Design Calculation	or Analysis	Cover Sheet
---------------------------	-------------	-------------

BSC

Complete only applicable items.

2. Page 1

3. Sys	stem				4. Document Identifier		
Wet	Handling Facility				050-SYC-WH00-00	300-000-00B	
5. Titl	e					ENC 200	70326 0001
Wet	Handling Facility (WHF) Mass Prope	erties				ENG.200	
6. Gro	pup						
Civil	/Structural/Architectural						
7. Do	cument Status Designation						
	Pre	liminary		Committed	Confirmed	Cancelled/S	Superseded
8. Not	tes/Comments						
T 1	- 1 1- 4i	1]	DISCLAIME	R	Common LLC	(DSC) and an
inter	calculations contained in this c ided solely for the use of BSC	in its v	ent we work f	or the Yucca I	by Bechtel SAIC Mountain Project.	Company, LLC	(BSC) and are
			Attach	ments	······································		Total Number of Pages
Attac	hment A: List of Plant Design Drawi	ngs					1
Attac	hment B: Plans, Sections and Elevati	on Ske	tches of	fWHF			17
Attac	hment C: Weight Distribution Due to	the Ca	nister 7	Fransfer Machine	;		2
	· · · ·				(000 <u>0000</u>		
			RE	CORD OF REVISI	ONS		
0	40	11.	12.	13.	14.	15.	16.
9. No.	10. Reason For Revision	Total #	Last	Originator	Checker	EGS	Approved/Accepted
		or Pgs.	Pg. #		(Print/Sign/Date)	(Print/Sign/Date)	(Print/Sign/Date)
00A	Initial Issue	84	B-17	Surendra K. Goel 2/1/07	Pravin Udani 02/01/07	Michael Ruben 2/1/07	Raj Rajagopal 2/2/07
00B	General Revision: Pages 1-66 and A-1	96			D is titles i		D 'D ' 1
	Pages 11, 18, 25, 28, 32, 34, 39-50, 53, and	80	C-7.	Surendra K. Goel	Pravin Udani	Michael Ruben	Raj Rajagopal
	56-64. Pages C-1 and C-2 have been added.		SUG	Selval	E m	Sur U.R	Hereph
	1) The floor at El -34 ' was eliminated as a		3/28/0	7 3/24/07	03/24/07	A II	for
	diaphragm as it is too small for diaphragm		7-9-	/ -11-/		Opomas franke	312410'
	action 2) Masses of building walls at floor elevations 100', 80', 40', 32', 0' and -52'					3/24/07	·
	were recalculated based on a more realistic						
	distribution of wall masses between floors						
	for accuracy. 3) Loads due to the Canister						
	Transfer Machine were added. 4) Pages 39 to 50, 53, and 56 to 64 of the calculation						
	without water in the pool were exact						
	duplicates of the case with the water in the						

CONTENTS

Page

1.	PURPOSE	3
2.	REFERENCES.2.1PROJECT PROCEDURES/DIRECTIVES.2.2DESIGN INPUTS	3 3 3 4 4
3.	ASSUMPTIONS	4 4 6
4.	METHODOLOGY	7 7 7 7
5.	LIST OF ATTACHMENTS	8
6.	BODY OF CALCULATIONS	8
7.	RESULTS AND CONCLUSIONS 6 7.1 RESULTS 7.2 CONCLUSIONS	6 6 66
AT	TACHMENT A LIST OF PLANT DESIGN DRAWINGS	-1
AT	TACHMENT B PLAN, SECTION AND ELEVATION SKETCHES OF WHF B-	-1
AT Ma	TACHMENT C WEIGHT DISTRIBUTION DUE TO THE CANISTER TRANSFER ACHINE	-1

FIGURES

Page

1. PURPOSE

The purpose of this calculation is to compute the mass properties of the Wet Handling Facility (WHF) concrete shear wall structure for the condition when the below grade water pit of the WHF is filled with water and when it is empty.

The basis of design for the WHF is defined in *the Basis of Design for the TAD Canister-Based Repository Design Concept*, 000-3DR-MGR0-00300-000, (Ref. 2.2.3)

2. REFERENCES

2.1 PROJECT PROCEDURES/DIRECTIVES

- 2.1.1 BSC 2006. EG-PRO-3DP-G04B-00037, Rev.7, *Calculations and Analyses*. Las Vegas, Nevada. Bechtel SAIC Company. ACC: ENG.20070122.0010
- 2.1.2 IT-PRO-0011, Rev. 3, ICN 0. *Software Management*. Las Vegas, Nevada. Bechtel SAIC Company. ACC: DOC.20061221.0003
- 2.1.3 ORD (Office of Repository Management) 2006, *Repository Project Management Automation Plan*, 000-PLN-MGR0-00200-000, Rev. 00D. Las Vegas, Nevada. Bechtel SAIC Company. ACC: ENG.20060703.0001.(DIRS 178400)

2.2 DESIGN INPUTS

- 2.2.1 BSC (Bechtel SAIC Company) 2006. Project Design Criteria Document. 000-3DR-MGR0-00100-000-006. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20061201.0005 (DIRS 178308)
- 2.2.2 Clough, R.W. and Penzien, J. 1975, *Dynamics of Structures*. New York, New York: McGraw-Hill. TIC: 254783, [DIRS 164683]
- 2.2.3 BSC (Bechtel SAIC Company) 2006, *Basis of Design for the TAD Canister-Based Repository Design Concept* 000-3DR-MGR0-00300-000-000. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20061023.0002. (DIRS 177636)
- 2.2.4 BSC (Bechtel SAIC Company) 2006. Seismic Analysis and Design Approach Document. 000-30R-MGR0-02000-000. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20061214.0008.
- 2.2.5 BSC (Bechtel SAIC Company) 2006 Wet Handling Facility Preliminary Layout Ground Floor Plan. 050-P0K-WH00-10301-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20060920.0004.
- 2.2.6 BSC (Bechtel SAIC Company) 2006. *Wet Handling Facility Preliminary Layout Second Floor Plan.* 050-P0K-WH00-10401-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20060920.0005.

- 2.2.7 BSC (Bechtel SAIC Company) 2006. *Wet Handling Facility Preliminary Layout Section A* 050-P0K-WH00-10501-000-00A .Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20060920.0006.
- 2.2.8 BSC (Bechtel SAIC Company) 2006. *Wet Handling Facility Preliminary Layout Section B* 050-P0K-WH00-10601-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20060920.0007.
- 2.2.9 BSC (Bechtel SAIC Company) 2007 Wet Handling Facility Preliminary Layout Ground Floor and Pool Basement Plans, 050-P0K-WH00-10101-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.2070221.0002.
- 2.2.10 BSC (Bechtel SAIC Company) 2007. Wet Handling Facility Preliminary Layout Second Floor Plan. 050-P0K-WH00-10102-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070221.0003.
- 2.2.11 BSC (Bechtel SAIC Company) 2007. *Wet Handling Facility Preliminary Layout Section A* 050-P0K-WH00-10103-000-00A .Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070221.0004.
- 2.2.12 BSC (Bechtel SAIC Company) 2007. *Wet Handling Facility Preliminary Layout Section B* 050-P0K-WH00-10104-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070221.0005.
- 2.2.13 BSC (Bechtel SAIC Company) 2007. CRCF, IHF, RF, and Canister Transfer Machine Mechanical Equipment Envelope, 000-MJO-HTC0-00201-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20061120.0011.

2.3 DESIGN CONSTRAINTS

None

2.4 DESIGN OUTPUTS

The mass properties generated herein will be used in the development of a "beam/column" lumped mass stick model for the Tier 1 seismic analysis of the WHF structure in the following calculation:

2.4.1 050-SYC-WH00-00200-000-00A, Tier 1 Seismic Analysis Using a Multiple Stick Model of the WHF.

3. ASSUMPTIONS

3.1 ASSUMPTIONS REQUIRING VERIFICATION

3.1.1 Structural Steel Framing Dead Loads are assumed as follows.

Base Slab at EL 0' and EL 20'..... (a) 10 lbs/ft²

Rationale: Structural steel represents a small fraction of the total mass of the WHF structure. Actual steel weights will be used as the design matures in the detailed design phase of the project. This assumption is being tracked in CalcTrac.

3.1.2 Equipment dead loads on floors are assumed as 100 lbs/ft² at EL. -52', +0', 32', and 40'. Equipment dead loads on Roof El. 80' & 100' are taken as 10 lbs/ft². Equipment dead loads include cranes less than 50-ton capacity, HVAC equipment, and electrical equipment, etc.

Rationale: The 10 lbs/ft^2 and 100 lbs/ft^2 dead loads are conservative assumptions for this type of structure. Actual equipment weights will be used as the design matures in the detailed design phase of the project. This assumption is being tracked in CalcTrac.

3.1.3 Roofing Dead Load @ Roof El. 80' & 100' is assumed as 55 lbs/ft².

Rationale: This is a reasonable assumption for a lightweight concrete fill material with an average thickness of 6 inches as well as membrane roofing material to be applied over the concrete slab. This assumption is being tracked in CalcTrac.

3.1.4 The dead load of the 200-ton capacity crane is assumed to be 400 kips.

Rationale: The 400 kip load is a conservative weight, bounding weights given in industry standards for a 200-ton crane with a 100-ft span. This assumption is being tracked in CalcTrac.

3.1.5 The floor slab for the 200-ton crane maintenance area between column lines B/C and 1/2, shown at El. +50' on Sketch Page B-14 is relocated to El. +40'. Likewise, the floor slab supporting the pool equipment is relocated from El. +30' as shown in the sketch to El. +20'. The El. +20' slab is considered in the mass and moment of inertia calculations by simply adding it to the slab at El. +0'. Relocation of the two slabs will be incorporated in the plant design drawings.

Rationale: Relocating the crane maintenance slab to El. +40' is to provide continuity to the frame diaphragm resulting in a more stable building structure. Crane maintenance function will not be impacted by this relocation. The pool equipment floor is then conveniently relocated in the middle of the crane maintenance floor and the ground floor at El. +0'. It is conservatively added to the weight of the slab at El. +0' for the mass and moment of inertia calculation. This assumption is being tracked in CalcTrac.

3.1.6 Live load is assumed to be 100 lbs/ft^2 for the floors and 40-lbs/ft^2 for the roof. Twenty five percent (25 lbs/ft² and 10 lbs/ft²) of these loads will be included during an earthquake for calculating the mass properties for use in the seismic analysis.

Rationale: 100 lbs/ft^2 Live load for floor live load and 40 lbs/ft^2 live load for roof is the standard engineering practice for heavy industrial buildings. Consideration of 25% of live load during seismic event is consistent with Section 8.3.1 of Ref. 2.2.4. This assumption is being tracked in CalcTrac.

3.1.7 The concrete walls between column lines B to C and 1 to 2 are 12 inches and 18 inches thick. These walls are supporting the slab at El. 20' and rest on the ground floor mat at El. 0'. The wall locations are taken from the Plant Design Software (PDS) model.

Rationale: The WHF sketch in Attachment B (Page B-3) shows the locations of these walls different from those used in this calculation and do not show their thicknesses. They were added after issuance of the sketches during design development. The wall locations and their thickness will be validated with the issuance of final WHF general arrangement drawings. This assumption is being tracked in CalcTrac.

3.1.8 This calculation continues to be based on WHF plans and sections shown in references 2.2.5, 2.2.6, 2.2.7, and 2.2.8 even though they have been superseded by references 2.2.9, 2.2.10, 2.2.11, and 2.2.12.

Rationale: The main difference between the two sets of drawings is the changing column lines and wall openings in the revised WHF floor plans. These changes do not impact the mass properties and the stick model results. A soil-structure interaction analysis using SASSI and detailed FEM using References 2.2.9, 2.2.10, 2.2.11, and 2.2.12 will supersede the results of this preliminary analysis. This assumption is being tracked in CalcTrac.

3.1.9 The estimated total weight of the canister transfer machine (CTM) is 400 tons. It includes the weight of the machine, hoist, all appurtenances, and the canister.

Rationale: Reference 2.2.13 lists the weight of the machine as estimated weight. The actual weight shall be tracked in CalcTrac.

3.2 ASSUMPTIONS NOT REQUIRING VERIFICATION

3.2.1 Wall openings were not considered in the mass calculation.

Rationale: Most major wall openings have a shield door, which is approximately equal to the weight of the concrete removed to form the opening. Neglecting other types of door openings is conservative since a larger mass will result in a larger load to be carried by the walls.

3.2.2 The mass of any moving crane weighing more than 50 tons is assumed as a concentrated mass acting at location giving maximum eccentricity.

Rationale: Using concentrated mass instead of distributed mass is conservative. Taking mass acting at location giving max eccentricity is bounding.

3.2.3 The pool mass (with water) includes the weight of four casks weighing 200 tons each.

Rationale: Section 5.2.1.8 of Reference 2.2.3 gives the maximum rail cask weight of 200 tons that will be in the WHF. There is enough space in the pool for four casks. This is a bounding assumption not requiring verification.

3.2.4 Plans, elevations, and sections of the WHF shown in Attachment B form the basis for computation of the mass properties of the WHF.

Rationale: The WHF plans, elevations and sections in Attachment B are taken from the approved plant design sketches listed in Attachment A (Ref 2.2.5 through Ref. 2.2.8)

3.2.5 The slab at El. -34' is eliminated from the model as a diaphragm. And its weight is combined with the slab at El. -52'.

Rationale: The slab at El. -34' is relatively small as compared to the rest of the concrete in its vicinity and is not suitable for diaphragm action. Combining its weight with the base slab at El. -52' leads to a more realistic model of the structure.

4 METHODOLOGY

4.1 QUALITY ASSURANCE

This calculation was prepared in accordance with procedure EG-PRO-3DP-G04B-00037, *Calculations and Analyses*, (Ref. 2.1.1). Section 5.1.2 of the *Basis of Design for the TAD Canister-Based Repository Design Concept* (Ref. 2.2.3) classifies the WHF structure as ITS. The approved version of this calculation is designated QA:QA.

4.2 USE OF SOFTWARE

Word and Excel, which are a part of the Microsoft Office 2000 suite of programs, were used in this calculation. Word and Excel are classified as Level 2 software usage and are not required to be qualified under the procedure of *Software Management* (Ref. 2.1.2, Section 4).

The calculation process and equations are documented in Section 6 of the document for checking by manual calculations.

The numbers shown in the spreadsheet calculations have been rounded off in Excel. Computations performed within Excel are based on actual numbers stored in Excel.

4.3 DESIGN APPROACH

The sketches in Attachment B were developed using the plant design sketches list in Attachment A (Ref. 2.2.5 through 2.2.8). The plans, sections and elevations with wall/slab thickness and dimensions shown in Attachment B will be used as the basis for computation of the mass properties of the WHF (Assumption 3.2.4)

The masses of the structure are combined at the diaphragm (floor/roof) elevation of the structure. For the WHF, the diaphragm elevations are located at elevation -52° , 0', 32', 40', 80', and 100'.

See Attachment B. Masses of the walls are combined with the diaphragms by considering half of the wall mass as tributary to the floor/roof at the bottom of the wall and half of the mass as tributary to the floor/roof at the top of the wall. The masses, centers of mass, and mass moments of inertia of the structure are computed for the various diaphragm (floor/roof) elevations of the structure using basic principles of Mechanics of Materials.

5 LIST OF ATTACHMENTS

Number of Pages

Attachment A	List of Plant Design Drawings	1
Attachment B	Plan, Section, and Elevation Sketches of WHF	17
Attachment C	Weight distribution due to the Canister Transfer Machine	2

6 BODY OF CALCULATIONS

In this section of the calculation, the masses, centers of mass, and mass moments of inertia of the structure are computed. The following two scenarios are considered in the calculations:

- The pool in the basement of the WHF is filled with water to a depth of 48'-0". Concurrently, four casks weighing 200 tons each are located in the farthest corner of the pool. This will give the maximum moment of inertias.
- There is neither the water nor the casks in the pool

The slab elevations are located at -52', 0', 32', 40', 80' and 100' are considered the diaphragm locations. As discussed in Section 4.3, masses of the walls are combined at the diaphragms by considering that half of the wall mass as tributary to the floor at the bottom of the wall and half of the mass is tributary to the floor at the top of the wall. This methodology is consistent with the methodology commonly used in the development of lumped mass stick models of structures. Distribution of the 400-ton weight of the Canister Transfer Machine (CTM) in Room 2004 of the WHF is given in Attachment C.

