a mart m

An Exelon Company

AmerGen Energy Company, LLC Three Mile Island Unit 1 Route 441 South, P.O. Box 480 Middletown, PA 17057 Telephone: 717-948-8000

April 30, 2007 5928-07-20096

U. S. Nuclear Regulatory Commis sion Washington, DC 20555

Attn: Document Control Desk

SUBJECT: THREE MILE ISLAND NUCLEAR STATION UNIT 1 AND UNIT 2 OPERATING LICENSE NO. DPR-50 AND POSSESSION ONLY LICENSE NO. DPR 73 DOCKET NOS. 50-289 AND 50-320 COMBINED 2006 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

The 2006 Annual Radioactive Effluent Release Report required by TMI-1 Technical Specification 6.9.4.1, TMI-2 Technical Specifications 6.8.1.2, and 6.12, and the Off-Site Dose Calculation Manual Part 4, Section 2.1 is enclosed. Also, an errata report for the 2005 Annual Radioactive Effluent Release Report is submitted in Attachment 11.

Attachment 1 contains a summary of the quantities of radioactive liquid and gaseous effluents released from the site as outlined in Reg. Guide 1.21, Rev. 1, with data summarized on a quarterly basis following the format of Appendix B thereof.

Attachment 2 contains information for each type of solid waste shipped offsite during the report period including the container volume, total curie quantity (specified as determined by measurement or estimate), principal radionuclides (specified as determined by measurement or estimate), type of waste, type of shipment and solidification agent(s).

Attachment 3 includes a summary of unplanned releases from the site to unrestricted areas of radioactive materials in gaseous and liquid effluents made during the reporting period.

Attachment 4 describes any changes made during 2006 to the Process Control Program (PCP) documents or to the Offsite Dose Calculation Manual (ODCM) and a listing of new locations for dose calculations and/or environmental monitoring identified by the land use census pursuant to Part 3, Section 8.2 of the ODCM.

Attachment 5 reports all instrumentation not returned to operable status within 30 days per the TMI ODCM Part 1, Sections 2.1.1.b and 2.1.2.b and Part 2, Section 2.1.2.b.

Attachment 6 is quarterly summaries of hourly meteorological data collected for 2006 in the form of joint frequency distribution of wind speed, wind direction and atmospheric stability.

5928-07-20096 Page 2 of 2

Attachment 7 is an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the respective unit during 2006.

Attachment 8 is an assessment of the radiation doses from the radioactive liquid and gaseous effluents to members of the public due to their activities inside the site boundary during 2006.

Attachment 9 is an assessment of the radiation doses to the most likely exposed real individual from reactor releases and other nearby uranium fuel cycle sources including doses from primary effluent pathways and direct radiation for 2006.

Attachment 10 is a summation of deviations from the sampling and analysis regime specified in the ODCM for TMI-1 and TMI-2.

Attachment 11 is an errata report for the 2005 Annual Radioactive Effluent Release Report. Only the affected pages are attached. Changes are annotated in bold font.

Enclosure 1 is a copy of the ODCM change for TMI's Offsite Dose Calculation Manual (ODCM), revision 25, which was issued on August 9, 2006 and current as of December 31, 2006. There was one revision made to the ODCM during 2006.

Please contact Laura Weber at extension x8947 if you have any questions concerning this report.

Sincerely,

Thomas J. Dougherty Plant Manager

TJD/lkw

Attachments/Enclosures

cc: Region 1 Administrator TMI Senior Resident Inspector TMI-1 Senior Project Manager TMI-2 Project Manager GPU Nuclear Cognizant Officer File 07028 Attachment 1 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Summary of Radioactive Liquid and Gaseous Effluents Released from TMI during 2006

TABLE 1A EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES

TMI-1

	2006	2006	2006	2006	EST. TOTAL
UNITS	1ST QUARTER	2ND QUARTER	3RD QUARTER	4TH QUARTER	ERROR %

A. FISSION AND ACTIVATION GASES

1. TOTAL RELEASE	Ci	3.30E-01	2.37E-02	2.85E-02	1.12E+00	25%
2. AVERAGE RELEASE RATE FOR PERIOD	uCi/sec	4.24E-02	3.01E-03	3.58E-03	1.40E-01	
3. PERCENT OF TECH SPEC LIMIT	%	*	*	*	*]

B. IODINES

1. TOTAL IODINE I-131	Ci	1.71E-07	1.88E-07	5.83E-07	1.30E-06	25%
2. AVERAGE RELEASE RATE FOR PERIOD	uCi/sec	2.19E-08	2.38E-08	7.34E-08	1.63E-07	
3. PERCENT OF TECH SPEC LIMIT	%	*	*	*	*	

C. PARTICULATES

1. PARTICULATES WITH HALF-LIVES > 8 DAYS	Ci	<1.00E-11	<1.00E-11	<1.00E-11	2.10E-06	25%
2. AVERAGE RELEASE RATE FOR PERIOD	uCi/sec	NA	NA	NA	2.65E-07	
3. PERCENT OF TECH SPEC LIMIT	%	*	*	*	*	
4. GROSS ALPHA RADIOACTIVITY	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	

D. TRITIUM

1. TOTAL RELEASE	Ci	2.81E+01	2.59E+01	2.37E+01	1.17E+01	15%
2. AVERAGE RELEASE RATE FOR PERIOD	uCi/sec	3.61E+00	3.30E+00	2.98E+00	1.47E+00	
3. PERCENT OF TECH SPEC LIMIT	%	*	*	*	*	

* % ODCM LIMITS: LISTED ON DOSE SUMMARY TABLE

TABLE 1CEFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2006)GASEOUS EFFLUENTS - GROUND LEVEL RELEASES

TMI-1

		CONTINUOUS		BATCH		CONTINUOUS		BATCH	
NUCLIDES RELEASED UN	IT	QUARTER 1	QUARTER 2	QUARTER 1	QUARTER 2	QUARTER 3	QUARTER 4	QUARTER 3	QUARTER 4

1. FISSION GASES

AR 41	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04
KR 85M	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04
KR 85	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	9.66E-01
KR 87	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04
KR 88	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04
XE131M	Ci	<1.00E-04	<1.00E- <u>04</u>	<1. <u>0</u> 0E-04	<1.00E-04	<1.00E-04	<1.00E-04	2.41E-04	4.59E-03
XE 133	Ci	2.90E-01	<1.00E-04	3.92E-02	2.36E-02	<1.00E-04	<1.00E-04	2.81E-02	1.46E-01
XE133M	Ci	<1.00E-04	<1.00E-04	<1.00E-04	2.70E-05	<1.00E-04	<1.00E-04	<1.00E-04	1.08E-04
XE 135M	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04
XE 135	Ci	1.32E-04	<1.00E-04	9.85E-06	<1.00E-04	1.20E-04	1.63E-04	<1.00E-04	<1.00E-04
XE 138	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04
TOTAL FOR PERIOD	Ci	2.90E-01	NA	3.92E-02	2.36E-02	1.20E-04	1.63E-04	2.83E-02	1.12E+00

2. IODINES

131	Ci	1.71E-07	1.88E-07	<1.00E-12	<1.00E-12	5.83E-07	1.30E-06	<1.00E-12	<1.00E-12
133	Ci	1.34E-06	1.75E-06	<1.00E-12	<1.00E-12	7.63E-06	6.53E-06	<1.00E-12	<1.00E-12

TOTAL FOR PERIOD	Ci	1.51E-06	1.94E-06	NA	NA	8.21E-06	7.83E-06	NA	NA

3. PARTICULATES

CS 137	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	2.10E-06	<1.00E-11	<1.00E-11
									·
TOTAL FOR PERIOD	Ci	NA	NA	NA	NA	NA	2.10E-06	NA	NA

TABLE 2A EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS-SUMMATION OF ALL RELEASES

TMI-1

	2006	2006	2006	2006	EST. TOTAL
UNITS	1ST QUARTER	2ND QUARTER	3RD QUARTER	4TH QUARTER	ERROR %

A. FISSION AND ACTIVATION PRODUCTS

1. TOTAL RELEASES (NOT INCLUDING TRITIUM, GASES, ALPHA)	Ci	2.71E-05	3.25E-06	8.63E-05	1.79E-05	25%
2. AVERAGE DILUTED CONCENTRATION DURING PERIOD	uCi/ml	4.02E-12	5.19E-13	1.53E-11	3.14E-12	
3. PERCENT OF APPLICABLE LIMIT	%	*	*	*	*	

B. TRITIUM

1. TOTAL RELEASE	Ci	3.24E+01	2.01E+01	8.97E+01	4.10E+02	25%
2. AVERAGE DILUTED CONCENTRATION DURING PERIOD	uCi/ml	4.81E-06	3.22E-06	1.59E-05	7.17E-05	
3. PERCENT OF APPLICABLE LIMIT	%	*	*	*	*	

C. DISSOLVED AND ENTRAINED GASES

1. TOTAL RELEASE	Ci	<1.00E-5	<1.00E-5	1.49E-05	1.28E-04	25%
2. AVERAGE DILUTED CONCENTRATION DURING PERIOD	uCi/ml	NA	NA	2.65E-12	2.25E-11	
3. PERCENT OF APPLICABLE LIMIT	%	*	*	*	*	

D. GROSS ALPHA ACTIVITY

1. TOTAL RELEASE	Ci	<1.00E-7	<1.00E-7	<1.00E-7	<1.00E-7	25%
E. VOLUME OF WASTE RELEASED (PRIOR TO DILUTION)	liters	9.75E+06	9.59E+06	1.07E+07	4.31E+08	10%
F. VOLUME OF DILUTION WATER USED	liters	6.73E+09	6.25E+09	5.63E+09	5.71E+09	10%

* % ODCM LIMITS: LISTED ON DOSE SUMMARY TABLE

TABLE 2B EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2006) LIQUID EFFLUENTS TMI-1

		CONTIN	NUOUS	BATCH		CONTI	NUOUS	BAT	СН
NUCLIDES RELEASED	UNIT	QUARTER 1	QUARTER 2	QUARTER 1	QUARTER 2	QUARTER 3	QUARTER 4	QUARTER 3	QUARTER 4
CR 51	Ci	<5.00E-07							
MN 54	Ci	<5.00E-07							
FE 59	Ci	<5.00E-07							
CO 58	Ci	<5.00E-07	<5.00E-07	1.17E-05	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07
CO 60	Ci	<5.00E-07	<5.00E-07	5.29E-06	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	1.65E-06
ZN 65	Ci	<5.00E-07							
SR 89	Ci	<5.00E-08							
SR 90	Ci	<5.00E-08							
ZR 95	Ci	<5.00E-07							
NB 95	Ci	<5.00E-07							
MO 99	Ci	<5.00E-07							
TC 99M	Ci	<5.00E-07							
131	Ci	<1.00E-06							
CS 134	Ci	<5.00E-07							
CS 137	Ci	<5.00E-07	<5.00E-07	4.00E-05	3.25E-06	7.43E-05	3.74E-07	1.21E-05	1.59E-05
BA 140	Ci	<5.00E-07							
LA 140	Ci	<5.00E-07							
CE 141	Ci	<5.00E-07							
FE 55	Ci	<1.00E-06							
H3	Ci	8.25E-02	1.46E-01	3.23E+01	2.00E+01	1.77E-01	3.09E-01	8.95E+01	4.09E+02
				`					
TOTAL FOR PERIOD	Ci	0.00E+00	0.00E+00	5.70E-05	3.25E-06	7.43E-05	3.74E-07	1.21E-05	1.76E-05
	:					·			
XE 133	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	1.49E-05	1.28E-04
XE 135	Ci	<1.00E-04							

FACILITY: TMI UNIT 1 LICENSE: DPR 50-289

1. REGULATORY LIMITS - - - REFER TO TMI OFFSITE DOSE CALCULATION MANUAL

A. FISSION AND ACTIVATION GASES:

B. IODINES:

C. PARTICULATES, HALF-LIVES > 8 DAYS:

D. LIQUID EFFLUENTS:

2. MAXIMUM EFFLUENT CONCENTRATIONS - - - TEN TIMES 10 CFR 20, APPENDIX B TABLE 2

PROVIDE THE MAXIMUM EFFLUENT CONCENTRATIONS USED IN DETERMINING ALLOWABLE RELEASE RATES OR CONCENTRATIONS.

A. FISSION AND ACTIVATION GASES:

B. IODINES:

C. PARTICULATES, HALF-LIVES > 8 DAYS:

D. LIQUID EFFLUENTS:

3. AVERAGE ENERGY

PROVIDE THE AVERAGE ENERGY (E-BAR) OF THE RADIONUCLIDE MIXTURE IN RELEASES OF FISSION AND ACTIVATION GASES, IF APPLICABLE

E-BAR BETA =	1.91E-01 MeV
E-BAR GAMMA =	2.14E-02 MeV
E-BAR BETA AND GAMMA =	2.12E-01 MeV

4. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

PROVIDE THE METHODS USED TO MEASURE OR APPROXIMATE THE TOTAL RADIOACTIVITY IN EFFLUENTS AND THE METHODS USED TO DETERMINE RADIONUCLIDE COMPOSITION:

A. FISSION AND ACTIVATION GASES: HPGE SPECTROMETRY, LIQUID SCINTILLATION

B. IODINES: HPGE SPECTROMETRY

C. PARTICULATES	HPGE SPECTROMETRY, GAS FLOW PROPORTIONAL,
	BETA SPECTROMETRY
D. LIQUID EFFLUENTS:	HPGE SPECTROMETRY, LIQUID SCINTILLATION

5. BATCH RELEASES

PROVIDE THE FOLLOWING INFORMATION RELATING TO BATCH RELEASES OF RADIOACTIVITY MATERIALS IN LIQUID AND GASEOUS EFFLUENTS.

	the second s			
A. LIQUID (ALL TIMES IN MINUTES)	QUARTER 1	QUARTER 2	QUARTER 3	QUARTER 4
1. NUMBER OF BATCH RELEASES:	27	6	11	25
2. TOTAL TIME PERIOD FOR BATCH RELEASES:	6215	1290	2995	10757
3. MAXIMUM TIME PERIOD FOR A BATCH RELEASE:	260	250	385	1300
4. AVERAGE TIME PERIOD FOR BATCH RELEASES:	230	215	272	430
5. MINIMUM TIME PERIOD FOR A BATCH RELEASE:	210	120	235	212
6. AVERAGE STREAM FLOW DURING PERIODS OF RELEASE				
OF EFFLUENT INTO A FLOWING STREAM: (CFS)	3.31E+06	2.16E+06	1.89E+06	2.67E+06

B. GASEOUS (ALL TIMES IN MINUTES)				
1. NUMBER OF BATCH RELEASES:	8	6	6	9
2. TOTAL TIME PERIOD FOR BATCH RELEASES:	5405	4443	4024	6143
3. MAXIMUM TIME PERIOD FOR A BATCH RELEASE:	830	829	780	855
4. AVERAGE TIME PERIOD FOR BATCH RELEASES:	675	740	670	682
5. MINIMUM TIME PERIOD FOR A BATCH RELEASE:	. 222	540	225	160

6. ABNORMAL RELEASES

A. LIQUID

1. NUMBER OF RELEASES:	-0-	-0-	-0-	1
2. TOTAL ACTIVITY RELEASED: (CURIES)	N/A	N/A	N/A	1.18E-01
B. GASEOUS				
1. NUMBER OF RELEASES:	1	1	1	7
2. TOTAL ACTIVITY RELEASED: (CURIES)	2.92E-01	9.72E-03	0.00E+00	2.13E-01

TABLE 1A EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES TMI-2

	2006	2006	2006	2006	EST. TOTAL
UNITS	1ST QUARTER	2ND QUARTER	3RD QUARTER	4TH QUARTER	ERROR %

A. FISSION AND ACTIVATION GASES

1. TOTAL RELEASE	Ci	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	25%
2. AVERAGE RELEASE RATE FOR PERIOD	uCi/sec	N/Á	N/A	N/A	N/A	
3. PERCENT OF TECH SPEC LIMIT	%	*	*	*	*	

B. IODINES

NOT APPLICABLE FOR TMI-2

C. PARTICULATES

1. PARTICULATES WITH HALF-LIVES > 8 DAYS	Ci	<1.00E-10	<1.00E-10	<1.00E-10	<1.00E-10	25%
2. AVERAGE RELEASE RATE FOR PERIOD	uĈi/sec	N/A	N/A	N/A	N/A	
3. PERCENT OF TECH SPEC LIMIT	%	*	*	*	*]
4. GROSS ALPHA RADIOACTIVITY	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11]

D. TRITIUM

.

1. TOTAL RELEASE	Ci	2.20E-01	2.16E-01	2.21E-01	2.89E-01	25%
2. AVERAGE RELEASE RATE FOR PERIOD	uĆi/sec	2.83E-02	2.74E-02	2.78E-02	3.64E-02	
3. PERCENT OF TECH SPEC LIMIT	%	*	*	*	*	

# BATCH RELEASES		0	0	Õ	0

* % ODCM LIMITS: LISTED ON DOSE SUMMARY TABLE

TABLE 1C EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2006) GASEOUS EFFLUENTS - GROUND LEVEL RELEASES TMI-2

		CONTINUOUS		BATCH		CONTINUOUS		BATCH	
NUCLIDES RELEASED	JNIT	QUARTER 1	QUARTER 2	QUARTER 1	QUARTER 2	QUARTER 3	QUARTER 4		

1. FISSION GASES

| KR 85M | Ci | <1.00E-04 |
|------------------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| KR 85 | Ci | <1.00E-04 |
| KR 87 | Ci | <1.00E-04 |
| KR 88 | Ci | <1.00E-04 |
| XE 133 | Ci | <1.00E-04 |
| XE 135M | Ci | <1.00E-04 |
| XE 135 | Ci | <1.00E-04 |
| XE 138 | Ci | <1.00E-04 |
| TOTAL FOR PERIOD | Ci | N/A |

2. IODINES

NOT APPLICABLE TO TMI-2

3. PARTICULATES

CS 137	Ci	<1.00E-10	<1.00E-10	N/A	N/A	<1.00E-10	<1.00E-10	N/A	N/A
TOTAL FOR PERIOD	Ci	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

4. TRITIUM

	T								
TRITIUM	Ci	2.20E-01	2.16E-01	<1.00E-06	<1.00E-06	2.21E-01	2.89E-01	<1.00E-06	<1.00E-06

TABLE 2A EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS-SUMMATION OF ALL RELEASES TMI-2

	2006	2006	2006	2006	EST. TOTAL
UNITS	1ST QUARTER	2ND QUARTER	3RD QUARTER	4TH QUARTER	ERROR %

A. FISSION AND ACTIVATION PRODUCTS

1. TOTAL RELEASES (NOT INCLUDING TRITIUM, GASES, ALPHA)	Ci	5.00E-07	6.02E-06	8.71E-06	2.47E-06	25%
2. AVERAGE DILUTED CONCENTRATION DURING PERIOD	uCi/ml	N/A	9.62E-13	1.55E-12	4.33E-13	
3. PERCENT OF APPLICABLE LIMIT	%	*	*	*	*	

B. TRITIUM

1. TOTAL RELEASE	Ci	1.88E-05	1.32E-04	3.59E-06	<1.00E-05	25%
2. AVERAGE DILUTED CONCENTRATION DURING PERIOD	uCi/ml	2.80E-12	2.10E-11	6.37E-13	N/A	
3. PERCENT OF APPLICABLE LIMIT	%	*	*	*	*	

C. DISSOLVED AND ENTRAINED GASES

1. TOTAL RELEASE	Ci	<5.00E-07	<5.00E-07	<5.00E-07	<5.00E-07	25%
2. AVERAGE DILUTED CONCENTRATION DURING PERIOD	uCi/ml	NA	NA	NA	NA	
3. PERCENT OF APPLICABLE LIMIT	%	*	*	*	*	

D. GROSS ALPHA ACTIVITY

1. TOTAL RELEASE	Ci	<1.00E-07	<1.00E-07	<1.00E-07	<1.00E-07	25%
E. VOLUME OF WASTE RELEASED (PRIOR TO DILUTION)	liters	1.53E+03	7.59E+03	1.00E+04	1.91E+03	10%
F. VOLUME OF DILUTION WATER USED	liters	6.73E+09	6.25E+09	5.63E+09	5.71E+09	10%
# BATCH RELEASES	·	1	4	6	2	

* % ODCM LIMITS: LISTED ON DOSE SUMMARY TABLE

TABLE 2B EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2006) LIQUID EFFLUENTS TMI-2

-		CONTI	NUOUS	BA	ГСН	CONTI	NUOUS	BA	СН
NUCLIDES RELEASED	UNIT	QUARTER 1	QUARTER 2	QUARTER 1	QUARTER 2	QUARTER 3	QUARTER 4	QUARTER 3	QUARTER 4
CO 60	Ci	NA	NA	<5.00E-07	<5.00E-07	NA	NA	<5.00E-07	<5.00E-07
ZN 65	Ci	NA	NA	<5.00E-07	<5.00E-07	NA	NĂ	<5.00E-07	<5.00E-07
SR 90	Ci	NA	NĂ	<5.00E-08	5.18E-07	NA	NA	<5.00E-08	<5.00E-08
SB 125	Ci	NA	NA	<5.00E-07	<5.00E-07	NA	NA	<5.00E-07	<5.00E-07
NB 95	Ci	NA	NA	<5.00E-07	<5.00E-07	NA	NA	<5.00E-07	<5.00E-07
CS 134	Ċi	NA ·	NĂ	<5.00E-07	<5.00E-07	NA	NĂ	<5.00E-07	<5.00E-07
CS 137	Ci	NA	NA	<5.00E-07	5.50E-06	NA	NA	8.71E-06	2.47E-06
H3	Ci	NA	NA	1.88E-05	1.32E-04	NA	NA	3.59E-06	<1.00E-05
TOTAL FOR PERIOD	Ci	NA	NA	1.88E-05	1.38E-04	NA	NA	1.23E-05	2.47E-06

Attachment 2 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

ì

Solid Waste Shipped Offsite During 2006

τ			
			•
	006 TMI-1 TABLE 3		
EFFLUENT AND W	ASTE DISPOSAL AI		
	ID IRRADIATED FUI		·····
A Calid wests shipped off site for buri	-l disposal (not	interdicted fuel)	
A. Solid waste shipped off-site for buria	al or disposal (not i	Irradiated idei)	
1. Type of waste	UNIT	12 month	EST. Total
		period	Error %
a. Spent resins, filter sludges,	m ³	38.7 m3	25%
Evaporator bottoms, etc.	Ci	30.9 Ci	
b. Dry compressible waste,	m ³	313.0 m3	25%
contaminated equipment, etc.	Ci	.079 Ci	
c. Irradiated components, control	m ³		N/A
rods, etc.	Ci	N/A	
d. Other (describe) :	m ³	N/A	N/A
· · ·	Ci		
2. Estimate of major nuclide			
composition (by type of waste)			
a. H3	90.5 %		
Ni63	7.3 %		
Cs137	1.7 %		
Co60	0.3 %		
b. Cs137	45.7 %		
Ni63	23.2 %		
Fe55	14.8 %		
Co58	4.95 %		
c. N/A			
		-	
	 ·		
d. N/A			
G. 1077			
3. Solid Waste Disposition	Mode of Transpo	rtation	Destination
Number of Shipments			
See attached for this information	······································	T	-
B. Irradiated Fuel Shipments			
(Disposition)	· · · · ·		
	None	-	
Number of Shipments			
N/A	Mode Transport	Destination	

WASTE SHIPPED AS FOLLOWS

<u>A.1.a</u>

Eight (8) - Poly HICs @ 170.8 ft3 each - Evaporator Bottoms

<u>A.1.b</u>

Seven (7) - Steel Cargo Containers @ 1280 ft3 each- DAW-Metal

One (1)-Intermodal Container @ 1280 ft3 each - Metal

Eight (8) Steel Boxes @ 96 ft3 each -DAW/Metal

One(1)- Steel Box @ 44 ft3 each- Soil

<u>A.3.a</u>

Eight Shipments Hittman Transport/Cask

Duratek, Oak Ridge TN

<u>A.3.b</u>

Four Shipments	Hittman Transport/Flatbed
Two Shipment	Hittman Transport/Flatbed

Duratek-Oak Ridge, TN.

Duratek-Kingston, TN.

NOTE- All Shipments were TYPE-A LSA-II

There were no changes to the Process Control Program (PCP) for TMI-1 during 2006.

			·····
EFFLUENT AND W	006 TMI-2 TABLE 3 ASTE DISPOSAL A ID IRRADIATED FU		
			1
A. Solid waste shipped off-site for buri	al or disposal (not	irradiated fuel)	· · ·
1. Type of waste	UNIT	12 month	EST. To
L		period	Error 9
a. Spent resins, filter sludges,	m ³	N/A	N/A
Evaporator bottoms, etc.	Ci		
b. Dry compressible waste,	m ³	. N/A	N/A
contaminated equipment, etc.	Ci		-
c. Irradiated components, control	m ³	N/A	N/A
rods, etc.	Ci		
d. d. Other (describe): Mixed Waste	m ³ Ci	N/A	N/A
2. Estimate of major nuclide		•	
composition (by type of waste)			
a. Cs137	N/A		
Cs134			
Ni63			
Fe55			:
b. Co58	N/A		
Cs137	beration with a second second	0	· · · · ·
Ni63			
Sr90	•		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
c. Ni63	N/A	· · ·	
Co58	·.		
Fe55		-	
Co60			
d. N/A	N/A	-	· · ·
3. Solid Waste Disposition	Mode of Transpo	rtation	Destination
Number of Shipments		•	
No Shipment during this period			· .
Y			
B. Irradiated Fuel Shipments (Disposition)			· · · ·
	None		
Number of Shipments	·	<u>.</u>	
N/A	Mode Transport	Destination	

Attachment 3 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Summary of Unplanned Releases from the TMI Site During 2006

There were no unplanned releases from TMI-2 in 2006. The unplanned releases for TMI-1 are summarized in the supplemental information in Attachment 1. The information is reported separately for liquid and gaseous releases, and the number of releases is reported for each quarter with a total curies released. The activity for these releases is also included in Tables 1A, 1C, 2A and 2B.

Attachment 4 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Changes to the Process Control Program and the Offsite Dose Calculation Manual during 2006 And a listing of new locations for dose calculations and/or environmental monitoring Identified by the Land Use Census

1. Changes to the Process Control Program

There were no changes to the Process Control Program.

2. Changes to the Offsite Dose Calculation Manual

There was one change to the Offsite Dose Calculation Manual. The procedure change is attached as an attachment.

3. A listing of new locations for dose calculations and/or environmental monitoring identified by the Land Use Census.

Based on the results of the 2006 land use census, no changes to the Radiological Environmental Monitoring Program are required. The residential census identified a change in the nearest residence in the north-northwest sector. A summer residence was abandoned on Henry Island. The distance of the nearest receptor went from 1067 meters to 1832 meters. Attachment 5 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Instrumentation not Returned to Operable Status within 30 Days During 2006

There was no instrumentation not returned to operable status within 30 days per the TMI ODCM Part 1, Sections 2.1.1.b and 2.1.2.b and Part 2, Section 2.1.2.b during 2006.

Attachment 6 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Annual Summary of Hourly Meteorological Data for 2006

The osprey did return and nest on the TMI meteorological tower. However, the station was able to calibrate the sensors and instrumentation before and after the osprey nested. The percent data recovery for meteorological information for 2006 was 98.4 percent. The data are presented by quarter.

Three Mile Island Nuclear Station Period of Record: January - March 2006 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind							
Direction	1-3	4-7	8-12	13-18	19-24	>24	Total
N1 .	•	•	4	4	•	0	F
N	0	. 3	1		0	0	5
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	. 0	0	0	0	0
ESE ,	0	0	0	0	. 0	0	0
SE	0	0	0	0.	0	0	0
SSE	0	1	0	0	0	0	1
S	ō	1	1	Ō	Ō	Ō	2
SSW	0	1	8	1	1	Ō	· 11
SW	1	1	6	0	0	0	8
WSW	0	5	0	0	0	0	5
. W	0	2	- 3	0	0	0	5
WNW	2	3	6	0	0	0	11
NW	2	[′] 5	4	2	.2	0	15
NNW	0	10	6	4	4 ·	0	24
Variable	0	0	0	0	0	0	0
Total	5	32	35	8	7	0	87
Hours of calm	in this stabil	ity class [.]	۰. ۱				
			n this stability c	200	0		
nouis or miss	ng winu nea	asurements if	i this stability C	1033.	0		

Hours of missing stability measurements in all stability classes:

Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F Winds Measured at 100 Feet Wind Speed (in mph)

8

8

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	[`] 1	0	0	0	2
NNE	ñ ·	0 0	Ó	ñ	, õ	ñ	ō
NE	ñ ·	õ	õ	õ	ñ	ñ	- Õ
ENE	Õ	. 3	. 0	. <u>0</u>	õ	õ	3
E	0	0	Ő	Ő	Õ	õ	Ő
ESE	Õ	2	2	Õ	ů 0	0	4
SE	0	2	1	0	0	0	3
SSE	õ	. 1	, 0	0	õ	0	1
'S	0 0	1	0	ů ·	0	0	1
SSW	0 .	1	3	1 .	0	· 0	5
SW	0	3	6	0	0	0	9
WSW .	0. 1	2	2	0	0	0 0	5
W	2 2	. 1	5		5	0	17
ŴŃW	2		3	. 0	0	0	22
NW	2	0	18	2	9	6	22 66
NNW	1	5	5	3	9	7	
	0	0	5	0		/	27 :
Variable	U	υ.	U	υ.	0	U	. 0
Total	6	26	46	50	24	13	165
Hours of calm	n in this stabil	ity class:	0		·	•	
Hours of miss	ing wind me	asurements in	this stability of	class:	· 3		· · ·

Hours of missing stability measurements in all stability classes:

Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	3	1	0	0	0	4
NNE -	0	1	0	0	0	0	1
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	1	Ο.	0	0	1
ESE	0	0	· 2	0	0	0	2
SÉ	0	· 0	0	0	0	0	0
SSE	1	0	0	0	0	0	1
S	1	. 0	0	0	0	0	1
SSW	0	2	1	1.	0	0	4
SW	0	0	3	0	1	0	4
WSW	1	0	· 1 ·	1	0	0	3
W	0	1	4	0	1	0	6
WNW	0	3	8	2	2	0	15
NW	1	4	13	24	11	1	54
NNW	´ 1	2	10	5	1	3	22
Variable	0	0	0	0	0	0	0
Total	5	16	44	33	16	4	118
Hours of calr	n in this stabil	lity class:	0		_		

Hours of missing wind measurements in this stability class: Hours of missing stability measurements in all stability classes:

Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

0 8

9

8

Wind			•				
Direction	. 1-3	4-7	8-12	13-18	19-24	> 24	Total
N	5	12	18	3	0	0	38
	-				-	+	
NNE	3	19	4	0	0	0	26
NE	3	18	1	· 0	0	0	22
ENE	2	8	1	0.	0	0	11 ·
E	5	13	12	1	0	0	31
ESE	6	2	17	2	0	0	52
SE	2	18	8	0	[′] 0	0	28
SSE	6	11	3	Ō	0	Ō	20
S	7	23	6	0	õ	Ō	36
SSW	5	19	13	5	Ō	Õ	42
SW	7	22	11	3	0.	ō	43
WSW	4	24	23	8	0 Í	· 0	59
W	6	38	43	31	4	Ō	122
WNW	4	30	65	60	18	õ	177
NW	5	22	87	108	35	5	262
NNW	3	23	43	18	1	2	90
Variable	0.	õ	0	0	ò	ō	0
4 di ano	0	U		U	v	Ū	U .
Total	73	327	355	239	58	7	1059
			- 30				

Hours of calm in this stability class: 6 Hours of missing wind measurements in this stability class: Hours of missing stability measurements in all stability classes:

Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	6	15	1	0	0	0	22
NNE	4	7	2	· 0	0	0	13
NE	2	2	3	0	0	0	7
ENE	1	4	0 、	0	0	0	5
E	4	5	6	0.	, O	0	15
ESE	6	6	16	5	0	0	~ 33
SE	3	10	9	1	0	0	23
SSE	10	6	3	2	0	0	21
S	6	7	3	4	0	0	20
SSW	5	10	13	10	0	0	38
SW	9	12	6	0	0	0	- 27
WSW	. 9	9	4	2	0	0	24
W	10	21	4	7	0	1	43
WNW	10	9	14	2	0	0	35
NW	7	13	5	8	5	1	39
NNW	10	12	8	6	-0	0	36
Variable	0	0	0	0	0	0	0
Total	102	148	97	47	5	2	401
Hours of calm	in this stabili	ity class:	23	- ·			

Hours of missing wind measurements in this stability class.

