ENCLOSURE

NINE MILE POINT NUCLEAR STATION, UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2007

NINE MILE POINT NUCLEAR STATION - UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2007

Constellation Energy

Nine Mile Point Nuclear Station

Page 1 of 2

NINE MILE POINT NUCLEAR STATION - UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

JANUARY – DECEMBER 2007

SUPPLEMENTAL INFORMATION

Facility: Nine Mile Point Unit #2

Licensee: Nine Mile Point Nuclear Station, LLC

1. <u>TECHNICAL SPECIFICATION/ODCM LIMITS</u>

A) FISSION AND ACTIVATION GASES

- 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 500 mrem/year to the whole body and less than or equal to 3000 mrem/year to the skin.
- 2. The air dose from noble gases released in gaseous effluents from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from lodine-131, lodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ and, during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

- 1. Improved Technical Specifications (ITS) limits the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001-20.2402, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity.
- 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 2 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by on-line gamma spectroscopic monitoring (intrinsic germanium crystal) of an isokinetic sample stream.

B) IODINES

Iodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic sample stream.

C) PARTICULATES

Activity released from the main stack and the combined Radwaste/Reactor Building vent is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus.

E) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters.

F) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analyses of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

Summary Data

Unit 1	Unit 2 X		Reporting Period January - December 2007
Liquid Efflu	ents:		
	uired MEC = 10 x 10CFR20.1001 - 20.2402, Appendix B,	Table 2 Colum	n 2
	$\frac{1}{20.2402}, \frac{1}{20.1001}, \frac{1}{20.2402}, \frac{1}$		11 2
	Average MEC - µCi/ml (Qtr. 1) = NO RELEASE	s	Average MEC - µCi/ml (Qtr. 3) = NO RELEASES
	Average MEC - µCi/ml (Qtr. 2) = NO RELEASE		Average MEC - µCi/ml (Qtr. 4) = NO RELEASES
	(Fiscing and Activation around MEN/)		
Average En	ergy (Fission and Activation gases - MEV):		
	Qrtr. <u>1</u> : Ēγ = 1.22E+00	Ēβ =	3.90E-01
	Qrtr. 2: $\bar{E}\gamma$ = 1.15E+00	Ēβ =	3.37E-01
	Qrtr. 3: $\bar{E}\gamma = 8.56E-01$	Εβ = Ēβ = Ēβ = Ēβ =	3.34E-01
	Qrtr. 4: $\bar{E}y = 8.85E-01$	Ēβ =	3.68E-01
	·		
_iquid:			
	Number of Botch Bologoo-		1
	Number of Batch Releases Total Time Period for Batch Releases (hrs)	0 N/A	
	Maximum Time Period for a Batch Release (hrs)	N/A	
	Average Time Period for a Batch Release (hrs)	N/A	
	Minimum Time Period for a Batch Release	N/A	
	Total volume of water used to dilute the liquid	<u>1st</u>	2nd 3rd 4th
	during the release period (L)	N/A	N/A N/A N/A
	,		
	Total volume of water available to dilute the liquid	<u>1st</u>	2nd 3rd 4th
	effluent during the report period	1.30E+10	1.24E+10 1.25E+10 1.31E+10
	· · ·		
aseous(E	mergency Condenser Vent) "Not applicable for Unit 2	2"	
	Number of Batch Releases	N/A	
	Total Time Period for Batch Releases (hrs)	N/A	
	Maximum Time Period for a Batch Release (hrs)	N/A	
	Average Time Period for a Batch Release (hrs)	N/A	
	Minimum Time Period for a Batch Release	N/A]
			-
aseous (F	Primary Containment Purge)		
	Number of Batch Releases	14	4
	Total Time Period for Batch Releases (hrs)	6.31E+02	
	Maximum Time Period for a Batch Release (hrs)	9.79E+01	4
	Average Time Period for a Batch Release (hrs)	4.51E+01	
	Minimum Time Period for a Batch Release (hrs)	1.95E+00	J

Summary Data

Page 2 of 2

Unit 1	Unit 2 X	-	Reporting Period January - December 2007
Abnormal Release	9S:		a a constructive de la construcción de la construcción de la construcción de la construcción de la construcción La construcción de la construcción d
A. Liquids:		,	· · · ·
	Number of Releases	0	
	Total Activity Released	N/A Ci	
B. Gaseous:	2000 m 200 mman -		
	Number of Releases	0	
	Total Activity Released	N/A Ci	

