6±0.7 4.9±1.2 SA-IDM-11E2 4.1±0.4 4.6±0.6 4.7±0.4 5.1±0.6 4.6±0.9 SA-IDM-12E1 4.2±0.4 4.7±0.6 5.0±0.5 4.9±0.6 4.7±0.7 SA-IDM-12E1 4.2±0.4 4.7±0.6 5.0±0.5 4.9±0.5 4.5±0.8 SA-IDM-15E1 4.0±0.4 4.5±0.5 6.0±0.6 6.3±0.7 5.8±1.0 SA-IDM-2F2 3.4±0.5 3.8±0.4 3.8±0.6 4.9±0.4 3.7±0.5 SA-IDM-2F5 4.0±0.6 4.5±0.6 4.5±0.6 4.5±0.7 5.8±10.7 SA-IDM-2F5 3.4±0.3 3.8±0.5 3.8±0.5 3.9±0.7 5.8±10.7 SA-IDM-3F3 3.3±0.3 4.1±0.4 3.8±0.4 4.2±0.6 3.9±0.7 SA-IDM-3F1 3.5±0.4 4.1±0.4 3.8±0.4 4.2±0.6 3.9±0.7 SA-IDM-5F1 3.5±0.4 4.1±0.4 4.9±0.5 4.3±0.4 4.0±0.7 SA-IDM-17F2 2.6±0.2 3.1±0.3 3.0±0.3 3.4±0.4	SA-IDM-3E1	3.1±0.4	3.7±0.5	3.6±0.4	3.9±0.4	3.6±0.7
SA-IDM-11E2 4.1±0.4 4.6±0.6 4.7±0.4 5.1±0.6 4.6±0.9 SA-IDM-12E1 4.2±0.4 4.7±0.6 5.0±0.5 4.9±0.6 4.7±0.7 SA-IDM-13E1 3.1±0.4 3.7±0.5 4.9±0.5 4.5±0.5 4.5±0.8 SA-IDM-16E1 4.0±0.4 4.5±0.5 4.5±0.6 4.9±0.5 4.5±0.8 SA-IDM-2F2 3.4±0.5 3.8±0.4 3.8±0.6 4.0±0.4 3.7±0.5 SA-IDM-2F5 4.0±0.6 4.5±0.6 4.5±0.6 4.5±0.6 4.5±0.7 SA-IDM-2F5 3.0±0.6 4.5±0.6 3.8±0.4 4.1±0.6 3.9±0.7 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.4 4.1±0.6 3.9±0.7 SA-IDM-3F3 3.3±0.3 4.1±0.4 4.0±0.5 4.3±0.6 3.9±0.7 SA-IDM-4F2 3.3±0.4 4.5±0.4 4.0±0.7 3.6±0.7 3.9±0.8 SA-IDM-3F1 3.5±0.4 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-4F2 2.9±0.3 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.4	SA-IDM-9F1	4.2±0.6	4.9±0.8	5.0±0.4	5.6±0.7	4.9±1.2
SA-IDM-12E1 4.2±0.4 4.7±0.6 5.0±0.5 4.9±0.6 4.7±0.7 SA-IDM-13E1 3.1±0.4 3.7±0.4 3.6±0.5 4.1±0.5 3.7±0.8 SA-IDM-16E1 4.0±0.4 4.5±0.5 4.5±0.6 4.9±0.5 4.5±0.8 SA-IDM-17E1 5.1±0.4 5.7±0.5 6.0±0.6 6.3±0.7 5.8±1.0 SA-IDM-2F2 3.4±0.5 3.8±0.4 3.6±0.6 4.0±0.4 3.7±0.5 SA-IDM-2F5 4.0±0.6 4.5±0.6 4.9±0.5 4.5±0.6 4.9±0.5 4.5±0.7 SA-IDM-2F6 3.7±0.3 4.1±0.4 4.0±0.3 4.5±0.6 3.9±0.7 3.6±0.7 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.4 4.2±0.6 3.9±0.8 SA-IDM-4F2 3.3±0.3 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-4F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.3±0.7 SA-IDM-10F2 2.9±0.4 4.5±0.5 4.9±0.5 4.4±0.7 3.4±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.5 5.1±0.5 4.8±0.7 5.4±0.6 4.4±0.7	SA-IDM-11E2	4.1±0.4	4.6±0.6	4.7±0.4	5.1±0.6	4.6±0.9
SA-IDM-13E1 3.1±0.4 3.7±0.4 3.8±0.5 4.1±0.5 3.7±0.8 SA-IDM-16E1 4.0±0.4 4.5±0.5 4.5±0.6 4.9±0.5 4.5±0.8 SA-IDM-1F1 5.1±0.4 5.7±0.5 6.0±0.6 6.3±0.7 5.8±1.0 SA-IDM-2F2 3.4±0.5 3.8±0.4 3.8±0.6 4.0±0.3 4.5±0.6 4.9±0.5 4.5±0.7 SA-IDM-2F5 4.0±0.6 4.5±0.6 4.9±0.5 4.5±0.7 5.4±0.7 5.4±0.7 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.5 4.3±0.6 3.9±0.7 5.4±0.7 SA-IDM-3F3 3.3±0.3 4.1±0.4 3.8±0.5 4.3±0.6 3.9±0.7 SA-IDM-3F1 3.5±0.4 4.1±0.4 4.0±0.7 3.6±0.7 5.4±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.5 5.1±0.5 4.6±0.7 SA-IDM-11F1 4.3±0.4 4.7±0.6 4.9±0.5 5.1±0.5 4.6±0.7 SA-IDM-13F2 3.9±0.4 4.5±0.5 4.9±0.5 5.1±0.5 4.6±0.7	SA-IDM-12E1	4.2±0.4	4.7±0.6	5.0±0.5	4.9±0.6	4.7±0.7
SA-IDM-16E1 4.0±0.4 4.5±0.5 4.5±0.5 4.9±0.5 4.5±0.8 SA-IDM-1F1 5.1±0.4 5.7±0.5 6.0±0.6 6.3±0.7 5.8±1.0 SA-IDM-2F2 3.4±0.5 3.8±0.4 3.8±0.6 4.0±0.4 3.7±0.5 SA-IDM-2F5 4.0±0.6 4.5±0.6 4.5±0.6 4.5±0.4 4.1±0.6 SA-IDM-2F6 3.7±0.3 4.1±0.4 4.0±0.3 4.5±0.4 4.1±0.6 SA-IDM-3F3 3.3±0.3 3.8±0.6 3.8±0.4 4.2±0.6 3.9±0.8 SA-IDM-5F1 3.5±0.4 3.5±0.4 3.2±0.7 SA-IDM-17 SA-IDM-17 SA-IDM-17 SA-IDM-17 SA-IDM-17 SA-IDM-17 SA-IDM-17 SA-IDM-17 SA-IDM-16 SA+IDM-16	SA-IDM-13E1	3.1±0.4	3.7±0.4	3.8±0`5	4.1±0.5	3.7±0.8
SA-IDM-1F1 5.1±0.4 5.7±0.5 6.0±0.6 6.3±0.7 5.8±1.0 SA-IDM-2F2 3.4±0.5 3.8±0.4 3.8±0.6 4.9±0.5 4.5±0.7 SA-IDM-2F5 4.0±0.6 4.5±0.6 4.9±0.5 4.9±0.5 4.5±0.7 SA-IDM-2F5 3.4±0.3 3.8±0.6 3.8±0.5 4.3±0.4 4.1±0.6 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.5 4.3±0.6 3.9±0.7 SA-IDM-3F3 3.3±0.3 4.1±0.4 3.8±0.6 4.0±0.7 3.6±0.7 SA-IDM-3F1 3.5±0.4 4.1±0.4 3.8±0.4 3.3±0.4 3.6±0.7 3.6±0.7 SA-IDM-5F1 3.5±0.4 4.1±0.4 4.0±0.5 4.3±0.4 3.2±0.4 3.2±0.4 3.2±0.4 3.2±0.4 3.6±0.7 3.8±0.4 3.3±0.7 SA-IDM-5F1 2.9±0.3 3.2±0.4 3.2±0.4 3.6±0.5 5.1±0.5 4.6±0.7 3.8±0.4 3.2±0.4 3.6±0.5 4.6±0.7 3.8±0.4 3.2±0.4 3.6±0.5 4.6±0.5 4.6±0.7 5.4±0.5 4.6±0.7 5.4±0.5 4.6±0.7 5.4±0.5 4.4±0.7 5.4±0.6 4.9±0.5 4.4±0.7	SA-IDM-16E1	4.0±0.4	4.5±0.5	4.5±0.6	4.9±0.5	4.5±0.8
SA-IDM-2F2 3.4±0.5 3.8±0.4 3.6±0.5 4.0±0.4 3.7±0.5 SA-IDM-2F5 4.0±0.6 4.5±0.6 4.5±0.5 4.5±0.7 4.5±0.7 SA-IDM-2F6 3.7±0.3 4.1±0.4 4.0±0.3 4.5±0.4 4.1±0.6 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.5 4.3±0.6 3.9±0.7 SA-IDM-3F2 3.3±0.3 4.1±0.4 3.8±0.4 4.2±0.6 3.9±0.8 SA-IDM-3F1 3.5±0.4 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.3±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.6±0.5 4.6±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.4 5.0±0.5 4.6±0.7 SA-IDM-11F1 4.3±0.4 4.5±0.5 4.9±0.5 4.4±0.7 SA-IDM-13F2 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.5 4.4±0.7 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.4±0.7 SA+DM-13F2 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.7 SA-IDM-13F3 <td>SA-IDM-1F1</td> <td>5.1±0.4</td> <td>5.7±0.5</td> <td>6.0:±0.6</td> <td>6.3±0.7</td> <td>5.8±1.0</td>	SA-IDM-1F1	5.1±0.4	5.7±0.5	6.0:±0.6	6.3±0.7	5.8±1.0
SA-IDM-2F5 4.0±0.6 4.5±0.6 4.5±0.6 4.5±0.6 4.5±0.7 SA-IDM-2F6 3.7±0.3 4.1±0.4 4.0±0.3 4.5±0.4 4.1±0.6 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.6 3.8±0.6 3.9±0.7 SA-IDM-3F3 3.3±0.3 4.1±0.4 3.8±0.4 4.2±0.6 3.9±0.8 SA-IDM-3F1 3.5±0.4 3.5±0.4 3.7±0.4 4.0±0.7 3.6±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.3±0.7 SA-IDM-7F2 2.6±0.2 3.1±0.3 3.0±0.3 3.4±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.5 5.1±0.5 4.8±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.5 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 6.6±0.4 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.5 4.9±0.5 4.4±0.7 4.9±0.5 4.4±0.7 SA-IDM-13F3 3.8±0.4 4.3±0.5 6.6±0.4 5.1±0.6 4.4±0.7 5.2±0.6 5.4±0.5 5.0±0.8 <t< td=""><td>SA-IDM-2F2</td><td>3.4±0.5</td><td>3.8±0.4</td><td>3,8±0.6</td><td>, 4.0±0.4</td><td>3.7±0.5</td></t<>	SA-IDM-2F2	3.4±0.5	3.8±0.4	3,8±0.6	, 4.0±0.4	3.7±0.5
SA-IDM-2F6 3.7±0.3 4.1±0.4 4.0±0.3 4.5±0.4 4.1±0.6 SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.5 4.3±0.6 3.9±0.7 SA-IDM-3F3 3.3±0.3 4.1±0.4 3.8±0.4 4.2±0.6 3.9±0.8 SA-IDM-4F2 3.3±0.4 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-4F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.0±0.7 SA-IDM-5F1 3.5±0.4 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-16F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.4 5.0±0.5 4.6±1.0 SA-IDM-11F1 4.3±0.4 4.7±0.6 4.9±0.5 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.4 5.1±0.6 4.4±0.9 SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-13F3 4.5±0.4 5.0±0.5 5.2±0.6	SA-IDM-2F5	4.0±0.6	4.5±0.6	4.5±0.6	4.9±0.5	4.5±0.7
SA-IDM-3F2 3.4±0.3 3.8±0.6 3.8±0.5 4.3±0.6 3.9±0.7 SA-IDM-3F3 3.3±0.3 4.1±0.4 3.8±0.4 4.2±0.6 3.9±0.8 SA-IDM-4F2 3.3±0.4 3.5±0.4 3.7±0.4 4.0±0.7 3.6±0.7 SA-IDM-6F1 3.5±0.4 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.0±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.0±0.3 3.4±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.4 5.0±0.5 4.6±1.0 SA-IDM-11F1 4.3±0.4 4.7±0.6 4.9±0.5 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F2 3.9±0.4 4.3±0.5 4.6±0.4 5.1±0.6 4.4±0.7 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.9±0.5 4.9±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16F2 3.5±0.5 4.9±0.5	SA-IDM-2F6	3.7±0.3	4.1±0.4	4.0±0.3	4.5±0.4	4.1±0.6
SA-IDM-3F3 3.3±0.3 4.1±0.4 3.8±0.4 4.2±0.6 3.9±0.8 SA-IDM-4F2 3.3±0.4 3.5±0.4 3.7±0.4 4.0±0.7 3.6±0.7 SA-IDM-5F1 3.5±0.4 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.3±0.7 SA-IDM-7F2 2.6±0.2 3.1±0.3 3.0±0.3 3.4±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.4 5.0±0.5 4.6±1.0 SA-IDM-13F2 3.9±0.4 4.5±0.5 4.9±0.4 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.5±0.5 4.5±0.5 4.8±0.5 4.4±0.7 SA-IDM-13F2 3.9±0.4 4.3±0.5 4.6±0.4 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.3±0.5 4.6±0.4 5.1±0.5 4.9±0.7 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.4 5.1±0.5 4.9±0.8 SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.2±0.6 5.4±0.7 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.0±0.4	SA-IDM-3F2	3.4±0.3	3.8±0.6	3.8±0.5	4.3±0.6	3.9±0.7
SA-IDM-4F2 3.3±0.4 3.5±0.4 3.7±0.4 4.0±0.7 3.6±0.7 SA-IDM-5F1 3.5±0.4 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.3±0.7 SA-IDM-10F2 2.6±0.2 3.1±0.3 3.0±0.3 3.4±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.4 5.0±0.5 4.6±1.0 SA-IDM-11F1 4.3±0.4 4.7±0.6 4.9±0.5 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±0.7 SA-IDM-13F3 3.8±0.4 3.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.7 4.9±0.7 5.0±0.5 5.3±0.5 5.0±0.8 SA-IDM-13F3 4.5±0.4 5.0±0.5 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.9±0.4	SA-IDM-3F3	3.3±0.3	4.1±0.4	3.8±0.4	4.2±0.6	3.9±0.8
SA-IDM-5F1 3.5±0.4 4.1±0.4 4.0±0.5 4.3±0.4 4.0±0.7 SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.3±0.7 SA-IDM-7F2 2.6±0.2 3.1±0.3 3.0±0.3 3.4±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.4 5.0±0.5 4.6±1.0 SA-IDM-11F1 4.3±0.4 4.7±0.6 4.9±0.5 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±0.7 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.5 4.9±0.5 4.9±0.8 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.5 5.3±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16F3 4.5±0.4 5.0±0.5 5.2±0.6 5.4±0.5 5.0±0.8 S.4±0.7 SA-IDM-16G1(C) 3.7±0.5 4.3±0.4 4.0±0.4 4.3±0.4 4.0±0.6 S.4±0.7 S.4±0.7 S.4±0.7 <td>SA-IDM-4F2</td> <td>3.3±0.4</td> <td>3.5±0.4</td> <td>3.7±0.4</td> <td>4.0±0.7</td> <td>3.6±0.7</td>	SA-IDM-4F2	3.3±0.4	3.5±0.4	3.7±0.4	4.0±0.7	3.6±0.7
SA-IDM-6F1 2.9±0.3 3.2±0.4 3.2±0.4 3.8±0.4 3.3±0.7 SA-IDM-7F2 2.6±0.2 3.1±0.3 3.0±0.3 3.4±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.4 5.0±0.5 4.6±1.0 SA-IDM-11F1 4.3±0.4 4.7±0.6 4.9±0.5 5.1±0.5 4.8±0.7 SA-IDM-13F2 3.9±0.4 4.5±0.5 4.5±0.5 4.8±0.7 4.4±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-13F3 3.8±0.4 4.3±0.5 5.2±0.6 5.4±0.6 4.7±0.9 SA-IDM-16F2 3.5±0.5 4.9±0.4 5.2±0.6 5.4±0.7 5.4±0.7<	SA-IDM-5F1	3.5±0.4	4.1±0.4	4.0±0.5	4.3±0.4	4.0±0.7
SA-IDM-7F2 2.6±0.2 3.1±0.3 3.0±0.3 3.4±0.4 3.0±0.7 SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.5 5.1±0.5 4.6±1.0 SA-IDM-11F1 4.3±0.4 4.7±0.6 4.9±0.5 5.1±0.5 4.6±0.7 SA-IDM-12F1 3.9±0.4 4.5±0.5 4.5±0.5 4.8±0.7 4.4±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.4 5.1±0.6 4.4±0.9 SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 5.4±0.8 SA-IDM-16F2 3.5±0.4 5.0±0.5 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16G2 3.5±0.5 4.0±0.4 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-10G3 (C) 4.9±0.5 4.7±0.5 5.3±0.5 4.9±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7 5.4±0.7	SA-IDM-6F1	2.9±0.3	3.2±0.4	3.2±0.4	3.8±0.4	3.3±0.7
