Table H-2 Summary of Data from S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996, Plate 21) for Frequency of Distributed Faulting (Page 5 of 12)

	Hangi	ng Wall	Footwall		
Distance from	Number of	Number of	Number of	Number of	
Principal Rupture	0.5 km ² Pixels with	0.5 km ² Pixels without	0.5 km ² Pixels with	0.5 km ² Pixels without	
(km)	Distributed Rupture	Distributed Rupture	Distributed Rupture	Distributed Rupture	
2.5	24	183	0	207	
3.0	26	220	0	246	
3.5	4	215	0	219	
4.0	6	236	0	242	
4.5	6	290	0	296	
5.0	2	232	0	234	
5.5	0	269	0	269	
6.0	0	246	0	246	
6.5	0	295	0	295	
7.0	0	277	0	277	
7.5	0	260	0	260	
8.0	0	325	0	325	
8.5	0	308	0	308	
9.0	0	300	0	300	
9.5	0	299	0	299	
10.0	0	286	0	286	
10.5	0	346	0	346	
11.0	0	330	. 0	330	
11.5	0	332	0	332	
12.0	0	325	0	325	
12.5	0	373	0	373	
13.0	0	348	0	348	
13.5	0	340	0	340	
14.0	0	379	0	379	
14.5	0	352	0	352	
15.0	0	394	0	394	
15.5	0	374	0	374	
16.0	0	367	0	367	
16.5	0	394	0	394	
17.0	0	417	0	417	
	L	1983 Mw 6.8 Borah Peak, I	D		
0.5	14	152	22	144	
1.0	6	122	10	118	
1.5	4	129	4	129	
2.0	12	200	4	208	
2.5	2	152	2	152	
3.0	6	186	4	188	
3.5	8	153	4	157	
4.0	14	174	4	184	
4.5	10	214	4	220	
5.0	8	166	2	172	
5.5	8	209	4	213	
6.0	6	180	0	186	
6.5	2	238	0	240	
7.0	0	218	0	218	

Table H-2 Summary of Data from S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996, Plate 21) for Frequency of Distributed Faulting (Page 6 of 12)

	Hangi	ng Wall	Foo	otwall
Distance from	Number of	Number of	Number of	Number of
Principal Rupture	0.5 km ² Pixels with	0.5 km ² Pixels without	0.5 km ² Pixels with	0.5 km ² Pixels without
(km)	Distributed Rupture	Distributed Rupture	Distributed Rupture	Distributed Rupture
7.5	0	202	0	202
8.0	0	266	0	266
8.5	0	252	0	252
9.0	0	246	0	246
9.5	0	243	0	243
10.0	0	230	0	230
10.5	0	295	0	295
11.0	0	276	0	276
11.5	0	276	0	276
12.0	0	271	0	271
12.5	0	314	0	314
13.0	0	297	0	297
13.5	0	287	0	287
14.0	0	320	0	320
14.5	0	299	0	299
15.0	0	344	0	344
15.5	0	323	0	323
16.0	0	315	0	315
16.5	0	338	0	338
17.0	0	372	0	372
	· · · · · · · · · · · · · · · · · · ·	1954 Mw 6.8 Stillwater, N	V	
0.5	4	146	2	148
1.0	4	126	6	124
1.5	8	128	0	136
2.0	10	190	0	200
2.5	10	140	0	150
3.0	6	172	0	178
3.5	0	162	0	162
4.0	0	179	0	179
4.5	0	213	0	213
5.0	0	178	0	178
5.5	0	203	0	203
6.0	0	190	0	190
6.5	0	223	0	223
7.0	0	215	0	215
7.5	6	200	0	206
8.0	6	245	0	251
8.5	0	245	0	245
9.0	0	236	0	236
9.5	0	243	0	243
10.0	0	234	0	234
10.5	4	271	0	275
11.0	2	270	0	272
11.5	2	266	0	268
12.0	0	269	0	269

·-----

I:\5001A\PSHA-XH1.DOC 9/2/98

Table H-2 Summary of Data from S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996, Plate 21) for Frequency of Distributed Faulting (Page 7 of 12)

	5 9775-0-1 P	(i uge / of iz)		
	Hangir	ng Wall	Foo	otwall
Distance from	Number of	Number of	Number of	Number of
Principal Rupture	0.5 km ² Pixels with	0.5 km ² Pixels without	0.5 km ² Pixels with	0.5 km ² Pixels without
(km)	Distributed Rupture	Distributed Rupture	Distributed Rupture	Distributed Rupture
12.5	0	305	0	305
13.0	0	291	0	291
13.5	0	285	0	285
14.0	0	313	0	313
14.5	0	297	0	297
15.0	0	330	00	330
15.5	0	318	00	318
16.0	0	313	0	313
16.5	0	331	0	331
17.0	0	359	00	359
	15	954 Mw 6.6 Rainbow Mtn.,	NV	
0.5	12	75	26	61
1.0	12	68	00	80
1.5	2	84	2	84
2.0	2	116	0	118
2.5	0	96	00	96
3.0	0	108	0	108
3.5	0	108	0	108
4.0	0	116	0	116
4.5	0	150	0	150
5.0	0	124	0	124
5.5	0	140	0	140
6.0	0	136	00	136
6.5	0	160	00	160
7.0	0	156	0	156
7.5	0	152	0	152
8.0	0	190	00	190
8.5	0	184	00	184
9.0	0	180	00	180
9.5	0	184	0	184
10.0	00	180	0	180
10.5	0	215	0	215
11.0	0	211	0	211
11.5	0	212	0	212
12.0	0	212	0	212
12.5	0	247	0	247
13.0	0	232	0	232
13.5	0	228	00	228
14.0	0	255	0	255
14.5	00	240	0	240
15.0	0	272	0	272
15.5	0	260	0	260
16.0	0	256	0	256
16.5	0	276	0	276
17.0	0	298	0	298

Table H-2 Summary of Data from S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996, Plate 21) for Frequency of Distributed Faulting (Page 8 of 12)

	Hangir	ng Wall	Foo	twall
Distance from	Number of	Number of	Number of	Number of
Principal Rupture	0.5 km ² Pixels with	0.5 km ² Pixels without	0.5 km ² Pixels with	0.5 km ² Pixels without
(km)	Distributed Rupture	Distributed Rupture	Distributed Rupture	Distributed Rupture
	19	86 Mw 6.2 Chalfant Valley,	CA	***
0.5	12	55	10	57
1.0	0	66	0	66
1.5	0	68	0	68
2.0	0	96	0	96
2.5	0	80	0	80
3.0	0	93	0	93
3.5	0	92	0	92
4.0	0	101	0	101
4.5	0	127	0	127
5.0	0	108	0	108
5.5	0	125	0	125
6.0	0	120	0	120
-6.5	0	141	0	141
7.0	0	140	0	140
7.5	0	136	0	136
8.0	0	172	0	172
8.5	0	164	0	164
9.0	0	165	0	165
9.5	0	168	0	168
10.0	0	164	0	164
10.5	0	197	0	197
11.0	0	193	0	193
11.5	0	197	0	197
12.0	0	196	0	196
12.5	0	227	0	227
13.0	0	216	0	216
13.5	0	212	0	212
14.0	0	238	0	238
14.5	0	224	0	224
15.0	0	253	0	253
15.5	0	244	0	244
16.0	0	240	0	240
16.5	0	261	0	261
17.0	0	277	0	277
17.5	0	277	0	277
18.0	0	286	0	286
18.5	0	277	0	277
19.0	0	300	0	300
19.5	0	288	0	288
20.0	0	317	0	317
20.5	0	301	0	301
21.0	0	317	0	317
21.5	0	328	0	328
22.0	0	316	0	316

I:\5001A\PSHA-XH1.DOC 9/2/98

Table H-2 Summary of Data from S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996, Plate 21) for Frequency of Distributed Faulting (Page 9 of 12)

1000-000 (PA		(1 uge 5 01 12)	the second se		
	Hangi	ng Wall	Footwall		
Distance from	Number of	Number of	Number of	Number of	
Principal Rupture	0.5 km ² Pixels with	0.5 km ² Pixels without	0.5 km ² Pixels with	0.5 km ² Pixels without	
(km)	Distributed Rupture	Distributed Rupture	Distributed Rupture	Distributed Rupture	
22.5	0	341	0	341	
23.0	0	328	0	328	
23.5	0	357	0	357	
24.0	0	356	0	356	
24.5	0	372	0	372	
	19	86 M _w 6.2 Chalfant Valley, with hanging wall cracking	, CA a		
0.5	12	55	10	57	
1.0	0	66	0	66	
1.5	0	68	0	68	
2.0	0	96	0	96	
2.5	0	80	0	80	
3.0	0	93	0	93	
3.5	0	92	0	92	
4.0	0	101	0	101	
4.5	0	127	0	127	
5.0	0	108	0	108	
5.5	0	125	0	125	
6.0	0	120	0	120	
6.5	0	141	0	141	
7.0	0	140	0	140	
7.5	0	136	0	136	
8.0	0	172	0	172	
8.5	0	164	0	164	
9.0	0	165	0	165	
9.5	2	166	0	168	
10.0	0	164	0	164	
10.5	0	197	0	197	
11.0	. 8	185	0	193	
11.5	4	193	0	197	
12.0	10	186	0	196	
12.5	2	225	0	227	
13.0	0	216	0	216	
13.5	8	204	0	212	
14.0	10	228	0	238	
14.5	10	214	0	224	
15.0	20	233	0	253	
15.5	10	234	0	244	
16.0	8	232	0	240	
16.5	2	259	0	261	
17.0	10	267	0	277	
17.5	2	275	0	277	
18.0	0	286	0	286	
18.5	2	275	0	277	
19.0	6	294	0	300	

Table H-2 Summary of Data from S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996, Plate 21) for Frequency of Distributed Faulting (Page 10 of 12)

	Handi	ng Wall	Foo	twall
Distance from	Number of	Number of	Number of	Number of
Principal Rupture	0.5 km ² Pixels with	0.5 km ² Pixels without	0.5 km ² Pixels with	0.5 km ² Pixels without
(km)	Distributed Rupture	Distributed Rupture	Distributed Rupture	Distributed Rupture
19.5	2	286	0	288
20.0	2	315	0	317
20.5	0	301	0	301
21.0	2	315	0	317
21.5	0	328	0	328
22.0	2	314	0	316
22.5	0	341	0	341
23.0	0	328	0	328
23.5	0	357	0	357
24.0	0	356	0	356
24.5	0	372	0	372
	19	80 M _w 6.1 Mammoth Lake	, CA	
0.5	8	108	2	114
1.0	20	74	8	86
1.5	22	70	2	90
2.0	8	129	6	131
2.5	2	92	0	94
3.0	0	121	0	121
3.5	0	105	0	105
4.0	0	122	0	122
4.5	0	153	0	153
5.0	0	120	0	120
5.5	0	149	0	149
6.0	0	133	0	133
6.5	0	168	0	168
7.0	0	158	0	158
7.5	0	148	0	148
8.0	0	194	0	194
8.5	0	186	0	186
9.0	0	183	0	183
9.5	0	185	0	185
10.0	0	175	0	175
10.5	0	223	0	223
11.0	0	213	0	213
11.5	0	215	0	215
12.0	0	212	0	212
12.5	0	244	0	244
13.0	0	234	0	234
13.5	0	228	0	228
14.0	0	257	0	257
14.5	0	238	0	· 238
15.0	0	277	0	277
15.5	0	261	0	261
16.0	0	254	0	254
16.5	0	279	0	279

Table H-2 Summary of Data from S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996, Plate 21) for Frequency of Distributed Faulting (Page 11 of 12)

	Hangi	ng Wall	Foo	twall	
Distance from	Number of	Number of	Number of	Number of	
Princinal Bunture	0.5 km ² Pixels with	0.5 km ² Pixels without	0.5 km ² Pixels with	0.5 km ² Pixels without	
(km)	Distributed Bupture	Distributed Bunture	Distributed Rupture	Distributed Rupture	
17.0	0	299	0	299	
11.0	v	1950 Mw 5.6 Fort Sage, C	A		
0.5	2	46	0	48	
1.0	0	46	0	46	
1.5	0	50	0	50	
2.0	0	72	0	72	
2.5	0	62	0	62	
3.0	0	74	0	74	
3.5	0	74	0	74	
4.0	0	82	0	82	
4.5	0	106	0	106	
5.0	0	90	0	90	
5.5	0	106	0	106	
- 60	0	102	0	102	
6.5	<u> </u>	102	0	102	
7.0	0	122	0	122	
7.0	0	118	0	118	
7.5	0	150	0	150	
0.0	ļ	146	0	146	
0.0	0	140	0	140	
9.0	0	140	0	140	
9.0	0	100	0	100	
10.0	0	140	0	170	
10.0	0	170	0	174	
11.0	0	174	<u> </u>	1/4	
11.5	0	170	0	170	
12.0	0	1/8	0	1/8	
12.5	0	206	0	206	
13.0	0	198	0	198	
13.5	<u> </u>	194	0	194	
14.0	<u> </u>	218	0	218	
14.5	0	206	0	206	
15.0	0	234	U	234	
15.5	0	226	0	226	
16.0	0	222	0	222	
16.5	0	242	0	242	
17.0	0	260	0	260	
	197	9 Mw 5.5 Homestead Valle	y, CA		
0.5	0	28	6	22	
1.0	0	26	0	26	
1.5	0	30	0	30	
2.0	0	52	0	52	
2.5	4	38	0	42	
3.0	2	53	0	55	
3.5	0	54	0	54	
4.0	0	63	0	63	

Table H-2 Summary of Data from S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996, Plate 21) for Frequency of Distributed Faulting (Page 12 of 12)

Hanging Wall Footwall								
Distance from	Number of	Number of	Number of	Number of				
Principal Rupture	0.5 km ² Pixels with	0.5 km ² Pixels without	0.5 km ² Pixels with	0.5 km ² Pixels without				
(km)	Distributed Rupture	Distributed Rupture	Distributed Rupture	Distributed Rupture				
4.5	0	87	0	87				
5.0	0	70	0	70				
5.5	Ö	87	0	87				
6.0	0	82	0	82				
6.5	0	107	0	107				
7.0	0	102	0	102				
7.5	0	98	0	98				
8.0	0	128	0	128				
8.5	0	130	0	130				
9.0	0	127	0	127				
9.5	0	130	0	130				
10.0	0	126	0	126				
10.5	0	163	0	163				
11.0	0	155	0	155				
11.5	0	159	0	159				
12.0	0	158	0	158				
12.5	0	187	0	187				
13.0	0	178	. 0	178				
13.5	0	174	0	174				
14.0	0	200	0	200				
14.5	0	186	0	186				
15.0	0	219	0	219				
15.5	0	206	0	206				
16.0	0	202	0	202				
16.5	0	223	0	223				
17.0	0	242	0	242				