The following spreadsheets are used to compute the masses, mass moments of inertia, and centers of gravity for slabs and walls for each diaphragm elevation. Spreadsheets have been created to compute masses, mass moments of inertia, and centers of gravity of each floor when the pool is filled with water. Four casks each weighing 200 tons are included in the weight of the water. Additional sheets have been created for the case when there is no water or casks in the pool. Concrete density is used as 150 Pcf. (Ref. 2.2.1, Section 4.2.11.6.6). Gravity (g) is taken as 32.2 ft/sec². Ref 2.2.2 [DIRS 164683] has been used in the computing the mass moments of inertia. Citations are given on the appropriate sheets.

Assumptions listed in Section 3.1 are used in this calculation on the following pages:

Assumption 3.1.1 is used on Pages 10, 12 through 16 and 38 Assumption 3.1.2 is used on Pages 10, 12 through 16 and 38 Assumption 3.1.3 is used on Pages 15 and 16 Assumption 3.1.4 is used on Pages 15 Assumption 3.1.5 is used on Pages 12, 14, B-14 and B-15 Assumption 3.1.6 is used on Pages 10, 12 through 16 and 38 Assumption 3.1.7 is used on Pages 19, 29, and B-3 Assumption 3.1.8 is used on Pages 10, 12-17, 19-24, 26-27, 29-31, 33, 35-38, 51-52, 54-55 & 65 Assumption 3.1.9 is used on Pages 13, 15, 16, C-1, and C-2

The coordinate system used in computing the mass moments of inertia of WHF is shown in Figure 1. For seismic analyses (Ref. Sections 2.4.1 and 2.4.2), the coordinates should be appropriately transferred to the axis system used in those analyses.

Figure 1

Coordinate System Showing Origin

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Slab ⁽³⁾ Width (W) Len.(L) Thick Weight = (Wt) CG Xi ⁽¹⁾ CG Zi ⁽¹⁾ Wt * CG Xi Wt * CG Zi Steel Load Dead Load Load (Wt) * CG Xi (Wt) * CG Xi Wt * CG Xi
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
(a) Conc.Slab (7): \sim </th
(a) Conc.Slab (¹): Image: Conc.Slab (¹):
B-C/2.4-5 114.00 116.00 8.00 15,868.80 127.00 105.00 2,015,337.60 1,666,224.00 528.96 1,322.40 330.60 277,108.92 229,105.80 18,050.76 2,292,446.52 1,895,32' B-2-B.8/3.7-4.2 ⁽¹⁰⁾ 18.00 65.00 2.00 351.00 146.00 105.00 51,246.00 36,855.00 46.80 117.00 29.25 28,185.30 20,270.25 544.05 79,431.30 57,125. L Σ 16,219.80 Σ 2,066,583.60 1,703,079.00 575.76 1,439.40 359.85 305,294.22 249,376.05 18,594.81 2,371,877.82 1,952,455 L Σ 16,219.80 Σ Z Z Z S75.76 1,439.40 359.85 305,294.22 249,376.05 18,594.81 2,371,877.82 1,952,455 L Σ
B.2-B.8/3.7-4.2 ⁽¹⁰⁾ 18.00 65.00 2.00 351.00 146.00 105.00 51,246.00 36,855.00 46.80 117.00 29.25 28,185.30 20,270.25 544.05 79,431.30 57,125.
Δ Δ
Σ = 16,219.80 2,066,583.60 1,703,079.00 575.76 1,439.40 359.85 305,294.22 249,376.05 18,594.81 2,371,877.82 1,952,455 L xbar zbar xbar zbar
xbar zbar zbar <t< td=""></t<>
Center of Concrete Slab =127.41105.00 $xbar = \Sigma (Wt * CGXi)/\Sigma Wt$ $zbar = \Sigma (Wt * CGZi)/\Sigma Wt$
L iCenter of other Applied Loads = 1 128.54 105.00 xbar = Σ ((Wi) * CGXi)/Σ (Wi) zbar=Σ ((Wi)*CGZi)/Σ (Wi)
$ \begin{array}{c} \hline \hline \\ $
10 water at 101 role
$C_{\text{entree of Pool}} = \frac{\lambda \Delta a_1}{2 \sqrt{a_1}} = \frac{\lambda \Delta a_2}{2 \sqrt{a_2}} + \frac{\lambda \Delta a_2}{2 \sqrt{a_2}} + \frac{\lambda \Delta a_1}{2 \sqrt{a_2}} = \frac{\lambda \Delta a_2}{2 \sqrt{a_2}} + \frac{\lambda \Delta a_2}{2 \sqrt{a_2}$
$ \begin{array}{c} \hline \\ \hline $
Centrol of All Pool Water Loads = 112.42 105.00 $xbar \in C(X) \cup X_{wat}$ $zbar = \Sigma(W_{wat} \in C(X)) \cup X_{wat}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\frac{\mathbf{V}_{BF} - \mathbf{Z}_{OH}}{\mathbf{V}_{BF} - \mathbf{Z}_{OH}} = \frac{14800}{14800} + \frac{14800}{100} + \frac{1000}{100} + \frac{1000}{10$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Totes:
1 Por continuate system definitions see Section 0.
2 Numbers and relations of the forming + Distributions of the Containing.
3 W1: Subclutari succi naming + Trationis & misc secti per mori of 1001 (set Section 3.0).
 W2. 2007 (althousing for loss weighing test that 50 tons, incluance, electrical & piping (see section 5.0).
3 W3.23 Working Wite Noa (See Section 3.0).
6. Appine Loads = win-(wint with 2.5%) (Ce and Water = 0.0524 Kine/Ce
$f_{1}(\pi)^{-1}$ that the decontractive types that in the first state of the pool (Pafer to Assumption 3.2.3).
0. To statistication of the state of the sta
10 Weight of slab at El - 34' combined with the slab at El - 52'

Weight and Centroid of Floor Slab @ Elev. - 34' (Pool with Water) :

,

This page is deleted. Weight of slab at EL. -34' is combined with slab at El. -52'

Weight a	nd Centroi	id of Floor	Slab (a	Elev. + 0' (Pool wit	h Water):									
(Refer to: A	ttB, Sht.B-3	, B-15 and B-	17)				-									
				(See Note 7)					Struct'l.	Equipment	Live	(See Note C	(Fac Nata C)		(See Note 8)	
Slab ⁽²⁾	Width (W)	Length (L)	Thick	Weight=(Wt)	CG Xi ⁽¹⁾	CG Zi ⁽¹⁾	Wt * CG Xi	Wt * CG Zi	Steel Load	Dead Load	Load	(Wi) * CG Xi	(Wi) * CG Zi	Total Weight	W _{total} *CG Xi	W _{total} * CGZi
	(Xdim)	(Zdim)	<u>t</u>	L*W*t*0.15					(10 psf)	(100 psf)	(25psf)	(,	(, 60 E	(W _{tatal})		
	<u>(</u> ft)	(ft)	<u>(ft)</u>	(kips)	(ft)	(ft)	(ft-kips)	(ft-kips)	W1 (kips)	W2 (kips)	W3 (kips)	(ft-kips)	(ft-kips)	(kips)	(ft-kips)	(ft-kips)
	<u> </u>															
A-D/1-7	270.00	214.00	6.00	52,002.00	133.00	105.00	6,916,266.00	5,460,210.00	577.80	5,778.00	1,444.50	1,037,439.90	819,031.50	59,802.30	7,953,705.90	6,279,241.50
B-C/1-2	55.00	84.00	1.50	1,039.50	28.50	97.00	29,625.75	100,831.50	46.20	462.00	115.50	17,775.45	60,498.90	1,663.20	47,401.20	161,330.40
at EL 20'																
B-C/2-4	75.00	61.00	-6.00	-4,117.50	115.50	105.00	-475,571.25	-432,337.50	-45./5	-45 /.50	-114.38	-71,335.69	-64,850.63	-4,735.13	-546,906.94	-497,188.13
(Pool area d	eduction)			<u> </u>												
	<u> </u> ``															
	<u> </u>		·													
			<u> </u>	48 974 00			6 470 320 50	5 128 704 00	578 25	5 787 50	1 445 63	983 879 66	814 679 78	56 730 38	7 454 200 16	5 943 393 78
┣────				40,724.00	<u> </u>	-	0,470,520.50	3,120,704.00	576.25	3,702.30	1,445.05	383,877.00	014,075.70	30,730.30	7,434,200.10	3,743,383.78
					xbar	zbar						<u> </u>				
	<u> </u>															
		Center of Co	oncrete S	lab=	132.25	104.83		xbar = Σ (Wt *	CGXi)/ΣWt			$zbar = \Sigma (Wt^*)$	CGZi)/2 Wt			
		Center of Of	ther App	lied Loads =	126.04	104.36		xbar = Σ {(Wi)	* CGXi}/Σ (W	/i)		zbar=Σ {(Wi)*	CGZi}/Σ (Wi)			
		Centroid of	All Load	s =	131.40	104.77		$xbar = \Sigma (W_{tota})$	<u>, * CGXi)/Σ W</u>	total		$zbar = \Sigma (W_{tota})$	¹ * CGZi)/Σ W _{to}	tal		
														l		
Notes:									_							
1 For coord	inate system d	efinition see S	ection 6.													
2 Numbers	and letters are	in reference to	o the colu	umn grid lines for	the buildin	ıg.										
3 W1: Struc	tural steel frar	ning + Platfor	ms & mis	sc steel per floor	or roof (see	Section 3.0	<u>)).</u>									_
4 W2: Floor	equipment lo	ad including c	ranes wie	ghing less than 5	0 tons, mec	chanical, ele	ctrical & piping	(seee Section 3.	0)							
5 W3: 25%	of the specifie	a live load (se	e Section	3.0).	_											
o. Applied L	$oaas = w_1 = ($	W1+ W2+W3	·)												·	
V . Unit who is $V_{m} = 0$	Wt+W1+W2	+W3)														
$o, w_{(Total)} = ($	W LT W 1 T W 2			_	_		_									

Weight an	d Centroic	l of Floor S	Slab @ El	ev. + 32' (P	ool with	Water)	:										
(Refer to: At	tB , Sht.B-4)															
				(See Note 7)					Struct'l.	Canister	Equipment	Live	(See Note 6)	(See Note 6)	(See Note 8)		
Slab (*)	Width (W)	Length (L)	Thickness	Weight=(Wt)	CG Xi ⁽⁰⁾	CG Zi	Wt * CG Xi	Wt * CG Zi	Steel Load	Transfer	Dead Load	Load	(Wi) * CG Xi	(Wi) * CG Zi	Total Weight	W _{total} *CG Xi	W _{total} * CGZi
	(Xdim)	(Zdim)	t	L*W*t*0.15					(40 psf)	Machine	(100 psf)	(25psf)	(,	<u>, , ,</u>	(W _{total)}		
	(ft)	(ft)	(ft)	(kips)	(ft)	(ft)	(ft-kips)	(ft-kips)	W1 (kips)	Wctm (kips)	W2 (kips)	W3 (kips)	(ft-kips)	(ft-kips)	(kips)	(ft-kips)	(ft-kips)
L																_	
A-B/4-7	122.0	57.0	4.0	4,172.4	207.0	26.5	863,686.8	110,568.6	278.2		695.4	173.9	237,513.9	30,406.4	5,319.8	1,101,200.7	140,975.0
(at EL 32')																	
						<u> </u>											
Canister Tra	asfer M/C				170.0	0.0	·			222.0			37,740.0	0.0	222.0	37,740.0	0.0
					170.0	53.0				176.1			29,937.0	9,333.3	176.1	29,937.0	9,333.3
└── ₋┤																	
					L												·
					<u> </u>	<u> </u>				l							
			Σ=	4,172.4		<u> </u>	863,686.8	110,568.6	278.2	398.1	695.4	173.9	305,190.9	39,739.7	5,717.9	1,168,877.7	150,308.3
I						<u> </u>											
┝───┤		0		l	xbar	zbar		1 5 634	+ 00 W 0 V	<u> </u>			- Barris				
\vdash		Center of Co	ncrete Slab=	= 	207.0	20.5		xbar = 2 (Wt	* CGXI/2 W	Vt			$zbar = \Sigma (Wt^*)$	CGZI)/2, Wt			
		C		L	200			-h	0 + CCV0 (C				zha	C78/5 (W8)			
		Center of Ut	ner Appneu	Loads =	200.0	34.0		$x \text{ Dar} = \mathcal{L} \{(w)\}$	i) * UGAI}/2	(wi)			20a1-2 ((WI) (
		Centroid of /			204.4	26.3		$xhar = \Sigma W$	* CGXi)/2	W			$zbar = \Sigma (W)$	* CCZ0/5 W	·		
Notors			til Loads -		204.4	20.5		<u>xbui</u> = (**)		" IOIRI		1	Loan D (Vi lotal				L
1 For coordin		Finition too Fo	ation 6							-							
2 Numbers ar	nd letters are in	n reference to	the column o	rid lines for the l	building												
3 W1 Struct	ural steel frami	ing + Platform	s & misc ster	al per floor or ro	of (see Sect	ion 3.0)									_		
4 W2: Floor e	ouinment loa	1 including era	anes wieghin	g less than 50 tor	ns mechan	ical electric	al & nining (se	ee Section 3.0)									
5 W3-25% 0	f the specified	live load (see	Section 3.0)	<u> </u>	ns, meenu		ai te piping (se	ce Beetton 5.0)									
6 Applied Lo	ads = Wi = (V)	V1+ W2+W3)					_								·		
7. Unit Wt of	Concrete= 0.1	50 Kips /Cft	·														
8. $W_{(Total)} = (V$	Wt+W1+W2+	W3+Wctm)	· ·												_		
9. Wetm = We	eights due to t	he Canister Tr	ansfer Mach	ine, see Attachm	ent C					_						-	
9. Wetm = We	eights due to t	he Canister Tr	ansfer Mach	ine, see Attachm	ent C												