SA-IDM-10F2 3.9±0.4 4.5±0.5 4.9±0.4 5.0±0.5 4.6±1.0 SA-IDM-11F1 4.3±0.4 4.7±0.6 4.9±0.5 5.1±0.5 4.6±0.7 SA-IDM-12F1 3.9±0.4 4.5±0.5 4.5±0.5 4.6±0.4 5.1±0.6 4.4±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.5 5.9±0.5 4.4±0.9 SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 4.7±0.9 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.0±0.6 5.4±0.6 5.4±0.6 5.4±0.6 SA-IDM-16G12 3.5±0.5 4.0±0.4 4.4±0.4 4.7±0.5 4.3±0.8 8.4=0.7 SA-IDM-16G1(C) 3.7±0.5 4.3±0.5 4.1±0.5 4.5±0.4 5.2±0.6 5.4±0.7 SA-IDM-16G1(C) 3.7±0.5 4.3±0.5 4.1±0.5 4.2±0.5 3.7±0.7	SA-IDM-7F2	2.6±0.2	3.1±0.3	3.0±0.3	3.4±0.4	3.0±0.7
SA-IDM-11F1 $4.340.4$ $4.740.6$ 4.9 ± 0.5 5.1 ± 0.5 4.8 ± 0.7 SA-IDM-12F1 3.9 ± 0.4 4.5 ± 0.5 4.5 ± 0.5 4.8 ± 0.5 4.4 ± 0.7 SA-IDM-13F2 3.9 ± 0.4 4.2 ± 0.4 4.6 ± 0.4 5.1 ± 0.6 4.4 ± 1.1 SA-IDM-13F3 3.8 ± 0.4 4.3 ± 0.5 4.6 ± 0.5 4.9 ± 0.5 4.4 ± 0.9 SA-IDM-13F3 3.8 ± 0.4 4.3 ± 0.5 4.6 ± 0.5 4.9 ± 0.5 4.4 ± 0.9 SA-IDM-13F4 4.4 ± 0.7 4.9 ± 0.7 5.0 ± 0.5 5.3 ± 0.5 4.9 ± 0.8 SA-IDM-13F3 4.5 ± 0.4 5.0 ± 0.5 5.2 ± 0.6 5.4 ± 0.5 5.0 ± 0.8 SA-IDM-16F2 3.5 ± 0.5 4.0 ± 0.4 4.0 ± 0.4 4.3 ± 0.4 4.0 ± 0.6 SA-IDM-16F2 3.5 ± 0.5 4.0 ± 0.4 4.0 ± 0.4 4.3 ± 0.4 4.0 ± 0.6 SA-IDM-16G3 (C) 4.9 ± 0.6 5.4 ± 0.6 5.4 ± 0.5 5.8 ± 0.7 SA-IDM-10G1(C) 3.7 ± 0.5 4.3 ± 0.4 4.4 ± 0.4 4.7 ± 0.5 4.3 ± 0.8 SA-IDM-16G1(C) 3.7 ± 0.5 4.3 ± 0.4 4.4 ± 0.4 4.7 ± 0.5 4.3 ± 0.8 SA-IDM-3S1 3.0 ± 0.3 3.6 ± 0.3 3.5 ± 0.4 4.2 ± 0.7 3.7 ± 0.7 SA-IDM-3S1 3.2 ± 0.4 4.2 ± 0.5 3.9 ± 0.4 4.2 ± 0.5 3.7 ± 0.7 SA-IDM-3S1 3.2 ± 0.4 4.2 ± 0.5 4.6 ± 0.4 4.1 ± 0.7 SA-IDM-3S1 3.0 ± 0.3 3.5 ± 0.5 3.9 ± 0.4 3.8 ± 0.4 4.1 ± 0.7 SA-IDM-4S1 3.5 ± 0.4 4.1 ± 0.5 4.2 ± 0.5 4.6 ± 0.5 4.2 ± 0.7 SA-IDM-4S1 3.5 ± 0.4	SA-IDM-10F2	3.9±0.4	4.5±0.5	4.9±0.4	5.0±0.5	4.6±1.0
SA-IDM-12F1 3.9±0.4 4.5±0.5 4.5±0.5 4.8±0.5 4.4±0.7 SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.4 5.1±0.6 4.4±0.9 SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 4.4±0.5 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16F2 3.5±0.4 5.0±0.5 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16G3 (C) 4.9±0.6 5.4±0.5 5.8±0.7 5.4±0.7 SA-IDM-3G1 (C) 4.0±0.5 4.7±0.6 4.6±0.4 5.1±0.6 4.6±0.9 SA-IDM-10G1(C) 3.7±0.5 4.3±0.4 4.4±0.4 4.7±0.5 4.3±0.8 SA-IDM-10G1(C) 3.7±0.5 4.3±0.5 4.1±0.5 4.5±0.4 5.5±0.6 4.8±1.2 SA-IDM-361 (C) 3.7±0.5 4.3±0.5 3.4±0.4 4.2±0.7 SA-IDM-351 3.0±0.3 3.5±0.5 3.9±0.4 3.4±0.7 S.4±0.7 S.	SA-IDM-11F1	4.3±0.4	4.7±0.6	4.9±0.5	5.1±0.5	4.8±0.7
SA-IDM-13F2 3.9±0.4 4.2±0.4 4.6±0.4 5.1±0.6 4.4±1.1 SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.5 4.9±0.5 4.4±0.9 SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 4.7±0.9 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-16G3 (C) 4.9±0.6 5.4±0.5 5.8±0.7 5.4±0.7 5.4±0.7 SA-IDM-3G1 (C) 4.0±0.5 4.7±0.6 4.6±0.4 5.1±0.6 4.6±0.9 SA-IDM-16G1(C) 3.7±0.5 4.3±0.4 4.4±0.4 4.7±0.5 4.3±0.8 SA-IDM-16G1(C) 3.7±0.5 4.3±0.5 4.1±0.5 4.5±0.4 5.2±0.6 4.8±1.2 SA-IDM-311 4.1±0.4 4.5±0.4 5.0±0.6 5.5±0.6 4.8±1.2 5.4±0.7 5.4±0.7 <t< td=""><td>SA-IDM-12F1</td><td>3.9±0.4</td><td>4.5±0.5</td><td>4.5±0.5</td><td>4.8±0.5</td><td>4.4±0.7</td></t<>	SA-IDM-12F1	3.9±0.4	4.5±0.5	4.5±0.5	4.8±0.5	4.4±0.7
SA-IDM-13F3 3.8±0.4 4.3±0.5 4.6±0.5 4.9±0.5 4.4±0.9 SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 4.7±0.9 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-16G3 (C) 4.9±0.6 5.4±0.5 5.8±0.7 5.4±0.7 SA-IDM-3G1 (C) 4.0±0.5 4.7±0.6 4.6±0.4 5.1±0.6 4.6±0.9 SA-IDM-10G1(C) 3.7±0.5 4.3±0.4 4.4±0.4 4.7±0.5 4.3±0.8 SA-IDM-16G1(C) 3.7±0.5 4.3±0.5 4.1±0.5 4.5±0.4 5.2±0.6 4.8±1.2 SA-IDM-3H1 (C) 3.3±0.3 3.6±0.3 3.5±0.4 4.2±0.5 3.7±0.7 SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-3S1 3.0±0.3 3.5±0.4 4.2±0.5 4.6±0.5 4.8±1.2 SA-IDM-3S1 3.0±0.3 3.5±0.4 4.2±0.5 4.6±0.5<	SA-IDM-13F2	3.9+0.4	4.2±0.4	4.6±0.4	5.1±0.6	4.4±1.1
SA-IDM-13F4 4.4±0.7 4.9±0.7 5.0±0.5 5.3±0.5 4.9±0.8 SA-IDM-14F2 4.1±0.5 4.8±0.6 4.9±0.4 5.2±0.6 4.7±0.9 SA-IDM-15F3 4.5±0.4 5.0±0.5 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-3G1 (C) 4.9±0.5 5.4±0.5 5.8±0.7 5.4±0.7 SA-IDM-10G1(C) 3.7±0.5 4.3±0.4 4.4±0.4 4.7±0.5 4.3±0.8 SA-IDM-10G1(C) 3.7±0.5 4.3±0.5 4.1±0.5 4.2±0.7 S.4±0.7 SA-IDM-3H1 (C) 3.3±0.3 3.6±0.3 3.5±0.4 4.2±0.5 3.7±0.7 SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-3S1 3.0±0.3 3.5±0.5 3.9±0.4 3.5±0.6 4.1±0.7	SA-IDM-13F3	3.8±0.4	4.3±0.5	4.6±0.5	4.9±0.5	4.4±0.9
SA-IDM-14F24.1±0.54.8±0.64.9±0.45.2±0.64.7±0.9SA-IDM-15F34.5±0.45.0±0.55.2±0.65.4±0.55.0±0.8SA-IDM-16F23.5±0.54.0±0.44.0±0.44.3±0.44.0±0.6SA-IDM-1G3 (C)4.9±0.65.4±0.55.8±0.75.4±0.7SA-IDM-3G1 (C)4.0±0.54.7±0.64.6±0.45.1±0.64.6±0.9SA-IDM-10G1(C)3.7±0.54.3±0.44.4±0.44.7±0.54.3±0.8SA-IDM-10G1(C)3.7±0.54.3±0.54.1±0.54.5±0.44.2±0.7SA-IDM-16G1(C)3.7±0.54.3±0.54.1±0.54.2±0.73.7±0.7SA-IDM-3H1 (C)3.3±0.33.6±0.33.5±0.44.2±0.53.7±0.7SA-IDM-3S13.0±0.33.3±0.53.4±0.43.8±0.43.4±0.7SA-IDM-3S13.0±0.33.3±0.53.4±0.43.8±0.44.1±0.7SA-IDM-3S13.0±0.33.3±0.53.4±0.44.6±0.54.1±0.7SA-IDM-4S13.5±0.44.1±0.54.2±0.44.6±0.54.1±0.7SA-IDM-16S13.8±0.34.2±0.44.6±0.54.2±0.7SA-IDM-16S13.8±0.34.2±0.44.6±0.54.2±0.7SA-IDM-16G1(C)4.1±0.54.6±0.44.6±0.54.2±0.7SA-IDM-16S13.8±0.34.2±0.44.6±0.54.2±0.7SA-IDM-16S13.8±0.34.2±0.44.6±0.54.2±0.7SA-IDM-16S13.8±0.34.2±0.44.6±0.54.2±0.7SA-IDM-14G1(C)4.1±0.54.6±0.4 <t< td=""><td>SA-IDM-13F4</td><td>4.4+0.7</td><td>4.9±0.7</td><td>5.0::0.5</td><td>5.3±0.5</td><td>4.9±0.8</td></t<>	SA-IDM-13F4	4.4+0.7	4.9±0.7	5.0::0.5	5.3±0.5	4.9±0.8
SA-IDM-15F3 4.5±0.4 5.0±0.5 5.2±0.6 5.4±0.5 5.0±0.8 SA-IDM-16F2 3.5±0.5 4.0±0.4 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-1G3 (C) 4.9±0.6 5.4±0.6 5.4±0.5 5.8±0.7 5.4±0.7 SA-IDM-3G1 (C) 4.0±0.5 4.7±0.6 4.6±0.4 5.1±0.6 4.6±0.9 SA-IDM-10G1(C) 3.7±0.5 4.3±0.4 4.4±0.4 4.7±0.5 4.3±0.8 SA-IDM-16G1(C) 3.7±0.5 4.3±0.5 4.1±0.5 4.5±0.4 4.2±0.7 SA-IDM-3H1 (C) 3.3±0.3 3.6±0.3 3.5±0.4 4.2±0.5 3.7±0.7 SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.5 4.6±0.5 4.1±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.4 4.6±0.5 4.2±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 3	SA-IDM-14F2	4.1±0.5	4.8±0.6	4.9±0.4	5.2±0.6	4.7±0.9
SA-IDM-16F2 3.5±0.5 4.0±0.4 4.0±0.4 4.3±0.4 4.0±0.6 SA-IDM-1G3 (C) 4.9±0.6 5.4±0.6 5.4±0.5 5.8±0.7 5.4±0.7 SA-IDM-3G1 (C) 4.0±0.5 4.7±0.6 4.6±0.4 5.1±0.6 4.6±0.9 SA-IDM-10G1(C) 3.7±0.5 4.3±0.4 4.4±0.4 4.7±0.5 4.3±0.8 SA-IDM-16G1(C) 3.7±0.5 4.3±0.5 4.1±0.5 4.5±0.4 4.2±0.7 SA-IDM-3H1 (C) 3.3±0.3 3.6±0.3 3.5±0.4 4.2±0.5 3.7±0.7 SA-IDM-3S1 4.1±0.4 4.5±0.4 5.0±0.6 5.5±0.6 4.8±1.2 SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-2S4 3.7±0.3 4.1±0.5 4.2±0.5 4.6±0.4 4.1±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.4 4.6±0.5 4.1±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.4 4.6±0.5 4.1±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.4 4.6±0.5 4.2±0.7 SA-IDM-16S1 3.8±0.3 4.2±0.4 4	SA-IDM-15F3	4.5±0.4	5.0±0.5	5.2±0.6	5.4±0.5	5.0±0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SA-IDM 16F2	3.5±0.5	4.0±0.4	4.0±0.4	4.3±0.4	4.0±0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SA-IDM-1G3 (C)	4.9±0.6	5.4±0.6	5.4±0.5	5.8±0.7	5.4±0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SA-IDM-3G1 (C)	4.0±0.5	4.7±0.6	4.6±0.4	5.1±0.6	4.6±0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SA-IDM-10G1(C)	3.7±0.5	4.3±0.4	4.4±0.4	4.7±0.5	4.3±0.8
SA-IDM-3H1 (C) 3.3 ± 0.3 3.6 ± 0.3 3.5 ± 0.4 4.2 ± 0.5 3.7 ± 0.7 SA-IDM-1S1 4.1 ± 0.4 4.5 ± 0.4 5.0 ± 0.6 5.5 ± 0.6 4.8 ± 1.2 SA-IDM-3S1 3.0 ± 0.3 3.3 ± 0.5 3.4 ± 0.4 3.8 ± 0.4 3.4 ± 0.7 SA-IDM-2S4 3.7 ± 0.3 4.1 ± 0.5 4.2 ± 0.5 4.6 ± 0.4 4.1 ± 0.7 SA-IDM-4S1 3.5 ± 0.4 4.1 ± 0.5 4.2 ± 0.4 4.6 ± 0.5 4.1 ± 0.9 SA-IDM-15S1 3.2 ± 0.4 3.6 ± 0.3 3.5 ± 0.5 3.9 ± 0.4 3.5 ± 0.6 SA-IDM-16S1 3.8 ± 0.3 4.2 ± 0.4 4.2 ± 0.4 4.6 ± 0.5 4.2 ± 0.7 SA-IDM-14G1(C) 4.1 ± 0.5 4.6 ± 0.4 4.8 ± 0.7 5.3 ± 1.2 4.7 ± 1.1 AVERAGE 3.8 ± 1.2 4.3 ± 1.2 4.4 ± 1.4 4.7 ± 1.3	SA-IDM-16G1(C)	3.7±0.5	4.3±0.5	4.1±0.5	4.5 1 0.4	4.2±0.7
SA-IDM-1S1 4.1±0.4 4.5±0.4 5.0±0.6 5.5±0.6 4.8±1.2 SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-2S4 3.7±0.3 4.1±0.5 4.2±0.5 4.6±0.4 4.1±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.5 3.6±0.5 4.1±0.9 SA-IDM-4S1 3.5±0.4 3.6±0.3 3.5±0.5 3.9±0.4 3.5±0.6 SA-IDM-15S1 3.2±0.4 3.6±0.3 3.5±0.5 3.9±0.4 3.5±0.6 SA-IDM-16S1 3.8±0.3 4.2±0.4 4.6±0.5 4.2±0.7 SA-IDM-14G1(C) 4.1±0.5 4.6±0.4 4.8±0.7 5.3±1.2 4.7±1.1 AVERAGE 3.8±1.2 4.3±1.2 4.4±1.4 4.7±1.3 GRAND AVC 4.3±1.4	SA-IDM-3H1 (C)	3.3±0.3	3.6±0.3	3.5±0.4	4.2±0.5	3.7±0.7
SA-IDM-3S1 3.0±0.3 3.3±0.5 3.4±0.4 3.8±0.4 3.4±0.7 SA-IDM-2S4 3.7±0.3 4.1±0.5 4.2±0.5 4.6±0.4 4.1±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.5 4.6±0.5 4.1±0.9 SA-IDM-4S1 3.5±0.4 3.6±0.3 3.5±0.5 3.9±0.4 3.5±0.6 SA-IDM-16S1 3.8±0.3 4.2±0.4 4.6±0.5 4.2±0.7 SA-IDM-14G1(C) 4.1±0.5 4.6±0.4 4.8±0.7 5.3±1.2 4.7±1.1 AVERAGE 3.8±1.2 4.3±1.2 4.4±1.4 4.7±1.3 GRAND AVC 4.3±1.4	SA-IDM-1S1	4.1±0.4	4.5±0.4	5.0±0.6	5.5±0.6	4.8±1.2
SA-IDM-2S4 3.7±0.3 4.1±0.5 4.2±0.5 4.6±0.4 4.1±0.7 SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.4 4.6±0.5 4.1±0.9 SA-IDM-15S1 3.2±0.4 3.6±0.3 3.5±0.5 3.9±0.4 3.5±0.6 SA-IDM-16S1 3.8±0.3 4.2±0.4 4.2±0.4 4.6±0.5 4.2±0.7 SA-IDM-14G1(C) 4.1±0.5 4.6±0.4 4.8±0.7 5.3±1.2 4.7±1.1 AVERAGE 3.8±1.2 4.3±1.2 4.4±1.4 4.7±1.3 GRAND AVG 4.3±1.4	SA-IDM-3S1	3.0±0.3	3.3±0.5	3.4±0.4	3.8±0.4	3.4±0.7
SA-IDM-4S1 3.5±0.4 4.1±0.5 4.2±0.4 4.6±0.5 4.1±0.9 SA-IDM-15S1 3.2±0.4 3.6±0.3 3.5±0.5 3.9±0.4 3.5±0.6 SA-IDM-16S1 3.8±0.3 4.2±0.4 4.2±0.4 4.6±0.5 4.2±0.7 SA-IDM-14G1(C) 4.1±0.5 4.6±0.4 4.8±0.7 5.3±1.2 4.7±1.1 AVERAGE 3.8±1.2 4.3±1.2 4.4±1.4 4.7±1.3	SA-IDM-2S4	3.7±0.3	4.1±0.5	4.2±0.5	4.6±0.4	4.1±0.7
SA-IDM-15S1 3.2±0.4 3.6±0.3 3.5±0.5 3.9±0.4 3.5±0.6 SA-IDM-16S1 3.8±0.3 4.2±0.4 4.2±0.4 4.6±0.5 4.2±0.7 SA-IDM-14G1(C) 4.1±0.5 4.6±0.4 4.8±0.7 5.3±1.2 4.7±1.1 AVERAGE 3.8±1.2 4.3±1.2 4.4±1.4 4.7±1.3 GRAND AVG 4.3±1.4	SA-IDM-4S1	3.5±0.4	4.1±0.5	4.2±0.4	4.6±0.5	4.1±0.9
SA-IDM-16S1 3.8±0.3 4.2±0.4 4.2±0.4 4.6±0.5 4.2±0.7 SA-IDM-14G1(C) 4.1±0.5 4.6±0.4 4.8±0.7 5.3±1.2 4.7±1.1 AVERAGE 3.8±1.2 4.3±1.2 4.4±1.4 4.7±1.3	SA-IDM-15S1	3.2±0.4	3.6±0.3	3.5±0.5	3.9±0.4	3.5±0.6
SA-IDM-14G1(C) 4.1±0.5 4.6±0.4 4.8±0.7 5.3±1.2 4.7±1.1 AVERAGE 3.8±1.2 4.3±1.2 4.4±1.4 4.7±1.3 GRAND AVG 4.3±1.4 4.3±1.4 4.3±1.4	SA-IDM-16S1	3.8±0.3	4.2±0.4	4.2±0.4	4.6±0.5	4.2±0.7
AVERAGE 3.8±1.2 4.3±1.2 4.4±1.4 4.7±1.3	SA-IDM-14G1(C)	4.1±0.5	4.6±0.4	4.8±0.7	5.3±1.2	4.7±1.1
	AVERAGE	3.8±1.2	4.3±1.2	4.4±1.4	4.7±1.3	
			· · · ·	GRAND	AVG	<u>4</u> 3+1 <i>A</i>

