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2.3.3 Water Seeping into Drifts
[NUREG-1804, Section 2.2.1.3.3.3: AC 1(1) to (5), (7) to (9), (12), AC 2(1) to (3), 
AC 3(1) to (4), (6), AC 4, AC 5; Section 2.2.1.3.6.3: AC 1(6)]

The information presented in this section addresses the requirements of proposed 10 CFR 
63.114(a)(1) through (a)(5), (a)(7), and (b) for conducting a performance assessment as it relates to 
the area of water seeping into drifts. The requirements of proposed 10 CFR 63.114(a)(6) are not 
referenced in this section because they are addressed by information provided in Sections 2.2, 2.3.4
to 2.3.7, and 2.3.11. Section 2.3.3 also provides information that addresses specific regulatory 
acceptance criteria in Section 2.2.1.3.3.3 of NUREG-1804, as shown below. According to the 
proposed rule change to 10 CFR Part 63, the assessment of repository performance by the total 
system performance assessment (TSPA) needs to consider both the first 10,000 years after disposal 
and the period after 10,000 years within the period of geologic stability. The same conceptual 
framework, including the numerical process models and rock properties, is used for predicting 
ambient seepage for both the first 10,000 years after repository closure and the post-10,000-year 
period.

With regard to water seeping into drifts, this section presents the following:

• Data from the Yucca Mountain site and surrounding region, uncertainties and variabilities 
in parameter values, and alternative conceptual models used in the analyses

• Specific features, events and processes (FEPs) included in the analyses, with appropriate 
technical bases for inclusion

• Technical bases for models used in the performance assessment.

The categories of information provided in this section, as well as the corresponding proposed 
10 CFR Part 63 regulatory requirements and NUREG-1804 acceptance criteria, are presented in the 
table below. With regard to Acceptance Criteria 1(12) and 3(6) in Section 2.2.1.3.3.3 of 
NUREG-1804, no formal peer reviews were used to support development of the current seepage 
models discussed in Section 2.3.3. Similarly, while an expert elicitation on unsaturated zone flow 
was completed for the TSPA for the viability assessment (CRWMS M&O), the results were not 
directly relied upon to develop the current seepage models. In addition, this section does not discuss 
the approach used for data qualification. However, scientific analyses, model development, and data 
qualification activities were conducted in accordance with project procedures that comply with 
Quality Assurance Program requirements. The project procedures governing data qualification are 
consistent with NUREG-1298 (Altman et al. 1988) in keeping with Acceptance Criterion 1(12). 
With regard to Acceptance Criterion AC4(5), the equivalent continuum modeling approach (Pruess 
et al. 1990) is not used in the models described in Section 2.3.3. Acceptance Criteria 1(6), 1(10), 
2(4), and 2(5) of NUREG-1804, Section 2.2.1.3.3.3 are not referenced below because they do not 
refer to the technical area of water seeping into drifts. These acceptance criteria, relating to 
components of the engineered barrier system, are addressed in Sections 2.3.5 and 2.3.6. Acceptance 
Criteria 1(11) and 3(5) are not referenced below because Section 2.2.1.4.1 provides the technical 
basis for exclusion of criticality from the TSPA.
2.3.3-1
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SAR 
Section Information Category

Proposed
10 CFR Part 63

Reference NUREG-1804 Reference

2.3.3 Water Seeping into Drifts 63.114(a)(1) 
63.114(a)(2)  
63.114(a)(3)  
63.114(a)(4) 
63.114(a)(5) 
63.114(a)(7)  
63.114(b) 
63.342(c)

Section 2.2.1.3.3.3:  
Acceptance Criterion 1(1) 
Acceptance Criterion 1(2) 
Acceptance Criterion 1(3) 
Acceptance Criterion 1(4) 
Acceptance Criterion 1(5) 
Acceptance Criterion 1(7) 
Acceptance Criterion 1(8) 
Acceptance Criterion 1(9) 
Acceptance Criterion 1(12) 
Acceptance Criterion 2(1) 
Acceptance Criterion 2(2) 
Acceptance Criterion 2(3) 
Acceptance Criterion 3(1) 
Acceptance Criterion 3(2) 
Acceptance Criterion 3(3) 
Acceptance Criterion 3(4) 
Acceptance Criterion 3(6) 
Acceptance Criterion 4  
Acceptance Criterion 5  
Section 2.2.1.3.6.3:  
Acceptance Criterion 1(6)

2.3.3.1 Summary and Overview Not applicable Not applicable

2.3.3.2 Ambient Seepage See details in sections below See details in sections below

2.3.3.2.1 Conceptual Description of Ambient 
Seepage Processes

63.114(a)(1) 
63.114(a)(4) 
63.114(a)(5)

Section 2.2.1.3.3.3: 
Acceptance Criterion 1(1) 
Acceptance Criterion 1(2) 
Acceptance Criterion 1(3) 
Acceptance Criterion 1(4) 
Acceptance Criterion 1(5) 
Acceptance Criterion 1(7) 
Acceptance Criterion 1(8)

2.3.3.2.2 Data and Data Uncertainty 63.114(a)(1) 
63.114(a)(2) 
63.114(b)

Section 2.2.1.3.3.3: 
Acceptance Criterion 2(1) 
Acceptance Criterion 2(2) 
Acceptance Criterion 3(1) 
Acceptance Criterion 3(2) 
Acceptance Criterion 3(3) 
Acceptance Criterion 3(4)
2.3.3-2
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2.3.3.2.3 Model and Model Uncertainty 63.114(a)(1) 
63.114(a)(2) 
63.114(a)(3) 
63.114(a)(7) 
63.114(b) 
63.342(c)

Section 2.2.1.3.3.3: 
Acceptance Criterion 3(1) 
Acceptance Criterion 3(2) 
Acceptance Criterion 3(3) 
Acceptance Criterion 3(4) 
Acceptance Criterion 4(1) 
Acceptance Criterion 4(2) 
Acceptance Criterion 4(3) 
Acceptance Criterion 4(4) 
Acceptance Criterion 5 
Section 2.2.1.3.6.3: 
Acceptance Criterion 1(6)

2.3.3.2.4 Ambient Component of Drift 
Seepage Abstraction

63.114(a)(1) 
63.114(a)(7) 
63.114(b) 
63.342(c)

Section 2.2.1.3.3.3: 
Acceptance Criterion 4(1) 
Acceptance Criterion 4(2) 
Acceptance Criterion 4(3) 
Acceptance Criterion 4(4) 
Acceptance Criterion 5

2.3.3.3 Thermal Seepage See details in sections below See details in sections below

2.3.3.3.1 Conceptual Description of 
Thermal-Hydrologic Processes

63.114(a)(1) 
63.114(a)(4) 
63.114(a)(5)

Section 2.2.1.3.3.3: 
Acceptance Criterion 1(1) 
Acceptance Criterion 1(2) 
Acceptance Criterion 1(3) 
Acceptance Criterion 1(4) 
Acceptance Criterion 1(5) 
Acceptance Criterion 1(7) 
Acceptance Criterion 1(8) 
Acceptance Criterion 1(9)

2.3.3.3.2 Data and Data Uncertainty 63.114(a)(1) 
63.114(a)(2) 
63.114(b)

Section 2.2.1.3.3.3: 
Acceptance Criterion 2(1) 
Acceptance Criterion 2(2) 
Acceptance Criterion 2(3) 
Acceptance Criterion 3(1) 
Acceptance Criterion 3(2) 
Acceptance Criterion 3(3) 
Acceptance Criterion 3(4)

2.3.3.3.3 Model and Model Uncertainty 63.114(a)(1) 
63.114(a)(2) 
63.114(a)(3)  
63.114(a)(7) 
63.114(b) 
63.342(c)

Section 2.2.1.3.3.3: 
Acceptance Criterion 3(1) 
Acceptance Criterion 3(2) 
Acceptance Criterion 3(3) 
Acceptance Criterion 3(4) 
Acceptance Criterion 4(1) 
Acceptance Criterion 4(2) 
Acceptance Criterion 4(3) 
Acceptance Criterion 4(4) 
Acceptance Criterion 5 
Section 2.2.1.3.6.3: 
Acceptance Criterion 1(6)

SAR 
Section Information Category

Proposed
10 CFR Part 63

Reference NUREG-1804 Reference
2.3.3-3
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In some instances, the acceptance criteria in the table above are addressed in multiple sections. The 
acceptance criteria for Section 2.2.1.3.3.3 of NUREG-1804, Quantity and Chemistry of Water 
Contacting Engineered Barriers or Waste Forms, are addressed by one or more of Sections 2.2, 2.3.3
to 2.3.7, 2.3.11 and 2.4, as described more fully in Section 2.3.5. The seepage calculation is based 
on an understanding of flow paths in the unsaturated zone at Yucca Mountain, which affects the 
quantity of seepage into drifts. Thus, the information on water seeping into drifts presented in this 
section not only addresses acceptance criteria given in Section 2.2.1.3.3.3 of NUREG-1804, but is 
also relevant for some acceptance criteria in Section 2.2.1.3.6.3 of NUREG-1804, Flow Paths in the 
Unsaturated Zone. In particular, Acceptance Criterion 1(6) in Section 2.2.1.3.6.3 of NUREG-1804 
refers to the spatial and temporal variability employed in process-level models to estimate, among 
other parameters, seepage flux, a subject relevant to and addressed in this section. Discussions on 
the spatial and temporal variability employed in the seepage-process models can be found in 
Sections 2.3.3.2 and 2.3.3.3.

2.3.3.1 Summary and Overview

The unsaturated zone above the repository is a component of the Upper Natural Barrier 
(Section 2.1.2.1), which prevents or substantially reduces the rate of movement of water into the 
emplacement drifts. The Upper Natural Barrier therefore prevents or substantially reduces the rate 
of the movement of water from the repository to the accessible environment. The FEPs that affect 
the movement (seepage) of water from the unsaturated formation into the emplacement drifts are 
discussed in this section. The potential for seepage to occur, and the seepage rates, are reduced by 
the diversion of water around the emplacement drifts as a result of capillary forces and vaporization 
effects.

An integrated conceptual framework has been developed to model the diversion of water around 
drifts and to predict the potential for seepage. Two basic time periods are defined, with different 
processes accounting for seepage barrier effects. During the early postclosure stage, while seepage 
is affected by thermal perturbation due to the waste heat, both capillary forces and vaporization 

2.3.3.3.4 Thermal Component of Drift 
Seepage Abstraction

63.114(a)(1) 
63.114(a)(7) 
63.114(b) 
63.342(c)

Section 2.2.1.3.3.3: 
Acceptance Criterion 5

2.3.3.4 Total System Performance 
Assessment Implementation of Drift 
Seepage

63.114(a)(1) 
63.114(a)(3) 
63.114(a)(7) 
63.114(b) 
63.342(c)

Section 2.2.1.3.3.3: 
Acceptance Criterion 5(1) 
Acceptance Criterion 5(2)

2.3.3.5 Analogue Observations 63.114(a)(1) 
63.114(a)(7) 
63.114(b)

Section 2.2.1.3.3.3: 
Acceptance Criterion 5(1)

2.3.3.6 Conclusions Not applicable Not applicable

SAR 
Section Information Category

Proposed
10 CFR Part 63

Reference NUREG-1804 Reference
2.3.3-4
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effects will likely cause diversion of water around drifts. This period is referred to as the period of 
thermal seepage (Section 2.3.3.3).

Once the thermal perturbation has diminished (typically, a few hundred to a few thousand years after 
repository closure), water flow into the drifts is reduced by capillary barrier effects only. This period 
is referred to as the period of ambient seepage (Section 2.3.3.2). The basic conceptual framework 
for predicting ambient seepage is the same for the first 10,000 years following repository closure 
and the post-10,000-year period.

Several FEPS contribute to the capability of the Upper Natural Barrier to limit seepage into 
emplacement drifts (Section 2.1.2.1). There are two key processes that define the seepage barrier 
capability during the ambient seepage period:

• Flow Diversion Around Repository Drifts—Downward percolation flux in the 
near-field host rock tends to be diverted around the drift openings by capillary forces. The 
amount of flow diversion due to capillary forces is a function of (1) the flow 
characteristics and magnitude of local percolation in the unsaturated zone above the 
emplacement drifts; (2) permeability and capillary strength of the fractured rock mass 
near the emplacement drifts; and (3) geometry of the emplacement drifts and drift-wall 
properties (Section 2.3.3.2.1.3).

• Water Influx at the Repository—Water influx at the repository is seepage into 
emplacement drifts. This FEP is directly linked with the above FEP on flow diversion, 
because the downward percolation water in the host rock that is not diverted around the 
emplacement drifts will seep into the drifts.

The main features that influence these key ambient-seepage processes are the following:

• Rock Properties of Host Rock and Other Units—The capillarity and permeability of 
the fracture network surrounding drift openings significantly affect diversion of water 
around repository drifts (Section 2.3.3.2.1.3).

• Fractures and Fracture Flow in the Unsaturated Zone—Interconnected fractures are 
the main conduits for downward percolation in the near-field host rock. The detailed flow 
patterns in the fractures surrounding drift openings significantly affect seepage 
(Section 2.3.3.2.1.2).

• Unsaturated Groundwater Flow in the Geosphere—The magnitude and variability of 
unsaturated flow in the unsaturated zone define the downward percolation flux arriving at 
individual drifts. The characteristics and magnitude of local percolation are a key 
parameter for seepage (Section 2.3.3.2.1.3).

The parameters and parameter characteristics associated with the above features and processes have 
been determined to be important to barrier capability (Section 2.1, Table 2.1-2). Various other FEPs 
influence these main features and processes. A complete list of the FEPs addressed in this section 
is given in Table 2.3.3-1.
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During the period of thermal seepage, thermal perturbation causes additional diversion of water 
around repository drifts. The key process affecting barrier capability caused by thermal 
perturbation is the following:

• Geosphere Dryout Due to Waste Heat—Thermal-hydrologic effects of heat from the 
repository reduce the rate of movement of liquid water to the emplacement drifts during 
the early postclosure stage (Section 2.3.3.3.1). Seepage is not expected to occur as long as 
boiling temperatures and dryout conditions prevail in the rock above the repository 
(Section 2.3.3.3.3.1). The thermal-hydrologic conditions in the near-field rock are 
influenced by many of the features and processes listed above for ambient seepage, in 
addition to the heat generation characteristics of the waste and the duration and efficiency 
of preclosure ventilation. Other features and processes important for thermal seepage are 
the condensation zone forming in the near-field rock, the two-phase flow characteristics 
of water and vapor, and the resaturation of the rock due to waste cooling (see discussion 
of FEPs in Table 2.3.3-1).

The effect of boiling and dryout in the host rock surrounding emplacement drifts contributes to 
barrier capability for the first few hundred to a few thousand years, depending on the location within 
the repository, which is a small fraction of the period of geologic stability. The parameters and 
parameter characteristics associated with this FEP have therefore not been specifically identified as 
important to barrier capability (Section 2.1, Table 2.1-2) (i.e., they are less important for barrier 
capability as the ambient-seepage related FEPs).

All features and processes discussed above, including their spatial variability and uncertainty, have 
been accounted for in the seepage predictions conducted in the TSPA, as discussed in 
Section 2.3.3.2 for ambient seepage and in Section 2.3.3.3 for thermal seepage.

Role of Water Seeping Into Drifts in the TSPA—Figure 2.3.3-1 schematically shows the 
information flow from the foundation of field and laboratory seepage-related data through 
different process models to the drift seepage abstraction and the TSPA drift seepage submodel. 
The following section briefly explains the model and abstraction components displayed in the 
figure, starting with the detailed process models for seepage predictions.

There are two conceptually consistent process models simulating seepage under ambient 
conditions: (1) the seepage calibration model; and (2) the seepage model for performance 
assessment. The seepage calibration model uses field test data from active seepage testing for the 
validation of the basic conceptual model for seepage predictions and determines seepage-relevant 
parameters through model calibration (Section 2.3.3.2.3.3). The basic conceptual model for 
seepage predictions and the calibrated parameters are transferred to the second process model for 
ambient conditions—the seepage model for performance assessment—which is used to predict drift 
seepage rates for long-term conditions at Yucca Mountain (Section 2.3.3.2.3.4). Seepage rates are 
calculated for a range of parameter combinations reflecting their expected spatial variability and 
uncertainty. Different drift shape scenarios are considered to account for drift degradation,
including the possibility of complete drift collapse. Information on drift shape changes is provided 
by the geomechanical model simulations conducted in the drift degradation analysis 
(Section 2.3.4). Results from the seepage model for performance assessment are summarized in 
seepage flow rate tables (lookup tables). As explained in Section 2.3.3.2, these lookup tables, 
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together with probability distributions of seepage-relevant parameters, are used to predict 
repository-wide ambient seepage rates in the TSPA.

A third seepage process model, the thermal-hydrologic seepage model (described in 
Section 2.3.3.3), analyzes seepage behavior during the period when water-flow processes in the 
near-field host rock are influenced by repository heating. This process model simulates the 
thermally driven coupled processes in the drift vicinity—including moisture redistribution from 
boiling and condensation of pore water—and evaluates the combined effect of flow diversion 
caused by capillary forces and vaporization, respectively. The conceptual treatment of flow 
diversion due to capillary forces is consistent with the two ambient seepage models. The 
thermal-hydrologic seepage model is applied to selected simulation cases to determine transient 
seepage rates for a range of expected repository conditions (Section 2.3.3.3.3.1). To allow for a 
simple abstraction method, the thermal seepage results are compared to ambient seepage 
predictions, with the goal of qualitatively describing the evolution of thermal seepage in 
comparison to ambient seepage rates.

In addition to these three primary seepage models, two other process models provide information 
on seepage-relevant parameters to the drift seepage abstraction. The flow focusing model evaluates 
intermediate-scale heterogeneity in rock properties in order to understand how preferential-flow 
processes affect the local percolation flux arriving at emplacement drifts. The thermal-
hydrologic-mechanical model predicts the changes in seepage-relevant parameters caused by 
excavation-related stress redistribution.

The drift seepage abstraction shown in Figure 2.3.3-1 assembles the input from the various data 
sources and process model results described above, synthesizes and simplifies this input into a 
coherent conceptual framework, and then feeds the necessary methods, parameters, and 
simplifications to the TSPA drift seepage submodel. The ambient component of seepage abstraction 
(Section 2.3.3.2.4) provides (1) probability distributions for seepage-relevant parameters 
accounting for spatial variability and uncertainty; (2) seepage lookup tables for intact and degraded 
drifts; (3) a methodology for determining seepage rates and estimation uncertainty from the lookup 
tables; (4) a distribution of flow focusing factors; (5) a methodology for categorizing drift 
degradation (from seismic activity) and seepage behavior based on the accumulated rockfall 
volume; and (6) a methodology for determining seepage after igneous intrusion and early failure 
events. The thermal component of seepage abstraction (Section 2.3.3.3.4) develops and justifies the 
methodology for calculating seepage during the time period of thermal perturbation.

As shown in Figure 2.3.3-1, information needed for the implementation of drift seepage into the 
TSPA is also provided by two other TSPA components; the EBS thermal-hydrologic environment 
submodel (SNL 2008a, Section 6.3.2), and the TSPA model for the seismic scenario class (SNL 
2008a, Section 6.6). The EBS thermal-hydrologic environment submodel provides percolation flux 
values interpolated at various locations throughout the repository (Section 2.3.3.2.3.5), using the 
three-dimensional flux distributions for current and future climate states calculated by the site-scale 
unsaturated zone flow model (Section 2.3.2). These flux values are needed in conjunction with flow 
focusing factors to estimate the local percolation flux arriving at the drifts. The EBS 
thermal-hydrologic environment submodel also provides the evolution of drift-wall temperature at 
each repository location which is required to evaluate whether thermal seepage is limited by a 
vaporization barrier (Section 2.3.3.3.4). The TSPA model for the seismic scenario class provides 
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cumulative rockfall volumes in response to (single or multiple) seismic events, which are used to 
categorize drifts with respect to the degree of drift degradation and its impact on seepage 
(Section 2.3.3.2.4.2.2).

Figure 2.3.3-2 shows the information transfer among the principal model components of the TSPA 
nominal scenario class model. The drift seepage abstraction, using input from ambient and thermal 
seepage process models, provides input to the TSPA drift seepage submodel (a component of the 
drift seepage and drift-wall condensation submodel in Figure 2.3.3-2). The TSPA drift seepage 
submodel is used in the TSPA to calculate the time-dependent average seepage rate (mass of water 
seeping into a drift segment per time, with drift segment length corresponding to be the approximate 
length of a waste package plus the spacing between waste packages) and seepage fraction (number 
of drift segments with seepage divided by total number of drift segments) in percolation subregions 
under ambient and thermal conditions. The drift-wall condensation submodel, using results from 
the in-drift condensation model (Section 2.3.5.4.2), provides the average rate of condensation, 
which is combined with the drift seepage results. These results are provided to the EBS flow 
submodel (Section 2.3.7.1), which calculates flow rates through breached waste packages and 
through the invert.

FEPs in the Models Related to Water Seeping into Drifts—The technical basis and approach 
for analysis of each FEP included in the seepage-related models is summarized in Table 2.3.3-1. 
Information on the complete set of FEPs, both included and excluded, is given in Section 2.2, as 
listed in Table 2.2-5. Some of the FEPs included in the seepage-related models are also included in 
models related to climate and infiltration, unsaturated zone flow, drift degradation, and the in-drift 
physical and chemical environment (Sections 2.3.1, 2.3.2, 2.3.4, and 2.3.5).

Design Features Related to Water Seeping into Drifts—Those repository features, described in 
Section 1.3.4, which are important to seepage have been adequately represented in and 
incorporated into the seepage-related models, the seepage model abstraction, and the seepage 
calculation in the TSPA. Design features important for ambient seepage are the emplacement drift 
size and shape, as well as the ground support system. Consistent with Section 1.3.4.2, the ambient 
seepage predictions are conducted for a circular drift with a nominal 5.5 m diameter. Rock bolts 
and other ground support described in Section 1.3.4.4 have been shown to not significantly affect 
the potential for or the magnitude of seepage (Section 2.3.3.2.3.4.1; excluded FEP 2.1.06.04.0A, 
Flow through rock reinforcement materials in EBS, Section 2.2, Table 2.2-5). An additional 
design feature important for thermal seepage (and the thermally-induced mechanical or chemical 
processes occurring in the near-field rock) is the thermal output of the waste packages. The 
respective process models described in Section 2.3.3.3 use a reference thermal load (which 
represents average conditions over all waste packages) consistent with the nominal thermal 
loading conditions described in Section 1.3.1.2.5. Table 2.2-3 provides a summary as to how 
repository design has been included in the performance assessment. The second and last column in 
the table provide pointers to where in the SAR each design control parameter is utilized.
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2.3.3.2 Ambient Seepage
[NUREG-1804, Section 2.2.1.3.3.3: AC 1(1) to (5), (7), (8), AC 2(1), (2), AC 3(1) to 
(4), AC 4, AC 5; Section 2.2.1.3.6.3: AC 1(6)]

This section describes the development, calibration, validation, and use of process models for the 
prediction of potential seepage into waste emplacement drifts under ambient conditions. Ambient 
conditions are expected over most of the time period important for the performance assessment, 
except for the early postclosure stages when thermal perturbation is strong because of the heat 
produced by the radioactive waste. The impact of thermal perturbation on seepage is discussed in 
Section 2.3.3.3. The ambient seepage models are developed based on a conceptual understanding of 
the process by which water may seep from the fractured rock into an emplacement drift. This 
conceptual understanding, as well as the key factors, properties, and conditions affecting seepage 
are discussed in Section 2.3.3.2.1. Data from active seepage testing, passive monitoring, and other 
observations provide the basis for the calibration and validation of the seepage process model. 
These data and their uncertainties are described in Section 2.3.3.2.2. The data are incorporated into 
a site-specific seepage process model through the seepage calibration model, which determines 
seepage-relevant parameters. These parameters are transferred to a conceptually consistent 
prediction model (the seepage model for performance assessment), which is used to calculate 
ambient seepage into waste emplacement drifts for a range of expected parameter combinations. 
The development, calibration, validation, and application of these models—as well as a discussion 
of model uncertainty and alternative conceptual models—can be found in Section 2.3.3.2.3. The 
results from the seepage prediction model are summarized in lookup tables. As described in 
Section 2.3.3.2.4, these tables—together with probability distributions of seepage-relevant 
parameters and a suitable abstraction of seepage-relevant FEPs (Table 2.3.3-1)—provide the 
information needed for the implementation of ambient drift seepage into the TSPA.

2.3.3.2.1 Conceptual Description of Ambient Seepage Processes
[NUREG-1804, Section 2.2.1.3.3.3: AC 1(1) to (5), (7), (8)]

In the context of Yucca Mountain seepage is defined as dripping of water into an underground 
opening, such as a niche, alcove, access tunnel, or emplacement drift (SNL 2007a, Section 6.1.3). 
Accordingly, seepage, as discussed in this section, does not include advective or diffusive vapor 
flow into the opening or condensation of water vapor on surfaces, which may lead to water drop 
formation and water drop detachment. Seepage, as defined here, does not constitute all the water 
potentially contacting the EBS. Furthermore, some of the water entering an underground opening 
may evaporate or flow along the wall and, thus, does not contribute to seepage. In-drift moisture 
redistribution and potential condensate accumulation are discussed in the section on the in-drift 
physical and chemical environment (Section 2.3.5).

In the unsaturated zone at Yucca Mountain, percolating water encountering an emplacement drift 
tends to be diverted around the opening because of capillary effects (Figure 2.3.3-3; Table 2.3.3-1, 
FEPs 2.1.08.02.0A Enhanced influx at the repository; 2.2.07.03.0A, Capillary rise in the 
unsaturated zone; and 2.2.07.20.0A, Flow diversion around repository drifts). Seepage occurs when 
percolation flux exceeds the seepage threshold (the minimum percolation flux required to initiate 
seepage). A nonzero seepage threshold indicates that water may be excluded due to capillary 
diversion. This capillary-diversion effect reduces the amount of water entering an emplacement 
drift, or prevents dripping altogether. The seepage flux averaged over a sufficiently large area 
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(i.e., that of an emplacement drift section with the length of a waste package) will always be equal 
to or less than the local percolation flux.

2.3.3.2.1.1 Significance of Seepage for Repository Performance

The rate and distribution of seepage from the unsaturated zone above the repository (a component 
of the Upper Natural Barrier) into the emplacement drifts affect performance in different ways. The 
number of waste packages contacted by water, the corrosion performance of the features that make 
up the EBS, the dissolution and mobilization of radionuclides, and the release and migration of 
radionuclides to the unsaturated zone below the repository (a component of the Lower Natural 
Barrier) are all influenced by seepage (Section 2.3.5). Partial or complete diversion of water around 
the emplacement drifts due to capillary diversion, in combination with vaporization during the 
thermal period, reduces or prevents seepage into the emplacement drifts. In addition, flow diversion 
around drifts results in development of a low-saturation and low-flux zone beneath the 
emplacement drift (Figure 2.3.3-4), which may delay the transport of released radionuclides from 
the emplacement drift to the unsaturated zone, but has been excluded from TSPA on the basis of low 
consequence (Excluded FEP 2.2.07.21.0A, Drift shadow forms below repository, in Section 2.2, 
Table 2.2-5).

2.3.3.2.1.2 Description of Ambient Seepage Process

Seepage is a process that occurs at the interface between the Upper Natural Barrier and the EBS. As 
a result, the amount and distribution of seepage is not only affected by the hydrogeological 
properties and flow conditions in the fractured host rock, but also by the repository design (drift 
geometry), construction method (excavation effects, drift surface roughness), and the operating 
conditions within the drifts (e.g., heat load and ventilation). Figure 2.3.3-4 schematically depicts the 
potentially significant processes and factors affecting seepage for both an intact drift and a partially 
collapsed drift. Some of the processes and factors shown in Figure 2.3.3-4 are insignificant and thus 
are excluded from further consideration (e.g., ground support, see excluded FEP 2.1.06.04.0A, 
Flow through rock reinforcement materials in EBS, Section 2.2, Table 2.2-5). Others (such as film 
flow and matrix imbibition (Table 2.3.3-1; FEPs 2.2.07.09.0A, Matrix imbibition in the unsaturated 
zone; and 2.2.07.18.0A, Film flow into the repository)) are not explicitly simulated, but are 
accounted for and therefore included in the seepage models through the estimation of effective 
seepage-relevant parameters (Section 2.3.3.2.1.5). A third group of processes (such as ventilation 
and evaporation effects) are considered when necessary (e.g., during model calibration), but 
conservatively are not included in the prediction of ambient seepage (as explained later in this 
section). The treatment of processes and factors shown in Figure 2.3.3-4 that are considered 
relevant for seepage assessment, and the identification of the key seepage-relevant parameters, are 
discussed in Section 2.3.3.2.3.

The source of seepage water is deep percolation in the unsaturated zone, which in turn depends on 
the precipitation and infiltration patterns at the surface. At Yucca Mountain, the majority of 
precipitation is inhibited from infiltration into the unsaturated zone by surface runoff and 
evapotranspiration. On the basis of the values in Tables 2.3.1-17, 2.3.1-18, and 2.3.1-19, the 
infiltration on average ranges from about 8% (average of present-day climate conditions) to about 
10% (average of glacial-transition climate conditions) of the precipitation expected over the 
repository area. Infiltrating water percolates downward in the unsaturated zone as local percolation 
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flux, driven by gravity and capillary forces. As this water percolates to depth within the unsaturated 
zone, it is spatially redistributed, as described by the site-scale unsaturated zone flow model 
(Section 2.3.2).

The detailed flow path within the unsaturated zone is determined by the degree of fracturing, 
fracture geometry, orientation, connectivity, and the hydrogeologic properties of the fractures and 
the matrix (Table 2.3.3-1, FEPs 1.2.02.01.0A, Fractures; 2.2.03.02.0A, Rock properties of host rock 
and other units; and 2.2.07.08.0A, Fracture flow in the unsaturated zone). Depending on these 
factors, the water in the unsaturated fracture network generally concentrates along discrete flow 
paths or channels. Tilted contacts between hydrogeologic units (especially between welded and 
nonwelded tuffs), as well as heterogeneity in rock properties, affect the overall flow pattern and 
change the frequency and spacing of flow channels (Section 2.3.2). Flow channeling and dispersion 
of flow paths also occur within rough-walled fractures where asperity contacts and locally larger 
fracture openings lead to small-scale redistribution of water within the fracture plane. Flow 
focusing (Section 2.3.3.2.3.5) impacts seepage because seepage depends on the local, rather than 
the average, percolation flux (SNL 2007a, Section 6.6.5; BSC 2004a, Section 6.8).

Rock formation properties around the emplacement drifts are altered as a result of mechanical, 
thermal, and chemical processes, which in turn may affect seepage. Stress redistribution during drift 
excavation leads to local opening or partial closing of fractures and, potentially, the creation of new 
fractures (SNL 2007a, Sections 6.3.2 and 6.6.3) (Table 2.3.3-1, FEP 2.2.01.01.0A, Mechanical 
effects of excavation and construction in the near field). Fracture apertures may also be changed by 
the thermal expansion of the rock matrix. Finally, the local chemical environment, which is altered 
by evaporation and thermal effects, will lead to dissolution and precipitation of minerals, affecting 
flow properties of the fracture system and fracture–matrix interaction (SNL 2007a, Section 6.3.2). 
These conditions lead to a flow pattern around an emplacement drift that is different from that in the 
undisturbed formation under ambient conditions.

In addition, as percolating water approaches the emplacement drifts, it encounters different thermal 
conditions over time that affect the amount of water that can seep into the drifts. During preclosure, 
ventilation removes heat and moisture from the surrounding rock (Table 2.3.3-1, FEP 1.2.02.02.0A, 
Faults). In most repository locations, near-drift rock temperatures rise above the boiling point of 
water after closure, resulting in a dryout zone, a two-phase transition zone, and a condensation zone. 
The effects of these thermal perturbations on flow and seepage are discussed in Section 2.3.3.3. As 
the radioactive decay heat dissipates, rock temperatures eventually decrease to below the boiling 
point of water, rewetting occurs, and seepage becomes possible. While there may be irreversible 
changes in the near-field host rock due to coupled effects, the impact on the quantity of long-term 
water seeping into the drifts is minor (Section 2.3.3.3.3.4).

Percolating water that reaches the immediate vicinity of the drift wall may be prevented from 
seeping into the drift because the water has the tendency to be held in the pores on account of 
capillary forces. This induces a local saturation buildup in the formation within the region closest 
to the drift crown, leading to a pressure gradient in the direction tangential to the drift 
circumference. If the tangential permeability and the capillarity of the fracture network within this 
region are sufficiently high, all or a portion of the water is diverted around the emplacement drift 
under partially saturated conditions. Conversely, if the capillarity of the formation is relatively 
weak, tangential permeability is low, or the local percolation flux is high, the water potential in the 
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formation may be higher than that in the emplacement drift, allowing water to exit the formation and 
enter the emplacement drift. At the emplacement drift surface, the water either evaporates, follows 
the inclined rough wall in a film, or forms a drop that may grow and eventually detach. For modeling 
purposes, only water that drips is defined as seepage to be explicitly modeled by the seepage model 
for performance assessment (SNL 2007a, Section 6.1.3). Evaporation from the drift wall is included 
in the seepage calibration model to account for ventilation effects that impacted the observed 
seepage rates; however, it is not considered in the seepage model for performance assessment, 
because relative humidity in the drift under ambient postclosure conditions is expected to be close 
to 100%. This assumption leads to slightly higher and conservative seepage predictions. Film flow 
is accounted for by estimating an effective, seepage-related parameter from seepage tests that 
reflects film flow processes (BSC 2005a, Section 6.2.1.1.2).

As discussed in Section 2.3.4, emplacement drifts degrade with time as a result of seismic activity, 
potentially leading to rock mass damage and rockfall in emplacement drifts (Table 2.3.3-1, FEP 
1.2.03.02.0D, Seismic-induced drift collapse alters in-drift thermohydrology). The resulting 
changes in drift shape and size affect the potential for seepage. Drift degradation furthermore leads 
to changes in seepage-relevant rock properties in the drift vicinity (SNL 2007a, Section 6.3.1). An 
abstraction methodology was developed that accounts for all the above effects (Section 2.3.3.2.4), 
based on seepage modeling predictions for moderately degraded as well as fully collapsed drifts 
(Section 2.3.3.2.3.4).

Seepage is also affected by igneous intrusions into emplacement drifts (Table 2.3.3-1, FEP 
1.2.04.03.0A, Igneous intrusion into repository), which are likely to introduce strong thermal, 
mechanical, and chemical perturbations within the drifts and the surrounding rock 
(Section 2.3.11.1). Given the uncertainties in predicting seepage processes under such conditions 
(SNL 2007a, Section 6.5.1.7), the TSPA drift seepage submodel does not account for the possible 
capillary-barrier effects above magma-filled drifts. Instead, seepage is conservatively set to the 
local percolation flux arriving at the drift (Section 2.3.3.2.4.2).

In summary, the rate of water dripping into an emplacement drift is expected to be less than the local 
percolation rate because (1) the dryout zone around the drift reduces liquid water flow, potentially 
preventing water from reaching the drift surface (SNL 2007a, Section 6.3.2); (2) the capillary 
barrier diverts water around the drift; (3) water may flow along the emplacement drift wall without 
dripping into the opening; and (4) water may evaporate from the drift surface (BSC 2004b, 
Section 6.3.1). Therefore, even if the seepage threshold were exceeded and seepage occurred, the 
seepage flux would be lower than the local percolation flux by the amount of water that is diverted 
around the drift, evaporates, or flows as a film along the drift surface. This ambient seepage 
representation applies to the period during which rock temperatures are below the boiling point of 
water, and before the drift geometry may change due to drift degradation in a seismic event. In the 
case of full drift collapse, when the original openings have filled with rubble rock material, capillary 
effects are still expected to cause flow diversion at the interface between the solid rock and the 
rubble-filled drift (Section 2.3.3.2.3.4.2).

2.3.3.2.1.3 Factors and Properties Affecting Ambient Seepage

The factors affecting ambient seepage include (1) the magnitude of the local percolation flux; 
(2) rock properties, including the strength of the capillary forces in the fractures and the tangential 
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permeability and connectivity of the fracture network in the immediate vicinity of the emplacement 
drift; (3) the emplacement drift size and shape, as well as the local topography of the rough 
emplacement drift wall; and (4) the thermodynamic conditions in the emplacement drift 
(specifically in-drift relative humidity). Some of these factors are affected by the construction 
method and ground-support system; they determine excavation effects in the formation, small-scale 
emplacement drift surface roughness, and the likelihood and geometry of breakouts. The relative 
humidity in the drift affects the evaporation potential. The treatment of these factors and their 
incorporation into the base-case seepage conceptual model are discussed below. Drift degradation 
and drift collapse in response to seismic events change the drift size, drift geometry, and the 
potential presence of rubble in the drift, which in turn affect the effectiveness of the capillary barrier. 
These factors are discussed in Section 2.3.3.2.1.4.

Percolation Flux—The magnitude of the percolation flux is an important factor determining 
seepage (Table 2.3.3-1, FEP 2.1.08.01.0A, Water influx at the repository). Seepage is initiated if 
the local percolation flux in individual flow channels and the accumulation of water from these 
channels near the emplacement drift crown exceed (1) the vaporization potential during the 
thermal period; (2) the diversion capacity of the capillary process; (3) the evaporation potential 
within the emplacement drift; and (4) the capacity of films to carry water along the emplacement 
drift surface. It is the local percolation flux rather than the large-scale average flux that controls 
the onset of seepage (SNL 2007a, Sections 6.3.1 and 6.6.5).