Hours of missing stability measurements in all stability classes:

Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind			vvilia ope	ea (in ripri)			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	5	. 4	0	0	0	0	. 9
NNE	1	0	0	0	0	0	1
NE	0	. 0	0	0	Ο,	0	0
ENE	0	1	1	0	0	0	2
E	1	1	0	0	0	0	2
ESE	1	1	0	0	0	0	2
SE	4	2	0	0	0	0	6
SSE	1	<u>`</u> 2	0	0	0	0	3
S .	2	5	0	0.	0	0	7
SSW	12	6	1	0	0	0	19
SW	8	7	1	0	0	0	16
WSW	4	3 .	0	0	0	0	7
W	9	7	0	0	0,	Ο.	16
WNW	6	3	0	0	0	0	9
NW	12	4	0	0	0	0	16
NNW	9 .	4	2	0	- 0	0	15
Variable	0 -	0	0	0	0	0	0
Total	75	50	5	0	0	0	130

Hours of calm in this stability class: 7 Hours of missing wind measurements in this stability class: Hours of missing stability measurements in all stability classes:

6 8

11

8

Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind				·			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	3	1	0	0	0	0	4
NNE	3	Ó	Ō	0	. 0	0	3
NE	Ō	Ō	Ö V	Ō	0	Ō	Ō
ENE	5	2	0	Ō	Ō	Ō	7
E	2	ō	Ō	Ō	0	Ō	2
ËSE	5	Ō	0	0	. 0	0	5
SE .	2	1	0	0	0	0	3
SSE	7	3	0	0	0	0	10
S	8	4	0	0	0	0	12
SSW	.15	8	0	0	Ο.	0	23
SW	14	8	0	0	0	0	22
WSW	6	6	0	0	0	0	12
W	1	2	1	0	0	0	4
ŴNW	4	1	0	0	0	0	5
NW	2	0	0	0	0	0	2
NNW	0	1	0	0 .	0 .	0	1
Variable	0	0	0	. 0	0	0	0
Total	77	37	1	0	0	0	115
Hours of cain	n in this stabi	litv class:	9				
Hours of miss	sing wind me	asurements in	n this stability c	lass:	3		
		•			•		

Hours of missing stability measurements in all stability classes:

Period of Record: April - June 2006 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

8

1

Wind	4.0	4 7	0.40	40.40	10.04		T - 4 - 1
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	14	0	1	0	0	16
NNE	0	3	0	0	0	0	3
NE	1	3	0	0	0	0	4
ENE	0	2	3	0	0	0	5
E	0	2	3	3	0	0	8
ESE	0	0	1	4	- 0	.0	5
SE	0	1 .	1	0	0	Q ·	2
SSE	0	2	0	v 0	. 0	Ó	2
S	0	0	· 1	0	0 .	0	1
SSW	0	6	6	0	0	0	12
SW	2	12	1	0	0	0	15
WSW	2	. 4	2	0	0	0	8
W .	9	8	3	0	0	0	20
WNW	5	13	9	1	· 0	0	28
NW	18	35	21	12	2	0	88
NNW	11	37	10	2	0	0	60
Variable	0	0	0	0	0	0	0
Total	49	142	61	. 23	2	0	277
Hours of caln	n in this stabil	lity class:	0			• •	
Hours of miss	sing wind mea	asurements in	this stability of	lass:	0		

Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind		a' =	0.40	10.10	10.04		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	4	4	5	0	0	Ó	13
NNE	0	1	1	0	0 .	0	2
NE	0	3	0	0	0	0	3
ENE	0	4	0	· 0	0	0.	4
E	0	1	1	0	0	0	2
ESE	0	0	1	1	0	0	2
SE	0	0	2	2	0	0	4
SSE	0	2 .	1	0	0	0	3
S	0	2	0	0	0	0	2
SSW	2	3	3	0	0	0	8
SW	1	9	3	0	0	0	13
WSW	0	6	1	0	0	0	7
W	3	3	5	2	0	0 .	13
WNW	3	6	5	5	0	0	19
NW	. 5	16	20	11	1	0	53
NNW	. 2	8.	10	4	0	0	24
Variable	0	0	0	0	0	0	0
Total	20	68	58	25	1	0	172
Hours of calm	in this stabil	ity class:	0		,		

Hours of missing wind measurements in this stability class:

Hours of missing stability measurements in all stability classes:

Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

0

1

0

1

			•				
Wind							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	5	3	0	0	0	9
			0	-	0	. 0	9
NNE	0	1 .	U	0	U	U	1
NE	0	1	0	0	0	0	1
ENE	0	0	0	0	0	0	0
E	0	3	2	0	0	0	5
ESE	0	0 .	3	1	1	0	5
SE	1	1	2	2	. 0	0	6
SSE	. 0	2	0	0.	0	0	2
S	1	2	1	0	0	0	4
SSW	1	2.	0	0	0.	0	3
SW	1	0	3	0	0	0	4
WSW	2	0	0	0	0	0	2
W	1	1	2 .	2 '	0	0	6
WNW	2	5	6	5	· 0	0	18
NW	2	5	6	11	1	0	25
NNW	2	7	7	4	0	0	20
Variable	0	0	0	0	0	0	0
Total	14	35	35	25	2	0	111

0

Hours of calm in this stability class:

Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3 <u>.</u>	4-7	8-12	13-18	19-24	> 24	Total
N	4	20	20	3	0	0	47
NNE	4	7	1	0	õ	õ	12
NE	3	6	1	Ő	õ	õ	10
ENE	1	6	2	Õ	õ	õ	9
E	2	12	29	1	õ	õ	44
ESE	2	13	21	4	Ő	Ő	40
SE	. 1	9	6	5	0	Õ	21
SSE	1	9	5	Õ	0	õ	15
S	5	14	9	1	Õ	õ	29
SSW	6	14	6	0	ō	Õ	26
SW	6	2	5	- 1	.0	õ	32
WSW	6	30	7	0	Ō.	Ō	43
W	13	17	18	4	1 .	0	53
WNW	6	30	42	23	1	0	102
NW	15	27	63	28	3	1	137
NNW	9	31	30	12	0	1	83
Variable	.0	0	0	0	0.	- 0	0
Total	84	265	265	82	5	2	703
Hours of calm	in this stabil	itv class:	6				
Hours of miss			this stability c	lass:	5		

Hours of missing wind measurements in this stability class:5Hours of missing stability measurements in all stability classes:1

Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	8	54	15	1	0	0	78
NNE	5	12	3	0 .	õ	õ	20
NE	8	9	0	õ	õ	· ñ	17
ENE	2	10	2	Ő	Ő	· 0	14
E	3	20	11	0	Ő	Ő .	34
ËSE	4	13	6	1	Õ	Ō	24
SE	5	12	3.	2	1	Õ	23
SSE	7	10	1	ō	Ô.	õ	18
S	4	27	5	Ō	Ō	Ō	36
SSW	4 8	17	9	Ō	0.	Ō	34
SW	7	14	2	0	0	0	23
WSW	15	15	0 · · ·	1	0	0	31
W	16	22	2	· 0 ·	0	0	40
WNW	23	20	.10	.5	0	0	58
NW	21	25	7	2.	1	0	56
NNW	20	25	8	3	1	0	57
Variable	0.	0	0	0	0	0	0
Total	156	305	84	15	3	0	563
Hours of calm	n in this stabili	itv class:	17				

9 1

Hours of calm in this stability class: 17 Hours of missing wind measurements in this stability class: Hours of missing stability measurements in all stability classes:

Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind	1 0	4 7	0 10	12 10	10.24	> 24	Tatal
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	4	8	1	0	0	0	13
NNE	4	0	0	0	0	0	4
NE	6	0	0	0	0	0	6
ENE	0	3	0	0	0	0	3
E	4	2	. 0	0	0	0	6
ESE	5	1	Ο.	0	0	0	6
SE	3	3	0	0	0	0	6
SSE	7	2	0	0	0	0	9
S	10	4	0	0	0	0	14
SSW	10	8	0	0	0	0	18
SW	11	9	1.	0	0	0	21
WSW	21	5	0	0	0	0	26
W	16	8	0	0	0	0	24
WNW	12	1	0	0	0	0	13
NW	13	7 -	1	0	0	0	21
NNW	7	18	1	0	0	0	26
Variable	0	0	0	0	0	0	0
Total	133	79	4	0	0	0	216
Hours of caln	n in this stabil	itv class:	16				
			this stability c	lass:	3		

Hours of missing wind measurements in this stability class: Hours of missing stability measurements in all stability classes:

Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

1

0

1

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
			·				
N -	1	1	0 -	0	0	0	2
NNE	0	0	0	0	0	· 0	0
NE	0	0	0	0	0	0	0
ENE	0	<u> </u>	0	0	0	0	1
E	. 2	0	0	0	0	0	2
ESE	4	1	0	0	0	0	5
SE	3	1 🗳	0	0	. 0	0	4
SSE	3	1	0 ·	0	0 .	0	4
S	3	1	0	0	0	0	4
SSW	5	7	0	0	0	0	12
SW	9	3	0	0	0	0	12
WSW	3	_ 1	0	0	0	0	4
W	11	1	0	0	0	0	12
WNW	2	0	0	0	0	0	2
NW	3	1	0	0	0	0	4
NNW	6	3	0	0	0	0	9
Variable	0	0	0	0	0	0	0
Total	55	22	0	. 0	0	0	77

8

Hours of calm in this stability class:

.....

Period of Record: July - September 2006 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	3	19	6	1	0	0	29
NNE	1	·2	1	0	0	0	4
NE	0	4	0	0	0	0	4
ENE	0	1	0	0.	0	0	1
E	0	4	1.	0	0	0	5
ESE	0	3	4	0	0	0	7
SE	0	3	2	0	0	.0	5
SSE	0	. 4	0	0	0	0	4
S	0	3 .	3	0	0	0	6
SSW	5	15	15	0	0	0	35
SW	2	29	10	0	0	0	41
WSW	10	11	2	0	0	0	23
W	9	14	3	0	0	0	26
WNW .	5	21	6	0	0	0	32
NW	17	49	13	5	0	0	84
NNW	9	41	.17	0	0	0	67
Variable	0	0	0	0	0	0	0
Total	61	223	83	6	0	0	373
Hours of caim	n in this stabil	itv class:	0				

Hours of calm in this stability class:

Hours of missing wind measurements in this stability class:

Hours of missing stability measurements in all stability classes: 30

Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

3

30

Wind			·				
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
- (-	
N	0	3	1	0	0	0	4
NNE	0	3	0	0	0	0	3
NE	0	0	0	0 ·	0	0	0
ENE	0	4	2	0	0	0	6
E	1	5	1	0	0	0	7
ESE	0	0	3	0	0	0	3
SE	0	3	0	0	0	0	3
SSE	0	0	1	0	0	0	1
S	1	1	0	0	0	0	2
SSW	1	5	3	0	0	0	9
SW	2	8	1	.0	0	0	11
WSW	4	6	2	0	0	0	12
W	4	2	4	0	0	0	10
WNW .	3	4	4	1	0	0 · ·	12
NW	8	6	9	1	0	0 .	24
NNW	3	11	7	0	0	0	21
Variable	0	0	0	. 0	0	0	0
Total	27	61	38	2	0	0	128
Hours of calm	n in this stabil	ity class:	2				
			this stability c	lass:	1		
• • •					~ ~		

Hours of missing stability measurements in all stability classes:

Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ň	0	0	1	0	0	0	1
NNE	õ	ō	Ó	Ō ·	Ō	Ō	Ó
NE	ō	Ō.	Ō	Õ	õ	õ	· Õ
ENE	Ō	ō	1	Ō	Ō	ō	1 .
E	Ō	4	2	Ō	ō	ō	6
ESE	Ō	1	3	0	0	0	4
SE	0	0	1	0	0	0	1
SSE	0	2	1	0	0	0	3
S	1	0	1 ⁻	0	0	0	2
SSW	0	1	1	0.	0	0	2
SW	0 /	6	0	· 0 ·	0	0.	6
WSW	3	5	0	0	0	0	8
W	4	1 .	1	0	0	0	6
WNW	3	4	0	0	. 0	0	7
NW	2	6	1	0	0	0	9
NNW	0	5	3	0	0	0	8
Variable	0	0	0	0	0	0	0
Total	13	35	16	0	0	0	64
Hours of calm Hours of missi	in this stabil	lity class: asurements in	1 this stability c	lass.	0		

Hours of missing stability measurements in all stability classes: 30

Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	5	27	0	0	0.	0	32
NNE	. 5	11	Õ	Õ	õ	Õ	16
NE	1	17	Ō	Ō	Ō	0.	18
ENE	3	20	1	Ó	0	0	24
E	4	16	13	Ō	0	0	33 .
ESE	1	15	10	0	0	0	26
SE	3	8	3	. 0	0	0	14
SSE	6	19	1	0	0	0	26
S	3	20	8	0	0	0	31
SSW	7	19	10	0	0	0	36
SW	10	24	8	0	0	0	42
WSW	10	21	3	0	0	0	34
W	10	25	6	2	0	0	43
WNW	7	35	14	0	0	Ο.	56
NW	9	30	18	4	0 .	0	61
NNW	13	18	9	0	0	0	40
Variable	0	0	0	· 0	0	0	0
Total	97	325	104	6	0	0	532
Hours of calm Hours of missi			9 this stability c	lass.	7		
Hours of missi			-	lass:	7		

30

Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	9	34	1	0	0	0	44
NNE	6	33	3	Ō	Ō	Ō	42
NE	4	18	10	Õ	Ō	Ō.	32
ENE	6	19	2	Ō	Õ	Ō	27
E	6	26	5	Ō	Ō	Ō	37
ESE	11	15	0	0	Ō	Ō	26
SE	13	5	0	0	0	0	18
SSE	8	13	0	0	0	0	21
S	17	19	3	0	· 0	0	39
SSW	10	34	6	0	0	0	50
SW	24	27	2	0	0	0	53
WSW	22	33	6	0	0	0	61
W	36	43	1	0	0	0	80
WNW	12	30	1	0	Ο.	0	43
NW	16	12	7	0	0	0	35
NNW	21	34	4	0	0	0	59
Variable	0	0.	0	.0	0	0	0
Total	221	395	51	0 .	0	0	667
Hours of calm i			27				
Hours of missing wind measurements in this s				ass:	10		

Hours of missing wind measurements in this stability class:10Hours of missing stability measurements in all stability classes:30

Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	8	12	0	0	0	0	20
NNE	1	3	0	· 0	0	0	4
NE	3	2	0	0	0	0	5
ENE	6	3	1	0 .	0	0	10
E	10	4	0	0	0	0	.14
ESE	11	3	0	0	0	0	14
SE	12	2	0	0	. 0	.0	14
SSE	11 ·	3	0	0	0	0	14
S	7	2	0	0	0	0	9
SSW	8	6	0	0	0	0	14
SW	18	4	0	0	0	0	22
WSW	22	3	0	0	0	0.	25
Ψ	31	7	0	0	0.	0	38
WNW	19	3	1	· 0	0	0	23
NW	17	3 .	0	0	0	. 0	20
NNW	12	18	0	0	0	0	30
Variable	0	0	0	0	0	0	0
Total	196	78	. 2	0	0	0	276
Hours of calm i	n this stabilit	y class:	47			· .	
Hours of missin			ass:	3			

30

Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	0	0	0 、	0	0	1
NNE	0	0	0	0	0	0	0
NÉ	1 .	0	0	0	0	0	1
ENE	0	1	0 .	0	0	0	1
E	0	2	0	0	0	0	2
ESE .	0	0	0	0	0	0	0
SE	1	0	0	0	0	0	1
SSE	1	0	0	0	0	0	1
S ·	1	0	0	0	0	0	1
SSW	0	1	0	0	0	0	1
SW	2	0	0	0	0	0	2
WSW	2	0	0	0	0	0	2 · *
W	2	1	0	0	0	0	3.
WNW	5	0	0	0	0	0	5
NW	1	1	0	0	0	0	2
NNW	1	1	0	0	0	0	2
Variable	0.	0	0	0	0	0	0
Total	18	7	Ó	0	0	0	25
Hours of calm	in this stabi	lity class:	3		•		
			this stability c	lass.	0		

Hours of missing wind measurements in this stability class:0Hours of missing stability measurements in all stability classes:30

Period of Record: October - December2006 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	3	2	0	0	0	5
NNE	0	1	0	0	0	0	1
NE	0	2	0	0	0	0	2 [,]
ENE	0	0	0	0	0	0	0
E	0	1	0	0	0	0	1
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	.0	0
SSE	0	0	0	0	0	0	0
S	1	3	0	2	0	0	6
SSW	0	8	8	3	Q	0	19
SW	1	6	5	. 1	Ò	0	13
WSW	2	0	1	0	0	0	3
W	3	0	2	4	0	.0	9
WNW	3	3	11	· 1	0	0	18
NW	2	5	11	3	0	0	21
NNW	1	- 6	0	0	0	0	7
Variable	0	0	0	0	0	0	0
Total	13	38	40	14	0	0.	105

Hours of calm in this stability class:

Hours of missing wind measurements in this stability class:

Hours of missing stability measurements in all stability classes: 7

0

0

Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0 ´	0	0	0	
NNE	0	1	0	0	0	0	1	
NE	0 -	0	. 1	0	0	0	1	
ENE	1	0	0	0	0	0	1	
E	0	2	0	0	0	0	2	
ESE	0	1 ·	2	0	0	0	3	
SE	0	0	0	0	0	· 0·	0	
SSE	0	0	. 0	0	0	0	0	
S	1	0	0	0	0	0	1	
SSW	0	2 ·	0	0	0	0	2	
SW	1	3	4	0	0	0	8	
WSW	1	1	¹	0	0	0	3	
W	0	0	1	4	1	0	6	
WNW	2	1	6	9	0	0	18	
NW	4	. 3	3	11	2	. 0	23	
NNW	1	¹	3	2	0	0	7	
Variable	0	0	0	0	0	0	0	
Total	11	15	21	26	3	0	76	
Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class:					0			
	asurements in	this stability c	1433.	U				

Hours of missing stability measurements in all stability classes:

Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

7

17

Wind						•	
Direction	1-3	4-7	8-12	`3-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
NNE	0		0	0	U	0	1 /
NE	0	1	2	0	0	0	3
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	1	3	0	0	0	4
SE	0	1	4	0	.0	0	5.
SSE	0	0	0	0	0	0	· 0
S	0	0	1	2 .	0	0	3
SSW	0	3	2	1	0	0	6
SW .	2	1	1	0	0	Ο.	4
WSW	1	0	0	0	0	0	1
Ŵ.	0	0	0	2	. 1	0	3
WNW	0	1	4	13	1	0	19
NW	0	3	7	2	4	0	16
NNW	0	2	6	1	0	0	9
Variable	0	0	0	0	0	0	0
Total	3	14	30	21	6	0	74

0

Hours of calm in this stability class:

Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	6	19	14	0	0	0	39
NNE	2	11	2	Ō	Ō	Ō	15
NE	8	15	6	0	0	0	29
ENE	2	1	1	0	0	0	4
E	0	14	5	0	0	0	19
ESE	5	7	53	0	0	0	65
SE	2	10	2	1	0	0	15
SSE 🗧 🗧	3	10	0	. 1	0	0	14
S	3	10	15	6	3	0	37
SSW	7	· 13	10	· 0	0	0	30
SW	8	16	15	1	0	0	40
WSW .	3	16	6	9	0	0	34
W	5	27	36	26	4	0	98
WNW	5	25	83	62	2	0	177
NW	11	14	60	36	2	0	123
NNW	6	17	23	12	0	0	58
Variable	0	0	0	0	0	0	0
Total	76	225	331	154	11	0	797
Hours of calm	n in this stabil	itv class:	15				

Hours of calm in this stability class:

186-1

\A/ind

Hours of missing wind measurements in this stability class:

Hours of missing stability measurements in all stability classes:

Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

2 7

12

7.

Wind	*						
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	13	12	1	0	0	0	26
NNE ·	2	16	0	0	0	0	18
NE	2	11	2	0	0	0	15
ENE	3	27	4	0	0	0	34
E	6	18	13	0	0	0	37
ESE	5	7	13	2	0	0	27
SE	2	5	3	3	0	0	13
SSE	9	9	3	1	0	0	22
S	6	16	19	9	1	0	51
SSW	6	17	15	0	0	1	39
SW	18	27	4	0	0	0	49
WSW	16	23	4	0	1	0	44
W	12	28	13	1	0	0	54
WNW	17	18	4	2	2	0	43
NW	19	20	37	15	1	0	92
NNW	19	26	5	3	0	0 .	53
Variable	0	0	0	0	0	0	0
Total	155	280	140	36	5	1	617
Hours of calm	in this stabil	ity class:	37				

Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	4	5	0	0	0	0	9
NNE	5	3	0	Ő	0	. 0	8
NE	3	3	0	0	0	0	6
ENE	3	1	0	0	0	0	
E	5 6	1	1	0	0	0	4
	-	5		0	0	0	12
ESE	4	3	0	0	0	0	7.
SE	10	1	0	U .	0	0	11
SSE	1	2	0	0	0	0 .	9
S	6	3	1	0	0	0	10
SSW	15	1	0	0,	0	0	22
SW	25	4	1	0	0	0	30
WSW	. 17	7	0	0	1	0	25
W	11	9	1	0	1	0	22
WNW	14	7	1	0	0	0	22
NW	12	3	1	0	0	0	16
NNW	11	11	2	0	0	0	24
Variable	0	0	0	0	0 ·	0	0
Total	153	74	8	0	2	0	237
Hours of caim	in this stabil	ity class:	62				
			this stability c	lass:	8		

Hours of missing wind measurements in this stability class: Hours of missing stability measurements in all stability classes:

Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 100 Feet Wind Speed (in mph)

7

2 7

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	. 0	0	0	0	0	2
NNE	4	0	Ō	0 .	Ō	Õ	4
NE .	0	0	0	0	0	Ō	0
ENE	2	0	0	0	0	Ō	2
E	· 0	1	0	0	0	0	1
ESE	8	1	0	0	0	0	9
SE	1 -	1	0	0	. 0	0	2
SSE	3	. 1	. 0	0	0	0	4
S	7	5	0	0	0	0 ·	12
SSW	12	8	1	0	. 0	0	21
SW	10	· 1	. 0	0	0	0	11
WSW	9	11	0	0	0	0	20
W	13 🛸	6	. 0	0	· 0 · ·	. O	19
WNW	4	2	0	0	0	0	6 ·
NW	4	. 4	0	0	0	0	8
NNW	5	0	. 0 .	0	0	0	5
Variable	0	0	0	0	0	0	0
Total	84	41	1	0	0	. 0	126
Hours of calm	n in this stabili	ity class:	30	·			

Attachment 7 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Assessment of Radiation Doses Due to Radioactive Liquid and Gaseous Effluents Released from TMI during 2006

TMI-1

The attached table presents the maximum hypothetical doses to an individual and the general population resulting from 2006 TMI-1 releases of gaseous and liquid effluents. Provided below is a brief explanation of the table.

A. Liquid (Individual)

Calculations were performed on the four age groups and seven organs recommended in Regulatory Guide 1.109. The pathways considered for TMI-1 were the consumption of drinking water and fish and standing on the shoreline influenced by TMI-1 effluents. The latter two pathways are considered to be the primary recreational activities associated with the Susquehanna River in the vicinity of TMI. The "critical receptor" or Receptor 1 was that individual who 1) consumed Susquehanna River water from the nearest downstream drinking water supplier (Wrightsville Water Supply), 2) consumed fish residing in the vicinity of the TMI-1 liquid discharge outfall and 3) occupied an area of shoreline influenced by the TMI-1 liquid discharge.

For 2006 the calculated maximum whole body (or total body) dose from TMI-1 liquid effluents was 1.35E-2 mrem to an adult (line 1). The maximum organ dose was 1.51E-2 mrem to the liver of an adult (line 2).

B. Gaseous (Individual)

There were six major pathways considered in the dose calculations for TMI-1 gaseous effluents. These were: (1) plume exposure (2) inhalation, consumption of; (3) cow milk, (4) vegetables and fruits, (5) meat, and (6) standing on contaminated ground. Real-time meteorology was used in all dose calculations for gaseous effluents.

Lines 3 and 4 present the maximum plume exposure at or beyond the site boundary. The notation of "air dose" is interpreted to mean that these doses are not to an individual, but is considered to be the maximum doses that would have occurred at or beyond the site boundary. The table presents the distance in meters to the location in the affected sector (compass point) where the theoretical maximum plume exposures occurred. The calculated maximum plume exposures were 2.07E-5 mrad and 3.16E-4 mrad for gamma and beta, respectively.

The maximum organ dose due to the release of iodines, particulates and tritium from TMI-1 in 2006 was 1.07E-2 mrem to the thyroid of a child residing 2000 meters from the site in the SE sector (line 5). This dose again reflects the maximum exposed organ for the appropriate age group.

For 2006, TMI-1 liquid and gaseous effluents resulted in maximum hypothetical doses that were a small fraction of the quarterly and yearly ODCM dose limits.

		<u></u>								 -1
		SUMMARY OF Ja	MAXIMUM IND nuary 1, 2006 th				И			
Effluent	Applicable Organ	Estimated Dose (mrem)	Age Group	Loca Dist (m)	ation Dir (to)	% OD Dose			M Dose (mrem)	
	· · · · · · · · · · · · · · · · · · ·					Quarter	Annual	Quarter	Annual	
(1) Liquid (2) Liquid	Total Body Liver	1.35E-2 1.51E-2	Adult Adult	Recepto Recepto		9.00E-1 3.02E-1	4.50E-1 1.51E-1	1.5 5	3 10	Ţ
(3) Noble Gas (4) Noble Gas	Air Dose (gamma-mrad) Air Dose (beta-mrad)	2.07E-5 3.16E-4	 	1000 3000	E SE	4,14E-4 3.16E-3	2.07E-4 1.58E-3	5 10	10 20	
(5) lodine, Tritium & Particulates	Thyroid	1.07E-2	Child	2000	SE	1. 43E-1	7.13E-2	7.5	15	
							<u> </u>		W 49 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

TMI-2

The attached table presents the maximum hypothetical doses to an individual and the general population resulting from 2006 TMI-2 releases of gaseous and liquid effluents. Provided below is a brief explanation of the table.

A. Liquid (Individual)

Calculations were performed on the four age groups and seven organs recommended in Regulatory Guide 1.109. The pathways considered for TMI-2 were the consumption of drinking water and fish and standing on the shoreline influenced by TMI-2 effluents. The latter two pathways are considered to be the primary recreational activities associated with the Susquehanna River in the vicinity of TMI. The "critical receptor" or Receptor 1 was that individual who 1) consumed Susquehanna River water from the nearest downstream drinking water supplier (Wrightsville Water Supply), 2) consumed fish residing in the vicinity of the TMI-2 liquid discharge outfall and 3) occupied an area of shoreline influenced by the TMI-2 liquid discharge.

For 2006 the calculated maximum whole body (or total body) dose from TMI-2 liquid effluents was 4.39E-4 mrem to an adult (line 1). The maximum organ dose was 6.90E-4 mrem to the liver of a teen (line 2).

B. <u>Gaseous (Individual)</u>

There were six major pathways considered in the dose calculations for TMI-2 gaseous effluents. These were: (1) plume exposure (2) inhalation, consumption of; (3) cow milk, (4) vegetables and fruits, (5) meat, and (6) standing on contaminated ground. Real-time meteorology was used in all dose calculations for gaseous effluents.

Since there were no noble gases released from TMI-2 during 2006, the gamma and beta air doses (lines 3 and 4, respectively) were zero.

The maximum organ dose due to the release of particulates and tritium from TMI-2 in 2006 was 3.97E-5 mrem to the liver, total body, thyroid, kidney, lung and GI tract of a child residing 2000 meters from the site in the SE sector (line 5).

For 2006, TMI-2 liquid and gaseous effluents resulted in maximum hypothetical doses that were a small fraction of the quarterly and yearly ODCM dose limits.

	SUMN	IARY OF MAXIMUN January 1, 200				ROM			
		1		Loca		%	of	T	
Effluent	Applicable Organ	Estimated Dose (mrem)	Age Group	Dist (m)	Dir (to)	ODCN	Dose		CM Dose t (mrem)
						Quarter	Annual	Quarter	
(1) Liquid (2) Liquid	Total Body Liver	4.39E-4 6.90E-4	Adult Teen	Receptor Receptor		2.93E-2 1.38E-2	1.46E-2 6.90E-3	1.5 5	3 10
(3) Noble Gas	Air Dose (gamma-mrad)	0				0	0	5	10
(4) Noble Gas	Air Dose (beta-mrad)	0				0	0	10	20
(5) Tritium & Particulate	Liver, Total Body, Thyroid, Kidney, Lung & GI Tract	3.97E-5	Child	2000	SE	5.29E-4	2.65E-4	7.5	15

Attachment 8 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Assessment of Radiation Doses from Liquid and Gaseous Effluents Releases to Members of the Public within the TMI Site Boundaries during 2006

The Offsite Dose Calculation Manual requires an assessment of the radiation doses from radioactive liquid and gaseous effluents to members of the public due to their activities inside the site boundary during the reporting period. The estimated dose to a member of the public at or within the TMI Site Boundary was 0.65 mrem for 2006.

