

BRUCE H HAMILTON Vice President McGuire Nuclear Station

Duke Energy Corporation MG01VP / 12700 Hagers Ferry Road Huntersville, NC 28078

704-875-5333 704-875-4809 fax bhhamilton@duke-energy.com

May 14, 2008

U. S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

Subject: Duke Energy Carolinas, LLC McGuire Nuclear Station Docket Nos. 50-369 and 50-370 Annual Radiological Environmental Operating Report

Pursuant to the requirements of Technical Specification 5.6.2, attached is the Annual Radiological Environmental Operating Report (AREOR) for the 2007 calendar year.

Questions regarding this report should be directed to Kay Crane, McGuire Regulatory Compliance at (704) 875-4306.

Regin T. K

Bruce H. Hamilton

U. S. Nuclear Regulatory Commission May 14, 2008 Page 2

Mr. John Stang, Project Manager U. S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555

Mr. Louis Reyes, Regional Administrator U. S. Nuclear Regulatory Commission, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30303

Division of Radiation Protection 3825 Barrett Drive Raleigh, N.C. 27609-7221

Mr. Joe Brady Senior Resident Inspector McGuire Nuclear Site

McGuire Nuclear Station Units 1 and 2

AREOR

Annual Radiological Environmental Operating Report 2007

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

DUKE ENERGY CORPORATION MCGUIRE NUCLEAR STATION Units 1 and 2

2007

TABLE OF CONTENTS

• •

1.0	Execu	tive Summary		•		1-1
2.0	Intro	luction				2-1
	2.1	Site Description and Sample Locations	-		-	2-1
	22	Scope and Requirements of the REMP	•	•	•	2-1
	2.2	Statistical and Calculational Methodology	•	•	•	2^{-1}
	2.5	2.2.1 Estimation of the Mean Value	•	•	•	2-2
		2.3.1 Estimation of the Mean Value .	.::	•	•	2-2
		2.3.2 Lower Level of Detection and Minimum Detectable Act	livity	·	·	2-3
		2.3.3 Trend Identification.	•	•	·	2-3
3.0	Inter	pretation of Results				3-1
	3.1	Airborne Radioiodine and Particulates				3-2
	3.2	Drinking Water.				3-5
	3.3	Surface Water				3-7
	34	Milk	•	·	•	3-9
	35	Broadleaf Vegetation	•	•	•	3-10
	3.6	Food Products	•	·	•	2 11
	3.0	Fich	·	·	•	2 12
	2.1	Chompling Codiment	•	•	•	2 15
	3.0 2.0	Direct Course Dadiction	•	·	·	3-13
	2.9		•	·	·	3-18
	5.10		•	·	·	3-20
4.0	Fyah	nation of Dase				4 1
7.0		Dose from Environmental Measurements	•	•	•	4-1
	1 2	Estimated Dose from Palanses	•	•	•	4-1
	4.2	Comparison of Dose	•	·	•	4-1
	4.3		•	•	•	4-2
5.0	Qual	ity Assurance				5-1
	5.1	Sample Collection	_			5-1
	52	Sample Analysis	•		•	5-1
	53	Dosimetry Analysis	•	•	•	5-1
	5.5	Laboratory Equipment Quality Assurance	•	•	•	51
	J.4	5.4.1 Daily Quality Control	•	•	•	51
		5.4.1 Daily Quality Control	•	•	•	5-1
		5.4.2 Calibration Vertification	•	•	•	5-1
		5.4.3 Batch Processing	•	•	·	5-2
	5.5	Duke Energy Intercomparison Program	•	•	•	5-2
	5.6	Duke Energy Audits	•	•	•	5-2
	5.7	U.S. Nuclear Regulatory Commission Inspections	•	·	•	5-2
	5.8	State of North Carolina Intercomparion Program	•	•		5-2
	5.9	TLD Intercomparison Program	•			5-3
		5.9.1 Nuclear Technology Services Intercomparison Program				5-3
		5.9.2 State of North Carolina Intercomparison Program .				5-3
		5.9.3 Internal Crosscheck (Duke Energy)				5-3
6.0	Refe	rences	•	•		6-1

 $z_{2}=z_{2},$

i

۰,

Appendices

Appendix A: Environmental Sampling ar	nd Analysis	Procedures		•••••	•	A-1
I. Change of Sampling Procedure	es.					A-2
II. Description of Analysis Procee	lures .	• •				A-2
III. Change of Analysis Procedures	set in the	rgZa ta ₂atar	itan si			A-3
IV. Sampling and Analysis Proced	ures .	$= \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} d$	• •			A-3
A.1 Airborne Particulate and	l Radioiodi	ne		• •		A-3
A.2 Drinking Water .		• • •				A-3
A.3 Surface Water .						A-4
A.4 Milk	· · ·		• •			A-4
A.5 Broadleaf Vegetation		<i>.</i> .	• • •	• •		A-4
A.6 Food Products.	· · ·					A-4
A.7 Fish	• •					A-4
A.8 Shoreline Sediment .				•		A-5
A.9 Direct Gamma Radiation	n (TLD)		• • •			A-5
A.10 Annual Land Use Censu	is .					A-5
V. Global Positioning System (GPS) Analysis					A-6
Appendix B: Radiological Env. Monitori	ng Program	1 - Summary	of Results			B-1
Air Particulate	· ·	• •	• •			B-2
Air Radioiodine.						B-3
Drinking Water		· · ·				B- 4
Surface Water .						B-5
Milk	• •		· · · · · · · · · · · · · · · · · · ·	• •	•	B-6
Broadleaf Vegetation	• •	• •	• •			B-7
Food Products			•••••			B-8
Fish .	•		• • •	• •		B-9
Shoreline Sediment .	• •	• • **	• •			B-10
Direct Gamma Radiation (TLD)					B-11
Appendix C: Sampling Deviations and U	navailable	Analyses		•••		C-1
C.1 Sampling Deviations	• •		• •			C-2
C.2 Unavailable Analyses	• •					C-3
Appendix D: Analytical Deviations .	• •	• •	• • •	• • •		D-1
Appendix E: Radiological Environmental	Monitorin	g Program l	Results	•••		E-1

•

LIST OF FIGURES

2	2.1-1	Sampling Locations Map (0.5 Mile Radius)			2-4
	2.1-2	Sampling Locations Map (Ten Mile Radius)			2-5
	3.1	Concentration of Gross Beta in Air Particulate			3-3
;	3.2	Concentration of Tritium in Drinking Water			3-5
	3.3	Concentration of Tritium in Surface Water .			3-7
	3.7-1	Concentration of Cs-137 in Fish			3-13
	3.7-2	Concentration of Co-60 in Fish .		•	3-13
	3.8-1.	Concentration of Cs-137 in Shoreline Sediment	•		3-15
÷.	-3:8-2	Concentration of Co-60 in Shoreline Sediment		•	3-16
	3.9	Direct Gamma Radiation (TLD) Results		•	3-18
ł	3.10	2007 Land Use Census Map	•	•	3-21

LIST OF TABLES

2.1-A	Radiological Monitoring Program Sampling Locations		2-6
2.1-B	Radiological Monitoring Program Sampling Locations (TLD Sites)		2-7

2.2-A	Reporting Levels for Radioactivity Concentrations in		
	Environmental Samples		2-8
2.2-B	REMP Analysis Frequency		2-8
2.2-C	Maximum Values for the Lower Limits of Detection .		2-9
3.1-A	Mean Concentrations of Radionuclides in Air Particulate		3-3
3.1-B	Mean Concentrations of Air Radioiodine (I-131)		3-4
3.2	Mean Concentrations of Radionuclides in Drinking Water		3-6
3.3	Mean Concentrations of Tritium in Surface Water		3-8
3.4	Mean Concentrations of Cs-137 in Milk		3-9
3.5	Mean Concentrations of Cs-137 in Broadleaf Vegetation .		3-10
3.6	Mean Concentrations of Cs-137 in Food Products		3-11
3.7	Mean Concentrations of Radionuclides in Fish		3-14
3.8	Mean Concentrations of Radionuclides in Shoreline Sediment		3-16
3.9	Direct Gamma Radiation (TLD) Results		3-19
3.10	Land Use Census Results		3-20
4.1-A	2007 Environmental and Effluent Dose Comparison .		4-3
4.1-B	Maximum Individual Dose for 2007 based on Environmental		
	Measurements for McGuire Nuclear Station		4-6
5.0-A	2007 Cross-Check Results for EnRad Laboratories		5-4
5.0-B	2007 Environmental Dosimeter Cross-Check Results .		5-9

LIST OF ACRONYMS USED IN THIS TEXT (in alphabetical order)

BW	BiWeekly
С	Control
DEHNR	Department of Environmental Health and Natural Resources
DHEC	Department of Health and Environmental Control
EPA	Environmental Protection Agency
GI-LLI	Gastrointestinal – Lower Large Intestine
GPS	Global Positioning System
LLD	Lower Limit of Detection
М	Monthly
MDA	Minimum Detectable Activity
MNS	McGuire Nuclear Station
mrem	millirem
NIST	National Institute of Standards and Technology
NRC	Nuclear Regulatory Commission
ODCM	Offsite Dose Calculation Manual
pCi/kg	picocurie per kilogram
pCi/l	picocurie per liter
pCi/m3	picocurie per cubic meter
PIP	Problem Investigation Process
Q	Quarterly
REMP	Radiological Environmental Monitoring Program
SA	Semiannually
SLCs	Selected Licensee Commitments
SM	Semimonthly
TECH SPECs	Technical Specifications
TLD	Thermoluminescent Dosimeter
μCi/ml	microcurie per milliliter
UFSAR	Updated Final Safety Analysis Report
W	Weekly

A second s

Ĩ.

,

1.0 EXECUTIVE SUMMARY

This Annual Radiological Environmental Operating Report describes the McGuire Nuclear Station Radiological Environmental Monitoring Program (REMP), and the program results for the calendar year 2007.

Included are the identification of sampling locations, descriptions of environmental sampling and analysis procedures, comparisons of present environmental radioactivity levels and pre-operational environmental data, comparisons of doses calculated from environmental measurements and effluent data, analysis of trends in environmental radiological data as potentially affected by station operations, and a summary of environmental radiological sampling results. Quality assurance practices, sampling deviations, unavailable samples, and program changes are also discussed.

Sampling activities were conducted as prescribed by Selected Licensee Commitments (SLC's). Required analyses were performed and detection capabilities were met for all collected samples as required by SLC's. Eleven-hundred fifty-five samples were analyzed comprising 1,636 test results in order to compile data for the 2007 report. Based on the annual land use census, the current number of sampling sites for McGuire Nuclear Station is sufficient.

Concentrations observed in the environment in 2007 for station related radionuclides were generally within the ranges of concentrations observed in the past. Inspection of data showed that radioactivity concentrations in surface water, drinking water, shoreline sediment and fish are higher than the activities reported for samples collected prior to the operation of the station. Measured concentrations were not higher than expected, and all positively identified measurements were within limits as specified in SLC's.

Additionally, environmental radiological monitoring data is consistent with effluents introduced into the environment by plant operations. The total body dose estimated to the maximum exposed member of the public as calculated by environmental sampling data, excluding TLD results, was 1.79E-1 mrem for 2007. It is therefore concluded that station operations has had no significant radiological impact on the health and safety of the public or the environment.

Vegetation Sampling

2.0 INTRODUCTION

2.1 SITE DESCRIPTION AND SAMPLE LOCATIONS

McGuire Nuclear Station (MNS) is located geographically near the center of a highly industrialized region of the Carolinas. The land is predominantly rural non-farm with a small amount of land being used for farming. The McGuire site is in northwestern Mecklenburg County, North Carolina, 17 miles north-northwest of Charlotte, North Carolina. The site is bounded to the west by the Catawba River channel and to the north by 32,510 acre Lake Norman. Lake Norman is impounded by Duke Energy Corporation's Cowans Ford Dam Hydroelectric Station. The tailwater of Cowans Ford Dam is the upper limit of Mountain Island Reservoir. Mountain Island Dam is located 15 miles downstream from the site. Lookout Shoals Hydroelectric Station is at the upper reaches of Lake Norman. Marshall Steam Station is located on the western shore of Lake Norman, approximately 16 miles upstream from the site (reference 6.3).

MNS consists of two pressurized water reactors. Each reactor unit is essentially a mirror image of the other joined by an auxiliary building housing both separate and common equipment. Each unit was designed to produce approximately 1200 gross Megawatts of electricity. Unit 1 achieved criticality August 8, 1981 and Unit 2 on May 8, 1983.

Figures 2.1-1 and 2.1-2 are maps depicting the Thermoluminescent Dosimeter (TLD) monitoring locations and the sampling locations. The location numbers shown on these maps correspond to those listed in Tables 2.1-A and 2.1-B. Figure 2.1-1 comprises all sample locations within 0.5 mile radius of MNS. Figure 2.1-2 comprises all sample locations within a ten mile radius of MNS.

2.2 SCOPE AND REQUIREMENTS OF THE REMP

An environmental monitoring program has been in effect at McGuire Nuclear Station since 1977, four years prior to operation of Unit 1 in 1981. The preoperational program provides data on the existing environmental radioactivity levels for the site and vicinity which may be used to determine whether increases in environmental levels are attributable to the station. The operational program provides surveillance and backup support of detailed effluent monitoring which is necessary to evaluate the significance, if any, of the contributions to the existing environmental radioactivity levels that result from station operation.

This monitoring program is based on NRC guidance as reflected in the Selected Licensee Commitments Manual, with regard to sample media, sampling locations, sampling frequency, and analytical sensitivity requirements. Indicator and control locations were established for comparison purposes to distinguish radioactivity of station origin from natural or other "manmade" environmental radioactivity. The environmental monitoring program also verifies projected and anticipated radionuclide concentrations in the environment and related exposures from releases of radionuclides from McGuire Nuclear Station. This program satisfies the requirements of Section IV.B.2 of Appendix I to 10CFR50 and provides surveillance of all appropriate critical exposure pathways to man and protects vital interests of the company, public, and state and federal agencies concerned with the environment. Reporting levels for radioactivity found in environmental samples are listed in Table 2.2-A. Table 2.2-B lists the REMP analysis and frequency schedule.

Ŏ

Õ

The Annual Land Use Census, required by Selected Licensee Commitments, is performed to ensure that changes in the use of areas at or beyond the site boundary are identified and that modifications to the Radiological Environmental Monitoring Program are made if required by changes in land use. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10CFR50. Results are shown in Table 3.10.

Participation in an interlaboratory comparison program as required by Selected Licensee Commitments provides for independent checks on the precision and accuracy of measurements of radioactive material in REMP sample matrices. Such checks are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10CFR50. A summary of the results obtained as part of this comparison program are in Section 5 of this annual report.

2.3 STATISTICAL AND CALCULATIONAL METHODOLOGY

2.3.1 ESTIMATION OF THE MEAN VALUE

There was one (1) basic statistical calculation performed on the raw data resulting from the environmental sample analysis program. The calculation involved the determination of the mean value for the indicator and the control samples for each sample medium. The mean is a widely used statistic. This value was used in the reduction of the data generated by the sampling and analysis of the various media in the Radiological Environmental Monitoring Program. The following equation was used to estimate the mean (reference 6.8):

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Where:

e por la sing<u>r</u>e dur de la composition

and the second second

x = estimate of the mean,

 d^{1} the second $\mathbf{i} =$ individual sample, which is the factor of d^{1} and d^{2}

N =total number of samples with a net activity (or concentration),

 χ_i = net activity (or concentration) for sample i.

NOTE: "Net activity (or concentration)" is the activity (or concentration) determined to be present in the sample. No "Minimum Detectable Activity", "Lower Limit of Detection", "Less Than Level", or negative activities or concentrations are included in the calculation of the mean.

2.3.2 <u>LOWER LEVEL OF DETECTION AND MINIMUM DETECTABLE</u> <u>ACTIVITY</u>

The Lower Level of Detection (LLD) and Minimum Detectable Activity (MDA) are used throughout the Environmental Monitoring Program.

LLD - The LLD, as defined in the Selected Licensee Commitments Manual is the smallest concentration of radioactive material in a sample that will yield a net count, above the system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is an *a priori* lower limit of detection. The actual LLD is dependent upon the standard deviation of the background counting rate, the counting efficiency, the sample size (mass or volume), the radiochemical yield, and the radioactive decay of the sample between sample collection and counting. The "required" LLD's for each sample medium and selected radionuclides are given in the Selected Licensee Commitments and are listed in Table 2.2-C.

MDA - The MDA may be thought of as an "actual" LLD for a particular sample measurement remembering that the MDA is calculated using a sample background instead of a system background.

2.3.3 TREND IDENTIFICATION

One of the purposes of an environmental monitoring program is to determine if there is a buildup of radionuclides in the environment due to the operation of the nuclear station. Visual inspection of tabular or graphical presentations of data (including preoperational) is used to determine if a trend exists. A decrease in a particular radionuclide's concentration in an environmental medium does not indicate that reactor operations are removing radioactivity from the environment but that reactor operations are not adding that radionuclide to the environment in quantities exceeding the preoperational level and that the normal removal processes (radioactive decay, deposition, resuspension, etc.) are influencing the concentration.

Substantial increases or decreases in the amount of a particular radionuclide's release from the nuclear plant will greatly affect the resulting environmental levels; therefore, a knowledge of the release of a radionuclide from the nuclear plant is necessary to completely interpret the trends, or lack of trends, determined from the environmental data. Some factors that may affect environmental levels of radionuclides include prevailing weather conditions (periods of drought, solar cycles or heavier than normal precipitation), construction in or around either the nuclear plant or the sampling location, and addition or deletion of other sources of radioactive materials (such as the Chernobyl accident). Some of these factors may be obvious while others are sometimes unknown. Therefore, how trends are identified will include some judgment by plant personnel.

1.11

يأفدر

Figure 2.1-1

Section 2 - Page 4

............

