

Table Of Contents
I. Summary and Conclusions
 II. Introduction
III. Program Description. 4 A. Sample Collection. 4 B. Sample Analysis 6 C. Data Interpretation. 6 D. Program Exceptions 8 E. Program Changes 9
IV. Results and Discussion 9 A. Aquatic Environment 9 1. Surface Water 9 2. Drinking Water 10 3. Ground Water 11 4. Fish 11 5. Sediment 11 6. Atmospheric Environment 12 1. Airborne 12 1. Airborne 12 1. Airborne 13 2. Terrestrial 13 a. Milk 13 b. Food Products 13 c. Grass 14 C. Ambient Gamma Radiation 14 D. Land Use Survey 15 E. Summary of Results – Inter-laboratory Comparison Program. 16
V. References

i

	Appendices
Appendix A	Radiological Environmental Monitoring Report Summary
Tables Table A-1	Radiological Environmental Monitoring Program Annual Summary for the Clinton Power Station, 2007
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
Tables	
Table B-1:	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Clinton Power Station, 2007
Table B-2:	Radiological Environmental Monitoring Program - Summary of Sample Collection, Clinton Power Station, 2007
Figures	19月1日にある。 19月1日 - 「「「「「」」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、 19月1日 - 「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「
Figure B-1:	Environmental Sampling Locations Within One Mile of the Clinton Power Station, 2007
Figure B-2:	Environmental Sampling Locations Between One and Two Miles from the Clinton Power Station, 2007
Figure B-3:	Environmental Sampling Locations Between Two and Five Miles from the Clinton Power Station, 2007
Figure B-4:	Environmental Sampling Locations Greater Than Five Miles from the Clinton Power Station, 2007
	الا المراكنية المراجع المحافي المحافي المراجع المحافي المحافي المحافي المحافي المحافي المحافي المحافي المحافي المحقق المحافي ا
Appendix C	Data Tables and Figures - Primary Laboratory
Tables	
Table C-I.1	Concentrations of I-131in Surface Water Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Clinton Power Station, 2007.

ii

Table C-I.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-II.1	Concentrations of Gross Beta in Drinking Water Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-II.2	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-II.3	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-III.1	Concentrations of Tritium in Ground Water Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-III.2	Concentrations of Gamma Emitters in Ground Water Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-IV.1	Concentrations of Gamma Emitters in Fish Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-V.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-VI.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-VI.2	Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 pCi/cu meter) in Air Particulate Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-VI.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-VII.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-VIII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-VIII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-IX.1	Concentrations of Gamma Emitters in Vegetation Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-IX.2	Concentrations of Gamma Emitters in Grass Samples Collected in the Vicinity of Clinton Power Station, 2007.
Table C-X.1	Quarterly TLD Results for Clinton Power Station, 2007.
Table C-X.2	Mean Quarterly TLD Results for the Inner Ring, Outer Ring, Special Interest and Control Locations for Clinton Power Station, 2007.

Table C-X.3	Summary of the Ambient Dosime Station, 2007.	etry Program for Clinton Power
Figures		
Figure C-1	Mean Monthly Gross Beta Conce Collected in the Vicinity of CPS,	entrations in Air Particulate Samples 2007.
Figure C-2	Mean Quarterly Ambient Gamma of CPS, 2007.	a Radiation Levels (TLD) in the Vicinity
Appendix D	Inter-Laboratory Comparison Pro	ogram
Tables		
Table D-1	Analytics Environmental Radioac Teledyne Brown Engineering, 20	, .
Table D-2	ERA Environmental Radioactivity Teledyne Brown Engineering, 20	•
Table D-3	DOE's Mixed Analyte Performan Teledyne Brown Engineering, 20	ce Evaluation Program (MAPEP) 07
Table D-4	ERA Statistical Summary Proficie Environmental, Inc., 2007	
Table D-5	DOE's Mixed Analyte Performan Environmental, Inc., 2007	ce Evaluation Program (MAPEP)
	Annual Radiological Groundwate (ARGPPR)	
· · · ·	e par la statue de la companya de la	
	tonis 1993 — Style State 1993 — Style State 1995 — State State 1995 — State State	2. The second se Second second secon second second sec
·		

ľ

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program (REMP) conducted for the Clinton Power Station (CPS) by AmerGen covers the period 1 January 2007 through 31 December 2007. During that time period, 1,580 analyses were performed on 1,465 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of CPS had no adverse radiological impact on the environment.

ਾ ਤੇ ਸ਼ੁਰੂ ਦਾ ਕਿਹਾ ਕ

-608

There were zero (0) radioactive liquid releases from CPS during 2007. Releases of gaseous radioactive materials were accurately measured in plant effluents. There was no gaseous effluent releases that approached the limits specified in the CPS Offsite Dose Calculation Manual (ODCM). The highest calculated offsite dose received by a member of the public due to the release of gaseous effluents from Clinton Power Station was 8.17 E-04 or 0.000817 mrem.

Surface, drinking, and ground water samples were analyzed for concentrations of tritium and gamma emitting nuclides. Drinking water samples were also analyzed for concentrations of gross beta and I-131. No fission or activation products were detected. Gross beta activities detected were consistent with those detected in previous years. No tritium activity was detected and the required lower limit of detection (LLD) was met.

Fish and shoreline sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected in fish or shoreline sediment samples:

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. Cosmogenic Be-7 was detected at levels consistent with those detected in previous years. No fission or activation products were detected.

High sensitivity I-131 analyses were performed on weekly air samples. All required LLDs were met.

Cow milk samples were analyzed for concentrations of I-131 and gamma emitting nuclides. All I-131 results were below the required LLDs. Concentrations of naturally occurring K-40 were consistent with those detected in previous years. No fission or activation products were found.

Food product samples were analyzed for concentrations of gross beta and gamma emitting nuclides. Gross beta activities detected were consistent with those detected in previous years. Concentrations of Cosmogenic Be-7 and naturally occurring K-40 were consistent with those detected in previous years. No fission or activation products were detected.

Grass samples were analyzed for concentrations of gamma emitting nuclides. Concentrations of Cosmogenic Be-7 and naturally occurring K-40 were consistent with those detected in previous years. No fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using thermoluminescent dosimeters. Levels detected were consistent with those observed in previous years.

Contraction and the second second

a de la servición de la servici Nomenta de la servición de la se Nomenta de la servición de la s

a second a second a second de la second Second de la second

II. Introduction

The Clinton Power Station (CPS), consisting of one approximately 1140 MW gross electrical power output boiling water reactor is located in Harp Township, DeWitt County, Illinois. CPS is owned and operated by AmerGen Energy Company and became operational in 1987. Unit No. 1 went critical on 15 February 1987. The site encloses approximately 13,730 acres. This includes the 4,895 acre, man-made cooling lake and about 452 acres of property not owned by AmerGen. The plant is situated on approximately 150 acres. The cooling water discharge flume – which discharges to the eastern arm of the lake – occupies an additional 130 acres. Although the nuclear reactor, supporting equipment and associated electrical generation and distribution equipment lie in Harp Township, portions of the aforementioned 13,730 acre plot reside within Wilson, Rutledge, DeWitt, Creek, Nixon and Santa Anna Townships.

1 BB . .

anto non e a

A Radiological Environmental Monitoring Program (REMP) for CPS was initiated in 1987. The preoperational period for most media covers the periods May 1980 through 27 February 1987 and was summarized in a separate report. This report covers those analyses performed by Teledyne Brown Engineering (TBE), Global Dosimetry, and Environmental Inc. (Midwest Labs) on samples collected during the period 1 January 2007 through 31 December 2007.

A. Objective of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.

III. Program Description

A. Sample Collection

S . . .

This section describes the general collection methods used by Environmental Inc. (Midwest Labs) to obtain environmental samples for the CPS REMP in 2007. Sample locations and descriptions can be found in Tables B-1 and B-2, and Figures B-1 through B-3, Appendix B. The sampling methods used by Environmental Inc. (Midwest Labs) are listed in Table B-2.

:

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, drinking water, well water, fish, and shoreline sediment. Two gallon water samples were collected monthly from continuous samplers located at three surface water locations (CL-90, CL-91 and CL-99) and one drinking water location (CL-14). A monthly grab sample was obtained from one surface water location (CL-13). Quarterly samples were obtained from two well water locations (CL-07D and CL-12). All samples were collected in new unused plastic bottles, which were rinsed at least twice with source water prior to collection. Fish samples comprising the flesh of largemouth bass, crappie, carp, and bluegill, the species most commonly harvested from the lakes by sporting fishermen, were collected semiannually at two locations, CL-19 and CL-105 (control). Shoreline sediment samples composed of recently deposited substrate were collected at one location semiannually, CL-07B.

Atmospheric Environment

· . . .

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, milk, food produce and grass. Airborne iodine and particulate samples were collected and analyzed weekly at ten locations (CL-01, CL-02, CL-03, CL-04, CL-06, CL-07, CL-08, CL-11, CL-15, and CL-94). The control location was CL-11. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The filters were replaced weekly and sent to the laboratory for analysis.

Milk samples were collected biweekly at one location (CL-116) from May through October, and monthly from November through April to coincide with the grazing season. All samples were collected in new unused

plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Food products were collected once a month from June through September at four locations (CL-114, CL-115, CL-117 and CL-118). The control location was CL-114. Various broadleaf vegetable samples were collected and placed in new unused plastic bags, and sent to the laboratory for analysis.

网络小说的复数形式 化

Grass samples were collected biweekly at four locations (CL-01, CL-02, CL-08 and CL-116) from May through October. The control location was CL-116. All samples were collected in new unused plastic bags and sent to the laboratory for analysis.

Ambient Gamma Radiation

Direct radiation measurements were made using Panasonic 814 calcium sulfate (CaSO₄) thermoluminescent dosimeters (TLD). The TLD locations were placed around the CPS site as follows:

and the state of the

An <u>inner ring</u> consisting of 16 locations (CL-01, CL-05, CL-22, CL-23, CL-24, CL-34, CL-35, CL-36, CL-42 CL-43, CL-44, CL-45, CL-46, CL-47, CL-48 and CL-63) near and within the site perimeter.

An <u>outer ring</u> consisting of 16 locations (CL-51, CL-52, CL-53, CL-54, CL-55, CL-56, CL-57, CL-58, CL-60, CL-61, CL-76, CL-77, CL-78, CL-79, CL-80 and CL-81) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

A <u>special interest</u> set consisting of seven locations (CL-37, CL-41, CL-49, CL-64, CL65, CL-74 and CL-75) representing special interest areas.

A <u>supplemental</u> set consisting of 14 locations (CL-02, CL-03, CL-04, CL-06, CL-07, CL-08, CL-15, CL-33, CL-84, CL-90, CL-91, CL-97, CL-99, and CL-114).

The balance of 1 location (CL-11) representing the control station.

The specific TLD locations were determined by the following criteria:

1. The presence of relatively dense population;

2. Site meteorological data taking into account distance and elevation for each of the sixteen–22 1/2 degree sectors around the site, where estimated annual dose from CPS, if any, would be most

significant;

1849 M.C.

3. On hills free from local obstructions and within sight of the vents (where practical); .

4. And near the closest dwelling to the HVAC stacks in the prevailing downwind direction.

Two TLDs – each composed of two CaSO₄ thermoluminescent phosphors enclosed in plastic - were placed at each location in a vented PVC conduit located approximately three feet above ground level. The TLDs were exchanged quarterly and sent to Global Dosimetry for analysis.

Β. Sample Analysis

1 2 2

This section describes the general analytical methodologies used by TBE and Environmental Inc. (Midwest Labs) to analyze the environmental samples for radioactivity for the CPS REMP in 2007. The analytical

procedures used by the laboratories are listed in Table B-2. · · · · ·

> In order to achieve the stated objectives, the current program includes the following analyses:

en la strata de la serie de

Concentrations of beta emitters in drinking water and air 1. particulates.

a de la companya de l

2. Concentrations of gamma emitters in surface, drinking and well water, air particulates, milk, fish, grass, sediment and vegetables.

3. . . . Concentrations of tritium in surface, drinking and well water.

Concentrations of I-131 in air, milk, vegetables and drinking water. 4.

in the second second

Ambient gamma radiation levels at various on-site and off-site 5. environs.

C. Data Interpretation

> The radiological and direct radiation data collected prior to CPS becoming operational was used as a baseline with which these operational data were compared. For the purpose of this report, CPS was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

> > - 6 -

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required CPS detection capabilities for environmental sample analysis.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity resulting in a negative number. An MDC was reported in all cases where positive activity was not detected.

N 1122 P

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface water and well water 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140, La-140, and Ce-144 were reported.

For fish, sediment and milk, 14 nuclides, Be-7, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140, La-140, and Ce-144 were reported.

For drinking water, grass and vegetation 13 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140, La-140, and Ce-144 were reported.

For grass 15 nuclides, Be-7, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140, La-140, and Ce-144 were reported.

For air particulate 11 nuclides, Be-7, K-40, Co-60, Nb-95, Zr-95, Ru-103, Ru-106, Cs-134, Cs-137, Ce-141 and Ce-144, were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

The exceptions described below are those that are considered 'deviations' from the Radiological Environmental Monitoring Program as required by the Station's ODCM. By definition, 'deviations' are permitted as delineated within NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants", October 1978, and within Radiological Assessment Branch Technical Position, Revision 1, November 1979, which states...."Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons".... The below section addresses the reporting requirements found within Section 7.1 of the Station's ODCM.

April 16, 2007, IR # 00618289

Only one kilogram of crapple was collected from the fish control station CI-105, due to both low lake level and water temperature of 48-50 degrees. The coves where fish tend to migrate were either non-existent or at too low a depth and the low water temperatures cause the fish to migrate towards deeper water, which challenges the ability of the electroshocking process. Although the fish volume was one kilogram, all required LLDs were met and there was no impact to the results.

July 04, 2007 – November 07, 2007 IR # 00695727

and the second second

Non-ODCM Composite Water Sampler, CL-99, displayed sporadic performance throughout the summer. Surface water station CL-99 serves as a supplement to the ODCM. Grab sampling was augmented during periods of troubleshooting and repairs when consistent compositing was either too much or too little. There was no impact on the results, and all LLDs were met.

July 25, 2007, IR # 00653836

Clinton's second quarter 2007 H-3 composite sample for surface water station CL-90 was missing the June contribution. Although the Licensee complied by collecting the required sample, before arriving at the vendor for analysis, the sample was inadvertently disposed of by the sample collecting vendor.

July 30, 2007, IR 00655565

. bishes Air samplers CL-02 and CL-03 were found not operating during the weekly surveillance. Although trouble-shooting determined a blown fuse, there was sufficient sampling volume collected such that there was no impact to the results, and all required LLDs were achieved.

and the second

October 08, 2007, IR # 00681664

ODCM Drinking Water Compositor CL-14 had a loss of power for 11 hours due to a 138 KV Line Outage. This resulted in a less than 2% loss of composite sampling to what is typically collected over a month; four (4) gallons of water. There was no impact to the results, and all required LLDs were achieved.

November 28, 2007 – December 05, 2007 IR # 00707575

Non-ODCM environmental Air Sampler CL-06 was found not running during the performance of the weekly surveillance due to a loss of power. Sample volume calculations revealed that the minimum sample volume had not been achieved. Air Sampler CL-06 serves as a special interest supplement to the ODCM.

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent recurrence. Occasional equipment breakdowns and power outages were unavoidable. A LOAD THE REPORT OF A LOAD

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation

Ε. Program Changes nam unanges

Starting in 2007, the mean and two standard deviation values are calculated using the positive values only.

Results and Discussion IV.

Α. Aquatic Environment

> Surface Water 1.

S. F. Strate

Samples were taken hourly, and grab samples to supplement during periods of inoperability – see exceptions, from a continuous compositor at three locations (CL-90, CL-91 and CL-99) on a monthly schedule and grab samples were taken monthly from one

1.163

station (CL-13). The following analyses were performed.

<u>lodine-131</u>

Monthly samples from location CL-90 were analyzed for I-131 activity (Table C-I.1, Appendix C). The required LLD was met.

Tritium

Monthly samples from all locations were composited quarterly and analyzed for tritium activity (Table C–I.2, Appendix C). The required LLD was met.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–I.3, Appendix C). Naturally occurring K-40 was found in three of 12 samples at locations CL-13 and CL-91 and one of 12 samples at locations CL-90 and CL-99. No other nuclides were detected and all required LLDs were met.

2. Drinking Water

Monthly samples were collected from a continuous compositor at one location (CL-14). The following analyses were performed:

Gross Beta

Monthly samples were analyzed for concentrations of gross beta (Tables C–II.1, Appendix C). Gross beta was found in three of 12 samples. The values ranged from 1.9 to 3.5 pCi/I. Concentrations detected were consistent with those detected in previous years.

Tritium

e e e e e e e e

Monthly samples were composited quarterly and analyzed for tritium activity (Table C–II.2, Appendix C). The required LLD was met.

Monthly samples were analyzed for gamma emitting nuclides (Table C-II.3, Appendix C).). Naturally occurring K-40 was found in five samples at location CL-14. No other nuclides were detected and all required LLDs were met.

3. Ground Water

Quarterly grab samples were collected at two locations (CL-7D and CL-12, consisting of CL-12R [a raw water sample from this well] and CL-12T [same well water, but after treatment and available for consumption]). The following analyses were performed:

Tritium

Samples from all locations were analyzed for tritium activity (Table C-III.1, Appendix C). The required LLD was met.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C-III.2, Appendix C). No nuclides were detected and all required LLDs were met. and the second provide the second 'r, ∙' .

4. Fish

1 1 1 1

Fish samples comprised of carp, bass, bluegill, crappie and channel catfish were collected at two locations (CL-19 and CL-105) semiannually. The following analysis was performed: en l'anti-la parte de l'éste en provinción.

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C-IV.1, Appendix C). Naturally occurring K-40 was found at both stations. No fission or activation products were found. No other nuclides were detected and the required LLDs were met.

5. Shoreline Sediment

> Aquatic shoreline sediment samples were collected at CL-07B semiannually. The following analysis was performed:

Shoreline sediment samples were analyzed for gamma emitting nuclides (Table C-V.1, Appendix C). Naturally occurring K-40 was detected in both samples. No fission or activation products were found. No other nuclides were detected and the required LLDs were met.

Β. Atmospheric Environment

1. Airborne

a.

Air Particulates

Continuous air particulate samples were collected from 10 locations on a weekly basis. The 10 locations were separated into three groups: Group I represents locations within one mile of the CPS site boundary (CL-02, CL-03, CL-04, CL-06, CL-15, and CL-94). Group II represents the locations at an intermediate distance within one to five miles of CPS (CL-01, CL-07, and CL-08), and Group III represents the control location greater than five miles from CPS (CL-11). The following analyses were performed:

Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C-VI.1 and C-VI.2 and Figure C-1, Appendix C).

Detectable gross beta activity was observed at all locations. Comparison of results among the three groups aid in determining the effects, if any, resulting from the operation of CPS. The results from the On-Site locations (Group I) ranged from 22 to 45 E-3 pCi/m³ with a mean of 22 E-3 pCi/m³. The results from the Intermediate Distance location (Group II) ranged from 9 to 45 E-3 pCi/m³ with a mean of 21 E-3 pCi/m³. The results from the Control locations (Group III) ranged from 8 to 39 E–3 pCi/m³ with a mean of 22 E-3pCi/m³. Comparison of the 2007 air particulate data with previous years data indicate no effects from the operation of CPS (Figure C–5, Appendix C). In addition a comparison of the weekly mean values for 2007 indicate no notable differences among the three groups.

a a transforma

- 12 -

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C-VI.3, Appendix C). Naturally occurring isotopes Be-7 due to cosmic ray activity was detected in all samples and K-40 was detected in three samples. No other nuclides were detected and all required LLDs were met.

b. Airborne lodine

Continuous air samples were collected from 10 locations (CL-01, CL-02, CL-03, CL-04, CL-06, CL-07, CL-08, CL-11, CL-15 and CL-94) and analyzed weekly for I-131 (Table C-VII.1, Appendix C). All results were less than the MDC and the required LLD was met.

2. Terrestrial

a.

Milk the second Samples were collected from CL-116 biweekly May through Control of the second monthly November through April, to coincide with the grazing season. The following analyses were performed:

Electron Anna Anna Anna

 $(1,1,2,\dots,1,1,2^{n-1}) \in \mathbb{R}^n$

17 Electron Cont

lodine-131

Milk samples were analyzed for concentrations of I-131 (Table C–VIII.1, Appendix C). The required LLD was met.

Gamma Spectrometry

Each milk sample was analyzed for concentrations of gamma emitting nuclides (Table C-VIII.2, Appendix C). Naturally occurring K-40 activity was found in all samples. No other nuclides were detected and all required LLDs were met.

Food Products b.

> Broadleaf vegetation samples were collected from four locations (CL-114, CL-115, CL-117 and CL-118) monthly June through September, to coincide with the harvest season. The following analyses were performed:

and the second states of

Each food product sample, cabbage, swiss chard and lettuce, was analyzed for concentrations of gamma emitting nuclides (Table C–IX.1, Appendix C).

Naturally occurring Be–7 due to cosmic ray activity was detected in 44 of 48 samples. Naturally occurring K-40 activity was found in all samples. No other nuclides were detected and all required LLDs were met.

b. Grass

Samples were collected from four locations (CL-01, CL-02, CL-08, and CL-116) biweekly May through October. The following analyses were performed:

Gamma Spectrometry

Each grass sample was analyzed for concentrations of gamma emitting nuclides (Table C–IX.2, Appendix C).

Naturally occurring Be–7 due to cosmic ray activity was detected in all 52 samples. Naturally occurring K-40 activity was found in all 52 samples. No other nuclides were detected and all required LLDs were met.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing Panasonic 814 (CaSO₄) thermoluminescent dosimeters. Fifty-four TLD locations were established around the site. Results of TLD measurements are listed in Tables C–X.1 to C–X.3, Appendix C.

A total of 216 TLD measurements were made in 2007. The average dose from the inner ring was 21.1 mR/quarter. The average dose from the outer ring was 21.2 mR/quarter. The average dose from the special interest group was 21.3 mR/quarter. The average dose from the supplemental group was 20.3 mR/quarter. The quarterly measurements ranged from 15.9 to 24.1 mR/quarter. The inner ring and outer ring measurements compared well to the control station, CL-11, which ranged from 18.2 mR/quarter to 20.7 mR/quarter with an average measurement of 19.9 mR/quarter. A comparison of the Inner Ring and Outer Ring data to the Control Location data indicate that the ambient gamma radiation levels from all the locations were comparable. The historical ambient gamma

radiation data from the control location were plotted along with similar data from the Inner and Outer Ring Locations (Figure C–2, Appendix C).