GASEOUS EFFLU	JENTS - SUN	MATION OF A	LL RELEASES	, ELEVATED A	ND GROUND LE	EVEL
		<u>1st</u> Quarter	<u>2nd</u> Quarter	<u>3rd</u> Quarter	<u>4th</u> Quarter	<u>Est. To</u> Error,
A. Fission & Activation Gases						
1. Total Release	Ci	2.26E+00	4.38E+00	2.00E+02	2.06E+02	5.00E+
2. Average Release Rate	µCi/sec	2.90E-01	5.58E-01	2.52E+01	2.58E+01	
B. lodines						
1. Total lodine - 131	Ci	4.68E-06	3.83E-06	5.76E-04	1.10E-03	3.00E+
2. Average Release Rate for Period	µCi/sec	5.96E-07	4.87E-07	6.79E-05	1.51E-04	
C. Particulates						
1. Particulates with half-lives>8	Ci	5.27E+00	4.33E-04	2.33E-04	1.30E-03	3.00E+
2. Average Release Rate for Period	µCi/sec	6.71E-01	5.51E-05	2.75E-05	1.79E-04	
3. Gross alpha radioactivity	Ci	3.98E-08	**	**	**	2.50E+
D. Tritium						
1. Total release	Ci	3.32E+01	2.62E+01	4.01E+01	3.89E+01	5.00E+
2. Average Release Rate for Period	µCi/sec	4.23E+00	3.33E+00	4.73E+00	5.36E+00	
Percent of Quarterly Gamma Air Dose Limit (5 mR)	%	6.50E-03	1.18E-02	3.92E-01	4.26E-01	
Percent of Quarterly Beta Air Dose Limit (10 mrad)	%	9.65E-05	1.62E-04	7.40E-03	1.13E-02	
Percent of Annual Gamma Air Dose Limit to Date (10 mR)	%	3.25E-03	9.13E-03	2.07E-01	4.21E-01	
Percent of Annual Beta Air Dose Limit to Date (20 mrad)	%	4.83E-05	1.30E-04	3.83E-03	9.50E-03	
Percent of Whole Body Dose Rate Limit (500 mrem/yr)	%	2.55E-04	4.57E-04	1.51E-02	1.64E-02	
Percent of Skin Dose Rate Limit (3000 mrem/yr)	%	4.97E-05	8.92E-05	2.96E-03	3.22E-03	
Tritium, Iodines, and Particulates (with half-lives greater than 8 days)						
Percent of Quarterly Dose Limit (7.5 mrem)	%	7.95E-03	6.95E-03	1.03E-02	1.33E-02	
Percent of Annual Dose Limit to Date (15 mrem)	%	4.01E-03	7.51E-03	1.27E-02	1.94E-02	
Percent of Organ Dose Limit	%	1.82E-04	1.56E-04	2.83E-03	6.38E-03	

Unit 1		nit 2 X	-			January - December 2
		GAS	SEOUS EFFLUENT			
				Continuou	s Mode (2)	
uclides Re	leased		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter
	Fission Gases (1)					
	Argon-41	Ci	2.48E-01	5.16E-01	1.49E-01	1.70E-01
	Krypton-85	Ci	9.44E-03		1.17E-02	
	Krypton-85m	Ci	6.56E-01	1.78E+00	3.70E+01	5.29E+01
	Krypton-87	Ci	6.98E-03		1.41E+01	1.14E+01
	Krypton-88	Ci	1.13E+00	2.09E+00	7.71E+01	7.86E+01
	Xenon-127	Ci	**	**	**	**
	Xenon-131m	Ci	**	**		
	Xenon-133	Ci Ci	**	**	7.12E+01	4.22E+01
	Xenon-133m			**		
	Xenon-135	Ci	2.41E-02	**	1.03E-01	5.33E+00
	Xenon-135m	Ci	4.23E-02 6.18E-02	**	**	3.07E+00 3.99E+00
	Xenon-137 Xenon-138	Ci Ci		**	**	
	ACHON-138	G	8.46E-02			4.43E+00
	<u>lodines (1)</u>					·
	lodine-131	Ci	1.98E-06	2.88E-06	3.56E-04	7.65E-04
	lodine-133	Ci	**	**	1.40E-03	6.59E-03
	lodine-135	Ci	**	**	**	**
	Particulates (1)		_			
	Chromium-51	Ci	**	**	**	**
	Manganese-54	Ci	**	**	**	**
	Iron-55	Ci	**	**	1.32E-05	3.18E-04
	Iron-59	Ci	**	**	**	**
	Cobalt-58	Ci	**	**	**	**
	Cobalt-60	Ci	5.27E+00	**	7.77E-06	**
	Neodymium-147	Ci	**	**	**	**
	Zirconium-95	Ci	**	**	**	**
	Zinc-65	Ci	**	**	**	**
	Strontium-89	Ci	**	**	3.59E-05	1.10E-04
	Stronium-90	Ci	**	**	**	**
	Niobium-95	Ci	**	**	**	**
	Molybdenum-99	Ci	**	**	**	**
	Cesium-134	Ci	**	**	**	**
	Cesium-136	Ci	**	**	**	**
	Cesium-137	Ci	**	**	**	**
	Barium-140	Ci	**	**	**	**
	Lanthanum-140	Ci	**	**	**	**
	Cerium-141	Ci	**	**	**	**
	Cerium-144	Ci	**	**	**	**
	<u>Tritium (1)</u>	Ci	2.09E+01	1.69E+01	2.35E+01	1.63E+01

(2) Contributions from purges are included. There were no other batch releases during the reporting period.

