

NINE MILE POINT NUCLEAR STATION, LLC

2006 ANNUAL

RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

May 11, 2007

U. S. Nuclear Regulatory Commission Washington, DC 20555-0001

ATTENTION:

Document Control Desk

SUBJECT:

Nine Mile Point Nuclear Station

Unit Nos. 1 & 2; Docket Nos. 50-220 & 50-410

2006 Annual Radiological Environmental Operating Report

In accordance with the Technical Specifications for Nine Mile Point Nuclear Station, Units 1 and 2, enclosed is the Annual Radiological Environmental Operating Report for the period January 1, 2006 through December 31, 2006.

This submittal does not contain any new regulatory commitments.

Should you have questions regarding the information in this submittal, please contact me at (315) 349-5219.

Very truly yours,

Mary A. Miller Licensing Director

MHM/KES/kms

Enclosure:

(1) 2006 Annual Radiological Environmental Operating Report

cc:

S. J. Collins, NRC

M. J. David, NRC

Resident Inspector, NRC

NINE MILE POINT NUCLEAR STATION, LLC

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

January 1, 2006 – December 31, 2006

For

NINE MILE POINT NUCLEAR STATION UNIT 1

Facility Operating License DPR-63

Docket No. 50-220

And

NINE MILE POINT NUCLEAR STATION UNIT 2

Facility Operating License NPF-69

Docket No. 50-410

TABLE OF CONTENTS

			<u>Page</u>
1.0	EXE	CUTIVE SUMMARY	1-1
2.0	INT	RODUCTION	2-1
	2.1	Program History	2-1
	2.2	Site Description	2-2
	2.3	Program Objectives	2-2
3.0	PRO	GRAM DESCRIPTION	3-1
	3.1	Sample Collection Methodology	3-13
	3.2	Analyses Performed	3-18
	3.3	Sample Locations	3-18
	3.4	Land Use Census	3-29
	3.5	Changes to the REMP Program	3-29
	3.6	Deviation and Exceptions to the Program	3-30
	3.7	Statistical Methodology	3-32
	3.8	Compliance with Required Lower Limits of Detection (LLD)	3-35
	3.9	Regulatory Dose Limits	3-37
4.0		IPLE SUMMARY TABLES IN BRANCH TECHNICAL ITION FORMAT	4-1
5.0	DAT	A EVALUATION AND DISCUSSION	5-1
	5.1	Aquatic Program	5-6
	5.2	Terrestrial Program	5-16
	5.3	Conclusion	5-35
	5.4	References	5-37

TABLE OF CONTENTS (Continued)

			<u>Page</u>
6.0	REP	ORT PERIOD ANALYTICAL RESULTS TABLES	6-1
7.0	HIST	ΓORICAL DATA TABLES	7-1
8.0	QUA	ALITY ASSURANCE/QUALITY CONTROL PROGRAM	8-1
	8.1	Program Description	8-1
	8.2	Program Schedule	8-2
	8.3	Acceptance Criteria	8-2
	8.4	Program Results Summary	8-4
	8.5	References	8-14

LIST OF TABLES

		Page
Table 3.0-1	Required Sample Collection and Analysis, Nine Mile Point Unit 1	3-2
Table 3.0-2	Required Sample Collection and Analysis, Nine Mile Point Unit 2	3-6
Table 3.3-1	2006 Environmental Sample Locations	3-20
Table 3.8-1	Required Detection Capabilities for Environmental Sample Analysis, Lower Limit of Detection (LLD)	3-36
Table 4.0-1	Radiological Environmental Monitoring Program Annual Summary	4-2
Table 6-1	Concentrations of Gamma Emitters in Shoreline Sediment Samples - 2006	6-2
Table 6-2	Concentrations of Gamma Emitters in Fish Samples - 2006	6-3
Table 6-3	Concentrations of Tritium in Surface Water Samples – 2006	6-6
Table 6-4	Concentrations of Gamma Emitters in Surface Water Samples - 2006	6-7
Table 6-5	Environmental Airborne Particulate Samples – Offsite Stations - 2006	6-12
Table 6-6	Environmental Airborne Particulate Samples – Onsite Stations - 2006	6-14
Table 6-7	Concentrations of Gamma Emitters in Monthly Composites of JAF/NMPNS	6-16
Table 6-8	Site Air Particulate Samples - 2006 Environmental Charcoal Cartridge Samples – Offsite Stations - 2006	6-31
Table 6-9	Environmental Charcoal Cartridge Samples – Onsite Stations - 2006	6-33
Table 6-10	Direct Radiation Measurement Results - 2006	6-35
Table 6-11	Concentrations of Iodine-131 and Gamma Emitters in Milk - 2006	6-38
Table 6-12	Concentrations of Gamma Emitters in Food Products - 2006	6-40
Table 6-13	Milk Animal Census - 2006	6-42
Table 6-14	Residence Census - 2006	6-43
Table 7-1	Historical Environmental Sample Data, Shoreline Sediment (Control)	7-1
Table 7-2	Historical Environmental Sample Data, Shoreline Sediment (Indicator)	7-2

LIST OF TABLES (continued)

		<u>Page</u>
Table 7-3	Historical Environmental Sample Data, Fish (Control)	7-3
Table 7-4	Historical Environmental Sample Data, Fish (Indicator)	7-4
Table 7-5	Historical Environmental Sample Data, Surface Water (Control)	7-5
Table 7-6	Historical Environmental Sample Data, Surface Water (Indicator)	7-6
Table 7-7	Historical Environmental Sample Data, Surface Water Tritium (Control)	7-7
Table 7-8	Historical Environmental Sample Data, Surface Water Tritium (Indicator)	7-8
Table 7-9	Historical Environmental Sample Data, Air Particulate Gross Beta (Control)	7- 9
Table 7-10	Historical Environmental Sample Data, Air Particulate Gross Beta (Indicator)	7-10
Table 7-11	Historical Environmental Sample Data, Air Particulates (Control)	7-11
Table 7-12	Historical Environmental Sample Data, Air Particulates (Indicator)	7-12
Table 7-13	Historical Environmental Sample Data, Air Radioiodine (Control)	7-13
Table 7-14	Historical Environmental Sample Data, Air Radioiodine (Indicator)	7-14
Table 7-15	Historical Environmental Sample Data, Environmental TLD (Control)	7-15
Table 7-16	Historical Environmental Sample Data, Environmental TLD (Site Boundary)	7-16
Table 7-17	Historical Environmental Sample Data, Environmental TLD (Offsite Sectors)	7-17
Table 7-18	Historical Environmental Sample Data, Environmental TLD (Special Interest)	7-18
Table 7-19	Historical Environmental Sample Data, Environmental TLD (Onsite Indicator)	7-19
Table 7-20	Historical Environmental Sample Data, Environmental TLD (Offsite Indicator)	7-20
Table 7-21	Historical Environmental Sample Data, Milk (Control)	7-21
Table 7-22	Historical Environmental Sample Data, Milk (Indicator)	7-22
Table 7-23	Historical Environmental Sample Data, Food Products (Control)	7-23

LIST OF TABLES (continued)

		<u>Page</u>
Table 7-24	Historical Environmental Sample Data, Food Products (Indicator)	7-24
Table 8.3.1	Error Resolution/Ratio of Agreement	8-3
Table 8-1	Interlaboratory Intercomparison Program (Gross Beta, Tritium, Iodine & Gamma Analysis of Air, Water, Milk, Soil, Filter & Food Products)	8-8

LIST OF FIGURES

		Page
Figure 3.3-1	New York State Map	3-24
Figure 3.3-2	Off-site Environmental Station and TLD Locations	3-25
Figure 3.3-3	Onsite Environmental Station and TLD Locations	3-26
Figure 3.3-4	Milk and Surface Water Sample Locations	3-27
Figure 3.3-5	Nearest Residence, Food Product, Fish and Shoreline Sediment Sample Locations	3-28

SECTION 1.0 EXECUTIVE SUMMARY

1.0 EXECUTIVE SUMMARY

The Annual Radiological Environmental Operating Report is published pursuant to Section 6.6.2 of the Nine Mile Point Unit 1 (NMP1) Technical Specifications, Section 5.6.2 of the Nine Mile Point Unit 2 (NMP2) Technical Specifications and 10 CFR 50.4.

This report describes the Radiological Environmental Monitoring Program (REMP), the implementation, and the results obtained as required by Technical Specifications (TS) and the Offsite Dose Calculation Manuals (ODCM). The report also contains the analytical results tables, data evaluation, dose assessment, and data trends for each environmental sample media. Also included are results of the land use census, historical data and the Environmental Laboratory's performance in the Interlaboratory Comparison Quality Assurance Program (ICQAP) required by the NMP1 and NMP2 ODCM.

The REMP is a comprehensive surveillance program, which is implemented to assess the impact of site operations on the environment and compliance with 10CFR20 and 40CFR190. Samples are collected from the aquatic and terrestrial pathways applicable to the site. The aquatic pathways include Lake Ontario fish, surface waters and lakeshore sediment. The terrestrial pathways include airborne particulate and radioiodine, milk, food products and direct radiation.

During 2006 there were 2402 analyses performed on environmental media collected as part of the required monitoring program. These results demonstrated that there was no significant or measurable radiological impact from the operation of either the NMP1 or NMP2 facilities. Cesium-137 was detected in one aquatic pathway (shoreline sediment) at very low levels and was attributed to fallout from past weapons testing. The 2006 results for all pathways sampled were consistent with the previous five year historical results and exhibited no adverse trends.

In summary, the analytical results from the 2006 REMP demonstrate that the routine operation of both facilities at the Nine Mile Point Site had no significant or measurable radiological impact on the environment. The results of the REMP continued to demonstrate that the operation of the plants did not result in a significant measurable dose to a member of the general population, or adversely impact the environment as a result of radiological effluents. The environmental program continued to demonstrate that the dose to a member of the public as a result of the operation of NMP1 and NMP2 remained significantly below the federally required dose limits specified in 10CFR20 and 40CFR190.

1 :

SECTION 2.0
INTRODUCTION

2.0 INTRODUCTION

Nine Mile Point Units 1 and 2 are operated by Nine Mile Point Nuclear Station, LLC. This report is submitted in accordance with Appendix A (Technical Specifications) Section 6.6.2 to License DPR-63, Docket No. 50-220 for the Nine Mile Point Nuclear Station Unit 1 and Appendix A (Technical Specifications) Section 5.6.2 to License NPF-69, Docket No. 50-410 for the Nine Mile Point Nuclear Station Unit 2 for the calendar year 2006.

Nine Mile Point Unit 1 (NMP1) and Nine Mile Point Unit 2 (NMP2) Radiological Environmental Monitoring Program (REMP) requirements reside within the NMP1 Offsite Dose Calculation Manual (ODCM) and NMP2 ODCM, respectively. Throughout this report references will be made to the ODCM. This refers to both the NMP1 ODCM and NMP2 ODCM.

2.1 PROGRAM HISTORY

Environmental monitoring of the Nine Mile Point site has been on-going since 1964. The program includes five years of pre-operational data which was conducted prior to any reactor operations. In 1968, the Niagara Mohawk Power Company began the required pre-operational environmental site testing program. This pre-operational data serves as a reference point to compare later data obtained during reactor operation. In 1969, NMP1, a 1850 Megawatts - Thermal (MWt) Boiling Water Reactor (BWR) began full power operation. In 1975, the James A. FitzPatrick Nuclear Power Plant (JAFNPP), a 2536 MWt BWR, currently owned and operated by Entergy, began full power operation. In 1988, the NMP2 reactor, a 3323 MWt BWR located between NMP1 and JAFNPP, began full power operation. In 1995, NMP2 was uprated to 3467 MWt.

In 1985, the individual station Effluent Technical Specifications were standardized to the generic Radiological Effluent Technical Specifications, much of which is common to both NMP1 and JAFNPP, and subsequently NMP2. Subsequent Technical Specification amendments relocated the REMP requirements to the ODCM for all three plants. Data generated by the REMP is shared, but each operating company reviews and publishes their own annual report.

In summary, three BWRs, which together generate approximately 7853 MWt, have operated collectively at the Nine Mile Point Site since 1988. A large database of environmental results for the exposure pathways has been collected and analyzed to determine the effect from reactor operations.

2.2 SITE DESCRIPTION

The Nine Mile Point Site is located on the southeast shore of Lake Ontario in the town of Scriba, approximately 6.2 miles northeast of the city of Oswego. The nearest metropolitan area is located approximately 36 miles south southeast of the site. The reactors and support buildings occupy a small shoreline portion of the 900 acre site. The land, soil of glacier deposits, rises gently from the lake in all directions. Oswego County is a rural environment, with about 15% of the land devoted to agriculture.

2.3 PROGRAM OBJECTIVES

The objectives of the Radiological Environmental Monitoring Program are to:

- 1. Measure and evaluate the effects of plant operation on the environs and to verify the effectiveness of the controls on radioactive material sources.
- 2. Monitor natural radiation levels in the environs of the NMPNS site.
- 3. Demonstrate compliance with the requirements of applicable federal regulatory agencies, including Technical Specifications and the Offsite Dose Calculation Manuals.

Section 3.0 PROGRAM DESCRIPTION

3.0 PROGRAM DESCRIPTION

To achieve the objectives listed in Section 2.3, an extensive sampling and analysis program is conducted every year. The Nine Mile Point Nuclear Station (NMPNS) Radiological Environmental Monitoring Program (REMP) consists of sampling and analysis of various media that include:

- Air
- Fish
- Food Products
- Milk
- Shoreline Sediment
- Surface Waters

In addition, direct radiation measurements are performed using thermoluminescent dosimeters (TLDs). These sampling programs are outlined in Table 3.0-1 and Table 3.0-2. The NMPNS REMP sampling locations are selected and verified by an annual land use census. The accuracy and precision of the analysis program is assured by participation in an Interlaboratory Comparison Quality Assurance Program (ICQAP). In addition to the participation in the ICQAP, sample splits are provided to the New York State Department of Health for cross-checking purposes.

Sample collections for the radiological program are accomplished by a dedicated site environmental staff from both the NMPNS and James A. FitzPatrick Nuclear Power Plant (JAFNPP). The site staff is assisted by a contracted environmental engineering company, EA Engineering, Science and Technology, Inc. (EA).

TABLE 3.0-1

Exposure Pathway and/or Sample	Number of Samples (a) and Locations	Sampling and Collection Frequency ^(a)	Type of Analysis and Frequency
<u>AIRBORNE</u>			
a. Radioiodine and Particulates	Samples from five locations; Three samples from offsite locations in different sectors of the highest calculated site average D/Q (based on all site licensed reactors). One sample from the vicinity of an established year round community having the highest calculated site average D/Q (based on all site licensed reactors). One sample from a control location 10-17 miles distant and in a least prevalent wind direction (d).	Continuous sampler operation with sample collection weekly or as required by dust loading, whichever is more frequent.	Radioiodine Canisters - analyze once/week for I-131. Particulate Samplers - Gross beta radioactivity following filter change (b). Composite (by location) for gamma isotopic analysis (c) once per 3 months, (as a minimum).
b. Direct Radiation (e)	32 stations with two or more dosimeters to be placed as follows: an inner ring of stations in the general area of the site boundary and an outer ring in the 4 to 5 mile range from the site with a station in each land based sector. (1) The balance of the stations should be placed in special interest areas such as population centers, nearby residences, schools and in 2 or 3 areas to serve as control stations.	Once per 3 months	Gamma dose once per 3 months.

Exposure Pathway and/or Sample	Number of Samples (a) and Locations	Sampling and Collection Frequency (a)	Type of Analysis and Frequency
WATERBORNE			
a. Surface (f)	One sample upstream. One sample from the site's downstream cooling water intake.	Composite sample over 1 month period (g)	Gamma isotopic analysis (c) once/month. Composite for once per 3 months tritium analysis.
b. Sediment from Shoreline	One sample from a downstream area with existing or potential recreational value.	Twice per year	Gamma isotopic analysis (c)
INGESTION			
a. Milk	Samples from milk sampling locations in three locations within 3.5 miles distance having the highest calculated site average D/Q. If there are none, then one sample from milking animals in each of 3 areas 3.5 – 5.0 miles distant having the highest calculated site average D/Q (based on all site licensed reactors). One sample from a milk sampling location at a control location (9-20 miles distant and in a least prevalent wind direction) (d).	Twice per month, April – December (samples will be collected in January – March if I-131 is detected in November and December of the preceding year).	Gamma isotopic (c) and I-131 analysis twice per month when animals are on pasture (April – December); once/month at other times (January – March) if required.

Exposure Pathway and/or Sample	Number of Samples (a) and Locations	Sampling and Collection Frequency (a)	Type of Analysis and Frequency
b. Fish	One sample each of two commercially or recreationally important species in the vicinity of a plant discharge area ^(h) .	Twice per year	Gamma isotopic analysis ^(c) on edible portions twice per year.
	One sample each of the same species from an area at least 5 miles distant from the site (d).		·
c. Food Products	Samples of three different kinds of broad leaf vegetation (such as vegetables) grown nearest to each of two different off-site locations of highest calculated site average D/Q (based on all licensed site reactors).	Once per year during harvest season	Gamma isotopic ^(c) analysis of edible portions (Isotopic to include I-131 or a separate I-131 analysis may be performed) once
	One sample of each of the similar broad leaf vegetation grown at least $9.3 - 20$ miles distant in a least prevalent wind direction.		during the harvest season.

NOTES FOR TABLE 3.0-1

- (a) It is recognized that, at times, it may not be possible or practical to obtain samples of the media of choice at the most desired location or time. In these instances, suitable alternative media and locations may be chosen for the particular pathway in question and may be substituted. Actual locations (distance and directions) from the site shall be provided in the Annual Radiological Environmental Operating Report. Highest D/Q locations are based on historical meteorological data for all site licensed reactors.
- (b) Particulate sample filters should be analyzed for gross beta 24 hours or more after sampling to allow for radon and thoron daughter decay. If the gross beta activity in air is greater than 10 times a historical yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.
- (c) Gamma isotopic analysis means the identification and quantification of gamma emitting radionuclides that may be attributable to the effluents from the facility.
- (d) The purpose of these samples is to obtain background information. If it is not practical to establish control locations in accordance with the distance and wind direction criteria, other sites, such as historical control locations which provide valid background data may be substituted.
- (e) One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purpose of this table, a thermoluminescent dosimeter may by considered to be one phosphor, and two or more phosphors in a packet may be considered as two or more dosimeters. Film badges shall not be used for measuring direct radiation.
- (f) The "upstream sample" should be taken at a distance beyond significant influence of the discharge. The "downstream sample" should be taken in an area beyond but near the mixing zone, if possible.
- (g) Composite samples should be collected with equipment (or equivalent) which is capable of collecting an aliquot at time intervals which are very short (e.g. hourly) relative to the compositing period (e.g. monthly) in order to assure obtaining a representative sample.
- (h) In the event commercial or recreational important species are not available as a result of three attempts, then other species may be utilized as available.

TABLE 3.0-2

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS Nine Mile Point Unit 2

Exposure Pathway and/or Sample	Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
<u>AIRBORNE</u>	•		
a. Direct Radiation	32 routine monitoring stations ^(b) either with 2 or more dosimeters or with 1 instrument for measuring and recording dose rate continuously, placed as follows: An inner ring of stations, one in each meteorological sector in the general area of the Site Boundary. An outer ring of stations, one in each land base meteorological sector in the 4 to 5 mile ⁽¹⁾ range from the site. The balance of the stations should be placed in special interest areas such as population centers, nearby residences, schools, and in one of two areas to serve as control stations ^(c) .	Once per 3 months	Gamma dose once per 3 months

(1) At this distance, 8 wind rose sectors, (W, WNW, NW, NNW, N, NNE, NE, and ENE) are over Lake Ontario.

	Exposure Pathway and/or Sample	Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
	Airborne Radioiodine and Particulates VATERBORNE	Samples from five locations: Three samples from offsite locations close to the site boundary (within one mile) in different sectors of the highest calculated annual site average ground-level D/Q (based on all site licensed reactors). One sample from the vicinity of an established year-round community having the highest calculated annual site average ground-level D/Q (based on all site licensed reactors). One sample from a control location at least 10 miles distant and in a least prevalent wind direction (c).	Continuous sampler operation with sample collection weekly, or more frequently if required by dust loading	Radioiodine Canister I-131 analysis weekly Particulate Sampler Gross beta radioactivity analysis ≥ 24 hours following filter change (d), Gamma isotopic analysis on each sample where gross beta activity is >10 times the previous yearly mean of control samples and gamma isotopic analysis (e) of composite sample (by location) once per 3 months.
<u>W</u>	ATERBORNE			
a.	Surface	One sample upstream (c) (f). One sample from the site's downstream cooling water intake (f).	Composite sample over 1-month period (g).	Gamma isotopic analysis (e) once per month and tritium analysis once per 3 months.

Exposure Pathway and/or Sample	Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
b. Ground	Samples from one or two sources if likely to be affected ^(h) .	Grab sample once per 3 months.	Gamma isotopic ^(e) and tritium analysis once per 3 months.
c. Drinking	One sample each of one to three of the nearest water supplies that could be affected by its discharge ⁽ⁱ⁾ .	Composite sample over a 2-week period ^(g) when I-131 analysis is performed; monthly composite otherwise.	I-131 analysis on each composite when the dose calculated for the consumption of the water is greater than 1 mrem per year. (i) Composite for gross beta and gamma isotopic analyses (e) monthly. Composite for tritium analysis once per 3 months.
d. Sediment from Shoreline	One sample from a downstream area with existing or potential recreational value.	Twice per year	Gamma isotopic analysis ^(e)

Exposure Pathway and/or Sample	Number of Samples and Sample Locations '		Type of Analysis and Frequency
INGESTION			
a. Milk	Samples from Milk Sampling Locations in three locations within 3.5 miles distance having the highest calculated annual site average D/Q (based on all licensed site reactors). If there are none, then 1 sample from Milk Sampling Locations in each of three areas 3.5 – 5.0 miles distant having the highest calculated annual site average D/Q (based on all licensed site reactors). One sample from a Milk Sample Location at a control location 9 - 20 miles distant and in a least prevalent wind direction (c).	Twice per month, April – December (samples will be collected January – March if I-131 is detected in November and December of the preceding year).	Gamma isotopic ^(e) and I-131 analysis twice/month when animals are on pasture (April – December); once per month at other times (January – March if required).
b. Fish	One sample each of two commercially or recreationally important species in the vicinity of a plant discharge area ^(k) . One sample of the same species in areas not influenced by station discharge ^(c) .	Twice per year	Gamma isotopic analysis ^(e) on edible portions twice per year.

Exposure Pathway and/or Sample	Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
c. Food Products	One sample of each principal class of food products from any area that is irrigated by water in which liquid plant wastes have been discharged ^(l) .	At time of harvest (m)	Gamma isotopic ^(e) and I-131 analysis of each sample of edible portions.
	Samples of three different kinds of broad leaf vegetation (such as vegetables) grown nearest to each of two different offsite locations of highest calculated annual site average D/Q (based on all licensed site reactors).	Once per year during the harvest season.	
	One sample of each of the similar broad leaf vegetation grown at least 9.3 miles distant in a least prevalent wind direction.		

NOTES FOR TABLE 3.0-2

- (a) Specific parameters of distance and direction sector from the centerline of one reactor, and additional descriptions where pertinent, shall be provided for each and every sample location in Table 3.0-2. Refer to NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," October 1978, and to Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979. Deviations are permitted from the required sampling schedule if specimens are unobtainable because of such circumstances as hazardous conditions, seasonal unavailability (which includes theft and uncooperative residents), or malfunction of automatic sampling equipment.
- (b) One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. Each of the 32 routine monitoring stations shall be equipped with 2 or more dosimeters or with 1 instrument for measuring and recording dose rate continuously. For the purpose of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor, two or more phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation.
- (c) The purpose of these samples is to obtain background information. If it is not practical to establish control locations in accordance with the distance and wind direction criteria, other sites, which provide valid background data, may be substituted.
- (d) Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay.
- (e) Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.
- (f) The "upstream" sample shall be taken at a distance beyond significant influence of the discharge. The "downstream" sample shall be taken in an area beyond but near the mixing zone.
- (g) In this program, representative composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) in order to assure obtaining a representative sample.
- (h) Groundwater samples shall be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.
- (i) Drinking water samples shall be taken only when drinking water is a dose pathway.
- (j) Analysis for I-131 may be accomplished by Ge-Li analysis provided that the lower limit of detection (LLD) for I-131 in water samples found on Table 3.8-1 can be met.

NOTES FOR TABLE 3.0-2 (Continued)

- (k) In the event two commercially or recreationally important species are not available after three attempts of collection, then two samples of one species or other species not necessarily commercially or recreationally important may be utilized.
- (l) Applicable only to major irrigation projects within 9 miles of the site in the general downcurrent direction.
- (m) If harvest occurs more than once/year, sampling shall be performed during each discrete harvest. If harvest occurs continuously, sampling shall be taken monthly. Attention shall be paid to including samples of tuberous and root food products.

3.1 SAMPLE COLLECTION METHODOLOGY

3.1.1 SHORELINE SEDIMENTS

One kilogram of shoreline sediment is collected at one area of existing or potential recreational value. One sample is also collected from a location beyond the influence of the site. Samples are collected as surface scrapings to a depth of approximately 1 inch. The samples are placed in plastic bags, sealed and shipped to the lab for analysis. Sediment samples are analyzed for gamma emitting radionuclides.

Shoreline sediment sample locations are shown in Section 3.3, Figure 3.3-5.

3.1.2 FISH

Samples of available fish species that are commercially or recreationally important to Lake Ontario; such as lake trout, salmon, walleye and smallmouth bass, are collected twice per year, once in the spring and again in the fall. Indicator samples are collected from a combination of the two on-site sample transects located off shore from the site. One set of control samples are collected at an off-site sample transect located off shore 8 - 10 miles west of the site. Available species are selected using the following guidelines:

- a. A minimum of two species that are commercially or recreationally important are to be collected from each sample location. Samples selected are limited to edible and/or sport species when available.
- b. Samples are composed of 0.5 to 1 kilogram of the edible portion only.

Selected fish samples are frozen after collection and segregated by species and location. Samples are shipped frozen in insulated containers for analysis. Edible portions of each sample are analyzed for gamma emitting radionuclides.

Fish collection locations are shown in Section 3.3, Figure 3.3-5.

3.1.3 SURFACE WATER

Surface water samples are taken from the respective inlet canals of the JAFNPP and the NRG's Oswego Steam Station. The JAFNPP facility draws water from Lake Ontario on a continuous basis. This is used for the "downstream" or indicator sampling point for the Nine Mile Point site. The Oswego Steam Station inlet canal removes water from Lake Ontario at a point approximately

7.6 miles west of the site. This "upstream" location is considered a control location because of the distance from the site as well as the result of the lake current patterns and current patterns from the Oswego River located nearby.

Samples from the JAFNPP facility are composited from automatic sampling equipment, which discharges into a compositing tank or bottles. Samples are collected monthly from the compositor and analyzed for gamma emitters. Samples from the Oswego Steam Station are also obtained using automatic sampling equipment and collected in a holding tank. Representative samples from this location are obtained weekly and are composited to form a monthly composite sample. The monthly samples are analyzed for gamma emitting radionuclides.

A portion of the monthly sample from each of the locations is saved and composited to form quarterly composite samples, which are analyzed for tritium.

In addition to the sample results for the JAFNPP and Oswego Steam Station collection sites, data is presented for the Nine Mile Point Unit 1 (NMP1) and Nine Mile Point Unit 2 (NMP2) facility inlet canal samples and from the City of Oswego drinking water supply. The latter three locations are not required by the ODCM. These locations are optional sample points which are collected and analyzed to enhance the surface water sampling program. Monthly composite samples from these three locations are analyzed for gamma emitting nuclides and quarterly composite samples are analyzed for tritium.

Sampling for groundwater and drinking water, as found in Section D 3.5.1 of the NMP2 ODCM, was not required during 2006. There was no groundwater source in 2006 that was tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties were suitable for contamination; therefore, drinking water was not a dose pathway during 2006.

Surface water sample locations are shown in Section 3.3 on Figure 3.3-4.

3.1.4 AIR PARTICULATE / IODINE

The air sampling stations required by the ODCM are located in the general area of the site boundary. The sampling stations are sited within a distance of 0.2 miles of the site boundary in sectors with the highest calculated deposition factor (D/Q) based on historical meteorological data. These stations (R-1, R-2, and R-3) are located in the E, ESE, and SE sectors as measured from the center of the NMP2 Reactor Building. The ODCM also require that a fourth air sampling station be located in the vicinity of a year round community. This station is located in the SE sector at a distance of 1.8 miles and is designated as Station R-4. A fifth station required by the ODCM is a

control location designated as Station R-5. Station R-5 is located 16.4 miles from the site in the NE meteorological sector.

In addition to the five ODCM required locations, there are ten additional sampling stations. Six of these sampling stations are located within the site boundary and are designated as Onsite Stations D1, G, H, I, J, and K. These locations are within the site boundary of the NMPNS and JAFNPP. One air sampling station is located Offsite in the SW sector in the vicinity of the City of Oswego and is designated as Station G Offsite. Three remaining air sampling stations are located in the ESE, SSE, and SSW sectors and range in distance from 7.2 to 9.0 miles. These are designated as Offsite Stations D2, E and F, respectively.

Each station collects airborne particulates using glass fiber filters (47 millimeter diameter) and radioiodine using charcoal sample cartridges (2 x 1 inch). The samplers run continuously and the charcoal cartridges and particulate filters are changed on a weekly basis. Sample volume is determined by use of calibrated gas flow meters located at the sample discharge. Gross beta analysis is performed on each particulate filter. Charcoal cartridges are analyzed for radioiodine using gamma spectral analysis. The particulate filters are composited monthly by location and analyzed for gamma emitting radionuclides.

Air sampling station locations are shown in Section 3.3, Figures 3.3-2 and 3.3-3.

3.1.5 TLD (DIRECT RADIATION)

Thermoluminescent dosimeters (TLDs) are used to measure direct radiation (gamma dose) in the environment. Environmental TLDs are supplied and processed quarterly by the AREVA/Framatone Environmental Laboratory. The laboratory utilizes a Panasonic based system using UD-814 dosimeters which are constructed of rectangular teflon wafers impregnated with 25% CaSO₄:Dy phosphor. Each dosimeter contains three calcium sulfate elements and one lithium borate element.

Environmental TLDs are placed in five different geographical regions around the site to evaluate effects of Direct Radiation as a result of Plant Operations. The following is a description of the five TLD geographical categories used in the NMPNS and JAFNPP Environmental Monitoring Program and the TLDs that make up each region:

TLD Geographical Category

Description

()n	site
\ / 1 I	שונט

TLDs placed at various locations within the Site Boundary and are not required by the ODCM, with the exception of TLD # 7, 23 and 18. (TLD locations comprising this group are: 3, 4, 5, 6, 7*, 18*, 23*, 24, 25, 26, 27, 28, 29, 30, 31, 39, 47, 103, 106 and 107)

Site Boundary

An inner ring of TLDs placed in the general area of the Site Boundary in each of the sixteen meteorological sectors. This category is required by the ODCM. (TLD locations comprising this group are: 7*, 18*, 23*, 75*, 76*, 77*, 78*, 79*, 80*, 81*, 82*, 83*, 84*, 85*, 86*, and 87*)

Offsite

An outer ring of TLDs placed 4 to 5 miles from the site in each of the 8 land based meteorological sectors. This category is required by the ODCM. (TLD locations comprising this group are 88*, 89*, 90*, 91*, 92*, 93*, 94*, and 95*)

Special Interest

TLDs placed in Special Interest areas of high population density and use. These TLDs are located at or near large industrial sites, schools, or nearby towns or communities. This category is required by the ODCM. (TLD locations comprising this group are: 9, 10, 11, 12, 13, 15*, 19, 51, 52, 53, 54, 55, 56*, 58*, 96*, 97*, 98*, 99, 100, 101, 102, 108, and 109)

Control

TLDs placed in areas beyond significant influence of the site and plant operations. These TLDs are located to the SW, S and NE of the site at distances of 12.6 to 24.7 miles. This category is also required by the ODCM. (TLD locations comprising this group are 8, 14*, 49*, 111, 113)

TLD location required by ODCM

Although the ODCM require a total of 32 TLD stations, environmental TLDs are also placed at additional locations, not required by the ODCM, within the Onsite, Special Interest and Control TLD categories to supplement the ODCM required direct radiation readings.

Two dosimeters are placed at each TLD monitoring location. The TLDs are sealed in polyethylene packages to ensure dosimeter integrity and placed in open webbed plastic holders and attached to supporting structures, such as utility poles.

Environmental TLD locations are shown in Section 3.3, Figures 3.3-2 and 3.3-3.

3.1.6 MILK

Milk samples are routinely collected from four farms during the sampling year. These farms include three indicator locations and one control location. Samples are normally collected April through December of the sample year. If plant related radionuclides are detected during November and December of the previous year, milk collections are continued into the following year, starting in January. If plant related radionuclides are not detected in the November and December samples, then milk collections do not commence until April of the next sampling year. Milk samples were not collected in January through March of 2006 as there were no positive detections of plant related radionuclides in samples collected during November and December 2005.

The ODCM also requires that a sample be collected from a control location nine to twenty miles from the site and in a less prevalent wind direction. This location is in the south sector at a distance of 14 miles and serves as the control location.

Milk samples are collected in polyethylene bottles from a bulk storage tank at each sampled farm. Before the sample is drawn, the tank contents are agitated to assure a homogenous mixture of milk and butterfat. Two gallons are collected from each indicator and control location during the first half and second half of each month. The samples are chilled, preserved and shipped fresh to the analytical laboratory within thirty-six hours of collection, in insulated shipping containers.

The milk sample locations are shown in Section 3.3, Figure 3.3-4. (Refer to Section 3.3, Table 3.3-1 for location designation and descriptions.)

3.1.7 FOOD PRODUCTS (VEGETATION)

Food products are collected once per year during the late summer harvest season. A minimum of three different kinds of broadleaf vegetation, edible or inedible, is collected from two different indicator garden locations. Sample locations are selected from gardens identified in the annual census that have the highest estimated deposition values (D/Q) based on historical site meteorological data. Control samples are also collected from available locations greater than 9.3

miles distant from the site in a least prevalent wind direction. Control samples are of the same or similar type of vegetation when available.

Food product samples are analyzed for gamma emitters using gamma isotopic analysis.

Food product locations are shown in Section 3.3, Figure 3.3-5.

3.2 ANALYSES PERFORMED

The following environmental sample analyses are performed by the JAFNPP Environmental Laboratory:

- Air Particulate Filter Gross Beta
- Air Particulate Filter Composites Gamma Spectral Analysis
- Airborne Radioiodine Gamma Spectral Analysis
- Fish Gamma Spectral Analysis
- Food Products (Vegetation) Gamma Spectral Analysis
- Milk Gamma Spectral Analysis and I-131
- Shoreline Sediment Gamma Spectral Analysis
- Special Samples (soil, food products, bottom sediment, etc.) Gamma Spectral Analysis
- Surface Water Monthly Composites Gamma Spectral Analysis, I-131
- Surface Water Quarterly Composites Tritium

The analysis of Direct Radiation using Thermoluminescent (TLD's) is performed by a contractor laboratory – Areva/Framatome Environmental Laboratory.

3.3 SAMPLE LOCATIONS

Section 3.3, Figures 3.3-1 through 3.3-5 provides maps illustrating sample locations. Sample locations referenced as letters and numbers on the report period data tables are consistent with designations plotted on the maps.

This section also contains an environmental sample location reference table (Table 3.3-1). This table contains the following information:

- Sample medium
- Map designation, (this column contains the key for the sample location and is consistent with the designation on the sample location maps and on the sample results data tables).

- Figure number
- Location description
- Degrees and distance of the sample location from the site.

3.3.1 LIST OF FIGURES

- Figure 3.3-1 New York State Map
- Figure 3.3-2 Off-Site Environmental Station and TLD Locations Map
- Figure 3.3-3 On-Site Environmental Station and TLD Locations Map
- Figure 3.3-4 Milk and Surface Water Sample Locations Map
- Figure 3.3-5 Nearest Residence, Food Product, Fish and Shoreline Sediment Sample Locations Map

TABLE 3.3-1
2006 ENVIRONMENTAL SAMPLE LOCATIONS

SAMPLE MEDIUM	MAP DESIGNATION	FIGURE NUMBER	LOCATION DESCRIPTION		CE (1 & 2)
Shoreline Sediment	5* 6	Figure 3.3-5 Figure 3.3-5	Sunset Bay Langs Beach, Control	80° at 232° at	1.5 miles 4.8 miles
Fish	02*	Figure 3.3-5	Nine Mile Point Transect	290° at	0.4 miles
	03* 00*	Figure 3.3-5 Figure 3.3-5	FitzPatrick Transect Oswego Transect - Control		0.8 miles 5.9 miles
Surface Water	03*	Figure 3.3-4	FitzPatrick Inlet		0.6 miles
	08* 09	Figure 3.3-4 Figure 3.3-4	Oswego Steam Station Inlet - Control NMP Unit 1 Inlet	237° at 319° at	7.6 miles 0.3 miles
	10	Figure 3.3-4	Oswego City Water	240° at	7.8 miles
	11	Figure 3.3-4	NMP Unit 2 Inlet		0.3 miles 0.3 miles
Air Radioiodine and	R-1*	Figure 3.3-2	R-1 Station, Nine Mile Point Road	92° at	1.8 miles
Particulates	R-2*	Figure 3.3-3	R-2 Station, Lake Road		1.1 miles
	R-3* R-4*	Figure 3.3-3 Figure 3.3-3	R-3 Station, Co. Rt. 29 R-4 Station, Co. Rt. 29	133° at 145° at	1.4 miles 1.8 miles
	R-5*	Figure 3.3-2	R-5 Station, Montario Point - Control	42° at	1.6 innes
	D1	Figure 3.3-3	D1 On-Site Station		0.3 miles
	G	Figure 3.3-3	G On-Site Station		0.7 miles
	H	Figure 3.3-3	H On-Site Station		0.8 miles
	Ī	Figure 3.3-3 Figure 3.3-3	I On-Site Station J On-Site Station		0.8 miles 0.9 miles
	K	Figure 3.3-3	K On-Site Station		0.5 miles
	G	Figure 3.3-2	G Off-Site Station, Saint Paul Street		5.4 miles
	D2	Figure 3.3-2	D2 Off-Site Station, Rt. 64		9.0 miles
	E	Figure 3.3-2	E Off-Site Station, Rt. 4	162° at	
	F	Figure 3.3-2	F Off-site Station, Dutch Ridge Road	192° at	7.6 miles

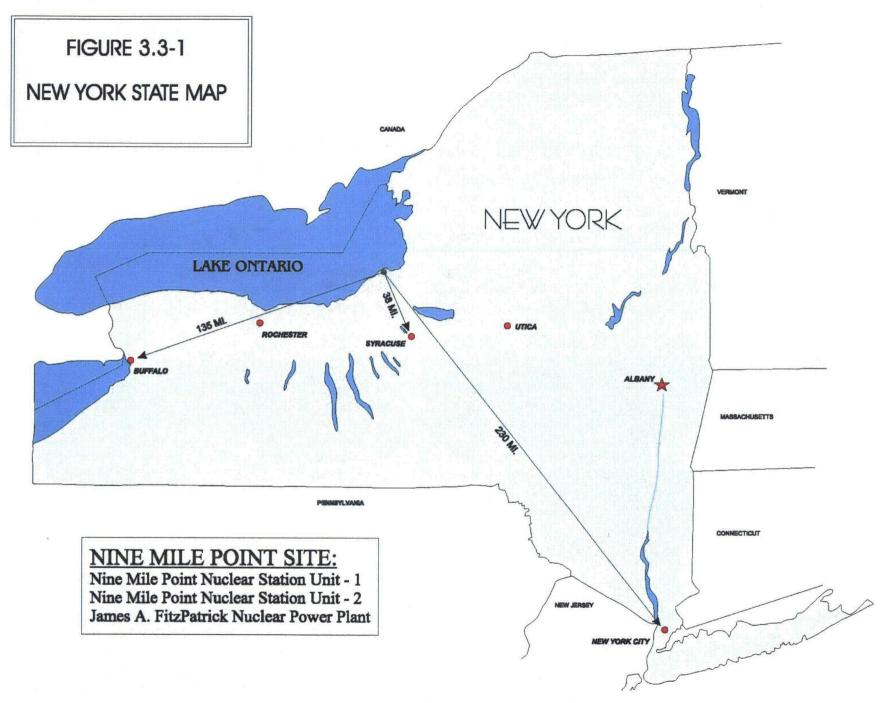
2006 ENVIRONMENTAL SAMPLE LOCATIONS

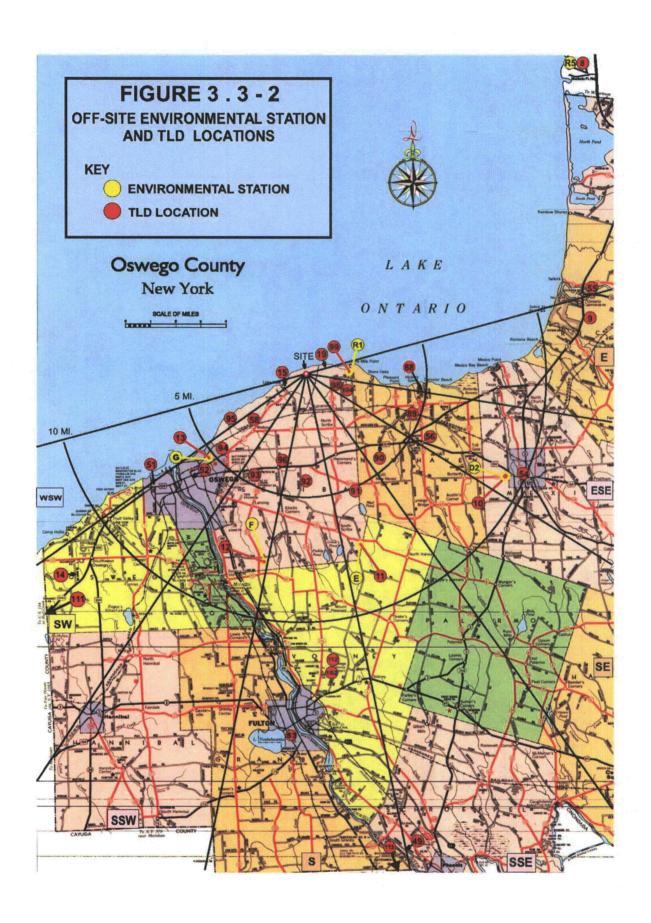
SAMPLE	MAP	FIGURE NUMBER	LOCATION DESCRIPTION	DEGREES &
MEDIUM	DESIGNATION		<u></u>	DISTANCE (1 & 2)
Thermoluminescent	3	Figure 3.3-3	D1 On-Site Station	71° at 0.3 miles
Dosimeters (TLD)	4	Figure 3.3-3	D2 On-Site Station	143° at 0.4 miles
	5	Figure 3.3-3	E On-Site Station	180° at 0.3 miles
	6	Figure 3.3-3	F On-Site Station	213° at 0.5 miles
	7*	Figure 3.3-3	G On-Site Station	245° at 0.7 miles
	8	Figure 3.3-2	R-5 Off-Site Station	42° at 16.2 miles
	9	Figure 3.3-2	State Route 3	80° at 11.4 miles
	10	Figure 3.3-2	D2 Off-Site Station	118° at 9.0 miles
	11	Figure 3.3-2	E Off-Site Station	162° at 7.1 miles
	12	Figure 3.3-2	F Off-Site Station	192° at 7.6 miles
	13	Figure 3.3-2	G Off-Site Station	226° at 5.4 miles
	14*	Figure 3.3-2	Southwest Oswego – Control	227° at 12.5 miles
	15*	Figure 3.3-2	West Site Boundary	240° at 0.9 miles
	18*	Figure 3.3-3	Energy Information Center	268° at 0.4 miles
	19	Figure 3.3-2	East Site Boundary	83° at 1.4 miles
	23*	Figure 3.3-3	H On-Site Station	73° at 0.8 miles
	24	Figure 3.3-3	I On-Site Station	95° at 0.8 miles
	25	Figure 3.3-3	J On-Site Station	109° at 0.9 miles
	26	Figure 3.3-3	K On-Site Station	132° at 0.5 miles
	27	Figure 3.3-3	North Fence, JAFNPP	60° at 0.4 miles
	28	Figure 3.3-3	North Fence, JAFNPP	68° at 0.5 miles
	29	Figure 3.3-3	North Fence JAFNPP	65° at 0.5 miles
	30	Figure 3.3-3	North Fence JAFNPP	57° at 0.4 miles
	31	Figure 3.3-3	North Fence NMP-1	279° at 0.2 miles
	39	Figure 3.3-3	North Fence NMP-1	298° at 0.2 miles
	47	Figure 3.3-3	North Fence JAFNPP	69° at 0.6 miles
	49*	Figure 3.3-2	Phoenix, NY – Control	168° at 19.7 miles
	51	Figure 3.3-2	Oswego Steam Station, East	234° at 7.3 miles
	52	Figure 3.3-2	Fitzhugh Park Elementary School, East	227° at 5.9 miles
	53	Figure 3.3-2	Fulton High School	183° at 13.7 miles
	54	Figure 3.3-2	Mexico High School	115° at 9.4 miles
	55	Figure 3.3-2	Pulaski Gas Substation, Rt. 5	75° at 13.0 miles

TABLE 3.3-1 (Continued)

