ENG.20080219.0006

BSC

Design Calculation or Analysis Cover Sheet

Complete only applicable items.

1. QA: QA

2. Page 1

3. System					4. Document Identifier		
Initial Handling Facility (IHF)					51A-SSC-IH00-00600-000-00B		
5. Title							
IHF	Steel Structure Seismic Analysis and	Steel M	lember	Design			
6. G	roup			<u> </u>			
Eng	ineering - Civil/Structural/Architectur	ral					
7. D	ocument Status Designation			84 - 7		1 10 1000-100	
	Pre	eliminary		Committed	Confirmed	Cancelled/	Superseded
8. N	otes/Comments						
7	This calculation supersed	es do	cume	ent 51A-SSC	C-IH00-00200-	000-00A in it	ts entirety
	Rev. 00 A of 2/19/08						
Г	· · · ·						
	NOTICE OF OPEN CHANG	E DO	СОМ	ENTS - THIS	DOCUMENT IS	IMPACTED BY	r I
Í 📕	THE LISTED CHANGE DO	DCUM	ENTS	AND CANNO	T BE USED WIT	THOUT THEM.	
	1) (CACN-	·001,	DATED 03/0	1/2008		
-					·····	······	
			Attach	ments	REALEST T T S FANTS S		Total Number of Pages
SEE	E SECTION 5			2			220
1							
			RE	CORD OF REVISIO	NS		
•	10	11.	12.	13.	14.	15.	16.
9. No.	Reason For Revision	Total #	Last	Originator	Checker	EGS	Approved/Accepted
		of Pgs.	Pg. #	(Print/Sign/Date)	(Print/Sign/Date)	(Print/Sign/Date)	(Print/Sign/Date)
00A	Initial Issue	268	H-9	A. Ketin	L. Alires	Sal Macias	R. Rajagopal
					11/20/07	11/20/07	102/00
				M. Lin	R. Chou		
2				11/26/07	11/26/07		
				E. Acaac	J. Solowey		
				11/26/07	11/26/07		
				J. Paredes	M. Soltani		
				11/26/07	11-26-07		
					K. Parikh 11-26-07		
00B	This Calculation is being revised as	275	H-9	J. Paredes	R. Chou	Sal Macias	R. Rajagopal
	- Added new name 19			Justo	T, SKANKERI	.Smories	Mungal
	- Revised pages 3, 4, 6, 7, 9 - 15, 17,			1 2/16/08	The barket		11108
	24, 26, and 29 - 55				2/16/08	2/16/08	2 16 00
	- Revised the contents of Attachment F						
	- Deleted Attachment G						
	- Revised Section 7.1.1 Maximum Joint Acceleration						
	- Added Section 7.1.2 Maximum Joint						
	Displacements						
	- Added Section 7.1.3 Story Shear						
							1

EG-PRO-3DP-G04B-00037.2-r2

DISCLAIMER

The calculations contained in this document were developed by Bechtel SAIC Company, LLC (BSC) and are intended solely for the use of BSC in its work for the Yucca Mountain Project.

CONTENTS

Page

AC	CRONYMS AND ABBREVIATIONS
1.	PURPOSE
2.	REFERENCES92.1PROJECT PROCEDURES / DIRECTIVES92.2DESIGN INPUTS92.3DESIGN CONSTRAINTS112.4DESIGN OUTPUTS11
3.	ASSUMPTIONS123.1ASSUMPTIONS REQUIRING VERIFICATION123.2ASSUMPTIONS NOT REQUIRING VERIFICATION13
4.	METHODOLOGY144.1QUALITY ASSURANCE144.2USE OF SOFTWARE144.3ANALYSIS METHOD15
5.	LIST OF ATTACHMENTS17
6.	BODY OF CALCULATION.186.1MATERIAL PROPERTIES186.2BUILT-UP STEEL SECTION PROPERTIES186.3SAP2000 ANALYSIS CASES186.4SAP2000 FEM DEVELOPMENT206.5SAP2000 INPUT LOADING AND LOAD COMBINATIONS236.6MODAL ANALYSIS246.7RESPONSE SPECTRUM ANALYSIS256.8STRUCTURAL STEEL DESIGN29
7.	RESULTS AND CONCLUSIONS307.1RESULTS7.2CONCLUSIONS55

ATTACHMENTS

Page

ATTACHMENT A	IHF Building Plan and X-Sections	A-1
ATTACHMENT B	Steel Built-Up Section Properties	B-1
ATTACHMENT C	Crane Positions and Loading for 7 Analysis Cases	C-1
ATTACHMENT D	Crane Load Case (CLC) Input and Output files	D-1
ATTACHMENT E	Foundation Loads	E-1
ATTACHMENT F	Groups D/C Ratios, Info for LA, Max. Joint Displ & Accel	F-1
ATTACHMENT G	NOT USED	G-1
ATTACHMENT H	Emails and Meeting Notes	H-1

FIGURES

Page

Figure 4.3.1	Coordinate System - Plan15
Figure 4.3.2	Member Cross Section Local Axis16
Figure 7.1.1	DBGM-2 Story Shear Diagram (LC 5) Fixed Base RSA – XX & YY36
Figure 6.4.1	IHF Steel Structure Column Lines
Figure 6.4.2	SAP2000 X-Y Plane @ Z=0 ft
Figure 6.4.3	SAP2000 X-Y Plane @ Z=26.75 ft
Figure 6.4.4	SAP2000 X-Y Plane @ Z=44 ft
Figure 6.4.5	SAP2000 X-Y Plane @ Z=53.75 ft A-6
Figure 6.4.6	SAP2000 X-Y Plane @ Z=65 ft
Figure 6.4.7	SAP2000 X-Y Plane @ Z=87.25 ft
Figure 6.4.8	SAP2000 X-Y Plane @ Z=97.5 ft
Figure 6.4.9	SAP2000 X-Y Plane @ Z=104.5 ft A-10
Figure 6.4.10	SAP2000 X-Z Plane @ Y=0 ft
Figure 6.4.11	SAP2000 X-Z Plane @ Y=23 ft
Figure 6.4.12	SAP2000 X-Z Plane @ Y=123 ft
Figure 6.4.13	SAP2000 X-Z Plane @ Y=160 ft
Figure 6.4.14	SAP2000 Y-Z Plane @ X=-4.5 ft
Figure 6.4.15	SAP2000 Y-Z Plane @ X=76.25 ft
Figure 6.4.16	SAP2000 Y-Z Plane @ X=137 ft
Figure 6.4.17	SAP2000 Y-Z Plane @ X=167 ft

Figure 6.4.18	SAP2000 IHF Steel Structure Analysis Case 1 Crane Position	A-19
Figure 6.4.19	SAP2000 IHF Steel Structure Analysis Case 2 Crane Position	A-20
Figure 6.4.20	SAP2000 IHF Steel Structure Analysis Case 3 Crane Position	A-21
Figure 6.4.21	SAP2000 IHF Steel Structure Analysis Case 4 Crane Position	A-22
Figure 6.4.22	SAP2000 IHF Steel Structure Analysis Case 5 Crane Position	A-23
Figure 6.4.23	SAP2000 IHF Steel Structure Analysis Case 6 Crane Position	A-24
Figure 6.4.24	SAP2000 IHF Steel Structure Analysis Case 7 Crane Position	A-25
Figure 6.4.25	SAP2000 Model – Group "BUILDINGCOL65DOWN"	A-26
Figure 6.4.26	SAP2000 Model – Group "BUILDINGCOL65UP"	A-27
Figure 6.4.27	SAP2000 Model – Group "CRANECOL"	A-28
Figure 6.4.28	SAP2000 Model – Group "BRACE@37"	A-29
Figure 6.4.29	SAP2000 Model – Group "BRACE@65"	A-30
Figure 6.4.30	SAP2000 Model – Group "BRACE@65UP"	A-31
Figure 6.4.31	SAP2000 Model – Group "ROOFTRUSS"	A-32
Figure 6.4.32	SAP2000 Model – Group "LOWERROOFHX"	A-33
Figure 6.4.33	SAP2000 Model – Group "ROOFHX"	A-34
Figure 6.4.34	SAP2000 Model – Group "SMALLVX"	A-35
Figure 6.4.35	SAP2000 Model – Group "SMALLHX@65"	A-36
Figure 6.4.36	SAP2000 Model – Group "SMALLHX@87"	A-37
Figure 1A	Columns @ Column Lines E/6, E/10, J/10 & K/10	B- 14
Figure 1B	Crane Rail Girder @ TOS EL. 64'-6"	B-15
Figure 1C	Crane Rail Girder @ TOS EL. 43-8", 53'-4", 86'-0"	B-16
Figure 1D	Columns @ Column Lines 4/G & 4/J	B-17
Figure 1E	Column @ Column Lines 4/C	B- 18
Figure 1F	Columns @ Column Lines 5/G & 5/J	B-19

TABLES

Page

Table 6.3.1	Analysis Case Definitions IHF Steel Structure	18
Table 6.3.2	Load Cases Description	19
Table 6.4.1	Groups Definition	21
Table 6.4.2	Frame Steel Section Properties	22
Table 6.5.1	SAP2000 Loading Input	23
Table 6.6.1	Modal Analysis General Information	24
Table 6.6.2	Mass Source	25
Table 6.6.3	Modal Analysis Results	25
Table 6.7.1	Response Spectrum Analysis General Information	26
Table 6.7.2	Not Used	26
Table 6.7.3	Response Spectrum Input Function - Horizontal	26
Table 6.7.3	Response Spectrum Input Function – Horizontal (continued)	27
Table 6.7.4	Response Spectrum Input Function - Vertical	27
Table 6.7.5	Modal Participating Mass Ratios For Crane Load Case 5 (CLC5)	28
Table 6.8.1	Load Combination Definitions for Steel Design	29
Table 7.1.1	Maximum Accelerations at EL. 26.75 FT – SAP2000 Output	30
Table 7.1.2	Maximum Accelerations at EL. 37 FT – SAP2000 Output	31
Table 7.1.3	Maximum Accelerations at EL. 65 FT – SAP2000 Output	31
Table 7.1.4	Maximum Accelerations at EL. 87 FT – SAP2000 Output	32
Table 7.1.5	Maximum Accelerations at EL. 104.5 FT – SAP2000 Output	32
Table 7.1.6	Maximum Accelerations	33
Table 7.1.7	Maximum Displacements at EL. 26.75 FT – SAP2000 Output	33
Table 7.1.8	Maximum Displacements at EL. 37 FT – SAP2000 Output	34
Table 7.1.9	Maximum Displacements at EL. 65 FT – SAP2000 Output	34
Table 7.1.10	Maximum Displacements at EL. 87 FT – SAP2000 Output	35
Table 7.1.11	Maximum Displacements at EL. 104.5 FT – SAP2000 Output	35
Table 7.1.12	Maximum Displacements	
Table 7.1.13	Story Shear (North – South)	37
Table 7.1.14	Story Shear (East – West)	37
Table 7.1.15	Steel Design Summary – Group CRANECOL	

Table 7.1.16	Steel Design Summary – Group BUILDINGCOL65DOWN
Table 7.1.17	Steel Design Summary – Group BUILDINGCOL65UP
Table 7.1.18	Steel Design Summary – Group ROOFTRUSS
Table 7.1.19	Steel Design Summary – Group SMALLVX40
Table 7.1.20	Steel Design Summary – Group SMALLHX@6540
Table 7.1.21	Steel Design Summary – Group SMALLHX@8741
Table 7.1.22	Steel Design Summary – Group ROOFBRACING41
Table 7.1.23	Steel Design Summary – Group BRACE@3742
Table 7.1.24	Steel Design Summary – Group BRACE@6542
Table 7.1.25	Steel Design Summary – Group BRACE@65UP43
Table 7.1.26	Steel Section Code Check for Group CRANECOL Frame Elements44
Table 7.1.27	Steel Section Code Check for Group BUILDINGCOL65DOWN Frame Elements
Table 7.1.28	Steel Section Code Check for Group BUILDINGCOL65up Frame Elements
Table 7.1.29	Steel Section Code Check for Group ROOFTRUSS Frame Elements47
Table 7.1.30	Steel Section Code Check for Group SMALLVX Frame Elements
Table 7.1.31	Steel Section Code Check for Group SMALLHX@65 Frame Elements49
Table 7.1.32	Steel Section Code Check for Group SMALLHX@87 Frame Elements50
Table 7.1.33	Steel Section Code Check for Group ROOFBRACING Frame Elements51
Table 7.1.34	Steel Section Code Check for Group BRACE@37 Frame Elements52
Table 7.1.35	Steel Section Code Check for Group BRACE@65 Frame Elements53
Table 7.1.36	Steel Section Code Check for Group BRACE@65UP Frame Elements54

ACRONYMS AND ABBREVIATIONS

Acronyms

Bechtel SAIC Company
Center of Gravity
Cask Handling Crane
Canister Transfer Machine
Demand/Capacity Ratio
Design Basis Ground Motion -2
Finite Element Model
Elevation
Heating, Ventilation, Air-Conditioning
Important To Safety
Important To Waste Isolation
Plant Design System
Square Root of the Sum of the Squares
Structures, Systems, and Components
Transportation, Aging, and Disposal
Waste Package
Three Dimensional

Abbreviations

IHF Initial Handling Facility	
-------------------------------	--

- kcf kips per cubic foot
- ksf kips per square foot
- psf pounds per square foot

1. PURPOSE

The purpose of this calculation is to develop a finite element model of the Initial Handling Facility (IHF) steel structure with SAP2000 computer program, and to perform a Tier-1 seismic analysis using response spectrum method with DBGM-2 input ground motion. This calculation will also include the preliminary design of the structural steel members subject to prevailing load combination. The results will be used in generating structural steel drawings and also as input to IHF foundation design.

2. REFERENCES

2.1 **PROJECT PROCEDURES / DIRECTIVES**

- 2.1.1 BSC (Bechtel SAIC Company) 2007. EG-PRO-3DP-G04B-00037, Rev. 010, *Calculations and Analysis*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20071018.0001
- 2.1.2 BSC (Bechtel SAIC Company) 2007. IT-PRO-0011 Rev. 007, *Software Management*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20070905.0007
- 2.1.3 Not Used
- 2.1.4 Not Used

2.2 DESIGN INPUTS

- 2.2.1 BSC (Bechtel SAIC Company) 2007. Project Design Criteria Document. 000-3DR-MGR0-00100-000-007. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20071016.0005; ENG.20071108.0001
- 2.2.2 BSC (Bechtel SAIC Company) 2007. Seismic Analysis and Design Approach Document. 000-30R-MGR0-02000-001. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20071220.0029
- 2.2.3 BSC (Bechtel SAIC Company) 2007. *Basis of Design for the TAD Canister-Based Repository Design Concept*. 000-3DR-MGR0-00300-000-001. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20071002.0042
- 2.2.4 ANSI/AISC N690-1994. (R2004) s2.2005. Supplement No.2 to the specification for Design, Fabrication, and Erection of Steel Safety-Related Structures for Nuclear Facilities. Chicago, Illinois: American Institute of Steel Construction. TIC: 252734; 258040.

- 2.2.5 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility (IHF): Design Loads for the Steel and Concrete Structures*. 51A-SYC-IH00-00700-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20071106.0008.
- 2.2.6 AISC (American Institute of Steel Construction) 1997. *Manual of Steel Construction: Allowable Stress Design*. 9th Edition, 2nd Revision 2nd Impression. Chicago, Illinois: American Institute of Steel Construction. TIC: 240772 – ISBN 1-56424-000-2
- 2.2.7 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility General Arrangement Legend and General Notes*. 51A-P10-IH00-00101-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG. 20071226.0016
- 2.2.8 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility General Arrangement Ground Floor Plan* 51A-P10-IH00-00102-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG. 20071226.0017
- 2.2.9 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility General Arrangement Second Floor Plan* 51A-P10-IH00-00103-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG. 20071226.0018
- 2.2.10 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility General Arrangement. Plan* at Elevation +73'-0" 51A-P10-IH00-00104-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG. 20071226.0019
- 2.2.11 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility General Arrangement Roof Plan.* 51A-P10-IH00-00105-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG. 20071226.0020
- 2.2.12 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility General Arrangement Sections A and B.* 51A-P10-IH00-00106-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG. 20071226.0021
- 2.2.13 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility General Arrangement Sections C, D and E.* 51A-P10-IH00-00107-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG. 20071226.0022
- 2.2.14 BSC (Bechtel SAIC Company) 2007. *Initial Handling Facility General Arrangement Sections F, G, H and J.* 51A-P10-IH00-00108-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG. 20071226.0023
- 2.2.15 MO0706DSDR5E4A.001. Seismic Design Spectra for the Surface Facilities Area at 5E-4 APE for Multiple Dampings. Submittal date: 6/14/2007. [DIRS:181422]
- 2.2.16 ASCE 7-98. 2000. Minimum Design Loads for Buildings and Other Structures. Revision of ANSI/ASCE 7-95. Reston, Virginia: American Society of Civil Engineers. TIC: 247427. ISBN-0784404453

- 2.2.17 ASCE 4-98. 2000. Seismic Analysis of Safety Related Nuclear Structures and Commentary, Reston, VA. American Society of Civil Engineers. TIC: 253158. [International Standard Book Number (ISBN) 0-7844-0433-X]
- 2.2.18 ASCE / SEI 43-05.2005 Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities. Reston, Virginia: American Society of Civil Engineers. TIC: 257275 [ISBN 0-7844-0762-2]
- 2.2.19 NRC (U.S Nuclear Regulatory Commission) 2007. "Seismic System Analysis." Section 3.7.2 of *Standard Review Plan*. NUREG-0800, Rev. 3. Washington, D.C.: U.S. Nuclear Regulatory Commission. ACC: MOL.20070521.0105 [DIRS 180932]
- 2.2.20 DOE (U.S. Department of Energy) 2007. Transportation, Aging and Disposal Canister System Performance Specification. WMO-TADCS-000001, Rev. 0. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20070614.0007. [DIRS 181403]
- 2.2.21 CSI (Computers and Structures, Inc.) 2004. *CSI Analysis Reference Manual for SAP2000, ETABS, and SAFE.* Berkeley, California: Computers & Structures, Inc. TIC: 257671.
- 2.2.22 SAP2000 V.9.1.4. 2005. Windows 2000. Software Tracking Number (STN): 11198-9.1.4-00. [DIRS:178238]
- 2.2.23 Blodgett, O.W. 1966;2002. "Design of Welded Structures." James F. Lincoln Arc Welding Foundation. TA684 .B54 1966 repr.2002. TIC: 254442.
- 2.2.24 Roark, Raymond J. 1989. "*Roark's formulas for stress and strain (Sixth Edition)*." McGraw-Hill. TA407.2 .R6 1989. ISBN: 0-072541-1. TIC: 10191.
- 2.2.25 DOE (U.S. Department of Energy) 2005. Software Validation Report for: SAP2000 Version 9.1.4. Document ID: 11198-SVR-9.1.4-00-Win2000. Las Vegas, Nevada: U.S. Department of Energy, Office of Repository Development. ACC: MOL.20051012.0425. [DIRS:176790].

2.3 DESIGN CONSTRAINTS

There are no design constraints.

2.4 DESIGN OUTPUTS

Design and analysis outputs of this calculation will include the following:

- 1) Steel member design check including Demand/Capacity ratios.
- 2) Support reactions for Dead Loads, Live Loads and each earthquake component Ex, Ey and Ez.
- 3) Maximum displacements and Story Drift considerations.
- 4) Seismic analysis including modal frequencies and mass participation factors.

3. ASSUMPTIONS

3.1 ASSUMPTIONS REQUIRING VERIFICATION

3.1.1 Building plan, elevations, and dimensions

Plans and elevations of the IHF building steel structure are shown in Attachment A. These sketches reflect the results of the design and will be incorporated in the steel drawings. They are based on general arrangement (G.A.) drawings (Ref 2.2.7 through 2.2.14), with minor variation in dimensions and/or arrangement of columns. The SAP2000 mathematical model closely represents the steel drawings with respect to some dimensions and location of structural members.

Rationale–The general arrangement drawings were in the process of being changed to reflect the final layout of the IHF structure as shown in the steel drawings including the final arrangement of columns. These minor discrepancies will be addressed during the detail design stage by incorporating all changes into the SAP2000 model of IHF building. Then the steel structure will be reanalyzed to verify that these dimensional and structural variations have no impact on the overall seismic response of the structure and also on the steel member stress levels. This assumption is being tracked in CalcTrac.

Where used: Section 6.4.