The source of percolation flux is net infiltration at the ground surface, stemming from precipitation 
events (Section 2.3.1). As infiltrating water percolates through the unsaturated zone, the flow 
patterns change depending on the heterogeneous properties of the hydrogeologic units 
(Section 2.3.2). Percolation flux in the TCw hydrogeologic unit occurs mostly in fractures before 
entering the PTn hydrogeologic unit (BSC 2004c, Section 6.1.2; BSC 2004d, Section 7.9.1). With 
its high matrix porosity and low fracture frequency, and the existence of tilted layers of nonwelded 
vitric and bedded tuff, the PTn unit diverts some percolating water into fault zones. It also dampens 
downward-moving transient pulses from surface infiltration events (SNL 2007b, Section 6.9). 
Below the PTn is the TSw hydrogeologic unit, which is a thick, densely fractured unit consisting of 
layers with different lithologic properties that will host the repository. Because of the presence of the 
PTn, the large-scale percolation flux distributions in the TSw predicted by the site-scale unsaturated 
zone flow model are considered to be steady within a given climate period, but changes in 
percolation flux due to climate change are accounted for (Section 2.3.2) (Table 2.3.3-1, FEPs 
1.3.01.00.0A, Climate change, and 1.4.01.01.0A, Climate modification increases recharge). The 
climate states considered are the present-day climate (0 to 600 years after emplacement), the 
monsoon climate (600 to 2,000 years), and the glacial-transition climate (2,000 to 10,000 years). 
Percolation flux during the post-10,000-year time period is based on the proposed revision to 
10 CFR 63.342(c), where a log-uniform distribution is prescribed defining the spatially-averaged 
percolation flux through the repository footprint.

Heterogeneities in rock properties of the hydrogeologic units occur on various scales. As seen in 
Figure 2.3.3-5, large-scale heterogeneities can divert water (e.g., along contacts between 
hydrogeologic units) and concentrate it into local features (e.g., faults (FEP 1.2.02.02.0A in 
Table 2.3.3-1)). Intermediate-scale heterogeneities, which are not resolved by the site-scale 
unsaturated zone flow model, are likely to redistribute water as it percolates downwards, resulting 
in an average, local percolation flux on the scale of an emplacement drift that is either higher or 
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lower than the flux averaged on the scale of the larger gridblock used in the site-scale unsaturated 
zone flow model. This intermediate-scale flow redistribution is captured by a distribution of 
so-called flow focusing factors, which are defined as the ratio of the drift-scale to the 
mountain-scale percolation flux. Flow concentration on this intermediate scale is referred to as flow 
focusing. Flow simulations using the flow focusing model that calculates flow focusing factors
(Section 2.3.3.2.3.5) show that flow becomes more focused within tens of meters of the top of the 
model. The effects of flow focusing change at interfaces between hydrogeologic units, leading to 
some additional redistribution of flow (BSC 2004a, Section 6.8).

Flow channeling and diversion of flow paths also occur within each rough-walled fracture, where 
asperity contacts and locally larger fracture openings lead to small-scale redistribution of water 
within the fracture (BSC 2004b, Section 6.3; SNL 2007a, Section 6.3.1). In addition to spatial 
flow-channeling effects, temporal fluctuations with a wide frequency spectrum and a range of 
amplitudes may exist. The flux in a flow channel may be near steady state or episodic, ranging from 
high-frequency fluctuations triggered by small flow instabilities to intermediate variabilities in 
percolation fluxes in response to changing weather conditions to long-term variations from climate 
changes. Since the small-scale, high-frequency fluctuations occur on the spatial and temporal scale 
of the liquid-release tests used for model calibration, these effects are included in the estimates of 
seepage-relevant parameters. As pointed out earlier, long-term variations in percolation flux due to 
climate changes are accounted for explicitly by using different flux distributions (Table 2.3.3-1; 
FEPs 1.3.01.00.0A, Climate change; and 1.4.01.01.0A, Climate modification increases recharge), 
while intermediate variabilities in response to precipitation events have been determined to be 
insignificant due to the presence of the PTn unit (Excluded FEPs 2.2.07.05.0A, Flow in the UZ from 
episodic infiltration; and 2.1.08.01.0B, Effects of rapid influx into the repository, in Section 2.2, 
Table 2.2-5).

The impact of lithophysal cavities on flow and seepage is twofold: (1) lithophysal cavities are 
essentially obstacles to water flow because capillary processes divert water flow around the cavities 
and focus the flow into regions between the cavities; and (2) lithophysal cavities intersected by the 
drift lead to a rough drift ceiling, potentially creating seepage points at local low points on the 
ceiling. Both effects promote seepage (BSC 2004b, Section 6.3.3.5). They are accounted for in the 
seepage calculation through the use of calibrated capillary-strength parameters 
(Section 2.3.3.2.3.2).

Rock Properties—Heterogeneities in rock properties occur on various scales that affect flow and 
seepage. The key rock properties determining the effectiveness of the capillary diversion are the 
capillary strength and the permeability tangential to the emplacement drift wall. Larger values of 
capillary strength and tangential permeability both lead to a higher seepage threshold (i.e., more 
diversion around the drift opening and, therefore, less seepage), while lower values result in a 
higher potential for seepage (BSC 2004b, Section 6.3.3.2).

In the model developed for ambient seepage predictions, rock properties are represented by a set of 
process-relevant, scale-dependent, and model-related parameters. As discussed in 
Section 2.3.3.2.3, capillarity and permeability are to be considered effective parameters determined 
by matching the model to data that contain information about the seepage process. In general, 
however, a fracture with a small aperture has relatively low permeability and strong capillarity (and 
vice versa for a fracture with a wide aperture). This negative correlation reduces the probability of 
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encountering parameter combinations that would lead to extreme (low or high) seepage behavior, 
making seepage in porous rocks relatively uniform across different geologic units. While the 
negative correlation between permeability and capillary strength is evident if considering a single 
fracture, such a correlation may not necessarily apply to a fracture system. A given permeability for 
fractured rock may result from a network consisting of a few large fractures or, alternatively, a 
network of many small, well-connected fractures. A network with few large fractures would exhibit 
relatively weak capillarity, while a network with many small fractures would have stronger 
capillarity. If the predominant fracture orientation is aligned with the longitudinal drift axis 
(Section 2.3.3.2.3.2, Figure 2.3.3-6), little or no tangential permeability is available, and seepage is 
increased. For flow diversion to occur, the fracture system must have sufficient connectivity and 
permeability to provide the necessary effective diversion pathways in a tangential direction around 
the emplacement drift (SNL 2007a, Section 6.3.1). The seepage relevant capillary strength 
parameter is an effective continuum parameter that implicitly accounts for additional factors 
affecting seepage. Factors that are lumped into the effective capillary strength parameters include 
(1) the continuum capillarity of a network of rough-walled fracture; (2) capillary rise within axially 
oriented fracture segments intersected by the drift; (3) small scale drift wall roughness (including 
effects of lithophysal cavities); and (4) capillary adsorption of water along the drift wall leading to 
film flow.

Because of excavation, stress is redistributed, and fractures generally dilate near the crown of the 
emplacement drift. Such fracture dilation depends on the orientation of the fracture set and occurs 
within approximately one emplacement drift radius. An increase in fracture aperture causes an 
increase in fracture permeability and a decrease in capillary strength. The ambient seepage models 
use excavation-disturbed rock properties in the simulation of seepage (BSC 2004b, Section 6.5.2; 
SNL 2007a, Section 6.6.3). Rock properties may also be affected by repository heat 
(Section 2.3.3.3) and the related thermal-hydrologic-chemical-mechanical effects, which are 
discussed in Sections 2.3.3.3.3.4 and 2.3.5.

Emplacement Drift Geometry and Drift-Wall Properties—Drift size and geometry affect the 
seepage threshold and the seepage rate. Generally, a large emplacement drift exhibits a 
significantly lower seepage threshold compared to a small opening. With larger emplacement 
drifts, more water accumulates in the high-saturation region near the emplacement drift boundary 
because the water needs to move over a longer diversion distance around the wider opening 
(Philip et al. 1989). The size of emplacement drifts is strongly affected in the case of drift collapse, 
as discussed in Section 2.3.3.2.1.4.

The effectiveness of a capillary diversion is greatest if the shape of the cavity follows an 
equipotential surface (Philip et al. 1989). Breakouts in the drift ceiling caused by rockfall and drift 
degradation may change the emplacement drift geometry locally and lead to local low points in the 
ceiling, which may trap water, reduce or prevent flow diversion, and initiate seepage
(Section 2.3.3.2.1.4). In addition, small-scale surface roughness increases seepage if the amplitude 
of the irregularity is comparable to the boundary-layer thickness, which is determined by the 
capillary rise in the fractures and is on the order of a few centimeters (BSC 2004b, Section 6.3.3.3).
Accounting for small-scale surface roughness in the seepage predictions is explained in 
Section 2.3.3.2.3.2.
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In-Drift Conditions—The relative humidity in the emplacement drift is the key factor that 
determines the evaporation potential, which in turn affects the amount of liquid water at the drift 
wall that is available for drop formation and seepage. The evaporation potential may change in 
response to active and passive drift ventilation, which determines the temperature, relative 
humidity, and the thickness of the diffusive boundary layer at the drift surface (BSC 2004b, 
Sections 6.6.1.3 and 6.6.1.4). Under the long-term conditions for which ambient seepage is 
evaluated for the TSPA, relative humidity is expected to be close to 100%, resulting in a negligible 
effect on seepage. However, ventilation and evaporation effects have to be accounted for in the 
analysis of data collected during active seepage testing (Section 2.3.3.2.2.1). The seepage rate data 
used for the estimation of seepage-relevant parameters (Section 2.3.3.2.3.3) are reduced by the 
amount of water that evaporated, which depends on the evaporation potential and the wetted area 
at the drift wall exposed to evaporation.

The development of wet spots on the ceiling during active seepage testing, and their relation to 
in-drift conditions, have been studied in several niches and along the Enhanced Characterization of 
the Repository Block (ECRB) Cross-Drift (Section 2.3.3.2.2.1.1). The tests showed that temporal 
reduction of the size of the wet spot during continued water release from above was related to 
increased evaporation as a result of changes in the ventilation regime. The effects of ventilation on 
seepage test data were addressed by (1) increasing relative humidity in the testing area (using 
bulkheads, end curtains, and humidifiers); (2) monitoring relative humidity and evaporation from 
a free water surface (pan experiments); and (3) including evaporation in the seepage calibration 
model used to analyze seepage-rate data (Sections 2.3.3.2.2.1 and 2.3.3.2.2.2). Similar effects on 
seepage are expected during the preclosure period, in which both heat and moisture are removed by 
forced ventilation.

2.3.3.2.1.4 Drift Degradation Effects

Drift degradation and related drift shape changes can be caused by seismic activity, as explained in 
Section 2.3.4. Seismic events of varying peak ground velocities (PGVs) have been evaluated in 
Drift Degradation Analysis (BSC 2004e). One of the conclusions from the geomechanical studies 
is that the degradation results are fundamentally different between nonlithophysal and lithophysal 
rocks.

In the hard, strong, jointed rock of the nonlithophysal units, damage to drifts will be mostly limited 
to the local gravitational drop of rock blocks (wedge type rockfall) at the drift roof, which is 
controlled by the geological structure. Except for this effect, emplacement drifts in nonlithophysal 
units are expected to remain mostly intact openings, with the horizontal extent of the drifts 
essentially unchanged (BSC 2004e, Figures 6-108 through 6-114). In most cases, as shown later, 
local rockfall has no considerable impact on seepage. Only if topographic lows would form at the 
drift ceiling (where percolation water could accumulate as lateral flow diversion is not possible), the 
seepage probabilities and rates would increase compared to nondegraded drifts (SNL 2007a, 
Sections 6.4.2.4.2 and 6.2.3[a]).

More significant drift degradation is predicted for the relatively deformable lithophysal rock. In 
lithophysal units, seismic events with large PGVs will lead to complete collapse of emplacement 
drifts, with rubble rock material filling the enlarged opening (BSC 2004e, Section 6.4.2.2.2) 
(Table 2.3.3-1, FEP 1.2.03.02.0D, Seismic induced drift collapse alters in drift thermohydrology). 
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In such conditions, seepage is defined as the flow of liquid water from the fractured formation into 
the rubble-filled opening. Drift collapse can lead to seepage behavior that is much different from 
that in intact drifts (SNL 2007a, Sections 6.4.2.4.2 and 6.2.2[a]). The larger size and possibly 
different shape of a collapsed drift can reduce the potential for flow diversion. In addition, the 
capillary barrier behavior at the drift wall can be affected by the rubble rock blocks filling the 
opening, as the capillary strength inside the opening is different from the zero capillary strength 
condition in the initially open drift. Finally, as discussed before, drift degradation can lead to 
changes in the permeability and capillary strength of the fractured rock in the vicinity of the rubble 
filled openings, which are caused by fracture dilation or the generation of new fractures.

2.3.3.2.1.5 Modeling Approach

A number of numerical models have been developed to (1) help understand the ambient seepage 
process; (2) to determine site specific, seepage relevant formation parameters; and (3) to predict 
seepage into intact and degraded waste emplacement drifts. These drift scale seepage models are 
linked to other models on different scales; specifically, the site scale unsaturated zone flow model
and the scale-transition models provide flow focusing factors. Quantitative and qualitative results 
from these process models are used in the seepage abstraction to arrive at a reasonable approach to 
handling seepage in TSPA calculations. Using this approach, the processes that are implicitly or 
explicitly accounted for include (1) the mountain-scale distribution of percolation flux; (2) the 
intermediate-scale and small-scale channeling of flow in the fracture network, including possible 
high-frequency fluctuations; (3) the drift-scale capillary diversion; (4) the microscale phenomena 
of film flow, drop formation, and drop detachment at the emplacement drift surface where water 
leaves the formation and enters the emplacement drift; and (5) the local thermodynamic 
environment in the emplacement drift influencing the potential for evaporation (e.g., relative 
humidity) (BSC 2004b, Section 6.3.3 and 6.3.4).

Seepage-relevant model parameters on the drift scale are determined using the seepage calibration 
model (Section 2.3.3.2.3.3), which simulates the liquid-release tests described in 
Section 2.3.3.2.2.1. A second model—the seepage model for performance assessment 
(Section 2.3.3.2.3.4)—is conceptually consistent with the seepage calibration model; it simulates 
seepage into waste emplacement drifts for combinations of the parameters that are most significant 
for predicting ambient seepage.

To support the modeling approach for ambient seepage, liquid release tests were performed at rates 
below and above the seepage threshold. The tests covered the conditions expected under ambient 
percolation conditions, which are typically below the threshold at which seepage becomes possible. 
The tests also covered localized, high flux conditions that could result from wetter future climates 
and could induce seepage. As a result, the chosen approach focuses on the relevant emplacement 
drift and waste package scale (BSC 2004b, Section 6.1.1).

Conducting active seepage tests in the repository host rock units and on a scale that approximates 
an emplacement drift section assures that data are generated that contain relevant information about 
the seepage processes to be predicted. Moreover, the consistency between calibration data and the 
prediction variable minimizes potential conceptual differences between the seepage calibration 
model and the seepage model for performance assessment. Finally, uncertainties and variabilities 
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inherent in the seepage process are addressed by a probabilistic treatment of seepage in the TSPA, 
based on uncertainty in parameters affecting seepage (Sections 2.3.3.2.3.6, 2.3.3.2.4, and 2.3.3.4).

2.3.3.2.2 Data and Data Uncertainty
[NUREG-1804, Section 2.2.1.3.3.3: AC 2(1), (2), AC 3(1) to (4)]

This section describes the data from the field tests and laboratory experiments that support the 
development of the two ambient seepage process models, the ambient component of the drift 
seepage abstraction, and the TSPA drift seepage submodel. Measurement uncertainties in these data 
are also discussed.

Tests to characterize seepage that were conducted in various niches and the ECRB Cross-Drift 
provide the primary data used for the seepage calibration model (BSC 2004b, Section 6.5.1). In 
addition to seepage tests, a section of the ECRB Cross-Drift and Alcove 7 were closed off to 
eliminate ventilation effects in order to provide data for seepage under natural percolation 
conditions (BSC 2004f, Section 6.10). Moisture monitoring in these drift sections, and observations 
related to evaporation and condensation effects, are described in Section 2.3.3.2.2.2.

2.3.3.2.2.1 Seepage Testing

The bulk of the data for understanding ambient seepage comes from two testing programs 
conducted in the Exploratory Studies Facility (ESF) and the ECRB Cross-Drift (BSC 2004b, 
Section 6.5.1): 

• Niche Studies—Short drifts, or niches, ranging from 6.3 to 15.0 m in length, were 
constructed in the Tptpmn unit and the Tptpll unit for use in a variety of tests (BSC 
2004b, Section 6.5.1).

• Systematic Borehole Testing Program—The systematic borehole testing program was 
initiated to complement the niche studies and to provide for systematic hydrologic 
characterization by performing air injection and liquid-release tests in approximately 
20-m-long boreholes drilled at a 15° angle upward and parallel to the drift axis into the 
crown every 30 m along the ECRB Cross-Drift (BSC 2004f, Section 6.11).

Multiple liquid-release tests (Section 2.3.3.2.2.1.1) were performed in Niches 2, 3, 4, and 5 (also 
referred to as Niches 3650, 3107, 4788, and 1620, respectively), and in the systematic testing 
boreholes (SYBT-ECRB-LA#1 to #3) to study seepage behavior and to characterize 
seepage-related properties in different units and under different conditions. Test locations in niches 
and the location of the ECRB Cross-Drift are illustrated in Figure 2.3.3-7. Seepage-rate data 
collected during those liquid-release tests were used to calibrate the seepage calibration model 
(Section 2.3.3.2.3.3) for the determination of seepage-relevant formation parameters (BSC 2004b, 
Section 6.5.3). In addition, air injection tests (Section 2.3.3.2.2.1.2) were conducted to determine 
permeability distributions needed to develop the seepage calibration model and the seepage model 
for performance assessment (BSC 2004b, Section 6.5.2).

Because evaporation at the drift wall affects seepage, other studies were done to monitor and at 
times control the drift relative humidity under various conditions (Section 2.3.3.2.2.1.3) (BSC 
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2004b, Section 6.5.4). Another study investigated capillary diversion by performing mass balance 
calculations using test data collected in Niche 5, along with associated modeling results to account 
for components of the mass balance equation that could not be measured directly 
(Section 2.3.3.2.2.1.4). A liquid-release test on the fault and fracture network between Alcove 8 and 
Niche 3 was conducted (Section 2.3.3.2.2.1.5).

2.3.3.2.2.1.1 Liquid-Release Tests

As part of the niche studies program, drift-scale liquid-release tests were initiated in 1997 to 
investigate potential seepage into an underground opening representing an emplacement drift. 
Niches were constructed at various locations along the ESF and the ECRB Cross-Drift. Boreholes 
were drilled above the niches prior to and after the niches were excavated, in order to facilitate 
characterization of the rock using air injection tests and investigation of seepage processes using 
liquid-release tests. The locations of the niches were chosen to represent different hydrogeologic 
units where emplacement drifts will be located. Additional liquid-release tests were conducted as 
part of the systematic borehole testing program (BSC 2004f, Section 6.1.1; BSC 2004b, 
Section 6.5.3).

The effectiveness of the capillary diversion and the presence of a threshold percolation flux were 
examined using liquid-release tests, in which water was released at various rates from a short section 
of a borehole above the opening. Any water that migrated from the borehole to the crown and 
dripped into the opening was captured and measured. Seepage processes were observed and 
resulting seepage rates were measured using liquid-release tests in multiple borehole intervals at 
Niches 2, 3, 4, and 5, and in three systematic testing boreholes (SYBT-ECRB-LA#1 to #3). To 
evaluate the seepage response to different percolation fluxes and different initial conditions, 
multiple liquid-release tests were conducted in the same borehole interval using different release 
rates—above and below the seepage threshold—with different time delays between individual test 
events. Only a small amount of water was released in early tests conducted in Niche 2. To reduce 
the impact of the effects of water storage in the rock formation, and to test a more representative 
portion of the fracture network involved in flow diversion around the opening, later tests in 
Niches 3, 4, and 5, and along the ECRB Cross-Drift, used significantly more water to reach near 
steady seepage conditions (BSC 2004b, Section 6.5.3). These later tests are used for parameter 
estimation purposes, as described in Section 2.3.3.2.3.3. Ventilation and evaporation effects were 
mitigated or accounted for, as discussed in Section 2.3.3.2.2.1.3.

Figure 2.3.3-8 shows an example of contours of the wetting front spreading across the Niche 4 
crown during a liquid-release test over a period of about 12 days. In this test, water issued from the 
formation through fractures and microcracks spread along the rough and dusty surface.

Figure 2.3.3-9 presents seepage rates measured in Niche 4 during a different liquid-release test, 
showing that they stabilize after about four days of continuous water injection. These stabilized 
seepage rates indicate that there are no relevant changes to the partitioning of injected water 
between flow diversion around the niche and storage in the formation on the one hand, and seepage 
on the other hand. (Note that due to the relatively short distance between the water release point and 
the niche crown, it is unlikely that water bypasses the niche. Bypassing of the niche and seepage 
collection system may have occurred in the Alcove 8–Niche 3 seepage test bed, as discussed in 
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Section 2.3.3.2.2.1.5.) In this example, because of the high release rate, a near-steady seepage rate 
developed that was approximately half the release rate.

2.3.3.2.2.1.2 Air Injection Tests

To understand the small-scale permeability variation that is important for seepage processes, air 
injection tests were conducted in the same boreholes above niches where seepage liquid-release 
tests were later performed. Air injection tests estimate the permeability of the fractured rock by 
isolating a short section of a borehole (in this case about 1 ft), using an inflatable packer system and 
then injecting compressed air at a constant rate into the isolated injection interval. The pressure 
buildup in the injection interval (and in nearby similarly isolated observation intervals) was 
monitored until steady conditions were reached, typically within a few minutes. Air injection was 
terminated after reaching steady pressures, and the decline in air pressure was then monitored as it 
recovered to its initial pretest condition. Air-permeability values were derived from the steady 
pressure data using the modified Hvorslev approach (LeCain 1995; BSC 2004f, Section 6.1.2.1) to 
obtain fracture permeability. The air permeabilities are considered representative of the intrinsic 
fracture continuum permeability because the fractures are essentially dry during air injection 
testing, and the contribution of matrix gas flow is negligible because of low overall matrix 
permeability and high liquid saturation (BSC 2004f, Section 6.1.2.1).

The air injection tests were conducted before and after excavation of the niches. The results showed 
that permeability around the niches was affected by excavation (BSC 2004f, Section 6.1.2.2.1; 
Wang and Elsworth 1999). Because seepage is determined by the formation properties and 
excavation effects in the immediate vicinity of the opening, postexcavation air-permeability data 
are used for calculation of seepage into emplacement drifts. Different excavation methods can result 
in varying degrees of excavation effects. Niches used in seepage testing were excavated using a 
Road-Header Alpine Miner, whereas systematic tests in the ECRB Cross-Drift are in a section 
excavated with a tunnel-boring machine. Since local postexcavation permeabilities are used to 
model each test, no bias is introduced in seepage calibration (BSC 2004b, Section 6.5.2). 
Emplacement drifts will be excavated using a tunnel-boring machine (Section 1.3.4.3). Qualitative 
evaluation of the effects of excavation on fracture propagation into the excavated wall indicates that, 
in general, the Alpine Miner and the tunnel-boring machines induce new fractures to similar depths 
(less than 10 cm into the wall) and, thus, would affect fracture permeability and capillary strength 
to a similar extent (SNL 2007a, Section 6.6.3). The uncertainty band for sampling fracture 
permeability in the drift seepage abstraction accounts for spatial variability and various sources of 
uncertainty, including uncertainty due to effects of excavation (SNL 2007a, Section 6.6.3).

The ambient seepage models do not directly use the flow rate and pressure data measured during the 
air injection testing; instead, the permeability values derived from these data are used to describe the 
small-scale heterogeneity distributions incorporated in the seepage models (Section 2.3.3.2.3.3). 
The variation of permeability measurements between different niche locations is also used to 
describe the intermediate-scale variability of this parameter in the drift seepage abstraction 
(Section 2.3.3.2.3.6.2). Uncertainties in permeability values stem from uncertainties in the 
measured airflow rate and pressure data and the analytical method used to derive the permeability 
values from these data. The airflow rate was measured using four different mass flow controllers, 
each of which covered a portion of the total response range of 1 to 500 standard L/min full scale 
(BSC 2004f, Appendix A2). Each flow mass controller has a maximum error of 10% of its full scale 
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(BSC 2004f, Appendix A2). Instrumentation error of the pressure sensors was about 0.3 kPa, which 
is negligible (BSC 2004f, Appendix A2). Short-circuiting of gas flow between adjacent boreholes 
was minimized by the design of the tests, thereby rendering the measurement uncertainty 
insignificant (SNL 2007a, Section 6.6.3.3). Uncertainty due to the effects of excavation methods on 
excavation disturbed permeability is included in the range of uncertainty used in the drift seepage 
abstraction (SNL 2007a, Section 6.6.3).

2.3.3.2.2.1.3 Relative Humidity Monitoring

Reduced relative humidity due to ventilation in the seepage testing sections of niches and the ECRB 
Cross-Drift leads to partial or complete evaporation of the water that reaches the wall of the opening, 
thus affecting seepage. To diminish, control, and quantify this effect, test sections of niches were 
isolated from the main access drifts by bulkheads. In some tests, humidity in the isolated niches was 
artificially increased by humidifiers to reduce the evaporation potential. Finally, evaporation pans 
were installed to directly measure the evaporation potential (BSC 2004f, Section 6.2.1.3).

The measured evaporation rates and a related sensitivity analysis indicate that evaporation effects 
in the closed off niches are insignificant, and that corrections to the seepage rate data used by the 
seepage calibration model are not needed (BSC 2004b, Section 6.7). In contrast, the relative 
humidity in the open ECRB Cross-Drift is significantly lower and exhibits relatively strong 
fluctuations, depending on weather and ventilation conditions. On the basis of observations from 
initial liquid-release tests in the open ECRB Cross-Drift, subsequent liquid-release tests included 
measurement of relative humidity and evaporation rates to estimate and correct for the effects of 
ventilation on measured seepage (BSC 2004f, Sections 6.2.1.3.5.3, 6.10.1.2.1, and 6.11.3.6; BSC 
2004b, Sections 6.5.4 and 6.6.1.3). In the seepage calibration model, evaporation was numerically 
simulated using the measured humidity as a time-varying boundary condition in the drift. A 
potential bias in the estimated seepage parameters due to evaporation effects was thus eliminated 
(BSC 2004b, Section 6.7).

High-humidity and low-evaporation conditions are expected to prevail during the postclosure 
period after the heat load and associated temperature rise have dissipated and the sealed repository 
has equilibrated with the surrounding rock (BSC 2004f, Section 6.2.1.3.2). Therefore, evaporation 
effects are (conservatively) not considered in the seepage model for performance assessment used 
for the prediction of ambient seepage (Section 2.3.3.2.3.4).

2.3.3.2.2.1.4 Mass Balance in Niche 5

The flow-diversion capability of the capillary barrier is the mechanism that leads to the absence of 
seepage into waste emplacement drifts or seepage fluxes that are significantly lower than the local 
percolation flux. Although not required to characterize seepage behavior, obtaining a complete 
mass balance during a liquid-release test is a means to directly assess the flow-diversion capability 
of a drift excavated from an unsaturated fractured formation. Calculating this mass (or rate) balance 
in a transient test requires estimation of the following components: the amount of water that (1) is 
injected; (2) seeps into the opening; (3) evaporates from the rock surface and the collection system; 
(4) is stored in the formation between the injection point and the opening; (5) bypasses the opening 
through known and unknown geologic features; and (6) is diverted around the opening on account 
of the capillary-barrier effect (BSC 2004b, Section 6.8).
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Components 1 and 2 can be measured with sufficient accuracy. Reliable estimates of Component 3 
can be obtained from relative humidity or evaporation-rate measurements. The tests can be run to 
near-steady-state conditions to minimize Component 4, and a rate balance (as opposed to a mass 
balance) can be performed. Measuring Components 5 and 6 requires capturing the water in a 
secondary water collection system at the side or below the drift (BSC 2004b, Section 6.8).

To measure Components 5 and 6, water was collected in a slot at the side of the niche during two 
seepage tests conducted in Niche 5 (BSC 2004f, Sections 6.2.1.3.5 and 6.6.2.3). While qualitative 
evidence was obtained for capillary diversion of water around the niche, it was not possible to 
accurately measure the amount of water diverted around and arriving at the side of the niche because 
of difficulties in excavating the slot and installing the capture system (BSC 2004f, Section 6.2.1.3.5; 
BSC 2004b, Section 6.8). The seepage calculations, therefore, rely on (1) established understanding 
of the physics underlying flow diversion by capillary processes; (2) extensive site-specific and 
seepage-relevant characterization data; (3) qualitative evidence demonstrating flow diversion and 
water exclusion due to capillarity; (4) calibration and validation of a physically based process 
model that includes all components of the mass balance; and (5) propagation of uncertainty and 
variability in a probabilistic treatment of seepage for the TSPA (SNL 2007a, Sections 6.4 through 
6.7 and 7).

2.3.3.2.2.1.5 Alcove 8–Niche 3 Testing

Evaluation of seepage is among the multiple objectives of the studies performed in the Alcove 8–
Niche 3 test bed. Water was released into a fault and the fracture network from various infiltrations 
plots within Alcove 8, which is located within the Topopah Spring Tuff upper lithophysal zone 
(Tptpul) next to the ECRB Cross-Drift (Figure 2.3.3-10). Approximately 20 m below Alcove 8, 
Niche 3 was excavated from the ESF main drift within the Topopah Spring Tuff middle 
nonlithophysal zone (Tptpmn). The Tptpul-Tptpmn contact is at about 3 m above Niche 3 (BSC 
2004f, Section 6.12; Salve 2005). Niche 3 was equipped with trays for seepage collection. In 
addition, boreholes surrounding Niche 3 were instrumented with sensors to detect the arrival of the 
wetting front.

Water was continuously released, over a period of 216 days, from a 3 m-by-4 m infiltration plot on 
the floor of Alcove 8. The infiltration plot was divided into 12 separate subplots, each having a 
1 m-by-1 m area. Ponded conditions occurred in these infiltration plots over most of the test 
duration. The spatial and temporal variability in infiltration rates into the fractured rock was 
continuously monitored. In Niche 3, the water collected in individual compartments of the tray 
system provided information about the temporal and spatial distribution of seepage from the ceiling 
of Niche 3 (BSC 2006, Section 6.1.1).

During the last 125 days of this test, the system reached a quasi-steady state, where only 10% of the 
total volume of the liquid released from the entire infiltration plot on Alcove 8 seeped out of the 
fractured rock through the niche ceiling (Zhou et al. 2006). The remaining water that was released 
was stored in the fractured rock, bypassed the niche, or was diverted around the opening on account 
of the capillary barrier effect. Although storage effects and bypassing may be considerable factors 
contributing to the low seepage-to-percolation ratio, these results demonstrate that seepage is likely 
to be smaller than the local percolation flux (SNL 2007a, Section 7.2[a]), which is consistent with 
the findings from the liquid-release tests described in Section 2.3.3.2.2.1.1 and the associated 
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modeling studies (Section 2.3.3.2.3). This result was obtained despite the fact that seepage was 
promoted due to fairly extreme test conditions (ponded infiltration conditions in Alcove 8; small 
distance from the source of infiltration in Alcove 8 to the potential seepage location in Niche 3), 
which result in downward fluxes towards Niche 3 that are much higher than ambient percolation 
fluxes for current or future climate conditions. The infiltration rate reported for Subplot 12, for 
example, was 15 l/day at the end of test stage 2, which translates into 5,475 mm/yr over the 
1 m × 1 m area of the subplot (BSC 2006, Section 6.1.2). For comparison, the present-day net 
percolation fluxes over the repository area (10 percentile infiltration scenario) are on the order of a 
few millimeter per year (Section 2.3.2, Figure 2.3.2-38).

2.3.3.2.2.1.6 Summary of Active Seepage Testing

Active testing was performed to understand the seepage process on the scale of an emplacement 
drift segment and to characterize seepage-relevant properties of the host rock. Recognizing that 
permeability, capillary strength, and the local percolation flux are key parameters affecting seepage, 
a series of tests were conducted that examined these factors. Liquid-release tests were performed at 
various locations, using release rates above and below the seepage threshold (Section 2.3.3.2.2.1.1). 
Air injection tests provided location-specific estimates of fracture permeability and its small-scale, 
as well as intermediate-scale, spatial variability (Section 2.3.3.2.2.1.2). To account for the expected 
impact of ventilation effects on observed seepage rates, relative humidity was controlled and 
monitored (Section 2.3.3.2.2.1.3). The data collected in four niches and three boreholes drilled into 
the crown of the ECRB Cross-Drift provided the basis for the estimation of seepage-relevant, 
site-specific, and model-related parameters on the scale of interest, and for the validation of the 
models used for the prediction of ambient seepage (Section 2.3.3.2.3.3). In addition, the 
flow-diversion capability of the open drift due to the capillary-barrier effect was further examined 
in Niche 5 (Section 2.3.3.2.2.1.4) and in the Alcove 8–Niche 3 test bed (Section 2.3.3.2.2.1.5). This 
comprehensive testing program provides the technical basis for the process modeling 
(Section 2.3.3.2.3) and abstraction (Section 2.3.3.2.4) of ambient seepage. Data from passive 
hydrologic testing and monitoring (Section 2.3.3.2.2.2), and observations of seepage under natural 
conditions (Section 2.3.3.2.2.3), supplement the information gained from active testing.

2.3.3.2.2.2 Moisture Monitoring in the ECRB Cross-Drift and Alcove 7

2.3.3.2.2.2.1 Passive Hydrologic Tests

Forced ventilation may have prevented the direct observation of seepage in the ESF main drift and 
the ECRB Cross-Drift (Section 2.3.3.2.2.3). In an attempt to observe seepage under natural flow 
conditions, the terminal section of the ECRB Cross-Drift was closed off by a series of bulkheads to 
minimize ventilation effects (Figure 2.3.3-11). The 918-m drift section is located in the Topopah 
Spring lower lithophysal (Tptpll) and the lower nonlithophysal (Tptpln) tuff units; the drift section 
is intersected by the Solitario Canyon Fault (BSC 2004f, Figure 6-108). Within the isolated sections 
between the bulkheads, barometric pressure, relative humidity, and temperature were measured at 
various stations to provide information on moisture dynamics. Psychrometers were installed along 
seven boreholes to measure the water potential and the initial extent and later rewetting of the dryout 
zone in the fractured rock. Electrical resistance probes were laid out at 0.5 m intervals to measure 
saturation changes along the drift wall. Six water collectors were installed. Periodically, the 
bulkhead doors isolating the nonventilated sections were opened for observations and sampling of 
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liquid water from the water collectors. Water samples from the collectors and from other locations 
in the tunnel were analyzed to evaluate whether the water originated from seepage or condensation 
based on the composition measured (Section 2.3.3.2.2.2.4) (BSC 2004f, Section 6.10.3).

Moisture monitoring similar to that described above has been conducted in Alcove 7 since 1998 (see 
Figure 2.3.3-7 for location of Alcove 7). Bulkhead doors were installed 64 and 132 m from the 
entrance of the alcove. Ambient temperature, barometric pressure, and relative humidity were 
monitored. The bulkheads were opened after being closed for extended periods. Evidence of 
moisture was observed, including drip spots on the drip collection sheets, moisture drops on the 
utility lines and on the shotcrete around the bulkheads, and moisture spots in the dust on one 
instrument enclosure. The rock in the crown had a dark, moist appearance, and the fractures in the 
rib appeared wet (BSC 2004f, Section 6.10.4).

2.3.3.2.2.2.2 Evidence of Ventilation Effects

Evidence of effects of forced ventilation in exploration drifts provides a basis for predicting their 
effects on repository performance (Table 2.3.3-1, FEP 1.1.02.02.0A, Preclosure ventilation). The 
observations of changes in water potential, saturation, and in-drift atmospheric conditions after 
closure of the bulkheads can be used to confirm the impact of ventilation and reduced relative 
humidity on the hydrologic conditions in the immediate vicinity of the drift. Under ventilated 
conditions, the matrix is partially dried out up to a few meters from the drift surface. Even though 
the relative humidity increases rapidly after closing the bulkheads in the ECRB Cross-Drift (BSC
2004f, Figure 6-112), the water potential data indicate that the rewetting of the matrix is a slow 
process. Figure 2.3.3-12 shows water potentials as a function of time and distance from the drift 
surface. Low water potentials up to a distance of about 1.5 m from the borehole collar indicated the 
extent of the dryout zone as a result of drift ventilation. After installation of the bulkheads, water 
potentials increased over a period of 1.5 years, indicating a tendency to return to preventilated 
conditions (Figure 2.3.3-12).

2.3.3.2.2.2.3 Observations Related to Wet Zones

Wet zones observed in the closed-off sections of the ECRB Cross-Drift provide information 
regarding potential seepage and in-drift moisture redistribution. Within the entries behind the 
bulkheads, droplets and other indications of moisture were observed on rock bolts, ventilation 
ducts, utility conduits, wire meshes, and painted patches of tunnel walls. Puddles of water were 
observed on the conveyor belt, and drip cloths showed evidence of dripping. Observed rust spots 
and organic growths, associated with organic introduced materials, indicated the prolonged 
presence of moisture (BSC 2004f, Section 6.10.2.2).

The visual observations of moisture on impervious (nonporous) surfaces, plus the chemical 
analyses of collected samples described below, suggest that the moisture originated from 
condensation. The near-100% relative humidity in the ECRB Cross-Drift (BSC 2004f, 
Figure 6-112) and local thermal gradients, partly induced by the operating heat from electrical 
equipment in the closed-off drift sections (BSC 2004f, Section 6.10.2.2), are the likely causes for the 
observed condensation.
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2.3.3.2.2.2.4 Chemical and Isotopic Water Analyses

Chemical and isotopic analyses were conducted on the water samples collected during the periodic 
entries into the nonventilated sections of the ECRB Cross-Drift. Analyses were performed with the 
objective of determining the origin of the moisture observed in the closed-off sections of the ECRB 
Cross-Drift. The chemical analyses included major anionic and cationic constituents (e.g., bromide, 
chloride, and lithium) (BSC 2004f, Section 6.10.3).

