Docket No: 50-352 50-353

LIMERICK GENERATING STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

Report No. 23

1 January Through 31 December 2007

Prepared By

Teledyne Brown Engineering Environmental Services

Limerick Generating Station Sanatoga, PA 19464

April 2008

Nuclear

TS 6.9.1.7

April 30, 2008

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

> Limerick Generating Station, Units 1 and 2 Facility Operating License Nos. NPF-39 and NPF-85 NRC Docket Nos. 50-352 and 50-353

Subject: 2007 Annual Radiological Environmental Operating Report

Dear Sir:

In accordance with the requirements of Section 6.9.17 of Limerick Generating Station (LGS) Unit 1 and Unit 2 Tech. Specs. and Section 6.1 of the LGS Units 1 and 2 Offsite Dose Calculation Manual (ODCM), this letter submits the 2007 Annual Radiological Environmental Operating Report No. 23. This report provides the 2007 results for the Radiological Environmental Monitoring Program (REMP) as called for in the Offsite Dose Calculation Manual.

In assessing the data collected for the REMP, we have concluded that the operation of LGS, Units 1 and 2 had no adverse impact on the environment. No plant-produced fission or activation products, with the exception of Cs-137, were found in any pathway modeled by the REMP. Cesium-137 levels detected in sediment were consistent with levels found in previous years and were the attributable to LGS liquid releases. Results of the groundwater protection program are also included in this report. No tritium activity in well water samples was greater than the lower limit of detection of 2000 pCi/L.

There are no commitments contained in this letter.

If you have any questions, please do not hesitate to contact us.

Sincerely.

frietagh 1. Muchi (

Christopher H. Mudrick Vice President -LGS Exelon Generation Company, LLC Attachment: 2007 Annual Radiological Environmental Operating Report No. 23 cc: S. Collins, Administrator, Region I, USNRC (w/Attachment) E. DiPaolo, USNRC Senior Resident Inspector, LGS (w/Attachment) P. Bamford -Senior Project Manager-NRR, USNRC (w/Attachment) USNRC Document Control Desk, Washington, DC (w/Attachment) T. Moslak, Inspector, Region I, USNRC (w/Attachment)

LIMERICK GENERATING STATION ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT DISTRIBUTION LIST

- bcc: E. Callan GML 5-1 (w/o Attachment)
 - C. Mudrick –GML 5-1 (w/o Attachment)
 - D. DiCello GML 1-1 (w/o Attachment)

R. Kreider – SSB 2-4 (w/Attachment)

T. Basso – SSB 2-2(w/Attachment)

S. Mitten -SSB 2-2 (w/Attachment)

C. Smith – SSB 2-2 (w/Attachment)

S. Gamble – SSB 2-4 (w/o Attachment)

J. Toro- SMB 1-2 (w/Attachment)

K. Jury – Cantara (w/o Attachment)

R. DeGregorio - KSA 3N (w/o Attachment)

C. Lewis – KSA 3N (w/o Attachment)

D. Helker – KSA 3E (w/o Attachment)

R. Janati-Commonwealth of PA (w/Attachment)

D. Dyckman - PA DEP BRP Inspector – SSB 2-4 (w/Attachment)

S. Focht – ANI (w/Attachment)

David Katz - Deputy Water Commissioner Environmental Policy and Planning City of Phila. Water Dept, ARAMark Tower 5th Flr, 1101 Market St. Phila. PA 19107-2994 (w/Attachment)

Aqua Pennsylvania 762 West Lancaster Avenue Bryn Mawr, PA 19010 (w/Attachment) Andrew Fabian -Phoenixville Water Works 140 Church St Phoenixville, PA 19460 (w/Attachment)

Donald Hershey- Executive Director, American Water Works, 1309 Bridge Street, New Cumberland, PA 17070 (w/Attachment)

James Hennessey - Pottstown Water Authority 100 E. High St Pottstown, PA 19464-9525 (w/Attachment)

I. Summary and Conclusions1
 II. Introduction
III. Program Description
IV. Results and Discussion 9 A. Aquatic Environment 9 1. Surface Water 9 2. Drinking Water 9 3. Fish 10 4. Sediment 10 B. Atmospheric Environment 11 1. Airborne 11 a. Air Particulates 11 b. Airborne lodine 11 2. Terrestrial 12 a. Milk 12 b. Broad Leaf Vegetation 12 D. 10 CFR 20.2002 Permit Storage Area 13 F. Summary of Results – Inter-Laboratory Comparison Program 14
V. References

.

Table Of Contents

i

e gaar t

•

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary
Tables	
Table A-1	Radiological Environmental Monitoring Program Annual Summary for the Limerick Generating Station, 2007.
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
Tables	
Table B-1:	Location Designation and Identification System for the Limerick Generating Station.
Table B-2:	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Limerick Generating Station, 2007.
Table B-3:	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, Limerick Generating Station, 2007.
Figures	
Figure B-1:	Environmental Sampling Locations Within One Mile of the Limerick Generating Station, 2007.
Figure B-2:	Environmental Sampling Locations Between One and Five Miles from the Limerick Generating Station, 2007.
Figure B-3:	Environmental Sampling Locations Greater Than Five Miles from the Limerick Generating Station, 2007.
Appendix C	Data Tables and Figures - Primary Laboratory
<u>Tables</u>	
Table C-i.1	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-I.2	

÷

Table C-II.1	Concentrations of Total Gross Beta in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-II.2	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-II.3	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-III.1	Concentrations of Gamma Emitters in Predator and Bottom Feeder (Fish) Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 pCi/cu meter) in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-VIII.1	Concentrations of Gamma Emitters in Broad Leaf Vegetation Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table C-IX.1	Quarterly TLD Results for Limerick Generating Station, 2007.
Table C-IX.2	Mean Quarterly TLD Results for the Site Boundary, Middle and Control Locations for Limerick Generating Station, 2007.
Table C-IX.3	Summary of the Ambient Dosimetry Program for Limerick Generating Station, 2007.
Figures	
Figure C-1	Mean Monthly Total Gross Beta Concentrations in Drinking Water Samples Collected in the Vicinity of LGS, 1982 - 2007.
Figure C-2	Mean Annual Cs-137 Concentrations in Fish Samples Collected in the Vicinity of LGS, 1982 - 2007.

	·
Figure C-3	Concentrations of Cs-137 in Sediment Samples Collected in the Vicinity of LGS, 1982 - 2007.
Figure C-4	Mean Monthly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of LGS, 1982 - 2007.
Figure C-5	Mean Weekly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of LGS, 2007.
Figure C-6	Mean Quarterly Ambient Gamma Radiation Levels (TLD) in the Vicinity of LGS, 1985 - 2007.
Appendix D	Data Tables and Figures - Comparison Laboratory
Tables	
Table D-I.1	Concentrations of Total Gross Beta in Drinking Water Samples Collected in the Vicinity Of Limerick Generating Station, 2007.
Table D-I.2	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity Of Limerick Generating Station, 2007.
Table D-I.3	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table D-II.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table D-II.2	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2007.
Table D-III.1	Concentrations of I-131 by Chemical Separation and Gamma Emitters in Milk Samples Collected in the Vicinity of Limerick Generating Station, 2007.
<u>Figures</u>	
Figure D-1	Comparison of Monthly Total Gross Beta Concentrations in Drinking Water Samples Split Between ENV and TBE, 2007.
Figure D-2	Comparison of Weekly Gross Beta Concentrations in Air Particulate Samples Collected from LGS Collocated Locations 11S1 and 11S2, 2007.

•

•

Appendix E Inter-Laboratory Comparison Program

Tables

Table E-1	Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2007.
Table E-2	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2007.
Table E-3	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2007.
Table E-4	ERA Statistical Summary Proficiency Testing Program Environmental, Inc., 2007.
Table E-5	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Environmental, Inc., 2007.

Appendix F Annual Radiological Groundwater Protection Program Report (ARGPPR)

Intentionally Left Blank

٠.:

. Summary and Conclusions

In 2007 the Limerick Generating Station released to the environment through the radioactive effluent liquid and gaseous pathways approximately 49 curies of noble gas, fission and activation products and approximately 54 curies of tritium. The dose from both liquid and gaseous effluents was conservatively calculated for the Maximum Exposed Member of the Public. The results of those calculations and their comparison to the allowable limits were as follows:

	Gaseous and liq	uid radiation do:	ses to memb	ers of the put	olic at location	าร		
Effluent	Applicable	Estimated	Age	Loc	ation	% of	Limit	Unit
	Organ	Dose	Group	Distance (meters)	Direction (toward)	Applicable Limit		
Noble Gas	Gamma - Air Dose	5.25E-03	All	762	SE	2.63E-02	20	mRad
Noble Gas	Beta – Air Dose	3.10E-03	All	762	SE	7.75E-03	40	mRad
Noble Gas	Total Body (Gamma)	3.47E-03	Al	762	SE	3.47E-02	10	mrem
Noble Gas	Skin (Beta)	6.40E-03	Ali	762	SE	2.13E-02	30	mrem
lodine, Particulate & Tritium	Thyroid	1.03E-02	· Infant	762	SE	3.40E-02	30	mrem
				ļ				
Liquid	Total Body	3.82E-03	Adult	LGS Outfall		6.37E-02	6	mrem
Liquid	Liver	5.07E-03	Teen	LGS	Outfall	2.54E-02	20	mrem

The doses as a result of the radiological effluents released from Limerick were a very small percentage of the allowable limits.

This report on the Radiological Environmental Monitoring Program conducted for the Limerick Generating Station (LGS) by Exelon covers the period 1 January 2007 through 31 December 2007. During that time period, 1,124 analyses were performed on 914 samples.

Surface and drinking water samples were analyzed for concentrations of tritium and gamma emitting nuclides. Drinking water samples were also analyzed for concentrations of total gross beta. No fission or activation products were detected. Gross beta activities detected were consistent with those detected in previous years. Tritium was found at downstream surface water location 13B1at a concentration of 272 pCi/L and drinking water location 15F7 at a concentration of 189 pCi/L. Assuming the highest concentration of 272 pCi/L was present all year, the dose via the drinking water pathway was calculated at 0.0282 mrem to a child (total body), which was 0.47% of the 10 CFR 50, Appendix I dose limit.

Fish (predator and bottom feeder) and sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected.

Sediment samples collected below the discharge had elevated Cesium-137 concentrations that were the result of LGS discharges. No other Plant produced fission or activation products were found in sediment. The calculated dose to a teenager's skin and whole body was 2.34E-4 mrem and 2.00E-4 mrem,

1

News per st

respectively. This dose represents 2.09E-04% and 5.98E-06%, respectively of the 10 CFR Part 50, Appendix I dose limits.

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. Cosmogenic Be-7 was detected at levels consistent with those detected in previous years. No fission or activation products were detected.

High sensitivity I-131 analyses were performed on weekly air samples. All results were less than the minimum detectable concentration.

Cow milk samples were analyzed for concentrations of I-131 and gamma emitting nuclides. All I-131 results were below the minimum detectable concentration. Concentrations of naturally occurring K-40 were consistent with those detected in previous years. No fission or activation products were found.

Broad Leaf Vegetation samples were analyzed for gamma emitting nuclides. Concentrations of naturally occurring Be-7 and K-40 were detected. No activation or fission products were detected.

Environmental gamma radiation measurements were performed quarterly using thermoluminescent dosimeters. Levels detected were consistent with those observed in previous years.

Review of the gamma spectroscopy results from the surface water samples located at the Limerick intake (24S1) and downstream of the 10CFR20.2002 permitted storage area indicated no offsite radionuclide transport was evident.

A radiological groundwater protection program (RGPP) was established in 2006 as part of an Exelon Nuclear fleetwide assessment of potential groundwater intrusion from the operation of the Station. Well water samples were analyzed for tritium, Sr-90 and gamma emitters. Most tritium values were less than the lower limit of detection of 200 pCi/L. However, one well located near the radwaste /cooling tower blowdown line had a tritium value as high as 309 pCi/L. This activity is consistent with environmental background levels. Although no drinking water pathway exist, the dose via the drinking water pathway was calculated at 0.032 mrem to a child (total body), which was 0.53% of the 10 CFR 50, Appendix I dose limit. All results for Sr-90 and gamma emitting nuclides were less than MDC.

In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of LGS had no adverse radiological impact on the environment.

II. Introduction

The Limerick Generating Station (LGS), consisting of two 3458 MWt boiling water reactors owned and operated by Exelon Corporation, is located adjacent to the Schuylkill River in Montgomery County, Pennsylvania. Unit No. 1 went critical on 22 December 1984. Unit No. 2 went critical on 11 August 1989. The site is located in Piedmont countryside, transversed by numerous valleys containing small tributaries that feed into the Schuylkill River. On the eastern river bank elevation rises from approximately 110 to 300 feet mean sea level (MSL). On the western river bank elevation rises to approximately 50 feet MSL to the western site boundary.

A Radiological Environmental Monitoring Program (REMP) for LGS was initiated in 1971. Review of the 1971 through 1977 REMP data resulted in the modification of the program to comply with changes in the Environmental Report Operating License Stage (EROL) and the Branch Technical Position Paper (Rev. 1, 1979). The preoperational period for most media covers the periods 1 January 1982 through 21 December 1984 and was summarized in a separate report. This report covers those analyses performed by Teledyne Brown Engineering (TBE), Global Dosimetry, and Environmental Inc. (Midwest Labs) on samples collected during the period 1 January 2007 through 31 December 2007.

On 6 July 1996 a 10CFR20.2002 permit was issued to Limerick for storage of slightly contaminated soils, sediments and sludges obtained from the holding pond, cooling tower and spray pond systems. These materials will decay to background while in storage. Final disposition will be determined at Station decommissioning.

A. Objective of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

1. Identifying significant exposure pathways.

3

- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.
- III. Program Description
 - A. Sample Collection

Samples for the LGS REMP were collected for Exelon Nuclear by Normandeau Associates, Inc.. This section describes the general collection methods used by NAI to obtain environmental samples for the LGS REMP in 2007. Sample locations and descriptions can be found in Tables B–1 and B–2, and Figures B–1 through B–3, Appendix B. The collection procedures used by NAI are listed in Table B-3.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, drinking water, fish, and sediment. Two-gallon water samples were collected monthly from continuous samplers located at two surface water locations (13B1 and 24S1) and four drinking water locations (15F4, 15F7, 16C2, and 28F3). Control locations were 24S1, and 28F3. All samples were collected in new unused plastic bottles, which were rinsed at least twice with source water prior to collection. Fish samples comprising the flesh of two groups, catfish/bullhead (bottom feeder) and sunfish (predator), were collected semiannually at two locations, 16C5 and 29C1 (control). Sediment samples composed of recently deposited substrate were collected at three locations semiannually, 16B2, 16C4 and 33A2 (control).

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, and milk. Airborne iodine and particulate samples were collected and analyzed weekly at five locations (10S3, 11S1, 13C1, 14S1, and 22G1). The control location was 22G1. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The filters were replaced weekly and sent to the laboratory for analysis.

Milk samples were collected biweekly at five locations (10F4, 18E1, 19B1, 23F1, and 25C1) from April through November, and monthly from December through March. Two additional locations (25E1 and 36E1) were sampled guarterly. Locations 36E1 and 23F1 were controls. All

samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Broad Leaf Vegetation were collected monthly at three locations (11S3, 13S3 and 31G1). The control location was 31G1. Five different kinds of vegetation samples were collected and placed in new unused plastic bags, and sent to the laboratory for analysis.

Ambient Gamma Radiation

Direct radiation measurements were made using Panasonic 814 calcium sulfate (CaSO₄) thermoluminescent dosimeters (TLD). The TLD locations were placed on and around the LGS site as follows:

A <u>site boundary ring</u> consisting of 16 locations (36S2, 3S1, 5S1, 7S1, 10S3, 11S1, 13S2, 14S1, 18S2, 21S2, 23S2, 25S2, 26S3, 29S1, 31S1 and 34S2) near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off–site doses) from LGS release.

An intermediate distance ring consisting of 16 locations (36D1, 2E1, 4E1, 7E1, 10E1, 10F3, 13E1, 16F1, 19D1, 20F1, 24D1, 25D1, 28D2, 29E1, 31D2, and 34E1) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

The balance of eight locations (5H1, 6C1, 9C1, 13C1, 15D1, 17B1, 20D1 and 31D1) representing control and special interests areas such as population centers, schools, etc.

The specific TLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- Site meteorological data taking into account distance and elevation for each of the sixteen-22 1/2 degree sectors around the site, where estimated annual dose from LGS, if any, would be most significant;
- 3. On hills free from local obstructions and within sight of the vents (where practical);
- 4. And near the closest dwelling to the vents in the prevailing downwind direction.

Two TLDs – each comprised of three CaSO₄ thermoluminescent phosphors enclosed in plastic – were placed at each location in a PVC conduit located approximately three feet above ground level. The TLDs were exchanged quarterly and sent to Global for analysis.

10CFR20.2002 Permit Storage Area

The results of the surface water sampling program were used to determine if radioactive nuclide transport from the storage area into the Schuylkill River had occurred.

B. Sample Analysis

This section describes the general analytical methodologies used by TBE and Midwest Labs to analyze the environmental samples for radioactivity for the LGS REMP in 2007. The analytical procedures used by the laboratories are listed in Table B-3.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in drinking water, and air particulates.
- 2. Concentrations of gamma emitters in surface and drinking water, air particulates, milk, fish, broad leaf vegetation and sediment.
- 3. Concentrations of tritium in surface and drinking water.
- 4. Concentrations of I-131 in air and milk.
- 5. Ambient gamma radiation levels at various site environs.
- C. Data Interpretation

The radiological and direct radiation data collected prior to LGS becoming operational was used as a baseline with which these operational data were compared. For the purpose of this report, LGS was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required LGS detection limits for environmental sample analysis.

The minimum detectable concentration (MDC) was defined as above with the exception that the measurement is an after the fact estimate of the presence of activity.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity affecting a negative number. An MDC was reported in all cases where positive activity was not detected.

If no positive activity was detected, then gamma spectroscopy MDC results for each type of sample were grouped as follows:

For surface and drinking water twelve nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For fish nine nuclides, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, I-131, Cs-134, and Cs-137 were reported.

For sediment and broad leaf vegetation eight nuclides, Be-7, K-40, Mn-54, Co-58, Co-60, I-131, Cs-134, and Cs-137 were reported.

For air particulate six nuclides, Be-7, Mn-54, Co-58, Co-60, Cs-134, and Cs-137 were reported.

For milk five nuclides, K-40, Cs-134, Cs-137, Ba-140, and La-140 were reported.

Means and standard deviations of positive results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2007 the LGS REMP had a sample recovery rate in excess of 99%. Exceptions are listed below:

- 1. Air particulate sample from location 22G1 for the week 05/29/07 06/04/07 was not available due to incorrect placement of the air particulate filter in the air sampler (IR708393).
- 2. Air iodine sample from location 10S3 for the week 09/24/07 10/01/07 was not shipped to the primary laboratory due to a sample collection error (IR698183).

- 3. Grab samples were taken for the composite drinking water sampler at location 16C2 during the following periods due to equipment malfunction or insufficient sample collected: 05/15 - 5/21/07, 05/29 - 06/04/07, 09/11 - 09/17/07 and 12/04 - 12/10/07.
- 4. A grab sample was taken for the composite drinking water sampler at location 28F3 from 12/26/06 01/02/07 due to insufficient sample collection.
- 5. A grab sample was taken for the composite drinking water sampler at location 15F4 from 10/30 11/05/07 due to sample collection error.
- Grab samples were taken for the composite surface water sampler at location 13B1 during the following periods due to equipment malfunction, line freezing or low water levels: 01/08 – 01/15/07, 09/11 – 09/17/07, and 10/15 – 10/30/07.
- Grab samples were taken for the composite surface water sampler at location 24S1 during the following periods due to equipment malfunction or line freezing: 02/06 – 02/20/07.
- The TLD holder for location 10S3 was destroyed due to a vehicle accident on 02/18/07. The TLDs were found exposed to the elements; however, they were read by the TLD vendor, Global Dosimetry (IR663786).
- 9. TLD data from locations 18S2, 25S2 and 29S1 was not complete for the first quarter 2007 due to vendor inability to read all dosimeters. Each TLD location has two TLDs comprising three dosimeters each. In each case one of the TLDs was not readable by the vendor. Global Dosimetry suspected that the TLDs were damaged by moisture. Average ambient radiation level for these locations was determined by averaging the three remaining good dosimeters (IR663752).

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent recurrence. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

Starting in 2007, the mean and two standard deviation values are calculated using the positive values only.

IV. Results and Discussion

A. Aquatic Environment

1. Surface Water

Samples were taken from a continuous sampler at two locations (13B1 and 24S1) on a monthly schedule. Of these locations only 13B1 located downstream, could be affected by Limerick's effluent releases. The following analyses were performed.

Tritium

Monthly samples from all locations were composited quarterly and analyzed for tritium activity (Table C–I.1, Appendix C). Tritium activity was detected in one sample at a concentration of 272 pCi/L. Although not a drinking water pathway, the dose via the drinking water pathway would result in a calculated dose to a child (total body) of 0.028 mrem, which was 0.47% of the 10 CFR 50, Appendix I dose limit.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–I.2, Appendix C). All nuclides were less than the MDC.

2. Drinking Water

Monthly samples were collected from continuous water samplers at four locations (15F4, 15F7, 16C2, and 28F3). Three locations (15F4, 15F7, and 16C2) could be affected by Limerick's effluent releases. The following analyses were performed:

Gross Beta

Samples from all locations were analyzed for concentrations of total gross beta (Tables C–II.1, Appendix C). The values ranged from 2.2 to 8.6 pCi/L. Concentrations detected were consistent with those detected in previous years (Figure C–1, Appendix C).

Tritium

Monthly samples from all locations were composited quarterly and analyzed for tritium activity (Table C–II.2, Appendix C). Tritium activity was detected in one sample at a concentration of 189 pCi/L. The dose via the drinking water pathway was calculated at 0.020 mrem to a child (total body), which was 0.33% of the 10 CFR 50, Appendix I dose limit.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–II.3, Appendix C). All nuclides were less than the MDC.

3. Fish

Fish samples comprised of catfish/bullhead (bottom feeder) and sunfish (predator) were collected at two locations (16C5 and 29C1) in the spring and fall season. Location 16C5 could be affected by Limerick's effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C–III.1, Appendix C). Naturally occurring K-40 was found at all stations and ranged from 2,330 to 4,300 pCi/kg wet and was consistent with levels detected in previous years. No other gamma emitting nuclides were found. Historical levels of Cs-137 are shown in Figure C–2, Appendix C.

4. Sediment

Aquatic sediment samples were collected at three locations (16B2, 16C4 and 33A2) semiannually. Of these locations two 16B2 and 16C4 located downstream, could be affected by Limerick's effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from all three locations were analyzed for gamma emitting nuclides (Table C–IV.1, Appendix C). Nuclides detected were naturally occurring Be-7, K-40 and the fission product Cs-137.

Beryllium-7 was found at locations 16B2 and 16C4 and ranged from 1540 to 6320 pCi/kg dry, respectively. Potassium-40 was found at 16B2, 16C4 and 33A2 and ranged from 11,000 to 12,500, 14,000 – 14,200 and 11,700 to 11,800 pCi/kg dry, respectively. The fission product Cs-137 was found at location 16B2 at 89 pCi/kg dry. The Cs-137 activity found is attributed to LGS radioactive effluent releases. The dose to a teenager's skin and whole body was conservatively calculated at 2.34E-4 mrem and 2.00E-4 mrem, respectively. These doses represent 2.09E-4% and 5.98E-4% of the Appendix I to 10 CFR Part 50 dose limits, respectively. The activity detected was consistent with those detected in the pre– operational years. (Figure C–4, Appendix C). No other Limerick fission or activation products were found.

- B. Atmospheric Environment
 - 1. Airborne
 - a. Air Particulates

Continuous air particulate samples were collected from five locations on a weekly basis. The five locations were separated into three groups: Group I represents locations within the LGS site boundary (10S3, 11S1, and 14S1), Group II represents the location at an intermediate distance from the LGS site (13C1), and Group III represents the control location at a remote distance from LGS (22G1). The following analyses were performed:

Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C–V.1 and C–V.2, Appendix C).

