BSC

Design Calculation or Analysis Cover Sheet

1. QA: QA 2. Page 1 ·

Complete only applicable items.

3. System 4. Document Identifier	
Monitored Geologic Repository 000-00C-MGR0-02500-000-00A	
5. Title	
Site-Specific Input Files for Use with GENII Version 2	
6. Group	
Preclosure Safety Analysis	
7. Document Status Designation	
Preliminary 🛛 Committed 🗌 Confirmed 🗌 Ca	ncelled/Superseded
8. Notes/Comments	
	Total Number of
Attachments	Total Number of Pages
Attachment A. Radionuclide Listing	2
Attachment B. Implicit Daughter Listing	4
Attachment C. Categorization of GENII Description Files	18
Attachment D. Parameter Development Calculation Files	
Attachment E. YMP Site-Specific Default Files	
Attachment F. YMP Site-Specific Nuclide Dependent Database File	
Attachment G. YMP Site-Specific FGR-13 Inhalation DCF File	2
Attachment H. Electronic Files with This Report	2 + CD
Attachment I. Meteorological Inputs	2
RECORD OF REVISIONS	
9. 10. 11. 12. 13. 14. 15.	16.
9. 10. No. Reason For Revision Total # Last Originator Checker EGS of Pgs. Pg. # (Print/Sign/Date) (Print/Sign/Date)	1
00A Initial issue. 252 252 D. Wesley Wu Kelvin J. Montague Sen-Sung Dale T. Dexheimer Yha Martin Be Sen-Sung	Isai Markik. Wisenburg
Dale T. Dexheimer Rh Jan Berton	Von gernenning
Dale T. Dexheimer Xh JMt Ber Day J. Wa #27/27 3/27/07 3/27/	107 31271200
DT. Det.	-
3/27/07	

DISCLAIMER

The calculations contained in this document were developed by Bechtel SAIC Company, LLC (BSC) and are intended solely for the use of BSC in its work for the Yucca Mountain Project.

CONTENTS

	Page
TABLES	
FIGURES	
ACRONYMS	
UNITS OF MEASURE	
1. PURPOSE	
1.1 SCOPE 1.2 LIMITATIONS	
2. REFERENCES	
2.1 PROCEDURES/DIRECTIVES2.2 DESIGN INPUTS	
2.2 DESIGN INFOTS	
2.4 DESIGN OUTPUTS	
3. ASSUMPTIONS	
3.1 ASSUMPTIONS REQUIRING VERIFICATION	
3.1.1 Average Absolute Humidity	
3.1.2 Average Daily Rain Rate	
3.1.3 Wind Speed	
3.1.4 Ambient Air Temperature	
 3.2 ASSUMPTIONS NOT REQUIRING VERIFICATION 3.2.1 Worker Status on the Nevada Test Site and the Nellis Air Force Range 	
3.2.1 Worker Status on the Nevada Test Site and the Nellis Air Force Range3.2.2 Location of Maximally Exposed Individuals	
3.2.3 Exposure Pathways	
3.2.4 Duration of Emplacement Activities	
3.2.5 Acute Exposure Period	
3.2.6 Fraction of Plants Roots in Surface Soil	
3.2.7 Animal Feed	
3.2.8 Animal Feed Storage Time Prior to Consumption	
3.2.9 Fraction of Animal Feed from Contaminated Products	
3.2.10 Holdup Time for Crop Food and Animal Products	
3.2.11 Harvest Removal	
3.2.12 Soil Resuspension	
4. INPUT DATA	
4.1 INPUT DATA	
4.1.1 Environmental Transport Parameters	
4.1.1.1 Soil-to-Plant Transfer Factors	
4.1.1.2 Transfer Coefficients for Animal Products	
4.1.1.3 Translocation Factors	
4.1.1.4 Weathering Half-Half or Weathering Rate Constant	

4.1.1.5	Dry Deposition Velocity for Soil Resuspension	
4.1.1.6	Animal Feed and Soil Consumption Rates	
4.1.1.7	Depth of Top Soil Available for Resuspension	64
4.1.2 So	il-Related Parameters	
4.1.2.1	Soil Bulk Density	65
4.1.2.2	Soil-Water Partition Coefficient.	65
4.1.2.3	Soil Water Content	67
4.1.3 Ag	gricultural Input Parameters	68
4.1.3.1	Surface Soil Depth	68
4.1.3.2	Annual Overwatering Rate	68
4.1.3.3	Crop Dry Biomass	69
4.1.3.4	Crop Dry-to-Wet Ratios	
4.1.3.5	Crop Wet Yields	71
4.1.3.6	Crop Growing Time	
4.1.3.7	Number of Alfalfa Cuttings Per Year	
4.1.4 In	halation Exposure Input Parameters	73
4.1.4.1	Mass Loading for Crops	73
4.1.4.2	Mass Loading for Inhalation Exposure	
	naracteristics of the Receptor	
4.1.5.1	Annual Consumption Rates of Locally Produced Foods	
4.1.5.2	Inadvertent Soil Ingestion Rate	
4.1.5.3	Building Shielding Factors	
4.1.5.4	Daily Exposure Times	
4.1.5.5	Inhalation Rates	
	te Meteorological Data	
4.1.6.1	Average Absolute Humidity	
4.1.6.2	Average Daily Rain Rate	
4.1.6.3	Wind Speed	
4.1.6.4	Ambient Air Temperature	
4.1.6.5	Transfer Resistance	
4.1.6.6	Meteorological Data File	
	idionuclide Specific Parameters	
	List of Radionuclides	
4.1.7.2	Implicit Daughters	
4.1.7.3	External Dose Coefficients	
4.1.7.4	Internal Dose Coefficients.	
4.1.7.5	Selection of Dose Coefficients for Inhalation	
4.1.7.6	Selection of Dose Coefficients for Ingestion	
4.1.7.7	Tritiated Water Inhalation Dose Coefficient with Skin Absorption	
	LATORY REQUIREMENTS	
	eclosure Performance Objectives	
	efinitions Applicable to Receptors	
	gan (Tissue) Weighting Factors	
5. METHO	DDOLOGY	
5.1 QUAL	ITY ASSURANCE	
	OF COMPUTER SOFTWARE	

5.3 GENIIv2 INPUT PARAMETER DEVELOPMENT	
5.3.1 List of GENIIv2 Input Parameters with Site-Specific Values	
5.3.2 Methods of Parameter Distribution Development	
5.4 GENII YMP Default Input files	
6. LIST OF ATTACHMENTS	
7. CALCULATIONS	
7.1 CALCULATIONS OF ENVIRONMENTAL PARAMETERS	101
7.1.1 Soil-to-Plant Transfer Factors for Crops	
7.1.2 Transfer Coefficients for Animal Products	
7.1.3 Translocation Factors	
7.1.4 Weathering Rate Constant	
7.1.5 Deposition Velocity from Soil To Plant Surface	
7.1.6 Animal Feed and Soil Consumption Rates	
7.2 CALCULATIONS OF SOIL-RELATED PARAMETERS	
7.2.1 Surface Soil Bulk Density	
7.2.2 Soil-Water Partition Coefficients	
7.2.3 Soil Water Content	
7.2.4 Surface Soil Areal Density	
7.3 CALCULATIONS OF AGRICULTURAL PARAMETERS	
7.3.1 Surface Soil Thickness	
7.3.2 Total Infiltration Rate	
7.3.3 Crop Wet Biomass	
7.3.4 Crop Dry-to-Wet Ratios	
7.3.5 Crop Yields	
7.3.6 Crop Growing Periods	
7.3.7 Resuspension Factor from Soil to Plant Surfaces	
7.3.8 Acute Fresh Forage Intake Fraction	
7.4 CALCULATIONS OF INHALATION PARAMETERS	
7.4.1 Mass Loading Factor for Resuspension Model	
7.4.2 Depth of Top Soil Available for Resuspension	
7.5 CALCULATIONS OF RECEPTOR PARAMETERS	
7.5.1 Chronic Exposure Period	
7.5.2 External Exposure Times	
7.5.2.1 External Exposure Period	
7.5.2.2 Fraction of Daily Time Spent Outdoors	
7.5.2.3 Fraction of Daily Time Spent Indoors	
7.5.3 Building Shielding Factors	
7.5.4 Inhalation Rates	
7.5.5 Inhalation Exposure Period	
7.5.6 Food Consumption Period	
7.5.7 Food Consumption Rates	
7.5.8 Inadvertent Soil Ingestion Rate	
7.5.9 Receptor Parameters for 95 th Percentile Deterministic Calculat	
7.6 METEOROLOGICAL RELATED PARAMETERS	
7.6.1 Absolute Humidity	

7.6.2 Average Daily Rain Rate	
7.6.3 Wind Speed	
7.6.4 Ambient Air Temperature	
7.6.5 Transfer Resistance	
7.6.6 Meteorological Data File	
7.7 DOSIMETRIC RELATED PARAMETERS	
8. GENIIV2 INPUT PARAMETERS	
8.1 GENIIv2 AIR FLUX AND PLUME MODULE INPUT PARAM	ETERS 157
8.1.1 AFF Air Flux Module	
8.1.2 Acute and Chronic Air Transport Modules	
8.1.2.1 Source Information Menu	
8.1.2.2 Model Information Menu	
8.1.2.3 Default Parameters Sub-Menu	
8.1.2.4 Meteorological Files Sub-Menu	
8.2 GENIIv2 CHRONIC EXPOSURE MODULE INPUT PARAME	TERS 159
8.2.1 Chronic Exposure Module Menu Screens	
8.2.1.1 Controls Menu (C1)	
8.2.1.2 Water Menus (C2 to C6)	
8.2.1.3 Soil Menus	
8.2.1.4 Agriculture Menus	
8.2.1.5 Pathways Sub-Menu (C26)	
8.2.2 Chronic Exposure Module Default Files	
8.3 GENIIv2 ACUTE EXPOSURE MODULE INPUT PARAMETE	
8.3.1 Acute Exposure Module Menu Screens	
8.3.1.1 Controls Menu (A1)	
8.3.1.2 Other Menus	
8.3.2 Acute Exposure Module Default File	
8.4 GENIIv2 RECEPTOR INTAKE MODULE INPUT PARAMETE	
8.4.1 Receptor Intake Module Menu Screens	
8.4.1.1 Age Group Selection and External Exposure to Air Menu	
8.4.1.2 External Ground Exposure Menu (R2)	
8.4.1.3 Food Crop Ingestion Menu (R3)	
8.4.1.4 Animal Product Ingestion Menu (R4)	
8.4.1.5 Inadvertent Soil Ingestion Menu (R5)	
8.4.1.6 Air Inhalation Menu (R6)8.4.1.7 Resuspended Soil Inhalation Menu (R7)	
8.4.2 Receptor Intake Module Default File	
8.4.2 Receptor make Module Default The	
8.5.1 Method Selection Menu (H1)8.5.2 Method Parameters Menu (H2)	
8.5.3 Constituent Parameters Menu (H3)	
8.5.5 Constituent raranceers wend (115)	
 9. CONCLUSIONS	
9.1 DETERMINISTIC METHOD	
9.2 STOCHASTIC METHOD	

9.3	DEFAULT INPUT FILES	. 176
	SITE-SPECIFIC DATABASE IN DOSE COEFFICIENT FILES	
9.5	PARAMETER SUMMARY FILE	. 177

ATTACHMENTS

INTENTIONALLY LEFT BLANK

TABLES

Page

Table 1. Exposure Pathways	. 32
Table 2. Radionuclide List and Additional Elements Required	. 39
Table 3. Soil-to-Plant Transfer Factors for Leafy Vegetables	. 41
Table 4. Soil-to-Plant Transfer Factors for Other Vegetables	. 42
Table 5. Soil-to-Plant Transfer Factors for Fruit	. 42
Table 6. Soil-to-Plant Transfer Factors for Grain	. 43
Table 7. Soil-to-Plant Transfer Factors for Forage	. 43
Table 8. Reference Sources for Soil-to-Plant Transfer Factors	. 44
Table 9. Soil-to-Plant Transfer Factors for Crops – Reference 1	. 45
Table 10. Soil-to-Plant Transfer Factors for Crops – Reference 2	. 45
Table 11. Soil-to-Plant Transfer Factors for Crops – Reference 4	
Table 12. Soil-to-Plant Transfer Factors for Crops – Reference 5	. 46
Table 13. Soil-to-Plant Transfer Factors for Crops – Reference 6	
Table 14. Soil-to-Plant Transfer Factors for Crops – Reference 7	. 47
Table 15. Soil-to-Plant Transfer Factors for Crops – Reference 9	
Table 16. Soil-to-Plant Transfer Factors for Crops – Reference 10	. 48
Table 17. Soil-to-Plant Transfer Factors for Crops – Reference 11	. 49
Table 18. Soil-to-Plant Transfer Factors for Crops – Reference 12	. 49
Table 19. Soil-to-Plant Transfer Factors for Crops – Reference 13	. 50
Table 20. Soil-to-Plant Transfer Factors for Crops – Reference 15	
Table 21. Transfer Coefficients for Beef	. 51
Table 22. Transfer Coefficients for Poultry	. 52
Table 23. Transfer Coefficients for Milk	. 52
Table 24. Transfer Coefficients for Eggs	. 53
Table 25. Reference Sources for Transfer Coefficients for Animal Products	. 54
Table 26. Animal Product Transfer Coefficients – Reference 1	. 54
Table 27. Animal Product Transfer Coefficients – Reference 2	. 55
Table 28. Animal Product Transfer Coefficients – Reference 3	. 55
Table 29. Animal Product Transfer Coefficients – Reference 4	. 56
Table 30. Animal Product Transfer Coefficients – Reference 5	. 56
Table 31. Animal Product Transfer Coefficients – Reference 6	. 57
Table 32. Animal Product Transfer Coefficients – Reference 7	. 57

Table 33. Animal Product Transfer Coefficients – Reference 8	58
Table 34. Animal Product Transfer Coefficients – Reference 9	58
Table 35. Animal Product Transfer Coefficients – Reference 10	59
Table 36. Animal Product Transfer Coefficients – Reference 11	59
Table 37. Animal Product Transfer Coefficients – Reference 12	60
Table 38. Animal Product Transfer Coefficients – Reference 13	60
Table 39. Animal Product Transfer Coefficients – Reference 14	61
Table 40. Animal Product Transfer Coefficients – Reference 15	61
Table 41. Translocation Factors for Crops	
Table 42. Dry deposition Velocity fro Soil Resuspension	
Table 43. Animal Feed and Soil Consumption Rates	64
Table 44. Soil-Water Partition Coefficients for Elements in the Biosphere Model	66
Table 45. Soil-Water Partition Coefficients for Elements not in the Biosphere Model	67
Table 46. Annual Overwatering Rate	68
Table 47. Crop Dry Biomass	69
Table 48. Crop Dry-to-Wet Ratios	
Table 49. Crop Yield	71
Table 50. Crop Growing Time	
Table 51. Mass Loading for Crops	73
Table 52. Mass Loading for Inhalation Exposure	73
Table 53. Annual Consumption Rates of Locally Produced Food for the RMEI	75
Table 54. CADI and EDPY Based on the Survey Food Group	
Table 55. Daily Exposure Times for Local Outdoor Workers	
Table 56. Breathing Rates (m ³ /hr) by Population Group and Environment	
Table 57. Lung Absorption Type Selection	
Table 58. GENIIv2 Files Containing Site-Specific Inputs Parameters	
Table 59. GENII Parameters Requiring Site-Specific Input Values or Distributions	
Table 60. YMP Receptor Dependent Site-Specific Default Files	
Table 61. Transfer Factors of Leafy Vegetables for All Elements of Interest	102
Table 62. Transfer Factors of Root Vegetables for All Elements of Interest	103
Table 63. Transfer Factors of Fruit for All Elements of Interest	104
Table 64. Transfer Factors of Grain for All Elements of Interest	105
Table 65. Transfer Factors of Forage for All Elements of Interest	106
Table 66. Beef Transfer Coefficients for All Elements of Interest	108
Table 67. Poultry Transfer Coefficients for All Elements of Interest	109

Table 68. Milk Transfer Coefficients for All Elements of Interest	. 110
Table 69. Eggs Transfer Coefficients for All Elements of Interest	. 111
Table 70. Translocation Factors for Crops Used in the GENIIv2	. 113
Table 71. Weathering Rate Constant Used in the GENIIv2	. 113
Table 72. Deposition Velocity from Soil to Plant Surface Used in the GENIIv2	. 115
Table 73. Consumption Rates Used in the GENIIv2	. 115
Table 74. Animal Daily Soil Consumption Rates Used in the GENIIv2	. 116
Table 75. Surface Soil Bulk Density Used in the GENIIv2	. 117
Table 76. Calculated Partition Coefficients for Elements not Used in the Biosphere Model	. 118
Table 77. Partition Coefficients for All Elements of Interest	. 119
Table 78. Soil Water Content Used in the GENIIv2	. 120
Table 79. Surface Soil Area Density Used in the GENIIv2	. 120
Table 80. Surface Soil Thickness Used in the GENIIv2	. 121
Table 81. Total Infiltration Rate Used in the GENIIv2	. 122
Table 82. Crop Wet Biomass Used in the GENIIv2	. 124
Table 83. Crop Dry/Wet Ratio Used in the GENIIv2	. 126
Table 84. Crop Yields Used in the GENIIv2	. 130
Table 85. Growing Periods Used in the GENIIv2	. 133
Table 86. Resuspension Factor From Soil To Plant Surface Used in the GENIIv2	. 134
Table 87. Mass Loading for Resuspension Used in the GENIIv2	. 135
Table 88. Depth of Top Soil Available for Resuspension Used in the GENIIv2	. 136
Table 89. External Exposure Period	. 139
Table 90. Fraction of Daily Time Spent Outdoors	. 139
Table 91. Fraction of Daily Time Spent Indoors	. 140
Table 92. Building Shielding Factor	. 141
Table 93. Inhalation Rate	. 142
Table 94. Inhalation Period	. 143
Table 95. Fraction of a Day Inhalation Occurs	. 144
Table 96. Food Consumption Period	. 146
Table 97. Food Consumption Rates	. 148
Table 98. Inadvertent Soil Ingestion Rate	. 148
Table 99. Soil Contact Days	. 149
Table 100. Food Consumption Rates and Periods – 95 th Percentile	
Table 101. The 95 th Percentile Values for Other Receptor Related Parameters	. 150
Table 102. Average Absolute Humidity	. 151

Table 103. Average Daily Rain Rate 152
Table 104. Wind Speed
Table 105. Ambient Air Temperature
Table 106. Transfer Resistance
Table 107. The Lung Solubility Class Used in the GENIIv2 155
Table 108. YMP Receptor Dependent Site-Specific Default Files
Table 109. List of Nuclides in GENIIv2 File RMBLIB.DAT
Table 110. Implicit Daughters and Parent Decay Chains 181
Table 111. GENIIv2 Files Containing Site-Specific Inputs Parameters
Table 112. Categorization of Exposure Parameters in FuiAFF.des 186
Table 113. Categorization of Exposure Parameters in ACPlume.des and CHPlume.des
Table 114. Categorization of Exposure Parameters in Gen_Exp.des and Gen_Act.des
Table 115. Categorization of Receptor Parameters in Gen_Rcp.des 194
Table 116. Categorization of Health Impact Parameters in Gen_Hei.des
Table 117. Evaluation of Database Parameters in Genii.des 197
Table 118. YMP Site-Specific Default Files 205
Table 119. YMP Chronic Exposure Parameter Files (GNDFLiud.*) and Parameter Values 207
Table 120. YMP Acute Exposure Parameter Files (GNDFLaud. *) and Parameter Values 214
Table 121. YMP Receptor Intake Parameter Files (GNDFLiud.*) and Parameter Values 221
Table 122. Receptor Intake File for Stochastic Run (GNDFLiud.pop) and Parameter Values 224
Table 123. Nuclide Dependent Parameters Replaced in YMPGENII.mdb 227
Table 124. Site Specific Transfer Coefficients and Transfer Factors in YMPGENII.mdb 229
Table 125. Site Specific Partition Coefficients and Lung Solubility Class in YMPGENII.mdb 241
Table 126. Partial Data from FGR13INH.ymp where Inhalation Dose Coefficients Updated 247

FIGURES

Page

Figure 1. Comparison of Distributions for Translocation Factors	112
Figure 2. Comparison of Distributions for Weathering Rate Constant	114
Figure 3. Comparison of Distributions for Deposition Velocity From Soil To Plant Surface	115
Figure 4. Comparison of Distributions for Soil Bulk Density	116
Figure 5. Comparison of Distributions for Surface Soil Area Density	121
Figure 6. Comparison of Distributions for Infiltration Rate	122
Figure 7. Comparison of Distributions for Wet Biomass for Root Vegetables	124
Figure 8. Comparison of Distributions for Wet Biomass for Fruit	125
Figure 9. Comparison of Distributions for Wet Biomass for Grain	125
Figure 10. Comparison of Distributions for Dry/Wet Ratio for Leafy Vegetables	127
Figure 11. Comparison of Distributions for Dry/Wet Ratio for Root Vegetables	127
Figure 12. Comparison of Distributions for Dry/Wet Ratio for Fruit	128
Figure 13. Comparison of Distributions for Dry/Wet Ratio for Grain	128
Figure 14. Comparison of Distributions for Dry/Wet Ratio for Forage	129
Figure 15. Comparison of Distributions for Leafy Vegetables Yield	130
Figure 16. Comparison of Distributions for Root Vegetables Yield	131
Figure 17. Comparison of Distributions for Fruit Yield	131
Figure 18. Comparison of Distributions for Grain Yield	132
Figure 19. Comparison of Distributions for Forage Yield	132
Figure 20. Comparison of Distributions for Resuspension Factor	134
Figure 21. Comparison of Distributions for Mass Loading factor	136
Figure 22. Exposure and Release Time Parameters	137
Figure 23. Comparison of Distributions for Daily Exposure Time	138
Figure 24. Comparison of Distributions for Outdoor Fraction	. 140
Figure 25. Comparison of Distributions for Indoor Fraction	141
Figure 26. Comparison of Distributions for Inhalation Rate	142
Figure 27. Comparison of Distributions for Inadvertent Soil Ingestion Rate	149
Figure 28. Comparison of Distributions for Average Daily Rain Rate	152
Figure 29. Electronic Files For Calculations and Results	249
Figure 30. Electronic Files for YMP Site Specific Default Development	249
Figure 31. Electronic Files from Original GENIIv2	250
Figure 32. Electronic Files from Attachment I	250

INTENTIONALLY LEFT BLANK

ACRONYMS

AM	arithmetic mean
BWR	boiling water reactor
BSC	Bechtel SAIC Company
CADI	contingent average daily intake
CEDE	committed effective dose equivalent
DCF	dose conversion factor
DIRS	Document Input Reference System
DOE	U.S. Department of Energy
DTN	data tracking number
EDPY	effective number of days per year
EPA	U.S. Environmental Protection Agency
FGR	Federal Guidance Report
FRAMES	Framework for Risk Analysis in Multimedia Environmental System
GM	geometric mean
GSD	geometric standard deviation
HEPA	high-efficiency particulate air [filter]
HLW	high-level radioactive waste
HTO	tritiated water
HVAC	heating, ventilation, and air-conditioning
ICRP IED	International Commission on Radiological Protection information exchange document
NRC	U.S. Nuclear Regulatory Commission
OBT	organically bound tritium
PCSA	preclosure safety analysis
PWR	pressurized water reactor
RadGrid	Radiological Monitoring Grid
RMEI	reasonably maximally exposed individual
SD	standard deviation
SE	standard error
TC	transfer coefficient (for animal product)
TDMS	Technical Data Management System
TEDE	total effective dose equivalent
TF	(soil-to-plant) transfer factor

- TSPA total system performance assessment
- YMP Yucca Mountain Project

UNITS OF MEASURE

А	angstroms (1E-10 meter)		
Ci cm cm ² cm ³	curie centimeter square centimeter cubic centimeter		
d	day		
ft	feet		
g GWd	gram gigawatt days		
hr	hour		
in.	inch		
kB kW	kilobyte kilowatt		
L	liter		
m m ² m ³ min mL mph mrem MTHM MTU	meter square meter cubic meter minute milliliter miles per hour millirem metric tons of heavy metal metric ton uranium		
rem	roentgen equivalent man		
s Sv	second sievert		
μCi μm	microcurie micrometer		
wt	weight		

INTENTIONALLY LEFT BLANK

1. PURPOSE

1.1 SCOPE

The objective of this calculation is to develop values for Yucca Mountain Project (YMP) sitespecific input parameters for use with the GENII Version 2 (GENIIv2) software package and to prepare default files containing those site-specific values for use with GENIIv2. GENIIv2 is a computer program used to calculate stochastic and deterministic dose to humans from exposure to radionuclides in the environment (Napier 2006 [DIRS 177330], and Napier et al 2006 [DIRS 177331]). The site-specific input parameters developed in this calculation can be used to calculate the potential radiation dose to an individual who works onsite or lives in the vicinity of the Yucca Mountain site.

As required by regulation (10 CFR 63.204) for the preclosure safety analysis (PCSA), the receptor in the general environment is "any real member of the public located beyond the boundary of the site." There are two ways to represent the calculated dose to any real member of the public located beyond the boundary of the site: 1) stochastic and 2) deterministic. For a stochastic dose calculation mean values and distributions for receptor related parameters including food consumption rates, food consumption periods, external and inhalation exposure times can be used. Then, the dose to any real member of the public is the maximum value (e.g. 95th percentile) from the calculated dose distribution.

The alternative method is a deterministic dose calculation with receptor characteristics that would bound those of any real member of the public. In this case, individual parameter values are selected at the 95th percentile level for the receptor related parameters including food consumption rates, food consumption periods, external and inhalation exposure times, instead of using the mean values. The use of the 95th percentile input values for each receptor related parameter provides a conservatively calculated dose, because it represents a maximized combination of receptor characteristics.

Site-specific GENIIv2 input parameter values to support either method, stochastic or deterministic, are developed in this calculation. Site-specific input values that were previously developed for the Biosphere Model (BSC 2004 [DIRS 169460]) for the YMP total system performance assessment (TSPA) are evaluated and selected, if applicable. Because the models for the TSPA and PCSA are not the exactly same, not all input parameters in the Biosphere Model are applicable. On the other hands, input parameters values for all of the radionuclides required in the PCSA are not all available in the Biosphere Model. The parameters values for radionuclides that are not available from the Biosphere Model are developed based on the same methodology used for the Biosphere Model.

Parameter values developed in this document are based on mean, median, best estimate or "expected" values from the technical references. 95th percentile values are also developed for receptor related parameters. For parameters that can be used for sensitivity and uncertainty analyses in GENIIv2 (Napier et al 2006 [DIRS 177331], Appendix E), distributions are evaluated and developed. The available distributions in GENIIv2 are limited to only four types: uniform, loguniform, normal, and lognormal (Napier 2006 [DIRS 177330], Section 5.3).

Therefore, some parameter distributions (e.g. cumulative and triangular) previously developed in the Biosphere Model are converted into one of those four types.

1.2 LIMITATIONS

The GENIIv2 parameters and distributions developed in this document are limited to those that are required for an exposure scenario with an airborne radionuclide release and subsequent air dispersion. Only parameters for exposure pathways discussed in Section 3.2.3 that are associated with this scenario are provided by this calculation. The parameters for other pathways that are available in other GENIIv2 scenarios are not evaluated nor discussed.

2. REFERENCES

2.1 **PROCEDURES/DIRECTIVES**

- 2.1.1 CC-PRO-2001, Rev.2. *Technical Interface Control*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070228.0003.
- 2.1.2 EG-DSK-3003, Rev.4. Desktop Information For Format Of Calculations And Analyses And Treatment Of Inputs And Assumptions. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070215.0012.
- 2.1.3 EG-DSK-3013, Rev.1. *Using CalcTrac*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070309.0001.
- 2.1.4 EG-PRO-3DP-G04B-00037, Rev. 07. *Calculations and Analyses*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070122.0010.
- 2.1.5 IT-PRO-0011, Rev. 3. *Software Management*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20061221.0003.
- 2.1.6 LS-PRO-0201, Rev.2. *Preclosure Safety Analyses Process*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20060927.0017.
- 2.1.7 PA-PRO-0301, Rev. 2. *Managing Technical Product Inputs*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20070312.0003.
- 2.1.8 BSC (Bechtel SAIC Company) 2006. *Quality Management Directive*. QA-DIR-10, Rev.
 0. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20060906.0001. 177655

2.2 DESIGN INPUTS

- 2.2.1 Baes, C.F., III; Sharp, R.D.; Sjoreen, A.L.; and Shor, R.W. 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. ORNL-5786. Oak Ridge, Tennessee: Oak Ridge National Laboratory. ACC: NNA.19870731.0041. 103766
- 2.2.2 BIOMASS (The IAEA Programme on Biosphere Modelling and Assessment Methods)
 2001. "Themes for a New Co-ordinated Research Programme on Environmental Model Testing and Improvement: Theme 1: Radioactive Waste Disposal, Theme 2: Environmental Releases, Theme 3: Biospheric Processes." *Working Material, Limited Distribution, Biosphere Modelling and Assessment, Biomass Programme*. Version {beta}2. Vienna, Austria: International Atomic Energy Agency. TIC: 252966. 159468
- 2.2.3 BSC (Bechtel SAIC Company) 2004. Agricultural and Environmental Input Parameters for the Biosphere Model. ANL-MGR-MD-000006 REV 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20040915.0007. 169673

- 2.2.4 BSC (Bechtel SAIC Company) 2004. *Biosphere Model Report*. MDL-MGR-MD-000001 REV 01. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20041108.0005. 169460
- 2.2.5 BSC (Bechtel SAIC Company) 2004. Environmental Transport Input Parameters for the Biosphere Model. ANL-MGR-MD-000007 REV 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20040913.0003. 169672
- 2.2.6 BSC (Bechtel SAIC Company) 2005. Characteristics of the Receptor for the Biosphere Model. ANL-MGR-MD-000005 REV 04. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20050405.0005. 172827
- 2.2.7 BSC (Bechtel SAIC Company) 2005. ICRP-72 Dose Conversion Factor Input File for MACCS2. 000-00C-MGR0-02200-000. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20050627.0008. 174424
- 2.2.8 BSC (Bechtel SAIC Company) 2005. Normal Operation Airborne Release Calculation. 000-HSC-WHS0-00200-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20050615.0018; ENG.20050801.0007. 172487
- 2.2.9 BSC (Bechtel SAIC Company) 2005. Preclosure Consequence Analyses for License Application. 000-00C-MGR0-00900-000-00C. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20050805.0003; ENG.20050817.0010; ENG.20050825.0023. 174261
- 2.2.10 BSC (Bechtel SAIC Company) 2006. Inhalation Exposure Input Parameters for the Biosphere Model. ANL-MGR-MD-000001 REV 04. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20060605.0011. 177101
- 2.2.11 BSC (Bechtel SAIC Company) 2006. Project Design Criteria Document. 000-3DR-MGR0-00100-000-006. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20061201.0005. 178308
- 2.2.12 BSC (Bechtel SAIC Company) 2006. Soil-Related Input Parameters for the Biosphere Model. ANL-NBS-MD-000009 REV 03. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20061002.0012. 177400
- 2.2.13 BSC (Bechtel SAIC Company) 2007. IED Surface Facility and Environment. 100-IED-WHS0-00201-000 REV 00B. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070323.0004. 179915
- 2.2.14 Bureau of the Census. 2002. "2000 Summary File 3 (SF 3) Sample Data, Amargosa Valley CCD, Nye County, Nevada." Washington, D.C.: U.S. Department of Commerce, Bureau of the Census. Accessed August 28, 2002. TIC: 253098. URL: http://factfinder.census.gov/servlet/DTTable?_ts=48597952130. 159728
- 2.2.15 Davis, P.A; Zach, R.; Stephens, M.E.; Amiro, B.D.; Bird, G.A.; Reid, J.A.K.; Sheppard, M.I.; Sheppard, S.C.; and Stephenson, M. 1993. *The Disposal of Canada's Nuclear Fuel*

Waste: The Biosphere Model, BIOTRAC, for Postclosure Assessment. AECL-10720. Pinawa, Manitoba, Canada: Atomic Energy of Canada Limited. TIC: 244741. **103767**

- 2.2.16 DOE (U.S. Department of Energy) 2005. Software Validation Report for GoldSim V8.02.500, Verification Copy. Document ID: 10344-SVR-8.02-05-WIN2000. Las Vegas, Nevada: U.S. Department of Energy, Office of Repository Development. ACC: MOL.20050611.0048. 174693
- 2.2.17 Eckerman, K.F. and Ryman, J.C. 1993. External Exposure to Radionuclides in Air, Water, and Soil, Exposure-to-Dose Coefficients for General Application, Based on the 1987 Federal Radiation Protection Guidance. EPA 402-R-93-081. Federal Guidance Report No. 12. Washington, D.C.: U.S. Environmental Protection Agency, Office of Radiation and Indoor Air. TIC: 225472. 107684
- 2.2.18 Eckerman, K.F.; Wolbarst, A.B.; and Richardson, A.C.B. 1988. Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion. EPA 520/1-88-020. Federal Guidance Report No. 11. Washington, D.C.: U.S. Environmental Protection Agency. ACC: MOL.20010726.0072. 101069
- 2.2.19 EPA (U.S. Environmental Protection Agency) 2002. Federal Guidance Report 13, CD Supplement, Cancer Risk Coefficients for Environmental Exposure to Radionuclides, EPA. EPA-402-C-99-001, Rev. 1. [Washington, D.C.]: U.S. Environmental Protection Agency. ACC: MOL.20051013.0016. 175544
- 2.2.20 EPA (U.S. Environmental Protection Agency) 1997. Food Ingestion Factors. Volume II of Exposure Factors Handbook. EPA/600/P-95/002Fb. Washington, D.C.: U.S. Environmental Protection Agency. TIC: 241061. 152549
- 2.2.21 GENII V.2.02. 2006. WINDOWS 2000. STN: 11211-2.02-00. 177605
- 2.2.22 GoldSim Technology Group. 2003. User's Guide, GoldSim Probabilistic Simulation Environment. Version 8.01. Redmond, Washington: Golder Associates. TIC: 255170. 166226
- 2.2.23 GoldSim V. 8.02.500. 2005. WINDOWS 2000. STN: 10344-8.02-05. 174650
- 2.2.24 Horak, C. and Carns, D. 1997. *Amargosa Focus Group Report.* Biosphere Study. Las Vegas, Nevada: University of Nevada, Las Vegas. TIC: 241712. **124149**
- 2.2.25 IAEA (International Atomic Energy Agency) 1994. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments. Technical Reports Series No. 364. Vienna, Austria: International Atomic Energy Agency. TIC: 232035. 100458
- 2.2.26 IAEA (International Atomic Energy Agency) 2001. Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment. Safety Reports

Series No. 19. Vienna, Austria: International Atomic Energy Agency. TIC: 251295. **158519**

- 2.2.27 ICRP (International Commission on Radiological Protection) 1995. Age-Dependent Doses to Members of the Public from Intake of Radionuclides: Part 4 Inhalation Dose Coefficients. Volume 24, Nos 3-4 of Annals of the ICRP. ICRP Publication 71. Terrytown, New York: Pergamon. TIC: 235869. 172751
- 2.2.28 ICRP (International Commission on Radiological Protection) 1995. Dose Coefficients for Intakes of Radionuclides by Workers, Replacement of ICRP Publication 61. Volume 24, No. 4 of Annals of the ICRP. ICRP Publication 68. Tarrytown, New York: Pergamon. TIC: 235867. 172721
- 2.2.29 ICRP (International Commission on Radiological Protection) 1977. Recommendations of the International Commission on Radiological Protection. Volume 1, No. 3 of Annals of the ICRP. ICRP Publication 26. Reprinted 1982. New York, New York: Pergamon Press. TIC: 221568. 101075
- 2.2.30 ICRP (International Commission on Radiological Protection) 1978. "Limits for Intakes of Radionuclides by Workers." *Annals of the ICRP*. ICRP Publication 30 Supplement to Part 1. New York, New York: Pergamon Press. TIC: 221575. 101076
- 2.2.31 ICRP (International Commission on Radiological Protection) 1979. *Limits for Intakes of Radionuclides by Workers*. Volume 2, No. 3/4 of *Annals of the ICRP*. Sowby, F.D., ed. ICRP Publication 30 Part 1. New York, New York: Pergamon Press. TIC: 4939. 110386
- 2.2.32 ICRP (International Commission on Radiological Protection) 1980. *Limits for Intakes of Radionuclides by Workers*. Volume 4, No. 3/4 of *Annals of the ICRP*. Sowby, F.D., ed. ICRP Publication 30 Part 2. Reprinted 1990. Elmsford, New York: Pergamon Press. TIC: 4941. 110351
- 2.2.33 ICRP (International Commission on Radiological Protection) 1981. *Limits for Intakes of Radionuclides by Workers*. Volume 6, No. 2/3 of *Annals of the ICRP*. Sowby, F.D., ed. ICRP Publication 30 Part 3, Including Addendum to Parts 1 and 2. New York, New York: Pergamon Press. TIC: 4943. 110352
- 2.2.34 ICRP (International Commission on Radiological Protection) 1991. "1990 Recommendations of the International Commission on Radiological Protection." Volume 21, No. 1-3 of *Annals of the ICRP*. ICRP Publication 60. New York, New York: Pergamon Press. TIC: 235864. **101836**
- 2.2.35 ICRP (International Commission on Radiological Protection) 1996. Age-Dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients. Volume 26, No. 1 of Annals of the ICRP. Smith, H., ed. ICRP Publication 72. New York, New York: Pergamon Press. TIC: 235870. 152446

- 2.2.36 Jensen, M.E.; Burman, R.D.; and Allen, R.G., eds. 1990. *Evapotranspiration and Irrigation Water Requirements*. ASCE Manuals and Reports on Engineering Practice No. 70. New York, New York: American Society of Civil Engineers. TIC: 246697. 160001
- 2.2.37 Kennedy, W.E., Jr. and Strenge, D.L. 1992. Technical Basis for Translating Contamination Levels to Annual Total Effective Dose Equivalent. Volume 1 of Residual Radioactive Contamination from Decommissioning. NUREG/CR-5512. Washington, D.C.: U.S. Nuclear Regulatory Commission. ACC: MOL.20010721.0030. 103776
- 2.2.38 LaPlante, P.A. and Poor, K. 1997. Information and Analyses to Support Selection of Critical Groups and Reference Biospheres for Yucca Mountain Exposure Scenarios. CNWRA 97-009. San Antonio, Texas: Center for Nuclear Waste Regulatory Analyses. ACC: MOL.20010721.0035. 101079
- 2.2.39 LeStrange, S.L. Water Required for Crop Management Practices in Pahrump. Call from LeStrange, S.L. to Hafen, T., July 28, 1997. ACC: MOL.19990323.0176. **125429**
- 2.2.40 Lide, D.R. and Frederikse, H.P.R., eds. 1997. *CRC Handbook of Chemistry and Physics*. 78th Edition. Boca Raton, Florida: CRC Press. TIC: 243741. **103178**
- 2.2.41 Mills, M.; Vogt, D.; and Mann, B. 1983. Parameters and Variables Appearing in Radiological Assessment Codes. NUREG/CR-3160. Washington, D.C.: U.S. Nuclear Regulatory Commission. TIC: 206047. 103781
- 2.2.42 MO0403SPAAEIBM.002. Agricultural and Environmental Input Parameters for the Biosphere Model. Submittal date: 03/22/2004. **169392**
- 2.2.43 MO0406SPAETPBM.002. Environmental Transport Input Parameters for the Biosphere Model. Submittal date: 06/24/2004. 170150
- 2.2.44 MO0407SPACRBSM.002. Characteristics of the Receptor for the Biosphere Model. Submittal date: 07/19/2004. **170677**
- 2.2.45 MO0503SPADCESR.000. Dose Coefficients for Internal and External Exposure to Selected Radionuclides Consistent with ICRP 72 Dosimetric Methods. Submittal date: 03/01/2005. 172896
- 2.2.46 MO0605SPAINEXI.003. Inhalation Exposure Input Parameters for the Biosphere Model. Submittal date: 05/04/2006. 177172
- 2.2.47 MO0609SPASRPBM.004. Soil Related Parameters for the Biosphere Model. Submittal date: 09/26/2006. 177742
- 2.2.48 Molenkamp, C.R.; Bixler, N.E.; Morrow, C.W.; Ramsdell, J.V., Jr.; and Mitchell, J.A. 2004. Comparison of Average Transport and Dispersion Among a Gaussian, a Two-Dimensional, and a Three-Dimensional Model. NUREG/CR-6853. Washington, D.C.: U.S. Nuclear Regulatory Commission. ACC: MOL.20061025.0115. 177808

- 2.2.49 Napier, B.A. 2006. *GENII Version 2 Users' Guide*. PNNL-14583, Rev. 1. [Richland, Washington]: Pacific Northwest National Laboratory. ACC: MOL.20060815.0037. 177330
- 2.2.50 Napier, B.A.; Strenge, D.L.; Ramsdell, J.V., Jr.; Eslinger, P.W.; and Fosmire, C. 2006. *GENII Version 2 Software Design Document*. PNNL-14584, Rev. 1. [Richland, Washington]: Pacific Northwest National Laboratory. ACC: MOL.20060815.0035. 177331
- 2.2.51 NCRP (National Council on Radiation Protection and Measurements) 1984. Radiological Assessment: Predicting the Transport, Bioaccumulation, and Uptake by Man of Radionuclides Released to the Environment. Report No. 76. Bethesda, Maryland: National Council on Radiation Protection and Measurement. TIC: 223622. 103784
- 2.2.52 NCRP (National Council on Radiation Protection and Measurements) 1996. Screening Models for Releases of Radionuclides to Atmosphere, Surface Water, and Ground. NCRP Report No. 123 I. Bethesda, Maryland: National Council on Radiation Protection and Measurements. TIC: 225158. 101882
- 2.2.53 Ng, Y.C. 1982. "A Review of Transfer Factors for Assessing the Dose from Radionuclides in Agricultural Products." *Nuclear Safety*, 23, (1), 57-71. Oak Ridge, Tennessee: U.S. Department of Energy. TIC: 253091. 160322
- 2.2.54 Peterson, H.J., Jr. 1983. "Terrestrial and Aquatic Food Chain Pathways." *Radiological Assessment, A Textbook on Environmental Dose Analysis.* Till, J.E. and Meyer, H.R., eds. NUREG/CR-3332. Pages 5-1 through 5-151. Washington, D.C.: U.S. Nuclear Regulatory Commission. ACC: NNA.19900212.0010; NNA.19900212.0015. 167077
- 2.2.55 Ramsdell, J.V., Jr.; Simonen, C.A.; Burk, K.W.; and Stage, S.A. 1996. "Atmospheric Dispersion and Deposition of {superscript 131}I Released from the Hanford Site." *Health Physics*, *71*, (4), 568-577. [Baltimore, Maryland: Lippincott Williams & Wilkins]. TIC: 258631. 177811
- 2.2.56 Rittmann, P.D. 1993. Verification Tests for the July 1993 Revision to the GENII Radionuclide and Dose Increment Libraries. WHC-SD-WM-TI-596. Richland, Washington: Westinghouse Hanford Company. TIC: 233965. 107744
- 2.2.57 Schmierer, J.L.; Orloff, S.B.; and Benton, R.W. 1997. "Stand Establishment." Chapter 2 of *Intermountain Alfalfa Management*. Orloff, S.B.; Carlson, H.L.; and Teuber, L.R.; eds. Publication 3366. Oakland, California: University of California, Division of Agriculture and Natural Resources. TIC: 251826. 160479
- 2.2.58 Sehmel, G.A. 1980. "Particle Resuspension: A Review." *Environment International, 4,* (2), 107-127. New York, New York: Pergamon Press. TIC: 254282. 163178
- 2.2.59 Sehmel, G.A. 1984. "Deposition and Resuspension." Chapter 12 of Atmospheric Science and Power Production. Randerson, D., ed. DOE/TIC-27601. Oak Ridge, Tennessee: U.S. Department of Energy, Technical Information Center. TIC: 223438. 158693

- 2.2.60 Sheppard, M.I. and Thibault, D.H. 1990. "Default Soil Solid/Liquid Partition Coefficients, Kds, for Four Major Soil Types: A Compendium." *Health Physics*, 59, (4), 471-482. New York, New York: Pergamon Press. TIC: 249329. 109991
- 2.2.61 Sheppard, S.C. 1995. Application of the International Union of Radioecologists Soil-to-Plant Database to Canadian Settings. AECL-11474. Pinawa, Manitoba, Canada: Atomic Energy of Canada Limited. TIC: 244744. 103789
- 2.2.62 Sheppard, S.C. and Evenden, W.G. 1997. "Variation in Transfer Factors for Stochastic Models: Soil-to-Plant Transfer." *Health Physics*, 72, (5), 727-733. [New York, New York: Pergamon Press]. TIC: 253546. 160641
- 2.2.63 Smith, G.M.; Watkins, B.M.; Little, R.H.; Jones, H.M.; and Mortimer, A.M. 1996.
 Biosphere Modeling and Dose Assessment for Yucca Mountain. EPRI TR-107190. Palo Alto, California: Electric Power Research Institute. TIC: 231592. 101085
- 2.2.64 Wang, Y-Y.; Biwer, B.M.; and Yu, C. 1993. A Compilation of Radionuclide Transfer Factors for the Plant, Meat, Milk, and Aquatic Food Pathways and the Suggested Default Values for the RESRAD Code. ANL/EAIS/TM-103. Argonne, Illinois: Argonne National Laboratory. TIC: 232998. 103839
- 2.2.65 Yu, C.; Loureiro, C.; Cheng, J.-J.; Jones, L.G.; Wang, Y.Y.; Chia, Y.P.; and Faillace, E. 1993. Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil. ANL/EAIS-8. Argonne, Illinois: Argonne National Laboratory. TIC: 253438. 160561
- 2.2.66 Yu C.; Zielen, A.J.; Cheng, J.-J.; LePoire, D.J.; Gnanapragasam, E.; Kamboj, S.; Arnish, J.; Wallo, A., III; Williams, W.A.; and Peterson, H. 2001. User's Manual for RESRAD Version 6. ANL/EAD-4. Argonne, Illinois: Argonne National Laboratory. TIC: 252702. 159465

2.3 DESIGN CONSTRAINTS

- 2.3.1 10 CFR 20. 2006 Energy: Standards for Protection Against Radiation. Internet Accessible. 176618
- 2.3.2 10 CFR 63. 2006 Energy: Disposal of High-Level Radioactive Wastes in a Geologic Repository at Yucca Mountain, Nevada. Internet Accessible. 176544
- 2.3.3 70 FR 49014. Public Health and Environmental Radiation Protection Standards for Yucca Mountain, NV. Internet Accessible. 177357
- 2.3.4 70 FR 53313. Implementation of a Dose Standard After 10,000 Years. ACC: Internet Accessible. **178394**
- 2.3.5 Regulatory Guide 1.109, Rev. 1. 1977. Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I. Washington, D.C.: U.S. Nuclear Regulatory Commission. ACC: NNA.19870806.0032. 100067

2.3.6 Regulatory Guide 1.183. 2000. *Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors*. Washington, D.C.: U.S. Nuclear Regulatory Commission. ACC: MOL.20050518.0242. **173584**

2.4 DESIGN OUTPUTS

This calculation does not support any specific engineering drawing, specification, or design list. The results of this calculation will be used as inputs for other preclosure safety analyses.

3. ASSUMPTIONS

The following assumptions are used to develop input parameter values and distributions.

3.1 ASSUMPTIONS REQUIRING VERIFICATION

The following assumptions are based on the *General Public Atmospheric Dispersion Factors*, a calculation report under development. Author of the report sent his results through email, and the entire email is included in Attachment I. Information from the email is used as assumptions requiring verification, and these assumptions are tracked using the *CalcTrack*.

3.1.1 Average Absolute Humidity

The arithmetic mean of the hourly absolute humidity values is 4.08 g/m^3 and standard deviation is 2.09 g/m³. A lognormal distribution is recommended with GM of 3.63 g/m³, GSD of 1.63, lower bound of 0.39 g/m³ and upper bound of 16.4 g/m³.

Rationale: Average absolute humidity is provided in Attachment I. The calculated average absolute humidity is appropriate for evaluating releases from surface and subsurface facilities, because it is based on the meteorological data from Site 1 located approximately 1 km south-south-west of the North Portal between 2001 and 2005.

Usage: The assumption is used to develop the GENIIv2 parameter, *ABSHUM*, *average absolute humidity* in Section 7.6.1.

3.1.2 Average Daily Rain Rate

The calculated average daily rain rate is 0.49 mm/day and standard deviation is 2.88 mm/day for those days with precipitation.

Rationale: Average daily rain rate is provided in Attachment I. The calculated average daily rain rate is appropriate for evaluating releases from surface and subsurface facilities, because it is based on the meteorological data from Site 1 located approximately 1 km south-south-west of the North Portal between 2001 and 2005. In addition, the calculated daily rain rates for the five years in the spreadsheet, *Absolute_Humidity.xls* as mentioned in Attachment I will be used to calculate the cumulative distribution of rain rate as discussed in Section 7.6.2.

Usage: The assumption is used to develop the GENIIv2 parameter, *RAIN*, *average daily rain rate* in Section 7.6.2.

3.1.3 Wind Speed

The mean wind speed is 3.64 m/s and its SD is 2.02 m/s with the minimum wind speed of 0.45 m/s, and the maximum wind speed of 17.8 m/s.

Rationale: Wind speed is provided in Attachment I. The calculated mean wind speed and its range are appropriate for evaluating releases from surface and subsurface facilities, because they are based on the meteorological data from Site 1 located approximately 1 km south-south-west of the North Portal between 2001 and 2005.

Usage: The assumption is used to develop the GENIIv2 parameters: *ARMINRISESPD*, *minimum wind speed during plume rise* and *ARMINWIND*, *maximum wind speed for calm* in Section 7.6.3.

3.1.4 Ambient Air Temperature

The mean temperature is 17.04°C and SD of 10.13°C with the minimum of -7.5°C and the maximum of 42.31°C.

Rationale: Ambient air temperature is provided in Attachment I. The calculated mean ambient air temperature and its range are appropriate for evaluating releases from surface and subsurface facilities, because they are based on the meteorological data from Site 1 located approximately 1 km south-south-west of the North Portal between 2001 and 2005.

Usage: The assumption is used to develop the GENIIv2 parameter, *SIX, ambient air temperature* in Section 7.6.4.

3.2 ASSUMPTIONS NOT REQUIRING VERIFICATION

3.2.1 Worker Status on the Nevada Test Site and the Nellis Air Force Range

Working staff members located on the Nevada Test Site and the Nellis Air Force Range are considered to be members of the public.

Rationale: Not all workers on the Nevada Test Site and the Nellis Air Force Range are expected to be radiation workers. Unless an individual's duties specifically involve exposure to radiation or to radioactive material and the individual is trained and monitored as a radiation worker, that individual is considered a member of the public for purposes of radiation protection.

Usage: This assumption is used in Section 3.2.2. The individuals considered in this assumption are categorized into the third group below as the offsite public in other than the general environment.

3.2.2 Location of Maximally Exposed Individuals

Three categories of individuals are used to evaluate compliance with dose limits: 1) onsite general public, 2) offsite public in the general environment, and 3) offsite public in other than the general environment. The site boundary is defined by the Yucca Mountain Project Withdrawal Area and also identifies the controlled area. Within the site boundary is an area designated as the Geologic Repository Operations Area that also identifies the restricted area.

1) Onsite General Public

The onsite general public may be located within the site boundary and outside the Geologic Repository Operations Area. The maximally exposed onsite public individual is defined as an individual located at the Geologic Repository Operations Area boundary that is also the restricted area boundary. For the purpose of this categorization, the onsite general public category excludes visitors inside the Geologic Repository Operations Area, who would be under direct supervision of repository radiation protection program.

2) Offsite Public in the General Environment

The general environment is defined in Section 4.2.2 as "everywhere outside the Yucca mountain site, the Nellis Air Force Range, and the Nevada Test Site". For releases from the surface or subsurface facilities, the maximum dose to members of the onsite public occurs at the shortest distance from the release point. The maximally exposed offsite public individual in the general environment is defined as an individual located at a distance that corresponds to the approximate distance between the surface facility or the subsurface repository and the nearest point of public access on the repository site boundary, excluding boundaries with the Nellis Air Force Range, and the Nevada Test Site.

3) Offsite Public in Other than the General Environment

The maximally exposed offsite public individual in other than the general environment is defined as an individual located at a distance that corresponds to the approximate distance between the surface facility or the subsurface repository and the nearest point of public access on the repository site boundaries with the Nellis Air Force Range, and the Nevada Test Site.

Rationale: The locations define the shortest distances from the surface and subsurface release points to the restricted area and site boundaries to calculate the public doses and are conservative.

Usage: This assumption is used in Section 3.2.3.

3.2.3 Exposure Pathways

Exposure pathways included in the dose calculations for airborne releases depend on the receptor location. The following four pathways are included in the dose calculations for any location: inhalation of outdoor air from air dispersion, inhalation of resuspended soil, air submersion, and ground shine. Onsite doses are within the controlled area and therefore exclude ingestion pathways, because of no agricultural activities in that area. Offsite doses in other than the general environment are on the Nellis Air Force Range or the Nevada Test Site and also exclude ingestion pathways, because of no agricultural activities in the area. Offsite doses in the general environment do include ingestions from animal products, terrestrial crops, and inadvertent soil ingestion. Water related food and recreational pathways are not considered, due to negligible impacts from airborne releases. Direct shine from contained radiation sources is not calculated within the GENIIv2. The exposure pathways considered in various sites are tabulated in Table 1. There are four subcategories under animal products: meat, poultry, milk, and eggs. There are also four subcategories under crop food: leafy vegetables, root (other) vegetables, fruit, and grains.

Rationale: The exposure pathways are appropriate for an airborne release from surface or subsurface facilities and exclude those pathways that are not applicable.

Usage: This assumption is used in Sections 8.2.1.1 for selecting control parameters including *ANFOOD* for animal product ingestion, *TFOOD* for terrestrial food crop ingestion, *AQFOOD* for aquatic food ingestion, and *RECRE* for recreational surface water. This assumption is also used in Section 8.2.1.5 for selecting appropriate pathways.

Pathway	Public Receptor Location		
	Onsite	Offsite in General Environment ^(c)	Offsite in other than General Environment
Inhalation of outdoor air	Х	Х	Х
Inhalation of resuspended soil	Х	Х	Х
Air submersion	Х	Х	Х
Ground shine	Х	Х	Х
Animal product ingestion	-	Х	-
Terrestrial food crop ingestion	-	Х	-
Inadvertent soil ingestion	-	Х	-
Aquatic food ingestion	-	-	-
Recreational surface water	-	-	-
Drinking water intake	-	-	-
Inhalation indoor air (shower) ^(b)	-	-	-
Direct shine	X ^(a)	X ^(a)	X ^(a)

Table 1. Exposure Pathways

Notes: (a) Direct shine from contained radiation sources may be included, but is not calculated with GENIIv.2.

(b) Inhalation of indoor air pathway in GENIIv2 includes both air from outdoor and water evaporation due to shower. This pathway is not selected, but time exposed from indoor air will include in inhalation of outdoor air pathway.

(c) The general environment is defined in Section 4.2.2 as "everywhere outside the Yucca mountain site, the Nellis Air Force Range, and the Nevada Test Site".

3.2.4 Duration of Emplacement Activities

An operational requirement will limit the duration of emplacement activities to 50 years or less.

Rationale: Potential repository accidents only pose a hazard to radioactive waste prior to waste employment when the waste is located on the surface. Fifty years is a reasonable upper limit for useful life of surface facilities and allows ample time for waste emplacement. This assumption is consistent with preclosure period for preclosure safety analysis to use 50 years for surface and emplacement activities (BSC 2006 [DIRS 178308], p.170).

Usage: This assumption is used in Section 7.5.1 to develop the chronic exposure period.

3.2.5 Acute Exposure Period

The acute release period and acute exposure time are equal and set to one hour each. The total duration of exposure is one year to cover the acute release period and a following 1 year period for other pathways, including ingestion pathway if it is applicable.

Rationale: An acute release is related to an accident sequence. The cumulative effect from previous years is not considered. The length of the release period has a relatively low impact because the time-integrated amount of radioactivity released and hence acute dose, are the same provided the release and exposure periods are equal and the release rate is equal to the released inventory divided by the release period. A one-hour release period is also consistent with the Gaussian plume model based on one hour based meteorological data. After acute release, one year of chronic exposure is included for other potential pathways.

Usage: This assumption is used in Section 8.3.1.1. It is used for the GENIIv2 parameters: *NTKEND, duration of exposure period* (1 year); *RELEND, end of release period* (1 hour = 0.000114 year); and *ACUTIM, duration of acute exposure* (1 hour = 0.000114 year).

3.2.6 Fraction of Plants Roots in Surface Soil

The fraction of plants roots in the surface soil is assumed to be 1.

Rationale: Soil in cultivated fields and gardens is divided into two compartments (surface soil and deep soil), and only the surface soil is included in the biosphere model. Because many crops require tilling every year, radionuclides would be uniformly distributed throughout the surface soil over the long term. This assumption is reasonable because 80 to 90 percent of the plant roots occur in the upper 60 to 75 percent of the root zone (Jensen et al. 1990 [DIRS 160001], p. 22). Although crop roots can penetrate into the deep soil compartment, radionuclide concentrations would typically decrease with soil depth due to leaching. This assumption conservatively estimates radionuclide concentrations in the crops because the higher radionuclide concentrations in the surface soil are used for calculating crop root uptake.

Usage: This assumption is used in Section 8.2.1.1. It is used for the GENIIv2 parameter *RF1*, *fraction of plants roots in surface soil*.

3.2.7 Animal Feed

Locally grown fresh forage is the only feed given to beef cattle and dairy cows, and locally produced grain is the only feed given to poultry and laying hen.

Rationale: Based on the Biosphere Model (BSC 2004 [DIRS 169460], Section 6.3.1.4), this is conservative because it assumes that all animal feed is locally produced and contaminated. In the Amargosa Valley, alfalfa and other hays are the most common crops, and dry hay used for livestock feed is both produced locally and imported from outside the area (Horak and Carns 1997 [DIRS 124149], p. 12). It is reasonable to assume that animals are fed locally grown fresh forage rather than dry hay with water added. In addition, although poultry and laying hens could be fed with other types of feed, locally produced grain is the only feed considered in the model. This approximation is conservative because it assumes that all animal feed is locally produced and contaminated.

Usage: This assumption is used in Section 8.2.1.4.7. It is used for the GENIIv2 parameter array: *CONSUM, consumption rate of animal fed.* It is also used as a criterion in developing other animal feed related parameters in Section 7.

3.2.8 Animal Feed Storage Time Prior to Consumption

No credit is taken for storage time prior to consumption of animal feed products.

Rationale: This is conservative because any storage time would provide for decay of radionuclides contained within the feed products.

Usage: This assumption is used in Section 8.2.1.4.8. It is used for the GENIIv2 parameter array *STORTM, storage times for meat, poultry, milk, and eggs animal feed, and meat and milk animal forage.*

3.2.9 Fraction of Animal Feed from Contaminated Products

The entire diet of animals is assumed to be from contaminated feed products.

Rationale: This is conservative because any other diet combination would reduce the amount of contaminated feed.

Usage: This assumption is used in Section 8.2.1.4.9. It is used for the GENIIv2 parameter array: *DIETFR, fraction of diet that is contaminated for meat, poultry, milk, and eggs animal feed, and meat and milk animal forage.*

3.2.10 Holdup Time for Crop Food and Animal Products

No credit is taken for holdup time prior to consumption of crop food and animal products by humans.

Rationale: Decay and progeny ingrowth may occur between slaughter and consumption of animal products, and between harvest and ingestion of crop food. Conservatively, no decay time credit is taken in this calculation.

Usage: This assumption is used in Section 8.2.1.4.16. It is used for the GENIIv2 parameter arrays: *HLDUP, time from harvest to ingestion of leafy vegetables, root vegetables, fruit, and grains*; and *HLDUPA, time from slaughter to ingestion for meat, poultry, milk, and eggs.*

3.2.11 Harvest Removal

No credit is taken for radionuclide removal from soil due to harvesting.

Rationale: Crop harvest removes radionuclides from cultivated fields. However, radionuclides could be added into the soil due to the use of contaminated manure for fertilizer. It is reasonable to assume that Amargosa Valley farmers will use manure from a dairy for fertilizer because they currently use manure from the dairy for fertilizer (Horak and Carns 1997 [DIRS 124149], p. 10). By not considering the harvest removal, these two processes compensate for each other. This assumption eliminates the need to calculate losses from crop harvest removal and gains from cow manure fertilizer. Applying this assumption to the entire Amargosa Valley is realistic because alfalfa is the major crop grown in Amargosa Valley (BSC 2004 [DIRS 169460], Section 6.3.1.4).

Usage: This assumption is used in Section 8.2.1.4.1. It is used to select the GENII control parameter *HARVEST, radionuclide removal due to harvesting*, that should be selected as FALSE to eliminate the radionuclide removal.

3.2.12 Soil Resuspension

Soil resuspension is considered separately for cultivated agricultural lands and non-cultivated lands. Radionuclides deposited on cultivated lands from air dispersion are mixed within surface soil thickness, whereas radionuclides deposited on non-cultivated lands are only mixed with a thin layer of soil called as critical thickness.

Rationale: After radionuclides release and air dispersion, deposition processes would deposit particles on ground surface. For cultivated land, resuspended particles could deposit on crops.

The deposited particles in the cultivated lands would be uniformly mixed within the surface soil due to tillage. However, resuspended particles that could be inhaled by humans would come from uncultivated lands where most human live, because cultivated lands cover only a small fraction of Amargosa Valley (BSC 2006 [DIRS 177101], Section 6.1). The deposited particles in the uncultivated lands are mixed within only a thin layer of surface dust. This assumption conservatively estimates human inhalation doses because contaminated particles from uncultivated lands have a higher radionuclide concentration due to a lower mixing depth than those from cultivated land.

Usage: This assumption is used in Sections 7.3.1, 7.3.7, 7.4.1, and 7.4.2. It is used in the GENII resuspension model parameters: *THICK* or *SURCM*, *surface soil thickness for crops; LEAFRS*, *resuspension factor from soil to plant surfaces; XMLF*, *mass loading factor for resuspension model resuspension;* and *AVASL*, *depth of top soil available for resuspension*.

INTENTIONALLY LEFT BLANK

4. INPUT DATA

4.1 INPUT DATA

The YMP Biosphere Model currently contains ten documents. Among these documents, the *Biosphere Model Report* (BSC 2004 [DIRS 169460]) describes conceptual and mathematical models, as well as model validation and implementation. Five input parameter reports provide input parameter values for the Biosphere Model, including:

- 1. Environmental Transport Input Parameters for the Biosphere Model (BSC 2004 [DIRS 169672])
- 2. Soil-Related Input Parameters for the Biosphere Model (BSC 2006 [DIRS 177400])
- 3. Agricultural and Environmental Input Parameters for the Biosphere Model (BSC 2004 [DIRS 169673])
- 4. Characteristics of the Receptor for the Biosphere Model (BSC 2005 [DIRS 172827])
- 5. Inhalation Exposure Input Parameters for the Biosphere Model (BSC 2006 [DIRS 177101])

The Biosphere Model is designed for the YMP site-specific environment, including resident life style, agricultural practice, and climate. Therefore, most parameter values provided in the five input reports described above are applicable to the PCSA. The outputs of these reports are in the Technical Data Management System (TDMS), which can be accessed by using a Data Tracking Number (DTN). A proposal of "Biosphere model input data to be used for preclosure safety analysis" was initiated, prepared and approved (TMRB-2007-004). The input data included in the relevent DTNs and AMR used as direct inputs to this calculation are listed in the information exchange document (IED), 100-IED-WHS0-00201-000-00B (BSC 2007 [DIRS 179915]). This IED includes following information that is used in Section 4.1.1 to Section 4.1.5:

- 1. MO0403SPAAEIBM.002. Agricultural and Environmental Input Parameters for the Biosphere Model. Submittal date: 03/22/2004. [DIRS 169392]
- 2. MO0406SPAETPBM.002. Environmental Transport Input Parameters for the Biosphere Model. Submittal date: 06/24/2004. [DIRS 170150]
- 3. MO0407SPACRBSM.002. Characteristics of the Receptor for the Biosphere Model. Submittal date: 07/19/2004. [DIRS 170677]
- 4. MO0605SPAINEXI.003. Inhalation Exposure Input Parameters for the Biosphere Model. Submittal date: 05/04/2006. [DIRS 177172]
- MO0609SPASRPBM.004. Soil Related Parameters for the Biosphere Model. Submittal date: 09/26/2006. [DIRS 177742]

6. Table 6-20 and Table 6-21 in BSC (Bechtel SAIC Company) 2005. *Characteristics of the Receptor for the Biosphere Model*. ANL-MGR-MD-000005 REV 04. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20050405.0005. [DIRS 172827]

The items listed above are cited in the approved IED, 100-IED-WHS0-00201-000-00B (BSC 2007 [DIRS 179915]), and therefore, they are appropriate for their intended use in this calculation.

The Biosphere Model does not provide all the required input for this calculation. Other inputs are also evaluated and selected in this document. These inputs and reference sources include site-specific meteorological data and radionuclide dosimetric data. They are discussed in detail in Section 4.1.6 and Section 4.1.7, respectively.

The radionuclides of interest are different in the TSPA and the PCSA. This document includes additional radionuclides of interest in the PCSA. The list of radionuclides in the inventories of pressurized water reactor (PWR), boiling water reactor (BWR), naval fuel, and high-level radioactive waste (HLW) is tabulated in the *Preclosure Consequence Analyses for License Application* (BSC 2005 [DIRS 174261] Tables 4, 17 and 18). In addition, radionuclides from the subsurface annual release are also considered (BSC 2005 [DIRS 172487], Table 13). The entire radionuclide list is included in Table 2. The last column of Table 2 includes chemical elements that correspond to radionuclides in the inventories, as well as a discussion of their inclusion or exclusion in this document. Many input parameters used for calculating doses are chemical element dependent, including soil-to-plant transfer factors, transfer coefficients for animal products, and soil partition coefficients.

There are 43 elements in the list in Table 2. Among them, 17 elements are already included in the Biosphere Model. Another 17 elements (bold font in the last column of Table 2) do not have transfer factors (Section 4.1.1.1), transfer coefficients (Section 4.1.1.2), and soil-water partition coefficients (Section 4.1.2.2) from the Biosphere Model, and their values are determined in this calculation based on the same methodology as used in the Biosphere Model. The last 9 elements are excluded because they either are gas (Ar and Kr) and short-lived (Al, Ba, K, N, Na, and Si), or use a special model (H).

Calcium (Ca) is included in this report, in case it is needed later. In addition, three daughter product radionuclides, whose corresponding elements are not listed in Table 2, are automatically linked with their parent radionuclides. They are ²¹⁰Bi, and ²¹⁰Po from decay of ²¹⁰Pb, and ¹²⁵mTe from ¹²⁵Sb. When these two parent radionuclides are included in a GENIIv2 run, partition coefficients (Kd values) for their decay products are required (see Section 8.2.1.3.1). Therefore, the three elements, Bi, Po, and Te are added to make total of 21 elements that need calculated partition coefficients. Transfer factors and transfer coefficients are not needed for these three elements.

Radionuclides	BWR & PWR Inventory List ^a	Naval Fuel and Crud Releases ^b	HLW Inventory List ^c	Subsurface Release List ^d	Chemical Element
²²⁷ Ac	x	x			Ac ^f
²⁸ AI				x	Al ^e
²⁴¹ Am	x	x	х	x	
²⁴² Am	x				a f
^{242m} Am	x	x	х		Am ^f
²⁴³ Am	x	x	х	x	
⁴¹ Ar				x	Ar ^e
^{137m} Ba	x	х	х		Ba ^e
¹⁴ C	x	х	х		C ^{e, f}
^{113m} Cd	x	х	х		Cd
¹⁴⁴ Ce			x		Ce
²⁵² Cf		х			Cf
³⁶ CI	x				CI ^f
²⁴² Cm	x	x	x		
²⁴³ Cm	x	x	x	x	
²⁴⁴ Cm	x	х	х	х	
²⁴⁵ Cm	x	х	х		Cm
²⁴⁶ Cm	x	x	х		
²⁴⁷ Cm		х			
²⁴⁸ Cm		х			
⁶⁰ Co	x	х	х	х	Co
¹³⁴ Cs	x	x	х		
¹³⁵ Cs	x	х	х		Cs ^f
¹³⁷ Cs	x	x	х	х	
¹⁵² Eu			х		
¹⁵⁴ Eu	x	x	х	x	Eu
¹⁵⁵ Eu	x	x	х		
⁵⁵ Fe	x	x		x	Fe
³ Н	x	х			Н ^е
¹²⁹	x	x	х		۱ ^f
⁴² K				x	K ^e
⁸⁵ Kr	x	x			Kr ^e
¹⁶ N	^	^		x	N ^e
²⁴ Na				x	Na ^e
^{93m} Nb	x	x	x	^	
⁹⁴ Nb	x	x	^		Nb
⁵⁹ Ni	x	x	x		
⁶³ Ni	x	x	x	x	Ni
²³⁷ Np	x	x	x	^	Np ^f

Radionuclides	BWR & PWR Inventory List ^a	Naval Fuel and Crud Releases ^b	HLW Inventory List ^c	Subsurface Release List ^d	Chemical Element
²³¹ Pa	x	x	Х		Pa ^f
²¹⁰ Pb		x			Pb ^f
¹⁰⁷ Pd	x	х			Pd
¹⁴⁷ Pm	x	х	х	x	Pm
²³⁸ Pu	x	х	х	х	
²³⁹ Pu	x	x	х	х	
²⁴⁰ Pu	x	x	х	x	Pu ^f
²⁴¹ Pu	x	x	х	x	
²⁴² Pu	x	x	х		
²²⁶ Ra		x			Ra ^f
²²⁸ Ra		x			ка
¹⁰² Rh		x			Rh
¹⁰⁶ Ru	x	x	х		Ru
¹²⁵ Sb	x	x	х		Sb
⁷⁹ Se	x	x	х		Se ^f
³¹ Si				x	Si ^e
¹⁴⁷ Sm		x			
¹⁵¹ Sm	x	x	х	x	Sm
¹²⁶ Sn	x	x	x		Sn ^f
⁹⁰ Sr	x	х	х	х	Sr ^f
⁹⁹ Tc	x	х	х		Tc ^f
²²⁹ Th		х			
²³⁰ Th	x	х			Th ^f
²³² Th		х			
²³² U	x	x	х		
²³³ U	x	x	х		
²³⁴ U	x	x	х		U ^f
²³⁵ U	x	x	х		U
²³⁶ U	x	x	х		
²³⁸ U	x	x	х		
⁹⁰ Y	x	x	х	x	Y
⁹³ Zr	x	x	х		Zr
Total	53	61	46	23	43 ^g

Table 2. Radionuclide List and Additional Elements Required (Cont'd)

Source: ^a BSC 2005 [DIRS 174261] Table 4, ^b BSC 2005 [DIRS 174261] Table 17, ^c BSC 2005 [DIRS 174261] Table 18, ^d BSC 2005 [DIRS 172487], Table 13.

Notes: ^e Elements either are gas and short-lived, or use a special model. They do not require transfer factors or transfer coefficients, ^f Elements are available in the Biosphere Model, ^g Ca and the daughter elements Bi, Po and Te are added for a total of 47.

4.1.1 Environmental Transport Parameters

Environmental transport parameters used for the YMP Biosphere Model are documented in the *Environmental Transport Input Parameters for the Biosphere Model* (BSC 2004 [DIRS 169672]). The parameter values evaluated and selected in this subsection are based on DTN: MO0406SPAETPBM.002 [DIRS 170150].

4.1.1.1 Soil-to-Plant Transfer Factors

The term "soil-to-plant transfer factors (TF)" used in the Biosphere Model relates the dry-weight activity concentration in the edible parts of plants (Bq/kg_dry_plant) to the dry-weight activity concentration in soil (Bq/kg_dry_soil) for an equilibrium condition between the two. The TF values are dimensionless, crop-type and element-dependent parameters. The TF for sixteen elements with five crop types are available from the DTN: MO0406SPAETPBM.002 [DIRS 170150]. As carbon uses a special model, the TF values are not required. Soil-to-plant transfer factors for five crop types are in lognormal distributions, defined by their geometric mean (GM), geometric standard deviation (GSD), a lower bound and an upper bound as tabulated in Table 3 to Table 7.

Per BSC 2004 ([DIRS 169672], page 6-10), the other-vegetable category includes crops like beans, carrots, cucumbers, potatoes, and peppers. This category corresponds to root vegetables in GENIIv2. It should be noted that the name root vegetables is not limited to only vegetables grown in plant roots. The consumption rate for other vegetables includes all vegetables that are not leafy vegetables. The word "root" is used when it refers to the GENIIv2 parameter, and is synonymous with "other" from the related Biosphere Model documents.

Element	Atomic No.	GM (Bq/kg_dry_wt)/ (Bq/kg_soil)	GSD	Lower Truncation Limit (Bq/kg_dry_w	Upper Truncation Limit t)/(Bq/kg_soil)
Ac	89	4.3E-03	2	7.2E-04	2.6E-02
Am	95	1.2E-03	2.5	1.2E-04	1.3E-02
CI	17	6.4E+01	2	1.1E+01	3.8E+02
Cs	55	8.5E-02	2.5	7.7E-03	9.4E-01
I	53	2.6E-02	9.9	7.2E-05	9.7E+00
Np	93	5.9E-02	4.4	1.3E-03	2.6E+00
Ра	91	4.6E-03	3.8	1.4E-04	1.4E-01
Pb	82	1.5E-02	4.6	3.0E-04	7.7E-01
Pu	94	2.9E-04	2	4.9E-05	1.7E-03
Ra	88	6.8E-02	2.7	5.1E-03	9.2E-01
Se	34	4.6E-02	3.8	1.4E-03	1.4E+00
Sn	50	3.8E-02	2	6.4E-03	2.3E-01
Sr	38	1.7E+00	2	2.9E-01	1.0E+01
Тс	43	4.6E+01	2.6	3.8E+00	5.5E+02
Th	90	4.3E-03	2.8	3.2E-04	5.9E-02
U	92	1.1E-02	2	1.8E-03	6.6E-02

Element	Atomic No.	GM (Bq/kg_dry_wt)/ (Bq/kg_soil)	GSD	Lower Truncation Limit (Bq/kg_dry_w	Upper Truncation Limit t)/(Bq/kg_soil)
Ac	89	1.1E-03	4.9	1.8E-05	6.6E-02
Am	95	4.0E-04	2.6	3.5E-05	4.6E-03
CI	17	6.4E+01	2	1.1E+01	3.8E+02
Cs	55	5.0E-02	2	8.4E-03	3.0E-01
Ι	53	3.2E-02	4.4	7.0E-04	1.5E+00
Np	93	3.1E-02	4.9	5.0E-04	1.9E+00
Pa	91	1.1E-03	10	3.0E-06	4.3E-01
Pb	82	9.0E-03	3.1	5.0E-04	1.6E-01
Pu	94	1.9E-04	2	3.3E-05	1.1E-03
Ra	88	1.2E-02	5.3	1.6E-04	8.6E-01
Se	34	4.6E-02	3.8	1.4E-03	1.4E+00
Sn	50	1.5E-02	3.6	5.3E-04	4.0E-01
Sr	38	7.9E-01	2	1.4E-01	4.5E+00
Тс	43	4.4E+00	3.7	1.5E-01	1.2E+02
Th	90	4.4E-04	5.6	5.3E-06	3.6E-02
U	92	6.0E-03	2.8	4.2E-04	8.5E-02

Table 4. Soil-to-Plant Transfer Factors for Other Vegetables

Source: DTN: MO0406SPAETPBM.002 [DIRS 170150]

Element	Atomic No.	GM (Bq/kg_dry_wt)/ (Bq/kg_soil)	GSD	Lower Truncation Limit (Bq/kg_dry_w	Upper Truncation Limit t)/(Bq/kg_soil)
Ac	89	8.5E-04	3.4	3.7E-05	2.0E-02
Am	95	5.4E-04	2.3	6.5E-05	4.5E-03
CI	17	6.4E+01	2	1.1E+01	3.8E+02
Cs	55	5.6E-02	2.8	3.8E-03	8.1E-01
I	53	5.7E-02	2.8	4.1E-03	7.9E-01
Np	93	3.4E-02	6.9	2.3E-04	5.0E+00
Pa	91	1.1E-03	10	3.0E-06	4.3E-01
Pb	82	1.2E-02	3.3	5.8E-04	2.6E-01
Pu	94	1.8E-04	3.4	7.8E-06	4.2E-03
Ra	88	7.3E-03	4.3	1.6E-04	3.2E-01
Se	34	4.6E-02	3.8	1.4E-03	1.4E+00
Sn	50	1.5E-02	3.6	5.3E-04	4.0E-01
Sr	38	2.9E-01	2.3	3.6E-02	2.4E+00
Тс	43	4.3E+00	4.6	8.7E-02	2.1E+02
Th	90	2.9E-04	4.9	4.8E-06	1.7E-02
U	92	6.3E-03	2.9	3.9E-04	1.0E-01

Element	Atomic No.	GM (Bq/kg_dry_wt)/ (Bq/kg_soil)	GSD	Lower Truncation Limit (Bq/kg_dry_w	Upper Truncation Limit t)/(Bq/kg_soil)
Ac	89	5.4E-04	2.9	3.6E-05	8.0E-03
Am	95	7.5E-05	3.2	3.8E-06	1.5E-03
Cl	17	2.4E+01	8.4	1.0E-01	5.8E+03
Cs	55	2.0E-02	2.2	2.7E-03	1.6E-01
Ι	53	2.5E-02	10	6.6E-05	9.4E+00
Np	93	4.4E-03	6.9	3.1E-05	6.3E-01
Pa	91	9.5E-04	7.2	5.9E-06	1.5E-01
Pb	82	5.5E-03	2.1	8.2E-04	3.8E-02
Pu	94	1.9E-05	4.2	4.8E-07	7.8E-04
Ra	88	3.1E-03	4	8.8E-05	1.1E-01
Se	34	2.9E-02	2	4.8E-03	1.7E-01
Sn	50	9.2E-03	2	1.5E-03	5.5E-02
Sr	38	1.7E-01	2	2.8E-02	1.0E+00
Тс	43	1.6E+00	4.3	3.8E-02	6.8E+01
Th	90	1.7E-04	5.2	2.4E-06	1.2E-02
U	92	1.1E-03	3.6	4.1E-05	3.1E-02

Table 6	Soil-to-Plant	Transfer	Factors	for Grain
		riansici	1 001013	

Source: DTN: MO0406SPAETPBM.002 [DIRS 170150]

Element	Atomic No.	GM (Bq/kg_dry_wt)/	GSD	Lower Truncation Limit	Upper Truncation Limit
		(Bq/kg_soil)		(Bq/kg_dry_w	t)/(Bq/kg_soil)
Ac	89	1.7E-02	5.4	2.2E-04	1.3E+00
Am	95	2.1E-03	10	5.5E-06	7.9E-01
CI	17	7.5E+01	2	1.3E+01	4.5E+02
Cs	55	1.3E-01	3.3	6.3E-03	2.8E+00
I	53	4.0E-02	10	1.1E-04	1.5E+01
Np	93	5.8E-02	5.6	6.8E-04	4.9E+00
Pa	91	1.9E-02	6.7	1.4E-04	2.5E+00
Pb	82	1.8E-02	7	1.2E-04	2.8E+00
Pu	94	1.0E-03	10	2.7E-06	3.9E-01
Ra	88	8.2E-02	3	4.9E-03	1.4E+00
Se	34	1.5E-01	5.5	1.9E-03	1.3E+01
Sn	50	1.6E-01	5.8	1.7E-03	1.5E+01
Sr	38	2.1E+00	2.1	3.2E-01	1.3E+01
Тс	43	2.7E+01	2.7	2.1E+00	3.5E+02
Th	90	1.0E-02	4.2	2.5E-04	3.9E-01
U	92	1.7E-02	6.1	1.6E-04	1.9E+00

No.	Reference	Table Reference
1	Baes et al. 1984 [DIRS 103766], pp. 10 to 11	Table 9
2	BIOMASS 2001 [DIRS 159468], pp. 82 to 92	Table 10
3	Davis et al. 1993 [DIRS 103767]	No TF data provided
4	IAEA 1994 [DIRS 100458], pp. 17 to 25	Table 11
5	IAEA 2001 [DIRS 158519], pp.67 to 68	Table 12
6	Kennedy and Strenge 1992 [DIRS 103776], pp. 6.25 to 6.27	Table 13
7	LaPlante and Poor 1997 [DIRS 101079], p. 2-13	Table 14
8	Lide and Frederikse 1997 [DIRS 103178]	No TF data provided
9	NCRP 1984 [DIRS 103784], p. 75	Table 15
10	NCRP 1996 [DIRS 101882], pp. 52 to 54	Table 16
11	Peterson 1983 [DIRS 167077], pp. 5-50 to 5-51	Table 17
12	Rittmann 1993 [DIRS 107744], pp. 35 to 36	Table 18
13	Sheppard 1995 [DIRS 103789], pp. 55 to 57	Table 19
14	Sheppard and Evenden 1997 [DIRS 160641], pp. 727 to 733	No TF data provided
15	Wang et al. 1993 [DIRS 103839], pp. 25 to 26	Table 20

Table 8. Reference Sources for Soil-to-Plant Transfer Factors

Source: BSC 2004 ([DIRS 169672], Tables 4-1 and 4-2.

	Atomic	<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil)					
Element	No.	Leafy ^(a)	Root ^(b)	Fruit ^(b)	Grain ^(b)	Forage ^(a)	
Са	20	3.5E+00	3.5E-01	3.5E-01	3.5E-01	3.5E+00	
Cd	48	5.5E-01	1.5E-01	1.5E-01	1.5E-01	5.5E-01	
Ce	58	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-02	
Cf	98	_	-	-	-	-	
Cm	96	8.5E-04	1.5E-05	1.5E-05	1.5E-05	8.5E-04	
Со	27	2.0E-02	7.0E-03	7.0E-03	7.0E-03	2.0E-02	
Eu	63	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-02	
Fe	26	4.0E-03	1.0E-03	1.0E-03	1.0E-03	4.0E-03	
Nb	41	2.0E-02	5.0E-03	5.0E-03	5.0E-03	2.0E-02	
Ni	28	6.0E-02	6.0E-02	6.0E-02	6.0E-02	6.0E-02	
Pd	46	1.5E-01	4.0E-02	4.0E-02	4.0E-02	1.5E-01	
Pm	61	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-02	
Rh	45	1.5E-01	4.0E-02	4.0E-02	4.0E-02	1.5E-01	
Ru	44	7.5E-02	2.0E-02	2.0E-02	2.0E-02	7.5E-02	
Sb	51	2.0E-01	3.0E-02	3.0E-02	3.0E-02	2.0E-01	
Sm	62	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-02	
Y	39	1.5E-02	6.0E-03	6.0E-03	6.0E-03	1.5E-02	
Zr	40	2.0E-03	5.0E-04	5.0E-04	5.0E-04	2.0E-03	

Table 9. Soil-to-Plant Transfer Factors for Crops – Reference 1

Source: Baes et al. 1984 [DIRS 103766], pp. 10 to 11

Notes: ^a leafy and forage values are taken from vegetation portions of food crops and feed plants, Bv; ^b root, fruit and grain values are from reproductive portions of food crops and feed plants, Br.

	Atomic		<i>TF</i> (Bq/Kg dry weight / Bq/Kg soil)				
Element	No.	Leafy	Root	Fruit	Grain	Forage	
Са	20	-	-	-	-	-	
Cd	48	-	-	-	-	-	
Ce	58	-	-	4.3E-04	-	-	
Cf	98	-	-	-	-	-	
Cm	96	-	-	4.3E-04	-	-	
Co	27	-	-	4.8E-03	-	-	
Eu	63	-	-	-	-	-	
Fe	26	-	-	-	-	-	
Nb	41	-	-	-	-	-	
Ni	28	-	-	-	-	-	
Pd	46	-	-		-	-	
Pm	61	-	-	-	-	-	
Rh	45	-	-	-	-	-	
Ru	44	-	-	1.1E-03	-	-	
Sb	51	_	-	_	_	-	
Sm	62	-	-	-	-	-	
Y	39	-	-	_	_	-	
Zr	40	-	-	-	-	-	

Table 10. Soil-to-Plant Transfer Factors for Crops – Reference 2

Source: BIOMASS 2001 [DIRS 159468], pp. 82 to 92

Notes: Values for Ce, Cm, and Ru are calculated GM from individual crops (apple, peach and watermelon) that could be grown in Amargosa Valley.

	Atomic		<i>TF</i> (Bq/Kg dry weight / Bq/Kg soil)				
Element	No.	Leafy	Root	Fruit	Grain	Forage	
Са	20	-	-	-	-	-	
Cd	48	-	-	-	-	-	
Ce	58	-	3.0E-2	3.0E-2	3.0E-02	-	
Cf	98	_	-	-	-	-	
Cm	96	7.7E-04	5.3E-4	-	2.1E-05	1.1E-03	
Co	27	2.0E-01	7.3E-02	-	3.7E-03	5.4E-02	
Eu	63	-	-	-	-	-	
Fe	26	-	4.0E-03	4.0E-03	4.0E-03	-	
Nb	41	5.0E-02	1.7E-02	-	_	-	
Ni	28	-	-	-	3.0E-02	1.8E-01	
Pd	46	-	_	-	_	-	
Pm	61	-	-	-	-	-	
Rh	45	-	9.0E-01	9.0E-01	9.0E-01	-	
Ru	44	2.0E-01	4.0E-02	4.0E-02	5.0E-03	-	
Sb	51	-	5.6E-04	-	_	-	
Sm	62	-	-	-	-	-	
Y	39	-	1.0E-02	1.0E-02	1.0E-02	-	
Zr	40	-	1.0E-03	1.0E-03	1.0E-03	-	

Table 11. Soil-to-Plant Transfer Factors for Crops – Reference 4

Source: IAEA 1994 [DIRS 100458], pp. 17 to 25

Notes: Based on the method used in BSC 2004 [DIRS 169672] Section 6.2.1.2, values for leafy are from mixed greens and forage are from grass, if available, or GM from individual cropsfrom, values for root, fruit and grain are from "not specified" if no other data available, or GM calculated from individual crops.

	Atomic		<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil)					
Element	No.	Leafy	Root	Fruit	Grain	Forage		
Са	20	-	-	-	-	_		
Cd	48	-	-	_	-	5.0E+00		
Ce	58	-	-	-	-	1.0E-01		
Cf	98	-	-	-	-	-		
Cm	96	-	-	-	-	1.0E-01		
Со	27	-	-	_	-	2.0E+00		
Eu	63	-	-	_	-	1.0E-01		
Fe	26	_	-	-	-	1.0E-01		
Nb	41	_	-	-	-	2.0E-01		
Ni	28	_	-	-	-	1.0E+00		
Pd	46	-	-	-	-	5.0E-01		
Pm	61	-	-	-	-	1.0E-01		
Rh	45	_	-	-	-	2.0E+00		
Ru	44	_	-	-	-	2.0E-01		
Sb	51	-	-	-	-	1.0E-01		
Sm	62	-	-	-	-	_		
Y	39	-	-	-	-	1.0E-01		
Zr	40	-	-	-	-	1.0E-01		

Table 12. Soil-to-Plant Transfer Factors for Crops – Reference 5

Source: IAEA 2001 [DIRS 158519], pp.67 to 68

	Atomic		<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil)				
Element	No.	Leafy	Root	Fruit	Grain	Forage	
Са	20	3.5E+00	3.5E-01	3.5E-01	3.5E-01	3.5E+00	
Cd	48	5.5E-01	1.5E-01	1.5E-01	1.5E-01	5.5E-01	
Ce	58	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-02	
Cf	98	1.0E-02	1.0E-02	1.0E-2	1.0E-02	1.0E-02	
Cm	96	3.0E-04	2.4E-04	1.5E-05	2.1E-05	3.0E-04	
Со	27	8.1E-02	4.0E-02	7.0E-03	3.7E-03	8.1E-02	
Eu	63	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-02	
Fe	26	4.0E-03	1.0E-03	1.0E-03	1.0E-03	4.0E-03	
Nb	41	2.0E-02	5.0E-03	5.0E-03	5.0E-03	2.0E-02	
Ni	28	2.8E-01	6.0E-02	6.0E-02	3.0E-02	2.8E-01	
Pd	46	1.5E-01	4.0E-02	4.0E-02	4.0E-02	1.5E-01	
Pm	61	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-02	
Rh	45	1.5E-01	4.0E-02	4.0E-02	4.0E-02	1.5E-01	
Ru	44	5.2E-01	2.0E-02	2.0E-02	5.0E-03	5.2E-01	
Sb	51	1.3E-04	5.6E-04	8.0E-05	3.0E-02	1.3E-04	
Sm	62	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-02	
Y	39	1.5E-02	6.0E-03	6.0E-03	6.0E-03	1.5E-02	
Zr	40	2.0E-03	5.0E-04	5.0E-04	5.0E-04	2.0E-03	

Table 13. Soil-to-Plant Transfer Factors for Crops – Reference 6

Kennedy and Strenge 1992 [DIRS 103776], pp. 6.25 to 6.27

Notes: Values for forage are from leafy vegetables based on BSC 2004 [DIRS 169672] Section 6.2.1.2.5.