D. Land Use Survey

A Land Use Survey conducted during the July through October 2007 growing season around the Clinton Power Station (CPS) was performed by Environmental Inc. (Midwest Labs) for AmerGen to comply with Clinton's Offsite Dose Calculation Manual, section 5.2. The purpose of the survey was to document the nearest resident, milk producing animal and garden of greater than 538 ft² in each of the sixteen 22 ½ degree sectors around the site. The distance and direction of all locations from the CPS Station HVAC vent stack were positioned using Global Positioning System (GPS) technology. There were no changes required to the CPS REMP, as a result of this survey. The results of this survey are summarized below.

and a state of the s A state of the state of the

માં દ્વીપર સમય આપસનાસપુર્વે તેવે આવેલ્ટ પ્રચાર પ્રસાથ પ્રથમ પ્રદાર આપ્ય પ્રચાર દ્વીત પ્રચાર પ્રચાર એટ આપસપુરસ્કાર આપવાસ સ્વયુદ્ધ છેલે પ્રચાર્થ છે. આ દેશ આપ્ય દેશ છે આ દેશ આપ્ય પ્રચાર આપ્ય આપ્ય દેશ કેટ સાર પ્રચાર આપ્ય સ્વયત્વે છે આપ્ય સ્વયત્વે છે. આપ્ય આપ્ય આપ્ય સ્વયત્વે છે છે. આપ્ય સાથે આપ્ય આપ્ય આપ્ય

(a) A set of the se

	Distance in	Miles from the	CPS Station HVAC Ve	ent Stack
	Sector	Residence Miles	Garden Miles	Milk Farm Miles
		0.9	0.9	0.9
19 1	2 NNE	1.0	3.0	2.3
	3 NE	1.3	2.1	>5.0
	4 ENE	1.8	2.6	>5.0
	5 E	1.0	1.0	>5.0
;	6 ESE	3.2	3.2	>5.0
	7 SE	2.8	>5.0	>5.0
	8 SSE	1.7	>5.0	>5.0
	9 S	3.0	3.0	4.1
s tr	10 SSW	2.9	>5.0	3.4
	11 SW	0.7	>5.0	3.6
	12 WSW		2.3 (). 	2.8
an a	13 W		2.0	>5.0
· · · · · · · ·	14 WNW	1.6	1.6	>5.0
	15 NW	1.6	2.8	>5.0
	16 NNW	1.7	1.3	
- '		· · ·	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + 1$	alla a Nave

E.

Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices for 19 analytes (Appendix D). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of TBE's result and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

1.

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is \pm 20% of the reference value. Performance is acceptable with warning when a mean result falls in the range from \pm 20% to \pm 30% of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the primary laboratory, 17 out of 19 analytes met the specified acceptance criteria. Two samples did not meet the specified acceptance criteria for the following reasons:

Teledyne Brown Engineering's Analytics March 2007 I-131 in charcoal result of 34.7 pCi was lower than the known value of 71.3, resulting in a found to known ratio of 0.49. A new technician counted the charcoal cartridge on the back rather than the face side. Due to decay of the I-131, recounting could not be performed. Counting the 2nd quarter Analytics charcoal cartridge on the face and the back resulted in approximately 220% more activity on the face of the cartridge. This indicates that TBE would have had acceptable results (ratio approximately 1.07) if the cartridge had

- 17 -

been counted on the face side. The investigation was documented by Nonconformance Report NCR 07-02.

2. Teledyne Brown Engineering's ERA July 2007 Cs-134 result of 57.6 pCi/L exceeded the lower acceptance limit of 60.2 pCi/L. The high activity of the sample resulted in the lower acceptance limit of 8.66. although the ratio of found to known was 83.6%, which is considered acceptable by TBE. The investigation was documented by Nonconformance Report NCR 07-07.

For the secondary laboratory, 18 out of 19 analytes met the specified acceptance criteria. One sample did not meet the specified acceptance criteria for the following reason:

1. Environmental Inc.'s ERA March 2007 air particulate Cs-137 result of 345.3 pCi/L exceeded the upper control limit of 336 pCi/L. The reported result was calculated using composite filter geometry rather than the single filter geometry. The recalculated result of 305.8 pCi/filter fell within the acceptance limits. This was entered into their June 2007 Program Deviation Report. C. A. Lat.

The Inter-Laboratory Comparison Program provides evidence of the counting systems and methods, and that the laboratories are producing accurate and reliable data. A second of that make (response

And a larger

and the states of the

요즘 모두 법정 같이 가지 말 한 것말?

V. References

, . i

1.5. American National Standards Institute, Inc., "Performance, Testing and Procedural Specifications for Thermoluminescent Dosimetry," ANSI N545-1975.

- 2. Code of Federal Regulations, Title 10, Part 20 (Nuclear Regulatory Commission). · ·
- CPS 2001 Annual Radioactive Effluent Release Report. 3.

- 4. "Environmental Radioactivity," M. Eisenbud, 1987 (E187).
- 5. "Natural Radon Exposure in the United States," Donald T. Oakley, U.S. Environmental Protection Agency. ORP/SID 72-1, June 1972.
- Federal Radiation Council Report No. 1, "Background Material for the 6. Development of Radiation Protection Standards," May 13, 1960.

7. International Commission on Radiation Protection, Publication 2, "Report of Committee II on Permissible Dose for Internal Radiation," (1959) with 1962 Supplement issued in ICRP Publication 6; Publication 9, "Recommendations on Radiation Exposure," (1965); ICRP Publication 7

(1965), amplifying specific recommendations of Publication 26 (1977).

- 8. International Commission on Radiation Protection, Publication No. 39 (1984), "Principles of Limiting Exposure to the Public to Natural Sources of Radiation".
- 9. "Radioactivity in the Environment: Sources, Distribution and Surveillance," Ronald L. Kathren, 1984.
- National Council on Radiation Protection and Measurements, Report No. 22, "Maximum Permissible Body Burdens and Maximum Permissible Concentrations of Radionuclides in Air and Water for Occupational Exposure," (Published as National Bureau of Standards Handbook 69, issued June 1959, superseding Handbook 52).
- 11. National Council on Radiation Protection and Measurements, Report No. 39, "Basic Radiation Protection Criteria," January 1971.
- National Council on Radiation Protection and Measurements, Report No. 44, "Krypton-85 in the Atmosphere – Accumulation, Biological Significance, and Control Technology," July 1975.
- National Council on Radiation Protection and Measurements, Report No. 91, "Recommendations on Limits for Exposure to Ionizing Radiation," June 1987.
- National Council on Radiation Protection and Measurements, Report No. 93, "Ionizing Radiation Exposure of the Population of the United States," September 1987.
- 15. National Research Council, 1990, Committee on Biological Effects of Ionizing Radiation (BEIR V), Board on Radiation Effects Research on Life Sciences, "The Effects of Exposure to Low Levels of Ionizing Radiation".
- 16. United States Nuclear Regulatory Commission, Regulatory Guide 4.1, "Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants," Revision 1, April 1975.
- 17. United States Nuclear Regulatory Commission, Regulatory Guide 4.13, "Performance, Testing and Procedural Specifications for Thermoluminescence Dosimetry: Environmental Applications, "Revision 1, July 1977.
- United States Nuclear Regulatory Commission, Regulatory Guide 1.109, "Calculation of Annual Dose to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I, "Revision 1, October 1977.
- 19. United States Nuclear Regulatory Commission Branch Technical Position, "An Acceptable Radiological Environmental Monitoring Program," Revision 1, November 1979.

- 20. United States Nuclear Regulatory Commission, Regulatory Guide 4.15, "Quality Assurance for Radiological Monitoring Programs (Norm Operations) – Effluent Streams and the Environment," Revision 1, February 1979.
- 21. Technical Specifications, Clinton Power Station, Unit No. 1, Docket No. 50-461, Office of Nuclear Reactor Regulation, 1986. Facility Operating License Number NPF-62.
- 22. Clinton Power Station, Updated Safety Analysis Report.
- 23. Clinton Power Station, Unit 1, Off-Site Dose Calculation Manual.

.

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

na se se anti-se de la construcción La construcción de la construcción d

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

-	: CLINTON POWER : DEWITT COUNTY			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	ANALYSIS LOWER LIMIT (F)	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS		
SURFACE WATER (PCI/LITER)	I-131	12	1	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0	
	H-3	16	2000	<lld< td=""><td>NA</td><td>_</td><td></td><td>0</td></lld<>	NA	_		0	
	11-3	10	2000		11/1	-	-	v	
	GAMMA MN-54	48	15	<lld< td=""><td>NA</td><td>_</td><td>_</td><td>0</td></lld<>	NA	_	_	0	
•	10111-5-4		15		1471			v	
• • •	· · _ ·	• •• ••••							
· ·	CO-58		- 15	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0	
		i entre s	an da stationes. Segnitationes		• 1				
, ·	FE-59	n te de la c	30	<lld< td=""><td>NA</td><td>-</td><td>-</td><td> 0</td></lld<>	NA	-	-	0	
	i de la companya de l	**			n Anna Anna Anna	•			
,	CO-60	21 - 1 1 - 10 - 1	15	<lld< td=""><td>NA</td><td>·</td><td></td><td>0</td></lld<>	NA	·		0	
			• .						
	ZN-65	. •	30	<lld< td=""><td>NA</td><td>-</td><td><u>-</u> ·</td><td>0</td></lld<>	NA	-	<u>-</u> ·	0	
	NB-95		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0	

į

Name of Facility: CLINTON POWER STATION Location of Facility: DEWITT COUNTY IL			REPORTING PERIOD: 2			50-461 2007 LOCATION			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT	
SURFACE WATER (PCI/LITER)	ZR-95		30	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0	
(I CHEITER)			4 -						
	CS-134		15	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0	
			··· *	$s_{\pm} \in Q$					
	CS-137		18	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0	
				· ·					
· · · · ·	BA-140	,	60 [.]	<lld< td=""><td>NA</td><td>-</td><td>_ • • • • •</td><td></td></lld<>	NA	-	_ • • • • •		
· : ·	· .		1997) 499 - 1997		. 1		· · · ·	WE 2081 - 14 141 - 2081 - 14	
	LA-140		15	<lld< td=""><td>NA</td><td>-</td><td>-</td><td></td></lld<>	NA	-	-		
۰.				1. S. 1.		a tha an an			
• ••	CE-144	and the second of the second	NA	<lld< td=""><td>NA</td><td></td><td>•</td><td>0</td></lld<>	NA		•	0	
DRINKING WATER (PCI/LITER)	GR-B	12	· 4. · · ·	2:5 (4/11) (1.9/3.5)	NA	2.5 (4/11) (1.9/3.5)	CL-14 INDICATOR STATION PLANT SERVICE BLD ONSITE	0 G	
	H-3	4	2000	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0	

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

Location of Facility: DEWITT COUNTY IL					DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)		LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS		
DRINKING WATER (PCI/LITER)	GAMMA MN-54	12	15	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		
	CO-58		15	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		
· · ·	FE-59		30	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		
	CO-60	· · · · · · · · · · · ·	15	<lld< td=""><td>NA</td><td>-</td><td></td><td> 0</td></lld<>	NA	-		 0		
	ZN-65.			<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		
	NB-95	en e	15	<lld< td=""><td>NA</td><td></td><td>-</td><td>0</td></lld<>	NA		-	0		
	ZR-95		30	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		
	CS-134		15	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

Name of Facility Location of Facility		DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-461 2007 Location				
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
DRINKING WATER (PCVLITER)	CS-137		18	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0
	BA-140		60 	<lld< td=""><td>NA</td><td></td><td>-</td><td>0</td></lld<>	NA		-	0
	LA-140		15	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0
•	CE-144		NA	~ < <u>L'LD</u> - · · · · ·	NA	-	- [·] · · ·	∾ ~0
GROUND WATER (PCI/LITER)	H-3	. 12	2000	<lld< td=""><td>NA</td><td>-</td><td></td><td>:</td></lld<>	NA	-		:
	GAMMA	12			2 	۰.		
	MN-54		. 15	<lld< td=""><td>NA</td><td>• •</td><td>· · · · · · · · ·</td><td>0</td></lld<>	NA	• •	· · · · · · · · ·	0
	CO-58		15	<lld< td=""><td>NA</td><td></td><td>· «</td><td>0</td></lld<>	NA		· «	0
	FE-59 THE MEAN A	ND 2 STANDARI	30 D DEVIATION VAL	<lld .UES ARE CALC</lld 	NA ULATED USING	- THE POSITIVE	- E VALUES	0

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

a de la servición de la construcción de la servición de la servición de la servición de la servición de la serv La servición de la servición de

~

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

Location of Facility: DEWITT COUNTY IL					UMBER: G PERIOD:	50-461 2007	2007			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	. TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F)	CONTROL LOCATION MEAN (F) RANGE	LOCATIO MEAN (F) RANGE	N WITH HIGHEST ANNUAL M STATION # NAME DISTANCE AND DIRECTION	EAN NUMBER OF NONROUTINE REPORTED MEASUREMENTS		
GROUND WATER (PCI/LITER)	CO-60		15	<lld< td=""><td>NA</td><td></td><td>-</td><td>0</td></lld<>	NA		-	0		
	ZN-65		30	< LLD	NA	-	-	0		
	NB-95		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0		
	ZR-95		30	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		
	CS-134	talah Stan	15 - 12 15 - 12 16 - 16 16 - 12 16 - 1	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>. 0</td></lld<>	NA	-	-	. 0		
	CS-137	e Na est	18	<lld< td=""><td>NA</td><td><u> </u></td><td>-</td><td>0</td></lld<>	NA	<u> </u>	-	0		
	BA-140		60	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		
	LA-140		15	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0		

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR	
THE CLINTON POWER STATION, 2007	

Name of Facility Location of Facility		REPORTING PERIOD:		50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN				
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCI/LITER)	CE-144		NA	<lld< td=""><td>NA</td><td>_</td><td>-</td><td>0</td></lld<>	NA	_	-	0
FISH (PCI/KG WET)	GAMMA BE-7	16	NA	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
(PEDRO WEI)	DE-7				-LED	-	-	U
	K-40		NA	3001 (8/8) (1960/4260)	2854 (8/8) (2200/3650)	3001 (8/8) (1960/4260)	CL-19 INDICATOR END OF DISCHARGE FLUME 3.4 MILES E OF SITE	0
	MN-54	•••••••••••••••••••••••••••••••••••••••	130	<lld< td=""><td>~<lld< td=""><td>-</td><td></td><td></td></lld<></td></lld<>	~ <lld< td=""><td>-</td><td></td><td></td></lld<>	-		
ant at a	· .	ų	- , * e,		2			MC725BBBCCCC
	CO-58		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
,	FE-59	. * · ·	260	<lld< td=""><td><lld< td=""><td></td><td>· · · · · ·</td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td>· · · · · ·</td><td>0</td></lld<>		· · · · · ·	0
		•••• •••				1. 	.,	v
	CO-60	. · · ·,	130	<pre>LLD</pre>	<lld< td=""><td> .* .</td><td>et en en</td><td>0</td></lld<>	 .* .	et en	0
	ZN-65		260	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

nter en la companya de la companya de la companya de Berra Berra Berra Berra Berra de La companya de la company Prime de la companya d

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

Name of Facility: CLINTON POWER STATION Location of Facility: DEWITT COUNTY IL				DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
FISH (PCI/KG WET)	NB-95		NA	tini. ≺LLD	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZR-95		ŇA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		100	. <lld< td=""><td><lld< td=""><td>₹</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>₹</td><td>-</td><td>0</td></lld<>	₹	-	0
	CS-137	··· .	100		<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BA-140	$\Delta (x_{ij}) = 0$ $\phi = \phi_{ij} + \phi_{ij}$ $\phi = \phi_{ij} + \phi_{ij}$	NA 	<pre>LLD</pre>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
• • • •	LA-140	an de la calencia. An de la calencia de	NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CE-144	· · ·	NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
SEDIMENT (PCI/KG DRY)	GAMMA BE-7	2	NA	<lld< td=""><td>NA</td><td>_</td><td>-</td><td>0</td></lld<>	NA	_	-	0
. ,	THE MEAN	AND 2 STANDARE	DEVIATION VAL	UES ARE CALC	ULATED USING			

Name of Facility: CLINTON POWER STATION Location of Facility: DEWITT COUNTY IL				DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL LOCATIONS LOCATIO	G PERIOD: CONTROL	50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F)	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
SEDIMENT (PCI/KG DRY)	K-40		NA	7210 (2/2) (6600/7820)	NA	7210 (2/2) (6600/7820)	CL-07B INDICATOR CLINTON LAKE 2.1 MILES SE OF SITE	0	
	MN-54		NA	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0	
	CO-58		ŇĂ	<lld< td=""><td>NA</td><td>-</td><td>-</td><td>0</td></lld<>	NA	-	-	0	
· · · ·	FE-59		NA	 <td>NÀ</td><td>-</td><td>-</td><td>0</td>	NÀ	-	-	0	
	CO-60		NA	<lld< td=""><td>NA</td><td><u>-</u> *</td><td>•</td><td>жналы. Настория 0</td></lld<>	NA	<u>-</u> *	•	жналы. Настория 0	
· . · · ·	ZN-65		NA	<lld< td=""><td>NA</td><td>-</td><td><u>.</u> 1. 4</td><td>0</td></lld<>	NA	-	<u>.</u> 1. 4	0	
	NB-95	in an	NA	<lld< td=""><td>NA</td><td>·····</td><td>- .</td><td>0</td></lld<>	NA	·····	- .	0	
	ZR-95		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0	

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

.

na stranovna slava svetska stranovna sva Makerika (1791.) po stranovna stranovna stranovna stranovna stranovna Predstava stranovna s

· · ·

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

Name of Facility Location of Facility		DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN				
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SEDIMENT (PCI/KG DRY)	CS-134		150	 LLD 	NA			0
	CS-137		180	<lld< td=""><td>ŇA</td><td>-</td><td>-</td><td>0</td></lld<>	ŇA	-	-	0
	BA-140		NA	÷ <lľď< td=""><td>NA</td><td></td><td>-</td><td>0</td></lľď<>	NA		-	0
	LA-140		NA	<lld< td=""><td>, NA</td><td>-</td><td>-</td><td>. 0</td></lld<>	, NA	-	-	. 0
· ·	CE-144		NA - 199 - 199 - 199 - 199 - 199 - 199	<lld< td=""><td>NA</td><td>- - ,</td><td></td><td>0</td></lld<>	NA	- - ,		0
NR PARTICULATE E-3 PCI/CU.METER)	GR-B	519	10	22 (467/467) (7/45)	22 (52/52) (8/39)	23 (52/52) (10/44)	CL-02 INDICATOR CLINTON'S MAIN ACCESS ROAI 0.7 MILES NNE OF SITE	0
	GAMMA BE-7	40	NA	80.3 (36/36) (41.2/134)	93.5 (4/4) (44.5/146)	95.1 (4/4) (65.6/134)	CL-08 INDICATOR DEWITT CEMETERY 2.2 MILES E OF SITE	0
	K-40		NA	19.2 (1/36)	<lld< td=""><td>19.2 (1/4)</td><td>CL-07 INDICATOR MASCOUTIN RECREATON ARE E VALUES SE OF SITE</td><td>0</td></lld<>	19.2 (1/4)	CL-07 INDICATOR MASCOUTIN RECREATON ARE E VALUES SE OF SITE	0

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

				DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F)	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
AIR PARTICULATE (E-3 PCI/CU.METER)	CO-60		ŃĂ	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
	NB-95		ŇĂ	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
	ZR-95		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
· ·	RU-103		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	RU-106		NA	<lld< td=""><td> <lld< td=""><td>-</td><td>- · · · · ·</td><td>0 89 - 00 000 - 00 000 - 00 000 - 00 000 - 00 000 - 00 00 00 00 0</td></lld<></td></lld<>	 <lld< td=""><td>-</td><td>- · · · · ·</td><td>0 89 - 00 000 - 00 000 - 00 000 - 00 000 - 00 000 - 00 00 00 00 0</td></lld<>	-	- · · · · ·	0 89 - 00 000 - 00 000 - 00 000 - 00 000 - 00 000 - 00 00 00 00 0	
<u> </u>	CS-134	·	50	<lld< td=""><td><lld< td=""><td>- </td><td><u>.</u> 1997 - 1997</td><td>. 0</td></lld<></td></lld<>	<lld< td=""><td>- </td><td><u>.</u> 1997 - 1997</td><td>. 0</td></lld<>	- 	<u>.</u> 1997 - 1997	. 0	
	CS-137	· · ·	60		· <lld< td=""><td>· · ·</td><td>· · · · ·</td><td>0</td></lld<>	· · ·	· · · · ·	0	
	CE-141		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

an an the State Charles of Name to State Backson a State Anno 1999 - The Longer Control Care and the State Anno 1997 - State St

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

Name of Facility Location of Facility	: CLINTON POW : DEWITT COUN			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-461 2007		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F)		LOCATION MEAN (F) RANGE	WITH HIGHEST ANNUAL MI STATION # NAME DISTANCE AND DIRECTION	SAN NUMBER OF NONROUTINE REPORTED MEASUREMENT
AIR PARTICULATE (E-3 PCI/CU.METER)	CE-144		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
			÷ 1.		. •			
AIR IODINE (E-3 PCI/CU.METER)	GAMMA I-131	519	70	<lld< td=""><td><lld< td=""><td>. -</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>. -</td><td>-</td><td>0</td></lld<>	. -	-	0
MILK (PCI/LITER)	I-131	19	1 + 7	NA ,	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA	·· 19 * ·		a				
	BE-7	19	NA	NA	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
		n 12 ang 1 Tang ang 1	na dia 1999. Ny George Maria	×				
	K-40	ate y et	NA	NA	1192 (19/19) (1050/1330)	1192 (19/19)	CL-116 CONTROL PASTURE IN RURAL KENNEY	. 0
		· · · · ·		· · .	(1050/1550)	.(1050/1330)	14 MILES WSW OF SITE	
	MN-54		NA	NA	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CO-58		NA	NA	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	FE-59		NA	NA	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

-	: CLINTON POWE : DEWITT COUNT			DOCKET NI REPORTINO INDICATOR	G PERIOD:	50-461 2007 Locatio	N WITH HIGHEST ANNUAL M	IEAN
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	CO-60		NA	NA	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZN-65		NA	NA	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
								Ū
. •	NB-95		NA	NA	<lld< td=""><td>-</td><td>· · -</td><td>0</td></lld<>	-	· · -	0
	ZR-95	·	··· NA	NA	~ <lld< td=""><td>-</td><td></td><td></td></lld<>	-		
			an g Ang	t satisti				MEV20222123 Ferret
	CS-134		45 ₂₁	NA	<ĽLD	-	-	0
14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	· .			,		۰.	and the second	
	CS-137	, , , , ,	18	NA	<lld< td=""><td></td><td>- </td><td>0</td></lld<>		- 	0
	BA-140	·	60,		. <lld< td=""><td> - = : · · _ · ·</td><td></td><td>0</td></lld<>	 - = : · · _ · ·		0
			15	NA	<lld< td=""><td></td><td></td><td></td></lld<>			

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

.

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

Location of Facility: DEWITT COUNTY IL			REPORTING PERIOD: INDICATOR CONTROL		50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	CE-144		NA	NA	<lld< td=""><td>-</td><td>-</td><td>0 .</td></lld<>	-	-	0 .
VEGETATION PCI/KG WET)	GAMMA MN-54	48	NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-58		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
•	FE-59	er a an a	NA	<lld< td=""><td><lld< td=""><td>-</td><td> -</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td> -</td><td>0</td></lld<>	-	 -	0
	CO-60		NA	 LLD 	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
,	ZN-65		NA	<lld< td=""><td><lld< td=""><td>_</td><td>·</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>_</td><td>·</td><td>0</td></lld<>	_	·	0
			алан 199 - с. с. С. с. с. с.		·			
	NB-95 ZR-95		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0 0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0 0</td></lld<>	-	-	0 0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR
THE CLINTON POWER STATION, 2007

Location of Facility: DEWITT COUNTY IL				DOCKET N REPORTIN INDICATOR	G PERIOD:	50-461 2007 LOCATION			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
VEGETATION (PCI/KG WET)	I-131		60 -:	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
1	CS-134		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
	CS-137		80	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0	
• .	·.			. :					
	BA-140		NA	<lld< td=""><td>~~<lld< td=""><td>-</td><td>- 11</td><td>······································</td></lld<></td></lld<>	~~ <lld< td=""><td>-</td><td>- 11</td><td>······································</td></lld<>	-	- 11	······································	
		* ر				·· .	· · · · · · ·	NENSORE VEHICE	
•	LA-140	· · · · · ·	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
et en	CE-144	· · · · · · · · · · · · · · · · · · ·	NA	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0	
GRASS (PCI/KG WET)	GAMMA BE-7	52	NA	2668.7 (39/39) (527/7550)	1842.7 (13/13) (505/3190)	2982.3 (13/13) (1140/5740)	CL-02 INDICATOR CLINTON'S MAIN ACCESS ROA 0.7 MILES NNE OF SITE	0 AD	

.