Weight	and Cent	roid of Sec	ond Floor	Slab @ Elev	·. + 40'	(Pool w	ith Water)									
(Refer to	AttB , Sht.H	3-4)				Î					1					
				(See Note 7)					Struct'l.	Equipment	Live			(See Note 8)		
Slab ⁽²⁾	Width (W)	Length (L)	Thickness	Weight=(Wt)	CG Xi ⁽¹⁾	CG Zi ⁽¹⁾	Wt * CG Xi	Wt * CG Zi	Steel Load	Dead Load	Load	(See Note 6)	(See Note 6)	Total Weight	W _{total} *CG Xi	W _{total} * CGZi
	(Xdim)	(Zdim)	ť	L*W*t*0.15					(40 psf)	(100 psf)	(25psf)		(WI) - CG ZI	(W _{total})		
	(ft)	(ft)	(ft)	(kips)	(ft)	(ft)	(ft-kips)	(ft-kips)	W1 (kips)	W2 (kips)	W3 (kips)	(ft-kips)	(ft-kips)	(kips)	(ft-kips)	(ft-kips)
								_								
A-B/1-4	152.0	55.0	2.0	2,508.0	74.0	26.5	185,592.0	66,462.0	334.4	836.0	209.0	102,075.6	27,692.5	3,887.4	287,667.6	103,016.1
C-D/1-6	216.0	55.0	2.0	3,564.0	106.0	183.5	377,784.0	653,994.0	475.2	1,188.0	297.0	207,781.2	272,497.5	5,524.2	585,565.2	1,013,690.7
B-C/1-2	61.0	104.0	1.5	1,427.4	30.0	105.0	42,822.0	149,877.0	253.8	634.4	158.6	31,402.8	83,265.0	2,474.2	74,224.8	259,786.8
						L										
										_	<u> </u>				<u> </u>	
	<u> </u>							·			<u> </u>				<u> </u>	
			Σ =	7 499 4			606,198.0	870.333.0	1.063.4	2,658.4	664.6	341.259.6	383,455,0	11.885.8	947.457.6	1.376.493.6
		— —		.,					1,00011							
					xbar	zbar	i —									· · · ·
												-				
		Center of Co	ncrete Slab=		80.8	116.1		xbar = Σ (Wt	* CGXi)/Σ W	/t		$zbar = \Sigma (Wt^*)$	CGZi)/ΣWt			
													-			
		Center of Ot	her Applied	Loads =	77.8	87.4	 	$xbar = \Sigma \{(Wi$) * CGXi}/ Σ	(Wi)		zbar=Σ {(Wi)*	CGZi}/Σ (Wi)			·
		Centroid of			707	115.9	<u> </u>	$xhar = \Sigma (W)$		W		$z_{har} = \overline{\Sigma} (W_{})$.* CGZi)/Σ W.			
	<u> </u>	Centrold of			12.1	115.5										
Notes:			L						<u> </u>	·		<u> </u>			<u>k</u>	
1 For coo	ordinate syster	n definition se	e Section 6.													
2 Numbe	rs and letters a	are in reference	e to the colum	in grid lines for th	e building	,										
3 W1: St	ructural steel f	framing + Plat	forms & misc	steel per floor or	roof (see S	Section 3.0)	. —								÷	
4 W2: Fl	oor equipment	load including	g cranes wieg	hing less than 50	tons, mech	anical, elec	trical & piping	seee Section 3.	D).							
5 W3: 25	% of the spec	ified live load	(see Section 3	3.0).		-										
6. Applie	1 Loads = Wi	= (W1+W2+	W3)										2			
7. Unit W	eight of Conc	rete= 0.150 Ki	ps /Cft													
8. W(Total)	= (Wt+W1+'	W2+W3)														

.

and C	.cinti or	urur Kt	DBIG IOC	(a) Elev. + 8	0' (Pool v	with Wat	ter):											
(Refer to: AttB ,	Sht.B-5)																	
				(See Note 9)									Roof				(See Note 10))
				Weight					Struct'l.	Crane Load	Roof	Roofing	Equipment			Total		
Slab ⁽²⁾ V	Width	Length	Thick	(Wt)=	CG Xi ⁽¹⁾	CG Zi ⁽¹⁾	Wt * CG XI	Wt * CG Zi	Steel Load	or Canister	Live Load	Dead load	Dead Load	WI* CGXI	WI* CGZi	Weight	W _{total} * CGXi	W _{total} * CGZi
C	(Xdim)	(Zdim)		L*W*t*(#)					(40 psf)	Transfer m/c	(10 psf)	(55 psf)	(10 psf)			(W _{tetal)}		
	(ft)	(ft)	(ft)	(kips)	(ft)	(ft)	(ft-kips)	(ft-kips)	W1 (kips)	W2 or Wctm	W3 (kips)	W4 (kips)	W5 (kips)	(ft-kips)	(ft-kips)	(kips)	(ft-kips)	(ft-kips)
										(kips)								
A-D/1-7	270.0	214.0	2.0	19,876.3	133.0	105.0	2,643,550.6	2,087,013.6	2,311.2		577.8	3,177.9	577.8	883,745.1	697,693.5	26,521.0	3,527,295.7	2,784,707.1
Crane 200 T:					260.0	60.0				400.0				104,000.0	24,000.0	400.0	104,000.0	24,000.0
Ded A-B/4-7	114.0	49.0	-2.0	-1,921.6	207.0	26.5	-397,767.9	-50,922.0	-223.4		-55.9	-307.2	-55.9	-132,974.7	-17,023.3	-2,564.0	-530,742.6	-67,945.3
(Slab @80'	_																	
deduction)								•										
Canister Transfer	r M/C ^{II}				170. <mark>0</mark>	53.0				246.5				41,905.0	13,064.5	246.5	41,905.0	13,064.5
															_			
					L											L		
			Σ =	17,954.7			2,245,782.7	2,036,091.6	2,087.8	646.5	521.9	2,870.7	521.9	896,675.4	717,734.7	24,603.5	3,142,458.0	2,753,826.3
					<u> </u>					<u> </u>						L		
					xbar	zbar			L							L		
											l							
C	Center of	Concrete S	Slab=		125.1	113.4		$xbar = \Sigma (Wt^*)$	CGXi)/ΣWt	L	$zbar = \Sigma (Wt)$	+ CGZi)/Σ Wi			L			
]											L						
C	Center of	Other App	olied Load	<u>s =</u>	149.4	119.6		$xbar = \Sigma (Wi)^*$	CGXI)/E WI		$zbar = \Sigma$ (Wi	• CGZiyΣ Wi	<u> </u>	here Wi≠(WI	+W3+W4+W5)=	6,002.3	
									1.0000	ļ				<u> </u>		<u> </u>		
	Centroid	of All Load	is =		127.7	111.9		$x bar = \Sigma (W_{tot})$	w CGXI/2 W	(etal	$zbar = \Sigma (W_u$	CGZI/2	V total	<u> </u>		<u> </u>		
													<u> </u>			1		
								l			I				l		i	l
Notes:																		
1 For coordinate sy	system de	efinition see	Section 6.						_									
2 Numbers and let	tters are	in reference	to the colu	umn grid lines fo	r the building	<u> </u>												
3 W1 = Structural	l steel fra	uming + Plat	tforms & m	isc steel per floo	or or roof (se	e Section 3.	0).	_	· · · · ·		-			_				
4 W2 = Over head	d travelin	ig crane or (Canister Tra	ansfer Machine	load													
5 W3 = 25% of the	he specifi	ed live load	(see Sectio	<u>m 3.0).</u>				-				_						
6 W4 = Roofing D	Dead load	l of 55 psf i	s the weigt	h of a lightweigt	h concrete to	pping.												· · ·
7 W5 = Roof equi	ipment lo	oad includin	ig cranes, n	nechanical, elect	rical & pipin	g (seee Sec	tion 3.0).						_					
8. $Wi = (W1 + W3 + W3 + W3 + W1 + W3 + W1 + W1 + $	+W4+W5	5)																
9. (#) = Slab Weig	zht Comp	utation as fo	ollows:							_								
Weight = Lengt	th*Width	*thickness*	(.150+.022	2);														
concrete in the r	metal dec	cking valley	of a three	inch metal deck	which weigh	s approxim	ately 22 psf.											
$10 W_{(Total)} = (Wt+$	+W1+W2	2+W3+W4+	+W5)									_						
11. For input due to	to the Ca	uster Irans	act Machin	c, see Allachme	auc											_		

-

Weight a	nd Cen	troid of	Roof S	lab @ Elev.	+ 100' ()	Pool with	Water):												
(Refer to: A	ttB , Shi	.B-4, B-5	and B-9)																
				(See Note 9)										Roof			See Note 10)	
				Weight					Struct'l.	Canister	Equipment	Roof	Roofing	Equipment	(See Note 9)	(See Note 8)	Total		
Slab ⁽²⁾	Width	Length	Thick	(Wt)=	CG Xi ⁽¹⁾	CG ZI ⁽¹⁾	Wt * CG Xi	Wt * CG Zi	Steel Load	Transfer	Dead Load	Live Load	Dead load	Dead Load	(WD * CG XI	(WD * CG ZL	Weight	W _{total} * CGXi	W _{total} * CGZi
	(Xdim)	(Zdim)		L*W*t*(#)					(40 psf)	Machine '	(0 psf)	(10 psf)	(55 psf)	(10 psf)		(,	(W _{total})		
	<u>(ft)</u>	(ft)	(ft)	(kips)	<u>(ft)</u>	(ft)	(ft-kips)	(ft-kips)	W1 (kips)	Wetm (kips)	W2 (kips)	W3 (kips)	W4 (kips)	W5 (kips)	(ft-kips)	(ft-kips)	(kips)	(ft-kips)	(ft-kips)
						L													
										Ĺ									
A-B/4-7	122.0	57.0	2.0	2,392.2	207.0	26.5	495,180.4	63,392.7	278.2		0.0	69.5	382.5	69.5	165,540.0	21,192.3	3,191.9	660,720.4	84,585.0
					<u> </u>											<u> </u>			
Canister Ti	ansfer M	/C			170.0	0.0				155.4					26,418.0	0.0	155.4	26,418.0	0.0
						ļ				<u> </u>							<u> </u>		
			Σ =	2,392.2		I	495,180.4	63,392.7	278.2	155.4	0.0	<u>69.5</u>	382.5	69.5	191,958.0	21,192.3	3,347.3	687,138.4	84,585.0
<u> </u>										<u> </u>				<u> </u>			<u> </u>		
				I	xbar	zbar	I			<u> </u>				<u> </u>					
———										<u> </u>				1					
	Center of	Concrete	Stab=	г	207.0	20.5		xbar = 2 (Wt)	" CGX1)/2 W	<u></u>		z Dar = 2 (W)	(* CGZi)/2 v	1 1					<u> </u>
├ ───	<u> </u>												+ 66786 1		where Wire (W)	1112111211121	NEX -	700.7	
	Center of	Other Ap	pnea Lo	<u>ads -</u>	201.0	11.1	l	XD31 - 2 (W)	COXI/2 1			20ar - 2 (W			where wire (wi	<u>+w2+w3rw4+</u>	(⁽¹⁾)-	133.1	
	Centroid	of All Los	ds =	L	205.3	253		xbar = $\Sigma (W_{})$	L. * CGXi)/Σ	W		$zbar = \Sigma (W)$	CGZi)/2	E W					
<u> </u>		01700 200				2010			<u>a</u>				[[<u> </u>	
					1	<u> </u>	· · · · ·							<u> </u>			<u> </u>		
Notes:						<u> </u>				<u> </u>				<u> </u>			<u> </u>		
1 For coord	linate syste	em definitie	n see Se	ction 6															
2 Numbers	and letters	are in refe	rence to	the column grid	lines for the	building.	-	-											
3 W1 Struc	tural steel	framing +	Platforms	& misc steel pe	r floor or re	of (see Sec	tion 3.0).												
4 W2 Floor	equipmen	t load inch	iding crat	nes, mechanical,	electrical &	piping (see	e Section 3.0).												
5 W3 25%	of the spec	cified live l	oad (see S	Section 3.0).		<u> </u>													
6 W4 Roof	ing load of	f 55 psf is 1	he weigth	of a lightweigth	concrete t	opping.													
7 W5 Roo	f equipmer	nt load incl	uding cra	nes, mechanical,	electrical &	piping (see	e Section 3.0).												
8. Wi=(W	+W2+W3	+W4+W5)																
9. (#) = Slal	(#) = Slab Weight Computation as follows:																		
Weight =	Weight = Length*Width*thickness*(.150+.022);																		
concrete	in the met	al decking	valley of	a three inch met	al deck whi	ch weighs a	pproximately 2	2 psf.											
10. W(Total) =	W _{(Tobh} = (Wt+W1+W2+W3+W4+W5+Wctm)																		
For input	t due to th	e Canister	Transfer	Machine, see At	tachment C														

Weight a	nd Cer	itroid	of Walls	on Floc	or Slab @	Elev 52' (P	ool wit	h Wate	r):	
(Refer to: A	.ttB , Sh	nt.B-2, F	3-7, B-8, B-1	10, B-14 a	ind B-15)					
WALL ⁽²⁾	start ⁽³⁾	end ⁽³⁾	Length	Height	Thickness	Weight ⁴	CGxi ⁽¹⁾	CGzi ⁽¹⁾	W*CGxi	W*CGzi
	(ft)	(ft)	=end-start	H	T	=L*H/2*T*0.15	(ft)	(ft)	ft-kips	ft-kips
			L (ft)	(ft)	(ft)	W (kips)				
N/S WALLS	S EL52	2' TO 0	, (4)							
2.4/B-C	51.0	159.0	108.0	52.0	8.0	3,369.6	74.0	105.0	249,350.4	353,808.0
3.2 /B-B.2	51.0	72.5	21.5	52.0	4.0	335.4	115.5	64.8	38,738.7	21,717.2
3.2/B.8-C	137.5	159.0	21.5	52.0	4.0	335.4	115.5	148.3	38,738.7	49,723.1
4.2/B-C	51.0	159.0	108.0	52.0	4.0	1,684.8	155.0	105.0	261,144.0	176,904.0
4.9/B-C	51.0	159.0	108.0	52.0	8.0	3,369.6	180.0	105.0	606,528.0	353,808.0
			[]							
E/W WALI		52' TO (0' ⁽⁴⁾	·		·	·			
	, 						Γ			
B/2.4-4.9	74.0	180.0	106.0	52.0	8.0	3,307.2	127.0	51.0	420,014.4	168,667.2
B.2/2.4-4.9	74.0	180.0	106.0	52.0	4.0	1,653.6	127.0	72.5	210,007.2	119,886.0
B.5/4.2-4.9	155.0	180.0	25.0	52.0	4.0	390.0	127.0	137.5	49.530.0	53.625.0
B 8/2.4-4.9	74.0	180.0	106.0	52.0	4.0	1.653.6	167.5	105.9	276.978.0	175.165.8
C/2.4-4.9	74.0	180.0	106.0	52.0	8.0	3.307.2	127.0	159.0	420.014.4	525.844.8
0.2										,
			· · · · · · · · · · · · · · · · · · ·	TOTAL	WEIGHT =	19,406.4	kips		2.571.043.8	1.999.149.0
		!	!	XBAR =	=	132.5	ft	XBAR =	<u>Σ (W*CGxi)/Σ</u>	W
		 	[]	ZBAR =	=	103.0	ft	ZBAR =	$\frac{1}{\Sigma} (W * CGzi) / \Sigma$	w
		+	†	,	[₽ <u></u>			
N/S WALL	EL52'	To -34	, (5)	·	L	L	<u> </u>	L		
WALL ⁽²⁾	start (3)	end ⁽³⁾	Length	Height	Thickness	Weight	CG _{xi} ⁽¹⁾	CGzi ⁽¹⁾	W*CGxi	W*CGzi
	(ft)	(ff)	=end-start	H	Т	`=L*H*T*0.15	(ft)	(ft)	ft-kins	ft-kips
			L (ft)	(ft)	(ft)	W (kips)			11-Mips	
							<u> </u>			
3.7/B.2-B.8	72.5	137.5	65.0	18.0	2.0	351.0	137.0	105.0	48.087.0	36.855.0
5.110.2 0.0	,						101.0			
		<u>г</u>	[]	TOTAL	WEIGHT =	351.0	kips		48,087,0	36,855.0
		┟───┦		XBAR =		137.0	ft ft	XBAR =	Σ (W*CGxi)/ Σ	: W
	-	┝──┦	 	ZBAR =		105.0	ft	ZBAR =	$\frac{\Sigma}{\Sigma}$ (W*CGzi)/ Σ	W
		I								
Notes:										
1 For coordi	inate syst	em defi	nition see Se	ection 6.						
2 Numbers	and letter	s are in	reference to	the colur	nn grid lines	for the building.				
2 The start a	nd and d	monsio			allel with the	wall For example	the y av	ia ia para		
5 The start a	na cha a	mensio	AS ICICI IO III	e axis pai	aller with the	wan. For example	, ше л-ал	as is parai	Her with the Das	st west wans

3 The start and end dimensions refer to the axis parallel with the wall. For example, the x-axis is parallel with the East/West walls (E/W). CGxi would be calculated as the start plus half the length, and CGzi would simply be the perpendicular distance from the wall to the origin. The opposite is true for the North/South wall (N/S).