Detectable gross beta activity was observed at all locations. Comparison of results among the three groups aid in determining the effects, if any, resulting from the operation of LGS. The results from the On-Site locations (Group I) ranged from 6 to 31 E–3 pCi/m³ with a mean of 16 E–3 pCi/m³. The results from the Intermediate Distance location (Group II) ranged from <8 to 27 E–3 pCi/m³ with a mean of 16 E–3 pCi/m³. The results from the Distant locations (Group III) ranged from 7 to 25 E–3 pCi/m³ with a mean of 17 E–3 pCi/m³. Comparison of the 2007 air particulate data with previous years data indicate no effects from the operation of LGS (Figure C–4, Appendix C). In addition a comparison of the weekly mean values for 2007 indicate no notable differences among the three groups (Figure C–5, Appendix C).

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–V.3, Appendix C). Naturally occurring Be-7 due to cosmic ray activity was detected in all samples. These values ranged from 53 to 136 E-3 pCi/m³. All other nuclides were less than the MDC.

b. Airborne lodine

Continuous air samples were collected from five locations (10S3, 11S1, 14S1, 13C1, and 22G1) and analyzed weekly for I-131 (Table C–VI.1, Appendix C). All results were less than the MDC.

2. Terrestrial

a. Milk

Samples were collected from five locations (10F4, 18E1, 19B1, 23F1, and 25C1) biweekly April through November and monthly December through March. Samples from two additional locations (36E1 and 25E1) were taken quarterly. The following analyses were performed:

lodine-131

Milk samples from all locations were analyzed for concentrations of I-131 (Table C–VII.1, Appendix C). All results were less than the MDC.

Gamma Spectrometry

Each milk sample was analyzed for concentrations of gamma emitting nuclides (Table C–VII.2, Appendix C).

Naturally occurring K-40 activity was found in all samples and ranged from 1,070 to 1,630 pCi/L. All other nuclides were less than the MDC.

b. Broad Leaf Vegetation

Three types of broad leaf vegetation samples were collected from three locations (11S3, 13S3 and 31G1) monthly from June through September. The following analysis was performed:

Gamma Spectrometry

Each broad leaf vegetation sample was analyzed for concentrations of gamma emitting nuclides (Table C-VIII.1, Appendix C).

Cosmogenic Be-7 was found in 27 of 32 samples and ranged from 111 to 2550 pCi/kg wet. Naturally occurring K-40 was found in all samples and ranged from 2020 to 7,160 pCi/kg wet. All other nuclides were less than the MDC.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing Panasonic 814 (CaSO₄) thermoluminescent dosimeters. Forty TLD locations were established around the site. Results of TLD measurements are listed in Tables C–IX.1 to C–IX.3, Appendix C.

Most TLD measurements were below 10 mR/standard month, with a range of 5.5 to 12.8 mR/standard month. A comparison of the Site Boundary and Intermediate Distance data to the Control Location data,

indicate that the ambient gamma radiation levels from the Control Location 5H1 were consistently higher. The historical ambient gamma radiation data from Location 5H1 were plotted along with similar data from the Site, Intermediate Distance and Outer Ring Locations (Figure C–6, Appendix C). Location 5H1 has a historical high bias, but tracked with the data from all three groups. This bias is most likely due to radon emanating from the ground.

D. 10 CFR 20.2002 Permit Storage Area

The results of the surface water aquatic monitoring program from Location 24S1 were used to determine if radioactivity from the permit storage area had made it to the Schuylkill River. The data obtained from the gamma analysis program did not detect any migration of radioactivity from the permit storage area.

E. Land Use Survey

A Land Use Survey conducted in August 2007 around Limerick Generating Station (LGS) was performed by Normandeau Associates, Inc. for Exelon Nuclear to comply with Bases 3.3.2 of the Limerick's Offsite Dose Calculation Manual. The purpose of the survey was to document the nearest resident, milk producing animal and garden of greater than 500 ft² in each of the sixteen 22 ½ degree sectors around the site. Two new gardens are included in the 2007 survey. The garden in the E sector is further away than 2006. The garden in the WNW sector is closer than 2006. The distance and direction of all locations from the LGS reactor buildings were positioned using Global Positioning System (GPS) technology. There were no changes required to the LGS REMP, as a result of this survey. The results of this survey are summarized below.

	Distance in miles from the LGS Reactor Buildings							
Sector	Residence Miles	Garden Miles	Milk Farm Miles					
1 N	0.6	1.8	4.7					
2 NNE	0.5	1.8	-					
3 NE	0.7	1.6	-					
4 ENE	0.7	0.7	-					
5 E	0.6	1.3	-					
6 ESE	0.5	0.3	-					
7 SE	0.7	0.2	-					
8 SSE	1.0	1.1	-					
9 S	1.0	1.2	4.2					
10 SSW	0.8	1.0	2.0					
11 SW	1.0	0.6	-					
12 WSW	0.6	2.3	2.7					
13 W	0.7	0.8	2.8					
14 WNW	0.7	0.7	-					
15 NW	0.7	1.6	-					
16 NNW	0.7	1.3	-					

F. Summary of Results – Inter-laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices for 28 analytes (Appendix E). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's MAPEP, were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of TBE's result and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is $\pm 20\%$ of the reference value. Performance is acceptable with warning when a mean result falls in the range from $\pm 20\%$ to $\pm 30\%$ of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the primary laboratory, 17 out of 19 analytes met the specified acceptance criteria. Two samples did not meet the specified acceptance criteria for the following reasons:

 Teledyne Brown Engineering's Analytics March 2007 I-131 in charcoal result of 34.7 pCi was lower than the known value of 71.3, resulting in a found to known ratio of 0.49. A new technician counted the charcoal cartridge on the back rather than the face side. Due to decay of the I-131, recounting could not be performed. Counting the 2nd quarter Analytics charcoal cartridge on the face

14

and the back resulted in approximately 220% more activity on the face of the cartridge. This indicates that we would have had acceptable results (ratio approximately 1.07) if the cartridge had been counted on the face side.

2. Teledyne Brown Engineering's ERA July 2007 Cs-134 result of 57.6 pCi/L exceeded the lower acceptance limit of 60.2 pCi/L. The high activity of the sample resulted in the lower acceptance limit of 8.66, although the ratio of found to known was 83.6%, which is considered acceptable by TBE.

For the secondary laboratory, 18 out of 19 analytes met the specified acceptance criteria. One sample did not meet the specified acceptance criteria for the following reasons:

1. Environmental Inc.'s ERA March 2007 air particulate Cs-137 result of 345.3 pCi/L exceeded the upper control limit of 336 pCi/L. The reported result was calculated using composite filter geometry rather than the single filter geometry. The recalculated result of 305.8 pCi/filter fell within the acceptance limits.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

- V. References
 - 1. Environmental Report Operating License Stage, Limerick Generating Station, Units 1 and 2, Volumes 1–5 Philadelphia Electric Company.
 - 2. Branch Technical Position Paper, Regulatory Guide 4.8, Revision 1, November 1979.
 - 3. Pre-operational Radiological Environmental Monitoring Program Report, Limerick Generating Station Units 1 and 2, 1 January 1982 through 21 December 1984, Teledyne Isotopes and Radiation Management Corporation.

Intentionally Left Blank

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

	ity: LIMERICK GEN ity: MONTGOMER		ION		DOCKET NUMBER: REPORTING PERIOD:		50-352 & 50-353 2007	
MEDIUM OR PATHWAY SAMPLED (UNIT OF	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION N MEAN (F) RANGE	WITH HIGHEST ANNUAL MEAN STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED
MEASUREMENT)			(LLD)					MEASUREMENTS
SURFACE WATER (PCI/LITER)	H-3	. 8	200	272 (1/4) (272)	<lld< td=""><td>272 (1/4) (272)</td><td>13B1 INDICATOR VINCENT DAM</td><td>0</td></lld<>	272 (1/4) (272)	13B1 INDICATOR VINCENT DAM	0
	GAMMA	24				· · ·		
	MN-54		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-58		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
• •	FE-59		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td>•</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>•</td><td>0</td></lld<>	-	•	0
	NB-95		15	<lld< td=""><td><lld< td=""><td>•</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0
	ZR-95		30	<lld< td=""><td><lld< td=""><td>•</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
	I-131		15	<lld< td=""><td><lld< td=""><td>-</td><td>- -</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>- -</td><td>0</td></lld<>	-	- -	0
	CS-134		15	<lld< td=""><td><lld< td=""><td>•</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0
	CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td>•</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>•</td><td>0</td></lld<>	-	•	0
	LA-140		. 15	<lld< td=""><td><lld< td=""><td>•</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LIMERICK GENERATING STATION, 2007

.

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

	ility: LIMERICK GEN ility: MONTGOMER		ION	INDICATOR	DOCKET NU REPORTING CONTROL	PERIOD:	50-352 & 50-353 2007 WITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F)	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
DRINKING WATER (PCI/LITER)	GR-B	48	4	4.7 (31/36) (2.2/8.6)	4.3 (9/12) (2.3/7.0)	5.1 (11/12) (2.8/8.6)	15F4 INDICATOR PHILADELPHIA SUBURBAN WATI 8.62 MILES SE OF SITE	0 ER COMPANY
	H-3	16	200	189 (1/12) (189)	<lld< td=""><td>189 (1/4) (189)</td><td>15F7 INDICATOR PHOENIXVILLE WATER WORKS 6.33 MILES SSE OF SITE</td><td>0</td></lld<>	189 (1/4) (189)	15F7 INDICATOR PHOENIXVILLE WATER WORKS 6.33 MILES SSE OF SITE	0
	GAMMA MN-54	48	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		15	<lld< td=""><td><lld.< td=""><td>-</td><td>-</td><td>0</td></lld.<></td></lld<>	<lld.< td=""><td>-</td><td>-</td><td>0</td></lld.<>	-	-	0
	FE-59		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>. 0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>. 0</td></lld<>	-	-	. 0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	NB-95		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZR-95		30	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	I-131		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-140		15	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LIMERICK GENERATING STATION, 2007

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

	: MONIGOMERY	COUNTY, PA	ION		DOCKET NUMBER: 50-352 & SREPORTING PERIOD: 2007			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION N MEAN (F) RANGE	WITH HIGHEST ANNUAL MEAN STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
FI-BOTTOM FEEDER (PCI/KG WET)	GAMMA К-40	4	N/A	3045 (2/2) (2820/3270)	2775 (2/2) (2750/2800)	3045 (2/2) (2820/3270)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	MN-54		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>. 0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>. 0</td></lld<>	-	-	. 0
:	FE-59		260	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZN-65		260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
· · ·	I-131		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		100	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		100	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>. 0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>. 0</td></lld<>	-	-	. 0
FI-PREDATOR (PCI/KG WET)	GAMMA K-40	4	N/A	3120 (2/2) (2920/3320)	3000 (2/2) (2860/3140)	3120 (2/2) (2920/3320)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	MN-54		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-58		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>. 0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>. 0</td></lld<>	-		. 0
	FE-59		260	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LIMERICK GENERATING STATION, 2007

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

Name of Facility: LIMERICK GENERATING STATION Location of Facility: MONTGOMERY COUNTY, PA							50-352 & 50-353 2007 /ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION . MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	CO-60		130	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	ZN-65		260	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	I-131		N/A	<lld< td=""><td><lld< td=""><td>-</td><td>• ·</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>• ·</td><td>0</td></lld<>	-	• ·	0
	CS-134		100	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		100	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
SEDIMENT (PCI/KG DRY)	GAMMA BE-7	6	NA	3930 (2/4) (1540/6320)	<lld< td=""><td>6320 (1/2) (6320/6320)</td><td>16C4 INDICATOR VINCENT DAM 2.18 MILES SSE OF SITE</td><td>0</td></lld<>	6320 (1/2) (6320/6320)	16C4 INDICATOR VINCENT DAM 2.18 MILES SSE OF SITE	0
	K-40		NA	12925 (4/4) (11000/14200)	11750 (2/2) (11700/11800)	14100 (2/2) (14000/14200)	16C4 INDICATOR VINCENT DAM 2.18 MILES SSE OF SITE	0
	MN-54		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
· ·	CO-58		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		NA	<lld< td=""><td><llð< td=""><td>-</td><td>· .</td><td>0</td></llð<></td></lld<>	<llð< td=""><td>-</td><td>· .</td><td>0</td></llð<>	-	· .	0
	I-131		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		150	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		180	89 (1/4) (89)	<lld< td=""><td>89 (1/2) (89)</td><td>16B2 INDICATOR LINFIELD BRIDGE 1.35 MILES SSE OF SITE</td><td>0</td></lld<>	89 (1/2) (89)	16B2 INDICATOR LINFIELD BRIDGE 1.35 MILES SSE OF SITE	0

A - 4

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LIMERICK GENERATING STATION, 2007

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

EDACTION OF DETECTADE & MEACHDEMENTS AT OBSCIERED LOCATIONS IS INDICATED IN DADENTHESES (S)

	ity: LIMERICK GENERATING STATION ity: MONTGOMERY COUNTY, PA			INDICATOR LOCATIONS	DOCKET NUMBER: 50-352 & 50-353 REPORTING PERIOD: 2007 CONTROL LOCATION WITH HIGHEST ANNUA LOCATION		2007	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F)	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B GAMMA	259 20	10	16 (207/208) (6/31)	17 (51/51) (7/25)	17 (51/51) (7/25)	22G1 CONTROL MANOR SUBSTATION 17.73 MILES SW OF SITE	. 0
	BE-7	20	NA	82.2 (16/16) (53.4/136)	90.3 (4/4) (65.6/130)	97.1 (4/4) (65.6/136)	13C1 INDICATOR KING ROAD 2.84 MILES SE OF SITE	0
	MN-54		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-60		· NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		10	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		10	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
AIR IODINE (E-3 PCI/CU.METER)	GAMMA I-131	259	70	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>· 0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>· 0</td></lld<>	-		· 0
MILK (PCI/LITER)	I-131 (LOW LVL)	118	1	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
3 - -	GAMMA K-40	118	NA	1288 (92/92) (1120/1520)	1254 (26/26) (1070/1630)	1322 (22/22) (1220/1520)	19B1 INDICATOR 1.95 MILES SSW OF SITE	0

TABLE A-1 RÁDIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LIMERICK GENERATING STATION, 2007

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

A - 5

Name of Facility: LIMERICK GENERATING STATION Location of Facility: MONTGOMERY COUNTY, PA					DOCKET NUMBER: REPORTING PERIOD:		50-352 & 50-353 2007	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION MEAN (F) RANGE	WITH HIGHEST ANNUAL MEAN STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT
	CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	BA-140		60	<lld< td=""><td><lld< td=""><td>•</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td>-</td><td>0</td></lld<>	•	-	0
	LA-140		15	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
BROADLEAF VEGETAT (PCI/KG WET)	ION GAMMA BE-7	32	NA	412.8 (16/20) (111/1110)	606.9 (11/12) (171/2550)	606.9 (11/12) (171/2550)	31G1 CONTROL	0
	K-40		NA	4694 (20/20) (2020/6780)	5274.2 (12/12) (3100/7160)	5274.2 (12/12) (3100/7160)	31G1 CONTROL 13.6 MILES NW	0
	MN-54		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CO-58		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		NA	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	I-131		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-134		60	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
	CS-137		80	<lld< td=""><td><lld< td=""><td>-</td><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>-</td><td>0</td></lld<>	-	-	0
DIRECT RADIATION (MREM/STD. MTH.)	TLD-QUARTERLY	Y 160	NA	7.3 (156/156) (5.2/12)	8.8 (4/4) (8.4/9.5)	11.2 (4/4) (10.6/12)	13S2 INDICATOR 500 KV SUBSTATION 0.41 MILES SE	0

.

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LIMERICK GENERATING STATION, 2007

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

- TABLE B-1:
 Location Designation and Identification System for the Limerick Generating

 Station
 Station
- <u>XXYZ</u> General code for identification of locations, where:
- Angular Sector of Sampling Location. The compass is divided into 36 sectors of 10 degrees each with center at Limerick's Units 1 and 2 off-gas vents. Sector 36 is centered due North, and others are numbered in a clockwise direction.
- Y Radial Zone of Sampling Location (in this report, the radial distance from the Limerick vent for all regional stations).
 - S : on-site location
 - A : 0-1 mile off-site

E: 4-5 miles off-site

F : 5-10 miles off-site G : 10-20 miles off-site

- B : 1-2 miles off-site
- C: 2-3 miles off-site
- D: 3-4 miles off-site
- H: 20-100 miles off-site
- Z Station's Numerical Designation within sector and zone, using 1, 2, 3... in each sector and zone.

ocation	Location Description	Distance & Direction From Site		
	Surface Water			
3B1	Vincent Dam (indicator)	1.75 miles SE		
IS1	Limerick Intake (control)	0.20 miles SW		
	Drinking (Potable) Water			
5F4	Philadelphia Suburban Water Company (indicator)			
iF7	Phoenixville Water Works (indicator)	6.33 miles SSE		
2 3	Citizens Home Water Company (indicator) Pottstown Water Authority (control)	2.66 miles SSE 5.84 miles WNW		
	Milk - bi-weekly / monthly			
-4		6.60 miles ESE		
E1		4.21 miles S		
B1		1.95 miles SSW		
F1	Control	5.02 miles SW		
51		2.69 miles WSW		
	<u> Milk - quartedy</u>	. ·		
1		4.27 miles WSW		
1	Control	4.70 miles N		
	Air Particulates / Air Iodine			
S3	Keen Road	0.50 miles E		
S1	LGS Information Center	0.38 miles ESE		
52	LGS Information Center	0.38 miles ESE		
1	King Road	2.84 miles SE		
1	Longview Road	0.63 miles SSE		
1	Manor Substation (control)	17.73 miles SW		
F	lish			
C5	Vincent Pool (indicator)	Downstream of Discharge		
C1	Pottstown Vicinity (control)	Upstream of Intake		
	Sediment			
2	Linfield Bridge (indicator)	1.35 miles SSE		
4	Vincent Dam (indicator)	2.18 miles SSE		
2	Upstream of Intake (control)	0.84 miles NNW		
E	Proad Leaf Vegetation			
ł	LGS Information Center	0.35 miles ESE		
53 53	LGS 500 KV Yard	0.24 miles SE		
,				

TABLE B-2: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Limerick Generating Station, 2007

÷

TABLE B-2: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Limerick Generating Station, 2007

ocation	Location Description	Distance & Direction From Site
	ronmental Dosimetry - TLD	
ite Boundary		
6S2	Evergreen & Sanatoga Road	0.60 miles N
S1	Sanatoga Road	0.44 miles NNE
S1	Possum Hollow Road	0.45 miles NE
51	LGS Training Center	0.59 miles ENE
083	Keen Road	0.50 miles E
1S1	LGS Information Center	0.38 miles ESE
382	500 KV Substation	0.41 miles SE
4S1	Longview Road	0.63 miles SSE
3S2	Rail Line along Longview Road	0.26 miles S
1S2	Near Intake Building	0.19 miles SSW
382	Transmission Tower	0.53 miles SW
552	Sector Site Boundary	0.46 miles WSW
6S3	Met. Tower #2	0.40 miles W
IS1	Sector Site Boundary	0.55 miles WNW
S1	Sector Site Boundary	0.26 miles NW
2	Met. Tower #1	0.58 miles NNW
mediate Di	stance	
01	Siren Tower No. 147	3.51 miles N
1	Laughing Waters GSC	4.76 miles NNE
1	Neiffer Road	4.78 miles NE
1	Pheasant Road	4.26 miles ENE
1	Royersford Road	3.94 miles E
-3	Trappe Substation	5.58 miles ESE
-3 E1	Vaughn Substation	4.31 miles SE
EI F1	Pikeland Substation	5.04 miles SSE
-1 D1	Snowden Substation	3.49 miles SSE
	Sheeder Substation	5.24 miles SSW
F1	Porters Mill Substation	3.97 miles SW
D1		3.99 miles WSW
D1	Hoffecker & Keim Streets W. Cedarville Road	3.89 miles WSW 3.83 miles W
D2		4.95 miles WNW
E1 D2	Prince Street	3.87 miles NW
52 E1	Poplar Substation Varnell Road	4.59 miles NNW
ntrol and Spe	acial Interest	
11	Birch Substation (control)	24.76 miles NE
:1	Pottstown Landing Field	2.14 miles NE
1	Reed Road	2.15 miles E
, C1	King Road	2.84 miles SE
D1	Spring City Substation	3.20 miles SE
31	Linfield Substation	1.60 miles S
	Ellis Woods Road	3.06 miles SSW
D1		
01	Lincoln Substation	3.00 miles WNW

TABLE B-3: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Limerick Generating Station, 2007

-الملغ الا المراجع

~

Sample <u>Medium</u>	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite from a continuous water compositor.	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Surface Water	Tritium	Quarterly composite from a continuous water compositor.	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	500 ml	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation Env. Inc., T-02 Determination of tritium in water (direct method)
Drinking Water	Gross Beta	Monthly composite from a continuous water compositor.	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	2 gallon	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices Env. Inc., W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue) Env. Inc., W(SS)-02 Determination of gross alpha and/or gross beta in water (suspended solids)
Drinking Water	Gamma Spectroscopy	Monthly composite from a continuous water compositor.	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Drinking Water	Tritium	Quarterly composite from a continuous water compositor.	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	500 ml	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation Env. Inc., T-02 Determination of tritium in water (direct method)
Fish	Gamma Spectroscopy	Semi-annual samples collected via electroshocking or other techniques	RMC-ER6 Collection of fish samples for radiological analysis (Limerick Generating Station)	1000 grams (wet)	TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Sediment	Gamma Spectroscopy	Semi-annual grab samples	RMC-ER7 Collection of sediment samples for radiological analysis (Limerick Generating Station)	500 grams (dry)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Particulates	Gross Beta	One-week composite of continuous air sampling through glass fiber filter paper	RMC-ER8 Collection of air particulate and air iodine samples for radiological analysis (Limerick Generating Station)	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters

B - 4

TABLE B-3:	Radiological Environmental Monitoring Progr	ram – Summary of Sample Collection and Analytical Methods, Limerick Generating Station, 2	007
1			
	·		

	Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
3	Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2023 Compositing of samples Env. Inc., AP-03 Procedure for compositing air particulate filters for gamma spectroscopic analysis	13 filters (approximately 3600 cubic meters)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
	Air Iodine	Gamma Spectroscopy	One-week composite of continuous air sampling through charcoal filter	RMC-ER8 Collection of air particulate and air iodine samples for radiological analysis (Limerick Generating Station)	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method)
	Milk	1-131	Bi-weekly grab sample when cows are on pasture. Monthly all other times	RMC-ER10 Collection of milk samples for radiological analysis (Limerick Generating Station)	2 gallon	TBE, TBE-2012 Radioiodine in various matrices Env. Inc., I-131-01 Determination of I-131 in milk by anic exchange
	Milk	Gamma Spectroscopy	Bi-weekly grab sample when cows are on pasture. Monthly all other times	RMC-ER10 Collection of milk samples for radiological analysis (Limerick Generating Station)	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
	TLD	Thermoluminescence Dosimetry	Quarterly TLDs comprised of two Panasonic 814 (containing 3 each CaSO ₄ elements)	RMC-ER9 Collection of TLD samples for radiological analysis (Limerick Generating Station)	2 dosimeters	Global Dosimetry