	Atomic		<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil)					
Element	No.	Leafy	Root	Fruit	Grain	Forage		
Са	20	-	-	-	-	-		
Cd	48	-	-	-	-	-		
Ce	58	_	-	-	-	-		
Cf	98	_	-	-	-	-		
Cm	96	1.1E-03	5.8E-04	5.8E-04	2.1E-05	1.1E-03		
Со	27	_	-	-	-	-		
Eu	63	_	-	-	-	-		
Fe	26	_	-	-	-	-		
Nb	41	5.0E-02	1.7E-02	1.7E-02	1.7E-02	5.0E-02		
Ni	28	1.8E-01	3.0E-02	3.0E-02	3.0E-02	1.8E-01		
Pd	46	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01		
Pm	61	-	-	-	-	-		
Rh	45	-	-	-	-	-		
Ru	44	_	-	-	-	-		
Sb	51	-	-	-	-	-		
Sm	62	1.0E-02	1.0E-02	1.0E-02	1.0E-02	1.0E-02		
Y	39	-	-	-	-	-		
Zr	40	1.0E-03	1.0E-03	1.0E-03	1.0E-03	1.0E-03		

Table 14. Soil-to-Plant Transfer Factors for Crops – Reference 7

Source: LaPlante and Poor 1997 [DIRS 101079], p. 2-13

Notes: Values for forage are from leafy vegetables based on BSC 2004 [DIRS 169672] Section 6.2.1.2.5.

	Atomic		<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil) ^(a)					
Element	No.	Leafy	Root	Fruit	Grain	Forage		
Са	20	-	-	-	-	-		
Cd	48	-	-	-	-	-		
Ce	58	-	-	-	-	-		
Cf	98	-	-	-	-	-		
Cm	96	-	-	-	-	-		
Со	27	-	-	-	-	1.1E+00		
Eu	63	-	-	-	-	-		
Fe	26	-	-	-	-	-		
Nb	41	-	-	-	-	-		
Ni	28	-	-	-	-	-		
Pd	46	-	-	-	-	-		
Pm	61	-	-	-	-	-		
Rh	45	-	-	-	-	-		
Ru	44	-	-	-	-	2.7E-01		
Sb	51	-	-	-	-	-		
Sm	62	-	-	-	-	-		
Y	39	-	-	-	-	-		
Zr	40	-	-	-	-	-		

Table 15. Soil-to-Plant Transfer Factors for Crops – Reference 9

Source: NCRP 1984 [DIRS 103784], p. 75

	Atomic		<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil)					
Element	No.	Leafy	Root	Fruit	Grain	Forage		
Ca	20	-	-	-	-	5.0E+00		
Cd	48	-	-	-	-	1.0E+00		
Ce	58	-	-	-	-	1.0E-01		
Cf	98	-	-	-	-	1.0E-01		
Cm	96	-	-	-	-	1.0E-01		
Со	27	-	-	-	-	2.0E+00		
Eu	63	-	-	-	-	1.0E-01		
Fe	26	-	-	-	-	1.0E-01		
Nb	41	-	-	-	-	1.0E-01		
Ni	28	-	-	-	-	1.0E+00		
Pd	46	-	-	-	-	5.0E-01		
Pm	61	-	-	-	-	1.0E-01		
Rh	45	-	-	-	-	2.0E-01		
Ru	44	-	-	-	-	2.0E-01		
Sb	51	-	-	-	-	1.0E-01		
Sm	62	-	-	-	-	1.0E-01		
Y	39	-	-	-	-	1.0E-01		
Zr	40	-	-	-	-	1.0E-01		

Source: NCRP 1996 [DIRS 101882], pp. 52 to 54

	Atomic		<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil)				
Element	No.	Leafy	Root	Fruit	Grain	Forage	
Са	20	-	-	-	-	-	
Cd	48	_	-	-	-	-	
Ce	58	3.6E-02	2.1E-02	2.8E-03	9.3E-04	7.2E-02	
Cf	98	_	-	-	-	-	
Cm	96	-	8.4E-05	-	6.2E-06	2.3E-03	
Со	27	8.0E-02	4.6E-02	-	1.7E-02	4.0E-02	
Eu	63	-	-	-	-	-	
Fe	26	-	-	-	-	-	
Nb	41	-	-	-	-	-	
Ni	28	-	-	-	-	-	
Pd	46	-	_	-	-	-	
Pm	61	-	-	-	-	-	
Rh	45	-	_	-	-	-	
Ru	44	5.6E-02	3.2E-02	1.2E-02	3.1E-03	2.7E-01	
Sb	51	-	-	-	-	-	
Sm	62	-	-	-	-	-	
Y	39	-	-	-	-	-	
Zr	40	7.2E-03	1.6E-03	5.4E-04	-	1.3E-01	

Table 17. Soil-to-Plant Transfer Factors for Crops – Reference 11

Source: Peterson 1983 [DIRS 167077], pp. 5-50 to 5-51 Notes: Based on BSC 2004 [DIRS 169672] Section 6.2.1.2, values of root vegetables are calculated from GM of radish, potato, and bean (three categories); values of grain are calculated from GM of wheat and corn (two categories); and values of forage are from alfalfa category, if available, else values of grass are used.

Table 18. Soil-to-Plant Transfer Factors for Crops – Reference 12	Table 18.	Soil-to-Plant	Transfer Factor	s for Crops -	- Reference 12
---	-----------	---------------	-----------------	---------------	----------------

	Atomic	<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil)					
Element	No.	Leafy	Root	Fruit	Grain	Forage	
Ca	20	2.0E+00	2.0E+00	2.0E+00	2.0E+00	2.0E+00	
Cd	48	2.0E+00	2.0E+00	2.0E+00	6.0E-01	2.0E+00	
Ce	58	4.0E-02	4.0E-02	4.0E-02	4.0E-03	4.0E-02	
Cf	98	2.5E-03	2.5E-03	2.5E-03	2.5E-03	2.5E-03	
Cm	96	2.0E-03	2.0E-03	2.0E-03	2.0E-04	2.0E-03	
Со	27	1.0E-01	1.0E-01	1.0E-01	4.0E-03	1.0E-01	
Eu	63	1.0E-02	1.0E-02	1.0E-02	2.0E-03	1.0E-02	
Fe	26	2.0E-02	2.0E-02	2.0E-02	5.0E-03	2.0E-02	
Nb	41	4.0E-02	4.0E-02	4.0E-02	8.0E-03	4.0E-02	
Ni	28	1.0E-01	1.0E-01	1.0E-01	5.0E-02	1.0E-01	
Pd	46	3.0E-01	3.0E-01	3.0E-01	5.0E-02	3.0E-01	
Pm	61	1.0E-02	1.0E-02	1.0E-02	1.0E-03	1.0E-02	
Rh	45	5.0E+01	5.0E+01	5.0E+01	5.0E+00	5.0E+01	
Ru	44	2.0E-01	2.0E-01	2.0E-01	2.0E-01	2.0E-01	
Sb	51	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02	
Sm	62	1.0E-02	1.0E-02	1.0E-02	2.0E-03	1.0E-02	
у	39	1.0E-02	1.0E-02	1.0E-02	1.0E-03	1.0E-02	
Zr	40	4.0E-02	4.0E-02	4.0E-02	4.0E-02	4.0E-02	

Source: Rittmann 1993 [DIRS 107744], pp. 35 to 36

Notes: Values for forage are from leafy vegetables based on BSC 2004 [DIRS 169672] Section 6.2.1.2.5.

	Atomic	<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil) ^(a)					
Element	No.	Leafy	Root	Fruit	Grain	Forage	
Ca	20	-	-	-	_	-	
Cd	48	-	-	-	-	-	
Ce	58	2.4E-01	1.4E-01	-	1.8E-02	1.2E-01	
Cf	98	-	-	-	-	-	
Cm	96	9.3E-04	5.7E-04	-	7.0E-05	4.8E-04	
Со	27	1.2E-01	7.5E-02	-	9.0E-03	6.3E-02	
Eu	63	-	-	-	-	-	
Fe	26	-	-	-	-	-	
Nb	41	_	-	-	_	-	
Ni	28	4.1E-01	2.5E-01	-	3.1E-02	2.1E-01	
Pd	46	-	-	-	-	-	
Pm	61	_	-	-	_	-	
Rh	45	_	-	-	_	-	
Ru	44	3.1E-01	1.8E-01	-	2.7E-02	1.6E-01	
Sb	51	1.1E-03	6.7E-04	-	8.6E-05	5.7E-04	
Sm	62	-	_	-	-	-	
Y	39	-	_	-	-	-	
Zr	40	-	-	-	-	-	

Table 19. Soil-to-Plant Transfer Factors for Crops – Reference 13

Source: Sheppard 1995 [DIRS 103789], pp. 55 to 57 Notes: The values selected are for 5% clay.

	Atomic		<i>TF</i> (pCi/Kg dry weight / pCi/Kg soil)					
Element	No.	Leafy	Root	Fruit	Grain	Forage		
Са	20	3.5E+00	3.5E-01	3.5E-01	3.5E-01	5.0E+00		
Cd	48	5.5E-01	1.5E-01	1.5E-01	1.5E-01	1.0E+00		
Ce	58	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-01		
Cf	98	1.0E-02	1.0E-02	1.0E-02	1.0E-02	1.0E-01		
Cm	96	8.5E-04	9.2E-04	9.2E-04	9.2E-04	4.0E-03		
Со	27	8.1E-02	1.7E-02	1.7E-02	1.7E-02	4.0E-01		
Eu	63	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-01		
Fe	26	4.0E-03	1.0E-03	1.0E-03	1.0E-03	3.0E-03		
Nb	41	2.0E-02	5.0E-03	5.0E-03	5.0E-03	1.0E-01		
Ni	28	2.8E-01	6.0E-02	6.0E-02	6.0E-02	1.1E-01		
Pd	46	1.5E-01	4.0E-02	4.0E-02	4.0E-02	5.0E-01		
Pm	61	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-01		
Rh	45	1.5E-01	4.0E-02	4.0E-02	4.0E-02	2.0E-01		
Ru	44	2.0E-01	1.5E-02	1.5E-02	1.5E-02	2.0E-01		
Sb	51	5.0E-02	3.0E-02	3.0E-02	3.0E-02	1.0E-01		
Sm	62	1.0E-02	4.0E-03	4.0E-03	4.0E-03	1.0E-01		
Y	39	1.5E-02	6.0E-03	6.0E-03	6.0E-03	1.0E-01		
Zr	40	2.0E-03	1.8E-03	1.8E-03	1.8E-03	1.0E-01		

Table 20. Soil-to-Plant Transfer Factors for Crops – Reference 15

Source: Wang et al. 1993 [DIRS 103839], pp. 25 to 26

Suitability for Use: The *soil-to-plant transfer factors* that are developed for the Biosphere Model for the post-closure dose assessment are appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. For those elements that are not available in the Biosphere Model, the same references and same method as the Biosphere Model are used to develop parameter values.

The parameters correspond to six GENIIv2 plant transfer factors: *CLBVLV* for leafy vegetables; *CLBVRV* for root vegetables; *CLBVFR* for fruit; *CLBVCL* for cereal; *CLBVAF* for animal forage; and *CLBVAG* for animal grain. Plant transfer factors for those elements that are not available in the Biosphere Model are developed in Section 7.1.1.

4.1.1.2 Transfer Coefficients for Animal Products

The term "transfer coefficients for animal products (TC)" used in the Biosphere Model is the fraction of the animal's daily intake of a radionuclide (Bq/day) that is transferred to 1 kilogram of animal product at equilibrium or at the time of slaughter (Bq/kg). The TC values are in units of day per kg (or day per L for milk) animal product, and are element dependent parameters. The TC values for sixteen elements with four animal products each are available from the DTN: MO0406SPAETPBM.002 [DIRS 170150]. The transfer coefficients are in lognormal distributions, defined by their GM, GSD, a lower bound and an upper bound as tabulated in Table 21 to Table 24. Similar to transfer factor in Section 4.1.1.1, carbon uses a special model and the TC values are not required.

Element	Atomic No.	GM (day/kg)	GSD	Lower Truncation Limit (day/kg)	Upper Truncation Limit (day/kg)
Ac	89	7.9E-05	8.2	3.5E-07	1.8E-02
Am	95	3.4E-05	9	1.2E-07	9.9E-03
CI	17	4.6E-02	2	7.7E-03	2.7E-01
Cs	55	2.4E-02	2.6	2.1E-03	2.7E-01
I	53	1.0E-02	2.8	6.8E-04	1.5E-01
Np	93	3.4E-04	8.8	1.3E-06	9.0E-02
Pa	91	6.6E-05	10	1.8E-07	2.5E-02
Pb	82	6.3E-04	2.6	5.4E-05	7.5E-03
Pu	94	1.3E-05	10	3.3E-08	4.7E-03
Ra	88	8.1E-04	2.1	1.1E-04	5.7E-03
Se	34	8.8E-02	5.8	9.6E-04	8.0E+00
Sn	50	1.9E-02	4.6	3.8E-04	9.9E-01
Sr	38	1.4E-03	4.4	3.1E-05	6.2E-02
Тс	43	1.1E-03	7.2	6.9E-06	1.8E-01
Th	90	1.1E-04	10	2.8E-07	4.0E-02
U	92	4.8E-04	3	2.9E-05	7.8E-03

Table 21. Transfer Coefficients for Beef

Element	Atomic No.	GM (day/kg)	GSD	Lower Truncation Limit (day/kg)	Upper Truncation Limit (day/kg)
Ac	89	4.0E-03	2	6.7E-04	2.4E-02
Am	95	1.8E-03	10	4.8E-06	6.7E-01
CI	17	3.0E-02	2	5.0E-03	1.8E-01
Cs	55	2.6E+00	9.8	7.2E-03	9.3E+02
I	53	5.5E-02	9.7	1.6E-04	1.9E+01
Np	93	3.6E-03	2	6.0E-04	2.1E-02
Ра	91	3.0E-03	2	5.1E-04	1.8E-02
Pb	82	2.5E-02	10	6.6E-05	9.3E+00
Pu	94	1.2E-03	10	3.2E-06	4.6E-01
Ra	88	1.7E-02	10	4.4E-05	6.3E+00
Se	34	5.1E+00	3.6	1.9E-01	1.4E+02
Sn	50	3.5E-02	10	9.4E-05	1.3E+01
Sr	38	3.1E-02	5.8	3.4E-04	2.9E+00
Тс	43	6.3E-02	10	1.7E-04	2.4E+01
Th	90	5.9E-03	8	2.7E-05	1.3E+00
U	92	2.4E-01	10	6.5E-04	9.2E+01

Source: DTN: MO0406SPAETPBM.002 [DIRS 170150]

Table 23. Transfer Coefficients for Milk

Element	Atomic No.	GM (day/L)	GSD	Lower Truncation Limit (day/L)	Upper Truncation Limit (day/L)
Ac	89	7.6E-06	4.1	2.0E-07	2.9E-04
Am	95	1.6E-06	4.2	3.9E-08	6.3E-05
CI	17	1.8E-02	2	2.9E-03	1.0E-01
Cs	55	7.7E-03	2	1.3E-03	4.6E-02
I	53	9.1E-03	2	1.5E-03	5.4E-02
Np	93	6.3E-06	2	1.0E-06	3.9E-05
Pa	91	4.4E-06	2	7.4E-07	2.6E-05
Pb	82	1.7E-04	3	1.0E-05	2.9E-03
Pu	94	2.3E-07	7.7	1.2E-09	4.4E-05
Ra	88	5.8E-04	2	1.0E-04	3.4E-03
Se	34	5.7E-03	2.5	5.5E-04	6.0E-02
Sn	50	1.1E-03	2	1.8E-04	6.3E-03
Sr	38	1.7E-03	2	2.8E-04	1.0E-02
Тс	43	2.1E-03	6	2.0E-05	2.1E-01
Th	90	4.4E-06	2	7.4E-07	2.6E-05
U	92	4.9E-04	2	8.1E-05	2.9E-03

Element	Atomic No.	GM (day/kg)	GSD	Lower Truncation Limit (day/kg)	Upper Truncation Limit (day/kg)
Ac	89	2.9E-03	2.3	3.4E-04	2.5E-02
Am	95	4.9E-03	2	8.2E-04	2.9E-02
CI	17	4.4E-02	10	1.2E-04	1.7E+01
Cs	55	3.5E-01	5.8	3.7E-03	3.3E+01
I	53	2.6E+00	2	4.4E-01	1.6E+01
Np	93	3.4E-03	2.4	3.4E-04	3.3E-02
Pa	91	2.0E-03	2	3.4E-04	1.2E-02
Pb	82	5.6E-02	10	1.5E-04	2.1E+01
Pu	94	1.7E-03	7.4	9.7E-06	2.9E-01
Ra	88	3.9E-04	10	1.0E-06	1.5E-01
Se	34	7.3E+00	2	1.2E+00	4.4E+01
Sn	50	8.7E-02	10	2.3E-04	3.3E+01
Sr	38	2.7E-01	2	4.5E-02	1.6E+00
Тс	43	2.4E+00	2	4.0E-01	1.4E+01
Th	90	3.5E-03	7.3	2.0E-05	5.9E-01
U	92	6.3E-01	2.5	6.0E-02	6.7E+00

Table 24	Transfer	Coefficients	for Eaas
	riansici	Cochicicities	IOI LYYS

Source: DTN: MO0406SPAETPBM.002 [DIRS 170150]

TC values for elements not in the Biosphere Model are developed based on the original references cited in BSC 2004 ([DIRS 169672], Table 4-7) as listed in Table 25. TC data from those references are tabulated Table 26 to Table 40. The data in these tables are the inputs to calculate the GM and GSD for transfer coefficients, which is the method used in the Biosphere Model, as discussed in Section 7.1.2. These references used as sources of data for development of the values of TCs are mainly review reports, compendia of biosphere parameter values, and comprehensive dose assessment reports that included the descriptions of biosphere models and the selection of model input parameter values. References were published by professional organizations producing technically defensible products pertinent to this analysis as indicated in the following discussion. Some of the references are considered sources of established fact data. Evaluation of each document that is the source of the direct input is presented in BSC 2004 ([DIRS 169672], Section 4.1.1.1). The data from these references are considered appropriate for the intended use (i.e., to develop the environmental transport parameters, including TC in this calculation). The calculations the transfer factors are performed in Section 7.1.2 using the same method as used in BSC 2004 ([DIRS 169672], Section 6.3).

No.	Reference	Table Reference
1	Baes et al. 1984 [DIRS 103766], p. 50-51	Table 26
2	Davis et al. 1993 [DIRS 103767], pp. 233 to 234	Table 27
3	IAEA 1994 [DIRS 100458], pp. 35 to 41	Table 28
4	IAEA 2001 [DIRS 158519], pp.67 to 68	Table 29
5	Kennedy and Strenge 1992 [DIRS 103776], pp. 6.29 to 6.31	Table 30
6	LaPlante and Poor 1997 [DIRS 101079], p. 2-13	Table 31
7	Mills et al. 1983 [DIRS 103781], pp. 145 to 146	Table 32
8	NCRP 1984 [DIRS 103784], p. 85 and pp. 82 to 83	Table 33
9	NCRP 1996 [DIRS 101882], pp. 52 to 54	Table 34
10	Ng 1982 [DIRS 160322], pp. 57 to 71	Table 35
11	Peterson 1983 [DIRS 167077], pp. 5-86 to 5-87	Table 36
12	Rittmann 1993 [DIRS 107744], pp. 35 to 36	Table 37
13	Regulatory Guide 1.109, Rev. 1 1977 [DIRS 100067], p. 1.109-37	Table 38
14	Smith et al. 1996 [DIRS 101085], pp. 5-27 to 5-29	Table 39
15	Wang et al. 1993 [DIRS 103839], pp. 27 to 34, Yu et al. 2001 [DIRS 159465], p. D-16	Table 40

Source: BSC 2004 ([DIRS 169672], Tables 4-7.

Table 26. Animal Product Transfer Coefficients – Reference 1

	Atomic	TC (day/kg)				
Element	No.	Beef	Poultry	Milk (day/l)	Eggs	
Са	20	7.0E-04	-	1.0E-02	-	
Cd	48	5.5E-04	-	1.0E-03	-	
Ce	58	7.5E-04	-	2.0E-05	-	
Cf	98	-	-	_	-	
Cm	96	3.5E-06	-	2.0E-05	-	
Со	27	2.0E-02	-	2.0E-03	-	
Eu	63	5.0E-03	-	2.0E-05	-	
Fe	26	2.0E-02	-	2.5E-04	-	
Nb	41	2.5E-01	-	2.0E-02	-	
Ni	28	6.0E-03	-	1.0E-03	-	
Pd	46	4.0E-03	-	1.0E-02	-	
Pm	61	5.0E-03	-	2.0E-05	-	
Rh	45	2.0E-03	-	1.0E-02	-	
Ru	44	2.0E-03	-	6.0E-07	-	
Sb	51	1.0E-03	-	1.0E-04	-	
Sm	62	5.0E-03	-	2.0E-05	-	
Y	39	3.0E-04	-	2.0E-05	-	
Zr	40	5.5E-03	-	3.0E-05	-	

Baes et al. 1984 [DIRS 103766], p. 50-51

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	1.6E-03	4.4E-01	1.1E-02	4.4E-01
Cd	48	3.5E-04	8.4E-01	1.5E-03	8.4E-01
Ce	58	-	-	-	-
Cf	98	-	-	-	-
Cm	96	-	-	-	-
Со	27	-	-	-	-
Eu	63	-	-	-	-
Fe	26	-	-	-	-
Nb	41	2.5E-01	3.0E-03	2.0E-02	3.0E-03
Ni	28	2.0E-03	2.0E-01	1.0E-03	2.0E-01
Pd	46	4.0E-03	4.0E-01	1.0E-02	4.0E-01
Pm	61	-	-	-	-
Rh	45	-	-	-	-
Ru	44	-	-	-	-
Sb	51	1.0E-03	1.0E-01	1.1E-04	1.0E-01
Sm	62	5.0E-03	5.0E-01	2.0E-05	5.0E-01
Y	39	3.0E-04	3.0E-02	2.0E-05	3.0E-02
Zr	40	2.0E-02	2.0E+00	3.0E-05	2.0E+00

Table 27. Animal Product Transfer Coefficients – Reference 2

Source: Davis et al. 1993 [DIRS 103767], pp. 233 to 234 Notes: Same value for BIRD used for poultry and eggs based on BSC 2004 [DIRS 169672] Section 6.3.3.4.

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	2.0E-03	4.0E-02	3.0E-03	4.0E-01
Cd	48	4.0E-04	8.0E-01	-	1.0E-01
Ce	58	2.0E-05	4.0E-03	3.0E-05	9.0E-05
Cf	98	-	-	-	-
Cm	96	-	-	-	-
Со	27	1.0E-02	2.0E+00	3.0E-04	1.0E-01
Eu	63	-	-	-	-
Fe	26	2.0E-02	1.0E+00	3.0E-05	1.0E+00
Nb	41	3.0E-07	3.0E-04	4.1E-07	1.0E-03
Ni	28	5.0E-03	-	1.6E-02	-
Pd	46	-	-	-	-
Pm	61	-	2.0E-03	-	-
Rh	45	-	-	-	-
Ru	44	4.0E-01	8.0E+00	3.3E-06	5.0E-03
Sb	51	4.0E-05	-	2.5E-05	-
Sm	62	-	-	-	-
Y	39	1.0E-03	1.0E-02	_	2.0E-03
Zr	40	1.0E-06	6.0E-05	5.5E-07	2.0E-04

Table 28. Animal Product Transfer Coefficients - Reference 3

Source: IAEA 1994 [DIRS 100458], pp. 35 to 41 Notes: Maximum values selected when multiple values

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	-	-	-	-
Cd	48	1.0E-03	-	2.0E-02	-
Ce	58	2.0E-04	-	3.0E-04	-
Cf	98	-	-	-	-
Cm	96	2.0E-05	-	2.0E-06	-
Co	27	7.0E-02	-	1.0E-02	-
Eu	63	2.0E-03	-	6.0E-05	-
Fe	26	5.0E-02	-	3.0E-04	-
Nb	41	3.0E-06	-	4.0E-06	-
Ni	28	5.0E-02	-	2.0E-01	-
Pd	46	2.0E-04	-	1.0E-04	-
Pm	61	2.0E-03	-	6.0E-05	-
Rh	45	2.0E-03	-	5.0E-04	-
Ru	44	5.0E-02	-	3.0E-05	-
Sb	51	5.0E-03	-	2.5E-04	-
Sm	62	-	-	-	-
Y	39	1.0E-02	-	6.0E-05	-
Zr	40	1.0E-05	-	6.0E-06	-

Table 29. Animal Product Transfer Coefficients - Reference 4

Source: IAEA 2001 [DIRS 158519], pp.67 to 68

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	7.0E-04	4.4E-02	1.0E-02	4.4E-01
Cd	48	5.5E-04	8.4E-01	1.0E-03	1.0E-01
Ce	58	7.5E-04	1.0E-02	2.0E-05	5.0E-03
Cf	98	5.0E-03	4.0E-03	7.5E-07	2.0E-03
Cm	96	3.5E-06	4.0E-03	2.0E-05	2.0E-03
Со	27	2.0E-02	5.0E-01	2.0E-03	1.0E-01
Eu	63	5.0E-03	4.0E-03	2.0E-05	7.0E-03
Fe	26	2.0E-02	1.5E+00	2.5E-04	1.3E+00
Nb	41	2.5E-01	3.1E-04	2.0E-02	1.3E-03
Ni	28	6.0E-03	1.0E-03	1.0E-03	1.0E-01
Pd	46	4.0E-03	3.0E-04	1.0E-02	4.0E-03
Pm	61	5.0E-03	2.0E-03	2.0E-05	2.0E-02
Rh	45	2.0E-03	5.0E-01	1.0E-02	1.0E-01
Ru	44	2.0E-03	7.0E-03	6.0E-07	6.0E-03
Sb	51	1.0E-03	6.0E-03	1.0E-04	7.0E-02
Sm	62	5.0E-03	4.0E-03	2.0E-05	7.0E-03
Y	39	3.0E-04	1.0E-02	2.0E-05	2.0E-03
Zr	40	5.5E-03	6.4E-05	3.0E-05	1.9E-04

Table 30. Animal Product Transfer Coefficients – Reference 5

Source: Kennedy and Strenge 1992 [DIRS 103776], pp. 6.29 to 6.31

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	-	-	-	-
Cd	48	-	-	-	-
Ce	58	-	-	-	-
Cf	98	-	-	-	-
Cm	96	3.5E-06	-	2.0E-05	2.0E-03
Со	27	-	-	-	-
Eu	63	-	-	-	-
Fe	26	-	-	-	-
Nb	41	3.0E-07	-	4.1E-07	1.0E-03
Ni	28	5.0E-03	-	1.6E-02	1.0E-01
Pd	46	4.0E-03	-	1.0E-02	4.0E-03
Pm	61	-	-	-	-
Rh	45	-	-	-	-
Ru	44	-	-	-	-
Sb	51	-	-	_	-
Sm	62	5.0E-03	-	2.0E-05	7.0E-03
Y	39	-	-	_	-
Zr	40	1.0E-06	-	6.0E-07	2.0E-04

Table 31. Animal Product Transfer Coefficients – Reference 6

Source: LaPlante and Poor 1997 [DIRS 101079], p. 2-13

Table 32. Animal Produc	t Transfer Coefficients	– Reference 7
-------------------------	-------------------------	---------------

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	3.3E-03	3.3E-03	8.0E-03	1.0E+00
Cd	48	1.6E-02	1.5E-02	5.2E-05	9.9E-04
Ce	58	1.0E-03	6.0E-04	1.0E-05	3.0E-03
Cf	98	5.0E-03	4.0E-03	7.5E-07	2.0E-03
Cm	96	5.0E-03	4.0E-03	2.5E-06	2.0E-03
Со	27	1.0E-03	1.0E-03	5.0E-04	1.0E-01
Eu	63	5.0E-03	4.0E-03	2.5E-06	7.0E-03
Fe	26	2.0E-02	1.0E-03	6.0E-04	1.0E-01
Nb	41	5.0E-04	1.0E-04	1.2E-03	1.2E-03
Ni	28	1.0E-03	1.0E-03	3.4E-03	1.0E-01
Pd	46	1.0E-03	3.0E-04	5.0E-03	4.0E-03
Pm	61	5.0E-03	1.0E-04	2.5E-06	7.0E-03
Rh	45	1.0E-03	3.0E-04	5.0E-03	4.0E-03
Ru	44	1.0E-03	3.0E-04	5.0E-07	4.0E-03
Sb	51	3.0E-03	6.0E-03	7.5E-04	7.9E-02
Sm	62	5.0E-03	4.0E-03	2.5E-06	7.0E-03
Y	39	5.0E-03	5.0E-04	5.0E-06	5.0E-04
Zr	40	5.0E-04	1.0E-04	2.5E-06	1.2E-03

Source: Mills et al. 1983 [DIRS 103781], pp. 145 to 146

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	-	-	-	-
Cd	48	-	-	-	-
Ce	58	-	-	-	-
Cf	98	-	-	-	-
Cm	96	-	-	-	-
Со	27	-	-	2.9E-03	-
Eu	63	-	-	-	-
Fe	26	-	-	-	-
Nb	41	-	-	-	-
Ni	28	-	-	-	-
Pd	46	-	-	-	-
Pm	61	-	-	-	-
Rh	45	-	-	-	-
Ru	44	2.0E-03	-	6.1E-07	-
Sb	51	-	-	_	-
Sm	62	-	-	-	-
Y	39	-	-	-	-
Zr	40	-	-	-	-

Table 33. Animal Product Transfer Coefficients – Reference 8

Source: NCRP 1984 [DIRS 103784], p. 85 and pp. 82 to 83

Table 34. Animal Product Transfer	Coefficients – Reference 9
-----------------------------------	----------------------------

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	2.0E-03	-	3.0E-03	-
Cd	48	1.0E-03	-	2.0E-03	-
Ce	58	2.0E-05	-	3.0E-05	-
Cf	98	6.0E-05	-	2.0E-06	-
Cm	96	2.0E-05	-	2.0E-06	-
Со	27	3.0E-02	-	2.0E-03	-
Eu	63	2.0E-03	-	6.0E-05	-
Fe	26	3.0E-02	-	3.0E-04	-
Nb	41	3.0E-07	-	2.0E-06	-
Ni	28	5.0E-03	-	2.0E-02	-
Pd	46	2.0E-04	-	1.0E-04	-
Pm	61	2.0E-03	-	6.0E-05	-
Rh	45	2.0E-03	-	5.0E-04	-
Ru	44	2.0E-03	-	2.0E-05	-
Sb	51	1.0E-03	-	1.0E-04	-
Sm	62	2.0E-03	-	6.0E-05	-
Y	39	2.0E-03	-	6.0E-05	-
Zr	40	1.0E-06	-	6.0E-07	-

Source: NCRP 1996 [DIRS 101882], pp. 52 to 54

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	-	-	1.1E-02	-
Cd	48	-	-	1.5E-03	-
Ce	58	7.5E-04	-	6.0E-05	-
Cf	98	-	-	_	-
Cm	96	-	-	-	-
Со	27	-	-	2.9E-03	-
Eu	63	-	-	_	-
Fe	26	-	-	2.7E-04	-
Nb	41	-	-	_	-
Ni	28	-	-	1.0E-03	-
Pd	46	-	-	_	-
Pm	61	-	-	-	-
Rh	45	-	-	_	-
Ru	44	2.0E-03	-	3.3E-06	4.0E-03
Sb	51	1.2E-03	-	1.1E-04	-
Sm	62	-	-	_	-
Y	39	-	-	_	-
Zr	40	-	_	3.0E-05	-

Table 35. Animal Product Transfer Coefficients – Reference 10

Source: Ng 1982 [DIRS 160322], p. 62 to 63

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Ca	20	1.6E-03	4.4E-02	1.1E-02	4.4E-01
Cd	48	-	-	-	-
Ce	58	2.9E-04	-	2.0E-05	-
Cf	98	-	-	-	-
Cm	96	-	-	-	-
Со	27	1.2E-02	-	2.0E-03	-
Eu	63	2.9E-04	-	2.0E-05	-
Fe	26	2.1E-02	1.5E+00	5.9E-05	1.3E+00
Nb	41	2.0E-03	2.0E-03	2.0E-02	3.0E-03
Ni	28	2.0E-03	-	1.0E-02	-
Pd	46	-	-	-	-
Pm	61	2.9E-04	-	2.0E-05	-
Rh	45	_	-	-	-
Ru	44	2.0E-03	7.0E-03	6.1E-07	6.0E-03
Sb	51	1.2E-03	-	-	-
Sm	62	2.9E-04	-	2.0E-05	-
Y	39	1.0E-03	1.0E-02	2.0E-05	2.0E-03
Zr	40	2.1E-02	_	8.0E-02	_

Source: Peterson 1983 [DIRS 167077], pp. 5-86 to 5-87

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Ca	20	1.6E-03	4.4E-02	8.0E-03	4.4E-01
Cd	48	4.0E-04	8.4E-01	1.2E-04	1.0E-01
Ce	58	2.0E-03	1.0E-02	4.0E-05	5.0E-03
Cf	98	5.0E-03	4.0E-03	7.5E-07	2.0E-03
Cm	96	5.0E-03	4.0E-03	3.0E-07	2.0E-03
Со	27	2.0E-02	5.0E-01	1.0E-04	1.0E-01
Eu	63	6.0E-03	4.0E-03	2.0E-05	7.0E-03
Fe	26	2.0E-02	1.5E+00	5.0E-05	1.3E+00
Nb	41	2.6E-07	3.1E-04	4.1E-07	1.3E-03
Ni	28	2.0E-03	1.0E-03	1.0E-03	1.0E-01
Pd	46	1.0E-03	3.0E-04	5.0E-03	4.0E-03
Pm	61	5.0E-03	2.0E-03	2.5E-06	2.0E-02
Rh	45	1.0E-03	3.0E-04	5.0E-03	4.0E-03
Ru	44	2.0E-03	7.0E-03	6.0E-07	6.0E-03
Sb	51	1.0E-03	6.0E-03	7.5E-04	7.0E-02
Sm	62	5.0E-03	4.0E-03	2.0E-05	7.0E-03
Y	39	1.0E-03	1.0E-02	5.0E-06	2.0E-03
Zr	40	1.2E-06	6.4E-05	5.5E-07	1.9E-04

Table 37. Animal Product Transfer Coefficients – Reference 12

Source: Rittmann 1993 [DIRS 107744], pp. 35 to 36

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	-	-	-	-
Cd	48	_	-	_	-
Ce	58	1.2E-03	-	1.0E-04	-
Cf	98	_	-	-	-
Cm	96	_	-	-	-
Со	27	1.3E-02	-	1.0E-03	-
Eu	63	_	-	_	-
Fe	26	4.0E-02	-	1.2E-03	-
Nb	41	2.8E-01	-	2.5E-03	-
Ni	28	5.3E-02	-	6.7E-03	-
Pd	46	_	-	-	-
Pm	61	_	-	-	-
Rh	45	1.5E-03	-	1.0E-02	-
Ru	44	4.0E-01	-	1.0E-06	-
Sb	51	-	-	-	-
Sm	62	-	-	_	-
Y	39	4.6E-03	-	1.0E-05	-
Zr	40	3.4E-02	-	5.0E-06	-

Source: Regulatory Guide 1.109, Rev. 1 1977 [DIRS 100067], p. 1.109-37

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	-	-	-	-
Cd	48	-	-	-	-
Ce	58	-	-	-	-
Cf	98	-	-	-	-
Cm	96	-	-	-	-
Co	27	-	-	-	-
Eu	63	-	-	-	-
Fe	26	-	-	-	-
Nb	41	2.0E-04	4.0E-02	2.0E-02	2.2E-02
Ni	28	-	-	-	-
Pd	46	-	-	-	-
Pm	61	-	-	-	-
Rh	45	-	-	-	-
Ru	44	-	-	-	-
Sb	51	-	-	-	-
Sm	62	-	-	_	-
Y	39	-	-	-	-
Zr	40	-	-	-	-

Table 39. Animal Product Transfer Coefficients – Reference 14

Source: Smith et al. 1996 [DIRS 101085], p. 5-27 to 5-29

Table 40. Animal Product Transfer Coefficients – Reference 15

	Atomic	TC (day/kg)			
Element	No.	Beef	Poultry	Milk (day/l)	Eggs
Са	20	1.6E-03	-	3.0E-03	-
Cd	48	4.0E-04	-	1.0E-03	-
Ce	58	2.0E-05	-	3.0E-05	-
Cf	98	6.0E-05	-	7.5E-07	-
Cm	96	2.0E-05	-	2.0E-06	-
Со	27	2.0E-02	-	2.0E-03	-
Eu	63	2.0E-03	-	2.0E-05	-
Fe	26	2.0E-02	-	3.0E-04	-
Nb	41	3.0E-07	-	2.0E-06	-
Ni	28	5.0E-03	-	2.0E-02	-
Pd	46	1.0E-03	-	5.0E-03	-
Pm	61	2.0E-03	-	2.0E-05	-
Rh	45	1.0E-03	-	5.0E-03	-
Ru	44	2.0E-03	-	3.3E-06	-
Sb	51	1.0E-03	-	1.0E-04	-
Sm	62	2.0E-03	-	2.0E-05	-
Y	39	2.0E-03	-	2.0E-05	-
Zr	40	1.0E-06	-	6.0E-07	-

Source: Wang et al. 1993 [DIRS 103839], pp. 27 to 34, and Yu et al. 2001 [DIRS 159465], p. D-16

Suitability for Use: The *transfer coefficients for animal products* that are developed for the Biosphere Model for the post-closure dose assessment are appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. For those elements that are not available in the Biosphere Model, the same references and same method used in the Biosphere Model are to be used to develop the parameter values. The parameters correspond to the GENIIv2 transfer coefficient parameters: *CLFMT* for Meat; *CLFMK* for milk; *CLFPL* for Poultry; and *CLFEG* for eggs.

4.1.1.3 Translocation Factors

The *translocation factors for crops* used in the Biosphere Model (BSC 2004 [DIRS 169672], Section 6.2.2.2 and Table 6-36) relates the fraction of a chemical element initially deposited on the leaf surface that is retained and translocated to the edible plant parts. Translocation factors for five types of crops are tabulated in Table 41. Among them, a fixed value was used for two crop types, while a distribution was assigned for three crop types. A median value can be used for a deterministic calculation in the GENIIv2.

Сгор Туре	Translocation Factor (distribution/value)
Leafy vegetables	1.0
Root vegetables	Piece-wise linear: (0.05, 0%), (0.1, 50%), (0.3, 100%)
Fruit	Piece-wise linear: (0.05, 0%), (0.1, 50%), (0.3, 100%)
Grain	Piece-wise linear: (0.05, 0%), (0.1, 50%), (0.3, 100%)
Fresh forage for beef cattle and diary cows	1.0

Table 41	. Translocation	Factors for Crops
----------	-----------------	-------------------

Source: DTN: MO0406SPAETPBM.002 [DIRS 170150]

Suitability for Use: The translocation factors for crops that are developed for the Biosphere Model for the post-closure dose assessment are appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. However, because a piece-wise linear distribution is not available in the GENIIv2, the distribution is converted to an accepted distribution in Section 7.1.3. The translocation factors correspond to the GENIIv2 parameters for each crop type: *TRANS* and *TRANSA*.

4.1.1.4 Weathering Half-Half or Weathering Rate Constant

The *weathering half-life* (or *weathering half-time*) describes the time for the amount of contaminant deposited on a plant to be reduced to one-half of its initial value (BSC 2004 [DIRS 169672], Section 6.2.2.3). A piece-wise linear distribution with the following values: (5 days; 0%), (14 days; 50%), (30 days; 100%) is provided in DTN: MO0406SPAETPBM.002 [DIRS 170150] for weathering half-life. A median value, 14 days, can be used for a deterministic calculation in the GENIIv2.

The weathering rate constant is defined in the Biosphere Model (BSC 2004 [DIRS 169672], Section 6.2.2.3). The relationship between the weathering half-life and weathering rate constant is given in BSC 2004 ([DIRS 169672], Equation 6-7):

$$T = \frac{\ln 2}{\lambda w}$$
 Equation 1

where:

 $T = \text{weathering half-life, day} \\ \lambda w = \text{weathering rate constant, day}^{-1}$

For a weathering half-life of 14 days, the weathering rate constant, λw is 0.0495 day⁻¹ (18.1 y⁻¹) from:

$$\lambda w = \frac{\ln 2}{T} = \frac{\ln 2}{14d} = 0.0495 d^{-1}$$
 Equation 2

Suitability for Use: The *weathering half-life* developed for the Biosphere Model for the postclosure dose assessment is appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. It corresponds to the GENIIv2 parameter *WTIM, weathering rate constant*. Note that the definition of weathering rate constant in GENIIv2 corresponds the weathering half-life in the Biosphere Model with the relation defined in Equation 1. The parameter distribution is converted to an GENIIv2 accepted distribution in Section 7.1.4.

4.1.1.5 Dry Deposition Velocity for Soil Resuspension

Deposition is an atmospheric removal process involving the transport of matter from the atmosphere to environmental surfaces. The deposition velocity is usually defined as the ratio of the deposition flux divided by the airborne particle concentration per unit volume, at some height above the surface. It has dimensions of distance per unit time, and its value may vary with environmental conditions, such as the presence of the turbulence and eddies in the near-surface atmospheric layer. The deposition velocities for particles depend on particle size and density and also on other variables such as wind speed and surface roughness (BSC 2004 [DIRS 169672], Section 6.2.2.1). The dry deposition velocity for soil resuspension in the Biosphere Model is represented by a piece-wise linear cumulative distribution represented as tabulated in Table 42. The median value of 8 x 10^{-3} m/s at 50 percent cumulative distribution that corresponds to 4 µm particle can be used for a deterministic calculation.

No.	Particle Size (µm)	Percent	Dry Deposition Velocity (m/s)
1	0.06	0	3E-4
2	0.8	16	1E-3
3	4.0	50	8E-3
4	20	84	3E-2
5	250	100	3E-1

Table 42. Dry deposition	Velocity fro Soil Resuspension
--------------------------	--------------------------------

Source: DTN: MO0406SPAETPBM.002 [DIRS 170150]

Suitability for Use: The *dry deposition velocity* developed for the Biosphere Model for the postclosure dose assessment is appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. It corresponds to GENIIv2 parameter: *DPVRES, deposition velocity from soil to plant surface.* This parameter value may be used for the *CLVD, atmospheric deposition velocity*, if a particle size distribution is in a range shown in Table 42. The parameter distribution is converted to an GENIIv2 accepted distribution in Section 7.1.5.

4.1.1.6 Animal Feed and Soil Consumption Rates

The animal feed and soil consumption rate categories are beef cattle, dairy cows, poultry and laying hens in the Biosphere Model (BSC 2004 [DIRS 169672], Section 6.3) and are the same as used for the GENIIv2. In the Biosphere Model grazing animals (beef cattle and dairy cows) are on a diet of fresh pasture grass only; and laying hens and poultry are fed with grain only (BSC 2004 [DIRS 169672], Section 6.3.1). This is conservative as discussed in BSC 2004 ([DIRS 169460] Section 6.3.1.4). It is used as an assumption in this calculation (Section 3.2.7). Animal feed, water, and soil consumption rates are tabulated in Table 43 as provided in DTN: MO0406SPAETPBM.002 [DIRS 170150]. A uniform distribution for all consumption rates is recommended, and maximum and minimum rates are provided. Mean values were calculated in Section 7.1.6 for a deterministic calculation in the GENIIv2.

Animal Type	Feed		Feed (Kg wet/day)	Water (L/day)	Soil (Kg/day)
Deefeette	Farana	Minimum	29	60	0.4
Beef cattle	Forage	Maximum	68	00	1.0
Deizueru	Forage	Minimum	50	60	0.8
Dairy cow		Maximum	73	100	1.1
Daultar	Onein	Minimum	0.12	0.5	0.01
Poultry	Poultry Grain		0.4	0.5	0.03
	Onein	Minimum	0.12	0.5	0.01
Laying hen	Grain	Maximum	0.4	0.5	0.03

Table 43. Animal Feed and Soil Consumption Rates

Source: DTN: MO0406SPAETPBM.002 [DIRS 170150]

Suitability for Use: The animal feed and soil consumption rates developed for the Biosphere Model for the post-closure dose assessment are appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. The rates correspond to the GENIIv2 parameters: *CONSUM, animal feed consumption rate; DWATER, animal intake rate of water;* and *SLCON, animal daily soil consumption rate.*

4.1.1.7 Depth of Top Soil Available for Resuspension

The critical thickness is developed in the Biosphere Model for the volcanic ash exposure scenario to predict contaminant concentration in air for the inhalation pathway. The function of this parameter is to allow for mixing of the contaminant deposited on the ground surface with the surface soil for thin sources, and to allow for partial resuspension of deposited activity for thick sources (BSC 2004 [DIRS 169672], Section 6.8). The critical thickness is represented by a uniform distribution with a minimum of 1 mm and a maximum of 3 mm in DTN: MO0406SPAETPBM.002 [DIRS 170150].

Suitability for Use: The critical thickness concept of a resuspendable layer thickness is the same as the GENIIv2 parameter *AVALSL*, *depth of top soil available for resuspension*. It is used in the soil resuspension for inhalation model as discussed in Section 7.4.2.

4.1.2 Soil-Related Parameters

Biosphere Model soil related parameters are documented in the *Soil-Related Input Parameters for the Biosphere Model* (BSC 2006 [DIRS 177400]). The parameter values evaluated and selected in this subsection are based on DTN: MO0609SPASRPBM.004 [DIRS 177742].

4.1.2.1 Soil Bulk Density

The soil bulk density describes the physical characteristics of the surface soil. The parameter developed in the Biosphere Model is representative of Amargosa Valley soil (BSC 2006 [DIRS 177400], Section 6.1). The mean soil bulk density is 1.5 g cm⁻³. The distribution is a triangular distribution over the density range of 1.3 g cm⁻³ and 1.7 g cm⁻³ with a mode at 1.5 g cm⁻³ (DTN: MO0609SPASRPBM.004 [DIRS 177742]).

Suitability for Use: The *soil bulk density* developed for the Biosphere Model is appropriate for the use of the PCSA, because of the same environment for the receptor. The GENIIv2 parameters are *BULKD*, *surface soil bulk density*; and *SLDN*, *density of contaminated soil/sediment layer*. The triangular distribution is converted to a distribution GENIIv2 can accept in Section 7.2.1.

4.1.2.2 Soil-Water Partition Coefficient

The *partition coefficient* (*Kd*) is the ratio of the mass of the solute in the solid phase per unit mass of the solid phase to the concentration of the solute in the solution at equilibrium. The partition coefficient values used in the Biosphere Model are based on the distributions of *Kd* recommended by Sheppard and Thibault (1990 [DIRS 109991], Table 3) with appropriate soil types presented in the vicinity of Lathrop Wells, Amargosa Valley (BSC 2006 [DIRS 177400], Section 6.2). For the seventeen elements used in the Biosphere Model, the GM, GSD, lower and upper truncation limits are shown in Table 44. If a deterministic value for the partition coefficient is required, the GM should be used (DTN: MO0609SPASRPBM.004 [DIRS 177742]).

	Parameter Values for a Lognormal Distribution					
Element	GM (L/kg)	GSD	Lower Truncation Limit (L/kg)	Upper Truncation Limit (L/kg)		
Ac	1.5E+03	6.0E+00	4.3E+01	5.0E+04		
Am	2.0E+03	1.4E+01	1.2E+01	3.3E+05		
С	1.8E+01	6.0E+00	5.3E-01	6.2E+02		
CI	1.4E-01	6.0E+00	1.3E-03	1.4E+01		
Cs	4.4E+03	3.7E+00	1.6E+02	1.3E+05		
I	4.5E+00	7.4E+00	8.9E-02	2.3E+02		
Np	2.5E+01	3.3E+00	2.3E+00	2.6E+02		
Ра	1.8E+03	6.0E+00	5.3E+01	6.2E+04		
Pb	1.6E+04	4.1E+00	1.0E+03	2.5E+05		
Pu	1.2E+03	3.3E+00	1.2E+02	1.3E+04		
Ra	3.6E+04	2.2E+01	8.3E+01	1.6E+07		
Se	1.5E+02	6.0E+00	4.4E+00	5.1E+03		
Sn	4.5E+02	6.0E+00	1.3E+01	1.5E+04		
Sr	2.0E+01	5.5E+00	7.2E-01	5.6E+02		
Тс	1.4E-01	6.0E+00	1.3E-03	1.4E+01		
Th	3.0E+03	8.2E+00	4.9E+01	1.8E+05		
U	3.3E+01	2.5E+01	6.3E-01	1.8E+04		

Table 44. Soil-Water Partition Coefficients for Elements in the Biosphere Model

Source: DTN: MO0609SPASRPBM.004 [DIRS 177742]

The partition coefficients for those elements that are not available in the Biosphere Model, as discussed in Section 4.1 and Table 2, are calculated in Section 7.2.2 using the same input source and same method as used in the Biosphere Model (BSC 2006 [DIRS 177400], Section 6.2). Data from Sheppard and Thibault (1990 [DIRS 109991], Tables A-1 and A-2), the source for the Biosphere Model inputs (BSC 2006 [DIRS 177400], Section 6.3), are tabulated in Table 45 for sandy and loam soils. This reference, *Default Soil Solid/Liquid Partition Coefficients, Kds, for Four Major Soil Types: A Compendium*, is an article presenting the results of a review and synthesis of previously published element *Ka* data for radionuclides of importance in nuclear waste management. The article was published in *Health Physics*, a scientific journal with international distribution. Prior to acceptance for publication, the article was subjected to rigorous scientific/technical peer review. More detailed evaluation of this reference is presented in BSC 2006 ([DIRS 177400], Section 4.1.2). Therefore, this reference source is considered appropriate for the intended use (i.e., to develop the partition coefficients in this calculation).

The partition coefficients for four elements (Cf, Eu, Pm, and Rh) are not available in Sheppard and Thibault (1990 [DIRS 109991]). These parameter values are taken from Baes et al. (1984 [DIRS 103766], p.58) and Yu et al (1993 [DIRS 160561], p.107). These references are reliable sources that are already used in this document for their values of transfer factors and transfer coefficients (Sections 4.1.1.1 and 4.1.1.2). Sheppard and Thibault (1990 [DIRS 109991], p.472) used the transfer factors from Baes et al. (1984 [DIRS 103766]) to develop their recommended values for those elements that are not commonly available. Yu et al (1993 [DIRS 160561], p.107) provides RESRAD *Kd* values based on Sheppard and Thibault (1990 [DIRS 109991]) *Kd* range. Therefore, data from these reports are considered appropriate for the intended use (i.e., to develop the partition coefficients in this calculation).

		Sand Soil ^a		Loam Soil ^a		Unspecified Soil Type	
Element	Atomic No.	Mean of In(K _d)	SD of In(K _d)	Mean of In(K _d)	SD of In(K _d)	GM of (Kd)	GSD of (K _d)
		Natural logarithms of the value in units of L/kg		Natural logarithms of the value in units of L/kg		Value in units of L/kg	
Bi	83	4.6	-	6.1	-	-	-
Са	20	1.8	-	3.4	-	-	-
Cd	48	4.3	1.5	3.7	1.6	-	-
Ce	58	6.2	1.6	9.0	1.5	-	-
Cf	98	-	-	-	-	200 ^c	-
Cm	96	8.4	2.4	9.8	0.7	-	-
Со	27	4.1	2.8	7.2	1.3	-	-
Eu	63	-	-	-	-	650 ^b	-
Fe	26	5.4	2.6	6.7	0.7	-	-
Nb	41	5.1	-	6.3	-	-	-
Ni	28	6.0	1.5	5.7	-	-	-
Pd	46	4.0	-	5.2	-	-	-
Pm	61	-	-	-	-	650 ^b	-
Po	84	5.0	1.6	6.0	1.3	-	-
Rh	45	-	-	-	-	60 ^b	-
Ru	44	4.0	1.4	6.9	-	-	-
Sb	51	3.8	-	5.0	-	-	-
Sm	62	5.5	-	6.7	-	-	-
Te	52	4.8	-	6.3	-	-	-
Y	39	5.1	-	6.6	-	-	-
Zr	40	6.4	-	7.7	-	-	-

Table 45. Soil-Water Partition	Coefficients for Element	s not in the Biosphere Model

Source: ^a Sheppard and Thibault (1990 [DIRS 109991], Tables A-1 and A-2), ^b Baes et al. (1984 [DIRS 103766], p.58), and ^c Yu et al (1993 [DIRS 160561], p107).

Suitability for Use: The *partition coefficients* developed for the Biosphere Model for the postclosure dose assessment are appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. The *partition coefficients* for those elements that are not available in the Biosphere Model, the same methods and references are used to develop parameter values. The *partition coefficients* correspond to the *surface soil distribution coefficient* or *soil adsorption coefficient* in the GENIIv2 (Napier et al 2006 [DIRS 177331], Section 7.2.5 and Appendix E). The GENIIv2 parameter for each element is *SOILKD*, *soil adsorption coefficients*.

4.1.2.3 Soil Water Content

The *soil water content* at field capacity developed in the Biosphere Model is representative of the Amargosa Valley soil (BSC 2006 [DIRS 177400], Section 6.5). It is a parameter used for calculating the leaching rate constant. As suggested by the DTN: MO0609SPASRPBM.004 [DIRS 177742], if a deterministic value for the soil water content at field capacity is required then the value is 0.20. The distribution is a uniform distribution over the range of 0.15 to 0.28.

Suitability for Use: The *soil water content* developed for the Biosphere Model for the postclosure dose assessment are appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. The GENIIv2 parameter is *MOISTC*, *surface soil moisture content*.

4.1.3 Agricultural Input Parameters

Biosphere Model agricultural and environmental related parameters are documented in the *Agricultural and Environmental Input Parameters for the Biosphere Model* (BSC 2004 [DIRS 169673]). The parameter values evaluated and selected in this subsection are based on DTN: MO0403SPAAEIBM.002 [DIRS 169392].

4.1.3.1 Surface Soil Depth

The Biosphere Model determines the tillage depth, as the depth of the soil layer where mechanical plowing or tilling occurs (BSC 2004 [DIRS 169673], Section 6.10). A tillage depth has a uniform distribution between 0.05 and 0.30 m with a recommended single value of 0.25 m (DTN: MO0403SPAAEIBM.002 [DIRS 169392]). This value is the most common conventional tillage depth. The Biosphere Model selects the tilling depth as surface soil depth (BSC 2004 [DIRS 169460], Table 6.6-3). The parameter is used to calculate the radionuclide leaching removal constant, and to estimate the surface soil areal density when multiplied by the soil bulk density (Section 7.2.4).

Suitability for Use: The Biosphere Model uses soil tillage depth as the surface soil depth for the post-closure dose assessment. This parameter is appropriate for the use in the preclosure safety analysis, because both consider the same environment for the receptor. The GENIIv2 parameters are: *THICK, surface soil thickness;* and *SURCM, surface soil layer thickness used for density*.

4.1.3.2 Annual Overwatering Rate

In the Biosphere Model, the annual *overwatering rate* is the amount of irrigation water intentionally applied to soil to leach salts, and the amount of precipitation that percolates below the root zone. The parameter has a cumulative distribution as shown in Table 46 with a mean of 0.079 m/yr (DTN: MO0403SPAAEIBM.002 [DIRS 169392]).

No.	Percent	Overwatering Rate (m/yr)
1	0	0.009
2	19	0.030
3	38	0.045
4	57	0.077
5	76	0.129
6	95	0.233
7	100	0.275

Source: DTN: MO0403SPAAEIBM.002 [DIRS 169392]

Suitability for Use: The *annual overwatering rate* developed for the Biosphere Model for the TSPA are considered appropriate for the use of the PCSA, because both consider the same environment for the receptor. The Biosphere Model developed this parameter for two climates: current and future climates. The annual overwatering rate developed for the present day climate is applicable to the PCSA. The GENIIv2 parameter is *VLEACH*, *total infiltration rate*.

4.1.3.3 Crop Dry Biomass

The *dry biomass* is a measure of the total, above-ground standing crop biomass per unit area, for each crop type. It is used in the Biosphere Model to calculate water and dust interception fractions. It represents the amount of plant material available to intercept contaminated water or dust (BSC 2004 [DIRS 169673], Section 6.1.2). Crop dry biomass developed using site-specific information is given in Table 47 (BSC 2004 ([DIRS 169673], Table 6.1-1 and Table 6.1-2) for each crop.

		Cumulative Distribution			
Crop Type	Mean	Percent	Dry Biomass (kg dry/m²)		
		0	0.10		
		5	0.13		
		20	0.14		
		35	0.15		
Leafy vegetables	0.21	50	0.16		
vegetables		65	0.18		
		80	0.30		
		95	0.42		
		100	0.50		
		0	0.30		
		5	0.40		
0.11		28	0.41		
Other vegetables	0.43	51	0.43		
vegetables		73	0.44		
		95	0.46		
		100	0.60		
	0.62	0	0.10		
		5	0.56		
Fruits		35	0.60		
Fruits		65	0.65		
		95	0.68		
		100	1.30		
	1.13	0	0.50		
		5	0.61		
Grains		35	0.74		
Grains		65	1.20		
		95	1.97		
		100	2.20		
	e 0.48	0	0.10		
		5	0.23		
Cattle Forage		73	0.34		
		95	1.38		
		100	1.50		

Source: DTN: MO0403SPAAEIBM.002 [DIRS 169392]

Suitability for Use: The *crop dry biomass* developed in the Biosphere Model is appropriate for the use in the preclosure safety analysis, because both consider the same environment for the receptor. It is used to calculate the GENIIv2 parameters: *BIOMAS, standing biomass (wet)* for human food crops; and *BIOMA2, standing animal feed biomass (wet)* for animal feed crops. The calculations of wet biomass from the crop dry biomass are documented in Section 7.3.3.

4.1.3.4 Crop Dry-to-Wet Ratios

The *dry-to-wet ratio* developed in the Biosphere Model is a measure of the ratio of dry mass to wet mass of edible foodstuffs per crop type (BSC 2004 [DIRS 169673], Section 6.2). The parameter was developed based on site-specific Amargosa Valley data. The crop dry-to-wet weight ratio has a cumulative distribution for each crop type and is tabulated in Table 48.

		Cumulative Distribution		
Сгор Туре	Mean	Percent	Dry-to-Wet Weight Ratio (kg dry / kg wet)	
		0	0.041	
		17	0.054	
		33	0.060	
Leafy vegetables	0.070	50	0.078	
vegetables		67	0.081	
		83	0.084	
		100	0.093	
		0	0.035	
		17	0.063	
0 //		33	0.078	
Other vegetables	0.103	50	0.080	
vegetables		67	0.103	
		83	0.122	
		100	0.240	
	0.120	0	0.062	
		25	0.084	
Fruits		50	0.102	
		75	0.155	
		100	0.194	
	0.903	0	0.891	
Craina		33	0.896	
Grains		67	0.906	
		100	0.918	
		0	0.182	
Cattle Forage	0.220	75	0.227	
		100	0.238	

Table 48. Crop Dry-to-Wet Ratios

Source: DTN: MO0403SPAAEIBM.002 [DIRS 169392]

Suitability for Use: The *dry-to-wet ratio* developed in the Biosphere Model is appropriate for the use in the preclosure safety analysis, because both consider the same environment for the receptor. The GENIIv2 parameters: *DRYFRC, dry/wet ratio* (human food); and *DRYFR2,*

animal feed dry/wet ratio. They are used to convert dry biomass to wet biomass required in the GENIIv2 as discussed in Section 7.3.3.

4.1.3.5 Crop Wet Yields

The *crop yield* developed in the Biosphere Model is a measure of the wet mass of the edible portion of each crop type per unit crop area. It represents the amount of foodstuffs into which the radionuclides are concentrated (BSC 2004 [DIRS 169673], Section 6.11). The crop yield developed for the Biosphere Model has a cumulative distribution for each crop type, as tabulated in Table 49.

	Maan	Cumulative Distribution		
Crop Type	Mean	Percent	Crop Yield (kg wet/m ²)	
		0	1.08	
		5	1.46	
		20	1.78	
		35	2.01	
Leafy vegetables	3.30	50	2.98	
vegetables		65	3.25	
		80	3.83	
		95	7.79	
		100	7.85	
		0	2.80	
		5	3.37	
0.11		28	3.56	
Other vegetables	4.13	51	3.64	
vegetables		72	4.92	
		95	5.15	
		100	6.61	
	2.75	0	0.73	
		5	1.51	
		28	2.67	
Fruits		51	2.92	
		72	3.00	
		95	3.63	
		100	6.89	
		0	0.27	
	0.59	5	0.28	
Grains		35	0.44	
Grains		65	0.54	
		95	1.10	
		100	1.22	
Cattle Forage	2.14	0	0.69	
		5	1.02	
		73	1.87	
		95	5.78	
		100	6.28	

Table 49. Crop Yield

Source: DTN: MO0403SPAAEIBM.002 [DIRS 169392]

Suitability for Use: The *crop yield* developed in the Biosphere Model is appropriate for the use in the preclosure safety analysis, because both consider the same environment for the receptor. This GENIIv2 parameters are: *YELD, yield (wet)* for human food and *YELDA, yield for animal food*. The conversion of the parameter distribution is discussed in Section 7.3.5.

4.1.3.6 Crop Growing Time

The *crop growing time* in the Biosphere Model is a measure of the amount of time crops are growing and potentially exposed to contaminated material. It is used to calculate the uptake of radionuclides deposited on the plant surface via interception. The parameter was developed based on site-specific Amargosa Valley data for two climates: current and future climates (BSC 2004 [DIRS 169673], Section 6.4). The growing time for the present day climate is selected in this document. Only fixed values were developed for the Biosphere Model as tabulated in Table 50, because of low sensitivity for the model (BSC 2004 [DIRS 169673], Section 6.4.2).

Сгор Туре	Growing Time (days)
Leafy vegetables	75
Other vegetables	80
Fruits	160
Grains	200
Cattle forage	75

Table 50.	Crop	Growing	Time
-----------	------	---------	------

Source: DTN: MO0403SPAAEIBM.002 [DIRS 169392]

Suitability for Use: The *crop growing time* developed in the Biosphere Model is appropriate for the use in the preclosure safety analysis, because both consider the same environment for the receptor. The GENIIv2 parameters are: *GRWP, growing period* for human food crops; and *GRWPA, animal feed growing period*.

4.1.3.7 Number of Alfalfa Cuttings Per Year

Six cuttings per year for alfalfa crop was used for developing alfalfa related agricultural parameters in the Biosphere Model (BSC 2004 [DIRS 169673], p.6-25). This value was cited from the growing season information for alfalfa given by the local farmer for an arid climate (LeStrange 1997 [DIRS 125429]). "The first cutting of alfalfa occurs about April 20. The last cutting occurs mid to late November. The total number of cuttings is 6 or 7 per year" (LeStrange 1997 [DIRS 125429]). This value was considered a qualified input, because it is based on local growing season information and agrees with the growing season for alfalfa in semi-arid climates recommended in Schmierer et al. (1997 [DIRS 160479], pp. 9 through 18), based on the site-specific agricultural practice discussed in the Biosphere Model (BSC 2004 [DIRS 169673], p.4-9).

Suitability for Use: This value is used to develop GENIIv2 parameter, *FRACFR, the acute fresh forage intake fraction* in Section 7.3.8.

4.1.4 Inhalation Exposure Input Parameters

Biosphere Model inhalation exposure related parameters are documented in the *Inhalation Exposure Input Parameters for the Biosphere Model* (BSC 2006 [DIRS 177101]). The parameter values evaluated and selected in this subsection are based on DTN: MO0605SPAINEXI.003 [DIRS 177172].

4.1.4.1 Mass Loading for Crops

The mass loading for crops is used to estimate soil concentration in air around the crops for the deposition of resuspended soil on crop surfaces. The mass loading for crops is developed in the Biosphere Model based on mass loading in fields and gardens where crops are growing. It is based on the crops grown and farming practices in Amargosa Valley, and therefore is consistent with the current conditions in the Yucca Mountain region (BSC 2006 [DIRS 177101], Section 6.2.5). The mass loading is similar to or higher than that in the inactive outdoor environment, with a minimum value equal to the minimum value of the inactive outdoor environment, and a modal and maximum value twice that of the inactive outdoor environment. The distribution values are provided in DTN: MO0605SPAINEXI.003 [DIRS 177172], as shown in Table 51.

Parameter Name	Type of		Mass Loading (mg/m³)			
	Distribution	Mode Minimum Maximu				
Mass Loading for Crops	Triangular	0.120	0.025	0.200		
Source: DTN: MO0605SPAINEXI 003 [DIPS 177172]						

Source: DTN: MO0605SPAINEXI.003 [DIRS 177172].

Suitability for Use: The mass loading for crops developed in the Biosphere Model is appropriate for the use in the PCSA, because both consider the same environment for the receptor. This parameter is not input directly in the GENIIv2, but is used to develop the parameter *LEAFRS*, *resuspension factor from soil to plant surface*, discussed in Section 7.3.7.

4.1.4.2 Mass Loading for Inhalation Exposure

The mass loading for inhalation pathway is used in the Biosphere Model to calculate radionuclide concentrations in air at the receptor (reasonably maximally exposed individual (RMEI)) environments from resuspended contaminated soil. Different environments are considered to capture different level of dustiness for the receptor. The parameter distribution and values for the nominal condition are tabulated in Table 52.

Environment	Type of	Mass Loading (mg/m ³)			
	Distribution	Mode	Minimum	Maximum	
Active Outdoors (mg/m ³)	Triangular	3.000	1.000	10.000	
Inactive Outdoors (mg/m ³)	Triangular	0.060	0.025	0.100	
Active Indoors (mg/m ³)	Triangular	0.100	0.060	0.175	
Asleep Indoors (mg/m ³)	Triangular	0.030	0.010	0.050	

Table 52.	Mass I	Loading for	r Inhalation	Exposure
-----------	--------	-------------	--------------	----------

Source: DTN: MO0605SPAINEXI.003 [DIRS 177172].

Based on BSC 2006 [DIRS 177101], Section 6.1.1), the five environments are described as following:

- 1. Active Outdoors—This environment is representative of conditions that occur when a person is outdoors in the contaminated environment conducting dust-generating activities.
- 2. Inactive Outdoors—This environment included outdoor locations within potentially contaminated areas where the RMEI is not conducting soil-disturbing activities.
- 3. Active Indoors—This environment included locations indoors in areas that may contain radionuclides where the RMEI would spend time active, including working.
- 4. Asleep (Inactive) Indoors—This environment included locations where the RMEI would spend time sleeping indoors in areas that may contain radionuclides.
- 5. Away from Potentially Contaminated Area—This environment encompassed locations that would not contain radionuclides released from the repository, including commuting routes to work as well as work and other locations outside of contaminated areas.

Suitability for Use: The mass loading values for inhalation developed in the Biosphere Model are appropriate for the use in the PCSA, because both consider the same environment for the receptor. Two sets of data, for nominal condition and post volcanic condition, were developed in the Biosphere Model. The nominal condition is selected for the preclosure safety analysis, because the post volcanic condition applies to a short period after volcanic eruption in additional to the nominal condition (BSC 2006 [DIRS 177101], Section 7.1), which is not consistent with the preclosure condition. The Biosphere Model determines mass loadings for different normal condition for use in the preclosure safety analysis as discussed in Section 7.4.1. The GENIIv2 parameter is *XMLF, mass loading factor for resuspension model*, that is entered when the resuspension model is selected as mass loading method (*IRES*).

4.1.5 Characteristics of the Receptor

Biosphere Model parameters related to the characteristics of the receptor are documented in the *Characteristics of the Receptor for the Biosphere Model* (BSC 2005 [DIRS 172827]). The parameter values evaluated and selected in this subsection are based on DTN: MO0407SPACRBSM.002 [DIRS 170677]. There is another DTN: MO0503SPADCESR.000 [DIRS 172896] generated from the report (BSC 2005 [DIRS 172827]) that provides updated dose coefficients from the ICRP-60/72 methodologies. That DTN is not used in this document, because the dose coefficients with the decay products considered in the Biosphere Model and the PCSA are treated differently. The GENIIv2 already provides a database for all dose coefficients for the radionuclides of interest.

4.1.5.1 Annual Consumption Rates of Locally Produced Foods

GENIIv2 uses daily food consumption rates and consumption period in a year (number of days per year that food is consumed) for each food category. The site-specific annual consumption rates of locally produced foods for the Amargosa Valley are determined from a 1997 regional survey of Amargosa Valley residents, as described in *Characteristics of the Receptor for the*

Biosphere Model (BSC 2005 [DIRS 172827], Section 6.4). The food consumption rates were developed based on the required characteristics of the RMEI defined in 10 CFR 63.312. Consumption rates of locally produced food for the RMEI are represented by log-normal distributions with the means and standard errors shown in Table 53.

	Annual const	Distribution		
Food Type	Mean	Standard Error	Distribution	
Leafy vegetables	3.78	0.88	Log-normal	
Other vegetables	4.73	0.67	Log-normal	
Fruit	12.68	1.36	Log-normal	
Grain	0.23	0.11	Log-normal	
Meat	2.85	0.65	Log-normal	
Poultry	0.42	0.13	Log-normal	
Milk	4.66	1.68	Log-normal	
Eggs	5.30	0.83	Log-normal	

	D () ()	
I able 53. Annual Consumption	າ Rates of Locall	y Produced Food for the RMEI

Source: DTN: MO0407SPACRBSM.002 [DIRS 170677]

The annual consumption rates for the RMEI were developed in BSC 2005 ([DIRS 172827], Section 6.4.2) based on the contingent average daily intake (CADI). CADI values are provided by gender and by food group from national average data rather than site-specific. CADI is the average amount of food from each food group consumed by individuals when they consume food from that group. The CADI values are represented by the arithmetic mean (AM) and standard error (SE) as tabulated in Table 54 from BSC 2005 ([DIRS 172827], Table 6-20). The SE of CADI represents the confidence of the mean based on the survey.

The second component used to determine the annual consumption rates is the effective number of days per year (EDPY) when locally produced food is consumed. EDPY is based on the results of site-specific surveys of consumption frequency of locally produced food for a given individual and a given food group. It is numerically equal to the number of days in a year at 100 percent consumption of locally produced food from a given food group by a given individual. The EDPY is represented by the arithmetic mean (AM), and standard deviation (SD), as tabulated in Table 54 from BSC 2005 ([DIRS 172827], Table 6-21). The values of EDPY are YMP site-specific, and the SD of EDPY represents the variance of the mean based on the site-specific survey.

Suitability for Use: The consumption rates for the RMEI do not apply directly to the "real member of the public" receptor that is required for the preclosure standard in 10 CFR 63.111, because the RMEI is based on the mean values of the dietary and lifestyle characteristics. Therefore, the consumption rates representative of the range for real members of the public were developed based on that site-specific survey data. Using the site-specific survey of consumption frequency of locally produced food (EDPY) addresses the variation in the number of days per year when locally produced food is consumed. The western United States averaged CADI is represented by mean and standard error, which does not address the variations among the individuals. However, the parameter developed using the CADI is a daily averaged value for entire year, which has a relatively narrow range. The combination of EDPY and CADI can provide site-specific annual consumption rates for GENIIv2. The four GENIIv2 parameters are:

UCRP, daily crop food consumption rates; TCRP, number of days that crop food consumed per year; UAMN, daily animal product consumption rates; and TAMN, number of days that animal products consumed per year. More discussions and the parameter development are provided in Sections 7.5.6 and 7.5.7.

Food Group	Gender	Population Fraction		Average Daily (g/day)	Effective Number of Days Per Year (EDPY) When Locally Produced Food is Consumed (day/yr)		
			Mean	SE	Mean	SD	
Leafy	М	0.522	126.2	34.4	30.7	60.1	
Vegetables	F	0.478	120.3	25.9	30.5	60.4	
Other	М	0.522	158.3	16.4	30.8	49.6	
Vegetables	F	0.478	122.9	10.2	37.2	58.7	
Fruit	М	0.522	362.6	26.9	22.2	38.0	
	F	0.478	300.2	27.8	35.9	55.1	
Tomatoes	М	0.522	96.2	5.0	33.2	47.3	
	F	0.478	67.8	6.3	51.2	89.3	
Grain	М	0.522	392.6	18.7	0.0	0.0	
	F	0.478	274.8	12.5	1.8	8.9	
Beef	М	0.522	143.4	17.7	19.3	61.1	
	F	0.478	87.6	12.1	17.6	54.3	
Dark	М	0.522	71.0	12.9	7.6	31.1	
Pork	F	0.478	45.5	9.0	11.6	37.3	
	М	0.522	166.7	128.0	0.7	3.3	
Wild Game	F	0.478	100.0	107.7	1.5	7.8	
Davillari	М	0.522	134.9	15.9	4.3	13.9	
Poultry	F	0.478	82.1	12.0	2.9	11.3	
Milk	М	0.522	389.1	24.0	13.0	59.9	
	F	0.478	302.1	24.4	14.0	56.3	
_	М	0.522	121.3	15.8	34.8	69.5	
Eggs	F	0.478	95.2	12.2	67.9	94.7	

Table 54. CADI and EDPY Based on the Survey Food Group

Source: BSC 2005 [DIRS 172827], Tables 6-20 and 6-21, which is listed in the IED document, 100-IED-WHS0-00201-000-00B (BSC 2007 [DIRS 179915]).

4.1.5.2 Inadvertent Soil Ingestion Rate

In the Biosphere Model, inadvertent ingestion of soil may be a result of swallowing dirt or dust accompanying mouth breathing, via food items contaminated with soil, as well as from mouthing of dirty hands or other contaminated non-food items BSC 2005 ([DIRS 172827], Section 6.4.3). The inadvertent soil ingestion rate provided by the DTN: MO0407SPACRBSM.002 [DIRS 170677] is represented by a piece-wise cumulative probability distribution with the following characteristic: (50 mg/day, 0 percent), (100 mg/day, 50 percent), and (200 mg/day, 100 percent). As this soil ingestion rate is based on every day, it is assumed that soil ingestion period, or soil contact days in GENIIv2 is 365 day.

Suitability for Use: Inadvertent soil ingestion rate in the Biosphere Model is based on a thorough review of applicable information and the data are appropriately justified and suitable for that application (BSC 2005 [DIRS 172827], Section 4.1.8). The Biosphere Model recommendations are appropriate for the use of the preclosure safety analysis, because both consider the same environment for the receptor. This parameter corresponds the two GENIIv2 parameters: *USOIL, inadvertent soil ingestion rate* and *TSOIL, soil contact days*.

4.1.5.3 Building Shielding Factors

Shielding afforded by the floors and walls of a structure when indoors varies depending on the type of construction, height above ground, and other factors. BSC 2005 ([DIRS 172827], Section 6.6) provides four values of shielding factors (0.1, 0.2, 0.3 and 0.4) for radionuclides of interest depending on relative penetrability of their emissions (energy and type of radiation emitted). The most conservative indoor shielding factor is 0.4 for high penetration radiations (gamma emitters of energy > 100 keV). Shielding from external exposure is not considered when outside a building, that is the outdoor shielding factor is 1.

Suitability for Use: The use of an indoor shielding factor of 0.4 is conservative, because it is based on highly penetrating gamma radiations and its suitability is discussed in BSC 2005 ([DIRS 172827], Section 4.1.10). The GENIIv2 parameters are: *SHIN, indoor shielding factor* and *SHOUT, outdoor shielding factor*. Although these parameters are available for the sensitivity and uncertainty analyses in the GENIIv2 (Napier 2006 [DIRS 177330], Appendix E.10), only a single value is provided.

4.1.5.4 Daily Exposure Times

The lifestyle characteristics of Amargosa Valley population groups are documented in BSC 2005 ([DIRS 172827], Section 6.3). Four population groups (non-workers, commuters, local indoor worker, and local outdoor workers) are identified to characterize the RMEI daily exposure times for external exposure and inhalation exposure. Estimates of the proportion of the adult population in the Amargosa Valley within each of the four categories were developed from 2000 census data (Bureau of the Census 2002 [DIRS 159728]) on employment and commuting time of people in the Amargosa Valley census county division (BSC 2005 [DIRS 172827], Section 6.3.2).

Similar to the consumption rates discussed in Section 4.1.5.1, the mean lifestyle characteristics of the people in the four population groups do not directly apply to any real member of the public that is required for the preclosure standard in 10 CFR 63.111. The *local outdoor workers group* is identified as a group that spends the most hours per day outside. This group is considered suitable for the receptor used for the preclosure dose calculation.

Daily exposure times for various environments developed in the Biosphere Model are for two scenarios: groundwater release and volcanic ash release. The main difference between the two scenarios is in the commuting time. Commuting time in the groundwater release scenario is considered to be in the uncontaminated area, where as commuting time in the volcanic ash release is considered to be in the contaminated area. The volcanic ash release scenario being an airborne release is more like the preclosure air dispersion. Therefore, the daily exposure times for local outdoor worker in the five environments (away from the Amargosa Valley, active

outdoors, inactive outdoors, asleep indoors, and inactive indoors) for volcanic ash release are selected. The parameter has a lognormal distribution defined by arithmetic mean, standard error, lower bound and upper bound, as tabulated in Table 55. The detailed five environments are described in Section 4.1.4.2.

F action and	Daily Exposure Time – Lognormal Distribution (hours/day)								
Environment	Mean	SE	Min	Max					
Away	2.0	0.4	1.2	3.3					
Active Outdoors	3.1	0.2	2.6	3.7					
Inactive Outdoors	4.2	0.3	3.5	5.0					
Asleep Indoors	8.3	0.1	8.0	8.6					
Active Indoors ^a	6.4	-	-	-					

Table 55. Daily Exposure Times for Local Outdoor Workers

Source: DTN: MO0407SPACRBSM.002 [DIRS 170677]

Notes: ^a Calculated as 24 hours minus the sum of the other four times, and a SE and distribution is not presented.

Suitability for Use: This parameter is not directly used in the GENIIv2, because the GENIIv2 does not consider the external and inhalation exposures dependent on various environments. This parameter is used to develop several exposure time related parameters in GENIIv2, as discussed in Sections 7.5.2 and 7.5.5.

4.1.5.5 Inhalation Rates

The breathing rates developed by the Biosphere Model are population group and environment dependent (BSC 2005 [DIRS 172827], Section 6.3.3). The breathing rates are represented by fixed values, as shown in Table 56. The breathing rates are used to develop the distribution of inhalation rates by weighing the daily exposure times in the corresponding environment in Section 7.5.4.

Population Group	Active Outdoors	Inactive Outdoors	Asleep Indoors	Active Indoors
Commuters Local Outdoor Workers Local Indoor Workers Non-workers	1.57	1.08	0.39	1.08

Table 56. Breathing Rates (m³/hr) by Population Group and Environment

Source: DTN: MO0407SPACRBSM.002 [DIRS 170677]

For annual doses from routine releases, the air inhalation rate for an average adult individual is given in Regulatory Guide 1.109 ([DIRS 100067], Table E-4) as 8000 m³/yr. That corresponds to 8000 m³/yr / 365 day/yr = 21.9 m³/day. The inhalation rate recommended in Regulatory Guide 1.109 is accepted for use in calculating annual doses from normal operations for regulatory compliance evaluations.

For offsite dose consequences from design basis accidents, the air inhalation rate given in Regulatory Guide 1.183 ([DIRS 173584], Section 4.1.3) is 3.5×10^{-4} m³/sec (30.2 m³/day) for the first 8 hour, 1.8×10^{-4} m³/sec (15.6 m³/day) for next 8-24 hours, and 2.3×10^{-4} m³/sec (19.9 m³/day) for the remainder of the accident time. The inhalation rate recommended in

Regulatory Guide 1.183 is accepted for use in calculating short-term doses from accident releases for regulatory compliance evaluations.

Suitability for Use: The breathing rates by population group and environment developed in the Biosphere Model are converted to a weighted average inhalation rate that can be used in GENIIv2. They are compared with the recommended values from Regulatory Guides in Section 7.5.4. The GENIIv2 parameters are: *UINH*, *air inhalation rate* and *UINHR*, *resuspended soil inhalation rate*.

4.1.6 Site Meteorological Data

Site metrological data were measured and used to develop the general public atmospheric dispersion factors, which is documented in a calculation under development. Some meteorological data are required in order to use GENIIv2 to calculate atmospheric dispersion factors. The author of the report sent his preliminary results through email, and the entire email is included in Attachment I. These inputs are not used to calculate or develop a new parameter in this document, rather they are used to develop YMP site-specific GENIIv2 default files.

4.1.6.1 Average Absolute Humidity

This is a placeholder for the assumption in Section 3.1.1 once it is verified.

4.1.6.2 Average Daily Rain Rate

This is a placeholder for the assumption in Section 3.1.2 once it is verified.

4.1.6.3 Wind Speed

This is a placeholder for the assumption in Section 3.1.3 once it is verified.

4.1.6.4 Ambient Air Temperature

This is a placeholder for the assumption in Section 3.1.4 once it is verified.

4.1.6.5 Transfer Resistance

Transfer resistances are usually associated with the characteristics of the depositing material and surface type (Ramsdell et al. 1996 [DIRS 177811], p.570). The transfer resistance is used as a mathematical device to establish an upper limit on the deposition velocity. The user can enter transfer resistance, but as a default, 10 and 100 s/m are assumed for gas (iodine) and particles, respectively (Ramsdell et al. 1996 [DIRS 177811], p.571, and Napier et al. 2006 [DIRS 177331], Section 5.3.5.1). The parameter values are also used to calculate atmospheric dispersion factors as discussed in Attachment I.

Suitability for Use: As the parameter is an empirical value to fit the mathematical model for the dry deposition velocity and this model is provided as an option in GENIIv2, the default parameter values are appropriate to use. By using these values, the mathematical model for the dry deposition velocities are consistent with experimentally determined deposition velocities

(Molenkamp et al. 2004 [DIRS 177808], p.13). The GENIIv2 parameter is *ARTRANSRESIST*, *transfer resistance* that will be further discussed in Section 7.6.5.

4.1.6.6 Meteorological Data File

A meteorological data file for the Yucca Mountain site is generated for the years 2001 to 2005 consistent with the GENIIv2 input data format for meteorological data, as discussed in Attachment I. The file, *ymp01-05.met* contains date, time, stability class, wind direction, wind speed, temperature, mixing height, precipitation code, precipitation rate, and weight in the GENIIv2 format (Napier 2006 [DIRS 177330] Appendix B, pages 140 and 141).

Suitability for Use: The meteorological data file, *ymp01-05.met*, is based on 5-years of meteorological data from Site 1 located approximately 1 km south-south-west of the North Portal. It is based on current meteorological data for the years 2001 to 2005 and is appropriate for evaluating releases from surface and subsurface facilities.

4.1.7 Radionuclide Specific Parameters

This section contains some default files from software package of GENII V.2.02 (2006. STN: 11211-2.02-00 [DIRS 177605]). These files are also shown in Attachment H and included in the attached CD.

4.1.7.1 List of Radionuclides

Radionuclides of interest in the PCSA are listed in Table 2. The list is covered by GENIIv2's radionuclide master data library (*RMDLIB.DAT*), which contains all radiological decay data for GENIIv2 (Napier et al 2006 [DIRS 177331], Sections 3.2, and B.1). The list of radionuclides included in the *RMDLIB.DAT* data library is tabulated in Attachment A.

4.1.7.2 Implicit Daughters

Decay of very short-lived radionuclides within the decay chains of longer-lived radionuclides is treated implicitly (Napier et al 2006 [DIRS 177331], Section 3.2). External and internal dose conversion factors account for the implicit daughters within the dose factors assigned for the explicit parent radionuclides (Napier et al 2006 [DIRS 177331], Sections 3.4.2 and 3.4.3). The list of radionuclides that are implicit daughters and their parent decay chains are tabulated in Attachment B.

4.1.7.3 External Dose Coefficients

For external exposures two external exposure pathways are considered: air submersion and external exposure to contaminated soil (ground shine) as discussed in Section 3.2.3. GENIIv2 provides two options to select dose coefficients and to calculate radiation doses: 1) using ICRP-60 factors and 2) using ICRP-30/48 factors. The external dose coefficients for exposure of adults are provided in GENIIv2 files and database in terms of the effective dose for an individual and, for ICRP-60, equivalent dose to specific organs.

1) ICRP-60 Factors

Under this option, organ equivalent and effective dose coefficients for air submersion and for external exposure to soil surface and an infinite contaminated layer are from Federal Guidance Report (FGR)-13 (EPA 2002 [DIRS 175544]). FGR-13 provides complete organ dose coefficients for 25 ICRP Publication 60 (ICRP 1991 [DIRS 101836]) organs. It is the source for each of the three GENIIv2 external dose conversion factors files. Dose coefficients for air submersion are included in the GENIIv2 file *F12TIII1.EXT* and dose coefficients for external exposure to soil are included in two GENIIv2 files, *F12TIII3.EXT* for surface contamination, and *F12TIII7.EXT* for infinite contamination layer (Napier et al 2006 [DIRS 177331], Section B.2). Each of GENIIv2 files contains dose coefficients for 825 radionuclides, which covers all radionuclides in the file of *RMDLIB.DAT* discussed in Section 4.1.7.1, and 25 organs or tissues in the body (Napier et al 2006], Section B.2). Dose coefficients for external exposure to contaminated soil are selected in GENIIv2 based on the input thickness of contaminated soil, *THICK*.

2) ICRP-30/48 Factors

Under this option, effective dose coefficients for air submersion are taken from FGR-12 (Eckerman and Ryman 1993 [DIRS 107684], Table III.1). Effective dose coefficients for external exposure to soil at surface, 1-cm, 5-cm, 15-cm and infinite contaminated layer are taken from FGR-12 (Eckerman and Ryman 1993 [DIRS 107684], Table III.3 to Table III.7). These effective dose coefficients are included in the GENIIv2 database file *GENII.mdb*. Note that for FGR-12 only effective dose coefficients, not organ coefficients, are included in the database.

Suitability for Use: This input is suitable, because FGR-12 (Eckerman and Ryman 1993 [DIRS 107684]) and FGR-13 (EPA 2002 [DIRS 175544]) are the regulatory recommended sources for dose coefficients air submersion and external exposure to contaminated soil.

4.1.7.4 Internal Dose Coefficients

The internal dose includes two pathways: inhalation and ingestion as discussed in Section 3.2.3. GENIIv2 provides two methods to select dose coefficients and to calculate radiation doses: 1) using ICRP-60 factors and 2) using ICRP-30/48 factors.

1) ICRP-60 Factors

Under this option, dosimetric inputs consistent with ICRP Publication 72 (ICRP 1996 [DIRS 152446]) are based on the concepts recommended in ICRP Publication 60 (ICRP 1991 [DIRS 101836]), which uses an expanded list of tissues and organs and revised values of tissue and organ weighting factors. In addition, biokinetic and dosimetric models were updated to include new information that became available since ICRP Publication 30. A new set of age-dependent dose coefficients for intakes of radionuclides by members of the public was developed and documented in a series of reports compiled in ICRP Publication 72 (ICRP 1996 [DIRS 152446]). This approach is consistent with the individual protection standard defined in terms of effective dose. Dose coefficients in FGR-13 (EPA 2002 [DIRS 175544]) are based on ICRP-60/72.

The values of dose coefficients for inhalation based on ICRP-60/72 methodologies are included in the GENIIv2 file, *FGR13INH.HDB*. The file provides age-depended radiation doses for radionuclides for an inhaled particle size of one micron AMAD, ICRP lung transfer classes (Fast, Medium, or Slow), and gut-to-blood transfer factor (f1). The ages for which data are specified are 100 days, 1 year, 5 years, 10 years, 15 years, and 20 years. Data are provided for 33 organs, tissues, or lung compartments in the ICRP models (Napier et al 2006 [DIRS 177331], Section B.4).

The values of dose coefficients for ingestion based on ICRP-60/72 methodologies are included in the GENIIv2 file, *FGR13ING.GDB*. The file provides age-dependent radiation doses for radionuclides for various values of the gut-to-blood transfer factor (f1). The ages for which data are specified are 100 days, 1 year, 5 years, 10 years, 15 years, and 20 years. Data are provided for 33 organs, tissues, or lung compartments in the ICRP models (Napier et al 2006 [DIRS 177331], Section B.3).

2) ICRP-30/48 Factors

Under this option, dosimetric inputs consistent with ICRP Publication 30 (ICRP 1979 [DIRS 110386]; ICRP 1980 [DIRS 110351]; ICRP 1981 [DIRS 110352]) are based on the concepts recommended in ICRP Publication 26 (ICRP 1977 [DIRS 101075]) and the dosimetric methods for intakes of radionuclides by workers outlined in ICRP Publication 30. This approach is consistent with the individual protection standard defined in terms of total effective dose equivalent. Dose coefficients in FGR-11 (Eckerman et al. 1988 [DIRS 101069], Table 2.1 for inhalation and Table 2.2 for ingestion) are based on ICRP-30 with updated metabolic information for only a few radionuclides provided by ICRP-48 (Eckerman et al. 1988 [DIRS 101069], pp.3-4). These effective dose coefficients are included in the GENIIv2 database file *GENII.mdb*. Note that for FGR-11 only effective dose coefficients, not organ coefficients, are included in the database.