The initial water samples collected from the puddles on the conveyor belt were dark in color. 
Because the surface of the conveyor belt contained dust and rock fragments, the chemical analyses 
of these samples did not provide meaningful information about the source of water found in the 
puddles. Subsequent samples were taken from clean containers placed on top of the conveyor belt. 
These samples were found to be low in chloride and silica content, which is characteristic of 
condensate. The samples were also found to lack the chemical signature of the water introduced 
during construction (20 mg/L of lithium bromide was added to construction water as a tracer). 
Although these data do not rule out the possibility of seepage (mixed waters), they indicate that 
observed moisture originated primarily from condensation (BSC 2004f, Section 6.10.3).

The hydrogen isotope composition (δD, ratio of the molar concentration of deuterium isotope 
relative to the more common isotope of hydrogen) and oxygen isotope composition (δ18O, ratio of 
the molar concentration of 18O relative to the more common isotope16O) were also analyzed. The 
δD values ranged from −48‰ to −90‰, and the δ18O values ranged from −3‰ to −10.7‰. These 
values distinguish the water samples from construction water, which has lower values. The lag time 
between opening of bulkheads and sample collection (3 to 4 hours) is sufficient to result in a 
significant degree of evaporation of the samples. As shown in Figure 2.3.3-13, the samples from the 
ECRB Cross-Drift are shifted from the global meteoric water line. The offset is characteristic of 
waters that have undergone some degree of evaporation and subsequent condensation (BSC 2004f, 
Section 6.10.3.2). The same degree of shift was observed for both the samples containing dust and 
rock fragments, and for the relatively clean samples, which indicates approximately the same 
amount of evaporation and subsequent condensation. The chemical analyses of water collected in 
the nonventilated ECRB Cross-Drift, as well as visual observations, indicate that condensation is 
the primary source of the dripping water, with minimal contribution from seepage (BSC 2004f, 
Section 6.10.3).

2.3.3.2.2.2.5 Summary of Moisture Monitoring in Drifts

Observations of hydrologic and thermodynamic conditions in the nonventilated drifts and in the 
nearby rock lead to the following conclusions:

• Effects of forced ventilation have a significant impact on seepage, mainly through 
evaporation of potential seepage water at the drift surface but also through the 
development of a dryout zone around the opening (Section 2.3.3.2.2.2.2).

• Once ventilation effects are reduced or eliminated, the relative humidity of the initially 
dry in-drift environment generally recovers rapidly to conditions dictated by moisture 
conditions in the rock (Section 2.3.3.2.2.2.2).
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• Variable temperature and relative humidity in closed-off drift sections facilitate in-drift 
moisture redistribution processes, including condensation of water on surfaces, which 
may induce dripping (Section 2.3.3.2.2.2.3). Section 2.3.5.4 provides details on these 
processes and how they are accounted for in the TSPA.

• The presence of water on nonporous surfaces and the chemistry of water samples indicate 
that the water accumulations in the ECRB Cross-Drift originated from condensate
(Section 2.3.3.2.2.2.4).

These observations are consistent with the conceptual understanding of seepage as implemented in 
the ambient seepage models discussed in Section 2.3.3.2.3.

2.3.3.2.2.3 Observation of Seepage Under Natural Conditions

2.3.3.2.2.3.1 Impact of Forced Ventilation on Seepage

The evaporation potential of the dry drift air in response to forced ventilation has a strong impact 
on seepage under natural ambient conditions (Table 2.3.3-1, FEP 1.1.02.02.0A, Preclosure 
ventilation). Seepage can only occur when the amount of percolating water is large enough to 
overcome evaporation. This has evidently not been the case in any of the ventilated openings in the 
rock units below the PTn unit at Yucca Mountain, as no unambiguous evidence of dripping from 
natural percolation water has ever been observed (SNL 2007a, Section 7.1.1[a]). The significant 
evaporation potential of the dry drift atmosphere is evident not only from theoretical considerations, 
but also from (1) temporal observations of wet spots observed at the drift crown during 
liquid-release tests conducted in the ECRB Cross-Drift (BSC 2004f, Section 6.10.2.2); and (2) the 
fact that a damp-looking feature observed along a the vertical end wall immediately after the dry 
excavation of Niche 1 (also referred to as Niche 3566) dried up within a few hours (BSC 2004f, 
Section 6.2.1.2; Wang et al. 1999) before a bulkhead could be installed to increase the relative 
humidity in the opening.

2.3.3.2.2.3.2 Direct Observation of Seepage into the ESF South Ramp 

Seepage has been observed over a limited time period in the South Ramp area of the ESF, in the 
fractured welded tuff above the PTn unit. During the period between October 2004 and February 
2005, unusually heavy precipitation occurred in the Yucca Mountain area—12.75 inches, which is 
about 3.5 times the recent nine-year average of 3.64 inches, taken over the same time period 
between October and February (BSC 2005b, Section 2.3). On February 28, 2005, Yucca Mountain 
Project personnel working in the South Ramp of the ESF observed, in select areas, wet spots on the 
main drift’s crown, ribs, and invert. This field observation is considered to be the first unambiguous 
evidence of seepage under ambient conditions.

As shown in Figure 2.3.3-14, wet areas were identified between Stations 75+62 and 75+82, Stations 
75+92 and 76+07, and Stations 77+48 to 77+53. Several factors have contributed to the occurrence 
of seepage in the South Ramp section of the ESF (SNL 2007a, Section 7.1[a]). Most importantly, 
the heavy rainfalls are believed to have induced large infiltration fluxes percolating down towards 
the tunnel. The area above the South Ramp has a relatively thin soil cover, and the distance from the 
land surface to the ESF is relatively small in the seepage section (less than 75 m vertical distance). 
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Also, as opposed to most other sections along the ESF and the ECRB Cross-Drift, the South Ramp 
is not overlain by bedded or nonwelded tuffs (such as the PTn). The PTn has a higher storage 
capacity and permeability, and thus is able to imbibe water and dampen episodic infiltration events. 
In contrast, the nonlithophysal units present above the seepage location are welded and highly 
fractured, resulting in fast flow through the fracture network. In summary, the high precipitation 
rates combined with thin soil cover led to pulses of high infiltration and percolation fluxes, which 
migrated through the fracture network and—due the absence of the nonwelded PTn unit—arrived 
at the ESF South Ramp without significant dampening. These fluxes were higher than the seepage 
threshold and the evaporation potential, thus inducing seepage.

The section of the ESF South Ramp that has no overlying layers of bedded or nonwelded tuffs (PTn) 
is approximately 300 m long, from Station 75+80 to the South Portal (at Station 78+77). Assuming 
(1) that each of the wet areas identified in Figure 2.3.3-14 actually resulted in drop formation and 
drop detachment (as opposed to film flow along the drift surface) and (2) that—for wet areas 
extending more than 5 m in axial direction—at least one dripping location exists for every 5 m of 
continuous wet area, approximately 13% of the drift section experienced seepage (SNL 2007a, 
Section 7.1[a]). These observations were used for a seepage abstraction validation study 
Section 2.3.3.4.3.

2.3.3.2.2.4 Summary of Data and Data Uncertainty

Data needed to develop the conceptual understanding, process models, and abstraction of ambient 
seepage were obtained through active seepage testing (Section 2.3.3.2.2.1), moisture monitoring 
(Section 2.3.3.2.2.2), and direct observations of seepage (Section 2.3.3.2.2.3). Active testing 
provided data for the development, calibration, and validation of the ambient seepage process 
models described in Section 2.3.3.2.3. The spatial variability of seepage-relevant properties is 
examined by performing air injection and liquid-release tests at multiple locations. Efforts were 
made to reduce the impact of systematic errors (such as those arising from evaporation, storage 
effects, and scale discrepancies) by controlling and monitoring relative humidity and by performing 
long-term experiments on the scale of interest. Measurement uncertainty (which is considered 
relatively small) and uncertainties related to model simplifications or spatial variability 
considerations are propagated through the seepage calibration model, the seepage model for 
performance assessment, and the abstraction methodology (Section 2.3.3.2.3.6). Additional data 
from the fractured host rock were used to corroborate the conceptual understanding of the capillary 
barrier effect and flow diversion capability of an emplacement drift.

2.3.3.2.3 Model and Model Uncertainty
[NUREG-1804, Section 2.2.1.3.3.3: AC 3(1) to (4), AC 4(1) to (4), AC 5; Section 
2.2.1.3.6.3: AC 1(6)]

2.3.3.2.3.1 General Approach for Ambient Seepage Modeling

The general approach followed to arrive at a calibrated and validated predictive seepage model is 
based on the recognition that (1) detailed simulation of individual seeps is not necessary to estimate 
average seepage rates into waste emplacement drifts; rather, calculated seepage rates can be 
averaged in time and over an emplacement drift section that approximates the length of a waste 
package, which is the spatial scale of interest; (2) calibration to data from seepage experiments 
2.3.3-27



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
provides confidence that the relevant processes are captured in a direct manner (i.e., they do not 
need to be indirectly inferred from secondary information or data); (3) individual factors affecting 
seepage can be combined into effective parameters; (4) estimating effective parameters 
compensates for processes and features that are not explicitly considered in the model; and (5) the 
estimated parameters can be directly used in the seepage model for performance assessment (BSC
2004b, Section 6.3.4).

The main advantage of this modeling approach is that it relies directly on seepage-rate data, which 
contain information about the relevant processes. The calibration data (seepage rates on the scale of 
a drift section) are similar to the quantity of interest for the subsequent simulations (emplacement 
drift seepage). The consistency between the seepage calibration model used to derive 
seepage-relevant parameters and the seepage model for performance assessment (used to simulate 
ambient seepage) minimizes conceptual differences (BSC 2004b; BSC 2004a).

The two ambient seepage models are based on data that capture seepage-relevant processes under 
in situ conditions. Some of these data are directly used to develop and calibrate the models. Air 
permeabilities are used to generate and condition heterogeneous permeability fields for the two 
models. Evaporation rate and relative humidity data are used to determine the evaporative boundary 
layer thickness, which is needed by the seepage calibration model to account for evaporation effects 
that impacted seepage data collected in the ventilated ECRB Cross-Drift. Seepage rate data 
measured during liquid-release tests are the principal data used for calibration of the seepage 
calibration model. Additional seepage rate data are used for testing the capability of the seepage 
calibration model to estimate seepage under different conditions and at different locations (BSC 
2004b, Section 7).

The development of the two ambient seepage models involves the following steps (BSC 2004b, 
Section 6.3.4; BSC 2004a; BSC 2004f, Section 6):

1. Geostatistical parameters of the permeability field are determined from the results of air 
injection test data.

2. Multiple realizations of the permeability field are generated, each of which is consistent 
with the geostatistical properties of the measured air permeabilities representing the 
excavation-disturbed zone in the drift vicinity.

3. A numerical model (i.e., the seepage calibration model) is developed for the simulation 
of liquid-release tests conducted in niches and along the ECRB Cross-Drift.

4. Capillary strength parameters are determined by calibrating the seepage calibration 
model against data from liquid-release tests.

5. The seepage calibration model is tested by comparing simulated seepage rates to 
observed data from seepage experiments not used for model calibration. This step 
provides confidence that the model is capable of predicting the seepage behavior above 
and below the seepage threshold.
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6. The seepage model for performance assessment, which is conceptually consistent with 
the seepage calibration model, is developed for simulating seepage into emplacement 
drifts.

7. Emplacement drift seepage is evaluated for ranges of percolation flux, capillary 
strength, and permeability that bracket the range expected to be sampled during the 
probabilistic seepage evaluation in the TSPA (BSC 2004a, Section 6.3.7, Table 6-3). 
These three parameters represent the key factors affecting ambient seepage into intact 
emplacement drifts. These parameters were identified as seepage-relevant by means of 
a sensitivity analysis (BSC 2004b, Section 6.6.3.1).

8. The results are combined in the ambient component of the drift seepage abstraction, 
providing the basis for a probabilistic evaluation of seepage in the TSPA.

The following sections describe the development of the drift-scale models used to estimate 
seepage-relevant rock properties, and to generate the seepage lookup tables, which are passed 
through the drift seepage abstraction for use in the TSPA calculations.

2.3.3.2.3.2 Conceptual and Numerical Models of Seepage

The ambient seepage process models consider three-dimensional, drift scale flow through the 
unsaturated fracture network. The fractured rock is conceptualized as a single, heterogeneous 
continuum with effective fracture permeabilities assigned to each gridblock using geostatistical 
methods, conditioned on the permeabilities determined from air injection tests 
(Section 2.3.3.2.2.1.2). The potential contribution of the matrix to seepage is not explicitly 
simulated, as there is very limited flow through the matrix, and the capillary barrier effects are 
strong due to the strong matrix capillarity.

Although the permeability structure comprises a network of discrete fractures, the continuum 
approach is appropriate for simulating unsaturated flow and seepage because it is capable of 
predicting observed seepage behaviors and seepage rates. In a network of randomly oriented 
fractures, flow diversion around openings occurs primarily within fracture planes. Diversion of 
water through multiple fractures arises only if a fracture is too short, and the flow path within a 
fracture plane is interrupted. In this case, water is diverted into the next connected fracture, if 
available. This fracture is again unlikely to be perfectly parallel to the drift axis, allowing the 
in-plane flow diversion process to continue. The situation is schematically illustrated in 
Figure 2.3.3-6, which shows two fractures intersecting a drift. In Figure 2.3.3-6a, the two fractures 
are aligned with the drift axis. This specific and unlikely fracture orientation prevents flow diversion 
and increases the likelihood of seepage. In Figure 2.3.3-6b, the fractures are approximately 
perpendicular to the drift axis. In this case, flow diversion occurs within the fracture plane, which 
is a process that is appropriately captured by a heterogeneous fracture continuum model, even for 
a single fracture. In-plane flow occurring in multiple fractures can be readily combined and 
described by an effective fracture continuum.

The geologic units that constitute the host rocks of the repository horizon are within the crystal-poor 
member of the Topopah Spring Tuff, which comprises strongly fractured, lithophysal and 
nonlithophysal rock units. The nonlithophysal rocks-the Topopah Spring Tuff middle 
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nonlithophysal (Tptpmn) and lower nonlithophysal (Tptpln) units-comprise roughly 15% of the 
emplacement area. The lithophysal rocks-the Topopah Spring Tuff upper lithophysal (Tptpul) and 
middle lithophysal (Tptpll) units-comprise approximately 85% of the emplacement area (about 
80% of the emplacement is within the Tptpll) (SNL 2007a, Section 6.6.1). The fracture inventory 
of these units has been extensively characterized from geological mapping and scanline surveys 
along the ESF and the ECRB Cross-Drift as well as from borehole cores and video logs (Mongano 
et al. 1999). The information gathered in the scanline surveys includes location, orientation, trace 
length, width, and roughness for fractures with a trace length greater than 1 m.

A network of long, relatively closely spaced joints generally characterizes the Tptpmn unit. The 
highest degree of fracturing is associated with joint sets that have average fracture spacing of less 
than 60 cm. Average trace lengths in the Tptpmn unit are between 2.54 m and 3.23 m for the 
different joint sets. These trace lengths are relatively long compared to the fracture spacing, 
suggesting that the Tptpmn unit features a well-connected fracture system, with numerous large 
fractures longer than 1 m. In addition, there are shorter fractures that have not been included in the 
line surveys and fracture analyses, but would increase fracture connectivity. The Tptpln unit is 
similar in fracture characteristics (joint sets, spacing, trace lengths) to the Tptpmn unit (SNL 2007a, 
Section 6.6.1). Based on the line surveys, the apparent fracture intensity in the lithophysal units is 
approximately five times smaller than in the Tptpmn unit, and about two times smaller than in the 
Tptpln unit. However, the Tptpll unit has abundant short-length, interlithophysal fractures, with 
spacing on the order of inches, which are not recorded in the line surveys and thus not reflected in 
the above average characteristics. The Tptpll unit has fracture characteristics different from the 
nonlithophysal units, but nevertheless features a well-connected fracture system, which comprises 
less intense fracturing with longer fractures, but very intense fracturing with short fractures (SNL
2007a, Section 6.6.1). Fracture network connectivity has been independently determined at the drift 
scale through cross-hole air injection tests, which support the fracture survey conclusions that 
fractures networks are well connected within the rocks units selected to host the repository 
(Section 2.3.3.2.2.1.2).

Given the significance of in-plane flow diversion around the drift in combination with relatively 
high fracture density, a three-dimensional, heterogeneous fracture continuum model is an 
appropriate conceptualization and is used as the basis for the ambient seepage models developed to 
analyze seepage data from liquid-release tests and to predict seepage into emplacement drifts (BSC
2004a, Section 6.3.1; BSC 2004b, Sections 6.3.2 and 6.6.2.2; Finsterle 2000).

To determine seepage-relevant parameters, models that simulate liquid-release tests are developed 
and calibrated to seepage data collected in the niches in the ESF drift and in the ECRB Cross-Drift 
(Section 2.3.3.2.2.1.1). The calibration process (Section 2.3.3.2.3.3) yields effective capillary 
strength parameters that not only represent the flow diversion capacity of the underground 
openings, but also include (1) the effects of film flow along the drift surface; (2) small-scale drift 
wall roughness; (3) effects of the discrete fractures terminating at the drift ceiling; (4) the effect of 
drift excavation on the apertures; and (5) in the case of lithophysal units, the presence of lithophysal 
cavities. Because the liquid-release tests have been conducted, once the seepage-relevant 
parameters are determined and the model is validated, ambient seepage predictions into intact and 
degraded emplacement drifts can be performed (Section 2.3.3.2.3.4).
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As discussed above, the impact of small-scale drift wall roughness is implicitly accounted for in the 
calibrated capillary strength parameter. Small-scale roughness corresponds to wall imperfections 
on the order of a few centimeters, as one can typically expect in drifts excavated with a tunnel boring 
machine (such as the ECRB Cross-Drift or the future emplacement drifts, Section 1.3.4.3). 
Therefore, the seepage simulations for the liquid-release tests in the ECRB Cross-Drift, as well as 
the predictive seepage simulations for emplacement drifts, are conducted without explicit 
consideration of drift wall roughness (i.e., with the drifts represented as circular openings). More 
irregular shapes are observed in the niches, which have been excavated using a Road-Header Alpine 
Miner and have imperfections on the order of a few decimeters. These decimeter-scale irregularities 
are not implicitly accounted for in the calibrated capillary strength parameter; rather, they are 
explicitly represented in the numerical grids used for the niche simulation of the seepage calibration 
model (Figure 2.3.3-15) (BSC 2004b, Section 6.3.3; BSC 2004a, Section 6.1; SNL 2007a, 
Section 6.4).

The conceptualization and approach described above are suitable for simulations of seepage 
averaged over an emplacement drift section equivalent to the length of one waste package. The 
seepage calibration model used for reproducing seepage-rate data from liquid-release tests, and the 
seepage model for performance assessment used for simulating seepage into emplacement drifts,
solves the Richards equation (Richards 1931) for saturated–unsaturated flow through porous 
materials. The van Genuchten–Mualem constitutive relations describe the capillary pressure and 
relative liquid permeability in the fracture continuum as a function of liquid saturation (van 
Genuchten 1980; BSC 2004b, Section 6.6.1).

To account for small-scale heterogeneity, the spatial structure of the air-permeability data is 
analyzed, and the resulting geostatistical parameters are used to generate multiple realizations of a 
spatially correlated permeability field, which are conditioned on the permeabilities measured in 
borehole intervals. The permeability fields are eventually mapped onto the numerical grid; an 
example is shown in Figure 2.3.3-15. The numerical grids created for the simulation of 
liquid-release tests by the seepage calibration model represent an appropriate section of the 
formation around the injection interval, including the emplacement drift (BSC 2004b, 
Section 6.6.2.2). For a small number of gridblocks, the statistically sampled permeability may be 
greater or smaller than the measured range, which is consistent with the probability distribution used 
to represent the data and the application of scaling relationships.

Evaporation from the drift and niche surfaces is accounted for in the seepage calibration model runs 
for the ECRB Cross-Drift systematic testing and Niche 5 testing. The model specifies a 
time-dependent water-potential boundary condition based on Kelvin’s equation, where the 
thickness of the diffusive boundary layer is determined from evaporation experiments at the 
seepage test location (BSC 2004b, Sections 6.6.1.3 and 6.6.1.4).

In summary, the ambient seepage process models describe the FEPs relevant for simulating 
unsaturated zone flow and seepage into underground openings at Yucca Mountain (BSC 2004b, 
Section 6.2; BSC 2004a, Section 6.2). The processes are captured explicitly by solving the 
physically based governing equations. The degree of complexity of the models is appropriate for the 
simulation of average seepage on the scale of an approximately 5 m long emplacement drift 
segment. Small-scale features and processes, including discrete-fracture flow behavior, surface 
roughness, and film flow, are captured in effective model-related parameters determined from 
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site-specific data that reflect the seepage process on the appropriate scale. Calibration of the seepage 
calibration model against seepage-rate data, and the consistent conceptualization of the seepage 
model for performance assessment, make this a valid and reasonable approach to characterizing and 
calculating seepage at Yucca Mountain (BSC 2004b, Section 6.3; BSC 2004a, Section 6.3).

2.3.3.2.3.3 Model Calibration and Validation

The seepage calibration process model is calibrated against seepage-rate data from numerous 
liquid-release tests conducted in several boreholes at locations in both the middle nonlithophysal 
zone and the lower lithophysal zone. Seepage data collected early in the testing period were not used 
for purposes of model calibration, because they were affected by storage of water in the rock 
formation and the properties of a few fractures connecting the injection interval with the opening. 
These fractures are not necessarily representative of the fracture network that is activated in flow 
diversion around the entire opening under steady-state conditions. To obtain more accurate results, 
data obtained at later times are used for calibration of the seepage calibration model because they 
are more representative of near-steady-state conditions and are less influenced by storage effects. 
Consequently, the seepage data obtained later in the test better reflect average conditions on the 
scale of interest (BSC 2004b, Section 6.6.3.2).

Eighty-one liquid-release tests conducted in Niches 2, 3, 4, and 5, and the systematic testing area in 
the ECRB Cross-Drift, are simulated with the seepage calibration model (BSC 2004b, Table 6-5 and 
Sections 6.6.3 and 7.2.2). In addition, evaporation effects are accounted for when simulating 
seepage into the open, ventilated ECRB Cross-Drift. An example of the simulated saturation 
distribution at the end of liquid-release tests conducted in Niche 5 and the ECRB Cross-Drift is 
depicted in Figure 2.3.3-16 (BSC 2004b, Sections 6.5.3 and 6.6.3). Measured seepage-rate data 
from 22 liquid-release tests performed in boreholes above Niches 3, 4, and 5, and along the ECRB 
Cross-Drift (BSC 2004b, Table 6-5 and Section 6.5.3), are used to calibrate the seepage calibration 
model and to estimate the seepage-relevant, model-related van Genuchten capillary strength 
parameter. Most of the remainder of the seepage-rate data from liquid-release tests is used to 
validate the seepage calibration model (BSC 2004b, Table 6-5 and Sections 6.6.3 and 7.2.2).

Examples of seepage-rate data and calibrated model results for the liquid-release tests conducted 
along the ECRB Cross-Drift and in Niche 5 are shown in Figure 2.3.3-17. For the tests conducted 
along the ECRB Cross-Drift (Figure 2.3.3-17a, b, and c), a significant component of the 
fluctuations in both the simulated and observed seepage rates results from the variation in relative 
humidity and the evaporation potential in the ventilated drift, which was appropriately captured by 
the seepage calibration model. No such fluctuations were observed in the Niche 5 test
(Figure 2.3.3-17d), where relative humidity was approximately constant at about 85% (BSC 2004b, 
Section 6.6.3.3).

The capillary strength parameter for each tested borehole interval is determined by calibrating the 
seepage calibration model against multiple tests using different liquid-release rates. Some of these 
release rates induced a local percolation flux that was above the seepage threshold (i.e., water 
dripped into the opening and yielded seepage-rate data used for calibration and validation of the 
seepage calibration model). However, tests performed below the seepage threshold were also used 
for calibration and validation in combination with tests that did result in seepage. These 
low-injection-rate seepage tests provide results at conditions similar to the natural percolation 
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fluxes that are below the seepage threshold and yield zero seepage in agreement with observations 
in exploration drifts and niches. Only high-infiltration climate or strong flow focusing causes the 
natural local percolation flux to exceed the seepage threshold, leading to seepage (BSC 2004b, 
Section 8.1). For example, record-breaking precipitation and relatively fast flow through fractured 
welded tuff contributed to a seepage event in the South Ramp area of the ESF (Ziegler 2005).

Figure 2.3.3-18 shows examples of validation runs in which seepage rates for liquid-release tests 
conducted in Niche 3 at different injection rates are simulated with the seepage calibration model 
using a single parameter set. Measured seepage data that were not used in model calibration serve 
the function of model validation. The results show that, for the tests at low injection rates 
(corresponding to the top four plots in Figure 2.3.3-18) where little or no seepage is predicted, the 
seepage calibration model always overestimates seepage and, therefore, provides conservative 
values with respect to effects of seepage.

Results for seepage tests with relatively high injection rates (corresponding to the bottom four plots 
in Figure 2.3.3-18) show that measured seepage is generally within the 95% uncertainty band, and 
less than the mean simulated seepage except for the tests conducted on October 11, 1999 (the bottom 
right plot in Figure 2.3.3-18), in which the measured seepage falls close to the upper bound of the 
uncertainty band and is more than the simulated seepage. The injection rates used in these tests were 
significantly greater than the background percolation flux, in order to achieve a measurable seepage 
amount in a reasonable amount of time. The observations in three of the bottom four tests yield 
results comparable to the model results, which provides additional confidence concerning the 
reliability of the seepage calibration model (BSC 2004b, Section 7.3). Only the fourth test yields 
seepage rates that are slightly larger than the relatively narrow uncertainty band (BSC 2004b, 
Section 7.3).

In summary, the capillary strength parameters determined from high-rate liquid-release tests 
provide an appropriate basis for seepage calculations under low and high natural percolation fluxes. 
Validation demonstrates that the seepage calibration model satisfactorily predicts the behavior 
above and below the seepage threshold (Figure 2.3.3-18). The measured seepage-rate data (1) fell 
within the range of the predicted seepage rates in all test cases for the Tptpll, and in almost all test 
cases for the Tptpmn, or (2) were lower than the predicted seepage rates in a few cases; i.e., the 
model prediction was conservative (BSC 2004b, Section 7.4). The data were marginally higher than 
the relatively narrow uncertainty band in two longer-term tests and in three short-term tests in 
Niche 2, which are considered of minor relevance (BSC 2004b, Section 7.4). The successful 
validation of the seepage calibration provides confidence that seepage into large underground 
openings can be reliably predicted for conditions that are different from those used for model 
calibration. The seepage model for performance assessment, which has the same conceptual basis 
as the seepage calibration model, is therefore validated for its intended purpose, which is the 
calculation of ambient seepage into waste emplacement drifts (Section 2.3.3.2.3.4).

The analysis of seepage-rate data for model development, and the determination of 
seepage-relevant parameters, is summarized as follows (BSC 2004b, Section 8.1):

• The testing and modeling approach provides the conceptual basis and parameters for the 
seepage model for performance assessment. The approach consists of analyzing seepage 
by means of the seepage calibration model, which is calibrated against seepage-rate data 
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from liquid-release tests conducted within the principal repository host units (Tptpmn and 
Tptpll).

• The variability of seepage-relevant parameters has been examined by performing 
liquid-release tests at various sites along the ESF and the ECRB Cross-Drift, and is 
incorporated into the drift seepage abstraction.

2.3.3.2.3.4 Prediction of Ambient Seepage

2.3.3.2.3.4.1 Seepage into Intact Emplacement Drifts

While the seepage calibration model simulates liquid release tests and seepage into niches and into 
the ECRB Cross-Drift for calibration and validation purposes, the seepage model for performance 
assessment evaluates total seepage into a section of an emplacement drift under ambient 
postclosure percolation conditions (BSC 2004a, Section 6.3.1). Isothermal flow simulations are 
performed over wide ranges of key parameters that bracket the range of parameters expected to be 
evaluated during the probabilistic TSPA calculations (Section 2.3.3.2.3.3). The key parameters 
affecting ambient seepage are the effective capillary strength parameter, permeability, and local 
percolation flux imposed at the upper model boundary (BSC 2004b, Section 6.3.3). These 
parameters were identified as seepage-relevant, based on the general understanding of the flow 
diversion and seepage process (Section 2.3.3.2.1.3; Philip et al. 1989), and by means of a formal 
sensitivity analysis (BSC 2004b, Section 6.6.3.1). The seepage calibration model and the seepage 
model for performance assessment are conceptually consistent, meaning that the basic conceptual 
framework and the calibrated parameters are transferred from the validated model to the 
predictive model. The main differences between the two models are in the model geometry (future 
emplacement drifts are slightly larger than niches), the flux boundary conditions (the seepage tests 
were operated with artificial water release in addition to natural percolation), and the range of key 
parameters considered (the seepage calibration model used key parameters specific to each test 
location, while the seepage model for performance assessment was applied to wide ranges of 
parameter combinations to encompass the seepage conditions near all future emplacement drift 
segments). Furthermore, evaporation from the drift wall is included in the seepage calibration 
model to account for ventilation effects that impacted the observed seepage rates. Evaporation is 
not considered in the seepage model for performance assessment, because relative humidity under 
ambient postclosure conditions is likely to be close to 100%.

The seepage model for performance assessment is a three-dimensional, drift-scale, predictive 
model employing a stochastic continuum representation of the small-scale heterogeneity of 
fractured rock in the drift vicinity (BSC 2004a, Section 6.3). Applying a percolation flux at the top 
of the model, the steady-state seepage flux is obtained. The calculation is repeated for different 
parameter combinations and different realizations of the underlying stochastic permeability field. 
Results are provided in the form of lookup tables that give seepage rates and related seepage 
estimation uncertainty as a function of the three key parameters (i.e., effective capillary strength 
parameter, permeability, and percolation flux) (BSC 2004a, Section 6.6.1). During a probabilistic 
TSPA calculation, values of key input parameters are sampled from their respective probability 
distributions, and the corresponding seepage rate is extracted from these lookup tables. Sensitivity 
analyses are performed to examine the impact of the standard deviation and correlation length 
describing the small-scale heterogeneity of the permeability field (BSC 2004a, Section 6.6.2).
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Example results from the seepage model for performance assessment are illustrated in 
Figure 2.3.3-19. The figure gives contours of the simulated mean seepage percentage into an 
emplacement drift with a diameter of 5.5 m as a function of the capillary strength parameter and the 
mean fracture permeability for selected percolation fluxes between 1 and 1,000 mm/yr. These 
percolation fluxes are local and include flow focusing. The seepage percentage (the ratio between 
the seepage rate and the percolation flux arriving over the footprint of the considered drift segment)
indicates the flow diversion capability of the capillary processes at the emplacement drift surface. 
As expected, the seepage percentage is large for small capillary strength, small permeability, and 
large percolation flux. In these extreme cases, seepage may approach 100% (i.e., there is no flow 
diversion at the drift wall), and the entire percolation flux seeps into the drift. At the other end of the 
spectrum, the seepage percentage is small for the cases with strong capillarity, large permeability, 
and small percolation flux. In many of these cases, there is no seepage; the entire percolation flux 
is diverted around the drift by capillary forces because the percolation flux is below the critical 
percolation flux. The critical percolation flux is the flux that corresponds to the seepage threshold 
for the given combination of permeability and capillary strength parameter (SNL 2007a, 
Sections 6.1.3, 6.4.2, and 6.6).

The model domain length along the drift axis considered in the seepage model for performance 
assessment is 5.1 m. In other words, the seepage model for performance assessment results—such 
as the seepage rate—represent the seepage conditions predicted for a drift section comprising one 
5.0 m long waste package plus the 0.1 m gap spacing between waste packages. The length of the 
waste package corresponds to the rounded length of the 44-BWR and 21-PWR waste packages 
considered in previous designs. With the introduction of the transportation, aging, and disposal 
(TAD) canisters for commercial spent nuclear fuel (SNF), which is about 5.85 m long (SNL 2007c, 
Table 4-3), the average length of all waste packages plus gap increases to about 5.614 m. This, in 
turn, increases the seepage rate that waste packages may potentially encounter, and may also 
increase the seepage fraction. As discussed in Total System Performance Assessment 
Model/Analysis for the License Application (SNL 2008a, Appendix P13[a]), the seepage rates are 
expected to increase by approximately 10% with increased waste package length, while it is shown 
that a change in seepage fraction has little effect on annual dose. Therefore, the overall effect of 
increasing the waste package length is considered minor (SNL 2008a, Appendix P13[a]).

The seepage model for performance assessment is also used to simulate the potential effect of rock 
bolts in the drift ceiling on seepage (BSC 2004a, Section 6.5). Several rock bolts scenarios are 
examined in a sensitivity analysis, including cases representing both grouted and ungrouted 
boreholes. It is shown that these features have a minor effect on seepage, and can be excluded in the 
TSPA drift seepage submodel (Section 2.2, Table 2.2-5, for excluded FEPs 1.1.01.01.0B, Influx 
through holes drilled in drift wall or crown; and 2.1.06.04.0A, Flow through rock reinforcement 
materials in EBS).

2.3.3.2.3.4.2 Seepage into Degraded Emplacement Drifts

The above ambient seepage predictions represent the conditions in idealized intact drifts. This 
section describes the seepage predictions conducted to evaluate the effects of drift degradation, 
using the seepage model for performance assessment with a specific model setup that accounts for 
drift geometry changes caused by seismic activity (BSC 2004a, Section 6.6.3; SNL 2007a, 
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Section 6.4.2.4.2). Two drift profile scenarios are considered that cover the range of degradation 
results expected in the nonlithophysal and lithophysal repository rocks (Section 2.3.3.2.1.4).

Nonlithophysal Rock—The first drift profile scenario is for drifts where isolated wedge type 
rockfall has occurred, representing degraded conditions in nonlithophysal rock. Otherwise, the 
drifts remain intact openings with the horizontal extent essentially unchanged. Seepage 
calculations are conducted for two selected drift profiles, based on model results from the drift 
degradation analysis. For the considered drift profiles the average seepage rates—as well as the 
average seepage threshold calculated—are almost identical to the no degradation cases (BSC 
2004a, Section 6.6.3). This result indicates that the impact of local geometry changes at the drift 
ceiling need not be explicitly addressed, as long as individual breakouts are not so ubiquitous 
(e.g., as a result of multiple seismic events) that many topographic lows would form at the ceiling. 
It follows that the seepage lookup table derived for the intact (idealized circular) drift can also be 
used to calculate seepage rates into moderately degraded drifts with local rockfall.

No seepage simulations are available for drift profiles with significant degradation, e.g., with 
several fallen wedges and multiple topographic lows at the roof. Since seepage may increase 
considerably in such cases, the predictions from the intact-drift lookup table cannot be used. It is 
therefore necessary to set seepage to an upper-bound value given by the local percolation flux 
arriving at the drift. In other words, it is assumed that there is no flow diversion capacity for drifts 
with multiple fallen wedges and topographic lows (Section 2.3.3.2.4).

Lithophysal Rock—The second drift profile scenario is for completely collapsed drifts, as 
expected in lithophysal rock in response to severe (or multiple) seismic events. During collapse, 
the rock mass above an underground opening disintegrates into a number of fragments that fall 
down and eventually fill the open space. The situation after drift collapse, as predicted by drift 
degradation analyses, can be categorized as follows (Section 2.3.4): The original opening has 
increased in size to about double the initial diameter (i.e, about 11 m diameter), and is filled with 
fragmented rubble with large voids. The solid wall rock surrounding the rubble filled opening is 
intact, but may have increased permeability and reduced capillary strength because of the dynamic 
motion and the stress redistribution (see discussion below). The rubble-filled opening is referred 
to hereafter as a “collapsed drift,” although technically there is no drift after collapse.

For seepage predictions, the various collapsed-drift profiles provided by the drift degradation 
analyses in Drift Degradation Analysis (BSC 2004e, Appendix R) are idealized as rubble-filled 
openings of circular shape with a diameter of 11 m (SNL 2007a, Figure 6-4[a]). The seepage model 
for performance assessment is configured for these conditions using a modified model geometry 
with an 11 m wide opening embedded in the stochastic continuum domain that represents the 
heterogeneous fractured rock in the drift vicinity. A capillary-strength parameter of 100 Pa is used 
within the opening, and is representative of the small capillarity of the rubble material. Systematic 
seepage simulations are conducted with the seepage model for performance assessment to evaluate 
the capillary-barrier behavior at the interface between the 11 m wide rubble-filled opening and the 
surrounding rock. The calculation is repeated for the parameter combinations evaluated in the intact 
drift simulations, and a seepage lookup table is developed specific for collapsed drifts similar in 
structure to the one developed above. In the case of drift collapse, this lookup table needs to be used 
instead of the lookup table for intact or moderately degraded drifts.
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Example seepage results illustrating the impact of drift collapse on seepage are presented in 
Figure 2.3.3-20, where seepage percentage contours for intact and collapsed drifts are plotted as a 
function of permeability and capillary strength, using a local percolation flux of 5 mm/yr. The 
seepage percentages obtained in the collapsed drift scenario are considerably higher than those for 
intact drifts, which is caused by the larger size of the collapsed drift (reducing the effectiveness of 
flow diversion around the drift) and the nonzero capillary strength in the rubble filled drift (reducing 
the effectiveness of the capillary barrier) (SNL 2007a, Section 6.4.2.4.2). Nevertheless, the 
simulation results demonstrate that most of the percolation flux is still diverted around the collapsed 
drift for most of the considered parameter range.