-

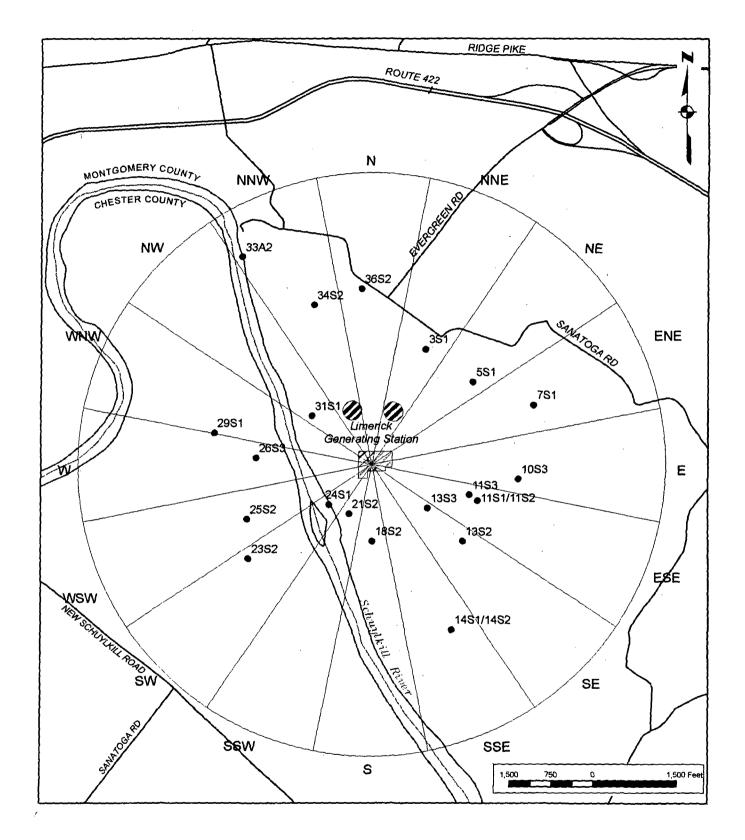
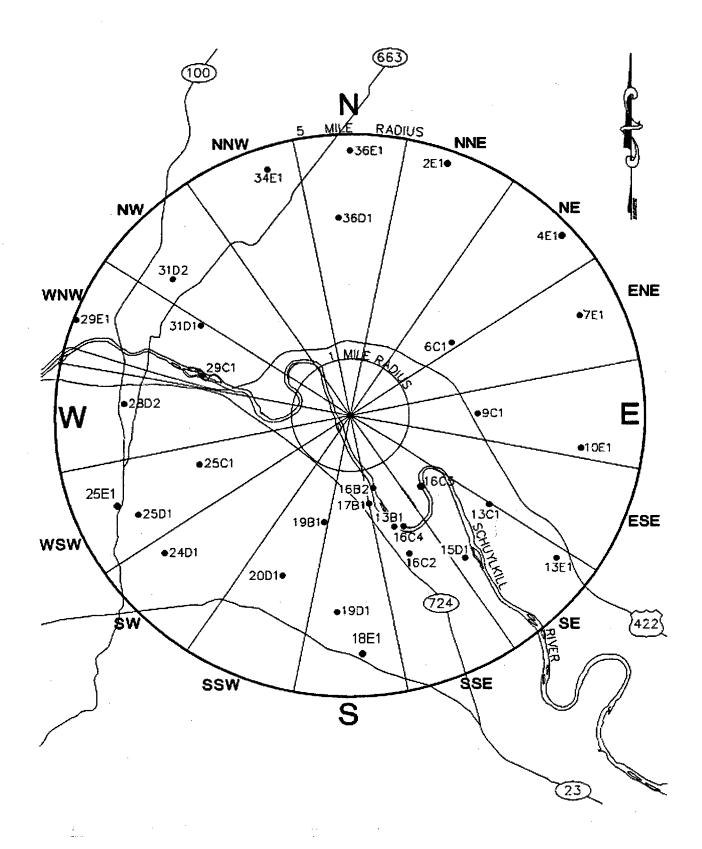



Figure B-1 Environmental Sampling Locations Within One Mile of the Limerick Generating Station, 2007

1

Figure B-2 Environmental Sampling Locations Between One and Five Miles from the Limerick Generating Station, 2007

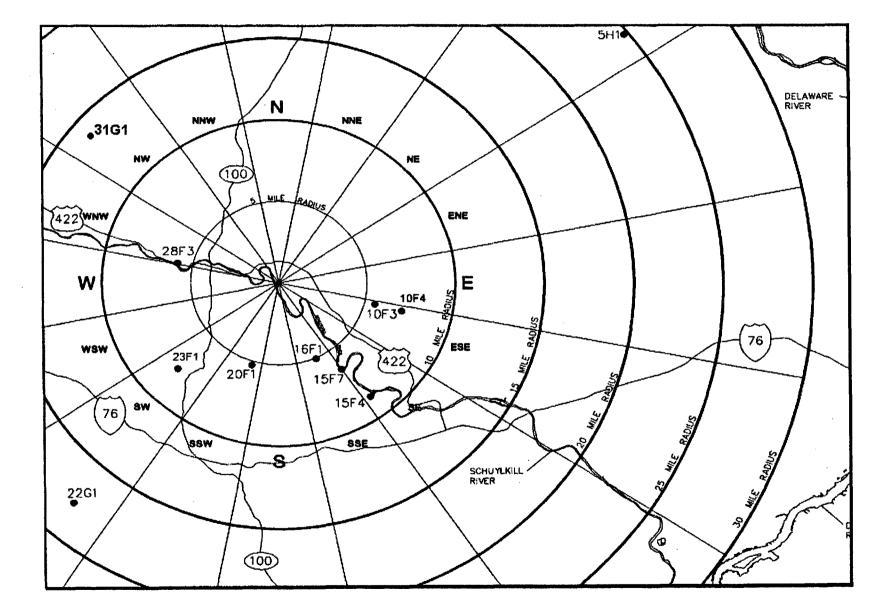


Figure B-3 Environmental Sampling Locations Greater than Five Miles from the Limerick Generating Station, 2007

B - 8

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

TABLE C-I.1CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED
IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

	LLEC	TION DD		13B1	_24S1		
01/02/07	-	04/02/07	<	171	< 168		
04/02/07	-	07/02/07	<	163	< 162		
08/17/07	-	10/01/07		272 ± 122	< 177		
10/30/07	-	12/31/07	<	178	< 180	,	
MEAN				272 ± 0	-		

с

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140
13B1	01/02/07 - 01/30/07	< 4	< 5	< 9	< 4	< 11	< 5	< 8	< 5	< 6	< 5	< 18	< 6
	01/30/07 - 02/27/07	< 7	< 6	< 13	< 7	< 12	< 7	< 12	< 8	< 7	< 7	< 28	< 8
	02/27/07 - 04/02/07	< 8	< 8	< 17	< 8	< 11	< 10	< 12	< 14	< 7	< 8	< 46	< 13
	04/02/07 - 04/30/07	< 4	< 4	< 8	< 5	< 7	< 4	< 7	< 7	< 3	< 4	< 19	< 7
	04/30/07 - 05/29/07	< 4	< 4	< 8	< 5	< 6	< 4	< 6	< 7	< 4	< 4	< 17	< 6
	05/29/07 - 07/02/07	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 8	< 2	< 2	< 16	< 5
	07/02/07 - 07/30/07	< 3	< 4	< 9	< 4	< 9	< 4	< 8	< 10	< 4	< 5	< 27	< 8
	07/30/07 - 08/28/07	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 14	< 1	< 2	< 20	< 6
	08/28/07 - 10/01/07	< 5	< 4	< 10	< 4	< 12	< 5	< 9	< 7	< 5	< 6	< 17	< 5
	10/01/07 - 10/30/07	< 2	< 2	< 5	< 2	< 5	< 2	< 4	< 6	< 2	< 2	< 15	< 5
	10/30/07 - 12/04/07	< 7	< 6	< 13	< 8	< 15	< 11	< 15	< 14	< 7	< 9	< 36	< 14
	12/04/07 - 12/31/07	< 5	< 4	< 12	< 7	< 12	< 5	< 11	< 11	< 5	< 5	< 26	< 10
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
2451	01/02/07 - 01/30/07	< 6	< 6	< 12	< 6	< 14	< 6	< 11	< 6	< 6	< 7	< 21	< 7
	01/30/07 - 02/27/07	< 7	< 7	< 16	< 7	< 13	< 8	< 10	< 10	< 6	< 9	< 29	< 10
	02/27/07 - 04/02/07	< 6	< 8	< 15	< 9	< 17	< 10	< 14	< 14	< 8	< 8	< 38	< 12
	04/02/07 - 04/30/07	< 5	< 6	< 14	< 6	< 10	< 6	< 10	< 10	< 5	< 6	< 27	< 8
	04/30/07 - 05/29/07	< 5	< 4	< 11	< 5	< 10	< 5	< 7	< 8	< 4	< 5	< 21	< 8
	05/29/07 - 07/02/07	< 1	< 1	< 3	< 1	< 3	< 1	< 2	< 5	< 1	< 1	< 9	< 3
	07/02/07 - 07/30/07	< 5	< 5	< 11	< 6	< 12	· < 5 .	< 9	< 11	< 5	< 5	< 27	< 9
	07/30/07 - 08/28/07	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 14	< 1	< 2	< 20	< 7
	08/28/07 - 10/01/07	< 5	< 5	< 11	< 7	< 9	< 6	< 9	< 7	< 5	< 5	< 22	< 8
	10/01/07 - 10/30/07	< 2	< 2	< 5	< 2	< 5	< 3	< 5	< 8	< 2	< 2	< 17	< 5
	10/30/07 - 12/04/07	< 8	< 8	< 18	< 9	< 16	< 10	< 16	< 14	< 8	< 8	< 43	< 12
	12/04/07 - 12/31/07	< 5	< 6	< 11	< 5	< 10	< 5	< 11	< 11	< 6	< 7	< 34	< 8
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-

TABLE C-I.2CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED
IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-II.1CONCENTRATIONS OF GROSS BETA IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

COLLECTION PERIOD	15F4	15F7	16C2	28F3
01/02/07 - 01/30/07	3.2 ± 1.5	< 2.1	< 2.2	< 2.2
01/30/07 - 02/27/07	3.3 ± 1.4	4.6 ± 1.6	3.5 ± 1.5	4.4 ± 1.6
02/27/07 - 04/02/07	3.8 ± 1.6	2.4 ± 1.4	2.6 ± 1.5	3.1 ± 1.5
04/02/07 - 04/30/07	3.2 ± 1.4	2.2 ± 1.3	2.2 ± 1.3	3.6 ± 1.4
04/30/07 - 05/29/07	< 2.2	< 2.1	< 2.2	2.3 ± 1.5
05/29/07 - 07/02/07	3.7 ± 1.7	2.8 ± 1.7	4.1 ± 1.8	< 2.4
07/02/07 - 07/30/07	5.7 ± 1.6	5.3 ± 1.6	4.5 ± 1.6	4.2 ± 1.5
07/30/07 - 08/28/07	7.5 ± 2.0	6.1 ± 1.9	6.6 ± 2.0	5.0 ± 1.8
08/28/07 - 10/01/07	6.1 ± 2.1	5.7 ± 2.0	5.2 ± 2.0	4.3 ± 1.9
10/01/07 - 10/30/07	8.2 ± 2.0	8.3 ± 2.1	3.8 ± 1.8	5.0 ± 1.8
10/30/07 - 12/04/07	8.6 ± 1.8	6.4 ± 1.6	5.9 ± 1.6	7.0 ± 1.6
12/04/07 - 12/31/07	2.8 ± 1.7	3.2 ± 1.8	3.4 ± 1.8	< 2.4
MEAN	5.1 ± 4.4	4.7 ± 4.0	4.2 ± 2.8	4.3 ± 2.7

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

TABLE C-II.2 CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

COLLECTION PERIOD	15F4	15F7	16C2	28F3	
01/02/07 - 04/02/07	< 167	< 167	< 171	< 171	
04/02/07 - 07/02/07	< 159	< 164	< 160	< 160	
07/02/07 - 10/01/07	< 174	189 ± 115	< 171	< 177	
10/30/07 - 12/31/07	< 178	< 174	< 177	< 177	
MEAN	-	189 ± 0	-	-	

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140
15F4	01/02/07 - 01/30/07	< 6	< 6	< 12	< 5	< 13	< 6	< 9	< 7	< 7	< 6	< 22	< 8
	01/30/07 - 02/27/07	< 7	< 6	< 16	< 6	< 17	< 9	< 13	< 12	< 7	< 7	< 30	< 12
	02/27/07 - 04/02/07	< 5	< 6	< 12	< 5	< 12	< 6	< 9	< 11	< 6	< 7	< 30	· < 11
	04/02/07 - 04/30/07	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 4	< 2	< 2	< 10	< 3
	04/30/07 - 05/29/07	< 3	< 4	< 7	< 4	< 7	< 4	< 5	< 6	< 3	< 4	< 18	< 5
	05/29/07 - 07/02/07	< 2	< 3	< 6	< 2	< 5	< 3	< 5	< 9	< 2	< 2	< 19	< 7
	07/02/07 - 07/30/07	< 3	< 3	< 8	< 3	< 7	< 5	< 6	< 10	< 3	< 3	< 22	< 7
	07/30/07 - 08/28/07	< 1	< 1	< 3	< 1	< 3	< 2	< 3	< 14	< 1	< 1	< 19	< 5
	08/28/07 - 10/01/07	< 5	< 4	< 9	< 4	< 9	< 5	< 10	< 8	< 5	< 5	< 22	< 6
	10/01/07 - 10/30/07	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 7	< 2	< 2	< 14	< 4
	10/30/07 - 12/04/07	< 4	< 5	< 10	< 3	< 10	< 5	< 8	< 8	< 4	< 5	< 21	< 7
	12/04/07 - 12/31/07	< 5	< 6	< 11	< 5	< 12	< 6	< 10	< 12	< 4	< 5	< 32	< 8
	MEAN		-	-	-	-	-	-	-	•	-	-	-
15F7	01/02/07 - 01/30/07	< 6	< 6	< 11	< 6	< 16	< 6	< 10	< 8	< 8	< 7	< 26	< 7
	01/30/07 - 02/27/07	< 7	< 7	< 15	< 5	< 15	< 8	< 13	< 11	< 6	< 8	< 37	< 12
	02/27/07 - 04/02/07	< 5	< 5	< 10	< 6	< 11	< 5	< 9	< 10	< 5	< 5	< 24	< 9
	04/02/07 - 04/30/07	< 1	< 1	< 4	< 2	< 3	< 2	< 3	< 3	< 1	< 2	< 8	< 3
	04/30/07 - 05/29/07	< 4	< 4	< 9	< 5	< 8	< 4	< 8	< 7	< 4	< 4	< 22	< 8
	05/29/07 - 07/02/07	< 3	< 3	< 6	< 3	< 5	< 3	< 5	< 10	< 2	< 3	< 21	< 7
	07/02/07 - 07/30/07	< 4	< 4	< 10	< 4	< 9	< 4	< 8	< 12	< 4	< 5	< 30	< 11
	07/30/07 - 08/28/07	< 2	< 2	< 4	< 1	< 3	< 2	< 3	< 15	< 1	< 2	< 21	< 7
	08/28/07 - 10/01/07	< 5	< 6	< 11	< 6	[;] < 11	< 6	< 9	< 8	< 6	< 6	< 26	< 4
	10/01/07 - 10/30/07	< 2	< 2	< 5	< 2	< 5	< 3	< 5	< 8	< 2	< 2	< 17	< 5
	10/30/07 - 12/04/07	< 5	< 6	< 14	< 6	< 11	< 6	< 10	< 8	< 5	< 6	< 23	< 9
	12/04/07 - 12/31/07	< 6	< 7	< 13	< 6	< 11	< 7	< 11	< 12	< 6	< 7	< 35	< 11
	MEAN	-	-	-	-	•		-	-		-	-	-

TABLE C-II.3 CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± SIGMA

Ω 1 4

TABLE C-II.3 CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140
16C2	01/02/07 - 01/30/07	< 5	< 6	< 14	< 6	< 13	< 6	< 10	< 7	< 7	< 6	< 21	< 8
	01/30/07 - 02/27/07	< 5	< 5	< 11	< 6	< 11	< 6	< 10	< 9	< 6	< 6	< 24	< 8
	02/27/07 - 04/02/07	< 6	< 6	< 10	< 6	< 15	< 6	< 10	< 10	< 5	< 5	< 24	< 11
	04/02/07 - 04/30/07	< 6	< 5	< 10	< 7	< 13	< 6	< 12	< 11	< 5	< 6	< 26	< 11
	04/30/07 - 05/29/07	< 4	< 5	< 10	< 4	< 10	< 5	< 9	< 7	< 4	< 4	< 21	< 7
	05/29/07 - 07/02/07	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 7	< 2	< 2	< 16	< 5
	07/02/07 - 07/30/07	< 5	< 4	< 11	< 5	< 10	< 5	< 9	< 12	< 4	< 4	< 26	< 9
	07/30/07 - 08/28/07	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 14	< 1	< 2	< 19	< 7
	08/28/07 - 10/01/07	< 4	< 3	< 9	< 5	< 9	< 4	< 7	< 6	< 4	< 4	< 17	< 5
	10/01/07 - 10/30/07	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 6	< 2	< 2	< 13	< 5
	10/30/07 - 12/04/07	< 6	< 7	< 12	< 7	< 16	< 7	< 12	< 12	< 6	< 6	< 32	< 12
	12/04/07 - 12/31/07	< 6	< 7	< 14	< 5	< 15	< 7	< 10	< 12	< 6	< 7	< 31	< 10
	MEAN	-	-	•	-	-	-	-	-	-	-	-	-
28F3	01/02/07 - 01/30/07	< 5	< 5	< 9	< 5	< 11	< 5	< 8	< 6	< 5	< 5	< 18	< 6
	01/30/07 - 02/27/07	< 6	< 5	< 14	< 7	< 8	< 7	< 9	< 9	< 5	< 7	< 31	< 12
	02/27/07 - 04/02/07	< 5	< 6	< 10	< 6	< 14	< 6	< 9	< 8	< 5	< 6	< 28	< 8
	04/02/07 - 04/30/07	< 3	< 3	< 10	< 3	< 8	< 4	< 6	< 7	< 4	< 3	< 22	< 7
	04/30/07 - 05/29/07	< 4	< 5	< 9	< 5	< 8	< 5	< 9	< 7	< 4	< 5	< 22	< 5
	05/29/07 - 07/02/07	< 1	< 2	< 3	< 1	< 3	< 2	< 3	< 6	< 1	< 1	< 12	< 4
	07/02/07 - 07/30/07	< 5	< 5	< 10	< 4	< 8 ·	< 5	< 9	< 12	< 5	< 6	< 26	< 11
	07/30/07 - 08/28/07	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 15	< 2	< 2	< 23	< 8
	08/28/07 - 10/01/07	< 6	< 6	< 13	< 5	< 14	< 7	< 9	< 8	< 5	< 5	< 21	< 7
	10/01/07 - 10/30/07	< 1	< 1	< 3	< 2	< 3	< 2	< 3	< 14	< 1	< 1	< 18	< 7
	10/30/07 - 12/04/07	< 5	< 6	< 13	< 6	< 12	< 6	< 10	< 10	< 5	< 6	< 29	< 10
	12/04/07 - 12/31/07	< 6	< 8	< 12	< 6	< 13	< 7	< 13	< 13	< 5	< 6	< 33	< 13

RESULTS IN UNITS OF PCI/LITER ± SIGMA

MEAN

Ω

1 S

TABLE C-III.1 CONCENTRATIONS OF GAMMA EMMITTERS IN PREDATOR AND BOTTOM FEEDER (FISH) SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

STC	COLLECTION PERIOD	K-40	MN-54	CO-58	FE-59	CO-60	ZN-65	I-131	CS-134	CS-137
16C5	PREDATOR				•					
	05/08/07	3090 ± 985	< 88	< 94	< 187	< 95	< 219	< 251	< 88	< 96
	10/29/07	2400 ± 251	< 14	< 15	< 34	< 16	< 32	< 56	< 13	< 14
	MEAN	2745 ± 976	-	-	-	· -	-	-	-	-
16C5	BOTTOM FEEDER									i`
	05/08/07	2330 ± 884	< 51	< 60	< 122	< 29	< 72.8	< 195	< 50	< 55
	10/29/07	2840 ± 352	< 18	< 19	< 41	< 15	< 38	< 88	< 17	< 21
	MEAN	2665 ± 725	-	-	-	-		·_	· _	-
29C1	PREDATOR	-								
	05/09/07	3140 ± 910	< 81	< 54	< 174	< 82	< 172	< 161	< 73	< 62
	10/29/07	2390 ± 462	< 27	< 31	< 77	< 29	< 65.4	< 110	< 25	< 27
	MEAN	2765 ± 1061	-	-	-	-	-		-	-
29C1	BOTTOM FEEDER									
	05/09/07	4300 ± 1100	< 58	< 63	< 174	< 81	< 174	< 210	< 63	< 67
	10/29/07	2900 ± 537	< 37	< 44	< 74	< 31	< 88.8	< 176	< 32	< 42
	MEAN	3182.5 ± 1616	-	. •	-	-	-	-	-	-

.1 -

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-IV.1CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED
IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF PCI/KG DRY ± 2 SIGMA

the second secon

CS-137

< 127

89 ± 60

89 ± 0

STC COLLECTION BE-7 K-40 MN-54 CO-58 CO-60 I-131 CS-134 PERIOD 16B2 06/13/07 < 1200 11000 ± 1860 < 103 < 134 < 109 < 114 < 946 12/07/07 1540 ± 676 12500 ± 1340 < 72 < 87 < 72 < 666 < 67 MEAN 1540 ± 0 11750 ± 2121 -----06/13/07 6320 ± 1310 14200 ± 2730 < 138 < 134 < 190 < 130 < 1380

16C4 < 150 12/07/07 < 599 14000 ± 1430 < 67 < 75 < 62 < 547 < 72 < 56 MEAN 6320 ± 0 14100 ± 283 ------33A2 06/13/07 < 1020 11700 ± 2140 < 142 < 89 < 94 < 851 < 79 < 105 12/07/07 < 740 11800 ± 1280 < 69 < 82 < 60 < 597 < 66 < 73 MEAN 11750 ± 141 -.

