

Clinton Power Station R. R. 3, Box 228 Clinton, IL 61727

10CFR50.36a U-603851 April 12, 2008

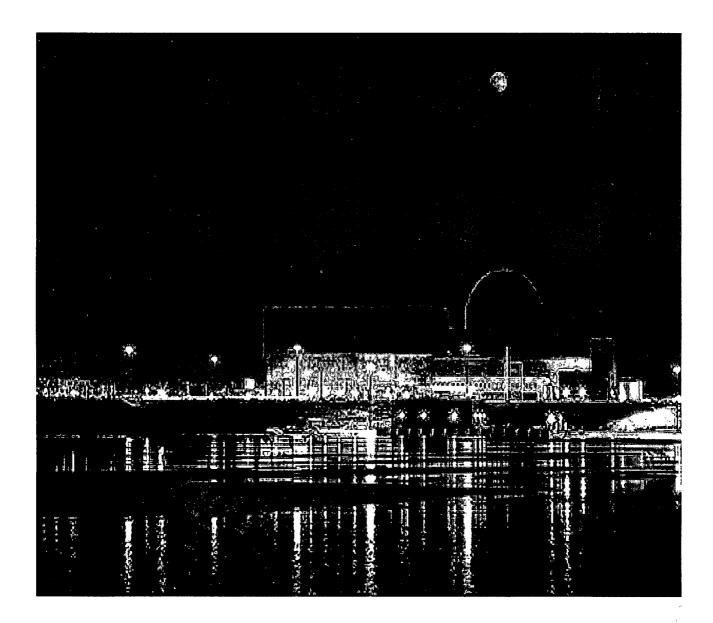
Document Control Desk Nuclear Regulatory Commission Washington, D.C. 20555

> Clinton Power Station Facility Operating License No. NPF-62 NRC Docket No. 50-461

Subject: Clinton Power Station 2007 Annual Radioactive Effluent Release Report

Attached is the Annual Radioactive Effluent Release Report for Clinton Power Station (CPS) for the period of January 1, 2007, through December 31, 2007. This submittal is provided in accordance with the requirements of section 5.6.3 of the CPS Technical Specifications and section 7.1 of the Offsite Dose Calculation Manual.

Respectfully, IN Ch


M. E. Kanavos Plant Manager Clinton Power Station

EET/RJC/blf

Attachment

cc: Regional Administrator, Region III NRC Senior Resident Inspector - Clinton Power Station Office of Nuclear Facility Safety – Illinois Emergency Management Agency

NRR

01 January 2007 - 31 December 2007

ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

CLINTON POWER STATION – DOCKET NUMBER 50-461

Prepared by:

Clinton Power Station

TABLE OF CONTENTS

SECTION	TITLE	PAGE
1	Executive Summary	5
2	Introduction	6
3	Supplemental Information	12
4	Radioactive Effluent Data	16
5	Solid Waste Disposal Information	27
6	Dose Measurements and Assessments	30
7	Meteorological Data and Dispersion Estimates	41
8	ODCM Operational Remedial Requirement Reports	73
9	Changes to Radioactive Waste Treatment Systems	74
10	New Locations for Dose Calculation and / or Environmental Monitoring	75
11	Corrections to Data Reported in Previous Reports	78
12	Changes to the Offsite Dose Calculation Manual	79

1

LIST OF TABLES

j

/

Ň

Î

TABLE NUMBER	TITLE	PAGE			
	Gaseous Effluents – Summation of All Releases	16			
1	1A Air Doses Due to Gaseous Releases	17			
	 1B Doses to a Member of the Public Due to Radioiodines, Tritium and Particulates in Gaseous Releases 	17			
2	Gaseous Effluents – Nuclides Released	18			
3	Radioactive Gaseous Waste LLD Values	19			
4	Waterborne Effluents – Summation of All Releases	21			
5	Waterborne Effluents – Nuclides Released	22			
6	Radioactive Liquid Waste LLD Values	23			
7	Solid Waste and Irradiated Fuel Shipments	28			
8	Maximum Offsite Doses and Dose Commitments to Members of the Public In Each Sector				
9	Calculated Doses to Members of the Public During Use of the Department of Natural Resources Recreation Area in the East- Southeast Sector within the CPS Site Boundary				
10	Calculated Doses to Members of the Public During Use of the Road in the Southeast Sector within the CPS Site Boundary	35			
İ1	Calculated Doses for the Residents in the South-Southeast Sector within the CPS Site Boundary	36			
12	Calculated Doses for the Residents in the Southwest Sector within the CPS Site Boundary	37			
13	Calculated Doses to Members of the Public During Use of the Agricultural Acreage in the South-Southwest Sector within the CPS Site Boundary	38			
14	Calculated Doses for the Residents in the West-Southwest Sector within the CPS Site Boundary	39			
15	Calculated Doses to Members of the Public During Use of Clinton Lake in the Northwest Sector within the CPS Site Boundary	40			
16	Meteorological Data Availability	42			
17	Classification of Atmospheric Stability	43			
18	Joint Wind Frequency Distribution by Stability Class	44			

·

LIST OF FIGURES

FIGURE NUMBER	TITLE	PAGE
1	CPS Airborne Effluent Release Points	7
2	CPS Waterborne Effluents Release Pathway	8
3	Effluent Exposure Pathways	11
4	Areas Within the CPS Site Boundary Open to Members of the Public	33
		·
	 :	

ľ

Ì

ĥ

•

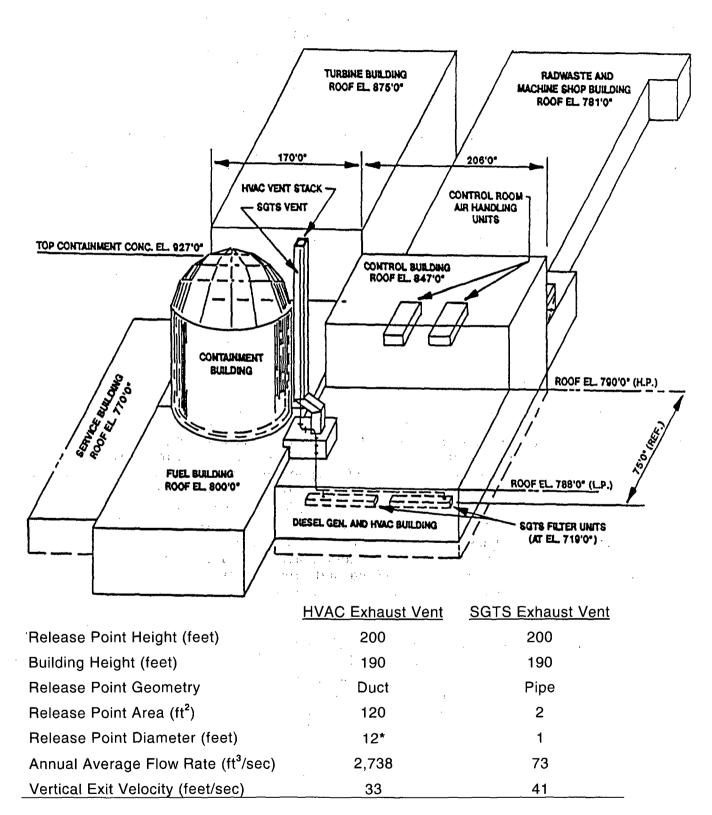
ľ

h

Î

Ì

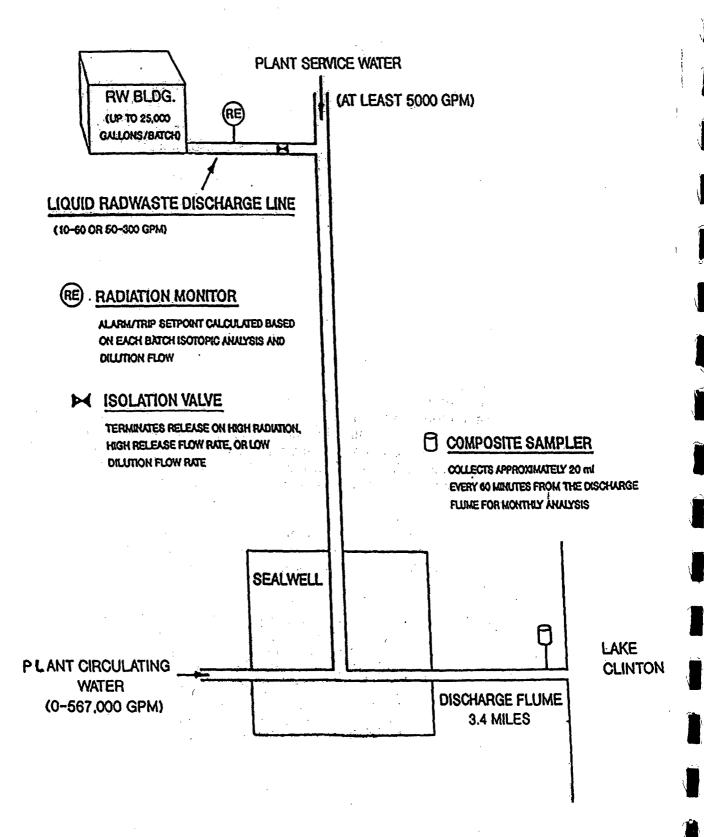
ł


Ì

Ļ

1

Figure 1


CPS AIRBORNE EFFLUENT RELEASE POINTS

* Effective $2(A/\pi)^2$ diameter

Figure 2

CPS WATERBORNE EFFLUENTS RELEASE PATHWAY

Exposure Pathways

A radiological exposure pathway is the vehicle by which the public may become exposed to radioactivity released from nuclear facilities. The major pathways of concern are those that could cause the highest calculated radiation dose. These pathways are determined from the type and amount of radioactivity released, the environmental transport mechanism, and how the plant environs are used (i.e., residence, gardens, etc.). The environmental transport mechanism includes the historical meteorological characteristics of the area that are defined by wind speed and wind direction. This information is used to evaluate how the radionuclides will be distributed within the surrounding area. The most important factor in evaluating the exposure pathway is the use of the environment by the public living around CPS. Factors such as location of homes in the area, use of cattle for milk, and the growing of gardens for vegetable consumption are important considerations when evaluating exposure pathways. Figure 3 illustrates the effluent exposure pathways that were considered.

The radioactive gaseous effluent exposure pathways include direct radiation, deposition on plants and soil, and inhalation by animals and humans. The radioactive liquid effluent exposure pathways include fish consumption and direct exposure from Lake Clinton.

· · ·

Dose Assessment

 γ_{1}

Whole body radiation involves the exposure of all organs in the human body to ionizing radiation. Most naturally occurring background radiation exposures consist of whole body exposure although specific organs can receive radiation exposure from distinct radionuclides. These radionuclides enter the body through inhalation and ingestion and seek different organs depending on the nuclide. For example, radioactive iodine selectively concentrates in the thyroid, radioactive cesium collects in muscle and liver tissue, and radioactive strontium in mineralized bone.

The total dose to organs from a given radionuclide also depends on the amount of activity in the organ and the amount of time that the radionuclide remains in the body. Some radionuclides remain for very short periods of time due to their rapid radioactive decay and / or elimination rate from the body, while others may remain longer.

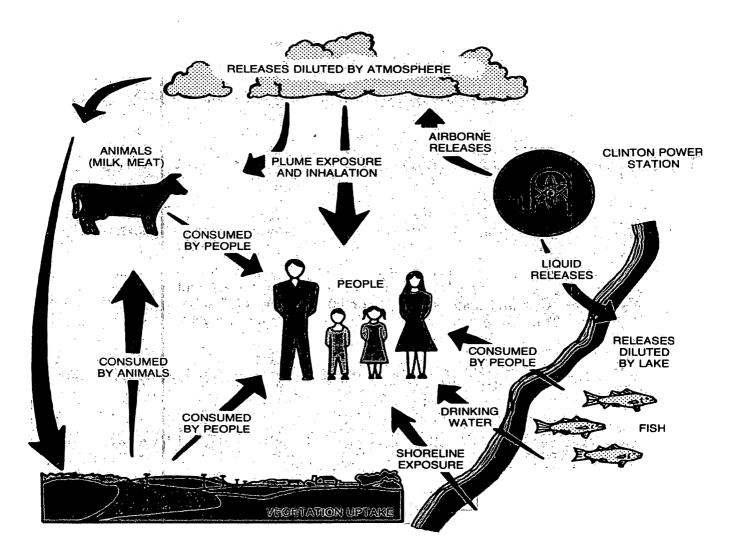
Radiation dose to the public in the area surrounding CPS is calculated for each release using historical weather conditions coupled with the concentrations of radioactive material present. The dose is calculated for all sixteen geographical sectors surrounding CPS and includes the location of the nearest residents, vegetable gardens producing broad leaf vegetables and dairy animals in all sectors. The calculated dose also uses the scientific concept of a "maximum exposed individual" and "standard man", and the maximum use factors for the environment, such as how much milk an average person consumes and how much air a person breathes in a year.

Section 6 contains more detailed information on dose to the public.

Gaseous Effluents

Gaseous effluent radioactivity released from CPS is classified into two (2) categories. The first category is noble gases. The second category consists of I^{131} , I^{133} , H^3 , and all radionuclides in particulate form with radioactive half-lives greater than eight (8) days. Noble gases - such as xenon and krypton - are biologically and chemically non-reactive. As such, these radionuclides – specifically Kr^{85m}, Xe¹³³ and Xe¹³⁵ – are the major contributors to external doses. Halogens I^{131} and I^{133} , H^3 and radionuclides in particulate form with radioactive half-lives greater than eight (8) days are the major contributors to internal doses.

Liquid Effluents


Liquid effluents may originate from two (2) sources at CPS. The first is effluent from the Radioactive Waste Treatment System. This water is demineralized prior to release. Samples are taken after the tank has been allowed to adequately recirculate. The second is from heat exchanger leaks found in closed cooling water systems that service radioactively contaminated systems. This would be considered an abnormal release. As a matter of station management commitment, CPS strives to be a zero (0) radioactive liquid release plant. The last liquid release occurred in September of 1992.

Solid Waste Shipments

To reduce the radiation exposure to personnel and maintain the federally required ALARA concept, the NRC and the Department of Transportation [DOT] have established limits on the types of radioactive waste and the amount of radioactivity that may be packaged and shipped offsite for burial or disposal. To ensure that CPS is complying with these regulations, the types of waste and the radioactivity present are reported to the NRC.

FIGURE 3

EFFLUENT EXPOSURE PATHWAYS

SECTION 3

SUPPLEMENTAL INFORMATION

I. REGULATORY LIMITS

The NRC requires nuclear power facilities to be designed, constructed and operated in such a way that the radioactivity in effluent releases to unrestricted areas are kept ALARA. To ensure these criteria are met, each license authorizing nuclear reactor operation includes the Offsite Dose Calculation Manual [ODCM] governing the The ODCM designates the limits for release of release of radioactive effluents. effluents, as well as the limits for doses to the general public from the release of radioactive liquids and gases. These limits are taken from Title 10 of the Code of Federal Regulations, Part 50, Appendix I (10CFR50 Appendix I), Title 10 of the Code of Federal Regulations, Part 20.1301 (10CFR20.1301) and Section 5.5.1 of our Station's Maintaining effluent releases within these operating Technical Specifications. limitations demonstrates compliance with ALARA principles. These limits are just a fraction of the dose limits established by the Environmental Protection Agency [EPA] found within Environmental Dose Standard Title 40, Code of Federal Regulations, Part 190 [40CFR190]. The EPA has established dose limits for members of the public in the vicinity of a nuclear power plant. These dose limits are:

- Less than or equal to 25 mRem per year to the total body.

- Less than or equal to 75 mRem per year to the thyroid.

Less than or equal to 25 mRem per year to any other organ.

Specific limit information is given below.

A. Gaseous Effluents

1. The maximum permissible concentrations for gaseous effluents shall not exceed the values provided within Section 5.5.4.g of Station Technical Specifications. To ensure these concentrations are not exceeded, dose rates due to radioactive materials released in gaseous effluents from the site to areas at and beyond the site area boundary shall be limited to the following:

a. Noble gases

Less than or equal to 500 mRem/year to the total

body.

- Less than or equal to 3,000 mRem/year to the skin.
- b. I¹³¹, I¹³³, H³, and all radionuclides in particulate form with radioactive half-lives greater than eight (8) days:

Less than or equal to 1,500 mRem/year to any organ.

