								E	NG.20031	002.00
	OCRWM	Desid	GN CA	LCUL	ATION OR A	NALYSIS CO	VER SHEET	1.	QA: QA Page 1	
3. Sys	tem					4. Document Id	entifier	Ċ.		<u> </u>
Subs	urface Tunneling and	1 Emplacem	ent Drif	t Syster	ns	800-P0C-MG	R0-00100-000-0	0E		
5. Titl	9									
Unde	rground Layout Con	figuration								
6. Gro	oup itiga Dagion Subsurf	face Engine								
7 Do	ument Status Designat	tion	ering		<u></u>	·				
	Santon Status Designa		Prelimi	narv	Final		1			
8. No	es/Comments	<u>~</u>	110111							
conju writte Vulca Revis refere DR E Revis Revis Histo	nction with Roger H en in conjunction with an design work and a sion 00B was to corre- ence (p. 26, 69 &71), SSC(B)-02-D-035. sion 00C was a redes sion 00D was to corre- tion 00E was to corre- ry page.	lenning from th Jim Blink authored the ect three edi , update a re sign, modific ect editorial ect editorial	n the Na from th remain itorials (iference ed or del s only,th s and cla	tural Sy the Decis der of th p. 36, 4 (p. 70). leted pa nerefore arify onl Atta	rstems Departmer ion Support and I the document. 9 & 59), add a cla and add the new ges are identified no impact review y,therefore no im-	nt. Section 8.5, Per Documentation D arifying statement reference (p.71). on the Change H vs were required. apact reviews wer	erformance Confin epartment. Alan 1 t and reference (p The revision was istory page. For changes see 1 e required. For ch	rmatic Linder . 65), part o the Ch hanges	on Facilites w n performed a correct an ol- of the close o hange History s see the Cha	vas all d ut of y page. nge r of Page
	······································						-			
					RECORD OF REV	ISIONS				
9. No.	10. Reason For Re	evision	11. Total # of Pgs.	12. Last Pg. #	13. Originator (Print/Sign/Date)	14. Checker (Print/Sign/Date)	15. QER (Print/Sign/Date)	Appro (F	16. ved/Accepted Print/Sign)	17. Date
00A	Issued in support of the I This document superced MG-000001 REV 00 IC ANL-WER-MD-000002	LA baseline. les ANL-SFS- N 02 and 2 REV 00	115	V-1	A. F. Linden C. L. Linden	R. W. Elayer	L. Abernathy	F. B	asamanowicz	08/22/02
00B	See Notes		115	V-1	A. F. Linden	J. Sheridan	L. Abernathy	F. B	asamanowicz	02/06/02
00C	Supercedes Rev. 00B. Is support of the LA. Majo accommodate rail based	ssued in ir change to transporter.	86	V-1	A. F. Linden	J. Sheridan	L. Abernathy		M. Board	06/30/0
00D	Supercedes Rev. 00C		86	V-1	A. F. Linden	J. Sheridan	L. Abernathy	1	M. Board	07/16/03
00E	Supercedes Rev. 00D		86	V-1	A. F. Linden	J. Sheridan	L. Abernathy	FUR	M. Board	09/25/03
					1hM	J. Since	L. aluarnathy	R	0. +	

CHANGE HISTORY

Revision Number	Effective Date	Description of Change
00A	08/22/02	Initial issue. Supercedes ANL-SFS-MG-000001 REV 00 ICN 02 and ANL-WER-MD-000002 REV 00.
00B	02/06/03	Corrected editorials on p. 36, 49, and 59. Added references on p. 65 and 71. Added clarifying statement on p. 65. Corrected old references on p. 26, 69, and 71. Updated reference on p. 70.
00C	06/30/03	Updated contents of all pages except for 7 and 32 which were unchanged.
		Changed or added figures on p. 35, 38, 41, 45, 49, 55, 59, II-3, II-4, II-5, II-6, and III-2. Changed or added Tables on p. 18, 23, 39, 42, 43, 46, 47, 50, 51, 54, 56, 57, 58, I-1, I-2, I-3, I-4, II-2, III-3, III-4, III-5, III-6, III-7, III-8, IV-1, IV-2 and IV-3. Changed or added statements on p. 2, 8, 9, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 33, 34, 36, 37, 39, 40, 43, 44, 47, 48, 51, 52, 53, 55, 60, 61, 62, 63, 64, I-1, II-1, II-2, III-1, IV-1 and V-1.
		The changed and added items refer to the page numbers in Rev. 00C.
		Deleted figure from p. II-17 of Rev. 00B Deleted tables from 65, II-1, II-3, II-4, II-6, II-7, II-8, II-9, II-11, II-12, II-14, II-15, II- 16, II-17, II-19, II-20 and IV-1 of Rev. 00B. Deleted section from p. 47, 48, 49, 50, 51, 52, 53 and 54 of Rev. 00B.
00D	07/16/03	Corrected editorial on pages 3, 5, 53 and 61
00E	09/25/03	Modified Change History. Replaced figures on p. 35, 55, 58, II-3, II-4, II-5, II-6, and III- 2. Added clarification on p. 43, 53. Modified Tables 3, 5, 8, 9, 10, 11,12 and III-1. Updated procedures on p.61.

CONTENTS

Page

1.	PURPOSE AND SCOPE	9
2.	QUALITY ASSURANCE	9
3.	DESIGN METHODOLOGY	9
4.	USE OF COMPUTER SOFTWARE	10 10 10
5.	 DESIGN INPUTS. 5.1 TECHNICAL INFORMATION	11 11 11 11 11 14 14 14 16 16 17 17 18 19 19 19 19 19 19 .19
6.	 ASSUMPTIONS	20 20 20 21 22 23
7.	DESIGN CONSTRAINTS	23 24 24 24 24 25

		7.1.4 Standoff From Paintbrush Nonwelded Hydrogeologic Unit	. 26
		7.1.5 Minimum Thickness of Paintbrush Hydrogeologic Unit	. 27
		7.1.6 Standoff From Calico Hills Nonwelded Hydrogeologic Unit	. 28
		7.1.7 Repository Host Horizon	. 29
		7.1.8 Overburden Cover	. 30
	7.2	OTHER DESIGN CONSTRAINTS	. 31
		7.2.1 Operating Temperature Mode	. 31
		7.2.2 Modular Design	. 31
		7.2.3 Location of Surface Openings	. 31
		7.2.4 Protection From Surface Water	. 32
		7.2.5 Subsurface Water Drainage	. 32
		7.2.6 Postclosure Water Drainage	. 32
	7.3	REPOSITORY CAPACITY DESIGN CONSTRAINTS	. 33
		7.3.1 Waste Package Standoff from Type I Faults	. 33
0	DE	VELODMENT OF THE LAVOUT	22
0.		CENEDAL LAVOUT DESCRIPTION	22
	0.1	EVISTING DAMOS AND MAINS	26
	0.2 0.2	NEW NODTH CONSTRUCTION DAMD	26
	0.5	DANEL DESCRIPTIONS	27
	0.4	PANEL DESCRIPTIONS	27
		8.4.2 Danal 2	20
		8.4.2 Panal 2	12
		8.1.4 Panal 1	Δ- 1 -5 - 1-7
	85	0.4.4 Γαμεί 4 ΡΕΡΕΩΡΜΑΝΩΕ CONFIDMATION ΕΛΩΙΙ ΙΤΙΕς	51
	0.J 8.6	VENTILATION INTEDEACE	.51
	0.0 8 7	FYCAVATION SUMMARY	55
	0./		50
	0.0		. 39
9.	RE	SULTS	. 60
10	RF	FERENCES	61
10	, ILL.		01
At	tachı	ment I, Available Emplacement Drift Length	. I-1
At	tachı	ment II. Repository Areas	П-1
At	tachı	ment III, Bounding Endpoint Coordinates for Emplacement Drifts II	[I -1
At	tachr	ment IV, Flexibility CalculationsIV	V-1
At	tachr	ment V, Electronic Vulcan Files	V-1

FIGURES

Page

1. Alternative Repository Footprint Superimposed on the SR Layout 12
2. Design Evolution Study—Underground Layout
3. Exploratory Studies Facility 15
4. Enhanced Characterization of the Repository Block
5.Underground Layout Configuration
6. Panel 1
7. Panel 2
8. Panel 3
9. Panel 4
10. Shaft Locations 55
11. Potential TBM Chambers

TABLES

Page

1.	Waste Package Inventories	18
2.	Subsurface Curvatures	23
3.	Panel 1 Opening Sizes and Lengths	39
4.	Panel 2 Opening Sizes and Lengths	42
5.	Panel 3 Opening Sizes and Lengths	46
6.	Panel 4 Opening Sizes and Lengths	50
7.	Shaft Locations	54
8.	Excavation Summary - Overall	56
9.	Excavation Summary for Panel 1	56
10	. Excavation Summary for Panel 2	56
11	. Excavation Summary for Panel 3	57
12	. Excavation Summary for Panel 4	57

ACROYNMS

AP	Absorber Plates
BSC BWR	Bechtel SAIC Company Boiling Water Reactor
CD CFR CHn CR CSNF	compact disk Code of Federal Regulations Calico Hills nonwelded hydrogeologic unit Control Rods commercial spent nuclear fuel
DIRS DHLW DOE DTN	Document Input Reference System Defense high-level waste U.S. Department of Energy Data Tracking Number
ECRB EL ESF	Enhanced Characterization of the Repository Block (drift) elevation Exploratory Studies Facilities
FR	Federal Register
GFM	Geologic Framework Model
HLW	high-level waste
IPWF	immobilized plutonium waste form
LA	license application
MCO MTHM	multi-canister overpack metric tons of heavy metal
PC PTn PWR	performance confirmation Paintbrush nonwelded hydrogeologic unit Pressurized Water Reactor
RHH	repository host horizon
SNF SR STA	Spent Nuclear Fuel Site Recommendation station
TBM	tunnel boring machine

ACROYNMS (continued)

TBV	to-be-verified
Tptpln	lower nonlithophysal welded zone of Topopah Spring lithostratigraphic unit
Tptpv3	densely-welded (vitrophyre) subzone of Topopah Spring lithostratigraphic unit
TSw	Topopah Spring Tuff hydrogeologic unit
TSw1	densely welded devitrified lithophysal-rich tuff
TSw2	densely welded devitrified lithophysal-poor tuff
VPI	vertical point of intersection

WP waste package

1. PURPOSE AND SCOPE

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

2. QUALITY ASSURANCE

This technical product was prepared in accordance with AP-3.12Q, *Design Calculations and Analyses*. In accordance with the *Q-List* (YMP 2001, p. A-9), the emplacement drifts are considered Quality Level 1, QL-1, and the remainder of the underground openings are considered conventional quality, CQ. Therefore, this work was subject to the requirements of the *Quality Assurance Requirements and Description* document (DOE [U.S. Department of Energy] DOE 2003).

The control of the electronic management of information was in accordance with Section 5.1.2 of AP-3.13Q, *Design Control*.

The control procedures followed for VULCAN V4.0NT (see Section 4.2) work were as follows:

- 1. Active VULCAN V4.0NT data files were saved to backup tape on a nightly basis and saved for a period of four weeks.
- 2. At the completion of specific milestones, the data files were backed up to a non-writable compact disk (CD) and sent to the records processing center.
- 3. The CD was labeled with generating program, originator, date, document number, and content description.
- 4. The CD also had an attached directory listing of the CD and description of the files contained on the CD.

3. DESIGN METHODOLOGY

The design of the underground layout was developed using the VULCAN V4.0NT software (see Section 4.2). The geological model for Yucca Mountain (see Section 5.1.3) was used as input into VULCAN V4.0NT. Using the model as a basis, the underground layout was developed in three-dimensions using the centerlines of the bottom of the excavations. The development of the layout was based on the inputs listed in Section 5, the assumptions listed in Section 6, the design constraints outlined in Section 7, and as described in Section 8. VULCAN V4.0NT was used throughout this analysis to extract information such as the coordinates, areas and lengths of the centerlines within the repository (see Attachments I, II, and III), and the excavation quantities specified in Sections 8.7 and 8.4. The underground layout is contained in two ".dxf" files (see Attachment V), one metric and one converted to imperial units .

The conversion factors used to convert from metric to Imperial units were:

1 foot = $\frac{1,200}{3,937}$ meters (ASTM E380-85, p. 24, footnote 13)

 $1 \text{ foot}^3 / \text{minute} = 4.719474 \text{ x } 10^{-4} \text{ meter}^3 / \text{second} (\text{ASTM E380-85, p. 26})$

4. USE OF COMPUTER SOFTWARE

Computer software was used and is documented in accordance with AP-SI.1Q, *Software Management*.

4.1 OFF-THE-SHELF SOFTWARE

No off-the-shelf software was used in the preparation of this analysis.

4.2 QUALIFIED SOFTWARE

The VULCAN V4.0NT software system, STN: 10044-4.0NT-00 (BSC 2002f) was used for configuring the underground layout within the three-dimensional geologic model of Yucca Mountain. VULCAN V4.0NT is a geology and mine engineering computer design system developed by Maptek/KRJA Systems, Inc.

The VULCAN V4.0NT software was obtained from Software Configuration Management, was appropriate for the application, and was used only within the range of validation in accordance with AP-SI.1Q, *Software Management*. The VULCAN V4.0NT is installed on a Dell 340 workstation running on a Windows 2000 operating system (property tag number 150635).

The following models and files were used in the preparation of this analysis.

- The geologic model of Yucca Mountain, the VULCAN Geologic Framework Model (GFM) GFM3.1 representation (DTN: MO0003MWDVUL03.002).
- The electronic files for the underground layout as described in the *Design Evolution Study Underground Layout*, (Board, M.; Linden, A.; and Zhu, M. 2002, Appendix B) including *areaofunits.dxf* and *proposedlayout.dxf*. These files were only used as the basis for starting the design of the layout.

Specific details of how the models and files were used are included in Sections 5.1.1 and 5.1.2.

The electronic output file from VULCAN V4.0NT can be found in Attachment V. Attachments I, II, III and IV summarize information extracted from the output file listed in Attachment V.

5. DESIGN INPUTS

The sources of design input, including technical information, codes and standards, applicable criteria and requirements are documented as appropriate in this section.

5.1 TECHNICAL INFORMATION

5.1.1 Design Evolution Study—Underground Layout

The *Design Evolution Study—Underground Layout* (Board, M.; Linden, A.; and Zhu, M. 2002) provides the results of a reevaluation of the repository footprint siting area and horizon selection, as well as the underground layout.

5.1.1.1 Footprint Siting Area and Horizon Selection Reevaluation

The underground layout reevaluation study resulted in a proposed alternative repository footprint boundary and horizon selection, driven primarily by an attempt to reduce uncertainties in performance assessment prior to the LA design studies. This footprint boundary is discussed in Sections 3, 4.3.1, and 4.3.2 of the *Design Evolution Study—Underground Layout* (Board, M.; Linden, A.; and Zhu, M. 2002, pp.3 to 14 and 19 to 23). This footprint (see Figure 1), illustrated with the previous layout for the site recommendation (SR), was used as the basis for developing the three-dimensional spatial constraints in this analysis. The design constraints governing the selection of this footprint and horizon, for this analysis, are further documented in Section 7.1.

5.1.1.2 Underground Layout Reevaluation

The design evolution study produced a layout configuration that had been modified significantly from the SR layout (see Figure 1) to produce a "modular" design (see Figure 2). This was accomplished by reducing the size of the emplacement panels, thereby reducing the excavation time necessary to establish areas and providing greater flexibility in meeting changeable waste receipt and thermal loading goals. The development of this layout is discussed in Section 5 of the *Design Evolution Study—Underground Layout* (Board, M.; Linden, A.; and Zhu, M. 2002, pp.33 to 53). This arrangement of underground openings was used as the basis in this analysis, for developing the layout in support of LA.

Figure 1. Alternative Repository Footprint Superimposed on the SR Layout

Note: The y-coordinate is the Northing and the x-coordinate is the Easting. The grid is 1 km squares.

Figure 2. Design Evolution Study—Underground Layout

5.1.2 Existing Facilities

The Exploratory Studies Facility (ESF), the East-West Cross Drift, also known as the Enhanced Characterization of the Repository Block (ECRB), and the Thermal Testing Facility Alcove will be incorporated into the underground layout. The following subsections outline the defining parameters of the ESF, ECRB, and the Thermal Testing Facility Alcove that are used in this analysis.

5.1.2.1 Exploratory Studies Facility

The existing ESF opening will be incorporated into the underground layout. The design and arrangement of the ESF, including gradients, coordinates, elevations, and azimuths, are illustrated in Figure 3 (CRWMS M&O 1996, p. 27).

5.1.2.2 East-West Cross Drift (Enhanced Characterization of the Repository Block)

The existing ECRB is incorporated into the underground layout. The design and arrangement of the ECRB is illustrated in Figure 4 (CRWMS M&O 1998a, Figure 1, and Attachment I) for reference only. The ECRB design as described below was outlined in the *East-West Cross Drift Starter Tunnel Layout Analysis* (CRWMS M&O 1998a, pp. 12 and 14) and is used as input to the layout.

The grade of the excavated invert for the starter tunnel is +0.5 percent. The starter tunnel departs from the North Ramp at a 45-degree angle (an azimuth of 253.9747 degrees) and terminates at Station (STA) 00+26.400 meters. The elevation at the breakout from the North Ramp was calculated at 1,083.423 meters and the elevation of the start of the bored tunnel at launch at 1,083.842 meters. The starter tunnel is initially mined up to approximately STA 00+14.200 meters. The starter tunnel's excavated invert is offset 305 millimeters below the bored invert. The ECRB drift is a 5.0-meter diameter bored tunnel that starts at the end of the starter tunnel STA 00+26.400 meters and proceeds along an azimuth of 253.9747 degrees to the beginning of the first horizontal circular curve at STA 1+82.454 meters. The tunnel continues along the horizontal curve to the end of the curve at The tunnel proceeds along an azimuth of 229.0000 degrees to STA 3+15.401 meters. STA 3+25.401 meters at which point VPI #1 (vertical point of intersection) was located. The drift then continues at a +1.846 percent slope along 229.0000 degrees azimuth to the location of VPI #2 at STA 7+72.661 meters. VPI #2 is located at the plan view intersection of the ECRB and the East Main drift centerlines. VPI #2 is located at an elevation of 1,093.592 meters. From this point, the drift slopes at a +1.488 percent and continues along the 229.0000 degrees azimuth to the location of VPI #3 at STA 16+02.05 meters. VPI #3 is located at an elevation of 1,105.931 meters. The drift continues, from this point, at a slope of +0.886 percent and 229.0000 degrees azimuth to the beginning of the second horizontal curve at STA 23+20.763 meters. The drift continues along the curve at +0.886 percent slope to VPI #4 located at STA 24+67.146 meters. VPI #4 elevation is 1,113.597 meters. The drift then continues from this point at a slope of -3.0 percent to the end of the horizontal curve #2 located at STA 26+40.158 meters. From the end of curve #2, the drift continues at a -3.0 percent slope along a 289.0000 degrees azimuth to the terminal end of the drift located at STA 28+23.066 meters. The invert elevation at the terminal point is 1,102.919 meters.

Figure 3. Exploratory Studies Facility

Figure 4. Enhanced Characterization of the Repository Block

5.1.2.3 Thermal Testing Facility Alcove

The Thermal Testing Facility Alcove (CRWMS M&O 1997a and CRWMS M&O 1997b) will be incorporated into the underground layout. This alcove could provide access for an observation drift below the first few emplacement drifts in Panel 1 of the repository, as shown in Figure 5-1 of the *Design Evolution Study - Underground Layout* (Board, M.; Linden, A.; and Zhu, M. 2002, p. 35). The alcove is shown in Figure 4.

5.1.3 Geology and Stratigraphy

The stratigraphy of Yucca Mountain and the characterized block were defined in the *Determination of Available Repository Siting Volume for the Site Recommendation* (CRWMS M&O 2000a, Section 8). The Vulcan geologic model of Yucca Mountain, the *Vulcan GFM3.1 Representation* (DTN: MO0003MWDVUL03.002) uses the Nevada State Plane coordinate system, NAD 27 as its basis (converted to metric). The geologic model was compared with the *Determination of Available Siting Volume for the Site Recommendation* (CRWMS M&O 2000a, Section 8) to ensure accurate file transfer.

The geology of Yucca Mountain was used to locate ancillary openings and openings located about the emplacement area, within the repository host horizon (RHH).

A new version of the geologic model for Yucca Mountain, *GFM2000* (DTN: MO0012MWDGFM02.002), has been developed. However, this new version of the geologic model is not yet available as a VULCAN representation. A non-verified version has been compared with the current work and there appears to be no impact to the layout, but when the new VULCAN representation becomes available, an impact review will be required.

5.1.4 Emplacement Drift Orientation

The subsurface opening orientations relative to the orientation of the dominant rock joints effect opening stability. The orientation of emplacement drifts relative to the dominant rock joint is therefore, a consideration for ground stability and block size failure. This consideration is based on maximizing the stability of emplacement drifts, which minimizes maintenance in the emplacement drifts. In addition, the size of a block failure is affected by the drift orientation. Lesser stability may be acceptable in excavations other than the emplacement drifts because of their increased accessibility. The orientation of the emplacement drifts, an azimuth of 252 degrees, was established in the to-be-verified (TBV) resolution analysis, *TBV-361 Resolution Analysis: Emplacement Drift Orientation* (CRWMS M&O 1999, p. 26). This azimuth was used for the emplacement drift configuration within the underground layout.

5.1.5 Waste Inventory

The most recent information available for the waste package (WP) inventory for 70,000 metric tons of heavy metal (MTHM) is contained in *Thermal Inputs for Evaluations Supporting TSPA-LA, Supplement* (Williams, N.H. 2003, Table 3) and are outlined in Table 1.

	Nominal Quantity	Nominal WP Length BSC 2003a,		
	2003, Table 3	Meters	inches	
21 Pressurized Water Reactor (PWR) Absorber Plates (AP)	4,299	5.149	202.7	
21 PWR Control Rods (CR)	95	5.149	202.7	
12 PWR AP Long	163	5.707	224.7	
44 Boiling Water Reactor (BWR) AP	2,831	5.171	203.6	
24 BWR AP	84	5.171	203.6	
Total commercial spent nuclear fuel (CSNF)	7,472			
5 DHLW Short/1 DOE SNF Short	1147	3.627	142.8	
5 DHLW Long/1 DOE SNF Long	1,406	5.204	204.9	
2 multi-canister overpacks (MCO)/2 DHLW	149	5.204	204.9	
5 DHLW Long/1 DOE SNF Short	31	5.204	204.9	
High-level waste (HLW) Long Only	679	5.204	204.9	
Naval Short	144	5.367	211.3	
Naval Long	156	6.002	236.3	
Total DOE/HLW	3,712			
TOTAL	11,184			

Table 1. Waste Package Inventories

This information has been used to demonstrate the capacity and flexibility of the underground layout.

5.2 CODES AND STANDARDS

There are no codes and standards used in the preparation of this analysis.

5.3 CRITERIA AND REQUIREMENTS

The criteria and requirements necessary to support the development of the underground layout are documented in this section. The development of the underground layout encompasses both the emplacement drift system, of which the emplacement drift is a component, and the tunneling system. Only the applicable criteria from these systems documented in this section. Project criteria were based on the design constraints of this document and are not addressed.

5.3.1 System Requirements

The following system requirements pertain to the underground layout configuration to support the LA design effort.

5.3.1.1 Multiple Barrier Requirement

The emplacement drifts are part of the EBS, which must include multiple barriers consisting of both natural and engineered barriers, to provide required postclosure performance (BSC 2002a, Section 3.1.1.1).

This requirement provides for consideration of multiple barriers that may include, among others, standoffs from natural features as discussed in Section 7.1.

5.3.1.2 Waste Inventory Requirement

The repository shall accept the 70,000 MTHM or equivalent of SNF/HLW of the types for disposal in the primary area of the repository (BSC 2002a, Section 3.1.2.1.1).

This requirement is in place to ensure that the repository layout has sufficient space for the waste disposal. The capability of the repository layout is discussed in Section 8.8.

5.3.1.3 Access Requirement

The subsystem will provide the necessary subsurface openings for use as pathways for access, transportation, ventilation, and monitoring activities during both repository construction and waste emplacement (BSC 2002e, Section 3.1.2.1.1).

The subsurface openings are discussed in Section 8

5.3.1.4 Performance Confirmation Opening Requirement

The subsystem will provide the necessary alcoves and performance confirmation drift openings for monitoring and testing subsurface conditions to support the Test and Evaluation Program that will be conducted throughout the preclosure period (BSC 2002e Section 3.1.2.1.2).

The Performance Confirmation openings are discussed in Section 8.5.

6. ASSUMPTIONS

Assumptions and the rationale for the suitability of the use of the assumptions are included in this section. These assumptions are consistent with the SR design unless otherwise noted.

6.1 **OPENING SEPARATIONS**

Assumption—Vertical separation between crossing drifts is assumed a minimum of 10 meters (33 feet) from the crown of the lower opening to the invert of the upper opening. The minimum separation (centerline-to-centerline) for non-emplacement drift running parallel is assumed as three diameters, based on the maximum diameter of the largest drifts.

Rationale—A minimum separation of three diameters of the largest of the two openings (centerline to centerline) is required for drifts that run perpendicular to one another. The basis of this is the rule of thumb that there is no interaction between drifts after a separation of three diameters regardless of ground stress. In low stress ground like Yucca Mountain, it is assumed that a 10 m vertical pillar is adequate based on the acceptability of a small degree of interference that could occur between drifts. This assumption will not be considered TBV since the assignment of the minimum separation between openings does not affect the total area required for emplacement of the specified WP inventory such that the conclusions of this analysis are impacted.

This assumption is used in Section 8.

6.2 TURNOUT CONFIGURATION

A number of assumptions are required for development of the emplacement drift turnout. The key assumptions are listed below with rationale as well as a description of the turnout itself. **Assumption**—It is assumed that the straight portion at the end of the turnout is 24 meters (79 feet).

Rationale—This straight portion of the turnout accommodates the setup and launch of the tunnel boring machine (TBM) as well as providing a docking area for the WP transporter for unloading of the WP in line with the emplacement drift. The WP transporter with the transfer dock is approximately 22 meters (72 feet) long (BSC 2001b, figure 3).

Assumption—It is assumed that the direct line of radiation from a 21 PWR WP positioned at the theoretical last emplacement spot will have a minimum standoff distance of 3 meters (10 feet) from the theoretical nose of the pillar.

Rationale— One of the functions of the turnout is to aid in reducing the radiation levels in the Mains and at the ventilation door. The direct line of radiation, the line-of-sight from the last emplaced WP in the emplacement drift, can increase the radiation levels in the mains and at the door. The theoretically last emplaced WP in the emplacement drift is assumed to be 1.5 meters (5 feet) from the start of the emplacement drift (see Section 6.3) and the projection of the direct line of radiation from this last WP will have a minimum assumed standoff distance of 3 meters (10 feet) from the theoretical intersects of the springlines of the main and the turnout. A 21 PWR

WP is used as it is the bounding WP for radiation levels. This is assumed to be sufficient to prevent the direct line of radiation from entering the mains or from hitting the ventilation door.

A transition from the East and West Mains into the emplacement drifts is required to support emplacement operations and accommodate the waste emplacement equipment. The emplacement drift turnouts will function as this transition from the main drifts into the emplacement drifts and support activities such as the TBM launch for emplacement drift excavation and WP transporter unloading and transfer of the WPs to the emplacement gantry. The emplacement drift turnout must also accommodate the WP transporter. A number of parameters within the turnout must be set by the physical constraints of the WP transporter. The curvature radius within the turnout is 61 meters in order to accommodate the minimum radius, which the transporter can negotiate (see Section 6.4). A difference in elevation of 0.8 meters between the interface of the bottom of the turnout and the bottom of the emplacement drift has also been used. This elevation step is required for interfacing with the transporter design for unloading the WP (see Section 6.4).