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-V.1

CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

		00000	1		
COLLECTION		GROUP I		GROUP II	GROUP III
PERIOD	10S3	<u>11S1</u>	14S1	13C1	22G1
01/02/07 - 01/08/07	13 ± 5	14 ± 5	16 ± 6	14 ± 6	14 ± 6 17 ± 5
01/08/07 - 01/15/07	15 ± 4 9 ± 5	16 ± 5 10 ± 5	19 ± 5 9 ± 5	15 ± 5 12 ± 5	17 ± 5 15 ± 5
01/15/07 - 01/22/07	9 ± 5 16 ± 5	10 ± 5 16 ± 5	9 ± 5 18 ± 5	12 ± 5 17 ± 5	15 ± 5 17 ± 5
01/22/07 - 01/29/07	10 ± 5 17 ± 5	16 ± 5 16 ± 5	17 ± 5	20 ± 6	25 ± 6
01/29/07 - 02/05/07 02/05/07 - 02/12/07	17 ± 5 17 ± 5	13 ± 5	17 ± 5	17 ± 5	15 ± 5
02/12/07 - 02/20/07	17 ± 3 12 ± 4	13 ± 5 12 ± 5	13 ± 5	17 ± 5 12 ± 5	18 ± 5
02/20/07 - 02/26/07	9 ± 5	12 ± 6	9 ± 6	< 8	10 ± 6
02/26/07 - 03/05/07	10 ± 4	16 ± 5	15 ± 5	10 ± 5	9 ± 4
03/05/07 - 03/12/07	18 ± 5	18 ± 5	22 ± 5	24 ± 6	20 ± 5
03/12/07 - 03/19/07	21 ± 5	17 ± 5	18 ± 5	15 ± 5	18 ± 5
03/19/07 - 03/27/07	15 ± 4	14 ± 4	14 ± 4	12 ± 4	18 ± 5
03/27/07 - 04/02/07	17 ± 5	12 ± 6	12 ± 6	15 ± 6	11 ± 6
04/02/07 - 04/09/07	9 ± 4	13 ± 5	15 ± 5	16 ± 5	16 ± 5
04/09/07 - 04/16/07	9 ± 4	9 ± 4	6 ± 4	13 ± 5	7 ± 4
04/16/07 - 04/23/07	14 ± 4	11 ± 4	9 ± 4	11 ± 4	11 ± 4
04/23/07 - 04/30/07	12 ± 4	12 ± 5	11 ± 5	16 ± 5	14 ± 5
04/30/07 - 05/07/07	9 ± 4	12 ± 5	8 ± 4	10 ± 5	10 ± 5
05/07/07 - 05/15/07	10 ± 4	10 ± 4	10 ± 4	10 ± 4	9 ± 4
05/15/07 - 05/21/07	13 ± 5	10 ± 5	16 ± 6	11 ± 6	12 ± 6
05/21/07 - 05/29/07	17 ± 4	16 ± 5	22 ± 5	15 ± 5	17 ± 5
05/29/07 - 06/04/07	16 ± 6	21 ± 6	16 ± 6	16 ± 6	(1)
06/04/07 - 06/11/07	11 ± 4	9 ± 5	12 ± 5	11 ± 5	11 ± 5
06/11/07 - 06/18/07	15 ± 4	13 ± 5	11 ± 5	14 ± 5	16 ± 5
06/18/07 - 06/25/07	11 ± 5	15 ± 5	13 ± 5	14 ± 5	15 ± 5
06/25/07 - 07/02/07	18 ± 5	18 ± 5	20 ± 5	21 ± 5 17 ± 5	18 ± 5 18 ± 5
07/02/07 - 07/09/07	20 ± 5 23 ± 5	17 [·] ± 5 24 ± 6	22 ± 5 22 ± 5	17 ± 5 26 ± 6	23 ± 5
07/09/07 - 07/16/07 07/16/07 - 07/23/07	23 ± 5 15 ± 5	13 ± 5	12 ± 5	16 ± 5	16 ± 5
07/23/07 - 07/31/07	15 ± 5 14 ± 4	13 ± 3 20 ± 4	12 ± 3 20 ± 4	20 ± 4	10 ± 3 17 ± 4
07/31/07 - 08/06/07	19 ± 6	21 ± 6	20 ± 4	19 ± 6	25 ± 6
08/06/07 - 08/14/07	21 ± 4	21 ± 5	19 ± 5	26 ± 5	25 ± 5
08/14/07 - 08/20/07	12 ± 5	16 ± 6	19 ± 6	16 ± 6	19 ± 6
08/20/07 - 08/27/07	7 ± 4	10 ± 5	11 ± 5	9±5	9 ± 5
08/27/07 - 09/04/07	22 ± 4	23 ± 5	22 ± 5	27 ± 5	23 ± 5
09/04/07 - 09/11/07	16 ± 5	17 ± 5	15 ± 5	17 ± 5	22 ± 6
09/11/07 - 09/17/07	12 ± 5	11 ± 5	13 ± 5	20 ± 6	11 ± 5
09/17/07 - 09/24/07	20 ± 5	18 ± 5	20 ± 6	26 ± 6	19 ± 5
09/24/07 - 10/01/07	22 ± 5	22 ± 5	21 ± 5	26 ± 6	21 ± 5
10/01/07 - 10/08/07	13 ± 5	13 ± 5	15 ± 5	11 ± 5	21 ± 6
10/08/07 - 10/15/07	17 ± 5	15 ± 5	20 ± 6	19 ± 6	18 ± 5
10/15/07 - 10/22/07	24 ± 5	25 ± 6	31 ± 6	23 ± 6	24 ± 6
10/22/07 - 10/29/07	16 ± 5	13 ± 5	9±5	13 ± 5	18 ± 5
10/29/07 - 11/05/07	12 ± 5 14 \pm 5	18 ± 6 13 ± 5	20 ± 6 16 ± 5	19 ± 6 15 ± 5	17 ± 6 19 ± 5
11/05/07 - 11/12/07	14 ± 5 21 \pm 5		10 ± 5 23 ± 6	15 ± 5 21 ± 6	19 ± 5 23 ± 6
11/12/07 - 11/19/07 11/19/07 - 11/26/07	21 ± 5 10 ± 5	19 ± 5 14 ± 5	23 ± 6 15 ± 5	21 ± 6 17 ± 5	23 ± 6 22 ± 6
11/26/07 - 12/03/07	10 ± 5 15 ± 5	14 ± 5 20 ± 6	19 ± 6	17 ± 5	14 ± 5
12/03/07 - 12/10/07	15 ± 5	14 ± 5	12 ± 5	9 ± 5	13 ± 5
12/10/07 - 12/17/07	20 ± 5	17 ± 5	20 ± 5	18 ± 5	20 ± 5
12/17/07 - 12/24/07	17 ± 5	18 ± 5	27 ± 6	18 ± 5	19 ± 6
12/24/07 - 12/31/07	23 ± 5	17 ± 5	23 ± 5	25 ± 6	24 ± 6
MEAN	15 ± 8	15 ± 8	16 ± 10	17 ± 10	17 ± 10

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-V.2 MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

GROUP I - ON-	SITE LOC	ATION	s	GROUP II - INTERMEDIA	ATE DIST	ANCE L	OCATIONS	GROUP III - CONTROL LOCATIONS				
	MIN	MAX	MEAN ± 2SD	COLLECTION PERIOD	MłN	MAX	MEAN ± 2SD		MIN	MAX	MEAN ± 2SD	
01/02/07 - 01/29/07	9	19	14 ±.6	01/02/07 - 01/29/07	12	17	15 ± 4	01/02/07 - 01/29/07	14	17	16 ± 3	
01/29/07 - 02/26/07	. 9	17	14 ± 6	01/29/07 - 02/26/07	< 8	20	16 ± 8	01/29/07 - 02/26/07	11	25	17 ± 12	
02/26/07 - 04/02/07	10	22	16 ± 6	02/26/07 - 04/02/07	10	24	15 ± 10	02/26/07 - 04/02/07	9	20	15 ± 10	
04/02/07 - 04/30/07	6	15	11 ± 5	04/02/07 - 04/30/07	11	16	14 ± 5	04/02/07 - 04/30/07	7	16	12 ± 7	
04/30/07 - 05/29/07	8	22	13 ± 8	04/30/07 - 05/29/07	10	15	11 ± 5	04/30/07 - 05/29/07	9	17	12 ± 7	
05/29/07 - 07/02/07	9	21	15 ± 7	05/29/07 - 07/02/07	11	21	15 ± 7	06/04/07 - 07/02/07	11	18	15 ± 6	
07/02/07 - 07/31/07	12	24	18 ± 8	07/02/07 - 07/31/07	16	26	19 ± 9	07/02/07 - 07/31/07	16	23	18 ± 7	
07/31/07 - 08/27/07	7	22	17 ± 10	07/31/07 - 08/27/07	9	26	18 ± 14	07/31/07 - 08/27/07	9	25	20 ± 15	
08/27/07 - 10/01/07	11	23	18 ± 8	08/27/07 - 10/01/07	17	27	23 ± 9	08/27/07 - 10/01/07	11	23	19 ± 10	
10/01/07 - 10/29/07	9	31	18 ± 12	10/01/07 - 10/29/07	11	23	17 ± 11	10/01/07 - 10/29/07		24	20 ± 6	
10/29/07 - 12/03/07	10	23	17 ± 7	10/29/07 - 12/03/07	15	21	17 ± 5	10/29/07 - 12/03/07	14	23	19 ± 8	
12/03/07 - 12/31/07	12	27	19 ± 8	12/03/07 - 12/31/07	9	25	18 ± 13	12/03/07 - 12/31/07	13	24	19 ± 10	
01/02/07 - 12/31/07	6	31	16 ± 5	01/02/07 - 12/31/07	< 8	27	16 ± 6	01/02/07 - 12/31/07	7	25	17 ± 6	

and more an and the second second

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

1.2

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-V.3 CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

STC		BE-7	MN-54	CO-58	CO-60	CS-134	CS-137
10S3	01/02/07 - 04/02/07	104 ± 25	< 4	< 3	< 4	< 3	< 4
	04/02/07 - 07/02/07	77 ± 40	< 3	< 6	< 3	< 4	< 3
	07/02/07 - 10/01/07	82 ± 28	< 3	< 3	< 3	< 3	< 2
	10/01/07 - 12/31/07	60 ± 27	< 2	< 4	< 3	< 4	< 3
	MEAN	81 ± 37	-	-	-	-	-
11S1	01/02/07 - 04/02/07	67 ± 31	< 3	< 4	< 3	< 4	< 3
	04/02/07 - 07/02/07	81 ± 36	< 4	< 5	< 3	< 4	< 3
	07/02/07 - 10/01/07	88 ± 31	< 2	< 3	< 2	< 4	< 2
	10/01/07 - 12/31/07	72 ± 24	< 2	< 3	< 4	< 3	< 2
	MEAN	77 ± 19	-	-	-	-	-
13C1	01/02/07 - 04/02/07	66 ± 26	< 3	< 3	< 3	< 3	< 2
	04/02/07 - 07/02/07	77 ± 36	< 3	< 5	< 4	< 4	< 3
	07/02/07 - 10/01/07	110 ± 28	< 3	< 5	< 3	< 5	< 3
	10/01/07 - 12/31/07	136 ± 26	< 2 g	< 3	< 3	< 2	< 2
	MEAN	97 ± 64	-	-	-	-	-
14S1	01/02/07 - 04/02/07	67 ± 33	< 3	< 5	< 4	< 4	< 3
	04/02/07 - 07/02/07	105 ± 57	< 4	< 7	< 4	< 4	< 4
	07/02/07 - 10/01/07	71 ± 23	< 3	< 4	< 3	< 4	< 3
	10/01/07 - 12/31/07	53 ± 27	< 3	< 4	< 4	< 3	< 3
	MÉAN	74 ± 44	-	-	-	-	-
22G1	01/02/07 - 04/02/07	66 ± 26	< 2	< 3	< 3	< 3	< 2
	04/02/07 - 07/02/07	130 ± 48	< 4	< 7	< 3	< 4	< 3
	07/02/07 - 10/01/07	95 ± 29	< 3	< 4	< 3	< 4	< 3
	10/01/07 - 12/31/07	71 ± 26	< 2	< 2	< 2	< 3	< 2
	MEAN	90 ± 59	-	-	-	-	-

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

.

,

.

TABLE C-VI.1CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN
THE VICINITY OF LIMERICK GENERATING STATION, 2007

COLLECTION		GROUP I		GROUP II	GROUP III
PERIOD 1	0S3	11S1	14\$1	13C1	22G1
01/02/07 - 01/08/07	< 15	< 16	< 16	< 17	< 11
01/08/07 - 01/15/07	< 29	< 31	< 31	< 32	< 17
01/15/07 - 01/22/07	< 25	< 28	< 28	< 28	< 15
01/22/07 - 01/29/07	< 30	< 50	< 50	< 51	< 50
01/29/07 - 02/05/07	< 22	< 37	< 38	< 38	< 38
02/05/07 - 02/12/07	< 42	< 45	< 46	< 26	< 46
02/12/07 - 02/20/07	< 23	< 25	< 26	< 26	< 17
02/20/07 - 02/26/07	< 26	< 36	< 36	< 37	< 36
02/26/07 - 03/05/07	< 24	< 26	< 26	< 26	< 13
03/05/07 - 03/12/07	< 35	< 38	< 39	< 39	< 21
03/12/07 - 03/19/07	< 14	< 16	< 16	< 16	< 12
03/19/07 - 03/27/07	< 26	< 28	< 29	< 29	< 21
03/27/07 - 04/02/07	< 45	< 48	< 49	< 49	< 27
04/02/07 - 04/09/07	< 40	< 44	< 44	< 45	< 24
04/09/07 - 04/16/07	< 34	< 36	< 37	< 37	< 20
04/16/07 - 04/23/07	< 45	< 49	< 50	< 40	< 50
04/23/07 - 04/30/07	< 21	< 42	< 42	< 43	< 42
04/30/07 - 05/07/07	< 57	< 62	< 63	< 63	< 50
05/07/07 - 05/15/07	< 25	< 27	< 28	< 28	< 28
05/15/07 - 05/21/07	< 27	< 29	< 30	< 30	< 18
05/21/07 - 05/29/07	< 44	< 48	< 48	< 49	< 32
05/29/07 - 06/04/07	< 15	< 16	< 17	< 17	< 10
06/04/07 - 06/11/07	< 18	< 19	< 14	< 19	< 19
06/11/07 - 06/18/07	< 16	< 18	< 18	< 18	< 10
06/18/07 - 06/25/07	< 53	< 57	< 58	< 58	< 39
06/25/07 - 07/02/07	< 20	< 21	< 22	< 22	< 16
07/02/07 - 07/09/07	< 26	< 29	< 29	< 29	< 19
07/09/07 - 07/16/07	< 20	< 40	< 41	< 41	< 41
07/16/07 - 07/23/07	< 40	< 43	< 44	< 44	< 26
07/23/07 - 07/31/07	< 51	< 56	< 56	< 57	< 29
07/31/07 - 08/06/07	< 49	< 53	< 54	< 55	< 30
08/06/07 - 08/14/07	< 16	< 31	< 31	< 32	< 32
08/14/07 - 08/20/07	< 63	< 54	< 69	< 69	< 69
08/20/07 - 08/27/07	< 28	< 55	< 55	< 56	< 56
08/27/07 - 09/04/07	< 46	< 50	< 25	< 51	< 51
09/04/07 - 09/11/07	< 20	< 40	< 40	< 41	< 40
09/11/07 - 09/17/07	< 45	< 61	< 61	< 62	< 61
09/17/07 - 09/24/07	< 15	< 27	< 27	< 28	< 27
09/24/07 - 10/01/07	(*	1) < 42	< 42	< 43	< 42
10/01/07 - 10/08/07	< 15	< 39	< 40	< 70	< 39
10/08/07 - 10/15/07	< 24	< 61	< 62	< 63	< 62
10/15/07 - 10/22/07	< 16	< 31	< 31	< 31	< 31
10/22/07 - 10/29/07	< 25	< 50	< 50	< 51	< 50
10/29/07 - 11/05/07	< 15	< 30	< 30	< 31	< 30
11/05/07 - 11/12/07	< 35	< 61	< 62	< 63	< 62
11/12/07 - 11/19/07	< 54	< 59	< 59	< 60	< 36
11/19/07 - 11/26/07	< 58	< 63	< 63	< 64	< 27
11/26/07 - 12/03/07	< 26	< 28	< 28	< 28	< 16
12/03/07 - 12/10/07	< 19	< 38	< 39	< 39	< 39
12/10/07 - 12/17/07	< 26	< 28	< 29	< 29	< 15
12/17/07 - 12/24/07	< 44	< 48	< 20	< 49	< 50
12/24/07 - 12/31/07	< 22	< 44	< 45	< 45	< 45

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

MEAN

1

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-VII.1 CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

	CONTROL FARMS		INDICATOR FARMS					
COLLECTION PERIOD	23F1	36E1	10F4	18E1	19B1	25C1	25E1	
01/16/07	< 0.8	< 0.4	< 0.7	< 0.7	< 0.4	< 0.8	< 0.4	
02/13/07	< 0.6		< 0.7	< 0.6	< 0.6	< 0.6		
03/13/07	< 0.7		< 0.8	< 0.8	< 0.7	< 0.8		
04/03/07	< 0.8	< 0.6	< 0.7	< 0.7	< 0.6	< 0.5	< 0.8	
04/17/07	< 0.5		< 0.9	< 0.6	< 0.6	< 0.6		
05/01/07	< 0.6		< 0.6	< 0.6	< 0.6	< 0.6		
05/15/07	< 0.6		< 0.8	< 0.8	< 0.6	< 0.7		
05/30/07	< 0.8		< 0.7	< 0.6	< 0.9	< 0.8		
06/12/07	< 0.7		< 0.5	< 0.5	< 0.6	< 0.9		
06/26/07	< 0.7		< 0.6	< 0.6	< 0.6	< 0.7		
07/10/07	< 0.8	< 0.8	< 0.9	< 0.8	< 0.8	< 0.8	< 0.9	
07/24/07	< 0.7		< 0.7	< 0.8	< 1.0	< 0.6		
08/07/07	< 0.5		< 0.4	< 0.5	< 0.6	< 0.4		
08/21/07	< 0.6		< 0.7	< 0.8	< 0.5	< 0.8		
09/04/07	< 0.7		< 0.8	< 0.9	< 0.8	< 0.7		
09/18/07	< 0.7		< 0.4	< 0.4	< 0.5	< 0.5		
10/02/07	< 0.6	< 0.5	< 0.6	< 0.5	< 0.5	< 0.4	< 0.5	
10/16/07	< 0.8		< 0.6	< 0.6	< 0.7	< 0.8		
10/30/07	< 0.5		< 0.7	< 0.7	< 0.6	< 0.6		
11/13/07	< 0.7		< 0.7	< 0.8	< 0.7	< 0.7		
11/27/07	< 0.6		< 0.6	< 0.7	< 0.7	< 0.6		
12/11/07	< 0.6		< 0.6	< 0.6	< 0.6	< 0.7		
MEAN	-	- '	-	-	-	-	-	

RESULTS IN UNITS OF E-3 PCI/LITER ± 2 SIGMA

(1) See Exceptions Section for Explanation

TABLE C-VII.2 CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

STC	COLLECTION PERIOD	K-40	CS-134	CS-137	BA-140	LA-140
1054		1040 + 144	< 6	< E	< 28	< 7
10F4	01/16/07 - 01/16/07	1240 ± 141	< 6 < 4	< 5 < 4	< 28 < 23	< 7 < 7
	02/13/07 - 02/13/07 03/13/07 - 03/13/07	1210 ± 109 1300 ± 142	< 6	< 6	< 28	< 10
	04/03/07 - 04/03/07	1300 ± 142 1220 ± 130	< 6	< 6	< 20 < 21	< 7
	04/17/07 - 04/17/07	1250 ± 130 1250 ± 102	< 4	< 4	< 20	< 6
	05/01/07 - 05/01/07	1290 ± 158	< 8	< 7	< 33	< 11
	05/15/07 - 05/15/07	1230 ± 130 1310 ± 73	< 3	< 3	< 13	< 5
	05/29/07 - 05/29/07	1270 ± 153	< 5	< 7	< 51	< 13
	06/12/07 - 06/12/07	1360 ± 126	< 4	< 4	< 28	< 6
	06/26/07 - 06/26/07	1330 ± 95	< 3	< 3	< 20	< 6
	07/10/07 - 07/10/07	1170 ± 109	< 5	< 5	< 27	< 8
	07/24/07 - 07/24/07	1330 ± 82	< 3	< 3	< 24	< 6
	08/07/07 - 08/07/07	1260 ± 186	< 6	< 9	< 36	< 10
	08/21/07 - 08/21/07	1350 ± 137	< 5	< 5	< 37	< 12
	09/04/07 - 09/04/07	1410 ± 161	< 6	< 6	< 49	< 12
	09/18/07 - 09/18/07	1410 ± 101 1420 ± 145	< 5	< 7	< 39	< 13
	10/02/07 - 10/02/07	1420 ± 143 1270 ± 143	< 6	< 6	< 31	< 12
	10/16/07 - 10/16/07	1360 ± 163	< 6	< 6	< 34	< 11
	10/30/07 - 10/30/07	1310 ± 175	< 6	< 8	< 31	< 10
•	11/13/07 - 11/13/07	1320 ± 62	< 2	< 2	< 35	< 12
	11/27/07 - 11/27/07	1320 ± 02 1300 ± 144	< 5	< 5	< 34	< 13
	12/11/07 - 12/11/07	1280 ± 47	< 2	< 2	< 13	< 4
	12/11/07 - 12/11/07	(200 1 4)	~ 2		× 15	~ 4
	MEAN	1298 ± 123	-	-	- '	-
18E1	01/16/07 - 01/16/07	1170 ± 198	< 8	< 9	< 31	< 7
	02/13/07 - 02/13/07	1270 ± 151	< 5	< 7	< 32	< 9
	03/13/07 - 03/13/07	1430 ± 148	< 6	< 7	< 31	< 9
	04/03/07 - 04/03/07	1250 ± 155	< 6	< 7	< 24	< 8
	04/17/07 - 04/17/07	1230 ± 91	< 3	< 4	< 19	< 4
	05/01/07 - 05/01/07	1160 ± 197	< 7	< 8	< 45	< 10
	05/15/07 - 05/15/07	1210 ± 89	< 3	< 4	< 16	< 5
	05/30/07 - 05/30/07	1240 ± 126	< 5	< 6	< 31	< 10
	06/12/07 - 06/12/07	1150 ± 164	< 6	< 7	< 28	< 6
	06/26/07 - 06/26/07	1240 ± 113	< 5	< 5	< 38	< 14
	07/10/07 - 07/10/07	1240 ± 142	< 3	< 4	< 22	< 7
	07/24/07 - 07/24/07	1250 ± 97	< 4	< 4	< 30	< 7
	08/07/07 - 08/07/07	1310 ± 167	< 7	< 8	< 42	< 11
	08/21/07 - 08/21/07	1240 ± 168	< 7	< 7	< 51	< 13
	09/04/07 - 09/04/07	1290 ± 185	< 6	< 7	< 52	< 13
	09/18/07 - 09/18/07	1310 ± 124	< 5	< 5	< 35	< 10
	10/02/07 - 10/02/07	1300 ± 126	< 5	< 5	< 24	< 6
	10/16/07 - 10/16/07	1230 ± 153	< 6	< 7	< 29	< 6
	10/30/07 - 10/30/07	1120 ± 183	< 8	< 8	< 33	< 14
	11/13/07 - 11/13/07	1140 ± 71	< 3	< 3	< 44	< 12 ·
	11/27/07 - 11/27/07	1290 ± 143	< 6	< 7	< 39	< 13
	12/11/07 - 12/11/07	1150 ± 60	< 2	< 3	< 19	< 5
	MEAN	1237 ± 144	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-VII.2 CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

STC	COLLECTION PERIOD	K-40	CS-134	CS-137	BA-140	LA-140
19B1	01/16/07 - 01/16/07	1250 ± 184	< 6	< 8	< 32	< 11
	02/13/07 - 02/13/07	1320 ± 147	< 6	< 7	< 41	< 11
	03/13/07 - 03/13/07	1260 ± 156	< 7	< 7	< 31	< 10
	04/03/07 - 04/03/07	1350 ± 160	< 6	< 7	< 21	< 9
	04/17/07 - 04/17/07	1290 ± 104	< 4	< 5	< 21	< 6
	05/01/07 - 05/01/07	1300 ± 140	< 5	< 6	< 28	< 9
	05/15/07 - 05/15/07	1360 ± 87	< 3	< 3	< 15	< 5
	05/29/07 - 05/29/07	1390 ± 126	< 5	< 6	< 39	< 14
	06/12/07 - 06/12/07	1400 ± 151	< 6	< 6	< 30	< 7
	06/26/07 - 06/26/07	1400 ± 131	< 5	< 6	< 46	< 14
				< 7	<.39	
	07/10/07 - 07/10/07	1230 ± 142	< 6			< 10
	07/24/07 - 07/24/07	1260 ± 117	< 5	< 5	< 38	< 10
	08/07/07 - 08/07/07	1430 ± 202	< 8	< 8	< 39	< 10
	08/21/07 - 08/21/07	1250 ± 125	< 5	< 6	< 38	< 12
	09/04/07 - 09/04/07	1320 ± 90	< 4	< 4	< 28	< 8
	09/18/07 - 09/18/07	1520 ± 142	< 5	< 6	< 39	< 14
	10/02/07 - 10/02/07	1220 ± 148	< 5	< 6	< 30 < 37	< 10
	10/16/07 - 10/16/07	1390 ± 156	< 7	< 8		< 11
	10/30/07 - 10/30/07	1280 ± 194	< 9 < 2	< 10 < 3	< 43	< 14 < 12
	11/13/07 - 11/13/07 11/27/07 - 11/27/07	1340 ± 65 1290 ± 157	< 7	< 8	< 38 < 44	< 13
	12/11/07 - 12/11/07	1240 ± 58	< 2	< 2	< 16	< 4
	12/11/07 ~ 12/11/07	1240 I 36	~ 2	~ 2	< 10	~ 4
	MEAN	1322 ± 153	-	-	-	-
23F1	01/16/07 - 01/16/07	1170 ± 129	< 4	< 5	< 25	< 6
	02/13/07 - 02/13/07	1110 ± 140	< 5	< 6	< 35	< 11
	03/13/07 - 03/13/07	1250 ± 182	< 7	< 8	< 35	< 13
	04/03/07 - 04/03/07	1290 ± 172	< 5	< 8	< 26	< 7
	04/17/07 - 04/17/07	1220 ± 79	< 3	< 3	< 16	< 4
	05/01/07 - 05/01/07	1070 ± 149	< 6	< 7	< 33	< 11
	05/15/07 - 05/15/07	1330 ± 91	< 3	< 4	< 16	< 5
	05/30/07 ~ 05/30/07	1220 ± 125	< 4	< 6	< 35	< 9
	06/12/07 - 06/12/07	1330 ± 158	< 6	< 8	< 31	< 10
	06/26/07 - 06/26/07	1340 ± 102	< 4	< 5	< 35	< 12
	07/10/07 - 07/10/07	1230 ± 177	< 7	< 7	< 39	< 13
	07/24/07 - 07/24/07	1410 ± 89	< 3	< 4	< 26	< 7
	08/07/07 ~ 08/07/07	1240 ± 218	< 8	< 8	< 48	< 13
	08/21/07 - 08/21/07	1630 ± 173	< 5	< 8	< 52	< 14
	09/04/07 - 09/04/07	1300 ± 147	< 6	< 7	< 43	< 15
	09/18/07 - 09/18/07	1090 ± 127	< 5	< 6	< 42	< 14
	10/02/07 - 10/02/07	1400 ± 151	< 5	< 7	< 29	< 8
	10/16/07 - 10/16/07	1260 ± 120	< 4	< 5	< 22	< 8
	10/30/07 - 10/30/07	1190 ± 218	< 7	< 10	< 47	< 7
	11/13/07 - 11/13/07	1280 ± 79	< 3	< 3	< 47	< 15
	11/27/07 - 11/27/07	1290 ± 142	< 6	< 7	< 50	< 13
	12/11/07 - 12/11/07	1240 ± 61	< 2	< 2	< 17	< 5
	MEAN	1268 ± 240	-	-	-	, -