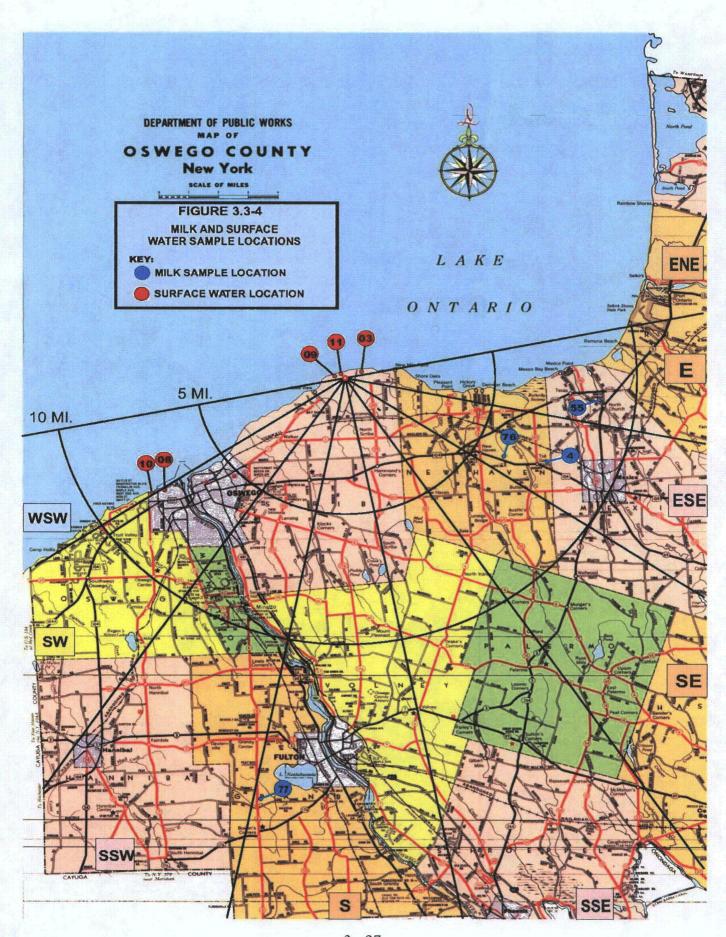
2006 ENVIRONMENTAL SAMPLE LOCATIONS

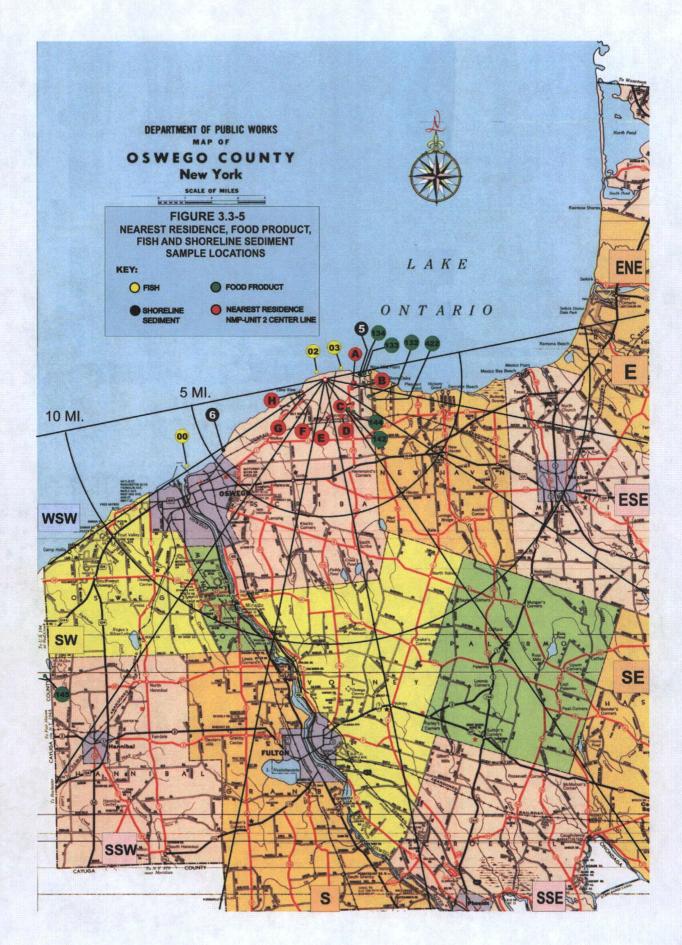
SAMPLE	MAP	FIGURE NUMBER	LOCATION DESCRIPTION	DEGREES &
MEDIUM	DESIGNATION			DISTANCE (1 & 2)
Thermoluminescent	56*	Figure 3.3-2	New Haven Elementary School	124° at 5.2 miles
Dosimeters (TLD)	58*	Figure 3.3-2	County Route 1A and Alcan	222° at 3.0 miles
(Continued)	75*	Figure 3.3-3	North Fence, NMP-2	354° at 0.1 miles
	76*	Figure 3.3-3	North Fence, NMP-2	25° at 0.1 miles
	77*	Figure 3.3-3	North Fence, NMP-2	36° at 0.2 miles
	78*	Figure 3.3-3	East Boundary, JAFNPP	85° at 1.0 miles
	79*	Figure 3.3-3	County Route 29	120° at 1.2 miles
	80*	Figure 3.3-3	County Route 29	136° at 1.5 miles
	81*	Figure 3.3-3	Miner Road	159° at 1.6 miles
	82*	Figure 3.3-3	Miner Road	180° at 1.6 miles
	83*	Figure 3.3-3	Lakeview Road	203° at 1.2 miles
	84*	Figure 3.3-2	Lakeview Road	226° at 1.1 miles
•	85*	Figure 3.3-3	North Fence, NMP-1	292° at 0.2 miles
	86*	Figure 3.3-3	North Fence, NMP-1	311° at 0.1 miles
	87*	Figure 3.3-3	North Fence, NMP-2	333° at 0.1 miles
,	88*	Figure 3.3-2	Hickory Grove Road	97° at 4.5 miles
	89*	Figure 3.3-2	Leavitt Road	112° at 4.3 miles
	90*	Figure 3.3-2	Route 104 and Keefe Road	135° at 4.2 miles
	91*	Figure 3.3-2	County Route 51A	157° at 4.9 miles
	92*	Figure 3.3-2	Maiden Lane Road	183° at 4.4 miles
	93*	Figure 3.3-2	County Route 53	206° at 4.4 miles
	94*	Figure 3.3-2	Country Route 1 and Kocher Road	224° at 4.4 miles
	95*	Figure 3.3-2	Lakeshore Camp Site	239° at 3.7 miles
	96*	Figure 3.3-2	Creamery Road	199° at 3.6 miles
	97*	Figure 3.3-3	County Route 29	145° at 1.8 miles
	98*	Figure 3.3-2	Lake Road	102° at 1.2 miles
	99	Figure 3.3-2	Nine Mile Point Road	92° at 1.8 miles
	100	Figure 3.3-3	Country Route 29 and Lake Road	106° at 1.1 miles
	101	Figure 3.3-3	County Route 29	133° at 1.4 miles
	102	Figure 3.3-2	Oswego County Airport	175° at 11.9 miles
	103	Figure 3.3-3	Energy Center, East	268° at 0.4 miles
	104	Figure 3.3-2	Parkhurst Road	102° at 1.4 miles


TABLE 3.3-1 (Continued)


2006 ENVIRONMENTAL SAMPLE LOCATIONS


SAMPLE MEDIUM	MAP DESIGNATION	FIGURE NUMBER	LOCATION DESCRIPTION	DEGREES & DISTANCE (1 & 2)
Thermoluminescent	105	Figure 3.3-3	Lakeview Road	199° at 1.4 miles
Dosimeters (TLD)	106	Figure 3.3-3	Shoreline Cove, West of NMP-1	274° at 0.3 miles
(Continued)	107	Figure 3.3-3	Shoreline Cove, West of NMP-1	273° at 0.3 miles
,	108	Figure 3.3-3	Lake Road	105° at 1.1 miles
	109	Figure 3.3-3	Lake Road	104° at 1.1 miles
	111	Figure 3.3-2	Sterling, NY – Control	214° at 21.8 miles
	112	Figure 3.3-2	EOF/Env. Lab, Oswego County Airport	175° at 11.9 miles
	113	Figure 3.3-2	Baldwinsville, NY – Control	178° at 24.7 miles
Cows Milk	76	Figure 3.3-4	Indicator Location	120° at 6.3 miles
	55	Figure 3.3-4	Indicator Location	97° at 8.7 miles
	4	Figure 3.3-4	Indicator Location	115° at 7.6 miles
·	77*	Figure 3.3-4	Control Location	190° at 16.0 miles
Food Products	132*	Figure 3.3-5	Indicator Location	110° at 2.0 miles
	133*	Figure 3.3-5	Indicator Location	83° at 1.6 miles
	134	Figure 3.3-5	Indicator Location	83° at 1.5 miles
	142	Figure 3.3-5	Indicator Location	143° at 1.7 miles
	144	Figure 3.3-5	Indicator Location	139° at 1.6 miles
	145*	Figure 3.3-5	Control Location	222° at 15.4 miles
	422	Figure 3.3-5	Indicator Location	112° at 2.0 miles


Table Notes:


- Degrees and distance based on Nine Mile Point Unit 2 Reactor Centerline Degrees and Distances updated by Global Positioning System (GPS) (1)
- Sample location required by ODCM

3.4 LAND USE CENSUS

The ODCMs require that a milch animal census and a residence census be conducted annually out to a distance of five miles. Milch animals are defined as any animal that is routinely used to provide milk for human consumption.

The milch animal census is an estimation of the number of cows and goats within an approximate ten mile radius of the Nine Mile Point Site. This census is performed once per year in the summer by sending questionnaires to previous milch animal owners, and by road surveys to locate any possible new owners. In the event that questionnaires are not answered, the owners are contacted by telephone or in person. The Oswego County Cooperative Extension Service was also contacted to provide any additional information.

The residence census is conducted each year to identify the closest residence in each of the 22.5 degree meteorological sectors out to a distance of five miles. A residence, for the purposes of this census, is a residence that is occupied on a part time basis (such as a summer camp), or on a full time, year round basis. Several of the site meteorological sectors are located over Lake Ontario, therefore, there are only eight sectors over land where residences are located within five miles.

In addition to the milch animal and residence census, a garden census is performed. The census is conducted each year to identify the gardens near the site that are to be used for the collection of food product samples. The results of the garden census are not provided in this report. The results are used only to identify appropriate sample locations. The garden census is not required by the ODCM if broadleaf vegetation sampling and analysis is performed.

3.5 CHANGES TO THE REMP PROGRAM

The following changes were implemented during the 2006 sampling program:

A. Food Product Sampling Program

During the reporting period, no changes were made to the Environmental Monitoring Locations sampled to implement the requirements of the NMP1 ODCM, Part I, Table D 3.6.20-1 and the NMP2 ODCM, Part I, Table D 3.5.1-1. Sample locations selected were based on the 2006 annual land use census and were utilized to implement the 2006 food product requirements.

3.6 DEVIATION AND EXCEPTIONS TO THE PROGRAM

The noted exceptions to the 2006 sample program address only those samples or monitoring requirements which are required by the ODCM. This section satisfies the reporting requirements of Section D 6.9.1.d of the NMP1 ODCM and Section D 4.1.2 of the NMP2 ODCM.

A. ODCM PROGRAM DEVIATIONS

The following are deviations from the program specified by the ODCM:

- 1. The air sampling pump at the R5 Environmental Sampling Station was inoperable for approximately 3 hours during the sample period of 1/17/06 through 1/24/06. The air sample pump was running at the time of sample collection. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pump was due to loss of power to the sampler. No corrective actions were required to restore unit to service.
- 2. The air sampling pumps at the R3 and R4 Environmental Sampling Stations were inoperable for approximately 1 hour during the sample period of 2/14/06 through 2/22/06. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pumps were due to high winds that caused a loss of power to the sampler. No corrective actions were required to restore unit to service.
- 3. The air sampling pump at the R5 Environmental Sampling Station was inoperable for approximately 3 hours during the sample period of 2/14/06 through 2/22/06. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pump was due to high winds that caused a loss of power to the sampler. No corrective actions were required to restore unit to service.
- 4. The air sampling pumps at the R1 and R2 Environmental Sampling Stations were inoperable for approximately 0.8 hours during the sample period of 3/28/06 through 4/4/06. The air sample pumps were running at the time of sample collection. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pumps were due to loss of power to the sampler. No corrective actions were required to restore unit to service.

- 5. The air sampling pump at the R5 Environmental Sampling Station was inoperable for approximately 2.4 hours during the sample period of 5/31/06 through 6/6/06. The air sample pump was running at the time of sample collection. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pump was due to loss of power to the sampler. No corrective actions were required to restore unit to service.
- 6. The air sampling pumps at the R1 and R2 Environmental Sampling Stations were inoperable for approximately 0.7 hours during the sample period of 7/25/06 through 8/1/06. The air sample pumps were running at the time of sample collection. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pumps were due to loss of power to the sampler. No corrective actions were required to restore unit to service.
- 7. The air sampling pump at the R5 Environmental Sampling Station was inoperable for approximately 2.5 hours during the sample period of 9/12/06 through 9/19/06. The air sample pump was running at the time of sample collection. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pump was due to loss of power to the sampler. No corrective actions were required to restore unit to service.
- 8. The air sampling pump at the R5 Environmental Sampling Station was inoperable for approximately 2.5 hours during the sample period of 9/26/06 through 10/3/06. The air sample pump was running at the time of sample collection. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pump was due to loss of power to the sampler. No corrective actions were required to restore unit to service.
- 9. The air sampling pumps at the R1 and R2 Environmental Sampling Stations were inoperable for approximately 9.7 hours during the sample period of 10/23/06 through 10/31/06. The air sample pumps were running at the time of sample collection. The sample pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pumps were due to loss of power to the sampler. No corrective actions were required to restore unit to service.
- 10. The air sampling pump at the R5 Environmental Sampling Station was inoperable for approximately 2.0 hours during the sample period of 12/5/06 through 12/12/06. The air sample pump was running at the time of sample collection. The sample

pump out of service time was determined based on the sample pump run time integrator. The inoperability of the pump was due to loss of power to the sampler. No corrective actions were required to restore unit to service.

B. AIR SAMPLING STATION OPERABILITY ASSESSMENT

The ODCM required air sampling program consists of 5 individual sampling locations. The collective operable time period for the air monitoring stations was 43,760 hours out of a possible 43,800 hours. The air sampling availability factor for the report period was 99.91%.

3.7 STATISTICAL METHODOLOGY

There are a number of statistical calculation methodologies used in evaluating the data from the environmental monitoring program. These methodologies include determination of standard deviation, the mean and associated error for the mean and the lower limit of detection (LLD).

3.7.1 ESTIMATION OF THE MEAN AND STANDARD DEVIATION

The mean, (X), and standard deviation, (s), were used in the reduction of the data generated by the sampling and analysis of the various media in the NMPNS Radiological Environmental Monitoring Program (REMP). The following equations were utilized to compute the mean $\overline{(X)}$ and the standard deviation (s):

A. Mean

$$\overline{\mathbf{X}} = \sum_{\substack{\mathbf{i} = 1 \\ \mathbf{N}}}^{\mathbf{n}} \mathbf{X}_{\mathbf{i}}$$

Where,

X = estimate of the mean.

i = individual sample, i.

N, n = total number of samples with positive indications.

 X_i = value for sample i above the lower limit of detection.

B. Standard Deviation

$$\mathbf{s} = \begin{bmatrix} \sum_{\mathbf{i}=1}^{\mathbf{n}} (\mathbf{X}_{\mathbf{i}} - \overline{\mathbf{X}})^2 \\ \frac{\mathbf{i}=1}{(\mathbf{N}-1)} \end{bmatrix}^{1/2}$$

Where,

X = mean for the values of X

s = standard deviation for the sample population.

3.7.2 ESTIMATION OF THE MEAN AND THE ESTIMATED ERROR FOR THE MEAN

In accordance with program policy, two recounts of samples are performed when the initial count indicates the presence of a plant related radionuclide(s). When a radionuclide is positively identified in two or more counts, the analytical result for the radionuclide is reported as the mean of the positive detections and the associated propagated error for that mean. In cases where more than one positive sample result is available, the mean of the sample results and the estimated error for the mean are reported in the Annual Report.

The following equations were utilized to estimate the mean $\overline{(X)}$ and the associated propagated error.

A. Mean

$$\overline{\mathbf{X}} = \sum_{\substack{\mathbf{i} = 1 \\ \mathbf{N}}}^{\mathbf{n}} \mathbf{X}_{\mathbf{i}}$$

Where,

X = estimate of the mean.

i = individual sample, i.

N,n = total number of samples with positive indications.

 X_i = value for sample i above the lower limit of detection.

B. Error of the Mean (Reference 18)

ERROR MEAN =
$$\frac{\sum_{i=1}^{n} (ERROR)^{2}}{N}$$

Where,

ERROR MEAN = propagated error i = individual sample

ERROR = 1 sigma* error of the individual analysis N, n = number of samples with positive indications

* Sigma (σ)

Sigma is the greek letter used to represent the mathematical term **Standard Deviation**.

Standard Deviation is a measure of dispersion from the arithmetic mean of a set of numbers.

3.7.3 LOWER LIMIT OF DETECTION (LLD)

The LLD is the predetermined concentration or activity level used to establish a detection limit for the analytical procedures.

The LLDs are specified by the ODCM for radionuclides in specific media and are determined by taking into account the overall measurement methods. The equation used to calculate the LLD is:

LLD =
$$\frac{4.66 \text{ S}_b}{\text{(E) (V) (2.22) (Y) exp (-\lambda\Delta t)}}$$

Where:

LLD = the a priori lower limit of detection, as defined above (in picocuries per unit mass or volume);

S_b = the standard deviation of the background counting rate or of the counting rate of a blank sample, as appropriate (in counts per minute);

- E = the counting efficiency (in counts per disintegration);
- V = the sample size (in units of mass or volume);
- 2.22 = the number of disintegrations per minute per picocurie;
- Y = the fractional radiochemical yield (when applicable);
- λ = the radioactive decay constant for the particular radionuclide;
- Δt = the elapsed time between sample collection (or end of the sample collection period) and time of counting.

The ODCM LLD formula assumes that:

- The counting times for the sample and background are equal.
- The count rate of the background is approximately equal to the count rate of the sample.

In the ODCM program, LLDs are used to ensure that minimum acceptable detection capabilities are met with specified statistical confidence levels (95% detection probability with 5% probability of a false negative). Table 3.8-1 lists the ODCM program required LLDs for specific media and radionuclides as specified by the NRC. The LLDs actually achieved are routinely lower than those specified by the ODCM.

3.8 COMPLIANCE WITH REQUIRED LOWER LIMITS OF DETECTION (LLD)

Tables D 4.6.20-1 and D 3.5.1-3 of the NMP1 ODCM and NMP2 ODCM, respectively, specify the detection capabilities for environmental sample analysis (See Report Table 3.8-1). The reporting requirements of NMP1 ODCM, Section D 6.9.1.d and NMP2 ODCM, Section D 4.1.2 require that a discussion of all analyses for which the LLDs required by Tables D 4.6.20-1 and D 3.5.1-3 were not achieved be included in the Annual Radiological Environmental Operating Report. Section 3.8 is provided pursuant to this requirement.

All sample analyses performed in 2006, as required by the ODCM, achieved the Lower Limit of Detection (LLD) specified by ODCM Tables D 4.6.20-1 and D 3.5.1-3.

TABLE 3.8-1

REQUIRED DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS

LOWER LIMIT OF DETECTION (LLD)

Analysis	Water (pCi/l)	Airborne Particulate or Gases (pCi/m³)	Fish (pCi/kg, wet)	Milk (pCi/l)	Food Products (pCi/kg, wet)	Sediment (pCi/kg, dry)
Gross Beta	4	0.01				
H-3	3000 (a)					
Mn-54	15		130			
Fe-59	30		260			
Co-58, Co-60	15		130			
Zn-65	30	·	260			
Zr-95, Nb-95	15					
I-131	15 (a)	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba/La	15			15		

⁽a) No drinking water pathway exists at the Nine Mile Point Site under normal operating conditions due to the direction and distance of the nearest drinking water intake. Therefore an LLD value of 3000 pCi/liter is used for H-3 and an LLD value of 15 pCi/liter is used for I-131.

3.9 REGULATORY DOSE LIMITS

Two federal agencies, the Nuclear Regulatory Commission and the Environmental Protection Agency have responsibility for regulations promulgated for protecting the public from radiation and radioactivity beyond the site boundary.

3.9.1 The Nuclear Regulatory Commission (NRC)

The NRC, in 10CFR20.1301, limits the levels of radiation in unrestricted areas resulting from the possession or use of radioactive materials such that they limit any individual to a dose of:

• less than or equal to 100 mrem per year to the total body.

In addition to this dose limit, the NRC has established design objectives for nuclear plant licensees. Conformance to these guidelines ensures that nuclear power reactor effluents are maintained as far below the legal limits as is reasonably achievable.

The NRC, in 10CFR50, Appendix I, establishes design objectives for the dose to a member of the general public from radioactive material in liquid effluents released to unrestricted areas to be limited to:

- less than or equal to 3 mrem per year to the total body, or
- less than or equal to 10 mrem per year to any organ.

The air dose due to release of noble gases in gaseous effluents is restricted to:

- less than or equal to 10 mrad per year for gamma radiation, or
- less than or equal to 20 mrad per year for beta radiation.

The dose to a member of the general public from iodine-131, tritium, and all particulate radionuclides with half-lives greater than 8 days in gaseous effluents is limited to:

• less than or equal to 15 mrem per year to any organ.

3.9.2 Environmental Protection Agency (EPA)

The EPA, in 40CFR190.10 Subpart B, sets forth the environmental standards for the uranium fuel cycle. During normal operation, the annual dose to any member of the public from the entire uranium fuel cycle shall be limited to;

- less than or equal to 25 mrem per year to the whole body,
- less than or equal to 75 mrem per year to the thyroid, and
- less than or equal to 25 mrem per year to any other organ.

SECTION 4.0

SAMPLE SUMMARY TABLES IN BRANCH TECHNICAL POSITION FORMAT

4.0 SAMPLE SUMMARY TABLES IN BRANCH TECHNICAL POSITION FORMAT

All sample data is summarized in table form. The tables are titled "Radiological Environmental Monitoring Program Annual Summary" and use the following format as specified in the NRC Branch Technical Position:

Column

- 1. Sample medium.
- 2. Type and number of analyses performed.
- 3. Required Lower Limits of Detection (LLD), see Section 3.8, Table 3.8-1. This wording indicates that inclusive data is based on 4.66 S_b (sigma) of background (See Section 3.7).
- 4. The mean and range of the positive measured values of the indicator locations.
- 5. The mean, range, and location of the highest indicator annual mean. Location designations are keyed to Table 3.3-1 in Section 3.3.
- 6. The mean and range of the positive measured values of the control locations.
- 7. The number of non-routine reports sent to the Nuclear Regulatory Commission.

NOTE: Only positive measured values are used in statistical calculations.

TABLE 4.0-1

MEDIUM (UNITS)	TYPE AND NUMBER OF ANALYSES*	LLD(a)	INDICATOR LOCATIONS; MEAN (f) / RANGE	LOCATION (b) OF HIGHEST ANNUAL MEAN: LOCATION & MEAN (f) / RANGE	CONTROL LOCATION: MEAN (f) / RANGE	NUMBER OF NONROUTINE REPORTS
Shoreline Sediment (pCi/kg-dry)	GSA (4): Cs-134 Cs-137	150 180	<lld <u>56 (1/2)</u> 56</lld 	<lld 5:="" <u="" no.="">56 (1/2) 1.5 miles at 80° 56</lld>	<lld <lld< td=""><td>0</td></lld<></lld 	0
Fish (pCi/kg-wet)	GSA (22): (h) Mn-54 Fe-59 Co-58 Co-60 Zn-65 Cs-134 Cs-137	130 260 130 130 260 130	<lld <lld="" <lld<="" td=""><td><lld <lld="" <lld<="" td=""><td><lld <lld="" <lld<="" td=""><td>0 0 0 0 0</td></lld></td></lld></td></lld>	<lld <lld="" <lld<="" td=""><td><lld <lld="" <lld<="" td=""><td>0 0 0 0 0</td></lld></td></lld>	<lld <lld="" <lld<="" td=""><td>0 0 0 0 0</td></lld>	0 0 0 0 0

TABLE 4.0-1 (continued)

MEDIUM (UNITS)	TYPE AND NUMBER OF ANALYSES*	LLD(a)	INDICATOR LOCATIONS: MEAN (f) / RANGE	LOCATION (b) OF HIGHEST ANNUAL MEAN: LOCATION & MEAN (f) / RANGE	CONTROL LOCATION: MEAN (1) / RANGE	NUMBER OF NONROUTINE REPORTS
Surface Water (pCi/liter)	H-3 (8): H-3	3000(c)	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	<u>GSA (24)</u> : Mn-54	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Fe-59	30	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Co-58	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Co-60	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Zn-65	30	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Zr-95	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Nb-95	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>. 0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>. 0</td></lld<></td></lld<>	<lld< td=""><td>. 0</td></lld<>	. 0
	I-131	15(c)	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-134	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137	18	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Ba/La-140	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0

TABLE 4.0-1 (continued)

MEDIUM (UNITS)	TYPE AND NUMBER OF ANALYSES*	LLD(a)	INDICATOR LOCATIONS: MEAN (f) / RANGE	LOCATION (b) OF HIGHEST ANNUAL MEAN: LOCATION & MEAN (f) / RANGE	CONTROL LOCATION: MEAN (f) / RANGE	NUMBER OF NONROUTINE REPORTS
TLD (mrem per standard month)	Gamma Dose (140)	(d)	4.7 (120/120) (i) 3.3 – 9.2	TLD #85 (g): 8.4 (4/4) 0.2 miles at 292° 7.9 – 9.2	4.1 (20/20) (i) 3.3 – 5.3	0
Air Particulates (pCi/m³)	Gross Beta (260):	0.01	0.015 (208/208) 0.005 – 0.035	R-2 0.016 (52/52) 1.1 miles at 107° 0.007 – 0.035	0.016 (52/52) 0.007 - 0.033	0
	<u>I-131 (260)</u> :	0.07	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	<u>GSA (60)</u> : Cs-134	0.05	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137	0.06	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
Milk (pCi/liter)	GSA (72): (e) (h) Cs-134	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137	18	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Ba/La-140	15	<lld< td=""><td><lld< td=""><td>·<lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td>·<lld< td=""><td>0</td></lld<></td></lld<>	· <lld< td=""><td>0</td></lld<>	0
	<u>I-131 (72)</u> : I-131	1	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0

TABLE 4.0-1 (continued)

MEDIUM (UNITS)	TYPE AND NUMBER OF ANALYSES*	LLD(a)	INDICATOR LOCATIONS: MEAN (f) / RANGE	LOCATION (b) OF HIGHEST ANNUAL MEAN: LOCATION & MEAN (f) / RANGE	CONTROL LOCATION: MEAN (f) / RANGE	NUMBER OF NONROUTINE REPORTS
Food Products (pCi/kg-wet)	GSA (28): (h) I-131	60	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-134	60	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137	80	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0

TABLE NOTES:

- * = Data for Table 4.0-1 is based on Unit 1 and Unit 2 ODCM required samples unless otherwise indicated.
- (a) = LLD values as required by the ODCMs. LLD units are specified in the medium column.
- (b) = Location is distance in miles and direction in compass degrees based on NMP2 reactor center-line. Units in this column are specified in medium column.
- (c) = The ODCMs specify an I-131 and tritium LLD value for surface water analysis (non-drinking water) of 15 pCi/liter and 3000 pCi/liter respectively.
- (d) = The ODCMs do not specify a particular LLD value to environmental TLDs. The NMP1 and NMP2 ODCM contains specifications for environmental TLD sensitivities.
- (e) = The ODCMs criteria for indicator milk sample locations include locations within 5.0 miles of the site. There are no milk sample locations within 5.0 miles of the site. Therefore, the only sample location required by the ODCMs is the control location. There were three optional locations during 2006.
- (f) = Fraction of number of detectable measurements to total number of measurements. Mean and range results are based on detectable measurements only.
- (g) = This dose is not representative of doses to a member of the public since this area is located near the north shoreline which is in close proximity to the generating facility and is not accessible to members of the public (See Section 5.2.4, TLDs).
- (h) = Data includes results from optional samples in addition to samples required by the ODCMs.
- (i) = Indicator TLD locations are: #7, 15, 23, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 18, 56, and 58. Control TLDs are all TLDs located beyond the influence of the site (TLD #: 8, 14, 49, 111, and 113).

SECTION 5.0 DATA EVALUATION AND DISCUSSION

5.0 DATA EVALUATION AND DISCUSSION

A. Introduction

Each year the results of the Annual Radiological Environmental Monitoring Program (REMP) are evaluated considering plant operations at the site, the natural processes in the environment and the archive of historical environmental radiological data. A number of factors are considered in the course of evaluating and interpreting the Annual Environmental Radiological Data. This interpretation can be made using several methods including trend analysis, population dose estimates, risk estimates to the general population based on significance of environmental concentrations, effectiveness of plant effluent controls and specific research areas. The report not only presents the data collected during the 2006 sample program but also assesses the significance of radionuclides detected in the environment. It is important to note that detection of a radionuclide is not, of itself, an indication of environmental significance. Evaluation of the impact of the radionuclide in terms of potential increased dose to man, in relation to natural background, is necessary to determine the true significance of any detection.

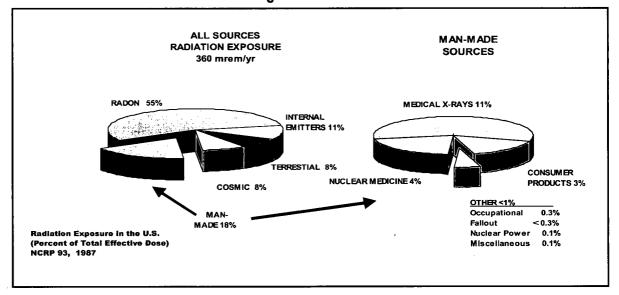
B. Units of Measure

Some of the units of measure used in this report are explained below.

Radioactivity is the number of atoms in a material that decay per unit of time. Each time an atom decays, radiation is emitted. The *curie* (Ci) is the unit used to describe the activity of a material and indicates the rate at which the atoms are decaying. One curie of activity indicates the decay of 37 billion atoms per second.

Smaller units of the curie are used in this report. Two common units are the *microcurie* (uCi), which is one millionth (0.000001) of a curie, and the *picocurie* (pCi), which is one trillionth (0.0000000000001) of a curie. The picocurie is the unit of radiation that is routinely used in this report. The mass, or weight, of radioactive material that would result in one curie of activity depends on the disintegration rate or half-life. For example, one gram of radium-226 contains one curie of activity, but it would require about 1.5 million grams of natural uranium to equal one curie. Radium-226 is more radioactive than natural uranium on a weight or mass basis.

C. Dose/Dose to Man


The dose or dose equivalent, simply put, is the amount of ionizing energy deposited or absorbed in living tissue. The amount of energy deposited or ionization caused is dependent on the type of radiation. For example, alpha radiation can cause dense localized ionization that can be up to 20 times the amount of ionization for the same energy imparted as from gamma or x-rays. Therefore, a quality factor must be applied to account for the different ionizing capabilities of various types of radiation. When the quality factor is multiplied by the absorbed dose, the result is the dose equivalent, which is an estimate of the possible biological damage resulting from exposure to any type of ionizing radiation. The dose equivalent is measured in rem (roentgen equivalent man). In terms of environmental radiation, the rem is a large unit. Therefore, a smaller unit, the millirem (mrem) is often used. One millirem (mrem) is equal to 0.001 of a rem.

The term "dose to man" refers to the dose or dose equivalent that is received by members of the general public at or beyond the site boundary. The dose is calculated based on concentrations of radioactive material measured in the environment. The primary pathways that contribute to the dose to man are; the inhalation pathway, the ingestion pathway and direct radiation.

D. Discussion

There are three separate groups of radionuclide that were measured in the environment in the media analyzed for the 2006 sampling program. The first of these groups consists of those radionuclide that are naturally occurring. The environment contains a significant inventory of naturally occurring radioactive elements. The components of natural or background radiation include the decay of radioactive elements in the earth's crust, a steady stream of high-energy particles from space called cosmic radiation, naturally-occurring radioactive isotopes in the human body like potassium-40, medical procedures, man-made phosphate fertilizers (phosphates and uranium are often found together in nature), and household items like televisions. In the United States, a person's average annual exposure from background radiation is 360 mrem, as illustrated on the following Background Radiation Chart.

Background Radiation

A number of radionuclides are present in the environment due to sources such as cosmic radiation and fallout from nuclear weapons testing. These radionuclides are expected to be present in many of the environmental samples collected in the vicinity of the Nine Mile Point Site. Some of the radionuclides normally present include:

- *Tritium*, present as a result of the interaction of cosmic radiation with the upper atmosphere,
- Beryllium 7, present as a result of the interaction of cosmic radiation with the upper atmosphere,
- Potassium -40 and radium-226, naturally occurring radionuclides found in the human body and throughout the environment, and
- Fallout radionuclides from nuclear weapons testing, including cesium-137 and strontium-90.

Beryllium-7 and potassium-40 are especially common in REMP samples. Since they are naturally occurring and are abundant, positive results for these radionuclides are reported in some cases in Section 6.0 of this report. Comparisons of program samples to natural background radiation are made throughout this section to help put program results into perspective and to aid the reader in determining what, if any, significant impact is demonstrated by the REMP results.

The second group of radionuclides that were detected are a result of the detonation of thermonuclear devices in the earth's atmosphere. Atmospheric nuclear testing during the early 1950s produced a measurable inventory of radionuclides presently found in the lower atmosphere as well as in ecological systems. In 1963 an Atmospheric Test Ban Treaty was Since the treaty, the global inventory of man-made radioactivity in the environment has been greatly reduced through the decay of short lived radionuclides and the removal of radionuclides from the food chain by such natural processes as weathering and sedimentation. This process is referred to in this report as ecological cycling. Since 1963, several atmospheric weapons tests have been conducted by the People's Republic of China and underground weapons testing by India, Pakistan & North Korea. In each case, the usual radionuclides associated with nuclear detonations were detected for several months following the test, and then after a peak detection period, diminished to a point where most could not be detected. Although reduced in frequency, atmospheric testing continued into the 1980's. The resulting fallout or deposition from these most recent tests has influenced the background radiation in the vicinity of the site and was evident in many of the sample media analyzed over the years. The highest weapons testing concentrations were noted in samples collected for the 1981 REMP. Cs-137 was the major byproduct of this testing and is still occasionally detected in a few select number of environmental media.

The third group of radionuclides that may be detected in the environment are those that are related to nuclear power technology. These radionuclides are the byproduct of the operation of light water reactors. These byproduct radionuclides are the same as those produced in atmospheric weapons testing and found in the Chernobyl fallout. This commonality makes a determination of the source of these radionuclides that may be detected in environmental samples difficult to determine. During 2006, Cs-137 was the only potential plant-related radionuclide detected in the REMP samples.

A number of factors must be considered in performing radiological sample data evaluation and interpretation. The evaluation is made using several approaches including trend analysis and dose to man. An attempt has been made not only to report the data collected during 2006, but also to assess the significance of the radionuclides detected in the environment as compared to natural and other man-made radiation sources. It is important to note that detected concentrations of radionuclides in the local environment as a result of man's technology are very small and are of no or little significance from an environmental or dose to man perspective.

The 1987 per capita average dose was determined to be 360 mrem per year from all sources, as noted in NCRP Report No. 93 (Reference 13). This average dose includes such exposure sources as natural radiation, occupational exposure, weapons testing, consumer

products and nuclear medicine. The 1987 per capita dose rate due to natural sources was 295 mrem per year. The per capita radiation dose from nuclear power production nationwide is less than one mrem per year.

The natural background gamma radiation in the environs of the Nine Mile Point site, resulting from radionuclides in the atmosphere and in the ground, accounts for approximately 60-65 mrem per year. This dose is a result of radionuclides of cosmic origin (for example, Be-7) and of primordial origin (Ra-226, K-40, and Th-232). A dose of 60 mrem per year, as a background dose, is significantly greater than any possible doses as a result of routine operations at the site during 2006.

The results of each sample medium are discussed in detail in Sections 5.1 and 5.2. This includes a summary of the results, the estimated environmental impact, a detailed review of any relevant detections with a dose to man estimate where appropriate, and an analysis of possible long term and short term trends.

During routine implementation of the REMP, additional or optional environmental pathway media are sampled and analyzed. These samples are obtained to:

- Expand the area covered by the program beyond that required by the ODCM.
- Provide more comprehensive monitoring than is currently required,
- Monitor the secondary dose to main pathways, and
- Maintain the analytical data base established when the plants began commercial operation.

The optional samples that are collected will vary from year to year. In addition to the optional sample media, additional locations are sampled and analyzed for those pathways required by the ODCM. These additional sample locations are obtained to ensure that a variety of environmental pathways are monitored in a comprehensive manner. Data from additional sample locations that are associated with the required ODCM sample media are included in the data presentation and evaluation. When additional locations are included, the use of this data is specifically noted in Sections 5.1 and 5.2.

Section 6.0 contains the analytical results for the sample media addressed in the report. Tables are provided for each required sample medium analyzed during the 2006 program.

Section 7.0, titled Historical Data, contains statistics from previous years environmental sampling. The process of determining the impact of plant operation on the environment includes the evaluation of past analytical data to determine if trends are changing or

developing. As state-of-the-art detection capabilities improve, data comparison is difficult in some cases. For example, Lower Limits of Detections (LLDs) have improved significantly since 1969 due to technological advances in laboratory procedures and analytical equipment.

5.1 AQUATIC PROGRAM

The aquatic program consists of samples collected from three environmental pathways. These pathways are:

- Shoreline Sediment
- Fish
- Surface Waters

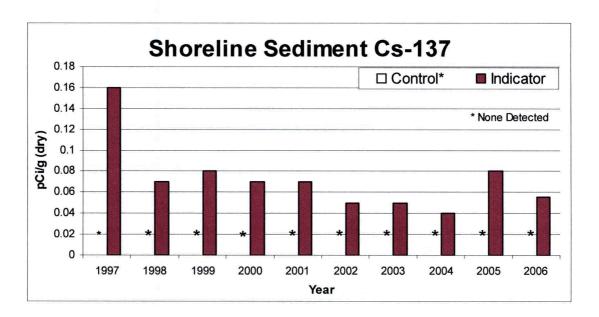
Section 6.0, Tables 6-1 through 6-4 present the analytical results for the aquatic samples collected for the 2006 sampling period.

5.1.1 SHORELINE SEDIMENT RESULTS

A. Results Summary

Shoreline sediment samples were obtained in April and October of 2006 at one offsite control location (Lang's Beach located near Oswego Harbor) and at one indicator location (Sunset Bay) which is an area east of the site considered to have recreational value.

A total of four sediment samples were collected for the 2006 sample program, two indicator and two control. Cs-137 was detected in one of the samples collected from the Sunset Bay indicator location in 2006, measuring 0.056 pCi/g (dry). This result continues to show a downward trend over the last 10 years. Cs-137 was not detected in samples collected from the control location during 2006; however, Cs-137 has been detected in the control samples in 1993 at an average concentration of 0.03 pCi/g.


The general lack of Cs-137 at the control location is attributed to the differences in the sediment types between the two sample locations (See Data Evaluation and Discussion). The source of the Cs-137 detected in the indicator shoreline sediment is considered to be the result of fallout from atmospheric nuclear weapons testing and not from operations at the site. The mean concentration of Cs-137 measured in the 2006 indicator sample is consistent with measured concentrations since shoreline sediment sampling began in 1985. Historical mean concentrations measured at the Sunset Bay indicator location ranged from a maximum of 0.33

pCi/g in 1993 to a minimum of 0.04 pCi/g (dry) in 2004. The results for the 2006 control location were less than the detection limit. The one naturally-occurring radionuclide detected was K-40 and was not related to plant operations. Monthly composite samples showed no presence of plant-related gamma emitting isotopes in the waters of Lake Ontario as a result of plant operations.

No other plant-related radionuclides were detected in the 2006 shoreline sediment samples.

The calculated potential whole body and skin doses which may result from the measured Cs-137 concentrations are extremely small and are insignificant when compared to natural background doses.

The following is a graph of the average Cs-137 concentration in shoreline sediment samples over the previous ten years. This graph illustrates a general downward trend in the Cs-137 concentrations since 1997.

B. Data Evaluation and Discussion

Shoreline sediment samples are routinely collected twice per year from the shoreline of Lake Ontario. Samples are collected from one indicator location (Sunset Bay), and one control location (Lang's Beach). Samples were collected from both the indicator and control locations in April and October 2006. The results of these sample collections are presented in Section 6.0, Table 6-1, "Concentrations of Gamma Emitters in Shoreline Sediment Samples – 2006". Cesium–137 (Cs-137) and Potassium–40 (K-40) were the significant radionuclides detected in the sediment samples.

Cs-137 was detected in the indicator sample collected in October for the 2006 program. The measured concentration for this sample was 0.056 pCi/g (dry). The presence of Cs-137 in certain environmental sample media such as soil, shoreline sediment and fish is historically common. Cs-137 is a fission product that is produced in nuclear power reactors and during atmospheric weapons testing. In addition to the Cs-137 found in the environment as a result of past weapons testing, a significant inventory of Cs-137 was also introduced globally as a result of the Chernobyl accident in 1986. Because Cs-137 is found in environmental samples as a result of weapons testing and Chernobyl, it is difficult to accurately determine the source of Cs-137 measured in the sediment sample. It is highly probable that the source of the cesium is from sources other than the operation of plants at the Nine Mile Point Site. It is likely that any sediment sample containing Cs-137 which was the result of plant operation would also contain other plant related isotopes such as Co-60 and Cs-134. The absence of corroborating radionuclides would indicate that the source of Cs-137 in sediment samples is from the existing background Cs-137 which is attributed to weapons testing and the Chernobyl accident. This assessment is further substantiated by the fact that Cs-137 was detected in the 1993 sediment control sample. Historically, Cs-137 has been routinely measured in the control samples of other environmental media such as fish and soil.

The general absence of Cs-137 in the control samples is attributed to the differences in the sediment types between the two sample locations. Few shoreline regions west of the site contain fine sediment and/or sand which would be representative of the indicator location. It is difficult to obtain control samples that are comparable in physical and chemical characteristics to the indicator samples. Other factors, which include changing lake level and shoreline erosion, further complicate attempts at consistency in shoreline sediment sampling. Recent soil samples from locations beyond any expected influence from the site have contained levels of Cs-137 equal to or greater than the concentrations found in the 2006 shoreline sediment samples. The Cs-137 is commonly found in soil samples and is attributed to weapons testing fallout. Shoreline samples containing soil or sediment are likely to contain Cs-137.

C. Dose Evaluation

The radiological impact of Cs-137 measured in the shoreline sediment can be evaluated on the basis of dose to man. In the case of shoreline sediments, the critical pathway is direct radiation to the whole body and skin. Using the parameters provided in Regulatory Guide 1.109, the potential dose to man in mrem per year can be calculated. The following regulatory guide values and the maximum 2006 shoreline sediment indicator Cs-137 concentration were used in calculating the dose to man:

- A teenager spends 67 hours per year at the beach area or on the shoreline,
- The sediment has a mass of 40 kg/m² (dry) to a depth of 2.5 cm,
- The shoreline width factor is 0.3, and
- The maximum measured Cs-137 concentration of 0.056 pCi/g (dry).

Using these conservative parameters, the potential dose to the maximum exposed individual (teenager) would be 0.00019 mrem/year to the whole body and 0.00022 mrem/year to the skin. This calculated dose is very small and is insignificant when compared to the natural background annual exposure of approximately 60 mrem as measured by control TLDs in the vicinity of the site.

D. Data Trends

The mean Cs-137 concentration for the shoreline sediment indicator sample for 2006 was 0.056 pCi/g (dry). This is consistent with mean concentration measured at the indicator location over the past ten years.

The previous five years of data show a stable mean concentration values measured at the indicator locations. Over the five year period, mean concentrations ranged from a high of 0.08 pCi/g (dry) in 2005 to a low value of 0.04 pCi/g (dry) measured in 2004. Cesium-137 was not detected in the control location samples over this same five year period.

The previous ten year data trend for indicator shoreline samples showed an overall downward trend in concentration measured at the indicator sample locations. Over the previous ten year period of 1997 through 2006, mean concentrations at the indicator location ranged from a maximum of 0.16 pCi/g (dry) in 1997 to a minimum of 0.04 pCi/g (dry) measured in 2004. The mean indicator concentration measured in 2006 of 0.056 pCi/g (dry) continues to support the long term decreasing trend in Cs-137 concentration in shoreline sediment samples. Cesium-137 was not detected in the control samples collected over the previous ten years.

Shoreline sediment sampling at the indicator location commenced in 1985. Prior to 1985, no data was available for long term trend analysis.

Section 7.0, Tables 7-1 and 7-2 illustrate historical environmental data for shoreline sediment samples.

5.1.2 FISH SAMPLE RESULTS

A. Results Summary

A total of 22 fish samples were collected for the 2006 sample program. Species collected were: smallmouth bass, brown trout, rainbow trout, lake trout, and walleye. The analytical results for the 2006 fish samples showed no detectable concentration of radionuclide that would be attributable to plant operations at the site or past atmospheric weapons testing. The absence of Cs-137 in the 2006 fish samples is significant in the fact that it continues to validate the absence of Cs-137 in fish samples observed. With the exception of 2001, 2003, 2004, 2005 and 2006, positive concentrations of Cs-137 have been measured in fish samples collected in the previous 20 years at a combination of both the indicator and/or control locations. (Refer to Tables 7-3 and 7-4). These low levels of Cs-137 represented no significant dose to man or impact on the environment.

The 2006 fish sample results demonstrate that plant operations at the Nine Mile Point site have no measurable radiological environmental impact on the upper levels of the Lake Ontario food chain. The 2006 results are consistent with previous year's results in that they continue to support the general long-term downward trend in fish Cs-137 concentrations over the last 30 years. Cs-137 was not detected in fish samples collected in 2000, 2001, 2003, 2004, 2005 and 2006 from indicator locations. The period of 2000 through 2006 as a group are the lowest results measured since the beginning of the Site Environmental Monitoring Program in 1969.