- 2. In accordance with Title 10 of the Code of Federal Regulations, Part 50, Appendix I, (10CFR50 Appendix I) air dose due to noble gases released in gaseous effluents to areas at and beyond the site boundary shall be limited to the following:
 - a. Less than or equal to 5 mRad for gamma radiation and less than or equal to 10 mRad for beta radiation during any calendar quarter.
 - b. Less than or equal to 10 mRad for gamma radiation and less than or equal to 20 mRad for beta radiation during any calendar year.
- 3. In accordance with Title 10 of the Code of Federal Regulations, Part 50, Appendix I, (10CFR50 Appendix I), dose to a member of the public (from I¹³¹, I¹³³, H³, and all radionuclides in particulate form with radioactive half-lives greater than eight (8) days) in gaseous effluents released to areas at and beyond the site boundary shall be limited to the following values:
 - a. Less than or equal to 7.5 mRem to any organ, during any calendar quarter.
 - b. Less than or equal to 15 mRem to any organ, during any calendar year.
- B. Liquid Effluents
 - The concentration of radioactive material released in liquid effluents to unrestricted areas shall be limited to the values provided within Section 5.5.4.b of Station Technical Specifications for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2.0E-04 μCi/ml total activity.
 - 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released to unrestricted areas shall be limited to:
 - a. Less than or equal to 1.5 mRem to the total body and less than or equal to 5 mRem to any organ during any calendar quarter.
 - Less than or equal to 3 mRem to the total body and less than or equal to 10 mRem to any organ during any calendar year.

II. AVERAGE ENERGY

b.

The CPS ODCM limits the dose equivalent rates due to the release of fission and activation gases to less than or equal to 500 mRem per year to the total body and less than or equal to 3,000 mRem per year to the skin. These limits are based on dose calculations using actual isotopic concentrations from our effluent release streams and not based upon the gross count rate from our monitoring systems. Therefore, the average beta and gamma energies [E] for gaseous effluents as described in Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and

-- page 13 of 80 --

Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants", are not applicable.

-- page 14 of 80 --

III. MEASUREMENT AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

A. Fission and Activation Gases

- 1. Gas samples are collected weekly and are counted on a high purity germanium detector (HPGe) for principal gamma emitters. The HVAC and SGTS release points are continuously monitored and the average release flow rates for each release point are used to calculate the total activity released during a given time period.
- 2. Tritium is also collected by passing a known volume of the sample stream through a gas washer containing a known quantity of demineralized water. The collected samples are distilled and analyzed by liquid scintillation. The tritium released was calculated for each release point from the measured tritium concentration, the volume of the sample, the tritium collection efficiency, and the respective stack exhaust flow rates.

B. Iodines

lodine is continuously collected on a silver zeolite cartridge filter via an isokinetic sampling assembly from each release point. Filters are normally exchanged once per week and then analyzed on an HPGe system. The average flow rates for each release point are averaged over the duration of the sampling period and these results - along with specific isotopic concentrations - are then used to determine the total activity released during the time period in question.

C. Particulates

Particulates are continuously collected on a filter paper via an isokinetic sampling assembly on each release point. Filters are normally exchanged once per week and then analyzed on an HPGe system. The average flow rates for each release point are averaged over the duration of the sampling period and these results - along with specific isotopic concentrations - are then used to determine the total activity released during the time period in question.

D. Liquid Effluents

Each tank of liquid radwaste is recirculated for at least two (2) tank volumes, sampled, and analyzed for principal gamma emitters prior to release. Each sample tank is recirculated for a sufficient amount of time prior to sampling ensuring that a representative sample is obtained. Samples are then analyzed on an HPGe system and liquid release permits are generated based upon the values obtained from the isotopic analysis and the most recent values for H³, gross alpha, Fe⁵⁵, Sr⁸⁹ and Sr⁹⁰. An aliquot based on release volume is saved and added to composite containers. The concentrations of composited isotopes and the volumes of the releases associated with these composites establish the proportional relationships that are then utilized for calculating the total activity released for these isotopes.

IV. **DESCRIPTION OF ERROR ESTIMATES**

Estimates of measurement and analytical error for gaseous and liquid effluents are calculated as follows:

$$E_{T} = \sqrt{[(E_{1})^{2} + (E_{2})^{2} + ...(E_{n})^{2}]}$$

÷ . .

where:

.

 E_{T} = total percent error, and

 $E_1...E_N$ = percent error due to calibration standards, laboratory analysis, instruments, sample flow, etc.

SECTION 4

RADIOACTIVE EFFLUENT DATA

TABLE 1

GASEOUS EFFLUENTS - Summation Of All Releases Data Period: 01 January 2007 – 31 December 2007 Continuous Mixed Mode

		Units	Quarter	Quarter	Quarter	Quarter	Est.
							Total
			1	2	3	4	Error, %
Α.	Fission & Activation	n Gases					
1.	Total Release	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01	30
2.	Average release rate for period	μCi/sec	0.00E+01	0.00E+01	0.00E+01	0.00E+01	
3.	Percent of ODCM Limit	%	*	*	*	*	
В.	Iodines						-
1.	Total Iodine-131	Ci	1.59E-06	9.27E-06	2.18E-05	9.32E-06	31
2.	Average release rate for period	μCi/sec	2.04E-07	1.18E-06	2.75E-06	1.17E-06	
3.	Percent of ODCM Limit	%	*	*	*	*	
С.	Particulates						-
1.	Particulates with half-lives >8 days	Ci	0.00E+01	1.28E-06	1.88E-05	9.23E-07	24
2.	Average release rate for period	μCi/sec	0.00E+01	1.63E-07	2.37E-06	1.16E-07	
3.	Percent of ODCM Limit	%	*	*	*	*	
4.	Gross alpha radioactivity	Ci	5.21E-07	1.02E-06	7.46E-07	6.38E-07	
D.	Tritium						
1.	Total Release	Ci	9.84E+00	8.90E+00	9.02E+00	9.78E+00	21
2.	Average release rate for period	μCi/sec	1.27E+00	1.13E+00	1.14E+00	1.23E+00	
3.	Percent of ODCM Limit	%	*	*	*	*]

* Applicable limits are expressed in terms of dose. See Tables 1A and 1B of this report.

.

TABLE 1A

Air Doses Due to Gaseous Releases

Doses per Quarter

Type of	ODCM	1 st	% of	2 nd	% of	3 rd	% of	4 th	% of
Radiation	Limit	Quarter	Limit	Quarter	Limit	Quarter	Limit	Quarter	Limit
Gamma	5 mRad	0.00E+01	0.00E+01	0.00E+01	0.00E+01	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Beta	10 mRad	0.00E+01	0.00E+01	0.00E+01	0.00E+01	0.00E+01	0.00E+01	0.00E+01	0.00E+01

Doses per Year

Type of Radiation	ODCM Limit	Year	% of Limit
Gamma	10 mRad	0.00E+01	0.00E+01
Beta	20 mRad	0.00E+01	0.00E+01

1. S.

TABLE 1B

Doses to a Member of the Public Due to Radioiodines, Tritium, and Particulates in Gaseous Releases

Doses per Quarter

<u>D0303 p</u>									
Type of	ODCM	Quarter	% of						
Organ	Limit	1 .	Limit	2	Limit	3	Limit	4	Limit
Bone	7.5	1.11E-08	1.48E-07	6.47E-08	8.63E-07	7.39E-06	9.85E-05	6.79E-08	9.06E-07
Liver	7.5	1.77E-04	2.37E-03	1.61E-04	2.14E-03	1.63E-04	2.17E-03	1.76E-04	2.35E-03
TBody	7.5	1.78E-04	2.37E-03	1.63E-04	2.18E-03	1.80E-04	2.40E-03	1.78E-04	2. <u>38E</u> -03
Thyroid	7.5	1.83E-04	2.44E-03	1.91E-04	2.55E-03	2.35E-04	3.14E-03	2.08E-04	2.77E-03
Kidney	7.5	1.78E-04	2.37E-03	1.61E-04	2.14E-03	1.63E-04	2.18E-03	1.77E-04	2.36E-03
Lung	7.5	1.78E-04	2.37E-03	1.61E-04	2.14E-03	1.63E-04	2.18E-03	1.77E-04	2.35E-03
GI LLI	7.5	1.78E-04	2.37E-03	1.61E-04	2.15E-03	1.67E-04	2.23E-03	1.77E-04	2.36E-03

Doses per Year

			······································
Type of	ODCM	Year	% of
Organ	Limit	Tear	Limit 🗠
Bone	15	7.53E-06	5.02E-05
Liver	15	6.78E-04	4.52E-03
TBody	15	6.99E-04	4.66E-03
Thyroid	15	8.17E-04	5.45E-03
Kidney	15	6.78E-04	4.52E-03
Lung	15	6.78E-04	4.52E-03
GI LLI	15	6.83E-04	4.55E-03

CLINTON POWER STATION GASEOUS EFFLUENTS - Nuclides Released

YEAR: 2007

Mixed Mode Release X					
Elevated Release		Conti	nuous Mode	X	
Ground-Level Release		Batch	Mode		, and ,
	Units	Quarter	Quarter	Quarter	Quarter
A. Fission Gases ^[1]		1 ^[2]	2 ^[2]	3 ^[2]	4 ^[2]
Total for Period	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
B. lodines ^[1]					
¹³¹	Ci	1.59E-06	9.26E-06	2.18E-05	9.32E-06
¹³³	Ci	0.00E+01	0.00E+01	2.15E-05	1.43E-05
Total for Period	Ci	1.59E-06	9.26E-06	4.33E-05	2.36E-05
C. Particulates ^[1]					
Co ⁶⁰	Ci	0.00E+01	1.24E-06	9.46E-06	9.23E-07
Sr ⁸⁹	Ci	0.00E+01	0.00E+01	9.37E-06	0.00E+01
Y ^{91m}	Ci	0.00E+01	0.00E+01	4.00E-03	0.00E+01
Cs ¹³⁸	Ci	0.00E+01	0.00E+01	1.36E-02	0.00E+01
Ce ¹⁴¹	Ci	0.00E+01	3.75E-08	0.00E+01	0.00E+01
Gross Alpha	Ci	5.21E-07	1.02E-06	7.46E-07	6.38E-07
Total for Period	Ci	5.21E-07	2.30E-06	1.76E-02	1.56E-06
D. Tritium ^[1]	• •	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Total for Period	Ci	9.84E+00	8.90E+00	9.02E+00	9.78E+00

^[1] Ten (10) times the values found in 10CFR20 Appendix B, Table 2, Column 1 are used for all Effluent Concentration Limit [ECL] calculations. For dissolved and entrained noble gases, the concentration is limited to 2.00E-04 µCi/cc total activity.

^[2] The lower the value of the actual sample activity - with respect to background activity – the greater the counting error. Proportionally, large errors are reported for the various components of CPS gaseous effluents because of their consistent low sample activity.

An entry of 0.00E+01 indicates that the Minimum Detectable Activity (MDA) concentration of the radionuclide was below the LLD value listed in Table 6.

TYPE OF ACTIVITY ANALYSIS	Lower Limit of Detection (LLD) ^a (µCi/cc)
Principal Gamma Emitters, [Noble Gases] ^{b,c}	≤1.00E-04
H ³ ^c	≤1.00E-06
1 ^{131 d}	≤1.00E-12
^{133 d}	≤1.00E-10
Principal Gamma Emitters, [Particulates] ^{b,e}	≤1.00E-11
Sr ⁸⁹ , Sr ^{90 g}	≤1.00E-11
Gross Alpha ^f	`≤1.00E-11

RADIOACTIVE GASEOUS WASTE LLD VALUES

Table 3 Notations

^aThe Lower Limit of Detection (LLD) as defined for purposes of these specifications, as an "a priori" determination of the smallest concentration of radioactive material in a sample that will yield a net count - above system background - that will be detected with a 95% probability and with a low (5%) probability of incorrectly concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

$$LLD = \frac{4.66 \cdot s_b}{E \cdot V \cdot 2.22 \times 10^6 \cdot Y \cdot e^{-\lambda \Delta t}}$$

Where:

LLD is the "a priori" lower limit of detection as defined above, as μ Ci per unit mass or volume,

 s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate, in counts per minute (cpm),

E is the counting efficiency, in counts per disintegration,

V is the sample size in units of mass or volume,

2.22E+06 is the number of disintegrations per minute (dpm) per microcurie,

Y is the fractional radiochemical yield, when applicable,

and

 Δt for plant effluents is the elapsed time between the midpoint of sample collection and the time of counting (sec).

 λ is the radioactive decay constant for the particular radionuclide (sec⁻¹)

Typical values of E, V, Y, and Δt should be used in the calculation.

The LLD is defined as an *a priori* (before the fact) limit representing the capability of a measurement system and not as an *a posteriori* (after the fact) limit for a particular measurement.

^bThe principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr⁸⁷, Kr⁸⁸, Xe¹³³, Xe^{133m}, Xe¹³⁵, and Xe¹³⁸ in noble gas releases and Mn⁵⁴, Fe⁵⁹, Co⁵⁸, Co⁶⁰, Zn⁶⁵, Mo⁹⁹, I¹³¹, Cs¹³⁴, Cs¹³⁷, Ce¹⁴¹, and Ce¹⁴⁴ in iodine and particulate releases. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable - together with those of the above nuclides - shall also be analyzed and reported in the Radioactive Effluent Release Report.

Weekly grab sample and analysis

^dContinuous charcoal sample analyzed weekly

[®]Continuous particulate sample analyzed weekly

¹Composite particulate sample analyzed monthly

⁸Composite particulate sample analyzed quarterly

WATERBORNE EFFLUENTS - Summation Of All Releases Data Period: 01 January 2007 through 31 December 2007

There were zero (0) liquid radwaste releases from CPS in 2007.

.

	Units	Quarter	Quarter	Quarter	Quarter	Est. Total
		1	2	3	4	Error, %
Fission & Activation P	roducts					
Total Release	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01	N/A
Average diluted concentration during period	μCi/mI	0.00E+01	0.00E+01	0.00E+01	0.00E+01	
Percent of ODCM Limit	%	N/A	N/A	N/A	N/A	
Tritium		• •				
Total Release	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01	N/A
Average diluted concentration during period	μCi/mI	0.00E+01	0.00E+01	0.00E+01	0.00E+01	
Limit	%	N/A	N/A	N/A	N/A	
Dissolved and Entrain	ed Gases	S		· · · · · · · · · · · · · · · · · · ·	•	
Total Release	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01	N/A
Average diluted concentration during period	μCi/ml	0.00E+01	0.00E+01	0.00E+01	0.00E+01	
Percent of ODCM Limit	%	N/A	N/A	N/A	N/A	
Gross Alpha Radioact	ivity	· 1	-			
Gross alpha radioactivity	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01	N/A
		•				
Volume of Waste eased (prior to ution)	Liters	0.00E+01	0.00E+01	0.00E+01	0.00E+01	N/A
Volume of dilution er used during period	Liters	0.00E+01	0.00E+01	0.00E+01	0.00E+01	N/A
	Total Release Average diluted concentration during period Percent of ODCM Limit Tritium Total Release Average diluted concentration during period Percent of ODCM Limit Dissolved and Entrain Total Release Average diluted concentration during period Percent of ODCM Limit Gross Alpha Radioact Gross alpha radioactivity Volume of Waste eased (prior to ition)	Fission & Activation ProductsTotal ReleaseCiAverage dilutedμCi/mlperiodμCi/mlperiod%Tritium%TritiumTotal ReleaseCiAverage dilutedμCi/mlconcentration duringμCi/mlperiod%Total ReleaseCiAverage dilutedμCi/mlconcentration duringμCi/mlperiod%Percent of ODCM%Limit%Dissolved and Entrained GasesTotal ReleaseCiAverage dilutedconcentration duringperiodμCi/mlPercent of ODCM%Limit%Gross Alpha RadioactivityCiVolume of WasteLiterseased (prior toLitersution)Liters	1Fission & Activation ProductsTotal ReleaseCi $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ Percent of ODCM Limit%N/ATritiumTotal ReleaseCi $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ Percent of ODCM Limit%N/ADissolved and Entrained GasesTotal ReleaseCiTotal ReleaseCi $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ Percent of ODCM Limit $\%$ N/AGross Alpha RadioactivityGi 0.00E+01Volume of Waste eased (prior to ution)Liters $0.00E+01$ Volume of dilutionLiters $0.00E+01$	12Fission & Activation ProductsTotal ReleaseCi $0.00E+01$ $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ Percent of ODCM%N/AN/ALimit%N/AN/ATritiumTotal ReleaseCi $0.00E+01$ $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ Percent of ODCM Limit%N/AN/ADissolved and Entrained GasesTotal ReleaseCi $0.00E+01$ Total ReleaseCi $0.00E+01$ $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ Percent of ODCM Limit%N/AN/ADissolved and Entrained GasesTotal ReleaseCi $0.00E+01$ $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ Percent of ODCM Limit%N/AN/AGross Alpha RadioactivityCi $0.00E+01$ $0.00E+01$ Volume of Waste eased (prior to tion)Liters $0.00E+01$ $0.00E+01$ Volume of dilutionLiters $0.00E+01$ $0.00E+01$	123Fission & Activation ProductsTotal ReleaseCi $0.00E+01$ $0.00E+01$ $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ $0.00E+01$ Percent of ODCM Limit%N/AN/AN/ATotal ReleaseCi $0.00E+01$ $0.00E+01$ $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ $0.00E+01$ Percent of ODCM Limit%N/AN/AN/ADissolved and Entrained GasesCi $0.00E+01$ $0.00E+01$ $0.00E+01$ Average diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ $0.00E+01$ Percent of ODCM Limit%N/AN/AN/AAverage diluted concentration during period μ Ci/ml $0.00E+01$ $0.00E+01$ $0.00E+01$ Percent of ODCM Limit%N/AN/AN/AGross Alpha RadioactivityGi $0.00E+01$ $0.00E+01$ $0.00E+01$ Volume of Waste eased (prior to tion)Liters $0.00E+01$ $0.00E+01$ $0.00E+01$ Volume of dilutionLiters $0.00E+01$ $0.00E+01$ $0.00E+01$ $0.00E+01$	1234Fission & Activation ProductsTotal ReleaseCi0.00E+010.00E+010.00E+010.00E+010.00E+01Average diluted concentration during period μ Ci/ml0.00E+010.00E+010.00E+010.00E+01Percent of ODCM Limit%N/AN/AN/AN/AN/ATotal ReleaseCi0.00E+010.00E+010.00E+010.00E+01Average diluted concentration during period μ Ci/ml0.00E+010.00E+010.00E+010.00E+01Percent of ODCM Limit%N/AN/AN/AN/AN/ADissolved and Entrained GasesTotal Release concentration during periodCi0.00E+010.00E+010.00E+010.00E+01Average diluted concentration during period μ Ci/ml0.00E+010.00E+010.00E+010.00E+01Average diluted concentration during period μ Ci/ml0.00E+010.00E+010.00E+010.00E+01Percent of ODCM period μ Ci/ml0.00E+010.00E+010.00E+010.00E+010.00E+01Percent of ODCM period $\%$ N/AN/AN/AN/APercent of ODCM period ψ N/AN/AN/AN/APercent of ODCM period μ Ci/ml0.00E+010.00E+010.00E+010.00E+01Percent of ODCM period ψ N/AN/AN/AN/AN/AVolume of Waste eased

WATERBORNE EFFLUENTS - Nuclides Released ^[1] Data Period: 01 January 2007 – 31 December 2007 All Modes

There were zero (\emptyset) liquid radwaste releases from CPS in 2007.