Suitability for Use: FGR-13 based on ICRP-60/72 methodologies contains the most current dosimetric model and provides compilation of dose coefficients for inhalation and ingestion of radionuclides for intakes of radionuclides by members of the public. The dose coefficients for adult are appropriate for the preclosure safety analysis receptor that is an adult member of the public consistent with 10 CFR 63.312 [DIRS 176544]. A 50-year committed period is considered for the effective dose coefficients in FGR-13. An 1.0 micron particle size is the appropriate default particulate aerosol size for releases to the general public. AMAD (Activity Median Aerodynamic Diameter) means 50% of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. FGR-11 contains dose conversion factors for inhalation and ingestion that are still used in the U.S. for the regulatory compliance by radiation workers.

4.1.7.5 Selection of Dose Coefficients for Inhalation

Dose coefficients for inhalation are included in the GENIIv2 file, *FGR13INH.HDB*, and the database *GENII.mdb* for several ICRP lung transfer classes (Fast, Medium, or Slow), and gut-toblood transfer factor (f1). The lung transfer classes are determined by chemical composition of particles inhaled by human. Selecting an appropriate class for preclosure safety analyses is documented in the *ICRP-72 Dose Conversion Factor Input File for MACCS2* (BSC 2005 [DIRS 174424]).

Per BSC 2005 [DIRS 174424], Section 3.9.4), oxides are the predominant chemical form of radionuclides released from spent fuel based on the information available on chemical compositions of spent nuclear fuel, and from HLW based on the information available on chemical compositions of HLW. This information was used for selecting inhalation dose coefficients when a radionuclide has multiple lung absorption types.

Dose coefficients for four specific chemical elements are selected based on their special features. Hydrogen is in the HTO (tritiated water) chemical form; carbon is in the CO_2 chemical form; uranium is in an oxide chemical form; and plutonium is in an oxide chemical form BSC 2005 [DIRS 174424], Section 3.9.5). The organically bound tritium (OBT) is treated as *slow* lung absorption class.

The available lung absorption types for each element are shown in Table 57, and the selected types are identified with a shaded box. For elements with multiple lung absorption types, the lung absorption type is selected based on the following prioritization (BSC 2005 [DIRS 174424], Section 3.9.3):

- (1) Type is recommended from fuel fission or activation product release data
- (2) Type is recommended for the oxide form of the element
- (3) Default type as recommended by ICRP-72 (ICRP 1996 [DIRS 152446], Table 2)
- (4) Type with highest effective dose coefficient.

Suitability for Use: The selected lung absorption types for inhalation are appropriate for the waste forms in which oxides are predominate chemical forms. This GENIIv2 parameter is *CLLCLAS, lung solubility class,* in the database file *GENII.mdb.* It is also *SOLUBIL, lung transfer inhalation class,* in the GENIIv2 screen menu. Further discussion of use the inputs is in Section 7.7.

Atomic			Lung Absorption Type		on Type	
No.	Element	Symbol	۴F	ьW	°S	Selection Basis from Reference
1	Hydrogen	Н	F	М	S	HTO use SR-2
4	Beryllium	Be		М	^е S	Y(S) for oxides
6	Carbon	С	F	М	S	CO ₂ use SR-2
9	Fluorine	F	F	М	^e S	Use maximum
11	Sodium	Na	^e F	_	_	⁹ See NOTES
12	Magnesium	Mg	F	^е М	_	W(M) for oxides
13	Aluminum	AI	F	^е М	_	W(M) for oxides
14	Silicon	Si	F	^е М	S	W(M) for oxides
15	Phosphorus	Р	^е F	М	_	D(F) for all except W(M) for phosphates
16	Sulfur	S	^е F	М	S	SO_2 use SR-1 and F
17	Chlorine	CI	F	^е М	-	Use maximum
19	Potassium	К	^e F	-	-	^g See NOTES
20	Calcium	Са	F	^е М	S	M for all compounds
21	Scandium	Sc	_	_	^e S	^g See NOTES
22	Titanium	Ti	F	^е М	S	W(M) for oxides
23	Vanadium	V	F	^е М	_	W(M) for oxides
24	Chromium	Cr	F	М	^е S	Y(S) for oxides
25	Manganese	Mn	F	^е М	_	W(M) for oxides
26	Iron	Fe	F	^е М	S	M for oxides
27	Cobalt	Со	F	М	^е S	S for oxides
28	Nickel	Ni	F	^е М	S	M for oxides
29	Copper	Cu	F	М	^e S	Y(S) for oxides
30	Zinc	Zn	F	М	^e S	S for oxides
31	Gallium	Ga	F	^е М	_	W(M) for oxides
32	Germanium	Ge	F	^е М	_	W(M) for oxides
33	Arsenic	As	_	^е М	_	^g See NOTES
34	Selenium	Se	^e F	М	S	F for all compounds
35	Bromine	Br	F	^е М	_	Use maximum
37	Rubidium	Rb	^е F	_	_	^g See NOTES
38	Strontium	Sr	F	^е М	S	M for reactor fuel activities
39	Yttrium	Y	_	М	^е S	Y(S) for oxides
40	Zirconium	Zr	F	^е М	S	M for fuel release
41	Niobium	Nb	F	^е М	S	M for fuel release
42	Molybdenum	Мо	F	^е М	S	M for oxides
43	Technetium	Тс	F	^е М	S	M for oxides
44	Ruthenium	Ru	F	^е М	S	M for fuel release
45	Rhodium	Rh	F	М	^е S	Y(S) for oxides
46	Palladium	Pd	F	M	^е S	Y(S) for oxides
47	Silver	Ag	F	^е М	S	M for activated corrosion products
48	Cadmium	Cd	F	M	^е S	Y(S) for oxides
49	Indium	In	F	^е М	_	W(M) for oxides
50	Tin	Sn	F	^е М	_	W(M) for oxides

Table 57. Lung Absorption Type Selection

Atomic	_		Lung Absorption Type		on Type	
No.	Element	Symbol	^a F	ь М	°S	Selection Basis from Reference
51	Antimony	Sb	F	^е М	S	M for oxides
52	Tellurium	Те	F	^е М	S	M for oxides
53	lodine	Ι	^e F	М	S	F no data to support M or S
55	Cesium	Cs	^е F	М	S	F for fuel release
56	Barium	Ва	F	^е М	S	M for default
57	Lanthanum	La	F	^е М	-	W(M) for oxides
58	Cerium	Ce	F	^е М	S	M for fuel release
59	Praseodymium	Pr	-	М	^e S	Y(S) for oxides
60	Neodymium	Nd	-	М	^e S	Y(S) for oxides
61	Promethium	Pm	-	М	^e S	Y(S) for oxides
62	Samarium	Sm	-	^е М	-	^g See NOTES
63	Europium	Eu	_	^е М	-	^g See NOTES
64	Gadolinium	Gd	F	^е М	_	W(M) for oxides
65	Terbium	Tb	_	^е М	_	^g See NOTES
66	Dysprosium	Dy	_	^е М	_	^g See NOTES
67	Holmium	Ho	_	^е М	_	^g See NOTES
68	Erbium	Er	_	^е М	_	^g See NOTES
69	Thulium	Tm	_	^е М	_	^g See NOTES
70	Ytterbium	Yb	_	М	^е S	Y(S) for oxides
71	Lutetium	Lu	_	М	^е S	Y(S) for oxides
72	Hafnium	Hf	F	^е М	_	W(M) for oxides
73	Tantalum	Та	_	M	^е S	Y(S) for oxides
74	Tungsten	W	^е F	_	_	^g See NOTES
75	Rhenium	Re	F	^е М	_	W(M) for oxides
76	Osmium	Os	F	M	^е S	Y(S) for oxides
77	Iridium	lr	F	M	°S	Y(S) for oxides
78	Platinum	Pt	e F	_	_	⁹ See NOTES
79	Gold	Au	F	м	^е S	Y(S) for oxides
80	Mercury	Hg	F	еМ	_	W(M) for oxides
81	Thallium	TI	^e F		_	^g See NOTES
82	Lead	Pb	F	^е М	S	M for default
83	Bismuth	Bi	F	^е М	_	W(M) for all except nitrates
84	Polonium	Po	F	^е М	S	M for default
85	Astatine	At	F	^е М	_	Use maximum
87	Francium	Fr	^e F		_	^g See NOTES
88	Radium	Ra	F	^е М	S	M for all compounds
89	Actinium	Ac	F	M	°S	Y(S) for oxides
90	Thorium	Th	F	M	°S	Y for oxides
90 91	Protactinium	Pa		M	°S	Y(S) for oxides
91	Uranium	га U	– F	M	°S	^j Y(S) for oxide f1 per ICRP-68
92	Neptunium	Np	F	е М	S	M for all compounds
93 94	Plutonium	Pu	F	M	° S	^j Y(S) for oxide f1 per ICRP-68
94 95	Americium	Am	F	е М	S	M for all compounds

Table 57. Lung Absorption Type Selection (Cont'd)

Atomic	Flowert	0 miles	Lung Absorption Type		on Type	Onlanting Dania from Deferring
No.	Element	Symbol	^a F	ьW	M ^c S	Selection Basis from Reference
96	Curium	Cm	F	е М	S	M for oxides
97	Berkelium	Bk	_	^е М	_	⁹ See NOTES
98	Californium	Cf	_	^е М	_	⁹ See NOTES
99	Einsteinium	Es	_	^е М	_	⁹ See NOTES
100	Fermium	Fm	_	^е М	_	⁹ See NOTES
101	Mendelevium	Md	_	^е М	_	^g See NOTES

Table 57. Lung Absorption Type Selection (Cont'd)

Source: BSC 2005 [DIRS 174424], Table 8.

NOTES: ^a F is the lung absorption type for deposited materials that are readily absorbed into body fluids from the respiratory tract (Fast absorption) (ICRP 1996 [DIRS 152446], page xii).

^b M is the lung absorption type for deposited materials that have intermediate rates of absorption into body fluids from the respiratory tract (Moderate absorption) (ICRP 1996 [DIRS 152446], page xii).

^c S is the lung absorption type for deposited materials that are relatively insoluble in the respiratory tract (Slow absorption) (ICRP 1996 [DIRS 152446], page xii).

^d ICRP Publication 71 (ICRP 1995 [DIRS 172751]).

^e Selected lung absorption types for elements are shown in the shaded boxes.

^f ICRP Publication 30, Part 3 (ICRP 1981 [DIRS 110352]).

^g Only one single lung absorption class.

^h ICRP Publication 30, Part 1 (ICRP 1979 [DIRS 110386]).

ⁱ ICRP Publication 30, Part 2 (ICRP 1980 [DIRS 110351]).

^j ICRP Publication 68 (ICRP 1995 [DIRS 172721]).

^K HTO is tritiated water.

4.1.7.6 Selection of Dose Coefficients for Ingestion

Ingestion dose coefficients from FGR-13 are included in the GENIIv2 file, *FGR13ING.GDB*. For most radionuclides, FGR-13 provides only one ingestion dose coefficient set. However, the radionuclides ³H, ³⁵S, and many Hg isotopes have more than one set of ingestion dose coefficients. For ³H, the first set is applicable to HTO, and the second set is for organically bound tritium (OBT). For other radionuclides with more than one set of ingestion dose coefficients, GENIIv2 pre-selects the first set as default values because the first set corresponds to its inorganic form, which is the most common chemical form in nuclear industry.

Suitability for Use: Ingestion dose coefficients for inorganic form are appropriate, because inorganic form is most common chemical form in nuclear industry.

4.1.7.7 Tritiated Water Inhalation Dose Coefficient with Skin Absorption

As discussed in Section 4.1.7.5, inhalation dose coefficient for hydrogen is selected as the HTO (tritiated water vapor) chemical form. Per ICRP-71 (ICRP 1995 [DIRS 172751], p. 33 para. 92), absorption through the skin contributes approximately one-third of the total HTO intake for a given air concentration and the inhalation dose coefficient for tritiated water do not explicitly include that contribution. The inhalation dose coefficient is therefore conservatively multiplied by 1.5 to account for skin absorption. The inhalation dose coefficient for HTO for all organs is 1.8×10^{-11} (Sv/Bq) per ICRP-71 (ICRP 1995 [DIRS 172751], Table 5.1.2(d)). A value of

 2.7×10^{-11} (Sv/Bq) (i.e. 1.8×10^{-11} (Sv/Bq) $\times 1.5$) is used for HTO inhalation dose coefficient for all organs in this calculation.

Suitability for Use: The use of a multiplier of 1.5 to account for skin absorption of tritium is consistent with ICRP-71 recommendations.

4.2 **REGULATORY REQUIREMENTS**

4.2.1 Preclosure Performance Objectives

Preclosure performance objectives are delineated in 10 CFR 63 [DIRS 176544]:

Normal Operation and Category 1 Event Sequences

1) 10 CFR 63.111(a)

10 CFR 63.111(a) requires protection against radiation exposures and releases of radioactive material. "(1) The geologic repository operations area must meet the requirements of Part 20 of this chapter. (2) During normal operations, and for Category 1 event sequences, the annual TEDE {total effective dose equivalent} (hereafter referred to as "dose") to any <u>real member of the public located beyond the boundary of the site</u> may not exceed the preclosure standard specified at § 63.204."

2) 10 CFR 63.204

10 CFR 63.204 states: "DOE (Department of Energy) must ensure that no member of the public in the general environment receives more that an annual dose of 0.15 mSv (15 mrem) ...".

3) 10 CFR 20 [DIRS 176618]

10 CFR 20 stipulates the dose limits for workers (Subpart C) and for members of the public (Subpart D), including the as low as reasonably achievable requirements of 10 CFR 20.1101.

Subpart C, 10 CFR 20.1201 Occupational dose limits for adult: "(a) The licensee shall control the occupational dose to individual adults, except for planned special exposures under § 20.1206, to the following dose limits. (1) An annual limit, which is the more limiting of— (i) The total effective dose equivalent being equal to 5 rems (0.05 Sv); or (ii) The sum of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue other than the lens of the eye being equal to 50 rems (0.5 Sv). (2) The annual limits to the lens of the eye, to the skin of the whole body, and to the skin of the extremities, which are: (i) A lens dose equivalent of 15 rems (0.15 Sv), and (ii) A shallow-dose equivalent of 50 rems (0.5 Sv) to the skin of the whole body or to the skin of any extremity."

Subpart D, 10 CFR 20.1301 Dose limits for individual members of the public: "(a) Each licensee shall conduct operations so that — (1) The total effective dose equivalent to individual members of the public from the licensed operation does not exceed 0.1 rem (1 mSv) in a year, exclusive of the dose contributions from background radiation, from any medical administration the individual has received, from exposure to individuals

administered radioactive material and released under § 35.75, from voluntary participation in medical research programs, and from the licensee's disposal of radioactive material into sanitary sewerage in accordance with § 20.2003, and (2) The dose <u>in any unrestricted area</u> from external sources, exclusive of the dose contributions from patients administered radioactive material and released in accordance with § 35.75, does not exceed 0.002 rem (0.02 mSv) in any one hour."

Category 2 Event Sequences

1) 10 CFR 63.111(b)

10 CFR 63.111(b) requires numerical guides for design objectives.

"(1) The geologic repository operations area must be designed so that, taking into consideration Category 1 event sequences and until permanent closure has been completed, the aggregate radiation exposures and the aggregate radiation levels in both restricted and unrestricted areas, and the aggregate releases of radioactive materials to unrestricted areas, will be maintained within the limits specified in paragraph (a) of this section.

(2) The geologic repository operations area must be designed so that, taking into consideration any single Category 2 event sequence and until permanent closure has been completed, no individual located on, or beyond, any point on the boundary of the site will receive, as a result of the single Category 2 event sequence, the more limiting of a TEDE of 0.05 Sv (5 rem), or the sum of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15 rem), and the shallow dose equivalent to skin may not exceed 0.5 Sv (50 rem)."

4.2.2 Definitions Applicable to Receptors

10 CFR 63.202 defines: "*Member of the public* means anyone who is not a radiation worker for purposes of worker protection."

10 CFR 63.202 defines: "*General environment* means everywhere outside the Yucca Mountain site, the Nellis Air Force Range, and the Nevada Test Site."

40 CFR 197.2 defines: "*Committed effective dose equivalent* means the effective dose equivalent received over a period of time (e.g., 30 years), as determined by Nuclear Regulatory Commission (NRC), by an individual from radionuclides internal to the individual <u>following a one-year intake</u> of those radionuclides."

4.2.3 Organ (Tissue) Weighting Factors

NRC Proposed rule 10 CFR 63.2 (70 FR 53313 [DIRS 178394]) defines weighting factors and, for calculating the effective dose equivalent, requires the use of tissue or organ weighting factor values in Appendix A of EPA proposed rule 40 CFR 197 (70 FR 49014 [DIRS 177357]). Proposed rule 40 CFR 197 (70 FR 49014 [DIRS 177357], Appendix A) requires that the effective dose equivalent dose calculation methodology be compatible with that established in

ICRP-26/30 (ICRP 1977 [DIRS 101075], and ICRP 1978 [DIRS 101076]) and continued in ICRP-60/72 (ICRP 1991 [DIRS 101836], and ICRP 1996 [DIRS 152446]).

INTENTIONALLY LEFT BLANK

5. METHODOLOGY

5.1 QUALITY ASSURANCE

This calculation report is prepared in accordance with EG-PRO-3DP-G04B-00037, Calculations and Analyses (Reference 2.1.4). The developed input values for GENIIv2 will be used to support consequence analysis for the License Application. Therefore, this calculation is subject to the *Quality Management Directive* (Reference 2.1.8). The *Desktop Information for Format of* Calculations and Analyses and Treatment of Inputs and Assumptions as procedure EG-DSK-3003 (Reference 2.1.2) is used as guidance. The organization process procedure LS-PRO-0201, Preclosure Safety Analyses Process (Reference 2.1.6), is also followed in the preparation of the document. Input data are identified and tracked in accordance with PA-PRO-0301, Managing Technical Product Inputs (Reference 2.1.7), because most of inputs in this document are currently located in Document Input Reference System (DIRS). Per Section 3.3.2.F of EG-PRO-3DP-G04B-00037, input links are developed for those references located within Infoworks. Data obtained from scientific investigations were controlled through information exchange document 100-IED-WHS0-00201-000-00B in accordance with CC-PRO-2001, Technical Interface Control (Reference 2.1.1). Software used in the calculation is tracked in accordance with IT-PRO-0011, Software Management (Reference 2.1.5). The assumption requiring verification is tracked in accordance with EG-DSK-3014, Using CalcTrac (Reference 2.1.3).

5.2 USE OF COMPUTER SOFTWARE

Some parameter distributions are developed, and visually checked using the GoldSim Graphical Simulation Environment, a graphical, object-oriented computer program for carrying out dynamic, probabilistic simulations (GoldSim Technology Group 2003 [DIRS 166226]). GoldSim 8.02.500 is a version of the software qualified under the Office of Civilian Radioactive Waste Management, Quality Assurance program for use on the Yucca Mountain Project (GoldSim V8.02.500. 2005. STN: 10344-8.02-05 [DIRS 174650]). The software was appropriate for the intended use, because it is the program used to perform stochastic sampling and calculations (DOE 2005 [DIRS 174693]). It is also used for the graphical representations in Section 7 for the distribution comparison, which is verified by visual inspection. The software was used within the range of validation in accordance with procedure IT-PRO-0011, *Software Management*. GoldSim was installed by Software Configuration Management on a DELL computer (CRWMS M&O 501422), and run under the Windows 2000 operating system.

The Microsoft Excel 2000 spreadsheet program is used to perform simple calculations as documented in Section 7 and Attachment D. User-defined formulas, input, and results are documented in sufficient detail in Section 7 to allow for independent duplication of various computations without recourse to the originator. Excel is classified as Level 2 software usage per IT-PRO-0011, *Software Management* that is not required to be qualified in accordance with IT-PRO-0011. The calculations were verified with hand calculations.

The Microsoft Access 2000 is used to update the YMP default database as described in Attachment F. Some default values in GENIIv2 database are replaced with the values developed in Section 7. Access 2000 is classified as Level 2 software usage per IT-PRO-0011, *Software*

Management that is not required to be qualified in accordance with IT-PRO-0011. The database update was verified with visual comparison.

GENII Version 2 (GENIIv2) (Napier et al 2006 [DIRS 177331]) is a computer program used to calculate stochastic and deterministic dose to humans from exposure to radionuclides in the environment. It is a version of the software qualified under the Office of Civilian Radioactive Waste Management, Quality Assurance program for use on the Yucca Mountain Project (GENII V.2.02. 2006. STN: 11211-2.02-00 [DIRS 177605]). The software is not used in this document to provide any dose calculations, but its default files are used to verify the requirements of inputs that are developed in this document, and to construct the YMP site-specific default files.

5.3 GENIIv2 INPUT PARAMETER DEVELOPMENT

The purpose of the document is to provide site-specific input values for GENIIv2 to calculate radiation doses for the preclosure safety analysis. This section provides a list of input parameters applicable to the preclosure safety analysis dose calculations and also provides the general method to develop site-specific input values for those parameters.

5.3.1 List of GENIIv2 Input Parameters with Site-Specific Values

The complete list of input parameters for GENIIv2 is given in the description (DES) text files distributed with the GENIIv2 software package. Input parameter descriptions in the DES files include the parameter type, units, minimum and maximum values. The type identifies the parameter as not stochastic or continuous. Continuous parameters can be used in GENIIv2 to perform sensitivity analyses. The eight DES files listed in Table 58 contain all of the parameters applicable to preclosure safety analysis dose calculations. Parameters in other GENIIv2 DES files are not used in the dose calculations.

GENIIv2 File	Parameter Category	Number of Variables	Evaluation in
FuiAFF.des	Air emission parameters	18	Table 112
ACPlume.des	Acute plume release parameters	29	Table 113
CHPlume.des	Chronic plume release parameters	24	Table 113
Gen_Act.des	Acute exposure parameters	101	Table 114
Gen_Exp.des	Chronic exposure parameters	93	Table 114
Gen_Rcp.des	Receptor parameters	51	Table 115
Gen_hei.des	Health impact parameters	16	Table 116
Genii.des	Database parameters	133	Table 117

In order to identify the parameters that require site-specific values or distributions and also the parameters required to select a release and dose scenario model applicable to the preclosure safety analyses, the parameters in these eight DES files are classified in Attachment C into five categories:

- 1. Distribution parameters with input values requiring a distribution,
- 2. *Fixed value* parameters with fixed input values or with values retrieved from the GENIIv2 database, *GENII.mdb*,
- 3. User model parameters used to select a release and dose model,

- 4. *Data from design/scenario* parameters with values dependent on specific design features and/or release scenarios, and
- 5. *Not used* parameters not used in the dose calculation due to either pathways not applicable or other alternative model used.

Parameters that require development of site-specific numerical values or distributions are tabulated in Table 59. They include parameters in the first category, *Distribution*, and parameters in the second category *Fixed value*, excluding those parameters that use default values retrieved directly from the *GENII.mdb* database. There are 80 parameters listed in Table 59. Since many parameters contain multiple input values due to their dependence on number of elements, crop types, and food types, a total of 519 individual inputs are developed, including 93 fixed values and 426 distributions in this document. Values for these parameters are developed in Section 7.

Parameters in the other categories are either selection parameters used to select a release or dose model, or are design specific and do not have site-specific values. Each of these parameters is discussed in Section 8 with the GENIIv2 module where that parameter is input.

No.	GENIIv2 Parameter	Parameter Description	Parameter Type	Value Type	In Section	No. Input
		FuiAFF.des	(1 Distribution)		<u>. </u>	
1	six	Ambient air temperature	Continuous	Distribution	7.6.3	1
		ACPlume.des, and	CHPlume.des (4	Fixed)	. <u></u>	
2	ARMINRISESPD	Minimum wind speed during plume rise	Not Stochastic	Fixed value	7.6.3	1
3	ARTRANSRESIST	Transfer resistance	Not Stochastic	Fixed values	7.6.5	2
4	ARMINWIND	Maximum wind speed for 'calm'	Not Stochastic	Fixed value	7.6.3	1
5	ARMETFILE	Path and Name of Meteorological Data File	Not Stochastic	Filename	7.6.6	-
6	ARCLDSHNLIB	Path and Name of Cloud Shine Library	Not Stochastic	Filename	7.6.6	-
	G	en_Exp.des and Gen_Act.d	es (52 Distributio	ns and 34 Fixed)		
7	ABSHUM	Absolute humidity, used only for tritium model	Continuous	Distribution	7.6.1	1
8	ACUTIM	The exposure time period	Not Stochastic	Fixed value	3.2.5	1
9	AVALSL	Depth of top soil available for resuspension	Continuous	Distribution	7.4.2	1
10	BEFAIR	Air deposition time prior to exposure	Not Stochastic	Fixed value	7.5.1	1
11	BEFORE	Time from start to exposure	Not Stochastic	Fixed value	7.5.1	1
12	BIOMA2	Standing animal feed biomass (wet)	Continuous	Distributions	7.3.3	4
13	BIOMAS	Standing biomass (wet)	Continuous	Distributions	7.3.3	4
14	BULKD	Surface soil bulk density	Continuous	Distribution	7.2.1	1
15	CONSUM	Consumption rate	Continuous	Distributions	7.1.6	4
16	DIETFR	Fraction of diet	Continuous	Fixed values	3.2.7	6
17	DPVRES	Deposition velocity from soil to plant surfaces	Continuous	Distribution	7.1.5	1
18	DRYFA2	Animal feed dry/wet ratio	Continuous	Distributions	7.3.4	4
19	DRYFAC	Dry/wet ratio	Continuous	Distributions	7.3.4	4
20	FRACFR ^a	Fraction of animal diet that is fresh forage in autumn	Continuous	Fixed value	7.3.8	1
21	GRWP	Crop Growing period	Continuous	Fixed values	7.3.6	4
22	GRWPA	Animal feed growing period	Continuous	Fixed values	7.3.6	4
23	HLDUP	Time from harvest to ingestion	Continuous	Fixed values	3.2.10	4
24	HLDUPA	Time from harvest to animal ingestion	Continuous	Fixed values	3.2.10	4
25	LEAFRS	Resuspension factor from soil to plant surfaces	Continuous	Distribution	7.3.7	1
26	MOISTC	Surface soil moisture content	Continuous	Distribution	7.2.3	1
27	NTKEND	Duration of exposure period	Not Stochastic	Fixed value	3.2.5 & 7.5.1	1
28	RAIN	Average daily rain rate	Continuous	Distribution	7.6.2	1

Table 59. GENII Parameters Requiring Site-Specific Input Values or Distributions

No.	GENIIv2 Parameter	Parameter Description	Parameter Type	Value Type	In Section	No. Input
29	RELEND	End of release period	Not Stochastic	Fixed value	3.2.5 & 7.5.1	1
30	RF1	Fraction of plants roots in surface soil	Continuous	Fixed value	3.2.6	1
31	SLCONA	Animal daily soil consumption rate	consumption rate Continuous Distributions		7.1.6	4
32	SLDN	Surface soil areal density	Continuous	Distribution	7.2.4	1
33	SOILKD	Soil adsorption coefficient	Continuous	Same as CLKD	7.2.2	-
34	SSLDN	Surface soil density	Continuous	Same as BULKD	7.2.1	-
35	STORTM	Storage time	Continuous	Fixed values	3.2.8	6
36	SURCM	Surface soil layer thickness used for density	Continuous	Distribution	7.3.1	1
37	THICK	Surface soil thickness	Continuous	Same as SURCM	7.3.1	-
38	TRANS	Translocation factor	Continuous	Distributions	7.1.3	4
39	TRANSA	Translocation factor for animal feed	Continuous	Distributions	7.1.3	4
40	VLEACH	Total infiltration rate	Continuous	Distribution	7.3.2	1
41	WTIM	Weathering rate constant from plants	Continuous	Distribution	7.1.4	1
42	XMLF	Mass loading factor for resuspension model	Continuous	Distribution	7.4.1	1
43	YELD	Yield	Continuous	Distributions	7.3.5	4
44	YELDA	Yield for animal feed	Continuous	Distributions	7.3.5	4
		Gen_Rcp.des (29 Di	stributions and 1	1 Fixed)	1	
45	FRINH	Fraction of a day inhalation occurs	Continuous	Distributions	7.5.5 & 7.5.9	2
46	FRINHR	Fraction of a day inhalation occurs for resuspension	Continuous	Distributions	7.5.5 & 7.5.9	2
47	FTIN	Fraction of time spent indoors	Continuous	Distribution	7.5.2 & 7.5.9	1
48	FTOUT	Fraction of time spent outdoors	Continuous	Distribution	7.5.2 & 7.5.9	1
49	SHIN	Indoor shielding factor	Continuous	Fixed value	7.5.3	1
50	SHOUT	Outdoor shielding factor	Continuous	Fixed value	7.5.3	1
51	TANM	Animal product consumption period	Continuous	Distributions	7.5.6 & 7.5.9	4
52	TCRP	Crop consumption period	Continuous	Distributions	7.5.6,7.5.9	4
53	TEXAIR	Yearly plume immersion exposure time	Continuous	Fixed values	7.5.2 & 7.5.9	2
54	TEXGRD	Yearly external ground exposure time	Continuous	Fixed values	7.5.2 & 7.5.9	2
55	TINH	Air inhalation period	Continuous	Fixed values	7.5.5,7.5.9	2
56	TINHR	Resuspended soil inhalation period	Continuous	Fixed values	7.5.5 & 7.5.9	2
57	TSOIL	Soil contact days	Continuous	Fixed value	7.5.8 & 7.5.9	1

Table 59. GENII Parameters R	Requiring Site-Specific Input	Values or Distributions (Cont'd)
------------------------------	-------------------------------	----------------------------------

No.	GENIIv2 Parameter	Parameter Description	Parameter Type	Value Type	In Section	No. Input
58	UANM	Animal product consumption rate	Continuous	Distributions	7.5.7 & 7.5.9	4
59	UCRP	Crop consumption rate	Continuous	Distributions	7.5.7 & 7.5.9	4
60	UEXAIR	Daily plume immersion exposure time	Continuous	Distributions	7.5.2 & 7.5.9	2
61	UEXGRD	Daily external ground exposure time	Continuous	Distributions	7.5.2 & 7.5.9	2
62	UINH	Air inhalation rate	Continuous	Distribution	7.5.4 & 7.5.9	1
63	UINHR	Resuspended soil inhalation rate	Continuous	Distribution	7.5.4 & 7.5.9	1
64	USOIL	Inadvertent soil ingestion rate	Continuous	Distribution	7.5.8 & 7.5.9	1
		Gen_hei.	des (43 Fixed)			
65	SOILT	Thickness of contaminated soil/sediment layer	Continuous	Same as SURCM	7.3.1	-
66	SSLDN ^b	Density of contaminated soil/sediment layer	Continuous	Same as BULKD	7.2.1	-
67	SOLUBIL	Lung transfer inhalation class	Not Stochastic	Fixed values	7.7	43
		Genii.des (3	44 distributions)			
68	CLBVAF	Bioconcentration in Wet Animal Forage from Soil	Continuous	Distributions	7.1.1	34
69	CLBVAG	Bioconcentration in Wet Animal Grain from Soil	Continuous	Same as CLBVCL	7.1.1	-
70	CLBVCL	Bioconcentration in Wet Cereal from Soil	Continuous	Distributions	7.1.1	34
71	CLBVFR	Bioconcentration in Wet Fruit from Soil	Continuous	Distributions	7.1.1	34
72	CLBVLV	Bioconcentration in Wet Leafy Vegetables from Soil	Continuous	Distributions	7.1.1	34
73	CLBVRV	Bioconcentration in Wet Root Vegetables from Soil	Continuous	Distributions	7.1.1	34
74	CLFEG	Feed to Egg Transfer Factor	Continuous	Distributions	7.1.2	34
75	CLFMK	Feed to Milk Transfer Factor	Continuous	Distributions	7.1.2	34
76	CLFMT	Feed to Meat Transfer Factor	Continuous	Distributions	7.1.2	34
77	CLFPL	Feed to Poultry Transfer Factor	Continuous	Distributions	7.1.2	34
78	CLKD	The dry soil-water partition coefficient	Continuous	Distributions	7.2.2	38
79	CLVD	The atmospheric deposition velocity	Continuous	Refer to DPVRES	7.1.5	-
80	CLLCLAS	The Lung Solubility Class	Not Stochastic	Same as SOLUBIL	7.7	-

Table 59. GENII Parameters Requiring Site-Specific Input Values or Distributions (Cont'd)

- Note: ^a The parameter FRACFR in this table replaces the parameter FRACUT in the files, because FRACUT is no long used.
 - ^b The description file uses SLDN for density of contaminated soil/sediment layer. The symbol SLDN has been used for surface soil areal density in *Gen_Exp.des* and *Gen_Act.des*. To eliminate the confusion, the symbol is modified to SSLDN here, because this parameter is the same as surface soil density (SSLDN) in the document.

5.3.2 Methods of Parameter Distribution Development

Site-specific input values that were previously developed by the Biosphere Model (BSC 2004 [DIRS 169460]) for the YMP total system performance assessment (TSPA) are evaluated and used as appropriate in this document. Some of these input parameters are used without any modifications. However, some parameters developed in the Biosphere Model cannot be used directly, because their distributions are not compatible with GENIIv2, which only allows four distribution types. Therefore, distribution conversions are performed, and comparisons of each converted distribution to its original distribution is performed to ensure the difference between the two distributions is reasonable, and acceptable.

Some parameters are element dependent. For those elements that are not available in the Biosphere Model, the same references and the same method used in the Biosphere Model are used to develop the parameter values. As mentioned Section 5.2, parameter development is performed in the Excel and GoldSim software. The related files are described in Attachment D. All calculation files are listed in Attachment H and the electronic files are included in the attached CD.

5.4 GENII YMP Default Input files

The developed input parameter values are site-specific for the Yucca Mountain project. These parameter values are used to create several new GENIIv2 default files. These default files can be read directly by the GENIIv2 software to avoid manually entering each individual parameter value.

Three site-specific parameter files are used by GENIIv2: 1) *GNDFLcud.def* - for chronic exposure 2) *GNDFLaud.def* - for acute exposure, and 3) *GNDFLiud.def* - for receptor intake. Because three receptors are considered for the Yucca Mountain project (Section 3.2.3), default files are generated for the three different receptors and are identified by their extensions: (*.onsite*) for onsite, (*.GE*) for offsite general environment, and (*.nonGE*) for offsite other than the general environment. The files are identified in Table 60 and discussed in Attachment E.

	GENIIv2	YMP Receptor Dependent Site-Specific Files				
Parameters	Default File Name	Onsite	Offsite GE	Offsite Non-GE		
Chronic Exposure	GNDFLcud.def	GNDFLcud.onsite	GNDFLcud.GE	GNDFLcud.nonGE		
Acute Exposure	GNDFLaud.def	GNDFLaud.onsite	GNDFLaud.GE	GNDFLaud.nonGE		
Receptor Intake	GNDFLiud.def	GNDFLiud.onsite	GNDFLiud.GE	GNDFLiud.nonGE		

 Table 60. YMP Receptor Dependent Site-Specific Default Files

Additionally, a site-specific nuclide dependent database file *YMPGENII.mdb* is generated to include nuclide-specific plant transfer factor, animal transfer coefficients, soil water partition coefficients, and lung transfer inhalation class as discussed in Attachment F.

An updated inhalation dose coefficient file - FGR13INH.ymp is also created to increase tritium water vapor phase dose coefficient by a factor of 1.5 to all organs to account for skin absorption, as discussed in Attachment G.

All YMP site-specific default files are listed in Attachment H and the electronic files are included in the attached CD.

		Number Pages
Attachment A.	Radionuclide Listing	2
Attachment B.	Implicit Daughter Listing	4
Attachment C.	Categorization of GENII Description Files	18
Attachment D.	Parameter Development Calculation Files	2
Attachment E.	YMP Site-Specific Default Files	22
Attachment F.	YMP Site-Specific Nuclide Dependent Database File	20
Attachment G.	YMP Site-Specific FGR-13 Inhalation DCF File	2
Attachment H.	Electronic Files with This Report	2
Attachment I.	Meteorological Inputs	2

6. LIST OF ATTACHMENTS

INTENTIONALLY LEFT BLANK

7. CALCULATIONS

The general methodology for input parameter development is discussed in Section 5.3.2. The parameters developed in this section are listed in Section 5.3.1. This section provides detailed calculations and analyses to determine site-specific values and distributions of those parameters.

7.1 CALCULATIONS OF ENVIRONMENTAL PARAMETERS

7.1.1 Soil-to-Plant Transfer Factors for Crops

The distribution values of transfer factors, *TF*, for leafy vegetables, other vegetables, fruit, grain, and forage used in the Biosphere Model are tabulated in Section 4.1.1.1 for the 16 elements. Transfer factors for additional elements are taken from the same references used in the Biosphere Model as listed in Table 9 to Table 20. The same methodology used in the Biosphere Model is used here to develop the distribution values of transfer factors for these additional elements in this section. An Excel file named as *Calculation_TF_TC_Kd.xls* is used to perform the calculations (see Attachment D). The Excel file, originally used for developing the *TF* in the Biosphere Model, contains calculations of *TF* for the elements used in the Biosphere Model. The description of the calculation can be found in BSC 2004 ([DIRS 169672], Appendix A). The calculation method is used in the Excel file *Calculation_TF_TC_Kd.xls* as described below.

There are five worksheets for the *TF* calculations: *Leafy*, *Other*, *Fruit*, *Grain*, and *Forage* for five different types of crops. In each worksheet, Column C to Column T were added for the additional elements copied from Table 9 to Table 20, while Column V to Column AK contains the elements used for the Biosphere Model. The inputs from Table 9 to Table 20 are copied into Row 4 to Row 13 in the *Leafy*, *Other*, *Fruit*, and *Grain* worksheets, and Row 4 to Row 16 in *Forage* worksheet. Calculations of geometric mean (GM), geometric standard deviations (GSD), and truncation limits for the TF were copied from a column where an element is used in the Biosphere Model. As explained in BSC 2004 ([DIRS 169672], Section 6.2.1.1.5), when the GSD of the published values was less than 2, it was assumed to be 2, and if it was greater than 10, it was assumed to be 10. A lognormal distribution defined by a GM and GSD with a truncation limit and an upper truncation limit is used for transfer factors for all crop types as well as all elements.

Transfer factors for a total of 34 elements of interest are tabulated in Table 61 to Table 65 for Leafy, Other, Fruit, Grain, and Forage, respectively. These tables combine the calculation results in the Excel file of *Calculation_TF_TC_Kd.xls* with the 16 elements already in the Biosphere Model discussed in Section 4.1.1.1.

Element	Atomic No.	GM	GSD	Lower Truncation Limit	Upper Truncation Limit
Ac	89	4.3E-03	2.0	7.2E-04	2.6E-02
Am	95	1.2E-03	2.5	1.2E-04	1.3E-02
Са	20	3.0E+00	2.0	5.1E-01	1.8E+01
Cd	48	7.6E-01	2.0	1.3E-01	4.5E+00
Ce	58	2.6E-02	3.5	1.0E-03	6.8E-01
Cf	98	6.3E-03	2.2	8.0E-04	5.0E-02
CI	17	6.4E+01	2.0	1.1E+01	3.8E+02
Cm	96	8.6E-04	2.0	1.4E-04	5.1E-03
Со	27	8.2E-02	2.0	1.3E-02	5.0E-01
Cs	55	8.5E-02	2.5	7.7E-03	9.4E-01
Eu	63	1.0E-02	2.0	1.7E-03	6.0E-02
Fe	26	6.0E-03	2.2	7.5E-04	4.8E-02
I	53	2.6E-02	9.9	7.2E-05	9.7E+00
Nb	41	3.0E-02	2.0	5.1E-03	1.8E-01
Ni	28	1.8E-01	2.1	2.8E-02	1.2E+00
Np	93	5.9E-02	4.4	1.3E-03	2.6E+00
Ра	91	4.6E-03	3.8	1.4E-04	1.4E-01
Pb	82	1.5E-02	4.6	3.0E-04	7.7E-01
Pd	46	1.7E-01	2.0	2.9E-02	1.0E+00
Pm	61	1.0E-02	2.0	1.7E-03	6.0E-02
Pu	94	2.9E-04	2.0	4.9E-05	1.7E-03
Ra	88	6.8E-02	2.7	5.1E-03	9.2E-01
Rh	45	6.4E-01	10.0	1.7E-03	2.4E+02
Ru	44	1.8E-01	2.2	2.4E-02	1.3E+00
Sb	51	9.4E-03	10.0	2.5E-05	3.5E+00
Se	34	4.6E-02	3.8	1.4E-03	1.4E+00
Sm	62	1.0E-02	2.0	1.7E-03	6.0E-02
Sn	50	3.8E-02	2.0	6.4E-03	2.3E-01
Sr	38	1.7E+00	2.0	2.9E-01	1.0E+01
Тс	43	4.6E+01	2.6	3.8E+00	5.5E+02
Th	90	4.3E-03	2.8	3.2E-04	5.9E-02
U	92	1.1E-02	2.0	1.8E-03	6.6E-02
Y	39	1.4E-02	2.0	2.3E-03	8.1E-02
Zr	40	3.6E-03	3.8	1.2E-04	1.1E-01

Table 61. Transfer Factors of Leafy Vegetables for All Elements of Interest

Source: Table 3, Table 9 to Table 20, and attached Excel file Calculation_TF_TC_Kd.xls

Element	Atomic No.	GM	GSD	Lower Truncation Limit	Upper Truncation Limit
Ac	89	1.1E-03	4.9	1.8E-05	6.6E-02
Am	95	4.0E-04	2.6	3.5E-05	4.6E-03
Са	20	5.4E-01	2.4	5.7E-02	5.1E+00
Cd	48	2.9E-01	3.7	1.0E-02	8.1E+00
Ce	58	1.6E-02	4.1	4.2E-04	5.8E-01
Cf	98	6.3E-03	2.2	8.0E-04	5.0E-02
CI	17	6.4E+01	2.0	1.1E+01	3.8E+02
Cm	96	3.2E-04	4.7	5.9E-06	1.7E-02
Со	27	3.8E-02	2.6	3.3E-03	4.4E-01
Cs	55	5.0E-02	2.0	8.4E-03	3.0E-01
Eu	63	5.0E-03	2.0	8.4E-04	3.0E-02
Fe	26	2.4E-03	3.8	7.8E-05	7.4E-02
I	53	3.2E-02	4.4	7.0E-04	1.5E+00
Nb	41	1.1E-02	2.4	1.1E-03	1.0E-01
Ni	28	7.4E-02	2.0	1.2E-02	4.6E-01
Np	93	3.1E-02	4.9	5.0E-04	1.9E+00
Ра	91	1.1E-03	10.0	3.0E-06	4.3E-01
Pb	82	9.0E-03	3.1	5.0E-04	1.6E-01
Pd	46	7.8E-02	2.6	6.8E-03	8.9E-01
Pm	61	5.0E-03	2.0	8.4E-04	3.0E-02
Pu	94	1.9E-04	2.0	3.3E-05	1.1E-03
Ra	88	1.2E-02	5.3	1.6E-04	8.6E-01
Rh	45	3.1E-01	10.0	8.2E-04	1.2E+02
Ru	44	4.3E-02	2.9	2.8E-03	6.7E-01
Sb	51	4.6E-03	9.5	1.4E-05	1.5E+00
Se	34	4.6E-02	3.8	1.4E-03	1.4E+00
Sm	62	5.8E-03	2.0	9.7E-04	3.4E-02
Sn	50	1.5E-02	3.6	5.3E-04	4.0E-01
Sr	38	7.9E-01	2.0	1.4E-01	4.5E+00
Тс	43	4.4E+00	3.7	1.5E-01	1.2E+02
Th	90	4.4E-04	5.6	5.3E-06	3.6E-02
U	92	6.0E-03	2.8	4.2E-04	8.5E-02
Y	39	7.4E-03	2.0	1.2E-03	4.4E-02
Zr	40	1.6E-03	4.5	3.4E-05	7.7E-02

Table 62. Transfer Factors of Root Vegetables for All Elements of Interest

Source: Table 4, Table 9 to Table 20, and attached Excel file Calculation_TF_TC_Kd.xls

Element	Atomic No.	GM	GSD	Lower Truncation Limit	Upper Truncation Limit
Ac	89	8.5E-04	3.4	3.7E-05	2.0E-02
Am	95	5.4E-04	2.3	6.5E-05	4.5E-03
Са	20	5.4E-01	2.4	5.7E-02	5.1E+00
Cd	48	2.9E-01	3.7	1.0E-02	8.1E+00
Ce	58	5.1E-03	4.6	1.0E-04	2.6E-01
Cf	98	6.3E-03	2.2	8.0E-04	5.0E-02
CI	17	6.4E+01	2.0	1.1E+01	3.8E+02
Cm	96	2.2E-04	8.4	8.9E-07	5.3E-02
Co	27	1.3E-02	3.4	5.6E-04	3.1E-01
Cs	55	5.6E-02	2.8	3.8E-03	8.1E-01
Eu	63	5.0E-03	2.0	8.4E-04	3.0E-02
Fe	26	2.4E-03	3.8	7.8E-05	7.4E-02
I	53	5.7E-02	2.8	4.1E-03	7.9E-01
Nb	41	9.7E-03	2.6	8.3E-04	1.1E-01
Ni	28	5.8E-02	2.0	9.7E-03	3.4E-01
Np	93	3.4E-02	6.9	2.3E-04	5.0E+00
Pa	91	1.1E-03	10.0	3.0E-06	4.3E-01
Pb	82	1.2E-02	3.3	5.8E-04	2.6E-01
Pd	46	7.8E-02	2.6	6.8E-03	8.9E-01
Pm	61	5.0E-03	2.0	8.4E-04	3.0E-02
Pu	94	1.8E-04	3.4	7.8E-06	4.2E-03
Ra	88	7.3E-03	4.3	1.6E-04	3.2E-01
Rh	45	3.1E-01	10.0	8.2E-04	1.2E+02
Ru	44	1.8E-02	4.7	3.3E-04	9.9E-01
Sb	51	7.7E-03	10.0	2.1E-05	2.9E+00
Se	34	4.6E-02	3.8	1.4E-03	1.4E+00
Sm	62	5.8E-03	2.0	9.7E-04	3.4E-02
Sn	50	1.5E-02	3.6	5.3E-04	4.0E-01
Sr	38	2.9E-01	2.3	3.6E-02	2.4E+00
Тс	43	4.3E+00	4.6	8.7E-02	2.1E+02
Th	90	2.9E-04	4.9	4.8E-06	1.7E-02
U	92	6.3E-03	2.9	3.9E-04	1.0E-01
Y	39	7.4E-03	2.0	1.2E-03	4.4E-02
Zr	40	1.4E-03	4.7	2.5E-05	7.6E-02

Table 63. Transfer Factors of Fruit for All Elements of Interest

Source: Table 5, Table 9 to Table 20, and attached Excel file Calculation_TF_TC_Kd.xls

Element	Atomic No.	GM	GSD	Lower Truncation Limit	Upper Truncation Limit
Ac	89	5.4E-04	2.9	3.6E-05	8.0E-03
Am	95	7.5E-05	3.2	3.8E-06	1.5E-03
Са	20	5.4E-01	2.4	5.7E-02	5.1E+00
Cd	48	2.1E-01	2.0	3.6E-02	1.3E+00
Ce	58	5.4E-03	3.1	2.8E-04	1.0E-01
Cf	98	6.3E-03	2.2	8.0E-04	5.0E-02
CI	17	2.4E+01	8.4	1.0E-01	5.8E+03
Cm	96	4.3E-05	4.6	8.2E-07	2.2E-03
Со	27	7.2E-03	2.0	1.2E-03	4.3E-02
Cs	55	2.0E-02	2.2	2.7E-03	1.6E-01
Eu	63	3.4E-03	2.0	5.6E-04	2.0E-02
Fe	26	1.8E-03	2.3	2.2E-04	1.5E-02
I	53	2.5E-02	10.0	6.6E-05	9.4E+00
Nb	41	7.0E-03	2.0	1.2E-03	4.2E-02
Ni	28	4.0E-02	2.0	6.6E-03	2.4E-01
Np	93	4.4E-03	6.9	3.1E-05	6.3E-01
Pa	91	9.5E-04	7.2	5.9E-06	1.5E-01
Pb	82	5.5E-03	2.1	8.2E-04	3.8E-02
Pd	46	5.4E-02	2.0	9.1E-03	3.2E-01
Pm	61	2.8E-03	2.0	4.7E-04	1.7E-02
Pu	94	1.9E-05	4.2	4.8E-07	7.8E-04
Ra	88	3.1E-03	4.0	8.8E-05	1.1E-01
Rh	45	2.0E-01	9.6	5.8E-04	6.6E+01
Ru	44	1.4E-02	4.1	3.7E-04	5.5E-01
Sb	51	1.0E-02	10.0	2.7E-05	3.9E+00
Se	34	2.9E-02	2.0	4.8E-03	1.7E-01
Sm	62	4.2E-03	2.0	7.0E-04	2.5E-02
Sn	50	9.2E-03	2.0	1.5E-03	5.5E-02
Sr	38	1.7E-01	2.0	2.8E-02	1.0E+00
Тс	43	1.6E+00	4.3	3.8E-02	6.8E+01
Th	90	1.7E-04	5.2	2.4E-06	1.2E-02
U	92	1.1E-03	3.6	4.1E-05	3.1E-02
Y	39	4.6E-03	2.4	4.7E-04	4.6E-02
Zr	40	1.6E-03	5.2	2.3E-05	1.1E-01

Table 64. Transfer Factors of Grain for All Elements of Interest

Source: Table 6, Table 9 to Table 20, and attached Excel file Calculation_TF_TC_Kd.xls

Element	Atomic No.	GM	GSD	Lower Truncation Limit	Upper Truncation Limit
Ac	89	1.7E-02	5.4	2.2E-04	1.3E+00
Am	95	2.1E-03	10.0	5.5E-06	7.9E-01
Са	20	3.6E+00	2.0	6.1E-01	2.2E+01
Cd	48	1.2E+00	2.3	1.4E-01	1.1E+01
Ce	58	4.9E-02	2.8	3.4E-03	7.2E-01
Cf	98	2.2E-02	6.2	2.1E-04	2.4E+00
CI	17	7.5E+01	2.0	1.3E+01	4.5E+02
Cm	96	2.8E-03	7.6	1.5E-05	5.2E-01
Со	27	1.8E-01	5.5	2.3E-03	1.5E+01
Cs	55	1.3E-01	3.3	6.3E-03	2.8E+00
Eu	63	3.2E-02	3.5	1.2E-03	8.1E-01
Fe	26	1.5E-02	5.1	2.2E-04	9.8E-01
I	53	4.0E-02	10.0	1.1E-04	1.5E+01
Nb	41	5.5E-02	2.4	5.9E-03	5.2E-01
Ni	28	2.2E-01	2.6	1.8E-02	2.7E+00
Np	93	5.8E-02	5.6	6.8E-04	4.9E+00
Ра	91	1.9E-02	6.7	1.4E-04	2.5E+00
Pb	82	1.8E-02	7.0	1.2E-04	2.8E+00
Pd	46	2.8E-01	2.0	4.7E-02	1.7E+00
Pm	61	3.2E-02	3.5	1.2E-03	8.1E-01
Pu	94	1.0E-03	10.0	2.7E-06	3.9E-01
Ra	88	8.2E-02	3.0	4.9E-03	1.4E+00
Rh	45	6.7E-01	10.0	1.8E-03	2.5E+02
Ru	44	2.1E-01	2.0	3.5E-02	1.2E+00
Sb	51	1.8E-02	10.0	4.9E-05	7.0E+00
Se	34	1.5E-01	5.5	1.9E-03	1.3E+01
Sm	62	2.2E-02	3.3	1.0E-03	4.6E-01
Sn	50	1.6E-01	5.8	1.7E-03	1.5E+01
Sr	38	2.1E+00	2.1	3.2E-01	1.3E+01
Тс	43	2.7E+01	2.7	2.1E+00	3.5E+02
Th	90	1.0E-02	4.2	2.5E-04	3.9E-01
U	92	1.7E-02	6.1	1.6E-04	1.9E+00
Y	39	3.6E-02	3.1	2.0E-03	6.5E-01
Zr	40	1.9E-02	8.3	8.4E-05	4.5E+00

Table 65. Transfer Factors of Forage for All Elements of Interest

Source: Table 7, Table 9 to Table 20, and attached Excel file Calculation_TF_TC_Kd.xls

7.1.2 Transfer Coefficients for Animal Products

The distribution values of transfer coefficients, TC, for beef, milk, poultry and eggs used in the Biosphere Model are tabulated in Section 4.1.1.2. Transfer coefficients for additional elements are taken from the same references used in the Biosphere Model as listed in Table 26 to Table 40. The same methodology used in the Biosphere Model is used here to develop the distribution values of transfer coefficients for these additional elements in this section. The same Excel file of *Calculation_TF_TC_Kd.xls* used for the transfer factors is used to perform the calculations. As mentioned before, the Excel file, originally used for developing the TC in the Biosphere Model, contains calculations of TC for those elements used in the Biosphere Model.

There are four worksheets for the *TC* calculations: *Meat, Poultry, Milk*, and *Eggs* for four different types of animal products. In each worksheet, Column C to Column T were added for the additional elements copied from Table 26 to Table 40, while Column V to Column AK contains the elements used for the Biosphere Model. The inputs from Table 26 to Table 40 are copied into Row 3 to Row 19 in the *Meat* and *Milk* worksheets, Row 4 to Row 13 in *Poultry* worksheet, and Row 4 to Row 14 in *Eggs* worksheet. Calculation of GM, GSD, and truncation limits for the *TC*s were copied from a column where an element is used for the Biosphere Model. As explained in BSC 2004 ([DIRS 169672], Section 6.2.1.1.5), when the GSD of the published values was less than 2, it was assumed to be 2, and if it was greater than 10, it was assumed to be 10. A lognormal distribution defined by GM and GSD with a lower truncation and an upper truncation is used for transfer coefficients for all animal products as well as all elements.

Transfer coefficients for a total of 34 elements of interest are tabulated in Table 66 to Table 69 for beef, poultry, milk and eggs, respectively. These tables combine the calculation results in the Excel file of *Calculation_TF_TC_Kd.xls* with the 16 elements already in the Biosphere Model discussed in Section 4.1.1.2.

Element	Atomic No.	GM (day/kg)	GSD	Lower Truncation Limit (day/kg)	Upper Truncation Limit (day/kg)
Ac	89	7.9E-05	8.2	3.5E-07	1.8E-02
Am	95	3.4E-05	9.0	1.2E-07	9.9E-03
Ca	20	1.5E-03	2.0	2.5E-04	9.0E-03
Cd	48	7.8E-04	3.3	3.6E-05	1.7E-02
Ce	58	2.7E-04	6.4	2.3E-06	3.1E-02
Cf	98	8.5E-04	10.0	2.3E-06	3.2E-01
CI	17	4.6E-02	2.0	7.7E-03	2.7E-01
Cm	96	4.1E-05	10.0	1.1E-07	1.6E-02
Со	27	1.5E-02	3.2	7.5E-04	2.9E-01
Cs	55	2.4E-02	2.6	2.1E-03	2.7E-01
Eu	63	2.5E-03	2.7	1.9E-04	3.3E-02
Fe	26	2.5E-02	2.0	4.1E-03	1.5E-01
I	53	1.0E-02	2.8	6.8E-04	1.5E-01
Nb	41	1.4E-04	10.0	3.6E-07	5.1E-02
Ni	28	5.3E-03	2.7	3.9E-04	7.1E-02
Np	93	3.4E-04	8.8	1.3E-06	9.0E-02
Pa	91	6.6E-05	10.0	1.8E-07	2.5E-02
Pb	82	6.3E-04	2.6	5.4E-05	7.5E-03
Pd	46	1.3E-03	3.4	5.3E-05	3.1E-02
Pm	61	2.5E-03	2.7	2.0E-04	3.1E-02
Pu	94	1.3E-05	10.0	3.3E-08	4.7E-03
Ra	88	8.1E-04	2.1	1.1E-04	5.7E-03
Rh	45	1.5E-03	2.0	2.5E-04	8.9E-03
Ru	44	6.0E-03	7.4	3.4E-05	1.0E+00
Sb	51	9.9E-04	3.5	3.8E-05	2.6E-02
Se	34	8.8E-02	5.8	9.6E-04	8.0E+00
Sm	62	3.0E-03	2.6	2.5E-04	3.5E-02
Sn	50	1.9E-02	4.6	3.8E-04	9.9E-01
Sr	38	1.4E-03	4.4	3.1E-05	6.2E-02
Тс	43	1.1E-03	7.2	6.9E-06	1.8E-01
Th	90	1.1E-04	10.0	2.8E-07	4.0E-02
U	92	4.8E-04	3.0	2.9E-05	7.8E-03
Y	39	1.3E-03	3.3	6.1E-05	2.9E-02
Zr	40	1.1E-04	10.0	2.9E-07	4.1E-02

Table 66. Beef Transfer Coefficients for All Elements of Interest

Source: Table 21, Table 26 to Table 40, and attached Excel file Calculation_TF_TC_Kd.xls

Element	Atomic No.	GM (day/kg)	GSD	Lower Truncation Limit (day/kg)	Upper Truncation Limit (day/kg)
Ac	89	4.0E-03	2.0	6.7E-04	2.4E-02
Am	95	1.8E-03	10.0	4.8E-06	6.7E-01
Са	20	4.1E-02	4.7	7.6E-04	2.2E+00
Cd	48	3.7E-01	6.0	3.7E-03	3.8E+01
Ce	58	3.9E-03	3.8	1.3E-04	1.2E-01
Cf	98	4.0E-03	2.0	6.7E-04	2.4E-02
CI	17	3.0E-02	2.0	5.0E-03	1.8E-01
Cm	96	4.0E-03	2.0	6.7E-04	2.4E-02
Со	27	1.5E-01	10.0	4.0E-04	5.6E+01
Cs	55	2.6E+00	9.8	7.2E-03	9.3E+02
Eu	63	4.0E-03	2.0	6.7E-04	2.4E-02
Fe	26	3.2E-01	10.0	8.5E-04	1.2E+02
I	53	5.5E-02	9.7	1.6E-04	1.9E+01
Nb	41	9.5E-04	7.6	5.1E-06	1.8E-01
Ni	28	3.8E-03	10.0	1.0E-05	1.4E+00
Np	93	3.6E-03	2.0	6.0E-04	2.1E-02
Pa	91	3.0E-03	2.0	5.1E-04	1.8E-02
Pb	82	2.5E-02	10.0	6.6E-05	9.3E+00
Pd	46	1.8E-03	10.0	4.8E-06	6.8E-01
Pm	61	9.5E-04	4.5	2.0E-05	4.5E-02
Pu	94	1.2E-03	10.0	3.2E-06	4.6E-01
Ra	88	1.7E-02	10.0	4.4E-05	6.3E+00
Rh	45	3.6E-03	10.0	9.4E-06	1.3E+00
Ru	44	1.5E-02	10.0	4.0E-05	5.7E+00
Sb	51	1.2E-02	5.1	1.8E-04	8.0E-01
Se	34	5.1E+00	3.6	1.9E-01	1.4E+02
Sm	62	1.3E-02	10.0	3.6E-05	5.0E+00
Sn	50	3.5E-02	10.0	9.4E-05	1.3E+01
Sr	38	3.1E-02	5.8	3.4E-04	2.9E+00
Тс	43	6.3E-02	10.0	1.7E-04	2.4E+01
Th	90	5.9E-03	8.0	2.7E-05	1.3E+00
U	92	2.4E-01	10.0	6.5E-04	9.2E+01
Y	39	7.3E-03	4.0	2.1E-04	2.6E-01
Zr	40	5.5E-04	10.0	1.5E-06	2.1E-01

Table 67. Poultry Transfer Coefficients for All Elements of Interest

Source: Table 22, Table 26 to Table 40, and attached Excel file Calculation_TF_TC_Kd.xls

Element	Atomic No.	GM (day/L)	GSD	Lower Truncation Limit (day/L)	Upper Truncation Limit (day/L)
Ac	89	7.6E-06	4.1	2.0E-07	2.9E-04
Am	95	1.6E-06	4.2	3.9E-08	6.3E-05
Са	20	6.9E-03	2.0	1.2E-03	4.1E-02
Cd	48	9.4E-04	5.4	1.2E-05	7.4E-02
Ce	58	3.7E-05	2.5	3.4E-06	4.0E-04
Cf	98	9.1E-07	2.0	1.5E-07	5.4E-06
CI	17	1.8E-02	2.0	2.9E-03	1.0E-01
Cm	96	3.8E-06	4.6	7.7E-08	1.9E-04
Со	27	1.4E-03	3.3	6.1E-05	3.1E-02
Cs	55	7.7E-03	2.0	1.3E-03	4.6E-02
Eu	63	2.0E-05	2.7	1.6E-06	2.5E-04
Fe	26	2.1E-04	3.0	1.2E-05	3.5E-03
I	53	9.1E-03	2.0	1.5E-03	5.4E-02
Nb	41	1.4E-04	10.0	3.8E-07	5.4E-02
Ni	28	5.5E-03	5.3	7.4E-05	4.2E-01
Np	93	6.3E-06	2.0	1.0E-06	3.9E-05
Pa	91	4.4E-06	2.0	7.4E-07	2.6E-05
Pb	82	1.7E-04	3.0	1.0E-05	2.9E-03
Pd	46	2.9E-03	6.9	2.0E-05	4.1E-01
Pm	61	1.6E-05	3.4	6.6E-07	3.7E-04
Pu	94	2.3E-07	7.7	1.2E-09	4.4E-05
Ra	88	5.8E-04	2.0	1.0E-04	3.4E-03
Rh	45	3.6E-03	3.6	1.4E-04	9.5E-02
Ru	44	1.8E-06	4.3	4.0E-08	7.7E-05
Sb	51	1.5E-04	2.5	1.4E-05	1.5E-03
Se	34	5.7E-03	2.5	5.5E-04	6.0E-02
Sm	62	1.8E-05	2.3	2.2E-06	1.5E-04
Sn	50	1.1E-03	2.0	1.8E-04	6.3E-03
Sr	38	1.7E-03	2.0	2.8E-04	1.0E-02
Tc	43	2.1E-03	6.0	2.0E-05	2.1E-01
Th	90	4.4E-06	2.0	7.4E-07	2.6E-05
U	92	4.9E-04	2.0	8.1E-05	2.9E-03
Y	39	1.8E-05	2.4	1.9E-06	1.6E-04
Zr	40	7.7E-06	10.0	2.0E-08	2.9E-03

Table 68. Milk Transfer Coefficients for All Elements of Interest

Source: Table 23, Table 26 to Table 40, and attached Excel file Calculation_TF_TC_Kd.xls

Element	Atomic No.	GM (day/kg)	GSD	Lower Truncation Limit (day/kg)	Upper Truncation Limit (day/kg)
Ac	89	2.9E-03	2.3	3.4E-04	2.5E-02
Am	95	4.9E-03	2.0	8.2E-04	2.9E-02
Ca	20	5.0E-01	2.0	8.3E-02	3.0E+00
Cd	48	6.1E-02	10.0	1.6E-04	2.3E+01
Ce	58	1.6E-03	6.9	1.1E-05	2.4E-01
Cf	98	2.0E-03	2.0	3.4E-04	1.2E-02
CI	17	4.4E-02	10.0	1.2E-04	1.7E+01
Cm	96	2.0E-03	2.0	3.4E-04	1.2E-02
Со	27	1.0E-01	2.0	1.7E-02	6.0E-01
Cs	55	3.5E-01	5.8	3.7E-03	3.3E+01
Eu	63	7.0E-03	2.0	1.2E-03	4.2E-02
Fe	26	7.4E-01	3.1	4.1E-02	1.3E+01
I	53	2.6E+00	2.0	4.4E-01	1.6E+01
Nb	41	2.1E-03	2.8	1.4E-04	3.1E-02
Ni	28	1.1E-01	2.0	1.9E-02	6.8E-01
Np	93	3.4E-03	2.4	3.4E-04	3.3E-02
Pa	91	2.0E-03	2.0	3.4E-04	1.2E-02
Pb	82	5.6E-02	10.0	1.5E-04	2.1E+01
Pd	46	1.0E-02	7.8	5.0E-05	2.0E+00
Pm	61	1.4E-02	2.0	2.4E-03	8.4E-02
Pu	94	1.7E-03	7.4	9.7E-06	2.9E-01
Ra	88	3.9E-04	10.0	1.0E-06	1.5E-01
Rh	45	1.2E-02	6.4	9.7E-05	1.4E+00
Ru	44	5.1E-03	2.0	8.5E-04	3.0E-02
Sb	51	7.9E-02	2.0	1.3E-02	4.7E-01
Se	34	7.3E+00	2.0	1.2E+00	4.4E+01
Sm	62	1.6E-02	6.7	1.2E-04	2.2E+00
Sn	50	8.7E-02	10.0	2.3E-04	3.3E+01
Sr	38	2.7E-01	2.0	4.5E-02	1.6E+00
Тс	43	2.4E+00	2.0	4.0E-01	1.4E+01
Th	90	3.5E-03	7.3	2.0E-05	5.9E-01
U	92	6.3E-01	2.5	6.0E-02	6.7E+00
Y	39	2.5E-03	3.8	7.9E-05	7.8E-02
Zr	40	1.2E-03	10.0	3.3E-06	4.6E-01

Table 69. Eggs Transfer Coefficients for All Elements of Interest

Source: Table 24, Table 26 to Table 40, and attached Excel file Calculation_TF_TC_Kd.xls

7.1.3 Translocation Factors

Input values for the translocation factors are shown in Table 41. For leafy vegetables and forage, a fixed value of 1.0 is used. For other types of crop, a piece-wise linear distribution of (0.05, 0%), (0.1, 50%), (0.3, 100%) is suggested. However, GENIIv2 does not accept that type of distribution (Napier 2006 [DIRS 177330], Section 5.3). The closest distribution that can be used in GENIIv2 is a loguniform distribution with minimum of 0.05 and maximum of 0.30. This conversion was performed stochastically in the GoldSim file: Distribution Comparison.gsm. The GoldSim element for the original distribution is Translocation Cumulative Dist, whose output was then copied into the ET Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum values (see cells A1003:D1009). Several different distributions were tested in the GoldSim before the final selection. Comparison of cumulative distribution function curves in GoldSim element of Translocation between original distribution (GoldSim the element: Translocation Cumulative Dist) developed distribution (GoldSim element and Translocation LogUniform Dist) is shown in Figure 1.

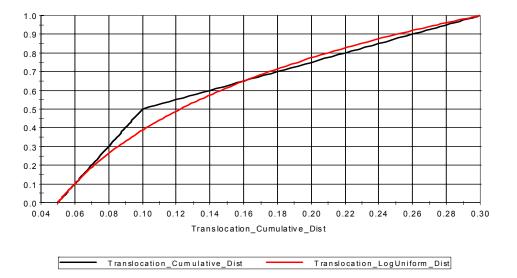


Figure 1. Comparison of Distributions for Translocation Factors

Based on the assumption in Section 3.2.7, locally grown fresh forage is the only feed given to beef cattle and dairy cows, and locally produced grain is the only feed given to poultry and laying hens (BSC 2004 [DIRS 169460], Section 6.1.3.4). Therefore, translocation factors used for animal feed are selected accordingly for the GENIIv2 as tabulated in Table 70.

Сгор Туре	GENIIv2 Parameter Symbol	Translocation Factor (Deterministic Value)	Translocation Factor (Distribution and Value)
Leafy vegetables	TRANS	1.0	1.0
Root vegetables	TRANS	0.1	Loguniform distribution Min = 0.05 and Max = 0.3
Fruit	TRANS	0.1	Loguniform distribution Min = 0.05 and Max = 0.3
Grain	TRANS	0.1	Loguniform distribution Min = 0.05 and Max = 0.3
Fresh forage for beef cattle	TRANSA	1.0	1.0
Grain for poultry	TRANSA	0.1	Loguniform distribution Min = 0.05 and Max = 0.3
Fresh forage for diary cows	TRANSA	1.0	1.0
Grain for eggs	TRANSA	0.1	Loguniform distribution Min = 0.05 and Max = 0.3

Table 70. Translocation Factors for Crops Used in the GENIIv2

Source: Section 4.1.1.3 and Table 41

7.1.4 Weathering Rate Constant

As discussed in Section 4.1.1.4, the *weathering rate constant* in the GENIIv2 is equivalent to the weathering half-life in the Biosphere Model. A piece-wise linear distribution with the following values: (5 days; 0%), (14 days; 50%), (30 days; 100%) is shown as inputs for weathering halflife in Section 4.1.1.4. The closest distribution that can be used in the GENIIv2 is a lognormal distribution with geometric mean of 14 days, geometric standard deviation of 1.65, minimum of 5 days, and maximum of 30 days. This conversion was performed stochastically in the GoldSim file: Distribution Comparison.gsm. The GoldSim element for the original distribution is Weathering Cumulative Dist, whose output was then copied into the ET Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum values (see cells F1003:I1009). Several different distributions were tested in the GoldSim before the final selection. Comparison of cumulative distribution function curves in GoldSim element of *Weathering* between the original distribution (GoldSim element: Weathering Cumulative Dist) developed and distribution (GoldSim element Weathering LogNormal Dist) is shown in Figure 2. Distribution values and a deterministic value used in the GENIIv2 are shown in Table 71.

Parameter Name	GENIIv2 Parameter Symbol	Weathering Rate Constant (day) (Deterministic Value)	Weathering Rate Constant (day) (Distribution and Value)
Weathering Rate Constant	WTIM	14	Lognormal Distribution: GM = 14, GSD = 1.65, Min = 5 and Max = 30

Source: Section 4.1.1.4

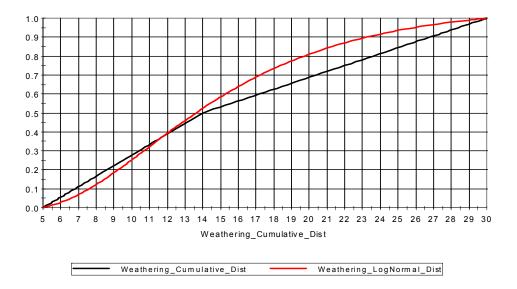


Figure 2. Comparison of Distributions for Weathering Rate Constant

7.1.5 Deposition Velocity from Soil To Plant Surface

The dry deposition velocity in the Biosphere Model is for soil particle resuspension, which is used for resuspension deposition from soil to plant surface in the GENIIv2. It is represented by a piece-wise linear cumulative distribution as tabulated in Table 42. This distribution is converted to a distribution that GENIIv2 can accept. The closest distribution is a lognormal distribution with geometric mean of 0.008 m/s, geometric standard deviation of 5.6, minimum of 0.0003 m/s, and maximum of 0.3 m/s. This conversion was performed stochastically in the GoldSim file: Distribution Comparison.gsm. The GoldSim element for the original distribution is Deposition Cumulative Dist, whose output was then copied into the ET Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum values (see cells K1003:N1009). Several different distributions were tested in the GoldSim before the final selection. Comparison of cumulative distribution function curves in GoldSim element of *Deposition* between the original distribution (GoldSim element: Deposition Cumulative Dist) and developed distribution (GoldSim element Deposition LogNormal Dist) is shown in Figure 3. Distribution values and a deterministic value used in the GENIIv2 are shown in Table 72.

As mentioned in Section 4.1.1.5, this parameter may also be used for the GENIIv2 parameter *CLVD*, *atmospheric deposition velocity*. Located in GENIIv2 database, this parameter is used to calculate deposition of particles transported through air dispersion. However, *CLVD* is not used if it is calculated from particle size and density in air transport module, as discussed in Section 7.6.5.

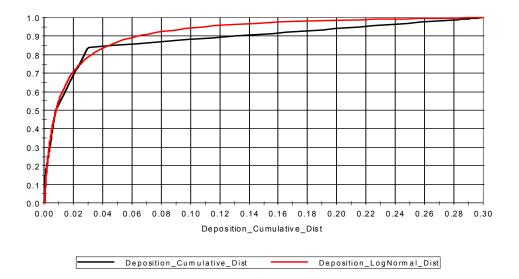


Figure 3. Comparison of Distributions for Deposition Velocity From Soil To Plant Surface

Table 72 Deposition Velocity from	Soil to Plant Surface Used in the GENIIv2
Tuble 72. Deposition velocity norm	

Parameter Name	GENIIv2 Parameter Symbol	Deposition Velocity (m/s) (Deterministic Value)	Deposition Velocity (m/s) (Distribution and Value)
Deposition Velocity			Lognormal Distribution:
From Soil To Plant	DPVRES or CLVD	0.008	GM = 0.008, GSD = 5.6,
Surface			Min = 0.0003 and Max = 0.3

Source: Section 4.1.1.5 and Table 42.

7.1.6 Animal Feed and Soil Consumption Rates

The inputs for the animal feed and soil consumption rates are given by a uniform distribution as shown in Section 4.1.1.6. The calculated means from the uniform distributions are tabulated in Table 73 and Table 74.

Animal Type – Feed Type	GENIIv2 Parameter Symbol	Feed (Kg wet/day) (Deterministic Value)	Feed (Kg wet/day) (Distribution and Value)
Poof oattle Eorogo	CONSUM	48.5	Uniform distribution
Beef cattle – Forage	CONSOM	40.0	Min = 29 and Max = 68
		61 E	Uniform distribution
Dairy cow – Forage	CONSUM 61.5	Min = 50 and Max = 73	
		0.00	Uniform distribution
Poultry – Grain	CONSUM	0.26	Min = 0.12 and Max = 0.40
	0010111	0.26	Uniform distribution
Laying hen – Grain	CONSUM		Min = 0.12 and Max = 0.40

Source: Section 4.1.1.6 and Table 43.

Animal Type	GENIIv2 Parameter Symbol	Soil (Kg/day) (Deterministic Value)	Soil (Kg/day) (Distribution and Value)
Beef cattle	SLCONA	0.70	Uniform distribution Min = 0.4 and Max = 1.0
Dairy cow	SLCONA	0.95	Uniform distribution Min = 0.8 and Max = 1.1
Poultry	SLCONA	0.02	Uniform distribution Min = 0.01 and Max = 0.03
Laying hen	SLCONA	0.02	Uniform distribution Min = 0.01 and Max = 0.03

Source: Section 4.1.1.6 and Table 43.

7.2 CALCULATIONS OF SOIL-RELATED PARAMETERS

7.2.1 Surface Soil Bulk Density

The surface soil bulk density provided in Section 4.1.2.1 is a triangular distribution over the density range of 1.3 g/cm³ and 1.7 g/cm³ with a mode at 1.5 g/cm³. This distribution is converted to a distribution that GENIIv2 can accept. The closest distribution is a normal distribution with a mean of 1.5 g/cm³, a standard deviation of 0.082 g/cm³, minimum of 1.3 g/cm³, and maximum of 1.7 g/cm³. This conversion was performed stochastically in the GoldSim file: Distribution Comparison.gsm. The GoldSim element for the original distribution is SoilDensity Triangular Dist, whose output was then copied into the SR Param worksheet in the Excel file of *Distribution Comparison.xls* to calculate mean, standard deviation, minimum and maximum values (see cells A1003:D1009). Several different distributions were tested in the GoldSim before the final selection. Comparison of cumulative distribution function curves in GoldSim element of SoilDensity between the original distribution (GoldSim element: developed distribution SoilDensity Triangular Dist) and (GoldSim element SoilDensity Normal Dist) is shown in Figure 4. Distribution values and a deterministic value used in the GENIIv2 are shown in Table 75.

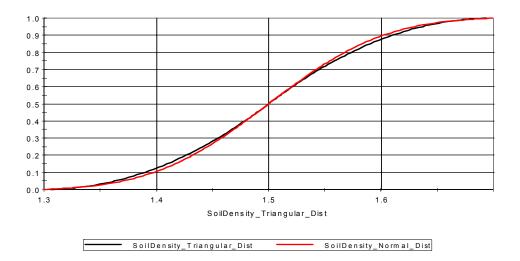


Figure 4. Comparison of Distributions for Soil Bulk Density

Parameter Name	GENIIv2 Parameter	Soil Density (kg/m ³)	Soil Density (kg/m ³)
	Symbol	(Deterministic Value)	(Distribution and Value)
Surface soil bulk density, Surface soil density, or Density of contaminated soil/sediment layer	BULKD or SSLDN	1500	Normal Distribution: Mean = 1500, SD = 82, Min = 1300 and Max = 1700

Table 75.	Surface Soil E	Bulk Density L	Jsed in the	GENIIv2
-----------	----------------	----------------	-------------	---------

Source: Section 4.1.2.1, and Excel file of *Distribution_Comparison.xls*

7.2.2 Soil-Water Partition Coefficients

The soils in Amargosa Valley have been classified as sand or sandy loam per BSC 2006 ([DIRS 177400], Table 6.2-1). Geometric mean and standard deviation of soil-water partition coefficients for 17 elements are shown in Table 44 as inputs for this document. The partition coefficients for additional 21 elements not used in the Biosphere Model are listed in Table 45. The same methodology used BSC 2006 ([DIRS 177400], Section 6.3.2) are used to select the appropriate partition coefficients.

The first step is to calculate arithmetic mean of partition coefficients from sandy and loam soils in Table 45 using Equation 3 below:

$$\mu = \exp(\lambda + 0.5 \zeta^2)$$
 Equation 3

where,

μ	=	arithmetic mean
λ	=	mean of the natural logarithm of the observed values x
ζ	=	standard deviation of ln(x)

The second step is to select a higher calculated arithmetic mean μ from sandy or loam soils, and add a standard deviation of $\ln(Kd) = \zeta$. If it is not available, the value of $\zeta = 1.8$ is assigned, as used in BSC 2006 ([DIRS 177400], Section 6.3.2), which is also the same as calculated through available standard deviations of $\ln(Kd)$.

The third step is to calculate the geometric mean and geometric standard deviation for *Kd* by using the formula for the value of μ and ζ :

$$GM_{Kd} = \exp(\mu);$$

 $GSD_{Kd} = \exp(\zeta)$ Equation 4

The calculation and selection of partition coefficients are performed in *Kd* worksheet under Excel file of *Calculation_TF_TC_Kd.xls*.

Element Atomic No.		Step 1: C using Eq	alculated Juation 3	Step 2: Selected In(Kd) and SD of In(kd)		Step 3: Calculated GM and GSD of Kd	
Liement	Atomic No.	Sandy Soil (L/kg)	Loam Soil (L/kg)	Mean of In(Kd)	SD of In(Kd)	GM of (Kd) (L/kg)	GSD of (Kd)
Bi	83	9.9E+01	4.5E+02	6.1	1.8	4.5E+02	6.0
Са	20	6.0E+00	3.0E+01	3.4	1.8	3.0E+01	6.0
Cd	48	2.3E+02	1.5E+02	4.3	1.5	7.4E+01	4.5
Ce	58	1.8E+03	2.5E+04	9.0	1.5	8.1E+03	4.5
Cf	98	2.0E	+02	5.3	1.8	2.0E+02	6.0
Cm	96	7.9E+04	2.3E+04	8.4	2.4	4.4E+03	11.0
Со	27	3.0E+03	3.1E+03	7.2	1.3	1.3E+03	3.7
Eu	63	6.5E	+02	6.5	1.8	6.5E+02	6.0
Fe	26	6.5E+03	1.0E+03	5.4	2.6	2.2E+02	13.5
Nb	41	1.6E+02	5.4E+02	6.3	1.8	5.4E+02	6.0
Ni	28	1.2E+03	3.0E+02	6.0	1.5	4.0E+02	4.5
Pd	46	5.5E+01	1.8E+02	5.2	1.8	1.8E+02	6.0
Pm	61	6.5E	+02	6.5	1.8	6.5E+02	6.0
Po	84	5.3E+02	9.4E+02	6.0	1.3	4.0E+02	3.7
Rh	45	6.0E	+01	4.1	1.8	6.0E+01	6.0
Ru	44	1.5E+02	9.9E+02	6.9	1.8	9.9E+02	6.0
Sb	51	4.5E+01	1.5E+02	5.0	1.8	1.5E+02	6.0
Sm	62	2.4E+02	8.1E+02	6.7	1.8	8.1E+02	6.0
Те	52	1.2E+02	5.4E+02	6.3	1.8	5.4E+02	6.0
Y	39	1.6E+02	7.4E+02	6.6	1.8	7.4E+02	6.0
Zr	40	6.0E+02	2.2E+03	7.7	1.8	2.2E+03	6.0

Table 76. Calculated Partition Coefficients for Elements not Used in the Biosphere Model

Source: Table 45 and attached Excel file: Calculation_TF_TC_Kd.xls

Combining Table 44 and Table 76, the partition coefficients for total of 38 elements can be obtained, as shown in Table 77. The distribution of partition coefficients is a lognormal distribution with geometric mean, geometric standard deviation, a lower bound and an upper bound. The lower and upper bounds are calculated using the 95 percent confidence limits of GM \times GSD^{±1.96} as suggested in BSC 2006 ([DIRS 177400], Section 6.3.2). The calculations are performed in the *Kd* worksheet in the Excel file of *Calculation TF TC Kd.xls*.

Element	Atomic No.	GM (L/kg)	GSD	Lower Bound (L/kg)	Upper Bound (L/kg)
Ac	89	1.5E+03	6.0E+00	4.3E+01	5.0E+04
Am	95	2.0E+03	1.4E+01	1.2E+01	3.3E+05
Bi	83	4.5E+02	6.0E+00	1.3E+01	1.5E+04
С	14	1.8E+01	6.0E+00	5.3E-01	6.2E+02
Ca	20	3.0E+01	6.0E+00	8.8E-01	1.0E+03
Cd	48	7.4E+01	4.5E+00	3.9E+00	1.4E+03
Ce	58	8.1E+03	4.5E+00	4.3E+02	1.5E+05
Cf	98	2.0E+02	6.0E+00	5.9E+00	6.8E+03
CI	17	1.4E-01	6.0E+00	1.3E-03	1.4E+01
Cm	96	4.4E+03	1.1E+01	4.0E+01	4.9E+05
Со	27	1.3E+03	3.7E+00	1.0E+02	1.7E+04
Cs	55	4.4E+03	3.7E+00	1.6E+02	1.3E+05
Eu	63	6.5E+02	6.0E+00	1.9E+01	2.2E+04
Fe	26	2.2E+02	1.3E+01	1.4E+00	3.6E+04
Ι	53	4.5E+00	7.4E+00	8.9E-02	2.3E+02
Nb	41	5.4E+02	6.0E+00	1.6E+01	1.9E+04
Ni	28	4.0E+02	4.5E+00	2.1E+01	7.6E+03
Np	93	2.5E+01	3.3E+00	2.3E+00	2.6E+02
Pa	91	1.8E+03	6.0E+00	5.3E+01	6.2E+04
Pb	82	1.6E+04	4.1E+00	1.0E+03	2.5E+05
Pd	46	1.8E+02	6.0E+00	5.3E+00	6.2E+03
Pm	61	6.5E+02	6.0E+00	1.91E+01	2.21E+04
Po	84	4.0E+02	3.7E+00	3.2E+01	5.2E+03
Pu	94	1.2E+03	3.3E+00	1.2E+02	1.3E+04
Ra	88	3.6E+04	2.2E+01	8.3E+01	1.6E+07
Rh	45	6.0E+01	6.0E+00	1.8E+00	2.0E+03
Ru	44	9.9E+02	6.0E+00	2.9E+01	3.4E+04
Sb	51	1.5E+02	6.0E+00	4.4E+00	5.1E+03
Se	34	1.5E+02	6.0E+00	4.4E+00	5.1E+03
Sm	62	8.1E+02	6.0E+00	2.4E+01	2.8E+04
Sn	50	4.5E+02	6.0E+00	1.3E+01	1.5E+04
Sr	38	2.0E+01	5.5E+00	7.2E-01	5.6E+02
Тс	43	1.4E-01	6.0E+00	1.3E-03	1.4E+01
Те	52	5.4E+02	6.0E+00	1.6E+01	1.9E+04
Th	90	3.0E+03	8.2E+00	4.9E+01	1.8E+05
U	92	3.3E+01	2.5E+01	6.3E-01	1.8E+04
Y	39	7.4E+02	6.0E+00	2.2E+01	2.5E+04
Zr	40	2.2E+03	6.0E+00	6.5E+01	7.5E+04

Table 77. Partition Coefficients for All Elements of Ir	nterest
---	---------

Source: Table 44, Table 76 and Excel file of Calculation_TF_TC_Kd.xls

7.2.3 Soil Water Content

The soil water content provided in Section 4.1.2.3 can be directly used in GENIIv2 for both deterministic value and distribution as shown in Table 78.

Parameter Name	GENIIv2 Parameter	Soil Water Content	Soil Water Content
	Symbol	(Deterministic Value)	(Distribution and Value)
Soil Water Content	MOISTC	0.20	Uniform Distribution: Min = 0.15 and Max = 0.28

Table 78. S	Soil Water	Content	Used in the	GENIIv2
-------------	------------	---------	-------------	---------

Source: Section 4.1.2.3

7.2.4 Surface Soil Areal Density

This parameter is used as an input to soil model in GENIIv2. It is the product of soil bulk density (BULKD – Section 4.1.2.1) and surface soil thickness (THICK – Section 4.1.3.1).

$$SLDN = BULKD \times THICK$$
 Equation 5

where,

SLDN = surface soil areal density (kg/m²) BULKD = soil bulk density (kg/m³) THICK = surface soil thickness (m)

The deterministic value can be calculated using mean values of the two parameters: 1500 kg/m^3 $\times 0.25$ m = 375 kg/m². However, distribution of the parameter needs to be developed by using distributions of these two parameters. This calculation was performed stochastically in the GoldSim file: Distribution Comparison.gsm. The GoldSim element for the calculation is AreaDensity Calculated, whose output was then copied into the SR Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum values (see cells F1003:I1009). Several different distributions were tested in the GoldSim before the final selection. Comparison of cumulative distribution function curves in GoldSim element of AreaDensity between the original distribution (GoldSim element: developed AreaDensity Calculated) and distribution (GoldSim element AreaDensity Normal Dist) is shown in Figure 5. Distribution values and a deterministic value used in the GENIIv2 are shown in Table 79.

Table 79. Surface Soil Area Density Used in the GENIIv2

Parameter Name	GENIIv2 Parameter Symbol	Area Density (kg/m²) (Deterministic Value)	Area Density (kg/m²) (Distribution and Value)
Surface Soil Area			Normal Distribution:
Density	SLDN	375	Mean = 262, SD = 109,
Denoty			Min = 69 and Max = 488

Source: Section 4.1.2.1 and Section 4.1.3.1, and Excel file of Distribution_Comparison.xls

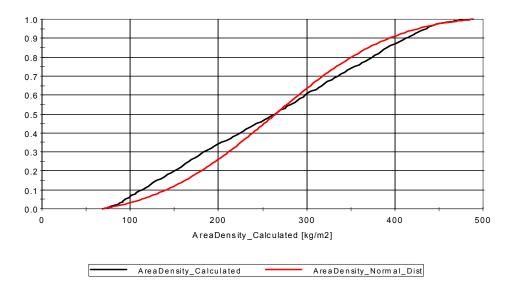


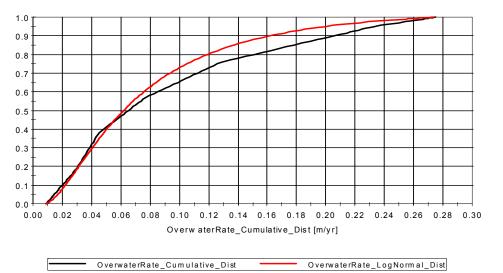
Figure 5. Comparison of Distributions for Surface Soil Area Density

7.3 CALCULATIONS OF AGRICULTURAL PARAMETERS

7.3.1 Surface Soil Thickness

Surface soil thickness is the same as surface soil depth provided in Section 4.1.3.1, which is based on the tillage depth developed in the Biosphere Model. It is the soil depth for plant whose roots are in that layer. It is a uniform distribution with minimum of 5 cm and maximum of 30 cm. It must be noted that the mean used for stochastic calculation is not the same as the mean from the distribution used for stochastic calculation. The parameter values for surface soil depth are listed in Table 80. The surface soil thickness is for cultivated agricultural lands, where radionuclides deposited are mixed in the entire layer as discussed in Section 3.2.12.

Table 80. Surface Soil Thickness Used in the GENIIv2
--


Parameter Name	GENIIv2 Parameter	Surface Soil Thickness (cm)	Surface Soil Thickness (cm)
	Symbol	(Deterministic Value)	(Distribution and Value)
Surface Soil	THICK, SOILT, and	25	Uniform Distribution:
Thickness	SURCM		Min = 5 and Max = 30

Source: Section 4.1.3.1

7.3.2 Total Infiltration Rate

Total infiltration rate used in the GENIIv2 is the annual overwatering rate provided in Section 4.1.3.2. It is a cumulative distribution, which is converted to a distribution that GENIIv2 can accept. The closest distribution a lognormal distribution with a geometric mean of 0.064 m/vr, geometric standard deviation of 2.34, minimum of 0.009 m/vr, and maximum of 0.275 This conversion performed stochastically in the GoldSim file: m/yr. was The GoldSim element for the original distribution is Distribution Comparison.gsm. OverwaterRate Cumulative Dist, whose output was then copied into the AG Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum

and maximum values (see cells A1003:D1009). Several different distributions were tested in the GoldSim before the final selection. Comparison of cumulative distribution function curves in GoldSim element of *OverwaterRate* between the original distribution (GoldSim element: *OverwaterRate_Cumulative_Dist*) and developed distribution (GoldSim element *OverwaterRate_LogNormal_Dist*) is shown in Figure 6. Distribution values and a deterministic value used in the GENIIv2 are shown in Table 81.