Figure 2.1-2

TABLE 2.1-A

MCGUIRE RADIOLOGICAL MONITORING PROGRAM SAMPLING LOCATIONS

计软件的

	Table	2.1-A Co	odes	a an an
W	Weekly	SM	Semimonthly	t te say
BW	BiWeekly	Q	Quarterly	
М	Monthly	SA	Semiannually	
C	Control			

	·			· · ·					
Site #	Location Description*	Air Rad. & Part.	Surface Water	Drinking Water	Shoreline Sediment	Food Products	Fish	Milk	Broad Leaf Veg.
101 "	North Mecklenburg Water Treatment Facility (3.31 mi E)		1	M					
119	Mt. Holly Municipal Water Supply (7.40 mi SSW)			M					
120	Site Boundary (0.46 mi NNE)	W]					[M(b)
121	Site Boundary (0.47 mi NE)	W							
125	Site Boundary (0.38 mi SW)	W							M(b)
128	Discharge Canal Bridge (0.45 mi NE)		M						
129	Discharge Canal Entrance to Lake Norman (0.51 mi ENE)				SA		SA		
130	Hwy 73 Bridge Downstream (0.52 mi SW)				SA				
131	Cowans Ford Dam (0.64 mi WNW)		М						
132	Charlotte Municipal Water Supply (11.1 mi SSE)	•.		. M					
133	Cornelius (6.23 mi ENE)	W							
- 134 C	East Lincoln Jr. High School (8.77 mi WNW)	W		1 2					M(b)
135 C	Plant Marshall Intake Canal (11.9 mi N)		M						
136 C	Mooresville Municipal Water Supply (12.7 mi NNE)	1.1		Μ					
137 C	Pinnacle Access Area (12.0 mi N)				SA		SA		
139 .	William Cook Dairy (2.49 mi E)				· ·			SM	
141 C	Lynch Dairy-Cows (14.8 mi WNW)							SM	
188	5 mile radius Gardens (2.79 mi NNE)		•		• •	M (a)			
192	Peninsula (2.84 mi NNE)	W							
193	Site Boundary (0.19 mi N)	* * ÷		•					M(b)
194	East Lincoln County Water Supply (6.73 mi NNW)			. M					
195	Fishing Access Road (0.19 mi N)	W							

. . .

14 da 11 a

(a) During Harvest Season (b) When Available · . .

at a second s

(b) When Available

ing and a second s

.

-;

* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

a da anti-

TABLE 2.1-B

MCGUIRE RADIOLOGICAL MONITORING PROGRAM SAMPLING LOCATIONS

Site	Location	Distance*	Sector	Site	Location	Distance*	Sector
⊩			1	#			
1/3	SITE BOUNDARY	0.27 miles	NW	164	BEATTIES FORD ROAD	4.64.miles	88F
145	SHE BOOKDAKT	0.27 miles	A LANYYami -		BEATTIEST ORD ROAD		331
144	SITE BOUNDARY	0.46 miles	NNE	165	ARTHER AUTEN ROAD	4.57 miles	S
					NECK ROAD		
145	SITE BOUNDARY	0.47 miles	NE		REFUGE BOUNDARY	4.44 miles	SSW
	a second se			and a	LUCIA RIVERBEND HWY/		
146	SITE BOUNDARY	0.42 miles	ENE	. 167	OLD FIREHOUSE	4.87 miles	SW
			<u> </u>	1.0		4.60	WOW
	SITE BOUNDARY	0.44 miles	. <u> </u>	168	ULD PLANK ROAD BRIDGE	4.60 miles	<u>wsw</u>
148	SITE BOUNDARY	0.46 miles	FSF	169	GLOVER LANE	4 03 miles	w
		0.40 miles		107	GLO CLIC LICE	1.05 111105	
149	SITE BOUNDARY	0.50 miles	SE	170	LITTLE EGYPT ROAD	4.32 miles	WNW
		:					
151	SITE BOUNDARY	0.37 miles	S	<u> </u>	TRIANGLE ACE HARDWARE	3.95 miles	NW
· ·					LAKESHORE SOUTH RD &		
152	SITE BOUNDARY	0.44 miles	SSW	.172	ISLAND VIEW COURT	4.69 miles	NNW
{		·	, a., a		KEISTLER STORE /		
153	SITE BOUNDARY	0.47 miles	SW	173 SI .	GLENWOOD ROAD	8.39 miles	NNW
154		0.455	337	174.61	EAST LINCOLN JR. HIGH	9.77	WAINI
154	SITE BOUNDARY	0.45 miles	VV	1/4 51	SCHOOL .	8.77 miles	WIN W
156	SITE BOUNDARY	0.44 miles	WNW	175 C	BOGER CITY	155 miles	WNW
		:			BELMARROW ROAD /	19.5 11105	
189	SITE BOUNDARY	0.43 miles	SSE	177 SI	COULWOOD COMMUNITY	8.77 miles	S
			• •		FLORIDA STEEL		
190	SITE BOUNDARY	0.33 miles	- WSW	1.7.8.SI	CORPORATION	9.32 miles	SE
ļ	· · · · · · · · · · · · · · · · · · ·				-MOORESVILLE WATER		
157	THE POINTE/MOORESVILLE	4.69 miles	<u> N </u>	180 SI	TREATMENT FACILITY	12.7 miles	NNE
150	PETHEL CHURCH BOAD	4.22 milas	NINE	101 01	OLD DAVIDSON WATER	: 7.02 milas	N117
1.30	HENDERSON ROAD &	4.55 miles	ININE	101 51		7.02 miles	INC
159	WEST CATAWBA AVENUE	4 73 miles	NF	182 51	CORNELIUS / AIR SITE # 133	6 23 miles	ENE
	ANCHORAGE MARINE	1.75 miles		102.01	MCGUIRE FISHING ACCESS	.0.23 111103	
160	SHOWROOM	4.89 miles	ENE	186 SI	ROAD ON PENINSULA	0.24 miles	NNW
	SAM FURR ROAD	1			ENERGY EXPLORIUM /	1	
161	& HWY 21	4.70 miles	Ē	187 SI	AIR SITE # 195	0.19 miles	N
					PENINSULA DEVELOPMENT /		
162	RANSON ROAD	4.53 miles	ESE	191 SI	AIR SITE # 192	2.84 miles	NNE
1.02		4.04 1					
163	MCCOY ROAD	4.94 miles	_ SE _	[<u> </u>			

(TLD SITES)

. ...

C = Control

SI = Special Interest

* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

ana	CUNCENTRA	TION9 IN ENV	INUNIVIENTA	LSAMPLES	
	· · · ·	12 ¹⁴ - 11.1	andanari di k		
Analysis	Water	Air Particulates	Fish	Milk	BroadLea
· · ·	(pCi/liter)	or Gases	(pCi/kg-wet)	(pCi/liter)	Vegetatio
		(pCi/m^3)			(pCi/kg-wo
H-3	$20,000^{(a),(b)}$				
Mn-54	1,000	· · · · · · · · · · · ·	30,000		
Fe-59	400	a da anti-	10,000		
Co-58	1,000		30,000		
Co-60 .	300	and the second second	10,000		
Zn-65 .	. 300 .		20,000		
	400				
I-131	. 2	0.9	·	3	100
	30	:	1,000	60	1,000
Cs-137	50	20	2,000	. 70	2,000
Ba-La-140	200			300	

(a) If no drinking water pathway exists, a value of 30,000 pCi/liter may be used.

(b) H-3 Reporting level not applicable to surface water

TABLE 2.2-B

REMP ANALYSIS FREQUENCY

		·				
Sample	Analysis	Gamma	Tritium	Low Level	Gross	TLD
Medium	Schedule	Isotopic		I-131	Beta	
Air Radioiodine	Weekly	X				
Air	Weekly	X			Х	
Direct Radiation	Quarterly					X
Surface	Monthly Composite	X				
Water	Quarterly Composite		X			
Drinking	Monthly Composite	X		(a)	X	
Water	Quarterly Composite		X			
Shoreline Sediment	Semiannually	X				
Milk	Semimonthly	X		X		
Fish	Semiannually	X				
Broadleaf Vegetation	Monthly ^(b)	X			····	
Food Products	Monthly ^(b)	Х				

(a) Low-level I-131 analysis will be performed if the dose calculated for the consumption of drinking water is > 1mrem per year. An LLD of 1 pCi/liter will be required for this analysis.

(b) When Available

. . . .

TABLE 2.2-C

Analysis	Water	Air Particulates	Fish	Milk	BroadLeaf	Sediment
. may in	(pCi/liter)	or Gases	(pCi/kg-wet)	(pCi/liter)	Vegetation	(pCi/kg-dry)
	i	(pCi/m ³)	seture in the		(pCi/kg-wet)	
Gross Beta	4	0.01				
H-3	2000 ^(a)					
Mn-54	15		130			
Fe-59	30		260		· · · ·	
Co-58, 60	15		130		· · · ·	
Zn-65	30	5 6 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	260			
Zr-Nb-95	15					
I-131	1 ^(b)	0.07	*** *	. 1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-La-140	15		·	15		

MAXIMUM VALUES FOR THE LOWER LIMITS OF DETECTION

(a) If no drinking water pathway exists, a value of 3000 pCi/liter may be used.

(b) If no drinking water pathway exists, the LLD of gamma isotopic analysis may be used.

÷.

,

۶.

. 9

 $(F_{1}) = (\mu S^{2}) \mu_{1} + (\mu S^{2}) \mu_{1}$

٠.

an 200 Alfan Alfan Ayfar

1.14

5

1. 242 1.

3.0 INTERPRETATION OF RESULTS

Review of 2007 REMP analysis results was performed to detect and identify changes in environmental levels as a result of station operation. The radionuclides with Selected Licensee Commitments reporting levels that indicate consistent detectable activity have been historically trended from preoperation to present. Analyses from 1977 - 1978 have been excluded since these results were much higher than the other preoperational years due to outside influences such as weapons testing. The preoperational analyses from 1981 were combined with the operational analyses from the latter part of 1981 and averaged to give one concentration for each radionuclide for that year.

The highest annual mean concentration of applicable Selected Licensee Commitments radionuclides from the indicator locations for each media type was used for trending purposes. Trending was performed by comparing annual mean concentrations to historical results. Factors evaluated include the frequency of detection and the concentration in terms of the percent of the radionuclide's SLC reporting level (Table 2.2-A). All maximum percent of reporting level values were well below the 100% action level. The highest value reached during 2007 was 7.40% for drinking water tritium at the North Mecklenburg Water Treatment Facility (Location 101). Only Selected Licensee Commitments radionuclides were detected in 2007.

Changes in sample location, analytical technique, and presentation of results must be considered when reviewing for trends. Calculation of the annual mean concentrations has been performed differently over the history of the REMP. During 1979-1986, all net results (sample minus background) positive and negative, were included in the calculation of the mean. Only positive net activity results were used to calculate the mean for the other years. All negative values were replaced with a zero for calculational and graphical purposes to properly represent environmental conditions. A change in gamma spectroscopy analysis systems in 1987 ended a period when many measurements yielded detectable low-level activity for both indicator and control location samples. It is possible that the method the previous system used to estimate net activity may have been vulnerable to false-positive results.

This section includes tables and graphs containing the highest annual mean concentrations of any effluent related radionuclide detected since the change in analysis systems in 1987. Any zero concentrations used in tables or graphs represent activity measurements less than detectable levels. Only the specific radionuclides that represent the highest dose contributors or demonstrate consistent detectable activity are shown graphically.

Data presented in Sections 3.1 through 3.9 support the conclusion that there was no significant increase in radioactivity in the environment around McGuire Nuclear Station due to station operations in 2007. Similarly, there was no significant increase in ambient background radiation levels in the surrounding areas. The 2007 land use census data, shown in Section 3.10, indicates that no program changes are required as a result of the census.

3.1 AIRBORNE RADIOIODINE AND PARTICULATES

In 2007, 364 particulate and radioiodine samples were analyzed, 312 at six indicator locations and 52 at the control location. Particulate samples were analyzed weekly for gamma and gross beta. Radioiodine samples received a weekly gamma analysis.

Gross beta analyses indicated 2.12E-2 pCi/m³ at the location with the highest annual mean and 2.18E-2 pCi/m³ at the control location. Detectable gamma emitting particulate activity was last observed in environmental air particulate samples in 2004 and is described in PIP G-04-00134.

No detectable I-131 activity in any environmental air radioiodine samples was found in 2007. K-40 and Be-7 that occur naturally were routinely detected in charcoal cartridges collected during the year. Cs-137 activity was not detected on any cartridges in 2007. Cs-137 detection on the charcoal cartridge was determined in 1990 to be an active constituent of the charcoal. A similar study was performed in 2001

again yielding this conclusion. Therefore, any Cs-137 activities were not used in any dose calculations in Section 4.0 of this report.

Figure 3.1 shows gross beta highest annual mean indicator and control location concentrations since 1985. There is no reporting level for gross beta. Table 3.1-A shows indicator and control location highest annual means for Cs-137 and gross beta.

Table 3.1-B gives indicator location highest annual means and control means since 1979 for I-131. Preoperational and ten year averages are also shown. No I-131 activity has been detected since 1989. Since no activity was detected in 2007, no reporting levels were approached.

Section 3 - Page 2

There is no reporting level for Gross Beta in air particulate

YEAR	Cs-137 Indicator (pCi/m ³)	Cs-137 Control (pCi/m ³)	Beta Indicator (pCi/m ³)	Beta Control (pCi/m ³)	
1979*	4.40E-3	1.47E-3	**	**	
1980*	6.70E-3	4.53E-3	**	**	
1981*	6.16E-3	5.32E-3	**	**	
1982*	3.82E-3	2.29E-3	**	**	
1983*	2.93E-3	3.21E-3	**	**	
1984	1.74E-3	8.29E-4	**	**	
1985	1.86E-3	1.32E-3	2.44E-2	2.40E-2	
1986	4.98E-3	3.03E-3	2.64E-2	2.52E-2	
1987	1.07E-2	7.91E-3	2.54E-2	2.59E-2	
1988	0.00E0	0.00E0	7.49E-2	5.51E-2	
1989	0.00E0	0.00E0	2.22E-2	2.14E-2	
1990	0.00E0	0.00E0	2.58E-2	2.37E-2	
1991	0.00E0	0.00E0	2.16E-2	2.15E-2	
1992	0.00E0	0.00E0	1.92E-2	2.02E-2	
1993	0.00E0	0.00E0	1.93E-2	2.04E-2	
1994	0.00E0	0.00E0	2.28E-2	2.02E-2	
1995	0.00E0	0.00E0	3.02E-2	5.17E-2	
1996	0.00E0	0.00E0	3.11E-2	5.49E-2	
1997	0.00E0	0.00E0	2.34E-2	3.62E-2	
1998	0.00E0	0.00E0	1.86E-2	2.66E-2	
1999	0.00E0	0.00E0	2.06E-2	3.47E-2	
2000	0.00E0	0.00E0	2.00E-2	2.77E-2	
2001	0.00E0	0.00E0	1.79E-2	1.91E-2	

•

••••

Table 3.1-A Mean Concentrations of Radionuclides in Air Particulate

Table 3.1-A continued

YEAR	Cs-137 Indicator (pCi/m ³)	Cs-137 Control (pCi/m ³)	Beta Indicator (pCi/m ³)	Beta Control (pCi/m ³)
2002	0.00E0	0.00E0	1.57E-2	1.72E-2
2003	0.00E0	1989 - N. 0.00E0' MEA	1.50E-2	1.63E-2
2004	0.00E0	0.00E0	1.67E-2	1.71E-2
2005	0.00E0 · 400.0	0.00E0	1.68E-2	1.77E-2
2006	. 0.00E0	0.00E0	1.79E-2	1.94E-2
Average (1997 – 2006)	NOT APPLICABLE	NOT APPLICABLE	1.83E-2	2.32E-2
2007	0.00E0	- 0.00E0	2.12E-2	2.18E-2

0.00E0 = no detectable measurements

* Radioiodines and Particulates analyzed together

** Gross Beta analysis not performed

Table 3.1-B Mean Concentrations of Air Radioiodine (I-131)

Year	Indicator Location (pCi/m ³)	Control Location (pCi/m ³)
1979*	3.28E-3	1.04E-3
1980*	2.01E-3	1.10E-3
1981*	4.17E-3	6.27E-4
1982*	1.42E-3	2.48E-3
1983*	1.99E-3	2.01E-4
1984	3.17E-3	0.00E0
1985	3.15E-3	1.04E-3
1986	1.27E-2	6.10E-3
1987	1.07E-2	6.60E-3
1988	• 0:00E0	0.00E0
1989	2.18E-2	0.00E0
1990	0.00E0	0.00E0
1991	0.00E0	0.00E0
1992	0.00E0	0.00E0
1993	0.00E0	0.00E0
1994	0.00E0	0.00E0
1995	0.00E0	0.00E0
1996	0.00E0	0.00E0
1997	0.00E0	0.00E0
1998	0.00E0	0.00E0
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	0.00E0
2005	2)- A START CARE OLOOEO	0.00E0
2006	0.00E0	0.00E0
2007	0.00E0 PATAMAN	0.00E0

0.00E0 = no detectable measurements

* Radioiodines and Particulates analyzed together.

3.2 DRINKING WATER

In 2007, 65 drinking water samples were analyzed for gross beta and gamma emitting radionuclides. Fifty-two samples were from the four indicator locations and 13 from the control location. Tritium (H-3) analyses were performed on 20 composite samples, 16 at indicator locations and four at the control location.

No detectable gamma activity was found in drinking water samples in 2007 and has not been detected since 1987. Gross beta analyses indicated 1.81 pCi/l at the location with the highest annual mean and 1.76 pCi/l at the control location. Tritium was detected in 14 of the 16 indicator composite samples taken in 2007 with the highest annual mean resulting in only 7.40% of the reporting level. The dose for consumption of water was less than one mrem per year, historically and for 2007; therefore low-level iodine analysis is not required.

Figure 3.2 shows tritium highest annual mean indicator and control location concentrations with comparisons to 20% of the reporting level. Table 3.2 gives indicator location highest annual means and control means since 1979 for tritium and gross beta. There is no reporting level for gross beta.

Drinking water Location 101 was added to the sampling program in 1999. Figure 3.2 shows an increase beginning in that year. There was an increase in drinking water tritium in 2006 due to silica removal from the spent fuel pools. This resulted in additional water volume being released from the plant. An extreme drought during the second half of 2007, affecting the Catawba River Basin, resulted in less dilution volume available in Lake Norman. This may have contributed to the tritium concentrations detected in environmental samples in 2007.