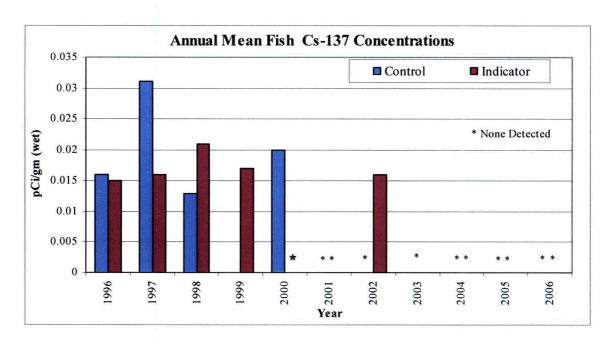
B. Data Evaluation and Discussion

Fish collections were made utilizing gill nets at one location greater than five miles from the site (Oswego Harbor area) and at two locations in the vicinity of the lake discharges for the NMPNS and the JAFNPP facilities. The Oswego Harbor samples served as control samples while the NMPNS and JAFNPP samples served as indicator samples. All samples were analyzed for gamma emitters. Section 6.0, Table 6-2 shows individual results for all the samples collected in 2006 in units of pCi/g (wet).

The spring fish collection was made up of 9 individual samples representing three separate species. Walleye, smallmouth bass and brown trout were collected from all three locations.

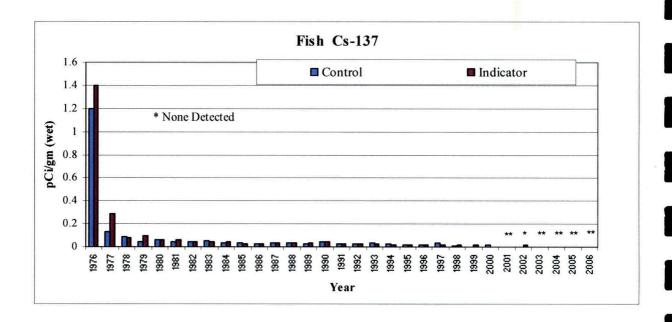
The total fall fish collection was comprised of 13 individual samples representing five individual species. Brown trout, smallmouth bass and walleye were collected from all three sampling locations. Lake trout and rainbow trout were collected at the Oswego

Harbor control location. Rainbow trout were collected at the NMPNS indicator location and lake trout were collected the JAFNPP indicator locations.


Cs-137 was not detected in any of the fish species collected for the 2006 sample program

C. Dose Evaluation

Fish represent the highest level in the aquatic food chain and have the potential to be a contributor to the dose to man from the operations at the site. The lack of detectable concentrations of plant-related radionuclides in the 2006 fish samples demonstrates that there is no attributable dose to man from operations at the site through the aquatic pathway. Some Lake Ontario fish species may be considered an important food source due to the local sport fishing industry. Therefore, these fish are an integral part of the human food chain.


D. Data Trends

The Cs-137 data for fish samples over the previous five years (2001 through 2005) show that the number of positive detections has decreased over this period relative to historical data. With the exception of 2002 there was no positive detection of Cs-137 over the previous five year period at the indicator locations. The general lack of positive detections was continued in the 2006 sample year. The graph below illustrates the mean control and indicator Cs-137 concentrations for 2006 and the previous ten years.

The ten year data trend shows a consistent level of Cs-137 measured in fish between 1997 and 2000. After 2000, the number of positive detections drops off as noted in the five year trend. The 1997 through 2006 results, as a group, are the lowest Cs-137 concentrations measured over the existence of the sample program.

The general long-term decreasing trend for Cs-137, illustrated in the graph below, is most probably a result of the cesium becoming unavailable to the ecosystem due to ion exchange with soils and sediments and radiological decay. The concentrations of Cs-137 detected in fish since 1976 are considered to be the result of weapons testing fallout. The general downward trend in concentrations will continue as a function of additional ecological cycling and radiological decay.

Section 7.0, Tables 7-3 and 7-4 show historical environmental sample data for fish.

5.1.3 SURFACE WATER (LAKE)

A. Results Summary

The ODCM requires that monthly surface water samples be taken from the respective inlet water supplies of the JAFNPP and NRG Energy's Oswego Steam Station. In conjunction with the required samples, three additional Lake Ontario surface water locations are sampled and analyzed. These additional locations are the Oswego City Water Intake, the NMP1 Intake and the NMP2 Intake. Gamma spectral analysis was performed on 24 monthly composite samples from the ODCM locations and on 36 monthly composite samples collected from the additional sample locations. The results of the gamma spectral analyses showed that only naturally-occurring radionuclides were detected in the 60 samples from the five locations collected for the 2006 Sampling Program. The two naturally-occurring radionuclide detected were K-40 and Ra-226 and were not related to plant operations. Monthly composite samples showed no presence of plant-related gamma emitting isotopes in the waters of Lake Ontario as a result of plant operations.

The monthly surface water samples are composited on a quarterly basis and are analyzed for tritium. A total of 20 samples were analyzed for tritium as part of the 2006 REMP program. The results for the 2006 samples showed no positive detections of tritium. All results for 2006 were below the established measurement sensitivity and are reported as less than the lower limit of detection (<LLD). There is no indication of a long-term buildup of tritium concentrations in the surface waters adjacent to the site.

B. Data Evaluation and Discussion

Gamma spectral analysis was performed on monthly composite samples from five Lake Ontario sampling locations. No plant-related radionuclide were detected in 2006 samples. This is consistent with historical data, which has not shown the presence of plant-related radionuclides in surface water samples.

Tritium samples are quarterly samples that are a composite of the applicable monthly samples for a given location. Tritium samples analyzed for the 2006 sample program were analyzed to an instrument detection level of 500 pCi/l.

The tritium results for the JAFNPP inlet canal samples contained no positive detections. The 2006 results had LLD values that ranged from <442 pCi/l to <498 pCi/l. The ODCM Control location (Oswego Steam Station inlet canal) results showed no positive detections and the sample results had LLD values in the range of <442 pCi/l to <461 pCi/l.

Tritium was not detected in any of the twelve optional Lake Ontario samples collected in the 2006 program. The Oswego City Water inlet is sampled to monitor drinking water quality and is representative of a control location due to its distance from the site. The city water inlet is located 7.8 miles west of the site in an "up-stream' direction based on the current patterns in the lake.

No positive detections of tritium were identified in 2006. The following is a summary of LLD results for the 2006 sample program:

Sample	Tritium	Concentration	pCi/liter
Sample Location	Minimum	Maximum	Mean (Annual)
JAF Inlet (Indicator)*	<442	<498	<466
Oswego Steam Inlet (Control)*	<442	<461	<455
NMP #1 Inlet	<442	<461	<455
NMP #2 Inlet	<442	<461	<455
Oswego City Water Supply	<442	<461	<455

^{*} Sample location required by ODCM

The above LLD values are far below the ODCM required LLD value of 3000 pCi/l.

Analytical results for surface water samples are found in Section 6.0, Tables 6-3 through 6-4.

C. Dose Evaluation


The radiological impact to members of the public from low levels of tritium in water is insignificant. This can be illustrated by calculating a dose to the whole body and maximum organ using the maximum LLD value and Regulatory Guide 1.109 methodology. Based on a water ingestion rate of 510 liters/yr and the maximum 2006 LLD concentration of <498 pCi/l, the calculated dose would be less than 0.052 mrem to the child whole body and less than 0.052 mrem to the child liver (critical age group/organ).

D. Data Trends

There are no data trends for gamma emitters such as Cs-137 and Co-60 as historically these radionuclides have not been detected in lake water samples.

Tritium results for the 2006 lake water samples were consistent with results from the previous five years for both the indicator and control locations. The mean measured tritium concentrations for the previous five year period of 2001 – 2005 was <LLD pCi/l for the control and ranged from <LLD pCi/l to 297 pCi/l for the indicator location. By comparison, the mean 2006 tritium concentrations were <455 pCi/l and <466 pCi/l for the control and indicator locations respectively. The previous five year data indicates no significant trends in either the indicator or the control mean concentrations. This previous five year data set is consistent with long term tritium results measured at the site. The indicator data from the previous ten year period, 1996 through 2005, is representative of natural variations in environmental tritium concentrations with no significant levels of tritium measured. The 1999 mean control value of 337 pCi/l is the highest concentration measured since 1989 and is within the variability of results measured over the life of the program. The ten year historical results are consistent between the control and indicator locations with no large variation in the measured results.

The following graph illustrates the concentrations of tritium measured in Lake Ontario over the past 20 years at both an indicator and control location. Prior to 1985, the Oswego City Water Supply results were used as control location data as this location closely approximates the Oswego Steam Station, the current control location.

Historical data for Surface Water Tritium is presented in Section 7.0, Tables 7-7 and 7-8.

5.2 TERRESTRIAL PROGRAM

The terrestrial program consists of samples collected from four environmental pathways. These pathways are:

- Airborne particulate and radioiodine,
- Direct Radiation,
- Milk, and
- Food Products

Section 6.0, Tables 6-5 through 6-12 present the analytical results for the terrestrial samples collected for the 2006 reporting period.

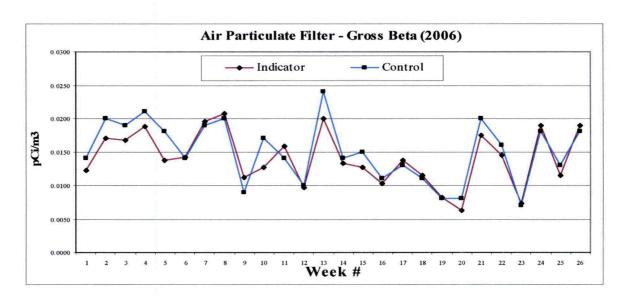
5.2.1 AIR PARTICULATE GROSS BETA

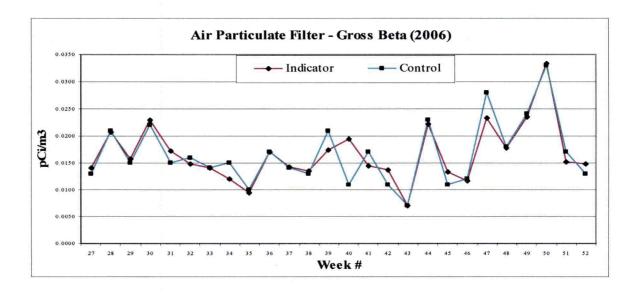
A. Results Summary

Weekly air samples were collected and analyzed for particulate gross beta particulate activity. For the 2006 program, a total of 52 samples were collected from control location R-5 and 208 samples were collected from indicator locations R-1, R-2, R-3, and R-4. These five locations are required by the ODCM. Additional air sampling locations are maintained and are discussed in Section 5.2.1.B below. The mean gross beta concentration for samples collected from the control location (R-5) in 2006 was 0.016 pCi/m³. The mean gross beta concentration for the samples collected from the indicator locations (R-1, R-2, R-3, and R-4) in 2006 was 0.015 pCi/m³. The mean gross beta results for the indicator and the control stations were equivalent in 2006. The consistency between the indicator and control mean values, demonstrates that there are no increased airborne radioactivity levels in the general vicinity of the site. The indicator results are consistent with concentrations measured over the last eighteen years. This consistency demonstrates that the natural baseline gross beta activity has been reached. The man-made radionuclide contribution to the natural background from atmospheric weapons testing and Chernobyl can no longer be detected above the background concentrations of naturally occurring beta emitting radionuclides.

B. Data Evaluation and Discussion

The air monitoring system consists of fifteen sample locations, six onsite and nine offsite. Each location is sampled weekly for particulate gross beta activity. A total of 780 samples were collected and analyzed as part of the 2006 program. Five of the nine offsite locations are required by the ODCM. These locations are designated as R-1, R-2, R-3, R-4, and R-5. R-5 is a control location required by the ODCM and is located beyond any local influence from the site. In addition, optional offsite and onsite air sample locations are maintained from which weekly samples are collected. The optional offsite locations are designated as D-2, E, F and G. The optional onsite locations are designated as D-1, G, H, I, J and K.


Gross beta analysis requires that the samples be counted no sooner than 24 hours after collection. This allows for the decay of short half-life naturally-occurring radionuclides, thereby increasing the sensitivity of the analysis for plant-related radionuclides.

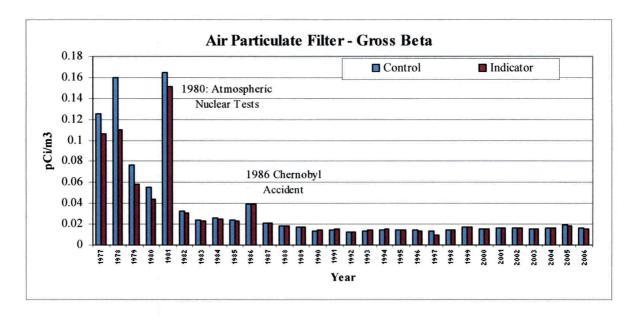

Section 6.0, Tables 6-5 and 6-6 present the weekly gross beta activity results for samples collected from the offsite and onsite locations.

The average annual gross beta indicator concentrations for the ODCM indicator stations (R-1, R-2, R-3 and R-4) was 0.015 pCi/m³. The offsite ODCM control station (R-5) annual mean gross beta concentration was 0.016 pCi/m³. The minimum, maximum and average gross beta results for sample locations required by the ODCM were as follows:

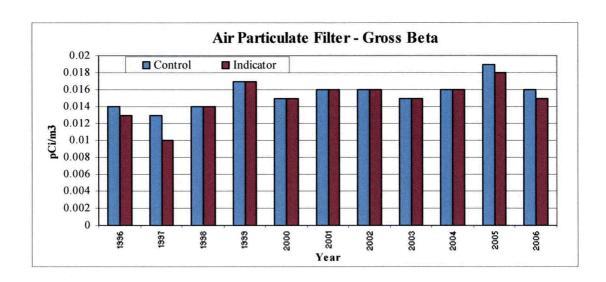
		Concentration pCi/m ³	
Location	Minimum	Maximum	Mean
R-1	0.007	0.032	0.016
R-2	0.007	0.035	0.016
R-3	0.005	0.035	0.015
R-4	0.005	0.031	0.015
R-5 (Control)	0.007	0.033	0.016

The mean weekly gross beta concentrations measured in 2006 are illustrated in the following graphs:

The fluctuations observed in the gross beta activity over the year can be attributed to changes in the environment, especially seasonal changes. The concentrations of naturally-occurring radionuclides in the lower levels of the atmosphere directly above the land are affected by time-related processes such as wind direction, precipitation, snow cover, soil temperature and soil moisture content.


C. Dose Evaluation

Dose calculations are not performed based on gross beta concentrations. Dose to man as a result of radioactivity in air is calculated using the specific radionuclide and the associated dose factor. See Section 5.2.2.C for dose calculations from air concentrations. The dose received by man from air gross beta concentration is a component of the natural background.


D. Data Trends

With the exception of the 1986 sample data, which was affected by the Chernobyl accident, the general trend in air particulate gross beta activity has been one of decreasing activity since 1981, when the mean control value was 0.165 pCi/m³. The 1981 samples were affected by fallout from a Chinese atmospheric nuclear test which was carried out in 1980.

The mean gross beta concentrations measured in 1977 to 2006 are illustrated in the following graph:

The trend for the previous five years represents a base line concentration or natural background level for gross beta concentrations. This trend is stable with minor fluctuations due to natural variations. The change in concentrations over the period of 1996 through 2006 is very small. This is illustrated by the following graph:

For the previous 10 years, the mean annual gross beta concentration at the control station (R-5) has remained steady with a narrow range of 0.013 pCi/m³ to 0.019 pCi/m³. The mean annual concentrations for the indicator stations for this same time period were similar to the control and ranged from a minimum mean of 0.010 pCi/m³ in 1997 to a maximum mean of 0.018 pCi/m³ in 2005.

Historical data of air particulate gross beta activity are presented in Section 7.0, Tables 7-9 and 7-10.

5.2.2 MONTHLY PARTICULATE COMPOSITES (GAMMA EMITTERS)

A. Results Summary

Fifteen air monitoring stations are maintained around the Nine Mile Point site. Five of the 15 air monitoring stations are required by the ODCM and are located offsite near the site boundary and offsite as a control location. Ten additional air sampling stations are also maintained as part of the sampling program. Together, these fifteen continuous air sampling stations make up a comprehensive environmental monitoring network for measuring radioactive air particulate concentrations in the environs of the site. Annually, the air monitoring stations provide 780 individual air particulate samples which are assembled by location into 180 monthly composite samples. The monthly composites are analyzed using gamma spectroscopy.

No plant-related gamma emitting radionuclides were detected in any of the air particulate filter samples collected during 2006.

The gamma analysis results for the monthly composite samples routinely showed positive detections of Be-7, K-40, and Ra-226. Each of these radionuclides is naturally occurring.

B. Data Evaluation Discussion

A total of fifteen air sampling stations are in continuous operation and located both onsite and in the offsite sectors surrounding the Nine Mile Point site. Five of the fifteen monitoring stations are required by the ODCM and the remaining ten are optional to provide an effective monitoring network. Composite air filter samples are assembled for each of the fifteen sampling locations. Each of the weekly air particulate filters collected for the month is assembled by location to form monthly composite samples. The monthly composite samples required by the ODCM are composite samples assembled for R-1, R-2, R-3, R-4 and R-5. Other sample locations not required by the ODCM, for which analytical results have been provided, include six onsite locations and four offsite locations. The analytical results for the 180 air particulate filter composites in 2006 showed no detectable activity of plant related radionuclides.

The results of the monthly composite samples are presented in Section 6.0, Table 6-7.

C. Dose Evaluation

The calculated dose as a result of plant effluents is not evaluated due to the fact that no plant related radionuclides were detected in 2006. The monthly air particulate sampling program demonstrated no offsite dose to man from this pathway as a result of operations of the plants located at the Nine Mile Point site.

D. Data Trends

No plant related radionuclides were detected during 2006 at the offsite air monitoring locations.

The ten year database of air particulate composite analysis shows that there is no buildup or routine presence of plant related radionuclides in particulate form in the atmosphere around the site. Historically Co-60 was detected in each of the years from 1977 through 1984 at both the indicator and control locations, with the exception of 1980 when Co-60 was not detected at the control location. The presence of Co-60 in the air samples collected during these years was the result of atmospheric weapons testing. Co-60 was

again detected in an offsite 2000 indicator sample and was the only positive detection of Co-60 since 1984. The detection of Co-60 in the one 2000 sample was an isolated event associated with effluents from the NMP1 facility. There have been no subsequent measurable concentrations of Co-60 in the environment surrounding the Nine Mile Point site.

Historical data shows that Cs-137 is the fission product radionuclide most frequently detected in the air particulate filter composites. Cs-137 was detected in each of the years from 1977 through 1983 at both the control and indicator sampling locations. The presence of Cs-137 in the air samples collected during these years was the result of atmospheric weapons testing. Cs-137 was again detected in 1986 as a result of the Chernobyl accident. Since 1986 there have been no detections of Cs-137 in the environment surrounding the Nine Mile Point site.

After 1986, no plant related or fallout radionuclides were detected in any of the offsite air particulate composite samples with the exception of the isolated detection of Co-60 in 2000 in a single sample. A review of the past five year's data for air particulate filter composites indicates no plant related radiological impact on the environment. All previous historical positive detections of fission product radionuclides were associated with atmospheric weapons testing or the Chernobyl accident, with the exception of the 2000 detection noted above.

Historical data for air particulate results are presented in Section 7.0, Tables 7-11 and 7-12.

5.2.3 AIRBORNE RADIOIODINE (I-131)

A. Results Summary

Iodine-131 (I-131) was not detected in any of the 780 samples analyzed for the 2006 program. No radioiodine has been measured offsite at the constant air monitoring stations since 1987.

B. Data Evaluation and Discussion

Airborne radioiodine (I-131) is monitored at the fifteen air sampling stations also used to collect air particulate samples. There are nine offsite locations, five of which are required by the ODCM. The offsite locations required by the ODCM are designated as R-1, R-2, R-3, R-4 and R-5. R-5 is a control station located beyond any local influence from the plant. Ten air sampling locations are also maintained in addition to those required by the ODCM.

Six of these stations D-1, G, H, I, J and K are located onsite. D-2, E, F and G are the optional stations located offsite. Samples are collected using activated charcoal cartridges. They are analyzed weekly for I-131. I-131 was not detected in any of the 2006 samples collected.

The analytical data for radioiodine are presented in Section 6.0, Tables 6-8 and 6-9.

C. Dose Evaluation

The calculated dose as a result of I-131 was not evaluated due to the fact I-131 was not detected during 2006. The I-131 sampling program demonstrated no offsite dose to man from this pathway as a result of operation of the plants located at the Nine Mile Point site.

D. Data Trends

No radioiodine has been detected in samples collected from the air sampling locations required by the ODCM since 1987.

There has been no positive detection of I-131 in air samples collected over the last ten years. This demonstrates that there is no measurable environmental impact or positive trend for iodine buildup due to plant operations during the period from 1997 through 2006. I-131 has previously been detected in samples collected during the last twenty year period in 1986 and 1987. The 1986 detection of I-131 was the result of the Chernobyl accident and the 1987 detection was the result of plant operations.

I-131 has been detected in the past at control locations. Control samples collected during 1976 had a mean I-131 concentration of 0.60 pCi/m³. During 1977 this mean decreased to 0.32 pCi/m³, and further decreased by a factor of ten to 0.03 pCi/m³ in 1978. I-131 was not detected in samples collected from the control location during 1979 – 1981 and 1983 to 1985. I-131 was detected once at the control location during 1982 at a concentration of 0.039 pCi/m³.

Iodine-131 has been detected in samples collected from the on-site indicator locations during 1976 to 1978, 1980 to 1983 and 1986 to 1987. The mean concentrations ranged from 0.013 pCi/m³ in 1980 to a maximum of 0.119 pCi/m³ in 1986. The maximum mean indicator I-131 concentration of 0.119 pCi/m³ was the result of the Chernobyl accident. I-131 was detected in a total of 75 weekly samples collected during the 1986 sample program. The 1986 measured concentrations ranged from a minimum of 0.023 pCi/m³ to a maximum of 0.36 pCi/m³. Each positive detection of I-131 in samples collected in 1986 was the direct result of the Chernobyl accident.

Historical data for I-131 are presented in Section 7.0, Tables 7-13 and 7-14.

5.2.4 DIRECT RADIATION THERMOLUMINESCENT DOSIMETERS (TLD)

A. Results Summary

Thermoluminescent dosimeters (TLDs) are used to measure direct radiation (gamma dose) in the environment. As part of the 2006 environmental monitoring program, TLDs were placed at a total of 72 different environmental TLD locations (32 required by the ODCM and 40 optional locations). These TLDs were placed, collected and read each quarter of 2006. As a result of placing two TLDs at each location, the results presented in this report are the average of two TLD readings obtained for a given location.

The 72 TLDs were placed in the following five geographical locations around the site boundary:

- Onsite (areas within the site boundary: TLDs 3, 4, 5, 6, 7, 23, 24, 25, and 26; TLDs 18, 27, 28, 29, 30, 30, 31, 39, 47, 103, 106, and 107 excluded),
- Site Boundary (area of the site boundary in each of the 16 meteorological sectors: Only includes TLD results that are not affected by radwaste direct shine, TLDs 7, 18, 78, 79, 80, 81, 82, 83, and 84; TLDs 23, 75, 76, 77, 85, 86, and 87 excluded),
- Offsite Sector (area four to five miles from the site in each of the eight land based meteorological sectors: TLDs 88, 89, 90, 91, 92, 93, 94, and 95),
- Special Interest (areas of high population density and use: TLDs 15, 56, 58, 96, 97 and 98), and
- Control (areas beyond significant influence of the site: TLDs 14 and 49).

All geographical locations are required by the ODCM with the exception of the Onsite area which was optional. Description of the five geograpical categories and the designation of specific TLD locations that make up each category is presented in Section 3.1.5, TLD (Direct Radiation) of this report.

A summary of the 2006 dose rates for each of the five geographical locations is as follows:

Dose in mrem per standard month

Geographic Category	Minimum	Maximum	Mean
Onsite (Optional)	3.5	14.4	5.3
Site Boundary (Inner Ring) * (1)	3.5	4.7	4.1
Offsite Sectors (Outer Ring) *	3.3	4.4	4.0
Special Interest * (2)	3.5	4.6	4.0
Control * (3)	3.3	4.4	4.0

- * Geographical locations required by the ODCM
- Only includes TLD results that are not affected by radwaste direct shine (TLDs. 7, 18, 78, 79, 80, 81, 82, 83, 84)
- Only includes TLD results required by the ODCM (TLDs. 15, 56, 58, 96, 97, 98)
- Only includes TLD results required by the ODCM (TLDs. 14, 49)

Comparison of annual mean dose rates associated with each geographical location indicate that there is no statistical difference in annual dose as a function of distance from the site boundary. The measured annual dose rate at the nearest resident to the site was consistent with the dose rates measured at the site boundary and control locations. The results for the Site Boundary, Offsite Sectors and Special Interest (Offsite) were well within expected normal variation when compared to the Control TLD results.

The results for the 2006 environmental TLD monitoring program indicate that there was no significant increase in dose rates as a result of operations at the site. The Hydrogen Water Chemistry systems used at NMPNS did not measurably increase the ambient radiation exposure rate beyond the site boundary.

B. Data Evaluation and Discussion

Direct Radiation (Gamma Dose) measurements were taken at 72 different environmental locations during 2006, 32 of which are required by the ODCM. These locations are grouped into five geographical location categories for evaluation of results. The five categories include: Onsite, Site Boundary, Offsite Sectors, Special Interest and Control locations. All categories are required by the ODCM with the exception of the Onsite TLDs. Onsite TLDs are placed at various locations within the site boundary to provide additional information on direct radiation levels at and around the NMP1, NMP2 and JAFNPP facilities.

Onsite TLDs are optional and are subdivided into three categories for which direct radiation results are evaluated. The 2006 direct radiation results for Onsite TLD locations were as follows:

- 1. Results for TLDs located near the NMP1, NMP2 and JAFNPP generating facilities and at previous or existing on-site air monitoring stations ranged from 3.5 to 14.4 mrem per standard month.
- 2. Results for TLDs located near the north shoreline of NMP1, NMP2 and Fitzpatrick facilities in close proximity to the Radwaste and NMP1 Reactor Building ranged from 3.3 to 31.8 mrem per standard month.
- 3. Results for TLDs located onsite near the Energy Information Center and its associated shoreline ranged from 4.3 to 5.9 mrem per standard month.

Site Boundary TLD results ranged from 3.5 to 9.2 mrem per standard month in 2006. This range included all TLDs placed in each of the 16 meteorological sectors in the general area of the site boundary. The highest dose rate measured at a location required by the ODCM was 9.2 mrem per standard month. This TLD, (TLD 85) represents the site boundary maximum dose and is located in the WNW sector along the lake shore in close proximity to the NMP1 plant. The TLD locations along the lakeshore close to the plants (TLDs 75, 76, 77, 85, 86 and 87) are influenced by radwaste buildings and radwaste shipping activities. These locations and are not accessible to members of the public, and the TLD results for these areas are not representative of dose rates measured at the remaining site boundary locations. The remaining Site Boundary TLD locations, which are located away from the plant ranged from 3.5 to 4.7 mrem per standard month resulting in an average dose rate of 4.1 mrem per standard month.

Offsite Sector TLDs, required by the ODCM, located 4 to 5 miles from the site in each of the 8 land based meteorological sectors ranged from 3.3 to 4.4 mrem per standard month with an average dose rate of 4.0 mrem per standard month.

Special Interest TLDs from all locations ranged from 3.5 to 4.6 mrem per standard month with an annual average dose rate of 4.0 mrem per standard month.

The Control TLD group required by the ODCM utilizes locations positioned well beyond the site. 2006 Control TLD results ranged from 3.3 to 5.3 mrem per standard month with an annual average dose rate of 4.1 mrem per standard month. These results include both the ODCM required control TLDs and the additional control TLDs.

TLD analysis results are presented in Section 6.0, Table 6-10.

C. Dose evaluation

2006 annual mean dose rates for each geographic location required by the ODCM are as follows:

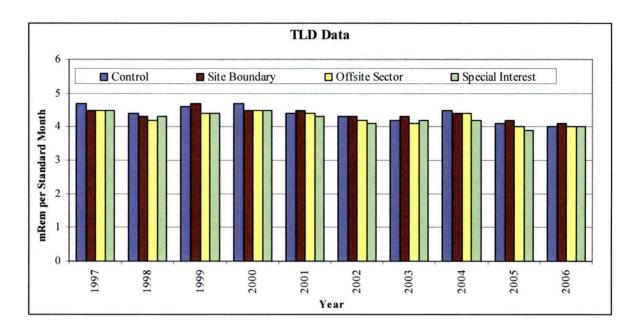
Site Boundary: 4.1 mrem per standard month (TLDs: 78, 79, 80, 81, 82, 83, 84, 7,

18)

Offsite Sectors: 4.0 mrem per standard month (TLDs: 88, 89, 90, 91, 92, 93, 94, 95)

Special Interest: 4.0 mrem per standard month (TLDs: 15, 56, 58, 96, 97, 98)

Control: 4.0 mrem per standard month (TLDs 14, 49)


The measured mean dose rate in the proximity of the closest resident was 4.2 mrem per standard month (TLD #s: 108, 109) which is consistent with the control measurements of 4.0 mrem per standard month.

The mean annual dose for each of the geographic location categories demonstrates that there is no statistical difference in the annual dose as a function of distance from the site. The TLD program verifies that operations at the site do not measurably contribute to the levels of direct radiation present in the offsite environment.

D. Data Trends

A comparison of historical TLD results can be made using the different geographical categories of measurement locations. These include Site Boundary TLDs located in each of the 16 meteorological sectors, TLDs located offsite in each land based sector at a distance of 4 to 5 miles from the site, TLDs located at special interest areas and TLDs located at control locations. Site Boundary, Offsite Sector and Special Interest TLD locations became effective in 1985; therefore, trends for these results can only be evaluated from 1985 to the present.

The following graph illustrates TLD results for the Control, Site Boundary, Offsite Sectors and Special Interest groups from 1997 through 2006:

TLDs located at the site boundary averaged 4.1 mrem per standard month during 2006 (Site Boundary average results do not include TLDs influenced by radwaste buildings and radwaste shipping activities). This result is consistent with the previous five year average of 4.3 mrem per standard month.

Offsite Sector TLDs averaged 4.0 mrem per standard month during 2006. This result is also consistent with the previous five year average of 4.2 mrem per standard month for offsite sectors.

Special Interest TLD locations averaged 4.0 mrem per standard month during 2006 which is consistent with the previous five year average of 4.1 mrem per standard month.

The last group of TLD locations required by the ODCM is the Control Group. This group utilized TLD locations positioned well beyond the site. 2006 control results from all Control TLDs averaged 4.0 mrem per standard month, consistent with the previous five year average of 4.2 mrem per standard month. The 2006 TLD program results, when compared to the previous twenty years, showed no significant trends relative to increased dose rates in the environment.

Section 7.0, Tables 7-15 through 7-20 show the historical environmental sample data for environmental TLDs.

5.2.5 MILK

A. Results Summary

A total of 72 milk samples were collected during the 2006 program and analyzed for gamma emitting radionuclides using gamma spectroscopy. In addition, each sample undergoes an iodine extraction procedure to determine the presence of Iodine-131 (I-131).

I-131, a possible plant related radionuclide, is measured to evaluate the cow/milk dose pathway to man. I-131 was not detected in any of the 72 milk samples collected in 2006 from the four milk sample locations.

Gamma spectral analyses of the milk samples showed only naturally occurring radionuclides, such as K-40, were detected in milk samples collected during 2006. K-40 was detected in all indicator and control samples. K-40 is a naturally occurring radionuclide and is found in many environmental sample media.

The 2006 results demonstrate that routine operations of the Nine Mile Point site resulted in no measurable contribution to the "dose to the public" from the cow/milk pathway.

B. Sampling Overview

Milk samples were collected from three indicator locations and one control location. The ODCM requires that three sample locations be within five miles of the site. Based on the milk animal census, there were no adequate milk sample locations within five miles of the site in 2006. Samples were collected from four farms located beyond the five-mile requirement to ensure the continued monitoring of this important pathway. The three indicator locations ranged from 6.3 to 8.7 miles from the site. The control samples were collected from a farm located 16.0 miles from the site and in a low frequency wind sector (upwind). The geographic location of each sample location is listed below:

Location No.	Direction From Site	Distance (Miles)
76	ESE	6.3
55	E	8.7
4	ESE	7.6
77 (Control)	ssw	16.0

Samples were collected from Indicator locations #4, #55, # 76 and Control location #77 from April through December, during the first and second half of each month. Samples were not required to be collected during January through March of 2006 as a result of I-131 not having been detected in samples collected during November and December of 2005, as stipulated in the ODCM.

C. Data Evaluation and Discussion

Each milk sample is analyzed for gamma emitters using gamma spectral analysis. The I-131 analysis is performed using resin extraction followed by spectral analysis for each sample. I-131 and gamma analysis results for milk samples collected during 2006 are provided in Section 6.0, Table 6-11.

Iodine–131 was not detected in any indicator or control milk samples analyzed during 2006. All I-131 milk results were reported as Lower Limits of Detection (LLD). The LLD results for all samples ranged from <0.50 to <0.85 pCi/liter. No plant-related radionuclides were detected in any milk sample collected in 2006. K-40 was the most abundant radionuclide detected, and found in every indicator and control sample collected. K-40 is a naturally-occurring radionuclide and is found in many of the environmental media samples. The K-40 concentration for all milk samples analyzed ranged from 1360 to 1790 pCi/liter. Cs-137 was not detected in any indicator or control milk sample collected in 2006.

D. Dose Evaluation

The calculated dose as a result of plant effluents is not evaluated due to the fact that no plant related radionuclides were detected.

The dose to man from naturally occurring concentrations of K-40 in milk and other environmental media can be calculated. This calculation illustrates that the dose received due to exposure from plant effluents is negligible compared to the dose received from naturally occurring radionuclides. Significant levels of K-40 have been measured in environmental samples. A 70 kilogram (154 pound) adult contains approximately 0.1

microcuries of K-40 as a result of normal life functions (inhalation, consumption, etc.). The dose to bone tissue is about 20 mrem per year as a result of internal deposition of naturally-occurring K-40.

E. Data Trends

Man-made radionuclides are not routinely detected in milk samples. In the past twenty years, Cs-137 was only detected in 1986, 1987, and 1988. The mean Cs-137 indicator activities for those years were 8.6, 6.8 and 10.0 pCi/liter, respectively. I-131 was measured in two milk samples collected in 1997 from a single sample location, having a mean concentration of 0.50 pCi/liter and was of undetermined origin. The previous detection was in 1986 with a mean concentration of 13.6 pCi/liter. The 1986 activity was a result of the Chernobyl accident.

The comparison of 2006 data to historical results over the operating life of the plants shows that Cs-137 and I-131 levels have decreased significantly since 1983.

Historical data of milk sample results for Cs-137 and I-131 are presented in Section 7.0, Tables 7-21 and 7-22.

5.2.6 FOOD PRODUCTS (VEGETATION)

A. Results Summary

There were no plant-related radionuclides detected in the 28 food product samples collected and analyzed for the 2006 program.

Detectable levels of naturally occurring K–40 were measured in all control and indicator samples collected for the 2006 program. Be-7 a naturally-occurring radionuclide, was also detected intermittently in samples collected in 2006. These results are consistent with the levels measured in 2005 and previous years.

The results of the 2006 sampling program demonstrate that there is no measurable impact on the dose to the public from the garden pathway as a result of plant operations.

B. Data Analysis and Discussion

Food product samples were collected from four indicator locations and one control location. The indicator locations are represented by nearby gardens in areas of highest

D/Q (deposition factor) values based on historical meteorology and an annual garden census. The control location was a garden 15 miles away in a predominately upwind direction.

Food product samples collected during 2006 included one variety considered to be an edible broadleaf vegetable. Collards, an edible broadleaf vegetable, were collected from one indicator location. Collards were not available from the control location. The general lack of edible broadleaf vegetation samples was the result of grower preference and such varieties were not available in local gardens. Where broadleaf vegetables were not available, non-edible broadleaf vegetation was collected. Non-edible vegetation consisting of squash leaves, pepper leaves, rhubarb, grape leaves, pumpkin leaves, zucchini leaves, corn leaves, and horseradish leaves were collected for the 2006 program. The leaves of these plants were sampled as representative of broadleaf vegetation which is a measurement of radionuclide deposition. In addition to the broadleaf vegetation, tomato samples were collected from all locations. Samples were collected during the late summer/fall harvest season. Each sample was analyzed for gamma emitters using gamma spectroscopy.

The analysis of food product samples collected during 2006 did not detect any plant-related radionuclides. Results for the past five years also demonstrate that there is no buildup of plant-related radionuclides in the garden food products grown in areas close to the site.

Naturally-occurring Be-7 and K-40 were detected in food product samples. The concentration of Be-7 in vegetation samples ranged from <0.06 to 5.05 pCi/g (wet). The concentration of K-40 in indicator and control samples ranged from 2.31 to 6.32 pCi/g (wet). The results for naturally-occurring radionuclides are consistent with the data of prior years.

Analytical results for food products are found in Section 6.0, Table 6-12.

C. Dose Evaluation

The calculated dose as a result of plant effluents is not evaluated due to the fact that no plant-related radionuclides were detected. The food product sampling program demonstrated no measurable offsite dose to man from this pathway as a result of operations of the plants located at the Nine Mile Point site.

D. Data Trends

Food product/vegetation sample results for the last five years demonstrate that there is no chronic deposition or buildup of plant-related radionuclides in the garden food products in the environs near the site.

The last positive indication was for Cs-137 which was detected at one indicator location in 1999 with a concentration of 0.008 pCi/g (wet).

Historically, Cs-137 had been detected in ten separate years since 1976 ranging from a maximum mean concentration of 0.047 pCi/g (wet) in 1985 to a minimum of 0.004 pCi/g (wet) in 1979. The trend for Cs-137 is a general reduction in concentration to non detectable levels in samples collected during the 2001 through 2006 sample programs.

Historical data of food product results are presented in Section 7.0, Tables 7-23 and 7-24.

5.2.7 LAND USE CENSUS RESULTS

A. Results Summary

The ODCM requires that an annual land use census be performed to identify potential new locations for milk sampling and for calculating the dose to man from plant effluents. In 2006, a milk animal census, a nearest resident census and a garden census were performed. The results of the closest residence census conducted in 2006 required no change to either the NMP1 or NMP2 ODCMs' closest resident location.

A garden census, not required by the ODCM, is performed to identify appropriate garden sampling locations and dose calculation receptors. Garden samples were collected from a number of locations listed in Table 5-1 of the NMP1 and NMP2 ODCMs and identified in the census as active for 2006. See Table 3.3-1 for 2006 sampling locations.

B. Data Evaluation and Discussion

A land use census is conducted each year to determine the utilization of land in the vicinity of the Nine Mile Point site. The land use census consists of two types of surveys. A milk animal census is conducted to identify all milk animals within a distance of 10 miles from the site. The census, covering areas out to a distance of 10 miles exceeds the 5 mile distance required by the ODCM. A resident census is conducted and is designed to identify the nearest resident in each meteorological sector out to a distance of 5 miles.

The milk animal census is an estimation of the number of cows and goats within an approximate 10 mile radius of the Nine Mile Point Site. The annual census is conducted during the first half of the grazing season by sending questionnaires to previous milk animal owners and also by road surveys to locate any possible new locations. In the event the questionnaires are not answered, the owners are contacted by telephone or in person. The local county agricultural extension service is also contacted as an additional source of information concerning new milk animal locations in the vicinity of the site.

The number of milk animals located within an approximate 10 mile radius of the site was estimated to be 533 cows and 6 goats based on the 2006 land use census. The number of cows has increased by 26, and the number of goats has decreased by 1 when compared to the 2005 census. The goats identified during the census were not milking goats. The results of the milk animal census are found in Section 6.0, Table 6-13.

The second type of census conducted is a residence census. The census is conducted in order to identify the closest residence within 5 miles in each of the 22.5 degree land-based meteorological sectors. There are only eight sectors over land where residences are located within 5 miles. The water sectors include: N, NNE, NE, ENE, W, WNW, NW and NNW. The results of the residence census, showing the applicable sectors and degrees and distance of each of the nearest residence, are found in Section 6.0, Table 6-14. There were two changes identified in the 2006 census for the closest resident in the land based meteorological sectors. The nearest resident locations are illustrated in Section 3.3, Figure 3.3-5. Both changes were in the same general area and had similar D/Q for their respective meteorological sectors.

5.3 CONCLUSION

The Radiological Environmental Monitoring Program (REMP) is an ongoing program implemented to measure and document the radiological impact of NMPNS operations on the local environment. The program is designed to detect and evaluate small changes in the radiological environment surrounding the site. Environmental media representing food sources consumed at the higher levels of the food chain, such as fish, food products and milk, are part of a comprehensive sampling program. Results of all samples are reviewed closely to determine any possible impact to the environment or to man. In addition, program results are evaluated for possible short and long term historical trends.

The federal government has established dose limits to protect the public from radiation and radioactivity. The Nuclear Regulatory Commission (NRC) specifies a whole body dose limit of 100 mrem/yr to be received by the maximum exposed member of the general public. This limit is set forth in Section 1301, Part 20, Title 10 of the U.S. Code of Federal Regulations (10CFR20). The Environmental Protection Agency (EPA) limits the annual whole body dose to 25 mrem/yr, which is specified in Section 10, Part 190, Title 40, of the Code of Federal Regulations (40CFR190). Radiation exposure to members of the public, calculated based on the results of the REMP, is extremely small. The dose to members of the public from operations at the Nine Mile Point site, based on environmental measurement and calculations made from effluent releases, is determined to be a fraction of limits set forth by the NRC and EPA.

The results of the 2006 REMP continue to clearly demonstrate that there is no significant short term or chronic long term radiological impact on the environment in the vicinity of the Nine Mile Point site. No unusual radiological characteristics were measured or observed in the local environment. The Environmental Monitoring Program continues to demonstrate that the effluents from the site to the environment contribute no significant or even measurable radiation exposures to the general public as confirmed by the sampling and analysis of environmental media from recognized environmental pathways. Based on TLD results there was no measurable increase in radiation levels beyond the site boundary as a result of the hydrogen water chemistry programs. Environmental radiation levels measured at the nearest residence are at the background level based on control station TLD results. The only measurable radiological impact on the environment continues to be the result of atmospheric weapons testing conducted in the early 1980s and the accident at the Chernobyl Nuclear Power Plant. Both of these source terms have contributed to a measurable inventory of Cs-137 in the environment. The results for the 2006 sample program demonstrate that the concentrations of man-made radionuclides continue to This reduction in environmental background concentrations will allow for the site environmental program to become more sensitive to the measurable impact of plant operations on the environment as time goes on.

The environmental monitoring program detected one potential plant-related radionuclide in the sample media collected during 2006. Cs-137 was detected in one shoreline sediment sample. The source of the Cs-137 measured in this sample is considered to be fallout from past atmospheric nuclear weapons testing. The measured concentration of Cs-137 in the sample was small and consistent with historical results for shoreline sediment. The impact of these Cs-137 concentrations are minimal in terms of dose to man. Dose from man-made sources in the environment is very small when compared to the dose originating from naturally-occurring sources of radioactivity.

Radiation from naturally-occurring radionuclides such as K-40 and Ra-226 contributed the vast majority of the total annual dose to members of the general public. The dose to members of the public, resulting from plant operations, is extremely small in comparison to the dose contribution from natural background levels and sources other than the plants. The whole body dose in Oswego County due to natural sources is approximately 50 - 60 mrem per individual per year as demonstrated by control environmental TLDs. The fraction of the annual dose to man, attributable to site operation, remains insignificant.

Based upon the overall results of the 2006 Radiological Environmental Monitoring Program, it can be concluded that the levels and variation of radioactivity in the environment samples were consistent with background levels that would be expected for the lakeshore environment of the site.

5.4 REFERENCES

- 1. U.S. Nuclear Regulatory Commission Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", March 1976.
- 2. U.S. Nuclear Regulatory Commission Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", October 1977 (Revision 1).
- 3. U.S. Nuclear Regulatory Commission Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants", December, 1975.
- 4. U.S. Nuclear Regulatory Commission Branch Technical Position to Regulatory Guide 4.8, "An Acceptable Radiological Environmental Monitoring Program", Revision 1, November 1979.
- 5. National Council on Radiation Protection and Measurements (NCRP), <u>Environmental Radiation Measurements</u>, NCRP Report No. 50, 1975.
- 6. National Council on Radiation Protection and Measurements (NCRP), <u>Natural Background</u>
 Radiation in the United States, NCRP Report No. 45, 1975.
- 7. National Council on Radiation Protection and Measurements (NCRP), <u>Cesium-137 from the Environment to Man: Metabolism and Dose</u>, NCRP Report No. 52, 1977.
- 8. National Council on Radiation Protection and Measurments (NCRP), <u>Radiation Exposure</u> from Consumer Products and Miscellaneous Sources, NCRP Report No. 56, 1977.
- 9. International Commission on Radiological Protection (ICRP), <u>Radionuclide Release into</u> the Environment: Assessment of Doses to Man, ICRP Publication 29, 1979.
- 10. Glasstone, Samuel and Jordan, Walter H., <u>Nuclear Power and Its Environmental Effects</u>, First Edition, American Nuclear Society, La Grange Park, Ill., 1980.
- 11. Schleien, Bernard. <u>The Health Physics and Radiological Health Handbook</u>. Scinta, Inc., Silver Spring, Maryland, 1992.