The following are the assumptions made in this assessment:

Access to the TMI Owner Controlled Area is limited to only those persons who have business related activities that support the operation of the facility. Therefore, based on the definition of a 'member of the public' in NUREG-1301, there is no credible scenario for this individual to receive non-occupational dose inside the TMI Owner Controlled Area. The scenario selected will be recreational use of the Susquehanna River and shoreline next to the Owner Controlled Area fence. Based on the two definitions of Site Boundary in the ODCM, this scenario is <u>AT</u> the Site Boundary for liquid releases but <u>INSIDE</u> the Site Boundary for gaseous releases.

A member of the public stays next to the owner controlled area for 67 hours. The 67 hours is based upon Reg. Guide 1.109 shoreline recreation period given in Table E-5. This is a table of recommended values to be used for the maximum exposed individual in lieu of site-specific data. Three Mile Island is co-located with other islands in the Lake Frederick area of the Susquehanna River. This area is used recreationally for boating and fishing over the summer months. The application of the 67 hours of recreational use from Reg. Guide 1.109 is appropriate.

The dose from liquid effluents was included in this scenario. The highest activity contained in releases from TMI is from batch releases from the Waste Evaporator Condensate Storage Tanks. The maximum time period for a single release was 22 hours. Since the time of a single release is less than the 67 hours of recreational use of the river, the highest quarterly cumulative dose from liquid effluents will be used in this calculation. The highest quarterly cumulative dose was 3.56E-2 mrem, total body. This cumulative dose included both batch and continuous liquid releases. Assuming that the total dose from a quarter was received in the 67 hours is conservative.

The highest dose from a single airborne release is characterized by release G200605549. This release contained the highest concentration of tritium of any gaseous release. In 2006, tritium released in gaseous effluents comprised 98 percent of the total curies released to the environment. No other releases would yield a higher dose than the release with the highest tritium concentration. This release occurred over 503 hours. The entire dose from this release will be applied to the 67 hour recreational use period. The application of the total dose from this release to 67 hours is

conservative. The total dose from release G200605549 was 8.24E-4 mrem to the critical receptor.

The highest fenceline TLD result (assumed to be equal to dose) will be added to the dose from the highest liquid and gaseous releases to yield the hypothetical maximum dose to a member of the public within the site boundaries.

The highest fenceline TLD result for 2006 was from Station L1-1 and was 6.6 mrem per standard month. The net TLD dose, obtained by subtracting the results from a control station TLD from the indicator results, was not used. This again is conservative.

Calculations:

6.6 mrem/std mo. * 1/30.44 d/std mo. * 1/24 hr/day * 67 hr = 0.61 mrem

The dose from gas release G200605549 was 0.000823 mrem.

The quarterly cumulative dose from liquid effluents was 0.0356 mrem.

Total Dose Calculation

0.61 mrem + 0.000823 mrem + 0.0356 = 0.65 mrem

Attachment 9 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Assessment of Radiation Dose to Most Likely Exposed Real Individual per 40 CFR 190

Dose calculations were performed to demonstrate compliance with 40 CFR 190 (ODCM Part IV Section 2.10). Gaseous and liquid effluents released from TMI-1 and TMI-2 in 2006 resulted in maximum individual doses (regardless of age group) of 0.0211 mrem to the thyroid and 0.0264 mrem to any other organ including the whole (total) body. The direct radiation component was determined using the highest quarterly fence-line exposure rate as measured by an environmental TLD, and subtracting from it, the lowest quarterly environmental TLD exposure rate.

Based on the maximum exposure rate of 6.6 mR/standard month, a person residing at the fence-line for 67 hours (shoreline exposure from Reg. Guide 1.109) received an exposure of 0.61 mR. Based on the lowest exposure rate of 4.1 mR/standard month and converting it by the same method yielded a background exposure of 0.38 mR. Therefore, the net exposure from direct radiation from TMINS was 0.23 mR. Combining the direct radiation exposure (assumed to be equal to dose) with the maximum organ doses from liquid and gaseous releases, the maximum potential (total) doses were 0.25 mrem to the thyroid and 0.26 mrem to any other organ. Both doses were well below the limits specified in 40 CFR 190.

Attachment 10 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Deviations from the ODCM Sampling and Analysis Regime during 2006

There were two deviations from the ODCM sampling program in 2006.

The Unit 1 Turbine Building Sump Compositor was found empty on October 23, 2006. The compositor was repaired and returned to service immediately. This is a flow proportional composite sampler for continuous releases from the Turbine Building Sump to the Industrial Waste Treatment System. This is a requirement of the ODCM, Part 1, Table 3.2-1-A.2. Radioactivity concentrations for this sample location are very consistent. Sample results from the week after were used with the volume of water released from the Industrial Waste Treatment System to calculate release doses for the time period the compositor was Out of Service.

On December 29, 2006, the ESF ventilation system was run for a surveillance without the effluent radiation monitor RM-A-14 and its associated sampling panel in service. The system was shutdown immediately upon recognizing this fact. A release permit was created to calculate the dose for the approximately 4 hours the system ran. This system is emergency ventilation for the fuel handling building and the normal radiation monitor, RM-A-4, for this building saw no change in reading over this time frame. The only isotope occasionally seen when this system runs is tritium. The normal weekly grab sample tritium for the spent fuel pool area was used for the dose calculation since no tritium sample was obtained via RM-A-14.

Attachment 11 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

Errata report for the 2005 Annual Radioactive Effluent Releases Report

An errata report was required due to the same values as 2004 being reported in 2005 in the Summary of Maximum Individual Doses for TMI-1 Table. The calculations were performed for 2005, but the table was not updated with the new values before submitting the annual report. Only the affected pages are attached. The changes are annotated in bold font.

Assessment of Radiation Doses Due to Radioactive Liquid and Gaseous Effluents Released from TMI during 2005

TMI-1

The attached table presents the maximum hypothetical doses to an individual and the general population resulting from 2005 TMI-1 releases of gaseous and liquid effluents. Provided below is a brief explanation of the table.

A. <u>Liquid (Individual)</u>

Calculations were performed on the four age groups and seven organs recommended in Regulatory Guide 1.109. The pathways considered for TMI-1 were the consumption of drinking water and fish and standing on the shoreline influenced by TMI-1 effluents. The latter two pathways are considered to be the primary recreational activities associated with the Susquehanna River in the vicinity of TMI. The "critical receptor" or Receptor 1 was that individual who 1) consumed Susquehanna River water from the nearest downstream drinking water supplier (Wrightsville Water Supply), 2) consumed fish residing in the vicinity of the TMI-1 liquid discharge outfall and 3) occupied an area of shoreline influenced by the TMI-1 liquid discharge.

For 2005, the calculated maximum whole body (or total body) dose from TMI-1 liquid effluents was **4.35E-2** mrem to an adult (line 1). The maximum organ dose was **5.76E-2** mrem to the liver of an adult (line 2).

B. <u>Gaseous (Individual)</u>

There were six major pathways considered in the dose calculations for TMI-1 gaseous effluents. These were: (1) plume exposure (2) inhalation, consumption of; (3) cow milk, (4) vegetables and fruits, (5) meat, and (6) standing on contaminated ground. Real-time meteorology was used in all dose calculations for gaseous effluents.

Lines 3 and 4 present the maximum plume exposure at or beyond the site boundary. The notation of "air dose" is interpreted to mean that these doses are not to an individual, but is considered to be the maximum doses that would have occurred at or beyond the site boundary. The table presents the distance in meters to the location in the affected sector (compass point) where the theoretical maximum plume exposures occurred. The calculated maximum plume exposures were **9.93E-5** mrad and **1.38E-4** mrad for gamma and beta, respectively. The maximum organ dose due to the release of iodines, particulates and tritium from TMI-1 in 2005 was **1.85E-2** mrem to the liver, total body, thyroid, kidney, lung and GI-LLI of an child residing **2000** meters from the site in the **SE** sector (line 5). This dose again reflects the maximum exposed organs for the appropriate age group.

For 2005, TMI-1 liquid and gaseous effluents resulted in maximum hypothetical doses that were a small fraction of the quarterly and yearly ODCM dose limits.

				TMI-1		·				<u> </u>
		SUMMARY OF N Jan	AXIMUM INDI uary 1, 2005 th	VIDUAL DO			И			
Effluent	Applicable Organ	Estimated Dose (mrem)	Age Group	Loc Dist (m)	ation Dir (to)	% OD Dose	СМ	1	M Dose (mrem)	
(1) Liquid (2) Liquid	Total Body Liver	4.35E-2 5.76E-2	Adult Adult	Recepto Recepto		<u>Quarter</u> 2.90 1.15	<u>Annual</u> 1.45 5.76E-1	<u>Quarter</u> 1.5 5	<u>Annual</u> 3 10	
(3) Noble Gas (4) Noble Gas	Air Dose (gamma-mrad) Air Dose (beta-mrad)	9.93E-5 1.38E-4		2000 4000	WSW WNW	1.99E-3 1.38E-3	9.93E-4 6.9E-4	5 10	10 20	٤.
(5) Iodine, Tritium & Particulates	Liver, Total Body, Thyroid, Kidney, Lung & GI-LLI	1.85E-2	Child	2000	SE	2.47E-1	1.23E-1	7.5	15	

Enclosure 1 2006 Annual Radioactive Effluent Releases Report for TMI 5928-07-20096

> ODCM change for TMI Offsite Dose Calculation Manual, Revision 25 6610-PLN-4200.01

> > (Revision 25 was issued on August 9, 2006)

A 🖛		40	A A 404 4000
	TACHMENT 1	AD-	AA-101-1002
	ure Approval Form Page 1 of 1		Revision 9
Document Number: 66(0-	PLN-4200.01	F	Revision: 24
🗋 New 🗍 Cancel 🔛 Cáncel 🔀 F	Revision EC#: PCR#:	1) PC-20986 PPIS	#:
Document Revision	Editorial	и.	· .
Supersede corporate document(s) List:		11716,0	.9
Revision Summary:	tached drange summar		
CONFIRM that no commitments (i.e., ti	hose steps annotated with CM-X) have b commitment change/deletion form and	een changed or del	
Originator:			
	Print	-7(21)06 Date	Location/Ext
Applicable BR	DR 🖸		•
Site Contacts BY	LA 🖸		
Check box and PB 🔲		, LG 🗖	
provide name TMI	ZN 🔲	Other 🔲	•
SÁ 🗌		Other 🗌	
Validation Req'd: XNo 🗌 Yes (attach)		Common Training Re	
		Site Specific Training	Req'd: 🗌 No 🔀 Yes
(Validation requirement see AD-AA-101)	Print/Signature		
Change Management: HU-AA-1101 C	hange Checklist Attached 🛛 🗌 Document T	raveler 🛛 🗶 None Red	quired
Level of Use: 🔲 Level 1 - Continuous	Use 🛛 🗌 Level 2 - Reference Use	Level 3 - Info	rmation Use
Approval			
CFAM (Standard Procedures)	Print/Sign	Date	Location/Ex:
Approval Location: TMI	Site Document(s) to be superseded Use additional sheets as necessary. Assure that		are dispositioned.
Location:	Use additional sheets as necessary. Assure the		
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No XYes	Use additional sheets as necessary. Assure that Temp or Interim Change #:	at all pending changes Interim Change expire	
Location: IM L Temp. Change Interim Change 10CFR50.59 Applicable: No XYes (Or applicable regulatory process reviews)	Use additional sheets as necessary. Assure that Temp or Interim Change #:	at all pending changes Interim Change expire	
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: Yes	Use additional sheets as necessary. Assure that Temp or Interim Change #: Tracking Number	at all pending changes Interim Change expire pt per	
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes	Use additional sheets as necessary. Assure that Temp or Interim Change #: Exem Tracking Number PORC Number (after PORC Approved.	at all pending changes Interim Change expira pt per 2006 - 020	ition:
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes If superceding a document containing commitment SQR/ITR/RTR N/A Req'd Revie	Use additional sheets as necessary. Assure that Temp or Interim Change #: Exem Tracking Number PORC Number (after PORC Approved) ts, notify the Commitment Tracking Coordinator per LS-AA	at all pending changes Interim Change expira pt per 2006 - 020	dated as appropriate.
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes If superceding a document containing commitment	Use additional sheets as necessary. Assure that Temp or Interim Change #: Exem Tracking Number PORC Number (after PORC Approved) ts, notify the Commitment Tracking Coordinator per LS-AA	at all pending changes Interim Change expire pt per 2006 - 020 A-110 so the CTD can be up	ation: dated as appropriate. eq'd XNo [] Yes
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes If superceding a document containing commitment SQR/ITR/RTR N/A Req'd Revie	Use additional sheets as necessary. Assure that Temp or Interim Change #: Exem Tracking Number PORC Number (after PORC Approved: ts, notify the Commitment Tracking Coordinator per LS-AA ws/Approval: (list) Surveillance Coo	at all pending changes Interim Change expire pt per 2006 - 020 A-110 so the CTD can be up	ation: dated as appropriate. eq'd X No [] Yes
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes If superceding a document containing commitment SQR/ITR/RTR N/A Req'd Revie	Use additional sheets as necessary. Assure that Temp or Interim Change #: Exem Tracking Number PORC Number (after PORC Approved) ts, notify the Commitment Tracking Coordinator per LS-AA	at all pending changes Interim Change expire pt per 2006 - 020 A-110 so the CTD can be up	dated as appropriate.
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes PORC Required: No Yes If superceding a document containing commitment SQR/ITR/RTR N/A Req'd Revie Cross Discipline Reviews R.Freeman Print Adam Miller Print	Use additional sheets as necessary. Assure the Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved: ts, notify the Commitment Tracking Coordinator per LS-AA ws/Approval: (list) Surveillance Coo Signature Adda Milla Signature	at all pending changes Interim Change expire pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Review Review $-\frac{1/21/2006}{0}$	ation: dated as appropriate. eq'd XNo [] Yes
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes PORC Required: No Yes If superceding a document containing commitment SQR/ITR/RTR N/A Req'd Revie Cross Discipline Reviews R.FREMM Print Adam Miller Print	Use additional sheets as necessary. Assure the Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved ts, notify the Commitment Tracking Coordinator per LS-AA ws/Approval: (list) Surveillance Coo Signature Adda Wilk Signature Josov A. Wilson Signature	at all pending changes Interim Change expire pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Review Review $-\frac{1/21/2006}{0}$	ation: dated as appropriate. eq'd XNo [] Yes
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes PORC Required: No Yes If superceding a document containing commitment SQR/ITR/RTR N/A Req'd Revie Cross Discipline Reviews R.Freema Print Adam Milley Print Jorthy A-Wilson per telcon Print	Use additional sheets as necessary. Assure the Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved: ts, notify the Commitment Tracking Coordinator per LS-AA ws/Approval: (list) Surveillance Coo Signature Adda Milla Signature	at all pending changes Interim Change expire pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Review Review $-\frac{1/21/2006}{0}$	ation: dated as appropriate. eq'd XNo [] Yes
Location: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes PORC Required: No Yes PORC Required: No Yes SQR/ITR/RTR N/A Req'd Revie Cross Discipline Reviews R. Fremb Print Adam Milley Print Jorthy A. Willson per telcon Print Temp Change Authorization	Use additional sheets as necessary. Assure the Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved: ts, notify the Commitment Tracking Coordinator per LS-A4 ws/Approval: (list) Surveillance Coor Signature Attach additional if regid	at all pending changes Interim Change expire pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Review Review Review $\frac{-1/21/2006}{Date}$ $\frac{7/24/2006}{Date}$	ation: dated as appropriate. eq'd SNo [] Yes <u>EN4.</u> Discipline or Org. <u>Discipline or Org.</u> <u>Cittem CrAM</u> Discipline or Org.
Location: IML Decation: IML Image Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes Port How Print Print Port How Port Ho	Use additional sheets as necessary. Assure that Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved. ts, notify the Commitment Tracking Coordinator per LS-AV ws/Approval: (list) Surveillance Coor Signature Attach additional if regid	at all pending changes Interim Change expira pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Ro $-\frac{1/21/2006}{Date}$ $\frac{7/24/2006}{Date}$ 8/2/06 Date Impl. Date	ation: dated as appropriate. eq'd SNO Yes ENG Discipline or Org Discipline or Org CHEM CHAM Discipline or Org. Exp. Date
Location: IML Decation: IML Image Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes PO	Use additional sheets as necessary. Assure the Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved ts, notify the Commitment Tracking Coordinator per LS-A4 ws/Approval: (list) Surveillance Coor Signature Jetter A. Wilson Signature Jetter A. Wilson Signature Attach additional if regid	at all pending changes Interim Change expira pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Ro $-\frac{1/21/2006}{Date}$ $\frac{7/24/2006}{Date}$ 8/2/06 Date Impl. Date	ation: dated as appropriate. eq'd SNO Yes ENG Discipline or Org Discipline or Org CHEM CHAM Discipline or Org. Exp. Date
Location: IML Decation: IML Image Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No Yes Port How Print Print Port How Port Ho	Use additional sheets as necessary. Assure the Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved: ts, notify the Commitment Tracking Coordinator per LS-AV ws/Approval: (list) Surveillance Coo Signature John A. W./Son Signature John A. W./Son Signature Attach additional if regid SQR Print/Sign/Date isciplinary reviews have been performed and the re- for all functional areas.	at all pending changes Interim Change expira pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Ro $-\frac{1/21/2006}{Date}$ $\frac{7/24/2006}{Date}$ 8/2/06 Date Impl. Date	dated as appropriate. eq'd SNO Yes ENG Discipline or Org. Discipline or Org. CHEM CFAM Discipline or Org. Exp. Date s form. This RP/RD/NPP-
Location: IML Decation: IML Temp. Change Interim Change 10CFR50.59 Applicable: No Yes (Or applicable regulatory process reviews) 10CFR72.48 Applicable: No Yes PORC Required: No	Use additional sheets as necessary. Assure the Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved. Is, notify the Commitment Tracking Coordinator per LS-AA ws/Approval: (list) Surveillance Coo Signature Multiple Signature Jathy A. Wilson Signature Jathy A. Wilson Signature Jathy A. Wilson Signature Attach additional if regid SQR Print/Sign/Date isciplinary reviews have been performed and the re for all functional areas. BACH Multiple SMCEL Source	at all pending changes Interim Change expira pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Ro $-\frac{1/21/2006}{Date}$ $\frac{7/24/2006}{Date}$ $\frac{8/2/06}{Date}$ Impl. Date eviewers have signed this	ation: dated as appropriate. eq'd SNO Yes ENG Discipline or Org. Discipline or Org. CHEM CHAMM Discipline or Org. Exp. Date
Location: IML	Use additional sheets as necessary. Assure that Temp or Interim Change #: Tracking Number PORC Number (after PORC Approved: ts, notify the Commitment Tracking Coordinator per LS-AA ws/Approval: (list) Surveillance Coo Signature John A. W./Son Signature John A. W./Son Signature Attach additional if regid SQR Print/Sign/Date isciplinary reviews have been performed and the re- for all functional areas. BACH	at all pending changes Interim Change expira pt per 2006 - 020 A-110 so the CTD can be up ordinator Review Ro $-\frac{1/21/2006}{Date}$ $\frac{7/24/2006}{Date}$ $\frac{8/2/06}{Date}$ Impl. Date eviewers have signed this	dated as appropriate. eq'd SNO Yes ENG Discipline or Org. Discipline or Org. CHEM CFAM Discipline or Org. Exp. Date s form. This RP/RD/NPPT

AD-AA-101-1002.F01AA Revision 4

Rug	01	06	08:	54a	
-----	----	----	-----	-----	--

TMI-1 Operations 008-2

p.3

ATTACHMENT 1	AD-AA-101-1002
Procedure Approval Form	Revision 9
Page 1 of 1	·
Document Number: 6610 - ALN - 4200.01	Revision: 24
Tille: Offsite Dosc Calculation Manu	al (open)
New Cancel Cancel Revision EC#	PCR#: pc- 201 86 PPISH
Document Revision 🗌 Editorial	AR#: #:
D Supersede comparate document(s) List: Revision Summary: Attach add'i descript, if reg't <u>see attached Grange</u>	
CONFIRM that no commitments (i.e., those steps annotated with evaluated via completion of LS-AA-110 commitment change/delet	CM-X) have been changed or deleted unless
Originator: L.K. Weber	-42106 +41/894
Print	Date Location/Ext
Site Contacts BY	CL []
Check box and PB OC	LG []
provide name TMI	Olhor 🖸
	Other 🛛
Validation Regid: XNo 🗌 Yes (attach)	Comman Training Red'd : 2 No 🗋 Yes
	Site Specific Training Req'd: 🔲 No 🔀 Yes
(Validation requirement see AD-AA-101) Print/Signature	
Change Management: 🛄 HU-AA-1101 Change Checklist Attached 👘 [] Document Traveler 🛛 🕅 None Required
Level of Use: 1 - Continuous Use Level 2 - Refe	rence Use Alevel 3 - Information Use
Approval CFAM (Standard Procedures) Print/Sign	Date Location/Ex
Approval Site Decument(s) to be	and the second
Location: TMI Use additional sheets as neces	sary. Assure that all pending changes are dispositioned.
Temp. Change Interim Change Temp or Interim Change	gs #: Interim Change expiration:
10CFR\$0.58 Applicable: IN a Yes (Or applicable regulatory process reviews)	🗂 Exempt per
10CFR72.48 Applicable: XNo Yes Tracking Number	
PORC Required: INO Yes PORC Number (after PORC A	
I superasting a document containing commitments, notify the Commitment Tracking Co SQR/ITR/RTR [] N/A Req'd Reviews/Approval: (list) Surv Cross Discipling Reviews	elliance Coordinator Review Req'd Z.No 🗌 Yea
R.Freening	-121/2006 ENG
Print Signature	Data Diagine & Org.
Adam Miller Ale Miller	7/24/2006 Docs Acsura
Prove	Dissiding of Oto
CARY R. LEIDICH. Man & Leidel	S/1/2006 OFFICER
Print Skynamure	Data Disciping of Crg.
Attach additional U req	d
Temp Change Authorization	· · · · ·
Only SRO Print/Sign/Date SQR Print/Sig	n/Date Exp. Date Exp. Date
SQR Approval Indicates that all regulard Gross-Discipitnary reviews have been part procedure is technically and functionally accurate for all functional areas. SQR Approval:	enned and the revjews/s have signed this (erm. This
	Date Discoules of Disc
Site Authorization:	
SFAM PrintSign	Date
	' Instal Bata
Plant Manager Print/Sign (when required by pl	ccodure) Date

AD-AA-101-1002.F01AA Revision 4

2001/002

FAX # 330-384-5669

AUGUST 1, 2006

FirstEnergy

FAX Transmittal

Please Deliver

Jim Byrne

TMI

2

(·

Location:

Subject:

Fax:

Phone:

From:

717-948-8461

330-315-8470

Ted Burgner

Number of pages:

(including cover)2

If you do not receive all pages, please call Tcd Burgner, 330-761-7890.

Sir:

Attached is the signed Procedure Approval Form you requested. If you would like me to send the original, please let me know.

Procedure Approval Form - GPU Cognizant Officer

Thank you,

Tcd

330-761-7890

Training Needs/Cost Analysis Worksheet Job Aid

Part One - Needs Analysis

TRAINING TOPIC: OFFSITE DOSE CALC	ULARION MANAR (ODEM) CHANGE
1. What are the reasons for performing Needs	Analysis?
Performance deficiency	Management request for training
X Regulation change	OPEX (LER, SOER, SER, etc.)
X Procedure change	System/equipment hardware change
System/equipment operating characteristic	Feedback (student, instructor, management,
change (flows, pressure, temperatures, etc.)	assessment, or inspection results)
New or changed job position description	Other:
Describe reasons: The ODCM 13 BLING UN CONDIN OFF CAS MONINAINE REGULE RM-A-7 OPPLANING AN REFERANCE	RM-A-4+6 EDDINE SAMPLES
2. Will this need for training be evaluated by a	nother process?
· · · ·	sses such as Job and Task Analysis maintenance. (Stop
Need Analysis)	
X NO: Need IS NOT being addressed via other pr	rocesses (continue at question 3)
3. What prevents or may prevent personnel fro	om performing this task satisfactorily?
Lackoficognitiveiknowledge or physical skills.	These situations would most likely be resolved
through training:	
New/revised procedure or equipment	Plant modification
X New/revised regulatory requirement	Industry event
Inadequate training on tasks	Change in job scope
Change in task skill or knowledge requ	irements Unsatisfactory work control
Describe what is not known or cannot be done:	
· · · · · ·	
Improper attitude. Affective behavior can be res	
finclude training Factors impacting affective be	havior include:
Confusing work assignments	
Poor supervision observation/follow-up	
Work assignments that are not challeng	ing
Poor interpersonal relationships on job	- C 41 1
Lack of acknowledgment of the worth of	of the work
Misconception of one's own abilities	
"Rewarding" satisfactory performance	by increasing the work
Describe factors below:	

JA-Analysis-210- 1303 Revision 0

Page 2 of 7

	other than training Distractions on the job	Poor lighting
	Lack of resources	
		Poor equipment
	Inadequate procedures	Poor work planning by the organization
	Poorly defined work goals Describe obstacles: (If ONLY Environmental	Unsatisfactory work control
		rmance to the desired level; or enhance the safety a ent errors based on lessons learned from operating
	YES / MAYBE Explain and continue at q Explain and continue at q	· .
алы, т. 	we have NO way and a second day was a second	اري هري ريون در
	Are the consequences of performance defic	iencies important?
· · ·	Are the consequences of performance defic	iencies important? onnel or general public. Personnel injury, fuel damage
	Are the consequences of performance defic YES: Threat to health and safety of plant perso or radioactive release may result. (contin	iencies important? onnel or general public. Personnel injury, fuel damage nue at question 6) stem operability or equipment down time. Regulatory
	 Are the consequences of performance defic YES: Threat to health and safety of plant person or radioactive release may result. (contine YES: Plant availability affected by loss of system violations or major equipment damage result. YES: Additional compensating actions are required 	iencies important? onnel or general public. Personnel injury, fuel damage nue at question 6) stem operability or equipment down time. Regulatory nay result. (continue at question 6) uired to complete a task, prevent minor regulatory
*	 Are the consequences of performance defic YES: Threat to health and safety of plant perso or radioactive release may result. (contin YES: Plant availability affected by loss of sys violations or major equipment damage r YES: Additional compensating actions are req infractions, or non-essential equipment result. (continue at question 6) 	iencies important? onnel or general public. Personnel injury, fuel damage nue at question 6) stem operability or equipment down time. Regulatory may result. (continue at question 6)

6. What is the estimated cost of actual/potential performance deficiency.

The cost of continued performance deficiencies is the value the company places on the mistake if it has already happened or if it were to happen. These costs may be hard to quantify, but a realistic approximation is needed to justify spending company resources. For example, if the incident did or could shut the plant down for 1 day, the lost production and power replacement cost of approximately \$1M per day plus repair costs, overtime for crews, and other costs would need to be considered as the cost of the performance deficiency. If the training is regulatory-driven, consider what the costs would be if the training was not done. For example, there might be regulatory fines, plant shutdowns, stop work actions, union walkouts, public relations problems to correct. Describe the impact of not correcting the problem.

Estimated cost of performance deficiency:

Describe:

JA-Analysis-210- 1303 Revision 0 Page 3 of 7

7. Which personnel and how many are impacted h	y this training need? (check all applicable boxes)
Licensed Operator (RO, SRO):	Non-Licensed Operator:
Shift Technical Advisor:	Fuel Handler/SRO Limited:
Engineer:	Chemistry technician:
Radiation technician:	New employee:
Electrical Maint. Technician:	Instrument Maint. technician:
Mechanical Maint. Technician:	Other:
8. Perform Cost Analysis, using Excel method (page	- ye 4) or manual method (nage 5)
Return on Investment (ROI) is less than 1	Do not train.
Return on Investment (ROI) is between 1 and 2	Training may be part of solution.
Return on Investment (ROI) is greater than 2	Training is the solution.
9. TRAINING RECOMMENDATION: (check all	
In Train immediately (mmediately contact training supervision)	Tailgate /Just-In-Time (JIT) training
	Classroom
	Simulator / Dynamic Learning Activity
	Lab
	Other:
	-
Include in existing training program	
	Next Continuing Training session
(proceed with for and task analysis, d	Future Continuing Training session
X	Next Initial Training class
Do NOT Frain	
Describe: perform JIT TRA,NIL HAMON	/ Supervilly BRILF ON ODEM
CIHANGE. INCORPORAR INTO LESSON A	
MAININ AS WELL AS INITAL LK	ENSE TRAINING.
10. Non-Training Actions to consider (check the app	blicable boxes):
Change the procedure	Change work design or conditions
Provide a job aid	Improve incentives / consequences
Modify the equipment	Improve tools
Change job assignments	Conduct crew briefings
Improve feedback, coaching, or supervisory	Other:
oversight	None
Describe:	
L	
1 it	
A LUM	
Comp	
104	
n 1/ °	

F

P.S. Comp 8.2-0

JA-Analysis-210-1303 Revision 0 Page 4 of 7

External Costs (entire training sequence): (Complete items below or atta Visuals: Materials: Consultants/Vendor Trainers: Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	ai D&D Costs: \$	
Total D&D time: 0.00 Enter D&D personnel labor rate: Tot External Costs (entire training sequence): (Complete items below or atta Visuals: Materials: Consultants/Vendor Trainers: Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	ch vendor proposal)	
Enter D&D personnel labor rate: Tot External Costs (entire training sequence): Complete items below or atta Visuals: Materials: Consultants/Vendor Trainers: Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	ch vendor proposal)	-
External Costs (entire training sequence): (Complete items below or atta Visuals: Materials: Consultants/Vendor Trainers: Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	ch vendor proposal)	
Visuals: Materials: Consultants/Vendor Trainers: Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:		
Materials: Consultants/Vendor Trainers: Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	cternal Costs: \$	
Consultants/Vendor Trainers: Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	cternal Costs: \$	
Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	cternal Costs: \$	
Hardware: Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	xternal Costs: \$	
Travel: Refreshments: Other: \$ (Describe): Total E: Implementation Costs:	cternal Costs: \$	·
Refreshments:	xternal Costs: \$	
Other: \$ (Describe): Total E: Implementation Costs:	xternal Costs: \$	
Implementation Costs:	cternal Costs: \$	
Implementation Costs:	cternal Costs: \$	
		•
Enter number of Classes:	•	
Enter number of instructors per class:	•	· · ·
Enter instructor administration time/class:		· · ·
Enter instructor labor rate:		
Other: \$ (Describe):	······································	•
Total Instructor Implementation Costs: \$		·
Enter number of students per class:	•	•
Enter average student travel/lodging cost:	Nafar ta manara ang sa	
Enter average student labor rate:	ا المربع المربحة في المربع الأرب المربحة المربحة المربحة المربحة المربحة المربحة المربحة المربحة المربحة المرب المربحة المربحة	
Other: \$ (Describe):		and a second second
Total Student Implemetation Costs: \$		and a start of the second s
Total Implement	itation Costs: \$	
Evaluation Costs:		•
Enter number of evaluations planned:		
Enter time to conduct each evaluation:		
Enter number of evaluators/evaluation:	•	•
Enter evaluator labor rate:	· · · · · · · · · · · · · · · · · · ·	
Total Eval	uation Costs: \$	-
TOTAL COST O	F TRAINING: \$	· .
COST OF CONTINUED PERFORMANCE	DEFICIENCY:	in the second
RETURN ON INVEST	MENT (ROI): #DI	V/01

J. 1

50.59 REVIEW COVERSHEET FORM

LS-AA-104-1001 Revision 2 Page 1 of 1

Station/Unit(s): _____TMI-1_____

Activity/Document Number: PC-20986 for 6610-PLN-4200.01

Revision Number: 0/ 24

Title: Offsite Dose Calculation Manual

NOTE: For 50.59 Evaluations, information on this form will provide the basis for preparing the biennial summary report submitted to the NRC in accordance with the requirements of 10 CFR 50.59(d)(2).