/ n	-	-	-	4	-	z	1
(–	d	q	e.	Ŧ.	Q	L	ţ

	n:	= 2	n	= 3	n	= 4	<u>n</u> :	= 5	n:	= 6
θ	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.
1983 M _w 6.8 Borah Peak, ID										
0 to 5	20	0.049	5	0.051	3	0.047	1	0.023	0	0
5 to 10	11	0.027	5	0.051	3	0.047	2	0.045	2	0.077
10 to 15	6	0.015	4	0.041	3	0.047	3	0.068	2	0.077
15 to 20	69	0.169	12	0.122	7	0.109	4	0.091	1	0.038
20 to 25	6	0.015	6	0.061	4	0.062	3	0.068	3	0.115
25 to 30	70	0.172	10	0.102	6	0.094	3	0.068	2	0.077
30 to 35	9	0.022	7	0.071	5	0.078	3	0.068	1	0.038
35 to 40	24	0.059	8	0.082	6	0.094	6	0.136	4	0.154
40 to 45	13	0.032	8	0.082	3	0.047	2	0.045	2	0.077
45 to 50	7	0.017	3	0.031	2	0.031	2	0.045	2	0.077
50 to 55	9	0.022	6	0.061	6	0.094	3	0.068	2	0.077
55 to 60	8	0.020	8	0.082	5	0.078	3	0.068	1	0.038
60 to 65	98	0.240	5	0.051	4	0.062	4	0.091	2	0.077
65 to 70	0	0	0	0	0	0	0	0	0	0
70 to 75	32	0.078	0	0	0	0	0	. 0	0	0
75 to 80	8	0.020	6	0.061	3	0.047	3	0.068	1	0.038
80 to 85	7	0.017	3	0.031	3	0.047	2	0.045	1	0.038
85 to 90	11	0.027	2	0.020	1	0.016	0	0	0	0
				1932 M _w 1	7.2 Cedar N	/ltn, NV				
0 to 5	1	0.029	0	0	0	0	0	0	0	0
5 to 10	2	0.059	0	0	0	0	0	0	0	0
10 to 15	2	0.059	2	0.200	0	0	0	0	0	0
15 to 20	2	0.059	1	0.100	1	0.333	1	0.333	0	0
20 to 25	5	0.147	2	0.200	0	0	0	0	0	0
25 to 30	3	0.088	1	0.100	0	0	0	0	0	0
30 to 35	3	0.088	0	0	0	0	0	0	0	0
35 to 40	3	0.088	1	0.100	1	0.333	1	0.333	1	1.0
40 to 45	1	0.029	0	0	0	0	0	0	0	0
45 to 50	55	0.147	1	0.100	0	0	0	0	0	0
50 to 55	3	0.088	1	0.100	0	0	0	0	0	0
55 to 60	0	0	0	0	0	0	0	0	0	0
60 to 65	1	0.029	1	0.100	1	0.333	1	0.333	0	0
65 to 70	0	0	0	0	0	0	0	0	0	0
70 to 75	0	0	0	0	0	0	0	0	0	0
75 to 80	1	0.029	0	0	0	0	0	0	0	0
80 to 85	0	0	0	0	0	0	0	0	0	0
85 to 90	2	0.059	0	0	0	0	0	0	0	0
		7 6394	1	986 Mw 6.2	Chalfant V	alley, CA	terestati de la constante t			
0 to 5	23	0.291	5	0.312	4	0.667	1	0.500	1	1.0
5 to 10	20	0.253	2	0.125	0	0	0	0	0	0
10 to 15	17	0.215	5	0.312	1	0.167	1	0.500	0	0
15 to 20	10	0.127	0	0	0	0	0	0	· 0	0
20 to 25	4	0.051	2	0.125	0	0	0	0	0	0
25 to 30	2	0.025	1	0.062	0	0	0	0	0	0
30 to 35	1	0.013	0	0	0	0	0	0	0	0
35 to 40	2	0.025	1	0.062	1	0.167	0	0	0	0

1:\5001A\PSHA-XH1.DOC 9/2/98

100		-	10	
122	na	-2	~1	×١
	ЧÇ	"	VI.	U1

	n	=2	n	= 3	n	= 4	n	= 5	n	= 6
θ	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.
40 to 45	0	0	0	0	0	0	0	0	0	0
45 to 50	0	0	0	0	0	0	0	0	0	0
50 to 55	0	0	0	0	0	0	0	0	0	0
55 to 60	0	0	0	0	0	0	0	0	0	0
60 to 65	0	0	0	0	0	0	0	0	0	0
65 to 70	.0	0	0	0	0	0	0	0	0	0
70 to 75	0	0	0	0	0	0	0	0	0	0
75 to 80	0	0	0	0	0	0	0	0	0	0
80 to 85	0	0	0	0	0	0	0	0	0	0
85 to 90	0	0	0	0	0	0	0	0	0	0
		d <u></u>		1954 Mw 6	.8 Dixie Va	lley, NV		· · · · · · · · · · · · · · · · · · ·		•
0 to 5	46	0.162	34	0.183	26	0.173	16	0.163	12	0.154
5 to 10	42	0.148	34	0.183	32	0.213	24	0.245	20	0.256
10 to 15	54	0.190	28	0.151	20	0.133	12	0.122	10	0.128
15 to 20	36	0.127	34	0.183	28	0.187	18	0.184	16	0.205
20 to 25	24	0.085	8	0.043	8	0.053	4	0.041	4	0.051
25 to 30	16	0.056	8	0.043	2	0.013	0	0	0	0
30 to 35	18	0.063	10	0.054	· 8	0.053	6	0.061	4	0.051
35 to 40	8	0.028	8	0.043	6	0.040	6	0.061	6	0.077
40 to 45	10	0.035	6	0.032	6	0.040	2	0.020	2	0.026
45 to 50	6	0.021	2	0.011	2	0.013	2	0.020	2	0.026
50 to 55	2	0.007	2	0.011	2	0.013	0	0	0	0
55 to 60	10	0.035	4	0.022	4	0.027	4	0.041	2	0.026
60 to 65	4	0.014	2	0.011	2	0.013	0	0	0	0
65 to 70	2	0.007	2	0.011	2	0.013	2	0.020	0	0
70 to 75	0	0	0	0	0	0	0	0	0	0
75 to 80	6	0.021	4	0.022	2	0.013	2	0.020	0	0
80 to 85	0	0	0	0	0	0	0	0	0	0
85 to 90	0	0	0	0	0	0	0	0	0	0
		1	معج <u>ب ،</u> ، من ا	1993 M _w 6.	1 Eureka V	alley,CA		h <u>ara an 1</u> 7 - 194		
0 to 5	0	0	0	0	0	0	0	0	0	0
5 to 10	2	0.020	0	0	0	0	0	0	0	0
10 to 15	2	0.020	0	0	0	0	0	0	0	0
15 to 20	1	0.010	0	0	0	0	0	0	0	0
20 to 25	1	0.010	0	0	0	0	0	0	0	0
25 to 30	7	0.070	1	0.059	0	0	0	0	0	0
30 to 35	12	0.120	2	0.118	0	0	0	0	0	0
35 to 40	20	0.200	2	0.118	1	0.167	0	0	0	0
40 to 45	8	0.080	4	0.235	2	0.333	0	0	0	0
45 to 50	14	0.140	4	0.235	1	0.167	0	0	0	0
50 to 55	19	0.190	0	0	0	0	0	0	0	0
55 to 60	4	0.040	2	0.118	0	0	0	0	0	0
60 to 65	3	0.030	0	0	0	0	0	0	0	0
65 to 70	2	0.020	0	0	0	0	0	0	0	0
70 to 75	2	0.020	1	0.059	1	0,167	0	0	0	0
75 to 80	2	0.020	0	0	0	0	0	0	0	0
80 to 85	1	0.010	1	0.059	1	0.167	1	1.000	0	0

	n	= 2	n	= 3	<u>ge 0 01 0)</u> n	= 4	n	= 5	n = 6		
θ	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.	
85 to 90	0	0	0	0	0	0	0	0	0	0	
001000	· · · ·	<u> </u>		1954 Mw 7.	1 Fairview	Peak, NV			<u> </u>		
0 to 5	25	0.181	17	0.191	13	0.197	12	0.245	9	0.231	
5 to 10	35	0.254	22	0.247	17	0.258	11	0.224	10	0.256	
10 to 15	12	0.087	10	0.112	9	0.136	4	0.082	4	0.103	
15 to 20	18	0.130	10	0.112	7	0.106	6	0.122	5	0.128	
20 to 25	19	0.138	13	0.146	8	0.121	6	0.122	5	0.128	
25 to 30	8	0.058	3	0.034	3	0.045	2	0.041	2	0.051	
30 to 35	6	0.043	6	0.067	4	0.061	4	0.082	1	0.026	
35 to 40	9	0.065	4	0.045	2	0.030	2	0.041	2	0.051	
40 to 45	0	0	0	0	0	0	0	0	0	0	
45 to 50	3	0.022	2	0.022	2	0.030	2	0.041	1	0.026	
50 to 55	1	0.007	0	0	0	0	0	0	0	0	
55 to 60	0	0	0	0	0	0	0	0	0	0	
60 to 65	1	0.007	1	0.011	0	0	0	0	0	0	
65 to 70	1	0.007	1	0.011	1	0.015	0	0	0	0	
70 to 75	0	0	0	0	0	0	0	0	0	0	
75 to 80	0	0	0	0	0	0	0	0	0	0	
80 to 85	0	0	0	0	0	0	0	0	0	0	
85 to 90	0	0	0	0	0	0 -	0	0	0	0	
				1950 M _w	5.6 Fort Sa	ige, CA					
0 to 5	1	1.0	1	1.0	0	0	0	0	0	0	
5 to 10	0	0	0	0	0	0	0	0	0	0	
10 to 15	0	0	0	0	0	0	0	0	0	0	
15 to 20	0	0	0	0	0	0	0	0	0	0	
20 to 25	0	0	0	0	0	0	0	0	0	0	
25 to 30	0	0	0	0	0	0	0	0	0	0	
30 to 35	0	0	0	0	0	0	0	0	0	0	
35 to 40	0	0	0	0	0	0	0	0	0	0	
40 to 45	0	0	0	0	0	0	0	0	0	0	
45 to 50	0	0	0	0	0	0	0	0	0	0	
50 to 55	0	0	0	0	0	0	0	0	0	0	
55 to 60	0	0	0	0	0	0	0	0	0	0	
60 to 65	0	0	0	0	0	0	0	0	0	0	
65 to 70	0	0	0	0	0	0	0	0	0	0	
70 to 75	0	0	0	0	0	0	0	0	0	0	
75 to 80	0	0	0	0	0	0	0	0	0	0	
80 to 85	0	0	0	0	0	0	0	0	0	0	
85 to 90	0	0	0	0	0	0	0	0	0	0	
				1975 M _w	5.2 Galway	/ Valley					
0 to 5	1	0.143	0	0	0	0	0	0	0	0	
5 to 10	0	0	0	0	0	0	0	0	0	0	
10 to 15	0	0	0	0	0	0	0	0	0	0	
15 to 20	1	0.143	0	0	0	0	0	0	0	0	
20 to 25	3	0.429	1	1.0	1	1.0	0	0	0	0	
25 to 30	0	0	0	0	0	0	0	0	0	0	
30 to 35	0	0	0	0	0	0	0	0	0	0	

а. 8.

(Page 4 01 8)										
6	No	= Z	No	Freq	No	= 4 Freq	No	Freq	No	≂ 0 Frea
25 to 40	0		0	0	0	0	0	0	0	0
35 10 40 40 to 45	0	0	0	0	0	0	0	0	0	0
40 to 40	0	0	0	0	0			0	<u> </u>	0
40 to 55	0		0	0	0	0	<u> </u>	0	0	0
55 to 60	0	0	n n		0		0	0	0	0
60 to 65		0 143	0	0	0	0	<u> </u>	0	0	0
65 to 70	+	0.143	0	0	0	0	0	0	0	0
70 to 75	0	0.140	0	0	0	0	0	0	0	0
75 to 80	0		0	0	0	0	0	0	0	0
80 to 85	0	0	0	0	0	0	0	0	0	0
85 to 90	0	0	0	0	0	0	0	0	0	0
	L			1959 M _w 7.	4 Hebgen I	Lake, MT	I	<u>-</u>	<u> </u>	
0 to 5	13	0.143	8	0.151	5	0.135	5	0.156	3	0.130
5 to 10	6	0.066	5	0.094	3	0.081	3	0.094	3	0.130
10 to 15	18	0.198	12	0.226	7	0.189	6	0.187	4	0.174
15 to 20	3	0.033	1	0.019	0	0	0	0	0	0
20 to 25	0	0	0	0	0	0	0	0	0	0
25 to 30	6	0.066	5	0.094	5	0.135	5	0.156	4	0.174
30 to 35	14	0.154	3	0.057	3	0.081	2	0.062	1	0.043
35 to 40	4	0.044	4	0.075	3	0.081	2	0.062	1	0.043
40 to 45	3	0.033	0	0	0	0	0	0	0	0
45 to 50	8	0.088	6	0.113	5	0.135	3	0.094	3	0.130
50 to 55	5	0.055	4	0.075	2	0.054	2	0.062	1	0.043
55 to 60	6	0.066	4	0.075	3	0.081	3	0.094	2	0.087
60 to 65	1	0.011	1	0.019	1	0.027	1	0.031	1	0.043
65 to 70	0	0	0	0	0	0	0	0	0	0
70 to 75	1	0.011	0	0	0	0	0	0	0	0
75 to 80	1	0.011	0	0	0	0	0	0	0	0
80 to 85	1	0.011	0	0	0	0	0	0	0	0
85 to 90	1	0.011	0	0	0	0	0	0	0	0
	r	T	19	79 M _w 5.5 I	Homestead	Valley, CA				
0 to 5	6	0.120	0	0	0	0	0	0	0	0
5 to 10	6	0.120	0	0	0	0	0	0	0	0
10 to 15	5	0.100	2	0.667	0	0	0	0	0	0
15 to 20	25	0.100	0	0		0	0	0	0	0
20 to 25		0.220		0.333		1.000		1.000	0	0
25 to 30	4	0.080	0		0	0	0		<u> </u>	0
30 to 35	2	0.040	0	0	0	0	0	0	0	0
35 to 40		0.020	0	0	0	0	0	0	0	0
40 (0 45 45 to 50	4	0.040	0							0
40 10 50 50 to 55	2	0.020	0	0	0	0	0		0	<u> </u>
50 to 50		0.000			0	0	0			<u> </u>
00 to 65	2	0.040	0			0				0
65 to 70		0.020			0		0			0
70 to 75		0.020	0	0		0	0	0		0
75 to 80	0	0	0		0	0	0	0		0
101000		U V	0	0	, V	U U			I U	