Hydrologic Property Changes—Geomechanical simulations have been conducted to determine 
the impact of drift degradation on the hydrologic properties in the drift vicinity (BSC 2004g, 
Section 6.8). Model results indicate that moderate degradation is not expected to cause any 
relevant rock-property changes, compared to the initial excavation disturbed conditions. Drift 
collapse, on the other hand, is expected to cause changes in the hydrologic properties, with 
fracture permeability increases and fracture capillary strength decreases in the relevant area above 
the drift crown. A local permeability increase would result in less seepage because of enhanced 
flow diversion around the collapsed drift, whereas a local capillary strength decrease would result 
in more seepage, since the capillary barrier is weakened. As discussed in Abstraction of Drift 
Seepage (SNL 2007a, Section 6.4.4.1.2), the net result of these counteracting property alterations 
is relatively small (i.e., the interpolated seepage rates using the adjusted properties for collapsed 
drifts are similar to the interpolated seepage rates using the initial excavation-disturbed 
properties). Thus, reasonable estimates of seepage into degraded or collapsed drifts can be derived 
when the seepage calculation uses the initial properties of the excavation-disturbed zone around 
drifts (i.e., when the calculation does not explicitly address changes to these properties caused by 
the drift degradation and collapse).

Drift Degradation Characterization for Seepage—How emplacement drifts can be categorized 
regarding the different degradation and seepage scenarios introduced above is explained in 
Section 2.3.3.2.4.2.

2.3.3.2.3.4.3 Seepage Predictions for Alcove 8–Niche 3 Tests

Numerical modeling of the flow and seepage processes in the Alcove 8–Niche 3 tests 
(Section 2.3.3.2.2.1.5) was conducted to evaluate the conceptual model for seepage predictions, as 
discussed in the preceding sections. Seepage modeling was conducted in two stages (BSC 2006, 
Sections 6.2 and 6.3.1). First, the infiltration rate and seepage data from early tests were used to 
calibrate the model in order to obtain site-specific rock properties. The calibrated model was then 
used to predict results for subsequent tests. Figure 2.3.3-21 shows the results for observed and 
simulated total seepage rates in comparison to total infiltration rates. There is an overall good 
agreement between observations and simulations for the calibration period (0 to 210 days) and the 
prediction period (after 210 days). Some disagreements observed in the late testing stage (after 550 
days) are attributed to scrubbing of the infiltration plots, which may have released in-fill or dust 
particles into the fractured rock (BSC 2006, Section 6.2.4). The data and modeling evaluation 
supports the conceptual approach for predicting seepage in the unsaturated rocks at Yucca 
Mountain. Note that these data were not directly used for the seepage calibration effort described in 
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Section 2.3.3.2.3.3, because of the larger separation between the infiltration and observation levels, 
which may allow some of the infiltrating water to migrate laterally and bypass Niche 3.

2.3.3.2.3.5 Percolation Flux and Flow Focusing

The magnitude and spatial distribution of local percolation fluxes at the repository horizon 
significantly affect seepage into emplacement drifts. The larger the local percolation flux, the 
greater the potential for seepage to occur and the larger the amount of water that can seep into 
emplacement drifts.

For ambient flow conditions, the three-dimensional spatial flux distributions in the unsaturated zone 
are provided by the site-scale unsaturated zone flow model (SNL 2007b). This model calculates 
flow fields accounting for climate changes and related uncertainties, variability in net infiltration, 
the effects of different stratigraphic units, and the presence of faults (Section 2.3.2.2)
(Table 2.3.3-1, FEPs 1.3.01.00.0A, Climate change; 2.2.03.01.0A, Stratigraphy; 1.2.02.02.0A,
Faults; and 2.2.07.02.0A, Unsaturated groundwater flow in the geosphere). Climate changes 
expected during the pre-10,000-year period are represented using the flux distributions for three 
future climate states, namely the present-day climate, the monsoon climate, and the 
glacial-transition climate. The flux distribution during the post-10,000-year period is based on the 
proposed revision to 10 CFR 63.342(c), where a log-uniform distribution is prescribed defining the 
average percolation flux through the repository. These flux distributions are interpolated by the 
multiscale thermal-hydrologic model (Section 2.3.5.4.1) (SNL 2008b) to determine downward flux 
values consistent with repository locations used for in-drift thermal-hydrologic calculations. 
However, because of the large model area used to determine the percolation flux distributions and 
the related interpolated values, the spatial resolution is much coarser than the extent of drift-scale 
seepage models (Figure 2.3.3-5), and layer-averaged properties are used within stratigraphic units 
(Sections 2.3.2 and 2.3.5.4.1). Intermediate-scale heterogeneity that may lead to focusing of flow is 
not represented. To bridge the gap in scale between the mountain-scale models providing 
percolation fluxes and drift-scale seepage models, the local percolation flux relevant for seepage is 
estimated from the interpolated percolation flux multiplied by a flow focusing factor (SNL 2007a, 
Section 6.7.1.1). (Table 2.3.3-1, FEPs 2.1.08.01.0A, Water influx at the repository; and 
2.2.07.04.0A, Focusing of unsaturated flow (fingers, weeps)).

Flow focusing factors are estimated with the use of a high-resolution fracture continuum numerical 
flow model, called the flow focusing model, that captures the intermediate-scale heterogeneity. This 
two-dimensional model is 100 m wide and extends from the bottom of the PTn unit to the repository 
horizon, a distance of 150 m at a typical location within the repository domain. The grid spacing is 
0.25 m and 0.5 m in the horizontal and vertical directions, respectively. The model explicitly 
includes the hydrologic properties of the model layers from the top of the TSw unit to the repository 
horizon (BSC 2004a, Section 6.8.1). In contrast to the site-scale unsaturated zone flow model, in 
which the rock properties within geologic units are considered uniform, the flow focusing model 
represents the intermediate-scale heterogeneity of the fractured rock, which is treated as a stochastic 
heterogeneous continuum with variable permeability. Both uniform and nonuniform percolation 
fluxes were applied at the top boundary of the heterogeneous domain to investigate uncertainty in 
flow focusing due to top boundary flux distribution. The resulting percolation flux distribution at 
the bottom boundary is analyzed to obtain flow focusing factors (BSC 2004a, Section 6.8.2; SNL 
2007a, Section 6.6.5.2).
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Simulations were conducted for several flow scenarios, with varying percolation flux rates of 1, 5, 
25, 100, and 500 mm/yr; different infiltration patterns (uniform, locally concentrated, and 
permeability dependent); and different realizations, as well as correlation lengths of the 
heterogeneous fracture permeability field. A distribution of flow focusing factors is readily 
generalized from the cross-sectional flux calculation by normalizing the flux values to the average 
infiltration rate imposed at the top boundary. Factors larger than 1 correspond to increased 
percolation fluxes, and factors smaller than 1 correspond to decreased percolation fluxes compared 
to the average percolation. For example, Figure 2.3.3-22a shows the distribution of flow focusing 
factors across the bottom of the model area, with 5 mm/yr uniform percolation imposed at the top 
and a spatial correlation of 1 m for fracture permeability. The profile demonstrates a significant 
variability, with flow focusing values ranging from about zero to more than six. Analysis of 
additional cross sections between the top and bottom boundary are statistically similar (BSC 2004a, 
Section 6.8.2), indicating that the basic flow focusing characteristics (Figure 2.3.3-5) develop 
within tens of meters from the top of the model and remain similar within a unit over extended 
vertical distances (SNL 2007a, Section 6.6.5.2). The frequency distribution over the entire model 
domain is shown in Figure 2.3.3-22b (BSC 2004a, Figure 6-25b). The infiltration cases, covering 
a range from 1 to 500 mm/yr, are statistically similar. This means that flow focusing factors, as 
modeled, are independent of the percolation flux (i.e., the distribution of flow focusing factors is not 
correlated to the distribution of percolation fluxes). The majority of the normalized flux values 
(focusing factors) ranges from zero to about two. The maximum percolation flux that occurs in the 
model domain is generally about five to six times higher than the infiltration flux prescribed at the 
upper boundary. The minimum percolation flux is almost zero (SNL 2007a, Section 6.6.5.2).

Based on these modeling results, a single frequency distribution of flow focusing factors is 
developed for use in the simulation of emplacement drift seepage. A regression analysis of the 
resulting flow focusing factors is shown in Figure 2.3.3-23, and provides a probability distribution 
function to be used in defining the local percolation flux relevant for seepage. This distribution 
conserves mass, so the amount of downward water flow remains unchanged when flow focusing 
factors are used as multipliers to the site-scale percolation fluxes. As shown in Figure 2.3.3-23, the 
infiltration distribution and fracture permeability (distribution and correlation length 1, 2, and 3 m, 
referred to as field 1, field 2, and field 3) have little effect on flow focusing (BSC 2004a, 
Section 6.8.2).

In summary, the local percolation flux sampled during the probabilistic TSPA seepage calculations 
is interpolated for a given location, climate state, and infiltration scenario from percolation flux 
distributions provided by the site-scale unsaturated zone flow model, multiplied by a flow focusing 
factor sampled from the cumulative distribution function shown in Figure 2.3.3-22b. The 
interpolated fluxes at selected repository locations are consistent with and provided by the 
multiscale thermal-hydrologic model (SNL 2008b). The local percolation flux defines one axis of 
the three-parameter seepage lookup table calculated by the seepage model for performance 
assessment for use in the TSPA seepage calculations. Flow channeling introduced by small-scale 
heterogeneity (i.e., smaller than the drift scale) is captured by the small-scale heterogeneity 
considered in the seepage model for performance assessment (Section 2.3.3.2.3.4) (SNL 2007a, 
Section 6.4.2).
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2.3.3.2.3.6 Parameter and Model Uncertainty

The first part of this section explains the derivation of probability distributions for the three 
seepage-relevant parameters evaluated by the seepage model for performance assessment: (1) the 
capillary strength parameter; (2) the reference permeability, and (3) the local percolation flux
(Sections 2.3.3.2.3.6.1, 2.3.3.2.3.6.2, and 2.3.3.2.3.6.3, respectively). Separate probability 
distributions are developed for spatial variability and for uncertainty. These parameters are defined 
in the context of the conceptual framework of the seepage model for performance assessment (SNL
2007a, Section 6.4.2), as follows: (1) the capillary strength is the calibrated effective parameter, as 
estimated by the seepage calibration model; (2) the permeability represents the mean value of the 
small-scale stochastic permeability fields in the drift-scale model domain; and (3) the percolation 
flux is the local flux arriving at the upper boundary of the seepage model for performance 
assessment (SNL 2007a, Section 6.6.5). The spatial variability distributions of these parameters 
refer to the intermediate-scale distribution within the repository units that is used for the calculation 
of repository-wide seepage rates in the TSPA (SNL 2007a, Section 6.6). The second part of this 
section describes how the different sources of model uncertainty are incorporated in the seepage 
prediction framework (Section 2.3.3.2.3.6.4).

2.3.3.2.3.6.1 Variability and Uncertainty of Capillary Strength

The capillary strength parameter is one of the key parameters affecting the capillary diversion at the 
emplacement drift crown (BSC 2004b, Section 6.3.3.2; SNL 2007a, Section 6.6.2). The larger this 
parameter, the stronger the capillary force holding water in the fractures, thus preventing it from 
seeping into emplacement drifts. The capillary strength parameter is estimated by matching 
seepage-rate data from liquid release tests (Section 2.3.3.2.2.1.1) using the seepage calibration 
model (Section 2.3.3.2.3.3). These estimates are uncertain due to uncertainty in the seepage-rate 
data and uncertainty in the seepage calibration model. The capillary strength parameter is also 
variable in space because different locations in the repository have different rock property 
characteristics and different capillary barrier behavior (BSC 2004b, Section 6.6.4). This variability 
in space is uncertain because of the limited number of testing locations where capillary strength 
parameters are available. Excavation effects are accounted for in the calibrated capillary strength 
values, because the liquid-release tests have been conducted in the excavation-disturbed zone near 
the drifts.

A summary of the calibrated capillary strength values is provided in Table 2.3.3-2. Data from six 
test intervals in the lower lithophysal zone (Tptpll), and four intervals in the middle nonlithophysal 
zone (Tptpmn), are analyzed. Multiple inversions with different realizations of the underlying 
heterogeneous permeability field are performed for test locations in the lower lithophysal zone. 
Uncertainties in the seepage rate data and in the seepage calibration model are propagated through 
each individual inversion, and are reflected in the estimation uncertainty of the parameters 
determined for each realization of the stochastic permeability field (BSC 2004b, Sections 6.6.3 and 
6.6.4; SNL 2007a, Section 6.6.2). For each test location, the average and standard error of the 
capillary strength parameter determined using the set of realizations of the permeability field is 
calculated, providing an estimate and corresponding estimation uncertainty for a given test location 
(BSC 2004b, Section 6.6.4; SNL 2007a, Section 6.6.2). These values provide the basis for 
developing appropriate probability distributions that characterize spatial variability and uncertainty 
of the seepage-relevant capillary strength parameter for use in the TSPA. The variability of capillary 
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strength refers to the variation of the effective drift scale parameter within the repository rock units. 
Figure 2.3.3-7 shows the locations of niches and drift sections where seepage tests have been 
conducted. The Tptpmn unit test locations (Niches 3 and 4) are separated by a distance of about 
1,700 m. The two niches represent areas in the middle nonlithophysal zone with distinct fracture 
characteristics. The Tptpll unit test locations (Niche 5 and systematic testing boreholes) are in 
relatively close proximity within a 150 m long section of the ECRB Cross-Drift. Where several 
boreholes were tested in one niche, the typical distance between test intervals was on the order of 
a few meters. Thus, the 10 available capillary strength values (Table 2.3.3-2) are not randomly 
placed over the entire repository area. They are clustered at four selected test locations within two 
different rock types (BSC 2004b, Section 6.5.1).

To evaluate the spatial variability of capillary strength from the data discussed above, it is important 
to recall the nature of the parameter in question. If capillary strength solely represented the capillary 
behavior of the fractured rock, this parameter would be expected to vary considerably between the 
Tptpmn and Tptpll units, as a result of potential differences in fracture aperture and fracture wall 
roughness. Thus, the analysis would need to be conducted separately for the two geologic units. 
However, as noted previously, the ambient seepage models derive and apply capillary strength as an 
effective process parameter that accounts for a number of additional factors affecting seepage
(Section 2.3.3.2.3; BSC 2004b, Section 6.3.3.2). Some of these factors (e.g., drift-wall roughness, 
film flow along drift wall, artifacts of finite discretization) are largely independent of intermediate- 
and large-scale variation. Consequently, analysis of statistical measures can be conducted without 
distinguishing between geologic units. Applying different averaging methods (SNL 2007a, 
Table 6.6-2) yields consistent estimates of capillary strength values, thereby confirming that a 
single mean and standard deviation provides representative estimates for the repository host rock. 
Using all 10 samples of both geologic units to derive the mean, standard deviation, and standard 
error of the mean is, therefore, appropriate (SNL 2007a, Sections 6.6.2 and 6.6[a]).

Figure 2.3.3-24 (SNL 2007a, Figure 6.6-2) shows the relatively uniform spread among the 10 data 
points of the capillary strength parameter, thereby demonstrating that a uniform distribution is 
appropriate for representing spatial variability of this parameter. The lower bound (402 Pa) and 
upper bound (780 Pa) of this uniform distribution are calculated from the mean and standard 
deviation, combining data from the 10 tests in both the Tptpmn and Tptpll repository host units 
(SNL 2007a, Table 6.6-2).

As discussed in Abstraction of Drift Seepage (SNL 2007a, Section 6.6.2), the main source of 
uncertainty in the capillary strength parameters is uncertainty in spatial variability distribution 
because only a limited number of data points is available. This uncertainty is expressed in the mean 
and in the range of the distribution. Other sources of uncertainty—such as the measurement 
uncertainty and conceptual model uncertainty—are considered less important in view of the careful 
experimental design used for liquid release and air injection testing, and the careful modeling and 
validation process that supports the seepage conceptual models. The estimation uncertainty of 
capillary strength is mainly a result of uncertainty in the small-scale fracture permeability 
distribution at each test location (BSC 2004b, Section 8.2; SNL 2007a, Section 6.6.2.3). This source 
of estimation uncertainty is directly accounted for in the seepage model for performance assessment 
(Section 2.3.3.2.3.4), and is passed through the seepage abstraction to the TSPA (Section 2.3.3.2.4).
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An empirical method is used to describe the combined uncertainty of the capillary strength 
parameter, based on estimates of the standard error of the mean of the 10-data-point sample. 
Uncertainty is accounted for by varying the mean of the uniform probability distribution for spatial 
variability, with the magnitude of variation sampled from an uncertainty distribution. The 
uncertainty distribution that represents this stochastic adjustment of the mean is a symmetric 
triangular distribution with a mean of 0, a minimum of −105 Pa, and a maximum of +105 Pa, taking 
into consideration the standard errors of the mean value (SNL 2007a, Sections 6.6.2 and 6.3[a]). A 
schematic of the spatial variability and uncertainty in the capillary strength parameter is given in 
Figure 2.3.3-25 (SNL 2007a, Figure 6.6-3), showing the triangular-shaped uncertainty distribution, 
which assigns a probability to the mean of the uniform-shaped spatial variability distribution. In 
other words, the capillary strength parameter is to be sampled from a uniform distribution on the 
interval [402 Pa + X, 780 Pa + X], where X is sampled from a triangular distribution having 
mode 0, lower bound −105 Pa, and upper bound +105 Pa. Thus, the most likely spatial variability 
distribution is the one where X = 0 (i.e., the uniform distribution with a minimum value of 402 Pa 
and a maximum value of 780 Pa). Least likely are the two bounding cases, where the triangular 
distribution at −105 Pa or +105 Pa indicates a zero probability. Considering the combined effect of 
spatial variability and uncertainty, the range of capillary strength parameter values to be used in the 
TSPA extends from 297 to 885 Pa, with the most likely value at 591 Pa (SNL 2007a, Section 6.6.2). 
The spatial variability and uncertainty distributions developed for the Tptpmn and Tptpll units are 
also suitable for the Tptpul and Tptpln units, respectively, because of similarity in the rock types 
(SNL 2007a, Section 6.6.4).

An alternative statistical method was applied in Abstraction of Drift Seepage (SNL 2007a, 
Section 6.6[a]) to support the distributions described above (and used in the TSPA drift seepage 
submodel). A maximum likelihood estimation was conducted to characterize the spatial variability 
and related uncertainty of the 10-data-point sample of capillary strength values. The resulting 
parameter range estimated by this analysis is 355 Pa to 825 Pa, which is slightly smaller than the 
range previously obtained. The consistency between the two approaches is very good, considering 
that the range determined by the maximum likelihood estimation describes only spatial variability 
and related uncertainty, while the larger range used in the TSPA drift seepage submodel includes 
additional sources of uncertainty.

2.3.3.2.3.6.2 Variability and Uncertainty of Fracture Permeability

The second key parameter affecting the diversion of water around drifts is the tangential fracture 
permeability in the boundary layer near the emplacement drift wall (BSC 2004b, Section 6.3.3.2; 
SNL 2007a, Section 6.6.3). As this parameter increases, water flow around the drift is more likely, 
and seepage is less likely. In a consistent manner, both the seepage calibration model and the 
seepage model for performance assessment apply a stochastic continuum conceptualization for 
fracture permeability in the drift vicinity. The small-scale variability of the continuum fracture 
permeability at a resolution of about 1 ft is implicitly accounted for in these models, using 
lognormal probability distributions based on air injection measurements that were performed on the 
same scale (SNL 2007a, Section 6.6.3). While the standard deviation of these small-scale fracture 
permeability distributions can be treated as a constant for abstraction purposes (as determined by 
sensitivity analyses showing its relative insignificance for reasonable ranges of standard deviation), 
the mean values of the distributions may vary significantly over the repository rock units. For the 
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TSPA, distributions covering the intermediate-scale variability and the uncertainty of these mean 
values of small-scale fracture permeability are developed (SNL 2007a, Section 6.6.3).

The most appropriate information on small-scale fracture permeability stems from the air injection 
testing conducted in the boreholes located above the niches. Using the pressure response as input, 
the air-permeability value of the tested interval is calculated by an analytical solution. Tests were 
performed using the same testing methodology and identical packer setup before and after niche 
excavation, thereby providing insight into the permeability changes induced by stress release due to 
drift excavation. Note that the fracture permeability needed for seepage calculations is the value that 
is representative of the excavation-disturbed zone, rather than the undisturbed formation (BSC 
2004f, Section 6.1.2.2).

The mean values and the standard deviations of the small-scale permeability data are calculated 
(SNL 2007a, Table 6.6-3) with the standard deviations reflecting spatial variability on a 1 ft test 
interval scale. This small-scale variability of permeability is explicitly accounted for in the seepage 
model for performance assessment. The mean permeability and its potential intermediate-scale 
variation within the repository units are quantified and provided to the TSPA (SNL 2007a, 
Section 6.6.3.2).

The two main host rock units (Tptpll and Tptpmn) have different fracture permeability ranges. 
Analyses of intermediate-scale variability are therefore conducted separately for the two units. To 
obtain a sample size sufficient for a statistical analysis of permeability in the two units, permeability 
values from the following sources are combined after appropriate adjustments are made: 
(1) preexcavation and postexcavation mean permeabilities from niche studies (BSC 2004f, 
Section 6.1); (2) permeabilities from air injection tests in surface-based boreholes (LeCain 1995); 
and (3) permeabilities from numerous boreholes drilled as part of the Single Heater Test and Drift 
Scale Test (SNL 2007d, Sections 6.2 and 6.3). With the exception of postexcavation permeability 
values, which are representative of the seepage-relevant excavation-disturbed zone and on the 
appropriate scale, the measured permeability values are adjusted to account for excavation effects, 
for scale effects resulting from different lengths of the injection intervals, or both (SNL 2007a, 
Section 6.6.3.2). Excavation effects are accounted for based on the measured pre- and 
post-excavation data and the simulation results from the thermal-hydrologic-mechanical model 
(BSC 2004a, Section 6.3.2). The permeability data used, the adjustments made, and the results of 
the statistical analysis of the combined data set are described in detail in Abstraction of Drift 
Seepage (SNL 2007a, Section 6.6.3).

For the middle nonlithophysal unit (Tptpmn), the log-permeability (permeability units of square 
meters) is described by normal distribution with a mean of −12.2 and a standard deviation of 0.34
(SNL 2007a, Section 6.6.3.2.1). For the lower lithophysal unit (Tptpll), the log-permeability is 
described by a normal distribution with a mean of −11.5 and a standard deviation of 0.47 (SNL 
2007a, Section 6.6.3.2.2). These distributions represent spatial variability in the drift-scale, 
disturbed-zone permeability value across the repository horizon.

Uncertainty in this seepage relevant parameter stems from (1) uncertainty in the derived air 
permeability values (which is a combination of the uncertainty in the measured flow-rate and 
pressure data and uncertainty regarding their analysis); and (2) uncertainty in the characterization 
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of its spatial variability. The first source is insignificant in comparison to the second (SNL 2007a, 
Section 6.6.3.3), and is thus not explicitly represented in the TSPA seepage calculations.

The main uncertainty source for fracture permeability is related to spatial variability, which is 
evaluated using values from the limited number of testing locations in the Tptpmn and Tptpll units. 
Uncertainty in the spatial variability of log-permeability is empirically accounted for by varying the 
mean of the distribution for spatial variability within appropriate ranges. A triangular uncertainty 
distribution is applied with a mean of zero and the upper and lower bounds related to the standard 
errors, which describe the potential uncertainty in the estimated mean of a sample (SNL 2007a, 
Section 6.6.3.3). A schematic of the spatial variability and uncertainty distributions for log 
permeability in the lower lithophysal unit is given in Figure 2.3.3-26. The triangular distribution 
representing uncertainty in log permeability in the Tptpll unit has a range of ±0.92; the 
corresponding distribution for the Tptpmn unit has a range of ±0.68 (SNL 2007a, Section 6.6.3.3). 
99% of the log permeability values sampled from the combined uncertainty and variability 
distribution shown in Figure 2.3.3-26 lie within the range from −12.9 to −10.0, as shown in 
Figure 2.3.3-27. The permeability distributions developed for the Tptpmn and Tptpll units are also 
suitable for the Tptpln and Tptpul units, respectively, because of similarity in the rock types (SNL 
2007a, Section 6.6.4).

2.3.3.2.3.6.3 Variability and Uncertainty of Local Percolation Flux

The local percolation flux at the repository horizon is the third key parameter affecting seepage into 
emplacement drifts (BSC 2004b, Section 6.3.3.1; SNL 2007a, Section 6.6.5). The larger this 
parameter, the greater the potential for seepage to occur and the larger the amount of water that can 
seep into emplacement drifts. The large-scale spatial and temporal variability of percolation fluxes 
in the unsaturated zone are captured by the percolation flux distributions generated by the site-scale 
unsaturated zone flow model (Section 2.3.2). As is discussed in Section 2.3.3.2.3.5, the multiscale 
thermal-hydrologic model uses these distributions to calculate downward fluxes for repository 
locations used in in-drift thermal-hydrologic calculations. These interpolated downward fluxes are 
then multiplied by the flow focusing factor to account for intermediate-scale flow redistributions, 
as explained in Section 2.3.3.2.3.5 (SNL 2007a, Section 6.6.5). The final results are then used as 
inputs to the TSPA drift seepage submodel to propagate percolation flux variability and uncertainty 
for the probabilistic seepage calculation.

There are several sources of uncertainty related to the large-scale percolation flux estimates 
provided by the unsaturated zone flow model. Uncertainty related to the future climates and net 
infiltration during the first 10,000 years after emplacement is accounted for using a range of 
alternative infiltration maps for each of the climate states: present day, monsoon, and 
glacial-transition (Sections 2.3.1 and 2.3.2). These infiltration maps, used as upper boundary 
conditions for the unsaturated zone flow model, lead to alternative percolation flux distributions. 
For a given climate state, the relative importance of a selected infiltration map is represented by a 
weighting factor (Section 2.3.2.3.5.1). The weighting factors are determined through comparison 
with measured data from the unsaturated zone (e.g., distributions of temperature and chloride),
using a generalized likelihood uncertainty estimation method. Four maps were selected,
representing the range of present-day infiltration at Yucca Mountain, giving four percolation flux 
distributions associated with weighting factors of 62%, 16%, 16%, and 6% (Section 2.3.2.4.1.2.4.5; 
Table 2.3.2-27). These same weighting factors are also used for the monsoon and glacial transition 
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climates. During the post-10,000-year time period, uncertainty in deep percolation is accounted for 
based on the proposed revision to 10 CFR 63.342(c), where a log-uniform distribution is prescribed 
for average percolation through the repository footprint ranging from 13 to 63 mm/yr. Four 
alternative percolation flux maps have been developed to provide upper boundary conditions that 
simulate this range of average fluxes at the repository. These are also associated with weighting 
factors of 62%, 16%, 16%, and 6%.

Uncertainty related to simulation of flow processes in the unsaturated zone has been addressed by 
calibration and validation of the model to a wide variety and large amount of data from different 
sources (SNL 2007b, Sections 6 and 7). For the scope of evaluating seepage, the most important 
sources of uncertainty are the flow diversion capacity of the PTn and the impact of spatial variability 
within stratigraphic units (SNL 2007a, Sections 6.6.5.1 and 6.6.5.3). The impact of the PTn flow 
diversion was addressed in Section 6.8.2 of Abstraction of Drift Seepage (SNL 2007a), where 
seepage rates were estimated using results of an alternative flow model for the PTn 
(Section 2.3.2.4.2.1). It was shown that the alternative flow model does not significantly impact the 
seepage estimates. The effect of intermediate scale spatial variability, which is not accounted for in 
the unsaturated zone model results, is explicitly incorporated in the TSPA drift seepage submodel 
using the flow focusing concept. It is recognized that the flow focusing factors used in the seepage 
abstraction model may be overestimating the variability of percolation flux, because a fine grid 
resolution was used for the numerical study (SNL 2007a, Section 6.6.5.3). The resulting percolation 
flux distributions used for seepage evaluation cover the spatial variability of this parameter and all 
related uncertainties.

2.3.3.2.3.6.4 Model Uncertainty

The uncertainty inherent in the ambient seepage results is a result of uncertainty in the key input 
parameters to the model, as well as uncertainty that arises from the modeling methodology 
(conceptual model) independent of the model input.

Uncertainty in the key input parameters for ambient seepage is accounted for in the TSPA drift 
seepage submodel by feeding appropriate probability distributions into the seepage lookup tables 
derived from the seepage model for performance assessment. The probabilities assigned to these 
key parameters distinguish between spatial variability and uncertainty using separate distributions. 
Spatial variability and uncertainty distributions for the capillary strength parameter and the local 
permeability have been derived by statistical analysis of the sparsely distributed data available from 
underground testing and surface-based boreholes (Sections 2.3.3.2.3.6.1 and 2.3.3.2.3.6.2). Spatial 
variability distributions for the local percolation flux are provided from site-scale simulations with 
the site-scale unsaturated zone flow model (Section 2.3.3.2.3.6.3). As discussed in Sections 2.3.1
and 2.3.2, alternative flux distributions have been developed that account for uncertainty in future 
climate, net infiltration, and deep percolation. For seepage purposes, the site-scale fluxes are then 
adjusted to account for intermediate-scale heterogeneity, using a spatial distribution of flow 
focusing factors.

The conceptual model used in the seepage model for performance assessment is adopted from the 
conceptual framework of the seepage calibration analyses, conducted with the seepage calibration 
model. The calibrated seepage calibration model with the appropriate effective parameters is 
capable of reproducing and predicting observed seepage data from liquid-release tests 
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(Section 2.3.3.2.3.3). The seepage model for performance assessment, which is conceptually 
consistent with the seepage calibration model, is thus likely to provide reasonable predictions of 
seepage into intact emplacement drifts. Alternative conceptual models corroborate the findings of 
the seepage calibration and prediction models (Section 2.3.3.2.3.7 below). Accordingly, the 
uncertainty about the conceptual model used in the seepage predictions for intact drifts is small 
compared to uncertainty in the model input parameters (as explained above). Prediction results from 
the seepage model for performance assessment are uncertain, however, because the exact structure 
of local heterogeneity in the drift vicinity is unknown. This estimation uncertainty is described by 
the range of seepage results available from multiple realizations of the stochastic permeability fields 
used in the seepage model. The lookup tables available for intact and collapsed drifts thus not only 
provide the mean seepage over all realizations, but also the spread in the seepage results expressed 
by the standard deviation. As pointed out in Section 2.3.3.2.4.3, the TSPA drift seepage submodel 
samples from both the mean seepage values as well as the standard deviations to account for 
estimation uncertainty (SNL 2007a, Section 6.5.1.2).

Additional sources of uncertainty need to be considered in the seepage assessment of degraded or 
collapsed drifts after seismic activity. First, there is considerable variability and uncertainty in the 
drift degradation results that provide input to the TSPA drift seepage submodel. This source of 
uncertainty is accounted for by using the rockfall regression curves developed in Seismic 
Consequence Abstraction (SNL 2007e, Sections 6.7.1.2 and 6.7.2.3) for categorizing drift 
degradation with respect to seepage (Section 2.3.3.2.4). These regression curves provide the mean 
rockfall volume for a seismic event of given magnitude, as well as the variation of volumes on 
account of drift degradation variability and uncertainty. There is also increased uncertainty about 
the seepage prediction results for degraded drifts, because liquid release tests have only been 
performed for mostly intact openings. This source of uncertainty is accounted for as follows (SNL 
2007a, Sections 6.5.1.5 and 6.2.4[a]). For drifts that have moderately degraded but not collapsed 
(for example, after local wedge-type rockfall in nonlithophysal rock), the ambient seepage rates 
from the seepage model performance assessment lookup table are increased by 20% to account for 
increased estimation uncertainty in the prediction. The choice of a 20% increase is based on a 
seepage sensitivity calculation with larger estimation uncertainties described in Abstraction of Drift 
Seepage (SNL 2007a, Section 6.5.1.5). For fully collapsed drifts in lithophysal rock, uncertainty is 
accounted for by the conservatism involved in using worst case profiles, and by assuming that all 
seepage from the surrounding rock into the rubble filled opening can potentially contact the drip 
shield or the waste package, independent of the actual seepage location (SNL 2007a, 
Section 6.2.4[a]). For strongly degraded drifts in nonlithophysal rock, uncertainty is accounted for 
by the conservatism in using the local percolation flux at the drift as the upper-bound value for 
seepage (SNL 2007a, Section 6.2.3.1[a]).

2.3.3.2.3.7 Alternative Conceptual Models of Ambient Seepage

The following alternative conceptual models were considered for evaluating ambient seepage:

• A discrete-fracture network model (BSC 2004b, Section 6.4.1)

• An analytical solution for seepage assuming a homogeneous porous medium (BSC 
2004a, Section 6.9.1)
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• An evaluation of ponding probability (BSC 2004b, Section 6.4.2)

• Observations of calcite and opal in lithophysal cavities (BSC 2004b, Section 6.4.3)

• A simplified analysis using liquid-release test data (BSC 2004b, Section 6.4.4).

In addition, an alternative conceptualization of flow focusing that could affect ambient seepage 
calculations was also evaluated (BSC 2004a, Section 6.9.2).

As discussed below, most of these alternatives were excluded because they would potentially 
underestimate seepage.

2.3.3.2.3.7.1 Discrete-Fracture Network Model

A discrete-fracture network model is an alternative conceptual model to the heterogeneous 
continuum model used for the two ambient seepage models (BSC 2004b, Section 6.4.1). In a 
discrete-fracture network model, individual fractures are discretized into appropriately small 
computational gridblocks. The flow equations solved within and between gridblocks are identical 
to those solved by a continuum model. A high-resolution discrete-fracture network model is capable 
of generating channelized flow and discrete seepage events. As discussed in Section 2.3.3.2.3.2, 
in-plane flow diversion is the key mechanism enabling capillary diversion around drifts; both the 
base-case continuum model and a three-dimensional discrete-fracture network model can simulate 
in-plane flow diversion (BSC 2004b, Section 6.4.1). However, a discrete-fracture network model 
requires detailed data on fracture-network geometry and unsaturated hydrologic properties on the 
scale of individual fractures, along with conceptual models and simplifying assumptions regarding 
unsaturated flow within fractures and across fracture intersections. The scarcity of this information 
leads to substantial uncertainty, which can partly be overcome by calibrating the model against 
hydrogeologic data using an approach very similar to that used for continuum models 
(Section 2.3.3.2.3.3). Results from a simplified calibrated fracture continuum model were 
compared to those of a discrete-fracture network model, yielding consistent results (Finsterle 2000). 
Given the consistency of results, the simplicity of the continuum conceptual model is considered an 
advantage over the complexity of the discrete-fracture network model.

2.3.3.2.3.7.2 Homogeneous Porous Medium Model

Ambient seepage into an underground opening excavated from a homogeneous porous medium can 
be calculated using an analytical solution derived by Philip et al. (1989). However, in a natural, 
fractured-porous medium, seepage is controlled by heterogeneity-induced channeling and local 
ponding effects (Sections 2.3.3.2.1.3 and 2.3.3.2.3.7.3). These conditions cause seepage to occur at 
significantly lower percolation fluxes than if the medium is homogeneous. Therefore, the 
homogeneous model would predict unrealistically low, less conservative seepage rates (BSC 2004a, 
Section 6.9.1).

2.3.3.2.3.7.3 Seepage Governed by Ponding Probability

As an alternative conceptual model to the ambient seepage models, seepage can be related to the 
local ponding probability that is derived from the variability of the permeability field (BSC 2004b, 
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Section 6.4.2). This alternative approach assumes that, in strongly heterogeneous formations, 
seepage is predominantly affected by pressure variations governed by local heterogeneity, rather 
than the presence and geometry of the capillary barrier. This behavior is different from the behavior 
in a homogeneous system where the geometry of the capillary barrier has a strong impact on seepage 
(Philip et al. 1989). Strong, medium- to small-scale heterogeneities tend to increase seepage 
because they increase channeling and local ponding. This effect is also included in the base-case 
ambient seepage models through the estimation of effective, seepage relevant parameters 
determined for multiple realizations of the small scale heterogeneous permeability field (BSC 
2004b, Section 6.4.2). While the ponding approach (BSC 2004b, Section 6.4.2) provides guidance 
on extrapolating seepage predictions to other units or drift geometries, this approach requires a 
calibration step similar to that performed for the seepage calibration model and offers no clear 
advantage over the selected modeling approach. Nevertheless, the concept that ponding probability 
affects seepage is consistent with and corroborates the two ambient seepage models, which produce 
random seepage locations as a result of local ponding in a stochastic permeability field (BSC 2004b, 
Section 6.4.2).

2.3.3.2.3.7.4 Inferring Seepage from Precipitates in Lithophysal Cavities

Observations of calcite and opal in lithophysal cavities have been evaluated to estimate water 
accumulation rates into these small openings (BSC 2004d, Section 7.7.5). Calcite precipitates from 
downward-percolating meteoric water because of (1) evaporation; (2) CO2 outgassing as a result of 
the geothermal gradient; and (3) interaction with a gas phase containing less CO2 than the gas with 
which the water was last equilibrated. Considering these calcite-precipitation mechanisms, and 
assuming water enters the cavities as seepage, the calcite-deposition data were used along with 
certain water-to-calcite ratios to estimate seepage rates into lithophysal cavities. The analysis of 
calcite and opal precipitation data shows that (1) not all lithophysal cavities encountered seepage;
and (2) seepage flux derived from mineral deposits is a small fraction of estimated percolation flux
(Marshall et al. 2003, Section 5; BSC 2004b, Section 6.4.3). Both conclusions corroborate the 
concept of a capillary barrier reducing seepage below the value of the percolation flux (BSC 2004b, 
Section 6.4.3).