Figure 3.2

	Gross Be	ta (pCi/l)	Tritium (p	Ci/l)
YEAR	Indicator	Control	Indicator	Control
	Location	Location	Location	Location
1979	2.40E0	2.03E0	1.65E2	1.50E2
1980	2.34E0	1.87E0	1.63E2	2.05E2
1981	2.79E0	2.41E0	1.88E2	1.78E2
1982	2.62E0	2.43E0	2.43E2	1.45E2
1983	1.80E0	1.87E0	2.65E2	1.45E2
. 1984	2.78E0	1.81E0	5.77E2	2.45E2
1985	1.88E0	1.90E0	5.93E2	4.00E2
1986	2.13E0	2.15E0	1.14E3	4.37E2
1987	2.30E0	2.00E0	1.35E3	7.75E2
1988	2.00E0	2.00E0	9.92E2	7.11E2
1989	2.80E0	2.70E0	5.62E2	0.00E0
1990	3.70E0	4.30E0	7.32E2	6.11E2
1991	2.40E0	2.50E0	5.22E2	0.00E0
1992	2.00E0	1.70E0	6.73E2	0.00E0
1993	2.80E0	2.40E0	0.00E0	0.00E0
1994	2.47E0	2.90E0	0.00E0	0.00E0
1995	4.20E0	3.30E0	3.58E2	0.00E0
1996	2.75E0	2.11E0	3.60E2	0.00E0
1997	2.70E0	2.24E0	2.90E2	0.00E0
1998	2.75E0	2.33E0	2.68E2	0.00E0
1999	2.48E0	2.17E0	5.49E2	0.00E0
2000	2.66E0	1.99E0	5.04E2	0.00E0
2001	2.48E0	2.19E0	6.98E2	0.00E0
2002	2.47E0	2.08E0	5.64E2	0.00E0
2003	1.81E0	1.52E0	3.51E2	0.00E0
2004	1.68E0	1.29E0	4.61E2	0.00E0
2005	1.74E0	1.30E0	7.35E2	0.00E0
2006	1.75E0	1.80E0	1.46E3	0.00E0
2007	1.81E0	1.76E0	1.48E3	0.00E0

Table 3.2 Mean Concentrations of Radionuclides in Drinking Water

ر. من العربي ال

4 . A

the second

2 space in managements of a stranger of the transmission of the strategy with the strategy of the strategy

Section 3 - Page 6

i Z

• • • •

94 - C. 1

3.3 SURFACE WATER

In 2007, 39 surface water samples were analyzed for gamma emitting radionuclides, 26 at the two indicator locations and 13 at the control location. Analyses for H-3 were performed on 12 samples, eight at indicator locations and four at the control location.

No detectable gamma activity was found in surface water samples in 2007 and has not been detected since 1988. Tritium was detected in all of the eight indicator composite samples taken in 2007. Tritium was detected in two of the control location composite samples in 2007.

Figure 3.3 shows tritium highest annual mean indicator and control location concentrations. Table 3.3 gives indicator and control location highest annual means since 1979 for tritium.

There was an increase in surface water

tritium in 2006 due to silica removal from the spent fuel pools. This resulted in additional water volume being released from the plant. An extreme drought during the second half of 2007, affecting the Catawba River Basin, resulted in less dilution volume available in Lake Norman. This may have contributed to the tritium concentrations detected in environmental samples in 2007.

Figure 3.3

pCi/liter **Concentration of Tritium in Surface Water** 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 200 Indicator Location Control Location

There is no reporting level for tritium in surface water

YEAR	H-3 Indicator (pCi/l)	H-3 Control (pCi/l
. 1979	1.85E2	1.66E2
1980	2.13E2	1.93E2
1981	1.75E2	1.70E2
1982	3.30E2	1.23E2
1983	5.75E2	3.67E2
1984	4.10E2	2.65E2
1985	7.33E2	0.00E0
1986	2.33E3	6.13E2
1987	9.20E2	7.70E2
1988	9.40E2	0.00E0
1989	8.22E2	0.00E0
1990	6.77E2	0.00E0
1991	7.53E2	0.00E0
	8.13E2	0.00E0
-1993	6.85E2	0.00E0
1994	0.00E0	0.00E0
1995	3.15E2	0.00E0
1996	8.08E2	0.00E0
1997	4.85E2	0.00E0
1998	3.40E2	0.00E0
1999	5.60E2	0.00E0
2000	6.22E2	0.00E0
2001	6.98E2	0.00E0
2002	5.65E2	0.00E0
2003	3.91E2	0.00E0
2004	5.04E2	0.00E0
	8.74E2	0.00E0
2006	1.65E3	2.19E2
2007	1.68E3	3.42E2
0.00E0 = no detectable measurements		
	and the second	
a and a second a se	and a Anna an a'	н — — — — — — — — — — — — — — — — — — —
	· · · · · · · · · · · · · · · · · · ·	
and the second	a series and the series of the	
n an	· · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	Annana an Anna Anna Anna Anna Anna Anna	•
······································	an ang an	
and a star and a second		
	and the second	
1		

Table 3.3	Mean (Concentrations	of Tritium	in	Surface	Water
-----------	--------	-----------------------	------------	----	---------	-------

•

.

3.4 <u>MILK</u>

In 2007, 52 milk samples were analyzed for low level I-131 and other gamma emitting radionuclides, 26 at the indicator location and 26 at the control location.

(1) Alt Manager and State and Sta

No detectable activity was found in milk samples in 2007 other than naturally-occurring K-40. Cs-137 has not been detected in milk samples since 1990 and all other radionuclides have not been detected since 1987.

Table 3.4 gives indicator location highest annual means and control means since 1979 for Cs-137. Since no activity was detected in 2007, no reporting levels were approached.

· · · · · · · · · · · · · · · · · · ·	ning tag and Distance and tag	e de la companya de l
YEAR	Cs-137 Indicator (pCi/l)	Cs-137 Control (pCi/l)
1979	2.48E1	6.04E0
1980	1:72E1	4.13E0
1981	2.04E1	- 4.15E0
1982	1.21E1	5.20E0
1983	2.01E1	2.82E0
1984	1.48E1	2.56E0
1985	1.42E1	2.72E0
1986	- 3.74E0	- 3.45E0
1987	5.20E0	8.60E0
1988 -	3.40E0	2.90E0
1989	- 6.00E0	5.60E0
1990	5.30E0	2.60E0
1991	0.00E0	0.00E0
1992	0.00E0	0.00E0
1993	0.00E0	0.00E0
1994	0.00E0	
1995	0.00E0	0.00E0
1996	0.Õ0E0	1000 00 1000 0000 0000 0000 0000 0000
1997	0.00E0	0.00E0
1998	0.00E0	0.00E0
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	0.00E0
2005	0.00E0	0.00E0
2006	0.00E0	0.00E0
2007	0.00E0	0.00E0

Table 3.4 Mean Concentrations of Cs-137 in Milk

0.00E0 = no detectable measurements

3.5 BROADLEAF VEGETATION

In 2007, 48 broadleaf vegetation samples were analyzed, 36 at the three indicator locations and twelve at the control location.

One of the thirty-six samples collected at indicator locations contained detectable Cs-137 activity. Cs-137 was detected in one of the twelve samples collected at Location 120 with a concentration of 13.4 pCi/kg which is 0.67% of the reporting level. Cs-137 was not detected in any of the twelve control location samples.

D

No airborne Cs-137 has been released from the plant since 1998. Cs-137 attributable to past nuclear weapons testing is known to exist in many environmental media at low and highly variable levels.

Table 3.5 gives indicator and control location highest annual means since 1979 for Cs-137.

YEAR	Cs-137 Indicator (pCi/kg)	Cs-137 Control (pCi/kg)
. 1979	2.19E1	1.93E1
	2.30E1	1.92E1
1981	3.04E1	2.02E1
	2.46E1	- 1.22E1
. 1983	9.07E0	7.85E0
1984	1.02E1	1.05E1
1985	8.05E0	2.37E-2
1986	4.03E1	1.27E1
1987	2.20E1	1.70E1
1988	3.90E1	3.40E1
1989	9.60E1	0.00E0
1990	4.00E1	0.00E0
1991	3.30E1	0.00E0
1992	4.90E1	0.00E0
1993	1.60E1	0.00E0
	0.00E0	0.00E0
1995	0.00E0	0.00E0
1996	0.00E0	0.00E0
1997	0.00E0	
1998	0.00E0	2.69E1
1999	- 0.00E0	0.00E0
2000		0.00E0 ··· ·
2001 m 2001		0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	0.00E0
2005	0.00E0	0.00E0
2006	2.98E1	0.00E0
2007	1.34E1	0.00E0

Table 3.5 Mean Concentrations of Cs-137 in Broadleaf Vegetation

 $\overline{0.00E0}$ = no detectable measurements

÷ . . .

. . .

FOOD PRODUCTS 3.6

In 2007, 12 food products (crops) samples were analyzed, all at one indicator location. There is no control location for this media. ing get a fire

No detectable activity has been detected in this media since 1987. Table 3.6 shows Cs-137 indicator highest annual means with preoperational data. Since no activity was detected in 2007, no reporting levels were approached.

YEAR		Cs-137 Indicator (pCi/kg)
1979	· · · · · · · · · · · · · · · · · · ·	2.19E1
1980		2.30E1
1981		3.04E1
1982		2.46E1
1983		9.07E0
1984		8.45E0
1985		7.99E0
1986		2.15E1
1987		2.90E1
1988		0.00E0
1989	and the second	0.00E0
1990	··· ··· ·	0.00E0
1991	·. ·	0.00E0
1992		0.00E0
- 1993	· · · · · · · · · · · · · · · · · · ·	0.00E0
1994	· · · · · · · · · · · · · · · · · · ·	0.00E0
1995	· · · · · · · · · · · · · · · · · · ·	0.00E0
1996	· · · · · · · · · · · · · · · · · · ·	0.00E0
1997	· · · · · · · · ·	0.00E0
1998	· · ·	0.00E0
1999		0.00E0
2000	······································	0.00E0
2001		0.00E0
2002	······································	0.00E0
2003	· · ·	0.00E0
2004	· · · · · · · · · · · · · · · · · · ·	0.00E0
2005	· · · · · · · · · · · · · · · · · · ·	0.00E0
2006		0.00E0
2007	and the second sec	0.00E0.

Table 3.6 Mean Concentrations of Cs-137 in Food Products

20070.00E0 = no detectable measurements 1. m/x x - 1 1. 2.42

3.7 <u>FISH</u>

In 2007, 12 fish samples were analyzed for gamma emitting radionuclides, six at the indicator location and six at the control location.

Figure 3.7-1 shows Cs-137 highest annual mean indicator and control location concentrations with comparisons to 5% of the reporting level. Figure 3.7-2 shows Co-60 highest annual mean indicator and control location concentrations also with comparisons to 5% of the reporting level. Table 3.7 gives indicator location highest annual means since 1980 for all radionuclides detected since the analysis change in 1988.

Co-58 activity was not detected in 2007 in any of the indicator or control samples. Cs-137 activity was detected in one of the six indicator samples taken at Location 129 with a mean concentration of 21.1 pCi/kg, which is 1.06% of the reporting level. Cs-137 was detected in one of the six control samples taken at Location 137 with a mean concentration of 19.5 pCi/kg, which is 0.98% of the reporting level.

All other radionuclides not shown in the table have demonstrated no detectable activity since 1986.

Figure 3.7-1

Figure 3.7-2

	Mn-54	Co-58	Co-60	Cs-134	Cs-137
YEAR	Indicator	Indicator	Indicator	Indicator	Indicator
1980	-1.97E1	8.36E0	-2.25E1	-2.70E1	-4.13E0
1981	-2.71E0	-2.98E0	-2.65E0	-1.99E0	1.80E1
1982	-3.83E0	8.16E0	-4.34E-1	-8.22E-1	2.69E1
1983	-2.60E0	2.60E1	1.11E1	-1.32E0	6.03E1
1984	3.61E0	1.45E2	2.82E1	3.11E1	4.38E1
1985	2.53E-1	7.19E0	1.72E1	-1.56E0	1.86E1
1986	1.03E0	3.17E1	2.96E1	1.67E1	3.49E1
1987	0.00E0	2.71E2	1.25E2	2.60E1	5.10E1
1988	1.20E1	7.70E1	0.00E0	2.70E1	3.60E1
1989	9.00E1	4.05E2	2.99E2	1.10E1	3.50E1
· 1990	0.00E0	5.60E1	4.10E1	0.00E0	3.30E1
1991	6.20E0	1:40E1	6.50E1	5.90E0	2.60E1
1992	0.00E0	0.00E0	0.00E0	0.00E0	2.90E1
1993	0.00E0	8.20E1	1.30E1	: 0.00E0	1.60E1
1994	0.00E0	0.00E0	0.00E0	0.00E0	3.10E1
1995	0.00E0	0.00E0	0.00E0	0.00E0	2.70E1
1996	0.00E0	0.00E0	0.00E0	0.00E0	2.78E1
1997	0.00E0	0.00E0	0.00E0	0.00E0	1.62E1
1998	0.00E0	0.00E0	0.00E0	0.00E0	3.21E1
1999	0.00E0	-3.53E1	0.00E0	0.00E0	2.10E1
2000	0.00E0	4.28E1	0.00E0	0.00E0	2.34E1
2001	0.00E0	1.32E1	0.00E0	0.00E0	3.04E1
2002	0.00E0	0.00E0	0.00E0	0.00E0	2.33E1
2003	0.00E0	0.60E0	0.00E0	0.00E0	3.05E1
2004	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0
2005	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0
2006	0.00E0	0.00E0	0.00E0	0.00E0	1.08E1
2007	0.00E0	0.00E0	0.00E0	0:00E0	2.11E1

 Table 3.7 Mean Concentrations of Radionuclides in Fish (pCi/kg)

0.00E0 = no detectable measurements

. y.

ł

All negative values have been replaced with zeros for calculational purposes

. ..

1.12

3.8 SHORELINE SEDIMENT

In 2007, six shoreline sediment samples were analyzed, four from two indicator locations and two at the control location.

Figure 3.8-1 shows Cs-137 highest annualmean indicator and control location concentrations since 1979. Figure 3.8-2 shows Co-60 highest annual mean indicator and control location concentrations since 1979.

Cs-137 activity was detected in one of the four indicator samples taken. The shoreline sediment location with the highest annual mean was Location 130 with a mean concentration of 114 pCi/kg. Cs-137 was not detected in any control location samples.

Table 3.8 gives indicator location highest annual means since 1979 for all radionuclides detected since the analysis change in 1988. There is no reporting level for shoreline sediment.

Figure 3.8-1

There is no reporting level for Cs-137 in shoreline sediment

Fi	gure	3	.8-2
		-	

There is no reporting level for Co-60 in shoreline sediment

m 11 0 0 1F	~	0.75 11 10.1 1		
Table 3.8 Mean	Concentrations	of Radionuclides in	Shoreline Sediment	n(i/kg)
I HOLE OLO ILLEUIL	Concerner actions	or accounterentered and	Shot chine Deamiente	

YEAR	Mn-54 Indicator	Co-58 Indicator	Co-60 Indicator	Cs-134 Indicator	Cs-137 Indicator
1979	-1.07E1	2.25E1	-6.50E0	0.00E0	1.20E1
1980	1.06E1	-8.74E0	2.36E1	-3.53E0	1.44E1
1981	2.13E1	1.20E1	8.21E0	3.97E1	3.36E1
1982		1.66E1	-1.69E0	7.67E1	4.40E1
1983	4.40E0	3.43E1	2.12E1	7.65E1	8.02E1
1984	1.19E1	7.11E1	3.04E1	3.34E1	9.13E1
1985	4.77E0	1.46E1	9.20E0	2.02E1	1.61E2
1986	1.37E1	1.02E1	1.16E1	6.35E1	1.53E2
1987	0.00E0	1.06E2	2.10E1	4.20E1	1.65E2
1988	6.50E0	9.20E1	1.20E1	9.10E0	2.66E2
1989	2.90E1	3.80E1	2.90E1	5.30E1	6.50E1
1990	3.80E1	2.70E1	1.68E2	0.00E0	6.10E1
	2.80E1	5.30E1	1.31E2	0.00E0	1.03E2
1992	9.40E0	0.00E0	5.10E1	9.20E0	8.60E1
1993	0.00E0	2.20E1	8.60E1	0.00E0	9.30E1
1994	4.10E1	0.00E0	0.00E0	0.00E0	8.00E1
1995	1.70E1	0.00E0	2.30E1	0.00E0	1.38E2
1996	2.90E1	1.78E1	3.50E1	0.00E0	1.47E2
1997	0.00E0	0.00E0	1.11E2	3.10E1	1.36E2
1998	0.00E0	0.00E0	5.21E1	0.00E0	9.97E1
1999	0.00E0	2.47E1	8.49E1	0.00E0	6.51E1
2000	0.00E0	3.04E1	0.00E0	0.00E0	1.08E2
	NAMES OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.	nera conta da characteriza da la conta da conta	ni ja dina mangané kana kana kana kana kana kana kana k	The second state and the second state of the second state of the second state of the second state of the second	an de la companya da ser a companya da ser a

Table 3.8 continued

YEAR	Mn-54 Indicator	Co-58 Indicator	Co-60 Indicator	Cs-134 Indicator	Cs-137 Indicator
2001	0.00E0	0.00E0	0.00E0	0.00E0	2.77E1
2002	2.24E1	0.00E0	0.00E0	0.00E0	1.59E2
2003	0.00E0	0.00E0	0.00E0	0.00E0	1.11E2
2004	0.00E0	0.00E0	0.00E0	0.00E0	7.17E1
2005	0.00E0	0.00E0	0.00E0	0.00E0	8.08E1
2006	0.00E0	0.00E0	0.00E0	0.00E0	1.59E2
2007	0.00E0	0.00E0	0.00E0	0.00E0	1.14E2

. **

Section 3 - Page 17

3.9 DIRECT GAMMA RADIATION

In 2007, 161 TLDs were analyzed, 157 at indicator locations, four at the control location. TLDs are collected and analyzed quarterly. The highest annual mean exposure for an indicator location was 108 milliroentgen. The annual mean exposure for the control location was 90.0 milliroentgen.

Figure 3.9 and Table 3.9 show TLD inner ring (site boundary), outer ring (4-5 miles), and control location annual averages in milliroentgen per year. Preoperational data and ten year rolling averages are

also given. As shown in the graph, inner and outer ring averages historically compare closely, with control data somewhat higher. Inner and outer ring averages comprise a number of data points with the control average representing only one location.

The calculated total body dose from gaseous effluents for 2007 was 2.43E-1 millirem, which is 0.36% of the average inner ring TLD values. Therefore, it can be concluded that discharges from the plant had very little impact on the measured TLD values.