The length of the turnout depends on the change in azimuth between the centerline of the perimeter main and the centerline of the emplacement drift. As the angle between the main and the emplacement drift gets larger, the turnout length increases. The variances in the turnout gradients change with the turnout length, but are configured such that any water encountered within the turnout will drain out to the main.

If any of the assumptions that feed into the turnout configuration are modified, such as the length of the WP transporter, impact to the turnout configuration will need to be determined. These assumptions are not considered TBV since configuration of the emplacement drift turnouts does not affect the total area required for emplacement of the specified WP inventories.

This assumption is used in Section 8.

6.3 THEORETICAL END OF THE FIRST AND LAST WASTE PACKAGE

Assumption—A minimum standoff of the 15 meters (49 feet) will be maintained between the end of the last WP and the centerline of the exhaust main. A minimum of 1.5 meters (5 feet) between the end of the turnout and the first WP.

Rationale—To allow for off normal access from the exhaust main, a design allowance of 15 meters (49 feet) has been provided at the exhaust end of each emplacement drift, where emplacement of WPs is not planned. A minimum operational standoff distance of 1.5 meters (5 feet) will be required between the emplacement drift turnout interface and the closest placed WP in the emplacement drift. It is assumed that this standoff distance is sufficient to ensure that the WP is not located at the edge of the elevation difference between the turnout and the emplacement drift (see Section 6.4). This assumption is not considered TBV since the assignment of the standoff distances does not significantly impact the repository footprint or the emplacement drift allocations within that footprint.

This assumption is used in Attachment I.

6.4 TRANSPORTATION INTERFACE ASSUMPTIONS

Assumption—The portions of the underground layout, supporting emplacement shall be designed with a maximum grade of ± 2.5 percent outside of emplacement drifts. The portions of the underground layout that do not support emplacement that might be supported by rail during construction shall be designed with a maximum grade of ± 5 percent. The portions of the underground layout that do not support emplacement and will not be supported by rail during construction shall be designed with a maximum grade of ± 15 percent.

Rationale—The assumption is needed to establish the maximum grade for all of the portions of the subsurface.

The maximum grade that the system will have to travel over to transport and emplace WPs will be in the ramps that access the subsurface repository. The ramps, which are already constructed, were inclined to allow access from the subsurface repository to the surface repository. There is no compelling reason for the rest of the subsurface facility that the system will be travelling on, to be inclined at a grade greater than the ramps (emplacement is planned via the North Ramp exclusively).

The *ESF Layout Calculation* (CRWMS M&O 1996, p. 27) identifies the design of the ESF including details of the ESF drift grades. As illustrated in Figure 3, the existing North Ramp grade is -2.1486 percent from the North Portal to the main drift. Rounding this grade up to +/-2.5 percent provides a conservative margin for the maximum expected grade to be traversed by the system. A limitation for the grade is an important factor in the sizing of the transport locomotives for the current waste emplacement concept. Thus, the design grade for the rail-based WP transportation system is limited to 2.5 percent, maximum.

Construction grade constraints are established based on how the construction operations are supported. While TBM operations do not require rail to support them, long haulages are traditionally supported with rail. Goodman Equipment, a manufacturer of underground rail based equipment, has established haulage capacity tables up to 6 percent and use a 2 mile long ± 4 percent haul as their sample calculation (Goodman Equipment Corporation 1971, pp. 1-3). Thus the maximum design grade for openings that could potentially use rail during construction is set conservatively at ± 5 percent.

Currently areas that do not have rail and were excavated using rubber tired equipment have been driven at grades of approximately 15 percent (14.61% in the Thermal Testing Facility Alcove), (CRWMS M&O 1997b). Thus the maximum design grade for openings that will not incorporate rail is set at ± 15 percent.

Assumption—The system shall operate within the curvatures identified in Table 2.

Location	Minimum Radius
Ramps and Mains	305 meters (1,001 feet)
Other Openings not used for Conveyor Mucking	100 meters (328 feet)
Within Emplacement Drift Turnouts	61 meters (200 feet)

Table 2. Subsurface Curvatures

Rationale—A minimum 305-meter (1,001-foot) radius curve along the centerline of the drift is used in the ramps and mains for conveyor muck handling. The curved sections of the turnouts have a 61-meter (200-foot) radius for the turning radii of the construction/development and emplacement operations equipment using rail transportation (BINFRA (Bechtel Infrastructure Corporation) 2002, pp.15-16). Final radii of the turnout walls will be dependent on equipment clearances and track requirements. Other openings in the repository that are not used for emplacement or conveyor muck handling will have at least a 100-meter (328-foot) radius for rail transportation.

Assumption—The system shall accommodate a minimum 0.80-meter (2.6-foot) difference in elevation between the bottom of the turnout and the bottom of the emplacement drift.

Rationale—The gantry carrier accommodates a minimum 0.80-meter (2.6-foot) difference in elevation between the bottom of the turnout and the bottom of the emplacement drift by hauling the waste emplacement gantry on the carrier bed (BSC 2001b, p. 41 and Figure 9).

These assumptions are not considered TBV since the WP transportation system interface does not significantly impact the repository footprint or the emplacement drift allocations within that footprint.

This assumption is used in Section 8.

6.5 SUBSURFACE VENTILATION SYSTEM INTERFACE ASSUMPTIONS

Assumption—The overall ventilation system will be similar to the ventilation system defined in *Site Recommendation Subsurface Layout* (BSC 2001c, Attachment IV).

Rationale—The ventilation system defined in the *Site Recommendation Subsurface Layout* (BSC 2001c) met all the thermal goals and set some reasonable ventilation constraints for a higher-temperature operating mode. By maintaining a similar system, the underground layout can be configured to minimize interference with the ventilation system and allow for future ventilation airflow analysis.

This assumption is used in Section 8.6.

7. DESIGN CONSTRAINTS

A number of design constraints have been used in defining the underground layout. These design constraints include those used to locate the repository in three-dimensional geologic space as well as locating and designing the surface openings such as the shaft collars and the portals.

7.1 REPOSITORY SITING CONSTRAINTS

7.1.1 Water Table Standoff

A standoff must be maintained from the closest edge of any emplacement drift to the top of the present-day water table (potentiometric surface).

This constraint is used to ensure that future climatic changes predicted to occur in the Yucca Mountain area do not cause the water table to rise to the level of the emplacement area of the repository. A standoff distance is established between the emplacement drifts and the present day water table to compensate for water table elevations higher than the present day water table.

Future climate states (monsoon, glacial transition, and full glacial) are expected to be wetter than the present day climate, and therefore, the water table is expected to rise. However, uncertainty exists regarding the amount of water table rise for each climate state. Mineral isotope studies suggest that the water table elevation could have been as much as 120 meters (394 feet) higher at the Yucca Mountain site (CRWMS M&O 2000b, Section 3.7.5.2). Estimates of the elevation of the water table under Yucca Mountain for wetter, glacial climatic conditions indicate that the water table could have been on the order of 100 m higher under these conditions (BSC 2003b, Section 6). Accordingly, an estimated water table rise of 120 meters (394 feet) is used for all flow fields using future climate states. It is noted that this does not directly constrain the footprint shown in Figure 1 (other constraints determine the layout). Additional studies are under way to better estimate water table rise under future climate conditions; the results will be taken into account in future design updates when they are available.

A standoff of 120 meters (394 feet) was maintained between the top of the present-day water table and any emplacement drift.

7.1.2 Perched Water Standoff

A standoff must be maintained from the closest edge of the emplacement drifts to any perched water. This standoff will avoid vaporization and mobilization of the perched water.

In order to prevent vaporization of any perched water near the emplacement area, a standoff of 30 meters (98 feet) is considered sufficient (Board, M.; Linden, A.; and Zhu, M. 2002, Section 3.2).

The hydrostratigraphic horizon where perched water has been observed and could potentially be important to the repository layout, is at the contact between the Calico Hills nonwelded hydrogeologic (CHn) unit, and the basal vitrophyre unit (Tptpv3) of the Topopah Spring Tuff hydrogeologic unit (TSw) (BSC 2001d, p. 46). Perched water has been observed at other horizons, particularly at locations outside the immediate layout area, but this is not important to layout design. The lower nonlithophysal welded lithostratigraphic unit (Tptpln) overlies the Tptpv3, and the repository layout may extend into the basal vitrophyre. Accordingly, the distance between the bottom of the Tptpln and the top of the CHn units is used to describe the proximity to the potential perching horizon. For purposes of this analysis, we have used the top of the vitrophyre to allow for perched water to exist at any depth within the vitrophyre. This depth is determined for the site area, based on the geology from the VULCAN GFM3.1 Representation (MO0003MWDVUL03.002).

The *Three Dimensional Thermo-Hydrologic Mountain-Scale UZ Model* (Wu et al., 1997, pp. 41 to 43) showed that nearby perched water could cause cooler temperatures in a repository after hundreds or thousands of years. Evaporation, transport, and subsequent condensation of perched water could increase the thermally driven fluxes of water vapor and liquid water in the host rock. However, this earlier modeling work was based on the viability assessment repository conceptual design, which was a hotter design than the current higher-temperature operating mode concept.

Thermal-hydrologic modeling, and observations from in-situ field thermal testing, show that evaporation of porewater from the matrix of the welded host rock is limited at temperatures below boiling as described in *Thermal Tests Thermal-Hydrological Analyses/Model Report* (BSC 2001e, Section 6.4) and the *Multiscale Thermohydrologic Model* (BSC 2001f, Sections 6.13.1 and 6.13.2). In addition, it is noted that thermal-hydrologic models predict high relative humidity at temperatures near boiling. These results mean that evaporation from a perched water zone would be similar to that from unsaturated tuff with the rock matrix nearly saturated, if the temperature does not exceed boiling. Accordingly, the extent of the boiling isotherm is used as the standoff distance to perched water.

Thermal-hydrologic simulations performed for the site recommendation design (similar to the higher-temperature operating mode concept) showed that regions up to 10 meters (33 feet) from the center of emplacement drifts would be dried out during the thermal period under the higher-temperature operating mode (BSC 2001a, Figures 4.3.5-2 and 4.3.5-3; and Section 4.3.6.4.2). For the higher-temperature operating mode, a region with temperatures as high as 95°C (203°F) extends to approximately 25 meters (82 feet) below the repository horizon (BSC 2002d, Figure 32). A standoff of 30 meters (98.4 feet) from the closest edge of the emplacement drifts was therefore selected to constrain the repository layout.

7.1.3 Standoff From Type I Faults

A standoff must be maintained from the closest edge of a repository opening to the main trace of any Type I fault zones.

The preference for location of the repository should be in the proposed repository block as defined by the block bounding faults. This block has been the principal focus of the site characterization studies completed to date. Bedrock Geologic Map of the Yucca Mountain Area, Nye County, Nevada (Day et al. 1998, p. 8) is a 1:24,000 scale map that includes the structural features in the vicinity of the main block. It is probable that other blocks suitable for a monitored geologic repository exist in the general area, but this main block has been the focus of studies to date. This area has been found to meet all the selection criteria and has been demonstrated to meet performance criteria for the natural systems. A detailed three-dimensional interpretation of the geology surrounding the location of the potential monitored geologic repository has been presented as the analyses detailing the construction and interpretation of the geology model and GFM2000 (MO0003MWDVUL03.002 GFM 3.1 and MO0012MWDGFM02.002).

Type I faults are identified in the *Staff Technical Position on Investigations to Identify Fault Displacement Hazards and Seismic Hazards at a Geological Repository* (McConnell, K.I.; Blackford, M.E.; and Ibrahim, A.B. 1992, p. 5) as:

"Faults or fault zones that are subject to displacement and of sufficient length and located such that they may affect repository design and/or performance. As such, they should be investigated in detail. Only faults that are determined to be "Type I" are of regulatory concern, because it is those faults, both inside and outside the controlled area, that may require consideration in repository design, could have an effect on repository performance, or could provide significant input into models used to assess repository performance."

Based on *Seismic Design Basis Inputs for a High-Level Waste Repository at Yucca Mountain, Nevada* (CRWMS M&O 1998b, pp. 4-7 to 4-9), the only Type I fault identified in the immediate area of the repository is the Solitario Canyon fault. Although the Bow Ridge fault is not in the immediate area of the repository, it has also been classified as a Type I fault.

It is conservatively estimated that a 60-meter (197 foot) standoff from the trace of any Type I fault is adequate to reduce the impact of potential fault movement. The effects of fault displacement on emplacement drifts were analyzed in *Effects of Fault Displacement on Emplacement Drifts* (CRWMS M&O 2000d, p. 58 and BSC 2002b) using information derived from the *Probabilistic Seismic Hazard Analyses for Fault Displacement and Vibratory Ground Motion at Yucca Mountain, Nevada* (CRWMS M&O 1998c, Figures 8-10 and 8-13). This standoff considers potential fractured ground in proximity of the Type I fault and uncertainty as to where the fault is located at depth. The use of a 60-meter (197-foot) standoff for a LA design is conservatively applied. When initial construction activities in the area of Solitario Canyon are completed, the location of the fault should be better known and the condition of the rock in proximity to the fault can be examined first hand. A construction standoff could then be determined based on actual observations.

Repository openings can be located within this standoff only if justified with a site impact evaluation. This option is provided because of the complexity of Type I faults' impact on repository design and performance and to allow the use of site impact analyses in determining the suitability of openings within the Type I fault standoff.

7.1.4 Standoff From Paintbrush Nonwelded Hydrogeologic Unit

A standoff must be maintained from the closest edge of the emplacement drifts to the base of the Paintbrush nonwelded (PTn) hydrogeologic unit (Board, M.; Linden, A.; and Zhu, M. 2002, Section 3.2).

The large storage capacity and low fracture frequency of the highly porous PTn unit may effectively dampen transient pulses of infiltration and more evenly distribute the downward flow of water, as discussed in the *Unsaturated Zone Flow and Transport Model Process Model Report* (CRWMS M&O 2000b, p. 72). Thermal and hydrologic perturbations emanating from the repository could modify these attributes through the process of mineralogic alteration that

reduces the matrix porosity. Establishment of a standoff between the repository and the base of the PTn would help limit the potential for changes due to repository hydrothermal effects.

The present hydrologic attributes of the PTn reflect the nonwelded glassy character of much of the rock in the unit. The rate at which the glassy tuff might alter is a function of temperature and of fluid content and composition, based on studies of natural alteration in the PTn. Local alteration of the PTn base under possible past hydrothermal conditions produced completely altered tuffs with mineral assemblages dominated by smectite, heulandite-clinoptilolite, opal-CT (partly crystalline silica), and quartz (Levy, S.S.; Norman, D.I.; and Chipera, S.J. 1996, pp. 786 to 789). Nothing is known for certain about the conditions of alteration, but paleogeothermometry data for similar mineral occurrences suggest temperatures as low as 40°C (104°F) (Levy, S.S. and O'Neil, J.R. 1989, Table 1).

The *FY 01 Supplemental Science and Performance Analyses, Volume 1: Scientific Bases and Analyses* (BSC 2001a, p. 3-50, and Figures 3.3.5-4 and 3.3.5-5) predicts maximum temperatures at the base of the PTn of about 57° C (135° F) (Figure 3.3.5-4, without lithophysal cavities) or 70° C (158° F) (Figure 3.3.5-5, with lithophysal cavities) after 1,000 years. Both predictions are for the higher-temperature operating mode repository cases. These figures (BSC 2001a, p. 3-50, and Figures 3.3.5-4 and 3.3.5-5) also show that the TSw unit 100 meters (328 feet) above the repository would reach a maximum temperature of approximately 80° C (176° F) at 1,000 years. This temperature may be taken as a surrogate for the temperature at the base of the PTn if the repository is located within 100 meters (328 feet) of the unit. Based on model #6 from the Mountain Scale Coupled Processes (TH) Model (CRWMS M&O 2000f), the maximum temperature approximately 100 meter (328 feet) above the repository is approximately 70° C (158° F) at 1000 years (CRWMS M&O 2000f, Figure 60). Model # 6 is a thermal load of 72.7 kW/acre and ventilation removing 70% of the heat for 50 years (CRWMS M&O 2000f, Table 5), which is similar to the current operating mode for LA.

For the lower-temperature case, *FY 01 Supplemental Science and Performance Analyses, Volume 1: Scientific Bases and Analyses* (BSC 2001a, pp. 3-50 and 3-51 and Figure 3.3.5-6) predicts temperatures of 44 to 47° C (111 to 117° F) after 2,000 years (with or without lithophysal-cavity effects). The temperature in the TSw unit 100 meters (328 feet) above the repository at that time would be about 57° C (135°F).

Under the predicted higher-temperature thermal regimes cited above, complete avoidance of mineralogic change in the PTn probably is not achievable for the repository configuration imposed by other constraints. A 100-meter (328-foot) offset between the repository and the base of the PTn is compatible with other design constraints but would be likely to protect the PTn from alteration only under lower-temperature thermal regimes. The offset should provide some protection against alteration by keeping the PTn above the region of highly increased fracture-fluid flux (BSC 2001a, Figures 3.3.5-8 and 3.3.5-9).

7.1.5 Minimum Thickness of Paintbrush Hydrogeologic Unit

A minimum thickness of the PTn hydrogeologic unit must be maintained above the repository area to avoid excessive seepage from the ground surface (Board, M.; Linden, A.; and Zhu, M. 2002, Section 3.2).

Geologic information relevant to the assessment of repository performance includes the thickness and continuity of the PTn unit lying above the repository horizon. The PTn is believed to play an important role in unsaturated zone flow and transport. The high matrix porosity and large storage capacity of the PTn may enable this unit to dampen and distribute infiltration pulses above the horizon.

Geologic data indicate that the PTn ranges in thickness from greater than 165 meters (541 feet) beneath northern Yucca Mountain to about 15 meters (49 feet) in the south, with breaks in areal coverage along the Solitario Canyon, Iron Ridge, and Dune Wash fault systems (Attachment II). Where the PTn is thin or absent as the result of fault displacement, episodic infiltration/percolation events may perpetuate into the TSw rather than be attenuated and more evenly redistributed within the matrix of the PTn.

A minimum PTn thickness of 10 meters (33 feet) is incorporated into this analysis to define the underground layout to take advantage of the role that the PTn hydrogeologic unit plays in the unsaturated zone flow and transport. This constraint was imposed after recent studies indicate significant effects of the PTn unit in diverting and damping flow above the potential repository (BSC 2001a, Section 3.3.4.5.1). These studies also indicate that the PTn layer is required to constraint the impact of episodic pulses on seepage into the emplacement drifts.

7.1.6 Standoff From Calico Hills Nonwelded Hydrogeologic Unit

The emplacement drifts shall be located to limit thermally driven alteration of the CHn hydrogeologic unit (Board, M.; Linden, A.; and Zhu, M. 2002, Section 3.2).

The CHn, all or in part, lies between the potential repository horizon and the saturated zone. The importance of this unit for geologic-repository performance is derived from its hydrologic-flow properties and its potential for radionuclide sorption (BSC 2002c, Section 1.2). Both of these attributes are functions of mineralogic alteration and vary with location in the unit. Below the northern and eastern parts of the repository, the CHn is predominantly zeolitic tuff. The CHn below the southwestern part of the repository is mostly glassy tuff. In regions where the CHn mineralogy is transitional between the two varieties, complex interlayering of vitric and zeolitic tuff exists (BSC 2002c, p. 44 and II-4 to II-5).

Potential repository thermal alteration of the CHn may vary depending on the local mineralogy of the unit. Zeolitic CHn tuffs contain zeolites (predominantly clinoptilolite), smecite, and secondary silica, plus crystalline clasts that are primary constituents. The presence of the zeolites clinoptilolite and mordenite is associated with increased radionuclide sorptive capacity (BSC 2002c, p. 44), therefore, thermal alteration of clinoptilolite-bearing tuffs may lead to a reduction or loss of the radionuclide sorptive capacity associated with these tuffs. Two types of potential thermal alteration have been identified. First, clinoptilolite dehydrates significantly when heated to near the boiling temperature (Bish, D.L.; Carey, J.W.: Levy, S.S.: and Chipera, S.J. 1996, p.31 and Figure 7). The long-term effects of dehydration are unknown, but this treatment may lead to reduced sorptive capacity. The second type of potential alteration is the recrystallization of clinoptilolite and other minerals to analcime, with a loss of sorptive capacity and probable modification of rock-transmissive properties. Natural alteration of clinoptilolite to analcime occurred between, 70 and 100°C (158 to 212°F) in boreholes G-1, G-2 and G-3 (Carey,

J.W.; Bish, D.L.; and Chipera, S.J. 1996, Section III, pp. 4 and 5). Dissolution kinetic data for this reaction are insufficient to quantify the rate of alteration as a function of thermal regime and fluid chemistry.

Glassy CHn tuff is subject to thermal alteration essentially the same as the PTn unit. A net gain of sorptive zeolites and clays may be favorable for geologic-repository performance, but the accompanying changes in transmissive properties would increase the uncertainties in numerical predictions of flow and transport.

The *FY 01 Supplemental Science and Performance Analyses, Volume 1: Scientific Bases and Analyses* (BSC 2001a, Figures 3.3.5-4 and 3.3.5-5) predicts for the higher-temperature repository, that the temperature in the upper 60 meters (197 feet) of the CHn will exceed 70°C (158°F) at 5,000 years. The temperature at the top of the CHn (910 masl) rises to about 73 to 74°C (163 to 165°F) after 5,000 years, and then declines to about 65°C (149°F) by 10,000 years. For the potential lower-temperature repository, a peak temperature of about 64°C (147°F) is reached at 5,000 years at the top of the CHn. By 10,000 years, the temperature throughout the CHn is about 61°C (142°F) (BSC 2001a, Figure 3.3.5-6).

Using the TSw unit 60 meters (197 feet) below the repository as a surrogate for the top of the CHn if it were 60 meters (197 feet) below the repository, peak temperatures of 80 to 82°C (176 to 180° F) are reached at 2,000 years for the higher-temperature repository. A peak temperature of 67° C (153° F) is reached at 5,000 years for the lower-temperature repository (BSC 2001a). Figures 3.3.5-4, 3.3.5-5, and 3.3.5-6). Based on model #6 from the Mountain Scale Coupled Processes (TH) Model (CRWMS M&O 2000f), the maximum temperature approximately 60 meters (197 feet) below the repository is approximately 75° C (167° F) at 1000 years (CRWMS M&O 2000f, Figure 60). Model # 6 is a thermal load of 72.7 kW/acre and ventilation removing 70% of the heat for 50 years (CRWMS M&O 2000f, Table 5), which is similar to the current operating mode for LA.

A standoff to the CHn hydrogeologic unit of 60 meters (197 feet) below the potential repository is recommended to limit recrystallization of the zeolitic CHn under lower-temperature repository conditions. Some amount of recrystallization is probably unavoidable under higher-temperature conditions. Alteration of the vitric CHn is likely to occur even under lower-temperature conditions, but alteration rates may be heavily influenced by the state of saturation in the CHn.

7.1.7 Repository Host Horizon

The emplacement drifts shall be located within the lower part of the lithophysal zone of the densely welded devitrified lithophysal-rich tuff (TSw1) unit and the entire densely welded devitrified lithophysal-poor tuff (TSw2) unit of the Topopah Spring Tuff.

The host rock for a repository should be able to sustain the excavation of stable openings that can be maintained during repository operations and that will isolate the waste for an extended period after closure. In addition, the rock should be able to absorb any heat generated by the WPs without undergoing significant changes that could threaten the site's ability to safely isolate the waste. The host rock should be of sufficient thickness and lateral extent to allow construction of a repository large enough to support the site's intended disposal capacity. Moreover, the amount

of suitable host rock should provide adequate flexibility in selecting the depth, configuration, and location of the repository.

Studies to date have shown that the TSw has these features and characteristics. Experience gained from excavating the ESF demonstrates that openings can be excavated and maintained in the unit. The dense welding of the tuff originally occurred at temperatures of approximately 800° C (1,500°F); the results of laboratory and underground testing to date that the heat added by the emplaced waste would not adversely affect the stability of the underground repository (DOE (U.S. Department of Energy) 2002, p. 1-30).

The lower part of the lithophysal zone of the TSw1 unit and the entire TSw2 unit of the TSw will be referred to herein as the RHH as documented in the *Determination of Available Repository Siting Volume for the Site Recommendation* (CRWMS M&O 2000a, Section 5.2.3). That document identified potentially viable RHH areas outside of the main block, but those areas should not be considered until they have been adequately characterized. At this time, those areas would not be necessary to meet the needs of the repository being considered for licensing.

7.1.8 Overburden Cover

The emplacement drifts must be located sufficiently below the directly overlying ground surface to protect the waste from exposure to the environment and discourage intentional or inadvertent human intrusion into the facility.

Placement of the emplacement area within the RHH as described in Section 7.1.7, allows for adequate overburden cover. The canyons extending east from Yucca Crest cut down up to 100 meters (328 feet) into 12.7 ma Tiva Canyon Tuff, which equates to a maximum average canyon-cutting rate of about 0.8 cm/ka (YMP 1993, p. 54). The long-term average erosion rates of unconsolidated material from Yucca Mountain hillslopes is less than 0.6 cm/ka (YMP 1993, Table 5); while the rate of erosion of bedrock on ridge crests ranges from 0.1 to 0.3 cm/ka. Cosmogenic nuclide dating of lava flow surfaces at Black Cone in Crater Flat (1.0 ± 0.1 Ma by K-Ar dating) yields maximum removal of less than 20 cm of material since flow deposition (0.02 cm/thousand years) (CRWMS M&O 2000e, pp. 7.4-5 and 7.4-9).

The overburden thickness was included in the volume evaluation for the site recommendation design (CRWMS M&O 2000a, Section 8.1) and was not considered a limiting constraint for the determination of the repository siting volume. The siting volume evaluation was predominantly dictated from locating the repository with the RHH as described in Section 7.1.7. The minimum overburden thickness measured from the top of the RHH to the topographic surface is approximately 125 meters (410 feet). This measurement was performed using VULCAN and the GFM3.1 geologic representation of Yucca Mountain.

In addition, the underground layout allows for approximately 215 meters (705 feet) from the emplacement area to the overlying topographic surface. These measurements were performed using the VULCAN V4.0NT software, the Vulcan GFM3.1 Representation (DTN: MO0003MWDVUL03.002), GFM2000 (MO0012MWDGFM02.002), and the electronic file of the underground layout produced during the reevaluation (Board, M.; Linden, A.; and Zhu, M. 2002, Appendix B).

The overburden thickness above the repository area is considered sufficient to protect the waste from exposure to the environment and discourage intentional or inadvertent human intrusion into the facility.

7.2 OTHER DESIGN CONSTRAINTS

7.2.1 Operating Temperature Mode

The underground facility must be capable of supporting higher-temperature operating mode (0.1 m WP spacing) (Williams, N.H. 2003).

Due to the uncertainty about the ultimate thermal operating mode of the repository, the design must be flexible enough to encompass a range of postclosure thermal modes, as described in the *Yucca Mountain Science and Engineering Report, Technical Information Supporting Site Recommendation Consideration, Revision 1* (DOE (U.S. Department of Energy) 2002, Sections 2.1.4 and 2.1.5).

7.2.2 Modular Design

The underground layout shall be designed in such a manner that will permit modular design and/or construction in stages.

This will facilitate the start of operations at the repository after an initial construction stage and continuation of operations concurrently with subsequent construction stages. The *Design Evolution Study - Underground Layout* (Board, M.; Linden, A.; and Zhu, M. 2002, Section 5.2) discusses the need for the underground layout to be flexible in nature. This flexibility includes allowing the ease of separation of construction and emplacement activities, the ease of variation of WP loading densities, and waste receipts governed by policy changes. The reevaluation study accomplished this by significantly modifying the underground layout to produce a "modular" design. The modular design included emplacement panels that are reduced in size, thereby reducing the excavation time necessary to establish emplacement areas and providing greater flexibility in meeting changeable waste receipt and thermal loading goals (Board, M.; Linden, A.; and Zhu, M. 2002, Section 6).