	n	= 2	n	= 3	n n	= 4	n	= 5	n = 6		
θ	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.	
80 to 85	0	0	0	0	0	0	0	0	0	0	
85 to 90	0	0	0	0	0	0	0	0	0	0	
	·			1992 Mw	7.4 Lande	rs, CA	h	. 			
0 to 5	11	0.143	8	0.136	6	0.200	6	0.353	4	0.333	
5 to 10	7	0.091	5	0.085	1	0.033	0	0	0	0	
10 to 15	6	0.078	4	0.068	4	0.133	2	0.118	1	0.083	
15 to 20	8	0.104	4	0.068	З	0.100	3	0.176	2	0.167	
20 to 25	7	0.091	6	0.102	4	0.133	2	0.118	1	0.083	
25 to 30	6	0.078	6	0.102	3	0.100	1	0.059	1	0.083	
30 to 35	2	0.026	1	0.017	0	0	0	0	0	0	
35 to 40	4	0.052	2	0.034	1	0.033	0	0	0	0	
40 to 45	2	0.026	2	0.034	1	0.033	0	0	0	0	
45 to 50	55	0.065	3	0.051	2	0.067	1	0.059	1	0.083	
50 to 55	4	0.052	4	0.068	2	0.067	1	0.059	1	0.083	
55 to 60	1	0.013	1	0.017	0	0	0	0	0	0	
60 to 65	3	0.039	3	0.051	0	0	0	0	0	0	
65 to 70	2	0.026	2	0.034	0	0	0	0	0	0	
70 to 75	3	0.039	2	0.034	• 1	0.033	1	0.059	1	0.083	
75 to 80	3	0.039	3	0.051	0	0	0	0	0	0	
80 to 85	1	0.013	1	0.017	1	0.033	0	0	0	0	
85 to 90	2	0.026	2	0.034	1	0.033	0	0	0	0	
				1980 Mw 6.1	Mammoth	Lake, CA			·		
0 to 5	8	0.061	3	0.120	1	0.143	0	0	0	0	
5 to 10	11	0.083	3	0.120	1	0.143	0	0	0	0	
10 to 15	17	0.129	1	0.040	1	0.143	1	0.250	0	0	
15 to 20	4	0.030	3	0.120	1	0.143	1	0.250	0	0	
20 to 25	19	0,144	7	0.280	2	0.286	2	0.500	1	1.000	
25 to 30	11	0.083	1	0.040	0	0	0	0	0	0	
30 to 35	8	0.061	1	0.040	0	0	0	0	0	0	
35 to 40	31	0.235	4	0.160	1	0.143	0	0	0	0	
40 to 45	1	0.008	1	0.040	0	0	0	0	0	0	
45 to 50	0	0	0	0	0	0	0	0	0	0	
50 to 55	10	00.076	0	0	0	0	0	0	0	0	
55 to 60	3	0.023	1	0.040	0	0	0	0	0	0	
60 to 65	2	0.015	0	0	0	0	0	0	0	0	
65 to 70	75	0.038	0	0	0	0	0	0	0	0	
70 to 75	0	0	0	0	0	0	0	0	0	0	
75 to 80	2	0.015	0	0	0	0	0	0	0	0	
80 to 85	0	0	0	0	0	0	0	0	0	0	
85 to 90	0	0	0	0	0	0	0	0	0	0	
0212				1872 M _w 7.0	Owens V	alley, CA		- 1		••	
0 to 5	29	0.266	8	0.229	6	0.250	4	0.250	4	0.286	
5 to 10	20	0.183	5	0.143	4	0.167	3	0.187	2	0.143	
10 to 15	4	0.037	4	0.114	1	0.042	1	0.062	1	0.071	
15 to 20	27	0.248	4	0.114	2	0.083	1	0.062	1	0.071	
20 to 25	5	0.046	5	0.143	4	0.167	2	0.125	2	0.143	
25 to 30	8	0.073	5	0.143	3	0.125	2	0.125	1	0.071	

10	 -11	<u>۱۱</u>
11/2/16	 nr 3	< 1

	n	n = 2		n = 3		= 4	n	= 5	n = 6			
θ	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.		
30 to 35	8	0.073	2	0.057	2	0.083	1	0.062	1	0.071		
35 to 40	45	0.046	2	0.057	2	0.083	2	0.125	2	0.143		
40 to 45	1	0.009	0	0	0	0	0	0	0	0		
45 to 50	1	0.009	0	0	0	0	0	0	0	0		
50 to 55	1	0.009	0	0	0	0	0	0	0	0		
55 to 60	0	0	0	0	0	0	0	0	0	0		
60 to 65	0	0	0	0	0	0	0	0	0	0		
65 to 70	0	0	0	0	0	0	0	0	0	0		
70 to 75	0	0	0	0	0	0	0	0	0	0		
75 to 80	0	0	0	0	0	0	0	0	0	0		
80 to 85	0	0	0	0	0	0	0	0	0	0		
85 to 90	0	0	0	0	0	0	0	0	0	0		
1915 Mw 7.3 Pleasant Valley, CA												
0 to 5	4	0.200	1	0.111	1	0.167	0	0	0	0		
5 to 10	1	0.050	1	0.111	0	0	0	0	0	0		
10 to 15	1	0.050	1	0.111	1	0.167	0	0	0	0		
15 to 20	1	0.050	1	0.111	1	0.167	1	0.500	1	0.500		
20 to 25	1	0.050	1	0.111	0	0	0	0	0	0		
25 to 30	1	0.050	1	0.111	0	0	0	0	0	0		
30 to 35	6	0.300	2	0.222	2	0.333	1	0.500	1	0.500		
35 to 40	2	0.100	0	0	0	0	0	0	0	0		
40 to 45	0	0	0	0	0	0	0	0	0	0		
45 to 50	2	0.100	0	0	0	0	0	0	0	0		
50 to 55	1	0.050	1	0.111	1	0.167	0	0	0	0		
55 to 60	0	0	0	0	0	0	0	0	0	0		
60 to 65	0	0	0	0	0	0	0	0	0	0		
65 to 70	0	0	0	0	0	0	0	0	0	0		
70 to 75	0	0	0	0	0	0	0	0	0	0		
75 to 80	0	0	0	0	0	0	0	0	0	0		
80 to 85	0	0	0	0	0	0	0	0	0	0		
85 to 90	0	0	0	0		0	0	0	0	0		
01.5		0.000		1954 Mw 6.	6 Rainbow	Mtn., NV		0.140	· · · · ·			
0 to 5	5	0.098	2	0.100	<u> </u>	0.111		0.143	1	0.500		
51010	4	0.078	2	0.100		0.111	<u> </u>	0	0	0		
15 to 20	13	0.255	1	0.050		0.111	0		0			
15 to 25	4	0.070		0.050	0	0	0		0	<u> </u>		
20 10 20 25 to 20		0.020	0			0	0	0		0		
20 to 25		0.039		0 100		0.111		0.142		0		
35 to 10	2	0.137		0.100		0.111		0.143				
40 to 45		0.039	1	0.050		0.111	0	0.143		0		
45 to 50		0.020	1	0.050	1	0 111	1	0 142		0 500		
50 to 55	0	0.059	0	0.000	0	0.111	0	0.143		0.500		
55 to 60	2	0.050	0	0.100		0111		0 1 4 2	0	0		
60 to 65	5	0.009	- <u>-</u>	0.100	1	0.111		0.143		0		
65 to 70	1	0.030		0.200	0	0.11		0.143		0		
70 to 75		0.020	4	0.050		0111		0 1 4 2		0		
101075		0.020	I	0.050	1	0.111		0.143	U	0		

I:\5001A\PSHA-XH1.DOC 9/2/98

n=2 $n=3$ $n=4$ $n=5$ $n=6$											
۵	No	Freq	No	Freq.	No.	Freq.	No.	Freq	No	Freq	
75 to 90	0	0		0	0	0	0	0		0	
75 10 80	0	0	0	0	0		0	0		0	
85 to 00	0	0	0	0	0	0	0		0	0	
00 10 90	0	0	0	1997 M. 7		Mexico	<u> </u>	<u> </u>	0	<u> </u>	
O to 5	25	0 145	10	0.161	16	0 199	R R	0.154	2	0.001	
5 to 10	20	0.140	10	0.143	10	0.100	10	0.104	7	0.091	
10 to 15	19	0.140	10	0.145	10	0.133	6	0.115	1	0.212	
15 to 20	10	0.100	14	0.123	13	0.141	8	0.154	4	0.001	
10 to 25	13	0.064		0.104	7	0.100	5	0.006		0.091	
20 to 20	11	0.004	3	0.062	5	0.002	5	0.090	4 5	0.121	
20 to 35	12	0.001	7	0.002	5	0.059	2	0.030	2	0.102	
30 to 33	10	0.070	8	0.002		0.003		0.000		0.001	
40 to 45	11	0.070	8	0.071		0.047	2	0.019	2	0.000	
40 to 43	0	0.001	5	0.045	3	0.047	2	0.038	1	0.001	
40 to 50		0.032	2	0.045	2	0.000		0.000		0.030	
55 to 60	2	0.000	2	0.018	0	0.024		0.019		0.050	
60 to 65	2	0.012	- 2	0.010	0		0	0	0	0	
65 to 70	1	0.006	0	0	0		n n		0		
70 to 75	1	0.006	0	1 <u>0</u>	0	n n	0		0		
75 to 80	0	0.000	0		0		0			0	
90 to 95		0.006	1	0.000	1	0.012	0		0	0	
95 to 00		0.000	0	0.003	0	0.012					
00 10 90											
O to 5	7	0.150	2	0.007	0.0 Stillwa	0 197	2	0.296	4	0.200	
5 to 10	7	0.159	3	0.120	0	0.107		0.200	0	0.200	
10 to 15	7	0.159	4	0.129	2	0 197		0142		0 200	
15 to 20	25	0.103	5	0.123	0	0.107	0	0.140	0	0.200	
20 to 25	5	0.114	5	0.161	3	0 187	1	0.143		0.200	
25 to 20	3	0.068	3	0.007	3	0.107	1	0.143	0	0.200	
20 to 35	1	0.000	1	0.037	1	0.062		0.140	0	0	
35 to 40	4	0.023	2	0.052	1	0.002	1	0143		0.200	
40 to 45	2	0.045	2	0.065	1	0.002	0	0.140		0.200	
40 to 40	2	0.045		0.000	0	0.002	0		0	0	
50 to 55	1	0.023	1	0.032	1	0.062	1	01/3	1	0.200	
55 to 60		0.020	0	0.002	0	0.002	0	0.140	0	0.200	
60 to 65	0			0	0	0	0		0		
65 to 70	0	0	0	<u> </u>	0	0	0		0		
70 to 75	0	0	0	0	0	0	0	0	0		
75 to 80	0	0	0	0	0	0	0	0		0	
75 to 85	0	0	0	0	0		0				
85 to 00		0	0		0				0		
0010 90				Combi	ined Stati			<u> </u>		U	
O to 5	225	0 125	112	0149		0 166	FC	0.167	20	0.160	
5 to 10	109	0.120	104	0.140	75	0.100	<u>50</u>	0.10/	30	0.100	
10 to 15	190	0.101	02	0.100	67	0.147	27	0.104	44	0.100	
10 10 10 15 to 00	102	0.101	92	0.120	60	0.123	3/	0.110	21	0.114	
10 to 20	100	0.069	91	0.000	60	0.123	43	0.128	29	0.122	
201025	122	0.000	00	0.086	42	0.082	20	0.078	21	0.089	

	(, ugo o or o)												
n = 2		= 2	n = 3		n	= 4	n	= 5	n = 6				
θ	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.	No.	Freq.			
25 to 30	161	0.090	52	0.068	30	0.059	19	0.057	15	0.063			
30 to 35	110	0.061	44	0.058	31	0.061	20	0.060	11	0.046			
35 to 40	131	0.073	47	0.061	30	0.059	22	0.066	18	0.076			
40 to 45	58	0.032	32	0.042	17	0.033	6	0.018	6	0.025			
45 to 50	65	0.036	28	0.037	18	0.035	13	0.039	11	0.046			
50 to 55	65	0.036	21	0.027	16	0.031	8	0.024	6	0.025			
55 to 60	39	0.022	24	0.031	13	0.025	11	0.033	5	0.021			
60 to 65	122	0.068	18	0.024	9	0.018	7	0.021	3	0.013			
65 to 70	16	0.009	6	0.008	3	0.006	2	0.006	0	0			
70 to 75	40	0.022	4	0.005	3	0.006	2	0.006	1	0.004			
75 to 80	23	0.013	13	0.017	5	0.010	5	0.015	1	0.004			
80 to 85	11	0.006	6	0.008	6	0.012	3	0.009	1	0.004			
85 to 90	16	0.009	4	0.005	2	0.004	0	0	0	0			

Figure H-1 Comparison of empirical CDF for the ratio D/Davg developed by the DFS team with the CDFs for various statistical distributions fit to the data

Figure H-2 Comparison of empirical CDF for the ratio D/Davg-paleo developed by the SBK team with the CDFs for various statistical distributions fit to the data

Figure H-3 Comparison of empirical CDF for the ratio D/Davg-F(RL) developed by the SBK team with the CDFs for various statistical distributions fit to the data

Figure H-4 Comparison of empirical CDF for the ratio D/D_{max-F(RL)} developed by the SBK team with the CDFs for various statistical distributions fit to the data

Figure H-5 Comparison of empirical CDF for the ratio D/D^{max} developed by the AAR team with the CDFs for various statistical distributions fit to the data

Figure H-6 Comparison of empirical CDF for the ratio D/Dcum developed by the SBK team with the CDFs for various statistical distributions fit to the data

Figure H-7 Probability distributions for D/D_{max} as a function of normalized location, x/L, along a principal rupture. Left, smooth curves for minimum, median, and maximum values of D/D_{max} developed by the ASM team from analysis of historical ruptures presented in Wheeler (1989). Right, CDFs for beta distributions computed using the beta parameters from the smooth curves shown on Figure H-8.

Figure H-8 Beta distribution parameters a and b developed at specific values of x/L from the "Wheeler" curves shown on the left of Figure H-7 and the smooth curves fit to these parameters

Figure H-9 Probability distributions for D/D_{max} as a function of normalized location, x/L, along a principal rupture developed by the SBK team using numerical simulations of slip with fractal fault roughness

Figure H-10 Beta distribution parameters a and b developed at specific values of x/L from the simulation results shown on Figure H-9 and the smooth curves fit to these parameters

Figure H-11 CDFs for simulations of D/D_{max} as a function of normalized location, x/L, from Figure H-9 compared to CDFs for beta distributions computed using the beta parameters from the smooth curves shown on Figure H-10

Figure H-12. Logistic regression models for the probability of surface rupture as a function of moment magnitude developed from three data sets presented in S.K. Pezzopane and T.E. Dawson (USGS, written communication, 1996).
GB = Great Basin post 1930, NB&R = northern Basin and Range post 1930, and EC = extensional cordillera.