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-VII.2 CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

STC	COLLECTION PERIOD	K-40	CS-134	CS-137	BA-140	LA-140
25C1	01/16/07 - 01/16/07	1230 ± 155	< 6	< 7	< 28	< 6
	02/13/07 - 02/13/07	1370 ± 161	< 6	< 7	< 37	< 15
	03/13/07 - 03/13/07	1250 ± 127	< 5	< 6	< 28	< 9
	04/03/07 - 04/03/07	1270 ± 143	< 5	< 6	< 19	< 7
	04/17/07 - 04/17/07	1250 ± 98	< 4	< 4	< 21	< 7
	05/01/07 - 05/01/07	1230 ± 159	< 6	< 7	< 33	< 11
	05/15/07 - 05/15/07	1240 ± 97	< 3	< 4	< 18	< 6
	05/29/07 - 05/29/07	1210 ± 99	< 4	< 4	< 28	< 9
	06/12/07 - 06/12/07	1280 ± 176	< 6	< 8	< 29	< 10
	06/26/07 - 06/26/07	1340 ± 116	< 4	< 5	< 37	< 13 [°]
	07/10/07 - 07/10/07	1440 ± 147	< 5	< 6	< 31	< 7
	07/24/07 - 07/24/07	1360 ± 102	< 4	< 5	< 30	< 10
	08/07/07 - 08/07/07	1320 ± 159	< 6	< 6	< 35	< 11
	08/21/07 - 08/21/07	1370 ± 110	< 4	< 5	< 37	< 12
	09/04/07 - 09/04/07	1250 ± 196	< 7	< 8	< 55	< 12
	09/18/07 - 09/18/07	1300 ± 155	< 6	< 7	< 41	< 13
	10/02/07 - 10/02/07	1280 ± 113	< 5	< 5	< 24	< 8
	10/16/07 - 10/16/07	1260 ± 141	< 6	< 6	< 28	< 10
	10/30/07 - 10/30/07	1420 ± 178	< 6	< 8	< 35	< 12
	11/13/07 - 11/13/07	1260 ± 67	< 3	< 3	< 43	< 13
	11/27/07 - 11/27/07	1210 ± 112	< 5	< 6	< 39	< 11
	12/11/07 - 12/11/07	1270 ± 63	< 3	< 3	< 22	< 7
	MEAN	1291 ± 131	-	-		-
25E1	01/16/07 - 01/16/07	1320 ± 139	< 5	< 6	< 29	< 10
	04/03/07 - 04/03/07	1360 ± 127	< 5	< 7	< 21	< 6
	07/10/07 - 07/10/07	1360 ± 168	< 6	< 7	< 41	< 12
	10/02/07 - 10/02/07	1150 ± 120	< 4	< 5	< 24	< 8
	MEAN	1298 ± 200	. - ·	-	-	-
36E1	01/16/07 - 01/16/07	1240 ± 159	< 6	< 7	< 35	< 10
	04/03/07 - 04/03/07	1250 ± 116	< 4	< 5	< 20	< 4
	07/10/07 - 07/10/07	1100 ± 136	< 5	< 7	< 31	< 11
	10/02/07 - 10/02/07	1120 ± 120	< 4	< 5	< 23	< 6
	MEAN	1178 ± 157	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

ŕ

TABLE C-VIII.1 CONCENTRATIONS OF GAMMA EMITTERS IN BROAD LEAF VEGETATION SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

STC		I TYPE	BE-7	K-40	MN-54	CO-58	CO-60	1-131	CS-134	CS-137
11S3	06/21/07	Cabbage	< 146	3310 ± 283	< 13	< 13	< 13	< 38	< 14	< 15
		Collards	111 ± 62	5770 ± 201	< 8	< 9	< 9	< 24	< 7	< 8
		Zucchini Leaves	1060 ± 210	4020 ± 384	< 18	< 19	< 19	< 48	< 16	< 19
	07/17/07	Cabbage	< 37	2020 ± 82	< 3	< 4	< 3	< 25	< 3	< 4
		Collards	134 ± 71	4820 ± 184	< 8	< 9	< 10	< 56	< 7	< 9
		Zucchini Leaves	334 ± 204	4200 ± 533	< 22	< 30	< 24	< 50	< 23	< 25
	08/13/07	Cabbage	125 ± 45	3510 ± 124	< 7	< 8	< 7	< 54	< 8	< 8
		Collards	243 ± 66	6470 ± 183	< 7	< 8	< 7	< 53	< 7	< 8
	09/10/07	Cabbage	< 135	2450 ± 274	< 14	< 17	< 13	< 32	< 13	< 14
	MEAN		335 ± 731	4063 ± 2911	-	-	-	-	-	-
1262	06/21/07	Cabbage	223 ± 117	4360 ± 313	< 11	< 12	< 10	< 37	< 11	< 11
1333	00/21/07	Collards	< 181	5130 ± 543	< 18	< 20	< 15	< 40	< 12	< 16
		Zucchini Leaves	633 ± 221	4340 ± 443	< 14	< 15	< 16	< 54	< 12	< 12
	07/17/07	Cabbage	256 ± 71	4800 ± 187	< 8	< 9	< 8	< 44	< 7	< 8
		Collards	188 ± 83	4740 ± 150	< 6	< 6	< 6	< 48	< 6	< 6
		Zucchini Leaves	697 ± 92	4880 ± 194	< 8	< 9	< 9	< 52	< 7	< 8
	08/13/07	Cabbage	406 ± 54	4400 ± 120	< 7	< 8	< 7	< 57	< 11	< 7
		Collards	273 ± 55	6480 ± 158	< 5	< 6	< 5	< 42	< 5	< 5
		Zucchini Leaves	1110 ± 75	5790 ± 160	< 7	< 8	< 7	< 52	< 6	< 7
	09/10/07	Cabbage	535 ± 205	6780 ± 486	< 23	< 21	< 21	< 42	< 19	< 21
		Collards	277 ± 154	5610 ± 519	< 22	< 20	< 25	< 34	< 17	< 20
	MEAN		460 ± 580	5210 ± 1699	-	-	-	-	-	-

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

STC	COLLECTION PERIOD	TYPE		E-7	K-40	MN-54	CO-58	CO-60	I-131	CS-134	CS-137
31G1	06/21/07	Cabbage	225	± 198	4910 ± 482	< 22	< 23	< 22	< 59	< 18	< 22
		Lettuce	256	± 119	3100 ± 345	< 16	< 13	< 15	< 40	< 11	< 15
		Zucchini Leaves	662	± 154	5530 ± 446	< 17	< 20	< 20	< 54	< 15	< 15
07/17/07	Acorn Squash	758	± 79	5760 ± 165	< 6	< 7	< 6	< 39	< 5	< 6	
		Cabbage	< 69		4660 ± 178	< 7	< 8	< 7	< 48	< 6	< 7
		Zucchini Leaves	331	± 78	5990 ± 188	< 8	< 9	< 8	< 56	· < 7	< 8
	08/13/07	Acorn Squash Leaves	2550	± 70	4440 ± 108	< 6	< 7	< 6	< 59	< 7	< 7
		Cabbage	371	± 53	7160 ± 152	< 8	< 8	< 8	< 59	< 8	< 7
		Zucchini Leaves	934	± 62	5500 ± 124	< 6	< 8	< 6	< 54	< 7	< 6
	09/10/07	Cabbage	233	± 143	5690 ± 395	< 16	< 17	< 18	< 41	< 16	< 17
		Lettuce	171	± 112	5600 ± 291	< 10	< 10	< 12	< 20	< 9	< 10
		Zucchini Leaves	185	± 91	4950 ± 293	< 12	< 11	< 10	< 22	< 11	< 11
	MEAN		607	± 1388	5274 ± 1976	-	-	-	_	-	-

TABLE C-VIII.1 CONCENTRATIONS OF GAMMA EMITTERS IN BROAD LEAF VEGETATION SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR LIMERICK GENERATING STATION, 2007

STATION	MEAN	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE 36S2	± 2 S. D. 7.5 ± 0.3	7.7 ± 0.7	7.4 ± 0.4	7.6 ± 0.5	7.4 ± 0.4
36D1	6.8 ± 0.3	6.7 ± 0.5	6.6 ± 1.3	6.7 ± 0.6	7.0 ± 0.7
2E1	7.4 ± 1.1	6.9 ± 0.3	7.0 ± 0.2	7.9 ± 0.7	7.9 ± 1.0
3S1	7.3 ± 0.3	7.1 ± 0.6	7.4 ± 0.8	7.4 ± 0.6	7.1 ± 0.7
4E1	6.0 ± 0.8	5.7 ± 0.6	5.7 ± 0.3	5.9 ± 0.6	6.5 ± 0.5
5S1	8.2 ± 1.0	7.8 ± 0.9	8.2 ± 0.8	8.9 ± 0.8	8.0 ± 0.2
5H1	8.8 ± 1.0	8.6 ± 0.5	8.4 ± 0.9	8.5 ± 0.3	9.5 ± 0.6
6C1	7.4 ± 1.0	7.0 ± 0.5	7.0 ± 0.4	7.8 ± 0.4	7.9 ± 0.7
7S1	7.6 ± 0.3	7.5 ± 0.7	7.6 ± 1.2	7.8 ± 0.6	7.6 ± 0.5
7E1	7.7 ± 0.2	7.7 ± 0.4	7.8 ± 0.5	7.6 ± 0.8	7.7 ± 1.0
9C1	7.5 ± 0.5	7.4 ± 1.1	7.1 ± 0.8	7.6 ± 0.6	7.7 ± 0.7
10S3	7.5 ± 0.3	7.5 ± 0.8	7.5 ± 5.0	7.7 ± 0.6	7.4 ± 1.0
10E1	7.6 ± 0.6	7.4 ± 1.0	7.3 ± 0.3	7.9 ± 0.8	7.8 ± 0.5
10F3	7.7 ± 0.8	7.3 ± 0.6	7.3 ± 0.6	8.0 ± 1.0	8.0 ± 0.3
1151	8.5 ± 0.6	8.4 ± 0.4	8.2 ± 0.4	8.9 ± 0.6	8.4 ± 0.3
13S2	11 ± 1.2	12 ± 0.4	11 ± 0.4	11 ± 0.6	11 ± 0.8
13C1	5.6 ± 0.9	5.6 ± 0.3	5.4 ± 0.2	5.2 ± 0.3	6.2 ± 0.8
13E1	7.5 ± 0.7	7.4 ± 0.5	7.1 ± 0.6	7.5 ± 0.5	8.0 ± 0.8
14S1	6.9 ± 0.7	7.2 ± 0.3	6.4 ± 0.3	7.1 ± 0.7	6.7 ± 0.4
15D1	7.7 ± 1.1	6.9 ± 0.4	7.7 ± 0.3	7.8 ± 0.4	8.2 ± 0.8
16F1	7.9 ± 0.9	7.9 ± 0.6	7.2 ± 0.5	8.1 ± 0.7	8.2 ± 0.2
17B1	7.3 ± 1.3	6.7 ± 0.5	6.9 ± 0.4	8.2 ± 2.8	7.4 ± 0.7
18S2	7.9 ± 0.3	8.0 ± 0.3	7.8 ± 1.1	8.1 ± 0.9	7.8 ± 0.6
19D1	7.1 ± 0.4	7.2 ± 0.5	6.8 ± 0.5	7.3 ± 0.3	7.2 ± 0.6
20D1	6.8 ± 0.3	6.9 ± 0.4	6.6 ± 0.3	6.8 ± 0.2	6.7 ± 0.8
20F1	7.2 ± 0.6	6.9 ± 0.8	7.0 ± 0.3	7.4 ± 0.7	7.5 ± 0.4
21S2	6.6 ± 0.8	6.3 ± 0.2	7.1 ± 0.4	6.6 ± 0.5	6.3 ± 0.5
23S2	6.8 ± 0.5	6.7 ± 0.7	6.8 ± 0.4	7.2 ± 1.7	6.6 ± 0.5
24D1	6.5 ± 0.5	6.3 ± 0.4	6.2 ± 0.4	6.7 ± 0.8	6.7 ± 0.7
25S2	6.5 ± 0.0	6.5 ± 0.2	6.5 ± 0.3	6.5 ± 0.6	6.5 ± 0.5
25D1	6.3 ± 0.3	6.1 ± 0.9	6.3 ± 0.2	6.4 ± 0.6	6.5 ± 0.5
26S3	6.5 ± 0.6	6.2 ± 0.6	6.4 ± 0.2	6.9 ± 0.8	6.5 ± 0.3
28D2	7.0 ± 0.5	7.1 ± 0.5	6.7 ± 0.3	6.9 ± 0.5	7.3 ± 0.7
29S1	6.5 ± 0.3	6.5 ± 1.1	6.3 ± 0.4	6.6 ± 0.3	6.5 ± 0.3
29E1	7.2 ± 0.5	7.3 ± 0.6	6.8 ± 0.6	7.3 ± 0.3	7.3 ± 0.5
31S1	7.4 ± 0.4	7.4 ± 0.8	7.3 ± 0.6	7.7 ± 0.9	7.2 ± 0.9
31D1	8.5 ± 0.4	8.6 ± 0.4	8.2 ± 0.3	8.5 ± 0.5	8.7 ± 1.3
31D2	7.6 ± 0.5	7.6 ± 0.7	7.3 ± 0.9	7.7 ± 0.2	7.9 ± 0.6
34S2	7.4 ± 0.8	7.3 ± 0.6	7.0 ± 0.3	7.5 ± 0.3	7.9 ± 1.1
34E1	7.3 ± 0.7	6.9 ± 0.4	7.0 ± 0.5	7.5 ± 0.3	7.6 ± 0.4

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH ± 2 STANDARD DEVIATIONS

C - 18

. .

TABLE C-IX.2MEAN QUARTERLY TLD RESULTS FOR THE SITE BOUNDRY,
MIDDLE AND CONTROL LOCATIONS FOR LIMERICK GENERATING
STATION, 2007

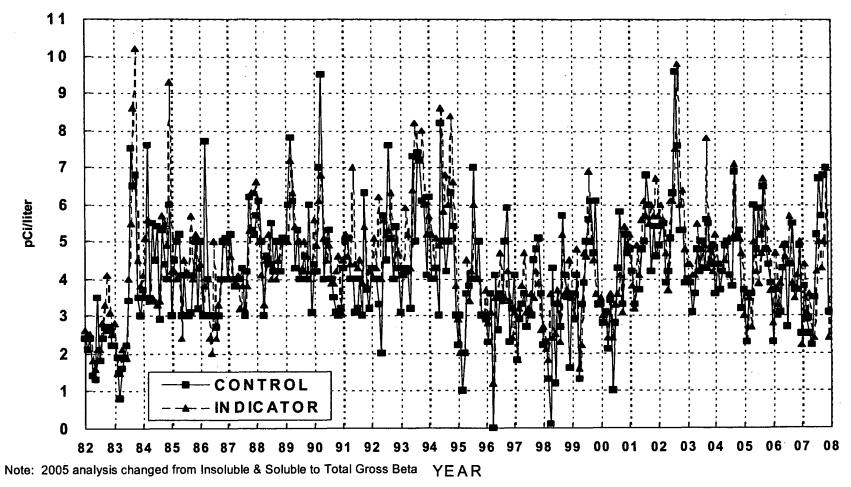
RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH ± 2 STANDARD DEVIATIONS OF THE STATION DATA

COLLECTION PERIOD	SITE BOUNDARY ± 2 S.D.	MIDDLE	CONTROL
JAN-MAR	7.5 ± 2.7	7.0 ± 1.4	8.6 ± 0.5
APR-JUN	7.4 ± 2.1	6.9 ± 1.3	8.4 ± 0.9
JUL-SEP	7.7 ± 2.3	7.3 ± 1.6	8.5 ± 0.3
OCT-DEC	7.4 ± 2.3	7.5 ± 1.3	9.5 ± 0.6

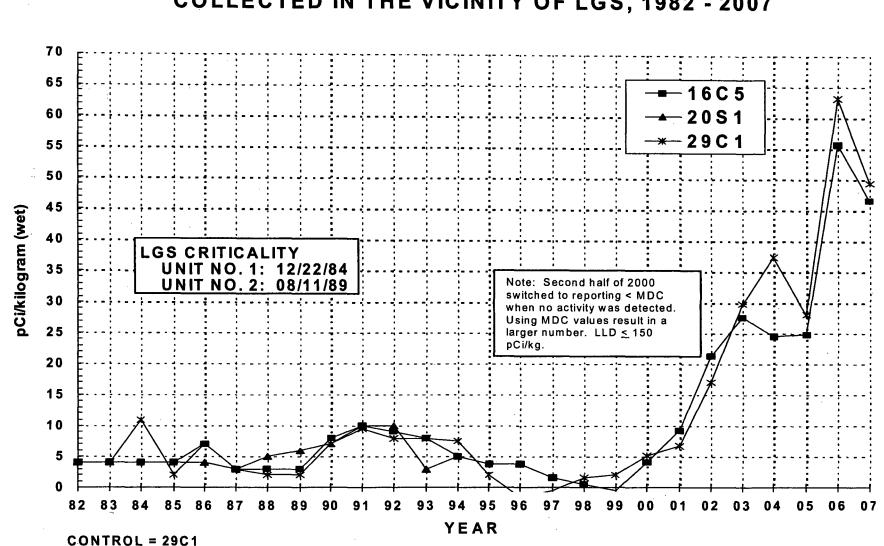
TABLE C-IX.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR LIMERICK
GENERATING STATION, 2007

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH

LOCATION	SAMPLES ANALYZED	PERIOD PE	ERIOD AXIMUM	PERIOD MEAN ± 2 S.D.
SITE BOUNDARY	64	6.2	12	7.5 ± 2.3
MIDDLE DISTANCE	92	5.2	8.7	7.2 ± 1.4
CONTROL	4	8.4	9.5	8.8 ± 1.0


THE PREOPERATIONAL MEAN WAS CALCULATED FROM MONTHLY TLD READINGS 01/15/82 TO 12/02/84.

SITE BOUNDARY STATIONS - 36S2, 3S1,5S1, 7S1, 10S3, 11S1, 13S2, 14S1, 18S2, 21S2, 23S2, 25S2,26S3,29S1,31S1,34S2


MIDDLE DISTANCE STATIONS - 36D1, 2E1, 4E1,6C1,7E1,9C1 10E1,10F3,13C1,13E1,15D1, 16F1, 17B1, 19D1, 20D1, 20F1, 24D1, 25D1, 28D2, 29E1, 31D1, 31D2, 34E1

CONTROL STATIONS - 5H1

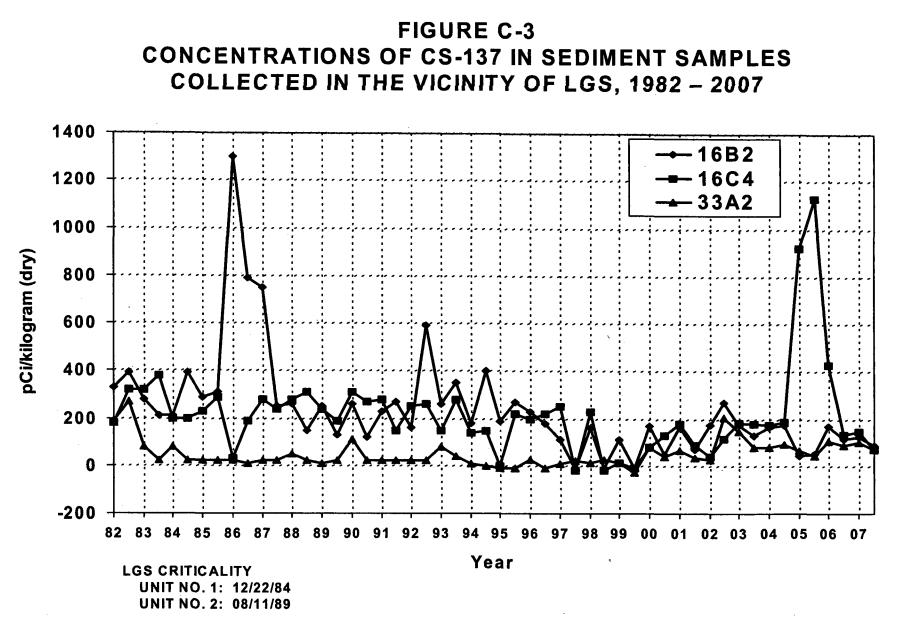
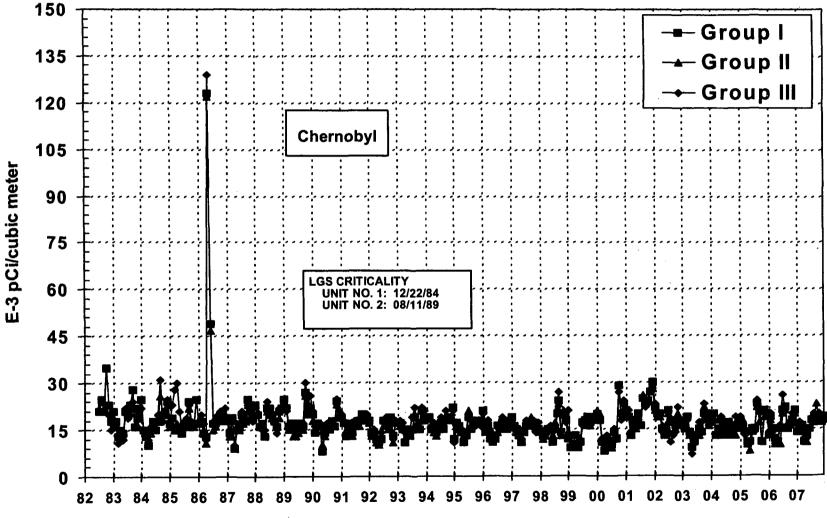
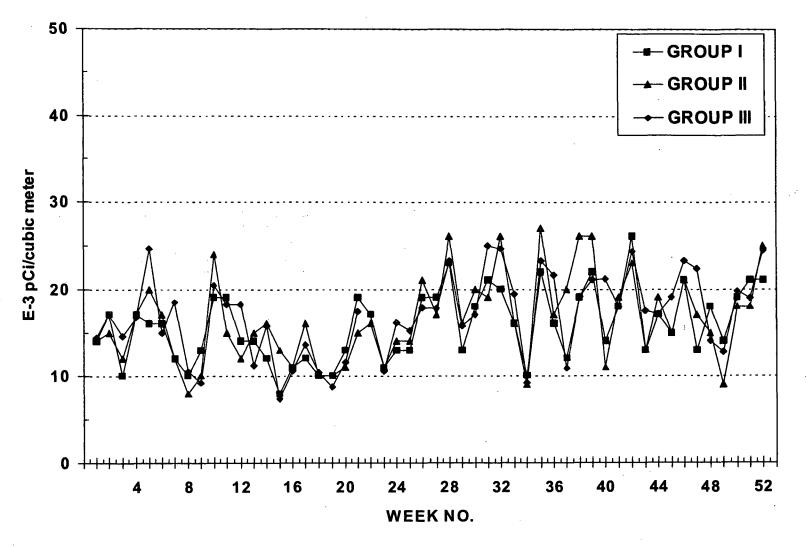
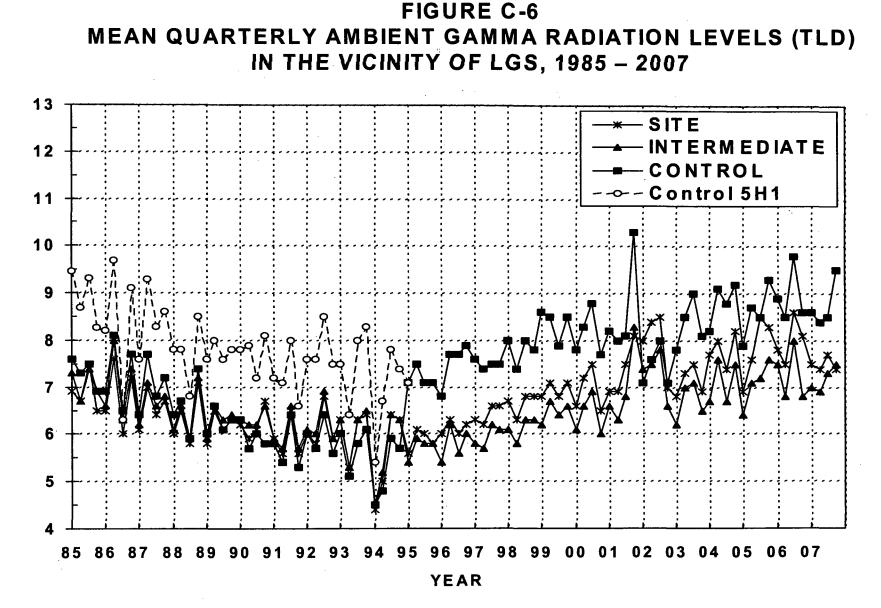

LGS CRITICALITY UNIT NO. 1: 12/22/84 UNIT NO. 2: 08/11/89 LGS CHANGED TO TOTAL GROSS BETA AT THE BEGINNING OF 2005. PREVIOUS DATA INCLUDED SUMMATION OF LESS THAN VALUES.