The advantage of using geochemical information to infer seepage is the fact that calcite and opal 
were deposited over a long period of time, and therefore record natural percolation conditions. The 
disadvantages of this approach are that (1) seepage is inferred in an indirect manner, requiring a 
geochemical model with associated assumptions; (2) the calcite deposited on lithophysal cavity 
floors may not originate from seepage, because there is a lack of evidence of dripping from cavity 
ceilings (absence of stalactites or stalagmites), even where fractures containing coatings intersect 
lithophysae ceilings; (3) the data reflect seepage into small cavities, instead of into a large opening; 
(4) seepage into lithophysal cavities does not include potential impacts from the 
excavation-disturbed zone around the emplacement drift; and (5) the historic record and the 
approach are not easily translated into seepage predictions under changed conditions (BSC 2004b, 
Section 6.4.3).

The seepage rates estimated from calcite-deposition data are significantly lower than those 
predicted by the TSPA using data derived from the seepage model for performance assessment. 
Therefore, inferring seepage from secondary mineral depositions in lithophysal cavities was not 
selected to quantitatively estimate seepage into emplacement drifts (BSC 2004b, Section 6.4.3).
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2.3.3.2.3.7.5 Inferring Seepage Threshold Directly from Liquid-Release Tests

The seepage threshold has been directly estimated from the liquid-release test data based on a 
number of assumptions with regard to a cross-sectional area of flux between the borehole and the 
niche ceiling, evaporation, and steady-state flow field (BSC 2004b, Section 6.4.4). Once the 
seepage threshold was estimated, a capillary strength parameter was derived assuming seepage into 
a cylindrical cavity excavated from a homogeneous porous medium. The seepage model for 
performance assessment that is discussed in Section 2.3.3.2.3.4.1 calculates a lower seepage 
threshold and potentially more seepage than that inferred directly from liquid-release tests; this 
model is, therefore, a more conservative approach (BSC 2004b, Section 6.4.4).

2.3.3.2.3.7.6 Alternative Flow Focusing Model

The flow focusing factor generated by the flow focusing model (Section 2.3.3.2.3.5) was 
determined for a gridblock width of 0.25 m. An alternative flow focusing model was developed in 
which the resulting flow focusing is averaged over 5-m-long sections (which approximates the 
emplacement drift diameter) at the bottom boundary (BSC 2004a, Section 6.9.2). The resulting 
distribution of flow focusing factors for 15 simulations was analyzed using the approach described 
in Section 2.3.3.2.3.5. Other parameters are identical to the flow focusing model selected for use 
(BSC 2004a, Section 6.9.2). The results show that 5 m averaged flow focusing factors range from 
0.2 to 2.4 for the 15 simulations, indicating that it is less focused than the flow focusing obtained 
from a grid width of 0.25 m. Seepage calculations conducted in Abstraction of Drift Seepage (SNL 
2007a, Sections 6.8.1 and 6.8.2) demonstrate that the flow focusing model selected for use in TSPA 
provides a more conservative estimate of flow focusing parameters with respect to seepage (SNL 
2007a, Section 6.6.5.2.3).

2.3.3.2.3.8 Summary of Ambient Seepage Modeling

The modeling for determining seepage-relevant parameters and simulating seepage under ambient 
conditions is summarized as follows:

• The testing conducted within the drifts and niches (Section 2.3.3.2.2) provides the 
conceptual basis and sufficient data for the development, calibration, and validation of the 
ambient seepage models (BSC 2004b, Section 6.5).

• The estimation of effective seepage-relevant, model-related parameters on the scale of 
interest is an appropriate methodology, given that the framework of the seepage model for 
performance assessment is consistent with the seepage calibration model (BSC 2004b, 
Section 6.3; BSC 2004a, Section 6.3).

• The seepage model for performance assessment is used to calculate ambient seepage into 
intact and degraded emplacement drifts for combinations of the three key parameters 
(permeability, capillary strength, and local percolation flux), and for multiple realizations 
of the heterogeneous permeability field (BSC 2004a, Section 6.6). The seepage rates and 
their uncertainties resulting from these simulations are summarized in lookup tables that 
will be passed through the seepage abstraction for probabilistic sampling in the TSPA 
seepage calculations.
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• Spatial variability of seepage-relevant parameters is examined using the available data. 
This variability is reflected in the probability distributions of the key seepage-relevant 
parameters used in the TSPA (SNL 2007a, Section 6.6).

• Uncertainties in calibration data are appropriately propagated through the seepage 
calibration model (BSC 2004b, Section 8.2). Conceptual model uncertainty and 
uncertainty in spatial variability are reflected in the probability distributions of the key 
seepage-relevant parameters used in the TSPA (SNL 2007a, Section 6.6).

• Uncertainty in the calculated seepage rate as a result of uncertainty in the small-scale 
properties has been quantified and is propagated to the TSPA drift seepage submodel 
component (SNL 2007a, Sections 6.6 and 6.8).

2.3.3.2.4 Ambient Component of Drift Seepage Abstraction
[NUREG-1804, Section 2.2.1.3.3.3: AC 4(1) to (4), AC 5]

The purpose of the ambient component of the drift seepage abstraction is to provide the necessary 
methodology, tools, parameter distributions, lookup tables, and simplifications to the TSPA, so that 
the ambient seepage calculations can be performed by the TSPA drift seepage submodel. Ambient 
seepage describes the evolution of seepage over most of the time period important for the 
performance assessment, except for the early postclosure stages when thermal perturbation is strong 
(Section 2.3.3.3). To develop an appropriate abstraction model for the TSPA, the drift seepage 
abstraction described in Abstraction of Drift Seepage (SNL 2007a) has assembled relevant input 
from various sources, and then synthesized and simplified this input into a coherent framework. 
Ambient seepage is calculated in the TSPA using a probabilistic approach that provides 
repository-wide seepage rates and their distributions, while accounting for the spatial and temporal 
variability and inherent uncertainty of seepage-relevant properties and processes. Various factors 
are important for predicting ambient seepage. The methodology of incorporating each of these 
factors, as described below, is directly based on the data and process-model discussion provided in 
the previous sections. As a result, the abstraction results (and thus the results of the TSPA drift 
seepage submodel) are consistent with the respective process model results—or, they provide 
appropriate upper bounds where they differ (SNL 2007a, Section 7). Confidence in the ambient 
seepage abstraction is also provided by the seepage calculations for the ESF South Ramp seepage 
event (Section 2.3.3.4.3), as well as by natural analogues for seepage processes (Section 2.3.3.5).

According to the drift seepage abstraction, the ambient seepage results derived from the seepage 
model for performance assessment provide the basis for the quantitative evaluation of seepage as a 
function of three key hydrologic properties (Section 2.3.3.2.3.4). These results are passed to the 
TSPA in the form of seepage lookup tables, so that a large number of realizations can be examined 
in probabilistic calculations. The key hydrologic parameters entering the lookup tables are the 
capillary strength and permeability in the drift vicinity, as well as the local percolation flux. For a 
given set of these parameters, the seepage rate and related estimation uncertainty are determined by 
linear interpolation between lookup table values (see below). Of importance in this process are the 
probabilistic distributions of the key hydrologic parameters that feed into the lookup tables. 
Appropriate distributions for these parameters have been developed that account for relevant 
processes, and describe their temporal and spatial variability and uncertainty (Section 2.3.3.2.3.6). 
Transient effects on ambient seepage are incorporated by using different percolation flux 
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distributions for the future climate stages. Transient changes in the other hydrologic properties—for 
example, from mechanical and chemical effects in response to thermal perturbation or drift 
degradation—need not be considered in the seepage calculation (Sections 2.3.3.2.1.4 and 
2.3.3.3.3.4). The effects of rock bolts on the drift ceiling need not be explicitly addressed in the 
ambient seepage abstraction (Section 2.3.3.2.3.4.1). Ambient seepage, however, does depend on 
the considered scenario class. As mentioned before, different lookup tables have been developed to 
account for drift degradation in response to single or multiple seismic events. How the TSPA 
submodel chooses the appropriate seepage scenario for given degradation conditions is explained 
in Section 2.3.3.2.4.2. This section also describes the simple method for calculating seepage into 
magma-filled drifts after igneous intrusion (see below).

The general calculation procedure for ambient seepage as outlined above is the same for the 
pre-10,000-year period and the post-10,000-year period. Changes in the long-term climate are 
accounted for by using the appropriate percolation flux fields for the post-10,000-year climate 
(Section 2.3.3.2.3.5). The abstraction methodology also accounts for the fact that the probability of 
disruptive events occurring at Yucca Mountain increases with time, so that more and more drifts are 
expected to be severely degraded or fully collapsed (Section 2.3.3.4.2).

The most significant information passed from the drift seepage abstraction to the TSPA drift 
seepage submodel is discussed in more detail in the following sections.

2.3.3.2.4.1 Probability Distributions for Seepage-Relevant Parameters

The probability distributions for two of the three key parameters affecting seepage (i.e., capillary 
strength and permeability) are described in Section 2.3.3.2.3.6. For each location examined during 
each probabilistic TSPA realization, stochastic values for capillary strength and permeability are 
sampled from these distributions (SNL 2007a, Section 6.6). The capillary strength distributions are 
based on the values calibrated by the seepage calibration model, using seepage-rate data from 
liquid-release tests conducted in different locations along the ESF and ECRB Cross-Drift. The 
permeability distributions are mostly based on small-scale air permeability measurements 
conducted in boreholes drilled in close proximity above ESF niches. The effect of excavation on 
these properties is included in both parameter distributions. Probability distributions are provided 
separately for spatial variability and uncertainty, and, in case of fracture permeability, separately for 
the main repository units Tptpll and Tptpmn. As discussed in Abstraction of Drift Seepage (SNL
2007a, Section 6.6.4), the probability distributions for the Tptpll and Tptpmn can also be used for 
the Tptpul and Tptpln, where data from seepage experiments and small-scale air injection tests are 
not available.

As described in Section 2.3.3.2.3.5, the third key parameter affecting seepage—the local 
percolation flux arriving at repository drifts—is based on the large-scale percolation fluxes 
simulated by the site-scale unsaturated zone flow model (Section 2.3.2). These large-scale 
percolation fluxes are (1) spatially variable as a result of infiltration and rock properties variability; 
(2) time dependent due to changes in climate; and (3) have a probabilistic component due to the 
stochastic sampling from different infiltration scenarios (Section 2.3.3.2.3.6.3). To incorporate 
intermediate-scale heterogeneity, the large-scale percolation fluxes interpolated for a given 
repository location are multiplied by a stochastic sampled value taken from the distribution of flow 
focusing factors described in Section 2.3.3.2.3.5. While the large-scale distribution of percolation 
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fluxes is developed by the site-scale unsaturated zone flow model, the actual interpolated flux 
values at given repository locations are provided to the TSPA by the multiscale thermal-hydrologic 
model (SNL 2008b), to ensure consistency between seepage calculations and in-drift 
thermal-hydrologic calculations.

For each TSPA realization, the process described above provides a set of parameters for which 
seepage is evaluated. The respective probability distributions for capillary strength, permeability, 
percolation flux, and flow focusing factors are not correlated in the TSPA. These uncorrelated 
distributions mean that the stochastic variables used to sample from the respective distributions are 
generated independently (SNL 2007a, Sections 6.6 and 6.7).

2.3.3.2.4.2 Ambient Seepage for Different Scenario Classes

Conditions in the unsaturated zone and within the repository depend on location and may change 
with time. They are also impacted by the effects of disruptive events; specifically, seismic events 
(Section 2.3.4) and igneous intrusions (Section 2.3.11). As part of the drift seepage abstraction, a 
methodology was developed to represent emplacement drift seepage for disruptive event scenarios 
(SNL 2007a, Sections 6.5, 6.7, and 6.2[a]). There is no specific methodology for early failure events 
(early failure of drip shields or waste packages), because the seepage conditions are not affected by 
these changes in the EBS (SNL 2008a, Section 6.3.3.1.2).

2.3.3.2.4.2.1 Ambient Seepage for the Nominal Scenario

The drift seepage abstraction for the nominal scenario applies to all emplacement drift segments that 
are (1) below the boiling temperature of water (Section 2.3.3.3); (2) not affected by a seismic event; 
and (3) not affected by an igneous event. In this case, seepage rates and uncertainties are calculated 
from the seepage lookup table for intact drifts described in Section 2.3.3.2.3.4 (SNL 2007a, 
Section 6.4.2; BSC 2004a). To account for increased estimation uncertainty due to moderate drift 
shape changes—for example from isolated rockfall unrelated to seismic events—the calculated 
seepage rates for intact drifts are increased by 20% based on a probabilistic sensitivity calculation 
(SNL 2007a, Section 6.5.1.5).

2.3.3.2.4.2.2 Ambient Seepage for Seismic Scenarios

Emplacement drifts may partially or completely collapse as a result of seismic events 
(Section 2.3.4). The degree of drift degradation depends on the geologic unit and the rock 
properties, as well as on the magnitude and occurrence probability of seismic events.

Drifts in Nonlithophysal Rock—In nonlithophysal rock units, the damage to drifts from seismic 
events will be mostly limited to local gravitational drop of rock blocks (wedge type rockfall), even 
for large seismic events (Section 2.3.3.2.1.4). As long as the number of local breakouts from 
rockfall is small, such cases are handled in the same manner as discussed above for the nominal 
scenario, where the seepage rates obtained from the intact-drift lookup table are increased by 20%
to account for estimation uncertainty due to moderate drift shape changes (Section 2.3.3.2.3.4.2). 
If, on the other hand, seismic events cause significant degradation with local breakouts at several 
locations and multiple topographic lows at the roof, the predictions from the intact-drift lookup 
table cannot be used because the capillary barrier capability can be significantly diminished
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(Figure 2.3.3-28). In this case, the seepage rates are set equal to an upper-bound value given by the 
local percolation flux arriving at the drift (i.e., the seepage percentage is set to 100%). As 
explained in Section 2.3.3.2.4.1, the local percolation flux is based on the large-scale percolation 
fluxes simulated by the site-scale unsaturated zone flow model, multiplied by a stochastic sampled 
value taken from the distribution of flow focusing factors.

As described in Abstraction of Drift Seepage (SNL 2007a, Section 6.2.3[a]), the drift seepage 
conditions at any given time are categorized by assessing the rockfall volume that has accumulated 
in response to the multiple seismic events considered to occur up to this point in time. The rockfall 
volume, in turn, is linked to the magnitude of a seismic event by rocktype-specific regression 
functions given in Seismic Consequence Abstraction (SNL 2007e, Section 6.7.2.3), while the 
rockfall volume from multiple seismic events is calculated as the sum of the rockfall volumes from 
individual events. (This procedure is consistent with Section 2.3.4, where the cumulative rockfall 
volume is used to evaluate the potential mechanical damage to the drip shield or the waste package.) 
The rock-type specific regression functions describe the mean rockfall volume, as well as the 
possible variation of rockfall volumes caused by the spread between different drift degradation 
realizations. Based on the visual inspection of simulated drift shapes (BSC 2004e), a threshold 
rockfall volume of 0.5 m3 per meter drift length is defined for nonlithophysal rocks (SNL 2007a, 
Section 6.2.3[a]). If the cumulative volume in a given drift section at a given time is smaller than this 
threshold, seepage is handled in the TSPA in the same manner as discussed above for the nominal 
scenario. If this threshold is exceeded, seepage is set equal to the local percolation flux arriving at 
the drift.

Details on the procedure for determining the threshold rockfall volume of 0.5 m³/m drift length are 
given in Abstraction of Drift Seepage (SNL 2007a, Section 6.2.3[a]); a brief explanation is given 
below. Results from a three-dimensional discontinuum analysis of seismically-induced rockfall in 
25-m-long drift sections were used to plot footprints of the fallen rocks (BSC 2004e, Section 6.3). 
(See three-dimensional visualizations for selected cases in Drift Degradation Analysis (BSC 
2004e, Figures 6-89 and 6-90)). More than 60 geomechanical simulation cases (representing 
different seismic events and different rock strength categories) were evaluated, with focus on the 
abundance of topographic lows created by the fallen rock blocks. The different cases were 
grouped into four classes of rockfall severity, ranging from cases with isolated rockfall and no 
impact on seepage (Severity Class 1) to cases with numerous topographic lows and potentially 
strong impact on seepage (Severity Class 4). The severity classes were defined as follows:

• Class 1: Few dispersed small rock blocks have dislodged—Rockfall masses are so 
dispersed that no topographic lows form. The intact-drift seepage model results are 
applicable.

• Class 2: Few large or several small blocks have dislodged away from crown—Some 
localized concentration of rockfall exists. However, if some topographic lows form, these 
are mainly on the sides. Therefore, the intact-drift seepage model results can be used.
2.3.3-53



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
• Class 3: Few large or several small blocks have dislodged along the crown—Some 
topographic lows form near the crown of the drift. Therefore, the intact-drift seepage 
model results may not be applicable in parts of the drift.

• Class 4: Several large and many medium/small blocks have dislodged along the 
crown—Significant rockfall has occurred and numerous topographic lows exist in most 
parts of the crown. Therefore, the intact-drift seepage model results are not applicable for 
most parts of the drift.

Figure 2.3.3-29 shows examples of drift footprints representative of the four categories. As 
illustrated, the drift footprint in Class 4 (Figure 2.3.3-29 (4)) shows significant rockfall and 
numerous topographic lows in most parts of the drift crown; the predictions from the intact-drift 
lookup table are clearly not applicable here. In contrast, the impact of rockfall on seepage is minimal 
for Classes 1 and 2 (Figure 2.3.3-29 (1) and (2)) because there are only a few localized rockfall 
occurrences, and the intact-drift seepage model results can be applied. Cases with Severity Class 3 
show intermediate rockfall suggesting that the intact-drift model results may not be applicable in 
parts of the drift (Figure 2.3.3-29 (3)).

To allow determining severity of rockfall based on rockfall volume, a correlation between the 
severity class and the simulated volume of rockfall was developed using results from all 
geomechanical rockfall simulation cases (SNL 2007a, Section 6.2.3[a]). In Table 2.3.3-3, the mean, 
median, as well as the 5th and 95th percentiles of rockfall volumes (per unit drift length) are given 
for the four classes. The threshold value of 0.5 m3/m was chosen based on the rockfall statistics for 
Severity Class 4, using the lower bound (5th percentile) rockfall volume of all simulation cases in 
this class to determine whether the intact-drift seepage results can be used in a given case or not 
(SNL 2007a, Section 6.2.3.1[a]). This threshold value ensures that the more severe of the cases in 
Class 3 (i.e., those with rockfall volume slightly larger than the mean of this class) are considered 
to have too many topographic lows to allow the use of the intact-drift seepage model.

Drifts in Lithophysal Rock—In lithophysal rock units, seismic events with large PGVs will lead 
to complete collapse of emplacement drifts, with rubble rock material filling the enlarged opening. 
For other seismic events with smaller PGVs, the extent of drift damage in lithophysal rocks is 
expected to be less significant, ranging from partial drift collapse for low strength rock to minor 
damage for all other rock-strength categories. A series of smaller seismic events over time, on the 
other hand, may lead to complete collapse even if individual events are not strong enough to cause 
severe damage.

Two different drift seepage conditions are considered for drifts in lithophysal rocks. All cases with 
minor damage and moderate drift shape changes are handled in the same manner as discussed above 
for the nominal scenario (SNL 2007a, Section 6.5.1.5). The seepage rates obtained from the 
intact-drift lookup table are increased by 20% to account for estimation uncertainty due to moderate 
drift degradation. In all other cases, seepage is calculated using the lookup table for complete drift 
collapse, or using both look-up tables, as explained in more detail below. While seepage into 
collapsed drifts is expected to be higher than seepage into intact drifts, most of the percolation flux 
is diverted around the tunnel openings in both cases (Section 2.3.3.2.3.4.2).
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In a process similar to the nonlithophysal rocks, the drift seepage conditions at any given time are 
categorized by assessing the rockfall volume that has accumulated in response to a series of seismic 
events. As above, the rockfall volumes corresponding to a given seismic event, as well as their 
variability and uncertainty range, can be determined by rock-type specific regression functions 
(SNL 2007e, Section 6.7.1.2), and rockfall volumes from individual events can be added up to 
account for the seismic history. Threshold volumes are again defined based on the visual inspection 
of simulated drift shapes. Drifts are considered intact or moderately degraded in the seepage 
calculation if the cumulative volume is smaller than 5 m3 per meter drift length (i.e., in this case, 
seepage is handled in the TSPA in the same manner as discussed above for the nominal scenario)
(SNL 2007a, Section 6.2.2.1[a]). Drifts are considered fully collapsed if the cumulative rockfall 
volume is larger than 60 m3 per meter drift length (SNL 2007a, Section 6.2.2.1[a]). In intermediate 
cases with partial collapse, seepage is determined from a linear interpolation between the results 
obtained for the nominal scenario and those obtained for fully collapsed drifts, using the cumulative 
rockfall volume as the interpolation parameter (SNL 2007a, Section 6.2.2.1[a]). This interpolation 
procedure affects not only the seepage rates, but also the seepage fraction, because overall a 
different number of drift segments will arrive at seepage conditions.

Details on the procedure of determining the above threshold volumes and the interpolation approach 
are given in Abstraction of Drift Seepage (SNL 2007a, Section 6.2.2[a]); a brief explanation is given 
below. For three levels of horizontal PGVs, namely 0.4 m/s, 1.05 m/s, and 2.44 m/s, a total number 
of 15 different realizations (cases) were considered in the drift degradation simulations for 
lithophysal rock (SNL 2007e, Table 6-28). The 15 cases have the same horizontal PGV, but differ 
with respect to other seismic characteristics, such as the vertical PGV. A list of these ground motion 
characteristics is given in Tables X-1 through X-5 of Drift Degradation Analysis (BSC 2004e). The 
15 cases also use different rock mass categories to represent the variability of geotechnical rock 
mass quality throughout the repository, ranging from Category 1 (poor quality) to Category 5 (high 
quality) (SNL 2007e, Section 6.7.1.1). Results from the different drift degradation simulations are 
listed in Table 2.3.3-4, where the observed rockfall volume for each case is given per drift length, 
and in Figures 2.3.3-30 through 2.3.3-32, where the corresponding drift profiles are depicted. 
Overall, the rockfall volumes in lithophysal units (where partial or full collapse is quite common for 
large PGV levels and low-quality rock) are larger than in nonlithophysal units (with wedge-type 
rockfall rather than full collapse).

As discussed in SNL (2007a, Section 6.2.2[a]), visual inspection of the 15 profiles developed for the 
0.4-m/s PGV seismic event suggests that all drifts remain essentially intact and very similar to their 
original shape (Figure 2.3.3-30). These drift shapes can be represented in TSPA using the seepage 
lookup table for intact drifts. Rockfall volumes are typically a few cubic meters per meter drift 
length or less. The one exception is Case 11 (low-quality rock and relatively strong ground motion), 
where over 7 m3/m rockfall is predicted, generating a wider drift with an asymmetric roof. 
Furthermore, all profiles obtained for the severe 2.44-m/s PGV seismic event result in complete 
drift collapse, with large rubble-filled openings and circular to parabolic shape (Figure 2.3.3-32). 
These drift shapes need to be represented in TSPA using the seepage lookup table for collapsed 
drifts. Rockfall volumes range from about 60 m3/m to more than 110 m3/m.

At the intermediate 1.05-m/s PGV level, the degradation results show a range from minor collapse 
(no relevant changes in drift width and shape) to partial collapse (larger width and relevant drift 
shape changes) (Figure 2.3.3-31). From visual inspection, the intact-drift lookup table can be used 
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for the cases with minor collapse (such as Cases 1, 3, 5, 6, 8, 9, 12, 13). All other realizations, such 
as Cases 2, 4, 7, 10, 11, 14, and 15, are intermediate cases, for which seepage results would be larger 
than those calculated from the intact-drift lookup table, but smaller than those calculated from the 
collapsed drift lookup table. Since no seepage simulations are available for such moderately 
degraded drifts, these cases need to be categorized as either intact or fully collapsed, or an 
interpolation needs to be conducted between seepage results for intact and collapsed drifts. 
Categorization as intact would mean underestimating seepage, which is nonconservative with 
respect to dose. Categorization as fully collapsed would mean overestimating seepage, which is 
conservative with respect to dose, but not necessarily realistic. Therefore, linear interpolation 
between the seepage results for intact and collapsed drifts is the method used in the TSPA drift 
seepage submodel. 

Comparison of the drift shapes in Figures 2.3.3-30 through 2.3.3-32 with the rockfall volumes in 
Table 2.3.3-4 suggests a good correlation between the magnitude of rockfall and the drift 
degradation impact on seepage. It is thus reasonable to use the rockfall volume as the key parameter 
for the categorization of drifts and the selection of seepage lookup tables in TSPA. The above 
defined rockfall threshold volumes were determined based on this correlation. All rockfall volumes 
smaller than 5 m3/m correspond to minor degradation, in which case drifts can be considered intact 
for the seepage calculation. All rockfall volumes larger than 60 m3/m correspond to complete drift 
collapse, in which case drifts can be considered fully collapsed for the seepage calculation. All 
rockfall volumes between 5 and 60 m3/m correspond to intermediate cases with partial collapse, 
where seepage is to be determined from linear interpolation.

2.3.3.2.4.2.3 Seepage for an Intruded Drift (Igneous Scenario)

If a dike intersects an emplacement drift during an igneous event, magma will fill the drift and 
solidify as it cools (Section 2.3.11) (Table 2.3.3-1, FEP 1.2.04.03.0A, Igneous Intrusion into 
Repository). Once the interface at the drift wall drops below 100°C, liquid water will be able to enter 
the drift and travel through the cooled magma (Section 2.3.11.1). Given the uncertainties in 
modeling seepage under these conditions, the drift seepage abstraction conservatively sets the 
seepage flux for an intruded drift equal to the local percolation flux. This treatment assumes 
undisturbed flow fields in the vicinity and through the intruded drift after the drifts return to 
temperatures below the boiling point of water (i.e., no capillary barrier at the interface between the 
cooled magma and the surrounding tuff, and no difference in hydrologic properties)
(Section 2.3.11.1).

2.3.3.2.4.2.4 Seepage During Preclosure Period

Seepage in ventilated drifts in units below the PTn unit is not expected. As discussed in 
Section 2.3.3.2.2.3.2, the South Ramp seepage event is the first unambiguous evidence of seepage 
under ambient conditions (SNL 2007a, Section 7.1.1[a]). However, the location of this event is not 
overlain by bedded or nonwelded tuffs such as the PTn. No unambiguous evidence of dripping from 
natural percolation water has ever been observed in the ventilated sections of the ESF and the ECRB 
Cross-Drift below the PTn. Therefore, in the TSPA, seepage is not considered to occur during the 
preclosure period while forced ventilation is in operation in the emplacement drifts 
(Section 2.3.3.2.2.2.2).
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2.3.3.2.4.3 Ambient Seepage Lookup Tables

Lookup tables of ambient seepage rates are passed to the TSPA drift seepage submodel for both 
intact and fully collapsed drifts. These lookup tables are based on the systematic seepage 
simulations performed with the seepage model for performance assessment, which produces 
precalculated seepage rates and associated uncertainty for these two cases over a large parameter 
range (BSC 2004a, Sections 6.6.1 and 6.6.3). To ensure that the parameter range encompasses the 
parameter variation in the TSPA drift seepage submodel, the local percolation flux values have been 
increased further by calculations conducted in Abstraction of Drift Seepage (SNL 2007a, 
Section 6.1[a]). Both lookup tables provide values for mean seepage and the associated standard 
deviation on account of estimation uncertainty (Section 2.3.3.2.3.6.4). The seepage rate evaluated 
by the TSPA for a given scenario and parameter set is taken to be the mean seepage rate (interpolated 
from the respective lookup table), perturbed by a stochastic value that is sampled from the 
uncertainty distribution provided by the corresponding standard deviation (SNL 2007a, 
Section 6.5.1). As mentioned above, this final value is increased by 20% in all cases where the 
intact-drift lookup table is used.

2.3.3.3 Thermal Seepage
[NUREG-1804, Section 2.2.1.3.3.3: AC 1(1) to (5), (7) to (9), AC 2(1) to (3), AC 3(1) 
to (4), AC 4(1) to (4), AC 5; Section 2.2.1.3.6.3: AC 1(6)]

Thermal seepage refers to seepage into drifts during the time period when flow and transport 
processes in the near-field rock are perturbed by the heat emanating from the waste. Thermal 
seepage processes have been analyzed using the thermal-hydrologic seepage model (BSC 2005a). 
This model predicts the thermally-driven coupled processes in the drift vicinity—including 
moisture redistribution from boiling and condensation of pore water—and evaluates the combined 
effect of two different processes that can prevent seepage at elevated conditions: (1) flow diversion 
as a result of capillary forces, which is effective at all temperature ranges; and (2) flow diversion as 
a result of pore water vaporization, which is effective only if boiling temperatures prevail in the 
rock. As described below, the thermal-hydrologic seepage model is applied to selected simulation 
cases varying a range of parameters important for thermal seepage (e.g., thermal-operating mode, 
local percolation flux, and seepage-relevant rock properties). For implementation in the TSPA, the 
transient thermal seepage results (as obtained from the model) are then compared to ambient 
seepage simulations for the same set of conditions and properties, but without the heat input, with 
the goal of qualitatively describing the evolution of thermal seepage in comparison to the ambient 
seepage rates.

Section 2.3.3.3.1 (below) provides a conceptual description of the thermal-hydrologic processes 
governing flow and seepage after repository closure. This discussion builds on the understanding of 
ambient hydrologic processes in the fractured TSw units surrounding the emplacement drifts 
(Section 2.3.3.2), and describes the added thermal-hydrologic effects due to heat from radioactive 
decay. The data and data uncertainty section (Section 2.3.3.3.2) presents in situ thermal tests, 
especially the Drift Scale Test, used to obtain site-specific data and their associated uncertainties. 
The model and model uncertainty section discusses the thermal-hydrologic seepage model as well 
as results, uncertainties, and model support activities (Section 2.3.3.3.3). The thermal component of 
the drift seepage abstraction is presented in Section 2.3.3.3.4.
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2.3.3.3.1 Conceptual Description of Thermal-Hydrologic Processes
[NUREG-1804, Section 2.2.1.3.3.3: AC 1(1) to (5), (7) to (9)]

The heat generated by the decay of the radioactive waste results in rock temperatures elevated from 
ambient for a few thousand years after emplacement (Section 2.3.5). During the first few hundred 
years after closure, these temperatures will be high enough to cause boiling conditions in the drift 
vicinity, giving rise to local water redistribution and altered flow paths (BSC 2005a, Sections 6.1 
and 6.2). Thermal expansion of the rock matrix induces thermal stresses and associated changes in 
flow properties near emplacement drifts (thermal-hydrologic-mechanical effects) (BSC 2004g, 
Sections 6.1 and 6.2). Thermally driven effects also cause dissolution and precipitation of minerals, 
which may affect flow properties (thermal-hydrologic-chemical effects) (SNL 2007f).
Thermal-hydrologic-mechanical and thermal-hydrologic-chemical processes and their effects on 
seepage are discussed in Section 2.3.3.3.3.4 (Excluded FEPs 2.1.09.12.0A, Rind (chemically 
altered zone) forms in the near field; 2.2.01.02.0A, Thermally-induced stress changes in the near 
field; and 2.2.10.04.0A, Thermo-mechanical stresses alter characteristics of fractures near 
repository, in Section 2.2, Table 2.2-5).

The major thermal-hydrologic processes occurring around an emplacement drift are shown in 
Figure 2.3.3-33 for an idealized, circular drift. As shown in this figure, heating of the rock causes 
pore water in the rock matrix to boil and vaporize. The vapor moves away from the boiling location 
through the permeable fracture network, driven primarily by the pressure increase caused by 
boiling. Vapor will either flow into the open drifts or will flow away from the drifts, and further into 
the near-field rock. Vapor that remains in the near-field rock will condense in the rock fractures once 
it reaches cooler regions away from the drift. The condensate can then drain either toward the heat 
source (from above) or away from the drift into the zone below the heat source. Condensed water 
can also imbibe from fractures into the matrix, leading to increased liquid saturation in the rock 
matrix. A dryout zone develops around the drift, separated from the zone of condensation by a 
nearly isothermal zone maintained nominally at the boiling temperature of water (Table 2.3.3-1, 
FEPs 2.2.07.10.0A, Condensation zone forms around drifts; and 2.2.10.12.0A, Geosphere dryout 
due to waste heat). This nearly isothermal zone is characterized by a collection of the following 
processes that are referred to as a heat pipe signature: continuous boiling, vapor transport, 
condensation, and migration of water back toward the heat source resulting from capillary forces or 
gravity drainage (BSC 2005a, Sections 6.1 and 6.2; Pruess et al. 1990) (Table 2.3.3-1, FEP 
2.2.10.10.0A, Two-phase buoyant flow/heat pipes). At later stages, with the heat output of the waste 
continuously decreasing, rock temperatures drop below boiling, the dryout zone resaturates, and the 
conditions in the drift vicinity slowly return to a long-term ambient status (Table 2.3.3-1, FEPs 
2.1.08.11.0A, Repository resaturation due to waste cooling; and 2.2.07.11.0A, Resaturation of 
geosphere dryout zone).

The heating of near-field rock to the boiling temperature of water and the resulting flow perturbation 
affects the potential for seepage. Condensed water forms a zone of sightly elevated water saturation 
in the fractures above the dryout zone. Water from this zone may be mobilized to flow rapidly down 
towards the drift. However, seepage would only be possible if both the vaporization barrier in the 
boiling zone and the capillary barrier at the drift ceiling would be breached. Results from the 
thermal-hydrologic seepage model demonstrate that this scenario is not expected 
(Section 2.3.3.3.3.1).
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As mentioned above, part of the vapor produced from boiling of pore water will flow into the open 
drifts, where it is subject to natural-convection transport along the drift axis and possible 
condensation on drift walls. These processes are included in the TSPA drift-wall condensation 
submodel that is described in Section 2.3.5.4.2, and are based on the prediction of condensation 
rates provided by the In-Drift Natural Convection and Condensation model (SNL 2007g).

Emplacement drifts may collapse as a result of low-probability seismic events (Section 2.3.4). The 
thermal conditions in a collapsed emplacement drift are different from those in an intact 
emplacement drift, because the properties of the rubble are different from those of the intact host 
rock in an open, air-filled drift. The extent to which these differences impact seepage under 
thermally elevated conditions is governed by the time at which significant drift collapse occurs. The 
abstraction of seepage for drift collapse cases during the thermal period of repository performance 
is described in Section 2.3.3.3.4, based on thermal-hydrologic modeling of rubble-filled collapsed 
drifts (SNL 2007a, Sections 6.4.3.4 and 6.5.3).

The impact of repository heat on the hydrologic, chemical, and mechanical conditions was 
examined using heater experiments, which included the Large Block Test, the Single Heater Test, 
and the Drift Scale Test. A short description of these tests is presented in Section 2.3.3.3.2.

2.3.3.3.2 Data and Data Uncertainty
[NUREG-1804, Section 2.2.1.3.3.3: AC 2(1) to (3), AC 3(1) to (4)]

This section describes the data from field tests and laboratory experiments that support the 
development of process models for thermal seepage and other coupled processes. Uncertainties in 
these data are also discussed. A primary data source for providing relevant rock properties, as well 
as measured data on the thermal-hydrologic response of the rock, are the three in situ field thermal 
tests that have been conducted at Yucca Mountain: the Large Block Test, the Single Heater Test, and 
the Drift Scale Test. The Large Block Test was conducted in a block of fractured rock excavated 
from an outcrop of the Tptpmn unit at the ground surface just southeast of Yucca Mountain. Both 
the Single Heater Test and the Drift Scale Test were performed underground within the Tptpmn 
subunit at the repository level (SNL 2007d, Section 6). While the Single Heater Test incorporated 
relatively small heated rock volume, with a 5-m long heater placed into a horizontal borehole in a 
side alcove of the ESF, the Drift Scale Test was much larger in size, with an approximately 50-m 
long drift segment heated by 9 floor-canister heaters as well as 50 borehole heaters. Of the three 
heater tests, the Drift Scale Test is the best suited for model validation against measured data, 
because of the wealth of measured data available from this test, and because its geometric setup and 
scale are most similar to the design of the emplacement drifts. The Drift Scale Test is therefore the 
main test used for model support, as discussed below. In addition to the thermal tests, which 
provided data only on the Tptpmn unit, thermal rock properties have been measured in the 
laboratory using cores taken from surface-based boreholes.

The Large Block Test and the Single Heater Test were used to evaluate thermal-hydrologic 
modeling concepts and to plan the more detailed and long-duration Drift Scale Test. For example, 
the measured response of the Large Block Test to a transient water influx event—caused by strong 
rainfall onto the outcrop—was compared against the simulated response (Mukhopadhyay and 
Tsang 2002) using a process model similar to the thermal-hydrologic seepage model, thereby 
providing confidence that processes controlling thermal-hydrologic seepage are adequately 
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accounted for in the thermal-hydrologic seepage model (Mukhopadhyay and Tsang 2002; SNL 
2007d, Section 6.1). Comparison of measured data and model results for the Single Heater Test also 
showed good agreement (Tsang and Birkholzer 1999).

The Drift Scale Test provides the bulk of the data used to evaluate the evolution of temperature, 
liquid saturation, and the thermally induced liquid refluxing, all of which potentially affect seepage 
into drifts. Although surface and underground thermal tests were all conducted in the Tptpmn unit, 
experience in coupled processes testing and modeling of subsurface systems shows that the results 
provide the basis for coupled processes modeling of other repository horizon units, provided that 
appropriate thermal properties are assigned to each unit (BSC 2005a, Section 7.1.3).