Results in mrad/standard month* +/- 2 sigma

* The standard month = 30.4 days. ** Quarterly Element TLD results by AREVA - NP Environmental Laboratory. (C) Control Station

2008 CONCENTRATIONS OF IODINE-131* AND GAMMA EMITTERS** IN MILK

	*	***		14 Q · .	
	SAMPLIN	G PERIOD	- 4	< GAMMA E	MITTERS>
STATION ID	START	STOP	I-131	K-40	RA-NAT
SA-MI K-2G3	1/7/2008	1/8/2008	<0.2	1350 +70	11 +4
SA-MLK-13E3	1/7/2008	1/8/2008	<0.2	1310 +69	<4 1
SA-MIK-14F4	1/7/2008	1/8/2008	<0.0	1280 +74	<3.8
SA-MIK-3G1 (C)	1/7/2008	1/8/2008	<0.2	1310 +74	<3.1
					en lineata a
SA-MLK-2G3	2/3/2008	2/4/2008	<0.3	1310 ±72	<5
SA-MLK-13E3	2/4/2008	2/4/2008	<0.2	1360 ±73	<3.4
SA-MLK-14F4	2/3/2008	2/4/2008	<0.2	1280 ±66	<3.8
SA-MLK-3G1 (C)	2/3/2008	2/4/2008	<0.2	1260 ±67	<4.6
SA-MLK-2G3	3/2/2008	3/3/2008	<0.2	1230 ±70	<4.7
SA-MLK-13E3	3/2/2008	3/3/2008	<0.2	1330 ±72	<2.9
SA-MLK-14F4	3/2/2008	3/3/2008	<0.3	1330 ±71	<3
SA-MLK-3G1 (C)	3/2/2008	3/3/2008	<0.3	1240 ±73	<3.5
SA-MLK-2G3	4/6/2008	4/7/2008	<0.2	1260 ±74	<3.2
SA-MLK-13E3	4/6/2008	4/7/2008	<0.2	1400 ±75	<4.5
SA-MLK-14F4	4/6/2008	4/7/2008	<0.2	1280 ±78	<3.6
SA-MLK-3G1 (C)	4/6/2008	4/7/2008	<0.2	1280 ±72	<3
SA-MI K-2G3	4/20/2008	4/21/2008	<0.1	1340 +74	<3.6
SA-MLK-13Ë3	4/20/2008	4/21/2008	<0.3	1450 ±76	<3.8
SA-MLK-14F4	4/20/2008	4/21/2008	<0.2	1440 ±70	<3.7.55
SA-MLK-3G1 (C)	4/20/2008	4/21/2008	<0.1	1330 ±69	<4.4
SA-MI K-2G3	5/4/2008	5/5/2008	<0.3	1360 +74	<5.1
SA-MI K-13E3	5/4/2008	5/5/2008	<0.2	1430 +76	<2.9
SA-MLK-14F4	5/4/2008	5/5/2008	<0.3	1390 ±73	<4.2
SA-MLK-3G1 (C)	5/4/2008	5/5/2008	<0.1	1280 ±64	<3.5
SA-MIK-2G3	5/18/2008	5/19/2008	<0.1	1380 +74	<31
SA-MLK-13E3	5/18/2008	5/19/2008	<0.2	1360 +70	<3.6
SA-MI K-14F4	5/18/2008	5/19/2008	<0.2	1340 +68	<3.5
SA-MLK-3G1 (C)	5/18/2008	5/19/2008	<0.1	1330 ±72	<2.9
SA-MLK-2G3	6/1/2008	6/2/2008	<0.2	1360 +74	<6.2
SA-MLK-13E3	6/1/2008	6/2/2008	<0.2	1300 ±72	<3
SA-MI K-14F4	6/1/2008	6/2/2008	<0.3	1390 +70	<3.9
SA-MLK-3G1 (C)	6/1/2008	6/2/2008	<0.2	1200 ±70	<3.1
SA-MIK-2G3	6/15/2008	6/16/2008	<0.2	1340 +70	<3.7
SA-MLK-13E3	6/15/2008	6/16/2008	<0.2	1270 +95	<3.7
SA-MI K-14F4	6/15/2008	6/16/2008	<0.2	1460 +75	<2.9
SA-MLK-3G1 (C)	6/15/2008	6/16/2008	<0.3	1250 ±69	<3.3
SA MIK 2G3	7/6/2008	7/2/2008	<0.2	1360 +74	<3.2
SA-MI K-13E3	7/6/2000	7/7/2000	<0.2	1420 +72	<2.5
SA-MI K-14G3 (1)	7/6/2008	7/7/2008	<0.3	1390 +69	<3.4
SA-MLK-3G1 (C)	7/6/2008	7/7/2008	<0.2	1220 ±72	<3
SA-MI K-2G3	7/20/2008	7/21/2008	<0.2	1370 +72	<3.6
SA-MIK-13F3	7/20/2008	7/21/2008	<0.2	1380 +69	<2 9
SA-MI K-14G3 (1)	7/20/2008	7/21/2008	<0.2	1330 +73	<2.8
SA-MLK-3G1 (C)	7/20/2008	7/21/2008	<0.2	1230 ±67	<2.9

Results in Units of pCi/L +/- 2 sigma

.
; ;

2008 CONCENTRATIONS OF IODINE-131* AND GAMMA EMITTERS** IN MILK

	Results in Units	of pCi/L +/- 2 s	igma	-
STATION ID	SAMPLING PERIOD START STOP	I-131	< GAMMA EI K-40	MITTERS> RA-NAT
SA-MLK-2G3	8/3/2008 8/4/2008	<0.3	1290 ±75	<3.3
SA-MLK-13E3	8/3/2008 8/4/2008	<0.2	1380 ±76	<2.9
SA-MLK-14G3 (1)	8/3/2008 8/4/2008	<0.2	1370 ±69	<3.1
SA-MLK-3G1 (C) SA-MLK-2G3 SA MLK 13E3	8/3/2008 8/18/2008 8/18/2008 8/18/2008 8/18/2008 8/18/2008	<0.2 <0.2 <0.2	1260 ±72 1380 ±70 1300 ±75	<2.9 <3.6
SA-MLK-1323 SA-MLK-14G3 (1) SA-MLK-3G1 (C)	8/17/2008 8/18/2008 8/17/2008 8/18/2008 8/17/2008 8/18/2008	<0.2 <0.2 <0.2	1320 ±74 1300 ±70	<2.9 <2.9
SA-MLK-2G3	9/1/2008 9/2/2008 9/1/2008 9/2/2008 9/1/2008 9/2/2008 9/1/2008 9/2/2008 9/2/2008 9/3/2008	<0.2	1230 ±72	<3.4
SA-MLK-13E3		<0.2	1370 ±69	<3.1
SA-MLK-14G3 (1)		<0.3	1120 ±89	<3
SA-MLK-3G1 (C)		<0.3	1390 ±72	<2.9
SA-MLK-2G3	9/14/2008 9/15/2008	<0.2	1290 ±69	<3.2
SA-MLK-13E3	9/14/2008 9/15/2008	<0.2	1430 ±71	<3
SA-MLK-14G3 (1)	9/14/2008 9/15/2008	<0.2	1390 ±74	<3.1
SA-MLK-3G1 (C)	9/14/2008 9/15/2008	<0.2	1270 ±72	<3.3
SA-MLK-2G3	10/5/2008 10/6/2008 10/5/2008 10/6/2008 10/5/2008 10/6/2008 10/5/2008 10/6/2008 10/5/2008 10/6/2008	<0.2	1400 ±73	<2.9
SA-MLK-13E3		<0.2	1370 ±74	<3.3
SA-MLK-14G3 (1)		<0.3	1370 ±76	<3
SA-MLK-3G1 (C)		<0.2	1360 ±73	<3
SA-MLK-2G3	10/19/200810/20/200810/20/200810/20/200810/19/200810/20/200810/19/200810/20/2008	<0.3	1360 ±71	<3.2
SA-MLK-13E3		<0.2	1290 ±71	<3.3
SA-MLK-14G3 (1)		<0.3	1290 ±72	<2.8
SA-MLK-3G1 (C)		<0.2	1330 ±74	<3.1
SA-MLK-2G3	11/2/200811/3/200811/2/200811/3/200811/2/200811/3/200811/2/200811/3/2008	<0.2	1300 ±73	<3.1
SA-MLK-13E3		<0.2	1310 ±74	<3.3
SA-MLK-14G3 (1)		<0.2	1270 ±68	<2.9
SA-MLK-3G1 (C)		<0.2	1390 ±75	<2.4
SA-MLK-2G3	11/16/2008 11/17/2008 11/16/2008 11/17/2008 11/16/2008 11/17/2008 11/16/2008 11/17/2008 11/16/2008 11/17/2008	<0.2	1280 ±71	<3.3
SA-MLK-13E3		<0.2	1310 ±73	<2.5
SA-MLK-14G3 (1)		<0.3	1330 ±72	<3.1
SA-MLK-3G1 (C)		<0.2	1270 ±66	<3.2
SA-MLK-2G3	11/30/200812/1/200811/30/200812/1/200811/30/200812/1/200812/1/200812/1/2008	<0.2	1470 ±77	<2.7
SA-MLK-13E3		<0.3	1390 ±68	<2.9
SA-MLK-14G3 (1)		<0.2	1310 ±74	<3.4
SA-MLK-3G1 (C)		<0.2	1390 ±74	<3.1

AVERAGE

- 14 1330 ±130

* lodine-131 results are corrected for decay to stop date of collection period & analyzed to an LLD of 1.0 pCi/L.