Description of Activity:

(Provide a brief, concise description of what the proposed activity involves.)

The ODCM is being updated to reflect revisions to the requirements for operability of the offgas ventilation radiation monitors. Based on the NRC letter to Chris Crane dated 7-19-06 (see attached) confirming that revisions to the condenser vent system low range noble gas monitors operability requirements are now governed by the TS requirements for ODCM revisions, AmerGen does not consider these operability requirements as regulatory commitments in accordance with ASLB Order LBP-84-47. The ODCM is also being changed to clarify a note for operability of RM-A-7 and references to the iodine sampler and radiation monitors for RMA-4 and 6. REMP sample locations were also updated to reflect current locations and to use more accurate distance and azimuth information acquired through GPS readings.

Reason for Activity:

(Discuss why the proposed activity is being performed.)

The revised requirements were requested to bring TMI-1 more in line with current industry guidelines for primary to secondary leakage. The note clarification was identified in IR 44097 during ILT training. The REMP location updates were a result of Global Positioning System (GPS) readings taken during normal sample rounds, corrections from REMP reviews and the addition of an alternate milk sampling farm and food products location in case one of the regular locations is not available. The clarifications for RM-A-4 and RM-A-6 monitors came about as a result of reviews for ECR 06-00061.

Effect of Activity:

(Discuss how the activity impacts plant operations, design bases, or safety analyses described in the UFSAR.)

The revised requirements for the condenser offgas monitoring are consistent with industry guidance provided in EPRI documents for primary to secondary leakage. The note clarification and REMP sample location updates will have no impact on radiological effluent control nor will they change any of the calculations for doses from pathways in the environment.

Summary of Conclusion for the Activity's 50.59 Review:

(Provide justification for the conclusion, including sufficient detail to recognize and understand the essential arguments leading to the conclusion. Provide more than a simple statement that a 50.59 Screening, 50.59 Evaluation, or a License Amendment Request, as applicable, is not required.)

The NRC letter to Chris Crane dated 7-19-06 states that once the operability requirements were relocated to the ODCM they were bounded by ODCM change requirements. Per Technical Specification 6.14, ODCM changes do not require pre-NRC approval, but they do require submittal with the next annual Radiological Effluents Report to the NRC, proper justification and appropriate cross-disciplinary, RTR/SQR and PORC review.

Attachments:

Attach all 50.59 Review forms completed, as appropriate. (NOTE: if both a Screening and Evaluation are completed, no Screening No. is required.) Forms Attached: (Check all that apply.)

	x	Applicability Review			•	
	_	50.59 Screening	50.59 Screening No.	 Rev.		
L		50.59 Evaluation	50.59 Evaluation No.	 Rev.	`	

LS-AA-104-1001.F01AA Rev 2

JULY 19, 2006

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

Mr. Christopher M. Crane President and Chief Executive Officer AmerGen Energy Company, LLC 4300 Winfield Road Warrenville, IL 60555

SUBJECT THREE MILE ISLAND NUCLEAR STATION, UNIT 1 - REQUEST TO REVISE CONDENSER VENT SYSTEM LOW RANGE NOBLE GAS MONITOR OPERABILITY REQUIREMENT (TAC NO. MD2058)

Dear Mr. Crane:

By letter dated May 25, 2006 (Agencywide Documents Access and Management System Accession Number ML061510356), AmerGen Energy Company (AmerGen) submitted a request for Nuclear Regulatory Commission (NRC) approval of a proposed commitment revision regarding the operability requirement for the condenser vent system low range noble gas monitors specified in the Three Mile Island (TMI) Unit 1 offsite dose calculation manual (ODCM).

AmerGen, in its request, stated that the current ODCM operability requirements applicable to the condenser vent system low range noble gas (condenser vent radiation) monitors fulfill a regulatory commitment in accordance with NRC Atomic Safety and Licensing Board (ASLB) Order LBP-84-47, dated October 31, 1984. Further, AmerGen stated that TMI Unit 1 Technical Specification (TS) Amendment No. 103, dated December 21, 1984, specifically states that the revised TS included in the amendment conformed with the condition imposed by the ASLB. TS 3.21.2 specified the allowed condenser vent radiation monitors outage time. TMI Unit 1 TS Amendment No. 197, dated October 2, 1995, relocated TS 3.21.2 requirements to the ODCM. In accordance with the AmerGen commitment management program, the proposed commitment change modifies the method of compliance specifically defined in the ASLB Order and, therefore, according to AmerGen's program, requires NRC's prior approval.

The NRC staff has reviewed AmerGen's submittal, its referenced documents, and TMI TS Section 6.14, "Offsite Dose Calculation Manual." Based on its review, the NRC staff determined that once Amendment No. 197 was issued, the sections that were relocated from the TS to the ODCM are bounded by the requirements of TS Section 6, "Administrative Controls," which govern technical review and controls of procedures and programs. TS Section 6.5.1.12 requires that AmerGen perform a 10 CFR 50.59 analysis to determine whether or not NRC approval is required. If it is determined that NRC approval is required, then AmerGen should submit its request in the form of a license amendment request, pursuant to 10 CFR 50.90.

C. Crane

-2-

This completes the NRC staff's activities with respect to TAC No. MD2058.

Sincerely,

Brocke Block

Brooke D. Poole, Acting Chief Plant Licensing Branch I-2 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation

Docket No. 50-289

cc: See next page

Three Mile Island Nuclear Station, Unit 1

CC:

Site Vice President - Three Mile Island Nuclear Station, Unit 1 AmerGen Energy Company, LLC P. O. Box 480 Middletown, PA 17057

Senior Vice President - Nuclear Services AmerGen Energy Company, LLC 4300 Winfield Road Warrenville, IL 60555

Vice President - Operations, Mid-Atlantic AmerGen Energy Company, LLC 200 Exclon Way, KSA 3-N Kennett Square, PA 19348

Vice President - Licensing and Regulatory Affairs AmerGen Energy Company, LLC 4300 Winfield Road Warrenville, IL 60555

Regional Administrator Region I U.S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406

Chairman Board of County Commissioners of Dauphin County Dauphin County Courthouse Harrisburg, PA 17120

Chairman Board of Supervisors of Londonderry Township R.D. #1, Geyers Church Road Middletown, PA 17057

Senior Resident Inspector (TMI-1) U.S. Nuclear Regulatory Commission P.O. Box 219 Middletown, PA 17057 Director - Licensing and Regulatory Affairs AmerGen Energy Company, LLC 200 Exelon Way, KSA 3-E Kennett Square, PA 19348

Director Bureau of Radiation Protection Pennsylvania Department of Environmental Protection Rachel Carson State Office Building P.O. Box 8469 Harrisburg, PA 17105-8469

Plant Manager - Three Mile Island Nuclear Station, Unit 1 AmerGen Energy Company, LLC P. O. Box 480 Middletown, PA 17057

Regulatory Assurance Manager - Three Mile Island Nuclear Station, Unit 1 AmerGen Energy Company, LLC P.O. Box 480 Middletown, PA 17057

Ronald Bellamy, Region I U.S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19405

Michael A. Schoppman Framatome ANP Sulte 705 1911 North Ft. Myer Drive Rosslyn, VA 22209

Vice President, General Counsel and Secretary AmerGen Energy Company, LLC 2301 Market Street, S23-1 Philadelphia, PA 19101

Three Mile Island Nuclear Station, Unit 1

CC:

Dr. Judith Johnsrud National Energy Committee Sierra Club 433 Orlando Avenue State College, PA 16803

Eric Epstein TMI Alert 4100 Hillsdale Road Harrisburg, PA 17112

Correspondence Control Desk AmerGen Energy Company, LLC P.O. Box 160 Kennett Square, PA 19348

Manager Licensing - Three Mile Island Nuclear Station, Unit 1 Exelon Generation Company, LLC 200 Exelon Way, KSA 3-E Kennett Square, PA 19348

Assistant General Counsel AmerGen Energy Company, LLC 200 Exelon Way Kennett Square, PA 19348

TOTAL P.05

50.59 APPLICABILITY REVIEW FORM

LS-AA-104-1002 Revision 2 Page 1 of 1

Activity/Document Number: PC-20986 for 6610-PLN-4200.01

_Revision Number: _____0/24

Address the questions below for all aspects of the Activity. If the answer is yes for any portion of the Activity, apply the identified process(es) to that portion of the Activity. Note that it is not unusual to have more than one process apply to a given Activity. See Section 4 of the Resource Manual (RM) for additional guidance.

		· · · · · · · · · · · · · · · · · · ·
I. Does the proposed Activity involve a change:		ļ
1. Technical Specifications or Operating License (10CFR50.90)?	X NO YES	See Section 4.2.1.1 of the RM
 Conditions of License Quality Assurance program (10CFR50.54(a))? Security Plan (10CFR50.54(p))? Emergency Plan (10CFR50.54(q))? 	<u>X NO</u> <u>YES</u> <u>X NO</u> <u>YES</u> <u>X NO</u> <u>YES</u>	See Section 4.2.1.2 of the RM
 Codes and Standards IST Program Plan (10CFR50.55a(f))? ISI Program Plan (10CFR50.55a(g))? 	<u>X NO</u> YES X NO YES	See Section 4.2.1.3 of the RM
4. ECCS Acceptance Criteria (10CFR50.46)?	<u>X</u> NO YES	See Section 4.2.1.4 of the RM
5. Specific Exemptions (10CFR50.12)?	<u>X</u> NO _ YES	See Section 4.2.1.5 of the RM
6. Radiation Protection Program (10CFR20)?	<u>X</u> NO YES	See Section 4.2.1.6 of the RM
7. Fire Protection Program (applicable UFSAR or operating license condition)?	<u>X</u> NO YES	See Section 4.2.1.7 of the RM
 Programs controlled by the Operating License or the Technical Specifications (such as the ODCM). 	NO _X YES	See Section 4.2.1.7 of the RM
9. Environmental Protection Program	<u>X</u> NO YES	See Section 4.2.1.7 of the RM
10. Other programs controlled by other regulations.	<u>X</u> NO YES	See Section 4.2.1 of the RM
II. Does the proposed Activity involve maintenance which restores SSCs to their original condition or involve a temporary alteration supporting maintenance that will be in effect during at-power operations for 90 days or less?	<u>_X NO _ YES</u>	See Section 4.2.2 of the RM
III. Does the proposed Activity involve a change to the:		
 UFSAR (including documents incorporated by reference) that is excluded from the requirement to perform a 50.59 Review by NEI 96-07 or NEI 98-03? 	<u>X</u> NO YES	See Section 4.2.3 of the RM
2. Managerial or administrative procedures governing the conduct of facility operations (subject to the control of 10CFR50, Appendix B)		See Section 4.2.4 of the RM
3. Procedures for performing maintenance activities (subject to 10 CFR 50, Appendix B)?	<u>XNO</u> YES	See Section 4.2.4 of the RM
 Regulatory commitment not covered by another regulation based change process (see NEI 99-04)? 	X_NO_YES	See Section 4.2.3/4.2.4 of the RM
IV. Does the proposed Activity involve a change to the Independent Spent Fuel Storage Installation (ISFSI) (subject to control by 10 CFR 72.48)	<u>X</u> NO YES	See Section 4.2.6 of the RM

Check one of the following:

If all aspects of the Activity are controlled by one or more of the above processes, then a 50.59 Screening is not required and the Activity may be implemented in accordance with its governing procedure.

□ If any portion of the Activity is **not** controlled by one or more of the above processes, then process a 50.59 Screening for the portion not covered by any of the above processes. The remaining portion of the activity should be implemented in accordance with its governing procedure.

Signoff:

50.59 Screener/50.59 Evaluator: (Circle One)

LKWeber (Print name)

Sign: Signature

Date: 1,24,00

LS-AA-104-1002 F01AA Rev 2

CY-AA-170-3100 Revision 0 Page 1 of 5

ATTACHMENT 1 ODCM Change Summary Matrix Page 1 of 1

ltem No.	(old) Rev. 24 page No.	(new) Rev. 25 page No.	Description of Change	
1	23	23	Added reference to AmerGen letter to NRC dated May 26, 2006.	
2	25	25	Changed the minimum operable channels for RMA-5 to 1.	
3	26	26	Correct 5.b from samples to sampler to match NUREG 1301 wording.	
4	28	28	Clarified wording for note on operability of RM-A-7 per IR 464097.	
5	29	29	Rewrite action statement for new compensatory actions.	
6	112	112	Remove detail adjectives to describe radiation monitors. ECR 06-00061 removed iodine monitors, but not samplers that are required for ODCM.	
7	171-175	37	Update survey distances and azimuths based on GPS sitings peformed in 2006.	
8	171	171	Delete air sampling stations B1-4 and Q4-1 that no longer exist and are not required.	
9	174	174	Added milk farm F4-1 as an alternate sampling location.	
10	175	175	Added Red Hill farm as an alternate food products sampling location. Deleted second control station which is not needed and no longer used.	
11	176	176	Removed number for deleted station and reused for new station.	
12	177	177	Removed number for deleted station and reused for new station. Corrected duplicate number to correct number per Table 8.5.	
13	178	178	Removed number for deleted station.	
14				
15				
16				
17	2			
18	,			

CY-AA-170-3100 Revision 0 Page 2 of 5

ATTACHMENT 2 ODCM Change Determination

Sta	atior	·	Three Mile Island		Page 1	of <u>4</u>			
ODCM Revision No. 25			Determina		ation No				
I. 1	De	Determination Questions (Check correct response)							
	 Does the ODCM change maintain the level of radioactive effluent control required by 10CFR20.1301? 		ve effluent control	X YES	NO				

Explain: (provide sufficient information including appropriate analyses justifying the ODCM change)

10 CFR 20.1301(a)(1) requires that each licensee conduct operations so that the total effective dose equivalent to individual members of the public from TMI operation does not exceed 100 mrem in one year. The revisions to the condenser offgas monitor operability requirements and changes to clarify notes/ descriptions and update REMP locations will not increase the dose to the public or reduce TMI's ability to control or quantify condenser offgas, Waste Gas Decay Tank or Aux/ Fuel Handling building ventilation releases. The additional compensatory sampling for offgas ventilation releases will enable quantification of noble gases via this release path. Continuous particulate and iodine sampling requirements are not impacted by this change. This change also brings TMI more in alignment with the NRC's NUREG-1301, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors". Section 3.3.3.11 for Radioactive Gaseous Effluent monitoring of this guide for Condenser Evacuation system requires 1 minimum operable noble gas activity monitor with grab samples every 12 hours if inoperable and restore to operable within 30 days otherwise explain in next Radioactive Release Report. Section 3.3.3.11 of NUREG 1301 also states that the shutdown provisions of controls 3.0.3 and 3.0.4 are not applicable.

The more stringent grab sample and operability requirements are not required explicitly by Radiological Effluent Controls regulations, but are a result of industry guidance from EPRI for primary to secondary leakage. TMI chooses to implement this guidance via the ODCM.

2. Does the ODCM change maintain the level of radioactive effluent control required by 10CFR20.1302?

X YES

___ NO

Explain: (provide sufficient information including appropriate analyses justifying the ODCM change)

10 CFR 20.1302 requires licensees to perform appropriate surveys in unrestricted areas and controlled areas to demonstrate compliance with dose limits for individual members of the public. The ability to perform surveys is not impacted by the changes due to the revised requirements or by the note/ description clarifications and updates to REMP sample

NO

ATTACHMENT 2 ODCM Change Determination

locations. Effluent concentration limits will not be impacted by these changes. TMI will still control its effluent path to ensure dose to the public is ALARA.

3. Does the ODCM change maintain the level of radioactive effluent control required by 40CFR190?

Explain: (provide sufficient information including appropriate analyses justifying the ODCM change)

40CFR190 requires that the annual dose equivalent does not exceed 25 mrem to the whole body, 75 mrem to the thyroid and 25 mrem to any other organ of any member of the public as a result of exposure to planned discharges of radioactive materials to the environment from uranium fuel cycle operations. The changes to the ODCM for the revised requirements or for the note/ description clarifications and REMP location updates will not increase discharges of radioactive materials nor will they negatively impact TMI's ability to control or quantify radioactive releases to the environment.

4. Does the ODCM change maintain the level of radioactive effluent control required by 10CFR50.36a?

Explain: (provide sufficient information including appropriate analyses justifying the ODCM change)

10CFR 50.36a requires that operating procedures be developed and followed for the control of effluents and that the radioactive waste system be maintained and used. It also specifies that each licensee shall submit a report annually that specifies the quantity of each of the principal radionuclides released to unrestricted areas in liquid and in gaseous effluents during the previous 12 months. These requirements will keep average annual releases of radioactive material in effluents and their resultant committed effective dose equivalents (CEDE) at small percentages of the dose limits. Operation of the rad waste system is not affected by these changes. The operation of the plant releasing and monitoring the effluents from the condenser offgas system will not be negatively impacted by the revised operability requirements. Two radiation monitors will remain installed and maintained on the offgas effluent. These changes will only affect the actions taken if these monitors are out of service. The revised requirements, the note/ description clarifications and REMP location updates will not impact the annual reporting of radiological effluents to the NRC.

X YES

X YES

NO

5. Does the ODCM change maintain the level of radioactive effluent control required by Appendix I to 10CFR50?

X YES

NO

CY-AA-170-3100 Revision 0 Page 4 of 5

ATTACHMENT 2 ODCM Change Determination

Explain: (provide sufficient information including appropriate analyses justifying the ODCM change)

10CFR50 Appendix I., Section II.A establishes the design objectives and limiting conditions for operation to meet ALARA criteria such that the calculated annual total quantity of all radioactive material above background released to unrestricted areas will not result in an estimated annual dose or dose commitment from liquid effluents in excess of 3 mrems to the total body or 10 mrems to any organ. For gaseous effluents the estimated annual air dose can not exceed 10 mrems for gamma radiation and 20 mrems for beta radiation. Section III establishes that implementation of Section II be demonstrated by calculational procedures based upon models and data such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated and that the cumulative effect of all sources and pathways being influenced by the plant be considered. Section IV provides guides on limiting conditions for operation. The licensee shall establish appropriate surveillance and monitoring programs for reporting of rad effluents data, environmental monitoring data and resulting radiation doses and changes in the use of unrestricted areas surrounding the plant. If releases of effluents result in exceeding one-half the annual exposure, there are investigative and reporting requirements.

The minor corrections to the azimuth and distance data for REMP locations will not impact ODCM calculations or methodologies for evaluating doses to individuals from principal pathways of exposure. The removal of two air sample stations does not impact TMI's ability to meet ODCM requirements from Table 8.1 to sample from 5 air sampling locations in Table 8.4. Table 8.4 still has two additional sample locations beyond the minimum of 5. The changes to actions for offgas radiation monitoring operability will also not change any methods of sampling or calculation of radiological effluents from this pathway. The note clarifying when releases from the waste gas system may occur without the primary radiation monitor operable also will not impact dose calculations from this release path. Changing the word for the iodine sampler in Table 2.1-2 to match NUREG 1301 and deleting the adjectives for the Aux/ Fuel Handling ventilation radiation monitors does not impact their ability to do iodine and particulate sampling for ODCM calculation requirements.

CY-AA-170-3100 Revision 0 Page 5 of 5

ATTACHMENT 2 ODCM Change Determination

Page 4 of 4

6. Does the ODCM change maintain the accuracy or reliability of effluent, dose, or setpoint calculations?

Explain: (provide sufficient information including appropriate analyses justifying the ODCM change)

The changes to the ODCM to change actions associated with the offgas radiation monitor operability, the note/ description clarifications and the REMP location updates will not impact dose calculations. Setpoint calculations for the radiation monitors are unchanged by the change to the required actions for the offgas radiation monitor. The accuracy and reliability of the effluent monitoring is also not negatively impacted. Both existing radiation monitors will be maintained. The alarm setpoints for the RM-A-4 and RM-A-6 gas monitors will not be impacted by the removal of their iodine channels via ECR 06-00061.

7. Does the ODCM change maintain the accuracy of radioactive effluent control required by the SAR?

Explain: (provide sufficient information including appropriate analyses justifying the ODCM change)

Chapter 11 of the UFSAR, specifically sections 11.2.4 and 11.4.3, were reviewed to determine that these ODCM changes will not impact the accuracy of radioactive effluent control required by the SAR. As stated before the revision to actions required for the offgas radiation monitor operability, the note/ description clarifications and REMP location changes are not changing the release paths of effluents to the environment or any ability to control or calculate doses via these pathways.

II. If <u>all</u> questions are answered YES, then complete the ODCM Change Determination and implement the Change per this procedure.

III. If <u>any</u> question is answered NO, then a change to the ODCM is not permitted

IV, Signoffs:

Determination Preparer: L.K. Weber (Printed Name)

Date:

Reviewer:	F. W. LINSEMBACH
	(Printed Name)

Date:

X YES

____NO

___ NO

X YES

AmerGen..

AmerGen Energy Company, LLC 200 Exelon Way Kennett Square, PA 19348 www.exeloncorp.com

An Exelon Company

May 25, 2006 5928-06-20449

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

> Three Mile Island Nuclear Station, Unit 1 Facility Operating License No. DPR-50 NRC Docket No. 50-289

Subject: Request to Revise Condenser Vent System Low Range Noble Gas Monitor Operability Requirement

References:

1. USNRC Atomic Safety and Licensing Board Order LBP-84-47, NRC Docket No. 50-289-OLA (ASLBP Docket No. 83-491-04-OLA), "Steam Generator Repair," dated October 31, 1984 (cited as 20 NRC 1405 (1984))

- 2. TMI Unit 1 letter to NRC (H. D. Hukill to J. F. Stolz), Condenser Off-Gas Monitor, dated November 19, 1984
- 3. TMI Unit 1 Technical Specification Amendment No. 103, Steam Generator Tube Repairs and Return To Operation, dated December 21, 1984
- 4. PWR Primary-to-Secondary Leak Guidelines Revision 3, EPRI, Palo Alto, CA: 2004, EPRI Document No. 1008219
- NRC "Notice of Opportunity to Comment on Model Safety Evaluation on Technical Specification Improvement to Modify Requirements Regarding The Addition of LCO 3.4.[17] on Steam Generator Tube Integrity Using the Consolidated Line Item Improvement Process," (Federal Register notice 70 FR 10298, dated March 2, 2005)
- U.S.N.R.C. Letter, "Three Mile Island Nuclear Station, Unit 1 Steam Generator Tube Kinetic Expansion Inspection and Repair Criteria (TAC MC7001)," P. S. Tam to C. M. Crane, November 8, 2005.
- 7. TMI Unit 1 Technical Specification Amendment No. 197, dated October 2, 1995

This letter is an AmerGen Energy Company, LLC (AmerGen) request for NRC approval of a proposed commitment revision regarding the operability requirement for the Condenser Vent System Low Range Noble Gas Monitors specified in the existing TMI Unit 1 Offsite Dose Calculation Manual (ODCM). The current ODCM operability requirement applicable to the Condenser Vent System Low Range Noble Gas Monitors fulfills a regulatory commitment in accordance with the NRC Atomic Safety and Licensing Board Order LBP-84-47, dated

U. S. Nuclear Regulatory Commission May 25, 2006 Page 2 of 8

October 31, 1984 (Reference 1), which authorized the return to service of the TMI Unit 1 steam generators with the kinetic expansion repair technique. In accordance with the AmerGen commitment management program, which implements the commitment change guidance specified in NEI 99-04, Rev. 0, "Guidelines for Managing NRC Commitment Changes," dated July 1999, the proposed commitment change modifies the method of compliance specifically defined in the Order (Reference 1), and therefore requires NRC prior approval.

The Condenser Vent System Low Range Noble Gas Activity Monitors provide data for determination of steam generator primary-to-secondary leakage rate. The existing TMI Unit 1 ODCM requires a minimum of two (2) Low Range Noble Gas Activity Monitors (RM-A5Lo and a suitable equivalent) to be operable when condenser vacuum is established, and allows continued operation with one (1) monitor for up to 28 days. TMI Unit 1 currently utilizes monitors RM-A5Lo and RM-A15. After 28 days, or if one operable monitor does not remain in service or is not placed in service within 1 hour, plant shutdown is required in accordance with TMI Unit 1 Technical Specification 3.0.1. The proposed commitment revision modifies the minimum channels required to be operable from two (2) channels to one (1) channel, and will allow continued plant operation for up to 14 days with both Condenser Vent System Low Range Noble Gas Activity Monitors inoperable, provided sampling and analysis actions are implemented. This proposed commitment change will eliminate outdated requirements, provide a primary-to-secondary leakrate monitoring regimen consistent with PWR industry standards and EPRI Guidelines as implemented by NEI 97-06, as well as prevent unnecessary plant transients if both monitors are temporarily out of service. Additionally, the proposed compensatory actions are consistent with other operating plant requirements for steam generator primary-to-secondary leakage monitoring.

Background and Requirements of NRC ASLB Order LBP-84-47

The current TMI Unit 1 Operating License Condition 2.c.(8), "Repaired Steam Generators," requires a plant shutdown if primary-to-secondary leak rate exceeds 0.1 gpm above baseline leakage. This license condition supported TMI Unit 1 restart with the kinetic expansion repairs on the OTSG tubes. The NRC Atomic Safety and Licensing Board (ASLB) Initial Decision, dated October 31, 1984, Section II.A, regarding proceedings related to the TMI-1 kinetic expansion repairs to the OTSG tubes and the ability to detect a primary-to-secondary leak rate of 0.1 gpm, as specified in the TMI-1 License Condition 2.c.(8), directed that redundancy be supplied in the form of a duplicate RM-A5 system or suitable equivalent of comparable sensitivity and response time. The ASLB further directed that the Technical Specifications (TS) be modified to permit plant operation for a maximum of 28 days with one of these duplicate systems inoperable, and to require plant shutdown if both of these systems are inoperable. As an alternative, the ASLB directed that the RM-A5 system must be operable at all times during plant operation.

The resulting NRC ASLB Order LBP-84-47 (Reference 1) authorized the USNRC Director of Nuclear Reactor Regulation to issue to TMI Unit 1 an operating license amendment that revised the Technical Specifications to recognize steam generator tube repair techniques other than plugging, specifically the kinetic expansion tube repair technique. This authorization was subject to conditions imposed by the Board in the Order, which specified: "A duplicate RM-A5 system or suitable equivalent of comparable sensitivity and response time for monitoring radioactive gas in the secondary system shall be installed. The Technical Specifications shall

U. S. Nuclear Regulatory Commission May 25, 2006 Page 3 of 8

be modified to permit plant operation for a maximum of 28 days with one of these duplicate systems inoperable, and to require plant shutdown if both of these systems are inoperable. As an alternative to the installation of a duplicate system, we direct that the RM-A5 system must be operable at all times during plant operation."

TMI Unit 1 letter to the NRC (Reference 2), dated November 19, 1984, clarified that TMI Unit 1 planned to provide a backup to RM-A5Lo using an existing portable monitor, RM-A13 having comparable sensitivity and response time to RM-A-5, and thus meeting the Order requirement of a suitable equivalent system which may be used for up to 28 days in the event that RM-A5Lo is inoperable. This letter further identified that TMI Unit 1 TS 3.21.2 would be changed to address the Board Order to implement the TS 28-day allowed outage time for RM-A5 and the plant shutdown action statement if both systems are inoperable.

The NRC issued TMI Unit 1 TS Amendment No. 103, dated December 21, 1984 (Reference 3), which permitted the return of the steam generators to operation in response to TMI Unit 1 amendment request of May 9, 1983, and in accordance with the ASLB Order LBP-84-47, dated October 31, 1984 (Reference 1). The NRC amendment specifically states that the revised TS included in this amendment incorporate the conditions imposed by the Board (identified above), and that the revised TS included in the amendment conformed with the condition imposed by the Board. The amendment also accepted the proposed alternative suitable equivalent system (portable monitor RM-A13) to RM-A5Lo, described above. The TS 3.21.2 requirement specified an allowed radiation monitor outage time of 28 days and specified a plant shutdown action statement in accordance with TS 3.0.1. TS 3.21.2 Bases specifically identified that the RM-A5 and suitable equivalent monitors provide data for determination of steam generator primary-to-secondary leakage rate, and that the channel operability requirements were based on ASLB Order dated October 31, 1984. The use of portable monitor RM-A13 was subsequently changed to permanently installed monitor RM-A15, which continues to meet the suitable equivalent criteria to this day.

These TS 3.21.2 requirements were subsequently relocated to the ODCM in TMI Unit 1 TS Amendment No. 197, dated October 2, 1995 (Reference 7), which administratively relocated the TS Radiological Effluent Monitoring requirements to the ODCM in accordance with the guidance contained in NRC Generic Letter 89-01 and NUREG-1430. The operability requirements and action statements applicable to RM-A5 and suitable equivalent monitors, as currently specified in the TMI-1 ODCM, Table 2.1-2 and associated Bases, remained unchanged from the requirements added to the TMI Unit 1 TS 3.21.2 in Amendment No. 103 in accordance with Reference 1, described above.

Proposed Alternative

Markups of the revised TMI Unit 1 ODCM text are provided in Attachment 1 to illustrate implementation of the proposed commitment revision regarding the operability requirement for the Condenser Vent System Low Range Noble Gas Monitors. The following is a summary of the proposed ODCM text.

 ODCM Page 23, Bases – Revised to add reference to the NRC SER approving the proposed revisions to the channel operability requirements originally based on ASLB Order No. LBP-84-47. U. S. Nuclear Regulatory Commission May 25, 2006 Page 4 of 8

- ODCM Page 25, Table 2.1-2 Revises Minimum Channels Operable requirement from two (2) channels to one (1) channel.
- ODCM Page 29, Table 2.1-2, Action 32 Revises the Action Statement to allow continued plant operation for up to 14 days with both Condenser Vent System Low Range Noble Gas Activity Monitors inoperable, provided grab samples are taken and analyzed in accordance with the proposed specified minimum frequency requirements of Table 1 of Action 32 in order to quantify primary-to-secondary leakrate. After 14 days, if one operable channel is not returned to service, within 1 hour the provisions of Technical Specification 3.0.1 apply, which would require that the plant be in hot standby within the next 6 hours, hot shutdown within the following 6 hours, and cold shutdown within the subsequent 24 hours. Action 32 is also revised to state that any inoperable channel(s) should be restored to operability as rapidly as practical.