3.1.2 Steel structure and concrete structure supported by a common mat foundation.

The IHF building is composed of steel and concrete structures supported on a common mat foundation. However the structures are not connected to each other. The structure-soil-structure interaction will be neglected in the fixed base analysis.

Rationale—The IHF steel structure supports are modeled as pinned connections at the mat, hence there will be no moment transfer to the foundation; however, the translational supports are considered fixed. As such the mat is considered to be rigid. There is also sufficient separation between the two structures as not to interact directly with each other under seismic loads. Therefore, any effect each structure may have on the response of the other structure through structure-soil-structure interaction, will be minimal and can be neglected in this preliminary Tier 1 analysis. This assumption is being tracked in CalcTrac.

Where used: SAP2000 models located in Attachment D/CLC Input and Output files - subfolder

3.1.3 General requirements for consideration of torsion

ASCE 4-98 (Ref 2.2.17) Section 3.1.1.d requires that the model shall represent the actual locations of the center of masses and center of rigidity of elements and equipment. Section 3.1.1 of the ASCE 4-98 also requires that the torsional moments due to accidental eccentricity with respect to the center of rigidity shall be accounted for. In the SAP2000 mathematical model the loads from the crane assemblies have been directly applied along the longitudinal centerline of structural members ignoring any eccentricity. Accidental torsion is not taken into account in the SAP2000 mathematical model for the seismic analysis or steel member selection. However, to

account for torsion it was recommended to increase the D/C ratios by 15% at outer columns and 0% at center columns, then linearly interpolate for %increase D/C rations for remaining columns (Refer to Attachment H).

Rationale– Detailed information about the cranes that will be operating in the IHF is not available at this time. This Tier-1 seismic analysis of the IHF is preliminary and its results are used in determining the initial structural member sizes. The finite element model for detailed design will include all eccentricities, and the corresponding calculation will address all issues related to torsion. The 15% maximum increase is based on accidental torsional analysis of other typical structures with a regular layout and represents a reasonable upper bound. This assumption is being tracked in CalcTrac.

Where used: Section 4.3

3.2 ASSUMPTIONS NOT REQUIRING VERIFICATION

3.2.1 Built-up column and girder sectional properties

In the IHF steel structure, built-up column and runway girder sections are used for structural members that support the cranes. For simplicity, in the SAP2000 model tube sections are used with dimensions and wall thicknesses selected in a way to produce similar, and conservative, section properties as built-up sections. See Attachment B for built-up steel section properties calculation.

Rationale–The section properties used in SAP2000 model closely represent the actual built-up column and girder section properties. The small discrepancies in the section properties will not affect the rigidity of the structure nor change the seismic system response in a significant way.

Where used: Section 6.2.

3.2.2 Crane Locations

There are six cranes operating in the IHF building:

- 1) Canister Transfer Machine Crane (Top of Rail El. 65'-0").
- 2) Cask Handling Crane (Top of Rail El. 65'-0").
- 3) CTM Maintenance Crane (Top of Rail El.87'-3").
- 4) Cask Preparation Crane (Top of Rail El. 87'-3").
- 5) WP Closure Room Crane (Top of Rail El. 53'-9").
- 6) Remote Handling Crane (Top of Rail El. 44' 1").

There are two variables for the selection of each crane location for the seismic analysis of the IHF steel structure, namely the position of the trolley on the crane bridge and the position of the crane bridge along the runway girder. Seven different crane loadings cases have been selected for analysis. Each Crane Loading Case has all six cranes placed in pre-determined locations as to cause maximum moments and/or maximum shears and/or maximum axial loads and/or maximum displacements in structural members in different parts of the IHF steel structure. Attachment C shows the position on the structure of all 6-cranes for each of the seven Crane Loading Cases analyzed.

Rationale–It will be shown that regardless of which Crane Load Case is used in the analysis, that is, regardless of what position the cranes are placed for analysis, the fundamental frequency of the structure does not change significantly. See Attachment D for fundamental frequencies for each Crane Load Analysis Case. In addition, the frequency band near the maximum accelerations on the input response spectra does not shift any significant amount to affect the seismic response. From member stress consideration point of view the selected crane locations closely envelope all possible combinations of crane positions. Further justification will be provided in the detailed analysis stage.

Where used Section 6.3.1.

4. METHODOLOGY

4.1 QUALITY ASSURANCE

This calculation was prepared in accordance with EG-PRO-3DP-G04B-00037, *Calculations and Analyses* (Ref.2.1.1). Section 3.1.2 of the *Basis of Design for the TAD Canister-Based Repository Design Concept* (Ref.2.2.3) classifies the IHF structure as ITS. Therefore the approved record version of this calculation is designated as QA: QA.

4.2 USE OF SOFTWARE

4.2.1 SAP2000 Version 9.1.4

The computer program SAP2000, Version 9.1.4 is used for static and dynamic analysis as well as for the design of structural steel members. SAP2000, Version 9.1.4 is classified as Level 1 software defined in IT-PRO-0011, *Software Management* (Ref. 2.1.2). The SAP2000 Software Validation Report is contained in Ref. 2.2.25. This software is commercially available from Computers and Structures, Inc. (Ref.2.2.21) and is qualified to perform static and dynamic analysis of structural systems. The software is installed on a PC system running the Windows 2000 operating system. SAP2000 is currently listed on the Qualified and Controlled Software Report (SW Tracking Number 11198-9.1.4-00) (Ref.2.2.22) as well as the Repository Project Management Automation Plan Ref. 2.1.3.

4.2.2 Microsoft Office 2000

Excel 2000 and Word 2000, which are part of the Microsoft Office 2000 Professional suite of programs, were used in this calculation. Microsoft Office 2000 Professional as used in this

calculation is classified as Level 2 software defined in IT-PRO-0011, Software Management (Ref. 2.1.2). Microsoft Office 2000 Professional is listed on the current Software Report (SW Tracking Number 610236-2000-00). The software was executed on a personal computer (PC) system running Microsoft Windows XP operating system. Results were confirmed by visual inspection and by performing hand calculations. Excel 2000 was used to tabulate SAP2000 model output in this calculation. Word 2000 was used in the text preparation of this document; no calculation functions contained in Word 2000 were used in this document.

4.3 ANALYSIS METHOD

The IHF building is a bearing-bolted braced frame steel structure delineated by General Arrangement drawings identified in References 2.2.7 thru 2.2.14 and the building primary function is to handle waste containers and/or canisters by means of large industrial capacity overhead cranes.

• The structural analysis and design of the IHF steel framing will be performed using the Finite Element Model SAP2000. The structural steel model orientation is based on the Global Axis as defined in Figure 4.3.1 below. Further description of the FEM model is explained in Section 6.3

Coordinate System-Plan View

Figure 4.3.1 Coordinate System - Plan

- X and Y are horizontal positive directions, and Z is a positive vertical direction originating from the foundation base and extending upwards, using the right hand rule. The Origin (0, 0, 0) occurs at gridline 10-L. See figure 6.4.1 in Attachment A.
- The SAP2000 Analysis manual defines the member axis where the local axis of any steel member, (columns, beams and/or braces), follows the right hand rule. Local axis is defined such that the length of the member is depicted as the local 1-1, with positive direction from the beginning of that member to its opposite end. The strong axis of the member cross section is then assigned as the local 3-3 direction, with positive direction being towards the right, and the weak-axis cross section or minor axis is the local 2-2 axis where positive is up, as defined in Figure 4.3.2 below.

Figure 4.3.2 Member Cross Section Local Axis

• The steel structure is a braced frame structure, where column supports are considered restrained in translational, vertical and rotational directions at column bases. There will be no moment transfer about the translational axes to the foundation mat. The base plate and anchor bolt configuration at the column bases warrant this boundary condition.

• The seismic design input load for the IHF steel structure analysis is based on Design Basis Ground Motion 2 (DBGM-2), 2000-year return period, provided in terms of Acceleration Response Spectra (Ref. 2.2.15). The structural damping value for bearing-bolted steel structures for ITS response level 2, which corresponds to DBGM-2, is 7 % (Ref. 2.2.2, Table 7-1).

• Mass source for dynamic seismic loading is based on Dead Load + 0.25 of the Floor Live Load + 0.25 of the Roof Live Load or 0.75 of the Snow Load + Crane Payload (Ref.2.2.2 and Attachment H). Modal analysis is performed with necessary number of modes to achieve a minimum of 90% of structural mass participation in all three orthogonal directions. For modal combination 10% method is used.

• The response spectrum analysis is performed for two horizontal and one vertical seismic component (X, Y, and Z respectively), using ground response spectral acceleration input motion for 7% damping and dynamic mass source.

• The individual directional results of the seismic response spectrum analysis are combined for each component (X, Y, and Z) of the earthquake input motion using the square-root–of-the-sum-of-the-squares (SRSS) method (Ref. 2.2.2, Section 7.2.7).

• SAP2000 computer program is used in performing the analysis and design of the IHF structure steel frame members. The program only has the option to design the steel member sizes using AISC-ASD (Ref. 2.2.6) in lieu of ANSI/AISC N690 (Ref. 2.2.4) as specified. A comparison of pertinent design allowable stresses for dead and live loads between the two code requirements was performed. The limiting parameters and allowable stress requirements for tension, shear, column and other compression members, bending about the major and minor axes, and for laterally unsupported members are exactly the same for both codes. Therefore, the AISC-ASD steel design requirements adopted in SAP2000 comply with the ANSI/AISC N690 requirements for dead and live loads. AISC-ASD (Ref. 2.2.6 Section A.5.2, page 5-30) allows 1/3 increase in the allowable stresses under seismic and wind loads. This corresponds to a load factor of 1/(1+1/3) = 0.75. ANSI/AISC N690 (Ref. 2.2.4 Table Q1.5.7.1) allows a load factor of 1/1.4 = 0.714. This discrepancy is accounted for in the SAP2000 steel design process by overwriting the default stress increase factor of 1.333 with

1.0. And the load combinations containing seismic loads are multiplied with a load factor of 0.714.

• The base joint reactions will be used as input loads to the IHF foundation mat design. However, the seismic reaction forces obtained from the Response Spectrum Analysis of the IHF Steel Structure have no sign associated with the forces. In order to maintain the directional sign of the reactions the following steps have to be taken in the seismic analysis. The joint accelerations are gathered from separate Response Spectrum Analysis done for each earthquake component, Ex, Ey, and Ez respectively. Then static equivalent joint forces are obtained by multiplying each individual joint's assembled mass by its corresponding acceleration for each of the three earthquake components. To derive the set of static base joint reactions an Equivalent Static Method is performed with the calculated seismic joint forces, Fx, Fy and Fz, using the SAP2000 model of the IHF steel structure (See Attachment E). These equivalent static seismic joint forces are input loads into the SAP2000 model as StaticEX, StaticEY, and StaticEZ. The resulting static base joint reactions are used as input into the SAP2000 foundation mat model. These joint reactions are listed in Attachment E

5. LIST OF ATTACHMENTS

Number of Pages

Attachment A	IHF Building Plan and X-Sections	37
Attachment B	Steel Built-Up Section Properties	. 30
Attachment C	Crane Positions and Loading for 7 Analysis Cases	140
Attachment D	Crane Load Case (CLC) Input and Output files	. 1+CD
Attachment E	Foundation Loads	1+CD
Attachment F	Groups D/C Ratios, Info for LA, Max. Joint Displ & Accel	1+CD
Attachment G	NOT USED	1
Attachment H	Emails and Meeting Notes	9

6. BODY OF CALCULATION

6.1 MATERIAL PROPERTIES

Structural Steel: W & WT shapes – ASTM A992/A 992M-06, Fy = 50 ksi, Fu = 65 ksiChannels, Angles, & Plates – ASTM A36/A 36M-05, Fy = 36 ksi, Fu = 58 ksi(Ref. 2.2.1, Section 4.2.11.6.1)

6.2 BUILT-UP STEEL SECTION PROPERTIES

There are six built-up steel sections in the IHF steel structure. The properties are calculated and tabulated in Attachment B. In the SAP2000 structural steel model of the IHF building, these built-up sections are input as tube sections with thickness and width/height dimensions such that the sectional properties are equal to the actual built-up section properties. Attachment B shows the built-up sections SAP2000 input properties, as well as their location in the structure. Their section names are BUILDUPCOL, COL1, COL2, COL3, CRANERAIL1 and CRANERAIL2. A comparison of the SAP2000 input section properties and the as-built section properties show that there is no significant difference between them (See Attachment B).

6.3 SAP2000 ANALYSIS CASES

For each of the seven pre-determined Crane Load Cases shown in Attachment C, the following analysis cases have been run in SAP2000 model of IHF steel structure.

Case	Туре	InitialCond	ModalCase	RunCase
Text	Text	Text	Text	Yes/No
SELF	LinStatic	Zero		Yes
ROOFDEAD	LinStatic	Zero		Yes
ROOFLIVE	LinStatic	Zero		Yes
SNOW	LinStatic	Zero		Yes
PLATFORMDEAD	LinStatic	Zero		Yes
PLATFORMLIVE	LinStatic	Zero		Yes
CLADDING	LinStatic	Zero		Yes
CRANEDEAD	LinStatic	Zero		Yes
CRANELIVE	LinStatic	Zero		Yes
CRANERAIL	LinStatic	Zero		Yes
MODAL	LinModal	Zero		Yes
SRSS	LinRespSpec		MODAL	Yes
EX	LinRespSpec		MODAL	Yes
EY	LinRespSpec		MODAL	Yes
EZ	LinRespSpec		MODAL	Yes

Table 6.3.1 Analysis Case Definitions IHF Steel Structure

The descriptions of every load case used in the SAP2000 models are listed below:

Table 6.3.2 Load Cases Description

Load Case Name	Load Description
Platformdead	Superimposed dead load on platforms in the
Platformlive	Superimposed live load on platforms in the steel model
Roofdead	Dead load due to superimposed dead load on the steel roof
Cladding	Dead load due to self-weight of cladding
Rooflive	Superimposed live load on the steel roof
Cranedead	Dead load due to the cranes
Cranelive	Live load or payload from the crane
Self	Self-weight of the steel structure
Cranerail	Self-weight of the crane rail (not include in self- weight of steel structure)
Snow	Load due to snow and snow drift
EX	X-direction Response Spectrum Analysis
EY	Y-direction Response Spectrum Analysis
EZ	Z-direction Response Spectrum Analysis
SRSS	SRSS combination of X, Y and Z Response Spectrum Analysis

6.3.1 Crane Load Cases (CLC)

Among many cases studied, seven distinctly different relative crane locations have been selected for the design and analysis of the IHF Building steel structure. There are seven predetermined load cases representing the location and loading of the six cranes located in the IHF Steel Structure. These seven cases as shown with their loading and various locations in the structure captures or envelopes the governing stress distribution of the structural steel frame elements. The analysis cases are called Crane Load Cases (CLC) 1 thru 7 and are shown in Attachment C. Assumption 3.2.2 addresses this selection of the analysis cases. IHF foundation mat calculation will include the results of the studies performed on this subject.

6.4 SAP2000 FEM DEVELOPMENT

The SAP2000 Finite Element Model of the Initial Handling Facility (IHF) closely represents the IHF steel structure layout presented on the general Arrangement Drawings (Ref.2.2.7 thru 2.2.14). The IHF Tier-1 model is developed using the graphical interface within SAP2000. All steel members used are standard AISC frame sections. Area sections represent the platform slab and these sections are further defined as shell elements located along the centerline of the slab. Location, dimensions, and other structural configurations, are obtained from the General Arrangement Drawings (Ref.2.2.7 thru 2.2.14). The origin (0,0,0) of the global coordinate system is located at the intersection of Column Line 10 and Column Line L. Figure 6.4.1 shows the origin for the IHF Tier-1 FEM together with layout of column lines. In Attachment A, the SAP2000 model geometry, plans and elevations, are presented in Figures 6.4.2 thru 6.4.24. In order to facilitate uniformity in selecting structural steel members for design, steel sections with the same properties, are grouped. The groups are named according to their intended structural use such as bracing, columns, etc. The following Table lists all groups used for the analysis and design of the steel members in the SAP2000 Model of the IHF Building Steel Structure. All the input data to the SAP2000 Model is included in Attachment D. For each Crane Load Case (CLC) there is one file that includes all the corresponding data for that specific CLC. There are seven in total and named IHF SAP2000 Analysis Crane Load Case 1, 2, 3, 4, 5, 6 and 7. These files are under directory called "Attachment D - CLC SAP2000 Analysis Input and Output files".

Table 6.4.1 Groups Definition

GroupName	Selection	SectionCut	Steel
Text	Yes/No	Yes/No	Yes/No
All	Yes	Yes	Yes
CRANECOL	Yes	Yes	Yes
SMALLVX	Yes	Yes	Yes
PURLIN	Yes	Yes	Yes
ROOFTRUSS	Yes	Yes	Yes
BUILDINGCOL2	Yes	Yes	Yes
SMALLHX	Yes	Yes	Yes
ROOFHX	Yes	Yes	Yes
LOWERPURLIN	Yes	Yes	Yes
LOWERROOFBEAM1	Yes	Yes	Yes
LOWERROOFBEAM2	Yes	Yes	Yes
LOWERROOFHX	Yes	Yes	Yes
HORZBEAM	Yes	Yes	Yes
TRUSTSMALL	Yes	Yes	Yes
BRACE@37	Yes	Yes	Yes
BRACE@65	Yes	Yes	Yes
BRACE@65UP	Yes	Yes	Yes
SINGLECOL	Yes	Yes	Yes
BUILDINGCOL65UP	Yes	Yes	Yes
BUILDINGCOL65DOWN	Yes	Yes	Yes
ATTACHCOL	Yes	No	No
ATTACHCOL2	Yes	Yes	Yes
ATTACHCOL3	Yes	Yes	Yes
SMALL1	Yes	Yes	Yes
SMALL@65	Yes	Yes	Yes
SMALL2	Yes	Yes	Yes
TRUSS@65	Yes	Yes	Yes
SMALLT@65	Yes	Yes	Yes
BRACE@98	Yes	Yes	Yes
ALLX	Yes	Yes	No
CraneStress	Yes	Yes	Yes
CLADCOL	Yes	No	No
SMALLHX@87	Yes	Yes	Yes
SMALLHX@65	Yes	Yes	Yes

SectionName	Material	Shape	Area	TorsConst	133	122	TotalWt
Text	Text	Text	ft2	ft4	ft4	ft4	Kip
BUILDUPCOL	STEEL	Box/Tube	1.4412	1.091708	1.729849	0.438851	137.726
COL1	STEEL	Box/Tube	1.77	3.850856	2.573875	2.573875	112.763
COL2	STEEL	Box/Tube	0.9624	1.487114	0.80107	1.440372	61.312
COL3	STEEL	Box/Tube	1.0545	1.143443	1.003648	0.683398	33.591
CRANERAIL1	STEEL	Box/Tube	1.1584	0.899074	1.446272	0.358229	279.304
CRANERAIL2	STEEL	Box/Tube	0.6412	0.398785	0.557591	0.16631	332.431
W10X49	STEEL	I/Wide Flange	0.1	0.000067	0.013117	0.004504	38.971
W10X68	STEEL	I/Wide Flange	0.1389	0.000172	0.019001	0.006462	140.454
W12X19	STEEL	I/Wide Flange	0.0387	0.000008681	0.006269	0.000181	0.234
W12X65	STEEL	I/Wide Flange	0.1326	0.000105	0.025704	0.008391	546.982
W14X109	STEEL	I/Wide Flange	0.2222	0.000343	0.059799	0.021557	11.816
W14X132	STEEL	I/Wide Flange	0.2694	0.000593	0.073785	0.026427	496.771
W14X159	STEEL	I/Wide Flange	0.3243	0.00095	0.091628	0.036073	1106.381
W14X211	STEEL	I/Wide Flange	0.4306	0.002151	0.128279	0.049672	884.421
W14X426	STEEL	I/Wide Flange	0.8681	0.015963	0.318287	0.113812	33.607
W14X68	STEEL	I/Wide Flange	0.1389	0.000145	0.034819	0.005835	186.938
W14X90	STEEL	I/Wide Flange	0.184	0.000196	0.048177	0.017458	1101.444
W18X119	STEEL	I/Wide Flange	0.2437	0.000511	0.105613	0.012201	32.013
W18X35	STEEL	I/Wide Flange	0.0715	0.000024	0.024595	0.000738	2.892
W18X40	STEEL	I/Wide Flange	0.0819	0.000039	0.029514	0.000921	1.486
W24X131	STEEL	I/Wide Flange	0.2674	0.000458	0.193866	0.016397	26.205
W24X146	STEEL	I/Wide Flange	0.2986	0.000646	0.220872	0.018856	149.118
W24X176	STEEL	I/Wide Flange	0.359	0.001153	0.27392	0.0231	8.357
W24X250	STEEL	I/Wide Flange	0.5104	0.003212	0.409433	0.034915	30.016
W24X76	STEEL	I/Wide Flange	0.1556	0.000129	0.101273	0.003979	2.821
W30X148	STEEL	I/Wide Flange	0.3021	0.000699	0.322145	0.010947	5.477
W36X230	STEEL	I/Wide Flange	0.4694	0.001379	0.72338	0.045332	25.536
W36X260	STEEL	I/Wide Flange	0.5313	0.002001	0.834298	0.052566	77.062
W36X300	STEEL	I/Wide Flange	0.6132	0.003096	0.978974	0.062693	745.472
W36X328	STEEL	I/Wide Flange	0.6694	0.004056	1.085069	0.06848	1037.106
W36X393	STEEL	I/Wide Flange	0.8056	0.0068	1.326196	0.084394	646.339
W8X24	STEEL	I/Wide Flange	0.0492	0.000017	0.003988	0.000883	29.234
W8X31	STEEL	I/Wide Flange	0.0633	0.000026	0.005305	0.001789	9.98
W8X40	STEEL	I/Wide Flange	0.0812	0.000054	0.007041	0.002368	54.221
W8X58	STEEL	I/Wide Flange	0.1188	0.000161	0.010995	0.003622	333.138

Table 6.4.2 Frame Steel Section Properties

6.5 SAP2000 INPUT LOADING AND LOAD COMBINATIONS

6.5.1 Applied Dead and Live Loads

Loads used in this calculation are documented in the *IHF Design Loads for the Steel and Concrete Structures* calculation (Ref.2.2.5). Table 6.5.1 below lists the SAP2000 load names, corresponding load descriptions and the percentage of loads used for calculating mass for seismic analysis.