- 12. U.S. Department of Health and Human Services. <u>Preparedness and Response in Radiation Accidents</u>, National Center for Devices and Radiological Health, Rackville, Maryland 20857, August 1983.
- 13. National Council on Radiation Protection and Measurments (NCRP), <u>Ionizing Radiation</u>
 <u>Exposure of the Population of the United States</u>, NCRP Report No. 93, 1987.
- 14. National Council on Radiation Protection and Measurements (NCRP), <u>Exposure of the Population in the United States and Canada from National Background Radiation</u>, NCRP Report No. 94, 1987.

SECTION 6.0

REPORT PERIOD ANALYTICAL RESULTS TABLES

6.0 REPORT PERIOD ANALYTICAL RESULTS TABLES

- 6.1 Environmental sample data is summarized in table format. Tables are provided for select sample media and contain data based on actual values obtained over the year. These values are comprised of both positive values and LLD values where applicable.
- 6.2 The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability and with 5% probability of falsely concluding that a blank observation represents a "real" signal (see Section 3.7.3 for detailed explanation).
- When the initial count of a sample indicates the presence of radioactivity, two recounts are normally performed. When a radionuclide is positively identified in two or more counts, the analytical results for that radionuclide is reported as the mean of the positive detections and the associated error for that mean (see Section 3.7.2 for methodology).
- Many of the tables are footnoted with the term "Plant Related Radionuclides".

 Plant related radionuclides are radionuclides that are produced in the reactor as a result of plant operation either through the activation or fission process.

TABLE 6-1

CONCENTRATIONS OF GAMMA EMITTERS IN SHORELINE SEDIMENT SAMPLES – 2006

Results in Units of pCi/g (dry) ± 1 Sigma

Sample	Collection			GAMMA EI	MITTERS		
Location	Date	K -40	Co-60	Cs-134	Cs-137	Zn-65	Others †
Sunset Bay	04/19/06	18.6 ± 1.33	<0.104	<0.131	<0.108	<0.296	<lld< td=""></lld<>
(05)***	10/19/06	17.9 ± 0.57	<0.052	<0.044	0.056 ± 0.02	<0.064	<lld< td=""></lld<>
Lang's Beach (06, Control)	04/19/06	14.5 ±0.55	<0.047	<0.052	<0.046	<0.063	<lld< td=""></lld<>
(06, Control) ***	10/19/06	11.5 ± 0.59	<0.053	<0.048	<0.038	<0.070	<lld< td=""></lld<>

^{***} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-2

CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES – 2006 Results in Units of pCi/g (wet) ± 1 Sigma

FITZPATRICK (03)***

Date	Type	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-134	Cs-137	Others †
05/31/06	Brown Trout	4.63 ± 0.45	<0.051	<0.052	<0.122	<0.058	<0.137	<0.041	<0.049	<lld< td=""></lld<>
05/31/06	Smallmouth Bass	5.15 ±0.54	<0.070	<0.049	<0.251	<0.065	<0.158	<0.058	<0.062	<lld< td=""></lld<>
05/31/06	Walleye	5.14 ± 0.49	<0.041	<0.042	<0.212	<0.040	<0.137	<0.063	<0.052	<lld< td=""></lld<>
09/07/06	Brown Trout	5.18 ± 0.47	<0.042	<0.048	<0.152	<0.064	<0.150	<0.045	<0.053	<lld< td=""></lld<>
09/07/06	Lake Trout	5.28 ± 0.49	<0.052	<0.051	<0.125	<0.054	<0.114	<0.053	<0.060	<lld< td=""></lld<>
09/07/06	Smallmouth Bass	5.67 ± 0.61	<0.065	<0.052	<0.163	<0.065	<0.179	<0.064	<0.059	<lld< td=""></lld<>
09/07/06	Walleye	5.07 ± 0.52	<0.043	<0.062	<0.190	<0.054	<0.162	<0.048	<0.058	<lld< td=""></lld<>

^{***} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-2 (continued)

CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES – 2006 Results in Units of pCi/g (wet) ± 1 Sigma

NINE MILE POINT (02)***

Date	Type	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-134	Cs-137	Others †
05/31/06	Brown Trout	4.17 ± 0.44	<0.049	<0.049	<0.135	<0.049	<0.132	<0.049	<0.049	<lld< td=""></lld<>
06/06/06	Smallmouth Bass	5.82 ± 0.45	<0.046	<0.050	<0.128	<0.057	<0.107	<0.048	<0.046	<lld< td=""></lld<>
06/06/06	Walleye	5.45 ± 0.51	< 0.053	<0.059	<0.204	<0.055	<0.125	<0.060	<0.046	<lld< td=""></lld<>
08/31/06	Brown Trout	5.49 ± 0.62	<0.067	<0.105	<0.216	<0.082	<0.136	<0.059	<0.055	<lld< td=""></lld<>
08/31/06	Rainbow Trout	3.60 ± 0.38	<0.062	<0.056	<0.195	<0.062	<0.168	<0.036	<0.056	<lld< td=""></lld<>
09/06/06	Smallmouth Bass	4.46 ± 0.53	<0.056	<0.047	<0.123	<0.079	<0.161	<0.065	<0.071	<lld< td=""></lld<>
09/06/06	Walleye	4.71 ± 0.54	<0.072	<0.056	<0.189	<0.073	<0.143	<0.071	<0.056	<lld< td=""></lld<>

^{***} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-2 (continued)

CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES – 2006 Results in Units of pCi/g (wet) ± 1 Sigma

OSWEGO HARBOR (CONTROL) (00)***

Date	Туре	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-134	Cs-137	Others †
05/31/06	Smallmouth Bass	6.14 ± 0.45	<0.039	<0.051	<0.130	<0.060	<0.130	<0.042	<0.051	<lld< td=""></lld<>
06/01/06	Brown Trout	4.55 ± 0.53	<0.056	<0.072	<0.196	<0.069	<0.172	<0.053	<0.064	<lld< td=""></lld<>
06/01/06	Walleye	4.76 ± 0.46	<0.046	<0.054	<0.188	<0.072	<0.094	<0.054	<0.050	<lld< td=""></lld<>
09/07/06	Brown Trout	5.86 ± 0.48	<0.068	<0.057	<0.170	<0.046	<0.158	<0.069	<0.060	<lld< td=""></lld<>
09/07/06	Lake Trout	4.85 ± 0.48	<0.057	<0.055	<0.126	<0.050	<0.156	<0.051	<0.047	<lld< td=""></lld<>
09/07/06	Rainbow Trout	6.07 ± 0.57	<0.075	<0.062	<0.217	<0.098	<0.166	<0.050	<0.056	<lld< td=""></lld<>
09/07/06	Walleye	5.54 ± 0.56	<0.048	<0.075	<0.148	<0.074	<0.175	<0.057	<0.071	<lld< td=""></lld<>
09/08/06	Smallmouth Bass	4.79 ± 0.52	<0.055	<0.054	<0.214	<0.056	<0.134	<0.069	<0.058	<lld< td=""></lld<>

^{***} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-3

CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES – 2006 (QUARTERLY COMPOSITE SAMPLES)

Results in Units of pCi/l ± 1 Sigma

Station Code	Period Period	Date	Tritium
	First Quarter	12/30/2005 - 03/31/2006	<467
FitzPatrick*	Second Quarter	03/31/2006 - 06/29/2006	<498
(03, Inlet)***	Third Quarter	06/29/2006 - 09/29/2006	<442
	Fourth Quarter	09/29/2006 — 12/29/2006	<457
	First Quarter	12/30/2005 - 03/31/2006	<461
Oswego Steam Station*	Second Quarter	03/31/2006 - 06/29/2006	<459
(08, Control)***	Third Quarter	06/29/2006 - 09/29/2006	<442
	Fourth Quarter	09/29/2006 - 12/29/2006	<457
	First Quarter	12/30/2005 - 03/31/2006	<461
Nine Mile Point Unit 1**	Second Quarter	03/31/2006 - 06/29/2006	<459
(09, Inlet)***	Third Quarter	06/29/2006 - 09/29/2006	<442
, , , , , , , , , , , , , , , , , , , ,	Fourth Quarter	09/29/2006 - 12/29/2006	<457
	First Quarter	12/30/2005 - 03/31/2006	<461
Nine Mile Point Unit 2**	Second Quarter	03/31/2006 - 06/29/2006	<459
(11, Inlet)***	Third Quarter	06/29/2006 - 09/29/2006	<442
	Fourth Quarter	09/29/2006 - 12/29/2006	<457
	First Quarter	12/30/2005 - 03/31/2006	<461
Oswego City Water**	Second Quarter	03/31/2006 - 06/29/2006	<459
(10)***	Third Quarter	06/29/2006 - 09/29/2006	<442
	Fourth Quarter	09/29/2006 - 12/29/2006	<457

^{*} Sample location required by ODCM

^{**} Optional Sample location

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-4

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES – 2006 Results in Units of pCi/liter ± 1 Sigma

OSWEGO STEAM STATION * (08, CONTROL)***

Nuclide	January	February	March	April	May	June
I-131	<0.81	< 0.78	< 0.82	< 0.80	< 0.85	< 0.70
Cs-134	<2.86	<4.01	<3.16	<2.74	<3.85	<3.97
Cs-137	<2.61	<3.48	<3.02	<2.03	<3.52	<4.03
Zr-95	<5.37	<6.70	<5.74	<4.86	<7.29	<8.24
Nb-95	<3.90	<4.75	<3.71	<3.52	<5.16	<5.10
Co-58	<3.29	<4.36	<2.81	<2.71	<4.51	<3.98
Mn-54	<2.65	<3.52	<2.55	<2.85	< 3.65	<3.02
Fe-59	<9.16	<12.10	<10.30	<7.82	<13.20	<12.60
Zn-65	<6.53	<7.68	<6.65	<5.51	<7.76	< 5.00
Co-60	<2.73	<3.85	<2.48	<2.68	<4.54	<4.56
K-40	174 ± 16	198 ± 23	162 ± 15	106 ± 13	165 ± 21	340 ± 26
Ba/La-140	<8.47	<10.20	<7.92	<6.50	<11.90	<9.72
Nuclide	July	August	September	October	November	December
					KI MADA IN THE TOTAL PRODUCTION OF THE PARTY	
I-131	<0.75	<0.79	<0.79	< 0.83	<0.66	<0.75
I-131 Cs-134				<0.83 <3.47	<0.66 <3.56	<0.75 <4.85
· · · · · · · · · · · · · · · · · · ·	<0.75	<0.79	<0.79			
Cs-134	<0.75 <3.85	<0.79 <3.99	<0.79 <2.27	<3.47	<3.56	<4.85
Cs-134 Cs-137	<0.75 <3.85 <3.63	<0.79 <3.99 <3.35	<0.79 <2.27 <2.37	<3.47 <4.19	<3.56 <4.16	<4.85 <4.82
Cs-134 Cs-137 Zr-95	<0.75 <3.85 <3.63 <7.34	<0.79 <3.99 <3.35 <7.94	<0.79 <2.27 <2.37 <5.89	<3.47 <4.19 <8.88	<3.56 <4.16 <8.69	<4.85 <4.82 <8.42
Cs-134 Cs-137 Zr-95 Nb-95	<0.75 <3.85 <3.63 <7.34 <5.47	<0.79 <3.99 <3.35 <7.94 <5.32	<0.79 <2.27 <2.37 <5.89 <3.73	<3.47 <4.19 <8.88 <6.13	<3.56 <4.16 <8.69 <6.36	<4.85 <4.82 <8.42 <6.43
Cs-134 Cs-137 Zr-95 Nb-95 Co-58	<0.75 <3.85 <3.63 <7.34 <5.47 <4.19	<0.79 <3.99 <3.35 <7.94 <5.32 <4.56	<0.79 <2.27 <2.37 <5.89 <3.73 <3.18	<3.47 <4.19 <8.88 <6.13 <5.12	<3.56 <4.16 <8.69 <6.36 <5.32	<4.85 <4.82 <8.42 <6.43 <5.08
Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	<0.75 <3.85 <3.63 <7.34 <5.47 <4.19 <3.66	<0.79 <3.99 <3.35 <7.94 <5.32 <4.56 <3.34	<0.79 <2.27 <2.37 <5.89 <3.73 <3.18 <2.72	<3.47 <4.19 <8.88 <6.13 <5.12 <4.72	<3.56 <4.16 <8.69 <6.36 <5.32 <4.66	<4.85 <4.82 <8.42 <6.43 <5.08 <4.65
Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54 Fe-59	<0.75 <3.85 <3.63 <7.34 <5.47 <4.19 <3.66 <11.80	<0.79 <3.99 <3.35 <7.94 <5.32 <4.56 <3.34 <13.80	<0.79 <2.27 <2.37 <5.89 <3.73 <3.18 <2.72 <8.71	<3.47 <4.19 <8.88 <6.13 <5.12 <4.72 <13.50	<3.56 <4.16 <8.69 <6.36 <5.32 <4.66 <13.50	<4.85 <4.82 <8.42 <6.43 <5.08 <4.65 <18.9
Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54 Fe-59 Zn-65	<0.75 <3.85 <3.63 <7.34 <5.47 <4.19 <3.66 <11.80 <7.50	<0.79 <3.99 <3.35 <7.94 <5.32 <4.56 <3.34 <13.80 <10.40	<0.79 <2.27 <2.37 <5.89 <3.73 <3.18 <2.72 <8.71 <7.10	<3.47 <4.19 <8.88 <6.13 <5.12 <4.72 <13.50 <12.20	<3.56 <4.16 <8.69 <6.36 <5.32 <4.66 <13.50 <11.70	<4.85 <4.82 <8.42 <6.43 <5.08 <4.65 <18.9 <13.7

^{*} Sample location required by ODCM

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-4 (continued)

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES – 2006 Results in Units of pCi/liter ± 1 Sigma

FITZPATRICK* (03, INLET)***

Nuclides	January	February	March	April	May	June
I-131	< 0.66	< 0.59	< 0.57	< 0.71	< 0.66	< 0.55
Cs-134	<1.76	<1.59	<3.41	<4.80	<3.19	<2.51
Cs-137	<2.72	<2.54	<2.87	<3.96	<3.28	<3.06
Zr-95	<5.34	<4.28	<5.16	<7.02	<6.85	<6.32
Nb-95	<3.22	<3.16	<3.96	<4.81	<5.51	<3.99
Co-58	<2.65	<2.65	<3.30	<3.99	<3.86	<3.63
Mn-54	<2.70	<2.63	<2.90	<3.52	<3.34	<3.33
Fe-59	<8.33	<8.12	<8.44	<13.20	<14.80	<10.00
Zn-65	<6.59	<6.77	<3.20	<9.51	<7.50	<7.86
Co-60	<2.76	<2.68	<3.43	<3.58	<3.55	<3.75
K-40	120 ± 14	121 ± 15	145 ± 16	116 ± 20	169 ± 18	100 ± 16
Ba/La-140	<5.12	<5.26	<6.45	<9.39	<14.40	<7.08
Nuclides	July	August	September	October	November	December
Nuclides I-131	July <0.55	August <0.46	September <0.74	October <0.76	November <0.55	December <0.48
7			<u> </u>			
I-131	<0.55	<0.46	<0.74	< 0.76	<0.55	<0.48
I-131 Cs-134	<0.55 <4.11	<0.46 <3.58	<0.74 <4.50	<0.76 <4.16	<0.55 <4.27	<0.48 <4.51
I-131 Cs-134 Cs-137	<0.55 <4.11 <3.50	<0.46 <3.58 <4.94	<0.74 <4.50 <4.14	<0.76 <4.16 <3.88	<0.55 <4.27 <4.79	<0.48 <4.51 <3.95
I-131 Cs-134 Cs-137 Zr-95	<0.55 <4.11 <3.50 <8.22	<0.46 <3.58 <4.94 <7.69	<0.74 <4.50 <4.14 <8.20	<0.76 <4.16 <3.88 <7.48	<0.55 <4.27 <4.79 <8.71	<0.48 <4.51 <3.95 <9.08
I-131 Cs-134 Cs-137 Zr-95 Nb-95	<0.55 <4.11 <3.50 <8.22 <4.84	<0.46 <3.58 <4.94 <7.69 <4.64	<0.74 <4.50 <4.14 <8.20 <5.53	<0.76 <4.16 <3.88 <7.48 <4.73	<0.55 <4.27 <4.79 <8.71 <7.13	<0.48 <4.51 <3.95 <9.08 <5.47
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	<0.55 <4.11 <3.50 <8.22 <4.84 <4.42	<0.46 <3.58 <4.94 <7.69 <4.64 <5.44	<0.74 <4.50 <4.14 <8.20 <5.53 <5.23	<0.76 <4.16 <3.88 <7.48 <4.73 <3.85	<0.55 <4.27 <4.79 <8.71 <7.13 <5.14	<0.48 <4.51 <3.95 <9.08 <5.47 <4.47
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	<0.55 <4.11 <3.50 <8.22 <4.84 <4.42 <3.60	<0.46 <3.58 <4.94 <7.69 <4.64 <5.44 <4.24	<0.74 <4.50 <4.14 <8.20 <5.53 <5.23 <3.63	<0.76 <4.16 <3.88 <7.48 <4.73 <3.85 <3.43	<0.55 <4.27 <4.79 <8.71 <7.13 <5.14 <4.86	<0.48 <4.51 <3.95 <9.08 <5.47 <4.47 <4.21
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54 Fe-59	<0.55 <4.11 <3.50 <8.22 <4.84 <4.42 <3.60 <12.70	<0.46 <3.58 <4.94 <7.69 <4.64 <5.44 <4.24 <15.90	<0.74 <4.50 <4.14 <8.20 <5.53 <5.23 <3.63 <14.9	<0.76 <4.16 <3.88 <7.48 <4.73 <3.85 <3.43 <11.90	<0.55 <4.27 <4.79 <8.71 <7.13 <5.14 <4.86 <13.90	<0.48 <4.51 <3.95 <9.08 <5.47 <4.47 <4.21 <12.1
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54 Fe-59 Zn-65	<0.55 <4.11 <3.50 <8.22 <4.84 <4.42 <3.60 <12.70 <9.74	<0.46 <3.58 <4.94 <7.69 <4.64 <5.44 <4.24 <15.90 <10.80	<0.74 <4.50 <4.14 <8.20 <5.53 <5.23 <14.9 <9.36	<0.76 <4.16 <3.88 <7.48 <4.73 <3.85 <3.43 <11.90 <8.16	<0.55 <4.27 <4.79 <8.71 <7.13 <5.14 <4.86 <13.90 <11.50	<0.48 <4.51 <3.95 <9.08 <5.47 <4.47 <4.21 <12.1 <11.2

^{*} Sample location required by ODCM

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-4 (continued)

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES – 2006 Results in Units of pCi/liter ± 1 Sigma

NINE MILE POINT UNIT 1** (09, INLET)***

Nuclides	January	February	March	April	May	June
I-131	<14.20	<8.58	<10.70	<13.10	<14.40	<9.50
Cs-134	<2.47	<2.79	<3.33	<4.10	<3.53	<2.30
Cs-137	<3.45	<2.92	<3.03	<3.48	<2.72	<3.03
Zr-95	<7.41	<5.73	<6.70	<6.78	<6.34	<6.24
Nb-95	<5.06	<3.42	<4.35	<4.65	<4.27	<3.78
Co-58	<3.98	<2.94	<3.67	<3.93	<3.87	<3.84
Mn-54	<4.03	<2.63	<3.31	<3.96	<3.50	<3.19
Fe-59	<13.00	<9.23	<12.10	<11.90	<9.73	<9.08
Zn-65	<8.36	<6.47	<7.93	<9.70	<6.94	<4.49
Co-60	<4.03	< 2.65	<3.78	<4.03	<4.00	<3.44
K-40	396 ± 25	146 ± 15	330 ± 22	146 ± 22	178 ± 18	108 ± 16
Ba/La-140	<5.78	<6.74	<10.20	<8.73	<11.50	<7.65
Nuclides	July	August	September	October	November	December
Nuclides	July <14.90	August <14.40	September <11.90	October <12.80	November <14.80	December <14.5
1						
I-131	<14.90	<14.40	<11.90	<12.80	<14.80	<14.5
I-131 Cs-134	<14.90 <4.72	<14.40 <2.13	<11.90 <3.60	<12.80 <4.93	<14.80 <2.41	<14.5 <4.19
I-131 Cs-134 Cs-137	<14.90 <4.72 <4.40	<14.40 <2.13 <2.90	<11.90 <3.60 <3.83	<12.80 <4.93 <3.96	<14.80 <2.41 <3.26	<14.5 <4.19 <4.13
I-131 Cs-134 Cs-137 Zr-95	<14.90 <4.72 <4.40 <9.50	<14.40 <2.13 <2.90 <6.31	<11.90 <3.60 <3.83 <6.63	<12.80 <4.93 <3.96 <7.51	<14.80 <2.41 <3.26 <6.93	<14.5 <4.19 <4.13 <8.39
I-131 Cs-134 Cs-137 Zr-95 Nb-95	<14.90 <4.72 <4.40 <9.50 <5.75	<14.40 <2.13 <2.90 <6.31 <4.48	<11.90 <3.60 <3.83 <6.63 <5.26	<12.80 <4.93 <3.96 <7.51 <5.92	<14.80 <2.41 <3.26 <6.93 <4.85	<14.5 <4.19 <4.13 <8.39 <5.30
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	<14.90 <4.72 <4.40 <9.50 <5.75 <4.92	<14.40 <2.13 <2.90 <6.31 <4.48 <3.81	<11.90 <3.60 <3.83 <6.63 <5.26 <4.05	<12.80 <4.93 <3.96 <7.51 <5.92 <4.82	<14.80 <2.41 <3.26 <6.93 <4.85 <3.98	<14.5 <4.19 <4.13 <8.39 <5.30 <4.64
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	<14.90 <4.72 <4.40 <9.50 <5.75 <4.92 <5.03	<14.40 <2.13 <2.90 <6.31 <4.48 <3.81 <3.30	<11.90 <3.60 <3.83 <6.63 <5.26 <4.05 <3.34	<12.80 <4.93 <3.96 <7.51 <5.92 <4.82 <3.73	<14.80 <2.41 <3.26 <6.93 <4.85 <3.98 <3.07	<14.5 <4.19 <4.13 <8.39 <5.30 <4.64 <4.34
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54 Fe-59	<14.90 <4.72 <4.40 <9.50 <5.75 <4.92 <5.03 <13.90	<14.40 <2.13 <2.90 <6.31 <4.48 <3.81 <3.30 <11.00	<11.90 <3.60 <3.83 <6.63 <5.26 <4.05 <3.34 <10.4	<12.80 <4.93 <3.96 <7.51 <5.92 <4.82 <3.73 <12.40	<14.80 <2.41 <3.26 <6.93 <4.85 <3.98 <3.07 <12.50	<14.5 <4.19 <4.13 <8.39 <5.30 <4.64 <4.34 <14.8
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54 Fe-59 Zn-65	<14.90 <4.72 <4.40 <9.50 <5.75 <4.92 <5.03 <13.90 <10.60	<14.40 <2.13 <2.90 <6.31 <4.48 <3.81 <3.30 <11.00 <7.98	<11.90 <3.60 <3.83 <6.63 <5.26 <4.05 <3.34 <10.4 <4.13	<12.80 <4.93 <3.96 <7.51 <5.92 <4.82 <3.73 <12.40 <9.52	<14.80 <2.41 <3.26 <6.93 <4.85 <3.98 <3.07 <12.50 <7.80	<14.5 <4.19 <4.13 <8.39 <5.30 <4.64 <4.34 <14.8 <9.44

^{**} Optional Sample location

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-4 (continued)

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES – 2006 Results in Units of pCi/liter ± 1 Sigma

NINE MILE POINT UNIT 2** (11, INLET)***

Nuclides	January	February.	March	April	May	June
I-131	<9.90	<9.70	<9.81	<12.70	<11.10	<11.70
Cs-134	<2.77	<2.06	<2.96	<4.81	<2.23	<5.16
Cs-137	<2.73	<2.92	<2.51	<4.20	<2.73	<4.41
Zr-95	<4.87	<5.53	<5.31	<7.05	<5.30	<8.65
Nb-95	<3.46	<3.89	<3.43	<4.66	<4.08	<5.74
Co-58	<2.96	<2.88	<2.67	<4.16	<3.11	<5.07
Mn-54	<2.67	<3.20	<2.53	<3.66	<2.81	<4.63
Fe-59	<7.40	<7.83	<9.39	<14.40	<9.31	<18.40
Zn-65	<6.95	<4.09	<6.60	<9.07	< 6.87	<11.20
Co-60	<2.60	<2.89	<2.96	<3.74	<3.09	<5.61
K-40	120 ± 15	139 ± 15	104 ± 14	135 ± 19	140 ± 15	324 ± 30
Ba/La-140	<8.86	<7.39	<9.25	<10.80	<8.48	<12.20
Nuclides	Jüly	August	September	October	November	December
Nuclides I-131	Jüly <14.70	August <14.10	September <13.5	October <12.20	November <14.60	December <14.90
2 VIN. 41 VI. VII. III (V. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1			1.00		
I-131	<14.70	<14.10	<13.5	<12.20	<14.60	<14.90
I-131 Cs-134	<14.70 <2.98	<14.10 <3.45	<13.5 <3.02	<12.20 <4.77	<14.60 <3.53	<14.90 <3.80
I-131 Cs-134 Cs-137	<14.70 <2.98 <4.08	<14.10 <3.45 <3.12	<13.5 <3.02 <3.61	<12.20 <4.77 <3.88	<14.60 <3.53 <3.36	<14.90 <3.80 <3.41
I-131 Cs-134 Cs-137 Zr-95	<14.70 <2.98 <4.08 <9.83	<14.10 <3.45 <3.12 <5.93	<13.5 <3.02 <3.61 <7.60	<12.20 <4.77 <3.88 <7.66	<14.60 <3.53 <3.36 <5.95	<14.90 <3.80 <3.41 <6.59
I-131 Cs-134 Cs-137 Zr-95 Nb-95	<14.70 <2.98 <4.08 <9.83 <5.57	<14.10 <3.45 <3.12 <5.93 <3.87	<13.5 <3.02 <3.61 <7.60 <5.62	<12.20 <4.77 <3.88 <7.66 <5.70	<14.60 <3.53 <3.36 <5.95 <4.56	<14.90 <3.80 <3.41 <6.59 <4.92
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	<14.70 <2.98 <4.08 <9.83 <5.57 <3.68	<14.10 <3.45 <3.12 <5.93 <3.87 <3.37	<13.5 <3.02 <3.61 <7.60 <5.62 <4.44	<12.20 <4.77 <3.88 <7.66 <5.70 <4.30	<14.60 <3.53 <3.36 <5.95 <4.56 <3.90	<14.90 <3.80 <3.41 <6.59 <4.92 <3.45
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	<14.70 <2.98 <4.08 <9.83 <5.57 <3.68 <4.12	<14.10 <3.45 <3.12 <5.93 <3.87 <3.37 <2.95	<13.5 <3.02 <3.61 <7.60 <5.62 <4.44 <3.92	<12.20 <4.77 <3.88 <7.66 <5.70 <4.30 <3.81	<14.60 <3.53 <3.36 <5.95 <4.56 <3.90 <3.57	<14.90 <3.80 <3.41 <6.59 <4.92 <3.45 <3.61
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54 Fe-59	<14.70 <2.98 <4.08 <9.83 <5.57 <3.68 <4.12 <13.80	<14.10 <3.45 <3.12 <5.93 <3.87 <3.37 <2.95 <9.59	<13.5 <3.02 <3.61 <7.60 <5.62 <4.44 <3.92 <13.4	<12.20 <4.77 <3.88 <7.66 <5.70 <4.30 <3.81 <10.90	<14.60 <3.53 <3.36 <5.95 <4.56 <3.90 <3.57 <10.90	<14.90 <3.80 <3.41 <6.59 <4.92 <3.45 <3.61 <10.5
I-131 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54 Fe-59 Zn-65	<14.70 <2.98 <4.08 <9.83 <5.57 <3.68 <4.12 <13.80 <9.76	<14.10 <3.45 <3.12 <5.93 <3.87 <3.37 <2.95 <9.59 <7.26	<13.5 <3.02 <3.61 <7.60 <5.62 <4.44 <3.92 <13.4 <11.0	<12.20 <4.77 <3.88 <7.66 <5.70 <4.30 <3.81 <10.90 <6.71	<14.60 <3.53 <3.36 <5.95 <4.56 <3.90 <3.57 <10.90 <8.06	<14.90 <3.80 <3.41 <6.59 <4.92 <3.45 <3.61 <10.5 <8.59

^{**} Optional Sample location

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-4 (continued)

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES – 2006 Results in Units of pCi/liter ± 1 Sigma

OSWEGO CITY WATER** (10)***

Service and the service and the service and	Francisco Marcinegos especialististi	ay and an area and again				
Nuclides	January	February	March	April	May	June
I-131	<14.90	<7.70	<10.20	<10.10	<10.30	<11.50
Cs-134	<3.91	<2.85	<2.19	<2.35	<2.99	<3.01
Cs-137	<3.75	<2.69	<3.11	<3.02	<2.61	<4.58
Zr-95	<7.69	<5.35	< 5.60	<6.10	<6.13	<7.76
Nb-95	<4.89	<3.44	<3.97	<4.29	<3.49	<5.40
Co-58	<4.61	<2.84	<3.06	<3.49	<2.87	<4.87
Mn-54	<3.89	<2.86	<2.60	<3.06	<2.35	<4.04
Fe-59	<12.10	<8.73	<8.99	<10.10	<9.70	<11.30
Zn-65	<8.73	<3.81	<5.50	<4.83	<6.41	<9.00
Co-60	<4.46	<2.88	<3.43	<3.25	<2.88	<4.32
K-40	179 ± 22	85 ± 13	148 ± 15	275 ± 20	166 ± 15	162 ± 22
Ba/La-140	<11.20	<7.22	<7.22	<7.72	<8.36	<11.20
Nuclides	July -	August	September	October	November	December
I-131	<11.70	<13.50	<13.9	<14.80	<14.80	<14.9
Cs-134	<3.68	<2.31	<4.19	<4.93	<3.83	<3.83
Cs-137						
1	<3.51	<2.77	< 3.75	<4.51	<3.82	<3.42
Zr-95	<3.51 <8.40	<2.77 <5.74	<3.75 <6.86	<4.51 <8.57	<3.82 <6.99	
						<3.42 .<7.99 <5.66
Zr-95	<8.40	<5.74	<6.86	<8.57	<6.99	. <7.99
Zr-95 Nb-95	<8.40 <5.03	<5.74 <3.96	<6.86 <5.28	<8.57 <5.78	<6.99 <3.59	<7.99 <5.66
Zr-95 Nb-95 Co-58	<8.40 <5.03 <4.67	<5.74 <3.96 <3.21	<6.86 <5.28 <4.43	<8.57 <5.78 <4.44	<6.99 <3.59 <4.30	<7.99 <5.66 <4.28
Zr-95 Nb-95 Co-58 Mn-54	<8.40 <5.03 <4.67 <3.60	<5.74 <3.96 <3.21 <2.75	<6.86 <5.28 <4.43 <4.69	<8.57 <5.78 <4.44 <4.81	<6.99 <3.59 <4.30 <3.79	<7.99 <5.66 <4.28 <4.14
Zr-95 Nb-95 Co-58 Mn-54 Fe-59	<8.40 <5.03 <4.67 <3.60 <15.70	<5.74 <3.96 <3.21 <2.75 <9.59	<6.86 <5.28 <4.43 <4.69 <13.7	<8.57 <5.78 <4.44 <4.81 <17.90	<6.99 <3.59 <4.30 <3.79 <11.80	<7.99 <5.66 <4.28 <4.14 <12.9
Zr-95 Nb-95 Co-58 Mn-54 Fe-59 Zn-65	<8.40 <5.03 <4.67 <3.60 <15.70 <9.94	<5.74 <3.96 <3.21 <2.75 <9.59 <7.25	<6.86 <5.28 <4.43 <4.69 <13.7 <5.90	<8.57 <5.78 <4.44 <4.81 <17.90 <12.80	<6.99 <3.59 <4.30 <3.79 <11.80 <5.22	<7.99 <5.66 <4.28 <4.14 <12.9 <9.88

^{**} Optional Sample location

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-5
ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - OFFSITE STATIONS – 2006

Week End Date	R-1 *	R-2 *	R-3 *	R-4.*	R-5 *	D-2 **	E **	F **	G**
01/10/06	0.012 ± 0.001	0.015 ± 0.001	0.009 ± 0.001	0.013 ± 0.001	0.014 ± 0.001	0.010 ± 0.001	0.012 ± 0.001	0.012 ± 0.001	0.013 ± 0.001
01/17/06	0.018 ± 0.001	0.016 ± 0.001	0.017 ± 0.001	0.017 ± 0.001	0.020 ± 0.002	0.015 ± 0.001	0.017 ± 0.001	0.018 ± 0.001	0.019 ± 0.001
01/24/06	0.015 ± 0.001	0.021 ± 0.002	0.016 ± 0.001	0.015 ± 0.001	0.019 ± 0.002	0.017 ± 0.001	0.017 ± 0.001	0.017 ± 0.001	0.018 ± 0.001
01/31/06	0.022 ± 0.002	0.018 ± 0.001	0.017 ± 0.001	0.018 ± 0.001	0.021 ± 0.002	0.017 ± 0.001	0.020 ± 0.001	0.020 ± 0.001	0.019 ± 0.001
02/07/06	0.014 ± 0.001	0.011 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.018 ± 0.001	0.013 ± 0.001	0.012 ± 0.001	$0.014 \hspace{0.2cm} \pm \hspace{0.2cm} 0.001$	0.014 ± 0.001
02/14/06	0.016 ± 0.001	0.015 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	0.014 ± 0.001	0.015 ± 0.001	0.016 ± 0.001	0.019 ± 0.001	0.016 ± 0.001
02/22/06	0.018 ± 0.001	0.021 ± 0.001	0.019 ± 0.001	0.020 ± 0.001	0.019 ± 0.001	0.018 ± 0.001	0.022 ± 0.001	0.022 ± 0.001	0.020 ± 0.001
02/28/06	0.021 ± 0.002	0.020 ± 0.002	0.021 ± 0.002	0.021 ± 0.002	0.020 ± 0.002	0.017 ± 0.002	0.020 ± 0.002	0.019 ± 0.002	0.020 ± 0.002
03/07/06	0.012 ± 0.001	0.012 ± 0.001	0.012 ± 0.001	0.010 ± 0.001	0.010 ± 0.001	0.012 ± 0.001	0.010 ± 0.001	0.012 ± 0.001	0.014 ± 0.001
03/14/06	0.013 ± 0.001	0.013 ± 0.001	0.012 ± 0.001	0.013 ± 0.001	0.017 ± 0.001	0.012 ± 0.001	0.013 ± 0.001	0.011 ± 0.001	0.015 ± 0.001
03/21/06	0.015 ± 0.001	0.017 ± 0.001	0.016 ± 0.001	0.015 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.016 ± 0.001	0.021 ± 0.001	0.014 ± 0.001
03/28/06	0.010 ± 0.001	0.009 ± 0.001	0.009 ± 0.001	0.011 ± 0.001	0.010 ± 0.001	0.010 ± 0.001	0.011 ± 0.001	0.011 ± 0.001	0.009 ± 0.001
04/04/06	0.020 ± 0.001	0.017 ± 0.001	0.022 ± 0.002	0.021 ± 0.002	0.024 ± 0.002	0.020 ± 0.002	0.018 ± 0.001	0.019 ± 0.001	0.022 ± 0.002
04/11/06	0.011 ± 0.001	0.016 ± 0.001	0.014 ± 0.001	0.012 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.013 ± 0.001
04/18/06	0.011 ± 0.001	0.014 ± 0.001	0.012 ± 0.001	0.014 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.014 ± 0.001	0.012 ± 0.001	0.013 ± 0.001
04/25/06	0.012 ± 0.001	0.009 ± 0.001	0.010 ± 0.001	0.010 ± 0.001	0.011 ± 0.001	0.011 ± 0.001	0.011 ± 0.001	0.010 ± 0.001	0.007 ± 0.001
05/02/06	0.013 ± 0.001	0.016 ± 0.001	0.011 ± 0.001	0.015 ± 0.001	0.013 ± 0.001	0.017 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.011 ± 0.001
05/09/06	0.012 ± 0.001	0.011 ± 0.001	0.011 ± 0.001	0.012 ± 0.001	0.011 ± 0.001	0.011 ± 0.001	0.010 ± 0.001	0.013 ± 0.001	0.012 ± 0.001
05/16/06	0.008 ± 0.001	0.010 ± 0.001	0.007 ± 0.001	0.008 ± 0.001	0.008 ± 0.001	0.004 ± 0.001	0.007 ± 0.001	0.009 ± 0.001	0.009 ± 0.001
05/23/06	0.007 ± 0.001	0.008 ± 0.001	0.005 ± 0.001	0.005 ± 0.001	0.008 ± 0.001	0.006 ± 0.001	0.006 ± 0.001	0.005 ± 0.001	0.007 ± 0.001
05/31/06	0.020 ± 0.001	0.021 ± 0.001	0.016 ± 0.001	0.013 ± 0.001	0.020 ± 0.001	0.021 ± 0.001	0.018 ± 0.001	0.020 ± 0.001	0.017 ± 0.001
06/06/06	0.015 ± 0.001	0.017 ± 0.002	0.014 ± 0.001	0.012 ± 0.001	0.016 ± 0.002	0.018 ± 0.002	0.019 ± 0.002	0.017 ± 0.002	0.019 ± 0.002
06/13/06	0.008 ± 0.001	0.007 ± 0.001	0.006 ± 0.001	0.008 ± 0.001	0.007 ± 0.001	0.007 ± 0.001	0.007 ± 0.001	0.005 ± 0.001	0.010 ± 0.001
06/20/06	0.018 ± 0.001	0.021 ± 0.002	0.018 ± 0.001	0.019 ± 0.001	0.018 ± 0.001	0.018 ± 0.001	0.019 ± 0.001	0.019 ± 0.001	0.017 ± 0.001
06/27/06	0.011 ± 0.001	0.012 ± 0.001	0.010 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	0.012 ± 0.001	0.012 ± 0.001
07/05/06	0.018 ± 0.001	0.018 ± 0.001	0.020 ± 0.001	0.020 ± 0.001	0.018 ± 0.001	0.018 ± 0.001	0.017 ± 0.001	0.014 ± 0.001	0.022 ± 0.001

^{*} Sample location required by ODCM

^{**} Optional sample location

TABLE 6-5 (continued)

ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - OFFSITE STATIONS - 2006

Week End Date	R-1 *	R-2 *	R-3 *	R-4 *	R-5 *	D-2 **	E **	F **	G**
07/11/06	0.013 ± 0.001	0.015 ± 0.001	0.013 ± 0.001	0.015 ± 0.001	0.013 ± 0.001	0.015 ± 0.001	0.014 ± 0.001	0.016 ± 0.001	0.014 ± 0.001
07/18/06	0.022 ± 0.002	0.021 ± 0.002	0.019 ± 0.002	0.021 ± 0.002	0.021 ± 0.002	0.017 ± 0.001	0.020 ± 0.001	0.021 ± 0.001	0.020 ± 0.002
07/25/06	0.018 ± 0.001	0.017 ± 0.001	0.013 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.020 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.015 ± 0.001
08/01/06	0.023 ± 0.002	0.022 ± 0.002	0.024 ± 0.002	0.023 ± 0.002	0.022 ± 0.002	0.020 ± 0.001	0.022 ± 0.002	0.024 ± 0.002	0.022 ± 0.002
08/08/06	0.018 ± 0.001	0.018 ± 0.001	0.016 ± 0.001	0.017 ± 0.001	0.015 ± 0.001	0.018 ± 0.001	0.014 ± 0.001	0.015 ± 0.001	0.016 ± 0.001
08/15/06	0.014 ± 0.001	0.016 ± 0.001	0.014 ± 0.001	0.015 ± 0.001	0.016 ± 0.001	0.012 ± 0.001	0.016 ± 0.001	0.014 ± 0.001	0.015 ± 0.001
08/22/06	0.015 ± 0.001	0.013 ± 0.001	0.012 ± 0.001	0.016 ± 0.001	0.014 ± 0.001	0.013 ± 0.001	0.017 ± 0.001	0.012 ± 0.001	0.014 ± 0.001
08/29/06	0.011 ± 0.001	0.010 ± 0.001	0.014 ± 0.001	0.013 ± 0.001	0.015 ± 0.001	0.012 ± 0.001	0.012 ± 0.001	0.013 ± 0.001	0.012 ± 0.001
09/06/06	0.009 ± 0.001	0.009 ± 0.001	0.011 ± 0.001	0.009 ± 0.001	0.010 ± 0.001	0.008 ± 0.001	0.010 ± 0.001	0.010 ± 0.001	0.008 ± 0.001
09/12/06	0.018 ± 0.002	0.015 ± 0.001	0.018 ± 0.002	0.017 ± 0.002	0.017 ± 0.001	0.014 ± 0.001	0.017 ± 0.001	0.018 ± 0.001	0.018 ± 0.002
09/19/06	0.014 ± 0.001	0.016 ± 0.001	0.013 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.015 ± 0.001	0.018 ± 0.001	0.015 ± 0.001	0.015 ± 0.001
09/26/06	0.015 ± 0.001	0.012 ± 0.001	0.013 ± 0.001	0.014 ± 0.001	0.013 ± 0.001	0.010 ± 0.001	0.014 ± 0.001	0.013 ± 0.001	0.014 ± 0.001
10/03/06	0.020 ± 0.002	0.018 ± 0.002	0.015 ± 0.002	0.017 ± 0.002	0.021 ± 0.002	0.017 ± 0.002	0.017 ± 0.002	0.018 ± 0.002	0.019 ± 0.002
10/10/06	0.022 ± 0.002	0.019 ± 0.002	0.017 ± 0.002	0.020 ± 0.002	0.011 ± 0.001	0.019 ± 0.002	0.019 ± 0.002	0.015 ± 0.002	0.018 ± 0.002
10/17/06	0.016 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.017 ± 0.001	0.013 ± 0.001	0.014 ± 0.001	0.016 ± 0.001	0.017 ± 0.001
10/24/06	0.013 ± 0.001	0.013 ± 0.001	0.014 ± 0.001	0.015 ± 0.001	0.011 ± 0.001	0.010 ± 0.001	0.012 ± 0.001	0.012 ± 0.001	0.014 ± 0.001
10/31/06	0.007 ± 0.001	0.009 ± 0.001	0.007 ± 0.001	0.005 ± 0.001	0.007 ± 0.001	0.006 ± 0.001	0.008 ± 0.001	0.008 ± 0.001	0.008 ± 0.001
11/07/06	0.022 ± 0.002	0.024 ± 0.002	0.022 ± 0.002	0.021 ± 0.001	0.023 ± 0.002	0.019 ± 0.001	0.022 ± 0.001	0.022 ± 0.002	0.021 ± 0.002
11/14/06	0.013 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	0.015 ± 0.001	0.011 ± 0.001	0.014 ± 0.001	0.012 ± 0.001	0.013 ± 0.001	0.015 ± 0.001
11/21/06	0.012 ± 0.001	0.013 ± 0.002	0.013 ± 0.002	0.009 ± 0.001	0.012 ± 0.001	0.013 ± 0.002	0.014 ± 0.002	0.012 ± 0.001	0.014 ± 0.002
11/28/06	0.025 ± 0.002	0.022 ± 0.002	0.022 ± 0.002	0.024 ± 0.002	0.028 ± 0.002	0.024 ± 0.002	0.024 ± 0.002	0.022 ± 0.001	0.022 ± 0.002
12/05/06	0.016 ± 0.001	0.019 ± 0.001	0.018 ± 0.001	0.018 ± 0.002	0.018 ± 0.001	0.016 ± 0.001	0.022 ± 0.002	0.019 ± 0.001	0.017 ± 0.001
12/12/06	0.026 ± 0.002	0.024 ± 0.002	0.020 ± 0.001	0.024 ± 0.002	0.024 ± 0.002	0.022 ± 0.001	0.023 ± 0.002	0.020 ± 0.001	0.023 ± 0.002
12/19/06	0.032 ± 0.002	0.035 ± 0.002	0.035 ± 0.002	0.031 ± 0.002	0.033 ± 0.002	0.030 ± 0.002	0.032 ± 0.002	0.028 ± 0.002	0.035 ± 0.002
12/26/06	0.014 ± 0.001	0.015 ± 0.001	0.016 ± 0.001	0.016 ± 0.001	0.017 ± 0.001	0.015 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.015 ± 0.001
01/02/07	0.013 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.016 ± 0.001	0.013 ± 0.001	0.015 ± 0.001	0.016 ± 0.001	0.013 ± 0.001	0.017 ± 0.001

Sample location required by ODCM Optional sample location

TABLE 6-6
ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - ONSITE STATIONS – 2006