Reason for Change Request

This proposed commitment change will eliminate outdated requirements, provide a primary-tosecondary leakrate monitoring regimen consistent with PWR industry standards and EPRI Guidelines as implemented by NEI 97-06, as well as prevent unnecessary plant transients if both monitors are temporarily out of service. Additionally, the proposed compensatory actions are consistent with other operating plant requirements for steam generator primary-tosecondary leakage monitoring.

Justification of Proposed Change

In accordance with ASLB Order LBP-84-47 (Reference 1), the TMI Unit 1 Offsite Dose Calculation Manual (ODCM), Table 2.1-2, "Radioactive Gaseous Process and Effluent Monitoring Instrumentation," Item 4.a, currently requires a minimum of two operable channels on the Condenser Vent System Low Range Noble Gas Activity Monitor. If one channel becomes inoperable, the ODCM allows 28 days for the inoperable channel to be restored. However, if no operable channels are in service, after one hour the provisions of Technical Specification 3.0.1 apply. TMI Unit 1 Technical Specification 3.0.1 states that in the event a Limiting Condition for Operation (LCO) is not met, within one hour action shall be initiated to place the unit in at least HOT STANDBY within the next 6 hours, and at least HOT SHUTDOWN within the following 6 hours, and at least COLD SHUTDOWN within the subsequent 24 hours. In summary, if both Condenser Vent System Low Range Noble Gas Activity Monitors are inoperable, the plant must begin to shut down within 1 hour.

The primary purpose of the TMI Unit 1 Condenser Vent System Low Range Noble Gas Activity Monitors (RM-A-5 and RM-A-15) is to detect radioactive gases in the secondary system. The amount of gas detected by the monitors is used to evaluate the plant's steam generator tube leakage (i.e., to detect primary-to-secondary leakage and to quantify the primary-to-secondary leakrate).

TMI Unit 1 plans to continue to use the two low range channels (RM-A5 and RM-A15) in accordance with the ODCM, and to revise the minimum channels operable requirement from two (2) channels to one (1) channel. The proposed action statement also specifies that inoperable Condenser Vent System Low Range Noble Gas Activity Monitor channels should be restored to operability as soon as practical. TMI Unit 1 also proposes to modify the commitment

U. S. Nuclear Regulatory Commission May 25, 2006 Page 5 of 8

implementation to require that if no operable Condenser Vent System Low Range Noble Gas Activity Monitor channel is in service, the plant may remain in service for up to 14 days if the specified sampling and analysis actions are implemented. The intent of this commitment change is to eliminate outdated requirements, provide a primary-to-secondary leakrate monitoring regimen consistent with PWR industry standards and EPRI Guidelines as implemented by NEI 97-06, as well as prevent unnecessary plant transients if both radiation monitors RM-A5 and RM-A15 are temporarily out of service. Additionally, the proposed compensatory actions are consistent with other operating plant requirements for steam generator primary-to-secondary leakage monitoring. It is expected that the revised commitment requirements will be infrequently used, as the operating history of the RM-A-5 and -15 monitors since the 1980's has shown that the probability of their simultaneous failure is low. Additionally, the sample lines to RM-A5 and RM-A15 have been modified to eliminate single point vulnerabilities that resulted in both detectors being declared inoperable on March 10, 2006.

TMI Unit 1 proposes to implement the proposed commitment change by modifying the ODCM so that a sampling regimen consistent with the EPRI *PWR Primary to Secondary Leak Guidelines* (Reference 4) is implemented if no Condenser Vent System Low Range Noble Gas Activity monitor is available. The current revision of the EPRI Guidelines provides the suggested sampling regimen in Section 3.2.2, entitled "No Available Continuous Radiation Monitor." The following is a summary of the proposed TMI Unit 1 ODCM text consistent with the above EPRI Guidelines:

<u>Entry Requirement</u>: There are no operable channels on the Condenser Vent System Low Range Noble Gas Activity Monitor.

Required Actions:

- If there is no operable channel of the Condenser Vent System Low Range Noble Gas Activity Monitor for a period of 14 days, within one hour action shall be initiated to place the unit in at least HOT STANDBY within the next 6 hours, and at least HOT SHUTDOWN within the following 6 hours, and at least COLD SHUTDOWN within the subsequent 24 hours.
- 2. If the primary-to-secondary leakrate was unstable* or was indicating an increasing trend at the initial time when there was no operable channel of the Condenser Vent System Low Range Noble Gas Activity Monitor, analyze grab samples of the reactor coolant system and Condenser OffGas once every 4 hours to provide an indication of primary-to-secondary leakage, and subsequent sample frequency shall be in accordance with Table 1 based on the last sample result. Otherwise, analyze grab samples of the reactor coolant system and Condenser OffGas to provide an indication of primary-to-secondary leakage at the minimum frequency indicated in Table 1, below:

U. S. Nuclear Regulatory Commission May 25, 2006 Page 6 of 8

Table 1

Minimum Frequency of Grab Samples When No Condenser Vent System Low Range Noble Gas Activity Monitor is Operable

Existing Total Primary-to-Secondary Leak Rate (based on last monitor reading or sample result)	Frequency of Grab Samples
0 to < 5 GPD	Once per 24 hours
5 to < 30 GPD	Once per 12 hours
30 to < 75 GPD	Once per 4 hours
75 GPD or greater	Place the unit in at least HOT STANDBY within the next 6 hours, and at least HOT SHUTDOWN within the following 6 hours, and at least COLD SHUTDOWN within the subsequent 24 hours.

*unstable is defined as > 10% increase during a 1 hour period, as stated in the EPRI Guidelines.

3. Return a channel of the Condenser Vent System Low Range Noble Gas Activity Monitor to operability as rapidly as practical.

As described above, the proposed TMI Unit 1 sampling regimen is as prescribed in the most recent revision of the EPRI *PWR Primary to Secondary Leak Guidelines*. These guidelines are industry standards and are based on considerable operating experience at Pressurized Water Reactors (PWRs) to ensure that the likelihood of propagation of steam generator tube flaws to tube rupture is minimized. The Guidelines are used by numerous plants and have been cited in the NRC's recent model safety evaluation for the Technical Specification improvements under TSTF-449, Rev. 4 for steam generator tube integrity (Reference 5). The EPRI Guidelines' discussion of the use of grab sampling when no radiation monitors are available for on-line quantification of primary-to-secondary leakage is also discussed in the *NRC Inspection Manual* for "Steam Generator Tube Primary-to-Secondary Leakage." The proposed sampling and analysis actions will be performed using existing plant equipment and procedures. No plant modifications are needed to implement the specified actions.

The TMI Unit 1 steam generator upper tubesheet expansions were repaired by a kinetic expansion process in the 1980's. At the time of these ASLB hearings, the PWR industry had limited operating experience with steam generator tube expansion repairs. At the time the repairs were "a new, large-scale application of the kinetic expansion process" and there was "no directly relevant experience" in the PWR industry (Reference 1, Page 1416). The additional radiation monitor channel, and the requirement for plant shutdown after one hour in the event that no radiation monitor is available to monitor the plant's Condenser Vent, were additional conservative measures with which to assess the success of the kinetic expansion repairs.

U. S. Nuclear Regulatory Commission May 25, 2006 Page 7 of 8

Since the early 1980's the PWR industry has obtained considerable experience with tube expansion repairs, including several different types of expansion repair methods. In addition, the TMI Unit 1 kinetic expansions have proven to be successful, leak-tight, and flaw-tolerant repairs. The plant has operated approximately 17 Effective Full Power Years (EFPY) since the kinetic expansions were installed. Since 1997, the maximum primary-to-secondary leakage experienced through the TMI Unit 1 steam generator tubes, including their kinetic expansion joints, has typically been less than 1 gallon per day (GPD).

In addition to the fact that the kinetic expansions were an effective repair, a significant number of kinetic expansion inspections have been performed to monitor their condition. Each (i.e., 100%) of the plant's inservice kinetic expansions was examined with rotating coil eddy current probes during the plant's last outage in the fall of 2005. These examinations were conducted in accordance with the requirements of AmerGen ECR #02-01121, which was approved by the NRC in Reference 6. More than 60,000 examinations of the plant's kinetic expansions have been performed over the last four refueling outages. These examinations and the analyses of the examination results have determined that significant active degradation in the kinetic expansions' required lengths is not occurring. In addition, the kinetic expansions are relatively flaw-tolerant since: (1) the expansion area is captured within the steam generator upper tubesheets, and (2) the expansions are not subjected to bending loads or potential loose part impact.

If the RM-A-5 and -15 radiation monitors are out of service, the proposed sampling regimen will allow evaluation of low levels of primary-to-secondary leakage. Other methods are available to monitor the plant for sizeable primary-to-secondary leaks, including MakeUp Tank level changes, Main Steam Line Radiation Monitors RM-G-26 and -27, Reactor Coolant System Pressurizer level changes, and Condenser Exhaust Hi-Range Radiation Monitor RM-A-5Hi.

There is no estimated risk increase under the plant's risk model associated with the loss of RM-A-5 and RM-A-15 operability, as these monitors are not included as part of any assumptions made in the PRA model regarding Steam Generator Tube Rupture (SGTR) or RCS Leak Rate detection. Steam generator tube ruptures are considered to be the full offset rupture of one tube. For leaks of this size it is assumed that RM-G26 and RM-G27 as well as RCS Pressure and OTSG Level and Feed Rates provide the necessary SGTR detection needed to satisfy the assumptions made by the PRA model. It should be noted that RM-G26 and RM-G27 are capable of some detection of OTSG Tube leakage smaller than what is assumed during a full offset rupture. In addition, particularly small break sizes or leaks that are within the makeup capacity of the normal charging system and would therefore not result in an automatic reactor trip, are not included in the initiating event categories of the plant's risk models. For such small leaks, the plant would be manually shutdown in a controlled fashion, and cooled down and depressurized for repairs, regardless of the leak/break location in the steam generator tubes.

The proposed commitment change provides a limit on the maximum length of time (i.e., 14 days) during which the plant can remain at power without an operable Condenser Vent System Low Range Noble Gas Activity monitor channel. The probability of a significant primary-to-secondary leak event occurring during this short duration is low. TMI Unit 1 has not had a significant primary-to-secondary leak event due to leakage from a kinetic expansion.

U. S. Nuclear Regulatory Commission May 25, 2006 Page 8 of 8

Conclusion

The proposed commitment change makes no physical changes to the TMI-1 plant and does not alter the TMI Unit 1 Technical Specification or License Condition maximum allowed primary-to-secondary leak rates at which the plant is required to be shutdown. The intent of the proposed commitment change is to eliminate outdated requirements, provide a primary-to-secondary leakrate monitoring regimen consistent with PWR industry standards and EPRI Guidelines as implemented by NEI 97-06, as well as prevent unnecessary plant transients if both monitors RM-A5 and RM-A15 are temporarily out of service. Additionally, the proposed compensatory actions are consistent with other operating plant requirements for steam generator primary-to-secondary leakage monitoring, and following the methodology of the EPRI PWR Guidelines is an acceptable, alternate method of monitoring the plant's primary-to-secondary leakage. The probability of both RM-A-5 and -15 channels becoming inoperable is low. The probability of a primary-to-secondary leak event occurring while both RM-A-5 and -15 channels are inoperable is also low. Thus, nuclear safety and plant operations are not adversely affected by the proposed commitment change.

We request approval of the proposed commitment change by August 31, 2006, to allow timely update of the affected ODCM requirements.

This submittal requests approval of a revision to an existing regulatory commitment, and no new regulatory commitments are established by this submittal. If you have any questions or require additional information, please contact David J. Distel at (610) 765-5517.

Respectfully,

mell Servar

Pamela B. Cowan Director – Licensing and Regulatory Affairs AmerGen Energy Company, LLC

Attachment: 1) TMI Unit 1 ODCM Proposed Markup Revisions

cc: S. J. Collins, Administrator, USNRC Region I

D. M. Kern, USNRC Senior Resident Inspector, TMI Unit 1

F. E. Saba, USNRC Project Manager, TMI Unit 1

D. Allard, Director, Bureau of Radiation Protection – PA Department of Environmental Resources

Chairman, Board of County Commissioners of Dauphin County Chairman, Board of Supervisors of Londonderry Township File No. 06025

Attachment 1

TMI Unit 1 ODCM Proposed Markup Revisions

Revised ODCM Pages

23 25 29

	Table 2.1-2 2. If the inoperable gas channel(s) is not restored to shall be submitted to the Regional Administrator the Director, Office of Inspection and Enforceme channel(s) inoperable. The report shall describe	of the NRC Region I Office and a copy nt within 30 days of declaring the
	(b) action being taken to restore the instrument to prevent recurrence.	o service, and (c) action to be taken to
ACTION 31	With the number of channels OPERABLE less than require requirement, effluent releases via this pathway may continu the channel has been declared inoperable, samples are co sampling equipment.	ue provided that within four hours after
ACTION 32	With the number of channels OPERABLE less than require requirement, effluent releases via this pathway may continue - OPERABLE channel the mains in convice or is placed in correspondence.	ue for up to 🕮 days, provided that ene
• • •	one OPERABLE channel deco not remain in corvice or the provisions of Technical Specification 3.0.1 apply, a	is not placed in service within 1 hour
ACTION 33	With the number of channels OPERABLE less than require requirement, either restore the inoperable channel to OPEF and submit a special report within 30 days outlining the act inoperability, and plans and schedule for restoring the syste	RABLE status within 7 days, or prepare tion(s) taken, the cause of the
Conden	ser Vent System Low Range Noble Gas Activ s should be restored to operability as	ity Monitor inoperable

INSERT TO TMI Unit 1 ODCM PAGE 29

If the primary-to-secondary leakrate was unstable* or was indicating an increasing trend at the initial time when there was no operable channel of the Condenser Vent System Low Range Noble Gas Activity Monitor, analyze grab samples of the reactor coolant system and Condenser OffGas once every 4 hours to provide an indication of primary-to-secondary leakage, and subsequent sample frequency shall be in accordance with Table 1 based on the last sample result. Otherwise, analyze grab samples of the reactor coolant system and Condenser OffGas to provide an indication of primary-to-secondary leakage at the minimum frequency indicated in Table 1, below:

Existing Total Primary-to-Secondary Leak Rate (based on last monitor reading or sample result)	Frequency of Grab Samples
0 to < 5 GPD	Once per 24 hours
5 to < 30 GPD	Once per 12 hours
30 to < 75 GPD	Once per 4 hours
75 GPD or greater	Place the unit in at least HOT STANDBY within the next 6 hours, and at least HOT SHUTDOWN within the following

Table 1

muoney of Crob Samples M/hon

Bellin imm tann. Eur

6 hours, and at least COLD SHUTDOWN within the subsequent 24 hours.

*unstable is defined as > 10% increase during a 1 hour period, as stated in the EPRI Guidelines.

		Humber
· · ·	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	on Manual (ODCM)	.24

2.1.2 Radioactive Gaseous Process and Effluent Monitoring Instrumentation

CONTROL:

The radioactive gaseous process and effluent monitoring instrumentation channels shown in Table 2.1-2 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Control 2.2.2.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined in accordance with the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY: As shown in Table 2.1-2.

ACTION:

a.

With a radioactive gaseous process or effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above control, immediately suspend the release of radioactive effluent monitored by the affected channel or declare the channel inoperable.

b.

With less than the minimum number of radioactive gaseous process or effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 2.1-2. Exert best efforts to return the instrumentation to OPERABLE status within 30 days and, if unsuccessful, explain in the next Annual Effluent Release Report why the inoperability was not corrected in a timely manner.

BASES

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases. The alarm/trip setpoints for these instruments shall be calculated in accordance with NRC approved methods in the ODCM to provide reasonable assurance that the annual releases are within the limits specified in 10 CFR 20.1301.

The low range condenser offgas noble gas activity monitors also provide data for determination of steam generator primary to secondary leakage rate. Channel operability requirements are based on an ASLB Order No. LBP-84-47 dated October 31, 1984, and as cited in 20 NRC 1405 (1984), as revised by NRC SER dated

6610-PLN-4200.01 Revision 24

Table 2.1-2 (Cont'd)

Radioactive Gaseous Process and Effluent Monitoring Instrumentation

۲	INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY		ACTION
Conde	enser Vent System	(1)			
a.	Low Range Noble Gas Activity Monitor (RM-A5Lo and Suitable Equivalent)		##	32	

4.

NOTE (1): For one of the channels, an operable channel may be defined for purposes of this control and 3.1.2.1 only as a suitable equivalent monitoring system capable of being placed in service within one hour. A suitable equivalent system shall include instrumentation with comparable sensitivity and response time to the RM-A5Lo monitoring channel. When the equivalent monitoring system is in service, indication will be continuously available to the operator, either through indication and alarm in the Control Room or through communication with a designated individual continuously observing local indication.

Ame	erGer		TM	11 - Unit 1	•	Number		
Title		•		Controls Proce	edure	6610-PLN Revision No.	-4200.01	
	0-1						4-25	
Applicability/Scop	e Calculatio	n Manual (USAG	ELEVEL	Effective Date	+ 03	
TMÍ Division	•		•		3	07/01	1/03	
This documen	t is within QA pl		X Yes	No		J		•
50.59 Applica	DIE	L	X Yes	No				
			List of Effec	tive Pages				
<u>Page</u>	Revision	Page	Revision	Page	Revision	Page	Revision	
1	24	41	24	81	24	121	24	
2 3	24 24	42 43	24 24	82 83	24 24	122 123	24 · 24	
4	24	44	24	84	24	124	24	
5	24	45	24	85	24	125	24	
6	24	46	24	86	24	126	24	
7 8	24 24	47 48	24 24	87 88	24 24	127	24	
9	24 24	40 49	24	89	24	128 129	24 24	
10	24	50	24	90	24	130	24	
11	24	51	24	91	24	131	24	
12	24	52	24	92	24	132	24	
13	24	53	24	. 93	24	133	24	
14	24	54	24	94	24	134	24	•
15	24	55	24	95	24	135	24	
16 17	24 24	56 . 57	24 24	96 97	24	136	24	
18	24	57 58	24	98	24 24	137 138	24 24	
19	24	59	24	99	24	139	24	
20	24	60	24	100	24	140	24	
. 21	24	61	24	101	24	141	24	
22	24	62 63	24	102	24 24	142	24	
22 23 24 25 26 27	24 13	63	24	103	24	143	24 24	
24	24 24 24 24 24 24 24 25	64 65 66 67 68 69	24 24	104	24 24	144 145 146	24	
25	24 05	65 66	24 24	105 106	24	145	24 24	
27	24	67	24	107	24	147	24 24	
28	20-25,	68	24	108	24	148	24	
29 30	. 24 25	69	24	109	24	148 149	24	•
30	24 24	70	24 24 24	110	24 24 24 24 24 24 24	150	24	
31 32 33	24	71	24	111	24	151 152	24	
32 22	24 24	72	24 24	112 113	24 00	152	24	
33	24 24	74	24	114	24	153	24 24	
34 35 36 37	24	71 72 73 74 75 76 77 78	24	115	24 24 24 24 24 24 24 24 24	153 154 155	24 24 24 24 24 24 24 24 24 24 24 24 24	
36	24	76	24	116	24	156	24	
37	24	77	24	117	24	157	24	
38 .39	24	78	24	118	24	158	24	
.39 40	24 24	79 80	24 24	119	24 24	159	24	
+ U	24	80	24	120	44	160	24	
								:
••			· .	· .			• .	
•		,		•	•		· -	
		• •	· 1					
				•				
		•				•		
1	,							

		·		•	ι.		,		
							Number		
				TM Radiological	II - Unit 1 Controls Proced	ture	6610-PL	N-4200.01	- "
Tit		e Calculat	ion Manual (C				Revision No.	24 25	
	·			List of Effect	tive Pages	· · · · · · · · · · · · · · · · · · ·	· .		
	Page	Revision	Page	Revision	Page	Revision	Page	Revision	
	161 162	24 24			1			· .	
	163	24	•				• •	,	
	164 165	24 24 24	· · ·		:	•			
	166 167	24 24							
	168	24	•			•		•	
	169 170	24 24						•	
	171 172	24 -24 - 25 -24 - 25 -24 - 25					· .		
	173	- 24 -25	- 		•	· ·		•	
	174 175	24 25 24 25 24 25 24 25 24 25 24 25			•				
	176	24 25							
-	177 178	24-25	· · ·						•
	179 180	24 24			· · · · ·				
	181	24		. '	· ·	. ·			
•	182 183	24 24			•	•			
	184	24							
·	185 186	24 24							
	187 188	24	•						
	189	24 24							
· , ·	190 191	24 24	•		· ·			1. 19 A.	
	192 193	24 24							
	194	24			•	,			•.
	195 196	24 24		· ·					••
		•				•			•
/		. ,	J .				·		
	· ·		· · · ·	· · ·		•			
						· ·			
• .		· .				·	-		
				2					
				`.				•	
•									

Offsite Dose Calculation N	Ianual (ODCM)	24
Title	·	Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

2.1.2 Radioactive Gaseous Process and Effluent Monitoring Instrumentation

CONTROL:

The radioactive gaseous process and effluent monitoring instrumentation channels shown in Table 2.1-2 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Control 2.2.2.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined in accordance with the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY: As shown in Table 2.1-2.

ACTION:

а.

With a radioactive gaseous process or effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above control, immediately suspend the release of radioactive effluent monitored by the affected channel or declare the channel inoperable.

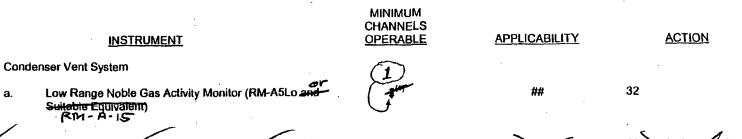
b.

With less than the minimum number of radioactive gaseous process or effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 2.1-2. Exert best efforts to return the instrumentation to OPERABLE status within 30 days and, if unsuccessful, explain in the next Annual Effluent Release Report why the inoperability was not corrected in a timely manner.

BASES

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases. The alarm/trip setpoints for these instruments shall be calculated in accordance with NRC approved methods in the ODCM to provide reasonable assurance that the annual releases are within the limits specified in 10 CFR 20.1301.

The low range condenser offgas noble gas activity monitors also provide data for determination of steam generator primary to secondary leakage rate. Channel operability requirements are based on an ASLB Order No. LBP 84 47 dated October 31, 1984, and as cited in 20 NRC 1403 (1984). On Amer Gen Letter # 5928-06-20449 * Request for Revise Condenser Vent System Low Range Noble Gas Monitor Operability Requirement, Panela B-Cowan to U.S.N.R.C., May 25, 2006. "


Table 2.1-2 (Cont'd)

Radioactive Gaseous Process and Effluent Monitoring Instrumentation

4.

NOTE(1):

а.

For one of the channels, an operable channel may be defined for purposes of this control and 3.1.2.1 only as a suitable equivalent monitoring system canable of being placed in service within one hour. A suitable equivalent system shall include instrumentation with comparable sensitivity and response time to the RM-A5Lo monitoring channel. When the equivalent monitoring system is in service, indication will be continuously available to the operator, either through indication and alarm in the Control Room or through communication with a designated individual continuously observing local indication.

Table 2.1-2 (Cont'd)

Radioactive Gaseous Process and Effluent Monitoring Instrumentation

		INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
5.	Auxil	iary and Fuel Handling Building Ventilation System			
	а.	Noble Gas Activity Monitor (RM-A8) or (RM-A4 and RM-A6)	1	•	27
	b.	lodine Samples (RM-A8) or (RM-A4 and RM-A6)	1	* '	31
	C.	Particulate Sampler (RM-A8) or (RM-A4 and RM-A6)	Í .	•	31
	d.	Effluent System Flow Rate Measuring Devices (FR-149 and FR-150)	1	*	26
	e.	Sampler Flow Rate Monitor	1	• •	26
6.	Fuel	Handling Building ESF Air Treatment System			
	а.	Noble Gas Activity Monitor (RM-A14 or Suitable Equivalent)	1	****	27, 33
	b.	lodine Cartridge	N/A ⁽²⁾	****	31, 33
	C.	Particulate Filter	N/A ⁽²⁾	****	31, 33
	d.	Effluent System Flow (UR-1104A/B)	1	***	26, 33
	e.	Sampler Flow Rate Monitor	· 1	***	26, 33

NOTE 2:

2: No instrumentation channel is provided. However, for determining operability, the equipment named must be installed and functional or the ACTION applies.

			Number
		TMI - Unit 1	e 6610-PLN-4200.01
Title		Radiological Controls Procedure	Revision No.
Offsite Dos	se Calculation I	Manual (ODCM)	24
	······································	Table 2.1-2	
		Table Notation	
	 *** Operability is n WDG-V47 and *** During Fuel Ha # At all times dur ## At all times wh 	as holdup system operation. Tot required when discharges are positively c where RM A8 (or RM A4 and RM A6), FT-1 andling Building ESF Air Treatment System C ring containment purging. en condenser vacuum is established. on of the ventilation system.	49, and FT-150 are operable or where RM-A8,
ACTION 25		of channels OPERABLE less than required contents of the tank may be released to the ase:	
		t two independent samples of the tank's con 3.2-2, Item A, and	tents are analyzed in accordance with
		t two technically qualified members of the Ur e rate calculations and verify the discharge v	
	3. The TM	MI Plant Manager shall approve each release	.
	Otherw	vise, suspend release of radioactive effluent	via this pathway.
ACTION 26	With the number requirement, efflu least once per 4 l	of channels OPERABLE less than required t lent releases via this pathway may continue hours.	by the Minimum Channels OPERABLE provided the flow rate is estimated at
ACTION 27	requirement, efflu least once per 12 24 hours after the	of channels OPERABLE less than required buent releases via this pathway may continue thours and the initial samples are analyzed for channel has been declared inoperable. If For cation 3.5.1, Table 3-5.1, Item C.3.f.	provided grab samples are taken at or gross activity (gamma scan) within
ACTION 30	OPER/ inopera	e number of channels OPERABLE less than ABLE requirement, a grab sample shall be co able gas channel(s) at least once per 24 hour ample shall be collected and analyzed for the	ollected and analyzed for the rs. With both channels inoperable, a
	(a)	at least once per 4 hours during degass	sing operations.
	(b)	at least once per 24 hours during other	operations (e.g. Feed and Bleed).
• .	·		· · · ·
	•		
	•		

	Table 2.2.If the inoperable gas channel(s) is shall be submitted to the Regional the Director, Office of Inspection a channel(s) inoperable. The report (b) action being taken to restore th	not restored to service with Administrator of the NRC f nd Enforcement within 30 o shall describe (a) the caus	Region I Office and a copy to lays of declaring the e of the monitor inoperability
ACTION 31	prevent recurrence. With the number of channels OPERABLE les requirement, effluent releases via this pathwa the channel has been declared inoperable, so sampling equipment.	ay may continue provided t	hat within four hours after
ACTION 32	With the number of channels OPERABLE less requirement, effluent releases via this pathwa OPERABLE channel remains in corvise or is one OPERABLE channel dece net remains the provisions of Technical Specification to Limiting Condition for Operation.	ay may continue for up to a placed in cervice within 1-1 in cervice or is not place	B days, provided that the from from After 28 days, ar if ding services within 1 hours
ACTION 33	With the number of channels OPERABLE less requirement, either restore the inoperable cha and submit a special report within 30 days of inoperability, and plans and schedule for rest	annel to OPERABLE status utlining the action(s) taken,	within 7 days, or prepare the cause of the
AFFE onden	ser Vent System Low Range Noble is should be restored to opera	Gas Activity Monitor bility as rapidly	tor inoperable as practical.

6610-PLN-4200.01 PC - 20286

INSERT TO TMI Unit 1 ODCM PAGE 29

If the primary-to-secondary leakrate was unstable* or was indicating an increasing trend at the initial time when there was no operable channel of the Condenser Vent System Low Range Noble Gas Activity Monitor, analyze grab samples of the reactor coolant system and Condenser OffGas once every 4 hours to provide an indication of primary-to-secondary leakage, and subsequent sample frequency shall be in accordance with Table 1 based on the last sample result. Otherwise, analyze grab samples of the reactor coolant system and Condenser OffGas to provide an indication of primary-to-secondary leakage at the minimum frequency indicated in Table 1, below:

Table 1
Minimum Frequency of Grab Samples When
No Condenser Vent System Low Range Noble Gas Activity Monitor is Operable

Existing Total Primary-to-Secondary Leak Rate (based on last monitor reading or sample result)	Frequency of Grab Samples
0 to < 5 GPD	Once per 24 hours.
5 to < 30 GPD	Once per 12 hours
30 to < 75 GPD	Once per 4 hours
75 GPD or greater	Place the unit in at least HOT STANDBY within the next 6 hours, and at least HOT SHUTDOWN within the following 6 hours, and at least COLD SHUTDOWN within the subsequent 24 hours.

*unstable is defined as > 10% increase during a 1 hour period, as stated in the EPRI Guidelines.

pg 29A

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Offsite Dose Calculati	on Manual (ODCM)	24

4.4 TMI-1 Gaseous Effluent Release Points and Gaseous Radiation Monitor Data

TMI-1 has eleven (11) required effluent gaseous radiation monitors. These are RM-A4, RM-A5, RM-A15, RM-A6, RM-A7, RM-A8, RM-A9, RM-A14, ALC-RMI-18, WHP-RIT-1, and RLM-RM-1. These gaseous release points, radiation monitors, and sample points are shown in Table 4.1.

4.4.1 RM-A4/RM-A6 Fuel Handling and Auxiliary Building Exhaust

RM-A4 is the particulate, radioiodine and gaseous radiation monitor for the TMI-1 Fuel Handling Building Ventilation (see Figures 4.1 and 4.2). RM-A6 is the particulate, radioiodine, and gaseous radiation monitor for the TMI-1 Auxiliary Building Ventilation (see Figures 4.1 and 4.2). High alarms on RM-A4 or RM-A6 noble gas channels will initiate shutdown of the related building ventilation air supply system. These two radiation monitors concurrently will satisfy requirements for the Station Vent release point in place of RM-A8.

4.4.2 RM-A8 Station Ventilation Exhaust

RM-A8 is the particulate, radioiodine and gaseous radiation monitor for the TMI-1 Station Ventilation (see Figures 4.1 and 4.2). This in plant effluent radiation monitor also has an associated sampling panel with sampling lines located before the sample filters. High alarm on RM-A8 noble gas low channel will initiate shutdown of the Station Ventilation air supply systems. (The Fuel Handling and Auxiliary Building Ventilation). This radiation monitor satisfies requirements for the Station Vent release point in place of RM-A4 and RM-A6.