4. Half the weight of the walls is combined with the floor below and half with floor above

5. All the weight of the wall is combined with the floor below.

THIS PAGE INTENTIONALLY LEFT BLANK

03242007 Rev B - WHF Mass Properties.xls

18

Weight an	d Centr	oid of V	all on Fie	or Slab ab	ove Elev.	+ 0' (Pool wit	th Water `			
(Refer to: At	-B. Sht.B	-3 and B-6	through B-1	7)						
WALL ⁽²⁾	stort (3)	and (3)	Length	Height	Thickness	Waight ⁴	CCvi ^(I)	CCri ^(I)	W*CGxi	W*CGzi
WALL	(ft)	(ft)	=end-start	Н	Т	=L*H/2*T*0.15	(ft)	(fft)	ft-kins	ft-kins
			L (ft)	(ft)	(ft)	W (kips)				
N/S WALLS	EL. 0' to 1	EL.32 ⁽⁴⁾		<u> </u>					·	
4/AB	0.00	53.00	53.00	32.00	4.00	508.80	148.00	26.50	75,302.40	13,483.20
5/AB	0.00	53.00	53.00	32.00	4.00	508.80	185.00	26.50	94,128.00	13,483.20
.6/AB	0.00	53.00	53.00	32.00	4.00	508.80	212.00	26.50	107,865.60	13,483.20
7/AB	0.00	53.00	53.00	32.00	4.00	508.80	266.00	26.50	135,340.80	13,483.20
FOUNDAL1		221(4)								
E/W WALLS	148.00	266.00	118.00	32.00	4.00	1 132 80	207.00	0.00	234 489 60	0.00
B/4-7	148.00	266.00	118.00	32.00	4.00	1,132.80	207.00	53.00	234,489.60	60.038.40
				TOTAL WE	IGHT =	4,300.80	kips		881,616.00	113,971.20
				XBAR =		204.99	ft	XBAR = S(W*CGxi)/S W	
				ZBAR =		26.50	ft	ZBAR = S(W*CGzi)/S W	
N/S WALLS	EL. 0' to	EL.40 ⁺⁽⁴⁾								·
1/AD	0.00	210.00	210.00	40.00	4.00	2,520.00	0.00	105.00	0.00	264,600.00
2/AB	0.00	53.00	53.00	40.00	4.00	636.00	108.00	26.50	54,344.00	16,854.00
2/CD	157.00	210.00	53.00	40.00	4.00	636.00	54.00	183.50	34.344.00	116,706.00
3/CD	157.00	210.00	53.00	40.00	4.00	636.00	108.00	183.50	68,688.00	116,706.00
4/CD	157.00	210.00	53.00	40.00	4.00	636.00	148.00	183.50	94,128.00	116,706.00
6/CD	157.00	210.00	53.00	40.00	4.00	636.00	212.00	183.50	134,832.00	116,706.00
2.1/BC	53.00	157.00	104.00	40.00	2.00	624.00	57.50	105.00	35,880.00	65,520.00
								_		
E/W WALLS	EL. 0' to	40"	149.00	40.00	4.00	1 776 00	74.00	0.00	131 434 00	0.00
B/1-4	0.00	148.00	148.00	40.00	4.00	1,776.00	74.00	53.00	131,424.00	94 131 73
C/1-6	0.00	212.00	212.00	40.00	4.00	2.544.00	109.50	157.00	278.568.00	399.408.00
D/1-6	0.00	212.00	212.00	40.00	4.00	2,544.00	106.00	210.00	269,664.00	534,240.00
				TOTAL WE	GHT =	15,600.00	kips		1,281,984.00	1,858,431.73
				XBAR =		82.18	ft	XBAR = S(W*CGxi)/S W	
				ZBAR =		<u>119.13</u>	ft	ZBAR = S(W*CGzi)/S W	-
N/S WALLS	EL. 0' to 1	EL.80***		—		r	<u> </u>			
7/BD	53.00	210.00	157.00	80.00	4.00	3 768 00	266.00	131 50	1.002.288.00	495 492 00
1100		210.00	101.00	TOTAL WE	GHT ≠	3.768.00	kips	101.00	1,002,288.00	495.492.00
				XBAR =		266.00	A.	XBAR = S (W*CGxi)/S W	
				ZBAR =		131.50	ft	ZBAR = S(W*CGzi)/S W	
		·								
WALL ⁽²⁾	start ⁽³⁾	end ⁽³⁾	Length	Height	Thickness	Weight	CGxi ⁽¹⁾	CGzi ⁽¹⁾	W*CGxi	W*CGzi
	(ft)	<u>(ft)</u>	=end-start	H	T	=L*H*T*0.15	(ft)	(ft)	ft-kips	ft-kips
			L (ft)	(11)	(ff)	W (kips)				
N/S WALLS	EL. 0' to J	CL.20' **	20.75	20.00	1.00	62.25	17.00	61 75	1.058.25	2 069 44
1.1/B-B.1	53.00	73.75	20.75	20.00	1.00	62.25	31 50	63.75	1,058.25	3,700.44
1.3/B-B.1	53.00	73.75	20.75	20.00	1.50	93.38	47.25	63.75	4,411.97	5,952.66
1.1/B.2-B.3	82.50	111.25	28.75	20.00	1.00	86.25	17.00	97.25	1,466.25	8,387.81
1.2/B.2-B.3	82.50	111.25	28.75	20.00	1.00	86.25	31.50	97.25	2,716.88	8,387.81
1.3/B.2-B.3	82.50	111.25	28.75	20.00	1.50	129.38	47.25	97.25	6,112.97	12,581.72
1.3/B.4-B.5	120.75	138.25	17.50	20.00	1.50	78.75	44.00	129.50	3,465.00	10,198.13
E/W WALLS	EL. 0' to	20'(")			· · · · · ·		<u> </u>			
D 1	0.00	47.75	47.75	20.00	1 50	212.63	23.63	73.75	5 023 27	15 681 00
B.2	0,00	47.25	47.25	20.00	1.50	212.63	23.63	83.25	5.023.27	17,701.03
B.3	0.00	47.25	47.25	20.00	1.50	212.63	23.63	111.25	5,023.27	23,654.53
B.4	0.00	44.00	44.00	20.00	1.50	198.00	22.00	120.75	4,356.00	23,908.50
B.5	0.00	44.00	44.00	20.00	1.50	198.00	22.00	138.25	4,356.00	27,373.50
				TOTAL WE	GHT =	1,632.38	kips		44,973.98	161,763.66
				XBAR =		27.55	ft	XBAR = S(W*CGxi)/S W	
				LDAK =		99.10	n	LBAR = S(w •CG21)/S W	
Notes										
1 For coordin	ate system	definition	sec Section f	<u>.</u>						
2 Numbers an	nd letters a	re in refere	nce to the co	lumn grid lines	for the building	ng				
3 The start an	d end dime	nsions refe	r to the axis	parallel with th	e wall. For ex	ample, the x-axis is	s parallel with	the East/We	st walls (E/W). CC	ixi would be
calculated as t	he start plu	is half the l	ength, and C	Gzi would sim	ply be the per	pendicular distance	e from the wa	ll to the orgin	. The opposite is	true for the N/S
walls.										

4. Half the weight of the walls is combined with the floor below and half with floor above
5. All the weight of the wall is combined with the floor below.

Weight a	nd Centro	oid of Wa	lls on Elev	v.+ 32' (P	ool with V	Water):				
(Refer to: A	ttB , Sht.B-	4, B-9 <u>, and F</u>	3-12 through	B-14)						
						<u> </u>				
WALL ⁽²⁾	start (3)	end ⁽³⁾	Length	Height	Thick	Weight ⁴	CGxi ⁽¹⁾	CGzi ⁽¹⁾	W*CGxi	W*CGzi
	(ft)	(ft)	=end-start	Н	T T	=L*H/2*T*0.15	(ft)	(ft)	ft-kips	ft-kips
	└─ <u>`</u>		L (ft)	(ft)	(ft)	W (kips)	<u> </u>			
	└───── │		<u>, </u>				┞───	╉────	<u>├──</u> ──	
N/S WALL	S EL. 32' to	40' (4)		L	L	<u> </u>	L	<u></u>	L	
				<u> </u>	<u> </u>	Τ	<u> </u>			
4/AR	0.00	53.00	53.00	8.00	4 00	127.20	148.00	26 50	18 825 60	3 370 80
	0.00	33.00		0.00	7.00	161.00	1-10.00	20.00	10,020.00	3,370.00
				TOTAL W		127.20	Line		18 825 60	3 370 80
				VRAD -		149.00	кірs 	$\mathbf{V}\mathbf{D}\mathbf{A}\mathbf{P} = \mathbf{\Sigma}$	10,023.00	3,370.00
	┟──┤			ZDAR -		148.00	n A	$\frac{\Delta BAR - 2}{7 R \Delta R = \Sigma}$, ,
I	ĹI			ZDAK -		20.50	<u></u>			
	<u> </u>									
N/S WALL	<u>S EL. 32' to</u>	100' "	r	r - -		τ		т——		
7/AB	0.00	53.00	53.00	68.00	4.00	1,081.20	266.00	26.50	287,599.20	28,651.80
	L									
				TOTAL W	EIGHT =	1,081.20	kips		287,599.20	28,651.80
「 <u> </u>			「	XBAR =		266.00	ft	$XBAR = \Sigma$	(W*CGxi)/Σ W	/
				ZBAR =		26.50	ft	$ZBAR = \Sigma$ (W*CGzi)/Σ W	7
								<u> </u>		
E/W WALI	LS EL. 32' to	80' (4)	·							
			·			Τ		Τ	[]	
R/4-7	148.00	266,00	118.00	48.00	4 00	1 699.20	207.00	53 00	351.734.40	90.057.60
	1,0,00		110.00		7.00	1,077	20,.00		JJ 19, J	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	┟────┤			TOTAL W	EICUT =	1 600 20	ling	╉─────	251 734 40	00.057.60
	├───┤			VOAD -		1,077.20	kips	$\frac{1}{\nabla D \wedge D} = \Sigma $	01,134.40	90,037.00
┞───┥	┝━━──┤			ABAK -		<u> </u>	n	$\frac{XBAR - 2}{7DAP} = \Sigma ($		/
	LI			ZBAK -		53.00	<u>tt</u>	LDAN - 2	W CO20/2	
_ _										
E/W WALI	<u>_S EL. 32' to</u>	100' **	r			 _	r		·	
						<u>↓ </u>		<u> </u>		
A/4-7	148.00	266.00	118.00	68.00	4.00	2,407.20	207.00	0.00	498,290.40	0.00
L	L							ļ	L	
L				TOTAL W	EIGHT =	2,407.20	kips		498,290.40	0.00
				XBAR =		207.00	ft	$XBAR = \Sigma$	(W*CGxi)/Σ W	/
				ZBAR =		0.00	ft	$ZBAR = \Sigma$ (W*CGzi)∕Σ W	·
Notes:										
1 For coord	inate system (definition see	e Section 6.							<u> </u>
2 Numbers	and letters are	in reference	to the colum	n grid lines f	or the buildir	 no				
2 1141100.0	and ionois are		<u>10 me conc</u>	an grita miles	or the owner.	<u>'5</u>				

3 The start and end dimensions refer to the axis parallel with the wall. For example, the x-axis is parallel with the East/West walls (E/W). CGxi would be calculated as the start plus half the length, and CGzi would simply be the perpendicular distance from the wall to the orgin. The opposite is true for the N/S walls.

4. Half the weight of the walls is combined with the floor below and half with floor above

Weight and	Centro	oid of '	Walls on H	Floor Sla	b @ Elev.	+ 40'(Pool wit	h Wate	er):		
(Refer to: AttI	3 , Sht.B-	4, B-6 th	trough B-16)							
WALL ⁽²⁾	start ⁽³⁾	end ⁽³⁾	Length	Height	Thickness	Weight ⁴	CGxi ⁽¹⁾	CGzi ⁽¹⁾	W*CGxi	W*CGzi
	(ft)	(ft)	=end-start	<u> </u>	T	=L*H/2*T*0.15	(ft)	(ft)	ft-kips	ft-kips
			L (ft)	(ft)	<u>(ft)</u>	W (kips)				
N/S WALLS E	L. 40' to 2	80' ⁽⁴⁾								
1/A-D	0.0	210.0	210.0	40.0	4.0	2,520.0	0.0	105.0	0.0	264,600.0
2/AB	0.0	53.0	53.0	40.0	4.0	636.0	54.0	26.5	34,344.0	16,854.0
3/AB	0.0	53.0	53.0	40.0	4.0	636.0	108.0	26.5	68,688.0	16,854.0
4/AB	0.0	53.0	53.0	40.0	4.0	636.0	148.0	26.5	94,128.0	16,854.0
<u>2/CD</u>	157.0	210.0	53.0	40.0	4.0	636.0	212.0	183.5	134,832.0	116,706.0
3/CD	157.0	210.0	53.0	40.0	4.0	636.0	54.0	183.5	34,344.0	116,706.0
4/CD	157.0	210.0	53.0	40.0	4.0	636.0	108.0	183.5	68,688.0	116,706.0
6/CD	157.0	210.0	53.0	40.0	4.0	636.0	185.0	183.5	117,660.0	116,706.0
						_				
									_	
E/W WALLS E	EL 40' to	80' ⁽⁴⁾								
A/1-4	0.0	148.0	148.0	40.0	4.0	1,776.0	74.0	0.0	131,424.0	0.0
B/1-4	0.0	148.0	148.0	40.0	4.0	1,776.0	74.0	53.0	131,424.0	94,131.7
C/1-7	0.0	270.0	270.0	40.0	4.0	3,240.0	135.0	157.0	437,400.0	508,680.0
D/1-7	0.0	270.0	270.0	40.0	4.0	3,240.0	135.0	210.0	437,400.0	680,400.0
				TOTAL W	'EIGHT =	17,004.0	kips		1,690,332.0	2,065,197.7
				XBAR =	_	99.4	ft	$XBAR = \Sigma (W$	*CGxi)/Σ W	
			_	ZBAR =		121.5	ft	$ZBAR = \Sigma (W)$	*CGzi)/Σ W	
			-							

Notes

1 For coordinate system definition see Section 6.

2 Numbers and letters are in reference to the column grid lines for the building

3 The start and end dimensions refer to the axis parallel with the wall. For example, the x-axis is parallel with the East/West walls (E/W). CGxi would be calculated as the start plus half the length, and CGzi would simply be the perpendicular distance from the wall to the orgin. The opposite is true for the N/S walls.