Week End Date	D-1 **	G **	H **	1 **		K **
01/09/06	0.010 ± 0.001	0.012 ± 0.001	0.017 ± 0.002	0.012 ± 0.001	0.012 ± 0.001	0.012 ± 0.001
01/16/06	0.014 ± 0.001	0.018 ± 0.001	0.017 ± 0.001	0.017 ± 0.001	0.016 ± 0.001	0.017 ± 0.001
01/23/06	0.018 ± 0.001	0.017 ± 0.001	0.016 ± 0.001	0.017 ± 0.001	0.016 ± 0.001	0.018 ± 0.001
01/31/06	0.020 ± 0.001	0.016 ± 0.001	0.022 ± 0.001	0.021 ± 0.001	0.018 ± 0.001	0.019 ± 0.001
02/06/06	0.017 ± 0.001	0.016 ± 0.001	0.017 ± 0.002	0.017 ± 0.002	0.019 ± 0.002	0.019 ± 0.001
02/13/06	0.014 ± 0.001	0.014 ± 0.001	0.015 ± 0.001	0.014 ± 0.001	0.013 ± 0.001	0.015 ± 0.001
02/21/06	0.019 ± 0.001	0.020 ± 0.001	0.021 ± 0.001	0.021 ± 0.001	0.019 ± 0.001	0.022 ± 0.001
02/27/06	0.025 ± 0.002	$0.020 \qquad \pm \qquad 0.002$	0.025 ± 0.002	0.029 ± 0.002	0.024 ± 0.002	0.025 ± 0.002
03/06/06	0.011 ± 0.001	0.014 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	0.011 ± 0.001
03/13/06	0.012 ± 0.001	0.010 ± 0.001	0.011 ± 0.001	0.015 ± 0.001	0.013 ± 0.001	0.016 ± 0.001
03/20/06	0.013 ± 0.001	0.017 ± 0.001	0.016 ± 0.001	0.014 ± 0.001	0.017 ± 0.001	0.014 ± 0.001
03/27/06	0.008 ± 0.001	0.008 ± 0.001	0.008 ± 0.001	0.009 ± 0.001	0.009 ± 0.001	0.007 ± 0.001
04/03/06	0.021 ± 0.002	$0.022 \qquad \pm \qquad 0.002$	0.021 ± 0.002	0.021 ± 0.001	0.020 ± 0.001	$0.022 \qquad \pm \qquad 0.002$
04/10/06	0.012 ± 0.001	0.010 ± 0.001	0.013 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.014 ± 0.001
04/17/06	0.013 ± 0.001	0.016 ± 0.002	0.014 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	0.016 ± 0.002
04/24/06	0.011 ± 0.001	0.008 ± 0.001	0.010 ± 0.001	0.010 ± 0.001	0.011 ± 0.001	0.009 ± 0.001
05/01/06	0.011 ± 0.001	0.010 ± 0.001	0.012 ± 0.001	0.013 ± 0.001	0.014 ± 0.001	0.010 ± 0.001
05/08/06	0.015 ± 0.001	0.009 ± 0.001	0.015 ± 0.001	0.012 ± 0.001	0.015 ± 0.001	0.013 ± 0.001
05/15/06	0.010 ± 0.001	0.011 ± 0.001	0.009 ± 0.001	0.010 ± 0.001	0.009 ± 0.001	0.012 ± 0.001
05/22/06	0.008 ± 0.001	0.009 ± 0.001	0.005 ± 0.001	0.006 ± 0.001	0.005 ± 0.001	$0.006 \qquad \pm \qquad 0.001$
05/30/06	0.019 ± 0.001	0.019 ± 0.001	0.017 ± 0.001	0.016 ± 0.001	0.016 ± 0.001	0.019 ± 0.001
06/05/06	0.021 \pm 0.002	0.018 ± 0.002	0.021 ± 0.002	0.019 ± 0.002	0.019 ± 0.002	$0.019 \qquad \pm \qquad 0.002$
06/12/06	0.007 ± 0.001	0.011 ± 0.001	0.009 ± 0.001	0.008 ± 0.001	0.009 ± 0.001	0.011 ± 0.001
06/19/06	0.018 ± 0.001	0.018 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.016 ± 0.001
06/26/06	0.014 ± 0.001	0.012 ± 0.001	0.017 ± 0.001	0.017 ± 0.001	0.014 ± 0.001	0.014 ± 0.001

^{**} Optional sample location

TABLE 6-6 (continued) ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - ONSITE STATIONS - 2006

Week End Date	D-1 **	G **	H**	1**	J.**	K **
07/05/06	0.017 ± 0.001	0.016 ± 0.001	0.017 ± 0.001 0.010	5 ± 0.001	0.018 ± 0.001	0.015 ± 0.001
07/10/06	0.015 ± 0.002	0.015 ± 0.002	$0.014 \pm 0.002 0.010$	5 ± 0.002	0.014 ± 0.002	0.013 ± 0.001
07/17/06	0.021 \pm 0.002	0.017 ± 0.001	0.021 ± 0.002 0.019	9 ± 0.001	0.021 ± 0.001	0.021 ± 0.002
07/24/06	0.016 ± 0.001	0.021 \pm 0.002	0.021 ± 0.002 0.01	7 ± 0.001	0.018 ± 0.001	0.015 ± 0.001
07/31/06	0.022 ± 0.002	0.023 ± 0.002	0.021 \pm 0.002 0.026) ± 0.001	0.019 ± 0.001	0.020 \pm 0.001
08/07/06	0.018 ± 0.001	0.017 ± 0.001	0.018 ± 0.001 0.01:	5 ± 0.001	0.018 ± 0.001	0.019 ± 0.001
08/14/06	0.019 ± 0.001	0.015 ± 0.001	0.013 ± 0.001 0.01	7 ± 0.001	0.018 ± 0.001	0.016 ± 0.001
08/21/06	0.016 ± 0.001	0.015 ± 0.001	0.016 ± 0.001 0.016	5 ± 0.001	0.013 ± 0.001	0.015 ± 0.001
08/28/06	0.015 ± 0.001	0.012 ± 0.001	0.013 ± 0.001 0.013	3 ± 0.001	0.014 ± 0.001	0.015 ± 0.001
09/05/06	0.010 ± 0.001	0.008 ± 0.001	$0.009 \pm 0.001 0.008$	3 ± 0.001	0.008 ± 0.001	0.010 ± 0.001
09/11/06	0.017 ± 0.001	0.018 ± 0.002	$0.016 \pm 0.001 0.01$	7 ± 0.001	0.016 ± 0.001	0.017 ± 0.002
09/18/06	0.011 ± 0.001	0.012 ± 0.001	0.014 ± 0.001 0.01	1 ± 0.001	0.012 ± 0.001	0.011 ± 0.001
09/25/06	0.017 ± 0.001	0.015 ± 0.001	0.015 ± 0.001 0.014	4 ± 0.001	0.015 ± 0.001	No Sample Available
10/02/06	0.017 ± 0.002	0.019 ± 0.002	$0.019 \pm 0.002 = 0.019$	θ \pm 0.002	0.015 ± 0.002	0.019 ± 0.002
10/09/06	0.017 ± 0.002	0.022 ± 0.002	$0.018 \pm 0.002 0.020$	± 0.002	0.017 ± 0.002	0.016 ± 0.002
10/16/06	0.018 ± 0.001	0.013 ± 0.001	0.013 ± 0.001 0.014	± 0.001	0.015 ± 0.001	0.016 ± 0.001
10/23/06	0.017 ± 0.001	0.018 ± 0.001	0.013 ± 0.001 0.014	± 0.001	0.016 ± 0.001	0.015 ± 0.001
10/30/06	0.009 ± 0.001	0.007 ± 0.001	0.007 ± 0.001 0.008	3 ± 0.001	0.006 ± 0.001	$0.007 \qquad \pm \qquad 0.001$
11/06/06	0.017 ± 0.001	0.020 ± 0.001	0.021 ± 0.001 0.018	3 ± 0.001	0.019 ± 0.001	0.021 ± 0.002
11/13/06	0.019 ± 0.001	0.016 ± 0.001	0.019 ± 0.001 0.019	£ 0.001	0.018 ± 0.001	0.010 ± 0.001
11/20/06	0.011 ± 0.002	0.012 ± 0.002	$0.012 \pm 0.001 0.014$	4 ± 0.002	0.010 ± 0.001	0.011 ± 0.001
11/27/06	0.022 ± 0.001	0.027 ± 0.002	0.020 ± 0.001 0.022	2 ± 0.002	0.021 \pm 0.002	0.021 ± 0.001
12/04/06	0.023 ± 0.002	0.021 ± 0.002	$0.023 \pm 0.002 0.013$	3 ± 0.001	$0.022 \qquad \pm \qquad 0.002$	$0.022 \qquad \pm \qquad 0.002$
12/11/06	0.024 ± 0.002	0.023 ± 0.002	$0.024 \pm 0.002 0.022$	2 ± 0.002	0.020 \pm 0.001	$0.023 \qquad \pm \qquad 0.002$
12/18/06	0.035 ± 0.002	0.035 ± 0.002	$0.034 \pm 0.002 0.03$	1 ± 0.002	0.033 ± 0.002	0.029 ± 0.002
12/26/06	0.014 ± 0.001	0.016 ± 0.002	0.014 ± 0.001 0.013		0.014 ± 0.001	0.018 ± 0.001
01/02/07	0.017 ± 0.001	0.013 ± 0.001	0.013 ± 0.001 0.013	7 ± 0.001	0.014 ± 0.001	0.018 ± 0.001

^{**} Optional sample location

TABLE 6-7 CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006

Results in Units of 10E-3 pCi/ m³ ± 1 Sigma

R1 OFFSITE COMPOSITE*

Nuclides	January	February	March	April	May	June
Be-7	<25.60	77.6 ± 18.7	45.0 ± 14.6	109 ± 20.4	109 ± 23.3	115 ±17.9
Zn-65	<4.00	<3.93	<6.40	<8.85	<11.80	<12.20
Cs-134	<5.97	<3.59	<5.05	< 5.00	<6.64	<5.38
Cs-137	<5.12	<3.40	<2.74	<2.72	<4.56	<1.81
Zr-95	<12.00	<7.99	<6.36	<10.70	<11.00	<8.23
Nb-95	<4.87	<4.82	<4.96	<4.52	<2.21	<4.67
Co-58	<4.28	<4.22	<2.62	<4.05	<6.85	<5.65
Mn-54	<6.48	< 5.70	< 0.89	<4.41	<6.82	<3.90
Co-60	<8.08	<7.92	<1.35	<5.34	<2.49	<4.28
K-40	<10.10	<23.70	53.8 ± 19.0	<19.20	<92.10	<50.10
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Nuclides Be-7	July 126 ± 21.8	August 110 ± 19.2	September 121 ± 25.4	October 62.4 ± 15.3	November 78.4 ± 16.0	December 105 ± 18.1
Be-7	126 ± 21.8	110 ± 19.2	121 ± 25.4	62.4 ± 15.3	78.4 ± 16.0	105 ± 18.1
Be-7 Zn-65	126 ± 21.8 <11.10	110 ± 19.2 <11.40	121 ± 25.4 < 14.3	62.4 ± 15.3 <5.91	78.4 ± 16.0 < 10.9	$105 \pm 18.1 < 10.9$
Be-7 Zn-65 Cs-134	126 ± 21.8 <11.10 <6.81	110 ± 19.2 <11.40 <4.40	121 ± 25.4 <14.3 <1.83	62.4 ± 15.3 <5.91 <3.30	78.4 ± 16.0 <10.9 <4.85	105 ± 18.1 <10.9 <3.65
Be-7 Zn-65 Cs-134 Cs-137	126 ± 21.8 <11.10 <6.81 <4.89	110 ± 19.2 <11.40 <4.40 <2.39	121 ± 25.4 <14.3 <1.83 <4.43	62.4 ± 15.3 <5.91 <3.30 <2.51	78.4 ± 16.0 <10.9 <4.85 <2.67	105 ± 18.1 <10.9 <3.65 <3.46
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	126 ± 21.8 <11.10 <6.81 <4.89 <8.76	110 ± 19.2 <11.40 <4.40 <2.39 <5.75	121 ± 25.4 <14.3 <1.83 <4.43 <13.1	62.4 ± 15.3 <5.91 <3.30 <2.51 <1.64	78.4 ± 16.0 <10.9 <4.85 <2.67 <6.16	105 ± 18.1 <10.9 <3.65 <3.46 <4.79
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	126 ± 21.8 <11.10 <6.81 <4.89 <8.76 <4.65	110 ± 19.2 <11.40 <4.40 <2.39 <5.75 <5.76	121 ± 25.4 <14.3 <1.83 <4.43 <13.1 <10.2	62.4 ± 15.3 <5.91 <3.30 <2.51 <1.64 <1.13	78.4 ± 16.0 <10.9 <4.85 <2.67 <6.16 <4.81	105 ± 18.1 <10.9 <3.65 <3.46 <4.79 <5.77
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	126 ± 21.8 <11.10 <6.81 <4.89 <8.76 <4.65 <4.54	110 ± 19.2 <11.40 <4.40 <2.39 <5.75 <5.76 <1.23	121 ± 25.4 <14.3 <1.83 <4.43 <13.1 <10.2 <2.23	62.4 ± 15.3 <5.91 <3.30 <2.51 <1.64 <1.13 <2.48	78.4 ± 16.0 <10.9 <4.85 <2.67 <6.16 <4.81 <5.50	105 ± 18.1 <10.9 <3.65 <3.46 <4.79 <5.77 <2.79
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	126 ± 21.8 <11.10 <6.81 <4.89 <8.76 <4.65 <4.54 <3.96	110 ± 19.2 <11.40 <4.40 <2.39 <5.75 <5.76 <1.23 <3.06	121 ± 25.4 <14.3 <1.83 <4.43 <13.1 <10.2 <2.23 <5.62	62.4 ± 15.3 <5.91 <3.30 <2.51 <1.64 <1.13 <2.48 <3.07	78.4 ± 16.0 <10.9 <4.85 <2.67 <6.16 <4.81 <5.50 <2.22	105 ± 18.1 <10.9 <3.65 <3.46 <4.79 <5.77 <2.79 <4.17

^{*} Sample location required by ODCM

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ m³ ± 1 Sigma

R2 OFFSITE COMPOSITE*

Nuclides	January	February	March	April	May	June
Be-7	78.8 ± 15.6	78.6 ± 17.7	86.5 ± 17.5	69.3 ± 15.3	133 ± 22.9	120 ±22.0
Zn-65	<6.77	<14.30	<8.60	<6.46	< 3.49	<14.10
Cs-134	<4.82	<3.87	<4.52	<3.76	<4.27	<6.36
Cs-137	<3.27	<3.97	<2.63	<2.74	< 4.02	<4.38
Zr-95	<8.02	<5.17	<7.55	<6.56	<9.64	<2.96
Nb-95	<3.04	<3.46	<5.06	<1.23	<5.22	<7.86
Co-58	<4.29	<4.41	<3.87	<3.92	<1.53	<5.00
Mn-54	<3.59	<4.08	<3.77	<3.35	<4.26	<6.50
Co-60	<4.68	<5.32	<3.71	<3.54	<1.99	<6.82
K-40	<64.30	<15.10	<37.60	<13.80	<20.20	<24.50
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
11		······································	l			
Nuclides	July	August	September	October	November	December
Nuclides Be-7	July 134 ± 21.9	93.3 ± 14.8	September 55.7 ± 13.8	October 73.0 ± 13.7	November 72.2 ± 16.3	December 43.6 ± 14.1
70.00		,				
Be-7	134 ± 21.9	93.3 ± 14.8	55.7 ± 13.8	73.0 ± 13.7	72.2 ± 16.3	43.6 ± 14.1
Be-7 Zn-65	134 ± 21.9 <3.21	93.3 ± 14.8 <1.98	55.7 ± 13.8 <8.38	73.0 ± 13.7 <7.69	72.2 ± 16.3 <11.1	43.6 ± 14.1 <8.65
Be-7 Zn-65 Cs-134	134 ± 21.9 <3.21 <7.28	93.3 ± 14.8 <1.98 <3.13	55.7 ± 13.8 <8.38 <4.39	73.0 ± 13.7 <7.69 <3.41	72.2 ± 16.3 <11.1 <5.36	43.6 ± 14.1 <8.65 <4.31
Be-7 Zn-65 Cs-134 Cs-137	134 ± 21.9 <3.21 <7.28 <4.34	93.3 ± 14.8 <1.98 <3.13 <2.97	55.7 ± 13.8 <8.38 <4.39 <3.58	73.0 ± 13.7 < 7.69 < 3.41 < 2.27	72.2 ± 16.3 <11.1 <5.36 <3.32	43.6 ± 14.1 <8.65 <4.31 <3.65
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	134 ± 21.9 <3.21 <7.28 <4.34 <10.10	93.3 ± 14.8 <1.98 <3.13 <2.97 <4.29	55.7 ± 13.8 <8.38 <4.39 <3.58 <9.70	73.0 ± 13.7 < 7.69 < 3.41 < 2.27 < 5.42	72.2 ± 16.3 <11.1 <5.36 <3.32 <8.02	43.6 ± 14.1 <8.65 <4.31 <3.65 <7.35
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	134 ± 21.9 <3.21 <7.28 <4.34 <10.10 <4.61	93.3 ± 14.8 <1.98 <3.13 <2.97 <4.29 <4.85	55.7 ± 13.8 <8.38 <4.39 <3.58 <9.70 <4.42	73.0 ± 13.7 < 7.69 < 3.41 < 2.27 < 5.42 < 3.72	72.2 ± 16.3 <11.1 <5.36 <3.32 <8.02 <1.11	43.6 ± 14.1 <8.65 <4.31 <3.65 <7.35 <4.22
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	134 ± 21.9 <3.21 <7.28 <4.34 <10.10 <4.61 <5.20	93.3 ± 14.8 <1.98 <3.13 <2.97 <4.29 <4.85 <3.25	55.7 ± 13.8 <8.38 <4.39 <3.58 <9.70 <4.42 <4.32	73.0 ± 13.7 < 7.69 < 3.41 < 2.27 < 5.42 < 3.72 < 3.22	72.2 ± 16.3 <11.1 <5.36 <3.32 <8.02 <1.11 <4.66	43.6 ± 14.1 <8.65 <4.31 <3.65 <7.35 <4.22 <4.79
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	134 ± 21.9 <3.21 <7.28 <4.34 <10.10 <4.61 <5.20 <1.21	93.3 ± 14.8 <1.98 <3.13 <2.97 <4.29 <4.85 <3.25 <2.79	55.7 ± 13.8 <8.38 <4.39 <3.58 <9.70 <4.42 <4.32 <4.35	73.0 ± 13.7 <7.69 <3.41 <2.27 <5.42 <3.72 <3.22 <3.06	72.2 ± 16.3 <11.1 <5.36 <3.32 <8.02 <1.11 <4.66 <4.66	43.6 ± 14.1 <8.65 <4.31 <3.65 <7.35 <4.22 <4.79 <3.26

^{*} Sample location required by ODCM

[†] Plant related radionuclides

TABLE 6-7 (continued)

CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006

Results in Units of 10e-3 pCi/ m³ ± 1 Sigma

R3 OFFSITE COMPOSITE*

Nuclides	January	February	March	April	May	June June
Be-7	64.1 ± 13.9	115 ± 21.8	51.9 ± 16.4	86.3 ± 16.2	114 ± 20.1	69.7 ± 16.5
Zn-65	<11.00	<3.68	<9.77	<6.11	<3.30	<7.50
Cs-134	<5.16	< 5.69	<5.57	<3.81	<5.01	<4.39
Cs-137	<4.13	<5.53	< 2.53	<2.30	<4.95	<3.21
Zr-95	<8.10	<11.80	<8.77	<7.54	<10.60	<9.62
Nb-95	< 5.90	<6.12	<4.83	<4.65	<4.94	<6.42
Co-58	<2.90	< 5.70	<4.69	<0.99	<6.06	< 5.02
Mn-54	<3.94	< 6.50	<4.48	<3.36	<4.65	<2.69
Co-60	<6.68	<2.14	< 5.06	<4.60	< 5.36	<4.15
K-40	135 ± 26.9	<21.80	<40.60	113 ± 25.2	<19.10	<16.20
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Nuclides Be-7	July 107 ± 19.5	August 89.4 ± 13.2	September 81.1 ± 14.9	October 45.9 ± 13.2	November <37.0	December 85.2 ± 19.2
HENRY OF THE CONTROL				cary4xees	regonymentymussa si sa e-e-e-e-sussa e-i-e-e-e-e-us	
Be-7	107 ± 19.5	89.4 ± 13.2	81.1 ± 14.9	45.9 ± 13.2	<37.0	85.2 ± 19.2
Be-7 Zn-65	107 ± 19.5 <12.60	89.4 ± 13.2 <1.86	81.1 ± 14.9 <8.83	45.9 ± 13.2 <7.40	<37.0 <13.8	85.2 ± 19.2 <9.09
Be-7 Zn-65 Cs-134	107 ± 19.5 <12.60 <4.63	89.4 ± 13.2 <1.86 <3.45	81.1 ± 14.9 <8.83 <6.13	45.9 ± 13.2 <7.40 <4.00	<37.0 <13.8 <5.57	85.2 ± 19.2 <9.09 <6.86
Be-7 Zn-65 Cs-134 Cs-137	107 ± 19.5 <12.60 <4.63 <0.92	89.4 ± 13.2 <1.86 <3.45 <2.50	81.1 ± 14.9 <8.83 <6.13 <0.82	45.9 ± 13.2 <7.40 <4.00 <2.20	<37.0 <13.8 <5.57 <4.28	85.2 ± 19.2 <9.09 <6.86 <3.56
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	107 ± 19.5 <12.60 <4.63 <0.92 <10.20	89.4 ± 13.2 <1.86 <3.45 <2.50 <5.95	81.1 ± 14.9 <8.83 <6.13 <0.82 <6.96	45.9 ± 13.2 <7.40 <4.00 <2.20 <5.59	<37.0 <13.8 <5.57 <4.28 <2.91	85.2 ± 19.2 <9.09 <6.86 <3.56 <6.53
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	107 ± 19.5 <12.60 <4.63 <0.92 <10.20 <4.14	89.4 ± 13.2 <1.86 <3.45 <2.50 <5.95 <3.50	81.1 ± 14.9 <8.83 <6.13 <0.82 <6.96 <5.45	45.9 ± 13.2 <7.40 <4.00 <2.20 <5.59 <5.43	<37.0 <13.8 <5.57 <4.28 <2.91 <9.45	85.2 ± 19.2 <9.09 <6.86 <3.56 <6.53 <4.85
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	107 ± 19.5 <12.60 <4.63 <0.92 <10.20 <4.14 <1.24	89.4 ± 13.2 <1.86 <3.45 <2.50 <5.95 <3.50 <3.71	81.1 ± 14.9 <8.83 <6.13 <0.82 <6.96 <5.45 <2.87	45.9 ± 13.2 <7.40 <4.00 <2.20 <5.59 <5.43 <3.77	<37.0 <13.8 <5.57 <4.28 <2.91 <9.45 <4.90	85.2 ± 19.2 <9.09 <6.86 <3.56 <6.53 <4.85 <4.97
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	107 ± 19.5 <12.60 <4.63 <0.92 <10.20 <4.14 <1.24 <3.51	89.4 ± 13.2 <1.86 <3.45 <2.50 <5.95 <3.50 <3.71 <2.27	81.1 ± 14.9 <8.83 <6.13 <0.82 <6.96 <5.45 <2.87 <2.51	45.9 ± 13.2 <7.40 <4.00 <2.20 <5.59 <5.43 <3.77 <3.59	<37.0 <13.8 <5.57 <4.28 <2.91 <9.45 <4.90 <4.30	85.2 ± 19.2 <9.09 <6.86 <3.56 <6.53 <4.85 <4.97 <3.72

^{*} Sample location required by ODCM

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $\rm m^3\pm~1~Sigma$

R4 OFFSITE COMPOSITE*

Nuclides	January	February	March	April	May	June
Be-7	57.1 ± 13.4	98.5 ± 16.1	<9.62	81.6 ± 18.2	76.5 ± 20.1	111 ± 18.6
Zn-65	<10.80	<10.60	<3.72	<6.53	<8.32	<6.96
Cs-134	<4.11	<3.61	<1.97	<4.56	<3.03	<4.65
Cs-137	<3.49	<3.42	< 0.83	<2.76	<3.59	<3.14
Zr-95	<6.91	<6.82	<1.65	<7.16	<6.74	<5.21
Nb-95	<6.56	<1.25	<1.56	< 2.76	< 6.85	<4.41
Co-58	<4.61	<2.82	<1.43	<4.72	< 5.68	<1.05
Mn-54	<2.51	<4.66	<1.67	<2.08	<4.35	<3.01
Co-60	<4.87	<4.77	<1.24	<4.77	<4.95	<3.81
K-40	<73.10	< 50.80	<16.90	<30.70	<17.6	<14.20
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Nuclides Be-7	July 146 ± 23.2	August 93.1 ± 15.3	September 83.9 ± 17.1	October 62.6 ± 16.0	November 22.7 ± 15.7	December 93.0 ± 20.8
The state of the s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			and a supplication of the	proprietation (1) of the Control of the Control	Complete At a time; 11 m injuries, 11 m in Section Control Section
Be-7	146 ± 23.2	93.1 ± 15.3	83.9 ± 17.1	62.6 ± 16.0	22.7 ± 15.7	93.0 ± 20.8
Be-7 Zn-65	146 ± 23.2 <10.90	93.1 ± 15.3 <6.52	83.9 ± 17.1 <8.67	62.6 ± 16.0 <7.87	22.7 ± 15.7 <2.96	93.0 ± 20.8 <16.00
Be-7 Zn-65 Cs-134	146 ± 23.2 <10.90 <6.07	93.1 ± 15.3 <6.52 <3.17	83.9 ± 17.1 <8.67 <3.88	62.6 ± 16.0 <7.87 <5.56	22.7 ± 15.7 <2.96 <3.64	93.0 ± 20.8 <16.00 <1.40
Be-7 Zn-65 Cs-134 Cs-137	146 ± 23.2 <10.90 <6.07 <3.85	93.1 ± 15.3 <6.52 <3.17 <2.79	83.9 ± 17.1 <8.67 <3.88 <3.43	62.6 ± 16.0 <7.87 <5.56 <3.25	22.7 ± 15.7 <2.96 <3.64 <3.44	93.0 ± 20.8 <16.00 <1.40 <3.40
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	146 ± 23.2 <10.90 <6.07 <3.85 <9.56	93.1 ± 15.3 <6.52 <3.17 <2.79 <7.13	83.9 ± 17.1 < 8.67 < 3.88 < 3.43 < 8.53	62.6 ± 16.0 <7.87 <5.56 <3.25 <8.60	22.7 ± 15.7 <2.96 <3.64 <3.44 <7.98	93.0 ± 20.8 <16.00 <1.40 <3.40 <7.89
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	146 ± 23.2 <10.90 <6.07 <3.85 <9.56 <1.51	93.1 ± 15.3 <6.52 <3.17 <2.79 <7.13 <2.70	83.9 ± 17.1 <8.67 <3.88 <3.43 <8.53 <5.14	62.6 ± 16.0 <7.87 <5.56 <3.25 <8.60 <4.01	22.7 ± 15.7 <2.96 <3.64 <3.44 <7.98 <7.60	93.0 ± 20.8 <16.00 <1.40 <3.40 <7.89 <1.93
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	146 ± 23.2 <10.90 <6.07 <3.85 <9.56 <1.51 <4.90	93.1 ± 15.3 <6.52 <3.17 <2.79 <7.13 <2.70 <0.80	83.9 ± 17.1 <8.67 <3.88 <3.43 <8.53 <5.14 <3.39	62.6 ± 16.0 <7.87 <5.56 <3.25 <8.60 <4.01 <5.23	22.7 ± 15.7 <2.96 <3.64 <3.44 <7.98 <7.60 <4.13	93.0 ± 20.8 <16.00 <1.40 <3.40 <7.89 <1.93 <7.23
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	146 ± 23.2 <10.90 <6.07 <3.85 <9.56 <1.51 <4.90 <4.28	93.1 ± 15.3 <6.52 <3.17 <2.79 <7.13 <2.70 <0.80 <2.22	83.9 ± 17.1 <8.67 <3.88 <3.43 <8.53 <5.14 <3.39 <2.95	62.6 ± 16.0 <7.87 <5.56 <3.25 <8.60 <4.01 <5.23 <3.77	22.7 ± 15.7 <2.96 <3.64 <3.44 <7.98 <7.60 <4.13 <4.65	93.0 ± 20.8 <16.00 <1.40 <3.40 <7.89 <1.93 <7.23 <4.31

^{*} Sample location required by ODCM

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $m^3 \pm 1$ Sigma

R5 OFFSITE COMPOSITE*

Nuclides	January	February	March	April	May	June
Be-7	53.0 ± 21.1	115 ± 20.3	67.0 ± 18.7	83.4 ± 19.1	109 ± 19.2	120 ± 18.5
Zn-65	<13.70	<11.70	<9.71	<8.85	<8.82	<12.90
Cs-134	<4.78	<4.73	< 6.90	< 5.86	<4.98	<4.54
Cs-137	<5.51	<3.55	<3.79	<3.97	<3.39	<4.14
Zr-95	<11.40	<8.35	<10.30	<6.56	<6.80	<9.44
Nb-95	<5.22	< 5.04	<4.71	<5.70	<4.68	<5.77
Co-58	<6.16	<4.41	<6.43	<4.05	<4.46	<4.53
Mn-54	<1.48	<1.50	<3.81	<4.41	<6.10	<2.72
Co-60	<2.33	<6.56	<7.49	<1.87	<19.40	<4.33
K-40	<67.60	<69.90	<60.20	<54.60	<61.10	80.4 ± 27.7
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
						1
Nuclides	July	August	September	October	November	December
Nuclides Be-7	July 133 ± 26.3	August 112 ± 15.8	September 70.4 ± 16.8	October 58.1 ± 13.0	November 68.2 ± 16.1	Transport and the street of th
Enthology and Egypton Calebra Chanker Cycles on the Control of		1.00 A 1.00 C 1.		NAME OF TAXABLE PARTY OF THE PA	The street of and an an arrange of the street of the stree	December
Be-7	133 ± 26.3	112 ± 15.8	70.4 ± 16.8	58.1 ± 13.0	68.2 ± 16.1	December 106 ± 17.0
Be-7 Zn-65	133 ± 26.3 < 18.80	112 ± 15.8 <7.32	70.4 ± 16.8 < 9.37	58.1 ± 13.0 <8.89	68.2 ± 16.1 <8.93	December 106 ± 17.0 <10.6
Be-7 Zn-65 Cs-134	133 ± 26.3 <18.80 <5.64	112 ± 15.8 <7.32 <2.40	70.4 ± 16.8 <9.37 <4.16	58.1 ± 13.0 <8.89 <3.54	68.2 ± 16.1 <8.93 <0.94	December 106 ± 17.0 <10.6 <5.31
Be-7 Zn-65 Cs-134 Cs-137	133 ± 26.3 <18.80 <5.64 <7.09	112 ± 15.8 <7.32 <2.40 <2.42	70.4 ± 16.8 < 9.37 < 4.16 < 4.24	58.1 ± 13.0 <8.89 <3.54 <2.99	68.2 ± 16.1 <8.93 <0.94 <0.83	December 106 ± 17.0 <10.6 <5.31 <3.10
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	133 ± 26.3 <18.80 <5.64 <7.09 <3.43	112 ± 15.8 <7.32 <2.40 <2.42 <4.75	70.4 ± 16.8 < 9.37 < 4.16 < 4.24 < 6.93	58.1 ± 13.0 <8.89 <3.54 <2.99 <8.79	68.2 ± 16.1 <8.93 <0.94 <0.83 <5.53	$\begin{array}{c c} \textbf{December} \\ 106 \pm 17.0 \\ < 10.6 \\ < 5.31 \\ < 3.10 \\ < 5.63 \\ \end{array}$
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	133 ± 26.3 <18.80 <5.64 <7.09 <3.43 <7.93	112 ± 15.8 <7.32 <2.40 <2.42 <4.75 <4.59	70.4 ± 16.8 < 9.37 < 4.16 < 4.24 < 6.93 < 3.70	58.1 ± 13.0 <8.89 <3.54 <2.99 <8.79 <5.53	68.2 ± 16.1 <8.93 <0.94 <0.83 <5.53 <7.21	$\begin{array}{c c} \textbf{December} \\ \hline 106 \pm 17.0 \\ < 10.6 \\ < 5.31 \\ < 3.10 \\ < 5.63 \\ < 4.76 \\ \end{array}$
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	133 ± 26.3 <18.80 <5.64 <7.09 <3.43 <7.93 <9.55	112 ± 15.8 <7.32 <2.40 <2.42 <4.75 <4.59 <2.76	70.4 ± 16.8 < 9.37 < 4.16 < 4.24 < 6.93 < 3.70 < 3.20	58.1 ± 13.0 <8.89 <3.54 <2.99 <8.79 <5.53 <3.19	68.2 ± 16.1 <8.93 <0.94 <0.83 <5.53 <7.21 <4.68	December 106 ± 17.0 <10.6 <5.31 <3.10 <5.63 <4.76 <4.77
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	133 ± 26.3 <18.80 <5.64 <7.09 <3.43 <7.93 <9.55 <6.41	112 ± 15.8 <7.32 <2.40 <2.42 <4.75 <4.59 <2.76 <3.07	70.4 ± 16.8 < 9.37 < 4.16 < 4.24 < 6.93 < 3.70 < 3.20 < 2.79	58.1 ± 13.0 <8.89 <3.54 <2.99 <8.79 <5.53 <3.19 <4.11	68.2 ± 16.1 <8.93 <0.94 <0.83 <5.53 <7.21 <4.68 <3.18	$\begin{array}{c c} \textbf{December} \\ \hline 106 \pm 17.0 \\ < 10.6 \\ < 5.31 \\ < 3.10 \\ < 5.63 \\ < 4.76 \\ < 4.77 \\ < 3.26 \\ \end{array}$

^{*} Sample location required by ODCM

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ m³ ± 1 Sigma

D2 OFFSITE COMPOSITE**

Nuclides	January	February	March	April	May	June
Be-7	58.9 ± 15.0	108 ± 17.7	61.0 ± 14.0	101 ± 17.0	101 ± 19.3	112 ± 19.1
Zn-65	<6.88	<10.80	<11.20	<8.84	<7.95	<9.87
Cs-134	<3.18	<4.78	<5.81	<3.85	<5.43	<6.09
Cs-137	<3.66	<4.02	<3.81	<2.98	<2.38	<3.46
Zr-95	<6.66	<9.31	<1.86	<1.68	<6.01	<8.32
Nb-95	<6.17	<3.26	<4.55	<3.32	<5.21	<5.55
Co-58	<3.55	<4.63	<4.06	<4.08	<3.49	<4.49
Mn-54	<3.12	<4.29	<3.56	<2.16	<4.87	<2.21
Co-60	<4.78	< 5.00	<5.49	<3.31	<1.67	<3.41
K-40	<14.10	<41.60	<40.00	<35.10	<16.90	<50.70
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
		, A 11 Page 19, On An equal to		A to the state of		No. 1 The Control of
Be-7	111 ± 21.6	103 ± 15.1	53.4 ± 13.9	73.1 ± 14.3	67.8 ± 15.6	80.2 ± 14.1
Be-7 Zn-65		7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			y at the Kindski (1), in the ESE of 1 1 1 1 1 1 1	N.S
	111 ± 21.6	103 ± 15.1	53.4 ± 13.9	73.1 ± 14.3	67.8 ± 15.6	80.2 ± 14.1
Zn-65	111 ± 21.6 <13.00	103 ± 15.1 <6.41	53.4 ± 13.9 <11.3	73.1 ± 14.3 <5.64	67.8 ± 15.6 <7.72	80.2 ± 14.1 <2.41
Zn-65 Cs-134	111 ± 21.6 <13.00 <4.64	103 ± 15.1 <6.41 <5.19	53.4 ± 13.9 <11.3 <4.91	73.1 ± 14.3 <5.64 <4.15	67.8 ± 15.6 <7.72 <4.29	80.2 ± 14.1 <2.41 <4.13
Zn-65 Cs-134 Cs-137	111 ± 21.6 <13.00 <4.64 <3.78	103 ± 15.1 <6.41 <5.19 <2.49	53.4 ± 13.9 <11.3 <4.91 <3.10	73.1 ± 14.3 <5.64 <4.15 <3.40	67.8 ± 15.6 <7.72 <4.29 <3.10	80.2 ± 14.1 <2.41 <4.13 <2.22
Zn-65 Cs-134 Cs-137 Zr-95	111 ± 21.6 <13.00 <4.64 <3.78 <6.93	103 ± 15.1 <6.41 <5.19 <2.49 <5.76	53.4 ± 13.9 <11.3 <4.91 <3.10 <9.93	73.1 ± 14.3 <5.64 <4.15 <3.40 <6.67	67.8 ± 15.6 <7.72 <4.29 <3.10 <7.15	80.2 ± 14.1 <2.41 <4.13 <2.22 <7.54
Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	111 ± 21.6 <13.00 <4.64 <3.78 <6.93 <4.67	103 ± 15.1 <6.41 <5.19 <2.49 <5.76 <3.61	53.4 ± 13.9 <11.3 <4.91 <3.10 <9.93 <5.06	73.1 ± 14.3 <5.64 <4.15 <3.40 <6.67 <4.59	67.8 ± 15.6 <7.72 <4.29 <3.10 <7.15 <6.31	80.2 ± 14.1 <2.41 <4.13 <2.22 <7.54 <3.40
Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	111 ± 21.6 <13.00 <4.64 <3.78 <6.93 <4.67 <6.40	103 ± 15.1 <6.41 <5.19 <2.49 <5.76 <3.61 <4.04	53.4 ± 13.9 <11.3 <4.91 <3.10 <9.93 <5.06 <4.36	73.1 ± 14.3 <5.64 <4.15 <3.40 <6.67 <4.59 <2.96	67.8 ± 15.6 <7.72 <4.29 <3.10 <7.15 <6.31 <4.65	80.2 ± 14.1 <2.41 <4.13 <2.22 <7.54 <3.40 <4.71
Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	111 ± 21.6 <13.00 <4.64 <3.78 <6.93 <4.67 <6.40 <3.98	103 ± 15.1 <6.41 <5.19 <2.49 <5.76 <3.61 <4.04 <3.46	53.4 ± 13.9 <11.3 <4.91 <3.10 <9.93 <5.06 <4.36 <4.15	73.1 ± 14.3 <5.64 <4.15 <3.40 <6.67 <4.59 <2.96 <3.81	67.8 ± 15.6 <7.72 <4.29 <3.10 <7.15 <6.31 <4.65 <3.89	80.2 ± 14.1 <2.41 <4.13 <2.22 <7.54 <3.40 <4.71 <2.36

Optional sample location Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $m^3 \pm 1$ Sigma

E OFFSITE COMPOSITE**

Nuclides	January	February	March	April	May	Jüne
Be-7	<40.40	105 ± 17.6	74.9 ± 15.7	91.6 ± 17.1	118 ± 21.2	98.0 ± 18.1
Zn-65	<4.33	<2.50	< 6.82	<10.20	<7.79	<6.74
Cs-134	<4.98	<3.82	< 5.05	<3.50	<6.24	<5.21
Cs-137	<5.53	<4.14	<4.47	<2.72	<3.21	<2.88
Zr-95	<11.10	<4.77	<7.88	<7.73	< 8.84	<6.65
Nb-95	<5.26	< 5.48	< 5.91	<7.02	<6.78	<4.43
Co-58	<6.71	< 5.20	< 5.62	<5.28	<1.29	<4.51
Mn-54	<4.29	<3.23	<3.95	<2.35	<5.15	<3.03
Co-60	<2.54	<1.44	<5.21	<3.72	<4.39	<3.73
K-40	<73.7	<14.6	<39.85	<37.90	<46.00	<14.60
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Nuclides Be-7	July 123 ± 20.9	August 82.0 ± 17.8	September 67.2 ± 21.4	October 52.3 ± 12.7	November 63.1 ± 15.8	December 90.3 ± 17.5
minute. Programming the feet of the Action (Action (Action)	1 3. 3. 8			military management of the property of the pro	transposition of the state of t	Committee of the state of the S
Be-7	123 ± 20.9	82.0 ± 17.8	67.2 ± 21.4	52.3 ± 12.7	63.1 ± 15.8	90.3 ± 17.5
Be-7 Zn-65	123 ± 20.9 <10.20	82.0 ± 17.8 <7.38	67.2 ± 21.4 <14.10	52.3 ± 12.7 <6.48	63.1 ± 15.8 <6.27	90.3 ± 17.5 <10.70
Be-7 Zn-65 Cs-134	123 ± 20.9 <10.20 <4.54	82.0 ± 17.8 <7.38 <3.74	67.2 ± 21.4 <14.10 <5.67	52.3 ± 12.7 <6.48 <4.03	63.1 ± 15.8 <6.27 <6.36	90.3 ± 17.5 <10.70 <4.61
Be-7 Zn-65 Cs-134 Cs-137	123 ± 20.9 <10.20 <4.54 <4.92	82.0 ± 17.8 <7.38 <3.74 <4.34	67.2 ± 21.4 <14.10 <5.67 <4.35	52.3 ± 12.7 <6.48 <4.03 <2.57	63.1 ± 15.8 <6.27 <6.36 <0.73	90.3 ± 17.5 <10.70 <4.61 <4.67
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	123 ± 20.9 <10.20 <4.54 <4.92 <9.37	82.0 ± 17.8 <7.38 <3.74 <4.34 <5.45	67.2 ± 21.4 <14.10 <5.67 <4.35 <2.97	52.3 ± 12.7 <6.48 <4.03 <2.57 <6.88	63.1 ± 15.8 <6.27 <6.36 <0.73 <7.45	90.3 ± 17.5 <10.70 <4.61 <4.67 <5.16
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	123 ± 20.9 <10.20 <4.54 <4.92 <9.37 <6.31	82.0 ± 17.8 <7.38 <3.74 <4.34 <5.45 <5.45	67.2 ± 21.4 <14.10 <5.67 <4.35 <2.97 <5.45	52.3 ± 12.7 <6.48 <4.03 <2.57 <6.88 <2.86	63.1 ± 15.8 <6.27 <6.36 <0.73 <7.45 <5.86	90.3 ± 17.5 <10.70 <4.61 <4.67 <5.16 <5.68
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	123 ± 20.9 <10.20 <4.54 <4.92 <9.37 <6.31 <3.32	82.0 ± 17.8 <7.38 <3.74 <4.34 <5.45 <5.45 <3.37	67.2 ± 21.4 <14.10 <5.67 <4.35 <2.97 <5.45 <5.01	52.3 ± 12.7 <6.48 <4.03 <2.57 <6.88 <2.86 <3.82	63.1 ± 15.8 <6.27 <6.36 <0.73 <7.45 <5.86 <5.41	90.3 ± 17.5 <10.70 <4.61 <4.67 <5.16 <5.68 <4.96
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	123 ± 20.9 <10.20 <4.54 <4.92 <9.37 <6.31 <3.32 <4.68	82.0 ± 17.8 <7.38 <3.74 <4.34 <5.45 <5.45 <3.37 <1.00	67.2 ± 21.4 <14.10 <5.67 <4.35 <2.97 <5.45 <5.01 <4.37	52.3 ± 12.7 <6.48 <4.03 <2.57 <6.88 <2.86 <3.82 <1.85	63.1 ± 15.8 <6.27 <6.36 <0.73 <7.45 <5.86 <5.41 <3.39	90.3 ± 17.5 <10.70 <4.61 <4.67 <5.16 <5.68 <4.96 <2.98

^{**} Optional sample location

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ m³ ± 1 Sigma

F OFFSITE COMPOSITE**

Nuclides	January	February	March	April April	May	June
Be-7	67.4 ± 13.3	72.0 ± 14.5	50.1 ± 13.7	93.6 ± 15.4	101 ± 23.7	107 ± 17.1
Zn-65	<10.40	<8.87	<8.84	<11.30	<4.72	<8.31
Cs-134	<3.91	< 2.09	<3.41	<4.39	<7.24	<3.71
Cs-137	< 0.71	<1.96	<2.70	<2.55	<1.45	<2.22
Zr-95	<6.15	<7.16	<4.52	<5.43	<13.90	<8.47
Nb-95	<4.10	<4.40	<5.89	<4.55	<2.41	<3.42
Co-58	<3.10	<2.37	<0.91	<4.37	<5.88	<1.04
Mn-54	<3.72	<3.56	<2.59	<2.43	<5.03	<3.43
Co-60	<3.45	<4.81	<4.14	<3.40	<7.74	<3.97
K-40	<36.30	<12.30	<41.90	68.0 ± 18.4	<27.70	<38.70
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	Table 100 Table 100	August	The Authority of	- 4 - 602 i. V. S.	The late of the second	Earther through the first time
nucliues	July	August	September	October	November	December
Be-7	86.6 ± 16.8	80.8 ± 13.7	76.4 ± 15.4	49.0 \pm 13.5	$November$ 75.0 ± 18.6	70.4 ± 14.4
	1. 38827 Nove 1				200 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 Marging Co. S. Charle and Mary or Alaysia Control Collections
Be-7	86.6 ± 16.8	80.8 ± 13.7	76.4 ± 15.4	49.0 ± 13.5	75.0 ± 18.6	70.4 ± 14.4
Be-7 Zn-65	86.6 ± 16.8 <11.60	80.8 ± 13.7 <5.03	76.4 ± 15.4 <13.40	49.0 ± 13.5 <9.33	75.0 ± 18.6 <15.26	70.4 ± 14.4 <11.21
Be-7 Zn-65 Cs-134	86.6 ± 16.8 <11.60 <5.62	80.8 ± 13.7 <5.03 <3.19	76.4 ± 15.4 <13.40 <4.39	49.0 ± 13.5 <9.33 <2.74	75.0 ± 18.6 <15.26 <3.63	70.4 ± 14.4 <11.21 <4.72
Be-7 Zn-65 Cs-134 Cs-137	86.6 ± 16.8 <11.60 <5.62 <4.75	80.8 ± 13.7 <5.03 <3.19 <0.58	76.4 ± 15.4 <13.40 <4.39 <3.20	49.0 ± 13.5 <9.33 <2.74 <1.71	75.0 ± 18.6 <15.26 <3.63 <1.19	70.4 ± 14.4 <11.21 <4.72 <2.61
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	86.6 ± 16.8 <11.60 <5.62 <4.75 <8.36	80.8 ± 13.7 <5.03 <3.19 <0.58 <4.00	76.4 ± 15.4 <13.40 <4.39 <3.20 <2.04	49.0 ± 13.5 <9.33 <2.74 <1.71 <6.32	75.0 ± 18.6 <15.26 <3.63 <1.19 <9.51	70.4 ± 14.4 <11.21 <4.72 <2.61 <7.36
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	86.6 ± 16.8 <11.60 <5.62 <4.75 <8.36 <3.81	80.8 ± 13.7 <5.03 <3.19 <0.58 <4.00 <4.05	76.4 ± 15.4 <13.40 <4.39 <3.20 <2.04 <3.95	49.0 ± 13.5 <9.33 <2.74 <1.71 <6.32 <4.35	75.0 ± 18.6 <15.26 <3.63 <1.19 <9.51 <7.40	70.4 ± 14.4 <11.21 <4.72 <2.61 <7.36 <6.43
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	86.6 ± 16.8 <11.60 <5.62 <4.75 <8.36 <3.81 <4.77	80.8 ± 13.7 <5.03 <3.19 <0.58 <4.00 <4.05 <3.38	76.4 ± 15.4 <13.40 <4.39 <3.20 <2.04 <3.95 <4.97	49.0 ± 13.5 <9.33 <2.74 <1.71 <6.32 <4.35 <2.51	75.0 ± 18.6 <15.26 <3.63 <1.19 <9.51 <7.40 <6.91	70.4 ± 14.4 <11.21 <4.72 <2.61 <7.36 <6.43 <3.71
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	86.6 ± 16.8 <11.60 <5.62 <4.75 <8.36 <3.81 <4.77 <3.23	80.8 ± 13.7 <5.03 <3.19 <0.58 <4.00 <4.05 <3.38 <0.69	76.4 ± 15.4 <13.40 <4.39 <3.20 <2.04 <3.95 <4.97 <4.72	49.0 ± 13.5 <9.33 <2.74 <1.71 <6.32 <4.35 <2.51 <3.50	75.0 ± 18.6 <15.26 <3.63 <1.19 <9.51 <7.40 <6.91 <4.10	70.4 ± 14.4 <11.21 <4.72 <2.61 <7.36 <6.43 <3.71 <4.22