The purpose of the Drift Scale Test was to evaluate the coupled thermal, hydrologic, chemical, and 
mechanical processes that result from heating within emplacement drifts at an intermediate scale. 
The Drift Scale Test was conducted in Alcove 5, which is approximately 50 m in length and 5 m in 
diameter. Alcove 5 was excavated off the main ESF drift (Figure 2.3.3-34) within the Tptpmn unit 
(SNL 2007d, Section 6.3; BSC 2005a, Section 7.2). Nine electrical floor-canister heaters were 
placed in this drift section to simulate radioactive-waste-bearing containers. Electrical heaters were 
also placed in a series of horizontal boreholes (wing heaters) that were drilled perpendicularly 
outward from the central axis to both sides of the drift. These heaters were emplaced to simulate the 
effect of adjacent emplacement drifts. The Drift Scale Test heaters were activated on December 3, 
1997. The temperature was continuously monitored during the heating, and neutron logs, electrical 
resistivity tomography, and cross-hole ground-penetrating radar tomography were performed to 
track changes in matrix liquid saturation. Several air injection tests were conducted in hydrology 
boreholes to track changes in fracture permeability and fracture liquid saturation (SNL 2007d, 
Section 6.3.2.4; BSC 2005a, Section 7.2.2). Monitoring and testing were also conducted to support 
investigation of thermal-hydrologic-chemical and thermal-hydrologic-mechanical processes 
(Section 2.3.5). After just over 4 years, on January 14, 2002, the heaters were switched off, and, 
since that time, the test area has been slowly cooling. Figure 2.3.3-34 shows a schematic view of the 
test layout with the main heater tunnel, the wing heaters, and the array of observation boreholes 
monitoring temperature, as well as chemical, mechanical, and hydrologic variables. Data on the 
evolution of temperature, liquid saturation, and permeability (SNL 2007d, Sections 6.3.1 and 6.3.2; 
CRWMS M&O 1998) are used to support the development of the thermal-hydrologic seepage 
model, as discussed in Section 2.3.3.3.3.2.

The impact of uncertainty and variability in these data, from both in situ tests as well as from core 
measurements, has been evaluated by conducting comprehensive sensitivity analyses with the 
thermal-hydrologic seepage model (BSC 2005a, Section 8). Uncertain and spatially variable model 
input parameters are the rock properties and the model boundary conditions, which have been varied 
in wide ranges to represent the potential parameter variation in the field. Sensitivity to all parameters 
relevant for thermal seepage was explicitly studied by (1) modeling two host rock units with 
different thermal and hydrologic properties (Tptpmn and Tptpll); (2) varying the fracture capillary 
strength parameter; (3) analyzing percolation scenarios with different flux multiplication factors; 
(4) changing host rock thermal conductivities and fracture permeabilities; and (5) simulating 
several different thermal loads. In all these cases, covering a wide range of property values and 
conditions, the main conclusions regarding thermal seepage were similar—in that no seepage (flow 
of liquid water into drifts) is predicted to occur during the period when temperatures in the rock are 
above the boiling temperature of water—and that thermal seepage is always less in magnitude 
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compared to the respective long-term ambient values (Section 2.3.3.3.3). As explained below, the 
thermal component of the drift seepage abstraction is a qualitative element that uses these main 
conclusions about the magnitude and evolution of thermal seepage. Since these conclusions are 
valid over the required range of conditions and parameter values used in the TSPA, uncertainty and 
variability in these data are intrinsically accounted for.

2.3.3.3.3 Model and Model Uncertainty
[NUREG-1804, Section 2.2.1.3.3.3: AC 3(1) to (4), AC 4(1) to (4), AC 5; 
Section 2.2.1.3.6.3: AC 1(6)]

The main process model for predicting the effect of heat on seepage is the thermal-hydrologic 
seepage model that is explained below (BSC 2005a). While incorporating some specific data and 
methods adopted from the modeling framework that was developed for ambient seepage, this model 
uses a conceptual approach for thermal-hydrologic processes that is consistent with the drift-scale 
models that describe coupled thermal-hydrologic-chemical (SNL 2007f; SNL 2007h) and 
thermal-hydrologic-mechanical (BSC 2004g) processes (Section 2.3.3.3.3). The basic model 
approach is also consistent with the multiscale thermal-hydrologic model (SNL 2008b), which 
describes mountain-scale and drift-scale temperature effects on in-drift thermal-hydrologic 
conditions for use in the TSPA. This latter model is discussed in Section 2.3.5. In contrast to the 
thermal-hydrologic seepage model, the multiscale thermal-hydrologic model was not specifically 
designed to capture seepage processes; therefore, the modeling framework developed for ambient 
seepage was not explicitly incorporated into the multiscale thermal-hydrologic model (which would 
require, for example, representing the small-scale heterogeneity in fracture permeability or using 
the calibrated effective fracture capillary-strength parameters).

2.3.3.3.3.1 Thermal-Hydrologic Seepage Model

The thermal-hydrologic seepage model evaluates coupled thermal-hydrologic processes and their 
impact on seepage (BSC 2005a, Section 6.2). This drift-scale model combines the two processes 
that prevent seepage into drifts at elevated temperatures: (1) capillary diversion, which is effective 
over the entire temperature range expected at Yucca Mountain; and (2) vaporization due to heat, 
which is effective while temperature is elevated above the boiling point of water. Besides 
incorporating the conceptual framework for ambient seepage, the thermal-hydrologic seepage 
model accounts for mass and energy transport processes, including the movement of both gaseous 
and liquid phases, transport of latent and sensible heat, phase transition between liquid and vapor, 
and vapor pressure lowering. The fractured rock is treated as a dual-permeability domain, 
accounting for the fractures and the rock matrix as two separate, overlapping continua. Similar to 
the ambient seepage models, a stochastic continuum model is implemented for fractures near the 
drift to consider the small-scale variability of permeability that accounts for flow channeling. The 
capillary strength parameter close to the drift wall was derived from the seepage calibration model 
by calibrating against ambient seepage rate data (Section 2.3.3.2.3.3) (BSC 2004b, Section 6.6.3; 
BSC 2005a, Section 6.2.1).

A key question relating to thermal seepage during the period above boiling temperature of water is 
whether water percolating down the fractures will boil off in the rock region above the drifts, or may 
penetrate all the way to the drift walls and, possibly, seep into the open cavities. Prediction of this 
behavior requires an understanding of small-scale flow channeling, because rapid preferential flow 
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is more likely to penetrate into the superheated rock zone. In addition to explicitly representing the 
small-scale heterogeneity in fracture permeability, the active fracture concept (BSC 2004c, 
Section 6.3.7) is applied in the thermal seepage predictions to account for the fact that unsaturated 
flow is restricted to a limited number of (active) fractures, and that flow within a fracture is likely 
to occur in individual fingers rather than in the entire fracture plane. A comparison study indicated 
that the thermal seepage rates simulated using the active fracture concept were slightly higher than 
those obtained with a standard dual permeability model (BSC 2005a, Sections 6.2.2.2 and 6.2.4.2). 
Another specific model choice was made with respect to the heat that can be conducted between the 
matrix rock and the fractures. When flow in the fractures occurs in individual fingers, the interface 
area available for heat flow from the matrix to the liquid water is much less than the full geometric 
contact area between fractures and matrix (Birkholzer and Zhang 2006). This effect is accounted for 
in the thermal-hydrologic seepage model by a significant reduction in the effectiveness of heat 
transfer from the matrix to the liquid flow in the fractures (BSC 2005a, Section 6.2.1.1.2).

Thermal seepage simulations were conducted for the two main repository host units (Tptpmn and 
Tptpll), and for a wide range of conditions and rock properties covering the expected variability and 
uncertainty in seepage-relevant factors. For example, four different thermal loads were analyzed to 
account for temperature variability arising from heat-output variation among waste packages, 
emplacement-time differences among repository sections, three-dimensional edge effects, and 
variation in thermal properties (SNL 2008b). The maximum rock temperatures in these cases 
ranged from as high as 150°C to a case that remains below boiling conditions at all times. Other 
factors in sensitivity studies were permeability, capillary strength, thermal conductivity, conceptual 
models for fracture–matrix interaction, and the local percolation flux arriving at emplacement 
drifts.

As explained in Section 2.3.3.2.3.5, the local percolation fluxes can vary considerably in space and 
will be affected by future climate changes. The thermal-hydrologic seepage model accounts for this 
spatial and temporal variation with appropriate flux boundary conditions at the top of the model 
domain. Consistent with the future climate analyses for the Yucca Mountain (Section 2.3.1), the 
model considers three long-term climate states during the period of thermal perturbation: the 
present-day climate, the monsoon climate, and the glacial transition climate. One flux scenario was 
simulated using percolation fluxes of 6, 16, and 25 mm/yr, respectively, for these three periods
(BSC 2005a, Section 6.2.1), which is about twice as high as the average fluxes given for the most 
likely infiltration scenario (Section 2.3.2.4.1.2.4.2). Additional flux scenarios have been studied to 
cover the possible upper range of local percolation fluxes within the repository units. These 
scenarios were defined by multiplying the boundary fluxes of the first case, using constant flow 
focusing factors of 5, 10, or 20. These large factors were chosen because the relevant cases for 
ambient and thermal seepage to occur are cases where the percolation flux is comparably high.

The transient simulations with the thermal-hydrologic seepage model were conducted in a 
two-dimensional cross section extending from the ground surface to the water table 
(Figure 2.3.3-35). Because of the two-dimensionality, the emplacement drift in the center of the 
domain needed to be treated as a closed system without axial flow and transport components. The 
model therefore does not address the effect of natural-convection vapor transport along the drift. It 
was shown in related studies (Section 2.3.5.4.2; SNL 2008b, Section 7.5; Birkholzer et al. 2006) 
that natural convection causes the transport of vapor-rich gases from the heated emplacement 
sections towards the cooler drift end sections, where the vapor condenses and drains off into 
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underlying rock formations. As a result, a considerable fraction of the moisture in the formation is 
effectively removed from the heated rock mass through evaporation into and transport along the 
open drifts. The two-dimensional thermal seepage model, in contrast, predicts that the majority of 
the vapor produced from boiling/evaporation of formation water remains in the fractured rock, 
which is a conservative treatment with respect to thermal seepage (Birkholzer et al. 2006).

The thermal-hydrologic seepage model simulates the flow and transport processes near the drift 
during repository heating and cooling, and explicitly calculates transient seepage rates into the drift 
under elevated temperature conditions for a simulation period of 4,000 years after waste 
emplacement. This is the period when the main flow perturbations are expected as a result of 
repository heat (SNL 2007a, Section 6.4.3.3). After this period, thermal-hydrologic effects on 
calculated seepage are small and can be approximated by ambient seepage models (SNL 2007a, 
Section 6.5.2). The simulation results from the thermal-hydrologic seepage model that are relevant 
to drift seepage abstraction are discussed below.

Thermal-hydrologic conditions are strongly driven by the thermal load placed into the emplacement 
drifts, and by the local percolation flux. For the case with an average thermal load (representative 
of a drift in the center of the repository), the heat generated from the waste packages results in 
maximum rock temperatures at the emplacement drift wall between 120°C and 140°C, depending 
on the hydrogeologic unit and the amount of percolation considered. In this case, the period during 
which rock temperature is above the boiling point of water is about 1,000 years for the base-case 
flux scenario. The rock temperature at the end of the 4,000 year thermal period decreased to about 
65°C. Greater percolation flux leads to cooler temperatures and a shorter boiling period with 
stronger heat pipe processes (liquid–vapor counterflow in the boiling-temperature zone). These 
calculated results from the thermal-hydrologic seepage model are consistent with the 
thermal-hydrologic results obtained with the two-dimensional thermal-hydrologic submodels used 
in the multiscale thermal-hydrologic model that is described in Section 2.3.5 (SNL 2008b, 
Sections 6.2.2, 6.2.3, and 6.2.4; SNL 2007a, Section 6.4.3).

Seepage under thermal conditions is possible only when two conditions are met simultaneously: 
(1) water arrives at the drift wall; and (2) the water potential at the drift wall exceeds a given 
threshold value that depends on capillary forces. The modeling results consistently demonstrate that 
the thermal perturbation of the flow field, causing increased downward flux from the condensation 
zone toward the drifts, is strongest during the first few hundred years after closure, corresponding 
to the time period when rock temperature is highest and the vaporization is most effective in limiting 
seepage. Even for high percolation fluxes into the model domain and strong flow channeling as a 
result of fracture heterogeneity, water cannot penetrate far into the superheated rock during the time 
that rock temperature is above the boiling point of water. Seepage will not occur when the drift 
crown temperature exceeds the boiling point of water. Much of the mobilized water is diverted 
around the dryout zone and drains away from the drift, as shown in Figure 2.3.3-36a. At the time 
when temperature has returned to below-boiling conditions (Figure 2.3.3-36b), fractures start to 
rewet at the drift wall. However, while the vaporization has become less effective, capillary 
diversion continues to form a barrier against water seepage into the drift (BSC 2005a, 
Sections 6.2.2, 6.2.3, and 6.2.4; SNL 2007a, Section 6.4.3).

Transient seepage rates were explicitly calculated by the thermal-hydrologic seepage model to 
directly quantify the potential for seepage during the thermally perturbed time period. These 
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transient seepage rates were compared with seepage results from ambient (steady-state) 
simulations. In other words, seepage results considering the combined effectiveness of the 
vaporization and the capillary barrier were compared with seepage results considering only the 
capillary barrier contribution. Results illustrating the evolution of thermal seepage for one 
realization and a flow focusing factor of 10 are given in Figure 2.3.3-37. To illustrate the transient 
seepage behavior, a simulation case with a large percolation flux is selected so that seepage is 
observed (BSC 2005a, Section 6.2.2.2). The results show that capillary diversion alone effectively 
prevents seepage (even without including the effects of heat) during the first 600 years after waste 
emplacement, as both ambient and thermal seepage are zero during this period. Since a large 
superheated zone has developed, two processes prevent seepage simultaneously and independently. 
These two processes are the vaporization of pore water and the flow diversion due to capillary 
forces. Later, as rock temperature decreases and the model boundary conditions change to 
monsoonal climate with higher infiltration and, correspondingly, higher percolation (at 600 years), 
the saturation in the rock surrounding the drift starts to increase. Seepage begins to occur a few 
hundred years after the rock temperatures have dropped below boiling conditions, with the delay 
caused by the relatively slow rewetting of the fractures. Initially, thermal seepage is considerably 
smaller than the respective ambient seepage value. With the assumed stepwise increase in 
infiltration at 2,000 years from emplacement (at the change to a glacial-transition climate) and the 
corresponding stepwise increase in percolation, the thermal seepage percentage increases, but still 
remains smaller than ambient seepage. At the end of the 4,000-year thermal period, the seepage 
percentage for thermal seepage is at about 17%, which is only slightly smaller than the long-term 
ambient value of 19.5% for a 250 mm/yr percolation flux (SNL 2007a, Sections 6.4.3 and 6.5.2).

As mentioned above, a wide range of conditions were studied in a sensitivity analysis, consistent 
with the potential variability in thermal output of different waste packages, spatial variability in 
percolation flux, and heterogeneous variability in hydrologic properties. Even over this wide 
range, there are several important observations with respect to thermal seepage that are common 
to all cases (BSC 2005a, Sections 6.2.4 and 8.1; SNL 2007a, Sections 6.4.3 and 6.5.2):

• Seepage during the 4,000-year thermal period is never observed in simulation runs for 
which the respective ambient seepage is zero.

• Seepage never occurs when the near-field rock temperature is above the boiling point of 
water.

• In simulation cases for which seepage occurs after the near-field rock temperature 
decreases to below the boiling point of water, seepage is initiated at several hundred to a 
few thousand years after rock temperature returns to below the boiling point of water.

• Thermal seepage rates are always smaller than the respective ambient seepage values. 
Thus, the ambient seepage values provide an asymptotic upper limit for thermal seepage.

These main qualitative conclusions form the basis for the thermal component of the drift seepage 
abstraction, as explained in Section 2.3.3.3.4.
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2.3.3.3.3.2 Thermal-Hydrologic Seepage Model Support

The thermal-hydrologic seepage model is supported by comparison with related models of in situ 
heater tests conducted at Yucca Mountain, with particular focus on the Drift Scale Test (BSC 2005a, 
Section 7). The Drift Scale Test is simulated with a version of the thermal-hydrologic seepage model 
called the Drift Scale Test thermal-hydrologic model. The thermal-hydrologic seepage model and 
the Drift Scale Test thermal-hydrologic model use the same conceptual model (and similar 
thermal-hydrologic properties) to simulate the same thermal-hydrologic processes (BSC 2005a, 
Sections 7.1.3 and 7.4). To accommodate the test design of the Drift Scale Test, there are of course 
differences between the two models regarding the model geometry and thermal load. The Drift 
Scale Test thermal-hydrologic model is a three-dimensional model, which allows for some heat and 
mass loss through the leaky bulkhead.

Comparison of measured and simulated data in the Drift Scale Test is primarily based on 
temperature, which can be measured accurately in the field. Measurements from approximately 
1,750 thermal sensors in the test were compared to model results as functions of time and space. 
Because of the vast amount of measured data available, the comparison is illustrated using 
temperature profiles and temperature history plots for a few representative examples. Additionally, 
statistical analysis of the comparison was used to evaluate quantitatively the closeness of the model 
results to the measurements. Good agreement is achieved, both qualitatively and quantitatively 
(BSC 2005a, Section 7.4, Table 7.4.3.1-1). Figures 2.3.3-38 and 2.3.3-39 show comparisons 
between measured and simulated temperatures as functions of space and time. The mean difference 
between measured temperature at the approximately 1,750 sensors and simulated temperatures did 
not exceed 5°C, or 2% of the maximum change in rock temperature at any time (BSC 2005a, 
Section 7.4.3.1.3, Table 7.4.3.1-1). The model results also showed good agreement between 
measured and predicted locations and durations of the two-phase heat-pipe conditions. This 
agreement provides confidence that the Drift Scale Test thermal-hydrologic model (and, hence, the 
thermal-hydrologic seepage model) incorporates the relevant thermal-hydrologic processes (BSC 
2005a, Section 7.5).

In addition to temperature analyses, thermal-hydrologic processes are also evaluated by tracking the 
time-varying locations of the drying and condensation front in response to heating. In the Drift Scale 
Test, this tracking was done using geophysical methods to determine saturation changes in the 
matrix and air injection tests to determine saturation changes in the fractures (BSC 2005a, 
Sections 7.4.3.2 and 7.4.3.3). These methods are semi-quantitative but produce images that can be 
compared with model results. Figure 2.3.3-40 provides an example of the agreement between 
simulated and measured contours of matrix saturation. The latter is based on ground penetrating 
radar measurements. The comparison indicates that the model captures the changes in drying and 
condensation reasonably well. Simulated fracture saturations and air-permeability changes 
calculated from these saturation changes were compared with measured air-permeability data 
obtained at different times throughout the heating phase of the test. This comparison showed that the 
main trends of air-permeability changes were captured by the results of the Drift Scale Test 
thermal-hydrologic model (BSC 2005a, Section 7.4.3.3). To provide additional confidence, the 
simulated fracture-saturation results were also compared to the location and timing of water 
collection from several packed-off borehole intervals (BSC 2005a, Section 7.4.3.3). The location 
and timing of water collection events correspond with the predicted evolution of high saturation 
conditions from the Drift Scale Test thermal-hydrologic model. In summary, the described model–
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data comparisons provide confidence that the Drift Scale Test thermal-hydrologic model accurately 
represents the relevant TH processes at the drift scale (BSC 2005a, Section 7.5).

While the Drift Scale Test results—as well as results from the other in situ heater tests at Yucca 
Mountain—provide valuable data on the strongly perturbed near field thermal-hydrologic 
conditions in the rock mass, there have been no seepage observations during the test and thus no 
measured seepage data are available that can be used for direct comparison with the model. The 
vaporization barrier generated by the heater output appeared to be totally effective in the Drift Scale 
Test, because of the intense thermal load and the rather small local percolation flux. To gain 
additional confidence, a simulation model similar to the thermal-hydrologic seepage model was 
applied to a laboratory heater test conducted by the Center for Nuclear Waste Regulatory Analyses 
at the Southwest Research Institute in San Antonio (hereafter referred to as the Centers experiment) 
(Figure 2.3.3-41). In contrast to the in situ heater tests at Yucca Mountain, where natural percolation 
is relatively small, the Centers experiment was operated using artificial water release from the top 
of the experimental apparatus, thereby testing the thermal seepage potential for extreme flow 
conditions. Test results indicated that water rapidly flowing in vertical fractures was able to 
penetrate the above-boiling rock region and seep into a horizontal cylindrical opening (Green and 
Prikryl 1998; Green and Prikryl 1999; Green et al. 2003). In other words, thermal seepage was 
shown to be possible despite above-boiling temperatures in the rock matrix.

Application of the thermal-hydrologic seepage model to the Centers experiment is described in 
Birkholzer and Zhang (2006). It is demonstrated there that the numerical simulations can reproduce 
the experimental observation of thermal seepage, provided that the model accounts for channelized 
flow in fractures and a related reduction in the fracture-matrix heat transfer. This result provides 
confidence that the conceptual model, as discussed in Section 2.3.3.3.3.1, and which features a 
significant reduction in the heat transfer from the matrix to the liquid flow in the fractures, is 
adequate. Birkholzer and Zhang (2006) also concluded that the Centers experiment was operated at 
conditions that are very favorable for thermal seepage, and that these conditions are not 
representative of those expected at Yucca Mountain.

The thermal-hydrologic seepage model calculations are also supported by comparison with an 
alternative conceptual model of water flow in the superheated rock environment. In this alternative 
model, the thermally perturbed downward flux from the condensation zone toward the superheated 
rock zone was conceptualized to form episodic preferential-flow events (finger flow) (BSC 2005a, 
Section 6.3 and Figure 6.3-1a). The effectiveness of vaporization was then tested for conditions 
where downward flux in small fingers is fast and large in magnitude compared to average flow. A
semianalytical solution (Birkholzer 2003) was used to simulate this process of episodic finger flow 
in a superheated fracture. Using the analytical solution, the maximum penetration distance into the 
superheated rock was determined for specific episodic flow events and thermal conditions, and the 
amount of water arriving at the drift crown was calculated. It was shown that finger flow is not likely 
to penetrate through the superheated rock during the first several hundred years of heating, when 
rock temperature is high and boiling conditions exist in a sufficiently large region above the drifts. 
Only later, when the boiling zone is small and the impact of vaporization is limited, can channelized 
water arrive at the drift crown (where the water potential does not exceed the threshold for seepage 
because capillary diversion is effective). The results of the alternative conceptual model show that 
refluxing of condensate water above the drifts does not result in seepage when the drift crown is 
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above 100°C, because of the combined effects of vaporization and capillary diversion (BSC 2005a, 
Section 6.3.4).

2.3.3.3.3.3 Model Uncertainty

The main sources of model uncertainty, with respect to the thermal-hydrologic seepage model, are 
uncertainty in model input parameters and uncertainty in the conceptual model. As discussed above, 
uncertainty with respect to the conceptual model has been addressed by comparison of in situ and 
laboratory heater tests, as well as by comparison with an alternative conceptual model. These 
activities build confidence in the validity of the conceptual model for thermal seepage. The rock 
properties and the model boundary conditions are uncertain, and spatially variable, model input 
parameters. Sensitivity to parameters relevant for thermal seepage was explicitly studied, using the 
thermal-hydrologic seepage model, by (1) assessing seepage in two host rock units with different 
thermal and hydrologic properties; (2) varying the seepage relevant fracture capillary strength 
parameter; (3) analyzing infiltration scenarios with different flux multiplication factors; 
(4) changing host rock thermal conductivities and fracture permeabilities; and (5) simulating 
several different thermal loads (Section 2.3.3.3.3.1). In all these cases, which cover a wide range of 
property values and conditions, the main conclusions regarding thermal seepage were similar—in 
that no seepage (flow of liquid water into drifts) is predicted to occur during the period of 
above-boiling temperatures in the rock—and that thermal seepage is always less in magnitude 
compared to the respective long-term ambient values. This confirms that these main conclusions 
hold for all relevant repository conditions considered in TSPA.

2.3.3.3.3.4 Coupled Mechanical and Chemical Processes and Impact on Seepage

Rock properties relevant for seepage are affected by thermal-hydrologic-mechanical and 
thermal-hydrologic-chemical effects. Thermally-induced stresses change fracture apertures, 
leading to permeability and porosity changes, which are combined with changes in fracture 
capillary strength. Thermal-hydrologic-chemical processes, such as mineral precipitation and 
dissolution in fractures and matrix, also have the potential for modifying the permeability, porosity, 
and capillary strength of the system. Drift-scale models with conceptual approaches similar to the 
thermal-hydrologic seepage model have been utilized to evaluate the impact of such processes and 
property changes on seepage. These models are the thermal-hydrologic-mechanical seepage model 
(BSC 2004g), and the thermal-hydrologic-chemical seepage model (SNL 2007f). On the basis of 
these modeling studies, changes in drift-scale hydrologic properties induced by thermal effects are 
concluded to have no significant impact on seepage (Excluded FEPs 2.1.09.12.0A, Rind 
(chemically altered zone) forms in the near field; 2.2.01.02.0A, Thermally-induced stress changes 
in the near field; and 2.2.10.04.0A, Thermo-mechanical stresses alter characteristics of fractures 
near repository, in Section 2.2, Table 2.2-5). Therefore, results from these two models are not 
utilized in the seepage calculations conducted in the TSPA drift seepage submodel. Specific details 
are provided in Section 2.3.5, as well as in Abstraction of Drift Seepage (SNL 2007a, 
Sections 6.4.4, 6.5.1.4, and 6.5[a]).
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2.3.3.3.4 Thermal Component of Drift Seepage Abstraction
[NUREG-1804, Section 2.2.1.3.3.3: AC 5]

The thermal component of the seepage abstraction provides the methodology that is used in the 
TSPA drift seepage submodel for calculating seepage during the time period of thermal 
perturbation. Results from complex drift-scale simulations are simplified for further use in the 
TSPA, making sure that variability and uncertainty in data and processes are adequately accounted 
for. The simplified abstraction procedure for thermal seepage is based on the consistent qualitative 
trends that were observed in various simulation scenarios conducted by the thermal-hydrologic
seepage model.

In intact or moderately degraded drifts, seepage under thermal conditions, as estimated by the 
thermal-hydrologic seepage model and other coupled processes models discussed in 
Sections 2.3.3.3.3 and 2.3.5, is shown to be zero whenever temperatures in the rock are above the 
boiling point of water, and is never higher than ambient seepage during the cooldown period 
(i.e., there is no enhanced seepage as a result of thermal perturbation). Based on these results, which 
have been consistently observed over a wide range of sensitivity cases, the thermal seepage for 
intact or moderately degraded drifts is set to zero for the period in which rock temperatures in the 
drift vicinity are above the boiling point of water (SNL 2007a, Section 6.5.2.1). The threshold drift 
wall temperature that defines the duration of this boiling period is set to 100°C, which is a few 
degrees greater than the boiling point of water at the repository elevation, thereby ensuring that no 
heat-pipe activity is occurring at the drift wall and also accommodating some uncertainty in 
modeling results (SNL 2007a, Section 6.5.2.1). For the remaining time during cooldown, the rate of 
thermal seepage is conservatively set equal to the ambient seepage rates, which do not include the 
potential benefits from thermal perturbation in reducing seepage, as shown in Figure 2.3.3-42.

The abstraction method for thermal seepage is thus a qualitative method that describes the transient 
evolution of seepage relative to the ambient seepage rates. The advantage of this approach is that the 
lookup tables for ambient seepage, which comprise precalculated seepage results over the entire 
parameter range sampled in the TSPA (Section 2.3.3.2.4.3), can be consistently used for the thermal 
and the post-thermal period. For TSPA implementation of the thermal seepage abstraction, detailed 
information is required about the duration of the boiling period as a function of location in the 
repository. This information is provided by the multiscale thermal-hydrologic model 
(Section 2.3.5.4.1). If the rock temperatures at the drift wall are above 100°C, the ambient seepage 
rate determined for the considered TSPA parameter case and location is set to zero.

For collapsed drifts (seismic scenario class), the thermal seepage rates are set (starting at the time 
of collapse) equal to the ambient seepage rate derived from the lookup table for collapsed drifts 
(Section 2.3.3.2.4.3). No modification is made to incorporate thermal effects in this bounding 
approach (SNL 2007a, Section 6.5.3). As mentioned earlier, seepage into collapsed drifts is defined 
as the flow of water from the largely intact rock into the rubble-filled drift opening. Simulations 
were conducted with the thermal-hydrologic seepage model to analyze the conditions within and 
around a collapsed drift, and to determine the impact on the seepage abstraction (BSC 2005a, 
Section 6.4.3.4). Results from this model suggest that the temperatures in the intact rock will often 
not reach boiling conditions. This is because (1) the drift size above the heat-producing waste 
canisters has increased after the collapse; and (2) thermal conduction within the rubble material is 
less effective than thermal radiation within an open drift, thereby giving rise to a much stronger 
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in-drift temperature gradient. Since there is generally no vaporization barrier in the intact rock, 
water seepage from the fractured formation into the rubble-filled drift is limited only by the 
capillary-induced flow diversion, as described and accounted for in the ambient seepage prediction. 
However, depending on the temperature conditions near the waste packages, the seeping water may 
boil off within the rubble material. This fate of water inside the rubble-filled opening is described 
in Sections 2.3.4 and 2.3.5 (SNL 2007e).

How to categorize emplacement drifts with respect to the drift degradation and seepage conditions 
in the case of seismic events is explained in Section 2.3.3.2.4.2. In the case of igneous intrusion
(Section 2.3.11), the drift seepage abstraction sets the seepage flux for an intruded drift equal to the 
local percolation flux, independent of the thermal conditions in the drift and the near-field rock prior 
to the igneous intrusion event (Section 2.3.3.2.4.2.3). As mentioned above, early failure events do 
not require a change in the abstraction methodology for seepage (Section 2.3.3.2.4.2).

2.3.3.4 Total System Performance Assessment Implementation of Drift Seepage
[NUREG-1804, Section 2.2.1.3.3.3: AC 5(1), (2)]

2.3.3.4.1 General Approach

The TSPA drift seepage submodel calculates the seepage rate (amount of seepage per time for each 
waste package) as a function of time and repository location for the nominal and disruptive event 
scenarios. The probabilistic procedure for calculating seepage in the TSPA is conducted according 
to the ambient and thermal components of the drift seepage abstraction that is described in 
Sections 2.3.3.2.4 and 2.3.3.3.4. These abstraction components provide the necessary 
specifications, tools, parameter distributions, lookup tables, and simplifications, based on 
evaluation of various data and process model sources.

2.3.3.4.1.1 Nominal and Seismic Scenarios

The seepage calculation for the nominal and seismic scenarios in the TSPA is performed using a 
probabilistic approach that accounts for the spatial and temporal variability and the inherent 
uncertainty of seepage-relevant properties and processes. The resulting information takes the form 
of repository-wide probability distributions for seepage rates at given points in time. The TSPA 
procedure for calculating seepage can be organized into two main steps, as illustrated in 
Figure 2.3.3-43 for the nominal scenario. Table 2.3.3-5 describes the inputs required by the TSPA 
drift seepage submodel (SNL 2007a, Sections 6.5.1 and 6[a]).

Step 1 consists of determining the long-term ambient seepage rates, using seepage lookup tables 
derived from the seepage model for performance assessment (Section 2.3.3.2.4). Probabilistic 
distributions have been defined describing the spatial variability and uncertainty of the key 
hydrologic parameters (capillary strength, permeability, local percolation flux) that feed into these 
lookup tables. The general calculation procedure for ambient seepage (as outlined above) is the 
same for the pre-10,000-year period and the post-10,000-year period. Transient effects on ambient 
seepage are incorporated (1) by using different percolation flux distributions for the future climate 
stages during the pre-10,000-year and the post-10,000-year periods; and (2) by incorporating drift 
shape changes caused by seismic activity and their impacts on seepage.
2.3.3-69



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
Step 2 involves adjusting the ambient seepage rate for thermal effects, if necessary. The abstraction 
method for thermal effects on seepage is a qualitative method that describes the transient evolution 
of seepage relative to the ambient seepage rates (Section 2.3.3.3.4). The advantage of this approach 
is that the lookup tables for ambient seepage, which comprise precalculated seepage results over the 
entire parameter range sampled in the TSPA, can be consistently used for the thermal and the 
post-thermal period.

Depending on the drift degradation conditions at the considered time step, ambient seepage needs 
to be calculated from the lookup table for intact drifts, or from the lookup table for collapsed drifts, 
or it needs to be set equal to the local percolation flux arriving at the considered drift 
(Section 2.3.3.2.4.2.2). Thus, before initiating Step 1 (below), the TSPA drift seepage submodel 
needs to evaluate the degree of drift degradation and its impact on seepage, which in turn depend on 
the geologic unit and the rock properties, as well as on the magnitude and occurrence probability of 
seismic events. In a procedure that accounts for the different geomechanical behavior in lithophysal 
and nonlithophysal units, drifts are categorized as mostly intact or strongly degraded by assessing 
the rockfall volume that has accumulated in a given drift location as a result of the seismic events 
that occurred during the considered time period (SNL 2008a, Section 6.6.1.3.2). This information 
is provided by rock-type specific regression functions that link the magnitude of seismic events to 
rockfall volume (Section 2.3.4). In case there have been no seismic events (e.g., in the nominal 
scenario or at early stages when no seismic event has occurred), the rockfall volume is set to zero.

For a given cumulative rockfall volume V, the following seepage procedure is applied: in 
nonlithophysal units, the lookup table for intact (or moderately degraded) drifts is used for the 
seepage calculation if V is smaller than a threshold value of 0.5 m3 per meter drift length (i.e., drifts 
are mostly intact). Otherwise, seepage is set to the local percolation flux arriving at the drift 
(i.e., drifts are strongly degraded, with many topographic lows at the ceiling, so that the intact-drift 
lookup table cannot be used). In lithophysal units, the lookup table for intact (or moderately 
degraded) drifts is used for the seepage calculation if the cumulative volume is smaller than a 
threshold value of 5 m3 per meter drift length (i.e., drifts are mostly intact). The lookup table for 
collapsed drifts is used for the seepage calculation if the cumulative rockfall volume is larger than 
a threshold value of 60 m3 per meter drift length (i.e., drifts are fully collapsed). In intermediate 
degradation cases, seepage is interpolated between the results obtained for intact and collapsed 
drifts, using the rockfall volume as the interpolation parameter (SNL 2007a, Section 6.2[a]). The 
rockfall threshold values have been determined based on the visual inspection of various simulated 
drift shapes provided in Drift Degradation Analysis (BSC 2004e, Appendix R). Once the drift 
degradation category is determined, Steps 1 and 2 can be conducted as described below.

• Step 1: Determine Ambient Seepage

– The first task is to sample appropriate values for the seepage-relevant parameters 
(permeability and capillary-strength), which feed into the seepage rate lookup tables 
(see Step 1A in Figure 2.3.3-43). The probabilities assigned to the permeability and the 
capillary-strength parameter distinguish explicitly between spatial variability and 
uncertainty, using separate probability distributions (Section 2.3.3.2.3.6). Spatial 
variability of permeability is described by a lognormal probability distribution, while 
spatial variability of the capillary-strength parameter is expressed by a uniform 
distribution. The uncertainty of both parameters is represented by triangular 
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distributions (using a log value for permeability) with a mean of zero and a range value 
defining the uncertainty of the respective parameter. The TSPA drift seepage submodel 
conducts stochastic sampling of the spatial variability distributions at each one of 
several thousand waste package locations (r) in the repository area to derive values of 
permeability and capillary strength. (These locations are consistent with those 
considered in the multiscale thermal-hydrologic model for in-drift thermal-hydrologic 
calculations; see Section 2.3.5.) A schematic illustration of this procedure for the 
capillary-strength parameter is given in Figure 2.3.3-44. Within each realization (R), 
the sampled values of permeability and capillary strength are adjusted to account for 
uncertainty using stochastic sampling of the log-triangular (permeability) and 
triangular (capillary strength) uncertainty distributions (Section 2.3.3.2.4.1).

– The next task is to sample appropriate values for the local percolation flux. First, one of 
the four alternative unsaturated-zone percolation flux distributions available for each 
climate state needs to be selected (Sections 2.3.1 and 2.3.2). For each realization (R), 
the TSPA chooses one distribution in a random process that accounts for the relative 
probability of each percolation flux scenario (see Step 1A in Figure 2.3.3-43) 
(Section 2.3.3.2.3.6.3). For each location r, the appropriate climate stage, and the 
chosen flux distribution, the percolation flux value is provided by the TSPA EBS 
thermal-hydrologic environment submodel, based on a spatial interpolation of 
site-scale percolation fluxes. This interpolation is conducted by the multiscale 
thermal-hydrologic model (Section 2.3.5). Then, a multiplication factor is sampled 
from the flow-focusing factor distribution. The product of the interpolated site-scale 
percolation flux and the sampled flow-focusing factor is the local percolation flux for 
seepage (Section 2.3.3.2.3.5). Flow focusing factors increase the site-scale fluxes in 
some areas, and reduce them in other areas, while the total amount of downward water 
flow over all sampled values remains unchanged (SNL 2007a, Section 6.6.5.2.2).

– For drifts categorized as intact or moderately degraded, the mean seepage rate for a 
given realization and location is extracted from the intact drift lookup table, using the 
corresponding parameter set determined above (Section 2.3.3.2.4.2.1). The standard 
deviation, which is different for each parameter set, and which represents the 
estimation uncertainty in seepage results, is also obtained (SNL 2007a, Section 6.7.1.1) 
(see Step 1B in Figure 2.3.3-43). The extracted mean seepage rate is then adjusted by 
applying a uniform probability density function, the range of which depends on the 
standard deviation. The value sampled from this distribution is added to the mean 
seepage rate in order to obtain the ambient seepage rate (SNL 2007a, Section 6.7.1.1) 
(see Step 1C in Figure 2.3.3-43). The ambient seepage rate is increased by 20% to 
account for increased estimation uncertainty in the prediction (SNL 2007a, 
Section 6.7.1.2).