Figure H-13a Frequency of distributed rupture as a function of distance from principal rupture. Data include hanging wall cracking from 1988 Chalfant Valley earthquake. Points along bottom of plot represent distances for individual earthquakes where observed frequency was zero. The data for the three magnitude intervals are offset for clarity.

Figure H-13b Frequency of distributed rupture as a function of distance from principal rupture. Data do not include hanging wall cracking from 1988 Chalfant Valley earthquake. Points along bottom of plot represent distances for individual earthquakes where observed frequency was zero. The data for the three magnitude intervals are offset for clarity.

Figure H-13c Frequency of distributed rupture as a function of distance from principal rupture developed for thr AAR and SDO teams. The plot on the left shows hanging wall data, the plot on the right shows footwall data. Data do not include hanging wall cracking from the 1988 Chalfant Valley earthquake or data from the 1980 Mammoth earthquake. Points along bottom of plot represent distances for individual earthquakes where observed frequency was zero. The data for the three magnitude intervals are offset for clarity.

1

Figure H-14 Example of fitting straight line (dashed line) to digitized rupture trace (solid points) to determine the average strike azimuth

Figure H-15 Frequency distribution for angle between average strike of principal rupture and strike of individual distributed rupture traces. Parameter n denotes the number of digitization points along an individual rupture trace. Top plot shows the data from Table H-3 presented in terms of fraction of total ruptures. Bottom plot shows exponential fits to the data normalized to unity at a relative angle of 0°.

APPENDIX I

RESULTS OF REGRESSION ATTENUATION ANALYSES

APPENDIX I

RESULTS OF REGRESSION ATTENUATION ANALYSES

The following tables summarize the regression coefficients developed from each experts' point estimates. The equation forms adopted for the regressions are discussed in Chapter 6.

1:\5001A\PSHA-XI.DOC 2/22/98

TABLE I-1A
J. G. ANDERSON: REGRESSION COEFFICIENTS
MEDIAN MODEL

And a second sec	V		The second se	1				A DESCRIPTION OF A DESC						
COMPONENT	FREQUENCY (HZ)	a_l	a2	<i>a</i> ₃	a4	<i>a</i> 5	<i>a</i> ₆	a7	a_8	<i>a</i> 9	a ₁₀	a ₁₁	a ₁₂	Sigma Fit
Horiz	PGA	1.9771	0.4586	-1.4197	-0.3066	0.2303	0.0000	0.0076	6.7	0.2144	-0.3545	5.2	6.0	0.1493
	20	2.8264	0.4586	-1.5590	-0.3066	0.2303	0.0136	-0.0263	7.4	0.2236	-0.3492	5.0	6.1	0.1455
	10	3.0127	0.4586	-1.5426	-0.3066	0.2303	0.0123	0.0354	7.4	0.1317	-0.3955	5.0	5.9	0.1631
	5	2.5847	0.4586	-1.3715	-0.3066	0.2303	-0.0100	0.0220	6.7	0.2009	-0.3174	5.3	6.0	0.1598
	2	1.7055	0.4586	-1.1607	-0.2628	0.2303	-0.0469	0.0382	5.8	0.2553	-0.3625	5.3	5.9	0.1521
	1	0.7983	0.4586	-1.0296	-0.2628	0.2303	-0.0803	-0.0330	5.0	0.3555	-0.2645	5.0	6.1	0.1557
	0.5	-0.5006	0.4586	-0.8625	-0.1752	0.2303	-0.1139	-0.1220	2.9	0.3861	-0.0211	5.0	6.5	0.1889
	0.3	-1.0946	0.4586	-0.8745	-0.0876	0.2303	-0.1407	-0.1366	3.0	0.2769	-0.0830	5.0	6.7	0.1992
	PGV	6.0533	0.4586	-1.2687	-0.1752	0.2303	-0.0476	0.0217	5.9	0.2551	-0.3154	5.1	6.0	0.1696
Vert	PGA	1.8132	0.7399	-1.5441	0.2825	0.1375	0.0000	0.1492	7.8	0.3229	-0.2993	5.1	6.5	0.1728
Trans do	20	2.7352	0.7399	-1.6777	0.2825	0.1375	0.0066	0.1284	7.6	0.3390	-0.2740	5.5	6.3	0.1668
	10	3.1549	0.7399	-1.6122	-0.1412	0.1375	-0.0364	0.1170	7.7	0.3135	-0.3205	5.1	6.5	0.2131
	5	2.5230	0.7399	-1.4196	-0.1695	0.1375	-0.0475	0.1274	8.2	0.3532	-0.2886	5.2	6.5	0.2079
	2	1.7173	0.7399	-1.2318	-0.1695	0.1375	-0.1003	0.1907	8.0	0.3075	-0.2739	5.0	6.2	0.2090
	1	0.5757	0.7399	-1.0973	-0.1695	0.1375	-0.1243	0.2956	6.9	0.2498	-0.1456	5.4	7.0	0.1679
	0.5	-0.0541	0.7399	-1.0697	-0.1695	0.1375	-0.1933	0.5981	5.8	-0.1117	-0.3472	5.0	5.5	0.2462
	0.3	-0.7565	0.7399	-0.9967	-0.1695	0.1375	-0.2338	0.6419	4.7	-0.1892	-0.5016	5.3	6.5	0.2554
	PGV	6.0353	0.7399	-1.3048	-0.1695	0.1375	-0.1137	0.4000	7.7	0.0160	-0.4243	5.0	5.9	0.2679
COMPONENT	FREQUENCY	b_I	<i>b</i> ₂	<i>b</i> ₃	b_4	SIGMA FIT								
-----------	-----------	--------	-----------------------	-----------------------	-------	-----------								
	(HZ)													
Horiz	PGA	0.5590	-0.0543	0.0	6.8	0.0094								
	20	0.5598	-0.0597	0.0	6.8	0.0105								
	10	0.5756	-0.0680	0.0	6.9	0.0155								
	5	0.6074	-0.0659	0.0	6.9	0.0148								
	2	0.6603	-0.0637	0.0	7.0	0.0158								
	1	0.7316	-0.0456	. 0.0	7.0	0.0091								
	0.5	0.8199	-0.0392	0.0	6.9	0.0159								
	0.3	0.8646	-0.0901	0.0	6.1	0.0224								
	PGV	0.7201	-0.0202	0.0	7.0	0.0102								
Vert	PGA	0.6326	-0.0205	0.0	6.2	0.0081								
	20	0.6528	-0.0182	0.0	6.5	0.0082								
	10	0.6742	-0.0636	0.0	5.9	0.0103								
	5	0.6530	-0.0606	0.0	5.8	0.0146								
	2	0.6573	-0.0691	0.0	5.8	0.0148								
	1	0.6838	-0.0453	0.0	5.8	0.0169								
	0.5	0.7221	-0.0156	0.0	5.8	0.0183								
	0.3	0.7640	-0.0382	0.0	5.8	0.0219								
	PGV	0.6299	-0.0370	0.0	5.8	0.0173								

TABLE I-1B J. G. ANDERSON: REGRESSION COEFFICIENTS SIGMA MODEL

1:\5001A\PSHA-XI.DOC 2/22/98

COMPONENT	FREQUENCY (HZ)	Cl	<i>C</i> ₂	C3	C4	C5	<i>c</i> ₆	MINIMUM	SIGMA FIT
Horiz	PGA	0.9620	0.0	-0.3323	0.0516	0.0304	6.0	0.2	0.0989
	20	0.9291	0.0	-0.2891	0.0434	0.0100	6.0	0.2	0.1008
3	10	0.9696	0.0	-0.3295	0.0496	0.0386	6.0	0.2	0.0968
	5	0.9489	0.0	-0.3064	0.0457	0.0260	6.0	0.2	0.0996
	2	0.9234	0.0	-0.2859	0.0425	0.0240	6.0	0.2	0.0961
	1	0.9467	0.0	-0.3018	0.0465	0.0394	6.0	0.2	0.1025
	0.5	0.8838	0.0	-0.2370	0.0393	0.0071	6.0	0.2	0.1059
	0.3	0.8841	0.0	-0.1975	0.0327	-0.0180	6.0	0.2	0.1128
	PGV	0.9170	0.0	-0.2645	0.0412	0.0060	6.0	0.2	0.1081
Vert	PGA	0.9061	0.0	-0.2806	0.0480	0.0242	6.0	0.2	0.1220
	20	0.9655	0.0	-0.2351	0.0349	-0.0417	6.0	0.2	0.1257
	10	0.8968	0.0	-0.2670	0.0438	0.0269	6.0	0.2	0.1131
	5	0.8608	0.0	-0.2251	0.0366	0.0584	6.0	0.2	0.1058
	2	0.8496	0.0	-0.1971	0.0315	0.0232	6.0	0.2	0.1073
	1	0.9472	0.0	-0.2968	0.0551	-0.0050	6.0	0.2	0.1308
	0.5	0.8773	0.0	-0.2503	0.0602	0.0613	6.0	0.2	0.2003
	0.3	0.8719	0.0	-0.1939	0.0476	0.0375	6.0	0.2	0.1721
	PGV	0.8580	0.0	-0.2441	0.0483	0.0259	6.0	0.2	0.1412

TABLE I-1C J. G. ANDERSON: REGRESSION COEFFICIENTS SIGMA-MU MODEL

I:\5001A\PSHA-XI.DOC 2/22/98

COMPONENT	FREQUENCY (HZ)	d_{I}	d_2	<i>d</i> ₃	d_4	SIGMA FIT
Horiz	PGA	0.1147	0.0	0.0	0.0	0.0
	20	0.1095	0.0	0.0	0.0	0.0
	10	0.1262	0.0	0.0	0.0	0.0
	5	0.1221	0.0	0.0	0.0	0.0
	2	0.1322	0.0	0.0	0.0	0.0
	1	0.1325	0.0	0.0	0.0	0.0
	0.5	0.1539	0.0	0.0	0.0	0.0
	0.3	0.1549	0.0	0.0	0.0	0.0
	PGV	0.1197	0.0	0.0	0.0	0.0
Vert	PGA	0.1310	0.0	0.0	0.0	0.0
	20	0.1153	0.0	0.0	0.0	0.0
	10	0.1419	0.0	0.0	0.0	0.0
	5	0.1411	0.0	0.0	0.0	0.0
	2	0.1473	0.0	0.0	0.0	0.0
	1	0.1390	0.0	0.0	0.0	0.0
	0.5	0.1702	0.0	0.0	0.0	0.0
	0.3	0.1929	0.0	0.0	0.0	0.0
	PGV	0.1240	0.0	0.0	0.0	0.0

TABLE I-1D J. G. ANDERSON: REGRESSION COEFFICIENTS SIGMA-SIGMA MODEL

I:\5001A\PSHA-XI.DOC 2/22/98

TABLE I-2A
D. M. BOORE: REGRESSION COEFFICIENTS
MEDIAN MODEL

COMPONENT	FREQUENCY (HZ)	<i>a</i> 1	<i>a</i> ₂	а3	a4	<i>a</i> 5	<i>a</i> ₆	a7	a_8	<i>a</i> 9	a ₁₀	<i>a</i> ₁₁	a ₁₂	SIGMA FIT
Horiz	PGA	1.5497	0.3084	-1.3607	0.0428	0.1679	0.0000	-0.0091	6.6	0.3143	-0.1556	5.0	6.6	0.0652
	20	2.6166	0.3084	-1.5608	0.0428	0.1679	0.0060	-0.0008	7.2	0.3150	-0.1482	5.2	6.5	0.0745
	10	2.8493	0.3084	-1.5616	0.0428	0.1679	-0.0015	0.0202	7.8	0.2528	-0.1906	5.0	6.4	0.0891
	5	2.4108	0.3084	-1.4094	0.0428	0.1679	-0.0139	0.0240	7.5	0.2560	-0.1443	5.0	6.5	0.0880
	2	1.5149	0.3084	-1.1710	0.0428	0.1679	-0.0522	-0.0020	5.8	0.3720	-0.1352	5.0	6.6	0.0779
	1	0.7658	0.3084	-1.0502	0.0428	0.1679	-0.0864	-0.0353	5.0	0.4619	-0.1113	5.0	6.8	0.0812
	0.5	-0.2483	0.3084	-0.9440	0.0428	0.1679	-0.1015	-0.1290	4.8	0.3628	-0.0287	5.1	6.7	0.0939
	0.3	-0.5903	0.3084	-0.9312	0.0428	0.1679	-0.1629	-0.2092	4.1	0.1632	-0.0246	5.1	6.5	0.0825
	PGV	5.8882	0.3084	-1.1710	0.0428	0.1679	-0.1051	-0.0677	5.5	0.3161	-0.2053	5.0	6.1	0.1341
Vert	PGA	1.6973	0.5387	-1.5373	0.2029	0.1404	0.0000	-0.0580	6.4	0.3991	-0.0696	5.6	6.4	0.0707
	20	3.1350	0.5387	-1.7786	0.2029	0.1404	0.0058	-0.0629	7.0	0.3832	-0.0957	5.7	6.3	0.0799
	10	3.0993	0.5387	-1.7441	0.2029	0.1404	-0.0027	-0.0034	7.3	0.3445	-0.1193	5.6	6.4	0.0872
	5	1.9869	0.5387	-1.4854	0.2029	0.1404	-0.0142	0.0407	6.7	0.3542	-0.0831	5.6	6.3	0.0852
	2	0.6682	0.5387	-1.1881	0.2029	0.1404	-0.0404	0.0537	5.3	0.3557	-0.0107	5.5	6.4	0.0934
	1	-0.1466	0.5387	-1.0425	0.2029	0.1404	-0.0646	0.0188	4.4	0.3217	0.0840	5.5	6.5	0.0963
	0.5	-1.0320	0.5387	-0.9188	0.2029	0.1404	-0.0963	-0.0472	3.4	0.3081	0.1089	5.6	6.5	0.1120
	0.3	-1.3453	0.5387	-0.9122	0.2029	0.1404	-0.1313	-0.0431	3.3	0.2441	0.0609	5.2	6.5	0.1209
	PGV	5.0911	0.5387	-1.2405	0.2029	0.1404	-0.0725	0.1002	6.3	0.0365	-0.1530	5.0	6.2	0.1720