Figure 3.9

There is no reporting level for Direct Radiation (TLD)

YEAR	Inner Ring Average	Outer Ring Average	Control
	(mR/yr)	(mR/yr)	(mR/yr)
1979	7.91E1	8.82E1	8.32E1
1980	7.54E1*	8.29E1*	1.05E2
1981	1.01E2	9.31E1	1.05E2
1982 appendix	8.95E1	8.97E1	1.10E2
1983	1.16E2	1.14E2	1.30E2
1984	7.85E1	7.83E1	9.02E1
1985	9.54E1	9.69E1	1.27E2
1986	8.91E1	9.35E1	1.10E2
1987	7.58E1	7.71E1	1.23E2
1988	6.03E1	6.42E1	5.48E1
1989	5.37E1	5.30E1	7.55E1
1990	4.34E1	4.78E1	6.25E1
1991	5.14E1	5.59E1	6.80E1
1992	5.65E1	5.55E1	7.60E1
1993	5.61E1	5.71E1	7.20E1
1994	6.40E1	6.93E1	9.55E1
1995	8.36E1	8.25E1	1.08E2
1996	7.18E1	7.02E1	9.88E1
1997	6.22E1	6.68E1	9.45E1
1998	6.59E1	6.32E1	8.69E1
1999	6.23E1	6.05E1	8.96E1
2000	6.50E1	6.08E1	8.97E1
2001	6.51E1	6.22E1	9.33E1
2002	6.57E1	6.43E1	9.48E1
2003	6.74E1	6.45E1	9.20E1
2004	6.46E1	6.33E1	9.16E1
2005	6.62E1	6.34E1	9.44E1
2006	6.75E1	6.58E1	9.17E1
Average (1997 – 2006)	6.52E1	6.35E1	9.19E1
2007	6.84E1	6.60E1	9.00E1

1

. D

11.1 KET. 1

Table 3.9 Direct Gamma Radiation (TLD) Results

* Values are based on two quarters due to change in TLD locations.

· · · · · ·

. . .

• 28.21.
3.10 LAND USE CENSUS

~

The land use census was conducted May 21 and May 22, 2007 as required by SLC 16.11.14. Table 3.10 summarizes census results. A map indicating identified locations is shown in Figure 3.10.

During the 2007 census, no new or closer irrigated gardens were identified. The nearest residence is located in the East sector at 0.48 miles. No environmental program changes were required as a result of the 2007 land use census.

Sector		Distance (Miles)	Sector		Distance (Miles)
N	Nearest Residence Nearest Garden (irrigated) Nearest Milk Animal	2.53 2.79	S	Nearest Residence Nearest Garden Nearest Milk Animal	1.45 3.12
NNE /	Nearest Residence Nearest Garden Nearest Milk Animal	1.23 2.53	SSW	Nearest Residence Nearest Garden Nearest Milk Animal	2.56 2.94
NE	Nearest Residence Nearest Garden (irrigated) Nearest Milk Animal	1.21 1.80	SW	Nearest Residence Nearest Garden Nearest Milk Animal	1.85 4.00
ENE	Nearest Residence Nearest Garden (irrigated) Nearest Milk Animal	0.57 2.54	. WSW	Nearest Residence Nearest Garden Nearest Milk Animal	1.01 1.33
E	Nearest Residence Nearest Garden Nearest Milk Animal (COW)	0.48 1.86 2.49	W	Nearest Residence Nearest Garden Nearest Milk Animal	1.15 1.23
ESE	Nearest Residence Nearest Garden Nearest Milk Animal	0.65 1.15	WNW	Nearest Residence Nearest Garden Nearest Milk Animal	0.88 1.73 -
SE	Nearest Residence Nearest Garden Nearest Milk Animal	0:67 1.18 -	NW	Nearest Residence Nearest Garden Nearest Milk Animal	0.95 1.68 -
SSE	Nearest Residence Nearest Garden Nearest Milk Animal	1.06 2.18	NNW	Nearest Residence Nearest Garden (irrigated) Nearest Milk Animal	1.48 1.69

Table 3.10 McGuire 2007 Land Use Census Results

"-" indicates no occurrences within the 5 mile radius

•••••••••

Figure 3.10

4.0 EVALUATION OF DOSE

4.1 DOSE FROM ENVIRONMENTAL MEASUREMENTS

Annual doses to maximum exposed individuals were estimated based on measured concentrations of radionuclides in 2007 MNS REMP samples. The primary purpose of estimating doses based on sample results is to allow comparison to effluent program dose estimates.

Doses based on sample results were calculated using the methodology and data presented in NRC Regulatory Guide 1.109. Measured radionuclide concentrations, averaged over the entire year for a specific radionuclide, indicator location and sample type, were used to calculate REMP-based doses. Where applicable, average background concentration at the corresponding control location was subtracted. Regulatory Guide 1.109 consumption rates for the maximum exposed individual were used in the calculations. When the guide listed "NO DATA" as the dose factor for a given radionuclide and organ, a dose factor of zero was assumed.

Maximum dose estimates (Highest Annual Mean Concentration) based on drinking water, fish, and shoreline sediment sample results are reported in Table 4.1-A. The individual critical population and pathway dose calculations are reported in Table 4.1-B.

REMP-based dose estimates are not reported for airborne radioiodine or milk sample types because no radionuclides other than naturally occurring K-40 and Be-7 were detected in the samples. Dose estimates are not reported for surface water because sampled surface water is not considered to be a potable drinking water source although surface water tritium concentrations are used in calculating doses from fish. Exposure estimates based upon REMP TLD results are discussed in Section 3.9.

The maximum environmental organ dose estimate for any single sample type (other than direct radiation from gaseous effluents) collected during 2007 was 1.58E-1 mrem to the maximum exposed child liver from the consumption of drinking water.

4.2 ESTIMATED DOSE FROM RELEASES

Throughout the year, dose estimates were calculated based on actual 2007 liquid and gaseous effluent release data. Effluent-based dose estimates were calculated using the RETDAS computer program which employs methodology and data presented in NRC Regulatory Guide 1.109. These doses are shown in Table 4.1-A along with the corresponding REMP-based dose estimates. Summaries of RETDAS dose calculations are reported in the Annual Radioactive Effluent Release Report (reference 6.6).

The effluent-based liquid release doses are summations of the dose contributions from the drinking water, fish, and shoreline pathways. The effluent-based gaseous release doses report noble gas exposure separately from iodine, particulate, and tritium exposure. For noble gas exposure there is no critical age group; as the maximum exposed individuals are assured to receive the same doses, regardless of their age group. For iodine, particulate, and tritium exposure the effluent-based gaseous release doses are summations of the dose contributors from ground/plane, inhalation, milk and vegetation pathways.

Õ

•

ŏ

Õ

4.3 <u>COMPARISON OF DOSES</u>

- <u>1</u>.

The environmental and effluent dose estimates given in Table 4.1-A agree reasonably well. The similarity of the doses indicate that the radioactivity levels in the environment do not differ significantly from those expected based on effluent measurements and modeling of the environmental exposure pathways. This indicates that effluent program dose estimates are both valid and reasonably conservative.

1.0000

, where we concretely the second second

There are some differences in how effluent and environmental doses are calculated that affect the comparison. Doses calculated from environmental data are conservative because they are based on a mean that includes only samples with a net positive activity versus a mean that includes all sample results (i.e. zero results are not included in the mean). Also, airborne tritium is not measured in environmental samples but is used to calculate effluent doses.

In calculations based on liquid release pathways, drinking water and fish consumption were the predominant dose pathways based on environmental and effluent data. The maximum total organ dose based on 2007 environmental sample results was 1.58E-1 mrem to the child liver. The maximum total organ dose of 2.43E-1 mrem for liquid effluent-based estimates was to the child liver.

In calculations based on gaseous release pathways, inhalation was the predominant dose pathway for effluent samples. The maximum organ dose for gaseous effluent estimates was 2.43E-1 mrem to the teen total body, liver, thyroid, kidney, lung, and GI-LLI. The maximum environmental dose is 1.14E-1 mrem to the child bone due to ground plane pathway.

Noble gas samples are not collected as part of the REMP, preventing an analogous comparison of effluent-based noble gas exposure estimates.

The doses calculated do not exceed the 40CFR190 dose commitment limits for members of the public. Doses to members of the public attributable to the operation of MNS are being maintained well within regulatory limits.

TABLE 4.1-A

MCGUIRE NUCLEAR STATION 2007 ENVIRONMENTAL AND EFFLUENT DOSE COMPARISON

ing the second the second ended where the product of a

LIQUID RELEASE PATHWAY

Organ	Environmental or Effluent Data	Critical Age ⁽¹⁾	Critical Pathway ⁽²⁾	Location	Maximum Dose ⁽³⁾ (mrem)
<u> </u>		_			
Skin	Environmental	Teen	Shoreline Sediment	130 (0.52 mi SW)	2.99E-04
Skin	Effluent	Teen	Shoreline Sediment	Discharge Pt.	5.91E-04
Bono	Environmental	Child	State States	120 (0.51 m; ENE)	2 61E 02
Done		Child	F1811	129(0.31 IIII ENE)	5.01E-05
Bone	Ennuent	Child	Fisn	Discharge Pt.	5.05E-02
Liver	Environmental	Child	Drinking Water	101 (3.31 mi F)	1.58E.01
Liver	Effluent	Child	Drinking Water	2.21 mi E	1.30E-01
Livei	Linucin	Ciniu	Dilliking water	5.51 III E	2.43E-01
T Body	Fnvironmental	Child	Drinking Water	$101(3.21 \text{ m}; \mathbf{E})$	1 55E 01
T. Dody	Effluent	Child	Drinking Water	$\frac{101(3.51 \text{ mm E})}{2.21 \text{ mm E}}$	1.55E-01
I. Bouy	Ennuent	Cinid	Drinking water	3.31 mi E	1.98E-01
Thuroid	Environmental	Child	Drinking Water	101(2,21 m; E)	1.55E 01
Thyroid	Effluent	Child	Drinking Water	$\frac{101}{2} (3.51 \text{ mm E})$	1.33E-01
Thylolu	Linuem	Ciniu	Drinking water	5.51 III E	1.89E-01
Kidnev	Environmental	Child	Drinking Water	101 (3 31 mi E)	1 56E-01
Kidney	Effluent	Child	Drinking Water	3 31 mi F	2.06E-01
Huney		enna		5.51 III L	2.001-01
Lung	Environmental	Child	Drinking Water	101 (3.31 mi E)	1.55E-01
Lung	Effluent	Child	Drinking Water	3.31 mi E	1.95E-01
0		;			
GI-LLI	Environmental	Child	Drinking Water	101 (3.31 mi E)	1.55E-01
GI-LLI	Effluent	Child	Drinking Water	3.31 mi E	1.89E-01
	· · · ·			43 ⁶	

(1) Critical Age is the highest total dose (all pathways) to an age group.

(2) Critial Pathway is the highest individual dose within the identified Critical Age group.

(3) Maximum dose is a summation of the fish, drinking water and shoreline sediment pathways.

Page 2 of

GASEOUS RELEASE PATHWAY

• >0100 $k_{\rm exp} \gtrsim 10^{-11}$

IODINE, PARTICULATE, and TRITIUM

Organ	Environmental or Effluent Data	Critical Age ⁽¹⁾	Critical Pathway ⁽²⁾	Location	Maximum Dose ⁽³⁾ (mrem)
Skin Skin	Environmental Effluent	All	Ground Plane	0.5 mi. ENE	0.00E+00 1.99E-05
Bone	Environmental	Child	Vegetation	120 (0.46 mi NNE)	1.14E-01
Bone	Effluent	All	Ground Plane	0.5 mi. ENE	1.71E-05
Liver	Environmental	Child	Vegetation	120 (0.46 mi NNE)	1.09E-01
Liver	Effluent	Teen	Inhalation	0.5 mi. ENE	2.43E-01
T. Body	Environmental	Adult	Vegetation	120 (0.46 mi NNE)	6.12E-02
T. Body	Effluent	Teen	Inhalation	0.5 mi. ENE	2.43E-01
Thyroid	Environmental	-	-	0.5 mi. ENE	0.00E+00
Thyroid	Effluent	Teen	Inhalation		2.43E-01
Kidney	Environmental	Child	Vegetation	120 (0.46 mi NNE)	3.55E-02
Kidney	Effluent	Teen	Inhalation	0.5 mi. ENE	2.43E-01
Lung	Environmental	Child	Vegetation	120 (0.46 mi NNE)	1.28E-02
Lung	Effluent	Teen	Inhalation	0.5 mi. ENE	2.43E-01
GI-LLI	Environmental	Adult	Vegetation	120 (0.46 mi NNE)	1.81E-03
GI-LLI	Effluent	Teen	Inhalation	0.5 mi. ENE	2.43E-01

(1) Critical Age is the highest total dose (all pathways) to an age group.

(2) Critial Pathway is the highest individual dose within the identified Critical Age group.

(3) Maximum dose is a summation of the ground/plane, inhalation, milk and vegetation pathways.

Page 3 of 3

.

NOBLE GAS

Air Dose	Environmental or Effluent Data	Critical Age	Critical Pathway	Location	Maximum Dose (mrad)
Beta Beta	Environmental Effluent	N/A State	Noble Gas	0.5 mi. NNE	Not Sampled 4.46E-02
Gamma Gamma	Environmental Effluent	N/A	Noble Gas	0.5 mi. NNE	Not Sampled 1.64E-02
		t,		<u></u>	
	н			an an stat an an An	
				1 - 14 1 - 14 - 14	:
				5. 	
			 Le que	an a	
		。 1997年 1997年		en er	
· .		€ (¹)		ting and the second sec	
. • nè "	. 2 1 - 22. 21	inter e a esta e	nang menangan Ali sa	2200 /	a Barta an

TABLE 4.1-B

.

IABLE 4.1-B Maximum Individual Dose for 2007 based on Environmental Measurements (mrem) for McGuire Nuclear Station

	Age	Sample Medium	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Skin
	Infant	Airborne	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		Drinking Water	0.00E+00	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01	0.00E+00
	· · · · ·	Milk	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
× *	. 40° - 11°	TOTAL	0.00E+00	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01	0.00E+00
4.	n ann Mar	art J	2 2 2	к. 1. Ц.			1. 1. Mar 1. 192	. •	•	1.1.1
	Child	Airborne	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5. Art		Drinking Water	0.00E+00	1.53E-01	1.53E-01	1.53E-01	1.53E-01	1.53E-01	1.53E-01	0.00E+00
a** [1 - 1	Milk	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		Broadleaf Vegetation	1.14E-01	1.09E-01	1.61E-02	0.00E+00	3.55E-02	1.28E-02	6.83E-04	0.00E+00
~	•	Fish	3.61E-03	5.14E-03	2.20E-03	1.69E-03	2.81E-03	2.09E-03	1.71E-03	0.00E+00
		Shoreline Sediment	0.00E+00	0.00E+00	5.36E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.26E-05
	٩	TOTAL	1.18E-01	2.67E-01	1.71E-01	1.55E-01	1.91E-01	1.68E-01	1.55E-01	6.26E-05
1		entral designed and a second	(1997) - 1989 1997	1 N. 197	. ` .	i a l'ang sant'	1171 N 117	nte por la sette subti S	999 - 199 - 199 1	terete in t
en trans a sé	Teen	Airborne	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		Drinking Water	0.00E+00	8.00E-02	8.00E-02	8.00E-02	8.00E-02	8.00E-02	8.00E-02	0.00E+00
		Milk	0.00E+00	0.00E+00	0.00Ĕ+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		Broadleaf Vegetation	6.30E-02	8.39E-02	2.92E-02	0.00E+00	2.85E-02	1.11E-02	1.19E-03	0.00E+00
		Fish	2.87E-03	5.86E-03	3.37E-03	2.04E-03	3.34E-03	2.55E-03	2.10E-03	0.00E+00
Act of	4	Shoreline Sediment	0.00E+00	0.00E+00	2.57E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.99E-04
		TOTAL	6.59E-02	1.70E-01	1.13E-01	8.20E-02	1.12E-01	9.37E-02	8.33E-02	2.99E-04
· · · ·	1. 1. 1. 1. 1.	×,*	1 (1 () () () () () () () () (an go than T			a 7			
	Adult	Airborne	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		Drinking Water	0.00E+00	1.13E-01	1.13E-01	1.13E-01	1.13E-01	1.13E-01	1.13E-01	0.00E+00
		Milk	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		Broadleaf Vegetation	6.84E-02	9.35E-02	6.12E-02	0.00E+00	3.17E-02	1.05E-02	1.81E-03	0.00E+00
		Fish	2.68E-03	6.32E-03	5.05E-03	2.65E-03	3.90E-03	3.07E-03	2.73E-03	0.00E+00
		Shoreline Sediment	0.00E+00	0.00E+00	4.60E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.36E-05
		TOTAL	7.11E-02	2.13E-01	1.79E-01	1.16E-01	1.49E-01	1.27E-01	1.18E-01	5.36E-05

Note: Dose tables are provided for sample media displaying positive nuclide occurrence.