Continuous Mode			Bato	X	
Nuclide	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4
A. Tritium					

H ³	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01

B. Fission and Activation Products

	-		· · · · · · · · · · · · · · · · · · ·		
Sr ⁸⁹	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Sr ⁹⁰	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Cs ¹³⁴	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Cs ¹³⁷	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
131	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Co ⁵⁸	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Co ⁶⁰	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Fe ⁵⁹	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Zn ⁶⁵	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Mn ⁵⁴	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Cr ⁵¹	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Zr/Nb ⁹⁵	Ci	0.00E+01	0.00E+01	0:00E+01	0.00E+01
Mo ⁹⁹	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Tc-99m	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Ba/La ¹⁴⁰	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Ce ¹⁴¹	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Ce ¹⁴⁴	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Total	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01

C. Dissolved and Entrained Noble Gases

Xe ¹³³	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Xe ¹³⁵	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01
Total	Ci	0.00E+01	0.00E+01	0.00E+01	0.00E+01

^[1] A value corresponding to ten times the values found in 10CFR20 Appendix B, Table 2, Column 2 are used for all Effluent Concentration Limit (ECL) calculations. For dissolved and entrained noble gases, the concentration is limited to 2.00E-04 μ Ci/ml total activity.

-- page 23 of 80 --

TYPE OF ACTIVITY ANALYSIS	Lower Limit of Detection (LLD) ^a (μCi/ml)
Principal Gamma Emitters	≤5.00E-07
1 ¹³¹	≤1.00E-06
Dissolved and Entrained Gases (Gamma Emitters) ^c	≤1.00E-05
H ³	≤1.00E-05
Gross Alpha	≤1.00E-07
Sr ⁸⁹ , Sr ⁹⁰	≤5.00E-08
Fe ⁵⁵	≤1.00E-06

RADIOACTIVE LIQUID WASTE LLD VALUES

Table 6 Notations

^aThe Lower Limit of Detection (LLD) as defined for purposes of these specifications, as an "a priori" determination of the smallest concentration of radioactive material in a sample that will yield a net count - above system background - that will be detected with a 95% probability and with only a 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

$$LLD = \frac{4.66 \cdot s_b}{E \cdot V \cdot 2.22 \times 10^6 \cdot Y \cdot e^{-\lambda \Delta t}}$$

Where:

LLD is the "a priori" lower limit of detection as defined above, as μ Ci per unit mass or volume,

 s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate, in counts per minute (cpm),

Table 6 Notations (continued)

E is the counting efficiency, as counts per disintegration,

V is the sample size in units of mass or volume,

2.22E+06 is the number of disintegrations per minute (dpm) per

microcurie,

Y is the fractional radiochemical yield, when applicable,

 λ is the radioactive decay constant for the particular radionuclide (sec⁻¹)

and

 Δ_t for plant effluents is the elapsed time between the midpoint of sample collection and the time of counting (sec).

Typical values of E, V, Y, and λt should be used in the calculation.

The LLD is defined as an *a priori* (before the fact) limit representing the capability of a measurement system and not as an *a posteriori* (after the fact, MDA) limit for a particular measurement.

^bThe principal gamma emitters for which the LLD requirement applies include the following radionuclides: Mn⁵⁴, Fe⁵⁹, Co⁵⁸, Co⁶⁰, Zn⁶⁵, Mo⁹⁹, Cs¹³⁴, Cs¹³⁷, Ce¹⁴¹, and Ce¹⁴⁴ shall also be measured, but with an LLD of 5.0E-06. This list does not mean that only these nuclides are detected and reported. Other gamma peaks that are measurable - together with those of the above nuclides - shall also be analyzed and reported in the Radioactive Effluent Release Report.

^cDissolved and entrained gases are: Xe¹³³, Xe¹³⁵, Xe¹³⁸, Kr^{85m}, Kr⁸⁷ and Kr⁸⁸.

1 1 1 1 1 1

BATCH RELEASES

There were zero (Ø) liquid radwaste releases from CPS in 2007.

A. Batch Liquid Releases: 2007

.

1.	Number of batch releases:	Ø
2.	Total time period for batch releases:	N/A
3.	Maximum time period for batch release:	N/A
4.	Average time period for batch release:	N/A
5.	Minimum time period for batch release:	N/A
6.	Average stream flow during periods of release:	N/A
7.	Total waste volume:	N/A
8.	Total dilution volume:	N/A

B. Batch Gaseous Releases: 2007

1.	Number of batch releases:	Ø
2.	Total time period for batch releases:	N/A
3.	Maximum time period for batch release:	N/A
4.	Average time period for batch release	N/A
5.	Minimum time period for batch release:	N/A

. . . .

ABNORMAL RELEASES

Information concerning abnormal radioactive liquid and gaseous releases is presented below for the year 2007. There were no abnormal or unplanned liquid or gaseous releases from CPS in 2007.

Liquid Releases:

Number of Abnormal Liquid Releases: Ø

.

Activity Released [Ci]

Nuclides	Activity [Ci]
N/A	Ø
Total	Ø

•

 $\gamma = 1.12$

Gaseous Releases:

Number of Abnormal Gaseous Releases: Ø

Activity Released [Ci]

Nuclides	Activity [Ci]
N/A	Ø
N/A	o tasa Ø
N/A	Ø
N/A	Ø
N/A	Ø
N/A	Ø
Total	Ø

••

SECTION 5

SOLID WASTE DISPOSAL INFORMATION

During this reporting period – 01 January 2007 through 31 December 2007 - there were fifteen (15) radioactive waste shipments and zero (\emptyset) irradiated fuel shipments from CPS. In addition, the CPS ODCM requires reporting of the following information for solid waste shipped offsite during the above reporting period:

1. Container volume: Class A Waste: 11,386* ft³ / Class B Waste: Ø ft³ / Class C Waste: 14.7 ft³

* This total includes Dry Active Waste (DAW), resins, filter sludges and evaporator bottoms.

- 2. Total curie quantity: Class A Waste was 606.8 curies and Class B Waste was Ø curies (determined by dose-to-curie and sample concentration methodology estimates) and Class C Waste was 1.31 curies in 2007.
- 3. Principal radionuclides: See A.2 for listing of measured radionuclides.
- 4. Source of waste and processing employed: Resins, filter sludges and evaporator bottoms dewatered or solidified in cement and non-compacted dry active waste.
- 5. Type of container: Type A and Strong Tight Container.
- 6. Solidification agent or absorbent: None.

Table 7

SOLID WASTE AND IRRADIATED FUEL SHIPMENTS

,	A.1. Type of Waste	Units	January – June 2007	July – December 2007	Est. Total Error, %
	Spent resins, filter	ft ³	1,710	288	
a.	sludges, evaporator			······································	25
	bottoms, etc.	Ci	199	408	
	Dry compactable		4,600	4,600	
b.	b. waste, contaminated equipment, etc.	· · · · ·	19	· · · · · · · · · · · · · · · · · · ·	25
		Ci	0.377	0.442	
	Irradiated	ft ³	(Ø)	(Ø)	
C.	c. components, control			· · ·	25
	rods, etc.	Ci	(Ø)	(Ø)	
d. Other Wastes		ft ³	(Ø)	198	
					25
		Ci	(Ø)	2.39E-03	

A. Solid Waste Shipped Offsite for Burial or Disposal: [**NOT** irradiated fuel]

* Total curie quantity and principal radionuclides were determined by measurements.

A.2. Estimate of major nuclide composition (by type of waste)

1. Spent resins, filters, evaporator bottoms, etc.

Waste	Nuclide	% Percent	Curico
Class	Name	Abundance	Curies
A	Mn ⁵⁴	4.553	27.7
	Fe ⁵⁵	64.181	390
	Co ⁶⁰	22.820	139
	Ni ⁶³	0.699	4.24
	Other	7.745	47.1

Waste Class	Nuclide Name	% Percent Abundance	Curies
В	Mn⁵⁴	Ø	Ø
	Fe ⁵⁵	Ø	Ø
	Co ⁶⁰	Ø	Ø
	Other	Ø	Ø
	,		

2. Dry compactable waste, contaminated equipment, etc.

Waste	Nuclide	% Percent	Curies
Class	Name	Abundance	Curies
Α	Mn ⁵⁴	4.891	0.040
	Fe ⁵⁵	79.006	0.647
	Co ⁶⁰	13.843	0.113
	Other	2.259	0.019

Table 7

SOLID WASTE AND IRRADIATED FUEL SHIPMENTS [continued]

A.3. Solid Waste Disposition

January - June 2007	·	
Number of Shipments	Mode of Transportation	Destination
1	Hittman Transport	Barnwell Waste Management Facility
4	Hittman Transport	Duratek / Bear Creek
1	Hittman Transport	Energy Solutions Barnwell
4	Hittman Transport	Energy Solutions, LLC. (Containerized)

July - December 2007

: .

Number of Shipments	Mode of Transportation	Destination
4	Hittman Transport	Duratek / Bear Creek
1	Hittman Transport	Studsvik Processing Facility, LLC

B. Irradiated Fuel Shipments (Disposition)

Number of Shipments	Mode of Transportation	Destination
Zero (Ø)	n N/A set stars	N/A

-- page 30 of 80 --

SECTION 6

DOSE MEASUREMENTS AND ASSESSMENTS

This section of the Annual Effluent Release Report provides the dose received by receptors around CPS from gaseous and liquid effluents. The dose to the receptor that would have received the highest dose in each sector (defined as the Critical Receptor for that sector) is listed within this report. This section also provides the dose to individuals who were inside the Site Boundary. This section also summarizes CPS's compliance with the requirements found within 49CFR190.

The assumptions used in determining dose values are as follows:

- All receptors within a five (5) mile radius are included in the Annual Land Use Census. This Annual Census determines what dose pathways are present as well as the distance of each receptor from the site.
- The annual average meteorological data for 2006 was used in conjunction with the Annual Land Use Census to determine the dose to each receptor within five (5) miles.
- The doses for each receptor from each sector were determined using methodologies given in the ODCM.
- The activity used in these assessments is the total activity released by CPS for the year 2007 including radionuclides with half-lives less than eight (8) days and when dose pathway factors were available.
- The occupancy factor was taken into consideration by calculating the dose to individuals using areas inside the Site Boundary in non-residential areas. The occupancy factor is determined by dividing the number of hour[s] of occupancy per year (taken from the ODCM) and dividing that value by the total number of hour[s] per year.
- Dose to individuals using areas inside the Site Boundary (that are not residences) was calculated using the Ground Plane and Inhalation pathways.

MAXIMUM OFFSITE DOSES AND DOSE COMMITMENTS TO MEMBERS OF THE PUBLIC IN EACH SECTOR Data Period: 01 January 2007 – 31 December 2007

This table illustrates the dose that a member from the public would most likely be exposed to from radioactive effluents in each sector from CPS. These values represent the maximum dose likely to expose a member of the public in each sector.

	RECEPTOR INFORMATION			AIR	BORNE EFF	LUENT DOS	E	WATER	BORNE	
			lodine and Particulates (mRem)		Noble Gases (mRad)		EFFLUENT DOSE (mRem) ^[1]			
Sector	Distance (miles)	Pathways	Organ	Age	Organ	Total Body	Gamma	Beta	Organ	Total Body
N	0.9	GP, I, M, V	Th	Α	7.82E-04	6.40E-04	0.00E+01	0.00E+01	0.00E+01	0.00E+01
NNE	1.0	GP, I	Th	A	2.03E-04	2.01E-04	0.00E+01	0.00E+01		
NE	1.3	GP, I	Th	Т	1.14E-04	1.13E-04	0.00E+01	0.00E+01	1	
ENE	1.8	GP, I	Th	Α	8.21E-05	8.13E-05	0.00E+01	0.00E+01		
E	1.0	GP, I, M	Th	A	1.60E-04	1.49E-04	0.00E+01	0.00E+01	ĺ	
ESE	3.2	GP, I	Th	A	7.16E-05	7.09E-05	0.00E+01	0.00E+01	1	
SE.	2.8	GP, I	Th	A	6.430E-05	6.37E-05	0.00E+01	0.00E+01		
SSE	1.7	GP, I	Th	Т	5.14E-05	5.08E-05	0.00E+01	0.00E+01	1	
S	3.0	GP, I, V	Th	Α	1.04E-04	9.39E-05	0.00E+01	0.00E+01	1	
SSW	2.9	GP, I	Th	A	4.02E-05	3.98E-05	0.00E+01	0.00E+01	1	
SW	0.7	GP, I	Th	A	1.64E-04	1.63E-04	0.00E+01	0.00E+01	1	
wsw	1.6	GP, I	Th	A	4.29E-05	4.25E-05	0.00E+01	0.00E+01	1	
W	1.2	GP, I, V	Th.	С	2.52E-04	2.20E-04	0.00E+01	0.00E+01		
WNW	1.6	GP, I, V	Th	A	2.41E-04	2.19E-04	0.00E+01	0.00E+01	1	
NW	1.6	GP, I, V	Th	A	2.31E-04	2.11E-04	0.00E+01	0.00E+01	1	
NNW	1.3	GP, I, M, V	Th	A	3.79E-04	3.36E-04	0.00E+01	0.00E+01	1	
L					: · ·	· ·		<u></u>	4	
						•		,		

<u>Key for Table 8</u>

GP = Ground Plane I = Inhalation	V = Vegetables Th = Thyroid	A = Adult T = Teen
M = Cows Meat	TH = Thyrold	I = Infant
		C = Child

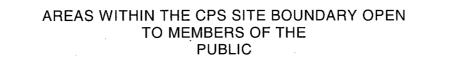
All doses were within all regulatory limits, including limits from 40CFR190.

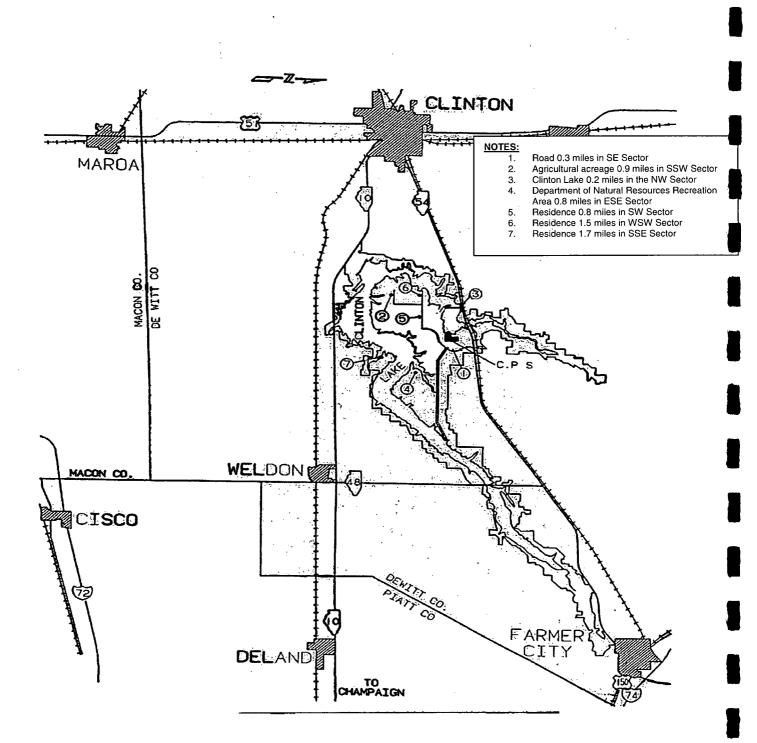
^[1] There were zero (\emptyset) liquid radwaste releases from CPS in 2007.