4.4.3 RM-A5/RM-A15 Condenser Off Gas Exhaust

RM-A5 is the gaseous radiation monitor for the TMI-1 Condenser Off Gas exhaust (see Figures 4.1 and 4.4). RM-A15 is the back up gaseous radiation monitor for the TMI-1 Condenser Off Gas exhaust (see Figures 4.1 and 4.4). High alarms on RM-A5 low channel or RM-A15 noble gas channels will initiate the MAP-5 Radioiodine Processor Station. These two radiation monitors together satisfy requirements for the Condenser Off Gas release point.

4.4.4 RM-A7 Waste Gas Decay Tank Exhaust

RM-A7 is the gaseous radiation monitor for the TMI-1 Waste Gas Decay tanks (see Figures 4.1 and 4.2). This in plant effluent radiation monitor also has an associated sampling panel. High alarm on RM-A7 noble gas channel will initiate shutdown of the Waste Gas Decay Tank release in progress. This radiation monitor satisfies requirements for batch gaseous releases to the Station Vent release point.

4.4.5 RM-A9 Reactor Building Purge Exhaust

RM-A9 is the particulate, radioiodine and gaseous radiation monitor for the TMI-1 Reactor Building Purge system (see Figures 4.1 and 4.3). This in plant effluent radiation monitor also has an associated sampling panel with sampling lines located before the sample filters. High alarm on RM-A9 noble gas low channel will initiate shutdown of the Reactor Building Purge System. This radiation monitor satisfies requirements for the Reactor Building Purge System release point.

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation M	anual (ODCM)	24

TABLE 8.4

TMINS REMP Station Locations-Air Particulate and Air Iodine

Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
B1-4	0.8	28	60
E1-2	0.4	-95-97	2
F1-3	0.6	105 112	70
G2-1	1.4	125 126	74
M2-1	1.3	253 256	3
A3-1	2.0-2.7	358 357	4
H3-1	2.3 2.2	159 160	5
-04-1	3.5		
Q15-1	1 3.5 \ 3 \ 4	305- 309	8

TABLE 8.5

TMINS REMP Station Locations-Direct Radiation (TLD)

Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
A1-4	0.3	5-6	9
B1-1	0.6	25	10
B1-2	0.4	20 23	11
C1-2	0.3	54-50	13
D1-1	0.2	14-76	14
E1-2	0.4	- 95- 97	2
E1-4	0.2	98 97	16
F1-2	0.2	109-112	17
G1-3	0.2	128-130	18
H1-1	0.5	167	19
J1-1	0.8	184 176	21
J1-3	0.3	189	22
K1-4	0.2	208 209	24
L1-1	0.1	235 236	26
M1-1	0.1	249250	27
N1-3	0.1	270 ヱヮ¥	28
P1-1	0.4	2 83 •3•3	29
P1-2	0.20.1	290 29 2	30

Offsite Dose Calculation Manual (ODCM)		24
Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

TABLE 8.5

TMINS REMP Station Locations-Direct Radiation (TLD)

Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
Q1-2	0.2	818- 321	31 -
R1-1	0.2	335 ,	32
C2-1	1.6 1. 5	48-44	33
K2-1	11-1.2	200	34
M2-1	1.3	253 256	3
A3-1	2.0-2.7	3 58- 357	3
H3~1	2322	159-160	. 5
R3-1	2.6	338 341	35
B5-1	484.9	18 19	36
C5-1	4.5 4.7	42-43	37
E5-1	4.8 4.7	81-82	38
F5-1	4.7	107-109	39
G5-1	4.8	131	40
H5-1	4.1	157-158	41
J5-1	4.9	182-181	42
K5-1	5.0 4.9	<u>200</u> 202.	43
L5-1	4.1	228	44
M5-1	4.3	249	45
N5-1	4.9 5.0	268 ,	46
P5-1	4.8 5.0	285 284	47.
Q5-1	5.0	348 317	48
R5-1	4.9	339	49
D6-1	5.2	85 -66	50
E7-1	6.8 6.7	86 -88	51
Q9-1	8.5	308-310	52
B10-1	9.4-9.2	21	53
G10-1	98-9-7	127128	6
G15-1	14.4	124 126	. 54
J15-1	12.6	180 (83	7
Q15-1	12.5 13.4	305 309	8

	TABLE 8.6 TMINS REMP Station Locations-Surface Water		
Offsite Dose Calculation Manual (ODCM)		24	
Title		Revision No.	
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01	
		Number	

Station Code	<u>Distance (miles)</u>	Azimuth (°)	<u>Map No.</u>
J1-2 (R)	0.5	188	5 7 ·
A3-2 (R)	252.7	3 33 - 356	5 9
Q9-1 (F)	8.5	3 08 310	52
Q9-1 (R)	. 8.5	308 - 310	52
G15-2 (F)	1 3.6 13.3	128 129	62
G15-3 (F)	14.8 15.7	124	63
F15-1 (R)	12.6	122	65
R) = Raw Water			

(R) = Raw Water (F) = Finished Water

TABLE 8.7

TMINS REMP Station Locations-Aquatic Sediment

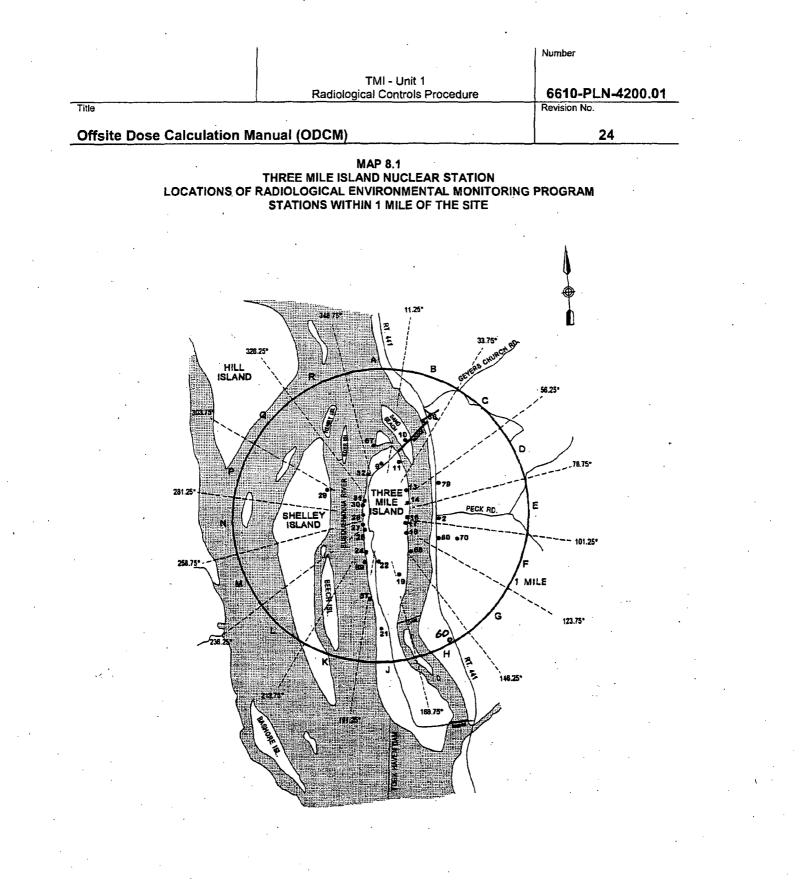
Distance (miles)	Azimuth (°)	<u>Map No.</u>
0.5	-0-359	67
0.3	137	68
03-0.2	202 212	69
4.5 (, 4	182 N 9	58
0.5	188	57
	0.5 0.3 <u>0.3</u> 0.2 1.5 (, \	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

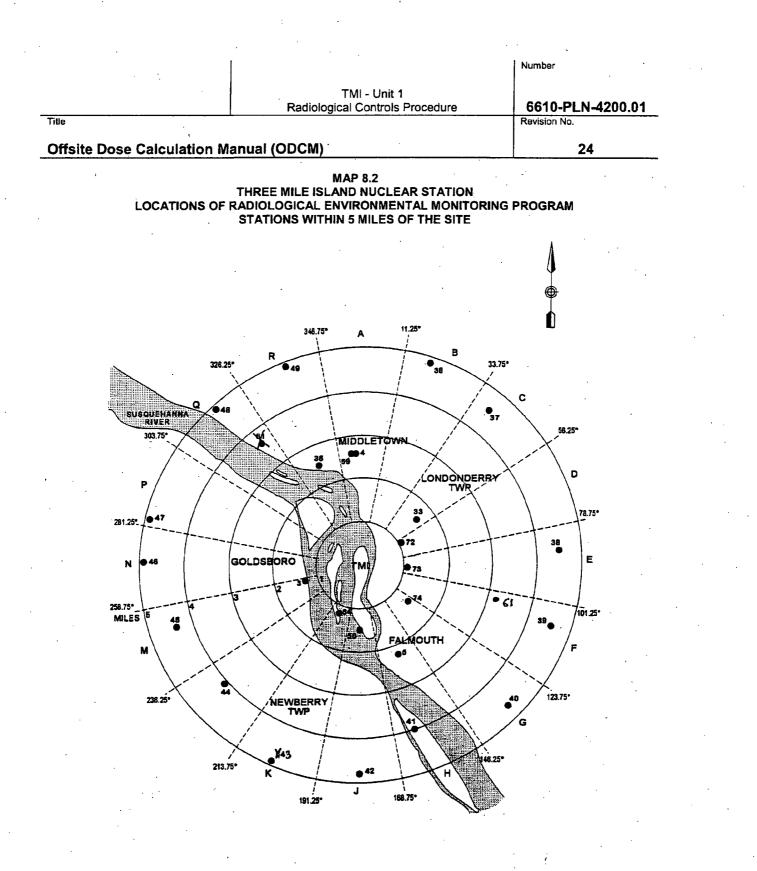
		Number	
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01	
Title		Revision No.	
Offsite Dose Calcu	lation Manual (ODCM)	24	
	TABLE 8.8		
	TMINS REMP Station Locations-Milk		

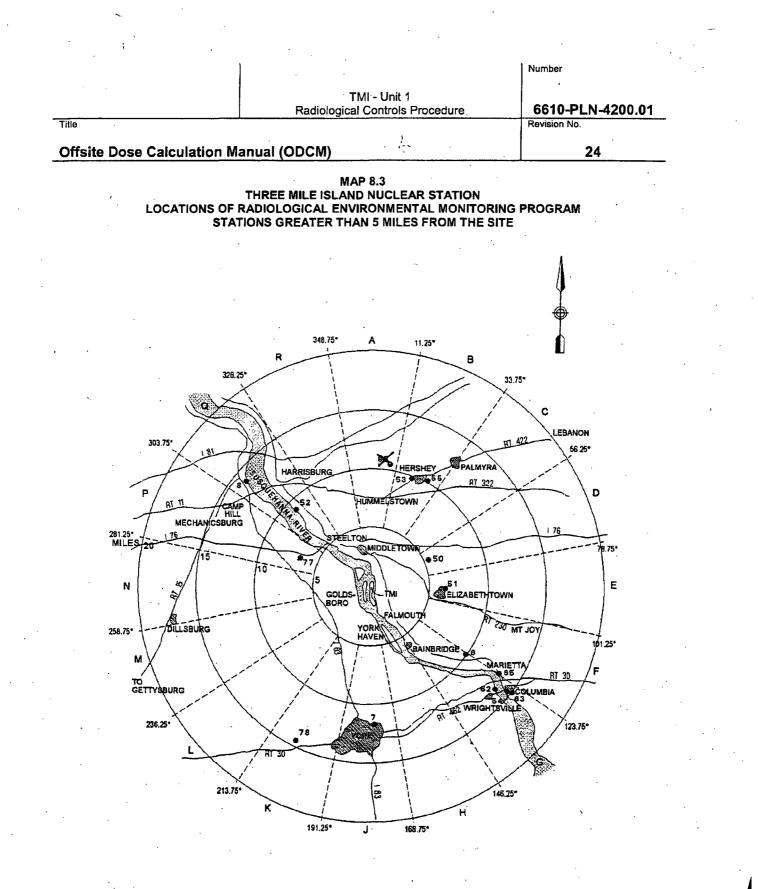
Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
D2-1	1.1	85 62	72
E2-2	1.1	_ 93 -96	73
G2-1	1.4	125 126	74
P7-1	6.7	293	77
K15-3	6.7 14.5 14.4	205	78
L F4-1	3.2	104	61

TABLE 8.9

TMINS REMP Station Locations-Fish


Station Code	Station Location	
IND	Downstream of Station Discharge	
BKG	Upstream of Station Discharge	


		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	· · · · · · · · · · · · · · · · · · ·	Revision No.
Offsite Dose Calculation	n Manual (ODCM)	24


TABLE 8.10

TMINS REMP Station Locations-Food Products

Station Code	Distance (miles)	<u>Azimuth (°)</u>	<u>Map No.</u>
D1-3 E1-2 F1-1	0.5 0.4 0.5 10.5	65 95 97 117	79 2 80
B10-2	10.5	28 31	
L_{H1-2}	1.0	151	60

· .	_	ļ				Number	
Am	erGei		T) (1.1			
			Radiological C	- Unit 1	redure	6610-PU	N-4200.01
Title			Radiological C			Revision No.	1-4200.01
						1	
	se Calculatio	on Manual	(ODCM)				.5
Applicability/Sct	ope			USA	GE LEVEL	Effective Date	
TMI Division			t		3	08/0	9/06
	ent is within QA p	lan scope	X Yes	No			
50.59 Applic			X Yes	No			
		_			. ·		
			List of Effect	ive Pages		•	
<u>Page</u>	Revision	<u>Page</u>	Revision	<u>Page</u>	Revision	Page	Revision
´ 1	25	41	25	81	25	121	25
2	25	42	25	82	25	122	25
3	25	43	25	83	25	123	25
4	25	44	25	84	25	124	25
5	25	45	25	85	25	125	25
6	25	46	25	86	25	126	25
7	25	47	25	87	25	127	25
8	25	48	25	88	25	128	25
9	25	49	25	89	25	129	25
10	25	50	25	90	25	130	25
11	25	51	25	91	25	131	25
12	25	52	25	92	25	132	25
13	25	53	25	- 93	25	133	25
14	25	54	- 25	94	25	134	25
15	25	55	25	95	25	135	25
16	25	56	25	96	25	136	25
17	25	57	25	97	25	137	25
18	25	58	25	98	25	138	25
19	25	59	25	99	25	139	25
20	- 25	60	25	100	25	140	25
21	25	61	25	101	25	141	25
22	25	62	25	102	25	142	25
23	25	63	25	103	25	143	25
24	25	64	25	104	25	144	25
25	25	65	25	105	25	145	25
26	25	66	25	106	25	146	25
27	25	67	25	107	25	147	25
28	25	68	25	108	25	148	25
29	25	69	25	109	25	149	25
30	25	70	25	110	25	150	25
31	25	71	25	111	25	151	25
32	25	72	25 25	112	25	152	25
33	25	73 74	25 25	113	25	153	25
34	25	74 75	25 25	114	25	154	25
35	25	75	25	115	25	155	25
36	25	76	25	116	25	156	25
37	25	77	25 25	117	25	157	25
38	25	78	25 25	118	25	158	25
39	25	79	25	119	25	159	25
40	25	80	25	120	25	160	25

÷

Diffsite Dose Calculation Manual (ODCM) List of Effective Pages Page Revision Page Revision Page Revision 161 25 103 25 103 25 163 25 103 25 103 26 164 25 105 25 103 27 164 25 105 25 107 25 176 25 107 25 103 25 177 25 103 25 103 25 177 25 113 25 113 25 178 25 113 25 113 25 184 25 113 25 113 25 189 25 113 25 113 25 184 25 113 25 113 25 189 25 113 25 113 25 193 25 <t< th=""><th>tle</th><th></th><th></th><th>TMI - L Radiological Con</th><th>Init 1 trols Proce</th><th>dure</th><th>Number 6610-P</th><th>LN-4200</th><th>0.01</th></t<>	tle			TMI - L Radiological Con	Init 1 trols Proce	dure	Number 6610-P	LN-4200	0.01
List of Effective Pages Page Revision Page Revision 161 25 162 25 163 25 164 25 165 25 166 25 167 25 168 25 177 25 178 25 179 25 171 25 177 25 178 25 179 25 177 25 178 25 179 25 179 25 179 25 180 25 181 25 182 25 184 25 185 25 186 25 189 25 190 26 191 25 192 25 193 25		se Calculatio	n Manual ((ODCM)					
Page Revision Page Revision Page Revision 161 25 162 25 163 25 164 25 165 25 166 25 167 25 168 25 167 25 168 25 170 25 171 25 172 25 173 25 174 25 177 25 178 25 179 25 180 25 181 25 183 25 184 25 185 25 190 25 193 25 194 25 195 25 196 25 197 25 198 25 199 25					Pages		<u>k</u>		·· <u>····</u> ····
162 25 163 25 164 25 166 25 167 25 168 25 170 25 171 25 172 25 173 25 174 25 175 25 176 25 177 25 178 25 177 25 178 25 178 25 178 25 180 25 181 25 182 25 183 25 184 25 185 25 186 25 191 26 192 25 193 25 194 25 195 25 196 25 196 25		Revision	Page	Revision	Page	Revision	Page	Re	vision
168 25 170 25 171 25 173 25 174 25 175 25 176 25 177 25 178 25 177 25 178 25 177 25 178 25 178 25 180 25 181 25 182 25 183 25 184 25 185 25 186 25 187 25 190 25 191 25 192 25 193 25 194 25 195 26 196 25	162 163 164 165 166	25 25 25 25 25 25	•						
174 25 175 25 177 25 178 25 179 25 180 25 181 25 182 25 183 25 184 25 185 25 186 25 187 25 188 25 189 25 190 25 191 25 192 25 193 25 194 25 195 25 196 25	168 169 170 171 172	25 25 25 25 25 25							
180 25 181 25 182 25 183 25 184 25 185 25 186 25 187 25 188 25 189 25 190 25 191 25 192 25 193 25 194 25 196 25	174 175 176 177 178	25 25 25 25 25 25 25		· ·					
187 25 188 25 189 25 190 25 191 25 192 25 193 25 194 25 195 25 196 25	180 181 182 183 184 185	25 25 25 25 25 25 25 25							
194 25 195 25 196 25	187 188 189 190 191 192	25 25 25 25 25 25		· · ·					
2	194 195	25 25 25 25							· ·
2	• • •					· • ·	· ,	. .	
				2		•			

Offsite Dose Calculation	ation Manual (ODCM)	25
Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

INTRODUCTION

The OFFSITE DOSE CALCULATION MANUAL (ODCM) is a supporting document of the Three Mile Island Nuclear Station (TMI) Unit 1 and Unit 2 PDMS Technical Specifications and implements TMI radiological effluent controls. The ODCM contains the controls, bases, and surveillance requirements for liquid and gaseous radiological effluents. In addition, the ODCM describes the methodology and parameters to be used in the calculation of off-site doses due to radioactive liquid and gaseous effluents. This document also describes the methodology used for calculation of the liquid and gaseous effluent monitoring instrumentation alarm/trip set points. Liquid and Gaseous Radwaste Treatment System configurations are also included.

The ODCM also is used to define the requirements for the TMI radiological environmental monitoring program (REMP) and contains a list and graphical description of the specific sample locations used in the REMP.

The ODCM is maintained at the Three Mile Island (TMI) site for use as a reference guide and training document of accepted methodologies and calculations. Changes in the calculation methods or parameters will be incorporated into the ODCM to ensure the ODCM represents the present methodology in all applicable areas. Changes to the ODCM will be implemented in accordance with the TMI-1 and TMI-2 PDMS Technical Specifications.

The ODCM follows the methodology and models suggested by NUREG-0133, and Regulatory Guide 1.109, Revision 1 for calculation of off-site doses due to plant effluent releases. Simplifying assumptions have been applied in this manual where applicable to provide a more workable document for implementation of the Radiological Effluent Controls requirements.

TMI implements the TMI Radiological Effluent Controls Program and Regulatory Guide 1.21, Revision 1 (Annual Radioactive Effluent Release Report) requirements by use of a computerized system used to determine TMI effluent releases and to update cumulative effluent doses.

			Number	
The				PLN-4200.01
Title			Revision	
Offs	ite Do	se Calculation N	Nanual (ODCM)	25
		· ·	TABLE OF CONTENTS	·
PAR	ГІ	TMI-1 RADIOLOG	ICAL EFFLUENT CONTROLS	
<u>Sections</u>	on			Page
1.0	DEFI	NITIONS	· ·	15
	Table	1-1, Frequency Not	ation	19
2.0	RADI	OLOGICAL EFFLU	ENT CONTROLS AND BASES	21
	2.1	Radioactive Efflue	ent Instrumentation	21
		2.1.1 Radioa	ctive Liquid Effluent Instrumentation	21
		Table 2.1-1, Radi	oactive Liquid Effluent Instrumentation	22
		2.1.2 Radioa	ctive Gaseous Process and Effluent Monitoring Instrumentation	23
		Table 2.1-2, Radio	oactive Gaseous Process and Effluent Monitoring Instrumentatio	n 24
	2.2	Radiological Efflu	ent Controls	30
		2.2.1 Liquid E	Effluent Controls	30
		2.2.2 Gaseou	as Effluent Controls	33
		2.2.3 Total Ra	adioactive Effluent Controls	39
3.0	SURV	EILLANCES		41
	3.1	Radioactive Efflue	ent Instrumentation	41
		3.1.1 Radioad	ctive Liquid Effluent Instrumentation	41
			ioactive Liquid Effluent Monitoring Instrumentation eillance Requirements	42
		3.1.2 Radioad	ctive Gaseous Process and Effluent Monitoring Instrumentation	44
		Table 3.1-2, Radi Surv	oactive Gaseous Process and Effluent Monitoring Instrumentatic eillance Requirements	n 45
	3.2	Radiological Efflue	ents	49
		3.2.1 Liquid E	ffluents	49
		Table 3.2-1, Radio	pactive Liquid Waste Sampling and Analysis Program	50

		Number
Tille	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Offsite Dose Calculation	Manual (ODCM)	25
	TABLE OF CONTENTS (Cont'd)	
PART I TMI-1 RADIOLOGICAL	EFFLUENT CONTROLS	
Section		Page
3.2.2 Gase	ous Effluents	53
Table 3.2-2, Ra	dioactive Gaseous Waste Sampling and Analysis Prog	ram 55
3.2.3 Total	Radioactive Effluents	59
4.0 PART I REFERENCES		60

		:	N	umber
Title	··			6610-PLN-4200.01
	te Dos	e Calculation M	anual (ODCM)	25
		·····	TABLE OF CONTENTS (Cont'd)	
PART	Ω.	TMI-2 RADIOLOG	ICAL EFFLUENT CONTROLS	
Sectio	n			Page
1.0	DEFI	NITIONS		62
	Table	1.1, Frequency Nota	tion	64
2.0	CONT	ROLS AND BASES		65
	2 .1	Radioactive Effluer	nt Instrumentation	65
		2.1.1 Radioac	tive Liquid Effluent Instrumentation	65
		2.1.2 Radioac	tive Gaseous Process and Effluent Monitoring Instrument	tation 65
		Table 2.1.2, Radio	active Gaseous Process and Effluent Monitoring Instrume	entation 67
	2.2	Radioactive Effluer	nt Controls	68
		2.2.1 Liquid E	fluent Controls	68
		2.2.2 Gaseous	s Effluent Controls	71
		2.2.3 Total Ra	dioactive Effluent Controls	76
3.0	SURV	EILLANCES		78
	3.1	Radioactive Effluer	nt Instrumentation	78
		3.1.1 Radioac	tive Liquid Effluent Instrumentation	78
		3.1.2 Radioac	tive Gaseous Process and Effluents Monitoring Instrume	ntation 78
			active Gaseous Process and Effluent Monitoring Instrum illance Requirements	entation 79
	3.2	Radiological Efflue	nts	80
		3.2.1 Liquid El	fluents	80
		Table 3.2-1, Radio	active Liquid Waste Sampling and Analysis Program	81
		3.2.2 Gaseous	Effluents	82
		Table 3.2-2, Radio	active Gaseous Waste Sampling and Analysis Program	83
		3.2.3 Total Ra	dioactive Effluents	86

	TMI - Unit 1 Radiological Controls Procedure	
Title		Revision No.
Offsite Dose Calculation Ma	anual (ODCM)	25
	TABLE OF CONTENTS (Cont'd)	
PART II TMI-2 RADIOLOG	ICAL EFFLUENT CONTROLS	
Section		Page
4.0 PART II REFERENCES	~	87
		· · · ·
		• •
	•	
·	· · · · ·	
·		
		·

•

7

•

	•			Number
			TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	_			Revision No.
Offs	ite Dos	se Calculation Ma	anual (ODCM)	25
			TABLE OF CONTENTS (Cont'd)	
PART	. IN	EFFLUENT DATA	AND CALCULATIONAL METHODOLOGIES	
Sectio	<u>in</u>			Page
1.0	LIQUI		rórs	89
	1.1	TMI-1 and TMI-2 L	iquid Radiation Monitor Set Points	89
	1.2	TMI Liquid Release	Points and Liquid Radiation Monitor Data	90
	1.3	Control of Liquid R	eleases	91
2.0	LIQUI	D EFFLUENT DOSE	ASSESSMENT	97
	2.1	Liquid Effluents - 1	0 CFR 50 Appendix I	97
	2.2	TMI Liquid Radwas	te System Dose Calcs Once per Month	98
	2.3	Alternative Dose C	alculational Methodology	99
3.0	LIQUI	D EFFLUENT WAST	E TREATMENT SYSTEM	104
	3.1	TMI-1 Liquid Efflue	nt Waste Treatment System	104
	3.2	Operability of TMI-	I Liquid Effluent Waste Treatment System	105
	3.3	TMI-2 Liquid Efflue	nt Waste Treatment System	105
4.0 、	GASE		DNITORS	108
	4.1	TMI-1 Noble Gas N	Ionitor Set Points	108
	4.2	TMI-1 Particulate a	nd Radiolodine Monitor Set Points	110
	4.3	TMI-2 Gaseous Ra	diation Monitor Set Points	111
	4.4	TMI-1 Gaseous Eff	uent Release Points and Gaseous Radiation Monito	r Data 112
	4.5	TMI-2 Gaseous Eff	luent Release Points and Gaseous Radiation Monito	r Data 114
	4.6	Control of Gaseous	Effluent Releases	115

					Number
			<u> </u>	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title					Revision No.
Offs	ite Do	se Calcula	ation Ma	nual (ODCM)	25
,				TABLE OF CONTENTS (Cont'd)	
PART		EFFLUEN	NT DATA	AND CALCULATIONAL METHODOLOGIES	
<u>Sectio</u>	<u>on</u>				Page
5.0	GAS	EOUS EFFL	UENT DO	SE ASSESSMENT	127
	5.1	Gaseous	Effluents -	Instantaneous Release Limits	127
		5.1.1	Noble Ga	ses	127
			5.1.1.1	Total Body	127
			5.1.1.2	Skin	128
		5.1.2	lodines a	nd Particulates	129
	5.2	Gaseous	Effluents -	10 CFR 50 Appendix I	130
		5.2.1	Noble Ga	ses	130
		5.2.2	lodines ar	nd Particulates	131
	5.3	Gaseous	Radioactiv	e System Dose Calculations Once per Month	133
,	5.4	Alternative	e Dose Ca	Iculational Methodologies	134
6.0	GASE	OUS EFFLI	UENT WA	STE TREATMENT SYSTEM	156
	6.1	Descriptio	n of the TI	MI-1 Gaseous Radwaste Treatment System	156
	6.2	Operability	y of the TN	/Il-1 Gaseous Radwaste Treatment System	156
7.0	EFFL		L DOSE	ASSESSMENT	158
8.0	TMIN	S RADIOLO	GICAL EN	IVIRONMENTAL MONITORING PROGRAM (REM	?) 159
	8.1	Monitoring	g Program	Requirements	159
	8.2	Land Use	Census		161
	8.3	Interlabora	atory Com	parison Program	163
9.0	PART	III REFERE	NCES	· .	179

		Number
	TMI - Unit 1	6640 DI NI 4200 04
Title	Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dos	se Calculation Manual (ODCM)	25
	TABLE OF CONTENTS (Cont'd)	
PART III	EFFLUENT DATA AND CALCULATIONAL METHODOLOGIES	
Section		Page
TABLES		
Table 1.1	TMI-1 Liquid Release Point and Liquid Radiation Monitor Data	93
Table 1.2	TMI-2 Sump Capacities	94
Table 2.1	Liquid Dose Conversion Factors (DCF): DF	100
Table 2.2	Bioaccumulation Factors, BFi	103
Table 4.1	TMI-1 Gaseous Release Point & Gaseous Radiation Monitor Data	116
Table 4.2	TMI-2 Gaseous Release Point & Gaseous Radiation Monitor Data	117
Table 4.3	Dose Factors for Noble Gases and Daughters	118
Table 4.4	Atmospheric Dispersion Factors for Three Mile Island - Station Vent	119
Table 4.5	Atmospheric Dispersion Factors for Three Mile Island - Ground Release	120
Table 4.6	Dose Parameters for Radioiodines and Radioactive Particulate In Gased	ous Effluents 121
Fable 5.2.1	Pathway Dose Factors, R _i - Infant, Inhalation	135
Table 5.2.2	Pathway Dose Factors, R _i - Child, Inhalation	136
Fable 5.2.3	Pathway Dose Factors, R _i - Teen, Inhalation	137
Table 5.2.4	Pathway Dose Factors, R _i - Adult, Inhalation	138
Table 5.3.1	Pathway Dose Factors, R _i - All Age Groups, Ground Piane	139
Table 5.4.1	Pathway Dose Factors, R _i - Infant, Grass-Cow-Milk	140 ·
Table 5.4.2	Pathway Dose Factors, R _I - Child, Grass-Cow-Milk	141
Table 5.4.3	Pathway Dose Factors, R _I - Teen, Grass-Cow-Milk	142
able 5.4.4	Pathway Dose Factors, R _i - Adult, Grass-Cow-Milk	143
able 5.5.1	Pathway Dose Factors, Ri - Infant, Grass-Goat-Milk	144