FIGURE C-2 MEAN ANNUAL CS-137 CONCENTRATIONS IN FISH SAMPLES COLLECTED IN THE VICINITY OF LGS, 1982 - 2007


* * - --

Station 20S1 discontinued in 1995


CONTROL = 33A2


FIGURE C-4 MEAN MONTHLY GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LGS, 1982 – 2007

YEAR

NOTE: Control Station 5H1 became the only distant location beginning in 1995

Intentionally Left Blank

C - 26

:

APPENDIX D

١

DATA TABLES AND FIGURES COMPARISON LABORATORY

The following section contains data and figures illustrating the analyses performed by the quality control laboratory, Environmental Incorporated (ENV). Duplicate samples were obtained from several locations and media and split between the primary laboratory, Teledyne Brown Engineering (TBE) and ENV. Comparison of the results for most media were within expected ranges.

Intentionally Left Blank

D - 2

.

.

TABLE D-I.1 CONCENTRATIONS OF TOTAL GROSS BETA IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

COLLECTION PERIOD		16C2	
	- 01/30/07	1.7 ± 0.9	
• · · • • · · ·	- 02/27/07	1.6 ± 0.6	
•=	- 04/02/07 - 04/30/07	1.7 ± 0.6 1.6 ± 0.9	
	- 05/29/07	7.6 ± 0.9 2.4 ± 1.1	
	- 07/02/07	2.4 ± 1.1 2.8 ± 1.1	
	- 07/30/07	3.1 ± 1.0	
	- 08/28/07	4.3 ± 1.2	
	- 10/01/07	2.9 ± 0.7	
10/01/07	- 10/30/07	4.4 ± 1.2	
10/30/07	- 12/04/07	2.4 ± 0.7	
12/04/07	- 12/31/07	2.8 ± 1.1	
MEAN		0.9 ± 0.5	

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE D-I.2 CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	16C2	
01/02/07 - 04/02/07	< 155	
04/02/07 - 07/02/07	< 152	
07/02/07 - 10/01/07	< 189	
10/01/07 - 12/31/07	< 176	
, .		
MEAN	-	

D - 3

TABLE D-1.3CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED
IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Zr-95	Nb-95	I-131	Cs-134	Cs-137	Ba-140	La-140
16C2	01/02/07 - 01/30/07	< 2	< 2	< 5	< 3	< 6	< 5	< 2	< 3	< 3	< 3	< 13	< 3
	01/30/07 - 02/27/07	< 4	< 2	< 8	< 2	< 3	< 5	< 3	< 5	< 4	< 3	< 15	< 3
	02/27/07 - 04/02/07	< 2	< 2	< 5	< 2	< 5	< 3	< 3	< 3	< 2	< 3	< 13	< 3
	04/02/07 - 04/30/07	< 2	< 3	< 8	< 4	< 8	< 4	< 3	< 6	< 3	< 3	< 17	< 2
	04/30/07 - 05/29/07	< 4	< 3	< 9	< 4	< 5	< 9	< 5	< 7	< 4	< 3	< 20	< 4
	05/29/07 - 07/02/07	< 5	< 4	< 7	< 3	< 7	< 4	< 5	< 5	< 4	< 5	< 23	< 7
	07/02/07 - 07/30/07	< 2	< 3	< 6	< 3	< 4	< 4	< 2	< 9	< 2	< 2	< 17	< 3
	07/30/07 - 08/28/07	< 3	< 3	< 9	< 4	< 8	< 6	< 4	< 4	< 4	< 4	< 13	< 6
	08/28/07 - 10/01/07	< 5	< 5	< 12	< 5	< 4	< 7	< 4	< 12	< 5	< 5	< 19	< 6
	10/01/07 - 10/30/07	< 4	< 3	< 6	< 4	< 6	< 5	< 3	< 8	< 4	< 3	< 20	< 6
	10/30/07 - 12/04/07	< 2	< 1	< 5	< 1	< 6	< 5	< 2	< 6	< 3	< 2	< 10	< 1
D-	12/04/07 - 12/31/07	< 2	< 2	< 2	< 3	< 4	< 3	< 3	< 3	< 3	< 2	< 10	< 1
4	MEAN	-	-	-	-	-	-	-	-	-	-	. •	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE D-II.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

1 4

, <u>-</u> ,

COLLECTION	11S2
PERIOD	
01/02/07 - 01/08/07	12 ± 5
01/08/07 - 01/15/07	19 ± 4
01/15/07 - 01/22/07	17 ± 4
01/22/07 - 01/29/07	21 ± 5
01/29/07 - 02/05/07	21 ± 5
02/05/07 - 02/12/07	27 ± 5
02/12/07 - 02/20/07	26 ± 4
02/20/07 - 02/26/07	22 ± 5
02/26/07 - 03/05/07	16 ± 4
03/05/07 - 03/12/07	31 ± 4
03/12/07 - 03/19/07	24 ± 5
03/19/07 - 03/27/07	18 ± 4
03/27/07 - 04/02/07	21 ± 5
04/02/07 - 04/09/07	8 ± 4
04/09/07 - 04/16/07	12 ± 4
04/16/07 - 04/23/07	11 ± 4
04/23/07 - 04/30/07	14 ± 4
04/30/07 - 05/07/07	15 ± 4
05/07/07 - 05/15/07	15 ± 4
05/15/07 - 05/21/07	24 ± 5
05/21/07 - 05/29/07	23 ± 4
05/29/07 - 06/04/07	26 ± 5
06/04/07 - 06/11/07	17 ± 4
06/11/07 - 06/18/07	21 ± 4
06/18/07 - 06/25/07	25 ± 5
06/25/07 - 07/02/07	25 ± 5 27 ± 5
07/02/07 - 07/09/07	27 ± 3 20 ± 4
07/09/07 - 07/16/07	20 ± 4 31 ± 5
07/16/07 - 07/23/07	31 ± 5 26 ± 5
	20 ± 3 22 ± 4
	29 ± 5
08/20/07 - 08/27/07	16 ± 4
08/27/07 - 09/04/07	32 ± 4
09/04/07 - 09/11/07	38 ± 5
09/11/07 - 09/17/07	19 ± 4
09/17/07 - 09/24/07	29 ± 4
09/24/07 - 10/01/07	31 ± 5
10/01/07 - 10/08/07	13 ± 4
10/08/07 - 10/15/07	23 ± 4
10/15/07 - 10/22/07	30 ± 5
10/22/07 - 10/29/07	18 ± 4
10/29/07 - 11/05/07	27 ± 4
11/05/07 - 11/12/07	25 ± 5
11/12/07 - 11/19/07	21 ± 5
11/19/07 - 11/26/07	23 ± 5
11/26/07 - 12/03/07	27 ± 5
12/03/07 - 12/10/07	17 ± 5
12/10/07 - 12/17/07	23 ± 4
12/17/07 - 12/24/07	29 ± 5
12/24/07 - 12/31/07	33 ± 5

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

TABLE D-II.2CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2007

STC				8e- 7	Mn-54	Co-58	Co-60	Cs-134	Cs-137
11S2	01/02/07	-	04/02/07	81 ± 12	< 0.4	< 0.6	< 0.7	< 0.7	< 0.5
	04/02/07	-	07/02/07	82 ± 17	< 0.9	< 0.9	< 1.1	< 0.6	< 0.7
	07/02/07	-	10/01/07	96 ± 19	< 0.5	< 0.5	< 0.7	< 0.6	< 0.9
	10/01/07	-	12/31/07	65 ± 16	< 0.7	< 0.8	< 0.4	< 0.3	< 0.5

•

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

81 ± 25

MEAN

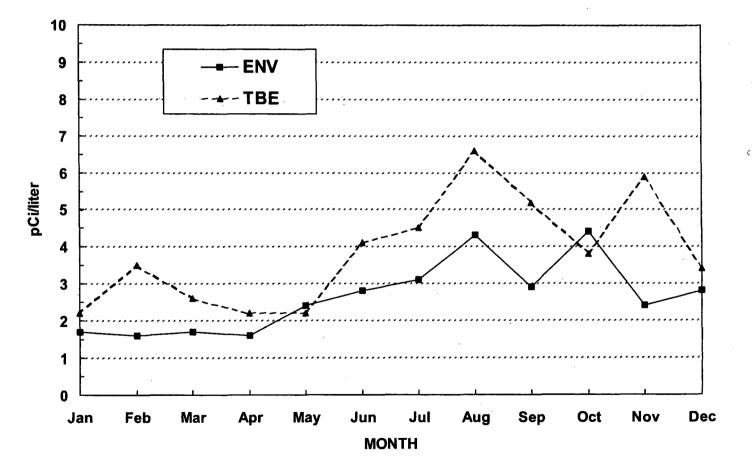
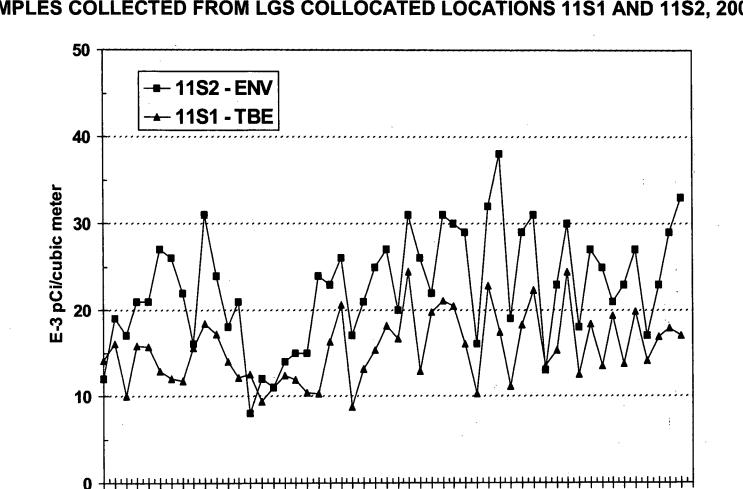

D - 6

TABLE D-III.1CONCENTRATIONS OF I-131 BY CHEMICAL SEPARATION AND GAMMA
EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF LIMERICK
GENERATING STATION, 2007

STC C	COLLECTION PERIOD	I-131	K-40 ⁻	Cs-134	Cs-137	Ba-140	La-140
19B1	01/16/07	< 0.2	1401 ± 116	- < 3	< 3.4	< 11	< 2
	04/03/07	< 0.2	1446 ± 128	< 3.2	< 4.9	< 15	< 3
	07/10/07	< 0.4	1339 ± 125	< 4.2	< 4.5	< 17	< 2
	10/02/07	< 0.4	1407 ± 121	< 2.4	< 2.7	< 24	< 3
·	MEAN	-	1398 ± 89		-	-	-
10F4	01/16/07	< 0.4	1487 ± 119	< 3.7	< 3	< 10	< 2
	04/03/07	< 0.2	1399 ± 116	< 4.1	< 5	< 14	< 3
	07/10/07	< 0.3	1202 ± 111	< 5	< 3.8	< 17	< 3
	10/02/07	< 0.2	1342 ± 118	< 3.8	< 3.2	< 20	< 5
	MEAN	-	1358 ± 239	-	-	-	-
25C1	01/16/07	< 0.4	1294 ± 116	< 4.1	< 2.7	< 11	< 3
	04/03/07	< 0.2	1424 ± 119	< 5.2	< 3.1	< 16	< 2
	07/10/07	< 0.3	1367 ± 118	< 3.5	< 3.4	< 10	< 4
	10/02/07	< 0.3	1327 ± 119	< 2.4	< 2.7	< 24	< 3
	MEAN	· _	1353 ± 112	-	-	-	-


RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

ENVIRONMENTAL INC. SOLUBLE AND INSOLUBLE FRACTIONS WERE COMBINED FOR TOTAL GROSS BETA COMPARISON.

D - 8

COMPARISON OF WEEKLY GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED FROM LGS COLLOCATED LOCATIONS 11S1 AND 11S2, 2007

FIGURE D-2

D-9

WEEK NO.

Intentionally Left Blank

D - 10

(

APPENDIX E

INTER-LABORATORY COMPARISON PROGRAM

٩

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

	Identification				Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
March 2007	E5255-396	Milk	Sr-89	pCi/L	125	137	0.91	A
			Sr-90	pCi/L	10.8	10	1.08	Α
March 2007	E5256-396	Milk	I-131	pCi/L	107	85.2	1.26	W
			Ce-141	pCi/L	269	297	0.91	Â
			Cr-51	pCi/L	244	245	1.00	Α
			Cs-134	pCi/L	98.1	112	0.88	Α
			Cs-137	pCi/L	227	234	0.97	Α
			Co-58	pCi/L	92.5	98.8	0.94	Α
			Mn-54	pCi/L	182.0	182	1.00	Α
			Fe-59	pCi/L	108.0	106	1.02	Α
·			Zn-65	pCi/L	985	1000	0.99	Α
			Co-60	pCi/L	143	152	0.94	Α
March 2007	E5258-396	AP	Ce-141	рСі	252	245	1.03	A
			Cr-51	рСі	204	202	1.01	Α
			Cs-134	рСі	74.9	92.3	0.81	Α
			Cs-137	pCi	190.0	197.0	0.96	Α
			Co-58	pCi	79.7	81.6	0.98	Α
			Mn-54	pCi	156	151	1.03	Α
			Fe-59	pCi	99.1	87.2	1.14	Α
			Zn-65	pCi	894	826	1.08	Α
			Co-60	pCi	122	126	0.97	Α
March 2007	E5257-396	Charcoal	I-131	рСі	34.7	71.3	0.49	N (1)
June 2007	E5384-396	Milk	Sr-89	pCi/L	98.3	95.2	1.03	Α
			Sr-90	pCi/L	16.1	12. 9	1.25	W
June 2007	E5385-396	Milk	I-131	pCi/L	71.0	70.1	1.01	А
			Ce-141	pCi/L	176	200	0.88	Α
			Cr-51	pCi/L	459	512	0.90	Α
			Cs-134	pCi/L	197	242	0.81	Α
		*	Cs-137	pCi/L	158	169	0.93	Α
			Co-58	pCi/L	180	198	0.91	· A
			Mn-54	pCi/L	163	166	0.98	Α
			Fe-59	pCi/L	158	167	0.95	Α
			Zn-65	pCi/L	318	334	0.95	Α
			Co-60	pCi/L	212	238	0.89	Α

(PAGE 1 OF 3)

E - 1

TABLE E-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

.

Month/Year June 2007	Number				Reported		Ratio (c)	
June 2007		Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
	E5387-396	AP	Ce-141	pCi	87.5	105	0.83	A
			Cr-51	pCi	232	268	0.87	Α
			Cs-134	pCi	101	127	0.80	Α
			Cs-137	pCi	78.9	88.5	0.89	Α
			Co-58	pCi	91.8	104.0	0.88	Α
			Mn-54	pCi	85.6	87	0.99	Α
			Fe-59	pCi	89.8	87.3	1.03	Α
			Zn-65	pCi	178	175	1.02	Α
			Co-60	рСі	111	125	0.89	Α
June 2007	E5386-396	Charcoal	I-131	рСі	79.3	79.1	1.00	Α
September 2007	E5492-396	Milk	Sr-89	pCi/L	99.0	94.9	1.04	А
			Sr-90	pCi/L	13.9	13.1	1.06	А
September 2007	E5493-396	Milk	I-131	pCi/L	81.9	85.2	0.96	А
			Ce-141	pCi/L	200	211	0.95	Α
			Cr-51	pCi/L	271	289	0.94	Α
			Cs-134	pCi/L	131	147	0.89	А
			Cs-137	pCi/L	131	131	1.00	А
			Co-58	pCi/L	114	114	1.00	Α
			Mn-54	pCi/L	171	168	1.02	А
			Fe-59	pCi/L	117	111	1.05	А
			Zn-65	pCi/L	212	202	1.05	A
			Co-60	pCi/L	143	148	0.97	Α
September 2007	E5495-396	AP	Ce-141	pCi	128	136	0.94	Α
			Cr-51	рСі	181	186	0.97	Α
			Cs-134	рСі	85.9	94.7	0.91	Α
			Cs-137	рСі	83.2	83.9	0.99	Α
			Co-58	pCi	69.4	73.3	0.95	Α
			Mn-54	pCi	112	108	1.04	Α
			Fe-59	pCi	79.6	71.1	1.12	Α
			Zn-65	pCi	159	130	1.22	W
			Co-60	рСі	92.0	95.2	0.97	Α
September 2007	E5494-396	Charcoal	I-131	рСі	70.8	69.5	1.02	Α
December 2007	E5749-396	Milk	Sr-89	pCi/L	87.6	93.7	0.93	Α
			Sr-90	pCi/L	15.5	15.2	1.02	Α

(PAGE 2 OF 3)

E - 2

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

(PAGE 3 OF 3)

	Identification	า			Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
December 2007	E5750-396	Milk	I-131	pCi/L	60.6	60.8	1.00	A
			Ce-141	pCi/L	137	141	0.97	Α
			Cr-51	pCi/L	497	512	0.97	Α
			Cs-134	pCi/L	117	137	0.85	Α
			Cs-137	pCi/L	166	166	1.00	Α
			Co-58	pCi/L	159	174	0.91	Α
			Mn-54	pCi/L	190	190	1.00	Α
			Fe-59	pCi/L	149	148	1.01	Α
			Zn-65	pCi/L	231	234	0.99	А
			Co-60	pCi/L	198	211	0.94	А
December 2007	E5752-396	AP	Ce-141	pCi	88.6	93.4	0.95	Α
			Cr-51	pCi	352	340	1.04	Α
			Cs-134	pCi	84.6	91.2	0.93	Α
			Cs-137	pCi	111	110.0	. 1.01	А
			Co-58	pCi	114	116.0	0.98	Α
			Mn-54	pCi	135	126	1.07	А
			Fe-59	pCi	119	98.5	1.21	W
			Zn-65	pCi	172	155	1.11	Α
			Co-60	pCi	137	141	0.97	Α
December 2007	E5751-396	Charcoal	I-131	pCi	65.8	74.1	0.89	А

(1) New technician counted charcoal cartridge on the back rather than the face, resulting in low activity. If the charcoal cartridge had been counted on the face, the ratio would have been approximately 1.07, which is acceptable. NCR 07-02

(a) Teledyne Brown Engineering reported result.

(b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) Ratio of Teledyne Brown Engineering to Analytics results.

(d) Analytics evaluation based on TBE internal QC limits: A= Acceptable. Reported result falls within ratio limits of 0.80-1.20.
 W-Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

(PAGE 1 OF 1))
---------------	---

	Identificatio	on			Reported	Known		
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Control Limits	Evaluation (c
July 2007	Rad 70	Water	Sr-89	pCi/L	58.6	58.2	49.5 - 66.9	А
-			Sr-90	pCi/L	18.7	19.0	10.3 - 27.7	Α
			Ba-133	pCi/L	18.6	19.4	10.7 - 28.1	Α
			Cs-134	pCi/L	57.6	68.9	60.2 - 77.6	N (1)
			Cs-137	pCi/L	55.4	61.3	52.6 - 70.0	Α
			Co-60	pCi/L	31.3	33.5	24.8 - 42.2	Α
			Zn-65	pCi/L	49.0	54.6	45.2 - 64.0	Â
			Gr-A	pCi/L	26.8	27.1	15.4 - 38.8	A
			Gr-B	pCi/L	12	11.5	2.84 - 20.2	Α
			I-131	pCi/L	31.1	26.5	21.3 - 31.7	Α
			H-3	pCi/L	1700	1770	1180 - 2360	А
October 2007	RAD 71	Water	Sr-89	pCi/L	27.07	27.4	19.3 - 33.9	А
			Sr-90	pCi/L	17.40	18.2	12.9 - 21.6	А
			Ba-133	pCi/L	12.57	12.6	8.64 - 15.5	Α
			Cs-134	pCi/L	63.33	71.1	58.0 - 78.2	А
			Cs-137	pCi/L	168	180	162 - 200	Α
			Co-60	pCi/L	21.93	23.2	19.9 - 28.3	А
			Zn-65	pCi/L	245.33	251	226 - 294	Α
	4		Gr-A	pCi/L	55.60	58.6	30.6 - 72.9	Α
			Gr-B	pCi/L	15.23	9.73	4.26 - 18.2	Α
			I-131	pCi/L	27.43	28.9	24.0 - 33.8	Α
			H-3	pCi/L	9263.3	9700	8430 - 10700	Α

(1) The Cs-134 TBE found/ERA known ratio is 83.6%, which TBE considers acceptable. NCR 07-07

(a) Teledyne Brown Engineering reported result.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2007

(PAGE 1 OF 1)

	Identification				Reported	Known	Acceptance	
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Range	Evaluation (c
ebruary 2007	07-MaW17	Water	Cs-134	Bq/L	74.5	83.5	58.5 - 108.6	A
-			Cs-137	Bq/L	162	163.0	114-1 - 211.9	Α
			Co-57	Bq/L	140	143.7	100.6 - 186.8	Α
			Co-60	Bq/L	27.9	26.9	18.8 - 35.0	Α
			H-3	Bq/L	346	283.0	198.1 - 367.9	W
			Mn-54	Bq/L	125	123.8	86.7 - 160.9	Α
			Sr-90	Bq/L	8.90	8.87	6.21- 11.53	Α
			Zn-65	Bq/L	117	114.8	80.4 - 149.2	Α
	07-GrW17	Water	Gr-A	Bq/L	0.502	0.327	>0.0 - 0.654	А
			Gr-B	Bq/L	0.975	0.851	0.426 - 1.277	Α
	07-MaS17	Soil	Cs-134	Bq/kg	322	327.4	229.2 - 425.6	Α
			Cs-137	Bq/kg	893	799.7	559.8 - 1039.6	Α
			Co-57	Bq/kg	508.3	471.2	329.8 - 612.6	Α
			Co-60	Bq/kg	300.3	274.7	192.3 - 357.1	Α
			Mn-54	Bq/kg	779	685.2	479.6 - 890.8	Α
			K-40	Bq/kg	682	602	421 - 783	Α
			Sr-90	Bq/kg	293	319.0	223.3 - 414.7	Α
			Zŋ-65	Bq/kg	618.7	536.8	375.8 - 697.8	Α
	07-RdF17	AP	Cs-134	Bq/sample	3.230	1.4960	2.9372 - 5.4548	w
			Cs-137	Bq/sample	2.453	2.5693	1.7985 - 3.3401	Α
			Co-57	Bq/sample	3.067	2.8876	2.0213 - 3.7539	Α
			Co-60	Bq/sample	2.767	2.9054	2.0338 - 3.7770	Α
			Mn-54	Bq/sample	3.557	3.5185	2.4630 - 4.5741	Α
			Sr-90	Bq/sample	0.584	0.6074	0.4252 - 0.7896	Α
			Zn-65	Bq/sample	2.463	2.6828	1.8780 - 3.4876	Α
	07-GrF17	AP	Gr-A	Bq/sample	0.353	0.601	>0.0 - 1.202	А
			Gr-B	Bq/sample	0.500	0.441	0.221 - 0.662	Α
ebruary 2007	07-RdV17	Vegetation		Bq/sample	6.207	6.2101	4.3471 - 8.0731	Α
			Cs-137	Bq/sample	7.80	6.9949	4.8964 - 9.0934	Α
			Co-57	Bq/sample	8.64	8.1878	5.7315 - 10.6441	
			Co-60	Bq/sample	6.10	5.8215	4.0751 - 7.5680	
			Mn-54	Bq/sample	9.41	8.4492	5.9144 - 10.9840) A
			K-40	Bq/sample	63.5	Not evaluated		
			Sr-90	Bq/sample	1.51	1.5351	1.0746 - 1.9956	А
			Zn-65	Bq/sample	7.15	5.6991	3.9894 - 7.4088	w