– For drifts in lithophysal units categorized as fully collapsed, the mean seepage rate and 
standard deviation for a given realization and location are extracted from the 
collapsed-drift lookup table, using the corresponding parameter (Section 2.3.3.2.4.2.2). 
The mean seepage rate is then adjusted for estimation uncertainty by applying a 
uniform probability density function, the range of which is defined by the standard 
deviation (Section 2.3.3.2.3.6.4). In intermediate drift degradation cases representing 
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partial collapse (with rockfall volume between 5 m3 and 60 m3 per meter drift length), 
two seepage rates are calculated using both the intact and collapsed drift lookup tables. 
The resulting rate is then interpolated between these two values, using the rockfall 
volume as the interpolation parameter (Section 2.3.3.2.4.2.2). This interpolation 
procedure affects not only the seepage rates, but also the seepage fraction, because 
overall a different number of drift segments will arrive at seepage conditions.

– For strongly degraded drifts in nonlithophysal units, the seepage rate is simply set 
equal to the local percolation flux (including flow focusing) and the seepage fraction is 
set equal to one, as determined above (Section 2.3.3.2.4.2.2).

• Step 2: Adjust Ambient Seepage for Thermal Effects

– For drifts categorized as intact or moderately degraded, seepage rates are set to zero 
during the time period that the drift wall temperature is above 100°C
(Section 2.3.3.3.4). If the temperature is below 100°C, the ambient rate determined in 
Step 2 is used without further adjustment (see Step 2 in Figure 2.3.3-43).

– For fully collapsed drifts, there is no adjustment for thermal effects (Section 2.3.3.3.4). 
In other words, seepage from the intact rock into the rubble-filled opening is set equal 
to the ambient seepage rate for a collapsed drift, independent of thermal 
considerations.

The seepage fraction is calculated in addition to the repository-wide distribution of seepage rates for 
the realization and the time considered. As mentioned before, the seepage fraction is defined as the 
number of drift segments with seepage over the entire repository, divided by the total number of drift 
segments (SNL 2007a, Section 6.5).

2.3.3.4.1.2 Igneous Scenario

For drifts intruded by magma, the seepage rate is set equal to the local percolation flux incident on 
the drift, starting at the time that the magma has cooled to temperatures below boiling 
(Section 2.3.11.1). This conservative approach is used because of the uncertainties in modeling 
in-drift conditions after an igneous event (SNL 2007a, Section 6.5.1.7).

2.3.3.4.1.3 Early Failure Scenario

No changes in the seepage calculations are required for the early failure scenario (early failure of 
drip shields or waste packages), because the seepage conditions are not affected by these changes 
in the EBS.

2.3.3.4.2 Example Calculation for Nominal and Seismic Scenarios

In order to demonstrate the capabilities of the Upper Natural Barrier, and to evaluate sensitivities in 
the abstraction process, a simplified probabilistic calculation of seepage is conducted for a variety 
of cases following the methodology described in Sections 2.3.3.2.4, 2.3.3.3.4, and 2.3.3.4.1. Results 
from this calculation are not utilized in the TSPA, although these results provide a quantitative 
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picture of expected seepage behavior. The TSPA drift seepage submodel performs a more 
comprehensive probabilistic seepage calculation within a Monte Carlo simulation procedure to 
provide the seepage results used in the TSPA.

The simplified probabilistic seepage calculation is conducted for the Tptpll unit, which comprises 
about 80% of the emplacement area. (Because the seepage abstraction is identical for lithophysal 
repository units, this calculation is also representative of the Tptpul. Together, the Tptpll and the 
Tptpul comprise about 85% of the emplacement area.) Probabilistic seepage results are calculated 
separately for the intact drift case, and the collapsed drift case, using a random procedure with a 
sample size of 10,000 stochastic cases. The spatial variability and uncertainty distributions 
developed for the Tptpll unit are simultaneously sampled in one calculational loop. In each 
stochastic seepage case, uncorrelated random numbers are generated to sample from spatial 
variability distributions (for capillary strength, permeability, percolation flux, and flow focusing 
factors, as described in Section 2.3.3.2.3.6), and from uncertainty distributions (for capillary 
strength, permeability, and seepage uncertainty, as described in Section 2.3.3.2.3.6) (SNL 2007a, 
Section 6.8). The impact of thermal perturbation is not explicitly accounted for in this simplified 
probabilistic seepage calculation (i.e., the ambient seepage rates are not adjusted for the impact of 
boiling on seepage). This is of course different in the TSPA drift seepage, where the ambient 
seepage rates for intact drifts are set to zero if the drift wall temperature is above 100°C 
(Section 2.3.3.4.1).

For each random parameter set, mean seepage rates and related standard deviations are interpolated 
from the appropriate seepage lookup tables for intact or collapsed drifts (Section 2.3.3.2.3.4), and 
the mean seepage rates are adjusted for seepage uncertainty. Separate calculations are conducted for 
the three climate states during the first 10,000-years after emplacement (the present-day, monsoon, 
and glacial-transition climates), as well as for the post-10,000-year climate, each with four 
alternative spatial variability distributions for percolation flux to account for climate and infiltration 
uncertainty. Seepage results for the intact drift cases include the 20% increase on account of 
estimation uncertainty (Section 2.3.3.2.4.2.1).

As explained in Section 2.3.2, four alternative unsaturated flow fields for the pre-10,000-year 
climates have been derived by the unsaturated zone flow model using the 10th, 30th, 50th, and 90th 
percentile of a suite of 40 Monte-Carlo derived infiltration scenarios. Comparison with measured 
data from the unsaturated zone (e.g., distributions of temperature and chloride concentrations) 
determined weighting factors that define the relative occurrence probability of these four alternative 
flow fields (SNL 2007b, Section 6.8). The weighting factors derived from this comparison are 62% 
for the flow field derived using the 10th percentile infiltration map, 16% for the flow field derived 
using the 30th percentile infiltration map, 16% for the flow field derived using the 50th percentile 
infiltration map, and 6% for the flow field derived using the 90th percentile infiltration map. Thus, 
while these four flow fields are based on the 10th, 30th, 50th, and 90th percentile infiltration 
scenarios, they are associated with relative occurrence probabilities (or weighting factors in the 
TSPA calculation) of, respectively, 62%, 16%, 16%, and 6%.

The flow fields for the post-10,000-year period are based on the stipulated distribution of average 
percolation flux to the repository horizon in the U.S. Nuclear Regulatory Commission (NRC)
proposed rule (10 CFR 63.342(c)), prescribing a log-uniform distribution ranging from 13 mm/yr 
to 64 mm/yr. Four alternative unsaturated zone flow fields were generated within this specified 
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range (SNL 2007b, Section 6.1.4). These four flow fields are as follows: (1) the first flow field has 
a 62% probability, and an average percolation flux through the repository footprint of 21.29 mm/yr; 
(2) the second flow field has a 16% probability and an average percolation flux through the 
repository footprint of 39.52 mm/yr; (3) the third flow field has a 16% probability, and an average 
percolation flux through the repository footprint of 51.05 mm/yr; and (4) the fourth flow field has 
a 6% probability, and an average percolation flux through the repository footprint of 61.03 mm/yr 
(SNL 2007b, Tables 6.1-3 and 6.8-1).

Figures 2.3.3-27, 2.3.3-45, and 2.3.3-46 present some example results from the simplified 
probabilistic calculation for ambient seepage into intact drifts located in the Tptpll unit. In this case, 
the calculations use the percolation flux distribution derived from the 10th percentile infiltration 
scenario for the pre-10,000-year period and from the first flow field for the post-10,000-year period. 
As pointed out above, these percolation flux distributions are the most likely of all four 
distributions, with a relative probability of 62%. Figure 2.3.3-45 provides histograms of the 
calculated seepage rates in kilograms per year per waste package location, showing the samples 
with nonzero seepage. The number of seepage occurrences clearly increases with the future climate 
changes. The seepage rates vary from small values below 0.1 kg/yr per waste package drift section 
up to almost 10,000 kg/yr per location (SNL 2007a, Section 6.4[a]). Figure 2.3.3-46 provides 
histograms of the calculated seepage percentages for each climate state, again showing only the 
samples with nonzero seepage. (As explained before, the seepage percentage is defined as the 
seepage rate divided by the mean percolation flux arriving over the footprint of the considered drift 
segment.) The seepage percentages also show considerable variability covering the entire range 
from 0% up to 100%. Most probable, however, are the small seepage percentages; only a few 
samples reach 80% seepage and more.

Figure 2.3.3-27 provides histograms of the distributions of seepage-relevant parameters sampled in 
the probabilistic seepage calculation. For permeability and capillary strength, the histograms 
represent the combined effect of spatial variability and uncertainty sampling, using the separate 
distributions described in Section 2.3.3.2.3.6. For percolation flux, the histograms represent the 
combined effect of spatial variability in the percolation flux distribution plus flow focusing. The 
fraction of all sampled parameter values that resulted in seepage is plotted in a light-yellow color. 
Seepage is less likely for parameter combinations with larger permeability, larger capillary strength, 
and smaller percolation flux. This is consistent with the understanding of seepage processes 
(Section 2.3.3.2.1.2). As the mean tangential permeability along the drift perimeter increases, more 
water is diverted around the drift opening without dripping. As the capillary strength of the fractured 
rock increases, more water is retained in the formation without dripping. Finally, as less water 
arrives at the drift crown, it is more likely that the seepage threshold is not exceeded.

Figures 2.3.3-47 through 2.3.3-49 summarize results of the simplified probabilistic calculation for 
intact drifts in the Tptpll unit, providing (1) the mean seepage rate (i.e., mean over 10,000 stochastic 
cases of the seepage rate in kilograms per year per drift segment containing one waste package); 
(2) The mean seepage percentage (i.e., mean seepage rate divided by mean percolation flux across 
reference area, with reference area given by footprint of considered drift segments); and (3) the 
mean seepage fraction during the present-day, monsoon, and glacial-transition climates. The four 
alternative unsaturated zone flow fields, which correspond to the 10th, 30th, 50th, and 90th
percentile infiltration scenarios, arrive at four different sets of seepage results. For the flow field 
based on the 10th percentile infiltration scenario, the most likely flow field with a relative 
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probability of 62%, seepage is expected to occur at about 8% of the waste package locations during 
the first 600 years after emplacement, without considering thermal effects, which would further 
reduce or eliminate seepage (Figure 2.3.3-49). This percentage rises to about 13% during the 
monsoon climate, and to about 17% during the glacial-transition climate. On average over all waste 
packages, the amount of seeping water per drift segment containing one waste package is 1.2, 4.6, 
and 14.4 kg/yr for the three climate states, respectively (Figure 2.3.3-47). These amounts translate 
to mean seepage percentages of 1.1%, 2.2%, and 4.7% (Figure 2.3.3-48). Thus, for the present-day 
climate and the most likely of the four flow fields, on average about 99% of the percolation flux 
would be diverted around drifts in the Tptpll unit. For the wetter climate states of the monsoonal and 
the glacial-transition climate states, the percentage of diverted flux would be approximately 98%
and 95%, respectively (SNL 2007a, Section 6.4[a] and Table 6-5[a]).

Figures 2.3.3-47 through 2.3.3-49 also present results for the other three unsaturated zone flow 
fields provided for each climate state; namely, those corresponding to the 30th, the 50th, and the 
90th percentile infiltration scenarios (SNL 2007a, Section 6.4[a] and Table 6-5[a]). As expected 
from the higher percolation fluxes, the 30th percentile infiltration scenario results in more seepage. 
Here, the seepage fraction varies from 16.7% for the present-day climate, to 22.8% during the 
monsoon period, to 29.5% during the glacial-transition climate. The respective mean seepage 
percentages are 3.0%, 4.9%, and 8.0%. Most seepage is seen for the 90th percentile infiltration 
scenario, with the seepage fraction as high as 52.6% during the monsoon climate. The mean seepage 
percentage during this climate state is 19.5%. Thus, even for the least likely of the four unsaturated 
zone flow fields, with a relative probability of 6% and comparably strong downward percolation, 
the diversion capacity of the unsaturated rock is about 81% overall. However, more than half of all 
waste packages are expected to experience some amount of seepage in this case (SNL 2007a, 
Section 6.4[a] and Table 6-5[a]). Overall, the observed seepage percentages demonstrate the 
important barrier capability of the unsaturated flow processes in the fractured rock at and above the 
repository horizon.

Figures 2.3.3-47 through 2.3.3-49 furthermore show seepage results for the post-10,000-year 
climate state. There are four alternative unsaturated zone flow fields for this period (Flow Fields 1 
through 4, with different relative probabilities of 62%, 16%, 16%, and 6%, respectively), which 
represent the stipulated distribution of average percolation flux given in the NRC proposed rule for 
the post-10,000-year climate (Section 2.3.2.4.1.2.4.2). In general, the expected seepage for the 
post-10,000-year period is higher than the seepage expected during the first 10,000 years after 
emplacement. This is because the NRC-mandated percolation fluxes for the post-10,000-year 
period are generally higher than during the first 10,000 years after emplacement (when comparing 
the flow fields with the same relative occurrence probability, such as the 10th percentile scenarios 
for the pre-10,000-year period with Flow Field 1 for the post-10,000-year period) (Tables 2.3.2-14
and 2.3.2-15). The one exception is the 90th percentile infiltration scenario for the monsoon climate, 
which features both the highest average percolation fluxes as well as the most seepage. As pointed 
out before, it can be expected that many drifts in the lower lithophysal units collapse as a result of 
seismic ground motion during the post-10,000-year period (Sections 2.3 and 2.4). Thus, the more 
likely seepage results for this time period are those for collapsed drifts presented below.

Summary statistics for seepage in collapsed drifts are depicted in Figures 2.3.3-50 through 2.3.3-52,
for the climate states and alternative unsaturated zone flow fields discussed above. Evaluation of 
seepage into collapsed drifts requires use of the collapsed-drift lookup table, but uses the same 
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probability distributions for permeability and capillary strength as in the intact cases. The resulting 
values for seepage rates, percentages, and fractions have increased considerably compared to the 
intact-drift values, thus indicating the significance of drift collapse. For the post-10,000-year 
period, where the collapsed-drift case is more likely because of the increasing probability of strong 
seismic events, the mean seepage rates range from about 183 to about 945 kg per year, per waste 
package and the seepage fraction ranges from about 53% to about 70%. In other words, seepage 
would be expected in the majority of waste package locations. However, the mean seepage 
percentage is between about 16% and about 29%, meaning—that even in these cases—most of the 
percolation flux would still be diverted around the collapsed opening.

2.3.3.4.3 Seepage Calculations for ESF South Ramp Seepage Event

During the period between October 2004 and February 2005, unusually heavy precipitation 
occurred in the Yucca Mountain area. On February 28, 2005, Yucca Mountain Project personnel 
working in the South Ramp of the ESF observed—in select areas—wet spots on the main drift’s
crown, ribs, and invert. This field observation is considered the first unambiguous evidence of 
seepage under ambient conditions. See Section 2.3.3.2.2.3.2 for more details on the field 
observations, and for a discussion of the several factors specific to the South Ramp location and 
geology that have contributed to the occurrence of seepage.

A seepage abstraction validation study was conducted to examine whether the approach employed 
to calculate seepage into waste emplacement drifts yields results that are consistent with the 
observed seepage in the ESF South Ramp (SNL 2007a, Section 7.1[a]). It is important to realize that 
this validation study was not an attempt to predict, reproduce, or analyze the South Ramp seepage 
data in a detailed quantitative manner. Such an effort would require the development of a specific 
model and a specific characterization and analysis approach best suited for capturing the 
hydrogeologic conditions in the South Ramp as they prevailed before, and during, the period of the 
seepage observations. Instead, the seepage abstraction conceptual framework outlined in 
Section 2.3.3.4.1—developed for the estimation of long-term seepage into waste emplacement 
drifts in the Topopah Spring unit—was used with minimal adjustments to examine whether the 
results of the probabilistic approach employed in the TSPA (which considers uncertainty and spatial 
variability in fracture permeability, capillary strength, and local percolation flux) would provide 
reasonable seepage estimates, even if applied to the different conditions in the South Ramp. 
(Section 2.3.3.2.2.3.2) If so, confidence can be gained that the TSPA approach captures the 
processes relevant for the prediction of natural seepage into large underground openings.

Details on the seepage abstraction validation study and its results are given in Abstraction of Drift 
Seepage (SNL 2007a, Section 7.1[a]). The following main steps were conducted, in a procedure 
that closely follows the abstraction approach developed for seepage calculations in the TSPA:

• Develop a heterogeneous fracture-continuum model of a 5-m-long section of the ESF.

• Evaluate seepage for a range of parameter values. The three seepage-relevant parameters 
varied are (1) reference fracture permeability; (2) van Genuchten capillary strength 
parameter; and (3) average percolation flux at top model boundary.

• Develop a lookup table of seepage as a function of the three seepage-relevant parameters.
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• Determine probability distributions for the three seepage-relevant parameters.

• Randomly sample from the probability distributions and determine related seepage flux.

• Determine the seepage fraction (percentage of realizations with nonzero seepage).

• Compare modeling results to qualitative information from seepage observations in the 
ESF South Ramp.

Good qualitative agreement was observed between the model results and observations, in terms of 
seepage fraction and seepage flux (SNL 2007a, Section 7.1[a]). Assuming reasonable probability 
distributions for fracture-continuum permeability, capillary strength, and local percolation flux, it 
was estimated that seepage would occur along about 37% of the ESF South Ramp section where the 
PTn unit is not present, compared with the observation that about 13% of this section of the ESF 
South Ramp exhibited wet spots in February 2005. Thus, the seepage simulations yielded results 
that are higher than but generally consistent with observations made in the South Ramp. 
Specifically, the model predicted that some (but not all) locations along the ESF South Ramp will 
encounter seepage, which is in qualitative agreement with the actual observations.

In summary, the seepage abstraction approach used to estimate long-term ambient seepage into 
waste emplacement drifts in the Topopah Spring unit has been minimally adapted to be able to 
estimate short-term, transient seepage into the ESF South Ramp located in the Tiva Canyon unit. 
These preliminary results indicate that the seepage predictions made with the models and approach 
used in the TSPA are reasonable, even when applied to a different hydrogeologic unit and different 
hydrologic conditions.

2.3.3.5 Analogue Observations
[NUREG-1804, Section 2.2.1.3.3.3: AC 5(1)]

Natural and man-made analogues provide evidence that supports the concept of water exclusion 
from underground openings as simulated in the suite of seepage models. Seepage exclusion in 
underground openings (drifts) is consistent with processes that occur in caves, lava tubes, rock 
shelters, and surface structures. Additional discussion of the use of natural analogues to support 
models for unsaturated zone flow is discussed in Section 2.3.2 (BSC 2004h, Section 8.2).

Analogues show that infiltrating water in the unsaturated zone is diverted around underground 
openings, and does not become seepage even for areas with greater precipitation rates than 
present-day rates at Yucca Mountain (BSC 2004h, Section 15.7.5). For example, observations of the 
hydrologic behavior of ancient man-made tunnels and natural caves provide information about 
water seepage into the natural and mined openings in an unsaturated zone over thousands of years. 
The archaeological and historical records in natural analogue sites provide qualitative information 
on the degradation of materials that is relevant to the performance of the repository (e.g., the 
preservation of materials in Egyptian pyramids and tombs that are over 5,000 years old points to 
absence of seepage). For example, unsaturated zone caves smaller than emplacement drifts contain 
ancient paintings preserved for more than 30,000 years, and contain a mummified human body that 
is more than 9,400 years old (DOE 2002, p. 2-33). These observations of natural caves and ancient 
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man-made tunnels and pyramids support the concept that a deep geologic repository in the 
unsaturated zone would keep waste dry and isolated (BSC 2004h, Section 8).

The qualitative evidence for water exclusion and flow diversion is substantiated by quantitative 
seepage measurements and observations in caves. These studies show that seepage is considerably 
smaller than percolation flux, thereby corroborating the seepage testing and modeling results at 
Yucca Mountain. For cases in which some seepage is observed, at least some of the water that enters 
underground openings does not drip but rather flows down the walls (and as such does not meet the 
definition of seepage used for performance assessment). In the instances in which dripping has been 
noted in settings that are analogous to Yucca Mountain, the drips are attributed to asperities in the 
surface of the roof and ceiling of the opening. These observations are consistent with the 
representation of seepage in the TSPA (BSC 2004h, Sections 8 and 15.7.5).

One such setting with various similarities to Yucca Mountain is the Nopal I uranium mine in Peña 
Blanca, Chihuahua, Mexico, which is currently being investigated as a natural analogue for Yucca 
Mountain performance assessment. Similarities between Peña Blanca and Yucca Mountain include 
the rock type, fracturing, and climate, making the Peña Blanca site an excellent analogue for 
investigating flow and radionuclide transport. One ongoing component of the study at Nopal I is an 
evaluation of radionuclide transport through the unsaturated zone via a seepage study of the +00 m 
adit at the Nopal I uranium mine (Levy et al. 2005; Ghezzehei et al. 2006). Seasonal rainfall on the 
exposed bedrock along the +10 m surface infiltrates into the fractured rhyolitic ash-flow tuff, and 
seeps into the +00 adit located 8 m below. At present, seepage data in the adit are being collected 
to investigate the spatial and temporal variability in seepage. The data collected so far indicate that 
the seepage within the adit is highly heterogeneous, and that, with the exception of a few zones with 
fast flow paths, there is a significant reduction in seepage compared to the amount of water 
infiltration at the surface (Dobson et al. 2008).

Similarly, calcite deposition in lithophysal cavities present in the host rock at Yucca Mountain 
provides natural analogue evidence of capillary diversion, which corroborates the concept of 
reduced or complete exclusion of seepage into underground openings in the unsaturated zone, 
compared to the natural percolation flux. There is little or no evidence of water dripping from cavity 
ceilings and accumulating in isolated masses on the floors of open cavities (Paces et al. 2001; 
Whelan et al. 2002, Section 4.1). In addition, calculated seepage rates from observations of 
naturally occurring calcite and opal precipitation in lithophysal cavities at Yucca Mountain 
(Marshall et al. 2003; BSC 2004d, Section 7.7.5) are much smaller than the seepage calculated by 
the seepage model for the TSPA and the estimated percolation flux.

Additional information on natural analogues for the unsaturated zone that are applicable to seepage 
is discussed in Section 2.3.2.

2.3.3.6 Conclusions

The seepage-related models described in this section incorporate the FEPs that contribute to the 
capability of the Upper Natural Barrier to limit seepage into emplacement drifts. A complete list of 
FEPs addressed in this section is given in Table 2.3.3-1. As demonstrated in Section 2.3.3.4.2, 
seepage is prevented or substantially reduced compared to the percolation flux arriving at a given 
repository location, as a result of diversion of water around the drifts.
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The FEPs associated with parameters and parameter characteristics that have been determined to 
be important to barrier capability, with respect to water seeping into drifts, have been introduced in 
Section 2.3.3.1. These are the following (Section 2.1, Table 2.1-2): 

• Flow diversion around repository drifts
• Water influx at the repository
• Rock properties of host rock and other units
• Fractures and Fracture flow in the unsaturated zone
• Unsaturated groundwater flow in the geosphere.

The reduction in seepage, compared to the percolation flux, is mainly a result of capillary pressures 
holding water in the formation and diverting it around the cavity, thereby preventing it from entering 
the cavity (such as an emplacement drift). The effectiveness of capillary diversion depends mostly 
on the local percolation flux and the near-field properties of the fractured rock.

When rock temperatures rise above the boiling point of water near the drift, as a result of heat 
generated by radioactive decay, vaporization of percolating water prevents seepage, thereby also 
contributing to barrier capability. However, the period of above-boiling temperatures lasts only for 
the first few hundred to a few thousand years after closure, which is a small fraction of the period 
of geologic stability. Therefore, while included in the seepage calculation conducted in the TSPA, 
the FEPs related to flow diversion caused by boiling and dryout (e.g., Geosphere dryout due to 
waste heat) have been determined to be less significant to barrier capability.

An integrated conceptual framework has been developed that models the seepage-relevant 
processes near the emplacement drifts for a range of relevant repository scenarios and conditions. 
The framework, as defined by the drift seepage abstraction, is implemented in the TSPA drift 
seepage submodel for the calculation of time-dependent repository-wide seepage rates and seepage 
fractions. The seepage calculation in the TSPA is based on and consistent with theoretical analyses, 
numerical modeling studies, laboratory and field experiments, as well as natural analogues, which 
all show that seepage into underground openings excavated in unsaturated formations is smaller 
than the percolation flux at the given location.

Uncertainties and Conservatisms Associated with the Capability of the Upper Natural 
Barrier Related to Seepage—Uncertainties associated with unsaturated flow and seepage at 
ambient and thermally perturbed conditions result from both the uncertainty and variability in the 
data and parameters used to represent the characteristics of the natural system, and from the 
simplifications and uncertainties in the models used to simulate important processes. The 
uncertainties associated with data and parameters that are important to barrier capability are 
described in Sections 2.3.3.2.3.6.1, 2.3.3.2.3.6.2, and 2.3.3.2.3.6.3 for ambient seepage, and in 
Section 2.3.3.3.2 for thermal seepage. The uncertainties associated with the seepage process 
models are described in 2.3.3.2.3.6.4 for ambient seepage, and Section 2.3.3.3.3.3 for thermal 
seepage. Uncertainties related to the seepage assessment of degraded drifts are described in 
Sections 2.3.3.2.3.6.4 and 2.3.3.2.4.

Relevant sources of data and model uncertainty are accounted for in the drift seepage abstraction, 
and are propagated to the TSPA drift seepage submodel. For example, ambient seepage is a function 
of three key hydrologic properties: (1) the capillary-strength parameter; (2) permeability; and 
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(3) local percolation flux that are spatially variable and uncertain. Spatial variability and uncertainty 
distributions for the capillary-strength parameter and the local permeability have been derived 
based on the liquid-release and air-permeability data available at various locations in the ESF and 
ECRB Cross-Drift (Sections 2.3.3.2.3.6.1 and 2.3.3.2.3.6.2). Spatial variability distributions for the 
local percolation flux are developed using site-scale simulations with the site-scale unsaturated 
zone flow model, while sampling from four alternative unsaturated zone flow fields accounts for 
uncertainty (Section 2.3.3.2.3.6.3). Flow focusing factors represent the effect of intermediate-scale 
heterogeneity. The resulting distributions cover the spatial variability and uncertainty inherent in 
these parameters (Section 2.3.3.2.3.6.3).

Model uncertainty in the ambient seepage predictions is incorporated in the TSPA seepage 
calculation by sampling the mean seepage rates as well as the spread in the seepage results 
stemming from estimation uncertainty (Section 2.3.3.2.3.6.4). Uncertainty in seepage results for 
degraded drifts is caused by (1) the variability and uncertainty in the degraded drift shapes and 
conditions; and (2) the increased uncertainty in the seepage simulation results. The former is 
implemented in the TSPA drift seepage submodel sampling of the uncertain rockfall volumes, in 
response to seismic events, and respective drift degradation from regression curves provided by the 
TSPA model for the seismic scenario class that is described in Section 2.3.4 (Section 2.3.3.2.4.2.2), 
whereas the latter is accounted for using upper-bound estimates in the seepage simulations (e.g., by 
selecting worst-case drift profiles representing the conditions after collapse).

Seepage during the thermal period is calculated in the TSPA by a simplified representation of the 
transient behavior. This simplification, which is based on the consistent trends observed in various 
sensitivity scenarios conducted by the thermal-hydrologic seepage model, uses upper-bound 
estimates for thermal seepage that account for both variability and uncertainty in data and models. 
Seepage is set to zero for all drifts with wall temperatures above 100°C. For the remaining time 
during cooldown, seepage is set equal to the respective ambient seepage rates calculated for the 
given set of parameters and conditions (Sections 2.3.3.3.3.3 and 2.3.3.3.4). 

Summary of Consistency Between TSPA Model Abstractions and Process Models—The 
ambient and thermal seepage process models provide the seepage rates that feed into the drift 
seepage abstraction. The ambient seepage rates are directly used in the TSPA drift seepage 
submodel by interpolation from seepage lookup tables. The thermal seepage rates are simplified 
using an upper-bound approach. Process model results providing information on seepage-relevant 
parameters and factors are either directly used without further modification (such as the unsaturated 
zone flow fields or the flow focusing factors), or have been abstracted to develop reasonable 
simplifications (such as the selected drift profiles for degraded drifts). In summary, the TSPA drift 
seepage submodel is consistent with supporting process models.

Summary of Key Output Parameters Provided to TSPA—The outputs from the drift seepage 
abstraction to the TSPA drift seepage submodel are shown in Figure 2.3.3-1. They include the 
seepage calculation methodology for nominal, seismic, igneous and early-failure scenarios; 
variability and uncertainty distributions for seepage-relevant parameters; flow-focusing factors; 
and seepage lookup tables containing mean seepage flow rates and their uncertainty for both intact 
and collapsed drifts.
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Table 2.3.3-1.  Features, Events, and Processes Addressed in Section 2.3.3 

FEP Number and 
FEP Name FEP Description

Summary of Technical Basis and Approach for FEP 
Inclusion

1.1.02.02.0A 
Preclosure 
ventilation

The duration of preclosure 
ventilation acts together with 
waste package spacing (as per 
design) to control the extent of 
the boiling front (zone of reduced 
water content). 

The effects of preclosure ventilation on seepage are 
accounted for through the calculation of 
time-dependent thermal conditions in the drift, which 
affect drift-wall temperature and, thus, the duration of 
thermal seepage. The ventilation model provides the 
basis for estimating the fraction of heat removed during 
the 50-year preclosure period following emplacement. 
The seepage model for performance assessment and 
the coupled processes seepage models conservatively 
do not explicitly account for rock drying in the drift 
vicinity as a result of evaporation driven by preclosure 
ventilation (Sections 2.3.3.2.1.2 and 2.3.3.2.4.2.4).

1.2.02.01.0A 
Fractures

Groundwater flow in the Yucca 
Mountain region and transport of 
any released radionuclides may 
take place along fractures. The 
rate of flow and the extent of 
transport in fractures are 
influenced by characteristics 
such as orientation, aperture, 
asperity, fracture length, 
connectivity, and the nature of 
any linings or infills. 

The seepage calibration model and seepage model for 
performance assessment are stochastic fracture 
continuum models. On the drift scale (relevant for 
seepage), the fracture network is considered a 
continuum (Section 2.3.3.2.3.2); its characteristics are 
determined from air injection tests 
(Section 2.3.3.2.2.1.2) and through model calibration 
(Section 2.3.3.2.3.3). The models used to estimate 
percolation flux and coupled processes relevant for 
seepage are based on a dual-permeability approach, 
which incorporates fracture and matrix properties 
averaged for different hydrogeologic units 
(Sections 2.3.3.2.1.3, 2.3.3.2.3.6, 2.3.3.2.4.1, and 
2.3.3.3.3).

1.2.02.02.0A  
Faults

Numerous faults of various sizes 
have been noted in the Yucca 
Mountain region, and specifically 
in the repository area. Faults may 
represent an alteration of the rock 
permeability and continuity of the 
rock mass, an alteration or short 
circuiting of the flow paths and 
flow distributions close to the 
repository, and/or unexpected 
pathways through the repository.

Faults as potential conduits for fluid flow are explicitly 
accounted for in the site-scale unsaturated flow zone 
model providing the large-scale percolation flux 
distributions that feeds into the drift seepage 
abstraction. Thus, the potentially large fluxes expected 
in fault zones are included in the seepage predictions, 
and are propagated through the seepage abstraction to 
the TSPA (Sections 2.3.3.2.2.1, 2.3.3.2.3, 2.3.3.2.4, 
and 2.3.3.4).

1.2.03.02.0D 
Seismic induced drift 
collapse alters in 
drift 
thermohydrology

Seismic activity could produce 
jointed rock motion and/or 
changes in rock stress, leading to 
enhanced drift collapse and/or 
rubble infill throughout part or all 
of the drifts. Drift collapse could 
impact flow pathways and 
condensation within the EBS, 
mechanisms for water contact 
with EBS components, and 
thermal properties within the 
EBS.

The changes in drift shape as a result of seismic activity 
and their impact on seepage are explicitly accounted for 
in the TSPA drift seepage submodel. Drifts are 
categorized with respect to seismically-induced 
degradation at each time step considered in the TSPA. 
Seepage is then determined, depending on the 
category. For example, ambient seepage into a 
collapsed drift is calculated using a seepage lookup 
table specifically developed for such conditions by the 
seepage model for performance assessment 
(Sections 2.3.3.2.3.4.2, 2.3.3.2.4.2.2, 2.3.3.3.4, and 
2.3.3.4).
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1.2.04.03.0A 
Igneous intrusion 
into repository

Magma from an igneous intrusion 
may flow into the drifts and 
extend over a large portion of the 
repository site, forming a sill, 
dike, or dike swarm, depending 
on the stress conditions. This 
intrusion could involve multiple 
drifts. The sill could be limited to 
the drifts, or a continuous sill 
could form along the plane of the 
repository, bridging between 
adjacent drifts.

The strong changes in the drift conditions caused by 
igneous intrusion, and their impact on seepage, are 
incorporated in the TSPA drift seepage submodel using 
a conservative abstraction. Given the uncertainties in 
predicting seepage processes under such conditions, 
seepage is set to the local percolation flux arriving at 
the intruded drift (i.e., no barrier capability is considered 
there (Sections 2.3.3.2.1.2, 2.3.3.2.4.2, and 2.3.3.3.4).

1.3.01.00.0A 
Climate change

Climate change may affect the 
long-term performance of the 
repository. This includes the 
effects of long-term change in 
global climate (e.g., glacial–
interglacial cycles) and 
shorter-term change in regional 
and local climate. Climate is 
typically characterized by 
temporal variations in 
precipitation and temperature. 

The impact of global climate change on seepage is 
included in TSPA through the calculation of percolation 
fluxes as a function of climatic conditions. The climate 
analysis is used to determine the expected climatic 
conditions that affect net infiltration and, ultimately, the 
percolation flux at the repository horizon. The 
unsaturated zone flow fields calculated for different 
global climate states are sampled in TSPA to obtain the 
local percolation flux, which is used to evaluate drift 
seepage. Short-term changes in regional and local 
climate (e.g., temporal variations in precipitation) are 
not explicitly accounted for in the seepage calculation, 
as these short-term fluctuations are considerably 
damped at the repository horizon. However, related 
uncertainties and variabilities in the local percolation 
flux are included in the TSPA drift seepage submodel of 
the TSPA (Sections 2.3.3.2.1.3, 2.3.3.2.3.5, 
2.3.3.2.3.6.3, 2.3.3.2.4, 2.3.3.3.3, and 2.3.3.4).

1.4.01.01.0A 
Climate modification 
increases recharge

Climate modification causes an 
increase in recharge in the Yucca 
Mountain region. Increased 
recharge might lead to increased 
flux through the repository, 
perched water, or water table 
rise.

The effects of climate changes on seepage are 
included explicitly in the TSPA through the unsaturated 
zone flow fields used to evaluate the seepage-relevant 
local percolation flux. Flow fields are evaluated for three 
distinct climate states during the pre-10,000-year 
period (present-day, monsoon, and glacial transition) 
and one climate state representing the 
post-10,000-year period. Uncertainty in each climate 
state and the resulting net infiltration is accounted for 
through the use of four alternative unsaturated zone 
flow fields, which represent different infiltration 
scenarios (Sections 2.3.3.2.1.3, 2.3.3.2.3.5, 
2.3.3.2.3.6.3, 2.3.3.2.4, 2.3.3.3.3, 2.3.3.3.4, and 
2.3.3.4).

Table 2.3.3-1.  Features, Events, and Processes Addressed in Section 2.3.3 (Continued)

FEP Number and 
FEP Name FEP Description

Summary of Technical Basis and Approach for FEP 
Inclusion
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2.1.08.01.0A  
Water influx at the 
repository

An increase in the unsaturated 
water flux at the repository may 
affect thermal, hydrologic, 
chemical, and mechanical 
behavior of the system. Increases 
in flux could result from climate 
change, but the cause of the 
increase is not an essential part 
of the FEP. 

The local percolation flux is one of the key factors 
affecting drift seepage. Spatial and temporal changes in 
the local percolation flux are thus included in TSPA. The 
local percolation flux is explicitly evaluated for different 
climate states, different infiltration scenarios, and 
different locations within the repository. Moreover, the 
local percolation flux is modified to account for random, 
intermediate-scale flow focusing effects and the impact 
of small-scale heterogeneity. For both ambient and 
thermal conditions, the local percolation flux is used to 
evaluate seepage into waste emplacement drifts, as 
provided in lookup tables from the seepage model for 
performance assessment (Sections 2.3.3.2.1.3, 
2.3.3.2.3.5, 2.3.3.2.3.6.3, 2.3.3.2.4, 2.3.3.3.3, 2.3.3.3.4, 
and 2.3.3.4).

2.1.08.02.0A 
Enhanced influx at 
the repository

An opening in unsaturated rock 
may alter the hydraulic potential, 
affecting local saturation around 
the opening and redirecting flow. 
Some of the flow may be directed 
to the opening, where it is 
available to seep into the 
opening. 

The impact of an underground opening on the 
unsaturated flow field (including capillary barrier effect 
and the related flow diversion around the drifts) and its 
relevance for seepage is explicitly captured in the 
seepage calibration model, the seepage model for 
performance assessment and the thermal-hydrologic 
seepage model, which provide the basis for the 
seepage evaluation in TSPA (Sections 2.3.3.2.1.3, 
2.3.3.2.2.1, 2.3.3.2.3, 2.3.3.2.4, 2.3.3.3.3, 2.3.3.3.4, 
and 2.3.3.4).