		TABLE I-2B	r.
D. M.	BOORE:	REGRESSION	COEFFICIENTS
		SIGMA MODE	L

COMPONENT	FREQUENCY	b_I	b_2	<i>b</i> ₃	b_4	SIGMA FIT
	(HZ)					
Horiz	PGA	0.5060	-0.0601	0.0	7.1	0.0004
	20	0.5246	-0.0607	0.0	7.1	0.0004
	10	0.5399	-0.0616	0.0	7.1	0.0003
	5	0.5855	-0.0598	0.0	7.1	0.0004
	2	0.6540	-0.0573	0.0	7.1	0.0005
	1	0.7089	-0.0540	0.0	7.1	0.0004
	0.5	0.7786	-0.0498	0.0	7.1	0.0004
	0.3	0.6838	-0.0839	0.0	7.1	0.0006
	PGV	0.5048	-0.0588	0.0	7.2	0.0021
Vert	PGA	0.5577	-0.0807	0.0	7.0	0.0049
	20	0.5954	-0.0770	0.0	7.0	0.0044
	10	0.5954	-0.0770	0.0	7.0	0.0044
	5	0.5954	-0.0576	0.0	7.0	0.0044
	2	0.5954	-0.0576	0.0	7.0	0.0044
	1	0.5954	-0.0576	0.0	7.0	0.0044
	0.5	0.5954	-0.0576	0.0	7.0	0.0044
	0.3	0.6121	-0.0576	0.0	7.0	0.0044
	PGV	0.4924	-0.0600	0.0	7.2	0.0022

I:\5001A\PSHA-XI.DOC 2/22/98

COMPONENT	FREQUENCY (HZ)	<i>c</i> ₁	<i>C</i> ₂	C3	C4	C5	С6	MINIMUM	SIGMA FIT
Horiz	PGA	0.5471	-0.0146	-0.1968	0.0337	0.0358	6.0	0.2	0.0659
	20	0.5194	0.0186	-0.1558	0.0269	0.0384	6.0	0.2	0.0691
	10	0.5976	0.0331	-0.1950	0.0323	0.0330	6.0	0.2	0.0660
	5	0.6248	0.0482	-0.2179	0.0361	0.0192	6.0	0.2	0.0603
	2	0.3572	0.0034	-0.0872	0.0187	0.0305	6.0	0.2	0.0543
	1	0.2909	-0.0070	-0.0330	0.0090	0.0523	6.0	0.2	0.0652
	0.5	0.2121	-0.0561	0.0153	0.0123	0.0502	6.0	0.2	0.0891
	0.3	0.2584	-0.0061	0.0870	-0.0082	0.0773	6.0	0.2	0.1139
	PGV	0.3575	0.0070	-0.1036	0.0271	0.0050	6.0	0.2	0.0840
Vert	PGA	0.3162	-0.0271	-0.0839	0.0201	0.0411	6.0	0.2	0.0726
	20	0.4047	-0.0043	-0.0734	0.0157	0.0076	6.0	0.2	0.0808
	10	0.2951	-0.0211	-0.0745	0.0187	0.0451	6.0	0.2	0.0679
	5	0.3058	-0.0036	-0.0760	0.0213	0.0599	6.0	0.2	0.0858
	2	0.2463	0.0210	-0.0090	0.0123	0.0444	6.0	0.2	0.0874
	1	0.3998	-0.0363	-0.1366	0.0329	0.0324	6.0	0.2	0.0847
	0.5	0.3062	0.0196	-0.0457	0.0207	0.0741	6.0	0.2	0.1323
	0.3	0.4412	-0.0852	-0.0048	0.0092	0.0306	6.0	0.2	0.1680
	PGV	0.1711	0.0371	0.0060	0.0035	0.1135	6.0	0.2	0.0744

TABLE I-2C D. M. BOORE: REGRESSION COEFFICIENTS SIGMA-MU MODEL

COMPONENT	FREQUENCY	d_I	d_2	d_3	d_4	SIGMA FIT
	(HZ)					
Horiz	PGA	0.1	0.0	0.0	7.1	0.0
	20	0.1	0.0	0.0	7.1	0.0
	10	0.1	0.0	0.0	7.1	0.0
	5	0.1	0.0	0.0	7.1	0.0
	2	0.1	0.0	0.0	7.1	0.0
	1	0.1	0.0	0.0	7.1	0.0
	0.5	0.1	0.0	0.0	7.1	0.0
	0.3	0.1	0.0	0.0	7.1	0.0
	PGV	0.1	0.0	0.0	7.1	0.0
Vert	PGA	0.1	0.0	0.0	7.1	0.0
	20	0.1	0.0	0.0	7.1	0.0
	10	0.1	0.0	0.0	7.1	0.0
	5	0.1	0.0	0.0	7.1	0.0
	2	0.1	0.0	0.0	7.1	0.0
	1	0.1	0.0	0.0	7.1	0.0
	0.5	0.1	0.0	0.0	7.1	0.0
	0.3	0.1	0.0	0.0	7.1	0.0
	PGV	0.1	0.0	0.0	7.1	0.0

TABLE I-2D D. M. BOORE: REGRESSION COEFFICIENTS SIGMA-SIGMA MODEL

COMPONENT	FREQUENCY	<i>a</i> 1	<i>a</i> ₂	<i>a</i> 3	a4	<i>a</i> 5	<i>a</i> ₆	a7	<i>a</i> ₈	<i>a</i> 9	a ₁₀	a ₁₁	a ₁₂	SIGMA
Horiz	PGA	1 8960	0.2126	-1 4434	-0.2258	0.2412	0.0000	0.0399	65	0.0000	0.0000	0.0	0.0	0 1105
	20	2,7450	0.2126	-1.5910	-0.2258	0.2412	0.0132	0.0291	6.9	0.0000	0.0000	0.0	0.0	0.1168
	10	2.7735	0.2126	-1.5481	-0.2032	0.2412	0.0144	0.0483	7.0	0.0000	0.0000	0.0	0.0	0.1180
	5	2.3798	0.2126	-1.3963	-0.1806	0.2412	-0.0011	0.0574	6.8	0.0000	0.0000	0.0	0.0	0.1230
	2	1.7052	0.2126	-1.2043	-0.1671	0.2412	-0.0496	0.0483	5.7	0.0000	0.0000	0.0	0.0	0.1487
	i	1.0160	0.2126	-1.1143	-0.1671	0.2412	-0.0885	0.0519	5.2	0.0000	0.0000	0.0	0.0	0.1519
	0.5	0.1935	0.2126	-1.0324	-0.1671	0.2412	-0.1418	0.0549	4.7	0.0000	0.0000	0.0	0.0	0.1782
	0.3	-0.2184	0.2126	-1.0371	-0.1671	0.2412	-0.2034	0.0269	4.6	0.0000	0.0000	0.0	0.0	0.1910
	PGV	6.0095	0.2126	-1.2345	-0.1671	0.2412	-0.0840	0.0469	4.9	0.0000	0.0000	0.0	0.0	0.1305
Vert	PGA	1.9650	0.4014	-1.6105	0.0000	0.2009	0.0000	0.1042	6.8	0.0000	0.0000	0.0	0.0	0.1308
	20	3.2137	0.4014	-1.8135	0.0000	0.2009	0.0040	0.0972	7.3	0.0000	0.0000	0.0	0.0	0.1464
	10	3.0633	0.4014	-1.7233	0.0000	0.2009	0.0001	0.1022	7.3	0.0000	0.0000	0.0	0.0	0.1405
	5	2.0716	0.4014	-1.4754	0.0000	0.2009	-0.0101	0.0949	7.0	0.0000	0.0000	0.0	0.0	0.1262
	2	1.0862	0.4014	-1.2540	0.0000	0.2009	-0.0531	0.1019	6.1	0.0000	0.0000	0.0	0.0	0.1309
	1	0.4391	0.4014	-1.1841	0.0000	0.2009	-0.0920	0.1647	5.7	0.0000	0.0000	0.0	0.0	0.1077
	0.5	-0.2319	0.4014	-1.1386	0.0000	0.2009	-0.1564	0.2868	4.7	0.0000	0.0000	0.0	0.0	0.1118
6	0.3	-0.6304	0.4014	-1.1370	0.0000	0.2009	-0.2225	0.3577	4.3	0.0000	0.0000	0.0	0.0	0.1582
	PGV	5.4130	0.4014	-1.3230	0.0000	0.2009	-0.0702	0.1917	6.7	0.0000	0.0000	0.0	0.0	0.1153

TABLE I-3A K. W. CAMPBELL: REGRESSION COEFFICIENTS MEDIAN MODEL

COMPONENT	FREQUENCY (HZ)	b_1	<i>b</i> ₂	b_3	b_4	SIGMA FIT
Horiz	PGA	0.4952	-0.0718	0.0	7.1	0.0107
	20	0.5000	-0.0756	0.0	7.1	0.0095
	10	0.5180	-0.0759	0.0	7.1	0.0097
	5	0.5518	-0.0743	0.0	7.1	0.0094
	2	0.6156	-0.0722	0.0	7.1	0.0090
	1	0.6611	-0.0697	0.0	7.1	0.0090
к	0.5	0.7137	-0.0666	0.0	7.1	0.0087
	0.3	0.7203	-0.0649	0.0	7.1	0.0087
	PGV	0.5657	-0.0789	0.0	7.1	0.0032
Vert	PGA	0.5842	-0.0642	0.0	6.8	0.0134
	20	0.6238	-0.0628	0.0	6.7	0.0124
	10	0.6287	-0.0644	0.0	6.7	0.0124
	5	0.6327	-0.0550	0.0	6.7	0.0123
	2	0.6475	-0.0586	0.0	6.7	0.0121
	1	0.6596	-0.0584	0.0	6.8	0.0121
	0.5	0.6838	-0.0603	0.0	6.8	0.0128
	0.3	0.6929	-0.0603	0.0	6.8	0.0128
2	PGV	0.5989	-0.0652	0.0	6.8	0.0137

TABLE I-3B K. W. CAMPBELL: REGRESSION COEFFICIENTS SIGMA MODEL

I:\5001A\PSHA-XI.DOC 2/22/98

I-11

F,

COMPONENT	FREQUENCY (HZ)	CI	<i>C</i> ₂	C3	C4	C5	С6	MINIMUM	SIGMA FIT
Horiz	PGA	0.7267	0.0	-0.3005	0.0535	0.0173	6.0	0.2	0.0800
	20	0.7021	0.0	-0.2571	0.0486	0.0132	6.0	0.2	0.0829
	10	0.8492	0.0	-0.3861	0.0691	0.0222	6.0	0.2	0.0660
	5	0.9030	0.0	-0.4097	0.0721	0.0007	6.0	0.2	0.0601
	2	0.5303	0.0	-0.1899	0.0395	0.0131	6.0	0.2	0.0843
	1	0.4384	0.0	-0.1203	0.0273	0.0477	6.0	0.2	0.0992
	0.5	0.2665	0.0	0.0325	0.0096	0.0263	6.0	0.2	0.1223
	0.3	0.2476	0.0	0.1379	-0.0106	0.0240	6.0	0.2	0.1341
	PGV	0.7873	0.0	-0.3460	0.0620	0.0272	6.0	0.2	0.1085
Vert	PGA	0.6835	0.0	-0.2488	0.0476	0.0222	6.0	0.2	0.1022
	20	0.7763	0.0	-0.2297	0.0423	0.0085	6.0	0.2	0.1093
	10	0.7307	0.0	-0.3015	0.0569	0.0342	6.0	0.2	0.0964
	5	0.8226	0.0	-0.3631	0.0677	0.0620	6.0	0.2	0.0944
	2	0.5424	0.0	-0.1390	0.0318	0.0378	6.0	0.2	0.1164
	1	0.7375	0.0	-0.2475	0.0475	-0.0049	6.0	0.2	0.1283
	0.5	0.5831	0.0	-0.1478	0.0433	0.0501	6.0	0.2	0.1541
	0.3	0.5651	0.0	-0.0052	0.0136	0.0817	6.0	0.2	0.1910
	PGV	0.8300	0.0	-0.3837	0.0728	0.1044	6.0	0.2	0.1112

TABLE I-3C K. W. CAMPBELL: REGRESSION COEFFICIENTS SIGMA-MU MODEL

COMPONENT	FREQUENCY (HZ)	d_I	d_2	d_3	d_4	SIGMA FIT
Horiz	PGA	0.1	0.0	0.0	7.1	0.0
	20	0.1	0.0	0.0	7.1	0.0
	10	0.1	0.0	0.0	7.1	0.0
	5	0.1	0.0	0.0	7.1	0.0
	2	0.1	0.0	0.0	7.1	0.0
	1	0.1	0.0	. 0.0	7.1	0.0
	0.5	0.1	0.0	0.0	7.1	0.0
	0.3	0.1	0.0	0.0	7.1	0.0
	PGV	0.1	0.0	. 0.0	7.1	0.0
Vert	PGA	0.1	0.0	0.0	7.1	0.0
	20	0.1	0.0	0.0	7.1	0.0
	10	0.1	0.0	0.0	7.1	0.0
	5	0.1	0.0	0.0	7.1	0.0
	2	0.1	0.0	0.0	7.1	0.0
	1	0.1	0.0	0.0	7.1	0.0
	0.5	0.1	0.0	0.0	7.1	0.0
	0.3	0.1	0.0	0.0	7.1	0.0
	PGV	0.1	0.0	0.0	7.1	0.0

TABLE I-3D K. W. CAMPBELL: REGRESSION COEFFICIENTS SIGMA-SIGMA MODEL

. .

COMPONENT	FREQUENCY	a	a	<i>a</i> ₂	a	as.	<i>a</i> ₆	<i>a</i> ₇	a,	a	an	<i>a</i> 11	<i>a</i> 12	SIGMA
	(HZ)		- 2			,	0	,			10		12	FIT
Horiz	PGA	1.6594	0.2412	-1.4068	-0.1238	0.2153	0.0000	0.0166	6.8	0.0000	0.0000	0.0	0.0	0.1588
	20	2.6292	0.2412	-1.5697	-0.1238	0.2153	0.0074	-0.0037	7.3	0.0000	0.0000	0.0	0.0	0.1796
	10	2.8002	0.2412	-1.5646	-0.1238	0.2153	0.0050	0.0153	7.7	0.0000	0.0000	0.0	0.0	0.1764
	5	2.3506	0.2412	-1.4123	-0.0825	0.2153	-0.0088	0.0439	7.4	0.0000	0.0000	0.0	0.0	0.1633
	2	1.5042	0.2412	-1.1972	-0.0413	0.2153	-0.0471	0.0690	6.1	0.0000	0.0000	0.0	0.0	0.1648
	1	0.7751	0.2412	-1.0911	0.0000	0.2153	-0.0819	0.0620	5.4	0.0000	0.0000	0.0	0.0	0.1687
	0.5	-0.0836	0.2412	-0.9972	0.0413	0.2153	-0.1217	0.0304	5.1	0.0000	0.0000	0.0	0.0	0.1765
19	0.3	-0.5679	0.2412	-0.9422	0.0413	0.2153	-0.1860	-0.0560	4.4	0.0000	0.0000	0.0	0.0	0.1545
	PGV	5.9472	0.2412	-1.2788	0.0413	0.2153	-0.0740	0.0723	5.7	0.0000	0.0000	0.0	0.0	0.1747
Vert	PGA	1.8472	0.3457	-1.6393	-0.1253	0.2179	0.0000	0.0630	6.8	0.0000	0.0000	0.0	0.0	0.1728
	20	3.0364	0.3457	-1.8353	-0.1253	0.2179	0.0115	0.0401	7.5	0.0000	0.0000	0.0	0.0	0.1927
	10	2.8984	0.3457	-1.7478	-0.1253	0.2179	0.0100	0.0391	7.8	0.0000	0.0000	0.0	0.0	0.1796
	5	2.2051	0.3457	-1.5680	-0.0835	0.2179	-0.0082	0.0592	7.4	0.0000	0.0000	0.0	0.0	0.1683
	2	1.3797	0.3457	-1.3725	-0.0418	0.2179	-0.0555	0.1148	6.9	0.0000	0.0000	0.0	0.0	0.1712
č.	1	0.5173	0.3457	-1.2524	0.0000	0.2179	-0.0879	0.1526	6.2	0.0000	0.0000	0.0	0.0	0.1494
	0.5	-0.4559	0.3457	-1.1451	0.0418	0.2179	-0.1399	0.2048	5.0	0.0000	0.0000	0.0	0.0	0.1516
	0.3	-1.0476	0.3457	-1.1063	0.0418	0.2179	-0.1827	0.2133	4.6	0.0000	0.0000	0.0	0.0	0.1560
	PGV	5.4176	0.3457	-1.4111	0.0418	0.2179	-0.0483	0.1238	6.4	0.0000	0.0000	0.0	0.0	0.2830

TABLE I-4A A. F. MCGARR: REGRESSION COEFFICIENTS MEDIAN MODEL

I:\5001A\PSHA-XI.DOC 2/22/98

COMPONENT	FREQUENCY (HZ)	bı	<i>b</i> ₂	<i>b</i> ₃	b_4	SIGMA FIT
Horiz	PGA	0.5670	-0.0441	0.0	6.9	0.0034
	20	0.5714	-0.0462	0.0	6.9	0.0041
	10	0.5895	-0.0543	0.0	6.8	0.0055
	5	0.6240	-0.0520	0.0	6.8	0.0053
	2	0.6939	-0.0486	0.0	6.7	0.0056
	1	0.7523	-0.0370	0.0	6.8	0.0032
	0.5	0.8528	-0.0302	0.0	6.8	0.0045
	0.3	0.8541	-0.0494	0.0	6.8	0.0070
	PGV	0.7480	-0.0256	0.0	5.8	0.0041
Vert	PGA	0.5404	-0.0636	0.0	6.8	0.0036
,	20	0.5557	-0.0625	0.0	6.8	0.0036
	10	0.5716	-0.0754	0.0	6.7	0.0069
	5	0.5757	-0.0735	0.0	6.7	0.0075
	2	0.6194	-0.0986	0.0	6.2	0.0090
	1	0.6572	-0.0593	0.0	6.6	0.0074
	0.5	0.7320	-0.0665	0.0	6.3	0.0097
	0.3	0.7732	-0.0849	0.0	6.1	0.0109
	PGV	0.6176	-0.0454	0.0	5.8	0.0089

TABLE I-4B A. F. MCGARR: REGRESSION COEFFICIENTS SIGMA MODEL

COMPONENT	FREQUENCY (HZ)	C ₁	<i>C</i> ₂	C3	C4	C5	С6	MINIMUM	SIGMA FIT
Horiz	PGA	0.4361	0.0	-0.1255	0.0231	0.0170	6.0	0.2	0.0944
	20	0.4444	0.0	-0.0793	0.0147	0.0093	6.0	0.2	0.0933
	10	0.5028	0.0	-0.1443	0.0256	0.0145	6.0	0.2	0.0833
	5	0.5358	0.0	-0.1647	0.0283	-0.0043	6.0	0.2	0.0829
	2	0.3175	0.0	-0.0454	0.0106	0.0012	6.0	0.2	0.0858
	1	0.3177	0.0	-0.0251	0.0075	0.0198	6.0	0.2	0.0943
	0.5	0.2482	0.0	0.0727	-0.0044	0.0056	6.0	0.2	0.1191
	0.3	0.2057	0.0	0.1263	-0.0157	0.0154	6.0	0.2	0.1098
	PGV	0.3386	0.0	-0.0486	0.0133	0.0072	6.0	0.2	0.1265
Vert	PGA	0.3355	0.0	-0.0288	0.0061	-0.0004	6.0	0.2	0.0977
	20	0.4595	0.0	-0.0238	0.0019	-0.0302	6.0	0.2	0.1128
	10	0.3773	0.0	-0.0699	0.0165	0.0148	6.0	0.2	0.0919
	5	0.2906	0.0	-0.0434	0.0157	0.0613	6.0	0.2	0.0899
	2	0.2361	0.0	0.0213	0.0027	0.0069	6.0	0.2	0.1045
	1	0.4178	0.0	-0.0855	0.0194	-0.0507	6.0	0.2	0.1106
	0.5	0.2854	0.0	-0.0087	0.0196	0.0659	6.0	0.2	0.1487
	0.3	0.2291	0.0	0.0702	0.0018	0.1555	6.0	0.2	0.1379
	PGV	0.4553	0.0	-0.1333	0.0277	0.1640	6.0	0.2	0.1883

TABLE I-4C A. F. MCGARR: REGRESSION COEFFICIENTS SIGMA-MU MODEL

.

.

COMPONENT	Frequency (HZ)	d_I	<i>d</i> ₂	d_3	d_4	SIGMA FIT
Horiz	PGA	0.1010	0.0073	0.0	7.2	0.0045
	20	0.1015	0.0097	0.0	7.2	0.0046
	10	0.1072	0.0102	0.0	7.2	0.0046
	5	0.1040	0.0092	0.0	7.2	0.0038
	2	0.1156	0.0171	0.0	7.2	0.0035
	1	0.1207	0.0239	0.0	7.2	0.0042
	0.5	0.1620	0.0396	0.0	7.2	0.0034
	0.3	0.1818	0.0496	0.0	7.1	0.0047
	PGV	0.1347	0.0273	0.0	7.2	0.0022
Vert	PGA	0.1435	0.0324	0.0	7.2	0.0072
	20	0.1402	0.0322	0.0	7.2	0.0065
	10	0.1431	0.0271	0.0	7.2	0.0074
	5	0.1322	0.0207	0.0	7.2	0.0071
	2	0.1364	0.0215	0.0	7.2	0.0082
-	1	0.1332	0.0257	0.0	7.2	0.0079
	0.5	0.1893	0.0477	0.0	7.2	0.0095
	0.3	0.2130	0.0609	0.0	6.9	0.0111
	PGV	0.1858	0.0449	0.0	7.2	0.0066

TABLE I-4D A. F. MCGARR: REGRESSION COEFFICIENTS SIGMA-SIGMA MODEL

I:\5001A\PSHA-XI.DOC 2/22/98

.

TABLE I-5A W. J. SILVA: REGRESSION COEFFICIENTS MEDIAN MODEL

COMPONENT	FREQUENCY (HZ)	<i>a</i> 1	a ₂	<i>a</i> ₃	a4	a5	a_6	a7	a_8	<i>a</i> 9	a ₁₀	a ₁₁	a ₁₂	SIGMA FIT
Horiz	PGA	1.8005	0.3153	-1.3837	-0.2558	0.2277	0.0000	-0.1026	6.5	0.2448	-0.2330	5.3	6.1	0.1025
	20	2.7125	0.3153	-1.5541	-0.2558	0.2277	0.0167	-0.1075	7.0	0.2384	-0.2658	5.2	6.2	0.1244
54	10	2.9773	0.3153	-1.5532	-0.2558	0.2277	0.0107	-0.0789	7.5	0.1681	-0.2994	5.1	6.0	0.1266
	5	2.6009	0.3153	-1.4075	-0.2558	0.2277	-0.0054	-0.0685	7.2	0.1991	-0.2360	5.3	6.1	0.1167
	2	1.6999	0.3153	-1.1745	-0.2345	0.2277	-0.0455	-0.0619	5.9	0.3161	-0.1954	5.1	6.2	0.1026
	1	0.9533	0.3153	-1.0575	-0.2131	0.2277	-0.0823	-0.1434	5.6	0.3724	-0.1700	5.3	6.2	0.1075
	0.5	0.0547	0.3153	-0.9277	-0.2131	0.2277	-0.1430	-0.2633	4.5	0.3164	-0.0652	5.4	6.3	0.1123
	0.3	-0.4523	0.3153	-0.9075	-0.2345	0.2277	-0.2005	-0.2867	4.3	0.3268	-0.0615	5.0	7.4	0.1246
	PGV	5.9145	0.3153	-1.1166	-0.2558	0.2277	-0.0938	-0.1484	5.5	0.3349	-0.1934	5.0	6.7	0.1001
Vert	PGA	1.8504	0.2013	-1.6070	-0.3040	0.2360	0.0000	-0.2461	6.3	0.3630	-0.2009	5.1	6.5	0.1031
	20	3.1590	0.2013	-1.8481	-0.3040	0.2360	0.0138	-0.2468	7.3	0.3313	-0.2651	5.2	6.5	0.1239
	10	3.0835	0.2013	-1.7702	-0.2606	0.2360	0.0090	-0.1158	7.8	0.2430	-0.2923	5.1	6.2	0.1238
	5	2.1817	0.2013	-1.5370	-0.2606	0.2360	-0.0083	-0.0119	6.9	0.3048	-0.1845	5.2	6.5	0.1094
	2	1.1944	0.2013	-1.2980	-0.2606	0.2360	-0.0514	0.0302	5.6	0.4316	-0.1490	5.0	6.6	0.1045
	1	0.5178	0.2013	-1.1971	-0.2606	0.2360	-0.0885	-0.1312	5.4	0.4854	-0.1251	5.1	6.6	0.1141
	0.5	-0.4204	0.2013	-1.0913	-0.2606	0.2360	-0.1457	-0.3447	4.5	0.4766	-0.0200	5.2	6.7	0.1182
	0.3	-0.9693	0.2013	-1.0845	-0.2823	0.2360	-0.2036	-0.3732	4.3	0.4332	0.0053	5.0	7.2	0.1408
	PGV	5.3774	0.2013	-1.2790	-0.2823	0.2360	-0.0798	-0.1293	5.2	0.4871	-0.1266	5.0	6.9	0.1054

I:\5001A\PSHA-XI.DOC 2/22/98

I-18

3

TABLE I-5B
W. J. SILVA: REGRESSION COEFFICIENTS
SIGMA MODEL

2

COMPONENT	FREQUENCY (HZ)	b_{I}	<i>b</i> ₂	<i>b</i> 3	b_4	SIGMA FIT
Horiz	PGA	0.6246	-0.0606	0.0	6.1	0.0062
	20	0.6107	-0.0696	0.0	6.2	0.0072
	10	0.6391	-0.0722	0.0	6.1	0.0066
	5	0.6648	-0.0696	0.0	6.1	0.0071
	2	0.7288	-0.0584	0.0	6.2	0.0069
	1	0.7716	-0.0311	0.0	6.8	0.0058
	0.5	0.8620	-0.0439	0.0	6.1	0.0081
	0.3	0.9044	-0.0671	0.0	5.9	0.0098
	PGV	0.7744	-0.0278	0.0	5.8	0.0091
Vert	PGA	0.6479	-0.0586	0.0	6.1	0.0060
	20	0.6414	-0.0667	0.0	6.2	0.0069
	10	0.6744	-0.0688	0.0	6.1	0.0062
	5	0.6797	-0.0683	0.0	6.1	0.0069
	2	0.7237	-0.0588	0.0	6.2	0.0070
	1	0.7586	-0.0316	0.0	6.8	0.0059
	0.5	0.8342	-0.0453	0.0	6.1	0.0084
	0.3	0.8780	-0.0690	0.0	5.9	0.0101
	PGV	0.7614	-0.0283	0.0	5.8	0.0093

•

TABLE I-5C W. J. SILVA: REGRESSION COEFFICIENTS SIGMA-MU MODEL

COMPONENT	FREQUENCY (HZ)	C1	<i>C</i> ₂	C3	C4	C5	C6	MINIMUM	SIGMA FIT
Horiz	PGA	0.3235	0.0	0.0	0.0	0.0415	6.0	0.2	0.0489
	20	0.3439	0.0	0.0	0.0	0.0585	6.0	0.2	0.0567
	10	0.3432	0.0	0.0	0.0	0.0442	6.0	0.2	0.0543
	5	0.3372	0.0	0.0	0.0	0.0233	6.0	0.2	0.0532
	2	0.3141	0.0	0.0	0.0	0.0606	6.0	0.2	0.0417
	1	0.3046	0.0	0.0	0.0	0.0705	6.0	0.2	0.0580
	0.5	0.3462	0.0	0.0	0.0	0.0929	6.0	0.2	0.0610
	0.3	0.4627	0.0	0.0	0.0	0.0756	6.0	0.2	0.0959
	PGV	0.3673	0.0	0.0	0.0	0.0344	6.0	0.2	0.0954
Vert	PGA	0.2695	0.0	0.0	0.0	0.0167	6.0	0.2	0.0710
	20	0.3043	0.0	0.0	0.0	0.0591	6.0	0.2	0.0759
	10	0.3016	0.0	0.0	0.0	0.0240	6.0	0.2	0.0830
	5	0.2917	0.0	0.0	0.0	0.0012	6.0	0.2	0.0847
	2	0.2500	0.0	0.0	0.0	0.0489	6.0	0.2	0.0669
	1	0.2294	0.0	0.0	0.0	0.0945	6.0	0.2	0.0757
	0.5	0.2881	0.0	0.0	0.0	0.0996	6.0	0.2	0.0689
	0.3	0.4034	0.0	0.0	0.0	0.0888	6.0	0.2	0.1069
	PGV	0.2940	0.0	0.0	0.0	0.0700	6.0	0.2	0.0990

TABLE I-5D
W. J. SILVA: REGRESSION COEFFICIENTS
SIGMA-SIGMA MODEL

COMPONENT	FREQUENCY	d_l	d_2	d_3	d_4	SIGMA FIT
	(HZ)					
Horiz	PGA	0.1335	0.0354	0.0	6.0	0.0050
	20	0.1298	0.0345	0.0	5.9	0.0054
	10	0.1379	0.0383	0.0	5.9	0.0054
	5	0.1326	0.0403	0.0	5.8	0.0056
	2	0.1384	0.0631	0.0	5.9	0.0059
	1	0.1275	0.0649	0.0	6.0	0.0065
	0.5	0.1469	0.0711	0.0	6.1	0.0081
	0.3	0.1855	0.0508	0.0	6.8	0.0090
	PGV	0.1454	0.0669	0.0	6.1	0.0066
Vert	PGA	0.1317	0.0383	0.0	5.9	0.0049
	20	0.1287	0.0342	0.0	5.9	0.0053
	10	0.1360	0.0375	0.0	5.9	0.0053
	5	0.1319	0.0400	0.0	5.8	0.0056
	2	0.1388	0.0632	0.0	5.9	0.0059
	1	0.1282	0.0648	0.0	6.0	0.0066
	0.5	0.1499	0.0720	0.0	6.1	0.0084
	0.3	0.1900	0.0519	0.0	6.8	0.0092
	PGV	0.1468	0.0674	0.0	6.1	0.0068