-	: CLINTON POWE : DEWITT COUNT			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-461 2007 LOCATION WITH HIGHEST ANNUAL MEAN		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER ÓF NONROUTINE REPORTED MEASUREMENTS
GRASS (PCI/KG WET)	K-40		NA	6496.7 (39/39) (2660/12800)	6589.2 (13/13) (4710/8220)	7920.8 (13/13) (5230/12800)	CL-08 INDICATOR DEWITT CEMETERY 2.2 MILES E OF SITE	0
	MN-54		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	· .			a 19				
	CO-58		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
:				 ,				
· • • .	FE-59	. ,	NA ~~~	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		NA NA	ALLD	<lld< td=""><td>÷.,</td><td>-</td><td>0</td></lld<>	÷.,	-	0
	ZN-65		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	NB-95	··	NA	<lld< td=""><td><lld< td=""><td>-</td><td>- '</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>- '</td><td>0</td></lld<>	-	- '	0
	ZR-95		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

-	: CLINTON POWE : DEWITT COUNT			DOCKET N REPORTING INDICATOR	G PERIOD: CONTROL	50-461 2007 LOCATION	WITH HIGHEST ANNUAL M	EAN
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION [.]	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GRASS (PCI/KG WET)	I-131		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		80	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BA-140		NA	· <lld·< td=""><td><lld< td=""><td>-</td><td></td><td></td></lld<></td></lld·<>	<lld< td=""><td>-</td><td></td><td></td></lld<>	-		
	LA-140		С. С. С. 	<lld< td=""><td><lld< td=""><td>-</td><td>- -</td><td>WEVERENEN OF T</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>- -</td><td>WEVERENEN OF T</td></lld<>	-	- -	WEVERENEN OF T
. :	CE-144		NA	<lld< td=""><td><lld< td=""><td>-</td><td>· 2</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>· 2</td><td>0</td></lld<>	-	· 2	0
DIRECT RADIATION (MILLI-ROENTGEN/QTF	TLD-QUARTERLY R.)	216	NA , , , , , ,		19.9 (4/4) (18.2/20.7)	22.1 (4/4) (20.0/23.9)	CL-51 INDICATOR 4.4 MILES NW	0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE CLINTON POWER STATION, 2007

APPENDIX B

r vaco f Ti Site

an an an a

· · · ·

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

(1994) A strategy of the st

化化物 网络拉拉

ocation	Location Description	Distance & Direction From Site
A. Surfac	ce Water	
CI-13 CL-90 CL-91 CL-99	Salt Creek Bridge on Rt. 10 (indicator) Discharge Flume (indicator) Parnell Boat Access (control) North Fork Access (control)	3.6 miles SW 0.4 miles SE 6.1 miles ENE 3.5 miles NNE
<u>B. Drinki</u>	ng (Potable) Water	
CL-14	Station Plant Service Bldg (indicator)	onsite
C. Well V	Vater	
CL-07D CL-12T CL-12R	Mascoutin Recreation Area (indicator) DeWitt Pump House (indicator) DeWitt Pump House (indicator)	2.3 miles ESE 1.6 miles E 1.6 miles E
DMilk -	bi-weekly / monthly	
CL-116	Dement Dairy (control)	14 miles WSW
E. Air Pa	rticulates / Air lodine	
CL-01 CL-02 CL-03 CL-04 CL-06 CL-07 CL-08 CL-11 CL-15 CL-94	Camp Quest Clinton's Main Access Road Clinton's Secondary Access Road Residence Near Recreation Area Clinton's Recreation Area Mascoutin Recreation Area DeWitt Cemetery Illinois Power Substation (Control) Rt. 900N Residence Old Clinton Road	1.8 miles W 0.7 miles NNE 0.7 miles NE 0.8 miles SW 0.7 miles WSW 2.3 miles SE 2.2 miles E 16 miles S 0.9 miles N 0.6 miles E
<u>F. Fish</u>		
CL-19 CL-105	End of Discharge Flume (indicator) Lake Shelbyville (control)	3.4 miles E 50 miles S
<u>G. Shore</u>	line Sediment	
CL-07B	Clinton Lake (indicator)	2.1miles SE
H. Food	Products	
CL-114 CL-115 CL-117 CL-118	Cisco (Control) Site's Secondary Access Road Residence North of Site Site's Main Access Road	12.5 miles SSE 0.7 miles NE 0.9 miles N 0.7 miles NNE
I. Grass		1.9 miles W
CL-01 CL-02 CL-08 CL-116	Camp Quest Clinton's Main Access Road DeWitt Cemetery Pasture in Rural Kenney	1.8 miles W 0.7 miles NNE 2.2 miles E 14 miles WSW

Location	Location Description	Distance & Direction From Site
	-518 Jp-	FIOIII Sile
	· · · · · · · · ·	
J. Enviro	onmental Dosimetry - TLD	
Inner Ring		
CL-01		1.8 miles W
CL-05		0.7 miles NNE
CL-22		0.6 miles NE
CL-23		0.5 miles ENE
CL-24	·	0.5 miles E
CL-34	,	0.8 miles WNW
CL-35		0.7 miles NW
CL-36		0.6 miles N
CL-42		2.8 miles ESE
CL-43		2.8 miles SE
CL-44		2.3 miles SSE
CL-45	2 Å	2.8 miles S
CL-46		2.8 miles SSW
CL-47		3.3 miles SW
CL-48	2.3	2.3 miles WSW
CL-63		1.3 miles NNW
Outer Ring		
Ũ		
CL-51		4.4 miles NW
CL-52	$1 \leq X \leq X_{1} \leq X_{2} \leq 1$	4.3 miles NNW
CL-53	11 Jan 1997	4.3 miles E
CL-54		4.6 miles ESE
CL-55		4.1 miles SE
CL-56		4.1 miles SSE
CL-57		4.6 miles S
CL-58	·	4.3 miles SSW
CL-60		4.5 miles SW
CL-61		4.5 miles WSW
CL-76		4.6 miles N
CL-77		4.5 miles NNE
CL-78		4.8 miles NE
CL-79		4.5 miles ENE
CL-80		4.1 miles W
CL-81		4.5 miles WNW

TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Clinton Power Station, 2007 Power Station, 2007

Location	Location Description	Distance & Direction	
Loouton	Ebodion Description	From Site	
Special Intere	st	(x,y) = (x,y) + (x,y	
CL-37		3.4 miles N	
CL-41		2.4 miles E	
CL-49		3.5 miles W	
CL-64		2.1 miles WNW	
CL-65		2.6 miles ENE	
CL-74		1.9 miles W	
CL-75		0.9 miles N	
Supplemental			1
CL-02		0.7 miles NNE	
CL-03		0.7 miles NE	
CL-04		0.8 miles SW	
CL-06		0.8 miles WSW	
CL-07		2.3 miles SE	
CL-08		2.2 miles E	
CL-15		0.9 miles N	
CL-33		11.7 miles SW	
CL-84		0.6 miles E	
CL-90		0.4 Miles BE	·
CL-91		6.1 miles ENE	
CL-97	· · · ·	10.3 miles SW	
CL-99	the second se	3.5 miles NNE	;
CL-114		12.5 miles SE	
.			•
<u>Control</u>	\tilde{I}^{*}		
<u>.</u>	And the set of		ч,
CL-11		16 miles S	
	$1.56^{+} + c_{\rm eff} = s_{\rm eff} + \frac{3}{2} + \frac{3}{2}$		н.
	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$		
	and the second		
	$\int_{\mathbb{R}^{d}} e^{-i \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} e^{-i \frac{1}{2} 1$		
,	· · · ·		
	$(-1)^{-1} = (-1)$		

 TABLE B-1:
 Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Clinton

 Power Station, 2007
 Power Station, 2007

. **

3

B - 3

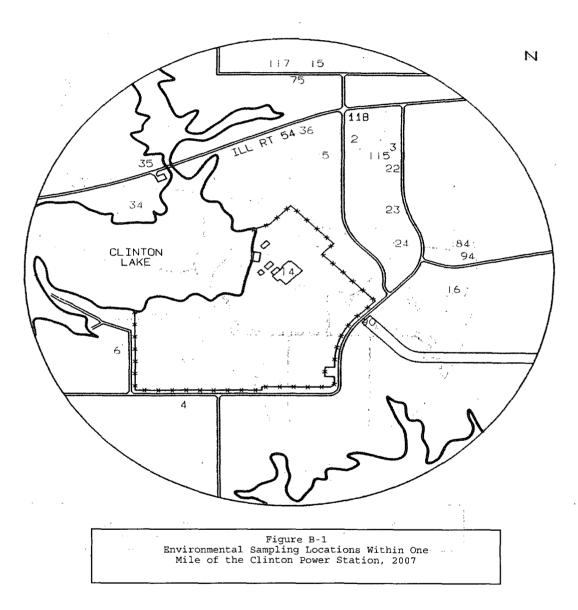
TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Clinton Power Station, 2007

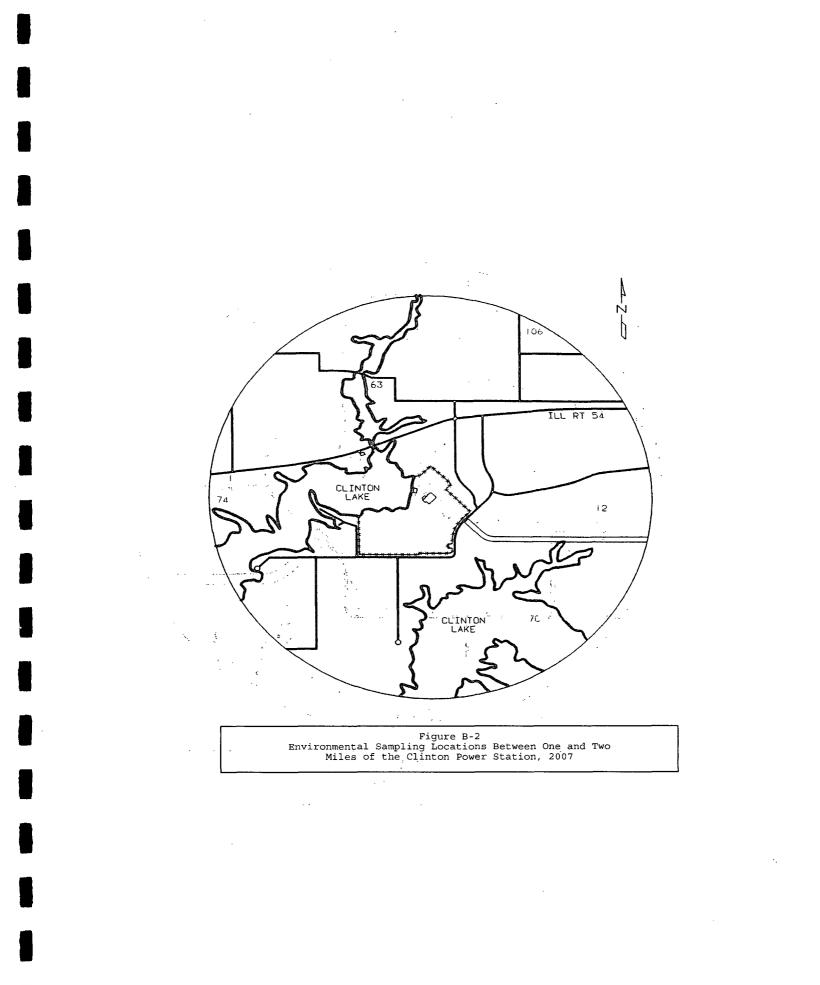
Sample [:] Medium	. Analysisbaan	Sampling Method	Analytical Procedure Number
Surface Water	Gamma de la	Monthly composite from a continuous	TBE, TBE-2007 Gamma emitting radioisotope analysis
<u></u>		water compositor.	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Surface Water	Tritium	Quarterly composite from a continuous water compositor.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
s * · ·	e		Env. Inc., T-02 Determination of tritium in water (direct method)
Drinking Water	Gross Beta	Monthly composite from a continuous water compositor.	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices
· ·		water compositor.	Env. Inc., W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue)
			Env. Inc., W(SS)-02 Determination of gross alpha and/or gross beta in water (suspended solids)
Drinking Water	Gamma Spectroscopy	Monthly composite from a continuous	TBE, TBE-2007 Gamma emitting radioisotope analysis
		water compositor.	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Drinking Water	Tritium	Quarterly composite from a continuous water compositor.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
			Env. Inc., T-02 Determination of tritium in water (direct method)
Well Water	Gamma Spectroscopy	Quarterly composite from a continuous water compositor.	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by
			gamma spectroscopy
Well Water	Tritium	Quarterly composite from a continuous water compositor.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
		water compositor,	Env. Inc., T-02 Determination of tritium in water (direct method)
Fish	Gamma Spectroscopy	Semi-annual samples collected via	TBE-2007 Gamma emitting radioisotope analysis
		electroshocking or other techniques	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Particulates	Gross Beta	One-week composite of continuous air sampling through glass	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices
		fiber filter paper	Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2007 Gamma emitting radioisotope analysis
			Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Iodine	Gamma Spectroscopy	One-week composite of continuous air	TBE, TBE-2007 Gamma emitting radioisotope analysis
		sampling through charcoal filter	Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method)
Milk	I-131	Bi-weekly grab sample when cows are on	TBE, TBE-2012 Radiolodine in various matrices
		pasture. Monthly all other times	Env. Inc., I-131-01 Determination of I-131 in milk by anion exchange

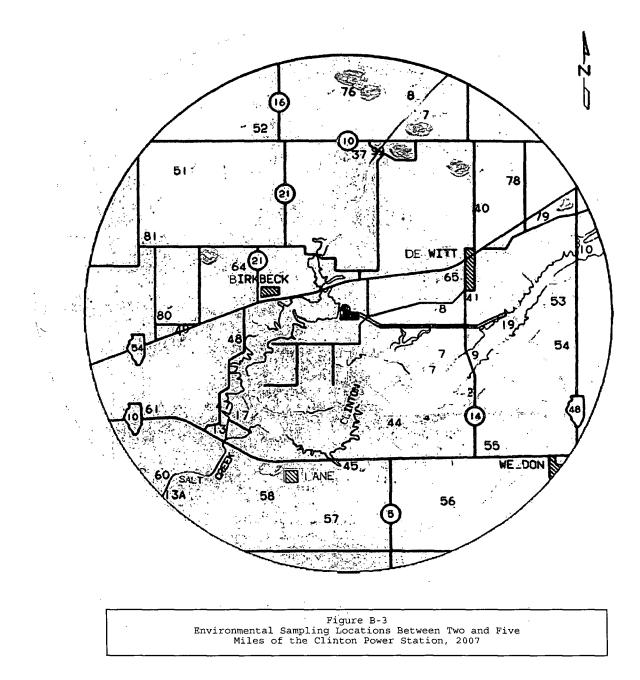
TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Clinton Power Station, 2007

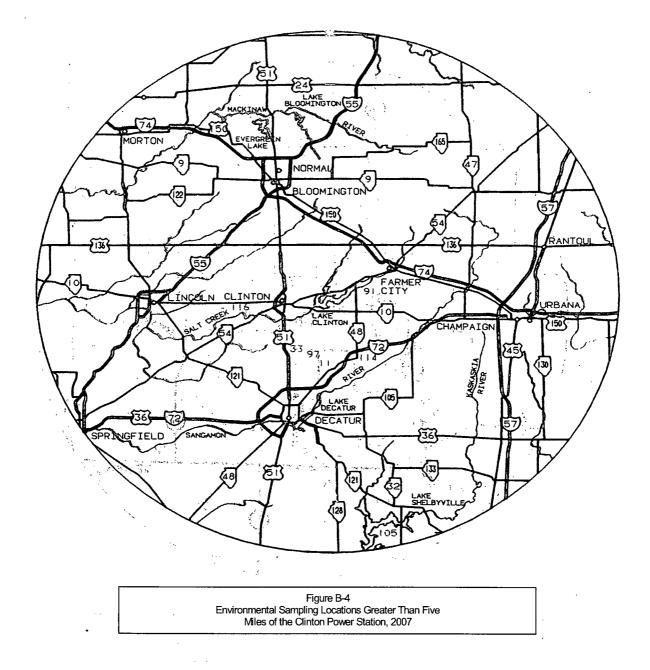
Sample Medium	Analysis	Sampling Method	Analytical Procedure Number
Food Products	Gross Beta	Monthly grab June through September	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices Env. Inc., EIML-AB-01 Gross alpha or gross beta in solid samples
Food Products	Gamma Spectroscopy	Monthly grab June through September	TBE, TBE-2007 Gamma emitting radioisotopes analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Grass	Gamma Spectroscopy	Biweekly May through October	TBE, TBE-2007 Gamma emitting radioisotopes analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
TLD	Thermoluminescence Dosimetry	Quarterly TLDs comprised of two Global Dosimetry CaF ₂ elements.	Global Dosimetry Quality Assurance Manual

n an ann a' fhrainn an Annaichteanna an Annaichteanna an Annaichteanna an Annaichteanna an Annaichteanna an Ann Annaichteanna an Annaichteanna an Annaichteanna an Annaichteanna an Annaichteanna an Annaichteanna an Annaichtean


and a strand strand


1. Construction of a field Wat gives interview and provide the second se Second secon second sec


ł


 An and a second sec Second sec

r •(2)

1. 必須服業

ē.,

APPENDIX C

The Constant of the second second second

and the states where the states and

DATA TABLES AND FIGURES -PRIMARY LABORATORY

1000 ...!' • .• .

1

TABLE C-I.1 **CONCENTRATIONS OF I-131 IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007**

RESULTS IN UNITS OF PCI/LITER ± SIGMA

COLLECTION PERIOD	CL-90
12/27/06 - 01/31/07	< 0.7
01/31/07 - 02/28/07	< 0.8
02/28/07 - 03/28/07	< 0.6
03/28/07 - 04/25/07	< 0.8
05/30/07 - 05/30/07	< 0.7
05/30/07 - 06/27/07	< 0.6
06/27/07 - 07/25/07	< 0.7
07/25/07 - 08/29/07	< 1.0
08/29/07 - 09/26/07	< 0.6
09/26/07 - 10/31/07	< 0.8
10/31/07 - 11/28/07	< 0.6
11/28/07 - 12/26/07	< 0.8

MEAN

TABLE C-I.2 CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± SIGMA

COLLECTION PERIOD	CL-90	CL-13,	CL-91	CL-99
01/31/07 - 03/28/07	< 162	< 165	< 167	< 162
04/25/07 - 06/27/07	< 159	< 165 < 164	< 164	< 162
07/25/07 - 09/26/07	< 182	< 179	< 183	< 183
10/31/07 - 12/26/07	< 170	< 171	< 172	< 172
MEAN	-	-	· -	-

MEAN

the second s

.

TABLE C-I.3

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± SIGMA

STC	COLLECTION	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	CS-134	CS-137	BA-140	LA-140	CE-144
CL-13	01/31/07	< 6	< 6	< 14	< .6	< 17	< 7	< 11	< 8	< 7	< 29	< 8	< 50
	02/28/07	< 5	< 5	< 11	< 6	< 11	< 5	< 11	< 5	< 6	< 29	< 10	< 43
	03/28/07	< 4	< 4	< 8	< 4	< 8	< 4	< 7	< 4	< 4	< 22	< 8	< 30
	04/25/07	< 5	< 5	< 10	< 7	< 12	< 7	< 12	< 5	< 5	< 31	< .14	< 35
	05/30/07	< 2	< 2	< 3	< 2	< 3.	< 2	< 3	< 2	< 2	< 11	< 3	< 13
	06/27/07	< 5	< 6	< 9	< 6	< 11	< 6	< 11	< 6	< 6	< 41	< 9	< 38
	07/25/07	< 6	< 7	< 11	< 6	< 16	< 7	< 10	< 9	< 6	< 29	< 12	< 48
	08/29/07	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 19	< 6	< 13
	09/26/07	< 7	< 8	<.15	<7	< 13	< 6	< 13	< 7	< 8	< 41	< 14	< 48
	10/31/07	< 2	< 2	< 6	< 2	< 5	<.3	< 5	< 2	< 2	< 21	< 7	< 16
	11/28/07	< 2	< 3	< 6	< 3	< 5	< 3	< 5	< 2	< 2	< 18	< 6	< 15
	12/26/07	< 3	.< 4	< 8	. < 4	< 7	< 4	< 8	< 3	< 4	< 28	< 5	< 27
	•		· .								•		
		-	-			- -	-	-	-	-	-	-	-
CL-90	12/27/06 - 01/31/07	.< 6	< 6	< 11	< 5	< 15	< 7	< 11	< 8	< 6	< 27	< 9	< 49
	01/31/07 - 02/28/07	< 5	< 4	< 8	< 4	<.9	< 5	< 8	< 5	< 5	< 25	< 9	< 37
	02/28/07 - 03/28/07	< 3	< 3	<.8	< 4	< 7	< 4	< 6	< 3	< 3	< 20	< 5	< 26
	03/28/07 - 04/25/07	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 2	< 2	< 13	< 4	< 14
	05/30/07 - 05/30/07	< 1	_< 1	< 3	<_1	< 3	< 1	< 2	< 1	< 1	< 8	< 3	< 10
	05/30/07 - 06/27/07	< 5 [′]	< ⁻ 5	< 11	·····< 4 ····	< 10	. < 5	< 8	< 5	. < 5	< 26	< 9	< 30
	06/27/07 - 07/25/07	< 5	< 7	< 14	< 8	< 11	< 6	< 9	< 5	< 5	< 31	< 12	< 39
	07/25/07 - 08/29/07	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 17	< 6	< 11
	08/29/07 - 09/26/07	< 5	< 5	< 9	< 5	< 9	< 5	< 9	< 5	< 5	< 24	< 8	< 36
	09/26/07 - 10/31/07	< 2	< 2 [·]	< 5	< 2	< 5	[′] < 3	< 4	< 2	< 2	< 18	< 6	< 14
	10/31/07 - 11/28/07	< 2	< 2	< 5	< 2	< 4	< 3	< 4	< 2	< 2	< 18	< 6	< 17
	11/28/07 - 12/26/07	< 4	< 5	< 9	< 4	< 9 . *	< 7	< 7	< 4	< 4	< 31	< 12	< 30
			41 i. 1	he a									
		-	-	-	-	-	-		-	-	-	-	-