Load Description	SAP2000 Load Name	Applied Load	Seismic Mass Participation
Roof Dead Load	ROOFDEAD	25psf	100%
Roof Live Load	ROOFLIVE	20psf	25%
Steel Platform Dead Load	PLATFORMDEAD	100psf	100%
Steel Platform Live Load	PLATFORMLIVE	100psf	25%
Concrete Slab Platform	SELF	none	100%
Structure self weight	SELF	none	100%
Cladding	CLADDING	25psf	100%
Crane Dead Loads	CRANEDEAD	Ref.2.2.5	100%
Crane Live Loads	CRANELIVE	Ref.2.2.5	25%
Crane Rail Load	CRANERAIL	100plf	100%
Snow Load	SNOW	Ref.2.2.5	75%

Table 6.5.1 SAP2000 Loading Input

6.5.2 Load Combinations

Section 4.2.11.4 of PDC (Ref. 2.2.1) specifies the structural design criteria for ITS structures. For structural steel, the following loading combinations are extracted from (Ref.2.2.1 Section 4.2.11.4.6).

where:

A = Ash load

D = Dead load (includes cladding, platform, roof and crane dead loads and structure self weight)L = Live load (includes crane and platform live load) $\begin{array}{l} L_r = Roof \ live \ load \\ S_N = Snow \ load \\ E = Earthquake \ (seismic) \ load \ resulting \ from \ DBGM-2 \ seismic \ level \ input \\ S = Allowable \ stress \ per \ allowable \ stress \ design \ (ASD) \ method \\ W = Wind \ load \\ W_t = Tornado \ load \end{array}$

<u>Note</u>: According to SADA (Ref. 2.2.2), Section 8.3.3, the stress increase factor, k, for compression in members and shear in members shall be 1.4 for earthquake load combinations. A similar requirement exists in ANSI/ASCE N690 (Ref. 2.2.4), Supplement No. 2, Table Q1.5.7.1, Footnote k, restricts the stress limit coefficient to 1.5 for both earthquake and tornado loading combinations. Conservatively, the SADA limit of 1.4S shall be used for both the earthquake and tornado loading combinations. Section 4.2.11.4.6 of Ref. 2.2.1 has several additional load combinations that have loads such as H (Lateral earth pressure load), T_a (Thermal load during accident condition), T_o (Thermal load during normal operating conditions), F (Fluid load), F' (Buoyant force of design basis flood), and R_o (Operating pipe reaction load). These loads are not applicable for the IHF Steel Structure and, therefore, load combinations containing these loads are not included in this calculation. In addition load combinations including wind and tornado loads are not taken in consideration when designing the steel members as those load combination cases do not govern when compared to load combinations including seismic loads. Hence, the critical load combinations used in this calculation for the design of steel members, and for obtaining maximum deflections and support reactions are summarized as following:

1.	S = D + L	2. $1.4S = D + 0.25L + SRSS$
3.	$1.4S = D + S_N + SRSS$	4. $1.4S = 0.9D + SRSS$

6.6 MODAL ANALYSIS

An Eigenvalue Modal Analysis is performed on the IHF Tier-1 FEM to determine the modeshapes and frequencies of the steel structure. A fixed base boundary condition is applied to the base mat joints. The mass source used in the modal analysis is shown on Table 6.6.2 and the model includes 100% of all dead loads, 25% of live loads and/or 75% of snow loads and 100% of the crane payload (Reference Attachment H). The mass is generated from these loads by SAP2000 program internally and applied in three orthogonal directions.

Table 6.6.1 Modal Analysis General Information

Case	ModeType	MaxNumModes	MinNumModes	EigenShift	EigenCutoff	EigenTol
Text	Text	Unitless	Unitless	Cyc/sec	Cyc/sec	Unitless
MODAL	Eigen	800	1	0	50	0.0000001

Within the 800 modes, cumulative mass participation is 99.3% for X-direction, 98.1% for Y-direction, and 89.1% for Z-direction. Table 6.6.3 shows the dominant fundamental frequencies of the IHF Steel Structure in three orthogonal directions. At 800th mode the frequency is 39.4Hz. Hence the cutoff frequency is not reached, however the required mass participation ratios are achieved.

Table 6.6.2 Mass Source

MassFrom	LoadCase	Multiplier
Text	Text	Unitless
All	PLATFORMDEAD	1
All	PLATFORMLIVE	0.25
All	CRANELIVE	0.25
All	CLADDING	1
All	CRANERAIL	1
All	ROOFDEAD	1
All	ROOFLIVE	0.25
All	CRANEDEAD	1
All	SNOW	0.75

Table 6 6 2	Model Analysis Posults
1 able 0.0.3	modal Analysis Results

Crane		X - Di	rection		Y - Direction			Z - Direction				
Load Cases	Mode #	Mass Part. %	Period (sec)	Freq. Hz	Mode #	Mass Part. %	Period (sec)	Freq. Hz	Mode #	Mass Part. %	Period (sec)	Freq. Hz
CLC1	1	78.7	0.407	2.454	2	63.0	0.277	3.604	77	23.01	0.116	8.642
CLC2	1	72.4	0.428	2.335	3	63.9	0.276	3.623	75	23.41	0.115	8.700
CLC3	1	72.9	0.427	2.343	2	64.4	0.266	3.763	77	23.48	0.115	8.681
CLC4	1	79.1	0.410	2.441	3	63.0	0.267	3.748	75	23.60	0.116	8.642
CLC5	1	76.7	0.416	2.404	2	63.4	0.277	3.610	76	22.47	0.113	8.816
CLC6	1	75.6	0.420	2.383	3	65.0	0.265	3.774	77	23.64	0.117	8.583
CLC7	1	76.2	0.418	2.393	3	64.8	0.266	3.766	78	23.93	0.116	8.642

For all periods, frequencies and modal participation factors of all seven Crane Load Cases (CLC) see Attachment D. The corresponding file names on the CD that includes Attachment D are listed in section 6.4 of this calculation.

6.7 **RESPONSE SPECTRUM ANALYSIS**

The seismic design load input for the IHF steel structure analysis is based on Design Basis Ground Motion 2 (DBGM-2), 2000-year return period, provided in terms of Acceleration Response Spectra (Ref. 2.2.15). The structural damping value for bearing-bolted steel structures for ITS response level 2 (corresponding to DBGM-2) is 7 % (Ref. 2.2.2, Table 7-1). The response spectrum analysis is performed for two horizontal and a vertical seismic component (X, Y, and Z respectively), using ground response spectral accelerations for 7% damping and dynamic mass source. The individual directional results of the seismic response spectrum

analysis are combined for each component (X, Y, and Z) of the earthquake input motion using the square-root–of-the-sum-of-the-squares (SRSS) method (Ref. 2.2.2, Section 7.2.7).

Table 0.7.1 Response opeon an Analysis General Information							
Case	ModalCombo	DampingType	ConstDamp				
Text	Text	Text	Unitless				
SRSS	10 Percent	Constant	0.07				
EX	10 Percent	Constant	0.07				
EY	10 Percent	Constant	0.07				
EZ	10 Percent	Constant	0.07				

Table 6.7.1 Response Spectrum Analysis General Information

Table 6.7.2 (Not Used)

Name		Period	Accel	FuncDamp
	Text	Sec	Unitless	Unitless
	RESPHORZ	0.01	0.4537	0.07
	RESPHORZ	0.011	0.47	
	RESPHORZ	0.0123	0.4911	
	RESPHORZ	0.0142	0.5161	
	RESPHORZ	0.0167	0.5373	
	RESPHORZ	0.0201	0.5638	
	RESPHORZ	0.0248	0.596	
	RESPHORZ	0.0335	0.65	
	RESPHORZ	0.0498	0.739	
	RESPHORZ	0.1	1.0267	
	RESPHORZ	0.1098	1.0218	
	RESPHORZ	0.1233	1.0125	
	RESPHORZ	0.1417	1.0019	
	RESPHORZ	0.1668	0.9904	
	RESPHORZ	0.2009	0.9562	
	RESPHORZ	0.2477	0.8916	
	RESPHORZ	0.3352	0.8025	
	RESPHORZ	0.4977	0.6778	
	RESPHORZ	1	0.3746	
	RESPHORZ	1.1233	0.332	
	RESPHORZ	1.2618	0.2942	

Table 6.7.3 Response Spectrum Input Function - Horizontal

Table 6.7.3 Response Spectrum Input Function – Horizontal (continued)

			FuncDam
Name	Period	Accel	р
Text	Sec	Unitless	Unitless
RESPHORZ	1.4174	0.2607	0.07
RESPHORZ	1.6681	0.2153	
RESPHORZ	2.0092	0.1701	
RESPHORZ	2.4771	0.124	
RESPHORZ	3.3512	0.0747	
RESPHORZ	4.9776	0.037	
RESPHORZ	10	0.009784	

Table 6.7.4 Response Spectrum Input Function - Vertical

Name	Period	Accel	FuncDamp
Text	Sec	Unitless	Unitless
RESPVERT	0.01	0.3194	0.07
RESPVERT	0.011	0.3369	
RESPVERT	0.0123	0.36	
RESPVERT	0.0142	0.3742	
RESPVERT	0.0167	0.4004	
RESPVERT	0.0201	0.4334	
RESPVERT	0.0248	0.4758	
RESPVERT	0.0335	0.5473	
RESPVERT	0.0498	0.6652	
RESPVERT	0.1	0.7169	
RESPVERT	0.1098	0.6937	
RESPVERT	0.1233	0.6629	
RESPVERT	0.1417	0.6261	
RESPVERT	0.1668	0.5833	
RESPVERT	0.2009	0.5371	
RESPVERT	0.2477	0.4904	
RESPVERT	0.3352	0.4323	
RESPVERT	0.4977	0.3641	
RESPVERT	1	0.1939	
RESPVERT	1.1233	0.1726	
RESPVERT	1.2618	0.1543	
RESPVERT	1.4174	0.1371	
RESPVERT	1.6681	0.1166	
RESPVERT	2.0092	0.0961	
RESPVERT	2.4771	0.0668	
RESPVERT	3.3512	0.038	
RESPVERT	4.9776	0.0172	
RESPVERT	10	0.004382	

StepType	Mode#	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text		Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
Mode	1	4.17E-01	7.67E-01	5.20E-04	4.03E-10	7.67E-01	5.20E-04	4.03E-10
Mode	2	2.78E-01	1.03E-03	6.34E-01	1.17E-05	7.68E-01	6.34E-01	1.17E-05
Mode	3	2.54E-01	2.63E-03	2.39E-03	9.54E-05	7.71E-01	6.37E-01	1.10E-04
Mode	4	2.41E-01	1.65E-06	4.28E-05	2.09E-03	7.71E-01	6.37E-01	2.19E-03
Mode	5	2.32E-01	5.80E-02	4.66E-05	8.16E-06	8.29E-01	6.37E-01	2.20E-03
Mode	6	2.31E-01	1.10E-04	2.73E-08	5.80E-04	8.29E-01	6.37E-01	2.78E-03
Mode	7	2.28E-01	4.21E-05	2.48E-05	8.51E-03	8.29E-01	6.37E-01	1.13E-02
Mode	8	2.12E-01	5.63E-05	4.84E-05	1.00E-02	8.29E-01	6.37E-01	2.13E-02
Mode	9	2.11E-01	6.90E-04	2.89E-07	9.80E-04	8.30E-01	6.37E-01	2.23E-02
Mode	10	2.02E-01	1.05E-05	5.61E-03	2.37E-05	8.30E-01	6.43E-01	2.23E-02
Mode	465	4.07E-02	4.95E-06	1.50E-04	2.86E-03	9.84E-01	9.69E-01	8.01E-01
Mode	466	4.06E-02	1.21E-05	1.20E-04	5.41E-05	9.84E-01	9.69E-01	8.01E-01
Mode	467	4.04E-02	1.12E-05	3.00E-04	2.09E-05	9.84E-01	9.69E-01	8.01E-01
Mode	468	4.04E-02	5.50E-05	4.69E-06	2.11E-05	9.84E-01	9.69E-01	8.01E-01
Mode	469	4.03E-02	4.10E-04	1.48E-05	9.20E-04	9.84E-01	9.69E-01	8.02E-01
Mode	470	4.02E-02	6.12E-06	9.05E-05	2.35E-07	9.84E-01	9.69E-01	8.02E-01
Mode	471	4.02E-02	1.10E-04	1.40E-04	2.36E-05	9.84E-01	9.70E-01	8.02E-01
Mode	472	4.00E-02	5.86E-05	1.60E-04	1.90E-04	9.85E-01	9.70E-01	8.02E-01
Mode	473	3.99E-02	2.44E-05	1.80E-04	1.21E-07	9.85E-01	9.70E-01	8.02E-01
Mode	474	3.99E-02	1.27E-05	2.00E-04	4.92E-06	9.85E-01	9.70E-01	8.02E-01
Mode	475	3.98E-02	7.69E-05	2.12E-05	2.60E-04	9.85E-01	9.70E-01	8.02E-01
Mode	790	2.57E-02	3.28E-07	1.72E-05	1.13E-07	9.93E-01	9.81E-01	8.90E-01
Mode	791	2.57E-02	1.67E-05	4.91E-05	6.99E-05	9.93E-01	9.81E-01	8.91E-01
Mode	792	2.57E-02	4.20E-06	1.67E-05	1.51E-09	9.93E-01	9.81E-01	8.91E-01
Mode	793	2.56E-02	5.86E-06	4.58E-05	4.67E-05	9.93E-01	9.81E-01	8.91E-01
Mode	794	2.56E-02	1.19E-05	3.20E-07	9.15E-06	9.93E-01	9.81E-01	8.91E-01
Mode	795	2.56E-02	2.18E-07	1.22E-06	9.07E-05	9.93E-01	9.81E-01	8.91E-01
Mode	796	2.56E-02	4.18E-05	8.15E-06	3.07E-05	9.94E-01	9.81E-01	8.91E-01
Mode	797	2.55E-02	4.43E-09	2.18E-05	1.30E-04	9.94E-01	9.81E-01	8.91E-01
Mode	798	2.55E-02	1.86E-06	5.27E-06	1.35E-05	9.94E-01	9.81E-01	8.91E-01
Mode	799	2.54E-02	1.20E-06	9.24E-07	1.60E-04	9.94E-01	9.81E-01	8.91E-01
Mode	800	2.54E-02	1.14E-05	1.45E-05	3.66E-05	9.94E-01	9.81E-01	8.91E-01

Table 6.7.5 Modal Participating Mass Ratios For Crane Load Case 5 (CLC5)

Note:

For Modal Participating Mass Ratios of other Crane Load Analysis Cases see Attachment D.

6.8 STRUCTURAL STEEL DESIGN

The selection of structural steel members is determined by the SAP2000 (Ref 2.2.21). All load combinations used by SAP2000 are defined in Table 6.8.1 below and are in agreement with the Project Design Criteria load combinations (Section 6.5.2 of this calculation).

ComboName	ComboType	CaseType	CaseName	ScaleFactor	SteelDesign
Text	Text	Text	Text	Unitless	Yes/No
DL	Linear Add	Linear Static	CLADDING	1	No
DL		Linear Static	CRANEDEAD	1	
DL		Linear Static	PLATFORMDEAD	1	
DL		Linear Static	ROOFDEAD	1	
DL		Linear Static	SELF	1	
DL		Linear Static	CRANERAIL	1	
LL	Linear Add	Linear Static	CRANELIVE	1	No
LL		Linear Static	PLATFORMLIVE	1	
LL		Linear Static	ROOFLIVE	1	
D+L+SRSS	Linear Add	Response Combo	DL	0.714	No
D+L+SRSS		Response Combo Response	LL	0.1785	
D+L+SRSS		Spectrum	SRSS	0.714	
0.9DL+SRSS	Linear Add	Response Combo Response	DL	0.643	No
0.9DL+SRSS		Spectrum	SRSS	0.714	
D+S+SRSS	Linear Add	Response Combo	DL	0.714	No
D+S+SRSS		Linear Static Response	SNOW	0.714	
D+S+SRSS		Spectrum	SRSS	0.714	
D+S+SRSS		Linear Static	CRANELIVE	0.1785	
D+L	Linear Add	Response Combo	DL	1	No
D+L		Response Combo	LL	1	
ENVELOPE	Envelope	Response Combo	0.9DL+SRSS	1	Yes
ENVELOPE		Response Combo	D+L	1	
ENVELOPE		Response Combo	D+L+SRSS	1	
ENVELOPE		Response Combo	D+S+SRSS	1	

Table 6.8.1 Load Combination Definitions for Steel Design

The IHF is composed of a large amount of steel members with different steel section properties. Based on their structural function, these members were classified into 33 groups (Table 6.4.1). However some members may have been included in more than one group. The member selection was made based on the most highly stressed member per group. The same selection was then conservatively used for all the members of that group. The most highly stressed member in each group, the Demand/Capacity (D/C) ratios in those members, and the section selected steel check data sheets generated by SAP2000 are listed in Attachment D. All the inputs used to generate the model and the base joint reactions due to governing load combinations are also listed as outputs in Attachment D.

7. RESULTS AND CONCLUSIONS

7.1 **RESULTS**

7.1.1 Maximum Joint Accelerations

Attachment F lists the maximum accelerations in the IHF Steel Structure. The global X axis pertains to the North – South direction, the global Y axis pertains to the East – West direction, and global Z axis is in the vertical direction. The maximum accelerations in the horizontal and vertical direction due the load combination, "SRSS", are shown in Table 7.1.1 through 7.1.5 below. Five elevations are selected for the accelerations, 26.75 ft, 37 ft, 65 ft, 87.25 ft and 104.5 ft. Elevation 26.75 ft and 37 ft are two platforms, elevation 65 ft is where the major cranes are located, elevation 87 ft is where the maintenance cranes are located and the highest point in the building is EL 104.5 ft. The enveloped maximum accelerations are extracted from SAP2000 analysis computer output (Attachment F).

For a typical IHF steel building acceleration refer to Table 7.1.6, which is due to crane load case 5 (CLC5).

Load Case	North - S Accelera	South Itions	East - V Accelera	Vest ntions	Vertical Accelerations		
Loau case	Joint ID	U1 (G's)	Joint ID	U2 (G's)	Joint ID	U3 (G's)	
CLC1	223	1.48	228	1.87	220	0.35	
CLC2	223	1.70	228	2.07	220	0.33	
CLC3	222	1.68	228	1.82	220	0.34	
CLC4	223	1.37	228	1.96	220	0.34	
CLC5	223	1.53	228	1.76	220	0.32	
CLC6	223	1.39	228	1.96	220	0.34	
CLC7	222	1.72	228	2.26	220	0.33	
Max.	222	1.72	228	2.26	220	0.35	

 Table 7.1.1 Maximum Accelerations at EL. 26.75 FT – SAP2000 Output

Note 1: All accelerations listed in the table above, are selected from joints that connect all major structural column members. Note 2: All accelerations listed in the table come from the SRSS combination, which is described in Section 4.3.