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

1

ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2007

(Page 1 of 2)

			Concentr	ation (pCi/L)		
Lab Code ^b [Date	Analysis	Laboratory	ERA	Control	
			Result ^c	Result ^d	Limits	Acceptance
STAP-1116 0	03/19/07	Gr. Alpha	34.64 ± 2.56	25.8	12.4 - 39	Pass
STAP-1116 0)3/19/07	Gr. Beta	93.41 ± 3.20	79.5	48.8 - 116	Pass
	03/19/07	Co-60	1610.00 ± 8.40	1300.0	1010.0 - 1620	Pass
)3/19/07	Cs-134	1340.40 ± 48.84	1120.0	732.0 - 1380	Pass
STAP-1117 ° 0)3/19/07	Cs-137	345.30 ± 8.20	255.0	192.0 - 336	Fail
STAP-1117 0)3/19/07	Mn-54	< 5.0	0.0		Pass
STAP-1117 0)3/19/07	Sr-90	156.10 ± 6.60	156.0	66.6 - 246	Pass
STAP-1117 0)3/19/07	Zn-65	363.80 ± 11.90	245.0	208.0 - 412	Pass
	3/19/07	Ac-228	3097.77 ± 94.96	2790.0	1790.0 - 3930	Pass
	3/19/07	Bi-212	2467.87 ± 114.33	2500.0	658.0 - 3730	Pass
	3/19/07	Co-60	7847.40 ± 86.60	7330.0	5340.0 - 9820	Pass
	3/19/07	Cs-134	7910.60 ± 356.88	7560.0	4850.0 - 9070	Pass
	3/19/07	Cs-137	4635.00 ± 99.10	4300.0	3290.0 - 5580	Pass
	3/19/07	K-40	12201.60 ± 423.20	11100.0	8050.0 - 15000	Pass
	3/19/07	Mn-54	< 34.0	0.0		Pass
	3/19/07	Pb-212	2046.80 ± 127.20	1730.0	1120.0 - 2430	Pass
	3/19/07	Pb-214	4142.80 ± 110.40	3330.0	1980.0 - 4980	Pass
	3/19/07	Sr-90	6163.30 ± 791.60	7500.0	2610.0 - 12400	Pass
	3/19/07	Th-234	4329.40 ± 569.10	3590.0	2190.0 - 4560	Pass
STSO-1118 ^f 0	3/19/07	Zn-65	0.00 ± 0.00	0.0	0.0 - 0	Pass
	3/19/07	Co-60	2827.90 ± 62.40	2600.0	1760.0 - 3720	Pass
	3/19/07	Cs-134	654.80 ± 48.40	579.0	308.0 - 822	Pass
	3/19/07	Cs-137	3307.30 ± 58.80	2920.0	2150.0 - 4060	Pass
	3/19/07	K-40	40814.20 ± 618.80	37900.0	27200.0 - 53600	Pass
	3/19/07	Mn-54	< 27.6	0.0		Pass
	3/19/07	Sr-90	8999.70 ± 580.90	8890.0	4900.0 - 11800	Pass
STVE-1119 0	3/19/07	Zn-65	474.30 ± 45.70	366.0	267.0 - 500	Pass
	3/19/07	Co-60	541.40 ± 9.00	536.0	467.0 - 631	Pass
	3/19/07	Cs-134	1623.80 ± 66.10	1750.0	1290.0 - 2020	Pass
,	3/19/07	Cs-137	1839.10 ± 17.90	1850.0	1570.0 - 2220	Pass
	3/19/07	Mn-54	< 8.1	0.0		Pass
	3/19/07	Sr-90	949.40 ± 16.70	989.0	630.0 - 1320	Pass
STW-1120 0	3/19/07	Zn-65	2009.00 ± 36.40	1910.0	1600.0 - 2410	Pass
	4/09/07	Sr-89	30.7 ± 4.3	35.4	26.7 - 44.1	Pass
STW-1121 04	4/09/07	Sr-90	39.3 ± 1.8	42.1	33.4 - 50.8	Pass

ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM **ENVIRONMENTAL, INC., 2007**

(Page 2 of 2)

			Concent	ration (pCi/L)		
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control	
			Result	Result ^d	Limits	Acceptance
STW-1122	04/09/07	Ba-133	30.0 ± 2.4	29.3	20.6 - 38.0	Pass
STW-1122	04/09/07	Co-60	118.5 ± 3.9	119.0	109.0 - 129.0	Pass
STW-1122	04/09/07	Cs-134	52.6 ± 2.3	54.3	45.6 - 63.0	Pass
STW-1122	04/09/07	Cs-137	49.5 ± 3.8	50.3	41.6 - 59.0	Pass
STW-1122	04/09/07	Zn-65	91.7 ± 6.3	88.6	73.3 - 104.0	Pass
STW-1123	04/09/07	Gr. Alpha	33.8 ± 3.5	56.5	32.0 - 81.0	Pass
STW-1123	04/09/07	Gr. Beta	24.2 ± 2.3	25.3	16.6 - 34.0	Pass
STW-1124	04/09/07	I-131	19.2 ± 1.2	18.9	13.7 - 24.1	Pass
STW-1125	04/09/07	H-3	7540.0 ± 255.0	8060.0	6660.0 - 9450.0	Pass
STW-1127	07/09/07	Sr-89	51.7 ± 5.0	58.2	49.5 - 66.9	Pass
STW-1127	07/09/07	Sr-90	21.4 ± 2.3	19.0	10.3 - 27.7	Pass
STW-1128	07/09/07	Ba-133	19.4 ± 2.2	19.4	10.7 - 28.1	Pass
STW-1128	07/09/07	Co-60	32.8 ± 2.0	33.5	24.8 - 42.2	Pass
STW-1128	07/09/07	Cs-134	67.0 ± 2.9	68.9	60.2 - 77.6	Pass
STW-1128	07/09/07	Cs-137	61.6 ± 3.8	61.3	52.6 - 70.0	Pass
STW-1128	07/09/07	Zn-65	55.6 ± 7.5	54.6	45.2 - 64.0	Pass
STW-1129	07/09/07	Gr. Alpha	19.2 ± 1.6	27.1	15.4 - 38.8	Pass
STW-1129	07/09/07	Gr. Beta	9.1 ± 0.9	11.5	2.8 - 20.2	Pass
STW-1131	10/05/07	Sr-89	27.3 ± 3.3	27.4	19.3 - 33.9	Pass
STW-1131	10/05/07	Sr-90	17.7 ± 1.2	18.2	12.9 - 21.6	Pass
STW-1132	10/05/07	Ba-133	12.2 ± 3.3	12.6	8.6 - 15.5	Pass
STW-1132	10/05/07	Co-60	23.8 ± 1.4	23.2	19.9 - 28.3	Pass
STW-1132	10/05/07	Cs-134	70.5 ± 4.2	71.1	58.0 - 78.2	Pass
STW-1132	10/05/07	Cs-137	178.2 ± 3.3	180.0	162.0 - 200.0	Pass
STW-1132	10/05/07	Zn-65	263.9 ± 6.9	251.0	226.0 - 294.0	Pass
STW-1133	10/05/07	Gr. Alpha	54.7 ± 2.1	58.6	30.6 - 72.9	Pass
STW-1133	10/05/07	Gr. Beta	11.9 ± 0.9	9.7	4.3 - 18.2	Pass
STW-1134	10/05/07	I-131	33.0 ± 1.5	28. 9	24.0 - 33.8	Pass
STW-1135	10/05/07	H-3	9965.0 ± 250.0	9700.0	8430.0 - 10700.0	Pass

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^e A high bias (~ 20%) was observed in gamma results for air filters. A composite filter geometry was used in the calculations vs. a single filter geometry. Result of recalculation. Cs-137, 305.8 ± 6.0 pCi/filter.

^f Included in the testing series as a "false positive". No activity expected.

4

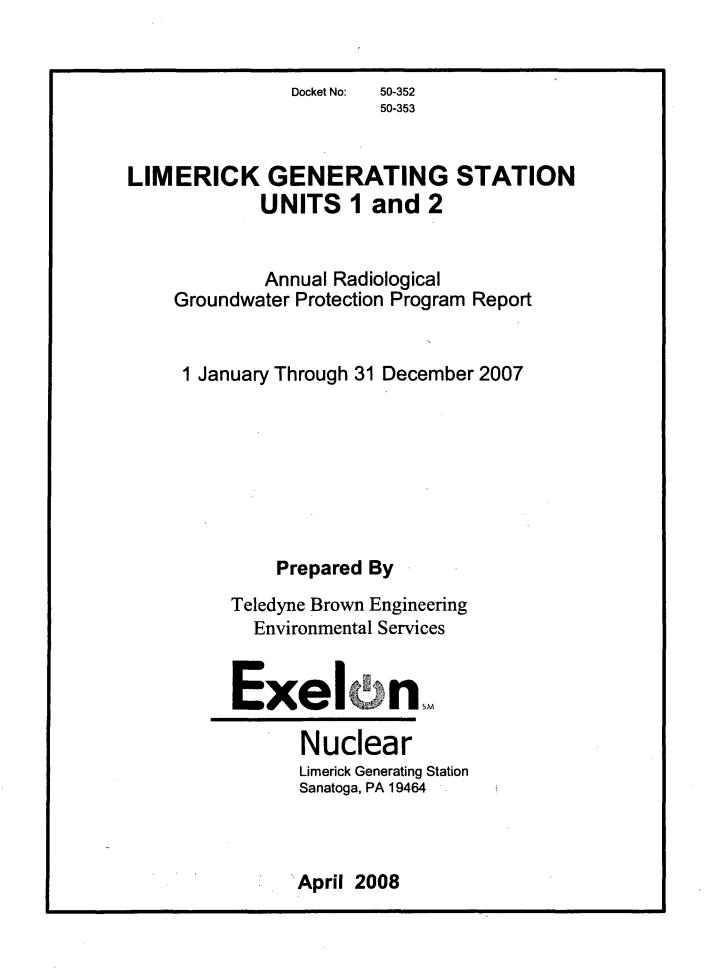
TABLE E-5DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)*ENVIRONMENTAL, INC., 2007

(Page 1 of 1)

			Conce	entration ^b		
		· · · · · · · · · · · · · · · · · · ·		Known	Control	<u>.</u>
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STW-1110	01/01/07	Gr. Alpha	0.45 ± 0.08	0.33	0.00 - 0.65	Pass
STW-1110	01/01/07	Gr. Beta	0.90 ± 0.14	0.85	0.43 - 1.28	Pass
STW-1111	01/01/07	Co-57	151.60 ± 10.00	143.70	100.60 - 186.80	Pass
STW-1111	01/01/07	Cs-134	79.20 ± 8.00	83.50	58.50 - 108.60	Pass
STW-1111	01/01/07	Cs-137	168.70 ± 12.10	163.00	114.10 - 211.90	Pass
STW-1111	01/01/07	H-3	262.20 ± 9.10	283.00	198.10 - 367.90	Pass
STW-1111	01/01/07	Mn-54	130.60 ± 11.50	123.80	86.70 - 160.90	Pass
STW-1111	01/01/07	Sr-90	9.60 ± 1.40	8.87	6.21 - 11.53	Pass
STW-1111	01/01/07	Zn-65	123.70 ± 17.00	114.80	80.40 - 149.20	Pass
STSO-1112	01/01/07	Co-57	501.20 ± 2.90	471.20	329.80 - 612.60	Pass
STSO-1112	01/01/07	Co-60	285.90 ± 2.10	274.70	192.30 - 357.10	Pass
STSO-1112	01/01/07	Cs-134	325.90 ± 7.40	327.40	229.20 - 425.60	Pass
STSO-1112	01/01/07	Cs-137	855.70 ± 4.60	799.70	559.80 - 1039.60	Pass
STSO-1112	01/01/07	Mn-54	750.90 ± 4.70	685.20	479.60 - 890.80	Pass
STAP-1113	01/01/07	Gr. Alpha	0.27 ± 0.04	0.60	0.00 - 1.20	Pass
STAP-1113	01/01/07	Gr. Beta	0.57 ± 0.05	0.44	0.22 - 0.66	Pass
STAP-1114	01/01/07	Co-57	3.51 ± 0.07	2.89	2.02 - 3.75	Pass
STAP-1114	01/01/07	Co-60	2.98 ± 0.10	2.91	2.03 - 3.78	Pass
STAP-1114	01/01/07	Cs-134	4.02 ± 0.16	4.20	2.94 - 5.45	Pass
STAP-1114	01/01/07	Cs-137	2.75 ± 0.12	2.57	1.80 - 3.34	Pass
STAP-1114	01/01/07	Mn-54	3.94 ± 0.12	3.52	2.46 - 4.57	Pass
STAP-1114	01/01/07	Sr-90	0.58 ± 0.18	0.61	0.43 - 0.79	Pass
STAP-1114	01/01/07	Zn-65	2.70 ± 0.10	2.68	1.88 - 3.49	Pass
STVE-1115	01/01/07	Co-57	8.90 ± 0.20	8.19	5.73 - 10.64	Pass
STVE-1115	01/01/07	Co-60	6.50 ± 0.20	5.82	4.08 - 7.57	Pass
STVE-1115	01/01/07	Cs-134	6.90 ± 0.30	6.21	4.35 - 8.07	Pass
STVE-1115	01/01/07	Cs-137	8.20 ± 0.30	6.99	4.90 - 9.09	Pass
STVE-1115	01/01/07	Mn-54	10.10 ± 0.30	8.46	5.91 - 10.98	Pass

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).


^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

APPENDIX F

. . i

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

Table Of Contents

I. Summary and Conclusions 1	
 II. Introduction	
 III. Program Description	;
IV. Results and Discussion 8 A. Groundwater Results 8 B. Surface Water Results 9 C. Drinking Water Well Survey 9 D. Summary of Results – Inter-laboratory Comparison Program 10 E. Leaks, Spills, and Releases 10 F. Trends 11 G. Investigations 11 H. Actions Taken 11	
V. References	

i

Appendices

Appendix A	Location Designation
Tables	
Table A-1	Radiological Groundwater Protection Program - Sampling Locations for the Limerick Generating Station, 2007
Figures	
Figure 1	Routine Well Water and Surface Water Sample Locations for the Radiological Groundwater Protection Program, Limerick Generating Station, 2007
Appendix B	Data Tables
Tables	
Table B-I.1	Concentrations of Tritium and Stronium-90 in Well Water Samples Collected as Part of the Radiological Groundwater Protection Program, Limerick Generating Station, 2007.
Table B-I.2	Concentrations of Gamma Emitters in Well Water Samples Collected as Part of the Radiological Groundwater Protection Program, Limerick Generating Station, 2007.
Table B-II.1	Concentrations of Tritium and Stronium-90 in Surface Water Samples Collected as Part of the Radiological Groundwater Protection Program, Limerick Generating Station, 2007.
Table B-II.2	Concentrations of Gamma Emitters in Surface Water Samples Collected as Part of the Radiological Groundwater Protection Program, Limerick Generating Station, 2007.

I. Summary and Conclusions

This report on the Radiological Groundwater Protection Program (RGPP) conducted for the Limerick Generating Station (LGS) by Exelon Nuclear covers the period 01 January 2007 through 31 December 2007.

In 2006, Exelon instituted a comprehensive program to evaluate the impact of station operations on groundwater and surface water in the vicinity of Limerick Generating Station. This evaluation involved numerous station personnel and contractor support personnel.

This report covers groundwater and surface water samples, collected from the environment, both on and off station property in 2007. During that time period, 90 analyses were performed on 36 samples from 21 locations.

In assessing all the data gathered for this report, it was concluded that the operation of Limerick Generating Station had no adverse radiological impact on the environment offsite of LGS. There are no know active releases into the groundwater at Limerick Generating Station.

Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) as specified in the Offsite Dose Calculation Manual (ODCM) in any of the groundwater or surface water samples. In the case of tritium, Exelon specified that it's laboratories achieve a lower limit of detection 10 times lower than that required by federal regulation.

Strontium-90 was not detected at a concentration greater than the LLD of 2.0 picoCuries per liter (pCi/L) in any of the groundwater or surface water samples tested.

Tritium was not detected in any of the groundwater or surface water samples at concentrations greater than the United States Environmental Protection Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission Reporting Limit) of 20,000 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L in 4 of 15 groundwater monitoring locations. The tritium concentrations ranged from 201 to 309 pCi/L. Although no drinking water pathway is available from groundwater, the dose via the drinking water pathway was calculated at 0.032 mrem to a child (total body), which was 0.553% of the 10 CFR 50, Appendix I dose limit. All results for Sr-90 and gamma emitting nuclides were less than MDC.

1

II. Introduction

The Limerick Generating Station (LGS), consisting of two 3458 MWt boiling water reactors owned and operated by Exelon Corporation, is located adjacent to the Schuylkill River in Montgomery County, Pennsylvania. Unit No. 1 went critical on 22 December 1984. Unit No. 2 went critical on 11 August 1989. The site is located in Piedmont countryside, transversed by numerous valleys containing small tributaries that feed into the Schuylkill River. On the eastern river bank elevation rises from approximately 110 to 300 feet mean sea level (MSL). On the western river bank elevation rises to approximately 50 feet MSL to the western site boundary.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) on samples collected in 2007.

A. Objective of the RGPP

The long-term objectives of the RGPP are as follows:

- 1. Identify suitable locations to monitor and evaluate potential impacts from station operations before significant radiological impact to the environment and potential drinking water sources.
- 2. Understand the local hydrogeologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface.
- 3. Perform routine water sampling and radiological analysis of water from selected locations.
- 4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner.
- 5. Regularly assess analytical results to identify adverse trends.
- 6. Take necessary corrective actions to protect groundwater resources.
- B. Implementation of the Objectives

The objectives identified have been implemented at Limerick Generating Station as discussed below:

1. Exelon and its consultant identified locations as described in the 2006 Phase 1 study. The Phase 1 study results and conclusions were made available to state and federal regulators as well as the public on an Exelon web site in station specific reports.

- 2. The Limerick Generating Station reports describe the local hydrogeologic regime. Periodically, the flow patterns on the surface and shallow subsurface are updated based on ongoing measurements.
- 3. Limerick Generating Station will continue to perform routine sampling and radiological analysis of water from selected locations.
- 4. Limerick Generating Station has implemented new procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner.
- 5. Limerick Generating Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends.
- C. Program Description

Samples for the ongoing ground water monitoring program were collected for Exelon Nuclear by Normandeau Associates, Inc.(NAI). This section describes the general collection methods used to obtain environmental samples for the LGS RGPP in 2007. Sample locations can be found in Table A–1, Appendix A.

1. Sample Collection

Groundwater and Surface Water

Samples of water were collected, managed, transported and analyzed in accordance with approved procedures following EPA methods. Both groundwater and surface water were collected. Sample locations, sample collection frequencies and analytical frequencies were controlled in accordance with approved station procedures. Contractor and/or station personnel were trained in the collection, preservation management, and shipment of samples, as well as in documentation of sampling events. Analytical laboratories were subject to internal quality assurance programs, industry cross-check programs, as well as nuclear industry audits. Station personnel reviewed and evaluated all analytical data deliverables as data were received.

Analytical data results were reviewed by both station personnel and an independent hydrogeologist for adverse trends or changes to hydrogeologic conditions. D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion, essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like nontritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (3He). This radioactive decay releases a beta particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

III. Program Description

A. Sample Analysis

This section describes the general analytical methodologies used by TBE to analyze the environmental samples for radioactivity for the Limerick Generating Station RGPP in 2007.

In order to achieve the stated objectives, the current program includes the following analyses:

4

- 1. Concentrations of gamma emitters in groundwater and surface water.
- 2. Concentrations of strontium in groundwater and surface water.
- 3. Concentrations of tritium in groundwater and surface water.
- B. Data Interpretation

The radiological data collected prior to Limerick Generating Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Limerick Generating Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criterion for the presence of activity. All analyses were designed to achieve the required LGS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

2. Laboratory Measurements Uncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus ±

the estimated sample standard deviation, as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

C. Background Analysis

A pre-operational radiological environmental monitoring program (preoperational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, aquatic life, and foodstuffs. The results of the monitoring were detailed in the report entitled, Pre-operational Radiological Environmental Monitoring Program Report, Limerick Generating Station Units 1 and 2, 1 January 1982 through 21 December 1984, Teledyne Isotopes and Radiation Management Corporation.

The pre-operational REMP contained analytical results from samples collected from both surface water and groundwater.

Monthly surface water sampling began in 1982, and the samples were analyzed for tritium as well as other radioactive analytes. During the preoperational program tritium was detected at a maximum concentration of 420 pCi/L, indicating that these preoperational results were from nuclear weapons testing and are radioactively decaying as predicted. Gamma isotopic results from the preoperational program were all less than or at the minimum detectable concentration (MDC) level.

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others. Additional detail may be found by consulting references.

a. Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and strontium-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s, and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected world wide since 1960. RadNet provides tritium precipitation concentration data for samples collected at stations through out the U.S. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in have typically been below 100 pCi/L since around 1980. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above. Water from previous vears was naturally captured in groundwater. As a result, some well water sources today are affected by the surface water from the 1960s that contained elevated tritium activity.

C.

Surface Water Data

Tritium concentrations are routinely measured in the Schuylkill and Delaware Rivers. Pennsylvania surface water data are typically less than 100 pCi/L.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 - 240 pCi/L or 140 ± 100 pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

IV. Results and Discussion

Gamma spectroscopy results for groundwater and surface water sample were reported for twelve nuclides (Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140).

A. Groundwater Results

Samples were collected from onsite wells throughout the year in accordance with the station radiological groundwater protection program. Analytical results and anomalies are discussed below.

Tritium

Samples from fifteen locations were analyzed for tritium activity (Table B– I.1, Appendix B). Tritium values ranged from non detectable to 309 pCi/L. Well MW-LR-5 had the highest value of 309 pCi/L. Although no drinking water pathway is available from groundwater, the dose via the drinking water pathway was calculated at 0.032 mrem to a child (total body), which was 0.553% of the 10 CFR 50, Appendix I dose limit.

Strontium

No Sr-90 activity was detected in any of the ground water samples analyzed (Table B–I.1, Appendix B).

Gamma Emitters

Potassium-40 was detected in one of 15 samples at a concentration of 155 pCi/Liter. No other gamma emitting nuclides were detected (Table B-I.2, Appendix B).

B. Surface Water Results

In accordance with the Station's radiological groundwater protection program surface water samples were collected from streams that transverses the site, as well as, from other water bodies that could influence the tritium concentration at Limerick. Analytical results and anomalies are discussed below.

Tritium

Samples from six locations were analyzed for tritium activity No tritium activity was detected in any surface water samples analyzed (Table B-1.3, Appendix B).

Strontium

No Sr-90 activity was detected in any of surface water samples analyzed (Table B–I.3, Appendix B).

Gamma Emitters

No gamma emitting nuclides were detected in any of the surface water samples analyzed (Table B–I.4, Appendix B).

C. Drinking Water Well Survey

A drinking water well survey was conducted during the summer 2006 by CRA (CRA 2006) around the Limerick Generating Station. CRA reviewed the Pennsylvania Groundwater Information System database to identify wells within a 1-mile radius from the center of the Station. Forty-six domestic withdrawal wells, two industrial wells, two commercial wells, and one institutional well were identified within the specified radius. The well depths range from 78 to 345 feet bgs, and they yield between 8 and 100 gallons per minute (gpm). All wells are completed in the Brunswick Formation.

The Station has one potable supply well and one fire water well. The potable supply well is constructed as an open-rock borehole. Groundwater was measured at a depth 102 feet bgs during a well pump replacement in 2004 (personal communication with Station, 2006). The pump was placed at a depth of approximately 294 feet bgs. The total well depth and the

depth of the steel casing are unknown. The well is located approximately 175 feet east of the Reactor Building. The Station estimates that the well is pumped at approximately 2 gpm. The fire water well is constructed as an open-rock borehole. Groundwater was encountered at 121 feet bgs during a well pump replacement in 2004. The well pump was placed at a depth of approximately 399 feet bgs. The total well depth and the depth of the steel casing are unknown. The well is located approximately 500 feet east of the cooling towers. The well is used only in an emergency fire situation; therefore, water use is estimated to be zero.

D. Summary of Results – Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE are presented in the Annual Radiological Environmental Operating Report.