	GASEOUS	EFFLUENTS - G		RELEASES	
			Contin	uous Mode (2)	
des Released		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter
Fission Gases	(1)				
Argon-41	Ci	**	**	**	**
Krypton-85	Ci	**	**	**	**
Krypton-85m	Ci	**	**	**	**
Krypton-87	Ci	**	**	**	**
Krypton-88	Ci	**	**	**	**
Xenon-127	Ci	**	**	**	**
Xenon-131m	Ci	**	**	**	**
Xenon-133	Ci	**	**	**	2.06E+00
Xenon-133m	Ci	**	**	**	**
Xenon-135	Ci	**	**.	**	8.40E-01
Xenon-135m	Ci	**	**	**	6.77E-01
Xenon-137	Ci	**	**	**	**
Xenon-138	Ci	**	**	**	**
lodines (1)				·	
lodine-131	Ci	2.70E-06	9.46E-07	2.20E-04	3.32E-04
lodine-133	Ci	**	**	9.97E-04	3.25E-03
lodine-135	Ci	**	**	**	**
Particulates (1)					
Chromium-51	Ci	**	**	**	**
Manganese-54	Ci	**	3.56E-05	**	3.49E-05
Iron-55	Ci	1.57E-04	3.46E-04	5.16E-05	6.68E-04
Iron-59	Ci	**	3.40L-04 **	3,10⊑-03	**
Cobalt-58	Ci	9.21E-06	**	**	**
Cobalt-60	Ci	2.95E-05	5.17E-05	3.18E-05	6.77E-05
Neodymium-147		**	**	**	**
Zirconium-95	Ci	**	**	**	**
Zinc-65	Ci	**	**	**	**
Stronium-89	Ci	**	**	**	**
Stronium-90	Ci	**	**	**	**
Niobium-95	Ci	**	**	**	**
Molybdenum-99		4.09E-05	**	9.25E-05	9.73E-05
Cesium-134	Ci	**	**	**	**
Cesium-136	Ci	**	**	**	** .
Cesium-137	Ci	**	**	**	**
Barium-140	Ci	**	**	**	**
Lanthanum-140		**	**	**	**
Cerium-141	Ci	**	**	**	**
Cerium-144	Ci	**	**	**	**
	0,	L	1	L	L
Tritium	Ci	1.24E+01	9.31E+00	1.66E+01	2.26E+01
	51		L 0.0. E. 00		

Page 1 of 2

Unit 1 Unit 2	Χ			Reporting Per	iod <u>January - E</u>	December 2007
· · · · · · · · · · · · · · · · · · ·	LIQUID EFF	LUENTS - SUM	MATION OF AL	L RELEASES (1)	•
		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	<u>Est. Total Error, %</u>
 A. <u>Fission & Activation Products</u> 1. Total Release (not including Tritium, gases, alpha) 	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
B. <u>Tritium</u>						
1.Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during the reporting $\ensuremath{period}\xspace$	µCi/ml	No Releases	No Releases	No Releases	No Releases	
C. Dissolved and Entrained Gases					<u> </u>	
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during the reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
D. Gross Alpha Radioactivity			_			
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
E. <u>Volumes</u>						
1. Prior to Dilution	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Volume of dilution water used during release period	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
3. Volume of dilution water available during reporting period	Liters	1.30E+10	1.24E+10	1.25E+10	1.31E+10	5.00E+01
F. <u>Percent of Tech. Spec. Limits</u> <u>Fission and Activation Gases</u>		· .				
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Quarterly Organ Dose Limit (5 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Annual Organ Dose Limit to Date (10 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of 10CFR20 Concentration Limit (2), (3)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 µCi/ml)	%	No Releases	No Releases	No Releases	No Releases	

(1) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 µCi/ml for required gamma emitting nuclides, 1.00E-05 µCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 µCi/ml for Sr-89/90, 1.00E-06 µCi/ml for I-131 and Fe-55, and 1.00E-07 µCi/ml for gross alpha radioactivity, as required by the Off-Site Dose Calculation Manual (ODCM), have been verified.

(2) The percent of 10CFR20 concentration limit is based on the average concentration during the quarter.

(3) Improved Technical Specifications limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001 - 20.2402, Appendix B, Table 2, Column 2. Maximum Effluent Concentrations (MEC) numerically equal to ten times the 10CFR20.1001 - 20.2402 concentrations were adopted to evaluate liquid effluents.