7.2.3 Location of Surface Openings

The surface openings to the underground facility shall be located outside the probable maximum flood areas.

This constraint is provided to ensure that the entrances to the subsurface facility are located outside the probable maximum flood areas. A subsurface flood would have adverse effects on repository operation and could cause unpredictable impacts to the natural barrier due to water infiltration. Therefore, this constraint is provided to ensure that all subsurface entrances are protected from flood events.

The probable maximum flood areas are identified in the *Technical Basis Report for Surface Characteristics, Preclosure Hydrology, and Erosion* (YMP 1995, Figure 2.6.2-1) and the

Reference Information Base item for Environmental Characteristics: Flood Potential Characteristics (DTN: MO9804RIB00026.004, Figure 3).

7.2.4 Protection From Surface Water

The surface openings must be designed to prevent surface water from entering the subsurface facilities.

The surface pad around all openings to the subsurface facility, including ramp portals and shaft collars, will be designed to maintain a grade on the pads away from the portals or shaft collars.

In addition, a physical structure will be required at the collar of all shafts to prevent rainwater from directly entering the subsurface facility.

The ramps descend from the surface to the repository level. To limit the inflow of surface rainwater and runoff from entering the subsurface facility, a slight upward grade at the entrance to the ramp should be made. The grade of the north and south portals is sloped away from the entrance to the subsurface tunnels. Rainwater will not flow into the ramp unless ponding of the water occurs outside of the portal.

7.2.5 Subsurface Water Drainage

An overall repository grade must be provided such that the overall water drainage and accumulation is away from the emplacement areas.

Natural water infiltration is expected at the repository horizon. It is an objective of the repository design to minimize the amount of water accumulation in the emplacement drifts, thereby reducing the chance of water contacting with the WPs. The underground layout will be designed to ensure that water drainage is not towards the emplacement drifts. Layout of the drifts cannot preclude water contacting the WPs (due to expected natural infiltration), but this constraint will reduce the chance of water flow being focused into the emplacement drifts.

7.2.6 Postclosure Water Drainage

The underground layout will be configured for postclosure water drainage such that:

- Water entering the emplacement drifts will be allowed to drain directly into the surrounding host rock without draining along the drift for collection in a centralized location.
- Drifting above the emplacement level will not have direct connection to an emplacement drift such that water entering the overlying drift could flow by gravity through a manmade opening into the underlying emplacement drifts.
- Drifting above the emplacement level will be configured to slope so that any water that enters the drift can flow, by gravity, away from the emplacement area.

The subsurface facility will aid in the isolation of wastes and the achievement of the postclosure requirements established in regulations. This design constraint will result in a facility which, to the extent practical, minimizes the opportunities for water to contact the WPs after closure.

It is not possible to preclude water contact with containers solely by the layout of the drifts, but this constraint will help ensure that the layout does not allow water more than one chance to contact a container, and does not focus flow onto containers that otherwise may not have been reached.

7.3 REPOSITORY CAPACITY DESIGN CONSTRAINTS

7.3.1 Waste Package Standoff from Type I Faults

In the event that the standoff from repository openings to a Type I fault is waived following a site impact analysis, a standoff must be maintained between Type I faults and any WP. A standoff must be maintained between splays associated with Type I faults and any WP.

Areas that contain Type I faults should be avoided but, if unavoidable, they must be allowed for in engineering design. It is conservatively estimated that a standoff from the edge of the Type I fault or fault zone by 15 meters (49 feet) is adequate to reduce the impact of potential fault movement. Using a 15-meter (49-foot) standoff to establish usable drift length for the LA design is conservatively applied. When initial construction activities in the area of Solitario Canyon are completed, the location of the fault should be better known and the condition of the rock in proximity to the fault can be examined first hand. A standoff could then be determined based on actual observations.

Fault splays may provide a preferential pathway for water movement because of their association with Type I faults. The design should provide for control of water intrusion and therefore, an offset of WPs from unavoidable splays of Type I faults is considered prudent as a safeguard against this possible water intrusion. For engineering design, WPs should be offset 5 meters (16 feet) from the outside edge of any identified fault splay associated with a Type I fault. Using a 5-meter (16-foot) standoff to establish usable drift length for the LA design is conservatively applied. When construction activities are completed, the location of any fault splays should be better known and the condition of the rock in proximity to the fault splay can be examined first hand. A standoff could then be determined based on actual observations.

8. DEVELOPMENT OF THE LAYOUT

The approach to developing the underground layout configuration was to maximize, to the extent possible, the area for emplacement within the footprint boundary (see Section 5.1.1.1), while keeping the emplacement drift lengths, to the extent possible, at a nominal 600 meters (1969 feet). The underground layout is illustrated in Figure 5. Therefore most of the drifts are approximately 600 meters, but some are up to 800 meters long.

8.1 GENERAL LAYOUT DESCRIPTION

The repository will be developed in a series of modules or panels; the first panel will provide early access for emplacement of waste by 2010. The subdivision of the layout into smaller,

integrated yet independent panels has the advantage of construction of emplacement areas without an initial commitment to develop large emplacement regions. This results in the following advantages:

- Faster availability of emplacement area
- Greater ease in separation of construction and emplacement operations
- Flexibility to accommodate possible changes in design or thermal loading strategies
- Potential for simpler ventilation design
- Better utilization of available repository emplacement area

Panels 1, 2, 3, and 4 (Figure 5) are located in the primary block area of the RHH. These panels will accommodate the 70, 000 MTHM case for LA. The lower block area of the RHH is available for expansion, but will not be designed as part of this report. The overall design has taken into account the need for flexibility during emplacement/construction. To increase the flexibility, the design has been set up to allow any of the remaining panels to be constructed after the first panel has been finished. This allows the emplacement sequence to change based on receipt rates or the funding levels, without requiring a change in the overall design. With a flexible sequence, it is not possible to determine the exact locations of the assembly/disassemble chambers for the TBMs. The tables showing opening sizes will only report the nominal size of the openings (i.e. 7.62 m), but a total number of chambers will be included in the summary of excavations (Section 8.7).

A description of the underground layout configuration as illustrated in Figure 5 and the influencing factors that affect the layout configuration are discussed in the following sections.

Attachment II shows the breakdown of the areas of each panel by its respective geologic unit, fault trace and boreholes around the emplacement areas

Figure 5. Underground Layout Configuration

8.2 EXISTING RAMPS AND MAINS

The ESF opening is located such that it can become an integral part of the underground layout configuration (see Section 5.1.2.1). The ramps in the ESF provide access to the RHH at gradients that accommodate rail transportation (see Section 6.4), where the North Ramp is at an approximate grade of -2.15 percent which will support emplacement and the South Ramp is at an approximate grade of -2.62 percent which will support construction.

The shape of the panels is slightly irregular. This was done to provide a high utilization of the available footprint area.

As shown in Figure 5, each panel consists of access mains on the intake side of the emplacement drifts and an exhaust main at the exhaust side of the emplacement drifts. The access mains and exhaust main are located in the same plane as that of the emplacement drifts. The panel details are found in Section 8.4.

8.3 NEW NORTH CONSTRUCTION RAMP

For access to the north end of the repository a new North Construction Ramp will be excavated (see Figure 5), that will connect with the ESF. This ramp will be sized at 7.62 meters (25 feet) and excavated with a TBM, similarly to the ESF ramps. To protect from potential flooding, the initial 10 meter (33 feet) lead in section (from the portal) of the ramp will be excavated up at a minimum of $\pm 1.00\%$ grade. A TBM launch chamber similar to the one at the present North Portal, 20 meters long (66 feet) will be constructed after the initial lead in section. These two sections will be excavated by conventional drill and blast methods and will be sized 11 meters x 11 meters (36 feet x 36 feet).

Subsequently, this new North Construction Ramp will only be used for construction access, in addition to ventilation, allowing the North Ramp to be used exclusively for waste emplacement. This new ramp will be excavated at -5 % grade (Section 6.4) and will provide access to the upper repository block. This new North Construction Ramp will not be used for emplacement activities and will be used for construction access and muck handling only. It will be determined, during detailed design, whether the ramp grade should be reduced to allow greater flexibility for rail handling. If required, the ramp could be excavated at a flatter grade, which would result in a greater length. A change to the ramp gradient would not impact the overall configuration of the emplacement area.

It is proposed that the North Construction Portal be established in Isolation Ridge, up-slope and north of the existing North Portal. Here, the portal can be established at a location that is hidden from line-of-sight from the North Portal, helping to isolate construction from emplacement activities. Road access would be established from the north, allowing a construction camp to be developed, which would be physically isolated from the waste handling facilities at the North Portal. After the North Construction Portal is established, construction activities would be restricted to the new North Construction Portal and South Portal, with waste handling through the North Portal only.

The location of the new North Construction Portal is approximately 2,000 meters (6,562 feet) from the existing north portal.
There may be other locations where a portal could be located that would also meet most of these objectives. The selection of the current location was to minimize the overall ramp length. If the overall grade of the ramp were modified, the portal position would need to be reevaluated.

8.4 PANEL DESCRIPTIONS

The following sections provide descriptions of each of the emplacement panels.

8.4.1 Panel 1

For Panel 1, Figure 6 shows the various openings that will be constructed. Table 3 lists the actual sizes and lengths of these openings (lengths have been rounded to the nearest meter) along centerline.

The initial emplacement panel will be located within the central section of the overall layout (Figure 6) and will utilize the ESF for access to the repository horizon. The size of the panel is small in comparison to the other panels in the repository. This was done so that the panel could be developed and equipped for waste emplacement in 2010. It is then necessary for subsequent construction activities to bypass the panel for continued development.

The exhaust main in Panel 1 will be driven with a 5.5 m TBM. This opening is sized smaller than the other exhaust mains because of the smaller volume of air required to move though it and by sizing it the same as the emplacement drifts, there will be better utilization of the excavation equipment. The first portion of this main will also be used as access to Panel 2 and 4. This portion will have to be slashed to $7 \times 7 \text{ m} (23 \times 23 \text{ ft})$ to support activities in these other two panels. This excavation will not have to be done in conjunction with Panel 1.

Portions of Panel 3 (i.e. East Drift 19) could require to be excavated along with Panel 1, depending on what is required to isolate construction from emplacement. This is not addressed in this report, but a detailed construction sequence will be required for detailed design.

Panel 1 consists of eight emplacement drifts (Figure 6) with a total useable waste emplacement length of 4,092 meters (13,426 feet). Provision is made for potential use of one or more emplacement drifts as Test and Evaluation drifts. An observation drift and instrumentation alcove is provided beneath Emplacement Drift 3 for instrumentation and observation purposes. The observation drift is excavated westward as an extension from the bottom of the existing Thermal Testing Facility Alcove (see Section 5.1.2.3). Details of the actual length of emplacement drifts, useable lengths and bounding end point coordinates for Panel 1 can be found in Attachments I and III.

The emplacement area of Panel 1 will be developed from the north to the south. The North Ramp will supply the intake ventilation for the panel during emplacement and the exhaust will be through Exhaust Raise 1 located at the north end of the panel between Emplacement Drifts 1 and 2. By constructing the panel in this manner it is possible to turn over the panel for emplacement in stages, as little as the first two drifts could be turned over in the first package. The overall drainage pattern for Panel 1 is that everything will drain to the bottom of the exhaust raise, except for the PC observation drift which has its own drainage pattern (See Section 8.5).

Figure 6. Panel 1

* Note: Numbers refer to the headings in Table 3

Heading		Si	ze	Plan Length	
		meters	feet	meters	feet
1	PC Observation Drift	5 x 5	16 x 16	739	2425
2	Alcove	5 x 5	16 x 16	40	131
3	Drift Turnout # 1	7 x 8	23 x 26	97	318
4	Drift Turnout # 2	7 x 8	23 x 26	97	318
5	Drift Turnout # 3	7 x 8	23 x 26	97	318
6	Drift Turnout # 4	7 x 8	23 x 26	97	318
7	Drift Turnout # 5	7 x 8	23 x 26	97	318
8	Drift Turnout # 6	7 x 8	23 x 26	97	318
9	Drift Turnout # 7	7 x 8	23 x 26	97	318
10	Drift Turnout # 8	7 x 8	23 x 26	97	318
11	Drift # 1	5.5 diameter	18 diameter	494	1621
12	Drift # 2	5.5 diameter	18 diameter	596	1955
13	Drift # 3	5.5 diameter	18 diameter	597	1959
14	Drift # 4	5.5 diameter	18 diameter	597	1959
15	Drift # 5	5.5 diameter	18 diameter	591	1939
16	Drift # 6	5.5 diameter	18 diameter	544	1785
17	Drift # 7	5.5 diameter	18 diameter	451	1480
18	Drift # 8	5.5 diameter	18 diameter	355	1165
19	East Main Extension	7 x 7	23 x 23	258	846
20	Construction Vent Raise to ECRB	2 diameter	7 diameter	29	95
21	Main to Panels 2 and 4 (#1 in Panel 2)	5.5 diameter*	18 diameter	303	994
22	Exhaust Main	5.5 diameter	18 diameter	895	2937
23	Access to Exhaust Raise # 1	5 x 5	16 x 16	13	43
24	Exhaust Raise # 1	5 diameter	16 diameter	371	1217

Table 3. Panel 1 Opening Sizes and Lengths

* Will initially be excavated at 5.5 m diameter, but will be slashed to 7 x 7 m later

8.4.2 Panel 2

For Panel 2, Figure 7 shows the various openings that will be constructed . Table 4 lists the actual sizes and lengths of these openings (lengths have been rounded to the nearest meter) along centerline.

Panel 2 is developed at the southern end of the primary area (Figure 5) and utilizes the southern portion of the ESF as its eastern limit. A short new main loop is needed to provide the western limit of the panel. This main will incorporate a portion of the main developed during Panel 1 construction and will be slashed to a 7 x 7 m (23 x 23 ft) opening. Panel 2 will utilize the existing ESF as its intake main.

Panel 2 consists of 27 emplacement drifts with a total useable waste emplacement length of 18,850 meters (61,842 feet). Details of the actual length of emplacement drifts, useable lengths and bounding end point coordinates for Panel 2 can be found in Attachment I and III.

The emplacement area of Panel 2 will be developed from the north to the south. The intake for the northern portion of Panel 2 will be supplied from Intake Shaft 3 and the southern portion will be supplied from the South Ramp. ECRB Exhaust Shaft will ventilate the northern portion, Exhaust Shaft 3 will ventilate the southern portion of Panel 2. During construction of Panel 2, Exhaust Shaft 3 will be accessed as a construction intake. By accessing Exhaust Shaft 3 early for Panel 2 construction some of the safety concerns due to dust can be mitigated. Also if there are

concerns with the overall length of the exhaust main for construction without flow through ventilation, emplacement drifts can periodically be excavated across the panel to supply construction intake air. A conveyor main (Heading 3, Table 4) has been shown connecting the South Ramp with the Exhaust Main. This opening has been proposed to help with construction, but a detailed analysis on whether it is cost effective has not been done. It is included in this report to help bound total potential excavations, but a feasibility study will be required during detailed design to justify it.

The emplacement drift turnover sequence will start from the north and progress south. The initial turnover package will include the portion of Panel 2 north of the access to Intake Shaft 3. Construction access for Panel 2 will only be from the South Ramp. The overall drainage pattern for Panel 2 is from the south to the north. Panel 2 connects with Panels 1 and 4 and will drain to Exhaust Shaft 2.

Page 41 of 64

Figure 7. Panel 2

* Note: Numbers refer to the headings in Table 4

Heading		Size		Plan Length	
		meters	feet	meters	feet
	Main to Panels 1 and 4 (#21 in				
1	Panel 2)	7 x 7 *	23 x 23	303	994
2	Main	7.62 diameter	25 diameter	3744	12283
3	Construction Conveyor Drift	7 62 diameter	25 diameter	372	1220
4	Exhaust Shaft #3 Access	8 x 8 5	26 x 28	20	66
5	Exhaust Shaft # 3	8 diameter	26 diameter	292	958
6	Intake Shaft # 3 Access	8 x 8 5	26 x 28	109	358
7	Intake Shaft # 3	8 diameter	26 diameter	248	814
8	ECRB Exhaust Shaft Access	8 x 8 5	26 x 28	<u>2</u> 40 01	200
0	ECRB Exhaust Shaft	8 diameter	26 diameter	308	1306
10	Drift Turnout # 1		20 diameter 23 x 26	97	318
10	Drift Turnout # 2	7 x 8	23 x 26	97	310
10	Drift Turnout # 2	7 × 0	23 x 20	97	210
12	Drift Turnout # 4	7 x 9	23 X 20	97	210
13	Drift Turnout # 4	7 x 0	23 X 20	97	310
14	Drift Turnout # 5	7 x 8	23 X 20	97	318
15		/ X ð	23 X 20	9/	318
16		/ X 8	23 X 26	9/	318
1/		/ X 8	23 x 26	9/	318
18	Drift Turnout # 9	/ X 8	23 x 26	97	318
19	Drift Turnout # 10	/ x 8	23 x 26	97	318
20	Drift Turnout # 11	<u> </u>	23 x 26	97	318
21	Drift Turnout # 12	/ x 8	23 x 26	97	318
22	Drift Turnout # 13	7 x 8	23 x 26	97	318
23	Drift Turnout # 14	7 x 8 23 x 26		97	318
24	Drift Turnout # 15	7 x 8	23 x 26	97	318
25	Drift Turnout # 16	7 x 8	23 x 26	97	318
26	Drift Turnout # 17	7 x 8	23 x 26	97	318
27	Drift Turnout # 18	7 x 8	23 x 26	97	318
28	Drift Turnout # 19	7 x 8	23 x 26	97	318
29	Drift Turnout # 20	7 x 8	23 x 26	97	318
30	Drift Turnout # 21	7 x 8	23 x 26	97	318
31	Drift Turnout # 22	7 x 8	23 x 26	97	318
32	Drift Turnout # 23	7 x 8	23 x 26	97	318
33	Drift Turnout # 24	7 x 8	23 x 26	97	318
34	Drift Turnout # 25	7 x 8	23 x 26	97	318
35	Drift Turnout # 26	7 x 8	23 x 26	123	404
36	Drift Turnout # 27	7 x 8	23 x 26	123	404
37	Drift # 1	5.5 diameter	18 diameter	753	2470
38	Drift # 2	5.5 diameter	18 diameter	779	2556
39	Drift # 3	5.5 diameter	18 diameter	779	2556
40	Drift # 4	5.5 diameter	18 diameter	775	2543
41	Drift # 5	5.5 diameter	18 diameter	772	2533
42	Drift # 6	5.5 diameter	18 diameter	769	2523
43	Drift # 7	5.5 diameter	18 diameter	766	2513
44	Drift # 8	5.5 diameter	18 diameter	763	2503
45	Drift # 9	5.5 diameter	18 diameter	759	2490
46	Drift # 10	5.5 diameter	18 diameter	756	2480
47	Drift # 11	5.5 diameter	18 diameter	750	2461
48	Drift # 12	5.5 diameter	18 diameter	744	2441
49	Drift # 13	5.5 diameter	18 diameter	737	2418
50	Drift # 14	5.5 diameter	18 diameter	731	2398
51	Drift # 15	5.5 diameter	18 diameter	725	2379
52	Drift # 16	5.5 diameter	18 diameter	718	2356
53	Drift # 17	5.5 diameter	18 diameter	712	2336
54	Drift # 18	5.5 diameter	18 diameter	706	2316

Table 4. Panel 2 Opening Sizes and Lengths

Heading		Size	Plan Length		
		meters	feet	meters	feet
55	Drift # 19	5.5 diameter	18 diameter	699	2293
56	Drift # 20	5.5 diameter	18 diameter	693	2274
57	Drift # 21	5.5 diameter	18 diameter	687	2254
58	Drift # 22	5.5 diameter	18 diameter	680	2231
59	Drift # 23	5.5 diameter	18 diameter	674	2211
60	Drift # 24	5.5 diameter	18 diameter	668	2192
61	Drift # 25	5.5 diameter	18 diameter	655	2149
62	Drift # 26	5.5 diameter	18 diameter	583	1913
63	Drift # 27	5.5 diameter	18 diameter	485	1591

* Will initially be excavated at 5.5 m diameter, but will be slashed to 7 x 7 m later

8.4.3 Panel 3

For Panel 3, Figure 8 shows the various openings that will be constructed. Table 5 lists the actual sizes and lengths of these openings (lengths have been rounded to the nearest meter) along centerline.

Panel 3 is located in the primary block of the RHH and will be developed to the immediate north of Panel 1 (Figure 5), using the new North Construction Ramp (see Section 8.3) for construction access. Panel 3 is divided into two zones, the east and the west. The zones share a common intake main that runs down the middle of the panel. The outside perimeter of the panel forms the exhaust main.

Panel 3 consists of 41 emplacement drifts (Figure 8) with a total useable waste emplacement length of 24,000 meters (78,740 feet). 22 drifts are located in the west zone making up 13,272 meters (43,543 feet) of emplacement length and 19 drifts are located in the east zone making up 10,728 meters (35,197 feet) of emplacement length. Both zones will be constructed simultaneously and turned over together. Details of the actual length of emplacement drifts, useable lengths and bounding end point coordinates for Panel 3 can be found in Attachments I and III.

The emplacement area of Panel 3 will be developed from the south to the north. The southern portion of both zones will be supplied intake air from the North Ramp, the central portion of the Panel 3 will be supplied from Intake Shaft 1 and the northern portion from Intake Shaft 2. The southern portion of the west zone will exhaust to the Exhaust Raise 1 in Panel 1, the central portion will exhaust to Exhaust Shaft 1 and the northern portion will exhaust to Exhaust Shaft 2. The east zone will exhaust the southern portion through Exhaust Raise 2 and the northern portion will exhaust to the Exhaust Shaft 2. During construction of the North Construction Ramp, Panel 3 and the northern portion of Panel 4, Exhaust Shaft 2 will be used as an intake shaft to help minimize safety concerns such as dust problems. Exhaust Shaft 2 will be connected to the intake main by a small access drift, since this drift is only required for construction, and does not handle large airflow volumes, it is sized smaller (5 m x 5 m, or 16 ft x 16 ft) than the regular shaft access drifts. Exhaust Shaft 2 also has the potential to be used for muck handling if so required. Exhaust Shaft 2 will be positioned to reduce overall lengths of dead end headings that are required to be constructed. Both the North Construction Ramp and the exhaust main can be connected into Exhaust Shaft 2 as they are being constructed, allowing for flow through ventilation.

The emplacement drift turnover sequence will start at the south and progress to the north. The size of turnover packages will depend on the amount of initial development that is completed before initial turnover. Initial construction access for Panel 3 will be from the North Construction Ramp. The overall drainage pattern for Panel 3 is that everything will drain to Exhaust Shaft 2. Also once Panel 3 and Panel 1 are connected at Exhaust Raise 1, Panel 1 will also be able to drain to Exhaust Shaft 2.

The exhaust main (heading 3, figure 8) can be driven from the connection with Panel 2 and underneath the North Construction Ramp as shown in Figure 8 or it can be driven in two parts from the North Construction Ramp. This would depend on the sequence of the panels. The overall amount of drift would remain the same in both cases, only the location of the shaft accesses and the grade of the main would change. Once the construction and emplacement sequence is developed, the layout of this area can be finalized.

* Note: Numbers refer to the headings in Table 5

Figure 8. Panel 3

I

lleeding		Size		Plan Length	
	Heading	meters	feet	meters	feet
1	North Construction Ramp	7.62 diameter	25 diameter	2884	9462
2	Intake Main	7.62 diameter	25 diameter	2371	7779
3	Exhaust Main	7.62 diameter	25 diameter	5728	18793
4	Exhaust Raise # 2 Access	5 x 5	16 x 16	127	417
5	Exhaust Raise # 2	5 m diameter	16 diameter	279	915
6	Intake Shaft # 1 Access	7.62 diameter	25 diameter	1384	4541
7	Intake Shaft # 1	8 diameter	26 diameter	378	1240
8	Exhaust Shaft # 1 Access	8 x 8.5	26 x 28	598	1962
9	Exhaust Shaft # 1	8 diameter	26 diameter	405	1329
10	Intake Shaft # 2 Access	8 x 8.5	26 x 28	770	2526
11	Intake Shaft # 2	8 diameter	26 diameter	350	1148
12	Exhaust Shaft # 2 Const. Access	5 x 5	16 x 16	31	102
13	Exhaust Shaft # 2 West Access	8 x 8.5	26 x 28	118	387
14	Exhaust Shaft # 2 East Access	8 x 8.5	26 x 28	106	348
15	Exhaust Shaft # 2	8 diameter	26 diameter	428	1404
16	West Drift Turnout # 1	7 x 8	23 x 26	122	400
17	West Drift Turnout # 2	7 x 8	23 x 26	122	400
18	West Drift Turnout # 3	7 x 8	23 x 26	122	400
19	West Drift Turnout # 4	7 x 8	23 x 26	122	400
20	West Drift Turnout # 5	7 x 8	23 x 26	122	400
21	West Drift Turnout # 6	7 x 8	23 x 26	122	400
22	West Drift Turnout # 7	7 x 8	23 x 26	122	400
23	West Drift Turnout # 8	7 x 8	23 x 26	122	400
24	West Drift Turnout # 9	7 x 8	23 x 26	118	387
25	West Drift Turnout # 10	7 x 8	23 x 26	96	315
26	West Drift Turnout # 11	7 x 8	23 x 26	97	318
27	West Drift Turnout # 12	7 x 8	23 x 26	97	318
28	West Drift Turnout # 13	7 x 8	23 x 26	97	318
29	West Drift Turnout # 14	/ x 8	23 x 26	97	318
30	West Drift Turnout # 15	/ X 8	23 x 26	97	318
31	West Drift Turnout # 16	/ X 8	23 x 26	97	318
32	West Drift Turnout # 17	/ X 8	23 X 26	97	318
33	West Drift Turnout # 18	7 x 8	23 X 20	97	318
34	West Drift Turnout # 19	7 x 8 23 x 20 7 x 8 23 x 26		97	318
30	West Drift Turnout # 21	7 x 9	23 X 20	97	210
30	West Drift Turpout # 22	7 x 9	23 X 20	97	210
20	Fast Drift Turnout # 1	7 × 9	23 X 20	97	310
30	East Drift Turnout # 2	7 x 8	23 x 20	123	404
40	East Drift Turnout # 3	7 x 8	23 x 26	123	404
40	East Drift Turnout # 4	7 x 8	23 x 26	123	404
42	Fast Drift Turnout # 5	7 x 8	23 x 26	123	404
43	East Drift Turnout # 6	7 x 8	23 x 26	120	394
44	Fast Drift Turnout # 7	7 x 8	23 x 26	97	318
45	Fast Drift Turnout # 8	7 x 8	23 x 26	97	318
46	Fast Drift Turnout # 9	7 x 8	23 x 26	97	318
47	Fast Drift Turnout # 10	7 x 8	23 x 26	97	318
48	East Drift Turnout # 11	7 x 8	23 x 26	97	318
49	East Drift Turnout # 12	7 x 8	23 x 26	97	318
50	East Drift Turnout # 13	7 x 8	23 x 26	97	318
51	East Drift Turnout # 14	7 x 8	23 x 26	97	318
52	East Drift Turnout # 15	7 x 8	23 x 26	97	318
53	East Drift Turnout # 16	7 x 8	23 x 26	97	318
54	East Drift Turnout # 17	7 x 8	23 x 26	97	318
55	East Drift Turnout # 18	7 x 8	23 x 26	97	318

Table 5.	Panel 3	Opening	Sizes and	Lengths
		- I - J		

Heading		Size		Plan Length	
		meters	feet	meters	feet
56	East Drift Turnout # 19	7 x 8	23 x 26	97	318
57	West Drift # 1	5.5 diameter	18 diameter	617	2024
58	West Drift # 2	5.5 diameter	18 diameter	617	2024
59	West Drift # 3	5.5 diameter	18 diameter	617	2024
60	West Drift # 4	5.5 diameter	18 diameter	617	2024
61	West Drift # 5	5.5 diameter	18 diameter	617	2024
62	West Drift # 6	5.5 diameter	18 diameter	617	2024
63	West Drift # 7	5.5 diameter	18 diameter	617	2024
64	West Drift # 8	5.5 diameter	18 diameter	617	2024
65	West Drift # 9	5.5 diameter	18 diameter	620	2034
66	West Drift # 10	5.5 diameter	18 diameter	623	2044
67	West Drift # 11	5.5 diameter	18 diameter	622	2041
68	West Drift # 12	5.5 diameter	18 diameter	622	2041
69	West Drift # 13	5.5 diameter	18 diameter	622	2041
70	West Drift # 14	5.5 diameter	18 diameter	622	2041
71	West Drift # 15	5.5 diameter	18 diameter	622	2041
72	West Drift # 16	5.5 diameter	18 diameter	622	2041
73	West Drift # 17	5.5 diameter	18 diameter	622	2041
74	West Drift # 18	5.5 diameter	18 diameter	622	2041
75	West Drift # 19	5.5 diameter	18 diameter	622	2041
76	West Drift # 20	5.5 diameter	18 diameter	622	2041
77	West Drift # 21	5.5 diameter	18 diameter	622	2041
78	West Drift # 22	5.5 diameter	18 diameter	622	2041
79	East Drift # 1	5.5 diameter	18 diameter	757	2484
80	East Drift # 2	5.5 diameter	18 diameter	799	2621
81	East Drift # 3	5.5 diameter	18 diameter	808	2651
82	East Drift # 4	5.5 diameter	18 diameter	794	2605
83	East Drift # 5	5.5 diameter	18 diameter	787	2582
84	East Drift # 6	5.5 diameter	18 diameter	782	2566
85	East Drift # 7	5.5 diameter	18 diameter	764	2507
86	East Drift # 8	5.5 diameter	18 diameter	714	2343
87	East Drift # 9	5.5 diameter	18 diameter	664	2178
88	East Drift # 10	5.5 diameter	18 diameter	615	2018
89	East Drift # 11	5.5 diameter	18 diameter	565	1854
90	East Drift # 12	5.5 diameter	18 diameter	515	1690
91	East Drift # 13	5.5 diameter	18 diameter	479	1572
92	East Drift # 14	5.5 diameter	18 diameter	464	1522
93	East Drift # 15	5.5 diameter	18 diameter	448	1470
94	East Drift # 16	5.5 diameter	18 diameter	432	1417
95	East Drift # 17	5.5 diameter	18 diameter	417	1368
96	East Drift # 18	5.5 diameter	18 diameter	401	1316
97	East Drift # 19	5.5 diameter	18 diameter	385	1263

8.4.4 Panel 4

For Panel 4, Figure 9 shows the various openings that will be constructed. Table 6 lists the actual sizes and lengths of these openings (lengths have been rounded to the nearest meter) along centerline.