Load Case	North - S Accelera	South Itions	East - V Accelera	Vest ntions	Vertical Accelerations		
Loau case	Joint ID	U1 (G's)	Joint ID	U2 (G's)	Joint ID	U3 (G's)	
CLC1	496	1.17	380	1.81	372	0.48	
CLC2	486	1.51	380	2.14	372	0.46	
CLC3	486	1.42	375	1.77	372	0.47	
CLC4	486	1.23	375	1.86	372	0.47	
CLC5	486	1.11	380	1.74	372	0.45	
CLC6	439	1.26	380	1.83	372	0.47	
CLC7	486	1.39	380	2.26	372	0.46	
Max.	486	1.51	380	2.26	372	0.48	

Table 7.1.2 Maximum Accelerations at EL. 37 FT – SAP2000 Output

Note 1: All accelerations listed in the table above, are selected from joints that connect all major structural column members. Note 2: All accelerations listed in the table come from the SRSS combination, which is described in Section 4.3.

Load Case	North - S Accelera	South Itions	East - V Accelera	Vest ntions	Vertical Accelerations		
Ebua case	Joint ID	U1 (G's)	Joint ID	U2 (G's)	Joint ID	U3 (G's)	
CLC1	859	1.23	798	1.93	875	0.84	
CLC2	833	1.25	793	2.07	834	0.77	
CLC3	838	1.25	793	2.05	790	0.76	
CLC4	859	1.29	798	2.04	854	0.76	
CLC5	859	1.26	793	1.90	834	0.88	
CLC6	875	1.64	798	2.10	876	0.80	
CLC7	812	1.66	798	2.13	812	0.75	
Max.	812	1.66	798	2.13	834	0.88	

Table 7.1.3 Maximum Accelerations at EL. 65 FT – SAP2000 Output

Note 1: All accelerations listed in the table above, are selected from joints that connect all major structural column members, as well as the joints along the crane rails at the above elevation (65'-0").

Note 2: All accelerations listed in the table come from the SRSS combination, which is described in Section 4.3.

Load Case	North - S Accelera	South ntions	East - V Accelera	Vest itions	Vertical Accelerations		
Load Case	Joint ID	U1 (G's)	Joint ID	U2 (G's)	Joint ID	U3 (G's)	
CLC1	1133	1.57	1058	1.89	1056	1.36	
CLC2	1133	1.54	1058	1.89	1086	1.48	
CLC3	1133	1.62	1063	2.20	1083	1.70	
CLC4	1110	1.50	1175	2.13	1152	1.74	
CLC5	1133	1.49	1175	2.25	1128	1.91	
CLC6	1133	1.54	1176	2.03	1152	1.61	
CLC7	1082	1.54	1175	2.06	1083	1.66	
Max.	1133	1.62	1175	2.25	1128	1.91	

Table 7.1.4 Maximum Accelerations at EL. 87 FT – SAP2000 Output

Note 1: All accelerations listed in the table above, are selected from joints that connect all major structural column members, as well as the joints along the crane rails at the above elevation (87'-3").

Note 2: All accelerations listed in the table come from the SRSS combination, which is described in Section 4.3.

Load Caso	North - S Accelera	South ntions	East - V Accelera	Vest tions	Vertical Accelerations		
Luau Case	Joint ID	U1 (G's)	Joint ID	U2 (G's)	Joint ID	U3 (G's)	
CLC1	1383	1.24	1453	1.45	1359	0.95	
CLC2	1383	1.33	1453	1.48	1360	0.92	
CLC3	1383	1.33	1454	1.50	1363	0.99	
CLC4	1383	1.31	1454	1.50	1503	1.01	
CLC5	1383	1.32	1453	1.45	1360	0.90	
CLC6	1383	1.39	1454	1.50	1503	1.00	
CLC7	1359	1.43	1454	1.51	1363	0.95	
Max.	1359	1.43	1454	1.51	1503	1.01	

Table 7.1.5 Maximum Accelerations at EL. 104.5 FT – SAP2000 Output

Note 1: All accelerations listed in the table above, are selected from joints that connect all major structural column members. Note 2: All accelerations listed in the table come from the SRSS combination, which is described in Section 4.3.

The maximum accelerations tabulated in Table 7.1.6, results from crane load case 5 (CLC5) analyses and is representative of a frame along column line 7, which is represented by column H-7. See Attachment F\Joint Displacements and Acceleration\Joint Selection Figures for Displacement and Acceleration.xls.

	Table 7.		elerations	
Elevation (ft)	Joint Label	North - South (g)	East - West (g)	Vertical (g)
104.5	1453	1.16	1.45	0.57
87.25	1130	1.17	1.25	0.50
65	856	1.00	1.04	0.41
0	-	0.45	0.45	0.32

Table 7.1.6 Maximum Accolorations

7.1.2 **Maximum Joint Displacements**

Attachment F lists the maximum deflections in the IHF Steel Structure. The global X axis pertains to the North – South direction, the global Y axis pertains to the East – West direction, and global Z axis is in the vertical direction. The maximum deflections in the horizontal and vertical direction due to the load combination, "Envelope", are shown in Table 7.1.7 through 7.1.11 below. Five elevations are selected for the displacements, 26.75 ft, 37 ft, 65 ft, 87.25 ft and 104.5 ft. Elevation 26.75 ft and 37 ft are two platforms, elevation 65 ft is where the major cranes are located, elevation 87 ft is where the maintenance cranes are located and the highest point in the building is EL 104.5 ft. The enveloped maximum and minimum displacements are extracted from SAP2000 analysis computer output (Refer to Attachment F) and only the absolute maximum values are tabulated below. It should be noted that these displacements have to be multiplied by a factor of 1.4 since in the SAP2000 analysis a factor of [1/1.4] was applied to all load combinations including earthquake loads.

For a typical IHF steel building frame displacement, refer to Table 7.1.12, which is due to crane load case 5 (CLC5).

Lood Com	North - S	iouth Di	splacements	East - W	East - West Displacements			Vertical Displacements		
Load Case	Joint ID	U1 (in)	U1×1.4 (in)	Joint ID	U2 (in)	U1x1.4 (in)	Joint ID	U3 (in)	U1x1.4 (in)	
CLC1	273	0.38	0.53	223	0.50	0.70	252	0.10	0.14	
CLC2	240	0.38	0.53	223	0.57	0.80	253	0.11	0.15	
CLC3	235	0.40	0.56	223	0.56	0.78	236	0.11	0.15	
CLC4	273	0.41	0.57	223	0.54	0.76	252	0.10	0.14	
CLC5	266	0.38	0.53	223	0.50	0.70	252	0.11	0.15	
CLC6	260	0.44	0.62	223	0.55	0.77	253	0.10	0.14	
CLC7	235	0.46	0.64	223	0.54	0.76	236	0.10	0.14	
Max.	235	0.46	0.64	223	0.57	0.80	252	0.11	0.15	

Table 7.1.7 Maximum Displacements at EL. 26.75 FT – SAP2000 Output

Note 1: All displacements listed in the table above, are selected from joints that connect all major structural column members Note 2: Displacements are based on load combination, "ENVELOPE" (See Section 6.8), and are multiplied by a factor of 1.4 since in SAP2000 analysis a factor of [1/1.4] was applied to all load combinations including earthquake loads.

The maximum absolute factored displacement at EL 26.75 ft. in the North – South (X) direction is 0.64". The North – South displacement is the direction in which the IHF interior concrete structure's lower floor slab is adjacent to this steel building's platform. Therefore, there will be a seismic separation between the IHF interior concrete structure floor slab at this elevation and the platform in this steel building at the same elevation.

Land Care	North - S	North - South Displacements			East - West Displacements			Vertical Displacements		
Load Case	Joint ID	U1 (in)	U1×1.4 (in)	Joint ID	U2 (in)	U1x1.4 (in)	Joint ID	U3 (in)	U1x1.4 (in)	
CLC1	425	0.54	0.76	375	0.62	0.87	420	0.13	0.18	
CLC2	398	0.58	0.81	375	0.69	0.97	421	0.14	0.20	
CLC3	402	0.62	0.87	375	0.68	0.95	394	0.13	0.18	
CLC4	448	0.57	0.80	375	0.66	0.92	420	0.12	0.17	
CLC5	444	0.58	0.81	375	0.62	0.87	420	0.13	0.18	
CLC6	402	0.67	0.94	375	0.67	0.94	421	0.12	0.17	
CLC7	393	0.70	0.98	375	0.67	0.94	394	0.13	0.18	
Max.	393	0.70	0.98	375	0.69	0.97	421	0.14	0.20	

Table 7.1.8 Maximum Displacements at EL. 37 FT – SAP2000 Output

Note 1: All displacements listed in the table above, are selected from joints that connect all major structural column members.

Note 2: Displacements are based on load combination, "ENVELOPE" (See Section 6.8), and are multiplied by a factor of 1.4 since in SAP2000 analysis a factor of [1/1.4] was applied to all load combinations including earthquake loads.

The maximum absolute factored displacement at EL 37 ft. in the North – South (X) direction is 0.98". The North – South displacement is the direction in which the IHF interior concrete structure's upper floor slab is adjacent to this steel building's platform. Therefore, there will be a seismic separation between the IHF interior concrete structure floor slab at this elevation and the platform in this steel building at the same elevation greater than 0.98", as noted in Table 7.1.8.

	North - S	iouth Di	splacements	East - W	East - West Displacements			Vertical Displacements		
Load Case	Joint ID	U1 (in)	U1x1.4 (in)	Joint ID	U2 (in)	U1×1.4 (in)	Joint ID	U3 (in)	U1×1.4 (in)	
CLC1	879	1.04	1.46	793	0.75	1.05	876	0.20	0.28	
CLC2	816	1.25	1.75	793	0.80	1.12	813	0.20	0.28	
CLC3	817	1.25	1.75	793	0.81	1.13	812	0.20	0.28	
CLC4	875	1.06	1.48	793	0.78	1.09	875	0.20	0.28	
CLC5	858	1.19	1.67	793	0.75	1.05	855	0.19	0.27	
CLC6	817	1.37	1.92	793	0.80	1.12	875	0.20	0.28	
CLC7	812	1.37	1.92	793	0.80	1.12	812	0.20	0.28	
Max.	812	1.37	1.92	793	0.81	1.13	812	0.20	0.28	

Table 7.1.9 Maximum Displacements at EL. 65 FT – SAP2000 Output

Note 1: All displacements listed in the table above, are selected from joints that connect all major structural column members,

as well as the joints along the crane rails at the above elevation (65'-0").

Note 2: Displacements are based on load combination, "ENVELOPE" (See Section 6.8), and are multiplied by a factor of 1.4 since in SAP2000 analysis a factor of [1/1.4] was applied to all load combinations including earthquake loads.

Load Case	North - South Displacements			East - West Displacements			Vertical Displacements		
	Joint ID	U1 (in)	U1×1.4 (in)	Joint ID	U2 (in)	U1x1.4 (in)	Joint ID	U3 (in)	U1x1.4 (in)
CLC1	1110	1.15	1.61	1058	0.68	0.95	1082	0.18	0.25
CLC2	<mark>1086</mark>	1.34	1.88	1058	0.70	0.98	1082	0.25	0.35
CLC3	1087	1.35	1.89	1058	0.70	0.98	1082	0.24	0.34
CLC4	1110	1.17	1.64	1058	0.69	0.97	1082	0.19	0.27
CLC5	1109	1.20	1.68	1058	0.69	0.97	1082	0.18	0.25
CLC6	1087	1.38	1.93	1058	0.70	0.98	1151	0.20	0.28
CLC7	<mark>1082</mark>	1.39	1.95	1058	0.71	0.99	1082	0.24	0.34
Max.	1082	1.39	1.95	1058	0.71	0.99	1082	0.25	0.35

Table 7.1.10 Maximum Displacements at EL. 87 FT – SAP2000 Output

Note 1: All displacements listed in the table above, are selected from joints that connect all major structural column members,

as well as the joints along the crane rails at the above elevation (87'-3").

Note 2: Displacements are based on load combination, "ENVELOPE" (See Section 6.8), and are multiplied by a factor of 1.4 since in SAP2000 analysis a factor of [1/1.4] was applied to all load combinations including earthquake loads.

Load Case	North - South Displacements			East - West Displacements			Vertical Displacements		
Load Case	Joint ID	U1 (in)	U1×1.4 (in)	Joint ID	U2 (in)	U1x1.4 (in)	Joint ID	U3 (in)	U1x1.4 (in)
CLC1	1415	1.24	1.74	1481	0.72	1.01	1388	0.17	0.24
CLC2	1383	1.41	1.97	1453	0.72	1.01	1388	0.19	0.27
CLC3	1383	1.40	1.96	1453	0.69	0.97	1388	0.19	0.27
CLC4	1415	1.25	1.75	1509	0.69	0.97	1388	0.18	0.25
CLC5	1383	1.28	1.79	1481	0.72	1.01	1388	0.17	0.24
CLC6	1383	1.38	1.93	1509	0.70	0.98	1388	0.18	0.25
CLC7	1383	1.37	1.92	1509	0.70	0.98	1388	0.19	0.27
Max.	1383	1.41	1.97	1481	0.72	1.01	1388	0.19	0.27

 Table 7.1.11 Maximum Displacements at EL. 104.5 FT – SAP2000 Output

Note 1: All displacements listed in the table above, are selected from joints that connect all major structural column members. Note 2: Displacements are based on load combination, "ENVELOPE" (See Section 6.8), and are multiplied by a factor of 1.4 since in SAP2000 analysis a factor of [1/1.4] was applied to all load combinations including earthquake loads.

Drift Requirements: The enveloped loading combinations maximum horizontal displacement (1.41 inches) occurs in U1 (X) direction at joint 1383 for load case CLC2 (see Table 7.1.11). From Ref. 2.2.1, Section 4.2.11.4.10 maximum allowable story drift = $0.01 \times H$, where H= height of the structure (H=104.5ft for IHF Steel Structure). Hence allowable drift = 0.01×105 ft = 1.05ft or 1.05ftx12 in/ft = 12.6 inches. The adjusted maximum displacement from Table 7.1.11 is 1.97 inches which is much less than allowable drift of 12.6 inches. Hence drift requirement as set by PDC (Ref.2.2.1) is satisfied.

The maximum displacements tabulated in Table 7.1.12, results from crane load case 5 (CLC5) analyses and is representative of a frame along column line 7, which is represented by column H-7. See Attachment F\Joint Displacements and Acceleration\Joint Selection Figures for Displacement and Acceleration.xls

Elevation (ft)	Joint Label	North - South (in)	East - West (in)	Vertical (in)
104.5	1453	1.17	0.72	0.09
87.25	1130	1.20	0.64	0.08
65	856	1.16	0.53	0.09
37	443	0.57	0.28	0.09
26.75	265	0.38	0.19	0.08

Table 7.1.12 Maximum Displacements

7.1.3 Story Shear

The story shear of the IHF steel building, for crane load case 5, was attained by the product of the assembled nodal masses and their corresponding one directional seismic acceleration (DBGM-2) for the North – South direction (X) and the East – West direction (Y). The story shear which provide the largest forces to their floors are for elevations 104.5ft, 97.5ft, 87.25ft, 65ft, 37ft, 26.75ft, and 0ft (base floor). These elevations correspond to significant mass sources in the IHF building model because story floor elevations are not clearly defined in the IHF. Elevation 104.5ft is the roof level, 97.5ft is the bottom chord elevation of the roof truss, 87.25ft corresponds to the CTM Maintenance and the Cask Preparation crane, 65ft corresponds to the CTM and Cask Handling crane elevation, 37ft is the elevation of the first platform, 26.75ft is the elevation of the second platform, and lastly 0ft is the base floor. The story shear diagram due to one directional response spectra accelerations in the X-direction (XX), North – South, and the Y-direction (YY), East – West, is shown in Figure 7.1.1. The story shear values (cumulative) and the force at each elevation for the North – South (X) and East – West (Y) directions are tabulated in Table 7.1.13 and Table 7.1.14, respectively.

Figure 7.1.1 DBGM-2 Story Shear Diagram (LC 5) Fixed Base RSA – XX & YY
Steel North - South (X)				
	Story	Story		
Elevation	Shear	Force		
ft	kip	kip		
104.5	1769	1769		
97.5	2875	1106		
92.875	2890	15		
87.25	4126	1236		
81.6875	4149	23		
76.1667	4165	16		
76.125	4417	252		
70.5625	4435	18		
65	7607	3172		
59.4	7823	216		
53.8	7834	11		
53.75	8437	603		
48.75	8449	12		
48.2	8680	231		
44	8943	263		
42.6	8952	9		
39.125	8968	17		
37	9966	998		
31.875	9974	8		
26.75	11277	1303		
20	11292	15		
18.5	11422	130		
13.38	11760	338		
6.69	11764	4		
0	11764	0		

 Table 7.1.13 Story Shear (North – South)

Table	7.1.14	Story	Shear	(East –	West)
-------	--------	-------	-------	---------	-------

Ste	Steel East - West (Y)				
	Story	Story			
Elevation	Shear	Force			
ft	kip	kip			
104.5	2281	2281			
97.5	3574	1292			
92.875	3584	11			
87.25	4758	1174			
81.6875	4773	15			
76.1667	4782	9			
76.125	5003	221			
70.5625	5013	11			
65	8297	3283			
59.4	8495	199			
53.8	8503	8			
53.75	9320	816			
48.75	9343	23			
48.2	9538	195			
44	10043	505			
42.6	10049	6			
39.125	10080	31			
37	10980	900			
31.875	10987	7			
26.75	12701	1713			
20	12722	21			
18.5	12771	49			
13.38	13144	373			
6.69	13148	4			
0	13148	0			

7.1.4 Structural Steel Design

The Initial Handling Facility is composed of a large amount of steel members with different steel section properties. Seven different crane load cases were selected for analysis. Each crane load case has all six cranes placed in pre-determined locations as to cause maximum moments, and/or maximum shears, and/or maximum axial loads, and/or maximum displacements in structural members in different areas of the IHF steel structure. Attachment C shows the position, on the structure, of all 6-cranes for each of the seven crane load cases analyzed. The IHF steel structure was analyzed and designed for governing loads and load combinations using SAP2000.

In order to facilitate uniformity in selecting structural steel members for design, steel sections with the same properties are grouped. The groups are named according to their intended structural use such as bracing, columns, etc. (Refer to Group Definition Table 6.4.1)

The SAP2000 program processes the results utilizing the AISC interaction formulas for axial and bending forces and compares them to the allowable stress in a ratio. This ratio is known as the Demand/Capacity ratio (Ref 2.2.2).

For the purpose of displaying the Demand/Capacity (D/C) ratios for the most critical elements, only 11 groups out of 33 have been selected. These 11 selected groups contain structural members with significant stress levels. Tables 7.1.15 thru 7.1.25 summarize the maximum D/C ratios for each of the seven SAP2000 crane load case (CLC) design runs of each group. Tables 7.1.26 through 7.1.36 provide the SAP2000 steel section code check for each critical element within the 11 groups selected.

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
CRANECOL	CLC1	W36X393	1256	0.548
CRANECOL	CLC2	W36X393	1205	0.541
CRANECOL	CLC3	W36X393	20	0.541
CRANECOL	CLC4	W36X393	1255	0.536
CRANECOL	CLC5	W36X393	1239	0.521
CRANECOL	CLC6	W36X393	1255	0.548
CRANECOL	CLC7	W36X393	1204	0.546
MAX.	CLC1	W36X393	1256	0.548

Table 7.1.15 Steel Design Summary – Group CRANECOL

Refer to Table 7.1.26 for detail design of frame elements under group, CRANECOL.

Table 7.1.16 Steel Design Summary – Group BUILDINGCOL65DOWN

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
BUILDINGCOL65DOWN	CLC1	W36X328	805	0.557
BUILDINGCOL65DOWN	CL C2	W36X328	756	0.547
BUILDINGCOL65DOWN	сцсз	W36X328	738	0.57
BUILDINGCOL65DOWN	0.0	W36¥328	805	0.567
BUILDINGCOL65DOWN	CL C5	W36Y328	756	0.533
	CL C6	W26V229	739	0.579
DULDINGCOLOSDOWN		W00X020	130	0.570
BUILDINGCOL65DOWN	CLC7	W36X328	805	0.578 0.578
MAX.	CLC7	W36X328	805	(See Note 1)

NOTE 1: Increase the D/C ratio 15% = 0.578 + 0.15 = 0.728 (15% increase on corner columns is to account for accidental torsion, Refer to Attachment H. Refer to Table 7.1.27 for detail design of frame elements under group, BUILDINGCOL65DOWN.