** All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-19

*** Monthly sample collected during Jan., Feb., March and Dec., when animals are not on pasture. (C) Control Station

(1) Location 14F4 had the barn & milking shed burn down the last week of June. Most of his

cows were sent to Location 14G3 where we collected a sample from July through December.

2008 CONCENTRATIONS OF GROSS ALPHA AND GROSS BETA EMITTERS, AND TRITIUM IN WELL WATER (Ground Water)*

		12	
•	SAMPLING	GROSS	GROSS CONTRACTOR
STATION ID	DATE	ALPHA	BETA
میں زیری میں ہوتا کا نہیں ہیں ان کا اور اور اور اور اور اور اور اور اور او			
SA-WWA-3E1	1/28/2008	<1.2	11+0 9 <155 <155
н. 1. т. н.			
SA-WWA-3E1	2/25/2008	1±0.7	8.4±0.9
		i Berri A	and the second
SA-WWA-3E1	3/31/2008	<0.8	10±0.9 <142
· * ·	and the second	•	
SA-WWA-3E1	4/28/2008	<0.8	· · · · · · · · · · · · · · · · · · ·
	e de la desta d		CONTRACT STREAM
SA-WWA-3E1	5/27/2008	<0.9	6%
	0.005/0000		
SA-WWWA-3E1	6/25/2008	<0.5	- 445 - 1889±0.9 - 445 - 143 - 143 - 146
SA-1000 3E1	7/28/2008	· · · · · · · · · · · · · · · · · · ·	
	112012000		- APP
SA-WWA-3E1	8/25/2008	<1	<13/2 H0+1 1 <13/2 <13/2 12/2 4/2 / / / / / / / / / / / / / / / /
	0.20.2000		
SA-WWA-3E1	9/29/2008	<u></u> <1	≥10±0.9
			WOLLER MODELLER STRAKE STRAKE
SA-WWA-3E1	10/25/2009	<1.1	10±1 <142
•		S (pa)	Markey - Will the state of the state of the
SA-WWA-3E1	11/24/2008	<0.9	10±0.9 <139
· · ·			, 영화가 있는 것 같은 것을 위해 있는 것을 가지 않는 것을 가지 않는 것을 수가 있다. - 通貨業業 같은
SA-WWA-3E1	12/29/2008	<0.5	10±1 <140
	3		《新闻》:"我们的人,我们是,我就能回了,这些人,我们还是我们的人,我们就是不是。" 1983—1984年1月,他们就能到了这个时间,这些人们就能到了,我就是我们是不是一个人,不是
· ;			
•		Ι,	BY NY MARCHINE STREAM AND
		9. 1 k. 1	MARS THE A REPORT OF A REPORT OF A REPORT OF A
AVENAGE	· 译在11月1日,11月1日。 11月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日		
		N 94 	- 現代時代の「And ACCASE」という。 And And And And And And And And And And

71

Results in Units of pCi/L +/- 2 sigma

* Management Audit Sample : not required by ODCM.

2008 CONCENTRATIONS OF GAMMA EMITTERS* IN WELL WATER**

Results in Units of pCi/L +/- 2 sigma

	SAMPLING	<gamma< th=""><th>EMITTERS></th></gamma<>	EMITTERS>
STATION ID	DATE	K-40	RA-NAT
SA-WWA-3E1	1/28/2008	<18	176±7
SA-WWA-3E1	2/25/2008	<17	159±4
SA-WWA-3E1	3/27/2008	<19	153±6
SA-WWA-3E1	4/28/2008	<16	254±8
SA-WWA-3E1	5/27/2008	<20	68±4
SA-WWA-3E1	6/25/2008	<26	66±4
SA-WWA-3E1	7/28/2008	48±19	162±4
SA-WWA-3E1	8/25/2008	<38	118±5
SA-WWA-3E1	9/29/2008	<32	98±4
SA-WWA-3E1	10/25/2008	<25	114±4
SA-WWA-3E1	11/24/2008	<15	99±3
SA-WWA-3E1	12/29/2008	61±17	185±5
	€1.) : 1 . 91		
AVERAGE		ν	138±109

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-18. ** Management Audit Samples: not required by ODCM.

gt.

2008 CONCENTRATIONS OF GROSS ALPHA AND GROSS BETA EMITTERS AND TRITIUM IN RAW AND TREATED POTABLE WATER (2F3)*

	e de la companya de la compa		ing in the second s	
	SAMPLING	GROSS	GROSS	
TYPE	PERIOD	ALPHA	BETA	TRITIUM
RAW	1/1-31/2008	<0.5	2.7±0.5	<155
TREATED	1/1-31/2008	<0.5	2.4±0.5	<150
RAW	2/1-28/2008	<0.4	3 1+0.5	<139
TREATED	2/1-28/2008	<0.6	3.5±0.7	<140
RAW	3/1-31/2008	<0.4	2.6±0.5	<143
TREATED	3/1-31/2008	<0.5	2.9±0.6	<143
RAW	4/1-30/2008	<0.4	3.2±0.7	<141
TREATED	4/1-30/2008	<0.6	3.5±0.7	<143
RAW	5/1-31/2008	<0.4	3.1±0.6	<139
TREATED	5/1-31/2008	<0.6	2.8±0.6	<140
RAW	6/1-30/2008	0.4±0.3	2±0.5	<134
TREATED	6/1-30/2008	<0.3	2.6±0.6	<143
RAW	7/1-31/2008	0.5±0.4	2.5±0.6	<134
TREATED	7/1-31/2008	<0.4	1.9±0.5	<134
RAW	8/1-31/2008	<0.5	2.9±0.8	<136
TREATED	8/1-31/2008	<0.6	3.1±0.8	<135
RAW	9/1-30/2008	<0.5	2.4±0.6	<142
TREATED	9/1-30/2008	<0.5	2.2±0.5	<143 (143)
RAW	10/1-31/2008	<0.5	2.7±0.6	<141
TREATED	10/1-31/2008	<0.5	2.2±0.6	<142
RAW	11/1-30/2008	<0.4	2.1±0.5	<142
TREATED	11/1-30/2008	<0.6	2.8±0.6	<144
RAW	12/1-31/2008	0.6±0.3	3±0.6	<142
TREATED	12/1-31/2008	<0.3	2.6±0.6	<141
AVERAGE	· · ·			
RAW	· •	-	2.7±0.8	
TREATED	•	-	2.7±1	
		tata di second		
GRAND AVER	AGE	-	2.7±0.9	<u> </u>

Results in Units of pCi/L +/- 2 sigma

* Managemnent Audit Sample: not required by ODCM.

2008 CONCENTRATIONS OF IODINE-131* AND GAMMA EMITTERS** IN RAW AND TREATED POTABLE WATER (2F3)***

		-	
TYPE	SAMPLING	<gamma< th=""><th>EMITTERS></th></gamma<>	EMITTERS>
	PERIOD I-131	.K-40	RA-NAT
RAW	1/1-31/2008 <0.1	<16	9±3
TREATED	1/1-31/2008 <0.2	<18	<2.6
RAW	2/1-28/2008 <0.3	30±14	<2.2
TREATED	2/1-28/2008 <0.2	57±16	<2.1
RAW	3/1-31/2008 <0.3	<15	<2.1
TREATED	3/1-31/2008 <0.2	50±16	3±1
RAW	4/1-30/2008 <0.2	51±15	<2
TREATED	4/1-30/2008 <0.2	43±15	5±2
RAW	5/1-31/2008 <0.2	50±14	<1.8
TREATED	5/1-31/2008 <0.2	28±10	<2
RAW	6/1-30/2008 <0.1	50±16	<4.2
TREATED	6/1-30/2008 <0.1	<15	21±3
RAW	7/1-31/2008 <0.2	<16	<2.4
TREATED	7/1-31/2008 <0.2	<10	<1.8
RAW	8/1-31/2008 <0.2	8±3	<2.5
TREATED	8/1-31/2008 <0.3	341 <14	<2
RAW	9/1-30/2008 <0.2	57±18	<3
TREATED	9/1-30/2008 <0.2	<16	<2
RAW	10/1-31/2008 <0.2	41±13	<2.3
TREATED	10/1-31/2008 <0.3	57±16	<2.1
RAW	.11/1-30/2008 <0.3	43±15	<1.7
TREATED	11/1-30/2008 <0.1	40±15	<1.5
RAW	12/1-31/2008 <0.2	a53±14	<1.7
TREATED	12/1-31/2008 <0.3	∾	24±2
AVERAGES RAW TREATED	1	36±36 36±30	
GRAND AVERA	.GE -	33±36	-

مو الد ال Results in Units of pCi/L +/- 2 sigma

* lodine-131 analyzed to an LLD of 1.0 pCi/L. ** All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-18

*** Management Audit Sample: not required by ODCM.

	SAMPLING		< GAMM/	EMITTERS	>
STATION ID	DATE	SAMPLE TYPE	K-40	RA-NAT	
SA-FPV-2F9	5/3/2008	Asparagus	1860±148	<8.3	
SA-FPV-2G2 (C)	5/3/208	Asparagus	2060±184	<7.3	•
SA-FPL-3H5 (C)	4/30/2008	Asparagus	2160±188	<13	Consept distances
AVERAGE			2030±310		
SA-FPL-3H5 (C)	7/25/2008	Cabbage	1850±160	<8.9	
AVERAGE	• • •		1850±160	-	
SA-FPV-2F9	7/26/2008	Ċorn	2090±142	<9.8	
SA-FPV-2F10	7/26/2008	Corn	2110±159	<7.2	
SA-FPV-3F6	8/3/2008	Çorn	2090±149	<5	n ann Allach
SA-FPV-2G2 (C)	7/19/2008	Corn	2140±153	<7.7	•
SA-FPV-9G2 (C)	8/7/2008	Corn	2150±163	89 <i>M</i> - 2 <8.3	
SA-FPV-3H5 (C)	7/19/2008	Corn	2190±159	<8.2	
SA-FPV-15F4	7/11/2008		2270±159	<8.4	
AVERAGE			2150±130	SANA ME	
SA-FPV-2F9	7/26/2008	Peppers	1620±151	<10	e i Nay e s
SA-FPV-2F9	8/3/2008	Peppers	1410±148	<8.8	
SA-FPV-2F10	7/26/2008	Peppers	1370±147		
SA-FPV-3F7	7/27/2008	Peppers	1550±146	<9.3	م، فعن الله الله ا
SA-FPV-2G2 (C)	7/19/2008	Peppers	1430±145	<8.1	
SA-FPV-9G2 (C)	8/7/2008	Peppers	1750±149	<7.2	· .
SA-FPV-3H5 (C)	7/19/2008	Peppers	1380±139	<7.8	and the second sec
AVERAGE	• . •		1500±290		
SA-FPV-2F10	7/26/2008	Tomatoes	1710±121	<6.1	
SA-FPV-3F6	7/27/2008	Tomatoes	2210±154	<6.6	د ۲۰۰۰ م در بوری شروع
SA-FPV-3F7	7/27/2008	Tomatoes	2420±165	<7.8	n di katendari sa
SA-FPV-2G2 (C)	7/19/2008	Tomatoes	2240±164	<7.8	
SA-FPV-2G4 (C)	7/27/2008	Tomatoes	1830±140	<7	
SA-FPV-9G1 (C)	8/3/2008	Tomatoes	1930±152	<7.8	
SA-FPV-3H5 (C)	7/19/2008	Tomatoes	1900±145	<8.2	
SA-FPV-15F4	8/3/2008	Tomatoes	2020±143	<7.6	•
SA-FPV-2F9	7/26/2008	Tomatoes	2620±162	<6.4	
			i .		
AVERAGE			2100±590		
GRAND AVERAGE			1940±660	-	•

2008 CONCENTRATIONS OF GAMMA EMITTERS* IN VEGETABLES** Results in Units of pCi/kg (Wet) +/- 2 sigma

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-18.

** Management Audit Sample: not required by ODCM.

(C) Control Station

2008 CONCENTRATIONS OF GAMMA EMITTERS* IN FODDER CROPS **

	SAMPLING	· · · · · · · · · · · · · · · · · · ·	< G/	MMA EMITTE	RS>
STATION ID	DATE	SAMPLE TYPE	Be-7	K-40	RA-NAT
SA-VGT-1S1	12/18/2008	Ornamental Cabbage	<62	3280±253	<12
SA-VGT-10D1	12/18/2008	Ornamental Cabbage	167±53	2420±227	<12
SA-VGT-15S1	12/18/2008	Ornamental Cabbage	<60	2300±204	<12
SA-VGT-16S1	12/18/2008	Ornamental Cabbage	<92	2970±233	<12
• •				-	
AVERAGE				2740±920	• _ •
SA-VGT-2G3	10/1-11/17/08	Silage	255±52.2	3060±210	<6.4
SA-VGT-3G1 (C)	10/1-11/17/08	Silage	137±33.8	2030±107	<5.3
SA-VGT-13E3	10/1-11/17/08	Silage	142±37	3220±169	<6:2
SA-VGT-14G3	10/1-11/17/08	Silage	231±30.4	1970±91	<3.6
			· .	· · · ·	• •
AVERAGE		• •	190±120	2770±1290	
(· · · · ·				· .
SA-VGT-14F4	10/17/2008	Soybeans	<26.5	16200±285	<12
SA-VGT-3G1 (C)	11/28/2008	Soybeans	<75.7	13100±262	11±5

Results in Units of pCi/kg (wet) +/- 2 sigma

AVERAGE

14700±4384

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-18.
** Management Audit Sample: not required by ODCM.
(C) Control Station

n.