Panel 4 is developed in the primary area of the RHH to the western limit of the repository footprint area (Figure 5). The northern portion of Panel 4 shares a common exhaust main with Panel 3 and would be constructed and turned over simultaneously with the northern portion of Panel 3. The common exhaust was developed to minimize excavation, but, if required, Panel 3

and 4 can be developed and turned over independently by constructing two exhaust mains on the north end of the panel.

Panel 4 consists of 30 emplacement drifts (Figure 9) with a total useable waste emplacement length of 17,003 meters (55,783 feet). Details of the actual length of emplacement drifts, useable lengths and bounding end point coordinates for Panel 4 can be found in Attachments I and III.

The emplacement area of Panel 4 will be developed from the north to the south or from south to north. Panel 4 shares common ventilation shafts with Panel 3. The intake for the northern portion of Panel 4 will be supplied from Intake Shaft 2 and the southern portion will be supplied from Intake Shaft 1. Exhaust Shaft 2 will ventilate the northern portion, Exhaust Shaft 1 will ventilate the central portion, and the ECRB Exhaust Shaft will ventilate the southern portion of Panel 4. A ventilation drift will connect the exhaust main with the ECRB. This drift will be sized 7 x 7 m. To accommodate the potential volumes, the ECRB will be to slashed to 7 x 7 m. During construction of Panel 4, Exhaust Shaft 2 will be accessed as a construction intake to help mitigate some of the safety concerns due to dust. Also if there are concerns with the overall length of the intake main for construction without flow-through ventilation, emplacement drifts can periodically be excavated across the panel to supply construction intake air.

The emplacement drift turnover sequence can start from the north or the south, as there is potential access from both directions. The overall drainage pattern for Panel 3 is from the south to the north. All of Panel 4 drains to Exhaust Shaft 2.

Page 49 of 64

Figure 9. Panel 4

 * Note: Numbers refer to the headings in Table 6

Headingmetersfeetmetersfeet1Intake Main7.62 diameter25 diameter4742155582Access to Panel 3 Exhaust $7x 7 \text{ or } 7.62$ diameter* $23 \times 23 \text{ or } 25$ diameter03Access to Panel 2diameter* $diameter$ 2004Vent Access to ECRB 7×7 or 7.62 $23 \times 23 \text{ or } 25$ 05Southern Exhaust Main7.62 diameter 25 diameter 9076Access to Exhaust Raise #1 5×5 16 \times 16237Drift Turnout #1 7×8 23×26 1234048Drift Turnout #2 7×8 23×26 1234049Drift Turnout #3 7×8 23×26 12340410Drift Turnout #4 7×8 23×26 12340411Drift Turnout #4 7×8 23×26 12340412Drift Turnout #4 7×8 23×26 12340413Drift Turnout #6 7×8 23×26 12340414Drift Turnout #6 7×8 23×26 12340415Drift Turnout #10 7×8 23×26 12340416Drift Turnout #10 7×8 23×26 12340415Drift Turnout #10 7×8 23×26 12340416Drift Turnout #10 7×8 23×26 9731816Drift Turnout #11 7×8	l le ediner		Size		Plan Length	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Heading	meters	feet	meters	feet
2Access to Panel 3 Exhaust $7x 7 \text{ or } 7.62$ diameter* $23 \times 23 \text{ or } 25$ diameter 200 656 3Access to Panel 2 $7x 7 \text{ or } 7.62$ diameter* $23 \times 23 \text{ or } 25$ diameter 155 509 4Vent Access to ECRB 7×7 23×23 205 673 5Southern Exhaust Main 7.62 diameter 25 diameter 907 2976 6Access to Exhaust Raise # 1 5×5 16×16 23 23×75 7Drift Turnout # 1 7×8 23×26 23×26 123 404 8Drift Turnout # 2 7×8 23×26 23×26 123 404 9Drift Turnout # 3 10 7×8 23×26 23×26 123 404 10Drift Turnout # 4 4 7×8 7×8 23×26 23×26 123 404 11Drift Turnout # 5 7×8 7×8 23×26 123 404 12Drift Turnout # 6 7×8 7×8 23×26 123 404 13Drift Turnout # 7 7×8 7×8 23×26 123 404 14Drift Turnout # 10 7×8 7×8 23×26 33×8 16Drift Turnout # 11 7×8 7×8 23×26 97 318 17Drift Turnout # 11 7×8 7×8 23×26 97 318 18Drift Turnout # 12 7×8 7×8 23×26 97 318	1	Intake Main	7.62 diameter	25 diameter	4742	15558
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7x 7 or 7.62	23 x 23 or 25		
3Access to Panel 2 $7x 7 \text{ or } 7.62$ diameter* $23 \times 23 \text{ or } 25$ diameter 155 509 4Vent Access to ECRB 7×7 23×23 205 673 5Southern Exhaust Main 7.62 diameter 25 diameter 907 2976 6Access to Exhaust Raise # 1 5×5 16×16 23 75 7Drift Turnout # 1 7×8 23×26 123 404 8Drift Turnout # 2 7×8 23×26 123 404 9Drift Turnout # 3 7×8 23×26 123 404 10Drift Turnout # 4 7×8 23×26 123 404 11Drift Turnout # 5 7×8 23×26 123 404 12Drift Turnout # 6 7×8 23×26 123 404 13Drift Turnout # 6 7×8 23×26 123 404 14Drift Turnout # 7 7×8 23×26 123 404 15Drift Turnout # 7 7×8 23×26 123 404 14Drift Turnout # 10 7×8 23×26 97 318 17Drift Turnout # 11 7×8 23×26 97 318 18Drift Turnout # 12 7×8 23×26 97 318	2	Access to Panel 3 Exhaust	diameter*	diameter	200	656
3 Access to Panel 2 diameter* diameter 155 509 4 Vent Access to ECRB 7 x 7 23 x 23 205 673 5 Southern Exhaust Main 7.62 diameter 25 diameter 907 2976 6 Access to Exhaust Raise # 1 5 x 5 16 x 16 23 75 7 Drift Turnout # 1 7 x 8 23 x 26 123 404 8 Drift Turnout # 2 7 x 8 23 x 26 123 404 9 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 3 7 x 8 23 x 26 123 404 11 Drift Turnout # 4 7 x 8 23 x 26 123 404 12 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 7 7 x 8 23 x 26 123 404 13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turn			7x 7 or 7.62	23 x 23 or 25		
4 Vent Access to ECRB 7 x 7 23 x 23 205 673 5 Southern Exhaust Main 7.62 diameter 25 diameter 907 2976 6 Access to Exhaust Raise # 1 5 x 5 16 x 16 23 75 7 Drift Turnout # 1 7 x 8 23 x 26 123 404 8 Drift Turnout # 2 7 x 8 23 x 26 123 404 9 Drift Turnout # 3 7 x 8 23 x 26 123 404 9 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 4 7 x 8 23 x 26 123 404 11 Drift Turnout # 4 7 x 8 23 x 26 123 404 12 Drift Turnout # 5 7 x 8 23 x 26 123 404 13 Drift Turnout # 6 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 123 404 15 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 D	3	Access to Panel 2	diameter*	diameter	155	509
5 Southern Exhaust Main 7.62 diameter 25 diameter 907 2976 6 Access to Exhaust Raise # 1 5 x 5 16 x 16 23 75 7 Drift Turnout # 1 7 x 8 23 x 26 123 404 8 Drift Turnout # 2 7 x 8 23 x 26 123 404 9 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 4 7 x 8 23 x 26 123 404 10 Drift Turnout # 4 7 x 8 23 x 26 123 404 11 Drift Turnout # 4 7 x 8 23 x 26 123 404 12 Drift Turnout # 5 7 x 8 23 x 26 123 404 13 Drift Turnout # 6 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 123 404 15 Drift Turnout # 10 7 x 8 23 x 26 103 338 16 Drift Turnout	4	Vent Access to ECRB	7 x 7	23 x 23	205	673
6 Access to Exhaust Raise # 1 5 x 5 16 x 16 23 75 7 Drift Turnout # 1 7 x 8 23 x 26 123 404 8 Drift Turnout # 2 7 x 8 23 x 26 123 404 9 Drift Turnout # 2 7 x 8 23 x 26 123 404 9 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 3 7 x 8 23 x 26 123 404 11 Drift Turnout # 4 7 x 8 23 x 26 123 404 12 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 6 7 x 8 23 x 26 123 404 13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 123 404 15 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11	5	Southern Exhaust Main	7.62 diameter	25 diameter	907	2976
7 Drift Turnout # 1 7 x 8 23 x 26 123 404 8 Drift Turnout # 2 7 x 8 23 x 26 123 404 9 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 4 7 x 8 23 x 26 123 404 11 Drift Turnout # 4 7 x 8 23 x 26 123 404 11 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 6 7 x 8 23 x 26 123 404 13 Drift Turnout # 6 7 x 8 23 x 26 123 404 13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 103 338 16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12	6	Access to Exhaust Raise # 1	5 x 5	16 x 16	23	75
8 Drift Turnout # 2 7 x 8 23 x 26 123 404 9 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 4 7 x 8 23 x 26 123 404 11 Drift Turnout # 4 7 x 8 23 x 26 123 404 12 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 6 7 x 8 23 x 26 123 404 13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 123 404 15 Drift Turnout # 8 7 x 8 23 x 26 103 338 16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7	7	Drift Turnout # 1	7 x 8	23 x 26	123	404
9 Drift Turnout # 3 7 x 8 23 x 26 123 404 10 Drift Turnout # 4 7 x 8 23 x 26 123 404 11 Drift Turnout # 4 7 x 8 23 x 26 123 404 11 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 6 7 x 8 23 x 26 123 404 13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 123 404 15 Drift Turnout # 8 7 x 8 23 x 26 103 338 16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13	8	Drift Turnout # 2	7 x 8	23 x 26	123	404
10 Drift Turnout # 4 7 x 8 23 x 26 123 404 11 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 6 7 x 8 23 x 26 123 404 13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 123 404 15 Drift Turnout # 8 7 x 8 23 x 26 123 404 15 Drift Turnout # 9 7 x 8 23 x 26 103 338 16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	9	Drift Turnout # 3	7 x 8	23 x 26	123	404
11 Drift Turnout # 5 7 x 8 23 x 26 123 404 12 Drift Turnout # 6 7 x 8 23 x 26 123 404 13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 8 7 x 8 23 x 26 123 404 15 Drift Turnout # 8 7 x 8 23 x 26 103 338 16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	10	Drift Turnout # 4	7 x 8	23 x 26	123	404
12 Drift Turnout # 6 7 x 8 23 x 26 123 404 13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 8 7 x 8 23 x 26 123 404 15 Drift Turnout # 9 7 x 8 23 x 26 103 338 16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	11	Drift Turnout # 5	7 x 8	23 x 26	123	404
13 Drift Turnout # 7 7 x 8 23 x 26 123 404 14 Drift Turnout # 8 7 x 8 23 x 26 123 404 15 Drift Turnout # 9 7 x 8 23 x 26 103 338 16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	12	Drift Turnout # 6	7 x 8	23 x 26	123	404
14 Drift Turnout # 8 7 x 8 23 x 26 123 404 15 Drift Turnout # 9 7 x 8 23 x 26 103 338 16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	13	Drift Turnout # 7	7 x 8	23 x 26	123	404
11 Drift Turnout # 9 7 x 8 23 x 26 103 338 15 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	14	Drift Turnout # 8	7 x 8	23 x 26	123	404
16 Drift Turnout # 10 7 x 8 23 x 26 97 318 17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	15	Drift Turnout # 9	7 x 8	23 x 26	103	338
17 Drift Turnout # 11 7 x 8 23 x 26 97 318 18 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	16	Drift Turnout # 10	7 x 8	23 x 26	97	318
11 Drift Turnout # 12 7 x 8 23 x 26 97 318 19 Drift Turnout # 13 7 x 8 23 x 26 97 318	17	Drift Turnout # 11	7 x 8	23 x 26	97	318
19 Drift Turnout # 13 7 x 8 23 x 26 97 318	18	Drift Turnout # 12	7 x 8	23 x 26	97	318
	19	Drift Turnout # 13	7 x 8	23 x 26	97	318
20 Drift Lunout # 14 7 x 8 23 x 26 97 318	20	Drift Turnout # 14	7 x 8	23 x 26	97	318
21 Drift Turnout # 15 7 x 8 23 x 26 97 318	21	Drift Turnout # 15	7 x 8	x 8 23 x 26		318
21 Drift Turnout # 16 7 x 8 23 x 26 97 318 22 Drift Turnout # 16 7 x 8 23 x 26 97 318	22	Drift Turnout # 16	7 x 8 23 x 26		97	318
22 Drift Turnout # 10 7 x 8 23 x 26 97 318 23 Drift Turnout # 17 7 x 8 23 x 26 97 318	23	Drift Turnout # 17	7 x 8	23 x 26	97	318
20 Drift Turnout # 18 7 x 8 23 x 26 97 318	24	Drift Turnout # 18	7 x 8	23 x 26	97	318
21 Drift Turnout # 10 7 x 8 23 x 26 97 318 25 Drift Turnout # 19 7 x 8 23 x 26 97 318	25	Drift Turnout # 19	7 x 8	23 x 26	97	318
26 Drift Turnout # 20 7 x 8 23 x 26 101 331	26	Drift Turnout # 20	7 x 8	23 x 26	101	331
20 Drift Turnout # 20 7 x 8 23 x 26 101 001 27 Drift Turnout # 21 7 x 8 23 x 26 106 348	27	Drift Turnout # 21	7 x 8	23 x 26	106	348
28 Drift Turnout # 22 7 x 8 23 x 26 106 348	28	Drift Turnout # 22	7 x 8	23 x 26	106	348
29 Drift Turnout # 23 7 x 8 23 x 26 106 348	29	Drift Turnout # 23	7 x 8	23 x 26	106	348
30 Drift Turnout # 24 7 x 8 23 x 26 106 348	30	Drift Turnout # 24	7 x 8	23 x 26	106	348
31 Drift Turnout # 25 7 x 8 23 x 26 106 348	31	Drift Turnout # 25	7 x 8	23 x 26	106	348
32 Drift Turnout # 26 7 x 8 23 x 26 106 348	32	Drift Turnout # 26	7 x 8 23 x 26		106	348
33 Drift Turnout # 27 7 x 8 23 x 26 107 351	33	Drift Turnout # 27	7 x 8	23 x 26	107	351
34 Drift Turnout # 28 7 x 8 23 x 26 128 420	34	Drift Turnout # 28	7 x 8	23 x 26	128	420
35 Drift Turnout # 29 7 x 8 23 x 26 147 482	35	Drift Turnout # 29	7 x 8	23 x 26	147	482
36 Drift Turnout # 30 7 x 8 23 x 26 175 574	36	Drift Turnout # 30	7 x 8	23 x 26	175	574
37 Drift # 1 5.5 diameter 18 diameter 617 2024	37	Drift # 1	5.5 diameter	18 diameter	617	2024
38 Drift # 2 5.5 diameter 18 diameter 617 2024	38	Drift # 2	5.5 diameter	18 diameter	617	2024
39 Drift # 3 5.5 diameter 18 diameter 617 2024	39	Drift # 3	5.5 diameter	18 diameter	617	2024
40 Drift # 4 5.5 diameter 18 diameter 617 2024	40	Drift # 4	5.5 diameter	18 diameter	617	2024
41 Drift # 5 5.5 diameter 18 diameter 617 2024	41	Drift # 5	5.5 diameter	18 diameter	617	2024
42 Drift # 6 5.5 diameter 18 diameter 617 2024	42	Drift # 6	5.5 diameter	18 diameter	617	2024
43 Drift # 7 5.5 diameter 18 diameter 617 2024	43	Drift # 7	5.5 diameter	18 diameter	617	2024
44 Drift # 8 5.5 diameter 18 diameter 617 2024	44	Drift # 8	5.5 diameter	18 diameter	617	2024
45 Drift # 9 5.5 diameter 18 diameter 634 2080	45	Drift # 9	5.5 diameter	18 diameter	634	2080
46 Drift # 10 5.5 diameter 18 diameter 605 1985	46	Drift # 10	5.5 diameter	18 diameter	605	1985
47 Drift # 11 5.5 diameter 18 diameter 605 1985	47	Drift # 11	5.5 diameter	18 diameter	605	1985
48 Drift # 12 5.5 diameter 18 diameter 605 1985	48	Drift # 12	5.5 diameter	18 diameter	605	1985
49 Drift # 13 5,5 diameter 18 diameter 605 1985	49	Drift # 13	5.5 diameter	18 diameter	605	1985
50 Drift # 14 5.5 diameter 18 diameter 605 1985	50	Drift # 14	5.5 diameter	18 diameter	605	1985
51 Drift # 15 5.5 diameter 18 diameter 605 1985	51	Drift # 15	5.5 diameter	18 diameter	605	1985
52 Drift # 16 5.5 diameter 18 diameter 605 1985	52	Drift # 16	5.5 diameter	18 diameter	605	1985
53 Drift # 17 5.5 diameter 18 diameter 605 1985	53	Drift # 17	5.5 diameter	18 diameter	605	1985

Table 6.	Panel 4 Opening Sizes and	Lengths
	1 0	<u> </u>

Heading -		Siz	e	Plan Length	
		meters	feet	meters	feet
54	Drift # 18	5.5 diameter	18 diameter	605	1985
55	Drift # 19	5.5 diameter	18 diameter	605	1985
56	Drift # 20	5.5 diameter	18 diameter	605	1985
57	Drift # 21	5.5 diameter	18 diameter	594	1949
58	Drift # 22	5.5 diameter	18 diameter	584	1916
59	Drift # 23	5.5 diameter	18 diameter	593	1946
60	Drift # 24	5.5 diameter	18 diameter	581	1906
61	Drift # 25	5.5 diameter	18 diameter	569	1867
62	Drift # 26	5.5 diameter	18 diameter	556	1824
63	Drift # 27	5.5 diameter	18 diameter	544	1785
64	Drift # 28	5.5 diameter	18 diameter	526	1726
65	Drift # 29	5.5 diameter	18 diameter	496	1627
66	Drift # 30	5.5 diameter	18 diameter	406	1332
67	Exhaust Main (Dual with Panel 3)	7.62 diameter	25 diameter	1122	3681
		7 x 7 or 7.62	23 x 23 or 25		
68	Access to Panel 3 Exhaust	diameter*	diameter	70	230
69	ECRB Slash	7 x 7	23 x 23	662	2172

* The size is dependent on the construction sequence

8.5 PERFORMANCE CONFIRMATION FACILITIES

As part of performance confirmation (PC), in situ testing and monitoring will be conducted in the repository footprint. To meet these requirements, an observation drift and a test alcove off the observation drift will be located in Panel 1 (Section 5.3.1.4) The observation drift in Panel 1 (see Figure 6, heading 1) will be excavated with conventional drill and blast methods from the Thermal Testing Facility alcove (Section 5.1.2.3) underneath and to the side of the emplacement drift to the test alcove. From this location the drift will ramp up to connect with the exhaust main of Panel 1. The test alcove (see Figure 6, heading 2) will also be excavated with conventional drill and blast methods from the observation drift to a position 20 meters (66 feet) south of Emplacement Drift 3. The observation drift and alcove will both have a horseshoe profile and be sized 5 meters x 5 meters (16 feet x 16 feet). The observation drift will run parallel to Emplacement Drift 3 but will be offset to the north by 20 meters (66 feet) from the drift centerlines. The 20 meter (66 foot) offset will help maintain a stable pillar between the emplacement drift and the observation drift when the observation drift ramps up to connect with the exhaust main. Also the 20 meter (66 foot) standoff will minimize the disturbance around the emplacement while still allowing for accurate placement of the monitoring boreholes. The test alcove will be located below the emplacement drift a minimum of 10 meters (33 feet) from crown to invert in order to maintain a stable pillar.

The location of the observation drift will allow for monitoring below and to the north of Emplacement Drift 3. As the drift ramps up to connect with the exhaust main, it will also supply a platform to position boreholes to monitor above the emplacement drift. The test alcove provides monitoring coverage to the south of the emplacement drift. The combination of the test alcove and observation drift will supply coverage to nearly half the perimeter of Emplacement Drift 3 utilizing shorter than 20 meters (66 feet) boreholes.

The determining factor to use drill and blast methods to construct the observation drift was to minimize the impact on the TBM schedule, while maximizing the advance rate of this drift, however it may be decided at a later date that mechanical excavation will be used to minimize

the perturbation on the host rock. The observation drift is graded away from the exhaust main to a low spot where the observation drift crosses underneath the intake main of Panel 1 (ESF), the test alcove is graded down from the south end to the intersect with the observation drift. By grading the drifts in this manner it will allow drainage away from the emplacement area.

8.6 VENTILATION INTERFACE

The overall ventilation plan is similar for each panel, or in the case where a panel is divided into zones, for each zone. The emplacement access side of the panel will be the intake side and the opposite side will only be used for exhaust. This allows for all normal operations to take place in the cooler intake air stream so no special temperature resistant equipment would be needed. The general airflow pattern will be as follows:

- The intake air will enter the repository through the ramps or intake shafts;
- Flow through the intake shaft accesses and raises to the intake/emplacement mains;
- Flow down the intake main, entering the emplacement drifts through the turnouts and the ventilation door(s);
- Flow through the emplacement drifts, exhausting to the exhaust main;
- Travel down the exhaust main to the exhaust access raises;
- Travel down to the raises to the exhaust accesses;
- Flow through the accesses to the exhaust shaft/raises; and
- Exit the repository through either a full size exhaust shaft or a smaller exhaust raise.

The exhaust system will be set up so that each emplacement drift can be isolated from the rest of the repository during off normal conditions. This will be achieved by positioning exhaust shafts or raises at the ends of each panel. The exhaust from one side of the drift requiring isolation would be diverted to the shaft or raise on that side and the exhaust from the other side would be diverted to the other shaft. This would allow off normal access to the isolated drift and the corresponding portion of the exhaust main without any potential exposure to the exhaust air. It would also allow for one or more drifts to be isolated without affecting the overall performance of the repository.

The opening sizes were maintained at similar sizes as that determined in the *Site Recommendation Subsurface Layout* (BSC 2001c, Attachment IV).

The ventilation mains, both intake and exhaust will be sized at 7.62 meter (25 foot) diameter and will be excavated with a TBM except for the exhaust main of Panel 1. As the exhaust main of Panel 1 becomes Emplacement Drift 1 and this main only has to support the exhaust of Panel 1, it will be 5.5 meter (18 foot) diameter to correspond with the other emplacement drift and minimize equipment required for initial start up.

The full size ventilation shafts, both intake and exhaust will be sized at 8 meters (26 feet), and these shafts will be developed using conventional drill and blast shaft sinking methods. In areas where the ventilation quantities do not require a full sized shaft, such as exhaust for Panel 1 and the south end of the east zone of Panel 3, exhaust raises to surface would be used. These raises will be sized at 5 meters (16 feet) and will be raise bored. These raises will be quicker and more cost effective to construct than a shaft of the same size.

The accesses to the shaft and raises will be excavated with conventional drill and blast methods. The accesses for the shafts will be sized at 8 meters x 8.5 meters (26 feet x 28 feet) and the accesses to the raises will be sized at 5 meters x 5 meters (16 feet x 16 feet). Construction vent raises that will handle low airflow volumes, such as the connection between the ECRB and the Panel 1 exhaust main will be 2 meter (7 foot) diameter and will be raise bored. To fully utilized the ECRB Shaft, the ECRB will be slashed to 7 x 7 m (23 x 23 ft) and the ventilation access to Panel 4 will also be 7 x 7 m (23 x 23 ft). The accesses will not require rail and will be driven at grades up to 15%.

The detailed ventilation volume allocation will not be determined in this calculation. The shaft and raise locations were determined based on suitable surface topography for collar locations and to approximately balance the ventilation system (i.e. balancing the number of drifts feeding into either side of a shaft).

The overall ventilation system consists of 3 shafts and 3 ramps on the intake side and 4 shafts and 2 raises on the exhaust side. These shafts and raises service 106 emplacement drifts in the four panels. Based on previous analysis (BSC 2001c) estimated intake quantities for ventilating each drift was 15 m^3/s (31,783 cfm) (BSC 2001c p. 62) and after expansion the exhaust was approximately 17 m^3/s (36,021 cfm) (BSC 2001c, p. IV-5). This configuration of intakes and exhausts will have a minimum of 20 percent extra capacity. Table 7 list the shaft collar and station coordinates and locations are shown in Figure 10.