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
BUILDINGCOL65UP	CLC1	W36X300	2772	0.363
BUILDINGCOL65UP	CLC2	W36X300	584	0.473
BUILDINGCOL65UP	CLC3	W36X300	584	0.461
BUILDINGCOL65UP	CLC4	W36X300	3140	0.505
BUILDINGCOL65UP	CLC5	W36X300	2576	0.395
BUILDINGCOL65UP	CLC6	W36X300	597	0.52
BUILDINGCOL65UP	CLC7	W36X300	584	0.485
MAX.	CLC6	W36X300	597	0.52

Table 7.1.17 Steel Design Summary – Group BUILDINGCOL65UP

Refer to Table 7.1.28 for detail design of frame elements under group, BUILDINGCOL65UP.

Table 7.1.18 Steel Design Summary – Group ROOFTRUSS

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
ROOFTRUSS	CLC1	W14X159	3204	0.611
ROOFTRUSS	CLC2	W14X159	3204	0.636
ROOFTRUSS	CLC3	W14X159	3204	0.598
ROOFTRUSS	CLC4	W14X159	3204	0.652
ROOFTRUSS	CLC5	W14X159	3204	0.612
ROOFTRUSS	CLC6	W14X159	4148	0.582
ROOFTRUSS	CLC7	W14X159	3204	0.614
MAX.	CLC4	W14X159	3204	0.652

Refer to Table 7.1.29 for detail design of frame elements under group, ROOFTRUSS.

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
SMALLVX	CLC1	W8X58	132	0.453
SMALLVX	CLC2	W8X58	1692	0.49
SMALLVX	CLC3	W8X58	43	0.432
SMALLVX	CLC4	W8X58	132	0.475
SMALLVX	CLC5	W8X58	132	0.442
SMALLVX	CLC6	W8X58	119	0.507
SMALLVX	CLC7	W8X58	107	0.489
MAX.	CLC6	W8X58	119	0.507

Table 7.1.19 Steel Design Summary – Group SMALLVX

Refer to Table 7.1.30 for detail design of frame elements under group, SMALLVX.

 Table 7.1.20 Steel Design Summary – Group SMALLHX@65

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
SMALLHX@65	CLC1	W12X65	2295	0.539
SMALLHX@65	CLC2	W12X65	2110	0.481
SMALLHX@65	CLC3	W12X65	2117	0.35
SMALLHX@65	CLC4	W12X65	2310	0.452
SMALLHX@65	CLC5	W12X65	2248	0.382
SMALLHX@65	CLC6	W12X65	2280	0.687
SMALLHX@65	CLC7	W12X65	2310	0.576
MAX.	CLC6	W12X65	2280	0.687

Refer to Table 7.1.31 for detail design of frame elements under group, SMALLHX@65.

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
SMALLHX@87	CLC1	W12X65	2997	0.199
SMALLHX@87	CLC2	W12X65	2840	0.229
SMALLHX@87	CLC3	W12X65	2844	0.187
SMALLHX@87	CLC4	W12X65	2983	0.186
SMALLHX@87	CLC5	W12X65	2957	0.219
SMALLHX@87	CLC6	W12X65	2983	0.246
SMALLHX@87	CLC7	W12X65	2844	0.243
MAX.	CLC6	W12X65	2983	0.246

Table 7.1.21 Steel Design Summary – Group SMALLHX@87

Refer to Table 7.1.32 for detail design of frame elements under group, SMALLHX@87.

Table 7.1.22 Steel Design Summary – Group ROOFBRACING

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
ROOFBRACING	CLC1	W12X65	3438	0.411
ROOFBRACING	CLC2	W12X65	3438	0.448
ROOFBRACING	CLC3	W12X65	3438	0.418
ROOFBRACING	CLC4	W12X65	3438	0.383
ROOFBRACING	CLC5	W12X65	3438	0.435
ROOFBRACING	CLC6	W12X65	1630	0.735
ROOFBRACING	CLC7	W12X65	1630	0.773
MAX.	CLC7	W12X65	1630	0.773

Note: ROOFBRACING includes groups ROOFHX and LOWERROOFHX. Refer to Table 7.1.33 for detail design of frame elements under group, ROOFBRACING.

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
BRACE@37	CLC1	W14X211	830	0.444
BRACE@37	CLC2	W14X211	467	0.421
BRACE@37	CLC3	W14X211	467	0.41
BRACE@37	CLC4	W14X211	830	0.439
BRACE@37	CLC5	W14X211	830	0.406
BRACE@37	CLC6	W14X211	830	0.412
BRACE@37	CLC7	W14X211	830	0.414
MAX.	CLC1	W14X211	830	0.444

Table 7.1.23 Steel Design Summary – Group BRACE@37

Refer to Table 7.1.34 for detail design of frame elements under group, BRACE@37.

 Table 7.1.24 Steel Design Summary – Group BRACE@65

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
BRACE@65	CLC1	W14X159	1527	0.412
BRACE@65	CLC2	W14X159	1526	0.499
BRACE@65	CLC3	W14X159	1527	0.491
BRACE@65	CLC4	W14X159	1527	0.418
BRACE@65	CLC5	W14X159	1526	0.43
BRACE@65	CLC6	W14X159	1527	0.493
BRACE@65	CLC7	W14X159	1526	0.472
MAX.	CL C2	W14X159	1526	0.499

Refer to Table 7.1.35 for detail design of frame elements under group, BRACE@65.

GROUP NAME	LOAD CASE	MEMBER SIZE	MEMBER ID	MAX. D/C RATIO
BRACE@65UP	CLC1	W14X132	2707	0.49
BRACE@65UP	CLC2	W14X132	2707	0.434
BRACE@65UP	CLC3	W14X132	2707	0.433
BRACE@65UP	CLC4	W14X132	2707	0.486
BRACE@65UP	CLC5	W14X132	2707	0.475
BRACE@65UP	CLC6	W14X132	2707	0.464
BRACE@65UP	CLC7	W14X132	2707	0.467
MAX.	CLC1	W14X132	2707	0.49

Table 7.1.25 Steel Design Summary – Group BRACE@65UP

Refer to Table 7.1.36 for detail design of frame elements under group, BRACE@65UP.

AISC-ASD89 STEEL SE Combo : ENVELOPE Units : Kip, ft, F	ECTION CHECH	¢					
Frame : 1256 X Mid : 59.500 Y Mid : 98.000 Z Mid : 42.600 Length : 11.200 Loc : 0.000	Desig Desig Frame Sect Majoz RLLF	gn Sect: W362 gn Type: Col e Type : Brad Class : Com r Axis : 0.0 : 1.0	X393 umn ced Frame pact 00 degrees c 00	ounterclockw	ise from local	L 3	
Area : 0.806 IMajor : 1.326 IMinor : 0.084	SMajo SMino ZMajo	or: 0.842 or: 0.121 or: 0.966	rMa rMi E	jor : 1.283 nor : 0.324 : 417600	AVMa AVMi 0.000	ajor: 0.320 inor: 0.428	3
STRESS CHECK FORCES	S & MOMENTS P	м33	M22	. 7200.0	₩3	т	
0.000	-869.006	-75.197	19.908	4.594	-2.382	-0.085	
Governing	Total	P	MMajor	MMinor	Batio	Status	
Equation	Batio	Batio	Ratio	Ratio	Limit	Check	
(H1-1)	0.548	= 0.488	+ 0.036	+ 0.025	0.600	OK	
AXIAL FORCE DESIGN	P	fa	Fa	Ft			
Axial	-869.006	1078.766	2211.177	4320.000			
MOMENT DESIGN	м	fb	Fb	Fe	Cm	K L	Cb
	Moment	Stress	Allowable	Allowable	Factor Facto	or Factor	Factor
Major Moment	-75.197	89.304	4752.000	2277.677	1.000 4.45	2.500	1.399
Minor Moment	19.908	165.128	5400.000	17959.538	0.764 1.00	1.000	
SHEAR DESIGN							
	V	fv	FV	Stress	Status	т	
	Force	Stress	Allowable	Ratio	Check	Torsion	
Major Shear	4.632	14.463	2880.000	0.005	OK	0.000	
Minor Shear	2.557	5.978	2880.000	0.002	OK	0.000	

SAP2000 v9.1.4 - File:

Table 7.1.27	Steel Section	Code Check	for Group	BUILDINGCOL	_65DOWN	Frame Elements
--------------	---------------	-------------------	-----------	-------------	---------	----------------

AISC-ASD89 STEEL SU Combo : ENVELOPE Units : Kip, ft, D	ECTION CHECH	¢						
Frame : 805 X Mid : 167.000 Y Mid : 123.000 Z Mid : 31.875 Length : 10.250 Loc : 0.000	Desig Desig Frame Sect Major RLLF	gn Sect: W362 gn Type: Colu Type: Brad Class: Com Axis: 0.00 : 1.00	K328 umn ced Frame pact 00 degrees c 00	counterclockw	vise from .	local 3	3	
Area : 0.669 IMajor : 1.085 IMinor : 0.068 Ixy : 0.000	SMajo SMino ZMajo ZMino	or : 0.702 or : 0.099 or : 0.799 or : 0.153	rMa rMi E Fy	ajor : 1.273 nor : 0.320 : 417600 : 7200.0	00.000 000	AVMajo AVMino	or: 0.263 or: 0.355	
STRESS CHECK FORCES Location 0.000	5 & MOMENTS P -347.898	M33 -487.976	M22 -159.323	V2 -73.767	-20.5	V3 12	T 0.000	
PMM DEMAND/CAPACITY Governing Equation (H1-3)	Total Ratio 0.578	P Ratio = 0.134	MMajor Ratio + 0.146	MMinor Ratio + 0.298	Rat. Lim 0.6	io it 00	Status Check OK	
AXIAL FORCE DESIGN	P Force -347.898	fa Stress 519.681	Fa Allowable 3873.024	Ft Allowable 4320.000				
MOMENT DESIGN								
Major Moment Minor Moment	M Moment -487.976 -159.323	fb Stress 695.190 1609.211	Fb Allowable 4752.000 5400.000	Fe Allowable 331748.448 20937.013	Cm Factor 0.830 0.681	K Factor 1.000 1.000	L Factor 1.000 1.000	Cb Factor 1.245
SHEAR DESIGN								
Major Shear Minor Shear	V Force 73.767 20.512	fv Stress 280.706 57.709	Fv Allowable 2880.000 2880.000	Stress Ratio 0.097 0.020	Stat: Che	us ck OK OK	T Torsion 0.000 0.000	

SAP2000 v9.1.4 - File:

Table 7 1 28 Steel Section	Code Check for Group	BLIII DINGCOL 65up	Frame Flements
Table 7.1.20 Steel Section	Code Check for Group	BOILDINGCOLOSUP	Frame Elements

AISC-ASD89 STEEL S Combo : ENVELOPE Units : Kip, ft,	ECTION CHECK	¢						
Frame : 597	Desig	gn Sect: W36	x300					
x Mid : -4.500	Desig	In Type: Col	umn God Frame					
z Mid : 81 688	Sect	Class : Com	Dact					
Length : 11.125	Majo	Axis : 0.0	00 degrees c	ounterclockw	ise from	local	3	
Loc : 11.125	RLLF	: 1.0	00					
Area : 0.613	SMajo	or : 0.640	rMa	jor : 1.264		AVMaj	or: 0.241	
IMajor : 0.979	SMind	or : 0.090	rMi	nor : 0.320		AVMin	or: 0.325	
IMinor : 0.063	ZMajo	or : 0.729	E	: 417600	0.000			
Ixy : 0.000	ZMind	or : 0.139	Fy	: 7200.0	00			
STRESS CHECK FORCE	S & MOMENTS	1122	100			17.2		
11 125	-418 555	121 602	-156 614	-7 314	16	991	-0 080	
11.125	410.000	121.002	150.014	7.514	10.	551	0.000	
PMM DEMAND/CAPACIT	Y RATIO							
Governing	Total	P	MMajor	MMinor	Ra	tio	Status	
Equation	Ratio	Ratio	Ratio	Ratio	Li	mit	Check	
(H1-2)	0.520	= 0.158	+ 0.040	+ 0.322	0.	600	OK	
AXIAL FORCE DESIGN								
	P	fa	Fa	Ft				
	Force	Stress	Allowable	Allowable				
Axial	-418.555	682.581	3821.847	4320.000				
MOMENT DESIGN								
	M	fb	Fb	Fe	Cm	K	L	Cb
	Moment	Stress	Allowable	Allowable	Factor	Factor	Factor	Factor
Major Moment	121.602	189.943	4752.000	69346.803	1.000	1.000	2.000	1.414
Minor Moment	-156.614	1738.274	5400.000	17763.713	0.626	1.000	1.000	
SHEAR DESIGN								
	v	fv	FV	Stress	Sta	tus	т	
	Force	Stress	Allowable	Ratio	Ch	eck	Torsion	
Major Shear	7.314	30.370	2880.000	0.011		OK	0.000	
Minor Shear	16 991	52 324	2880 000	0 018		OK	0 000	

SAP2000 v9.1.4 - File:

Table 7.1.29 Steel Section Code Check for Group ROOFTRUSS Frame Elements

AISC-ASD89 STEEL SECTION Combo : ENVELOPE Units : Kip, ft, F	N CHECK				
Frame : 3204 X Mid : 80.208 Y Mid : 0.000 Z Mid : 97.500 Length : 7.917 Loc : 7.917	Design Sect: W14 Design Type: Bea Frame Type : Bra Sect Class : Com Major Axis : 0.0 RLLF : 1.0	X159 m ced Frame pact 00 degrees co 00	punterclockwise f	from local 3	
Area : 0.324 IMajor : 0.092 IMinor : 0.036 Ixy : 0.000	SMajor : 0.147 SMinor : 0.055 ZMajor : 0.166 ZMinor : 0.084	rMa rMir E Fy	jor : 0.532 nor : 0.334 : 4176000.000 : 7200.000	AVMajor: 0 AVMinor: 0	.078 .215
DESIGN MESSAGES Section overstressed	d				
STRESS CHECK FORCES & MC Location 7.917 -314	OMENTS P M33 4.546 24.351	M22 -117.698	V2 -2.388	V3 14.867 -0.	т 043
PMM DEMAND/CAPACITY RATI Governing T Equation F (H1-2) C	IO Total P Ratio Ratio 0.652 = 0.225	MMajor Ratio + 0.035	MMinor Ratio + 0.393	Ratio Sta Limit Ch 0.600 Overstr	tus eck ess
AXIAL FORCE DESIGN	P fa Force Stress	Fa Allowable	Ft Allowable		
AXIAI -314	4.546 969.907	4016.498	4320.000		
MOMENT DESIGN	M fb oment Stress	Fb Allowable	Fe Allowable Fact	Cm K or Factor Fac	L Cb tor Factor
Minor Moment -117	7.698 2120.830	5400.000	38163.759 0.6	500 1.000 1.	000
SHEAR DESIGN					
Major Shear 3 Minor Shear 14	V fv Force Stress 3.720 47.932 4.867 69.194	Fv Allowable 2880.000 2880.000	Stress Ratio 0.017 0.024	Status Check Tors OK 0. OK 0.	T ion 000 000

SAP2000 v9.1.4 - File:

AISC-ASD89 STEEL SE	CTION CHECK	к					
Combo : ENVELOPE							
Units : Kip, ft, F							
Frame : 119	Desid	gn Sect: W8	X58				
X Mid : -8.250	Desid	gn Type: Br	ace				
Y Mid : 98.000	Frame	e Type : Br	aced Frame				
Z Mid : 6.690	Sect	Class : Co	mpact				
Length : 15.339	Majo	r Axis : 0.	000 degrees c	counterclockw	vise from local	3	
Loc : 7.669	RLLF	: 1.	000				
Area : 0,119	SMaio	or • 0.030	rMa	ior : 0.304	AVMa	ior: 0.031	
IMajor : 0.011	SMind	or : 0.011	rMi	nor : 0.175	AVMir	nor: 0.077	
IMinor : 0.004	ZMajo	or : 0.035	E	: 417600	00.000		
Ixy : 0.000	ZMind	or : 0.016	FY	: 7200.0	000		
CERECE CHECK FORCES	C MOMENTIC						
Location	D	M33	M22	172	173	T	
7.669	-216.468	0.837	0.000	0.000	0.000	0.000	
,	210.100	0.00,	0.000	0.000	0.000	0.000	
PMM DEMAND/CAPACITY	RATIO						
Governing	Total	E	• MMajor	MMinor	Ratio	Status	
Equation	Ratio	Ratic	Ratio	Ratio	Limit	Check	
(HI-I)	0.507	= 0.501	+ 0.006	+ 0.000	0.600	OK	
AXIAL FORCE DESIGN							
	P	fa	Fa	Ft			
	Force	Stress	Allowable	Allowable			
Axial	-216.468	1822.893	3638.967	4320.000			
MOMENT DESIGN	M	fb		Fe	Cm I	<i>х</i> т	Ch
	Moment	Stross	Allowable	Allowable	Factor Factor	r Factor	Factor
Major Moment	0.837	27.748	4320,000	33851 288	0.850 1.000	0.500	1.000
Minor Moment	0.000	0.000	5400.000	11150.139	1.000 1.000	0.500	1.000
minor momente	0.000	0.000	5100.000	11100.100	1.000 1.000	, 0.000	
SHEAR DESIGN							
	V	fv	FV	Stress	Status	т	
	Force	Stress	Allowable	Ratio	Check	Torsion	
Major Shear	0.000	0.000	2880.000	0.000	OK	0.000	
Minor Shear	0.000	0.000	2880.000	0.000	OK	0.000	

Table 7.1.30 Steel Section Code Check for Group SMALLVX Frame Elements

SAP2000 v9.1.4 - File:

Table 7.1.31 Steel Section Code Check for Group SMALLHX@65 Frame Elements

AISC-ASD89 STEEL SECTION Combo : ENVELOPE Units : Kip, ft, F	1 CHECK				
Frame : 2280 X Mid : -8.250 Y Mid : 104.250 Z Mid : 65.000 Length : 14.577 Loc : 7.289	Design Sect: W12 Design Type: Bea Frame Type : Bra Sect Class : Non Major Axis : 0.0 RLLF : 1.0	X65 m ced Frame -Compact 00 degrees com 00	unterclockwise f	rom local 3	
Area : 0.133 IMajor : 0.026 IMinor : 0.008 Ixy : 0.000	SMajor : 0.051 SMinor : 0.017 ZMajor : 0.056 ZMinor : 0.026	rMajo rMino E Fy	or: 0.440 or: 0.252 : 4176000.000 : 7200.000	AVMajor: 0. AVMinor: 0.	033 084
DESIGN MESSAGES Section overstressed	1				
STRESS CHECK FORCES & MC Location 7.289 -298	DMENTS P M33 3.926 1.727	M22 0.000	V2 0.000	V3 0.000 0.0	Т 00
PMM DEMAND/CAPACITY RATI Governing 7 Equation 8 (H1-1) 0	Total P Ratio Ratio 0.687 = 0.679	MMajor Ratio + 0.009	MMinor Ratio + 0.000	Ratio Stat Limit Che 0.600 Overstre	us ck ss
AXIAL FORCE DESIGN	P fa Force Stress	Fa Allowable	Ft Allowable		
MOMENT DESIGN	2253.680	3321.105	4320.000		
Major Moment I Minor Moment (M fb oment Stress 1.727 33.866 0.000 0.000	Fb Allowable 4320.000 5215.454	Fe Allowable Fact 19610.382 1.0 6401.888 1.0	Cm K Cor Factor Fact 000 1.000 1.0 000 1.000 1.0	L Cb or Factor 00 1.000 00
SHEAR DESIGN Major Shear (Minor Shear (V fv Force Stress 0.000 0.000 0.000 0.000	FV Allowable 2880.000 2880.000	Stress Ratio 0.000 0.000	Status Check Torsi OK 0.0 OK 0.0	T on 00 00

SAP2000 v9.1.4 - File:

AISC-ASD89 STEEL SE Combo : ENVELOPE Units : Kip, ft, F	CTION CHEC	к					
Frame : 2983 X Mid : -8.250 Y Mid : 104.250 Z Mid : 87.250 Length : 14.577 Loc : 7.289	Desi Desi Fram Sect Majo RLLF	gn Sect: W12 gn Type: Bea e Type : Bra Class : Nor r Axis : 0.0 : 1.0	X65 m ced Frame -Compact 00 degrees c 00	ounterclockw	ise from local	3	
Area : 0.133 IMajor : 0.026 IMinor : 0.008 Ixy : 0.000	SMaj SMin ZMaj ZMin	or : 0.051 or : 0.017 or : 0.056 or : 0.026	rMa rMi E Fy	jor : 0.440 nor : 0.252 : 417600 : 7200.0	AVMa AVMi 00.000	jor: 0.033 nor: 0.084	
STRESS CHECK FORCES	& MOMENTS						
Location	P	M33	M22	V2	V3	Ţ	
7.289	-104.636	1.727	0.000	0.000	0.000	0.000	
PMM DEMAND/CAPACITY	RATIO						
Governing	Total	P	MMajor	MMinor	Ratio	Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit	Check	
(H1-1)	0.246	= 0.238	+ 0.008	+ 0.000	0.600	OK	
AXIAL FORCE DESIGN							
	P	fa	Fa	Ft			
	Force	Stress	Allowable	Allowable			
Axial	-104.636	788.878	3321.105	4320.000			
MOMENT DESIGN							
	М	fb	Fb	Fe	Cm	K L	Cb
	Moment	Stress	Allowable	Allowable	Factor Facto	r Factor	Factor
Major Moment	1.727	33.866	4320.000	19610.382	1.000 1.00	0 1.000	1.000
Minor Moment	0 000	0 000	5215 454	6401 888	1 000 1 00	0 1 000	
MINOI MOMENC	0.000	0.000	5215.151	0401.000	1.000 1.00	0 1.000	
SHEAR DESIGN							
	v	fv	Fv	Stress	Status	Т	
	Force	Stress	Allowable	Ratio	Check	Torsion	
Major Shear	0.000	0.000	2880.000	0.000	OK	0.000	
Minor Shear	0.000	0.000	2880.000	0.000	OK	0.000	

Table 7.1.32 Steel Section Code Check for Group SMALLHX@87 Frame Elements

SAP2000 v9.1.4 - File:

Table 7.1.33 Steel Section Code Check for Group ROOFBRACING Frame Elements

AISC-ASD89 STEEL SEC Combo : ENVELOPE Units : Kip, ft, F	CTION CHECK						
Frame : 1630 X Mid : 159,500 Y Mid : 35,500 Z Mid : 97,500 Length : 29,155 Loc : 5,831	Design Design Frame Sect (Major RLLF	n Sect: W12 n Type: Beau Type : Brad Class : Non Axis : 0.0 : 1.0	x65 m ced Frame -Compact 00 degrees c 00	ounterclockw	ise from local	3	
Area : 0.133 IMajor : 0.026 IMinor : 0.008 Ixy : 0.000	SMajo: SMino: ZMajo: ZMino:	r : 0.051 r : 0.017 r : 0.056 r : 0.026	rMa rMi E Fy	jor : 0.440 nor : 0.252 : 417600 : 7200.0	AVMa AVMi 0.000 00	jor: 0.033 nor: 0.084	
DESIGN MESSAGES Section overstre	essed						
STRESS CHECK FORCES Location 5.831	& MOMENTS P 95.507	M33 133.639	M22 0.000	V2 0.150	V3 0.000	т 0.000	
PMM DEMAND/CAPACITY Governing Equation (H2-1)	RATIO Total Ratio 0.773	P Ratio = 0.167	MMajor Ratio + 0.607	MMinor Ratio + 0.000	Ratio Limit 0.600 O	Status Check verstress	
AXIAL FORCE DESIGN	P Force 95.507	fa Stress 720.053	Fa Allowable 3321.105	Ft Allowable 4320.000			
MOMENT DESIGN	м	fh	Fb	Fe	Cm	к т.	Ch
Major Moment Minor Moment	Moment 133.639 0.000	Stress 2621.222 0.000	Allowable 4320.000 5215.454	Allowable 19610.382 6401.888	Factor Facto 1.000 1.00 1.000 1.00	r Factor 0 0.500 0 0.500	Factor 1.410
SHEAR DESIGN	v	fv	Fv	Stress	Status	т	
Major Shear Minor Shear	Force 1.265 0.000	Stress 38.603 0.000	Allowable 2880.000 2880.000	Ratio 0.013 0.000	Check OK OK	Torsion 0.000 0.000	

SAP2000 v9.1.4 - File:

AISC-ASD89 STEEL S	ECTION CHEC	ĸ					
Combo : ENVELOPE	-						
nits : Kip, It,	E						
	Deel		¥011				
Mid : 20 750	Desi	gn Sect: W14	X211				
Mid : 123 000	Eram	a Tupe : Bra	ced Frame				
Mid : 35 375	Sect	Class : Com	nact				
angth : 29 556	Maio	r Avia : 0.0	00 degrees o	ounterclock	ise from loca	1 3	
oc : 14 778	RLLF	· 1.0	00 degrees c	OUNCELCIOCK	VISC IIOM IOCA	I J	
. 14.770		. 1.0	00				
rea : 0.431	SMaj	or : 0.196	rMa	jor : 0.546	AVM	ajor: 0.107	7
Major : 0.128	SMin	or : 0.075	rMi	nor : 0.340	AVM	inor: 0.285	5
Minor : 0.050	ZMaj	or : 0.226	E	: 417600	00.000		
xy : 0.000	ZMin	or : 0.115	Fy	: 7200.0	000		
TRESS CHECK FORCE	S & MOMENTS						
Location	P	M33	M22	V2	V3	Т	
14.778	-665.598	18.709	0.000	0.000	0.000	0.000	
MM DEMAND /CAPACIT	V PATTO						
Governing	Total	P	MMajor	MMinor	Ratio	Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit	Check	
(H1-1)	0.444	= 0.424	+ 0.020	+ 0.000	0.600	OK	
XIAL FORCE DESIGN		-		-			
	P	fa	Fa	Ft			
Arrial.	Force	Stress	ALLOWADLE	ALLOWADLE			
AXIdi	-005.598	1545.905	3047.529	4320.000			
OMENT DESIGN							
	M	fb	Fb	Fe	Cm	K L	Cb
	Moment	Stress	Allowable	Allowable	Factor Fact	or Factor	Factor
Major Moment	18.709	95.407	4320.000	29336.420	0.850 1.0	00 0.500	1.000
Minor Moment	0.000	0.000	5400.000	11359.591	1.000 1.0	00 0.500	
HEAR DESIGN							
	V	fv	Fv	Stress	Status	Т	
	Force	Stress	Allowable	Ratio	Check	Torsion	
Major Shear	0.000	0.000	2880.000	0.000	OK	0.000	
Minor Shear	0.000	0.000	2880.000	0.000	OK	0.000	

Table 7.1.34 Steel Section Code Check for Group BRACE@37 Frame Elements

SAP2000 v9.1.4 - File:

AISC-ASD89 STEEL SE	CTION CHECK	ĸ					
Combo : ENVELOPE							
Units : Kip, ft, F	7						
Frame : 1526	Desig	gn Sect: W14	X159				
X Mid : 114.625	Desig	gn Type: Bra	ce				
Y Mid : 0.000	Frame	e Type : Bra	ced Frame				
Z Mid : 51.000	Sect	Class : Com	pact			4	
Length : 40.492	Majo	r Axis : 0.0	00 degrees c	ounterclockw	vise from local	3	
Loc : 20.246	RLLF	: 1.0	00				
		0 1 47					
Area : 0.324	SMajo	Dr : 0.147	rMa	JOF : 0.532	AVMa	JOT: 0.078	
IMajor : 0.092	SMIN	DI : 0.055	IMI.	. 417600	AVMI	101: 0.215	
TVV : 0.000	ZMin	0.100	Ev	. 7200 0	0.000		
iny . 0.000	201110	. 0.004	LY	. 7200.0			
STRESS CHECK FORCES	& MOMENTS						
Location	P	M33	M22	V2	V 3	Т	
20.246	-489.720	23.529	0.000	0.000	0.000	0.000	
PMM DEMAND/CAPACITY	RATIO						
Governing	Total	P	MMajor	MMinor	Ratio	Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit	Check	
(H1-1)	0.499	= 0.464	+ 0.035	+ 0.000	0.600	OK	
AXIAL FORCE DESIGN			_				
	P	Ía	Fa	Ft			
	Force	Stress	Allowable	Allowable			
Axial	-489.720	1510.058	3253.943	4320.000			
NONENE DESIGN							
MOMENT DESIGN	м	fb	Fb	Fo	Cm	х т	Ch
	Moment	Stross	Allowable	Allowable	Factor Factor	Eastor	Factor
Major Moment	23 529	160 493	4320 000	14822 446	0 850 1 00		1 000
Minor Moment	0.000	0.000	5400.000	5835 363	1.000 1.000	0.500	1.000
HINGI HOMONIC	0.000	0.000	5100.000	0000.000	1.000 1.000	0.000	
SHEAR DESIGN							
	v	fv	FV	Stress	Status	т	
	Force	Stress	Allowable	Ratio	Check	Torsion	
Major Shear	0.000	0.000	2880.000	0.000	OK	0.000	
Minor Shear	0 000	0 000	2880 000	0 000	OK	0 000	

Table 7.1.35 Steel Section Code Check for Group BRACE@65 Frame Elements

SAP2000 v9.1.4 - File:

AISC-ASD89 STEEL SE	CTION CHECK	к					
Combo : ENVELOPE							
Units : Kip, ft, F							
Frame : 2707	Desi	an Sect . W14	v132				
X Mid : 53,875	Desi	an Type: Bra	Ce Ce				
Y Mid : 123.000	Frame	e Type : Bra	ced Frame				
Z Mid : 76.125	Sect	Class : Com	pact				
Length : 32.911	Majo	r Axis : 0.0	00 degrees co	ounterclockw	ise from local	3	
Loc : 16.455	RLLF	: 1.0	00				
Area : 0.269	SMaj	or : 0.120	rMa	jor : 0.523	AVMa	or: 0.066	
IMajor : 0.074	SMin	or : 0.043	rMi	nor : 0.313	AVMin	nor: 0.175	
IMinor : 0.026	ZMajo	or : 0.135	E	: 417600	0.000		
Ixy : 0.000	ZMine	or : 0.065	Fy	: 7200.0	00		
STRESS CHECK FORCES	6 MOMENTS						
Location	P	M33	M22	V2	73	T	
16.455	-433.809	13,173	0.000	0.000	0.000	0.000	
PMM DEMAND/CAPACITY	RATIO						
Governing	Total	P	MMajor	MMinor	Ratio	Status	
Equation	Ratio	Ratio	Ratio	Ratio	Limit	Check	
(H1-1)	0.490	= 0.467	+ 0.023	+ 0.000	0.600	OK	
AXIAL FORCE DESIGN							
	P	fa	Fa	Ft			
Deni a l	Force	Stress	Allowable	Allowable			
AXIAI	-433.809	1610.014	3440./14	4320.000			
MOMENT DESIGN							
MOMENT DEDIGN	M	fb	Fb	Fe	Cm F	с т.	Cb
	Moment	Stress	Allowable	Allowable	Factor Factor	Factor	Factor
Major Moment	13.173	109.350	4320.000	21746.646	0.850 1.000	0.500	1.000
Minor Moment	0.000	0.000	5400.000	7788.995	1.000 1.000	0.500	
SHEAR DESIGN							
	V	fv	Fv	Stress	Status	т	
	Force	Stress	Allowable	Ratio	Check	Torsion	
Major Shear	0.000	0.000	2880.000	0.000	OK	0.000	
Minor Shear	0.000	0.000	2880.000	0.000	OK	0.000	

Table 7.1.36 Steel Section Code Check for Group BRACE@65UP Frame Elements

SAP2000 v9.1.4 - File:

7.1.5 Foundation Loads

Support reactions generated by applying each directional earthquake force as static equivalent loads to the IHF Steel Structure will be used as input loads to the foundation mat design of the IHF Building. Attachment E lists these loads and in Section 4.3 the methodology is described in detail.

7.2 CONCLUSIONS

The IHF Steel Structure was modeled in SAP2000 to reflect the General Arrangement Drawings for design and analysis of its structural members under prevailing loads and load combinations.

The predetermined seven load cases of the six cranes as shown with their seismic loadings and their various locations in the structure were considered, as capturing as many possible maximum stress conditions of the structure's members collectively. The assortment of Crane Load Cases, were carefully selected to cover the cranes positions that would provide the worst loading case to design the steel structure (See Attachment D). The worst loading case can occur wherever the heaviest vertical load may occur, or where the most torsional moment in the structure exists or where the bracing members are significantly stressed for a given loading arrangement.

It has been shown that regardless where the cranes are placed for the analysis, the fundamental frequency of the structure does not significantly change (See Table 6.6.3). The frequency band near the maximum accelerations on the input response spectra does not shift any significant amount to affect the seismic response. Considering member stresses, the selected crane locations closely envelop all possible combinations of crane positions.

Based on the specific needs of this structure and criteria set-forth by PDC (Ref.2.2.1) and SADA (Ref. 2.2.2), and based on the summary of results obtained from the SAP2000 computer analysis, the IHF Steel Structure as designed and documented in this calculation, is acceptable and meets and/or exceeds the minimum requirements.

The results of the calculation are to be used as the basis for the IHF structural steel drawings as part of Tier-1 design and as load input for the foundation mat design for the IHF building.

ATTACHMENT A

IHF BUILDING PLAN AND X-SECTIONS

Pages

Fig. 6.4.1	IHF Steel Structure Column Lines	A-2
Fig. 6.4.2 thru Fig. 6.4.17	IHF SAP2000 Structural Model Plan and Sections	A-3 to A-18
Fig. 6.4.18 thru Fig. 6.4.24	CTM and CASK Crane Positions at EL. 65 feet	A-19 to A-25
Fig. 6.4.25 thru Fig. 6.4.36	SAP2000 Structural Model Element Groupings	A-26 to A-37

4

FIG. 6.4.1 IHF Steel Structure Column Lines

51A-SSC-IH00-00600-000-00B

.

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - X-Y Plane @ Z=26.75 - Kip, ft, F Units

.

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - X-Y Plane @ Z=44 - Kip, ft, F Units

51A-SSC-IH00-00600-000-00B

February 2008

February 2008

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - X-Y Plane @ Z=97.5 - Kip, ft, F Units

Attachment A A- 9

February 2008

February 2008

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - X-Z Plane @ Y=0 - Kip, ft, F Units

Attachment A

February 2008

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - X-Z Plane @ Y=23 - Kip, ft, F Units

Attachment A A-12

February 2008

-

. .

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - X-Z Plane @ Y=123 - Kip, ft, F Units

February 2008

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - X-Z Plane @ Y=160 - Kip, ft, F Units

Attachment A A- 14

February 2008

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - Y-Z Plane @ X=-4.5 - Kip, ft, F Units

February 2008

February 2008

IHF Steel Structure Seismic Analysis and Steel Member Design

¥.

SAP2000 v9.1.4 - File:steel-10.23.2007 LOAD 5 - Y-Z Plane @ X=167 - Kip, ft, F Units

February 2008

States -CTM Crane Distributed weight (typ.) Cask Handling Crane

Attachment A

FIG. 6.4.18

SAP2000 IHF Steel Structure Analysis Case 1 Major Cranes, CTM and Cask, Position and Loading at EL.65ft

Attachment A

51A-SSC-IH00-00600-000-00B

12

Attachment A A-24

FIG. 6.4.26

FIG. 6.4.27

Attachment A A-29

SAP2000 Model - Group "BRACE@65" Y-Z Plane @X = -4.5ft

FIG. 6.4.30

Attachment A A-31

51A-SSC-IH00-00600-000-00B

FIG. 6.4.31

Attachment A A-32

FIG. 6.4.32 SAP2000 Model - Group "LOWERROOFHX" X-Y Plane @ Z = 65ft

FIG. 6.4.34

February 2008

SAP2000 Model - Group "SMALLHX@65"

SAP2000 Model - Group "SMALLHX@87"

ATTACHMENT B

STEEL BUILT-UP SECTION PROPERTIES

		Pages
Built-Up Steel Section Properties Calculation		B-2 to B-13
Figure-1 A	Columns @ Col E-6/10, J/10 & K/10 with W36x393	B-14
Figure-1 B	Crane Rail Girder @ TOS EL. 64'-6", Crane Rail 1 with W36x300	B-15
Figure-1 C	Crane Rail Girder @ TOS EL. 43-8", 53'-4", 86'-0" with W36x191	B-16
Figure-1 D	Columns @ Col 4/G & 4/J with 2 x WF36x260	B-17
Figure-1 E	Column @ Col 4/C with 2 x WF24x250	B-18
Figure-1 F	Columns @ Col Lines 5G & 5J with W36x260 & W36x328	B-19
SAP2000 Input Structural Steel Properties for Built-Up Sections		B-20 to B-25
Sketches for Location of Built-Up Steel Sections in SAP2000 Structural Model E		

BUILT-UP (B.U.) SECTION PROPERTIES

Basic Formulas: Ref .2.2.23

$I = bd^3/12$	Rectangular solid sect	ion w/ neutral axis at center
$Ix_{BU} = Ixw + Ix_{plates}$	Sx = Ix/Cy	$r_x = (Ix/A)^{1/2}$
$Iy_{BU} = Iyw + (A_{plate} x d_1^2)$	Sy = Iy/Cy	$r_y = (Iy/A)^{1/2}$

Torsional constant formula for basic sections:

$\mathbf{J} = 1/3(\mathbf{b}\mathbf{t}^3)$	Rectangular solid section with 't' thickness

 $J = 2t1 x t2 x b^2 h^2 / (b x t2 + h x t1)$ Rectangular box hollow section where:

b = centroidal distance between 2 plates with t2 thickness

h = centroidal distance between 2 plates with t1 thickness

Columns at Col. E.6/10, J/10, and K/10 (Ref Figure 1-A)

W36x393 with Plate 2 in x 33.4 in each side

b = 16.83 in	d = 37.8 in	Width and depth of W36
t1 = 2.20 in	t2 = 1.22 in	Flange and web thickness of W36
H = 35.6 in		Mean height of W36
t3 = 2 in	h = 33.4 in	Thickness and depth of plate
$Ixw = 27500 \text{ in}^4 Iyw = 1000$	1750 in ⁴	Axis X and Y moment of inertia of W36
$Zxw = 1660 \text{ in}^3$	$Zyw = 325 \text{ in}^3$	Plastic section modulus of W36
$Aw = 115 in^2$		Cross-sectional area of W36

Built-Up Section properties

$A = 115 \text{ in}^2 + 2(2\text{in x } 33.4\text{in}) = 248.6 \text{ in}^2$	Cross-sectional area of B.U. section
$Ix = 27500in^4 + 2 x 2in x (33.4in)^3/12 = 39920 i$	n ⁴ B.U. X-axis moment of inertia
$Iy = 1750in^4 + 2[2in \times 33.4in \times (8.415in)^2]$	B.U. Y-axis moment of inertia
$= 11210 \text{ in}^4$	

$Sx = 39920in^4/18.9in = 2112.2 in^3$	B.U. X-axis section modulus
$Sy = 11210in^3/9.42in = 1190 in^3$	B.U. Y-axis section modulus
Avy = 2 x 2in x 33.4in + 37.8in x 1.22in = 179.7	² in ² Shear area parallel to web and plates
$Avx = 2 \times 2.2in \times 16.83in = 74.05 in^3$	Shear area parallel to W36 flanges
$r_x = (39920 \text{ in}^4/248.6 \text{ in}^2)^{1/2} = 12.67 \text{ in}$	X-axis radius of gyration
$r_y = (11210in^4/248.6in^2)^{1/2} = 6.71$ in	Y-axis radius of gyration

Torsional Constant

Ref.2.2.23

 $J = 2t1 x t3 x b^{2}H^{2}/(b x t3 + H x t1) + 1/3(h x t2^{3})$

 $J = 2 x 2.2in x 2in x (16.83in)^{2} x (35.6in)^{2} / (16.83in x 2in + 35.6in x 2.2in)$

 $+ 1/3[33.4 \text{in x} (1.22 \text{in})^3]$

 $J = 28230 \text{ in}^4$

Plastic Section Modulus

Ref.2.2.24

Plastic section modulus, is the arithmetical sum of the static moments about the neutral axis of the parts of the cross-section above and below, or left and right, of that axis.

$$Zx = Zx/w + 2x(1/4)(t3 x h^{2})$$

$$Zx = 1660in^{3} + 2x(1/4)[2in x (33.4in)^{2}] = 2775 in^{3}$$

$$Zy = Zy/w + 2x(t3 x h) x b/2$$

$$Zy = 325in^{3} + 2x(2in x 33.4in) x 16.83in/2 = 1449 in^{3}$$

Crane Runway Girder (a) TOS El 64 ⁷ -6 ³⁷	Crane Rail 1	(Ref. Figure 1-B)	
W36x300 with Plate 1 ¹ / ₂ " x 33.38" each side			

b = 16.65 in	d = 36.74 in	Width and depth of W36
t1 = 1.68 in	t2 = 0.94 in	Flange and web thickness of W36
H = 35.06 in		Mean height of W36
t3 = 1.5 in	h = 33.38 in	Thickness and depth of plate

$Ix/w = 20300 \text{ in}^4$	$Iy/w = 1300 \text{ in}^4$	Axis X and Y moment of inertia of W36
$Zx/w = 1260 \text{ in}^3$	$Zy/w = 241 \text{ in}^3$	Plastic section modulus of W36
$Aw = 88.3 in^2$		Cross-sectional area of W36

Built-Up Section properties

A = 88.3 in ² + 2(1.5in x 33.38in) = 188.44 in ²	Cross-sectional area of B.U. section
$Ix = 20300in^4 + 2 \times 1.5in \times (33.38in)^3 / 12 = 295$	598 in ⁴ B.U. X-axis moment of inertia
$Iy = 1300in^4 + 2[1.5in \times 33.38in \times (8.32in)^2]$	B.U. Y-axis moment of inertia
$= 8232 \text{ in}^4$	
$Sx = 29598in^4/18.37in = 1611 in^3$	B.U. X-axis section modulus
$Sy = 8232in^3/9.08in = 907 in^4$	B.U. Y-axis section modulus
Avy = 2 x 1.5in x 33.38in + 36.74in x 0.94in	Shear area parallel to web and plates
$= 134.7 \text{ in}^2$	
$Avx = 2 x 1.68in x 16.65in = 46 in^3$	Shear area parallel to W36 flanges
$r_x = (29598 \text{ in}^4/188.44 \text{ in}^2)^{1/2} = 12.53 \text{ in}$	X-axis radius of gyration
$r_y = (8232in^4/188.44in^2)^{1/2} = 6.61 in$	Y-axis radius of gyration

Torsional Constant Ref.2.2.23

 $J = 2t1 x t3 x b^{2}H^{2}/(b x t3 + H x t1) + 1/3(h x t2^{3})$

 $J = 2 \times 1.68 \text{in} \times 1.5 \text{in} \times (16.65 \text{in})^2 \times (35.06 \text{in})^2 / (16.65 \text{in} \times 1.5 \text{in} + 35.06 \text{in} \times 1.68 \text{in})$

 $+ 1/3[33.38in \times (0.94in)^3]$

 $J = 20485 \text{ in}^4$

Plastic Section Modulus

Ref.2.2.24

Plastic section modulus, is the arithmetical sum of the static moments about the neutral axis of the parts of the cross-section above and below, or left and right, of that axis.

