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1.2.6 Receipt Facility
[NUREG-1804, Section 2.1.1.2.3: AC 1, AC 2, AC 6; Section 2.1.1.6.3: AC 1, AC 2; 
Section 2.1.1.7.3.1: AC 1; Section 2.1.1.7.3.2: AC 1; Section 2.1.1.7.3.3(I): AC 1, AC 2, 
AC 4; HLWRS-ISG-02 Section 2.1.1.2.3: AC 2]

The design and operation of the Receipt Facility (RF) and the systems within the facility are 
described in this section. Information specific to the generic features of structural design, 
mechanical handling design, and heating, ventilation, and air-conditioning (HVAC) design, is 
provided in Sections 1.2.2.1, 1.2.2.2, and 1.2.2.3. Information related to the electrical power, 
controls and monitoring, fire protection, plant services, and waste management is provided in 
Sections 1.4.1 to 1.4.5, respectively. The methodologies for shielding and nuclear criticality design 
are addressed in Sections 1.10.3 and 1.14, respectively. Logic diagrams for structures, systems, and 
components (SSCs) that are important to safety (ITS) used in facilities, including the RF, are 
provided in Section 1.2.4.2 where the discussion of the ITS equipment is addressed.

ITS SSCs in the mechanical handling system that are used in handling facilities, including the RF, 
are discussed in Section 1.2.4.2. Table 1.2.6-1 lists the non-ITS mechanical handling SSCs used in 
the RF, which are similar to those in other handling facilities. RF-specific non-ITS SSCs in the 
mechanical handling system are summarized in Table 1.2.6-2. Non-ITS SSCs in the mechanical 
handling system that are used in handling facilities, including the RF, are described in Table 1.2.4-1.

1.2.6.1 Receipt Facility Description
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2, AC 6; Section 2.1.1.6.3: 
AC 1(2)(e), (2)(h), AC 2(2); Section 2.1.1.7.3.1: AC 1(1), (2), (3), (5), (6), (9); 
Section 2.1.1.7.3.2: AC 1(1), (2); Section 2.1.1.7.3.3(I): AC 1(1), AC 2(1), (2), (3), 
AC 4(1)]

1.2.6.1.1 Facility Description

The RF provides the facility as well as necessary utilities and support systems to perform the 
following functions:

• Receive rail-based transportation casks containing commercial spent nuclear fuel (SNF) 
in transportation, aging, and disposal (TAD) canisters or dual-purpose canisters (DPCs).

• Prepare the transportation casks for unloading by removing impact limiters, inspecting, 
upending and removing casks from their conveyances, gas sampling, and unbolting the 
cask lid(s). For transportation casks containing vertically handled DPCs, the RF installs 
the DPC lifting fixture to the DPC lid.

• Transfer the TAD canisters from transportation casks to aging overpacks for movement to 
a Canister Receipt and Closure Facility (CRCF) or to the Aging Facility.

• Transfer vertically handled DPCs from transportation casks to aging overpacks for 
movement to the Wet Handling Facility (WHF) or to the Aging Facility.
— —
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• Transfer transportation casks containing horizontally handled DPCs to cask transfer 
trailers so they can be moved to the horizontal aging modules at the Aging Facility.

• Replace the lid(s) on the unloaded transportation casks. The transportation casks are 
inspected, surveyed, and decontaminated prior to leaving the facility.

• Install and fasten lids on the loaded aging overpacks.

• Conduct maintenance, radiological surveys, minor decontamination, and low-level 
radioactive waste collection, as required.

• Confine and control the radioactive waste sources during normal operations, off-normal 
operations, and event sequences.

• Control radiation exposure, temperature, human access, prevent criticality, and mitigate 
identified hazards.

• Provide adequate shielding.

• Monitor the facility operations and performance to ensure the health and safety of 
workers and the public.

• Withstand the effects of natural phenomena and nearby military and industrial hazards.

The RF is an ITS surface structure that is located between the CRCF 1 and CRCF 2 facilities 
northeast of the North Portal of the repository. The RF is physically separated from other surface 
buildings to isolate it from interactions with the other facilities during a seismic event. The location 
of the RF relative to the other surface facilities is shown in Figures 1.2.1-1 and 1.2.1-2. The RF is 
located such that it is protected from external flooding as shown in Figure 1.2.2-7. The distance of 
the geologic repository operations area facilities from the site boundary is shown in Figure 1.1-1.

The RF is a reinforced concrete structure made of noncombustible materials with interior and 
exterior shear walls, concrete floor and roof slab diaphragms, and concrete mat foundation. The 
overall footprint of the RF is approximately 315 ft wide by 318 ft long. The ITS portion of the 
structure is approximately 200 ft wide by 240 ft long. The maximum height of the building is 100 ft 
above grade with other roofs 72 ft and 64 ft above grade. General arrangement floor plans for the 
various floors for the RF and the associated legend are shown in Figures 1.2.6-1 to 1.2.6-4. The roof 
plan is shown in Figure 1.2.6-5. Cross-section views of the facility are shown in Figures 1.2.6-6 to 
1.2.6-11. The ITS and non-ITS areas of the RF are shown on Figure 1.2.6-2. Room or area numbers 
corresponding to the figures are given in parentheses to aid in understanding the location where 
processes are performed or where major equipment is located.

The foundation for the RF is a reinforced concrete mat having the necessary thickness to adequately 
support the superstructure. The foundation mat for the RF structure is 7 ft thick. The superstructure 
consists of 4 ft thick exterior and interior concrete walls. The internal shielded rooms are also made 
up of 4 ft thick concrete walls and slabs. Other elevated floor diaphragm slabs are generally 1 ft 6 in. 
thick.
— —
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The RF is designed to withstand the design basis ground motion (DBGM)-2 seismic event. The 
loads associated with the various cask and canister handling equipment are supported from the RF 
interior walls and slabs and then transferred to the foundation. The cask transfer trolley, site 
transporter, and cask transfer trailers are supported directly by the basemat foundation for the RF 
building. 

Ancillary areas of the facility that are not categorized as ITS are constructed on separate slabs on 
grade using lighter concrete construction and/or insulated metal panels on steel framing. These 
ancillary areas/rooms are attached to, but fall outside, the footprint of the main RF structure. The 
mat foundations for the RF ancillary area non-ITS structures are reinforced concrete mats to 
adequately support the superstructures. The non-ITS portions of the RF will not compromise the 
integrity of the RF ITS structure in a DBGM-2 event.

The RF is divided into areas for handling operations and areas to support these activities. Handling 
activities are performed in the following areas: cask preparation room (Room 1017), cask unloading 
room (Room 1015), loading room (Room 1013), canister transfer room (Room 2007), site 
transporter vestibule (Room 1001), lid bolting room (Room 1002), and the transportation cask 
vestibule and vestibule annex (Rooms 1021A and 1021). The handling support areas include 
equipment rooms (Rooms 1215 and 1224), HVAC rooms (Rooms 1004, 1004A, 1019, 1019A, 
2003, 2004, 2006, 2008, 2009, 2010, and 2011), the gas sampling room (Room 1223), electrical and 
battery rooms (Rooms 1005, 1005A, 1018, 1018A, 1020, and 1020A), maintenance room 
(Room 1014), the canister transfer machine maintenance room (Room 1016), the facility operations 
room (Room 1207) and communications room (Room 1208).

The radiation/radiological monitoring system provides for monitoring of dose rates and airborne 
radioactivity levels in the RF, as described in Section 1.4.2. For airborne radioactivity monitoring, 
the system includes continuous air monitors and effluent monitors. The system includes area 
radiation monitors that measure gamma and neutron radiation levels. The system instruments 
include local alarms that provide audible and visible warnings. The system and alarms are 
monitored in the facility operations room and the Central Control Center.

The RF is designed to provide radiation protection to workers, the public, and the environment, and 
minimize occupational exposure in accordance with as low as is reasonably achievable dose 
principles. Features for minimization and control of radioactive contamination within the RF are 
incorporated into the design. Shielded work areas, as required, are incorporated into the design. 
Section 1.10 addresses the design features to reduce occupational exposures to repository workers.

Interlocks on shield doors are provided to ensure that workers cannot be inadvertently exposed to 
high radiation.

Major mechanical handling equipment in the RF includes cranes, cask transfer trolley, canister 
transfer machine, and associated lifting fixtures and devices.

An overview of major areas within the RF is provided below.
— —
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1.2.6.1.1.1 Cask Receipt Area

1.2.6.1.1.1.1 Transportation Cask Vestibule and Annex (Rooms 1021 and 1021A)

The purpose of the transportation cask vestibule is to provide a receiving area for the railcar and 
transportation cask and the cask transfer trailer prior to entry into or leaving the cask preparation 
room. It provides environmental separation between the preparation area and the outside 
environment. The vestibule enables the cask preparation room to remain isolated from the outside 
environment when its receipt door is open.

1.2.6.1.1.1.2 Site Transporter Vestibule (Room 1001)

The site transporter vestibule serves as a staging area for the site transporter with an aging overpack. 
It also provides the environmental separation between the outside environment and the RF. This 
area also provides direct site transporter access for the delivery and removal of aging overpacks. The 
site transporter vestibule provides a receiving area for the site transporter containing an aging 
overpack prior to entry into or leaving the lid bolting room.

The site transporter vestibule is located on the north side of the building. Empty aging overpacks are 
moved into the site transporter vestibule from the outside, and loaded overpacks are moved in from 
the lid bolting room and transported out to their destinations.

1.2.6.1.1.2 Cask Preparation Room (Room 1017) and Annex (Room 1017A)

The cask preparation area is used to receive transportation casks, prepare them for canister 
unloading, and export the unloaded casks. Transportation casks are received in this area via railcar. 
The cask preparation room is equipped with a 200-ton bridge crane with a 20-ton auxiliary hoist; a 
cask tilting frame to upend certain transportation casks; a cask stand to temporarily place certain 
casks while removing impact limiters or installing lift trunnions; a cask transfer trolley to move 
casks into the cask unloading room; a mobile access platform to gain access to the transportation 
casks on the railcar; and a mobile lift to access cask operations on the cask stand and railcar, and 
stands for yokes, and transportation cask lids. The crane rails are supported by corbels cast into the 
concrete walls.

1.2.6.1.1.3 Cask Unloading Room (Room 1015) and Loading Room (Room 1013)

The cask unloading room and the loading room shield operating personnel in other rooms of the 
facility from radiation during canister transfer. The cask unloading room and loading room are 
located on the ground floor immediately below the canister transfer room. Transportation casks are 
moved from the cask preparation room to the cask unloading room on the cask transfer trolley. An 
empty aging overpack on a site transporter is positioned in the loading room.

1.2.6.1.1.4 Canister Transfer Room (Room 2007)

The canister transfer room is located on the second floor; the associated loading and unloading 
rooms and maintenance access room are located on the ground floor, directly below the canister 
transfer room. The canister transfer room is equipped with a canister transfer machine and shielded 
— —
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slide gates in the floor of the canister transfer room. The canister transfer machine extracts the TAD 
canister or DPC from the transportation cask through a cask port in the ceiling of the cask unloading 
room. The canister transfer machine then inserts the removed TAD canister or DPC into the aging 
overpack through a loading port in the loading room ceiling.

1.2.6.1.1.5 Lid Bolting Room (Room 1002)

The lid bolting room has two purposes: (1) to receive and prepare unloaded aging overpacks and 
(2) to prepare loaded aging overpacks for export. Aging overpack lid bolts are removed and 
installed in the lid bolting room. The site transporter moves unloaded overpacks into the lid bolting 
room from the site transporter vestibule and moves loaded overpacks into the lid bolting room from 
the loading room. The room is equipped with a 10-ton bridge crane.

1.2.6.1.2 Operational Processes

Figure 1.2.6-12 illustrates the operational sequences and material flow paths through the RF. 
Figure 1.2.6-13 shows the inventory of waste forms in the RF at any one time. Figure 1.2.6-14
illustrates the major waste handling functions performed in the RF.

The major operational waste handling functions are summarized in the following sections.

1.2.6.1.2.1 Cask Handling

The transportation cask vestibule receives railcars carrying transportation casks containing TAD 
canisters or DPCs. In the cask preparation room, the transportation cask impact limiters are removed 
and the lifting trunnions are installed, as required. The cask transfer trolley is configured with the 
appropriate pedestal for the transportation cask, which is upended by the cask handling crane and 
moved into the trolley. Once the transportation cask is secured to the cask transfer trolley, the trolley 
is moved under the cask preparation platform, the cask cavity is sampled and depressurized, and the 
transportation cask lid bolts are removed. If the cask lid is not equipped with a lid lifting fixture, a 
fixture is installed. The cask transfer trolley is then moved to the cask unloading room.

For casks containing DPCs, the cask lid is removed and a canister lifting adapter is installed on the 
DPC. This operation is not required for casks containing TAD canisters because TAD canisters have 
an integral lifting feature. The cask transfer trolley is then used to move the cask into the cask 
unloading room and position it below the cask port.

In situations involving horizontal DPC casks, the horizontal lift and transfer option (of the cask only 
without impact limiters) is used to transfer horizontal DPC casks to the cask transfer trailer. Casks 
transferred to the cask transfer trailer are removed from the RF, and thereafter the DPC is transferred 
to a horizontal aging module at the Aging Facility as described in Section 1.2.7. If CRCF 1 were to 
become operational before the RF, CRCF 1 would have the capability of transferring horizontal 
DPC casks to the horizontal cask transfer trailer.

Aging overpacks are prepared to receive canisters transferred from loaded transportation casks. 
Typical preparation includes positioning the aging overpack and unbolting the closure lid.
— —
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The cask transfer trolley returns the unloaded transportation cask to the cask preparation area. After 
determining that the exterior of the transportation cask satisfies the requirements to return it to the 
transportation system, it is reassembled according to operating procedures and returned to its railcar.

Before departing the RF, the exterior surfaces of aging overpacks are surveyed for the presence of 
nonfixed contamination. Excessive nonfixed contamination is removed using hand wipes. Then, 
with the outer vestibule door closed, the inner vestibule door is opened. The site transporter exits the 
facility into the vestibule and the inner door is closed behind it. The outer vestibule door is opened 
and the site transporter exits the RF.

1.2.6.1.2.2 Canister Transfer

Canister transfer operations in the RF occur in the cask unloading room, canister transfer room, and 
the loading room. Canister transfer operations are performed in the canister transfer room using a 
canister transfer machine.

The canister transfer machine is moved to the cask port above the cask unloading room, the shield 
skirt is lowered, and the canister transfer machine slide gate and cask port slide gate are opened. The 
cask lid is then removed. The canister guide sleeve is lowered, the TAD canister or DPC is lifted into 
the canister transfer machine, the canister guide sleeve is raised, the canister transfer machine and 
cask port slide gates are closed, and the shield skirt is raised. The loaded canister transfer machine 
moves to the aging overpack port. Once the shield skirt is lowered, the canister transfer machine and 
aging overpack port slide gates are opened, the canister guide sleeve is lowered, and the canister is 
lowered into the aging overpack, which has been previously positioned below the aging overpack 
port with its lid removed. The canister guide sleeve is raised, the canister transfer machine and aging 
overpack port slide gates are closed, and the shield skirt is raised. The canister transfer machine then 
replaces the lids on the loaded aging overpack and the unloaded transportation cask, or the lid is 
replaced on the unloaded transportation cask in the cask preparation room.

1.2.6.1.3 Safety Category Classification

The overall RF is classified as ITS. The portions of the RF structure that do not contain ITS SSCs 
are classified as non-ITS. The ITS structure provides protection of SSCs from internal and external 
hazards.

The RF is designed such that the failures of portions, parts, subparts, or subsystems of non-ITS SSCs 
cannot adversely interact with an ITS SSC and prevent the safety function from being performed.

1.2.6.1.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls for the structural features of the RF.

1.2.6.1.5 Design Bases and Design Criteria

The nuclear safety design bases for ITS and important-to-waste-isolation (ITWI) SSCs and features 
are derived from the preclosure safety analysis presented in Sections 1.6 through 1.9 and the 
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postclosure performance assessment presented in Sections 2.1 through 2.4. The nuclear safety 
design bases identify the safety functions to be performed and the controlling parameters with 
values or ranges of values that bound the design.

The quantitative assessment of event sequences, including the evaluation of component reliability 
and the effects of operator action, is developed in Section 1.7. SSCs or procedural safety controls 
appearing in an event sequence with a prevention or mitigation safety function are described in the 
applicable design section of the SAR.

Section 1.9 describes the methodology for safety classification of SSCs and features of the 
repository. The tables in Section 1.9 present the safety classification of the SSCs and features. These 
tables also list the preclosure and postclosure nuclear safety design bases for each structure, system, 
or major component.

To demonstrate the relationship between the nuclear safety design bases and the design criteria for 
the repository SSCs and features, the nuclear safety design bases are repeated in the appropriate 
SAR sections for each individual ITS/ITWI SSC or feature that performs a safety function. The 
design criteria are characteristics of the ITS/ITWI SSCs or features that are utilized to implement 
the assigned safety functions.

The nuclear safety design bases and their relationship to design criteria for the RF structure and the 
ITS/ITWI SSCs contained in the RF are provided in Table 1.2.6-3.

1.2.6.1.6 Design Methodologies

The design methodologies for the RF structure are in accordance with codes and standards provided 
in Section 1.2.2.1.

1.2.6.1.7 Consistency of Materials with Design Methodologies

Materials of construction used in the design of the RF structure are in accordance with codes and 
standards provided in Section 1.2.2.1.

1.2.6.1.8 Design Codes and Standards

The principal codes and standards applicable to the RF structure are provided in Table 1.2.2-12.

1.2.6.1.9 Design Load Combinations

The design load combinations for the RF structure are in accordance with codes and standards 
provided in Section 1.2.2.1. These design load combinations are applicable to steel and reinforced 
concrete structures.
— —
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1.2.6.2 Mechanical Handling System
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2, AC 6; Section 2.1.1.6.3: 
AC 1(2)(h), AC 2(2); Section 2.1.1.7.3.1: AC 1(1), (2), (3), (5), (6), (9); Section 
2.1.1.7.3.2: AC 1(1), (2); Section 2.1.1.7.3.3(I): AC 1(1), AC 2(1), (2), (3), AC 4(1)]

The mechanical handling system is divided into two subsystems: cask handling and canister 
transfer. ITS SSCs in the mechanical handling system are designed as described in Section 1.2.2.2.

ITS SSCs in the RF mechanical handling system, which are also used in other handling facilities, 
are described in Section 1.2.4.2. Non-ITS SSCs in the RF mechanical handling system that are also 
used in other handling facilities are described in summary in Table 1.2.4-1. Table 1.2.6-1 lists the 
non-ITS mechanical handling SSCs in the RF that are also used in other handling facilities. The 
non-ITS SSCs in the mechanical handling system that are specific to the RF are described in 
summary in Table 1.2.6-2. Table 1.2.6-3 provides the RF design bases and their relationship to 
design criteria. The rated capacity of the ITS mechanical handling equipment is provided in 
Tables 1.2.2-10 and 1.2.2-11. The summary-level description for the Type 1-5 equipment and 
personnel shield doors is provided in Table 1.2.4-3.

Logic diagrams for ITS SSCs are shown where the description of the ITS equipment is provided. 
Typical non-ITS logic diagrams, which show the interface with digital control and management 
information system (DCMIS) and programmable logic controller elements within the selected ITS 
logic diagrams, are shown in Figures 1.2.4-15 to 1.2.4-18.

1.2.6.2.1 Cask Handling Subsystem

1.2.6.2.1.1 Subsystem Description

The cask handling subsystem prepares transportation casks and aging overpacks for waste transfer 
operations. The system also prepares unloaded transportation casks for leaving the facility. The cask 
handling subsystem SSCs associated with waste handling operations are classified as ITS.

1.2.6.2.1.1.1 Subsystem Functions

The functions of the cask handling subsystem are to:

• Receive transportation casks containing commercial SNF in TAD canisters or DPCs.

• Prepare loaded transportation casks for canister transfer operations.

• Prepare empty aging overpacks for canister transfer operations.

• Transfer transportation casks containing horizontally handled DPCs to cask transfer 
trailers so they can be moved to the horizontal aging module at the aging pad.

• Prepare unloaded transportation cask to leave the facility.
— —
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1.2.6.2.1.1.2 Subsystem Location and Functional Arrangement

The cask handling subsystem is located in the transportation cask vestibule (Rooms 1021 and 
1021A), cask preparation room (Room 1017), site transporter vestibule (Room 1001), lid bolting 
room (Room 1002), and loading room (Room 1013). These areas are shown in Figure 1.2.6-2.

1.2.6.2.1.1.3 Subsystem and Components

ITS SSCs in the RF cask handling subsystem, which are also used in other handling facilities, are 
listed below and described in Section 1.2.4.2, including figures and logic diagrams:

Cask Handling Crane—The cask handling crane’s function is removing transportation casks 
from railcars and placing them into the cask transfer trolley or onto a cask transfer trailer. The cask 
handling crane is located in the cask preparation room. Due to the configuration of the crane in the 
facility, it is not possible for the cask handling crane to lift the bottom of a cask more than 30 ft
above the floor. Figure 1.2.6-15 shows detail of this equipment. Figures 1.2.4-36 and 1.2.4-37
provide the logic diagrams for the cask handling crane.

Cask Transfer Trolley—The cask transfer trolley is used for moving a loaded transportation cask 
between the cask preparation room and the cask unloading room. See Figures 1.2.4-26 and 1.2.4-27.

Loading Room Equipment Shield Door (Type 2)—The loading room equipment shield door is 
described in Section 1.2.3.2.4. For details of equipment, refer to Figure 1.2.3-36. The logic 
diagram for the IHF and RF equipment shield door (double) is shown in Figure 1.2.3-38.

Cask Handling Yoke—The RF uses a cask handling yoke to upend a transportation cask and 
remove it from the conveyance. The cask handling crane uses the cask handling yoke to transfer 
transportation casks from the railcar to the cask transfer trolley. See Figures 1.2.4-28 to 1.2.4-30
for details.

Cask Lid-Lifting Grapple—The cask lid-lifting grapple is used in the cask preparation room 
with the cask handling crane auxiliary hook for installing the lid adapter onto the transportation 
cask or DPC. See Figures 1.2.4-31 to 1.2.4-32 for details.

DPC Lid Adapter—The function of the DPC lid adapter is to lift DPCs of various sizes. The 
adapter has multiple mounting positions that accommodate the various DPCs. The DPC lid 
adapter is designed to engage with the canister transfer machine canister grapple. See 
Figure 1.2.4-38 for details.

Rail Cask Lid Adapter—This equipment is described in Section 1.2.4.2 and Figure 1.2.4-40.

Horizontal Lifting Beam—This equipment is used to lift and transfer horizontal casks. The 
lifting beam has a capacity of 150 tons. This equipment is described in Section 1.2.4.2. For details 
of this equipment, refer to Figure 1.2.4-39.

ITS SSCs that are unique to the RF cask handling subsystem are described below.
— —
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Cask Unloading Room Equipment Shield Door (Type 5)—The cask unloading room 
equipment shield door is located between the cask preparation room and the cask unloading room 
to protect personnel from radiation. The cask unloading room equipment shield door is a slide 
open type door, made up of two side-by-side steel panels. Each panel is operated by an electric 
motor turning a screw, which interacts with a panel-mounted bracket. The door overlaps the 
aperture on the top, bottom, and both sides to prevent streaming. A staggered door edge provides 
shielding between the door panels. The weight of the door is supported by rollers under the bottom 
of the door, which run in a floor-recessed channel. The channel is covered with hinged plates to 
provide a level floor for the cask transfer trolley air pallets to pass over. The plates are lifted by 
slide ramps as the door closes.

The equipment shield door is controlled from the facility operations room. A local emergency open 
button is provided. The equipment shield door is interlocked with the cask port slide gate such that 
the doors cannot be opened unless the slide gate is in the closed position. The equipment shield door 
is also interlocked with the equipment confinement door. The door is also provided with an 
obstruction sensor that halts door travel and opens the door when an obstacle is detected in the 
pathway of the door. For details of this equipment, see Figures 1.2.6-16 and 1.2.4-20. The logic 
diagram for the cask unloading room equipment shield door (Types 2, 3, and 5) is shown in 
Figure 1.2.3-38.

Cask Preparation Platform—The cask preparation platform is located in the cask preparation 
room (Room 1017). The main function is to provide personnel and tool access to the top of a 
transportation cask while the cask is restrained in the cask transfer trolley. The cask preparation 
platform consists of a fixed platform above the transportation cask with an opening to 
accommodate access to the cask or DPC within. Mounted over the opening is the platform shield 
plate. This plate is retracted to gain access to the top of the cask or DPC and closed for bolting 
operations. For details of the equipment, see Figure 1.2.6-17.

Lid Bolting Room Platform—The lid bolting room platform is an elevated steel platform located 
in the lid bolting room that provides personnel and tool access to the top of the aging overpacks in 
the site transporter for lid bolting and unbolting operations. The platform consists of two sections 
that are anchored to the floor and separated from each other to allow the site transporter with an 
aging overpack to be located in the center. Each platform section has a hinged platform that rotates 
from the vertical orientation to the horizontal orientation such that the platform surrounds the 
upper portion of the aging overpack. For details of this equipment, refer to Figure 1.2.6-18.

Lid Bolting Room Crane—The lid bolting room crane is an overhead crane with a 10-ton lifting 
capacity located in the lid bolting room. The lid bolting room crane is used for lifting activities 
relevant to the bolting and unbolting of aging overpack lids. For details of this equipment, refer to 
Figures 1.2.6-19 and 1.2.6-20.

1.2.6.2.1.2 Operational Processes

The handling of transportation casks in the CRCF and the RF is the same and is described in 
Section 1.2.4.2. The handling of aging overpacks is different in the RF and is described below.
— —
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Aging Overpacks—Unloaded aging overpacks are received in the lid bolting room on the site 
transporter. The lid bolts are removed from the aging overpack lid. The loading room equipment 
shield door is opened, the aging overpack is moved inside using the site transporter. The aging 
overpack is positioned with the site transporter for lid removal and to receive a canister. The site 
transporter is then deactivated. The electrical supply is disconnected, and the cable is retracted so 
that the loading room equipment shield door can be closed. The loading room equipment shield 
door is closed. The TAD canister or DPC is loaded into the empty aging overpack using the 
canister transfer subsystem.

Upon completion of the canister transfer and lid restoration, the loading room equipment shield door 
is opened, the aging overpack is returned to the lid bolting room using the site transporter, and the 
loading room equipment shield door is closed. The aging overpack lid bolts are installed using 
common tools and the lid bolting room platform. Once the lid bolts are reinstalled in the lid, the 
aging overpack is moved into the site transporter vestibule, the lid bolting room door is closed, the 
exterior door is opened, and the site transporter carries the aging overpack out of the RF.

1.2.6.2.1.3 Safety Category Classification

The cask handling crane, lid bolting room crane, cask transfer trolley, cask handling yoke, 
horizontal lifting beam, loading room equipment shield door, cask unloading room equipment 
shield door, DPC lid adapter, rail cask lid adapter, cask lid-lifting grapple, cask preparation 
platform, and lid bolting room platform in the cask preparation subsystem are categorized as ITS.

1.2.6.2.1.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

The preclosure safety analysis identifies three procedural safety controls related to the operation of 
components in the cask handling subsystem of the RF. Table 1.9-10 identifies the unique numbering 
of the preclosure procedural safety controls, as well as the associated facility/operations area, SSCs, 
and bases.

PSC-1—To limit the spurious movement of the cask transfer trolley potentially resulting in 
canister impacts, the cask preparation and canister transfer operating procedures will include a 
warning that deflation of the RF cask transfer trolley is an important procedural step in the 
preclosure safety analysis. The cask preparation and canister transfer operating procedures will 
require that the cask transfer trolley be on the floor of the RF with the air pallet feature deactivated 
during loading of the cask onto the trolley, cask preparation activities while the cask is on the 
trolley, and during canister unloading activities. This requirement will be independently verified.

PSC-11—To ensure seismic stability of the transportation cask during cask preparation, the cask 
preparation operating procedure will include a warning that connection to the RF cask handling 
crane is an important procedural step in the preclosure safety analysis. The cask preparation 
operating procedure will require that a loaded transportation cask remain attached to the RF cask 
handling crane hoist and associated yoke until the cask is placed into the cask transfer trolley and 
the trolley’s seismic restraints are properly engaged. The engagement of the seismic restraints will 
be independently verified prior to slacking the load on the RF cask handling crane.
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1.2.6-11



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001
PSC-12—To prevent the operator from attempting to remove the cask lid with the lid bolts still in 
place, the cask preparation operating procedure will include a warning that the removal of loaded 
transportation cask lid bolts is a procedural step important to the preclosure safety analysis. The 
cask preparation operating procedure will include a prerequisite to confirm lid bolt removal prior 
to movement of the cask from the RF cask preparation room (Room 1017) to the cask unloading 
room (Room 1015). The removal of the bolts will be independently verified.

1.2.6.2.1.5 Design Bases and Design Criteria

The nuclear safety design bases and design criteria for the cask handling subsystem in the RF are 
addressed in Table 1.2.6-3.

1.2.6.2.1.6 Design Methodologies

The design methodologies for the ITS SSCs in the cask handling subsystem that are similar to those 
in other handling facilities, including the cask handling crane, lid bolting room crane, cask transfer 
trolley, cask handling yoke, horizontal lifting beam, DPC lid adapter, rail cask lid adapter, cask 
lid-lifting grapple, and cask preparation platform, are in accordance with codes and standards 
provided in Section 1.2.2.2. The design methodologies used in the design of the equipment shield 
doors, and the lid bolting room platform are in accordance with Section Q1.2 of ANSI/AISC 
N690-1994.

1.2.6.2.1.7 Consistency of Materials with Design Methodologies

Materials of construction used in the design of ITS SSCs in the cask handling subsystem that are 
similar to those in other handling facilities, including the cask handling crane, lid bolting room 
crane, cask transfer trolley, cask handling yoke, horizontal lifting beam, DPC lid adapter, rail cask 
lid adapter, cask lid-lifting grapple, and cask preparation platform are in accordance with the codes 
and standards provided in Section 1.2.2.2. Materials of construction used in the design of the 
equipment shield doors, and lid bolting room platform are in accordance with Section Q1.4 of 
ANSI/AISC N690-1994.

1.2.6.2.1.8 Design Codes and Standards

The principal codes and standards applicable to the cask handling subsystem are identified in 
Table 1.2.2-12.

1.2.6.2.1.9 Design Load Combinations

The load combinations used in the analysis of ITS SSCs for the cask handling subsystem that are 
similar to those in other handling facilities, including the cask handling crane, lid bolting room 
crane, cask transfer trolley, cask handling yoke, horizontal lifting beam, DPC lid adapter, rail cask 
lid adapter, cask lid-lifting grapple, and cask preparation platform are in accordance with codes and 
standards provided in Section 1.2.2.2. The design load combinations analyzed include normal 
conditions and event sequences and the effects of natural phenomena. The load combinations used 
in the design of the equipment shield doors, and lid bolting room platform are in accordance with 
Table Q1.5.7.1 of ANSI/AISC N690-1994.
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1.2.6.2.2 Canister Transfer Subsystem

1.2.6.2.2.1 Subsystem Description

The canister transfer subsystem consists of SSCs that transfer the TAD canisters and DPCs from 
transportation casks into aging overpacks.

1.2.6.2.2.1.1 Subsystem Functions

The canister transfer subsystem transfers loaded TAD canisters and DPCs from transportation casks 
to aging overpacks for movement to the WHF, to a CRCF, or to an aging pad.

1.2.6.2.2.1.2 Subsystem Location and Functional Arrangement

The canister transfer subsystem is located in the canister transfer room, cask unloading room, 
loading room, lid bolting room, and site transporter vestibule. These rooms are shown in 
Figures 1.2.6-2 and 1.2.6-3.

1.2.6.2.2.1.3 Subsystem and Components

Canister Transfer Subsystem—ITS SSCs in the RF canister transfer subsystem that are similar 
to those used in other handling facilities are listed below and described in detail in Section 1.2.4.2, 
including figures and logic diagrams.

Canister Transfer Machine—The canister transfer machine is used to transfer a TAD canister or 
a DPC from a transportation cask to an aging overpack. Due to the configuration of the canister 
transfer machine in the facility, it is not possible for the canister transfer machine to lift the bottom 
of a canister more than 45 ft above the floor of the transportation cask and aging overpack. This 
equipment is described in Section 1.2.4.2 and shown in Figures 1.2.4-51 to 1.2.4-59.

Canister Transfer Machine Maintenance Crane—The canister transfer machine maintenance 
crane is an overhead crane rated at a 15-ton capacity and located in the canister transfer room. The 
canister transfer machine maintenance crane is mounted above the canister transfer machine. The 
crane supports canister transfer machine maintenance when required. The crane is also used to lift 
miscellaneous fixtures and items in support of canister transfer activities. For details of this 
equipment, refer to Figure 1.2.6-21.

Port Slide Gates—The cask port slide gate and aging overpack port slide gate are located in the 
floor of the canister transfer room between the canister transfer room and the cask unloading room 
and loading room. See Figures 1.2.4-57 to 1.2.4-59 for details. The design of the port slide gates is 
the same as the design used for the CRCF.

Canister Transfer Machine Canister Grapples—The grapples are used to lift lids from TAD 
transportation casks and aging overpacks and to lift TAD canisters and DPCs during canister 
transfer operations. See Figures 1.2.4-47 to 1.2.4-49 for details.
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1.2.6.2.2.2 Operational Processes

The canister transfer subsystem transfers TAD canisters and DPCs from transportation casks to 
aging overpacks.

After an aging overpack has been received in the loading room and a loaded transportation cask has 
been received in the cask unloading room, the aging overpack lid and cask lids are removed by the 
canister transfer machine and placed in the lid station. If the transportation cask contains a DPC, the 
cask lid has previously been removed by the cask handling subsystem in the cask preparation room.

The canister transfer machine moves to the cask port, the shield skirt is lowered, and the canister 
transfer machine slide gate and cask port slide gate are opened. The canister guide sleeve is lowered, 
the canister is raised into the canister transfer machine, the canister guide sleeve is raised, the 
canister transfer machine slide gate is closed, the cask port slide gate is closed, and the canister 
transfer machine shield skirt is raised. The canister transfer machine is moved to the aging overpack 
port, the shield skirt is lowered, and the canister transfer machine and aging overpack port slide 
gates are opened. The canister guide sleeve is lowered, the canister is placed in the aging overpack, 
the canister guide sleeve is raised, the slide gates are closed, and the shield skirt is raised. The 
canister transfer machine replaces the aging overpack lid, and the loaded aging overpack is moved 
out of the loading room.

A contamination survey of the canister is taken during the canister transfer operations to determine 
surface contamination levels. If not acceptable, the canister is sent to the WHF for decontamination 
activities.

For transportation casks that contained TAD canisters, the canister transfer machine retrieves the 
cask lid from the cask lid station and places it on the unloaded transportation cask before the cask 
is removed from the cask unloading room.

1.2.6.2.2.3 Safety Category Classification

The canister transfer machine, canister transfer machine maintenance crane, canister transfer 
machine grapples, cask port slide gate, and the aging overpack port slide gate in the canister transfer 
subsystem are categorized as ITS.

1.2.6.2.2.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

The preclosure safety analysis identifies two procedural safety controls related to the operation of 
components in the canister transfer subsystem of the RF. Table 1.9-10 identifies the unique 
numbering of the preclosure procedural safety controls, as well as the associated facility/operations 
area, SSCs, and bases.

PSC-13—To limit the probability of personnel receiving direct radiation exposure during 
operations with the canister transfer machine, the canister transfer operating procedure will 
include a warning that workers entering the RF canister transfer room (Room 2007) could receive 
an inadvertent exposure if the canister transfer machine is away from a port with a waste form 
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present and the slide gate open. The procedures will require an independent verification that the 
port slide gates are closed at the completion of a canister transfer operation.

PSC-14—To limit the probability that a loaded canister is not in a vertical orientation during 
transfer, the canister transfer operating procedure will include a warning that the lowering of the 
RF canister transfer machine guide sleeve prior to lifting or lowering a DPC or TAD canister is a 
procedural step important to the preclosure safety analysis. The canister transfer operating 
procedure will include a prerequisite to confirm guide sleeve lowering prior to lifting or lowering 
a DPC or TAD canister. The lowering of the guide sleeve will be independently verified.

1.2.6.2.2.5 Design Bases and Design Criteria

The nuclear safety design bases and design criteria for the canister transfer subsystem in the RF are 
addressed in Table 1.2.6-3.

1.2.6.2.2.6 Design Methodologies

The design methodologies for ITS SSCs in the canister transfer subsystem that are similar to those 
in other handling facilities, including the canister transfer machine, canister transfer machine 
maintenance crane, and canister transfer machine grapples, are in accordance with codes and 
standards provided in Section 1.2.2.2. The methodologies used in the design of the cask port slide 
gate and the aging overpack port slide gate are in accordance with Section Q1.2 of ANSI/AISC 
N690-1994.

1.2.6.2.2.7 Consistency of Materials with Design Methodologies

Materials of construction used in the design of ITS SSCs in the canister transfer subsystem that are 
similar to those in other handling facilities, including the canister transfer machine, canister transfer 
machine maintenance crane, and canister transfer machine grapples, are in accordance with codes 
and standards provided in Section 1.2.2.2. Materials of construction used in the design of the cask 
port slide gate and the aging overpack port slide gate in the canister transfer subsystem are in 
accordance with Section Q1.4 of ANSI/AISC N690-1994.

1.2.6.2.2.8 Design Codes and Standards

The principal codes and standards applicable to the canister transfer subsystem are identified in 
Table 1.2.2-12.

1.2.6.2.2.9 Design Load Combinations

The load combinations used in the analysis of ITS SSCs for the canister transfer subsystem that are 
similar to those in other handling facilities, including the canister transfer machine, canister transfer 
machine maintenance crane, and canister transfer machine grapples, are in accordance with codes 
and standards provided in Section 1.2.2.2. The design load combinations analyzed include normal 
operations and event sequences and the effects of natural phenomena. The load combinations and 
applicable stress limit coefficients used in the design of cask port slide gate and aging overpack port 
slide gate are in accordance with Table Q1.5.7.1 of ANSI/AISC N690-1994.
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1.2.6.3 Process Systems
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2, AC 6]

1.2.6.3.1 Cask Cavity Gas Sampling Subsystem

The cask cavity gas sampling system samples the gas inside a loaded transportation cask before it 
is opened to obtain an indication of the condition of the waste inside. The presence of gaseous 
fission products or gases other than helium is indicative of off-normal conditions inside the cask. 
The cask cavity gas sampling system also vents the cask to the HVAC system to equalize pressure 
with the room prior to opening the cask. 

The design and operation of the cask cavity gas sampling subsystem in the RF is functionally the 
same as that in the CRCF. Therefore, the system description, operational processes, and codes and 
standards provided in Section 1.2.4.3.1 also apply to the RF. The RF cavity gas sampling system is 
located in the gas sampling room (Room 1223). The RF cask gas sampling piping and 
instrumentation diagram is shown in Figure 1.2.6-22.

The cask cavity gas sampling subsystem is classified as non-ITS.

1.2.6.3.2 Water Collection Subsystem

The water collection subsystem provides floor drains to collect small amounts of water that are 
discharged or leak from process SSCs and to collect fire suppression water. The potentially 
contaminated effluents are collected in the tanks and removed by tanker truck from the RF. The 
system is classified as non-ITS.

The design and operation of the water collection subsystem in the RF is functionally similar to that 
in the CRCF. Therefore, the system description, operational processes, and codes and standards 
provided in Section 1.2.4.3.2 also apply to the RF.

Figure 1.2.6-23 shows the RF liquid low-level radioactive waste sampling and sump piping and 
instrumentation diagram.

1.2.6.4 Receipt Facility HVAC System
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2(1), (2), (3), AC 6; 
Section 2.1.1.6.3: AC 1(2)(a), (2)(d), (2)(j)]

The RF HVAC system is designed to limit the release of radioactive airborne contaminants for the 
protection of the workers and public, and maintain the indoor environmental conditions required for 
operations and for the health and safety of the facility workers.

The ventilation confinement zoning in the RF is based upon normal operations. The RF is expected 
to remain clean during normal operations, and airborne contamination is not expected. The 
confinement zoning for the RF is tertiary as defined in Table 1.2.2-13.
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The remaining portions of the facility where there is no potential for contamination are classified as 
a nonconfinement zone. Figures 1.2.6-24 through 1.2.6-26 illustrate the confinement zoning for the 
RF.

The preclosure safety analysis for the RF has not identified category 1 or 2 event sequences that 
could result in the release of radionuclides. There is no requirement to remove heat from any rooms 
in the RF during an event sequence. Consequently, the RF HVAC system is non-ITS.

During normal operations, the HVAC system operates to dissipate the heat gain from various 
sources to maintain the required room temperature for proper operation of equipment and personnel 
comfort. Air handling units and fan coil units are utilized to supply conditioned air to various areas 
and the supply air is then returned and/or exhausted. The air handling units and fan coil units are 
sized to dissipate the heat generated from lights, solar loads, and operating mechanical and electrical 
equipment, as well as the decay heat generated from TAD canisters or DPCs that are present in the 
area served by the HVAC system.

The RF is designed such that waste form temperature limits are not exceeded during normal 
operation or under off-normal conditions. The thermal performance of commercial SNF in the areas 
of the RF where canisters are transferred from transportation casks to aging overpacks was 
evaluated. This evaluation bounds other locations in the facility. The heat load considered in this 
evaluation is 22 kW for commercial SNF canisters.

The evaluation shows that cladding temperature for commercial SNF does not exceed the limit of 
400°C during normal operation, and does not exceed the limit of 570°C under off-normal 
conditions, when there is assumed to be no ventilation system air flow for 30 days. 

1.2.6.4.1 System Description

The RF HVAC system includes the following subsystems:

• HVAC supply and exhaust subsystems serving tertiary confinement (waste handling) 
areas (Rooms 1013, 1015, 1017, and 1017A)

• HVAC subsystems serving the electrical equipment and battery rooms

• HVAC supply and exhaust subsystems serving tertiary confinement (non-waste handling) 
areas

• HVAC subsystems serving nonconfinement areas.

Each subsystem is provided with the necessary distribution ductwork and accessories, electrical 
power, and instrumentation and controls to operate, control, monitor, alarm, provide status, and 
verify that the required function is met.

HVAC Supply and Exhaust Subsystems Serving the Tertiary Confinement (Waste Handling) 
Areas—A separate supply and exhaust subsystem is provided for areas where a loaded canister is 
handled. Air is exhausted from these areas through two stages of high-efficiency particulate air 
— —
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(HEPA) filters. The exhaust subsystem flow rate is greater than the supply air flow rate ensuring that 
the air flow is into the confinement areas.

Each exhaust HEPA filter train consists of three HEPA filter plenums with a bag-in/bag-out feature, 
demisters, prefilters, two stages of HEPA filters, and an exhaust fan with adjustable speed drive. The 
exhaust subsystem includes two sets of components, including ductwork. The exhaust subsystem is 
provided with instrumentation and controls to automatically start the standby fan should the running 
fan fail. Physical separation is provided so that damage to one train of exhaust equipment does not 
cause damage to the other train.

The RF exhaust system effluent is monitored for radioactivity downstream of the exhaust fans. 
Upon detection of high exhaust air radiation, a high radiation alarm is annunciated locally, in the 
facility operations room, and at the Central Control Center.

The tertiary confinement areas for waste handling are cooled by direct supply from air handling 
units, including cascaded air from cooler adjacent spaces to maintain the temperature required for 
the equipment and for the personnel present during the process operation. The supply units consist 
of once-through air handling units, each provided with prefilters and primary filters, heating and 
cooling coils, and a supply fan.

Figure 1.2.6-27 shows the composite ventilation flow diagram, and Figures 1.2.6-28 and 1.2.6-29
show the ventilation and instrumentation diagrams, for the exhaust subsystem serving tertiary 
confinement waste handling areas. Figures 1.2.6-30 and 1.2.6-31 show the ventilation and 
instrumentation diagrams, for the HVAC supply subsystems serving tertiary confinement waste 
handling areas.

HVAC Subsystems Serving the Electrical Equipment and Battery Rooms—Each group of 
electrical rooms and battery rooms (Train A and Train B) are served by two sets of HVAC supply 
and exhaust equipment. The supply air is conditioned using a split-type, direct expansion 
recirculating fan coil unit with a HEPA filter. This localized cooling ensures that electrical power is 
not lost due to overheating in these areas. A remote condensing unit is provided for each fan coil 
unit. Air is continuously exhausted from each battery room to preclude accumulation of hydrogen 
generated by the batteries during charging. Hydrogen concentrations are maintained well below the 
lower explosive limit. A single stage HEPA filter is provided in each exhaust path.

Figure 1.2.6-32 shows the composite ventilation flow diagram, and Figures 1.2.6-33 to 1.2.6-36
show the ventilation and instrumentation diagrams, for the HVAC subsystems serving the electrical 
equipment and battery rooms.

HVAC Supply and Exhaust Subsystems Serving the Tertiary Confinement (Non-Waste 
Handling) Areas—The confinement areas where waste is not handled are served by recirculating 
supply air units and exhaust HEPA filter assemblies. There are two supply subsystems, one serving 
the north confinement areas and corridors (two operating units, one standby unit) and another 
serving the south confinement areas (one operating unit, one standby unit). 

A portion of the air supplied to these confinement areas is exhausted by the exhaust subsystem or 
cascaded to the waste handling confinement areas in order to maintain the appropriate negative 
— —
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pressure in the confinement areas, and the remaining air is returned to the air handling unit. The 
exhaust air for the confinement areas is passed through a single stage of HEPA filters prior to 
discharging to the atmosphere at a release point. The exhaust subsystem effluent is continuously 
monitored for radioactivity downstream of the exhaust fans. Upon detection of high exhaust air 
radiation, a high radiation alarm is annunciated at the Central Control Center and facility operations 
room. An alarm is also generated upon detection of radiation monitor failure.

The normal power battery room is also continuously exhausted with sufficient volume changes per 
hour to preclude accumulation of hydrogen generated by the batteries during charging. Hydrogen 
concentrations are maintained well below the lower explosive limit. Air that is cascaded or supplied 
into the battery room is exhausted through the Train B battery room HEPA exhaust subsystem.

Figure 1.2.6-37 shows the composite ventilation flow diagram, and Figures 1.2.6-38 to 1.2.6-42
show the ventilation and instrumentation diagrams, for the HVAC supply and exhaust subsystems 
serving tertiary confinement (non-waste handling) areas.

HVAC Subsystem Serving the Nonconfinement Areas—The nonconfinement HVAC subsystem 
provides conditioned air for cooling, heating, and ventilation to meet the air quality standards 
required for the safety, health, and comfort of the personnel and maintains the environmental 
conditions suitable for the proper performance of SSCs in the noncontaminated areas of the RF.

The nonconfinement HVAC subsystem is provided for areas such as offices, vestibules, and facility 
operations rooms that have no potential for contamination. It is a recirculating HVAC system with 
no HEPA filter. The air handling units are provided with economizers, and the supply air is either 
returned or exhausted depending on the temperature of the outside air relative to the inside room 
temperature.

In addition, dedicated recirculating fan coil units are provided for the vestibules. The vestibules are 
classified as nonconfinement areas. Each supply unit consists of a recirculating air handling unit, 
which is provided with prefilters and high-efficiency primary filters, heating and cooling coils, and 
a supply fan.

Figure 1.2.6-43 shows the composite ventilation flow diagram for the HVAC subsystem serving 
nonconfinement areas.

1.2.6.4.1.1 System Functions

The functions of the RF HVAC system are to:

• Maintain airflow from areas of lesser contamination potential to areas of greater 
contamination potential

• Maintain space temperatures within acceptable limits

• Remove potentially contaminated airborne particulate from the exhaust

• Provide a release point to the atmosphere via monitored discharge.
— —
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1.2.6.4.1.2 System Location and Functional Arrangement

The location and arrangement of the HVAC supply and exhaust equipment are shown on the RF 
floor plan general arrangement (Figures 1.2.6-2 and 1.2.6-3).

Table 1.2.2-14 provides the typical HVAC system monitoring, status, and alarm functions.

Table 1.2.6-4 provides the HVAC exhaust components and system design data.

Table 1.2.6-5 provides the indoor design temperatures.

Table 1.2.6-6 provides the HVAC supply components and system design data.

The exhaust system components are located in separate rooms on the first level of the facility. The 
fan coil units serving the electrical rooms are located inside the rooms they serve while the 
condensing units are located in a missile protected area outdoors. The battery room exhausts are 
located in separate rooms on the first level. The air handling units serving the non-waste handling 
confinement areas are located in HVAC equipment rooms on the second level. The nonconfinement 
air handling units are located on the second floor, directly above the nonconfinement areas.

1.2.6.4.1.3 Systems and Components

The major components in the RF confinement and nonconfinement HVAC systems are also used in 
the CRCF confinement and nonconfinement HVAC systems, which are described in 
Section 1.2.4.4.1.3.

Additionally, the RF contains once-through air handling units serving the tertiary confinement 
waste handling areas. Each air handling unit consists of prefilters, primary filters, a supply fan, 
heating coils, and cooling coils. The fans for the air handling units are heavy-duty plenum-type, 
centrifugal fans with nonoverloading airfoil or backward-inclined blades. The air handling unit fans 
are equipped with adjustable speed drives to provide adjustment in the airflow to compensate for 
filter loading.

1.2.6.4.2 Operational Processes

The operational processes for the RF HVAC system are similar to the processes in the CRCF with 
respect to the non-ITS functions. These operational processes are described in Section 1.2.4.4.2.

1.2.6.4.3 Design Codes and Standards

SSCs in the RF confinement and nonconfinement HVAC systems are designed using the methods 
and practices in the codes and standards identified in Section 1.2.4.4.8.
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1.2.6.5 General References
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ANSI/AISC N690-1994. American National Standard Specification for the Design, Fabrication, 
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Table 1.2.6-1. List of Non-ITS Mechanical Handling Structures, Systems, and Components in the Receipt 
Facility That are Also Used in Other Handling Facilities 

List of Non-ITS Mechanical Handling 
SSCs in the RF That are Also Used in 

Other Handling Facilities Location of Information

Cask Lid Stand This equipment is used in the RF and described in Table 1.2.4-1.

Nuclear Facilities Grapple Stand This equipment is used in the RF and described in Table 1.2.4-1.

Mobile Access Platform This equipment is used in the RF and described in Table 1.2.4-1.

Impact Limiter Lifting Device This equipment is used in the RF and described in Table 1.2.4-1.

Cask Handling Yoke Stand This equipment is used in the RF and described in Table 1.2.4-1.

Impact Limiter Stand This equipment is used in the RF and described in Table 1.2.4-1.

Horizontal Lifting Beam Stand This equipment is used in the RF and described in Table 1.2.4-1.

Cask Tilting Frame This equipment is used in the RF and described in Table 1.2.4-1.

Horizontal Cask Stand This equipment is used in the RF and described in Table 1.2.4-1.

Mobile LIft This equipment is used in the RF and described in Table 1.2.4-1.

Platform Shield Plate This equipment is used in the RF and described in Table 1.2.4-1.

Personnel Confinement Door This equipment is used in the RF and described in Table 1.2.4-1.
— —
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Table 1.2.6-2. RF-Specific Non-ITS Structures, Systems, and Components in the Mechanical Handling 
System

RF Specific Non-ITS 
SSCs in the Mechanical 

Handling System Summary Description

DPC Lid Adaptor Stand This equipment is used in the cask preparation room to store the DPC lid adaptor when 
it is not in use. This equipment is designed using the methods and practices provided in 
Manual of Steel Construction, Allowable Stress Design (AISC 1997). For details of the 
equipment, see Figure 1.2.4-126.

Equipment Confinement 
Door

The cask preparation annex equipment confinement door provides equipment and 
personnel access to the cask preparation room from the transportation cask vestibule 
annex. The cask preparation annex equipment confinement door is a slide-open-type 
door, made up of two panels on separate rails. Each panel is operated independently by 
an electric motor turning a screw, which interacts with a panel-mounted bracket. The 
panels open independently, allowing either a rail car or a truck to pass through. The 
door overlaps the aperture on the top, bottom, and both sides to provide confinement. 
Sealing features are provided to limit air leakage. This equipment is designed using the 
methods and practices provided in Manual of Steel Construction, Allowable Stress 
Design (AISC 1997). For details of this equipment see Figures 1.2.6-44 and 1.2.4-23. 
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ia for the Receipt Facility 

Design Criteria

 device/adapter is required to be designed in 
he requirements of ANSI N14.6-1993, as modified 
 (NRC 1980), Section 5.1.1(4).

ices are required to have an interlock to prevent 
ice actuation if the special lifting device is not 
d to the hoisting system and an interlock to 
ion if the special lifting device is not either fully 
isengaged.

ices/adapters are required to be designed for 
rations associated with a DBGM-2 seismic event.

ired to be designed in accordance with the 
SME NOG-1-2004 for Type I cranes.

ired to be designed in accordance with the 
SME NOG-1-2004 for Type I cranes.

junction with the special lifting device, is required 
ch that the bottom of any cask cannot be more 
he floor with the crane hoisting system in a 
n.
Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criter

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety 
Function

Controlling Parameters and 
Values

Mechanical 
Handling System 
(H)

Cask Handling Cask Handling Yoke  
(200-HM00- 
BEAM-00001)

Protect against 
drop 

H.RF.HM.01. The cask handling 
yoke is an integral part of the 
load-bearing path. See cask 
handling crane requirements.

The special lifting
accordance with t
by NUREG-0612

Special lifting dev
special lifting dev
properly connecte
prevent hoist mot
engaged or fully d

Special lifting dev
loads and accele

Cask Handling 
Crane; 200-ton 
(200-HM00-CRN- 
00001) 

Protect against 
drop 

H.RF.HM.02. The mean probability 
of dropping a loaded cask from less 
than the two-block height resulting 
from the failure of a piece of 
equipment within the load-bearing 
path shall be less than or equal to 
3 × 10−5 per transfer with the cask 
yoke or 1 × 10−4 transfer with a 
sling.

The crane is requ
requirements of A

H.RF.HM.03. The mean probability 
of dropping a loaded cask from a 
two-block height resulting from the 
failure of a piece of equipment 
within the load-bearing path shall 
be less than or equal to 4 × 10−7per 
transfer. 

The crane is requ
requirements of A

Limit drop 
height

H.RF.HM.04. The two-block drop 
height shall not exceed 30 ft from 
bottom of shortest cask to the floor.

The crane, in con
to be designed su
than 30 ft above t
two-block conditio
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ired to be designed in accordance with the 
SME NOG-1-2004 for Type I cranes.

idge are required to be designed to preclude 
an 20 ft/min. 

ired to be designed in accordance with the 
SME NOG-1-2004 for Type I cranes, for loads 
 associated with a DBGM-2 seismic event. 
ral capacity is provided as required to 
pliance.

ired to be designed in accordance with the 
SME NOG-1-2004 for Type I cranes, for loads 
 associated with a DBGM-2 seismic event.

 trolley is required to be designed to preclude 
an 2.5 mph. 

 trolley is required to be designed such that its 
 supply must be disconnected for the cask 
quipment shield door to be closed.

he Receipt Facility (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling 
(Continued)

Cask Handling 
Crane; 200-ton 
(200-HM00-CRN- 
00001) (Continued)

Protect against 
drop of a load 
onto a cask

H.RF.HM.05. The mean probability 
of dropping a load onto a loaded 
cask or its contents shall be less 
than or equal to 9 × 10−5 per cask 
handled.

The crane is requ
requirements of A

Limit speed H.RF.HM.06. The speed of the 
trolley and bridge shall be limited to 
20 ft/min.

The trolley and br
speeds greater th

Protect against 
crane collapse 
onto a waste 
container

H.RF.HM.07. The mean frequency 
of collapse of the cask handling 
crane due to the spectrum of 
seismic events shall be less than or 
equal to 8 × 10−6 per year.

The crane is requ
requirements of A
and accelerations
Additional structu
demonstrate com

Protect against 
a cask or heavy 
object drop from 
the crane

H.RF.HM.08. The mean frequency 
of a hoist system failure of the cask 
handling crane due to the spectrum 
of seismic events shall be less than 
or equal to 2 × 10−5 per year.

The crane is requ
requirements of A
and accelerations

Cask Transfer 
Trolley and Pedestal 
(Trolley: 200- 
HM00-TRLY-00001) 
(Pedestal: 200- 
HM00-PED-00001)

Limit speed H.RF.HM.09. The speed of the cask 
transfer trolley shall be limited to 2.5 
mph.

The cask transfer
speeds greater th

Protect against 
spurious 
movement

H.RF.HM.10. The mean probability 
of spurious movement of the cask 
transfer trolley while a canister is 
being lifted by the canister transfer 
machine shall be less than or equal 
to 1 × 10−9 per transfer. 

The cask transfer
pneumatic power
unloading room e

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety 
Function

Controlling Parameters and 
Values
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ce and energy-absorbing features are required to 
nimize the likelihood of seismic-induced sliding 
l impact loads as needed. 

ce and energy-absorbing features are required to 
nimize the likelihood of seismic-induced rocking 
l impact loads as needed.

ired to be designed in accordance with the 
SME NOG-1-2004 for Type II cranes, for loads 
 associated with a DBGM-2 seismic event. 
ral capacity is provided as required to 
pliance.

 device/adapter is required to be designed in 
he requirements of ANSI N14.6-1993, as modified 
 (NRC 1980), Section 5.1.1(4).

ices/adapters are required to be designed for 
rations associated with a DBGM-2 seismic event.

he Receipt Facility (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling 
(Continued)

Cask Transfer 
Trolley and Pedestal 
(Trolley: 200- 
HM00-TRLY-00001) 
(Pedestal: 200- 
HM00-PED-00001) 
(Continued)

Protect against 
impact and 
inducing 
stresses on the 
waste container

H.RF.HM.11. The mean frequency 
of the sliding of the cask transfer 
trolley into a wall and inducing 
stresses that can breach the waste 
container due to the spectrum of 
seismic events shall be less than or 
equal to 1 × 10−6 per year. 

Operating clearan
be provided to mi
impact and contro

Protect against 
rocking (which 
induces an 
impact into a 
wall) of a trolley 
holding a cask 

H.RF.HM.12. The mean frequency 
of a rocking impact of the cask 
transfer trolley into a wall and 
inducing stresses that can breach 
the waste container due to the 
spectrum of seismic events shall be 
less than or equal to 1 × 10−6 per 
year. 

Operating clearan
be provided to mi
impact and contro

Cask Handling/ 
Cask Receipt

Lid Bolting Room 
Crane (200-HMC0- 
CRN-00001)

Protect against 
collapse of the 
lid bolting room 
crane 

H.RF.HMC.01. The mean frequency 
of collapse of the lid bolting room 
crane due to the spectrum of 
seismic events shall be less than or 
equal to 8 × 10−6 per year.

The crane is requ
requirements of A
and accelerations
Additional structu
demonstrate com

Horizontal Lifting 
Beam 
(200-HMC0-BEAM-
00001)

Protect against 
drop 

H.RF.HMC.02. The horizontal lifting 
beam is an integral part of the 
load-bearing path. See cask 
handling crane requirements. 

The special lifting
accordance with t
by NUREG-0612

Special lifting dev
loads and accele

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety 
Function

Controlling Parameters and 
Values
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 device/adapter is required to be designed in 
he requirements of ANSI N14.6-1993, as modified 
 (NRC 1980), Section 5.1.1(4).

ices are required to have an interlock to prevent 
ice actuation if the special lifting device is not 
d to the hoisting system and an interlock to 
ion if the special lifting device is not either fully 
isengaged.

ices/adapters are required to be designed for 
rations associated with a DBGM-2 seismic event.

 device/adapter is required to be designed in 
he requirements of ANSI N14.6-1993, as modified 
 (NRC 1980), Section 5.1.1(4).

ices/adapters are required to be designed for 
rations associated with a DBGM-2 seismic event.

 device/adapter is required to be designed in 
he requirements of ANSI N14.6-1993, as modified 
 (NRC 1980), Section 5.1.1(4).

ices/adapters are required to be designed for 
rations associated with a DBGM-2 seismic event.

ired to be designed in accordance with the 
SME NOG-1-2004 for Type II cranes, for loads 
 associated with a DBGM-2 seismic event. 
ral capacity is provided as required to 
pliance.

he Receipt Facility (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling/ 
Cask Receipt 
(Continued)

Cask Lid-Lifting 
Grapples (DPC) 
(200-HMH0-HEQ- 
00008)

Protect against 
drop of a load 
onto a DPC

H.RF.HMH.01. The cask lid-lifting 
grapple is an integral part of the 
load-bearing path. See cask 
handling crane requirements. 

The special lifting
accordance with t
by NUREG-0612

Special lifting dev
special lifting dev
properly connecte
prevent hoist mot
engaged or fully d

Special lifting dev
loads and accele

Cask 
Handling/Cask 
Preparation

Rail Cask Lid 
Adapters 
(200-HMH0-HEQ- 
00002)

Protect against 
drop 

H.RF.HMH.02. The rail cask lid 
adapters are an integral part of the 
load-bearing path. See cask 
handling crane requirements.

The special lifting
accordance with t
by NUREG-0612

Special lifting dev
loads and accele

DPC Lid Adapter 
(200-HMH0-HEQ- 
00001)

Protect against 
drop of a DPC

H.RF.HMH.03. The DPC lid adapter 
is an integral part of the 
load-bearing path. See canister 
transfer machine requirements.

The special lifting
accordance with t
by NUREG-0612

Special lifting dev
loads and accele

Waste Transfer/ 
Canister Transfer

Canister Transfer 
Machine 
Maintenance Crane 
(200-HTC0- 
CRN-00001)

Protect against 
collapse of the 
canister transfer 
machine 
maintenance 
crane 

H.RF.HTC.01. The mean frequency 
of collapse of the canister transfer 
machine maintenance crane due to 
the spectrum of seismic events 
shall be less than or equal to 
8 × 10−6 per year.

The crane is requ
requirements of A
and accelerations
Additional structu
demonstrate com

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety 
Function

Controlling Parameters and 
Values
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sfer machine is required to be designed in 
he requirements of ASME NOG-1-2004 for Type I 

sfer machine is required to be designed with the 
:

pper limit switches

stable speed drive that stops the hoist at setpoints 
ependent from the hoist upper limit switches

verload limit that stops the hoist

 stop the hoist when the load clears the canister 
chine slide gate.

sfer machine is required to be designed in 
he requirements of ASME NOG-1-2004 for Type I 

sfer machine is required to be designed with the 
:

pper limit switches

stable speed drive that stops the hoist at setpoints 
ependent from the hoist upper limit switches

verload limit that stops the hoist

 stop the hoist when the load clears the canister 
chine slide gate.

fer machine, in conjunction with the special lifting 
ired to be designed such that the bottom of any 
e more than 45 ft above the cavity floor of the cask 
 with the canister transfer machine hoisting 
lock condition.

he Receipt Facility (Continued)

Design Criteria
Mechanical 
Handling System 
(H)  
(Continued)

Waste Transfer/ 
Canister Transfer 
(Continued)

Canister Transfer 
Machine  
(200-HTC0- 
FHM-00001)

Protect against 
drop

H.RF.HTC.02. The mean probability 
of dropping a canister from below 
the two-block height due to the 
failure of a piece of equipment 
within the load-bearing path shall 
be less than or equal to 1 × 10−5 per 
transfer.

The canister tran
accordance with t
cranes.

The canister tran
following features

• Two hoist u

• A hoist adju
that are ind

• A load cell o

• A sensor to
transfer ma

H.RF.HTC.03. The mean probability 
of drop of a canister from the 
two-block height due to the failure 
of a piece of equipment within the 
load-bearing path shall be less than 
or equal to 3 × 10−8 per transfer.

The canister tran
accordance with t
cranes.

The canister tran
following features

• Two hoist u

• A hoist adju
that are ind

• A load cell o

• A sensor to
transfer ma

Limit drop 
height

H.RF.HTC.04. The two-block drop 
height shall not exceed 45 ft from 
the bottom of a canister to the 
cavity floor of the cask or aging 
overpack. 

The canister trans
device(s), is requ
canister cannot b
or aging overpack
system in a two-b

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t

System or 
Facility (System 
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Subsystem or 
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Applicable) Component

Nuclear Safety Design Bases
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Controlling Parameters and 
Values
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sfer machine is required to be designed in 
he requirements of ASME NOG-1-2004 for Type I 

sfer machine is required to be designed with the 
:

pper limit switches

stable speed drive that stops the hoist at setpoints 
ependent from the hoist upper limit switches

verload limit that stops the hoist

 stop the hoist when the load clears the canister 
chine slide gate.

uired to be provided to prevent operation of the 
achine bridge and trolley drives unless the 
achine shield skirt is raised, indicating that the 

f the canister transfer machine slide gate.

rs that provide power to the adjustable speed 
ge and trolley motors are required to have 
er-current protection. 

idge are required to be designed to preclude 
an 20 ft/min. 

fer machine is required to be designed with guide 
 and TAD canisters to preclude non-flat bottom 

he Receipt Facility (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Waste Transfer/ 
Canister Transfer 
(Continued)

Canister Transfer 
Machine  
(200-HTC0- 
FHM-00001) 
(Continued)

Protect against 
drop of a load 
onto a canister

H.RF.HTC.05. The mean probability 
of dropping a load onto a canister 
shall be less than or equal to 
1 × 10−5 per transfer.

The canister tran
accordance with t
cranes.

The canister tran
following features

• Two hoist u

• A hoist adju
that are ind

• A load cell o

• A sensor to
transfer ma

Protect against 
spurious 
movement 

H.RF.HTC.06. The mean probability 
of a spurious movement of the 
canister transfer machine while a 
canister is being lifted or lowered 
shall be less than or equal to 
5 × 10−9 per transfer.

Interlocks are req
canister transfer m
canister transfer m
canister is clear o

The circuit breake
drives for the brid
instantaneous ov

Limit speed H.RF.HTC.07. The speed of the 
canister transfer machine trolley 
and bridge shall be limited to 
20 ft/min. 

The trolley and br
speeds greater th

Preclude 
non-flat bottom 
drop of a DPC 
or TAD

H.RF.HTC.08. The canister transfer 
machine shall preclude 
non-flat-bottom drops of DPCs and 
TAD canisters.

The canister trans
features for DPCs
drops.

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t

System or 
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Subsystem or 
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sfer machine is required to be designed with the 
:

hoist interlock (skirt must be down to permit hoist 

canister transfer machine slide gate interlock 
must be down or gate must be closed)

port gate interlock (skirt must be down before port 
 opened).

ction 1.2.6.2.2.4) addresses closure of the port 
at the completion of a canister transfer operation.

sfer machine slide gate is required to be 
h that the maximum slide gate closing force is 
ach a canister.

sfer machine is required to be designed in 
he requirements of ASME NOG-1-2004 for Type I 
and accelerations associated with a DBGM-2 
ditional structural capacity is provided as required 
mpliance.

sfer machine is required to be designed in 
he requirements of ASME NOG-1-2004 for Type I 
and accelerations associated with a DBGM-2 

he Receipt Facility (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Waste Transfer/ 
Canister Transfer 
(Continued)

Canister Transfer 
Machine  
(200-HTC0- 
FHM-00001) 
(Continued)

Protect against 
direct exposure 
to personnel

H.RF.HTC.09. The mean probability 
of inadvertent radiation streaming 
resulting from the inadvertent 
opening of the canister transfer 
machine slide gate, the inadvertent 
raising of the canister transfer 
machine shield skirt, or an 
inadvertent motion of the canister 
transfer machine away from an 
open port shall be less than or 
equal to 1 × 10−6 per transfer.

The canister tran
following features

• Shield skirt–
operation)

• Shield skirt–
(either skirt 

• Shield skirt–
gate can be

• PSC-13 (Se
slide gates 

Preclude 

canister breach
H.RF.HTC.10. Closure of the 
canister transfer machine slide gate 
shall be incapable of breaching a 
canister.

The canister tran
power-limited suc
insufficient to bre

Protect against 
collapse of the 
canister transfer 
machine

H.RF.HTC.11. The mean frequency 
of collapse of the canister transfer 
machine due to the spectrum of 
seismic events shall be less than or 
equal to 1 × 10−5 per year.

The canister tran
accordance with t
cranes, for loads 
seismic event. Ad
to demonstrate co

Protect against 
a canister or 
heavy object 
drop from the 
canister transfer 
machine

H.RF.HTC.12. The mean frequency 
of a hoist system failure of the 
canister transfer machine due to the 
spectrum of seismic events shall be 
less than or equal to 2 × 10−5 per 
year.

The canister tran
accordance with t
cranes, for loads 
seismic event.

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t
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 device/adapter is required to be designed in 
he requirements of ANSI N14.6-1993, as modified 
 (NRC 1980), Section 5.1.1(4).

 device is required to have mechanical features 
ial lifting device disengagement when a load is 
he special lifting device.

 device is required to have an interlock to prevent 
ice actuation if the special lifting device is not 
d to the hoisting system and an interlock to 
ion if the special lifting device is not either fully 
isengaged.

ices/adapters are required to be designed for 
rations associated with a DBGM-2 seismic event.

ed to be designed to meet the wind and ash loads 
e 1.2.2-1.

ed to be designed to meet the wind and ash loads 
e 1.2.2-1.

ated at least one-half mile from any ITS structure.

ent of building collapse is performed to develop 
 for the structure. Convolution of the structure 
 seismic hazard curve (as described in 
rformed to demonstrate compliance.

he Receipt Facility (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Waste Transfer/ 
Canister Transfer 
(Continued)

Canister Transfer 
Machine Grapples 
(200-HTC0- 
HEQ-00001)

Protect against 
canister drop 

H.RF.HTC.13. The canister transfer 
machine grapple is an integral part 
of the load-bearing path of the 
canister transfer machine. See 
canister transfer machine 
requirements.

The special lifting
accordance with t
by NUREG-0612

The special lifting
that prevent spec
suspended from t

The special lifting
special lifting dev
properly connecte
prevent hoist mot
engaged or fully d

Special lifting dev
loads and accele

Receipt Facility 
(RF)

Receipt Facility 
(RF)

Structure Maintain 
building 
structural 
integrity to 
protect ITS 
SSCs inside the 
building from 
external events

RF.01. The mean frequency of 
building collapse due to winds less 
than or equal to 120 mph shall not 
exceed 1 × 10−6 per year.

Structure is requir
described in Tabl

RF.02. The mean frequency of 
building collapse due to volcanic 
ash fall less than or equal to a roof 
load of 21 lb/ft2 shall not exceed 
1 × 10−6 per year. 

Structure is requir
described in Tabl

RF.03. The RF shall be located 
such that there is a distance of at 
least one-half mile between the RF 
and the repository heliport.

The heliport is loc

Protect against 
building 
collapse onto 
waste 
containers

RF.04. The mean frequency of 
collapse of the RF structure due to 
the spectrum of seismic events 
shall be less than or equal to 
2 × 10−6 per year.

Fragility assessm
the fragility curve
fragility curve and
Section 1.7) is pe

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t
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 doors are required to be interlocked to prevent 
g when associated transfer port slide gates that 
ntary shielding function are not closed.

 doors are required to be designed in accordance 
e provisions of ANSI/AISC N690-1994. Equipment 
equired to be designed to not collapse following 
conveyance at its design speed.

 doors are required to be designed in accordance 
e provisions of ANSI/AISC N690-1994 for loads 
 associated with a DBGM-2 seismic event. 
ral capacity is provided as required to 
pliance.

required to be power-limited such that the 
te closing force is insufficient to sever the hoisting 

required to be interlocked to prevent it from 
 associated equipment shield door that has a 
hielding function is not closed.

required to be interlocked to prevent it from 
 canister transfer machine is present above it with 
ered.

required to be power-limited such that the 
ate closing force is insufficient to breach the 

he Receipt Facility (Continued)

Design Criteria
Receipt Facility 
(RF)  
(Continued)

Receipt Facility 
(RF)  
(Continued)

Shield Doors 
(Including 
Anchorages)

Protect against 
direct exposure 
of personnel 

RF.05. Equipment shield doors 
shall have a mean probability of 
inadvertent opening of less than or 
equal to 1 × 10−7 per waste 
container handled. 

Equipment shield
them from openin
have a compleme

Preclude 
collapse onto 
waste 
containers 

RF.06. An equipment shield door 
falling onto a waste container as a 
result of impact from a conveyance 
shall be precluded.

Equipment shield
with the applicabl
shield doors are r
an impact from a 

Protect against 
equipment 
shield door 
collapse onto a 
waste container

RF.07. The mean frequency of 
collapse of equipment shield doors 
(including attachment of door to 
wall and frame anchorages) due to 
the spectrum of seismic events 
shall be less than or equal to 
6 × 10−6 per year.

Equipment shield
with the applicabl
and accelerations
Additional structu
demonstrate com

Cask Port Slide 
Gate  
(200-HTC0- 
HTCH-00001)

Protect against 
dropping a 
canister due to 
a spurious 
closure of the 
slide gate

RF.HTC.01. The mean probability 
of a canister drop resulting from a 
spurious closure of the slide gate 
shall be less than or equal to 
5 × 10−6 per transfer. 

The slide gate is 
maximum slide ga
ropes.

Protect against 
direct exposure 
to personnel

RF.HTC.02. The mean probability 
of occurrence of an inadvertent 
opening of a slide gate shall be less 
than or equal to 4 × 10−9 per 
transfer. 

The slide gate is 
opening when an
complementary s

The slide gate is 
opening unless a
its shield skirt low

Preclude 
canister breach

RF.HTC.03. Closure of the slide 
gate shall be incapable of 
breaching a canister. 

The slide gate is 
maximum slide g
canister.

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t
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required to be power-limited such that the 
te closing force is insufficient to sever the hoisting 

required to be interlocked to prevent it from 
 associated equipment shield door that has a 
hielding function is not closed.

required to be interlocked to prevent it from 
 canister transfer machine is present above it with 
ered.

required to be power-limited such that the 
ate closing force is insufficient to breach the 

quired to be designed in accordance with the 
ons of ANSI/AISC N690-1994 for loads and 
ociated with a DBGM-2 seismic event. Additional 
y is provided as required to demonstrate 

quired to be designed in accordance with the 
ons of ANSI/AISC N690-1994 for loads and 
ociated with a DBGM-2 seismic event. Additional 
y is provided as required to preclude platform 
absorbing features are required as necessary to 
rces on the waste container.

quired to be designed in accordance with the 
ons of ANSI/AISC N690-1994 for loads and 
ociated with a DBGM-2 seismic event. Additional 
y is provided as required to demonstrate 

he Receipt Facility (Continued)

Design Criteria
Receipt Facility 
(RF) (Continued)

Receipt Facility 
(RF) (Continued)

Aging Overpack 
Port Slide Gate 
(200-HTC0- 
HTCH-00002)

Protect against 
dropping a 
canister due to 
a spurious 
closure of the 
slide gate

RF.HTC.04. The mean probability 
of a canister drop resulting from a 
spurious closure of the slide gate 
shall be less than or equal to 
5 × 10−6 per transfer. 

The slide gate is 
maximum slide ga
ropes.

Protect against 
direct exposure 
to personnel

RF.HTC.05. The mean probability 
of occurrence of an inadvertent 
opening of a slide gate shall be less 
than or equal to 4 × 10−9 per 
transfer. 

The slide gate is 
opening when an
complementary s

The slide gate is 
opening unless a
its shield skirt low

Preclude 
canister breach

RF.HTC.06. Closure of the slide 
gate shall be incapable of 
breaching a canister.

The slide gate is 
maximum slide g
canister.

Cask Preparation 
Platform 
(200-HMH0-PLAT- 
00001)

Protect against 
collapse

RF.HMH.01. The mean frequency 
of collapse of the cask preparation 
platform due to the spectrum of 
seismic events shall be less than or 
equal to 3 × 10−6 per year.

The platform is re
applicable provisi
accelerations ass
structural capacit
compliance.

Protect against 
platform 
collapse or 
waste container 
breach due to 
an impact from 
the cask 
transfer trolley

RF.HMH.02. The mean frequency 
of platform collapse or waste 
container breach from the impact of 
the cask transfer trolley into the 
platform due to the spectrum of 
seismic events shall be less than or 
equal to 2 × 10−5 per year.

The platform is re
applicable provisi
accelerations ass
structural capacit
collapse. Energy 
limit the impact fo

Lid Bolting Room 
Platform 
(200-HMC0-PLAT- 
00003)

Protect against 
platform 
collapse

RF.HMC.01. The mean frequency 
of collapse of the lid bolting room 
platform due to the spectrum of 
seismic events shall be less than or 
equal to 3 × 10−6 per year. 

The platform is re
applicable provisi
accelerations ass
structural capacit
compliance.

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t
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quired to be designed in accordance with the 
ons of ANSI/AISC N690-1994 for loads and 
ociated with a DBGM-2 seismic event. Additional 
y is provided as required to preclude platform 
absorbing features are required as necessary to 
rces on the waste container. 

on features are required to be located and sized to 
ation of the ITS structures due to a flood 
e probable maximum precipitation event.

 to confirm that the controlling parameters and 

n) with the seismic hazard curve.  

he Receipt Facility (Continued)

Design Criteria
Receipt Facility 
(RF) (Continued)

Receipt Facility 
(RF) (Continued)

Lid Bolting Room 
Platform 
(200-HMC0-PLAT- 
00003) (Continued)

Protect against 
collapse or 
waste container 
breach due to 
an impact from 
the site 
transporter

RF.HMC.02. The mean frequency 
of platform collapse or waste 
container breach from the impact of 
the site transporter into the platform 
due to the spectrum of seismic 
events shall be less than or equal to 
2 × 10−5 per year.

The platform is re
applicable provisi
accelerations ass
structural capacit
collapse. Energy 
limit the impact fo

Balance of Plant 
(SB)

Flood Protection Flood Control 
Features

Protect ITS 
SSCs from 
external 
flooding events

SB.01.The site flood control 
features will be designed to the 
probable maximum flood.

The flood protecti
prevent the inund
associated with th

NOTE: “Protect against” in this table means either “reduce the probability of” or “reduce the frequency of.”  
For casks, canisters, and associated handling equipment that were previously designed, the component design will be evaluated
values are met. 
Seismic control values shown represent the integration of the probability distribution of SSC failure (i.e., the loss of safety functio
The numbers appearing in parentheses in the third column are component numbers.  
Facility Codes: CR: Canister Receipt and Closure Facility; RF: Receipt Facility; SB: Balance of Plant. 
System Codes: H: Mechanical Handling. 
Subsystem Codes: HM: Cask Handling; HMC: Cask Receipt; HMH: Cask Preparation; HTC: Canister Transfer. 
BWR= boiling water reactor; PWR = pressurized water reactor.

Table 1.2.6-3.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for t

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component
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Safety 
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Values
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Table 1.2.6-4.  RF HVAC Exhaust Components and System Design Data 

Subsystem/
Components

Number of Units Nominal 
Airflow 

Capacity
cfm/unit

HEPA Filter Plenum 
Components

(No. of Banks)

Operating Standby Demister Prefilter
HEPA 
Filter

Confinement Areas Exhaust HEPA Filter 
Plenum—Train A (Equipment Number: 
200-VCT0-FLT-00005/00006/00007)

3 0 13,500 1 1 2

Confinement Areas Exhaust Fan—Train A 
(Equipment Number: 
200-VCT0-EXH-00005)

1 0 40,500 NA NA NA

Confinement Areas Exhaust HEPA Filter 
Plenum—Train B (Equipment Number: 
200-VCT0-FLT-00008/00009/00010)

0 3 13,500 1 1 2

Confinement Areas Exhaust Fan—Train B 
(Equipment Number: 
200-VCT0-EXH-000006)

0 1 40,500 NA NA NA

Battery Room Train A Exhaust HEPA Filter 
Plenum (Equipment Number: 
200-VCT0-FLT-00003/00004)

1 1 2,000 NA 1 1

Battery Room Train A Exhaust Fan 
(Equipment Number: 
200-VCT0-EXH-00009/00010)

1 1 2,000 NA NA NA

Battery Room Train B Exhaust HEPA Filter 
Plenum (Equipment Number: 
200-VCT0-FLT-00011/00012)

1 1 4,000 NA 1 1

Battery Room Train B Exhaust Fan 
(Equipment Number: 
200-VCT0-EXH-00011/00012)

1 1 4,000 NA NA NA

HEPA Exhaust Filter Plenum (Equipment 
Number: 
200-VCT0-FLT-00001/00002/00013)

2 1 18,000 NA 1 1

HEPA Exhaust Fan (Equipment Number: 
200-VCT0-EXH-00001/00002/00013)

2 1 18,000 NA NA NA

Nonconfinement Janitor Closet Exhaust 
Fan (Equipment Number: 
200-VNI0-EXH-00001)

1 NA 1,000 NA NA NA

Nonconfinement Men’s 
Locker/Shower/Restroom Exhaust Fan 
(Equipment Number: 
200-VNI0-EXH-00002)

1 NA 750 NA NA NA

NOTE: Equipment numbers are shown in Figures 1.2.6-27, 1.2.6-32, 1.2.6-37 and 1.2.6-43. 
NA = not applicable.
— —
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Table 1.2.6-5.  RF Indoor Design Temperatures

Area or Room

Maximum Summer
Temperature
(°F Dry Bulb)

Minimum Winter
Temperature
(°F Dry Bulb)

Cask Preparation Room 85a 65

Cask Loading and Unloading Rooms 100b 65

Lid Bolting Room 90b 65

HEPA Rooms 90b 65

Maintenance Room 85a 65

Low Level Radioactive Waste Staging Room 90b 65

Support Areas 75 70

Gas Sampling Room 90b 65

Electrical Rooms 90b 65

Battery Rooms 77 72

Corridors and Elevator Lobby 85 65

Vestibules 90b 65

Operations/Maintenance Storage Room 85a 65

Canister Transfer Room 85a 65

Receiver/Dryer Equipment Room 90b 65

Canister Transfer Machine Maintenance Room 90b 65

Offices and Support Areas 75 70

Operations Room 75 70

Communications Room 75 70

Corridors 85 65

Instrument and Electrical Shop 85a 65

NOTE: aThese areas are normally not occupied. However, these areas are designed to be at a maximum of 85°F 
since there is expected extended occupancy during operation. 
bThese areas are normally not occupied and the temperature limits are based on the electrical equipment 
located in the space.
— —
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Table 1.2.6-6.  RF HVAC Supply Components and System Design Data

Subsystem/
Components

Number of Units 
Nominal Unit

CapacityOperating Standby

Confinement Areas Supply Air Handling Unit (Equipment 
Number: 200-VCT0-AHU-00006/00007)

1 1 30,000 cfm

Confinement Areas Air Handling Unit—North (Equipment 
Number: 200-VCT0-AHU-00001/00002/00003)

2 1 30,000 cfm

Confinement Areas Air Handling Unit—South (Equipment 
Number: 200-VCT0-AHU-0004/0005)

1 1 36,000 cfm

Nonconfinement Areas Supply Air Handling Unit (Equipment 
Number: 200-VNI0-AHU-00001/00002)

1 1 20,000 cfm

Nonconfinement Areas Return Fan (Integral to 
200-VNI0-AHU-00001/00002)

1 1 20,000 cfm

Nonconfinement Transportation Cask Vestibule—Fan Coil Units 
(Equipment Number: 200-VNI0-FCU-00001/00002)

1 1 5,000 cfm

Nonconfinement Site Transporter Vestibule—Fan Coil Units 
(Equipment Number: 200-VNI0-FCU-00003/00004)

1 1 2,000 cfm

Nonconfinement Transportation Cask Vestibule Annex—Fan 
Coil Units (Equipment Number: 200-VNI0-FCU-00005/00006)

1 1 1,000 cfm

Nonconfinement Low Level Waste Vestibule—Fan Coil Units 
(Equipment Number: 200-VNI0-FCU-00007/00008)

1 1 2,000 cfm

Electrical Room Train A—Direct Expansion Fan Coil Units 
(Equipment Number: 200-VCT0-FCU-00001/00002)

1 1 6,000 cfm

Electrical Room Train A—Condensing Units (Equipment 
Number: 200-VCT0-CDU-00001/00002)

1 1 20 tons

Electrical Room Train B—Direct Expansion Fan Coil Units 
(Equipment Number: 200-VCT0-FCU-00003/00004)

1 1 6,000 cfm

Electrical Room Train B—Condensing Units (Equipment 
Number: 200-VCT0-CDU-00003/00004)

1 1 20 tons

NOTE: Equipment numbers are shown in Figures 1.2.6-27, 1.2.6-32, 1.2.6-37, and 1.2.6-43.
— —
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Figure 1.2.6-1. RF General Arrangement Legend
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Figure 1.2.6-2. RF General Arrangement Ground Floor 
Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A and has been 
updated: Information Designated as Official Use Only, 

as Figure A-67.
NOTE: AO = aging overpack; HR = handrail; LC = load center; MCC = motor control center.
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Figure 1.2.6-3. RF General Arrangement Second Floor 
Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A and has been 
updated: Information Designated as Official Use Only, 

as Figure A-68.
NOTE: The structure for Room 2008 is non-ITS. 
AO = aging overpack; LC = load center; MCC = motor control center.
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Figure 1.2.6-4. RF General Arrangement Third Floor 
Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A and has been 
updated: Information Designated as Official Use Only, 

as Figure A-69.
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Figure 1.2.6-5. RF General Arrangement Roof Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-70.
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Figure 1.2.6-6. RF General Arrangement Section A

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-71.
NOTE: AO = aging overpack; HR = handrail; LC = load center; MCC = motor control center.
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Figure 1.2.6-7. RF General Arrangement Section B

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-72.
NOTE: AO = aging overpack; CTM = canister transfer machine; HR = handrail; LC = load center.
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Figure 1.2.6-8. RF General Arrangement Section C

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-73.
NOTE: AO = aging overpack; LC = load center; MCC = motor control center.
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Figure 1.2.6-9. RF General Arrangement Section D

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-74.
NOTE: CTM = canister transfer machine.



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001

INTENTIONALLY LEFT BLANK
— —
1.2.6-56



1.2.6-57

— —
DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001

Figure 1.2.6-10. RF General Arrangement Section E

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-75.
NOTE: MCC = motor control center.
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Figure 1.2.6-11. RF General Arrangement Section F

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-76.
NOTE: LC = load center.
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Figure 1.2.6-12. RF Operational Sequences and Material 
Flow Paths (Sheet 1 of 2)

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-77.
NOTE: AO = aging overpack.
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Figure 1.2.6-12. RF Operational Sequences and Material 
Flow Paths (Sheet 2 of 2)

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-77.
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Figure 1.2.6-13. Inventory of Waste Forms in the Receipt 
Facility at Any One Time

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-78.
NOTE: This figure is an example representing the number of waste forms that could be present in the facility at any one time. 
It does not define limits on number of waste forms that may be present in specific areas of the facility.
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Figure 1.2.6-14. RF Major Waste Processing Functions



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001

INTENTIONALLY LEFT BLANK
— —
1.2.6-68



1.2.6-69

— —
DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001

Figure 1.2.6-15. RF Cask Handling Crane Mechanical 
Equipment Envelope
Equipment Number:200-HM00-CRN-00001.
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Figure 1.2.6-16. RF Cask Unloading Room Equipment 
Shield Door—Type 5 Mechanical 
Equipment Envelope
Equipment Number:200-RF00-DR-00001.
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Figure 1.2.6-17. RF Cask Preparation Platform 
Mechanical Equipment Envelope

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-79.
Equipment Number:200-HMH0-PLAT-00002.

NOTE: The platform, in conjunction with the energy absorbing features, is designed so that the transportation cask is 
prevented from impacting the underside of the platform during a seismic event.
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Figure 1.2.6-18. RF Lid Bolting Room Platform 
Mechanical Equipment Envelope (Sheet 
1 of 2)

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-80.
Equipment Number:200-HMC0-PLAT-00003.
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Figure 1.2.6-18. RF Lid Bolting Room Platform 
Mechanical Equipment Envelope (Sheet 
2 of 2)

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-80.
Equipment Number:200-HMC0-PLAT-00003.
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Figure 1.2.6-19. RF Lid Bolting Room Crane Mechanical 
Equipment Envelope
Equipment Number:200-HMC0-CRN-00001
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Figure 1.2.6-20. RF Lid Bolting Room Crane Process and 
Instrumentation Diagram
Equipment Number:200-HMC0-CRN-00001, lid bolting room crane.

NOTE: This drawing includes the RF lid bolting room crane that has been classified as ITS. While the RF lid bolting room 
crane is ITS, the instrumentation, electrical and control devices shown herein are non-ITS and non-ITWI.
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Figure 1.2.6-21. RF Canister Transfer Machine 
Maintenance Crane Mechanical 
Equipment Envelope
Equipment Number:200-HTC0-CRN-00001.
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Figure 1.2.6-22. RF Cask Cavity Gas Sampling System 
Piping and Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI. Valves that are not included in the valve position table 
maintain the position as indicated in the figure.
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Figure 1.2.6-23. RF Liquid Low-Level Radioactive Waste 
Sampling and Sump Piping and 
Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.6-24. RF Confinement Zoning, Ground Floor

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-81.
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Figure 1.2.6-25. RF Confinement Zoning, Second Floor

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-82.
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Figure 1.2.6-26. RF Confinement Zoning, Third Floor

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-83.
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Figure 1.2.6-27. RF Composite Ventilation Flow Diagram, 
Tertiary Confinement HVAC Supply and 
Exhaust
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
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Figure 1.2.6-28. RF Confinement Areas High-Efficiency 
Particulate Air Exhaust System—Train A 
Ventilation and Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
The isolation damper is closed and flow is zero during normal operation. The interlock will shut down the operating 
fan and start the standby unit upon detection of any of the following: low differential pressure across the fan 
coincident with low flow; high HEPA filter train differential pressure; or low HEPA filter train differential pressure.
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Figure 1.2.6-29. RF Confinement Areas High-Efficiency 
Particulate Air Exhaust System—Train B 
Ventilation and Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
The isolation damper is closed and flow is zero during normal operation. The interlock will shut down the operating 
fan and start the standby unit upon detection of any of the following: low differential pressure across the fan 
coincident with low flow; high HEPA filter train differential pressure; or low HEPA filter train differential pressure.
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Figure 1.2.6-30. RF Confinement Areas HVAC Supply 
System Ventilation and Instrumentation 
Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
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Figure 1.2.6-31. RF Confinement Areas Air Distribution 
System Ventilation and Instrumentation 
Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
AHU = air handling unit.
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Figure 1.2.6-32. RF Composite Ventilation Flow Diagram, 
Tertiary Confinement HVAC Systems, 
Electrical and Battery Rooms
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.6-33. RF Confinement Electrical Room HVAC 
System—Train A Ventilation and 
Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.6-34. RF Confinement Battery Room Exhaust 
System—Train A Ventilation and 
Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
The silicon-controlled rectifier is integral to the electric heating coil and modulates heating in response to the 
temperature controller signal.
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Figure 1.2.6-35. RF Confinement Electrical Room HVAC 
System—Train B Ventilation and 
Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001

INTENTIONALLY LEFT BLANK
— —
1.2.6-112



1.2.6-113

— —
DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001

Figure 1.2.6-36. RF Confinement Battery Room Exhaust 
System—Train B Ventilation and 
Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
The silicon-controlled rectifier is integral to the electric heating coil and modulates heating in response to the 
temperature controller signal.
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Figure 1.2.6-37. RF Composite Ventilation Flow Diagram, 
Tertiary Confinement HVAC Supply and 
Exhaust System
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.6-38. RF Confinement South Areas HVAC 
Supply System Ventilation and 
Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001

INTENTIONALLY LEFT BLANK
— —
1.2.6-118



1.2.6-119

— —
DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001

Figure 1.2.6-39. RF Confinement Southwest Areas Air 
Distribution System Ventilation and 
Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.6-40. RF Confinement South Areas Air 
Distribution System Ventilation and 
Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
The silicon-controlled rectifier is integral to the electrical heating and modulates heating in response to the 
temperature controller signal.
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Figure 1.2.6-41. RF Confinement Ground Floor West 
Areas Air Distribution System Ventilation 
and Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.6-42. RF Confinement High-Efficiency 
Particulate Air Exhaust System 
Ventilation and Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.6-43. RF Composite Ventilation Flow Diagram, 
Nonconfinement HVAC System Support 
and Operations
NOTE: This figure includes no SSCs that are either ITS or ITWI. 
LLW = low-level radioactive waste.
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Figure 1.2.6-44. Receipt Facility Cask Preparation Annex 
Equipment Confinement Door 
Mechanical Equipment Envelope
Equipment Number:200-RF00-DR-00003.
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1.2.7 Aging Facility
[NUREG-1804, Section 2.1.1.2.3: AC 1, AC 2, AC 6; Section 2.1.1.6.3: AC 1, AC 2; 
Section 2.1.1.7.3.1: AC 1; Section 2.1.1.7.3.2: AC 1; Section 2.1.1.7.3.3(I): AC 1, AC 2, 
AC 4; HLWRS-ISG-02 Section 2.1.1.2.3: AC 2]

The Aging Facility is designed to uncouple waste receipts from waste emplacement operations to 
accommodate repository temperature and thermal limits, operations workflow (differences in 
acceptance and emplacement rates), and maintenance outages. The principal components of the 
Aging Facility are aging overpacks that contain either transportation, aging, and disposal (TAD) 
canisters or dual-purpose canisters (DPCs) positioned on an aging pad. The DPCs are loaded, dried, 
inerted, and welded closed at the utilities. TAD canisters are loaded, dried, inerted, and welded 
closed at the utility or at the repository in the Wet Handling Facility (WHF).

The DPC or TAD canister is the primary barrier to radionuclide release for material contained in 
aging overpacks on the aging pad. The canister is relied upon to prevent release given the imposition 
of defined mechanical and thermal loads on the aging pads. The TAD canister containment 
boundary is designed to stress limits in accordance with 2004 ASME Boiler and Pressure Vessel 
Code (ASME 2004, Section III, Subsection NB). DPCs are designed to the ASME code of various 
editions depending on the certificate of compliance issued by the U.S. Nuclear Regulatory 
Commission. The aging overpack protects TAD canisters and DPCs from external hazards and 
shields workers and the public from the TAD canisters or DPCs. Section 1.2.7.1.3.2 provides 
additional details on the TAD canister and DPC overpack systems, and Section 1.5.1 provides 
additional details on the DPC and TAD canister.

TAD canisters and vertical DPCs can be transferred from transportation casks to vertical aging 
overpacks in the Canister Receipt and Closure Facilities (CRCFs) and the Receipt Facility (RF) and 
then moved to an aging pad. TAD canisters loaded in the WHF that are being transferred to the 
Aging Facility can be transferred to a vertical aging overpack within the WHF. DPCs that require 
aging in a horizontal aging module will only be received in the RF and then moved to an aging pad. 
These processes are discussed for the CRCFs in Section 1.2.4, for the WHF in Section 1.2.5, and for 
the RF in Section 1.2.6. The chart shown in Figure 1.2.7-1 presents an overview of the relationship 
and major interfaces between surface facilities and represents the material flow paths. It is 
anticipated that a significant number of transportation casks containing TAD canisters or DPCs will 
be unloaded in the RF and transferred to aging overpacks. The RF is also used to transfer horizontal 
DPCs in transportation casks to a transfer trailer, so they can be moved to a horizontal aging module 
at an aging pad.

Management of TAD canisters or DPCs in the Aging Facility considers the thermal management 
and repository operational requirements, based on the type of canister in which the spent nuclear 
fuel (SNF) is packaged and the characteristics of the SNF contained in each aging overpack. For 
processing, the aging overpacks with their canisters are moved to either the CRCF or the WHF. TAD 
canisters designated for processing for emplacement are moved to the CRCF, where the TAD 
canisters are placed in a waste package, sealed, and loaded onto a transport and emplacement 
vehicle for subsequent underground emplacement. DPCs designated for processing into TAD 
canisters are moved to the WHF where the DPCs are opened and placed in the pool, and the 
commercial SNF contents are transferred to TAD canisters.
— —
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Section 1.3.1 provides details on thermal management of repository operations. The 
U.S. Department of Energy has performed system studies that provide confidence that 
2,500 storage spaces is a sufficient number to provide operational flexibility.

The Aging Facility is similar in design and operation to the SNF dry cask storage systems that have 
been in use for almost 20 years at commercial reactor sites and U.S. Department of Energy facilities. 
The Aging Facility incorporates a canister-based aging overpack. The majority of overpack systems 
utilized by the Aging Facility are TAD canister–based vertical overpack systems. The TAD 
canister–based vertical overpack system will be designed following the specifications in 
Transportation, Aging and Disposal Canister System Performance Specification (DOE 2008).

To demonstrate compliance with the preclosure safety requirements of 10 CFR Part 63, the 
preclosure safety analysis presented in Sections 1.6 to 1.9 includes and bounds potential Aging 
Facility operations and configurations. Aging Facility components that are important to safety (ITS)
and are anticipated for use at the repository are typical of components utilized at existing reactor 
sites and independent SNF storage installations. Aging Facility component reliability is obtained 
based on existing component designs and evaluated against the performance required by 
repository-specific conditions and the repository nuclear safety design bases. Details on the 
methodology and results for Aging Facility component reliability are presented in Sections 1.6 to 
1.9. Prior to the use of any specific aging overpack system (including associated canister) at the 
repository, analyses are performed to demonstrate compliance with the Yucca Mountain 
repository–specific criteria and repository nuclear safety design bases. The acceptability of aging 
overpack systems for repository usage is demonstrated through a combination of two important 
design aspects: (1) compliance with design code stress limits, leakage limits, and thermal limits 
given the imposition of loadings described in this section; and (2) fragility assessments described in 
Section 1.7 that demonstrate adequate capacity exists to support regulatory compliance. 
Section 5.10 provides additional discussion of the licensing process to be followed to authorize use 
of aging overpack systems.

The following sections describe the principal components of the Aging Facility, including pad 
locations and materials, overpack design requirements, overpack transportation requirements, 
overpack installation requirements, maintenance and operations requirements, and associated 
design analyses.

1.2.7.1 Aging Facility Description
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2, AC 6; Section 2.1.1.6.3: 
AC 1(2)(h); Section 2.1.1.7.3.2: AC 1(1); Section 2.1.1.7.3.3(I): AC 1(1), AC 2(1), 
(2), (3), AC 4(1), (2)]

The Aging Facility consists of three components:

• The aging pad component with monitoring
• The aging overpack component
• The overpack transfer component.

The aging pad areas are shown on Figure 1.2.7-2. The total capacity of the two aging pad areas is 
2,500 spaces. Figure 1.2.7-3 shows the detailed layout of aging pad area 17P with seven pads for 
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about 1,250 vertical aging overpacks. Figure 1.2.7-4 shows aging pad area 17R. Aging pad area 
17R has eight pads with space for about 1,150 vertical aging overpacks, and two pads with space for 
100 horizontal DPCs in horizontal aging modules, with 50 modules on each pad.

Vertical aging overpacks are arrayed in groups of 16 overpacks, spaced on 4-by-4 grids with a 
square center-to-center pitch of approximately 18 ft with a spacing between overpacks of 6 ft. This 
spacing was established to enable access for the site transporter and to permit air circulation for 
cooling. Horizontal aging modules are arranged side by side.

Aging overpacks include TAD canister–containing overpacks and commercially available 
overpacks containing DPCs. These aging overpacks consist of:

• TAD Canister Overpack with TAD Canister—This system is specifically designed to 
meet Aging Facility design criteria. This system consists of a vertical overpack that 
receives a TAD canister that is either loaded off site and shipped to the repository or is 
loaded in the WHF.

• Overpack Systems for DPCs—These systems are for commercial DPCs evaluated to 
meet Aging Facility design criteria and include the following:

– Vertical overpack for DPCs, which consists of a concrete vertical overpack that 
receives a metal canister loaded at the originating utility

– Horizontal module for DPCs, which consists of a concrete horizontal module that 
receives a metal canister loaded at the originating utility.

Section 1.2.2.1 describes the flood control features of the repository site areas. Drainage channels 
transport flood water around the Aging Facility to preclude flooding interactions with the aging 
overpacks. The aging pad areas are located greater than one-half mile from the heliport 
(Figure 1.2.1-1). The aging pad areas will be surrounded by a security fence to control access, as 
shown in Figure 1.2.7-2. Radiological posting will be utilized to delineate the distance at which 
public occupancy could result in a dose of 100 mrem/yr.

1.2.7.1.1 Functions

Aging is required at the repository to provide the operational flexibility necessary to efficiently 
maintain a flow of SNF to the repository from utilities and at the same time load waste packages 
within the temperature limits of the repository.

The Aging Facility performs the following waste handling functions:

• Provides up to 21,000 MTHM of aging capability for the repository in 2,500 aging spaces

• Protects TAD canisters and DPCs from external hazards
— —
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• Provides the capability to place commercial SNF in a location where it can be aged to 
appropriate thermal power levels, providing passive heat removal to preclude exceeding 
waste form temperature limits

• Provides the capability to uncouple receipt of commercial SNF from emplacement of 
commercial SNF by creating a location to temporarily place commercial SNF until the 
waste emplacement process can accommodate it

• Provides the capability to move commercial SNF between the Aging Facility and the 
handling facilities

• Protects the workers and the public from radiation.

1.2.7.1.2 Location and Functional Arrangement

The two aging pad areas designated 17P and 17R are shown in Figure 1.2.7-2. The Aging Facility 
areas are located to avoid faults and flooding and are sufficiently distant from the handling facilities 
and construction workers to reduce direct shine and sky shine from the array of aging overpacks.

1.2.7.1.3 Major Components

The major components of the Aging Facility are described in this section. The aging pads, aging 
overpacks, and transfer components are classified as ITS.

1.2.7.1.3.1 Aging Pad

The Aging Facility provides the stable surface and associated monitoring components necessary for 
aging commercial SNF. An aging pad slab is an elongated, reinforced concrete mat foundation that 
is supported on existing soil and compacted fill where needed. The aging pads consist of nominally 
3-ft-thick reinforced concrete slabs where the aging overpacks and horizontal aging modules are 
placed. In addition to space for storage, the pad includes aprons that allow approach to the aging 
overpacks for placement and retrieval. The aging pad includes space to maneuver the transfer 
equipment around the vertical aging overpacks, horizontal aging modules, and other support 
systems required for the safe operation and maintenance of each aging pad.

The concrete aging pads are designed and constructed to provide support for the aging overpacks 
during credible design events and to withstand loads and load combinations imposed by natural 
phenomena, such as earthquakes, extreme winds, and tornado winds. Flood drainage channels are 
sized to carry away water from a probable maximum flood surrounding the aging pads. This 
precludes the possibility that aging overpacks will be subject to the probable maximum flood. The 
distance of the aging pads from upslope hillsides and the location of the drainage channel preclude 
soil from sliding onto the concrete aging pads and contacting the aging overpacks. Each pad is a 
conventionally reinforced concrete mat providing for water runoff, and each is designed to consider 
concrete heating and transport equipment accessibility. Section 1.2.2 provides further details on the 
structural design of the aging pads.
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Additional features supporting the aging pads include normal and standby power supplies, lighting,
video monitoring, and equipment for monitoring the overpack outlet vent temperatures and the 
environment (e.g., area ambient temperatures, wind speed and direction). Maintenance and support 
equipment for the aging pad subsystem includes debris removal equipment and platforms for 
checking aging overpack ventilation ports and performing maintenance. The standby diesel 
generators provide standby power. Portable, hand-held fire extinguishers are available at each aging 
pad.

Each aging pad is equipped with closed-circuit television cameras mounted around the perimeter, 
used for general awareness of conditions at the aging pad. These cameras are provided with pan, tilt,
and zoom capabilities, and provide the operator in the Central Control Center Facility (CCCF) the 
ability to visually monitor activities and conditions at the aging pads.

Provisions are made at each aging pad to accommodate instrumentation to thermally monitor the 
aging overpacks and horizontal aging modules. Monitoring of aging overpacks or horizontal aging 
modules is provided to enable operators to remotely read the temperature of the outlet air. 
Figure 1.2.7-5 shows the temperature monitoring system.

Temperature sensors attached to the exhaust air ports of the vertical aging overpacks and horizontal 
aging modules that monitor outlet air temperature are connected to the digital control and 
management information system remote input/output cabinets located in the electrical utility 
building at each aging pad area. This temperature information is available in the CCCF to enable 
monitoring by CCCF operators. The temperature data is displayed, recorded, and alarmed if the 
temperatures are above the setpoints as detailed by overpack-specific performance requirements 
specified in the Technical Requirements Manual for the approved aging overpack. Because no 
monitors are relied upon to protect against or mitigate the consequences of Category 1 or 
Category 2 event sequences, the aging overpack monitoring components are classified as non-ITS.
Based on overpack system-specific design and analysis, normal cooling is verified with differential 
temperature readings in the CCCF, or visual inspections, or a combination of both. The installation 
of temperature sensors limits the need for visual inspections and minimizes radiation exposure 
associated with Aging Facility operations.

Operations following a high temperature alarm will be performed using approved off-normal 
operating procedures. The displays of the postevent monitoring variables will be developed to 
coordinate with these procedures. The initial event categorization and communications following 
an event occur in the CCCF.

1.2.7.1.3.2 Aging Overpack 

The aging overpack component provides overpacks for aging commercial SNF within TAD 
canisters and DPCs. The DPC or TAD canister is the primary boundary against radionuclide release 
during the aging process. The aging overpack is a missile barrier and a radiation shield. It provides 
kinematic stability and passive cooling for the canister and cushions the canister against a drop or 
collision with mechanical loads. Aging overpacks are designed such that the TAD canisters or DPCs 
placed within the overpacks maintain containment of radioactive materials given the occurrence of 
natural phenomena described in Table 1.2.2-1.
— —
1.2.7-5



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SARDocket No. 63–001
The Aging Facility consists of the following aging overpacks as discussed below:

• Vertical aging overpacks for DPCs and TAD canisters

• Horizontal aging modules for existing horizontal DPCs.

1.2.7.1.3.2.1 Vertical Aging Overpacks for DPCs and TAD Canisters

A vertical aging overpack is a right circular cylinder with a metal inner liner surrounded by concrete. 
The vertical aging overpack has a support structure to support the inserted canister during the aging 
process. The vertical aging overpack has a bolted lid on the top of the structure that provides 
shielding and protects the inserted canister during the aging process. The reinforced concrete 
sidewalls and top of the overpack provide shielding and protection against natural phenomena, such 
as tornadoes, earthquakes, high winds, and ambient-temperature extremes. The design of the 
vertical aging overpacks permits placement on the aging pads without the requirement for seismic 
restraints or other tie-downs. The vertical aging overpacks have a maximum fully loaded weight of 
250 tons, a maximum overpack diameter of 12 ft, and a maximum overpack height of 22 ft. A 
conceptual vertical aging overpack is shown in Figure 1.2.7-6.

The vertical aging overpacks are equipped with air inlets and outlets at the tops and bottoms to 
permit removal of heat. The ventilation air is passively drawn through the bottom air inlets of the 
overpack into the annular area between the canister and the metal wall of the aging overpack internal 
cavity. It then passes up the side of the canister by thermosiphon action (convective movement) and 
is discharged from the outlet vents. The inlet and outlet vent designs are offset such that radiation 
streaming is precluded. The vertical aging overpacks are equipped with temperature sensors to 
measure outlet air temperature. Temperature measurement and monitoring is used to ensure 
adequate, passive-cooling thermal performance. The vertical aging overpack is provided with 
removable screens at the inlet to the lift slots and in the air outlets to keep wildlife and debris from 
disturbing the airflow. Worker exposure during setup at the aging pad is minimized with a 
single-point sensor plug connection to the temperature monitors. Contact dose rates on the vertical 
aging overpack surface and vents do not exceed 40 mrem/hr.

The vertical aging overpack is designed such that its center of gravity and the coefficient of friction 
between the concrete pad and the bottom of the overpack are sufficiently low to ensure that it will 
not tip over during a seismic event.

The vertical aging overpack systems withstand a beyond design basis ground motion (DBGM) 
seismic event, as defined in Table 1.2.2-3, without tipover, without exceeding canister stress or 
normal leakage limits, without sliding into other overpacks, and without exceeding short-term 
waste form temperature limits. The vertical aging overpack systems must withstand a seismic event 
characterized by horizontal and vertical peak ground accelerations of 96.52 ft/s2 (3 g) without 
tipover and without exceeding canister leakage rates.

1.2.7.1.3.2.2 Horizontal Aging Modules for Dual-Purpose Canisters

The horizontal aging modules are used solely for horizontal DPCs. The horizontal DPC is a right 
circular cylinder with metal walls. Like the vertical DPC, it has an internal basket to support the SNF 
— —
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and to maintain a critically safe geometry. The horizontal aging module cavity has rails to cradle the 
DPC. The horizontal aging modules are designed to accommodate a range of horizontal DPCs. 
When the horizontal aging module is to receive a DPC shorter than the length of the rails, a fixed 
position stop is preinstalled in the horizontal aging module. This stop is used to limit the axial shift 
of the DPC during seismic events.

The horizontal aging module is a box-like, thick-walled reinforced concrete structure with a 
removable access door in the front to permit horizontal loading of the canister. The horizontal aging 
module is loaded and unloaded at the aging pad area. Inside the module, the canisters rest on rails. 
The heavily reinforced concrete sidewalls and top provide shielding and protection against natural 
phenomena, such as tornadoes, earthquakes, high winds, and ambient temperature extremes. The 
horizontal aging modules are designed to protect the canister from exceeding canister stress limits 
and leakage rates or short-term temperature limits given a beyond DBGM seismic event.

The horizontal aging module protects the canister from breach given a drop of a load such as an end 
plate cover (lid) from a horizontal shielded transfer cask or the mobile crane boom onto the 
horizontal aging module. A shield wall is used behind each horizontal aging module and at each end 
of the rows to supplement the shielding and reduce the radiation dose emanating from the horizontal 
aging modules. Contact dose rates on accessible surfaces of the horizontal aging modules do not 
exceed 40 mrem/hr. The horizontal aging modules have a minimum concrete shielding thickness of 
nominally 3 ft. The maximum height of a horizontal aging module is nominally 21 ft. The 
maximum width of a horizontal aging module is nominally 8 ft 6 in. The minimum length (with the 
minimum of 3 ft of shielding) of a horizontal aging module is nominally 23 ft 4 in.

The horizontal aging modules are configured with vents and flow paths to permit natural circulation 
airflow to transfer the heat from the canister to the atmosphere. The horizontal aging modules 
containing DPCs are equipped with temperature sensors to measure outlet air temperature. The 
horizontal aging module is provided with removable screens at the air inlet and at the air outlet to 
keep wildlife and debris from disturbing the airflow. Worker exposure during placement of a 
canister into a horizontal aging module is minimized with a single-point sensor plug connection to 
the temperature monitors. Figure 1.2.7-7 shows operations associated with horizontal aging 
modules.

1.2.7.1.3.3 Overpack Transfer 

The overpack transfer component includes equipment capable of moving aging overpacks and 
transportation casks containing horizontal DPCs between the handling facilities and the aging pads.

Loaded, vertical aging overpacks are moved to and from the aging pads using a bottom-lift site 
transporter. Section 1.2.8.4 provides further details for the bottom-lift site transporter.

For the horizontal DPCs going to aging, transportation casks, including the support skid designed 
for shipping horizontal canisters by rail, are removed from the railcars and placed on horizontal 
transfer trailers at the RF. The horizontal transfer trailers are designed for docking at the portal of 
the horizontal aging modules. The positioning equipment is an integral part of the transfer trailer.
— —
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Additional equipment is needed to facilitate the transfer of canisters to the horizontal aging 
modules. This includes a hydraulic ram system that inserts through a portal in the appropriate end 
of the transportation cask and pushes the loaded canister into the horizontal aging module. A ram 
is also used to withdraw the horizontally placed DPCs from the horizontal aging module to a 
shielded transfer cask to enable the DPC to be moved to the WHF. Figure 1.2.7-7 shows the transfer 
process for horizontal DPCs. The unloading process is the reverse of loading. The hydraulic ram is 
specifically designed to limit the maximum push and pull forces to prevent permanent deformation 
to the DPCs handled by the unit.

A shielded transfer cask is used for movement of horizontal DPCs from the horizontal aging 
modules at the aging pad to the WHF. The shielded transfer cask is compatible with the horizontal 
transfer trailer. The shielded transfer cask is designed to dock to the horizontal aging module in a 
manner similar to that of the transportation cask. The shielded transfer cask, like the transportation 
cask, is a heavy-walled, right circular cylinder that provides shielding to the personnel working 
around the cask. Section 1.2.8.4 provides detail on site transportation equipment.

1.2.7.2 Operational Processes
[NUREG-1804, Section 2.1.1.2.3: AC 6]

The Aging Facility provides for aging commercial SNF. Overpacks used by the Aging Facility will 
be loaded in accordance with an overpack-specific loading plan. Prior to receipt of a DPC or TAD 
canister, detailed analyses will be performed to develop aging overpack-specific performance 
requirements to define the loading limits associated with the aging overpack system. These 
performance requirements will be maintained in the Technical Requirements manual and will 
define the range of waste form characteristics that are acceptable for the aging overpack system such 
that the waste form within a specific aging overpack system meets both the thermal and shielding 
limits of the system and the nuclear safety design bases. Only those canisters that meet the defined 
performance requirement will be loaded into an appropriate aging overpack. Each aged canister will 
have an individual aging plan that, based on reactor records and heat generation decay curves, will 
have a predetermined aging time on the pad. Once the thermal output of the canister is below defined 
emplacement limits it will be made available for emplacement. The operations group will determine 
the appropriate time to move the canister into the WHF or a CRCF for placement into a waste 
package and subsequent emplacement based on emplacement drift loading plans described in 
Section 1.3.1. Figure 1.2.7-1 illustrates the Aging Facility operational interfaces and processes. 
Each canister placed in an overpack will be recorded in plant records to ensure that accurate later 
recovery and placement in a waste package can be performed and that traceability of waste is 
maintained.

Processing DPCs received from a utility requires opening the DPCs and transferring the SNF 
contents to a TAD canister. To accomplish this, the DPC will be opened and unloaded in the WHF, 
and the SNF assemblies will be moved one at a time into the TAD canister. Some DPCs that contain 
high-heat assemblies may be placed directly on the aging pad after they are placed in aging 
overpacks. The aging of these DPCs will continue until the thermal power of the assemblies permits 
emplacement.
— —
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As the maintenance and repair activities associated with the aging pads are expected to occur only 
on an as-needed basis, no regularly scheduled maintenance is planned. The aging overpacks are 
expected to be inspected quarterly.

The Aging Facility interfaces with the following facilities and systems that perform or support 
waste handling operations:

• RF

• CRCFs

• WHF

• CCCF

• Support systems, such as electrical power, electrical support, communications, digital 
control and management information, fire protection, environmental and meteorological 
monitoring, radiation and radiological monitoring, and handling

• Miscellaneous repository facilities (e.g., utilities)

• Safeguards and security systems and programs.

1.2.7.2.1 Aging and Staging in Vertical Orientation

The aging process for vertical aging overpacks involves preparation of vertical aging overpacks for 
loading, transferring canisters into the vertical aging overpacks, and moving vertical aging 
overpacks to the aging pad.

Empty vertical aging overpacks are stored in the Aging Overpack Staging Facility (Section 1.2.8) 
until needed for loading at one of the handling facilities. When needed, a vertical aging overpack is 
delivered to a handling facility for loading. Canistered commercial SNF is transferred to and from 
overpacks in the RF, WHF, and CRCF.

At the handling facilities, vertical DPCs or TAD canisters containing commercial SNF are loaded 
into vertical aging overpacks. Overpacks containing TAD canisters or DPCs do not require seal 
monitoring or cavity inerting because the sealed canister provides the containment function and the 
canister has been previously inerted. The vertical aging overpack lids are manually bolted within the 
handling facilities. The location and contents of each aging overpack on the aging pad will be 
identified and maintained consistent with the Material Control and Accounting Plan as described in 
GI Section 4. Unique identifiers are recorded and checklists are completed to ensure that the aging 
overpacks comply with loading parameters and limits.

At the aging pad, shielding and loading plans are utilized to reduce the amount of radiation exposure 
to the workers by reducing the amount of time that they are in proximity to multiple aging overpacks 
on the same pad.
— —
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1.2.7.2.2 Aging in Horizontal Orientation

A transportation cask that arrives with a commercial DPC that is to be aged in a horizontal aging 
module is unloaded directly from the railcar at the RF onto a horizontal transfer trailer. The cask and 
trailer are then towed to the appropriate aging pad. The contents of each horizontal canister are 
recorded, along with the horizontal aging module used to age each canister. The location and 
contents of each horizontal aging module on the aging pad will be identified and maintained 
consistent with the Material Control and Accounting Plan as described in GI Section 4. Unique 
identifiers are recorded and checklists are completed to ensure that the horizontal aging modules 
comply with loading parameters and limits.

The transportation cask lid bolts and lid are removed manually at the pad with the aid of a mobile 
crane, and the transportation cask is aligned to a horizontal aging module. The horizontal aging 
module access door is opened using the mobile crane, and the transportation cask is docked to the 
horizontal aging module to provide shielding (Figure 1.2.7-7). Leveling jacks are used to stabilize 
the transfer trailer while transferring the canister to a horizontal aging module. A hydraulic ram 
driven by a hydraulic power unit is aligned behind the transportation cask so that the hydraulic ram 
can be engaged to grapple rings on the appropriate end of the horizontal DPC. The hydraulic ram 
cylinders are actuated to insert the horizontal DPC into the horizontal aging module. Transfer is 
accomplished using guide rails inside the horizontal aging module. Once the canister is transferred 
to the horizontal aging module, the empty transportation cask and trailer are removed. The 
horizontal aging module access door is closed. When the aging process is complete, the process is 
reversed, using a shielded transfer cask and horizontal transfer trailer. The shielded transfer cask is 
similar in construction to the transportation cask. The horizontal transfer trailer moves the loaded 
cask to the WHF.

1.2.7.3 Safety Category Classification
[NUREG-1804, Section 2.1.1.6.3: AC 2(2)]

The aging pads, aging overpacks with TAD canisters or DPCs, and cask transfer equipment are 
classified as ITS (Table 1.9-1).

1.2.7.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects
[NUREG-1804, Section 2.1.1.6.3: AC 2(2)]

There is a procedural safety control to limit the acceptable surface contamination of TADs and 
DPCs placed on the aging pads in aging overpacks or horizontal aging modules. In most cases, the 
procedural safety control is performed in the waste handling facilities during canister transfer. For 
horizontal DPCs, the procedural safety control is performed when the horizontal DPCs are 
transferred to the horizontal aging modules. Because this procedural safety control is not specific to 
the Aging Facility, it is addressed in Table 1.2.1-3.
— —
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1.2.7.5 Design Bases and Design Criteria
[NUREG-1804, Section 2.1.1.6.3: AC 1(2)(h), AC 2(2); 2.1.1.7.3.1: AC 1(1), (2), (3), 
(5), (6), (9)]

The nuclear safety design bases for ITS and important-to-waste-isolation (ITWI) structures, 
systems, and components (SSCs) and features are derived from the preclosure safety analysis 
presented in Sections 1.6 through 1.9 and the postclosure performance assessment presented in 
Sections 2.1 through 2.4. The nuclear safety design bases identify the safety functions to be 
performed and the controlling parameters with values or ranges of values that bound the design.

The quantitative assessment of event sequences, including the evaluation of component reliability 
and the effects of operator action, is developed in Section 1.7. SSCs or procedural safety controls 
appearing in an event sequence with a prevention or mitigation safety function are described in the 
applicable design section of the SAR.

Section 1.9 describes the methodology for safety classification of SSCs and features of the 
repository. The tables in Section 1.9 present the safety classification of the SSCs and features. These 
tables also list the preclosure and postclosure nuclear safety design bases for each structure, system, 
or major component.

To demonstrate the relationship between the nuclear safety design bases and the design criteria for 
the repository SSCs and features, the nuclear safety design bases are repeated in the appropriate 
SAR sections for each individual ITS/ITWI SSC or feature that performs a safety function. The 
design criteria are characteristics of the ITS/ITWI SSCs or features that are utilized to implement 
the assigned safety functions.

The nuclear safety design bases and their relationship to design criteria for the Aging Facility are 
provided in Table 1.2.7-1.

1.2.7.6 Design Methodologies
[NUREG-1804, Section 2.1.1.7.3.2: AC 1(1), (2)]

1.2.7.6.1 Seismic Design

The seismic design of the aging pads applies the same design methodologies used to design other 
structures at the geologic repository operations area that are classified as ITS. The seismic design 
of the equipment used by the cask transfer subsystem is consistent with the design methodologies 
applied to the design of mechanical handling equipment classified as ITS. Section 1.2.2 provides 
detailed discussion of the seismic design methodology used for the design of ITS repository surface 
facilities. 

1.2.7.6.2 Structural Design

Each aging pad slab is a reinforced concrete mat supported on grade. The pads are designed to 
withstand loads and load combinations imposed by natural phenomena, such as earthquakes, 
extreme winds, and tornado winds. Section 1.2.2 provides further detail on the structural design of 
the aging pad slabs.
— —
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Prior to the use of any specific aging overpack system (including associated canister) at the 
repository, the canister and overpack systems are evaluated for normal handling loads, dead loads, 
thermal loads, and event sequence loads. The canister and overpack system loadings are compared 
with allowable stress and leakage rate limits. A TAD canister in a system aging overpack shall 
maintain a maximum leakage rate of 1.5 × 10−12 fraction of canister free volume per second 
(normal). The maximum leakage rate of a TAD canister shall be 9.3 × 10−10 fraction of canister free 
volume per second (off-normal). For DPCs in an aging overpack, the maximum canister leakage 
rate is equal to that for which it was designed. The TAD canister containment boundary is designed, 
fabricated, and inspected in accordance with the 2004 ASME Boiler and Pressure Vessel Code
(ASME 2004, Section III, Subsection NB). DPCs are designed to the ASME code of various 
editions depending on the certificate of compliance issued by the U.S. Nuclear Regulatory 
Commission. Details on the structural design of DPCs are provided in Section 1.5.1.

1.2.7.6.3 Shielding Design

The aging overpacks are designed to limit dose rates to less than 40 mrem/hr on contact. Aging 
overpack-specific performance requirements will be developed to define loading limits. These 
overpack-specific performance requirements will be maintained in the Technical Requirements 
Manual for approved aging overpacks. Physical separation between the aging pads and other 
process facilities provides further radiation control to minimize radiation exposures to personnel 
and to meet as low as is reasonably achievable (ALARA) goals.

The aging overpacks are designed to preclude gross shielding failure given the imposition of 
mechanical and thermal loads as described in this section.

Canister source terms and shielding methodology are discussed in Section 1.10.3. Aging overpacks 
are designed so that the combined neutron and gamma contact dose rate on any accessible exterior 
surface does not exceed 40 mrem/hr at any location. This is inclusive of any joints, ventilation ducts, 
and penetrations. Shielding and external dose calculations are performed using flux-to-dose 
conversion factors in accordance with ICRP Publication 60 (ICRP 1991) recommendations as 
implemented in ICRP Publication 74, Conversion Coefficients for Use in Radiological Protection 
Against External Radiation (ICRP 1997) and in ANSI/ANS-6.1.1-1991, American National 
Standard for Neutron and Gamma-Ray Fluence-to-Dose Factors.

1.2.7.6.4 Criticality Design

Each canister is designed to preclude the potential for criticality of the commercial SNF contained 
within the canister. Criticality control measures are integral to the canister. The canister design 
prevents the potential for criticality during aging. Criticality safety for the Aging Facility is 
discussed in Section 1.14.

1.2.7.6.5 As Low as is Reasonably Achievable Design

As described in Section 1.10, the design of the Aging Facility incorporates features and principles 
that ensure occupational and public radiation doses are kept ALARA. This principle is part of the 
overall radiation protection program established for the geologic repository operations area, in 
— —
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accordance with the requirements of 10 CFR Part 20. The Aging Facility is designed to ensure that 
individual and collective annual doses are maintained ALARA during normal operations.

Specific ALARA considerations incorporated in the design of the Aging Facility include:

• Using a shield wall behind each horizontal aging module at each end of the rows to 
supplement the shielding and reduce the radiation dose emanating from the horizontal 
aging module

• Using remotely monitored temperature-sensing components

• Spacing of aging overpacks to reduce dose rates to workers and to reduce the time 
required for placement and removal of overpacks

• Minimizing worker exposure during setup at the aging pad with a single-point sensor plug 
connection to the temperature monitors

• Designing of vertical aging overpacks to remain stable without anchor bolts or straps to 
minimize setup time

• Locating the Aging Facility a sufficient distance from the handling and miscellaneous 
repository facilities to minimize doses. Posting or fencing surrounding the aging pad area 
indicates the boundary where a hypothetical nonradiological worker would receive a dose 
of 100 mrem/yr

• Locating the Aging Facility a sufficient distance from handling and support facility 
construction activities so that exposures are a small fraction of the 10 CFR Part 20 limits 
for the onsite public.

1.2.7.6.6 Thermal Design

Aging overpacks are designed to ensure adequate passive cooling to maintain waste form and 
material temperature limits. Aging overpack-specific performance requirements will be developed 
to define thermal loading limits. These performance requirements will be maintained in the 
Technical Requirements Manual for approved aging overpacks. Waste form temperature limits are 
provided in Section 1.5.1. Material temperature limits are from design codes and standards listed in 
Section 1.2.7.8.

A canister in an aging overpack maintains off-normal leakage rates when exposed to a fire supplied 
by 100 gal of diesel fuel with an additional surrogate fully engulfing fire of twice the duration of the 
fuel fire with a steady state release rate of 10 MW. The aging overpack and canister protects the 
cladding from exceeding the short-term cladding temperature limits given the occurrence of this 
fire. Combustible material control is described in Section 1.4.3.
— —
1.2.7-13



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SARDocket No. 63–001
1.2.7.7 Consistency of Materials with Design Methodologies
[NUREG-1804, Section 2.1.1.7.3.3(I): AC 2(1), (2), (3)]

The selection of construction materials for the Aging Facility SSCs is consistent with the 
recommendations contained in the industry codes and standards identified in Section 1.2.7.8. There 
are no unique or first-of-a-kind material applications for the Aging Facility SSCs. The aging pads 
consist of reinforced concrete designed and constructed in accordance with ACI 349-01/349R-01,
Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349-01) and Commentary 
(ACI 349R-01). Concrete for aging overpacks is formulated per ACI 349-01/349R-01. Reinforcing 
steel complies with ASTM A 706/A 706M-06a, Standard Specification for Low-Alloy Steel 
Deformed and Plain Bars for Concrete Reinforcement, or ASTM A 615/A 615M-06a, Standard 
Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.

1.2.7.8 Design Codes and Standards
[NUREG-1804, Section 2.1.1.7.3.3(I): AC 1(1)]

The principal codes and standards applicable to the design of the aging pads, concrete vertical 
overpacks, concrete horizontal aging modules, and reinforcing steel are:

• ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in 
Nuclear Facilities

• ACI 349-01/349R-01, Code Requirements for Nuclear Safety Related Concrete Structures 
(ACI 349-01) and Commentary (ACI 349R-01)

• ANSI/ANS-6.4-1997, Nuclear Analysis and Design of Concrete Radiation Shielding for 
Nuclear Power Plants, Appendix A.

The principal codes and standards applicable to the design of the cask tractor and trailer 
mechanical handling components are:

• ANSI/ITSDF B56.9, Safety Standard for Operator Controlled Industrial Tow Tractors 

• ANSI N14.30-1992, Semi-Trailers Employed in the Highway Transport of 
Weight-Concentrated Radioactive Loads—Design, Fabrication, and Maintenance, 
Nuclear Materials.

1.2.7.9 Design Load Combinations
[NUREG-1804, Section 2.1.1.7.3.3(I): AC 4(1), (2)]

The structural loads and load combinations used in the design of ITS structures, including the aging 
pads, are presented in Section 1.2.2.

The canister and overpack system will be evaluated for normal handling loads, dead loads, thermal 
loads, and event sequence loads. The aging overpack systems will withstand the natural-phenomena 
loading parameters at Yucca Mountain as shown in Table 1.2.2-1 without tipover, without sliding 
— —
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into other overpacks, without exceeding canister stress and leakage limits, and without exceeding 
waste form or material temperature limits.
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Design Criteria

pack is required to be designed for loads 
 impact or collision.

pack is required to be designed for loads 
 drops.

pack is required to be designed for loads 
 impact or collision.

pack is required to be designed for loads 
 drops.

pack is required to be designed for loads 
 impact or collision.

pack is required to be designed for loads 
 drops.
Table 1.2.7-1.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Crite

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function
Controlling Parameters and 

Values

Aging Facility 
(AP) 

Aging Handling/ 
Aging Overpack 

Aging Overpack 
(TAD: 170-HAC0- 
ENCL-00003) 
(Vertical DPC: 170- 
HAC0-ENCL-00002)

Protect against 
direct exposure to 
personnel

AP.CR.HAC.01. The mean 
conditional probability of loss of 
shielding of the aging overpack 
resulting from an impact or 
collision shall be less than or equal 
to 1 × 10−5 per impact. 

The aging over
associated with

AP.CR.HAC.02. The mean 
conditional probability of loss of 
shielding of the aging overpack 
resulting from a drop shall be less 
than or equal to 5 × 10−6 per drop.

The aging over
associated with

AP.WH.HAC.01. The mean 
conditional probability of loss of 
shielding of the aging overpack 
resulting from an impact or 
collision shall be less than or equal 
to 1 × 10−5 per impact.

The aging over
associated with

AP.WH.HAC.02. The mean 
conditional probability of loss of 
shielding of the aging overpack 
resulting from a drop shall be less 
than or equal to 5 × 10−6 per drop.

The aging over
associated with

AP.RF.HAC.01. The mean 
conditional probability of loss of 
shielding of the aging overpack 
resulting from an impact or 
collision shall be less than or equal 
to 1 × 10−5 per impact.

The aging over
associated with

AP.RF.HAC.02. The mean 
conditional probability of loss of 
shielding of the aging overpack 
resulting from a drop shall be less 
than or equal to 1 × 10−5 per drop.

The aging over
associated with
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 shall be located such that there is a distance of at 
ile between the aging pads and the repository 

sment of the pad is performed to develop the 
Convolution of the fragility curve and seismic 
as described in Section 1.7) is performed to 
mpliance.

aging modules are required to be designed in 
th ACI 349-01/349R-01 for loads associated with 
ion.

aging modules are required to be designed in 
h ACI 349-01/349R-01 for loads and accelerations 
 a beyond DBGM seismic event.

pack is required to be designed for loads 
 impact or collision.

 the Aging Facility (Continued)

Design Criteria
Aging Facility 
(AP)

Aging Handling/ 
Aging Pad

Aging Pad Protect ITS SSCs 
from external 
events

AP.SB.01. The aging pads shall be 
located such that there is a 
distance of at least one-half mile 
between the aging pads and the 
repository heliport.

The aging pads
least one-half m
heliport.

Protect against 
aging overpack 
tipover

AP.SB.02. The mean frequency of 
aging pad structure failure causing 
aging overpack tipover due to the 
spectrum of seismic events shall 
be less than or equal to 1 × 10−5 
per year.

Fragility asses
fragility curve. 
hazard curve (
demonstrate co

Aging Handling/ 
Aging Overpack

Horizontal Aging 
Module 
(170-HAC0- 
ENCL-00001)

Protect against 
direct exposure to 
personnel

AP.SB.HAC.01. The mean 
conditional probability of loss of 
horizontal aging module gamma 
shielding due to an impact or 
collision shall be less than or equal 
to 1 × 10−5 per impact.

The horizontal 
accordance wi
impact or collis

Protect against 
structural 
collapse onto a 
waste container

AP.SB.HAC.02. The mean 
frequency of collapse of the 
horizontal aging module structure 
due to the spectrum of seismic 
events shall be less than or equal 
to 2 × 10−6 per year.

The horizontal 
accordance wit
associated with

Aging Overpack 
(TAD: 170-HAC0- 
ENCL-00003) 
(Vertical DPC: 170- 
HAC0-ENCL-00002)

Protect against 
direct exposure to 
personnel

AP.SB.HAC.06. The mean 
conditional probability of loss of 
shielding of the aging overpack 
resulting from an impact or 
collision shall be less than or equal 
to 1 × 10−5 per impact.

The aging over
associated with

Table 1.2.7-1.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function
Controlling Parameters and 

Values
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pack is required to be designed for loads 
 drops.

pack is required to be designed to prevent it from 
ther aging overpack on an aging pad for a beyond 
 event.

pack is required to remain upright and free 
 and after a seismic event characterized by the 
vertical peak ground accelerations of 96.52 ft/s2 

ction features are required to be located and sized 
inundation of the ITS structures due to a flood 
 the probable maximum precipitation event.

 the Aging Facility (Continued)

Design Criteria
Aging Facility 
(AP) (Continued)

Aging Handling/ 
Aging Overpack 
(Continued)

Aging Overpack 
(TAD: 170-HAC0- 
ENCL-00003) 
(Vertical DPC: 170- 
HAC0-ENCL-00002) 
(Continued)

Protect against 
direct exposure to 
personnel 
(Continued)

AP.SB.HAC.07. The mean 
conditional probability of loss of 
shielding of the aging overpack 
resulting from a drop at the 
equipment base shall be less than 
or equal to 5 × 10−6 per drop.

The aging over
associated with

Protect against 
sliding of an 
aging overpack

AP.SB.HAC.08. The mean 
frequency of sliding of an aging 
overpack (with a waste container) 
into another aging overpack on the 
aging pad due to the spectrum of 
seismic events shall be less than 
or equal to 5 × 10−6 per year.

The aging over
sliding into ano
DBGM seismic

Protect against 
tipover of an 
aging overpack

AP.SB.HAC.09. The mean 
frequency of tipover of the aging 
overpack on the aging pad due to 
the spectrum of seismic events 
shall be less than or equal to 
5 × 10−8 per year.

The aging over
standing during
horizontal and 
(3 g).

Balance of Plant 
(SB)

Flood Protection Flood Control 
Features

Protect ITS SSCs 
from external 
flooding events

SB.01. The site flood control 
features will be designed to the 
probable maximum flood.

The flood prote
to prevent the 
associated with

Table 1.2.7-1.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function
Controlling Parameters and 

Values
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pack and canister are required to be designed 
anister maximum effective plastic strain from a 
 required reliability when evaluated against the 
ity curves.

nalysis depends on the combination of the 
ach component.)

pack and canister are required to be designed 
anister maximum effective plastic strain from a 
 required reliability when evaluated against the 
ity curves.

nalysis depends on the combination of the 
ach component.)

aging module and canister are required to be 
 that the canister maximum effective plastic strain 
ets the required reliability when evaluated against 
pacity curves.

nalysis depends on the combination of the 
ach component.)

aging module and canister are required to be 
 that the canister maximum effective plastic strain 
 impact or collisions meets the required reliability 

d against the canister capacity curves.

nalysis depends on the combination of the 
ach component.)

 to confirm that the controlling parameters and 

n) with the seismic hazard curve.  

et Handling Facility. 

 the Aging Facility (Continued)

Design Criteria
DOE and 
Commercial 
Waste Package 
System (DS)

Canistered Spent 
Nuclear Fuel

DPC and TAD 
Canister  
(Both Analyzed as a 
Representative 
Canister)

Provide 
containment 

DS.SB.03. The mean conditional 
probability of breach of a canister 
within an aging overpack following 
a drop shall be less than or equal 
to 1 × 10−5 per drop.

The aging over
such that the c
drop meets the
canister capac

(Note: PCSA a
reliabilities of e

DS.SB.04. The mean conditional 
probability of breach of a canister 
within an aging overpack resulting 
from a side impact or collision shall 
be less than or equal to 1 × 10−8 
per event

The aging over
such that the c
drop meets the
canister capac

(Note: PCSA a
reliabilities of e

DOE and 
Commercial 
Waste Package 
System (DS) 
(Continued)

Canistered Spent 
Nuclear Fuel 
(Continued)

DPC and TAD 
Canister (Analyzed 
as a Representative 
Canister) (Continued)

Provide 
containment 
(Continued)

DS.SB.05. The mean conditional 
probability of breach of a canister 
in a horizontal aging module 
resulting from a collision or side 
impact shall be less than or equal 
to 1 × 10−8 per event.

The horizontal 
designed such
from a drop me
the canister ca

(Note: PCSA a
reliabilities of e

DS.SB.06. The mean conditional 
probability of breach of a canister 
resulting from a drop of a load onto 
a horizontal aging module shall be 
less than or equal to 1 × 10−5 per 
drop.

The horizontal 
designed such
from low speed
when evaluate

(Note: PCSA a
reliabilities of e

NOTE: “Protect against” in this table means either “reduce the probability of” or “reduce the frequency of.”  
For casks, canisters, and associated handling equipment that were previously designed, the component design will be evaluated
values are met. 
Seismic control values shown represent the integration of the probability distribution of SSC failure (i.e., the loss of safety functio
The numbers appearing in parentheses in the third column are component numbers.  
Facility Codes: AP: Aging Facility; CR: Canister Receipt and Closure Facility; RF: Receipt Facility; SB: Balance of Plant; WH: W
System Codes: DS: DOE and Commercial Waste Package. 
Subsystem Codes: HAC: Aging Overpack.

Table 1.2.7-1.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function
Controlling Parameters and 

Values
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Figure 1.2.7-1. Surface Facilities Overview and Interface 
Relationship Chart
NOTE: HAM = horizontal aging module; STC = shielded transfer cask.
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Figure 1.2.7-2.  Aging Pad Area Locations

NOTE: Security fence is the protected area barrier. This figure is truncated for clarity. The surface elevations of the 
individual pads are arranged to assist site drainage.
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Figure 1.2.7-3.  Aging Pad 17P Plan

NOTE: Dimensions shown are nominal.
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Figure 1.2.7-4. Aging Pad 17R Plan
NOTE: Dimensions shown are nominal.
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Figure 1.2.7-5. Temperature Monitoring System for Vertical Aging Overpack (a) and Horizontal Aging 
Module (b)

NOTE: H = high temperature alarm in the CCCF.
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Figure 1.2.7-6.  Typical Vertical Aging Overpack
— —
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Figure 1.2.7-7. Loading/Retrieval Typical Horizontal 
Aging Module
NOTE: Solid, horizontal arrows show progression of operations. 
Dashed-line, horizontal arrows indicate direction of travel. 
CTT = cask transfer trailer; HAM = horizontal aging module; HDPC = horizontal 
dual-purpose canister; HTC = horizontal transfer cask; TC = transportation cask.
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1.2.8 Balance of Plant Facilities
[NUREG-1804, Section 2.1.1.2.3: AC 1, AC 2, AC 6; Section 2.1.1.6.3: AC 1, AC 2; 
Section 2.1.1.7.3.1: AC 1; Section 2.1.1.7.3.2: AC 1; Section 2.1.1.7.3.3(I): AC 1, AC 2, 
AC 4; HLWRS-ISG-02 Section 2.1.1.2.3: AC 2]

The design and operation of the balance of plant facilities and the systems within those facilities are 
described in this section. Information related to the generic features of structural design and heating, 
ventilation, and air-conditioning (HVAC) design, as applicable to the important to safety (ITS) 
structures, systems, and components (SSCs) in balance of plant facilities, is provided in 
Sections 1.2.2.1 and 1.2.2.3, respectively. Infrastructure information specific to the balance of plant 
facilities related to the electrical power, controls and monitoring, fire protection, plant service, and 
waste management is provided in Sections 1.4.1 to 1.4.5, respectively.

The location of the balance of plant facilities relative to other surface facilities is shown in 
Figures 1.2.1-1 and 1.2.1-2; the numbers in parentheses below for balance of plant facilities are the 
area numbers identified in Figures 1.2.1-1 and 1.2.1-2. The distance of the geologic repository 
operations area (GROA) facilities from the site boundary is shown in Figure 1.1-1.

1.2.8.1 Balance of Plant Facility Descriptions
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2(1), (2), (3), AC 6; Section 
2.1.1.6.3 AC 1(2)(e)]

The list provided in Table 1.2.8-1 represents the balance of plant facilities and identifies the balance 
of plant facilities that are classified as non-ITS. There are no nuclear safety design bases for the 
structures of the balance of plant facilities.

In surface transportation facilities, the site transporter, cask tractor and cask transfer trailers, site 
prime mover, and transportation casks are classified as ITS. The site roads and rails are classified 
as non-ITS.

1.2.8.1.1 Facility Descriptions

1.2.8.1.1.1 Emergency Diesel Generator Facility

The Emergency Diesel Generator Facility (EDGF) (Area 26D) is designed to house the two 
independent 13.8 kV ITS diesel generators (Trains A and B) and the supporting mechanical systems 
for those two diesel generators. The system design and operations for the ITS electric power system 
and description of the interfaces between the ITS electric power system with the various Yucca 
Mountain electrical equipment are provided in Section 1.4.1. No radioactive material is present 
within the EDGF, and radioactive waste management, shielding, and criticality design are not 
applicable to the EDGF and its systems.

The EDGF is a non-ITS surface structure that is located between the Wet Handling Facility (WHF) 
and Canister Receipt and Closure Facility 1 (CRCF 1) northeast of the North Portal of the repository. 
In the event of loss of power from an offsite source, the ITS diesel generators in the EDGF are 
designed to provide 13.8 kV power to ITS loads in the CRCFs and the WHF. The EDGF is 
physically separated from the other surface buildings to isolate it from interactions with the other 
— —
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facilities during a seismic event. The location of the EDGF relative to the other surface facilities is 
shown on Figure 1.2.1-2.

The general arrangement floor plan for the ground floor and the associated legend are shown on 
Figures 1.2.8-1 and 1.2.8-2. The roof plan is shown in Figure 1.2.8-3. Cross-section views of the 
facility are shown in Figures 1.2.8-4 through 1.2.8-7.

The overall footprint of the EDGF is approximately 174 ft wide by 98 ft long. The height of the 
building is 23 ft above grade.

The foundation of the EDGF is a reinforced concrete mat having the necessary thickness to support 
the superstructure and the ITS diesel generators. The foundation mat for the EDGF structure is 4 ft 
thick. The ITS diesel generators are founded on the foundation mat of the main structure. The 
superstructure consists of 3-ft-thick exterior walls and 2-ft-thick interior concrete shear walls. 
Concrete walls that are 2 ft thick separate internal rooms. The roof diaphragm slab is a 3-ft-thick 
concrete slab. The ancillary items near the EDGF structure are external pads near the structure that 
support equipment such as normal power transformers. These ancillary equipment pads are 
structurally independent of the main concrete structure.

A monorail hoist with a capacity of 2 tons provides the capability for lifting equipment in each 
generator room and is used to transfer parts to and from the ITS diesel generators and to and from 
maintenance areas within the EDGF. The hoist is capable of handling the largest serviceable part of 
the ITS diesel generator. The hoist is not used when the ITS diesel generator is operating. It is parked 
away from the ITS diesel generators when not in use. The monorail hoist has been classified as 
non-ITS.

Each ITS diesel generator, including the turbocharger, is housed within its own generator room. The 
generator rooms include a suitable allowance for piping connections and auxiliary equipment that 
is mounted on the engine frame (e.g., connection box, lubrication oil equipment, cooling water 
piping, and governor and generator auxiliaries). The diesel generator set is provided with a 
turbocharger, inlet air filter and silencer, exhaust gas silencer, muffler, and stack. The controls for 
each ITS diesel generator are provided in the adjacent, dedicated switchgear room. The controls and 
instrumentation are sufficient to monitor the performance of the generator and engine as well as the 
condition of both the ITS and normal electrical buses from within each switchgear room of the 
EDGF. Sufficient 125 V DC batteries and inverters are provided to ensure that the ITS demands for 
the EDGF itself are met whenever there is an interruption of normal power.

The two ITS diesel generators are designed as stationary backup units and are capable of meeting 
the ITS equipment electrical loads. In the event of a loss of normal power, the ITS diesel generators 
in the EDGF are designed to provide 13.8 kV power to the ITS power demands via separate ITS 
transformers, load centers, and motor control centers that are located in the CRCFs and WHF. Each 
of the two ITS diesel generators is sized to accommodate ITS loads from the handling facilities.
— —
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An overview of the major areas within the EDGF is provided below.

Generator Rooms (Rooms 1001 and 1011)—The generator room for each train contains the ITS 
diesel generator and turbocharger, 2-ton monorail hoist, jacket water pumps, fuel oil day tank, 
engine combustion air intake silencer, and the air start skid.

Switchgear Rooms (Rooms 1002 and 1012)—The switchgear room for each train contains a 
transformer, 13.8 kV ITS switchgear, transformer, battery charger, uninterruptible power supply, 
and motor control center.

Battery Rooms (Rooms 1003 and 1013)—The battery room for each train is located within the 
switchgear rooms and contains a battery rack of ITS uninterruptible power supply batteries.

Mechanical Rooms (Rooms 1004 and 1014)—The mechanical room for each train contains the 
air handling unit and fan coil unit.

1.2.8.1.1.2 Administration Facility (Area 620)

The Administration Facility is a multifunctional area that provides space and layout for offices, food 
services, training, computer operations, and emergency operations. Two major areas within the 
facility are the computer operations center and the Emergency Operations Center. The computer 
operations center provides space and services for local network equipment and functions. The 
Emergency Operations Center provides space for emergency management services and functions so 
that it is fully capable of functioning as an alternate technical support center and as a near-site 
emergency operations facility if, or when, activated by the emergency plan.

In order to facilitate management and operation of the Emergency Operations Center, dedicated 
computers and phone lines are provided to support the Emergency Operations Center functions. 
Video-teleconference capability is provided for an Emergency Operations Center secure conference 
room.

Radiation monitoring systems are provided in the Emergency Operations Center composed of 
installed monitors or portable monitoring equipment dedicated to the Emergency Operations 
Center. These systems continuously indicate radiation dose rates and airborne radioactivity 
concentrations inside the Emergency Operations Center while it is in use during an emergency. 
These monitoring systems include local alarms with trip levels set to provide early warning to 
Emergency Operations Center personnel of adverse conditions that may affect the habitability of the 
Emergency Operations Center.

The Emergency Operations Center has reliable voice communications to the Central Control 
Center, Emergency Operations Facility, the facility operations rooms, U.S. Nuclear Regulatory 
Commission, and state and local emergency operations centers. The normal communication path 
between the Emergency Operations Center and the facility operations rooms is through the Central 
Control Center.
— —
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1.2.8.1.1.3 Security Facilities (Areas 30A, 30B, 30C, 65A, and 65B)

The security facilities include areas that provide space and layout for security staff. These include 
the Central Security Station (Area 30A), Cask Receipt Security Station (Area 30B), North Perimeter 
Security Station (Area 30C), and administration security stations (Areas 65A and 65B). The North 
Perimeter Security Station only functions as an exit facility from the protected area. The Cask 
Receipt Security Station also functions, for the receipt of cask shipments, as the point of custody 
transfer (from the transportation system to the repository). The secondary alarm station is located 
in the Cask Receipt Security Station.

1.2.8.1.1.4 Central Control Center Facility (Area 240)

The CCCF is constructed of concrete and structural steel.

The facility is designed with entrances and exits by means of a central facility corridor that 
physically separates the operational area of the primary alarm station from all other facility features. 
The roof is a concrete slab on metal decking. Figure 1.2.8-8 presents the architectural floor plan of 
the CCCF. The CCCF provides a central location for the monitoring of selected repository 
operations and systems.

The CCCF provides functional space, structures, and internal systems that support the Central 
Control Center, primary alarm station, HVAC rooms, electrical rooms, and central communications 
room. The Central Control Center functions as the technical support center for conducting 
emergency management activities. The technical support center monitors important parameters and 
has redundant emergency communications, a backup power supply, a GROA-wide emergency 
alarm notification system, and an electronic system to provide personnel accountability.

The Central Control Center provides capability to transfer the functions of the technical support 
center (located in the Central Control Center) to the near-site emergency operations facility located 
in the Administration Facility.

The Central Control Center contains human–machine interface consoles, printers, and other 
operational support equipment. A separate engineering configuration room houses other support 
equipment. Central Control Center personnel are protected from radiological hazards, including 
direct radiation and airborne radioactivity from event sequences, to the same degree as personnel in 
handling facility operations rooms. Radiation monitoring systems are provided in the Central 
Control Center, that are composed of installed monitors or portable monitoring equipment 
dedicated to the Central Control Center. These systems continuously indicate radiation dose rates 
and airborne radioactivity concentrations inside the Central Control Center while it is in use during 
an emergency. These monitoring systems include local alarms with trip levels set to provide early 
warning to Central Control Center personnel of adverse conditions that may affect the habitability 
of the Central Control Center. The Central Control Center includes the site communications system, 
which is described in Section 1.4.2.4. The Central Control Center and central communications 
room share an HVAC system and electrical system. The CCCF complies with the applicable 
functional criteria for emergency response facilities provided in NUREG-0696, Functional Criteria 
for Emergency Response Facilities, Final Report (NRC 1981), Section 2.5.
— —
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The primary alarm station is in the CCCF and accommodates key security personnel with work 
areas, security computers, security alarm communication and display system for monitoring alarm 
equipment, on and off-site redundant communication equipment, and a video assessment system 
consisting of closed circuit television cameras and recording system.

1.2.8.1.1.5 Low-Level Waste Facility (Area 160)

The Low-Level Waste Facility (LLWF) is a multistory building designed to accept, manage, and 
store dry active waste and liquid radioactive waste. The general arrangement floor plans and 
associated legend for the LLWF are shown in Figures 1.2.8-9 to 1.2.8-11. The LLWF general 
arrangement sections are shown in Figures 1.2.8-12 to 1.2.8-14. The building is designed as a 
structural steel structure with concrete floor, concrete mat foundation, concrete shield walls, steel 
roof truss system, and interior and external structural steel bracing. Four separate, part-height, 
walled, shielded storage bays are located inside of the building. The four bays provide space and 
concrete shielding for interim storage of packaged waste. Storage is provided in the LLWF for 
wastes contained in boxes, drums, high-efficiency particulate air (HEPA) filters, and high-integrity 
containers. Unloaded dual-purpose canisters (DPCs) are also stored in the LLWF for eventual 
disposal.

The LLWF is physically separated from other buildings to isolate it from interactions with the other 
facilities during a seismic event. The low-level radioactive waste is transported to the facility from 
the Initial Handling Facility (IHF), CRCFs, WHF, and Receipt Facility (RF) via standard vehicular 
transport (e.g., an open flatbed truck), and radiation shielding is provided as needed to transfer items 
(e.g., radioactive filters from the handling facilities). This area has hatches through which waste 
containers are moved. Used DPCs are sent to the LLWF in a shielded transfer cask or other 
acceptable container. A 50-ton-capacity bridge crane has the capability to access the facility to move 
large waste containers. An open process area, located adjacent to the receipt area, contains a scale 
and supply storage area.

Liquid low-level radioactive waste is transported to the LLWF from the IHF, CRCFs, and RF by 
tanker truck or in containers placed on standard vehicular transport, such as an open flatbed truck. 
Liquid low-level radioactive waste from the WHF collection tanks is hard piped directly to the 
low-level radioactive waste collection tanks. Liquid low-level radioactive waste is sampled, 
characterized, and processed by mobile equipment as described in Section 1.4.5.

1.2.8.1.1.6 Warehouse and Non-Nuclear Receipt Facility (Area 230)

The Warehouse and Non-Nuclear Receipt Facility (WNNRF) is a single-story building on a 
reinforced concrete foundation. It provides space, structures, and enclosures for systems that 
support empty waste package storage operations. The WNNRF stores empty new waste packages; 
transportation, aging, and disposal (TAD) canisters; lids; pallets; spread rings; and shield plugs until 
needed. There is no radioactive material contained in the waste packages or TAD canisters received 
or stored in this building. Operations at the WNNRF include receiving and inspecting empty waste 
packages and TAD canisters, pallets, and associated fixtures and handling supplies and storing them 
until needed. Figure 1.2.8-15 shows the WNNRF architectural floor plan. The WNNRF is also 
designated as the operational support center.
— —
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1.2.8.1.1.7 Facilities for Utilities (Areas 25A, 25B, 25C, 26B, 27A, 27B, 28A, 28B, 
28E, and 90A)

The facilities for utilities include individual facilities and areas that provide functional space and 
layout for plant services, electrical power distribution and support, fire water facilities, an 
evaporation pond, a stormwater retention pond, and cooling towers.

The systems and equipment that support repository operations are housed in a separate Utilities 
Facility (Area 25A) and include equipment for the heating and cooling systems and a deionized 
water system.

The normal electrical power system includes the switchyard (138 kV) (Area 27A), the 13.8 kV 
Switchgear Facility (Area 27B), and a Standby Diesel Generator Facility (Area 26B). The 
switchyard provides interface between offsite and onsite electrical power systems. The switchyard 
contains, within the switchyard fence, transmission line towers for the 138 kV offsite power 
sources, main step-down transformers, high-voltage circuit breakers, disconnect switches, and 
surge arrestors. The 13.8 kV Switchgear Facility is located outside the switchyard fence.

Fire water facilities (Areas 28A, 28B, and 28E) include tanks and pump houses.

The evaporation pond (Area 25C) is a lined pond used to collect cooling-tower water (Area 25B), 
deionized water processing packages, blowdown, and treated water from the liquid low-level 
radioactive waste process tank outside the LLWF. The treated water may be discharged to the 
evaporation pond after the water is confirmed to be below the limits prescribed by the operational 
radiation protection program.

A stormwater retention pond (Area 90A) is a lined pond that is used to collect stormwater runoff.

1.2.8.1.1.8 Fire, Rescue, and Medical Facility (Area 63A)

The Fire, Rescue, and Medical Facility is a multifunctional facility that provides space and layout 
for fire protection and fire-fighting services, underground rescue services, and emergency and 
occupational medical services.

1.2.8.1.1.9 Materials and Consumables Facilities (Areas 68A, 68B, and 71B)

Warehouse/central receiving (Area 68A) provides functional space for warehousing and receiving 
materials. The materials and yard storage area (Area 68B) provides functional space for storing 
materials.

The equipment yard/storage (Area 71B) provides functional space for storing equipment.

1.2.8.1.1.10 Maintenance and Repair Facilities (Areas 71A and 220)

The maintenance and repair facilities provide space and layout for craft shops, heavy equipment 
maintenance, and vehicle maintenance.
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The craft shops (Area 71A) include facilities and functional space to provide shop environment 
work areas for trade and craft personnel. The craft shops furnish workspace, shop equipment, 
consumables, tool storage and maintenance, management office, and personnel space.

The Heavy Equipment Maintenance Facility (Area 220) includes facility and functional space for 
performing preventive maintenance and equipment repair associated with the fleet of mobile 
(wheeled and tracked) operational transport equipment used within the GROA. Space is provided 
for maintenance and repair of the TEV, site transporter, and other surface and subsurface 
transportation equipment. If it is deemed necessary to perform work on contaminated equipment in 
the Heavy Equipment Maintenance Facility, it will be performed in accordance with the radiation 
protection program. Figure 1.2.8-16 shows the Heavy Equipment Maintenance Facility 
architectural floor plan.

1.2.8.1.1.11 Aging Overpack Staging Facility (Area 290)

The aging overpack staging facility is an outdoor area for storing empty aging overpacks and 
unloaded (noncontaminated) aging overpacks. The aging overpack staging pad is located southeast 
of CRCF 1 (Area 060). The reinforced concrete pad has sufficient space for storing 18 empty or 
unloaded aging overpacks.

An electrically-operated, rail-mounted, safe-lift double gantry crane (rated at approximately 
300 tons) is used to handle the aging overpacks and place the aging overpack on the designated 
space for inspection. The site transporter is used for transporting the aging overpack to the 
designated staging location on the staging pad and transporting the aging overpack to the CRCF, 
WHF, or RF for use in canister transfer operations.

Area lighting is provided to facilitate 24-hour operation support. Area drainage is provided to 
prevent potential water buildup in the area.

1.2.8.1.1.12 Other Facilities and Areas

The diesel fuel oil storage (Area 70A) and fueling stations (Area 70B) provide storage for fuel oil. 
The vehicle maintenance and motor pool (Area 690) provides functional space for storage and 
maintenance of motor vehicles. The helicopter pad (Area 66A) provides space for the landing and 
takeoff of helicopters. The railcar buffer area (Area 33A) provides space for the staging of railcars. 
The truck buffer area (Area 33B) provides space for the staging of trucks and responds to system 
changes such as surges in cask delivery or facility outages. Space is provided for wastewater 
treatment in Area 35A.

1.2.8.1.2 Facility Operations

The facilities provide space and infrastructure to support repository operations, including waste 
handling and waste emplacement. The principle of operation for each facility is in accordance with 
the functional purpose of each facility, as described in Section 1.2.8.1.1.
— —
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1.2.8.1.3 Design Codes and Standards

The facilities are designed using the methods and practices in the following codes and standards:

• ACI 349-01/349R-01, Code Requirements for Nuclear Safety Related Concrete Structures 
(ACI 349-01) and Commentary (ACI 349R-01)

• ACI 318-02/318R-02, Building Code Requirements for Structural Concrete (ACI 318-02) 
and Commentary (ACI 318R-02)

• Manual of Steel Construction, Allowable Stress Design (AISC 1997)

• ASCE 7-98, Minimum Design Loads for Buildings and Other Structures

• API Std 620, Design and Construction of Large, Welded, Low-Pressure Storage Tanks

• AWS D1.1/D1.1M, Structural Welding Code—Steel

• International Building Code 2000 (ICC 2003).

1.2.8.2 ITS Diesel Generator Mechanical Support Systems
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2, AC 6; Section 2.1.1.6.3: 
AC 1(2)(h), (2)(k), (2)(l), AC 2(2); Section 2.1.1.7.3.1: AC 1(1), (2), (3), (5), (9); 
Section 2.1.1.7.3.2: AC 1(1), (2); Section 2.1.1.7.3.3(I): AC 1(1), AC 2(1), (2), (3), 
AC 4(1)]

The equipment associated with each ITS diesel generator mechanical and electrical support system
is classified as ITS. The seismic design of this equipment is addressed in Section 1.2.2.1. The 
mechanical systems of one ITS diesel generator are physically separated from the other ITS diesel 
generator by multiple concrete walls that meet or exceed a three-hour fire barrier (concrete wall).

For each train (Train A and Train B) the EDGF houses one ITS diesel generator with an ITS fuel oil 
day tank, ITS engine air startup subsystem, ITS lubricating subsystem, ITS engine jacket cooling 
water subsystem (excluding the air coolers), and ITS air intake and exhaust subsystem located in the 
generator room (Room 1001 or 1011); one ITS 13.8 kV switchgear and associated ITS control 
panels, load center, and motor control centers in the switchgear room (Room 1002 or 1012); ITS 
batteries to serve the EDGF ITS instrumentation, controls, and ITS equipment demands in the 
battery room (Room 1003 or 1013); and ITS mechanical ventilation equipment and cooling 
equipment in the mechanical room (Room 1004 or 1014).

Because Train A and Train B are functionally the same for each of the mechanical support systems, 
process and instrumentation diagrams and descriptions are provided only for Train A in 
Sections 1.2.8.2.1 to 1.2.8.2.5. Figure 1.2.8-17 illustrates the interfaces between the EDGF ITS 
diesel generator Train A and the mechanical systems that support it.
— —
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The EDGF HVAC systems that provide ventilation for each of the generator rooms and ventilation 
and cooling for each of the switchgear rooms and battery rooms are independent and are classified 
as ITS. The EDGF HVAC system is addressed in Section 1.2.8.3.

Typical non-ITS logic diagrams, which show the interface with digital control and management 
information system (DCMIS) and programmable logic controller elements within the selected ITS 
logic diagrams, are shown in Figures 1.2.4-15 to 1.2.4-18.

1.2.8.2.1 ITS Diesel Generator Fuel Oil System

1.2.8.2.1.1 System Description

The ITS diesel generator fuel oil system is classified as ITS and consists of two independent, 
underground diesel fuel oil storage tanks, from which fuel is drawn through duplex basket filters by 
diesel fuel oil transfer pumps to the diesel fuel oil day tank. A diesel-engine-driven fuel oil pump 
draws fuel from the day tank through another set of duplex basket strainers to the ITS diesel 
generator. There is one underground diesel fuel oil storage tank per ITS diesel generator, providing 
diesel fuel to the dedicated day tank that supports each ITS diesel generator. There are two fuel oil 
pumps for each ITS diesel generator. Each ITS diesel generator is equipped with a fuel oil system. 
Figure 1.2.8-17 shows the engine-mounted fuel oil pump and the connections to the engine. 
Figure 1.2.8-18 shows the EDGF ITS diesel fuel oil system Train A piping and instrumentation 
diagram. Figure 1.2.8-19 shows the ITS diesel generator fuel oil transfer pump logic diagram.

The components in the ITS diesel generator fuel oil system are described below.

Diesel Fuel Oil Storage Tanks—The two diesel fuel oil storage tanks for the ITS diesel 
generators are located underground, outside the EDGF. Each has double-walled construction. 
Fittings are provided on each tank for level instrumentation, ventilation, sampling for quality of 
oil, water removal, and sounding. Two flanged openings provide for mounting transfer pumps. In 
addition, each tank is equipped with an internal sump and a connection leading to a manway. 
Above each tank, there is a concrete vault, with the roof above plant grade. This vault houses the 
instruments, pumps, and the manway. Each diesel fuel oil storage tank is carbon steel with a 
1/8-in. corrosion allowance. The tank is coated with a high-performance coating (coal tar epoxy or 
other suitable material) that is compatible for underground service. The tank is also provided with 
cathodic and lightning protection. Each tank is vented to the atmosphere with the vent line 
containing a flame arrestor and a bird screen. The vent line and the flame arrestor are missile 
protected. Since venting is to the outside atmosphere, there is no buildup of combustible gases.

The design of the fuel oil system allows replenishment of fuel without interrupting operation of the 
ITS diesel generator. The tank capacity provides enough fuel oil to operate one ITS diesel generator 
for at least 14 days with margin. For extended operation of the generator beyond 14 days, the diesel 
fuel oil storage tank will be refilled.

The design of the tank also prevents turbulence of sediment in the bottom of the storage tank from 
degrading overall fuel quality to an unacceptable level. To prevent detrimental effects of sediment 
on diesel performance, a strainer on the fill port to the underground storage tank and duplex fuel oil 
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1.2.8-9



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001
strainers in the diesel fuel oil piping from the underground storage tank to the day tank and from the 
day tank to the diesel engine are provided.

The tops of the tanks are located below ground level. Each tank has an internal sump and a sampling 
line from which water and sediment are removed. A connection is provided to empty the tank sump 
using a portable pump.

Diesel Fuel Oil Transfer Pumps—Two gear-driven, positive-displacement diesel fuel oil 
transfer pumps are provided to transfer fuel oil from each diesel fuel oil storage tank to the 
associated diesel fuel oil day tank. A pump house encloses the transfer pumps and associated 
piping above the storage tank. The transfer pump inlet is located away from the sump inside the 
diesel fuel oil storage tank, but near the bottom of the tank. The transfer pump suction contains 
duplex fuel oil strainers. The performance of the strainers is monitored by pressure drop across the 
strainers.

Diesel Fuel Oil Day Tanks—The diesel fuel oil day tanks are sized for 4 hours of full-demand 
operation of the ITS diesel generators. The tanks are located within a corner of the diesel generator 
room, as shown in Figure 1.2.8-2. The day tanks are elevated to ensure that a slight positive 
pressure exists at the suction of the engine-driven fuel oil pumps. The pump suction contains 
duplex fuel oil strainers and the performance of the strainers is monitored by pressure drop across 
the strainers. The day tanks are separated from any sources of ignition or high-temperature 
surfaces. The fuel oil piping is run from the tank to the engine and the fuel oil piping on the engine 
is located away from hot surfaces. Tank fittings provide for draining, sampling, recirculation, and 
instrumentation. Alarms on the diesel engine annunciate on conditions of high or low fuel oil 
pressure.

The fuel oil day tank is vented to the atmosphere outside of the building with a flame arrestor and 
bird screen. The vent line and the flame arrestor are missile protected. Since venting is to the outside 
atmosphere, there is no buildup of combustible gases.

Piping—The fuel oil system piping is designed in accordance with ASME B31.3-2004, Process 
Piping. Portions of the diesel fuel oil piping between the fuel oil storage tank and the day tank are 
routed underground. The underground piping is double walled, with carbon steel material of 
construction for the core piping and jacket piping, and provides 1/8-in. corrosion allowance. The 
jacket piping is coated with a high-performance coating such as coal tar epoxy or other suitable 
material that is compatible for underground service. The piping is also provided with cathodic 
protection and leak detection features.

1.2.8.2.1.2 Operational Processes

The fuel oil storage tanks for the diesel generators are replenished from trucks (or other mobile 
suppliers) as required to maintain an adequate supply. The fuel oil meets ASTM D 975-06, Standard 
Specification for Diesel Fuel Oils. Prior to adding fuel oil to the storage tanks, the contents of the 
tanks are tested for specific gravity, viscosity, water content, and sediment content at a minimum in 
accordance with Regulatory Guide 1.137. Periodic manual sampling of the oil is performed in 
accordance with the requirements of ASTM D 4057-06, Standard Practice for Manual Sampling of 
Petroleum and Petroleum Products.
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Each transfer pump takes suction from a diesel generator fuel oil storage tank and discharges fuel 
oil to a diesel generator fuel oil day tank. Each pump is capable of supplying its diesel generator and, 
simultaneously, increasing the inventory in the fuel oil day tank. One of two redundant fuel oil 
transfer pumps is automatically started and stopped by a day tank high-low level switch; the second 
pump is turned on automatically on a day tank low-low level. Any overflow is returned to the 
storage tank via the recirculation line. The capacity of the recirculation line exceeds that of the 
transfer pumps.

Biocides and other fuel additives are introduced to the fuel oil to prevent deterioration of the oil, 
accumulation of sludge in the storage tanks, and the growth of algae and fungi. In the event the 
diesel fuel oil degrades during storage or is to be pumped out of the diesel fuel oil storage tank for 
tank inspection, it can be transferred using a portable pump and provided connections to the plant’s 
auxiliary fuel oil tank for use in the standby generators or to a fuel oil tanker truck. After inspection 
of the diesel fuel oil storage tank, the nondegraded fuel oil may be transferred back to the diesel fuel 
oil storage tank.

1.2.8.2.1.3 Safety Category Classification

The ITS diesel generator fuel oil system is classified as ITS.

1.2.8.2.1.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls for the ITS diesel generator fuel oil system.

1.2.8.2.1.5 Design Bases and Design Criteria

The nuclear safety design bases for ITS SSCs and for SSCs important to waste isolation (ITWI) and 
features are derived from the preclosure safety analysis presented in Sections 1.6 through 1.9 and 
the postclosure performance assessment presented in Sections 2.1 through 2.4. The nuclear safety 
design bases identify the safety functions to be performed and the controlling parameters with 
values or ranges of values that bound the design.

The quantitative assessment of event sequences, including the evaluation of component reliability 
and the effects of operator action, is developed in Section 1.7. SSCs or procedural safety controls 
appearing in an event sequence with a prevention or mitigation safety function are described in the 
applicable design section of the SAR.

Section 1.9 describes the methodology for safety classification of SSCs and features of the 
repository. The tables in Section 1.9 present the safety classification of the SSCs and features. These 
tables also list the preclosure and postclosure nuclear safety design bases for each structure, system, 
or major component.

To demonstrate the relationship between the nuclear safety design bases and the design criteria for 
the repository SSCs and features, the nuclear safety design bases are repeated in the appropriate 
SAR sections for each individual ITS/ITWI SSC or feature that performs a safety function. The 
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design criteria are characteristics of the ITS/ITWI SSCs or features that are utilized to implement 
the assigned safety functions.

The nuclear safety design bases for the ITS mechanical support systems associated with the ITS 
diesel generators are addressed in Table 1.4.1-1.

1.2.8.2.1.6 Design Methodologies

The design methodologies used in the design of ITS SSCs in the ITS diesel generator fuel oil system 
are in accordance with codes and standards provided in Section 1.2.8.2.1.8.

1.2.8.2.1.7 Consistency of Materials with Design Methodologies

Materials of construction used in the design of the ITS SSCs in the ITS diesel generator fuel oil 
system are in accordance with the codes and standards provided in Section 1.2.8.2.1.8.

1.2.8.2.1.8 Design Codes and Standards

The ITS diesel generator fuel oil system and its components are designed in accordance with the 
following codes and standards:

• 2004 ASME Boiler and Pressure Vessel Code (ASME 2004), Section VIII

• ASME B31.3-2004, Process Piping

• ANSI/ANS-59.51-1997, Fuel Oil Systems for Safety-Related Emergency Diesel 
Generators

• ASTM D 4057-06, Standard Practice for Manual Sampling of Petroleum and Petroleum 
Products

• ASTM D 975-06, Standard Specification for Diesel Fuel Oils

• NFPA 30, Flammable and Combustible Liquids Code

• NFPA 70, National Electrical Code

• NFPA 780, Standard for the Installation of Lightning Protection Systems

• IEEE Std 344-2004, IEEE Recommended Practice for Seismic Qualification of Class 1E 
Equipment for Nuclear Power Generating Stations

• IEEE Std 387-1995, Standard Criteria for Diesel-Generator Units Applied as Standby 
Power Generating Stations

• Regulatory Guide 1.137, Fuel-Oil Systems for Standby Diesel Generators.
— —
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1.2.8.2.1.9 Design Load Combinations

The load combinations used in the analysis of ITS SSCs in the ITS diesel generator fuel oil system 
are in accordance with the codes and standards provided in Section 1.2.8.2.1.8. The design load 
combinations analyzed include normal conditions, event sequences, and the effects of natural 
phenomena.

1.2.8.2.2 ITS Diesel Generator Air Start System

1.2.8.2.2.1 System Description

Each ITS diesel generator is equipped with an air start system. Each air start system consists of one 
air compressor, aftercooler, air dryer, air receiver, compressor air intake filter, piping, valves, 
associated instrumentation, and an air distribution system on the diesel engine. For each air start 
system, the system is classified as ITS downstream of the ITS isolation gate valve; the upstream 
components (the compressor, aftercooler, and air dryer) are non-ITS. Figure 1.2.8-20 shows the 
EDGF ITS diesel generator air start system Train A piping and instrumentation diagram. 
Figure 1.2.8-21 shows the ITS diesel generator air compressor logic diagram.

The components in the ITS diesel generator air start system are described below.

Air Compressors—One motor-driven compressor is provided for each ITS diesel generator air 
start system. The compressor control is integrated with the receiver air pressure to ensure adequate 
pressure in the receiver. The air to the compressor is drawn from the generator room.

Aftercoolers—Each air start system is equipped with an aftercooler to cool the air after 
compression and to condense any moisture in the air to aid the air dryers in removing moisture. 
The aftercooler is installed between the compressor and the dryer.

Air Dryers—Each air start system is equipped with an air dryer that dries the air to a dew point of 
either 50°F or 10°F below the lowest expected ambient temperature, whichever is more restrictive.

Air Receivers—Each air start system is equipped with one air receiver. Each air receiver is 
capable of providing starting air for five consecutive engine starts without recharging the receiver. 
Features are provided for blowdown of air receivers to eliminate any moisture that might 
accumulate.

Air Start Distributor—Each ITS diesel generator is equipped with an air start distributor which 
consists of an air start control valve, a distributor valve, air-operated piston check valves, and air 
distribution piping. The air start control valve, when energized, opens to allow air into the 
distribution piping and into the distributor valve. The distributor valve distributes air to open the 
piston check valves, depending on the power stroke position of the pistons.

1.2.8.2.2.2 Operational Processes

The air receiver for each diesel engine is maintained at operating pressure by an individual 
compressor. The compressor automatically starts when air receiver pressure drops to a nominal set 
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point and stops when the upper set point is achieved. Alarms are provided if the air pressure drops 
to a set low level. The check valve in the air receiver charging line ensures that a broken line from 
the compressor does not affect the receiver. The isolation valve upstream of the check valve and the 
equipment downstream of the check valve are ITS. The air dryer and aftercooler are utilized to keep 
water out of the diesel engine.

When the ITS diesel generator receives a start signal, the air start distributor is energized, allowing 
starting air to flow to the cylinders, using air from the air receiver. As soon as the engine has fired 
and is running on its own power, a speed switch cuts the electrical circuit to the starting air valves 
and causes the valves to close.

1.2.8.2.2.3 Safety Category Classification

The ITS diesel generator air start system downstream of the ITS isolation valve is classified as ITS.

1.2.8.2.2.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls for the ITS diesel generator air start system.

1.2.8.2.2.5 Design Bases and Design Criteria

The nuclear safety design bases for the ITS mechanical support systems associated with the ITS 
diesel generators are addressed in Table 1.4.1-1.

1.2.8.2.2.6 Design Methodologies

The design methodologies used in the design of ITS SSCs in the ITS diesel generator air start system 
are in accordance with the codes and standards provided in Section 1.2.8.2.2.8.

1.2.8.2.2.7 Consistency of Materials with Design Methodologies

Materials of construction used in the design of ITS SSCs in the ITS diesel generator air start system 
are in accordance with the codes and standards provided in Section 1.2.8.2.2.8.

1.2.8.2.2.8 Design Codes and Standards

The ITS diesel generator air start system is designed in accordance with the following codes and 
standards:

• 2004 ASME Boiler and Pressure Vessel Code (ASME 2004), Section VIII
• ASME B31.3-2004, Process Piping
• CGA G-7.1-2004, Commodity Specification for Air.
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1.2.8-14



DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR
1.2.8.2.2.9 Design Load Combinations

The design load combinations used in the analysis of ITS SSCs in the ITS diesel generator air start
system are in accordance with the codes and standards provided in Section 1.2.8.2.2.8. The design 
load combinations analyzed include normal conditions, event sequences, and the effects of natural 
phenomena.

1.2.8.2.3 ITS Diesel Generator Jacket Water Cooling System

1.2.8.2.3.1 System Description

Each diesel engine has an independent jacket water cooling subsystem. Major components include 
aftercoolers (engine-mounted combustion air coolers), a lube oil cooler, a jacket water air cooler, 
jacket water pumps, a jacket water expansion tank, an electric immersion heater, and a keep-warm 
circulating pump. The system is designed such that the cooling water chemistry criteria are 
compatible with the materials of the system’s various components. The EDGF jacket water cooling 
system is classified as ITS. Figure 1.2.8-17 shows the connections to the engine. The ITS diesel 
generator jacket water cooling system Train A piping and instrumentation diagram is shown in 
Figure 1.2.8-22.

The components of the ITS diesel generator jacket water cooling system are described below.

Jacket Water Pumps—The jacket water cooling system includes two independent circulation 
pumps that are backed up by an engine-mounted, gear-driven pump. Each jacket water pump 
circulates the jacket water through the ITS diesel generator coolant loop during periods of diesel 
operation to remove heat from the engine.

Jacket Water Air Cooler—The jacket water air cooler for the ITS diesel generator is a forced-air 
radiator that provides the means for removing heat from the ITS diesel generator coolant loop 
during periods of diesel operation. The jacket water air cooler also has two electric fans (one 
operating and one standby) that are utilized to provide the forced air flow. The jacket water air 
cooler is located outside of the EDGF structure.

Expansion Tank—The jacket water expansion tank is connected to the ITS diesel generator 
coolant loop to allow for coolant volumetric changes due to temperature variations, to provide 
makeup water, and to absorb pump pressure variations.

Thermostatic Valve—A three-way thermostatic valve is installed in the ITS diesel generator 
coolant loop at the inlet to the jacket water cooler. This valve provides the capability to bypass the 
jacket water around the cooler depending on the temperature of the jacket water.

Aftercoolers—The aftercooler is an engine-mounted, air-to-water heat exchanger. At the diesel 
engine, a portion of the jacket water is diverted to the aftercoolers. The aftercooler cools the 
combustion air after it has passed through the turbocharger. The aftercooler is internal to the diesel 
engine and is not depicted on Figure 1.2.8-22.
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Lube Oil Cooler—The ITS diesel generator lube oil cooler provides the means of removing heat 
from the engine lube oil. The lube oil cooler utilizes the jacket water air cooler as its heat sink.

Jacket Water Keep-Warm Pump and Inline Heater—The jacket water keep-warm system 
consists of a keep-warm circulating pump and an inline heater. The circulation pump and inline 
heater start automatically based on the diesel temperature. The circulation pump and inline heater 
automatically stop when the engine is started.

1.2.8.2.3.2 Operational Processes

When the ITS diesel generator is not in operation, the unit is maintained at a set temperature to 
ensure quick starting. The keep-warm circulating pump and inline heater operate continuously to 
maintain the engine at this temperature by circulating warmed water through the engine water 
jackets. A thermostat on the heater maintains the temperature of the circulating water at 135°F. The 
keep-warm circulating pump and inline heater are automatically deenergized when the diesel 
engine is started.

The ITS diesel generator jacket water cooling system provides a sufficient heat sink to permit the 
diesel engine to start and operate without the need for external cooling water. The jacket water air 
cooler contains two fans (one operating and one standby).

The ITS diesel generator jacket water is treated to maintain the compatibility of the water chemistry 
and the system materials and to preclude long-term corrosion and organic fouling. The ITS diesel 
generator jacket water cooling system is vented to ensure that internal spaces are filled with cooling 
water.

During operation of the diesel engine, temperature regulation of the jacket water is accomplished 
through action of the thermostatic valve that modulates coolant flow between the ITS diesel 
generator jacket water cooler and its associated bypass line. In this manner, the engine jacket water 
is maintained at the proper temperature for maximum engine efficiency. The diesel engine jacket 
water is monitored for temperature and has a high jacket water temperature alarm and a high-high 
jacket water temperature trip.

1.2.8.2.3.3 Safety Category Classification

The ITS diesel generator jacket water cooling system is classified as ITS.

1.2.8.2.3.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls for the ITS diesel generator jacket water cooling system.

1.2.8.2.3.5 Design Bases and Design Criteria

The nuclear safety design bases for the ITS mechanical support systems associated with the ITS 
diesel generators are addressed in Table 1.4.1-1.
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1.2.8.2.3.6 Design Methodologies

The design methodologies used in the design of ITS SSCs in the ITS diesel generator jacket water 
cooling system are in accordance with the codes and standards provided in Section 1.2.8.2.3.8.

1.2.8.2.3.7 Consistency of Materials with Design Methodologies

Materials of construction used in the design of ITS SSCs in the ITS diesel generator jacket water 
cooling system are in accordance with codes and standards provided in Section 1.2.8.2.3.8.

1.2.8.2.3.8 Design Codes and Standards

The ITS diesel generator jacket water cooling system is designed in accordance with the following 
codes and standards:

• 2004 ASME Boiler and Pressure Vessel Code (ASME 2004), Section VIII
• ASME B31.3-2004, Process Piping
• Pump Standards (HI 2005)
• Standards of the Tubular Exchanger Manufacturers Association (TEMA 2007).

1.2.8.2.3.9 Design Load Combinations

The load combinations used in the analysis of ITS SSCs in the ITS diesel generator jacket water 
cooling system are in accordance with the codes and standards provided in Section 1.2.8.2.3.8. The 
design load combinations analyzed include normal conditions and event sequences and the effects 
of natural phenomena.

1.2.8.2.4 ITS Diesel Generator Lubricating Oil System

1.2.8.2.4.1 System Description

Each ITS diesel generator is provided with a lubricating oil system. Major components of the system 
include one engine-driven pump; an engine-mounted lube oil collection sump; a full-flow filter; a 
full-flow strainer; a lube oil cooler; an electric keep-warm heater; an electric motor-driven, 
keep-warm circulating pump; an electric motor-driven, prelubricating pump; and associated valves, 
piping, and instrumentation. The EDGF lubricating oil system is classified as ITS. The EDGF ITS 
diesel generator lubricating oil system Train A piping and instrumentation diagram is shown in 
Figure 1.2.8-23. Figure 1.2.8-17 shows the engine-mounted lubricating oil pump, the lubricating oil 
sump, and the connections to the engine.

The components of the ITS diesel generator lubricating oil system are described below.

Lubricating Oil Pump—The lubricating oil pump is mounted on the ITS diesel generator. The 
engine-driven pump provides lubricating oil to the engine and generator bearings during engine 
operation. Oil is kept at a constant pressure and temperature by use of regulating valves, 
recirculation lines, and a lube oil cooler.
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Lubricating Oil Sump—Each ITS diesel generator has a lubricating oil collection sump. The 
collection sump is sized to contain the minimum amount of lubricating oil plus the amount of 
lubricating oil expected to be consumed over the duration of operation.

Full Flow Filter and Strainer—The full lubricating oil flow passes through a filter to remove 
solids. The strainer is located downstream of the filter to protect the bearings from any solids that 
pass the filter and any degraded filter media. The performance of the full flow filter and strainer is 
monitored by the pressure drop across each of them.

Lube Oil Cooler—The lube oil cooler is discussed in Section 1.2.8.2.3.1.

Lubricating Oil Keep-Warm System—The lubricating oil keep-warm system consists of an 
electric keep-warm circulating pump and an inline heater. The circulation pump and inline heater 
start automatically based on the diesel lubricating oil sump temperature. The circulating pump and 
inline heater automatically stop when the engine is started. The keep-warm system is utilized to 
ensure the early and adequate supply of warm lubricating oil in order to minimize the potential for 
degradation of metal-to-metal engine parts during engine starts.

Prelubricating Pump—The prelubricating oil pump is an electric pump. Prelubrication ensures 
that the engine and bearings are lubricated prior to starting the diesel.

1.2.8.2.4.2 Operational Processes

When the engine is operating, circulation is accomplished by an engine-driven gear pump that 
draws oil from the sump and passes it through a lube oil cooler, filter, and strainer before distribution 
to the bearings. Oil returns to the sump by gravity drain. During this process, the lube oil cools 
internal components, such as pistons, by splashing against hot surfaces. Heat transferred to the lube 
oil is absorbed into the ITS diesel generator jacket water cooling system. The diesel engine has high 
and low oil pressure alarms, high-high and low-low pressure trips, and a high lube oil temperature 
trip.

During standby periods, the lubricating oil is circulated through an inline heater and then through 
the entire engine by an electric motor-driven, keep-warm pump. The keep-warm circulating pump 
operates continuously to maintain the engine at temperature by circulating the lubricating oil 
through the heater and back to the lubricating oil sump. A thermostat on the heater maintains the 
temperature of the lubricating oil at nominally 135°F. The keep-warm circulating pump and inline 
heater are automatically deenergized when the diesel engine is started.

The prelubricating pump provides lubricating oil to the diesel motor prior to cranking and is part of 
the startup sequence for the diesel generator. The prelubricating step utilizes an 
electric-motor-driven pump. After the diesel starts, the prelubricating pump is not utilized.

1.2.8.2.4.3 Safety Category Classification

The ITS diesel generator lubricating oil system is classified as ITS.
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1.2.8.2.4.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls for the ITS diesel generator lubricating oil system.

1.2.8.2.4.5 Design Bases and Design Criteria

The nuclear safety design bases for the ITS mechanical support systems associated with the ITS 
diesel generators are addressed in Table 1.4.1-1.

1.2.8.2.4.6 Design Methodologies

The methodologies used in the design of ITS SSCs in the ITS diesel generator lubricating oil system 
are in accordance with the codes and standards provided in Section 1.2.8.2.4.8.

1.2.8.2.4.7 Consistency of Materials with Design Methodologies

The materials of construction used in the design of ITS SSCs in the ITS diesel generator lubricating 
oil system are in accordance with the codes and standards provided in Section 1.2.8.2.4.8.

1.2.8.2.4.8 Design Codes and Standards

The ITS diesel generator lubricating oil system is designed in accordance with 
ANSI/ANS-59.52-1998, American National Standard, Lubricating Oil Systems for Safety-Related 
Emergency Diesel Generators.

1.2.8.2.4.9 Design Load Combinations

The load combinations used in the analysis of ITS SSCs in the design of ITS diesel generator 
lubricating oil system are in accordance with the codes and standards provided in 
Section 1.2.8.2.4.8. The design load combinations analyzed include normal conditions and event 
sequences and the effects of natural phenomena.

1.2.8.2.5 ITS Diesel Generator Air Intake and Exhaust System

1.2.8.2.5.1 System Description

Each ITS diesel generator is provided with an air intake and exhaust system. The sizing, location of 
air intake, and piping arrangement of air intake and exhaust are designed to prevent the degradation 
of diesel engine power output. The major components of the system include an intake air filter, 
intake and exhaust silencers, and piping and expansion joints. The EDGF air intake and exhaust 
system is classified as ITS. The air intake filter, intake and exhaust silencers, and piping and 
expansion joints are sized to supply an adequate supply of air to the ITS diesel generator without an 
excessive pressure drop. Figure 1.2.8-24 shows the EDGF air intake and exhaust system Train A 
piping and instrumentation diagram.
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1.2.8-19



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001
The components in the ITS diesel generator air intake and exhaust system are described below.

Intake Air Filter—A filter is used in the air intake system to remove particulates from the 
combustion air before it enters the diesel engine.

Intake and Exhaust Silencers—A silencer is installed in the air intake system to minimize the 
noise level within the generator room. An exhaust silencer is installed in the exhaust system 
outside of the EDGF to reduce the noise emitted from the system.

Piping—Expansion joints are located to accommodate the thermal growth of the exhaust piping.

1.2.8.2.5.2 Operational Processes

Upon initiation of an ITS diesel generator start signal, air is drawn into the air intake filter and passes 
through the intake piping and silencer to the turbocharger and then through the aftercooler to the 
engine intake manifolds. The air intake filter, silencers, and the air piping are sized to supply an 
adequate supply of air to the ITS diesel generator. After the exhaust gases pass through the 
turbocharger, the exhaust gas enters the exhaust pipe and passes through the exhaust silencer 
(located outside of the EDGF). The exhaust and intake piping outside the EDGF are designed to 
reduce the potential of exhaust gases entering the intake.

The exhaust is monitored for pressure and temperature. A high temperature alarm and high back 
pressure cause the diesel engine to trip.

1.2.8.2.5.3 Safety Category Classification

The ITS diesel generator air intake and exhaust system is classified as ITS.

1.2.8.2.5.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls for the ITS diesel generator air intake and exhaust system.

1.2.8.2.5.5 Design Bases and Design Criteria

The nuclear safety design bases for the ITS mechanical support systems associated with the ITS 
diesel generators are addressed in Table 1.4.1-1.

1.2.8.2.5.6 Design Methodologies

The design methodologies used in the design of ITS SSCs in the ITS diesel generator air intake and 
exhaust system are in accordance with the codes and standards provided in Section 1.2.8.2.5.8.

1.2.8.2.5.7 Consistency of Materials with Design Methodologies

Materials of construction used in the design of ITS SSCs in the ITS diesel generator air intake and 
exhaust system are in accordance with the codes and standards provided in Section 1.2.8.2.5.8.
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1.2.8.2.5.8 Design Codes and Standards

The ITS diesel generator air intake and exhaust subsystem is designed in accordance with the 
following codes and standards:

• ASME B31.3-2004, Process Piping

• NUREG/CR-0660, Enhancement of On-site Emergency Diesel Generator Reliability
(Boner and Hanners 1979).

1.2.8.2.5.9 Design Load Combinations

The load combinations used in the analysis of ITS SSCs in the ITS diesel generator air intake and 
exhaust system are in accordance with the codes and standards provided in Section 1.2.8.2.5.8. The 
design load combinations analyzed include normal conditions and event sequences and the effects 
of natural phenomena.

1.2.8.3 Balance of Plant Facilities Heating, Ventilation, and Air-Conditioning
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2, AC 6; Section 2.1.1.6.3: 
AC 1(2)(a), (2)(d), (2)(h), (2)(j), AC 2(2); Section 2.1.1.7.3.1: AC 1(1), (2), (3), (5), 
(9); Section 2.1.1.7.3.2: AC 1(1), (2); Section 2.1.1.7.3.3(I): AC 1(1), AC 2(1), (2), 
(3), AC 4(1)]

1.2.8.3.1 Emergency Diesel Generator Facility Heating, Ventilation, and 
Air-Conditioning Systems

The EDGF HVAC system is designed to maintain the indoor environmental conditions required for 
equipment located in the facility. Separate but identical HVAC subsystems support the Train A and 
Train B generator rooms, switchgear rooms and battery rooms. During an event sequence, the safety 
function of the ITS HVAC subsystems is to provide cooling of the ITS electrical and controls 
equipment.

1.2.8.3.1.1 System Description

The EDGF HVAC system includes the following subsystems:

• ITS HVAC subsystems serving nonconfinement ITS generator rooms
• ITS HVAC subsystems serving nonconfinement ITS switchgear and battery rooms
• Non-ITS HVAC subsystem serving nonconfinement non-ITS mechanical rooms
• Non-ITS HVAC subsystem serving nonconfinement non-ITS electrical room.

The HVAC subsystems that support the cooling of generator room, electrical switchgear room, and 
battery room equipment for the EDGF are classified as ITS. The basis for classification is to prevent 
loss of electrical power to ITS components due to overheating.
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ITS HVAC Subsystems Serving Nonconfinement ITS Generator Rooms—The ITS generator 
rooms (Train A and Train B) are each provided with room temperature–activated ITS exhaust fans 
to provide outdoor air ventilation in order to maintain the temperature below 120°F in the rooms.

ITS HVAC Subsystems Serving Nonconfinement ITS Switchgear and Battery Rooms—The 
ITS switchgear and battery rooms (Train A and Train B) are each provided with an ITS split-type, 
direct expansion recirculating air handling unit. Remote condensing units are provided for each air 
handling unit. The air handling units provide localized cooling in the switchgear and battery rooms 
to ensure that ITS electrical power is not lost due to overheating in these areas. Each battery room 
is continuously exhausted through redundant exhaust fans in order to ensure that there is no 
accumulation of hydrogen in the battery room.

Non-ITS HVAC Subsystem Serving Nonconfinement Non-ITS Mechanical Rooms—The 
mechanical rooms and exit corridors A and B are each provided with split-type, direct expansion fan 
coil units. Remote condensing units (heat pumps) are provided for each fan coil unit. The fan coil 
units provide localized cooling in the mechanical rooms and exit corridors to maintain the 
environmental conditions suitable for the proper performance of SSCs in the rooms.

Non-ITS HVAC Subsystem Serving Nonconfinement Non-ITS Electrical Room—The non-ITS 
electrical room and entry corridor are provided with split-type, direct expansion fan coil units. 
Remote condensing units (heat pumps) are provided for each fan coil unit. The fan coil units provide 
localized cooling in the electrical room and entry corridor to maintain the environmental conditions 
suitable for the proper performance of SSCs in the rooms.

The EDGF support areas such as the fire protection room and entry and exit corridors are provided 
with unit heaters in order to prevent freezing of the fire water sprinkler piping.

Each subsystem is provided with the necessary air distribution ductwork and accessories, electrical 
power, instrumentation and controls to operate, control, monitor, alarm, provide status, and verify 
that the required functions are met.

1.2.8.3.1.1.1 System Functions

The EDGF HVAC system maintains space temperatures within acceptable limits for operations of 
equipment.

1.2.8.3.1.1.2 System Location and Functional Arrangement

The location and arrangement of the EDGF HVAC system is shown on Figure 1.2.8-2. The ITS air 
handling unit and exhaust fans serving the ITS switchgear room A and battery room A are located 
in mechanical room A, and the ITS air handling unit and exhaust fans serving the ITS switchgear 
room B and battery room B are located in mechanical room B. The ITS generator room exhaust fans 
are wall-mounted and are located in the generator room they serve. The fan coil units serving the 
mechanical rooms are located inside the room they serve. There are two fan coil units serving the 
non-ITS electrical room, an unassigned room, and entry area; one is located in mechanical room A 
and the other is located in mechanical room B. The air-cooled condensing units are located outside 
the EDGF facility. The ITS condensing units are provided with missile protection.
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Table 1.2.8-2 provides the design bases and their relationship to design criteria for the balance of 
plant facilities. Table 1.2.8-3 provides the EDGF indoor design temperatures. Table 1.2.8-4
provides the EDGF ITS HVAC components and system design data. Table 1.2.8-5 provides the 
EDGF non-ITS HVAC components and system design data.

The Train A and Train B HVAC systems in the EDGF are identical. The ventilation flow diagram 
for both trains of the EDGF nonconfinement generator rooms is shown in Figure 1.2.8-25. The 
ventilation flow diagram for both trains of the EDGF nonconfinement switchgear and battery rooms 
is shown in Figure 1.2.8-26. The ventilation and instrumentation diagram for the EDGF 
nonconfinement generator room A ITS HVAC system is shown in Figure 1.2.8-27. The ventilation 
and instrumentation diagram for the EDGF nonconfinement switchgear room A ITS HVAC system 
is shown in Figure 1.2.8-28. The ventilation and instrumentation diagram for the EDGF 
nonconfinement battery room A ITS exhaust system is shown in Figure 1.2.8-29. The ventilation 
and instrumentation diagram for the EDGF nonconfinement mechanical room A non-ITS HVAC 
system is shown in Figure 1.2.8-30. The Train B ventilation and instrumentation diagrams are the 
same as for Train A. The ventilation and instrumentation diagram for the EDGF nonconfinement 
non-ITS electrical room HVAC system is shown in Figure 1.2.8-31. The EDGF nonconfinement 
generator room ITS exhaust fans and dampers logic diagram is shown in Figure 1.2.8-32. The 
EDGF nonconfinement switchgear room ITS air handling unit and inlet damper room logic diagram 
is shown in Figure 1.2.8-33. The EDGF nonconfinement battery room exhaust fan logic diagram is 
shown in Figure 1.2.8-34.

1.2.8.3.1.1.3 Systems and Components

Major components are described below.

ITS Air Handling Units—Each recirculating air handling unit serving the ITS switchgear and 
battery rooms is a draw-through-type unit consisting of prefilters, high-efficiency primary filters, 
centrifugal fan, electric heating coils, and refrigerant (direct expansion) cooling coils. The fans for 
the air handling units are centrifugal-type fans with nonoverloading backward-inclined or airfoil 
blades. The fans are equipped with adjustable speed drives to provide adjustment in the airflow to 
compensate for filter loading. The outdoor air supply inlet is through a roof-mounted, louvered 
penthouse. Where necessary, the outdoor air inlet is provided with tornado dampers and missile 
barriers to preclude entry of missiles into the building.

ITS Exhaust Fans—The exhaust fans serving the battery rooms are vaneaxial-type units with 
spark-resistant construction and explosion-proof motors. The exhaust fans serving the generator 
rooms are tubular-type units.

Non-ITS Fan Coil Units—Each fan coil unit is a recirculating blow-through-type unit consisting 
of primary filters, supply fan, direct expansion cooling coil, and electric heating coil. The outdoor 
air supply inlet is provided with bird screen and storm-type louvers or a rain hood for protection 
from the environmental elements.

Dampers—Parallel-blade dampers are used for isolating systems or portions of a system. 
Opposed blade-type volume dampers are used to provide system balancing. Backdraft dampers 
are used to maintain the proper direction of air flow and prevent reversal of the air flow. ITS 
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tornado dampers are provided in the ITS exhaust ductwork discharging to the atmosphere and 
outside air intake ductwork to prevent damage to the ITS SSCs caused by rapid depressurization 
during a tornado event. Backdraft dampers are provided at the discharge of each ITS exhaust fan 
to prevent backflow through the standby unit and at the discharge of each non-ITS fan coil unit to 
prevent backflow through a non-operating unit.

Ductwork—Ductwork classified as ITS is designed to minimize leakage.

Controls and Instrumentation—The HVAC system parameters are monitored and controlled by 
temperature, pressure, and flow instrumentation.

The design of the instrumentation and controls for the HVAC system is based on the following 
considerations:

• The supply air handling units are interlocked with the exhaust fans when applicable to 
prevent the air handling unit from operating until the exhaust fans are operating.

• The supply air handling units and fan coil units are controlled by individual temperature 
controllers with room-mounted temperature sensors and transmitters.

• The air handling unit fan airflow rate is maintained at its setpoint by using the adjustable 
speed drive controlled by discharge duct flow controller with a duct-mounted flow sensor 
and transmitter.

• The reheat coils are controlled by individual temperature controllers with room-mounted 
temperature sensors and transmitters.

1.2.8.3.1.2 Operational Processes

ITS Air Handling Units during Normal Operation—ITS direct expansion air handling units 
with remote ITS air-cooled condensing units are utilized to maintain space temperatures in each of 
the Train A and Train B ITS switchgear and battery rooms. The exhaust fans for the battery room 
are interlocked with the air handling unit such that the air handling unit cannot be operated unless 
one battery room exhaust fan is running (to preclude pressurizing the battery rooms). The 
operation of the refrigerant compressor in the condensing unit is controlled by either the signal 
from the temperature sensors and transmitters located in the switchgear room or the battery room 
(whichever is higher) as determined by a signal selector.

During normal as well as emergency operation, the air handling unit for Train A and air handling 
unit for Train B are both operating. Normal control of the supply air handling unit is through an 
adjustable speed drive receiving start/stop commands from the DCMIS as initiated by an operator.
The supply unit is interlocked to operate only when an associated exhaust fan is operating. Once 
started, supply fan speed will be controlled by the adjustable speed drive via an analog input from 
the ITS flow transmitter at the discharge duct. A smoke detector mounted on the discharge of the air 
handling unit will shut down the unit upon detection of smoke. An alarm is then sent to the Central 
Control Center, and to the facility fire protection alarm panel.
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Failure of an operating supply unit, as determined by the differential pressure switch across the fan 
coupled with the low-flow signal from the ITS flow switch, shuts down the fan and closes its 
associated outdoor air damper. The other train’s unit will continue to run.

The battery room exhaust operates continuously to preclude accumulation of hydrogen. Redundant 
exhaust fans are provided for each battery room with the standby unit starting automatically when 
either of the following occurs: (1) low differential pressure across the operating fan coincident with 
low air flow (fan failure); (2) fan trip. The exhaust fans have spark-resistant construction and are 
equipped with explosion-proof motors.

ITS Generator Room Exhaust Fans during Normal Operation—Wall-mounted ITS in-line 
exhaust fans are utilized to maintain space temperatures in the Train A and Train B ITS generator 
rooms. The operation of the exhaust fans is controlled by the signal from the temperature sensors 
and transmitters located in the generator room; the outlet damper for each fan opens and closes 
based upon fan operation. The intake dampers are also controlled by the temperature signal, 
opening on high temperature and closing on low temperature. In addition, the diesel generator 
startup also causes the intake dampers to open to allow outdoor air to be drawn in by the diesel 
generator combustion air inlet. The operation of the exhaust fans is controlled by the signal from 
the temperature sensors and transmitters located in the generator room.

Non-ITS Supply Subsystems during Normal Operation—Conditioned air is delivered to the 
non-ITS areas (mechanical and electrical rooms, entry and exit corridors and an unassigned room) 
via the corresponding direct expansion fan coil units. The supply air to the mechanical and 
unassigned room as well as the electrical room is returned to their corresponding fan coil units and 
mixes with outdoor makeup air and cooled or heated prior to redistribution.

Normal operation of the fan coil units is initiated by receiving start/stop commands from the 
DCMIS as initiated by an operator from the Central Control Center. Once started, the fan coil units 
operate continuously and maintain the required room temperature via an analog input from the 
DCMIS for the room temperature in the main room served.

Interlocks, Trips, and Alarms—Each ITS supply fan is interlocked with its corresponding 
outdoor air inlet damper such that the damper opens or closes upon fan start or stop. Each ITS 
supply fan is also interlocked with the ITS battery room exhaust fans to prevent operation unless 
an exhaust fan is running.

Each switchgear room supply air handling unit is provided with a duct-mounted smoke detector 
located downstream of the filters to shut down the unit whenever smoke is detected in the airstream.

The ITS generator room temperature instruments provide a signal to start the wall-mounted exhaust 
fans and open the inlet dampers when the temperature high setpoint is reached. A high-high 
temperature alarm is sent to the local control panel as well as to the Central Control Center. Low 
generator room temperature turns off the exhaust fans and closes the inlet dampers (unless the ITS 
diesel generator is running).
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1.2.8.3.1.3 Safety Classification

Portions of the EDGF HVAC system that support the ventilation of the generator and associated 
equipment in the generator rooms and the cooling of ITS electrical and controls equipment are 
classified as ITS.

1.2.8.3.1.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls for the EDGF HVAC system.

1.2.8.3.1.5 Design Bases and Design Criteria

The nuclear safety design bases for the ITS mechanical support systems associated with the ITS 
diesel generators are addressed in Table 1.4.1-1.

1.2.8.3.1.6 Design Methodologies

The methodologies used in the design of ITS SSCs in the EDGF HVAC system are in accordance 
with the codes and standards provided in Section 1.2.2.3.

1.2.8.3.1.7 Consistency of Materials with Design Methodologies

The materials of construction used in the design of the ITS SSCs of the EDGF HVAC system are in 
accordance with the codes and standards provided in Section 1.2.2.3.

1.2.8.3.1.8 Design Codes and Standards

The principal codes and standards applicable to the ITS SSCs in the EDGF HVAC system are 
provided in Table 1.2.2-12.

Non-ITS SSCs in the EDGF HVAC system are designed using the methods and practices in the 
codes and standards provided in Section 1.2.4.4.

1.2.8.3.1.9 Design Load Combinations

The design load combinations used in the analysis of SSCs classified as ITS for the EDGF HVAC 
system are in accordance with codes and standards provided in Section 1.2.2.3.

1.2.8.3.2 Facilities HVAC

1.2.8.3.2.1 System Description

Each facility that is normally occupied is provided with a nonconfinement non-ITS HVAC system.
The normally occupied areas of the facilities (e.g., the Administration Facility, security facilities, 
emergency response facilities, maintenance and repair facilities, WNNRF, and the Utilities Facility) 
are provided with HVAC systems that include recirculating supply air handling units with an 
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integral supply fan, return-exhaust fans, and associated distribution ductwork, dampers, and 
controls. Each air handling unit consists of prefilters, high-efficiency primary filters, fans, heating 
coils, and cooling coils.

1.2.8.3.2.1.1 System Functions

The nonconfinement, non-ITS HVAC system serving the facilities are designed to perform the 
following functions:

• Maintain proper temperature, air pressure, relative humidity, and other environmental 
conditions in the facility, including filtered and conditioned air for cooling, heating, and 
ventilation to meet air quality standards required for the safety, health, and comfort of 
workers.

• Maintain a slightly positive differential air pressure relative to ambient pressure to 
minimize infiltration of unconditioned air and dust into the facility.

1.2.8.3.2.1.2 System Location and Functional Arrangement

The facilities are configured to provide the space and layout necessary for the nonconfinement,
non-ITS HVAC and other support systems that serve the facilities. The location of the outdoor 
intakes is such that the possibility of outdoor contaminants entering the facilities is minimized.

1.2.8.3.2.1.3 Systems and Components

The facilities except for the LLWF are served by nonconfinement non-ITS HVAC systems for 
which ventilation zoning of the facilities is not required.

1.2.8.3.2.1.3.1 Low-Level Waste Facility and Central Control Center Facility 
HVAC Systems

The HVAC systems for the LLWF and the CCCF are described below.

1.2.8.3.2.1.3.2 Low-Level Waste Facility HVAC System

The LLWF HVAC system is designed to limit the release of radioactive airborne contaminants for 
the protection of the workers and public, condition air to support the operation of SSCs, and 
maintain the indoor environmental conditions required for operations and for the health and safety 
of the facility workers. The LLWF HVAC system includes tertiary confinement areas. The LLWF 
HVAC system is non-ITS.

The components used in the LLWF non-ITS confinement, HEPA exhaust system and non-ITS 
nonconfinement HVAC system are also used in the CRCF confinement HEPA exhaust system and 
nonconfinement HVAC system as described in Section 1.2.4.4.1.3. Additionally, the LLWF 
contains a non-ITS confinement, once-through air handling unit with prefilters, high-efficiency 
primary filters, a plenum fan, heating coils, and cooling coils. The fans for the air handling units are 
heavy-duty, centrifugal-type fans with nonoverloading backward-inclined or airfoil blades. The air 
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handling unit fans are equipped with adjustable speed drives to provide adjustment in the airflow to 
compensate for filter loading.

Table 1.2.8-6 provides the LLWF indoor design temperatures. Table 1.2.8-7 provides the LLWF 
HVAC components and system design data. Table 1.2.8-8 provides the LLWF exhaust components 
and system design data.

Figure 1.2.8-35 shows the LLWF confinement zone for the ground floor. Figure 1.2.8-36 shows the 
LLWF confinement zone for the second floor. Figure 1.2.8-37 provides the composite ventilation 
flow diagram for the confinement non-ITS supply and exhaust HVAC system in the LLWF. 
Figure 1.2.8-38 provides the composite ventilation flow diagram for the nonconfinement non-ITS 
supply and exhaust HVAC system in the LLWF. Figure 1.2.8-39 shows the LLWF confinement 
areas HVAC supply system ventilation and instrumentation diagram. Figure 1.2.8-40 shows the 
LLWF confinement areas air distribution system ventilation and instrumentation diagram. 
Figure 1.2.8-41 shows the LLWF confinement non-ITS areas HEPA exhaust system ventilation and 
instrumentation diagram.

1.2.8.3.2.1.3.3 Central Control Center Facility HVAC System

The CCCF consists of two main areas: the Central Control Center area and the primary alarm station 
area. The Central Control Center area consists of the Central Control Center, communication rooms, 
supporting rooms, and mechanical, electrical equipment, and battery rooms. The primary alarm 
station consists of safeguards and security and supporting mechanical, electrical equipment, and 
battery rooms. Communication rooms that are part of the Central Control Center area have their own 
separate computer room air-conditioning units.

All of the above HVAC systems serving the CCCF are nonconfinement and are classified as 
non-ITS.

Central Control Center Area HVAC System—The Central Control Center HVAC system is a 
split HVAC system with variable air volume air handling units located inside the mechanical 
room, and remote air-cooled condensing units associated with each air handling unit located 
outside. The air handling unit consists of prefilters, high-efficiency primary filters, electric heating 
coil, direct expansion cooling coil, and a variable volume supply fan to conserve energy. Variable 
air volume terminal units with an electric reheat coil controlled by a room thermostat are provided 
for space temperature control. Constant air volume terminal units with reheat are provided for 
rooms requiring a fixed amount of exhaust air, such as battery rooms. Humidity is maintained in 
the Central Control Center and supporting rooms by means of a humidifier.

Return air fans are also provided with a variable air volume control, with return air flow maintained 
to be less than the supply air flow by a constant differential.

Smoke purge capability is provided with once-through exhaust with no recirculation.

A minimum amount of outside air is supplied to satisfy ventilation air requirements. Outside air is 
monitored, and when high levels of radioactivity are detected in the incoming outside air, the normal 
path of outside air is closed, and outside air is redirected to pass through an emergency outside air 
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filter unit, consisting of prefilters, HEPA filters, and an outside air fan. The Central Control Center 
is designated as the technical support center, and it is in accordance with the applicable criteria for 
emergency response facilities in NUREG-0696 (NRC 1981).

Communication rooms are provided with independent recirculating computer-room-type 
air-conditioning units that are located inside the communication rooms, supplying air under the 
raised floor. Remote air-cooled condensing units associated with each unit are located outside. A 
constant amount of air for ventilation from the main air handling unit is provided by means of a 
constant air volume terminal unit.

The equipment (including air handling units, computer-room-type air-conditioning units, air-cooled 
condensing units, return fans, battery room exhaust fans), except toilet and kitchen exhaust fans, is 
provided with a standby unit to account for failure or maintenance of the operating unit.

Battery rooms are constantly exhausted using spark-resistant construction exhaust fans with 
explosion-proof motors to limit hydrogen accumulation during battery charging.

The Central Control Center HVAC system is provided with the necessary distribution ductwork and 
accessories, electrical power, and instrumentation and controls to operate, control, monitor, alarm, 
and provide status to verify that the required function is met.

HVAC equipment and components are powered by the normal power systems backed by the 
standby diesel generators.

Primary Alarm Station Area HVAC System—The HVAC system for the primary alarm station 
serving the safeguards and security areas will be described in the physical protection plan.

Table 1.2.8-9 shows the CCCF and primary alarm station indoor design temperatures.

Table 1.2.8-10 shows the CCCF and primary alarm station HVAC components and system design 
data.

Figure 1.2.8-42 shows the CCCF Central Control Center areas HVAC system ventilation flow 
diagram. Figure 1.2.8-43 shows the CCCF primary alarm station areas HVAC system ventilation 
flow diagram. Figure 1.2.8-44 shows the ventilation and instrumentation diagram for the 
return/exhaust HVAC system for the CCCF Central Control Center areas. Figure 1.2.8-45 shows the 
ventilation and instrumentation diagram for the air handling unit HVAC system for the CCCF 
Central Control Center areas. Figure 1.2.8-46 shows the ventilation and instrumentation diagram 
for the return/exhaust fan HVAC system for the CCCF Central Control Center areas. 
Figure 1.2.8-47 shows the ventilation and instrumentation diagram for the communication room 
HVAC system for the CCCF Central Control Center areas. Figure 1.2.8-48 shows the ventilation 
and instrumentation diagram for the safeguards and security for the CCCF primary alarm station 
areas.
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1.2.8.3.2.2 Operational Processes

1.2.8.3.2.2.1 Facilities HVAC Systems

The HVAC systems for the facilities provide filtered and conditioned air for cooling, heating, and 
ventilation to meet air quality standards required for the safety, health, and comfort of the workers
and for the operability of the equipment. The supply air is conditioned by the air handling unit prior 
to distribution to different areas of the facilities. The supply air temperature from the air handling 
units is maintained by controlling the condensing units. Temperature controllers, with sensors 
located in various spaces, maintain desired room temperatures. Exhaust air from the facility is 
discharged to the outside environment by exhaust fans and associated ductwork. The HVAC system 
parameters are monitored and controlled by temperature, pressure, and flow instrumentation. 
Operations of the supply, exhaust, and return fans are controlled from the facility operations room 
at each facility.

1.2.8.3.2.2.2 Central Control Center Facility HVAC System

Central Control Center Areas during Normal Operation—A variable air volume air handling 
unit supplies conditioned air to Central Control Center areas. Air is returned by means of return 
fans, mixed with outside air, and then is filtered and heated, or cooled prior to redistribution. An 
outside air damper modulates the amount of outside air to maintain the minimum ventilation 
airflow required.

The conditioned air temperature is maintained by means of an electric heating coil, a direct 
expansion cooling coil, and a remote air-cooled condensing unit. The condensing unit run/stop 
status and common trouble alarm is indicated at the DCMIS.

The DCMIS provides control and operation monitoring to Central Control Center HVAC 
equipment; it monitors the status of the operating and standby units and provides alarms and an 
automatic start of the standby unit. Duct-mounted smoke detectors, located downstream of the air 
handling unit, shut down the operating unit upon detection of smoke. A smoke alarm signal is sent 
to the facility fire protection alarm panel. Instrumentation for monitoring and controlling the CCCF 
HVAC system is provided in the Central Control Center.

A permissive signal from an air handling unit supply fan is provided to allow start of the return fan 
only when the supply fan is in operation. Automatic isolation dampers on the inlet and discharge 
open when the unit is started and close when the unit is shut down. Open and closed status is 
indicated at the DCMIS. Return air volume is tracked to the supply air volume by a constant 
differential; the adjustable speed drive of the return fan is controlled by means of a computing relay 
that receives flow signals from both supply and return fans. Room temperatures are controlled via 
a room thermostat controlling a variable air volume terminal unit with a reheat coil. Humidity in the 
Central Control Center and other occupied areas is maintained by means of a humidifier.

The battery rooms are supplied by means of constant air volume terminal units. One exhaust fan 
operates constantly with one standby fan provided to maintain negative pressure in the battery 
rooms to prevent the hydrogen concentration reaching flammability limits. The standby fan starts 
automatically upon failure of the operating fan.
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The constant air volume recirculating air conditioning unit for the communication rooms operates 
similarly to the air handling unit serving Central Control Center areas, as described above, with the 
exception that the ventilation air is drawn from Central Control Center areas instead of being taken 
directly from outside.

The janitorial room, toilets, and kitchen are provided with once-through exhaust by means of their 
respective exhaust fans.

Central Control Center Areas during Emergency Operation—When high levels of 
radioactivity are detected by means of a radioactivity monitor in the incoming outside air, an alarm 
is indicated at the DCMIS and a signal is sent to fully close the normal outside air damper. This 
signal also starts the emergency outside air supply fan to direct the minimum outside air through a 
prefilter and a HEPA filter. Automatic isolation dampers on the inlet and discharge open when the 
unit is started and close when the unit is shut down. The open and closed status is indicated on the 
DCMIS. In order to compensate for a pressure drop across the HEPA filter, the adjustable speed 
drive of the outside air fan is increased to maintain constant airflow. Differential pressure across 
filters is indicated and alarmed on the DCMIS.

Central Control Center Areas during Smoke Purge Operation—In the event of a smoke 
purge, the outside and exhaust air dampers open fully, and the return air damper is fully closed to 
provide once-through exhaust with no recirculation. The amount of air drawn from outside is 
reduced to approximately 30% of the supply airflow by reducing the speed of the adjustable speed 
drive of the air handling unit supply fan in order not to overcool during winter.

Primary Alarm Station Areas—The operational processes for the primary alarm station area 
HVAC system will be discussed in the physical protection plan.

1.2.8.3.2.2.3 Low-Level Waste Facility HVAC System

The operational processes for the LLWF HVAC system are similar to the operational processes in 
the CRCF with respect to non-ITS confinement and non-ITS nonconfinement functions. The CRCF 
HVAC operational processes are described in Section 1.2.4.4.2.

1.2.8.3.2.3 Design Codes and Standards

The principal codes and standards applicable to the SSCs in HVAC systems of the facilities are 
designed using the methods and practices in the codes and standards provided in Section 1.2.4.4.8.

1.2.8.4 Surface Transportation
[NUREG-1804, Section 2.1.1.2.3: AC 1(2), (3), (4), AC 2, AC 6; Section 2.1.1.6.3: 
AC 1(2)(h), AC 2(2); Section 2.1.1.7.3.1: AC 1(1), (2), (3), (5), (9); 
Section 2.1.1.7.3.2: AC 1(1), (2); Section 2.1.1.7.3.3(I): AC 1(1), AC 2(1), (2), (3), 
AC 4(1)]

The ITS surface transportation equipment includes the site transporters, the cask tractors, and the 
cask transfer trailers. The site prime movers for moving cask railcars and cask semi-trailers are also 
ITS. All other surface transportation equipment is non-ITS.
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1.2.8.4.1 Site Transporter

1.2.8.4.1.1 Description

The site transporter is classified as ITS and is used to transport unloaded or loaded aging overpacks 
between surface handling facilities and the Aging Facility. It also transports unloaded DPCs inside 
shielded transfer casks or other acceptable containers to the LLWF. The site transporter is used in 
multiple locations, such as the CRCF, WHF, RF, aging overpack staging facility, Aging Facility, and 
LLWF. The site transporter is designed to withstand a DBGM-2 seismic event.

The main frame of the site transporter has a horseshoe-shaped carbon steel superstructure that 
allows entry and full engagement of the overpacks or casks. The rear section contains the motive 
power source, fuel tank, lift forks, and the operator station with operating controls.

The site transporter has a self-contained, diesel-driven electric generator and a series of motors to 
drive the vehicle and to lift and lower the casks. Two types of casks are carried in a vertical 
orientation: a concrete-and-steel ventilated aging overpack or a steel shielded transfer cask. The site 
transporter is designed to lift aging overpacks or shielded transfer casks from the bottom so that 
access to the top of these casks is unobstructed.

The site transporter is self-propelled and powered by a diesel engine generator and electric motors 
when operated outdoors and by an electric cable when used inside buildings. The site transporter 
includes a cask restraint system to prevent uncontrolled cask movement during transport. The site 
transporter is designed to operate at a maximum speed of 2.5 mph. The site transporter drive and 
control system does not allow for a runaway situation or speeds in excess of 2.5 mph. The motor and 
gearboxes in the site transporter drive system are designed to use the horsepower of the motor for 
controlling the top speed. If an overspeed situation happens, the maximum allowable motor current 
is exceeded, which causes the current overload to trip, stopping the motor. The site transporter is 
capable of operating and stopping on roadways with a 5% grade and 2% cross-slope.

The site transporter is equipped with a movement warning light and an audible alarm, and carries 
a maximum of 100 gal of fuel. Fire suppression equipment is provided on the site transporter. The 
site transporter is designed for operation in the full range of anticipated weather conditions at the 
repository.

The site transporter is designed to withstand the natural phenomena loading parameters provided in 
Table 1.2.2-1 as applicable. The horizontal and vertical ground response spectra are shown in 
Figures 1.2.2-8 to 1.2.2-13. Figure 1.2.8-49 shows an isometric view of the site transporter.

1.2.8.4.1.2 Operational Processes

Loaded aging overpacks are moved between the RF, CRCFs, WHF, and the Aging Facility using the 
site transporter. When the site transporter is in position for loading or unloading in the CRCF, RF, 
or WHF, the electric power supply is disconnected to allow the associated equipment shield door to 
close.
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After the site transporter has engaged and lifted the aging overpack, the overpack is moved to the 
Aging Facility. The site transporter is deactivated with the brakes set while a loaded canister is being 
placed into or removed from the aging overpack. At the aging pad, the aging overpack is lowered 
into place, the lifting mechanism is disengaged, and the site transporter is moved away.

When aging is complete the process is reversed, and the aging overpack is moved from the Aging 
Facility to a handling facility using the site transporter.

The site transporter is designed to remain stable during normal operation or event sequences. The 
site transporter speed is limited, and the road grade to the Aging Facility is designed to ensure safe 
operations.

1.2.8.4.1.3 Safety Category Classification

The site transporter is classified as ITS.

1.2.8.4.1.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

The preclosure safety analysis identifies one procedural safety control related to the operation of the 
site transporter. Table 1.9-10 identifies the unique numbering of the preclosure procedural safety 
controls, as well as the associated facility/operations area, SSCs, and bases.

PSC-2—To limit spurious movement potentially resulting in collision or tipover, the site 
transporter operating procedures will include a warning that deactivation of the site transporter is 
an important procedural step in the preclosure safety analysis. The site transporter operating 
procedure will require that the site transporter be deactivated with the brakes set while a loaded 
canister is being place into or removed from the aging overpack. The deactivation of the site 
transporter will be independently verified.

1.2.8.4.1.5 Design Bases and Design Criteria

The nuclear safety design bases for ITS and ITWI SSCs and features are derived from the preclosure 
safety analysis presented in Sections 1.6 through 1.9 and the postclosure performance assessment 
presented in Sections 2.1 through 2.4. The nuclear safety design bases identify the safety functions 
to be performed and the controlling parameters with values or ranges of values that bound the 
design.

The quantitative assessment of event sequences, including the evaluation of component reliability 
and the effects of operator action, is developed in Section 1.7. SSCs or procedural safety controls 
appearing in an event sequence with a prevention or mitigation safety function are described in the 
applicable design section of the SAR.

Section 1.9 describes the methodology for safety classification of SSCs and features of the 
repository. The tables in Section 1.9 present the safety classification of the SSCs and features. These 
tables also list the preclosure and postclosure nuclear safety design bases for each structure, system, 
or major component.
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To demonstrate the relationship between the nuclear safety design bases and the design criteria for 
the repository SSCs and features, the nuclear safety design bases are repeated in the appropriate 
SAR sections for each individual ITS/ITWI SSC or feature that performs a safety function. The 
design criteria are characteristics of the ITS/ITWI SSCs or features that are utilized to implement 
the assigned safety functions.

The nuclear safety design bases and their relationship to design criteria for the site transporter are 
provided in Table 1.2.8-2.

1.2.8.4.1.6 Design Methodologies

The design methodologies used in the design of ITS components in the site transporter are in 
accordance with the codes and standards provided in Section 1.2.8.4.1.8.

1.2.8.4.1.7 Consistency of Materials with Design Methodologies

Materials of construction used in the design of ITS SSCs in the site transporter are in accordance 
with the codes and standards provided in Section 1.2.8.4.1.8.

1.2.8.4.1.8 Design Codes and Standards

The principal code and standard applicable to the site transporter is ASME NOG-1-2004, Type I.

1.2.8.4.1.9 Design Load Combinations

The design load combinations used in the analysis of SSCs classified as ITS in the site transporter 
are in accordance with the codes and standards provided in Section 1.2.8.4.1.8. The design load 
combinations analyzed include normal conditions and event sequence, and the effects of natural 
phenomena.

1.2.8.4.2 Cask Tractor and Cask Transfer Trailers

1.2.8.4.2.1 Description

The cask tractor is the tow vehicle that pulls a cask transfer trailer carrying a transportation cask 
containing a horizontal DPC from the RF to the aging pad, where the DPC is inserted into a 
horizontal aging module, or pulls a cask transfer trailer carrying a horizontal shielded transfer cask 
containing a horizontal DPC from the aging pad to the WHF.

The cask tractor is powered by a diesel engine and has four-wheel drive, four-wheel steering, and 
pneumatic tires. The fuel capacity of the engine is limited to 100 gallons. The maximum cask tractor 
loaded speed is 2.5 mph. The cask tractor is equipped with a dual-brake system designed to alert the 
driver to system failure. An interlock is provided to turn off the cask tractor engine if the driver 
leaves the seat.

There are two different cask transfer trailers to accommodate the different casks to be carried. Each 
cask transfer trailer is a heavy industrial trailer with a support skid mounted on top. The skid is 
— —
1.2.8-34



DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR
designed to support the transportation cask or horizontal shielded transfer cask containing a DPC. 
The cask transfer trailer and skid have a payload capacity sufficient for the maximum combined 
weight of the cask and DPC. The skid includes an integral hydraulic system, a hydraulic ram, and 
an optical alignment system. Hydraulic jacking units are used to raise, level, and stabilize the cask 
transfer trailer while transferring the DPC at the horizontal aging module.

The cask transfer trailer brakes are independent of those of the cask tractor, and are capable of 
holding the trailer on a 5% grade with a 2% cross-slope. The cask transfer trailer brakes are engaged 
when the trailer is disconnected from the cask tractor.

The cask tractor and cask transfer trailers are designed such that they will not puncture a 
transportation cask or horizontal shielded transfer cask during a collision, drop, tipover, or seismic 
event, either in the as-designed configuration or in a failed configuration. The transportation cask 
is constructed of an inner steel shell, a layer of dense gamma shielding material, and a thick outer 
steel shell that together is more than 7 in. thick, and has a thick steel lid. The horizontal shielded 
transfer cask is similarly robust. The inherent toughness of the casks provides puncture resistance. 
The cask tractor trailers are designed to minimize potential cask drop heights, and the limited speed 
of the cask tractor minimizes potential collision impact forces. The cask tractor and cask transfer 
trailers are designed to withstand the natural phenomena loading parameters provided in 
Table 1.2.2-1, as applicable.

Figure 1.2.8-50 shows the mechanical equipment envelope for the cask tractor and cask transfer 
trailer.

1.2.8.4.2.2 Operational Processes

Horizontal DPCs are designed to be handled in the horizontal orientation. Transportation casks 
containing horizontal DPCs may go directly to the WHF or to the RF. In the RF, the transportation 
casks containing the horizontal DPCs are placed on a cask transfer trailer. The cask transfer trailer 
is towed to the Aging Facility by the cask tractor. The transportation casks containing the horizontal 
DPCs are unloaded at the aging pad and the DPCs are placed in horizontal aging modules.

When DPCs are removed from the horizontal aging module, the DPCs are transferred into a 
horizontal shielded transfer cask, which is mounted on a cask transfer trailer and taken to the WHF 
for canister transfer operations.

The retrieval from a horizontal aging module is initiated by removing the access door with a 
horizontal aging module door hoist or a mobile crane. The door is staged on the pad. The cask 
transfer trailer with an empty horizontal shield transfer cask placed on it is positioned with proper 
alignment with the horizontal aging module cavity.

Using a mobile crane, the lid is removed from the shielded transfer cask. The trailer is backed the 
remaining distance to the horizontal aging module, the cask tractor is disconnected, and the trailer 
brakes are engaged.

The DPC is pulled by the hydraulic ram from the horizontal aging module into the horizontal 
shielded transfer cask. Cask support skid restraints are installed on the cask transfer trailer so that 
the horizontal shielded transfer cask is secured. The shielded transfer cask lid is reinstalled, one end 
of the hydraulic ram is disconnected and lowered as shown in Figure 1.2.8-50, and the hydraulic 
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ram port cover is closed. The horizontal shielded transfer cask is then transferred on a cask transfer 
trailer to the WHF. Section 1.2.5 provides operational details for the WHF.

1.2.8.4.2.3 Safety Category Classification

The cask tractor and cask transfer trailers are classified as ITS.

1.2.8.4.2.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

The preclosure safety analysis identifies one procedural safety control related to the operation of the 
cask tractor and cask transfer trailers. Table 1.9-10 identifies the unique numbering of the 
preclosure procedural safety controls, as well as the associated facility/operations area, SSCs, and 
bases.

PSC-2—To limit spurious movement potentially resulting in collision or tipover, the cask tractor 
and cask transfer trailers operating procedures will include a warning that deactivation of the cask 
tractor and cask transfer trailers is an important procedural step in the preclosure safety analysis. 
The cask tractor and cask transfer trailers operating procedure will require that the cask tractor and 
cask transfer trailers be deactivated with the brakes set during waste handling operations with 
loaded waste containers being placed on or taken off the cask tractor and cask transfer trailers. The 
deactivation of the cask tractor and cask transfer trailers will be independently verified.

1.2.8.4.2.5 Design Bases and Design Criteria

The nuclear safety design bases and their relationship to design criteria for the cask tractor and cask 
transfer trailers are provided in Table 1.2.8-2.

1.2.8.4.2.6 Design Methodologies

The design methodologies used in the design of the cask tractor and cask transfer trailers are in 
accordance with the codes and standards provided in Section 1.2.8.4.2.8.

1.2.8.4.2.7 Consistency of Material with Design Methodologies

Materials of construction used in the design of the cask tractor and cask transfer trailers are in 
accordance with the codes and standards provided in Section 1.2.8.4.2.8.

1.2.8.4.2.8 Design Codes and Standards

The cask tractor is designed in accordance with the following standards:

• ANSI/ITSDF B56.8, Safety Standard for Personnel and Burden Carriers
• ANSI/ITSDF B56.9, Safety Standard for Operator Controlled Industrial Tow Tractors.
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The cask transfer trailers are designed in accordance with the following standards:

• ANSI N14.30-1992, Semi-Trailers Employed in the Highway Transport of 
Weight-Concentrated Radioactive Loads—Design, Fabrication, and Maintenance.

1.2.8.4.2.9 Design Load Combinations

The design load combinations used in the analysis of SSCs classified as ITS in the cask tractor and 
cask transfer trailers are in accordance with the codes and standards in Section 1.2.8.4.2.8.

1.2.8.4.3 Site Prime Movers

1.2.8.4.3.1 Description

There are three types of prime movers to support the movement of cask cars and trailers bearing 
casks from the buffer area to and from the handling facilities.

A rubber-tired truck tractor for moving truck-based casks and a steel-wheeled locomotive for 
moving rail-based casks are used as prime movers. The hybrid prime mover runs on both rubber 
tires and on tracks with steel wheels. The hybrid prime mover develops its rail traction power by 
transferring the load from the car being pulled to the prime mover through the coupler. All prime 
movers are diesel powered.

Truck tractors are able to pull the design load trailers carrying loaded truck casks. The truck tractor 
has an axle configuration and gross vehicle weight rating that is compatible with the trailers 
provided for movement of truck casks. The weight balance between the steering and driven axles 
is compatible with gross axle load ratings and industry practice for steering axle loading. The truck 
tractor has a conventional tractor-trailer fifth wheel with a coupler height that is adjustable to a 
height dimension compatible with the trailer. The truck tractor has conventional tractor-trailer 
interface connectors that facilitate electrical and air supply to the cask trailer. The air system has 
adequate capacity to support the trailer braking system.

A rail-based switcher locomotive is used with sufficient size and traction power to move the rail cars 
in the buffer area as well as moving rail cars to and from the waste handling facilities.

The site prime movers work in conjunction with buffer cars at each end to allow for rail cask cars 
to be placed in the building without the site prime mover entering the building.

Each of the site prime mover vehicles is provided with fail-safe equipment capable of limiting speed 
to 9 mph while traveling within the GROA and 2.75 mph while approaching the handling facilities. 
The site prime movers and cask conveyances are equipped with braking systems that operate in 
tandem when connected. These braking systems are designed to automatically apply the brakes 
whenever the 9 mph speed limit is exceeded while traveling within the GROA. The speed is limited 
so that if a collision should occur, the safety consequences are bounded by other event sequences 
and shown to be acceptable.
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The diesel fuel capacity for site prime movers entering a waste handling facility is limited to 
100 gallons of diesel fuel. The fuel tank for each site prime mover is designed to protect against fire 
explosions. The rail-based site prime mover does not enter the handling facilities, thereby 
preventing any fire or explosion inside the building from the diesel fuel tank. Therefore, the 
potential for an explosion causing breach of a cask carried by the site prime mover is eliminated. The 
site prime movers are designed to withstand the natural phenomena loading parameters provided in 
Table 1.2.2-1, as applicable

1.2.8.4.3.2 Operational Processes

Upon receipt of a loaded legal-weight truck trailer or railcar at Gate B-30A, the trailer/railcar is 
dropped off by the offsite prime movers (locomotive or truck tractor) for security inspection and 
paper work turn over. The site prime mover picks up the trailer or railcar after it has been cleared and 
takes it either to the designated waste handling facility or to the railcar buffer area or truck buffer 
area for temporary storage until it can be taken into one of the waste handling facilities for 
processing. In that instance, when the waste handling facility is ready to process either the railcar 
or truck trailer from the buffer areas, the site prime mover travels to the designated waste handling 
facility.

The railcar or truck trailer is pushed by a site prime mover and is driven by the site prime mover 
operator located in the cab of the site prime mover. When the railcar or truck trailer approaches the 
waste handling facility, the conveyance is visually inspected, and a crew member directs the railcar 
or truck trailer into the transportation cask vestibule (or Cask Preparation Area for the IHF), 
ensuring there are no vehicles or obstructions in the path.

Once the railcar or truck trailer is in the transportation cask vestibule, the outer door of the vestibule 
is closed, inside door is opened and the railcar or truck trailer proceeds to the cask preparation room 
and stops. The site prime mover is deactivated, the railcar or truck trailer brakes are set, and the 
wheels are chocked. The site prime mover normally detaches from the railcar or truck trailer and 
proceeds back to the transportation cask vestibule. The vestibule inside door is then closed.

1.2.8.4.3.3 Safety Category Classification

The site prime movers are categorized as ITS.

1.2.8.4.3.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

The preclosure safety analysis identifies one procedural safety control related to the operation of the 
site prime mover. Table 1.9-10 identifies the unique numbering of the preclosure procedural safety 
controls, as well as the associated facility or operations area, SSCs, and bases.

PSC-2—To limit spurious movement potentially resulting in collision or tipover, the rail-based 
site prime mover operating procedures will include a warning that detachment of the site prime 
mover from the railcar is an important procedural step in the preclosure safety analysis. The site 
prime mover operating procedure will require that the site prime mover be detached prior to waste 
handling operations with loaded waste containers being placed on or taken off the railcar. The 
detachment of the site prime mover will be independently verified.
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For truck-based site prime movers, the site prime mover operating procedure will require that the 
site prime mover be detached or deactivated with its brakes set prior to waste handling operations 
with loaded waste containers being placed on or taken off the truck trailer. The detachment or 
deactivation of the site prime mover will be independently verified.

1.2.8.4.3.5 Design Bases and Design Criteria

The nuclear safety design bases and their relationship to design criteria for the site prime movers are 
provided in Table 1.2.8-2.

1.2.8.4.3.6 Design Methodologies

The design methodologies used in the design of the site prime movers are in accordance with the 
codes and standards provided in Section 1.2.8.4.3.8.

1.2.8.4.3.7 Consistency of Material with Design Methodologies

Materials of construction used in the design of the site prime movers are in accordance with the 
codes and standards provided in Section 1.2.8.4.3.8.

1.2.8.4.3.8 Design Codes and Standards

The site prime movers are designed in accordance with the following codes and standards:

• 49 CFR 571.121 and 49 CFR 571.108
• A Policy on Geometric Design of Highways and Streets (AASHTO 2004)
• Manual for Railway Engineering (AREMA 2007).

1.2.8.4.3.9 Design Load Combinations

The design load combinations used in the analysis of SSCs classified as ITS in the site prime movers 
are in accordance with the codes and standards in Section 1.2.8.4.3.8.

1.2.8.4.4 Roads and Rails

1.2.8.4.4.1 Surface Roads

1.2.8.4.4.1.1 System Description

The road and access-way system provides roads, parking areas, and walkways for the repository 
facilities.

The road and access-way system is physically and functionally compatible with transportation 
equipment to accommodate the movement of personnel, equipment, supplies, and waste packages. 
The road and access-way system is designed to handle traffic consistent with the cask receipt and 
return rates. Roads used by the site transporter, site prime movers, and cask tractor and cask transfer 
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trailers, have a maximum 5% grade with a maximum 2% cross-slope. Roads for firefighting 
apparatus have a maximum grade of 10%.

The site roads are classified as non-ITS.

1.2.8.4.4.1.2 Operational Processes

Roads located within the GROA provide for the delivery and pickup of casks and other commodities 
from the surface facilities. Site roads extend to all handling facilities, support facilities, warehouses, 
and parking and buffer areas. GROA roads have posted speed limits in order to prevent site 
accidents and provide adequate room for stopping. Roads are designed and constructed based on 
accepted industry standards and provide the necessary capacity to carry large and 
weight-concentrated loads and accommodate vehicles having turning radii larger than normal road 
traffic. Sufficient lighting is provided within the GROA for road operations, including in parking 
areas, to meet physical security and industrial health and safety requirements.

1.2.8.4.4.1.3 Design Codes and Standards

Surface roads are designed using the methods and practices in the following codes and standards:

• Standard Plans for Road and Bridge Construction (NDOT 2007)

• Standard Specification for Road and Bridge Construction (Stephens 2001)

• A Policy on Geometric Design of Highways and Streets (AASHTO 2004), as applicable, 
for design parameters not covered in the Nevada Department of Transportation 
documents

• International Fire Code 2006 (ICC 2006), Section D.103.2.

1.2.8.4.4.2 Surface Rails

1.2.8.4.4.2.1 System Description

The surface rails are designed to receive transportation casks. Transportation casks and their 
conveyances are received at the interface with the Nevada Transportation System. The surface rails 
include passages through the GROA security gates and any buffer areas. The rail yard has a cask 
buffer area to maintain a cask inventory. The surface rails include a track for moving the site prime 
mover and transportation casks on conveyances into the handling facilities. The surface rails also 
provide for moving loaded waste packages from the handling facilities into the subsurface facility
and the interface with the emplacement and retrieval equipment rail system.
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The surface rails are designed similarly to a heavy-haul, freight railroad that is operated at low 
speeds. The surface rails are divided into two distinct rail systems:

1. Standard-gauge rail is provided to accommodate delivery and onsite transport of 
transportation casks and equipment, waste packages, TAD canisters, and site supplies.

2. Transport and emplacement vehicle rail is designed to accommodate transport of waste 
packages from the IHF and CRCFs to the emplacement drifts.

The surface rails are designed to accommodate the receipt of empty TAD canisters into the WNNRF,
transportation casks into the handling facilities, and the receipt of empty aging overpacks at the 
aging overpack staging facility. Unloaded transportation casks utilize similar steps to leave the 
GROA following processing through the handling facilities. The surface rails are designed for a 
maximum grade less than 3%.

Surface rails for commercial railcars inside and outside the handling facilities are categorized as 
non-ITS. Surface rails for the TEV are categorized as non-ITS. The ITS rails in the IHF and CRCF 
are addressed in Section 1.2.2.

1.2.8.4.4.2.2 Operational Processes

Rail lines are provided within the protected area of the GROA to provide for the delivery and pickup 
of casks and other commodities from the surface facilities. Rail lines extend to all handling 
facilities, support facilities, warehouses, and buffer areas. Rail lines are constructed to accepted 
industry standards and provide the necessary capacity to carry large and weight-concentrated loads. 
Vehicles are required to stop and yield to rail traffic at railroad grade crossings.

1.2.8.4.4.2.3 Design Codes and Standards

Surface rails are designed using the methods and practices in Manual for Railway Engineering
(AREMA 2007).

1.2.8.4.5 Transportation Casks

Transportation casks are the primary mode of transporting SNF and high-level radioactive waste 
from utility generators and federal government sites to the repository. SNF and high-level 
radioactive waste remain in the transportation cask in the approved transportation configuration 
until the transportation cask is safely inside of a waste handling facility.

Transportation casks received at the repository are certified by the U.S. Nuclear Regulatory 
Commission under 10 CFR Part 71. The transportation casks are capable of withstanding the 
repository-specific natural phenomena and environmental conditions identified in Table 1.2.2-1.
The horizontal and vertical ground response spectra are shown in Figures 1.2.2-8 to 1.2.2-13.

Structural failure analysis of representative transportation casks and canisters expected to be 
handled at the YMP site was performed to address design parameters, drop parameters, and 
containment failure modes. The analysis is discussed in Section 1.7.2.
— —
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1.2.8.4.5.1 System Description

Transportation casks, which are certified under 10 CFR Part 71, are used to enclose TAD, naval 
SNF, HLW, and DOE SNF canisters and uncanistered commercial SNF for transportation. The 
transportation cask protects the SNF or HLW during transport and repository event sequences,
dissipates decay heat from the contents, and protects workers and the public from radiation. 
Transportation casks are included in certain repository event sequences and consequently are 
classified as ITS.

To demonstrate compliance with the preclosure safety requirements of 10 CFR Part 63, the 
preclosure safety analysis presented in Sections 1.6 to 1.9 includes and bounds potential 
transportation casks. Transportation cask reliability is obtained based on existing component 
designs and evaluated against the performance required by repository-specific conditions and the 
repository nuclear safety design bases. Details on the methodology and results for transportation 
cask reliability are presented in Sections 1.6 to 1.9. Prior to the use of any transportation cask at the 
repository, analyses will be performed to demonstrate compliance with the Yucca Mountain 
repository–specific criteria and repository nuclear safety design bases. Section 5.10 provides 
additional discussion of the licensing process to be followed to authorize use of transportation casks.

1.2.8.4.5.2 Operational Processes

The operational processes for the unloading of transportation casks at the IHF, CRCF, WHF, and RF 
are described in detail in Sections 1.2.3.2, 1.2.4.2, 1.2.5.2, and 1.2.6.2, respectively. The 
transportation casks are returned to the national transportation system after they have been unloaded 
of SNF and high-level radioactive waste at the waste handling facilities.

1.2.8.4.5.3 Safety Category Classification

Transportation casks are certified by the U.S. Nuclear Regulatory Commission under 10 CFR 
Part 71 and are classified as ITS.

1.2.8.4.5.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls associated with the transportation casks.

1.2.8.4.5.5 Design Bases and Design Criteria

The nuclear safety design bases and their relationship to design criteria for transportation casks are 
provided in Table 1.2.8-2.

1.2.8.4.5.6 Design Methodologies

The design methodologies used in the design of ITS components of the transportation casks are in 
accordance with codes and standards used to meet the performance requirements of 10 CFR Part 71.
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1.2.8.4.5.7 Consistency of Material with Design Methodologies

Materials of construction used in the design of ITS components of the transportation casks are in 
accordance with codes and standards used to meet the performance requirements of 10 CFR Part 71.

1.2.8.4.5.8 Design Codes and Standards

The transportation casks are designed in accordance with the codes and standards used to meet the 
performance requirements at 10 CFR Part 71.

1.2.8.4.5.9 Design Load Combinations

The design load combinations for the transportation casks are based on the requirements of codes 
and standards used to meet the performance requirements in 10 CFR Part 71. The design load 
combinations analyzed include normal conditions, event sequences, and the effects of natural 
phenomena.
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Table 1.2.8-1.  Balance of Plant Facilities Construction Description 

Facility Name(s) General Description of Construction 

Aging Overpack Staging Facility 
(Area 290)

Reinforced concrete pad.

Administration Facility (Area 620) Single-story, office-grade commercial structure with structural steel framing.

Central Security Station (Area 30A) Single-story, office-grade commercial structure with structural steel framing, 
concrete walls, and foundation.

North Perimeter Security Station 
(Area 30C)

Single-story commercial structure with structural steel framing, concrete 
walls, and foundation.

Cask Receipt Security Station 
(Area 30B)

Single-story, office-grade commercial structure with structural steel framing, 
concrete walls, and foundation.

Administration Security Stations 
(Areas 65A and 65B)

These buildings consist of small, premanufactured, kiosk-style guard 
stations.

Central Control Center Facility 
(Area 240)

Single-story hardened structure constructed of concrete and structural steel. 
The roof is a concrete slab on metal deck. 

Utilities Facility (Area 25A) Single-story, industrial-grade structure with structural steel framing.

Cooling Tower (Area 25B) Manufactured cooling towers with steel supporting structure.

Evaporation Pond (Area 25C) Lined earthen pond.

Stormwater Retention Pond 
(Area 90A)

Lined earthen pond.

Fire Water Facilities (Areas 28A, 
28B, and 28E)

Single-story, commercial-grade structure with structural steel framing. 
Precast or tilt-up concrete walls on concrete foundations.

Fire, Rescue, and Medical Facility 
(Area 63A)

Single-story, industrial-grade structure with structural steel framing. Precast 
or tilt-up concrete walls on concrete foundations.

Warehouse/Central Receiving 
(Area 68A)

Single-story, industrial-grade structure with structural steel framing. Precast 
or tilt-up concrete walls on concrete foundations.

Materials/Yard Storage (Area 68B) Open paved area with perimeter fencing.

Equipment/Yard Storage (Area 71B) Open paved area with perimeter fencing.

Emergency Diesel Generator Facility 
(Area 26D)

Single-story reinforced concrete structure. The base slab, walls, and roof 
are constructed of reinforced concrete. ITS diesel generators are supported 
on the base slab.

Standby Diesel Generator Facility 
(Area 26B)

Single-story, industrial-grade structure with structural steel framing. Precast 
or tilt-up concrete walls on concrete foundations.

Low-Level Waste Facility (Area 160) The LLWF is a multistory structure that is designed as a structural steel 
structure with concrete floor, concrete mat foundation, concrete shield walls, 
steel roof truss system, and interior and external structural steel bracing.

Warehouse and Non-Nuclear 
Receipt Facility (Area 230)

Single-story, industrial-grade structure with structural steel framing. Precast 
or tilt-up concrete walls on concrete foundations.
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Craft Shops (Area 71A) Single-story, industrial-grade structure with structural steel framing. Precast 
or tilt-up concrete walls on concrete foundation.

Heavy Equipment Maintenance 
Facility (Area 220)

Single-story, industrial-grade structure with structural steel framing. Precast 
or tilt-up concrete walls on concrete foundation.

Switchyard (138 kV) and 13.8 kV 
Switchgear Facility
(Areas 27A and 27B)

Single-story, industrial-grade structure with structural steel framing. Precast 
or tilt-up concrete walls on concrete foundation.

Diesel Fuel Oil Storage (Area 70A) American Petroleum Institute code (API Std 650) petroleum storage vessel.

Fueling Stations (Area 70B) Steel structure canopy above fuel island.

Railcar Buffer Area (Area 33A) Heavy-freight railcar buffer area with a capacity of 25 railcars used to stage 
rail-mounted waste casks prior to processing in the waste handling 
buildings.

Truck Buffer Area (Area 33B) Paved truck buffer area with a capacity of five trucks used to stage 
truck-mounted waste casks prior to processing in the waste handling 
buildings.

Wastewater Treatment (Area 35A) Area for wastewater processing.

Helicopter Pad (Area 66A) Federal Aviation Administration compliant heliport for day and night 
operation.

Vehicle Maintenance and Motor Pool 
(Area 690)

Single-story, industrial-grade structure with structural steel framing. Precast 
or tilt-up concrete walls on concrete foundation.

Table 1.2.8-1.  Balance of Plant Facilities Construction Description (Continued)

Facility Name(s) General Description of Construction 
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 the Balance of Plant Facilities 

Design Criteria

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curve.

CSA analysis depends on the combination of the 
ies of each component.)

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

k and canister are required to be designed such 
 canister maximum effective plastic strain from low 
mpacts or collisions meets the required reliability 
valuated against the canister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

hat carry DOE standard canisters shall 
rate physical features that prevent a dropped cask 
 contacting the internal canister.

k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.
Table 1.2.8-2.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function Controlling Parameters and Values

Mechanical 
Handling System 
(H)

Cask handling Transportation Cask 
(Analyzed as a 
Representative Cask)

Provide 
containment

H.IH.01. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a cask drop 
shall be less than or equal to 1 × 10−5 
per drop. 

The cas
that the
drop me
the can

(Note: P
reliabilit

H.IH.02. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a drop of a 
load onto the cask shall be less than or 
equal to 1 × 10−5 per drop. 

The cas
that the
drop me
the can

(Note: P
reliabilit

H.IH.03. The mean conditional 
probability of breach of a canister 
contained within a sealed cask resulting 
from a side impact or collision shall be 
less than or equal to 1 × 10−8 per 
impact.

The cas
that the
speed i
when e

(Note: P
reliabilit

Preclude lid 
contact with 
canisters

H.IH.04. The geometry of the casks that 
carry HLW canisters shall preclude lid 
contact with canisters following a drop 
of a cask lid. 

Casks t
incorpo
lid from

Protect against 
direct exposure to 
personnel

H.IH.05. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a drop of a cask 
shall be less than or equal to 1 × 10−5 
per drop.

The cas
maximu
impacts
evaluat
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k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

 prime movers are required to be designed to 
e speeds greater than 9 mph.

e mover fuel tanks are required to be designed to 
e a fuel tank explosion.

 transporter is required to be designed such that 
rical power supply must be disconnected for the 
loading room equipment shield door to be closed.

 transporter is required to be designed to preclude 
reater than 2.5 mph.

 transporter fuel tank is required to be designed to 
e a fuel tank explosion.

 transporter is required to be designed such that it 
lift an aging overpack more than 3 ft.

lance of Plant Facilities (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask handling 
(Continued)

Transportation Cask 
(Analyzed as a 
Representative Cask) 
(Continued)

Protect against 
direct exposure to 
personnel 
(Continued)

H.IH.06. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a collision or 
side impact to a cask shall be less than 
or equal to 1 × 10−8 per impact.

The cas
maximu
impacts
evaluat

H.IH.07. The mean conditional 
probability of loss of cask gamma 
shielding resulting from drop of a load 
onto a cask shall be less than or equal 
to 1 × 10−5 per impact.

The cas
maximu
impacts
evaluat

Site Prime Mover Limit speed H.IH.08. The speed of the site prime 
mover shall be limited to 9 mph.

The site
preclud

Preclude fuel tank 
explosion

H.IH.09. The fuel tank of a site prime 
mover that enters the facility shall 
preclude fuel tank explosions. 

Site prim
preclud

Aging (AP) Aging Handling/ 
Cask Transfer

Site Transporter 
(170-HAT0-MEQ- 
00001)

Protect against 
spurious 
movement

AP.CR.HAT.01. The mean probability of 
spurious movement of the site 
transporter while the canister is being 
lifted or lowered shall be less than or 
equal to 1 × 10−9 per transfer.

The site
its elect
cask un

Limit speed AP.CR.HAT.02. The speed of the site 
transporter shall be limited to 2.5 mph. 

The site
speed g

Preclude fuel tank 
explosion

AP.CR.HAT.03. The site transporter fuel 
tank shall preclude fuel tank explosions. 

The site
preclud

Reduce severity 
of a drop

AP.CR.HAT.04. The site transporter 
shall preclude a drop of an aging 
overpack from a height greater than 3 ft 
measured from the equipment base.

The site
cannot 

Table 1.2.8-2.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for the Ba

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function Controlling Parameters and Values
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ng clearance and energy-absorbing features are 
 to be provided to minimize the likelihood of 

-induced sliding impact and control impact loads 
ed.

 transporter is required to have a wide base, such 
 inherently stable, will not tip over, but may slide if 
d to sufficiently high seismic forces.

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curve.

CSA analysis depends on the combination of the 
ies of each component.)

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curve.

CSA analysis depends on the combination of the 
ies of each component.)

k and canister are required to be designed such 
 canister maximum effective plastic strain from low 
mpact or collisions meets the required reliability 
valuated against the canister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

lance of Plant Facilities (Continued)

Design Criteria
Aging (AP) 
(Continued)

Aging Handling/ 
Cask Transfer 
(Continued)

Site Transporter 
(170-HAT0-MEQ- 
00001) (Continued)

Protect against 
sliding impact and 
inducing stresses 
on the waste 
container

AP.CR.HAT.05. The mean frequency of 
a sliding impact of the site transporter 
into a wall and inducing stresses on the 
waste container due to the spectrum of 
seismic events shall be less than or 
equal to 2 × 10−5 per year.

Operati
required
seismic
as need

Protect against 
tipover of a site 
transporter 

AP.CR.HAT.06. The mean frequency of 
a tipover of the site transporter due to 
the spectrum of seismic events shall be 
less than or equal to 2 × 10−6 per year.

The site
that it is
expose

Mechanical 
Handling System 
(H)

Cask Handling Transportation Cask 
(Analyzed as a 
Representative Cask)

Provide 
containment

H.CR.01. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a drop shall 
be less than or equal to 1 × 10−5 per 
drop.

The cas
that the
drop me
the can

(Note: P
reliabilit

H.CR.02. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a drop of a 
load onto the cask shall be less than or 
equal to 1 × 10−5 per drop.

The cas
that the
drop me
the can

(Note: P
reliabilit

H.CR.03. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a side impact 
or collision shall be less than or equal to 
1 × 10−8 per impact.

The cas
that the
speed i
when e

(Note: P
reliabilit
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k is required to be designed such that the 
m effective plastic strain from drop, low speed 

 or collisions meets the required reliability when 
ed against the cask capacity curves.

k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

hat carry DOE standard canisters shall 
rate physical features that prevent a dropped cask 
 contacting the internal canister.

 prime movers are required to be designed to 
e speeds greater than 9 mph.

e mover fuel tanks are required to be designed to 
e a fuel tank explosion.

lance of Plant Facilities (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling 
(Continued)

Transportation Cask 
(Analyzed as a 
Representative Cask) 
(Continued)

Protect against 
direct exposure to 
personnel

H.CR.04. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a drop of a cask 
shall be less than or equal to 1 × 10−5 
per drop.

The cas
maximu
impact,
evaluat

H.CR.05. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a collision or 
side impact to a cask shall be less than 
or equal to 1 × 10−8 per impact.

The cas
maximu
impacts
evaluat

H.CR.06. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a drop of a load 
onto a cask shall be less than or equal 
to 1 × 10−5 per impact.

The cas
maximu
impacts
evaluat

Preclude lid 
contact with 
canister

H.CR.07. The geometry of the casks 
that carry DOE standardized canisters 
or HLW canisters shall preclude lid 
contact with canisters following a drop 
of a cask lid.

Casks t
incorpo
lid from

Site Prime Mover Limit speed H.CR.08. The speed of the site prime 
mover shall be limited to 9 mph.

The site
preclud

Preclude fuel tank 
explosion

H.CR.09. The fuel tank of a site prime 
mover shall preclude fuel tank 
explosions.

Site prim
preclud
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 transporter is required to be designed such that 
rical power supply must be disconnected for the 
 room equipment shield door to be closed.

 transporter is required to be designed to preclude 
reater than 2.5 mph.

 transporter fuel tank is required to be designed to 
e a fuel tank explosion.

 transporter is required to be designed such that it 
lift an aging overpack more than 3 ft.

ng clearance and energy-absorbing features are 
 to be provided to minimize the likelihood of 

-induced sliding impact and control impact loads 
ed.

 transporter is required to have a wide base, such 
 inherently stable, will not tip over, but may slide if 
d to sufficiently high seismic forces.

k tractor is required to be designed to preclude 
reater than 2.5 mph.

k tractor fuel tank is required to be designed to 
e a fuel tank explosion.

lance of Plant Facilities (Continued)

Design Criteria
Aging (AP) Aging 
Handling/Cask 
Transfer

Site Transporter 
(170-HAT0-MEQ- 
00001)

Protect against 
spurious 
movement

AP.WH.HAT.01. The mean probability of 
spurious movement of the site 
transporter while the canister is being 
lifted or lowered shall be less than or 
equal to 1 × 10−9 per transfer.

The site
its elect
loading

Limit speed AP.WH.HAT.02. The speed of the site 
transporter shall be limited to 2.5 mph.

The site
speed g

Preclude fuel tank 
explosion

AP.WH.HAT.03. The site transporter fuel 
tank shall preclude fuel tank explosions. 

The site
preclud

Reduce severity 
of a drop

AP.WH.HAT.04. The site transporter 
shall preclude a vertical dropping of an 
aging overpack from a height greater 
than 3 ft measured from the equipment 
base.

The site
cannot 

Protect against 
sliding impact and 
inducing stress on 
the waste 
container

AP.WH.HAT.05. The mean frequency of 
sliding impact of the site transporter into 
a wall and inducing stresses that can 
breach the waste container due to the 
spectrum of seismic events shall be less 
than or equal to 2 × 10−5 per year.

Operati
required
seismic
as need

Protect against 
tipover of the site 
transporter

AP.WH.HAT.06. The mean frequency of 
tipover of the site transporter due to the 
spectrum of seismic events shall be less 
than or equal to 2 × 10−6 per year. 

The site
that it is
expose

Cask Tractor  
(for use with the Cask 
Transfer Trailer) 
(170-HAT0-HEQ- 
00001)

Limit speed AP.WH.HAT.07. The speed of the cask 
tractor shall be limited to 2.5 mph.

The cas
speed g

Preclude fuel tank 
explosion

AP.WH.HAT.08. The cask tractor fuel 
tank shall preclude fuel tank explosions.

The cas
preclud
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k transfer trailer fuel tank is required to be 
d to preclude a fuel tank explosion.

k transfer trailer is required to be designed such 
annot drop a cask from a height of more than 6 ft.

k transfer trailer is required to be designed to 
e puncture of transportation casks and horizontal 
d transfer casks during collisions.

k transfer trailer is required to be designed to 
e puncture of transportation casks and horizontal 
d transfer casks during seismic events.

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

k is required to be designed such that the 
m effective plastic strain from a drop meets the 
 reliability when evaluated against the cask 
 curves.

lance of Plant Facilities (Continued)

Design Criteria
Aging (AP) 
(Continued)

Aging 
Handling/Cask 
Transfer 
(Continued)

Cask Transfer Trailer 
(for use with 
Transportation Casks 
and Horizontal Shielded 
Transfer Casks  
(PWR DPC: 170- 
HAT0-TRLY-00001) 
(BWR DPC: 170- 
HAT0-TRLY-00002)

Preclude fuel tank 
explosion

AP.WH.HAT.09. The cask transfer trailer 
fuel tank shall preclude fuel tank 
explosions.

The cas
designe

Reduce severity 
of a drop

AP.WH.HAT.10. The cask transfer trailer 
shall preclude dropping a cask from a 
height greater than 6 ft measured from 
the equipment base.

The cas
that it c

Preclude 
puncture of a 
cask 

AP.WH.HAT.11. The cask transfer trailer 
shall preclude puncture of a cask due to 
collision.

The cas
preclud
shielde

AP.WH.HAT.12. The cask transfer trailer 
shall be designed to preclude puncture 
of a cask due to the spectrum of seismic 
events.

The cas
preclud
shielde

Mechanical 
Handling System 
(H)

Cask Handling Transportation Cask 
(Analyzed as a 
Representative Cask) 
Shielded Transfer Cask 
(Analyzed as a 
Representative Cask) 
(TAD: 
050-HT00-HEQ-00001) 
(DPC: 
050-HT00-HEQ-00002) 
(Continued)

Provide 
containment 

H.WH.01. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a drop shall 
be less than or equal to 1 × 10−5 per 
drop. 

The cas
that the
drop me
the can

(Note: P
reliabilit

H.WH.02. The mean conditional 
probability of breach of a sealed cask 
containing uncanistered SNF resulting 
from a drop shall be less than or equal 
to 1 × 10−5 per drop.

The cas
maximu
required
capacity
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k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

k is required to be designed such that the 
m effective plastic strain from a drop meets the 
 reliability when evaluated against the cask 
 curves.

k and canister are required to be designed such 
 canister maximum effective plastic strain from low 
mpact or collisions meets the required reliability 
valuated against the canister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

k is required to be designed such that the 
m effective plastic strain from a low speed impact 
ion meets the required reliability when evaluated 
 the cask capacity curves.

k is required to be designed such that the 
ced failure hazard meets the required reliability 

valuated against the spectrum of fires.

lance of Plant Facilities (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling 
(Continued)

Transportation Cask 
(Analyzed as a 
Representative Cask) 
Shielded Transfer Cask 
(Analyzed as a 
Representative Cask) 
(TAD: 
050-HT00-HEQ-00001) 
(DPC: 
050-HT00-HEQ-00002) 
(Continued)

Provide 
containment 
(continued)

H.WH.03. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a drop of a 
load onto the cask shall be less than or 
equal to 1 × 10−5 per drop.

The cas
that the
drop me
the can

(Note: P
reliabilit

H.WH.04. The mean conditional 
probability of breach of a sealed cask 
containing uncanistered SNF resulting 
from a drop of a load onto the cask shall 
be less than or equal to 1 × 10−5 per 
drop.

The cas
maximu
required
capacity

H.WH.05. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a side impact 
or collision shall be less than or equal to 
1 × 10−8 per impact.

The cas
that the
speed i
when e

(Note: P
reliabilit

H.WH.06. The mean conditional 
probability of breach of a sealed cask 
containing uncanistered SNF resulting 
from a side impact or collision shall be 
less than or equal to 1 × 10−8 per 
impact.

The cas
maximu
or collis
against

H.WH.07. The mean conditional 
probability of breach of a sealed cask 
containing uncanistered SNF resulting 
from the spectrum of fires shall be less 
than or equal to 5 × 10−2 per fire event.

The cas
fire-indu
when e
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k is required to be designed such that the 
m effective plastic strain from a drop or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

 prime movers are required to be designed to 
e speeds greater than 9 mph.

e mover fuel tanks are required to be designed to 
e a fuel tank explosion.

 transporter is required to be designed such that 
rical power supply must be disconnected for the 
 room equipment shield door to be closed.

 transporter is required to be designed to preclude 
reater than 2.5 mph.

 transporter fuel tank is required to be designed to 
e a fuel tank explosion.

lance of Plant Facilities (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling 
(Continued)

Transportation Cask 
(Analyzed as a 
Representative Cask) 
Shielded Transfer Cask 
(Analyzed as a 
Representative Cask) 
(TAD: 
050-HT00-HEQ-00001) 
(DPC: 
050-HT00-HEQ-00002) 
(Continued)

Protect against 
direct exposure to 
personnel

H.WH.08. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a drop of a cask 
shall be less than or equal to 1 × 10−5 
per drop.

The cas
maximu
impacts
evaluat

H.WH.09. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a collision or 
side impact to a cask shall be less than 
or equal to 1 × 10−8 per impact.

The cas
maximu
impacts
evaluat

H.WH.10 The mean conditional 
probability of loss of cask gamma 
shielding resulting from a drop of a load 
onto a cask shall be less than or equal 
to 1 × 10−8 per impact.

The cas
maximu
impacts
evaluat

Site Prime Mover Limit speed H.WH.11. The speed of the site prime 
mover shall be limited to 9 mph.

The site
preclud

Preclude fuel tank 
explosion

H.WH.12. The fuel tank of a site prime 
mover shall preclude fuel tank 
explosions.

Site prim
preclud

Aging (AP) Aging Handling/ 
Cask Transfer

Site Transporter 
(170-HAT0-MEQ- 
00001)

Protect against 
spurious 
movement

AP.RF.HAT.01. The mean probability of 
spurious movement of the site 
transporter while the canister is being 
lifted or lowered shall be less than or 
equal to 1 × 10−9 per transfer.

The site
its elect
loading

Limit speed AP.RF.HAT.02. The speed of the site 
transporter shall be limited to 2.5 mph.

The site
speed g

Preclude fuel tank 
explosion

AP.RF.HAT.03. The site transporter fuel 
tank shall preclude fuel tank explosions.

The site
preclud
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 transporter is required to be designed such that it 
lift an aging overpack more than 3 ft.

ng clearance and energy-absorbing features are 
 to be provided to minimize the likelihood of 

-induced sliding impact and control impact loads 
ed.

 transporter is required to have a wide base, such 
 inherently stable, will not tip over, but may slide if 
d to sufficiently high seismic forces.

k tractor is required to be designed to preclude 
reater than 2.5 mph.

k tractor fuel tank is required to be designed to 
e a fuel tank explosion.

k transfer trailer fuel tank is required to be 
d to preclude a fuel tank explosion

k transfer trailer is required to be designed such 
annot drop a cask from a height greater than 6 ft.

lance of Plant Facilities (Continued)

Design Criteria
Aging (AP) 
(Continued)

Aging Handling/ 
Cask Transfer 
(Continued)

Site Transporter 
(170-HAT0-MEQ- 
00001) (Continued)

Reduce severity 
of a drop

AP.RF.HAT.04.The site transporter shall 
be incapable of dropping an aging 
overpack from a height greater than 3 ft 
measured from the equipment base. 

The site
cannot 

Protect against 
sliding impact and 
inducing stresses 
that can breach a 
waste container

AP.RF.HAT.05. The mean frequency of 
a sliding impact of the site transporter 
into a wall and inducing stresses that 
can breach the waste container due to 
the spectrum of seismic events shall be 
less than or equal to 2 × 10−5 per year. 

Operati
required
seismic
as need

Protect against 
tipover of a site 
transporter 

AP.RF.HAT.06. The mean frequency of 
a tipover of the site transporter due to 
the spectrum of seismic events shall be 
less than or equal to 2 × 10−6 per year. 

The site
that it is
expose

Cask Tractor  
(for use with the Cask 
Transfer Trailer) 
(170-HAT0-HEQ- 
00001)

Limit speed AP.RF.HAT.07. The speed of the cask 
tractor shall be limited to 2.5 mph. 

The cas
speed g

Preclude fuel tank 
explosion

AP.RF.HAT.08. The cask tractor fuel 
tank shall preclude fuel tank explosions.

The cas
preclud

Cask Transfer Trailer 
(for use with 
Transportation Casks 
and Horizontal Shielded 
Transfer Casks  
(PWR DPC:170- HAT0- 
TRLY-00001) 
(BWR DPC: 170- 
HAT0-TRLY-00002)

Preclude fuel tank 
explosion

AP.RF.HAT.09. The cask transfer trailer 
fuel tank shall preclude fuel tank 
explosions.

The cas
designe

Reduce severity 
of a drop

AP.RF.HAT.10. The cask transfer trailer 
shall preclude dropping a cask from a 
height greater than 6 ft measured from 
the equipment base.

The cas
that it c
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k transfer trailer is required to be designed to 
e puncture of transportation casks and horizontal 
d transfer casks during collision. 

k transfer trailer is required to be designed to 
e puncture of transportation casks and horizontal 
d transfer casks during seismic events 

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curve.

CSA analysis depends on the combination of the 
ies of each component.)

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curve.

CSA analysis depends on the combination of the 
ies of each component.)

k and canister are required to be designed such 
 canister maximum effective plastic strain from low 
mpact or collisions meets the required reliability 
valuated against the canister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

lance of Plant Facilities (Continued)

Design Criteria
Aging (AP) 
(Continued)

Aging Handling/ 
Cask Transfer 
(Continued)

Cask Transfer Trailer 
(for use with 
Transportation Casks 
and Horizontal Shielded 
Transfer Casks  
(PWR DPC:170- HAT0- 
TRLY-00001) 
(BWR DPC: 170- 
HAT0-TRLY-00002) 
(Continued)

Preclude 
puncture of a 
cask due to 
impact

AP.RF.HAT.11. The cask transfer trailer 
shall preclude puncture of a cask due to 
collision.

The cas
preclud
shielde

Preclude 
puncture of a 
cask 

AP.RF.HAT.12. The cask transfer trailer 
shall be designed to preclude puncture 
of casks due to the spectrum of seismic 
events. 

The cas
preclud
shielde

Mechanical 
Handling System 
(H)

Cask Handling Transportation Cask 
(Analyzed as a 
Representative Cask)

Provide 
containment

H.RF.01. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a drop shall 
be less than or equal to 1 × 10−5 per 
drop.

The cas
that the
drop me
the can

(Note: P
reliabilit

H.RF.02. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a drop of a 
load onto the cask shall be less than or 
equal to 1 × 10−5 per drop.

The cas
that the
drop me
the can

(Note: P
reliabilit

H.RF.03. The mean conditional 
probability of breach of a canister in a 
sealed cask resulting from a side impact 
or collision shall be less than or equal to 
1 × 10−8 per impact.

The cas
that the
speed i
when e

(Note: P
reliabilit
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k is required to be designed such that the 
m effective plastic strain from drop, low speed 

 or collisions meets the required reliability when 
ed against the cask capacity curves.

k is required to be designed such that the 
m effective plastic strain from drop, low speed 

 or collisions meets the required reliability when 
ed against the cask capacity curves.

k is required to be designed such that the 
m effective plastic strain from drop, low speed 

 or collisions meets the required reliability when 
ed against the cask capacity curves.

 prime mover is required to be designed to 
e speed greater than 9 mph.

 prime mover fuel tank is required to be designed 
ude a fuel tank explosion.

k tractor is required to be designed to preclude 
reater than 2.5 mph.

k tractor fuel tank is required to be designed to 
e a fuel tank explosion.

lance of Plant Facilities (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling 
(Continued)

Transportation Cask 
(Analyzed as a 
Representative Cask) 
(Continued)

Protect against 
direct exposure to 
personnel

H.RF.04. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a drop of a cask 
shall be less than or equal to 1 × 10−8 
per drop. 

The cas
maximu
impact,
evaluat

H.RF.05. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a collision or 
side impact to a cask shall be less than 
or equal to 1 × 10−8 per impact.

The cas
maximu
impact,
evaluat

H.RF.06. The mean conditional 
probability of loss of cask gamma 
shielding resulting from a drop of a load 
onto a cask shall be less than or equal 
to 1 × 10−5 per impact.

The cas
maximu
impact,
evaluat

SIte Prime Mover Limit speed H.RF.07. The speed of the site prime 
mover shall be limited to 9 mph.

The site
preclud

Preclude fuel tank 
explosion

H.RF.08. The fuel tank of a site prime 
mover that enters the facility shall 
preclude fuel tank explosions.

The site
to precl

Aging Facility 
(AP)

Aging 
Handling/Cask 
Transfer

Cask Tractor (for use 
with the Cask Transfer 
Trailer)  
(170-HAT0-MEQ- 
00001)

Limit speed AP.SB.HAT.01. The speed of the cask 
tractor shall be limited to 2.5 mph.

The cas
speed g

Preclude fuel tank 
explosion

AP.SB.HAT.02. The cask tractor fuel 
tank shall preclude fuel tank explosions.

The cas
preclud
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k transfer trailer fuel tank is required to be 
d to preclude a fuel tank explosion.

k transfer trailer is required to be designed such 
annot drop a horizontal shielded transfer cask or 
tally oriented transportation cask from a height of 
an 6 ft.

k transfer trailer is required to be designed to 
e puncture of transportation casks and horizontal 
d transfer casks during collisions. 

k transfer trailer (hydraulic ram) is required to be 
d to preclude puncture or breach of the canister 
anister transfer operations.

k transfer trailer is required to be designed to 
e speed greater than 2.5 mph.

k transfer trailer is required to be designed to 
e puncture of transportation casks and horizontal 
d transfer casks during seismic events.

 transporter is required to be designed to preclude 
reater than 2.5 mph.

 transporter fuel tank is required to be designed to 
e a fuel tank explosion.

lance of Plant Facilities (Continued)

Design Criteria
Aging Facility 
(AP) (Continued)

Aging 
Handling/Cask 
Transfer 
(Continued)

Cask Transfer Trailer 
for use with 
Transportation Casks 
and Horizontal Shielded 
Transfer Casks  
(PWR DPC: 170- 
HAT0-TRLY-00001]) 
(BWR DPC: 170- 
HAT0-TRLY-00002)

Preclude fuel tank 
explosion

AP.SB.HAT.03. The cask transfer trailer 
fuel tank shall preclude fuel tank 
explosions.

The cas
designe

Reduce severity 
of a drop

AP.SB.HAT.04. The cask transfer trailer 
shall preclude dropping a cask from a 
height greater than 6 ft measured from 
the equipment base.

The cas
that it c
horizon
more th

Preclude 
puncture of a 
cask

AP.SB.HAT.05. The cask transfer trailer 
shall preclude puncture of a cask due to 
collision.

The cas
preclud
shielde

Preclude 
puncture of a 
canister

AP.SB.HAT.06. The cask transfer trailer 
shall preclude puncture of a canister by 
the hydraulic ram.

The cas
designe
during c

Limit speed AP.SB.HAT.07. The speed of the cask 
transfer trailer shall be limited to 
2.5 mph.

The cas
preclud

Preclude 
puncture of a 
cask

AP.SB.HAT.08. The cask transfer trailer 
shall be designed to preclude puncture 
of a cask due to the spectrum of seismic 
events.

The cas
preclud
shielde

Site Transporter 
(170-HAT0-MEQ- 
00001)

Limit speed AP.SB.HAT.09. The speed of the site 
transporter shall be limited to 2.5 mph.

The site
speed g

Preclude fuel tank 
explosion

AP.SB.HAT.10. The site transporter fuel 
tank shall preclude fuel tank explosions.

The site
preclud

Table 1.2.8-2.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for the Ba

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function Controlling Parameters and Values
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 transporter is required to be designed such that it 
lift an aging overpack more than 3 ft.

 transporter is required to have a wide base, such 
 inherently stable, will not tip over, but may slide if 
d to sufficiently high seismic forces.

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curves.

CSA analysis depends on the combination of the 
ies of each component.)

k and canister are required to be designed such 
 canister maximum effective plastic strain from a 
ets the required reliability when evaluated against 

ister capacity curves.

CSA analysis depends on the combination of 
ies of each component.)

lance of Plant Facilities (Continued)

Design Criteria
Aging Facility 
(AP) (Continued)

Aging 
Handling/Cask 
Transfer 
(Continued)

Site Transporter 
(170-HAT0-MEQ- 
00001) (Continued)

Reduce severity 
of a drop

AP.SB.HAT.11. The site transporter shall 
preclude a vertical drop of an aging 
overpack from a height greater than 3 ft 
measured from the equipment base.

The site
cannot 

Protect against 
tipover of the site 
transporter

AP.SB.HAT.12. The mean frequency of 
tipover of the site transporter due to the 
spectrum of seismic events shall be less 
than or equal to 2 × 10−6 per year.

The site
that it is
expose

Mechanical 
Handling System 
(H)

Cask Handling Transportation Cask 
(Analyzed as a 
Representative Cask)

Provide 
containment

H.SB.01. The mean conditional 
probability of breach of a canister in a 
sealed cask on a railcar, truck trailer, or 
cask transfer trailer resulting from a 
drop shall be less than or equal to 
1 × 10−5 per drop.

The cas
that the
drop me
the can

(Note: P
reliabilit

H.SB.02. The mean probability of 
breach of a canister in a sealed cask on 
a railcar, truck trailer, or cask transfer 
trailer resulting from a drop of a load 
onto the cask shall be less than or equal 
to 1 × 10−5 per drop.

The cas
that the
drop me
the can

(Note: P
reliabilit

H.SB.03. The mean conditional 
probability of breach of a canister in a 
sealed cask on a railcar, truck trailer, or 
cask transfer trailer resulting from a side 
impact or collision shall be less than or 
equal to 1 × 10−8 per impact.

The cas
that the
drop me
the can

(Note: P
reliabilit

Table 1.2.8-2.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for the Ba

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function Controlling Parameters and Values
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k is required to be designed such that the 
m effective plastic strain from a drop meets the 
 reliability when evaluated against the cask 
 curves.

k is required to be designed such that the 
m effective plastic strain from a drop meets the 
 reliability when evaluated against the cask 
 curves.

k is required to be designed such that the 
m effective plastic strain from a drop, low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curve.

k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

k is required to be designed such that the 
m effective plastic strain from drops or low speed 
 or collisions meets the required reliability when 
ed against the cask capacity curves.

lance of Plant Facilities (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling 
(Continued)

Transportation Cask 
(Analyzed as a 
Representative Cask) 
(Continued)

Provide 
containment 
(Continued)

H.SB.04. The mean conditional 
probability of breach of a sealed cask 
containing uncanistered commercial 
spent nuclear fuel on a truck trailer 
resulting from a collision followed by a 
rollover/drop shall be less than or equal 
to 1 × 10−8 per drop.

The cas
maximu
required
capacity

H.SB.05. The mean conditional 
probability of breach of a sealed cask 
containing uncanistered commercial 
spent nuclear fuel resulting from a drop 
of a load onto the cask shall be less 
than or equal to 1 × 10−5 per drop.

The cas
maximu
required
capacity

Protect against 
direct exposure to 
personnel

H.SB.06. The mean conditional 
probability of loss of gamma shielding 
resulting of a cask from a drop shall be 
less than or equal to 1 × 10−5 per drop.

The cas
maximu
impacts
evaluat

H.SB.07. The mean conditional 
probability of loss of gamma shielding of 
a cask resulting from a collision or side 
impact shall be less than or equal to 
1 × 10−8 per impact.

The cas
maximu
impacts
evaluat

H.SB.08. The mean conditional 
probability of loss of gamma shielding of 
a cask resulting from a drop of a load 
onto it shall be less than or equal to 
1 × 10−5 per drop.

The cas
maximu
impacts
evaluat

Table 1.2.8-2.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for the Ba

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function Controlling Parameters and Values
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 prime movers are required to be designed to 
e speeds greater than 9 mph.

e mover fuel tanks are required to be designed to 
e a fuel tank explosion.

 to confirm that the controlling parameters and 

n) with the seismic hazard curve.  

: Balance of Plant; WH: Wet handling Facility. 

lance of Plant Facilities (Continued)

Design Criteria
Mechanical 
Handling System 
(H) (Continued)

Cask Handling 
(Continued)

Site Prime Mover Limit speed H.SB.09. The speed of the site prime 
mover shall be limited to 9 mph. 

The site
preclud

Preclude fuel tank 
explosion

H.SB.10. The fuel tank of a site prime 
mover that enters a facility shall 
preclude fuel tank explosions.

Site prim
preclud

NOTE: “Protect against” in this table means either “reduce the probability of” or “reduce the frequency of.”  
For casks, canisters, and associated handling equipment that were previously designed, the component design will be evaluated
values are met. 
Seismic control values shown represent the integration of the probability distribution of SSC failure (i.e., the loss of safety functio
The numbers appearing in parentheses in the third column are component numbers.  
Facility Codes: AP: Aging Facility; CR: Canister Receipt and Closure Facility; IH: Initial Handling Facility; RF: Receipt Facility; SB
System Codes: H: Mechanical Handling. 
Subsystem Codes: HAT: Cask Transfer.

Table 1.2.8-2.  Preclosure Nuclear Safety Design Bases and their Relationship to Design Criteria for the Ba

System or 
Facility (System 

Code)

Subsystem or 
Function (as 
Applicable) Component

Nuclear Safety Design Bases

Safety Function Controlling Parameters and Values
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Table 1.2.8-3.  EDGF—Indoor Design Temperatures

Area or Room

Maximum 
Summer 

Temperature
(°F Dry Bulb)

Minimum 
Winter 

Temperature
(°F Dry Bulb)

Generator Room A 120a 65

Generator Room B 120a 65

Switchgear Room A 90b 65

Battery Room A 77 72

Switchgear Room B 90b 65

Battery Room B 77 72

Mechanical Rooms A and B 90b 65

Entry Corridor 90b 65

Exit Corridor A and B 120c 45

Electrical Room 90b 65

Fire Protection Room 120c 45

Unassigned Room 90b 65

NOTE: aThese areas are normally not occupied and are designed to have a summer maximum of 120°F when the 
diesel generator is running and outdoor air temperature is 102°F. 
bThese areas are normally not occupied and the temperature limits are based on the equipment located in 
the space. 
cThese areas are normally not occupied and the summer maximum of 120°F occurs when the outdoor air 
temperature is 102°F.
— —
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Table 1.2.8-4.  EDGF ITS HVAC Components and System Design Data

Subsystem/Components

Number of Units 
Nominal Unit 

CapacityOperating Standby

ITS Switchgear Room A—Direct Expansion Air Handling Unit 
(Equipment Number 26D-VNI0-AHU-00001)

1 0 8,000 cfm

ITS Switchgear Room A—Condensing Unit (Equipment Number 
26D-VNI0-CDU-00001)

1 0 187,500 Btu/hr

ITS Switchgear Room B—Direct Expansion Air Handling Unit 
(Equipment Number 26D-VNI0-AHU-00002)

1 0 8,000 cfm

ITS Switchgear Room A—Condensing Unit (Equipment Number 
26D-VNI0-CDU-00002)

1 0 187,500 Btu/hr

Battery Room A Exhaust Fans (Equipment Number 
26D-VNI0-EXH-00001/00002)

1 1 450 cfm

Battery Room B Exhaust Fans (Equipment Number 
26D-VNI0-EXH-00003/00004)

1 1 450 cfm

Generator Room A Exhaust Fans (Equipment Number 
26D-VNI0-EXH-00005/00006/00007/00008)

4 0 22,000 cfm

Generator Room B Exhaust Fans (Equipment Number 
26D-VNI0-EXH-00009/00010/00011/00012)

4 0 22,000 cfm

NOTE:  Equipment numbers are shown in Figures 1.2.8-25 and 1.2.8-26.
— —
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Table 1.2.8-5.  EDGF Non-ITS HVAC Components and System Design Data

Subsystem/Components

Number of Units 
Nominal Unit 

CapacityOperating Standby

Electrical Room—Direct Expansion Fan Coil Units (Equipment 
Number 26D-VNI0-FCU-00001/00002)

2 0 1,800 cfm

Electrical Room—Condensing Units (Equipment Number 
26D-VNI0-CDU-00007/00008)

2 0 61,750 Btu/hr

Mechanical Room A—Direct Expansion Fan Coil Units (Equipment 
Number 26D-VNI0-FCU-00003/00004)

2 0 400 cfm

Mechanical Room A—Condensing Units (Equipment Number 
26D-VNI0-CDU-00003/00004)

2 0 13,750 Btu/hr

Mechanical Room B—Direct Expansion Fan Coil Units (Equipment 
Number 26D-VNI0-FCU-00005/00006)

2 0 400 cfm

Mechanical Room B—Condensing Units (Equipment Number 
26D-VNI0-CDU-00005/00006)

2 0 13,750 Btu/hr

Electric Unit Heaters for Fire Protection Room (Equipment Number 
26D-VNI0-VUH-00001/00002)

1 1 1 kW

Electric Unit Heaters for Exit Corridor A (Equipment Number 
26D-VNI0-VUH-00003/00004)

1 1 1 kW

Electric Unit Heaters for Exit Corridor B (Equipment Number 
26D-VNI0-VUH-00005/00006)

1 1 1 kW

Electric Unit Heaters for Entry Corridor (Equipment Number 
26D-VNI0-VUH-00007/00008)

2 0 3 kW

Electric Unit Heaters for Generator Room A (Equipment Number 
26D-VNI0-VUH-00009/00010/00011/00012)

4 0 7.5 kW

Electric Unit Heaters for Generator Room B (Equipment Number 
26D-VNI0-VUH-00013/00014/00015/00016)

4 0 7.5 kW

NOTE: Equipment numbers for Train A are shown in Figures 1.2.8-25, 1.2.8-26, 1.2.8-30, and 1.2.8-31. The Train B 
ventilation and instrumentation diagrams are the same as for Train A; equipment numbers are unique for 
each train.
— —
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Table 1.2.8-6.  LLWF—Indoor Design Temperatures

Area or Room

Maximum 
Summer 

Temperature
(°F Dry Bulb)

Minimum 
Winter 

Temperature
(°F Dry Bulb)

Packaging Area 90a 65

Staging Rooms A, B, C, and D 90a 65

HVAC Room 90a 65

Equipment Decontamination Room 90a 65

Sorting Rooms A and B 90a 65

Glove Box Room 90a 65

Support Areas 75 70

Truck Entrance Bay 85b 65

Storage Room 90a 65

Electrical Room 90a 65

Battery Room 77 72

Vestibule 90 65

NOTE: aThese areas are normally not occupied and the temperature limits are based on the electrical equipment 
located in the space. 
bThese areas are normally not occupied. However, these areas are designed to be at a maximum of 85°F 
due to the expected extended occupancy during operation.
— —
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Table 1.2.8-7.  LLWF HVAC Components and System Design Data

Subsystem/Components

Number of Units Nominal
Airflow Capacity 

(cfm/unit)Operating Standby

Confinement Area Once-Through Supply Air Handling Unit 
(Equipment Number 160-VCT0-AHU-00001/00002/00003)

2 1 20,000

Nonconfinement Truck Entrance Bay—Fan Coil Units (Equipment 
Number 160-VNI0-FCU-00001/00002)

1 1 12,000

Nonconfinement Air Handling Unit—Supply Fan (Equipment Number 
160-VNI0-AHU-00001/00002)

1 1 20,000

Nonconfinement Air Handling Unit—Return Fan (Integral to unit 
160-VNI0-AHU-00001/00002)

1 1 20,000

NOTE: Equipment numbers are shown in Figures 1.2.8-37 and 1.2.8-38.
— —
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Table 1.2.8-8.  LLWF Exhaust Components and System Design Data 

Subsystem/Components

Number of Units Nominal 
Airflow 

Capacity 
(cfm/unit)

HEPA Filter Plenum 
Components (No. of Banks)

Operating Standby Demister Prefilter
HEPA 
Filter

Confinement Areas Exhaust HEPA Filter 
Plenum (Equipment Number: 
160-VCT0-FLT-00001/00002/00003/ 
00004)

3 1 18,000 NA 1 1

Non-ITS Confinement Areas Exhaust 
Fan (Equipment Number: 
160-VCT0-EXH-00001/00002/00003/ 
00004)

3 1 18,000 NA 1 1

Nonconfinement Battery Room Exhaust 
Fan (Equipment Number: 
160-VNI0-EXH-00001/00002)

1 1 1,500 NA NA NA

Nonconfinement Toilet/Janitors Room 
Exhaust Fan (Equipment Number: 
160-VNI0-EXH-00003)

1 NA 1,500 NA NA NA

Nonconfinement Break Room Exhaust 
Fan (Equipment Number: 
160-VNI0-EXH-00004)

1 NA 300 NA NA NA

NOTE: Equipment numbers are shown in Figures 1.2.8-37 and 1.2.8-38.  
NA = not applicable.
— —
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Table 1.2.8-9.  CCCF and Primary Alarm Station Indoor Design Temperatures 

Area or Room

Maximum
Summer Temperature

(°F Dry Bulb)

Minimum
Winter Temperature

(°F Dry Bulb)

Corridors and Vestibules 75 70

Central Control Center 75 70

Communication Rooms 1/2 75 70

Network Operations Room 75 70

Safeguards and Security Room 75 70

Battery Room 1/2/3 77 72

Kitchen and Break Rooms 75 70

HVAC Room 1/2 90a 65

Electrical Equipment Rooms 1/2/3 90a 65

Offices and Support Areas 75 70

NOTE: aThese areas are normally not occupied and the temperature limits are based on the electrical equipment 
located in the space.
— —
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Table 1.2.8-10. CCCF and Primary Alarm Station HVAC Components and System Design  
Data 

Subsystem/Components

Number of Units 
Nominal Unit 

CapacityOperating Standby

CCCF Outside Air Filter Unit (Equipment Number: 
240-VNI0-FLT-00001)

0 1 2000 cfm

CCCF Outside Air Fan (Equipment Number: 240-VNI0-FAN-00001) 0 1 2000 cfm

CCCF Direct Expansion Air Handling Unit (Equipment Number: 
240-VNI0-AHU-00001A/00001B)

1 1 12,000 cfm

CCCF Direct Expansion Condensing Unit (Equipment Number: 
240-VNI0-CDU-00003A/00003B)

1 1 40 tons

CCCF Return Air Fan (Equipment Number: 
240-VNI0-FAN-00002A/00002B)

1 1 10,000 cfm

CCCF Communications Room 1 Fan Coil Units (Equipment Number: 
240-VNI0-ACU-00001A/00001B)

1 1 3,800 cfm

CCCF Communications Room 1 Condensing Units (Equipment 
Number: 240-VNI0-CDU-00001A/00001B)

1 1 10 tons

CCCF Communications Room 2 Fan Coil Units (Equipment Number: 
240-VNI0-ACU-00002A/00002B)

1 1 3,800 cfm

CCCF Communications Room 2 Condensing Units (Equipment 
Number: 240-VNI0-CDU-00002A/00002B)

1 1 10 tons

CCCF Battery Room Exhaust Fan (Equipment Number: 
240-VNI0-EXH-00001A/00001B)

1 1 700 cfm

CCCF Kitchen Exhaust Fan (Equipment Number: 
240-VNI0-EXH-00003)

1 NA 550 cfm

CCCF Toilets and Janitors Closet Exhaust Fan (Equipment Number: 
240-VNI0-EXH-00002)

1 NA 250 cfm

Primary Alarm Station Outside Air Filter Unit (Equipment Number: 
240-VNI0-FLT-00002)

0 1 600 cfm

Primary Alarm Station Outside Air Fan (Equipment Number: 
240-VNI0-FAN-00003)

0 1 600 cfm

Primary Alarm Station Direct Expansion Air Handling Unit (Equipment 
Number: 240-VNI0-AHU-00002A/00002B)

1 1 5,000 cfm

Primary Alarm Station Direct Expansion Condensing Unit (Equipment 
Number: 240-VNI0-CDU-00004A/00004B)

1 1 20 tons

Primary Alarm Station Return Air Fan (Equipment Number: 
240-VNI0-FAN-00004A/00004B)

1 1 4,500 cfm

Primary Alarm Station Battery Room Exhaust Fan (Equipment 
Number: 240-VNI0-EXH-00004A/00004B)

1 1 350 cfm
— —
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Primary Alarm Station Toilets and Janitors Closet Exhaust Fan 
(Equipment Number: 240-VNI0-EXH-00005)

1 NA 250 cfm

NOTE: Equipment numbers are shown in Figures 1.2.8-42 and 1.2.8-43. 
NA = not applicable.

Table 1.2.8-10. CCCF and Primary Alarm Station HVAC Components and System Design  
Data (Continued)

Subsystem/Components

Number of Units 
Nominal Unit 

CapacityOperating Standby
— —
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Figure 1.2.8-1. EDGF General Arrangement Legend
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Figure 1.2.8-2. EDGF General Arrangement Ground 
Floor Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-84.
NOTE: HR = handrail; MCC = motor control center.
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Figure 1.2.8-3. EDGF General Arrangement Roof Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-85.
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Figure 1.2.8-4. EDGF General Arrangement Section A

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-86.
NOTE: MCC = motor control center.
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Figure 1.2.8-5. EDGF General Arrangement Section B

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-87.
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Figure 1.2.8-6. EDGF General Arrangement Section C

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-88.
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Figure 1.2.8-7. EDGF General Arrangement Section D

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-89.
.
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Figure 1.2.8-8. Central Control Center Facility 
Architectural Floor Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-90.
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Figure 1.2.8-9. Low-Level Waste Facility General 
Arrangement Legend
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Figure 1.2.8-10. Low-Level Waste Facility General 
Arrangement Ground Floor Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-91.
NOTE: HIC = high integrity container; LC = load center; LLW = low-level radioactive waste; MCC = motor control center.
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Figure 1.2.8-11. Low-Level Waste Facility General 
Arrangement Second Floor and 
Mezzanine Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-92.
NOTE: HR = handrail; LLW = low-level radioactive waste.
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Figure 1.2.8-12. Low-Level Waste Facility General 
Arrangement Section A

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-93.
NOTE: LLW = low-level radioactive waste.
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Figure 1.2.8-13. Low-Level Waste Facility General 
Arrangement Section B

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-94.
NOTE: LLW = low-level radioactive waste.
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Figure 1.2.8-14. Low-Level Waste Facility General 
Arrangement Section C

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-95.
NOTE: LLW = low-level radioactive waste.
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Figure 1.2.8-15. Warehouse and Non-Nuclear Receipt 
Facility Architectural Floor Plan



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001

INTENTIONALLY LEFT BLANK
— —
1.2.8-102



1.2.8-103

— —
DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001

Figure 1.2.8-16. Heavy Equipment Maintenance Facility 
Architectural Floor Plan
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Figure 1.2.8-17. EDGF ITS Diesel Generator Train A 
Piping and Instrumentation Diagram
NOTE: JW = jacket water; PP = personnel protection.
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Figure 1.2.8-18. EDGF ITS Diesel Generator Train A Fuel 
Oil System Piping and Instrumentation 
Diagram
NOTE: ITS controls and instrumentation are identified by the letters “ITS” after the instrumentation tag number or control 
device identifier.
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Figure 1.2.8-19. ITS Diesel Generator Fuel Oil Transfer 
Pump Logic Diagram
NOTE: Important to safety controls are identified by the letters “ITS” after the instrumentation tag number or control device 
identifier. The DCMIS is non-ITS and non-ITWI. Simultaneous DCMIS and local control is prevented by the “remote” 
position of the local handswitch. Instrumentation tag numbers are prefixed by “26D-EG00-.” Software tag numbers 
are prefixed by “26DEG00.”
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Figure 1.2.8-20. EDGF ITS Diesel Generator Air Start 
System Train A Piping and 
Instrumentation Diagram
NOTE: ITS controls and instrumentation are identified by the letters “ITS” after the instrumentation tag number or control 
device identifier.
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Figure 1.2.8-21. EDGF ITS Diesel Generator Air 
Compressor Logic Diagram
NOTE: Important to safety controls are identified by the letters “ITS” after the instrumentation tag number or control device 
identifier. The DCMIS is non-ITS and non-ITWI. 
Instrumentation tag numbers are prefixed by “26D-EG00-.” Software tag numbers are prefixed by “26DEG00.”
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Figure 1.2.8-22. EDGF ITS Diesel Generator Jacket 
Water Cooling System Train A Piping 
and Instrumentation Diagram
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Figure 1.2.8-23. EDGF ITS Diesel Generator Lubricating 
Oil System Train A Piping and 
Instrumentation Diagram
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Figure 1.2.8-24. EDGF ITS Diesel Generator Air Intake 
and Exhaust Train A Piping and 
Instrumentation Diagram
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Figure 1.2.8-25. EDGF Nonconfinement Generator 
Rooms ITS HVAC Systems Ventilation 
Flow Diagram
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Figure 1.2.8-26. EDGF Nonconfinement Switchgear and 
Battery Rooms ITS HVAC Systems 
Ventilation Flow Diagram
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Figure 1.2.8-27. EDGF Nonconfinement Generator 
Room A ITS HVAC System Ventilation 
and Instrumentation Diagram
NOTE: ITS controls and instrumentation are identified by the letters “ITS” after the instrumentation tag number or control 
device identifier.



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001

INTENTIONALLY LEFT BLANK
— —
1.2.8-126



1.2.8-127

— —
DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001

Figure 1.2.8-28. EDGF Nonconfinement Switchgear 
Room A ITS HVAC System Ventilation 
and Instrumentation Diagram
NOTE: ITS controls and instrumentation are identified by the letters “ITS” after the instrumentation tag number or control 
device identifier. 
OA = outside air.
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Figure 1.2.8-29. EDGF Nonconfinement Battery Room A 
ITS Exhaust System Ventilation and 
Instrumentation Diagram
NOTE: ITS controls and instrumentation are identified by the letters “ITS” after the instrumentation tag number or control 
device identifier.
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Figure 1.2.8-30. EDGF Nonconfinement Non-ITS 
Mechanical Room A HVAC System 
Ventilation and Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.8-31. EDGF Nonconfinement Non-ITS 
Electrical Room HVAC System 
Ventilation and Instrumentation Diagram
NOTE: This figure includes no SSCs that are either ITS or ITWI.
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Figure 1.2.8-32. EDGF Nonconfinement Generator Room 
ITS Exhaust Fans and Dampers Logic 
Diagram
NOTE: Important to safety controls are identified by the letters “ITS” after the instrumentation tag number or control device 
identifier. The DCMIS is non-ITS and non-ITWI. 
Instrumentation tag numbers are prefixed by “26D-VNI0-.” Software tag numbers are prefixed by “26DVNI0.”
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Figure 1.2.8-33. EDGF Nonconfinement Switchgear 
Room ITS Air Handling Unit and Inlet 
Damper Room Logic Diagram
NOTE: Important to safety controls are identified by the letters “ITS” after the instrumentation tag number or control device 
identifier. The DCMIS is non-ITS and non-ITWI. Instrumentation tag numbers are prefixed by “26D-VNI0-.” Software 
tag numbers are prefixed by “26DVNI0.” 
ASD = adjustable speed drive.
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Figure 1.2.8-34. EDGF Nonconfinement Battery Room 
ITS Exhaust Fan Digital Logic Diagram
NOTE: Important to safety controls are identified by the letters “ITS” after the instrumentation tag number or control device 
identifier. The DCMIS is non-ITS and non-ITWI. 
Instrumentation tag numbers are prefixed by “26D-VNI0-.” Software tag numbers are prefixed by “26DVNI0.”
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Figure 1.2.8-35. Low-Level Waste Facility Confinement 
Zoning Ground Floor Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-96.
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Figure 1.2.8-36. Low-Level Waste Facility Confinement 
Zoning Second Floor Plan

This figure has been designated Official Use Only 
under the Freedom of Information Act (5 U.S.C. 552), 

Exemption 2, Circumvention of Statute.

This figure is included in Appendix A: Information 
Designated as Official Use Only, as Figure A-97.
NOTE: LLW = low-level radioactive waste.
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Figure 1.2.8-37. Low-Level Waste Facility Composite 
Ventilation Flow Diagram Confinement 
Non-ITS Supply and Exhaust HVAC 
System
NOTE: This figure contains no SSCs that are either ITS or ITWI.
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Figure 1.2.8-38. Low-Level Waste Facility Composite 
Ventilation Flow Diagram 
Nonconfinement Non-ITS Supply and 
Exhaust HVAC System
 NOTE: This figure contains no SSCs that are either ITS or ITWI.
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Figure 1.2.8-39. Low-Level Waste Facility Confinement 
Areas HVAC Supply System Ventilation 
and Instrumentation Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI. If a smoke alarm is detected, the signal is directed to the fire 
alarm panel. An interlock is provided to shut down the operating fan and start the standby unit upon detection of high 
or low differential pressure across the operating fan. CH = chilled water; HW = hot water.
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Figure 1.2.8-40. Low-Level Waste Facility Confinement 
Areas Air Distribution System Ventilation 
and Instrumentation Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI. AHU = air handling unit; LLW = low-level radioactive waste.
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Figure 1.2.8-41. Low-Level Waste Facility Confinement 
Non-ITS Areas HEPA Exhaust System 
Ventilation and Instrumentation Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI. An interlock is provided to shut down the operating fan and 
start the standby unit upon detection of high or low differential pressure across the operating fan. 
ASD = adjustable speed drive.
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Figure 1.2.8-42. Central Control Center Facility Central 
Control Center Areas HVAC System 
Ventilation Flow Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI. AHU = air handling unit.
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Figure 1.2.8-43. Central Control Center Facility Primary 
Alarm Station Areas HVAC System 
Ventilation Flow Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI.
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Figure 1.2.8-44. Central Control Center Facility Central 
Control Center Areas, Return/Exhaust 
HVAC System Ventilation and 
Instrumentation Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI. AHU = air handling unit.
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Figure 1.2.8-45. Central Control Center Facility Central 
Control Center Areas Air Handling Unit 
HVAC System Ventilation and 
Instrumentation Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI. If a smoke alarm is detected, the signal is directed to the fire 
alarm panel. An interlock is provided to shut down the operating fan and start the standby unit upon detection of high 
or low differential pressure across the operating fan. OA = outside air; RA = return air.
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Figure 1.2.8-46. Central Control Center Facility Central 
Control Center Areas Return/Exhaust 
Fan HVAC System Ventilation and 
Instrumentation Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI.An interlock is provided to shut down the operating fan and 
start the standby unit upon detection of high or low differential pressure across the operating fan. AHU = air handling 
unit.
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Figure 1.2.8-47. Central Control Center Facility Central 
Control Center Areas, Communication 
Room HVAC System Ventilation and 
Instrumentation Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI. If a smoke alarm is detected, the signal is directed to the fire 
alarm panel. An interlock is provided to shut down the operating fan and start the standby unit upon detection of low 
differential pressure across the operating fan. CCC = Central Control Center.
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Figure 1.2.8-48. Central Control Center Facility Primary 
Alarm Station Areas Safeguards and 
Security Ventilation and Instrumentation 
Diagram
NOTE: This figure contains no SSCs that are either ITS or ITWI. ASD = adjustable speed drive; AHU = air handling unit.
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Figure 1.2.8-49. Site Transporter Mechanical Equipment 
Envelope
Equipment Number:170-HAT0-MEQ-00001.
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Figure 1.2.8-50. Cask Tractor and Cask Transfer Trailer 
Mechanical Equipment Envelope
NOTE: STC = shielded transfer cask.

Equipment Number:170-HAT0-TRLY-00001, Pressurized Water Reactor DPC Cask Transfer Trailer; 170-HAT0-TRLY-00002, 
Boiling Water Reactor DPC Cask and Horizontal Shielded Transfer Cask Transfer Trailer.
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