2008 CONCENTRATIONS OF GROSS BETA EMITTERS IN SURFACE WATER

		·				
SAMPLING DATE	< SA-SWA-11A1	SA-SWA-12C1 (Control)	STATION ID SA-SWA-16F1	SA-SWA-1F2	SA-SWA-7E1	AVERAGE
January	87±8	67±7	42±5	21±4	146±11	73±96
February	84±8	43±5	34±6	18±4	91±8	54±64
March	63±7	51±6	51±6	8±4	90±9	53±59
April	43±5	24±4	14±4	10±4	78±7	34±56
Мау	79±8	50±6	42±6	28±5	134±11	67±83
June	56±7	38±6	33±6	20±5	114±10	52±73
July	121±10	66±7	61±7	31±5	164±13	88±106
August	116±10	72±8	51±6	46±6	186±15	94±116
September	292±22	125±12	129±12	88±10	330±28	193±220
October	234±17	119±10	102±9	77±8	302±22	167±193
November	262±24	158±18	144±17	94±14	212±21	174±129
December 🤌 💈	79±10	60±9	46±8	37±8	89±11	62±44
••			<i>.</i>	an an ann 1940 - San San 1947 - San San		
AVERAGE	126±172	73±81	62±81	40±60	161±167	
			(GRAND AVERAGE		92±148

Results in Units of pCi/L +/- 2 sigma

2008 CONCENTRATIONS OF GAMMA EMITTERS* IN SURFACE WATER

Results in Units of pCi/L +/- 2 sigma

	SAMPLING	<gamma< th=""><th>EMITTERS></th></gamma<>	EMITTERS>
STATION ID	DATE	K-40	RA-NAT
and the second			
SA-SWA-1F2	1/7/2008	75+18	<27
SA-SWA-7F1	1/7/2008	160+20	6 4+3
SA-SWA-11A1	1/7/2008	86+16	<27
SA-SWA-12C1(C)	1/7/2008	97+17	<26
SA-SWA-16F1	1/7/2008	93+18	<23
		00110	2.0
SA-SWA-1F2	2/4/2008	76±18	- <5.2
SA-SWA-7E1	2/4/2008	92±18	<2.6
SA-SWA-11A1	2/4/2008	113±22	<2:2
SA-SWA-12C1 (C)	2/4/2008		<2.1
SA-SWA-16F1	2/4/2008	61±16	<2.3
• .			
SA-SWA-1F2	3/3/2008	61±19	<2.8
SA-SWA-7E1	3/3/2008	91±15	<2.2
SA-SWA-11A1	3/3/2008	55±19	<2.2
SA-SWA-12C1(C)	3/3/2008	66±16	<2
SA-SWA-16F1	3/3/2008	52±17	<2.5
	· · · · · · · · · · · · · · · · · · ·		
SA-SWA-1F2	4/8/2008	51±15	<1.9
SA-SWA-7E1	4/8/2008	109±18	<2.3
SA-SWA-11A1	4/8/2008	95±15	<3
SA-SWA-1201(0)	4/8/2008	61±17	<1.9
5A-5VVA-10F1	4/8/2008	51±12	<2.2
SA-SWA-1F2	5/5/2008	59+17	<17
SA-SWA-7F1	5/5/2008	121+22	<1.9
SA-SWA-11A1	5/5/2008	103±20	<5.6
SA-SWA-12C1(C)	5/5/2008	77±17	<2.2
SA-SWA-16F1	5/5/2008	71±16	<2.1
SA-SWA-1F2	6/5/2008	56±12	<1.8
SA-SWA-7E1	6/5/2008	109±21	<1.7
SA-SWA-11A1	6/5/2008	90±15	<2.2
SA-SWA-12C1(C)	6/5/2008	69±15	6.1±1
SA-SWA-16F1	6/5/2008	65±16	<2.1
SA-SWA-1F2	7/7/2008	89±17	<2.4
SA-SWA-7E1	7/7/2008	89±19	<2
SA-SWA-11A1	7/7/2008	120±21	<1.7
SA-SWA-12C1(C)	7/7/2008	71±16	<6.6
SA-SWA-16F1	7/7/2008	80±19	<1.7

2008 CONCENTRATIONS OF GAMMA EMITTERS* IN SURFACE WATER

Results in Units of pCi/L +/+ 2 sigma

	SAMPLING	GAN	MMA EMITTERS>
STATION ID	DATE	K-40	RA-NAT
دی میں اور	مولودي المرفي الحفاط بالارار الرائد حضائه فالرابقات	aga ini menerekan sanggi sunggi an an malan kulu sunga	Billion Martines and Antonio and the performance of the state of the
SA-SWA-1F2	8/4/2008	87±20	····· <1.7
SA-SWA-7E1	8/4/2008	157±20	<1.5
SA-SWA-11A1	8/4/2008	94±20	<2.1
SA-SWA-12C1(C)	8/4/2008	88±17	<2.2
SA-SWA-16F1	8/4/2008	61±18	<2.2
SA-SWA-1F2	9/2/2008	126±16	<1.7
SA-SWA-7E1	9/2/2008	125±21	<2.2
SA-SWA-11A1	9/2/2008	128±22	<1.6
SA-SWA-12C1(C)	9/2/2008	110±18	<1.7
SA-SWA-16F1	9/2/2008	81±16	<2.3
SA-SWA-1F2	10/7/2008	67±18	<1.7
SA-SWA-7E1	10/7/2008	128±21	<2.3
SA-SWA-11A1	<u>an 10/7/2008</u>	166±24	< 1 7
SA-SWA-12C1(C)	<u>at 10/7/2008</u>	.79±22	<1.8
SA-SWA-16F1	10/7/2008	113±18	<1.6
SA SIA/A 1E2	11/7/2009	90+10	-17
SA-SWA-172 SA-SWA 7E1	11/7/2008	138+24	
SA-SWA-7L1 SA-SWA-11A1	11/7/2008	186+22	
SA-SWA-12C1 (C)	11/7/2008	115+18	20
SA-SWA-16F1	11/7/2008	91+19	<2 4
	141112000		· · · · · · · · · · · · · · · · · · ·
SA-SWA-1F2	12/3/2008	.43±14	<2.2
SA-SWA-7E1	12/3/2008	92±18	<2.2
SA-SWA-11A1	12/3/2008	89±20	<1.6
SA-SWA-12C1(C)	12/3/2008	49±18	<4.8
SA-SWA-16F1	12/3/2008	60±15	<1,6
	•	New and New York	에 가장에 가장하는 수가 있다. 이 가장에 있는 것이 있는 것 같은 것이 같은 것이 있는 것이 없는 것이 있는 것이 없는 것
	i di sela si s Seconda si sela	site en la	
VERAGE	 A strategy and 	91±62	
	5		
			Mr. Para

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-18 (C) Control Station

2008 CONCENTRATIONS OF TRITIUM IN SURFACE WATER

Results in Units of pCi/L +/- 2 sigma

	<		ST	ATION ID		>
SAMPLING PERIOD	SA-SWA-11A1	SA-SWA-12C1 (Control)	SA-SWA-16F1	SA-SWA-1F2	SA-ŚWA-7E1	AVERAGE
January	<140	<140	<140	<140	<140	-
February	<140	<140	<140	<140	<140	-
March	<140	<140	<140	<140	<140	
April	<140	<140	<140	<140	<140	-
Мау	<150	<150	<150	<150	<150	-
June	<150	<140	<140	<150	<140	1 4 4
July	<140	<140	<140	<140	<140	
August	<130	<130	<130	<130	<130	-
September	<130	<130	<130	<130	<130	-
October	<135	<150	<140	<140	<140	
November	150±90	210±90	<140	<140	<140	-
December	<140	<140	<140	140±80	<130	-

2008 CONCENTRATIONS OF GAMMA EMITTERS** IN EDIBLE FISH

•		
	\ .	GAMMA EMITTERS (FLESH)
STATION ID	SAMPLING PERIOD	K-40
· · · · · · · · · · · · · · · · · · ·		
SA-ESF-7E1 SA-ESF-11A1 SA-ESF-12C1 (C)	6/5/2008 6/5/2008 6/5-6/2008	3600±200 3320±180 3540±190
AVERAGE		3490±290
SA-ESF-7E1 SA-ESF-11A1 SA-ESF-12C1 (C)	9/4/2008 9/10-10/08/08 9/4/2008	3730±200 3720±200 3770±190
AVERAGE		3740±50
GRAND AVERAGE		3610±340
· · · ·		

Results in Units of pCi/kg (wet) +/- 2 sigma

** All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-18 (C) Control Station

2008 CONCENTRATIONS OF GAMMA EMITTERS* IN CRABS

Results in Units of pCi/kg (wet) +/- 2 sigma

a second and constants a second a second and a second by the second second second second second second second s

	SAN.		GAMM/	EMITTERS>
STATION ID		RIOD	K·40	RANAT
SA-ECH-11A1 SA-ECH-12C1 (C)	6/23-7 6/23-7	7/01/2008 7/01/2008	2460±160 2530±150	16±6 24±10
AVERAGE			2500±100	20±10
SA-ECH-11A1 SA-ECH-12C1 (C)	8/28-9 8/28-9)/02/2008)/02/2008	2600±170 2690±180	<7.8 <8
AVERAGE			2650±130	
GRAND AVERAGE		م کی کی کی کرد کرد. محمد کرد کرد کرد کرد کرد کرد کرد کرد کرد کر	2570±200	
en de la companya de La companya de la comp		MARANA POLICIA SCOLUMBA	- 24 	

* All other gamma emitters searched for were <LLD; Typical LLDs are giver Table C-18.

(C) Control Station

۰.

2008 CONCENTRATIONS OF GAMMA EMITTERS* IN SEDIMENT

Results in Units of pCi/kg (dry) +/- 2 sigma

	SAMPLING	a la antese a	and which a strain that we are strained and the second strain			· · · · · · · · · · · · · · · · · · ·	
STATION ID	DATE	Be-7	K-40	Co-60	Cs-137	RA-NAT	Th-232
			114_1-4 1	1. A.	,		•
SA-ESS-6S2	6/9/2008	<54	1830±113	<2.9	<10	242±11	277±26
SA-ESS-7E1	5/30/2008	233±99	12400±337	<29	<20	688±20	838±56
SA-ESS-11A1	5/30/2008	<35	2090±123	<7.9	<4.7	321±11	355±28
SA-ESS-15A1	5/30/2008	157±68	4920±243	ົ <7.1	<14	ି359±14	532±46
SA-ESS-16A1	5/30/2008	<90	5520±199	<6.1	<12	574±15	7 34± 47
SA-ESS-12C1 (C)	5/30/2008	<63	11900±323	<9.3	<12	670±20	897±55
SA-ESS-16F1	5/30/2008	<128	6780±217	<11	<7.4	280±12	360±30
			SULUN.		i su i s		
AVERAGE		N A	6500±8500	124	- 191 - 191	450±380	570±510
SA-ESS-6S2	11/24/2008	308±55	3040±141	<4.6	<3.8	121±7.7	301±22
SA-ESS-7E1	11/20/2008	<69	11800±352	<14	<27	663±25	859±72
SA-ESS-11A1	11/20/2008	<67	5500±237	<17	<9.7	342±14	446±40
SA-ESS-15A1	11/20/2008	<60	4450±198	<7.6	<15	262±11	409±32
SA-ESS-16A1	11/20/2008	<67	4550±207	<16	<6.4	813±18	958±44
SA-ESS-12C1 (C)	11/20/2008	<35	7230±196	<12	<6.6	246±9.1	443±34
SA-ESS-16F1	11/20/2008	<112	8470±280	<8.1	<27	374±14	487±39
			· · · · · · · · · · · · · · · · · · ·	•	· · · ·	•	
AVERAGE	1	· ·	6400±6000	· -'	-	400±490	560±500
			6500+7100	· ·		430+430	560+480
GIVEN AVELAGE		-	000011100	-	-	-0000	2007400

* All other gamma emitters searched for were <LLD; typical LLDs are given in Table C-18 (C) Control Station

and the examination of the

2008 MAPLEWOOD TESTING SERVICES LLDs FOR GAMMA SPECTROSCOPY

	<u> </u>	<u> </u>		and a set of the set of		
SAMPLE TYPE:	<		<water< th=""><th><</th><th><mil< th=""><th>K></th></mil<></th></water<>	<	<mil< th=""><th>K></th></mil<>	K>
	IODINE	PARTICULATES	GAMMA SCAN	IODINE	GAMMA SCAN	IODINE
ACTIVITY:	10-3 pCi/m3	10-3 pCi/m3	/ pCi/L*	pCi/L	pCi/L	pCi/L
GEOMETRY:	47 ML	13 FILTERS	3:5 LITERS	100 ML	3.5 LITERS	100 ML /
COUNT TIME:	120 MINS	500 MINS	1000 MINS	1000 MINS	500 MINS	1000 MINS
DELAY TO COUNT:	2 DAYS	5 DAYS	7 DAYS	3 DAYS	2 DAYS	2 DAYS
NUCLIDES				• • •		•
BE-7	-	2.0	12	-	18	
NA-22	- ,	0.32 <	1.6	-	6.0	-
K-40	-	9	34	-	32	-
CR-51	-	1.6	11	-	20	-
MN-54	-	0.36	1.2	- '	3.2	-
CO-58	-	0.31	2.2	-	2.9	-
FE-59		0.78	2.7		9.8	
CO-60	-	0.28	2.6	-	5.9	· · · · •
ZN-65	_ *	0.54	3.6	· - ·	17	• •
ZRNB-95	-	0.54	3.2	- :	3.9	- .
MO-99	-	38	86		15	-
RU-103	-	0.30	1.2	-	1.6	-
RU-106	-	2.8	15	-	28	
AG-110M	-	0.39	2.2	× , -	3.İ	-
SB-125	-	0.86	2.8	-	4.8	-
TE-129M	-	12	60	-	87	-
I-131	8.5	0.68	2.9	0.33	3.1	0.33
TE-132	-	2.3	5	· _	9.8	·
BA-133	-	0.24	1.2		1.9	· - ·
CS-134	-	0.30	0.9	· <u>-</u> 2.	2.4	-
CS-136	-	0.36	3.2	- :	2.1	· _
CS-137	-	0.35	1.1		3.2	-
BALA-140	-	1.3	7.6	-	.5.3	-
CE-141	-	0.20	3.0	-	3.2	$\mathbf{a}^{(t)}$.
CE-144	· _	0.70	* 7.5	-	4.4	· · · · ·
RA-NAT	-	1.10	6.6	-	5.1	2 - <u>2</u> - <u>1</u> - <u>1</u>
TH-232	-	1.2	10.0	·	14	-

TABLE C-18 (Cont'd)

2008 MAPLEWOOD TESTING SERVICES

SAMPLE TYPE:	FOOD PRODUCTS	VEGETATION	FISH & CRAB	SEDIMENT
· ·	GAMMA SCAN	GAMMA SCAN	GAMMA SCAN	GAMMA SCAN
ACTIVITY:	pCi/kg WET	pCi/kg WET	pCi/kg WET	pCi/kg DRY
GEOMETRY:	500 ml	3.5 LITER	500 ml	500 ml
COUNT TIME:	500 MINS	500 MINS	500 MINS	500 MINS
DELAY TO COUNT:	3 DAYS	7 DAYS	5 DAYS	30 DAYS
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·
NUCLIDES	• •			
BE-7	92	75	75	128
NA-22	8.9	18	9.9	24
K-40	70	32	55	55
CR-51	55	25	74	99
MN-54	10	10	4.7	14
CO-58	5.6	7.5	6.6	7.8
FE-59	20	. 16	14	24
CO-60	, 22	16	15	
ZN-65	20	25	13	19
ZRNB-95	18	6.8	10	34
MO-99	251	d. 227	206	90500
RU-103	6.5	⊴ 4.2 -	j ⊭ _V 6.7	14
RU-106	65	36	38	68
AG-110M	10	12	2 9	20
SB-125	18	_{:50} 8.1	5 (g. 14	24
TE-129M	328	210	229	575
I-131	7.9	6.3	2 A C 104	80
TE-132	23	7.8	12	4030
BA-133	7.3	3.6	h. 1 3.0	14.0
CS-134	6.4	3.7	3.8	7
CS-136	8.9	4.0	34	40
CS-137	24	5.8	- 1 2	27
BALA-140	30	₁₀ 1 23	97	139
CE-141	7.7	4.6	9.0	19
CE-144	32	18	18	40
RA-NAT	13	12	24	5.0
TH-232	73	39	44	8.1

APPENDIX D

SUMMARY OF RESULTS FROM ANALYTICS, ENVIRONMENTAL RESOURCE ASSOCIATES, AND AREVA E – LAB INTERLABORATORY COMPARISON PROGRAMS

APPENDIX D

SUMMARY OF RESULTS FOR ANALYTICS, ENVIRONMENTAL RESOURCE ASSOCIATES, AND AREVA E-LAB INTERLABORATORY COMPARISON PROGRAM

Appendix D presents a summary of the analytical results for the 2008 Analytics and Environmental Resource Associates (ERA) Interlaboratory Comparison Program plus the TLD QA Data for AREVA E-LAB.