Sha	afts	Metric		Imperial			
Inta	kes					-	
		Northing	Easting	Elevation	Northing	Easting	Elevation
Intake Shaft	Collar	234474.453	170560.873	1450	769271.6	559581.8	4757.208
1	Station	234474.453	170560.873	1072.017	769271.6	559581.8	3517.11
Intake Shaft	Collar	235903.432	171805.963	1410	773959.8	563666.7	4625.975
2	Station	235903.432	171805.963	1059.535	773959.8	563666.7	3476.158
Intake Shaft	Collar	233260.252	171322.497	1325	765288	562080.6	4347.104
3	Station	233260.252	171322.497	1076.902	765288	562080.6	3533.136
Por	tals						
		Northing	Easting	Elevation	Northing	Easting	Elevation
North Cor	nstruction	235227.875	173211.391	1186.093	771743.5	568277.7	3891.373
No	rth	233279.97	173679.768	1122.56	765352.7	569814.4	3682.932
South		230614.635	172900.776	1160.069	756608.2	567258.6	3805.993
Exha	usts						
Exhaust	Collar	234010	170690	1435	767747.8	560005.4	4707.996
Raise 1	Station	234010	170690	1064.094	767747.8	560005.4	3491.116
Exhaust	Collar	234580	171890	1340	769617.9	563942.4	4396.317
Raise 2	Station	234580	171890	1061.201	769617.9	563942.4	3481.624
		Northing	Easting	Elevation	Northing	Easting	Elevation
Exhaust	Collar	234880.587	170495.703	1470	770604.1	559368	4822.825
Shaft 1	Station	234880.587	170495.703	1064.977	770604.1	559368	3494.012
Exhaust	Collar	236330.286	171803.382	1450	775360.3	563658.3	4757.208
Shaft 2	Station	236330.286	171803.382	1022.294	775360.3	563658.3	3353.976
Exhaust	Collar	230842.855	170669.239	1400	757356.9	559937.3	4593.167
Shaft 3	Station	230842.855	170669.239	1107.869	757356.9	559937.3	3634.734
ECRB	Collar	233029.534	170378.507	1475	764531.1	558983.5	4839.229
Exhaust	@ ECRB	233029.534	170378.507	1109.405	764531.1	558983.5	3639.773
Shaft	Station	233029.534	170378.507	1076.564	764531.1	558983.5	3532.027

Table 7. Shaft Locations

Figure 10. Shaft Locations

8.7 EXCAVATION SUMMARY

The detailed excavation lengths for the underground layout are summarized in Table 8. Table 9 through Table 12 outlines the excavation lengths associated with each emplacement panel.. The summarized lengths are from the rounded lengths in Section 8.4. Figure 11 shows there are potentially 12 assemble/disassemble chambers required for the large TBM, each of these chamber is 11 x 11m (36 x 36 ft) and 20 m long (66 ft). These excavations have been included in Table 8.

Opening Description	Size		Plan L	.ength
	meters	feet	meters	feet
Emplacement Drifts	5.5 diameter	18 diameter	66,450	218,017
Emplacement Drift Turnouts	7 x 8	23 x 26	11,148	36,564
Access/Exhaust Mains	7.62 diameter	25 diameter	22,295	73,147
Exhaust Main	5.5 diameter	18 diameter	1,198	3,931
Intake/Exhaust Shafts	8 diameter	26 diameter	2,499	8,199
Shaft Access	8 x 8.5	26 x 28	1,812	5,946
Construction Shaft Access	5 x 5	16 x 16	31	102
Exhaust Raise	5 diameter	16 diameter	650	2,132
Construction Vent Raise	2 diameter	6.5 diameter	29	95
Exhaust Raise Access	5 x 5	16 x 16	163	535
Main Slash	7 x 7	23 x 23	965	3,166
Intake Main Extension	7 x7	23 x 23	258	846
Assembly/Disassembly Chambers	11 x 11	36 x 36	240	787
Ventilation Access	7 x 7	23 x 23	205	673
Intake Shaft Access	7.62 diameter	25 diameter	1,384	4,541
Performance Confirmation Facility	5 x 5	16 x 16	779	2,556
TOTAL			109,866	360,450

Table 8. Excavation Summary - Overall

Table 9. Excavation Summary for Panel 1

Opening Description	Size		Plan L	.ength
	meters	feet	meters	feet
Emplacement Drifts	5.5 diameter	18 diameter	4,225	13,863
Emplacement Drift Turnouts	7 x 8	23 x 26	776	2,544
Access/Exhaust Mains	7.62 diameter	25 diameter	0	0
Exhaust Main	5.5 diameter	18 diameter	1,198	3,931
Intake/Exhaust Shafts	8 diameter	26 diameter	0	0
Shaft Access	8 x 8.5	26 x 28	0	0
Exhaust Raise	5 diameter	16 diameter	371	1217
Construction Vent Raise	2 diameter	6.5 diameter	29	95
Exhaust Raise Access	5 x 5	16 x 16	13	43
Intake Main Extension	7 x 7	23 x 23	258	846
Performance Confirmation Facility	5 x 5	16 x 16	779	2,556
TOTAL			7,649	25,095

Table 10. Excavation Summary for Panel 2

Opening Description	S	ize	Plan L	.ength
	meters	feet	meters	Feet
Emplacement Drifts	5.5 diameter	18 diameter	19,318	63,380
Emplacement Drift Turnouts	7 x 8	23 x 26	2,671	8,758
Access/Exhaust Mains	7.62 diameter	25 diameter	4,116	13,503
Exhaust Main	5.5 diameter	18 diameter	0	0
Intake/Exhaust Shafts	8 diameter	26 diameter	938	3,078
Shaft Access	8 x 8.5	26 x 28	220	723
Exhaust Raise	5 diameter	16 diameter	0	0
Construction Vent Raise	2 diameter	6.5 diameter	0	0
Exhaust Raise Access	5 x 5	16 x 16	0	0
Main Slash	7 x 7	23 x 23	303	994
Performance Confirmation Facility	5 x 5	16 x 16	0	0
TOTAL			27,566	90,436

Opening Description	S	ize	Plan L	_ength
	meters	feet	meters	feet
Emplacement Drifts	5.5 diameter	18 diameter	25,233	82,789
Emplacement Drift Turnouts	7 x 8	23 x 26	4,350	14,266
Access/Exhaust Mains	7.62 diameter	25 diameter	10,983	36,034
Exhaust Main	5.5 diameter	18 diameter	0	0
Intake/Exhaust Shafts	8 diameter	26 diameter	1,561	5,121
Shaft Access	8 x 8.5	26 x 28	1,592	5,223
Exhaust Raise	5 diameter	16 diameter	279	915
Construction Vent Raise	2 diameter	6.5 diameter	0	0
Exhaust Raise Access	5 x 5	16 x 16	127	417
Construction Shaft Access	5 x 5	16 x 16	31	102
Shaft Access	7.62 diameter	25 diameter	1,384	4,541
Performance Confirmation Facility	5 x 5	16 x 16	0	0
TOTAL			45,540	149,408

Table 11. Excavation Summary for Panel 3

Table 12. Excavation Summary for Panel 4

Opening Description	S	ize	Plan L	_ength
	meters	feet	meters	feet
Emplacement Drifts	5.5 diameter	18 diameter	17,674	57,985
Emplacement Drift Turnouts	7 x 8	23 x 26	3,351	10,996
Access/Exhaust Mains	7.62 diameter	25 diameter	7,196	23,610
Exhaust Main	5.5 diameter	18 diameter	0	0
Intake/Exhaust Shafts	8 diameter	26 diameter	0	0
Shaft Access	8 x 8.5	26 x 28	0	0
Exhaust Raise	5 diameter	16 diameter	0	0
Construction Vent Raise	2 diameter	6.5 diameter	0	0
Exhaust Raise Access	5 x 5	16 x 16	23	75
Main Slash	7 x 7	23 x 23	662	2,172
Ventilation Access	7 x 7	23 x 23	205	673
Performance Confirmation Facility	5 x 5	16 x 16	0	0
TOTAL			29,111	95,511

Figure 11. Potential TBM Chambers

8.8 LAYOUT FLEXIBILITY

This section outlines the design flexibility associated with the underground layout for the 70,000 MTHM case as directed by the DOE (Waisley, S. 2001). The discussion of the loading flexibility for the 70,000 MTHM case does not preclude receipt or emplacement of larger waste quantities, but it is not within the scope of this document to determine those quantities. At a 0.1 m WP spacing, the 70,000 MTHM case can be accommodated by emplacing all of Panels 1, 3, 4 and up to Drift 17 in Panel 2 (Attachment IV). This will leave 6,541.2 m of contingency in the remaining 10 drifts of Panel 2.

9. **RESULTS**

Sufficient capacity exists within the underground layout to support a 70,000 MTHM waste inventory (see Section 8.8).

The underground layout configuration also allows sufficient flexibility for supporting any parametric studies required for documenting a flexible-operating mode.

The underground layout can accommodate emplacement scenarios requiring up to 63.9 kilometers (39.7 miles) of emplacement drift (see Attachment IV). This relates to approximately 4.1 kilometers (2.5 miles) in Panel 1, 18.8 kilometers (11.7 miles) in Panel 2, 24.0 kilometers (14.9 miles) in Panel 3, and 17.0 kilometers (10.6 miles) in Panel 4 (Attachment I). This layout configuration is contained in the output files SUBSURFACELADESIGN_M.dxf and SUBSURFACELADESIGN I.dxf (see Attachment V).

This document should be considered in conjunction with a thermal management analysis to determine the viability of any specific combination of operating parameters.

The information generated as a result of this analysis is reasonable compared to the inputs documented in Sections 5, 6, and 7 and the calculation and underground layout, as presented in Section 8, is suitable for use as the technical basis for the underground layout general arrangement drawings. Shared interfaces are accurate and correct, and design interfaces have been considered as outlined in Section 6.4 and 6.5.

Attachment II includes miscellaneous information required for inputs to the scientific models.

10. REFERENCES

AP-3.12Q, Rev. 2, ICN 1. *Design Calculations and Analyses*. Washington, D.C.: U.S. Department of Energy. ACC: DOC.20030827.0013.

AP-3.13Q, Rev. 3, ICN 2. *Design Control*. Washington, D.C.: U.S. Department of Energy. ACC: MOL.20030827.0009.

AP-SI.1Q, Rev. 5. ICN 2, *Software Management*. Washington, D.C.: U.S. Department of Energy. ACC: DOC.20030902.0003.

ASTM E380-85. 1985. *Standard for Metric Practice*. Philadelphia, PA: American Society for Testing and Materials. TIC: 232193. [DIRS 158147]

BINFRA (Bechtel Infrastructure Corporation) 2002, *Yucca Mountain-MGR, Subsurface Transporter System Review*. New York, New York: Bechtel Infrastructure Corporation. ACC: MOL.20021030.0077. [DIRS 160685]

Bish, D.L.; Carey, J.W.; Levy, S.S.; and Chipera, S.J. 1996. *Mineralogy-Petrology Contribution to the Near-Field Environment Report*. Milestone LA3668. Los Alamos, New Mexico: Los Alamos National Laboratory. ACC: MOL.19971111.0588. [DIRS 101430]

Board, M.; Linden, A.; and Zhu, M. 2002. *Design Evolution Study—Underground Layout*. TDR-MGR-MG-000003 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20020429.0023. [DIRS 157756]

BSC 2001a. FY 01 Supplemental Science and Performance Analyses, Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00 ICN 01. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010801.0404; MOL.20010712.0062; MOL.20010815.0001. [DIRS 155950]

BSC 2001b. *Gantry Structural/Control System Analysis*. ANL-WER-MD-000001 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010425.0003. [DIRS 154553]

BSC 2001c. *Site Recommendation Subsurface Layout*. ANL-SFS-MG-000001 REV 00 ICN 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010411.0131. [DIRS 154477]

BSC 2001d. *UZ Flow Models and Submodels*. MDL-NBS-HS-000006 REV 00 ICN 01. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20020417.0382. [DIRS 158726]

BSC 2001e. *Thermal Tests Thermal-Hydrological Analyses/Model Report*. ANL-NBS-TH-000001 REV 00 ICN 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20011116.0025. [DIRS 157330]

BSC 2001f. *Multiscale Thermohydrologic Model*. ANL-EBS-MD-000049 REV 00 ICN 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20020123.0279. [DIRS 158204]

BSC 2002a. *Emplacement Drift System Description Document*. 800-3YD-TE00-00100-000-000. Las Vegas, Nevada: Bechtel SAIC Company. MOL.20030107.0114. [DIRS 159292]

BSC 2002b. Errata for Effects of Fault Displacement on Emplacement Drifts. ANL-EBS-GE-000004 REV 00 ICN 01. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20020327.0353. [DIRS 158729]

BSC 2002c. *Mineralogical Model (MM3.0) Analysis Model Report*. MDL-NBS-GS-000003 REV 00 ICN 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20020423.0151. [DIRS 158730]

BSC 2002d. *Drift-Scale Coupled Processes (DST and THC Seepage) Models*. MDL-NBS-HS-000001 REV 01 ICN 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20020312.0156. [DIRS 158375]

BSC 2002e, *Subsurface Tunneling System Description Document*. 800-3YD-TU00-00100-000-000. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20021223.0171. [DIRS 160857]

BSC 2002f, Software Code: Vulcan. V4.0NT. PC. 10044-4.0NT-00. [DIRS 163382]

BSC 2003a, *Waste Package Envelope Dimensions for Facilities & Handling*. 000-B20-EBS0-00101-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20030529.0001 [DIRS 163383]

BSC 2003b, *Site-Scale Saturated Zone Flow Model*. MDL-NBS-HS-000011 REV 01A. Las Vegas, Nevada: Bechtel SAIC Company. ACC. MOL.20030626.0296 [DIRS 162649]

Carey, J.W.; Bish, D.L.; and Chipera, S.J. 1996. *Kinetics and Thermodynamics of Mineral Evolution at Yucca Mountain. Volume III of Summary and Synthesis Report on Mineralogy and Petrology Studies for the Yucca Mountain Site Characterization Project. Milestone 3665.* Los Alamos, New Mexico: Los Alamos National Laboratory. ACC: MOL.19961230.0039. [DIRS 105201]

CRWMS M&O (Civilian Radioactive Waste Management System Management and Operating Contractor) 1996. *ESF Layout Calculation*. BABEAD000-01717-0200-00003 REV 04. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19960930.0095. [DIRS 101536]

CRWMS M&O 1997a. *Exploratory Studies Facility TS Main Drift Thermal Testing Facility Alcove Plan Sht. 1 of 3.* BABEAF000-01717-2100-40230 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980128.0300. [DIRS 107983]

CRWMS M&O 1997b. *Exploratory Studies Facility TS Main Drift Thermal Testing Facility Alcove Plan Sht. 2 of 3.* BABEAF000-01717-2100-40231 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19970418.0281.

CRWMS M&O 1998a. *East-West Cross Drift Starter Tunnel Layout Analysis*. BABEAF000-01717-0200-00008 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980216.0530. [DIRS 113521]

CRWMS M&O 1998b. Seismic Design Basis Inputs for a High-Level Waste Repository at Yucca Mountain, Nevada. B0000000-01727-5700-00018 REV 0. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980806.0711. [DIRS 102304]

CRWMS-M&O 1998c. *Probabilistic Seismic Hazard Analyses for Fault Displacement and Vibratory Ground Motion at Yucca Mountain, Nevada*. Milestone SP32IM3, September 23, 1998. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19981207.0393. [DIRS 103731]

CRWMS M&O 1999. *TBV-361 Resolution Analysis: Emplacement Drift Orientation*. B00000000-01717-5705-00136 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990802.0316. [DIRS 115042]

CRWMS M&O 2000a. Determination of Available Repository Siting Volume for the Site Recommendation. TDR-NBS-GS-000003 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000705.0054. [DIRS 148153]

CRWMS M&O 2000b. Unsaturated Zone Flow and Transport Model Process Model Report. TDR-NBS-HS-000002 REV 00 ICN 02. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000831.0280. [DIRS 151940]

CRWMS M&O 2000d. *Effects of Fault Displacement on Emplacement Drifts*. ANL-EBS-GE-000004 REV 00 ICN 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000504.0297. [DIRS 151954]

CRWMS M&O 2000e. *Yucca Mountain Site Description*. TDR-CRW-GS-000001 REV 01 ICN 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20001003.0111. [DIRS 151945]

CRWMS M&O 2000f. *Mountain-Scale Coupled Processes (TH) Models (U0105)*. MDL-NBS-HS-000007 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.1990721.0528. [DIRS 144454]

Day, W.C.; Dickerson, R.P.; Potter, C.J.; Sweetkind, D.S.; San Juan, C.A.; Drake, R.M., II; and Fridrich, C.J. 1998. *Bedrock Geologic Map of the Yucca Mountain Area, Nye County, Nevada.* Geologic Investigations Series I-2627. Denver, Colorado: U.S. Geological Survey. ACC: MOL.19981014.0301. [DIRS 100027]

DOE (U.S. Department of Energy) 2002. *Yucca Mountain Science and Engineering Report*. DOE/RW-0539, Rev. 1. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: MOL.20020404.0042. [DIRS 155943]

DOE 2003. *Quality Assurance Requirements and Description*. DOE/RW-0333P, Rev. 13. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20030422.0003. [DIRS 162903]

Goodman Equipment Corporation 1971. *Goodman Mining Machine Sales Manual - Locomotive General Data Trolley Locomotive Calculations*. Section 4068. Bedford Park, Illinois: Goodman Equipment Corporation. TIC: 237874. [DIRS 104714]

Levy, S.S. and O'Neil, J.R. 1989. "Moderate-Temperature Zeolitic Alteration in a Cooling Pyroclastic Deposit." *Chemical Geology*, *76*, (3/4), 321-326. Amsterdam, The Netherlands: Elsevier. TIC: 237819. [DIRS 116960]

Levy, S.S.; Norman, D.I.; and Chipera, S.J. 1996. "Alteration History Studies in the Exploratory Studies Facility, Yucca Mountain, Nevada, USA." *Scientific Basis for Nuclear Waste Management XIX, Symposium held November 27-December 1, 1995, Boston, Massachusetts.* Murphy, W.M. and Knecht, D.A., eds. *412,* 783-790. Pittsburgh, Pennsylvania: Materials Research Society. TIC: 233877. [DIRS 104157]

McConnell, K.I.; Blackford, M.E.; and Ibrahim, A.B. 1992. *Staff Technical Position on Investigations to Identify Fault Displacement Hazards and Seismic Hazards at a Geological Repository*. NUREG-1451. Washington, D.C.: U.S. Nuclear Regulatory Commission. TIC: 204829. [DIRS 105205]

MO9804RIB00026.004. Environmental Characteristics: Flood Potential Characteristics. Submittal date: 04/27/1998. [DIRS 121264]

MO0003MWDVUL03.002. VULCAN GFM 3.1 Representation. Submittal date: 03/07/2000. [DIRS 148019]

MO0012MWDGFM02.002. Geologic Framework Model (GFM2000). Submittal date: 12/18/2000. [DIRS 153777]

Waisley, S. 2001. *Technical Direction to Bechtel SAIC Company, LLC, Contract Number DE-AC08-01RW12101: TDL No. 02-003*. Letter from S. Waisley (DOE) to K. Hess (BSC), November 2,2001, with attachments. ACC: HQO.20011109.0001. [DIRS 157462]

Williams, N.H. 2003, *Thermal Inputs for Evaluations Supporting TSPA-LA, Supplement*. Interoffice memorandum from N.H. Williams (BSC) to Distribution, April 4, 2003, 0205035938, with enclosures. ACC: MO L.20030501.0081. [DIRS 162731]

Wu, Y.S.; Haukwa, C.; Ahlers, C.F.; and Bodvarsson, G.S. 1997. *Three Dimensional Thermo-Hydrologic Mountain-Scale UZ Model*. Milestone SP33UAM4. Berkeley, California: Lawrence Berkeley National Laboratory. ACC: MOL.19971224.0061. [DIRS 117925]

YMP (Yucca Mountain Site Characterization Project) 1993. *Evaluation of the Potentially Adverse Condition "Evidence of Extreme Erosion During the Quaternary Period" at Yucca Mountain, Nevada.* Topical Report YMP/92-41-TPR. Las Vegas, Nevada: Yucca Mountain Site Characterization Office. ACC: NNA.19930316.0208. [DIRS 100520]

YMP 1995. *Technical Basis Report for Surface Characteristics, Preclosure Hydrology, and Erosion*. YMP/TBR-001, Rev. 0. Las Vegas, Nevada: Yucca Mountain Site Characterization Office. ACC: MOL.19951201.0049. [DIRS 102215]

YMP 2001. *Q-List.* YMP/90-55Q, Rev. 7. Las Vegas, Nevada: Yucca Mountain Site Characterization Office. ACC: MOL.20010409.0366. [DIRS 154817]

ATTACHMENT I AVAILABLE EMPLACEMENT DRIFT LENGTH

The lengths of the emplacement drifts represented in this attachment are extracted from the SUBSURFACELADESIGN_M.dxf using VULCAN V4.0NT. These emplacement drift lengths represent the total excavated length of the emplacement drifts. SUBSURFACELADESIGN_I.dxf represents the converted layout in Imperial units

Portions of these excavated emplacement drifts will not be used for waste emplacement for a number of reasons, which are outlined below. These lengths of emplacement drift are considered unusable and will not be included in determining the capacity or flexibility of the underground layout.

Unusable emplacement drift is defined as the following:

- An operational standoff distance is maintained from the end of the each emplacement drift to the theoretical end of the closest WP. This standoff distance is 15 meters (49 feet) at the exhaust end of the emplacement drift and 1.5 meters (5 feet) at the intake end of the emplacement drift (see Section 6.3) for a total of 16.5 meters (54 feet) per emplacement drift.
- Unusable emplacement drift length accounts for emplacement area that extends beyond the footprint boundary outlined in Figure 1 (Footprint Restriction).

The available length of emplacement drift is calculated as the excavation lengths of each drift less the total standoff lengths as shown in Tables I-1 through I-4. The excavated emplacement drift lengths were extracted in SI units using VULCAN V4.0NT, then converted to Imperial units. All calculations are performed in SI units, then converted to Imperial units and rounded to the nearest 1/10th of a foot.

Drift	Drift Excavated Length		Operational Footprint I	Operational Standoff & Footprint Restriction		rift Length	Cum. Available Drift Length	
	meters	Feet	meters	feet	meters	feet	meters	feet
1	493.963	1,620.6	16.500	54.1	477.463	1,566.5	477.463	1,566.5
2	596.051	1,955.5	16.500	54.1	579.551	1,901.4	1,057.014	3,467.9
3	597.055	1,958.8	16.500	54.1	580.555	1,904.7	1,637.569	5,372.6
4	597.055	1,958.8	16.500	54.1	580.555	1,904.7	2,218.124	7,277.3
5	590.721	1,938.1	16.500	54.1	574.221	1,883.9	2,792.345	9,161.2
6	543.725	1,783.9	16.500	54.1	527.225	1,729.7	3,319.570	10,891.0
7	451.204	1,480.3	16.500	54.1	434.704	1,426.2	3,754.274	12,317.1
8	354.518	1,163.1	16.500	54.1	338.018	1,109.0	4,092.292	13,426.1
Sub	4,224.292	13,859.2	132.000	433.1	4,092.292	13,426. 1		

 Table I- 1. Available Emplacement Drift Length, Panel 1

Table I- 2. Available Emplacement Drift Length, Panel 2

Drift	Excavate	d Length	Operationa Footprint I	I Standoff & Restriction	Available D	Drift Length	Cum. Availa Leng	Cum. Available Drift Length	
	meters	feet	meters	feet	meters	feet	meters	feet	
1	752.741	2,469.6	16.500	54.1	736.241	2,415.5	736.241	2,415.5	
2	779.342	2,556.9	16.500	54.1	762.842	2,502.8	1,499.083	4,918.2	
3	778.6	2,554.5	16.500	54.1	762.100	2,500.3	2,261.183	7,418.6	
4	775.397	2,543.9	16.500	54.1	758.897	2,489.8	3,020.080	9,908.4	
5	772.196	2,533.4	16.500	54.1	755.696	2,479.3	3,775.776	12,387.7	
6	768.993	2,522.9	16.500	54.1	752.493	2,468.8	4,528.269	14,856.5	
7	765.79	2,512.4	16.500	54.1	749.290	2,458.3	5,277.559	17,314.8	
8	762.588	2,501.9	16.500	54.1	746.088	2,447.8	6,023.647	19,762.6	
9	759.385	2,491.4	16.500	54.1	742.885	2,437.3	6,766.532	22,199.9	
10	756.183	2,480.9	16.500	54.1	739.683	2,426.8	7,506.215	24,626.6	
11	749.854	2,460.1	16.500	54.1	733.354 2,406.0 8,		8,239.569	27,032.7	
12	743.526	2,439.4	16.500	54.1	727.026	2,385.2	8,966.595	29,417.9	
13	737.196	2,418.6	16.500	54.1	720.696	2,364.5	9,687.291	31,782.4	
14	730.868	2,397.9	16.500	54.1	714.368	2,343.7	10,401.659	34,126.1	
15	724.539	2,377.1	16.500	54.1	708.039	2,323.0	11,109.698	36,449.1	
16	718.21	2,356.3	16.500	54.1	701.710	2,302.2	11,811.408	38,751.3	
17	711.881	2,335.6	16.500	54.1	695.381	2,281.4	12,506.789	41,032.7	
18	705.552	2,314.8	19.049	62.5	686.503	2,252.3	13,193.292	43,285.0	
19	699.223	2,294.0	22.616	74.2	676.607	2,219.8	13,869.899	45,504.8	
20	692.895	2,273.3	23.434	76.9	669.461	2,196.4	14,539.360	47,701.2	
21	686.565	2,252.5	21.821	71.6	664.744	2,180.9	15,204.104	49,882.1	
22	680.237	2,231.7	17.676	58.0	662.561	2,173.8	15,866.665	52,055.9	
23	673.908	2,211.0	16.500	54.1	657.408	2,156.8	16,524.073	54,212.7	
24	667.579	2,190.2	16.500	54.1	651.079	2,136.1	17,175.152	56,348.8	
25	655.358	2,150.1	16.500	54.1	638.858	2,096.0	17,814.010	58,444.8	
26	583.366	1,913.9	16.500	54.1	566.866	1,859.8	18,380.876	60,304.6	
27	485.213	1,591.9	16.500	54.1	468.713	1,537.8	18,849.589	61,842.4	
Sub	19,317.183	63,376.5	467.596	1,534.1	18,849.589	61,842.4			