TMI - Unit 1 Radiological Controls Procedure fsite Dose Calculation Manual (ODCM) TABLE OF CONTENTS (Cont'd) RT III EFFLUENT DATA AND CALCULATIONAL METHODOLOGIES Stion BLES	6610-PLN-4200.01 Revision No. 25 Page 145
fsite Dose Calculation Manual (ODCM) TABLE OF CONTENTS (Cont'd) RT III EFFLUENT DATA AND CALCULATIONAL METHODOLOGIES ction	25 Page
TABLE OF CONTENTS (Cont'd) RT III EFFLUENT DATA AND CALCULATIONAL METHODOLOGIES ction ction ction	Page
RT III EFFLUENT DATA AND CALCULATIONAL METHODOLOGIES	
ztion	
BLES	145
	145
ble 5.5.2 Pathway Dose Factors, Ri - Child, Grass-Goat-Milk	
ble 5.5.3 Pathway Dose Factors, Ri - Teen, Grass-Goat-Milk	146
ble 5.5.4 Pathway Dose Factors, R ₁ - Adult, Grass-Goat-Milk	147
ble 5.6.1 Pathway Dose Factors, R _i - Infant, Grass-Cow-Meat	148
ble 5.6.2 Pathway Dose Factors, Ri - Child, Grass-Cow-Meat	149
ble 5.6.3 Pathway Dose Factors, R _I - Teen, Grass-Cow-Meat	150
Ne 5.6.4 Pathway Dose Factors, R _I - Adult, Grass-Cow-Meat	151
ble 5.7.1 Pathway Dose Factors, R _i - Infant, Vegetation	152
ble 5.7.2 Pathway Dose Factors, Rt - Child, Vegetation	153
le 5.7.3 Pathway Dose Factors, R ₁ - Teen, Vegetation	154
ble 5.7.4 Pathway Dose Factors, Rt - Adult, Vegetation	155
le 8.1 Sample Collection and Analysis Requirements	164
ele 8.2 Reporting Levels for Radioactivity Concentrations in Environmental Sa	imples 168
le 8.3 Detection Capabilities for Environmental Sample Analysis	169
Ne 8.4 TMINS REMP Station Locations - Air Particulate and Air lodine	171
ble 8.5 TMINS REMP Station Locations - Direct Radiation (TLD)	171
ble 8.6 TMINS REMP Station Locations - Surface Water	173
ble 8.7 TMINS REMP Station Locations - Aquatic Sediment	173
ble 8.8 TMINS REMP Station Locations - Milk	174
ble 8.9 TMINS REMP Station Locations - Fish	174
e 8.10 TMINS REMP Station Locations - Food Products	175

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation Manual (ODCM)		25
	TABLE OF CONTENTS (Cont'd)	
PART III	EFFLUENT DATA AND CALCULATIONAL METHODOLOGIES	
Section	· · ·	Page
T ABLES MAP 8.1	Three Mile Island Nuclear Station Locations of Radiological Environment Monitoring Program Stations within 1 Mile of the Site	al 176
MAP 8.2	Three Mile Island Nuclear Station Locations of Radiological Environment Monitoring Program Stations within 5 miles of the Site	al 177
MAP 8.3	Three Mile Island Nuclear Station Locations of Radiological Environment Monitoring Program Stations Greater than 5 miles from the Site	al 178
FIGURES		
Figure 1.1	TMI-1 Liquid Effluent Pathways	95
Figure 1.2	TMI-2 Liquid Effluent Pathways	96
Figure 3.1	TMI-1 Liquid Radwaste	106
Figure 3.2	TMI-1 Liquid Waste Evaporators	107
Figure 4.1	TMI-1 Gaseous Effluent Pathways	122
Figure 4.2	TMI-1 Auxiliary & Fuel Handling Buildings Effluent Pathways	123
Figure 4.3	TMI-1 Reactor Building Effluent Pathway	124
Figure 4.4	TMI-1 Condenser Offgas Effluent Pathway	125
Figure 4.5	TMI-2 Gaseous Effluent Filtration System/Pathways	126
Figure 6.1	Waste Gas System	157

		· · · · ·		Number
Title			TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offs	ite Do	se Calculation Ma	anual (ODCM)	25
			TABLE OF CONTENTS (Cont'd)	
PAR1	r Iv	REPORTING REQ	UIREMENTS	
<u>Section</u>	<u>on</u>			Page
1.0	TMI A	NNUAL RADIOLOG	CAL ENVIRONMENTAL OPERATING REPORT	182
2.0	TMI A	NNUAL RADIOACT	VE EFFLUENT RELEASE REPORT	183
3.0	PART	IV REFERENCES		185
APPE	ENDICE	8		
	Α.	Pathway Dose Rat	e Parameter (P _i)	186
	В.	Inhalation Pathway	Dose Factor (R _i)	187
	C.	Ground Plane Path	way Dose Factor (R _i)	188
	D.	Grass-Cow-Milk Pa	athway Dose Factor (R _i)	189
·	E.	Cow-Meat Pathway	/ Dose Factor (R _i)	191
	F.	Vegetation Pathwa	y Dose Factor (R _i)	192
	APPE	NDIX A - F REFEREI	NCES	193

		Number
·	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calcul	25	

PARTI

TMI-1 RADIOLOGICAL EFFLUENT CONTROLS

					Number		
				TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01		
Title	-				Revision No.		
Offs	ite Dos	se Calcu	lation Ma	anual (ODCM)	25		
.0	DEFI	NITIONS					
	The fo	ollowing ter	ms are de	fined for uniform interpretation of these controls	and surveillances.		
	1.1	Reactor	Operating	Conditions			
		1.1.1	Cold Shi	utdown			
			delta k/k	ctor is in the cold shutdown condition when it is s , and Tavg is no more than 200°F. Pressure is d ation 3.1.2.			
		1.1.2	Hot Shut	tdown			
				ctor is in the hot shutdown condition when it is su and Tavg is at or greater than 525°F.	bcritical by at least one percent		
		1.1.3	Reactor	Critical			
			The read	ctor is critical when the neutron chain reaction is	self-sustaining and Keff = 1.0.		
	1.1.4 Hot Standby						
			The reactor is in the hot standby condition when all of the following conditions exist:				
			a.	Tavg is greater than 525°F			
			b.	The reactor is critical	<u>!</u>		
			C .	indicated neutron power on the power range percent of rated power. Rated power is defin Definition 1.1.			
		1.1.5	Power O	peration			
			two perc	tor is in a power operating condition when the in ent of rated power as indicated on the power ran n Technical Specification Definition 1.1.	dicated neutron power is above ge channels. Rated power is		
		1.1.6	Refueling	g Shutdown			
			reactor w at the de Technica	tor is in the refueling shutdown condition when, evold be subcritical by at least one percent delta cay heat removal pump suction is no more than al Specification 3.1.2. A refueling shutdown refere all or a portion of the fuel assemblies and/or co	k/k and the coolant temperature 140°F. Pressure is defined by s to a shutdown to replace or		
		1.1.7	Refueling	g Operation			
				tion involving a change in core geometry by mar reactor vessel head is removed.	nipulation of fuel or control rods		
				15			

•		1	Number
		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
litle			Revision No.
Offsite D	site Dose Calculation Manual (ODCM)		25
	1.1.8	Refueling Interval	
		Time between normal refuelings of the reactor. This is de	efined as once per 24 months.
	1.1.9	Startup	
		The reactor shall be considered in the startup mode wher	the shutdown margin is

1.1.10 Tave

Tave is defined as the arithmetic average of the coolant temperatures in the hot and cold legs of the loop with the greater number of reactor coolant pumps operating, if such a distinction of loops can be made.

1.1.11 Heatup - Cooldown Mode

The heatup-cooldown mode is the range of reactor coolant temperature greater than 200° F and less than 525° F.

1.2 Operable

A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s) and when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its function(s) are also capable of performing their related support function(s).

1.3 Instrument Channel

An instrument channel is the combination of sensor, wires, amplifiers, and output devices which are connected for the purpose of measuring the value of a process variable for the purpose of observation, control, and/or protection. An instrument channel may be either analog or digital.

1.4 Instrumentation Surveillance

1.4.1 Channel Test

A CHANNEL TEST shall be the injection of a simulated signal into the channel as close to the sensor as practical to verify OPERABILITY, including alarm and/or trip functions.

1.4.2 Channel Check

A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrumentation channels measuring the same parameter.

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation	25	

1.4.3 Source Check

A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a radioactive source.

1.4.4 Channel Calibration

An instrument CHANNEL CALIBRATION is a test, and adjustment (if necessary), to establish that the channel output responds with acceptable range and accuracy to known values of the parameter which the channel measures or an accurate simulation of these values. Calibration shall encompass the entire channel, including equipment actuation, alarm, or trip and shall be deemed to include the channel test.

1.5 Dose Equivalent I-131

The DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microcurie/gram) which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in Table III of TID 14844, "Calculation of Distance Factors for Power and Test Reactor Sites". [Or in Table E-7 of NRC Regulatory Guide 1.109, Revision 1, October 1977.]

1.6 Offsite Dose Calculation Manual (ODCM)

The OFFSITE DOSE CALCULATION MANUAL (ODCM) contains the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluent, in the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints, and in the conduct of the Radiological Environmental Monitoring Program. The ODCM also contains (1) the Radiological Effluent Controls, (2) the Radiological Environmental Monitoring Program and (3) descriptions of the information that should be included in the Annual Radiological Environmental Operating and Annual Radioactive Effluent Release Reports.

1.7 Gaseous Radwaste Treatment

The GASEOUS RADWASTE TREATMENT SYSTEM is the system designed and installed to reduce radioactive gaseous effluent by collecting primary coolant system off gases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

1.8 Ventilation Exhaust Treatment System

A VENTILATION EXHAUST TREATMENT SYSTEM is any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluent by passing ventilation or vent exhaust gases through charcoal absorbers and/or HEPA filters for the purpose of removing iodine or particulates from the gaseous exhaust system prior to the release to the environment. Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEMS.

1.9 Purge - Purging

PURGE or PURGING is the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating conditions in such a manner that replacement air or gas is required to purify the confinement.

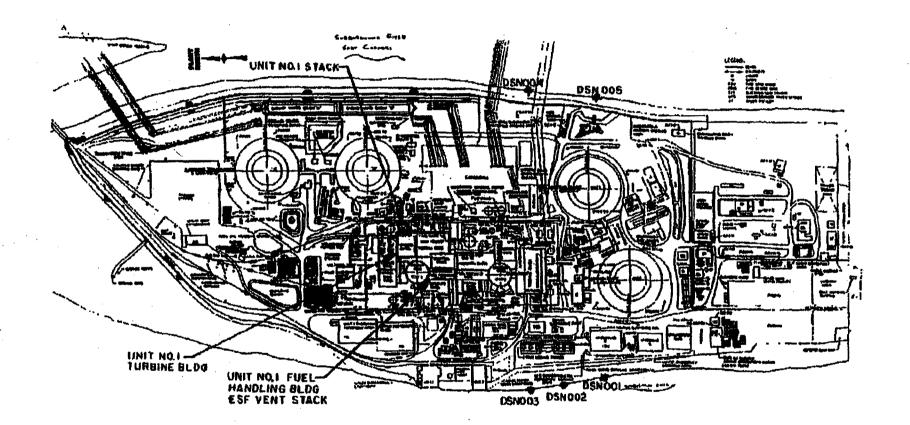
Number TMI - Unit 1 Radiological Controls Procedure 6610-PLN-4200.01 Title Revision No. **Offsite Dose Calculation Manual (ODCM)** 25 1.10 Venting VENTING is the controlled process of discharging air as gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating conditions in such a manner that replacement air or gas is not provided. Vent used in system name does not imply a VENTING process. 1.11 Member(s) of the Public MEMBER OF THE PUBLIC means any individual except when that individual is receiving an occupational dose. 1.12 Site Boundary The SITE BOUNDARY used as the basis for the limits on the release of gaseous effluents is as defined in Section 2.1.2.2 and shown on Figure 2.1-3 of the TMI-1 FSAR. This boundary line includes portions of the Susquehanna River surface between the east bank of the river and Three Mile Island and between Three Mile Island and Shelley Island. The SITE BOUNDARY used as the basis for the limits on the release of liquid effluents is as shown in Figure 1.1 in Part I of this ODCM. 1.13 **Frequency Notation** The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1-1. All Surveillance Requirements shall be performed within the specified time interval with a maximum allowable extension not to exceed 25% of the surveillance interval. The 25% extension applies to all frequency intervals with the exception of "F." No extension is allowed for intervals designated "F." 1.14 Occupational Dose OCCUPATIONAL DOSE means the dose received by an individual in the course of employment in which the individual's assigned duties involve exposure to radiation or to radioactive material from licensed and unlicensed sources of radiation, whether in the possession of the licensee or other person. Occupational dose does not include doses received from background radiation, from any medical administration the individual has received, from exposure to individuals administered radioactive material and released under 10CFR35.75, from voluntary participation in medical research programs, or as a member of the public.

	1	Number
	TMI - Unit 1 Radiological Controis Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calcula	25	

Table 1-1

Frequency Notation

Notation	Frequency
S	Shiftly (once per 12 hours)
D	Daily (once per 24 hours)
W	Weekly (once per 7 days)
M	Monthly (once per 31 days)
Q	Quarterly (once per 92 days)
S/A	Semi-Annually (once per 184 days)
R P S/U	Refueling Interval (once per 24 months) Prior to each reactor startup, if not done during the previous 7 days
P	Completed prior to each release
N/A (NA)	Not applicable
E	Once per 18 months
F	Not to exceed 24 months


Bases

Section 1.13 establishes the limit for which the specified time interval for Surveillance Requirements may be extended. It permits an allowable extension of the normal surveillance interval to facilitate surveillance scheduling and consideration of plant operating conditions that may not be suitable for conducting the surveillance; e.g., transient conditions or other ongoing surveillance or maintenance activities. It also provides flexibility to accommodate the length of a fuel cycle for surveillances that are specified to be performed at least once each REFUELING INTERVAL. It is not intended that this provision be used repeatedly as a convenience to extend surveillance intervals beyond that specified for surveillances that are not performed once each REFUELING INTERVAL. Likewise, it is not the intent that REFUELING INTERVAL surveillances be performed during power operation unless it is consistent with safe plant operation. The limitation of Section 1.13 is based on engineering judgment and the recognition that the most probable result of any particular surveillance being performed is the verification of conformance with the Surveillance Requirements. This provision is sufficient to ensure that the reliability ensured through surveillance activities is not significantly degraded beyond that obtained from the specified surveillance interval.

N

FIGURE 1.1

Gaseous Effluent Release Points and Liquid Effluent Outfall Locations

·	<u> </u>	TMI ~ Unit 1 Radiological Controls		Number 6610-PLN-4200.01
Title Offsite Dose Calculation Manual (ODCM)			Revision No.	
		Table 2.1-1		
		Radioactive Liquid Effluent In	strumentation	
• .	Instru	ment	Minimum Channeis Operable	ACTION
1.		s Radioactivity Monitors ding Automatic Termination lease		
	а.	Unit 1 Liquid Radwaste Effluent Line (RM-L6)	1 .	18
	b.	IWTS/IWFS Discharge Line (RM-L12)	1	20
2.	Flow	Rate Measurement Devices		
	a.	Unit 1 Liquid Radwaste Effluent Line (FT-84)	1	21
	b.	Station Effluent Discharge (FT-146)	1	21
		Table Notation		
ACTION 18		he number of channels OPERABLE less than ement, effluent releases may continue, provid		

- 1. At least two independent samples are analyzed in accordance with Surveillances 3.2.1.1.1 and 3.2.1.1.2 and;
- 2. At least two technically qualified members of the Unit staff independently verify the release rate calculations and verify the discharge valve lineup.
- 3. The TMI Plant Manager shall approve each release.

1

Otherwise, suspend release of radioactive effluents via this pathway.

- ACTION 20 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may commence or continue provided that grab samples are collected and analyzed for gross radioactivity (beta or gamma) at a limit of detection of at least 1x10⁻⁷ microcuries/ml, prior to initiating a release and at least once per 12 hours during release.
- ACTION 21 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, radioactive effluent releases via this pathway may continue, provided the flow rate is estimated at least once per 4 hours during actual releases. Pump curves may be used to estimate flow.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	· · ·	Revision No.

Offsite Dose Calculation Manual (ODCM)

2.0 RADIOLOGICAL EFFLUENT CONTROLS AND BASES

2.1 Radioactive Effluent Instrumentation

2.1.1 Radioactive Liquid Effluent Instrumentation

CONTROL:

The radioactive liquid effluent monitoring instrumentation channels shown in Table 2.1-1 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Control 2.2.1.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined in accordance with the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY: At all times *

ACTION:

а.

With a radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above control, immediately suspend the release of radioactive liquid effluent monitored by the affected channel or declare the channel inoperable.

25

b.With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 2.1-1. Exert best efforts to return the instrumentation to OPERABLE status within 30 days and, if unsuccessful, explain in the next Annual Effluent Release Report why the inoperability was not corrected in a timely manner.

- For FT-84, and RM-L6, operability is not required when discharges are positively controlled through the closure of WDL-V257.
- For RM-L12 and associated IWTS/IWFS flow interlocks, operability is not required when discharges are positively controlled through the closure of IW-V72, 75 and IW-V280, 281.
 - For FT-146, operability is not required when discharges are positively controlled through the closure of WDL-V257, IW-V72, 75 and IW-V280, 281.

BASES

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluent during actual or potential releases. The alarm/trip setpoints for these instruments shall be calculated in accordance with NRC approved methods in the ODCM to ensure that the alarm/trip will occur prior to exceeding ten times the effluent concentrations of 10 CFR Part 20.

	1	Number
Tille	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

2.1.2 Radioactive Gaseous Process and Effluent Monitoring Instrumentation

CONTROL:

The radioactive gaseous process and effluent monitoring instrumentation channels shown in Table 2.1-2 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Control 2.2.2.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined in accordance with the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY: As shown in Table 2.1-2.

ACTION:

With a radioactive gaseous process or effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above control, immediately suspend the release of radioactive effluent monitored by the affected channel or declare the channel inoperable.

b.

а.

With less than the minimum number of radioactive gaseous process or effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 2.1-2. Exert best efforts to return the instrumentation to OPERABLE status within 30 days and, if unsuccessful, explain in the next Annual Effluent Release Report why the inoperability was not corrected in a timely manner.

BASES

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases. The alarm/trip setpoints for these instruments shall be calculated in accordance with NRC approved methods in the ODCM to provide reasonable assurance that the annual releases are within the limits specified in 10 CFR 20.1301.

The low range condenser offgas noble gas activity monitors also provide data for determination of steam generator primary to secondary leakage rate. Channel operability requirements are based on an AmerGen letter #5928-06-20449, "Request to Revise Condenser Vent System Low Range Noble Gas Monitor Operability Requirements", Pamela B. Cowan to U.S.N.R.C., May 25, 2006.

Table 2.1-2

Radioactive Gaseous Process and Effluent Monitoring Instrumentation

		INSTRUME <u>NT</u>	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION			
1.	Wast	e Gas Holdup System		<u>,</u>				

	а.	Noble Gas Activity Monitor (RM-A7)	1	***	25			
•	b.	Effluent System Flow Rate Measuring Device (FT-123)	1	***	26			
2.	Wast	e Gas Holdup System Explosive Gas Monitoring System		·				
	a.	Hydrogen Monitor	2	* **	30			
	b.	Oxygen Monitor	2	**	30			
3.	Cont	Containment Purge Monitoring System						
	а.	Noble Gas Activity Monitor (RM-A9)	1	#	27			
	. b.	lodine Sampler (RM-A9)	1	#	31			
	· C.	Particulate Sampler (RM-A9)	1	. #	31			
	d.	Effluent System Flow Rate Measuring Device (FR-148A, FR-148B)	1	#	26			
	e.	Sampler Flow Rate Monitor	<u></u> 1	#	26			

Table 2.1-2 (Cont'd)

Radioactive Gaseous Process and Effluent Monitoring Instrumentation

	INSTRUMENT	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABILITY	ACTION
Cond	enser Vent System			
а.	Low Range Noble Gas Activity Monitor (RM-A5Lo or RM-A-15)	1	##	32

4.

Table 2.1-2 (Cont'd)

-

۰.

Radioactive Gaseous Process and Effluent Monitoring Instrumentation

		INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
5.	Auxili	ary and Fuel Handling Building Ventilation System			
	a.	Noble Gas Activity Monitor (RM-A8) or (RM-A4 and RM-A6)	1	*	27
•	b.	lodine Sampler (RM-A8) or (RM-A4 and RM-A6)	1	*	31
	C,	Particulate Sampler (RM-A8) or (RM-A4 and RM-A6)	1	*	31
	d.	Effluent System Flow Rate Measuring Devices (FR-149 and FR-150)	1	•	26
	e,	Sampler Flow Rate Monitor	1		26
6.	Fuel	Handling Building ESF Air Treatment System			
	a.	Noble Gas Activity Monitor (RM-A14 or Suitable Equivalent)	1	****	27, 33
	b.	lodine Cartridge	N/A ⁽²⁾	****	31, 33
	C.	Particulate Filter	N/A ⁽²⁾	**	31, 33
	d.	Effluent System Flow (UR-1104A/B)	1	****	26, 33
	e.	Sampler Flow Rate Monitor	1	***	26, 33

NOTE 2: No instrumentation channel is provided. However, for determining operability, the equipment named must be installed and functional or the ACTION applies.

Table 2.1-2 (Cont'd)

Radioactive Gaseous Process and Effluent Monitoring Instrumentation

		INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
7.	Cher	nical Cleaning Building Ventilation System			
	a.	Noble Gas Activity Monitor (ALC RM-I-18)	1 ⁽³⁾	###	27
	b.	lodine Sampler (ALC RM-I-18)	1 ⁽³⁾	###	31
	C.	Particulate Sampler (ALC RM-I-18)	1	###	31
8.	Was	te Handling and Packaging Facility Ventilation System			
	а.	Particulate Sampler (WHP-RIT-1)	1	###	31
9.	Resp	pirator and Laundry Maintenance Facility Ventilation			
		System			
	a.	Particulate Sampler (RLM-RM-1)	1	###	31

NOTE 3:

Channel only required when liquid radwaste is moved or processed within the facility.

				Number
			TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title				Revision No.
Offsite Do	se Ca	aiculation Ma	nual (ODCM)	25
			Table 2.1-2	
			Table Notation	
	•••• V C A ##	Dperability is not NDG-V47 or whe closure of WDG-V During Fuel Hand At all times during At all times when	holdup system operation. required when discharges are positively controlled re RM-A8, FT-149 and FT-150 are operable and F /47. Iling Building ESF Air Treatment System Operation containment purging. condenser vacuum is established. of the ventilation system.	RM-A8 is capable of automatic
ACTION 25	req		channels OPERABLE less than required by the M ntents of the tank may be released to the environn a:	
	1.		wo independent samples of the tank's contents are -2, Item A, and	e analyzed in accordance with
. '	2.		wo technically qualified members of the Unit staff i ate calculations and verify the discharge valve line	
	3.	The TMI	Plant Manager shall approve each release.	
		Otherwise	e, suspend release of radioactive effluent via this p	pathway.
ACTION 26	req		channels OPERABLE less than required by the M It releases via this pathway may continue provideo urs.	
ACTION 27	req lea: 24	uirement, effluer st once per 12 ho hours after the ci	channels OPERABLE less than required by the M to releases via this pathway may continue provided burs and the initial samples are analyzed for gross hannel has been declared inoperable. If RM-A9 is tion 3.5.1, Table 3-5.1, Item C.3.f.	i grab samples are taken at activity (gamma scan) within
ACTION 30	1.	OPERAB inoperabl	number of channels OPERABLE less than required LE requirement, a grab sample shall be collected a e gas channel(s) at least once per 24 hours. With ple shall be collected and analyzed for the inopera	and analyzed for the both channels inoperable, a
•		(a)	at least once per 4 hours during degassing ope	rations.
		(b)	at least once per 24 hours during other operation	ons (e.g. Feed and Bleed).
	2.	shali be s the Direct channel(s (b) action	perable gas channel(s) is not restored to service wi ubmitted to the Regional Administrator of the NRC or, Office of Inspection and Enforcement within 30) inoperable. The report shall describe (a) the cau being taken to restore the instrument to service, a ecurrence.	C Region I Office and a copy to days of declaring the use of the monitor inoperability,
			-	

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation M	anual (ODCM)	25

Table 2.1-2

- ACTION 31 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided that within four hours after the channel has been declared inoperable, samples are continuously collected with auxiliary sampling equipment.
- ACTION 32 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 14 days, provided that grab samples are taken and analyzed.

If the primary-to-secondary leakrate was unstable* or was indicating an increasing trend at the initial time when there was no operable channel of the Condenser Vent System Low Range Noble Gas Activity Monitor, analyze grab samples of the reactor coolant system and Condenser OffGas once every 4 hours to provide an indication of primary-to-secondary leakage, and subsequent sample frequency shall be in accordance with Table 1 based on the last sample result. Otherwise, analyze grab samples of the reactor coolant system and Condenser OffGas to provide an indication of primary-to-secondary leakage at the minimum frequency indicated in Table 1, below:

	Table 1
	Minimum Frequency of Grab Samples When
No Condenser V	ent System Low Range Noble Gas Activity Monitor is Operable

Existing Total Primary-to-Secondary Leak Rate (based on last monitor reading or sample result)	Frequency of Grab Samples
0 to < 5 GPD	Once per 24 hours
5 to < 30 GPD	Once per 12 hours
30 to < 75 GPD	Once per 4 hours
75 GPD or greater	Place the unit in at least HOT STANDBY within the next 6 hours, and at least HOT SHUTDOWN within the following 6 hours, and at least COLD SHUTDOWN within the subsequent 24 hours.

*Unstable is defined as > 10% increase during a 1 hour period, as stated in the EPRI Guidelines.

Condenser Vent System Low Range Noble Gas Activity Monitor inoperable channels should be restored to operability as rapidly as practical.

After 14 days, if one OPERABLE channel is not returned to service, within 1 hour the provisions of Technical Specification 3.0.1 apply, as if this Control were a Tech Spec Limiting Condition for Operation.

ACTION 33

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, either restore the inoperable channel to OPERABLE status within 7 days, or prepare and submit a special report within 30 days outlining the action(s) taken, the cause of the inoperability, and plans and schedule for restoring the system to OPERABLE status.

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01 Revision No.

25

Offsite Dose Calculation Manual (ODCM)

Title

2.2 Radioactive Effluent Controls

- 2.2.1 Liquid Effluent Controls
 - 2.2.1.1 Liquid Effluent Concentration

CONTROL:

The concentration of radioactive material released at anytime from the unit to unrestricted areas shall be limited to ten times the concentrations specified in 10 CFR Part 20.1001-20.2401, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 3 x 10^{-3} uCi/cc total activity.

APPLICABILITY: At all times

ACTION:

With the concentration of radioactive material released from the unit to unrestricted areas exceeding the above limits, immediately restore concentrations within the above limits.

BASES

This control is provided to ensure that the concentration of radioactive materials released in liquid waste effluent from the unit to unrestricted areas will be less than ten times the concentration levels specified in 10 CFR Part 20.1001-20.2401, Appendix B, Table 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water outside the site will not result in exposures with (1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC and (2) the limits of 10 CFR Part 20.1301 to the population. The concentration limit for noble gases is based upon the assumption the Xe-135 is the controlling radioisotope and its MPC in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2.

2.2.1.2

Liquid Effluent Dose

CONTROL

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released from the unit to the SITE BOUNDARY shall be limited:

- a.
- During any calendar quarter to less than or equal to 1.5 mrem to the total body and to less than or equal to 5 mrem to any organ.

b.

During any calendar year to less than or equal to 3 mrem to the total body and to less than or equal to 10 mrem to any organ.

· .		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Tille		Revision No.
Offsite Dose Calculation M	anual (ODCM)	25

APPLICABILITY: At all times

ACTION:

a.

With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce the releases of radioactive materials in liquid effluents during the subsequent 3 calendar quarters so that the cumulative dose or dose commitment to any individual from such releases during these four calendar quarters is within 3 mrem to the total body and 10 mrem to any organ. This Special Report shall also include (1) the result of radiological analyses of the drinking water source, and (2) the radiological impact on finished drinking water supplies with regard to the requirements of 40 CFR 141, Safe Drinking Water Act.

BASES

This control and associated action is provided to implement the requirements of Sections II.A. III.A. and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents will be kept "as low as is reasonably achievable". Also, for fresh water sites with drinking water supplies which can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 10 CFR 20. The dose calculations in the ODCM implement The requirements in Section III.A. of Appendix I that conformance with the guides of Appendix I is to be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October, 1977, and Regulatory Guide 1.113. "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April, 1977. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guides 1.109 and 1.113.

Number

	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Ma	anual (ODCM)	25

2.2.1.3

Title

Liquid Radwaste Treatment System

CONTROL:

The appropriate portions of the liquid radwaste treatment system shall be used to reduce the radioactive materials in liquid wastes prior to their discharge when the projected doses due to the liquid effluent from the unit to unrestricted areas would exceed 0.06 mrem to the total body or 0.2 mrem to any organ in any calendar month.

APPLICABILITY: At all times

1.

2.

3.

ACTION:

а.

With radioactive liquid waste being discharged without treatment and in excess of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which includes the following information:

> Explanation of why liquid radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for inoperability,

- Action(s) taken to restore the inoperable equipment to OPERABLE status, and,
- A summary description of action(s) taken to prevent a recurrence.

BASES

The requirement that the appropriate portions of this system be used, when specified, provides assurance that the releases of radioactive materials in liquid effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The intent of Section II.D. is to reduce effluents to as low as is reasonably achievable in a cost effective manner. This control satisfies this intent by establishing a dose limit which is a small fraction (25%) of Section II.A of Appendix I, 10 CFR Part 50 dose requirements. This margin, a factor of 4, constitutes a reasonable reduction.

	}	Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculatio	n Manual (ODCM)	25

2.2.1.4 Liquid Holdup Tanks

CONTROL

The quantity of radioactive material contained in each of the following tanks shall be limited to less than or equal to 10 curies, excluding tritium and dissolved or entrained noble gases.

a. Outside temporary tank

APPLICABILITY: At all times.

ACTION:

а

With the quantity of radioactive material in any of the above listed tanks exceeding the above limit, immediately suspend all additions of radioactive material to the tank and within 48 hours reduce the tank contents to within the limit.

BASES

Restricting the quantity of radioactive material contained in the specified tanks provides assurance that in the event of an uncontrolled release of the tanks' contents, the resulting concentrations would be less than the limits of 10 CFR Part 20.1001-20-20.2401, Appendix B, Table 2, Column 2, at the nearest potable water supply and the nearest surface water supply in an unrestricted area.

2.2.2 Gaseous Effluent Controls

2.2.2.1 Gaseous Effluent Dose Rate

CONTROL:

The dose rate due to radioactive materials released in gaseous effluent from the site shall be limited to the following:

- a. For noble gases: less than or equal to 500 mrem/yr to the total body and less than or equal to 3000 mrem/yr to the skin, and
 - For I-131, I-133, tritium and all radionuclides in particulate form with half lives greater than 8 days: less than or equal to 1500 mrem/yr to any organ.

APPLICABILITY: At all times.

ACTION:

b.

With the release rate(s) exceeding the above limits, immediately decrease the release rate to comply with the above limit(s).