2.1.08.03.0A 
Repository dry-out 
due to waste heat

Repository heat evaporates 
water from the unsaturated zone 
rocks near the drifts, as the 
temperature exceeds the 
vaporization temperature. This 
zone of reduced water content 
(reduced saturation) could 
migrate outward during the 
heating phase and then migrate 
back to the waste package as 
heat diffuses throughout the 
mountain and the radioactive 
heat sources decay. This FEP 
addresses the effects of dryout 
within the repository drifts.

This FEP is included in the thermal-hydrologic seepage 
model (Section 2.3.3.3), which feeds into the drift 
seepage abstraction and TSPA. The thermal-hydrologic 
seepage model captures repository dryout during the 
heating phase and rewetting during the cooling phase. 
These processes are also captured by other coupled 
processes models providing direct or indirect input to 
the TSPA, such as the multiscale thermal-hydrologic 
model (Section 2.3.5.4.1) and the 
thermal-hydrologic-chemical seepage model 
(Section 2.3.5.3).

2.1.08.11.0A 
Repository 
resaturation due to 
waste cooling

Following the peak thermal 
period, water in the condensation 
cap may flow downward, 
resaturating the geosphere 
dryout zone and flowing into the 
drifts. This may lead to an 
increase in water content and/or 
resaturation in the repository.

The thermal-hydrologic seepage model 
(Section 2.3.3.3), which feeds into the seepage 
abstraction, explicitly simulates dryout of the repository, 
followed by resaturation as the waste packages cool. 
Dryout and resaturation effects are also captured by 
other coupled processes models providing direct or 
indirect input to the TSPA, such as the multiscale 
thermal-hydrologic model (Section 2.3.5.4.1) and the 
thermal-hydrologic-chemical seepage model 
(Section 2.3.5.3).
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2.1.11.01.0A 
Heat generation in 
EBS

Temperature in the waste and 
EBS will vary through time. Heat 
from radioactive decay will be the 
primary cause of temperature 
change, but other factors to be 
considered in determining the 
temperature history include the in 
situ geothermal gradient, thermal 
properties of the rock, EBS, and 
waste materials, hydrologic 
effects, and the possibility of 
exothermic reactions. 
Considerations of the heat 
generated by radioactive decay 
should take different properties of 
different waste types, including 
DOE SNF, into account.

The thermal-hydrologic seepage model 
(Section 2.3.3.3), which feeds into the seepage 
abstraction and TSPA, explicitly simulates the 
temperature buildup in the EBS and the near-field rock. 
The model uses prescribed heat generation rates 
consistent with the multi-scale thermal-hydrologic 
model (Section 2.3.5.4.1), the 
thermal-hydrologic-chemical seepage model 
(Section 2.3.5.3), and the in-drift condensation model 
(Section 2.3.5.4.2). The calculated temperatures are 
influenced not only by the heat of radionuclide decay, 
but also by the geothermal gradient from the ground 
surface to the water table and the thermal-physical 
properties of the rock and significant EBS features. The 
thermal effects from having different types of waste 
forms, including DOE SNF, are represented by four 
alternative heat generation rates accounting for 
temperature variability. Exothermic reactions 
(FEP 2.1.11.03.0A) produce insignificant amounts of 
heat and are not included in TSPA. 

2.2.01.01.0A 
Mechanical effects 
of excavation and 
construction in the 
near field

Excavation will produce some 
disturbance of the rocks 
surrounding the drifts due to 
stress relief. Stresses associated 
directly with excavation (e.g., 
boring and blasting operations) 
may also cause some changes in 
rock properties. Properties that 
may be affected include rock 
strength, fracture spacing, and 
block size, and hydrologic 
properties, such as permeability.

Excavation effects and their impacts on seepage are 
included in the TSPA through the use of 
seepage-relevant parameters calibrated for the 
excavation-disturbed zone around niches and drifts 
(Sections 2.3.3.2.2.1, 2.3.3.2.3, 2.3.3.2.4, 2.3.3.3.3, 
2.3.3.3.4, and 2.3.3.4).

2.2.03.01.0A 
Stratigraphy 

Stratigraphic information is 
necessary information for the 
performance assessment. This 
information should include 
identification of the relevant rock 
units, soils, and alluvium and their 
thickness, lateral extents, and 
relationships to each other. Major 
discontinuities should be 
identified. 

Stratigraphic information is used in TSPA to evaluate 
seepage into waste emplacement drifts located in 
specific hydrogeologic units. Seepage-relevant 
parameters (permeability and capillary strength) are 
evaluated separately for lithophysal and nonlithophysal 
rock units, and the percolation flux used to determine 
seepage is taken from the unsaturated zone flow fields, 
which incorporate stratigraphic information. Seepage is 
evaluated for specific repository locations, capturing 
their respective host rock unit (Sections 2.3.3.2.1.1, 
2.3.3.2.1.3, 2.3.3.2.2.1, 2.3.3.2.3, 2.3.3.2.4, 2.3.3.3.2, 
2.3.3.3.3, 2.3.3.3.4, and 2.3.3.4).
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2.2.03.02.0A  
Rock properties of 
host rock and other 
units

Physical properties, such as 
porosity and permeability of the 
relevant rock units, soils, and 
alluvium, are necessary for the 
performance assessment. 
Possible heterogeneities in these 
properties should be considered. 
Questions concerning events and 
processes that may cause these 
physical properties to change 
over time are considered in other 
FEPs. 

Properties affecting seepage are defined for each of the 
repository rock units, using appropriate probability 
distributions that describe their repository-wide 
variability. The impact of heterogeneity on percolation 
flux is included through the spatial variability 
incorporated in the unsaturated zone flow fields, plus 
the additional variability introduced by flow-focusing 
factors. The impact of small-scale heterogeneity on 
seepage is explicitly modeled in (1) the seepage 
calibration model; (2) the seepage model for 
performance assessment; and (3) the 
thermal-hydrologic seepage model. These provide the 
basis for the seepage evaluation in the TSPA. The 
impact of potential changes in the physical properties 
as a result of coupled thermal, mechanical, and 
chemical processes has been evaluated and 
considered insignificant (see excluded FEPs 
2.2.01.02.0A, 2.2.10.04.0A, 2.2.10.04.0B, 
2.2.10.05.0A, and 2.2.10.06.0A, as identified in 
Section 2.2, Table 2.2-5) (Sections 2.3.3.2.1.3, 
2.3.3.2.2.2, 2.3.3.2.3, 2.3.3.2.3.3, 2.3.3.2.4, 2.3.3.3.3, 
2.3.3.3.3.4, 2.3.3.3.4, and 2.3.3.4).

2.2.07.02.0A 
Unsaturated 
groundwater flow in 
the geosphere

Groundwater flow occurs in 
unsaturated rocks in most 
locations above the water table at 
Yucca Mountain, including at the 
location of the repository. See 
related FEPs for discussions of 
specific issues related to 
unsaturated flow. 

The impact of unsaturated flow at the repository level 
on seepage is included in TSPA through the use of local 
percolation fluxes, which are derived from site-scale 
unsaturated flow fields, intermediate-scale flow 
focusing factors, and small-scale flow simulations with 
a heterogeneous fracture permeability field 
(Sections 2.3.3.2, 2.3.3.3, and 2.3.3.4).

2.2.07.03.0A 
Capillary rise in the 
unsaturated zone

Capillary rise involves the 
drawing up of water, above the 
water table or above locally 
saturated zones, in continuous 
pores of the unsaturated zone 
until the suction gradient is 
balanced by the gravitational pull 
downward.

Capillary forces and their impact on seepage are 
included in TSPA through the explicit simulation of 
capillary- and gravity-driven water flow toward, around, 
and into waste emplacement drifts. Site-specific, 
seepage-relevant capillary strength parameters have 
been calculated using the seepage calibration model 
and data from liquid-release tests (Sections 2.3.3.2.1.2, 
2.3.3.2.1.3, 2.3.3.2.2.1, 2.3.3.2.2.2, 2.3.3.2.3, 2.3.3.2.4, 
2.3.3.3.3, 2.3.3.3.4, and 2.3.3.4).
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2.2.07.04.0A 
Focusing of 
unsaturated flow 
(fingers, weeps)

Unsaturated flow can differentiate 
into zones of greater and lower 
saturation (fingers) that may 
persist as preferential flow paths. 
Heterogeneities in rock 
properties, including fractures 
and faults, may contribute to 
focusing. Focused flow may 
become locally saturated. 

The unsaturated zone flow fields represent the 
large-scale redistribution of infiltrating water as it 
percolates through hydrogeologic layers, with matrix, 
fractures, and faults explicitly taken into account. 
Intermediate-scale focusing of flow from the site scale 
to the drift scale is accounted for in the drift seepage 
abstraction by using a distribution of flow focusing 
factors, which were determined from high-resolution 
simulations of flow in a heterogeneous fracture 
continuum. Preferential flow induced by small-scale 
heterogeneity is explicitly accounted for in the suite of 
seepage process models that feed the drift seepage 
abstraction and TSPA by using multiple, stochastic, 
heterogeneous fracture permeability fields. Thus, 
preferential flow is addressed in the seepage lookup 
tables and in the thermal component of the drift 
seepage abstraction (Sections 2.3.3.2.1.3, 2.3.3.2.2.1, 
2.3.3.2.2.2, 2.3.3.2.3.5, 2.3.3.2.3.6, 2.3.3.2.4, and 
2.3.3.4).

2.2.07.08.0A 
Fracture flow in the 
unsaturated zone

Fractures or other analogous 
channels may act as conduits for 
fluids to move into the subsurface 
to interact with the repository and 
as conduits for fluids to leave the 
vicinity of the repository and be 
conducted to the saturated zone. 
Water may flow through only a 
portion of the fracture network, 
including flow through a restricted 
portion of a given fracture plane.

Fractures as potential conduits for fluid flow are 
explicitly accounted for in the site-scale unsaturated 
zone flow model providing the large-scale percolation 
flux distribution and the drift-scale models used to 
evaluate seepage under ambient and thermal 
conditions. The fact that water may only flow through a 
portion of the fracture network is accounted for through 
the use of (1) the active fracture model (on the 
mountain scale), (2) flow focusing factors (on the 
intermediate scale), and (3) explicit simulation of 
preferential flow (on the drift scale). Thus, fracture flow 
and its spatial distribution are embedded in the lookup 
tables for seepage and propagated to TSPA 
(Sections 2.3.3.2.1.3, 2.3.3.2.2.1, 2.3.3.2.2.2, 2.3.3.2.3, 
2.3.3.2.4, 2.3.3.3.3, 2.3.3.3.4, and 2.3.3.4).

2.2.07.09.0A  
Matrix imbibition in 
the unsaturated 
zone

Water flowing in fractures or other 
channels in the unsaturated zone 
may be imbibed into the 
surrounding rock matrix. This 
may occur during steady flow, 
episodic flow, or into matrix pores 
that have been dried out during 
the thermal period.

Imbibition of water into the matrix is included in the 
unsaturated zone flow model that provides the 
percolation flux for the drift-scale seepage process 
models and TSPA. The ambient seepage models are 
stochastic fracture continuum models; the impact of the 
matrix on seepage during both the liquid-release tests 
used for model calibration and the calculation of 
steady-state ambient seepage into waste emplacement 
drifts is considered small enough that it can be lumped 
into seepage-relevant parameters applied to the 
fracture continuum. The thermal-hydrologic seepage 
model and other drift-scale coupled processes models, 
on the other hand, include the rock matrix because the 
matrix impacts heat transfer and provides a source for 
water that evaporates during above-boiling temperature 
conditions (Sections 2.3.3.2.1.3, 2.3.3.2.2.1, 
2.3.3.2.2.2, 2.3.3.2.3, 2.3.3.2.4, 2.3.3.3.3, 2.3.3.3.4, 
and 2.3.3.4).
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2.2.07.10.0A 
Condensation zone 
forms around drifts

Condensation of the two-phase 
flow generated by repository heat 
may form in the rock where the 
temperature drops below the 
local vaporization temperature. 
Waste package emplacement 
geometry and thermal loading 
may affect the scale at which 
condensation caps form (over 
waste packages, over panels, or 
over the entire repository) and 
the extent to which shedding will 
occur as water flows from the 
region above one drift to the 
region above another drift or into 
the rock between drifts. 

The coupled thermal-hydrologic processes of vapor 
condensation during the thermal period, which 
potentially leads to water accumulation above the drifts 
and shedding between drifts, is explicitly simulated with 
the thermal-hydrologic process seepage model that 
feeds into the drift seepage abstraction and TSPA 
(Sections 2.3.3.2.1.2, 2.3.3.2.1.3, 2.3.3.3, and 2.3.3.4). 
Vapor condensation in the rock is also captured by 
other coupled processes models providing direct or 
indirect input to the TSPA, such as the multiscale 
thermal-hydrologic model (Section 2.3.5.4.1) and the 
thermal-hydrologic-chemical seepage model 
(Section 2.3.5.3).

2.2.07.11.0A 
Resaturation of 
geosphere dryout 
zone

Following the peak thermal 
period, water in the condensation 
cap may flow downward into the 
drifts. Influx of cooler water from 
above, such as might occur from 
episodic flow, may accelerate 
return flow from the condensation 
cap by lowering temperatures 
below the condensation point. 
Percolating groundwater will also 
contribute to resaturation of the 
dryout zone. Vapor flow, as 
distinct from liquid flow by 
capillary processes, may also 
contribute. 

Resaturation of the vaporization zone around drifts and 
the potential of return flow of condensation water to the 
drifts are processes explicitly simulated in the 
thermal-hydrologic seepage model that feeds the drift 
seepage abstraction and TSPA. The impact of potential 
episodic flow events penetrating the dryout zone during 
the thermal period has been addressed using an 
alternative conceptual model that corroborated the 
results obtained with the thermal-hydrologic seepage 
model (Section 2.3.3.3). Resaturation effects are also 
captured by other coupled processes models providing 
direct or indirect input to the TSPA, such as the 
multiscale thermal-hydrologic model (Section 2.3.5.4.1) 
and the thermal-hydrologic-chemical seepage model 
(Section 2.3.5.3).

2.2.07.18.0A  
Film flow into the 
repository

Water may enter waste 
emplacement drifts by a film-flow 
process. This differs from the 
traditional view of flow in a 
capillary network where the 
wetting phase exclusively 
occupies capillaries with 
apertures smaller than some 
level defined by the capillary 
pressure. A film-flow process 
could allow water to enter a 
waste emplacement drift at 
nonzero capillary pressure. 
Dripping into the drifts could also 
occur through collection of the 
film flow on the local minima of 
surface roughness features along 
the crown of the drift. 

The impact of film flow through the fracture network 
leading to potential drop detachment at the drift wall is 
implicitly accounted for in the seepage-relevant 
parameters estimated by the seepage calibration 
model, which is calibrated against seepage-rate data 
from liquid-release tests. These seepage-rate data 
include film flow water appearing at and detaching from 
the drift wall. The seepage-relevant parameters thus 
include the effect of film flow; these parameters are 
propagated to the drift seepage abstraction and TSPA 
(Sections 2.3.3.2.1.3, 2.3.3.2.2.1, 2.3.3.2.2.2, and 
2.3.3.2.3).
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2.2.07.20.0A  
Flow diversion 
around repository 
drifts

Flow in unsaturated rock tends to 
be diverted by openings, such as 
waste emplacement drifts, due to 
the effects of capillary forces. The 
resulting diversion of flow could 
have an effect on seepage into 
the repository. Flow diversion 
around the drift openings could 
also lead to the development of a 
zone of lower flow rates and low 
saturation beneath the drift, 
known as the drift shadow.

The impact of flow diversion around underground 
openings and its relevance for seepage are explicitly 
captured by the suite of seepage process models that 
feed into the drift seepage abstraction and TSPA. The 
seepage calibration model and seepage model for 
performance assessment simulate water flow driven by 
capillary forces and gravity, which are the main 
processes leading to flow diversion around and 
seepage into waste emplacement drifts. Site-specific, 
seepage-relevant parameters characterizing the 
capillary-barrier and flow-diversion effects are 
estimated from seepage-rate data and are propagated 
through the drift seepage abstraction to TSPA 
(Sections 2.3.3.2.1.3, 2.3.3.2.2.1, 2.3.3.2.2.2, 2.3.3.2.3, 
2.3.3.2.4, 2.3.3.3.3, 2.3.3.3.4, and 2.3.3.4). 

2.2.10.03.0B 
Natural Geothermal 
Effects on Flow in 
the Unsaturated 
Zone

Infiltration into the subsurface 
provides a boundary condition for 
groundwater flow in the 
unsaturated zone. The amount 
and location of the infiltration 
influences the amount of 
seepage entering the drifts; and 
the amount and location of 
recharge influences the height of 
the water table, the hydraulic 
gradient, and therefore specific 
discharge. Different sources of 
infiltration could change the 
composition of groundwater 
passing through the repository. 
Mixing of these waters with other 
groundwaters could result in 
mineral precipitation, dissolution, 
and altered chemical gradients in 
the subsurface.

The hydrologic effects of infiltration and recharge are 
included in the infiltration model (Section 2.3.1). The 
time dependence of infiltration results is linked to the 
timing of climate change (Section 2.3.1). This is 
incorporated in TSPA through the unsaturated zone 
flow fields used to evaluate the seepage-relevant local 
percolation flux. Flow fields are evaluated for three 
distinct climate states during the pre-10,000-year 
period (present-day, monsoon, and glacial transition) 
and one climate state representing the 
post-10,000-year period. Uncertainty in each climate 
state and the resulting net infiltration is accounted for 
through the use of four alternative unsaturated zone 
flow fields, which represent different infiltration 
scenarios (Sections 2.3.3.2.1.3, 2.3.3.2.3.5, 
2.3.3.2.3.6.3, 2.3.3.2.4, 2.3.3.3.3, 2.3.3.3.4, and 
2.3.3.4).
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2.2.10.10.0A 
Two-phase buoyant 
flow/heat pipes

Heat from waste can generate 
two-phase buoyant flow. The 
vapor phase (water vapor) could 
escape from the mountain. A heat 
pipe consists of a system for 
transferring energy between a hot 
and a cold region (source and 
sink, respectively) using the heat 
of vaporization and movement of 
the vapor as the transfer 
mechanism. Two-phase 
circulation continues until the 
heat source is too weak to 
provide the thermal gradients 
required to drive it. Alteration of 
the rock adjacent to the drift may 
include dissolution that maintains 
the permeability necessary to 
support the circulation (as 
inferred for some geothermal 
systems).

The coupled thermal-hydrologic processes causing 
heat-pipe effects are explicitly simulated with the 
thermal-hydrologic seepage model, which feeds into 
the drift seepage abstraction. The impact of heat-pipe 
behavior on near-field conditions and seepage is 
assessed for various simulation cases and accounted 
for in the thermal seepage abstraction methodology 
(Sections 2.3.3.2.1.2, 2.3.3.3, and 2.3.3.4). Heat pipe 
effects are also captured by other coupled processes 
models providing direct or indirect input to the TSPA, 
such as the multiscale thermal-hydrologic model 
(Section 2.3.5.4.1) and the 
thermal-hydrologic-chemical seepage model 
(Section 2.3.5.3).

2.2.10.12.0A 
Geosphere dryout 
due to waste heat

Repository heat evaporates 
water from the unsaturated zone 
rocks near the drifts as the 
temperature exceeds the 
vaporization temperature. This 
zone of reduced water content 
(reduced saturation) migrates 
outward during the heating phase 
(about the first 1,000 years) and 
then migrates back to the waste 
packages as heat diffuses 
throughout the mountain, and the 
radioactive sources decay. This 
FEP addresses the effects of 
dryout within the rocks.

The coupled processes of vaporization, dryout, 
condensation, and resaturation are explicitly simulated 
using the thermal-hydrologic seepage model, which 
feeds into the drift seepage abstraction and TSPA 
(Section 2.3.3.3). These processes are also captured 
by other coupled processes models providing direct or 
indirect input to the TSPA, such as the multiscale 
thermal-hydrologic model (Section 2.3.5.4.1) and the 
thermal-hydrologic-chemical seepage model 
(Section 2.3.5.3).
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2.3.11.03.0A 
Infiltration and 
recharge

Infiltration into the subsurface 
provides a boundary condition for 
groundwater flow in the 
unsaturated zone. The amount 
and location of the infiltration 
influences the amount of 
seepage entering the drifts; and 
the amount and location of 
recharge influences the height of 
the water table, the hydraulic 
gradient, and therefore specific 
discharge. Different sources of 
infiltration could change the 
composition of groundwater 
passing through the repository. 
Mixing of these waters with other 
groundwaters could result in 
mineral precipitation, dissolution, 
and altered chemical gradients in 
the subsurface.

The hydrologic effects of infiltration and recharge are 
included in the infiltration model (Section 2.3.1). The 
time dependence of infiltration results is linked to the 
timing of climate change (Section 2.3.1). This is 
incorporated in TSPA through the unsaturated zone 
flow fields used to evaluate the seepage-relevant local 
percolation flux. Flow fields are evaluated for three 
distinct climate states during the pre-10,000-year 
period (present-day, monsoon, and glacial transition) 
and one climate state representing the 
post-10,000-year period. Uncertainty in each climate 
state and the resulting net infiltration is accounted for 
through the use of four alternative unsaturated zone 
flow fields, which represent different infiltration 
scenarios (Sections 2.3.3.2.1.3, 2.3.3.2.3.5, 
2.3.3.2.3.6.3, 2.3.3.2.4, 2.3.3.3.3, 2.3.3.3.4, and 
2.3.3.4).

Table 2.3.3-1.  Features, Events, and Processes Addressed in Section 2.3.3 (Continued)

FEP Number and 
FEP Name FEP Description

Summary of Technical Basis and Approach for FEP 
Inclusion
2.3.3-96



D
O

E/RW
-0573, R

ev. 0
Yucca M

ountain Repository SAR

nd Middle Nonlithophysal Zone

stimate 1/α (Pa)

Standard 
Errorc Minimum Maximum

13.8 447.7 674.1

12.3 457.1 676.1

13.3 443.1 645.7

11.4 382.8 616.6

40.8 356.0 1,197.0

69.2 231.1 1,840.7

— — —

— — —

— — —

— — —
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Table 2.3.3-2.  Summary Statistics of Estimated Capillary Strength Parameter for Lower Lithophysal a

Location Interval
Number of 
Inversionsa

E

Mean
Standard 

Deviationb

Lower lithophysal zone 
(Tptpll)

SYBT-ECRB-LA#1 Zone 2 17 534.3 56.8

SYBT-ECRB-LA#2 Zone 2 21 557.1 56.4

SYBT-ECRB-LA#2 Zone 3 19 534.8 57.8

SYBT-ECRB-LA#3 Zone 1 23 452.0 54.7

Niche 5 Borehole 4 30 671.2 223.2

Niche 5 Borehole 5 24 740.5 339.0

Middle nonlithophysal zone 
(Tptpmn)

Niche 3 Upper middle 1 741 —

Niche 4 Upper left 1 646 —

Niche 4 Upper middle 1 603 —

Niche 4 Upper right 1 427 —

NOTE: aEach inversion is based on a different realization of the heterogeneous permeability field.  
bRepresents estimation uncertainty on account of small-scale heterogeneity (not available for estimates for the mi
cStandard error of mean.

Source: BSC 2004b, Table 6-8.
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Table 2.3.3-3. Correlation between Rockfall Severity Class and Statistics of Rockfall Volume per Unit Drift 
Length for Nonlithophysal Rock

Severity

Total Rockfall Volume (m3/m)

Mean Median 5th Percentile 95th percentile

1 0.0209 0.0128 0.0047 0.0539

2 0.1683 0.1093 0.0256 0.4198

3 0.4727 0.3547 0.1246 1.0908

4 1.4215 1.1772 0.5060 2.7261

Source: SNL 2007a, Table 6-4[a].
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Table 2.3.3-4.  Rockfall Volumes for Various Drift Degradation Simulation Cases in Lithophysal Rock

Realization 
Case 

Ground Motion 
Number

Rock Mass 
Category 
Number

Rubble Volume (m3/m) by PGV H1 Level

0.4 m/s 1.05 m/s 2.44 m/s

1 4 3 0.06 2.26 104.75

2 8 5 0 7.63 67.92

3 16 4 0 3.22 69.3

4 12 1 2.13 5.62 109.77

5 2 3 0 3.62 84.2

6 8 1 2.46 3.11 109.85

7 14 2 0.06 5.52 76.59

8 4 4 0 3.42 94.52

9 10 2 0.03 0.58 94.28

10 6 3 0 11.84 60.83

11 9 1 7.16 21.95 82.53

12 1 1 2.12 4.35 111.21

13 1 3 0 0.79 103.52

14 7 4 0 28.96 62.22

15 11 4 0 14.38 72.16

Source: SNL 2007a, Table 6-1[a].
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Table 2.3.3-5.  Inputs Required by the TSPA Drift Seepage Submodel

Input Attributes Source

Probability distributions reflecting 
spatial variability of the capillary 
strength parameter, permeability, 
and the flow focusing factor

Used to sample parameter variability for 
each location, r, corresponding to the 
several thousand locations identified by 
the multiscale thermal-hydrologic model

Drift seepage abstraction

Uncertainty distributions for the 
capillary strength parameter and 
permeability

Used to sample parameter uncertainty 
for a particular realization, R. Applied to 
all locations and time steps

Drift seepage abstraction 

Site-scale percolation flux 
distributions 

Used to provide percolation flux at each 
location, r, corresponding to the several 
thousand locations identified by the 
multiscale thermal-hydrologic model

Sixteen fluxes per location reflecting 
four climate states and four infiltration 
scenarios

TSPA EBS thermal-hydrologic 
environment submodel 
(generated by the site-scale 
unsaturated zone model and 
interpolated by the multiscale 
thermal-hydrologic model)

Response surfaces (i.e., lookup 
tables) of seepage rate as a 
function of the capillary strength 
parameter, permeability, and local 
percolation flux 

Used to interpolate the mean seepage 
rate at each location, r, corresponding 
to the several thousand locations 
identified by the multiscale 
thermal-hydrologic model

Used to sample seepage uncertainty for 
particular realization, R. 

Separate tables for intact and collapsed 
drifts

Drift seepage abstraction 
(generated by the seepage model 
for performance assessment)

Thermal-hydrologic variables (drift 
wall temperature)

Used to evaluate thermal seepage 
conditions at each location in each 
percolation subregion

TSPA EBS thermal-hydrologic 
environment submodel 
(generated by the multiscale 
thermal-hydrologic model)

Cumulative rockfall volume Used to categorize drifts with respect to 
drift degradation, for particular 
realization, R, and rock unit 

Seismic consequence abstraction 
(provides rock-type specific 
regression curves that link 
seismic event to rockfall volume)

Source: SNL 2007a, Section 6.7.
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Figure 2.3.3-1. Information Flow Supporting TSPA Seepage Calculations at the Data, Process, 
Abstraction, and TSPA Levels

Source: Modified from SNL 2007a, Figure 1-1; SNL 2008a, Figure 6.3.3-2.
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Figure 2.3.3-2. Information Transfer Among the Principal Model Components of the TSPA Nominal 
Scenario Class Model

NOTE: For details about outputs and information transfer shown on this figure, see Section 2.4.2.3.2.1. 
BDCF = biosphere dose conversion factor; DS = drip shield; LC = localized corrosion; PA = performance 
assessment; RH = relative humidity; RMEI = reasonably maximally exposed individual; SZ = saturated zone; 
TH = thermal-hydrologic; UZ = unsaturated zone; WF = waste form; WP = waste package.
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Figure 2.3.3-3. Schematic Showing Reduced Seepage as a Result of Capillary Flow Diversion in the 
Unsaturated Zone
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Figure 2.3.3-4.  Schematic Showing Seepage Processes and Factors Potentially Affecting Seepage
2.3.3-104



DOE/RW-0573, Rev. 0Yucca Mountain Repository SAR
Figure 2.3.3-5.  Schematic of Flow-Channeling Effects on Various Scales

NOTE: Flow-focusing factors are applied to account for flow-channeling effects between the intermediate-scale and 
drift-scale processes.
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Figure 2.3.3-6.  Schematic Showing Two Fractures Intersecting a Drift

NOTE: (a) A two-dimensional fracture network model assumes that all fractures are parallel to the drift axis, 
preventing flow diversion within the fracture plane; (b) a two-dimensional (and three-dimensional) fracture 
continuum model considers flow diversion occurring within multiple fracture planes that are approximately 
perpendicular to the drift axis.

Source: BSC 2004b, Figure 6-1.
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Figure 2.3.3-7.  Schematic Showing Approximate Location of Niches and Alcoves 5 to 8

NOTE: The shape of the openings is approximate. Niches 3566, 3650, 3107, 4788, and 1620 are also referred to as 
Niches 1, 2, 3, 4, and 5, respectively.

Source: BSC 2004f, Figure 6-3.
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Figure 2.3.3-8. Wetting-Front Sequences Overlying Fracture Map of Niche 4 Crown for a 
Representative Liquid-Release Test

NOTE: Blue contours are outlines of wetting fronts. Red numbers indicate ordering of the wetting fronts in time (about 
12 elapsed days). The pink bar indicates the approximate position of the release interval in the borehole 
above the niche, projected onto the crown.

Source: BSC 2004f, Figure 6-30.
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Figure 2.3.3-9. Release, Return, and Seepage Rates Observed During a Representative 
Liquid-Release Test Conducted in Niche 4

NOTE: Negative values indicate flow into the formations; positive values indicate flow out of the formation.

Source: BSC 2004f, Figure 6-29.
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Figure 2.3.3-10.  Schematic Illustration of the Alcove 8–Niche 3 Test Configuration

NOTE: Boreholes identified by numbers.

Source: BSC 2004f, Figure 6-149.
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OTE: Not to scale.
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Figure 2.3.3-12. Water Potential Measurement as a Function of Time and Distance from the Borehole 
Collar

Source: Modified from BSC 2004f, Figure 6-109b.

Figure 2.3.3-13. Plot of the Hydrogen and Oxygen Isotope Compositions of Water Samples Collected 
from the Enhanced Characterization of the Repository Block Cross-Drift

NOTE: Also plotted is the isotopic composition of construction water, two pore-water samples extracted from core 
samples from Alcove 5, and the Global Meteoric Water Line.

Source: Modified from BSC 2004f, Figure 6-126.
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Figure 2.3.3-14. Full Periphery View of the ESF South Ramp from Station 75+00 to Station 78+00, 
Showing Seeps Identified Since February 28, 2005

NOTE: Tpcpln = Tiva Canyon Tuff lower nonlithophysal zone; Tpcpmn = Tiva Canyon Tuff middle nonlithophysal 
zone; Tpcpul = Tiva Canyon Tuff upper lithophysal zone.

Source: SNL 2007a, Figure 7-1[a]
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Figure 2.3.3-15. Examples of the Numerical Grid and One Realization of the Underlying Heterogeneous 
Permeability Field for the Simulation of Liquid-Release Tests in (a) a Niche and (b) the 
Enhanced Characterization of the Repository Block Cross-Drift

NOTE: Boreholes are indicated by thick black or grey lines, and the injection intervals are indicated by a thick white 
line.

Source: BSC 2004b, Figures 6-15b and 6-14.
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Figure 2.3.3-16. Saturation Distributions at the End of a Liquid-Release Test Conducted in (a) Niche 5 
(at 13 days) and (b) the Enhanced Characterization of the Repository Block Cross-Drift 
(at 30 days) as Simulated with the Seepage Calibrated Model

NOTE: Boreholes are indicated by thick black or grey lines, and the injection intervals are indicated by a thick white 
line.

Source: BSC 2004b, Figures 6-28a and 6-21d.
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Figure 2.3.3-17. Calibration of Seepage-Rate Data from Liquid-Release Tests (a) Boreholes 
SYBT-ECRB-LA#1, Zone 2; (b) SYBT-ECRB-LA#2, Zone 2; (c) SYBT-ECRB-LA#2, 
Zone 3; and (d) Borehole 4 in Niche 5

NOTE: The gray line is the measured release rate, which is approximated in the seepage calibration model by the 
black line. Blue symbols represent measured seepage-rate data; the red line is calculated with the seepage 
calibration model. The green line is the relative humidity used to prescribe the evaporation boundary 
condition. Relative humidity in Niche 5 was constant at approximately 85%.

Source: BSC 2004b, Figures 6-19, 6-22, 6-23, and 6-25.
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Figure 2.3.3-18. Validation of Seepage Calibration Model and Tptpmn Unit Seepage-Relevant 
Parameters Using Data from Niche 3

NOTE: Linear uncertainty propagation analysis was used to calculate the uncertainty band of the model estimates. 
The uncertainty envelope used in the drift seepage abstraction for TSPA is broader than the uncertainty range 
used for comparison of individual test results with model results. This accommodates the cases in which 
measured seepage values are greater than the 95% confidence interval around simulated seepage values 
(Niche 3 Upper Middle 10-11-99).

Source: BSC 2004b, Figure 7-8.
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Figure 2.3.3-19. Mean Seepage Percentage as a Function of Capillary Strength Parameter and Log 
Permeability for Percolation Fluxes of 1, 10, 50, 200, 400, 600, 800, and 1,000 mm/yr

NOTE: Permeability values in log10 of unit m2.

Source: Modified from BSC 2004a, Figure 6-8.
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Figure 2.3.3-20. Seepage Percentage for (a) Intact Drifts and (b) Collapsed Drifts as a Function of 
Capillary Strength Parameter and Log Permeability for a Percolation Flux of 5 mm/year

NOTE: Horizontal and vertical lines indicate simulated parameter cases. Permeability values in log10 of unit m2.

Source: Modified from SNL 2007a, Figures 6.4-3 and 6.4-8.
2.3.3-119



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
Figure 2.3.3-21.  Total Infiltration Rates (top) and Seepage Rates (bottom) in Alcove 8-Niche 3 Testing

NOTE: The bottom plot shows simulated and observed total seepage rates. The model was calibrated for a 210-day 
period at the beginning of infiltration.

Source: BSC 2006, Figure 6.2-4.
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Figure 2.3.3-22. (a) Spatial Variability and (b) Cumulative Frequency Distribution of Flow-Focusing 
Factors at the Bottom of the Model Domain for a Simulation Case with 5 mm/yr 
Infiltration, as Well as Cumulative Frequency for the Entire Model Domain

Source: Modified from BSC 2004a, Figure 6-25.
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Figure 2.3.3-23. Regression Curve (and 99% Confidence Band) for Cumulative Distribution of 
Percolation Flux at the Bottom of the Model Domain, Averaged over All Simulations for 
Various Flow-Focusing Factors

Source: BSC 2004a, Figure 6-26.
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Figure 2.3.3-24. Histogram and Related Probability Distribution for Spatial Variability of Capillary 
Strength Parameter, Using Statistical Parameters from All of the Samples from the 
Tptpmn and Tptpll Units

NOTE: Vertical lines indicate mean and range of distribution.

Source: SNL 2007a, Figure 6.6-2.
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Figure 2.3.3-25. Triangular Probability Distribution for Covering Uncertainty of the Capillary Strength 
Parameter by Varying the Mean of the Spatial Probability Distribution, Statistical 
Parameters Derived from All of the Samples from the Tptpmn and Tptpll Units

NOTE: The least likely spatial probability distributions (at the minimum and the maximum of the triangular distribution) 
are based on statistical parameters summarized in Abstraction of Drift Seepage (SNL 2007a, Table 6.6-2). 
SE = standard error.

Source: SNL 2007a, Figure 6.6-3.
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Figure 2.3.3-26. Log-Triangular Probability Distribution for Covering Uncertainty of Permeability in the 
Tptpll Unit by Varying the Mean of the Log-Normal Spatial Probability Distribution

NOTE: The least likely spatial probability distributions (at the minimum and the maximum of the log-triangular 
distribution) are discussed in Abstraction of Drift Seepage (SNL 2007a, Sections 6.6.2.2 and 6.6.2.3). 
SE = standard error.

Source: SNL 2007a, Figure 6.6.8.
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Figure 2.3.3-27. Histograms of Seepage-Relevant Parameters (a) Permeability, (b) Capillary Strength, 
and (c) Percolation Flux Including Flow Focusing

NOTE: Results are from the probabilistic calculation for impact drifts in the Tptpll, using flow field from 10th percentile 
infiltration scenario of the present-day climate. Light-shaded bars indicate parameter combinations giving 
seepage.

Source: SNL 2007a, Figure 6-12[a].
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Figure 2.3.3-28. Schematic of Flow Processes and Seepage in Drifts with Local Wedge-Type Rockfall in 
Nonlithophysal Rock

NOTE: (a) Single large wedge has shaken loose. (b) Two large wedges have shaken loose, and a topographic low 
forms at the ceiling, increasing the potential for seepage.

Source: SNL 2007a, Figure 6-7[a].
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l Rock

s where rockfall has occurred. The selected 
/s, Case 27; (2) PGV = 1.05 m/s, Case 24; 
rrence probability of less than 10−8 per year. 
 range of rockfall volumes for evaluation of 

606 m3/m, (3) 0.2766 m3/m, and (4) 2.7281 
Figure 2.3.3-29.  Footprint Plot for Selected Rockfall Cases in Nonlithophysa

NOTE: The axes represent distance along drift centerline and perpendicular to drift centerline. Red areas identify location
cases are representative of the typical rockfall behavior in the four classes of rockfall severity with (1) PGV = 0.4 m
(3) PGV = 2.44 m/s, Case 28; and (4) PGV = 5.35 m/s, Case 64. Notice that the PGV level of 5.35 m/s has an occu
The simulation results derived from the 5.35-m/s PGV level are included in the analyses because they broaden the
drift shapes after multiple seismic events. The rockfall volumes for the selected cases are (1) 0.0044 m3/m, (2) 0.0
m3/m.

Source: SNL 2007a, Figure 6-8[a].
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