Excava		l l enath	Operational Standoff & Footprint Available D		rift Length Cum. Available		able Drift		
Drift		Restriction		ction		int Longti			
	meters	feet	meters	feet	meters	feet	meters	Feet	
W1	616.500	2,022.6	16.500	54.1	600.000	1,968.5	600.000	1,968.5	
W2	616.500	2,022.6	16.500	54.1	600.000	1,968.5	1,200.000	3,937.0	
W3	616.500	2,022.6	16.500	54.1	600.000	1,968.5	1,800.000	5,905.5	
W4	616.500	2,022.6	16.500	54.1	600.000	1,968.5	2,400.000	7,874.0	
W5	616.500	2,022.6	16.500	54.1	600.000	1,968.5	3,000.000	9,842.5	
W6	616.500	2,022.6	16.500	54.1	600.000	1,968.5	3,600.000	11,811.0	
W7	616.500	2,022.6	16.500	54.1	600.000	1,968.5	4,200.000	13,779.5	
W8	616.500	2,022.6	16.500	54.1	600.000	1,968.5	4,800.000	15,748.0	
W9	619.839	2,033.6	16.500	54.1	603.339	1,979.5	5,403.339	17,727.5	
W10	622.784	2,043.3	16.500	54.1	606.284	1,989.1	6,009.623	19,716.6	
W11	621.690	2,039.7	16.500	54.1	605.190	1,985.5	6,614.813	21,702.1	
W12	621.690	2,039.7	16.500	54.1	605.190	1,985.5	7,220.003	23,687.6	
W13	621.690	2,039.7	16.500	54.1	605.190	1,985.5	7,825.193	25,673.2	
W14	621.690	2,039.7	16.500	54.1	605.190	1,985.5	8,430.383	27,658.7	
W15	621.690	2,039.7	16.500	54.1	605.190	1,985.5	9,035.573	29,644.2	
W16	621.690	2,039.7	16.500	54.1	605.190	1,985.5	9,640.763	31,629.7	
W17	621.690	2,039.7	16.500	54.1	605.190	1,985.5	10,245.953	33,615.3	
W18	621.690	2,039.7	16.500	54.1	605.190	1,985.5	10,851.143	35,600.8	
W19	621.690	2,039.7	16.500	54.1	605.190	1,985.5	11,456.333	37,586.3	
W20	621.690	2,039.7	16.500	54.1	605.190	1,985.5	12,061.523	39,571.8	
W21	621.690	2,039.7	16.500	54.1	605.190	1,985.5	12,666.713	41,557.4	
W22	621.690	2,039.7	16.500	54.1	605.190	1,985.5	13,271.903	43,542.9	
E1	757.174	2,484.2	289.808	950.8	467.366	1,533.3	467.366	1,533.4	
E2	798.926	2,621.1	192.237	630.7	606.689	1,990.4	1,074.055	3,523.8	
E3	808.132	2,651.3	104.246	342.0	703.886	2,309.3	1,777.941	5,833.1	
E4	793.966	2,604.9	16.500	54.1	777.466	2,550.7	2,555.407	8,383.9	
E5	786.956	2,581.9	16.500	54.1	770.456	2,527.7	3,325.863	10,911.6	
E6	781.835	2,565.1	16.500	54.1	765.335	2,510.9	4,091.198	13,422.5	
E7	764.227	2,507.3	16.500	54.1	747.727	2,453.2	4,838.925	15,875.7	
E8	714.319	2,343.6	16.500	54.1	697.819	2,289.4	5,536.744	18,165.1	
E9	664.412	2,179.8	16.500	54.1	647.912	2,125.7	6,184.656	20,290.8	
E10	614.505	2,016.1	16.500	54.1	598.005	1,962.0	6,782.661	22,252.8	
E11	564.597	1,852.3	16.500	54.1	548.097	1,798.2	7,330.758	24,051.0	
E12	514.691	1,688.6	16.500	54.1	498.191	1,634.5	7,828.949	25,685.5	
E13	479.481	1,573.1	16.500	54.1	462.981	1,519.0	8,291.930	27,204.4	
E14	463.808	1,521.7	18.648	61.2	445.160	1,460.5	8,737.090	28,664.9	
E15	448.136	1,470.3	26.285	86.2	421.851	1,384.0	9,158.941	30,049.0	
E16	432.463	1,418.8	17.231	56.5	415.232	1,362.3	9,574.173	31,411.3	
E17	416.79	1,367.4	16.500	54.1	400.290	1,313.3	9,974.463	32,724.6	
E18	401.118	1,316.0	16.500	54.1	384.618	1,261.9	10,359.081	33,986.4	
E19	385.446	1,264.6	16.500	54.1	368.946	1,210.5	10,728.027	35,196.9	
Sub W	13,634.903	44,733.8	363.000	1,190.9	13,271.903	43,542.9			
Sub E	11,590.982	38,028.1	862.955	2,831.2	10,728.027	35,196.9			
Sub	25,225.885	82,761.9	1,225.955	4,022.1	23,999.930	78,739.8			

	Table I- 3.	Available	Emplacement	Drift Length,	Panel 3
--	-------------	-----------	-------------	---------------	---------

Drift	Excavate	d Length	Operationa & Foo Restri	Il Standoff tprint ction	Available D	rift Length	Cum. Availa	able Drift
	meters	feet	meters	feet	meters	feet	meters	feet
1	616.5	2,022.6	190.059	623.6	426.441	1,399.1	426.441	1,399.1
2	616.5	2,022.6	19.407	63.7	597.093	1,959.0	1,023.534	3,358.0
3	616.5	2,022.6	16.500	54.1	600.000	1,968.5	1,623.534	5,326.5
4	616.5	2,022.6	16.500	54.1	600.000	1,968.5	2,223.534	7,295.0
5	616.5	2,022.6	16.500	54.1	600.000	1,968.5	2,823.534	9,263.5
6	616.5	2,022.6	16.500	54.1	600.000	1,968.5	3,423.534	11,232.0
7	616.5	2,022.6	16.500	54.1	600.000	1,968.5	4,023.534	13,200.5
8	616.5	2,022.6	16.500	54.1	600.000	1,968.5	4,623.534	15,169.0
9	634.452	2,081.5	16.500	54.1	617.952	2,027.4	5,241.486	17,196.4
10	605.393	1,986.2	16.500	54.1	588.893	1,932.1	5,830.379	19,128.5
11	605.393	1,986.2	16.500	54.1	588.893	1,932.1	6,419.272	21,060.6
12	605.393	1,986.2	16.500	54.1	588.893	1,932.1	7,008.165	22,992.6
13	605.393	1,986.2	16.500	54.1	588.893	1,932.1	7,597.058	24,924.7
14	605.393	1,986.2	16.500	54.1	588.893	1,932.1	8,185.951	26,856.7
15	605.393	1,986.2	16.500	54.1	588.893	1,932.1	8,774.844	28,788.8
16	605.393	1,986.2	16.500	54.1	588.893	1,932.1	9,363.737	30,720.9
17	605.393	1,986.2	16.500	54.1	588.893	1,932.1	9,952.630	32,652.9
18	605.393	1,986.2	16.500	54.1	588.893	1,932.1	10,541.523	34,585.0
19	605.393	1,986.2	16.500	54.1	588.893	1,932.1	11,130.416	36,517.0
20	605.001	1,984.9	16.500	54.1	588.501	1,930.8	11,718.917	38,447.8
21	593.519	1,947.2	16.500	54.1	577.019	1,893.1	12,295.936	40,340.9
22	583.98	1,915.9	16.500	54.1	567.480	1,861.8	12,863.416	42,202.7
23	593.37	1,946.7	16.500	54.1	576.870	1,892.6	13,440.286	44,095.3
24	580.977	1,906.1	16.500	54.1	564.477	1,852.0	14,004.763	45,947.3
25	568.584	1,865.4	16.500	54.1	552.084	1,811.3	14,556.847	47,758.6
26	556.192	1,824.8	16.500	54.1	539.692	1,770.6	15,096.539	49,529.2
27	543.788	1,784.1	16.500	54.1	527.288	1,729.9	15,623.827	51,259.2
28	526.088	1,726.0	16.500	54.1	509.588	1,671.9	16,133.415	52,931.0
29	495.837	1,626.8	16.500	54.1	479.337	1,572.6	16,612.752	54,503.7
30	406.369	1,333.2	16.500	54.1	389.869	1,279.1	17,002.621	55,782.8
Sub	17,674.087	57,985.7	671.466	2,203.0	17,002.621	55,782.8		

Table I-4. Available Emplacement Drift Length, Panel 4

ATTACHMENT II REPOSITORY AREAS

The VULCAN V4.0NT software program provides a three dimensional design of the underground layout configuration. The following areas were generated in VULCAN V4.0NT and are within the bounds of its qualifications. The files of the areas can be found in Attachment V, the geological units areas were determined using the triangulation files (TpXXX.00t files), the repository areas and fault traces are found in the DXF files (SUBSURFACELADESIGN_I.dxf, SUBSURFACELADESIGN_M.dxf and FAULTTRACE.dxf). The units in Tables II-1 and II-2 are rounded to the nearest number. The areas are shown in Figure II-1, the geological units are shown in Figure II-2 and the trace of the faults in the emplacement areas are shown in Figure II-3

The approximate thickness of the PTn can be found by contouring the file "PTnThickness.00t" (Attachment V) in VULCAN V4.0NT. There are nine different units in the PTn. This file is the difference in elevation between the 9th unit of the PTn (Topopah Spring Tuff moderately welded subzone) and the 1st unit (Tiva Canyon Tuff moderately welded subzone). The minimum thickness over the emplacement area is >20 m. There appears to be "holes" in this triangulation. These are created where the 1st or 9th units are absent. Cutting a thickness between the 7th units of the PTn (Pah Canyon bedded Tuff) and the 9th unit shows (as shown in file "PtnThickness3.00t") that the PTn thickness exceeds 10 m, thus meeting the thickness constraint.

Figure II-4 shows the boreholes that are within 50 m elevation of the plane of the repository and are reasonably close to the footprint. Also boreholes G-2, WT-6 and WT-24, which help define the watertable in the north, have been included. In total, 33 boreholes have been located. UZ-1 is the closest borehole to intersecting an emplacement drift, it is approximately 3 m from the springline. These boreholes are extracted from the Vulcan GFM 3.1 representation (MO003MWDVUL03.002).

•

	sq. m	sq. ft
1	509,221	5,481,182
II	509,345	5,482527
	1,048,428	11,285,140
IV	1,108,122	11,927,680
V	724,537	7,798,822
VI	392,994	4,230,135
VII	1,126,427	12,124,713
VIII	585,000	6,296,860

Table II-1 Repository Areas

Table II- 2 Emplacement Areas by Geological Unit (sq. m).

	Panel								
Geological Unit	1	2	2 Cont.	3 East	3 West	4	Total		
Tptpul	0	0	0	224,398	0	0	224,398		
Tptpmn	119,172	79,277	936	338,409	78,209	0	616,003		
Tptpll	179,678	902,050	439,097	273,002	948,118	1,271,323	4,013,268		
Tptpln	0	1,208	55,299	0	0	72,976	129,483		
Total	298,850	982,535	495,332	835,809	1,026,327	1,344,299	4,983,152		

Table II- 3 Fault Intersect Coordinate (with Emplacement Drift invert) (m.)

	Sever \	Nash Fault			Pagany	Wash Fault		
Drift	Northing	Easting	Elevation	Drift	Northing	Easting	Elevation	
3-2 E	236,080.804	172,228.178	1,043.507	3-1 W	236,217.888	171,601.585	1,038.822	
3-3 E	236,012.895	172,281.310	1,044.678	3-1 E	236,013.508	171,758.938	1,042.336	
				3-2 E	235,945.075	171,810.448	1,043.507	
	Drill Hole	e Wash Fault		3-3 E	235,876.446	171,861.351	1,044.678	
Drift	Northing	Easting	Elevation	3-4 E	235,807.771	171,912.113	1,045.850	
4-1	235,989.651	170,899.141	1,038.822	3-5 E	235,738.490	171,961.013	1,047.021	
4-2	235,919.182	170,944.386	1,039.993	3-6 E	235,669.240	172,010.006	1,048.192	
3-4 W	235,779.565	171,038.935	1,042.336	3-7 E	235,599.953	172,058.886	1,049.363	
3-5 W	235,711.013	171,090.078	1,043.507					
3-6 W	235,642.550	171,141.491	1,044.678	West Ghost Dance Fault				
3-7 W	235,574.216	171,193.302	1,045.850	Drift	Northing	Easting	Elevation	
3-8 W	235,505.827	171,244.947	1,047.021	2-17	231,868.412	170,797.192	1,095.046	
3-9 W	235,437.148	171,295.697	1,048.192	2-18	231,780.447	170,788.587	1,096.218	
3-10 E	235,152.792	171,469.032	1,052.877	2-19	231,691.954	170,778.356	1,097.389	
3-11 E	235,079.577	171,505.820	1,054.049	2-20	231,603.653	170,768.718	1,098.560	
3-12 E	235,006.192	171,542.090	1,055.220	2-21	231,515.406	170,759.244	1,099.732	
3-13 E	234,932.807	171,578.361	1,056.391	2-22	231,427.566	170,751.025	1,100.903	
3-14 E	234,859.514	171,614.907	1,057.563	2-23	231,340.690	170,745.771	1,102.074	
3-15 E	234,786.234	171,651.497	1,058.734	2-24	231,258.288	170,754.288	1,103.246	
3-16 E	234,713.264	171,689.042	1,059.905	2-25	231,176.124	170,763.537	1,104.417	
3-17 E	234,640.579	171,727.462	1,061.077	2-26	231,093.364	170,770.950	1,105.589	
				2-27	231,009.562	170,775.160	1,106.760	

Figure II- 1. Areas

Figure II-2. Geological Units by Panel

Figure II-3. Fault Traces in the Emplacement Areas

Figure II-4. Boreholes

ATTACHMENT III BOUNDING ENDPOINT COORDINATES FOR EMPLACEMENT DRIFTS

The emplacement area in the underground layout is bounded by a set of coordinates that represent the theoretically last emplaced WP in the drift. Emplaced WPs on either end of the emplacement drift will be placed a minimum of 1.5 meters (5 feet) from the end of emplacement drift turnout interface and a minimum of 15 meters (49 feet) from centerline of the exhaust main (Section 6.3).

The endpoint coordinates are Nevada State Plane Coordinate System, NAD 27 represented in both SI and Imperial units. The endpoint coordinates were extracted in SI units using VULCAN V4.0NT, then converted to Imperial units.

Figure III- 1. Bounding Endpoint Coordinates

Ũ,
meters
258.34
04.24
3.79
2.61
.25
5
7
57
17
8
33
2
0
90
5
ω
_
∞
\
S
2
24
75
6
7
7
4
53
73
66.
0.73
.45
22

Table III- 1. Primary Area Bounding Endpoint Coordinates, Panels 1, 2, 3, and 4

Northin	lg	East	llıy		ation	Panel	Drift	Zone	Side
	feet	meters	feet	meters	feet				0.5.0
~	770889.11	171422.914	562410.01	1055.22	3462.00	с	12	East	West
7	71394.19	171896.722	563964.50	1055.22	3462.00	3	12	East	East
7	770604.84	171418.373	562395.11	1056.391	3465.84	3	13	East	West
1	71074.23	171858.695	563839.74	1056.391	3465.84	3	13	East	East
7	70320.58	171413.833	562380.22	1057.563	3469.69	З	14	East	West
7	70771.89	171837.205	563769.23	1057.563	3469.69	3	14	East	East
7	770036.31	171409.292	562365.32	1058.734	3473.53	3	15	East	West
7	70464.00	171810.496	563681.60	1058.734	3473.53	3	15	East	East
2	769752.05	171404.751	562350.42	1059.905	3477.37	с	16	East	West
7	70173.02	171799.66	563646.05	1059.905	3477.37	с	16	East	East
7	69467.78	171400.21	562335.52	1061.077	3481.22	с	17	East	West
7	69873.61	171780.909	563584.53	1061.077	3481.22	с	17	East	East
<u>`</u>	69183.51	171395.67	562320.63	1062.248	3485.06	с	18	East	West
<u>_</u>	69573.45	171761.463	563520.73	1062.248	3485.06	с	18	East	East
<u>``</u>	68899.25	171391.129	562305.73	1063.419	3488.90	с	19	East	West
<u>_</u>	69273.30	171742.017	563456.93	1063.419	3488.90	с	19	East	East
3 7	75055.58	171661.675	563193.35	1038.822	3408.20	e	.	West	East
3	74447.28	171091.041	561321.19	1038.822	3408.20	e	.	West	West
8	74731.45	171619.739	563055.76	1039.993	3412.04	с	2	West	East
8 7	74123.15	171049.105	561183.61	1039.993	3412.04	3	2	West	West
23 7	74407.32	171577.803	562918.18	1041.164	3415.89	3	3	West	East
13 7	73799.02	171007.169	561046.02	1041.164	3415.89	3	3	West	West
28 7	74083.19	171535.867	562780.59	1042.336	3419.73	3	4	West	East
18 7	73474.89	170965.233	560908.44	1042.336	3419.73	3	4	West	West
33 7	73759.06	171493.931	562643.01	1043.507	3423.57	3	5	West	East
23 7	73150.76	170923.297	560770.85	1043.507	3423.57	3	5	West	West
38 7	73434.93	171451.995	562505.42	1044.678	3427.41	3	6	West	East
29 7	72826.63	170881.361	560633.27	1044.678	3427.41	с	9	West	West
44 7	73110.80	171410.059	562367.84	1045.85	3431.26	3	7	West	East
34 7	72502.50	170839.425	560495.68	1045.85	3431.26	з	7	West	West
49 7	72786.67	171368.123	562230.25	1047.021	3435.10	з	8	West	East
39 7	72178.37	170797.489	560358.10	1047.021	3435.10	3	8	west	West
54 7	72467.46	171330.802	562107.81	1048.192	3438.94	3	6	West	East
12 7	71855.78	170756.993	560225.23	1048.192	3438.94	3	6	West	West
59 7	72174.83	171318.41	562067.15	1049.363	3442.79	3	10	West	East
7 7	71560.16	170741.8	560175.39	1049.363	3442.79	3	10	West	West
7 7	771889.46	171312.829	562048.84	1050.535	3446.63	3	11	West	East
~ ~	71275.90	170737.259	560160.49	1050.535	3446.63	3	11	West	West
2 7	771605.19	171308.288	562033.94	1051.706	3450.47	3	12	West	East
רי ס	70991.63	170732.718	560145.59	1051.706	3450.47	ന	10	Weet	West

Title: Underground Layout_C onfiguration Document Identifier: 800-P0C-MGR0-00100-000-00E