^{**} Optional sample location

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $m^3 \pm 1$ Sigma

G OFFSITE COMPOSITE**

Nuclides	January	February	March	April	May	June
Be-7	51.1 ± 15.4	120 ± 21.2	71.3 ± 14.3	128 ± 21.6	137 ± 23.7	126 ± 20.4
Zn-65	<11.20	<3.60	<14.40	<14.20	<13.60	<7.10
Cs-134	<3.78	<3.41	<4.19	<4.91	<3.32	<3.43
Cs-137	<4.18	<3.83	<3.26	<3.37	<4.59	<2.15
Zr-95	<7.35	<7.08	<10.60	<10.50	<9.48	<6.57
Nb-95	<6.42	<1.75	< 5.88	<6.49	<7.58	<6.66
Co-58	<3.70	<4.39	<2.87	< 5.06	<4.89	<3.84
Mn-54	<5.58	<4.89	<4.81	<3.41	<1.29	<2.67
Co-60	<6.05	<2.09	<5.06	<1.84	<1.96	<5.39
K-40	136 ± 27.3	<21.40	<40.60	<68.00	<19.90	<15.3
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Be-7	105 : 20 0	(0.0 + 10.5	50.2 . 10.0	560 . 144		, and the second
	125 ± 20.8	68.8 ± 12.5	59.3 ± 18.0	56.3 ± 14.4	<38.0	<38.4
Zn-65	125 ± 20.8 < 8.36	68.8 ± 12.5 <6.42	59.3 ± 18.0 <12.40	56.3 ± 14.4 < 6.80	<38.0 <7.63	<38.4 <9.96
Zn-65 Cs-134		ļ				
	<8.36	<6.42	<12.40	<6.80	<7.63	<9.96
Cs-134	<8.36 <3.67	<6.42 <1.92	<12.40 <6.32	<6.80 <6.39	<7.63 <5.25	<9.96 <6.35
Cs-134 Cs-137	<8.36 <3.67 <3.76	<6.42 <1.92 <3.07	<12.40 <6.32 <3.77	<6.80 <6.39 <3.61	<7.63 <5.25 <2.57	<9.96 <6.35 <4.12
Cs-134 Cs-137 Zr-95	<8.36 <3.67 <3.76 <2.19	<6.42 <1.92 <3.07 <5.15	<12.40 <6.32 <3.77 <7.55	<6.80 <6.39 <3.61 <5.86	<7.63 <5.25 <2.57 <5.96	<9.96 <6.35 <4.12 <8.40
Cs-134 Cs-137 Zr-95 Nb-95	<8.36 <3.67 <3.76 <2.19 <6.29	<6.42 <1.92 <3.07 <5.15 <2.77	<12.40 <6.32 <3.77 <7.55 <4.00	<6.80 <6.39 <3.61 <5.86 <4.50	<7.63 <5.25 <2.57 <5.96 <3.99	<9.96 <6.35 <4.12 <8.40 <6.29
Cs-134 Cs-137 Zr-95 Nb-95 Co-58	<8.36 <3.67 <3.76 <2.19 <6.29 <5.34	<6.42 <1.92 <3.07 <5.15 <2.77 <2.12	<12.40 <6.32 <3.77 <7.55 <4.00 <4.52	<6.80 <6.39 <3.61 <5.86 <4.50 <4.13	<7.63 <5.25 <2.57 <5.96 <3.99 <6.28	<9.96 <6.35 <4.12 <8.40 <6.29 <4.16
Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	<8.36 <3.67 <3.76 <2.19 <6.29 <5.34 <3.62	<6.42 <1.92 <3.07 <5.15 <2.77 <2.12 <2.64	<12.40 <6.32 <3.77 <7.55 <4.00 <4.52 <4.39	<6.80 <6.39 <3.61 <5.86 <4.50 <4.13 <4.26	<7.63 <5.25 <2.57 <5.96 <3.99 <6.28 <3.96	<9.96 <6.35 <4.12 <8.40 <6.29 <4.16 <3.27

^{**} Optional sample location

[†] Plant related radionuclides

TABLE 6-7 (continued)

CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $m^3 \pm 1$ Sigma

D1 ONSITE COMPOSITE**

Nuclides	January	February	March	April	May	June
Be-7	89.7 ± 15.0	55.0 ± 14.5	65.2 ± 16.3	72.4 ± 13.7	92.0 ± 18.9	129 ± 24.3
Zn-65	<6.90	<10.40	<12.20	<6.06	<12.60	<10.70
Cs-134	< 5.16	<4.64	<4.91	<2.15	<4.36	<1.36
Cs-137	<3.64	<4.14	<4.87	<2.01	<4.31	<4.17
Zr-95	<4.61	<9.10	<2.59	<4.88	<6.45	<9.71
Nb-95	< 5.80	<5.24	< 6.02	<3.39	<4.48	<7.54
Co-58	< 5.03	< 5.97	<4.36	<4.12	<1.38	<1.66
Mn-54	<2.46	<4.54	<3.79	<2.16	< 5.00	<4.19
Co-60	<1.38	<4.84	<5.86	<3.31	<1.82	<2.28
K-40	<14.00	105 ± 24.8	<21.00	<35.00	<67.40	<97.90
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Be-7	155 ± 25.8	113 ± 18.5	82.2 ± 19.8	74.1 ± 14.2	91.1 ± 17.1	81.1 ± 17.2
Zn-65	<14.90	47.00	0.50			
~	<14.80	<7.29	<9.59	<13.80	<7.23	<9.98
Cs-134	<5.14	<7.29 <2.52	<9.59 <3.33	<13.80 <2.41	<7.23 <4.06	<9.98 <5.05
Cs-134 Cs-137						
	<5.14	<2.52	<3.33	<2.41	<4.06	<5.05
Cs-137	<5.14 <4.57	<2.52 <2.82	<3.33 <5.67	<2.41 <4.07	<4.06 <3.09	<5.05 <3.80
Cs-137 Zr-95	<5.14 <4.57 <8.54	<2.52 <2.82 <7.93	<3.33 <5.67 <10.26	<2.41 <4.07 <6.94	<4.06 <3.09 <5.69	<5.05 <3.80 <5.34
Cs-137 Zr-95 Nb-95	<5.14 <4.57 <8.54 <2.13	<2.52 <2.82 <7.93 <5.47	<3.33 <5.67 <10.26 <6.01	<2.41 <4.07 <6.94 <5.60	<4.06 <3.09 <5.69 <4.89	<5.05 <3.80 <5.34 <6.49
Cs-137 Zr-95 Nb-95 Co-58	<5.14 <4.57 <8.54 <2.13 <6.71	<2.52 <2.82 <7.93 <5.47 <4.25	<3.33 <5.67 <10.26 <6.01 <7.84	<2.41 <4.07 <6.94 <5.60 <3.58	<4.06 <3.09 <5.69 <4.89 <3.74	<5.05 <3.80 <5.34 <6.49 <1.08
Cs-137 Zr-95 Nb-95 Co-58 Mn-54	<5.14 <4.57 <8.54 <2.13 <6.71 <4.60	<2.52 <2.82 <7.93 <5.47 <4.25 <2.86	<3.33 <5.67 <10.26 <6.01 <7.84 <4.78	<2.41 <4.07 <6.94 <5.60 <3.58 <2.42	<4.06 <3.09 <5.69 <4.89 <3.74 <3.76	<5.05 <3.80 <5.34 <6.49 <1.08 <3.95

Optional sample location

Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $\rm m^3\pm~1~Sigma$

G ONSITE COMPOSITE**

Nuclides	January	February	March	April	May	June
Be-7	62.2 ± 19.0	75.0 ± 23.3	67.2 ± 17.5	75.2 ± 14.1	94.4 ± 17.1	99.7 ± 18.7
Zn-65	<4.20	<14.30	<11.40	<8.09	<2.29	<7.06
Cs-134	<3.83	<4.97	<2.50	<4.32	<4.24	< 5.46
Cs-137	< 6.00	<6.51	<2.34	<2.07	<2.63	<3.02
Zr-95	<12.70	<10.40	<1.91	<7.50	<7.42	<6.99
Nb-95	<2.00	<1.77	<1.29	<3.68	<4.42	<3.68
Co-58	<4.53	<6.51	<5.07	<3.58	<2.62	<3.21
Mn-54	<1.53	<4.88	<3.63	<2.07	<3.59	< 0.98
Co-60	<6.70	<2.08	<3.85	<3.27	<4.28	<1.49
K-40	<25.30	<89.10	<15.00	<33.10	<36.10	<15.20
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Nuclides Be-7	July 126 ± 22.1	August 72.7 ± 15.2	September 36.6 ± 14.3	October 51.2 ± 15.7	November 84.7 ± 16.2	December 66.7 ± 16.2
Estima (Stadio) control (Station 1914) (Co. 1919) See See See Co. 1919 (Co. 1919)	1.1.10480 4000 1.40 = 1.1, 1.0 40 200,	Server . R. C. and Direck . 1 Control of the Contro	Para a composition of the control of	Formula (1921), and the proproper week	Committee Commit	Traffice They are a first the depth of the section
Be-7	126 ± 22.1	72.7 ± 15.2	36.6 ± 14.3	51.2 ± 15.7	84.7 ± 16.2	66.7 ± 16.2
Be-7 Zn-65	126 ± 22.1 <8.17	72.7 ± 15.2 <1.98	36.6 ± 14.3 <10.60	51.2 ± 15.7 <2.17	84.7 ± 16.2 <10.80	66.7 ± 16.2 <10.50
Be-7 Zn-65 Cs-134	126 ± 22.1 <8.17 <5.97	72.7 ± 15.2 <1.98 <3.12	36.6 ± 14.3 <10.60 <3.27	51.2 ± 15.7 <2.17 <3.68	84.7 ± 16.2 <10.80 <3.54	66.7 ± 16.2 <10.50 <2.73
Be-7 Zn-65 Cs-134 Cs-137	126 ± 22.1 <8.17 <5.97 <3.48	72.7 ± 15.2 <1.98 <3.12 <1.79	36.6 ± 14.3 <10.60 <3.27 <3.59	51.2 ± 15.7 <2.17 <3.68 <2.91	84.7 ± 16.2 <10.80 <3.54 <4.08	66.7 ± 16.2 <10.50 <2.73 <2.72
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	126 ± 22.1 <8.17 <5.97 <3.48 <9.49	72.7 ± 15.2 <1.98 <3.12 <1.79 <6.38	36.6 ± 14.3 <10.60 <3.27 <3.59 <5.72	51.2 ± 15.7 <2.17 <3.68 <2.91 <6.05	84.7 ± 16.2 <10.80 <3.54 <4.08 <5.27	66.7 ± 16.2 <10.50 <2.73 <2.72 <8.65
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	126 ± 22.1 <8.17 <5.97 <3.48 <9.49 <4.35	72.7 ± 15.2 <1.98 <3.12 <1.79 <6.38 <4.40	36.6 ± 14.3 <10.60 <3.27 <3.59 <5.72 <4.94	51.2 ± 15.7 <2.17 <3.68 <2.91 <6.05 <1.15	84.7 ± 16.2 <10.80 <3.54 <4.08 <5.27 <1.24	66.7 ± 16.2 <10.50 <2.73 <2.72 <8.65 <3.56
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	126 ± 22.1 <8.17 <5.97 <3.48 <9.49 <4.35 <3.37	72.7 ± 15.2 <1.98 <3.12 <1.79 <6.38 <4.40 <2.83	36.6 ± 14.3 <10.60 <3.27 <3.59 <5.72 <4.94 <3.76	51.2 ± 15.7 <2.17 <3.68 <2.91 <6.05 <1.15 <0.96	84.7 ± 16.2 <10.80 <3.54 <4.08 <5.27 <1.24 <4.53	66.7 ± 16.2 <10.50 <2.73 <2.72 <8.65 <3.56 <4.52
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	126 ± 22.1 <8.17 <5.97 <3.48 <9.49 <4.35 <3.37 <2.92	72.7 ± 15.2 <1.98 <3.12 <1.79 <6.38 <4.40 <2.83 <3.38	36.6 ± 14.3 <10.60 <3.27 <3.59 <5.72 <4.94 <3.76 <3.25	51.2 ± 15.7 <2.17 <3.68 <2.91 <6.05 <1.15 <0.96 <0.82	84.7 ± 16.2 <10.80 <3.54 <4.08 <5.27 <1.24 <4.53 <3.00	66.7 ± 16.2 <10.50 <2.73 <2.72 <8.65 <3.56 <4.52 <3.95

^{**} Optional sample location

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $m^3 \pm 1$ Sigma

H ONSITE COMPOSITE**

Nuclides	January	February	March	April	May	June
Be-7	50.5 ± 15.6	111 ± 19.9	69.5 ± 14.6	67.8 ± 17.4	130 ± 15.9	80.3 ± 17.8
Zn-65	<6.48	<7.56	<2.45	<9.05	<8.71	<9.93
Cs-134	<4.02	<4.22	<5.54	<4.57	<5.18	< 5.69
Cs-137	<3.49	<4.01	<2.84	<4.05	<3.58	<3.70
Zr-95	<7.71	<8.35	<8.66	<6.76	<4.80	<9.46
Nb-95	<3.68	< 5.62	<3.54	< 5.93	<4.92	< 5.62
Co-58	<3.70	<2.96	<4.43	<1.45	<3.15	<5.20
Mn-54	<3.43	<2.59	< 2.99	< 5.86	<2.67	<4.27
Co-60	<1.30	<1.53	<1.40	<1.91	<4.50	<5.05
K-40	<37.40	<42.20	<14.30	<55.70	<43.50	<62.20
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	Aŭgust	September	October	November	December
Nuclides Be-7	July 111 ± 20.8	August 67.4 ± 12.8	September 68.8 ± 15.7	October . 69.1 ± 13.0	November 69.4 ± 18.0	December 79.0 ± 15.8
CONT. I S TO THE PROPERTY OF T	The street of th				1981 (44 14, 12 cont.) (12 cont.) (12 cont.) (14 14 14 14 14 14 14 14 14 14 14 14 14 1	Contract Complete Contract Con
Be-7	111 ± 20.8	67.4 ± 12.8	68.8 ± 15.7	69.1 ± 13.0	69.4 ± 18.0	79.0 ± 15.8
Be-7 Zn-65	111 ± 20.8 <2.95	67.4 ± 12.8 <1.88	68.8 ± 15.7 <6.67	69.1 ± 13.0 <7.57	69.4 ± 18.0 <12.80	79.0 ± 15.8 <8.65
Be-7 Zn-65 Cs-134	111 ± 20.8 <2.95 <5.51	67.4 ± 12.8 <1.88 <4.23	68.8 ± 15.7 <6.67 <5.25	69.1 ± 13.0 <7.57 <3.60	69.4 ± 18.0 <12.80 <7.44	79.0 ± 15.8 <8.65 <5.95
Be-7 Zn-65 Cs-134 Cs-137	111 ± 20.8 <2.95 <5.51 <3.98	67.4 ± 12.8 <1.88 <4.23 <1.70	68.8 ± 15.7 <6.67 <5.25 <3.31	69.1 ± 13.0 <7.57 <3.60 <2.59	69.4 ± 18.0 <12.80 <7.44 <4.02	79.0 ± 15.8 <8.65 <5.95 <4.50
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	111 ± 20.8 <2.95 <5.51 <3.98 <2.19	67.4 ± 12.8 <1.88 <4.23 <1.70 <4.10	68.8 ± 15.7 <6.67 <5.25 <3.31 <10.90	69.1 ± 13.0 <7.57 <3.60 <2.59 <4.23	69.4 ± 18.0 <12.80 <7.44 <4.02 <9.83	79.0 ± 15.8 <8.65 <5.95 <4.50 <6.27
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	111 ± 20.8 <2.95 <5.51 <3.98 <2.19 <7.07	67.4 ± 12.8 <1.88 <4.23 <1.70 <4.10 <2.83	68.8 ± 15.7 <6.67 <5.25 <3.31 <10.90 <6.46	69.1 ± 13.0 <7.57 <3.60 <2.59 <4.23 <4.85	69.4 ± 18.0 <12.80 <7.44 <4.02 <9.83 <6.64	79.0 ± 15.8 <8.65 <5.95 <4.50 <6.27 <4.21
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	111 ± 20.8 <2.95 <5.51 <3.98 <2.19 <7.07 <3.31	67.4 ± 12.8 <1.88 <4.23 <1.70 <4.10 <2.83 <3.46	68.8 ± 15.7 <6.67 <5.25 <3.31 <10.90 <6.46 <4.85	69.1 ± 13.0 <7.57 <3.60 <2.59 <4.23 <4.85 <3.56	69.4 ± 18.0 <12.80 <7.44 <4.02 <9.83 <6.64 <5.39	79.0 ± 15.8 <8.65 <5.95 <4.50 <6.27 <4.77
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	111 ± 20.8 <2.95 <5.51 <3.98 <2.19 <7.07 <3.31 <3.61	67.4 ± 12.8 <1.88 <4.23 <1.70 <4.10 <2.83 <3.46 <2.65	68.8 ± 15.7 <6.67 <5.25 <3.31 <10.90 <6.46 <4.85 <3.86	69.1 ± 13.0 <7.57 <3.60 <2.59 <4.23 <4.85 <3.56 <4.16	69.4 ± 18.0 <12.80 <7.44 <4.02 <9.83 <6.64 <5.39 <3.35	79.0 ± 15.8 <8.65 <5.95 <4.50 <6.27 <4.21 <4.77 <2.17

^{**} Optional sample location

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $m^3 \pm 1$ Sigma

I ONSITE COMPOSITE**

Nuclides	January	February	March	April	May	June
Be-7	45.7 ± 14.9	75.9 ± 18.7	74.7 ± 17.2	118 ± 17.5	102 ± 15.9	93.7 ± 18.5
Zn-65	<10.60	<11.00	<11.70	<7.64	<8.36	<9.70
Cs-134	<5.95	<5.15	<6.24	<2.72	<1.96	<6.01
Cs-137	<3.02	<2.71	<3.74	<2.97	<2.17	<3.00
Zr-95	<8.51	<8.91	<8.67	<10.70	<7.29	<7.00
Nb-95	<4.03	< 5.50	<5.37	<4.30	<4.52	<1.72
Co-58	<4.96	<3.68	< 5.05	< 3.69	<4.04	<4.34
Mn-54	<4.61	<3.38	<4.02	<2.71	<1.95	<4.84
Co-60	<4.92	<5.13	<5.76	<3.31	<3.07	<7.48
K-40	124 ± 29.8	<42.60	135 ± 26.5	<35.10	<31.00	<21.20
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Be-7	139 ± 20.8	69.4 ± 12.4	74.6 ± 14.5	61.9 ± 14.7	<52.0	54.9 ± 16.8
Zn-65	<8.55	<6.16	<10.60	<7.54	<13.86	<10.6
Cs-134	<3.62	<3.22	<3.26	<4.07	<3.81	<4.66
Cs-137	<4.50	<1.48	<3.21	<1.79	<4.28	<4.14
Zr-95	1			ا میما		-0.70
	<1.87	<3.76	<7.22	<8.11	<10.09	<9.70
Nb-95	<1.87 <7.57	<3.76 <4.69	<7.22 <5.99	<8.11 <5.15	<10.09	<9.70 <6.53
Nb-95	<7.57	<4.69	<5.99	<5.15	<6.83	<6.53
Nb-95 Co-58	<7.57 <4.09	<4.69 <2.85	<5.99 <2.55	<5.15 <5.70	<6.83 <1.72	<6.53 <4.76
Nb-95 Co-58 Mn-54	<7.57 <4.09 <5.20	<4.69 <2.85 <1.67	<5.99 <2.55 <2.77	<5.15 <5.70 <3.28	<6.83 <1.72 <5.47	<6.53 <4.76 <6.89

^{**} Optional sample location

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ $m^3 \pm 1$ Sigma

J ONSITE COMPOSITE**

Nuclides	January	February	March #	April	May	June
Be-7	<26.90	<44.20	44.5 ± 18.2	104 ± 17.6	81.1 ± 15.2	95.7 ± 17.9
Zn-65	<12.60	<3.62	<12.20	<7.81	<7.90	<2.47
Cs-134	< 5.66	<4.31	<4.90	<2.96	<3.48	<4.29
Cs-137	<4.51	<3.04	<3.76	<4.12	<3.29	<2.26
Zr-95	<10.60	<9.03	<8.87	<8.40	<8.49	<5.23
Nb-95	<6.14	<4.84	<6.96	<4.78	<4.84	<3.50
Co-58	< 5.69	<4.43	<5.53	<3.45	<4.05	<1.06
Mn-54	< 5.79	<1.34	<3.79	<3.40	<2.96	<3.88
Co-60	<6.06	<2.09	<5.85	<1.30	< 5.46	<1.42
K-40	<21.70	<60.90	<59.70	<13.20	<37.50	<64.30
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides						
lauchues	July	August	September	October	November	December
Be-7	116 ± 19.9	87.0 ± 13.5	79.9 ± 20.4	60.0 ± 15.4	November 46.6 ± 15.7	83.7 ± 16.6
th Street entreet at 11/10/11/10/11/11/11/11/11/11/11		27111111111111111111111111111111111111			HE - 1 - 1 THE HELLEGISING INVESTMENT OF THE PARTY OF THE	
Be-7	116 ± 19.9	87.0 ± 13.5	79.9 ± 20.4	60.0 ± 15.4	46.6 ± 15.7	83.7 ± 16.6
Be-7 Zn-65	116 ± 19.9 <9.46	87.0 ± 13.5 <5.04	79.9 ± 20.4 < 14.70	60.0 ± 15.4 <7.47	46.6 ± 15.7 <9.65	83.7 ± 16.6 <9.26
Be-7 Zn-65 Cs-134	116 ± 19.9 <9.46 <3.27	87.0 ± 13.5 <5.04 <2.41	79.9 ± 20.4 <14.70 <6.72	60.0 ± 15.4 <7.47 <5.27	46.6 ± 15.7 <9.65 <4.00	83.7 ± 16.6 <9.26 <4.69
Be-7 Zn-65 Cs-134 Cs-137	116 ± 19.9 <9.46 <3.27 <3.35	87.0 ± 13.5 <5.04 <2.41 <2.43	79.9 ± 20.4 <14.70 <6.72 <4.08	60.0 ± 15.4 < 7.47 < 5.27 < 3.07	46.6 ± 15.7 <9.65 <4.00 <3.26	83.7 ± 16.6 <9.26 <4.69 <2.47
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	116 ± 19.9 <9.46 <3.27 <3.35 <7.18	87.0 ± 13.5 <5.04 <2.41 <2.43 <6.80	79.9 ± 20.4 <14.70 <6.72 <4.08 <5.73	60.0 ± 15.4 < 7.47 < 5.27 < 3.07 < 8.23	46.6 ± 15.7 <9.65 <4.00 <3.26 <7.64	83.7 ± 16.6 <9.26 <4.69 <2.47 <7.29
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	$ \begin{array}{r} 116 \pm 19.9 \\ < 9.46 \\ < 3.27 \\ < 3.35 \\ < 7.18 \\ < 4.86 \end{array} $	87.0 ± 13.5 <5.04 <2.41 <2.43 <6.80 <3.32	79.9 ± 20.4 <14.70 <6.72 <4.08 <5.73 <1.43	60.0 ± 15.4 < 7.47 < 5.27 < 3.07 < 8.23 < 3.87	46.6 ± 15.7 <9.65 <4.00 <3.26 <7.64 <7.91	83.7 ± 16.6 <9.26 <4.69 <2.47 <7.29 <6.38
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	$ \begin{array}{r} 116 \pm 19.9 \\ < 9.46 \\ < 3.27 \\ < 3.35 \\ < 7.18 \\ < 4.86 \\ < 3.71 \\ \end{array} $	87.0 ± 13.5 <5.04 <2.41 <2.43 <6.80 <3.32 <3.25	79.9 ± 20.4 <14.70 <6.72 <4.08 <5.73 <1.43 <4.21	60.0 ± 15.4 <7.47 <5.27 <3.07 <8.23 <3.87 <4.99	46.6 ± 15.7 <9.65 <4.00 <3.26 <7.64 <7.91 <3.15	83.7 ± 16.6 <9.26 <4.69 <2.47 <7.29 <6.38 <3.78
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	$ \begin{array}{r} 116 \pm 19.9 \\ < 9.46 \\ < 3.27 \\ < 3.35 \\ < 7.18 \\ < 4.86 \\ < 3.71 \\ < 4.14 \\ \end{array} $	87.0 ± 13.5 <5.04 <2.41 <2.43 <6.80 <3.32 <3.25 <0.70	79.9 ± 20.4 <14.70 <6.72 <4.08 <5.73 <1.43 <4.21 <4.22	60.0 ± 15.4 < 7.47 < 5.27 < 3.07 < 8.23 < 3.87 < 4.99 < 3.58	46.6 ± 15.7 <9.65 <4.00 <3.26 <7.64 <7.91 <3.15 <3.43	83.7 ± 16.6 <9.26 <4.69 <2.47 <7.29 <6.38 <3.78 <3.81

^{**} Optional sample location

[†] Plant related radionuclides

TABLE 6-7 (continued) CONCENTRATIONS OF GAMMA EMITTERS IN MONTHLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2006 Results in Units of 10e-3 pCi/ m³ ± 1 Sigma

K ONSITE COMPOSITE**

Nuclides	January	February	March	April	May	June
Be-7	57.1 ± 14.0	78.1 ± 15.4	65.1 ± 15.7	73.2 ± 16.6	83.1 ± 14.9	83.7 ± 15.9
Zn-65	<10.60	<9.33	<10.50	<10.40	<7.28	<8.75
Cs-134	<3.30	<5.13	<5.25	<4.69	<4.37	<5.13
Cs-137	< 0.80	<2.99	<4.70	<2.97	<2.89	<3.97
Zr-95	<9.11	<9.97	<8.36	< 5.86	<4.91	<7.46
Nb-95	<3.41	<4.74	<4.87	<2.78	<4.40	<6.54
Co-58	<4.81	<4.19	<3.72	<3.58	<3.47	<5.30
Mn-54	<3.25	< 0.97	<3.73	<3.70	<2.94	<2.61
Co-60	<4.96	<3.87	<1.52	<4.21	<4.10	<4.15
K-40	<50.20	<72.90	<61.30	<30.30	<29.30	<42.10
Others †	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nuclides	July	August	September	October	November	December
Nuclides Be-7	July 99.5 ± 23.4	August 63.9 ± 12.6	September <52.5	October 61.5 ± 15.5	November 34.4 ± 14.9	December 73.6 ± 15.4
ppan alfairisen matamatanan - 4 P Sh				Inner' seeses:::seeses::MXXIVIIVIIXIIIA	ris 'n 'n N' Grinnglee ee miniminingset Mees	processed with the contraction of the contraction o
Be-7	99.5 ± 23.4	63.9 ± 12.6	<52.5	61.5 ± 15.5	34.4 ± 14.9	73.6 ± 15.4
Be-7 Zn-65	99.5 ± 23.4 <16.30	63.9 ± 12.6 <8.41	<52.5 <13.30	61.5 ± 15.5 <7.81	34.4 ± 14.9 <10.64	73.6 ± 15.4 <8.94
Be-7 Zn-65 Cs-134	99.5 ± 23.4 <16.30 <7.34	63.9 ± 12.6 <8.41 <5.52	<52.5 <13.30 <8.20	61.5 ± 15.5 <7.81 <4.49	34.4 ± 14.9 <10.64 <5.73	73.6 ± 15.4 <8.94 <3.98
Be-7 Zn-65 Cs-134 Cs-137	99.5 ± 23.4 <16.30 <7.34 <8.16	63.9 ± 12.6 <8.41 <5.52 <3.05	<52.5 <13.30 <8.20 <4.33	61.5 ± 15.5 <7.81 <4.49 <3.40	34.4 ± 14.9 <10.64 <5.73 <3.11	73.6 ± 15.4 <8.94 <3.98 <4.64
Be-7 Zn-65 Cs-134 Cs-137 Zr-95	99.5 ± 23.4 <16.30 <7.34 <8.16 <9.43	63.9 ± 12.6 <8.41 <5.52 <3.05 <4.76	<52.5 <13.30 <8.20 <4.33 <9.74	61.5 ± 15.5 <7.81 <4.49 <3.40 <6.35	34.4 ± 14.9 <10.64 <5.73 <3.11 <5.73	73.6 ± 15.4 <8.94 <3.98 <4.64 <8.20
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95	99.5 ± 23.4 <16.30 <7.34 <8.16 <9.43 <6.39	63.9 ± 12.6 <8.41 <5.52 <3.05 <4.76 <4.30	<52.5 <13.30 <8.20 <4.33 <9.74 <7.21	61.5 ± 15.5 <7.81 <4.49 <3.40 <6.35 <5.12	34.4 ± 14.9 <10.64 <5.73 <3.11 <5.73 <5.72	73.6 ± 15.4 <8.94 <3.98 <4.64 <8.20 <4.74
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58	99.5 ± 23.4 <16.30 <7.34 <8.16 <9.43 <6.39 <7.42	63.9 ± 12.6 < 8.41 < 5.52 < 3.05 < 4.76 < 4.30 < 2.75	<52.5 <13.30 <8.20 <4.33 <9.74 <7.21 <6.16	61.5 ± 15.5 <7.81 <4.49 <3.40 <6.35 <5.12 <2.61	34.4 ± 14.9 <10.64 <5.73 <3.11 <5.73 <5.72 <3.00	73.6 ± 15.4 <8.94 <3.98 <4.64 <8.20 <4.74 <4.70
Be-7 Zn-65 Cs-134 Cs-137 Zr-95 Nb-95 Co-58 Mn-54	99.5 ± 23.4 <16.30 <7.34 <8.16 <9.43 <6.39 <7.42 <7.51	63.9 ± 12.6 <8.41 <5.52 <3.05 <4.76 <4.30 <2.75 <3.45	<52.5 <13.30 <8.20 <4.33 <9.74 <7.21 <6.16 <6.44	61.5 ± 15.5 <7.81 <4.49 <3.40 <6.35 <5.12 <2.61 <2.77	34.4 ± 14.9 <10.64 <5.73 <3.11 <5.73 <5.72 <3.00 <3.27	73.6 ± 15.4 <8.94 <3.98 <4.64 <8.20 <4.74 <4.70 <3.68

^{**} Optional sample location

[†] Plant related radionuclides

TABLE 6-8 ENVIRONMENTAL CHARCOAL CARTRIDGE SAMPLES - OFFSITE STATIONS – 2006

I-131 ACTIVITY pCi/ m³ ± 1 Sigma

Week End Date	R-1*	R-2 *	R-3 *	R-4*	R-5*	D-2 **	E **	F**	G **
01/10/06	< 0.026	<0.023	< 0.042	< 0.029	<0.028	<0.008	< 0.021	<0.024	<0.041
01/17/06	< 0.022	< 0.016	< 0.025	< 0.042	< 0.023	<0.028	< 0.042	<0.024	< 0.014
01/24/06	< 0.028	< 0.028	< 0.006	<0.008	< 0.034	< 0.024	< 0.031	<0.026	< 0.018
01/31/06	< 0.020	< 0.026	< 0.023	< 0.039	< 0.025	< 0.025	< 0.024	<0.008	< 0.027
02/07/06	< 0.029	< 0.022	< 0.035	< 0.025	< 0.023	< 0.022	<0.008	<0.022	< 0.024
02/14/06	< 0.025	< 0.015	< 0.016	< 0.013	< 0.021	< 0.023	< 0.016	<0.023	< 0.019
02/22/06	< 0.007	< 0.018	< 0.019	<0.008	< 0.015	< 0.017	< 0.032	<0.024	< 0.031
02/28/06	< 0.032	<0.022	< 0.031	< 0.035	< 0.026	< 0.032	< 0.049	<0.024	< 0.006
03/07/06	< 0.025	< 0.020	< 0.019	< 0.025	< 0.011	< 0.019	< 0.024	<0.020	< 0.018
03/14/06	< 0.042	< 0.025	< 0.021	< 0.042	< 0.019	<0.022	< 0.031	<0.020	< 0.024
03/21/06	< 0.029	< 0.015	< 0.028	< 0.025	<0.028	< 0.018	< 0.036	<0.020	< 0.024
03/28/06	<0.018	< 0.027	< 0.020	< 0.023	<0.028	< 0.022	< 0.026	<0.021	< 0.036
04/04/06	< 0.020	<0.027	< 0.016	< 0.032	<0.028	< 0.024	< 0.025	<0.026	< 0.025
04/11/06	< 0.045	< 0.032	< 0.020	< 0.017	< 0.030	< 0.032	< 0.032	<0.029	< 0.015
04/18/06	< 0.030	< 0.026	< 0.015	< 0.030	< 0.015	< 0.037	< 0.025	<0.021	< 0.022
04/25/06	< 0.005	< 0.031	< 0.029	< 0.024	< 0.024	< 0.029	< 0.027	<0.022	< 0.030
05/02/06	< 0.029	< 0.020	< 0.019	< 0.024	< 0.030	<0.028	< 0.021	<0.020	< 0.023
05/09/06	< 0.023	< 0.021	< 0.022	< 0.024	< 0.029	< 0.025	< 0.036	<0.021	<0.021
05/16/06	< 0.008	< 0.019	< 0.024	< 0.027	< 0.027	< 0.026	<0.008	< 0.027	< 0.026
05/23/06	< 0.032	<0.025	<0.027	< 0.024	< 0.019	< 0.033	< 0.027	<0.018	< 0.027
05/31/06	< 0.021	<0.024	<0.020	< 0.038	<0.028	< 0.025	< 0.022	<0.023	< 0.018
06/06/06	< 0.026	< 0.035	< 0.029	< 0.018	< 0.037	< 0.027	< 0.019	<0.020	< 0.033
06/13/06	< 0.033	<0.016	< 0.019	< 0.023	<0.023	<0.008	< 0.018	<0.020	< 0.033
06/20/06	< 0.027	< 0.017	< 0.021	< 0.017	< 0.016	< 0.020	< 0.016	<0.026	< 0.016
06/27/06	< 0.037	<0.025	< 0.024	< 0.018	< 0.023	< 0.026	< 0.027	<0.014	< 0.018

Sample location required by ODCM Optional sample location

TABLE 6-8 (continued)

ENVIRONMENTAL CHARCOAL CARTRIDGE SAMPLES - OFFSITE STATIONS – 2006

I-131 ACTIVITY pCi/m³ ± 1 Sigma

Week End Date	R-1*	R-2 *	R-3 *	R-4 *	R-5 *	D-2 **	E **	F **	G**
07/04/06	< 0.026	< 0.018	< 0.013	< 0.020	< 0.017	< 0.013	< 0.023	< 0.023	< 0.018
07/11/06	< 0.037	< 0.026	<0.028	< 0.026	< 0.038	<0.041	< 0.049	< 0.027	< 0.029
07/18/06	< 0.038	< 0.020	<0.020	< 0.026	< 0.029	< 0.026	< 0.039	< 0.027	< 0.024
07/25/06	<0.022	< 0.021	< 0.027	< 0.042	< 0.024	< 0.022	< 0.027	< 0.033	< 0.028
08/01/06	< 0.023	< 0.028	< 0.033	< 0.023	< 0.019	< 0.037	< 0.022	<0.022	< 0.027
08/08/06	< 0.032	< 0.017	< 0.014	< 0.019	< 0.022	< 0.020	< 0.009	< 0.011	< 0.011
08/15/06	<0.008	< 0.018	<0.021	< 0.026	< 0.005	< 0.021	< 0.024	< 0.027	< 0.026
08/22/06	<0.031	< 0.024	< 0.021	< 0.028	< 0.024	< 0.033	< 0.019	< 0.013	< 0.025
08/29/06	<0.025	< 0.029	< 0.025	< 0.019	< 0.017	< 0.028	< 0.026	< 0.020	< 0.021
09/06/06	<0.023	< 0.018	< 0.023	< 0.035	< 0.024	< 0.026	< 0.026	< 0.038	< 0.025
09/12/06	< 0.018	< 0.022	< 0.015	< 0.025	< 0.024	< 0.022	< 0.016	< 0.020	< 0.021
09/19/06	<0.028	< 0.007	< 0.018	< 0.016	< 0.024	< 0.049	<0.008	< 0.029	< 0.037
09/26/06	<0.021	< 0.012	<0.020	< 0.016	< 0.015	< 0.024	< 0.025	< 0.022	< 0.024
10/03/06	<0.025	< 0.031	< 0.019	< 0.024	< 0.034	< 0.030	< 0.015	< 0.027	< 0.027
10/10/06	<0.040	< 0.023	< 0.023	< 0.040	< 0.024	< 0.026	<0.008	< 0.030	< 0.038
10/17/06	< 0.032	< 0.024	< 0.018	< 0.017	< 0.022	< 0.031	< 0.034	< 0.014	< 0.022
10/24/06	< 0.037	< 0.021	< 0.018	< 0.024	< 0.024	< 0.027	< 0.034	< 0.018	< 0.022
10/31/06	<0.030	< 0.025	<0.021	< 0.020	<0.028	< 0.027	< 0.039	<0.023	< 0.031
11/07/06	<0.028	< 0.014	<0.029	<0.022	< 0.021	< 0.026	< 0.031	<0.020	< 0.026
11/14/06	<0.026	< 0.024	<0.021	< 0.032	< 0.028	< 0.020	< 0.023	<0.022	< 0.025
11/21/06	< 0.013	< 0.023	<0.028	< 0.035	< 0.025	< 0.020	< 0.023	< 0.033	< 0.019
. 11/28/06	< 0.026	< 0.021	<0.028	<0.031	< 0.025	< 0.026	< 0.017	<0.023	<0.008
12/05/06	< 0.026	< 0.025	<0.026	< 0.034	< 0.029	< 0.025	< 0.029	< 0.035	< 0.023
12/12/06	< 0.023	< 0.023	<0.038	<0.022	< 0.014	< 0.023	<0.028	<0.023	< 0.026
12/19/06	< 0.025	<0.022	<0.022	<0.028	<0.029	< 0.020	<0.024	<0.024	<0.022
12/26/06	< 0.023	<0.024	<0.020	< 0.034	< 0.026	< 0.016	< 0.025	<0.018	< 0.026
01/02/07	< 0.022	<0.028	<0.024	< 0.026	< 0.033	< 0.027	<0.028	<0.023	<0.029

Sample location required by ODCM Optional sample location

TABLE 6-9
ENVIRONMENTAL CHARCOAL CARTRIDGE SAMPLES - ONSITE STATIONS – 2006

I-131 ACTIVITY pCi/m3 ± 1 Sigma

Week End Date	D1 **		H **	1**	J**	K **
01/09/06	<0.041	< 0.031	< 0.009	<0.021	<0.038	< 0.026
01/16/06	<0.027	< 0.021	< 0.026	< 0.008	<0.022	< 0.029
01/23/06	<0.021	< 0.018	<0.008	< 0.013	<0.024	< 0.034
01/31/06	<0.021	<0.024	< 0.027	< 0.026	<0.022	< 0.025
02/06/06	<0.032	< 0.023	< 0.027	<0.024	<0.025	< 0.037
02/13/06	< 0.027	<0.006	< 0.024	< 0.024	<0.022	< 0.025
02/21/06	<0.024	<0.023	< 0.034	<0.012	<0.028	<0.008
02/27/06	< 0.043	<0.025	< 0.024	<0.018	<0.019	<0.024
03/06/06	<0.032	< 0.026	<0.022	< 0.031	< 0.016	< 0.030
03/13/06	< 0.032	< 0.026	< 0.030	<0.024	<0.025	< 0.034
03/20/06	< 0.041	< 0.032	< 0.019	<0.031	<0.028	< 0.030
03/27/06	<0.023	<0.024	< 0.015	<0.040	<0.019	< 0.030
04/03/06	< 0.030	<0.026	< 0.019	<0.022	< 0.027	< 0.034
04/10/06	< 0.040	<0.022	< 0.029	< 0.030	<0.032	<0.021
04/17/06	<0.028	<0.020	< 0.031	<0.024	<0.025	< 0.046
04/24/06	<0.022	<0.012	< 0.015	<0.022	<0.029	< 0.029
05/01/06	<0.041	<0.026	< 0.019	<0.025	< 0.019	< 0.026
05/08/06	<0.022	<0.023	< 0.022	< 0.005	<0.020	< 0.033
05/15/06	<0.029	<0.024	<0.028	<0.028	<0.032	< 0.015
05/22/06	<0.025	< 0.029	< 0.027	< 0.020	< 0.027	<0.022
05/30/06	<0.033	< 0.019	< 0.027	< 0.014	< 0.015	<0.024
06/05/06	<0.026	< 0.028	< 0.018	< 0.020	< 0.027	< 0.027
06/12/06	< 0.037	< 0.028	< 0.026	< 0.021	<0.031	< 0.036
06/19/06	<0.051	<0.021	< 0.026	< 0.022	< 0.015	< 0.027
06/26/06	<0.040	<0.024	<0.028	< 0.021	< 0.018	< 0.019

^{**} Optional sample location

TABLE 6-9 (continued)

ENVIRONMENTAL CHARCOAL CARTRIDGE SAMPLES - ONSITE STATIONS - 2006

I-131 ACTIVITY pCi/ m³ ± 1 Sigma

Week End	D1 **	G **	H**	T **	J**	K **
Date						
07/05/06	< 0.030	< 0.015	< 0.022	< 0.016	< 0.018	< 0.024
07/10/06	< 0.031	< 0.026	<0.041	< 0.031	< 0.045	< 0.026
07/17/06	< 0.031	<0.030	< 0.025	< 0.020	< 0.014	< 0.022
07/24/06	<0.021	<0.021	< 0.019	< 0.025	< 0.024	< 0.023
07/31/06	< 0.034	< 0.019	<0.025	< 0.020	< 0.005	< 0.026
08/07/06	<0.022	< 0.023	< 0.025	< 0.020	< 0.005	< 0.021
08/14/06	< 0.037	< 0.026	< 0.027	<0.024	< 0.027	< 0.029
08/21/06	< 0.033	<0.021	< 0.025	< 0.019	< 0.029	< 0.019
08/28/06	<0.022	< 0.026	< 0.025	< 0.023	< 0.022	< 0.023
09/05/06	< 0.026	< 0.017	< 0.005	< 0.018	< 0.025	< 0.020
09/11/06	<0.041	< 0.031	< 0.023	< 0.024	< 0.016	< 0.030
09/18/06	<0.025	<0.023	<0.029	< 0.025	< 0.031	< 0.027
09/25/06	<0.029	< 0.029	< 0.027	< 0.032	< 0.037	No Sample
10/02/06	<0.028	<0.014	< 0.016	< 0.016	< 0.009	< 0.023
10/09/06	< 0.031	<0.029	<0.021	<0.029	< 0.016	< 0.024
10/16/06	< 0.064	< 0.014	<0.020	< 0.015	< 0.016	< 0.023
10/23/06	<0.021	< 0.017	< 0.016	< 0.016	< 0.019	< 0.025
10/30/06	<0.028	< 0.026	<0.023	< 0.016	< 0.024	< 0.015
11/06/06	< 0.025	<0.020	< 0.019	<0.030	< 0.027	<0.021
11/13/06	<0.022	< 0.015	< 0.018	< 0.027	< 0.021	< 0.018
11/20/06	< 0.031	<0.022	< 0.014	< 0.023	< 0.022	< 0.033
11/27/06	<0.022	< 0.016	< 0.030	< 0.028	< 0.030	< 0.022
12/04/06	< 0.027	< 0.023	< 0.024	< 0.023	< 0.015	< 0.030
12/11/06	< 0.020	< 0.027	< 0.025	<0.042	<0.024	<0.022
12/18/06	< 0.029	<0.021	< 0.021	<0.023	< 0.037	<0.025
12/26/06	< 0.013	< 0.019	< 0.027	< 0.031	< 0.027	<0.025
01/02/07	< 0.017	<0.012	< 0.016	< 0.021	< 0.022	< 0.015