TABLE I-6A
P. G. SOMERVILLE: REGRESSION COEFFICIENTS
MEDIAN MODEL

COMPONENT	FREQUENCY (HZ)	a ₁	a2	<i>a</i> ₃	a4	<i>a</i> 5	<i>a</i> ₆	a7	<i>a</i> ₈	ag	a ₁₀	a ₁₁	a ₁₂	SIGMA FIT
Horiz	PGA	1.9958	0.4419	-1.4672	-0.0696	0.1873	0.0000	0.0474	7.4	0.1137	-0.3247	5.2	6.0	0.1357
a con description of the Man const	20	2.8175	0.4419	-1.6032	-0.0696	0.1873	0.0088	0.0192	7.5	0.1163	-0.3085	5.0	6.1	0.1331
	10	3.2424	0.4419	-1.6657	-0.0696	0.1873	0.0115	0.0692	8.6	0.0472	-0.3688	5.1	5.9	0.1415
	5	2.7528	0.4419	-1.4804	-0.0696	0.1873	-0.0101	0.0698	7.9	0.0888	-0.3043	5.1	6.0	0.1419
	2	1.8591	0.4419	-1.2335	-0.0696	0.1873	-0.0592	0.0723	6.4	0.1728	-0.2919	5.3	5.9	0.1362
	1	0.9851	0.4419	-1.1037	-0.0696	0.1873	-0.0981	0.0358	5.7	0.2394	-0.2533	5.1	6.0	0.1408
	0.5	-0.2631	0.4419	-0.9365	-0.0696	0.1873	-0.1388	-0.0296	4.0	0.2554	-0.1006	5.0	6.2	0.1682
	0.3	-0.7669	0.4419	-0.9285	-0.0696	0.1873	-0.1725	-0.0665	3.8	0.1646	-0.1141	5.0	7.0	0.1806
	PGV	6.1419	0.4419	-1.2895	-0.0696	0.1873	-0.0818	0.0720	6.0	0.1300	-0.3366	5.2	5.9	0.1831
Vert	PGA	1.7975	0.7212	-1.5779	0.3965	0.1132	0.0000	0.0977	7.2	0.1952	-0.2478	5.1	6.5	0.1377
	20	2.9792	0.7212	-1.7716	0.3965	0.1132	0.0048	0.0938	7.6	0.1789	-0.2697	5.2	6.5	0.1366
	10	3.0338	0.7212	-1.7444	0.3965	0.1132	0.0036	0.1249	7.7	0.1519	-0.2566	5.1	6.3	0.1380
	5	2.2087	0.7212	-1.5319	0.3965	0.1132	-0.0066	0.1270	7.7	0.1861	-0.2233	5.1	6.3	0.1346
	2	1.2175	0.7212	-1.2841	0.3965	0.1132	-0.0595	0.1763	7.2	0.1857	-0.1821	5.1	6.0	0.1521
	1	0.1031	0.7212	-1.1187	0.3965	0.1132	-0.0900	0.2377	6.1	0.1295	-0.0242	5.1	6.0	0.1248
	0.5	-0.7137	0.7212	-1.0516	0.3965	0.1132	-0.1418	0.3920	4.9	0.0000	-0.3000	6.5	7.4	0.1833
	0.3	-1.3183	0.7212	-1.0035	0.3965	0.1132	-0.1706	0.4636	4.2	0.0000	-0.4000	6.2	7.4	0.2021
	PGV	5.3412	0.7212	-1.3183	0.3965	0.1132	-0.0770	0.3185	7.0	0.0000	-0.3000	5.0	7.4	0.1912

1:\5001A\PSHA-X1.DOC 2/22/98

.

COMPONENT	FREQUENCY (HZ)	<i>b</i> 1	<i>b</i> ₂	b_3	b_4	SIGMA FIT
Horiz	PGA	0.5454	-0.0613	0.0	6.9	0.0059
	20	0.5396	-0.0694	0.0	6.9	0.0071
	10	0.5714	-0.0767	0.0	6.8	0.0094
1	5	0.6028	-0.0732	0.0	6.8	0.0089
	2	0.6665	-0.0721	0.0	6.8	0.0090
	1	0.7130	-0.0597	0.0	6.9	0.0046
	0.5	0.7717	-0.0538	0.0	6.9	0.0096
	0.3	0.7958	-0.1063	0.0	6.1	0.0134
	PGV	0.6876	-0.0535	0.0	6.1	0.0072
Vert	PGA	0.6137	-0.0504	0.0	6.5	0.0058
	20	0.6436	-0.0465	0.0	6.5	0.0062
	10	0.6492	-0.0785	0.0	6.3	0.0089
	5	0.6337	-0.0701	0.0	6.2	0.0109
	2	0.6336	-0.0895	0.0	6.1	0.0126
	1	0.6502	-0.0533	0.0	6.4	0.0115
	0.5	0.6701	-0.0545	0.0	6.4	0.0161
	0.3	0.7010	-0.0963	0.0	6.0	0.0197
	PGV	0.5972	-0.0676	0.0	6.0	0.0103

TABLE I-6B P. G. SOMERVILLE: REGRESSION COEFFICIENTS SIGMA MODEL

.

1

TABLE I-6C
P. G. SOMERVILLE: REGRESSION COEFFICIENTS
SIGMA-MU MODEL

COMPONENT	FREQUENCY	c ₁	<i>C</i> ₂	C3	C4	C5	C6	MINIMUM	SIGMA FIT
	(HZ)			22					
Horiz	PGA	0.4746	-0.0453	-0.1543	0.0312	0.0132	6.0	0.2	0.0697
	20	0.4341	-0.0389	-0.1050	0.0255	-0.0082	6.0	0.2	0.0787
	10	0.5688	-0.0117	-0.2377	0.0492	0.0298	6.0	0.2	0.0746
	5	0.5514	-0.0025	-0.2143	0.0438	0.0085	6.0	0.2	0.0787
	2	0.4041	-0.0191	-0.1270	0.0315	0.0187	6.0	0.2	0.0855
	1	0.3950	-0.0398	-0.1307	0.0329	0.0502	6.0	0.2	0.0905
	0.5	0.3231	-0.0260	-0.0168	0.0179	0.0012	6.0	0.2	0.1039
	0.3	0.2431	0.0271	0.1117	-0.0081	-0.0317	6.0	0.2	0.1216
	PGV	0.3855	0.0034	-0.0656	0.0137	-0.0022	6.0	0.2	0.1132
Vert	PGA	0.3466	-0.0558	-0.0529	0.0164	0.0179	6.0	0.2	0.1088
	20	0.5132	-0.0676	-0.0360	0.0075	-0.0614	6.0	0.2	0.1086
	10	0.3193	-0.0411	-0.0549	0.0183	0.0299	6.0	0.2	0.1035
	5	0.2389	-0.0050	-0.0177	0.0155	0.1039	6.0	0.2	0.1167
	2	0.2227	0.0080	0.0725	-0.0031	0.0506	6.0	0.2	0.1237
	1	0.4351	-0.0868	-0.1008	0.0301	0.0191	6.0	0.2	0.1147
	0.5	0.4045	-0.0669	-0.0585	0.0360	0.0896	6.0	0.2	0.1836
	0.3	0.4448	-0.0947	-0.0035	0.0238	0.0291	6.0	0.2	0.1773
7.00	PGV	0.2434	0.0309	-0.0209	0.0123	0.1925	6.0	0.2	0.1203

	TABLE I-6D
P.	G. SOMERVILLE: REGRESSION COEFFICIENTS
	SIGMA-SIGMA MODEL

1

COMPONENT	FREQUENCY	d_{I}	d_2	d_3	d_4	SIGMA FIT
	(HZ)					
Horiz	PGA	0.1648	-0.0070	0.0	5.8	0.0062
	20	0.1619	-0.0055	0.0	5.8	0.0062
	10	0.1748	0.0062	0.0	7.2	0.0060
	5	0.1715	0.0055	0.0	7.2	0.0043
	2	0.1759	0.0593	0.0	6.0	0.0064
	1	0.1713	0.0992	0.0	5.9	0.0078
	0.5	0.1858	0.1278	0.0	5.9	0.0055
	0.3	0.1957	0.1219	0.0	5.9	0.0044
	PGV	0.1924	0.0850	0.0	6.0	0.0048
Vert	PGA	0.1727	0.0057	0.0	7.2	0.0052
	20	0.1626	-0.0010	0.0	6.5	0.0042
	10	0.1741	0.0148	0.0	5.8	0.0056
	5	0.1763	0.0228	0.0	5.8	0.0056
	2	0.1843	0.0952	0.0	5.8	0.0060
	1	0.1741	0.1405	0.0	5.8	0.0078
	0.5	0.1919	0.1762	0.0	5.8	0.0067
	0.3	0.1995	0.1538	0.0	5.8	0.0044
	PGV	0.1805	0.1120	0.0	5.9	0.0088

TABLE I-7A	
M. C. WALCK: REGRESSION COEFFICIEN	ГS
MEDIAN MODEL	

.

COMPONENT	FREQUENCY	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	a4	<i>a</i> 5	<i>a</i> ₆	a ₇	a_8	<i>a</i> 9	a ₁₀	a ₁₁	a ₁₂	SIGMA
Horiz	PGA	1 9092	0 2170	-1 4495	-0 1943	0 2237	0.000	-0 1331	74	0 1574	-0 2079	51	63	0.0721
110112	20	2 7014	0.2170	-1.5881	-0.1943	0.2237	0.0000	-0 1501	7.6	0.2096	-0.1813	5.5	6.2	0.0775
	10	2.7707	0.2170	-1.5581	-0.1943	0.2237	0.0171	-0.1007	7.8	0.1045	-0.2559	5.0	6.0	0.0982
	5	2.5077	0.2170	-1.4277	-0.1943	0.2237	-0.0054	-0.1224	7.7	0.1503	-0.1854	5.0	6.4	0.0829
	2	1.6685	0.2170	-1.1947	-0.1943	0.2237	-0.0550	-0.1270	6.2	0.2306	-0.1506	5.1	6.1	0.0732
	1	0.8069	0.2170	-1.0454	-0.1943	0.2237	-0.0956	-0.1003	5.3	0.2657	-0.1260	5.3	6.0	0.0816
	0.5	-0.1650	0.2170	-0.9097	-0.1943	0.2237	-0.1406	-0.1338	4.5	0.2454	0.0210	5.0	6.0	0.1039
	0.3	-0.5989	0.2170	-0.9200	-0.1943	0.2237	-0.1764	-0.1613	4.6	0.1336	-0.0249	5.3	7.0	0.1074
	PGV	6.3192	0.2170	-1.3065	-0.1943	0.2237	-0.0782	-0.1320	6.8	0.3225	-0.2042	5.0	6.7	0.1270
Vert	PGA	2.0111	0.3076	-1.6747	-0.0548	0.1979	0.0000	-0:0856	7.2	0.2393	-0.1406	5.5	6.5	0.0876
	20	3.1584	0.3076	-1.8811	-0.0548	0.1979	0.0171	-0.0874	7.8	0.2197	-0.1740	5.6	6.3	0.1029
	10	2.9870	0.3076	-1.7765	-0.0548	0.1979	0.0118	-0.0870	8.0	0.1850	-0.1570	5.6	6.3	0.0990
	5	2.2835	0.3076	-1.5785	-0.0548	0.1979	-0.0102	-0.0954	7.7	0.2268	-0.1040	5.7	6.2	0.0838
	2	1.5135	0.3076	-1.3836	-0.0548	0.1979	-0.0632	-0.0658	7.0	0.2301	-0.0831	5.5	6.4	0.0842
	1	0.7035	0.3076	-1.2693	-0.0548	0.1979	-0.0958	-0.0031	6.5	0.2117	0.0130	5.5	6.3	0.0898
	0.5	-0.5457	0.3076	-1.0812	-0.0548	0.1979	-0.1405	0.0455	4.5	0.2538	0.1001	5.1	6.5	0.1082
	0.3	-0.9148	0.3076	-1.1201	-0.0548	0.1979	-0.1834	0.0927	4.7	0.1565	-0.0677	5.7	6.2	0.1171
	PGV	5.1786	0.3076	-1.2816	-0.0548	0.1979	-0.0599	0.0255	5.1	0.3538	-0.0906	5.0	6.8	0.1381

	TABLE I-7B	
M.	C. WALCK: REGRESSION	COEFFICIENTS
	SIGMA MODE	L

COMPONENT	FREQUENCY	b_{I}	b_2	b_3	b_4	SIGMA FIT
	(HZ)					
Horiz	PGA	0.5377	-0.0799	0.0	6.8	0.0116
	20	0.5398	-0.0817	0.0	6.8	0.0109
	10	0.5556	-0.0842	0.0	6.8	0.0112
	5	0.5895	-0.0813	0.0	6.8	0.0116
	2	0.6509	-0.0731	0.0	6.9	0.0108
	1	0.6993	-0.0675	0.0	7.1	0.0144
	0.5	0.7753	-0.0558	0.0	7.2	0.0099
	0.3	0.7917	-0.0705	0.0	6.8	0.0152
	PGV	0.7140	0.0446	0.0	5.8	0.0204
Vert	PGA	0.5681	-0.0698	0.0	6.8	0.0086
	20	0.5793	-0.0684	0.0	6.8	0.0075
	10	0.5838	-0.0769	0.0	6.8	0.0131
	5	0.6052	-0.0784	0.0	6.8	0.0135
	2	0.6472	-0.0830	0.0	6.8	0.0176
	1	0.6921	-0.0696	0.0	6.9	0.0183
	0.5	0.7536	-0.0753	0.0	6.7	0.0221
	0.3	0.7861	-0.0813	0.0	6.6	0.0224
	PGV	0.6522	-0.0154	0.0	6.5	0.0360

.