 $Zx = Zx/w + 2x(1/4)(t3 x h^2)$

 $Zx = 1260in^3 + 2x(1/4)[1.5in x (33.38in)^2] = 2095 in^3$

ATTACHMENT B PAGE NO. B- 4

Zy = Zy/w + 2x(t3 x h) x b/2

$$Zy = 241 \text{ in}^3 + 2x(1.5 \text{ in } x \ 33.38 \text{ in}) \ x \ 16.65 \text{ in}/2 = 834 \text{ in}^3$$

Crane Runway Girder @ TOS El 43'-8", 53'-4", 86'-0" (Ref: Figure -1C)

W30x191 with Plate 1" x 28.31" each side

b = 15.04 in	d = 30.68 in	Width and depth of W36
t1 = 1.185 in	t2 = 0.71 in	Flange and web thickness of W36
H = 29.5 in		Mean height of W36
t3 = 1 in	h = 28.31 in	Thickness and depth of plate
$Ix/w = 9170 in^4$	$Iy/w = 673 in^4$	Axis X and Y moment of inertia of W36
$Zx/w = 673 \text{ in}^3$	$Zy/w = 138 \text{ in}^3$	Plastic section modulus of W36
$Aw = 56.1 in^2$		Cross-sectional area of W36

Built-Up Section properties

A = 56.1 in ² + 2(1in x 28.31in) = 112.72 in ²	Cross-sectional area of B.U. section
Ix = $9170in^4 + 2 \times 1in \times (28.31in)^3/12 = 12951 i$	n ⁴ B.U. X-axis moment of inertia
$Iy = 673in^4 + 2[1in \times 28.31in \times (7.52in)^2]$	B.U. Y-axis moment of inertia
$= 3875 \text{ in}^4$	
$Sx = 12951in^4/15.34in = 844in^3$	B.U. X-axis section modulus
$Sy = 3875 in^3 / 8.02 in = 483.2 in^3$	B.U. Y-axis section modulus
Avy = 2 x 1in x 28.31in + 30.68in x 0.71in	Shear area parallel to web and plates
$= 78.40 \text{ in}^2$	
$Avx = 2 \times 1.185 in \times 15.04 in = 35.64 in^3$	Shear area parallel to W36 flanges

$r_x = (12951in^4/112.72 in^2)^{1/2} = 10.72 in$	X-axis radius of gyration
$r_v = (3875in^4/112.72in^2)^{1/2} = 5.86 in$	Y-axis radius of gyration

Torsional Constant Ref.2.2.23

 $J = 2t1 x t3 x b^{2}H^{2}/(b x t3 + H x t1) + 1/3(h x t2^{3})$

 $J = 2 \times 1.185 \text{ in } \times 1 \text{ in } \times (15.04 \text{ in})^2 \times (29.5 \text{ in})^2 / (15.04 \text{ in } \times 1 \text{ in } + 29.5 \text{ in } \times 1.185 \text{ in})$

 $+ \frac{1}{3} [28.31 \text{ in } x (0.71 \text{ in})^3]$

 $J = 9330 \text{ in}^4$

Plastic Section Modulus Ref.2.2.24

Plastic section modulus, is the arithmetical sum of the static moments about the neutral axis of the parts of the cross-section above and below, or left and right, of that axis.

$$Zx = Zx/w + 2x(1/4)(t3 x h^2)$$

 $Zx = 673in^3 + 2x(1/4)[1in x (28.31in)^2] = 1074 in^3$

Zy = Zy/w + 2x(t3 x h) x b/2

 $Zy = 138in^3 + 2x(1in \times 28.31in) \times 15.04in/2 = 564 in^3$

Column at Col. 4/G and 4/J (Ref: Figure 1-D)

2 @ W36x260 with Plate 1.5in x 42.5 on each side welded to outside face of W36 flanges

$b_f = 16.55$ in	$d_w = 36.26$ in	Width and depth of W36
$t_{f} = 1.44$ in	$t_w = 0.84$ in	Flange and web thickness of W36
b=28 in		Spacing between 2 – W36, c/c of webs
H1 = 35.15 in		Mean depth of W36 between flanges
H2 = 37.76 in		Mean distance between centerline of 2 plates

 $H_{Avg} = 36.32$ in $2 - 1\frac{1}{2}$ " plates are welded to the outside face of the 1.44" thick flanges of 2-W36 shapes. H_{Avg} is

the distance between centerlines of the combined thickness of flange & plate.

t2 = 1.5 in	h = 42.5 in	Thickness and depth of plate
$Ix/w = 17300 \text{ in}^4$	$Iy/w = 1090 in^4$	Axis X and Y moment of inertia of W36 each
$Zx/w = 1080 \text{ in}^3$	$Zy/w = 204 \text{ in}^3$	Plastic section modulus of W36 each
$Aw = 76.5 in^2$		Cross-sectional area of W36 each

Built-Up Section properties

A = 2 x 76.5 in ² + 2(1.5in x 42.5in) = 280.5 in ²	Cross-sectional area of B.U. section
Iy = $[2x1090 \text{ in}^4 + 2 \text{ x } 76.5 \text{ in}^2(14\text{in})^2]$	B.U. X-axis moment of inertia
+ 2 x 1.5in x $(42.5in)^3/12 = 51360 in^4$	
$Ix = 2 x 17300in^4 + 2[1.5in x 42.5in x(18.88in)^2]$	B.U. Y-axis moment of inertia
$= 80048 \text{ in}^4$	
$Sy = 51360in^4/22.275in = 2306 in^3$	B.U. X-axis section modulus
$Sx = 80048in^4/19.63in = 4078 in^3$	B.U. Y-axis section modulus
$Avy = 2 x .84in x 36.26in = 60.9 in^2$	Shear area parallel to web and plates
Avx = 2 x 1.44in x 16.55in + 2 x 1.5in x 42.5in	Shear area parallel to W36 flanges

$$= 175.2$$
 in

$r_y = (51360in^4/280.5in^2)^{1/2} = 13.5 in$	X-axis radius of gyration
$r_x = (80048in^4/280.5in^2)^{1/2} = 16.9$ in	Y-axis radius of gyration

Torsional Constant Ref.2.2.23

 $J = 2t1 x t3 x b^{2}H^{2}_{Avg} / (b x t3 + H_{Avg} x t1)$ $J = 2 x 2.94 in x .84 in x (28 in)^{2} x (36.32 in)^{2} / (28 in x .84 in + 36.32 in x 2.94 in)$ $J = 39202 in^{4}$

Subtract the torsional value of the gap between the flanges.

ATTACHMENT B PAGE NO. B-7

$$\begin{split} b_{gap} &= 28in - 16.55in = 11.45 \text{ in} \\ Jgap &= (t_f x \ b_{gap}^2 x \ H_1^2) / (b_{gap} + H_1) \\ Jgap &= 1.44in \ x \ (11.45in)^2 \ x \ (34.82in)^2 / \ (11.45in + 34.82in) = 4947 \ \text{in}^4 \\ Jnet &= 39202in^3 - 4947in^3 = 34255in^4 \end{split}$$

Plastic Section Modulus Ref.2.2.24

Plastic section modulus, is the arithmetical sum of the static moments about the neutral axis of the parts of the cross-section above and below, or left and right, of that axis.

 $Zy = 2Aw \times b/2 + 2x(1/4)(t2 \times h^2)$ $Zy = 2 \times 76.5 \text{ in}^2 \times 28in/2 + 2x(1/4)[1.5in \times (42.5in)^2] = 2425 \text{ in}^3$ $Zx = 2 \times Zx/w + 2 \times (t2 \times h) \times H2/2$ $Zx = 2 \times 1080in^3 + 2 \times (1.5in \times 42.5in) \times 37.76in/2 = 4567 \text{ in}^3$

<u>Column at Col. 4/C</u>	Refer to similar B.U. section sketch for Col. 4/G and 4/J (Ref : Figure 1-F)		
2 @ W24x250 with Pla	ate 1 in x 39 in on each si	de welded to outside face of W24 flanges	
$b_f = 13.18$ in	$d_w = 26.34$ in	Width and depth of W24	
$t_{f} = 1.89$ in	$t_{\rm w} = 1.04$ in	Flange and web thickness of W24	
b=28 in		Spacing between 2 – W24	
H1 = 24.45 in		Mean depth of W36 between flanges	
H2 = 27.34	<i></i>	Mean distance between the 2 plates	
H _{Avg} = 25.45 in		2-1 plates are welded to the outside face of the 1.89" thick flanges of 2-W36 shapes. H _{Avg} is the distance between centerlines of the combined thickness of flange & plate.	
t2 = 1 in	h = 39 in	Thickness and depth of plate	
$Ix/w = 8490 \text{ in}^4$	$Iy/w = 724 in^4$	Axis X and Y moment of inertia of W24 each	
$Zx/w = 744 \text{ in}^3$ $Aw = 73.5 \text{ in}^2$	$Zy/w = 171 \text{ in}^3$	Plastic section modulus of W24 each Cross-sectional area of W24 each	

Built-Up Section properties

A = 2 x 73.5 in ² + 2(1in x 39in) = 225 in ²	Cross-sectional area of B.U. section
$Iy = [2x724 in^4 + 2 x 73.5 in^2(14in)^2]$	B.U. X-axis moment of inertia
$+ 2 \times 1 \sin x (39 in)^3 / 12 = 40146 in^4$	
$Ix = 2 \times 8490 in^4 + 2[1in \times 39in \times (13.67in)^2]$	B.U. Y-axis moment of inertia
$= 31555 \text{ in}^4$	
$Sy = 40146in^4/20.59in = 1950 in^3$	B.U. X-axis section modulus
$Sx = 31555in^4/14.17in = 2227 in^3$	B.U. Y-axis section modulus
$Avy = 2 \times 1.04in \times 26.34in = 54.78 in^2$	Shear area parallel to web and plates
$Avx = 2 \times 1.89in \times 13.18in + 2 \times 1in \times 39in$	Shear area parallel to W24 flanges
$= 127.8 \text{ in}^2$	
$r_y = (40146in^4/225in^2)^{1/2} = 13.35$ in	X-axis radius of gyration
$r_x = (31555in^4/225in^2)^{1/2} = 11.84$ in	Y-axis radius of gyration

Torsional Constant Ref.2.2.23

 $J = 2t1 x t3 x b^{2}H^{2}_{Avg}/(b x t3 + H_{Avg} x t1)$

 $J = 2 \times 2.89in \times 1.04in \times (28in)^2 \times (25.45in)^2 / (28in \times 1.04in + 25.45in \times 2.89in)$

$$J = 29730 \text{ in}^4$$

Subtract the torsional value of the gap between the flanges.

 $b_{gap} = 28in - 13.18in = 14.82 \text{ in}$ Flange $t_f = 1.89 \text{ in}$ Jgap = $(t_f x b_{gap}^2 x H_1^2)/(b_{gap} + H_1)$ Jgap = $1.89in x (14.82in)^2 x (24.45in)^2 / (14.82in + 24.45in) = 6320 \text{ in}^4$ Jnet = $29730in^4 - 6320in^4 = 23410in^4$

Plastic Section Modulus Ref.2 2.24

Plastic section modulus, is the arithmetical sum of the static moments about the neutral axis of the parts of the cross-section above and below, or left and right, of that axis.

 $Zy = 2Aw \times b/2 + 2x(1/4)(t2 \times h^2)$ $Zy = 2 \times 73.5 \text{ in}^2 \times 28 \text{in}/2 + 2 \times (1/4) [1 \text{in} \times (39 \text{in})^2] = 2818 \text{ in}^3$ Zx = 2 x Zx/w + 2 x (t2 x h) x H2/2 $Zx = 2 \times 744in^3 + 2 \times (1in \times 39in) \times 27.34in/2 = 2554 in^3$

Column at Col. 5/G and 5/J

(See sketch for Built-Up Section and components)

W36x328 properties

$b_f = 16.63$ in	$d_w = 37.09$ in	Width and depth of W36
$t_f = 1.85$ in	t _w = 1.02 in	Flange and web thickness of W36
$Ix/w = 22500 in^4$	$Iy/w = 1420 in^4$	Axis X and Y moment of inertia of W36 each
$Zx/w = 1380 \text{ in}^3$	$Zy/w = 265 \text{ in}^3$	Plastic section modulus of W36 each
$Aw = 96.4 \text{ in}^2$		Cross-sectional area of W36 each
W36x260 properties		
$b_{f} = 16.55$ in	$d_w = 36.26$ in	Width and depth of W36
$t_f = 1.44$ in	$t_{\rm w} = 0.84$ in	Flange and web thickness of W36
$Ix/w = 17300 \text{ in}^4$	$Iy/w = 1090 in^4$	Axis X and Y moment of inertia of W36 each
$Zx/w = 1080 \text{ in}^3$	$Zy/w = 204 \text{ in}^3$	Plastic section modulus of W36 each
$Aw = 76.5 in^2$		Cross-sectional area of W36 each

Plus: 2-Side Plates 2in x 45in

1-Bottom Plate 2in x 36.26in

Built-Section properties

 $A = 96.4in^2 + 76.5in^2 + 2(2in \times 45in) + 2in \times 36.26in$ Total Built-Up Section area

ATTACHMENT B PAGE NO. B- 10

IHF Steel structure seismic analysis and steel member design

51A-SSC-IH00-00600-000-00B

= 425.42 in^2 Locate Neutral X – axis

Moment of section areas at the bottom of bottom plates

W36s:	96.4in ² x 20.55in	-	1981. in ³
	76.5in ² x 39.51in	=	3022.5 in^3
Plates:	2in x 36.26in x 1in	=	72.5 in ³
	2(2in x 45in) x 23.89in	= .	4300. in ³
Σ Mom	ent Areas	-	9376 in ³
$Y_{bot} = 9$	9376 in ³ /425.42 in ²	=	22.04 in
$Y_{top} = 4$	7.78in – 22.04in	=	25.74 in

Compute Ix:

W36x260:	$1090 \text{ in}^4 + 76.5 \text{ in}^2(17.46 \text{in})^2$	=	24411.0 in^4
W36x328:	$22500 \text{ in}^4 + 96.4 \text{ in}^2(1.5 \text{ in})^2$	=	22717.0 in ⁴
2 Side Plates:	$2 \text{ x} (2\text{in})(45\text{in})^3/12 + 2 \text{ x} (2\text{in x} 45\text{in})(1.85\text{in})^2$	=	30991.0 in ⁴
1 Bottom Plate	$(36.26 \text{ in } x (2 \text{ in})^3/12 + (2 \text{ in } x 36.26 \text{ in})(21.04 \text{ in})^2)$	=	32103.0 in^4

Ix = 110222.0 in^4

Max. $Sx = Ix / Y_{bot}$

Max. $Sx = 110222 \text{ in}^{4}/22.04 = 5001.0 \text{ in}^{3}$

Min. $Sx = Ix / Y_{top}$

Min. $Sx = 110222 \text{ in}^{4}/25.74 = 4282.0 \text{ in}^{3}$

Shear Area: $Ax = (.84in)(33.38in) + 2((1.85in)(16.63in)) = 89.5 in^{2}$

Ay = $2((2 \text{ in})(45 \text{ in}) + (1.44 \text{ in})(16.55 \text{ in})) + (1.02 \text{ in})(33.39 \text{ in}) = 262 \text{ in}^2$

Compute Iy:

W36x260: W36x328: 2 Side Plates: 1 Bottom Plate	2 x (45in)(2in) ³ /12 + 2 x (2in x 45in)(19.1 :2in x (36.26in) ³ /12	3in) ²		17300.0 in ⁴ 1420.0 in ⁴ 66592.0 in ⁴ 7945.0 in ⁴
	ŀ	y	=	93257.0 in ⁴

 $Sy = 93257.0 \text{ in}^4 / 20.13 = 4633.0 \text{ in}^3$

Torsional Constant Ref.2.2.23

ATTACHMENT B PAGE NO. B- 11

$$J = 2t1 x t3 x b^{2}H^{2}/(b x t3 + H x t1) + 1/3(h x t2^{3})$$

The basic torsional constant equation for a rectangular box section per the above reference.

The **torsional constant** of the Built-Up section is computed based on the parts of a formed rectangular box section defined as follows (See sketch):

Part 1: A semi-uniform rectangular box consisting of a U-shaped 2 inch plates and closed on the 4^{th} side with the web thickness of W36x260 ($t1_w = 0.84$ in).

For the top and bottom plates, use the average plate thickness, $t1 = \frac{1}{2}(t1_w + t1_b) = 1.42$ in

$$J1 = 2t1 x t3 x b^{2}H^{2}/(b x t3 + H x t1)$$

 $J1 = 2 \times 1.42 \text{in} \times 2 \text{in} \times (38.26 \text{in})^2 \times (38.51 \text{in})^2 / (38.26 \text{in} \times 2 \text{in} + 38.51 \text{in} \times 1.42 \text{in})$

 $J1 = 93981 \text{ in}^3$

Part 2: Included parts of the 2 W36 flanges that are welded inside the semi-uniform rectangular box in Part 1.

 $J2 = 2t1_f x t3_f x b_f^2 h_f^2 / (b_w x t3_f + h x t1_f)$

 $J2 = 2 \times 1.85$ in x 1.44in x (16.63in)² x (8.7in)²/(34.82in x 1.44in + 35.24in x 1.85in)

 $J2 = 967 \text{ in}^3$

Part 3: The web of W36x328 at the centerline Y-axis of the Built-Up box section.

$$J3 = 1/3(h_w x t2^3)$$

 $J3 = 1/3[33.39in \times (1.02in)^3]$

 $J3 = 12 \text{ in}^3$

Torsional Constant J = J1 + J2 + J3 = 94,960 in⁴

Plastic Section Modulus

Ref.2.2.24

Plastic section modulus, is the arithmetical sum of the static moments about the neutral axis of the parts of the cross-section above and below, or left and right, of that axis.