COMPLIANCE WITH 40CFR190 REQUIREMENTS

Thermoluminescent dosimeters [TLD] are stationed around CPS to measure the ambient gamma radiation field. Monitoring stations are placed near the site boundary and approximately five (5) miles from the reactor, in locations representing the sixteen (16) compass sectors. Other locations are chosen to measure the radiation field at places of special interest such as nearby residences; meeting places and population centers. Control sites are located further than ten (10) miles from the site, in areas that should not be affected by plant operations. The results from the TLDs are reported in the Annual Radiological Environmental Monitoring Report [REMP]. The results from this effort indicated no excess dose to offsite areas.

Additionally, NUREG-0543, METHODS FOR DEMONSTRATING LWR COMPLIANCE WITH THE EPA URANIUM FUEL CYCLE STANDARD (40 CFR PART 190) states in section IV, "As long as a nuclear plant site operates at a level below the Appendix I reporting requirements, no extra analysis is required to demonstrate compliance with 40 CFR Part 190." The organ and whole body doses reported in Table 8 are determined using 10 CFR 50 Appendix I methodology. The doses reported are well below the limits of Appendix I.


DOSE TO MEMBERS OF THE PUBLIC WITHIN THE SITE BOUNDARY


CPS Offsite Dose Calculation Manual section 7.2 requires that the Radioactive Effluent Release Report include an assessment of the radiation doses from radioactive liquids and gaseous effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY. Within the CPS site boundary there are seven areas that are open to members of the public as identified by CPS ODCM Table 3.4-4 (see Figure 4):

- The Department of Natural Resources Recreation Area at 1.287 kilometers (0.8 miles) in the ESE sector
- A road at 0.495 kilometers (0.3 miles) in the SE sector
- A residence at 2.736 kilometers (1.7 miles) in the SSE sector
- A residence at 1.219 kilometers (0.8 miles) in the SW sector
- Agricultural acreage at 1.372 kilometers (0.9 miles) in the SSW sector
- A residence at 2.414 kilometers (1.5 miles) in the WSW sector
- A portion of Clinton Lake at 0.335 kilometers (0.2 miles) in the NW sector

At all of the above locations, the plume, inhalation and ground-plane exposure pathways are used for dose calculations. The 2007 Annual Land Use Census identified no other exposure pathways. All dose calculations were performed using the methodology contained in the CPS ODCM.

FIGURE 4

CALCULATED DOSES TO MEMBERS OF THE PUBLIC DURING USE OF THE DEPARTMENT OF NATURAL RESOURCES RECREATION AREA IN THE EAST-SOUTHEAST SECTOR WITHIN THE CPS SITE BOUNDARY Data Period: 01 January 2007 – 31 December 2007

DESCRIPTION	DOSE	UNITS
Total Body Dose Rate (Noble Gases)	0.00E+01	mRem/year
Skin Dose Rate (Noble Gases)	0.00E+01	mRem/year
Gamma Air Dose	0.00E+01	mRad
Beta Air Dose	0.00E+01	mRad
Total Body Dose (Particulates)	2.65E-04	mRem
Total Body Dose (Particulates) Skin Dose (Particulates) ^[1]	4.01E-05	mRem

[1] DOSE includes the dose values resulting from the release of iodines, particulates (with half lives >8 days) and tritium in gaseous effluents.

Highest Organ Dose by Age Group:

Teen Thyroid	2.70Ę-04	MRem
Adult Thyroid	2.67E-04	mRem
Child Thyroid	2.44E-04	mRem
Infant Thyroid	1.56E-04	mRem

CALCULATED DOSES TO MEMBERS OF THE PUBLIC DURING USE OF THE ROAD IN THE SOUTHEAST SECTOR WITHIN THE CPS SITE BOUNDARY Data Period: 01 January 2007 – 31 December 2007

DESCRIPTION	DOSE	UNITS
Total Body Dose Rate (Noble Gases)	0.00E+01	mRem/year
Skin Dose Rate (Noble Gases)	0.00E+01	mRem/year
Gamma Air Dose	0.00E+01	mRad
Beta Air Dose	0.00E+01	mRad
Total Body Dose (Particulates)	6.15E-04	mRem
Total Body Dose (Particulates) Skin Dose (Particulates) ^[1]	8.33E-05	mRem

[1] DOSE includes the dose values resulting from the release of iodines, particulates (with half lives >8 days) and tritium in gaseous effluents.

Highest Organ Dose by Age Group:

.

.

Teen Thyroid	6.26E-04	mRem		
Adult Thyroid	6.21E-04	mRem	· * *	· . · ·
Child Thyroid	5.65E-04	mRem	1 I A	. •
Infant Thyroid	3.57E-04	mRem	·· , ·	л`,

الأفراقية المحاج والمراجع المتحاج المتحاج والمحاج

CALCULATED DOSES FOR THE RESIDENTS IN THE SOUTH-SOUTHEAST SECTOR WITHIN THE CPS SITE BOUNDARY Data Period: 01 January 2007 – 31 December 2007

DESCRIPTION	DOSE	UNITS
Total Body Dose Rate (Noble Gases)	0.00E+01	mRem/year
Skin Dose Rate (Noble Gases)	0.00E+01	mRem/year
Commo Air Dooo]
Gamma Air Dose	0.00E+01	mRad
Beta Air Dose	0.00E+01	mRad
Total Body Dose (Particulates)	5.11E-05	mRem
Total Body Dose (Particulates) Skin Dose (Particulates) ^[1]	3.67E-06	mRem

[1] DOSE includes the dose values resulting from the release of iodines, particulates (with half lives >8 days) and tritium in gaseous effluents.

Highest Organ Dose by Age Group:

Adult Thyroid	5.16E-05	mRem
Teen Thyroid	N/A ^[2]	mRem
Child Thyroid	N/A ^[2]	mRem
Infant Thyroid	N/A ^[2]	mRem

[2] No receptors of this age at this location

CALCULATED DOSES FOR THE RESIDENTS IN THE SOUTHWEST SECTOR WITHIN THE CPS SITE BOUNDARY Data Period: 01 January 2007 – 31 December 2007

DESCRIPTION	DOSE	UNITS
Total Body Dose Rate (Noble Gases)	0.00E+01	mRem/year
Skin Dose Rate (Noble Gases)	0.00E+01	mRem/year
Gamma Air Dose	0.00E+01	mRad
Beta Air Dose	0.00E+01	mRad
Total Body Dose (Particulates)	1.56E-04	mRem
Total Body Dose (Particulates) Skin Dose (Particulates) ^[1]	1.70E-05	mRem

[1] DOSE includes the dose values resulting from the release of iodines, particulates (with half lives >8 days) and tritium in gaseous effluents.

Highest Organ Dose by Age Group:

Adult Thyroid	1.57E-04	mRem	. *
Teen Thyroid	N/A ^[2]	mRem	
Child Thyroid	N/A ^[2]	mRem	
Infant Thyroid	N/A ^[2]	mRem	
No recontors of t	hic ago at this	location	· * · · ·

[2] No receptors of this age at this location

and the second
CALCULATED DOSES TO MEMBERS OF THE PUBLIC DURING USE OF THE AGRICULTURAL ACREAGE IN THE SOUTH-SOUTHWEST SECTOR WITHIN THE CPS SITE BOUNDARY Data Period: 01 January 2007 – 31 December 2007

DESCRIPTION DOSE UNITS Total Body Dose Rate (Noble Gases) 0.00E+01 mRem/year Skin Dose Rate (Noble Gases) 0.00E+01 mRem/year Gamma Air Dose 0.00E+01 mRad Beta Air Dose 0.00E+01 mRad Total Body Dose (Particulates) 9.30E-05 mRem Skin Dose (Particulates) [1] 1.12E-05 mRem

[1] DOSE includes the dose values resulting from the release of iodines, particulates (with half lives >8 days) and tritium in gaseous effluents.

Highest Organ Dose by Age Group:

Teen Thyroid Adult Thyroid	9.48E-05 9.39E-05	mRem mRem	
Child Thyroid	1 N/A [2]	mRem	• • • •
Infant Thyroid	N/A ^[2]	mRem	
		1. A.	· · · ·

[2] Dose calculated only for the age groups likely to be in the field.

CALCULATED DOSES FOR THE RESIDENTS IN THE WEST-SOUTHWEST SECTOR WITHIN THE CPS SITE BOUNDARY Data Period: 01 January 2007 – 31 December 2007

DESCRIPTION	DOSE	UNITS
Total Body Dose Rate (Noble Gases)	0.00E+01	mRem/year
Skin Dose Rate (Noble Gases)	0.00E+01	mRem/year
Gamma Air Dose	0.00E+01	mRad
Beta Air Dose	0.00E+01	mRad
Total Body Dose (Particulates)	4.29E-05	mRem
Skin Dose (Particulates) ^[1]	2.69E-06	mRem

[1] DOSE includes the dose values resulting from the release of iodines, particulates (with half lives >8 days) and tritium in gaseous effluents.

Highest Organ Dose by Age Group:

Adult Thyroid	4.34E-05	mRem	11. J. A. A.
Teen Thyroid	N/A ^[2]	mRem	
Child Thyroid	N/A [2]	mRem	
Infant Thyroid	N/A ^[2]	mRem	

[2] No receptors of this age at this location

CALCULATED DOSES TO MEMBERS OF THE PUBLIC DURING USE OF CLINTON LAKE IN THE NORTHWEST SECTOR WITHIN THE CPS SITE BOUNDARY Data Period: 01 January 2007 – 31 December 2007

DESCRIPTION	DOSE	UNITS
Total Body Dose Rate (Noble Gases)	0.00E+01	mRem/year
Skin Dose Rate (Noble Gases)	0.00E+01	mRem/year
Gamma Air Dose	0.00E+01	mRad
Beta Air Dose	0.00E+01	mRad
Total Body Dose (Particulates)	5.36E-04	mRem
Total Body Dose (Particulates) Skin Dose (Particulates) ^[1]	3.91E-05	mRem

[1] DOSE includes the dose values resulting from the release of iodines, particulates (with half lives >8 days) and tritium in gaseous effluents.

Highest Organ Dose by Age Group:

1

Teen Thyroid	5.46E-04	mRem
Adult Thyroid	5.41E-04	mRem
Child Thyroid	4.89E-04	mRem
Infant Thyroid	2.98E-04	mRem

A State of the second
METEOROLOGICAL DATA AND DISPERSION ESTIMATES

On 13 April 1972, the meteorological monitoring program commenced at the Clinton Power Station site. The meteorological system consists of a tower 199 feet high with two (2) levels of instrumentation at the 10-meter and 60-meter elevations. A combined cup and vane sensor measures wind direction and wind speed[s] at the 10-meter and 60-meter levels. An aspirated dual temperature sensor senses the temperatures at these levels. One-half of the dual sensors at each elevation are used for ambient temperature while the other half is used to provide a differential temperature between the 10-meter and 60-meter levels.

Meteorological monitoring instruments have been placed on the Clinton Power Station microwave tower at the 10-meter level to serve as a backup to the primary meteorological tower.

Clinton Power Station meteorological data is transmitted to the Main Control Room [MCR] via a dedicated communication link. Once the signals are received at the MCR, they are then converted to a 4 to 20 milliamp signal and fed individually to a microprocessor and chart recorders. The microprocessor is part of the Clinton Power Station Radiation Monitoring System [RMS]. Meteorological data is available via the microprocessors in the Main Control Room and the Technical Support Center [TSC].

Dispersion modeling for effluents for normal operation of Clinton Power Station is a straight-line, sector-averaged Gaussian plume model designed to estimate average relative concentration at various receptor points. The model was developed in accordance with routine release analysis procedures specified in Regulatory Guide 1.111. For joint frequency input data, periods of calm are distributed in accordance with a directional distribution. For hourly input data, periods of calm are the previous hour's wind direction. Periods of calm are assigned a wind speed value of half the specified instrument threshold value. Reference Table 18 for more detailed information on meteorology and dispersion data.

METEOROLOGICAL DATA AVAILABILITY

Data Period: 01 January 2007 – 31 December 2007

	PERCE	NT OF VALID	PARAMETER	HOURS
PARAMETER	Quarter 1	Quarter 2	Quarter 3	Quarter 4
1. Wind Speed	t set		••	·
a. 10-Meter sensor	99.5%	99.7%	99.9%	99.6%
b. 60 Meter sensor	99.4%	99.7%	99.9%	98.3%
2. Wind Direction				· · · · · · · · · · · · · · · · · · ·
a. 10-Meter sensor	99.5%	99.7%	99.9%	99.6%
b. 60 Meter sensor	99.5%	99.7%	99.9%	99.6%
3. Temperature		· · · ·	,	· · · · ·
a. 10-Meter sensor	98.4%	99.7%	100%	99.6%
b. 60 Meter sensor	97.2%	99.7%	100%	99.1%
c. Temperature Difference (10m-60m)	97.3%	99.7%	100%	99.1%
4. Percent of hours for which valid 10- meter Wind Speed, Wind Direction, and Delta Temperature were available	97.5%	99.7%	99.9%	99.0%
5. Percent of hours for which valid 60- meter Wind Speed, Wind Direction, and Delta Temperature were available	97.3%	99.7%	99.9%	97.8%

Clinton Power Station was able to achieve 99.4% Meteorological Recoverable Data during 2007 exceeding the minimum criteria of 90% as delineated within Regulatory Guide 1.23.

CLASSIFICATION OF ATMOSPHERIC STABILITY

Stability Classification	Pasquill Category	Defining Conditions
Extremely unstable	A	<∆T <u><</u> -1.042
Moderately unstable	B	-1.042 <∆T <u><</u> -0.933
Slightly unstable	С	-0.933 <∆T <u><</u> -0.823
Neutral	D	-0.823 <∆T <u><</u> -0.274
Slightly stable	E	-0.274 <∆T <u><</u> 0.823
Moderately stable	F	0.823 <∆T <u><</u> 2.195
Extremely stable	G	2.195 <∆T <u><</u>

 ΔT = temperature difference in degrees Fahrenheit per 100 feet

1

ł

1

ň

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Reporting Period: 01 January 2007 through 31 December 2007

·.

The following table contains the joint wind frequency tables for CPS. The tables are segregated by sensor elevation and calendar quarter. All tabled values are in hours.

. .

•

. . . .