 $Q_{i}^{(i)} \in \mathcal{H}$

Section 4 - Page 6

McGuire Nuclear Station

Dose from Drinking Water Pathway for 2007 Data

Maximum Exposed Infant

Infant Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

1

and the

. *

Usage (inteksii	n one vear) -	330	1.				· •						: ·	tertar a	lat	
Usage (intake i	n one year) –	- 550					۹.	Highest	Annual		:				1.1. A.	
		1997 - A			<i></i>			Net N	1ean	· · ·	- 5		1 1 1	: `}	1	·· ` ·
		17		Ingestio	n Dose F	actor		<u>Concen</u>	tration				Dose (m	<u>rem)</u>	<u>1</u>	нт н. 19
		1.10 ± 0.11	16			•	н., 44 	Indicator	Water				1	111	$N_{\rm ell} = 10^{-1}$	
Radionuclide	Bone	Liver Physical	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	$_{A}$ · Lung $_{A}$. GI-LLI
Mn-54	NO DATA	1.99E-05	4.51E-06	NO DATA	4.41E-06	NO DATA	7.31E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
			÷			1941 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -	201	3 <u>,</u> 1-	a	$= \{ e_i \in i \}$	1,314		增位也。		01 30	ter, tri
Co-58	NO DATA	3.60E-06	8.98E-06	NO DATA	NO DATA	NO DATA	8.97E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0,00E+00;	Q.00E+00	. 0.00E+00
Fe-59	3.08E-05	5.38E-05	2.12E-05	NO DATA	NO DATA	1.59E-05	2.57E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		i,		594 P. H	11. <u>1</u> 1	• •				11 a 11 a 11	. • • •			的现在分	्रम् अप्र	$p \rightarrow 1$
Co-60	NO DATA	1.08E-05	2.55E-05	NO DATA	NO DATA	NO DATA	2.57E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00	. 0.00E+00 "	0.00E+00
Zn-65	1.84E-05	6.31E-05	2.91E-05	NO DATA	3.06E-05	NO DATA	5.33E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00Ė+00	0.00E+00	0.00E+00
		1						17					1. Ke (1. 1. 1.	4 V 3	<u>)</u> (1	:
Nb-95	4.20E-08	1.73E-08	1.00E-08	NO DATA	1.24E-08	NO DATA	1.46E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	2.06E-07	5.02E-08	3.56E-08	NO DATA	5.41E ¹ 08	NO DATA	2.50E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Ó.00E+00
		est of			$\phi \in \{1, \infty\}$					1.1	e (A	4 af	14 - E	$d_{i} \in \mathcal{A}_{i}$:
I-131	3.59E-05	4.23E-05	1.86E-05	1.39E-02	4.94E-05	NO DATA	1.51E-06	ALL	0.00	0.00E+00	0.00E+00	0.Q0E+00	0,00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	3.77E-04	7.03E-04	7.10E-05	NO DATA	1.81E-04	7.42E-05	1.91E-06	ALL	· 0.00 ;	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	5.22E-04	6.11E-04	4.33E-05	NO DATA	1.64E-04	6.64E-05	1.91E-06	ALL .	0.00	0.00E+00	0.00E+00	, 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	1.71E-04	1.71E-07	8.81E-06	NO DATA	4.06E-08	1.05E-07	4.20E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	i i	- 14	1 A A	NY IN T	4.5									•		
Н-3	NO DATA	3.08E-07	3.08E-07	3.08E-07	3.08E-07	3.08E-07	3.08E-07	101	1480	0.00E+00	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01

Dose Commitment (mrem) =

0.00E+00 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01

McGuire Nuclear Station Dose from Drinking Water Pathway for 2007 Data Maximum Exposed Child

and the second second

0.00E+00 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01

Child Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

				`х .										· · ·		
Usage (intake i	in one year) =	510	1											·	·	
					· • -			Highest A Net Me	annual ean		·					
a state in the				Ingestio	n Dose <u>F</u> a	actor		Concent	<u>ation</u>				Dose (m	<u>rem)</u>		
				<u>.</u>		,*• .		Indicator	Water							
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.07E-05	2.85E-06	NO DATA	3.00E-06	NO DATA	8.98E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	1.80E-06	5.51E-06	NO DATA	NO DATA	NO DATA	1.05E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	1.65E-05	2.67E-05	1.33E-05	NO DATA	NO DATA	7.74E-06	2.78E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C0-60	NO DATA	5.29E-06	1.56E-05	NO DATA	NO DATA	NO DATA	2.93E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	1.37E-05	3.65E-05	2.27E-05	NO DATA	2.30E-05	NO DATA	6.41E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	2.25E-08	8.76E-09	6.26E-09	NO DATA	8.23E-09	NO DATA	1.62E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	1.16E-07	2.55E-08	2.27E-08	NO DATA	3.65E-08	NO DATA	2.66E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	1.72E-05	1.73E-05	9.83E-06	5.72E-03	2.84E-05	NO DATA	1.54E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	2.34E-04	3.84E-04	8.10E-05	NO DATA	1.19E-04	4.27E-05	2.07E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	3.27E-04	3.13E-04	4.62E-05	NO DATA	1.02E-04	3.67E-05	1.96E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	8.31E-05	7.28E-08	4.85E-06	NO DATA	2.37E-08	4.34E-08	4.21E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	101	1480	0.00E+00	1.53E-01	1.53E-01	1.53E-01	1.53E-01	1.53E-01	1.53E-01
												•				

Section 4 - Page 8

Dose Commitment (mrem) =

McGuire Nuclear Station

Dose from Broadleaf Vegetation Pathway for 2007 Data Maximum Exposed Child

and the second second

.

the second se

0.00E+00 3.55E-02

. .

1.28E-02

6.83E-04

Child Dose from Vegetation Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

,

(0, 1, 2)

and the state of the 141 g. # 1.4 26 kg Usage (intake in one year) = "我们的这个时候,我们们都能是我的一个。 ۰., **Highest Annual** Net Mean . .. eges ange ::::-10.00 **Ingestion Dose Factor** Dose (mrem) Concentration · · · · · Food Indicator Thyroid Kidney **GI-LLI** (pCi/kg) Radionuclide Bone Liver T. Body Lung Location Bone Liver T. Body Thyroid Kidney Lung **GI-LLI** 9.83E-06 1.72E-05 1.73E-05 5.72E-03 2.84E-05 NO DATA 1.54E-06 I-131 ALL 0.00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1. j . . 145 2.34E-04 3.84E-04 8.10E-05 NO DATA 1.19E-04 2.07E-06 ALL 0.00E+00 Cs-134 4.27E-05 0.000.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Cs-137 3.27E-04 3.13E-04 4.62E-05 NO DATA 1.02E-04 3.67E-05 1.96E-06 120 13.4 1.14E-01 1.09E-01 1.61E-02 0.00E+00 3.55E-02 1.28E-02 6.83E-04

1.14E-01 1.09E-01

1.61E-02

Dose Commitment (mrem) =

McGuire Nuclear Station Dose from Fish Pathway for 2007 Data Maximum Exposed Child

Child Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 1338 pCi/l x 0.9 = 1204 pCi/kg Usage (intake in one year) = 6.9 kg

• =

	Highest Annual															
				••				Net N	Aean -							
				Ingestio	<u>n Dose F</u>	actor		Concer	tration				Dose (m	rem)		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Fish (pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.07E-05	2.85E-06	NO DATA	3.00E-06	NO DATA	8.98E-06	ALL	0.00	0.00E+00						
Co-58	NO DATA	1.80E-06	5.51E-06	NO DATA	NO DATA	NO DATA	1.05E-05	ALL	0.00	0.00E+00						
Fe-59	1.65E-05	2.67E-05	1.33E-05	NO DATA	NO DATA	7.74E-06	2.78E-05	ALL	0.00 .	0.00E+00						
C0-60	NO DATA	5.29E-06	1.56E-05	NO DATA	NO DATA	NO DAȚA	2.93E-05	ALL	0.00	0.00E+00						
Zn-65	1.37E-05	3.65E-05	2.27E-05	NO DATA	2.30E-05	NO DATA	6.41E-06	ALL	0.00	0.00E+00						
Cs-134	2.34E-04	3.84E-04	8.10E-05	NO DATA	1.19E-04	4.27E-05	2.07E-06	ALL	0.00	0.00E+00						
Cs-137	3.27E-04	3.13E-04	4.62E-05	NO DATA	1.02E-04	3.67E-05	1.96E-06	129	1.60	3.61E-03	3.46E-03	5.10E-04	0.00E+00	1.13E-03	4.05E-04	2.16E-05
Н-3	NO DATA	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	128	1204	0.00E+00	1.69E-03	1.69E-03	1.69E-03	1.69E-03	1.69E-03	1.69E-03
						Dose Comm	itment (mro	em) =		3.61E-03	5.14E-03	2.20E-03	1.69E-03	2.81E-03	2.09E-03	1.71E-03

Section 4 - Page 10

McGuire Nuclear Station Dose from Shoreline Sediment Pathway for 2007 Data Maximum Exposed Child

Shoreline Recreation =								
Shore Width Factor =								
Shore Width Factor =								
Sediment Surface Mass =								

. ***** 1

···, . .

1.2.14

2.1

. .

i de la composition de

н,

14hr (in one year)0.3(lake shore - location 129)0.2(river shoreline - location 130)40kg/m²

and the second second

....

. . .

Child Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m^2) x Shore Width Factor x Sediment Surface Mass (kg/m²) x Sediment Concentration (pCi/kg)

	Externa <u>on Con</u>	l Dose Fact taminated	tor Standing <u>Ground</u>	Highest A <u>Mean Co</u> i	nnual Net ncentration	L	<u>Dose</u>	
	Radionuclide	(mrem/hr	per pCi/m ²)	Indicator Location	Sediment	(m T. Body	rem) Skin	
Ð	Kaulonuchuc	I. Douy	JKII	Location	(perkg)	I. Douy	SKIII	
	Mn-54	5.80E-09	6.80E-09	ALL	0.00	0.00E+00	0.00E+00	
	Co-58	7.00E-09	8.20E-09	ALL	0.00	0.00E+00	0.00E+00	
	Co-60	1.70E-08	2.00E-08	ALL	0.00	0.00E+00	0.00E+00	
	Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00	
	Cs-137	4.20E-09	4.90E-09	130	114	5.36E-05	6.26E-05	
			Dose Commitme	ent (mrem) =		5.36E-05	6.26E-05	

Section 4 - Page 11

McGuire Nuclear Station Dose from Drinking Water Pathway for 2007 Data Maximum Exposed Teen

Teen Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in	n one year) =	510	1													
, . .				1		•••.		Highest A Net M	Annual Iean			.,	· .		3	·
				Ingestio	n Dose F	actor		Concent	tration				Dose (m	rem)		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Water (pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	5.90E-06	1.17E-06	NO DATA	1.76E-06	NO DATA	1.21E-05	ALL	0.00	0.00E+00						
Co-58	NO DATA	9.72E-07	2.24E-06	NO DATA	NO DATA	NO DATA	1.34E-05	ALL	0.00	0.00E+00						
Fe-59	5.87E-06	1.37E-05	^{**} 5.29E-06	NO DATA	NO DATA	4:32E-06	3.24E-05	ALL.	0.00	0.00E+00						
Co-60	NO DATA	2.81E-06	6.33E-06	NO DATA	NO DATA	NO DATA	3.66E-05	ALL	0.00	0.00E+00						
Zn-65	5.76E-06	2.00E-05	9.33E-06	NO DATA	1.28E-05	NO DATA	8.47E-06	ALL	0.00	0.00E+00						
Nb-95	8.22E-09	4.56E-09	2.51E-09	NO DATA	4.42E-09	NO DATA	1.95E-05	ALL	0.00	0.00E+00						
Zr-95	4.12E-08	1.30E-08	8.94E-09	NO DATA	1.91E-08	NO DATA	3.00E-05	ALL	0.00	0.00E+00						
1-131	5.85E-06	8.19E-06	4.40E-06	2.39E-03	1.41E-05	NO DATA	1.62E-06	ALL	0.00	0.00E+00						
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	0.00	0.00E+00						
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	ALL	0.00	0.00E+00						
BaLa-140	2.84E-05	3.48E-08	1.83E-06	NO DATA	1.18E-08	2.34E-08	4.38E-05	ALL	0.00	0.00E+00						
Н-3	NO DATA	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	101	1480	0.00E+00	8.00E-02	8.00E-02	8.00E-02	8.00E-02	8.00E-02	8.00E-02

Section 4 - Page 12

Dose Commitment (mrem)=

0.00E+00 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02

McGuire Nuclear Station Dose from Broadleaf Vegetation Pathway for 2007 Data Maximum Exposed Teen

and the second second

Teen Dose from Vegetation Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)

;

		ft - s	,. ·								·	1 4	···· .	-141, http://		
Usage (intake	in one year) =	42	kg				× .	Highest Not N	Annual	. :			5. M	and the		
				Ingestio	<u>n Dose I</u>	Factor		<u>Concer</u>	tration Food	r			<u>Dose (m</u>	<u>rem)</u>	· · · · ·	
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
I-131	5.85E-06	8.19E-06	4.40E-06	2.39E-03	1.41E-05	NO DATA	1.62E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	120	13.4	6.30E-02	8.39E-02	2.92E-02	0.00E+00	2.85E-02	1.11E-02	1.19E-03
						Dose Comm	iitment (mr	em) =		6.30E-02	8.39E-02	2.92E-02	0.00E+00	2.85E-02	1.11E-02	1.19E-03

•

McGuire Nuclear Station Dose from Fish Pathway for 2007 Data Maximum Exposed Teen

Teen Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 1338 pCi/l x 0.9 = 1204 pCi/kg Usage (intake in one year) = 16 kg

a a transferance

				- 1	$\{ (1, \dots, n) \}$			Highest	Annual							
				Ingestio	n Dose F	<u>actor</u>	<u>j</u> e 1	- Net I	Mean	÷	· ·		Dose (m	rem)		
								<u>Concer</u>	<u>itration</u>							
Radionuclide	Bone	Liver	T. Body	, Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	5.90E-06	1.17E-06	NO DATA	1.76E-06	NO DATA	1.21E-05	ALL	0.00	0.00E+00						
Co-58	NO DATA	9.72E-07	2.24E-06	NO DATA	NO DATA	NO DAȚA	1.34E-05	ALL	0.00	0.00E+00						
Fe-59	5.87E-06	1.37E-05	5.29E-06	NO DATA	NO DATA	4.32E-06	3.24E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0 0
Co-60	NO DATA	2.81E-06	6.33E-06	NO DATA	NO DATA	NO DATA	3.66E-05	ALL	0.00	0.00E+00						
Zn-65	5.76E-06	2.00E-05	9.33E-06	NO DATA	1.28E-05	NO DATA	8.47E-06	ALL	0.00	0.00E+00						
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	. 0.00	0.00E+00						
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	. 129	1.60	2.87E-03	3.81E-03	1.33E-03	0.00E+00	1.30E-03	5.04E-04	5.43E-05
Н-3	NO DATA	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	128	1204	0.00E+00	2.04E-03	2.04E-03	2.04E-03	2.04E-03	2.04E-03	2.04E-03
						Dose Comm	nitment (mr	em) =		2.87E-03	5.86E-03	3.37E-03	2.04E-03	3.34E-03	2.55E-03	2.10E-03

Section 4 - Page 14

	5-1.													
		;		McGuir	re Nucle	ar Station	ı	•						
		Dose from	m Shore	line Sed	liment F	athway fo	or 2007	Data			4 - <u>2</u> 01		a.	
۰.	· .		Ма	ximum	Expose	d Teen	۰.							
a star and a star		Shoreline Recr	eation =	67	hr (in one	yéar)			: •		. ¹ 1.	:		
20 g		Shore Width Fa Shore Width Fa	actor = actor =	0.3 0.2	(lake shor (river sho	e - location 129) reline - location	130)			* .	• • •	1,55		
: ;		Sediment Surfa	ce Mass =	40	kg/m ²			• .			. 14.	jiq: s	• t	
t an Sa	· .	Teen Dose from Dose Factor (m	n Shoreline Se rem/hr per pC	diment Pathw Ci/m ²) x Shore	vay (mrem) = e Width Facto	Shoreline Recre or x Sediment Su	eation (hr) x] irface Mass (External (kg/m²) x			· · · · · · · · · · · · · · · · · · ·	· 13 (
the part of the second se		Sediment Conc	entration (pCi	i/kg)	<i>.</i> .	n na Shi Martina A		,			(1) (0)	5 8 F		
		External <u>on Cont</u>	Dose Factor S aminated Gro	Standing <u>ound</u>	Highest A <u>Mean Con</u>	nnual Net centration	D	<u>1050</u>		e Barla (e)				
land and an arrest state of the state of t		(mren	ı/hr per pCi/n	n ²)	Indicator	Sediment	(៣)	rem)						
A State of the sta		Radionuclide	T. Body	Skin	Location	(pCi/kg)	T. Body	Skin						
ч	1. p	Mn-54	5.80E-09	6.80E-09	ALL	0.00	0.00E+00	0.00E+00						
		Co-58	7.00E-09	8.20E-09	ALL	0.00	0.00E+00	0.00E+00						
		Co-60	1.70E-08	2.00E-08	ALL	0.00	0.00E+00	0.00E+00						
		Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00						

130

4.90E-09

Dose Commitment (mrem) =

Cs-137

4.20E-09

114

2.57E-04 2.99E-04

2.57E-04 2.99E-04

McGuire Nuclear Station Dose from Drinking Water Pathway for 2007 Data Maximum Exposed Adult

Adult Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

· · ·			· · ·	· ·										s		•
Usage (intake i	in one year) =	730	1													
					:		х х.	Highest	Annual							
								Net N	lean							
÷	1. T			Ingostio	n Doso F	actor		Concon	tration				Doco (m			
				ingestio	n Dose r	actor		Concen	W				DOSE (III	<u>rem)</u>		
D I I I I	n .	¥ 4	TD.d.	Th	K idaaa	T	CLUI	Indicator	water	р	T •	T D I			*	CLINI
Radionuciide	Bone	Liver	I. Douy	Thyroid	Klulley	Lung	GI-LLI	Location	(pcm)	вопе	Liver	I. Dody	тпугою	Kidney	Lung	GI-LLI
Mn-54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	4.34E-06	1.02E-05	3.91E-06	NO DATA	NO DATA	2.85E-06	3.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	6.22E-09	3.46E-09	1.86E-09	NO DATA	3.42E-09	NO DATA	2.10E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	3.04E-08	9.75E-09	6.60E-09	NO DATA	1.53E-08	NO DATA	3.09E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	4.16E-06	5.95E-06	3.41E-06	1.95E-03	1.02E-05	NO DATA	1.57E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	2.03E-05	2.55E-08	1.33E-06	NO DATA	8.67E-09	1.46E-08	4.18E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	101	1480	0.00E+00	1.13E-01	1.13E-01	1.13E-01	1.13E-01	1.13E-01	1.13E-01

0.00E+00 1.13E-01 1.13E-01 1.13E-01 1.13E-01 1.13E-01 1.13E-01

Section 4 - Page 16

Dose Commitment (mrem) =

					,		· · · ·	
. *.	÷.					· .	e te se	and the second second
	.: .	. •		McGuire I	Nuclear Stati	о. О п	1997 - 1 9	1. J. 144
			Dose from l	Broadleaf Ve	getation Path	way for 200	7 Data	
				Maxin	num Exposed	Adult	та, т	an a
			÷		• <u> </u>	,	÷	and the state of the state

Adult Dose from Vege	tation (mrem) = Usage	(kg) x Dose Factor (mrem	/pCi ingested) x Concentration	(pCi/kg)
0	· · · ·			1 63/

	. 1	• •		۰.,	n per se	•	· .	2 al	Average and the
Usage (intal	ke in one year) =	64 kg							and the second
7.5			, TT					the provide states	

	, i t	• • •						•	Highest Net N	Annual Aean		·		·			·•
	eest digitu ⊉	e stan		rîv î	Ingestio	n Dose F	Factor		Concen	tration				<u>Dose (m</u>	<u>rem)</u>		
Ra	dionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Food (pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
	I-131	4.16E-06	5.95E-06	3.41E-06	1.95E-03	1.02E-05	NO DATA	1.57E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Cs-137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	120	13.4	6.84E-02	9.35E-02	6.12E-02	0.00E+00	3.17E-02	1.05E-02	1.81E-03

 Dose Commitment (mrem) =
 6.84E-02
 9.35E-02
 6.12E-02
 0.00E+00
 3.17E-02
 1.05E-02
 1.81E-03

McGuire Nuclear Station Dose from Fish Pathway for 2007 Data Maximum Exposed Adult

11 C. 1

Adult Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg)H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 1338 pCi/l x 0.9 = 1204 pCi/kgUsage (intake in one year) =21 kg

								Highest Net N	Annual Tèan	.,						
			Ingestic	on Dose Fa	actor	t .	84° 1.	Concen	<u>tration</u>	•	:		Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+0 0	0.00E+00	0.00E+00	0.00E+00
Fe-59	4.34E-06	1.02E-05	3.91E-06	NO DATA	NO DATA	2.85E-06	3.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06		0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	129	1.60	2.68E-03	3.66E-03	2.40E-03	0.00E+00	1.24E-03	4.13E-04	7.09E-05
Н-3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	128	1204	0.00E+00	2.65E-03	2.65E-03	2.65E-03	2.65E-03	2.65E-03	2.65E-03
						Dose Comm	nitment (mr	em) =		2.68E-03	6.32E-03	5.05E-03	2.65E-03	3.90E-03	3.07E-03	2.73E-03

Section 4 - Page 18

McGuire Nuclear Station Dose from Shoreline Sediment Pathway for 2007 Data Maximum Exposed Adult

Shoreline Recreation =	12	hr (in one year)	· ,	
Shore Width Factor =	0.3	(lake shore - location 129)		
Shore Width Factor =	0.2	(river shoreline - location 130)	• •	a parte anti-
Sediment Surface Mass =	40	kg/m ²	•	al an an

Adult Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m²) x Shore Width Factor x Sediment Surface Mass (kg/m²) x Sediment Concentration (pCi/kg)

External Dos <u>on Cont</u>	se Factor S aminated (standing <u>Fround</u>	Highest Ar <u>Mean</u> Con	nnual Net	<u>D</u>	<u>ose</u>	
Radionu <u>c</u> lide	(mrem/hr p T. Body	er pCi/m²) Skin	Indicator Location	Sediment (pCi/kg)	(m) T. Body	rem) Skin	
Mn-54	5.80E-09	6.80E-09	ALL	0.00	0.00E+00	0.00E+00	
Co-58	7.00E-09	8.20E-09	ALL	0.00	0.00E+00	0.00E+00	
Co-60	1.70E-08	2.00E-08	ALL	0.00	0.00E+00	0.00E+00	
Cs-134	1.20E-08	1.40E-08	ALL	. 0.00	0.00E+00	0.00E+00	
Cs-137	4.20E-09	4.90E-09	130	114	4.60E-05	5.36E-05	
	Dose Comn	nitment (mrem)) =		4.60E-05	5.36E-05	

1:**	M	, ".+ 4	5.4 °	
:	:	$\mathcal{D}_{n,k}$		
				<i></i>

1.11

5.0 QUALITY ASSURANCE

5.1 SAMPLE COLLECTION

EnRad Laboratories, Fisheries, and Aquatic Ecology performed the environmental sample collections as specified by approved sample collection procedures.

5.2 <u>SAMPLE ANALYSIS</u>

EnRad Laboratories performed the environmental sample analyses as specified by approved analysis procedures. EnRad Laboratories is located in Huntersville, North Carolina, at Duke Energy Corporation's Environmental Center.

5.3 DOSIMETRY ANALYSIS

Duke Energy Corporation's Environmental Center

The Radiation Dosimetry and Records group performed environmental dosimetry measurements as specified by approved dosimetry analysis procedures.

5.4 LABORATORY EQUIPMENT QUALITY ASSURANCE

5.4.1 DAILY QUALITY CONTROL

EnRad Laboratories has an internal quality assurance program which monitors each type of instrumentation for reliability and accuracy. Daily quality control checks ensure that instruments are in proper working order and these checks are used to monitor instrument performance.

5.4.2 CALIBRATION VERIFICATION

National Institute of Standards and Technology (NIST) standards that represent counting geometries are analyzed as unknowns at various frequencies ranging from weekly to annually to verify that efficiency calibrations are valid. The frequency is dependent upon instrument use and performance. Investigations are performed and documented should calibration verification data fall out of limits.

5.4.3 <u>BATCH PROCESSING</u>

Method quality control samples are analyzed with sample analyses that are processed in batches. These include gross beta in drinking water and all tritium analyses.

5.5 DUKE ENERGY INTERCOMPARISON PROGRAM

and the second

EnRad Laboratories participated in the Duke Energy Nuclear Generation Department Intercomparison Program during 2007. Interlaboratory cross-check standards, including, Marinelli beakers, air filters, air cartridges, gross beta on smears, and tritium in water samples were analyzed at various times of the year by the four counting laboratories in Duke Energy for this program. A summary of these Intercomparison Reports for 2007 is documented in Table 5.0-A.

5.6 DUKE ENERGY AUDITS

The McGuire Radiation Protection Section was not audited by the Quality Assurance Group in 2007. The program was audited in 2006. There were some REMP areas for improvement identified as a result of the 2006 audit (PIP M-06-01151).

EnRad Laboratories was not audited by the Quality Assurance Group in 2007. The program was audited in 2006. There were no REMP recommendations as a result of the 2006 audit.

5.7 U.S. NUCLEAR REGULATORY COMMISSION INSPECTIONS

The McGuire Nuclear Station Radiological Environmental Monitoring Program was audited by the NRC in 2007 (Reference 6.12). There were no findings identified by the audit.

5.8 STATE OF NORTH CAROLINA INTERCOMPARISON PROGRAM

EnRad Laboratories routinely participates with the State of North Carolina Department of Environmental Health and Natural Resources (DEHNR) in an intercomparison program. EnRad Laboratories sends air, water, milk, vegetation, sediment, and fish samples which have been collected to the State of North Carolina Radiation Protection Section.

5.9 <u>TLD INTERCOMPARISON PROGRAM</u>

÷ ...

5.9.1 NUCLEAR TECHNOLOGY SERVICES INTERCOMPARISON PROGRAM

Radiation Dosimetry and Records participates in a quarterly TLD intercomparison program administered by Nuclear Technology Services, Inc. of Roswell, GA: Nuclear Technology Services irradiates environmental dosimeters quarterly and sends them to the Radiation Dosimetry and Records group for analysis of the unknown estimated delivered exposure. A summary of the Nuclear Technology Services Intercomparison Report is documented in Table 5.0-B.

5.9.2 STATE OF NORTH CAROLINA INTERCOMPARISON PROGRAM

The State of North Carolina Radiation Protection Section suspended this program during 2007 as described in PIP G-07-00366.

5.9.3 INTERNAL CROSSCHECK (DUKE ENERGY)

100

. Then it

Radiation Dosimetry and Records participates in a quarterly TLD intracomparison program administered internally by the Dosimetry Lab. The Dosimetry Lab Staff irradiates environmental dosimeters quarterly and submits them for analysis of the unknown estimated delivered exposure. A summary of the Internal Cross Check (Duke Energy) Result is documented in Table 5.0-B.

TABLE 5.0-ADUKE POWER COMPANYINTERLABORATORY COMPARISON PROGRAM

2007 CROSS-CHECK RESULTS FOR ENRAD LABORATORIES

ا معالم المحمد معالم التي يريد وكان المعالم المحمد المحمد المعالم المحمد المعالم المعالي المعالي والم

Cross-Check samples are normally analyzed a minimum of three times. A status of "3 Pass" indicates that all three analyses yielded results within the designated acceptance range. A status of "1 Pass" indicates that one analysis of the cross-check was performed.

If applicable, footnote explanations are included following this data table.

Defense	Carral ID	Nteatista	A	Deferment	Mar Dana I	Course Charal
Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/!	pCi/l	¦ ∝ ∝ pCi/l ∝ ∞	a para di sa
.6/2.6/2007	Q072GWR	Cr-51	1.06 - 1.88 E4	1.41 E4	1.37 E4	3 Pass
an an ann an		Co-57	2.68 - 4.76 · E2	3.58 E2	- 3.80 E2	3 Pass
		Co-60	1.46 - 2.59 - E3	-1.95 E3	1.94 E3	3 Pass
	·	Sr-85	1.83 - 3.24 E3	2.44 E3	2.30 E3	3 Pass
· · ·		. Y-88	2.82 - 5.00 E3 ·	3.76 E3	- 3.62 E3	3 Pass
ی ، منابعہ ،	4 . 	Cd-109	0.77 - 1.36 E4	1.02 E4	1.07 E4	3 Pass
1.1		Sn-113	1.40 - 2.49 E3	1.87 E3	1.85 E3	3 Pass
n	14. 160 A	Te-123M	3.73 - 6.61 E2	4.97 E2	4.78 E2	3 Pass
· .		Cs-137	1.13 - 2.00 E3 .	1.51.E3	-1.45 E3	3 Pass
	· · · ·	\$	· · · ·			
11/20/2007	Q074GWS	Cr-51	2.96 - 5.24 E5	3.94 E5	3.97 E5	3 Pass
		Co-57	1.33 - 2.37 E4 -	1.78 E4…	1.86 E4	3 Pass
		Co-60	7.33 - 12.99 E4	· 9.77 E4 ··	••• 9.69 E4	3 Pass
,. en	· ·	Sr-85	7.21 - 12.78 E4	9.61 E4	9.48 E4	3 Pass
,		Y-88	1.23 - 2.19 E5	4.65 E5	- 1.64 E5	3 Pass
<u>.</u>	.,	Cd-109 .	3.93 - 6.96 E5	5.24 E5	5.31 E5	3 Pass
land on	والمعرفين والمعرفة	Sn-113	6.18 - 10.96 E4	-8.24 E4	8.29 E4	3 Pass
- 4 		Te-123M	1.61 - 2.85 E4	2.15 E4	2.20 E4	3 Pass

Gamma in Water 1.0 liter

1	Référence	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
3	Date ¹¹			Range	' Value	Value	Status
1.	مىيە مەر ي			pCi/l	pCi/l	pCi/l	
2.	. 6/26/2007	Q072GWR	Cr-51	- 1.06 - 1.88 E4 ··	1.41 E4	1.41 E4	3 Pass
	به ۲۰۰۰ ۱۹۰۱ میل		·Co-57	-2.68-4.76-E2	3.58 E2		3 Pass
٠	ې د .		Co-60	1-46 - 2.59 E3	- 1.95 E3	1.97 E3	3 Pass
1.			Sr-85	1.83 - 3.24 ·E3	2.44 E3	2.37 E3	3 Pass
-			Y-88	2.82 - 5.00 E3	3.76 E3	3.77 E3	3 Pass
		:	Cd-109	0.77 - 1.35 E4	~ 1.02 E4	1.06 E4	3 Pass
		a in the gave were	Sn-113	1.40 - 2.49 E3	· 1.87 E3	1.87 E3	3 Pass
	,	,	Te-123M	- 3.73 - 6.61 E2	4.97 E2	5.03: E2	3 Pass
		1	Cs-137	1.13 - 2.00 E3	1.5! E3	1.33 [.] E3	3 Pass
š.,,		- 1		and provide the second	ng ser integer i stati	- 14 OF 12 V. H. 1 194	the strategy of the

Gamma in Water 1.0 liter, continued

					· · · · · · · · · · · · · · · · · · ·	
11/20/2007	Q074GWS	Cr-51	2.96 - 5.24 E5	3.94 E5	4.00 E5	3 Pass
		Co-57	1.33 - 2.37 E4 *	1.78 E4	1.87 E4	3 Pass
		Co-60	7.33 - 12.99 (E4)	9.77 E4	9.80 E4	3 Pass
		Sr-85	7.21 - 12.78, E4,	9.61 E4	9.61 E4	3 Pass
		Y-88	1.23 - 2.19 E5	1.65 E5	1.66 E5	3 Pass
		Cd-109	3.93 - 6.96 E5	5.24 E5	5.36 E5	3 Pass
		Sn-113	6.18 - 10.96 E4	8.24 E4	8.34 E4	3 Pass
		Te-123M	1.61 - 2.85 E4	2.15 E4	2.19 E4	3 Pass
		Cs-137	6.07 - 10.76 E4	8.09 E4	7.95 E4	3 Pass

Gamma in Water 0.5 liter

Reference	Sample I.D.	Nuclide	Acceptance	"Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	*
6/26/2007	Q072GWR	Cr-51	1.06 - 1.88 E4	1.41 E4		3 Pass
		Co-57	2.68 - 4.76 E2	3.58 E2	3.76 E2	3 Pass
		Co-60	1.46 - 2.59 E3	1.95 E3	1.97 E3	3 Pass
		Sr-85	1.83 - 3.24 E3	2.44 E3	2.32 E3	3 Pass
		Y-88	2.82 - 5.00 E3	: 3.76 E3	3.62 E3	3 Pass
		Cd-109	0.77 - 1.36 E4	1.02 E4	1.02 E4	3 Pass
		Sn-113	1.40 - 2.49 E3	1.87 E3	1.87 E3	3 Pass
Į	1	Te-123M	3.73 - 6.61 E2	-4.97 E2	4.88 E2	3 Pass
		Cs-137	1.13 - 2.00 E3	1.51 E3	1.40 E3	3 Pass
			, where the summary of	a de créce	ant to see	
11/20/2007	Q074GWS	Cr-51	2.96 - 5.24 °E5 **	3.94 E5	3.95 E5.	3 Pass
Í	4 C	Co-57	1.33 - 2.37 E4		1.79 E4	3 Pass
		° 'Co-60'	7.33 - 12.99 E4	9.77 E4	9.54 E4	3 Pass
	میں میں میں میں اور	Sr-85	7.21 - 12.78 E4	9.61 E4	9.28 E4	3 Pass
	· · · · ·	Y-88	1.23 - 2.19 E5 -	1.65 E5	1.61 E5	3 Pass
	× -	Cd-109	3.93 - 6.96 E5	5.24 E5	5.26 E5	3 Pass
· .		Sn-113	6.18 - 10.96 E4	8.24 E4	8.16 E4	3 Pass
		Te-123M	1.61 - 2.85 E4	2.15 E4	2.13 E4	3 Pass
		Cs-137	6.07 - 10.76 E4	8.09 E4	7.59 E4	3 Pass
			- 1. arw 1	an Linderse L		
		1				·····

Gamma in Water 0.25 liter

a de la companya de la

:	*	Range	Value	* .	
,		0	value	Value	Status
		.pCi/l	pCi/l ⁱ	pCi/l	
072GWR	Cr-51	1.06 - 1.88, E4	1.41 E4	1.44 E4	3 Pass
a ar ar ar	Co-57	2.68 - 4.76 E2	3.58 E2	3.95 E2	3 Pass
	Co-60	1.46 - 2.59 E3	1.95 E3	1.93 E3	3 Pass
:	Sr-85	1.83 - 3.24 E3	2.44 E3	2.42 E3	3 Pass
	Y-88	2.82 - 5.00 E3	-3.76-E3	3.67 E3	3 Pass
• •	Cd-109	0.77 - 1.36 E4	1.02 E4	1.07 E4	3 Pass
	Sn-113	1.40 - 2.49 E3	1.87 E3	1.86 E3	3 Pass
	Te-123M	3.73 - 6.61 E2	4.97 E2	4.86 E2	3 Pass
	Cs=137	1.13 - 2.00 E3	1.51-E3-	1.45 E3	3 Pass
14 · • • • • • • • • • • • • • • • • • •	an and a constant of the	ульф. Джили настик Акалоник толон 1	as inclusion to much a second	naan marinikati kesteka nabi	1995 (#157.144) - 5 (#1.42) - 4 (#1.74)
•		Co-57 Co-60 Sr-85 Y-88 Cd-109 Sn-113 Te-123M Cs=137	Co-57 2.68 - 4.76 E2 Co-60 1.46 - 2.59 E3 Sr-85 1.83 - 3.24 E3 Y-88 2.82 - 5.00 E3 Cd-109 0.77 - 1.36 E4 Sn-113 1.40 - 2.49 E3 Te-123M 3.73 - 6.61 E2 Cs=137 1.13 - 2.00 E3	Co-57 2.68 - 4.76 E2 3.58 E2 Co-60 1.46 - 2:59 E3 1.95 E3 Sr-85 1.83 - 3.24 E3 2.44 E3 Y-88 2.82 - 5.00 E3 3.76 E3 -Cd-109 0.77 - 1:36 E4 1.02 E4 Sn-113 1.40 - 2.49 E3 1.87 E3 -Te-123M 3.73 - 6.61 E2 4.97 E2 Cs=137 1.13 - 2.00 E3 1.51 E3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Gamma in Water 0.25 liter, continued

•			La tra tra como de la	· ·		
11/20/2007	Q074GWS	Cr-51	2.96 - 5.24 E5	[;] 3.94 E5	3.90 E5	3 Pass
	· · · · · · · ·	Co-57	1.33 - 2.37 E4	1.78 E4 .		3 Pass
		Co-60	7.33 - 12.99 E4	9.77 E4	9.56 E4	3 Pass
		Sr-85	7.21 - 12.78 E4	9.61 E4		
		Y-88	1.23 - 2.19 E5	1.65 E5	1.62 E5	3 Pass
1		Cd-109	3.93 - 6.96 E5	5.24 E5	5.12 E5	3 Pass
and the second of the second sec	· · ·	Sn-113	6.18 - 10.96 E4	8.24 E4	8.08 E4	3 Pass
	•	Te-123M	1.61 - 2.85 E4	2.15 E4	2.15 E4	3 Pass
		Cs-137	6.07 - 10.76 E4	8.09 E4	7.67 E4	3 Pass
ſ.				· · · · ·		· · · ·

Gamma in Filter

Γ	Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
	Date		· · · · · · · · · · · · · · · · · · ·	Range	Value	Value .	Status
		1	_	<u>p</u> Ci	pCi	pCi	
ſ	5/14/2007	E5415-37	Cr-51	2.63 - 4.67 E2	3.51 E2	3.25 E2	3 Pass
ľ	n an an san san San an San San San San San San San San S		Mn-54	0.86 - 1.52 E2	1.14 E2	1.18 E2	3 Pass
·	e ar i re		Co-58	1.02 - 1.81 E2	1.36 E2	1.28 E2	3 Pass
·	and the second	and the second	Fe-59	0.86 - 1.52 E2	1.14 E2	1.20 E2	3 Pass
			Co-60	1.22 - 2.17 E2	1.63 E2	1.57 E2	3 Pass
	• * * * *	- 12 63 · · · ·	Zn-65	1.72 - 3:05 E2	2.29 E2	2.31 E2	3 Pass
	, fait,		Cs-134	1.25 - 2.21 E2	1.66 E2	1.48 E2	3 Pass
			Cs-137	0.87 - 1.54 E2	1.16 E2	1.06 E2	3 Pass
- N	- · · ·		Ce-139	0.00 - 0.00° E1	0.00E+00	3.10 E1	3 Pass ⁽¹⁾
	·	n (*)	Ce-141	1:03 - 1.82 E2	1.37 E2	* 1.29 E2	3 Pass
Г			160 x 17				

Jodine in Water and when the weather a state of the second state o

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date	1		Range	Value	Value	Status
s - 12	1993 - 1995 -		pCi/l	pCi/l	pCi/l	
5/15/2007	Q072LIW1	I-131	MA N/A	0.00E+00	0.00E+00	3 Pass
	- er	n. 2			· · · ·	
5/15/2007	Q072LIW2	- I-131	~~1.84 - 3:27 · E3 ···	2.46 E3	2.06 E3	3 Pass
·					- a	No. y to
5/15/2007	Q072LIW3-	···I-131	1.70 - 3.01 E1	2.26 E1	2.20 E1	3 Pass

Iodine in Milk

ý

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
7/25/2007	Q073LIM1	I-131	0.95 - 1.68 E3	1.27 E3	1.11 E3	3 Pass
7/25/2007	Q073LIM2	I-131	3.62 - 8.34 EO	5.49 E0	5.65 E0	3 Pass
7/25/2007	Q073LIM3	I-131	2.30 - 4.07 E1	3.06 E1	2.67 E1	3 Pass

Iodine on Cartridge

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date	1 - 245 - 441-028-035 	. <u>a</u> -15-12 a.e.	Range	Value	Value	Status
			pCiasta	pCi	pCi	
6/14/2007	E5416-37	I-131	5.92 - 10.49 El	7.89 E1	9.77 El	3 Pass
			1 (2) 4 (L X X X X			<u>,</u>
		1.48-44-14. Aug 1.98-8-4 18-4 18-4 18-4	anterestation and the second			· · · · · · · · · · · · · · · · · · ·

Beta Air Particulate

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date		n n Than an tha	Range	Value	Value	Status
· · · ·			pCi	pCi	pCi	in and the second second
6/14/2007	E5417-37	Cs-137	0.92 - 1.62 E2	1.22 E2	1.14 E2	3 Pass

and the second sec

Beta in Water 1997 (1997) (1997) 1997 - 1997 (1997) Reference Sample I.D: Nuclide Acceptance Reference Mean Reported Cross Check Date Value Status Range 12.10 a stand 101.054 pCi/l pCi/l pCi/l 6/14/2007 E5418-37 Cs-137 1.11 - 1.97 E2 1.48 E2 1.58 E2 3 Pass 1. L - 5

Beta Smear Reference -Nuclide-- Acceptance Reference Sample I.D. Mean Reported Cross Check Range dpm Date Value Status Value dpm dpm 1/11/2007 A21058-04 Beta 1.01 - 1.80 E4 ---· --1.32 E4 ----1.35 E4 3 Pass اليانية. محصحية الأحما وحوير و Sec. Sec. Sec. •

Tritium in Water

Reference	Sample I.D.	- Nuclide -	Acceptance	Reference	Mean Reported	Cross Check					
Date	۰. ۱		Range	Value	Value	Status					
			pCi/l	pCi/l	pCi/l						
6/25/2007	Q072TWR1	H-3	3.87 - 7.69 E2	5.45 E2	4.83 E2	3 Pass					
			, nav sam	n maagan in ku waa	тат н.с. т	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
6/25/2007	Q072TWR2	H-3	0.78 - 1.38 E4	1.04-E4	0.98 E4	3 Pass					
ang ana kaona ang kaona ang kaona ang kaona ang kaona kao											
6/25/2007	Q072TWR3	H-3	1.32-2.34 E3	1.76 E3	1-64 E3	3 Pass					
	· · ·	energy .	an a	- M-	and the second s	· ••.					
10/7/2007.	Q074TWSL1	H-3	N/A	0.00E+00	- 0.00E+00 ···	3 Pass					
10/7/2007	Q074TWSL2	H-3	2.71 - 4.81 E4	3.62 E4	3.63 E4	3 Pass					
		1			al de la cala	REAL PARTS					

N.: . C 94 a an entre particality -----en 1 $\sim_{e^{-1}}$ w. 15 Section Section - ma . .

Table 5.0-A Footnote Explanations

(1) Gamma in Filter, Sample ID E5415-37, Reference Date 6/14/2007

-4

.

.

.

T. . .

1.

.'

 f_{i}^{α}

Ĵ

٢.

ŝ

Ce-139 was identified in cross-check sample and reported. The cross check supplier does not include this radionuclide on the certificate of analysis for this cross-check sample. The radionuclide was determined to be an inherent contaminant in the cross-check sample.

TABLE 5.0-B2007 ENVIRONMENTAL DOSIMETER
CROSS-CHECK RESULTS

Nuclear Technology Services

						and the second se	the second s	and the second			
— 1st Quart	er 2007					2nd Quart	ter 2007				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
102164	73.0	73.4	0.55	<+/-15%	Pass	102493	90.5	92.8	2.54	<+/-15%	Pass
102322	73.0	77.3	5.89	<+/-15%	Pass	102316	90.5	94.2	4.09	<+/-15%	Pass
102263	73.0	76.0	4.11	<+/-15%	Pass	102476	90.5	94.0	3.87	<+/-15%	Pass
102250	73.0	77.8	6.58	<+/-15%	Pass	102492	90.5	94.6	4.53	<+/-15%	Pass
102184	73.0	79.3	8.63	<+/-15%	Pass	102470	90.5	92.7	2.43	<+/-15%	Pass
	Averag	ge Bias (B)	5.15				Averag	e Bias (B)	3.49		
Standard Deviation (S) 3.04						St	andard De	viation (S)	0.95		
Measure Performance B +S 8.19 <15%					Pass	Measur	e Performa	ance B +S	4.44	<15%	Pass
Brd Quarter 2007						4th Quart	er 2007				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
102174	65.5	63.7	-2.75	<+/-15%	Pass	102006	92.2	99.0	7.38	<+/-15%	Pass
102220	65.5	67.7	3.36	<+/-15%	Pass	102093	92.2	97.5	5.75	<+/-15%	Pass
102236	65.5	64.5	-1.53	<+/-15%	Pass	102244	92.2	103.6	12.36	<+/-15%	Pass
102302	65.5	66.5	1.53	<+/-15%	Pass	102343	92.2	100.3	8.79	<+/-15%	Pass
102304	65.5	66.1	0.92	<+/-15%	Pass	102436	92.2	100.7	9.22	<+/-15%	Pass
	Averag	ge Bias (B)	0.31				Averag	e Bias (B)	8.70		
S	tandard De	eviation (S)	2.44			St	andard De	viation (S)	2.46		
Measu	re Performa	ance IBI+S	2.75	<15%	Pass	Measur	e Performa	ince IBI+S	11.16	<15%	Pass

Internal Crosscheck (Duke Energy)

								· · ·			
1st Quart	er 2007					2nd Quart	ter 2007				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fai
100770	24.0	22.3	-6.97	<+/-15%	Pass	101190	48.0	47.1	-1.88	<+/-15%	Pass
100522	24.0	23.6	-1.70	<+/ -1 5%	Pass	100026	48.0	46.4	-3.33	<+/-15%	Pass
100041	24.0	22.0	-8.22	<+/-15%	Pass	100148	48.0	46.3	-3.54	<+/-15%	Pass
100038	24.0	23.0	-4.28	<+/-15%	Pass	100038	48.0	47.2	-1.67	<+/-15%	Pass
100762	24.0	21.1	-11.93	<+/-15%	Pass	100096	48.0	46.4	-3.33	<+/-15%	Pass
100148	24.0	23.2	-3.41	<+/-15%	Pass	100770	48.0	46.1	-3.96	<+/-15%	Pass
100279	24.0	23.0	-4.37	<+/-15%	Pass	100740	48.0	46.9	-2.29	<+/-15%	Pass
100619	24.0	23.2	-3.48	<+/-15%	Pass	100784	48.0	45.6	-5.00	<+/-15%	Pass
100784	24.0	22.0	-8.45	<+/-15%	Pass	100619	48.0	47.1	-1.88	<+/-15%	Pass
100814	24.0	22.8	-4.93	<+/-15%	Pass	100814	48.0	47.0	-2.08	<+/-15%	Pass
	Averag	ge Bias (B)	-5.77				Averag	e Bias (B)	-2.90		
Standard Deviation (S)			3.07			St	andard De	viation (S)	1.10		
Measure Performance B +S			8.84	<15%	Pass	Measur	e Performa	nce B +S	4.00	<15%	Pass
3rd Ouart	er 2007					4th Quart	er 2007				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100389	` 24.0 ´	`22.7 [´]	-5.42	<+/-15%	Pass	100412	12.0	<u></u> 11.9	-0.83	<+/-15%	Pass
100407	24.0	22.8	-5.00	<+/-15%	Pass	100733	12.0	11.3	-5.83	<+/-15%	Pass
100629	24.0	22.9	-4.58	<+/-15%	Pass	100477	12.0	11.6	-3.33	<+/-15%	Pass
100409	24.0	23.7	-1.25	<+/-15%	Pass	100406	12.0	11.5	-4.17	<+/-15%	Pass
100647	24.0	23.5	-2.08	<+/-15%	Pass	100863	12.0	11.8	-1.67	<+/ -1 5%	Pass
100274	24.0	22.8	-5.00	<+/-15%	Pass	100870	12.0	11.6	-3.33	<+/ -1 5%	Pass
100117	24.0	22.6	-5.83	<+/-15%	Pass	100752	12.0	12.1	0.83	<+/ -1 5%	Pass
100162	24.0	22.1	-7.92	<+/-15%	Pass	101021	12.0	11.6	-3.33	<+/-15%	Pass
100423	24.0	23.1	-3.75	<+/-15%	Pass	100096	12.0	11.9	-0.83	<+/-15%	Pass
100611	24.0	23.6	-1.67	<+/-15%	Pass	101307	12.0	11.4	-5.00	<+/-15%	Pass
Average Bias (B) -4.25		-4.25				Averag	e Bias (B)	-2.75			
Standard Deviation (S) 2.0			2.09			St	andard De	viation (S)	2.08		
Measure Performance BI+S			6.34	<15%	Pass	Measur	e Performa	nce B +S	4.83	<15%	Pass

6.0 REFERENCES

- 6.1 McGuire Selected License Commitment Manual
- 6.2 McGuire Technical Specifications

- 6.3 McGuire Updated Final Safety Analysis Report
- 6.4 McGuire Offsite Dose Calculation Manual
- 6.5 McGuire Annual Radiological Environmental Operating Report 1979 2006
- 6.6 McGuire Annual Radioactive Effluent Release Report 2007
- 6.7 Probability and Statistics in Engineering and Management Science, Hines and Montgomery, 1969, pages 287-293.
- 6.8 Practical Statistics for the Physical Sciences, Havilcek and Crain, 1988, pages 83-93.
- 6.9 Nuclear Regulatory Commission Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purposes of Evaluating Compliance with 10CFR50, Appendix I.
- 6.10 EnRad Laboratories Operating Procedures
- 6.11 RETDAS, Radiological Effluent Tracking and Dose Assessment Software, Canberra Version 3.5.1, DPC Revision #4.0
- 6.12 NRC Integrated Inspection Report (50-369/2007005, 50-370/2007005)
- 6.13 Duke Energy Corporation EnRad Laboratory Charcoal Cartridge Study, performed 2001

APPENDIX A

ENVIRONMENTAL SAMPLING AND ANALYSIS PROCEDURES

APPENDIAL STRUCTURE CONTRACTOR

Adherence to established procedures for sampling and analysis of all environmental media at McGuire Nuclear Station was required to ensure compliance with Station Selected Licensee Commitments. Analytical procedures were employed to ensure that Selected Licensee Commitments detection capabilities were achieved.

Environmental sampling and analyses were performed by EnRad Laboratories, Dosimetry and Records, and Fisheries and Aquatic Ecology.

This appendix describes the environmental sampling frequencies and analysis procedures by media type.

I. CHANGE OF SAMPLING PROCEDURES

No changes were made to the sampling procedures during 2007.

II. DESCRIPTION OF ANALYSIS PROCEDURES

Gamma spectroscopy analyses are performed using high purity germanium gamma detectors and Canberra analytical software. Designated sample volumes are transferred to appropriate counting geometries and analyzed by gamma spectroscopy. Perishable samples such as fish and broadleaf vegetation are ground to achieve a homogeneous mixture. Soils and sediments are dried, sifted to remove foreign objects (rocks, clams, glass, etc.) then transferred to appropriate counting geometry.

Low-level iodine analyses are performed by passing a designated sample aliquot through a pre-weighed amount of ion exchange resin to remove and concentrate any iodine in the aqueous sample (milk). The resin is then dried, mixed thoroughly, and a net resin weight determined before being transferred to appropriate counting geometry and analyzed by gamma spectroscopy.

Tritium analyses are performed quarterly by using low-level environmental liquid scintillation analysis technique on a Packard 2550 liquid scintillation system or Perkin-Elmer 2900TR liquid scintillation system. Tritium samples are distilled and batch processed with a tritium spike and blank to verify instrument performance and sample preparation technique are acceptable.

Gross beta analysis is performed by concentrating a designated aliquot of sample precipitate and analyzing by Tennelec XLB Series 5 gas-flow proportional counters. Samples are batch processed with a blank to ensure sample contamination has not occurred.

III. CHANGE OF ANALYSIS PROCEDURES

No analysis procedures were changed during 2007.

IV. SAMPLING AND ANALYSIS PROCEDURES

A.1 AIRBORNE PARTICULATE AND RADIOIODINE

Airborne particulate and radioiodine samples at each of seven locations were composited continuously by means of continuous air samplers. Air particulates were collected on a particulate filter and radioiodines were collected in a charcoal cartridge positioned behind the filter in the sampler. The samplers are designed to operate at a constant flow rate (in order to compensate for any filter loading) and are set to sample approximately 2 cubic feet per minute. Filters and cartridges were collected weekly. A separate weekly gamma analysis was performed on each charcoal cartridge and air particulate. A weekly gross beta analysis was performed on each filter. The continuous composite samples were collected from the locations listed below.

	A 6	
Location 120	- <u>-</u>	Site Boundary (0.46 mi. NNE)
Location 121	=	Site Boundary (0.47 mi. NE)
Location 125	1. <u>1</u>	Site Boundary (0.38 mi. SW)
Location 133	- <u>-</u>	Cornelius (6.23 mi. ENE)
Location 134	1 = 1	East Lincoln Jr. High School (8.77 mi. WNW)
Location 192	=	Peninsula (2.84 mi. NNE)
Location 195	· =	Fishing Access Road (0.19 mi. N)

A.2 DRINKING WATER

energy offers a second star of the second

Monthly composite samples were collected. A gross beta and gamma analysis was performed on monthly composites. Tritium analysis was performed on the quarterly composites. The composites were collected monthly from the locations listed below.

Location 101	=	North Mecklenburg Water Treatment Facility (3.31 mi E)
Location 119	= `	Mt. Holly Municipal Water Supply (7.40 mi. SSW)
Location 132	=	Charlotte Municipal Water Supply (11.1 mi. SSE)
Location 136	=	Mooresville Municipal Water Supply (12.7 mi. NNE)
Location 194	=	East Lincoln County Water Supply (6.73 mi. NNW)

SURFACE WATER **A.3**

Monthly composite samples were collected. A gamma analysis was performed on the monthly composites. Tritium analysis was performed on the quarterly composites sample. The composites were collected monthly from the locations listed below.

a an ann an an an Araile ann an A Location 128 = Discharge Canal Bridge (0.45 mi. NE) Location 131 = Cowans Ford Dam (0.64 mi. WNW) Location 135 = Plant Marshall Intake Canal (11.9 mi. N) 1.11

MILK A.4

 $\Delta = \frac{1}{2} + \frac{1}{2} +$

A.5

Biweekly grab samples were collected at each dairy. A gamma and low-level Iodine-131 analysis was performed on each sample. The biweekly grab samples were collected from the locations listed below.

		· // · ·	· · ·	• -		
Location 13	39 👘 =	w W	illiam C	Cook Da	ury (2.49 i	ni. E)
Location 14	41 =	: Ly	nch Da	iry - Co	ws (14.8 r	ni. WNW)

BROADLEAF VEGETATION

Monthly samples were collected as available and a gamma analysis was performed on each sample. The samples were collected from the locations listed below.

Location 120	=	Site Boundary (0.46 mi. NNE)
Location 125	=	Site Boundary (0.38 mi. SW)
Location 134	. =	East Lincoln Junior High School (8.77 mi. WNW)
Location 193	$\cdot_{\rm HI} = 0$	Site Boundary (0.19 mi. N)

FOOD PRODUCTS A.6

Samples were collected monthly when available during the harvest season and a gamma analysis was performed on each. The samples were collected at the location listed below.

Location 188 = 5 mile radius Gardens (2.79 mi NNE)

and the group of a large state

A.7 FISH

62 14 12 - A

Semiannual samples were collected and a gamma analysis was performed on the edible portions of each sample. Boney fish (i.e. Sunfish) were prepared whole minus the head and tail portions. The samples were collected from the locations listed below.
Location 129	=	Discharge Canal Entrance to Lake Norman (0.51 mi. ENE)
Location 137	=	Pinnacle Access Area (12.0 mi. N)

A.8 SHORELINE SEDIMENT

一日,1月,1月月月,日日之前第三日日

Semiannual samples were collected and a gamma analysis was performed on each following the drying and removal of rocks and clams. The samples were collected from the locations listed below.

Location 129	= :	Discharge Canal Entrance to Lake Norman (0.51 mi. ENE)
Location 130	=	Highway 73 Bridge Downstream (0.52 mi. SW)
Location 137	=	Pinnacle Access Area (12.0 mi. N)

A.9 DIRECT GAMMA RADIATION (TLD)

Thermoluminescent dosimeters (TLD) were collected quarterly at forty-one locations. A gamma exposure rate was determined for each TLD. TLD locations are listed in Table 2.1-B. The TLDs were placed as indicated below.