Figure 6. Comparison of Distributions for Infiltration Rate	е
---	---

Table 81. Total Infiltration Rate	Used in the GENIIv2
-----------------------------------	---------------------

Parame	eter Name	GENIIv2 Parameter Symbol	Overwatering Rate (cm/yr) (Deterministic Value)	Overwatering Rate (cm/yr) (Distribution and Value)
	verwatering	VLEACH	7.9	Lognormal Distribution: GM = 6.4, GSD = 2.34,
Rate			Min = 0.9 and Max = 27.5	

Source: Section 4.1.3.2, and Excel file of *Distribution_Comparison.xls*

7.3.3 Crop Wet Biomass

Crop dry biomass provided in Section 4.1.3.3 is the product of crop wet biomass and dry wet ratio of biomass. Dry wet ratio of biomass is not the same as dry-to-wet ratio discussed in Section 4.1.3.4, because dry-to-wet ratio is for crop yield that is edible part of plant. Biomass is the plant mass above surface soil, which may or may not be edible. For leafy vegetables and forage, they are the same, but not for root vegetables, fruit, and grain. Therefore, wet yield is the same as wet biomass for leafy vegetables and forage (see Section 7.3.5), which is used in this document.

GENIIv2 uses the crop wet biomass multiply crop dry/wet ratio to calculate airborne particles deposited on crop surface (Napier et al 2006 ([DIRS 177331], Section 9.4). This part of the model is equivalent to crop dry biomass in the Biosphere Model (BSC 2004 [DIRS 169460]), Section 6.4.3). However, the GENIIv2 does not have two separate parameters: dry wet ratio of

crop and wet ratio for biomass. Therefore, the wet biomass can be calculated as a ratio of crop dry biomass (Section 4.1.3.3) to crop dry/wet ratio (Section 4.1.3.4) for root vegetables, fruit, and grain.

$$BIOMAS_{j} = \frac{DRYMAS_{j}}{DRYFRC_{j}}$$
 Equation 6

where,

BIOMAS = wet biomass for crop type *j* (kg-wet/m²) DRYMAS = dry biomass for crop type *j* (kg-dry/m²) DRYFRC = dry to wet ratio for crop type *j* (kg-dry/kg-wet) *j* = crop type, including root vegetables, fruit, and grain

The mean values of crop wet biomass can be calculated from a ratio of the means from the two inputs (Table 47 and Table 48). The distribution of crop wet biomass are developed using GoldSim software. This calculation was performed stochastically in the GoldSim file: Distribution Comparison.gsm. GoldSim elements for calculation The the are WetBiomOther Calculated, WetBiomFruit Calculated, and WetBiomGrain Calculated. The outputs of these elements were then copied into the AG Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum values (see cells F1003:AC1009). However, it is found that the ranges of calculated wet biomass for root vegetables and fruit are very large, mainly due to extreme values of the two parameters sampled in some realizations. Therefore, 5th percentile and 95th percentile values are selected to be lower and upper bound for the distribution values, as shown in Table 82.

Comparison of cumulative distribution function curves for the calculated distribution (GoldSim
elements: WetBiomOther_Calculated, WetBiomFruit_Calculated, and
WetBiomGrain_Calculated) and developed distribution (GoldSim element
WetBiomOther_LogNormal_Dist, WetBiomFruit_LogNormal_Dist, and
WetBiomGrain_LogNormal_Dist) are shown in Figure 7 to Figure 9.

Based on the assumption in Section 3.2.7, locally grown fresh forage is the only feed given to beef cattle and dairy cows, and locally produced grain is the only feed given to poultry and laying hens. Therefore, grain feeds for beef cattle and dairy cow are not considered and their values are not listed in the results of this section. Wet biomasses used for animal feed are selected accordingly for the GENIIv2 as tabulated in Table 82.

Сгор Туре	GENIIv2 Parameter Symbol	Crop Wet Biomass (kg-wet/m²) (Deterministic Value)	Crop Wet Biomass (kg-wet/m ²) (Distribution and Value)
			Lognormal distribution:
Leafy vegetables	BIOMAS	3.30	GM = 2.83, GSD = 1.65,
			Min = 1.08 and Max = 7.85
			Lognormal distribution:
Root (Other) vegetables	BIOMAS	4.17	GM = 4.81, GSD = 1.54,
			Min = 2.11 and Max = 9.82
			Lognormal distribution:
Fruit	BIOMAS	5.17	GM = 5.54, GSD = 1.50,
			Min = 3.18 and Max = 9.51
			Lognormal distribution:
Grain	BIOMAS	1.25	GM = 1.12, GSD = 1.50,
			Min = 0.67 and Max = 2.19
			Lognormal distribution:
Fresh forage for beef cattle	BIOMAS2	2.14	GM = 1.83, GSD = 1.72,
Callie			Min = 0.69 and Max = 6.28
			Lognormal distribution:
Grain for poultry	BIOMAS2	1.25	GM = 1.12, GSD = 1.50,
			Min = 0.67 and Max = 2.19
			Lognormal distribution:
Fresh forage for diary cows	BIOMAS2	2.14	GM = 1.83, GSD = 1.72,
0000			Min = 0.69 and Max = 6.28
			Lognormal distribution:
Grain for eggs	BIOMAS2	1.25	GM = 1.12, GSD = 1.50,
			Min = 0.67 and Max = 2.19

Table 82.	Crop Wet Biomass	Used in the GENIIv2
-----------	------------------	---------------------

Source: Table 47, Table 48 and Excel file of Distribution_Comparison.xls

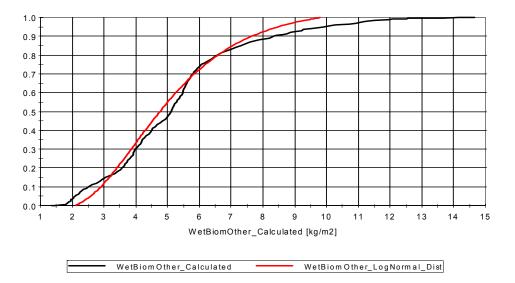


Figure 7. Comparison of Distributions for Wet Biomass for Root Vegetables

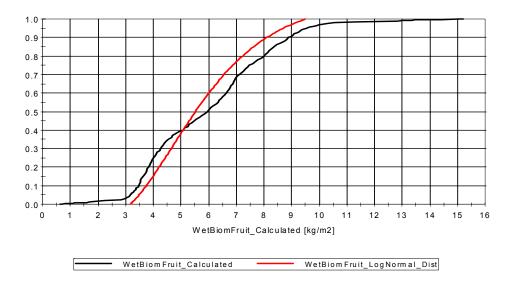


Figure 8. Comparison of Distributions for Wet Biomass for Fruit

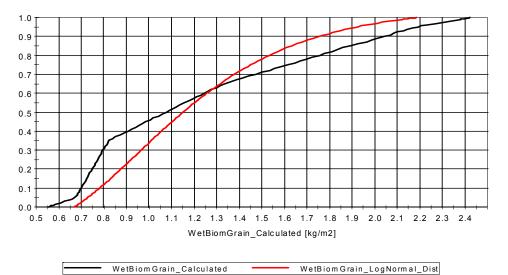


Figure 9. Comparison of Distributions for Wet Biomass for Grain

7.3.4 Crop Dry-to-Wet Ratios

Dry-to-wet weight ratios provided in Section 4.1.3.4 are for five crop types. The parameter distribution for all crop types is a cumulative distribution that is converted to a distribution that GENIIv2 can accept. The closest distributions for the five crop types are tabulated in Table 83. calculation performed This stochastically the GoldSim file: was in Distribution Comparison.gsm. The original distributions are in the GoldSim elements of DryWetLeafy Cumulative Dist, DryWetOther Cumulative Dist, DryWetFruit Cumulative Dist, DryWetGrain Cumulative Dist, and

DryWetForage Cumulative Dist. The outputs of these elements were copied into the AG Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum values (see cells AE1003:BB1009). Comparison of cumulative distribution function curves in GoldSim element of DryWetLeafy between the original distribution (GoldSim elements: DryWetLeafy Cumulative Dist) and developed distribution (GoldSim element DryWetLeafy Normal Dist) is shown in Figure 10. Similarly, comparison of cumulative distribution function curves in GoldSim elements of DryWetOther, DryWetFruit, DryWetGrain, DryWetForage between the original distributions (GoldSim DryWetOther Cumulative Dist, DryWetFruit Cumulative Dist, elements. DryWetGrain Cumulative Dist, DryWetForage Cumulative Dist) and developed distributions elements: DryWetOther LogNormal Dist, DryWetFruit LogUniforml Dist, (GoldSim DryWetGrain Uniform Dist, and DryWetForage Uniform Dist) for root vegetables, fruit, grain, and forage are shown in Figure 11 to Figure 14, respectively.

Based on the assumption in Section 3.2.7, locally grown fresh forage is the only feed given to beef cattle and dairy cows, and locally produced grain is the only feed given to poultry and laying hens. Dry/wet ratios used for animal feed are selected accordingly for the GENIIv2 as tabulated in Table 83.

Сгор Туре	GENIIv2 Parameter Symbol	Crop Dry/Wet Ratio (Deterministic Value)	Crop Dry/Wet Ratio (Distribution and Value)
			Normal Distribution:
Leafy vegetables	DRYFAC	0.07	Mean =0.071, SD = 0.015,
			Min = 0.041 and Max =0.093
			Lognormal distribution:
Root (Other) vegetables	DRYFAC	0.103	GM = 0.089, GSD = 1.52,
			Min = 0.035 and Max = 0.24
Fruit	DRYFAC	0.12	Loguniform distribution with Min = 0.062 and Max = 0.194
Grain	DRYFAC	0.903	Uniform distribution with Min = 0.891 and Max = 0.918
Fresh forage for beef cattle	DRYFA2	0.220	Uniform distribution with Min = 0.182 and Max = 0.238
Grain for poultry	DRYFA2	0.903	Uniform distribution with Min = 0.891 and Max = 0.918
Fresh forage for diary cows	DRYFA2	0.220	Uniform distribution with Min = 0.182 and Max = 0.238
Grain for eggs	DRYFA2	0.903	Uniform distribution with Min = 0.891 and Max = 0.918

Table 83. Crop Dry/Wet Ratio Used in the GENIIv2

Source: Section 4.1.3.4, Table 48, and Excel file of *Distribution_Comparison.xls*

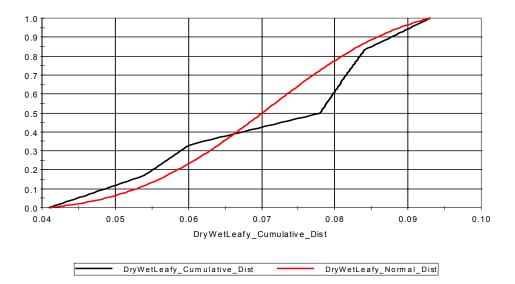


Figure 10. Comparison of Distributions for Dry/Wet Ratio for Leafy Vegetables

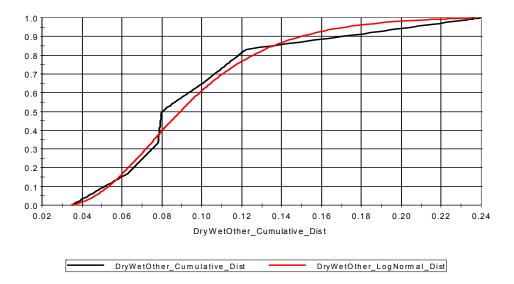


Figure 11. Comparison of Distributions for Dry/Wet Ratio for Root Vegetables

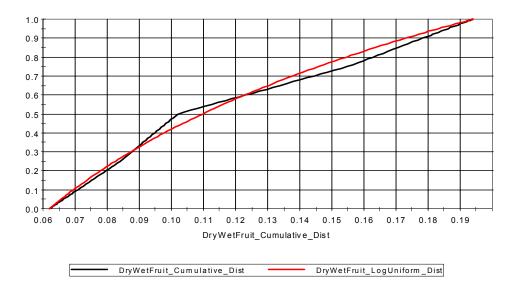


Figure 12. Comparison of Distributions for Dry/Wet Ratio for Fruit

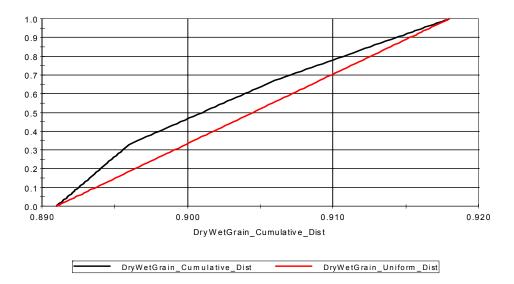


Figure 13. Comparison of Distributions for Dry/Wet Ratio for Grain

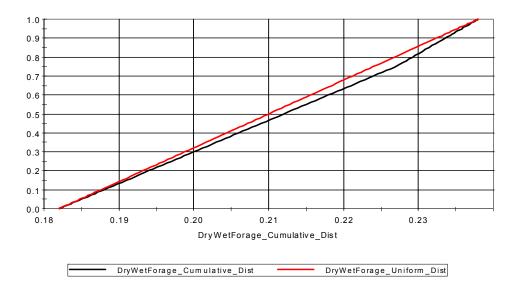


Figure 14. Comparison of Distributions for Dry/Wet Ratio for Forage

7.3.5 Crop Yields

Crop wet yields provided in Section 4.1.3.5 are for five crop types. The parameter distribution for all crop types is a cumulative distribution that is converted to a distribution that GENIIv2 can accept. The closest distributions for the five crop types are tabulated in Table 84. The conversion was performed stochastically in the GoldSim file: Distribution Comparison.gsm. The original distributions are in the GoldSim elements of YieldLeafy Cumulative Dist, YieldRoot Cumulative Dist, YieldFruit Cumulative Dist, YieldGrain Cumulative Dist, and YieldForage Cumulative Dist. The outputs of these elements were copied into the AG Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum values (see cells BD1003:CA1009). Comparison of cumulative distribution function curves in GoldSim elements of YieldLeafy, YieldRoot, YieldFruit, YieldGrain, and YieldForage between the original distributions (GoldSim elements: YieldOther Cumulative Dist, YieldLeafy Cumulative Dist, YieldFruit Cumulative Dist, YieldGrain Cumulative Dist, YieldForage Cumulative Dist) and developed distributions (GoldSim elements. YieldLeafy LogNormal Dist, YieldOther LogNormal Dist, YieldFruit LogNormal Dist, YieldGrain LogNormal Dist, and YieldtForage LogNormal Dist) for leafy vegetables, root vegetables, fruit, grain, and forage, respectively, are shown in Figure 15 and Figure 19, respectively.

Based on the assumption in Section 3.2.7, locally grown fresh forage is the only feed given to beef cattle and dairy cows, and locally produced grain is the only feed given to poultry and laying hens. Crop yields used for animal feed are selected accordingly for the GENIIv2 as tabulated in Table 84.

Сгор Туре	GENIIv2 Parameter Symbol	Crop Yield (kg-wet/m ²) (Deterministic Value)	Crop Yield (kg-wet/m ²) (Distribution and Value)
			Lognormal distribution:
Leafy vegetables	YELD	3.30	GM = 2.83, GSD = 1.65,
			Min = 1.08 and Max = 7.85
			Lognormal distribution:
Root (Other) vegetables	YELD	4.13	GM = 4.06, GSD = 1.20,
			Min = 2.80 and Max = 6.61
			Lognormal distribution:
Fruit	YELD	2.75	GM = 2.70, GSD = 1.37,
			Min = 0.73 and Max = 6.89
			Lognormal distribution:
Grain	YELD	0.59	GM = 0.52, GSD = 1.51,
			Min = 0.27 and Max = 1.22
			Lognormal distribution:
Fresh forage for beef cattle	YELDA	2.14	GM = 1.83, GSD = 1.72,
			Min = 0.69 and Max = 6.28
			Lognormal distribution:
Grain for poultry	YELDA	0.59	GM = 0.52, GSD = 1.51,
			Min = 0.27 and Max = 1.22
			Lognormal distribution:
Fresh forage for diary cows	YELDA	2.14	GM = 1.83, GSD = 1.72,
00005			Min = 0.69 and Max = 6.28
	YELDA	0.59	Lognormal distribution:
Grain for eggs			GM = 0.52, GSD = 1.51,
			Min = 0.27 and Max = 1.22

Table 84.	Crop	Yields	Used in	the GENIIv2
1 4010 0 11	0.00	110100	0000	

Source: Section 4.1.3.5, Table 49, and Excel file of Distribution_Comparison.xls

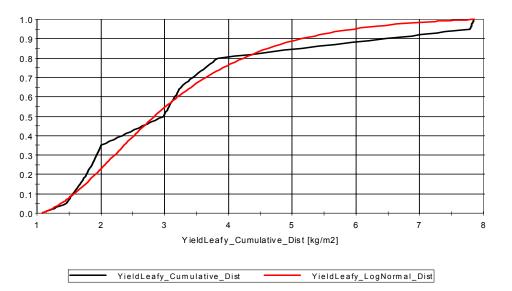


Figure 15. Comparison of Distributions for Leafy Vegetables Yield

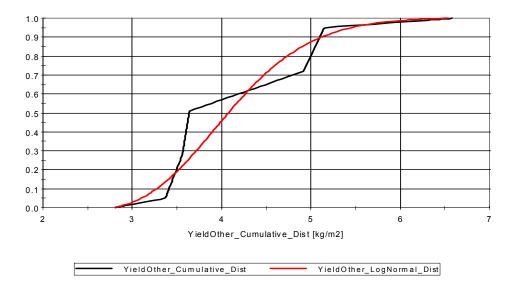


Figure 16. Comparison of Distributions for Root Vegetables Yield

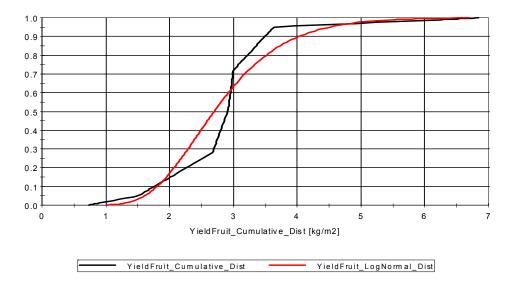


Figure 17. Comparison of Distributions for Fruit Yield

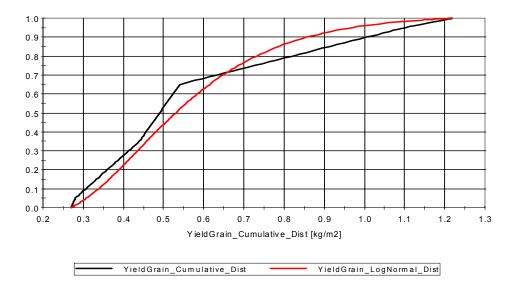


Figure 18. Comparison of Distributions for Grain Yield

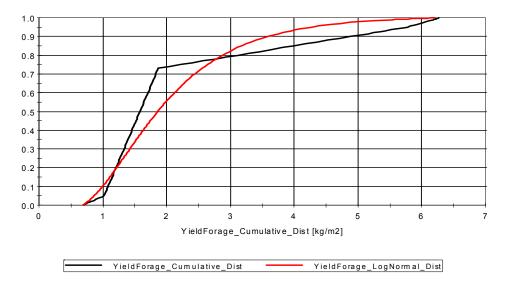


Figure 19. Comparison of Distributions for Forage Yield

7.3.6 Crop Growing Periods

Crop growing periods and animal feed growing periods used in GENIIv2 are provided in Section 4.1.3.6. The growing times for five types of crops used in the Biosphere Model are fixed values. Based on the assumption 3.2.7, locally grown fresh forage is the only feed given to beef cattle and dairy cows, and locally produced grain is the only feed given to poultry and laying hens. Growing periods used for animal feed are selected accordingly for the GENIIv2 as tabulated in Table 85.

Сгор Туре	GENIIv2 Parameter Symbol	Growing Period (day) (Deterministic Value)	Growing Period (day) (Distribution and Value)
Leafy vegetables	GRWP	75	None
Root (Other) vegetables	GRWP	80	None
Fruit	GRWP	160	None
Grain	GRWP	200	None
Fresh forage for beef cattle	GRWPA	75	None
Grain for poultry	GRWPA	200	None
Fresh forage for diary cows	GRWPA	75	None
Grain for eggs	GRWPA	200	None

Table 85. Growing Periods Used in the GENIIv2

Source: Section 4.1.3.6 and Table 50

7.3.7 Resuspension Factor from Soil to Plant Surfaces

Resuspension factor from soil to plant surface relates the radionuclide concentration in soil (per unit area) to the concentration in air (Napier et al 2006 [DIRS 177331], Section 9.4.1.5). The parameter can be calculated from a ratio of mass loading for crops provided in Section 4.1.4.1 to surface soil areal concentration calculated in Section 7.2.4, based on the fact that radionuclide mass concentration is the same in soil and in air. The resuspension factor for food crop and animal product pathway is representative of conditions on farmland, which may be different from the resuspension factor for the inhalation exposure pathway. Resuspension factor is in units of per meter.

$$LEAFRS = \frac{MLFC}{SLDN}$$
 Equation 7

where,

LEAFRS = resuspension factor from soil to plant surface (1/m) MLFC = mass loading for crops (kg/m³) SLDN = surface soil areal density (kg/m²)

The deterministic value can be calculated directly to be 3.2×10^{-10} (m⁻¹) = 0.12 mg/m³ ÷ 375 kg/m^2 . However, distribution of the parameter needs to be developed by using distributions of above two parameters. This calculation was performed stochastically in the GoldSim file: Distribution Comparison.gsm. The GoldSim element for the calculation is Resupension Calculated, whose output was copied into Inh Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum for distribution values, which is shown in Table 86. The comparison of cumulative distribution function curves (GoldSim element: Resupension) for the calculated distribution (GoldSim element: Resupension Calculated) and developed distribution (GoldSim element Resupension LogNormal Dist) is shown in Figure 20.

Parameter Name	GENIIv2 Parameter Symbol	Resuspension Factor (m ⁻¹) (Deterministic Value)	Resuspension Factor (m ⁻¹) (Distribution and Value)
Resuspension factor			Lognormal Distribution:
from soil to plant	LEAFRS	3.2E-10	GM = 4.59E-10, GSD = 1.83,
surface			Min = 8.37E-11 and Max = 2.52E-9

Source: Section 4.1.4.1, Section 7.2.4 and Excel file of *Distribution_Comparison.xls*

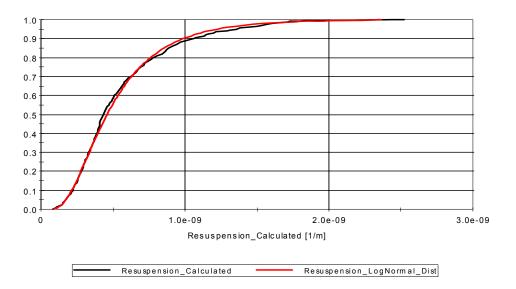


Figure 20. Comparison of Distributions for Resuspension Factor

7.3.8 Acute Fresh Forage Intake Fraction

The current GENIIv2 model conservatively assumes that there is no weathering for the fresh forage if an accident occurs in autumn (Napier et al 2006 [DIRS 177331], p.131), and that cattle and cows are fed with the contaminated forage that is harvested immediately after an accident for an entire year. This method is conservative because site-specific agricultural practice uses multiple alfalfa cuttings as specified in Section 4.1.3.7. A new parameter, the acute fresh forage intake fraction can model the fraction of animal diet that comes from fresh forage and stored forage. The fraction of 1 means all animal feed is the fresh forage, while the fraction of 0 means all animal feed is the stored forage. After an initial acute release, the meat or milk concentration of a radionuclide will be reduced as this fraction is increased, because fresh forage is weathered, but stored forage is not.

Based on Section 4.1.3.7, there are six cuttings per year for alfalfa between April and November. The contaminated alfalfa from a single cutting after an accident is not sufficient for the entire year, because it only provides one sixth of the animal feed supply based on the conservative assumption that all animal feed is locally produced (Section 3.2.7). Therefore, it is reasonably conservative to use 0.17 (1/6) as a stored forage fraction, and 0.83 as an acute fresh forage intake fraction (fraction of animal diet that is fresh forage in autumn), *FRACFR*.

7.4 CALCULATIONS OF INHALATION PARAMETERS

7.4.1 Mass Loading Factor for Resuspension Model

The mass loading for inhalation pathway used in the Biosphere Model is environment dependent, which is non-cultivated lands as discussed in Section 3.2.12. Five different environments are considered to capture different level of dustiness for the receptor, as discussed in Section 4.1.4.2. Time spend in each environment are provided in Section 4.1.5.4.

Because the GENIIv2 does not provide the capability of an environmental dependent inhalation pathway, a time-weighted mass loading is calculated for inhalation of resuspension as:

$$XMLF = \frac{\sum_{k} S_k \times T_k}{\sum_{k} T_k}$$
 Equation 8

where,

XMLF = weighted mass loading factor (g/m³)

 S_k = mass loading for environment k (g/m³)

 T_k = daily exposure time at environment k (hr/day)

k = environment index, including active outdoors, inactive outdoors, inactive indoors, asleep indoors, and away.

The calculation of mass loading was performed stochastically in the GoldSim file: Distribution Comparison.gsm. The GoldSim element for the calculation is MassLoading Calculated, which uses mass loading and daily exposure time for four environments. As mass loading at the away environment is not considered as contaminated, it is not included in the calculation in the MassLoading Calculated. The output of the MassLoading Calculated was copied into the Inh Param worksheet in the Excel file of Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum for distribution values (see cells K1003:N1009). The best distribution is a lognormal and its values are shown in Table 87. The comparison of cumulative distribution function curves in the GoldSim element, MassLoading between the calculated distribution (GoldSim element: MassLoading Calculated) and developed distribution (GoldSim element MassLoading LogNormal Dist) is shown in Figure 21.

Table 87. Mass Loading for Resuspension Used in the GENIIv	2
5 1	

Parameter Name	GENIIv2 Parameter Symbol	Mass Loading for Resuspension (g/m ³) (Deterministic Value)	Mass Loading for Resuspension (g/m³) (Distribution and Value)
Mass loading factor for resuspension model resuspension	XMLF	0.0006	Lognormal Distribution: GM = 0.0006, GSD = 1.50, Min = 0.0002 and Max = 0.0014

Source: Section 4.1.4.2, Section 4.1.5.4, and Excel file of Distribution_Comparison.xls

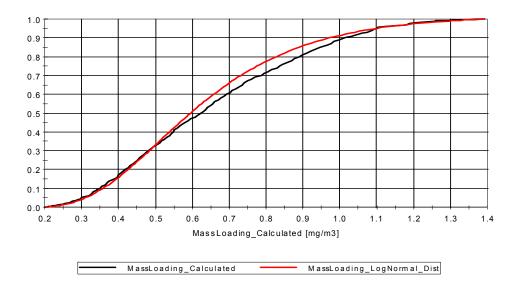


Figure 21. Comparison of Distributions for Mass Loading factor

7.4.2 Depth of Top Soil Available for Resuspension

Critical thickness (a hypothetical layer of soil from which soil particles would be more readily resuspended) is provided in Section 4.1.1.7. Resuspension caused by the wind relates only to the material the wind stress can act upon, which might be within the top millimeter or so of a soil surface (Sehmel 1980 [DIRS 163178], p. 110). In general, the range of surface soil thickness that may be used for characterizing the resuspension source strength is from about 1 mm to 1 cm (Sehmel 1984 [DIRS 158693], p. 574). Thus, the values and distribution provided for critical thickness is suitable for the depth of top soil available for resuspension used in the GENIIv2. The values and distribution are given in Table 88.

This parameter is also used for the thickness of contaminated soil/sediment layer to calculate external exposure. It is expected that only small amount of contaminated particles be transported and deposited on the ground surface. Then the contaminated particles would be mixed with soil due to resuspension, which causes external exposure as well.

Parameter Name	GENIIv2 Parameter Symbol	Resuspension Depth (cm) (Deterministic Value)	Resuspension Factor (cm) (Distribution and Value)
Depth of top soil available for	AVASL	0.2	Uniform Distribution: Min = 0. 1 and Max = 0.3

Table 88 Depth of Top	Soil Available for Resuspension Used in the GENIIv2
Table 00. Depth of Top	

resuspension Source: Section 4.1.1.7.

7.5 CALCULATIONS OF RECEPTOR PARAMETERS

Characteristics of the receptor in the TSPA are based on the RMEI concept, defined in 10 CFR 63.312. The related REMI parameters developed in the Biosphere Model are based on the mean value of entire Amargosa Valley. However, the receptor for the PCSA is based on any real

member of public, as required 10 CFR 63.211. Therefore, some of the receptor parameters developed by the Biosphere Model are not used directly in the PCSA without modification.

7.5.1 Chronic Exposure Period

In order to include the cumulative effect of all previous years' chronic releases during the 50-year emplacement period (see Section 3.2.4), a 50-year chronic release period is included in the dose calculation. Although the exposure period starts at the beginning of 50th year and has duration of one year, chronic releases over the previous 49 years are included, and represent the annual exposure in the final year of a 50-year emplacement period. It includes the effects of continual buildup of soil contamination over the entire emplacement period.

Chronic airborne releases due to normal operations are modeled to occur continuously over a 50-year period beginning at time 0 and ending at 50 year (*RELEND*). In order to include the cumulative effect of contamination buildup from all previous years' chronic releases during the emplacement period, the 1-year exposure period begins at time 49 year (*BEFORE*) and has a duration of 1 year (*NTKEND*). Deposition for 49 years (*BEFAIR*) occurs prior to the current year's release and the 1-year exposure period. Figure 22 shows the relationship among these four parameters. It is not in scale and for general purpose. A dash line in the figure means time expandable.

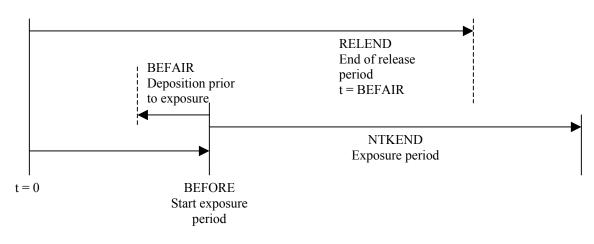


Figure 22. Exposure and Release Time Parameters

7.5.2 External Exposure Times

7.5.2.1 External Exposure Period

The daily exposure times for various environments provided in Section 4.1.5.4 are the basis to develop external exposure time, as well as a fraction of daily time spent outdoors and indoors. A continuous full time residential occupancy is reasonable for an offsite individual, that is, 365 days per year of external exposure period can be used for both air submersion and ground shine. However, an individual spends average 2 hrs each day (Table 55) away from Amargosa Valley, where it is considered an uncontaminated area (BSC 2005 [DIRS 172827], Section 6.3). The total daily exposure time for air submersion and ground shine is then 22 hours per day on average. The distribution of this parameter was performed stochastically in the GoldSim file:

Distribution_Comparison.gsm. The GoldSim element for the calculation is *DailyTime_Calculated* using

$$T_{ex} = 24(hr/day) - T_{away}$$
 Equation 9

where,

 T_{away} = daily exposure time at away environment (hr/day)

The output of the *DailyTime_Calculated* was then copied into the *Inh_Param* worksheet in the Excel file of *Distribution_Comparison.xls* to calculate mean, standard deviation, minimum and maximum for distribution values (see cells P1003:S1009). The most appropriate distribution is normal and its values are shown in Table 89. The comparison of cumulative distribution function curves in the GoldSim element, *DailyTime* between the calculated distribution (GoldSim element: *DailyTime_Calculated*) and developed distribution (GoldSim element *DailyTime_Normal_Dist*) is shown in Figure 23.

The time away from the ground shine in GENIIv2 is entered as the fraction of daily time spent outdoors or fraction of daily time spent indoors (see parameter development below), the exposure time is set to entire day (24 hr/day) in order to avoid double counting of the away time.

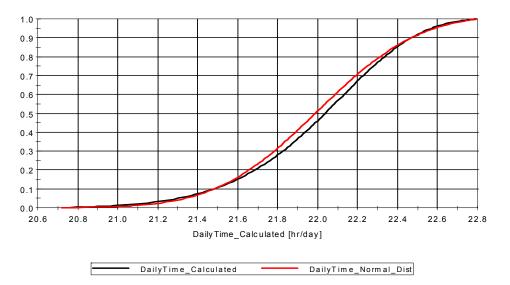


Figure 23. Comparison of Distributions for Daily Exposure Time

The exposure time parameters for an onsite individual is for a full time worker. Based on a work environment of 8 hr/day and 250 day/yr or a full time 40 hr/week and 50 week/yr work schedule, the daily exposure time is 8.5 hr/day including a lunch break. A uniform distribution with minimum of 8 hr/day and maximum of 9 hr/day is a used for the distribution. The annual exposure period is 250 days per year on average, with a uniform distribution minimum of 225 day/yr and maximum of 275 day/yr. That covers individual worker time off or 10% overtime. The external exposure periods to be used in the GENIIv2 are given in Table 89.

Individual	Category	GENIIv2 Parameter Symbol	External Exposure Period (Mean Value)	External Exposure Period (Distribution and Value)
	Yearly external exposure period for offsite individual	TEXAIR or TEXGRD	365 (day/yr)	None
Offsite Public	Daily external exposure period for offsite individual	UEXAIR	22 (hr/day)	Normal Distribution: Mean = 22.0, SD = 0.4 Min = 20.7 and Max = 22.8
	Daily external exposure period for offsite individual	UEXGRD	24 (hr/day)	None
Onsite	Yearly External exposure period for onsite individual	TEXAIR or TEXGRD	250 (day/yr)	Uniform Distribution: Min = 225 and Max = 275
Worker	Daily external exposure period for onsite individual	UEXAIR or UEXGRD	8.5 (hr/day)	Uniform Distribution: Min = 8.0 and Max = 9.0

Table 89. External Exposure Period

Source: Section 4.1.5.4, and Excel file of Distribution_Comparison.xls

7.5.2.2 Fraction of Daily Time Spent Outdoors

The fraction of daily time spent outdoors is the sum of time spent in two environments: outdoors_active and outdoors_inactive. The mean is calculated as 0.304 = (3.1 + 4.2) hr / 24 hr. To be consistent with total exposure fraction (22 hr / 24 hr = 0.92), the calculated mean of the fraction of daily time spent outdoors is conservatively rounded to 0.31. The distribution of the parameter is developed stochastically in the GoldSim file: *Distribution_Comparison.gsm*. The GoldSim element for the calculation is *OutdoorFraction_Calculated*, whose output is copied into the *Rpt_Param* worksheet in the Excel file: *Distribution_Comparison.xls* to calculate mean, standard deviation, minimum and maximum values, which are shown in Table 90. The comparison of cumulative distribution function curves for the calculated distribution (GoldSim element: *OutdoorFraction_Calculated*) and developed distribution (GoldSim element *OutdoorFraction_LogNormal Dist*) is shown in Figure 24.

Parameter Name	GENIIv2 Parameter Symbol	Outdoor Fraction (Mean Value)	Outdoor Fraction (Distribution and Value)
Freation of daily time			Normal Distribution:
Fraction of daily time spent outdoors	FTOUT	0.31	Mean = 0.31, SD = 0.014
			Min = 0.27 and Max = 0.35

Source: Section 4.1.5.4 and Excel file of *Distribution_Comparison.xls*



Figure 24. Comparison of Distributions for Outdoor Fraction

7.5.2.3 Fraction of Daily Time Spent Indoors

The fraction of daily time spent indoors is the sum of time spent in two environments: indoors asleep and indoors inactive. The mean is calculated as 0.61 = (6.4 + 8.3) hr / 24 hr. The distribution of the parameter is developed stochastically in the GoldSim file: Distribution Comparison.gsm. The GoldSim element for the calculation is IndoorFraction Calculated, whose output was then copied into the Rpt Param worksheet in the Excel file: Distribution Comparison.xls to calculate mean, standard deviation, minimum and maximum values, which are shown in Table 91. The comparison of cumulative distribution function curves for the calculated distribution (GoldSim element: IndoorFraction Calculated) and developed distribution (GoldSim element IndoorFraction LogNormal Dist) is shown in Figure 25.

Table 91.	Fraction	of Daily	Time Spent Indoors
-----------	----------	----------	--------------------

Parameter Name	GENIIv2 Parameter Symbol	Indoor Fraction (Mean Value)	Indoor Fraction (Distribution and Value)
Fraction of daily time	FTIN	0.61	Normal Distribution: Mean = 0.61, SD = 0.022
spent indoors			Min = 0.54 and Max = 0.67

Source: Section 4.1.5.4 and Excel file of *Distribution_Comparison.xls*

An individual spends an average of 2 hrs each day (Table 55) away from Amargosa Valley, where it is considered an uncontaminated area. This would make the total of indoor and outdoor fractions not equal to 1. As above for the offsite individual fractions, the parameters for an onsite individual should be 1 for outdoor fraction and 0 for indoor fraction based on the assumption that a worker is at outdoor for their entire work schedule.

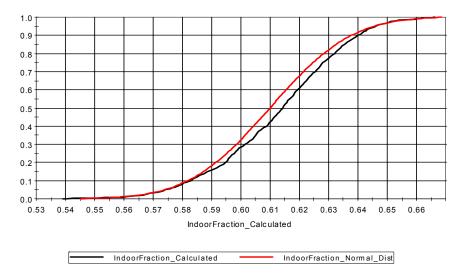


Figure 25. Comparison of Distributions for Indoor Fraction

7.5.3 Building Shielding Factors

Building shielding factors provided in Section 4.1.5.3 are used to shield external exposure when an individual stays indoors. There is no shielding when an individual stays outdoors. Building shielding factors are tabulated in Table 92.

Table 92.	Building	Shielding	Factor
-----------	----------	-----------	--------

Parameter Name	GENIIv2 Parameter Symbol	Shielding Factor (Mean Value)	Shielding Factor (Distribution and Value)
Indoor shielding factor	SHIN	0.4	None
Outdoor shielding factor	SHOUT	1	None

Source: Section 4.1.5.3

7.5.4 Inhalation Rates

Three types of inhalation are included in GENIIv2: outdoor air, resuspended soil, and indoor air due to water usage (volatile radionuclides) (Napier et al 2006 [DIRS 177331], Section 10.4). Based on the exposure pathways considered in the preclosure dose calculation (Section 3.2.3), the third inhalation is not applicable, and no parameter value is developed in this document.

The breathing rates for various environments developed for the Biosphere Model are provided in Section 4.1.5.5. Because the GENIIv2 does not consider inhalation dependent on the environments, a distribution of inhalation rate is calculated by weighing the distribution of daily exposure time (Section 4.1.5.4) in corresponding environments with the breathing rates:

$$UINH = \sum_{k} Br_{k} \times T_{k}$$
 Equation 10

where,

UINH = weighted inhalation rate (m³/day)

- Br_k = breathing rate in environment k (m³/hr)
- T_k = daily exposure time at environment k (hr/day)
- k = environment index, including active outdoors, inactive outdoors, inactive indoors, asleep indoors, and away.

The breathing rate for away is assigned to be breathing rate at inactive outdoors. The calculated mean is 21.7 m³/day, which agrees with 21.9 m³/day for an average adult individual given in Regulatory Guide 1.109. The calculated inhalation rate is for a chronic exposure scenario. For offsite doses consequences from design basis accidents, the inhalation rate given in Regulatory Guide 1.183 ([DIRS 173584], Section 4.1.3) is 3.5×10^{-4} m³/sec (30.2 m³/day) for the first 8 hour, 1.8×10^{-4} m³/sec (15.6 m³/day) for next 8-24 hours, and 2.3×10^{-4} m³/sec (19.9 m³/day) for the remainder of the accident time. Therefore, inhalation rate of 30.2 m³/day is used for an acute exposure scenario, assumed to last one hour (Section 3.2.5).

This calculation of inhalation rate is performed stochastically in the GoldSim file: *Distribution_Comparison.gsm.* The GoldSim element for the calculation is *InhalationRate_Calculated*, whose output is then copied into the *Inh_Param* worksheet in the Excel file of *Distribution_Comparison.xls* to calculate mean, standard deviation, minimum and maximum for distribution values, which are shown in Table 93. The comparison of cumulative distribution function curves in GoldSim element of *InhalationRate* between the calculated distribution (GoldSim element: *InhalationRate_Calculated*) and developed distribution (GoldSim element: *InhalationRate_Calculated*) and developed distribution (GoldSim element: *InhalationRate_Normal Dist*) is shown in Figure 26.

Parameter Name	GENIIv2 Parameter Symbol	Inhalation Rate (m ³ /day) (Mean Value)	Inhalation Rate (m ³ /day) (Distribution and Value)
Inhalation rate for chronic exposure	UINH and UINHR	21.7	Normal Distribution: Mean = 21.7, SD = 0.12 Min = 21.3 and Max = 22.1
Inhalation rate for acute exposure	UINH	30.2	Fixed value

Table 93. Inhalation Rate

Source: Sections 4.1.5.4 and 4.1.5.5, and Excel file of *Distribution_Comparison.xls*

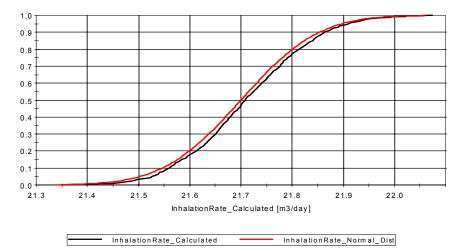


Figure 26. Comparison of Distributions for Inhalation Rate

7.5.5 Inhalation Exposure Period

The inhalation exposure period applies to inhalation of outdoor air and resuspended soil. It is equal to the external exposure time, discussed in Section 7.5.2. Similar to external exposure, two parameters are used, one for the duration of the inhalation period (days), and one for the fraction of time inhalation occurs in any day.

The inhalation periods to be used in the GENIIv2 are the same as the yearly external exposure period shown in Table 89. The parameter distribution values are shown in Table 94.

Category	GENIIv2 Parameter Symbol	Inhalation Period (day/year) (Mean Value)	Inhalation Period (day/year) (Distribution and Value)
Air inhalation period for offsite individual	TINH	365	None
Resuspended soil inhalation period for offsite individual	TINHR	365	None
Air inhalation period for onsite individual	TINH	250	Uniform Distribution: Min = 225 and Max = 275
Resuspended soil inhalation period for onsite individual	TINHR	250	Uniform Distribution: Min = 225 and Max = 275

Source: Section 4.1.5.4, and Excel file of *Distribution_Comparison.xls*

Indoor air for an offsite individual contains the same contamination level as outdoor air due to house ventilation (BSC 2005 ([DIRS 172827], Section 6.3.4). Therefore, fraction of a day outdoor inhalation occurs is conservatively selected the same as the total daily external exposure period for offsite individual shown in Table 89. Because resuspension only occurs outdoors, the fraction of a day resuspension inhalation occurs is the same as the fraction of time spent outdoors as shown in Table 90.

The parameters for an onsite individual are the same as the daily external exposure period for an onsite individual shown in Table 89 for both outdoor air and resuspended soil. Daily hours are converted into a fraction of a day. The parameter values for fraction of a day inhalation occurs to be used in the GENIIv2 are given in Table 95.

Category	GENIIv2 Parameter Symbol	Fraction Of A Day Outdoor Inhalation Occurs (Mean Value)	Fraction Of A Day Outdoor Inhalation Occurs (Distribution and Value)
Air inhalation for offsite individual	FRINH	0.92	Normal Distribution: Mean = 0.92, SD = 0.02 Min = 0.86 and Max = 0.95
Resuspended soil inhalation for offsite individual	FRINHR	0.31	Normal Distribution: Mean = 0.31, SD = 0.014 Min = 0.27 and Max = 0.35
Air inhalation for onsite individual	FRINH	0.35	Uniform Distribution: Min = 0.33 and Max = 0.38
Resuspended soil inhalation for onsite individual	FRINHR	0.35	Uniform Distribution: Min = 0.33 and Max = 0.38

Table 95	Fraction	of a D	av Inhala	tion Occurs
Tuble 00.	1 100001	or u D	ay minute	

Source: Section 4.1.5.4, and Excel file of *Distribution_Comparison.xls*

7.5.6 Food Consumption Period

The effective number of days per year (EDPY) when locally produced food is consumed is provided in Table 54. As discussed in Section 4.1.5.1, EDPY is numerically equal to the number of days in a year at 100 percent consumption of locally produced food from a given food group by a given individual. This input has the same meaning as the food consumption periods used in the GENIIv2. The EDPY is represented by the AM and SD, which represents the variance of the mean based on the site-specific survey on consumption frequency of locally produced food for a given individual and a given food group. The distribution of the food consumption period is lognormal, because its SD is larger than the AM. In addition, the EDPY in Table 54 is dependent on gender and food group, which includes more food types considered in the GENIIv2.

To calculate food consumption periods from the EDPY, the first step is to calculate the mean and SD of the weighed EDPY by gender fraction. The mean for each food group is calculated by

$$EDPY_{wt} = EDPY_m \times F_m + EDPY_f \times F_f$$
 Equation 11

where,

 $EDPY_{wt}$ = weighted EDPY by gender fraction (day/yr) $EDPY_m$ = EDPY by male individual (day/yr) F_m = fraction of male individual $EDPY_f$ = EDPY by female individual (day/yr) F_f = fraction of female individual

The SD for each food group is calculated by using the general formula for propagating errors (BSC 2005 [DIRS 172827], Eq.6.4-3)

$$SD_{EDPY_{wt}} = \sqrt{(SD_{EDPY_m} \times F_m)^2 + (SD_{EDPY_f} \times F_f)^2}$$
 Equation 12

The second step is to sum the food groups belonging to the food types considered in the GENIIv2. Food groups of tomato and fruit are combined to food type of fruit, and food groups of beef, pork and wild game are combined to food type of meat (BSC 2005 [DIRS 172827], Section 6.4.2). The mean is simply added those food groups together. For the food type of fruit, the AM is calculated as:

$$EDPY_{wt,fruit_type} = EDPY_{wt,tomato} + EDPY_{wt,fruit}$$
 Equation 13

The SD is calculated as:

$$SD_{EDPY_{wt,fruit_type}} = \sqrt{(SD_{EDPY_{wt,formato}})^2 + (SD_{EDPY_{wt,fruit}})^2}$$
Equation 14

The third step is to calculate GM and GSD using the AM and SD with assuming a lognormal distribution (GoldSim Technology Group 2003 [DIRS 166226], pp. 524-525).

 $GM = e^{\lambda}$ Equation 15 $GSD = e^{\zeta}$ Equation 16

$$\zeta^{2} = \ln\left[1 + \left(\frac{SD}{AM}\right)^{2}\right]$$
Equation 17

$$\lambda = \ln(AM) - \frac{1}{2}\zeta^2$$
 Equation 18

The last step is to set a lower bound and an upper bound. To check the range of food consumption periods from the lognormal distribution determined by using above equations, the 99 percent confidence interval is used (BSC 2005 [DIRS 172827], Eq.6.3-6)

$$LB = \frac{GM}{GSD^{2.576}}$$
 Equation 19
$$UB = GM \times GSD^{2.576}$$
 Equation 20

The calculation is performed in the Excel file of *Consumption_Rate_Period.xls*. Columns O to Q are data taken from Table 54. Columns R and S are calculated using Equation 11 and Equation 12, respectively. Column T and U is to combine tomato and fruit for new fruit, and beef, pork and wide game for meat, which are calculated using Equation 13 and Equation 14. Columns V and W are calculated using Equation 15 to Equation 18. Columns X and Y are calculated using Equation 19 and Equation 20. It is found that out of eight food types, six of them have food consumption period more 200 days per year, and some are close to 365 days per year. Therefore, minimum and maximum values are selected as 0 and 365 day per year, respectively, for all food types. The calculated GM and GSD are used for the distribution values are shown in Table 96. The GM is also reported for the mean value used as deterministic calculation, as shown in Table 96.

Food Type	GENIIv2 Parameter Symbol	Food Consumption Period (day/yr) (Mean Value)	Food Consumption Period (day/yr) (Lognormal Distribution and Values)
Leafy Vegetables	TCRP	17.9	GM = 17.9, GSD = 2.82 Min = 0 and Max = 365
Root Vegetables	TCRP	22.5	GM = 22.5, GSD = 2.47 Min = 0 and Max = 365
Fruit	TCRP	54.0	GM = 54.0, GSD = 2.08 Min = 0 and Max = 365
Grain	TCRP	0.16	GM = 0.16, GSD = 6.10 Min = 0 and Max = 365
Meat	TANM	15.1	GM = 15.1, GSD = 3.14 Min = 0 and Max = 365
Poultry	TANM	1.4	GM = 1.4, GSD = 4.07 Min = 0 and Max = 365
Milk	TANM	4.2	GM = 4.2, GSD = 4.61 Min = 0 and Max = 365
Eggs	TANM	33.3	GM = 33.3, GSD = 2.50 Min = 0 and Max = 365

Source: Section 4.1.5.1, Table 54, and *Consumption_Rate_Period.xls*

7.5.7 Food Consumption Rates

The contingent average daily intake (CADI) is in provided in Table 54. As discussed in Section 4.1.5.1, CADI is the average amount of food from each group consumed by individuals when they consumed some food from that group. The CADI values are not site-specific, rather from the averages in the western United States (BSC 2005 [DIRS 172827], Section 6.4). The CADI is represented by the arithmetic mean (AM) and standard error (SE). Similar to the EDPY provided in Table 54, the CADI values are also food group and gender dependent. The CADI values are used to develop the food consumption rates for the GENIIv2.

The methods used to calculate food consumption rates from the CADI values are very similar to the method used to calculate food consumption period from the EDPY discussed in Section 7.5.6, except a normal distribution is assigned to the consumption rates, because inputs are based on large survey data and represent the mean and variation of the mean. The calculation was performed in the Excel file of *Consumption_Rate_Period.xls*. Columns C to E are data taken from Table 54.

The first step is to calculate the AM and SE of the weighed CADI by gender fraction using Equation 11 (see Column F) and Equation 12 (see Column G). The second step is to combine the food groups belonging to the food types considered in the GENIIv2. Because the EDPY is calculated by simply adding the different food groups, the consumption rate for that food type must be weighted using its corresponding food groups for their EDPY (see Column H):

$$CADI_{wt} = \frac{\sum_{k} CADI_{k} \times EDPY_{k}}{\sum_{k} EDPY_{k}}$$
 Equation 21

To simplify the calculation, the SE of combined food groups are calculated using Equation 12 with a weighing factor being a fraction of corresponding EDPY on Equation 21 (see Column I). The third step is to calculate GM and GSD using the AM and SD with assuming a lognormal distribution using Equation 15 to Equation 18 (see Columns J and K). The calculated GM and GDS are not used, but verify the normal distribution for consumption rates, because GSD are close to 1. The last step is to calculate a lower bound and an upper bound using Equation 22 and Equation 23 for a normal distribution (see Columns L and M):

$$LB = AM - 2.576 \times SE$$
 Equation 22

$$UB = AM + 2.576 \times SE$$
 Equation 23

The daily food consumption rates shown in Table 97 are based on the CADI with AM and SE. The mean of CADI is comparable with the EPA suggestion with 188 g/day for total vegetables and 173 g/day for fruit (EPA 1997 [DIRS 152549], Table 9-19 and 9-18). However, the range of CADI is much narrower than the EPA suggestion, in which a ratio of about 3 is observed between the 95th percentile value and the mean for meat consumption (EPA 1997 [DIRS 152549], Section 9.3). The EPA report also states that the data are collected over a 3-day period and may not necessarily reflect the long-term distribution of average daily intake rates. This implies that the upper percentiles shown here will tend to overestimate the corresponding percentiles of the true long-term distribution (EPA 1997 [DIRS 152549], Section 9.3). Therefore, the food consumption rates developed here are reasonable covering the variation on an annual average as required by the GENIIv2. A large variation observed by the EPA survey is likely due to consumption rates based on a daily average. In addition, there are eight food categories considered in the model, and it is also unlikely that a receptor consumes all food categories at the high rates. Furthermore, a very large range for the consumption rates.

Food Type	GENIIv2 Parameter Symbol	Food Consumption Rates (kg/day) (Mean Value)	Food Consumption Rates (kg/day) (Normal Distribution and Values)
Leafy Vegetables	UCRP	0.123	AM = 0.123, SE = 0.022 Min = 0.067 and Max = 0.180
Root Vegetables	UCRP	0.141	AM = 0.141, SE = 0.010 Min = 0.116 and Max = 0.167
Fruit	UCRP	0.185	AM = 0.185, SE = 0.008 Min = 0.163 and Max = 0.206
Grain	UCRP	0.336	AM = 0.336, SE = 0.011 Min = 0.307 and Max = 0.366
Meat	UANM	0.098	AM = 0.098, SE = 0.008 Min = 0.078 and Max = 0.119
Poultry	UANM	0.110	AM = 0.110, SE = 0.010 Min = 0.084 and Max = 0.136
Milk	UANM	0.348	AM = 0.348, SE = 0.017 Min = 0.303 and Max = 0.392
Eggs	UANM	0.109	AM = 0.109, SE = 0.010 Min = 0.083 and Max = 0.135

	Table 97.	Food	Consumption	Rates
--	-----------	------	-------------	-------

Source: Section 4.1.5.1, Table 54, and Consumption_Rate_Period.xls

7.5.8 Inadvertent Soil Ingestion Rate

Inadvertent soil ingestion rate provided in Section 4.1.5.2 is represented by a piece-wise cumulative probability distribution, which is converted to a distribution that GENIIv2 can accept. The conversion is performed stochastically in the GoldSim file: *Distribution_Comparison.gsm*. The GoldSim element for the calculation is *SoiConsump_Cumulative_Dist*, whose output is copied into the *Rpt_Param* worksheet in the Excel file of *Distribution_Comparison.xls* to calculate geometric mean, and geometric standard deviation (see cells K1003:N1009). The original minimum and maximum values from the cumulative distribution are selected for a lower bound and an upper bound for the developed distribution curves for the calculated distribution (GoldSim element: *SoiConsump_Cumulative_Dist*) and developed distribution (GoldSim element: *SoiConsump_Cumulative_Dist*) and developed distribution (GoldSim element: *SoiConsump_Cumulative_Dist*) is shown in Figure 27.

Table 98. In	advertent Soil Ingestion Rate
--------------	-------------------------------

Parameter Name	GENIIv2 Parameter Symbol	Soil Ingestion Rate (mg/day) (Mean Value)	Soil Ingestion Rate (mg/day) (Distribution and Value)
Soil Ingestion Rate	USOIL	104	Lognormal Distribution: GM = 104, GSD = 1.49
			Min = 50 and Max = 200

Source: Section 4.1.5.2, and Excel file of *Distribution_Comparison.xls*

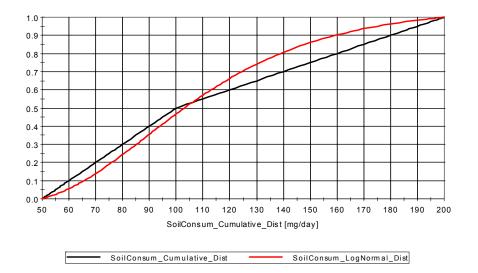


Figure 27. Comparison of Distributions for Inadvertent Soil Ingestion Rate

Inadvertent soil ingestion rate developed in the Biosphere Model is based on an average daily rate continuously throughout entire year (BSC 2005 [DIRS 172827], Section 6.4.3). The parameter of soil contact days used in the GENIIv2 is a fixed value as shown in Table 99.

Table 99.	Soil Contact Days
-----------	-------------------

Parameter Name	GENIIv2 Parameter	Soil Contact Day (day/yr)	Soil Contact Day (day/yr)
	Symbol	(Mean Value)	(Distribution and Value)
Soil Contact Days	TSOIL	365	None

Source: Section 4.1.5.2

7.5.9 Receptor Parameters for 95th Percentile Deterministic Calculations

As required by regulation (10 CFR 63.204) for the preclosure safety analysis, the receptor for the offsite in the general environment is "any real member of the public located beyond the boundary of the site." One method to demonstrate compliance is to perform a deterministic dose calculation with receptor characteristics that bound those of any real member of the public. In this case, individual parameter values are selected at the 95th percentile level instead of using the mean values for the receptor related parameters including food consumption rates, food consumption periods, external and inhalation exposure times. The use of the 95th percentile input values for each parameter provides a conservatively calculated dose, because it represents a maximized combination of receptor characteristics.

The 95th percentile values are calculated using the following equations for normal and lognormal distributions, respectively:

$95^{th} = AM + 1.645 \times SE$	Equation 24
1 (45	

$$95^m = GM \times GSD^{1.045}$$
 Equation 25

The calculation of food consumption rates and food consumption periods is performed in the Columns N and Z in the file of *Consumption_Rate_Period.xls*, respectively. The results are shown in Table 100.

Food Type	GENIIv2 Parameter Symbol	Food Consumption Rates (kg/day) (95 th Percentile Value)	Food Consumption Period (day/yr) (95 th Percentile Value)
Leafy Vegetables	UCRP and TCRP	0.159	99
Root Vegetables	UCRP and TCRP	0.158	100
Fruit	UCRP and TCRP	0.198	180
Grain	UCRP and TCRP	0.355	3
Meat	UANM and TANM	0.112	99
Poultry	UANM and TANM	0.126	14
Milk	UANM and TANM	0.376	52
Eggs	UANM and TANM	0.125	150

Table 100. Food Consumption Rates and Periods – 95 th Percentile	Table 100.	Food Consumption	on Rates and Periods -	- 95 th Percentile
---	------------	------------------	------------------------	-------------------------------

Source: Table 96, Table 97, and Consumption_Rate_Period.xls

The 95th percentile values for other receptor related parameters discussed previously are calculated using Equation 24 and Equation 25 for normal and lognormal distributions. A fixed value is considered as bounding and is used directly for the deterministic calculation as shown in Table 101.

Table 101. The 95 th Percentile Values for Other Receptor Related Parameter	ers
--	-----

Parameter	GENIIv2 Parameter Symbol	Units	95 th Percentile Value	
Soil Ingestion:				
Soil Ingestion Rate	USOIL	mg/day	193	
Soil Contact Days	TSOIL	day	365	
External Exposure:				
Yearly exposure period for air submersion	TEXAIR	day/yr	365	
Yearly exposure period for ground shine	TEXGRD	day/yr	365	
Daily exposure period for air submersion	UEXAIR	hr/day	22.7	
Daily exposure period for ground shine	UEXGRD	hr/day	24	
Fraction of daily time spent indoors	FTIN	-	0.65	
Fraction of daily time spent outdoors	FTOUT	-	0.33	
Inhalation Pathway:				
Air inhalation period	TINH	day/yr	365	
Resuspended soil inhalation period	TINHR	day/yr	365	
Air inhalation fraction	FRINH	-	0.95	
Resuspended soil inhalation fraction	FRINHR	-	0.33	
Inhalation rate for chronic exposure	UINH and UINHR	m³/day	21.9	
Inhalation rate for acute exposure	UINH and UINHR	m³/day	30.2	

Source: Table 89 to Table 91, Table 93 to Table 95, and Table 99.

7.6 METEOROLOGICAL RELATED PARAMETERS

7.6.1 Absolute Humidity

Absolute humidity is used to calculate tritium concentration in food pathways. The parameter is developed using site-specific meteorological data discussed in Section 3.1.1. Values and distributions for the absolute humidity are summarized in Table 102.

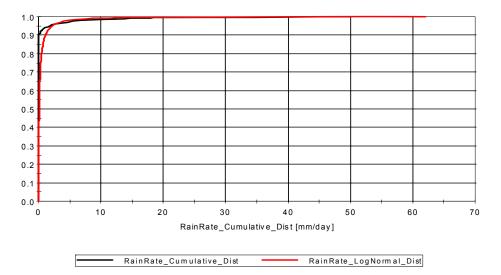
Parameter Name	GENIIv2 Parameter Symbol	Absolute Humidity (kg/m³) (Deterministic Value)	Absolute Humidity (kg/m ³) (Distribution and Value)
Average Absolute Humidity	400////		Lognormal Distribution:
	ABSHUM	4.08E-3	GM = 3.63E-3, GSD = 1.63 Min = 3.9E-4 and Max = 1.64E-2

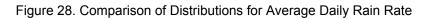
Source: Section 3.1.1

7.6.2 Average Daily Rain Rate

Average daily rain rate is used to estimate the interception fraction from rain when wet deposition rates are determined in an atmospheric transport module, and the user has selected the option to allow the code to calculate the wet deposition interception fraction.

Although the screen on the chronic exposure module asks the average daily rain rate when raining, it is actually a yearly total average rate. The annual average interception fraction for vegetation is estimated using that rainfall rate. The deposition on crops is then treated as a continuous process, similarly to what is done for dry deposition (Napier et al. 2004 [DIRS 177331], Section 9.4.1.4).


Using method provided in Section 7.5.6, the calculated mean of 0.49 mm/day and SD of 2.88 mm/day provided in Section 3.1.2 is converted to GM of 0.10 mm/day and GSD of 6.62 when a lognormal distribution is assumed. The calculation is performed in the cells G2:J3 in the *Rain_Rate* worksheet of Excel file of *Distribution_Comparison.xls*. A lower bound of 0 mm/day is selected for no precipitation. An upper bound of 100 mm/day is selected based on the measured maximum value (52.07 mm/day, cell B1813 in the *Rain_Rate* worksheet of Excel file of *Distribution_Comparison.xls*. The suggested average daily rain rate is shown in Table 103.


A cumulative distribution using calculated daily rain rate is constructed in the *Rain_Rate* worksheet of Excel file of *Distribution_Comparison.xls*. Column B in the *Rain_Rate* worksheet is copied from the Column *Daily Precip (mm/day)* in the *MetData* worksheet of the Excel file *Absolute_Humidity.xls* mentioned in Attachment I. The data are sorted and percentile values are assigned for each daily rain rate. Values of the cumulative distribution are listed in Column D and Column E in the *Rain_Rate* worksheet of Excel file of *Distribution_Comparison.xls*.

The comparison of cumulative distribution function curves in the GoldSim element of *RainRate* between the cumulative distribution in GoldSim element of *RainRate_Cumulative_Dist* and developed distribution in GoldSim element *RainRate_LogNorma_Dist* is shown in Figure 28.

Parameter Name	GENIIv2 Parameter Symbol	Average Rain Rate (mm/day) (Deterministic Value)	Average Rain Rate (mm/day)	
Average Daily Rain Rate	RAIN	0.49	Lognormal Distribution: GM =0.10, GSD = 6.62	
			Min = 0 and Max = 100	

Source: Section 3.1.2 and Distribution_Comparison.xls

7.6.3 Wind Speed

The straight-line Gaussian plume model is defined under the assumption of a non-zero wind speed, because of infinite concentration and no direction defined (Napier et al. 2006 [DIRS 177331], Section 5.1.6). The GENIIv2 provides a method to solve the problem by introducing a minimum wind speed for calm winds. Per Section 3.1.3, based on the wind speed measurements during the five years period, the mean wind speed is 3.64 m/s and its SD is 2.02 m/s with the minimum wind speed of 0.45 m/s, and the maximum wind speed of 17.8 m/s. With minimum wind speed of 0.45 m/s, the calm wind situation may not occur at the Yucca Mountain.

Two parameters in the GENIIv2 are related to the minimum wind speed, *ARMINRISESPD* for *minimum wind speed during plume rise*, and *ARMINWIND* for *maximum wind speed for calm*. The two parameters can use the minimum wind speed of 0.4 m/s, as shown in Table 104.

Parameter Name	GENIIv2 Parameter Symbol	Wind Speed (m/s) (Deterministic Value)	Wind Speed (m/s) (Distribution and Value)		
minimum wind speed during plume rise	ARMINRISESPD	0.4	None		
maximum wind speed for calm	ARMINWIND	0.4	None		

Table 104. Wind Speed

Source: Section 3.1.3

7.6.4 Ambient Air Temperature

Another parameter measured in the Yucca Mountain is ambient air temperature. Per Section 3.1.4, the mean temperature is 17.04° C and SD of 10.13° C with the minimum of -7.5° C and the maximum of 42.31° C. The GENIIv2 parameter is the *ambient air temperature (six)*, as shown in Table 105.

Parameter Name	GENIIv2 Parameter Symbol	Ambient air temperature (°C) (Deterministic Value)	Ambient air temperature (°C) (Distribution and Value)	
Auchieutein			Normal Distribution:	
Ambient air temperature	six	17.04	Mean = 17.04, SD = 10.13	
			Min = -7.5 and Max = 42.31	

Source: Section 3.1.4

7.6.5 Transfer Resistance

Dry deposition velocity for soil particle resuspension is discussed in Section 7.1.5. This parameter is used to calculate particle deposition velocity from the atmospheric dispersion. In general, the deposition velocities observed for any particular material have a wide range of values. Nevertheless, the deposition velocity is frequently assumed to be constant. More realistically, the dry deposition velocity may be modeled using an analogy to electrical resistance, which is one of the options provided in the GENIIv2 (Napier et al. 2006 [DIRS 177331], Section 5.3.5.1). The input data of transfer resistance is in Section 4.1.6.5.

Following the resistance analogy, dry deposition velocities are equal to the reciprocal of the sum of the three component resistances: an aerodynamic resistance, a surface resistance, and a transfer resistance. The aerodynamic resistance is a function of wind speed, atmospheric stability, and surface roughness. The surface resistance is a function of wind speed and surface roughness. Transfer resistances are usually associated with the characteristics of the depositing material and surface type (Ramsdell et al. 1996 [DIRS 177811], p.570). The transfer resistance is used as a mathematical device to establish an upper limit on the deposition velocity. The GENIIv2 user can enter transfer resistances, but as a default, 10 and 100 s/m are assumed for gas (iodine) and particles, respectively (Napier et al. 2006 [DIRS 177331], Section 5.3.5.1). By using these values, the mathematical model for the dry deposition velocities are consistent with experimentally determined deposition velocities as discussed in NUREG/CR-6853 (Molenkamp et al. 2004 [DIRS 177808], p.13). Therefore, the transfer resistances, 10 and 100 s/m for gas (iodine) and particles recommended from these references are considered as the best available data.

It is noted that a single value of 100 s/m for transfer resistance is used to calculate general public atmospheric dispersion factors as discussed in Attachment I, as a conservative approach. However, if the disersion factors are calculated using GENIIv2, the two separate values can be used to reduce the conservatism if needed. The commanded values are shown in Table 106.

Parameter Name	GENIIv2 Parameter Symbol	Transfer Resistance (s/m) (Deterministic Value)	Transfer Resistance (s/m) (Distribution and Value)		
Transfer Resistance for Particles	ARTRANSRESIST	100	None		
Transfer Resistance for Iodine	ARTRANSRESIST	10	None		

Table 106.	Transfer Resistance
------------	---------------------

Source: Section 4.1.6.5

7.6.6 Meteorological Data File

A meteorological data file for the Yucca Mountain site is generated and discussed in Attachment I. The file, *ymp01-05.met* contains date, time, stability class, wind direction, wind speed, temperature, mixing height, precipitation code, precipitation rate, and weighting factor in the GENIIv2 format (Napier 2006 [DIRS 177330] Appendix B).

The meteorological data file, *ymp01-05.met*, is selected in the GENIIv2 plume module. The cloud shine library file is also needed, and the GENIIv2 default file, *cshnlib.dat* is used.

7.7 DOSIMETRIC RELATED PARAMETERS

The references for dose coefficients for external, inhalation and ingestion are provided in Section 4.1.7. There is no specific calculation needed for these dosimetric parameters, as these values are recommended by regulatory guidance. However, the appropriate dosimetric methodologies (e.g. FGR-11/12 or FGR-12/13), lung absorption class (see Table 57), and receptor age, must be selected as discussed in Section 4.1.7.

If FGR-11/12 method is selected in GENIIv2, dose conversion factors for inhalation and ingestion and external dose coefficients are those located in the GENIIv2 database file *GENII.MDB*. If FGR-12/13 method is selected in GENIIv2, effective dose coefficients for inhalation and ingestion are those in the GENIIv2 text files *FGR13INH.HDB* and *FGR13ING.GDB*, respectively. The external dose coefficients for air submersion, exposure to surface contaminated soil and exposure to infinite contaminated soil are those in the GENIIv2 text files *F12TIII1.EXT*, *F12TIII3.EXT*, *F12TIII7.EXT*, respectively.

The inhalation lung absorption classes (*SOLUBIL*, *lung solubility class* in the database file *GENII.MDB*, or CLLCLAS, *lung transfer inhalation class*, in GENIIv2 screen menu) for nongaseous elements are shown in Table 57. Six noble gases, He, Ne, Ar, Kr, Xe, and Rn, and two common gas elements, O and N are categorized as *gas* lung class. The organically bound tritium (OBT) is treated as *slow* lung absorption class. A complete summary of selected lung solubility classes, including gases, is shown in Table 107.

Element	Atomic No.	Lung Solubility Class	Element	Atomic No.	Lung Solubility Class	Element	Atomic No.	Lung Solubility Class
Hydrogen	1	vapor	Rubidium	37	fast	Ytterbium	70	slow
Beryllium	4	slow	Strontium	38	medium	Lutetium	71	slow
Carbon	6	gas	Yttrium	39	slow	Hafnium	72	medium
Nitrogen	7	gas	Zirconium	40	medium	Tantalum	73	slow
Oxygen	8	gas	Niobium	41	medium	Tungsten	74	fast
Fluorine	9	slow	Molybdenum	42	medium	Rhenium	75	medium
Neon	10	gas	Technetium	43	medium	Osmium	76	slow
Sodium	11	fast	Ruthenium	44	medium	Iridium	77	slow
Magnesium	12	medium	Rhodium	45	slow	Platinum	78	fast
Aluminum	13	medium	Palladium	46	slow	Gold	79	slow
Silicon	14	medium	Silver	47	medium	Mercury	80	medium
Phosphorus	15	fast	Cadmium	48	slow	Thallium	81	fast
Sulfur	16	fast	Indium	49	medium	Lead	82	medium
Chlorine	17	medium	Tin	50	medium	Bismuth	83	medium
Argon	18	gas	Antimony	51	medium	Polonium	84	medium
Potassium	19	fast	Tellurium	52	medium	Astatine	85	medium
Calcium	20	medium	lodine	53	fast	Radon	86	gas
Scandium	21	slow	Xenon	54	gas	Francium	87	fast
Titanium	22	medium	Cesium	55	fast	Radium	88	medium
Vanadium	23	medium	Barium	56	medium	Actinium	89	slow
Chromium	24	slow	Lanthanum	57	medium	Thorium	90	slow
Manganese	25	medium	Cerium	58	medium	Protactinium	91	slow
Iron	26	medium	Praseodymium	59	slow	Uranium	92	slow
Cobalt	27	slow	Neodymium	60	slow	Neptunium	93	medium
Nickel	28	medium	Promethium	61	slow	Plutonium	94	slow
Copper	29	slow	Samarium	62	medium	Americium	95	medium
Zinc	30	slow	Europium	63	medium	Curium	96	medium
Gallium	31	medium	Gadolinium	64	medium	Berkelium	97	medium
Germanium	32	medium	Terbium	65	medium	Californium	98	medium
Arsenic	33	medium	Dysprosium	66	medium	Einsteinium	99	medium
Selenium	34	fast	Holmium	67	medium	Fermium	100	medium
Bromine	35	medium	Erbium	68	medium	Mendelevium	101	medium
Krypton	36	gas	Thulium	69	medium	OBT	-	slow

Source: Section 4.1.7.5

INTENTIONALLY LEFT BLANK

8. GENIIv2 INPUT PARAMETERS

Input to GENIIv2 is organized by module. Each module has several menu screens that provide for selection of parameter options and entry of specific values. This section provides a summary of YMP site-specific values for GENIIv2 organized by module and menu screen and also identifies YMP default files that can be used to automatically enter those values.

8.1 GENIIv2 AIR FLUX AND PLUME MODULE INPUT PARAMETERS

The GENIIv2 air flux and plume modules include parameters that define the radionuclide release to the environment and air dispersion of that release. The radionuclide release is defined in a "user defined" Air Flux module that determines the radionuclide particle type and characteristics, release rate, and exhaust characteristics. One of two atmospheric dispersion modules: Acute Plume and Chronic Plume, is then selected to input parameters that determine the dispersion characteristics. No default files are available to automate the data entry for the Air Flux and Plume modules.

8.1.1 AFF Air Flux Module

Most of Air Flux input parameters are scenario dependent. The table below provides the input parameters for each sub-menu screen.

Parameter	Description	YMP Value	Units	Reference
	Type of Release Sub-Menu:			
media	Point	TRUE	T/F	Table 112
media	Area	FALSE	T/F	Table 112
one	Exit area of source	Scenario dependent	m²	Table 112
two	Exit height of source	Scenario dependent	m	Table 112
three	Height of adjacent structure	Scenario dependent	m	Table 112
four	Exit velocity of source	Scenario dependent	m/s	Table 112
five	Exit temperature of source	Scenario dependent	deg C	Table 112
six	Ambient air temperature	17.04	deg C	Table 105
	Flux Type Sub-Menu:			
fluxtypes	Gas1	TRUE	T/F	Table 112
reactivefrac	Non reactive fraction	Scenario dependent	fraction	Table 112
reactivedensity	Density	Scenario dependent	g/cm ³	Table 112
fluxtypes	Particle n (n= 1, 2, 3)	TRUE	T/F	Table 112
radius	radius	Scenario dependent	um	Table 112
density	density	Scenario dependent	g/cm ³	Table 112
	Constituent Sub-Menus:			
CASID	Constituent (Radionuclide name)	Scenario dependent	-	Table 112
ctime	Time	Scenario dependent	yr	Table 112
cval	Constituent flux for Gas1	Scenario dependent	pCi/yr	Table 112
cval	Constituent flux for Particle n (n=1, 2, 3)	Scenario dependent	pCi/yr	Table 112

8.1.2 Acute and Chronic Air Transport Modules

There are four air transport modules used for YMP dose analyses: 1) acute plume, 2) chronic plume, 3) X/Q acute and 4) X/Q chronic. The first two modules calculate atmospheric dispersion X/Q's and deposition rates from hourly meteorological data based on input data in this section. The second two modules allow the user to enter pre-calculated X/Q values and deposition rates.

8.1.2.1 Source Information Menu

Parameter	Description	YMP Value	Units	Reference
ARSRCDORISEFLAG	Do Plume Rise	FALSE	T/F	Table 113
ARSRCDODISPFLAG	Use Enhanced Dispersion	FALSE	T/F	Table 113

8.1.2.2 Model Information Menu

8.1.2.2.1 Radial Grid Definition Sub-Menu

Parameter	Description	YMP Value	Units	Reference
ARNUMRECRING	16 Sectors in Radial Grid	TRUE	T/F	Table 113
ARNUMRECRING	36 Sectors in Radial Grid	FALSE	T/F	Table 113
ARRADVAL	Radial Distances	Scenario dependent	m	Table 113

8.1.2.2.2 Model Parameters Sub-Menu

Parameter	Description	YMP Value	Units	Reference
ARSIGPARM	Pasquill-Gifford (ISC3)	FALSE	T/F	Table 113
ARSIGPARM	Pasquill-Gifford (NRC)	TRUE	T/F	Table 113
ARSIGPARM	Brigg's Urban Condition	FALSE	T/F	Table 113
ARSIGPARM	Brigg's Open Country	FALSE	T/F	Table 113
ARSIGPARM	Turbulence Statistics	FALSE	T/F	Table 113
ARCALMDISTFLAG	User's supplied calm wind distribution	FALSE	T/F	Table 113

8.1.2.3 Default Parameters Sub-Menu

Parameter	Description	YMP Value	Units	Reference
ARMINRISESPD	Minimum wind speed during plume rise	0.4	m/s	Table 104
	Sigma to shift to semi-infinite cloud shine	400	m	See Note
ARTRANSRESIST	Transfer resistance for iodine	10	s/m	Table 106
ARTRANSRESIST	Transfer resistance for particles	100	s/m	Table 106
ARMINWIND	Maximum wind speed for "calm"	0.4	m/s	Table 104

Note: A semi-infinite plume is selected in the pathway menu, so the 400 m value is not used.

8.1.2.4 Meteorological Files Sub-Menu

Parameter	Description	YMP Value	Units	Reference
ARMETFILE	Path and Name of Meteorological data file	Ymp01-05.met	-	Section 7.6.6
ARCLDSHNLIB	Path and Name of Cloud Shine Library	cshinlib.dat	-	Section 7.6.6

Note: Include path name to each file name based on its location for the GENIIv2 run.

8.2 GENIIv2 CHRONIC EXPOSURE MODULE INPUT PARAMETERS

The GENIIv2 Chronic Exposure module calculates concentrations in media resulting from a radionuclide release. The Chronic Exposure module uses as input radionuclide concentrations in air as generated by the Air Transport module. The output is the radionuclide concentration in various exposure media (air, crops, animal products, soil, etc.). The exposure pathways depend on the receptors and scenarios, which is discussed in Table 1.

Input parameters in the Chronic Exposure module can be manually entered from menu screens (see Section 8.2.1), or transferred directly from a default file (see Section 8.2.2).

8.2.1 Chronic Exposure Module Menu Screens

Parameters are organized by Chronic Exposure module menu screen. Only those parameters required for the pathways shown in Table 1 are provided with YMP input data. Parameters not used in the YMP site-specific calculations with GENIIv2 are either not discussed or designated with a "-".

Parameter	Description	YMP Value	Units	Reference
ANFOOD	Animal product ingestion	TRUE	T/F	Assumption 3.2.3
TFOOD	Terrestrial food crop ingestion	TRUE	T/F	Assumption 3.2.3
AQFOOD	Aquatic food ingestion	FALSE	T/F	Assumption 3.2.3
RECRE	Recreational surface water	FALSE	T/F	Assumption 3.2.3
DEBUG	Debug testing	-	T/F	User option
NTKEND	Duration of exposure period	1	yr	Section 7.5.1
RELEND	End of release period	50	yr	Section 7.5.1
BEFORE	Time from start to exposure	49	yr	Section 7.5.1
ABSHUM	Absolute humidity	0.00408	kg/m ³	Table 102
RF1	Fraction of plants roots in surface soil	1.0	fraction	Assumption 3.2.6
RAIN	Average daily rain rate, when raining	0.49	mm/day	Table 103
BEFAIR	Air deposition time prior to exposure	49	yr	Section 7.5.1

8.2.1.1 Controls Menu (C1)

8.2.1.2 Water Menus (C2 to C6)

These menus are not used, because water is not contaminated in the YMP air dispersion scenario.

8.2.1.3 Soil Menus

Parameter	Description	YMP Value	Units	Reference
LEACHOPTION	Type of leach rate constant	1	Menu Option	"calculated from user input"
THICK	Surface soil thickness for leaching	25	cm	Table 80
MOISTC	Surface soil moisture content	0.20	-	Table 78
BULKD	Surface soil bulk density	1.5	g/cm ³	Table 75
VLEACH	Total infiltration rate	7.9	cm/yr	Table 81
	Parent soil absorption coefficient (Kd)			
CASID	Radionuclide name	Table 77	-	Section 7.2.2
SOILKD	Soil adsorption coefficient (Kd)	Table 77	L/kg	Section 7.2.2

8.2.1.3.1 Soil-Leaching Sub-Menu (C7)

8.2.1.3.2 Soil-Resuspension Sub-Menu (C8)

Parameter	Description	YMP Value	Units	Reference
IRES	Type of model to run	1	menu	"mass loading model"
XMLF	Mass loading factor for resuspension model	6.0E-04	g/m ³	Table 87
AVASL	Depth of top soil available for resuspension	0.2	cm	Table 88
RESFAC	Resuspension factor	-	1/m	Not Used

8.2.1.3.3 Soil-Surface Soil Sub-Menu (C9)

Parameter	Description	YMP Value	Units	Reference
SLDN	Surface soil area density	375	kg/m ²	Table 79
SURCM	Surface soil layer thickness used for density	25	cm	Table 80
SSLDN	Surface soil density	1500	kg/m ³	Table 75

8.2.1.4 Agriculture Menus

8.2.1.4.1 Agriculture-General Sub-Menu (C10)

Parameter	Description	YMP Value	Units	Reference
HARVEST	Radionuclide removal due to harvesting	FALSE	T/F	Assumption 3.2.11
DRYSET	User defined dry deposition interception fraction to plants	FALSE	T/F	Use Model Equation
DEPFR1	Dry deposition interception fraction to plants	-	fraction	Not Used
WETSET	User defined wet deposition interception fraction to plants	FALSE	T/F	Use Model Equation
DEPFR2	Wet deposition interception fraction to plants	-	fraction	Not Used
LEAFRS	Resuspension factor from soil to plant surfaces	3.2E-10	1/m	Table 86
DVPRES	Deposition velocity from soil to plant surfaces	8E-03	m/s	Table 72
WTIM	Weathering rate constant from plants	14	day	Table 71

Parameter	Description	YMP Value	Units	Reference
YELDA(6)	Yield of:			
	meat animal feed (grain)	0.59	kg(wet)/m ²	Table 84
	poultry animal feed (grain)	0.59	kg(wet)/m ²	Table 84
	milk animal feed (grain)	0.59	kg(wet)/m ²	Table 84
	egg animal feed (grain)	0.59	kg(wet)/m ²	Table 84
	meat animal forage (pasture grass)	2.14	kg(wet)/m ²	Table 84
	milk animal forage (pasture grass)	2.14	kg(wet)/m ²	Table 84

8.2.1.4.2 Agriculture-Animal Feed-Yield Sub-Menu (C11)

8.2.1.4.3 Agriculture-Animal Feed-Dry/Wet Ratio Sub-Menu (C12)

Parameter	Description	YMP Value	Units	Reference
DRYFA2(6)	Dry/wet weight ratio for:			
	meat animal feed (grain)	0.903	fraction	Table 83
	poultry animal feed (grain)	0.903	fraction	Table 83
	milk animal feed (grain)	0.903	fraction	Table 83
	egg animal feed (grain)	0.903	fraction	Table 83
	meat animal forage (pasture grass)	0.220	fraction	Table 83
	milk animal forage (pasture grass)	0.220	fraction	Table 83

8.2.1.4.4 Agriculture-Animal Feed-Translocation Factor Sub-Menu (C13)

Parameter	Description	YMP Value	Units	Reference
TRANSA(6)	Translocation factor of:			
	meat animal feed (grain)	0.1	fraction	Table 70
	poultry animal feed (grain)	0.1	fraction	Table 70
	milk animal feed (grain)	0.1	fraction	Table 70
	egg animal feed (grain)	0.1	fraction	Table 70
	meat animal forage (pasture grass)	1.0	fraction	Table 70
	milk animal forage (pasture grass)	1.0	fraction	Table 70

8.2.1.4.5 Agriculture-Animal Feed-Soil Intake Sub-Menu (C14)

Parameter	Description	YMP Value	Units	Reference
SLCONA(4)	Soil intake rate for:			
	meat animal	0.70	kg/day	Table 74
	poultry animal	0.02	kg/day	Table 74
	milk animal	0.95	kg/day	Table 74
	egg animal	0.02	kg/day	Table 74

Parameter	Description	YMP Value	Units	Reference
BIOMA2(6)	Standing biomass (wet) for:			
	meat animal feed (grain)	1.25	kg(wet)/m ²	Table 82
	poultry animal feed (grain)	1.25	kg(wet)/m ²	Table 82
	milk animal feed (grain)	1.25	kg(wet)/m ²	Table 82
	egg animal feed (grain)	1.25	kg(wet)/m ²	Table 82
	meat animal forage (pasture grass)	2.14	kg(wet)/m ²	Table 82
	milk animal forage (pasture grass)	2.14	kg(wet)/m ²	Table 82

8.2.1.4.6 Agriculture-Animal Feed-Standing Biomass Sub-Menu (C15)

8.2.1.4.7 Agriculture-Animal Feed-Consumption Sub-Menu (C16)

Parameter	Description	YMP Value	Units	Reference
CONSUM(6)	Consumption rate of:			
	meat animal feed (grain)	0.0	kg(wet)/day	Assumption 3.2.7
	poultry animal feed (grain)	0.26	kg(wet)/day	Table 73
	milk animal feed (grain)	0.0	kg(wet)/day	Assumption 3.2.7
	egg animal feed (grain)	0.26	kg(wet)/day	Table 73
	meat animal forage (pasture grass)	48.5	kg(wet)/day	Table 73
	milk animal forage (pasture grass)	61.5	kg(wet)/day	Table 73

8.2.1.4.8 Agriculture-Animal Feed-Storage Time Sub-Menu (C17)

Parameter	Description	YMP Value	Units	Reference
STORTM(6)	Storage time for:			
	meat animal feed (grain)	0	day	Assumption 3.2.8
	poultry animal feed (grain)	0	day	Assumption 3.2.8
	milk animal feed (grain)	0	day	Assumption 3.2.8
	egg animal feed (grain)	0	day	Assumption 3.2.8
	meat animal forage (pasture grass)	0	day	Assumption 3.2.8
	milk animal forage (pasture grass)	0	day	Assumption 3.2.8

8.2.1.4.9 Agriculture-Animal Feed-Diet Fraction Sub-Menu (C18)

Parameter	Description	YMP Value	Units	Reference
DIETFR(6)	Fraction of diet that is contaminated:			
	meat animal feed (grain)	0.0	fraction	Assumption 3.2.7
	poultry animal feed (grain)	1.0	fraction	Assumption 3.2.9
	milk animal feed (grain)	0.0	fraction	Assumption 3.2.7
	egg animal feed (grain)	1.0	fraction	Assumption 3.2.9
	meat animal forage (pasture grass)	1.0	fraction	Assumption 3.2.9
	milk animal forage (pasture grass)	1.0	fraction	Assumption 3.2.9

Parameter	Description	YMP Value	Units	Reference
GRWPA(6)	Growing period for:			
	meat animal feed (grain)	200	day	Table 85
	poultry animal feed (grain)	200	day	Table 85
	milk animal feed (grain)	200	day	Table 85
	egg animal feed (grain)	200	day	Table 85
	meat animal forage (pasture grass)	75	day	Table 85
	milk animal forage (pasture grass)	75	day	Table 85

8.2.1.4.10 Agriculture-Animal Feed-Growing Period Sub-Menu (C19)

8.2.1.4.11 Agriculture-Food Crop-Standing Biomass Sub-Menu (C20)

Parameter	Description	YMP Value	Units	Reference
BIOMAS(4)	Standing biomass (wet) for:			
	leafy vegetables	3.30	kg(wet)/m ²	Table 82
	root vegetables	4.17	kg(wet)/m ²	Table 82
	fruits	5.17	kg(wet)/m ²	Table 82
	grains	1.25	kg(wet)/m ²	Table 82

8.2.1.4.12 Agriculture-Food Crop-Growing Period Sub-Menu (C21)

Parameter	Description	YMP Value	Units	Reference
GRWP(4)	Growing period for:			
	leafy vegetables	75	day	Table 85
	root vegetables	80	day	Table 85
	fruits	160	day	Table 85
	grains	200	day	Table 85

8.2.1.4.13 Agriculture-Food Crop-Yield Sub-Menu (C22)

Parameter	Description	YMP Value	Units	Reference
YELD(4)	Yield of:			
	leafy vegetables	3.30	kg(wet)/m ²	Table 84
	root vegetables	4.13	kg(wet)/m ²	Table 84
	fruits	2.75	kg(wet)/m ²	Table 84
	grains	0.59	kg(wet)/m ²	Table 84

8.2.1.4.14 Agriculture-Food Crop-Dry/Wet Ratio Sub-Menu (C23)

Parameter	Description	YMP Value	Units	Reference
DRYFAC(4)	Dry/wet weight ratio of:			
	leafy vegetables	0.070	kg(wet)/m ²	Table 83
	root vegetables	0.103	kg(wet)/m ²	Table 83
	fruits	0.120	kg(wet)/m ²	Table 83
	grains	0.903	kg(wet)/m ²	Table 83

Parameter	Description	YMP Value	Units	Reference
TRANS(4)	Translocation factor of:			
	leafy vegetables	1.0	kg(wet)/m ²	Table 70
	root vegetables	0.1	kg(wet)/m ²	Table 70
	fruits	0.1	kg(wet)/m ²	Table 70
	grains	0.1	kg(wet)/m ²	Table 70

8.2.1.4.15 Agriculture-Food Crop-Translocation Factor Sub-Menu (C24)

8.2.1.4.16 Agriculture-Intake Delay Sub-Menu (C25)

Parameter	Description	YMP Value	Units	Reference
HLDUP(4)	Time from harvest to ingestion of:			
	leafy vegetables	0	day	Assumption 3.2.10
	root vegetables	0	day	Assumption 3.2.10
	fruits	0	day	Assumption 3.2.10
	grains	0	day	Assumption 3.2.10
HLDUPA(4)	Time from slaughter to ingestion of:			
	meat	0	day	Assumption 3.2.10
	poultry	0	day	Assumption 3.2.10
	milk	0	day	Assumption 3.2.10
	eggs	0	day	Assumption 3.2.10

8.2.1.5 Pathways Sub-Menu (C26)

Based on Section 3.2.3, three scenarios are considered: Onsite, Offsite General Environment, and Offsite other than General Environment. The pathways listed below are for Offsite General Environment. The other two cases (Onsite, and Offsite in other than General Environment) are the same except they do not include ingestion pathway (Table 1). For those two cases all ingestion pathways as denoted by a (*) in the table below should be set to "FALSE" in the Pathway menu screen, including ingestion of meat, poultry, milk, eggs (ANF(4)), leafy vegetables, root vegetables, fruits, grains (TDF(4)) and soil (SLING).