4. Half the weight of the wall is combined with floor below and half with the floor above

Weight a	nd Cen	troid	of Walls o	n @ El	ev. + 80' (Pool with Wat	ter):			
(Refer to: A	AttB , Sh	t.B-5, B	-9, and B-14))						
	start (3)	end ⁽³⁾	Length	Height	Thickness	Weight ⁴		CGzi ⁽¹⁾	W*CGxi	W*CGzi
WALL ⁽²⁾	(ft)	(ft)	=end-start	Н	T	=L*H/2*T*0.15	(ft)	(ft)	ft-kips	ft-kips
_			L (ft)	(ft)	(ft)	W (kips)				
N/S WALL	S EL. 80	' to 100'	(4)				 	[]		
4/A-B	0.0	53.0	53.0	20.0	4.0	318.0	_148.0	26.5	47,064.0	8,427.0
E/W WALI	 S EL. 8()' <u>to 100</u>	, (4)				 	<u> </u>		
B/4-7	148.0	266.0	118.0	20.0	4.0	708.0	207.0	53.0	146,556.0	37,524.0
				TOTAL W	VEIGHT =	1,026.0	kips		193,620.0	45,951.0
				XBAR =		188.7	ft	XBAR =	Σ (W*CGxi)	/Σ W
				ZBAR =		44.8	ft	ZBAR = 1	Σ (W*CGzi)	ΣW
									_	
Notes:										
1 For coord	inate syst	em defir	ition see Sec	tion 6.						
2 Numbers	and letter	s are in 1	reference to the	he column g	grid lines for t	he building				
(E/W). CGx	i would b	e calcula	ated as the sta	rt plus half	the length, an	d CGzi would simp	ly be the p	erpendicu	lar distance	from the

4. Half the weight of the wall is combined with floor below and half with the floor above

DDR LUMPED WEIGHTS (Pool wi	ith Water):				
WEGHTS AND THEIR CENTERS)		+	<u> </u>	<u>+</u>	
(WEGHIS AND THEIR CENTERS)		<u> </u>		+	<u> </u>
RASEMENT FLOOR SLAB @ - 52' :		+	┼────		<u></u>
DAGEMENT FLOOR GLAD & CL.	Weight W		zbar	W*xbar	Wtabar
BASE SLAB + WATER + WALLS	(kips)	(ft)	(ft)	(ft - kins)	(ft - kins)
a) BASEMENT FLOOR SLAB @ EL -52 (Page 10)	18.594.8	127.6	105.0	2 371 877 8	1 952 455 1
b) Wt Of WATER (Page 10)	12,388.9	112.4	105.0	1 392 807 3	1 300 834 1
c) FOUR CASKS IN THE POOL (Page 10)	1.600.0	148.0	105.0	236 800 0	168 000 0
d) Wt. Of 1/2 WALLS EI, -52' to El. 0' (Page 17)	19,406.4	132.5	103.0	2 571.043.8	1 999 149 0
e) Full Wt. Of Walls E152' to E]34' (Page 17)	351.0	137.0	105.0	48.087.0	36 855 0
SUM	52,341.1			6.620.615.9	5.457.293.2
		+	<u> </u>		
· · · · · · · · · · · · · · · · · · ·		XBAR =	126.5		XBAR = S(W*xbar)/S(W)
	Floor Slab@-52	ZBAR =	104.3	<u>₽</u>	7BAR = S(W*zbar)/S(W)
		WEIGHT=	52.341.1	kips	WEIGHT = $S(Weight)$
<u> </u>		1			
FLOOR SLAB @ + 0':			L		L
	Weight W	xbar	zbar	W*xbar	W*zbar
BASE SLAB @ U' + WALLS	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) FLOOR SLAB @0' (Page 12)	56,730.4	131.4	104.8	7,454,200.2	5.943,383.8
b)1/2 Wt. Of Walls below El. 0' (Page 17)	19,406.4	132.5	103.0	2,571,043.8	1.999,149,0
c)1/2 Wt. of Walls above El. 0' as follows:		1			
0'-32' (Page 19)	4,300.8	205.0	26.5	881,616.0	113,971.2
0'-40' (Page 19)	15,600.0	82.2	119.1	1,281,984.0	1.858,431.7
0'-80' (Page 19)	3,768.0	266.0	131.5	1,002,288.0	495,492.0
d) Full Wt. of Walls El. 0' to El. 20' (Page 19)	1,632.4	27.6	99.1	44,974.0	161,763.7
SUM	101,438.0	1		13,236,105.9	10,572,191.4
		XBAR =	130.5	ft	$\overline{XBAR} = S(W^*xbar)/S(W)$
	0' BASE SLAB	ZBAR =	104.2	ft	ZBAR = S(W*zbar)/S(W)
		WEIGHT	101,438.0	kips	WEIGHT = S(Weight)
		<u> </u>			
FLOOR SLAB @ 32':					
	Weight W	xbar	zbar	W*xbar	W*zbar
FLOOR SLAD (# 54 + WALLS	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) FLOOR SLAB @32' (Page 13)	5,717.9	204.4	26.3	1,168,877.7	150,308.3
b) 1/2 Wt. Of Walls below El. 32'					
0'-32' (Page 19)	4,300.8	205.0	26.5	881,616.0	113,971.2
c) 1/2 Wt. Of Walls above El. 32' as follows:					
32'-40' ^(Page 20) 4/A-B	127.2	148.0	26.5	18,825.6	3,370.8
32'-100' ^(Page 20) 7/A-B	1,081.2	266.0	26.5	287,599.2	28,651.8
32'-80' ^(Page 20) B/4-7	1,699.2	207.0	53.0	351,734.4	90,057.6
32'-100' (Page 20) A/4-7	2,407.2	207.0	0.0	498,290.4	0.0
SUM	15,333.5			3,206,943.3	386,359.7
		XBAR =	209.1	ft	XBAR = S(W*xbar)/S(W)
	32' BASE SLAB	ZBAR =	25.2	ft .	ZBAR = S(W*zbar)/S(W)
		WEIGHT	15,333.5	kips	WEIGHT = S(Weight)

DDR LUMPED WEIGHTS (Pool wit	h Water):				
(WEGHTS AND THEIR CENTERS)					
FLOOR SLAB @ + 40' :					<u> </u>
Base Slab+Walls					
	Weight W	xbar	zbar	W*xbar	W*zbar
FLOOR SLAD @ 40 + WALLS	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) FLOOR SLAB @ 40' (Page 14)	11,885.8	79.7	115.8	947,457.6	1,376,493.6
b) 1/2 wt. Of Walls below E1.40'					
0'-40' ^(Page 19)	15,600.0	82.2	119.1	1,281,984.0	1,858,431.7
32'-40' (Page 20) 4/A-B	127.2	148.0	26.5	18,825.6	3,370.8
c) 1/2 Wt of Walls above El.40'					
40'-80' (Page 21)	17,004.0	99.4	121.5	1,690,332.0	2,065,197.7
SUM	44,617.0			3,938,599.2	5,303,493.9
		XBAR =	88.3	ft	$\overline{XBAR} = S(W^*xbar)/S(W)$
	40' SLAB	ZBAR =	118.9	ft	ZBAR = S(W*zbar)/S(W)
		WEIGHT	44,617.0	kips	WEIGHT = S(Weight)
ROOF SLAB @ + 80':					
Roof/Roof Slab+Walls					
BOOF SLAB @ 80' + WALLS	Weight W	xbar	zbar	W*xbar	W*zbar
	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) ROOF SLAB @ 80' (Page 15)	24,603.5	127.7	111.9	3,142,458.0	2,753,826.3
including roof slab @80' deduction and crane wt.					
b) 1/2 wt. Of Walls below El.80'					
0'-80' ^(Page 19) 7/B-D	3,768.0	266.0	131.5	1,002,288.0	495,492.0
32'-80' ^(Page 20) B/4-7	1,699.2	207.0	53.0	351,734.4	90,057.6
40'-80' (Page 21)	17,004.0	99.4	121.5	1,690,332.0	2,065,197.7
c) 1/2 Wt of Walls above El.80'					
80'-100' ^(Page 22) 4/A-B, B/4-7	1,026.0	188.7	44.8	193,620.0	45,951.0
SUM	48,100.7			6,380,432.4	5,450,524.6
		XBAR =	132.6	ft	XBAR = S(W*xbar)/S(W)
	80' ROOF	ZBAR =	113.3	ft	ZBAR = S(W*zbar)/S(W)
		WEIGHT	48,100.7	kips	WEIGHT = S(Weight)
ROOF SLAB @ 100' :					, <u> </u>
Roof Slab+Walls		<u> </u>			
ROOF SLAB @ 100' + WALLS	Weight W	xbar	zbar	W*xbar	<u>W</u> *zbar
(Page 16)	(kips)	(ft)	(ft)	(ft - kips)	<u>(ft - kips)</u>
a) ROOF SLAB @ 100' (* 440 10)	3,347.3	205.3	25.3	687,138.4	84,585.0
b) 1/2 wt. Of Walls below El.100'					
32'-100' - Wall A/4-7 (rage 20)	2,407.2	207.0	0.0	498,290.4	0.0
32'-100' - Wall 7/A-B (lage 20)	1,081.2	266.0	26.5	287,599.2	28,651.8
80'-100' - Walls 4/A-B + B/4-7 (rage 22)	1,026.0	188.7	44.8	193,620.0	45,951.0
<u>SUM</u>	7,861.7			1,666,648.0	159,187.8
	<u> </u>				
		XBAR =	212.0		XBAR = S(W*xbar)/S(W)
	100' ROOF	ZBAR =	20.2	<u>n</u>	ZBAR = S(W*zbar)/S(W)
L	<u> </u>	WEIGHT	7,861.7	KIPS	WEIGHT = S(Weight)

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE - SUMMARY OF MASS & CENTERS OF MASS (Pool with Water):											
		└──── ┤									
(For WEIGHT, XBAR and ZBAR, see Pgs.	. 23 and 24)	·									
	WEIGHT (W)	MASS (W/g)		<u> </u>							
LOCATIONS	(kips)	(kip-sec ^{2/} π)	(<u>tt</u>) *	<u>(tt)</u> *							
BASEMENT SLAB @ -52' + WALLS	52,341.1	1,625.5	126.5	104.3							
(+ Wt. Of Water in Pool + Four Casks)											
	_										
FLOOR SLAB @ 0' + WALLS	101,438.0	3,150.2	130.5	104.2							
ELOOD SLAR @ 37' + WALLS	15 333 5	476.2	209.1								
FLOOR SLAD W 32 HALLS	10,000.0			23.2							
	-++										
FLOOR SLAB @ 40' + WALLS	44,617.0	1,385.6	88.3	118.9							
ROOF @ 80' + WALLS	48,100.7	1,493.8	132.6	113.3							
·											
IIPPER ROOF @ 100' + WALLS	7 861.7	244.2	212.0	20.2							
TOTAL =	269,692.0	8,375.5									

* for coordinate system definition see Pg.# 9.

MASS MOM	ENTS OF	INERTIA	@ BASEN	AENT FI	LOOR EL 5	2' (Pool with V	Vater):		
Ref 2.2.2, "Dyr	namics of S	tructures"	by Clough	and Penz	ien, 1975, Pg.	24		1	
(Note: For coo	rdinate Sys	tem defina	tion see pa	ge 9)					
									1
Basement Floo	or EL. @ -:	52' + WAL	LS -52' te	-34' and	1 -52' to 0'		·		, ,
				CGx =	126.5	CGz =	104.3		
	<u> </u>								
Area	Len. x	Len. z	Wt.	CGxi	CGzi	Iox	mdz^2	Ioz	
Description	Lx	Lz	(W)			W*Lz^2/12g	W*(CGz-CGzi)^2/g	W*Lx^2/12g	W*(CGx-CGxi)^2/g
· · _	(ft)	(ft)	(kips)	(ft)	(ft)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)
					· · · · ·				
FLOOR SLAI	B @ -52' ^(F)	rom Pg. 10)							
B-C/2.4-5	114.0	116.0	18,050.8	127.0	105.0	628,600.0	303.7	607,111.0	145.9
B.2-B.8/3.7-4.2	18.0	65.0	544.1	146.0	105.0	5,948.8	9.2	456.2	6,431.4
			<u> </u>						<u> </u>
ADD WATER	(From Pg. 10)								
(B-C/2.4-4.2)	75.0	61.0	13,703.0	115.5	105.0	131,959.1	230.5	199,481.4	51,397.3
(-) step Area	18.0	65.0	-1,314.1	144.5	105.0	-14,369.2	-22.1	-1,101.9	-13,238.1
	•								
ADD FOUR C	CASKS (Fro	m Pg. 10)							
			1,600.0	148.0	105.0	0.0	26.9	0.0	22,990.7
					L				<u> </u>
N/S WALLS E	EL52' to	0' (From Pg. 1	7)						
2.4/B-C		108.0	3,369.6	74.0	105.0	101,715.9	56.7	0.0	288,318.3
3.2 /B-B.2		21.5	335.4	115.5	64.8	401.2	16,263.3	0.0	1,258.0
3.2/B.8-C		21.5	335.4	115.5	148.3	401.2	20,152.8	0.0	1,258.0
4.2/B-C		108.0	1,684.8	155.0	105.0	50,857.9	28.3	0.0	42,529.8
4.9/B-C	_	108.0	3,369.6	180.0	105.0	101,715.9	56.7	0.0	299,637.1
E/W WALLS	EL52' to	0' (From Pg.	. 17)						
B/2.4-4.9	106.0		3,307.2	127.0	51.0	0.0	291,388.3	96,169.0	26.7
B.2/2.4-4.9	106.0		1,653.6	127.0	72.5	0.0	51,813.7	48,084.5	13.4
B.5/4.2-4.9	25.0		390.0	127.0	137.5	0.0	13,379.1	630.8	3.2
B.8/2.4-4.9	106.0		1,653.6	167.5	105.9	0.0	142.5	48,084.5	86,369.1
C/2.4-4.9	106.0		3,307.2	127.0	159.0	0.0	307,716.4	96,169.0	26.7
N/S WALLS F	EL52' to	-34' ^{(from Pg.}	. 17)		-				
3.7/B.2-B.8		65.0	351.0	137.0	105.0	3,837.9	5.9	0.0	1,204.1
				_	Σ	1,011,068.8	701,552.0	1,095,084.4	788,371.9
Mass Moment of Inertia about centroidal x-axis Ix =					1,712,620.8	kip-ft-sec^2			$(lox + mdz^2)$
Mass Moment	Aass Moment of Inertia about centroidal z-axis 1z =					kip-ft-sec^2			$(loz + mdx^2)$
Mass Moment	Ass Moment of Inertia about centroidal y-axis 12 =					kip-ft-sec^2			(Ix+lz)

THIS PAGE INTENTIONALLY LEFT BLANK

,

MASS MO	MENT	S OF IN	ERTIA (a FLOO	OR EL	+ 0' (<u>Pool</u> ·	with Water):		
Ref 2.2.2, "Dyr	namics of S	Structures"	by Clough a	nd Penzier	n, 1975, I	Pg. 24			
Slab @ 0' and	WALLS	-52' to 0' +	WALLS 0	' -32' + W.	ALLS 0	'-20' + WALLS	0'-40' + WALLS 0'-80'		
				CGx =	130.5	CGz =	104.2		
Area	Length	Length	Weight	CGxi	CGzi	Iox	mdz^2	loz	mdx^2
Description	Lx	Lz	(W)			W*Lz^2/12g	W*(CGz-CGzi)^2/g_	W*Lx^2/12g	W*(CGx-CGxi)^2/g
	(ft)	(ft)	(kips)	<u>(ft)</u>	(ft)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)
				_					
Slab @ 0' (From	m Pg. 12)							· · · · · · · · · · · · · · · · · · ·	
A-D/1-7	270.0	214.0	59,802.3	133.0	105.0	7,087,748.8	1,120.6	11,282,576.8	11,749.6
B-C/1-2	55.0	84.0	1,663.2	28.5	97.0	30,371.5	2,695.0	13,020.7	537,228.6
B-C/2-4	75.0	61.0	-4,735.1	115.5	105.0	-45,598.9	-88.7	-68,931.4	-33,019.8
(Pool area ded	uction)								
		(From Pr. 10	<u>, </u>						
N/S WALLS F	EL. 0' to 3	2'(From Fg. 19	,						
4/AB		53.0	508.8	148.0	26.5	3,698.8	95,453.7	0.0	4,847.6
5/AB		53.0	508.8	185.0	26.5	3,698.8	95,453.7	0.0	46,959.9
6/AB		53.0	508.8	212.0	26.5	3,698.8	95,453.7	0.0	104,995.1
7/AB		53.0	508.8	266.0	26.5	3,698.8	95,453.7	0.0	290,180.0
	EI 014 0	as (From Pg. 1	9)						
E/W WALLS	LLU 103	2,	1 122 0	207.0	0.0		292 142 5	40 820 7	205.065.0
A/4-7	118.0		1,132.8	207.0	52.0	0.0	382,143.5	40,820.7	205,965.0
B/4-/	116.0		1,152.0	207.0	35.0	0.0	92,300.3	40,820.7	203,903.0
		n (from Pg 1	9)						
1 1/B-B 1		20.8	62.3	17.0	63.8	69.4	3 166 8	0.0	24 897 7
$-\frac{1.17B-B.1}{1.27B-B.1}$		20.0	62.3	31.5	63.8	69.4	3 166 8	0.0	18 941 7
1.3/B-B.1		20.8	93.4	47.3	63.8	104.0	4.750.2	0.0	20.090.2
1.1/B.2-B.3		28.8	86.3	17.0	97.3	184.5	130.2	0.0	34,496.8
1.2/B.2-B.3		28.8	86.3	31.5	97.3	184.5	130.2	0.0	26.244.6
1.3/B.2-B.3		28.8	129.4	47.3	97.3	276.8	195.4	0.0	27,835.8
1.3/B.4-B.5		17.5	78.8	44.0	129.5	62.4	1,562.6	0.0	18,292.5
						L	· · ·		
E/W WALLS	EL. 0' to 2	20' (from Pg. 1	9)						
B.1	47.3		212.6	23.6	73.8	0.0	6,131.9	1,228.5	75,402.7
B.2	47.3		212.6	23.6	83.3	0.0	2,904.6	1,228.5	75,402.7
B.3	47.3		212.6	23.6	111.3	0.0	326.0	1,228.5	75,402.7
B.4	44.0		198.0	22.0	120.8	0.0	1,679.5	992.0	72,368.0
B.5	44.0		198.0	22.0	138.3	0.0	7,119.5	992.0	72,368.0
N/S WALLS F	EL. 0' to 4	0' (From Pg. 1)	9) 						
1/AD		210.0	2,520.0	0.0	105.0	287,608.7	47.2	0.0	1,332,490.8
2/AB		53.0	636.0	54.0	26.5	4,623.5	119,317.2	0.0	115,545.0
3/AB		53.0	636.0	108.0	26.5	4,623.5	119,317.2	0.0	9,985.7
2/CD		53.0	636.0	54.0	183.5	4,623.5	124,134.7	0.0	115,545.0
3/CD		53.0	636.0	108.0	183.5	4,623.5	124,134.7	0.0	9,985.7
4/CD		53.0	636.0	148.0	183.5	4,623.5	124,134.7	0.0	6,059.5
6/CD		53.0	636.0	212.0	183.5	4,623.5	124,134.7	0.0	131,243.8
2.1/BC		104.0	624.0	57.5	105.0	17,466.8	11.7	0.0	103,226.9

MASS MC	MENT	S OF IN	ERTIA (a) FLOO	DR EL	+ 0' (Pool y	with Water):		
Ref 2.2.2, "Dy	namics of S	Structures"	by Clough a	nd Penzier	n, 1975, I	Pg. 24			
Slab @ 0' and	WALLS	-52' to 0' +	WALLS 0'	<u>-3</u> 2' + W.	ALLS 0	'-2 <u>0' +</u> WALLS ()'-40' + WALLS 0'-80'		
				CGx =	130.5	CGz =	104.2		
									_
Area	Length	Length	Weight	CGxi	CGzi	Iox	mdz^2	loz	mdx^2
Description	Lx	Lz	(W)			W*Lz^2/12g	W*(CGz-CGzi)^2/g	W*Lx^2/12g	W*(CGx-CGxi)^2/g
	(ft)	(ft)	(kips)	(ft)	(ft)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)
E/W WALLS	EL 0' to 4	0' (From Pg. 1)	9)						
A/1-4	148.0		1,776.0	74.0	0.0	0.0	599,123.3	100,676.8	175,974.4
B/1-4	148.0		1,776.0	74.0	53.0	0.0	144,705.7	100,676.8	175,974.4
C/1-6	212.0		2,544.0	109.5	157.0	0.0	220,062.9	295,904.6	34,791.2
D/1-6	212.0		2,544.0	106.0	210.0	0.0	883,978.7	295,904.6	47,364.5
N/S WALLS	EL 0' to 80	(From Pg. 19)	1						
7/BD		157.0	3,768.0	266.0	131.5	240,366.0	87,064.4	0.0	2,148,974.9
N/S WALLS I	EL52' to	0' (From Pg. 1	.7)						
2.4/B-C		108.0	3,369.6	74.0	105.0	101,715.9	63.1	0.0	333,875.8
3.2 /B-B.2		21.5	335.4	115.5	64.8	401.2	16,229.8	0.0	2,338.9
3.2/B.8-C		21.5	335.4	115.5	148.3	401.2	20,190.2	0.0	2,338.9
4.2/B-C		108.0	1,684.8	155.0	105.0	50,857.9	31.6	0.0	31,446.0
4.9/B-C		108.0	3,369.6	180.0	105.0	101,715.9	63.1	0.0	256,566.7
E/W WALLS	EL52' to	0' (From Pg.	17)	_					
B/2.4-4.9	106.0		3,307.2	127.0	51.0	0.0	290,942.5	96,169.0	1,247.2
B.2/2.4-4.9	106.0		1,653.6	127.0	72.5	0.0	51,680.8	48,084.5	623.6
B.5/4.2-4.9	25.0		390.0	127.0	137.5	0.0	13,411.9	630.8	147.1
B.8/2.4-4.9	106.0		1,653.6	167.5	105.9	0.0	149.6	48,084.5	70,361.6
C/2.4-4.9	106.0		3,307.2	127.0	159.0	0.0	308,174.9	96,169.0	1,247.2
					Σ	7,916,542.4	4,262,359.8	12,396,277.6	7,023,969.0
Mass Moment of Inertia about centroidal x-axis Ix =						12,178,902.2	kip-ft-sec^2		$(lox + mdz^2)$
Mass Moment	ass Moment of Inertia about centroidal z-axis Iz =					19,420,246.6	kip-ft-sec^2		$(loz + mdx^2)$
Mass Moment	of Inertia a	bout centro	idal y-axis I	y =		31,599,148.8	kip-ft-sec^2		(lx+lz)

,

MASS MC	MENTS	OF INER	TIA@J	FLOOI	R EL. +	+ 32' (Pool w	ith Water):		
Ref 2.2.2, "Dy	mamics of St	ructures" by (lough and	Penzien,	1975, Pg	g. 24		1	
Slab @ 32'+ '	WALLS 0'-3	2' + WALL	S <u>32'-40'</u> +	WALLS	s 32'- 10(0':			
				CGx =	209.1	CGz =	25.2		
Area	Length x	Length z	Wt.	CGxi	CGzi	lox	mdz^2	loz	mdx^2
Description	Lx	Lz	(W)		<u> </u>	W*Lz^2/12g	W*(CGz-CGzi)^2/g	W*Lx^2/12g	W*(CGx-CGxi)^2/g
	(ft)	(ft)	(kips)	(ft)	(ft)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)
				<u> </u>					
Slab @ EL. 3	2' (From Pg. 13)			·	r		· · · · · · · · · · · · · · · · · · ·		·
A-B/4-7	122.0	57.0	5,319.8	207.0	26.5	44,731.0	280.5	204,917.3	760.9
(at EL 32')			_			<u> </u>			
						<u> </u>			
Canister Trans	sfer M/c		222.0	170.0	0.0	0.0	4,377.2	0.0	10,565.1
		L	176.1	170.0	53.0	0.0	4,227.5	0.0	8,380.7
r				L	L				
		(From Pg. 19)							
N/S WALLS	EL. 0' to 32'	(riom 1 5, 17)			г——	T	г <u> </u>		I
			500.0	148.0	265	2 (08.8	26.0		
<u>4/AB</u>	0.0	53.0	508.8	148.0	26.5	3,698.8	26.8	0.0	59,078.3
5/AB	0.0	53.0	508.8	185.0	26.5	3,698.8	26.8	0.0	9,212.6
6/AB	0.0	53.0	508.8	212.0	26.5	3,698.8	26.8	0.0	128.7
7/AB	0.0	53.0	508.8	266.0	26.5	3,698.8	26.8	0.0	51,075.5
		(From Pg. 19)							
E/W WALLS	EL U' to 32		1 1 2 2 9	207.0		1	22.225.0	40.820.7	
A/4-/	118.0	0.0	1,132.8	207.0	52.0	0.0	22,333.0	40,820.7	162.0
<u> </u>	118.0	0.0	1,132.0	207.0	33.0	0.0	2/,194.5	40,820.7	162.0
NUCIWATIC	ET 22! to 40	(From Pg. 20)							
N/S WALLS	EL 32 10 40	53.0	1272	1480	26.5		67	T	14 760 6
	0.0		121.2	140.0	20.5	924.7	0.7	0.0	14,/09.0
FAW WALLS	EI 37' to 8	n, (From Pg. 20)							
R/4.7	1180	,	1 699 2	207.0	53.0		40 791 5	61 231 0	243.0
	110.0	0.0	1,077.4	207.0		0.0			275.0
N/S WALLS	FL. 32' to 10	(From Pg. 20)							
7/AB	0.0	53.0	1.081.2	266.0	26.5	7.860.0	57.0	0.0	108,535.4
	0.0		.,					0.0	100,0001
E/W WALLS	EL. 32' to 1	00* (From Pg. 20))						
A/4-7	118.0	0.0	2.407.2	207.0	0.0	0.0	47.463.2	86.743.9	344,3
					[<u>╃╼─</u> ──		╂──────	
					Σ=	68,310.9	146,840.8	434.533.6	263.418.1
			•						
Mass Moment	of Inertia abo	out centroidal	x-axis 1x	=		215,151.7	kip-ft-sec^2		$(lox + mdz^2)$
Mass Moment of Inertia about centroidal z-axis Iz =						697,951.7	kip-ft-sec^2		$(loz + mdx^2)$
Mass Moment of Inertia about centroidal y-axis 12						913,103.4	kip-ft-sec^2	<u> </u>	(Ix+Iz)

THIS PAGE INTENTIONALLY LEFT BLANK

MASS MC												
Ref 2.2.2, "Dy	namics of St	ructures" by	Clough a	nd Penzi	ien, 1975,	Pg. 24						
Slab @+40' +	WALLS 32	' to 40' and	40' to 80	':								
					CGx =	88.3	CGz =	118.9				
Area	Length x	Length z	Wt.	CGxi	CGzi	Iox	mdz^2	loz	mdx^2			
Description	Lx	Lz	(W)			W*Lz^2/12g	W*(CGz-CGzi)^2/g	W*Lx^2/12g	W*(CGx-CGxi)^2/g			
	(ft)	(ft)	(kips)	(ft)	(ft)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)			
					_							
Slab @ 40' (Fr	om Pg. 14)								,,			
A-B/1-4	152.0	55.0	3,887.4	74.0	26.5	30,433.2	1,030,004.4	232,439.2	24,604.0			
C-D/1-6	216.0	55.0	5,524.2	106.0	183.5	43,247.2	716,670.0	667,021.4	53,894.6			
B-C/1-2	61.0	104.0	2,474.2	30.0	105.0	69,256.0	14,775.8	23,826.0	260,944.9			
N/S WALLS EL. 32' to 40' (From Pg. 20)												
4/AB	4/AB 0.0 53.0 127.2 148.0 26.5 924.7 33,702.9 0.0 14,090.7											
E/W WALLS	EL. 32' to 4	0' (From Pg. 2))) 					· · · ·	· · · · · · · · · · · · · · · · · · ·			
NONE	_				_							
N/S WALLS	EL. 40' to 80)' (From Pg. 21)										
1/A-D	0.0	210.0	2,520.0	0.0	105.0	287,608.7	15,049.5	0.0	609,857.4			
2/AB	0.0	53.0	636.0	54.0	26.5	4,623.5	168,514.4	0.0	23,204.8			
3/AB	0.0	53.0	636.0	108.0	26.5	4,623.5	168,514.4	0.0	7,684.2			
4/AB	0.0	53.0	636.0	148.0	26.5	4,623.5	168,514.4	0.0	70,453.3			
2/CD	0.0	53.0	636.0	212.0	183.5	4,623.5	82,510.1	0.0	302,350.3			
3/CD	0.0	53.0	636.0	54.0	183.5	4,623.5	82,510.1	0.0	23,204.8			
<u>4/CD</u>	0.0	53.0	636.0	108.0	183.5	4,623.5	82,510.1	0.0	7,684.2			
6/CD	0.0	53.0	636.0	185.0	183.5	4,623.5	82,510.1	0.0	184,786.9			
E/W WALLS	EL 40' to 8	D' (From Pg. 21))					<u> </u>				
A/1-4	148.0	0.0	1,776.0	74.0	0.0	0.0	779,311.8	100,676.8	11,240.6			
B/1-4	148.0	0.0	1,776.0	74.0	53.0	0.0	239,275.4	100,676.8	11,240.6			
C/1-7	270.0	0.0	3,240.0	135.0	157.0	0.0	146,314.1	611,273.3	219,670.8			
D/1-7	270.0	0.0	3,240.0	135.0	210.0	0.0	835,676.9	611,273.3	219,670.8			
	r											
					Σ=	463,834.3	4,646,364.3	2,347,186.7	2,044,582.9			
Mass Moment	fass Moment of Inertia about centroidal x-axis Ix =						kip-ft-sec^2		$(\text{Iox} + \text{mdz}^2)$			
Mass Moment	ass Moment of Inertia about centroidal z-axis Iz =						kip-ft-sec^2		$(loz + mdx^2)$			
Mass Moment	lass Moment of Inertia about centroidal y-axis Iy =						kip-ft-sec^2		(Ix+Iz)			

THIS PAGE INTENTIONALLY LEFT BLANK

MASS MO	MENTS	OF INE	RTIA Sla	b and W	alls @ EL.	+ 80' (Pool '	with Water):		
Ref 2.2.2, "Dyr	amics of St	ructures" by	Clough and	Penzien, 19	975, Pg. 24				
Slab @80+ W.	ALLS + wa	lls 40' to 80'	+ walls 80	' to 100'					
	_								
				CGx =	132.6	CGz =	113.3		
				_					<u> </u>
Area	Leng. x	Leng. z	Weight	CGxi	CGzi	Iox	mdz^2	Ioz	mdx^2
Description		Lz	(W)	(6)	(0)	W*Lz^2/12g	W*(CGz-CGzi)^2/g	W*Lx^2/12g	W*(CGx-CGxi)^2/g
	(it)	(11)	(kips)	• (11)	(tt)	(kip-it-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)
	(From PG. 15)	1							
51aD:@ EL. 8(270.0	214.0	26 521 0	133.0	105.0	3 143 262 5	56 942 2	5 003 577 5	102.5
Ded A_B/4-7	114.0	49.0	-2 564 0	207.0	26.5	-15 931 9	-600 129 4	-86 235 5	-440 201 6
Crane 200 T:	114.0	49.0	400.0	260.0	60.0	0.0	35,310,1	0.0	201 474 8
<u>Clane 200 II</u>			10010					0.0	
Canister Tran	sfer M/c	_	246.5	170.0	53.0	0.0	27.848.9	0.0	10.680.9
							<u> </u>		
	·		<u> </u>						
N/S WALLS F	EL. 80' to 1(0' (From Pg. 22	*)			_			
4/A-B		53.0	318.0	148.0	26.5	2,311.8	74,431.8	0.0	2,327.8
E/W WALLS	EL. 80' to 1	00' (From Pg. 2							
B/4-7	118.0		708.0	207.0	53.0	0.0	79,988.0	25,512.9	121,554.6
		(T) P 44)							
N/S WALLS F	EL. 40' to 80)' (From Pg. 21)							<u>, </u>
I/A-D	0.0	210.0	2,520.0	0.0	105.0	287,608.7	5,410.6	0.0	1,377,023.3
2/AB	0.0	53.0	636.0	54.0	26.5	4,623.5	148,863.6	0.0	122,171.1
3/AB	0.0	53.0	636.0	108.0	26.5	4,623.5	148,863.6	0.0	11,998.8
4/AB	0.0	53.0	636.0	148.0	26.5	4,623.5	148,863.6	0.0	4,655.6
2/CD	0.0	53.0	636.0	212.0	183.5	4,623.5	97,295.5	0.0	124,372.7
3/CD	0.0	53.0	630.0	108.0	183.5	4,023.3	97,295.5	0.0	11 009 9
4/CD	0.0	52.0	636.0	185.0	183.5	4,023.5	97,295.5	0.0	54 135 2
0/CD	0.0		030.0	185.0	165.5	4,025.5	97,295.5	0.0	
							I	<u> </u>	
E/W WALLS	EL. 40' to 8	0' (From Pg. 21)	_				-	
A/1-4	148.0	0.0	1.776.0	74.0	0.0	0.0	708,206.8	100.676.8	189,706.7
B/1-4	148.0	0.0	1,776.0	74.0	53.0	0.0	200,633.8	100,676.8	189,706.7
C/1-7	270.0	0.0	3,240.0	135.0	157.0	0.0	192,025.3	611,273.3	557.0
D/1-7	270.0	0.0	3,240.0	135.0	210.0	0.0	940,609.7	611,273.3	557.0
N/S WALLS E	L. 0' to EL	.80' (From Pg.	19)						
7/BD	0.0	157.0	3,768.0	266.0	131.5	240,366.0	38,698.4	0.0	2,080,936.7
					Σ=	3,689,981.6	2,595,748.9	6,366,755.1	4,185,929.5
Mass Moment of Inertia about centroidal x-axis Ix =				6,285,730.5	kip-ft-sec^2			$(lox + mdz^2)$	
Mass Moment	ass Moment of Inertia about centroidal z-axis $Iz =$				10,552,684.5	kip-ft-sec^2		<u> </u>	$\left[(\text{loz} + \text{mdx}^*) \right]$
Mass Moment	ot Inertia ab	out centroida	al y-axis Iy =	2	16,838,415.0	kip-ft-sec^2	1	1	(lx+lz)

MASS MOM	IENTS OF	INERTIA	OF RC	OF SL	AB @ E	L. + 100' (Poo	ol with Water):		
Ref 2.2.2, "Dynar	mics of Structu	res" by Clous	gh and Penz	ien, 1975,	Pg. 24				
					['				
Slab @100' + W	'ALLS EL. 80'	' to 100' and	EL. 32' to	100'					
				CGx =	212.0	CGz =	20.2		
Area	Length x	Length z	Weight	CGxi	CGzi	Iox	mdz^2	loz	mdx^2
Description	Lx	Lz	(W)			W*Lz^2/12g	W*(CGz-CGzi)^2/g	W*Lx^2/12g	W*(CGx-CGxi)^2/g
	(ft)	(ft)	(kips)	(ft)	(ft)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)
Slab @ EL 100'	(From Pg.16)		-			· _			
A-B/4-7	122.0	57.0	3,191.9	207.0	26,5	26,838.6	3,873.9	122,950.4	2,474.5
L			Ļ'	L!	L!				
Canister Transf	er <u>M</u> /c		155.4	170.0	0.0	0.0	1,978.7	0.0	8,511.7
L		L'	<u> </u>	Ļ!					
L					L!				!
N/S WALLS EL	<u> 80' to 100' (F</u>	'rom Pg. 22)		_					<u> </u>
4/A-B	0.0	53.0	318.0	148.0	26.5	2,311.8	386.0	0.0	40,446.4
<u> </u>							[]		
E/W WALLS EI	L. 80' to 100' ((FromPg. 22)					<u> </u>		·
B/4-7	118.0	0.0	708.0	207.0	53.0	0.0	23,585.1	25,512.9	548.9
L					L!				
N/S WALLS EL	32' to 100' (F	/rom Pg. 20)					<u> </u>		
7/AB	0.0	53.0	1,081.2	266.0	26.5	7,860.0	1,312.2	0.0	97,926.0
				<u> </u>					
E/W WALLS A	Γ EL. 32' to 10	JO' (From Pg. 20)	. <u> </u>						
A/4-7	118.0	0.0	2,407.2	207.0	0.0	0.0	30,651.0	86,743.9	1,866.1
L									
					Σ=	37,010.3	61,786.9	235,207.2	151,773.6
Mass Moment of	Inertia about c	entroidal x-a	kis Ix =			98,797.3	kip-ft-sec^2		$(lox + mdz^2)$
Mass Moment of	Inertia about c	entroidal z-av	(is Iz =			386,980.8	kip-ft-sec^2		$(loz + mdx^2)$
Mass Moment of	Inertia about c	entroidal y-ar	xis Iy =			485,778.1	kip-ft-sec^2		(Ix+Iz)

Table Sh	Table Showing Summary Of Mass Momment Of Inertia (Pool with Water):							
	Ix	Iz	Iy (=Ix+Iz)	MASS(W/g)	h	mh^2	Ix+mh^2	Iz+mh^2
	(kip-sec^2/ft)	(kip-sec^2/ft)	kip-ft-sec^2	(kip-sec^2/ft)	(ft)_	kip-ft-sec^2	kip-ft-sec^2	kip-ft-sec^2
						-		
				·				
BASE SLAB @ -52' + WALLS	1,712,620.8	1,883,456.3	3,596,077.1	1,625.5	-52.0	4,395,352.5	6,107,973.3	6,278,808.8
(WITH WEIGHT OF WATER								
+ 4 CASKS)					ļ			
		- -	· · · · · ·		1			
			·					
BASE SLAB @ 0' + WALLS	12,178,902.2	19,420,246.6	31,599,148.8	3,150.2	0.0	0.0	12,178,902.2	19,420,246.6
· · · · · · · · · · · · · · · · · · ·								
FLOOR SLAB @ 32' + WALLS	215,151.7	697,951.7	913,103.4	476.2	32.0	487,624.7	702,776.3	1,185,576.4
FLOOR SLAB @ 40' + WALLS	5,110,198.6	4,391,769.5	9,501,968.1	1,385.6	40.0	2,216,991.8	7,327,190.4	6,608,761.3
	6 295 720 5	10 552 694 5	16 929 415 0	1 402 9	80.0	0.560.206.7	15 946 107 0	20 112 001 2
ROOF SLAB @ 80 + WALLS	0,285,750.5	10,552,084.5	10,838,413.0	1,495.8	80.0	9,300,390.7	15,840,127.2	20,113,081.2
						•		
UPPER ROOF @ 100' + WALLS	98,797.3	386,980.8	485,778.1	244.2	100.0	2,441,517.4	2,540,314.7	2,828,498.2
						<u>.</u>		
TOTAL =		· · · · ·	62,934,490.5	8,375.5			44,703,284.1	56,434,972.5
		•	6.29E+07				4.47E+07	5.64E+07
			L <u></u> _					
Note:			··	·			,	
Ix, Iy, and Iz are floor mass moment	s of inertia at the	floor centroidal a	xes.				·	
For using these results, see a caution	ary note on Page	9 about the axis s	ystem.					

Weight and (Centroid of	Baseme	nt Flo	or Slab @ Elev	52' (Po	ol witho	ut Water):	_								
(Refer to: AttB	, Sht. B-2, B-9	and B-17)														
									Struct'l.	Equipment	Live		(Wi) * CG	(W _{total)}		
Slab ⁽²⁾	Width (W)	Len.(L)	Thick	Weight = (Wt)	CG Xi ⁽¹⁾	CG Zi ⁽¹⁾	Wt * CG Xi	Wt * CG Zi	Steel Load	Dead Load	Load	(Wi) * CG Xi	Zi (See Note	Total Weight	W _{total} *CG Xi	W _{total} * CGZi
	(Xdim)	(Zdim)	• t ⁽¹⁰⁾	L*W*t*(#)		<u> </u>			(40 psf)	(100 psf)	(25psf)	(See Note 6)	6)	(See Note 9)		
	(ft)	(ft)	(ft)	(kips)	(ft)	(ft)	(ft-kips)	(ft-kips)	W1 (kips)	W2 (kips)	W3 (kips)	(ft-kips)	(ft-kips)	(kips)	(ft-kips)	(ft-kips)
(a) Conc.Slab (7)	2															
B-C/2.4-5	114.0	116.0	8.0	15.868.8	127.0	105.0	2.015.337.6	1.666.224.0	529.0	1.322.4	330.6	277.108.9	229,105,8	18.050.8	2,292,446,5	1,895,329.8
B.2-B.8/3.7-4.2	18.0	65.0	2.0	351.0	146.0	105.0	51,246.0	36,855.0	46.8	117.0	29.3	28,185.3	20.270.3	544.1	79.431.3	57.125.3
·			Σ =	16.219.8			2.066.583.6	1,703.079.0	575.8	1.439.4	359.9	305.294.2	249.376.1	18.594.8	2.371.877.8	1,895,329.8
					yhar	zhar		1,100,07,510	0,010				2.0.9			
		Center of	Concret		1274	105.0		$x bar = \Sigma (Wt *$	CCX0/2 Wt			$zbar = \Sigma (Wt * t)$	$CZi/\Sigma Wt$		ł	
	1	Center of	other A	nnlied Loads =	128.5	105.0		$xbar = \sum \{(Wi)\}$	* CGXB/E (V	Vi)		$zbar = \Sigma {(Wi)*C}$	GZi/Σ (Wi)			
<u>├</u>	<u> </u>	Centroid	of All L	pplica Louas	127.6	101.9		$xbar = \Sigma (W_{max})$	* CGXi)/Σ V	Visual		$zbar = \Sigma (W_{restal})$	* CGZi)/E W.	·		
(b) Watar in the	Pool :	centrola	1		12/10	1011									<u> </u>	
Water W/t			0.0				0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
(B CD 4 4 2)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(B-C/2.4-4.2)	+		0.0												00	0.0
(-) step Area	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0
														<u> </u>		
[<u>Σ</u> =	0.0			0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					<u> </u>			<u> </u>							<u> </u>	
	<u>+</u>			<u> </u>	xbar	zbar		E alte	COVERN			- Law - D (IX/4 +)		<u> </u>		
	I	Center of	Pool W	ater =	0.0	0.0		$xbar = \Sigma (Wt *$	CGXI/2 Wt	L		$zbar = \Sigma (Wt^*)$	CGZi)/2 Wt		<u> </u>	
┣────		Center of	other A	pplied Loads =	0.0	0.0		$x \text{ bar} = \sum \{(W_i)\}$	* CGXI}/2 (V	<u>vi)</u>		zbar=2 {(WI)*C	* CC7205 W			
		Centroia		ool water Loads =	0.0	0.0		XDar - 2 (W tota	1 * CGAI)/2 v	total		ZDar - 2 (W total		xe)		
								· ·					<u> </u>	<u> </u>	<u> </u>	
	l				+	<u> </u>						<u> </u>	<u> </u>			
(c) Four Casks	<u> </u>	<u> </u>	<u>Σ</u> =	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				(see Note 8)		<u> </u>		<u> </u>			<u> </u>					
					xbar	zbar				ļ						
	<u> </u>	Center of	Pool W	ater =	0.0	0.0		$xbar = \Sigma (Wt *$	CGXi)/2 Wt	L		$zbar = \Sigma (Wt^*)$	CGZi)/2 Wt			
	L	Center of	other A	pplied Loads =	0.0	0.0		$xbar = \Sigma \{(Wi)\}$	* CGXi}/2 (\	Vi)		zbar=2. {(Wi)*(GZI}/2 (WI)	<u> </u>		
		Centroid	of All Pe	ool Water Loads =	0.0	0.0		$xbar = \Sigma (W_{tota})$	1.* CGX1)/2 V	v total		ZDar = 2 (W _{total}	* CGZi/2 W	ini		
Notes:																
1 For coordinate	system definiti	on see Sect	ion 6.													
2 Numbers and least sector 2	etters are in ref	erence to th	e colum	n grid lines for the buil	ding											
3 W1: Structural	steel framing +	Platforms	& misc	steel per floor or roof (see Section	3.0).									<u> </u>	
4 W2: Floor equi	ipment load inc	luding cran	ies weigh	ning less than 50 tons,	mechanical,	electrical d	t piping (see Sec	tion 3.0).								
5 W3: 25% of th	e specified live	load (see S	Section 3	.0)												
6. Applied Loads	= Wi = (W1 +	W2+W3)		·												
7. (#) = Unit W	t. Of Concrete=	-0. <u>150 K</u> ip:	s/ Cft an	d Water = 0.0624 Kips	/ Cft										_	
8. Postulated four	casks @ 200 t	ons each co	onservati	vely located in the fart	hest corner	of the pool	(Refer to Assum	ption 3.2.3)								
9. $W_{(Total)} = (Wt +$	-W1+W2+W3)															
10. Weight of sla	b at El34' inc	luded with	the slab	at El52'												

PAGES 39 THROUGH 50 INTENTIONALLY LEFT BLANK

DDR LUMPED WEIGHTS (Poo	l without Water):				
(WEGHTS AND THEIR CENTERS)	Τ				
<u> </u>					
BASEMENT FLOOR SLAB @ - 52' :					
	Weight W	xbar	zbar	W*xbar	W*zbar
BASE SLAB + WATER + WALLS	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) BASEMENT SLAB @ E152 (Page 38)	18,594.8	127.6	105.0	2,371,877.8	1,952,455.1
b) Wt. Of WATER (Page 38)	0.0	0.0	0.0	0.0	0.0
c) FOUR CASKS IN THE POOL (Page 38)	0.0	0.0	0.0	0.0	0.0
d) Wt. Of 1/2 WALLS El52' to El. 0' (Page 17)	19,406.4	132.5	103.0	2,571,043.8	1,999,149.0
e) Full Wt. Of Walls El52' to El34' (Page 17)	351.0	137.0	105.0	48,087.0	36,855.0
SUM	38,352.2			4,991,008.6	3,988,459.1
		XBAR =	130.1	ft	$XBAR = \Sigma(W*xbar)/\Sigma(W)$
	Floor Slab@-52	ZBAR =	104.0	ft	$ZBAR = \Sigma(W*zbar)/\Sigma(W)$
		WEIGHT	38,352.2	kips	WEIGHT = Σ (Weight)
FLOOR SLAB @ + 0':					
· .	Weight W	xbar	zbar	W*xbar	W*zbar
	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) FLOOR SLAB @0' (Page 12)	56,730.4	131.4	104.8	7,454,200.2	5,943,383.8
b)1/2 Wt. Of Walls below El. 0' (Page 17)	19,406.4	132.5	103.0	2,571,043.8	1,999,149.0
c)1/2 Wt. of Walls above El. 0' as follows:					
0'-32' (Page 19)	4,300.8	205.0	26.5	881,616.0	113,971.2
0'-40' (Page 19)	15,600.0	82.2	119.1	1,281,984.0	1,858,431.7
0'-80' (Page 19)	3,768.0	266.0	131.5	1,002,288.0	495,492.0
d) Full Wt. of Walls El. 0' to El. 20' (Page 19)	1,632.4	27.6	99.1	44,974.0	161,763.7
SUM	101,438.0			13,236,105.9	10,572,191.4
		XBAR =	130.5	ft	$XBAR = \Sigma(W*xbar)/\Sigma(W)$
	0' BASE SLAB	ZBAR =	104.2	ft	$ZBAR = \Sigma(W*zbar)/\Sigma(W)$
		WEIGHT	101,438.0	kips	WEIGHT = Σ (Weight)
	<u> </u>				
FLOOR SLAB @ + 32':					
	Weight W	xbar	zbar	W*xbar	W*zbar
	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) FLOOR SLAB @32' (Page 13)	5,717.9	204.4	26.3	1,168,877.7	150,308.3
b) 1/2 Wt. Of Walls below El. 32'					
0'-32' (Page 19)	4,300.8	205.0	26.5	881,616.0	113,971.2
c) 1/2 Wt. Of Walls above El. 32' as follows:					
<u>32'-40'</u> (Page 20) 4/A-B	127.2	148.0	26.5	18,825.6	3,370.8
32'-100' (Page 20) 7/A-B	1,081.2	266.0	26.5	287,599.2	28,651.8
32'-80' (Page 20) B/4-7	1,699.2	207.0	53.0	351,734.4	90,057.6
	2,407.2	207.0	0.0	498,290.4	0.0
SUM	15,333.5			3,206,943.3	386,359.7
·		XBAR =	209.1	ft	$XBAR = \Sigma(W^*xbar)/\Sigma(W)$
	32' BASE SLAB	ZBAR =	25.2	ft	$ZBAR = \Sigma(W*zbar)/\Sigma(W)$
		WEIGHT	15,333.5	kips	WEIGHT = Σ (Weight)

DDR LUMPED WEIGHTS (Pool	without Water):				
(WEGHTS AND THEIR CENTERS)					
				1	
FLOOR SLAB @ + 40' :					
Base Slab+Walls					
40' FLOOR SLAB	Weight W	xbar	zbar	W*xbar	W*zbar
	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) FLOOR SLAB @ 40' (Page 14)	11,885.8	79.7	115.8	947,457.6	1,376,493.6
b) 1/2 wt. Of Walls below El.40'					
0'-40' (Page 19)	15,600.0	82.2	119.1	1,281,984.0	1,858,431.7
32'-40' Page 20 4/A-B	127.2	148.0	26.5	18,825.6	3,370.8
c) 1/2 Wt of Walls above El.40'					
40'-80' ^(Page 21)	17,004.0	99.4	121.5	1,690,332.0	2,065,197.7
SUM	44,617.0			3,938,599.2	5,303,493.9
				· · ·	
		XBAR =	88.3	ft	$XBAR = \Sigma(W^*xbar)/\Sigma(W)$
	40' SLAB	ZBAR =	118.9	ft	$ZBAR = \Sigma(W*zbar)/\Sigma(W)$
		WEIGHT	44,617.0	kips	WEIGHT = Σ (Weight)
ROOF SLAB @ + 80':				•	
Roof/Roof Slab+Walls					
	Weight W	xbar	zbar	W*xbar	W*zbar
	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) ROOF SLAB @ 80' (Page 15)	24,603.5	127.7	111.9	3,142,458.0	2,753,826.3
wt.					
b) 1/2 wt. Of Walls below E1.80'					
0'-80' (Page 19)	3,768.0	266.0	131.5	1,002,288.0	495,492.0
32'-80' (Page 20)	1,699.2	207.0	53.0	351,734.4	90,057.6
40'-80' (Page 21)	17,004.0	99.4	121.5	1,690,332.0	2,065,197.7
c) 1/2 Wt of Walls above El.80'					´
80'-100' ^(Page 22)	1,026.0	188.7	44.8	193,620.0	45,951.0
SUM	48,100.7			6,380,432.4	5,450,524.6
		XBAR =	132.6	ft	$\overline{\text{XBAR}} = \Sigma(W^* \text{xbar}) / \Sigma(W)$
	80' ROOF	ZBAR =	113.3	ft	$ZBAR = \Sigma(W*zbar)/\Sigma(W)$
		WEIGHT	48,100.7	kips	WEIGHT = Σ (Weight)
FLR. SLAB @ 100' :					
Roof Slabs+Walls					
100' ROOF	Weight W	xbar	zbar	W*xbar	W*zbar
	(kips)	(ft)	(ft)	(ft - kips)	(ft - kips)
a) ROOF SLAB @ 100' (Page 16)	3,347.3	205.3	25.3	687,138.4	84,585.0
b) 1/2 wt. Of Walls below El.100'					
32'-100' - Wall A/4-7 (Page 20)	2,407.2	207.0	0.0	498,290.4	0.0
32'-100' - Wall 7/A-B (Page 20)	1,081.2	266.0	26.5	287,599.2	28,651.8
80'-100' - Walls 4/A-B + B/4-7 (Page 22)	1,026.0	188.7	44.8	193,620.0	45,951.0
SUM	7,861.7			1,666,648.0	159,187.8
		XBAR =	212.0	ft	$\overline{XBAR} = \Sigma(W^*xbar)/\Sigma(W)$
	100' ROOF	ZBAR =	20.2	ft	$ZBAR = \Sigma(W*zbar)/\Sigma(W)$
		WEIGHT	7,861.7	kips	WEIGHT = Σ (Weight)

THIS PAGE INTENTIONALLY LEFT BLANK

For WEIGHT, XBAR and ZBAR, see Pgs. 5	51 and 52)	└─── ↓		_
		<u>↓ </u>		
	WEIGHT (W)	MASS (W/g)	CGx	CGz
LOCATIONS	(kips)	(kip-sec^2/ft)	(ft)	(ft)
	_ 	<u>├</u>		^T
BASEMENT SLAB @ -52' + WALLS	38,352.2	1,191.1	130.1	104.0
· · · · · · · · · · · · · · · · · · ·				
FLOOR SLAB @ 0' + WALLS	101,438.0	3,150.2	130.5	104.2
FLOOR SLAB @ 32' + WALLS	15,333.5	476.2	209.1	25.2
	44 617 0	1 205 6	00 2	119.0
FLOOK SLAB @ 40' + WALLS	44,017.0	1,383.0	<u> </u>	II8.9
ROOF @ 80' + WALLS	48,100.7	1,493.8	132.6	113.3
UPPER ROOF @ 100' + WALLS	7,861.7	244.2	212.0	20.2
		7.041.1		
101AL -	235,703.1	/,941.1		

MASS MON	MENTS	OF IN	ERTIA	@ FLO	OR EL 5	2' (Pool wit	hout Water):		
Ref 2.2.2, "Dyna	amics of S	tructures"	by Clougl	and Penzi	ien, 1975, Pg. 2	24			
(Note: For coord	dinate Sys	tem defin	ation see p	age 9)					
POOL Floor E	L. @ -52'	+ WALL	S -52' to -	43'				··	
				CGx =	130.1	CGz =	104.0		
									•
Area	Len. x	Len. z	Wt.	CGxi	CGzi	lox	mdz^2	loz	mdx^2
Description	Lx	Lz	(W)			W*Lz^2/12g	W*(CGz-CGzi)^2/g	W*Lx^2/12g	W*(CGx-CGxi)^2/g
	(ft)	(ft)	(kips)	(ft)	(ft)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)	(kip-ft-sec^2)
								_	
FLOOR SLAB	<u>@</u> - <u>52' ^{(Fi}</u>	rom Pg. 38)							
B-C/2.4-5	114.0	116.0	18,050.8	127.0	105.0	628,600.0	565.6	607,111.0	5,513.5
B.2-B.8/3.7-4.2	18.0	65.0	544.1	146.0	105.0	5,948.8	186,278.0	456.2	_360,154.3
				-	<u> </u>				
NO WATER (FI	rom Pg. 38)								
NO CASKS (FFO	m rg. 38)			_					
		(Enom Be	17)						
N/S WALLS E	L52' to (0' (From Fg.	1 <i>.,</i> ,					ı ——	
2.4/B-C		108.0	3,369.6	74.0	105.0	101,715.9	105.6	0.0	329,767.3
3.2 /B-B.2		21.5	335.4	115.5	64.8	401.2	16,043.1	0.0	2,231.3
3.2/B.8-C		21.5	335.4	115.5	148.3	401.2	20,399.6	0.0	2,231.3
4.2/B-C		108.0	1,684.8	155.0	105.0	50,857.9	52.8	0.0	32,346.7
4.9/B-C		108.0	3,369.6	180.0	105.0	101,715.9	105.6	0.0	260,192.2
		(From B	la 17)						
E/W WALLS E	L52' to	0' (********	g. 17)						
B/2.4-4.9	106.0		3,307.2	127.0	51.0	0.0	288,458.5	96,169.0	1,010.2
B.2/2.4-4.9	106.0		1,653.6	127.0	72.5	0.0	50,941.6	48,084.5	505.1
B.5/4.2-4.9	25.0		390.0	127.0	137.5	0.0	13,596.1	630.8	119.1
B.8/2.4-4.9	106.0		1,653.6	167.5	105.9	0.0	192.2	48,084.5	71,693.2
C/2.4-4.9	106.0		3,307.2	127.0	159.0	0.0	310,742.2	96,169.0	1,010.2
		from P	·						
N/S WALLS E	L52' to -	-34'	.		105.0		<u> </u>		
3.7/B.2-B.8		65.0	351.0	137.0	105.0	3,837.9	11.0	0.0	513.6
						002 470 0	007 401 0	906 705 0	1.0(7.300.0
┝────						893,4/8.8	88/,491.8	890,705.0	1,007,288.0
	[1 700 070 7	1-in 6 62			$(1 \text{ av } + m d^2)$
Mass Moment of	f inertia at	bout centr	oidal x-axi	$s_{1x} =$	1,/80,9/0./	kip-it-sec^2			(lox + mdz)
Mass Moment of	f Inertia at	pour centre	oidal y avi	$\frac{12}{12}$	1,703,992.9	kip-it-sec^2	┨		$(102 \pm 110x)$
iviass ivioment of	i mertia at	out centr	olual y-axi	5 iy -	3,/44,903.0	kip-it-see 2	<u> </u>	<u> </u>	(1712)

,

•

PAGES 56 THROUGH 64 INTENTIONALLY LEFT BLANK

Table Showing Summary Of Mass Momment Of Inertia (Pool without Water):								
	Ix	Iz	Iy (=Ix+Iy)	MASS(W/g)	h	mh^2	Ix+mh^2	Iz+mh^2
	(kip-sec ² /ft)	(kip-sec^2/ft)	kip-ft-sec^2	(kip-sec^2/ft)	(ft)	kip-ft-sec^2	kip-ft-sec^2	kip-ft-sec^2
			-					
	1 790 070 7	1.0(2.002.0	2 744 0(2) (1 101 1	52.0	2 220 622 8	5 001 602 5	5 194 (25 7
$\frac{BASE SLAB}{(WITHOUT WATER OR CASKS)}$	1,780,970.7	1,963,992.9	3,/44,963.0	1,191.1	-52.0	3,220,032.8	5,001,003.5	5,184,025.7
(without watek ok casks)								
FLOOR SLAB @ 0' + WALLS	12,178,902.2	19,420,246.6	31,599,148.8	3,150.2	0.0	0.0	12,178,902.2	19,420,246.6
	215 151 7	(07.051.7	012 102 4	476.0	22.0		702 776 2	1 195 576 4
FLOOR SLAB (@ 32 + WALLS	215,151.7	097,951.7	915,105.4	4/0.2	32.0	487,024.7	/02,770.3	1,185,570.4
FLOOR SLAB @ 40' + WALLS	5,110,198.6	4,391,769.5	9,501,968.1	1,385.6	40.0	2,216,991.8	7,327,190.4	6,608,761.3
ROOF SLAB @ 80' + WALLS	6,285,730.5	10,552,684.5	16,838,415.0	1,493.8	80.0	9,560,396.7	15,846,127.2	20,113,081.2
	· · · · · · · · · · · · · · · · · · ·							
UPPER ROOF @ 100' + WALLS	98,797.3	386,980.8	485,778.1	244.2	100.0	2,441,517.4	2,540,314.7	2,828,498.2
TOTAL =			63,083,377.0	7,941.1			43,596,914.2	55,340,789.5
			6.31E+07				4.36E+07	5.53E+07
N 4.				<u> </u>				
INOTE:	of inertia at the fl							
For using these results, see a cautional	rv note on Page 9	about the axis sv	stem.	<u> </u>		<u> </u>		

7 **RESULTS AND CONCLUSIONS**

7.1 RESULTS

Results from this calculation will be mass inputs to the lumped mass stick model used in the seismic analysis of the Wet Handling Facility (WHF).

The primary outputs from this calculation are

- Finite element model properties including mass and mass moments of inertia
- Coordinates for the centers of mass of each floor and roof level

All results are shown in Section 6 of this calculation. The outputs are reasonable based on the inputs.

7.2 CONCLUSIONS

The results of the calculation are adequate for use in the structural calculations being performed as part of the Tier 1 seismic analysis. A more refined finite element analysis will be generated for Tier 2 seismic analysis.

Attachment A LIST OF PLANT DESIGN DRAWINGS

- 1. Wet Handling Facility Preliminary Layout Ground Floor Plan. 050-P0K-WH00-10301-000-00A. (Ref. 2.2.5)
- 2. Wet Handling Facility Preliminary Layout Second Floor Plan. 050-P0K-WH00-10401-000-00A. (Ref. 2.2.6)
- 3. Wet Handling Facility Preliminary Layout Section A. 050-P0K-WH00-10501-000-00A. (Ref. 2.2.7)
- 4. Wet Handling Facility Preliminary Layout Section B. 050-P0K-WH00-10601-000-00A. (Ref. 2.2.8)
- 5. Wet Handling Facility Preliminary Layout Ground Floor and Pool Basement Plans. 050-P0K-WH00-10101-000-00A. (Ref. 2.2.9)
- 6. Wet Handling Facility Preliminary Layout Second Floor Plan. 050-P0K-WH00-10102-000-00A. (Ref. 2.2.10)
- 7. Wet Handling Facility Preliminary Layout Section A. 050-P0K-WH00-10103-000-00A. (Ref. 2.2.11)
- 8. Wet Handling Facility Preliminary Layout Section B. 050-P0K-WH00-10104-000-00A. (Ref. 2.2.12)
- 9. CRCF, IHF, RF, and Canister Transfer Machine Mechanical Equipment Envelope 000-MJO-HTC0-00201-000-00A (Ref. 2.2.13)

Attachment B

PLAN, SECTION, AND ELEVATION SKETCHES OF WHF

GROUND FLOOR PLAN AT EL 0'-0"

60'-0"

onou (

٩

2

4

ELEVATION ALONG COL LINE "1" (LOOKING EAST)

ELEVATION ALONG COL "3" (LOOKING EAST)

ELEVATION ALONG COL "6" (LOOKING EAST)

EAST WALL-ELEVATION ALONG COL LINE "7" (LODKING EAST)

ELEVATION ALONG COL LINE "A" (LOOKING NORTH)

March 2007

SOUTH WALL-ELEVATION ALONG COL LINE "D" (LOOKING NORTH)

Attachment C

WEIGHT DISTRIBUTION DUE TO THE CANISTER TRANFER MACHINE

The Canister Transfer Room of the Wet Handling Facility (WHF), Room Number 2004, floor elevation 32', lies between Column Rows 4-7 and A-B (Figure C-1). This attachment calculates the loads on the WHF structure due to the Canister Transfer Machine.

The Canister Transfer Machine consists of a crane bridge spanning between the walls at Column Rows A and B within Room No. 2004. The floor of the Canister Transfer Room (El. 32') has openings between Column Rows 4 and 5 Rows 5 and 6 for lifting and lowering of the canisters. The main function of the canister transfer machine is to lift canisters from the floor opening between column rows 5 and 6 and lower them through the opening between column rows 4 and 5. The estimated weight of the equipment is 400 tons (Ref. 2.2.13). From the point of view of loading on the structure, the most critical location of the crane would be when the loaded crane is over the eastern floor opening (i.e. between Rows 4 and 5) because at that location, the load would have the maximum eccentricity on the diaphragm floor slab at elevation 32'.

With reference to Figure C-2, the distribution of the canister transfer machine weight on Walls A and B is as follows:

Weight of the canister transfer Machine = 400 tons = 800 kips

Weight on the wall at Column Line $A = 800 \times 25/53 = 377.4$ kips

Weight on the wall at Column Line $B = 800 \times (53 - 25)/53 = 422.6$ kips

The corbels on the wall for the cask transfer machine are located at Elevation 60' (Reference 2.2.13). Therefore, the walls are considered loaded at that location. The wall weight, in turn, is distributed to the floor slabs above and below the loading point. Thus, reactions at the floor slab level, per Figure C-2, are as follows:

Reaction $R_{A32} = 377.4 \text{ x} (100-60)/(100-32)$	= 222 kips	at x = 170', z = 0'
Reaction R_{A100} = 377.4 x (60-32)/(100-32)	= 155.4 kips	at x = 170', z = 0'
Reaction $R_{B32} = 422.6 \text{ x} (80-60)/(80-32)$	= 176.1 kips	at x = 170', z = 53'
Reaction $R_{B80} = 422.6 \text{ x} (60-32)/(80-32)$	= 246.5 kips	at x = 170', z = 53'

These weights are applied to the respective floors at the locations identified above in the mass properties calculation.