^{**} Optional sample location

TABLE 6-10

DIRECT RADIATION MEASUREMENT RESULTS – 2006

Results in Units of mrem/std. Month ± 1 Sigma

Location Number	Location 23	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Degrees & Distance (1)
3	D1 Onsite	12.52 ± 0.71	14.38 ± 0.58	14.37 ± 0.67	11.10 ± 0.57	69° at 0.2 miles
4	D2 Onsite	4.78 ± 0.26	4.88 ± 0.26	4.25 ± 0.20	4.50 ± 0.22	140° at 0.4 miles
5	E Onsite	4.60 ± 0.29	4.71 ± 0.26	4.41 ± 0.26	4.68 ± 0.26	175° at 0.4 miles
6	F Onsite	3.96 ± 0.22	3.91 ± 0.17	3.99 ± 0.31	4.00 ± 0.20	210° at 0.5 miles
7*	G Onsite	3.60 ± 0.19	3.73 ± 0.28	3.57 ± 0.16	3.49 ± 0.16	250° at 0.7 miles
8*	R-5 Offsite Control	5.25 ± 0.33	4.80 ± 0.20	4.72 ± 0.20	4.92 ± 0.25	42° at 16.4 miles
9	D1 Offsite	4.38 ± 0.24	4.24 ± 0.25	3.99 ± 0.25	4.12 ± 0.22	80° at 11.4 miles
10	D2 Offsite	4.33 ± 0.29	3.95 ± 0.17	3.85 ± 0.20	4.13 ± 0.18	117° at 9.0 miles
11	E Offsite	4.10 ± 0.23	4.11 ± 0.19	3.88 ± 0.22	4.09 ± 0.21	160° at 7.2 miles
12	F- Offsite	4.15 ± 0.18	4.16 ± 0.22	3.93 ± 0.25	4.20 ± 0.21	190° at 7.7 miles
13	G Offsite	4.21 ± 0.31	4.11 ± 0.22	4.03 ± 0.27	4.13 ± 0.20	225° at 5.3 miles
14*	DeMass Rd., SW Oswego - Control	4.41 ± 0.18	4.39 ± 0.20	4.28 ± 0.17	4.39 ± 0.24	226° at 12.6 miles
15*	Pole 66, W. Boundary - Bible Camp	3.82 ± 0.18	3.67 ± 0.19	3.57 ± 0.31	3.85 ± 0.22	237° at 0.9 miles
18*	Energy Info. Center - Lamp Post, SW	4.61 ± 0.24	4.28 ± 0.27	4.37 ± 0.19	4.64 ± 0.25	265° at 0.4 miles
19	East Boundary - JAF, Pole 9	4.82 ± 0.27	4.43 ± 0.20	4.34 ± 0.24	4.52 ± 0.28	81° at 1.3 miles
23*	H Onsite	5.28 ± 0.24	5.37 ± 0.20	4.98 ± 0.25	5.45 ± 0.43	70° at 0.8 miles
24	I Onsite	4.54 ± 0.22	4.50 ± 0.19	4.30 ± 0.19	4.42 ± 0.26	98° at 0.8 miles
25	J Onsite	4.14 ± 0.24	4.23 ± 0.18	4.05 ± 0.19	4.36 ± 0.22	110° at 0.9 miles
26	K Onsite	4.48 ± 0.18	4.30 ± 0.21	4.09 ± 0.21	4.45 ± 0.23	132° at 0.5 miles
27	N. Fence, N. of Switchyard, JAF	23.83 ± 1.23	20.70 ± 1.25	21.69 ± 1.03	16.13 ± 0.98	60° at 0.4 miles
28	N. Light Pole, N. of Screenhouse, JAF	31.78 ± 1.61	26.74 ± 1.10	28.38 ± 1.66	27.96 ± 1.41	68° at 0.5 miles
29	N. Fence, N. of W. Side	28.68 ± 2.09	24.77 ± 1.52	26.62 ± 1.47	19.16 ± 1.38	65° at 0.5 miles
30	N. Fence, (NW) JAF	13.32 ± 1.04	12.57 ± 0.96	13.04 ± 1.34	9.94 ± 0.58	57° at 0.4 miles
31	N. Fence, (NW) NMP-1	7.60 ± 0.38	7.15 ± 0.36	6.90 ± 0.29	7.37 ± 0.36	276° at 0.2 miles

TABLE 6-10 (continued)

DIRECT RADIATION MEASUREMENT RESULTS – 2006 Results in Units of mrem/std. Month ± 1 Sigma

Location Number	Location	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Degrees & Distance (1)
39	N. Fence, Rad. Waste-NMP-1	10.91 ± 0.52	9.24 ± 0.89	9.54 ± 0.38	9.99 ± 0.62	292° at 0.2 miles
47	N. Fence, (NE) JAF	8.01 ± 0.32	7.06 ± 0.31	6.67 ± 0.25	6.28 ± 0.26	69° at 0.6 miles
49*	Phoenix, NY-Control	3.81 ± 0.20	3.50 ± 0.15	3.33 ± 0.22	3.84 ± 0.30	163° at 19.8 miles
51	Liberty & Bronson Sts., E of Oswego Steam Station	4.38 ± 0.24	4.07 ± 0.22	3.88 ± 0.18	4.18 ± 0.19	233° at 7.4 miles
52	E. 12th & Cayuga Sts., Oswego School	4.30 ± 0.22	3.84 ± 0.15	3.73 ± 0.21	3.84 ± 0.17	227° at 5.8 miles
53	Broadwell & Chestnut Sts. Fulton H.S.	4.73 ± 0.23	4.45 ± 0.22	4.15 ± 0.21	4.38 ± 0.28	183° at 13.7 miles
54	Liberty St. & Co. Rt. 16 Mexico H.S.	4.27 ± 0.24	3.92 ± 0.24	3.53 ± 0.23	3.93 ± 0.25	115° at 9.3 miles
55	Gas Substation Co. Rt. 5-Pulaski	4.34 ± 0.20	4.05 ± 0.16	3.57 ± 0.19	4.02 ± 0.21	75° at 13.0 miles
56*	Rt. 104-New Haven Sch. (SE Corner)	3.85 ± 0.17	3.69 ± 0.22	3.51 ± 0.17	3.84 ± 0.24	123° at 5.3 miles
58*	Co Rt. 1A-Alcan (E. of E. Entrance Rd.)	4.58 ± 0.20	4.39 ± 0.29	4.20 ± 0.22	4.53 ± 0.30	220° at 3.1 miles
75*	Unit 2, N. Fence, N. of Reactor Bldg.	7.94 ± 0.54	7.21 ± 0.30	7.48 ± 0.30	7.81 ± 0.44	5° at 0.1 miles
76*	Unit 2, N. Fence, N. of Change House	5.99 ± 0.28	5.35 ± 0.29	5.48 ± 0.24	5.68 ± 0.29	25° at 0.1 miles
77*	Unit 2, N. Fence, N. of Pipe Bldg.	6.77 ± 0.35	6.29 ± 0.31	6.35 ± 0.48	6.52 ± 0.31	45° at 0.2 miles
78*	JAF. E. of E. Old Lay Down Area	4.72 ± 0.28	4.15 ± 0.21	4.25 ± 0.32	4.57 ± 0.26	90° at 1.0 miles
79*	Co. Rt. 29, Pole #63, 0.2 mi. S. of Lake Rd.	4.10 ± 0.18	3.82 ± 0.15	3.75 ± 0.21	3.96 ± 0.20	115° at 1.1 miles
80*	Co. Rt. 29, Pole #54, 0.7 mi. S. of Lake Rd.	4.30 ± 0.18	4.25 ± 0.25	3.83 ± 0.18	4.13 ± 0.27	133° at 1.4 miles
81*	Miner Rd., Pole #16, 0.5 mi. W. of Rt. 29	4.30 ± 0.32	3.83 ± 0.28	3.89 ± 0.22	4.25 ± 0.48	159° at 1.6 miles
82*	Miner Rd., Pole # 1-1/2, 1.1 mi. W. of Rt. 29	4.14 ± 0.21	4.15 ± 0.27	3.75 ± 0.23	4.02 ± 0.29	181° at 1.6 miles
83*	Lakeview Rd., Tree 0.45 mi. N. of Miner Rd.	4.14 ± 0.32	4.04 ± 0.17	4.09 ± 0.20	3.81 ± 0.23	200° at 1.2 miles
84*	Lakeview Rd., N, Pole #6117, 200ft. N. of Lake Rd.	4.06 ± 0.19	4.08 ± 0.18	3.78 ± 0.24	4.16 ± 0.20	225° at 1.1 miles
85*	Unit 1, N. Fence, N. of W. Side of Screen House	9.16 ± 0.38	7.96 ± 0.40	7.88 ± 0.31	8.49 ± 0.56	294° at 0.2 miles
86*	Unit 2, N. Fence, N of W. Side of Screen House	8.37 ± 0.35	7.45 ± 0.46	7.67 ± 0.50	7.80 ± 0.51	315° at 0.1 miles
87*	Unit 2, N. Fence, N. of E. Side of Screen House	8.10 ± 0.52	7.82 ± 0.35	7.89 ± 0.38	7.95 ± 0.56	341° at 0.1 miles
88*	Hickory Grove Rd., Pole #2, 0.6 mi. N. of Rt. 1	4.28 ± 0.35	3.93 ± 0.19	3.82 ± 0.22	4.07 ± 0.23	97° at 4.5 miles

TABLE 6-10 (continued)

DIRECT RADIATION MEASUREMENT RESULTS – 2006

Results in Units of mrem/std. Month ± 1 Sigma

Location Number	Löcation	First Quarter	Secor Quart		Third Quarter	Fourth Ouarter	Dogress &	Distance (1)
89*	Leavitt Rd., Pole #16, 0.4 mi. S. of Rt.1	4.42 ± 0.21	4.31 ±	0.21	3.98 ± 0.22	4.34 ± 0.22	111° at	4.1 miles
90*	Rt. 104, Pole #300, 150 ft. E. of Keefe Rd.	3.94 ± 0.19	4.00 ±	0.16	3.60 ± 0.24	4.10 ± 0.20	135° at	4.2 miles
91*	Rt 51A, Pole #59, 0.8 mi. W. of Rt. 51	4.17 ± 0.38	3.74 ±	0.26	3.53 ± 0.20	3.96 ± 0.29	156° at	4.8 miles
92*	Maiden Lane Rd., Power Pole, 0.6 mi. S. of Rt. 104	4.30 ± 0.21	4.41 ±	0.20	4.18 ± 0.19	4.42 ± 0.23	183° at	4.4 miles
93*	Rt. 53 Pole 1-1, 120 ft. S. of Rt. 104	4.11 ± 0.17	4.10 ±	0.27	3.69 ± 0.23	4.13 ± 0.17	205° at	4.4 miles
94*	Rt. 1, Pole #82, 250 ft. E. of Kocher Rd. (Co. Rt. 63)	3.95 ± 0.20	3.80 ±	0.24	3.53 ± 0.16	3.84 ± 0.22	223° at	4.7 miles
95*	Alcan W access Rd., Joe Fultz Blvd, Pole #21	3.85 ± 0.24	3.54 ±	0.24	3.29 ± 0.21	3.60 ± 0.19	237° at	4.1 miles
96*	Creamery Rd., 0.3 mi. S. of Middle Rd., Pole 1-1/2	4.17 ± 0.26	3.98 ±	0.16	3.71 ± 0.25	3.96 ± 0.26	199° at	3.6 miles
97*	Rt. 29, Pole #50, 200ft. N. of Miner Rd.	4.21 ± 0.21	4.09 ±	0.24	3.72 ± 0.22	4.09 ± 0.21	143° at	1.8 miles
98*	Lake Rd., Pole #145, 0.15 mi. E. of Rt 29	4.36 ± 0.31	4.23 ±	0.17	3.87 ± 0.17	4.23 ± 0.18	101° at	1.2 miles
99	NMP Rd., 0.4 mi. N. of Lake Rd., Env. Station R1	4.60 ± 0.18	4.16 ±	0.21	4.08 ± 0.22	4.25 ± 0.22	88° at	1.8 miles
100	Rt. 29 & Lake Rd., Env. Station R2	4.34 ± 0.21	4.19 ±	0.19	3.96 ± 0.17	4.18 ± 0.28	104° at	1.1 miles
101	Rt. 29, 0.7 mi. S. of Lake Rd., Env. Station R3	3.86 ± 0.24	3.75 ±	0.20	3.53 ± 0.17	3.85 ± 0.23	132° at	1.5 miles
102	EOF/Env. Lab, Rt 176, E. Driveway, Lamp Post	4.23 ± 0.22	3.94 ±	0.19	3.81 ± 0.21	4.15 ± 0.28	175° at	11.9 miles
103	EIC, East Garage Rd., Lamp Post	4.81 ± 0.21	4.26 ±	0.26	4.33 ± 0.23	4.56 ± 0.23	267° at	0.4 miles
104	Parkhurst Rd., Pole #23, 0.1 mi. S. of Lake rd.	4.22 ± 0.21	4.11 ±	0.19	3.96 ± 0.20	4.06 ± 0.25	102° at	1.4 miles
105	Lake view Rd. Pole #36, 0.5 mi. S. of Lake Rd.	4.36 ± 0.22	4.28 ±	0.31	3.94 ± 0.16	4.21 ± 0.23	198° at	1.4 miles
106	Shoreline Cove, W. of NMP-1, Tree on W. Edge	5.94 ± 0.36	5.31 ±	0.47	5.25 ± 0.22	5.12 ± 0.24	274° at	0.3 miles
107	Shoreline Cove, W. of NMP-1, 30 ft SSW of #106	5.42 ± 0.57	4.80 ±	0.31	5.20 ± 0.35	5.12 ± 0.24	272° at	0.3 miles
108	Lake Rd., Pole #142, 300 ft E. of Rt. 29 S.	4.45 ± 0.18	4.13 ±	0.18	4.09 ± 0.17	4.22 ± 0.28	104° at	1.1 miles
109	Tree North of Lake Rd., 300 ft E. of Rt. 29 N	4.44 ± 0.24	4.00 ±	0.23	4.15 ± 0.17	4.21 ± 0.20	103° at	1.1 miles
111	State Route 38, Sterling NY - Control	4.15 ± 0.20	3.75 ±	0.24	3.72 ± 0.25	3.89 ± 0.26	166° at	26.4 miles
112	EOF/Env. Lab, Oswego County Airport	4.39 ± 0.35	3.76 ±	0.19	3.84 ± 0.21	3.73 ± 0.17	175° at	11.9 miles
113	Baldwinsville, NY - Control	3.85 ± 0.16	3.45 ±	0.23	3.47 ± 0.24	3.76 ± 0.20	214° at	21.8 miles

⁽¹⁾ Direction and distance based on NMP-2 reactor centerline and sixteen 22.5° sector grid

^{*} TLD required by ODCM

TABLE 6-11

CONCENTRATIONS OF IODINE-131 AND GAMMA EMITTERS IN MILK – 2006

Results in Units of pCi/liter ± 1 Sigma

		Sample Locati	on*** No. 5	55**		
Collection Date	I-131	K-40	Cs-134	Cs-137	Ba/La	Others †
04/03/06	< 0.782	1410 ± 87	<7.90	<7.36	<10.10	< LLD
04/16/06	< 0.740	1670 ± 94	<7.87	<7.99	<13.48	< LLD
05/08/06	< 0.717	1480 ± 90	<8.24	<6.04	<7.31	< LLD
05/22/06	< 0.831	1660 ± 112	<9.92	<9.62	<2.27	< LLD
06/05/06	< 0.789	1630 ± 104	< 6.87	<8.72	<11.60	< LLD
06/19/06	<0.688	1680 ± 103	<10.20	<8.72	<9.20	. <lld< td=""></lld<>
07/10/06	< 0.706	1600 ± 97	<9.19	<9.29	<11.20	< LLD
07/24/06	< 0.736	1510 ± 93	<9.35	<8.25	<4.89	< LLD
08/07/06	< 0.529	1500 ± 95	<9.83	<9.12	<7.18	< LLD
08/21/06	< 0.773	1460 ± 91	<8.80	<6.93	<9.18	< LLD
09/11/06	< 0.546	1610 ± 101	<7.58	<10.40	<10.30	< LLD
09/25/06	< 0.798	1790 ± 122	<9.80	<12.40	< 8.65	<lld< td=""></lld<>
10/10/06	< 0.818	1460 ± 93	<8.51	<9.12	<9.39	< LLD
10/23/06	< 0.751	1420 ± 94	<9.19	<7.68	<10.10	< LLD
11/06/06	<0.800	1610 ± 80	< 5.70	<7.47	<9.12	< LLD
11/20/06	< 0.849	1460 ± 119	<9.45	<9.49	<12.30	< LLD
12/04/06	< 0.842	1640 ± 96	<8.54	<7.38	<5.79	< LLD
12/18/06	< 0.759	1580 ± 106	<9.16	<8.19	<9.07	< LLD

		Sample Locat	ion*** No.	4**		
Collection Date	I-131	K-40	Cs-134	Cs-137	Ba/La	Others †
04/03/06	< 0.806	1500 ± 88	<6.40	<7.32	<8.66	< LLD
04/16/06	< 0.690	1370 ± 98	<8.99	<9.98	<14.70	< LLD
05/08/06	< 0.646	1730 ± 103	<5.61	<8.93	<11.60	< LLD
05/22/06	< 0.832	1440 ± 98	<7.73	<7.24	<7.54	< LLD
06/05/06	< 0.623	1530± 93	<7.49	<7.17	<10.80	< LLD
06/19/06	< 0.785	1520 ± 95	<7.68	<7.58	<11.40	< LLD
07/10/06	< 0.748	1660 ± 101	<9.40	<8.01	<10.90	< LLD
07/24/06	< 0.756	1550 ± 95	<6.78	<7.41	<8.12	< LLD
08/07/06	< 0.496	1430 ± 93	<8.98	<9.29	<8.88	< LLD
08/21/06	< 0.757	1470 ± 95	<6.22	<8.15	<9.82	< LLD
09/11/06	< 0.567	1440 ± 100	<10.30	<8.63	<9.96	< LLD
09/25/06	< 0.812	1480 ± 130	<14.80	<11.80	<3.40	<lld< td=""></lld<>
10/10/06	< 0.831	1580 ± 97	<8.09	<8.41	<10.2	< LLD
10/23/06	< 0.819	1680 ± 87	<4.83	<6.54	<6.25	< LLD
11/06/06	< 0.794	1500 ± 107	<13.40	<10.40	<10.30	< LLD
11/20/06	< 0.793	1670 ± 107	<8.46	<8.55	<9.33	< LLD
12/04/06	< 0.769	1450 ± 77	<4.96	<6.37	<4.41	< LLD
12/18/06	< 0.796	1430 ± 120	<10.30	<13.40	<11.90	< LLD

[†] Plant related radionuclides

^{**} Optional sample location

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-11 (continued)

CONCENTRATIONS OF IODINE-131 AND GAMMA EMITTERS IN MILK – 2006 Results in Units of pCi/liter ± 1 Sigma

		Sample Location	on*** No. 76	**		
Collection Date	I-131	K-40	Cs-134	Cs-137	∃Ba/La	Others †
04/03/06	<0.719	1550 ± 94	<9.20	<7.54	<8.31	< LLD
04/16/06	< 0.769	1520 ± 129	<11.50	<11.20	<14.50	< LLD
05/08/06	< 0.843	1420 ± 67	<4.40	<5.82	<6.39	< LLD
05/22/06	< 0.806	1400 ± 102	<10.50	<9.52	<11.40	< LLD
06/05/06	<.0.656	1640 ± 86	<7.40	<8.79	<6.82	< LLD
06/19/06	< 0.843	1590 ± 96	<9.79	<9.70	<11.80	< LLD
07/10/06	< 0.826	1540 ± 71	<4.85	<6.30	<4.80	< LLD
07/24/06	< 0.845	1650 ± 87	<8.40	<8.35	<5.59	< LLD
08/07/06	< 0.488	1710 ± 88	<6.35	<7.91	<6.83	< LLD
08/21/06	< 0.802	1650 ± 125	<11.00	<11.50	<8.25	< LLD
09/11/06	< 0.571	1460 ± 103	<8.65	<7.95	<12.50	< LLD
09/25/06	< 0.783	1630 ± 118	<12.00	<10.30	<12.30	<lld< td=""></lld<>
10/10/06	< 0.809	1760 ± 89	<6.82	<7.76	<6.25	< LLD
10/23/06	< 0.836	1650 ± 73	<4.62	<5.99	<7.31	< LLD
11/06/06	<0.797	1630 ± 116	<12.70	<9.06	<13.60	< LLD
1 1/20/06	<0.808	1450 ± 115	<12.80	<8.84	<9.41	< LLD
12/04/06	<0,772	1500 ± 121	<10.40	<11.90	<11.70	< LLD
12/18/06	< 0.776	1410 ± 106	<9.75	<8.10	<13.60	< LLD

	dediti	Sample Location 1	No. 77*** (C	ontrol)		
Collection Date	I-131	K-40	Cs-134	Cs-137	Ba/La	Others †
04/03/06	< 0.807	1700 ± 95	<6.60	<7.01	<7.23	< LLD
04/16/06	< 0.793	1750 ± 120	<9.26	<11.90	<12.90	< LLD
05/08/06	< 0.733	1570 ± 97	<8.64	<8.48	<8.44	< LLD
05/22/06	< 0.760	1590 ± 79	<8.64	<7.41	<6.49	< LLD
06/05/06	< 0.818	1700 ± 74	<4.05	<6.35	<6.07	< LLD
06/19/06	< 0.756	1680 ± 72	<4.15	<6.60	<6.70	< LLD
07/10/06	< 0.700	1480 ± 94	<7.95	<7.01	<7.19	< LLD
07/24/06	< 0.679	1360 ± 105	<9.49	<7.76	<13.60	< LLD
08/07/06	< 0.633	1620 ± 124	<12.00	<9.31	<11.80	< LLD
08/21/06	< 0.813	1610 ± 62	<5.41	<5.81	<4.68	< LLD
09/11/06	< 0.725	1480 ± 105	<10.52	<5.59	<13.60	< LLD
09/25/06	< 0.782	1430 ± 112	<13.20	<8.95	<12.80	<lld< td=""></lld<>
10/10/06	< 0.837	1620 ± 122	<12.30	<9.73	<10.10	< LLD
10/23/06	< 0.706	1520 ± 95	<7.95	<7.54	<8.75	< LLD
11/06/06	< 0.845	1700 ± 99	<8.70	<8.17	<7.01	< LLD
11/20/06	< 0.815	1620 ± 89	<5.77	<7.07	<9.54	< LLD
12/04/06	< 0.830	1610 ± 108	<8.81	<9.52	<7.54	< LLD
12/18/06	< 0.836	1670 ± 113	<10.60	<8.30	<9.32	< LLD

[†] ** Plant related radionuclides

Optional sample location

Corresponds to sample location noted on Figure 3.3-4

TABLE 6-12

CONCENTRATION OF GAMMA EMITTERS IN FOOD PRODUCTS - 2006

Results in pCi/g (wet) ± 1 sigma

	Sample							
Site	Date	Description	Be-7	K-40	I-131	Cs-134	Cs-137	Zn-65
		Tomatoes	< 0.08	2.53 ± 0.12	< 0.01	< 0.01	< 0.01	< 0.02
132**	** 09/12/06	Pepper Leaves	0.761 ± 0.15	4.82 ± 0.49	< 0.05	< 0.05	< 0.05	< 0.13
		Zucchini Leaves	1.70 ± 0.17	3.57 ± 0.32	< 0.04	< 0.04	< 0.03	<0.08
		Tomatoes	< 0.07	2.70 ± 0.11	< 0.01	< 0.01	< 0.01	< 0.02
	•	Pepper Leaves	0.565 ± 0.11	6.32 ± 0.41	< 0.05	< 0.04	< 0.03	<0.08
133*	09/12/06	Squash Leaves	2.20 ± 0.16	3.20 ± 0.25	< 0.04	< 0.03	< 0.03	< 0.06
	07/12/00	Rhubarb Leaves	< 0.29	2.95 ± 0.35	< 0.05	< 0.03	< 0.03	< 0.06
		Collard Greens	0.278 ± 0.10	4.15 ± 0.36	< 0.03	< 0.03	< 0.03	< 0.06
		Zucchini Leaves	1.51 ± 0.15	3.06 ± 0.29	< 0.04	< 0.04	< 0.02	<0.08
134**	09/12/06	Grape Leaves	1.73 ± 0.16	3.29 ± 0.32	< 0.05	< 0.03	< 0.03	<0.09
	09/12/06	Corn Leaves	3.30 ± 0.21	3.58 ± 0.30	< 0.05	< 0.03	< 0.03	< 0.10
142**		Tomatoes	< 0.19	3.37 ± 0.26	< 0.03	< 0.03	< 0.03	< 0.06
		Grape Leaves	3.48 ± 0.25	3.44 ± 0.36	< 0.06	<0.04	< 0.03	<0.12

^{*} Sample location required by ODCM

** Optional sample location

Note: Other plant related nuclides <LLD

TABLE 6-12 (Continued)

CONCENTRATION OF GAMMA EMITTERS IN FOOD PRODUCTS - 2006

Results in pCi/g (wet) ± 1 sigma

Site	Sample Date	Description	Be-7	K-40	I-131	Cs-134	Cs-137	Zn-65
		Horseradish Leaves	0.611 ± 0.13	5.57 ± 0.34	< 0.05	< 0.03	< 0.03	<0.11
		Tomatoes	<0.08	2.41 ± 0.15	<0.01	<0.02	<0.01	<0.04
144**	09/12/06	Squash Leaves	3.31 ± 0.23	2.44 ± 0.31	<0.06	<0.04	< 0.03	<0.09
		Corn Leaves	2.22 ± 0.22	3.44 ± 0.36	< 0.06	< 0.05	<0.05	<0.09
		Pumpkin Leaves	5.05 ± 0.24	3.46 ± 0.30	< 0.06	< 0.03	<0.02	<0.03
	09/12/06	Tomatoes	<0.06	2.31 ± 0.12	<0.01	< 0.01	<0.01	<0.03
422**		Pepper Leaves	0.695 ± 0.09	5.74 ± 0.32	<0.03	<0.03	<0.02	<0.06
		Zucchini Leaves	1.62 ± 0.11	3.29 ± 0.21	<0.03	<0.02	<0.02	<0.06
		Rhubarb Leaves	0.293 ± 0.07	4.98 ± 0.29	< 0.03	<0.03	<0.02	<0.07
		Pumpkin Leaves	2.29 ± 0.13	4.67 ± 0.25	< 0.03	< 0.02	<0.02	<0.05
		Horseradish Leaves	0.259 ± 0.09	4.02 ± 0.29	<0.05	< 0.02	<0.02	<0.09
145* (Control)	09/11/06	Corn Leaves	1.52 ± 0.16	5.28 ± 0.33	< 0.05	<0.03	<0.03	<0.09
()		Tomatoes	<0.08	2.80 ± 0.13	<0.01	< 0.01	<0.01	<0.03
		Squash Leaves	1.28 ± 0.09	3.15 ± 0.19	<0.03	<0.02	<0.02	<0.06
		Zucchini Leaves	0.617 ± 0.14	3.04 ± 0.36	<0.06	<0.03	<0.03	<0.08

^{*} Sample location required by ODCM

** Optional sample location

Note: Other plant related nuclides <LLD

TABLE 6-13

MILK ANIMAL CENSUS - 2006

Town or Area ^(a)	Location Designation (1)	Degrees ⁽²⁾	Distance (2) (Miles)	Number of Milk Animals
Scriba	62	184°	6.6	4G
	75	145°	7.6	2G
	9	97°	4.8	40C
New Haven	4*	113°	7.8	80C
	64	107°	7.9	38C
	78	128°	8.0	2C
	14	123°	9.4	56C
	60	91°	9.5	25C
Mauina	76*	120°	6.3	30C
Mexico	55*	95°	9.0	50C
	21	112°	10.3	70C
	72	100°	9.6	38C
Sterling	73	234°	13.1	4C
Richland	22	90°	9.7	6C
Volney	66	156°	7.8	34C
Granby (Control)	77**	191°	13.9	60C

MILKING ANIMAL TOTALS:

533 Cows

(including control locations)

6 Goats

MILKING ANIMAL TOTALS: (excluding control locations)

473 Cows 6 Goats

NOTES:

- C Cows
- G Goats
- * Milk sample location
- ** Milk sample control location
- (1) Reference Figure 3.3-4
- (2) Degrees and distance are based on NMP-2 reactor building centerline
- (a) Census performed out to a distance of approximately 10 miles

TABLE 6-14

RESIDENCE CENSUS - 2006

Meteorological Sector	Location	Map Location ⁽¹⁾	Degrees (2)	Distance ⁽²⁾
N	*	-	_	_
NNE	*	-	-	-
NE	*	-	-	-
ENE	*	-	-	-
Е	West Sunset Bay Road	A	100°	1.3 miles
ESE	Lake Road	В	104°	1.1 miles
SE	County Route 29	С	125°	1.4 miles
SSE	Miner Road	D	158°	1.7 miles
S	Miner Road	Е	171°	1.6 miles
SSW	Lakeview Road	F	20 8 °	1.2 miles
SW	Lakeview Road	G	215°	1.1 miles
WSW	Bible Camp Retreat	Н	239°	0.9 miles
W	*	-	-	-
WNW	*	-	-	-
NW	*	-	-	-
NNW	*	-	-	-

NOTES:

- This meteorological sector is over Lake Ontario. There is no residence within five miles Corresponds to Figure 3.3-5
- (1)
- (2) Based on NMP2 reactor centerline

SECTION 7.0 HISTORICAL DATA TABLES

TABLE 7-1
HISTORICAL ENVIRONMENTAL SAMPLE DATA SHORELINE SEDIMENT (CONTROL) (1)

	Cs-137 (pCi/g (dry))		Co-60 (pCi/g (dry))			
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1979 (2)	0.22	0.22	0.22	LLD	LLD	LLD
1980	0.07	0.09	0.08	LLD	LLD	LLD
1981	LLD	LLD	LLD	LLD	LLD	LLD
1982	0.05	0.05	0.05	LLD	LLD	LLD
1983	LLD	LLD	LLD	LLD	LLD	LLD
1984	LLD	LLD	LLD	LLD -	LLD	LLD
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	LLD	LLD	LLD	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	0.03	0.03	0.03	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD

⁽¹⁾ Control location was at an area beyond the influence of the site (westerly direction).

⁽²⁾ Sampling was initiated in 1979. Sampling was not required prior to 1979.

TABLE 7-2 HISTORICAL ENVIRONMENTAL SAMPLE DATA SHORELINE SEDIMENT (INDICATOR) (1)

	Cs-137 (pCi/g (dry))		Co-60 (pCi/g (dry))			
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1979	(2)	(2)	(2)	(2)	(2)	(2)
1980	(2)	(2)	(2)	(2)	(2)	(2)
1981	(2)	(2)	(2)	(2)	(2)	(2)
1982	(2)	(2)	(2)	(2)	(2)	(2)
1983	(2)	(2)	(2)	(2)	(2)	(2)
1984	(2)	(2)	(2)	(2)	(2)	(2)
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	LLD	LLD	LLD	LLD	LLD .	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	0.25	0.34	0.30	LLD	LLD	LLD
1990	0.28	0.28	0.28	LLD	LLD	LLD
1991	0.11	0.16	0.14	LLD	LLD	LLD
1992	0.10	0.16	0.13	LLD	LLD	LLD
1993	0.17	0.49	0.33	LLD	LLD	LLD
1994	0.08	0.39	0.24	LLD	LLD	LLD
1995	0.16	0.17	0.16	LLD	LLD	LLD
1996	0.13	0.18	0.16	LLD	LLD	LLD
1997	0.13	0.18	0.16	LLD	LLD	LLD
1998	0.07	0.07	0.07	LLD	LLD	LLD
1999	0.06	0.09	0.08	LLD	LLD	LLD
2000	0.06	0.08	0.07	LLD	LLD	LLD
2001	0.06	0.07	0.07	LLD	LLD	LLD
2002	0.05	0.05	0.05	LLD	LLD	LLD
2003	0.04	0.05	0.05	LLD	LLD	LLD
2004	0.04	0.04	0.04	LLD	LLD	LLD
2005	0.06	0.09	0.08	LLD	LLD	LLD
2006	0.06	0.06	0.06	LLD	LLD	LLD

Location was off-site at Sunset Beach (closest location with recreational value).
 Sampling initiated in 1985 as required by Technical Specifications requirements.

TABLE 7-3
HISTORICAL ENVIRONMENTAL SAMPLE DATA FISH (CONTROL) (1)

	Cs-137 (pCi/g (wet))					
YEAR	MIN.	MAX.	MEAN			
1976	1.2	1.2	1.2			
1977	0.13	0.13	0.13			
1978	0.04	0.20	0.09			
1979	0.03	0.06	0.04			
1980	0.03	0.11	0.06			
1981	0.028	0.062	0.043			
1982	0.027	0.055	0.046			
1983	0.041	0.057	0.049			
1984	0.015	0.038	0.032			
1985	0.026	0.047	0.034			
1986	0.021	0.032	0.025			
1987	0.017	0.040	0.031			
1988	0.023	0.053	0.033			
1989	0.020	0.033	0.029			
1990	0.025	0.079	0.043			
1991	0.016	0.045	0.030			
1992	0.019	0.024	0.022			
1993	0.023	0.041	0.032			
1994	0.012	0.035	0.024			
1995	0.014	0.020	, 0.016			
1996	0.014	0.018	0.016			
1997	0.019	0.043	0.031			
1998	0.013	0.013	0.013			
1999	LLD	LLD	ĿLD			
2000	0.02	0.02	0.02			
2001	LLD	LLD	LLD			
2002	LLD	LLD	LLD			
2003	LLD	LLD	LLD			
2004	LLD	LLD	LLD			
2005	LLD	LLD	LLD			
2006	LLD	LLD	LLD			

⁽¹⁾ Control location was at an area beyond the influence of the site (westerly direction).

TABLE 7-4
HISTORICAL ENVIRONMENTAL SAMPLE DATA FISH (INDICATOR) (1)

	Cs-137 (pCi/g (wet))			
YEAR	MIN.	MAX	MEAN	
1976	0.5	3.9	1.4	
1977	0.13	0.79	0.29	
1978	0.03	0.10	0.08	
1979	0.02	0.55	0.10	
1980	0.03	0.10	0.06	
1981	0.03	0.10	0.06	
1982	0.034	0.064	0.048	
1983	0.033	0.056	0.045	
1984	0.033	0.061	0.043	
1985	0.018	0.044	0.030	
1986	0.009	0.051	0.028	
1987	0.024	0.063	0.033	
1988	0.020	0.074	0.034	
1989	0.020	0.043	0.035	
1990	0.024	0.115	0.044	
1991	0.021	0.035	0.027	
1992	0.013	0.034	0.026	
1993	0.021	0.038	0.030	
1994	0.011	0.028	0.020	
1995	0.016	0.019	0.018	
1996	0.014	0.016	0.015	
1997	0.015	0.017	0.016	
1998	0.021	0.021	0.021	
1999	0.016	0.018	0.017	
2000	LLD	LLD	LLD	
2001	LLD	LLD	LLD	
2002	0.016	0.016	0.016	
2003	LLD	LLD	LLD	
2004	LLD	LLD	LLD	
2005	LLD	LLD	LLD	
2006	LLD	LLD	LLD	

⁽¹⁾ Indicator locations are in the general area of the NMP1 and J. A. FitzPatrick cooling water discharge structures.

TABLE 7-5

HISTORICAL ENVIRONMENTAL SAMPLE DATA SURFACE WATER (CONTROL) (3)

	Cs-137 (pCi/liter)			Co	o-60 (pCi/liter	·)
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1976	(1)	(1)	(1)	(1)	(1)	(1)
1977	(2)	(2)	(2)	(2)	(2)	(2)
1978	LLD	LLD	LLD	(2)	(2)	(2)
1979	2.5	2.5	2.5	LLD	LLD	LLD
1980	LLD	LLD	LLD	LLD	LLD	LLD
1981	LLD	LLD	LLD	1.4	1.4	1.4
1982	. LLD	LLD	LLD	LLD	LLD	LLD
1983	LLD	LLD ·	LLD	LLD	LLD	LLD
1984	LLD	LLD	LLD	LLD	LLD	LLD
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	LLD	LLD	LLD	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	ĽĽD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	· LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD

⁽¹⁾ No gamma analyses performed (not required).

⁽²⁾ Data showed instrument background results.

⁽³⁾ Location was the City of Oswego Water Supply for 1976 - 1984 and the Oswego Steam Station inlet canal for 1985 – 2006.

TABLE 7-6 HISTORICAL ENVIRONMENTAL SAMPLE DATA **SURFACE WATER (INDICATOR)** (3)

	Cs-137 (pCi/liter)		Co-60 (pCi/liter)			
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1976	(1)	(1)	(1)	(1)	(1)	(1)
1977	(2)	(2)	(2)	(2)	(2)	(2)
1978	LĽĎ	LĽĎ	LLD	(2)	(2)	(2)
1979	LLD	LLD	LLD	LLD	LLD	LLD
1980	LLD	LLD	LLD	LLD	LLD	LLD
1981	LLD	LLD	LLD	LLD	LLD	LLD
1982	0.43	0.43	0.43	1.6	2.4	1.9
1983	LLD	LLD	LLD	LLD	LLD	LLD
1984	LLD	LLD	LLD	LLD	LLD	LLD
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	LLD	LLD	LLD	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD

No gamma analyses performed (not required). (1)

Data showed instrument background results.

⁽²⁾ (3) Location was the J. A. FitzPatrick inlet canal.

TABLE 7-7

HISTORICAL ENVIRONMENTAL SAMPLE DATA SURFACE WATER TRITIUM (CONTROL) (1)

	TRITIUM (pCi/liter)				
YEAR	MIN.	MAX.	MEAN.		
1976	440	929	652		
1977	300	530	408		
1978	215	490	304		
1979	174	308	259		
1980	211	290	257		
1981	211	328	276		
1982	112	307	165		
1983	230	280	250		
1984	190	220	205		
1985	230	370	278		
1986	250	550	373		
1987	140	270	210		
1988	240	460	320		
1989	180	660	373		
1990	260	320	290		
1991	180	200	190		
1992	190	310	242		
1993	160	230	188		
1994	250	250	250		
1995	230	230	230		
1996	LLD	LLD	LLD		
1997	LLD	LLD	LLD		
1998	190	190	190		
1999	220	510	337		
2000	196	237	212		
2001	LLD	LLD	LLD		
2002	LLD	LLD	LLD		
2003	LLD	LLD	LLD		
2004	LLD	LLD	LLD		
2005	LLD	LLD	LLD		
2006	LLD	LLD	LLD		

⁽¹⁾ Control location is the City of Oswego drinking water for 1976 – 1984 and the Oswego Steam Station inlet canal for 1985 – 2006.

TABLE 7-8

HISTORICAL ENVIRONMENTAL SAMPLE DATA SURFACE WATER TRITIUM (INDICATOR) (1)

	TRITIUM (pCi/liter)			
YEAR	MIN.	MAX.	MEAN	
1976	365	889	627	
1977	380	530	455	
1978	377	560	476	
1979	176	276	228	
1980	150	306	227	
1981	212	388	285	
1982	194	311	266	
1983	249	560	347	
1984	110	370	280	
1985	250	1200 (2)	530	
1986	260	500	380	
1987	160	410	322	
1988	430	480	460	
1989	210	350	280	
1990	220	290	250	
1991	250	390	310	
1992	240	300	273	
1993	200	280	242	
1994	180	260	220	
1995	320	320	320	
1996	LLD	LLD	LLD	
1997	160	160	160	
1998	190	190	190	
1999	180	270	233	
2000	161	198	185	
2001	LLD	LLD	LLD	
2002	297	297	297	
2003	LLD	LLD	LLD	
2004	LLD	LLD	LLD	
2005	LLD	LLD	LLD	
2006	LLD	LLD	LLD	

⁽¹⁾ Indicator location is the FitzPatrick inlet canal.

⁽²⁾ Suspect sample contamination. Recollected samples showed normal levels of tritium.

TABLE 7-9
HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR PARTICULATE GROSS BETA (CONTROL) (1)

	GROSS BETA (pCi/m³)				
YEAR	MIN.	MAX.	MEAN		
1977	0.001	0.484	0.125		
1978	0.01	0.66	0.16		
1979	0.010	0.703	0.077		
1980	0.009	0.291	0.056		
1981	0.016	0.549	0.165		
1982	0.011	0.078	0.033		
1983	0.007	0.085	0.024		
1984	0.013	0.051	0.026		
1985	0.013	0.043	0.024		
1986	0.008	0.272	0.039		
. 1987	0.009	0.037	0.021		
1988	0.008	0.039	0.018		
1989	0.007	0.039	0.017		
1990	0.003	0.027	0.013		
1991	0.006	0.028	0.014		
1992	0.006	0.020	0.012		
1993	0.007	0.022	0.013		
1994	0.008	0.025	0.015		
1995	0.006	0.023	0.014		
1996	0.008	0.023	0.014		
1997	0.006	0.025	0.013		
1998	0.004	0.034	0.014		
1999	0.010	0.032	0.017		
2000	0.006	0.027	0:015		
2001	0.006	0.034	0.016		
2002	0.008	0.027	0.016		
2003	0.004	0.032	0.015		
2004	0.008	0.032	0.016		
2005	0.008	0.034	0.019		
2006	0.007	0.033	0.016		

⁽¹⁾ Locations used for 1977 - 1984 were C offsite, D1 offsite, D2 offsite, E offsite, F offsite, and G offsite. Control location R-5 offsite was used for 1985 – 2006 (formerly C offsite location).

TABLE 7-10
HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR PARTICULATE GROSS BETA (INDICATOR) (1)

	GROSS BETA (pCi/m³)				
YEAR	MIN.	MAX.	MEAN		
1977	0.002	0.326	0.106		
1978	0.01	0.34	0.11		
1979	0.001	0.271	0.058		
1980	0.002	0.207	0.044		
1981	0.004	0.528	0.151		
1982	0.001	0.113	0.031		
1983	0.002	0.062	0.023		
1984	0.002	0.058	0.025		
1985	0.010	0.044	0.023		
1986	0.007	0.289	0.039		
1987	0.009	0.040	0.021		
1988	0.007	0.040	0.018		
1989	0.007	0.041	0.017		
1990	0.005	0.023	0.014		
1991	0.007	0.033	0.015		
1992	0.005	0.024	0.013		
1993	0.005	0.025	0.014		
1994	0.006	0.025	0.015		
1995	0.004	0.031	0.014		
1996	0.006	0.025	0.013		
1997	0.001	0.018	0.010		
1998	0.002	0.040	0.015		
1999	0.009	0.039	0.017		
2000	0.005	0.033	0.015		
2001	0.004	0.037	0.016		
2002	0.006	0.026	0.016		
2003	0.005	0.035	0.015		
2004	0.003	0.037	0.016		
2005	0.007	0.040	0.018		
2006	0.005	0.035	0.015		

⁽¹⁾ Locations used for 1977 - 1984 were D1 onsite, D2 onsite, E onsite, F onsite, G onsite, H onsite, I onsite, J onsite, and K onsite as applicable. 1985 – 2006 locations were R-1 offsite, R-2 offsite, R-3 offsite, and R-4 offsite.

TABLE 7-11

HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR PARTICULATES (CONTROL) (1)

	Cs-137 (pCi/m ³)		Co-60 (pCi/m ³)			
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1977	0.0002	0.0112	0.0034	0.0034	0.0347	0.0172
1978	0.0008	0.0042	0.0018	0.0003	0.0056	0.0020
1979	0.0008	0.0047	0.0016	0.0005	0.0014	0.0009
1980	0.0015	0.0018	0.0016	LLD	LLD	LLD
1981	0.0003	0.0042	0.0017	0.0003	0.0012	0.0008
1982	0.0002	0.0009	0.0004	0.0004	0.0007	0.0006
1983	0.0002	0.0002	0.0002	0.0007	0.0007	0.0007
1984	LLD	LLD	LLD	0.0004	0.0012	0.0008
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	0.0075	0.0311	0.0193	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD

⁽¹⁾ Locations included composites of C, D1, E, F, and G offsite air monitoring locations for 1977 - 1984. Sample location included only R-5 air monitoring location for 1985 - 2006.

TABLE 7-12

HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR PARTICULATES (INDICATOR) (1)

	Cs-137 (pCi/m ³)			Co-60 (pCi/m³)		
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1977	0.0001	0.0105	0.0043	0.0003	0.0711	0.0179
1978	0.0003	0.0026	0.0016	0.0003	0.0153	0.0023
1979	0.0003	0.0020	0.0010	0.0003	0.0007	0.0005
1980	0.0005	0.0019	0.0011	0.0016	0.0016	0.0016
1981	0.0002	0.0045	0.0014	0.0002	0.0017	0.0006
1982	0.0001	0.0006	0.0004	0.0003	0.0010	0.0005
1983	0.0002	0.0003	0.0002	0.0003	0.0017	0.0007
1984	LLD	LLD	LLD	0.0007	0.0017	0.0012
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	0.0069	0.0364	0.0183	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	0.0048	0.0048	0.0048
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD

⁽¹⁾ Locations included composites of D1, D2, E, F, G, H, I, J, and K onsite air monitoring locations for 1977 - 1984. Locations included R-1 through R-4 air monitoring locations for 1985 - 2006.

TABLE 7-13

HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR RADIOIODINE (CONTROL) (1)

	IODINE-131 (pCi/m ³)				
YEAR	MIN.	MAX.	MEAN		
1976	0.01	5.88	0.60		
1977	0.02	0.82	0.32		
1978	0.03	0.04	0.03		
1979	LLD	LLD	LLD		
1980	LLD	LLD	LLD		
1981	LLD	LLD	LLD		
1982	0.039	0.039	0.039		
1983	LLD	LLD	LLD		
1984	LLD	LLD	LLD		
1985	LLD	LLD	LLD		
1986	0.041	0.332	0.151		
1987	LLD	LLD	LLD		
1988	LLD	LLD	LLD		
1989	LLD	LLD	LLD		
1990	LLD	LLD	LLD		
1991	LLD	LLD	LLD		
1992	LLD	LLD	LLD		
1993	LLD	LLD	LLD		
1994	LLD	LLD	LLD		
1995	LLD	LLD	LLD		
1996	LLD	LLD	LLD		
1997	LLD	LLD	LLD		
1998	LLD	LLD	LLD		
1999	LLD	LLD	LLD		
2000	LLD	LLD	LLD		
2001	LLD	LLD	LLD		
2002	LLD	LLD	LLD		
2003	LLD	LLD	LLD		
2004	LLD	LLD	LLD		
2005	LLD	LLD	LLD		
2006	LLD	LLD	LLD		

⁽¹⁾ Locations D1 offsite, D2 offsite, E offsite, F offsite, and G offsite used for 1976 - 1984. Location R-5 offsite used for 1985 – 2006.