Parameter	Description	YMP Value	Units	Reference
	Ingestion of:			
ANF(4)	meat	TRUE (*)	T/F	Assumption 3.2.3
	poultry	TRUE (*)	T/F	Assumption 3.2.3
	milk	TRUE (*)	T/F	Assumption 3.2.3
	eggs	TRUE (*)	T/F	Assumption 3.2.3
TFD(4)	leafy vegetables	TRUE (*)	T/F	Assumption 3.2.3
	root vegetables	TRUE (*)	T/F	Assumption 3.2.3
	fruits	TRUE (*)	T/F	Assumption 3.2.3
	grains	TRUE (*)	T/F	Assumption 3.2.3
AQF(4)	fish	FALSE	T/F	Assumption 3.2.3
	mollusca	FALSE	T/F	Assumption 3.2.3
	crustacean	FALSE	T/F	Assumption 3.2.3
	aquatic plants	FALSE	T/F	Assumption 3.2.3
DRINK	Drinking water	FALSE	T/F	Assumption 3.2.3
SHING	Inadvertent shower water	FALSE	T/F	Assumption 3.2.3
SWING	Inadvertent swimming water	FALSE	T/F	Assumption 3.2.3
SLING	Inadvertent soil	TRUE (*)	T/F	Assumption 3.2.3
	Inhalation of:			
INHAL	Outdoor air	TRUE	T/F	Assumption 3.2.3
SHINDR	Indoor air (shower)	FALSE	T/F	Assumption 3.2.3
SLINH	Suspended or resuspended soil	TRUE	T/F	Assumption 3.2.3
	External:			
SWDRML	Swimming	FALSE	T/F	Assumption 3.2.3
SRDRML	Boating	FALSE	T/F	Assumption 3.2.3
SHDRML	Shoreline	FALSE	T/F	Assumption 3.2.3
GROUND	Soil	TRUE	T/F	Assumption 3.2.3
AIREXT	External air	TRUE	T/F	Assumption 3.2.3
FINITE	Finite plume model	FALSE	T/F	See (**)

Notes: (*) For the receptor in the location of the Onsite and Offsite in other than General Environment, the values are FALSE, see Section 3.2.3.

(**) Based on Napier 2006 ([DIRS 177330], Sections 4.6.11 and 4.7.8), when the finite plume model is used, the external dose values are read directly from the atmospheric transport file (ATO) and no calculations are performed for this pathway in the GENII chronic or acute exposure module. Otherwise, a semi-infinite plume is assumed and the dose is to be based on the air concentration.

8.2.2 Chronic Exposure Module Default Files

For the convenience, GENIIv2 provides a capability to read user defined default values for the Chronic Exposure module in a default file, instead of manually entering all the parameter values listed above. The default file that is read by the Chronic Exposure module must be named *GNDFLcud.DEF*. It contains 198 input parameter values. The only parameters not contained in the file *GNDFLcud.DEF* are the partition coefficients (adsorption coefficients) for each

radionuclide, or chemical element, *SOILKD*. These values are contained in the *YMPGENII.mdb* database file, which is discussed in Section 8.6.

There are three default files available and one must be copied as *GNDFLcud.DEF* into the FRAMES subdirectory prior to using the default file option in GENIIv2. The three files are: *GNDFLcud.GE*, *GNDFLcud.onsite*, and *GNDFLcud.nonGE* and they contain YMP site-specific inputs for Offsite General Environment, Onsite, and Offsite in other than General Environment, respectively. Generation of the three files is discussed in Attachment E.

8.3 GENIIv2 ACUTE EXPOSURE MODULE INPUT PARAMETERS

The GENIIv2 Acute Exposure module calculates concentrations in media resulting from a radionuclide release. The module considers two time periods, one during the release and one following the release. The Acute Exposure module uses as input radionuclide concentrations in air as generated by the Air Transport module. The output is the radionuclide concentration in various exposure media (air, crops, animal products, soil, etc.). The exposure pathways depend on the receptors and scenarios, which is discussed in Table 1.

Input parameters in the Acute Exposure module can be manually entered from menu screens (see Section 8.3.1), or transferred directly from a default file (see Section 8.3.2).

8.3.1 Acute Exposure Module Menu Screens

Parameters are organized by Acute Exposure module menu screen. Only those parameters required for the pathways shown in Table 1 are provided with YMP input data. Parameters not used in the YMP site-specific calculations with GENIIv2 are either not discussed or designated with a "-".

Parameter	Description	YMP Value	Units	Reference
ANFOOD	Animal product ingestion	TRUE	T/F	Assumption 3.2.3
TFOOD	Terrestrial food crop ingestion	TRUE	T/F	Assumption 3.2.3
AQFOOD	Aquatic food ingestion	FALSE	T/F	Assumption 3.2.3
RECRE	Recreational surface water	FALSE	T/F	Assumption 3.2.3
DEBUG	Debug testing	-	T/F	User option
NTKEND	Duration of exposure period	1	yr	Assumption 3.2.5
RELEND	End of release period	0.000114	yr	Assumption 3.2.5
ACUTIM	Duration of acute exposure	0.000114	yr	Assumption 3.2.5
ABSHUM	Absolute humidity	0.00408	kg/m ³	Table 102
RF1	Fraction of plants roots in surface soil	1.0	fraction	Assumption 3.2.6
RAIN	Average daily rain rate, when raining	0.49	mm/day	Table 103

8.3.1.1 Controls Menu (A1)

8.3.1.2 Other Menus

All other menus (A2 through A26) and input parameter values for Acute Exposure module are the same as the menus (C2 through C26) and parameter values used for Chronic Exposure

module as discussed in Section 8.2.1.3 to Section 8.2.1.5. The only exception is the parameter of the acute fresh forage intake fraction that is not used for chronic exposure module.

Parameter	Description	YMP Value	Units	Reference
FRACFR	Acute fresh forage intake fraction:			
	meat animal forage (pasture grass)	0.83	fraction	Section 7.3.8
	milk animal forage (pasture grass)	0.83	fraction	Section 7.3.8

8.3.1.2.1 Agriculture-Animal Feed- Acute Forage Sub-Menu (A27)

8.3.2 Acute Exposure Module Default File

For the convenience, GENIIv2 provides a capability to read user defined default values for the Acute Exposure module in a default file, instead of manually entering all the parameter values listed above. The default file that is read by the Acute Exposure module must be named *GNDFLaud.DEF*. The only parameters not contained in the file *GNDFLaud.DEF* are the partition coefficients (adsorption coefficients) for each radionuclide, or chemical element, *SOILKD*. These values are contained in the *YMPGENII.mdb* database file, which is discussed in Section 8.6.

There are three default files available and one must be copied as *GNDFLaud.DEF* into the FRAMES subdirectory prior to using the default file option in GENIIv2. The three files are: *GNDFLaud.GE*, *GNDFLaud.onsite*, and *GNDFLaud.nonGE* and they contain YMP site-specific inputs for Offsite General Environment, Onsite, and Offsite in other than General Environment, respectively. Generation of the three files is discussed in Attachment E.

8.4 GENIIv2 RECEPTOR INTAKE MODULE INPUT PARAMETERS

The GENIIv.2 Receptor Intake module allows the user to specify age groups and parameters necessary to estimate the intake or exposure to radionuclides. Parameters are input on the Receptor Intake module menu screens. Parameters not used in the YMP site-specific calculations with GENIIv2 are either not discussed or designated with a "-".

Input parameters in the Receptor Intake module can be manually entered from menu screens (see Section 8.4.1), or transferred directly from a default file (see Section 8.4.2).

Some input parameters in Receptor Intake module menu screens below contain two values: one for an offsite individual, and one for an onsite individual. Other input parameters apply to pathways applicable only to an offsite individual as discussed in Table 1. Also some input parameters have values tabulated for both mean and 95th percentile.

8.4.1 Receptor Intake Module Menu Screens

Parameter	Description	YMP Value	Units	Reference
NAGES	Number of age groups	1	n/a	
LOWAGE	Age group lower bound	18	yrs	Defines Adult
UPAGE	Age group upper bound	70	yrs	Defines Adult
	Mean Values			
UEXAIR	Daily plume immersion exposure time	22 (* 8.5)	hr/day	Table 89
TEXAIR	Yearly plume immersion exposure time	365 (* 250)	day/yr	Table 89
	95 th Percentile Values for Offsite			
UEXAIR	Daily plume immersion exposure time	22.7	hr/day	Table 101
TEXAIR	Yearly plume immersion exposure time	365	day/yr	Table 101

8.4.1.1 Age Group Selection and External Exposure to Air Menu (R1)

Notes: values with * are for onsite individual

8.4.1.2 External Ground Exposure Menu (R2)

Parameter	Description	YMP Value	Units	Reference
SHIN	Indoor shielding factor	0.4	fraction	Table 92
SHOUT	Outdoor shielding factor	1.0	fraction	Table 92
	Mean Values			
UEXGRD	Daily external ground exposure time	24 (* 8.5)	hr/day	Table 89
TEXGRD	Yearly external ground exposure time	365 (* 250)	day/yr	Table 89
FTIN	Fraction of time spent indoors	0.61 (* 0.0)	fraction	Table 91
FTOUT	Fraction of time spent outdoors	0.31 (* 1.0)	fraction	Table 90
	95 th Percentile Values for Offsite			
UEXGRD	Daily external ground exposure time	24	hr/day	Table 101
TEXGRD	Yearly external ground exposure time	365	day/yr	Table 101
FTIN	Fraction of time spent indoors	0.65	fraction	Table 101
FTOUT	Fraction of time spent outdoors	0.33	fraction	Table 101

Notes: values with * are for onsite individual

Parameter	Description	YMP Value	Units	Reference
UCRP(4)	Mean Consumption Rates*			
	leafy vegetables	0.123	kg/day	Table 97
	root vegetables	0.141	kg/day	Table 97
	fruits	0.185	kg/day	Table 97
	grains	0.336	kg/day	Table 97
	95 th Percentile Consumption Rates for Offsite*			
	leafy vegetables	0.159	kg/day	Table 100
	root vegetables	0.158	kg/day	Table 100
	fruits	0.198	kg/day	Table 100
	grains	0.355	kg/day	Table 100
TCRP(4)	Mean Consumption Periods			
	leafy vegetables	17.9	day	Table 96
	root vegetables	22.5	day	Table 96
	fruits	54	day	Table 96
	grains	0.16	day	Table 96
	95 th Percentile Consumption Periods for Offsite			
	leafy vegetables	99	day	Table 100
	root vegetables	100	day	Table 100
	fruits	180	day	Table 100
	grains	3	day	Table 100

8.4.1.3 Food Crop Ingestion Menu (R3)

Notes: * Consumption rates are 0.0 for onsite individual and offsite in other than the General Environment.

Parameter	Description	YMP Value	Units	Reference
UAMN(4)	Mean Consumption Rates*			
	meat	0.098	kg/day	Table 97
	poultry	0.110	kg/day	Table 97
	milk	0.348	kg/day	Table 97
	eggs	0.109	kg/day	Table 97
	95 th Percentile Consumption Rates for Offsite*			
	meat	0.112	kg/day	Table 100
	poultry	0.126	kg/day	Table 100
	milk	0.376	kg/day	Table 100
	eggs	0.125	kg/day	Table 100
TANM(4)	Mean Consumption Periods			
	meat	15.1	day	Table 96
	poultry	1.4	day	Table 96
	milk	4.2	day	Table 96
	eggs	33.3	day	Table 96
	95 th Percentile Consumption Periods for Offsite			
	meat	99	day	Table 100
	poultry	14	day	Table 100
	milk	52	day	Table 100
	eggs	150	day	Table 100

8.4.1.4 Animal Product Ingestion Menu (R4)

Notes: * Consumption rates are 0.0 for onsite and offsite in other than General Environment.

8.4.1.5 Inadvertent Soil Ingestion Menu (R5)

Parameter	Description	YMP Value	Units	Reference
	Mean Ingestion Values			
TSOIL	Soil contact days	365	day/yr	Table 99
USOIL	Inadvertent soil ingestion rate	104 (* 0)	mg/day	Table 98
	95 th Percentile Soil Ingestion Values for Offsite			
TSOIL	Soil contact days	365	day/yr	Table 101
USOIL	Inadvertent soil ingestion rate	193	mg/day	Table 101

Notes: values with * are for onsite individual and offsite in other than the General Environment.

Parameter	Description	YMP Value	Units	Reference
	Mean Inhalation Values			
UINH	Air inhalation rate	21.7 (** 30.2)	m ³ /day	Table 93 & Table 101
TINH	Air inhalation period	365 (* 250)	day/yr	Table 94
FRINH	Fraction of a day outdoor inhalation occurs	0.92 (* 0.35)	fraction of day	Table 95
	95 th Percentile Inhalation Values for Offsite			
UINH	Air inhalation rate	21.9 (** 30.2)	m ³ /day	Table 101
TINH	Air inhalation period	365	day/yr	Table 101
FRINH	Fraction of a day outdoor inhalation occurs	0.95	fraction of day	Table 101

8.4.1.6 Air Inhalation Menu (R6)

Notes: values with * are for onsite individual, and value with ** is for an acute exposure.

8.4.1.7 Resuspended Soil Inhalation Menu (R7)

Parameter	Description	YMP Value	Units	Reference
	Mean Soil Inhalation Values			
UINHR	Resuspended soil inhalation rate	21.7	m³/day	Table 93
TINHR	Resuspended soil inhalation period	365 (* 250)	day/yr	Table 94
FRINHR	Fraction of a day resuspension inhalation occurs	0.31 (* 0.35)	fraction of day	Table 95
	95 th Percentile Soil Inhalation Values for Offsite			
UINHR	Resuspended soil inhalation rate	21.9	m³/day	Table 101
TINHR	Resuspended soil inhalation period	365	day/yr	Table 101
FRINHR	Fraction of a day resuspension inhalation occurs	0.33	fraction of day	Table 101

Notes: values with * are for onsite individual

8.4.2 Receptor Intake Module Default File

For the convenience, GENIIv2 provides a capability to read user defined default values for the Receptor Intake module in a default file, instead of manually entering all the parameter values listed above. The default file that is read by the Receptor Intake module must be named *GNDFLiud.DEF*. It contains 83 input parameters. The only parameter not contained in the file *GNDFLiud.GE* is the receptor age range, *LOWAGE* and *UPAGE* on menu R1, and fraction of a day outdoor inhalation occurs *FRINH* on menu R6. These values must be entered manually.

There are three default files available and one must be copied as *GNDFLiud.DEF* into the FRAMES subdirectory prior to using the default file option in GENIIv2. The three files are: *GNDFLiud.GE*, *GNDFLiud.onsite*, and *GNDFLiud.nonGE* and contain YMP site-specific inputs for Offsite General Environment, Onsite, and Offsite in other than General Environment, respectively. Generation of the three files is discussed in Attachment E.

The YMP site-specific file for Offsite General Environment, *GNDFLiud.GE*, includes parameter values discussed in the previous sections and uses the 95th percentile values for those parameters with multiple values. The YMP site-specific file for Onsite, *GNDFLiud.onsite*, includes parameter values that are listed in the parentheses in the previous sections. The YMP site-specific file for Offsite in other than General Environment, *GNDFLiud.nonGE*, includes parameter values that are similar to those for Offsite General Environment using the 95th percentile values, except that all ingestion related parameter values are set to 0.0 because the ingestion pathways are not applicable.

The three Receptor Intake default files described above are for a chronic exposure scenario using 95^{th} percentile values. For an acute release with an offsite receptor, the inhalation rate must be changed to 30.2 m^3 /day from 21.9 m^3 /day to be consistent with the assumption (Section 3.2.5) of 1 hour accident release. The acute inhalation rate must be manually entered from a menu screen, after the default file is loaded into GENIIv2.

8.5 GENIIv2 HEALTH IMPACTS MODULE INPUT PARAMETERS

The GENIIv.2 Health Impacts module allows the user to select the type of dose and/or risk calculation to be performed. Parameters are input on the Health Impacts module menu screens. Parameters not used in the YMP site-specific calculations with GENIIv2 are either not discussed or designated with a "-".

8.5.1 Method Selection Menu (H1)

Parameter	Description	YMP Value	Units	Reference
FGR13	ICRP 60 Dose Conversion Factor Selection	Select	Option Selection	Constraint 4.2.3 and Section 4.1.7.4

Calculated doses for YMP for compliance purposes are to be based on the radiation dosimetry of ICRP Publication 60 (ICRP 1991 [DIRS 101836]). Dose conversion factors based on ICRP 60 are provided in Federal Guidance Report 12 (Eckerman and Ryman 1993 [DIRS 107684]), and 13 (EPA 2002 [DIRS 175544]) and are appropriate for YMP dose calculations.

8.5.2 Method Parameters Menu (H2)

Parameter	Description	YMP Value	Units	Reference		
HEINC	Calculate lifetime cancer incidence	FALSE	T/F	not needed		
HEFAT	Calculate cancer fatalities	FALSE	T/F	not needed		
HECEDE	Calculate radiation effective dose equivalent commitment (CEDE)	TRUE	T/F	Constraint 4.2.3 and Section 4.1.7.4		
SOILT	Thickness of contaminated soil/sediment layer	0.25	m	Table 80		
SSLDN	Density of contaminated soil/sediment layer	1500	kg/m ³	Table 75		

8.5.3 Constituent Parameters Menu (H3)

Parameter	Description	YMP Value	Units	Reference
FS-CName	Constituent	Select	-	Table 2
SOLUBIL	Lung transfer inhalation class	Select	-	Table 107

The lung transfer inhalation class can be entered manually from the screen menu. It can also be automatically loaded from database file *GENII.mdb*, which contains the parameter: *CLLCLAS*, *lung solubility class*.

8.6 GENIIv2 RADIONUCLIDE AND ELEMENT RELATED DATABASE

GENIIv2 contains a radionuclide specific database *GENII.mdb*. When a model is built in GENIIv2, a constituent module loads information from the database for each radionuclide. Default values are provided for many parameters that are required for a GENIIv2 run. YMP site-specific values for eleven parameters under four categories (or tables in *GENII.mdb*) are developed in this document. The parameters are soil-water partition coefficient under partitioning category (*Partitioning* table); transfer coefficients for meat, poultry, milk, and eggs under the animal transfer factor category (*Animal* table); soil-to-plant transfer factors for leafy vegetables, root vegetables, fruit, grain, and forage under the plant transfer factor category (*Plant* table); and lung transfer inhalation class under dosimetric category (*Dosimetry* table). These parameters are chemical element dependent, and data is tabulated for their corresponding radionuclides.

The deterministic values for transfer factors, and transfer coefficients are tabulated in Table 61 to Table 65, and Table 66 to Table 69, respectively. The partition coefficients are tabulated in Table 77. The lung solubility classes are tabulated in Table 107. Modification of the GENIIv2 database is necessary in order to include these site-specific data. Attachment F describes the generation of a YMP site-specific radionuclide dependent database file *YMPGENII.mdb* from the GENIIv2 default database *GENII.mdb* using data developed in this document.

INTENTIONALLY LEFT BLANK

9. CONCLUSIONS

Site-specific inputs for use with GENIIv2 are developed using the previously qualified data and other reliable sources. Based on the required dose calculation with its associated pathways (Section 3.2.3), input parameters are first screened from the GENIIv2 "description (DES)" files (Section 5.3). Those relevant input parameters requiring site-specific values are then evaluated based on available information to develop either a fixed value or distribution (Section 7). Some parameters are based on the assumptions (Section 3) as a conservative approach. Others are based on the input data from the Biosphere Model in Section 4.1 or calculated from Biosphere Model references in Section 7. Parameter values developed in this document are based on mean, median, best estimate or "expected" values from the technical references. 95th percentile values are also developed for receptor related parameters. Input parameters are organized in the GENIIv2 input menu screens (Section 8) for convenience in entering data. These site-specific values are also saved in several GENIIv2 default files that can be read directly by GENIIv2 to avoid entering the parameters individually (Section 8).

As required by regulation (10 CFR 63.111(a)) for the preclosure safety analysis (PCSA), the receptor in the general environment is "any real member of the public located beyond the boundary of the site." There are two ways to represent the calculated dose to any real member of the public located beyond the boundary of the site: 1) deterministic and 2) stochastic. Site-specific GENIIv2 input parameter values to support either method are developed in this calculation.

9.1 DETERMINISTIC METHOD

A deterministic dose calculation method uses receptor characteristics that would bound those of any real member of the public. In this case, individual parameter values are selected at the 95th percentile level for the receptor related parameters including food consumption rates, food consumption periods, external and inhalation exposure times, instead of using the mean values. The use of the 95th percentile input values for each receptor related parameter provides a conservatively calculated dose, because it represents a maximized combination of receptor characteristics.

For a deterministic dose calculation method, the "YMP" values" are mean values listed in the Section 8.1, Section 8.2, Section 8.3, and Section 8.5, and the "95th Percentile" values for receptor parameters listed in Section 8.4.

9.2 STOCHASTIC METHOD

A stochastic dose calculations method uses mean values and distributions for parameters, including receptor related parameters and used a sensitivity and uncertainty analysis to determine a dose distribution. Then, the dose to any real member of the public is the maximum value (e.g. 95th percentile) from the calculated dose distribution.

For a stochastic dose calculation method, the "YMP" values" are the distribution values shown in the entire Section 7. The mean values needed to run a stochastic calculation are listed in Section 8.1, Section 8.2, Section 8.3, Section 8.4, and Section 8.5.

9.3 DEFAULT INPUT FILES

The site-specific parameter values for the Yucca Mountain project developed in this calculation are used to create several GENIIv2 default files. These default files can be read directly by the GENIIv2 software to avoid manually entering each individual parameter value. The default files contain values for use with either a deterministic or stochastic method dose calculation. However, the "Receptor Intake" default files contain the "95th Percentile" values in Section 8.4.1 for receptor parameters. Therefore, those parameter values would need to be manually replaced with "YMP" values when performing a stochastic method calculation.

Three site-specific parameter files are used by GENIIv2: 1)*GNDFLcud.def* - for chronic exposure 2) *GNDFLaud.def* - for acute exposure, and 3) *GNDFLiud.def* - for receptor intake. Because three receptors are considered for the Yucca Mountain project (Section 3.2.3), default files are generated for the three different receptors and are identified by their extensions: (*.onsite*) for onsite, (*.GE*) for offsite general environment, and (*.nonGE*) for offsite other than the general environment. The files are identified in Table 108 and discussed in Attachment E.

	GENIIv2	YMP Receptor Dependent Site-Specific Files					
Parameters	Default File Name	Onsite	Offsite GE	Offsite Non-GE			
Chronic Exposure	GNDFLcud.def	GNDFLcud.onsite	GNDFLcud.GE	GNDFLcud.nonGE			
Acute Exposure	GNDFLaud.def	GNDFLaud.onsite	GNDFLaud.GE	GNDFLaud.nonGE			
Receptor Intake	GNDFLiud.def	GNDFLiud.onsite	GNDFLiud.GE	GNDFLiud.nonGE			

Table 108. YMP Receptor Dependent Site-Specific Default Files

The two offsite Receptor Intake default files described above are for an acute exposure scenario using 95th percentile values. The only difference for a chronic release is that the inhalation rate must be manually changed from 30.2 m³/day to 21.9 m³/day. The onsite receptor intake default file is for an acute exposure scenario using mean values. One additional receptor intake default file is created for use with stochastic runs, *GNDFLiud.pop*, that uses mean values rather than 95th percentile values. It is also setup for an acute exposure scenario, and the inhalation rate would also need to be changed for a chronic scenario.

Files in the column corresponding to the receptor location of interest for the dose calculation must be copied into the FRAMES directory that contains the executable version of GENIIv2 and renamed to the name in the "Default File Name" column. For example, for an Offsite-GE calculation, the file *GNDFLiud.GE* would be copied to the FRAMES directory and renamed as *GNDFLiud.def*.

9.4 SITE-SPECIFIC DATABASE IN DOSE COEFFICIENT FILES

A site-specific nuclide dependent database file *YMPGENII.mdb* is generated to include nuclidespecific plant transfer factor, animal transfer coefficients, soil water partition coefficients (Kd), and lung transfer inhalation class as discussed in Attachment F. Also an updated inhalation dose coefficient file – *FGR13INH.ymp* is also created to increase tritium water vapor phase dose coefficient by a factor of 1.5 to all organs to account for skin absorption, as discussed in Attachment G.

These files must be copied into the FRAMES directory that contains the executable version of GENIIv2 and renamed as follows.

- 1) *YMPGENII.mdb* renamed to *GENII.mdb*
- 2) *FGR13INH.ymp* renamed to *FGR13INH.HDB*

9.5 PARAMETER SUMMARY FILE

discussed in All parameters Section 7 are summarized in the Excel file. GENII Parameter Summary.xls. This file contains all parameters listed in Table 59. This file contains twelve worksheets. This main worksheet, SUM3, includes all parameters, and shows parameter distribution values if only a single input was developed. The worksheet has hyperlinks under GENII Symbol (Column C) if multiple input values were developed under one parameter name. The hyperlink connects to eleven worksheets, TF, TC, Kd, Lung, Biomass, DryWet, Feed, Trans, Yield, Fixed, and Intake, which contain the relevant parameter distribution values. If a parameter has a lognormal distribution, log(GM) and log(GSD) are calculated, as GENIIv2 takes only log values, instead of GM and GSD.

INTENTIONALLY LEFT BLANK

ATTACHMENT A. RADIONUCLIDE LISTING

The table in this attachment lists radionuclides in the radionuclide master data library *RMDLIB.DAT* from the GENIIv2 software package (GENII V.2.02. 2006. STN: 11211-2.02-00 [DIRS 177605]).

			Nuclio	les Alphak	petical an	d by Mass	Number			
Ac223	As71	Bi204	Ce135	Cr49	Eu146	Gd152	Ho164	lr186A	La143	Nb97
Ac224	As72	Bi205	Ce137	Cr51	Eu147	Gd153	Ho164m	Ir186B	Lu169	Nb97m
Ac225	As73	Bi206	Ce137m	Cs125	Eu148	Gd159	Ho166	lr187	Lu170	Nb98
Ac226	As74	Bi207	Ce139	Cs126	Eu149	Ge66	Ho166m	lr188	Lu171	Nd136
Ac227	As76	Bi210	Ce141	Cs127	Eu150A	Ge67	Ho167	lr189	Lu172	Nd138
Ac228	As77	Bi210m	Ce143	Cs128	Eu150B	Ge68	1120	lr190	Lu173	Nd139
Ag102	As78	Bi211	Ce144	Cs129	Eu152	Ge69	I120m	lr190m	Lu174	Nd139m
Ag103	At207	Bi212	Cf244	Cs130	Eu152m	Ge71	1121	Ir190N	Lu174m	Nd141
Ag104	At211	Bi213	Cf246	Cs131	Eu154	Ge75	1122	lr191m	Lu176	Nd141m
Ag104m	At215	Bi214	Cf248	Cs132	Eu155	Ge77	1123	lr192	Lu176m	Nd147
Ag105	At216	Bk245	Cf249	Cs134	Eu156	Ge78	1124	lr192m	Lu177	Nd149
Ag106	At217	Bk246	Cf250	Cs134m	Eu157	H3	1125	lr194	Lu177m	Nd151
Ag106m	At218	Bk247	Cf251	Cs135	Eu158	Hf170	1126	lr194m	Lu178	Ne19
Ag108	Au193	Bk249	Cf252	Cs135m	F18	Hf172	1128	lr195	Lu178m	Ni56
Aq108m	Au194	Bk250	Cf253	Cs136	Fe52	Hf173	1129	lr195m	Lu179	Ni57
Ag109m	Au195	Br74	Cf254	Cs137	Fe55	Hf175	1130	K38	Md257	Ni59
Ag110	Au195	Br74m	CI36	Cs138	Fe59	Hf177m	1131	K40	Md258	Ni63
Ag110m	Au198	Br75	CI38	Cu57	Fe60	Hf178m	1132	K42	Mg28	Ni65
Ag111	Au198	Br76	CI39	Cu60	Fm252	Hf179m	l132m	K43	Mn51	Ni66
Ag112	Au199	Br77	Cm238	Cu61	Fm253	Hf180m	1133	K44	Mn52	Np232
Ag115	Au200	Br80	Cm240	Cu62	Fm254	Hf181	1134	K45	Mn52m	Np233
AI26	Au200	Br80m	Cm241	Cu64	Fm255	Hf182	1135	Kr74	Mn53	Np234
Al28	Au201	Br82	Cm242	Cu66	Fm257	Hf182m	ln109	Kr76	Mn54	Np235
Am237	Ba126	Br83	Cm243	Cu67	Fr219	Hf183	In110A	Kr77	Mn56	Np236A
Am238	Ba128	Br84	Cm244	Dy155	Fr220	Hf184	In110B	Kr79	Mo101	Np236B
Am239	Ba131	C11	Cm245	Dy157	Fr221	Hg193	In111	Kr81	Mo90	Np237
Am240	Ba131	C14	Cm246	Dy159	Fr222	Hg193m	In111m	Kr81m	Mo93	Np238
Am241	Ba133	Ca41	Cm247	Dy165	Fr223	Hg194	In112	Kr83m	Mo93m	Np239
Am242	Ba133	Ca45	Cm248	Dy166	Ga65	Hg195	In113m	Kr85	Mo99	Np240
Am242m	Ba135	Ca47	Cm249	Er161	Ga66	Hg195m	In114	Kr85m	N13	Np240m
Am243	Ba137	Ca49	Cm250	Er165	Ga67	Hg197	In114m	Kr87	Na22	014
Am244	Ba139	Cd104	Co55	Er167m	Ga68	Hg197m	In115	Kr88	Na24	O15
Am244m	Ba140	Cd107	Co56	Er169	Ga70	Hg199m	In115m	La131	Nb88	O19
Am245	Ba141	Cd109	Co57	Er171	Ga72	Hg203	In116m	La132	Nb89a	Os180
Am246	Ba142	Cd113	Co58	Er172	Ga73	Hg206	ln117	La134	Nb89b	Os181
Am246m	Be10	Cd113m	Co58m	Es250	Gd145	Ho155	In117m	La135	Nb90	Os182
Ar37	Be7	Cd115	Co60	Es251	Gd146	Ho157	In119	La137	Nb93m	Os185
Ar39	Bi200	Cd115m	Co60m	Es253	Gd147	Ho159	In119m	La138	Nb94	Os189m
Ar41	Bi201	Cd117	Co61	Es254	Gd148	Ho161	lr182	La140	Nb95	Os190m
As69	Bi202	Cd117m	Co62m	Es254m	Gd149	Ho162	lr184	La141	Nb95m	Os191
As70	Bi203	Ce134	Cr48	Eu145	Gd151	Ho162m	lr185	La142	Nb96	Os191m

Table 109. List of Nuclides in GENIIv2 File RMBLIB.DAT

		Ν	uclides Al	phabetical	ly and by	Mass Num	nber		
Os193	Pm148m	Pu236	Re187	Sb126m	Sn121	Tb154	Th227	U238	Yb167
Os194	Pm149	Pu237	Re188	Sb127	Sn121m	Tb155	Th228	U239	Yb169
P30	Pm150	Pu238	Re188m	Sb128A	Sn123	Tb156	Th229	U240	Yb175
P32	Pm151	Pu239	Re189	Sb128B	Sn123m	Tb156m	Th230	V47	Yb177
P33	Po203	Pu240	Rh100	Sb129	Sn125	Tb156N	Th231	V48	Yb178
Pa227	Po205	Pu241	Rh101	Sb130	Sn126	Tb157	Th232	V49	Zn62
Pa228	Po207	Pu242	Rh101m	Sb131	Sn127	Tb158	Th234	W176	Zn63
Pa230	Po209	Pu243	Rh102	Sc43	Sn128	Tb160	Ti44	W177	Zn65
Pa231	Po210	Pu244	Rh102m	Sc44	Sr80	Tb161	Ti45	W178	Zn69
Pa232	Po211	Pu245	Rh103m	Sc44m	Sr81	Tc101	TI194	W179	Zn69m
Pa233	Po212	Pu246	Rh105	Sc46	Sr82	Tc104	TI194m	W181	Zn71m
Pa234	Po213	Ra222	Rh106	Sc47	Sr83	Tc93	TI195	W185	Zn72
Pa234m	Po214	Ra223	Rh106m	Sc48	Sr85	Tc93m	TI197	W187	Zr86
Pb195m	Po215	Ra224	Rh107	Sc49	Sr85m	Tc94	TI198	W188	Zr88
Pb198	Po216	Ra225	Rh99	Se70	Sr87m	Tc94m	TI198m	Xe120	Zr89
Pb199	Po218	Ra226	Rh99m	Se72	Sr89	Tc95	TI199	Xe121	Zr93
Pb200	Pr136	Ra227	Rn218	Se73	Sr90	Tc95m	TI200	Xe122	Zr95
Pb201	Pr137	Ra228	Rn219	Se73m	Sr91	Tc96	TI201	Xe123	
Pb202	Pr138	Rb77	Rn220	Se75	Sr92	Tc96m	TI202	Xe125	
Pb202m	Pr138m	Rb79	Rn222	Se77m	Ta172	Tc97	TI204	Xe127	
Pb203	Pr139	Rb80	Ru103	Se79	Ta173	Tc97m	TI206	Xe129m	
Pb204m	Pr142	Rb81	Ru105	Se81	Ta174	Tc98	TI207	Xe131m	
Pb205	Pr142m	Rb81m	Ru106	Se81m	Ta175	Tc99	TI208	Xe133	
Pb209	Pr143	Rb82	Ru94	Se83	Ta176	Tc99m	TI209	Xe133m	
Pb210	Pr144	Rb82m	Ru97	Si31	Ta177	Te116	TI210	Xe135	
Pb211	Pr144m	Rb83	S35	Si32	Ta178A	Te121	Tm162	Xe135m	
Pb212	Pr145	Rb84	Sb115	Sm141	Ta178B	Te121m	Tm166	Xe138	
Pb214	Pr147	Rb86	Sb116	Sm141m	Ta179	Te123	Tm167	Y86	
Pd100	Pt186	Rb87	Sb116m	Sm142	Ta180	Te123m	Tm170	Y86m	
Pd101	Pt188	Rb88	Sb117	Sm145	Ta180m	Te125m	Tm171	Y87	
Pd103	Pt189	Rb89	Sb118	Sm146	Ta182	Te127	Tm172	Y88	
Pd107	Pt191	Re177	Sb118m	Sm147	Ta182m	Te127m	Tm173	Y90	
Pd109	Pt193	Re178	Sb119	Sm151	Ta183	Te129	Tm175	Y90m	
Pm141	Pt193m	Re180	Sb120A	Sm153	Ta184	Te129m	U230	Y91	
Pm142	Pt195m	Re181	Sb120B	Sm155	Ta185	Te131	U231	Y91m	
Pm143	Pt197	Re182A	Sb122	Sm156	Ta186	Te131m	U232	Y92	
Pm144	Pt197m	Re182B	Sb124	Sn110	Tb147	Te132	U233	Y93	
Pm145	Pt199	Re184	Sb124m	Sn111	Tb149	Te133	U234	Y94	
Pm146	Pt200	Re184m	Sb124N	Sn113	Tb150	Te133m	U235	Y95	
Pm147	Pu234	Re186	Sb125	Sn117m	Tb151	Te134	U236	Yb162	
Pm148	Pu235	Re186m	Sb126	Sn119m	Tb153	Th226	U237	Yb166	

Table 109. List of Nuclides in GENIIv2 File RMBLIB.DAT (Continued)

Source: *RMDLIB.DAT* file in GENII V.2.02 (2006. STN: 11211-2.02-00 [DIRS 177605]). It is also shown in Attachment H and included in the attached CD.

ATTACHMENT B. IMPLICIT DAUGHTER LISTING

The radionuclide master data library (*RMDLIB.DAT*) contains all radiological decay data for GENIIv2. This file is included in the GENII V.2.02 (2006. STN: 11211-2.02-00 [DIRS 177605]). Decay of very short-lived radionuclides with the decay chains of longer-lived radionuclides is treated implicitly per PNNL-14584 (Napier et al 2006 [DIRS 177331], Section 3.2). External and internal dose conversion factors account for the implicit daughters within the dose factors assigned for the explicit parent radionuclides (Napier et al 2006 [DIRS 177331], Sections 3.4.2 and 3.4.3).

Double counting dose contributions from implicit daughters should be avoided by not including the implicit daughter as an input if its parent radionuclide is already included in the list of input radionuclides. A list of implicit daughters in *RMDLIB.DAT* and all of their potential parent radionuclide decay chains is given in Table 110.

No. Parents	Implicit Daughter			Parent	Nuclide(s) with Impl	icit Daught	ter in its De	cay Chain	
1	Ac223	Pa227								
1	Ac224	Th228								
1	Ac228	Ra228								
2	Ag104	Ag104m	Cd104							
1	Ag108	Ag108m								
1	Ag110	Ag110m								
1	Al28	Mg28								
1	Am238	Cm238								
2	Am245	Cf249	Pu245							
1	Am246m	Pu246								
1	As70	Se70								
1	As78	Ge78								
3	At215	Ac223	Fr219	Pa227						
2	At216	Pb212	Fr220							
2	At217	Ac225	Fr221							
2	At218	Rn222	Po218							
2	Au200	Au200m	Pt200							
1	Ba137m	Cs137								
7	Bi211	Ac223	Ra223	At215	Fr219	Pb211	Po215	Rn219		
3	Bi212	Pb212	At216	Fr220						
3	Bi213	Ac225	At217	Fr221						
4	Bi214	Rn222	At218	Pb214	Po218					
3	Bk250	Pu246	Es254	Es254m						
1	Br74	Kr74								
1	Br80	Br80m								
1	Br83	Se83								
1	Cm249	Es253								
1	Co60m	Fe60								
1	Cs126	Ba126								
1	Cs128	Ba128								
1	Cs138	Xe138								

Table 110. Implicit Daughters and Parent Decay Chains

No. Parents	Implicit Daughter		Parent Nuclide(s) with Implicit Daughter in its Decay Chain								
1	Cu62	Zn62									
1	Cu66	Ni66									
1	Dy157	Ho157									
	Fm254	Es254m									
2	Fr219	Ac223	Pa227								
1	Fr220	Pb212									
1	Fr221	Ac225									
1	Fr222	Ac226									
1	Fr223	Th227									
1	Ga68	Ge68									
1	Hg193	Hg193m									
1	Ho161	Er161									
1	Ho162	Ho162m									
1	Ho164	Ho164m									
1	1120	Xe120									
1	1120	Xe120 Xe121									
1	1121	Xe121 Xe122									
2	1122	1132m	Te132								
1	1132	Te134	16132			+	-				
1		Sn110									
	In113m	Sn113									
	In114	In114m	-	-		-	-	-			
	In115m	Cd115	<u> </u>			-	-	-			
	In117	Cd117	Cd117m	In117m							
	In117m	Cd117	Cd117m								
	In119	In119m									
	lr190m	lr190N	-	-		-	_				
	lr195	lr195m	-	-		-	_				
	Kr77	Rb77									
3	Kr83m	Br83	Rb83	Se83							
1	La134	Ce134									
1	La141	Ba141									
1	La142	Ba142									
		Yb178									
	Mn52m	Fe52									
1	Nb97	Nb97m									
1	Nd139	Nd139m									
4	Nd141	Nd141m	Pm141	Sm141	Sm141m						
3	Nd141m	Pm141	Sm141	Sm141m							
1	Np240m	U240									
2	Os189m	lr189	Re189								
2	Pa234	Pa234m	Th234								
1	Pa234m	Th234									
1	Pb202m	Bi202									
	Pb204m	Bi204									
	Pb209	Ac225	At217	Bi213	Fr221	Po213	TI209				
	Pb211	Ra223	Po215	Rn219	1	-			1		
	Pb214	Rn222	Po218	-	1		1	1	1		
	Pm141	Sm141	Sm141m								

Table 110. Implicit Daughters and Parent Decay Chains (Cont.d)

No. Parents	Implicit Daughter			Par	ent Nuclide(s) with Imp	licit Daughte	er in its Deca	y Chain		
1	Pm142	Sm142									
1	Po207	At207									
9	Po211	Ac223	Ra223	At211	At215	Bi211	Fr219	Pb211	Po215	Rn219	
4	Po212	Pb212	At216	Bi212	Fr220						
4	Po213	Ac225	At217	Bi213	Fr221						
10	Po214	Rn222	At218	Bi214	Fr222	Pb214	Po218	Ra222	Rn218	Th226	U230
2	Po215	Ra223	Rn219								
2	Po216	Ra224	Rn220								
1	Po218	Rn222									
1	Pr136	Nd136									
1	Pr138	Nd138									
2	Pr139	Nd139	Nd139m								
2	Pr144	Ce144	Pr144m								
1	Pr144m	Ce144									
1	Pu234	Pu238									
1	Pu243	Cm247	1								
4	Ra222	Ac226	Fr222	Th226	U230						
1	Rb80	Sr80			5200	-	-	+	+		+
2	Rb81	Rb81m	Sr81								-
1	Rb82	Sr82	5101								
1	Rb88	Kr88									
1	Re180	Os180									
2	Rh103m	Pd103	Ru103			-		-			
			Ruius			-		-			
1	Rh106	Ru106	Fr222	D-000	Th 0.00	11000					
5	Rn218	Ac226	FIZZZ	Ra222	Th226	U230					
1	Rn219	Ra223									
1	Rn220	Ra224									
1	Sb116	Te116		-	_	_	_	-			-
1	Sb124m	Sb124N		-	_	_	_	-			-
1	Sb126m	Sn126									
1	Sb128A	Sn128									
2	Sc44	Sc44m	Ti44								
1	Sc49	Ca49				_		_			
1	Se73	Se73m	+	-		_	_				
1	Se81	Se81m				_					
1	Sm141	Sm141m								_	
1	Sr87m	Y87								_	
1	Ta176	W176								_	
1	Ta178A	W178									
1	Ta184	Hf184									
1	Tc101	Mo101									
1	Tc93	Tc93m									
1	Tc94m	Ru94									
1	Tc99m	Mo99									
1	Te129	Te129m									
2	Te131	Sb131	Te131m								
1	Te133	Te133m									
2	Th226	Ac226	U230								
1	TI195	Pb195m									

Table 110. Implicit Daughters and Parent Decay Chains (Cont'd)

No. Parents	Implicit Daughter			Par	ent Nuclide	(s) with Imp	licit Daught	er in its Deca	ay Chain	
2	TI198	Pb198	TI198m							
1	TI199	Pb199								
2	TI206	Bi210m	Hg206							
8	TI207	Ac223	Ra223	At215	Bi211	Fr219	Pb211	Po215	Rn219	
4	TI208	Pb212	At216	Bi212	Fr220					
4	TI209	Ac225	At217	Bi213	Fr221					
1	Tm162	Yb162								
1	Tm166	Yb166								
1	W177	Re177								
1	Xe135m	1135								
1	Y91m	Sr91								
1	Y92	Sr92								
1	Zn69	Zn69m								

Table 110. Implicit Daughters and Parent Decay Chains (Cont'd)

Source: *RMDLIB.DAT* file in GENII V.2.02 (2006. STN: 11211-2.02-00 [DIRS 177605]). It is also shown in Attachment H and included in the attached CD.

ATTACHMENT C. CATEGORIZATION OF GENII DESCRIPTION FILES

This attachment categorizes GENIIv2 input parameters used in preclosure safety analysis dose calculations. All parameters for GENIIv2 are listed in the GENIIv2 description files (DES) distributed with the code software. Input parameter descriptions in the DES files include the parameter type, units, minimum and maximum values. The type identifies the parameter as not stochastic or continuous. Continuous parameters can be used in GENIIv2 to perform sensitivity analyses.

The eight DES files listed in Table 111 contain all of the parameters applicable to preclosure safety analysis dose calculations. Parameters in other GENIIv2 DES files are not used in the dose calculations.

GENIIv2 File	Parameter Category	Number of Parameters	Categorization in
FuiAFF.des	Air emission parameters	18	Table 112
ACPlume.des	Acute plume release parameters	29	Table 113
CHPlume.des	Chronic plume release parameters	24	Table 113
Gen_Act.des	Acute exposure parameters	101	Table 114
Gen_Exp.des	Chronic exposure parameters	93	Table 114
Gen_Rcp.des	Receptor parameters	51	Table 115
Gen_hei.des	Health impact parameters	16	Table 116
Genii.des	Database parameters	133	Table 117

Table 111. GENIIv2 Files Containing Site-Specific Inputs Parameters

Source: The files listed above are included in GENII V.2.02 (2006. STN: 11211-2.02-00 [DIRS 177605]). They are also shown in Attachment H and included in the attached CD.

In order to identify the parameters that require site-specific values or distributions and parameters required to select a release and dose scenario model applicable to the preclosure safety analyses, the parameters in these eight DES files are classified into five categories: 1) *Distribution* - parameters with input values requiring a distribution, 2) *Fixed value* - parameters with fixed input values or values from the GENIIv2 database, *GENII.mdb*, 3) *User model* - parameters used to select a release and dose model, 4) *Data from design/scenario* - parameters with values dependent on specific design features and/or release scenarios, and 5) *Not used* - parameters not used in the dose calculation due to either pathways not applicable or other alternative model used.

The discussion of each parameter in the eight description files is listed in Table 112 to Table 117. The files, *ACPlume.des* and *CHPlume.des* contain very similar parameters, and therefore only one representative table is used. Also, the files *Gen_Act.des* and *Gen_Exp.des* are the essentially same, and therefore only one table is used. The parameters highlighted with green are those developed, either distribution or fixed value, in this document as summarized in Table 59.

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
CVTFormat	Not Stochastic				CVT format	Not used (defaults to General Number)
progeny	Not Stochastic				Use progeny	Not used (defaults to False)
media	Not Stochastic				Type of release	User model
dataset	Not Stochastic				Dataset and file extension	Not used (set to aff:Air for airborne)
one	Continuous	m²			Exit area of source	Data from design (used for Plume Rise)
two	Continuous	m			Exit height of source	Data from design (used for Plume Rise)
three	Continuous	m			Height of adjacent structure	Data from design (used for Plume Rise)
four	Continuous	m/s			Exit velocity	Data from design (used for Plume Rise)
five	Continuous	°C			Exit temperature of source	Data from design (used for Plume Rise)
six	Continuous	°C			Ambient air temperature	Distribution
fluxtypes	Not Stochastic				Use suspended particle/gas	Data from scenario (from source term)
reactivefrac	Continuous	fraction			Reactive gas fraction	Not used (model not used)
reactivedensit y	Continuous	g/cm ³			Reactive gas density	Not used (model not used)
radius	Continuous	μm			Radius	Data from scenario (from source term)
density	Continuous	g/cm ³			Density	Data from scenario (from source term)
CASID	Not Stochastic				Chemical Abstract System Identification	Data from scenario (from source term)
ctime	Not Stochastic	yr			Time	Data from scenario (from source term)
cval	Continuous				Constituent flux	Data from scenario (from source term)

Table 112. Categorization of Exposure Parameters in FuiAFF.des

GENIIv2 Parameter	Parameter Type	Units	Min	Мах	Parameter Description	Category
JHOUR *	Continuous	Jhr	0	8760	Julian start hour	User model (for Acute release)
ARMINRISESP D	Not Stochastic	m/s	0	99.99	Minimum wind speed during plume rise	Fixed value
ARMINSIGYS HIFT	Not Stochastic	m	0	1E6	Sigma to shift to semi- infinite cloud shine	Not used (semi-infinite model used)
ARTRANSRES IST	Not Stochastic	s/m	0	1E6	Transfer resistance	Fixed value
ARSIGPARM	Not Stochastic				Sigma Parameterization Usage	User model (NRC method suggested)
ARMINWIND	Not Stochastic	m/s	0	2	Maximum wind speed for 'calm'	Fixed value
ARRADVAL	Not Stochastic	m	1.0E-20	1E6	Radial Distance	Data from scenario
ARNUMRECRI NG	Not Stochastic				Sectors in radial grid	Data from scenario
ARSRCNUMB	Not Stochastic				Source Number	Data from scenario
ARSRCNAME	Not Stochastic				Source Name	Data from scenario
ARSRCDORIS EFLAG	Not Stochastic				Do Plume Rise	User model
ARSRCDODIS PFLAG	Not Stochastic				Use Enhanced Dispersion	User model
ARISCFLAG	Not Stochastic				Dispersion	User model
ARISCWAKEF LAG	Not Stochastic				Building Wakes	User model
ARLOWBOUN DFLAG	Not Stochastic				Use Lower Bound	User model
ARBIDFLAG	Not Stochastic				Buoyancy Induced Dispersion	User model
ARBLDHGT	Not Stochastic		1.0E-20		Building Height	Data from design (used for building wake)
ARBLDWDTH	Not Stochastic		1.0E-20		Building Width	Data from design (used for building wake)
ARHGHWNDC ORFLAG	Not Stochastic				High Wind Correction	User model (used for PNNL enhanced dispersion)
ARLOWWNDC ORFLAG	Not Stochastic				Low Wind Correction	User model (used for PNNL enhanced dispersion)
ARBLDAREA	Not Stochastic	m²	1.0E-20		Building Area	Data from design (used for PNNL enhanced dispersion)
ARMETFILE	Not Stochastic				Path and Name of Meteorological Data File	Fixed value

GENIIv2 Parameter	Parameter Type	Units	Min	Мах	Parameter Description	Category
ARCLDSHNLI B	Not Stochastic				Path and Name of Cloud Shine Library	Fixed value)
ARCALMDIST FLAG	Not Stochastic				Use user's supplied calm wind distribution	Not used (scenario not considered)
ARCALMDIST	Not Stochastic	fraction	0	1	Calm Wind Distribution	Not used (scenario not considered)
ARSTARTMO NTH *	Not Stochastic	mn	1	12	Release Start Month	User model (for Acute release)
ARSTARTDAY	Not Stochastic	day	1	31	Release Start Day	User model (for Acute release)
ARSTARTYEA R *	Not Stochastic	yr			Release Start Year	User model (for Acute release)
ARSTARTHOU R *	Not Stochastic	hr	1	24	Release Start Hour	User model (for Acute release)

Table 113. Categorization of Exposure Parameters in ACPlume.des and CHPlume.des (Co	nťd)

Notes: Parameters with * are only included in file ACPlume.des, not in CHPlume.des

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
ABSHUM	Continuous	kg/m ³	0	0.1	Absolute humidity, used only for tritium model	Distribution
ACUTIM *	Not Stochastic	yr	0	1	The exposure time period	Fixed Value
AIREXT	Not Stochastic	N/A			External air	User model (pathway selection)
AIRPROB *	Not Stochastic	N/A			Use probability for air	Not used
ANDKR	Continuous	l/m ³	0	10	Indoor volatilization factor for radionuclides	Not used (pathway not applicable)
ANDKRN	Continuous	l/m ³	0	10	Indoor volatilization factor for radon	Not used (pathway not applicable)
ANF	Not Stochastic	N/A			Ingestion pathway	User model (pathway selection)
ANFLabel	Not Stochastic	N/A			Terrestrial animal product constant	User model (selection index)
ANFOOD	Not Stochastic	N/A			Animal product ingestion	User model (pathway selection)
AQF	Not Stochastic	N/A			Ingestion pathway	User model (pathway selection)
AQFLabel	Not Stochastic	N/A			Aquatic animal product constant	User model (selection index)
AQFOOD	Not Stochastic	N/A			Aquatic food ingestion	User model (pathway selection)
AVALSL	Continuous	cm	0.01	200	Depth of top soil available for resuspension	Distribution
BEFAIR	Not Stochastic	yr	0	0	Air deposition time prior to exposure	Fixed value (for chronic exposure)
BEFIRR	Not Stochastic	yr	0	0	Irrigation water deposition time prior to exposure	Not used (pathway not applicable)
BEFORE	Not Stochastic	yr	0	1E6	Time from start to exposure	Fixed value (for chronic exposure)
BIOMA2	Continuous	kg/m ²	0.1	10	Standing animal feed biomass (wet)	Distribution
BIOMAS	Continuous	kg/m ²	0.1	10	Standing biomass (wet)	Distribution
BULKD	Continuous	g/cm ³	0.5	3	Surface soil bulk density	Distribution
CASID	Not Stochastic	N/A			Chemical Abstract System Identification	Data from scenario (from source term)
CONSUM	Continuous	kg/d	0.001	300	Consumption rate	Distribution
DEBUG	Not Stochastic	N/A			Debug testing	Not used
DEPFR1	Continuous	fraction	0	1	Dry deposition retention fraction to plants	Not used (method not selected)
DEPFR2	Continuous	fraction	0	1	Wet deposition retention fraction to plant surfaces	Not used (method not selected)
DEPPROB *	Not Stochastic	N/A			Use probability for deposition	Not used
DIETFR	Continuous	fraction	0	1	Fraction of diet	Fixed value

Table 114. Categorization of Exposure Parameters in Gen_Exp.des and Gen_Act.des

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
DPVRES	Continuous	m/s	0	0.1	Deposition velocity from soil to plant surfaces	Distribution
DRINK	Not Stochastic	N/A			Drinking water	User model (pathway selection)
DRYFA2	Continuous	fraction	0.05	0.95	Animal feed dry/wet ratio	Distribution
DRYFAC	Continuous	fraction	0.05	0.95	Dry/wet ratio	Distribution
DRYSET	Not Stochastic	N/A			User defined dry deposition interception fraction to plants	User model
DWATER	Continuous	L/d	0.001	200	Intake rate of water	Not used (pathway not applicable)
DWFACA	Continuous	fraction	0	1	Animal water contaminated fraction	Not used (pathway not applicable)
DWSRC	Not Stochastic	N/A			Source of domestic water	Not used (pathway not applicable)
DWTRET	Not Stochastic	N/A			Treatment plant purification of domestic water	Not used (pathway not applicable)
EXTPROB *	Not Stochastic	N/A			Use probability for external	Not used
FdFrLabel	Not Stochastic	N/A			Feed animal constant	User model (selection index)
FINITE	Not Stochastic	N/A			Finite plume model	User model (pathway selection)
FRACFR * ^a	Continuous	fraction	0	1	Fraction of animal diet that is fresh forage in autumn	Distribution
GROUND	Not Stochastic	N/A			Soil external	User model (pathway selection)
GRWP	Continuous	day	0	365	Growing period	Fixed value
GRWPA	Continuous	day	0	365	Animal feed growing period	Fixed value
HARVST	Not Stochastic	N/A			Radionuclide removal due to harvesting	User model
HLDUP	Continuous	day	0	365	Time from harvest to ingestion	Fixed value
HLDUP2	Continuous	day	0	365	Time from harvest to ingestion	Fixed value
HLDUPA	Continuous	day	0	365	Time from harvest to animal ingestion	Fixed value
HOLDDW	Continuous	day	0	365	Delay time in water distribution system	Not used (pathway not applicable)
INHAL	Not Stochastic	N/A			Air	User model (pathway selection)
IRES	Not Stochastic	N/A			Type of resuspension model	User model
IRRSA	Not Stochastic	N/A			Source of animal feed irrigation	Not used (pathway not applicable)

Table 114. Categorization of	Exposure Parameters in	Gen Exp.des and Ge	n Act.des (Cont'd)
5	•	_ /	_ ` ` /

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
IRRSR	Not Stochastic	N/A			Source of residential irrigation	Not used (pathway not applicable)
IRRST	Not Stochastic	N/A			Source of irrigation	Not used (pathway not applicable)
IRTIMA	Continuous	mon/yr	0	12	Animal feed irrigation time	Not used (pathway not applicable)
IRTIMR	Continuous	mon/yr	0	12	Irrigation time for residential land	Not used (pathway not applicable)
IRTIMT	Continuous	mon/yr	0	12	Irrigation time	Not used (pathway not applicable)
ISALT	Not Stochastic	N/A			Aquatic foods from salt water (vesus fresh water)	Not used (pathway not applicable)
LEACHOPTI ON	Not Stochastic	N/A			Type of leach rate constant	User model
LEACHR	Continuous	1/yr	0	100	Leach rate constant	Not used (Kd model used)
LEAFRS	Continuous	1/m	0	0.001	Resuspension factor from soil to plant surfaces	Distribution
LOIC	Not Stochastic	yr	0	0	Loss of institutional control time prior to exposure	Not used (pathway not applicable)
MOISTC	Continuous	fraction	0	1	Surface soil moisture content	Distribution
NDS	Not Stochastic	N/A			Progeny count	User model (index)
NTKEND	Not Stochastic	yr	0	1E6	Duration of exposure period	Fixed value
NUMCON	Not Stochastic	N/A			Number of constituents	Data from scenario (from source term)
PROBAIR *	Not Stochastic	Percent	С	1	Percent of air	Not used
PROBDEP *	Not Stochastic	Percent	0	1	Percent of deposition	Not used
PROBEXT *	Not Stochastic	Percent	0	1	Percent of external	Not used
RAIN	Continuous	mm/d	0.01	10	Average daily rain rate	Distribution
REC	Not Stochastic	N/A			External pathway	User model (pathway selection)
RECRE	Not Stochastic	N/A			Recreational surface water	User model (pathway selection)
RELEND	Not Stochastic	yr	0	1E6	End of release period	Fixed value
RESFAC	Continuous	1/m	0	0.001	Resuspension factor	Not used (mass loading method used)
RESIRR	Not Stochastic	N/A			Residential irrigation	Not used (pathway not applicable)

Table 114. Categorization of Exposure Parameters in Gen_Exp.des and Gen_Act.des (Cont'd)

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
RF1	Continuous	fraction	0	1	Fraction of plants roots in surface soil	Fixed value
RIRR	Continuous	in/yr	0	200	Irrigation rate	Not used (pathway not applicable)
RIRRA	Continuous	in/yr	0	200	Animal feed irrigation rate	Not used (pathway not applicable)
RIRRR	Continuous	in/yr	0	200	Irrigation rate for residential land	Not used (pathway not applicable)
SEDDN	Continuous	kg/m ²	0	5000	Shoreline sediment density	Not used (pathway not applicable)
SHINDR	Not Stochastic	N/A			Indoor or showering	User model (pathway selection)
SHING	Not Stochastic	N/A			Inadvertent shower water	User model (pathway selection)
SLCONA	Continuous	kg/d	0	5	Animal daily soil consumption rate	Distribution
SLDN	Continuous	kg/m^2	1E-5	3000	Surface soil areal density	Distribution
SLING	Not Stochastic	N/A			Inadvertent soil	User model (pathway selection)
SLINH	Not Stochastic	N/A			Suspended or resuspended soil	User model (pathway selection)
SOILKD	Continuous	ml/g	0	1E6	Soil adsorption coefficient	Distribution
SSLDN	Continuous	kg/m ³	1E-5	3000	Surface soil density	Distribution
STORTM	Continuous	day	0	356	Storage time	Fixed value
SURCM	Continuous	cm	1E-5	500	Surface soil layer thickness used for density	Distribution
SWING	Not Stochastic	N/A			Inadvertent swimming water	User model (pathway selection)
TFD	Not Stochastic	N/A			Ingestion pathway	User model (pathway selection)
TFDLabel	Not Stochastic	N/A			Plant product constant	User model (selection index)
TFOOD	Not Stochastic	N/A			Terrestrial food crop ingestion	User model (pathway selection)
THICK	Continuous	cm	0	10000	Surface soil thickness	Distribution
TRANS	Continuous	fraction	0	1	Translocation factor	Distribution
TRANSA	Continuous	fraction	0	1	Translocation factor for animal feed	Distribution
VLEACH	Continuous	cm/yr	0	500	Total infiltration rate	Distribution
WETSET	Not Stochastic	N/A			User defined wet deposition interception fraction to plants	User model
WTIM	Continuous	d	0.1	100	Weathering rate constant from plants	Distribution

Table 114. Ca	ategorization of	Exposure P	arameters in	Gen Exp.d	les and Gen	Act.des (Cont'd)

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
XMLF	Continuous	g/m ³	0	5	Mass loading factor for resuspension model	Distribution
YELD	Continuous	kg/m ²	0.001	10	Yield	Distribution
YELDA	Continuous	kg/m ²	0.1	10	Yield for animal feed	Distribution

Table 114. Categorization of Exposure Parameters in *Gen_Exp.des* and *Gen_Act.des* (Cont'd)

Notes: Parameters with * are only included in file Gen_Act.des, not in Cen_Exp.des

^a The parameter FRACFR in this table replaces the parameter FRACUT in the files, because FRACUT is no long used.

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
ANFLabel	Not Stochastic	N/A			Terrestrial animal product constant	User model (selection index)
AQFLabel	Not Stochastic	N/A			Aquatic animal product constant	User model (selection index)
EQFRAC	Continuous	fraction	0	1	Radon progeny indoor equilibrium fraction	Not used (pathway not applicable)
EVBOAT	Continuous	evt/day	0	10	Frequency of boating event	Not used (pathway not applicable)
EVSHOR	Continuous	evt/day	0	10	Frequency of shoreline use	Not used (pathway not applicable)
EVSHWR	Continuous	evt/day	0	10	Frequency of showering event	Not used (pathway not applicable)
EVSWIM	Continuous	evt/day	0	10	Frequency of swimming event	Not used (pathway not applicable)
FRINDR	Continuous	fraction	0	1	Fraction of a day indoor inhalation occurs	Not used (pathway not applicable)
FRINH	Continuous	fraction	0	1	Fraction of a day (indoor – mistake) inhalation occurs	Distribution
FRINHR	Continuous	fraction	0	1	Fraction of a day inhalation occurs (for resuspension)	Distribution
FTIN	Continuous	fraction	0	1	Fraction of time spent indoors	Distribution
FTOUT	Continuous	fraction	0	1	Fraction of time spent outdoors	Distribution
LOWAGE	Not Stochastic	yr	0	100	Lower age limit	User model
NAGES	Not Stochastic	N/A			Number of age groups	User model
RNMODL	Not Stochastic	N/A			Use Radon Model	Not used (pathway not applicable)
SFBOAT	Continuous	none	0	1	Shielding factor	Not used (pathway not applicable)
SHIN	Continuous	none	0	1	Indoor shielding factor	Fixed value
SHOUT	Continuous	none	0	1	Outdoor shielding factor	Fixed value
SWFAC	Continuous	none	0	1	Shoreline width factor	Not used (pathway not applicable)
TANM	Continuous	day/yr	0	365	Animal product consumption period	Distribution
TAQU	Continuous	day/yr	0	365	Fish consumption period	Not used (pathway not applicable)
TBOAT	Continuous	day	0	365	Boating days	Not used (pathway not applicable)
TCRP	Continuous	day/yr	0	365	Crop consumption period	Distribution
TDW	Continuous	day/yr	0	365	Drinking water ingestion period	Not used (pathway not applicable)
TEBOAT	Continuous	hr	0	24	Duration of boating event	Not used (pathway not applicable)

Table 115. Categorization of Receptor Parameters in Gen_Rcp.des

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
TESHOR	Continuous	hr	0	24	Duration of shoreline use events	Not used (pathway not applicable)
TESHWR	Continuous	hr	0	24	Duration of showering event	Not used (pathway not applicable)
TESWIM	Continuous	hr	0	24	Duration of swimming event	Not used (pathway not applicable)
TEXAIR	Continuous	day	0	365	Yearly plume immersion exposure time	Fixed value
TEXGRD	Continuous	day	0	365	Yearly external ground exposure time	Fixed value
TFDLabel	Not Stochastic	N/A			Plant product constant	User model (selection index)
TINDRH	Continuous	day/yr	0	365	Indoor air inhalation period	Not used (pathway not applicable)
TINH	Continuous	day/yr	0	365	Air inhalation period	Fixed value
TINHR	Continuous	day/yr	0	365	Resuspended soil inhalation period	Fixed value
TSHOR	Continuous	day	0	365	Shoreline days	Not used (pathway not applicable)
TSHWR	Continuous	day	0	365	Showering days	Not used (pathway not applicable)
TSOIL	Continuous	day	0	365	Soil contact days	Fixed value
TSWIM	Continuous	day	0	365	Swimming days	Not used (pathway not applicable)
UANM	Continuous	kg/day	0	10	Animal product consumption rate	Distribution
UAQU	Continuous	kg/day	0	10	Aquatic food consumption rate	Not used (pathway not applicable)
UCRP	Continuous	kg/day	0	10	Crop consumption rate	Distribution
UDW	Continuous	L/day	0	10	Drinking water ingestion rate	Not used (pathway not applicable)
UEXAIR	Continuous	hr	0	24	Daily plume immersion exposure time	Fixed value
UEXGRD	Continuous	hr	0	24	Daily external ground exposure time	Fixed value
UINDRH	Continuous	m³/day	0	50	Indoor air inhalation rate	Not used (pathway not applicable)
UINH	Continuous	m³/day	0	50	Air inhalation rate	Distribution
UINHR	Continuous	m³/day	0	50	Resuspended soil inhalation rate	Distribution
UPAGE	Not Stochastic	yr	0	100	Upper age limit	User model
USHIN	Continuous	L/hr	0	10	Ingestion rate of water while showering	Not used (pathway not applicable)
USOIL	Continuous	mg/day	0	15000	Inadvertent soil ingestion rate	Distribution
USWIM	Continuous	L/hr	0	10	Ingestion rate of water while swimming	Not used (pathway not applicable)

Table 115. Categorization of Receptor Parameters in Gen_Rcp.des (Cont'd)

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
AMAD	Not Stochastic	um			Chemical Abstract System Identification	Not used (from database)
CASID	Not Stochastic	N/A			Chemical Abstract System Identification	Data from scenario (from source term)
F1	Not Stochastic	fraction			Chemical Abstract System Identification	Not used (from database)
FGR13	Not Stochastic				Chemical Abstract System Identification	User model
HECEDE	Not Stochastic				Calculate radiation effective dose equivalent commitment	User model
HECONFAT	Continuous	risk/Sv	0.0001	1	Cancer fatality conversion factor	Not used (only doses calculated)
HECONINC	Continuous	risk/Sv	0.0001	1	Cancer incidence conversion factor	Not used (only doses calculated)
HEFAT	Not Stochastic				Calculate cancer fatalities	User model
HEINC	Not Stochastic				Calculate lifetime cancer incidence	User model
IHEAST	Not Stochastic		0		Chemical Abstract System Identification	User model
METHOD	Not Stochastic		0		Chemical Abstract System Identification	User model
NDS	Not Stochastic	N/A			Progeny count	Data from scenario (from source term)
NUMCON	Not Stochastic	N/A			Number of constituents	Data from scenario (from source term)
SOILT	Continuous	m	0.001	5	Thickness of contaminated soil/sediment layer	Distribution
SOLUBIL	Not Stochastic		1	5	Lung transfer inhalation class	Fixed value
SSLDN*	Continuous	kg/m ³	500	3000	Density of contaminated soil/sediment layer	Distribution

Table 116. Categoriz	ation of Health Impact	Parameters in Gen_Hei.des

Note: * the description file uses SLDN for density of contaminated soil/sediment layer. The symbol SLDN has been used for surface soil areal density in *Gen_Exp.des* and *Gen_Act.des*. To eliminate the confusion, the symbol is changed to SSLDN, because this parameter is the same as surface soil density (SSLDN) in the document.

GENIIv2 Parameter	Parameter Type	Units	Min	Мах	Parameter Description	Category
CLABSKN	Continuous	fraction	0	1	The dermal absorption fraction from soil	Not used (default from database)
CLANDF	Continuous	m ³ /L	0	10	Inhalation Volatilization Factor for Indoors	Not used (default from database)
CLAPF	Continuous	kg/kg	0	1E+10	Bioconcentration in Wet Animal Forage from Air	Not used (default from database)
CLAPLV	Continuous	kg/kg	0	1E+10	Bioconcentration in Wet Leafy Vegetables from Air	Not used (default from database)
CLBFF	Continuous	L/kg	0	200000	Bioaccumulation in Wet Fish from Freshwater	Not used (default from database)
CLBFI	Continuous	L/kg	0	200000	Bioaccumulation in Wet Crustacea from Freshwater	Not used (default from database)
CLBFM	Continuous	L/kg	0	100000	Bioaccumulation in Wet Mollusk from Freshwater	Not used (default from database)
CLBFP	Continuous	L/kg	0	100000	Bioaccumulation in Wet Plants from Freshwater	Not used (default from database)
CLBHALF	Continuous	day	0		Half Time in Biota	Not used (default from database)
CLBIOA	Continuous	day	1.0E-30		The biodegradation half- life in Air	Not used (default from database)
CLBIOS	Continuous	day	1.0E-30		The biodegradation half- life in Soil	Not used (default from database)
CLBIOW	Continuous	day	1.0E-30		The biodegradation half- life in Water	Not used (default from database)
CLBMF	Continuous	L/kg	0	100000	Bioaccumulation in Wet Fish from Saltwater	Not used (default from database)
CLBMI	Continuous	L/kg	0	100000	Bioaccumulation in Wet Crustacea from Saltwater	Not used (default from database)
CLBMM	Continuous	L/kg	0	100000	Bioaccumulation in Wet Mollusk from Saltwater	Not used (default from database)
CLBMP	Continuous	L/kg	0	100000	Bioaccumulation in Wet Plants from Saltwater	Not used (default from database)
CLBP	Continuous	degC	-250	5000	The boiling point temperature	Not used (default from database)
CLBSAF	Continuous	kg/kg	0	100000 0	Bioaccumulation in Wet Biota from Sediment	Not used (default from database)
CLBVAF	Continuous	kg/kg	0	5000	Bioconcentration in Wet Animal Forage from Soil	Distribution
CLBVAG	Continuous	kg/kg	0	5000	Bioconcentration in Wet Animal Grain from Soil	Distribution
CLBVAH	Continuous	kg/kg	0	5000	Bioconcentration in Wet Animal Hay from Soil	Not used (default from database)
CLBVCL	Continuous	kg/kg	0	5000	Bioconcentration in Wet Cereal from Soil	Distribution
CLBVFR	Continuous	kg/kg	0	5000	Bioconcentration in Wet Fruit from Soil	Distribution
CLBVLV	Continuous	kg/kg	0	5000	Bioconcentration in Wet Leafy Vegetables from Soil	Distribution

Table 117. Evaluation of Database Parameters in Genii.des

GENIIv2 Parameter	Parameter Type	Units	Min	Мах	Parameter Description	Category
CLBVOV	Continuous	kg/kg	0	5000	Bioconcentration in Wet Other Vegetables from Soil	Not used (default from database)
CLBVRV	Continuous	kg/kg	0	5000	Bioconcentration in Wet Root Vegetables from Soil	Distribution
CLCHEM	Not Stochastic		1	48	RAAS constituent Type	Not used (default from database)
CLCLASS	Discrete		1	6	The atmospheric deposition class	Not used (default from database)
CLCNUM	Discrete		0	1000	Carbon Number	Not used (default from database)
CLCPFG	Continuous	(mg/kg/ d) ⁻¹	0	2000	Ingestion Cancer Potency Factor, Water	Not used (default from database)
CLCPFGF	Continuous	(mg/kg/ d) ⁻¹	0	2000	Ingestion Cancer Potency Factor, Food	Not used (default from database)
CLCPFGS	Continuous	(mg/kg/ d)⁻¹	0	2000	Ingestion Cancer Potency Factor, Soil	Not used (default from database)
CLCPFH	Continuous	(mg/kg/ d) ⁻¹	0	2000	Inhalation Cancer Potency Factor	Not used (default from database)
CLDCAIR	Continuous	cm ² /sec	0	1	The diffusion coefficient in air	Not used (default from database)
CLDCAT	Continuous	degC	-50	100	The reference temperature for air diffusion	Not used (default from database)
CLDCGRT	Continuous	cm ² /sec	0	1	The diffusion coefficient in grout	Not used (pathway not applicable)
CLDCGT	Continuous	degC	-50	100	The reference temperature for grout diffusion	Not used (pathway not applicable)
CLDCWAT	Continuous	cm ² /sec	0	1	The diffusion coefficient in water	Not used (pathway not applicable)
CLDCWT	Continuous	degC	-50	100	The reference temperature for water diffusion	Not used (pathway not applicable)
CLDEX	Continuous	rem/hr per pCi/m ³	0	1	External Dose Factor, Air Immersion	Fixed value (from database)
CLDFAD	Continuous	rem/pCi	0	1	Inhalation Dose Factor, class Day	Fixed value (from database)
CLDFAW	Continuous	rem/pCi	0	1	Inhalation Dose Factor, class Week	Fixed value (from database)
CLDFAY	Continuous	rem/pCi	0	1	Inhalation Dose Factor, class Year	Fixed value (from database)
CLDIAM	Continuous	um	1E-6	10	Inhalation Dose Factor Particle Diameter	Fixed value (from database)
CLDIMR	Continuous	rem/hr per pCi/L	0	1	External Dose Factor, Water Immersion	Not used (default from database)
CLDSH	Continuous	rem/hr per pCi/m ²	0	1	External Dose Factor, Ground Surface	Fixed value (from database)

Table 117. Evaluation of Database Parameters in Genii.des (Cont'd)

GENIIv2 Parameter	Parameter Type	Units	Min	Max	Parameter Description	Category
CLDSH1	Continuous	rem/hr per pCi/m ³	0	1	External Dose Factor, Ground Contaminated to 1cm	Fixed value (from database)
CLDSH15	Continuous	rem/hr per pCi/m ³	0	1	External Dose Factor, Ground Contaminated to 15cm	Fixed value (from database)
CLDSH5	Continuous	rem/hr per pCi/m ³	0	1	External Dose Factor, Ground Contaminated to 5cm	Fixed value (from database)
CLENTF	Continuous	J/kg K	0	1E+07	The entropy of fusion	Not used (default from database)
CLENTFT	Continuous	degC	-50	100	The entropy of fusion temperature	Not used (default from database)
CLETYPE	Not Stochastic		1	5	MEPAS exposure type	Not used (default from database)
CLFEG	Continuous	day/kg	0	1E5	Feed to Egg Transfer Factor	Distribution
CLFLASH	Continuous	degC	-100	2000	The flash point temperature	Not used (default from database)
CLFMK	Continuous	day/L	0	1E5	Feed to Milk Transfer Factor	Distribution
CLFMT	Continuous	day/kg	0	100000	Feed to Meat Transfer Factor	Distribution
CLFONEI	Continuous	fraction	0	1	The GI absorption fraction, Insoluble	Not used (default from database)
CLFONES	Continuous	fraction	0	1	The GI absorption fraction, Soluble	Not used (default from database)
CLFPK	Continuous	day/kg	0	1E5	Feed to Pork Transfer Factor	Not used (pathway not applicable)
CLFPL	Continuous	day/kg	0	1E5	Feed to Poultry Transfer Factor	Distribution
CLFR	Continuous		0	10	The fugacity ratio	Not used (default from database)
CLGHALF	Continuous	day	1.0E-30		The decay half-life in Groundwater	Not used (default from database)
CLGPHAL F	Continuous	day	1.0E-30		The physical loss half time in Groundwater	Not used (default from database)
CLHEATC	Continuous	J/kg	0	1E8	The heat of combustion	Not used (default from database)
CLHEATF	Continuous	J/kg	0	1E8	The heat of fusion	Not used (default from database)
CLHEATV	Continuous	J/kg	0	1E8	The heat of vaporization	Not used (default from database)
CLHLC	Continuous	atm m³/mol e	0	100	Henry's law constant	Not used (default from database)
CLHLCT	Continuous	degC	-50	100	Henry's law constant temperature	Not used (default from database)
CLHRRRC	Continuous	cm ³ /mo le sec	0	10	Hydroxyl radical reaction rate constant	Not used (default from database)

Table 117. Evaluation of Database Parameters in Genii.des (Cont'd)

GENIIv2 Parameter	Parameter Type	Units	Min	Мах	Parameter Description	Category
CLHYDA	Continuous	day	1.0E-30		The hydrolysis half-life in Air	Not used (default from database)
CLHYDW	Continuous	day	1.0E-30		The hydrolysis half-life in Water	Not used (default from database)
CLKD	Continuous	mL/g	0	1E7	The dry soil-water partition coefficient	Distribution
CLKOC	Continuous	mL/g	0	1E10	The dry organic-carbon partition coefficient	Not used (default from database)
CLKOW	Continuous	mL/mL	0	1E10	The octanol water partition coefficient	Not used (default from database)
CLKPERM	Continuous	cm/hr	0	10	The aqueous skin permeability constant	Not used (default from database)
CLKTYPE	Not Stochastic		0	1	MEPAS constituent Type	Not used (default from database)
CLLCLAS	Not Stochastic				The lung solubility class	Fixed value (from database)
CLMCV	Continuous	A ³	1	5000	The molecular volume	Not used (default from database)
CLMFORM	Not Stochastic				The molecular formula	Not used (default from database)
CLMP	Continuous	degC	-250	5000	The melting point temperature	Not used (default from database)
CLMV	Continuous	cm³/mo I	1	5000	The molar volume	Not used (default from database)
CLMVT	Continuous	degC	-50	100	The molar volume temperature	Not used (default from database)
CLOXAIR	Continuous	day	1.0E-30		The oxidation half-life in Air	Not used (default from database)
CLPCDEN	Continuous	g/mL	0	20	The pure contaminant density	Not used (default from database)
CLPHTA	Continuous	day	1.0E-30		The photolysis half-life in Air	Not used (default from database)
CLPHTW	Continuous	day	1.0E-30		The photolysis half-life in Water	Not used (default from database)
CLPKA	Continuous	pН	1	13	The acid dissociation constant	Not used (default from database)
CLRAAS	Not Stochastic		1	14	RAAS Constituent Type	Not used (default from database)
CLRDFGI	Continuous	rem/pCi	0	1	Ingestion Dose Factor, insoluble	Not used (default from database)
CLRDFGS	Continuous	rem/pCi	0	1	Ingestion Dose Factor, soluble	Not used (default from database)
CLRDFS	Continuous	rem/pCi	0	1	Dermal Absorption Dose Factor	Not used (default from database)
CLRFCH	Continuous	mg/m^3	0	5000	Inhalation Reference Concentration	Not used (default from database)
CLRFDG	Continuous	mg/kg/d ay	0	2000	Ingestion Reference Dose, Water	Not used (default from database)
CLRFDGF	Continuous	mg/kg/d ay	0	2000	Ingestion Reference Dose, Food	Not used (default from database)

Table 117. Evaluation of Database Parameters in Genii.des (Cont'd)

GENIIv2 Parameter	Parameter Type	Units	Min	Мах	Parameter Description	Category
CLRFDGS	Continuous	mg/kg/d ay	0	2000	Ingestion Reference Dose, Soil	Not used (default from database)
CLRFDH	Continuous	mg/kg/d ay	0	2000	Inhalation Reference Dose	Not used (default from database)
CLSFEX	Continuous	risk/yr per pCi/m ²	0	1	External Slope Factor	Not used (default from database)
CLSFG	Continuous	risk/pCi	0	1	Ingestion Slope Factor, Water	Not used (default from database)
CLSFGF	Continuous	risk/pCi	0	1	Ingestion Slope Factor, Food	Not used (default from database)
CLSFGS	Continuous	risk/pCi	0	1	Ingestion Slope Factor, Soil	Not used (default from database)
CLSFH	Continuous	risk/pCi	0	1	Inhalation Slope Factor	Not used (default from database)
CLSHALF	Continuous	day	1.0E-30		The decay half-life in Soil	Not used (default from database)
CLSHCF	Continuous	day	0		Half Time in Soil, no leaching	Not used (default from database)
CLSOL	Continuous	mg/L	0	1E6	The water solubility	Not used (default from database)
CLSOLT	Continuous	degC	-50	100	The water solubility temperature	Not used (default from database)
CLSPHALF	Continuous	day	1.0E-30		The physical loss half time in Soil	Not used (default from database)
CLSURT	Continuous	dyne/c m	0	10000	The surface tension	Not used (default from database)
CLSURTT	Continuous	degC	-50	100	The surface tension temperature	Not used (default from database)
CLTHALF	Continuous	day	1.0E-30		The decay half-life in Air	Not used (default from database)
CLTPHALF	Continuous	day	1.0E-30		The physical loss half time in Air	Not used (default from database)
CLTSA	Continuous	A ²	1	5000	The molecular surface area	Not used (default from database)
CLURISKG	Continuous	risk/(ug/ L)	0	1000	Ingestion Unit Risk Factor	Not used (default from database)
CLURISKH	Continuous	risk/(ug/ m ³)	0	1000	Inhalation Unit Risk Factor	Not used (default from database)
CLVAP	Continuous	mm Hg	0	50000	The vapor pressure	Not used (default from database)
CLVD	Continuous	m/sec	0	1	The atmospheric deposition velocity	Distribution
CLVISC	Continuous	centipoi se	0	10000	The dynamic viscosity	Not used (default from database)
CLVISCT	Continuous	degC	-50	100	The dynamic viscosity temperature	Not used (default from database)
CLVP	Continuous	degC	-50	100	The vapor pressure temperature	Not used (default from database)

Table 117. Evaluation of Database Parameters in Genii.des (Cont'd)

GENIIv2 Parameter	Parameter Type	Units	Min	Мах	Parameter Description	Category
CLVPFA	Continuous	fraction	0	1	The vapor phase fraction in air versus particulates	Not used (default from database)
CLWHALF	Continuous	day	1.0E-30		The decay half-life in Surface Water	Not used (default from database)
CLWM	Continuous	g/mole	1	50000	The molecular weight	Not used (default from database)
CLWOEHC	Not Stochastic				The weight of evidence for human carcinogenicity	Not used (default from database)
CLWPF	Continuous	fraction	0	1	The water purification factor	Not used (default from database)
CLWPHAL F	Continuous	day	1.0E-30		The physical loss half time in Surface Water	Not used (default from database)
FSCASID	Not Stochastic				The Chemical Abstracts Service Identification number	Data from scenario (from source term)
FSCNAME	Not Stochastic				Constituent Name	Data from scenario (from source term)
FSFRACTI ON	Continuous	fraction	0	1	First dregration product fraction	Data from scenario (default from database)
FUIDataBa se	Not Stochastic				Microsoft Access database being used	Data from scenario (default from database)
NDS	Not Stochastic				Number of straight chain decay products	Data from scenario (default from database)
NumCon	Not Stochastic				Number of Constituents	Data from scenario (default from database)
SSCASID	Not Stochastic				Second degration product CASID	Data from scenario (default from database)
SSCNAME	Not Stochastic				Second degration product name	Data from scenario (default from database)
SSFRACTI ON	Continuous	fraction	0	1	Second degration product fraction	Data from scenario (default from database)

Table 117. Evaluation of Database Parameters in Genii.des (Cont'd)

ATTACHMENT D. PARAMETER DEVELOPMENT CALCULATION FILES

During the parameter development in this document, four Excel files and one GoldSim file are generated to assist the parameter calculations, including *Calculation_TF_TC_Kd.xls*, *Consumption_Rate_Period.xls*, *Distribution_Comparison.gsm*, *Distribution_Comparison.xls*, and *GENII_Parameter_Summary.xls*. The descriptions of these files are provided in the relevant sections in this document. This attachment summarizes the general functions of these files to understand the purpose of the files as well as the calculations.

D.1. Calculation of Transfer Factors and Coefficients

Calculations of transfer factors, transfer coefficients and partition coefficients are discussed in Section 7.1.1, Section 7.1.2, and Section 7.2.2, respectively. These calculations are completed in the Excel file of *Calculation_TF_TC_Kd.xls*. There are ten worksheets included in the file. Five worksheets, *Leafy, Other, Fruit, Grain,* and *Forage,* contain the calculation of crop transfer factors for the additional elements that are not covered in the Biosphere Model. Four worksheets: *Meat, Poultry, Milk,* and *Eggs* contain the calculation of transfer coefficients of animal products. As discussed in Section 7.1.1, these worksheets contain information that is originally used for developing the transfer factors in the Biosphere Model (BSC 2004 [DIRS 169672], Appendix A).

In each of these worksheets, Column C to Column T were added for the additional elements copied from Table 9 to Table 20 for crop transfer factors, or from Table 26 to Table 40 for transfer coefficients of animal products, while Column V to Column AK contains the elements used for the Biosphere Model. Calculation of geometric mean, geometric standard deviations, and truncation limits for the transfer factors were copied from a column where an element is used in the Biosphere Model. As explained in BSC 2004 ([DIRS 169672], Section 6.2.1.1.5), when the GSD of the published values was less than 2, it was assumed to be 2, and if it was greater than 10, it was assumed to be 10. A lognormal distribution defined by a geometric mean and a geometric standard deviation with a lower bound and an upper bound is used for transfer factors for all crop types as well as all elements.

The calculation and selection of partition coefficients are performed in the last worksheet, *Kd*, under the Excel file of *Calculation_TF_TC_Kd.xls*. Column A to Column H were copied for the additional elements from Table 45. By using Equation 3 and Equation 4, selection of *Kd* values is done in the Column J to Column N based on the method described in Section 7.2.2. In addition, those elements in the Biosphere Model are also included in the worksheet in cells of M26:R43. The geometric mean, geometric standard deviation, and a lower and upper limit are calculated and highlighted in Column O to Column R. The results are then copied into Column U to Column Z, and sorted in order of element symbol.

D.2. Parameter Distribution Conversion

Thirty input distributions are developed in this document through conversion of the original distributions or calculation using the original distributions into the distribution types that GENIIv2 can accept. A GoldSim file, *Distribution_Comparison.gsm* is used to generate 1000 realizations from its original distribution, which is usually named as *_*Cumulative_Dist.* Some

parameters used in the GENIIv2 require some calculations from the original input distributions. These calculated parameters are also generated using 1000 realization values and the parameters are usually named as *_*Calculated*. The results of 1000 realization values from these original distributions or calculated from original distributions are then imported into the Excel file, *Distribution_Comparison.xls*. This Excel file contains six worksheets: *ET_Param*, *SR_Param*, *AG_Param*, *Inh_Param*, *Rpt_Param*, and *Rain_Rate*.

When 1000 realization values are copied into a worksheet, it contains realization number in the first column and corresponding parameter values in the second column. The third column is the calculation of natural logarithm from the second column. The parameter distribution values are located in Row 1003 to Row 1009. The calculated values include AM, SD, GM, and GSD. The minimum and maximum values are either calculated from this distribution or obtained from the original distribution. The medium value if needed is obtained from the original distribution. The medium value if needed is obtained from the original distribution. The closest distribution is selected using a simple criterion to check the calculated GSD. If calculated GSD is great than 1.2, a lognormal distribution or loguniform distribution is first attempted. Otherwise, normal or uniform is used. Then potential distributions are tested by creating a new distribution in the GoldSim file, which is named as *_LogNormal_Dist, *_LogUniform_Dist, *_Normal_Dist, and *_Uniform_Dist, and compared with the original or calculated distributions. Comparisons of these two distributions are shown in the entire Section 7.

D.3. Calculation of Consumption Rates and Periods

Food consumption rates and food consumption periods are developed based on the CADI and EDPY discussed in Section 4.1.5.1. The input data shown in Table 54 are copied into Column A to Column E for the CADI, and Column O to Column Q for the EDPY in the Excel file of *Consumption_Rate_Period.xls*. The calculations in Column F to Column N and Column R to Column AB are discussed in Sections 7.5.6 and 7.5.7.

D.4. Other Files Generated

An Excel file *GENII_Parameter_Summary.xls* does not calculate parameter values. It is used for parameter summary, which is described in Section 9.

ATTACHMENT E. YMP SITE-SPECIFIC DEFAULT FILES

The YMP site-specific input data complied in this calculation have been incorporated into several files that can be used as default files with GENIIv2. As discussed in the *GENII Version 2 Software Design Document* (Napier et al 2006 [DIRS 177331], Appendix F), GENIIv2 provides three user supplied default files: *GNDFLcud.DEF*, *GNDFLaud.DEF*, and *GNDFLiud.DEF*, for chronic exposure parameters, acute exposure parameters, and receptor intake parameters, respectively. This saves the user the need to individually input each value onto a menu screen. These default files are included in the software package of GENII V.2.02 (2006. STN: 11211-2.02-00 [DIRS 177605]). They are also shown in Attachment H and included in the attached CD.

Because the exposure and intake parameter values are different for different receptor locations: onsite, offsite general environment (GE), and offsite non-GE, three files have been created for each of the GENIIv2 default files, as shown in Table 118. To use them with GENIIv2, copy them into the FRAMES subdirectory and rename their extension to "def" to be the same as the GENIIv2 default file name.

	GENIIv2	YMP Loc	ation Dependent Site	-Specific
Parameters	Default File Name	Onsite	Offsite GE	Offsite Non-GE
Chronic Exposure	GNDFLcud.def	GNDFLcud.onsite	GNDFLcud.GE	GNDFLcud.nonGE
Acute Exposure	GNDFLaud.def	GNDFLaud.onsite	GNDFLaud.GE	GNDFLaud.nonGE
Receptor Intake	GNDFLiud.def	GNDFLiud.onsite	GNDFLiud.GE	GNDFLiud.nonGE

Table 118. YMP Site-Specific Default Files

The contents of each of the YMP location dependent site specific files are shown in Table 119 for chronic exposure module, Table 120 for acute exposure module, and Table 121 for receptor intake module. One additional receptor intake file is created for use with stochastic runs, *GNDFLiud.pop*, that uses mean values rather than 95th percentile values, as shown in Table 122. In those tables the symbol "-" denotes parameters not used in the YMP analyses. In those cases, the value in the table and file is the same as the generic default file distributed with GENIIv2. The "Menu" column is a cross-reference to the input menu screen in Section 8 that is the source of the YMP site-specific value.