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: A

10 Meter Height

Quarter: 1

WIND	<u> </u>	\	VIND SPE	ED (MPH)	•	··
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	0	3	0	0	0	3
NNE	0	0	0	0	0	0	0
NE	0	0	0	8	0	0	8
ENE	0	0	1	3	0	0	4
E	0	0	6	0	0	0	6
ESE	0	0	1	0	0	0	1
SE	0	1	1	0	0	0	2
SSE	0	0	5	0	0	0	5
S	0	0	2 `	0	0	0	2
SSW	0	0	0	0	0	0	0
SW	0	0	0	1	0	0	1
WSW	0	0	0	1	0	0	1
W	0	0	1	8	7	0	16
WNW	0	0	6	6	23	0	35
NW	0	0	6	0	0	0	6
NNW	0	0	2	0	0	0	2
TOTAL	0	1	34	27	30	0	92
PERIODS OF C	ALM (HOUF	RS) :	0	HOURS	OF MISSIN	IG DAT	A: 5
VARIABLE DIRE	ECTION :		0				

Stability Class: A 10 Meter Height

·						-		
WIND		١	WIND SPE	-				
DIRECTION	1-3	4 - 7	<u>8 - 12</u>	13 - 18	<u>19 - 24</u>	> 24	TOTAL	
N	0	0	2	0	0	0	2	
NNE	0	1	1	12	0	0	14	
NE	0	0	4	0.	0.	0	4	
ENE	0	0	4	0.	0	0	4	
E	0	1	5	0,	0	0	6	
ESE	0	7	0.	0.	0	0	7	
SE	0	6	5	0	0	0	11	
SSE	0	2	2	0	0	0	4	
S	0	1	10	1	0	0	12	
SSW	0	0	4	3	3	0	10	
SW	0	2	5	5	0.	0	12	
wsw	0	1	2	0	0	0	3	
W C	0	2	2	6	4	0.	14	
WNW	0	1	4	17	7	1	30	
NW	0	1	7	12	2	0	22	
NNW	Ō	0	7	0	0	0	7	
TOTAL	0	25	64	56	16	1	162	
PERIODS OF CA			0		OF MISSI			5
VARIABLE DIREC	•		Ő			10 0/11		

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: A

10 Meter Height

Quarter: 3

WIND			WIND SPE	ED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18		> 24	TOTAL
N	0	6	13	0	0.	0	19
NNE	0	2	4	2	0	0	8
NE	0	6	15	1 1	0	0	22
ENE	0	3	1	0	0	0	4
E	0	12	6	0	0	0	18
ESE	0	1	0	0	0	0	1
SE	0	10	1	0	0	0	11
SSE	0	1	2	0	0	0	3
S	0	11 ⁺	26	0	0	0	37
SSW	0	3	11	4	0	0	18
SW	0	2	3	4	0	0	9
WSW	0	5	5	10	0	0	20
W	0	3	9	3	0	0	15
WNW	0	6	7	2	0	0	15
NW	1	8	8	4	0	0	21
NNW	0	1	5	0	0	0	6
TOTAL	1	80	116	30	0 .	0	227
PERIODS OF C	ALM (HOUF	RS) :	0	HOURS	OF MISSIN	NG DAT	A: 0
VARIABLE DIRE		·	0				

Stability Class: A 10 Meter Height

WIND		V	VIND SPE	ED (MPH	l)		<u> </u>	
DIRECTION	<u> </u>	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL	
N	0	0	2	2,	0	0	4	
NNE	0	0	0	2	1	0	3	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
E	0	0	0	0	0	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	0	0	0	0	0	0	
SSE	0	0	0	0	0	0	0	
S	0	2	12	0	0	0	14	
SSW	0	0	2	3	0	0	5	
SW	0	0.	0	0	0	0	0	
WSW	0	0	0	0	0	0	0	
W	0	0	2	4	0	0	6	
WNW	0	0	1	7	3	0	11	
NW	0	0	0	1	1	0	2	
NNW	0	0	0	0	0	0	0	
TOTAL	Į O	2	19	19	5	0	45	
PERIODS OF CA		RS) :	0	HOURS	OF MISSIN	IG DAT	A: 21	
VARIABLE DIREC	CTION :		0					

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: B 10 Meter Height Quarter: 1

WIND				ED. (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	 19 - 24	> 24	TOTAL
N	0	0	1	0	0	0	1
NNE	0	0	0	0	0	0	0
NE	0	0	1	1	0	0	2
ENE	0	0	1	1	0	0	2
E	0	0	0	0	0	0	0
ESE	0	2	8	0	0	0	10
SE	0	9	0	0	0	0	9
SSE	0	2	1	0	0	0	3
S	0	1	1	0	0	0	2
SSW	0	0	4	2	2	0	8
SW	0	0	2	7	0	0	9
WSW	0	0	1	2	0	0	3
W	0	0	3	7	0	0	10
WNW	0	1	14	2	5	0	22
NW	0	3	4	0	1	0	8
NNW	0	1	3	2	0	0	6
TOTAL	0	19	44	24	8	0	95
PERIODS OF CA	ALM (HOUF	RS) :	• 0	HOURS (OF MISSIN	IG DAT	A: 55
VARIABLE DIRE	CTION :		0	. <u>.</u>			

Stability Class: B 10 Meter Height Quarter: 2

				2 · · · ·			к. н. р. П. П. П
WIND	۰.	<u>۱</u>	WIND SPI	EED (MPH	I)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	<u>> 2</u> 4	TOTAL
N	0	4	2	0	0	0	6
NNE	0	2	4	5	0	0 -	11
NE	0	1	2	0	0	0	3
ENE	0	1	3	01	0	<u></u> 0	4
E	0	5	2	0	0	0.	7
ESE	0	7	0	0	0	0	7
SE	1	10	2	0	0.	0	13
SSE	0	3	2	0	0	0	5
S	0	6	10	4	0	0	20
SSW	0	2	0	4	4	1	11
SW	0	3	6	2	0	0	11
WSW	0	4	14	3	1	0	22
W	0	2	4	2	0	0	8
WNW	0	1	5	4	1	0	11
NW	0	3	5	3	3	0	14
NNW	0	0	4	3	0	0	7
TOTAL	1	54	65	30	9	1	160
PERIODS OF CA	•	RS) :	0	HOURS	OF MISSIN	NG DAT	A: 6
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: B

10 Meter Height

Quarter: 3

WIND	· · · · · · · · · · · · · · · · · · ·		WIND SPE	ED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	1	5	5	0	0	0	11
NNE	0	2	4	0	0	0	6
NE	0	7	4	1	0	0	12
ENE	0	5	1	0	0	0.1	6
E	0	9	1	0	0	0	10
ESE	0	12	0	0	0	0	12
SE	0	11	0	0	0	0	11
SSE	0	8	1	0	0	0	. 9
S	0	10	7	2	0	0	19
SSW	0	8	11	2	0	0	21
SW	0	3	12	4	0	0	19
WSW	0	2	6	4	0	0	12
W	0	2	2	0	0	0	4
WNW	0	9	6	1	0	0	16
NW	0	'11	7	1	0	0	19
NNW	0, ,	3	1	0	0	0	4
TOTAL	1	107	68	15	0	0	191
PERIODS OF C	ALM (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT	A: 0
VARIABLE DIRE	CTION :		0				

Stability Class: B

10 Meter Height

WIND	: •	1	WIND SPE	EED (MPH	I) .		
DIRECTION	_ 1 - 3	4 - 7	8 - 12	13 - 18	19 - 24 [,]	> 24	TOTAL
N	0	2	3 [·]	0	0	0	5
NNE	0	1	1	3	0	0	5
NE	0	0	0	0	0	0	0
ENE	0	1	0	0	0	0	1
E	0	1	0	0	0	0	1
ESE	0	0	0	0	0	0	0
SE	0	0	1	0	0	0	1
SSE	0	1	2	0	0	0	3
S	· 0	5	5	1	0	0	11
SSW	0	1	7 .	1	1	0	10
SW	0	2	2	0	0	0	4
WSW	0	0	3	2	0	1	6
W	0	1	3	1	0	0	5
WNW	0	1	5	6	1	0	13
NW	.0	0	6	7	1	0	14
NNW	0	0	4	0	0	0	4
TOTAL	0	16	42	21	3	1	83
PERIODS OF C	ALM (HOUF	RS) :	0	HOURS	OF MISSIN	IG DAT	A: 21
VARIABLE DIRE	CTION :	-	0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: C

10 Meter Height

Quarter: 1

WIND			WIND SPE		0		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N			1	0	0	0	1
NNE	0	õ	0 0	õ	0	õ	0
NE	0	Õ	Õ	2	0	Õ	2
ENE	0	Õ	0	1	0	0	1
Е	0	2	2	0	0	0	4
ESE	0	1	4	0	0	0	5
SE	0	4	2	0	0	0	6
SSE	0	0	3	0	0	0	3
S	0	2	8	0	0	0	10
SSW	0	1	9	4	2	0	16
SW	0	0	2	6	0	0	8
WSW	0	1	4	3	4	0	12
W	0	2	9	5	9	0	25
WNW	0	4	11	10	4	0	29
NW	0	2	8	0	0	0	10
NNW	0	0	1	1	0	0	2
TOTAL	0	19	64	32	19	0	134
PERIODS OF CA		RS) :	0	HOURS	OF MISSI	NG DAT	A :
VARIABLE DIRE	CTION :		0			-	• 13 ••

Stability Class: C

10 Meter Height

Quarter: 2

WIND		I	WIND SPE	ED (MPH	I)		. t	•
DIRECTION	1 - 3	4 - 7	8 - 12	<u>13 - 18.</u>	19 - 24	> 24	TOTAL	
N	0	6	3	1	0	0	10	
NNE	0	1,	4	3	0	0	8	
NE	0	2	2	3	0 -	0	7	
ENE	0	1	1	0	0	0	2	
E	0	4	1	0	0	0	5	
ESE	0	7	5	0	0	0	12	
SE	3	9	1	0	0	0	13	
SSE	0	8	2	2	0	0	12	
S	0	6	8	4	1	0	19	
SSW	0	2	1	4	6	0	13	
SW	0.	2	8	3	1	1	15	
WSW	0	5	10	5	1	0	21	
w	0	2	9	1	0	0	12	
WNW	0	4	5	4	2	0	15	
NW	0	3	4	6	1	0	14	
NNW	1	4	2	1	0	Ō	8	
TOTAL	4	66	66	37	12	1	186	
PERIODS OF CA			0					3
VARIABLE DIRE			Ö					•

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: C

10 Meter Height

Quarter: 3

WIND		١	WIND SPE	ED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	2	1	0	0	0	3
NNE	2	11	4	0	0	0	17
NE	0	8	4	0	0	0	12
ENE	. 0	7	1	0	0	0	8
E	· O	3	1	0	0	0	4
ESE	1	8	0	0	0	0	9
SE	1	6	0.	0	0	0	7
SSE	0	13	2	0	0	0	15
S	^I O	7	7 ·	0	0	0	14
SSW	1	3	8	0	0	0	12
SW	0	2	14	4	0	0	20
WSW	1	2	9	1	0	0	13
W	0	4	1	1	0	0	6
WNW	1	9	7	0	0	0	17
NW	1	8	6	0	0	0	15
NNW	1	3	2	. 1	. 0	0	7
TOTAL	.9	96	67	7	0	0	179
PERIODS OF C	ALM (HOUI	RS) :	0	HOURS	OF MISSIN	IG DAT	A : '
ARIABLE DIRE	ECTION :		0				

Stability Class: C

10 Meter Height

Quarter: 4

WIND		14						
		v	VIND SPE	ED (MPH) ' '			
DIRECTION	1 - 3	.4 - 7.	8 - 12	13 - 18	19 - 24	> 24	TOTAL	
N	0	3	7	2	0	0	12	
NNE	0	0	0	0	2	0	2	
NE	0	1	3	2	1	0	7	
ENE	0	1	0	0	0	0	1	
E	0	0	0	0	0	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	3	1 ⊡	0	0	0	4	
SSE	0	4	7	1	0	0	12	
S	0	6	11	3	3	0	23	
SSW	0	1	4	2	3	0	10	
SW	0	1	12	1	0	0	14	
WSW	0	2	7	1	1	2	13	
W	0	3	3	2	0	0	8	
WNW	0	2	4	6	1	0	13	
NW	1	3	1	10	3	0	18	
NNW	0	3	1	1	0	0	5	
TOTAL	L.	33	61	31	14	2	142	
PERIODS OF CAL	M (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT	A: 21	
VARIABLE DIRECT	10N :		0					

L

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: D

10 Meter Height

Quarter: 1

WIND			WIND SPE	ED (MPF	l) ·		
DIRECTION	1 - 3	4 - 7	8 - 12	13 <mark>- 18</mark>	19 - 24	> 24	TOTAL
N	0	2	14	12	5	0	33
NNE	0	4	12	6	0	7	29
NE	2	12	42	19	10	6	91
ENE	1	3	19	4	0	0	27
Е	3	10	36	9	0	0	58
ESE	2	37	36	6	1	0	82
SE	1	12	7	1	Q	0	21
SSE	1	12	17	20	0	0	50
S	0	15	26	45	3	0	89
SSW	4	15	35	37	9	0	100
SW	2	11	31	26	1	0	71
WSW	0	15	22	30	26	9	102
W	1	16	34	37	13	0	101
WNW	0	19	65	73	24	1	182
NW	0	11	48	21	4	0	84
NNW	0	7	31	11	1	0	50
TOTAL	17	201	475	357	97	23	1170
PERIODS OF CA	•	S) :	0	HOURS	OF MISSIN	IG DAT	A :
VARIABLE DIRE	CTION :		0				

Stability Class: D

10 Meter Height

Quarter: 2

WIND		١	WIND SPE	EED (MPH	l) :			
DIRECTION	1 3	4 - 7	8 - 12	13 - 18	1 <u>9 - 24</u>	> 24	TOTAL	
N	0	12	13	5	0	0,	30	
NNE	2	6	15	5	3	0	31	
NE	0	13	29	12	. 1.	0	55	
ENE	0	7	23	0	0	0	30	
Е	5	13	21	4	0	0	43	
ESE	4	28	14	0	0	0	46	
SE	3	25	14	2	. 0	0	44	
SSE	4	26	11	0	0	0	41	
S	0	25	33	15	6	0	79	
SSW	0	18	17	24	6	0	65	
SW	1	21	18	9	0	2	51	
WSW.	4	8	15	8	8	2	45	
W	3	10	26	17	5	0	61	
WNW	3	15	23	17	23	2	83	
NW	2	8	16	24	7	1	58	
NNW	0	7	8	5	0	0	20	
TOTAL	31	242	296	147	59	7	782	
PERIODS OF CA		RS) :	0	HOURS	OF MISSI	IG DAT	A: 6	
VARIABLE DIRE	•	,	0					
								_

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: D

10 Meter Height

Quarter: 3

WIND		١	WIND SPE	EED (MPH	l)	<u>.</u>	
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	1	11	15	2	0	0	29
NNE	1	17	16	0	0 .	0	34
NE	2	27	7	0	0	0	36
ENE	3	12	3	0	0	0	18
E	1	10	0	0	0	0	11
ESE	3	16	1	0	0	0	20
SE	5	11	1	0	0	0	17
SSE	5	18	9	0	0	0	32
S	2	20	28	8	0	0	58
SSW	0	15	26	9	0	0	50
SW	2	21	33	2	0	0	58
WSW	0	9	8	0	0	0	17
W	2	7	8	0	0	0	17
WNW	0	12	7	2	0	0	21
NW	3	17	19	1	0	0	40
NNW	2	12	9	0	0	0	23
TOTAL	32	235	190	24	0	0	481
PERIODS OF C	ALM (HOUF	0	HOURS	OF MISSI	IG DAT	A : 0	
ARIABLE DIRE	CTION :		0				

Stability Class: D 10 Meter Height

Quarter: 4

WIND		Ì	WIND SPI	EED (MPH	l)			
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL	
N	5	14	26	21	3	0	69	
NNE	10	17	11	8	3	0	49	
NE	4	23	31	8	1	0	67	
ENE	2	8	14	1	0	0	25	
E	5	4	11	0	0	0	20	
ESE	1	19	20	0 :	0 -	0	40	
SE	1	26	2Ó	6	0	0	53	
SSE	1	26	34	12	2	0	75 ·	
S	1 .	19	43	25	4	0	92	
SSW	3	20	34	30	4	0	91	
SW	0	13	19	5	0	0	37	
WSW	1	8	15	30	10	5	69	
W	4	10	18	31	2	3 [.]	68	
WNW	1	11	21	39	12	5	89	
NW	9	13	28	·18	13	0	81	
NNW	9	8	27	11	2	0	57	
TOTAL	57	239	372	245	56	13	982	
PERIODS OF C	ALM (HOU	RS) :	0	HOURS	OF MISSII	NG DAT	A: 21	
VARIABLE DIRE	ECTION :		0					

,

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: E 10 Meter Height

Quarter: 1

WIND			WIND SPE		0		
DIRECTION	1 - 3	4 - 7	8 - 12 .	•	') 19 - 24	> 24	TOTAL
N		2	5	0	0		7
NNE	Õ	8	7 [.]	õ	Õ	0 0	15
NE	1	5	2	0	0	0.	8
ENE	0	8	2	0	0	Ō	10
Е	2	14	4	0	0	0	20
ESE	5	17	6	2	0	0	30
SE	5	21:	8	1	0	0	35
SSE	0	3	9	2	0	0 -	14
S	3	8	14	23	0	0	48
SSW	2	25	34	14	6	0	81
SW	0	15	19	6	0 ·	0	40
WSW	0	9	10	6	0.	0	25
W	2	14	14	13	0	0	43
WNW	1	17	25	8	0	0	51
NW	0	6	11	0	0	0	17
NNW	0	6	7	3	0	0	16
TOTAL	21 .	178	177	78	6	0	460
PERIODS OF CA	LM (HOUF	RS) :	0	HOURS	OF MISSIN	IG DAT	A : 5
ARIABLE DIRE	CTION :		0				

Stability Class: E 10 Meter Height

WIND WIND SPEED (MPH) DIRECTION 1 - 3 4 - 7 8 - 12 13 - 18 19 - 24 > 24 TOTAL N 2 4 2 0 0 0 8 NNE 1 14 9 6 0 0 30 NE 0 15 14 6 0 0 35 ENE 6 14 1 0 0 0 21 E 7 17 10 2 0 0 36 ESE 11 36 6 0 0 0 25 SE 4 20 1 0 0 25 SSE 8 44 12 0 0 64 S 5 57 19 11 2 0 94 SSW 2 20 15 0 0 0 25 WNW 1						N		.	
N 2 4 2 0 0 0 8 NNE 1 14 9 6 0 0 30 NE 0 15 14 6 0 0 35 ENE 6 14 1 0 0 0 21 E 7 17 10 2 0 0 36 ESE 11 36 6 0 0 0 53 SE 4 20 1 0 0 0 25 SSE 8 44 12 0 0 64 S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 37 WSW 1 11 13 0 0 0 25 W 2 10 16 0 0 21<				WIND SPE	•	•			
NNE 1 14 9 6 0 0 30 NE 0 15 14 6 0 0 35 ENE 6 14 1 0 0 0 21 E 7 17 10 2 0 0 36 ESE 11 36 6 0 0 0 25 SE 4 20 1 0 0 0 25 SSE 8 44 12 0 0 64 S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 37 WSW 1 11 13 0 0 25 W 2 10 16 0 0 25 W 2 10 16 0 0 21 NW 3 10 7 1 0 21 NW 1 <td< td=""><td>DIRECTION</td><td>1-3</td><td>_ 4 - 7 _</td><td>8 - 12</td><td><u>13</u> - 18</td><td>19 - 24</td><td>> 24</td><td>TOTAL</td><td></td></td<>	DIRECTION	1-3	_ 4 - 7 _	8 - 12	<u>13</u> - 18	19 - 24	> 24	TOTAL	
NE 0 15 14 6 0 0 35 ENE 6 14 1 0 0 0 21 E 7 17 10 2 0 0 36 ESE 11 36 6 0 0 0 53 SE 4 20 1 0 0 0 25 SSE 8 44 12 0 0 0 64 S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 57 SW 2 20 15 0 0 37 WSW 1 11 13 0 0 28 WNW 1 11 13 0 0 21 NW 3 10 7 1 0 0 21	N	2	4	2	0	0	0 ·	8	
ENE 6 14 1 0 0 0 21 E 7 17 10 2 0 0 36 ESE 11 36 6 0 0 0 25 SE 4 20 1 0 0 0 25 SSE 8 44 12 0 0 0 64 S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 37 WSW 1 11 13 0 0 25 W 2 10 16 0 0 25 W 2 10 16 0 0 25 W 2 10 16 0 0 25 NW 3 10 7 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL <	NNE	1	14	9	6	0	0	30	
E 7 17 10 2 0 0 36 ESE 11 36 6 0 0 0 53 SE 4 20 1 0 0 0 25 SSE 8 44 12 0 0 0 64 S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 37 SW 2 20 15 0 0 0 37 WSW 1 11 13 0 0 25 W 2 10 16 0 0 25 W 2 10 16 0 0 25 NW 3 10 7 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	NE	0	15	14	6	0	0	35	
ESE 11 36 6 0 0 0 53 SE 4 20 1 0 0 0 25 SSE 8 44 12 0 0 0 64 S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 57 SW 2 20 15 0 0 37 WSW 1 11 13 0 0 25 W 2 10 16 0 0 25 NW 1 11 13 0 0 25 NW 3 10 7 1 0 25 NW 3 10 7 1 0 21 NNW 1 10 2 1 0 14 TOTAL 59 318 161 33 2 0 573	ENE	6	14	1	0	0.	0	21	
SE 4 20 1 0 0 0 25 SSE 8 44 12 0 0 0 64 S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 57 SW 2 20 15 0 0 0 37 WSW 1 11 13 0 0 25 W 2 10 16 0 0 25 NW 1 11 13 0 0 25 NW 1 11 13 0 0 25 NW 3 10 7 1 0 21 21 NNW 1 10 2 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	Е	7.	· 17	10	2	0	0	36	
SSE 8 44 12 0 0 0 64 S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 57 SW 2 20 15 0 0 0 37 WSW 1 11 13 0 0 0 25 W 2 10 16 0 0 28 WNW 1 11 13 0 0 25 NW 3 10 7 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	ESE	11	36	6	0	0	0	53	
S 5 57 19 11 2 0 94 SSW 5 25 21 6 0 0 57 SW 2 20 15 0 0 0 37 WSW 1 11 13 0 0 0 25 W 2 10 16 0 0 28 WNW 1 11 13 0 0 25 NW 3 10 7 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	SE	4	20	· 1	0	0	0.	25	
SSW 5 25 21 6 0 0 57 SW 2 20 15 0 0 0 37 WSW 1 11 13 0 0 0 25 W 2 10 16 0 0 0 28 WNW 1 11 13 0 0 0 25 NW 3 10 7 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	SSE	8.	44	12	0	0	0	64	
SW 2 20 15 0 0 0 37 WSW 1 11 13 0 0 0 25 W 2 10 16 0 0 0 28 WNW 1 11 13 0 0 0 25 NW 3 10 7 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	S	5	57	19	11	2	0	94	
WSW 1 11 13 0 0 0 25 W 2 10 16 0 0 0 28 WNW 1 11 13 0 0 0 25 NW 3 10 7 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	SSW	5	25	21	6	0	0	57	
WSW 1 11 13 0 0 0 25 W 2 10 16 0 0 0 28 WNW 1 11 13 0 0 0 25 NW 3 10 7 1 0 0 21 NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	SW .	2	20	15	0	0	0	37	
WNW1111300025NW310710021NNW110210014TOTAL593181613320573	WSW	1		13	0	0	0	25	
NW310710021NNW110210014TOTAL593181613320573	W	2	10	16	0	0	0	28	
NNW 1 10 2 1 0 0 14 TOTAL 59 318 161 33 2 0 573	WNW.	1	11	13	0	0	0	25	
TOTAL 59 318 161 33 2 0 573	NW	3	10	7	1	0	0	21	
	NNW	1	10	2	1	0	0	1 4	
PERIODS OF CALM (HOURS): 0 HOURS OF MISSING DATA: 6	TOTAL	59 ·	318	161	33	2	0	573	
	PERIODS OF CA	LM (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT	A :	6.
VARIABLE DIRECTION : 0			,	0					

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: E 10 Meter Height

Quarter: 3

WIND			VIND SPE	EED (MPH	l) ·		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
<u> </u>	2	17	7.1	0	0	0	26
NNE	1	23	1	0	0	0	25 ·
NE	4	38	1	1	0	0	44
ENE	3	20	2	0	0	0	25
E	6	21	0	0	0	0	27
ESE	6	26	1	0	0	0	33
SE	7	32	4	0	0	0	43
SSE	5	66	5	0	0	0	76
S	5	46	14	3	0	0	68
SSW	4	47	32	0	0	0.	83
SW	2	33	12	0	0	0	47
WSW	4	13 🕔	10 [.]	0	0	0	27
W	2	13	5	0	0	0	20
WNW	1	17	5	0	0	0	23
NW	2	22	8	0	0	0	32
NNW	5	8	0	0	0	0	13
TOTAL	59 ·	442	107	4	0	0	612
PERIODS OF CA	ALM (HOUF	RS) :	0	HOURS	OF MISSIN	IG DAT	A: 0
VARIABLE DIRE	CTION :		0				

Stability Class: E 10 Meter Height

Quarter: 4 ł. .

	· · · · · · · · · · · · · · · · · · ·							
WIND		١	WIND SPE	EED (MPF	l)			
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL	
N	2	9	7	2	0	0	20	
NNE	2	7	7	9	1	0	26	
NE	3	6	8	7	0	0	24	
ENE	7	10	4	0	0	0.	21	
E	1	9	4	0	0	0	14	
ESE	5	25	7	0.	0	0	37	
SE	5	51	8	2	0	0	66	
SSE	5	44	29	2	0	0	80	
S	3	32	50	26	0	0	111	
SSW	2	17	48	25	0	0	92	
SW	1	18	19	2	0	0	40	
WSW	3	16	16	2	0	0	37	
W	2	14	15	3	0	0	34	
WNW	0	18	40	7	0	0.	65	
NW	0	12	22	8	2	0	44	
NNW	3	11	4	1	1	0	20	
TOTAL	44	299	288	96	4	0	731	
PERIODS OF CA	LM (HOU	RS) :	0	HOURS	OF MISSI	NG DAT	A :	21
VARIABLE DIRE	CTION :		0	-				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: F

10 Meter Height

Quarter: 1

WIND			WIND SPE	EED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	<u> 13 - 18</u>	19 - 24	> 24	TOTAL
N	0	1	0	0	0.	0	1
NNE	0	0	0	0	0	0	0
NE	0	8	0	0	0	0	8
ENE	1 -	2	0	0	0	0	3
E	1	3	0	0	0	0	4
ESE	1	10	0	0	0	0	11
SE	3	7	0	0	0	0	10
SSE	1	5	3	0	0	0	9
S	3	10	4	0	0	0	17
SSW	1	6	3	0	0	0	10
SW	4	6 [.]	4	0.	0	0	14
WSW	4	3	1	0	0	, 0 -	8
W	1	3	0	0	0	0	4
WNW	2	4	3	0	0	0	9
NW	0	1	3	0	0	0	4
NNW	0	1	1	0	0	0	2
TOTAL	22	70	22	0	0.	0	114
PERIODS OF CA	ALM (HOUF	RS) :	1	HOURS	OF MISSIN	IG DAT	A : 5
VARIABLE DIRE	CTION :		0				1

Stability Class: F 10 Meter Height

Quarter: 2

<u> </u>							
WIND		1	NIND SPE	EED (MPH	l) :: :,		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - <u>18</u>	<u> 19 - 24</u>	> 24	TOTAL
N	0	0	0	0	0	0	0
NNE	4	5	0	0	0	0	9
NE	9	15	0	0	0	0	24
ENE	7	3	0	0	0	0	10
E	2	7	0.	0.	0 :	0	9
ESE	3	4	0	0	0	0	7
SE	3	3	1	0	0	0	7
SSE	1	2	4	0	0	0	7
S ·	0	6	0	0	0	0	6
SSW	5	10	0	0	0	0	15
SW	5	17	3	0	0	0	25
WSW	2	6	10	0	0	0	18
W	5	2	0	0	0	0	7
WNW	9	4	1	0	0	0	14
NW	1	11	0	0	0	0	12
NNW	0	4	0	0	0	0	4
TOTAL	56	99	19	0	0	0	174
PERIODS OF CA	ALM (HOUF	RS) :	1	HOURS	OF MISSIN	NG DAT	A: 6
VARIABLE DIRE	CTION :		0	(

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: F

10 Meter Height

Quarter: 3

WIND		N	WIND SPE	ED (MPF	I)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	2	9	0	0	0	0	11
NNE	4	19	0	0	0.	0	23
NE	11	51	0	0	0	0	62
ENE	5	19	0	0	0	0	24
E	8	5	0	0	0	0	13
ESE	6	8	0	0	0	0	14
SE	8	12	0	0	0	0	20
SSE	. 7	10	1 -	0	0	0	18 ·
S	6	16	0	0	0	0	22
SSW	3	18·	6	0	0	0:	27
SW	2	12	0	0	0	0	14
WSW	3	10	3	0	0	0	16
W	0	3	0	0	0	0	3
WNW	6	6	0	0	0	0	12
NW	2	8	0	0	0	0	10
NNW ¹	1	3	0	0	0	0	4
TOTÁL	74	209	10	0.	0	0	293
PERIODS OF CA	LM (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT.	A :
VARIABLE DIRE	CTION :		0				<u>.</u>

Stability Class: F 10 Meter Height

Quarter: 4

: •. ,

		<u> </u>					
WIND			WIND SPE				
DIRECTION	<u> </u>	4 - 7	<u> </u>	13 - 18	19 - 24	> 24	TOTAL
N	0	3	1	0	0	0	4
NNE	1	2	0	0	0	0	3
NE	2	8	0	0	0	0	10.
ENE	1	1	0	0	0	0	2
E	1	2	0	0	0	0	3 ¹
ESE	0	4	Ő	0	0	0	4
SE	2	10	0	0.	0	0	12 [.]
SSE	3	27	3	0	0	0	33
S	2	12	1	0	0	0	15
SSW	1	10	1	0	0	0	12
SW	0	5	1	0	0	0	6
WSW	1	6	1	0	0	0	8
W	0	3	0	0	0	0	3
WNW	2	1	0	0	0	0	3
NW	3	7	6	0	0	0	16
NNW	0	6	2	0	1	0	9
TOTAL	19	107	16	0	1	0	143
PERIODS OF CA	LM (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT	A: 21
VARIABLE DIRE		•	0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: G

10 Meter Height

Quarter: 1

WIND				ED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	•	19 - 24	> 24	TOTAL
N	1	2	0	0	0	0	3
NNE	0	0	1	0	0	0	1
NE	1	8	0	0	0	0	9
ENE	0	1	0	0	0	0	1
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	5	0	0	0	0	0	5
SSW	1	5	2	0	0	0	8
SW	1	1	0	0	0	0	2
WSW	2	0	0	0	0	0	2
W	0	0	0	0	0	0	0
WNW	1	0	1	0	0	0	2.
NW	1	0	0	0	0	0	1
NNW	2	0	0	0	0	0	2
TOTAL	15	17	4	0	0	0	36
PERIODS OF CA		RS) :	2	HOURS (OF MISSIN	NG DAT	A:
VARIABLE DIRE	CTION :		0				

Stability Class: G

10 Meter Height

Quarter: 2

WIND			WIND SPE	EED (MPH)		·····
DIRECTION	1 - 3	4 - 7	<u>8 - 12</u>	13 - 18	19 - 24	> 24	TOTAL
N	3	0	0	0	0	0	3
NNE	6	6	0	0	0	0	12
NE	7	31	0	0	0	0	38
ENE	5	4	0	0	0	0	9
E	3	0	0	0	0	0	3
ESE	2	2	0	0	0	0	4
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	1	0	0	0	0	0	1
SSW	1	1	0	0	0	0	2
SW	3	8	0	0	0	0	11
WSW	2	7	0	0	0	0	9
W	8	8	0	0	0	0	16
WNW	5	5	0	0	0	0	10
NW	10	4	0	0	0	0	14
NNW	5	0	0	0	0	0	5
TOTAL	61	76	0	0	0	0	137
PERIODS OF CA	LM (HOUF	RS) :	3	HOURS	OF MISSI	NG DAT	A : 6
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: G

10 Meter Height

Quarter: 3

WIND		\	WIND SPE	ED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	7	1	0	0	0	0	8
NNE	18	17	0	0	0	0	35
NE	39	69	0	0	0	0	108
ENE	8	1	0	0	0	0	9
E	6	2	0	0	0	0	8
ESE	4	1	0	0	0	0	5
SE	5	1	0	0	0	0	6
SSE	2	4	0	0	0	0	6
S	1	2	0 ·	0	0	0	3
SSW	1	3 [.] '	0	0	0	0	4
SW	2	1	0	0	0	0	3
WSW	3	0	0	0	0	0	3
W	2	0	0	0	0	0	2
WNW	6	4	0	0	0	0	10
NW	2	5	0	0	0	0	7
NNW	2	0	0	0	0	0	2
TOTAL	108	111	0	0	0	0	219
PERIODS OF CA	ALM (HOUP	RS) :	3 .	HOURS	OF MISSI	NG DAT	A: 0
VARIABLE DIRE	CTION :	·	0				

Stability Class: G

10 Meter Height

WIND		1	WIND SPE	ED (MPH)	•.	
DIRECTION	1 - 3	4 - 7	8 - <u>12</u>	13 - 18	19 - 24	> 24	TOTAL
N	1	2	0	0	0	0	3
NNE	5	2	0	0	0	0	7
NE	4 '	3	0	0	0	0	7 🕔
ENE	3	2	0	0	0	0	5
E	2	2	0	0	0	0	4
ESE	4	2	0	0	0	0	6
SE	1	3	0	0	0	0	4
SSE	0	2	2	0	0	0	4
S	1	0	0	0	0	0	1
SSW	4	2	0	0	0	0	6
SW	2	2	0	0	0	0	4
WSW	0	1	0	0	0	0	1
W	1	0	0	0	0	0	1
WNW	1	1	0	0	0	0	2
NW	0	2	3	0	0	0	5
NNW	0	<u> </u>	0	0	0	0	1
TOTAL	29	27	5	0	0	0	61
PERIODS OF CA	ALM (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT	A: 21
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: A

60 Meter Height

Quarter: 1

WIND	-	v		ED (MPH)		
DIRECTION	1 - 3	4 - 7			19 - 24	> 24	TOTAL
N	0	0	2	1	0	0	3
NNE	0	0	0	0	0	0	0
NE	0	0	0	1	6	0	7
ENE	0	0	0	1	4	0	5
E	0	0	0	5	0	0	5
ESE	0	0	2	0	0	0	2
SE	0	0	2	0	0	0	2
SSE	0	0.	2	2	0	0	4
S	0	0	1	2	0	0	3
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	1	0	1
WSW	0	0	0	1	0	0	1
W	0	0	0	4	9	4	17
WNW	0	0	3	3	15	13	34
NW	0	0	4	2	0	0	6
NNW	0	0	2	0	0	0	2
TOTAL	0	0	18	22	35	17	92
PERIODS OF C	ALM (HOUF	RS) :	0	HOURS (OF MISSIN	IG DAT	A: 55
VARIABLE DIRE	CTION :		0				. •

Stability Class: A

60 Meter Height

Quarter: 2

WIND		1	WIND SPE	ED (MPH)	•	
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	<u> 19 - 24</u>	>.24	TOTAL
N	0	0	1	0	0	0	1
NNE	0	0	1	10	4	0	15
NE	0	0	0	4	0	0	4
ENE	0	0	1	3.	0	0	4
E	0	0	2	4	0	0	6
ESE	0	3	5	0	0	0	8
SE	0	1.	5	4	0	0	10
SSE	0	1	2	1	0	0	4
S	0	0	3	8	1	1	13
SSW	0	0	0	6	2	2	10
SW	0	0	4	7:	0	0	11
WSW	0	0	2	1	0	2	5
W	0	1	2	3	7	0	13
WNW	0	0	5	4	14	6	29
NW	0	1	1	10	9	0	21
NNW	0	0	2	6	0	0	8
TOTAL	0	7	36	71	37	11	162
PERIODS OF CA	LM (HOUF	RS) :	0	HOURS	OF MISSIN	IG DAT	A: (
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: A

60 Meter Height

Quarter: 3

WIND		V		ED (MPH)		
DIRECTION	1 - 3	4 - 7 ·	8 - 12	13 - 18	 19 - 24	> 24	TOTAL
N	0	2	14	3	0	0	19
NNE	0	1	2	4	0	0	7
NE	0	0	11	4	2	0	17
ENE	0	1	9	2	0	0	12
E	0	3	12	3	0	0	18
ESE	0	0	0	0	0	0	0
SE	0	4	7	0	0	0	11
SSE	0	1	4	0	0	0	5
S	0	1	13	19	0	0	33
SSW	0	0	4	12	3	1	20 ·
SW	0	0	3	4	1	0	8
WSW	0	4	3	9	4	0	20
W	0	2	4	7	2	0	15
WNW	0	2	8	3	1	0	14
NW	0	6	9	5	1	0	21
NNW	0	2	3	2	0	0	7
TOTAL	0	29	106	77	14	1	227
PERIODS OF C	ALM (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT	A : C
VARIABLE DIRE	ECTION :		. 0				

Stability Class: A 60 Meter Height

:• *1* Quarter: 4

	'	2. A. A.	<i>P</i> .					
WIND		N	WIND SPE	EED (MPH	l) · · · ·			
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL	
N	0	0	1	3.	0	0 ·	4	
NNE	0	0	0	0	1	1	2	
NE	0	0	0	0	1	0	1	
ENE	0	0	0	0	0	0	0	
E	0	0	0	0	Ó	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	0	0	0	0	0	0	
SSE	0	0	0	0	0	0	0	
S	0	0	5	4	1	0	10	
SSW	0	0	4	4	1	0	9 :	
SW	0	0	0	0	0	0	0	
WSW	0	0	0	0	0	0	0	
W	0	0	0	2	3	0	5	
WNW	0	0	0	3	6	1	10	
NW	0	0	0	0	2	2	4	
NNW	0	0	0	0	0	0	0	
TOTAL	0	0	10	16	15	4	45	
PERIODS OF CA	LM (HOUR	RS) :	0	HOURS	OF MISSI	NG DAT	A: 21	
VARIABLE DIREC	CTION :		0					

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: B

60 Meter Height

Quarter: 1

WIND				ED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18		> 24	TOTAL
	0	0	1	0	0	0	1
NNE	0	0	0	0	0	0	0
NE	0	0	1	0	1	0	2
ENE	0	0	0	1	1	0	2
Е	0	0	0	0	0	0	0
ESE	0	1	4	5.	0	0	10
SE	0	9	0	0	0	0	9
SSE	0	2	0	1	0	0	3
S	0	0	2	0	0	0	2
SSW	0	0	2	4	0	2	8
SW	0	0	1	6	2	0;	9
WSW	0	0	1	1	1	0	3
W	0	0	4	5	3	0	12
WNW	0.	1	8	6	1	4	20
NW	0	0	5	2	0	1	8
NNW	0	0	3	1	2	0	6
TOTAL	0	13	32	32	11	7	95
PERIODS OF CA	LM (HOUP	RS) :	· 0	HOURS	OF MISSIN	IG DAT	A: 5
VARIABLE DIRE			0				£,

Stability Class: B 60 Meter Height

WIND		V	VIND SPE	EED (MPH	I) (•••	
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	<u> 19 - 24</u>	> 24	TOTAL	
N	0	2	4	0	0	0	6	
NNE	0	0	4	4	2	0	10	
NE	0	1	2	1	0	0	4	
ENE	0	0	2	2	0	0	4	
Ε,	0	0.	7.	2	0	0	9	
ESE	0	4	1	0.	0	0	5	
SE	0	5	7	1	0	o	13	
SSE	0	3	0	2	0	0	5	
S	0	1	7	8	4	0	20	
SSW	0	1	1	1	2	5	10	
SW	0	1	6	4	0	0	11	
WSW	0	3	9	10	0	1	23	
W	0	0	6	1	0	0	7	
WNW	0	0	5	1	3	3	12	
NW	0	2	4	1	4	2	13	
NNW	0	0	3	5	0	0	8	
TOTAL	0	23	68	43	15	11	160	
PERIODS OF CAL	M (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT	A : 6	6
VARIABLE DIREC	TION :	-	0					

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: B

60 Meter Height

Quarter: 3

WIND				EED (MPH	-		
DIRECTION	1 - 3	<u> </u>	8 - 12	<u> 13 - 18</u>	19 - 24	> 24	TOTAL
N	0	3	4	2	0	0	9
NNE	0	1	3	1	0	0	5 ·
NE	0	1	9	1	1	0	12
ENE	0	0	7	1	0	0	8
E	0	5	3	1	0	0	9
ESE	0	8	5	0	0	0	13
SE	0	8	3	0	0	0	11 ·
SSE	0	3	3	0	0	0	6
S	0	10	3	5	2	1 ,	21
SSW	0	1	12	5	2	0	20
SW	0	2	8	8	1	0	19
WSW	0	1	3	8	2	0	14
W	0	0	1	2	0	0	3
WNW	0	6	5	4	1	0	16
NW	0	11	7	2	1	0	21
NNW	0	0	4	0	0	0	4
TOTAL	0	60	80	40	10	1	191
PERIODS OF CA	LM (HOUF	RS) :	0 ·	HOURS	OF MISSIN	IG DAT	A :
VARIABLE DIRE	CTION :		0				

Stability Class: B 60 Meter Height

WIND		<u>`</u>		EED (MPH	<u> </u>			
	1 0					. 04	TOTAL	l l
DIRECTION	1-3		8 - 12	<u>13 - 18</u>	19 - 24	> 2,4	TOTAL	
N	0	0	3	2	0	0	5	
NNE	0	1	1	0	2	0	4	
NE	0	0	0	0	1	0	1	
ENE	0	0	1	0.	0	0:	1	
E	0	0	Ó	0	0	0	0	
ESE	0	11	0 ,	0	0	0	1	1
SE	0	0	01	1	0	0	1	
SSE	0	1	2	1	0	0	4	
S	0	1	3	1	1	0	6	
SSW	0	0	9	3	1	1	14	
SW	0	1	1	2	0	0	4	
WSW	0	0	1	2	2	1	6 -	
W	0	0	2	1	1	0	4	
WNW	0	0	1	9	3	0	13	
NW	0	0	3	6	4	2	15	
NNW	0	0	4	0	0	. 0	4	
TOTAL	0	5	31	28	15	4	83	
PERIODS OF CA	LM (HOUP	RS) :	0	HOURS	OF MISSI	NG DAT	A: 2	21
VARIABLE DIRE			0					

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: C

60 Meter Height

Quarter: 1

WIND			WIND SPE	ED (MPH)	•	
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	, 19 - 24	> 24	TOTAL
N	0	0	1	0	0	0	1
NNE	0	0	0	0	0	0	0
NE	0	0	0	1	1	0	2
ENE	0	0	0	0	0	1	1
E	0	0	0	0	0	0	0
ESE	0	0	. 3	6	0	0	9
SE	0	4	2	0	0	0	6
SSE	0	0	2	1	0	0	3
S	0	1	· 6	· 3	0	0	10
SSW	0	0	5	6	3	2	16
SW	0	0	0	5	5	0	10
WSW	0	1	1	3.	1	0	6
W	0	1	9	4.	3	4	21
WNW	0	1	7	10	5	9	32
NW	0	2	6	3	1	3	15
NNW	0	0	1	0	1	0	2
TOTAL	0	10	43	42	20	19	134
PERIODS OF CA	LM (HOUF	RS) :	0	HOURS	OF MISSIN	IG DAT	A: 55
VARIABLE DIRE	CTION :		0				

Stability Class: C

60 Meter Height

Quarter: 2

WIND		V	WIND SPE	EED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	4	3	0	1	0	8
NNE	0	1	6	2	1	0	10
NE	0	2	0	3	2	0	7
ENE	0	1	1	1	0	0	3
E	0 .	1	3	1	0	0	5
ESE	1	6	3	1	5	0	16
SE	1	6	2	0	0	0	9
SSE	0	6	2	2	2	0	12
S	0	3	5	7	5	2	22
SSW	0	2	0	2	1	5	10
SW	0	1	10	2	2	2	17
WSW	0	1	8	4	4	1	18
W	0	1	8.	5	0	0	14
WNW	0	4	5	0	3	2	14
NW	0	1	4	5	2	1	13
NNW	0	3	1	4	0	0.	8
TOTAL	2 .	43	61	39	28	13	186
PERIODS OF CA	LM (HOUF	RS) :	0	HOURS (OF MISSI	NG DAT	A: 6
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: C

60 Meter Height

Quarter: 3

WIND			WIND SPE	ED (MPH)	·	
DIRECTION	1 - 3		8 - 12	-	19 - 24	> 24	TOTAL
N	0	3	1	1.	0	0	5
NNE	0	2	7	1	0	0	10
NE	0	4	11	1	0	0	16
ENE	0	1	8	1	0	0	10
E	0	1	3	1	0	0	5
ESE	0	7	2	0	0	0	9
SE	1	8	1	0	0	0	10
SSE	0	6	1	2	0	0	9
S	0	7	1	5	2	0	15 `
SSW	0	0	10	4	0	0	14
SW	1	0,	9	5	4	0	19
WSW	0	2	4	6	1	0	13
W	0	3	4	1	0	0	8
WNW	1	8	8	1	0	0	18
NW	1	5	4	1	0	0	11
NNW	.0	3	3	0	1	0.	7 ´.
TOTAL	4	60	. 77	30	8	0	179
PERIODS OF C	ALM (HOUF	RS) :	0	HOURS	OF MISSIN	NG DAT	A: 0
ARIABLE DIRE	ECTION :		. 0				ť

Stability Class: C

60 Meter Height

	• •		·		•			
WIND		V	VIND SPE	EED (MPH	l) ⁻			
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL	
N	0	4	4	1	2	0	11	
NNE	0	0	1	1	0	2	4	
NE	0	1	Ó.	3	0	1	5	
ENE	0	0	0	0	0	2	2	
E	0	0	1	0	0	0	1	
ESE	0	0	0	0	0	0	0	
SE	0	2	0	1	O	0	3	
SSE	0	3	4	1	1	0	9	
S	0	1	14	5	3	3	26	
SSW	0	1	2	3	2	3	11	
SW	0	0	5	8	1	0	14	
WSW_	.0	2	2	5	0	3	12	
W	0	1	4	2	0	0	7	
WNW	0	0	5	2	6	0	13	
NW	0	4	0	6	3	3	16	
NNW	0	1	1	5	1.	0	8	
TOTAL	0	20	43	43	19	17	142	
PERIODS OF CA	LM (HOUF	RS) :	0	HOURS	OF MISSI	NG DAT	A : 2	21
VARIABLE DIRE	CTION :		0					

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: D

60 Meter Height

Quarter: 1

WIND		١	WIND SPE	ED (MPH)		•
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	· 0	9	1,4	7	5	35
NNE	0	1	7	10	3	7	28
NE	0	7	7	35	10	18	77
ENE	0	3	3	17	10	6	39
Е	1	4	5	23	10	2	45
ESE	0	4	26	33	19	9	91
SE	1	7	12	6	0	1	27
SSE	0	3	12	12	15	7	49
S	1	5	11	15	42	19	93
SSW	0	10	19	21	31	10	91
SW	0	7	16	29	22	1	75
WSW	1	6	10	30	20	38	105
W	1	4	22	37	20	13	97
WNW	0	5	35	56	54	24	174
NW /	0	5	28	37	16	4	90
NNW	0	2	26	20	3	0	51
TOTAL	5	73	248	395	282	164	1167
PERIODS OF CA		RS) :	0	HOURS (ÖF MISSIN	IG DAT	A : .
VARIABLE DIRE	CTION :		0			••	
				· •	1	18 - A	

Stability Class: D

60 Meter Height

Quarter: 2

WIND		١	WIND SPE	ED (MPH) ¹ , ² , ³	. •	• • •
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	4	13	10	1	0	28
NNE	0	2	11	10	2	1	26.
NE	2	2	13	19	<u>17</u>	3	56
ENE	1	4	4	15	9	0	33
E	1	4.	9	18	7	Ġ	42
ESE	1	5	14	16	8 ;	1	45
SE	2,	13	18	12	4.	0	49
SSE	0	15	13	10	2	1	41
S	0	11	18	28	23	7	87
SSW	0	7	14	11	9	14	55
SW	2	5	23	14	7	2	53
WSW	1 ்	4	16	9	5	14	49
W	2	2	12	28	10	5	59
WNW	0	7	18	13	12	26	76
NW	0	10	6	21	19	6	62
NNW	0	2	6	7	6	0	21
TOTAL	12	97	208	241	141	83	782
PERIODS OF CA	LM (HOUF	<u> (S) :</u>	0	HOURS	OF MISSI	NG DAT.	A: 6
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: D

60 Meter Height

Quarter: 3

							· · · · · · · · · · · · · · · · · · ·
WIND		V		EED (MPH	,		
DIRECTION	1-3	4 - 7	8 - 12	<u> 13 - 18</u>	<u> 19 - 24</u>	> 24	TOTAL
N	2	1	12	10	2	0	27
NNE	1	7	19	11	0	0	38
NE	2	3	16	3	3	0	27
ENE	0	5	13	2	0	0	20
E	1	3	7	2	0	0	13
ESE	2	10	8	3	0	0	23
SE	2	4	11	1	0	0	18
SSE	1	5	8	11	0	0	25
S	2	8	16	20	10	5	61
SSW	2	5	14	19	6	1	47
SW	0	3	30	26	3	0	62
WSW	0	2	11	7	0	0	20
W	0	3	7	4	0.	0	14
WNW	0.	6	10	6	1	0	23
NW	1	10	14	10	1	0	36
NNW	1	6	. 12	8	0	0 .	27
TOTAL	17	81	208	143	26	6	481
PERIODS OF CA	LM (HOUF	RS) :	0	HOURS	OF MISSI	IG DAT	A: 0
VARIABLE DIRE			0			,	

Stability Class: D

60 Meter Height

-				-					
WIND									-
DIRECTION	1 0			EED (MPH	,	. 04	TOTAL		
	1 - 3	<u>4 - 7</u>		13 - 18		> 24	TOTAL		
N	0	5	21	24	14	6	70		[
NNE	0	4	15	4	9	2	34		
NE	5	11	20	12	5	4	57		
ENE	1	3	17	15	3	1	40		
E	2	3	3	12	1	0	21		
ESE	3	5	13	15	4	0	40		
SE	2	4	25	14	7	0	52		
SSE	0	5	20	23	9	9	66		
S	2	6	33	27	26	12	106		
SSW	2	8	24	20	24	10	88		
SW	0	3	13	19	7	1	43		
WSW	1	4	8	19	18	15	65		
W	0	8	15	13	24	7	67		
WNW	2	4	9	23	28	18	84		
NW	0	5	11	25	15	16	72		
NNW	0	3	26	16	5	0	50	•	
TOTAL	20	81	273	281	199	101	955		
PERIODS OF C	ALM (HOU	RS) :	0	HOURS	OF MISSI	NG DAT	A: 2	!1	
VARIABLE DIRE		•	0						

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: E 60 Meter Height

Quarter: 1

WIND			VIND SPE	ED (MPH)		
DIRECTION	1 - 3	4 - 7	8 - 12	<u> 13 - 18</u>	19 - 24	> 24	TOTAL
N	0	0	5	5	00	0	10
NNE	0	1	2	9	0	0	12
NE	0	1	4	4	1	0	10
ENE	0	1	3	3	0	0	7
E	0	0	5	5	2	0	12
ESE	0	4	5	14	6	1	30
SE	0	3	18	13	3	1	38
SSE	0 /	2	5	7	5	1	20
S	1	0	4	10	16	12	43
SSW	0	5	11	22	24	9	71
SW	0	4	12	25	10	1	52
WSW	0	1	7	9	9	0	26
W	0	1	9	11	10.	1	32
WNW	0	0	14	18	13	4	49
NW	0	3	12	13	1	0	29
NNW	1	0	11	4	3	0	19
TOTAL	2	26	127	172	103	30	460
PERIODS OF CA	ALM (HOUF	RS) :	0	HOURS (OF MISSIN	IG DAT	A : 55
VARIABLE DIRE	CTION :		0				ι.

Stability Class: E60 Meter HeightQuarter: 2

							· · · · · · · · · · · · · · · · · · ·
WIND		1		EED.(MPH	•		
DIRECTION	<u>1-3</u>	4 - 7	<u> 8 - 12 </u>	<u> 13 - 18</u>	<u> 19 - 24</u>	> 24	TOTAL
N	0	0	5	5	0	0	10
NNE	0	0	10	13	9	0	32
NE	0	1	3	11	12	0	27
ENE	0	1	10	8	0	0	19
E	3	4	13	9	7	2	38
ESE	1	6	16	16	3	0	42
SE	0 ·	10	27	6	0	0	43
SSE	0	6	28	30	8	0	72
S	0	5	36	28	17	8	94
SSW	0	0	14	18	7	2	41
SW	0	4	13	23	1	0	41
WSW	1	1	6	10	3	0	21
W	0	6	9	24	0	0	39
WNW	0	3	. 8	11	0	0	22
NW	0	0	9	10	1	0	20
NNW	1	1	8	2	0	0	12
TOTAL	6	48	215	224	68	12	573
PERIODS OF CA	LM (HOUF	RS) :	0 ·	HOURS	OF MISSIN	NG DAT	A : (
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: E

÷

60 Meter Height

Quarter: 3

WIND		1	WIND SPE	ED (MPH	1)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	1	3 ·	10	15	0	0	29
NNE	0 🕤	5	12	3	0	0	20
NE	0	3	12	12	1	0	28
ENE	1	3	. 13	20	1	0	38
E	.0	3	9	9	1	0	22
ESE	1	4	17	12	0	0	34
SE	1	3	36	5	0	0	45
SSE	0	11	21	35	0	0	67
S	0	4	26	38	3	2	73
SSW	1	4	23	39	2	0	69
SW	0 .	4	21	36	1	0	62
WSW	1	2	11	20	1	0	35
W	1	3	10	8	0	0	22
WNW	0	4	11	8	0	0	23
NW	3	2	17	10	0	0	32
NNW	1 +	4	4	4	0	0	13
TOTAL	11	62	253	274	10	2	612
PERIODS OF CA	ALM (HOUI	RS) :	0	HOURS	OF MISSI	NG DAT	A :
VARIABLE DIRE	CTION :		0				
· · · · · · · · · · · · · · · · · · ·							

Stability Class: E 60 Meter Height

WIND	<u> </u>	·	WIND SPE	EED (MPH)•		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	., 19 - 24	> 24	TOTAL
N	1	7	5	12	1	0	26
NNE	0	4	2	4	.9	3	22
NE	0	3	2	2	11	4	22
ENE	1	1	3	9	3	0	17
E	1	3	4	8	0	0	16
ESE	4	1	3	8	· 1	0	17
SE	2	11	36	20	0	0	69
SSE	0	4	28	34	8	2	76
S	0	5	25	53	32	7	122
SSW	1	2	18	28	35	6	90
SW	0	2	9	30	10	0	51
WSW	0	3	12	16	7	0	38
W	1	3	9	11	3	0	27
WNW	0	1	15	26	13	.0	55
NW	0	2	17	27	11	2	59
NNW	0	1	12	6	3	1	23
TOTAL	11	53	200	294	147	25	730
PERIODS OF CA	-0	HOURS	OF MISSI	NG DAT	A: 2		
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: F

60 Meter Height

Quarter: 1

WIND		V	VIND SPE	EED (MPH	l)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	0	1	0	0	0	1
NNE	0	0	0	1	0	0	1
NE	0	2	0	1	0	0	3
ENE	0	0	2	1	0	0	3
Е	0	0	4	0	0	0	4
ESE	0	0	1	4	0	0	5
SE	0	2	9	6	0	0	17
SSE	0 ·	0	2	5	3	0	10
S	0	1	1	11	1	0	14
SSW	0	4	2	6	2	0	14
SW	0	2	3	5	4	0	14
WSW	1	3	2	1	1	0	8
W	0	1	2	0	0	0	3
WNW	1	0	4	3	0	0	8
NW	0	1	1	2	0	0	4
NNW	0	1	2	3	0	0	6
TOTAL	2 .	17	36	49	11	0	115
PERIODS OF CA	LM (HOUP	RS) :	0	HOURS	OF MISSIN	IG DAT	A :
VARIABLE DIRE	CTION :		0				1

Stability Class: F

60 Meter Height

WIND	- · · ·	V	VIND SPE	ED (MPH)• : v , •*		•
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	1	0	0	0	0	1
NNE	0	2	1	0	0	0	3
NE	0	0	3,	2	0	0.	5
ENE	0,	4	8	5,	0	0	17
E	0	3	9	5	0	0	17 ,
ESE	0	1	6	3	0.	0.	10
SE	0	0	6	1	0	0	7
SSE	1	0	2	1	1	0	5
S	0	2	2	8	1	0	13
SSW	0	1	3	2	0	0	6
SW	0	5	4	16	0	0	25
WSW	1	0	1	12	7	0	21
W	0	2	8	4	0	0	14
WNW	0	3	3	1	0	0	7
NW	0	3	3	2	0	0	8
NNW	0	2	9	4	0	0	15
TOTAL	2	29	68	66	9	0	174
PERIODS OF CA	LM (HOUF	RS) :	1	HOURS	OF MISSI	IG DAT	A: 6
VARIABLE DIRE	CTION :	·	0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: F

60 Meter Height

Quarter: 3

.

WIND		V	VIND SPE	ED (MPH)	· · ·	
DIRECTION	1 - 3	4 - 7 [°]	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	1	4	2	0	0	7
NNE	1	2	7	11	0	0	21
NE	1	2	14	23	2	0	42
ENE	0	1	11	21	1	0	34
E	0	2	13	7	0	0	22
ESE	0	2	9	4	0	0	15
SE	0	6	5	0	0	· 0	11
SSE	0	11	8	8	0	0	27
S	0	4	13	9	0	0	26
SSW	0	2	7	16	0	0	25
SW	0	0	6	14	0	0	20
WSW	0	2	5	6	0.	0	13
W	1 ·	0	6	7	0	0	14
WNW	1	0	3	1	0	0	5
NW	0	0	3	4	0	0	7
NNW	0	1	1	3	0	0	5 ·
TOTAL	4	36	115	136	3	0	294
PERIODS OF CA		RS) :	0	HOURS	OF MISSI	NG DAT	A: 0
VARIABLE DIRE	CTION :		0				

Stability Class: F 60 Meter Height

WIND		V	WIND SPE	ED (MPH	l)		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	<u>19 - 24</u>	> 24	TOTAL
N	1	1	1	4	0	0	7
NNE	0	0	1	3	0	0	4
NE	0	0	1	3	0	0	4
ENE	1 1	0	2`	2 °	0	0	5
E	0	0:	1	Ó	0	0	1
ESE	0	1	1	Í	0	0	3
SE	0	2	6	2	0	0	10
SSE	0	0	3	7	0	0	10
S	0 ·	1	15	18	0	0	34
SSW	0	1	12	6	1	0	20
SW	0	1	5	4	0	0 [°]	10
WSW	0	0	3	5	0	0	8
W	0	0	1	0	0	0	1 -
WNW	0	0	4	0	0	0	4
NW	0	0	4	6	1	1	12
NNW	1	2	2	5	0	0	10
TOTAL	3	9	62	66	2	1	143
PERIODS OF CA	•	RS) :	0	HOURS	OF MISSII	NG DAT	A: 21
VARIABLE DIRE	CTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: G

60 Meter Height

Quarter: 1

WIND				EED (MPH	IN.			
DIRECTION	1 - 3	4 - 7	8 - 12	•	'' 19 - 24	> 24	TOTAL	
N	0		0 - 12	2	<u>-13-24</u> 0	0	2	
NNE	0	0	0	1	0	0	1	
NE	0	0	0	1	3	0	 ∕I	
ENE	0	0 0	0	1	1	0 0	2	
E	0 0	2	1	0	0	0	3	
ESE	0	0	0	0	õ	õ	0	
SE	0	1	õ	Õ	õ	Õ	1	
SSE	Õ	, 0	Õ	0	Õ	Õ	0	
S	Õ	0 0	Õ	0	0	0	0	
SSW	0	0	1	0	1	0	2	
SW	0	0	2	4	3	0	9	
WSW	0	4	2	0	0	0	6	
W	0	1	1	0	0	0	2	
WNW	0	1	1	0	0	0	2	
NW	0	2	0	0	0	0	2	
NNW	0	2	0	0	0	0	2	
TOTAL	0	13	8	9	8	0	38	
PERIODS OF CA	PERIODS OF CALM (HOURS) : 0			HOURS	OF MISSIN	IG DAT	A :	55
VARIABLE DIRE	CTION :		0					<u> </u>

Stability Class: G

60 Meter Height

Quarter: 2

WIND			WIND SPE	ED (MPH)		•••••
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	0	1	4	0	0	0	5
NNE	0	2	4	0	0.	0	6
NE	0	1	4	3	0	0	8
ENE	0 /	2	7	14	0	0	23
E	0	1.	4	10	0	0	15
ESE	0	1	6	0	0	0 -	7
SE	1	4	4	0.	0	0	9
SSE	1	0	0	0	0	0	1 -
S	0	1	0	0.	0	0	1
SSW	1	1	1	0	0	0	3
SW	3	1	1	7	0	0	12
WSW	0	2	2	9	0	0	13
W	1	1 -	5	8	0	0	15
WNW	1	2	2	1	0	0	6
NW	0	2	7	2	0	0	11
NNW	0	3	1	1	0	0	5
TOTAL	8	25	52	55	0	0	140
PERIODS OF C	ALM (HOUF	RS) :	0	HOURS	OF MISSIN	IG DAT	A: 6
VARIABLE DIRE	ECTION :		0				

JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS

Stability Class: G 60 Meter Height

Quarter: 3

WIND		V	WIND SPE	EED (MPH) ·		
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL
N	1	1	2	0	0	0	4
NNE	1	5	2	4	0	0	12
NE	0	6	8	18	3	0	35
9 ENE	0	5	13	20	1	0	39
E	0	2	28	20	0	0	50
ESE	0	2	10	4	0	0	16
SE	0	7	2	0	0	0	9
SSE	1	5	5	1	0	0	12
S	0	3	2	1	0	0	6
SSW	1	2	3	2	0	0	8
SW	3	2	1	2	0	0	8
WSW	1 ·	3	2	1	0	0	7
W	1	0	3	0	0	0	4
WNW	1	0	0	0	0	0	1
NW	0	2	1	1	0	0	4
NNW	0	• 0	5	2	0	0	7
TOTAL	10	45	87	76	4	0	222
PERIODS OF CA	ALM (HOUF	RS) :	0	HOURS (OF MISSIN	IG DAT	Ā: 0
VARIABLE DI <u>RE</u>	CTION :		0		·		

Stability Class: G

60 Meter Height

WIND	4	١	VIND SPI	EED (MPH	l)			,
DIRECTION	1 - 3	4 - 7	8 - 12	13 - 18	19 - 24	> 24	TOTAL	
N	0	0	0	0	0	0	0	
NNE	1	0	2	2	0	0	5	
NE	0	1	2	1	0	0	4	
ENE	0	1	2	3	0	0	6	
E	0	0	1	1	0	0	2	
ESE	0	3	1	1	0	0	5	
SE	0	1	6	0	0	0	7	
SSE	0	3	3	0	0	0	6	
S	0	2	2	3	0	0	7	
SSW	0	0	3	0	0	0	3	
SW	0	0	3	0	0	0	3	
WSW	0	0	3	0	0	0	3	
W	0	0	2	0	0	0	2	
WNW	0	0	2	1	. 0	0	3	
NW	0	0	0	3	0	0	3	
NNW	0	0	0	0	2	0	2	
TOTAL	1	11	32	15	2	0	61	
PERIODS OF CA	LM (HOU	RS) :	0	HOURS	OF MISSI	NG DAT	Ā: 2	1
VARIABLE DIREC	CTION :		0					

ODCM OPERATIONAL REMEDIAL REQUIREMENT REPORTS

In accordance with CPS ODCM section[s] 2.7.1 and 3.9.2, INOPERABLE radioactive liquid and gaseous effluent monitoring instrumentation channels remaining in an INOPERABLE condition for greater than 30 days shall be reported in the Annual Radioactive Effluent Release Report.

During the course of 2007, there were zero (Ø) instances when either a radioactive liquid or gaseous effluent instrumentation channel[s] was INOPERABLE for greater than any 30 day period.

CHANGES TO RADIOACTIVE WASTE TREATMENT SYSTEMS

In accordance with Section 7.2 of the CPS ODCM, licensee-initiated changes to the liquid, gaseous or solid radioactive waste treatment systems shall be reported in the Annual Radioactive Effluent Release Report.

The Process Control Program (PCP) for Radioactive Wastes procedure, RW-AA-100, Revision 3 had no changes in 2007.

There were no permanent changes to the Solid Radioactive Waste Treatment System during the course of the 2007 reporting period.

NEW LOCATIONS FOR DOSE CALCULATION AND / OR ENVIRONMENTAL MONITORING

The following is a summary of the 2007 Annual Land Use Census. It shows changes in locations for dose calculations and / or environmental monitoring identified by the Annual Land Use Census. The distance of the receptor is being listed in the report in lieu of the name of the resident. This is being done to maintain and respect the privacy of the residents.

1.0 Nearest Residence

The nearest residents identified in each of the sixteen (16) sectors are shown below. An asterisk notes any changes from the previous year below (*)

SECTOR	2007 RESIDENT (miles)	AGE GROUP	2006 RESIDENT (miles)	AGE GROUP
N	0.9	А	0.9	A
NNE	1.0	I, A	1.0	A
NE	1.3	A	1.3	Τ, Α
ENE	1.8	C, A	1.8	A
E	1.0	A	1.0	A
ESE	3.2	A	3.2	• • • • A
SE	2.8	A	2.4	С, Т, А
SSE	1.4	- T, A	1.8	Τ, Α
S	3.0	A	3.0	А
SSW	2.9	A	2.9	. A
SW	0.7	А	0.7	А
WSW	1.6	Α	1.6	A
W	1.2	C, A	1.2	C, A
WNW	1.6	A	1.6	А
NW	1.6	A	1.6	А
NNW	1.7	Α	0.9	Α

(I)nfant

(C)hild

(T)een

(A)dult

2.0 Broadleaf Garden Census

Eighty-three (83) gardens within a three (3) mile radius were located in the sixteen (16) geographical sectors surrounding CPS. Fourteen (14) gardens contained broad leaf vegetation, which were specifically identified for this report. Although other crops were identified within these areas, they are not addressed as part of this report.

The nearest gardens identified in each of the sixteen (16) geographical sectors are shown below. An asterisk notes any changes from the previous year below (*).

SECTOR	2007 GARDENS (miles)	AGE GROUPS	2006 GARDENS (miles)	AGE GROUPS
N	0.9	A	0.9	A
NNE	3.0	A	2.3	A
NE	2.1	A	2.1	T, A
ENE	2.6	A	2.6	I, C, T, A
E	1.0	A	> 5	
ESE	3.2	A	3.3	T, A
SE	> 5		> 5	
SSE	> 5		2.8	C, A
S	3.0	Α	3.0	A
SSW	> 5		> 5	
SW	> 5		> 5	
WSW	2.3	A	2.9	T, A
Ŵ	2.0	Α	1.2	C, A
WNW	1.6	A	1.6	A
NW	2.8	C, T, A	> 5	
NNW	1.3	A	1.3	Α

(I)nfant

(**C**)hild

(T)een

(A)dult

3.0 Milking Animal Census

Milking animals within the sixteen (16) geographical sectors were located within five (5) miles surrounding CPS. These milking animals were either used for the nursing of their offspring or used for meat production for their own personal use and sold commercially. There were no residents that milked their animals for human consumption.

Milking animals were specifically identified for this report. Although other livestock were identified within these areas, they are not addressed as part of this report.

The nearest milking animals identified in each of the sixteen (16) geographical sectors are shown below. An asterisk notes any changes from the previous year below (*).

		- ··· - ··· - ··· - ···		
SECTOR	2007 MILKING ANIMALS (miles)	AGE GROUPS	2006 MILKING ANIMALS (miles)	AGE GROUPS
N	0.9	· A	0.9	A
NNE	2.3	А	2.3	A
NE	> 5	N/A	> 5	N/A
ENE	> 5	N/A	> 5	N/A
E	1.0	N/A	> 5	N/A
ESE	> 5	N/A	> 5	N/A
SE	> 5	N/A	> 5	N/A
SSE	> 5	N/A	> 5	N/A
S	4.1	А	4.1	A
SSW	3.4	А	3.4	A
SW	3.6	N/A	> 5	N/A
WSW	2.8	A	3.4	A
w	> 5	N/A	> 5	N/A
WNW	> 5	N/A	> 5	N/A
NW	> 5	N/A	> 5	N/A
NNW	1.3 ·	A	1.3	A

(I)nfant

(**C**)hild

(**T**)een

(A)dult

CORRECTIONS TO DATA REPORTED IN PREVIOUS REPORTS

There were no administrative changes identified in 2007 against previously submitted Annual Radioactive Effluent Release Report[s] resulting in an errata data submittal to the Commission.

and a second
CHANGES TO THE OFFSITE DOSE CALCULATION MANUAL

There were no changes to the Offsite Dose Calculation Manual during 2007.

٠,

.· ·.