TABLE 7-14

HISTORICAL ENVIRONMENTAL SAMPLE DATA AIR RADIOIODINE (INDICATOR) (1)

	IODINE-131 (pCi/m ³)				
YEAR	i MiN	MAX	MEAN		
1976	0.01	2.09	0.33		
1977	0.02	0.73	0.31		
1978	0.02	0.07	0.04		
1979	LLD	LLD	LLD		
1980	0.013	0.013	0.013		
1981	0.016	0.042	0.029		
1982	0.002	0.042	0.016		
1983	0.022	0.035	0.028		
1984	LLD	LLD	LLD		
1985	LLD	LLD	LLD		
1986	0.023	0.360	0.119		
1987	0.011	0.018	0.014		
1988	LLD	LLD	LLD		
1989	LLD	LLD	LLD		
1990	LLD	LLD	LLD		
1991	LLD	LLD	LLD		
1992	LLD	LLD	LLD		
1993	LLD	LLD	LLD		
1994	LLD	LLD	LLD		
1995	LLD	LLD	LLD		
1996	LLD	LLD	LLD		
1997	LLD	LLD	LLD		
1998	LLD	LLD	LLD		
1999	LLD	LLD	LLD		
2000	LLD	LLD	LLD		
2001	LLD	LLD	LLD		
2002	LLD	LLD	LLD		
2003	LLD	LLD	LLD		
2004	LLD	LLD	LLD		
2005	LLD	LLD	LLD		
2006	LLD	LLD	LLD		

⁽¹⁾ Locations used for 1976 - 1984 were D1 onsite, D2 onsite, E onsite, F onsite, G onsite, H onsite, I onsite, J onsite, and K onsite, as applicable. Locations used for 1985 - 2006 were R1 offsite, R-2 offsite, R-3 offsite, and R-4 offsite.

TABLE 7-15 HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (CONTROL) (2)

	DOSE (mrem per standard month)				
YEAR	MIN.	MAX.	MEAN		
Preop	(1)	(1)	(1)		
1970	6.0	7.3	6. 7		
1971	2.0	6.7	4.3		
1972	2.2	6.2	4.4		
1973	2.2	6.9	4.7		
1974	2.7	8.9	5.6		
1975	4.8	6.0	5.5		
1976	3.2	7.2	5.4		
1977	4.0	8.0	5.3		
1978	3.3	4.7	4.3		
1979	3.3	5.7	4.7		
1980	3.8	5.8	4.9		
1981	3.5	5.9	4.8		
1982	3.8	6.1	5.1		
1983	4.9	7.2	5.8		
1984	4.7	8.2	6.2		
1985	4.5 (4.4)*	7.6 (6.8)*	5.6 (5.4)*		
1986	5.3 (5.5)*	7.5 (7.2)*	6.3 (6.3)*		
1987	4.6 (4.6)*	6.6 (5.8)*	5.4 (5.2)*		
1988	4.4 (4.8)*	6.8 (6.8)*	5.6 (5.4)*		
1989	2.9 (2.9)*	6.4 (5.6)*	4.7 (4.6)*		
1990	3.7 (3.7)*	6.0 (5.9)*	4.8 (4.6)*		
1991	3.8 (3.8)*	5.4 (5.3)*	4.5 (4.3)*		
1992	2.6 (2.6)*	5.0 (4.7)*	4.1 (3.9)*		
1993	3.4 (3.4)*	5.6 (5.2)*	4.4 (4.3)*		
1994	3.1 (3.1)*	5.0 (4.6)*	4.1 (3.9)*		
1995	3.4 (3.4)*	5.7 (4.9)*	4.4 (4.2)*		
1996	3.4 (3.4)*	5.6 (5.6)*	4.3 (4.2)*		
1997	3.7 (3.9)*	6.2 (5.2)*	4.7 (4.6)*		
1998	3.7 (3.7)*	5.6 (4.8)*	4.4 (4.2)*		
1999 2000	3.6 (3.7)*	7.1 (4.7)*	4.6 (4.4)*		
2000	3.7 (3.7)*	7.3 (5.5)* 5.4 (5.0)*	4.7 (4.3)*		
2001	3.6 (3.9)* 3.4 (3.4)*	5.4 (5.0)* 5.5 (5.2)*	4.4 (4.4)*		
2002	3.4 (3.4)*	5.5 (5.2)* 5.5 (4.8)*	4.3 (4.1)* 4.2 (4.2)*		
2003	3.4 (3.4)	5.9 (5.9)*	4.3 (4.5)*		
2005	3.3 (3.4)*	5.1 (4.5)*	4.1 (4.0)*		
2006	3.3 (3.3)*	5.3 (4.4)*	4.1 (4.0)*		

- Data not available.
- (2) TLD #8, 14, 49, 111 and 113 where applicable.
 ()* TLD result based on the ODCM required locations (TLD #14 and 49).

TABLE 7-16

HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (SITE BOUNDARY) (2)

	DOSE (mrem per standard month)			
YEAR	MIN.	MAX	MEAN	
Preop	(1)	(1)	(1)	
1970	(1)	(1)	(1)	
1971	(1)	(1)	(1)	
1972	(1)	(1)	(1)	
1973	(1)	(1)	(1)	
1974	(1)	(1)	(1)	
1975	(1)	(1)	(1)	
1976	(1)	(1)	(1)	
1977	(1)	(1)	(1)	
1978	(1)	(1)	(1)	
1979	(1)	(1)	(1)	
1980	(1)	(1)	(1)	
1981	(1)	(1)	(1)	
1982	(1)	(1)	(1)	
1983	(1)	(1)	(1)	
1984	(1)	(1)	(1)	
1985	4.1	12.6	6.2	
1986	4.4	18.7	7.0	
1987	4.4	14.3	6.1	
1988	3.4	17.9	6.4	
1989	2.8	15.4	5.9	
1990	3.6	14.8	5.8	
1991	3.2	16.7	5.7	
1992	3.2	10.4	4.8	
1993	3.3	11.6	5.3	
1994	2.8	12.4	5.2	
1995	3.5	9.6	5.4	
1996	3.2	9.1	5.2	
1997	3.5	10.2	5.9	
1998	3.7	9.4	5.4	
1999	3.3	12.3	5.8	
2000	3.6	10.0	5.5	
2001	3.6	10.3	5.7	
2002	3.5	9.4	5.4	
2003	3.2	8.9	5.4	
2004	3.3	10.8	5.6	
2005	3.4	9.2	5.5	
2006	3.5	9.2	5.4	

⁽¹⁾

No data available (not required prior to 1985). TLD locations initiated in 1985 as required by the new Technical Specifications. Includes TLD numbers 7, 18, 23, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, and 87. (2)

TABLE 7-17

HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (OFFSITE SECTORS) (2)

	DOSE (mrem per standard month)				
YEAR	MIN.	MAX.	MEAN		
Preop	(1)	(1)	(1)		
1970	(1)	(1)	(1)		
1971	(1)	(1)	(1)		
1972	(1)	(1)	(1)		
1973	(1)	(1)	(1)		
1974	(1)	(1)	(1)		
1975	(1)	(1)	(1)		
1976	(1)	(1)	(1)		
1977	(1)	(1)	(1)		
1978	(1)	(1)	(1)		
1979	(1)	(1)	(1)		
1980	(1)	(1)	(1)		
1981	(1)	(1)	(1)		
1982	(1)	(1)	(1)		
1983	(1)	(1)	(1)		
1984	(1)	(1)	(1)		
1985	4.0	7.1	5.0		
1986	4.6	8.6	6.0		
1987	4.3	6.0	5.2		
1988	3.8	7.0	5.3		
1989	2.5	6.8	4.9		
1990	3.6	6.3	4.7		
1991	3.6	5.6	4.5		
1992	2.9	5.0	4.1		
1993	3.4	6.3	4.5		
1994	3.0	5.1	4.0		
1995	3.2	5.2	4.2		
1996	3.2	5.3	4.2		
1997	3.5	5.8	4.5		
1998	3.5	5.0	4.2		
1999	3.6	5.6	4.4		
2000	3.4	6.6	4.5		
2001	3.6	5.4 5.2	4.4		
2002 2003	3.1	5.3	4.2		
2003	3.4 3.2	4.8 6.7	4.1		
2004	3.2	6.7 4.7	4.4		
2003	3.2	4.7 4.4	4.0		

⁽¹⁾ No data available (not required prior to 1985).

TLD locations initiated in 1985 as required by the new Technical Specifications. Includes TLD numbers 88, 89, 90, 91, 92, 93, 94, and 95.

TABLE 7-18

HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (SPECIAL INTEREST) (2) (3)

	DOSE (mrem per standard month)			
YEAR	MIN.	MAX.	MEAN	
Preop	(1)	(1)	(1)	
1970	(1)	(1)	(1)	
1971	(1)	(1)	(1)	
1972	(1)	(1)	(1)	
1973	(1)	(1)	(1)	
1974	(1)	(1)	(1)	
1975	(1)	(1)	(1)	
1976	(1)	(1)	(1)	
1977	(1)	(1)	(1)	
1978	(1)	(1)	(1)	
1979	(1)	(1)	(1)	
1980	(1)	(1)	(1)	
1981	(1)	(1)	(1)	
1982	(1)	(1)	(1)	
1983	(1)	(1)	(1)	
1984	(1)	(1)	. (1)	
1985	3.9	6.8	5. 3	
1986	4.8	8.2	6.1	
1987	3.5	6.0	5.1	
1988	3.9	6.6	5.3	
1989	2.1	7.0	4.8	
1990	3.2	6.3	4.7	
1991	2.9	5.6	4.4	
1992	3.0	4.8	4.1	
1993	3.2	5.8	4.5	
1994	2.9	4.8	4.0	
1995	3.4	4.9	4.3	
1996	3.2	5.3	4.2	
1997	3.5	5.4	4.5	
1998	3.7	4.9	4.3	
1999	3.6	5.5	4.4	
2000	3.6	6.3	4.5	
2001	3.8	5.0	4.3	
2002	3.5	4.7	4.1	
2003	3.4	5.0	4.2 4.2	
2004	3.0 3.4	5.9 4.7	3.9	
2005				
2006	3.5	4.6	4.0	

(1)

No data available (not required prior to 1985).
TLD locations initiated in 1985 as required by the new Technical Specifications. TLD's included are numbers (2)96, 58, 97, 56, 15, and 98.

TLD locations include critical residences and populated areas near the site.

TABLE 7-19

HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (ONSITE INDICATOR) (2)

	nth)		
YEAR	MIN.	MAX	MEAN
Preop	(1)	(1)	(1)
1970	4 .7	9.0	$\hat{6}.\hat{0}$
1971	1.5	7.7	4.7
1972	2.3	8.2	4.9
1973	3.0	24.4	6.6
1974	3.1	10.6	5.7
1975	4.6	16.0	7.3
1976	3.7	18.8	6.9
1977	3.0	15.3	5.7
1978	3.0	9.0	4.3
1979	2.7	8.3	4.3
1980	3.9	12.0	5.3
1981	4.1	11.8	5.8
1982	3.9	13.0	6.3
1983	5.0	16.5	6.9
1984	4.6	13.2	7.0
1985	4.7	15.9	6.3
1986	4.7	16.1	7.0
1987	4.0	11.4	5.8
1988	4.4	11.9	6.0
1989	2.7	14.5	6.0
1990	3.6	12.9	5.5
1991	3.2	11.6	5.1
1992	3.2	5.6	4.3
1993	3.1	13.6	5.2
1994	2.8	14.3	5.1
1995	3.5	28.6	6.2
1996	3.1	32.6	6.4
1997	3.5	28.8	7.7
1998	3.6	28.8	6.2
1999	3.3	28.4	6.6
2000	3.7	16.5	5.6
2001	3.8	14.5	5.6
2002	3.5	13.6	5.3
2003	3.2	12.9	5.3
2004	3.3	13.2	5.4
2005	3.4	14.1	5.4
2006	3.5	14.4	5.3

No data available.

⁽¹⁾ (2) Includes TLD numbers 3, 4, 5, 6, and 7 (1970 - 1973). Includes TLD numbers 3, 4, 5, 6, 7, 23, 24, 25, and 26 (1974 - 2006). Locations are existing or previous onsite environmental air monitoring locations.

TABLE 7-20
HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (OFFSITE INDICATOR) (2)

	DOSE (mrem per standard month)				
YEAR	MIN.	MAX.	MEAN		
Preop	(1)	(1)	(1)		
1970	5.0	8.0	$\hat{6.7}$		
1971	1.1	7.7	4.5		
1972	1.8	6.6	4.4		
1973	2.2	6.9	4.1		
1974	2.4	8.9	5.3		
1975	4.5	7.1	5.5		
1976	3.4	7.2	5.2		
1977	3.7	8.0	5.3		
1978	2.7	4.7	3.7		
1979	3.0	5.7	4.0		
1980	3.1	5.8	4.6		
1981	3.6	5.9	4.7		
1982	4.0	6.2	5.2		
1983	4.6	7.2	5.6		
1984	4.6	8.2	6.1		
1985	4.6	7.7	5.5		
1986	5.0	7.6	6.1		
1987	4.4	6.6	5.2		
1988	4.2	6.6	5.4		
1989	2.8	6.4	4.6		
1990	3.8	6.0	4.8		
1991	3.4	5.4	4.3		
1992	3.1	5.2	4.1		
1993	3.2	5.6	4.3		
1994	3.0	5.0	4.1		
1995	3.9	5.7	4.4		
1996	3.3	5.5	4.1		
1997	3.7	6.2	4.7		
1998 1999	3.9	5.6 7.1	4.4 4.6		
2000	3.8 3.8	7.1 7.3	4.6 4.6		
2000	3.8	7.3 5.9	4.6 4.5		
2001	3.6	5.5	4.3 4.4		
2002	3.0	5.5	4.4		
2003	3.1	6.5	4.5		
2004	3.6	5.1	4.2		
2006	3.9	5.3	4.2		
2000	3.7	J.J	7.2		

⁽¹⁾ No data available.(2) Includes TLD num

⁽²⁾ Includes TLD numbers 8, 9, 10, 11, 12, and 13 (offsite environmental air monitoring locations).

TABLE 7-21 HISTORICAL ENVIRONMENTAL SAMPLE DATA MILK (CONTROL) (2)

	Cs	Cs-137 (pCi/liter)		I-131 (pCi/liter)		r)
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1976	(1)	(1)	(1)	(1)	(1)	(1)
1977	(1)	(1)	(1)	(1)	(1)	(1)
1978	2.4	7.8	5.8	LLD	LLD	LLD
1979	LLD	LLD	LLD	LLD	LLD	LLD
1980	3.6	5.6	4.5	1.4	1.4	1.4
1981	3.9	3.9	3.9	LLD	LLD	LLD
1982	LLD	LLD	LLD	LLD	LLD	LLD
1983	LLD	LLD	LLD	LLD	LLD	LLD
1984	LLD	LLD .	LLD	LLD	LLD	LLD
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	5.3	12.4	8.4	0.8	29.0	13.6
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD

⁽¹⁾

No data available (samples not required). Location used was an available milk sample location in a least prevalent wind direction greater than ten miles (2) from the site.

TABLE 7-22
HISTORICAL ENVIRONMENTAL SAMPLE DATA
MILK (INDICATOR) (1)

	Cs	s-137 (pCi/lite	er)	I-1	31 (pCi/liter)	
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1976	4.0	15.0	9.3	0.02	45.00	3.20
1977	11.0	22.0	17.1	0.01	49.00	6.88
1978	3.4	33.0	9.9	0.19	0.19	0.19
1979	3.2	53.0	9.4	LLD	LLD	LLD
1980	3.2	21.0	8.1	0.3	8.8	3.8
1981	3.5	29.0	8.6	LLD	LLD	LLD
1982	3.5	14.0	5.7	LLD	LLD	LLD
1983	3.3	10.9	7.2	LLD	LLD	LLD
1984	LLD	LLD	LLD	LLD	LLD	LLD
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	6.1	11.1	8.6	0.3	30.0	5.2
1987	5.5	8.1	6.8	LLD	LLD	LLD
1988	10.0	10.0	10.0	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	0.50	0.50	0.50
1998	LLD	LLD	LĻD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD

⁽¹⁾ Locations sampled were available downwind locations within ten miles with high radionuclide deposition potential.

TABLE 7-23

HISTORICAL ENVIRONMENTAL SAMPLE DATA FOOD PRODUCTS (CONTROL) (2)

	Cs-137 (pCi/g (wet))			
YEAR	MIN.	MAX.	MEAN	
1976	(1)	(1)	(1)	
1977	(1)	(1)	(1)	
1978	(1)	(1)	(1)	
1979	(1)	(1)	(1)	
1980 (3)	0.02	0.02	0.02	
1981	LLD	LLD	LLD	
1982	LLD	LLD	LLD	
1983	LLD .	LLD	LLD	
1984	LLD	LLD	LLD	
1985 (4)	LLD	LLD	LLD	
1986	LLD	LLD	LLD	
1987	LLD	LLD	LLD	
1988	LLD	LLD	LLD	
1989	LLD	LLD	LLD	
1990	LLD	LLD	LLD	
1991	LLD	LLD	LLD	
1992	LLD	LLD	LLD	
1993	0.007	0.007	0.007	
1994	LLD	LLD	LLD	
1995	LLD	LLD	LLD	
1996	LLD	LLD	LLD	
1997	LLD	LLD	LLD	
1998	LLD	LLD	LLD	
1999	LLD	LLD	LLD	
2000	LLD	LLD	LLD	
2001	LLD	LLD	LLD	
2002	LLD	LLD	LLD	
2003	LLD	LLD	LLD	
2004	LLD	LLD	LLD	
2005	LLD	LLD	LLD	
2006	LLD	LLD	LLD	

⁽¹⁾ No data available (control samples not required).

⁽²⁾ Location was an available food product sample location in a least prevalent wind direction greater than ten miles from the site.

⁽³⁾ Data comprised of broadleaf and non-broadleaf vegetation (1980 - 1984).

⁽⁴⁾ Data comprised of broadleaf vegetation only (1985 - 2006).

TABLE 7-24

HISTORICAL ENVIRONMENTAL SAMPLE DATA FOOD PRODUCTS (INDICATOR) (1)

	Cs-137 (pCi/g (wet))				
YEAR	MIN.	MAX	MEAN		
1976 (2)	LLD	LLD	LLD		
1977	LLD	LLD	LLD		
1978	LLD	LLD	LLD		
1979	0.004	0.004	0.004		
1980	0.004	0.060	0.036		
1981	LLD	LLD	LLD		
1982	LLD	LLD	LLD		
1983	LLD	LLD	LLD		
1984	LLD	LLD	LLD		
1985 (3)	0.047	0.047	0.047		
1986	LLD	LLD	LLD		
1987	LLD	LLD	LLD		
1988	0.008	0.008	0.008		
1989	0.009	0.009	0.009		
1990	LLD	LLD	LLD		
1991	0.040	0.040	0.040		
1992	LLD	LLD	LLD		
1993	LLD	LLD	LLD		
1994	0.004	0.011	0.008		
1995	0.010	0.012	0.011		
1996	LLD	LLD	LLD		
1997	0.012	0.012	0.012		
1998	LLD	LLD	LLD		
1999	0.008	0.008	0.008		
2000	LLD	LLD	LLD		
2001	LLD	LLD	LLD		
2002	LLD	LLD	LLD		
2003	LLD	LLD	LLD		
2004	LLD	LLD	LLD		
2005	LLD	LLD	LLD		
2006	LLD	LLD	LLD		

⁽¹⁾ Indicator locations were available downwind locations within ten miles of the site and with high radionuclide deposition potential.

⁽²⁾ Data comprised of broadleaf and non-broadleaf vegetation (1976 - 1984).

Data comprised of broadleaf vegetation only (1985 – 2006).

SECTION 8.0 QUALITY ASSURANCE / QUALITY CONTROL PROGRAM

8.0 QA/QC PROGRAM

8.1 PROGRAM DESCRIPTION

The Offsite Dose Calculation Manuals (ODCM) for NMP1 and NMP2, Part II, Section 4.0 requires that the licensee participate in an Interlaboratory Comparison Program. The Interlaboratory Comparison Program shall include sample media for which samples are routinely collected and for which comparison samples are commercially available. Participation in an Interlaboratory Comparison Program ensures that independent checks on the precision and accuracy of the measurement of radioactive material in the environmental samples are performed as part of the Quality Assurance Program for environmental monitoring. To fulfill the requirement for an Interlaboratory Comparison Program, the JAFNPP Environmental Laboratory has engaged the services of two independent laboratories to provide quality assurance comparison samples. The two laboratories are Analytics, Incorporated in Atlanta, Georgia and the U.S. Department of Commerce's National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.

Analytics supplies sample media as blind sample spikes, which contain certified levels of radioactivity unknown to the analysis laboratory. These samples are prepared and analyzed using standard laboratory procedures. The results are submitted to Analytics, which issues a statistical summary report. The JAFNPP Environmental Laboratory uses predetermined acceptance criteria methodology for evaluating the laboratory's performance for Analytic's sample results.

In addition to the Analytics Program, the JAFNPP Environmental Laboratory participates in the NEI/NIST Measurement Assurance Program. In 1987, the nuclear industry established a Measurement Assurance Program at the National Bureau of Standards (now the National Institute of Standards and Technology) to provide sponsoring nuclear utilities an independent verification, traceable to NIST, of their capability to make accurate measurements of radioactivity, as described in NRC Regulatory Guide 4.15. The program includes distribution to sponsoring utilities, approximately six times a year. The samples are prepared by NIST to present specific challenges to participating laboratories. NIST supplies sample media as blind sample spikes. These samples are prepared and analyzed by the JAFNPP Environmental Laboratory and the results are submitted to the Entergy Nuclear Northeast representative, who uses predetermined acceptance criteria methodology for evaluating the laboratory's performance. The performance results along with the NIST Report of Test (Certifies what activities are present in the sample) are forwarded to the laboratory.

8.2 PROGRAM SCHEDULE

SAMPLE MEDIA	LABORATORY ANALYSIS	SAMPLE PROVIDER ANALYTICS
Water	Gross Beta	1
Water	Tritium	4
Water	I-131	2
Water	Mixed Gamma	2
Air	Gross Beta	2
Air	I-131	2
Air	Mixed Gamma	3
Milk	I-131	2
Milk	Mixed Gamma	2
Soil	Mixed Gamma	1
Vegetation	Mixed Gamma	1
TOTAL SA	AMPLE INVENTORY	22

8.3 ACCEPTANCE CRITERIA

Each sample result is evaluated to determine the accuracy and precision of the laboratory's analysis result. The sample evaluation method is discussed below.

8.3.1 SAMPLE RESULTS EVALUATION

Samples provided by Analytics and NIST are evaluated using what is specified as the NRC method. This method is based on the calculation of the ratio of results reported by the participating laboratory (QC result) to the Vendor Laboratory Known value (reference result).

An Environmental Laboratory analytical result is evaluated using the following calculation:

The value for the error resolution is calculated.

Using the appropriate row under the Error Resolution column in Table 8.3.1 below, a corresponding Ratio of Agreement interval is given.

The value for the ratio is then calculated.

If the value falls within the agreement interval, the result is acceptable.

TABLE 8.3.1

ERROR RESOLUTION	RATIO OF AGREEMENT
< 4	No Comparison
4 to 7	0.5-2.0
8 to 15	0.6-1.66
16 to 50	0.75-1.33
51 to 200	0.8-1.25
>200	0.85-1.18

This acceptance test is generally referred to as the "NRC" method. The NRC method generally results in an acceptance range of approximately \pm 25% of the known value when applied to sample results from the Analytics and NIST Interlaboratory Comparison Program. This method is used as the procedurally required assessment method and requires the generation of a deviation from QA/QC program report when results are unacceptable.

8.4 PROGRAM RESULTS SUMMARY

The Interlaboratory Comparison Program numerical results are provided on Table 8-1.

8.4.1 ANALYTICS QA SAMPLES RESULTS

Twenty QA blind spike samples were analyzed as part of Analytics 2006 Interlaboratory Comparison Program. The following sample media were evaluated as part of the comparison program.

• Air Charcoal Cartridge: I-131

• Air Particulate Filter: Mixed Gamma Emitters, Gross Beta

• Water: I-131, Mixed Gamma Emitters, Tritium, Gross Beta

• Soil: Mixed Gamma Emitters

• Milk: I-131, Mixed Gamma Emitters

• Vegetation: Mixed Gamma Emitters

The JAFNPP Environmental Laboratory performed 84 individual analyses on the 20 QA samples. Of the 84 analyses performed, 82 were in agreement using the NRC acceptance criteria for a 97.6% agreement ratio.

There were two non-conformities in the 2006 program.

8.4.1.1 ANALYTICS SAMPLE NONCONFORMITIES

Analytics Sample E4882-05, Ce-141 in Water Nonconformity No. 2006-01

A spiked mixed gamma in water sample supplied by Analytics, Inc., was analyzed in accordance with standard laboratory procedures. The sample contained a total of ten radionuclides for analysis. Ten of the ten radionuclides present were quantified. Nine of the ten radionuclides were quantified within the acceptable range. The mean result for Ce-141 was determined to be outside the QA Acceptance Criteria resulting in a sample nonconformity. The water sample was analyzed three times using three different detectors. An average Ce-141 value of 64.8 pCi/L was reported. The known result for the sample was 86.8 pCi/L as determined by the supplier. One of the three reported results was 72 pCi/L and resulted in an agreement when compared to the known of 86.8 pCi/L with a ratio of 0.83. The remaining 2 individual results were outside the acceptance criteria and had ratios to the known that ranged from 0.67 and 0.74. All of the analysis had relatively low count rate, which ranged from 3.9 counts per minute to 4.9 counts per minute.

An evaluation of the Ce-141 result was performed. The detector calibrations were reviewed to determine if the efficiency determination in the lower end (<500 KeV) of the calibration curve exhibited any anomalies. The efficiency curve evaluation showed that shape of the curve and the corresponding efficiency coefficients were within the normal range and compared favorably with the previous calibration. The

spectrum and peak search results were examined with no abnormalities identified. Ce-141 decays by beta minus with a 32.5 day half-life and a gamma ray energy of 145 KeV with a yield of 48%. No significant secondary gamma energies are produced in the Ce-141 decay scheme.

The combination of low sample activity and low net counts most likely resulted in an inaccurate sample result. The nonconforming analytical results for this sample media and radionuclide are not routine and does not indicate a programmatic deficiency in the analysis of Ce-141 in water samples or other environmental media. Confidence in the accurate analysis of Ce-141 can be demonstrated by other Ce-141 analytical results. The Ce-141 results for the other Quality Assurance samples analyzed as part of the 2006 Interlaboratory Comparison Program were all acceptable and are summarized below. These results demonstrate that at the time of sample analysis the gamma spectral analysis system was performing properly and was in control.

2006 Ce-141 Results

Sample ID	Medium	JAFNPP	Reference	Ratio
E4883-05	Filter pCi/filter	58.6 ± 1.6	61.4 ± 1	0.95
E5002-05	Milk pCi/liter	185.7 ± 4.0	184 ± 3.1	1.01
E5003-05	Soil pCi/g	0.241 ± 0.008	0.214 ± 0.004	1.13
E5005-05	Vegetation pCi/g	0.209 ± 0.007	0.223 ± 0.004	0.94
E5076-05	Water pCi/liter	94.2 <u>+</u> 2.61	88.0 ± 1.47	1.07
E5077-05	Filter pCi/filter	80.3 ± 1.41	78.6 ± 1.13	1.02
E5078-05	Milk pCi/liter	86.7 <u>+</u> 2.76	86.0 ± 1.44	1.01
E4963-09 *	Milk pCi/liter	98.4 ± 3.95	104 ± 1.5	0.94
E4997-09 *	Water pCi/liter	160 <u>+</u> 19	149 ± 2.5	1.07
E5073-09 *	Vegetation pCi/g	0.162 ± 0.003	0.153 ± 0.002	1.06
E5170-09 *	Water pCi/liter	284.3 ± 5.6	286 ± 5.0	0.99

Mean Ratio = 1.02

These results demonstrate that at the time of sample analysis the gamma spectral analysis system was performing properly and was in control. Historical results from the 2005 Interlaboratory Comparison program demonstrated the laboratory's ability to analyze Ce-141 accurate in low level environmental sample media. These results are summarized below:

^{*} Provided by laboratory client, NOT reported in Annual Report

2005 Ce-141 Results

Sample ID	Medium	JAF	Reference	Ratio
E-4488-05	Water pCi/liter	235±6	221±4	1.06
E-4713-05	Water pCi/liter	291±4	2 8 2±5	1.03
E-4489-05	Filter pCi/filter	157±3	155±3	1.01
E-4714-05	Filter pCi/filter	176±3	165±3	1.07
E-4585	Soil pCi/kg	173±2	182±3	0.95
E-4584-05	Milk pCi/liter	101±5	92±2	1.09
E-4715-05	Milk pCi/liter	237±4	233±4	1.02
E-4587	Vegetation pCi/kg	178±9	174±3	1.02
NIST 1801-20	Filter pCi/filter	1.89E5±475	1.96E5±2176	0.96
NIST-1800-10	Water pCi/G	1.47E5±441	1.48E5±1125	0.99

Mean Ratio = 1.02

The mean ratio for these samples relative to the known (reference) value was 1.02. The 2006 nonconformity is considered to be an isolated instance. The Ce-141 results for 2005 and 2006 program demonstrate that there is no systematic error or persistent low bias present in the analysis of samples for Ce-141 in water or other environmental sample media. No corrective actions were implemented as a result of this nonconformity.

Analytics Sample E5221-05, Gross Beta in Water Nonconformity No. 2006-02

A water sample, spiked with Cs-137, supplied by Analytics was analyzed for gross beta activity in accordance with standard laboratory procedures. Half of the 1 liter sample provided was evaporated such that any remaining residue would remain in a 2 inch stainless steel planchet. The planchet was then counted 3 times on a low background counter (LBC). An average Gross Beta value of 173 pCi/L was determined and reported for the sample. The known value for the sample was 249 pCi/L as determined by Analytics. The acceptable ratio of agreement for this sample was determined to be 0.8 to 1.25. The calculated ratio of sample results divided by the known value was 0.69, which fell outside the QA Acceptance Criteria. An investigation into the QA nonconformity was initiated.

A thorough review of all raw data and calculations used to determine the reported gross beta value was conducted with no errors noted. The original stainless steel planchet was then reanalyzed on a different LBC with no appreciable difference in the resulting gross beta value.

The remaining 500ml of E5221-05 was then analyzed by gamma spectroscopy, which confirmed Analytics known Cs-137 activity. Following the confirmation of the samples Cs-137 concentration, a duplicate gross beta analysis was performed on the remaining sample in accordance with standard laboratory procedures. A value of 245 pCi/L was obtained on the backup gross beta analysis, equivalent to 98% recovery of the known value.

Based on the difference between the initial and backup results, it is believed that some of the sample residue was removed from the original stainless steel planchet prior to counting. The missing material equates to 26cpm or 68dpm. All equipment used to process the original sample was checked for loose radioactive material, none was detected. The following procedure revision has been submitted to address this nonconformity: Add "Use caution when evaporating samples. Boiling or spattering may cause substantial sample losses and cross-contamination."

Historical Water Gross Beta Results

Sample ID	Medium	JAFNPP	Reference	Ratio
QAP-58 (2003)	Water Bq/liter	588±7	627±10	0.937
QAP-59 (2003)	Water Bq/liter	1796±17	1948±195	0.922
QAP-0403 (2004)	Water Bq/liter	1105±17	1170±117	0.944
A19773-05 (2005)	Water pCi/ml	1802±2	1830±46	0.985
E4458-80 (2005)	Water pCi/L	260±1.4	268±8.9	0.970

Mean Ratio = 0.95

The mean ratio for these samples relative to the known (reference) value was 0.95. The 2006 nonconformity is considered to be an isolated instance. The results for 2003 through 2005 demonstrate that there is no systematic error present in the analysis of samples for gross beta in water.

8.4.2 NIST QA SAMPLES RESULTS

In 2006, JAF Environmental Laboratory participated in the NEI/NIST Measurement Assurance Program. Two QA blind spike samples were analyzed. The following sample media were evaluated as part of the comparison program.

• Air Particulate Filter: Mixed Gamma Emitters

• Water: I-131, Tritium

The JAF Environmental Laboratory performed 7 individual analyses on the two QA samples. Of the 7 analyses performed, 7 were in agreement using the NRC acceptance criteria for a 100% agreement ratio.

There were no non-conformities in the 2006 program.

8.4.3 NUMERICAL RESULTS TABLES

TABLE 8-1 INTERLABORATORY INTERCOMPARISON PROGRAM Gross Beta Analysis of Air Particulate Filter

							REF	EREN	ICE		
	SAMPLE	,		JAFN	1PP I	LAB	L	AB*		RATIO	
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/filte	er. <u>+</u> 1	sigma	pCi/filte	er <u>+</u> 2	sigma	(1)	EVALUATION
6/8/2006	E5001-05	Filter	Gross Beta	64.8	±	1.20	60.0	±	2.00	1.08	Acceptable
12/7/2006	E5171-05	Filter	Gross Beta	99.5	±	1.45	86.0	±	2.87	1.16	Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).

Tritium Analysis of Water

							REF	EREN	CE		
	SAMPLE			JAFN	IPP L	AΒ	L	AB*		RATIO	
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/lite	r <u>+</u> 1 :	sigma	pCi/lite	er <u>+</u> 2 s	sigma	(1)	EVALUATION
3/23/2006	E4881-05	Water	H-3	4530	±	107	4210	±	140	1.08	Acceptable
7/14/2006	E5059-05	Water	H-3	933	±	84	750	±	25	1.24	Acceptable
9/14/2006	E5080-05	Water	H-3	832	±	82	903	±	30	0.92	Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).

Gross Beta Analysis of Water

					REFERENCE		
	SAMPLE			JAFNPP LAB	LAB*	RATIO	
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/liter ±1 sigma	pCi/liter ±2 sigma	(1)	EVALUATION
12/7/2006	E5221-05	Water	Gross Beta	173.0 ± 2.18	249 ± 8.29	0.69	Not Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).

I-131 Gamma Analysis of Air Charcoal

					REFERENCE		
	SAMPLE			JAFNPP LAB	LAB*	RATIO	
DATE	ID NO.	MEDIUM	ANALYSIS	pCi <u>+</u> 1 sigma	pCi <u>+</u> 2 sigma	(1)	EVALUATION
6/8/2006	E5004-05	Air	I-131	63.3 ± 2.42	66.0 ± 2.20	0.96	Acceptable
9/14/2006	E5079-05	Air	I-131	97.2 ± 2.5	91.9 ± 3.06	1.06	Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).

^{*} Sample provided by Analytics, Inc.

Gamma Analysis of Water

							REFE	EREN	ICE		
	SAMPLE			JAFNPP LAB			L	AB*		RATIO	
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/lite	r <u>+1</u>	sigma	pCi/liter <u>+</u> 2 sigma			(1)	EVALUATION
3/23/2006	E4882-05	Water	Ce-141	64.8	±	3.7	86.8	±	2.9	0.75	Not Acceptable
	i		Cr-51	263.0	±	17.8	234.0	±	7.8	1.12	Acceptable
			Cs-134	107.0	±	3.4	101.0	±	3.4	1.06	Acceptable
			Cs-137	71.8	±	2.9	74.3	±	2.5	0.97	Acceptable
			Co-58	79.0	±	3.1	87.5	±	2.9	0.90	Acceptable
			Mn-54	85.1	±	3.1	78.1	±	2.6	1.09	Acceptable
			Fe-59	79.5	±	3.6	72.4	±	2.4	1.10	Acceptable
			Zn-65	156.0	±	6.3	148.0	±	4.9	1.05	Acceptable
			Co-60	104.0	±	2.5	107.0	±	3.6	0.97	Acceptable
			I-131**	71.9	±	0.9	67.4	±	2.3	1.07	Acceptable
9/14/2006	E5076-05	Water	Ce-141	94.2	±	2.6	88.0	±	2.9	1.07	Acceptable
			Cr-51	288.7	±	13.1	288.0	±	9.6	1.00	Acceptable
			Cs-134	94.1	±	1.9	87.0	±	2.9	1.08	Acceptable
			Cs-137	173.0	±	2.4	179.0	±	6.0	0.97	Acceptable
			Co-58	115.0	±	2.1	112.0	±	3.7	1.03	Acceptable
			Mn-54	124.3	±	2.1	115.0	±	3.8	1.08	Acceptable
			Fe-59	47.9	±	1.9	44.7	±	1.5	1.07	Acceptable
			Zn-65	148.0	±	3.9	148.0	±	4.9	1.00	Acceptable
			Co-60	139.0	±	1.7	137.0	±	4.6	1.01	Acceptable
			I-131**	86.1	±	1.2	79.9	±	2.66	1.08	Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).

^{*} Sample provided by Analytics, Inc.

^{**} Result determined by Resin Extraction/Gamma Spectral Analysis.

Gamma Analysis Milk

			REFERENCE								
	SAMPLE			JAFNI	PP L	AΒ		AB*	ICL	RATIO	
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/liter			pCi/liter ±2 sigma			(1)	EVALUATION
6/8/2006	E5002-05	Milk	Ce-141	185.7	±	4.0	184.0	±	6.1	1.01	Acceptable
			Cr-51	257.7	±	16.9	259.0	±	8.6	0.99	Acceptable
			Cs-134	128.0	±	3.0	127.0	±	4.2	1.01	Acceptable
			Cs-137	112.7	±	2.8	117.0	±	3.9	0.96	Acceptable
			Co-58	98.8	±	2.6	100.0	±	3.3	0.99	Acceptable
			Mn-54	153.3	±	3.2	146.0	±	4.9	1.05	Acceptable
			Fe-59	94.8	±	3.4	93.6	±	3.1	1.01	Acceptable
			Zn-65	191.0	±	6.0	185.0	±	6.2	1.03	Acceptable
			Co-60	127.3	±	2.3	129.0	±	4.3	0.99	Acceptable
			I-131**	61.9	±	0.9	63.2	±	2.1	0.98	Acceptable
9/14/2006	E5078-05	Milk	Ce-141	86.7	±	2.8	86.0	±	2.9	1.01	Acceptable
			Cr-51	285.3	±	14.2	282.0	<u>±</u>	9.4	1.01	Acceptable
			Cs-134	89.5	±	2.2	85.0	±	2.8	1.05	Acceptable
			Cs-137	170.0	±	2.4	175.0	±	5.8	0.97	Acceptable
			Co-58	105.0	±	2.3	109.0	±	3.7	0.96	Acceptable
			Mn-54	117.7	±	2.2	113.0	±	3.8	1.04	Acceptable
			Fe-59	47.5	±	2.4	43.7	±	1.5	1.09	Acceptable
			Zn-65	147.7	±	4.2	145.0	±	4.8	1.02	Acceptable
			Co-60	129.3	±	1.8	134.0	±	4.5	0.97	Acceptable
			I-131**	72.7	±	1.3	73.8	±	2.46	0.99	Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).

^{*} Sample provided by Analytics, Inc.

^{**} Result determined by Resin Extraction/Gamma Spectral Analysis.

Gamma Analysis of Air Particulate Filters

							1	ERE			
	SAMPLE			JAFNPP LAB			LAB*			RATIO	
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/filt	er <u>+</u> 1	sigma	pCi/filter <u>+</u> 2 sigma			(1)	EVALUATION
3/23/2006	E4883-05	Filter	Ce-141	58.6	±	1.60	61.4	±	2.05	0.95	Acceptable
			Cr-51	169.0	±	10.3	166.0	±	5.52	1.02	Acceptable
			Cs-134	74.0	±	3.90	71.5	±	2.38	1.03	Acceptable
			Cs-137	51.8	±	2.10	52.5	±	1.75	0.99	Acceptable
			Co-58	60.5	±	2.40	61.9	±	2.06	0.98	Acceptable
			Mn-54	61.5	±	2.40	55.3	±	1.84	1.11	Acceptable
			Fe-59	55.6	±	2.90	51.3	±	1.71	1.08	Acceptable
			Zn-65	115.0	±	5.50	104.0	±	3.48	1.11	Acceptable
			Co-60	72.5	±	2.10	75.6	±	2.52	0.96	Acceptable
9/14/2006	E5077-05	Filter	Ce-141	80.3	±	1.41	78.6	±	2.62	1.02	Acceptable
			Cr-51	266.3	±	9.88	257.0	±	8.57	1.04	Acceptable
			Cs-134	84.1	±	2.03	77.7	±	2.59	1.08	Acceptable
			Cs-137	159.7	±	2.24	160.0	±	5.33	1.00	Acceptable
			Co-58	101.3	±	2.03	99.8	±	3.33	1.01	Acceptable
			Mn-54	112.0	±	2.01	103.0	±	3.42	1.09	Acceptable
			Fe-59	46.1	±	1.98	39.9	±	1.33	1.15	Acceptable
			Zn-65	147.7	±	4.09	132.0	±	4.41	1.12	Acceptable
			Co-60	119.7	±	1.71	122.0	±	4.07	0.98	Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).

Gamma Analysis of Soil

				aiiiiia Ai	larys	13 01 5011					
						REFERENCE					
	SAMPLE			JA	JAF LAB		LAB*		RATIO		
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/gram ±1 sigma		pCi/gram <u>+</u> 2 sigma		(1)	EVALUATION		
6/8/2006	E5003-05	Soil	Ce-141	0.241	±	0.008	0.214	±	0.007	1.13	Acceptable
			Cr-51	0.349	±	0.036	0.302	±	0.010	1.16	Acceptable
			Cs-134	0.162	±	0.006	0.147	±	0.005	1.10	Acceptable
			Cs-137	0.249	±	0.007	0.237	±	0.008	1.05	Acceptable
			Co-58	0.114	±	0.004	0.117	±	0.004	0.97	Acceptable
			Mn-54	0.185	±	0.006	0.170	±	0.006	1.09	Acceptable
			Fe-59	0.120	±	0.007	0.109	±	0.004	1.10	Acceptable
			Zn-65	0.236	±	0.010	0.216	±	0.007	1.09	Acceptable
			Co-60	0.155	±	0.004	0.150	±	0.005	1.04	Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).

^{*} Sample provided by Analytics, Inc.

^{*} Sample provided by Analytics, Inc.

Gamma Analysis of Vegetation

							REFERENCE				
	SAMPLE			JAFNPP LAB		LAB*		RATIO			
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/gram ±1 sigma		pCi/gram <u>+</u> 2 sigma		(1)	EVALUATION		
6/8/2006	E5005-05	Vegetation	Ce-141	0.209	±	0.007	0.223	±	0.007	0.94	Acceptable
			Cr-51	0.293	±	0.034	0.315	±	0.011	0.93	Acceptable
			Cs-134	0.159	±	0.007	0.154	<u>±</u>	0.005	1.03	Acceptable
			Cs-137	0.127	±	0.006_	0.143	±_	0.005	0.89	Acceptable
			Co-58	0.109	±	0.006	0.122		0.004	0.90	Acceptable
			Mn-54	0.160	±	0.006	0.178	<u>±</u>	0.006	0.90	Acceptable
			Fe-59	0.105	±	0.008	0.114	±	0.004	0.92	Acceptable
			Zn-65	0.207	±	0.013	0.225	±	0.008	0.92	Acceptable
			Co-60	0.140	±	0.005	0.156	±	0.005	0.90	Acceptable

⁽¹⁾ Ratio = Reported/Analytics (See Section 8.3).
* Sample provided by Analytics, Inc.

Analysis of water

	SAMPLE			JAFNPP LAB			REFERI	ENC	E LAB*	RATIO	
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/gram <u>+</u> 1 sigma			pCi/gram <u>+</u> 2 sigma			(1)	EVALUATION
2/15/2006	1831-3	Water	1-131	2.06E+06	±	2.77E+04	2.09E+06	±	1.47E+04	0.99	Acceptable
			H-3	1.12E+06	±	3.11E+03	1.11E+06	±	8.86E+03	1.01	Acceptable

⁽¹⁾ Ratio = Reported/NIST (See Section 8.3).

Gamma Analysis of Filter

	Gainina Analysis of Filter												
	SAMPLE			JAFNPP LAB			REFERENCE LAB*			RATIO			
DATE	ID NO.	MEDIUM	ANALYSIS	pCi/filter ±1 sigma			pCi/filter <u>+</u> 2 sigma			(1)	EVALUATION		
6/8/2006	1851-16	Filter	Mn-54	3.08E+04	±	158	2.80E+04	±	280	1.10	Acceptable		
			Co-57	3.74E+04	±	94	3.36E+04	±	336	1.11	Acceptable		
			Fe-59	1.01E+05	±	1418	8.91E+04	±	891	1.13	Acceptable		
			Se-75	5.24E+04	±	508	5.61E+04	±	561	0.93	Acceptable		
			Cs-134	3.00E+04	±	143	2.76E+04	±	276	1.09	Acceptable		

⁽¹⁾ Ratio = Reported/NIST (See Section 8.3).

^{*} Sample provided by NIST

^{*} Sample provided by NIST

8.5 REFERENCES

- 8.5.1 Radioactivity and Radiochemistry, <u>The Counting Room: Special Edition</u>, 1994 Caretaker Publications, Atlanta, Georgia.
- 8.5.2 <u>Data Reduction and Error Analysis for the Physical Sciences</u>, Bevington P.R., McGraw Hill, New York (1969).