Along with these nine files for YMP site specific default values, an Excel file *GENII v2 Site-Specific Parameters.xls* is used to help develop these default files. The *GENII v2 Site-Specific Paramaters.xls* file contains four worksheets. The *Des Files* worksheet lists in Column B all of the parameters used for chronic exposure, acute exposure, and receptor intake, and tabulates their default values. The default values are provided for onsite (Column O), offsite in the GE (Column P), offsite in the non-GE (Column Q), and offsite population mean values (Column R). Default values for the appropriate parameters are selected using the Excel INDEX and MATCH functions in Columns M, O, and Q of each of three worksheets: *Acute Default GNDFLaud*, *Chronic Default GNDFLcud*, and *Intake Default GNDFLiud*. Columns N, P, and R of each of those worksheets are then used to format the default values into the proper GENIIv2 default file format. To create the default files, each of the Columns N, P, and R are copied individually,

beginning in Row 2, into a text editor and saved as a text file with the corresponding GENIIv2 default file name from Table 118.

Values
arameter
) and P
ameter Files (<i>GNDFLiud.</i> *) and Pa
re Parameter Files (
onic Exposu
ΥМР
Table 119. YMP Chro

			YMP Onsite	File: GNDFLcud.onsite	YMP Offsite GE	File: GNDFLcud.GE	YMP Offsite Non-GE	File: GNDFLcud.nonGE
Parameter	Units	Menu	Value	"YMP Chronic Onsite Mean Values",198	Value	"YMP Chronic Offsite GE Mean Values",198	Value "Y	"YMP Chronic Offsite Non-GE Mean Values",198
IRES	N/A	C8	-	"IRES",0,0,0,0,0,0,0,"N/A","N/A",1	٢	"IRES",0,0,0,0,0,0,0,"N/A","1	-	"IRES",0,0,0,0,0,0,0,"N/A","N/A",1
IRRSA	N/A	Q	'	"IRRSA",1,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRSA",1,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",1,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	Q	,	"IRRSA",2,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRSA",2,0,0,0,0,0,0,"N/A","N/A",0	,	"IRRSA",2,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	Q	'	"IRRSA",3,0,0,0,0,0,0,"N/A","N/A",0	,	"IRRSA",3,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",3,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	Q	'	"IRRSA",4,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRSA",4,0,0,0,0,0,0,"N/A","N/A",0	·	"IRRSA",4,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	Q	'	"IRRSA",5,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRSA",5,0,0,0,0,0,0,"N/A","N/A",0	·	"IRRSA",5,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	5 2		"IRRSA",6,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRSA",6,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",6,0,0,0,0,0,0,"N/A","N/A",0
IRRST	N/A	Q	'	"IRRST",1,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRST",1,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST",1,0,0,0,0,0,0,0,"N/A",0
IRRST	N/A	Q		"IRRST",2,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRST",2,0,0,0,0,0,0,"N/A","N/A",0		"IRRST",2,0,0,0,0,0,0,"N/A","N/A",0
IRRST	N/A	Q	'	"IRRST",3,0,0,0,0,0,0,"N/A","N/A",0	,	"IRRST",3,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST",3,0,0,0,0,0,0,"N/A","N/A",0
IRRST	N/A	Q	'	"IRRST",4,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRST",4,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST",4,0,0,0,0,0,0,"N/A","N/A",0
IRRSR	N/A	C3	'	"IRRSR",0,0,0,0,0,0,0,"N/A","N/A",0	ı	"IRRSR",0,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSR",0,0,0,0,0,0,0,"N/A","N/A",0
LEACH- OPTION	N/A	C7	0	"LEACHOPTION",0,0,0,0,0,0,"N/A","N/A",0	0	"LEACHOPTION",0,0,0,0,0,0,"N/A","N/A",0	0	"LEACHOPTION",0,0,0,0,0,0,"N/A","N/A",0
DWSRC	N/A	S	0	"DWSRC",0,0,0,0,0,0,0,"N/A","N/A",0	0	"DWSRC",0,0,0,0,0,0,0,"N/A",0	0	"DWSRC",0,0,0,0,0,0,0,"N/A","N/A",0
INHAL	N/A	C26	TRUE	"INHAL",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"INHAL",0,0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"INHAL",0,0,0,0,0,0,0,0,"N/A","N/A",TRUE
ANFOOD	N/A	ç	FALSE	"ANFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"ANFOOD",0,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE
TFOOD	N/A	ũ	FALSE	"TFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFOOD",0,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFOOD",0,0,0,0,0,0,0,0,"N/A",FALSE
AQFOOD	N/A	G	FALSE	"AQFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQFOOD",0,0,0,0,0,0,0,0,"N/A",FALSE	FALSE	"AQFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE
RECRE	N/A	G	FALSE	"RECRE",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"RECRE",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"RECRE",0,0,0,0,0,0,0,0,"N/A",FALSE
DEBUG	N/A	ç	FALSE	"DEBUG",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DEBUG",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DEBUG",0,0,0,0,0,0,0,0,"N/A",FALSE
DWTRET	N/A	C3	FALSE	"DWTRET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DWTRET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DWTRET",0,0,0,0,0,0,0,"N/A","N/A",FALSE
RESIRR	N/A	C C	FALSE	"RESIRR",0,0,0,0,0,0,0,"N/A",FALSE	FALSE	"RESIRR",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"RESIRR",0,0,0,0,0,0,0,"N/A","N/A",FALSE
FINITE	N/A	C26	FALSE	"FINITE",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"FINITE",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"FINITE",0,0,0,0,0,0,0,"N/A","N/A",FALSE
AIREXT	N/A	C26	TRUE	"AIREXT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"AIREXT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"AIREXT",0,0,0,0,0,0,0,"N/A","N/A",TRUE
ANF	N/A	C26	FALSE	"ANF",1,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"ANF",1,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANF",1,0,0,0,0,0,"N/A","N/A",FALSE
ANF	N/A	C26	FALSE	"ANF",2,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"ANF",2,0,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANF",2,0,0,0,0,0,0,"N/A","N/A",FALSE
ANF	N/A	C26	FALSE	"ANF",3,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"ANF",3,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANF",3,0,0,0,0,0,0,"N/A","N/A",FALSE
ANF	N/A	C26	FALSE	"ANF",4,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"ANF",4,0,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANF",4,0,0,0,0,0,0,"N/A","N/A",FALSE
TFD	N/A	C26	FALSE	"TFD",1,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFD",1,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFD",1,0,0,0,0,0,"N/A","N/A",FALSE
TFD	N/A	C26	FALSE	"TFD",2,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFD",2,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFD",2,0,0,0,0,0,"N/A","N/A",FALSE
TFD	N/A	C26	FALSE	"TFD",3,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFD",3,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFD",3,0,0,0,0,0,"N/A","N/A",FALSE
TFD	N/A	C26	FALSE	"TFD",4,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFD",4,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFD",4,0,0,0,0,0,0,"N/A",FALSE

000-00C-MGR0-02500-000-0)0/
--------------------------	-----

		_	_	_	_	_	_		_											_	_	_							0	
Value "YMP Chronic Offsite GE Mean Values",198	"AQF",1,0,0,0,0,0,0,"N/A","N/A",FALSE	"AQF",2,0,0,0,0,0,0,"N/A","N/A",FALSE	"AQF",3,0,0,0,0,0,0,"N/A","N/A",FALSE	"AQF",4,0,0,0,0,0,0,"N/A","N/A",FALSE	"DRINK",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SHING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SWING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SLING",0,0,0,0,0,0,0,"N/A","N/A",TRUE	"SHINDR",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SLINH",0,0,0,0,0,0,0,"N/A","N/A",TRUE	"REC",1,0,0,0,0,0,0,"N/A","N/A",FALSE	"REC",2,0,0,0,0,0,0,"N/A","N/A",FALSE	"REC",3,0,0,0,0,0,0,"N/A","N/A",FALSE	"GROUND",0,0,0,0,0,0,0,"N/A","N/A", TRUE	"SWDRML",0,0,0,0,0,0,0,"N/A",FALSE	"SRDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SHDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"ISALT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	"DRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"WETSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"HARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"LOIC",0,0,0,0,0,0,0,"mn","yr",0	"BEFIRR",0,0,0,0,0,0,"yr","yr",0	"BEFAIR",0,0,0,0,0,0,0"yr","yr",49	"NTKEND",0,0,0,0,0,0,0"yr","yr",1	"RELEND",0,0,0,0,0,0,0,"yr","yr",50	"BEFORE",0,0,0,0,0,0,"yr","yr",49	0.00408 "ABSHUM",0,0,0,0,0,0,0,8/m^3","kg/m^3",0.0040 8	
Value	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	·	·	·	TRUE	·	·	'		·	FALSE	FALSE	FALSE	·	ı	49	-	50	49	0.00408	
"YMP Chronic Onsite Mean Values",198	"AQF",1,0,0,0,0,0,0,"N/A","N/A",FALSE	"AQF",2,0,0,0,0,0,0,"N/A","N/A",FALSE	"AQF",3,0,0,0,0,0,0,"N/A","N/A",FALSE	"AQF",4,0,0,0,0,0,0,"N/A","N/A",FALSE	"DRINK",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SHING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SWING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SLING",0,0,0,0,0,0,0,"N/A","N/A",TRUE	"SHINDR",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SLINH",0,0,0,0,0,0,0,"N/A","N/A",TRUE	"REC",1,0,0,0,0,0,0,"N/A","N/A",FALSE	"REC",2,0,0,0,0,0,"N/A","N/A",FALSE	"REC",3,0,0,0,0,0,0,"N/A","N/A",FALSE	"GROUND",0,0,0,0,0,0,0,"N/A","N/A",TRUE	"SWDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SRDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SHDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"ISALT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	"DRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"WETSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"HARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE	"LOIC",0,0,0,0,0,0,0,"mn","yr",0	"BEFIRR",0,0,0,0,0,0,0,"yr","yr",0	"BEFAIR",0,0,0,0,0,0,0,"yr","yr",49	"NTKEND",0,0,0,0,0,0,"yr","yr",1	"RELEND",0,0,0,0,0,0,0,"yr","yr",50	"BEFORE",0,0,0,0,0,0,"yr","yr",49	"ABSHUM",0,0,0,0,0,0,0,"kg/m^3","kg/m^3",0.0040 8	
Value	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	'	'	'	TRUE		'	'	'	'	FALSE	FALSE	FALSE	'	'	49	-	50	49	0.00408	
Menu	C26	C26	C26	C26	C26	C26	C26	C26	C26	C26			,	C26		'	'	'	C3	C10	C10	C10	0	3	C C	5	5	5	5	
Units	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	yr	yr	yr	yr	yr	yr	kg/m^3	
Parameter	AQF	AQF	AQF	AQF	DRINK	SHING	SWING	SLING	SHINDR	SLINH	REC	REC	REC	GROUND	SWDRML	SRDRML	SHDRML	SLDRML	ISALT	DRYSET	WETSET	HARVST	LOIC	BEFIRR	BEFAIR	NTKEND	RELEND	BEFORE	ABSHUM	
GR	0-02	250)0-()00	-00	A					2	08	of2	252												N	Aar	ch	200	7

Table 119. YMP Chronic Exposure Parameter Files (GNDFLiud.*) and Parameter Values (Cont'd)

		ו מטופ דוש. דואור טוווטווט באףטסטופ רמומווופופו רוופס (שיאשרבומט.) מווט רמומווופופו עמונפס (שטוון ט) לאשם		ו רווכא (שואטר בומט.) מווט רמומוווטוס		
	YMP Onsite	File: GNDFLcud.onsite	dffsite F GE	rmP Offsite File: GNDFLcud.GE GE	Offsite Non-GE	File: GNDFLcud.nonGE
Menu		Value "YMP Chronic Onsite Mean Values",198	Value "	"YMP Chronic Offsite GE Mean Values",198	Value	"YMP Chronic Offsite Non-GE Mean Values",198
C26	FALSE	"AQF",1,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",1,0,0,0,0,0,0,"N/A",FALSE	FALSE	"AQF",1,0,0,0,0,0,0,"N/A","N/A",FALSE
C26	FALSE	"AQF",2,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",2,0,0,0,0,0,0,"N/A",FALSE	FALSE	"AQF",2,0,0,0,0,0,0,"N/A","N/A",FALSE
C26	FALSE	"AQF",3,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",3,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",3,0,0,0,0,0,0,"N/A","N/A",FALSE
C26	FALSE	"AQF",4,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",4,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",4,0,0,0,0,0,0,"N/A","N/A",FALSE
C26	FALSE	"DRINK",0,0,0,0,0,0,0,0,"N/A",FALSE	FALSE	"DRINK",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DRINK",0,0,0,0,0,0,0,"N/A","N/A",FALSE
C26	FALSE	"SHING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SHING",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SHING",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE
C26	FALSE	"SWING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SWING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SWING",0,0,0,0,0,0,0,"N/A","N/A",FALSE
C26	TRUE	"SLING",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"SLING",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"SLING",0,0,0,0,0,0,0,"N/A","N/A",TRUE
C26	FALSE	"SHINDR",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SHINDR",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SHINDR",0,0,0,0,0,0,0,"N/A",FALSE
C26	TRUE	"SLINH",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"SLINH",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"SLINH",0,0,0,0,0,0,0,"N/A","N/A",TRUE
ı	ı	"REC",1,0,0,0,0,0,0,"N/A",FALSE	,	"REC",1,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"REC",1,0,0,0,0,0,0,"N/A","N/A",FALSE
ı	ı	"REC",2,0,0,0,0,0,0,"N/A",FALSE	,	"REC",2,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"REC",2,0,0,0,0,0,0,"N/A","N/A",FALSE
ı	·	"REC",3,0,0,0,0,0,0,"N/A",FALSE	ı	"REC",3,0,0,0,0,0,"N/A","N/A",FALSE	'	"REC",3,0,0,0,0,0,0,"N/A","N/A",FALSE
C26	TRUE	"GROUND",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"GROUND",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"GROUND",0,0,0,0,0,0,0,"N/A","N/A",TRUE
ı	ı	"SWDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"SWDRML",0,0,0,0,0,0,0,0,"N/A",FALSE	·	"SWDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE
ı	ı	"SRDRML",0,0,0,0,0,0,0,"N/A",FALSE	ı	"SRDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	·	"SRDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE
ı	ı	"SHDRML",0,0,0,0,0,0,0,"N/A",FALSE	,	"SHDRML",0,0,0,0,0,0,0,"N/A",FALSE	ı	"SHDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE
ı	ı	"SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	,	"SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE
C3	ı	"ISALT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	,	"ISALT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	ı	"ISALT",0,0,0,0,0,0,0,"N/A","N/A",TRUE
C10	FALSE	"DRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE
C10	FALSE	"WETSET",0,0,0,0,0,0,0,"N/A",FALSE	FALSE	"WETSET",0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"WETSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE
C10	FALSE	"HARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"HARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"HARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE
0	I	"LOIC",0,0,0,0,0,0,0,"mn","yr",0	ı	"LOIC",0,0,0,0,0,0,0,"mn","yr",0	I	"LOIC",0,0,0,0,0,0,0,"mn","yr",0

"ABSHUM",0,0,0,0,0,0,"kg/m^3","kg/m^3",0.0040

0.00408

"BEFORE",0,0,0,0,0,0,0,"yr","yr",49

"RELEND",0,0,0,0,0,0,0,"yr","yr",50

"NTKEND",0,0,0,0,0,0,0,"yr",1

49 50 49

"BEFAIR",0,0,0,0,0,0,0,"yr","yr",49

"BEFIRR",0,0,0,0,0,0,0,"yr","yr",0

.

"XMLF",0,0,0,0,0,0,0,"g/m^3","g/m^3",0.0006

0.0006

"XMLF",0,0,0,0,0,0,0,"g/m^3","g/m^3",0.0006 "RF1",0,0,0,0,0,0,0,"fraction","fraction",1

> 0.0006 0.2

"XMLF",0,0,0,0,0,0,0,"g/m^3","g/m^3",0.0006 "RF1",0,0,0,0,0,0,0,"fraction","fraction",1

> 0.0006 0.2

8 8 C

AVALSL XMLF RF1

~

fraction g/m^3 сJ

"AVALSL",0,0,0,0,0,0,0,"cm","cm",0.2

~

"AVALSL",0,0,0,0,0,0,0,"cm","cm",0.2

0.2

~

"AVALSL",0,0,0,0,0,0,0,"cm","cm",0.2

"RF1",0,0,0,0,0,0,0,"fraction","fraction",1

ק
onť
C)
lues
r Va
letei
ıran
Б
an(
, * , pr
FLi
DNS
s (0
File
eter
ram
e Pa
sure
odx
ы Ш
Chronic Exposure Parameter Files (GNDFLiud.*) and Parameter Values (Cont
РС
YMP (
119.
able 119
Table 119. YMP Chronic

Inits Menu Value kg/m^2 C11 0.59 " kg/m^2 C11 0.59 " kg/m^2 C11 0.59 " kg/m^2 C11 0.59 " kg/m^2 C11 2.14 " kg/m^2 C11 2.14 " kg/m^2 C11 2.14 " kg/m^2 C11 2.14 " day C25 0 0 day C25 0 day day C19 200 0 day C19 200 75 day C19 200 75 day C19 75 0 day C17 0 75 day C17 0 0 day C17 0 0 day C17 0 0 day C17 0 0	"YMP Chronic Onsite Mean Values",198 "YELDA",1,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",3,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",3,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "YELDA",5,0,0,0,0,0,"kg/m^2","day",0 "HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",2,0,0,0,0,0,0,"day","day",0 "GRWPA",2,0,0,0,0,0,0,"day","day",200 "GRWPA",4,0,0,0,0,0,0,"day","day",200 "GRWPA",4,0,0,0,0,0,0,"day","day",200 "GRWPA",4,0,0,0,0,0,0,"day","day",200 "GRWPA",5,0,0,0,0,0,0,0,"day","day",200 "GRWPA",5,0,0,0,0,0,0,0,"day","day",200 "GRWPA",5,0,0,0,0,0,0,0,0,"day","day",200 "GRWPA",5,0,0,0,0,0,0,0,0,"day","day",200 "GRWPA",5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	Value "YMP Chronic Offsite GE Mean Values",198 0.59 "YELDA",1,0,0,0,0,0,%/m^2","kg/m^2",0.59 0.59 "YELDA",1,0,0,0,0,0,%/m^2","kg/m^2",0.59 0.59 "YELDA",2,0,0,0,0,0,0,%/m^2","kg/m^2",0.59 0.59 "YELDA",3,0,0,0,0,0,0,%/m^2","kg/m^2",0.59 0.59 "YELDA",4,0,0,0,0,0,%/m^2","kg/m^2",0.59 0.59 "YELDA",5,0,0,0,0,0,0,%/m^2","kg/m^2",2.14 2.14 "YELDA",5,0,0,0,0,0,0,0,0,0,0,0 2.14 "YELDA",5,0,0,0,0,0,0,0,0,0,0,0,0,0 2.14 "YELDA",5,0,0,0,0,0,0,0,0,0,0,0,0,0 2.14 "HEDUPA",5,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0 "HLDUPA",1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0 "HLDUPA",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0 "HLDUPA",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	Value 0.59 0.59 0.59 0.59 0.59 0.59 0 0 0 2.14 2.14 2.00 2200 2200 2200 200 200 200 200 200	"YMP Chronic Offsite Non-GE Mean Values',198 "YELDA",1,0,0,0,0,0,"kg/m^2,","kg/m^2",0.59 "YELDA",2,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",3,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",3,0,0,0,0,0,"day","day",0 "HLDUPA",3,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,"day","day",200
kg/m^{*2} $C11$ 0.59 kg/m^{*2} $C11$ 2.14 kg/m^{*2} $C11$ 2.14 kg/m^{*2} $C11$ 2.14 kg/m^{*2} $C11$ 2.14 kg/m^{*2} $C11$ 2.00 day $C25$ 0 day $C19$ 200 day $C17$ 0 $fraction$ $C18$ 0 $fraction$ $C18$ 0	"kg/m^2",0.59 "kg/m^2",0.59 "kg/m^2",0.59 "kg/m^2",0.59 "%g/m^2",0.59 yy","day",0 yy","day",0 yy","day",0 yy","day",0 yy","day",200 yy","day",200 ","day",200		0.59 0.59 0.59 0.59 0.59 2.14 2.14 0 0 2.00 200 200 200	"YELDA",1,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",2,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",3,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",2,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,"day","day",0 "GRWPA",2,0,0,0,0,0,"day","day",0 "GRWPA",2,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,0,0,"day","day",200
kg/m^2 C11 0.59 kg/m^2 C11 0.59 kg/m^2 C11 0.59 kg/m^2 C11 0.59 kg/m^2 C11 2.14 kg/m^2 C11 2.14 kg/m^2 C11 2.14 kg/m^2 C11 2.14 kg/m/2 C11 2.14 kg/m/2 C11 2.14 kg/m/2 C11 2.14 kg/m/2 C11 2.14 day C25 0 day C19 200 day C19 200 day C19 200 day C19 200 day C17 0 day C18 0 <	,"kg/m^2.",0.59 ,"kg/m^2.",0.59 ,"kg/m^2.",0.59 ,"kg/m^2.",0.59 ,"kg/m^2.",2.14 ,"day",0 ,y","day",0 ,y","day",0 ,","day",200 ,","day",200 ,","day",75		0.59 0.59 0.59 2.14 0 2.14 0 2.00 200 200 200	"YELDA",2,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",3,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",4,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "YELDA",5,0,0,0,0,0,0,"kg/m^2","day",0 "HLDUPA",1,0,0,0,0,0,0,"day","day",0 "HLDUPA",3,0,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,"day","day",0 "GRWPA",2,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,"day","day",200
kg/m^2C11 0.59 kg/m^2C11 0.59 kg/m^2C11 0.59 kg/m^2C11 2.14 kg/m^2C11 2.14 kg/m^2C11 2.14 dayC25 0 dayC25 0 dayC25 0 dayC19 200 dayC19 200 dayC19 200 dayC19 200 dayC19 200 dayC17 0 dayC17 0 dayC17 0 dayC17 0 dayC17 0 dayC17 0 fractionC18 1	,"kg/m^2."0.59 "kg/m^2."0.59 "kg/m^2."2.14 "kg/m^2."2.14 yy"."day",0 yy"."day",0 yy"."day",0 yy"."day",200 ","day",200 ","day",75 ","day",75		0.59 0.59 2.14 2.14 0 2.00 200 200 200	"YELDA",3,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",4,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "YELDA",6,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "HLDUPA",1,0,0,0,0,0,0,"day","day",0 "HLDUPA",2,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,0,"day","day",200
kg/m ² C11 0.59 kg/m ² C11 2.14 kg/m ² C11 2.14 kg/m ² C11 2.14 day C25 0 day C25 0 day C25 0 day C19 200 day C17 0 fraction C18 0	"kg/m^2",0.59 "kg/m^2",2.14 "kg/m^2",2.14 yy","day",0 yy","day",0 yy","day",0 ","day",200 ","day",200 ","day",75		0.59 2.14 2.14 0 0 200 200 200 200	"YELDA",4,0,0,0,0,0,"kg/m^2","kg/m^2",0.59 "YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "YELDA",6,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",2,0,0,0,0,0,"day","day",0 "HLDUPA",3,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,"day","day",200
kg/m ² C11 2.14 " kg/m ² C11 2.14 " day C25 0 0 day C25 0 0 day C25 0 0 day C25 0 0 day C19 200 0 day C17 0 0 day	"kg/m^2",2.14 "kg/m^2",2.14 yy","day",0 yy","day",0 yy","day",0 ","day",200 ","day",200 ","day",200 ","day",75		2.14 2.14 0 200 200 200 200	"YELDA",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "YELDA",6,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "HLDUPA",1,0,0,0,0,0,0,"day","day",0 "HLDUPA",2,0,0,0,0,0,0,"day","day",0 "HLDUPA",3,0,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,0,"day","day",200
kg/m ² C11 2.14 " day C25 0 0 day C25 0 0 day C25 0 0 day C25 0 0 day C19 200 0 day C19 200 200 day C17 0 0 fraction C18 0 0	""kg/m^2", 2.14 !y", "day", 0 !y", "day", 0 !y", "day", 0 !y", "day", 200 ", "day", 200 ", "day", 200 , "day", 75		2.14 0 200 200 200	"YELDA",6,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",2,0,0,0,0,0,"day","day",0 "HLDUPA",3,0,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,0,"day","day",200
day C25 0 day C25 0 day C25 0 day C25 0 day C19 200 day C17 0 fraction C18 0 fraction C18 0	DUPA",1,0,0,0,0,0,0,"day","day",0 DUPA",2,0,0,0,0,0,"day","day",0 DUPA",3,0,0,0,0,0,"day","day",0 DUPA",4,0,0,0,0,0,"day","day",200 VPA",2,0,0,0,0,0,"day","day",200 VPA",2,0,0,0,0,0,"day","day",200 VPA",5,0,0,0,0,0,0,"day","day",75		0 200 200 200	"HLDUPA",1,0,0,0,0,0,"day","day",0 "HLDUPA",2,0,0,0,0,0,0,"day","day",0 "HLDUPA",3,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,0,"day","day",200
day C25 0 day C25 0 day C25 0 day C19 200 day C19 75 day C17 0 fraction C18 0 fraction C18 0	DUPA",2,0,0,0,0,0,0,"day","day",0 DUPA",3,0,0,0,0,0,"day","day",0 DUPA",4,0,0,0,0,0,0,"day","day",0 VPA",1,0,0,0,0,0,0,"day","day",200 VPA",3,0,0,0,0,0,0,"day","day",200 VPA",5,0,0,0,0,0,0,"day","day",75		0 200 200	"HLDUPA",2,0,0,0,0,0,"day","day",0 "HLDUPA",3,0,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,"day","day",200 "GRWPA",3,0,0,0,0,0,0,"day","day",200
day C25 0 day C25 0 day C19 200 day C17 0 fraction C18 0 fraction C18 0	DUPA",3,0,0,0,0,0,0,"day","day",0 DUPA",4,0,0,0,0,0,"day","day",0 VPA",1,0,0,0,0,0,0,"day","day",200 VPA",2,0,0,0,0,0,0,"day","day",200 VPA",3,0,0,0,0,0,0,"day","day",75 VPA",5,0,0,0,0,0,0,"day","day",75		0 0 200 200	"HLDUPA",3,0,0,0,0,0,0,"day","day",0 "HLDUPA",4,0,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,0,"day","day",200 "GRWPA" 3,0,0,0,0,0,0,"day","day",200
day C25 0 day C19 200 day C17 0 fraction C18 0 fraction C18 0	DUPA",4,0,0,0,0,0,0,"day","day",0 VPA",1,0,0,0,0,0,0,"day","day",200 VPA",2,0,0,0,0,0,0,"day","day",200 VPA",3,0,0,0,0,0,0,"day","day",200 VPA",5,0,0,0,0,0,0,"day","day",75		0 200 200	"HLDUPA",4,0,0,0,0,0,0,"day","day",0 "GRWPA",1,0,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,0,"day","day",200 "GRWPA" 3,0,0,0,0,0,0,"day""day" 200
day C19 200 day C19 75 day C17 0 fraction C18 0 fraction C18 0	VPA",1,0,0,0,0,0,0,"agy","day",200 VPA",2,0,0,0,0,0,"day","day",200 VPA",3,0,0,0,0,0,0"day","day",200 VPA",4,0,0,0,0,0,"day","day",200 VPA",5,0,0,0,0,0,"day","day",75		200 200	"GRWPA",1,0,0,0,0,0,0,"day","day",200 "GRWPA",2,0,0,0,0,0,0,"day","day",200 "GRWPA" 3.0.0.0.0.0,"day" "day" 200
day C19 200 day C19 200 day C19 200 day C19 200 day C19 75 day C19 75 day C19 75 day C17 0 fraction C18 0 fraction C18 0	VPA",2,0,0,0,0,0,0,"ay","day","200 VPA",3,0,0,0,0,0,0,"aay","day",200 VPA",5,0,0,0,0,0,"day","day",75 VPA",5,0,0,0,0,0,"day","day",75		200 200	"GRWPA",2,0,0,0,0,0,0,"day","day",200 "cRWPA" 3 0 0 0 0 0.1"dav" "dav" 200
day C19 200 day C19 200 day C19 75 day C19 75 day C17 0 fraction C18 0 fraction C18 0	VPA",3,0,0,0,0,0,0,"day","day",200 VPA",4,0,0,0,0,0,0,"day","day",200 VPA",5,0,0,0,0,0,0"day","day",75		200	"GRWPA" 3 0 0 0 0 0 1dav" "dav" 200
day C19 200 day C19 75 day C19 75 day C17 0 fraction C18 0 fraction C18 0	VPA",4,0,0,0,0,0,0,"day","day",200 NPA",5,0,0,0,0,0,0,"day","day",75	-		
day C19 75 day C19 75 day C17 0 fraction C18 0 fraction C18 0	NPA",5,0,0,0,0,0,0,0,1day",75		200	"GRWPA",4,0,0,0,0,0,0,"day","day",200
day C19 75 day C17 0 fraction C18 0 fraction C18 0			75	"GRWPA",5,0,0,0,0,0,0,"day","day",75
day C17 0 fast C17 0 fast C17 0 fraction C18 0 fraction C18 0	"GRWPA",6,0,0,0,0,0,0,"day","day",75	75 "GRWPA",6,0,0,0,0,0,1 day", day", 75	75	"GRWPA",6,0,0,0,0,0,0,"day","day",75
day C17 0 faction C18 0 fraction C18 0 fraction C18 1	'STORTM",1,0,0,0,0,0,0,1day","day",0	0 "STORTM",1,0,0,0,0,0,1dy","day",0	0	"STORTM",1,0,0,0,0,0,0,"day",0
day C17 0 day C17 0 day C17 0 day C17 0 fraction C18 0 fraction C18 0	'STORTM",2,0,0,0,0,0,0,"day","day",0	0 "STORTM",2,0,0,0,0,0,"day","day",0	0	"STORTM",2,0,0,0,0,0,0,"day","day",0
day C17 0 day C17 0 day C17 0 fraction C18 0 fraction C18 0	'STORTM",3,0,0,0,0,0,0,"day","day",0	0 "STORTM",3,0,0,0,0,0,1day","day",0	0	"STORTM",3,0,0,0,0,0,0,"day","day",0
day C17 0 day C17 0 fraction C18 0 fraction C18 0	'STORTM",4,0,0,0,0,0,0,"day","day",0	0 "STORTM",4,0,0,0,0,0,1dy","day",0	0	"STORTM",4,0,0,0,0,0,0,"day","day",0
day C17 0 fraction C18 0 fraction C18 1	'STORTM",5,0,0,0,0,0,0,0,"day","day",0	0 "STORTM",5,0,0,0,0,0,1day","day",0	0	"STORTM",5,0,0,0,0,0,0,"day","day",0
fraction C18 0 fraction C18 1	'STORTM",6,0,0,0,0,0,0,"day","day",0	0 "STORTM",6,0,0,0,0,0,"day","day",0	0	"STORTM",6,0,0,0,0,0,0,"day","day",0
fraction C18 1	"DIETFR",1,0,0,0,0,0,0,"fraction","fraction",0	0 "DIETFR", 1,0,0,0,0,0,0,"fraction", "fraction", 0	0	"DIETFR",1,0,0,0,0,0,0,"fraction","fraction",0
	'DIETFR",2,0,0,0,0,0,0,"fraction","fraction",1	1 "DIETFR",2,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",2,0,0,0,0,0,0,"fraction","fraction",1
DIETFR fraction C18 0 "DIETFR'	'DIETFR",3,0,0,0,0,0,0,"fraction","fraction",0	0 "DIETFR",3,0,0,0,0,0,0,"fraction","fraction",0	0	"DIETFR",3,0,0,0,0,0,0,"fraction","fraction",0
DIETFR fraction C18 1 "DIETFR'	'DIETFR",4,0,0,0,0,0,0,"fraction","fraction",1	1 "DIETFR",4,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",4,0,0,0,0,0,0,"fraction","fraction",1
DIETFR fraction C18 1 "DIETFR'	"DIETFR",5,0,0,0,0,0,0,"fraction","fraction",1	1 "DIETFR",5,0,0,0,0,0,0,"fraction","fraction",1	~	"DIETFR",5,0,0,0,0,0,0,"fraction","fraction",1
DIETFR fraction C18 1 "DIETFR'	"DIETFR",6,0,0,0,0,0,0,"fraction","fraction",1	1 "DIETFR",6,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",6,0,0,0,0,0,0,"fraction","fraction",1
YELD kg/m^2 C22 3.3 "YELD",1	"YELD",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3	3.3 "YELD",1,0,0,0,0,0,"kg/m^2","kg/m^2",3.3	3.3	"YELD",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3
YELD kg/m^2 C22 4.13 "YELD",2	'YELD",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.13	4.13 "YELD",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.13	4.13	"YELD",2,0,0,0,0,0,"kg/m^2","kg/m^2",4.13
YELD kg/m^2 C22 2.75 "YELD",3	"YELD",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.75	2.75 "YELD",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.75	2.75	"YELD",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.75
YELD kg/m^2 C22 0.59 "YELD",4	"YELD",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	0.59	"YELD",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59

Ŧ
Ľ,
ğ
9
Per
alı
2
meter
Ĕ
ara
5
anc
(¥.)
nd.
NDFLiua
<u>I</u> ND
ΰ
) s
File
_
mete
an
Par
۵.
sur
Öd
ш
лiс
<u>I</u>
Ċ
MP CI
۶
119.
÷
Table 1
Та

Prime Chronic Offsite GE Mean Values", 198 Value "HLDUP", 10,00,00,0, "day", "day", 0 "HLDUP", 10,00,00,0, "day", "day", 0 0 "HLDUP", 20,00,00,0, "day", "day", 0 0 "HLDUP", 30,00,00,0, "day", "day", 0 0 "HLDUP", 30,00,00,0, "day", "day", 6 0 0 1160 0 "HLDUP", 30,00,00,0, "day", "day", 6 0 0 1160 0 "GRWP", 1,0,00,00,0, "day", "day", 6 0 0 1160 0 "GRWP", 2,0,00,00,0, "day", "day", 6 0 0 1160 0 "GRWP", 2,0,00,00,0, "day", "day", 6 0 0 160 0 "RIRRA", 1,0,00,0,0,0, "day", "day", 6 0 0 1160 0 "RIRRA", 2,0,00,0,0,0, "Indyr", "Indyr", 35 0 0 0 0 "RIRRA", 5,0,00,0,0,0, "Indyr", "Indyr", 35 0 0 0 0 "RIRRA", 5,0,00,0,0,0, "Indyr", "Indyr", 35 0 0 0 0 "RIRRA", 5,0,00,0,0,0,0, "Indyr", "Indyr", 35 0 0 0 0 "RIRRA", 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,				YMP Onsite	File: GNDFL cud. onsite	YMP Offsite GE	File: GNDFLcud.GE	YMP Offsite Non-GE	File: GNDFLcud.nonGE
dby CZS 0 HLDUP*7100000.04%*/36%*0 0 HLDUP*200000.04%*/36%*0 0 dby CZS 0 HLDUP*700000.04%*/36%*0 0 HLDUP*200000.04%*/36%*0 0 dby CZS 0 HLDUP*700000.04%*/36%*0 0 HLDUP*20000.00%*/36%*0 0 dby CZS 0 HLDUP*700000.04%*/36%*0 0 HLDUP*20000.04%*/36%*0 0 dby CZS 0 CRRWP*10.00.00.06%*/36%*0 0 HLDUP*2000.00.06%*/36%*0 0 dby CZS 0 CRRWP*10.00.00.06%*/36%*0 0 HLDUP*2000.00.06%*/36%*0 0 dby CZS 0 CRRWP*10.00.00.06%*/36%*0 0 CRRWP*10.00.00.06%*/36%*0 0 dby CZ CZ CRRWP*10.00.00.00.4%*/36%*0 200 CRRWP*10.00.00.00%*74% dby CZ CRRWP*10.00.00.00.4%*/36%*0 200 CRRWP*10.00.00.00%*74% 200 200 dby CZ CZ CRRWP*10.00.00.00.4%*/36%*0 200 200 200 200 200 200		Units	Menu	Value		Value	"YMP Chronic Offsite GE Mean Values",198	Value	"YMP Chronic Offsite Non-GE Mean Values",198
day C25 0 HLDUF*2.00.00.00.°ab/°ab/°D 0 HLDUF*2.00.00.00.°ab/°ab/°D 0 day C23 0 HLDUF*3.00.00.00.°ab/°ab/°D 0 HLDUF*3.00.00.00.°ab/°ab/°D 0 day C23 0 HLDUF*3.00.00.00.°ab/°ab/°D 0 HLDUF*3.00.00.00.°ab/°ab/°D 0 day C21 75 °GRWP*1.0.00.00.00.°ab/°ab/°D 0 HLDUF*3.00.00.00.°ab/°ab/°D 0 day C21 160 °GRWP*1.00.00.00.°ab/°ab/°D 0 HLDUF*3.00.00.00.°ab/°ab/°D 0 day C21 160 °GRWP*1.00.00.00.°ab/°ab/°D 160 °GRWP*1.00.00.00.°ab/°ab/°D 160 day C21 160 °GRWP*1.00.00.00.°ab/°ab/°D 160 °GRWP*1.00.00.00.°ab/°ab/°D 160 day C21 160 °GRWP*1.00.00.00.°ab/°ab/°D 160 °GRWP*2.00.00.00.°ab/°ab/°D 160 day C23 2 °GRWP*2.00.00.00.°ab/°ab/°D 160 °GRWP*2.00.00.00.°ab/°ab/°D 160 day C23 2 °GRWP*2.00.00.00.°ab/°ab/°D °GRWP*2.00.00.00.°	нгрир	day	C25	0	"HLDUP",1,0,0,0,0,0,0,"day",0	0	"HLDUP",1,0,0,0,0,0,0,"day","day",0	0	"HLDUP",1,0,0,0,0,0,0,"day","day",0
day C25 0 HLDUP*3.00.00.0.0*ay*'a9/0 0 HLDUP*3.00.00.0.0*ay*'a9/0 0 day C21 75 "GRWP*1.0.00.00.0.0*ay*'a9/0 0 HLDUP*3.00.00.0.0*ay*'a9/0 0 day C21 160 "GRWP*1.0.00.00.0.0*ay*'a9/0 0 HLDUP*3.00.00.0.0*ay*'a9/0 0 day C21 160 "GRWP*1.0.00.00.0.0*ay*'a9/0 0 "GRWP*1.0.00.00.0.0*ay*'a9/0 0 day C21 160 "GRWP*1.0.00.00.0.0*ay*'a9/0 160 "GRWP*1.0.00.00.0.0*ay*'a9/160 160 day C21 200 "GRWP*1.0.00.00.0.*ay*'a9/160 160 "GRWP*1.0.00.00.0.*ay*'a9/160 160 day C31 C30 "GRWP*1.0.00.00.0.*ay*'a9/160 160 "GRWP*1.0.00.00.0.*ay*'a9/160 160 day C3 - "RIRA.1.0.00.00.0.*ay*'a9/160 160 "GRWP*1.0.00.00.0.*ay*'a9/160 160 day C3 - "RIRA.2.0.00.00.0.*ay*'a9/160 170 "RIWP*1.0.00.00.0.*ay*'a9/160 160 day C3 - "RIRA.2.0.00.00.0.*ay*'a9/160	HLDUP	day	C25	0	"HLDUP",2,0,0,0,0,0,0,"day","day",0	0	"HLDUP",2,0,0,0,0,0,0,"day","day",0	0	"HLDUP",2,0,0,0,0,0,0,"day","day",0
day C25 0 "HLDUP",4,000,00,"day","day",200 0 HLDUP",4,000,00,"day","day",200 0 day C21 75 "GRWP",10,000,00,"day","day",200 75 75 75 75 day C21 200 "GRWP",10,000,00,"day","day",200 160 160 160 day C21 200 "GRWP",10,000,00,"day","day",200 200 200 inlyr C5 - "RIRAX,10,00,00,00,"day",100," - 75 75 75 inlyr C5 - "RIRAX,10,00,00,00,"day",100," - - 78 76 inlyr C5 - "RIRAX,20,00,00,00,"inlyr",117,"inlyr" - - 178 70,00,00,00,"inlyr",107 - - inlyr C5 - "RIRAX,4,00,00,00,00,"inlyr",117,"inlyr",107 -	нгрир	day	C25	0	"HLDUP",3,0,0,0,0,0,0,"day","day",0	0	"HLDUP",3,0,0,0,0,0,0,"day","day",0	0	"HLDUP",3,0,0,0,0,0,0,"day","day",0
day C21 75 "GRWP",10.0.0.0.0,"day"	нгрир	day	C25	0	"HLDUP",4,0,0,0,0,0,0,"day","day",0	0	"HLDUP",4,0,0,0,0,0,0,"day","day",0	0	"HLDUP",4,0,0,0,0,0,0"day","day",0
day C21 80 "GRWP"-2.0.00.00.0" day"" day". 30 80 day C21 160 "GRWP"-3.0.00.00.0" indy", "indy". 35 - - day C21 160 "GRWP"-3.0.00.00.0" indy", "indy". 35 - - indy C21 160 "GRWP"-3.0.00.00.0" indy", "indy". 35 - - indy C3 - "RIRAY.10.00.00.0" indy", "indy". 35 - - indy C3 - "RIRAY.10.00.00.0" indy", "indy". 47 - - - - indy C3 - "RIRAY.3.0.00.00.0" indy", "indy". 47 - - - - - indy C3 - "RIRAY.3.0.00.00.0" indy", "indy". 47 -	GRWP	day	C21	75	"GRWP",1,0,0,0,0,0,0,"day","day",75	75	"GRWP",1,0,0,0,0,0,1,day","day",75	75	"GRWP",1,0,0,0,0,0,0,"day",75
day C21 160 'GRWP*3.0.0.0.0.0." day'' day' 160 160 'GRWP*3.0.0.0.0.0." day'' 140'' 160 160 niyir C3 200 'GRWP*3.0.0.0.0.0.0." hyf'' niyy' 15 'GRWP*3.0.0.0.0.0." hyf'' 10, '''''''''''''''''''''''''''''''''	GRWP	day	C21	80	"GRWP",2,0,0,0,0,0,0,"day","day",80	80	"GRWP",2,0,0,0,0,0,"day","day",80	80	"GRWP",2,0,0,0,0,0,0,"day","day",80
day C21 200 'GRWP*A,0.0.00.0.0."day"."day".200 200 intyr C5 - 'RIRRA*1,0.0.00.0.0."intyr". - 'RIRRA*1,0.0.00.0.0."intyr". - montyr C5 - 'RIRRA*1,0.0.00.0.0."intyr". - 'RIRRA*1,0.0.00.0.0."intyr". - montyr C5 - 'RIRRA*1,0.0.00.0.0."intyr". - 'RIRRA*1,0.0.0.0.0.0."intyr". - montyr C6 - 'RIRRA*1,0.0.0.0.0.0."intyr". - 'RIRRA*1,0.0.0.0.0.0."intyr". - montyr C6 - 'RIRRA*1,0.0.0.0.0.0."intyr". - 'RIRRA*1,0.0.0.0.0.0."intyr". <t< td=""><td>GRWP</td><td>day</td><td>C21</td><td>160</td><td>"GRWP",3,0,0,0,0,0,0,"day","day",160</td><td>160</td><td>"GRWP",3,0,0,0,0,0,0,"day","day",160</td><td>160</td><td>"GRWP",3,0,0,0,0,0,0,"day","day",160</td></t<>	GRWP	day	C21	160	"GRWP",3,0,0,0,0,0,0,"day","day",160	160	"GRWP",3,0,0,0,0,0,0,"day","day",160	160	"GRWP",3,0,0,0,0,0,0,"day","day",160
Intyr CS "RIRRA", 1,0,0,00,0,0,"n/yr", "n/yr", 35 "RIRRA", 2,00,0,0,0,0,"n/yr", "n/yr", 35 Intyr CS - "RIRRA", 2,00,0,0,0,0,"n/yr", "n/yr", 35 - "RIRRA", 2,00,0,0,0,0,0,"n/yr", "n/yr", 35 - Intyr CS - "RIRRA", 2,00,0,0,0,0,"n/yr", "n/yr", 35 - "RIRRA", 2,00,0,0,0,0,"n/yr", "n/yr", 35 - - - Intyr CS - "RIRRA", 2,00,0,0,0,0,"n/yr", "n/yr", 47 - <td< td=""><td>GRWP</td><td>day</td><td>C21</td><td>200</td><td>"GRWP",4,0,0,0,0,0,0,"day","day",200</td><td>200</td><td>"GRWP",4,0,0,0,0,0,0,"day","day",200</td><td>200</td><td>"GRWP",4,0,0,0,0,0,0,"day",200</td></td<>	GRWP	day	C21	200	"GRWP",4,0,0,0,0,0,0,"day","day",200	200	"GRWP",4,0,0,0,0,0,0,"day","day",200	200	"GRWP",4,0,0,0,0,0,0,"day",200
Indyr CS • "RIRRA".20.0.0.0.0.0."hyd"."h", "h", "R" • "RIRRA".20.0.0.0.0.0."hyd"."h" • "RIRRA".20.0.0.0.0.0."hyd"."h" indyr CS • "RIRRA".30.0.0.0.0.0."hyd"."h" • "RIRRA".30.0.0.0.0.0."hyd"."h" • "RIRRA".30.0.0.0.0.0."hyd"."h" indyr CS • "RIRRA".4.0.0.0.0.0.0."hyd"."h" • "RIRRA".30.0.0.0.0.0."hyd"."h" • "RIRRA".30.0.0.0.0.0."hyd"."h" indyr CS • "RIRRA".4.0.0.0.0.0.0."hyd"."h" • "RIRRA".30.0.0.0.0.0."hyd"."h" • "RIRRA".30.0.0.0.0.0."h" mondyr CS • "RIRRA".4.0.0.0.0.0.0.0."h" • "RIRRA".50.0.0.0.0.0.0."h" • "RIRRA".4.0.0.0.0.0.0.0."h" mondyr CS • "RIRRA".4.0.0.0.0.0.0.0."h" • "RIRRA".50.0.0.0.0.0.0."h" • "RIRRA".4.0.0.0.0.0.0.0."h" mondyr CS • "RIRRA".50.0.00.0.0.0."h" • "RIRRA".50.0.00.0.0.0."h" • "RIRRA".50.0.00.0.0.0."h" mondyr CS • "RIRRA".50.0.00.0.0.0."h" • "RIRRA".50.0.0.0.0.0.0.0."h" • "RIRRA".50.0.0.0.0.0.0."h" mondyr CS • "RIRRA".50.0.00.0.0.0."h" • "RIRRA".50.0.0.0.0.0.0.0."h" • "RIRRA".50.0.0.0.0.0.0.0."h" mondyr CS • "RIRRA".50.0.0.0.0.0.0.0.0.0."h" • "RIRRA".50.0.0.0.0.0.0.0.0.0.0.0.0.0."h" • "	RIRRA	in/yr	C5	,	"RIRRA",1,0,0,0,0,0,0,"in/yr","in/yr",35	,	"RIRRA",1,0,0,0,0,0,0,"in/yr","in/yr",35	,	"RIRRA",1,0,0,0,0,0,0,"in/yr",35
Indyr CS - TRIRRA".3,0.0.0.0.0" indyr". indyr".47 - TRIRRA".3,0.0.0.0.0.0" indyr".47 Indyr CS - TRIRRA".50.0.0.0.0." indyr".47 - TRIRRA".50.0.0.0.0.0" indyr".47 - TRIRRA".50.0.0.0.0.0" indyr".47 Indyr CS - TRIRRA".50.0.0.0.0.0" indyr".47 - TRIRRA".50.0.0.0.0.0" indyr".47 - TRIRA".50.0.0.0.0.0" indyr".47 Indyr CS - TRIRRA".50.0.0.0.0.0" indyr".47 - TRIRA".50.0.0.0.0.0" indyr".47 - TRIRA".50.0.0.0.0.0" indyr".47 Indvr CS - TRIRA".50.0.0.0.0.0" indyr".47 - TRIRA".50.0.0.0.0.0" indyr".47 - TRIRA".50.0.0.0.0.0.0" indyr".47 Indvr - CS - TRIRA".50.0.0.0.0.0.0" indyr".1001111111111111111111111111111111111	RIRRA	in/yr	C5	,	"RIRRA",2,0,0,0,0,0,0,"in/yr","in/yr",0	,	"RIRRA",2,0,0,0,0,0,0,"in/yr","in/yr",0	,	"RIRRA",2,0,0,0,0,0,0,"in/yr","in/yr",0
Iniyr CS - "RIRRA", 5,00,0,0,0, "Iniyr", "Iniyr", A7 - "RIRRA", 5,00,0,0,0, "Iniyr", "Iniyr", A7 Iniyr CS - "RIRRA", 5,00,0,0,0, "Iniyr", "Iniyr", "A7 - "RIRRA", 5,00,0,0,0, "Iniyr", "Iniyr", A7 Iniyr CS - "RIRRA", 5,00,0,0,0, "Iniyr", "Iniyr", A7 - "RIRRA", 5,00,0,0,0,0," "Iniyr", "Iniyr", "A7 Iniyr CS - "RIRRA", 5,00,0,0,0," monyr", "Iniyr", A7 - "RIRRA", 5,00,0,0,0,0," monyr", "Iniyr", "A7 CS - "RIRRA", 5,00,0,0,0," monyr", "Iniyr", A7 - "RIRRA", 5,00,0,0,0,0," monyr", "Iniyr", "A7 CS - "RIRRA", 5,00,0,0,0," monyr", "Iniyr, A7 - "RIRRA", 5,00,0,0,0,0," monyr", "Iniyr, A2 CS - "RIRRA", 5,00,0,0,0," monyr", "Iniyr, A3 - "RIRRA", 5,00,0,0,0,0," monyr", "Iniyr, A7 CS - "RIRRA", 5,00,0,0,0," monyr", "Iniyr, A5 - "RIRRA", 5,00,0,0,0,0," monyr", "Iniyr, A3 Monyr CS - "RIRRA", 5,00,0,0,0,0," monyr", "Iniyr, A5 - "RIRRA", 5,00,0,0,0,0," monyr", "Iniyr, A3 Monyr CS - "RIRRA", 5,00,0,0,0,0,0," monyr", "Iniyr, A3 - "RIRRA", 5,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	RIRRA	in/yr	C5	,	"RIRRA",3,0,0,0,0,0,0,"in/yr","in/yr",47	ı	"RIRRA",3,0,0,0,0,0,0,"in/yr","in/yr",47	,	"RIRRA",3,0,0,0,0,0,0,"in/yr","in/yr",47
Intyr CS - "RIRRA", 5,0,0,0,0,0, "Intyr", "Intyr", 47 - "RIRRA", 5,0,0,0,0,0, "Intyr", 47 - "RIRRA", 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	RIRRA	in/yr	C5	ı	"RIRRA",4,0,0,0,0,0,0,"in/yr","in/yr",0	ı	"RIRRA",4,0,0,0,0,0,0,"in/yr","in/yr",0	ı	"RIRRA",4,0,0,0,0,0,0,"in/yr","in/yr",0
In/yr CS "RIRRA", 6.0,0,0,0,0,"mon/yr", "in/yr", "in/yr", "A - mon/yr C6 - "IRTIMA", 1,0,0,0,0,0,0,"mon/yr", "mon/yr", "mon/y	RIRRA	in/yr	C5	ı	"RIRRA",5,0,0,0,0,0,0,"in/yr","in/yr",47	ı	"RIRRA",5,0,0,0,0,0,0,"in/yr","in/yr",47	,	"RIRRA",5,0,0,0,0,0,0,"in/yr","in/yr",47
monlyr CS 'HTIMA"; 1,0,0,0,0,0,0'monlyr"; Monlyr"; Monlyr; Monlyr"; Monlyr"; Monlyr; Monlyr"; Monlyr; Monlyr	RIRRA	in/yr	C5	ı	"RIRRA",6,0,0,0,0,0,0,"in/yr","in/yr",47		"RIRRA",6,0,0,0,0,0,0,1","in/yr",47	,	"RIRRA",6,0,0,0,0,0,0,"in/yr",47
monlyr C6 - 'IRTIMA".2,0.0.0.0.0, 'monlyr', 'monlyr','molyr', 'monlyr','molyr', 'm		mon/yr	90 Ce	ı	"IRTIMA",1,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMA",1,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMA",1,0,0,0,0,0,0,"mon/yr","mon/yr",6
monlyr C6		mon/yr	C6	ı	"IRTIMA",2,0,0,0,0,0,0,"mon/yr","mon/yr",0		"IRTIMA",2,0,0,0,0,0,0,"mon/yr","mon/yr",0	ı	"IRTIMA",2,0,0,0,0,0,0,"mon/yr","mon/yr",0
mon/yr C6		mon/yr	C6	ı	"IRTIMA",3,0,0,0,0,0,0,"mon/yr","mon/yr",6		"IRTIMA",3,0,0,0,0,0,0,"mon/yr","mon/yr",6		"IRTIMA",3,0,0,0,0,0,0,"mon/yr","mon/yr",6
mon/yr C6 - "IRTIMA",5,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,0,0,0,0,"mon/yr",6 - "IRTIMA",5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		mon/yr	90 C	ı	"IRTIMA",4,0,0,0,0,0,0,"mon/yr","mon/yr",0	ı	"IRTIMA",4,0,0,0,0,0,0,"mon/yr","mon/yr",0	ı	"IRTIMA",4,0,0,0,0,0,0,"mon/yr","mon/yr",0
mon/yr C6 - "IRTIMA", 6,0,0,0,0,0, "mon/yr", "mon/yr", 6 - "IRTIMA", 6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		mon/yr	C6	ı	"IRTIMA",5,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMA",5,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMA",5,0,0,0,0,0,0,"mon/yr","mon/yr",6
 inlyr C5 - "RIRR", 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		mon/yr	C6	ı	"IRTIMA",6,0,0,0,0,0,0,"mon/yr","mon/yr",6	'	"IRTIMA",6,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMA",6,0,0,0,0,0,0,"mon/yr","mon/yr",6
 in/yr C5 - "RIRR", 2,0,0,0,0,0,0,"in/yr","in/yr", 40 in/yr C5 - "RIRR", 3,0,0,0,0,0,0,"in/yr","in/yr", 35 "RIRR", 3,0,0,0,0,0,"in/yr","in/yr", 35 "RIRR", 3,0,0,0,0,0,0,"in/yr","in/yr", 35 "RIRR", 3,0,0,0,0,0,0,"in/yr","in/yr", 0 mon/yr C6 - "IRTIMT", 1,0,0,0,0,0,0,"in/yr","in/yr", 6 "RITMT", 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	RIRR	in/yr	C5		"RIRR",1,0,0,0,0,0,0,"in/yr","in/yr",35	·	"RIRR",1,0,0,0,0,0,0,"in/yr",35	ı	"RIRR",1,0,0,0,0,0,0,"in/yr","in/yr",35
 in/yr C5 - "RIRR",3,0,0,0,0,0,0,"in/yr","in/yr",35 - "RIRR",3,0,0,0,0,0,"mn/yr","in/yr",35 - in/yr C5 - "IRTIMT",1,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,0,"mon/yr",6 mon/yr C7 - "IRTIMT",2,0,0,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,0,0,0,0,"mon/yr",6 mon/yr C6 - "IRTIMT",2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	RIRR	in/yr	C5	ı	"RIRR",2,0,0,0,0,0,0,"in/yr","in/yr",40	'	"RIRR",2,0,0,0,0,0,0,"in/yr","in/yr",40	ı	"RIRR",2,0,0,0,0,0,0,"in/yr","in/yr",40
 in/yr C5 - "RIRR",4,0,0,0,0,0,"mon/yr","in/yr",0 "RIRR",4,0,0,0,0,0,"mon/yr",6 "IRTIMT",1,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",1,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,0,0,"mon/yr",6 "IRTIMT",2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	RIRR	in/yr	C5	ı	"RIRR",3,0,0,0,0,0,0,"in/yr","in/yr",35	ı	"RIRR",3,0,0,0,0,0,0,"in/yr",35	ı	"RIRR",3,0,0,0,0,0,0,"in/yr","in/yr",35
monlyr C6 - "IRTIMT",1,0,0,0,0,0,"monlyr","monlyr",6 - "IRTIMT",2,0,0,0,0,0,"monlyr",6 - "IRTIMT",2,0,0,0,0,0,"monlyr",6 - "IRTIMT",2,0,0,0,0,0,"monlyr",6 - "IRTIMT",2,0,0,0,0,0,"monlyr",6 - "IRTIMT",2,0,0,0,0,0,0,"monlyr",6 - "IRTIMT",2,0,0,0,0,0,0,"monlyr",6 - "IRTIMT",2,0,0,0,0,0,0,0,"monlyr",6 - "IRTIMT",2,0,0,0,0,0,0,0,"monlyr",6 - - IRTIMT",2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	RIRR	in/yr	C5	ı	"RIRR",4,0,0,0,0,0,0,"in/yr",0	ı	"RIRR",4,0,0,0,0,0,0,"in/yr","in/yr",0	ı	"RIRR",4,0,0,0,0,0,0,"in/yr","in/yr",0
monlyr C6 - "IRTIMT",2,0,0,0,0,0,"monlyr","monlyr",6 - "IRTIMT",2,0,0,0,0,0,"monlyr",6 - "IRTIMT",2,0,0,0,0,0,"monlyr",6 - "IRTIMT",3,0,0,0,0,0,0,"monlyr",6 - "IRTIMT",3,0,0,0,0,0,0,"monlyr",6 - - IRTIMT",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		mon/yr	90 Ce	ı	"IRTIMT",1,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMT",1,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMT",1,0,0,0,0,0,0,"mon/yr","mon/yr",6
monlyr C6 - "IRTIMT",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		mon/yr	C6	ı	"IRTIMT",2,0,0,0,0,0,0,"mon/yr","mon/yr",6	,	"IRTIMT",2,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMT",2,0,0,0,0,0,0,0,"mon/yr","mon/yr",6
mon/yr C6 - "IRTIMT",4,0,0,0,0,0,"mon/yr","mon/yr","mon/yr",0 - day C25 - "HLDUP2",1,0,0,0,0,0,"day","day",1dy",1 - "HLDUP2",1,0,0,0,0,0,"day","day",1 - day C25 - "HLDUP2",2,0,0,0,0,0,"day","day",1 - "HLDUP2",1,0,0,0,0,0,0,"day","day",0 - day C25 - "HLDUP2",2,0,0,0,0,0,0,"day","day",0 - "HLDUP2",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		mon/yr	00 Ce	ı	"IRTIMT",3,0,0,0,0,0,0,"mon/yr","mon/yr",6	'	"IRTIMT",3,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMT",3,0,0,0,0,0,0,0,"mon/yr","mon/yr",6
day C25 - "HLDUP2",1,0,0,0,0,0,"day","day","day","day","day","day","day","day","day","day","day","day","day","day",0 day C25 - "HLDUP2",2,0,0,0,0,0,0,"day","day",0 - day C25 - "HLDUP2",3,0,0,0,0,0,0,0,"day","day",0 - day C25 - "HLDUP2",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		mon/yr	C6	ı	"IRTIMT",4,0,0,0,0,0,0,"mon/yr","mon/yr",0	ı	"IRTIMT",4,0,0,0,0,0,0,"mon/yr","mon/yr",0	ı	"IRTIMT",4,0,0,0,0,0,0,"mon/yr","mon/yr",0
day C25 - "HLDUP2",2,0,0,0,0,0,0,0,14dy",1day",0 - "HLDUP2",2,0,0,0,0,0,0,0,0,0 - - day C25 - "HLDUP2",3,0,0,0,0,0,0,0,0,0,0,0,0,0 - "HLDUP2",3,0,0,0,0,0,0,0,0,0,0 - - day C25 - "HLDUP2",4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	HLDUP2	day	C25	ı	"HLDUP2",1,0,0,0,0,0,0,"day","day",1		"HLDUP2",1,0,0,0,0,0,0,"day","day",1		"HLDUP2",1,0,0,0,0,0,0,"day","day",1
day C25 - "HLDUP2",3,0,0,0,0,0,0,"day","day","day","day","day","day","day","day","day","day","day","day",0 day C25 - "HLDUP2",4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	HLDUP2	day	C25	·	"HLDUP2",2,0,0,0,0,0,0,"day","day",0		"HLDUP2",2,0,0,0,0,0,0,"day","day",0		"HLDUP2",2,0,0,0,0,0,"day","day",0
day C25 - "HLDUP2",4,0,0,0,0,0,0,"day",'day",0 - "HLDUP2",4,0,0,0,0,0,0,"day","day",0 - '	HLDUP2	day	C25	ı	"HLDUP2",3,0,0,0,0,0,0,"day","day",0		"HLDUP2",3,0,0,0,0,0,0,"day","day",0		"HLDUP2",3,0,0,0,0,0,0,"day","day",0
	HLDUP2	day	C25		"HLDUP2",4,0,0,0,0,0,0,"day","day",0		"HLDUP2",4,0,0,0,0,0,0,"day","day",0		"HLDUP2",4,0,0,0,0,0,"day","day",0

Table 119. YMP Chronic Exposure Parameter Files (GNDFLiud.*) and Parameter Values (Cont'd)

			YMP Onsite	File: GNDFLcud.onsite	YMP Offsite	File: GNDFLcud.GE	YMP Offsite Non-GE	File: GNDFLcud.nonGE
Parameter Units	· Units	Menu	Value	"YMP Chronic Onsite Mean Values",198	Value	"YMP Chronic Offsite GE Mean Values",198	Value	"YMP Chronic Offsite Non-GE Mean Values",198
DWFACA	fraction	C3	,	"DWFACA",1,0,0,0,0,0,0,"fraction","fraction",1		"DWFACA",1,0,0,0,0,0,0,"fraction","fraction",1		"DWFACA",1,0,0,0,0,0,0,"fraction","fraction",1
DWFACA	fraction	C3	'	"DWFACA",2,0,0,0,0,0,0,"fraction","fraction",1	,	"DWFACA",2,0,0,0,0,0,0,"fraction","fraction",1	ı	"DWFACA",2,0,0,0,0,0,0,"fraction","fraction",1
DWFACA	fraction	ü	,	"DWFACA",3,0,0,0,0,0,0,"fraction","fraction",1	,	"DWFACA",3,0,0,0,0,0,0,"fraction","fraction",1	ı	"DWFACA",3,0,0,0,0,0,0,"fraction","fraction",1
DWFACA	fraction	C3	'	"DWFACA",4,0,0,0,0,0,0,"fraction","fraction",1	,	"DWFACA",4,0,0,0,0,0,0,"fraction","fraction",1	·	"DWFACA",4,0,0,0,0,0,0,"fraction","fraction",1
SSLDN	kg/m^3	C9	1500	"SSLDN",0,0,0,0,0,0,"kg/m^3","kg/m^3",1500	1500	"SSLDN",0,0,0,0,0,0,0,"kg/m^3","kg/m^3",1500	1500	"SSLDN",0,0,0,0,0,0,0,"kg/m^3","kg/m^3",1500
RIRRR	in/yr	C2	·	"RIRRR",0,0,0,0,0,0,0,"in/yr",35	ı	"RIRRR",0,0,0,0,0,0,0,"in/yr",35	ı	"RIRRR",0,0,0,0,0,0,0,"in/yr","in/yr",35
IRTIMR	mon/yr	C2	'	"IRTIMR",0,0,0,0,0,0,0,"mon/yr","mon/yr",6	ŀ	"IRTIMR",0,0,0,0,0,0,0,"mon/yr","mon/yr",6	ı	"IRTIMR",0,0,0,0,0,0,0,"mon/yr","mon/yr",6
HOLDDW	day	C2	,	"HOLDDW",0,0,0,0,0,0,0,"day","day",1	,	"HOLDDW",0,0,0,0,0,0,0,"day","day",1	ı	"HOLDDW",0,0,0,0,0,0,"day","day",1
RESFAC	1/m	C8	'	"RESFAC",0,0,0,0,0,0,0,"1/m","1/m",0.00000001	,	"RESFAC",0,0,0,0,0,0,0,"1/m","1/m",0.00000001	ı	"RESFAC",0,0,0,0,0,0,0,1/m","1/m",0.00000001
WTIM	q	C10	14	"WTIM",0,0,0,0,0,0,14",14	14	"WTIM",0,0,0,0,0,0,0"d",14	14	"WTIM",0,0,0,0,0,0,0,"d","d",14
DEPFR1	fraction	C10	'	"DEPFR1",0,0,0,0,0,0,0,"fraction","fraction",0.25	,	"DEPFR1",0,0,0,0,0,0,0,"fraction","fraction",0.25	ı	"DEPFR1",0,0,0,0,0,0,0,"fraction","fraction",0.25
RAIN	p/um	C1	0.49	"RAIN",0,0,0,0,0,0,0,"mm/d","mm/d",0.49	0.49	"RAIN",0,0,0,0,0,0,0,0,"mm/d","mm/d",0.49	0.49	"RAIN",0,0,0,0,0,0,0,"mm/d","mm/d",0.49
ANDKR	l/m^3	C2		"ANDKR",0,0,0,0,0,0,0,"//m^3","//m^3",0	,	"ANDKR",0,0,0,0,0,0,0,"l/m^3","l/m^3",0	ı	"ANDKR",0,0,0,0,0,0,0,1/m^3","//m^3",0
ANDKRN	l/m^3	C2	'	"ANDKRN",0,0,0,0,0,0,0,"I/m^3","I/m^3",0.1	,	"ANDKRN",0,0,0,0,0,0,0,"//m^3","//m^3",0.1	ı	"ANDKRN",0,0,0,0,0,0,0,"I/m^3","I/m^3",0.1
SEDDN	kg/m^2	C2		"SEDDN",0,0,0,0,0,0,0,"kg/m^2","kg/m^2",15		"SEDDN",0,0,0,0,0,0,"kg/m^2","kg/m^2",15	·	"SEDDN",0,0,0,0,0,0,0,"kg/m^2","kg/m^2",15
THICK	сш	C7	25	"THICK",0,0,0,0,0,0,0,"cm",25	25	"THICK",0,0,0,0,0,0,0,"cm",25	25	"THICK",0,0,0,0,0,0,0,"cm","cm",25
MOISTC	fraction	C7	0.2	"MOISTC",0,0,0,0,0,0,0,"fraction","fraction",0.2	0.2	"MOISTC",0,0,0,0,0,0,0,"fraction","fraction",0.2	0.2	"MOISTC",0,0,0,0,0,0,0,"fraction","fraction",0.2
BULKD	g/cm^3	C7	1.5	"BULKD",0,0,0,0,0,0,0,"g/cm^3","g/cm^3",1.5	1.5	"BULKD",0,0,0,0,0,0,0,"g/cm^3","g/cm^3",1.5	1.5	"BULKD",0,0,0,0,0,0,0,"g/cm^3","g/cm^3",1.5
VLEACH	cm/yr	C7	7.9	"VLEACH",0,0,0,0,0,0,0,"cm/yr","cm/yr",7.9	7.9	"VLEACH",0,0,0,0,0,0,0,"cm/yr","cm/yr",7.9	7.9	"VLEACH",0,0,0,0,0,0,0,"cm/yr","cm/yr",7.9
DEPFR2	fraction	C10		"DEPFR2",0,0,0,0,0,0,0,"fraction","fraction",0.25		"DEPFR2",0,0,0,0,0,0,0,"fraction","fraction",0.25	·	"DEPFR2",0,0,0,0,0,0,0,"fraction","fraction",0.25
LEAFRS	1/m	C10	3.2E-10	"LEAFRS",0,0,0,0,0,0,0,1,"1/m","1/m",0.000000003	3.2E-10	"LEAFRS",0,0,0,0,0,0,0,1/m","1/m",0.000000003 2	3.2E-10	"LEAFRS",0,0,0,0,0,0,0,0,1/m","1/m",0.000000003 2
DPVRES	s/m	C10	0.008	"DPVRES",0,0,0,0,0,0,0,"m/s","m/s",0.008	0.008	"DPVRES",0,0,0,0,0,0,0,"m/s","m/s",0.008	0.008	"DPVRES",0,0,0,0,0,0,0,"m/s","m/s",0.008
SLDN	kg/m^2	C9	375	"SLDN",0,0,0,0,0,0,"kg/m^2","kg/m^2",375	375	"SLDN",0,0,0,0,0,0,0,"kg/m^2","kg/m^2",375	375	"SLDN",0,0,0,0,0,0,0,"kg/m^2","kg/m^2",375
SURCM	сш	C9	25	"SURCM",0,0,0,0,0,0,0,"cm","cm",25	25	"SURCM",0,0,0,0,0,0,0,"cm","cm",25	25	"SURCM",0,0,0,0,0,0,0,"cm","cm",25
DWATER	L/d	C3	,	"DWATER",1,0,0,0,0,0,0,"L/d","L/d",50	,	"DWATER",1,0,0,0,0,0,0,"L/d","L/d",50	ı	"DWATER",1,0,0,0,0,0,0,"L/d","L/d",50
DWATER	L/d	C3	·	"DWATER",2,0,0,0,0,0,0,"L/d","L/d",0.3	ı	"DWATER",2,0,0,0,0,0,0,"L/d","L/d",0.3	ı	"DWATER",2,0,0,0,0,0,0,"L/d","L/d",0.3
DWATER	L/d	C3	,	"DWATER",3,0,0,0,0,0,0,"L/d","L/d",60	,	"DWATER",3,0,0,0,0,0,0,"L/d","L/d",60	ı	"DWATER",3,0,0,0,0,0,0,"L/d","L/d",60
DWATER	L/d	C3	'	"DWATER",4,0,0,0,0,0,0,"L/d","L/d",0.3	·	"DWATER",4,0,0,0,0,0,0,"L/d","L/d",0.3	ı	"DWATER",4,0,0,0,0,0,0,"L/d","L/d",0.3
BIOMA2	kg/m^2	C15	1.25	"BIOMA2",1,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25
BIOMA2	kg/m^2	C15	1.25	"BIOMA2",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25
BIOMA2	kg/m^2	C15	1.25	"BIOMA2",3,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25
BIOMA2	kg/m^2	C15	1.25	"BIOMA2",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",4,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25

(Cont'd)
Values
l Parameter
s (GNDFLiud.*) and
nic Exposure Parameter Files (G
2 2
19. YMP Ch
119.
Table .

Parameter Units Menu Value "YMP Chronic O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.		 "YMP Chronic Offsite GE Mean Values", 198 "BIOMA2", 5,0,0,0,0,0,0, "kg/m^2z", "kg/m^2z", 2.14 "BIOMA2", 5,0,0,0,0,0,0,0,0, "kg/m^2z", "kg/m^2z", 2.14 "CONSUM", 1,0,0,0,0,0,0, "kg/d", "kg/d",0 "CONSUM", 3,0,0,0,0,0,0, "kg/d", "kg/d",0 "CONSUM", 5,0,0,0,0,0,0, "kg/d", "kg/d",0.26 "CONSUM", 5,0,0,0,0,0,0, "kg/d", "kg/d",0.26 "CONSUM", 5,0,0,0,0,0,0, "kg/d", "kg/d",0.26 "CONSUM", 5,0,0,0,0,0,0,0, "kg/d", "kg/d",0.26 "CONSUM",5,0,0,0,0,0,0, "kg/d", "kg/d",48.5 "CONSUM",5,0,0,0,0,0,0, "kg/d", "kg/d",48.5 "BIOMAS",1,0,0,0,0,0,0,0,0,0,0,"kg/m^2z", "kg/m^2z",417 "BIOMAS",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	Value "YMP Chronic Offsite Non-GE Mean Values", 198 Value Values", 198 2.14 "BIOMA2", 5,0,0,0,0,0,"kg/m^2", "kg/m^2", 2.14 2.14 "BIOMA2", 6,0,0,0,0,0,"kg/m^2", "kg/m^2", 2.14 0 "CONSUM", 1,0,0,0,0,0,"kg/d", "kg/d",0 0 "CONSUM", 2,0,0,0,0,0,"kg/d", "kg/d",0 0 "CONSUM", 3,0,0,0,0,0,"kg/d", "kg/d",0 0 "CONSUM", 3,0,0,0,0,0,"kg/d", "kg/d",0 0 "CONSUM", 3,0,0,0,0,0,"kg/d", "kg/d",0 0 "CONSUM", 5,0,0,0,0,0,0,"kg/d", "kg/d",0 0 "CONSUM", 5,0,0,0,0,0,0,"kg/d", "kg/d",0 3.3 "BIOMAS", 1,0,0,0,0,0,"kg/d", "kg/d",61.5 3.3 "BIOMAS", 1,0,0,0,0,0,"kg/m^2", "kg/m^2",8.1 4.17 "BIOMAS", 2,0,0,0,0,0,0,"kg/m^2", "kg/m^2",8.1 5.17 "BIOMAS", 3,0,0,0,0,0,"kg/m^2", "kg/m^2",8.1
kg/m^2C15 2.14 kg/m^2C15 2.14 kg/dC16 0 kg/dC16 0.26 kg/m^2C20 4.17 kg/m^2C20 4.17 kg/m^2C20 1.25 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC24 0.1 fractionC24 0.1 fractionC24 0.1 fractionC12 0.903 frac	<pre>IOMA2",5,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 IOMA2",6,0,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "CONSUM",1,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",3,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",3,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 IOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.17 IOMAS",2,0,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17</pre>	"BIOMA2",5,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "BIOMA2",6,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "CONSUM",1,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",2,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",4,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",3.3 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/m^2C15 2.14 kg/dC160kg/dC160.26kg/dC160.26kg/dC160.26kg/m^2C16 48.5 kg/m^2C20 4.17 kg/m^2C20 4.17 kg/m^2C20 4.17 kg/m^2C20 4.17 kg/m^2C20 4.17 kg/m^2C20 1.25 fractionC13 0.1 fractionC14 0.1 fractionC12 0.903	<pre>IOMA2",6,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "CONSUM",1,0,0,0,0,"kg/d","kg/d",0 "CONSUM",2,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",3,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",0.26 "IOMAS",1,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 IOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17</pre>	"BIOMA2",6,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14 "CONSUM",1,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",2,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",3,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",38.5 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",61.5 "CONSUM",6,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/d C16 0 kg/d C16 0.26 kg/m^2 C20 1.5 kg/m^2 C20 3.3 kg/m^2 C20 1.25 fraction C13 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903 fraction C12 0.903 fraction C12 0.903 ifraction C12 0.903 <td>"CONSUM", 1,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",2,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",3,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",4,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d","kg/d",61.5 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",61.5 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",2,"3.3 IOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 IOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",17</td> <td>"CONSUM",1,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",2,0,0,0,0,0,0,"kg/d","6,0.26 "CONSUM",3,0,0,0,0,0,0,"kg/d","6,0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17</td> <td></td>	"CONSUM", 1,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",2,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",3,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",4,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d","kg/d",61.5 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",61.5 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",2,"3.3 IOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 IOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",17	"CONSUM",1,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",2,0,0,0,0,0,0,"kg/d","6,0.26 "CONSUM",3,0,0,0,0,0,0,"kg/d","6,0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/d C16 0.26 kg/d C16 0 kg/d C16 0 kg/d C16 0.26 kg/d C16 0.26 kg/d C16 61.5 kg/m^2 C20 3.3 kg/m^2 C20 3.3 kg/m^2 C20 1.25 fraction C13 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903 fraction C12 0.903 fraction C12 0.903 ifraction C12 0.903 <td>"CONSUM", 2,0,0,0,0,0,0,0,"kg/d", "kg/d",0.26 "CONSUM",3,0,0,0,0,0,"kg/d", "kg/d",0 "CONSUM",4,0,0,0,0,0,"kg/d", "kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d", "kg/d",61.5 "CONSUM",6,0,0,0,0,0,"kg/d", "kg/m^2",33 IOMAS",1,0,0,0,0,0,0,"kg/m^2", "kg/m^2",3.17 IOMAS",2,0,0,0,0,0,0,"kg/m^2", "kg/m^2",5.17</td> <td>"CONSUM",2,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",3,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",4,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",61.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.17 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17</td> <td></td>	"CONSUM", 2,0,0,0,0,0,0,0,"kg/d", "kg/d",0.26 "CONSUM",3,0,0,0,0,0,"kg/d", "kg/d",0 "CONSUM",4,0,0,0,0,0,"kg/d", "kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d", "kg/d",61.5 "CONSUM",6,0,0,0,0,0,"kg/d", "kg/m^2",33 IOMAS",1,0,0,0,0,0,0,"kg/m^2", "kg/m^2",3.17 IOMAS",2,0,0,0,0,0,0,"kg/m^2", "kg/m^2",5.17	"CONSUM",2,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",3,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",4,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",61.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.17 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/d C16 0 kg/d C16 0.26 kg/d C16 0.26 kg/d C16 48.5 kg/m^2 C20 4.17 kg/m^2 C20 3.3 kg/m^2 C20 4.17 kg/m^2 C20 1.25 fraction C13 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903 fraction C12 0.903 fraction C12 0.903 fraction C12 0.903 fraction C12 <td>"CONSUM",3,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",4,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d","kg/d",48.5 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",61.5 BIOMAS",1,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 IOMAS",2,0,0,0,0,0,"kg/m^2","kg/m^2",5.17 IOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17</td> <td>"CONSUM",3,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",4,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5 "CONSUM",6,0,0,0,0,0,0,"kg/m^2","kg/d",61.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17</td> <td></td>	"CONSUM",3,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",4,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,"kg/d","kg/d",48.5 "CONSUM",6,0,0,0,0,0,"kg/d","kg/d",61.5 BIOMAS",1,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 IOMAS",2,0,0,0,0,0,"kg/m^2","kg/m^2",5.17 IOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	"CONSUM",3,0,0,0,0,0,"kg/d","kg/d",0 "CONSUM",4,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5 "CONSUM",6,0,0,0,0,0,0,"kg/m^2","kg/d",61.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/dC16 0.26 kg/dC1648.5kg/dC1648.5kg/m^2C20 3.3 kg/m^2C20 4.17 kg/m^2C20 4.17 kg/m^2C20 4.17 kg/m^2C20 1.25 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC24 0.1 fractionC24 0.1 fractionC24 0.1 fractionC24 0.1 fractionC24 0.1 fractionC12 0.903	"CONSUM",4,0,0,0,0,0,0,","kg/d","kg/d",0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","Kg/d",48.5 "CONSUM",6,0,0,0,0,0,"kg/d","Kg/d",61.5 SIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 IOMAS",2,0,0,0,0,0,"kg/m^2","kg/m^2",5.17 IOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	"CONSUM",4,0,0,0,0,0,0,","kg/d","6,0.26 "CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",0.26 "CONSUM",6,0,0,0,0,0,0,"kg/d","kg/d",61.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/dC16 48.5 kg/dC16 61.5 kg/m^2C20 3.3 kg/m^2C20 4.17 kg/m^2C20 4.17 kg/m^2C20 1.25 fractionC13 0.1 fractionC24 0.1 fractionC24 0.1 fractionC24 0.1 fractionC12 0.903	"CONSUM",5,0,0,0,0,0,","kg/d","kg/d",48.5 "CONSUM",6,0,0,0,0,0,0,"kg/d","kg/d",61.5 8IOMAS",1,0,0,0,0,0,"kg/m^2z","kg/m^2",3.3 IOMAS",2,0,0,0,0,0,"kg/m^2","kg/m^2",5.17 IOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	"CONSUM",5,0,0,0,0,0,","kg/d","kg/d",48.5 "CONSUM",6,0,0,0,0,0,0,"kg/d","kg/d",61.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17 "BIOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/dC16 61.5 kg/m^2C20 3.3 kg/m^2C20 4.17 kg/m^2C20 5.17 kg/m^2C20 5.17 kg/m^2C20 1.25 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC13 0.1 fractionC24 0.1 fractionC24 0.1 fractionC24 0.1 fractionC24 0.1 fractionC12 0.903	"CONSUM",6,0,0,0,0,0,0,","kg/d","kg/d",61.5 8IOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",33 1OMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.17 1OMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	"CONSUM",6,0,0,0,0,0,0,","kg/d",61.5 "BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17 "BIOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/m ² C20 3.3 kg/m ² C20 3.17 kg/m ² C20 5.17 kg/m ² C20 5.17 kg/m ² C20 1.25 fraction C13 0.1 fraction C24 1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903 fraction C12 0.903 fraction C12 0.903 fraction C12 0.903 fraction C12 0.903 ifaction C1	810MAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 10MAS",2,0,0,0,0,0,"kg/m^2","kg/m^2",4.17 10MAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	"BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3 "BIOMAS",2,0,0,0,0,0,"kg/m^2","kg/m^2",4.17 "BIOMAS",3,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/m^2 C20 4.17 kg/m^2 C20 5.17 kg/m^2 C20 5.17 kg/m^2 C20 5.17 kg/m^2 C20 1.25 fraction C13 0.1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	IOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.17 IOMAS",3,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	"BIOMAS",2,0,0,0,0,0,"kg/m^2","kg/m^2",4.17 "BIOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	
kg/m^2 C20 5.17 kg/m^2 C20 1.25 fraction C13 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	IOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	"BIOMAS",3,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	•
kg/m^2 C20 1.25 fraction C13 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903			
fraction C13 0.1 fraction C13 1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	BIOMAS",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25 "BIOMAS",4,0,0,0,0,0,0,"kg/m^2",1.25 .	1.25 "BIOMAS",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25
fraction C13 0.1 fraction C13 1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	TRANSA",1,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANSA",1,0,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANSA", 1,0,0,0,0,0,0,"fraction", "fraction", 0.1
fraction C13 0.1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	TRANSA",2,0,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANSA",2,0,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANSA",2,0,0,0,0,0,0,"fraction","fraction",0.1
fraction C13 0.1 fraction C13 1 fraction C13 1 fraction C13 1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	TRANSA",3,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANSA",3,0,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANSA",3,0,0,0,0,0,0,"fraction","fraction",0.1
fraction C13 1 fraction C13 1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	TRANSA",4,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANSA",4,0,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANSA",4,0,0,0,0,0,0,"fraction","fraction",0.1
fraction C13 1 fraction C24 1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	"TRANSA",5,0,0,0,0,0,0,"fraction","fraction",1	1 "TRANSA",5,0,0,0,0,0,0,"fraction","fraction",1	1 "TRANSA",5,0,0,0,0,0,0,"fraction","fraction",1
fraction C24 1 fraction C24 0.1 fraction C12 0.903	'TRANSA",6,0,0,0,0,0,0,"fraction","fraction",1	1 "TRANSA",6,0,0,0,0,0,0,"fraction","fraction",1	1 "TRANSA",6,0,0,0,0,0,0,"fraction","fraction",1
fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	"TRANS",1,0,0,0,0,0,0,"fraction","fraction",1	1 "TRANS", 1,0,0,0,0,0,0,"fraction", "fraction", 1	1 "TRANS", 1,0,0,0,0,0,0,"fraction", "fraction", 1
fraction C24 0.1 fraction C24 0.1 fraction C12 0.903	"TRANS",2,0,0,0,0,0,0,0"fraction","fraction",0.1	0.1 "TRANS",2,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANS",2,0,0,0,0,0,0,"fraction","fraction",0.1
fraction C24 0.1 fraction C12 0.903 1	"TRANS",3,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANS", 3,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANS",3,0,0,0,0,0,0,"fraction","fraction",0.1
fraction C12 0.903 T	"TRANS",4,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANS",4,0,0,0,0,0,0,"fraction","fraction",0.1	0.1 "TRANS",4,0,0,0,0,0,0,"fraction","fraction",0.1
fraction C12 0.903 r fraction C12 0.222 r fraction C12 0.222 r	'DRYFA2",1,0,0,0,0,0,0,"fraction","fraction",0.903	0.903 "DRYFA2",1,0,0,0,0,0,0,"fraction","fraction",0.903 0	0.903 "DRYFA2",1,0,0,0,0,0,0,"fraction","fraction",0.903
fraction C12 0.903 1 fraction C12 0.903 1 fraction C12 0.903 1 fraction C12 0.22 1 fraction C12 0.22 1	'DRYFA2",2,0,0,0,0,0,0,"fraction","fraction",0.903	0.903 "DRYFA2",2,0,0,0,0,0,0,"fraction","fraction",0.903 0	0.903 "DRYFA2",2,0,0,0,0,0,0,"fraction","fraction",0.903
fraction C12 0.903 · fraction C12 0.22 fraction C12 0.22	'DRYFA2",3,0,0,0,0,0,0,"fraction","fraction",0.903	0.903 "DRYFA2",3,0,0,0,0,0,0,"fraction","fraction",0.903 0	0.903 "DRYFA2",3,0,0,0,0,0,0,"fraction","fraction",0.903
fraction C12 0.22 f	'DRYFA2",4,0,0,0,0,0,0,"fraction","fraction",0.903	0.903 "DRYFA2",4,0,0,0,0,0,0,"fraction","fraction",0.903 0	0.903 "DRYFA2",4,0,0,0,0,0,0,"fraction","fraction",0.903
fraction C12 0.22	'DRYFA2",5,0,0,0,0,0,0,"fraction","fraction",0.22	0.22 "DRYFA2",5,0,0,0,0,0,0,"fraction","fraction",0.22 (0.22 "DRYFA2",5,0,0,0,0,0,0,"fraction","fraction",0.22
_	"DRYFA2",6,0,0,0,0,0,0,"fraction","fraction",0.22	0.22 "DRYFA2",6,0,0,0,0,0,0,"fraction","fraction",0.22 (0.22 "DRYFA2",6,0,0,0,0,0,0,"fraction","fraction",0.22
DRYFAC fraction C23 0.07 "DRYFAC",1,0,0,0,0	"DRYFAC",1,0,0,0,0,0,0,"fraction","fraction",0.07	0.07 "DRYFAC",1,0,0,0,0,0,0,"fraction","fraction",0.07 (0.07 "DRYFAC",1,0,0,0,0,0,0,"fraction","fraction",0.07
DRYFAC fraction C23 0.103 "DRYFAC",2,0,0,0,0	"DRYFAC",2,0,0,0,0,0,0,"fraction","fraction",0.103	0.103 "DRYFAC",2,0,0,0,0,0,0,"fraction","fraction",0.103 0	0.103 "DRYFAC",2,0,0,0,0,0,0,"fraction","fraction",0.103
DRYFAC fraction C23 0.12 "DRYFAC",3,0,0,0,0	"DRYFAC",3,0,0,0,0,0,0,"fraction","fraction",0.12	0.12 "DRYFAC",3,0,0,0,0,0,0,"fraction","fraction",0.12 (0.12 "DRYFAC",3,0,0,0,0,0,0,"fraction","fraction",0.12
DRYFAC fraction C23 0.903 "DRYFAC",4,0,0,0,0	"DRYFAC",4,0,0,0,0,0,0,"fraction","fraction",0.903	0.903 "DRYFAC",4,0,0,0,0,0,0,"fraction","fraction",0.903 0	0.903 "DRYFAC",4,0,0,0,0,0,0,"fraction","fraction",0.903

			YMP Onsite	File: GNDFLcud.onsite	YMP Offsite GE	File: GNDFLcud.GE	YMP Offsite Non-GE	File: GNDFLcud.nonGE
Parameter Units		Menu	Value	"YMP Chronic Onsite Mean Values",198	Value	"YMP Chronic Offsite GE Mean Values",198	Value	"YMP Chronic Offsite Non-GE Mean Values",198
SLCONA	kg/d	C14	0.7	0.7 "SLCONA",1,0,0,0,0,0,0,"kg/d","kg/d",0.7	0.7	0.7 "SLCONA",1,0,0,0,0,0,0,"kg/d","kg/d",0.7	0.7	0.7 "SLCONA",1,0,0,0,0,0,0,"kg/d","kg/d",0.7
SLCONA	kg/d	C14	0.02	0.02 "SLCONA",2,0,0,0,0,0,"kg/d","kg/d",0.02	0.02	"SLCONA",2,0,0,0,0,0,0,"kg/d","kg/d",0.02	0.02	"SLCONA",2,0,0,0,0,0,0,"kg/d","kg/d",0.02
SLCONA	kg/d	C14	0.95	"SLCONA",3,0,0,0,0,0,0,"kg/d","kg/d",0.95	0.95	"SLCONA",3,0,0,0,0,0,0,"kg/d","kg/d",0.95	0.95	"SLCONA",3,0,0,0,0,0,0,"kg/d","kg/d",0.95
SLCONA	kg/d	C14		0.02 "SLCONA",4,0,0,0,0,0,"kg/d","kg/d",0.02	0.02	"SLCONA",4,0,0,0,0,0,0"kg/d","kg/d",0.02	0.02	"SLCONA",4,0,0,0,0,0,0,"kg/d","kg/d",0.02
SLCONA	kg/d	C14	ī	"SLCONA",5,0,0,0,0,0,0,"kg/d","kg/d",0	ı	"SLCONA",5,0,0,0,0,0,0,"kg/d","kg/d",0	ı	"SLCONA",5,0,0,0,0,0,0,"kg/d","kg/d",0
SLCONA	kg/d	C14	·	"SLCONA",6,0,0,0,0,0,0,"kg/d","kg/d",0	'	"SLCONA",6,0,0,0,0,0,0,"kg/d","		"SLCONA",6,0,0,0,0,0,0,"kg/d","kg/d",0

Γ

Table 120. YMP Acute Exposure Parameter Files (GNDFLaud.*) and Parameter Values

			YMP Onsite	File: GNDFLaud.onsite	YMP Offsite GE	File: GNDFLaud.GE	YMP Offsite Non- GE	File: GNDFLaud.nonGE
Parameter	Units	Menu	Value	"YMP Acute Onsite Mean Values",203	Value	"YMP Acute Offsite GE Mean Values",203	Value	"YMP Acute Offsite Non-GE Mean Values",203
IRES	N/A	8A	+	"IRES",0,0,0,0,0,0,0,"N/A","N/A",1	-	"IRES",0,0,0,0,0,0,0,0,"N/A","N/A",1	-	"IRES",0,0,0,0,0,0,0,1,"N/A",1
IRRSA	N/A	A4	'	"IRRSA",1,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",1,0,0,0,0,0,0,"N/A","N/A",0	,	"IRRSA",1,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	A4	'	"IRRSA",2,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",2,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",2,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	A4	'	"IRRSA",3,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",3,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",3,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	A4	'	"IRRSA",4,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",4,0,0,0,0,0,0,"N/A","N/A",0	,	"IRRSA",4,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	A4	'	"IRRSA",5,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",5,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",5,0,0,0,0,0,0,"N/A","N/A",0
IRRSA	N/A	A4	'	"IRRSA",6,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRSA",6,0,0,0,0,0,0,"N/A","N/A",0	,	"IRRSA",6,0,0,0,0,0,0,"N/A","N/A",0
IRRST	N/A	A4	'	"IRRST",1,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST",1,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST",1,0,0,0,0,0,0,"N/A","N/A",0
IRRST	N/A	A4	'	"IRRST",2,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST",2,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST",2,0,0,0,0,0,0,"N/A","N/A",0
IRRST	N/A	A4	'	"IRRST",3,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST";3,0,0,0,0,0,0,"N/A","N/A",0	'	"IRRST",3,0,0,0,0,0,0,"N/A","N/A",0
IRRST	N/A	A4	'	"IRRST",4,0,0,0,0,0,0,"N/A",0	'	"IRRST",4,0,0,0,0,0,0,"N/A","N/A",0		"IRRST",4,0,0,0,0,0,0,"N/A","N/A",0
IRRSR	N/A	A2	0	"IRRSR",0,0,0,0,0,0,0,"N/A","N/A",0	0	"IRRSR",0,0,0,0,0,0,0,"N/A","N/A",0	0	"IRRSR",0,0,0,0,0,0,0,"N/A","N/A",0
LEACHOP	N/A	A7	0	"LEACHOPTION",0,0,0,0,0,0,"N/A","N/A",0	0	"LEACHOPTION",0,0,0,0,0,0,"N/A","N/A",0	0	"LEACHOPTION",0,0,0,0,0,0,0,"N/A","N/A",0
DWSRC	N/A	A2	0	"DWSRC",0,0,0,0,0,0,0,"N/A","	0	"DWSRC",0,0,0,0,0,0,0,"N/A","N/A",0	0	"DWSRC",0,0,0,0,0,0,0,"N/A","N/A",0
INHAL	N/A	A26	TRUE	"INHAL",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"INHAL",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"INHAL",0,0,0,0,0,0,0,"N/A","N/A", TRUE
ANFOOD	N/A	A1	FALSE	"ANFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"ANFOOD",0,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE
TFOOD	N/A	A1	FALSE	"TFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFOOD",0,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE
AQFOOD	N/A	A1	FALSE	"AQFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQFOOD",0,0,0,0,0,0,0,"N/A","N/A",FALSE
RECRE	N/A	A1	FALSE	"RECRE",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"RECRE",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"RECRE",0,0,0,0,0,0,0,"N/A","N/A",FALSE
DEBUG	N/A	A1	FALSE	"DEBUG",0,0,0,0,0,0,0,"N/A",FALSE	FALSE	"DEBUG",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DEBUG",0,0,0,0,0,0,"N/A","N/A",FALSE
DWTRET	N/A	A2	FALSE	"DWTRET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DWTRET",0,0,0,0,0,0,0,"N/A",FALSE	FALSE	"DWTRET",0,0,0,0,0,0,0,"N/A","N/A",FALSE
RESIRR	N/A	A2	FALSE	"RESIRR",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"RESIRR",0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"RESIRR",0,0,0,0,0,0,0,"N/A","N/A",FALSE
FINITE	N/A	A26	FALSE	"FINITE",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"FINITE",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"FINITE",0,0,0,0,0,0,0,"N/A","N/A",FALSE
AIREXT	N/A	A26	TRUE	"AIREXT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"AIREXT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"AIREXT",0,0,0,0,0,0,0,"N/A","N/A",TRUE
ANF	N/A	A26	FALSE	"ANF",1,0,0,0,0,0,0,"N/A",FALSE	TRUE	"ANF",1,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANF",1,0,0,0,0,0,0,"N/A",FALSE
ANF	N/A	A26	FALSE	"ANF",2,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"ANF",2,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANF",2,0,0,0,0,0,0,"N/A",FALSE
ANF	N/A	A26	FALSE	"ANF",3,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"ANF",3,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANF",3,0,0,0,0,0,0,"N/A",FALSE
ANF	N/A	A26	FALSE	"ANF",4,0,0,0,0,0,0,"N/A",FALSE	TRUE	"ANF",4,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"ANF",4,0,0,0,0,0,0,"N/A",FALSE
TFD	N/A	A26	FALSE	"TFD",1,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFD",1,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFD",1,0,0,0,0,0,0,"N/A","N/A",FALSE
TFD	N/A	A26	FALSE	"TFD",2,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFD",2,0,0,0,0,0,0,0,N/A","N/A",TRUE	FALSE	"TFD",2,0,0,0,0,0,0,"N/A","N/A",FALSE
TFD	N/A	A26	FALSE	"TFD",3,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFD",3,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFD",3,0,0,0,0,0,0,"N/A","N/A",FALSE

(Cont'
Values
Parameter
*) and
(GNDFLaud.)
YMP Acute Exposure Parameter Files
Table 120. YMP A

(p

Inits Menu Value "TMP Acute Onsite Mean Values",203 NIA A26 FALSE "TCP",4,0,0,0,0,0,0,10,10,10,11,11,17,FALSE NIA A26 FALSE "AOF",1,0,0,0,0,0,0,11,11,11,7,FALSE NIA A26 FALSE "AOF",3,0,0,0,0,0,0,11,4,"11,11,7,FALSE NIA A26 FALSE "AOF",3,0,0,0,0,0,0,11,4,"11,11,7,FALSE NIA A26 FALSE "AOF",3,0,0,0,0,0,0,0,11,4,"11,11,7,FALSE NIA A26 FALSE "AOF",3,0,0,0,0,0,0,0,11,4,"11,17,FALSE NIA A26 FALSE "SHINDR",0,0,0,0,0,0,11,4,"11,17,FALSE NIA A26 FALSE "SUNG",0,0,0,0,0,0,0,11,4,"11,4",FALSE NIA A26 FALSE "SUNDR",0,0,0,0,0,0,0,11,4","11,4",FALSE NIA A26 FALSE "SUNDR",0,0,0,0,0,0,0,11,4","11,4",TRUE NIA A26 FALSE "SUNDR",0,0,0,0,0,0,0,0,11,4","11,7 NIA A26 FALSE "SUNDR",0,0,0,0,0,0,0,0,0,0,14,"11,7 NIA A26 TRUE "SUNDR",0,0,0,0,0,0,0,0,0,0,0,0,14,"1,7 NIA A26 TRUE				YMP Onsite	File: GNDFLaud.onsite	YMP Offsite GE	File: GNDFLaud.GE	YMP Offsite Non- GE	File: GNDFLaud.nonGE
NIA A26 FALSE "TED",4,0,0,0,0,0,0,10,11,11,11,11,11,11,11,11,			Menu	Value		Value	"YMP Acute Offsite GE Mean Values",203	Value	"YMP Acute Offsite Non-GE Mean Values", 203
NIA A26 FALSE "AGF",1,0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "AGF",2,0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "AGF",2,0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "AGF",2,0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "AGF",4,0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "SHING",0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "SOMIG",0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "SUNG",0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "SUNRC",0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "SUNNC",0,0,0,0,0,"N/A,""N/A",FALSE NIA A26 FALSE "SUNNC",0,0,0,0,0,"N/A,""N/A",FALSE NIA - "SUNRML",0,0,0,0,0,0,"N/A,""N/A",FALSE NIA - "SUNRML",0,0,0,0,0,"N/A","N/A",FALSE NIA - "SUNRML",0,0,0,0,0,"N/A","N/A",FALSE NIA - "SUNRML",0,0,0,0,0,"N/A","N/A","FALSE NIA - "SUNRML",0,0,0,0,0,0,"		N/A	A26	FALSE	"TFD",4,0,0,0,0,0,0,"N/A","N/A",FALSE	TRUE	"TFD",4,0,0,0,0,0,0,"N/A","N/A",TRUE	FALSE	"TFD",4,0,0,0,0,0,0,"N/A",FALSE
N/A A26 FALSE "AGF"_3.0.00,0,0,"N/A", "N/A", FALSE N/A A26 FALSE "AGF"_3.0.00,0,0,"N/A", "N/A", FALSE N/A A26 FALSE "AGF"_4,0,0,0,0,0,"N/A", "N/A", FALSE N/A A26 FALSE "AGF"_4,0,0,0,0,0,"N/A", "N/A", FALSE N/A A26 FALSE "SHING",0,0,0,0,0,0,"N/A", "N/A", FALSE N/A A26 FALSE "SHING",0,0,0,0,0,0,0,"N/A", "N/A", FALSE N/A A26 TRUE "SLING",0,0,0,0,0,0,"N/A", "N/A", FALSE N/A A26 TRUE "SLING",0,0,0,0,0,0,"N/A", "N/A", FALSE N/A A26 TRUE "SLING",0,0,0,0,0,0,"N/A", "N/A", FALSE N/A - "SUNG",0,0,0,0,0,0,0,"N/A", "N/A", FALSE N/A - "SCOUDD",0,0,0,0,0,0,"N/A", "N/A", FALSE N/A - "SCOUDD",0,0,0,0,0,0,0,"N/A", "N/A", FALSE N/A - "SCOUDD",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	AQF	N/A	A26	FALSE	"AQF",1,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",1,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",1,0,0,0,0,0,"N/A","N/A",FALSE
N/A A26 FALSE "AGF"3,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 FALSE "AOF"4,0,0,0,0,"N/A","N/A",FALSE N/A A26 FALSE "ADF"4,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 FALSE "SHING",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 FALSE "SHING",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SHING",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SLING",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SLING",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SLING",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SLINH",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SCOUND",0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SCOUND",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SCOUND",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A26 TRUE "SCOUND",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	AQF	N/A	A26	FALSE	"AQF",2,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",2,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",2,0,0,0,0,0,0,"N/A","N/A",FALSE
NIA A26 FALSE "AGF"4,0,0,0,0,0,"N/A","N/A",FALSE NIA A26 FALSE "DRINK",0,0,0,0,0,"N/A","N/A",FALSE NIA A26 FALSE "SHING",0,0,0,0,0,"N/A","N/A",FALSE NIA A26 FALSE "SHING",0,0,0,0,0,"N/A","N/A",FALSE NIA A26 FALSE "SHING",0,0,0,0,0,0,"N/A","N/A",FALSE NIA A26 TRUE "SHINDF",0,0,0,0,0,0,0,"N/A","N/A",FALSE NIA A26 TRUE "SHINDF",0,0,0,0,0,0,"N/A","N/A",FALSE NIA A26 TRUE "SLING",0,0,0,0,0,0,"N/A","N/A",FALSE NIA A26 TRUE "SLING",0,0,0,0,0,0,"N/A","N/A",FALSE NIA A26 TRUE "SLING",0,0,0,0,0,0,"N/A","N/A",FALSE NIA A26 TRUE "SLDRML",0,0,0,0,0,0,"N/A","N/A",FALSE NIA A26 TRUE "SUDRML",0,0,0,0,0,0,"N/A","N/A",FALSE NIA A27 E "REC",1,0,0,0,0,0,0,0,"N/A","N/A",FALSE NIA A28 TRUE "SUDRML",0,0,0,0,0,0,0,0,N/A","N/A",FALSE NIA A20 TRUE "SUDRML",0,0,0,0,0,0,0	AQF	N/A	A26	FALSE	"AQF",3,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",3,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",3,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A A26 FALSE "DRINK",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	AQF	N/A	A26	FALSE	"AQF",4,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",4,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"AQF",4,0,0,0,0,0,"N/A","N/A",FALSE
N/A A26 FALSE "SHING",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	DRINK	N/A	A26	FALSE	"DRINK",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DRINK",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DRINK",0,0,0,0,0,0,0,"N/A",FALSE
N/A A26 FALSE "SWING",0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A A26 TRUE "SLING",0,0,0,0,0,0,"N/A","N/A","FALSE N/A A26 FALSE "SLING",0,0,0,0,0,0,"N/A","N/A","FALSE N/A A26 TRUE "SLINH",0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",1,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",3,0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",3,0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",3,0,0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",3,0,0,0,0,0,0,0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "SWDRML",0,0,0,0,0,0,0,0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "SUDRML",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 N/A - - "SUDRML",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	SHING	N/A	A26	FALSE	"SHING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SHING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SHING",0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A A26 TRUE "SLING",0,0,0,0,0,"N/A","N/A","TRUE N/A A26 FALSE "SHINDR",0,0,0,0,0,"N/A","N/A","FALSE N/A A26 TRUE "SLINH",0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",1,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",1,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",2,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "REC",2,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "SUDRML",0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "SUDRML",0,0,0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "SUDRML",0,0,0,0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "SUDRML",0,0,0,0,0,0,0,0,0,0,"N/A","N/A","FALSE N/A - - "SUDRML",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	SWING	N/A	A26	FALSE	"SWING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SWING",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SWING",0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A A26 FALSE "SHINDR",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	SLING	N/A	A26	TRUE	"SLING",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"SLING",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"SLING",0,0,0,0,0,0,0,"N/A","N/A",TRUE
N/A A26 TRUE "SLINH",0,0,0,0,0,NIA","NIA", FALSE N/A - - "REC",1,0,0,0,0,0,NIA","NIA", FALSE N/A - - "REC",1,0,0,0,0,0,0,NIA","NIA", FALSE N/A - - "REC",2,0,0,0,0,0,0,0,NIA","NIA", FALSE N/A - - "REC",3,0,0,0,0,0,0,0,0,NIA","NIA", FALSE N/A - - "REC",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	SHINDR	N/A	A26	FALSE	"SHINDR",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SHINDR",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"SHINDR",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A - "REC",1,0,0,0,0,0,"N/A","N/A",FALSE N/A - "REC",2,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "REC",3,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "REC",3,0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "REC",3,0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "SHDRML",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "SHDRML",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "SHDRML",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "SHDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "SLDRML",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "N/A","N/A", FALSE N/A - - "SECPROB",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	SLINH	N/A	A26	TRUE	"SLINH",0,0,0,0,0,0,0,"N/A","N/A", TRUE	TRUE	"SLINH",0,0,0,0,0,0,0,"N/A","N/A", TRUE	TRUE	"SLINH",0,0,0,0,0,0,0,"N/A","N/A", TRUE
N/A - "REC", 2,0,0,0,0,0,"N/A", FALSE N/A - "REC", 3,0,0,0,0,0,"N/A", FALSE N/A - "REC", 3,0,0,0,0,0,"N/A", FALSE N/A - "REC", 3,0,0,0,0,0,"N/A", FALSE N/A - "SWDRML", 0,0,0,0,0,"N/A", "N/A", FALSE N/A - - N/A - - N/A - - N/A - - - - "SUDRML", 0,0,0,0,0,0,"N/A", "N/A", FALSE N/A - - N/A - - A10 FALSE "SUDRML", 0,0,0,0,0,0,"N/A", "N/A", FALSE N/A - - "SLDRML", 0,0,0,0,0,0,0,"N/A", "N/A", FALSE N/A A10 FALSE "NFACT", 0,0,0,0,0,0,"N/A", "N/A", FALSE N/A A10 FALSE "N/A", "N/A", FALSE N/A A10 FALSE "NA", "N/A", FALSE N/A - "SALT", 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	REC	N/A		'	"REC",1,0,0,0,0,0,0,"N/A","N/A",FALSE	,	"REC",1,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"REC",1,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A - "REC", 3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	REC	N/A		ı	"REC",2,0,0,0,0,0,0,"N/A","N/A",FALSE	,	"REC",2,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"REC",2,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A A26 TRUE "GROUND",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	REC	N/A		ľ	"REC",3,0,0,0,0,0,0,"N/A","N/A",FALSE	·	"REC",3,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"REC",3,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A - "SWDRML",0,0,0,0,0,0,0,0,1,1,4,",1,1,4,FALSE N/A - "SRDRML",0,0,0,0,0,0,0,1,1,4,",1,1,4,FALSE N/A - "SHDRML",0,0,0,0,0,0,0,1,1,4,",1,1,4,FALSE N/A - "SHDRML",0,0,0,0,0,0,0,1,1,4,",1,1,4,",1,1,4,1,7,1 N/A - "SHDRML",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	GROUND	N/A	A26	TRUE	"GROUND",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"GROUND",0,0,0,0,0,0,0,"N/A","N/A",TRUE	TRUE	"GROUND",0,0,0,0,0,0,0,"N/A","N/A",TRUE
N/A - "SRDRML",0,0,0,0,0,0,0,"N/A","FALSE N/A - "SHDRML",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "SHDRML",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "SLDRML",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "SLDRML",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "ISALT",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "NA", FALSE N/A A10 FALSE "NA", FALSE N/A A10 FALSE "N/A", N/A", FALSE N/A - - "SUPPROB", 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	SWDRML	N/A		ı	"SWDRML",0,0,0,0,0,0,0,"N/A",FALSE	,	"SWDRML",0,0,0,0,0,0,0,"N/A",FALSE	ı	"SWDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A - "SHDRML",0,0,0,0,0,0,"N/A","FALSE N/A - "SLDRML",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A2 - "SLDRML",0,0,0,0,0,0,"N/A","RALSE N/A A10 FALSE "ISALT",0,0,0,0,0,0,0,"N/A","RUE N/A A10 FALSE "N/A","N/A","FALSE N/A - - "AIRPROB",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	SRDRML	N/A		ı	"SRDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"SRDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	I	"SRDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE
 N/A "SLDFML",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A2 - "ISALT",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "DRYSET",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "WETSET",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "WATST",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "WATST",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "MARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "MARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "MARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A "TRPROB",0,0,0,0,0,0,"N/A","N/A",TRUE N/A "DEPPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE N/A "DEPPROB",0,0,0,0,0,0,0,0,0,0,0,0,014 Yr A1 1, "NTKEND",0,0,0,0,0,0,0,0,0,014 Yr A1 0,001 Nr A1 0,001 Rg/m^3 A1 B "DEAHUM",0,0,0,0,0,0,0,0,0,0,0014 M	SHDRML	N/A	ī	ı	"SHDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"SHDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	ı	"SHDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A A2 - "ISALT",0,0,0,0,0,0,"N/A","N/A",TRUE N/A A10 FALSE "DRYSET",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "DRYSET",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "WETSET",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "WETSET",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "AIRPROB",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "BRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "BRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "BRYSET",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "BRYSET",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	SLDRML	N/A	ī	ı	"SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	·	"SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE	I	"SLDRML",0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A A10 FALSE "DRYSET",0,0,0,0,0,0,0,0,0,0,"N/A","FALSE N/A A10 FALSE "WETSET",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	ISALT	N/A	A2	ı	"ISALT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	ı	"ISALT",0,0,0,0,0,0,0,"N/A","N/A",TRUE	I	"ISALT",0,0,0,0,0,0,0,"N/A","N/A",TRUE
N/A A10 FALSE "WETSET",0,0,0,0,0,0,"N/A","N/A",FALSE N/A A10 FALSE "HARVST",0,0,0,0,0,0,"N/A","N/A",FALSE N/A - - "AIRPROB",0,0,0,0,0,0,"N/A","TAUE N/A - - "AIRPROB",0,0,0,0,0,0,"N/A","TAUE N/A - - "AIRPROB",0,0,0,0,0,0,0,"N/A","TRUE N/A - - "BEPPROB",0,0,0,0,0,0,0,"N/A","TRUE N/A - - "EXTPROB",0,0,0,0,0,0,0,"N/A","TRUE N/A - - "EXTPROB",0,0,0,0,0,0,0,0,"N/A","TRUE N/A - - - "EXTPROB",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	DRYSET	N/A	A10	FALSE	"DRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"DRYSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A A10 FALSE "HARVST",0,0,0,0,0,0,0,N/A","N/A",FALSE N/A - - "AIRPROB",0,0,0,0,0,0,0,N/A","N/A",FALSE N/A - - "AIRPROB",0,0,0,0,0,0,0,N/A","N/A",FRUE N/A - - "AIRPROB",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	WETSET	N/A	A10	FALSE	"WETSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"WETSET",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"WETSET",0,0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A - - "AIRPROB",0,0,0,0,0,0,10,"N/A","IRUE N/A - - "DEPPROB",0,0,0,0,0,0,10,10,10,10,10,10,10,10,10,	HARVST	N/A	A10	FALSE	"HARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"HARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE	FALSE	"HARVST",0,0,0,0,0,0,0,"N/A","N/A",FALSE
N/A - "DEPPROB",0,0,0,0,0,NA","N/A",TRUE N/A - "EXTPROB",0,0,0,0,0,0,NA","N/A",TRUE N/A - "EXTPROB",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	AIRPROB	N/A		ı	"AIRPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE	,	"AIRPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE	ı	"AIRPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE
N/A - "EXTPROB",0,0,0,0,0,0,NA","N/A",TRUE yr A1 1 "NTKEND",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		N/A		ľ	"DEPPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE	·	"DEPPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE	ı	"DEPPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE
 yr A1 1. "NTKEND",0,0,0,0,0,0,"yr","yr",1 yr A1 0.0001 "RELEND",0,0,0,0,0,0,0,"yr","yr",0.000114 yr A1 0.0001 "ACUTIM",0,0,0,0,0,0,0,0,"yr","yr",0.0040 kg/m^3 A1 0.0040 A2 A3 A4 A4 A5 A6 A6 A7 A7 A8 A1 A1 A2 A3 A4 A4 A5 A6 A6 A7 A7 A8 A9 A9 A1 A1		N/A		ı	"EXTPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE	,	"EXTPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE	ı	"EXTPROB",0,0,0,0,0,0,0,"N/A","N/A",TRUE
yr A1 0.0001 "RELEND",0,0,0,0,0,0,0,"yr","yr",0.000114 yr A1 0.0001 "ACUTIM",0,0,0,0,0,0,0,0,0,00114 kg/m^3 A1 0.0040 "ABSHUM",0,0,0,0,0,0,0,0,"kg/m^3","kg/m^3",0.0040 8 6-osison A1 "BESHUM",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	NTKEND	yr	A1	.	"NTKEND",0,0,0,0,0,0,"yr","yr",1	-	"NTKEND",0,0,0,0,0,0,"yr","yr",1	-	"NTKEND",0,0,0,0,0,0,0,"yr",1
yr A1 0.0001 "ACUTIM",0,0,0,0,0,0,0,"yr","yr",0.000114 kg/m^3 A1 0.0040 "ABSHUM",0,0,0,0,0,0,0,"kg/m^3","kg/m^3",0.0040 8 6-0-8in0 A1 " "DE4" 0.0.0.0.0.0.0.0.0" "feration" 1	RELEND	yr	A1	0.0001		0.0001 14	"RELEND",0,0,0,0,0,0,0,"yr","yr",0.000114	0.0001 14	"RELEND",0,0,0,0,0,0,0,"yr","yr",0.000114
kg/m^3 A1 0.0040 "ABSHUM",0,0,0,0,0,0,"kg/m^3","kg/m^3",0.0040 8 6-ostion A1 1 "BE4" 0.0.0.0.0.0.0.0.0"	ACUTIM	yr	A1	0.0001 14	"ACUTIM",0,0,0,0,0,0,0,","yr",0.000114	0.0001 14	"ACUTIM",0,0,0,0,0,0,0,",yr","yr",0.000114	0.0001 14	"ACUTIM",0,0,0,0,0,0,0,",yr","0.000114
		g/m^3	A1	0.0040	"ABSHUM",0,0,0,0,0,0,"kg/m^3","kg/m^3",0.0040 8		0.0040 "ABSHUM",0,0,0,0,0,0,"kg/m^3","kg/m^3",0.0040 8	0.0040 8	"ABSHUM",0,0,0,0,0,0,0,"kg/m^3","kg/m^3",0.0040 8
	RF1 fra	fraction	A1	~	"RF1",0,0,0,0,0,0,0,"fraction","fraction",1	~	"RF1",0,0,0,0,0,0,0,0,"fraction","fraction",1	~	"RF1",0,0,0,0,0,0,0,"fraction","fraction",1

(Conťd)
Values
id Parameter
3NDFLaud.*) and
cute Exposure Parameter Files (
Table 120. YMP A
Tab

			YMP Onsite	File: GNDFLaud.onsite	YMP Offsite GE	File: GNDFLaud.GE	Offsite Non- GE	File: GNDFLaud.nonGE
Parameter	Units	Menu	Value	"YMP Acute Onsite Mean Values",203	Value	"YMP Acute Offsite GE Mean Values",203	Value	"YMP Acute Offsite Non-GE Mean Values", 203
XMLF	g/m^3	A8	0.0006	"XMLF",0,0,0,0,0,0,0,"g/m^3","g/m^3",0.0006	0.0006	"XMLF",0,0,0,0,0,0,0,"g/m^3","g/m^3",0.0006	0.0006	"XMLF",0,0,0,0,0,0,0,"g/m^3","g/m^3",0.0006
AVALSL	сш	A8	0.2	"AVALSL",0,0,0,0,0,0,0,"cm","cm",0.2	0.2	"AVALSL",0,0,0,0,0,0,0,"cm","cm",0.2	0.2	"AVALSL",0,0,0,0,0,0,0,"cm","cm",0.2
YELDA	kg/m^2	A11	0.59	"YELDA",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	"YELDA",1,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	"YELDA", 1,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59
YELDA	kg/m^2	A11	0.59	"YELDA",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	"YELDA",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	"YELDA",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59
YELDA	kg/m^2	A11	0.59	"YELDA",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	"YELDA",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	"YELDA",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59
YELDA	kg/m^2	A11	0.59	"YELDA",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	"YELDA",4,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	0.59	"YELDA",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59
YELDA	kg/m^2	A11	2.14	"YELDA",5,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14	2.14	"YELDA",5,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14	2.14	"YELDA",5,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14
YELDA	kg/m^2	A11	2.14	"YELDA",6,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14	2.14	"YELDA",6,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14	2.14	"YELDA",6,0,0,0,0,0,"kg/m^2","kg/m^2",2.14
HLDUPA	day	A25	0	"HLDUPA",1,0,0,0,0,0,0,"day","day",0	0	"HLDUPA",1,0,0,0,0,0,0,"day","day",0	0	"HLDUPA",1,0,0,0,0,0,0,"day","day",0
HLDUPA	day	A25	0	"HLDUPA",2,0,0,0,0,0,0,"day","day",0	0	"HLDUPA",2,0,0,0,0,0,0,"day","day",0	0	"HLDUPA",2,0,0,0,0,0,0,"day","day",0
HLDUPA	day	A25	0	"HLDUPA",3,0,0,0,0,0,0,"day","day",0	0	"HLDUPA",3,0,0,0,0,0,0,"day","day",0	0	"HLDUPA",3,0,0,0,0,0,0,"day","day",0
HLDUPA	day	A25	0	"HLDUPA",4,0,0,0,0,0,0"day","day",0	0	"HLDUPA",4,0,0,0,0,0,0"day","day",0	0	"HLDUPA",4,0,0,0,0,0,0,"day","day",0
GRWPA	day	A19	200	"GRWPA",1,0,0,0,0,0,0,"day","day",200	200	"GRWPA",1,0,0,0,0,0,0,"day","day",200	200	"GRWPA",1,0,0,0,0,0,0,"day","day",200
GRWPA	day	A19	200	"GRWPA",2,0,0,0,0,0,0,"day","day",200	200	"GRWPA",2,0,0,0,0,0,0,"day","day",200	200	"GRWPA",2,0,0,0,0,0,0,"day","day",200
GRWPA	day	A19	200	"GRWPA",3,0,0,0,0,0,0,"day","day",200	200	"GRWPA",3,0,0,0,0,0,0,"day","day",200	200	"GRWPA",3,0,0,0,0,0,0,"day","day",200
GRWPA	day	A19	200	"GRWPA",4,0,0,0,0,0,0,"day","day",200	200	"GRWPA",4,0,0,0,0,0,0,"day","day",200	200	"GRWPA",4,0,0,0,0,0,0,"day","day",200
GRWPA	day	A19	75	"GRWPA",5,0,0,0,0,0,0,1day","day",75	75	"GRWPA",5,0,0,0,0,0,0,"day",75	75	"GRWPA",5,0,0,0,0,0,0,1 day",1 day",75
GRWPA	day	A19	75	"GRWPA",6,0,0,0,0,0,0,1day","day",75	75	"GRWPA",6,0,0,0,0,0,0,"day",75	75	"GRWPA",6,0,0,0,0,0,0,1 day",1 day",75
STORTM	day	A17	0	"STORTM",1,0,0,0,0,0,0,"day","day",0	0	"STORTM",1,0,0,0,0,0,0,"day","day",0	0	"STORTM",1,0,0,0,0,0,0,"day","day",0
STORTM	day	A17	0	"STORTM",2,0,0,0,0,0,0,"day","day",0	0	"STORTM",2,0,0,0,0,0,0,"day","day",0	0	"STORTM",2,0,0,0,0,0,0,"day","day",0
STORTM	day	A17	0	"STORTM",3,0,0,0,0,0,0,"day","day",0	0	"STORTM",3,0,0,0,0,0,0,"day","day",0	0	"STORTM",3,0,0,0,0,0,0,"day","day",0
STORTM	day	A17	0	"STORTM",4,0,0,0,0,0,0,"day","day",0	0	"STORTM",4,0,0,0,0,0,0,"day","day",0	0	"STORTM",4,0,0,0,0,0,0,"day","day",0
STORTM	day	A17	0	"STORTM",5,0,0,0,0,0,0,"day","day",0	0	"STORTM",5,0,0,0,0,0,0,"day","day",0	0	"STORTM",5,0,0,0,0,0,0,"day","day",0
STORTM	day	A17	0	"STORTM",6,0,0,0,0,0,0,"day","day",0	0	"STORTM",6,0,0,0,0,0,0,"day","day",0	0	"STORTM",6,0,0,0,0,0,0,"day","day",0
DIETFR	fraction	A18	0	"DIETFR",1,0,0,0,0,0,0,"fraction","fraction",0	0	"DIETFR",1,0,0,0,0,0,0,"fraction","fraction",0	0	"DIETFR",1,0,0,0,0,0,0,"fraction","fraction",0
DIETFR	fraction	A18	-	"DIETFR",2,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",2,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",2,0,0,0,0,0,0,"fraction","fraction",1
DIETFR	fraction	A18	0	"DIETFR",3,0,0,0,0,0,0,"fraction","fraction",0	0	"DIETFR",3,0,0,0,0,0,0,"fraction","fraction",0	0	"DIETFR",3,0,0,0,0,0,0,"fraction","fraction",0
DIETFR	fraction	A18	-	"DIETFR",4,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",4,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",4,0,0,0,0,0,0,"fraction","fraction",1
DIETFR	fraction	A18	-	"DIETFR",5,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",5,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",5,0,0,0,0,0,0,"fraction","fraction",1
DIETFR	fraction	A18	-	"DIETFR",6,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",6,0,0,0,0,0,0,"fraction","fraction",1	-	"DIETFR",6,0,0,0,0,0,0,"fraction","fraction",1
YELD	kg/m^2	A22	3.3	"YELD",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3	3.3	"YELD",1,0,0,0,0,0,"kg/m^2","kg/m^2",3.3	3.3	"YELD",1,0,0,0,0,0,"kg/m^2","kg/m^2",3.3
YELD	kg/m^2	A22	4.13	"YELD",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.13	4.13	"YELD",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.13	4.13	"YELD",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.13

(Cont'
Values
Parameter
*) and
(GNDFLaud.)
YMP Acute Exposure Parameter Files
Table 120. YMP A

(p

Initial Menu Value "YMP Acute Onsite Mean Values", 203 Value Rgm*2 A22 2.75 "YELD", 3,0,0,0,0,0,"eg/m*2", 2.75 2.75 Rgm*2 A25 0.59 "YELD", 3,0,0,0,0,0,"eg/m*2", 2.75 2.75 Rgm*2 A25 0 "HLDUF", 1,0,0,0,0,0,"eg/m*2", "day", 0 0 day A25 0 "HLDUF", 3,0,0,0,0,0,0,"eg/m*2", "day", 0 0 day A25 0 "HLDUF", 3,0,0,0,0,0,0,"eg/m*2", "day", 0 0 day A21 75 "GRWP", 1,0,0,0,0,0,0,"ay," "day", "day", 0 0 day A21 160 "FILDUF", 3,0,0,0,0,0,0,"ay," "day", "day", 0 160 day A21 160 "GRWP", 1,0,0,0,0,0,0,0,"ay," "day", "day", 40,0 160 day A21 160 "GRWP", 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 160 day A21 160 "GRWP", 40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		Offsite File: GNDFLaud.GE GE	Offsite File: GNDFLaud.nonGE Non- GE
Kg/m/z A22 2.75 "YELD", 3,0,0,0,0,0, %g/m/z", "kg/m/z", 2.75 2.75 kg/m/z A25 0.59 "YELD", 4,0,0,0,0,0,0,0,"a/y","a/y",0 0.59 day A25 0 "HLDUP", 2,0,0,0,0,0,0,"a/y","a/y",0 0 day A25 0 "HLDUP", 2,0,0,0,0,0,0,"a/y","a/y",0 0 day A25 0 "HLDUP", 3,0,0,0,0,0,0,"a/y","a/y","a/y",0 0 day A21 75 "GRWP", 1,0,0,0,0,0,0,"a/y","		alue "YMP Acute Offsite GE Mean Values",203	Value "YMP Acute Offsite Non-GE Mean Values", 203
Kg/m*/z A22 0.59 "YELD", 4,0,0,0,0,0, "kg/m*z", 0.59 0.59 day A25 0 "HLDUP", 1,0,0,0,0,0,0"day", "day", 0 0 day A25 0 "HLDUP", 2,0,0,0,0,0,0"day", "day", 0 0 day A25 0 "HLDUP", 2,0,0,0,0,0,0"day", "day", 0 0 day A21 75 0 "HLDUP", 4,0,0,0,0,0,0"day", "day", 0 0 day A21 75 0 "HLDUP", 4,0,0,0,0,0,0"day", "day", 0 0 day A21 75 "GRWP", 4,0,0,0,0,0,0,0"day", "day", 160 160 day A21 160 "GRWP", 4,0,0,0,0,0,0,0"day", "day", 160 160 day A21 200 "GRWP", 4,0,0,0,0,0,0,0"day", "day", 160 160 day A21 200 "GRWP", 4,0,0,0,0,0,0,0,0"day", "day", 160 160 day A21 200 "GRWP", 4,0,0,0,0,0,0,0,0,0,0,0 160 day A21 A21 A21 A21 A21 in/yr A21 A21 A21 A21 A2	ELD",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.75	:.75	2.75 "YELD",3,0,0,0,0,0,"kg/m^2","kg/m^2",2.75
day A25 0 "HLDUP", 1,0.0,0.0,0."day, "day", 0 0 day A25 0 "HLDUP, 2,0.0,0.0,0."day, "day", 0 0 day A25 0 "HLDUP, 2,0.0,0.0,0."day, "day", 0 0 day A21 75 "GRWP", 1,0.0,0.0,0.0,0."day", "day", 0 0 day A21 75 "GRWP", 4,0.0,0.0,0.0,0."day", "day", 0 0 day A21 150 "GRWP", 4,0.0,0.0,0.0,0.0,0."day", "day", 160 160 day A21 160 "GRWP", 4,0.0,0.0,0.0,0.0,0."day", "day", 160 160 day A21 160 "GRWP", 4,0.0,0.0,0.0,0.0,0."day", "day", 160 160 day A21 200 "GRWP", 4,0.0,0.0,0.0,0.0,0.0,0.0,0."day", 470 160 in/yr A5 - "RIRRA", 5,0.0,0.0,0.0,0.0,0.0,0.0,0."mon/yr", 47 160 in/yr A5 - "RIRRA", 5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 160 in/yr A5 - "RIRRA", 5,0.0,0.0,0.0,0.0,0.0,0.0,0.0 160 in/yr A5 - "RIRRA", 5,0.0,0.0,0.0,0.0,0.0,0.0.	ELD",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",0.59	.59 "YELD",4,0,0,0,0,0,0"kg/m^2","kg/m^2",0.59	0.59 "YELD",4,0,0,0,0,0,"kg/m^2","kg/m^2",0.59
day A25 0 "HLDUP", 2,00,0,0,0,"day", "day", 0 0 day A25 0 "HLDUP", 3,00,0,0,0,"day", "day", 0 0 day A21 75 "GRWP", 1,0,0,0,0,0,"day", "day", 0 0 day A21 75 "GRWP", 1,0,0,0,0,0,0,"day", "day", 0 0 day A21 160 "GRWP", 4,00,0,0,0,0,0,"day", "day", 160 160 day A21 160 "GRWP", 4,00,0,0,0,0,0,"day", "day", 160 160 day A21 160 "GRWP", 4,00,0,0,0,0,0,0,"day", "day", 160 160 day A21 200 "GRWP", 4,00,0,0,0,0,0,"day", "day", 160 160 day A21 200 "GRWP", 4,00,0,0,0,0,0,0,0,0,"day", 460 160 day A21 200 "GRWP", 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"HLDUP",1,0,0,0,0,0,0,"day","day",0	0 "HLDUP",1,0,0,0,0,0,0,"day","day",0	0 "HLDUP",1,0,0,0,0,0,0,"day","day",0
day A25 0 "HLDUP",3,0,0,0,0,0,"day","day","day",0 0 day A21 75 "GRWP",4,0,0,0,0,0,"day","day",75 75 day A21 75 "GRWP",4,0,0,0,0,0,"day","day",75 75 day A21 160 "GRWP",3,0,0,0,0,0,"day","day",75 75 day A21 160 "GRWP",3,0,0,0,0,0,0,"day","day",75 75 day A21 160 "GRWP",3,0,0,0,0,0,0,"day","day",760 76 day A21 160 "GRWP",3,0,0,0,0,0,0,"day","day",760 76 day A21 200 "GRWP",4,0,0,0,0,0,0,0,"day","day",760 76 in/yr A5 - "RIRRA",4,0,0,0,0,0,0,0,"day","day",760 200 in/yr A5 - "RIRRA",4,0,0,0,0,0,0,0,0,0,0,"day","day",760 200 in/yr A5 - "RIRRA",5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"HLDUP",2,0,0,0,0,0,0,"day","day",0	0 "HLDUP",2,0,0,0,0,0,0,"day","day",0	0 "HLDUP",2,0,0,0,0,0,0,"day","day",0
day A25 0 "HLDUP",4,0,0,0,0,0,"day","day","day",75 75 day A21 75 "GRWP",3,0,0,0,0,0,"day","day",75 75 day A21 160 "GRWP",3,0,0,0,0,0,"day","day",75 75 day A21 160 "GRWP",3,0,0,0,0,0,"day","day",75 75 day A21 160 "GRWP",3,0,0,0,0,0,0,"in/yr","in/yr",35 200 in/yr A5 - "RIRRA",1,0,0,0,0,0,0,"in/yr","in/yr",47 2 in/yr A5 - "RIRRA",2,0,0,0,0,0,0,"in/yr","in/yr",47 2 in/yr A5 - "RIRRA",5,0,0,0,0,0,0,0,"in/yr","in/yr",47 2 in/yr A5 - "RIRRA",5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"HLDUP",3,0,0,0,0,0,0,"day","day",0	0 "HLDUP",3,0,0,0,0,0,0,"day","day",0	0 "HLDUP",3,0,0,0,0,0,0,"day","day",0
day A21 75 "GRWP", 1,0,0,0,0,0," day", "day", 75 75 day A21 80 "GRWP", 2,0,0,0,0,0," day", "day", 76 75 day A21 160 "GRWP", 2,0,0,0,0,0," day", "day", 76 76 day A21 160 "GRWP", 2,0,0,0,0,0," day", "day", 76 76 in/yr A5 - "RIRRA", 10,0,0,0,0," in/yr", "in/yr", 35 - in/yr A5 - "RIRRA", 5,0,0,0,0,0,0," in/yr", 47 - in/yr A5 - "RIRRA", 5,0,0,0,0,0,0," in/yr", 47 - in/yr A5 - "RIRRA", 5,0,0,0,0,0,0," in/yr", 47 - in/yr A5 - "RIRRA", 5,0,0,0,0,0,0,0," in/yr", 47 - mon/yr A6 - "RIRRA", 5,0,0,0,0,0,0,0," in/yr", 47 - mon/yr A6 - "RIRRA", 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"HLDUP",4,0,0,0,0,0,0,"day","day",0	0 "HLDUP",4,0,0,0,0,0,"day","day",0	0 "HLDUP",4,0,0,0,0,0,0,"day","day",0
day A21 80 "GRWP",2,0,0,0,0,0,"day","day",80 80 day A21 160 "GRWP",3,0,0,0,0,0,"day",160 160 day A21 200 "GRWP",3,0,0,0,0,0,"day",160 160 in/yr A5 - "RIRRA",1,0,0,0,0,0,"in/yr","in/yr",35 - in/yr A5 - "RIRRA",5,0,0,0,0,0,0,"in/yr",16 - in/yr A5 - "RIRRA",5,0,0,0,0,0,0,"in/yr",16 - in/yr A5 - "RIRRA",5,0,0,0,0,0,0,"in/yr",17 - in/yr A5 - "RIRRA",5,0,0,0,0,0,0,0,0,"in/yr",47 - in/yr A5 - "RIRRA",5,0,0,0,0,0,0,0,0,"in/yr",47 - mon/yr A6 - "RIRRA",5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"GRWP",1,0,0,0,0,0,0,"day","day",75	75 "GRWP",1,0,0,0,0,0,"day","day",75	75 "GRWP",1,0,0,0,0,0,"day",75
day A21 160 "GRWP",3,0,0,0,0,0,"day","day","160 160 day A21 200 "GRWP",4,0,0,0,0,0,"day","day","35 - in/yr A5 - "RIRRA",1,0,0,0,0,0,0,"in/yr","in/yr",35 - in/yr A5 - "RIRRA",2,0,0,0,0,0,0,"in/yr","in/yr",35 - in/yr A5 - "RIRRA",5,0,0,0,0,0,0,"in/yr","in/yr",35 - in/yr A5 - "RIRRA",5,0,0,0,0,0,0,0,"in/yr","in/yr",47 - in/yr A5 - "RIRRA",5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"GRWP",2,0,0,0,0,0,0,"day","day",80	80 "GRWP",2,0,0,0,0,0,"day","day",80	80 "GRWP",2,0,0,0,0,0,"day","day",80
day A21 200 "GRWP", 4,0,0,0,0,0, "in/yr", "in/yr", 35 200 in/yr A5 - "RIRRA", 1,0,0,0,0,0, "in/yr", "in/yr", 35 - in/yr A5 - "RIRRA", 2,0,0,0,0,0, "in/yr", "in/yr", 35 - in/yr A5 - "RIRRA", 2,0,0,0,0,0,0, "in/yr", "in/yr", 35 - in/yr A5 - "RIRRA", 4,0,0,0,0,0,0, "in/yr", "in/yr", 47 - in/yr A5 - "RIRRA", 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"GRWP",3,0,0,0,0,0,0,"day","day",160	160 "GRWP",3,0,0,0,0,0,0,"day","day",160	160 "GRWP",3,0,0,0,0,0,0,"day","day",160
 inlyr A5 - "RIRRA", 2,0,0,0,0,0,"inlyr", "inlyr", 35 inlyr A5 - "RIRRA", 2,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A5 - "RIRRA", 5,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A5 - "RIRRA", 5,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A5 - "RIRRA", 5,0,0,0,0,0,0,"inlyr", 47 inlyr A6 - "RIRRA", 5,0,0,0,0,0,0,"inlyr", "inlyr", 47 monlyr A6 - "RIRRA", 5,0,0,0,0,0,0,"inlyr", "inlyr", 6 monlyr A6 - "RIRRA", 5,0,0,0,0,0,0,"monlyr", 6 monlyr A6 - "RIRRA", 5,0,0,0,0,0,0,0,"monlyr", 6 monlyr A6 - "RIRRA", 5,0,0,0,0,0,0,0,"monlyr", 6 monlyr A6 - "RIRRA", 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"GRWP",4,0,0,0,0,0,0,"day","day",200	200 "GRWP",4,0,0,0,0,0,0,"day","day",200	200 "GRWP",4,0,0,0,0,0,0,"day","day",200
 inlyr A5 "RIRRA", 3,0,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A5 "RIRRA", 3,0,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A5 "RIRRA", 5,0,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A5 "RIRRA", 5,0,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A6 "RTIMA", 1,0,0,0,0,0,0,"inlyr", "inlyr", 6 monlyr A6 "RTIMA", 2,0,0,0,0,0,0,0,"inlyr", "inlyr", 6 monlyr A6 "RTIMA", 2,0,0,0,0,0,0,"inlyr", "inlyr", 6 "IRTIMA", 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"RIRRA",1,0,0,0,0,0,0,"in/yr","in/yr",35	- "RIRRA",1,0,0,0,0,0,0,"in/yr","in/yr",35	- "RIRRA",1,0,0,0,0,0,0,"in/yr","in/yr",35
 Inlyr A5 - "RIRRA", 3,0,0,0,0,0,"Inlyr","Inlyr", 47 Inlyr A5 - "RIRRA", 4,0,0,0,0,0,"Inlyr", "Inlyr", 47 Inlyr A5 - "RIRRA", 5,0,0,0,0,0,"Inlyr", "Inlyr", 47 Inlyr A6 - "RIRRA", 5,0,0,0,0,0,"Inlyr", "Inlyr", 6 Innonlyr A6 - "IRTIMA", 2,0,0,0,0,0,"Innlyr", "Innlyr", 6 Innonlyr A6 - "IRTIMA", 2,0,0,0,0,0,0,"Innlyr","Innlyr", 6 Innonlyr A6 - "IRTIMA", 2,0,0,0,0,0,0,"Innlyr", "Innlyr", 6 Innonlyr A6 - "IRTIMA", 2,0,0,0,0,0,0,"Innlyr", 8 Innlyr A6 - "IRTIMA", 2,0,0,0,0,0,0,"Innlyr", 8 Innlyr A6 - "IRTIMA", 2,0,0,0,0,0,0,"Innlyr", 8 Innlyr A6 - "IRTIMA", 7,0,0,0,0,0,0,"Innlyr", 8 Innlyr A6 - "IRTIMA", 7,0,0,0,0,0,0,"Innlyr", 6 Innlyr A5 - "RIRR", 7,0,0,0,0,0,0,0,"Innlyr", 6 Inlyr A5 - "RIRR", 7,0,0,0,0,0,0,0,"Innlyr", 6 Innlyr A5 - "IRTIMA", 2,0,0,0,0,0,0,0,"Innlyr", 15 Innlyr A5 - "RIRR", 2,0,0,0,0,0,0,0,0,0,0,0,"Innlyr", 6 Innlyr A5 - "RIRR", 2,0,0,0,0,0,0,0,0,0,0,"Innlyr", 6 Innlyr A5 - "RIRR", 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"RIRRA",2,0,0,0,0,0,0,"in/yr","in/yr",0	- "RIRRA",2,0,0,0,0,0,0,"in/yr",0	- "RIRRA",2,0,0,0,0,0,0,"in/yr",0
 inlyr A5 "RIRRA", 5,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A5 "RIRRA", 5,0,0,0,0,0,0,"inlyr", "inlyr", 47 inlyr A5 "RIRRA", 5,0,0,0,0,0,0,"monlyr", 6 monlyr A6 "RTIMA", 2,0,0,0,0,0,0,"monlyr", 6 monlyr A6 "RTIMA", 3,0,0,0,0,0,0,"monlyr", 6 "IRTIMA", 5,0,0,0,0,0,0,0,"monlyr", 6 "IRTIMA", 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"RIRRA",3,0,0,0,0,0,0,"in/yr","in/yr",47	- "RIRRA",3,0,0,0,0,0,0,"in/yr","in/yr",47	- "RIRRA",3,0,0,0,0,0,0,"in/yr","in/yr",47
 inlyr A5 - "RIRRA", 5,0,0,0,0,0,",n/yr","n/yr",47 inlyr A5 - "RIRRA", 5,0,0,0,0,0,"n/yr","n/yr",47 monlyr A6 - "RTIMA", 1,0,0,0,0,0,0,"mon/yr",6 monlyr A6 - "RTIMA", 2,0,0,0,0,0,"mon/yr",6 monlyr A6 - "RTIMA", 4,0,0,0,0,0,"mon/yr",6 monlyr A6 - "RTIMA", 5,0,0,0,0,0,"mon/yr",6 monlyr A6 - "RTIMA", 5,0,0,0,0,0,0,"mon/yr",6 monlyr A6 - "RTIMA", 5,0,0,0,0,0,0,0,"mon/yr",6 inlyr A5 - "RIRR", 1,0,0,0,0,0,0,0,"mon/yr",6 inlyr A5 - "RIRR", 2,0,0,0,0,0,0,0,"mon/yr",6 inlyr A5 - "RIRR", 2,0,0,0,0,0,0,0,"mon/yr",6 inlyr A5 - "RIRR", 3,0,0,0,0,0,0,0,"mon/yr",6 mon/yr A6 - "RTIMT", "mon/yr",6 mon/yr A6 - "RIRR", 3,0,0,0,0,0,0,0,0,0,"mon/yr",6 mon/yr A6 - "RIRR", 3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"RIRRA",4,0,0,0,0,0,0,"in/yr","in/yr",0	- "RIRRA",4,0,0,0,0,0,0,"in/yr",0	- "RIRRA",4,0,0,0,0,0,0,"in/yr",0
 inlyr A5 - "RIRRA", 6,0,0,0,0,0, "inlyr", "inlyr", 47 monlyr A6 - "IRTIMA", 1,0,0,0,0,0,0, "monlyr", 6 monlyr A6 - "IRTIMA", 2,0,0,0,0,0,0, "monlyr", 6 monlyr A6 - "IRTIMA", 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"RIRRA",5,0,0,0,0,0,0,"in/yr","in/yr",47	- "RIRRA",5,0,0,0,0,0,0,"in/yr","in/yr",47	- "RIRRA",5,0,0,0,0,0,0,"in/yr","in/yr",47
 monlyr A6 "IRTIMA",1,0,0,0,0,0,"monlyr","monlyr",6 monlyr A6 "IRTIMA",2,0,0,0,0,0,"monlyr","monlyr",6 monlyr A6 "IRTIMA",5,0,0,0,0,0,"monlyr","monlyr",6 monlyr A6 "IRTIMA",5,0,0,0,0,0,0,"monlyr",6 inlyr A5 "RIRR",1,0,0,0,0,0,0,"monlyr",6 inlyr A5 "IRTIMA",5,0,0,0,0,0,0,0,"monlyr",6 inlyr A5 "IRTIMA",5,0,0,0,0,0,0,"monlyr",6 monlyr A6 "RIRR",4,0,0,0,0,0,0,0,"monlyr",6 monlyr A6 "RIRR",4,0,0,0,0,0,0,0,"monlyr",6 monlyr A6 "IRTIMT",10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	"RIRRA",6,0,0,0,0,0,0,"in/yr","in/yr",47	- "RIRRA",6,0,0,0,0,0,0,"in/yr","in/yr",47	- "RIRRA",6,0,0,0,0,0,0,"in/yr","in/yr",47
 monlyr A6 "IRTIMA",2,0,0,0,0,0,"monlyr","monlyr",0 A6 "IRTIMA",3,0,0,0,0,0,"monlyr","monlyr",6 monlyr A6 "IRTIMA",5,0,0,0,0,0,"monlyr","monlyr",6 monlyr A6 "IRTIMA",5,0,0,0,0,0,0,"monlyr","monlyr",6 monlyr A6 "IRTIMA",5,0,0,0,0,0,0,"monlyr","6 monlyr A5 "IRTIMA",5,0,0,0,0,0,0,0,"monlyr","6 inlyr A5 "RIRR",2,0,0,0,0,0,0,"monlyr","6 inlyr A5 "RIRR",2,0,0,0,0,0,0,"monlyr",6 inlyr A5 "RIRR",2,0,0,0,0,0,0,"monlyr",6 monlyr A5 "RIRR",2,0,0,0,0,0,0,0,"monlyr",6 monlyr A6 "IRTIMT",1,0,0,0,0,0,0,0,"monlyr",6 monlyr A6 "IRTIMT",1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 monlyr A6 "IRTIMT",1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	RTIMA",1,0,0,0,0,0,0,"mon/yr","mon/yr",6	- "IRTIMA",1,0,0,0,0,0,0,"mon/yr",6	- "IRTIMA",1,0,0,0,0,0,0,"mon/yr","mon/yr",6
 monlyr A6 "IRTIMA", 3,0,0,0,0,0, "monlyr", "monlyr", 6 monlyr A6 "IRTIMA", 5,0,0,0,0,0,0, "monlyr", "monlyr", 6 monlyr A6 "IRTIMA", 5,0,0,0,0,0,0, "monlyr", 6 monlyr A5 "IRTIMA", 5,0,0,0,0,0,0,0,"monlyr", 6 inlyr A5 "RIRR", 2,0,0,0,0,0,0,"monlyr", 75 inlyr A5 "RIRR", 2,0,0,0,0,0,0,0,0,"monlyr", 6 "inlyr", 40 "inlyr A5 "RIRR", 2,0,0,0,0,0,0,"monlyr", 6 "inlyr A5 "RIRR", 2,0,0,0,0,0,0,"monlyr", 6 "inlyr A5 "RIRR", 2,0,0,0,0,0,0,"monlyr", 6 "monlyr A6 "RIRR", 2,0,0,0,0,0,0,0,"monlyr", 6 "monlyr A6 "IRTIMT", 1,0,0,0,0,0,0,0,"monlyr", 6 "monlyr A6 "IRTIMT", 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	RTIMA",2,0,0,0,0,0,0,"mon/yr","mon/yr",0	- "IRTIMA",2,0,0,0,0,0,0,"mon/yr",0	- "IRTIMA",2,0,0,0,0,0,0,"mon/yr","mon/yr",0
 monlyr A6 "IRTIMA",4,0,0,0,0,0,"monlyr","monlyr",0 A6 "IRTIMA",5,0,0,0,0,0,"monlyr","monlyr",6 monlyr A6 "IRTIMA",6,0,0,0,0,0,"monlyr",6 monlyr A5 "RIRR",1,0,0,0,0,0,0,"mlyr",35 inlyr A5 "RIRR",3,0,0,0,0,0,0,"mlyr",35 inlyr A5 "RIRR",40,0,0,0,0,0,"mlyr",35 inlyr A5 "RIRR",40,0,0,0,0,0,0,"mlyr",56 monlyr A5 "RIRR",40,0,0,0,0,0,0,0,"mlyr",55 inlyr A5 "RIRR",40,0,0,0,0,0,0,0,"monlyr",6 monlyr A6 "IRTIMT",1,0,0,0,0,0,0,"monlyr",6 monlyr A6 "IRTIMT",20,0,0,0,0,0,0,"monlyr",6 monlyr A6 "IRTIMT",40,0,0,0,0,0,0,0,0,0,0 monlyr A6 "IRTIMT",40,0,0,0,0,0,0,0,0,0,0,0 monlyr 	RTIMA",3,0,0,0,0,0,0,"mon/yr","mon/yr",6	- "IRTIMA",3,0,0,0,0,0,0,"mon/yr",6	- "IRTIMA",3,0,0,0,0,0,0,"mon/yr","mon/yr",6
 monlyr A6 "IRTIMA", 5,0,0,0,0,0, "monlyr", "monlyr", 6 monlyr A6 "IRTIMA", 6,0,0,0,0,0, "monlyr", 6 inlyr A5 "RIRR", 1,0,0,0,0,0,0, "inlyr", 35 inlyr A5 "RIRR", 2,0,0,0,0,0,0, "inlyr", 35 inlyr A5 "RIRR", 3,0,0,0,0,0,0, "inlyr", 35 inlyr A5 "RIRR", 40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	RTIMA",4,0,0,0,0,0,0,"mon/yr","mon/yr",0	- "IRTIMA",4,0,0,0,0,0,0,"mon/yr","mon/yr",0	- "IRTIMA",4,0,0,0,0,0,0,"mon/yr","mon/yr",0
 monlyr A6 "RTIMA",6,0,0,0,0,0,"monlyr","monlyr",6 inlyr A5 "RIRR",1,0,0,0,0,0,"inlyr",35 inlyr A5 "RIRR",2,0,0,0,0,0,0,"inlyr",40 inlyr A5 "RIRR",3,0,0,0,0,0,0,"inlyr",35 inlyr A5 "RIRR",4,0,0,0,0,0,0,"inlyr",6 monlyr A6 "IRTIMT",1,0,0,0,0,0,0,"monlyr",6 "monlyr A6 "IRTIMT",2,0,0,0,0,0,0,"monlyr",6 monlyr A6 "IRTIMT",2,0,0,0,0,0,0,"monlyr",6 monlyr A6 "IRTIMT",3,0,0,0,0,0,0,0,"monlyr",6 "monlyr A6 "IRTIMT",3,0,0,0,0,0,0,0,0,0,0,0,0,0,0 	RTIMA",5,0,0,0,0,0,0,"mon/yr","mon/yr",6	- "IRTIMA",5,0,0,0,0,0,0,"mon/yr",6	- "IRTIMA",5,0,0,0,0,0,0,"mon/yr","mon/yr",6
 in/yr A5 - "RIRR", 1,0,0,0,0,0, "In/yr", "In/yr", 35 - in/yr A5 - "RIRR", 2,0,0,0,0,0, "In/yr", "In/yr", 40 - in/yr A5 - "RIRR", 3,0,0,0,0,0,0, "In/yr", "In/yr", 35 - in/yr A5 - "RIRR", 3,0,0,0,0,0,0,0, "In/yr", "In/yr", 35 - in/yr A5 - "RIRR", 4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	RTIMA",6,0,0,0,0,0,0,"mon/yr","mon/yr",6	- "IRTIMA",6,0,0,0,0,0,0,"mon/yr",6	- "IRTIMA",6,0,0,0,0,0,0,"mon/yr","mon/yr",6
 in/yr A5 - "RIRR", 2,0,0,0,0,0,"In/yr", 40 - In/yr", 45 in/yr A5 - "RIRR", 3,0,0,0,0,0,0,"In/yr", 35 in/yr A5 - "RIRR", 4,0,0,0,0,0,0,"In/yr", 71,0,0,0 mon/yr A6 - "IRTIMT", 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"RIRR",1,0,0,0,0,0,0,"in/yr","in/yr",35	- "RIRR", 1,0,0,0,0,0,0,"in/yr", "in/yr", 35	- "RIRR",1,0,0,0,0,0,0,"in/yr","in/yr",35
 in/yr A5 "RIRR", 3,0,0,0,0,0,0,"In/yr", "In/yr", 35 in/yr A5 "RIRR", 4,0,0,0,0,0,0,"In/yr", 35 mon/yr A6 "IRTIMT", 1,0,0,0,0,0,0,"mon/yr", 6 mon/yr A6 "IRTIMT", 2,0,0,0,0,0,0,"mon/yr", 6 mon/yr A6 "IRTIMT", 3,0,0,0,0,0,0,0,"mon/yr", 6 "IRTIMT", 4,0,0,0,0,0,0,0,0,0,0 	"RIRR",2,0,0,0,0,0,0,"in/yr","in/yr",40	- "RIRR",2,0,0,0,0,0,0,"in/yr","in/yr",40	- "RIRR",2,0,0,0,0,0,0,"in/yr","in/yr",40
 in/yr A5 - "RIRR",4,0,0,0,0,0,"in/yr","n/yr",0 mon/yr A6 - "IRTIMT",1,0,0,0,0,0,0,"mon/yr",6 mon/yr A6 - "IRTIMT",2,0,0,0,0,0,"mon/yr",6 mon/yr A6 - "IRTIMT",3,0,0,0,0,0,0,"mon/yr",6 mon/yr A6 - "IRTIMT",4,0,0,0,0,0,0,0,"mon/yr",6 mon/yr A6 - "IRTIMT",4,0,0,0,0,0,0,0,0,0 	"RIRR",3,0,0,0,0,0,0,"in/yr","in/yr",35	- "RIRR",3,0,0,0,0,0,0,"in/yr","in/yr",35	- "RIRR",3,0,0,0,0,0,0,"in/yr","in/yr",35
monlyr A6 - "IRTIMT",1,0,0,0,0,0,0,monlyr",6 - ' monlyr A6 - "IRTIMT",2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	"RIRR",4,0,0,0,0,0,0,"in/yr","in/yr",0	- "RIRR",4,0,0,0,0,0,"in/yr","in/yr",0	- "RIRR",4,0,0,0,0,0,0,"in/yr","in/yr",0
monlyr A6 - "IRTIMT",2.0,0,0,0,0, "monlyr",6 - '' monlyr A6 - "IRTIMT",3,0,0,0,0,0,0,0,"monlyr",6 - ' monlyr A6 - "IRTIMT",4,0,0,0,0,0,0,0,"monlyr",0 - '	RTIMT",1,0,0,0,0,0,0,"mon/yr","mon/yr",6	 "IRTIMT", 1,0,0,0,0,0,0,"mon/yr","mon/yr",6 	- "IRTIMT",1,0,0,0,0,0,0,"mon/yr","mon/yr",6
mon/yr A6 - "IRTIIMT",3,0,0,0,0,0,0,mon/yr",6 - ' mon/yr A6 - "IRTIIMT",4,0,0,0,0,0,0,0,0,"mon/yr",0 - '	RTIMT",2,0,0,0,0,0,0,"mon/yr","mon/yr",6	- "IRTIMT",2,0,0,0,0,0,0,"mon/yr","mon/yr",6	- "IRTIMT",2,0,0,0,0,0,0,"mon/yr","mon/yr",6
mon/yr A6 - "IRTIMT",4,0,0,0,0,0,0,0,","mon/yr",0 -	RTIMT", 3,0,0,0,0,0,0,"mon/yr","mon/yr",6	- "IRTIMT",3,0,0,0,0,0,0,"mon/yr","mon/yr",6	- "IRTIMT",3,0,0,0,0,0,0,"mon/yr","mon/yr",6
	RTIMT",4,0,0,0,0,0,0,"mon/yr","mon/yr",0	- "IRTIMT",4,0,0,0,0,0,0,"mon/yr","mon/yr",0	- "IRTIMT",4,0,0,0,0,0,0,"mon/yr","mon/yr",0
•	"HLDUP2",1,0,0,0,0,0,0,"day","day",1	- "HLDUP2",1,0,0,0,0,0,"day","day",1	- "HLDUP2",1,0,0,0,0,0,"day","day",1
HLDUP2 day A25 - "HLDUP2",2,0,0,0,0,0,0,"day","day",0 - "HLDUP2",2,0,0,0,0,0,0	"HLDUP2",2,0,0,0,0,0,0,"day","day",0	- "HLDUP2",2,0,0,0,0,0,"day","day",0	- "HLDUP2",2,0,0,0,0,0,"day","day",0

Table 120. YMP Acute Exposure Parameter Files (GNDFLaud.*) and Parameter Values (Cont'd)

			YMP Onsite	File: GNDFLaud.onsite	YMP Offsite GE	File: GNDFLaud.GE	YMP Offsite Non- GE	File: GNDFLaud.nonGE
Parameter	Units	Menu	Value	"YMP Acute Onsite Mean Values",203	Value	"YMP Acute Offsite GE Mean Values",203	Value	"YMP Acute Offsite Non-GE Mean Values",203
HLDUP2	day	A25		"HLDUP2",3,0,0,0,0,0,0,"day","day",0		"HLDUP2",3,0,0,0,0,0,0,"day","day",0		"HLDUP2",3,0,0,0,0,0,0,"day","day",0
HLDUP2	day	A25		"HLDUP2",4,0,0,0,0,0,0,"day","day",0		"HLDUP2",4,0,0,0,0,0,0,"day","day",0	'	"HLDUP2",4,0,0,0,0,0,0,"day","day",0
DWFACA	fraction	A3	·	"DWFACA",1,0,0,0,0,0,0,"fraction","fraction",1		"DWFACA",1,0,0,0,0,0,0,"fraction","fraction",1	'	"DWFACA", 1,0,0,0,0,0,0,"fraction","fraction",1
DWFACA	fraction	A3	ı	"DWFACA",2,0,0,0,0,0,0,"fraction","fraction",1	'	"DWFACA",2,0,0,0,0,0,0,"fraction","fraction",1	'	"DWFACA",2,0,0,0,0,0,0,"fraction","fraction",1
DWFACA	fraction	A3		"DWFACA",3,0,0,0,0,0,0,"fraction","fraction",1		"DWFACA",3,0,0,0,0,0,0,"fraction","fraction",1	'	"DWFACA",3,0,0,0,0,0,0,"fraction","fraction",1
DWFACA	fraction	A3		"DWFACA",4,0,0,0,0,0,0,"fraction","fraction",1		"DWFACA",4,0,0,0,0,0,0,"fraction","fraction",1	'	"DWFACA",4,0,0,0,0,0,0,"fraction","fraction",1
SSLDN	kg/m^3	A9	1500	"SSLDN",0,0,0,0,0,0,0,"kg/m^3","kg/m^3",1500	1500	"SSLDN",0,0,0,0,0,0,"kg/m^3","kg/m^3",1500	1500	"SSLDN",0,0,0,0,0,0,0,0,"kg/m^3","kg/m^3",1500
RIRRR	in/yr	A2	ı	"RIRRR",0,0,0,0,0,0,0,"in/yr",35	ı	"RIRRR",0,0,0,0,0,0,0,"in/yr","in/yr",35	'	"RIRRR",0,0,0,0,0,0,0,"in/yr",35
IRTIMR	mon/yr	A2		"IRTIMR",0,0,0,0,0,0,0,0,"mon/yr","mon/yr",6		"IRTIMR",0,0,0,0,0,0,0,"mon/yr","mon/yr",6	'	"IRTIMR",0,0,0,0,0,0,0,"mon/yr","mon/yr",6
HOLDDW	day	A2	ı	"HOLDDW",0,0,0,0,0,0,0,"day","day",1	ı	"HOLDDW",0,0,0,0,0,0,0,"day","day",1	'	"HOLDDW",0,0,0,0,0,0,0,"day","day",1
RESFAC	1/m	A8	ī	"RESFAC",0,0,0,0,0,0,0,1/m","1/m",0.00000001	'	"RESFAC",0,0,0,0,0,0,0,"1/m","1/m",0.00000001	'	"RESFAC",0,0,0,0,0,0,0,"1/m","1/m",0.00000001
WTIM	q	A10	14	"WTIM",0,0,0,0,0,0,14	14	"WTIM",0,0,0,0,0,0,1d",14	14	"WTIM",0,0,0,0,0,0,"d","d",14
DEPFR1	fraction	A10	·	"DEPFR1",0,0,0,0,0,0,0,"fraction","fraction",0.25		"DEPFR1",0,0,0,0,0,0,0,"fraction","fraction",0.25	'	"DEPFR1",0,0,0,0,0,0,0,"fraction","fraction",0.25
RAIN	p/uu	A1	0.49	"RAIN",0,0,0,0,0,0,0,"mm/d","mm/d",0.49	0.49	"RAIN",0,0,0,0,0,0,0,0,"mm/d","mm/d",0.49	0.49	"RAIN",0,0,0,0,0,0,0,"mm/d","mm/d",0.49
ANDKR	l/m^3	A2		"ANDKR",0,0,0,0,0,0,0,"I/m^3","I/m^3",0		"ANDKR",0,0,0,0,0,0,0,"//m^3","//m^3",0	'	"ANDKR",0,0,0,0,0,0,0,"I/m^3","I/m^3",0
ANDKRN	l/m^3	A2	ı	"ANDKRN",0,0,0,0,0,0,0,"//m^3","//m^3	,	"ANDKRN",0,0,0,0,0,0,0,"//m^3","//m^3",0.1	'	"ANDKRN",0,0,0,0,0,0,0,"I/m^3","I/m^3",0.1
SEDDN	kg/m^2	A2	ı	"SEDDN",0,0,0,0,0,0,0,"kg/m^2","kg/m^2",15		"SEDDN",0,0,0,0,0,0,0,"kg/m^2","kg/m^2",15	'	"SEDDN",0,0,0,0,0,0,0,"kg/m^2","kg/m^2",15
THICK	сш	A7	25	"THICK",0,0,0,0,0,0,0,"cm",25	25	"THICK",0,0,0,0,0,0,0,"cm","cm",25	25	"THICK",0,0,0,0,0,0,0,"cm","cm",25
MOISTC	fraction	A7	0.2	"MOISTC",0,0,0,0,0,0,0,"fraction","fraction",0.2	0.2	"MOISTC",0,0,0,0,0,0,0,"fraction","fraction",0.2	0.2	"MOISTC",0,0,0,0,0,0,0,"fraction","fraction",0.2
BULKD	g/cm^3	A7	1.5	"BULKD",0,0,0,0,0,0,"g/cm^3","g/cm^3",1.5	1.5	"BULKD",0,0,0,0,0,0,"g/cm^3","g/cm^3",1.5	1.5	"BULKD",0,0,0,0,0,0,"g/cm^3","g/cm^3",1.5
VLEACH	cm/yr	A7	7.9	"VLEACH",0,0,0,0,0,0,0,"cm/yr","cm/yr",7.9	7.9	"VLEACH",0,0,0,0,0,0,0,"cm/yr","cm/yr",7.9	7.9	"VLEACH",0,0,0,0,0,0,0,"cm/yr","cm/yr",7.9
DEPFR2	fraction	A10	ı	"DEPFR2",0,0,0,0,0,0,0,"fraction","fraction",0.25		"DEPFR2",0,0,0,0,0,0,0,"fraction","fraction",0.25		"DEPFR2",0,0,0,0,0,0,0,"fraction","fraction",0.25
LEAFRS	1/m	A10	3.2E- 10	"LEAFRS",0,0,0,0,0,0,0,1/m","1/m",0.000000003	3.2E- 10	"LEAFRS",0,0,0,0,0,0,0,0,1/m","1/m",0.000000003 2	3.2E- 10	"LEAFRS",0,0,0,0,0,0,0,1//m","1/m",0.000000003 2
DPVRES	s/m	A10	0.008	"DPVRES",0,0,0,0,0,0,0,"m/s","m/s",0.008	0.008	"DPVRES",0,0,0,0,0,0,0,"m/s","m/s",0.008	0.008	"DPVRES",0,0,0,0,0,0,0,"m/s","m/s",0.008
SLDN	kg/m^2	A9	375	"SLDN",0,0,0,0,0,0,0,0,"kg/m^2","kg/m^2",375	375	"SLDN",0,0,0,0,0,0,0,"kg/m^2","kg/m^2",375	375	"SLDN",0,0,0,0,0,0,0,"Kg/m^2","Kg/m^2",375
SURCM	сш	A9	25	"SURCM",0,0,0,0,0,0,"cm","cm",25	25	"SURCM",0,0,0,0,0,0,0,"cm","cm",25	25	"SURCM",0,0,0,0,0,0,"cm","cm",25
DWATER	L/d	A3	ı	"DWATER",1,0,0,0,0,0,"L/d",50		"DWATER",1,0,0,0,0,0,0,"L/d","L/d",50	'	"DWATER",1,0,0,0,0,0,0,"L/d","L/d",50
DWATER	L/d	A3		"DWATER",2,0,0,0,0,0,"L/d","L/d",0.3		"DWATER",2,0,0,0,0,0,0,"L/d","L/d",0.3	'	"DWATER",2,0,0,0,0,0,0,"L/d","L/d",0.3
DWATER	L/d	A3	ı	"DWATER",3,0,0,0,0,0,"L/d","L/d",60	ı	"DWATER",3,0,0,0,0,0,0,"L/d","L/d",60	'	"DWATER",3,0,0,0,0,0,0,"L/d","L/d",60
DWATER	L/d	A3	ı	"DWATER",4,0,0,0,0,0,0,"L/d","L/d",0.3	ı	"DWATER",4,0,0,0,0,0,0,"L/d","L/d",0.3	'	"DWATER",4,0,0,0,0,0,0,"L/d","L/d",0.3
BIOMA2	kg/m^2	A15	1.25	"BIOMA2",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",1,0,0,0,0,0,0"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",1,0,0,0,0,0,"kg/m^2","kg/m^2",1.25

Table 120. YMP Acute Exposure Parameter Files (GNDFLaud.*) and Parameter Values (Cont'd)

			YMP Onsite	File: GNDFLaud.onsite	YMP Offsite GE	File: GNDFLaud.GE	YMP Offsite Non-	File: GNDFLaud.nonGE
Parameter Units	Units	Menu	Value	"YMP Acute Onsite Mean Values",203	Value	"YMP Acute Offsite GE Mean Values",203	Value	"YMP Acute Offsite Non-GE Mean Values",203
BIOMA2	kg/m^2	A15	1.25	"BIOMA2",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25
BIOMA2	kg/m^2	A15	1.25	"BIOMA2",3,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25
BIOMA2	kg/m^2	A15	1.25	"BIOMA2",4,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMA2",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25
BIOMA2	kg/m^2	A15	2.14	"BIOMA2",5,0,0,0,0,0,"kg/m^2","kg/m^2",2.14	2.14	"BIOMA2",5,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14	2.14	"BIOMA2",5,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14
BIOMA2	kg/m^2	A15	2.14	"BIOMA2",6,0,0,0,0,0,"kg/m^2","kg/m^2",2.14	2.14	"BIOMA2",6,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14	2.14	"BIOMA2",6,0,0,0,0,0,0,"kg/m^2","kg/m^2",2.14
CONSUM	kg/d	A16	0	"CONSUM",1,0,0,0,0,0,0,"kg/d","kg/d",0	0	"CONSUM",1,0,0,0,0,0,"kg/d","kg/d",0	0	"CONSUM",1,0,0,0,0,0,0,"kg/d","kg/d",0
CONSUM	kg/d	A16	0.26	"CONSUM",2,0,0,0,0,0,0,"kg/d","kg/d",0.26	0.26	"CONSUM",2,0,0,0,0,0,0,"kg/d","kg/d",0.26	0.26	"CONSUM",2,0,0,0,0,0,0,"kg/d","kg/d",0.26
CONSUM	kg/d	A16	0	"CONSUM",3,0,0,0,0,0,0,"kg/d","kg/d",0	0	"CONSUM",3,0,0,0,0,0,"kg/d","kg/d",0	0	"CONSUM",3,0,0,0,0,0,0,"kg/d","kg/d",0
CONSUM	kg/d	A16	0.26	"CONSUM",4,0,0,0,0,0,0,"kg/d","kg/d",0.26	0.26	"CONSUM",4,0,0,0,0,0,0,"kg/d","kg/d",0.26	0.26	"CONSUM",4,0,0,0,0,0,0,"kg/d","kg/d",0.26
CONSUM	kg/d	A16	48.5	"CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5	48.5	"CONSUM",5,0,0,0,0,0,"kg/d","kg/d",48.5	48.5	"CONSUM",5,0,0,0,0,0,0,"kg/d","kg/d",48.5
CONSUM	kg/d	A16	61.5	"CONSUM",6,0,0,0,0,0,0,"kg/d","kg/d",61.5	61.5	"CONSUM",6,0,0,0,0,0,"kg/d","kg/d",61.5	61.5	"CONSUM",6,0,0,0,0,0,0,"kg/d","kg/d",61.5
BIOMAS	kg/m^2	A20	3.3	"BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3	3.3	"BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3	3.3	"BIOMAS",1,0,0,0,0,0,0,"kg/m^2","kg/m^2",3.3
BIOMAS	kg/m^2	A20	4.17	"BIOMAS",2,0,0,0,0,0,"kg/m^2","kg/m^2",4.17	4.17	"BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.17	4.17	"BIOMAS",2,0,0,0,0,0,0,"kg/m^2","kg/m^2",4.17
BIOMAS	kg/m^2	A20	5.17	"BIOMAS",3,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	5.17	"BIOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17	5.17	"BIOMAS",3,0,0,0,0,0,0,"kg/m^2","kg/m^2",5.17
BIOMAS	kg/m^2	A20	1.25	"BIOMAS",4,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMAS",4,0,0,0,0,0,0,"kg/m^2","kg/m^2",1.25	1.25	"BIOMAS",4,0,0,0,0,0,"kg/m^2","kg/m^2",1.25
TRANSA	fraction	A13	0.1	"TRANSA",1,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANSA",1,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANSA",1,0,0,0,0,0,0,"fraction","fraction",0.1
TRANSA	fraction	A13	0.1	"TRANSA",2,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANSA",2,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANSA",2,0,0,0,0,0,0,"fraction","fraction",0.1
TRANSA	fraction	A13	0.1	"TRANSA",3,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANSA",3,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANSA",3,0,0,0,0,0,0,"fraction","fraction",0.1
TRANSA	fraction	A13	0.1	"TRANSA",4,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANSA",4,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANSA",4,0,0,0,0,0,0,"fraction","fraction",0.1
TRANSA	fraction	A13	~	"TRANSA",5,0,0,0,0,0,0,"fraction","fraction",1	-	"TRANSA",5,0,0,0,0,0,0,"fraction","fraction",1	-	"TRANSA",5,0,0,0,0,0,0,"fraction","fraction",1
TRANSA	fraction	A13	-	"TRANSA",6,0,0,0,0,0,0,"fraction","fraction",1	-	"TRANSA",6,0,0,0,0,0,0,"fraction","fraction",1	-	"TRANSA",6,0,0,0,0,0,0,"fraction","fraction",1
TRANS	fraction	A24	-	"TRANS",1,0,0,0,0,0,0,"fraction","fraction",1	-	"TRANS",1,0,0,0,0,0,0,"fraction","fraction",1	-	"TRANS",1,0,0,0,0,0,0,"fraction","fraction",1
TRANS	fraction	A24	0.1	"TRANS",2,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANS",2,0,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANS",2,0,0,0,0,0,0,"fraction","fraction",0.1
TRANS	fraction	A24	0.1	"TRANS",3,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANS",3,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANS",3,0,0,0,0,0,0,"fraction","fraction",0.1
TRANS	fraction	A24	0.1	"TRANS",4,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANS",4,0,0,0,0,0,0,"fraction","fraction",0.1	0.1	"TRANS",4,0,0,0,0,0,0,"fraction","fraction",0.1
DRYFA2	fraction	A12	0.903	"DRYFA2",1,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFA2",1,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFA2",1,0,0,0,0,0,0,"fraction","fraction",0.903
DRYFA2	fraction	A12	0.903	"DRYFA2",2,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFA2",2,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFA2",2,0,0,0,0,0,0,"fraction","fraction",0.903
DRYFA2	fraction	A12	0.903	"DRYFA2",3,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFA2",3,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFA2",3,0,0,0,0,0,0,"fraction","fraction",0.903
DRYFA2	fraction	A12	0.903	"DRYFA2",4,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFA2",4,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFA2",4,0,0,0,0,0,0,"fraction","fraction",0.903
DRYFA2	fraction	A12	0.22	"DRYFA2",5,0,0,0,0,0,0,"fraction","fraction",0.22	0.22	"DRYFA2",5,0,0,0,0,0,0,"fraction","fraction",0.22	0.22	"DRYFA2",5,0,0,0,0,0,0,"fraction","fraction",0.22
DRYFA2	fraction	A12	0.22	"DRYFA2",6,0,0,0,0,0,0,"fraction","fraction",0.22	0.22	"DRYFA2",6,0,0,0,0,0,0,"fraction","fraction",0.22	0.22	"DRYFA2",6,0,0,0,0,0,0,"fraction","fraction",0.22
DRYFAC	fraction	A23	0.07	"DRYFAC", 1,0,0,0,0,0,0,"fraction","fraction",0.07	0.07	"DRYFAC",1,0,0,0,0,0,0,"fraction","fraction",0.07	0.07	"DRYFAC",1,0,0,0,0,0,"fraction","fraction",0.07

Table 120. YMP Acute Exposure Parameter Files (GNDFLaud.*) and Parameter Values (Cont'd)

			YMP Onsite	File: GNDFLaud.onsite	YMP Offsite GE	File: GNDFLaud.GE	YMP Offsite File: GNDFLaud.nonGE Non- GE	nonGE
Parameter Units	Units	Menu	Value	"YMP Acute Onsite Mean Values",203	Value	"YMP Acute Offsite GE Mean Values",203	Value "YMP Acute Offsite Non-GE Mean Values",203	E Mean Values",203
DRYFAC fraction	fraction	A23		0.103 "DRYFAC",2,0,0,0,0,0,0,"fraction","fraction",0.103	0.103	0.103 "DRYFAC",2,0,0,0,0,0,0,"fraction","fraction",0.103	0.103 "DRYFAC",2,0,0,0,0,0,0,"fraction","fraction",0.103	ion","fraction",0.103
DRYFAC fraction	fraction	A23		0.12 "DRYFAC", 3,0,0,0,0,0,0,"fraction", "fraction", 0.12	0.12	"DRYFAC",3,0,0,0,0,0,0,"fraction","fraction",0.12	0.12 "DRYFAC",3,0,0,0,0,0,0,"fraction","fraction",0.12	ion","fraction",0.12
DRYFAC fraction	fraction	A23		0.903 "DRYFAC",4,0,0,0,0,0,0,"fraction","fraction",0.903	0.903	"DRYFAC",4,0,0,0,0,0,0,"fraction","fraction",0.903	0.903 "DRYFAC",4,0,0,0,0,0,0,"fraction","fraction",0.903	ion","fraction",0.903
FRACFR fraction	fraction	A27	0.83	"FRACFR", 1, 0, 0, 0, 0, 0, 0, "fraction", "fraction", 0.83	0.83	"FRACFR", 1,0,0,0,0,0,0,"fraction","fraction", 0.83	0.83 "FRACFR",1,0,0,0,0,0,0,"fraction","fraction",0.83	ion","fraction",0.83
FRACFR fraction	fraction	A27	0.83	"FRACFR", 3,0,0,0,0,0,0,"fraction","fraction",0.83	0.83	"FRACFR", 3,0,0,0,0,0,0,"fraction", "fraction", 0.83	0.83 "FRACFR",3,0,0,0,0,0,0,"fraction","fraction",0.83	ion","fraction",0.83
PROBAIR percent	percent	'	ı	"PROBAIR",2,0,0,0,0,0,0,"percent","percent",95	ı	"PROBAIR",2,0,0,0,0,0,0,"percent","percent",95	 "PROBAIR", 2,0,0,0,0,0,0,"percent","percent", 95 	cent", "percent", 95
PROBDEP percent	percent	'	ı	"PROBDEP",3,0,0,0,0,0,0,"percent","percent",95	ı	"PROBDEP",3,0,0,0,0,0,0,"percent","percent",95	- "PROBDEP", 3,0,0,0,0,0,0, "percent", "percent", 95	rcent","percent",95
PROBEXT percent	percent	'	ı	"PROBEXT",4,0,0,0,0,0,0,"percent","percent",95	ı	"PROBEXT",4,0,0,0,0,0,0,"percent","percent",95	 "PROBEXT",4,0,0,0,0,0,0,"percent","percent",95 	cent","percent",95
SLCONA	kg/d	A14	0.7	"SLCONA", 1,0,0,0,0,0,0,"kg/d","kg/d",0.7	0.7	"SLCONA", 1,0,0,0,0,0,0,"kg/d","kg/d",0.7	0.7 "SLCONA",1,0,0,0,0,0,0,"kg/d","kg/d",0.7	","kg/d",0.7
SLCONA	kg/d	A14	0.02	0.02 "SLCONA",2,0,0,0,0,0,0,"kg/d","kg/d",0.02	0.02	"SLCONA",2,0,0,0,0,0,0,"kg/d","kg/d",0.02	0.02 "SLCONA",2,0,0,0,0,0,"kg/d","kg/d",0.02	","kg/d",0.02
SLCONA	kg/d	A14	0.95	0.95 "SLCONA",3,0,0,0,0,0,0,"kg/d","kg/d",0.95	0.95	"SLCONA",3,0,0,0,0,0,"kg/d","kg/d",0.95	0.95 "SLCONA", 3,0,0,0,0,0,0,"kg/d","kg/d",0.95	","kg/d",0.95
SLCONA	kg/d	A14		0.02 "SLCONA",4,0,0,0,0,0,0,"kg/d","kg/d",0.02	0.02	"SLCONA",4,0,0,0,0,0,0,"kg/d","kg/d",0.02	0.02 "SLCONA",4,0,0,0,0,0,"kg/d","kg/d",0.02	","kg/d",0.02
SLCONA	kg/d	A14	ı	"SLCONA",5,0,0,0,0,0,0,"kg/d","kg/d",0	ı	"SLCONA",5,0,0,0,0,0,0,"kg/d","kg/d",0	- "SLCONA",5,0,0,0,0,0,"kg/d","kg/d",0	","kg/d",0
SLCONA	kg/d	A14	'	"SLCONA",6,0,0,0,0,0,0,"kg/d","kg/d",0	ı	"SLCONA",6,0,0,0,0,0,"kg/d","kg/d",0	- "SLCONA", 6,0,0,0,0,0,"kg/d","kg/d",0	","kg/d",0
Note: - m	neans n	iot app	olicable	Note: - means not applicable for YMP site-specific, use GENIIv2 defaults.	ults.			

arameter Values
٩
(GNDFLiud.*) and
Parameter Files (
Receptor Intake
Table 121. YMP

			YMP Onsite	File: GNDFLiud.onsite	үмР Offsite GE	File: GNDFLiud.GE	Ortsite Non- GE	File: GNDFLiud.nonGE
Parameter	Units	Menu	Value	"YMP Receptor Onsite Mean Values",84	Value	"YMP Receptor Offsite GE 95th Values",84	Value	"YMP Receptor Offsite Non-GE 95th Values",84
NAGES	N/A	R1	1	"NAGES",0,0,0,0,0,0,0,"N/A","N/A",1	1	"NAGES",0,0,0,0,0,0,0,"N/A","N/A",1	1	"NAGES",0,0,0,0,0,0,0,"N/A",1
EDAGE	yr	,	'	"EDAGE",1,0,0,0,0,0,"yr","yr",70	,	"EDAGE",1,0,0,0,0,0,0,"yr",70	ī	"EDAGE",1,0,0,0,0,0,0,","yr",70
POPAGE	none		ı	"POPAGE",1,0,0,0,0,0,0,"none","none",1	,	"POPAGE",1,0,0,0,0,0,0,"none","none",1	I	"POPAGE", 1,0,0,0,0,0,0,"none","none",1
UEXAIR	hr	R1	8.5	"UEXAIR",1,0,0,0,0,0,0,"hr","hr",8.5	22.7	"UEXAIR",1,0,0,0,0,0,0,"hr","hr",22.7	22.7	"UEXAIR",1,0,0,0,0,0,0,"hr","hr",22.7
TEXAIR	day	R1	250	"TEXAIR",1,0,0,0,0,0,0,"day","day",250	365	"TEXAIR",1,0,0,0,0,0,0,"day","day",365	365	"TEXAIR",1,0,0,0,0,0,0,"day","day",365
SHIN	none	R2	0.4	"SHIN",0,0,0,0,0,0,0,"none","none",0.4	0.4	"SHIN",0,0,0,0,0,0,0,0,"none","none",0.4	0.4	"SHIN",0,0,0,0,0,0,0,"none","none",0.4
SHOUT	none	R2	-	"SHOUT",0,0,0,0,0,0,0,"none","none",1	-	"SHOUT",0,0,0,0,0,0,0,0,"none","none",1	~	"SHOUT",0,0,0,0,0,0,0,"none","none",1
UEXGRD	hr	R2	8.5	"UEXGRD",1,0,0,0,0,0,0,"hr","hr",8.5	24	"UEXGRD",1,0,0,0,0,0,0,"hr","hr",24	24	"UEXGRD",1,0,0,0,0,0,0,"hr","hr",24
TEXGRD	day	R2	250	"TEXGRD",1,0,0,0,0,0,0,"day","day",250	365	"TEXGRD",1,0,0,0,0,0,0,"day","day",365	365	"TEXGRD",1,0,0,0,0,0,0,"day","day",365
FTIN	fractio n	R2	0	"FTIN",1,0,0,0,0,0,0,"fraction","fraction",0	0.65	"FTIN",1,0,0,0,0,0,0,"fraction","fraction",0.65	0.65	"FTIN",1,0,0,0,0,0,0,"fraction","fraction",0.65
FTOUT	fractio n	R2	-	"FTOUT",1,0,0,0,0,0,0,"fraction","fraction",1	0.33	"FTOUT",1,0,0,0,0,0,0,"fraction","fraction",0.33	0.33	"FTOUT",1,0,0,0,0,0,0,"fraction","fraction",0.33
EVSWIM e	evt/day		'	"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1		"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1		"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESWIM	hr		I	"TESWIM",1,0,0,0,0,0,0,"hr","hr",2	,	"TESWIM",1,0,0,0,0,0,0,"hr","hr",2	I	"TESWIM",1,0,0,0,0,0,0,"hr",2
TSWIM	day	ı	ı	"TSWIM",1,0,0,0,0,0,0,"day","day",50	ı	"TSWIM",1,0,0,0,0,0,0,"day","day",50	ī	"TSWIM",1,0,0,0,0,0,0,"day",50
SFBOAT	none	ī	I	"SFBOAT",0,0,0,0,0,0,0,"none","none",1	,	"SFBOAT",0,0,0,0,0,0,0,"none","none",1	I	"SFBOAT",0,0,0,0,0,0,0,0,"none","none",1
EVBOAT e	evt/day		I	"EVBOAT",1,0,0,0,0,0,0,"evt/day","evt/day",1	,	"EVBOAT",1,0,0,0,0,0,0,"evt/day","evt/day",1	I	"EVBOAT",1,0,0,0,0,0,0,"evt/day","evt/day",1
TEBOAT	hr	ı	ı	"TEBOAT",1,0,0,0,0,0,0"hr","hr",2	ı	"TEBOAT",1,0,0,0,0,0,0,"hr","hr",2	ī	"TEBOAT",1,0,0,0,0,0,0,"hr",2
TBOAT	day	·	I	"TBOAT",1,0,0,0,0,0,0,"day","day",50	,	"TBOAT",1,0,0,0,0,0,0,"day","day",50	I	"TBOAT",1,0,0,0,0,0,0,"day",50
EVSHOR e	evt/day		I	"EVSHOR",1,0,0,0,0,0,0,"evt/day","evt/day",1	,	"EVSHOR",1,0,0,0,0,0,"evt/day","evt/day",1	I	"EVSHOR",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESHOR	hr		I	"TESHOR",1,0,0,0,0,0,0,"hr",5	,	"TESHOR",1,0,0,0,0,0,0,"hr","hr",5	I	"TESHOR",1,0,0,0,0,0,0,"hr","hr",5
TSHOR	day	,	ı	"TSHOR",1,0,0,0,0,0,0,"day","day",100	,	"TSHOR",1,0,0,0,0,0,0,"day","day",100	ī	"TSHOR",1,0,0,0,0,0,0,"day","day",100
SWFAC	none		I	"SWFAC",0,0,0,0,0,0,0,0,"none","none",0.2	,	"SWFAC",0,0,0,0,0,0,0,0,"none","none",0.2	I	"SWFAC",0,0,0,0,0,0,0,0,"none","none",0.2
UCRP	kg/day	R3	0	"UCRP",1,1,0,0,0,0,0,"kg/day","kg/day",0	0.159	"UCRP",1,1,0,0,0,0,0,"kg/day","kg/day",0.159	0	"UCRP",1,1,0,0,0,0,0,"kg/day","kg/day",0
TCRP	day/yr	R3	0	"TCRP",1,1,0,0,0,0,0,"day/yr","day/yr",0	66	"TCRP",1,1,0,0,0,0,0,"day/yr","day/yr",99	0	"TCRP",1,1,0,0,0,0,0,"day/yr","day/yr",0
UCRP	kg/day	R3	0	"UCRP",1,2,0,0,0,0,0,"kg/day","kg/day",0	0.158	"UCRP",1,2,0,0,0,0,0,"kg/day","kg/day",0.158	0	"UCRP",1,2,0,0,0,0,0,"kg/day","kg/day",0
TCRP	day/yr	R3	0	"TCRP",1,2,0,0,0,0,0,"day/yr","day/yr",0	100	"TCRP", 1,2,0,0,0,0,0,"day/yr", "day/yr", 100	0	"TCRP",1,2,0,0,0,0,0,"day/yr","day/yr",0
UCRP	kg/day	R3	0	"UCRP",1,3,0,0,0,0,0,"kg/day","kg/day",0	0.198	"UCRP",1,3,0,0,0,0,0,"kg/day","kg/day",0.198	0	"UCRP",1,3,0,0,0,0,0,"kg/day","kg/day",0
TCRP	day/yr	R3	0	"TCRP",1,3,0,0,0,0,0,"day/yr","day/yr",0	180	"TCRP",1,3,0,0,0,0,0,"day/yr","day/yr",180	0	"TCRP",1,3,0,0,0,0,0,"day/yr","day/yr",0
UCRP	kg/day	R3	0	"UCRP",1,4,0,0,0,0,0"kg/day","kg/day",0	0.355	"UCRP",1,4,0,0,0,0,0,"kg/day","kg/day",0.355	0	"UCRP",1,4,0,0,0,0,0"kg/day","kg/day",0
TCRP	day/yr	R3	0	"TCRP",1,4,0,0,0,0,0,"day/yr","day/yr",0	ю	"TCRP",1,4,0,0,0,0,0,"day/yr","day/yr",3	0	"TCRP",1,4,0,0,0,0,0,day/yr","day/yr",0

Table 121. YMP Receptor Intake Parameter Files (GNDFLiud.*) and Parameter Values (Cont'd)

Ŀ		-)		5	
Γ		Menu	Value	"YMP Receptor Onsite Mean Values",84	Value	"YMP Receptor Offsite GE 95th Values",84	Value	"YMP Receptor Offsite Non-GE 95th Values",84
NANM K	kg/day	R4	0	"UANM",1,1,0,0,0,0,0,"kg/day","kg/day",0	0.112	"UANM",1,1,0,0,0,0,0,"Kg/day","kg/day",0.112	0	"UANM",1,1,0,0,0,0,0,"kg/day","kg/day",0
TANM	day/yr	R4	0	"TANM",1,1,0,0,0,0,0,"day/yr","day/yr",0	66	"TANM",1,1,0,0,0,0,0,"day/yr","day/yr",99	0	"TANM",1,1,0,0,0,0,0,"day/yr","day/yr",0
NANM	kg/day	R4	0	"UANM",1,2,0,0,0,0,0,"kg/day","kg/day",0	0.126	"UANM",1,2,0,0,0,0,0,"kg/day","kg/day",0.126	0	"UANM",1,2,0,0,0,0,0,"kg/day","kg/day",0
TANM	day/yr	R4	0	"TANM",1,2,0,0,0,0,0,"day/yr","day/yr",0	14	"TANM",1,2,0,0,0,0,0,"day/yr","day/yr",14	0	"TANM",1,2,0,0,0,0,0,"day/yr","day/yr",0
NANM	kg/day	R4	0	"UANM",1,3,0,0,0,0,0,"kg/day","kg/day",0	0.376	"UANM",1,3,0,0,0,0,0,"kg/day","kg/day",0.376	0	"UANM",1,3,0,0,0,0,0,"kg/day","kg/day",0
TANM	day/yr	R4	0	"TANM",1,3,0,0,0,0,0,"day/yr","day/yr",0	52	"TANM",1,3,0,0,0,0,0,"day/yr","day/yr",52	0	"TANM",1,3,0,0,0,0,0,"day/yr","day/yr",0
NANM K	kg/day	R4	0	"UANM",1,4,0,0,0,0,0,"kg/day","kg/day",0	0.125	"UANM",1,4,0,0,0,0,0,"kg/day","kg/day",0.125	0	"UANM",1,4,0,0,0,0,0,"kg/day","kg/day",0
TANM	day/yr	R4	0	"TANM",1,4,0,0,0,0,0,"day/yr","day/yr",0	150	"TANM",1,4,0,0,0,0,0,"day/yr","day/yr",150	0	"TANM",1,4,0,0,0,0,0,"day/yr","day/yr",0
UAQU	kg/day	,	ı	"UAQU",1,1,0,0,0,0,0,"kg/day","kg/day",0.11	ı	"UAQU",1,1,0,0,0,0,0,"kg/day","kg/day",0.11	I	"UAQU",1,1,0,0,0,0,0,"kg/day","kg/day",0.11
TAQU	day/yr	,	ı	"TAQU",1,1,0,0,0,0,0,"day/yr","day/yr",365	ı	"TAQU",1,1,0,0,0,0,0,"day/yr","day/yr",365	I	"TAQU",1,1,0,0,0,0,0,"day/yr","day/yr",365
UAQU	kg/day	,	'	"UAQU",1,2,0,0,0,0,0,"kg/day","kg/day",0.019	ı	"UAQU",1,2,0,0,0,0,0,"kg/day","kg/day",0.019	ı	"UAQU",1,2,0,0,0,0,0,"kg/day","kg/day",0.019
TAQU	day/yr	,	ı	"TAQU",1,2,0,0,0,0,0,"day/yr","day/yr",365	ı	"TAQU",1,2,0,0,0,0,0,"day/yr","day/yr",365	I	"TAQU",1,2,0,0,0,0,0,"day/yr","day/yr",365
UAQU	kg/day	,	'	"UAQU",1,3,0,0,0,0,0,"kg/day","kg/day",0.019	'	"UAQU",1,3,0,0,0,0,0,"kg/day","kg/day",0.019	ı	"UAQU",1,3,0,0,0,0,0,"kg/day","kg/day",0.019
TAQU	day/yr	,	'	"TAQU",1,3,0,0,0,0,0,"day/yr","day/yr",365	'	"TAQU",1,3,0,0,0,0,0,"day/yr","day/yr",365	ı	"TAQU",1,3,0,0,0,0,0,"day/yr","day/yr",365
UAQU	kg/day	,	'	"UAQU",1,4,0,0,0,0,0,"kg/day","kg/day",0.019	ı	"UAQU",1,4,0,0,0,0,0,"kg/day","kg/day",0.019	ı	"UAQU",1,4,0,0,0,0,0,"kg/day","kg/day",0.019
TAQU	day/yr	,	'	"TAQU",1,4,0,0,0,0,0,"day/yr","day/yr",365	ı	"TAQU",1,4,0,0,0,0,0,"day/yr","day/yr",365	ı	"TAQU",1,4,0,0,0,0,0,"day/yr","day/yr",365
NDW	L/day	,	'	"UDW",1,0,0,0,0,0,0,"L/day","L/day",2	'	"UDW",1,0,0,0,0,0,0,"L/day","L/day",2	ı	"UDW",1,0,0,0,0,0,0,"L/day","L/day",2
TDW	day/yr	,	'	"TDW",1,0,0,0,0,0,0,"day/yr","day/yr",365	ı	"TDW",1,0,0,0,0,0,0,"day/yr","day/yr",365	ı	"TDW",1,0,0,0,0,0,0,"day/yr","day/yr",365
EVSWIM ev	evt/day	,	,	"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1	'	"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1	ı	"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESWIM	Ъ	,	'	"TESWIM",1,0,0,0,0,0,0,"hr","hr",2	'	"TESWIM",1,0,0,0,0,0,0,"hr","hr",2	ı	"TESWIM",1,0,0,0,0,0,0,"hr",2
TSWIM	day	,	'	"TSWIM",1,0,0,0,0,0,0,"day","day",50	'	"TSWIM",1,0,0,0,0,0,0,"day","day",50	ı	"TSWIM",1,0,0,0,0,0,0,"day","day",50
MIMSU	L/hr	,	'	"USWIM",1,0,0,0,0,0,0,"L/hr","L/hr",0.02	ı	"USWIM",1,0,0,0,0,0,0,"L/hr","L/hr",0.02	ı	"USWIM",1,0,0,0,0,0,0,"L/hr","L/hr",0.02
EVSHWR ev	evt/day	,	,	"EVSHWR",1,0,0,0,0,0,0,"evt/day","evt/day",1	'	"EVSHWR",1,0,0,0,0,0,0,"evt/day","evt/day",1	ı	"EVSHWR",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESHWR	Ъг		'	"TESHWR",1,0,0,0,0,0,0,"hr","hr",0.167	'	"TESHWR",1,0,0,0,0,0,0,"hr","hr",0.167	·	"TESHWR",1,0,0,0,0,0,0,"hr","hr",0.167
TSHWR	day		'	"TSHWR",1,0,0,0,0,0,0,"day","day",365	'	"TSHWR",1,0,0,0,0,0,0,"day","day",365	ı	"TSHWR",1,0,0,0,0,0,0,"day","day",365
NIHSU	L/hr		'	"USHIN",1,0,0,0,0,0,0,"L/hr","L/hr",0.06	'	"USHIN",1,0,0,0,0,0,0,"L/hr","L/hr",0.06	ı	"USHIN",1,0,0,0,0,0,0,"L/hr","L/hr",0.06
TSOIL	day	R5	365	"TSOIL",1,0,0,0,0,0,0,"day","day",365	365	"TSOIL",1,0,0,0,0,0,0,"day","day",365	365	"TSOIL",1,0,0,0,0,0,0,"day","day",365
	mg/da y	R5	0	"USOIL",1,0,0,0,0,0,0,"mg/day","mg/day",0	193	"USOIL",1,0,0,0,0,0,0,"mg/day","mg/day",193	0	"USOIL",1,0,0,0,0,0,0,"mg/day","mg/day",0
HNIN	m [^] 3/d ay	R6	30.2	"UINH",1,0,0,0,0,0,0,"m^3/day","m^3/day",30.2	30.2	"UINH",1,0,0,0,0,0,0,"m^3/day","m^3/day",30.2	30.2	"UINH",1,0,0,0,0,0,0,"m^3/day","m^3/day",30.2
TINH	day/yr	R6	250	"TINH",1,0,0,0,0,0,0,"day/yr","day/yr",250	365	"TINH",1,0,0,0,0,0,0,"day/yr","day/yr",365	365	"TINH",1,0,0,0,0,0,0,"day/yr","day/yr",365

(Cont'd)
Values
*) and Parameter
(GNDFLiud.*)
Parameter Files
Receptor Intake
Table 121. YMP

					ΥMP		ΥMP	
			YMP Onsite	File: GNDFLiud.onsite	Offsite GE	File: GNDFLiud.GE	Offsite Non- GE	File: GNDFLiud.nonGE
Parameter	Units	Menu	Value	"YMP Receptor Onsite Mean Values",84	Value	"YMP Receptor Offsite GE 95th Values",84	Value	"YMP Receptor Offsite Non-GE 95th Values",84
FRINH	fractio n	R6	0.35	"FRINH",1,0,0,0,0,0,0,"fraction","fraction",0.35	0.95	"FRINH",1,0,0,0,0,0,0,"fraction","fraction",0.95	0.95	"FRINH",1,0,0,0,0,0,0,"fraction","fraction",0.95
UINHR	m^3/d av	R7	21.7	"UINHR",1,0,0,0,0,0,0,"m^3/day","m^3/day",21.7	21.9	"UINHR",1,0,0,0,0,0,0,"m^3/day","m^3/day",21.9	21.9	"UINHR",1,0,0,0,0,0,0,"m [^] 3/day","m [^] 3/day",21.9
TINHR	day/yr	R7	250	"TINHR",1,0,0,0,0,0,0,"day/yr","day/yr",250	365	"TINHR",1,0,0,0,0,0,0,"day/yr","day/yr",365	365	"TINHR",1,0,0,0,0,0,0,"day/yr","day/yr",365
FRINHR	fractio n	R7	0.35	"FRINHR",1,0,0,0,0,0,0,"fraction","fraction",0.35	0.33	"FRINHR",1,0,0,0,0,0,0,"fraction","fraction",0.33	0.31	"FRINHR",1,0,0,0,0,0,0,"fraction","fraction",0.33
UINDRH	m^3/d av	'	'	"UINDRH",1,0,0,0,0,0,0"m [^] 3/day","m [^] 3/day",23	·	"UINDRH",1,0,0,0,0,0,0,"m^3/day","m^3/day",23	·	"UINDRH",1,0,0,0,0,0,0"m^3/day","m^3/day",23
TINDRH	day/yr	'	'	"TINDRH",1,0,0,0,0,0,0,"day/yr","day/yr",365		"TINDRH",1,0,0,0,0,0,0,"day/yr","day/yr",365	ī	"TINDRH",1,0,0,0,0,0,0,"day/yr","day/yr",365
FRINDR	fractio n	R8	0	"FRINDR",1,0,0,0,0,0,0,"fraction","fraction",0	0	"FRINDR",1,0,0,0,0,0,0,"fraction","fraction",0	0	"FRINDR",1,0,0,0,0,0,0,"fraction","fraction",0
EVSHWR	evt/day	'	'	"EVSHWR",1,0,0,0,0,0,0,"evt/day","evt/day",1	ı	"EVSHWR",1,0,0,0,0,0,0,"evt/day","evt/day",1	·	"EVSHWR",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESHWR	hr	'	'	"TESHWR",1,0,0,0,0,0,0,"hr","hr",0.167	'	"TESHWR",1,0,0,0,0,0,0,"hr","hr",0.167		"TESHWR",1,0,0,0,0,0,0,"hr","hr",0.167
TSHWR	day	'	'	"TSHWR",1,0,0,0,0,0,0,"day","day",365	·	"TSHWR",1,0,0,0,0,0,0,"day","day",365		"TSHWR",1,0,0,0,0,0,0,"day","day",365
ASKINSH	cm^2	'	•	"ASKINSH",1,0,0,0,0,0,0,"cm^2","cm^2",20000	·	"ASKINSH",1,0,0,0,0,0,0,"cm^2","cm^2",20000		"ASKINSH",1,0,0,0,0,0,0,"cm^2","cm^2",20000
EVSWIM	evt/day	'	'	"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1	·	"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1		"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESWIM	hr	'	'	"TESWIM",1,0,0,0,0,0,0,"hr","hr",2	ı	"TESWIM",1,0,0,0,0,0,0,"hr","hr",2		"TESWIM",1,0,0,0,0,0,0,"hr","hr",2
TSWIM	day	'	'	"TSWIM",1,0,0,0,0,0,0,"day",50	·	"TSWIM",1,0,0,0,0,0,0,"day","day",50		"TSWIM",1,0,0,0,0,0,0,"day","day",50
ASKINSW	cm^2	'	'	"ASKINSW",1,0,0,0,0,0,0,"cm^2","cm^2",20000	ı	"ASKINSW",1,0,0,0,0,0,0,"cm^2","cm^2",20000		"ASKINSW",1,0,0,0,0,0,0,"cm^2","cm^2",20000
EVSOIL	evt/day	'	'	"EVSOIL",1,0,0,0,0,0,0,"evt/day","evt/day",1	ı	"EVSOIL",1,0,0,0,0,0,"evt/day","evt/day",1		"EVSOIL",1,0,0,0,0,0,0,"evt/day","evt/day",1
TSOILD	day	'	'	"TSOILD",1,0,0,0,0,0,0,"day","day",182.5	ı	"TSOILD",1,0,0,0,0,0,0,"day","day",182.5		"TSOILD",1,0,0,0,0,0,0,"day","day",182.5
ADHSOL	mg/cm ^2	'	'	"ADHSOL",1,0,0,0,0,0,0,"mg/cm^2","mg/cm^2",0.5	'	"ADHSOL",1,0,0,0,0,0,0,"mg/cm^2","mg/cm^2",0.5	'	"ADHSOL",1,0,0,0,0,0,0,"mg/cm^2","mg/cm^2",0.5
ASKINSL	cm^2	'	'	"ASKINSL",1,0,0,0,0,0,0,"cm^2","cm^2",5000	'	"ASKINSL",1,0,0,0,0,0,0,"cm^2","cm^2",5000		"ASKINSL",1,0,0,0,0,0,0,"cm^2","cm^2",5000
EVSHOR	evt/day	'	'	"EVSHOR",1,0,0,0,0,0,0,"evt/day","evt/day",1	'	"EVSHOR",1,0,0,0,0,0,0,"evt/day","evt/day",1		"EVSHOR",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESHOR	hr	'	'	"TESHOR",1,0,0,0,0,0,0,"hr","hr",5	·	"TESHOR",1,0,0,0,0,0,"hr","hr",5		"TESHOR",1,0,0,0,0,0,0,"hr","hr",5
TSHOR	day	'	'	"TSHOR",1,0,0,0,0,0,0,"day","day",100		"TSHOR",1,0,0,0,0,0,0,"day","day",100		"TSHOR",1,0,0,0,0,0,0,"day","day",100
ADHSED	mg/cm ^2	'	'	"ADHSED",1,0,0,0,0,0,0,"mg/cm^2","mg/cm^2",0.5	'	"ADHSED",1,0,0,0,0,0,0,"mg/cm^2","mg/cm^2",0.5	ı	"ADHSED",1,0,0,0,0,0,0,"mg/cm^2","mg/cm^2",0.5
ASKINSD	cm^2	-		"ASKINSD",1,0,0,0,0,0,0,"cm^2","cm^2",5000		"ASKINSD",1,0,0,0,0,0,0,"cm^2","cm^2",5000		"ASKINSD",1,0,0,0,0,0,0,"cm^2","cm^2",5000
Note: - m	eans n	iot app	licable	Note: - means not applicable for YMP site-specific, use GENIIv2 defaults.	ults.			

ameter Values
p) and Par
GNDFLiud.po
tic Run (G
for Stochas
ntake File
Receptor
Table 122.

			YMP Offsite pop	File: GNDFL iud.pop
Parameter	Units	Menu	Value	"YMP Receptor Offsite Mean Values",84
NAGES	N/A	R1	~	"NAGES",0,0,0,0,0,0,0,"N/A",1
EDAGE	yr		'	"EDAGE",1,0,0,0,0,0,0,"yr","yr",70
POPAGE	none		'	"POPAGE",1,0,0,0,0,0,0,"none","none",1
UEXAIR	hr	R1	22	"UEXAIR",1,0,0,0,0,0,0,"hr","hr",22
TEXAIR	day	R1	365	"TEXAIR",1,0,0,0,0,0,0,"day","day",365
SHIN	none	R2	0.4	"SHIN",0,0,0,0,0,0,0,"none","none",0.4
SHOUT	none	R2	~	"SHOUT",0,0,0,0,0,0,0,"none","none",1
UEXGRD	hr	R2	24	"UEXGRD",1,0,0,0,0,0,0,"hr","hr",24
TEXGRD	day	R2	365	"TEXGRD",1,0,0,0,0,0,0,"day","day",365
FTIN	fraction	R2	0.61	"FTIN",1,0,0,0,0,0,0,"fraction","fraction",0.61
FTOUT	fraction	R2	0.31	"FTOUT",1,0,0,0,0,0,0,"fraction","fraction",0.31
EVSWIM	evt/day			"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESWIM	hr		'	"TESWIM",1,0,0,0,0,0,0,"hr","hr",2
TSWIM	day	,	'	"TSWIM",1,0,0,0,0,0,0,"day","day",50
SFBOAT	none	·	'	"SFBOAT",0,0,0,0,0,0,0,0,"none","none",1
EVBOAT	evt/day			"EVBOAT",1,0,0,0,0,0,0,"evt/day","evt/day",1
TEBOAT	hr			"TEBOAT",1,0,0,0,0,0,0,"hr","hr",2
TBOAT	day		'	"TBOAT",1,0,0,0,0,0,0,"day","day",50
EVSHOR	evt/day	·		"EVSHOR",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESHOR	hr	,	'	"TESHOR",1,0,0,0,0,0,0,"hr","hr",5
TSHOR	day	,	'	"TSHOR",1,0,0,0,0,0,0,"day","day",100
SWFAC	none	·	'	"SWFAC",0,0,0,0,0,0,0,"none","none",0.2
UCRP	kg/day	R3	0.123	"UCRP",1,1,0,0,0,0,"kg/day","kg/day",0.123
TCRP	day/yr	R3	17.9	"TCRP",1,1,0,0,0,0,0,"day/yr","day/yr",17.9
UCRP	kg/day	R3	0.141	"UCRP",1,2,0,0,0,0,"kg/day","kg/day",0.141
TCRP	day/yr	R3	22.5	"TCRP",1,2,0,0,0,0,0,"day/yr","day/yr",22.5
UCRP	kg/day	R3	0.185	"UCRP",1,3,0,0,0,0,0,"kg/day","kg/day",0.185
TCRP	day/yr	R3	54	"TCRP", 1,3,0,0,0,0,0,"day/yr","day/yr",54
UCRP	kg/day	R3	0.336	"UCRP",1,4,0,0,0,0,"kg/day","kg/day",0.336
TCRP	day/yr	R3	0.16	"TCRP",1,4,0,0,0,0,0,"day/yr","day/yr",0.16
NANM	kg/day	R4	0.098	"UANM",1,1,0,0,0,0,0,"kg/day","kg/day",0.098
TANM	day/yr	R4	15.1	"TANM",1,1,0,0,0,0,0,"day/yr","day/yr",15.1

(Conťd)
Values
nd Parameter V
and
Run (GNDFLiud.pop)
9) ur
hastic
or St
ke File for Stoc
or Intake
Receptor
122.
Table

			YMP Offsite pop	File: GNDFLiud.pop
Parameter	Units	Menu	Value	"YMP Receptor Offsite Mean Values",84
UANM	kg/day	R4	0.11	"UANM",1,2,0,0,0,0,0,"kg/day","kg/day",0.11
TANM	day/yr	R4	1.4	"TANM",1,2,0,0,0,0,0,"day/yr","day/yr",1.4
NANM	kg/day	R4	0.348	"UANM",1,3,0,0,0,0,0,"kg/day","kg/day",0.348
TANM	day/yr	R4	4.2	"TANM",1,3,0,0,0,0,0,"day/yr","day/yr",4.2
NANM	kg/day	R4	0.109	"UANM",1,4,0,0,0,0,0,"kg/day","kg/day",0.109
TANM	day/yr	R4	33.3	"TANM",1,4,0,0,0,0,0,"day/yr","day/yr",33.3
UAQU	kg/day	·	,	"UAQU",1,1,0,0,0,0,0,"kg/day","kg/day",0.11
TAQU	day/yr	,	,	"TAQU",1,1,0,0,0,0,0,"day/yr","day/yr",365
UAQU	kg/day	,	,	"UAQU",1,2,0,0,0,0,0,"kg/day","kg/day",0.019
TAQU	day/yr			"TAQU",1,2,0,0,0,0,0,"day/yr","day/yr",365
UAQU	kg/day			"UAQU",1,3,0,0,0,0,0,"kg/day","kg/day",0.019
TAQU	day/yr			"TAQU",1,3,0,0,0,0,0,"day/yr","day/yr",365
UAQU	kg/day			"UAQU",1,4,0,0,0,0,0,"kg/day","kg/day",0.019
TAQU	day/yr			"TAQU",1,4,0,0,0,0,0,"day/yr","day/yr",365
NDM	L/day	,		"UDW",1,0,0,0,0,0,0,"L/day",2
TDW	day/yr	ı	·	"TDW",1,0,0,0,0,0,0,"day/yr","day/yr",365
EVSWIM	evt/day			"EVSWIM",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESWIM	hr	ı		"TESWIM",1,0,0,0,0,0,0,"hr","hr",2
TSWIM	day	·		"TSWIM",1,0,0,0,0,0,0,0"day","day",50
NIWSU	L/hr			"USWIM",1,0,0,0,0,0,"L/hr","L/hr",0.02
EVSHWR	evt/day			"EVSHWR",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESHWR	hr	·	,	"TESHWR",1,0,0,0,0,0,0,"hr","hr",0.167
TSHWR	day	,		"TSHWR",1,0,0,0,0,0,0,"day","day",365
NIHSN	L/hr			"USHIN",1,0,0,0,0,0,0,"L/hr","L/hr",0.06
TSOIL	day	R5	365	"TSOIL",1,0,0,0,0,0,0,"day","day",365
NSOIL	mg/day	R5	104	"USOIL",1,0,0,0,0,0,0,"mg/day","mg/day",104
NIN	m^3/day	R6	30.2	"UINH",1,0,0,0,0,0,0,"m^3/day","m^3/day",30.2
TINH	day/yr	R6	365	"TINH",1,0,0,0,0,0,0,"day/yr","day/yr",365
FRINH	fraction	R6	0.92	"FRINH",1,0,0,0,0,0,0,"fraction","fraction",0.92
UINHR	m^3/day	R7	21.7	"UINHR",1,0,0,0,0,0,0,"m^3/day","m^3/day",21.7
TINHR	day/yr	R7	365	"TINHR",1,0,0,0,0,0,0,"day/yr","day/yr",365
FRINHR	fraction	R7	0.31	"FRINHR",1,0,0,0,0,0,0,"fraction","fraction",0.31

			Offsite	File: GNDFLiud.pop
Parameter	Units	Menu	pop Value	"YMP Receptor Offsite Mean Values",84
UINDRH	m^3/day			"UINDRH",1,0,0,0,0,0,0,"m^3/day","m^3/day",23
TINDRH	day/yr		,	"TINDRH",1,0,0,0,0,0,0,"day/yr","day/yr",365
FRINDR	fraction	R8	0	"FRINDR",1,0,0,0,0,0,0,"fraction","fraction",0
EVSHWR	evt/day			"EVSHWR",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESHWR	hr			"TESHWR",1,0,0,0,0,0,0,"hr","hr",0.167
TSHWR	day			"TSHWR",1,0,0,0,0,0,0,"day","day",365
ASKINSH	cm^2			"ASKINSH",1,0,0,0,0,0,0,"cm^2","cm^2",20000
EVSWIM	evt/day			"EVSWIM",1,0,0,0,0,0,"evt/day","evt/day",1
TESWIM	hr			"TESWIM",1,0,0,0,0,0,0,"hr","hr",2
TSWIM	day			"TSWIM",1,0,0,0,0,0,"day","day",50
ASKINSW	cm^2			"ASKINSW",1,0,0,0,0,0,0,"cm^2","cm^2",20000
EVSOIL	evt/day			"EVSOIL",1,0,0,0,0,0,0,"evt/day","evt/day",1
TSOILD	day			"TSOILD",1,0,0,0,0,0,0,"day","day",182.5
ADHSOL	mg/cm^2		,	"ADHSOL", 1,0,0,0,0,0,0,"mg/cm^2","mg/cm^2",0.5
ASKINSL	cm^2			"ASKINSL",1,0,0,0,0,0,0,"cm^2","cm^2",5000
EVSHOR	evt/day			"EVSHOR",1,0,0,0,0,0,0,"evt/day","evt/day",1
TESHOR	hr			"TESHOR",1,0,0,0,0,0,0,"hr","hr",5
TSHOR	day		,	"TSHOR",1,0,0,0,0,0,0,"day","day",100
ADHSED	mg/cm^2	·	'	"ADHSED",1,0,0,0,0,0,0,0,"mg/cm^2","mg/cm^2",0.5
ASKINSD	cm^2	,	,	"ASKINSD" 1 0 0 0 0 0 "cm^2" "cm^2" 5000

Note: - means not applicable for YMP site-specific, use GENIV2 defaults.

ATTACHMENT F. YMP SITE-SPECIFIC NUCLIDE DEPENDENT DATABASE FILE

As discussed in the GENII Version 2 User's Guide (Napier et al 2006 [DIRS 177330], Section 4.1), nuclide dependent data are provided to GENIIv2 from a database file named *GENII.mdb*. YMP site-specific data has been incorporated into a database file *YMPGENII.mdb* that is modified version of *GENII.mdb*. The new file *YMPGENII.mdb* contains the YMP site-specific transfer coefficients for animal products from Section 7.1.2, soil-to-plant transfer factors from Section 7.1.1, soil water partition coefficients for all of the YMP radionuclides listed in Table 2. To use this file with GENIIv2, copy it into the FRAMES subdirectory and rename it to "*GENII.mdb*".

Individual parameters in the nuclide dependent database are identified by a field name. Only those fields whose values were developed are updated in the database file *YMPGENII.mdb*, as shown in Table 123.

Field Name	Parameter Name	Units	Source
CLFMT	Feed to Animal Meat Transfer Factor	d/kg	Table 66
CLFMK	Feed to Animal Milk Transfer Factor	d/kg	Table 68
CLFPL	Feed to Poultry Transfer Factor	d/kg	Table 67
CLFEG	Feed to Egg Transfer Factor	d/kg	Table 69
CLBVLV	Soil to Plant Concentration Ratio for Leafy Vegetables	kg soil/kg dry	Table 61
CLBVRV	Soil to Plant Concentration Ratio for Root Vegetables	kg soil/kg dry	Table 62
CLBVFR	Soil to Plant Concentration Ratio for Fruit	kg soil/kg dry	Table 63
CLBVCL	Soil to Plant Concentration Ratio for Cereal	kg soil/kg dry	Table 64
CLBVAF	Soil to Plant Concentration Ratio for Animal Forage	kg soil/kg dry	Table 65
CLBVAH	Soil to Plant Concentration Ratio for Animal Hay	kg soil/kg dry	same as Forage
CLBVAG	Soil to Plant Concentration Ratio for Animal Grain	kg soil/kg dry	same as Cereal
CLBVOV	Soil to Plant Concentration Ratio for Other Vegetables	kg soil/kg dry	same as Root
CLKD	The dry soil-water partition coefficient	mL/g or L/kg	Table 77
CLLCLAS	Lung solubility class	-	Table 107

 Table 123. Nuclide Dependent Parameters Replaced in YMPGENII.mdb

The contents of the YMP site specific radionuclide dependent transfer coefficients and transfer factors in *YMPGENII.mdb* are shown in Table 124, which contains radionuclide that correspond to 33 elements. The contents of the YMP site specific radionuclide dependent soil water partition coefficients and lung solubility class in *YMPGENII.mdb* are shown in Table 125, which contains radionuclides that correspond to 43 elements (38 elements for partition coefficients and 5 noble gas elements).

To help update *YMPGENII.mdb*, two Excel files, *Nuclide Plant and Animal Data.xls* and *Nuclide Kd and Lung Class Data.xls* are used to manipulate the parameter values. The *Nuclide Plant and Animal Data.xls* file includes four worksheets that contain the site-specific animal transfer factors from Table 66 to Table 69 and five worksheets that contain site-specific soil to plant

concentration factors from Table 61 to Table 65. The Excel VLOOKUP function is used in the worksheet *GENII All Extracted Data* to select the animal transfer factors and soil to plant concentration factors for each nuclide in the GENII database file, *GENII.mdb* based on its element. The acronyms used in *GENII.mdb* for the parameters are listed in the worksheet *DB Parameters*, and they are listed as the column headings in the worksheet *GENII All Extracted Data*. For those elements that do not have site-specific factors in Table 61 to Table 69, a value of "#N/A" is shown in the worksheet *GENII All Extracted Data* and the current factor value in the GENII database file, *GENII.mdb*, continues to be used. The worksheet *ImportBoth* is the same as the worksheet *GENII All Extracted Data* except that all of the rows with elements having "#N/A" have been deleted. The worksheet *ImportBoth* is then used to update the animal transfer factors and soil to plant concentration factors into the site-specific database *YMPGENII.mdb* using the ACCESS code *Import Spreadsheet Wizard*.

The *Nuclide Kd and Lung Class Data.xls* file includes one worksheet that contains the sitespecific dry soil-water partition coefficients from Table 77 and one worksheet that contains sitespecific lung solubility classes from Table 107. The Excel VLOOKUP function is used in the worksheet *GENII All Extracted Data* to select the partition coefficients and lung solubility classes for each nuclide in the GENII database file, *GENII.mdb* based on its element. The acronyms used in *GENII.mdb* for the parameters are listed as the column headings in the worksheet *GENII All Extracted Data*. For those elements that do not have site-specific factors in Table 77 or Table 107, a value of "#N/A" is shown in the worksheet *GENII All Extracted Data* and the current factor value in the GENII database file, *GENII.mdb*, continues to be used. The worksheet *ImportKd* and *ImportLungAll* are the same as the worksheet *GENII All Extracted Data* except that all of the rows with elements having "#N/A" have been deleted. The worksheets *ImportKd* and *ImportLungAll* are then used to update the dry soil-water partition coefficients and lung solubility classes into the site-specific database *YMPGENII.mdb* using the ACCESS code *Import Spreadsheet Wizard*.

YMPGENII.mdb
Transfer Factors in
Coefficients and
Transfer
4. Site Specific
Table 124. Site S

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Нау	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
AC223	7.9E-05	7.6E-06	4.0E-03	2.9E-03	4.3E-03	1.1E-03	5.4E-04	1.7E-02	1.7E-02	5.4E-04	1.1E-03	8.5E-04
AC224	7.9E-05	7.6E-06	4.0E-03	2.9E-03	4.3E-03	1.1E-03	5.4E-04	1.7E-02	1.7E-02	5.4E-04	1.1E-03	8.5E-04
AC225	7.9E-05	7.6E-06	4.0E-03	2.9E-03	4.3E-03	1.1E-03	5.4E-04	1.7E-02	1.7E-02	5.4E-04	1.1E-03	8.5E-04
AC226	7.9E-05	7.6E-06	4.0E-03	2.9E-03	4.3E-03	1.1E-03	5.4E-04	1.7E-02	1.7E-02	5.4E-04	1.1E-03	8.5E-04
AC227	7.9E-05	7.6E-06	4.0E-03	2.9E-03	4.3E-03	1.1E-03	5.4E-04	1.7E-02	1.7E-02	5.4E-04	1.1E-03	8.5E-04
AC228	7.9E-05	7.6E-06	4.0E-03	2.9E-03	4.3E-03	1.1E-03	5.4E-04	1.7E-02	1.7E-02	5.4E-04	1.1E-03	8.5E-04
AM237	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM238	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM239	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM240	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM241	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM242	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM242m	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM243	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM244	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM244m	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM245	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM246	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
AM246m	3.4E-05	1.6E-06	1.8E-03	4.9E-03	1.2E-03	4.0E-04	7.5E-05	2.1E-03	2.1E-03	7.5E-05	4.0E-04	5.4E-04
CA41	1.5E-03	6.9E-03	4.1E-02	5.0E-01	3.0E+00	5.4E-01	5.4E-01	3.6E+00	3.6E+00	5.4E-01	5.4E-01	5.4E-01
CA45	1.5E-03	6.9E-03	4.1E-02	5.0E-01	3.0E+00	5.4E-01	5.4E-01	3.6E+00	3.6E+00	5.4E-01	5.4E-01	5.4E-01
CA47	1.5E-03	6.9E-03	4.1E-02	5.0E-01	3.0E+00	5.4E-01	5.4E-01	3.6E+00	3.6E+00	5.4E-01	5.4E-01	5.4E-01
CA49	1.5E-03	6.9E-03	4.1E-02	5.0E-01	3.0E+00	5.4E-01	5.4E-01	3.6E+00	3.6E+00	5.4E-01	5.4E-01	5.4E-01
CD104	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01
CD107	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01
CD109	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01
CD113	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01
CD113m	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01
CD115	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01
CD115m	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01
CD117	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01

ťd)
(Con
dbm.
MPGENII
YMP(
.⊆
Factors
Transfer
and 7
ents
effici
õ
Transfer Co
becific ⁻
Sp
Site
124.
Table 124. Site

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Нау	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
CD117m	7.8E-04	9.4E-04	3.7E-01	6.1E-02	7.6E-01	2.9E-01	2.1E-01	1.2E+00	1.2E+00	2.1E-01	2.9E-01	2.9E-01
CE134	2.7E-04	3.7E-05	3.9E-03	1.6E-03	2.6E-02	1.6E-02	5.4E-03	4.9E-02	4.9E-02	5.4E-03	1.6E-02	5.1E-03
CE135	2.7E-04	3.7E-05	3.9E-03	1.6E-03	2.6E-02	1.6E-02	5.4E-03	4.9E-02	4.9E-02	5.4E-03	1.6E-02	5.1E-03
CE137	2.7E-04	3.7E-05	3.9E-03	1.6E-03	2.6E-02	1.6E-02	5.4E-03	4.9E-02	4.9E-02	5.4E-03	1.6E-02	5.1E-03
CE137m	2.7E-04	3.7E-05	3.9E-03	1.6E-03	2.6E-02	1.6E-02	5.4E-03	4.9E-02	4.9E-02	5.4E-03	1.6E-02	5.1E-03
CE139	2.7E-04	3.7E-05	3.9E-03	1.6E-03	2.6E-02	1.6E-02	5.4E-03	4.9E-02	4.9E-02	5.4E-03	1.6E-02	5.1E-03
CE141	2.7E-04	3.7E-05	3.9E-03	1.6E-03	2.6E-02	1.6E-02	5.4E-03	4.9E-02	4.9E-02	5.4E-03	1.6E-02	5.1E-03
CE143	2.7E-04	3.7E-05	3.9E-03	1.6E-03	2.6E-02	1.6E-02	5.4E-03	4.9E-02	4.9E-02	5.4E-03	1.6E-02	5.1E-03
CE144	2.7E-04	3.7E-05	3.9E-03	1.6E-03	2.6E-02	1.6E-02	5.4E-03	4.9E-02	4.9E-02	5.4E-03	1.6E-02	5.1E-03
CF244	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CF246	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CF248	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CF249	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CF250	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CF251	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CF252	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CF253	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CF254	8.5E-04	9.1E-07	4.0E-03	2.0E-03	6.3E-03	6.3E-03	6.3E-03	2.2E-02	2.2E-02	6.3E-03	6.3E-03	6.3E-03
CL36	4.6E-02	1.8E-02	3.0E-02	4.4E-02	6.4E+01	6.4E+01	2.4E+01	7.5E+01	7.5E+01	2.4E+01	6.4E+01	6.4E+01
CL38	4.6E-02	1.8E-02	3.0E-02	4.4E-02	6.4E+01	6.4E+01	2.4E+01	7.5E+01	7.5E+01	2.4E+01	6.4E+01	6.4E+01
CL39	4.6E-02	1.8E-02	3.0E-02	4.4E-02	6.4E+01	6.4E+01	2.4E+01	7.5E+01	7.5E+01	2.4E+01	6.4E+01	6.4E+01
CM238	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM240	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM241	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM242	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM243	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM244	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM245	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM246	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM247	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM248	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04

(p,
Cont
) qpu
ENIL.
ors in YMPGENII.mdb
ž
. <u> </u>
Factors in)
nsfer
Tra
ents and Trai
ients
oeffic
ŏ
ransfer Co
F
Site Specific Tra
sp
Site
124. 9
Table 124. Site S

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Hay	Grain	Other	Fruit
CASID	day/kg CLFMT	day/L CLFMK	day/kg CLFPL	day/kg CLFEG	kg/kg CLBVLV	kg/kg CLBVRV	kg/kg CLBVCL	kg/kg CLBVAF	kg/kg CLBVAH	kg/kg CLBVAG	kg/kg CLBVOV	kg/kg CLBVFR
CM249	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
CM250	4.1E-05	3.8E-06	4.0E-03	2.0E-03	8.6E-04	3.2E-04	4.3E-05	2.8E-03	2.8E-03	4.3E-05	3.2E-04	2.2E-04
C055	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
CO56	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
CO57	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
CO58	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
CO58m	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
CO60	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
C060m	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
CO61	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
CO62m	1.5E-02	1.4E-03	1.5E-01	1.0E-01	8.2E-02	3.8E-02	7.2E-03	1.8E-01	1.8E-01	7.2E-03	3.8E-02	1.3E-02
CS125	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS126	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS127	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS128	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS129	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS130	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS131	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS132	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS134	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS134m	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS135	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS135m	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS136	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS137	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
CS138	2.4E-02	7.7E-03	2.6E+00	3.5E-01	8.5E-02	5.0E-02	2.0E-02	1.3E-01	1.3E-01	2.0E-02	5.0E-02	5.6E-02
EU145	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU146	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU147	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU148	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU149	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03

(p,
Cont
) qpu
ENIL.
ors in YMPGENII.mdb
ž
. <u> </u>
Factors in)
nsfer
Tra
ents and Trai
ients
oeffic
ŏ
ransfer Co
F
Site Specific Tra
sp
Site
124. 9
Table 124. Site S

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Нау	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
EU150a	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU150b	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU152	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU152m	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU154	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU155	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU156	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU157	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
EU158	2.5E-03	2.0E-05	4.0E-03	7.0E-03	1.0E-02	5.0E-03	3.4E-03	3.2E-02	3.2E-02	3.4E-03	5.0E-03	5.0E-03
FE52	2.5E-02	2.1E-04	3.2E-01	7.4E-01	6.0E-03	2.4E-03	1.8E-03	1.5E-02	1.5E-02	1.8E-03	2.4E-03	2.4E-03
FE55	2.5E-02	2.1E-04	3.2E-01	7.4E-01	6.0E-03	2.4E-03	1.8E-03	1.5E-02	1.5E-02	1.8E-03	2.4E-03	2.4E-03
FE59	2.5E-02	2.1E-04	3.2E-01	7.4E-01	6.0E-03	2.4E-03	1.8E-03	1.5E-02	1.5E-02	1.8E-03	2.4E-03	2.4E-03
FE60	2.5E-02	2.1E-04	3.2E-01	7.4E-01	6.0E-03	2.4E-03	1.8E-03	1.5E-02	1.5E-02	1.8E-03	2.4E-03	2.4E-03
1120	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1120m	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1121	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1122	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1123	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1124	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1125	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1126	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1128	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1129	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1130	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1131	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1132	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
l132m	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1133	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1134	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
1135	1.0E-02	9.1E-03	5.5E-02	2.6E+00	2.6E-02	3.2E-02	2.5E-02	4.0E-02	4.0E-02	2.5E-02	3.2E-02	5.7E-02
NB88	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03

(p,
Cont
) qpu
ENIL.
ors in YMPGENII.mdb
ž
. <u> </u>
Factors in)
nsfer
Tra
ents and Trai
ients
oeffic
ŏ
ransfer Co
F
Site Specific Tra
sp
Site
124. 9
Table 124. Site S

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Нау	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
NB89a	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB89b	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB90	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB93m	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB94	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB95	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB95m	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB96	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB97	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB97m	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NB98	1.4E-04	1.4E-04	9.5E-04	2.1E-03	3.0E-02	1.1E-02	7.0E-03	5.5E-02	5.5E-02	7.0E-03	1.1E-02	9.7E-03
NI56	5.3E-03	5.5E-03	3.8E-03	1.1E-01	1.8E-01	7.4E-02	4.0E-02	2.2E-01	2.2E-01	4.0E-02	7.4E-02	5.8E-02
NI57	5.3E-03	5.5E-03	3.8E-03	1.1E-01	1.8E-01	7.4E-02	4.0E-02	2.2E-01	2.2E-01	4.0E-02	7.4E-02	5.8E-02
NI59	5.3E-03	5.5E-03	3.8E-03	1.1E-01	1.8E-01	7.4E-02	4.0E-02	2.2E-01	2.2E-01	4.0E-02	7.4E-02	5.8E-02
NI63	5.3E-03	5.5E-03	3.8E-03	1.1E-01	1.8E-01	7.4E-02	4.0E-02	2.2E-01	2.2E-01	4.0E-02	7.4E-02	5.8E-02
NI65	5.3E-03	5.5E-03	3.8E-03	1.1E-01	1.8E-01	7.4E-02	4.0E-02	2.2E-01	2.2E-01	4.0E-02	7.4E-02	5.8E-02
NI66	5.3E-03	5.5E-03	3.8E-03	1.1E-01	1.8E-01	7.4E-02	4.0E-02	2.2E-01	2.2E-01	4.0E-02	7.4E-02	5.8E-02
NP232	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP233	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP234	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP235	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP236a	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP236b	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP237	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP238	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP239	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP240	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
NP240m	3.4E-04	6.3E-06	3.6E-03	3.4E-03	5.9E-02	3.1E-02	4.4E-03	5.8E-02	5.8E-02	4.4E-03	3.1E-02	3.4E-02
PA227	6.6E-05	4.4E-06	3.0E-03	2.0E-03	4.6E-03	1.1E-03	9.5E-04	1.9E-02	1.9E-02	9.5E-04	1.1E-03	1.1E-03
PA228	6.6E-05	4.4E-06	3.0E-03	2.0E-03	4.6E-03	1.1E-03	9.5E-04	1.9E-02	1.9E-02	9.5E-04	1.1E-03	1.1E-03
PA230	6.6E-05	4.4E-06	3.0E-03	2.0E-03	4.6E-03	1.1E-03	9.5E-04	1.9E-02	1.9E-02	9.5E-04	1.1E-03	1.1E-03

(p
Cont
) qpu
NII.n
in YMPGENII.mdb
MX (
.⊑.
Factor
ē
ansf
d Tr
nts and Tra
ents
ficie
bef
Ŏ
ansfer Co
Ë
ecific
Sp
Site S
124.
Table 124. Site §

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Hay	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
PA231	6.6E-05	4.4E-06	3.0E-03	2.0E-03	4.6E-03	1.1E-03	9.5E-04	1.9E-02	1.9E-02	9.5E-04	1.1E-03	1.1E-03
PA232	6.6E-05	4.4E-06	3.0E-03	2.0E-03	4.6E-03	1.1E-03	9.5E-04	1.9E-02	1.9E-02	9.5E-04	1.1E-03	1.1E-03
PA233	6.6E-05	4.4E-06	3.0E-03	2.0E-03	4.6E-03	1.1E-03	9.5E-04	1.9E-02	1.9E-02	9.5E-04	1.1E-03	1.1E-03
PA234	6.6E-05	4.4E-06	3.0E-03	2.0E-03	4.6E-03	1.1E-03	9.5E-04	1.9E-02	1.9E-02	9.5E-04	1.1E-03	1.1E-03
PA234m	6.6E-05	4.4E-06	3.0E-03	2.0E-03	4.6E-03	1.1E-03	9.5E-04	1.9E-02	1.9E-02	9.5E-04	1.1E-03	1.1E-03
PB195m	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB198	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB199	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB200	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB201	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB202	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB202m	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB203	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB205	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB209	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB210	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB211	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB212	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PB214	6.3E-04	1.7E-04	2.5E-02	5.6E-02	1.5E-02	9.0E-03	5.5E-03	1.8E-02	1.8E-02	5.5E-03	9.0E-03	1.2E-02
PD100	1.3E-03	2.9E-03	1.8E-03	1.0E-02	1.7E-01	7.8E-02	5.4E-02	2.8E-01	2.8E-01	5.4E-02	7.8E-02	7.8E-02
PD101	1.3E-03	2.9E-03	1.8E-03	1.0E-02	1.7E-01	7.8E-02	5.4E-02	2.8E-01	2.8E-01	5.4E-02	7.8E-02	7.8E-02
PD103	1.3E-03	2.9E-03	1.8E-03	1.0E-02	1.7E-01	7.8E-02	5.4E-02	2.8E-01	2.8E-01	5.4E-02	7.8E-02	7.8E-02
PD107	1.3E-03	2.9E-03	1.8E-03	1.0E-02	1.7E-01	7.8E-02	5.4E-02	2.8E-01	2.8E-01	5.4E-02	7.8E-02	7.8E-02
PD109	1.3E-03	2.9E-03	1.8E-03	1.0E-02	1.7E-01	7.8E-02	5.4E-02	2.8E-01	2.8E-01	5.4E-02	7.8E-02	7.8E-02
PM141	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM142	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM143	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM144	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM145	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM146	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM147	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03

(p,
Cont
) qpu
ENIL.
ors in YMPGENII.mdb
ž
. <u> </u>
Factors in)
nsfer
Tra
ents and Trai
ients
oeffic
ŏ
ransfer Co
F
Site Specific Tra
sp
Site
124. 9
Table 124. Site S

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Hay	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
PM148	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM148m	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM149	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM150	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PM151	2.5E-03	1.6E-05	9.5E-04	1.4E-02	1.0E-02	5.0E-03	2.8E-03	3.2E-02	3.2E-02	2.8E-03	5.0E-03	5.0E-03
PU234	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU235	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU236	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU237	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU238	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU239	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU240	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU241	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU242	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU243	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU244	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU245	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
PU246	1.3E-05	2.3E-07	1.2E-03	1.7E-03	2.9E-04	1.9E-04	1.9E-05	1.0E-03	1.0E-03	1.9E-05	1.9E-04	1.8E-04
RA222	8.1E-04	5.8E-04	1.7E-02	3.9E-04	6.8E-02	1.2E-02	3.1E-03	8.2E-02	8.2E-02	3.1E-03	1.2E-02	7.3E-03
RA223	8.1E-04	5.8E-04	1.7E-02	3.9E-04	6.8E-02	1.2E-02	3.1E-03	8.2E-02	8.2E-02	3.1E-03	1.2E-02	7.3E-03
RA224	8.1E-04	5.8E-04	1.7E-02	3.9E-04	6.8E-02	1.2E-02	3.1E-03	8.2E-02	8.2E-02	3.1E-03	1.2E-02	7.3E-03
RA225	8.1E-04	5.8E-04	1.7E-02	3.9E-04	6.8E-02	1.2E-02	3.1E-03	8.2E-02	8.2E-02	3.1E-03	1.2E-02	7.3E-03
RA226	8.1E-04	5.8E-04	1.7E-02	3.9E-04	6.8E-02	1.2E-02	3.1E-03	8.2E-02	8.2E-02	3.1E-03	1.2E-02	7.3E-03
RA227	8.1E-04	5.8E-04	1.7E-02	3.9E-04	6.8E-02	1.2E-02	3.1E-03	8.2E-02	8.2E-02	3.1E-03	1.2E-02	7.3E-03
RA228	8.1E-04	5.8E-04	1.7E-02	3.9E-04	6.8E-02	1.2E-02	3.1E-03	8.2E-02	8.2E-02	3.1E-03	1.2E-02	7.3E-03
RH100	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH101	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH101m	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH102	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH102m	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH103m	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01

(p,
Cont
) qpu
ENIL.
ors in YMPGENII.mdb
ž
. <u> </u>
Factors in)
nsfer
Tra
ents and Trai
ients
oeffic
ŏ
ransfer Co
F
Site Specific Tra
sp
Site
124. 9
Table 124. Site S

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Нау	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
RH105	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH106	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH106m	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH107	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH99	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RH99m	1.5E-03	3.6E-03	3.6E-03	1.2E-02	6.4E-01	3.1E-01	2.0E-01	6.7E-01	6.7E-01	2.0E-01	3.1E-01	3.1E-01
RU103	6.0E-03	1.8E-06	1.5E-02	5.1E-03	1.8E-01	4.3E-02	1.4E-02	2.1E-01	2.1E-01	1.4E-02	4.3E-02	1.8E-02
RU105	6.0E-03	1.8E-06	1.5E-02	5.1E-03	1.8E-01	4.3E-02	1.4E-02	2.1E-01	2.1E-01	1.4E-02	4.3E-02	1.8E-02
RU106	6.0E-03	1.8E-06	1.5E-02	5.1E-03	1.8E-01	4.3E-02	1.4E-02	2.1E-01	2.1E-01	1.4E-02	4.3E-02	1.8E-02
RU94	6.0E-03	1.8E-06	1.5E-02	5.1E-03	1.8E-01	4.3E-02	1.4E-02	2.1E-01	2.1E-01	1.4E-02	4.3E-02	1.8E-02
RU97	6.0E-03	1.8E-06	1.5E-02	5.1E-03	1.8E-01	4.3E-02	1.4E-02	2.1E-01	2.1E-01	1.4E-02	4.3E-02	1.8E-02
SB115	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB116	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB116m	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB117	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB118m	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB119	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB120a	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB120b	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB122	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB124	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB124m	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB124n	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB125	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB126	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB126m	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB127	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB128a	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB128b	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB129	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SB130	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03

(p,
Cont
) qpu
ENIL.
ors in YMPGENII.mdb
ž
. <u> </u>
Factors in)
nsfer
Tra
ents and Trai
ients
oeffic
ŏ
ransfer Co
F
Site Specific Tra
sp
Site
124. 9
Table 124. Site S

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Hay	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
SB131	9.9E-04	1.5E-04	1.2E-02	7.9E-02	9.4E-03	4.6E-03	1.0E-02	1.8E-02	1.8E-02	1.0E-02	4.6E-03	7.7E-03
SE70	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SE73	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SE73m	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SE75	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SE77m	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SE79	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SE81	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SE81m	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SE83	8.8E-02	5.7E-03	5.1E+00	7.3E+00	4.6E-02	4.6E-02	2.9E-02	1.5E-01	1.5E-01	2.9E-02	4.6E-02	4.6E-02
SM141	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM141m	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM142	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM145	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM146	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM147	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM151	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM153	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM155	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SM156	3.0E-03	1.8E-05	1.3E-02	1.6E-02	1.0E-02	5.8E-03	4.2E-03	2.2E-02	2.2E-02	4.2E-03	5.8E-03	5.8E-03
SN110	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN111	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN113	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN117m	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN119m	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN121	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN121m	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN123	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN123m	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN125	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN126	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02

ťd)
(Con
dbm.
MPGENII
YMP(
.⊆
Factors
Transfer
and 7
ents
effici
õ
Transfer Co
becific ⁻
Sp
Site
124.
Table 124. Site

		Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Нау	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
SN127	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SN128	1.9E-02	1.1E-03	3.5E-02	8.7E-02	3.8E-02	1.5E-02	9.2E-03	1.6E-01	1.6E-01	9.2E-03	1.5E-02	1.5E-02
SR80	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR81	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR82	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR83	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR85	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR85m	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR87m	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR89	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR90	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR91	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
SR92	1.4E-03	1.7E-03	3.1E-02	2.7E-01	1.7E+00	7.9E-01	1.7E-01	2.1E+00	2.1E+00	1.7E-01	7.9E-01	2.9E-01
TC101	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC104	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC93	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC93m	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC94	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC94m	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC95	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC95m	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC96	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC96m	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC97	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC97m	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC98	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC99	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TC99m	1.1E-03	2.1E-03	6.3E-02	2.4E+00	4.6E+01	4.4E+00	1.6E+00	2.7E+01	2.7E+01	1.6E+00	4.4E+00	4.3E+00
TH226	1.1E-04	4.4E-06	5.9E-03	3.5E-03	4.3E-03	4.4E-04	1.7E-04	1.0E-02	1.0E-02	1.7E-04	4.4E-04	2.9E-04
TH227	1.1E-04	4.4E-06	5.9E-03	3.5E-03	4.3E-03	4.4E-04	1.7E-04	1.0E-02	1.0E-02	1.7E-04	4.4E-04	2.9E-04
TH228	1.1E-04	4.4E-06	5.9E-03	3.5E-03	4.3E-03	4.4E-04	1.7E-04	1.0E-02	1.0E-02	1.7E-04	4.4E-04	2.9E-04

(p,
Cont
) qpu
ENIL.
ors in YMPGENII.mdb
ž
. <u> </u>
Factors in)
nsfer
Tra
ents and Trai
ients
oeffic
ŏ
ransfer Co
F
Site Specific Tra
sp
Site
124. 9
Table 124. Site S

	Meat	Milk	Poultry	Egg	Leafy	Root	Cereal	Forage	Нау	Grain	Other	Fruit
	day/kg	day/L	day/kg	day/kg	kg/kg							
CASID	CLFMT	CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
TH229	1.1E-04	4.4E-06	5.9E-03	3.5E-03	4.3E-03	4.4E-04	1.7E-04	1.0E-02	1.0E-02	1.7E-04	4.4E-04	2.9E-04
TH230	1.1E-04	4.4E-06	5.9E-03	3.5E-03	4.3E-03	4.4E-04	1.7E-04	1.0E-02	1.0E-02	1.7E-04	4.4E-04	2.9E-04
TH231	1.1E-04	4.4E-06	5.9E-03	3.5E-03	4.3E-03	4.4E-04	1.7E-04	1.0E-02	1.0E-02	1.7E-04	4.4E-04	2.9E-04
TH232	1.1E-04	4.4E-06	5.9E-03	3.5E-03	4.3E-03	4.4E-04	1.7E-04	1.0E-02	1.0E-02	1.7E-04	4.4E-04	2.9E-04
TH234	1.1E-04	4.4E-06	5.9E-03	3.5E-03	4.3E-03	4.4E-04	1.7E-04	1.0E-02	1.0E-02	1.7E-04	4.4E-04	2.9E-04
U230	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U231	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U232	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U233	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U234	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U235	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U236	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U237	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U238	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U239	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
U240	4.8E-04	4.9E-04	2.4E-01	6.3E-01	1.1E-02	6.0E-03	1.1E-03	1.7E-02	1.7E-02	1.1E-03	6.0E-03	6.3E-03
Y86	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y86m	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y87	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y88	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
790	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y90m	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y91	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y91m	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y92	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y93	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Υ94	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
Y95	1.3E-03	1.8E-05	7.3E-03	2.5E-03	1.4E-02	7.4E-03	4.6E-03	3.6E-02	3.6E-02	4.6E-03	7.4E-03	7.4E-03
ZR86	1.1E-04	7.7E-06	5.5E-04	1.2E-03	3.6E-03	1.6E-03	1.6E-03	1.9E-02	1.9E-02	1.6E-03	1.6E-03	1.4E-03
ZR88	1.1E-04	7.7E-06	5.5E-04	1.2E-03	3.6E-03	1.6E-03	1.6E-03	1.9E-02	1.9E-02	1.6E-03	1.6E-03	1.4E-03
ZR89	1.1E-04	7.7E-06	5.5E-04	1.2E-03	3.6E-03	1.6E-03	1.6E-03	1.9E-02	1.9E-02	1.6E-03	1.6E-03	1.4E-03

Meat	tMilk	Poultry	Egg	Leafy	Root	Cereal	Forage	Hay	Grain	Other	Fruit
day/kg	g day/L	day/kg	day/kg	kg/kg							
CLFMT	IT CLFMK	CLFPL	CLFEG	CLBVLV	CLBVRV	CLBVCL	CLBVAF	CLBVAH	CLBVAG	CLBVOV	CLBVFR
1.1E-(1.1E-04 7.7E-06	5.5E-04	1.2E-03	3.6E-03	1.6E-03	1.6E-03	1.9E-02	1.9E-02	1.6E-03	1.6E-03	1.4E-03
1.1E-(1.1E-04 7.7E-06	5.5E-04	1.2E-03	3.6E-03	1.6E-03	1.6E-03	1.9E-02	1.9E-02	1.6E-03	1.6E-03	1.4E-03
1.1E-(1.1E-04 7.7E-06	5.5E-04	1.2E-03	3.6E-03	1.6E-03	1.6E-03	1.9E-02	1.9E-02	1.6E-03	1.6E-03	1.4E-03

CASID	CLKD (mL/g)	CLLCLAS	CASID	CLKD (mL/g)	CLLCLAS
AC223	1500.0	slow	PM141	650.0	slow
AC224	1500.0	slow	PM142	650.0	slow
AC225	1500.0	slow	PM143	650.0	slow
AC226	1500.0	slow	PM144	650.0	slow
AC227	1500.0	slow	PM145	650.0	slow
AC228	1500.0	slow	PM146	650.0	slow
AM237	2000.0	medium	PM147	650.0	slow
AM238	2000.0	medium	PM148	650.0	slow
AM239	2000.0	medium	PM148m	650.0	slow
AM240	2000.0	medium	PM149	650.0	slow
AM241	2000.0	medium	PM150	650.0	slow
AM242	2000.0	medium	PM151	650.0	slow
AM242m	2000.0	medium	PO203	400.0	medium
AM243	2000.0	medium	PO205	400.0	medium
AM244	2000.0	medium	PO207	400.0	medium
AM244m	2000.0	medium	PO210	400.0	medium
AM245	2000.0	medium	PO211	400.0	medium
AM246	2000.0	medium	PO212	400.0	medium
AM246m	2000.0	medium	PO213	400.0	medium
AR37	0.0	gas	PO214	400.0	medium
AR39	0.0	gas	PO215	400.0	medium
AR41	0.0	gas	PO216	400.0	medium
BI200	450.0	medium	PO218	400.0	medium
BI201	450.0	medium	PU234	1200.0	slow
BI202	450.0	medium	PU235	1200.0	slow
BI203	450.0	medium	PU236	1200.0	slow
BI205	450.0	medium	PU237	1200.0	slow
BI206	450.0	medium	PU238	1200.0	slow
BI207	450.0	medium	PU239	1200.0	slow
BI210	450.0	medium	PU240	1200.0	slow
BI210m	450.0	medium	PU241	1200.0	slow
BI211	450.0	medium	PU242	1200.0	slow
BI212	450.0	medium	PU243	1200.0	slow
BI213	450.0	medium	PU244	1200.0	slow
BI214	450.0	medium	PU245	1200.0	slow
C11	18.0	gas	PU246	1200.0	slow
C14	18.0	gas	RA222	36000.0	medium
CA41	30.0	medium	RA223	36000.0	medium
CA45	30.0	medium	RA224	36000.0	medium
CA47	30.0	medium	RA225	36000.0	medium
CA49	30.0	medium	RA226	36000.0	medium
CD104	74.0	slow	RA227	36000.0	medium
CD107	74.0	slow	RA228	36000.0	medium
CD109	74.0	slow	RH100	60.0	slow
CD113	74.0	slow	RH101	60.0	slow
CD113m	74.0	slow	RH101m	60.0	slow
CD115	74.0	slow	RH102	60.0	slow
CD115m	74.0	slow	RH102m	60.0	slow

Table 125. Site Specific Partition	Coefficients and Lung Solubility Class in YMPGENII.mdb

CASID	CLKD (mL/g)	CLLCLAS	CASID	CLKD (mL/g)	CLLCLAS
CD117	74.0	slow	RH103m	60.0	slow
CD117m	74.0	slow	RH105	60.0	slow
CE134	8100.0	medium	RH106	60.0	slow
CE135	8100.0	medium	RH106m	60.0	slow
CE137	8100.0	medium	RH107	60.0	slow
CE137m	8100.0	medium	RH99	60.0	slow
CE139	8100.0	medium	RH99m	60.0	slow
CE141	8100.0	medium	RN218	0.0	gas
CE143	8100.0	medium	RN219	0.0	gas
CE144	8100.0	medium	RN220	0.0	gas
CF244	200.0	medium	RN222	0.0	gas
CF246	200.0	medium	RU103	990.0	medium
CF248	200.0	medium	RU105	990.0	medium
CF249	200.0	medium	RU106	990.0	medium
CF250	200.0	medium	RU94	990.0	medium
CF251	200.0	medium	RU97	990.0	medium
CF252	200.0	medium	SB115	150.0	medium
CF253	200.0	medium	SB116	150.0	medium
CF254	200.0	medium	SB116m	150.0	medium
CL36	0.140	medium	SB117	150.0	medium
CL38	0.140	medium	SB118m	150.0	medium
CL39	0.140	medium	SB119	150.0	medium
CM238	4400.0	medium	SB120a	150.0	medium
CM240	4400.0	medium	SB120b	150.0	medium
CM241	4400.0	medium	SB122	150.0	medium
CM242	4400.0	medium	SB124	150.0	medium
CM243	4400.0	medium	SB124m	150.0	medium
CM244	4400.0	medium	SB124n	150.0	medium
CM245	4400.0	medium	SB125	150.0	medium
CM246	4400.0	medium	SB126	150.0	medium
CM247	4400.0	medium	SB126m	150.0	medium
CM248	4400.0	medium	SB127	150.0	medium
CM249	4400.0	medium	SB128a	150.0	medium
CM250	4400.0	medium	SB128b	150.0	medium
CO55	1300.0	slow	SB1200	150.0	medium
CO56	1300.0	slow	SB130	150.0	medium
CO57	1300.0	slow	SB131	150.0	medium
CO58	1300.0	slow	SE70	150.0	fast
CO58m	1300.0	slow	SE70	150.0	fast
CO60	1300.0	slow	SE73m	150.0	fast
CO60m	1300.0	slow	SE75	150.0	fast
CO61				150.0	
CO61 CO62m	1300.0	slow	SE77m		fast
	1300.0	slow	SE79	150.0	fast
CS125	4400.0	fast	SE81	150.0	fast
CS126	4400.0	fast	SE81m	150.0	fast
CS127	4400.0	fast	SE83	150.0	fast
CS128	4400.0	fast	SM141	810.0	medium

Table 125. Site Specific Partition	Coefficients and Lung Solubility Class in	YMPGENII.mdb (Cont'd)

CASID	CLKD (mL/g)	CLLCLAS	CASID	CLKD (mL/g)	CLLCLAS
CS130	4400.0	fast	SM142	810.0	medium
CS131	4400.0	fast	SM145	810.0	medium
CS132	4400.0	fast	SM146	810.0	medium
CS134	4400.0	fast	SM147	810.0	medium
CS134m	4400.0	fast	SM151	810.0	medium
CS135	4400.0	fast	SM153	810.0	medium
CS135m	4400.0	fast	SM155	810.0	medium
CS136	4400.0	fast	SM156	810.0	medium
CS137	4400.0	fast	SN110	450.0	medium
CS138	4400.0	fast	SN111	450.0	medium
EU145	650.0	medium	SN113	450.0	medium
EU146	650.0	medium	SN117m	450.0	medium
EU147	650.0	medium	SN119m	450.0	medium
EU148	650.0	medium	SN121	450.0	medium
EU149	650.0	medium	SN121m	450.0	medium
EU150a	650.0	medium	SN123	450.0	medium
EU150b	650.0	medium	SN123m	450.0	medium
EU152	650.0	medium	SN125	450.0	medium
EU152m	650.0	medium	SN126	450.0	medium
EU154	650.0	medium	SN127	450.0	medium
EU155	650.0	medium	SN128	450.0	medium
EU156	650.0	medium	SR80	20.0	medium
EU157	650.0	medium	SR81	20.0	medium
EU158	650.0	medium	SR82	20.0	medium
FE52	220.0	medium	SR83	20.0	medium
FE55	220.0	medium	SR85	20.0	medium
FE59	220.0	medium	SR85m	20.0	medium
FE60	220.0	medium	SR87m	20.0	medium
H3	0.7	vapor	SR89	20.0	medium
H3EL	0.7	vapor	SR90	20.0	medium
1120	4.50	fast	SR91	20.0	medium
I120m	4.50	fast	SR92	20.0	medium
1121	4.50	fast	TC101	0.140	medium
1122	4.50	fast	TC104	0.140	medium
1123	4.50	fast	TC93	0.140	medium
1124	4.50	fast	TC93m	0.140	medium
1125	4.50	fast	TC94	0.140	medium
1126	4.50	fast	TC94m	0.140	medium
1128	4.50	fast	TC95	0.140	medium
1129	4.50	fast	TC95m	0.140	medium
1120	4.50	fast	TC96	0.140	medium
1131	4.50	fast	TC96m	0.140	medium
1132	4.50	fast	TC97	0.140	medium
1132m	4.50	fast	TC97m	0.140	medium
1133	4.50	fast	TC98	0.140	medium
1134	4.50	fast	TC99	0.140	medium
1135	4.50	fast	TC99m	0.140	medium
KR74	0.0	gas	TE116	540.0	medium

Table 125. Site Specific Partition Coefficients and Lung Solubility Class in YMPGENII.mdb (Cont'd)

CASID	CLKD (mL/g)	CLLCLAS	CASID	CLKD (mL/g)	CLLCLAS
KR76	0.0	gas	TE121	540.0	medium
KR77	0.0	gas	TE121m	540.0	medium
KR79	0.0	gas	TE123	540.0	medium
KR81	0.0	gas	TE123m	540.0	medium
KR81m	0.0	gas	TE125m	540.0	medium
KR83m	0.0	gas	TE127	540.0	medium
KR85	0.0	gas	TE127m	540.0	medium
KR85m	0.0	gas	TE129	540.0	medium
KR87	0.0	gas	TE129m	540.0	medium
KR88	0.0	gas	TE131	540.0	medium
NB88	540.0	medium	TE131m	540.0	medium
NB89a	540.0	medium	TE132	540.0	medium
NB89b	540.0	medium	TE133	540.0	medium
NB90	540.0	medium	TE133m	540.0	medium
NB93m	540.0	medium	TE134	540.0	medium
NB94	540.0	medium	TH226	3000.0	slow
NB95	540.0	medium	TH227	3000.0	slow
NB95m	540.0	medium	TH228	3000.0	slow
NB96	540.0	medium	TH229	3000.0	slow
NB97	540.0	medium	TH230	3000.0	slow
NB97m	540.0	medium	TH231	3000.0	slow
NB98	540.0	medium	TH232	3000.0	slow
NE19	0.0	gas	TH234	3000.0	slow
NI56	400.0	medium	U230	33.0	slow
NI57	400.0	medium	U231	33.0	slow
NI59	400.0	medium	U232	33.0	slow
NI63	400.0	medium	U233	33.0	slow
NI65	400.0	medium	U234	33.0	slow
NI66	400.0	medium	U235	33.0	slow
NP232	25.0	medium	U236	33.0	slow
NP233	25.0	medium	U237	33.0	slow
NP234	25.0	medium	U238	33.0	slow
NP235	25.0	medium	U239	33.0	slow
NP236a	25.0	medium	U240	33.0	slow
NP236b	25.0	medium	XE120	0.0	gas
NP237	25.0	medium	XE121	0.0	gas
NP238	25.0	medium	XE122	0.0	gas
NP239	25.0	medium	XE123	0.0	gas
NP240	25.0	medium	XE125	0.0	gas
NP240m	25.0	medium	XE127	0.0	gas
OBT	0.7	slow	XE129m	0.0	gas
PA227	1800.0	slow	XE131m	0.0	gas
PA228	1800.0	slow	XE133	0.0	gas
PA230	1800.0	slow	XE133m	0.0	gas
PA231	1800.0	slow	XE135	0.0	gas
PA232	1800.0	slow	XE135m	0.0	gas
PA233	1800.0	slow	XE138	0.0	gas
PA234	1800.0	slow	Y86	740.0	slow

Table 125. Site Specific Partition	Coefficients and Lung Solubility Class in	YMPGENII.mdb (Cont'd)

CASID	CLKD (mL/g)	CLLCLAS	CASID	CLKD (mL/g)	CLLCLAS
PA234m	1800.0	slow	Y86m	740.0	slow
PB195m	16000.0	medium	Y87	740.0	slow
PB198	16000.0	medium	Y88	740.0	slow
PB199	16000.0	medium	Y90	740.0	slow
PB200	16000.0	medium	Y90m	740.0	slow
PB201	16000.0	medium	Y91	740.0	slow
PB202	16000.0	medium	Y91m	740.0	slow
PB202m	16000.0	medium	Y92	740.0	slow
PB203	16000.0	medium	Y93	740.0	slow
PB205	16000.0	medium	Y94	740.0	slow
PB209	16000.0	medium	Y95	740.0	slow
PB210	16000.0	medium	ZR86	2200.0	medium
PB211	16000.0	medium	ZR88	2200.0	medium
PB212	16000.0	medium	ZR89	2200.0	medium
PB214	16000.0	medium	ZR93	2200.0	medium
PD100	180.0	slow	ZR95	2200.0	medium
PD101	180.0	slow	ZR97	2200.0	medium
PD103	180.0	slow			
PD107	180.0	slow			
PD109	180.0	slow			

Table 125. Site Specific Partition	Coefficients and Lung Solubility Class in	YMPGENII.mdb (Cont'd)
		(/

INTENTIONALLY LEFT BLANK

ATTACHMENT G. YMP SITE-SPECIFIC FGR-13 INHALATION DCF FILE

As discussed in the *GENII Version 2 Software Design Document* (Napier et al 2006 [DIRS 177331], Section B.4), GENIIv2 dose conversion factors using the latest ICRP methods are provided in a file named *FGR13INH.hdb*. As discussed in Section 4.1.7.7, the tritium vapor phase adult inhalation dose conversion factor is multiplied be a factor of 1.5 for all organs to account for skin absorption. The new values for each organ are 2.7×10^{-11} Sv/Bq in the row corresponding to age 7300 (Column 2) and class vapor V (Column 4). Those values have been incorporated into a new dose conversion factor file *FGR13INH.ymp*, (see highlighted part in Table 126). All other values remain the same as in the original file. To use this file with GENIIv2, copy it into the FRAMES subdirectory and rename it to "*FGR13INH.hdb*".

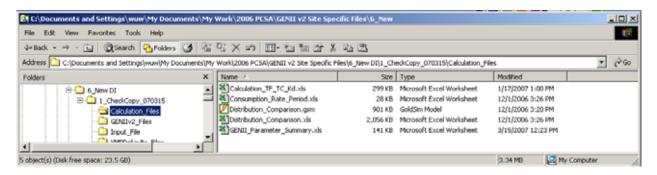
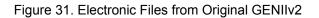

Nucli de	Age	AMAD	Class /f1					Adrenals	UB_Wall	Bone_Sur	
H-3	100	1	F	Е	1.00E+00	1	L	2.46E-11	2.46E-11	2.46E-11	
H-3	365	1	F	Е	1.00E+00	1	L	1.92E-11	1.92E-11	1.92E-11	
H-3	1825	1	F	Е	1.00E+00	1	L	1.07E-11	1.07E-11	1.07E-11	
H-3	3650	1	F	Е	1.00E+00	1	L	7.99E-12	7.99E-12	7.99E-12	
H-3	5475	1	F	Е	1.00E+00	1	L	5.83E-12	5.83E-12	5.83E-12	
H-3	7300	1	F	Е	1.00E+00	1	L	6.16E-12	6.16E-12	6.16E-12	
H-3	100	1	М	Е	2.00E-01	1	L	8.28E-12	8.28E-12	8.28E-12	
H-3	365	1	М	Е	1.00E-01	1	L	5.40E-12	5.40E-12	5.40E-12	
H-3	1825	1	М	Е	1.00E-01	1	L	3.34E-12	3.34E-12	3.34E-12	
H-3	3650	1	М	Е	1.00E-01	1	L	2.44E-12	2.44E-12	2.44E-12	
H-3	5475	1	М	Е	1.00E-01	1	L	2.00E-12	2.00E-12	2.00E-12	
H-3	7300	1	М	Е	1.00E-01	1	L	2.15E-12	2.15E-12	2.15E-12	
H-3	100	1	S	Е	2.00E-02	1	L	7.10E-13	7.10E-13	7.10E-13	
H-3	365	1	S	Е	1.00E-02	1	L	4.56E-13	4.56E-13	4.56E-13	
H-3	1825	1	S	Е	1.00E-02	1	L	3.12E-13	3.12E-13	3.12E-13	
H-3	3650	1	S	Е	1.00E-02	1	L	2.36E-13	2.36E-13	2.36E-13	
H-3	5475	1	S	Е	1.00E-02	1	L	2.13E-13	2.13E-13	2.13E-13	
H-3	7300	1	S	Е	1.00E-02	1	L	2.30E-13	2.30E-13	2.30E-13	
H-3	100	0	V	Е	1.00E+00	1	L	6.35E-11	6.35E-11	6.35E-11	
H-3	365	0	V	Е	1.00E+00	1	L	4.86E-11	4.86E-11	4.86E-11	
H-3	1825	0	V	Е	1.00E+00	1	L	3.07E-11	3.07E-11	3.07E-11	
H-3	3650	0	V	Е	1.00E+00	1	L	2.28E-11	2.28E-11	2.28E-11	
H-3	5475	0	V	Е	1.00E+00	1	L	1.80E-11	1.80E-11	1.80E-11	
H-3	7300	0	V	Е	1.00E+00	1	L	2.70E-11	2.70E-11	2.70E-11	
H-3	100	0	G	Е	1.00E+00	1	L	6.35E-15	6.35E-15	6.35E-15	
H-3	365	0	G	Е	1.00E+00	1	L	4.86E-15	4.86E-15	4.86E-15	
H-3	1825	0	G	Е	1.00E+00	1	L	3.07E-15	3.07E-15	3.07E-15	
H-3	3650	0	G	Е	1.00E+00	1	L	2.28E-15	2.28E-15	2.28E-15	

Table 126. Partial Data from FGR13INH.ymp where Inhalation Dose Coefficients Updated

INTENTIONALLY LEFT BLANK

ATTACHMENT H. ELECTRONIC FILES WITH THIS REPORT

The electronic files associated with this document can be categorized as three types. The first set includes the calculation files under a subdirectory of Calculation_Files that contains four Excel files and one GoldSim file. The second set includes the YMP default files under a subdirectory of YMPDefault_Files that contains 12 YMP default files, three Excel files to be used to develop these default files, and one batch file to use YMP default files. The last set includes some GENIIv2 files that are mentioned in this document under a subdirectory of GENIIv2_Files that contains 19 original GENIIv2 files. These files are included in a data CD.



e Edit View Favorites Tools Help							
Back + + - 🔄 🕲 Search 🎦 Folders 🎯 🧌	(\mathbb{R})	(22) 🔟 🐿 🖆 🗶 🛍 🖾 👘					
dress 🛄 C:\Documents and Settings\www.My Documents/J	4y Work),2	006 PCSA\GENII v2 Site Specific Files\6_New DI\3_	ConcurrenceCopy_0	0323(YMPDefaults_Files		-	(Pa
klers	×	Name 4	Size	Туре	Modified		
GENTI v2 Site Specific Files		Defaults.bat	1 KB	MS-DOS Batch File	11/29/2006 2:43 PM		
I_check.copy_060817		FGR13INH.ymp	5,812 KB	YMP File	9/14/2006 3:19 PM		
3 2 backcheck copy 061020		GENII v2 Site-Specific Parameters.xls	661 KB	Microsoft Excel Wor	3/15/2007 3:12 PM		
3 prereview copy_061204		GNDFLaud.GE	9 KB	GE File	3/15/2007 2:47 PM		
3 4_review copy_070112		GNDFLaud.nonGE	9 KB	NONGE File	3/15/2007 2:48 PM		
E S badireview copy 070326		GNDFLaud.onske	9 KB	ONSITE File	3/15/2007 2:48 PM		
🖨 🧰 6_New DI		GNDFLoud.GE	9 KB	GE File	11/29/2006 1:22 PM		
I_CheckCopy_070315		GNDFLoud.nonGE	9 KB	NONGE File	11/29/2006 1:24 PM		
2_ReviewCopy_070320		GNDFLoud.onsite	9 KB	ONSITE File	11/29/2006 1:22 PM		
3_ConcurrenceCopy_070323	_	GNDFLud.GE	4 KB	GE File	11/29/2006 1:28 PM		
Calculation Files		GNDFLlud.nonGE	4 KB	NONGE File	11/29/2006 1:28 PM		
GENIIV2 Files		GNDFLiud.onsite	4 KB	ONSITE File	12/11/2006 11:12 AM		
Input_File		GNDFLud.pop	4 KB	POP File	12/11/2006 11:13 AM		
TMPDefaults_Files		Nuclide Kd and Lung Class Data.xls	519 KB	Microsoft Excel Wor	3/15/2007 3:47 PM		
B- D IED-TMRB		Nuclide Plant and Animal Data.xis	1,060 KB	Microsoft Excel Wor	3/15/2007 3:41 PM		
IED Review		YMPGENII.mdb	4,132 KB	Microsoft Access Ap	3/20/2007 8:11 AM		

Figure 30. Electronic Files for YMP Site Specific Default Development

File Edit View Favorites Tools Help			ite Specific Files\				1
ម Back + → - 🖭 🛛 🖓 Search 🏻 🎦 Folders 🖓		吸入の 目・包包	67 X Pb CB				
iddress 🗀 C:\Documents and Settings\wuw\My Docum	ents'/My	Work(2006 PCSA\GENII v2 Site S	pecific Files\2_Und	er_Revision_00A_Files\;4_F	inalCopy_070327\GENEIv2	_Files	20
olders	×	Name /	Size	Туре	Modified		
E- My Work		AcPlume.des	4 KD	DES File	7/26/2006 12:09 PM		
😑 🦲 2006 PCSA		ChPlume.des	4 KB	DES File	7/25/2006 2:41 PM		
CSNE Release Fractions		🛋 cshnib.dət	411 KB	DAT File	2/16/2003 2:00 PM		
GENII v2 Ste Specific Files		F12TIII1.EXT	204 KB	EXT File	8/10/1999 3:03 AM		
I_Under_Revision_000_Files		F12TIII3.EXT	204 KB	EXT File	8/10/1999 2:43 AM		
E 2 Under Revision 00A Files		F12TIII7.EXT	204 KB	EXT File	8/10/1999 2:43 AM		
1_CheckCopy_070315		FGR13ING.GDB	1,872 KB	GDB File	12/1/1999 7:49 PM		
2_ReviewCopy_070320		FGR13INH.HDB	5,812 KB	HD8 File	11/24/2001 9:03 PM		
B) 3 ConcurrenceCopy 070323		FuiAFF.des	4 KB	DES File	6/15/2006 9:04 AM		
4 FinalCopy_070327		Gen_Act.des	11 KB	DES File	7/28/2006 8:37 AM		
Calculation_Files		Gen_Exp.des	11 KB	DES File	7/26/2006 1:47 PM		
- GENDV2_Files		Gen_Hei.des	3 KB	DES File	7/13/2006 11:55 AM		
- Input_File		Gen_Rcp.des	7 KB	DES File	7/13/2006 12:02 PM		
YMPDefaults_Files	_	GENIL.des	20 KB	DES File	7/27/2006 7:47 AM		
- GENIIV2_Files		@GENII.mdb	2,792 KB	Microsoft Access Appl	0/30/2006 3:40 PM		
B- DIED-TMRB		GNDFLaud.DEF	9 KB	DEF File	5/26/2005 2:39 PM		
B OldFiles		GNDFLoud.DEF	9 KB	DEF File	5/26/2005 2:39 PM		
E GENIIv2 Qualification		GNDFLiud.DEF		DEF File	5/3/2005 8:30 AM		
PCSA Activity	-1	RMDLIB.DAT	80 KB	DAT File	7/11/2006 9:28 AM		
object(s) (Disk free space: 23.2 GB)	_				11.3 MB	💢 My Computer	

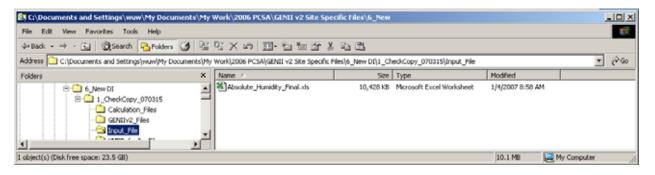


Figure 32. Electronic Files from Attachment I

ATTACHMENT I. METEOROLOGICAL INPUTS

The Meteorological Inputs are from Jorge Schulz through an email as attached below. It is used as assumptions requiring verification in Section 3.1. The Excel file *Absolute_Humidity.xls* discussed in this attachment is used to develop the cumulative distribution of daily rain rate as discussed in Section 3.1.2, and the file is included in the attached CD as shown in Attachment H. No other files mentioned in this attachment is used in this document.

From:Jorge Schulz on 03/15/2007 06:29 AMTo:Wesley Wu/YM/RWDOE@CRWMScc:Dale Dexheimer/YM/RWDOE@CRWMS, Sen-Sung Tsai/YM/RWDOE@CRWMSSubject:Meteorological Inputs

LSN: Relevant - Privileged User Filed as: Excl/AdminMgmt-14-4/QA:N/A

Wesley:

References:

MO0305SEP01MET.002. Meteorological Monitoring Data for 2001. Submittal date: 05/21/2003. [DIRS 166164]

MO0305SEP02MET.002. Meteorological Monitoring Data for 2002. Submittal date: 05/21/2003. [DIRS 166163]

MO0503SEPMMD03.001. Meteorological Monitoring Data for 2003. Submittal date: 03/03/2005. [DIRS 176097]

MO0607SEPMMD04.001. Meteorological Monitoring Data for 2004. Submittal date: 07/18/2006. [DIRS 178311]

MO0610METMND05.000. Meteorological Monitoring Data for 2005. Submittal date: 09/18/2006. [DIRS 178328]

Absolute Humidity:

Absolute humidity is used to calculate tritium concentration in food pathways. The parameter is developed using site-specific meteorological data provided in above references. The calculation is performed in an Excel file: *Absolute_Humidity.xls*. The arithmetic mean of the hourly absolute humidity values is 4.08 g/m³ and standard deviation is 2.09 g/m³. A lognormal distribution is recommended with GM of 3.63 g/m³, GSD of 1.63, lower bound of 0.39 g/m³ and upper bound of 16.4 g/m³.

Average Daily Rain Rate:

The average daily rain rate is determined from the Yucca Mountain site meteorological data provided in above references, which includes the precipitation amount, *p*, in mm for each hour. The average daily rain rate is calculated by (1) summing the hourly precipitation for each calendar day, and (2) averaging calculated daily rain rate for the entire period. The calculation is performed in the Excel file *Absolute_Humidity.xls*, which contains two worksheets. *MetData* worksheet contains all raw data and average calculation, and *Parameters* worksheet provides some inputs and summary of average calculation done in *MetData*.

The calculated average daily rain rate is 0.49 mm/day and standard deviation is 2.88 mm/day for those days with precipitation. There are 699 hours of precipitation out of a total of 43,751 hours of valid data (1.6%).

Wind Speed:

Based on the wind speed measurements during the five years period, the mean wind speed is 3.64 m/s and its SD is 2.02 m/s with the minimum wind speed of 0.45 m/s, and the maximum wind speed of 17.8 m/s. The calculation is performed in the worksheet *MetData* of Excel file *Met Data* 2001-2005.xls.

Ambient Temperature

The ambient temperature is provided in the referenced meteorological data. The mean temperature is calculated in the worksheet *MetData* of Excel file *Met Data 2001-2005.xls* The mean temperature is 17.04C and SD of 10.13C with the minimum of -7.5C and the maximum of 42.31C.

Transfer Resistance:

Transfer resistances are usually associated with the characteristics of the depositing material and surface type. The transfer resistance is used as a mathematical device to establish an upper limit on the deposition velocity. The user can enter transfer resistance, but as a default, 10 and 100 s/m are assumed for gas (iodine) and particles, respectively. For the purposes of determining atmospheric dispersion factors, the transfer resistance for particles (100 s/m) is used for both particles and iodines. This is conservative because the higher transfer resistance results in lower deposition velocities and higher depleted X/Q values.

Met Data File Generation:

A meteorological data file for the Yucca Mountain site has been generated consistent with the (GENIIv2) input data format. The file, *ymp01-05.met* contains date, time, stability class, wind direction, wind speed, temperature, mixing height, precipitation code, precipitation rate, and weight in the GENIIv2 format, which are converted from the meteorological data files referenced above

Calculation of the required additional parameters and the meteorological data conversion into the GENIIv2 format is performed in the Excel spreadsheet *Met Data 2001-2005.xls*. The Excel spreadsheet *Met Data 2001-2005.xls* has several worksheets, of which, three: *Parameters, Monin-Obukhov Data*, and *MetData* are used in the meteorological data conversion.

The Excel spreadsheets are available in folder O:\\SA-DEPT\YMP XQ Calculation\Spreadsheets

Regards,

Jorge