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± SIGMA

STC		MN-54	CO-58	FE-59	CO-60	ZÑ-65	NB-95	ZR-95	CS-134	CS-137	BA-140	LA-140	CE-144
CL-91	12/27/06 - 01/31/07	< 7	< 7	< 16	< 9.	< 17	< 8	< 12	< #	< 8	< 33	< 11	< 59
	01/31/07 - 02/28/07	< 8	< 6	< 12	< 7.	< 12	< 7	< 12	< 6	< 6	< 33	< 12	< 50
	02/28/07 - 03/28/07	< 4	< 4	< 8	< 4	< 8	< 4	< 8	< 4	< 4	< 20	< 6	< 29
	03/28/07 - 04/25/07	< 1	< 1	< 3	< 1	< 3.	< 2	< 3	< 1	< 1 [°]	< 10	< 3	< 11
	05/30/07 - 05/30/07	< 1	< 2	< 4	< 2	< 3.	< 2	< 3	< 1	< 2	< 10	< 3	< 11
	05/30/07 - 06/27/07	< 4	< 5	< 11	< 5	< 9	< 5	< 9	< 4	< 5	< 32	< 10	< 34
	06/27/07 - 07/25/07	< 7	< 9	< 20	< 7.	< 19	< 9	< 15	< 8	< 9	< 45	< 13	< 62
	07/25/07 - 08/29/07	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 2	< 15	< 5	< 12
	08/29/07 - 09/26/07	< 5	< 7	< 16	< 7	< 14	< 7	< 12	< 7	< 7	< 41	< 14	< 52
	09/26/07 - 10/31/07	< 2	< 3	< 6	< 2	< 5	< 3	< 4	< 2	< 2	< 21	< 8	< 16
	10/31/07 - 11/28/07	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 2	< 2	< 17	< 5	< 13
	11/28/07 - 12/26/07	<.4	< 4	< 9	< 4	< 7	< 5	< 7	< 4	< 4	< 31	< 10	< 31
		-	-	-	-	4	. –	-		-	-	. * • :	-
CL-99	12/27/06 - 01/31/07	< 7	< 8	< 14	< 7	< 18	< 9	< 13	< #	< 8	< 33	< 11	< 56
	01/31/07 - 02/28/07	< 6	< 6	< 11	< 5	< 10.	< 7	< 12	< 5	< 7	< 25	< 9.	< 41
	02/28/07 - 03/28/07	< 4	< 4	< 7	< 4	< 6	< 4	< 7	< 4	< 4	< 20	< 7	< 27
	03/28/07 - 04/25/07	< 2	< 2	< 6	< 2	< 4	< 3	< 4	< 2	< 2	< 16	< 5	< 18
	05/30/07 - 05/30/07	< 1	< 1	< 3	< 1	< 3	< 1	< 3	< 1	< 1	< 10	< 3	< 10
	05/30/07 - 06/27/07	< 4	< 4	< 9	< 4	< 7	້ < 5	··· < 7 ^{····}	< 4	< 4	< 25	< 7	< 31
	07/04/07 - 07/25/07	< 4	< 4	< 9	< 4	< 8	< 4	< 8	< 4	< 4	< 29	< 8	< 26
	08/01/07 - 08/29/07	< 1	< 1	< 3	< 1	< 3	< 2	< 3	< 1	< 1	< 14	< 5	< 11
	09/05/07 - 09/26/07	< 7	< 6 . • ,	< 15	< 8	< 14	. < 7	< 9	< 6	< 6	< 26	< 11	< 42
	10/03/07 - 10/31/07	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 19	< 6	< 16
	10/31/07 - 11/28/07	< 2	< 3	< 6	< 3	< 5	< 3	< 5	< 2	< 3	< 17	< 6	< 15
	11/28/07 - 12/26/07	< 4	< 5	< 10	< 4	< 9	< 4	< 8	< 4	< 4	< 31	< 10	< 31
		-	-	-	-	-	-	-	-	-	-	-	-

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

C - 3

TABLE C-II.1CONCENTRATIONS OF GROSS BETA IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± SIGMA

COLLECT	ON	CL-14
PERIOD		
12/27/06	- 01/31/07	< 2.1
01/31/07	- 02/28/07	1.9 ± 1.3
02/28/07	- 03/28/07	< 1.9
03/28/07	- 04/25/07	< 2.1
05/30/07	- 05/30/07	< 2.0
05/30/07	- 06/27/07	< 2.1
06/27/07	- 07/25/07	2.3 ± 1.2
07/25/07	- 08/29/07	3.5 ± 1.7
08/29/07	- 09/26/07	< 2.2
09/26/07	- 10/31/07	< 2.4
10/31/07	- 11/28/07	2.4 ± 1.2
11/28/07	- 12/26/07	< 2.3
MEAN		2.5 ± 1.4

TABLE C-II.2CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± SIGMA

ς,

COLLECTION	CL-14						÷				
PERIOD							2	÷.			
12/27/06 - 03/28/07	< 161		۰.	·· · ·	.'		·				
03/28/07 - 06/27/07	< 163				-	,			-	1.	
06/27/07 - 09/26/07	< 181								<u>,</u> 1		
09/26/07 - 12/26/07	< 174					·: .	•	ζ.	el u se		۰
						· ·		• :	•		,
MEAN	-								,		
							:	· · ,			
			•							· · .	

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-II.3

CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± SIGMA

	12/27/06 - 01/31/07 01/31/07 - 02/28/07 02/28/07 - 03/28/07 03/28/07 - 04/25/07 04/25/07 - 05/30/07 05/30/07 - 06/27/07 06/27/07 - 07/25/07	< 42 < 42 < 27 < 15 < 40 < 44	< 51 52 ± 51 < 68 < 27 < 39	< 5 < 6 < 3 < 1	< 5 < 5 < 3	< 9 < 13	< 5	< 9	< 5	< 8	< 7	< 4		< 19	< 7	< 32
0 0 0 0 0 0	02/28/07 - 03/28/07 03/28/07 - 04/25/07 04/25/07 - 05/30/07 05/30/07 - 06/27/07 06/27/07 - 07/25/07	< 27 < 15 < 40	< 68 < 27	< 3		< 13						· -	< 5	< 19		~ 32
0 0 0 0	03/28/07 - 04/25/07 04/25/07 - 05/30/07 05/30/07 - 06/27/07 06/27/07 - 07/25/07	< 15 < 40	< 27	-	< 3		< 5	< 11	< 5	< 11	< 12	< 6	< 6	< 29	< 9	< 38
0 0 0	04/25/07 - 05/30/07 05/30/07 - 06/27/07 06/27/07 - 07/25/07	< 40		< 1	-	< 8	< 4	< 8	< 3	< 6	< 7	< 3	< 4	< 18	< 6	< 24
0 0	05/30/07 - 06/27/07 06/27/07 - 07/25/07		< 39		< 1	< 3	< 1	< 3	< 2	< 3	< 5	< 1	< 2	< 11	< 3	< 11
0	06/27/07 - 07/25/07	< 44		< 5	< 5	< 10	< 4	< 9	,< 5	< 7	< 14	< 5	< 4	< 33	< 10	< 33
			53 ± 45	< 5	< 4	< 11	< 5	< 6 🔅	< 5	< 8	< 13	< 4	< 5	< 29 [°]	< 10	< 35
		< 65	< 1 17	< 8	< 7	< 16	< 7	< 15	· < 7	< 14	< 14	< 8	< 7	< 35	< 11	< 52
0	07/25/07 - 08/29/07	< 20	< 17	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 12	< 2	< 2	< 19	< 6	< 15
0 O	8/29/07 - 09/26/07	< 46	107 ± 51	< 5 '	< 4	< 11	< 5	< 8	. < 5	< 10	< 11	< 4	< 4	< 26	< 8	< 35
<u>لہ</u> ٥	9/26/07 - 10/31/07	< 20	< 41	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 9	< 2	< 2	< 18	< 6	< 15
	0/31/07 - 11/28/07	< 13	19 ± 18	< 1	< 2	< 4	< 1	< 3	< 2 .	< 3	< 6	< 1	< 1	< 12	< 4	< 10
1	1/28/07 - 12/26/07	< 45	49 ± 44	< 5	< 4	< 11	< 6	< 10	< 6	[′] < 8	< 15	< 4	< 4	< 35	< 13	< 29
	MEAN	-	56 ± 63	-	-	-	-	-	 • : `	-	-	-	-	-		-
							•									
							: ···			x	·			, j , j		
							•		·		:					
									•				÷.			

TABLE C-III.1

CONCENTRATIONS OF TRITIUM IN GROUND WATER SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

2 . .

, ,

RESULTS IN UNITS OF PCI/LITER ± SIGMA

COLLECTION PERIOD	CL-07D	CL-12R	CL-12T
03/28/07 - 03/28/07	< 166	< 189	< 185
06/27/07 - 06/27/07	< 154	< 165	< 167
09/26/07 - 09/26/07	< 178	< 187	< 191
12/26/07 - 12/26/07	< 189	< 181	< 195

MEAN

机力 均可加 一度 计行业计

> > ş.

C - 6

TABLE C-III.2 **CONCENTRATIONS OF GAMMA EMITTERS IN GROUND WATER SAMPLES** COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

STC COLLECTION MN-54 CO-58 FE-59 CO-60 ZN-65 NB-95 ZR-95 CS-134 CS-137 BA-140 LA-140 CE-144 PERIOD CL-07D 03/28/07 < 3 < 2 < 2 < 3 < 2 < 3 < 2 < 3 < 1 < 2 < 8 < 11 06/27/07 < 5 < 5 < 10 < 4 < 9 < 3 < 6 < 4 < 5 < 30 < 7 < 31 09/26/07 < 28 < 8 < 43 < 4 < 5 < 9 < 4 < 11 < 5 < 9 < 5 < 6 12/26/07 < 2 < 1 < 3 < 2 < 3 < 1 < 2 < 10 < 3 < 11 < 1 < 4 MEAN ------------< 2 CL-12R 03/28/07 < 2 < 2 < 4 < 2 < 4 < 3 < 2 < 2 < 9 < 3 < 13 < 6 < 6 < 5 < 34 < 13 < 40 06/27/07 < 5 < 6 < 14 < 13 < 11 < 5 09/26/07 < 5 < 5 < 8 < 4 < 9 < 5 < 9 < 4 < 4 < 23 < 7 < 32 < 2 < 2 < 2 < 5 < 2 < 4 < 2 < 4 < 2 < 13 < 4 < 15 12/26/07 Ż MEAN -+ ---------< 2 < 2 < 3 < 3 < 1 < 2 < 8 < 3 < 11 CL-12T 03/28/07 < 1 < 3 < 1 < 9 < 9 < 4 < 33 < 44 06/27/07 < 4 < 4 < 11 < 4 < 6 < 5 < 10. < 5 < 6 < 23 < 40 09/26/07 < 4 < 10 < 5 < 10 < 9 < 4 < 4 < 9 12/26/07 < 2 < 2 < 4 < 2 < 4 < 2 < 4 < 2 < 2 < 13 < 5 < .13 MEAN ~

RESULTS IN UNITS OF PCI/LITER ± SIGMA

C - 7

2

CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± SIGMA

STC	COLLECTION PERIOD	N BE-7	K-40	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	CS-134	CS-137	BA-140	LA-140	CE-144
CL-105									<u> </u>		128.6 K I DAVIS PLANE STA	· · · · · · · · · · · · · · · · · · ·	The result of the second of		And the second statement of the second second
Crappie	04/16/07	< 646	3650 ± 1070	< 78	< 57	< 145	< 76	< 131	< 82	< 98	< 50	< 75	< 416	< 88	< 367
Largemouth Bass	04/16/07	< 391	3650 ± 659	< 45	< 41	< 89	< 41	< 81	< 46	< 82	< 36	< 46	< 294	< 101	< 232
Carp	04/16/07	< 375	2740 ± 683	< 45	< 50	< 102	< 45	< 104	< 50	< 87	< 38	< 40	< 285	< 104	< 232
Bluegill	04/16/07	< 349	2500 ± 657	< 34	< 34	< 76	< 42	< 72	< 43	< 74	< 35	< 45	< 242	< 73	< 192
Bluegill	10/09/07	< 876	2210 ± 1100	< 54	< 109	< 180	< 56	< 205	< 109	< 177	< 76	< 71	< 1380	< 302	< 521
Carp	10/09/07	< 770	2200 ± 817	< 68	< 78	< 208	< 62	< 149	< 56	< 153	< 60	< 63	< 1080	< 354	< 414
Crappie	10/09/07	< 732	2980 ± 923	< 62	< 97	< 21 9	< 86	< 205	< 120	< 154	< 63	< 69	< 1050	< 384	< 702
Largemouth Bass	10/09/07	< 857	2900 ± 934	< 76	< 93	< 214	< 73	< 158	< 116	< 154	< 68	< 92	< 1290	< 1080	< 674
	MEAN	-	2854 ± 1138	-	- ,	-	-	-	-	-	-	-	-	-	-
CL-19															
Carp	04/16/07	< 357	3080 ± 683	< 32	< 38	< 91	< 32	< 100	< 40	< 74	< 39	< 41	< 288	< 92	< 219
Channel Catfish	04/16/07	< 358	4260 ± 805	< 51	< 49	< 117	< 41	< 103	< 55	< 86	< 46	< 49	< 306	< 104	< 223
Bluegill	04/16/07	< 279	2780 ± 508	< 30	< 27	< 75	< 30	< 65	< 34	< 49	< 29	< 30	< 167	< 79	< 157
Largemouth Bass	04/16/07	< 308	3380 ± 611	< 36	< 37	< 81	< 34	< 77	< 36	< 69	< 31	< 39	< 227	< 56	< 185
Bluegill	10/09/07	< 725	1960 ± 968	< 77	< 104	< 232	< 96	< 138	< 112	< 177	< 79	< 79	< 2270	< 553	< 459
Carp	10/09/07	< 714	3770 ± 928	< 57	< 72	< 138	< 56	< 133	< 100	< 135	< 44	< 45	< 1450	< 524	< 386
Largemouth Bass	10/09/07	< 446	2590 ± 860	< 30	< 33	< 94	< 31	< 63	< 39	< 105	< 28	< 11	< 1120	< 335	< 175
Channel Catfish		< 742		< 86	< 93	< 226	< 111	< 120	< 82	< 183	< 71	< 88	< 944	< 367	< 629
19 A				·. ·		in e staarde ee in N	رې درو د مېکې د د ۲۰۰۰ کېږې	· · · ·			, · ·		• •		· · · · ·
	MEAN	-	3001 ± 1565			e 13 ⁻	- -		-	-	-	-	-	-	-

and the second of the statement

TABLE C-IV.1

TABLE C-V.1CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES
COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

STC	COLLECTION PERIOD	BE-7	K-40	.MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	CS-134	CS-137	BA-140	LA-140	CE-144
CL-07B	04/16/07 10/09/07	< 144 < 315	6600 ± 363 7820 ± 102		< 17 < 49	< 44 < 123	< 17 < 43	< 35 < 90	< 19 < 49	< 33 < 81	< 13 < 34	< 14 < 40	< 203 < 357	< 60 < 40	< 71 < 229
	MEAN	-	7210 ± 172	5 -	-	5 1.190 5 T 2	- 14 -		-	-	-	-	-	-	-
. ¹ .			· · ·		• • •	• 5 • * * • • •	¢ *		1. J.						
		•	· .	2			. :	*i			•				·
							.*								
,	•		(·.	-	· ·	2000 - 2000 2000 2000 - 2000 2000 - 2000						, - ,		•
	~			•				2 J				t. N		- 19	
·				·	N 1.	a serve a re	···· · ·				. .	;	en e	ा हेर्नु जन्म	•_• • • • •
				· · · · ·				21					an a		
·				* • • • • • •											

RESULTS IN UNITS OF PCI/KG DRY ± SIGMA

.

C - 9

TABLE C-VI.1

CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION	130.5		GROU	2		
PERIOD		CL-03	CL-04	CL-06	CL-15	CL-94
01/03/07 - 01/10/07	15 ± 4	14 ± 4	16 ± 4	12 ± 4	19 ± 5	19 ± 5
01/10/07 - 01/17/07	17 ± 4	14 ± 4	16 ± 4	14 ± 4	14 ± 4	13 ± 4
01/17/07 - 01/24/07	38 ± 5	28 ± 5	33 ± 5	30 ± 5	31 ± 5	29 ± 5
01/24/07 - 01/31/07	27 ± 5	26 ± 5	30 ± 5	25 ± 5	26 ± 5	25 ± 5
01/31/07 - 02/07/07	23 ± 5	19 ± 5.	18 ± 5	18 ± 5	14 ± 4	23 ± 5
02/07/07 - 02/14/07	20 ± 4	18 ± 4	23 ± 5	24 ± 5	25 ± 5	21 ± 4
02/14/07 - 02/21/07	30 ± 5	22 ± 5	24 ± 5	26 ± 5	24 ± 5	23 ± 5
02/21/07 - 02/28/07	18 ± 4	14 ± 4 💫	18 ± 4	16 ± 4	18 ± 4	15 ± 4
02/28/07 - 03/07/07	22 ± 5	18 ± 4	19 ± 5	23 ± 5	21 ± 5	24 ± 5
03/07/07 - 03/14/07	22 ± 5	21 ± 5	20 ± 5	19 ± 4	20 ± 5	21 ± 5
03/14/07 - 03/21/07	18 ± 4	18 ± 4	1 8 ± 4	14 ± 4	19 ± 4	20 ± 4
03/21/07 - 03/28/07	17 ± 4	18 ± 4	17 ± 4	15 ± 4	19 ± 4	16 ± 4
03/28/07 - 04/04/07	17 ± 4	17 ± 4	18 ± 4	16 ± 4	20 ± 4	16 ± 4
04/04/07 - 04/11/07	20 ± 4	18 ± 4	21 ± 4	19 ± 4	21 ± 4	16 ± 4
04/11/07 - 04/18/07	20 ± 4	15 ± 4	20 ± 5	20 ± 5	20 ± 5	19 ± 4
04/18/07 - 04/25/07	15 ± 4	12 ± 4	12 ± 4	14 ± 4	15 ± 4	11 ± 4
04/25/07 - 05/02/07	17 ± 4	16 ± 4	16 ± 4	17 ± 4	14 ± 4	15 ± 4
05/02/07 - 05/09/07	19 ± 4	18 ± 4	21 ± 4	20 ± 4	19 ± 4	17 ± 4
05/09/07 - 05/16/07	22 ± 5	22 ± 5	19 ± 4	18 ± 4	20 ± 4	19 ± 4
05/16/07 - 05/23/07	27 ± 5	17 ± 4	17 ± 4	17 ± 4	19 ± 5	18 ± 5
05/23/07 - 05/30/07	27 ± 5	22 ± 4	24 ± 4	22 ± 4	24 ± 4	20 ± 4
05/30/07 - 06/06/07	26 ± 5	20 ± 4	18 ± 4	19 ± 4	19 ± 4	16 ± 4
06/06/07 - 06/13/07	22 ± 5	19 ± 5	20 ± 5	18 ± 5	21 ± 5	18 ± 5
06/13/07 - 06/20/07	28 ± 5	27 ± 5	29 ± 5	29 ± 5	22 ± 5	29 ± 5
06/20/07 - 06/27/07	19 ± 4	15 ± 4	21 ± 4	14 ± 4	16 ± 4	15 ± 4
06/27/07 - 07/04/07	13 ± 4	12 ± 4	14 ± 4	12 ± 4	13 ± 4	10 ± 4
07/04/07 - 07/11/07	21 ± 5	16 ± 5	20 ± 5	19 ± 5	21 ± 5	16 ± 5
07/11/07 - 07/18/07	10 ± 5	8 ± 4	8 ± 4	10 ± 4	10 ± 5	7 ± 4
07/18/07 - 07/25/07	20 ± 4	15 ± 4	16 ± 4	18 ± 4	15 ± 4	16 ± 4
07/25/07 - 08/01/07	25 ± 5	30 ± 5	26 ± 5	27 ± 5	22 ± 4	27 ± 5
08/01/07 - 08/08/07	26 ± 5	26 ± 5	24 ± 5	24 ± 5	23 ± 5	27 ± 5
08/08/07 - 08/15/07	26 ± 5	26 ± 5	27 ± 5	26 ± 5	28 ± 5	32 ± 5
08/15/07 - 08/22/07	26 ± 5	29 ± 5	29 ± 5	29 ± 5	27 ± 5	26 ± 5
08/22/07 - 08/29/07	22 ± 4	24 ± 5	27 ± 5	31 ± 6	20 ± 4	24 ± 5
08/29/07 - 09/05/07	27 ± 5	29 ± 5	24 ± 5	26 ± 5	22 ± 5	27 ± 5
09/05/07 - 09/12/07	20 ± 4	25 ± 5	19 ± 4	17 ± 4	16 ± 4	21 ± 5
09/12/07 - 09/19/07	24 ± 5	20 ± 5	18 ± 5	18 ± 5	14 ± 4	12 ± 4
09/19/07 - 09/26/07	34 ± 5	26 ± 5	29 ± 5	27 ± 5	30 ± 5	20 ± 4
09/26/07 - 10/03/07	35 ± 5	33 ± 5	28 ± 5	19 ± 5	27 ± 5	36 ± 5
10/03/07 - 10/10/07	13 ± 5	13 ± 5	13 ± 5	11 ± 4	14 ± 5	12 ± 4
10/10/07 - 10/17/07	20 ± 5	18 ± 5	20 ± 5	23 ± 5	22 ± 5	16 ± 5
10/17/07 - 10/24/07	17 ± 4	19 ± 4	20 ± 4	20 ± 4	20 ± 4	21 ± 5
10/24/07 - 10/31/07	22 ± 4	21 ± 4	18 ± 4	24 ± 5	17 ± 4	20 ± 4
10/31/07 - 11/07/07	17 ± 4	16 ± 4	19 ± 4	15 ± 4	16 ± 4	22 ± 5
11/07/07 - 11/14/07	32 ± 5	26 ± 5	35 ± 6	37 ± 5	32 ± 5	38 ± 5
11/14/07 - 11/21/07	23 ± 4	24 ± 5	23 ± 5	22 ± 5	26 ± 5	21 ± 4
11/21/07 - 11/28/07	28 ± 5	24 ± 4	27 ± 5	27 ± 5	25 ± 5	25 ± 5
11/28/07 - 12/05/07	29 ± 5	28 ± 5	22 ± 4	(1)	23 ± 5	25 ± 5
12/05/07 - 12/12/07	23 ± 5	28 ± 5	25 ± 5	26 ± 5	23 ± 5	24 ± 5
12/12/07 - 12/19/07	42 ± 6	43 ± 6	45 ± 6	43 ± 5	44 ± 6	38 ± 6
12/19/07 - 12/26/07	38 ± 5	45 ± 6	40 ± 6	38 ± 5	36 ± 5	43 ± 6
12/26/07 - 01/02/08	44 ± 6	37 ± 5	37 ± 5	38 ± 6	37 ± 6	41 ± 6
				00		
MEAN	23 ± 15	22 ± 15	22 ± 14	22 ± 15	21 ± 13	22 ± 16

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-VI.1

CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION -	CL-01	GROUP II CL-07	CL-08	GROUP III CL-11	
and share the surface of the state of the state of the	construction of the second	and and the local of the second second second second second	11 ± 4		
01/03/07 - 01/10/07	15 ± 4	14 ± 4		15 ± 4	
01/10/07 - 01/17/07	17 ± 4	15 ± 4	14 ± 4	18 ± 4	
01/17/07 - 01/24/07	26 ± 4	30 ± 5	28 ± 5	28 ± 5	· · · · ·
01/24/07 - 01/31/07	24 ± 5	26 ± 5	31 ± 5	24 ± 5	CARDS AND A
01/31/07 - 02/07/07	17 ± 5	21 ± 5 🔗	17 ± 5	17 ± 5	
02/07/07 - 02/14/07	25 ± 5	18 ± 4	22 ± 4	21 ± 4	all and a second second
02/14/07 - 02/21/07	25 ± 5	24 ± 5	23 ± 5	25 ± 5	
02/21/07 - 02/28/07	17 ± 4	12 ± 4	13 ± 4	17 ± 4	
02/28/07 - 03/07/07	22 ± 5	17 ± 4	18 ± 4	19 ± 5	· · ·
03/07/07 - 03/14/07	17 ± 4	21 ± 5	18 ± 4	16 ± 4	
03/14/07 - 03/21/07	15 ± 4	14 ± 4	15 ± 4	21 ± 4	
03/21/07 - 03/28/07	15 ± 4	15 ± 4	19 ± 4	20 ± 4	
03/28/07 - 04/04/07	14 ± 4	19 ± 4	18 ± 4	18 ± 4	
04/04/07 - 04/11/07	20 ± 4	16 ± 4	18 ± 4	18 ± 4	
04/11/07 - 04/18/07	20 ± 7 21 ± 5	17 ± 4	16 ± 4	18 ± 4	
04/18/07 - 04/25/07	14 ± 4	12 ± 4	10 ± 4	10 ± 4 14 ± 4	
04/25/07 - 05/02/07	14 ± 4 19 ± 4	12 ± 4 18 ± 4	17 ± 4	14 ± 4 16 ± 4	
	15 ± 4				
05/02/07 - 05/09/07		18 ± 4	17 ± 4	18 ± 4	
05/09/07 - 05/16/07	20 ± 4	19 ± 4	16 ± 4	18 ± 4	
05/16/07 - 05/23/07	18 ± 5	17 ± 4	20 ± 5	21 ± 5	a = b = b
05/23/07 - 05/30/07	25 ± 5	19 ± 4	21 ± 4	25 ± 5	1
05/30/07 - 06/06/07	21 ± 4	16 ± 4	19 ± 4	19 ± 4	4
06/06/07 - 06/13/07	17 ± 4	20 ± 5	21 ± 5	24 ± 5	
06/13/07 - 06/20/07	21 ± 4	23 ± 5	24 ± 5	26 ± 5	
06/20/07 - 06/27/07	17 ± 4	14 ± 4	18 ± 4	20 ± 4	(1, 1) $(1, 1)$ $(1, 1)$ $(1, 1)$
06/27/07 - 07/04/07	11 ± 4	14 ± 4	15 ± 4	8 ± 4	
07/04/07 - 07/11/07	18 ±,5	21 ± 5	14 ± 5	18 ± 5	· · ·
07/11/07 - 07/18/07	9 ± 4	10 ± 5	12 ± 5	11 ± 5	N
07/18/07 - 07/25/07	16 ± 4	18 ± 4	16 ± 4	20 ± 4	×
07/25/07 - 08/01/07	28 ± 5	27 ± 5	29 ± 5	31 ± 5	
08/01/07 - 08/08/07	30 ± 5	24 ± 5	30 ± 5	28 ± 5	and the second
08/08/07 - 08/15/07	24 ± 5	20 ± 4	20 ± 4	29 ± 5	
08/15/07 - 08/22/07	30 ± 5	31 ± 5	26 ± 5	32 ± 5	
08/22/07 - 08/29/07	20 ± 4	24 ± 5	23 ± 4	19 ± 4	
08/29/07 - 09/05/07	25 ± 5	25 ± 5	31 ± 5	24 ± 5	
09/05/07 - 09/12/07	17 ± 4	18 ± 4	14 ± 4	21 ± 5	
09/12/07 - 09/19/07	15 ± 4	26 ± 5	22 ± 5	20 ± 5	
09/19/07 - 09/26/07	30 ± 5	31 ± 5	27 ± 5	28 ± 5	A
09/26/07 - 10/03/07	28 ± 5	29 ± 5	31 ± 5	32 ± 5	· •
10/03/07 - 10/10/07	13 ± 4	13 ± 4	11 ± 4	12 ± 4	
10/10/07 - 10/17/07	18 ± 5	13 ± 4	20 ± 5	19 ± 5	
10/17/07 - 10/24/07	18 ± 4	21 ± 4	20 ± 4	21 ± 4	
10/24/07 - 10/31/07	19 ± 4	22 ± 4	20 ± 4	18 ± 4	
10/31/07 - 11/07/07	20 ± 4	19 ± 4	16 ± 4	20 ± 4	
11/07/07 - 11/14/07	33 ± 5	37 ± 5	32 ± 5	37 ± 5	
11/14/07 - 11/21/07	22 ± 4	22 ± 4	24 ± 5	21 ± 4	
11/21/07 - 11/28/07	30 ± 5	22 ± 4 26 ± 5	24 ± 5 26 ± 5	30 ± 5	
11/28/07 - 12/05/07					
	31 ± 5	26 ± 5	30 ± 5	22 ± 5	i.
12/05/07 - 12/12/07	27 ± 5	23 ± 5	23 ± 5	24 ± 5	
12/12/07 - 12/19/07	38 ± 5	42 ± 6	45 ± 6	39 ± 6	
12/19/07 - 12/26/07	36 ± 5	39 ± 6	39 ± 6	39 ± 5	
12/26/07 - 01/02/08	41 ± 6	43 ± 6	43 ± 6	37 ± 5	
	00	o	00	00	
MEAN	22 ± 14	21 ± 15	22 ± 15	22 ± 14	

TABLE C-VI.2	MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS (E-3 PCI/CU METER) IN AIR
	PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

GROUP I - ON	N-SITE LO	OCATIO	NS a	GROUP II - INTERMEDI	ATE DIS	TANCE L	LOCATIONS	GROUP III - CO	NTROL L		ONS
COLLECTION PERIOD	MIN	MAX	MEAN ± 2SD	COLLECTION	MIN	MAX	MEAN ± 2SD	COLLECTION	MIN	MAX	MEAN ± 2SD
01/03/07 - 01/31/07	12	38	22 ± 15	01/03/07 - 01/31/07	11	31	21 ± 14	01/03/07 - 01/31/07	15	28	21 ± 12
01/31/07 - 02/28/07	14	30	20 ± 8	01/31/07 - 02/28/07	12	25	19 ± 9	01/31/07 - 02/28/07	17	25	20 ± 8
02/28/07 - 03/28/07	14	24	19 ± 5	02/28/07 - 03/28/07	14	22	17 ± 5	02/28/07 - 03/28/07	16 -	21	.19 ± 4
03/28/07 - 05/02/07	11	21	17 ± 5	03/28/07 - 05/02/07	12	21	17 ± 5	03/28/07 - 05/02/07	14	18	17 ± 4
05/02/07 - 05/30/07	· 17	27	20 ± 6	05/02/07 - 05/30/07	. 15	25	19 ± 5	05/02/07 - 05/30/07	18 ·	25	21 ± 7
05/30/07 - 06/27/07	14	29	21 ± 10	05/30/07 - 06/27/07	. 14	24	19 ± 6	05/30/07 - 06/27/07	19	26	22 ± 7
06/27/07 - 08/01/07	7	30	17 ± 12	06/27/07 - 08/01/07	9	29	17 ± 13	06/27/07 - 08/01/07	8	31	18 ± 18
08/01/07 - 08/29/07	20	32	26 ± 6	08/01/07 - 08/29/07	20	31	25 ± 8	08/01/07 - 08/29/07	19	32	27 ± 11
08/29/07 - 10/03/07	12	36	24 ± 12	08/29/07 - 10/03/07	14	31	25 ± 12	08/29/07 - 10/03/07	20	32	25 ± 10
10/03/07 - 10/31/07	11	24	18 ± 7	10/03/07 - 10/31/07	. 11	22	17 ± 8	10/03/07 - 10/31/07	12	21	18 ± 8
10/31/07 - 11/28/07	15	38	25 ± 13	10/31/07 - 11/28/07	<u>)</u> 16	37	25 ± 13	10/31/07 - 11/28/07	20	37	27 ± 15
11/28/07 - 01/02/08	22	45	35 ± 16	11/28/07 - 01/02/08	, 23	45	35 ± 15	11/28/07 - 01/02/08	22	39	32 ± 17
01/03/07 - 01/02/08	22	45	22 ± 10	01/03/07 - 01/02/08	9	45	21 ± 11	01/03/07 - 01/02/08	8	39	22 ± 10

 \sim_2

Current Mathematical States
 Current Mathematical States
 Current Mathematical States

JIN 1 MILES OF CPS

* GROUP I LOCATIONS WITHIN 1 MILES OF CPS

** GROUP II LOCATIONS WITHIN 1-5 MILES OF CPS

*** GROUP III LOCATIONS GREATER THAN 5 MILES OF CPS

•

TABLE C-VI.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

STC	COLLECTION PERIOD	BE-7	K-40	CO-60	NB-95	ZR-95	RU-103	RU-106	CS-134	CS-137	CE-141	CE-144
CL-01	01/03/07 - 04/04/07	52 ± 17	< 16	< 2	< 2	< 3	< 2	< 11	< 2	< 1	< 3	< 6
	04/04/07 - 07/04/07	88 ± 26	< 38	< 3	< 4	< 7	< 6	< 22	< 3	< 2	< 8	< 11
	07/04/07 - 10/03/07	88 ± 27	< 46	< 3	< 6	< 7	< 6	< 29	< 4	< 3	< 9	< 11
	10/03/07 - 01/02/08	71 ± 22	< 31	< 2	< 4	< 6	< 3	< 21	< 2	< 2	< 5	< 11
	MEAN	75 ± 34	-	-	-	-	-	-	-	-	-	-
					10.542							
CL-02	01/03/07 - 04/04/07	59 ± 21	< 39	< 2	< 3	< 4	< 3	< 20	< 2	< 2	< 4	< 8
	04/04/07 - 07/04/07	80 ± 44	< 60	< 3	< 5	< 9	< 7	< 31	< 4	< 3	< 12	< 15
	07/04/07 - 10/03/07	92 ± 30	< 18	< 3	< 5	< 7	< 7	< 23	< 3	< 3	< 10	< 13
	10/03/07 - 01/02/08	48 ± 17	< 52	< 4	< 3	< 3	< 5	< 25	< 3	< 3	< 7	< 16
	·			· .	$h_{i,j} \in \mathcal{I}_{i,j}$,		
	MEAN	70 ± 40	· -	- ·	.	- ,	: -		-	-	-	-
CL-03	01/03/07 - 04/04/07	69 ± 14	< 27	< 2	< 2	< 4	< 2	< 13	< 2	< 2	< 3	< 6
	04/04/07 - 07/04/07	112 ± 32	< 34	< 2	< 5	< 8	< 6	< 21	< 2	< 3	< 9	< 12
	07/04/07 - 10/03/07	84 ± 39	< 50	< 5	< 6	< 8 🖓	< 9	< 29	< 4	< 3	< 13	< 13.
	10/03/07 - 01/02/08	41 ± 22	< 42	< 3	< 4	< 6	< 3	< 25	< 4	< 2	< 5	< 11
											12	10 P 8
	MEAN	76 ± 59	- '		т. <mark>-</mark> ун. н.	-	-	-	-	- ·	یې کې د درې د کامې کې و د	en la
CL-04	01/03/07 - 04/04/07	74 ± 23	< 37	< 3 ,	< 3	< 5	< 3	< 16	< 2	< 2	< 4	< 9
	04/04/07 - 07/04/07	103 ± 44	< 44	< 3	< 6	< 10	< 7	< 23	< 3	< 3	< 11	< 14
	07/04/07 - 10/03/07	78 ± 31	< 60	< 4	< 5	. < 9	< 8	< 20	< 5	< 4	< 11	< 14
	10/03/07 - 01/02/08	66 ± 26	< 60	< 3	< 3	< 7	< 4	< 25	< 3	< 3	< 6	< 12
	MEAN	80 ± 32	· . - · :		<u> </u>		1 -	, - *		-	-	-
		· . ·					· ·	· · · ·				
CL-06	01/03/07 - 04/04/07	66 ± 23	< 22	< 2	< 3	< 5	< 3	< 20	< 2	< 2	< 4	< 8
	04/04/07 - 07/04/07	97 ± 31	< 43	< 3	< 4	< 7	< 5	< 23	< 3	< 2	< 8	< 10
	07/04/07 - 10/03/07	113 ± 31	< 58	< 3	< 6	< 10	< 7	< 26	< 3	< 3	< 9	< 12
	10/03/07 - 01/02/08	74 ± 26	< 50	< 4	< 5	< 6	< 5	< 30	< 4	< 3	< 7	< 14
	MEAN	87 ± 43	-	-	-	-	-	-		-	-	-

1

TABLE C-VI.3

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

											:	
STC		BE-7	K-40	CO-60	NB-95	ZR-95	RU-103	RU-106	CS-134	CS-137	CE-141	CE-144
CL-07	01/03/07 - 04/04/07	50 ± 27	< 45	< 3	< 4	< 8	< 4	< 29	< 3	< 3	< 6 ;	< 13
	04/04/07 - 07/04/07	97 ± 39	< 66	< 3	< 7	< 12	< 6	< 29	< 3	< 4	< 12	<u><</u> 14
	07/04/07 - 10/03/07	85 ± 29	19 ± 17	< 2	< 4	< 7	< 6	< 20	< 3	< 2	< 8	< 11
	10/03/07 - 01/02/08	52 ± 25	< 37	< 3	< 3	< 6	< 3	< 22	< 3	< 2	< 5	< 10
											. •	
	MEAN	71 ± 47	19 ± 0	-	-	-	-	-	-	-	-	-
CL-08	01/03/07 - 04/04/07	75 ± 20	< 31	< 3	< 3	< 5	< 3	< 20	< 2 .	< 2 .	< 4	< 9
	04/04/07 - 07/04/07	134 ± 43	< 58	< 4	< 6	< 13	< 9	< 28	< 3	< 4	·< 13	< 17
	07/04/07 - 10/03/07	106 ± 47	< 51	< 1	< 4	< 9	< 8	< 25	< 3	< 3	< 11	< 16
	10/03/07 - 01/02/08	66 ± 28	< 43	< 2	< 3	< 5	< 4	< 25	< 3	< 3	< 6	< 13
	MEAN	95 ± 62	-	- 		-	-	-	-		-	-
CL-11	01/03/07 - 04/04/07	97 ± 30	< 51	< 4	< 5	< 7	< 5	< 29	< 3	< 3	< 8	< 17
	04/04/07 - 07/04/07	146 ± 38	< 47	< 3	< 5	< 9	< 9	< 28	< 4	< 2	< 15	< 20
	07/04/07 - 10/03/07	87 ± 23	< 42	< 2	< 4	< 7	< 5	< 24	< 3	< 2	< 8	< 10
	10/03/07 - 01/02/08	45 ± 37	< 53	< 4	< 5	< 8	< 6	< 29	< 4	< 4	< 6	< 14
	MEAN	94 ± 83	-		s Maria I a c	 -	-	-	-	-	. -	-
CL-15	01/03/07 - 04/04/07	85 ± 41	< 18	< 5	< 3	< 8	< 5	< 29	< 4	< 4	< 8	< 18
	04/04/07 - 07/04/07	103 ± 31	< 42	< 2	< 4	< 8	< 6	< 20	< 2	< 2	< 9	< 13
	07/04/07 - 10/03/07	88 ± 43 .	< 44	. < 3 .	. < 5	< 10	< 8	< 33	< 4	< 3	< 10	< 14
	10/03/07 - 01/02/08	47`± 34	< 58	< 4	< 4	⁻ < 7	< 5	< 25	< 4	< 3	< 7	< 15
	MEAN	81 ± 48	_	<u> </u>	· -	-		-	· _	-	-	-
CL-94	01/03/07 - 04/04/07	89 ± 39	< 39	< 3	< 4	< 6	< 4	< 22	< 3	< 3	< 8	< 17
01-34	04/04/07 - 07/04/07	97 ± 43	< 60	< 4	< 6	< 12	< 8	< 33	< 4	< 3	< 0 < 13	< 17
	07/04/07 - 10/03/07	37 ± 43 115 ± 50	< 57	< 3	< 7	< 9	< 7	< 31	< 4	< 3	< 11	< 17 < 15
	10/03/07 - 01/02/08	52 ± 25	< 14	< 1	< 3	< 5	< 3	< 16	< 2	< 2	< 5	< 10
		JZ ± 2J	- 17	- 1	<i>.</i> U	- 0	- 0	\$ 10	~ 2	~ 2	~ 5	< 10
	MEAN	88 ± 53	-	-	-	-	-	-	-	-	-	-

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

C - 14

TABLE C-VII.1

CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF E-3 PCI/CU MÉTÉR ± 2 SIGMA

COLLECTION			G	ROUPI		
PERIOD	CL-02	CL-03	CL-04	CL-06	CL-15	CL-94
01/03/07 - 01/10/07	< 40	< 40	< 40	< 24	< 39	< 20
01/10/07 - 01/17/07	< 38	< 38	< 38	< 21	< 28	< 15
01/17/07 - 01/24/07	< 22	< 22	< 22	< 22	< 35	< 35
01/24/07 - 01/31/07	< 27	< 27	< 27	< 27	< 26	< 25
01/31/07 - 02/07/07	< 31	< 41	< 41	< 41	< 46	< 46
02/07/07 - 02/14/07	< 36	< 36	< 36	< 36	< 45	< 45
02/14/07 - 02/21/07	< 25	< 40	< 40	< 40	< 36	< 36
02/21/07 - 02/28/07	< 46	< 46	< 35	< 46	< 44	< 44
02/28/07 - 03/07/07	< 40	< 40	< 40	< 24	< 49	< 27
03/07/07 - 03/14/07	< 22	< 22	< 23	< 13	< 21	< 17
03/14/07 - 03/21/07	< 57	< 57	< 57	< 34	< 55	< 55
03/21/07 - 03/28/07	< 35	< 35	< 35	< 26	< 35	< 35
03/28/07 - 04/04/07	< 36	< 36	< 36	< 20	< 37	< 30
04/04/07 - 04/11/07	< 40	< 40	< 40	< 22	< 38	< 37
04/11/07 - 04/18/07	< 31	< 31	< 31	< 17	< 68	< 37
04/18/07 - 04/25/07	< 18	< 18 [°]	< 18	< 11	< 39	< 39
04/25/07 - 05/02/07	< 33	< 33	< 33	< 18	< 31	< 23
05/02/07 - 05/09/07	< 37	< 37	< 37	< 20	< 18	< 33
05/09/07 - 05/16/07	< 49	< 49	< 49	< 39	< 63	< 42
05/16/07 - 05/23/07	< 42	< 42	< 42	< 23	< 42	< 33
05/23/07 - 05/30/07	< 40	< 39	< 39	< 24	< 38	< 30
05/30/07 - 06/06/07	< 27	, < 27	< 27	< 16	< 23	< 14
06/06/07 - 06/13/07	< 10 y	< 10	< 10	< 6	< 10	< 6
06/13/07 - 06/20/07	< 30	< 30	< 30	< 16	< 34	< 14
06/20/07 - 06/27/07	< 41	< 40	< 43	< 22	< 39	< 22
06/27/07 - 07/04/07	< 39	< 38	< 39	< 23	< 38	< 23
07/04/07 - 07/11/07	< 45	< 44	< 44	< 24	< 59	< 32
07/11/07 - 07/18/07	< 56	< 56	< 56	< 56 [°]	< 55	< 23
07/18/07 - 07/25/07	< 38	< 38	< 38	< 25	< 43 _/ .	< 23
07/25/07 - 08/01/07	< 63 (1)	< 63 (1)	< 42	< 56	< 53	< 30
08/01/07 - 08/08/07	< 50	< 25	< 49	< 50	< 40	< 40
08/08/07 - 08/15/07	< 40	< 40	< 40	< 26	< 43	< 26
08/15/07 - 08/22/07	< 35	< 53	< 53	< 53	< 65	< 65
08/22/07 - 08/29/07	< 63	< 67	< 64	< 60	< 62	< 34
08/29/07 - 09/05/07	< 60	< 61	< 61	< 38	< 64	< 67
09/05/07 - 09/12/07	< 50	< 52	< 51	< 53	< 36	< 37
09/12/07 - 09/19/07	< 54	< 55	< 56	< 55	< 56	< 57
09/19/07 - 09/26/07 09/26/07 - 10/03/07	< 46 < 30	< 47 < 30	< 47 < 31	< 46	< 33 < 23	< 32
10/03/07 - 10/10/07	< 50 C < 67	< 66	< 66	< 19 < 66	< 66 [°]	< 14 < 66
10/10/07 - 10/17/07	< 47	< 08 < 47	< 48	< 46		< 00 < 41
10/17/07 - 10/24/07	< 47	< 48	< 48 < 48	< 40 < 47	< 42 < 68	< 68
10/24/07 - 10/31/07	< 60	< 48 < 60	< 48 < 64	< 60	< 35	< 35
10/31/07 - 11/07/07	< 24	< 26	< 25	< 23	< 25	< 26
11/07/07 - 11/14/07	< 64	< 65	< 67	< 65	< 68	< 66
11/14/07 - 11/21/07	< 45	< 46	< 46	< 29	< 27	< 31
11/21/07 - 11/28/07	< 30	< 31	< 31	< 30	< 40	< 21
11/28/07 - 12/05/07	< 52	< 52	< 52	(1)	< 48	< 45
12/05/07 - 12/12/07	< 18	< 19	< 18	< 19	< 23	< 23
12/12/07 - 12/19/07	< 61	< 26	< 61	< 56	< 65	< 64
12/19/07 - 12/26/07	< 26	< 46	< 48	< 46	< 48	< 47
12/26/07 - 01/02/08	< 36	< 34	< 36	< 36	< 28	< 27
		- •				
MEAN	-	-	-	-	-	-

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-VII.1

CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION		GROUP II		GROUP III
PERIOD	CL-01	CL-07	<u>CL-08</u>	CL-11 *
01/03/07 - 01/10/07	< 40	< 39	< 39	< 39
01/10/07 - 01/17/07	< 38	< 27	< 27	< 28
01/17/07 - 01/24/07	< 12	< 19	< 34	< 35
01/24/07 - 01/31/07	< 15	< 20	< 25	< 25
01/31/07 - 02/07/07	< 31	< 41	< 46	< 46
02/07/07 - 02/14/07	< 29	< 24	< 44	< 44
02/14/07 - 02/21/07	< 39	< 23	< 36	< 36
02/21/07 - 02/28/07	< 47	< 28	< 44	< 43
02/28/07 - 03/07/07	< 40	< 48	< 48	< 48
03/07/07 - 03/14/07	< 22	< 21	< 21	< 21
03/14/07 - 03/21/07	< 57	< 44	< 55	< 55
03/21/07 - 03/28/07	< 35	< 23	< 35	< 35
03/28/07 - 04/04/07	< 36	< 37	< 37	< 37
04/04/07 - 04/11/07	< 40	< 37	< 30	< 37
04/11/07 - 04/18/07	< 31	< 67	< 68	< 67
04/18/07 - 04/25/07	< 18	< 38	< 38	< 21
04/25/07 - 05/02/07	< 33	< 31	< 31	< 31
05/02/07 - 05/09/07	< 37	< 33	< 33	< 33
05/09/07 - 05/16/07	< 49	< 63	< 64	< 62
05/16/07 - 05/23/07	< 42	< 41	< 42	< 41
05/23/07 - 05/30/07	< 40	< 38	< 38	< 38
05/30/07 - 06/06/07	< 27	< 23	< 23	< 23
06/06/07 - 06/13/07	< 10	< 10	< 10	< 10
06/13/07 - 06/20/07	< 30	< 33	< 33	< 33
06/20/07 - 06/27/07	< 42	< 39	< 39	< 39
06/27/07 - 07/04/07	< 38	< 38	< 38	< 36
07/04/07 - 07/11/07	< 44	< 61	< 58	< 59
07/11/07 - 07/18/07	< 31	< 54	< 54	< 54
07/18/07 - 07/25/07	< 39.	< 42	< 42	< 42
07/25/07 - 08/01/07	< 52	< 56	< 53	< 53
08/01/07 - 08/08/07	< 32 < 48	< 26	< 40	< 40
08/08/07 - 08/15/07	< 41	< 42	< 43	< 42
08/15/07 - 08/22/07	< 53	< 36	< 65	< 65
08/22/07 - 08/29/07	< 48	< 61	< 60	< 59
08/29/07 - 09/05/07	< 61		< 65	< 65
	< 28	< 40		< 37
09/05/07 - 09/12/07		< 29	< 37 < 55	< 56
09/12/07 - 09/19/07	< 32	< 41		
09/19/07 - 09/26/07	< 23	< 21	< 32	< 31
09/26/07 - 10/03/07	< 31	< 24	< 24	< 25
10/03/07 - 10/10/07	< 32	< 28	< 66	< 67
10/10/07 - 10/17/07	< 24	< 25	< 42	< 41
10/17/07 - 10/24/07	< 30	< 68	< 68	< 33
10/24/07 - 10/31/07	< 26	< 26	< 35	< 37
10/31/07 - 11/07/07	< 15	< 15	< 25	< 24
11/07/07 - 11/14/07	< 28	< 36	< 67	< 66
11/14/07 - 11/21/07	< 46	< 45	< 45	< 45
11/21/07 - 11/28/07	< 19	< 39	< 40	< 39
11/28/07 - 12/05/07	< 28	< 38	< 48	< 48
12/05/07 - 12/12/07	< 11	< 12	< 23	< 24
12/12/07 - 12/19/07	< 60	< 36	< 63	< 64
12/19/07 - 12/26/07	< 47	< 31	< 46	< 45
12/26/07 - 01/02/08	< 20	< 21	< 26	< 27

MEAN

-

* INDICATES CONTROL STATION

-

-

TABLE C-VIII.1

CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

1.11

RESULTS IN UNITS OF PCI/LITER ± SIGMA

• : *"*

COLLECTION PERIOD CL-116 01/31/07 < 0.4 02/28/07 < 0.6 03/28/07 < 0.8 04/25/07 < 0.9 05/09/07 < 0.6 05/23/07 < 0.8 06/06/07 < 0.8 06/06/07 < 0.8 06/06/07 < 0.8 06/29/07 < 0.6 07/14/07 < 0.6 08/15/07 < 0.8 08/15/07 < 0.8 08/29/07 < 0.6 09/12/07 < 0.6 09/12/07 < 0.6 10/24/07 < 0.7 01/26/07 < 0.6 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -								•
COLLECTION PERIOD CL-116 01/31/07 < 0.4 02/28/07 < 0.6 03/28/07 < 0.8 04/25/07 < 0.8 05/09/07 < 0.6 05/23/07 < 0.8 06/06/07 < 0.8 06/20/07 < 0.6 07/14/07 < 0.6 08/01/07 < 0.6 08/01/07 < 0.6 08/15/07 < 0.8 08/15/07 < 0.8 08/20/07 < 0.6 09/12/07 < 0.6 09/26/07 < 0.6 09/12/07 < 0.6 10/10/07 < 0.8 09/26/07 < 0.6 10/12/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -		CONTROL	FARM					
PERIOD CL-116 01/31/07 < 0.4 02/28/07 < 0.6 03/28/07 < 0.8 04/25/07 < 0.9 05/09/07 < 0.6 05/23/07 < 0.8 06/20/07 < 0.8 06/20/07 < 0.7 07/14/07 < 0.6 08/10/107 < 0.6 08/29/07 < 0.6 08/29/07 < 0.6 08/15/07 < 0.8 08/29/07 < 0.6 09/12/07 < 0.7 09/26/07 < 0.6 10/24/07 < 0.7 09/26/07 < 0.6 10/24/07 < 0.7 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -	COLLECTION							
01/31/07 < 0.4 02/28/07 < 0.6 03/28/07 < 0.8 04/25/07 < 0.9 05/09/07 < 0.6 05/23/07 < 0.8 06/06/07 < 0.7 07/104/07 < 0.6 07/14/07 < 0.6 08/15/07 < 0.8 08/15/07 < 0.6 08/15/07 < 0.6 08/15/07 < 0.6 08/15/07 < 0.6 09/12/07 < 0.6 09/12/07 < 0.6 10/24/07 < 0.6 10/24/07 < 0.6 10/24/07 < 0.6 10/24/07 < 0.6 10/24/07 < 0.6 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -		CL-116			•	,	1111	
02/28/07 < 0.6 03/28/07 < 0.8 04/25/07 < 0.9 05/09/07 < 0.6 05/23/07 < 0.8 06/06/07 < 0.8 06/20/07 < 0.6 07/14/07 < 0.6 08/01/07 < 0.6 08/01/07 < 0.6 08/01/07 < 0.6 08/15/07 < 0.8 08/29/07 < 0.6 09/22/07 < 0.6 09/12/07 < 0.6 10/24/07 < 0.6 10/24/07 < 0.6 11/28/07 < 0.6 11/28/07 < 0.6 11/28/07 < 0.6 11/28/07 < 0.6 11/28/07 < 0.6 11/28/07 < 0.9 MEAN -	01/31/07	< 0.4	· ·		•		••	
03/28/07 < 0.8 04/25/07 < 0.9 05/09/07 < 0.6 05/23/07 < 0.8 06/06/07 < 0.7 07/104/07 < 0.6 07/118/07 < 0.6 08/01/07 < 0.8 08/01/07 < 0.6 09/12/07 < 0.6 09/12/07 < 0.6 09/12/07 < 0.6 09/12/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.6 11/28/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/28/07 < 0.9								
04/25/07 < 0.9 05/09/07 < 0.6 05/23/07 < 0.8 06/20/07 < 0.7 07/14/07 < 0.6 08/01/07 < 0.8 08/01/07 < 0.8 08/29/07 < 0.6 09/26/07 < 0.6 09/26/07 < 0.6 10/10/07 < 0.8 10/10/07 < 0.8 10/24/07 < 0.6 11/28/07 < 0.6 12/26/07 < 0.6 MEAN -					.* •			
05/09/07 < 0.6 05/23/07 < 0.8 06/06/07 < 0.8 06/20/07 < 0.6 07/18/07 < 0.6 08/15/07 < 0.8 08/15/07 < 0.6 09/12/07 < 0.6 09/12/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.6 11/28/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.9				·				· · · .
05/23/07 < 0.8 06/06/07 < 0.8 06/20/07 < 0.7 07/04/07 < 0.6 07/18/07 < 0.8 08/01/07 < 0.8 08/15/07 < 0.6 09/12/07 < 0.6 09/12/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.6 11/28/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.9							*	
06/06/07 < 0.8 06/20/07 < 0.7 07/04/07 < 0.6 07/18/07 < 0.6 08/01/07 < 0.8 08/15/07 < 0.6 09/12/07 < 0.6 09/12/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9								•
06/20/07 < 0.7 07/04/07 < 0.6 07/18/07 < 0.6 08/01/07 < 0.8 08/15/07 < 0.6 09/12/07 < 0.6 10/26/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.6 11/28/07 < 0.6 12/26/07 < 0.9								
07/04/07 < 0.6 07/18/07 < 0.6 08/01/07 < 0.8 08/15/07 < 0.6 09/12/07 < 0.6 09/26/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.9				·.				
07/18/07 < 0.6 08/01/07 < 0.8 08/15/07 < 0.8 08/29/07 < 0.6 09/12/07 < 0.7 09/26/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.6 12/26/07 < 0.6 12/26/07 < 0.9 MEAN -								,
08/01/07 < 0.8 08/15/07 < 0.8 08/29/07 < 0.6 09/12/07 < 0.7 09/26/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -					•		5 - L	
08/15/07 < 0.8 08/29/07 < 0.6 09/12/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -								· · · ·
08/29/07 < 0.6 09/12/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9						•		
09/12/07 < 0.7 09/26/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -					•.		· .	
09/26/07 < 0.6 10/10/07 < 0.8 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -							•	
10/10/07 < 0.8 10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9						* I		
10/24/07 < 0.7 11/28/07 < 0.6 12/26/07 < 0.9 MEAN -								· ·
11/28/07 < 0.6 12/26/07 < 0.9 MEAN -			•			• '		
12/26/07 < 0.9						. · ·		
MEAN -				•				
MEAN -					·.			
	MEAN	-			2 A.J.			
an Anna Santan Marina Anna Anna Anna Anna Anna Anna Anna A								
Martin de la companya de la company A companya de la comp								
					,			
			1.		- ,			1
			2	<u>.</u>				
			· · ·					
								. :
								•
							. • .	•

TABLE C-VIII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES
COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

STC	COLLECTION	BE-7	K-40	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	CS-134		BA-140	LA-140	CE-144
CL-116 *	01/31/07	< 36	1210 ± 115	< 4	< 4	< 10	< 5	< 11	< 5	< 6	< 4	< 5	< 19	< 6	< 30
	02/28/07	< 44	1300 ± 124	< 5	< 5	< 11	< 5 ·	< 12	< 6	< 8	< 5	< 6	< 24	.<9 < 8	୍ର < 33
	03/28/07	< 39	1300 ± 103	< 4	< 4	< 10	< 5	< 9	< 4	< 8	< 4	< 5	< 23	< 6	< 29
	04/25/07	< 55	1290 ± 138	< 6	< 7 ·	< 17	< 5	< 14	[`] < 6	< 11	< 5	< 6	< 40	² < 11	< 40
	05/09/07	< 46	1070 ± 109	< 5	< 5	< 11	< 5	< 10	< 5	< 9	< 4	< 5	< 32	< 8	< 34
	05/23/07	< 34	1210 ± 112	< 4	< 4	< 10	< 5	< 11	< 4	< 9	< 4	< 4	['] < 27	< 6	< 31
	06/06/07	< 41	1180 ± 110	< 5	< 5	< 11 _ ::	< 5	<.10	< 4.	< 9	< 3	< 4	< 26	< 10	< 29
· ·	06/20/07	< 32	1250 ± 100	< 4	< 4	< 11	< 4	< 9	< 5	< 8	< 3	< 4	< 33	< 8	< 32
	07/04/07	< 53	1330 ± 117	< 5	< 5	< 14 ∶	< 5	< 14	< .6	< 10	< 5	< 6	< 40	< 11	< 42
	07/18/07	< 46	1100 ± 110	< 5	< 5	< 12	< 5	< 11	< 5	< 8	< 4	< 5	< 25	< 8	< 34
	08/01/07	< 43	1200 ± 123	< 6	< 5	< 14	< 6	< 15	< 5	< 10	< 5 ·	< 6	< 26	< 7	< 44
	08/15/07	< 50	1050 ± 113	< 5	< 6	< 17	< 5	< 13	< 6	< 12	< 5	< 5	< 48	< 11	< 45
	08/29/07	< 24	1060 ± 65	< 3	< 3	< 7	< 3	< 6	< 3	< 5	< 3	< 3	< 19	< 5	< 19
	09/12/07	< 74	1240 ± 188	< 7	< 10	< 19	< 9	< 18	< 9	< 15	< 7	< 8	< 43	< 13	< 54
	09/26/07	< 41	1250 ± 121	< 5	< 5	< 12	< 5	< 12	< 5	< 9	< 4	< 5	< 23	< 7	< 31
	10/10/07	< 44	1180 ± 130	< 6	< 5 :	< 13 🛁	< 4	< 12 ⁻	< 7	< 8	< 5	< 6	< 34	< 10	. < 36
	10/24/07	< 57	1210 ± 133	< 7	< 7	< 18	< 8	< 16	< 8	< 12	< 6	< 7	< 47	< 14	< 35
	11/28/07	< 61	1090 ± 172	< 6.		< 16. S.		< 17	< 9	< 13	< 7	< 8	< 29	< 12	< 48
	12/26/07	< 39	1120 ± 109	< 4	< 5	< 12	< 5	< 13	< 7	< 9	< 4	< 5	< 32	< 11	< 32
	MEAN	-	1192 ± 176	- 	- 19 - 20		- 		-	-	-	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± SIGMA

* INDICATES CONTROL STATION

C - 18

TABLE C-IX.1

5

CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

STC		MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140	CE-144
CL-114	06/27/07	< 10	< 11	< 25	`< 11	< 23	< 10	< 17	< 13	< 10	< 11	< 44	< 11	< 67
Cabbage	06/27/07	< 13	< 13	< 32	< 16	< 33	<.14	< 25	< 19	< 11	< 15	< 53	< 16	< 88
Lettuce	06/27/07	< 13	< 13.	< 31 ·	·. , < 14	< 33	. < 13	< 21	< 19	< 12	< 15	< 51	< 15	< 72
Swiss Chard	07/25/07	۰. < ع	< 3	< 8	[`] < 3	< 7	< 4	< 6	< 13	< 3	< 3	< 27	< 7	< 20
Cabbage	07/25/07	< 6	< 6	< 15	< 6	< 15	< 7	< 11	< 24 [.]	< 5	< 6	< 49	< 12	< 37
Lettuce	07/25/07	< 4	< 4	< 13	· < 5	< 11	< 5	< 8	< 16	< 4	< 4	< 32	< 8	< 23
Swiss Chard	08/29/07	< 10	< 13	< 33	< 12	< 31	< 14	< 25	< 59	< 11	< 15	< 119 .	< 21	< 69
Cabbage	08/29/07	< 12	< 12	< 30	< 11	< 27	< 14	< 23	< 56	< 11	< 12	< 108	< 28	< 83
Lettuce + Swiss Chard	08/29/07	< 10	< 11	< 29	< 11	. < 26	< 11	< 20	< 48	< 8	< 9	< 88	< 25	< 63
Swiss Chard	09/26/07	< 10	< 10	< 27	.< 10	< 21	< 14	< 20	< 52	< 8	< 9	< 83	< 30. ∂	د کې 55 = 55 >
Cabbage	09/26/07	< 10	< 11	< 27	< 13	< 23	··< 11 [.]	< 20	< 57	< 9	< 11	< 102	-<`25`-	···· 61··· ``
Lettuce	09/26/07	< 10	< 12	< 33	< 10	< 27	< 11	< 21	< 57	< 10	< 9	< 105	< 20	< 70
Swiss Chard		÷.,	· · · .		×.,									
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-	-
4			14	an a' te				-						

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

and the first states of

TABLE C-IX.1 CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

STC		MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140	CE-144
CL-115	06/27/07	< 12	< 11	< 23	< 11	< 27	< 12	< 21	< 16	< 11	< 14	< 52	< 19	< 74
Cabbage														<i></i>
	06/27/07	< 22	< 19	< 47	< 20	< 53	< 24	< 33	< 31	< 18	< 25	< 88	< 23	< < 132
Lettuce		•			< 12	< 28	· · · · ·							
Swiss Chard	06/27/07	< 12	< 11	< 28	< 12	< 28	< 11	< 19	< 17	< 10	< 13	< 48	< 14	< 69
Swiss Chard	07/25/07	< 7	< 7	< 20	< 7	< 16	< 8	< 13	< 26	< 6	< 7	< 53	< 15	< 38
Cabbage		- 1	- 1		- /		- 0	- 10	~ 20	- 0	-)	- 55	× 15	< 50
	07/25/07	< 7	< 8	< 20	[^] < 7	< 18	< 8	< 14	< 27	< 6	< 7	< 58	< 16	< 43
Lettuce														
	07/25/07	< 10	< 11	< 28	< 10	< 24	< 11	< 17	< 40	< 9	< 10	< 82	< 17	< 65
Swiss Chard	08/29/07	< 13	< 16		, < 13	<`34	- 10			- 44				
Cabbage	06/29/07		< 10	< 33	< 13	< 34	< 16	< 26	< 60	< 11	< 14	< 117	< 16	< 77
	08/29/07	< 7	< 9	< 22	< 8	< 19	< 9	< 15	< 41	< 6	< 7	< 74	< 21	< 48
Lettuce + Swiss Chard			-				-			Ū			. 21	. 10
	08/29/07	< 4	< 4	< 12	< 5	< 10	< 4	< 8	< 22	< 3	< 4	< 39	< 11	< 24
Swiss Chard				· .	79		. "							
	09/26/07	< 11	< 11	< 29	< 11	< 26	< 13	< 21	< 53	< 10	< 10	< 98	< 27	< 71
Pig Weed (for Lettuce)				× 2.	: ``` ~ 12```									
	09/26/07	⁻ < 11	ໍ<ີ13	< 29	~ 12	[~] < ⁻ 27	< 12	< 24	< 57	< 10	< 10	< 96	< 30	< 71
Swiss Chard (for Cabbage)		2 N.		11 ¹¹ 14	10181	· .								
	09/26/07	< 10	< 10	< 28	< 12	< 27	< 12	< 21	< 58	< 9	< 9	< 98	< 27	< 78
Swiss Chard		in s				· · ·	۰.							
	MEAN	<u>م</u>				-			.					

(20) A provide the second s Second s Second se

TABLE C-IX.1

CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

	· **	· 41	· · .		÷	٩.	· · · .							
STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140	CE-144
CL-117	06/27/07	< 10	< 9	< 25	< 11	< 26	< 11	< 17	< 15	< 9	< 10	< 42	< 9	< 71
Cabbage	06/27/07	< 27	< 26	< 58	< 25	< 67	< 28	< 50	< 44	< 25	< 33	< 131	< 36	< 153
_ettuce	06/27/07	< 11	< 11	< 28	< 11	< 27	< 10	< 20	< 15	< 9	< 12	< 51	< 14	< 63
Swiss Chard	07/25/07	< 4	< 4	< 10	< 4	< 9	< 4	< 7	< 18	< 4	< 4	< 34	< 9	< 27
Cabbage	07/25/07	< 6	< 6	< 15	< 6	< 14	< 7	< 11	< 27	< 5	< 6	< 51	< 11	< 43
Lettuce	07/25/07	< 6	< 7	< 19	< 7	< 17	< 7	< 12	< 26	< 5	< 6	< 51	< 13	< 36
Swiss Chard	08/29/07	< 10	< 10	< 28	< 11	< 24	< 12	< 19	< 43	< 8	< 10	< 84	< 30	< 61
Cabbage	08/29/07	< 14	< 15	< 38	< 15	< 34	< 16	< 26	< 58	< 12	< 13	< 112	< 30	< 73
ettuce + Swiss Chard.	08/29/07	< 12	< 14	< 35	< 12	< 33	< 15	< 24	< 59	< 10	< 11	< 123	< 24	< 71
Swiss Chard	09/26/07	< 14	< 13	< 34	< 12	< 29	< 14	< 24	< 55	< 10	< 13	< 106	< 25	< 78
Cabbage	09/26/07	< 9	-< 10	< 23	< 8 .	< 19	~ < 10	< 16	< 49	< 8	< 9	< 81	< 20	< 56
ettuce	09/26/07	< 8	< 8	< 23	< 7	< 20	< 9	< 14	< 38	< 7	< 7	< 68 [.]	< 19	< 48
Swiss Chard			r ja e		.*			, *						
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-	-
· ··· .		•		i fina Na mara										

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-IX.1

CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

STC	COLLECTION	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	Í-131	CS-134	CS-137	BA-140	LA-140	
CL-118	06/27/07	< 16	< 21	< 50	< 22	< 57	< 25	< 47	< 35	< 21	< 23	< 97	< 21	< 141
Cabbage	06/27/07	< 20	< 21	< 46	< 23	< 36	< 24	< 25	< 25	< 20	< 23	< 89	< 27	< 104
Lettuce	00/2/10/	~ 20	~ 21	< 40	~ 25	- 50	× 24	- 25	~ 25	~ 20	~ 25	< 05	~ 21	< 104
	06/27/07	< 20	< 19	< 48	< 22	< 43	< 22	< 38	< 32	< 17	< 23	< 83	< 24	< 112
Swiss Chard				·		• .			. –					
Cabbaga	07/25/07	< 13	< 12	< 30	_< 11	< 31	< 14	< 24	< 55	< 10	< 13	< 100	< 29	< 64
Cabbage	07/25/07	. < 11	< 11	< 28	, < 10 .	< 23	< 12	< 20	< 53	< 10	< 12	< 101	< 27	< 74
Lettuce				20				20		10	12	, ion j	. 21	
	07/25/07	< 12	< 12	< 30	< 11	< 25	< 12	< 19	< 48	< 10	< 10	< 91	< 26	< 70
Swiss Chard	08/29/07	< 5	< 6	< 15	· < 5	< 12	< 6	< 9	< 27	< 4	< 5	< 48	< 16	4.04
Swiss Chard	00/24/07	< 5	< 0	< 15	< D 	N. 12	,<0	< 9	< 21	< 4	< 5	< 48	< 16	< 31
•	08/29/07	< 6	< 7	< 20	< 7	< 17	< 8	< 14	< 33	< 5	< 7	< 63	< 19	< 35
Lettuce + Swiss Chard	08/29/07	< 11	< 12	~ 31 ·	· < 11	< 26	< 12	< 21	< 40	< 9	< 11	< 81	< 22	< 50
Pig Weed + Cabbage	00/20/01		12		5 5 11	. 20	- 12	~ 21	< 4 0	- 5	~ 11	< 01	- 22	< 50
	09/26/07	< 10	< 12	< 29	< 8	< 25	< 12	< 23	< 50	< 10	< 11	< 88	< 19	< 65
Cabbage	09/26/07	< 11			د. محمد آند < 12	< 30	< 14	< 22	< 59	< 10	< 10	< 98	< 25	< 80
Swiss Chard			· 1 .	< 34	< 12 . ↑ €		, • 1 •			4 10	\$ 10	< 30 ·	~ 25	< 00 ,
	09/26/07	< 11	< 13	< 29	< 11	< 27	< 11	< 23	< 51	< 10	< 10	< 98	< 24	< 68
Swiss Chard subsitituted for le	ettuce				· · · · ·									
	MEAN	·												

MEAN COMPLEX CONTRACTOR CONT

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

.

~

TABLE C-IX.2CONCENTRATIONS OF GAMMA EMITTERS IN GRASS SAMPLES
COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

															1	
STC	COLLECTION	BE-7	K-40	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140	CE-14
	PERIOD					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		-		4. N. & SHIELD AND		11.2.13.2.3.4.4.1.194.5.13.2.4494.474				
CL-01	05/09/07	1780 ± 112	5850 ± 225	< 9	< 9 .	< 23	< 10	< 22	< 10	< 17	< 23	< 8	< 9	< 54	< 16	< 57
	05/23/07	1480 ± 133	6040 ± 256	< 9	< 10	< 27	< 9	< 25	< 10	< 19	< 55	< 9	< 9	< 91	< 24	< 62
	06/06/07	1370 ± 94	6380 ± 201	< 7	< 7	< 19 [™] · ·	< 9	< 18	< 8	< 14	< 21	< 6	< 7	< 49	< 14	< 42
	06/20/07	1290 ± 147	6000 ± 365	< 14	< 15	< 34	< 16	< 30	< 14	< 30	< 35	< 12	< 16	< 82	< 23	< 80
	07/04/07	3990 ± 411	2660 ± 515	< 19	< 25	⁻ < 51	< 1 5	< 58	< 23	< 43	< 42	< 22	< 20	< 82	< 24	< 17
	07/18/07	4560 ± 275	4540 ± 374	< 16	< 17	< 37	< 18	< 37	< 19	< 31	< 50	< 17	< 18	< 112	< 30	< 11
	08/01/07 [.]	1300 ± 300	5310 ± 575	< 28	< 27	< 60	< 31	< 61	< 25	< 37	< 51	< 23	< 28	< 129	< 38	< 15
	08/15/07	1040 ± 66	6570 ± 170	< 9	< 10	< 26	< 9	< 23	< 10	< 18	< 57	< 9	< 8	< 96	< 24	< 51
	08/29/07	2950 ± 158	6670 ± 268	< 11 .	< 12	< 31	< 11	< 26	< 13	< 21	< 51	< 10	< 12	< 98	< 26	< 75
	09/12/07	1810 ± 406	5070 ± 806	< 33	< 35	< 90	< 37	< 77	< 38	< 65	< 43	< 35	< 33	< 138	< 42	< 186
	09/26/07	1900 ± 228	4340 ± 427	< 18	< 20	< 45	< 19	< 40	< 21	< 34	< 59	< 17	< 19	< 121	< 38	< 12
	10/10/07	2520 ± 251	5470 ± 457	< 18	< 19	< 45	< 16 -	< 38	< 18	< 31	< 56	. < 14	< 14	< 124	< 39	< 10
	10/24/07	3650 ± 294	3730 ± 399	< 15	< 20	< 43	< 21	< 43	< 24	< 33	< 59	< 15	< 20	< 115	< 38	< 13
							· .									
	MEAN	2280 ± 2314	5279 ± 2381	-	-	-	-	-	-	-	-	-	-	-	-	-
		•				5.									-1 < A	UN .
CL-02	05/09/07	1220 ± 102	6400 ± 242	< 10	< 11	< 25	< 10	< 24	< 11	< 18	< 27	< 9	< 10	< 64	< 18	< 59
	05/23/07	1360 ± 107	7350 ± 229	< 8	. < 9	< 23	< 9	< 19	< 8	< 15	< 49	< 7	< 8	< 80	< 19	< 47
	06/06/07	1140 ± 65	5940 ± 165	< 6	< 6	< 15	< 6	< 15	< 6	< 11	< 18	< 5	< 6	< 40	< 11	< 35
	06/20/07	5550 ± 328	5900 ± 522	< 22	< 21	< 52	< 22	< 40	< 19	< 39	< 45	< 14	< 18	< 116	< 36	< 12
	07/04/07	3760 ± 342	4130 ± 586	< 24	< 23	< 56	< 21	< 56	< 23	< 34	< 42	< 20	< 25	< 95	< 31	< 15
	07/18/07	5740 ± 141	5990 ± 203	< 9	< 9	< 19	< 8	< 19	< 9	< 15	< 24	< 8	< 8	< 54	< 14	< 63
	08/01/07	2100 ± 263	7440 ± 614	< 27	< 31	< 69	< 30	< 66	< 35	< 49	< 49	< 26	< 29	< 147	< 44	< 13
	08/15/07	1530 ± 89	6120 ± 175	< 6	< 7	< 18	< 6	< 15	< 7	< 13	· < 51	< 5	< 6	< 79	< 21	< 39
	08/29/07	4170 ± 157	6110 ± 228	< 9	< 10	< 24	< 9	< 21	< 11	< 19	< 47	< 9	< 9	< 85	< 24	< 60
	09/12/07	2200 ± 373	6950 ± 811	< 40	< 35	< 77	< 35	< 87	< 37	< 54	< 39	< 32	< 34	< 139	< 45	< 20
	09/26/07	2430 ± 150	5830 ± 284	< 11	< 11	< 27	< 14	< 25	< 13	< 22	< 36	< 11	< 13	< 79	< 23	< 75
	10/10/07	2750 ± 354	7790 ± 783	< 14	< 14	< 35	< 16	< 33	< 16	< 26	< 60	< 15	< 17	< 127	< 27	< 11
	10/24/07	4820 ± 158	5820 ± 240	< 12	< 12	< 29	< 13	< 29	< 12	< 22	< 37	< 11	< 12	< 78	< 26	< 61
	MEAN	2982 ± 3295	6290 ± 1886	-	_	-	-	-	_	-	-	_	-	· _	-	_
		2002 2 0200	0200 ± 1000													

.

3

TABLE C-IX.2 CONCENTRATIONS OF GAMMA EMITTERS IN GRASS SAMPLES COLLECTED IN THE VICINITY OF CLINTON POWER STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

			 .										• :			
STC	COLLECTION PERIOD	BE-7	K-40	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131		CS-137	BA-140	LA-140	CE-144
CL-08	05/09/07	570 ± 167	5770 ± 506	< 19	< 20	< 48	< 25	< 47	< 21	< 39	< 57	< 17	< 20	< 129;	< 36 了	< 114
	05/23/07	774 ± 81	8910 ± 198	< 6	< 7	< 20	< 7	< 16	< 7	< 13	< 42	< 6	< 6	< 69	ج 19 🐳	< 41
	06/06/07	527 ± 79	10200 ± 252	< 8	< 8	< 21	< 8	< 20	< 9	< 15	< 22	< 7	< 8	< 52	× 19 + 0 × 14 -	< 45
	06/20/07	938 ± 179	8020 ± 454	< 18	< 20	< 46	< 20 .	< 46	< 21	< 34	. < 52	< 18	< 19	< 125	< 36	< 110
	07/04/07	2190 ± 339	6220 ± 637	< 25	< 26	< 63	< 31	< 58	< 32	< 57	< 48	< 25	< 28,	< 134	< 37	< 175
	07/18/07	2850 ± 136	9270 ± 277	< 10 [·]	< 10	< 26	< 11 1	< 24	< 11	< 18	< 26	< 8 ·	< 10	< 65	< 15	< 63
	08/01/07	4340 ± 280	12800 ± 556	< 28	< 28	< 55	< 25	< 58	< 30	< 46	< 53	< 27	< 28	< 146	< 39	< 196
	08/15/07	1380 ± 85	11100 ± 220	< 7	< 7	< 20	< 7	< 17	< 8	< 14	< 52	< 6	< 6	< 79	< 19	< 38
	08/29/07	3280 ± 163	8210 ± 277	< 10	< 11	< 27	< 10	< 23	< 12	< 18	< 48	< 9	< 10	< 88	< 22	< 63
	09/12/07	3970 ± 539	6090 ± 888	< 38	< 36	< 72	< 31	< 87	< 45	< 74	< 57	< 39	< 34	< 168	< 37	< 238
	09/26/07	2470 ± 112	5620 ± 208	< 9	< 9	< 21	< 9	< 21	< 10	< 16	< 26	< 8	< 8	< 60	< 16	< 62
	. 10/10/07	4830 ± 398	5530 ± 511	< 15	< 16	< 50	< 19.	< 40	< 19	< 28	< 60	< 14	< 16	< 131	< 25	< 106
	10/24/07	7550 ± 183	5230 ± 204	< 10	< 11	< 23	· < 10	< 23	< 11	< 19	< 36	< 9	< 10	< 73	< 19	< 62
					· ·											
	MEAN	2744 ± 4116	7921 ± 4869	-	-		•	-	-	-	-	-	-	-	-	-
CL-116	05/09/07	1150 ± 178	5820 ± 429	< 17	< 20	< 47	< 20	< 42	< 15	< 33	< 46	< 14	< 17	< 106	< 35	< 87
	05/23/07	505 ± 76	7250 ± 207	< 7	< 8	< 21	< 7	< 19	< 9	< 15	< 55	< 7	< 7	< 85	< 22	< 52
	06/06/07	1320 ± 79	6470 ± 183	< 7	< 7	< 16	< 7	< 16	< 8	< 13	< 21	< 6	· < 7	< 47	< 12	< 44
	06/20/07	1010 ± 127	6090 ± 359	<u>< 13</u>	< 14	< 32	< 15	< 33	< 14	< 23	.< 37	< 11	< 13	< 74	< 24	< 76
	07/04/07	2190 ± 305	4710 ± 561	< 21	< 22	< 58	< 21	< 53	< 20	< 34	< 34	< 21 ·	< 22	< 99	< 25	< 151
	07/18/07	2420 ± 137	7160 ± 275	< 12	< 12	< 28	< 11	< 27	< 13	< 22	< 31	< 11	< 12	< 74	< 21	< 72
	08/01/07	2010 ± 351	7170 ± 628	< 27	< 25	< 61	< 27	< 61	< 26	< 47	< 55	< 24	< 27	< 145	< 29	< 172
	08/15/07	1220 ± 75	5890 ± 158	< 6 ·	< 6	< 16	< 5	< 13	< 6	< 11	< 33	< 5	< 5	< 59	< 13	< 35
	08/29/07	2650 ± 131	7440 ± 261	< 9	< 11	< 25	< 9	< 21	< 12	< 19	< 45	< 9	< 9	< 83	< 20	< 63
	09/12/07	1680 ± 363	8220 ± 1070	< 39	< 38	< 103	< 40	< 94	< 35	< 70	< 47	< 34	< 50	< 194	< 51	< 212
	09/26/07	2520 ± 118	6700 ± 222	< 8	< 9	< 20	< 9	< 20	< 10	< 16	< 26	< 8	< 8	< 60	< 14	< 54
	10/10/07	2090 ± 199	6560 ± 333	< 12	< 13	< 35	< 13	< 31	< 16	< 25	< 60	< 11	< 13	< 116	< 32	< 89
	10/24/07	3190 ± 251	6180 ± 419	< 19	< 19	< 48	< 21	< 42	< 22	< 35	< 60	< 17	< 19	< 131	< 40	< 119
	MEAN	1843 ± 1540	6589 ± 1783	-	-	-	-	-	-	-	-	-	-	-	-	-

C - 24

TABLE C-X.1 QUARTERLY TLD RESULTS FOR CLINTON POWER STATION, 2007

.

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS \times 45 \times 15

			2 L	an a	
STATION	MEAN	12/28/06 - 03/29/07	03/29/07 - 06/28/07	06/28/07 - 09/27/07	09/27/07 - 12/27/07
CODE	± 2 S.D.				
CL-01	20.4 ± 0.5	20.1 ± 1.0	20.3 ± 4.8	20.5 ± 1.9	20.7 ± 1.7
CL-02	21.8 ± 3.4	20.4 ± 1.5	20.3 ± 2.4	22.9 ± 1.2	23.6 ± 1.4
CL-03	21.1 ± 1.6	21.3 ± 0.9	19.9 ± 1.4	21.6 ± 0.8	21.6 ± 1.2
CL-04	21.0 ± 1.5	20.8 ± 1.0	19.9 ± 1.4 20.0 ± 2.2		
CL-04 CL-05				21.3 ± 2.2	21.8 ± 1.0
	21.9 ± 3.4	22.2 ± 1.8	19.6 ± 1.3	22.2 ± 1.6	23.7 ± 1.7
CL-06	19.0 ± 3.0	19.5 ± 2.0	16.9 ± 1.5	19.2 ± 0.9	20.5 ± 1.5
CL-07	20.3 ± 2.2	20.0 ± 1.2	18.9 ± 1.3	20.7 ± 0.7	21.5 ± 1.3
CL-08	20.4 ± 1.7	20.2 ± 1.3	19.4 ± 2.2	20.6 ± 1.3	21.5 ± 1.3
CL-11	19.9 ± 2.3	20.6 ± 1.0	18.2 ± 1.8	20.0 ± 2.1	20.7 ± 3.4
CL-15	19.1 ± 3.2	20.2 ± 1.3	16.8 ± 1.7	20.2 ± 2.1	19.0 ± 1.3
CL-22	21.0 ± 4.2	19.0 ± 0.6	19.4 ± 1.2	22.9 ± 2.3	22.8 ± 2.1
CL-23	21.0 ± 2.7	19.9 ± 1.3	19.7 ± 2.0	22.1 ± 2.5	22.1 ± 1.5
CL-24	21.8 ± 4.7	21.5 ± 3.3	18.7 ± 1.4	24.0 ± 1.8	23.1 ± 0.7
CL-33	21.4 ± 3.0	20.9 ± 1.7	19.6 ± 1.5	22.1 ± 1.7	23.1 ± 1.9
CL-34	21.8 ± 3.1	21.0 ± 1.5	20.0 ± 1.7	22.9 ± 1.8	23.2 ± 2.4
CL-35	20.7 ± 3.0	20.6 ± 1.8	18.9 ± 1.3	20.7 ± 1.5	22.6 ± 0.7
CL-36	21.1 ± 3.2	20.2 ± 2.7	19.7 ± 3.7	21.1 ± 1.1	23.3 ± 2.7
CL-37	20.9 ± 1.5	21.2 ± 1.8	19.8 ± 1.9	21.4 ± 1.6	21.3 ± 2.0
CL-41	21.9 ± 3.7	21.5 ± 3.4	19.5 ± 1.9	00 5 . 0 0 .	00.0
CL-42	21.1 ± 2.7	20.2 ± 1.3	19.7 ± 2.5	23.5 ± 2.2 22.1 ± 2.3	22.4 ± 1.1
CL-43	21.9 ± 3.0	21.5 ± 1.2	19.9 ± 1.0	23.0 ± 2.2	23.0 ± 1.1
CL-44	21.9 ± 2.0	21.8 ± 0.8	20.6 ± 3.7		
CL-45	21.9 ± 1.8	21.6 ± 2.8		22.0 ± 1.3	23.1 ± 1.8
CL-46	19.3 ± 1.9		20.7 ± 1.7	22.3 ± 1.5	22.8 ± 1.8
CL-40 CL-47	21.5 ± 3.4	19.2 ± 0.7	18.1 ± 1.8	20.4 ± 1.5	19.5 ± 0.6
CL-47 CL-48	21.5 ± 3.4 20.6 ± 2.2	20.6 ± 0.7	19.8 ± 1.5	22.0 ± 2.7	23.7 ± 1.2
CL-40 CL-49	21.8 ± 2.5	20.0 ± 1.8	19.3 ± 1.1	21.3 ± 1.4	21.6 ± 1.4
CL-49 CL-51	21.0 ± 2.3 22.1 ± 3.2	20.9 ± 2.2	20.5 ± 1.9	22.9 ± 1.4	22.7 ± 0.8
CL-51 CL-52	21.5 ± 2.5	22.0 ± 1.4	20.0 ± 0.3	23.9 ± 1.5	22.5 ± 1.7
CL-52 CL-53		21.7 ± 2.2	19.8 ± 1.9	22.8 ± 2.3	21.8 ± 0.8
	² 20.6 ± 2.7	19.9 ± 2.8	19.2 ± 1.1	21.1 ± 2.0	22.3 ± 3.2
CL-54	20.9 ± 2.2	20.0 ± 1.1	19.9 ± 1.2	22.1 ± 1.0	21.4 ± 1.4
CL-55	21.6 ± 2.6	21.2 ± 1.0	19.9 ± 1.6	22.7 ± 1.0	22.4 ± 2.4
CL-56	21.9 ± 2.8	20.7 ± 1.5	20.7 ± 1.1	23.2 ± 1.3	23.1 ± 1.6
CL-57	21.7 ± 3.6	19.9 ± 1.0	20.8 ± 0.9	24.1 ± 1.3	22.0 ± 2.2
CL-58	21.2 ± 3.2	20.2 ± 1.1	19.4 ± 1.4	22.6 ± 2.0	22.4 ± 1.2
CL-60	21.1 ± 3.4	20.3 ± 0.7	19.1 ± 0.8	22.9 ± 2.3	22.1 ± 2.5
CL-61	20.9 ± 2.9	19.6 ± 1.4	19.7 ± 1.8	21.8 ± 2.6	22.5 ± 2.3
CL-63	19.2 ± 2.7	19.4 ± 2.3	17.4 ± 0.8	19.4 ± 1.6	20.7 ± 1.2
CL-64	22.0 ± 3.1	21.4 ± 1.6	20.4 ± 1.6	22.1 ± 3.5	24.1 ± 4.3
CL-65	22.0 ± 2.7	21.3 ± 0.8	20.4 ± 1.7	22.7 ± 1.3	23.4 ± 2.0
CL-74	19.3 ± 2.9	19.2 ± 1.7	17.4 ± 1.3	19.9 ± 1.7	20.8 ± 1.4
CL-75	21.1 ± 2.8	20.4 ± 1.2	19.5 ± 1.6	22.3 ± 0.9	22.2 ± 1.2
CL-76	20.9 ± 2.1	20.2 ± 1.3	19.9 ± 1.8	22.2 ± 1.7	21.4 ± 0.9
CL-77	20.2 ± 2.7	19.6 ± 2.1	18.5 ± 0.6	21.4 ± 1.8	21.1 ± 1.5
CL-78	21.4 ± 2.2	21.0 ± 1.4	20.1 ± 1.8	21.9 ± 1.8	22.7 ± 1.8
CL-79	20.8 ± 2.3	20.3 ± 1.0	19.4 ± 1.2	21.2 ± 1.8	22.1 ± 1.4
CL-80	21.2 ± 3.6	19.9 ± 0.7	19.3 ± 1.4	22.9 ± 1.5	22.5 ± 2.5
CL-81	21.1 ± 4.3	20.2 ± 2.0	18.5 ± 1.3	23.3 ± 3.4	22.2 ± 1.1
CL-84	20.8 ± 2.0	20.1 ± 0.9	19.7 ± 0.7	21.6 ± 1.7	21.6 ± 2.1
CL-90	18.8 ± 4.2	18.8 ± 1.1	15.9 ± 1.2	20.7 ± 1.4	19.9 ± 1.8
CL-91	20.5 ± 2.9	19.8 ± 0.7	18.8 ± 3.0	21.2 ± 1.5	22.0 ± 0.9
CL-97	22.0 ± 2.9	22.1 ± 0.6	19.9 ± 0.8	23.2 ± 1.2	22.7 ± 2.4
CL-99	18.1 ± 2.1	18.3 ± 1.7	16.6 ± 1.2	18.8 ± 1.2	18.8 ± 1.8
CL-114	19.9 ± 2.1	19.4 ± 1.6	18.6 ± 1.4	20.9 ± 1.5	20.6 ± 1.5

C - 25

TABLE C-X.2MEAN QUARTLY TLD RESULTS FOR THE INNER RING, OUTER RING,
SPECIAL INTEREST, SUPPLEMENTAL AND CONTROL LOCATIONS FOR CLINTON
POWER STATION, 2007

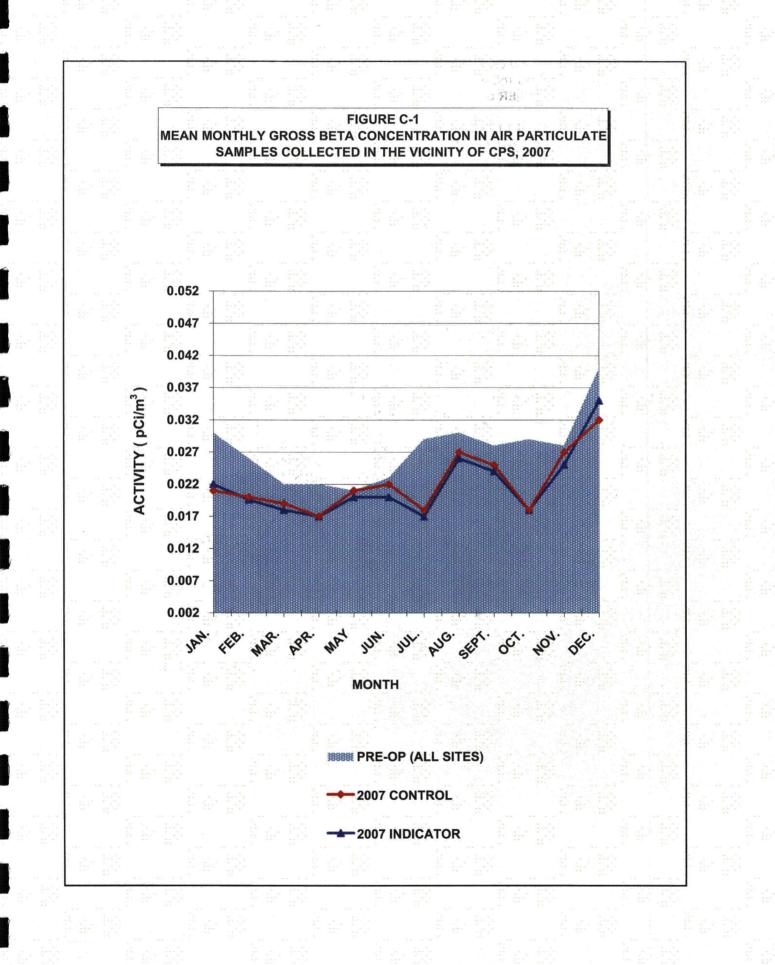
RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS OF THE STATION DATA

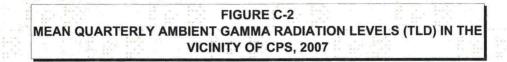
COLLECTION	INNER RING	OUTER RING	SPECIAL INTEREST	SUPPLEMENTAL	CONTROL
PERIOD	± 2 S.D.	± 2 S.D.	± 2 S.D.	± 2 S.D.	± 2 S.D.
APR-JUN JUL-SEP	20.6 ± 1.9 19.5 ± 1.7 21.8 ± 2.4 22.4 ± 2.4	20.4 ± 1.4 19.6 ± 1.3 22.5 ± 1.8 22.2 ± 1.0	$20.8 \pm 1.6 \\ 19.6 \pm 2.2 \\ 22.1 \pm 2.4 \\ 22.5 \pm 2.4$	$20.1 \pm 2.0 \\ 18.7 \pm 3.0 \\ 21.1 \pm 2.5 \\ 21.3 \pm 2.8$	$20.6 \pm 1.0 \\ 18.2 \pm 1.8 \\ 20.0 \pm 2.1 \\ 20.7 \pm 3.4$

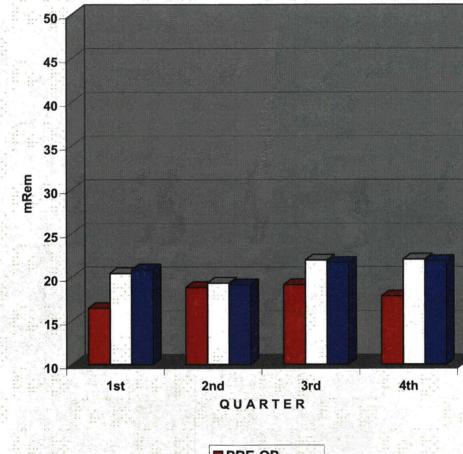
TABLE C-X.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR CLINTON
POWER STATION, 2007

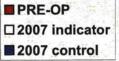
RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER

LOCATION	SAMPLES ANALYZED	PERIOD MINIMUM	PERIOD MAXIMUM	PERIOD MEAN ± 2 S.D.	PRE-OP MEAN, ± 2 S.D., ALL LOCATIONS
INNER RING	64	17.4	24.0	21.1 ± 3.1	
OUTER RING	64	18.5	24.1	21.2 ± 2.8	18 ± 2.4
SPECIAL INTEREST	28	17.4	24.1	21.3 ± 3.1	
SUPPLEMENTAL 🔬	56	15.9	23.6	20.3 ± 3.3	
CONTROL	4	18.2	20.7	19.9 ± 2.3	And A
	ו			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	·


INNER RING STATIONS - CL-01, CL-05, CL-22, CL-23, CL-24, CL-34, CL-35, CL-36, CL-42, CL-43, CL-44, CL-45, CL-46, CL-47, CL-48, CL-63


OUTER RING STATIONS - CL-51, CL-52, CL-53, CL-54, CL-55, CL-56, CL-57, CL-58, CL-60, CL-61, CL-76, CL-77, CL-78, CL-79, CL-80, CL-81


SPECIAL INTEREST STATIONS - CL-37, CL-41, CL-49, CL-64, CL-65, CL-74, CL-75


SUPPLEMENTAL STATIONS - CL-02, CL-03, CL-04, CL-06, CL-07, CL-08, CL-114, CL-15, CL-33, CL-84, CL-90, CL-91, CL-97, CL-99

CONTROL STATIONS - CL-11

APPENDIX D

一と当<mark>初始ム</mark> Massia - L POLIN

4.1

INTER-LABORATORY COMPARISON PROGRAM

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

(PAGE 1 OF 3)

Month/Year	Identificatior Number		Nuclide	2°, 141, 1	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
March 2007	E5255-396	Milk	Sr-89		pCi/L	125	137	0.91	A
			Sr-90		pCi/L	10.8	10	1.08	A
	E5256-396	Milk	I -1 31		pCi/L	107	85.2	1.26	W
			Ce-141		pCi/L	269	297	0.91	A
	•		Cr-51		pCi/L	244	245	1.00	A
			Cs-134		pCi/L	98.1	112	0.88	A
			Cs-137	• '	pCi/L	227	234	0.97	A
			Co-58		pCi/L	92.5	98.8	0.94	A
	•		Mn-54		pCi/L	182.0	182	1.00	A
			Fe-59		pCi/L	108.0	102	1.02	A
			Zn-65		pCi/L	985	1000	0.99	Â
	· .		Co-60		pCi/L	, 143	152	0.94	A
	EE250 200		Co 111		-Ci	250	245	1.02	٨
	E5258-396	AP	Ce-141		pCi	252	245 202	•	A
		2.0	Cr-51	1.1	pCi	204		1.01	A
		•	Cs-134		pCi	74.9	92.3	0.81	A
			Cs-137		pCi	· 190.0	197.0	0.96	A
		:, •	Co-58	.*	pCi	79.7	81.6	0.98	A
		· ·	Mn-54	·* •	pCi	156	151	1.03	A
		÷	Fe-59		pCi	· <u>∴</u> .99.1	87.2	1.14	A
			Zn-65	- 4C	pCi		826	1.08	A
		•	. Co-60	<i></i>	pCi	. 122	126	0.97	A
	E5257-396	Charcoal	. I-131	31	рСі	34.7	7 1.3	0.49	N (1)
June 2007	E5384-396	Milk	Sr-89		pCi/L	98.3		<u>ي</u> ر 1.03 مې	- ; A
	• , 		Sr-90	: 1.	pCi/L	16.1	12.9	1.25	W
	E5385-396	Milk	I-131	1. NA	pCi/L	.₀., 71.0	70.1	1.01	А
			Ce-141		pCi/L	176	200	0.88	А
			Cr-51		pCi/L	459	512	0.90	Α
			Cs-134		pCi/L	. 197	242	0.81	А
			Cs-137		pCi/L	.158	169	0.93	А
	14		Co-58		pCi/L	180	198	0.91	, A
		· ·	Mn-54	· · ·	pCi/L	.163	166	0.98	А
			Fe-59	,	pCi/L	. 158	167	0.95	А
			Zn-65	,	pCi/L	318	334	0.95	А
			Co-60		pCi/L	212	238	.0.89	А
	E5387-396	AP	Ce-141		pCi	87.5	105	0.83	А
			Cr-51		, pCi	232	268	0.87	А
			Cs-134		pCi	101	127	0.80	A
			Cs-137		pCi	78.9	88.5	0.89	A
	- -		Co-58		pCi	91.8	104.0	0.88	A
	•		Mn-54		pCi	85.6	87	0.99	A
			Fe-59		pCi	89.8	87.3	1.03	A
			Zn-65		pCi	178	175	1.02	A
			Co-60		pCi	111	125	0.89	A

D - 1

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

(PAGE 2 OF 3)

	Identification					Reported	Known		
Month/Year	Number	Matrix	Nuclide	west the state	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
September 2007	EE402 206	Milk	S* 90		nC://	.00.0	04.0	1 0 1	•
September 2007	⊏0492-390	IVIIK	Sr-89 Sr-90		pCi/L pCi/L	99.0 13.9	94.9 13.1	1.04	A
			21-90	• •	puil	13.9	13.1	1.06	A
	E5493-396	Milk	I-131		pCi/L	81.9	85.2	0.96	А
			Ce-141		pCi/L	200	211	0.95	А
			Cr-51		pCi/L	271	289	0.94	А
	• •		Cs-134		pCi/L	131	147	0.89	А
			Cs-137		pCi/L	131	131	1.00	А
			Co-58		pCi/L	114	114	1.00	А
			Mn-54	•	pCi/L	171	168	1.02	А
			Fe-59		pCi/L	117	111	1.05	А
			Zn-65	·.	pCi/L	212	202	1.05	А
			Co-60	. •	pCi/L	143	148	0.97	А
	E5495-396	AP	Ce-141		pCi	128	136	0.94	A
	20100 000		Cr-51	· .	pCi	181	186	0.97	A
			Cs-134	,	pCi	85.9	94.7	0.91	A
	a 1	÷	Cs-137		pCi	83.2	83.9	0.99	A
		н Н	Co-58	· .	pCi	69.4	73.3	0.95	A
	N.	·	Mn-54	· •;	pCi	112	108	1.04	A
		• .	Fe-59	10	pCi	79.6	71.1	1.12	A
		·	Zn-65	<i></i>	pCi	159	130	1.22	Ŵ
		4,277		· *•	pCi	92.0	95.2	0.97	A
ţ	E5494-396	Charcoal	· I-131	1.1	pCi	70.8	69.5	1.02	А
December 2007	E5749-396	Milk	Sr-89	1	pCi/L	87.6	93.7	0.93	··· · · A
· · · ·		•. :	Sr-90		pCi/L	15.5	15.2	1.02	A
	E5750-396	Milk	Ì-131	"·`,	pCi/L	60.6	60.8	1:00	А
	20100 000	dira.	Ce-141	• .	pCi/L	137	141	0.97	A
			Ċr-51		pCi/L	497	512	0.97	A
		: -	Cs-134	· .	pCi/L	117	137	0.85	A
i	· .		Cs-137		pCi/L	166	166	1.00	A
			Co-58		pCi/L	159	174	0.91	A
1	1. 1.		Mn-54		pCi/L	190	190	1.00	A
			Fe-59		pCi/L	149	148	1.01	A
			Zn-65		pCi/L	231	234	0.99	A
			Co-60		pCi/L	198	211	0.94	A
	E5752-396	AP	Ce-141		pCi	88.6	93.4	- 0.95	А
			Cr-51		pCi	352	340	1.04	A
			Cs-134		pCi	84.6	91.2	0.93	A
			Cs-137		pCi	111	110.0	1.01	A
			Co-58		pCi	114	116.0	0.98	Â
					P 01				~
					nCi	135	126	1 07	Δ
			Mn-54		pCi nCi	135 119	126 98 5	1.07 1.21	A W
				:	pCi pCi pCi	135 119 172	126 98.5 155	1.07 1.21 1.11	A W A

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM

(PAGE 3 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
December 2007	E5751-396	Charcoal	I-131	рСі	65.8	74.1	0.89	A
			· · · ·		·			
				24. 283	2010 2010 - 2010 2010 - 2010 2010 - 2010 2010 - 2010 2010 - 2010			•

(1) New technician counted charcoal cartridge on the back rather than the face, resulting in low activity. If the charcoal cartridge had been counted on the face, the ratio would have been approximately 1.07, which is acceptable. NCR 07-02

- (a) Teledyne Brown Engineering reported result.
- (b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.
- (c) Ratio of Teledyne Brown Engineering to Analytics results.
- (d) Analytics evaluation based on TBE internal QC limits: A= Acceptable. Reported result falls within ratio limits of 0.80-1.20.
 W-Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

(PAGE 1 OF 1)

en andere en engelen en jegen endere dre a	Identificatio	on	<u>, marine de la constante de la constante</u>		Reported	Known	a a cara an an an an an ann an ann an	میں میں بینے کا افراد ک
Month/Year	Number	Media	Nuclide	Units		Value (b)	Control Limits	Evaluation (c)
July 2007	Rad 70	Water	Sr-89	pCi/L	58.6	58.2	49.5 - 66.9	A
,			Sr-90	pCi/L	18.7	19.0	10.3 - 27.7	A
			Ba-133	pCi/L	18.6	19.4	10.7 - 28.1	A
			Cs-134	pCi/L	57.6	68.9	60.2 - 77.6	N (1)
			Cs-137	pCi/L	55.4	61.3	52.6 - 70.0	A
			Co-60	pCi/L	31.3	33.5	24.8 - 42.2	А
			Zn-65	pCi/L	49.0	54.6	45.2 - 64.0	А
			Gr-A	pCi/L	26.8	27.1	15.4 - 38.8	А
			Gr-B	pCi/L	12	11.5	2.84 - 20.2	А
			I-131	pCi/L	31.1	26.5	21.3 - 31.7	А
			H-3	pCi/L	1700	1770	1180 - 2360	A
October 2007	RAD 71	Water	Sr-89	pCi/L	27.07	27.4	19.3 - 33.9	А
			Sr-90	pCi/L	17.40	18.2	12.9 - 21.6	А
			Ba-133	pCi/L	12.57	12.6	8.64 - 15.5	А
			Cs-134	pCi/L	63.33	71.1	58.0 - 78.2	А
			Cs-137	pCi/L	168	180	162 - 200	А
			Co-60	pCi/L	21.93	23.2	19.9 - 28.3	А
			Zn-65	pCi/L	245.33	251	226 - 294	А
			Gr-A	pCi/L	55.60	58.6	30.6 - 72.9	А
			Gr-B	pCi/L	15.23	9.73	4.26 - 18.2	А
			I-131	pCi/L	27.43	28.9	24.0 - 33.8	А
			H-3	pCi/L	9263.3	9700	8430 - 10700	А

(1) The Cs-134 TBE found/ERA known ratio is 83.6%, which TBE considers acceptable. NCR 07-07

(a) Teledyne Brown Engineering reported result.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. N=not acceptable. Reported result falls. outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2007

(PAGE 1 OF 1)

	Identification				Reported	Known	Acceptance	
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Range	Evaluation (c)
February 2007	0 7- MaW17 W	/ater	Cs-134	Bq/L	74.5	83.5	58.5 - 108.6	А
			Cs-137	Bq/L	162	163.0	114-1 - 211.9	Â
<i>i</i>	· ·		Co-57	Bq/L	140	143.7	100.6 - 186.8	A
• • •			Co-60	Bq/L	27.9	26.9	18.8 - 35.0	A
e			H-3	Bq/L	346	283.0	198.1 - 367.9	W
			Mn-54	Bq/L	125	123.8	86.7 - 160.9	A
			Sr-90	Bq/L	8.90	8.87	6.21- 11.53	A
			Zn-65	Bq/L	117	114.8	80.4 - 149.2	A
	07-GrW17 W	/ater	Gr-A	Bq/L	0.502	0.327	>0.0 - 0.654	A
			Gr-B	Bq/L	0.975	0.851	0.426 - 1.277	Â
			OI D	DqiL	0.010	0.001		~
	07-MaS17 So	oil	Cs-134	Bq/kg	322	327.4	229.2 - 425.6	А
			Cs-137	Bq/kg	893	799.7	559.8 - 1039.6	A
			Co-57	Bq/kg	508.3	471.2	329.8 - 612.6	A
	. •		Co-60	Bq/kg	300.3	274.7	192.3 - 357.1	A
			Mn-54	Bq/kg	779	685.2	479.6 - 890.8	А
	N 1		K-40	Bq/kg	682	602	421 - 783	A
1 A	•		Sr-90	Bq/kg	293	319.0	223.3 - 414.7	А
	Service A	i	Zn-65	Bq/kg	618.7	536.8	375.8 - 697.8	A
				100		ta di second	dige the second second	
	07-RdF17 Al	P 🔬	Cs-134	Bq/sample	3.230	-1.4960	2.9372 - 5.4548	W
. N	100 No. 101		Cs-137	Bq/sample	2.453	2:5693	1.7985 - 3.3401	Α
	1. A.			Bq/sample			2.0213 - 3.7539	. A
				Bq/sample	2.767		2.0338 - 3.7770	Α
1.11	,		Mn-54	Bq/sample			2.4630 - 4.5741	<u>;</u> A
			Sr-90	Bq/sample	0.584	0.6074	0.4252 - 0.7896	А
			Zn-65	Bq/sample	2.463	2.6828	1.8780 - 3.4876	A
N	07-GrF17 Al	Р	Gr-A	Bq/sample	0.353	0.601	>0.0 - 1.202	A
	4. · · · · ·		Gr-B	Bq/sample	0.500	0.441	0.221 - 0.662	А
February 2007	07-RdV17 Ve	egetation	Cs-134	Bq/sample	6.207	6.2101	4.3471 - 8.0731	А
	•	_	Cs-137	Bq/sample	7.80	6.9949	4.8964 - 9.0934	А
-			Co-57	Bg/sample	8.64	8.1878	5.7315 - 10.6441	А
			Co-60	Bq/sample	6.10	5.8215	4.0751 - 7.5680	А
			Mn-54	Bq/sample	9.41	8.4492	5.9144 - 10.9840	A
			K-40	Bq/sample		Not evaluated	by MAPEP	
. •			Sr-90	Bq/sample	1.51	1.5351	1.0746 - 1.9956	Α.
· ·			Zn-65	Bq/sample	7.15	5.6991	3.9894 - 7.4088	W

(a) Teledyne Brown Engineering reported result.

- (b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.
- (c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2007 (Page 1 of 2)

		- <u></u>						
		Concentration (pCi/L)						
Lab Code *	Date	Analysis	Laboratory	ERA	Control			
		3	Result ^b	Result ^c	Limits	Acceptanc		
STAP-1116	03/19/07	Gr. Alpha	34.64 ± 2.56	25.8	12.4 - 39	Pass		
STAP-1116	03/19/07	Gr. Beta	93.41 ± 3.20	79.5	48.8 - 116	Pass		
STAP-1117	03/19/07	Co-60	1610.00 ± 8.40	1300.0	1010.0 - 1620	Pass		
STAP-1117	03/19/07	Cs-134	1340.40 ± 48.84	1120.0	732.0 - 1380	Pass		
STAP-1117 ^e	03/19/07	Cs-137	345.30 ± 8.20	255.0	192.0 - 336	Fail		
STAP-1117 ⁺	03/19/07	Mn-54	< 5.0	0.0		Pass		
STAP-1117	03/19/07	Sr-90	156.10 ± 6.60	156.0	66.6 - 246	Pass		
STAP-1117	03/19/07	Zn-65	363.80 ± 11.90	245.0	208.0 - 412	Pass		
STSO-1118	03/19/07	Ac-228	3097.77 ± 94.96	2790.0	1790.0 - 3930	Pass		
STSO-1118	03/19/07	Bi-212	2467.87 ± 114.33	2500.0	658.0 - 3730	Pass		
STSO-1118	03/19/07	Co-60	7847.40 ± 86.60	7330.0	5340.0 - 9820	Pass		
STSO-1118	03/19/07	Cs-134	7910.60 ± 356.88	7560.0	4850.0 - 9070	Pass		
STSO-1118	03/19/07	Cs-137	4635.00 ± 99.10	4300.0	3290.0 - 5580	Pass		
STSO-1118	03/19/07	K-40	12201.60 ± 423.20	11100.0	8050.0 - 15000	Pass		
STSO-1118 [']		Mn-54	< 34.0	0.0		Pass		
STSO-1118	03/19/07	Pb-212	2046.80 ± 127.20	1730.0	1120.0 - 2430	Pass		
STSO-1118	03/19/07 °	Pb-214	4142.80 ±110.40	3330.0	1980.0 - 4980	Pass		
STSO-1118	03/19/07	Sr-90	`6163.30 ± 791.60	7500.0	2610.0 - 12400	Pass		
STSO-1118	03/19/07	Th-234	4329.40 ± 569.10	3590.0	2190.0 - 4560	Pass		
STSO-1118 ⁺	03/19/07	Zn-65	0.00 ± 0.00	0.0	0.0 - 0	Pass		
STVE-1119	03/19/07	Co-60	2827.90 ± 62.40	2600.0	1760.0 - 3720	Pass		
STVE-11.19	03/19/07	Cs-134	654.80 ± 48.40	579.0	308.0 - 822	Pass		
STVE-1119	03/19/07	Cs-137	3307.30 ± 58.80	2920.0	2150.0 - 4060	Pass		
STVE-1119	03/19/07	K-40	40814.20 ± 618.80	37900.0	27200.0 - 53600	Pass		
STVE-1119	03/19/07	Mn-54	< 27.6	0.0		Pass		
STVE-1119	03/19/07	Sr-90	8999.70 ± 580.90	8890.0	4900.0 - 11800	Pass		
STVE-1119	03/19/07	Žn-65	474.30 ± 45.70	366.0	267.0 - 500	Pass		
STW-1120	03/19/07	Co-60	541.40 ± 9.00	536.0	467.0 - 631	Pass		
STW-1120	03/19/07	Cs-134	1623.80 ± 66.10	1750.0	1290.0 - 2020	Pass		
STW-1120	.03/19/07	Cs-137	1839.10 ± 17.90	1850.0	1570.0 - 2220	Pass		
STW-1120 [†]	03/19/07	Mn-54	< 8.1	0.0		Pass		
STW-1120	03/19/07	Sr-90	949.40 ± 16.70	989.0	630.0 - 1320	Pass		
STW-1120	03/19/07	Zn-65	2009.00 ± 36.40	1910.0	1600.0 - 2410	Pass		
STW-1121	04/09/07	Sr-89	30.7 ± 4.3	35.4	26.7 - 44.1	Pass		
STW-1121	04/09/07	Sr-90	39.3 ± 1.8	42.1	33.4 - 50.8	Pass		

ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2007

(Page 2 of 2)

			Concentra	tion (pCi/L)		
Lab Code *	Date	Analysis	Laboratory	ERA	Control	
		- 	Result ^b	Result ^c	Limits	Acceptance
STW-1122	04/09/07	Ba-133	30.0 ± 2.4	29.3	20.6 - 38.0	Pass
STW-1122	04/09/07	Co-60	118.5 ± 3.9	119.0	109.0 - 129.0	Pass
STW-1122	04/09/07	Cs-134	52.6 ± 2.3	54.3	45.6 - 63.0	Pass
STW-1122	04/09/07	Cs-137	49.5 ± 3.8	50.3	41.6 - 59.0	Pass
STW-1122	04/09/07	Zn-65	91.7 ± 6.3	88.6	73.3 - 104.0	Pass
STW-1123	04/09/07	Gr. Alpha	33.8 ± 3.5	56.5	32.0 - 81.0	Pass
STW-1123	04/09/07	Gr. Beta	24.2 ± 2.3	25.3	16.6 - 34.0	Pass
STW-1124	04/09/07	I-131	19.2 ± 1.2	18.9	13.7 - 24.1	Pass
STW-1125	04/09/07	H-3	7540.0 ± 255.0	8060.0	6660.0 - 9450.0	Pass
STW-1127	07/09/07	Sr-89	51.7 ± 5.0	58.2	49.5 - 66.9	Pass
STW-1127	07/09/07	Sr-90	21.4 ± 2.3	19.0	10.3 - 27.7	Pass
STW-1128	07/09/07	Ba-133	19.4 ± 2.2	19.4	10.7 - 28.1	Pass
STW-1128	07/09/07	Co-60	32.8 ± 2.0	**.*	24.8 - 42.2	Pass
STW-1128	07/09/07	Cs-134	67.0 ± 2.9	68.9	60.2 - 77.6	Pass
STW-1128	07/09/07	Cs-137	61.6 ± 3.8	61.3 [·]	52.6 - 70.0	Pass
STW-1128	07/09/07	Zn-65	55.6 ± 7.5	54.6	45.2 - 64.0	Pass
STW-1129	07/09/07	Gr. Alpha	19.2 ± 1.6	27.1		Pass
STW-1129	07/09/07	Gr. Beta	9.1/±0.9	11. <u>5</u> .e	2.8 - 20.2	Pass
STW-1131	10/05/07	Sr-89	27.3 ± 3.3	27.4	19.3 33.9	Pass
STW-1131	10/05/07	Sr-90	17.7 ± 1.2	18.2	12.9 - 21.6	Pass
STW-1132	10/05/07	Ba-133	12.2 ± 3.3	12.6	8.6 - 15.5	Pass
STW-1132	10/05/07	Co-60	23.8 ± 1.4	23.2	19.9 - 28.3	Pass
STW-1132	10/05/07	Cs-134	70.5 [°] ± 4.2	71.1	58.0 - 78.2	Pass
STW-1132	10/05/07	Cs-137	178.2 ± 3.3	180.0	162.0 - 200.0	Pass
STW-1132	10/05/07	Zn-65	263.9 ± 6.9	251.0	226.0 - 294.0	Pass
STW-1133	10/05/07	Gr. Alpha	54.7 ± 2.1	58.6	30.6 - 72.9	Pass
STW-1133	10/05/07	Gr. Beta	11.9 ± 0.9	9.7	4.3 - 18.2	Pass
STW-1134	10/05/07	I-131	33.0 ± 1.5	28.9	24.0 - 33.8	Pass
STW-1135	10/05/07	H-3	9965.0 ± 250.0	9700.0 .	8430.0 - 10700.0	Pass

Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^e A high bias (~ 20%) was observed in gamma results for air filters. A composite filter geometry was used in the calculations vs. a single filter geometry. Result of recalculation. Cs-137, 305.8 ± 6.0 pCi/filter.

^f Included in the testing series as a "false positive". No activity expected.

TABLE D-5	DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)*
	ENVIRONMENTAL, INC., 2007

(Page 1 of 1)

. . .

		Concentration ^b						
				Known		•		
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance		
STW-1110	01/01/07	Gr. Alpha	0.45 ± 0.08	0.33	0.00 - 0.65	Pass		
STW-1110	01/01/07	Gr. Beta	0.90 ± 0.14	0.85	0.43 - 1.28	Pass		
STW-1111	01/01/07	Co-57	151.60 ± 10.00	143.70	100.60 - 186.80	Pass		
STW-1111	01/01/07	Cs-134	79.20 ± 8.00	83.50	58.50 - 108.60	Pass		
STW-1111	01/01/07	Cs-137	168.70 ± 12.10	163.00	114.10 - 211.90	Pass		
STW-1111	01/01/07	H-3	262.20 ± 9.10	283.00	198.10 - 367.90	Pass		
STW-1111	01/01/07	Mn-54	130.60 ± 11.50	123.80	86.70 - 160.90	Pass		
STW-1111	01/01/07	Sr-90	9.60 ± 1.40	8.87	6.21 - 11.53	Pass		
STW-1111	01/01/07	Zn-65	123.70 ± 17.00	114.80	80.40 - 149.20	Pass		
STSO-1112	01/01/07	Co-57	501.20 ± 2.90	471.20	329.80 - 612.60	Pass		
STSO-1112	01/01/07	Co-60	285.90 ± 2.10	274.70	192.30 - 357.10	Pass		
STSO-1112	01/01/07	Cs-134	325.90 ± 7.40	327.40	229.20 - 425.60	Pass		
STSO-1112	01/01/07	Cs-137	855.70 ± 4.60	799.70	559.80 - 1039.60	Pass		
STSO-1112	01/01/07	Mn-54	750.90 ± 4.70	685.20	479.60 - 890.80	Pass		
STAP-1113	01/01/07	Gr. Alpha	0.27 ± 0.04	0.60	• 0.00 - 1.20	Pass		
STAP-1113	01/01/07	Gr. Beta	0.57 ± 0.05	0.44	0.22 - 0.66	Pass		
STAP-1114	01/01/07	Co-57	3.51 ± 0.07	2.89	2.02 - 3.75	Pass		
STAP-1114	01/01/07	Co-60	2.98 ± 0.10	2.91	2.03 - 3.78	Pass		
STAP-1114	01/01/07	Cs-134	4.02 ± 0.16	4.20	2.94 - 5.45	Pass		
STAP-1114	01/01/07	Cs-137	2.75 ± 0.12	2.57	1.80 - 3.34	Pass		
STAP-1114	01/01/07	Mn-54	3.94 ± 0.12	3.52	2.46 - 4.57	Pass		
STAP-1114	01/01/07	Sr-90	0.58 ± 0.18	0.61	0.43 - 0.79	Pass		
STAP-1114	01/01/07	Zn-65	2.70 ± 0.10	2.68	1.88 - 3.49	Pass		
STVE-1115	01/01/07	Co-57	8.90 ± 0.20	8.19	5.73 - 10.64	Pass		
STVE-1115	01/01/07	Co-60	6.50 ± 0.20	5.82	4.08 - 7.57	Pass		
STVE-1115	01/01/07	Cs-134	6.90 ± 0.30	6.21	4.35 - 8.07	Pass		
STVE-1115	01/01/07	Cs-137	8.20 ± 0.30	6.99	4.90 - 9.09	Pass		
STVE-1115	01/01/07	Mn-54	10.10 ± 0.30	8.46	5.91 - 10.98	Pass		

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

D - 8

Intentionally left blank

APPENDIX E

化化化 网络小人

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

Intentionally left blank

مرانی ۱۹۹۰ - ۲۰۹۰ ۱۹۹۰ - ۲۰۹۰ ۱۹۹۰ - ۲۰۹۰