Junt meters feat meters met	lade	Norti	hing	East	ing	Eleva	ation	Danel	7.i‡	Zona	Side
3-10M 236096.008 771/30.20 771/30.21 771/30.21 771/30.21 771/30.21 771/30.21 770/30.21 7	Lauel	meters	feet	meters	feet	meters	feet			20116	0146
3-140 23401.2075 71707.33 71703.3617 562031.66 1054.049 3656.15 3656.15 3656.15 3656.15 3656.15 3656.15 3656.15 3656.15 3656.15 3657.15 3657.16 3657.17 3657.16 3657.17 3657.16 3657.17 3657.16 3657.17 3657.16 3657.17 3657.16 3657.17	3- 13W	235099.088	771320.92	171303.747	562019.04	1052.877	3454.31	3	13	West	East
3-14W 23-0302.444 7170366 7172392.71 7172392 7172394 700 5170 700 7172 700 71720 71239		234912.075	770707.37	170728.177	560130.69	1052.877	3454.31	3	13	West	West
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3- 14W	235012.444	771036.66	171299.207	562004.15	1054.049	3458.16	3	14	West	East
3 15W 234738.75 770158.23 1707162.33 170149.666 66190302 1655.22 3462.00 3 155 West East 3 17W 234738.76 770138.36 170714.565 56190.45 1655.391 3465.44 3 16 West East 3 17W 23452.51 770183.56 170714.555 56194.45 1655.33 3465.43 3 17 West East 3 19W 234457.52 769615.31 1059.46 1655.63 3463.53 3 16 West East 3 19W 234457.52 769615.31 56192.66 1051.077 3477.33 3 19 West West 3 21W 23457.92.77 76961.53 65192.66 1051.077 3477.33 3 19 West West West 3 21W 23457.94 7703.73 5610.0507 1051.077 3477.33 3 19 West West We		234825.43	770423.10	170723.637	560115.80	1054.049	3458.16	3	14	West	West
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3- 15W	234925.799	770752.39	171294.666	561989.25	1055.22	3462.00	3	15	West	East
3-16W 224836/145 77046813 717130 2016 106 West East 3-17W 22475215 770163 611716 6015.05 105563 3463664 3 177 West East 3-17W 224752.51 770163 6107.101 6607.15 1056.37563 3463664 3 177 West East 3-17W 224752.51 770163.06 1770160.473 56007.51 1056.3753 346366 3 177 West		234738.786	770138.83	170719.096	560100.90	1055.22	3462.00	с	15	West	West
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3- 16W	234839.155	770468.13	171290.125	561974.35	1056.391	3465.84	с	16	West	East
3-17W 23-54/56.51 770133.66 17/265.65 561944.56 1057.563 3496.66 3 17 Weet East 3-18W 23-465.636 76937030 17/261.043 561944.56 1055.734 3475.53 39 17 Weet East 3-18W 23-465.636 76939060 17/261.043 561944.56 1058.734 3475.53 39 19 Weet East 3-19W 23-467.632 769916.63 17/261.962 56194.47 1058.734 3477.37 3 19 Weet Weet East 3-2440.5264 7699.17 17/271.962 56194.47 1061.077 3411.22 3 20 Weet Weet East 3-21W 23-440.564 7694.765 17/261.495 56010.541 1061.077 3411.22 3 20 Weet Weet East 3-21W 76941.861 17/261.765 56019.561 1063.419 348.56 3412.22 3 20 Weet East <tr< td=""><td></td><td>234652.142</td><td>769854.57</td><td>170714.555</td><td>560086.00</td><td>1056.391</td><td>3465.84</td><td>с</td><td>16</td><td>West</td><td>West</td></tr<>		234652.142	769854.57	170714.555	560086.00	1056.391	3465.84	с	16	West	West
234656 3565 36007101 5500710 1057103 5500710 1057103 5500710 1057123 37133 3 17 West East 3-190 23465686 76893906 171261633 5619266 1056373 347353 3 19 West West West 3-190 23445257 76803107 171261503 5619266 1050554 347373 3 19 West East 3-20W 23442576 7680107 171271952 56194176 1061077 348122 3 20 West East 3-21W 2343256 76871550 171267431 5600151 1061077 348122 3 20 West East 3-21W 23430567 77127530 5600151 1061077 348122 3 20 West East 3-21W 2341057 7740273 10609151 1062419 348206 3 22 West East 4-1 2341324	3- 17W	234752.51	770183.86	171285.584	561959.45	1057.563	3469.69	с	17	West	East
3-16W 2:3466.566 17/25(6):3 17/126(1-3) 56194.56 1058.724 373.53 3 18 West East 3-19W 2:3465.566 17/25/61 56190.17 1055.056 3477.37 3 19 West East 3-19W 2:3473.022 769301.07 17/12/10933 561041.31 1059.905 3477.37 3 19 West East 3-20W 2:34302.564 76931.01 17/127.127 1051.013 3417.27 3 20 West East 3-20W 2:34302.564 76931.01 17/127.127 361034.13 1061.07 3481.22 3 20 West East 3-21W 2:34405.34 17/1267.38 561084.97 1061.07 3481.22 3 20 West East 3-22W 2:34305.37 17/10807.31 559996.62 1063.349 348.500 3 21 West East 2:32W 2:3418.27 7:3418.35 17/10667.31 559996.62 <td< td=""><td></td><td>234565.497</td><td>769570.30</td><td>170710.014</td><td>560071.10</td><td>1057.563</td><td>3469.69</td><td>с</td><td>17</td><td>West</td><td>West</td></td<>		234565.497	769570.30	170710.014	560071.10	1057.563	3469.69	с	17	West	West
3-100 23478.653 7662.664 170705.473 560066.21 1056.736 377.37 3 19 West West West 3-100 234392.207 769001.77 170706.433 56004316 1059.906 3477.37 3 19 West West West 3-200 234392.207 769001.77 17070.333 560041.51 1061.077 3481.22 3 29 West West West 3-200 234305.54 76901.50 17069.536 561084.70 1061.077 3481.22 3 20 West West West 3-21W 234316.26 76817.50 17068.54 160011.51 1062.248 3485.06 3 22 West West East 3-22W 234316.27 77416.68 171065.53 55936.57 1063.419 3485.06 3 22 West West West 2431327 77416.68 171025.73 56190.00 1053.419 3485.06 3 22 <	3- 18W	234665.866	769899.60	171281.043	561944.56	1058.734	3473.53	с	18	West	East
3-19(W 234579.227 76961/33 17/12/16.503 66192476 1051.07 3477.37 3 19 West East 3-20W 234392.578 76901.77 17/12/1962 66191.476 1061.077 3477.37 3 21 West East 3-20W 234392.578 768071.71 17/12/1962 56191.46 1061.077 3471.27 3 20 West East 3-20W 23430.564 76871.56 170691.861 56101151 1062.246 3485.06 3 22 West East 3-21W 234716.92 7684149.86 1710671.56 1063.419 3485.06 3 22 West East 3-22W 234316.92 768414.98 171087.518 561090.00 10383822 3485.06 3 22 West East 3-22SH 563416.98 17067.573 561090.00 10383822 3408.20 4 1 Mest East 4 23644.98 171087.573 561095.01<		234478.853	769286.04	170705.473	560056.21	1058.734	3473.53	с	18	West	West
24392.207 768001/T 17071.0833 56104136 1061.077 347.23 3 19 West West 3-20W 23449.257 768001.77 17127.1923 561914.76 1061.077 3481.22 3 20 West West West 3-21W 23449.05.94 76904.80 17127.127 56193.946 1061.077 3481.22 3 20 West Est 3-21W 234410.59 76904.80 17126.243 3485.06 3 221 West West 3-22W 234419.29 76876.54 17066.393 651984.97 1053.419 3485.06 3 221 West Est 4 23561.957 77410.58 65199.667 1063.419 3485.06 3 222 West Est 4 23561.957 77416.86 17096.503 56199.000 1039.832 3488.90 3 222 West Est 4 23564.13 77416.86 170966.539 561990.00 10	3- 19W	234579.222	769615.33	171276.503	561929.66	1059.905	3477.37	с	19	West	East
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		234392.207	769001.77	170700.933	560041.31	1059.905	3477.37	с	19	West	West
	3- 20W	234492.578	769331.07	171271.962	561914.76	1061.077	3481.22	с	20	West	East
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		234305.564	768717.50	170696.392	560026.41	1061.077	3481.22	3	20	West	West
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3- 21W	234405.934	769046.80	171267.421	561899.86	1062.248	3485.06	с	21	West	East
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		234218.92	768433.24	170691.851	560011.51	1062.248	3485.06	с	21	West	West
	3- 22W	234319.29	768762.54	171262.88	561884.97	1063.419	3488.90	с	22	West	East
$4 \cdot 1$ 236042.732 77416.86 171062.509 56127.58 1038.822 3408.20 4 1 1 1 10 10 235510.957 773961.32 77065.539 559206.910 1033.822 3402.20 4 1 1 10081.27 $4 \cdot 2$ 235549.426 773487.38 77065.539 559226.910 1033.823 3412.04 4 2 10 10841 $4 \cdot 3$ 235549.426 773487.38 770422.704 560952.41 1041.164 3415.89 4 3 2 10845.143 $4 \cdot 3$ 235569.338 773467.33 773467.33 50095.714 1047.366 3419.73 4 4 6 10845.14 $4 \cdot 5$ 235560.938 773467.35 773467.36 51047.236 3419.73 4 4 6 8645.14 $4 \cdot 5$ 235560.938 773467.53 773467.53 $77347.3256.536$ 3419.73 4 4 6 8645.14 $4 \cdot 5$ 2355467.53 773467.53 77082.196 560677.24 1042.356 3427.41 4 6 6 6 $4 \cdot 5$ 2355467.53 772472.09 77082.196 560675.00 1044.678 3427.41 4 6 6 6 $4 \cdot 5$ 235564.54 777472.09 77082.196 560675.00 1044.678 3427.41 4 6 6 6 $4 \cdot 7$ 235564.56 770720.26 57082.246 56067.50 1044.6		234132.276	768148.98	170687.31	559996.62	1063.419	3488.90	с	22	West	West
	4-1	236042.732	774416.86	171062.509	561227.58	1038.822	3408.20	4	1		East
4.2 235943.337 774092.73 171020.573 561090.00 1039.393 3412.04 4 2 2 2 2 $2.35759.456$ 773467.38 770486.37 559022.61 1039.993 3412.04 4 2 2 2 4.3 2355659.73 77346.31 559022.61 1041.164 3415.89 4 3 2 2 $2.355659.73$ 77346.31 770408.004 559080.261 1041.164 3415.89 4 3 2 2 4.4 235746.348 77344.48 770366.068 559942.67 1042.336 3419.73 4 4 6 2 4.5 235560.338 77341.63 170366.068 558942.67 1042.336 3419.73 4 4 6 2 4.5 235564.753 773120.35 170384.765 560677.24 1043.507 3423.57 4 4 6 2 4.6 235564.754 77246.203 770324.132 558065.096 1044.678 3427.41 4 6 6 4.7 23544.993 772170.203 17082.196 560670.244 1044.678 3427.74 4 7 6 2 4.7 235564.564 772172.02 17082.298 560639.233 1044.678 3427.74 4 7 6 2 4.7 235564.564 772172.96 170282.198 560639.233 1044.678 3437.26 4 7 6 2 <		235910.955	773984.52	170656.939	559896.97	1038.822	3408.20	4	-		West
	4-2	235943.937	774092.73	171020.573	561090.00	1039.993	3412.04	4	2		East
4.3 235845.143 773768.61 170978.637 560952.41 1041.164 3415.89 4 3 3 3 6 8 4.4 235746.348 773160.31 170408.004 559080.26 1041.164 3415.89 4 3 3 $West$ 4.4 235560.938 77346.34 170366.068 569842.67 1042.336 3419.73 4 4 4 6 $West$ 4.5 235560.938 772802.356 1042.336 3419.73 4 4 6 $West$ 4.5 235548.756 170384.162 1042.507 3423.57 4 5 6 $West$ 4.6 235548.758 772796.22 170384.132 56067.50 1044.678 3427.41 4 6 6 $West$ 4.6 235548.758 772796.22 170382.83 560539.66 1044.678 3427.41 4 6 6 $West$ 4.7 235548.758 772196.22 170282.196 56067.50 1044.678 3427.41 4 6 6 $West$ 4.7 235548.758 772196.22 170282.136 560402.07 1044.678 3427.41 4 6 6 $West$ 4.6 235548.758 772196.22 170282.196 560402.07 1044.678 3427.41 4 6 8 $West$ 4.7 23554.564 777182.92 170282.136 1044.678 3427.41 4 6 W M		235759.426	773487.38	170452.704	559226.91	1039.993	3412.04	4	2		West
	4-3	235845.143	773768.61	170978.637	560952.41	1041.164	3415.89	4	3		East
4.4 235746.348 77344.48 77036.068 560814.83 1042.336 3419.73 4 4 6 6 $east$ 235560.338 772836.18 170366.068 558942.67 1042.336 3419.73 4 4 6 0 $West$ $4-5$ 235647.553 773120.35 170366.068 55806.09 1043.507 3423.57 4 5 6 $West$ $4-6$ 235648.743 770224.132 55806.09 1044.507 3423.57 4 5 6 $West$ $4-6$ 235548.7169 170224.132 55867.50 1044.678 3427.41 4 6 K K $4-7$ 235548.749 772187.92 170822.83 560539.66 1044.678 3427.41 4 6 K K $4-7$ 235544.516 772187.29 17082.196 55867.50 1044.678 3437.41 4 6 K K $4-7$ 235544.516 772187.29 17028.28 560042.07 1044.678 3437.10 4 7 K K $4-7$ $235524.53.46$ 772187.90 17028.96 1704.026 558392.33 1047.021 3435.10 4 7 K K $4-8$ 235551.69 771182.86 170180.846 56003.46 1044.021 3435.10 4 8 K K $4-8$ 235561.69 7771879 66028.98 560264.49 1047.021 3435.10 4 <td< td=""><td></td><td>235659.733</td><td>773160.31</td><td>170408.004</td><td>559080.26</td><td>1041.164</td><td>3415.89</td><td>4</td><td>3</td><td></td><td>West</td></td<>		235659.733	773160.31	170408.004	559080.26	1041.164	3415.89	4	3		West
	4-4	235746.348	773444.48	170936.701	560814.83	1042.336	3419.73	4	4		East
4.5 235647.553 773120.35 170894.765 560677.24 1043.507 3423.57 4 5 6 6 $8st$ 4.6 235462.144 772796.22 170324.132 558805.09 1043.507 3423.57 4 5 6 $West$ 4.6 235548.758 772796.22 170852.83 560539.66 1044.678 3427.41 4 6 6 $West$ 4.7 235363.349 772187.92 170852.83 560539.66 1044.678 3427.41 4 6 6 $West$ 4.7 235449.963 772187.92 170282.196 58667.50 1044.678 3427.41 4 6 6 $West$ 4.7 235449.963 772187.92 170282.196 55867.50 1044.678 3437.41 4 6 6 $West$ 4.7 235449.963 772172.96 170282.196 56042.07 1047.021 3435.10 4 7 7 $Kest$ 4.8 235564.554 771863.78 560264.49 1047.021 3435.10 4 7 7 $Kest$ 4.8 235564.564 771825.37 17078.956 568392.33 1047.021 3435.10 4 7 8 $Kest$ 4.9 235564.564 7711826.37 17078.958 5600264.49 1047.021 3435.10 4 8 8 $Kest$ 4.9 235561.5759 771825.37 170708.958 56033.46 1048.192 <td< td=""><td></td><td>235560.938</td><td>772836.18</td><td>170366.068</td><td>558942.67</td><td>1042.336</td><td>3419.73</td><td>4</td><td>4</td><td></td><td>West</td></td<>		235560.938	772836.18	170366.068	558942.67	1042.336	3419.73	4	4		West
	4-5	235647.553	773120.35	170894.765	560677.24	1043.507	3423.57	4	5		East
4-6 235548.758 772796.22 170852.83 560539.66 1044.678 3427.41 4 6 6 east 235563.349 772187.92 170282.196 558667.50 1044.678 3427.41 4 6 West 4-7 235563.349 772187.92 170282.196 558667.50 1044.678 3427.41 4 6 West 4-7 235564.554 771863.79 170240.26 558529.92 1045.85 3431.26 4 7 West 235564.554 771863.79 170240.26 558529.92 1047.021 3435.10 4 7 Nest 4-8 235561.69 77147.96 170768.958 560264.49 1047.021 3435.10 4 7 Nest 235165.759 771539.66 170198.324 558392.33 1047.021 3435.10 4 8 Nest 235165.759 771825.37 170728.461 560131.63 1048.192 3438.94 4 9 Nest 235061		235462.144	772512.05	170324.132	558805.09	1043.507	3423.57	4	5		West
235363.349 772187.92 170282.196 558667.50 1044.678 3427.41 4 6 West 4-7 235449.963 772472.09 170810.894 560402.07 1045.85 3431.26 4 7 8 West 4-8 235564.554 771863.79 170240.26 558529.92 1047.021 3435.10 4 7 West 4-8 235551.169 772147.96 170768.958 560264.49 1047.021 3435.10 4 7 West 2355165.759 771539.66 170198.324 558392.33 1047.021 3435.10 4 8 West 4-9 2355165.759 771825.37 170198.324 558392.33 1047.021 3435.10 4 8 West 4-9 2355165.759 771825.37 170198.364 170140.754 558302.33 1048.192 3438.94 4 9 West 235061.884 771198.86 170140.754 558203.46 1048.192 3438.94 4 9	4-6	235548.758	772796.22	170852.83	560539.66	1044.678	3427.41	4	9		East
4-7 235449.963 772472.09 170810.894 560402.07 1045.85 3431.26 4 7 East 235264.554 771863.79 170240.26 558529.92 1045.85 3431.26 4 7 West 4-8 235551.169 772147.96 170768.958 560264.49 1047.021 3435.10 4 8 West 235516.169 771539.66 170198.324 558392.33 1047.021 3435.10 4 8 West 235165.759 771825.37 170198.324 558392.33 1047.021 3435.10 4 8 West 4-9 235516.1884 771198.86 170140.754 558203.46 1048.192 3438.94 4 9 Mest 235061.884 771198.86 170140.754 558203.46 1048.192 3438.94 4 9 9 Mest 4-10 235155.124 771598.85 560004.91 1049.363 3442.79 4 9 0 Mest 4-10		235363.349	772187.92	170282.196	558667.50	1044.678	3427.41	4	6		West
235264.554 771863.79 170240.26 558529.92 1045.85 3431.26 4 7 7 West 4- 8 235351.169 772147.96 170768.958 560264.49 1047.021 3435.10 4 8 West 4- 8 235165.759 771539.66 170198.324 558392.33 1047.021 3435.10 4 8 West 4- 9 235165.759 771825.37 170198.324 558392.33 1048.192 3435.40 4 8 West 4- 9 235525.842 771198.86 170140.754 560131.63 1048.192 3438.94 4 9 Mest 235061.884 771198.86 170140.754 558203.46 1048.192 3438.94 4 9 Mest 4- 10 235155.124 771508.77 170689.838 560004.91 1049.363 3442.79 4 9 Mest 234973.145 771504.77 170689.838 560004.91 1049.363 3442.79 4 10 10	4-7	235449.963	772472.09	170810.894	560402.07	1045.85	3431.26	4	7		East
4-8 235351.169 772147.96 170768.958 560264.49 1047.021 3435.10 4 8 East 235165.759 771539.66 170198.324 558392.33 1047.021 3435.10 4 8 West 4-9 235565.842 771825.37 170728.461 560131.63 1048.192 3438.94 4 9 Kest 235061.884 771198.86 170140.754 558203.46 1048.192 3438.94 4 9 Kest 4-10 235155.124 771504.77 170689.838 560004.91 1049.363 3442.79 4 9 Kest 4-10 235155.124 771504.77 170689.838 560004.91 1049.363 3442.79 4 10 70 70 Kest 234973.145 770907.73 170129.767 558167.41 1049.363 3442.79 4 10 70 Kest		235264.554	771863.79	170240.26	558529.92	1045.85	3431.26	4	7		West
235165.759 771539.66 170198.324 558392.33 1047.021 3435.10 4 8 West 4-9 235252.842 771825.37 170728.461 560131.63 1048.192 3438.94 4 9 East 235061.884 771198.86 170140.754 558203.46 1048.192 3438.94 4 9 West 4-10 235155.124 771504.77 170689.838 560004.91 1049.363 3442.79 4 9 West 234973.145 770907.73 170129.767 558167.41 1049.363 3442.79 4 10 0 Kest	4-8	235351.169	772147.96	170768.958	560264.49	1047.021	3435.10	4	8		East
4-9 235252.842 771825.37 170728.461 560131.63 1048.192 3438.94 4 9 East 2 235061.884 771198.86 170140.754 558203.46 1048.192 3438.94 4 9 West 4-10 235155.124 771504.77 170689.838 560004.91 1049.363 3442.79 4 10 2 234973.145 770907.73 170129.767 558167.41 1049.363 3442.79 4 10 Mest		235165.759	771539.66	170198.324	558392.33	1047.021	3435.10	4	8		West
235061.884 771198.86 170140.754 558203.46 1048.192 3438.94 4 9 West 4-10 235155.124 771504.77 170689.838 560004.91 1049.363 3442.79 4 10 East 234973.145 770907.73 170129.767 558167.41 1049.363 3442.79 4 10 Mest	4-9	235252.842	771825.37	170728.461	560131.63	1048.192	3438.94	4	6		East
4-10 235155.124 771504.77 170689.838 560004.91 1049.363 3442.79 4 10 East 234973.145 770907.73 170129.767 558167.41 1049.363 3442.79 4 10 Mest		235061.884	771198.86	170140.754	558203.46	1048.192	3438.94	4	6		West
234973.145 770907.73 170129.767 558167.41 1049.363 3442.79 4 100 West	4- 10	235155.124	771504.77	170689.838	560004.91	1049.363	3442.79	4	10		East
		234973.145	770907.73	170129.767	558167.41	1049.363	3442.79	4	10		West

Title: Underground Layout_C onfiguration Document Identifier: 800-P0C-MGR0-00100-000-00E

Side	2000	East	West	East	10/0ct																																				
7000	20107																																								
Drift		11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28	28	29	29	30	00
Daned	5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
tion	feet	3446.63	3446.63	3450.47	3450.47	3454.31	3454.31	3458.16	3458.16	3462.00	3462.00	3465.84	3465.84	3469.69	3469.69	3473.53	3473.53	3477.37	3477.37	3481.22	3481.22	3485.06	3485.06	3488.90	3488.90	3492.74	3492.74	3496.59	3496.59	3500.43	3500.43	3504.27	3504.27	3508.12	3508.12	3511.96	3511.96	3515.80	3515.80	3519.65	2540.55
Eleva	meters	1050.535	1050.535	1051.706	1051.706	1052.877	1052.877	1054.049	1054.049	1055.22	1055.22	1056.391	1056.391	1057.563	1057.563	1058.734	1058.734	1059.905	1059.905	1061.077	1061.077	1062.248	1062.248	1063.419	1063.419	1064.59	1064.59	1065.762	1065.762	1066.933	1066.933	1068.105	1068.104	1069.276	1069.276	1070.447	1070.447	1071.618	1071.618	1072.79	107070
ng	feet	559990.01	558152.51	559975.11	558137.62	559960.22	558122.72	559945.32	558107.82	559930.42	558092.92	559915.52	558078.02	559900.63	558063.13	559885.73	558048.23	559870.83	558033.33	559855.93	558019.65	559841.03	558040.59	559835.04	558064.36	559888.11	558088.13	559873.21	558111.90	559858.32	558135.67	559843.42	558159.44	559828.52	558183.25	559841.65	558251.60	559903.96	558408.31	559909.13	
Easti	meters	170685.297	170125.226	170680.756	170120.686	170676.215	170116.145	170671.674	170111.604	170667.133	170107.063	170662.593	170102.522	170658.052	170097.981	170653.511	170093.441	170648.97	170088.9	170644.429	170084.731	170639.888	170091.111	170638.061	170098.356	170654.237	170105.601	170649.696	170112.847	170645.156	170120.092	170640.615	170127.338	170636.074	170134.594	170640.076	170155.429	170659.069	170203.192	170660.645	170700 050
ing	feet	771220.50	770623.46	770936.24	770339.20	770651.97	770054.93	770367.71	769770.67	770083.44	769486.40	769799.18	769202.14	769514.91	768917.87	769230.64	768633.61	768946.38	768349.34	768662.11	768065.47	768377.85	767792.84	768096.48	767521.14	767834.29	767249.44	767550.03	766977.74	767265.76	766706.04	766981.49	766434.34	766697.23	766162.64	766422.07	765905.43	766162.89	765676.92	765885.14	725100 00
North	meters	235068.48	234886.501	234981.835	234799.857	234895.191	234713.213	234808.547	234626.568	234721.902	234539.924	234635.258	234453.28	234548.614	234366.636	234461.969	234279.992	234375.325	234193.347	234288.681	234106.823	234202.036	234023.727	234116.274	233940.912	234036.36	233858.098	233949.716	233775.283	233863.071	233692.467	233776.427	233609.653	233689.782	233526.841	233605.914	233448.442	233526.916	233378.792	233442.259	10001 700
lade		4-11		4- 12		4- 13		4- 14		4- 15		4- 16		4- 17		4- 18		4- 19		4- 20		4-21		4- 22		4- 23		4-24		4- 25		4- 26		4- 27		4- 28		4- 29		4-30	

0:40	olde	East	West																																						
70.00	zone																																								
4:-0		-	-	2	2	3	3	4	4	5	5	9	9	7	7	8	8	6	6	10	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19	19	20	20
	ranei	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
ation	feet	3531.17	3531.17	3535.02	3535.02	3538.86	3538.86	3542.70	3542.70	3546.55	3546.55	3550.39	3550.39	3554.23	3554.23	3558.08	3558.08	3561.92	3561.92	3565.76	3565.76	3569.61	3569.61	3573.45	3573.45	3577.29	3577.29	3581.13	3581.13	3584.98	3584.98	3588.82	3588.82	3592.66	3592.66	3596.51	3596.51	3600.35	3600.35	3604.19	3604.19
Eleva	meters	1076.304	1076.304	1077.476	1077.476	1078.647	1078.647	1079.818	1079.818	1080.99	1080.99	1082.161	1082.161	1083.332	1083.332	1084.504	1084.504	1085.675	1085.675	1086.847	1086.847	1088.018	1088.018	1089.189	1089.189	1090.361	1090.361	1091.532	1091.532	1092.703	1092.703	1093.875	1093.875	1095.046	1095.046	1096.218	1096.218	1097.389	1097.389	1098.56	1098.56
bu	feet	561721.09	559423.83	561706.19	559325.93	561691.29	559313.35	561676.40	559308.44	561661.50	559303.53	561646.60	559298.63	561631.70	559293.72	561616.81	559288.82	561601.91	559283.91	561587.01	559279.01	561572.11	559283.86	561557.21	559288.71	561542.32	559293.56	561527.42	559298.41	561512.52	559303.26	561497.62	559308.11	561482.73	559312.96	561467.83	559325.76	561452.93	559341.74	561438.03	559349.14
Easti	meters	171212.931	170512.724	171208.39	170482.884	171203.849	170479.049	171199.308	170477.554	171194.767	170476.058	171190.226	170474.563	171185.686	170473.068	171181.145	170471.573	171176.604	170470.078	171172.063	170468.583	171167.522	170470.061	171162.981	170471.539	171158.44	170473.018	171153.9	170474.496	171149.359	170475.974	171144.818	170477.452	171140.277	170478.931	171135.736	170482.833	171131.195	170487.704	171126.654	170489.959
ing	feet	765635.60	764889.18	765351.34	764577.95	765067.07	764294.43	764782.81	764013.41	764498.54	763732.39	764214.28	763451.37	763930.01	763170.35	763645.74	762889.33	763361.48	762608.31	763077.21	762327.29	762792.95	762049.45	762508.68	761771.60	762224.41	761493.75	761940.15	761215.90	761655.88	760938.05	761371.61	760660.20	761087.35	760382.34	760803.08	760107.08	760518.81	759832.85	760234.55	759555.83
North	meters	233366.199	233138.688	233279.555	233043.824	233192.91	232957.408	233106.266	232871.754	233019.621	232786.099	232932.977	232700.444	232846.332	232614.789	232759.688	232529.134	232673.043	232443.479	232586.399	232357.824	232499.755	232273.136	232413.11	232188.446	232326.465	232103.758	232239.821	232019.069	232153.176	231934.38	232066.531	231849.692	231979.887	231765.002	231893.243	231681.102	231806.598	231597.515	231719.953	231513.079
	Label	2-1		2-2		2-3		2-4		2-5		2-6		2-7		2-8		2-9		2- 10		2- 11		2- 12		2- 13		2- 14		2- 15		2- 16		2- 17		2- 18		2- 19		2- 20	

0	<u>b</u>	st	st	st	st	st	st	st	st	st	st	st	st	st	st
Sic	5	Ea	ме	Ea	We	Ea	We	Ea	We	Ea	We	Ea	We	Ea	We
7000	20107														
Drift		12	12	22	22	23	23	54	54	25	25	26	26	72	72
Daned		2	2	2	2	2	2	2	2	2	2	2	2	2	2
ation	feet	3608.04	3608.04	3611.88	3611.88	3615.72	3615.72	3619.57	3619.57	3623.41	3623.41	3627.25	3627.25	3631.10	3631.10
Eleva	meters	1099.732	1099.732	1100.903	1100.903	1102.074	1102.074	1103.246	1103.246	1104.417	1104.417	1105.589	1105.589	1106.76	1106.76
ing	feet	561423.14	559348.96	561408.24	559340.88	561393.34	559342.06	561378.44	559346.91	561363.54	559370.14	561228.41	559459.65	561082.96	559620.46
East	meters	171122.114	170489.905	171117.573	170487.44	171113.032	170487.8	171108.491	170489.278	171103.95	170496.36	171062.762	170523.641	171018.429	170572.657
ing	feet	759950.28	759276.34	759666.01	758994.29	759381.75	758715.25	759097.48	758437.40	758813.22	758165.52	758489.88	757915.18	758163.20	757688.00
North	meters	231633.309	231427.892	231546.664	231341.922	231460.02	231256.87	231373.375	231172.181	231286.731	231089.313	231188.179	231013.008	231088.605	230943.765
lade		2-21		2- 22		2- 23		2- 24		2- 25		2- 26		2- 27	

ATTACHMENT IV FLEXIBILITY CALCULATIONS

The required emplacement drift length for each WP type is determined by multiplying the total number of WPs, by type, with the length of the WP plus the WP spacing and rounding to one decimal place. The cumulative required emplacement drift length for each WP type is summed to get the total required emplacement drift length for any given WP spacing. Table IV- 1 provides a calculation for a WP spacing of 0.1 meters (0.3 feet).

Type of WP (see Section 5.1.5)	WP Quantities (see Section 5 1 5)	WP Leng Section	gth (see 1 5.1.5)	Requ Emplacer Len	uired nent Drift gth
	Section 5.1.5)	meters	inches	meters	feet
21 PWR AP	4,299	5.149	202.7	22,135.551	72,623.1
21 PWR CR	95	5.149	202.7	489.155	1,604.8
12 PWR AP Long	163	5.707	224.7	930.241	3,052.0
44 BWR AP	2,831	5.171	203.6	14,639.101	48,028.5
24 BWR AP	84	5.171	203.6	434.364	1,425.1
Total CSNF	7,472				
5 DHLW Short/1 DSNF Short	1147	3.627	142.8	4,160.169	
5 DHLW Long/1 DOE SNF Long	1,406	5.204	204.9	7,316.824	13,648.8
2 MCO/2 DHLW	149	5.204	204.9	775.396	24,005.3
5 DHLW Long/1 DOE SNF Short	31	5.204	204.9	161.324	2,543.9
HLW Long Only	679	5.204	204.9	3,533.516	529.3
Naval Short	144	5.367	211.3	772.848	11,592.9
Naval Long	156	6.002	236.3	936.312	2,535.6
Total DOE/HLW	3,712				
TOTAL	11,184			57,403.2	188,330.3

Table IV-1.	Reduired Er	nplacement	Length Sar	nple Calculation
	r toquin ou Ei	npiaconione	Longar oar	inplo Galoalation

Drift	Available D	rift Length	Cum. Availabl	e Drift Length
Dint	meters	feet	meters	feet
		PANEL 1		
1	477.463	1,566.5	477.463	1,566.5
2	579.551	1,901.4	1,057.014	3,467.9
3	580.555	1,904.7	1,637.569	5,372.6
4	580.555	1,904.7	2,218.124	7,277.3
5	574.221	1,883.9	2,792.345	9,161.2
6	527.225	1,729.7	3,319.570	10,891.0
7	434.704	1,426.2	3,754.274	12,317.1
8	338.018	1,109.0	4,092.292	13,426.1
		PANEL 3		
W1	600.000	1,968.5	4,692.292	15,394.6
W2	600.000	1,968.5	5,292.292	17,363.1
W3	600.000	1,968.5	5,892.292	19,331.6
W4	600.000	1,968.5	6,492.292	21,300.1
W5	600.000	1,9 <mark>68.5</mark>	7,092.292	<u>23,2</u> 68.6
W6	600.000	1,968.5	7,692.292	25,237.1

Table IV- 3. Cumulative Emplacement Drift Length

Drift	Available D	rift Length	Cum. Availabl	e Drift Length
Dint	meters	feet	meters	feet
W7	600.000	1.968.5	8.292.292	27.205.6
W8	600.000	1.968.5	8.892.292	29,174,1
W9	603.339	1.979.5	9,495,631	31,153,6
W10	606.284	1,989.1	10,101,915	33.142.7
W11	605.190	1.985.5	10,707,105	35.128.2
W12	605,190	1,985,5	11,312,295	37,113.8
W13	605.190	1,985.5	11,917.485	39,099.3
W14	605.190	1,985.5	12,522.675	41,084.8
W15	605.190	1,985.5	13,127.865	43,070.3
W16	605.190	1,985.5	13,733.055	45,055.9
W17	605.190	1,985.5	14,338.245	47,041.4
W18	605.190	1,985.5	14,943.435	49,026.9
W19	605.190	1,985.5	15,548.625	51,012.4
W20	605.190	1,985.5	16,153.815	52,998.0
W21	605.190	1,985.5	16,759.005	54,983.5
W22	605.190	1,985.5	17,364.195	56,969.0
E1	467.366	1,533.3	17,831.561	58,502.4
E2	606.689	1,990.4	18,438.250	60,492.8
E3	703.886	2,309.3	19,142.136	62,802.2
E4	777.466	2,550.7	19,919.602	65,352.9
E5	770.456	2,527.7	20,690.058	67,880.6
E6	765.335	2,510.9	21,455.393	70,391.6
E7	747.727	2,453.2	22,203.120	72,844.7
E8	697.819	2,289.4	22,900.939	75,134.2
E9	647.912	2,125.7	23,548.851	77,259.9
E10	598.005	1,962.0	24,146.856	79,221.8
E11	548.097	1,798.2	24,694.953	81,020.0
E12	498.191	1,634.5	25,193.144	82,654.5
E13	462.981	1,519.0	25,656.125	84,173.5
E14	445.160	1,460.5	26,101.285	85,634.0
E15	421.851	1,384.0	26,523.136	87,018.0
E16	415.232	1,362.3	26,938.368	88,380.3
E17	400.290	1,313.3	27,338.658	89,693.6
E18	384.618	1,261.9	27,723.276	90,955.4
E19	368.946	1,210.5	28,092.222	92,165.9
		PANEL 4		
1	426.441	1,399.1	28,518.663	93,565.0
2	597.093	1,959.0	29,115.756	95,523.9
3	600.000	1,968.5	29,715.756	97,492.4
4	600.000	1,968.5	30,315.756	99,460.9
5	600.000	1,968.5	30,915.756	101,429.4
6	600.000	1,968.5	31,515.756	103,397.9
7	600.000	1,968.5	32,115.756	105,366.4
8	600.000	1,968.5	32,715.756	107,334.9
9	617.952	2,027.4	33,333.708	109,362.3
10	588.893	1,932.1	33,922.601	111,294.4
11	588.893	1,932.1	34,511.494	113,226.5
12	588.893	1,932.1	35,100.387	115,158.5
13	588.893	1,932.1	35,689.280	117,090.6
14	588.893	1,932.1	36,278.173	119,022.6