TABLE OF CONTENTS

TABLE		
NO.	TABLE DESCRIPTION	PAGE
D-1	Analytics Results: Gross Alpha/Beta in Water, Gross Beta in Air Particulate filters, Iodine in Air Samples, and Tritium in Water Samples	91
D-2	Analytics Results: Gamma Emitters in Water and Milk Samples	92
D-3	Analytics Results: Gamma Emitters in Air Particulate and Soil Samples	93
D-4	ERA Results: Gamma Emitters in Water, Gross Alpha/Beta in Water, Tritium Analysis in Water, and lodine Analysis in Water Samples	94
D-5	Percentage of Individual TLD Results That Passed AREVA- E-Lab Internal Criteria	95
D-6	Third Party TLD Testing Performance Criteria	95

RESULTS FOR ANALYTICS ENVIRONMENTAL CROSS CHECK PROGRAM

Gross Alpha and Gross Beta Emitters In Water (pCi/L), Iodine In Air Samples (pCi/m³), Gross Beta In Air Particulate Filter (pCi/m³), And Tritium Analysis In Water (pCi/L)

		r						
Date	MTS Sample	Sample		MTS Reported	Known		Ratio MTS/	
MM-YY	Code	Media	Nuclide	Value	Value	Resolution	Analytics	Evaluation
					19 A.	1		
03-2008	B683	APT	Beta	83.7	71	60	1.18	Acceptable
03-2008	H684	WAT	H-3	4078	4010	60	1.02	Acceptable
		· .		1				
· 03-20 <mark>08</mark>	1687	AIO	I-131	60.7	60	60	1.01	Acceptable
-				4				· · · · ·
06-2008	B691	APT	Beta	. 41	42	60	0.98	Acceptable
06-2008	AB692	WAT	Alpha	158.5	194	60	0.82	Acceptable
			Beta	191.6	169	60	1.13	Acceptable
			•.					- 1 A
06-2008	1693	AIO	l-131	80.1	85	21	0.95	Acceptable
06-2008	H695	WAT	H-3	13084	13000	60	1.01	Acceptable
				;				
09-2008	1698	AIO	I-131	91.5	89	60	1.03	Acceptable
		~ 1			,		· .	
09-2008	H700	WAT	H-3	11161	11400	60	0.98	Acceptable
09-2008	AB701	WAT	Alpha	143	152	60	0.94	Acceptable
· · ·		-	Beta	169	134	60	1.26	Disagree
						· · · · · · · · · · · · · · · · · · ·		· ·
12-2008	AB706	WAT	Alpha	52.	114	60	0.46	Disagree
·			Beta	228	204	60	1.12	Acceptable
				· · · · · · · · · · · · · · · · · · ·		· .		
12-2008	1707	AIO	I-131	54	54	60	1.01	Acceptable
12-2008	H705	WAT	H-3	10194	10200	60	1.00	Acceptable
12-2008	B709	APT	Beta	127	119	60	1.07	Acceptable

RESULTS FOR ANALYTICS ENVIRONMENTAL CROSS CHECK PROGRAM

Gamma Ernitters in Water And Milk (pCi/L)

Date MM-YY	MTS Sample Code	Sample Media	Nuclide	MTS Reported Value	Known Value	Resolution	Ratio MTS/ Analytics	Evaluation
				·				
03-2008	G685	WAT	Cr-51	290	286.0	60	1.01	Acceptable
			Min-54	84.0	75.0	60	1.12	Acceptable
	_		Co-58	59	56	63	1.04	Acceptable
			Fe-59	88.0	81	60	1.08	Acceptable
	· .		Co-60	190	188	60	1.01	Acceptable
		· · · ·	Zn-65	116	109	60	1.07	Acceptable
,, '			I-131	71	70	60	1.00	Acceptable
	<u> </u>		Cs-134	94	100	60	0.94	Acceptable
			Cs-137	121	116	60	1.04	Acceptable
1 12 1 12		· ·	Ce-141	199	198	60	1.01	Acceptable
03-2008	G688	MILK	Cr-51	361.3	359	60	1.01	Acceptable
			Mn-54	103.3	94	60	1.10	Acceptable
			Co-58	72.4	71	60	1.02	Acceptable
	· · · · ·		Fe-59	110.3	102	60	1.08	Acceptable
N			Co-60	240.7	235	60	1.02	Acceptable
			Zn-65	146.7	137	60	1.07	Acceptable
			I-131	60.3	60	60	1.00	Acceptable
1 - 1 1 - 1		1. f 100 h	Cs-134	117.3	125	60	0.94	Acceptable
	· · · ·		Cs-137	151.0	146	60	1.03	Acceptable
1 11	د. بی میرد م ^{را} د است	a ta para subara	Ce-141	249.3	249	60	1.00	Acceptable
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Re :						·
12-2008	G708	WAT	Cr-51	303	288	60	1.05	Acceptable
	-		Mn-54	181	178	60	1.02	Acceptable
			Co-58	127	122	60	1.04	Acceptable
			Fe-59	124	117	· 60	1.06	Acceptable
			Co-60	160	156	60	1.02	Acceptable
	1 . 		Zn-65	219	214	60	1.02	Acceptable
· · · ·			I-131	64	64	• 60	0.99	Acceptable
			Cs-134	148	157	60	0.94	Acceptable
	,	÷.	Cs-137	138	140	60	0.99	Acceptable
	-		Ce-141	228	. 224	60	1.02	Acceptable

RESULTS FOR ANALYTICS ENVIRONMENTAL CROSS CHECK PROGRAM

Gamma Emitters in Soil (pCi/g-dry) And Air Particulate Samples (pCi/m³)

		• .				· · · · · · · · · · · · · · · · · · ·		
	MTS			MTS	4.52 h 11 h 2 h		Ratio	
Date	Sample	Sample		Reported	Known		MTS/	·-
MM-YY	Code	Media	Nuclide	Value	Value	Resolution	Analytics	Evaluation
· · · · · · · · · · · · · · · · · · ·				1345	14 N			Provincia de la composición de la composicinde la composición de la composición de la composición de l
03-2008	G686	Soil	Cr-51	0.509	0.517	60	.99	Acceptable
e dit set el			Mn-54	0.154	0.136	60	1.13	Acceptable
			Co-58	0.107	0.102	60	1.05	Acceptable
t turki			Fe-59	0.161	0.147	60	1.10	Acceptable
			Co-60	0.334	0.34	60	0.98	Acceptable
2, 1, 4			Zn-65	0.199	0.197	60	1.01	Acceptable
1 N. 194	7		Cs-134	0.162	0.180	60	0.90	Acceptable
			Cs-137	0.307	0.321	60	1.05	Acceptable
		ŧ	Če-141	0.345	0.358	60	0.96	Acceptable
							Harden and Hard Sales and Angeler (1999)	
06-2008	G694	APT	Cr-51	185	145	F 60	1.27	Disagree
:			Mn-54	184	142	60	1.30	Disagree
•		· · · · · · · · · · · · · · · · · · ·	Co-58	78	65	60	1.20	Acceptable
· · · · · · · · · · · · · · · · · · ·			Fe-59	125	96	60	1.30	Disagree
			Co-60	124	109	61	1.14	Acceptable
			Zn-65	164	133	60	1.23	Acceptable
			Cs-134	77	81	60	0.95	Acceptable
	· .		Cs-137	148	122	60	1.22	Acceptable
			Ce-141	216	183	60	1.18	Acceptable
				2007 C		a and a second		2 8 NORTHER AND
09-2008	G699	SOIL	Cr-51	0.821	0.833	60	0.99	Acceptable
		· ·	Mn-54	0.361	0.329	60	ित हो। 1.10 ा, हुई	Acceptable
24	<i></i>		Co-58	0.364	0.353	60	1.03	Acceptable
1 a'	24 J	a	Fe-59	0.304	0.286	60	1.06	Acceptable
Start (Co-60	0.453	0.464	60	0.98	Acceptable
·····			Zn-65	0.639	0.632	. 60	1.01	Acceptable
2.0.5% J	, ¹		Cs-134	0.424	0.459	60	0.92	Acceptable
			Cs-137	0.433	0.416	60	1.04	Acceptable
s 5].			Ce-141	0.324	0.319	64	1.02	Acceptable
							· · ·	· _

RESULTS FOR ENVIRONMENTAL RESOURCE ASSOCIATES (ERA) PROFICIENCY TESTING PROGRAM

ĭ

Gamma Emitters in Water (pCi/L), Gross Aipha and Beta in Water (pCi/L), Iodine-131 Analysis in Water (pCi/L), and Tritium in Water (pCi/L),

							· · · · · · · · · · · · · · · · · · ·
	MTS			MTS	ERA		
Date	Sample	Sample		Reported	Assigned	Acceptance	· · ·
MM-YY	Code	Media	Nuclide	Value	Value	Limits	Évaluation
01-2008	AB682	WAT	Alpha	13.9	14.8	7.15 – 21.2	Acceptable
			Beta	21.1	22.5	13.7 - 30.6	Acceptable
04-2008	H690	WAT	H-3	11946	12000	10400 – 13200	Acceptable
							·
04-2008	1689	WAT	I-131	29.4	28.7	13.9-33.6	Acceptable
					· · · ·	•	
07-2008	G697	WAT	Ba-133	46.1	46.6	38.1-51.8	Acceptable
			Co-60	28.7	25.7	. 22.3-31	Acceptable
			Cs-134	88.3	93.2	75.6-102.0	Acceptable
			Cs-137	55.3	54.6	49.1-62.9	Acceptable
			Zn-65	106.7	98.8	88.8-118.0	Acceptable
						-	
7-2008	AB696	WAT	Alpha	19.8	30.7	15.7-40.0	Acceptable
			Beta	24.8	25.8	16.1-33.7	Acceptable
				-			
10-2008	AB703	WAT	Alpha	17:8	26.9	13.6-35.5	Acceptable
·			Beta	32.8	38	25.1-45.5	Acceptable
12-2008	1702	WAT	I-131	30	28.1	23.4-33.0	Acceptable
		\$					
12-2008	H704	WAT	H-3 -	2220.3	2220	1830-2460	Acceptable
						(

PERCENTAGE OF INDIVIDUAL TLD RESULTS THAT PASSED AREVA E-LAB INTERNAL CRITERIA

en el est el terra l'anna patient desta desta de l

ا در محمد میں دیکھی کا در ماہ میں محمد کا ایک ا

·

. به منه الاستارين ف

میں ہے کہ ایک میں ایس ا اور جات

Dosimeter Type	Number	% Passed Bias	% Passed Precision	
and the second	Tested	criteria	Criteria	
Panasonic Environmental TLDs	90	100	100	

TABLE D-6

THIRD PARTY TLD TESTING PERFORMANCE CRITERIA

(1) A set of the se	والمتعم عليه الدوال وموسيد واخترا بدريتم الدوار الدوار ال		
Dosimeter Type	Exposure	ANSI Category	% (Bias ± SD) *
	Period	·····································	
Panasonic Environmental TLDs	FH 2008	<u> </u>	2.7 +/- 1.0
Panasonic Environmental TLDs	SH 2008	Star II	-1.1*+/- 1.4

evel.

a to the second se

* Performance criteria are the same as the internal criteria

······ ······ ·····

APPENDIX E

SYNOPSIS OF LAND USE CENSUS

1

APPENDIX E

SYNOPSIS OF 2008 LAND USE CENSUS

A land use census was conducted in each of the 16 meteorological sectors to identify, within a distance of 8 km (5 miles), the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than $50m^2$ ($500ft^2$) producing broad leaf vegetation. In accordance with Salem and Hope Creek ODCMs the census was performed using a door to door survey, visual survey and by consulting with local agriculture authorities.

Meteorological Sector	Milk Animal July, 2008 Km (miles)	Nearest Residence July, 2008 Km (miles)	Vegetable Garden July, 2008 Km (miles)
Ν	None	None	None
NNF	None	None	None
NE	None	64(40)	
FNF	None	5.2 (3.6)	7.0 (4.9)
F	None	None	None
FSF	None	None	None
SF	None	None	None
SSF	None	None	None
S	None	None	None
SSW	None	5 5 (3 <i>4</i>)	None
SW	None	6 9 (A 3)	
	None	7 1 (<i>A A</i>)	7.1 (4.4)
W/		7.1 (1 .4) 6.5 (4.0)	/.I(4.4)
	7.0 (4.9)	5.5 (4.0) 5.5 (2.4)	None
	None	5.5 (5.4)	None
	None	5.9 (3.7)	None
NINVV	None	0. δ (4.Ζ)	None

The 2008 Land Use Census results are summarized in the above table. A comparison of the identified locations from the 2008 table with the 2007 table shows that no new nearest milk animal, nearest resident, or nearest vegetable garden (500 Ft^2) with broadleaf vegetation were identified. Therefore, no formal dose evaluation or changes to the ODCMs are required.

99.

APPENDIX F

RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM (RGPP)

2008 Radiological Groundwater Protection Program (RGPP)

Table of Contents

I.	INTRODUCTION	•••••••••••••••••••••••••••••••••••••••	105
II.	GROUNDWATER PATHWAYS		106
A	. OBJECTIVES FOR THE RGPP		106
III.	LONG-TERM GROUNDWATER SAMPLIN	G PROGRAM DESCRIPTION	107
A B C	SAMPLE COLLECTION SAMPLE ANALYSIS DATA EVALUATION		107 108 109
IV.	RESULTS AND DISCUSSION		112
A B C D	GROUNDWATER RESULTS Investigations RGPP 2008 Status Impacts to Groundwater: Past Spills and Leaks		112 115 117 118
V.	REFERENCES	••••••	118

Tables

1.	Hope C	Creek.	RGPP	Monitoring	Wells:	Construction	Details
----	--------	--------	------	------------	--------	--------------	---------

2 Salem RGPP Monitoring Wells: Construction Details

3 Relevant Groundwater Evaluation Criteria: Salem and Hope Creek Generating Stations

4A Analytical Results for Tritium in Groundwater: Hope Creek Generating Station

4B Analytical Results for Tritium in Groundwater: Salem Generating Station

5 Salem and Hope Creek 10CFR 50.75(g) Data

Figures

1 Hope Creek RGPP Monitoring Well Locations

2 Salem RGPP Monitoring Well Locations

3 Hope Creek Tritium Trends: Wells BH, BI, BJ, BK, BM, BN

4 Salem Tritium Trends: Wells AL, BD, BE, BG, Z

Introduction

This is the annual report on the status of the Radiological Groundwater Protection Program (RGPP) conducted at Salem and Hope Creek Generating Stations. This report covers the RGPP groundwater samples collected from the PSEG site in 2008. This report also describes any changes to this program and provides the radiochemical analysis results for groundwater samples collected during the 2008 reporting year. The 2006 PSEG Annual Radiological Environmental Operating Report (AREOR) was the first report that provided a description of the RGPP (PSEG, 2007). Both the 2006 and 2007 AREORs contained information and detailed descriptions of the RGPP in Appendix F. This report contains a summary of the previous annual report description and the results of the 2008 long-term groundwater-sampling program.

The RGPP was initiated by PSEG in 2006 to determine whether groundwater at and in the vicinity of Salem and Hope Creek Stations had been adversely impacted by any releases of radionuclides related to nuclear station operations. The RGPP is a voluntary program implemented by PSEG in conjunction with the nuclear industry initiatives and associated guidance (NEI, 2007). Although it is designed to be separate, the RGPP complements the existing Radiological Environmental Monitoring Program and Radioactive Effluent Technical Specification programs. The long-term groundwatersampling program is one of the key elements of the RGPP that provides for early leak detection. The other key elements that comprise the RGPP and contribute to public safety are spill/leak prevention and effective remediation.

In 2002, operations personnel at Salem Generating Station identified a release of radioactive liquids from the Unit 1 Spent Fuel Pool to the environment. PSEG developed a Remedial Action Work Plan (RAWP). This RAWP was reviewed by the U.S. Nuclear Regulatory Commission (USNRC) and approved by the New Jersey Department of Environmental Protection - Bureau of Nuclear Engineering (NJDEP-BNE). In accordance with the RAWP, a Groundwater Recovery System (GRS) has been installed

and is in operation to remove the groundwater containing tritium. This system was designed to reduce the migration of the tritium plume towards the plant boundary. The GRS is fully discussed in the quarterly Remedial Action Plan Reports (RAPR) provided to the state and the U.S. Nuclear Regulatory Commission by PSEG. The information and data associated with the GRS is not included in the annual RGPP reports. It should be noted that five shared monitoring wells (Well IDs AL, T, U, Y and Z) are included in both the GRS monitoring and RGPP long-term sampling programs to ensure that the two programs are comprehensive.

II. Groundwater Pathways

PSEG's Salem and Hope Creek Generating Stationss are located in a flat, largely undeveloped region of southern New Jersey. The Sites are bordered on the west and south by the Delaware River Estuary and on the east and north by extensive marshlands. Both of the sites obtain cooling water from the Delaware River Estuary and discharge it back to this Estuary.

Sector Sector Sector

The two sites are underlain by over 1,000 feet of inter-layered sand, silt and clay. The Salem and Hope Creek sites derive potable and sanitary water from deep wells in the Potomac-Raritan-Magothy (PRM) formations, greater than 600 feet below the surface.

There are no potable wells off-site within at least one mile. The nearest potable supply well is located 3:65 miles away in the state of Delaware. In the vicinity of the site there is no public water supply wells or private wells that can be impacted by radionuclides associated with nuclear station operations.

A. Objectives for the RGPP

The long-term sampling program objectives are as follows:

.

1. Identify suitable locations to monitor and evaluate potential impacts from

station operations before significant radiological impact to the environment or potential drinking water sources can occur.

2. Understand the local hydro-geologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface.

and an a grand fraction from the constant

te can al filler when a more and a set of the set of the

3. Perform routine water sampling from strategic locations and evaluate radiochemical analysis results.

4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner, again and the stakeholders in a timely manner, again and the stakeholders in a timely manner, again a stakeholder of the stakeholders in a stakeholder of the stakeholders in a stakeholder of the stakeholder of

- 5. Regularly evaluate analytical results to identify adverse trends. (C. 1945)
 - 6. Take necessary corrective actions to protect groundwater resources.

III. Long-term Groundwater Sampling Program Description

A. Sample Collection of the approxy carefully of the local data to the second and the part of

This section describes the general sampling methodologies used to collect water samples from monitoring wells for the Salem and Hope Creek Generating Stations RGPP. In 2006, the RGPP monitoring wells (Tables 1 and 2, Monitoring Well Construction Details) were installed and developed for both Salem and Hope Creek as part of the Site Tritium Investigation (ARCADIS, 2006A and 2006B). Groundwater samples were collected from all new monitoring wells, as well as the five pre-existing wells located at Salem (AL, T, U, Y & Z). Test Engineers and Laboratory Technicians from PSEG Maplewood Testing Services (MTS) collected these groundwater samples. Sampling protocols were consistent with U.S. Environmental Protection Agency (USEPA) and NJDEP guidance; a

modified low-flow sampling methodology was used. This methodology is consistent with protocols established for the Salem GRS investigation. The initial groundwater sampling began approximately two weeks following the completion of well development activities.

In May 2006, after the Site Hydrological Investigation was completed the longterm groundwater-sampling program was initiated. The Hope Creek RGPP monitoring wells are currently sampled semi-annually (BL, BT, BO, BP, BR and BS) and quarterly (BH, BI, BJ, BK, BM, BN and BQ). The Salem RGPP monitoring wells are currently sampled semi-annually (BA, BB, BC, BD, BE, BF, BG and BU), quarterly (AL, T and U) and monthly (Y and Z). The sampling frequencies that are specified in the RGPP procedures may be modified by the PSEG RGPP Manager for purposes of adaptive management of the RGPP. However, sampling and analysis shall not occur less frequently than semi annually.

Two deviations occurred in the RGPP sampling program during 2008. The deviations were for Salem Well BC and Hope Creek Well BN. The Salem monitoring well BC, which is sampled semiannually, could not be sampled during the October 2008 sampling campaign due to a recent security modification. This modification prevented safe access to the well. This safety concern is being evaluated and the necessary corrective actions will be taken.

The Hope Creek Well BN which is required to be sampled quarterly was not collected during the second quarter. This well location was thought to have a semi-annual sampling frequency. A quarterly sampling frequency is appropriate for well BN because it's tritium concentrations are trending upward. Well BN will be sampled quarterly in 2009.

B. Sample Analysis

Ŋ

This section describes the general analytical methodologies used to analyze the water samples for radioactivity for the Salem and Hope Creek Generating Stations RGPP. Groundwater samples were analyzed for plant-related gamma emitting radionuclides (every sample), tritium (every sample) and total strontium (annually) by a radiochemical analytical laboratory. In order to achieve the stated RGPP objectives, the long-term groundwater-sampling program includes the following measurements and analyses:

the war least of the College Alternation of the

and a fear to be the state of the

- Concentrations of tritium in water by filtration/distillation and liquid scintillation.
- Concentrations of strontium in water by chemical separation and liquid scintillation.

· marching the second second second

train the Mitter and Andread

The tritium analysis results reported in Tables 4A and 4B were obtained from PSEG MTS laboratory located in Maplewood, NJ. The gamma spectroscopy and total Sr analysis results are obtained from Teledyne Brown Engineering (TBE) Laboratory located in Knoxville; TN. Analytical laboratories are subject to internal quality assurance programs and inter-laboratory cross-check programs. The inter- laboratory cross-check program for the RGPP samples is conducted between the PSEG MTS laboratory and the TBE laboratory (tritium analysis only). Station personnel review and evaluate all analytical data deliverables obtained from these laboratories upon receipt.

C. Data Evaluation

This section describes the method used to evaluate the analytical results for RGPP

samples obtained at the Salem and Hope Creek Generating Stations site. Analytical data results are reviewed for adverse trends or anomalous data. Investigations and notifications are made as required by RGPP program procedures. The radiological data for groundwater collected during the preoperational phase of the stations were used as a baseline with which current operational data were compared. Several factors are important in the interpretation and evaluation of the radiological data:

Lower Limit of Detection

The lower limit of detection (LLD) is specified by federal regulation as a minimum sensitivity value that must be achieved routinely by the analytical method. The environmental LLD specified in the Offsite Dose Calculation Manual (ODCM) for tritium is 3,000 pCi/L (ODCM Table 14.12-1 for Salem and Table 14.12.1-1 for Hope Creek). However, for the RGPP all tritium analyses are performed with the lower LLD of 200 pCi/L. All other nuclides Minimum Detectable Concentrations (MDCs) meet or are below the LLDs specified in the ODCM. For 2008 RGPP, the analytical sensitivities for all analysis met or were below the LLDs specified in the ODCMs.

Laboratory Measurements Uncertainty

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from the counting system measurement, calibration standards, sample volume or weight measurements, sampling uncertainty and other factors.

Analytical uncertainties are reported at the 95% confidence level in this RGPP report to be consistent with the uncertainties reported in the

AREOR for the RGPP.

3.

Groundwater Data Quality Analysis

Groundwater samples generally consist of at least four aliquots. These split samples were either submitted to a laboratory or held as back up samples as described in the MTS sampling procedures.

One of the groundwater samples is submitted to the respective station's onsite chemistry laboratory for tritium and gamma spectroscopy analysis. If these scans indicated that tritium concentrations is below 10,000 pCi/L and no plant-related gamma emitters were present (all RGPP samples met this criteria), then the second sample is sent to the MTS Laboratory for tritium analysis. The on-site Chemistry laboratory's screening analysis for all 2008 RGPP groundwater samples were below 10,000 pCi/L for tritium and no plant-related gamma emitters were present above the associated LLDs specified in the ODCM.

The third split sample is submitted to the TBE Laboratory for tritium, gamma spectroscopy and total Sr analysis. During 2008, the tritium concentration results for those wells that had results above the minimum detectable concentrations were compared. The PSEG MTS and TBE tritium results on split samples were found to have a relative percent difference within \pm 10%.

The forth split sample is held as a back-up samples until all the analytical results were received and determined to be valid. In the event that the results were believed to be questionable or sample results were lost, the back-up sample would be submitted for analysis. In addition, this back-up sample can be used to verify a samples analytical result when needed.

IV. Results and Discussion

The locations of the RGPP monitoring wells are illustrated on the aerial maps for Hope Creek and Salem in Figures 1 and 2, respectively. The Monitoring Well Construction Details for Hope Creek and Salem are provided in Tables 1 and 2, respectively. The relevant groundwater parameters used to evaluate the groundwater data are provided in Table 3 Relevant Groundwater Evaluation Criteria: Salem and Hope Creek Generating Stations. The Lower Limit of Detection (LLD) is defined as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. The Reporting Level is the level of plant produced radioactive material in an environmental sampling medium (averaged over any calendar quarter) from a specified location that requires a 30-day written report to the U. S. Nuclear Regulatory Commission. The 2008 Groundwater Tritium Analytical Results for Hope Creek Generating Station are shown in Table 4A. The 2008 Groundwater Tritium Analytical Results for Salem Generating Station are shown in Table 4B. During 2008, none of the groundwater sample results exceeded the Reporting Levels in Table 3. A difference of the second of the second second second second second second second second second se

A. . Groundwater Results of the literation of the state o

AND A STATE AND A STATE AND AND AND A STATE AND A STATE

Samples were collected from RGPP monitoring wells during 2008 in accordance with the station and MTS procedures for the radiological groundwater protection program with the exception of Salem RGPP monitoring well BC and BN. Well BC was sampled once instead of semiannually due to a safety concern associated with a recent Security Modification. This safety concern is being evaluated and the safety hazard will be moved back to allow safe access. The Well BN was not sampled during the second quarter. This well location was thought to have a

semi-annual sampling frequency. Well BN will be sampled quarterly in 2009.

The MTS Laboratory in Maplewood, NJ analyzed the groundwater samples for tritium. TBE Laboratory in Knoxville, TN analyzed the groundwater samples for plant-related tritium, gamma emitters and total strontium. Analytical results and anomalies, if any, are discussed below.

Share to an a March March State

Production of the state of the

Tritium at Hope Creek Generating/Station

The results of the laboratory analysis indicate that tritium was detected, i.e, reported at a concentration above the RGPP LLD of 200 pCi/L, in six RGPP monitoring wells. The tritium concentrations measured at wells BH, BI, BJ, BK, BM, and BN ranged from <200 pCi/L to 934 pCi/L during 2008.

Carbon 201 Markeys Markey Carbon Markey Markey Constance of the

the spectral for the second
Tritium was detected at well BH in the range of $\leq 200 \text{ pCi/L}$ to 736 pCi/L. Well BH is located down gradient of the Condensate Storage Tank (CST) near the southwest protected area boundary and is a perimeter well. Tritium was detected at well BI in the range of 227 pCi/L to 678 pCi/L. Well BJ is located due west of the reactor containment and is a sentinel well. Tritium was detected at well BJ in the range of <200 pCi/L to 934 pCi/L. Well BJ is also located down gradient of the CST and is a sentinel well. Tritium was detected at well BK in the range of <200 pCi/L to 934 pCi/L. Well BJ is also located down gradient of the CST and is a sentinel well. Tritium was detected at well BK in the range of <200 pCi/L to 798 pCi/L. Well BK is also located due west of the reactor containment and is a perimeter well. Tritium was detected at well BM in the range of <200 pCi/L to 258 pCi/L. Well BM is also located west of the Unit 2 Reactor Building and is a sentinel well. Tritium was detected at well BN in the range of 238 pCi/L to 423 pCi/L. Well BN is located northeast of the Material Control Center and is a sentinel well.

These low concentrations of tritium were evaluated and determined not to be indicative of an adverse trend as shown in Figure 3 - Hope Creek Tritium Trends: Wells BH, BJ, BK, BM, BN. These wells are being sampled quarterly and the
results will continue to be evaluated. These tritium concentrations are all well below the ODCM Reporting Limit of 30,000 pCi/L. Monitoring is underway for alternate sources considered to be a potential contributor to these anomalous results, such as analysis of the yard drainage systems, the service water system, the precipitation from the roof areas near the plant vents, and other similar potential sources.

Tritium at Salem Generating Station

The results of the laboratory analysis indicate that tritium was detected, i.e., reported at a concentration above the RGPP LLD of 200 pCi/L, in five RGPP monitoring wells. The tritium concentrations measured at wells AL, BD, BE, BG and Z ranged from <200 pCi/L to 659 pCi/L during 2008.

Tritium was detected at well AL in the range of 366 pCi/L to 426 pCi/L. Well AL is also located south of the Salem 1 containment and is a sentinel well. The tritium concentration in well BD ranged from 264 pCi/L to 323 pCi/L. Well BD was installed to monitor groundwater quality adjacent to and downgradient of the Refueling, Auxiliary, and Primary Water Storage tank area and is a sentinel well. Tritium was detected at well BE in the range of <200 pCi/L to 659 pCi/L. Well BE is also located due west of the Salem 2 containment and is a perimeter well. Tritium was detected at well BG in the range of <200 pCi/L to 322 pCi/L. Well BG is located northwest of the Salem 2 containment and is a perimeter well. Tritium was detected at well Z in the range of <200 pCi/L to 289 pCi/L. Well Z is also located due west of the Salem 1 Spent Fuel Pool and is a perimeter well.

These low concentrations of tritium were evaluated and determined not to be indicative of an adverse trend as shown in Figure 4 – Salem Tritium Trends: Wells AL, BD, BE, BG, Z. The concentration of tritium detected in these wells is well below the ODCM Reporting Limit of 30,000 pCi/L. The tritium concentrations in these wells are being monitored and trended. No adverse trends

have been observed.

Gamma Emitters

No plant-related gamma emitters were detected in any RGPP well sampled in 2008. Naturally occurring Potassium-40 was detected in several of the wells sampled during 2008.

化加尔克氟酸酸药 医马氏镜板

<u>Strontium</u>

Total strontium, including Sr-89 and Sr-90, was not detected in any RGPP well sampled during 2008.

the second products of the particular and

Electronic and all for the concerning principal

B. Investigations

An elevated tritium concentration was measured in the water from the Unit 2 Turbine Building Emergency Sump at Hope Creek Station. This resulted in a Tritium Investigation being conducted during the last quarter of 2008.

and the set of the set of the second s

On November 7, 2008, as part of a station evaluation for an increase in plant water usage, water in the Unit 2 Emergency Sump was sampled. The results identified a tritium concentration of 40,990 pCi/L in the water from the Unit 2 Emergency Sump. One of the purposes for this sump is to collect the condensation from the Unit 2 Turbine Building HVAC. It was determined that this sump had been drained on or about November 3, 2008 and released through cooling tower blowdown to the Delaware River. Operations Department personnel were notified immediately. Equipment Operators tagged out the sump preventing any more inadvertent discharges.

A calculation was performed to determine the potential concentration of tritium that could have been released to the Delaware River. This calculation was based

on the maximum tritium concentration and volume of water found in the Unit 2 Emergency Sump. Based on this calculation, which included the dilution associated with the water in the blowdown line, the amount released is greater than an order of magnitude below the reportable concentration listed in the ODCM.

A Prompt Investigation was initiated and a team was formed. The team's charter was to investigate and determine the source (s) of Tritium to the sump. This team worked independent but not exclusive from the Demineralized Water Usage Team mentioned previously.

The team evaluated eleven failure modes for the source of the Tritium in the Unit 2 Emergency Sump. Of the eleven failure modes identified, four were determined by the team to be the greatest potential sources of Tritium. In addition, the team performed a review of P&IDs drawings and visually inspected all potential sources to the sump. No anomalous inputs to the sump were identified.

grade all the second
Chemistry personnel obtained additional water samples from the 1C Lift Station, Low Volume Oily Waste, and the Cooling Tower blowdown. Results were less than LLD for all samples. This is consistent with historical analysis results of tritium concentration in these systems.

Call and Call Strategy and the second second

and the set of the set of the set of the set of the

The Tritium Investigation team validated all open failure modes and concluded that the most probable source for the tritium is the recycling of monitored gaseous effluents from the offgas stack through the normal Turbine Building HVAC System condensate drains. Tritium concentrations are monitored prior to all future pump-outs of this sump. If sump concentrations are in excess of 3000 pCi/L the sump contents will be processed through the Liquid Radwaste System. The investigation found no indication of a release to groundwater from this sump.

C. RGPP 2008 Status

The RGPP long-term sampling program will be modified as required in 2009 to effect changes as a result of the recent tritium concentrations and to adaptively manage the program to meet the RGPP objectives. Baseline sampling and analysis of groundwater will continue on the following schedule: the addition program to meet the RGPP objectives.

- Tritium will be analyzed at least twice each calendar year to an LLD of 200 pCi/L;
- Plant-related gamma emitters will be analyzed semi-annually to the Environmental LLDs specified in the ODCM; and,
- Strontium will be analyzed annually as total strontium; if the total strontium is greater than 2.0 pCi/L strontium-89 and strontium-90 analysis will be performed.

RGPP monitoring well sample frequency will be adjusted based on analytical results, but in no event less than twice per year. In addition, several locations will undergo an investigation into the fluctuating tritium concentrations.

They's provide borners of the man

During October through December of 2008 PSEG Chemistry Department personnel conducted a self assessment of the RGPP. The assessment was performed to identify areas of the program that meets the intent of Nuclear Energy Institute NEI 07-07, "Industry Groundwater Protection Initiative - Final Guidance Document," August 2007 (NEI, 2007). This self-assessment identified program strengths, opportunities for performance improvement, and program deficiencies, and provided recommendations. These recommendations are currently being implemented. It is expected that completion of these recommended actions will improve RGPP conformance with the NEI-07-07 Objectives for the Industry Ground Water Protection Initiative (GPI). This in turn would strengthen the RGPP implementation and contribute to overall program excellence.

D. Impacts to Groundwater: Past Spills and Leaks

Historical unplanned and unmonitored releases on site are listed in Table 5, Salem and Hope Creek 10CFR50.75(g) Data. There are currently no known active releases into the groundwater at Salem or Hope Creek Stations.

In conclusion, the operation of Salern and Hope Creek Stations has had no adverse radiological impact on the environment from unmonitored or unplanned releases of radionuclides to groundwater.

V. References

- ARCADIS, 2006A. Site Investigation Report July 2006. PSEG Nuclear LLC. Hope Creek Generating Station, Hancock's Bridge, New Jersey.
- 2. ARCADIS, 2006B. Site Investigation Report July 2006. PSEG Nuclear LLC. Salem Generating Station, Hancock's Bridge, New Jersey.
- NEI, 2007, NEI 07-07, Industry Groundwater Protection Initiative Final Guidance Document, Nuclear Energy Institute, Washington, DC, June 2007.
- 4. PSEG, 2007. 2006 Annual Radiological Environmental Operating Report, January 1 to December 31, 2006, Salem Generating Station Unit 1 and 2 and Hope Creek Generating Station, April 2007.
- 5. PSEG, 2008. 2007 Annual Radiological Environmental Operating Report, January 1 to December 31, 2007, Salem Generating Station Unit 1 and 2 and Hope Creek Generating Station, April 2008.
- 6. Reference for the 2008 Tritium Investigation Unit 2 Turbine Bldg Sump (Later)

Table 1 Hope Creek RGPP Monitoring Wells: Construction Details

					1				
	Installation	Construction	Diameter	Total Depth	Monitoring	MP	MP	Monitoring	
Well ID	Date	Details	(inches)	(feet bgs)	Interval	Elevation	Elevation	Purpose	Source Targets
	· ·				(feet bgs)	(feet RPD)	(feet msl)		
		-							
Well BH	May-06	Sch-40 PVC	4	37.0	27 - 37	97.92	8	Perimeter	NA
Well Bi	May-06	Sch-40 PVC	4	38.5	28.5 - 38.5	99.6	9.68	Source	Facilities; Piping
Well BJ	May-06	Sch-40 PVC	4	38.0	28 - 38	.100.23	10.31	Source	Condensate Storage & Transfer; Facilities; Piping
Well BK	May-06	Sch-40 PVC	4	38.5	28.5 - 38.5	98.19	8.27	Perimeter	NA
Well BL	May-06	Sch-40 PVC	4	35.0	25 - 35	99.71	9.79	Perimeter	NA
Well BM	May-06	Sch-40 PVC	4	38.0	28 - 38	99.76	9.84	Source	Facilities; Piping
Well BN	May-06	Sch-40 PVC	4	12.5	7.5 - 12.5		12.72	Source	Auxiliary Boiler Building; Piping
Well BO ·	May-06	Sch-40 PVC	4	36.0	26 - 36	97.98	8.06	Perimeter/Source	Building Sewage
Well BP	May-06	Sch-40 PVC	4	38.0	28 38	99.06	9.14	Perimeter/Source	Building Sewage
Well BQ	May-06	Sch-40 PVC	4 ~.	42.0	32=42	102.16	12.24	Source	Auxiliary Boiler Building; Dry Cask Storage Building; Piping
Well BR	May-06	Sch-40 PVC	4	- 40.5	30.5 - 40.5			Perimeter/Source	Piping; Dry Cask Storage
				25.0	05.05	104.28	14.36	l lännadiant	Building
	iviay-06	Scn-40 PVC	4	35.0	25 - 35	100.55	10.63	Upgradient	
	May-06	Sch-40 PVC	4	38.5	28.5 - 38.5	99.60	9.68	Upgradient	NA

Notes:		2
MP	Measuring Point	
bgs	Below ground surface	•
RPD	Relative to plant datum	
msl	Relative to mean sea level (NAVD 1988	6)
NA	Not applicable	
NAD 83	North American Datum 1983	

· · · ·								· · · · · · · · · · · · · · · · · · ·	
	Installation	Constructio n	Diameter	Total Depth	Monitoring	MP	MP	Monitoring	
Well ID	Date	Details	(inches)	(feet bgs)	Interval (feet bos)	Elevation	Elevation	Purpose	Source Targets
									· .· ·
Well T	Jun-03	Sch-40 PVC	2	31.2	21.2 - 31.2	. 104.13	14.21	Source	Facilities; House Heating Bir
Well U	May-03	Sch-40 PVC	-2	32.2	27.2 - 32.2	98.57	8.65	Source	Facilities; House Heating Blr
Well Y	Sep-03	Sch-40 PVC	2	37.0	27.0 - 35.0	101.81	11.89	Perimeter	NA
Well Z	Sep-03	Sch-40 PVC	2	37.5	27.5 - 37.5	101.86	11.94	Perimeter	NA
Well AL	Jan-04	Sch-40 PVC	2	25.3	15.3 - 25.3	99.13	9.21	Perimeter	NA
Well BA	May-06	Sch-40 PVC	4	39.5	29.5 - 39.5	101.07	11.15	Perimeter	NA
Well BB	May-06	Sch-40 PVC	4		37 - 47	99.38	9.46	Perimeter	NA
Well BC	May-06	Sch-40 PVC	4	38.0	28 - 38	98.78	8.86	Source / Perimeter	Facilities; RAP Tanks; Piping
Well BD	May-06	Sch-40, P.VC	4	40.5	30.5 - 40.5	98.78	8.86	Source	Facilities; RAP Tanks; Piping
Well BE	May-06	Sch-40 PVC	4	37.0	27 - 37	98.31	8.39	Perimeter	NA
Well BF	May-06	Sch-40 PVC	4	42.5	32.5 - 42.5	99.11	9.19	Perimeter	NA
Well BG	May-06	Sch-40 PVC	4	37.0	27 - 37	100	10.08	Perimeter	NA
Well BU	May-06	Sch-40 PVC	4	36.0	26 - 36	100.16	. 10.24	Upgradient	NA

Table 2. Salem RGPP Monitoring Wells: Construction Details

Notes:	
	Measuring
MP	Point
bgs	Below ground surface
RPD	Relative to plant datum
msl	Relative to mean sea level (NAVD 1988)
NA	Not applicable
NAD 83	North American Datum 1983

Isotope	RGPP LLD (pCi/L)	PSEG ODCM Reporting Level (pCi/L)		
	······································		· · .	
Tritium Conc. (pCi/L)	200	30,000		
Total Strontium (pCi/L)	2.0	8		
Mn-54	15	1000		
Fe-59	. 30	400		
Co-60	15	300		
Zn-65	30	300		
Nb-95	15	400		
Zr-95	vo area 15	200	· .	
Cs-134	15	30		
Cs-137	18	50		
Ba-140	60	200	· · · · · · · · · · · · · · · · · · ·	
La-140	15	200		

Table 3. Relevant Groundwater Evaluation Criteria: Salem and Hope Creek Generating Stations

* Informal Report, ODCM Reporting Limit 30,000 pCi/L

- **1**

121

1/4 that

A. Althou

255

State Contractor

ipic paras

\$ A4295

si.

Table 4A. Analytica	Results for	Tritium in	Groundwater	
H	lope Creek G	ienerating	Station	• -

Well ID	Sample Data	Tritium Conc.	Well ID	Sample Data	Tritium Conc.
		(pCi/L)			(pCi/L)
	03/19/2008	. 736		03/24/2008	, <200
	06/12/2.008	<200		06/12/2008	<200
вн	09/23/2008	<200	ВМ	09/23/2008	258
	11/11/2008	<200		11/11/2008	<200
	12/18/2008	<200		12/18/2008	<200
	· · · ·	<u> </u>		· · · · · · · · ·	
· · · · ·	03/24/2008	577		03/24/2008	319
i.	06/12/2008	241		06/12/2008	NS
BI	09/23/2008	227	BN	09/15/2008	372
2 A	11/11/2008	592		11/12/2008	238
	12/18/2008	678		12/30/2008	423
þ					
	03/19/2008	<200	PO	04/16/2008	<200
	06/12/2008	<200	<u>,</u>	10/27/2008	<200
BJ	09/23/2008	934	1,000	· · · ·	· · ·
	11/11/2008	200	BD	04/16/2008	<200
4. 	12/18/2008	<200	BP	10/27/2008	<200
	7	-			•
	03/19/2008	611	,	03/24/2008	<200
	06/12/2008	<200	••••	09/15/2008	<200
ВК	09/23/2008	<200	BQ	11/12/2008	<200
,	11/11/2008	798		12/30/2008	<200
	12/18/2008	<200			
			. **		
, ומ	04/22/2008	<200		4/16/2008	<200
DL	10/30/2008	<200		10/27/2008	<200
-					
DT	04/16/2008	<200	De	.04/16/2008	<200
ВІ	10/27/2008	<200	ВЭ	10/27/2008	<200

and the split se

Bold concentration value indicates tritium level above RGPP Administrative Limits 200 pCi/L. NS Not Sampled

					
		Tritium	Na Ng 1 mm	بالمراجع والمراجع والمراجع	Tritium
Well ID	Sample Date	Conc.	Well ID	Sample Date	Conc.
		(pCi/L)			(pCi/L)
	01/23/2008	366	· · · · · · · · ·	101/16/2008 sada	<200
	04/22/2008	375		05/28/2008	<200
AL	07/16/2008	426	U	07/16/2008	<200
	10/20/2008	396		10/20/2008	<200
		+ .			
	04/17/2008	<200			
BA	10/20/2008	<200		¥ 14	
				03/13/2008	<200
				04/22/2008	<200
BR	04/17/2008	<200		05/15/2008	<200
	10/20/2008	<200		06/24/2008	<200
· .	· · · · · · · · · · · · · · · · · · ·			07/17/2008	<200
DO	04/17/2008		V	08/19/2008	<200
BC	10/21/2008	NS	Υ.	09/03/2008	<200
	. ,			10/18/2008	<200
PD	04/22/2008	323		11/21/2008	<200
	10/20/2008	264		12/23/2008	<200
					, .
BE	04/17/2008	<200		at a start of the	
	10/21/2008	659			
-					
· BC	04/17/2008	<200		· · · · · · · · · · · · · · · · · · ·	
	10/21/2008	<200	· · · · · · · · · · · ·	03/13/2008	<200
•			i i i i i i i i i i i i i i i i i i i	04/22/2008	<200
	04/22/2008	322		05/15/2008	<200
DQ.	10/21/2008	· <200······		06/24/2008	<200
	· · · ·		an an the second	07/17/2008	<200
	04/16/2008	<200		08/19/2008	<200
BU	10/27/2008	<200	a	09/03/2008	<200
	••••••••••••••••••••••••••••••••••••••	•		10/18/2008	278
	01/16/2008	<200		11/21/2008	289
-	04/22/2008	<200		12/23/2008	253
	07/16/2008	<200			
	10/21/2008	<200		,	· .

Table 4B Analytical Results for Tritium in Groundwater:Salem Generating Station

Bold concentration value above RGPP Administrative Reporting Level 200 pCi/L.

NS Not Sampled

Salem and Hope Creek 10CFR 50.75(g) Data Table 5.

Ì

			and the second	
Spill/D)ischarge	Quantity(ies) Spilled / Discharged	Location of Spill/Discharge	Description
Apr-95		~ 88 mCi	Hope Creek and Salem	Steam from the Decon Solution Evaporator released from Hope Creek's South Plant Vent
Jun-01		~5Ci	Unit 1 RWST	Salem Unit 1 RWST Nozzle Leak
Sep-02		~5.Ci	Ground west of Unit 1 Spent Fuel Building	Blockage of the Spent Fuel Pool liner's "tell-tales" caused backup of contaminated water through building seams
Jan-05		No discharge to the environment	Hope Creek rooms 3133, 3135, 3129 and 5102	Water from inside the Waste Sludge Phase Separator Tank Room appeared to be leaking through the crack in the wall
May-07		2.8 milli Curies of Cs 137	In front of Salem Unit 2 condensate polisher	Burst site glass during operation. Resin blown through wall into switchyard

ίε.,

1

1 4.273

のないないというないできょうないない

あるとない時間の行いたち

Figure 1 - Hope-Creek RGPP Monitoring Well Locations

Figure 2 - Salem RGPP Monitoring Well Locations

0 200 400 800 1,200 1,600 Feet

Figure 3 Hope Creek Tritium Trends: Wells BH, BI, BJ, BK, BM, BN

All the L - Salent KUP? Monitoring Well Location.

Figure 4 Salem Tritium Trends: Wells AL, BD, BE, BG, Z