About the neutral X-axis:

From	W36x260 =	$76.5in^2 x \ 17.46 in$	$= 1335.7 \text{ in}^{3}$
	W36x328 =	(16.63in x 1.85in)(16.12in + 19.12in)	=1084.2 in ³

	(1.02in x 15.2in) x 7.6in + (1.02in x 18.19in) x 9.1in			$= 286.7 \text{ in}^3$
	2in Bot Plate = (2in x 36.26in) x 21.04in			$= 1525.8 \text{ in}^3$
			Zx	=4232.4 in ³
About the Y-axis (symmetrical):				
From	W36x260			$= 1080 \text{ in}^3$
	W36x328			$= 265 \text{ in}^3$
	2in Bot. Plate	¹ / ₄ x 2in x (36.26in) ³		$= 657 \text{ in}^3$
	2 Side Plates	2(2in x 45in) x 38.26in/2		$= 3443 \text{ in}^3$
			Zv	$=\overline{5445 \text{ in}^3}$

Figure ID

(REF PG. NO -B-6) Attachment B

COLUMN @ COL 4C WITH 2X WF 24 X250

PG B-19 mag 2/22/08

Á

10/26107.

# B\$ - / 6 · 9	Bard falle Section	
SAP 2000 INPUT VALUE OF BUILDUP COL @ K-10 J-10	Section Name Properties Property Modifiers Material Section Properties Set Modifiers Dimensions Outlide depth [13] Outlide width [12] Flange thickness [14] Web thickness [14]	
E-6-10	Section Name BUILDUPCOL Properfies 1.4412 Section modulus about 3.4 Cross-section (axie) area 1.0917 Section modulus about 3.4 Torsional constant 1.0917 Section modulus about 3.4 Moment of Ineria about 3 axis 1.7299 Plastic modulus about 3.4 Moment of Ineria about 3 axis 0.4389 Plastic modulus about 2.4 Shear area in 3 direction 1.0502 Radus of Byration about 3.4 Shear area in 3 direction 0.5132 Radus of Gyration about 3.4	avis 1.050 avis 06225 vie 1.407 vie 0.7519 3 avis 1.0555 2 avis 0.5518
itari C Q	CUL 1 + Constant from the Constant of Provide Constant (24) of the Constant	Hilds And

BUILDUP COL (FIG I-A)

1.2223 FT³ CROSS SECTION AREA AXIAL 1.726 4 FT² SECTION MODULUS ABOUT 3 AXIS FT4 0.6886 FT3 1.3614 SECTION MODULUS ABOUT 2 AXIS TORSIQNAL CONSTANT FT 3 1.6059 MOMENT OF INERTIA ABOUT 3 AXIS 1.9251 PLASTIC MODULUS ABOUT 3 AXIS FT⁴ FT 3 0.8385 MOMENT OF INERTIA ABOUT 2 AXIS 0. 5406 FT PLASTIC MODULUS ABOUT 2 AXIS 1.2479 RADIUS OF GYRATION ABOUT 3 AXIS 1.0558 SHEAR AREA IN 2 DIRECTION FT² FT 4AN RADIUS OF GYRATION ABOUT 2 AXIS 0.5592 0.5142 FT SHEAR AREA IN 3 DIRECTION FT² SAP * ACFUAL SEC. Properties Less by 5%. (No, impact

• •

Des For These Kerness	Liew Herristan Section	は何は何から とうしょう シ	All the state of the	Sector Statistic Local		1	. تهنع
3 6 19 0	@ • {				• \$ •§F	174.	
1	Section Name			- 1			
	Recording	Desettu ModiSe	a Mataial			1	
	Section Proventies	Set Modified					
				-			
	Demensions Districts don't (12)	I	- [¥ 1 1			
	Cluster depth (13)	· · · · · ·			1.2		
	Uutside width (12)	- [-				
	Flenge thickness (U)	1	- 11				
	Web trickness (Iw)	1					
1							
	and the second second		2433 181			12	
	Property Data	(HALING SAR				×	
	Property Data					t ^K =	
	Property Data	20011				T × s	
	Property Data Section Name	pou -		-		1	
	Property Data Section Name Properties Doss-section Javiet ana	200L1	meden about 3 avis	-		1 ¹ 5	
	Property Data Section Name Properties Coss-section (asia) ans Torsional constant	COL1 1.77 Sectio 3.8509 Sectio	n modulus about 3 avis n modulus 2 avis	- - - - - - - - - - - - - - - - - - -		r ^X =	
	Property Data Section Name Poperties Doss-section (axis) area Tossional constant Honent of Ineria about 3 axis	EDL1 1.77 Sectio 3.6509 Sectio 2.5739 Plastic	n modukus abouk 3 avis n modukus abouk 2 avis n modukus abouk 3 avis		_ * _	r ^X :	
	Property Data Section Name Properties Coss-section (asia) area Tosional constant Homent of Ineria about 3 asis Moment of Ineria about 3 asis	COL1 1.77 Sectio 3.6509 Sectio 2.5739 Plastic 2.5739 Plastic	n modukus about 3 axis n modukus about 2 axis modukus about 2 axis modukus about 2 axis	1.6606 1.6506 1.5539 1.5539	_ * *	r [×] =	
	Property Data Section Name Properties Coss-section (asist) ans Tossional Constant Moment of Inertia about 2 asis Moment of Inertia about 2 asis Shear area in 2 direction	COL1 1.77 Sectio 3.6609 Sectio 2.5739 Plastic 2.5739 Plastic 0.93 Radius	n modulus about 3 axis n modulus about 2 axis modulus about 2 axis modulus about 2 axis at Gyration about 3 axis	1.6606 1.5506 1.5539 1.5538 1.2559 1.2059	_ * }	T [×] =	
	Property Data Section Name Properties Coss-section (arist) area Torsional constant Moment of Inertia about 2 aris Moment of Inertia about 2 aris Shear area in 2 direction Shear area in 3 direction	COL1 1.77 Sectio 3.6609 Sectio 2.5739 Plastic 2.5739 Plastic 0.33 Radius 0.33 Radius	n modulus about 3 axis n modulus about 2 axis reodulus about 2 axis reodulus about 2 axis of Gyration about 3 axis of Gyration about 2 axis	1.5505 1.5505 1.5539 1.2539 1.2059	- *	τ ^τ -	
	Property Data Section Name Properties Coss-section (asia) ana Tomion el constant Moment of Ineria about 3 asis Moment of Ineria about 2 asis Shear area in 2 direction Shear area in 3 direction	COL1 1.77 Sectio 3.6509 Sectio 2.5739 Plastic 2.5739 Plastic 0.93 Radue	n modulus about 3 avis n modulus about 2 avis modulus about 3 avis modulus about 2 avis modulus about 2 avis of Gyration about 2 avis of Gyration about 2 avis	1.6605 1.5505 1.9599 1.2059	- " *	Υ ^π	
	Property Data Section Name Properties Coss-section (asist) area Tossion et constant Homent of Inerite about 3 asis Moment of Inerite about 3 asis Moment of Inerite about 3 asis Shear area in 2 direction Shear area in 3 direction	COL1 1.77 Sectio 3.6509 Sectio 2.5739 Plastic 2.5739 Plastic 0.93 Radius 0.93 Radius	n modulus about 3 axis n modulus about 2 axis modulus about 3 axis modulus about 2 axis of Gyretion about 3 axis of Gyretion about 2 axis	1.6605 1.5606 1.9530 1.9596 1.2059	- "	Υ -	
	Property Data Section Name Properties Cross-section (asia) ares Tossional constant Monent of Inertia about 3 asis Moment of Inertia about 2 asis Shear area in 2 direction Shear area in 3 direction	COL1 1.77 Section 3.6509 Section 2.5739 Plastic 2.5739 Plastic 0.93 Reduct 0.93 Reduct	n modulus about 3 avis n modulus about 2 avis modulus about 3 avis modulus about 2 avis no Gyrelion about 3 avis no Gyrelion about 2 avis	1.6606 1.5606 1.5590 1.9598 1.2059		Υ ⁷ -	

ACTUAL PROPERTIES ---- REF PG NO BII-BIZ É FIGURE NO 1F

COL 1 (FIG I-F)

CROSS SECTION AREA AXIAL2.9543 FT^2 TORSIONAL CONSTANT4.5795 $=\pi^4$ MOMENT OF INERTIA ABOUT 3 AXIS4.4973 FT^4 MOMENT OF INERTIA ABOUT 2 AXIS5.3155 FT^4 SHEAR AREA IN 2 DIRECTION1.819 FT^2 SHEAR AREA IN 3 DIRECTION0.62 FT^2

SECTION MODULUS ABOUT 3 AXIS 2.894	FT ³
SECTION MODULUS ABOUT 2 AXIS 2.68	FT ³
PLASTIC MODULUS ABOUT 3 AXIS 3.1510	FT 3
PLASTIC MODULUS ABOUT 2 AXIS 2.4493	FT 3
RADIUS OF GYRATION ABOUT 3 AXIS 2.69	FT
RADIUS OF GYRATION ABOUT 2 AXIS 1.709	FT

r= ("/Ax)"2

ie G	Edt yew	Define	0	8	Draw	A	Carling Man		2	• • • • • • •	2, 22, 1, 1971 29 - 11	·	<u>-181 ×1</u>	
	·					1	Secular Halle	,			Sec.			
						10.0	Properties	Property	Modifiers	Material	10.00			
						-15	secon Properties	501 1	oodiers {			8		
						1	Dimensions				1	20		
						8	Uutade depth (13)			Í	-			
						-	Outside width (12)	1						
							Flange thickness (If)	t -			3			
			15				Web thickness (tw)						- 1	
	19					5	1						1	
					2,12								12	
						Pre	perly Data							
			15			ž +	a	64	n ••	a	•) 54 Feb == - 1			4
			1.0	÷.,		1 c.	Section Name		COL2				- 1	
					3	1.50	Properties -	_	_					
						1.1	Cross-section (axial) area	0.9624	Section	nociulus about 3 asis	0.6676	3.0		
						4.4	Torsional constant	1,4871	Section	modulus about 2 avis	0,9605			
						100	Moment of Inertia about 3 axis	0.9011	Plastic	nodulus about 3 asis	0.7956	1	1	
			1			10	Moment of Inertia about 2 axis	1.4404	Plastic	nodulus about 2 aois	1.0961		1	
						8	Shear area in 2 direction	0.576	Radius	of Gyration about 3 axis	0.5123			
-							Shear area in 3 direction	0.42	Radius	of Gyration about 2 axis	1.2234		1	-1
	·						0						· ·	
						1								0
				1		L			<u></u>	¥0	47 - X			Ver
		CROCKING S	1.7.9.4	E-Della	12:32	#.×725	and the second second	NAME OF	Sec. Standard	an and an and a second	in the first line			26
Ä						10			STI AN LOCALINA					10.20
2	Sec 1	2	2	At 6	-	In I	5 Coil #D, Mr 1	5" (15)	Lief			1	1	•

ACTUAL PROPERTIES ---- REF PG NO. B7-B8 & FIGURE NO 1-D

(G4 & J4) COL 2

less

	CROSS SECTION AREA AXIAL	1.9479	FT ²	SECTION MODULUS ABOUT 3 AXIS	2.3599	FT ³
	TORSIONAL CONSTANT	1.6519	PT4	SECTION MODULUS ABOUT 2 AXIS	1.3345	FT ³
	MOMENT OF INERTIA ABOUT 3	AXIS 3. 8603	FT⁴	PLASTIC MODULUS ABOUT 3 AXIS	2.6429	FT 3
2	MOMENT OF INERTIA ABOUT 2	AXIS 2.478	FT ⁴	PLASTIC MODULUS ABOUT 2 AXIS	1.4034	FT 3
->*	SHEAR AREA IN 2 DIRECTION	0.4229	FT ²	RADIUS OF GYRATION ABOUT 3 AXIS	1.4083	FT
Harris .	SHEAR AREA IN 3 DIRECTION	1.2167	FT ²	RADIUS OF GYRATION ABOUT 2 AXIS	1.1250	FT
8	.107		150		8	(F)
10/2	61* 1			9 - 1 2		

15

* Actual section property

ATTACHMENT B PAGE NO. B - 22

by 271.

ž

₩

SADianut huiltungaturna star Murgan 35 SADJOOD IOAD S REV IX Y Plane a 56 Edt Yew Define and Com 10 S S S S - 14 2 3 -	Word Box/Tube Section Section Name Properties Property Modifiers Material Section Properties	고 교 X 고 고 X X (고 고 · · · · · · · · · · · · · · · · ·
	Dimensions Outside depth. {13} Outside width (12) Flange thickness (14) Web thickness (1w)	
· . 今予、驚、二下 下 エ ス チ	Section Name CDL3 Properties Cross-section [avia] ares 1.0545 Section modulu: about 3 avis Cross-section [avia] ares 1.1434 Section modulu: about 2 avis 0.663 Moment of Inetis about 3 avis 0.56 Moment of Inetis about 2 avis 0.6634 Plastic modulu: about 2 avis 0.76 Shear area in 2 direction 0.833 Redux of Gyration about 2 avis 0.69	84 73 75 75 76
Popo 3 Sec 1 3/3 At 6"		B-7, B-8, B-9
ACTUAL TICC		EFIGURE NO 1-E 10-26-07
CROSS SECTION AREA AXIAL (, TORSIONAL CONSTANT),	L_{2} L_{2	AXIS 1.1285 FT ³ AXIS 1.2888 FT ³
MOMENT OF INERTIA ABOUT 3 AXIS MOMENT OF INERTIA ABOUT 2 AXIS SHEAR AREA IN 2 DIRECTION SHEAR AREA IN 3 DIRECTION	1.5217FT*PLASTIC MODULUS ABOUT 27 0.3804 FT*RADIUS OF GYRATION ABOUT 0.3275 FT*RADIUS OF GYRATION ABOUT	AXIS 1.6300 FT AXIS 1.4780 FT T3 AXIS 1.1125 FT T2 AXIS 0.9867 FT
* Actua NO	Sec. properties less by insignificant impact.	21.

51A-SSC-IH00-00600-000-00B

IHF Steel Structure Seismic Analysis and Steel Member Design

82 a 🔨

	5) SADinaal Antibuar alumn day - Micros				
	22 5AP2000 LOAD 5 RIV (X Y Plane :	Bay/Jupe Section			1 - 2
	Bast Bast 1 G +	Section Name	t and and a	ויאמ⊾ ייאלת∥. יניו	
	1 A	Properties Properly Modifiers Section Properlies	Material .		
		Outside depth (13) Outside with (12)			
	С. t	Flange thickness (V)		~	
	12		i L Display Color	e X	
	3	apriyData			
	NR.	Section Name CRANERAL	1		
		Constantian Constant	modulus about 3 aris 0.9331 modulus about 2 aris 0.5118	1	
	X	Moment of Insets about 2 axis 0.3592 Plastic m Shear area in 2 direction 0.775 Redius of	nodulus about 2 anis 0.6043 of Gyration about 3 anis 1.1174		
		Sheararea in 3 direction 0.4668 Radius o	of Gyration about 2 axis 0.55551		
	THE REPORT OF THE		diese en annae in middalaise e si an annae eann	- RANDE WILLIAM - THE -	
	Page 4 Sec 1 4/4 At 6"	In S Col 1 37: 15- 5: " (AR GB)	5. 11 Groger (southers	D Steps Bushuppel	MAD
	ACTION PRO	PERTIES	and a support of	FEPG NO 22	21200
	ACTURL. THE		10	E RILVERENO 1-B	09-00
1					4 10-11
	4	RANERAIL 1 (FIG	<u>I-B)</u>	1.1	*
2/22/08	CROSS SECTION AREA AXIAL	1.3086 FT ² SECTION	MODULUS ABOUT 3	AXIS 0.7323 FT' 5	THAN SAP
LESS	TORSIONAL CONSTANT	0.9879 FT4 SECTION	MODULUS ABOUT 2	AXIS 0.5247 FP	2/22/08
:55 -*	MOMENT OF INERTIA ABOUT 3 AX	XIS 1-4274 FT PLASTIC	MODULUS ABOUT 3 A	XIS 1.2/24 FT	The se THAN
SAP 21.	MOMENT OF INERTIA ABOUT 2 A	XIS 0.3970 FT PLASTIC	MODULUS ABOUT 2 A	XIS 0.4826 FT 3	- (C
	SHEAR AREA IN 2 DIRECTION	0.9354 FT ² RADIUS	OF GYRATION ABOUT	3 AXIS 1.0442 FT]	LESS THAN
·*	SHEAR AREA IN 3 DIRECTION	0.3194 FT ² RADIUS	OF GYRATION ABOUT	2 AXIS 0.5508 FT)	SAP
LESS THAN		Mana at Intertio	AND LESS	17 · 17 · 17	
SAP	* ACTUAL	MOW OF INCRIMY	SARIS LESS	/#//W 3/ 6/ 2/.	
	* ACTUAL	SHEAR IN 3 DIRECT	TION LESS	THAN SAP BY 321.	
	* ACTUAL	SEC. MOD. ABOUT	3 AXIS LESS	THAN SAP BY I'.	+
	* ACTUAL	PLASTIC MODULUS	ABOUT ZAXIS L	ESS THAN SAP BY ZIT.	
	* ACTUAL	RADIUS OF GYRATIO	N ABOUT 3 AXIS	LESS THAN SAP BY 71.	
	* ACTUAL	RADIUS OF GYRATI	ON ABOUT 2 P	XIS LESS THAN SAP BY	ГŽ. с
8					

ATTACHMENT B PAGE NO. B -24

.

51A-SSC-IH00-00600-000-00B

10.3

-07

IHF Steel Structure Seismic Analysis and Steel Member Design

* SLIGHTLY

St (Appropris Autolinament for the result Word	
ST SAP2000 I OAD STREV : 1 > Y Plane & Bry/Tube Section	
B G B S S S S S S S S S S S S S S S S S	
Reporties Property Modifier	s Malaia
Dimension	
Outside deph (3) Outside widh (12)	
K Flange thickness (#)	
Web Utickness (M)	
Property Data	
and Section Hene CRANERZ	JI2
Piòpetia	Direction of the second se
Torsional constant 0.3996 Section	n module about 2 arts
Montrad Institute State 14	modulus about 3 aois Uluseon modulus about 2 aois 0.3068
Shear area in 2 checton 0.4252 Reading	rol System about 3 avis: 0.9335 rol Greeken about 2 avis: 0.5560
	a a second a
	A THE AND AND AND AND A THE AND A TH
Page 5 Soci 5/5 At 5" In 5 Col'1 710 TPL 12" CAP	
Start	ston start of two to a local setting and the found of the start of the start of the start of the start of the st
ACTUAL PROPERTIES	REF PG NO 4- BG. B-5
i a	Z FIGURE NO 1-C WD 10-26
CRANERAL 2	(FIG I-C)
CROSS SECTION AREA AXIAL 0.7828 FT ² SECTIO	N MODULUS ABOUT 3 AXIS 0.4884 FT
TORSIONAL CONSTANT 0.4499 FT 4 SECTIO	N MODULUS ABOUT 2-AXIS 0,2796 FT
MOMENT OF INERTIA ABOUT 3 AXIS 0.6246 FT PLASTI	CMODULUS ABOUT 3 AXIS 0.621 5 FT 3
MOMENT OF INERTIA ABOUT 2 AXIS 0-1869 FT PLASTI	C MODULUS ABOUT 2 AXIS OF 3 76 (1 AT 3
SHEAR AREA IN 2 DIRECTION 0.5444 FT ² RADIU	SOF GYRATION ABOUT 3 AXIS 7. 8937 FT
SHEAR AREA IN 3 DIRECTION 0. 2475 FT RADIU	SOF GYRATION ABOUT 2 AXIS 0.4 883 FT SAI SAI SAI
LIGHTLY Tae (111)	· · · · · · · · · · · · · · · · · · ·
SAP Y Arrial Survey	
A FICTURE SHEAK AREA IN	1 3 VIK LESS IMAN SAP BY 1/
TE ACTUNE KOU. OF GYRATI	A ADUT & AXIS LESS THAN SAP BY 4'
T ACTUAL RAD OF GYRATION	TOUT 2 MXIS LESS THAN SAP BY 4'T.

G (J C K + SEE FIGURE. COL. 2 COL. 3 1D Pg NO B-17 Attachment B +++-----CoL. SEE FIGURE 1F PG NO B-19 Attochment-B → + + + ++ +++ + + + -<u>+</u>-<u>+</u>-++++ SEE FIGURE / IA PG. NO B-14 (E:G -++---++(J) K BUILT UP COL SECTION (TYP. _____ ++SAP2000 v9.1.4 - File:LOAD 5 REV - X-Y Plane @ Z=0 - Kip, ft, F Units

51A-SSC-IH00-00600-000-00B