- * An inner ring of 14 TLDs at the site boundary, one in each available meteorological sector. The site boundary locations in the N and NNW sectors are over water; however, two special interest TLD's were placed in these sectors inside the site boundary in March, 1991.
- * An outer ring of 16 TLDs, one in each meteorological sector in the 6 to 8 kilometer range.
- * The remaining TLDs were placed in special interest areas such as population centers, residential areas, schools, and control locations.

A.10 ANNUAL LAND USE CENSUS

An annual Land Use Census was conducted to identify within a distance of 8 kilometers (5.0 miles) from the station, the nearest location from the site boundary in each of the sixteen meteorological sectors, the following:

* The Nearest Residence

· . ! .

* The Nearest Garden greater than 50 square meters or 500 square feet

* The Nearest Milk-giving Animal (cow, goat, etc.)

The census was conducted during the growing season from 5/21 to 5/22/2007. Results are shown in Table 3.10. No changes were made to the sampling procedures during 2007 as a result of the 2007 census.

In the environmental program, the air deposition parameters (D/Q) are used to determine air, broadleaf vegetation and milk sampling locations. McGuire's sectors with the three highest values did not change in 2007.

V. GLOBAL POSITIONING SYSTEM (GPS) ANALYSIS

The McGuire site centerline used for GPS measurements was referenced from the McGuire Nuclear Station Updated Final Safety Analysis Report (UFSAR), section 2.1.1, Site Location. Waypoint coordinates used for MNS GPS measurements were latitude 35°-25'-59"N and longitude 80°-56'-55"W. Maps and tables were generated using North American Datum (NAD) 27. Data normally reflect accuracy to within 2 to 5 meters from point of measurement. GPS field measurements were taken as close as possible to the item of interest. Distances for the locations are displayed using three significant figures.

Facility: McGuire Nuclear Station

1. No. 1. 1.

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Medium or Pathway Sampled Type and Total Number Of		Lower Limit of Detection	All Indicator Locations	Location Anr Name, Dis	n with Highest nual Mean stance, Direction	Control Location	No.of Non- Routine Report Meas.
Unit of Measurement	Analy Perfor	/ses med	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Air Particulate	an a						134	
(pCi/m3)	-						(8.77 mi WNW)	
	BETA	364	1,00E-02	2.02E-2 (312/312)	195	2.12E-2 (52/52)	2.18E-2 (52/52)	0
	1997 (B) 1997 (B)			1.01E-2 - 3.76E-2	(0.19 mi N)	1.06E-2 - 3.52E-2	1.06E-2 - 3.97E-2	
· · · · ·	CS-134	364	5.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
· · · · · · · · · · · · · · · · · · ·				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
·	CS-137	364	6.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00	4 .	0.00 - 0.00	0.00 - 0.00	
	I-131	364	7.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
wat to see a	27.22.23			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

Facility: McGuire Nuclear Station

Docket No. 50

. 50-369,370

Location: Mecklenburg County, North Carolina County

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Type a Tota Numb of	and al per	Lower Limit of Detection	All Indicator Locations	Projection Projection Name, Dis	n with Highest Jual Mean Stance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analy Perform	ses ned	(LLD)	Mean (Fraction) Range	Eocation	Mean (Fraction) Range	Mean (Fraction) Range	
Air Radioiodine (pCi/m3)							134 (8.77 mi WNW)	
	<u>CS-134</u>	364	5.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
		·		0.00 - 0.00	: 	0.00 - 0.00	0.00 - 0.00	
	CS-137	364	6.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
			+ 1, T	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131	364	7.00E-02	0.00 (0/312)	;	0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00	.''	0.00 - 0.00	0.00 - 0.00	
				······································	· · · · · · · · · · · · · · · · · · ·			

Mean and range based upon detectable measurements only Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

> Report Generated @ 2/25/2008 15:12 Appendix B - Page 3

Facility: McGuire Nuclear Station

 $a^{-\frac{1}{2}} a = \frac{1}{2}$

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2007 to 31-DEC-2007

			The second se	the second se	and the second se			
Medium or Pathway Sampled	Type and Numb of	Total ber	Lower Limit of Detection	All Indicator Locations	Location Annu Name, Dista	with Highest al Mean ance, Direction	Control Location	No. of No Routine Report Meas.
Unit of Measurement	Analy Perforr	ses ned	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Drinking Water (pCi/liter)	· · ·						136 (12.7 mi NNE)	
	BALA-140	. 65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0
· · · ·				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	BETA	65	4	1.76 (51/52)	119	1.81 (13/13)	1.76 (12/13)	0
· · ·		•		0.73 - 2.68	(7.40 mi SSW)	0.73 - 2.68	1.27 - 2.71	
- 1	CO-58	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0
:'			:	0.00 - 0.00	······································	0.00 - 0.00	0.00 - 0.00	
	CO-60	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0
••				0.00 - 0.00	. · · ·	0.00 - 0.00	0.00 - 0.00	
	CS-134	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0
		· •		0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
*	CS-137	65	18	0.00 (0/52)	•	0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
		65	30	0.00 (0/52)	·. · ·	0.00 (0/13)	0.00 (0/13)	0
1				0.00 - 0.00	rt 1 4	0.00 - 0.00	0.00 - 0.00	
	H-3	20	2000	1054 (14/16)	101	1480 (4/4)	0.00 (0/4)	0
		• • •		307 - 1951	(3.31 mi E)	1300 - 1950	0.00 - 0.00	
	I-131	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
:	MN-54	• 65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0
	· ••••••			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	NB-95	65	15	0.00 (0/52)		0.00 (0/13)	.0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZN-65	65	30	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0
	<u>.</u>		· .	0.00 - 0.00	· · ·	0.00 - 0.00	0.00 - 0.00	·
							0.00 (0.0)	
	ZR-95	65	15	0.00 (0/52)			0.00 (0/13)	, ,0

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

2

a Same

Docket No.

50-369,370

ŝ

i.

51.12 ·

,

Location: Mecklenburg County, North Carolina and Reference

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Type and To Number of	otal	Lower Limit of Detection	All Indicatorates	Locati Ibn Lith Anomi Name, D	on with Highest nnual Mean Pistance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performe	i .	(LLD)	Mean (Fraction) Range	HE Location	Mean (Fraction) Range	Mean (Fraction)	:
Surface Water (pCi/liter)							135 (11.9 mi N)	
	BALA-140	39	15	0.00 (0/26)	in a constant	0.00 (0/13)	0.00 (0/13)	0
			<u></u>	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-58	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
			· · · · · · · · · · · · · · · · · · ·	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60	39	- 15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00	i 1	0.00 - 0.00	0.00 - 0.00	
	CS-134	39	. 15	0.00 (0/26)	1	0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00	.: 1	0.00 - 0.00	0.00 - 0.00	
	CS-137	-39	18	0.00 (0/26)	· · · · ·	0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00	(0.00 - 0.00	0.00 - 0.00	
	FE-59	39	30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	H-3	12	. 2000	1298 (8/8)	128	1680 (4/4)	342 (2/4)	0 1
			-	814 - 2460	(0.45 mi N	E) 1280 - 2460	339 - 344	
	I-131	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
			· ·	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	<u>MN-54</u>	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
	·			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	<u>NB-95</u>	39	15	0.00 (0/26)	1	0.00 (0/13)	0.00 (0/13)	0
			· <u></u>	0.00 - 0.00	1 +	0.00 - 0.00	0.00 - 0.00	
	ZN-65	39	30	0.00 (0/26)	, , , , , , , , , , , , , , , , , , , ,	0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZR-95	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00	<u> </u>	0.00 - 0.00	0.00 - 0.00	
					1999 - A.	:	<u> </u>	4 4

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

/*

Facility: McGuire Nuclear Station	
-----------------------------------	--

 $\hat{s}_{i,j} \in \hat{\lambda}_{i,j}$

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina $(\alpha,\beta) = (\alpha,\beta,\delta)$

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Type and TotalLowerNumberLimit ofofDetection		All Indicator	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Milk (pCi/liter)	· · ·					141 (14.8 mi WNW)	
	BALA-140 52	· 15	0.00 (0/26)		0.00 (0/26)	0.00 (0/26)	0
	<u>_1; _</u>		0.00 - 0.00	······································	0.00 - 0.00	0.00 - 0.00	
	<u>CS-134</u> 52	15	0.00 (0/26)		0.00 (0/26)	0.00 (0/26)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 52	18	0.00 (0/26)	÷ •	0.00 (0/26)	0.00 (0/26)	0
	t i ¹		0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131 52	15	0.00 (0/26)		0.00 (0/26)	0.00 (0/26)	0
9 m be 79 m	(0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	LLI-131 52	1	0.00 (0/26)	-	0.00 (0/26)	0.00 (0/26)	0
			. 0.00 - 0.00 :		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator ALL Locations	Location Annu Annu Name, Distr	with Highest al Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	En Location	Mean (Fraction) Range	Mean (Fraction) Range	
Broadleaf Vegetation						134 (8.77 mi WNW)	
(penkg-wei)	CS-134 48	60	0.00 (0/36)	λ ['] ,	0.00 (0/12)	0.00 (0/12)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 48	80	13.4 (1/36)	120	13.4 (1/12)	0.00 (0/12)	0
			13.4 - 13.4	(0.46 mi NNE)	13.4 - 13.4	0.00 - 0.00	
	I-131 48	60	0.00 (0/36)	· . ·	0.00 (0/12)	0.00 (0/12)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

 $(A_{i}) = \sum_{j \in \mathcal{I}} (A_{i}) = (A_{i}) = \sum_{j \in \mathcal{I}} (A_{i}) = (A_{i}) = A_{i}$

Facility: McGuire Nuclear Station

re Nuclear Station

Docket No. 50-369,370

50-369,370

Location: Mecklenburg County, North Carolina $\operatorname{Constant}$

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator Locations	Location Annu Name, Dista	with Highest al Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Food Products (pCi/kg-wet)						NO CONTROL LOCATION	
	.CS-134 12	60	0.00 (0/12)		0.00 (0/12)	0.00 (0/0)	0
	······································		0.00 - 0.00	:	0.00 - 0.00	0.00 - 0.00	
۰. ۱۰۰۸ - ۲۰۰۱	CS-137 12	80	0.00 (0/12)		0.00 (0/12)	0.00 (0/0)	0
•••			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131 12	60	0.00 (0/12)	•• ••	0.00 (0/12)	0.00 (0/0)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	2		V				
Mean and range Fraction of detec Zero range indica	based upon detecta table measurement ates no detectable a	ble measurer s at specified activity meas	nents only l locations is indica urements	ated in parenthes	ses, (Fraction)	·	
	· .		-				
			· · · ·				
"	ا ا الم مراجع الم		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	 Stand Inc. 	na na sina sina siyan		
			· .		• • • • • • • • • • • • • • • • • • •	• •	

Facility: McGuire Nuclear Station

ŏ

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Type an Nurr o	d Total iber f	Lower Limit of Detection	All Indicator	Location Lot I Location Annu Name, Dista	with Highest al Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of	Anal	yses		Mean (Fraction)	Location	Mean (Fraction)	Mean (Fraction)	
Measurement	Perfo	rmed .	(LLD)	Range	dist Code	Range	Range	
Fish (pCi/kg-wet)	· · · · · · · · · · · · · · · · · · ·				L , , , , , , , , , , , , , , , , , , ,		137 (12.0 mi N)	
	CO-58	· 12 ·	130	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60	12	. 130	0.00 (0/6)	· <u></u>	0.00 (0/6)	0.00 (0/6)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	12	130	0.00 (0/6)	at.e	0.00 (0/6)	0.00 (0/6)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	·
	CS-137	12	150	21.1 (1/6)	129	21.1 (1/6)	19.5 (1/6)	. 0
				21.1 - 21.1	(0.51 mi ENE)	21.1 - 21.1	19.5 - 19.5	
	FE-59	12	260	0.00 (0/6)	<u></u>	0.00 (0/6)	0.00 (0/6)	0
			e e di	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	:
	MN-54	12	130	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZN-65	12	260	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
		<u></u>		0.00 - 0.00	<u></u>	0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

· • *

Docket No.

50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Type and Tota Number of	I Lower Limit of Detection	All Indicator	Location v Annua Name, Dista	vith Highest al Mean nce, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Shoreline Sediment (pCi/kg-dry)						137 (12.0 mi N)	
(poing ary)	MN-54	5 0	0.00 (0/4)	· · · ·	0.00 (0/2)	0.00 (0/2)	
			···· 0.00 - 0.00 ····	```	0.00 - 0.00	0.00 - 0.00	
	CO-58 (5 0	0.00 (0/4)		0.00 (0/2)	0.00 (0/2)	0 .
20 A 1 A 20	toprame for the second second	· · ·	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60 (5 0	0.00 (0/4)	· · ·	0.00 (0/2)	0.00 (0/2)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134 (5 150	0.00 (0/4)	* 1	0.00 (0/2)	0.00 (0/2)	· 0
			0.00 - 0.00	· · · · · · · · · · · · · · · · · · ·	0.00 - 0.00	0.00 - 0.00	
	CS-137 (5 180	114 (1/4)	130	114 (1/2)	0.00 (0/2)	0
			114 - 114	(0.52 mi SW)	114 - 114	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

If LLD is equal to 0.00, then the LLD is not required by Selected Licensee Commitments

Facility: McGuire Nuclear Station

ar Station

Docket No. 50-369,370

.

369,370

÷ .

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2007 to 31-DEC-2007

Medium or Pathway Sampled	Type and Total Number of	Lower, Limit of Detection	All Indicator and Locations	Location Annu ¹⁹⁹¹ Annu Name, Dist	with Highest Lal Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	E Location B Code	Mean (Fraction) Range	Mean (Fraction) Range	
Direct Radiation TLD (mR/standard quarter)				4		175 (15.5 mi WNW)	
	161	0.00E+00	17.4 (157/157)	. 180	26.9 (4/4)	22.5 (4/4)	0
			10.2 - 41.2	(12.7 mi NNE)	25.4 - 28.3	20.3 - 24.8	•
		······································	t por a	9 - J			*

Mean and range based upon detectable measurements only Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

4 10

a constant set and

and the second second second second

•••••

•

•

APPENDIX C

MCGUIRE NUCLEAR STATION SAMPLING DEVIATIONS & UNAVAILABLE ANALYSES

<u></u>						
DEVIATION & UNAVAILABLE REASON CODES						
BF	Blown Fuse	PO	Power Outage			
FZ	Sample Frozen	PS	Pump out of service / Undergoing Repair			
IW	Inclement Weather	SL	Sample Loss/Lost due to Lab Accident			
LC	Line Clog to Sampler	SM	Motor / Rotor Seized			
OT	Other	TF	Torn Filter			
PI	Power Interrupt	VN -	Vandalism			
PM	Preventive Maintenance	CN	Construction			

C.1 SAMPLING DEVIATIONS

Air Particulate and Air Radioiodines

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
				Planned power interruption to site by Duke maintenance occurred 2/24/2007 from approximately 12:00 to 13:00 as requested by work request 40815. Safety-
				related maintenance was performed to replace electrical knife switch with breaker panel. Switch replacement was performed in conjunction with work
134	2/19 - 2/26/2007	2/19 - 2/26/2007	PI	completed late 2006 for this location.

Drinking Water

 $f_{\rm MA}$

	Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
1 -12 AUTO	201 θ2 − − − − − − − − − − − − − − − − − −		Con the second property of the second se		Water plant personnel contacted Duke, indicating the water sampling equipment was making a strange noise and they had turned off the water supply @ 9/13/2007 11:00. Work request 48579 written. Maintenance determined the noise was pipe chatter and was emanating from the water supply line, not the sampling equipment. Normal sampling was resumed
	136	8/27 - 9/24/2007	8/27 - 9/24/2007	PS	9/18/2007 09:00.

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
· · · · · · · · · · · · · · · · · · ·				Onsite vehicle accident at Marshall statio caused power interruption to sampling equipment 2/22/2007. Work request
			i filosofie de la composición	normal sampling resumed 2/27/2007 15:00. It is estimated sampling was
135	2/12 - 3/12/2007	2/12 - 3/12/2007	PI	interrupted for about 5 days.
•				Reservoir pump malfunction due to clogged intake line was identified. Work
		ананананананананананананананананананан		repaired and reservoir pump was replaced Normal sampling resumed 4/13/2007
128	4/9 - 5/7/2007	4/13 - 5/7/2007	LC	16:00.
		n an	Shuke Sinesi in the	Reservoir pump malfunction interrupted water flow to sample reservoir. Work
135	6/4 - 7/2/2007	6/7 - 7/2/2007	PS	request 45370 written. Flow restored and normal sampling resumed 6/7/2007 15:16
		ran Felgustan Antonio antonio		Low Lake Norman water level due to exceptional drought conditions during 2007 caused loss of prime with the submersible pump. Work request 48738
۰.	8/27 - 9/24/2007 9/24 - 10/22/2007	8/27 - 9/18/2007 9/24 - 10/22/2007	i parti a Si statu Parti statu Parti statu	written. The submersible pump was shut down by maintenance on 9/18/2007 to prevent pump damage. Weekly grab
135	10/11 - 11/19/2007 11/19 - 12/17/2007	10/22 - 11/19/2007 11/19 - 12/17/2007	PS	samples were initiated. PIP G-07-00791 was written.

Surface Water

a a secondar a secondar

C.2 UNAVAILABLE ANALYSES

i de la composición d La composición de la c

TLD

Location	Scheduled Collection Dates	Reason Code	Corrective Action
143	3/15 - 6/14/2007	VN	TLD missing. 3 rd quarter 2007 TLD placed in field.
159	6/14 - 9/13/2007	CN	TLD missing. 4th quarter 2007 TLD placed in field.
182	6/14 - 9/13/2007	CN CN	TLD missing. 4 th quarter 2007 TLD placed in field.
· .	, ^{, ,}	;	2
	1999 - N		í l

and the second second

~ ~

.

APPENDIX D

•

•

ANALYTICAL DEVIATIONS

No Analytical deviations were incurred for the 2007 Radiological Environmental Monitoring Program

APPENDIX E

•

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM RESULTS

This appendix includes all of the sample analysis reports generated from each sample medium for 2007. Appendix E is located separately from this report and is permanently archived at the Duke Energy Corporation Environmental Center radiological environmental master file, located at the McGuire Nuclear Station Site in Huntersville, North Carolina.