E. Leaks, Spills, and Releases

Tritium was discovered in the "C" aux boiler on 11/17/2007 (IR 700944). Activity found was 4030 pCi/L. Subsequent sampling of the Refuel Water Storage Tank (RWST) and the telltale indicator for the guard pipe from the condensate return line of the steam heat to the circulating water pump house (gooseneck) showed positive tritium, as well. The gooseneck was discharging directly to the ground, which resulted in a notification to the PA DEP per the Exelon radiological groundwater protection program procedure. Total time that tritiated water was being discharged to the ground was three days. On 11/20/2007 the discharge from the gooseneck was redirected to a drain that goes through the oil interceptors, oily waste separators, hold pond and then to radwaste discharge line to outfall 001.

The release rate was determined by operations as 2.9 gallons/minute. Total volume released to the ground was calculated as 47,423 liters for the three days of discharge. The highest activity observed during that time period was 4850 pCi/L. Based upon this information a total of 2.3E+08 pCi were discharged to the ground. There is no drinking water pathway that could become contaminated from this release. Monitoring well P-11 is the closes well to the release. The maximum dose via the drinking water pathway was calculated at 0.502 mrem to a child (total body), which was 8.369% of the 10 CFR 50, Appendix I dose limit. F. Trends

No trends have been identified.

G. Investigations

Conclusions from the Phase 1 report have been made available to state and federal regulators and to the public. Currently no investigations are on going.

- H. Actions Taken
 - 1. Compensatory Actions

There have been no station events requiring compensatory actions at the Limerick Generating Station.

2. Installation of Monitoring Wells

No new wells have been installed in 2007

3. Actions to Recover/Reverse Plumes

No actions were required to recover or reverse groundwater plumes.

- V. References
 - 1. Conestoga Rovers and Associates, Fleetwide Assessment, Limerick Generating Station, Sanatoga, Pennsylvania, Ref. No. 045136(17), September 2006
 - 2. Pre-operational Radiological Environmental Monitoring Program Report, Limerick Generating Station Units 1 and 2, 1 January 1982 through 21 December 1984, Teledyne Isotopes and Radiation Management Corporation.

::

5.5 а 5

ł,

APPENDIX A

LOCATION DESIGNATION

 TABLE A-1:
 Radiological Groundwater Protection Program – Sampling Locations for the Limerick Generating Station, 2007

Location	Туре	Distance
MW-LR-1	Monitoring Well	Onsite
MW-LR-2	Monitoring Well	Onsite
MW-LR-3	Monitoring Well	Onsite
MW-LR-4	Monitoring Well	Onsite
MW-LR-5	Monitoring Well	Onsite
MW-LR-6	Monitoring Well	Onsite
MW-LR-7	Monitoring Well	Onsite
MW-LR-8	Monitoring Well	Onsite
MW-LR-9	Monitoring Well	Onsite
P11	Monitoring Well	Onsite
P14	Monitoring Well	Onsite
P16	Monitoring Well	Onsite
P17	Monitoring Well	Onsite
P3	Monitoring Well	Onsite
SP22	Monitoring Well	Onsite
SW-LR-2	Surface Water	Offsite
SW-LR-4	Surface Water	Offsite
SW-LR-6	Surface Water	Offsite
SW-LR-7	Surface Water	Onsite
SW-LR-8	Surface Water	Onsite
SW-LR-9	Surface Water	Onsite

A - 1

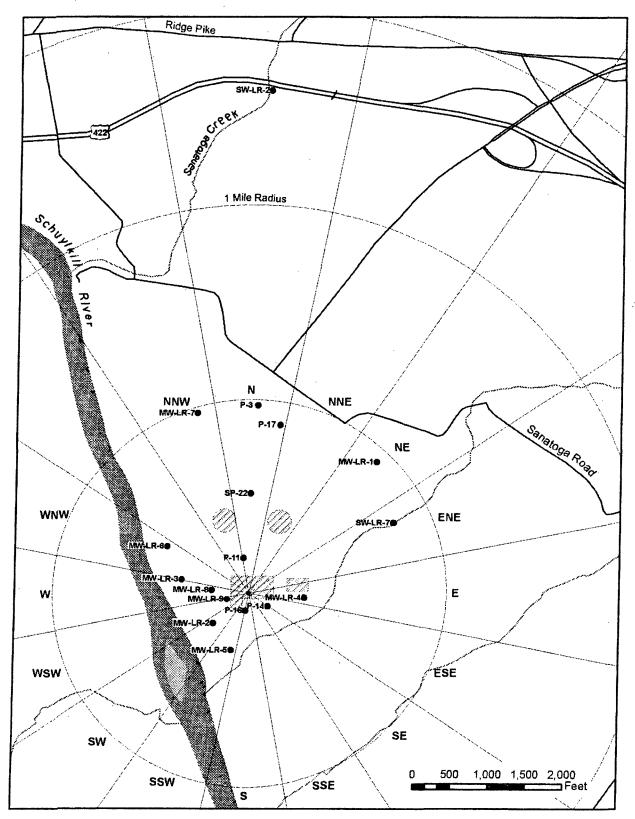


Figure 1 Routine Well Water and Surface Water Sample Locations for the Radiological Groundwater Protection Program, Limerick Generating Station, 2007

APPENDIX B

DATA TABLES

TABLE B-I.1CONCENTRATIONS OF TRITIUM AND STRONTIUM-90 IN WELL WATER SAMPLES
COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER
PROTECTION PROGRAM, LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SITEDATEH-3SR-90MW-LR-105/02/07< 162MW-LR-110/30/07< 178< 1.8MW-LR-205/01/07< 164MW-LR-305/02/07< 166MW-LR-305/02/07< 166MW-LR-305/02/07< 163MW-LR-405/01/07< 163MW-LR-505/02/07309 \pm 117MW-LR-505/02/07309 \pm 117MW-LR-505/02/07309 \pm 117MW-LR-511/01/07281 \pm 125< 0.8MW-LR-511/01/07201 \pm 126< 0.7MW-LR-605/02/07< 166MW-LR-610/21/07< 183MW-LR-705/02/07< 163MW-LR-810/30/07< 188< 1.0MW-LR-810/30/07215 \pm 128< 1.2MW-LR-810/30/07215 \pm 128< 1.2MW-LR-810/30/07209 \pm 112< 0.5MW-LR-905/03/07308 \pm 117MW-LR-905/03/07209 \pm 122MW-LR-901/30/07250 \pm 127< 1.5MW-LR-901/30/07< 163P-1105/01/07< 163P-1405/03/07< 164P-1505/03/07< 164P-1605/03/07< 164P-1705/01/07< 164P-1605/03/07< 164P-1705/01/07< 164P-1705/01/07< 164P-1605/03/07< 164P-1705/01/07 <th></th> <th>COLLECTION</th> <th></th> <th></th>		COLLECTION		
MW-LR-110/30/07< 178	SITE	DATE	H-3	SR-90
MW-LR-2 05/01/07 < 164 MW-LR-2 10/31/07 < 189 < 0.8 MW-LR-3 05/02/07 < 166 MW-LR-3 05/01/07 < 163 MW-LR-4 05/01/07 < 163 MW-LR-5 05/02/07 309 \pm 117 MW-LR-5 05/02/07 309 \pm 117 MW-LR-5 05/02/07 309 \pm 117 MW-LR-5 05/02/07 215 \pm 125 < 0.8 MW-LR-5 05/02/07 201 \pm 126 < 0.7 MW-LR-5 05/02/07 < 166 MW-LR-6 05/02/07 < 163 MW-LR-7 05/02/07 < 163 MW-LR-8 0/30/07 281 \pm 114 MW-LR-8 0/30/07 281 \pm 114 MW-LR-8 0/30/07 215 \pm 128 < 1.2 MW-LR-9 05/03/07 281 \pm 114 MW-LR-9 05/03/07 209 \pm 131 < 1.3 MW-LR-9 05/03/07 209 \pm 131 < 1.3 MW-LR-9 10/30/07 215 \pm 128 <	MW-LR-1	05/02/07	< 162	
MW-LR-2 $10/31/07$ < 189< 0.8MW-LR-3 $05/02/07$ < 166	MW-LR-1	10/30/07	< 178	< 1.8
MW-LR-3 05/02/07 < 166 MW-LR-3 10/31/07 < 196 < 1.4 MW-LR-3 05/02/07 309 ± 117 MW-LR-4 05/02/07 309 ± 117 MW-LR-5 05/02/07 309 ± 117 MW-LR-5 11/01/07 281 ± 125 < 0.8 MW-LR-5 11/01/07 201 ± 126 < 0.7 MW-LR-6 05/02/07 < 166 MW-LR-7 05/02/07 < 166 MW-LR-8 05/02/07 < 166 MW-LR-7 05/02/07 < 163 MW-LR-8 05/03/07 281 ± 114 MW-LR-8 01/30/07 215 ± 128 < 1.2 MW-LR-8 05/03/07 208 ± 117 MW-LR-8 00/30/07 209 ± 112 MW-LR-9 05/03/07 208 ± 117 MW-LR-9 05/03/07 209 ± 112 MW-LR-9 05/03/07 209 ± 112 MW-LR-9 0/30/07 250 ± 127 < 1.5 MW-LR-9 0/30/07 216 ± 128 < 1.6 P-11 0/30/07 < 163 < 1.6	MW-LR-2	05/01/07	< 164	
MW-LR-3 $10/31/07$ < 196< 1.4MW-LR-4 $05/01/07$ < 163	MW-LR-2	10/31/07	< 189	< 0.8
NW-LR-3 $10/31/07$ < 196< 1.4MW-LR-4 $05/01/07$ < 163	MW-LR-3	05/02/07	< 166	
MW-LR-410/30/07< 179< 1.3MW-LR-505/02/07 309 ± 117 MW-LR-511/01/07281 ± 125 < 0.8	MW-LR-3	10/31/07	< 196	< 1.4
MW-LR-505/02/07 309 ± 117 MW-LR-511/01/07281 ± 125 < 0.8	MW-LR-4	05/01/07	< 163	
MW-LR-511/01/07 281 ± 125 < 0.8MW-LR-5F11/01/07 201 ± 126 < 0.7	MW-LR-4	10/30/07	< 179	< 1.3
MW-LR-5F MW-LR-5 SPLIT11/01/07 201 ± 126 222 ± 101 < 0.6 MW-LR-605/02/07 10/31/07 < 166 194 < 1.8 MW-LR-605/02/07 10/30/07 < 163 191 < 1.3 MW-LR-705/02/07 10/30/07 < 163 191 < 1.3 MW-LR-8 MW-LR-805/03/07 10/30/07 281 ± 114 215 ± 128 < 1.2 < 1.5 MW-LR-8 MW-LR-810/30/07 10/30/07 $< 115 \pm 128$ < 1.2 < 1.2 < 0.5 MW-LR-9 MW-LR-905/03/07 00/30/07 308 ± 117 209 ± 112 < 1.5 < 1.3 < 1.5 MW-LR-9 MW-LR-9 DUP 05/03/07 MW-LR-9 DUP 05/03/07 209 \pm 112 < 1.5 < 1.3 < 1.5 MW-LR-9 MW-LR-9 SPLIT 10/30/07 < 163 < 194 < 1.6 P-11 P-14 P-1605/03/07 $05/03/07$ $< 164P-16< 1.310/30/07< 164P-16P-17P-17P-17P-3P-305/01/07< 158P-3< 1.6SP-2205/01/07< 159< 159$	MW-LR-5	05/02/07	309 ± 117	
MW-LR-5 SPLIT11/01/07 222 ± 101 < 0.6MW-LR-605/02/07< 166	MW-LR-5	11/01/07	281 ± 125	< 0.8
MW-LR-5 SPLIT11/01/07 222 ± 101 < 0.6MW-LR-605/02/07< 166	MW-LR-5F	11/01/07	201 ± 126	< 0.7
MW-LR-6 $10/31/07$ < 194< 1.8MW-LR-7 $05/02/07$ < 163	MW-LR-5 SPLIT	11/01/07		< 0.6
MW-LR-705/02/07< 163MW-LR-710/30/07< 191	MW-LR-6	05/02/07	< 166	
MW-LR-7 $10/30/07$ < 191< 1.3MW-LR-8 $05/03/07$ 281 ± 114 MW-LR-8 $10/30/07$ < 188	MW-LR-6	10/31/07	< 194	< 1.8
MW-LR-7 $10/30/07$ < 191< 1.3MW-LR-8 $05/03/07$ 281 ± 114 MW-LR-8 $10/30/07$ < 188	MW-LR-7	05/02/07	< 163	
MW-LR-810/30/07< 188< 1.0MW-LR-8M10/30/07215 \pm 128< 1.2	MW-LR-7	10/30/07	< 191	. < 1.3
MW-LR-8M MW-LR-8 SPLIT $10/30/07$ 215 ± 128 < 1.2 < 175< 0.5MW-LR-9 SPLIT $05/03/07$ 308 ± 117 209 ± 112 308 ± 117 209 ± 112 MW-LR-9 DUP $05/03/07$ 209 ± 112 209 ± 112 MW-LR-9 $10/30/07$ 269 ± 131 < 1.3 250 ± 127 MW-LR-9M $10/30/07$ 250 ± 127 < 1.5 40.4 P-11 $05/01/07$ < 163 $10/30/07$ < 163 194 P-14 $05/03/07$ < 165 $10/30/07$ < 165 213 ± 122 P-16 $05/03/07$ < 167 213 ± 122 < 1.7	MW-LR-8	05/03/07	281 ± 114	
MW-LR-8 SPLIT $10/30/07$ < 175 < 0.5 MW-LR-9 SPLIT $05/03/07$ 308 ± 117 MW-LR-9 DUP $05/03/07$ 209 ± 112 MW-LR-9 DUP $05/03/07$ 269 ± 131 < 1.3 MW-LR-9 M $10/30/07$ 250 ± 127 < 1.5 MW-LR-9 SPLIT $10/30/07$ < 175 < 0.4 P-11 $05/01/07$ < 163 P-14 $05/03/07$ < 165 P-14 $05/03/07$ < 165 P-16 $05/03/07$ < 167 P-16 $05/03/07$ < 164 P-16 $05/03/07$ < 164 P-17 $05/01/07$ < 164 P-17 $05/01/07$ < 164 P-3 $05/01/07$ < 158 P-3 $05/01/07$ < 159	MW-LR-8	10/30/07	< 188	< 1.0
MW-LR-8 SPLIT $10/30/07$ < 175 < 0.5 MW-LR-9 SPLIT $05/03/07$ 308 ± 117 MW-LR-9 DUP $05/03/07$ 209 ± 112 MW-LR-9 DUP $05/03/07$ 269 ± 131 < 1.3 MW-LR-9 $10/30/07$ 250 ± 127 < 1.5 MW-LR-9M $10/30/07$ 250 ± 127 < 1.5 MW-LR-9 SPLIT $10/30/07$ < 163 P-11 $05/01/07$ < 163 P-14 $05/03/07$ < 165 P-14 $05/03/07$ < 165 P-16 $05/03/07$ < 167 P-16 $05/03/07$ < 164 P-16 $05/03/07$ < 164 P-17 $05/01/07$ < 164 P-17 $05/01/07$ < 164 P-3 $05/01/07$ < 158 P-3 $05/01/07$ < 159	MW-LR-8M	10/30/07	215 ± 128	< 1.2
MW-LR-9 DUP05/03/07209 \pm 112MW-LR-910/30/07269 \pm 131< 1.3	MW-LR-8 SPLIT	10/30/07	< 175	< 0.5
MW-LR-910/30/07 269 ± 131 < 1.3MW-LR-9M10/30/07 250 ± 127 < 1.5MW-LR-9 SPLIT10/30/07< 175< 0.4P-1105/01/07< 163P-1405/03/07< 165P-1405/03/07< 166P-1605/03/07< 167P-1605/03/07< 164P-1705/01/07< 164P-1705/01/07< 164P-305/01/07< 158P-305/01/07< 159	MW-LR-9	05/03/07	308 ± 117	
MW-LR-9M MW-LR-9 SPLIT $10/30/07$ 250 ± 127 < 1.5 < 175< 0.4P-11 $05/01/07$ < 163 10/30/07< 164 < 1.6	MW-LR-9 DUP	05/03/07	209 ± 112	
MW-LR-9 SPLIT $10/30/07$ < 175< 0.4P-11 $05/01/07$ < 163	MW-LR-9	10/30/07	269 ± 131	< 1.3
MW-LR-9 SPLIT $10/30/07$ < 175 < 0.4 P-11 $05/01/07$ < 163 P-11 $10/30/07$ < 194 < 1.6 P-14 $05/03/07$ < 165 P-14 $10/30/07$ < 196 < 1.3 P-16 $05/03/07$ < 167 P-16 DUP $05/03/07$ < 164 P-16 $10/30/07$ < 213 ± 122 < 1.7 P-17 $05/01/07$ < 164 P-17 $05/01/07$ < 164 P-3 $05/01/07$ < 158 P-3 $10/31/07$ < 194 < 1.6 SP-22 $05/01/07$ < 159	MW-LR-9M	10/30/07	250 ± 127	< 1.5
P-11 $10/30/07$ < 194< 1.6P-14 $05/03/07$ < 165		10/30/07		
P-14 $05/03/07$ < 165P-14 $10/30/07$ < 196< 1.3P-16 $05/03/07$ < 167P-16 DUP $05/03/07$ < 164P-16 $10/30/07$ < 164P-17 $05/01/07$ < 164P-17 $05/01/07$ < 164P-3 $05/01/07$ < 158P-3 $10/31/07$ < 194SP-22 $05/01/07$ < 159	P-11	05/01/07	< 163	
P-14 $10/30/07$ < 196< 1.3P-16 $05/03/07$ < 167	P-11	10/30/07	< 194	< 1.6
P-16 $05/03/07$ < 167 P-16 DUP $05/03/07$ < 164 P-16 $10/30/07$ 213 ± 122 < 1.7 P-17 $05/01/07$ < 164 P-17 $05/01/07$ < 164 P-3 $05/01/07$ < 158 P-3 $05/01/07$ < 194 < 1.6 SP-22 $05/01/07$ < 159	P-14	05/03/07	< 165	
P-16 $05/03/07$ < 164 213 ± 122< 1.7P-16 $10/30/07$ < 164 10/30/07< 164 199< 1.4	P-14	10/30/07	< 196	< 1.3
P-16 10/30/07 213 ± 122 < 1.7 P-17 05/01/07 < 164	P-16	05/03/07	< 167	
P-16 10/30/07 213 ± 122 < 1.7 P-17 05/01/07 < 164	P-16 DUP	05/03/07	< 164	
P-17 10/30/07 < 199 < 1.4 P-3 05/01/07 < 158 P-3 10/31/07 < 194 < 1.6 SP-22 05/01/07 < 159	P-16	10/30/07	213 ± 122	< 1.7
P-17 10/30/07 < 199 < 1.4 P-3 05/01/07 < 158 P-3 10/31/07 < 194 < 1.6 SP-22 05/01/07 < 159	P-17	05/01/07	< 164	
P-3 10/31/07 < 194 < 1.6 SP-22 05/01/07 < 159				< 1.4
P-3 10/31/07 < 194 < 1.6 SP-22 05/01/07 < 159	P-3	05/01/07	< 158	
				[`] < 1.6
	SP-22	05/01/07	< 159	
	SP-22	10/30/07	< 194	< 0.8

SAMPLES ARE DISTILLED FOR H-3 ANALYSIS

B - 1

	STC	COLLECTION PERIOD	Be-7	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	i-131	Cs-134	Cs-137	Ba-140	La-140	
	MW-LR-1	10/30/07	< 44	< 92	< 4	< 4	< 11	< 4	< 11	< 5	< 9	< 17	< 5	< 5	< 35	< 10	,
	MW-LR-2	10/31/07	< 44	< 45	< 4	< 5	< 10	< 5	< 11	< 6	< 9	< 14	< 5	< 4	< 36	< 12	
	MW-LR-3	10/31/07	< 43	< 98	< 5	< 6	< 10	< 4	< 9	< 6	< 8	< 13	< 4	< 5	< 29	< 14	
	MW-LR-4	10/30/07	< 36	< 78	< 4	< 4	< 8	< 4	< 7	< 4	< 7	< 12	< 3	< 4	< 24	< 10	
	MW-LR-5	11/01/07	< 31	< 73	< 3	< 3	< 8	< 3	< 7	< 3	< 7	< 9	< 3	< 4	< 24	< 8	
	MW-LR-5F	11/01/07	< 41	< 36	< 5	< 5	< 11	< 5	< 11	< 6	< 10	< 14	< 5	< 5	< 30	< 12	
	MW-LR-5 SPLIT	11/01/07	< 27	< 65	< 2	< 2	< 4	< 3	< 7	< 3	< 6	< 7	< 3	< 3	< 11	< 5	
B - 2	MW-LR-6	10/31/07	< 42	< 101	< 5	< 6	< 12	< 5	< 11	< 5	< 10	< 13	< 5	< 5	< 35	< 13	
	MW-LR-7	10/30/07	< 44	< 92	< 5	< 4	< 11	< 5	< 9	< 6	< 8	< 14	< 4	< 5	< 33	< 9	
	MW-LR-8	10/30/07	< 44	< 95	< 5	< 5	< 12	< 5	< 9	< 6	< 10	< 15	< 4	< 5	< 39	< 12	
	MW-LR-8M	10/30/07	< 36	< 78	< 4	< 4	< 9	< 4	< 7	< 4	< 7	< 12	< 3	< 4	< 29	< 8	
	MW-LR-8 SPLIT	10/30/07	< 28	< 69	< 3	< 2	< 3	< 2	< 5	< 2	< 4	< 6	< 2	< 2	< 11	< 3	
	MW-LR-9	10/30/07	< 46	< 92	< 5	< 5	< 10	< 5	< 13	< 6	< 10	< 18	< 5	< 5	< 41	< 14	
	MW-LR-9M	10/30/07	< 31	< 36	< 3	< 4	< 8	< 4	< 7	< 4	< 7	< 11	< 3	< 4	< 25	< 9	
	MW-LR-9 SPLIT		< 28	< 76	< 2	< 3	< 8	< 1	< 5	< 4	< 5	< 8	< 2	< 3	< 13	< 3	
	P-11	10/30/07	< 51	< 47	< 5	< 5	< 11	< 7	< 11	< 6	< 10	< 17	< 4	< 5	< 35	< 12	
	P-14	10/30/07	< 37	155 ± 45	< 4	< 4	< 8	< 3	< 8	< 4	< 7	< 12	< 4	< 4	< 26	< .8	
	P-16	10/30/07	< 27	< 28	< 3	< 3	< 7	< 3	< 7	< 3	< 6	< 11	< 3	< 3	< 24	< 7	
	P-17	10/30/07	< 30	< 31	< 3	< 3	< 7	< 4	< 6	< 4	< 6	< 11	< 3	< 3	< 23	< 7	
	P-3	10/31/07	< 35	< 70	< 4	< 4	< 9	< 3	< 7	< 4	< 7	< 12	< 4	< 4	< 29	< 10	
	SP-22	10/30/07	< 25	< 53	< 3	< 3	< 6	< 2	< 5	< 3	< 5	< 9	< 3	< 3	< 21	< 7	

TABLE B-1.2 CONCENTRATIONS OF GAMMA EMITTERS IN WELL WATER SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, LIMERICK GENERATING STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE B-II.1CONCENTRATIONS OF TRITIUM AND STRONIUM-90 IN SURFACE WATER
SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER
PROTECTION PROGRAM, LIMERICK GENERATING STATION 2007

	COLLECTION		
SITE	DATE	H-3	SR-90
SW-LR-2	4/30/07	< 164	
SW-LR-2	10/29/07	< 197	< 0.7
SW-LR-4	10/29/07	< 195	
SW-LR-6	10/29/07	< 194	
SW-LR-7	4/30/07	< 166	
SW-LR-7	10/30/07	< 181	< 1.5
SW-LR-8	10/31/07	< 192	
SW-LR-9	10/31/07	< 191	

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SAMPLES ARE DISTILLED FOR H-3 ANALYSIS

.

TABLE B-II.2CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED AS PART OF THE
RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, LIMERICK GENERATING STATION, 2007

STC	COLLECTION PERIOD	Be-7	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
SW-LR-2		< 38	< 35	< 4	< 4	< 9	< 4	< 7	< 5	< 7	< 14	< 4	< 4	< 31	< 10
SW-LR-7	10/30/07	< 34	< 74	< 4	< 4	< 8	< 4	< 7	< 4	< 7	< 13	< 3	< 4	< 28	< 9
1															•
•															
•													`		
								. ·							
	-														
	· ·														

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA