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EXECUTIVE SUMMARY

This report describes models and analyses used to develop ground motion inputs for the
proposed geologic repository at Yucca Mountain, Nevada. These new ground motion inputs
supplement those described in Development of Earthquake Ground Motion Input for Preclosure
Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca
Mountain, Nevada (BSC 2004 [DIRS 170027]). These ground motions are based on updated
inputs to the ground motion site-response model and on an alternate approach to that used
previously for incorporating the site response in developing ground motion inputs. The ground
motion inputs also reflect new information on the characterization of extreme ground motions
that can occur at Yucca Mountain. Specific objectives of this study are:

e For ground motion annual frequencies of exceedance (AFE) appropriate for preclosure
design analyses, calculate hazard-consistent site-specific seismic design acceleration
response spectra for a range of damping values; strain-compatible soil properties; and
time histories (acceleration, velocity, and displacement). Provide seismic design inputs
for the Repository Block waste emplacement level (RB) and for the Surface Facilities
Area (SFA).

e For probabilistic analyses supporting the demonstration of compliance with preclosure
performance objectives, provide mean seismic hazard curve for the SFA and RB. The
results should reflect, as appropriate, available knowledge on the characterization of
extreme ground motions that could occur at Yucca Mountain.

In these analyses, a random-vibration-theory-based equivalent-linear site-response model and a
stochastic point-source ground motion model have been utilized. The purpose of the site-
response model is to incorporate the effects of the local rock and soil conditions at the SFA and
RB on earthquake ground motions. The model and its validation were described in BSC 2004
([DIRS 170027]).

The stochastic point-source ground motion model is used to calculate ground motions based on
properties of the earthquake source, propagation path, and site. This model is used in
conjunction with the site-response model to evaluate the V/H (vertical to horizontal) ratios of
ground motions. The model is also used to estimate extreme ground motions from earthquakes
that can occur at Yucca Mountain. By assessing a distribution of extreme stress drops
reasonably associated with such earthquakes, the model is used to characterize the probabilities
that extreme ground motions can occur. This result is used to condition the probabilistic seismic
hazard analysis (PSHA) ground motion hazard results for use in developing site-specific ground
motions for the SFA and RB. The description and validation of the stochastic point-source
ground motion model is contained in this report. In addition, this report also describes the use of
these models, the model results, and the development of ground motion inputs based on these
results.

Geological/geotechnical inputs to the site-response ground motion model include small-strain
seismic velocities, densities, and nonlinear dynamic material properties. The velocity profiles
and dynamic material property curves were developed based upon a geotechnical, geological,
and geophysical program performed in 2000 to 2001 and additional data collected in a 2004 to
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2005 field program. Velocity data were acquired using downhole and suspension logging
techniques in boreholes and spectral-analysis-of-surface-waves (SASW) surveys. Dynamic
laboratory testing using resonant column and torsional shear were performed on samples from
the RB and SFA in 2000 and 2001.

For the RB, two base case shear-wave and compressional-wave velocity profiles are used to
represent the variability in mean velocities observed in the data, which indicate both “soft” and
“stiff” zones exist at Yucca Mountain. For the SFA, a single base case profile for both shear-
wave and compressional-wave velocity is used for the area northeast of and three base case
profiles for the area south of the Exile Hill fault splay. To accommodate the effect of the varying
thickness of alluvium, site-response modeling was carried out for multiple values of alluvium
thickness. For the area represented by the Northeast-of-the-Fault tuff velocity profile, alluvium
thickness values of 30, 70, 100, and 200 ft were used. For the area represented by the South-of—
the-Fault tuff velocity profiles, thickness values of 30, 70, and 100 ft were used. The base case
profiles are used, along with information on the statistical correlation of layer thicknesses and
layer velocities, to develop a suite of random velocity profiles that are used as model input.

Similarly for the nonlinear dynamic properties of site materials, multiple base case curves of
normalized shear modulus and damping, as a function of cyclic shear strain, are developed to
represent uncertainty in the mean values of these properties. Two sets of curves are developed
for the tuff and two sets for alluvium at the site. In addition, adjustments to the curves are made
as a function of depth to represent the effect of confining pressure on the materials. For input to
the site response model, the mean curves for all materials are used as a basis to create
randomized curves representing variability in properties across the site.

The starting point for the site response modeling is the output of the PSHA, which was
calculated for a reference hard rock outcrop. As a result of the large epistemic uncertainty in
PSHA estimates of median motions as well as untruncated aleatory variabilities about median
estimates, PSHA results for extreme ground motions yield AFEs > 10®. Recent analyses and
assessments indicate such results are inconsistent with the geologic setting at Yucca Mountain.
One analysis made use of geological observations in underground excavations at Yucca
Mountain, laboratory rock testing, numerical simulations of rock mass deformation, and site
response modeling to estimate a level of peak horizontal ground velocity (PGV) that had not
been exceeded in 12.8 million years. This nonexceedance observation over 107 yrs was used to
condition the repository level PGV hazard curve to an AFE of 10®. In an effort to refine the
earlier analysis, the present study used both the site nonexceedance observations, updated to
reflect current site response model inputs, as well as an assessment (probability distribution) of
extreme source processes. In the current hazard curve conditioning, revised reference hard rock
outcrop horizontal hazard curves were developed for all structural frequencies considered in the
original PSHA (CRWMS M&O 1998 [DIRS 103731]), as well as horizontal- and vertical-
component PGV. The conditioned reference rock outcrop hazard curves were then used to
develop horizontal and vertical ground motions for the RB and SFA.

Approach 3 as defined in NUREG/CR-6728 (McGuire et al. 2001 [DIRS 157510]) was used in
developing hazard-consistent site-specific ground motions for the SFA and RB. Deaggregation
of the PSHA results to identify controlling earthquakes for structural frequency ranges of 1 to 2
Hz and at 5 to 10 Hz (BSC 2004 [DIRS 170027]) was used to develop input for site response
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modeling. Response spectra for appropriate controlling earthquakes were scaled to PGA values
ranging from 0.1 to 10 g. These response spectra form the basis for development of a database
of site transfer functions that are used in determining the site-specific ground motions.

In implementing Approach 3 using the full integration method, the following steps were taken:
1) base case mean site properties were used to produce a randomized suite of velocity profiles as
well as G/Gmax and hysteretic damping curves that are used to incorporate site variability in site
response modeling; 2) transfer functions (amplification factors for horizontal motions and V/H
ratios for vertical motions) were computed using the RVT-based equivalent-linear site response
model; 3) the conditioned PSHA reference rock outcrop fractile and mean hazard curves were
integrated with the transfer functions to arrive at a distribution of site-specific horizontal and
vertical hazard curves; and 4) site-specific UHS were computed.

Based on Approach 3, hazard-consistent site-specific design ground motion inputs for preclosure
analyses were determined for the RB waste emplacement drifts (about 335 m depth). Preclosure
inputs also were determined for the SFA. Two design basis ground motion levels (DBGM-1 and
DBGM-2) are used. DBGM-1 has a mean AFE of 1x10~, while DBGM-2 has a mean AFE of
5x10*.  For beyond-design-basis ground motion (BDBGM) analyses and fragility analyses
ground motions with a mean AFE of 1x10™ are developed. For preclosure seismic safety
analyses, the site-specific hazard curves and associated UHS from Steps 3 and 4 above are used.
Thus, in this report, ground motions for design analyses (response spectra, time histories, and
strain-compatible material properties) are presented for AFE of 107, 5x10™, and 10®. Hazard
curves and associated UHS are presented for AFEs from 10~ to 107 for the SFA and from 10~ to
107® for the RB. Key results and products of this study are listed in Table E-1.

Note that in computing the UHS, spectral acceleration (SA) for a period of 3.3 sec was
inadvertently used for a period of 3.0 sec. Thus, for periods greater than 2.0 sec the UHS has
lower SA (higher AFE) than intended. Users of these data should take into account this
limitation when deciding whether the data are adequate for an intended use. Design response
spectra based on the UHS and time histories spectrally matched to design response spectra have
the same limitation.
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Table E-1. Preclosure Seismic Ground Motions for Design Analyses

Annual Site Design Time PGA 10 Hz SA 1 Hz SA PGV
Frequency Response | Histories (9) (9) (9) (cm/sec)
of Spectra H | Vv H v H v H v
Exceedance
5 three-
Horizontal | component
10 SFA and sets 0.33 | 0.22 | 0.82 0.55 0.29 0.15 | 23.19 —
Vertical spectrally
matched
5 three-
Horizontal | component
5x10™ SFA and sets 045 | 0.32 | 1.17 0.86 0.43 0.23 | 34.13 —
Vertical spectrally
matched
5 three-
Horizontal | component
10 SFA and set 091 | 0.72 | 240 | 2.22 0.96 0.52 | 7413 —
Vertical spectrally
matched
1 three-
\ RB Horizontal | component
10° EL and set 0.12 | 0.07 | 0.27 0.14 0.10 | 0.082 | 13.48 | 6.96
Vertical spectrally
matched
1 three-
4 RB Horizontal | component
5x10 and set 0.17 | 0.12 | 0.39 | 0.23 0.15 0.12 | 19.54 | 10.10
EL .
Vertical spectrally
matched
1 three-
. RB Horizontal | component
10° EL and set 0.37 | 0.32 | 0.84 0.59 0.30 0.25 | 41.40 | 21.51
Vertical spectrally
matched

Seismic hazard curves for the SFA: Horizontal and vertical SA at 0.3, 0.5, 1, 5, 10, 20, and 100 Hz (PGA), Horizontal

PGV

Seismic hazard curves for the RB EL: Horizontal and vertical SA at 0.3, 0.5, 1, 5, 10, 20, and 100 Hz (PGA), PGV

NOTES: PGA = peak ground acceleration

PGV = peak ground velocity

SA = spectral acceleration

RB EL = Repository block emplacement level

SFA = Surface facilities area

H, V = Horizontal, vertical
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