meters feet meters feet 15 588.893 1,932.1 36,867.066 120,954.7 16 588.893 1,932.1 37,455.959 122,868.8 17 588.893 1,932.1 38,044.852 124,818.8 18 588.893 1,932.1 39,233.745 126,750.9 19 588.801 1,930.8 39,811.139 130,613.7 21 577.019 1,893.1 40,388.138 132,506.8 22 567.480 1,861.8 40,955.638 134,368.6 23 576.870 1,892.6 41,532.508 138,113.2 25 552.084 1,811.3 42,049.069 139,924.5 26 539.692 1,770.6 43,188.761 141,695.1 27 527.288 1,729.9 43,716.049 143,425.1 28 509.588 1,671.9 44,225.637 145,096.9 29 479.337 1,572.6 44,704.974 146,669.6 30 388.69	Drift	Available Dri	ft Length	Cum. Available D	rift Length
15 588.893 $1.932.1$ $36.667.066$ $120.954.7$ 16 588.893 $1.932.1$ $37.455.959$ $122.886.8$ 17 588.893 $1.932.1$ $38.633.745$ $126.750.9$ 19 588.893 $1.932.1$ $39.222.638$ $128.682.9$ 20 586.601 $1.930.8$ $39.21.139.22.638$ $128.682.9$ 20 586.801 $1.930.8$ $39.811.139$ $130.613.7$ 21 577.019 $1.893.1$ $40.388.158$ $132.506.8$ 23 576.870 $1.892.6$ $41.532.508$ $134.388.6$ 23 576.870 $1.892.6$ $41.532.508$ $134.388.6$ 24 564.477 $1.852.0$ $42.096.985$ $138.113.2$ 25 552.084 $1.771.6$ $43.188.761$ $141.995.1$ 27 527.288 $1.771.6$ $43.188.761$ $145.996.98$ 28 509.588 $1.671.9$ $44.226.637$ $145.996.99$ 29 479.337 $1.572.6$ $44.704.974$ $146.669.6$ 30 389.869 $1.279.1$ $45.094.843$ $150.3664.1$ 2 762.842 $2.502.8$ $46.593.926$ $152.866.9$ 3 762.100 $2.500.3$ $47.356.026$ $152.867.0$ 5 755.696 $2.479.3$ $48.870.619$ $160.3364.41$ 2 762.493 $2.468.8$ $49.623.112$ $162.2857.2$ 7 749.290 $2.458.3$ $50.372.402$ $165.2357.2$ 7 749.290 $2.458.3$ $50.372.402$ $165.2357.2$ </th <th></th> <th>meters</th> <th>feet</th> <th>meters</th> <th>feet</th>		meters	feet	meters	feet
16 588.893 1,932.1 37,455.999 122,886.8 17 588.893 1,932.1 38,044.852 124,818.8 18 588.893 1,932.1 38,633.745 126,750.9 19 588.893 1,932.1 39,222.638 128,682.9 20 588.501 1,930.8 39,811.139 130,613.7 21 577.019 1,883.1 40,938.158 132,506.8 22 567.480 1,881.6 41,532.508 134,368.6 23 576.870 1,882.0 42,096.985 138,113.2 26 539,692 1,770.6 43,188.761 141,695.1 27 527.286 1,729.9 43,716.049 143,425.1 28 509.588 1,671.9 44,225.637 145,096.9 30 389.869 1,279.1 45,094.843 147,948.7 1 736.241 2,415.5 45,831.084 150,364.1 2 762.842 2,502.8 46,533.926 152,666.9 3	15	588.893	1,932.1	36,867.066	120,954.7
17588.8931,932.138,044.852124,818.818588.8931,932.138,633,745126,862.920588.5011,930.839,811.139130,613.721577.0191,893.140,388.168132,506.822567.4801,861.840,955.638134,368.623576.8701,882.641,532.508136,261.224564.4771,852.042,096.985138,113.225552.0841,811.342,649.069139,924.526539.6921,770.643,188.761141,695.127527.2881,729.943,716.049143,425.128509.5881,671.944,225.637145,096.929479.3371,572.644,704.974146,669.630389.8691,279.145,094.843150,364.12762.8422,500.347,350.026155,367.24758.8972,489.848,114.923157,857.05755.6962,479.348,870.619160,336.46752.4932,468.849,623.112162,263.57749.2902,458.350,372.402165,263.58746.0882,447.851,118.490167,714.59742.8852,437.351,861.375170,148.510739.6832,426.852,601.68172,575.311733.5542,437.351,861.375170,148.515708.0392,332.056,204.541148,497.7 <td>16</td> <td>588.893</td> <td>1,932.1</td> <td>37,455.959</td> <td>122,886.8</td>	16	588.893	1,932.1	37,455.959	122,886.8
18 588.893 1,932.1 38,633.745 126,750.9 19 588.893 1,932.1 39,222.638 128,682.9 20 588.501 1,930.8 39,811.139 130,613.7 21 577.019 1,883.1 40,388.158 132,506.8 22 567.480 1,861.8 40,955.638 134,368.6 23 576.870 1,882.6 41,532.508 138,261.2 24 564.477 1,852.0 42,096.965 138,113.2 25 552.084 1,811.3 42,649.069 139,924.5 26 539.692 1,770.6 43,188.761 141,695.1 27 527.288 1,729.9 43,716.049 143,425.1 28 509,588 1,671.9 44,225.637 145,096.9 29 479.337 1,572.6 44,704.974 146,669.6 30 389.869 1,279.1 45,934.843 147,948.7 21 762.842 2,502.8 46,533.926 155,367.2 3	17	588.893	1,932.1	38,044.852	124,818.8
19 568.893 1,932.1 39.22.638 128.682 20 568.501 1,930.8 39.811.139 130.613.7 21 577.019 1,830.8 39.811.139 130.613.7 22 567.480 1,861.8 40.388.158 132.506.8 22 567.480 1,861.8 40.955.638 134.368.6 23 576.870 1,892.6 41.532.008 138.261.2 24 564.477 1,852.0 42.090.895 133.113.2 25 552.084 1,811.3 42.649.069 139.924.5 26 539.692 1,770.6 43.188.761 141.698.1 27 527.288 1,671.9 44.225.637 145.096.9 29 479.337 1,572.6 44.709.484 147.948.7 30 389.869 1,279.1 45.094.843 147.948.7 762.442 2502.8 46.593.926 152.866.9 3 762.100 2,500.3 47.356.026 155.367.2 4 758.897	18	588.893	1,932.1	38,633.745	126,750.9
20 588.501 1,930.8 39.811.139 130.613.7 21 577.019 1,893.1 40.388.158 132.506.8 22 567.480 1,881.8 40.955.638 134.368.6 23 576.870 1,892.6 41.532.508 136.261.2 24 564.477 1,852.0 42.096.985 138.113.2 25 552.084 1,811.3 42.049.069 139.924.5 26 539.692 1,770.6 43.188.761 141.695.1 27 527.288 1,729.9 43.716.049 143.425.1 28 509.588 1,671.9 44.225.637 145.096.9 29 479.337 1,572.6 44.70.497.4 146.669.6 30 389.869 1,279.1 45.094.843 147.948.7 7 762.842 2,502.8 46.593.926 152.866.9 3 762.100 2,500.3 47.356.026 155.367.2 4 758.897 2,498.8 48.114.923 157.557.0 5	19	588.893	1,932.1	39,222.638	128,682.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	588.501	1,930.8	39,811.139	130,613.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	577.019	1,893.1	40,388.158	132,506.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	567.480	1,861.8	40,955.638	134,368.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	576.870	1,892.6	41,532.508	136,261.2
25 552.084 $1.811.3$ $42,649.069$ $139.924.5$ 26 539.692 $1.770.6$ $43,188.761$ $144.1695.1$ 27 527.288 $1.729.9$ $43,716.049$ $143,425.1$ 28 509.588 $1.671.9$ $44,225.637$ $145,096.9$ 29 479.337 $1.572.6$ $44,704.974$ $146,669.6$ 30 389.869 $1.279.1$ $45,094.843$ $147,948.7$ PANEL 2T762.842 $2.415.5$ $45,831.084$ $150,364.1$ 2 762.842 $2.502.8$ $46,593.926$ $152,866.9$ 3 762.100 $2.500.3$ $47,356.026$ $155,367.2$ 4 758.897 $2.4489.8$ $48,114.923$ $157,857.0$ 5 755.696 $2,479.3$ $48,870.619$ $160,336.4$ 6 752.493 $2,468.8$ $49,623.112$ $162,285.2$ 7 749.290 $2,458.3$ $50,372.402$ $165,263.5$ 8 746.088 $2,447.8$ $51,118.490$ $167,711.2$ 9 742.885 $2,437.3$ $51,861.375$ $170,148.5$ 10 739.683 $2,426.8$ $52,601.058$ $172,575.3$ 11 733.544 $2,406.0$ $53,334.412$ $174,981.3$ 12 727.026 $2,384.5$ $54,782.134$ $177,366.6$ 13 720.696 $2,323.0$ $56,204.541$ $184,997.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 20 669.461 <td< td=""><td>24</td><td>564.477</td><td>1,852.0</td><td>42,096.985</td><td>138,113.2</td></td<>	24	564.477	1,852.0	42,096.985	138,113.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	552.084	1,811.3	42,649.069	139,924.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	539.692	1,770.6	43,188.761	141,695.1
28 509,588 1,671.9 44,225,637 145,096.9 29 479,337 1,572.6 44,704.974 146,669.6 30 389,869 1,279.1 45,094,843 147,948.7 PANEL 2 1 736,241 2,415.5 45,831,084 150,364.1 2 762,842 2,502.8 46,593,926 152,866.9 3 762,100 2,409.8 48,114.923 157,857.0 5 755,696 2,479.3 48,870.619 160,336.4 6 752,493 2,468.8 49,623.112 162,805.2 7 749,290 2,458.3 50,372.402 165,283.5 8 746,088 2,447.8 51,118.490 167,711.2 9 742,285 2,437.3 51,861.375 170,148.5 10 739,683 2,426.8 52,601.058 172,575.3 11 733,354 2,406.0 53,33.4.12 174,981.3 12 727.026 2,385.3 54,061.438 177,3	27	527.288	1,729.9	43,716.049	143,425.1
29 479.337 1,572.6 44,704.974 146,669.6 30 389.869 1,279.1 45,094.843 147,948.7 PANEL 2 1 736.241 2,415.5 45,831.084 150,364.1 2 762.842 2,502.8 46,593.926 152,866.9 3 762.100 2,500.3 47,356.026 155,367.2 4 758.897 2,489.8 48,114.923 157,857.0 5 755.696 2,479.3 48,870.619 160,336.4 6 752.493 2,468.8 49,623.112 162,805.2 7 749.290 2,458.3 50,372.402 165,263.5 8 746.088 2,447.8 51,118.490 167,711.2 9 742.885 2,437.3 51,861.375 170,148.5 10 739.683 2,420.8 52,601.058 172,575.3 11 733.354 2,406.0 53,334.412 174,981.3 12 727.026 2,385.3 54,061.058 177,97	28	509.588	1,671.9	44,225.637	145,096.9
30 389.869 1,279.1 45,094.843 147,948.7 PANEL 2 1 736.241 2,415.5 45,831.084 150,364.1 2 762.842 2,502.8 46,593.926 152,866.9 3 762.100 2,500.3 47,356.026 155,367.2 4 758.897 2,489.8 48,114.923 157,857.0 5 755.696 2,479.3 48,870.619 160,336.4 6 752.493 2,468.8 49,623.112 162,805.2 7 749.290 2,458.3 50,372.402 165,263.5 8 746.088 2,447.8 51,118.490 167,711.2 9 742.855 2,437.3 51,861.375 170,148.5 10 739.683 2,426.8 52,601.058 172,575.3 11 733.354 2,406.0 53,334.412 174,981.3 12 727.026 2,385.3 54,061.438 177,366.6 13 720.696 2,364.5 54,782.134 179,73	29	479.337	1,572.6	44,704.974	146,669.6
PANEL 2 1 736.241 2,415.5 45,831.084 150,364.1 2 762.842 2,502.8 46,593.926 152,866.9 3 762.100 2,500.3 47,356.026 155,367.2 4 758.897 2,489.8 48,114.923 157,857.0 5 755.696 2,479.3 48,870.619 160,336.4 6 752,493 2,468.8 49,623.112 162,805.2 7 749.290 2,458.3 50,372.402 165,263.5 8 746.088 2,447.8 51,118.490 167,711.2 9 742.885 2,437.3 51,861.375 170,148.5 10 739.683 2,426.8 52,601.058 172,575.3 11 733.354 2,406.0 53,334.412 174,981.3 12 727.026 2,385.3 54,061.438 177,366.6 13 720.696 2,364.5 54,782.134 179,731.1 14 714.368 2,323.0 56,204.541 184,397.7	30	389.869	1,279.1	45,094.843	147,948.7
1 736.241 $2,415.5$ $45,831.084$ $150,364.1$ 2 762.842 $2,502.8$ $46,593.926$ $152,866.9$ 3 762.100 $2,500.3$ $47,356.026$ $155,367.2$ 4 758.897 $2,489.8$ $48,114.923$ $157,857.0$ 5 755.696 $2,479.3$ $48,870.619$ $160,336.4$ 6 752.493 $2,468.8$ $49,623.112$ $162,805.2$ 7 749.290 $2,458.3$ $50,372.402$ $165,263.5$ 8 746.088 $2,447.8$ $51,118.490$ $167,711.2$ 9 742.885 $2,437.3$ $51,861.375$ $170,148.5$ 10 739.683 $2,426.8$ $52,601.058$ $172,575.3$ 11 733.354 $2,406.0$ $53,334.412$ $174,981.3$ 12 727.026 $2,385.3$ $54,061.438$ $177,366.6$ 13 720.696 $2,364.5$ $54,782.134$ $179,731.1$ 14 714.368 $2,343.7$ $55,6906.502$ $182,074.8$ 15 708.039 $2,322.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$		1	PANEL 2	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	736.241	2,415.5	45,831.084	150,364.1
3 762.100 $2,500.3$ $47,356.026$ $155,367.2$ 4 758.897 $2,489.8$ $48,114.923$ $157,857.0$ 5 755.696 $2,479.3$ $48,870.619$ $160,336.4$ 6 752.493 $2,468.8$ $49,623.112$ $162,805.2$ 7 749.290 $2,458.3$ $50,372.402$ $165,263.5$ 8 746.088 $2,447.8$ $51,118.490$ $167,711.2$ 9 742.885 $2,437.3$ $51,861.375$ $170,148.5$ 10 739.683 $2,426.8$ $52,601.058$ $172,575.3$ 11 733.354 $2,406.0$ $53,334.412$ $174,981.3$ 12 727.026 $2,385.3$ $54,061.438$ $177,366.6$ 13 720.696 $2,364.5$ $54,782.134$ $179,731.1$ 14 714.368 $2,333.7$ $55,496.502$ $182,074.8$ 15 708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,196.4$ $59,634.203$ $195,649.9$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ <td< td=""><td>2</td><td>762.842</td><td>2,502.8</td><td>46,593.926</td><td>152,866.9</td></td<>	2	762.842	2,502.8	46,593.926	152,866.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	762.100	2,500.3	47,356.026	155,367.2
5 755.696 $2,479.3$ $48,870.619$ $160,336.4$ 6 752.493 $2,468.8$ $49,623.112$ $162,805.2$ 7 749.290 $2,458.3$ $50,372.402$ $165,263.5$ 8 746.088 $2,447.8$ $51,118.490$ $167,711.2$ 9 742.885 $2,437.3$ $51,861.375$ $170,148.5$ 10 739.683 $2,426.8$ $52,601.058$ $172,575.3$ 11 733.354 $2,406.0$ $53,334.412$ $174,981.3$ 12 727.026 $2,385.3$ $54,061.438$ $177,366.6$ 13 720.696 $2,364.5$ $54,782.134$ $179,731.1$ 14 714.368 $2,343.7$ $55,496.502$ $182,074.8$ 15 708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,180.9$ $60,298.947$ $197,830.8$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ 24 651.079 $2,136.1$ $62,290.853$ $204,297.5$ 25 638.858 $2,096.0$ $62,908.853$ $206,393.5$ <td>4</td> <td>758.897</td> <td>2,489.8</td> <td>48,114.923</td> <td>157,857.0</td>	4	758.897	2,489.8	48,114.923	157,857.0
6 752.493 $2,468.8$ $49,623.112$ $162,805.2$ 7 749.290 $2,458.3$ $50,372.402$ $165,263.5$ 8 746.088 $2,447.8$ $51,118.490$ $167,711.2$ 9 742.885 $2,437.3$ $51,861.375$ $170,148.5$ 10 739.683 $2,426.8$ $52,601.058$ $172,575.3$ 11 733.354 $2,406.0$ $53,334.412$ $174,981.3$ 12 727.026 $2,385.3$ $54,061.438$ $177,366.6$ 13 720.696 $2,364.5$ $54,782.134$ $179,731.1$ 14 714.368 $2,343.7$ $55,496.502$ $182,074.8$ 15 708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,180.9$ $60,298.947$ $197,830.8$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ 24 651.079 $2,136.1$ $62,269.995$ $204,297.5$ 25 638.858 $2,006.0$ $62,908.853$ $206,393.5$	5	755.696	2,479.3	48,870.619	160,336.4
7749.290 $2,458.3$ $50,372.402$ $165,263.5$ 8746.088 $2,447.8$ $51,118.490$ $167,711.2$ 9742.885 $2,437.3$ $51,861.375$ $170,148.5$ 10739.683 $2,426.8$ $52,601.058$ $172,575.3$ 11733.354 $2,406.0$ $53,334.412$ $174,981.3$ 12727.026 $2,385.3$ $54,061.438$ $177,366.6$ 13720.696 $2,364.5$ $54,782.134$ $177,31.1$ 14714.368 $2,343.7$ $55,496.502$ $182,074.8$ 15708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16701.710 $2,302.2$ $56,906.251$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,180.9$ $60,298.947$ $197,830.8$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ 24 651.079 $2,136.1$ $62,269.995$ $204,297.5$ 25 638.858 $2,096.0$ $62,245.53$ $206,393.5$	6	752.493	2,468.8	49,623.112	162,805.2
8746.0882,447.851,118.490167,711.29742.8852,437.351,861.375170,148.510739.6832,426.852,601.058172,575.311733.3542,406.053,334.412174,981.312727.0262,385.354,061.438177,366.613720.6962,364.554,782.134179,731.114714.3682,343.755,496.502182,074.815708.0392,323.056,204.541184,397.716701.7102,302.256,906.251186,699.917695.3812,281.457,601.632188,981.418686.5032,252.358,288.135191,233.719676.6072,219.858,964.742193,453.520669.4612,196.459,634.203195,649.921664.7442,180.960,298.947197,830.822662.5612,173.860,961.508200,004.523657.4082,156.861,618.916202,161.424651.0792,136.162,269.995204,297.525638.8582,096.062,908.853206,393.526566.9661,950.862,447.700202.92.5	7	749.290	2,458.3	50,372.402	165,263.5
9742.8852,437.351,861.375170,148.510739.6832,426.852,601.058172,575.311733.3542,406.053,334.412174,981.312727.0262,385.354,061.438177,366.613720.6962,364.554,782.134179,731.114714.3682,343.755,496.502182,074.815708.0392,323.056,204.541184,397.716701.7102,302.256,906.251186,699.917695.3812,281.457,601.632188,981.418686.5032,252.358,288.135191,233.719676.6072,219.858,964.742193,453.520669.4612,196.459,634.203195,649.921664.7442,180.960,298.947197,830.822662.5612,173.860,961.508200,004.523657.4082,156.861,618.916202,161.424651.0792,136.162,269.995204,297.525638.8582,096.062,908.853206,393.526566.664,950.862,474.7420,025.3	8	746.088	2,447.8	51,118.490	167,711.2
10 739.683 $2,426.8$ $52,601.058$ $172,575.3$ 11 733.354 $2,406.0$ $53,334.412$ $174,981.3$ 12 727.026 $2,385.3$ $54,061.438$ $177,366.6$ 13 720.696 $2,364.5$ $54,782.134$ $179,731.1$ 14 714.368 $2,343.7$ $55,496.502$ $182,074.8$ 15 708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,180.9$ $60,298.947$ $197,830.8$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ 24 651.079 $2,136.1$ $62,269.995$ $204,297.5$ 25 638.858 $2,096.0$ $62,908.853$ $206,933.5$	9	742.885	2,437.3	51,861.375	170,148.5
11 733.354 $2,406.0$ $53,334.412$ $174,981.3$ 12 727.026 $2,385.3$ $54,061.438$ $177,366.6$ 13 720.696 $2,364.5$ $54,782.134$ $179,731.1$ 14 714.368 $2,343.7$ $55,496.502$ $182,074.8$ 15 708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,180.9$ $60,298.947$ $197,830.8$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ 24 651.079 $2,136.1$ $62,269.995$ $204,297.5$ 25 638.858 $2,096.0$ $62,475.740$ $206,059.35$	10	739.683	2,426.8	52,601.058	1/2,5/5.3
12 727.026 $2,385.3$ $54,061.438$ $177,366.6$ 13 720.696 $2,364.5$ $54,782.134$ $179,731.1$ 14 714.368 $2,343.7$ $55,496.502$ $182,074.8$ 15 708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,180.9$ $60,298.947$ $197,830.8$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ 24 651.079 $2,136.1$ $62,269.995$ $204,297.5$ 25 638.858 $2,096.0$ $62,908.853$ $206,393.5$	11	733.354	2,406.0	53,334.412	174,981.3
13 720.696 $2,364.5$ $54,782.134$ $179,731.1$ 14 714.368 $2,343.7$ $55,496.502$ $182,074.8$ 15 708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,180.9$ $60,298.947$ $197,830.8$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ 24 651.079 $2,136.1$ $62,269.995$ $204,297.5$ 25 638.858 $2,096.0$ $62,908.853$ $206,393.5$	12	727.026	2,385.3	54,061.438	177,366.6
14 714.368 $2,343.7$ $55,496.502$ $182,074.8$ 15 708.039 $2,323.0$ $56,204.541$ $184,397.7$ 16 701.710 $2,302.2$ $56,906.251$ $186,699.9$ 17 695.381 $2,281.4$ $57,601.632$ $188,981.4$ 18 686.503 $2,252.3$ $58,288.135$ $191,233.7$ 19 676.607 $2,219.8$ $58,964.742$ $193,453.5$ 20 669.461 $2,196.4$ $59,634.203$ $195,649.9$ 21 664.744 $2,180.9$ $60,298.947$ $197,830.8$ 22 662.561 $2,173.8$ $60,961.508$ $200,004.5$ 23 657.408 $2,156.8$ $61,618.916$ $202,161.4$ 24 651.079 $2,136.1$ $62,269.995$ $204,297.5$ 25 638.858 $2,096.0$ $62,475.740$ $200,035.5$	13	720.696	2,364.5	54,782.134	1/9,/31.1
15708.0392,323.056,204.541184,397.716701.7102,302.256,906.251186,699.917695.3812,281.457,601.632188,981.418686.5032,252.358,288.135191,233.719676.6072,219.858,964.742193,453.520669.4612,196.459,634.203195,649.921664.7442,180.960,298.947197,830.822662.5612,173.860,961.508200,004.523657.4082,156.861,618.916202,161.424651.0792,136.162,269.995204,297.525638.8582,096.062,908.853206,393.5	14	714.368	2,343.7	55,496.502	182,074.8
16701.7102,302.256,906.251186,699.917695.3812,281.457,601.632188,981.418686.5032,252.358,288.135191,233.719676.6072,219.858,964.742193,453.520669.4612,196.459,634.203195,649.921664.7442,180.960,298.947197,830.822662.5612,173.860,961.508200,004.523657.4082,156.861,618.916202,161.424651.0792,136.162,269.995204,297.525638.8582,096.062,908.853206,393.5	15	708.039	2,323.0	56,204.541	184,397.7
17 695.381 2,281.4 57,601.632 188,981.4 18 686.503 2,252.3 58,288.135 191,233.7 19 676.607 2,219.8 58,964.742 193,453.5 20 669.461 2,196.4 59,634.203 195,649.9 21 664.744 2,180.9 60,298.947 197,830.8 22 662.561 2,173.8 60,961.508 200,004.5 23 657.408 2,156.8 61,618.916 202,161.4 24 651.079 2,136.1 62,269.995 204,297.5 25 638.858 2,096.0 62,908.853 206,393.5	10	701.710	2,302.2	56,906.251	186,699.9
18 686.503 2,252.3 58,288.135 191,233.7 19 676.607 2,219.8 58,964.742 193,453.5 20 669.461 2,196.4 59,634.203 195,649.9 21 664.744 2,180.9 60,298.947 197,830.8 22 662.561 2,173.8 60,961.508 200,004.5 23 657.408 2,156.8 61,618.916 202,161.4 24 651.079 2,136.1 62,269.995 204,297.5 25 638.858 2,096.0 62,908.853 206,393.5	17	695.381	2,281.4	57,601.632	188,981.4
19 676.607 2,219.8 58,964.742 193,453.5 20 669.461 2,196.4 59,634.203 195,649.9 21 664.744 2,180.9 60,298.947 197,830.8 22 662.561 2,173.8 60,961.508 200,004.5 23 657.408 2,156.8 61,618.916 202,161.4 24 651.079 2,136.1 62,269.995 204,297.5 25 638.858 2,096.0 62,908.853 206,393.5	18	686.503	2,252.3	58,288.135	191,233.7
20 669.461 2,196.4 59,634.203 195,649.9 21 664.744 2,180.9 60,298.947 197,830.8 22 662.561 2,173.8 60,961.508 200,004.5 23 657.408 2,156.8 61,618.916 202,161.4 24 651.079 2,136.1 62,269.995 204,297.5 25 638.858 2,096.0 62,908.853 206,393.5	19	676.607	2,219.8	58,964.742	193,453.5
21 004.744 2,180.9 00,296.947 197,830.8 22 662.561 2,173.8 60,961.508 200,004.5 23 657.408 2,156.8 61,618.916 202,161.4 24 651.079 2,136.1 62,269.995 204,297.5 25 638.858 2,096.0 62,908.853 206,393.5	20	009.401	2,190.4	29,034.203	193,049.9
22 662.361 2,173.8 60,961.308 200,004.5 23 657.408 2,156.8 61,618.916 202,161.4 24 651.079 2,136.1 62,269.995 204,297.5 25 638.858 2,096.0 62,908.853 206,393.5	21	004.744	2,100.9	60.061.509	191,030.0
23 057.400 2,150.8 01,018.910 202,161.4 24 651.079 2,136.1 62,269.995 204,297.5 25 638.858 2,096.0 62,908.853 206,393.5 26 566.866 4,950.8 62,475.740 200,052.2	22	002.001	2,1/3.0	00,901.000	200,004.5
24 051.079 2,130.1 02,209.995 204,297.5 25 638.858 2,096.0 62,908.853 206,393.5 26 566.966 4,950.8 62,475.740 200,053.2	23	007.408	2,100.8	01,010.910	202,101.4
	24	620 050	2,130.1	62 000 052	204,291.3
	20	000.000	2,090.0	62 175 710	200,383.0
20 300.000 1,039.0 03,473.119 200,233.3 27 468,713 1,537.8 63,044,432 200,233.3	20	162 712	1,009.0	63 04/ 422	200,203.3

ATTACHMENT V ELECTRONIC VULCAN FILES

The attached CD contains the electronic file created by VULCAN V4.0NT (BSC 2002f) for the underground layout as developed in this analysis.

Filename	Description	Filesize	Date & Time
Subsurfaceladesign_m.dxf	Metric Layout	1,100 KB	05/19/03 7:04 am
Subsurfaceladesign_i.dxf	Imperial Layout	1,122 KB	05/19/03 7:04 am
TptpllPanel1.00t	Geological Triangulation	3 KB	05/16/03 11:28 am
TptpllPanel2.00t	Geological Triangulation	5 KB	05/01/03 6:47 am
TptpllPanel2cont.00t	Geological Triangulation	4 KB	05/01/03 6:47 am
TptpllPanel3e.00t	Geological Triangulation	4 KB	05/150/3 9:29 am
TptpllPanel3w.00t	Geological Triangulation	3 KB	05/01/03 6:47 am
TptpllPanel4.00t	Geological Triangulation	7 KB	05/01/03 6:47 am
TptpllPanel4north.00t	Geological Triangulation	4 KB	05/01/03 6:47 am
TptpllPanel4south.00t	Geological Triangulation	6 KB	05/01/03 6:47 am
TptplnPanel2.00t	Geological Triangulation	2 KB	05/01/03 6:47 am
TptplnPanel2cont.00t	Geological Triangulation	4 KB	05/01/03 6:47 am
TptplnPanel4.00t	Geological Triangulation	7 KB	05/01/03 6:47 am
TptpmnPanel1.00t	Geological Triangulation	3 KB	05/01/03 6:47 am
TptpmnPanel2.00t	Geological Triangulation	4 KB	05/01/03 6:47 am
TptpmnPanel2cont.00t	Geological Triangulation	2 KB	05/01/03 6:47 am
TptpmnPanel3e.00t	Geological Triangulation	8 KB	05/01/03 6:47 am
TptpmnPanel3w.00t	Geological Triangulation	3 KB	05/01/03 6:47 am
TptpulPanel3eaest.00t	Geological Triangulation	4 KB	05/16/03 1:25 pm
PtnThickness.00t	Geological Triangulation	2,103 KB	05/21/03 7:04 am
PtnThickness3.00t	Geological Triangulation	2,284 KB	05/21/03 8:06 am
Faulttrace	Traces of Faults	21 KB	05/21/03 1:53 pm