TABLE I-7C
M. C. WALCK: REGRESSION COEFFICIENTS
SIGMA-MU MODEL

COMPONENT	FREQUENCY	<i>c</i> ₁	<i>C</i> ₂	С3	C4	C5	С6	MINIMUM	SIGMA FIT
	(HZ)			5125					
Horiz	PGA	0.4410	0.0	-0.1066	0.0180	0.0220	6.0	0.2	0.0342
	20	0.4270	0.0	-0.0826	0.0166	0.0273	6.0	0.2	0.0457
	10	0.4561	0.0	-0.1182	0.0225	0.0151	6.0	0.2	0.0423
i i	5	0.4926	0.0	-0.1386	0.0237	0.0138	6.0	0.2	0.0398
	2	0.3457	0.0	-0.0568	0.0111	0.0133	6.0	0.2	0.0430
	1	0.3454	0.0	-0.0684	0.0136	0.0424	6.0	0.2	0.0575
	0.5	0.2627	0.0	-0.0027	0.0073	0.0447	6.0	0.2	0.0684
	0.3	0.2924	0.0	0.0682	-0.0086	0.0274	6.0	0.2	0.0724
	PGV	0.4004	0.0	-0.0878	0.0184	0.0292	6.0	0.2	0.0909
Vert	PGA	0.4292	0.0	-0.0364	0.0085	-0.0061	6.0	0.2	0.0533
	20	0.5320	0.0	-0.0759	0.0148	-0.0112	6.0	0.2	0.0598
	10	0.4840	0.0	-0.0941	0.0209	0.0126	6.0	0.2	0.0555
÷	5	0.4053	0.0	-0.0295	0.0112	0.0358	6.0	0.2	0.0693
	2	0.3742	0.0	-0.0048	0.0054	0.0125	6.0	0.2	0.0605
	1	0.4533	0.0	-0.0666	0.0142	-0.0085	6.0	0.2	0.0592
	0.5	0.3733	0.0	0.0239	0.0027	-0.0032	6.0	0.2	0.0845
	0.3	0.4412	0.0	0.0000	0.0074	0.0124	6.0	0.2	0.0973
	PGV	0.3698	0.0	-0.0176	0.0088	0.0322	6.0	0.2	0.0902

I-28

.

TABLE I-7D
M. C. WALCK: REGRESSION COEFFICIENTS
SIGMA-SIGMA MODEL

2

COMPONENT	FREQUENCY	d_I	d_2	d_3	d_4	SIGMA FIT
	(HZ)					
Horiz	PGA	0.1757	0.0072	0.0	7.2	0.0035
	20	0.1757	0.0075	0.0	7.2	0.0034
	10	0.1826	0.0115	0.0	7.2	0.0035
	5	0.1794	0.0131	0.0	7.2	0.0022
	2	0.1786	0.0281	0.0	6.8	0.0036
	1	0.1779	0.0343	0.0	7.0	0.0057
	0.5	0.1956	0.0423	0.0	7.2	0.0075
	0.3	0.2137	0.0505	0.0	7.2	0.0105
	PGV	0.1826	0.0202	0.0	6.9	0.0088
Vert	PGA	0.2010	0.0203	0.0	7.2	0.0066
	20	0.1990	0.0197	0.0	7.2	0.0063
	10	0.2036	0.0205	0.0	7.2	0.0077
2	5	0.1933	0.0192	0.0	7.2	0.0061
	2	0.1885	0.0264	0.0	7.1	0.0075
	1	0.1877	0.0350	0.0	7.2	0.0082
	0.5	0.2058	0.0446	0.0	7.2	0.0150
	0.3	0.2305	0.0567	0.0	7.2	0.0141
	PGV	0.1860	0.0194	0.0	7.2	0.0108

APPENDIX J

) ,

HYPOCENTRAL DISTANCE METRIC: DEVELOPMENT OF MODELS FOR AREAL SOURCES

.

APPENDIX J TABLE OF CONTENTS

Page

J .1	INTRODUCTION	J-1
J.2	MEDIAN GROUND MOTION	J-1
J.3	ALEATORY VARIABILITY	J-2
J.4	EPISTEMIC UNCERTAINTY	J-3
J.5	CONCLUSIONS	J-5

LIST OF TABLES

Table J-1	Regression 1	Model	Coefficients

LIST OF FIGURES

Figure J-1	Example distribution of hypocenters (stars) on the rupture plane for $T=0.2$
Figure J-2	Map view of a vertical fault rupture plane
Figure J-3	Mean rupture distance versus hypocentral distance for M_w 6.5 for T=0.25
Figure J-4a	Model of the mean rupture distance versus hypocentral distance for $M_{\rm w}5.0$ for T=0.25
Figure J-4b	Model of the mean rupture distance versus hypocentral distance for M_w 5.8 for T=0.25
Figure J-4c	Model of the mean rupture distance versus hypocentral distance for M_w 6.5 for T=0.25
Figure J-5	Aleatory variability of the individual estimates of Ri given a hypocentral distance and $M_w 6.5$ and T=0.25
Figure J-6a	Aleatory variability of the individual estimates of Ri given a hypocentral distance and $M_w 5.0$ and T=0.25

Figure J-6b	Aleatory variability of the individual estimates of Ri given a hypocentral distance and M_w 5.8 and T=0.25
Figure J-6c	Aleatory variability of the individual estimates of Ri given a hypocentral distance and M_w 6.5 and T=0.25
Figure J-7	Example of additional aleatory variability (Sigma hypo) in the natural log ground motion due to use of hypocentral distance
Figure J-8	Example of epistemic uncertainty in the medial natural log ground motion due to uncertainty in the T value (depth distribution of hypocenters)

APPENDIX J

HYPOCENTRAL DISTANCE METRIC: DEVELOPMENT OF MODELS FOR AREAL SOURCES

J.1 INTRODUCTION

The attenuation relations developed directly from the experts' point estimates were formulated to describe ground motions from planar seismogenic sources (faults). However, most hazard models - including those proposed for the Yucca Mountain PSHA project - incorporate areal sources over which uniform seismic activity is expected. These areal sources typically model background seismic activity (activity which cannot be assigned to known faults) or activity arising from a laterally distributed source zone. In the hazard analysis, areal sources are typically treated as point sources. The distance measure for a point source is hypocentral distance as opposed to the 'closest distance to the fault' measures used by the experts in this study.

In this appendix, a conversion from hypocentral distance to "closest distance" is developed that accounts for the finite dimension of the fault rupture. This conversion affects both the median ground motion and the aleatory variability and, to a lesser extent, the epistemic uncertainty in both.

J.2 MEDIAN GROUND MOTION

We consider a fault rupture dimension as given by the Wells and Coppersmith $(1994)^1$ magnitude-area and magnitude-width scaling relations for all fault types. For this study, we only used the mean relations for the rupture dimension scaling relations. (This will tend to underestimate the aleatory variability impact; however, it is a small effect). For each magnitude, the hypocenter is located at various locations on the rupture plane along-strike and down-dip (Figure J-1). Since hypocenters tend to be located near the bottom of fault ruptures, a minimum depth (in terms of the fraction of the fault width) is used to constrain the depth distribution of the hypocenters. Note that this constraint is in terms of the location of the hypocenters. The top of the hypocenters is defined by the parameter T, where T=0

¹ Wells, D.L. and Coppersmith, K.J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement: Bulletin of the Seismological Society of America, v. 84, p. 974-1002.

corresponds to the top of the rupture and T=1 corresponds to the bottom of the rupture (Figure J-1).

For each hypocenter, sites were located in a circle around the hypocenter (sites with constant hypocentral distance, Figure J-2). For each site, the rupture distance was computed. The mean and standard deviation of the rupture distance for the ith hypocenter are denoted R_i and σ_{R_i} , respectively. This process was applied for both vertical faults and 60 degree dipping faults (no distinction is made for the difference due to fault dip).

The resulting correlation between hypocentral distance and mean rupture distance (R_i) for T=0.25 is shown on Figure J-3 for magnitude 6.5. Based on the trends on Figure J-3, the following functional form was adopted

For $H \leq 30$ km,

$$\overline{R}(H, M, T) = H(1 + e_1 + (e_2 + e_9(T - 0.25))(M - 5)) + H^2(e_3 + (e_4 + e_{10}(T - 0.25))(M - 5))(J - 1a)$$

and for H > 30 km,

$$\overline{R}(H, M, T) = H + 30(e_1 + (e_2 + e_9(T - 0.25))(M - 5)) + 900(e_3 + (e_4 + e_{10}(T - 0.25))(M - 5))$$
(J-1b)

where R is the mean rupture distance (in km), M is moment magnitude, H is hypocentral distance (in km), and T is the top of the hypocenter zone on the fault rupture (in fraction of fault width). An ordinary least-squares regression analyses was performed. The resulting coefficients are listed in Table J-1; the standard deviation of the fit is $\sigma_{\overline{p}} = 1.2$ km.

The mean \overline{R} is plotted versus hypocentral distance on Figures J-4a, J-4b, and J-4c for magnitudes 5.0, 5.8, and 6.5, respectively. This model can be used to convert the hypocentral distance for a given magnitude to a closest-distance measure.

J.3 ALEATORY VARIABILITY

The correlation of the aleatory variability of the individual estimates of R_i with hypocentral distance is shown on Figure J-5 for M = 6.5 and T = 0.25. This correlation suggests a relation of the form

$$\sigma_{R_i}(H, M, T) = \left(e_5 + \left(e_6 + e_{11}(T - 0.25)\right)(M - 5)\right) \tanh\left\{H\left(e_7 + e_8(M - 5)\right)\right\}$$
(J-2)

The estimated coefficients resulting from an ordinary least-squares regression are listed in Table J-1. The aleatory variability for magnitude 5.0, 5.8 and 6.5 are plotted versus hypocentral distance on Figures J-6a, J-6b, and J-6c, respectively.

The total aleatory variability is the combination of σ_{Ri} and the equation fitting variability of the \overline{R}_i

$$\sigma_{R}(H, M, T) = \sqrt{\sigma_{R_{i}}^{2}(H, M, T) + \sigma_{\overline{R}}^{2}}$$
(J-3)

The effect of variability of rupture distance (given H, M and T) on the resulting ground motion is computed by standard propagation of errors:

$$\sigma_{Hypo}(H, M, T) = \sqrt{\left(\frac{\partial Y}{\partial R}\right)^2 \cdot \sigma_R^2(H, M, T)}$$
(J-4)

where Y is the natural log ground motion attenuation relation. For the functional form used in this study (Eq. 6-1 in Section 6; without hanging wall and footwall effects)

$$\frac{\partial Y}{\partial R} = (a_3 + a_5(M - 6.25)) \frac{R(H, M, T)}{R^2(H, M, T) + a_8^2}$$
(J-5)

where a_3 , a_5 , and a_8 are coefficients in the regression equations for each expert (Appendix I).

Substituting Equations J-5 and J-3 into Equation J-4 leads to:

$$\sigma_{Hypo}(H, M, T) = \left(\left(a_3 + a_5(M - 6.25) \right) \frac{R(H, M, T)}{R^2(H, M, T) + a_8^2} \right) \sqrt{\sigma_{R_i}^2(H, M, T) + \sigma_{\overline{R}}^2} \, (J-6) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right$$

This additional aleatory variability should be added (using square-root-sum-squares) to the aleatory variability of the experts models (σ_{Total}) given in Equation 6-6. The σ_{hypo} is plotted on Figure J-7.

J.4 EPISTEMIC UNCERTAINTY

The epistemic uncertainty was estimated by considering the uncertainty in the model resulting from uncertainty in T given by σ_T ,

The epistemic uncertainty in the median is given by

$$\sigma_{\mu}^{Hypo}(H, M, T) = \sqrt{\left(\frac{\partial Y}{\partial T}\right)^2 \cdot \sigma_T^2}$$
(J-7)

where

$$\frac{\partial Y}{\partial T} = \frac{\partial Y}{\partial R} \frac{\partial R}{\partial T}$$
(J-8)

and

$$\frac{\partial R(H,M)}{\partial T} = \begin{cases} e_9 H(M-5) + e_{10} H^2(M-5) & \text{for } H \le 30 \text{ km} \\ e_9 30(M-5) + e_{10} 900(M-5) & \text{for } H > 30 \text{ km} \end{cases}$$
(J-9)

The epistemic uncertainty in the aleatory variability is expressed as

$$\sigma_{\sigma}^{Hypo} = \sqrt{\left(\frac{\partial \sigma_{Hypo}}{\partial T}\right)^2 \sigma_T^2}$$
(J-10)

$$= \left| \frac{\partial Y}{\partial R} \right| \frac{\partial \sigma_R}{\partial T} \sigma_T \tag{J-11}$$

where

$$\frac{\partial \sigma_R}{\partial T} = e_{11} (M-5) \tanh\left\{H(e_7 + e_8(M-5))\right\}$$
(J-12)

For this study, we assumed that $\sigma_T = 0.15$ (i.e., 15% of the down-dip width).

The resulting epistemic uncertainty in the median variability is plotted on Figure J-8 for M_w 6.5 and 5.8. The epistemic uncertainty in the aleatory variability is negligible.

J.5 CONCLUSIONS

If the hypocentral distance is simply applied to the attenuation equations developed in Section 6 in place of the "closest distance to the fault rupture," the resulting median ground motion will be overestimated and the aleatory variability will be underestimated. The factors developed in this appendix provide an approximate correction for these effects so that the hazard for areal sources can be easily evaluated using the attenuation relations developed in Section 6.

TABLE J-1REGRESSION MODEL COEFFICIENTS

COEFFICIENT	ESTIMATE
el	-0.207
e2	-0.323
e3	0.0058
<i>e4</i>	0.0059
e5	1.894
e6	3.854
e7	0.0116
e8	0.0094
eg	-0.177
e10	0.0055
e11	0.0111

Distance along Strike

Figure J-1 Example distribution of hypocenters (stars) on the rupture plane for T = 0.2. If T = 0, then hypocenters would be uniformly distributed over the rupture plane. If T = 0.5, then the hypocenters would be uniformly distributed over the lower half of the rupture plane.

Figure J-2 Map view of a vertical fault rupture plane. For each hypocenter on the rupture plane, a suite of locations (shown by the triangles) is used for each hypocentral distance. The closest distance is then computed for each location to produce a set of hypocentral distance-rupture distance pairs.

Figure J-3 Mean rupture distance versus hypocentral distance for $M_w 6.5$ for T = 0.25. The rupture distance is less than the hypocentral distance (the points all plot below the R = H line).

Figure J-4a Model of the mean rupture distance versus hypocentral distance for M_W 5.0 for T = 0.25

Figure J-4b Model of the mean rupture distance versus hypocentral distance for M_W 5.0 for T = 0.25

Figure J-4c Model of the mean rupture distance versus hypocentral distance for M_W 6.5 for T = 0.25

Figure J-5 Aleatory variability of the individual estimates of Ri given a hypocentral distance and M_W 6.5 and T = 0.25

Figure J-6a Aleatory variability of the individual estimates of Ri given a hypocentral distance and M_W 5.0 and T = 0.25

Figure J-6b Aleatory variability of the individual estimates of Ri given a hypocentral distance and M_W 5.8 and T = 0.25

Figure J-6c Aleatory variability of the individual estimates of Ri given a hypocentral distance and M_W 6.5 and T = 0.25

Figure J-7 Example of additional aleatory variability (Sigma hypo) in the natural log ground motion due to hypocentral distance. This is added (using SRSS) to the aleatory variability given by the experts. This example is for horizontal PGA using the Anderson model

Figure J-8 Example of epistemic uncertainty in the median natural log ground motion due to uncertainty in the T value (depth distribution of hypocenters). This example is for horizontal PGA using Anderson's results. This additional epistemic uncertainty is negligible.