Page 2 of 2

Unit 1	Unit 2	X		·	Reporting Peri	iod <u>January - I</u>	Decemt
			LUENTS RELE	ASED			
				Batch Mo	ode (1),(2)		
clides Released			<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter	
Nuclides	Released						
Strontium-	.89	Ci	No Releases	No Releases	No Releases	No Releases	
Strontium-	-90	Ci	No Releases	No Releases	No Releases	No Releases	
Cesium-13	34	Ci	No Releases	No Releases	No Releases	No Releases	
Cesium-1	37	Ci	No Releases	No Releases	No Releases	No Releases	
lodine-131	l	Ci	No Releases	No Releases	No Releases	No Releases	
Cobalt-58		Ci	No Releases	No Releases	No Releases	No Releases	
Cobalt-60		Ci	No Releases	No Releases	No Releases	No Releases	
Iron-59		Ci	No Releases	No Releases	No Releases	No Releases	
Zinc-65		Ci	No Releases	No Releases	No Releases	No Releases	
Manganes	e-54	Ci	No Releases	No Releases	No Releases	No Releases	
Chromium	-51	Ci	No Releases	No Releases	No Releases	No Releases	
Zirconium	-95	Ci	No Releases	No Releases	No Releases	No Releases	
Niobium-9	5	Ci	No Releases	No Releases	No Releases	No Releases	
Molybden	um-99	Ci	No Releases	No Releases	No Releases	No Releases	
Technetiu	m-99m	Ci	No Releases	No Releases	No Releases	No Releases	
Barium-14	0	Ci	No Releases	No Releases	No Releases	No Releases	
Lanthanur	n-140	Ci	No Releases	No Releases	No Releases	No Releases	
Cerium-14	11	Ci	No Releases	No Releases	No Releases	No Releases	
Tungsten-	187	Ci	No Releases	No Releases	No Releases	No Releases	
Arsenic-76	5	Ci	No Releases	No Releases	No Releases	No Releases	
lodine-133	3	Ci	No Releases	No Releases	No Releases	No Releases	
Iron-55		Ci	No Releases	No Releases	No Releases	No Releases	
Neptuniun	n-239	Ci	No Releases	No Releases	No Releases	No Releases	
Silver-110	m	Ci	No Releases	No Releases	No Releases	No Releases	
Gold-199		Ci	No Releases	No Releases	No Releases	No Releases	
Cerium-14	14	Ci	No Releases	No Releases	No Releases	No Releases	
Cesium-1		Ci	No Releases	No Releases	No Releases	No Releases	
Copper-64		Ci	No Releases	No Releases	No Releases	No Releases	
Dissolved or Entrained	l Gases	Ci	No Releases	No Releases	No Releases	No Releases	
Tritium		Ci	No Releases	No Releases	No Releases	No Releases	

(1) No continuous mode release occurred during the report period as indicated by effluent sampling.

ı.

(2) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 μCi/ml for required gamma emitting nuclides, 1.00E-05 μCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μCi/ml for Sr 80/90, 1.00E-06 μCi/ml for I-131 and Fe-55, and 1.00E-07 μCi/ml for gross alpha radioactivity, as identified in the ODCM, has been verified.

Unit 1	Unit 2	X		Reporting Period	January - Decer	nber 2007
	SOLID W	ASTE AND IRRA	DIATED FUEL SHI	PMENTS		
A1. TYPE	I. TYPE <u>Volume</u> (m ³)				<u>Activity (1)</u> (Ci)	
		Class			<u>Class</u>	
	Α	В	с	A	В	С
a.1 Spent Resins (Dewatered)	9.29E+01	0.00E+00	0.00E+00	1.37E+02	0.00E+00	0.00E+00
a.2 Filter Sludge	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
a.3 Concentrated Waste	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Totals .	9.29E+01	0.00E+00	0.00E+00	1.37E+02	0.00E+00	0.00E+00
b.1 Dry, compressible waste	3.70E+02	0.00E+00	0.00E+00	5.90E+00	0.00E+00	0.00E+00
 Dry, non-compressible waste (contaminated equipment) 	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Totals	3.70E+02	0.00E+00	0.00E+00	5.90E+00	0.00E+00	0.00E+00
. Irradiated Components, Control Rods	0.00E+00	0.00E+00	3.42E-01	0.00E+00	0.00E+00	4.84E+04
d. Other (to vendor for processing	3)					
1.1 Contaminated Equipment	3.08E+02	0.00E+00	0.00E+00	2.25E+01	0.00E+00	0.00E+00
I.2 Filters	0.00E+00	2.18E+00	1.09E+00	0.00E+00	2.21E+02	1.54E+02
Totals	3.08E+02	2.18E+00	1.09E+00	2.25E+01	2.21E+02	1.54E+02

Page 2 of 4

Unit 1	Unit 2 X	Reporting Peric	od January - December 2007				
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS							
A1. TYPE	<u>Container</u>	Package	Solidification Agent				
a.1 Spent Resin (Dewatered)	Poly Liner	General Design	None				
a.2 Filter Sludge	N/A	N/A	N/A				
a.3 Concentrated Waste	N/A	N/A	N/A				
	······		· · · · · · · · · · · · · · · · · · ·				
b.1 Dry, Compressible waste	Metal Box	General Design	None				
b.2 Dry, non-compressible waste (Contaminated Equipment)	N/A	N/A	N/A				
		•					
c. Irradiated Components, Control Rods	Steel Liner	Туре В	None				
d. Other (to vendor for processing)	·····						
d.1 Tank Sediment and Filters	Metal Box	General Design	None				
d.2 Filters	Steel Liner	Туре В	None				

Page 3 of 4

Unit 1 Unit 2 X	Reporting Period January - December 2007
SOLID WASTE AND IRRAD	NATED FUEL SHIPMENTS
A2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (BY TYPE OF	WASTE)
a. Spent Resins, Filter Sludges, Concentrated Waste	
Nuclide	Percent
Fe-55	7.09E+01
Co-60	1.67E+01
Mn-54	8.00E+00
Zn-65	2.50E+00
Other: H3, Cr-51, Fe-59, Co-58, Ni-63, Zr-95, Nb-95, Sb-124, I-131,	1.90E+00
Cs-134, Cs-137, Ba-140, La-140	1.502+00
b. Dry, compressible waste, dry, non-compressible waste (contaminate	ed equipment)
Nuclide .	Percent
Fe-55	7.47E+01
Co-60	2.05E+01
Mn-54	3.30E+00
Other: H-3, C-14, Co-58, Ni-63, Zn-65, Sr-90, Tc-99, Ag-110m,	
Cs-134, Cs-137, Ce-144, Pu-241, Cm-242	1.50E+00
c. Irradiated Components, Control Rods:	
Nuclide	Percent
Co-60	5.07E+01
Fe-55	4.40E+01
Ni-63	3.80E+00
Mn-54	1.30E+00
Other: H-3, C-14, Cr-51, Fe-59, Co-58, Ni-59, Zn-65, Sr-90, Zr-95,	2.00E-01
Nb-94, Mo-93, Tc-99, Ag-110m, I-129, Cs-134, Cs-137, Ce-144, U-234,	
U-235, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Am-241, Cm-242,	
Cm-243	
d. Other (To Vendor for Processing)	
1. Contaminated Equipment and Filters	
Nuclide	Percent
Fe-55	6.67E+01
Co-60	2.69E+01
Mn-54	2.50E+00
Zn-65	1.50E+00
Ni-63	1.10E+00
Cs-137	1.00E+00
Other: H-3, C-14, Cr-51, Fe-59, Co-58, Ni-59, Sr-89, Sr-90, Zr-95, Nb-94, Nb-95, Mo-93, Tc-99, Ag-110m, Sn-113, Sb-124, Sb-125, I-129, Cs-134, Cs-137, Ce-144, Pu-238, Pu-239, Pu-241, Am-241, Cm-242, Cm-243	3.00E-01

,

Page 4 of 4

Unit 1	Unit 2 X	Reporting Period January - December 2007					
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS							
A3. SOLID WASTE DISPOSITION							
h altra f Okia ana ta	Marila of Transmission	Deskinsting					
Number of Shipments	Mode of Transportation	Destination					
16	Hittman Transport	Clive Disposal Facility					
9	Hittman Transport	Duratek Services, Inc.					
3	Hittman Transport	Studsvik Processing Facility - Memphis					
2	Studvik Logistics	Studsvik Processing Facility - Memphis					
20	Hittman Transport	Studsvik Processing Facility - Erwin					
4	Hittman Transport	Barnwell					
B. IRRADIATED FUEL SHIPMENTS	(Disposition): There were no shipments.						
Number of Shipments	Mode of Transportation	Destination					
0	N/A	N/A					
	O A TREATMENT FACILITY FOR PROCES sludge from NMPNS to the treatment facilit						

1

Unit 1

Unit 2 X

Reporting Period January - December 2007

SUMMARY OF CHANGES TO THE OFF-SITE DOSE CALCULATION MANUAL (ODCM)

The Unit 2 Off-Site Dose Calculation Manual (ODCM) was revised during the reporting period to revise the alarm setpoint methodology for the offgas monitor. NMP2 Technical Specification LCO 3.7.4 states, "The gross gamma activity rate of noble gases measured at the offgas recombiner effluent shall be \leq 350,000 µCi/sec after decay of 30 minutes." The Offgas Pretreatment Noble Gas Detector Alarm Setpoint methodology given in Section 2.1.2.3 of the ODCM, in addition to a safety factor of 0.8, conservatively did not take into account the 30 minute decay. The revised methodology takes into account the 30 minute decay and provides margin taking into account variable offgas flow rates. These changes do not affect the levels of radioactive effluent control required by 10 CFR 20.1302, 40 CFR 190, 10 CFR 50.36a, and 10 CFR 50 Appendix I, and do not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations. A summary of the changes presented to and approved by the Station Operations Review Committee on September 2, 2007 is provided below. The summary also includes the justification for the change.

REVISION 29						
Page #	New/Amended Section #	Description of Change	Reason For Change			
II 12	2.1.1	Added: after decay of 30 minutes	Agrees with Technical Specification			
II 12	2.1.2	Added: after 30-minute decay	Agrees with Technical Specification			
II 15	2.1.2.3	Added discussion for the origin of the change	Clarification			
II 15	2.1.2.3	Revised equation: replaced 3.50E+05 with ACT	To include 30 minutes decay			
II 16	2.1.2.3	Replaced 350,000 µCi/sec with the variable "ACT" which accounts for 30 minutes decay	To include 30 minutes decay			
II 16	2.1.2.3	Added Note to explain why 900,000 µCi/sec is conservatively applicable	Clarification			
			·			

The Unit 2 Off-Site Dose Calculation Manual (ODCM) was revised during the reporting period to revise the definition of "Background" used in the alarm setpoint methodology for the offgas monitor. The definition was expanded to clarify the constituents that contribute to "Background". These changes do not affect the levels of radioactive effluent control required by 10 CFR 20.1302, 40 CFR 190, 10 CFR 50.36a, and 10 CFR 50 Appendix I, and do not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations. A copy of the ODCM, Revision 30 is attached and a summary of the changes presented to and approved by the Station Operations Review Committee on September 18, 2007 is provided below. The summary also includes the justification for the change.

REVISION 30

Page #	New/Amended Section #	Description of Change	Reason For Change
II 16	2.1.2.3	Revised the definition of Background	Clarification

SUMMARY OF CHANGES TO THE PROCESS CONTROL PROGRAM (PCP) There were no changes to the NMP2 Process Control Program (PCP) during the report period.					
<u> </u>					
			·		

-

Unit 1	Unit 2	X	Reporting Period January - December 2007		
SUMMARY OF INOPERABLE MONITORS					
Monitor	Dates of	noperability	Cause and Corrective Actions		
1) Vent Effluent Noble Gas Activity Monitor		07 to	The Vent Gaseous Effluent Monitoring System (GEMS) cabinet flow rate reading failed anomalously low rendering the flow device and the radiation monitor inoperable. Repairs were not timely due to the obsolescence of failed components. Repairs were completed by the Original Equipment Manufacturer and a permanent change to the flow measurement system was implemented. The station has approved a project plan for replacement of the system, with an expected completion in 2008. Required grab sampling and analysis as directed by the Off-Site Dose Calculation Manual were maintained during the period of inoperability.		
2) Vent Effluent System Flow Rate Monitor	May 7, 20 October 3		The Vent Gaseous Effluent Monitoring System (GEMS) cabinet flow rate reading failed anomalously low rendering the flow device and the radiation monitor inoperable. Repairs were not timely due to the obsolescence of failed components. Repairs were completed by the Original Equipment Manufacturer and a permanent change to the flow measurement system was implemented. The station has approved a project plan for replacement of the system, with an expected completion in 2008. Required grab sampling and analysis as directed by the Off-Site Dose Calculation Manual were maintained during the period of inoperability.		

Unit 1 Unit 2 X	Reporting Period	<u> January – December 2007</u>
DOSES TO MEMBERS OF THE PUBLIC DUE TO THEI	ACTIVITIES INSIDE THE SITE BOUI	NDARY
Introduction		
An assessment of the radiation dose potentially received by boundary from Nine Mile Point Unit 2 (NMP2) liquid and gaseou December 2007.		
This assessment considers the maximum exposed individual gaseous effluents to identify the maximum dose received by boundary.		
Prior to September 11, 2001, the public had access to the Energy displays or for picnicking and associated activities. Fishing also the shoreline adjacent to the NMP Site was the onsite activity the Member of the Public. Following September 11, 2001 public ac- fishing by Members of the Public at locations on site is also pro- annual dose to a hypothetical fisherman was still evaluated to	occurred near the shoreline adj nat resulted in the potential max cess to the Energy Information C ibited. Although fishing was not	acent to the NMP. Fishing near imum dose received by a Center has been restricted and conducted during 2007 the
Dose Pathways		
Dose pathways considered for this evaluation included direct soil doses). Other pathways, such as ingestion pathways, insignificant, or are considered as part of the evaluation of addition, only releases from the NMP2 stack and vent were pathways such as liquid effluents is not applicable since swimm	are not considered because t the total dose to a member of evaluated for the inhalation p	hey are either not applicable, f the public located off-site. In pathway. Dose due to aquatic
Dose to a hypothetical fisherman is received through the follow	ing pathways while standing on	the shoreline fishing:
• External ground pathway; this dose is received from plant r	elated radionuclides detected i	n the shoreline sediment.
Inhalation pathway; this dose is received through inhalation	n of gaseous effluents released f	rom NMP2 Stack and Vent.
 Direct radiation pathway; dose resulting from the operation Fitzpatrick (JAF) Facilities. 	n of NMP2, Nine Mile Point Unit 1	(NMP1) and the James A.
Methodologies for Determining Dose for Applicable	e Pathways	
External Ground (Shoreline Sediment) pathway		
Dose from the external ground (shoreline sediment) is based or (NMP2 ODCM) as adapted from Regulatory Guide 1.109. Fo exposed individual fished from the shoreline at all times.		
 The total dose received by the whole body and skin o using the following input parameters: Usage Factor = 3 		
• Density in grams per square meter = 40,000		
• Shore width factor = 0.3		
Whole body and skin dose factor for each radionuclic	e = Regulatory Guide 1.109, Tab	ole E-6.
• Fractional portion of the year = 1 (used average radio	nuclide concentration over toto	Il time period)
 Average Cs-137 concentration = 1.65 E-01 pCi/g 		
The total whole body and skin doses received by a hypothetic pathway is presented in Table 1, Exposure Pathway Dose.	al maximum exposed fisherman	from the external ground

Page 2 of 4

Unit	1 Unit 2	<u> </u>	¢	Reporting Period	<u>January – December 2007</u>
	DOSES TO	MEMBERS OF	THE PUBLIC DUE TO THEIR ACTIVIT	IES INSIDE THE SITE BOUT	NDARY

Inhalation Pathway

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP2 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2007 is calculated using the following input parameters for gaseous effluents released from both the NMP2 Stack and Vent for the time period exposure is received:

NMP 2 Stack:

Variable	Fisherman *
X/Q (s/m³)	9.60E-07
Inhalation dose factor	Table E-7 Regulatory Guide 1.109
Annual air intake m³/year) (adult)	, 8000
Fractional portion of the year (hours)	0.0356
H-3 (pCi/sec)	2.40 E+06
Fe-55 (pCi/sec)	1.40 E+01
Co-60 (pCi/sec)	3.29 E-01
Sr-89 (pCi/sec)	6.19 E+00
I-131 (pCi/sec)	4.75 E+01
I-133 (pCi/sec)	3.38 E+02

NMP2 Vent:

Variable	Fisherman *
X/Q (s/m³)	2.80E-06
Inhalation dose factor	Table E-7 Regulatory Guide 1.109
Annual air intake (m³/year) (adult)	8000
Fractional portion of the year (hours)	0.0356
H-3 (pCi/sec)	2.06 E+06
Mn-54 (pCi/sec)	2.98 E+00
Fe-55 (pCi/sec)	4.51 E+01
Co-60 (pCi/sec)	6.41 E+00
Mo-99 (pCi/sec)	8.04 E+00
I-131 (pCi/sec)	2.34 E+01
I-133 (pCi/sec)	1.80 E+02

 The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Dose.

Page 3 of 4

Unit 1	Unit 2	<u>x</u>	Reporting Period	<u> January – December 2007</u>

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP2 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 – December 31, TLD data for the second, third, and fourth quarters of 2007 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	1.41 E-03
Exposure time (hours)	312

Total Doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Dose.

Dose Received By A Hypothetical Maximum Exposed Member Of The Public Inside the Site Boundary During 2007

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from Liquid and Gaseous effluents released from NMP2 during 2007:

Exposure Pathway	Dose Type	Fisherman	
		(mRem)	
External Ground	Whole Body	2.60 E-03	
	Skin of Whole Body	3.03 E-03	
Inhalation	Whole Body	3.63 E-04	
	Maximum Organ	Thyroid: 4.73 E-04	
Direct Radiation	Whole Body	0.44	

Table 1 Exposure Pathway Annual Dose

Г

Page 4 of 4

nit 1	Unit 2 <u>X</u>	Reporting Period	<u> January – December 2007</u>
	DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR	ACTIVITIES INSIDE THE SITE BOUN	DARY
ased on	these values the total annual dose received by a hype	othetical maximum exposed mei	mber of the public is as follow
	Table 2 Annua	I Dose Summary	
	Total Annual Dose for 2007	Fisherman	
	Total Annual Dose for 2007	Fisherman (mRem)	-
	Total Annual Dose for 2007 Total Whole Body		
-		(mRem)	

Page 1 of 2

1

Uni	t 1 Unit 2X	Reporting Period	January – December 2007
	DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR	ACTIVITIES OUTSIDE THE SITE BOUN	DARY
	roduction		
site	assessment of radiation doses potentially received by the boundary was conducted for the period January through se limits.	likely most exposed member of the December 2007 for comparison	ne public located beyond the against the 40CFR190 annual
fac	e intent of 40 CFR 190 requires that the effluents of Nine Mile cilities, be considered. In this case, the effluents of NMP2, I cilities must be considered.		
	CFR190 requires the annual radiation dose received by mo ant operations, be limited to:	embers of the public in the gener	ral environment, as a result of
	• < 25 mRem wholebody		
	• < 25 mRem any organ (except thyroid)	<i>'</i> .	
1 1 	• < 75 mRem thyroid		
	s evaluation compares doses resulting from Liquid and Gas ult of the operation of the NMP2, NMP1 and JAF nuclear fac		n originating from the site as a
Do	ose Pathways		
	se pathways considered for this evaluation included dos diation from all nuclear operating facilities located on the Ni	ξ i	gaseous effluents and direct
Do	se to the most likely member of the public, outside the site b	ooundary, is received through the f	ollowing pathways:
•	Fish consumption pathway; this dose is received from plan by a member of the public.	nt radionuclides that have concer	ntrated in fish that is consumed
•	Shoreline Sediment; this dose is received as a result of c shoreline sediment, which is used as a recreational area.	in individual's exposure to plant r	adionuclides deposited in the
•	Deposition, Inhalation and Ingestion pathways resulting fi gaseous effluents released from NMP1, NMP2 and JAF op	•	received through exposure to
•	Direct Radiation pathway; radiation dose resulting from th	e operation of NMP1, NMP2 and J/	AF facilities.
<u>M</u>	ethodologies for Determining Dose for Applicab	<u>e Pathways</u>	
<u>Fisl</u>	h Consumption		
Mc en	use received as a result of fish consumption is based on th anual (NMP2 ODCM) as adapted from Regulatory Guide 1.1 vironmental fish samples taken near the site discharge poir ember of the public consumes fish taken near the site discharge	09. The dose for 2007 is calculated the for this evaluation it is assume	d from actual analysis results of
	o radionuclides were detected in fish samples collected an nole body and organs of the likely most exposed Member of		no dose was received by the
S.h.	oreline Sediment		
		adalagy in the NMP2 ODCM	tantod from Roculatory Cuida
1.1	ose received from shoreline sediment is based on the method 09. For this evaluation it is assumed that the most likely expression for recreational purposes.		

Page 2 of 2

Unit 1 Unit 2X	Reporting Period	<u> January – December 2007</u>
DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY		
Shoreline Sediment continued:		
The total dose received by the whole body and skin of the maximum exposed individual during 2007 is calculated using the following input parameters:		
Usage Factor = 67 hours per year		
 Density in grams per square meter = 40,000 		
Shore width factor = 0.3		
• Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6		
 Fractional portion of the year = 1 		
 Average Cs-137 Concentration = 0.019 pCi/g 		
Dose Pathways Resulting From Gaseous Effluents		
Dose received by the likely most exposed member of the public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP2 ODCM, NMP1 Offsite Dose Calculation Manual, and the JAF Offsite Dose Calculation Manual. These calculations consider deposition, inhalation and ingestion pathways. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAF during 2007 provide a total dose to the whole body and maximum organ dose for this pathway. Direct Radiation Pathway Dose as a result of direct gamma radiation from the site, encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion and from ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2007, the closest residence and the same location. Dose Potentially Received by the Likely Most Exposed Member of the Public Outside the Site Boundary During 2007		
Exposure Pathway	Dose Type	Dose (mRem)
Fish Consumption	Total Whole Body	No Dose
Shoreline Sediment	Total Maximum Organ Total Whole Body	No Dose 6.47 E-05
	Total Skin of Whole Body	7.55E-05
Gaseous Effluents	Total Whole Body	1.92E-02
	Total Maximum Organ	Thyroid: 9.32E-02
Direct Radiation	Total Whole Body	1.5

Based on these values the maximum total annual dose potentially received by the most likely exposed member of the public during 2007 is as follows:

- Total Whole Body: 1.52 mRem
- Total Skin of Whole Body: 1.69E-02 mRem
- Maximum Organ: Thyroid: 9.32E-02 mRem

40CFR190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAF facilities. The maximum organ dose (Thyroid: 0.093 mRem) and the maximum whole body dose (1.52 mRem) are below the 40 CFR 190 criteria of 25 mRem per calendar year to the maximum exposed organ or the whole body, and below 75 mRem per calendar year to the thyroid.