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

BASES

The control implements the requirement in Technical Specification (6.8.4.b(7). This specification is provided to ensure that the dose from radioactive materials in gaseous effluents at and beyond the SITE BOUNDARY will be within the annual dose limits of 10 CFR Part 20. The annual dose limits are the doses associated with 10 times the concentrations of 10 CFR Part 20, Appendix B, Table 2, Column 1. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC, either within or outside the SITE BOUNDARY, to annual average concentrations exceeding the limits specified in Appendix B, Table 2 of 10 CFR Part 20.1302. For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of the MEMBER OF THE PUBLIC will be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the exclusion area boundary. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrem/year to the total body or to less than or equal to 3000 mrem/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrem/year (NUREG 1301).

2.2.2.2 Gaseous Effluents Dose-Noble Gases

CONTROL:

The air dose due to noble gases released in gaseous effluents from the unit to areas at and beyond the SITE BOUNDARY shall be limited to the following:

- a. During any calendar quarter: less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation and,
- b. During any calendar year: less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

APPLICABILITY: At all times.

ACTION:

a.

With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

Offsite Dose Calculati	on Manual (ODCM)	25
Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

BASES

This control applies to the release of radioactive materials in gaseous effluents from TMI-1.

This control and associated action is provided to implement the requirements of Section II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable." The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through the appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Release of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guides 1.109 and 1.111.

2.2.2.3

Dose - Iodine-131, Iodine-133, Tritium, and Radionuclides In Particulate Form

CONTROL:

The dose to a MEMBER OF THE PUBLIC from lodine-131, lodine-133, Tritium, and all radionuclides in particulate form with half lives greater than 8 days, in gaseous effluents released from the unit to areas at and beyond the SITE BOUNDARY shall be limited to the following:

- a. During any calendar quarter: less than or equal to 7.5 mrem to any organ, and
- b. During any calendar year: less than or equal to 15 mrem to any organ.

APPLICABILITY: At all times.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Man	ual (ODCM)	25

ACTION:

With the calculated dose from the release of lodine-131, lodine-133, Tritium, and radionuclides in particulate form with half lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which identifies the cause(s) for exceeding the limit and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

BASES

This control applies to the release of radioactive materials in gaseous effluents from TMI-1.

This control and associated action is provided to implement the requirements of Section II.C. III.A and IV.A of Appendix I, 10 CFR Part 50. The Controls are the guides set forth in Section II.C of Appendix I. The ACTION statement provides the required operating flexibility and at the same time implements the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." The ODCM calculational methods specified in the surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October, 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Revision 1, July, 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate controls for iodine-131, iodine-133, tritium and radionuclides in particulate form with half lives greater than 8 days are dependent upon the existing radionuclide pathways to man, in areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of these calculations were: 1) individual inhalation of airborne radionuclides, 2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, 3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man, and 4) deposition on the ground with subsequent exposure of man.

· [Number		
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01		
Title		Revision No.		
Offsite Dose Calculation Man	ual (ODCM)	25		
2.2.2.4	Gaseous Radwaste Treatment System			

CONTROL

The GASEOUS RADWASTE TREATMENT SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be OPERABLE. The appropriate portions of the GASEOUS RADWASTE TREATMENT SYSTEM shall be used to reduce radioactive materials in the gaseous waste prior to their discharge when the monthly projected gaseous effluent air doses due to untreated gaseous effluent releases from the unit would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The appropriate portions of the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the monthly projected doses due to gaseous effluent releases from the site would exceed 0.3 mrem to any organ.

APPLICABILITY: At all times.

ACTION:

а.

With the GASEOUS RADWASTE TREATMENT SYSTEM and/or the VENTILATION EXHAUST TREATMENT SYSTEM inoperable for more than a month or with gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which includes the following information:

- 1. Identification of the inoperable equipment or subsystems and the reason for inoperability,
- 2. Action(s) taken to restore the inoperable equipment to OPERABLE status, and
- A summary description of action(s) taken to prevent a recurrence.

BASES

The use of the GASEOUS RADWASTE TREATMENT SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensures that gaseous effluents are treated as appropriate prior to release to the environment. The appropriate portions of this system provide reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." This control implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the guide set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

Offsite Dose Calculation Ma	anual (ODCM)	25
Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

2.2.2.5 Explosive Gas Mixture

CONTROL

The concentration of oxygen in the Waste Gas Holdup System shall be limited to less than or equal to 2% by volume whenever the concentration of hydrogen in the Waste Gas Holdup System is greater than or equal to 4% by volume.

AVAILABILITY: At all times.

ACTION:

Whenever the concentration of hydrogen in the Waste Gas Holdup System is greater than or equal to 4% by volume, and:

- a. The concentration of oxygen in the Waste Gas Holdup System is greater than 2% by volume, but less than 4% by volume, without delay begin to reduce the oxygen concentration to within its limit.
- b. The concentration of oxygen in the Waste Gas Holdup System is greater than or equal to 4% by volume, immediately suspend additions of waste gas to the Waste Gas Holdup System and without delay begin to reduce the oxygen concentration to within its limit.

BASES:

Based on experimental data (Reference 1), lower limits of flammability for hydrogen is 5% and for oxygen is 5% by volume. Therefore, if the concentration of either gas is kept below it lower limit, the other gas may be present in higher amounts without the danger of an explosive mixture. Maintaining the concentrations of hydrogen and oxygen such that an explosive mixture does not occur in the waste gas holdup system provides assurance that the release of radioactive materials will be controlled in conformance with the requirements of General Design Criterion 60 of Appendix A to 10 CFR 50.

REFERENCES

(1) Bulletin 503, Bureau of Mines; Limits of Flammability of Gases and Vapors.

		inditibe:
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calcula	tion Manual (ODCM)	25

2.2.2.6 Waste Gas Decay Tanks

CONTROL:

The quantity of radioactivity contained in each waste gas decay tank shall be limited to less than or equal to 8800 curies noble gases (considered as Xe-133).

APPLICABILITY: At all times.

ACTION:

а,

With the quantity of radioactive material in any waste gas decay tank exceeding the above limit, immediately suspend all additions of radioactive material to the tank and within 48 hours reduce the tank contents to within the limit.

BASES

Restricting the quantity of radioactivity contained in each waste gas decay tank provides assurance that in the event of an uncontrolled release of the tanks contents, the resulting total body exposure to a MEMBER OF THE PUBLIC at the nearest exclusion area boundary will not exceed 0.5 rem. This is consistent with Standard Review Plan 15.7.1, "Waste Gas System Failure."

2.2.3 Total Radioactive Effluent Controls

2.2.3.1 Total Dose

CONTROL:

The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC, due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the total body or any organ except the thyroid, which shall be limited to less than or equal to 75 mrem.

APPLICABILITY: At all times.

ACTION:

With the calculated dose from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of Controls 2.2.1.2.a, 2.2.1.2.b, 2.2.2.a, 2.2.2.b, 2.2.2.3.a, or, 2.2.2.3.b, calculations should be made including direct radiation contributions from the unit and from outside storage tanks to determine whether the above limits of Control 2.2.3.1 have been exceeded. If such is the case, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculatio	n Manual (ODCM)	25

Offsite Dose Calculation Manual (ODCM)

10 CFR Part 20.2203(b), shall include an analysis which estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceed the above limits, and if the release condition resulting in violation of 40 CFR 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR 190. Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete.

BASES

This control is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR Part 20, 1301(d). This control requires the preparation and submittal of a Special Report whenever the calculated doses from plant generated radioactive effluents and direct radiation exceed 25 mrem to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrem. For sites containing up to 4 reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the reactor units and outside storage tanks are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the member of the public from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered. If the dose to any member of the public is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR Part 190.11 and 10 CFR Part 20.2203(b), is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Controls 2.2.1.1 and 2.2.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01

3.0 SURVEILLANCES

- 3.1 Radioactive Effluent Instrumentation
 - 3.1.1 Radioactive Liquid Effluent Instrumentation

Surveillance Requirements

3.1.1.1 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, AND CHANNEL TEST operations during the MODES and at the frequencies shown in Table 3.1-1.

Table 3.1-1

		INSTRUMENT	CHANNEL <u>CHECK</u>	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL <u>TEST</u>
1.	Radio Isolat	pactivity Monitors Providing Alarm and Automatic ion				
	а.	Unit 1 Liquid Radwaste Effluents Line (RM-L-6)	D	Р	R(2)	Q(1)
	b.	IWTS/IWFS Discharge Line (RM-L-12)	D	P	R(2)	Q(1)
2.	Flow	Rate Monitors	•			
	a.	Unit 1 Liquid Radwaste Effluent Line (FT-84)	D(3)	N/A	R	· Q
	b.	Station Effluent Discharge (FT-146)	D(3)	N/A	R	Q

42

Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	n Manual (ODCM)	25

Table 3.1-1

Table Notation

- (1) The CHANNEL TEST shall also demonstrate that automatic isolation of this pathway and control room alarm annunciation occurs if the following condition exists:
 - 1. Instrument indicates measured levels above the high alarm/trip setpoint. (includes circuit failure)
 - 2. Instrument indicates a down scale failure. (Alarm function only.) (Includes circuit failure)
 - 3. Instrument controls moved from the operate mode (Alarm function only).
- (2) The initial CHANNEL CALIBRATION for radioactivity measurement instrumentation shall be performed using one or more of the reference standards certified by the National Institute of Standards and Technology or using standards that have been obtained from suppliers that participated in measurement assurance activities with NIST. These standards should permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration should be used. (Operating plants may substitute previously established calibration procedures for this requirement)
- (3) CHANNEL CHECK shall consist of verifying indication of flow during periods of release. CHANNEL CHECK shall be made at least once daily on any day on which continuous, periodic, or batch releases are made.

		· ·
Offsite Dose Calculation Manual (ODCM)		25
Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

3.1.2 Radioactive Gaseous Process and Effluent Monitoring Instrumentation

Surveillance Requirements

- 3.1.2.1
- 1 Each radioactive gaseous process or effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL TEST operations at the frequencies shown in Table 3.1-2.

Table 3.1-2

	Raulbacuve Odsebbs i Toessa and Emeent monitoring instrumentation ourveintinoo Requiremento						
		INSTRUMENT	CHANNEL <u>CHECK</u>	Source <u>Check</u>	CHANNEL CALIBRATION	CHANNEL <u>TEST</u>	APPLICABILITY
1.	Wast	e Gas Holdup System					
	a.	Noble Gas Activity Monitor (RM-A7)	Р	Р	E(3)	Q(1)	***
	b.	Effluent System Flow Rate Measuring Device (FT-123)	Р	N/A	Ε	Q	***
2.	Wast	e Gas Holdup System Explosive Gas Monitoring System					
	a.	Hydrogen Monitar	D	N/A	Q(4)	M	ste vie
	ь.	Oxygen Monitor	D	N/A	Q(5)	M	**
3.	Conta	ainment Purge Vent System					
	a.	Noble Gas Activity Monitor (RM-A9)	D	Р	E(3)	M(1)	#
	b.	lodine Sampler (RM-A9)	. W	N/A	N/A	N/A	#
	C.	Particulate Sampler (RM-A9)	w	N/A	N/A	N/A	#
	d.	Effluent System Flow Rate Measuring Device (FR-148)	D	N/A	E	Q	#
	e.	Sampler Flow Rate Monitor	D	N/A	E	N/A	#
4.	Cond	lenser Vent System					
	a.	Noble Gas Activity Monitor (RM-A5 and Suitable Equivalent - See Table 2.1-2, Item 4.a)	D	M	E(3)	Q(2)	##

Radioactive Gaseous Process and Effluent Monitoring Instrumentation Surveillance Requirements

Table 3.1-2

		INSTRUMENT	CHANNEL <u>CHECK</u>	SOURCE <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL <u>TEST</u>	APPLICABILITY
5.	Auxili	ary and Fuel Handling Building Ventilation System					
	a.	Noble Gas Activity Monitor (RM-A8) or (RM-A4 and RM-A6)	D	M	E(3)	Q(1)	*
	b.	Iodine Sampler (RM-A8) or (RM-A4 and RM-A6)	W	N/A	N/A	N/A	*
	C.	Particulate Sampler (RM-A8) or (RM-A4 and RM-A6)	W	N/A	N/A	N/A	*
	d.	System Effluent Flow Rate Measurement Devices (FR-149 and FR-150)	D	N/A	» E	Q	*
	e.	Sampler Flow Rate Monitor	D	N/A	Е	N/A	*
6.	Fuel	Handling Building ESF Air Treatment System					
	a.	Noble Gas Activity Monitor (RM-A14)	D	M	R(3)	Q(2)	****
	b.	System Effluent Flow Rate (UR-1104 A/B)	D	N/A	R	Q	****
	с.	Sampler Flow Rate Measurement Device	D _	N/A	R	Q	***

Radioactive Gaseous Process and Effluent Monitoring Instrumentation Surveillance Requirements

Table 3.1-2

Radioactive Gaseous Process and Effluent Monitoring Instrumentation Surveillance Requirements

		INSTRUMENT	CHANNEL <u>CHECK</u>	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL <u>TEST</u>	APPLICABILITY
7.	Chen	nical Cleaning Building Ventilation System					
	a.	Noble Gas Activity Monitor (ALC RM-I-18)	D	м	E(3)	Q(2)	###
	b.	lodine Sampler (ALC RM-I-18)	w	′ N/A	N/A	N/A	###
·	c.	Particulate Sampler (ALC RM-I-18)	w	N/A	N/A	N/A	###
8.	Wast	e Handling and Packaging Facility Ventilation System	· .			·	
	a.	Particulate Sampler (WHP-RIT-1)	D	w	SA	W	###
9.	Resp	irator and Laundry Maintenance Ventilation System					
	a.	Particulate Sampler (RLM-RM-1)	D	W	SA	W	###

	ĺ			Number	
			TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01	
Title		<u></u>	· ·	Revision No.	
Offsite Dose Calculation Manu			anual (ODCM)	25	
-			Table 3.1-2		
			Table Notation		
	* ** *** # ## ###	Operability is not ro WDG-V47, and wh During Fuel Handli At all times during At all times when c	holdup system operation. equired when discharges are positively controlled the ere RM-A8 (or RM-A4 and RM-A6), FT-149, and FT ing Building ESF Air Treatment System Operation. containment purging. condenser vacuum is established. f the ventilation system.	rough the closure of -150 are operable.	
(1)	The CHANNEL TEST shall also demonstrate that automatic isolation of this pathway for the Auxiliary and Fuel Handling Building Ventilation System, the supply ventilation is isolated and control room alarm annunciation occurs if the following condition exists:				
	1.	Instrument indicate	es measured levels above the high alarm/trip setpoin	t (Includes circuit failure).	
	2.	Instrument indicate	es a down scale failure (Alarm function only) (Include	s circuit failure).	
	3.	Instrument controls moved from the operate mode (Alarm function only).			
(2)	The CHANNEL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exist:				
	1	Instrument indicate	es measured levels above the alarm setpoint. (includ	es circuit failure)	
	2.	Instrument indicate	es a down scale failure (includes circuit failure).		
	3.	Instrument controls moved from the operate mode.			
(3)	The initial CHANNEL CALIBRATION for radioactivity measurement instrumentation shall be performed usir one or more of the reference standards certified by the National Institute of Standards and Technology or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards should permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration should be used. (Operating plants may substitute previously established calibration procedures for this requirement.)				
(4)	The CHANNEL CALIBRATION shall include the use of standard gas samples containing a nominal:				
	1.	One volume perce	nt hydrogen, balance nitrogen, and		
	2.	Four volume perce	nt hydrogen, balance nitrogen.		
(5)	The CHANNEL CALIBRATION shall include the use of standard gas samples containing a nominal:				
	1.	One volume percer	nt oxygen, balance nitrogen, and	,	

2. Four volume percent oxygen, balance nitrogen.

					Number
			Rad	TMI - Unit 1 diological Controls Procedure	6610-PLN-4200.01
tie					Revision No.
Offsite Dos	se Calcu	lation Ma	nual (ODC	M)	25
3.2	Radiolo	gical Effluen	its		
	3.2.1	Liquid Eff	luents	· · · ·	i
		SURVEIL	LANCE REG	UIREMENTS	
		3.2.1.1	Concentra	tion	
			3.2.1.1.1	The radioactivity content of each b shall be determined prior to releas accordance with Table 3.2-1. The shall be used with the calculationa assure that the concentration at th within the limits of Control 2.2.1.1.	e by sampling and analysis in results of pre-release analyses I methods in the ODCM to
			3.2.1.1.2	Post-release analysis of samples of shall be performed in accordance the previous post-release analysis calculational methods in the ODCN concentrations at the point of relea- limits of Control 2.2.1.1.	with Table 3.2-1. The results of shall be used with the I to assure that the
· .			3.2.1.1.3	The radioactivity concentration of l continuous release points shall be analysis of samples in accordance of the analysis shall be used with t ODCM to assure that the concentr maintained within the limits of Con	determined by collection and with Table 3.2-1. The results he calculational methods of the ation at the point of release is
		3.2.1.2	Dose Calc	ulations	
			3.2.1.2.1	Cumulative dose contributions from determined in accordance with the Manual (ODCM) at least once a m	Offsite Dose Calculation
		3.2.1.3	Liquid Wa	ste Treatment	
			3.2.1.3.1	Doses due to liquid releases shall month, in accordance with the OD	
		3.2.1.4	Liquid Hole	dup Tanks	: :
			3.2.1.4.1	The quantity of radioactive materia tanks specified in Control 2.2.1.4 s the limit by analyzing a represental content weekly when radioactive m tank.	hall be determined to be within tive sample of the tank's

6610-PLN-4200.01 Revision 25

Table 3.2-1

Radioactive Liquid Wasite Sampling and Analysis Program

	Liquid Release Type	Sampling ⊱requency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) (µCi/mi) (Note a)
A.1	Batch Waste Release Tanks (Note d)	P Each Batch	P Each Batch	H-3 Principal Gamma Emitters (Note f)	1 x 10 ⁻⁵ 5 x 10 ⁻⁷
		e 		I-131	1 x 10 ⁻⁶
		, , , , , , , , , , , , , , , , , , ,		Dissolved and Entrained Gases (Gamma Emitters) (Note g)	Ì x 10 ⁻⁴
		P	Q	Gross alpha	1 x 10 ⁻⁷
		Each Batch	Composite (Note b)	Sr-89, Sr-90	5 x 10 ⁻⁸
		1	 	Fe-55	<u>1 x 10⁻⁶</u>
A.2	Continuous Releases (Note e)	Continuous (Note c)	W Composite (Note c)	Principal Gamma Emitters (Note f)	5 x 10 ⁻⁷
		1 . 1 . 1 1		; I-131	1 x 10 ⁻⁶
		Grab Sample M	M	Dissolved and Entrained Gases (Gamma Emitters) (Note g)	1 x 10 ⁻⁵
		Continuous	M	H-3	1 x 10°
		(Note c)	Composite (Note c)	Gross alpha	1 x 10 ⁻⁷
		Continuous (Note c)	Q Composite	Sr-89, Sr-90	5 x 10 ⁻⁸
			(Note c)	Fe-55	1 x 10 ⁻⁸

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title Offsite Dose Calculation	Manual (ODCM)	Revision No.

Table 3.2-1

Table Notation

а.

The LLD is defined, for purposes of this surveillance, as the smallest concentration of radioactive material in a sample that will yield a net count above system background that will be detected with 95% probability with 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \,\text{Sb}}{\text{E x V x } 2.22 \,\text{x } 10^6 \,\text{x Y x exp} \,(-\lambda \,\text{At})}$$

Where:

LLD is the "a priori" lower limit of detection as defined above (as microcurie per unit mass or volume),

 s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency (as counts per disintegration),

V is the sample size (in units of mass or volume),

2.22 x 10⁶ is the number of disintegrations per minute per microcurie,

Y is the fractional radiochemical yield (when applicable),

 λ is the radioactive decay constant for the particular radionuclide, and

∆t is the elapsed time between midpoint of sample collection and time of counting.

Typical values of E, V, Y and ∆t shall be used in the calculation.

It should be recognized that the LLD is defined as an "a priori" (before the fact) limit representing the capability of a measurement system and not as an "a posteriori" (after the fact) limit for a particular measurement.

b.

C.

A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen which is representative of the liquids released.

To be representative of the quantities and concentrations of radioactive materials in liquid effluent, samples shall be collected continuously in proportion to the rate of flow of the effluent stream. Prior to analyses, all samples taken for the composite shall be thoroughly mixed in order for the composite sample to be representative of the effluent release.

		Number	
· .	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01	
Title		Revision No.	
Offsite Dose Calc	ulation Manual (ODCM)	25	

Table 3.2-1

- d. A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and be thoroughly mixed, by a method described in the ODCM, to assure representative sampling.
- e. A continuous release is the discharge of liquid wastes of a non- discrete volume; e.g., from a volume or system that has an input flow during the continuous release.
- f. The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radioactive Effluent Release Report pursuant to TS 6.9.4.
- g. The gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, and Xe-135. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Effluent Release Report pursuant to T.S. 6.9.4.

				Number
		Ba	TMI - Unit 1 diologicai Controls Procedure	6610-PLN-4200.01
Title				Revision No.
Offsite Dose Calcu	lation Ma	nual (ODC	:M)	25
3.2.2	Gaseous	Effluents		· .
	SURVEIL	LANCE REC	QUIREMENTS	
	3.2.2.1	Dose Rate	es	•
		3.2.2.1.1	The dose rate due to noble gases determined to be within the limits accordance with the methods and	of Control 2.2.2.1.a in
		3.2.2.1.2	The dose rate of radioactive mate gaseous effluents shall be determ Control 2.2.2.1.b in accordance wi the ODCM by obtaining represent analyses in accordance with the s specified in Table 3.2-2.	ined to be within the limits of ith methods and procedures of ative samples and performing
	3.2.2.2	Dose, Not	ble Gas	
		3.2.2.2.1	Cumulative dose contributions from current calendar quarter and current determined in accordance with the CALCULATION MANUAL (ODCM	nt calendar year shall be OFFSITE DOSE
	3.2.2.3	Dose, lodi	ne-131, lodine-133, Tritium, and Rad	dionuclides In Particulate Form
		3.2.2.3.1	Cumulative dose contributions from Tritium, and radionuclides in partic greater than 8 days for the current calendar year shall be determined OFFSITE DOSE CALCULATION I	ulate form with half lives calendar quarter and current in accordance with the
	3.2.2.4	Gaseous	Naste Treatment	
	· .	3.2.2.4.1	Doses due to gaseous releases from monthly in accordance with the O	
	3.2.2.5	Explosive	Gas Mixture	· · ·
		3.2.2.5.1	The concentrations of hydrogen ar holdup system shall be determined Control 2.2.2.5 by monitoring the v Holdup System with the hydrogen in Table 2.1-2 of Control 2.1.2.	d to be within the limits of vaste gases in the Waste Gas
			· .	
			· .	

				i	1 1 1	Number	
		Radi	TMI - U ological Cont	rols Proce	dure	6610-PLN-4	200.01
Title		-			1	Revision No.	
Offsite Dose Calculation	tion Manua	ai (ODCI	VI)			25	
•	3.2,2.6 V	Vaste Gas	Decay Tank		1 1		
•	3.	.2.2.6.1	shall be dete header exce waste gas d	ermined w eds 10.7 ecay tank	eekly. If the con Ci/cc, daily san	tained in the vent ncentration of the ples shall be tak to determine if th	vent en of each
					 .		
	,						
						, ·	
					1	•	
	· .						
						,	
							,
						.*	
					1		
							, •
							94 1
		·					· ·
	•	•			· ·	,	
• •		,					
				•			
· · · · · · · · · · · · · · · · · · ·							
		:					
				:			
						· · ·	
	·.						
			54	,		· .	
				• •			

Table 3.2-2

	Gaseous Release Type	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) µCi/mI) (Note a)
Α.	Waste Gas Decay Tank	P Each Tank Grab Sample	P Each Tank	Principal Gamma Emitters (Note g)	1 x 10 ⁻⁴
В,	Containment Purge	P (Note b) Each Purge Grab Sample	P (Note b) Each Purge	H-3 Principal Gamma Emitters (Note g)	1 x 10 ⁻⁶ 1 x 10 ⁻⁴
D.	Auxiliary and Fuel Handling Building Air Treatment System	M (Notes c, e) Grab Sample	M	H-3 Principal Gamma Emitters (Note g)	1 x 10 ⁻⁶ 1 x 10 ⁻⁶
D.	Fuel Handling Building ESF Air Treatment System	M (during System Operation) Grab Sample	M (during System Operation)	H-3 Principal Gamma Emitters (Note g)	1 x 10 ⁻⁶ 1 x 10 ⁻⁴
	Condenser Vacuum Pumps Exhaust (Note h)	M (Note h) Grab Sample	M (Note h)	H-3 Principal Gamma Emitters (Note g)	1 x 10 ⁻⁶ 1 x 10 ⁻⁴
	Chemical Cleaning Building Air Treatment System	M (Note I) Grab Sample	M	H-3 Principal Gamma Emitters (Note g)	1 x 10 ⁻⁶ 1 x 10 ⁻⁴
3. 	Waste Handling and Packaging Facility Air Treatment System	See Section I of this table	See Section I of this table	See Section I of this table	See Section I of this table
1 .	Respirator and Laundry Maintenance Facility Air Treatment System	See Section I of this table	See Section I of this table	See Section I of this table	See Section I of this table

Radioactive Gaseous Waste Sampling and Analysis Program

6610-PLN-4200.01 Revision 25

Table 3,2-2

Radioactive Gaseous Waste Sampling and Analysis Program

	Gaseous Release Type	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) (µCi/ml) (Note a)
Ι.	All Release Types as Listed Above in B, C, D, F, G, and H (During System Operation) (Note i)	Continuous (Note f)	W (Note d) Charcoal Sample	I-131	1 x 10 ⁻¹²
		Continuous (Note f)	W (Note d) Particulate	Principal Gamma Emitters (Note g) (I-131, Others)	1 x 10 ⁻¹¹
ŗ		Continuous (Note f)	Q Composite Particulate Sample	Gross Alpha	1 x 10 ⁻¹¹
		Continuous (Note f)	Q Composite Particulate Sample	Sr-89, Sr-90	1 x 10 ⁻¹¹
J.	Condenser Vent Stack Continuous Iodine Sampler (Note j)	Continuous (Note k)	W (Note d) Charcoal Sample	I-131	1 x 10 ⁻¹²

. 1		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Ma	25	

Table 3.2-2

Table Notation

a. The LLD is defined, for purposes of this surveillance, as the smallest concentration of radioactive material in a sample that will yield a net count above system background that will be detected with 95% probability with 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

 $LLD = \frac{4.66 \, \text{Sb}}{\text{E x V x } 2.22 \, \text{x } 10^6 \, \text{x Y x } \exp(-\lambda \Delta t)}$

Where:

b.

C.

LLD is the "a priori" lower limit of detection as defined above (as microcurie per unit mass or volume),

 S_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency (as counts per disintegration),

V is the sample size (in units of mass or volume),

2.22 x 10⁶ is the number of disintegrations per minute per microcurie,

Y is the fractional radiochemical yield (when applicable),

 $\boldsymbol{\lambda}$ is the radioactive decay constant for the particular radionuclide, and

∆t is the elapsed time between midpoint of sample collection and time of counting.

Typical values of E, V, Y and Δt shall be used in the calculation.

It should be recognized that the LLD is defined as an "a priori" (before the fact) limit representing the capability of a measurement system and not as an "a posteriori" (after the fact) limit for a particular measurement.

Sampling and analysis shall also be performed following shutdown, startup, or a THERMAL POWER change exceeding 15 percent of RATED THERMAL POWER within one hour unless (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the primary coolant has not increased more than a factor of 3; and (2) the noble gas activity monitor shows that effluent activity has not increased by more than a factor of 3.

Tritium grab samples from the spent fuel pool area shall be taken at least once per 24 hours when the refueling canal is flooded.

						Number
			TMI - Unit			
		Radio	logical Controls	Proc	edure	6610-PLN-4200.01
tle			•			Revision No.
ffsite Do	se Calculation Ma	anual (ODCN	I)		•	25
				-		
			Table 3.2	-2		
· d.	Charcoal cartridge shall be completed					per 7 days and analyses sampler).
e.	Tritium grab sampl the spent fuel pool		n weekly from th	ne spe	nt fuel pool area	whenever spent fuel is in
f.						known for the time period Controls 2.2.2.1, 2.2.2.2,
g .	radionuclides: Kr-8 Mn-54, Fe-59, Co- This list does not n	37, Kr-88, Xe-13 58, Co-60, Zn-65 nean that only th er with those of t	3, Xe-133m, Xe 5, Mo-99, Cs-13 ese nuclides ar he above nuclid	-135 7, Ce e to be les, st	and Xe-138 for g 141 and Ce-144 considered. O nall also be analy	clusively are the following aseous emissions and for particulate emissions. ther gamma peaks that are yzed and reported in the
h.	RATED THERMAL EQUIVALENT I-13	g shutdown, star POWER within 1 concentration	tup, or a THER one hour unles in the primary c	MAL F s (1) a oolant	POWER change inalysis shows th thas not increas	nalysis shall also be exceeding 15 percent of nat the DOSE ed more than a factor of 3; increased by more than a
i.	Gross Alpha, Sr-89 Treatment System.		lyses do not app	oly to	the Fuel Handlin	g Building ESF Air
j.	equipment will be p 30 days from the til inoperability, (b) the	placed in service me the sampler i e action taken to ce, and (d) quar	within 48 hours s found or mad restore represent tification of the	or a r e inop entativ releas	eport will be pre erable which ide e sampling capa	hen alternate sampling pared and submitted within entifies (a) the cause of the ability, (c) the action taken ay during the period and
k.	Applicable only who	en condenser va	cuum is establi	shed.		
t.	Applicable when lic	uid radwaste is	moved or proce	ssed	within the facility	•
m.	lodine samples onl stored or processe		Chemical Clea	ning B	uilding when TN	II-1 liquid radwaste is
•						
		•	. •			,
				-	•	

ł.

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calcul	25	

Total Radioactive Effluents 3.2.3

3.2.3.1 **Dose Calculation**

> 3.2.3.1.1 Cumulative annual dose contributions from liquid and gaseous effluents shall be determined in accordance with Surveillances 3.2.1.2.1, 3.2.2.2.1, and 3.2.2.3.1, including direct radiation contributions from the Unit and from outside storage tanks, and in accordance with the methodology contained in the ODCM.

	Number
TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	Revision No.
Offsite Dose Calculation Manual (ODCM)	25

4.0 PART I REFERENCES

- 4.1 Title 10, Code of Federal Regulations, "Energy"
- 4.2 Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routing Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, "Revision 1, October 1977

4.3 TMI-1 Technical Specifications, attached to Facility Operating License No. DPR-50

4.4 TMI-1 FSAR

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

PART II

TMI-2 RADIOLOGICAL EFFLUENT CONTROLS

				Number
		TMI - Unit 1	l	
Title		Radiological Controls Pr	ocedure	6610-PLN-4200.01 Revision No.
		·		
Offsite Dose	Calculation Ma	anual (ODCM)		25
		PART II		
		Definitions		· · · ·
1.0 DEFINIT	ONS			
DEFINED TERMS	S			
	he DEFINED TEF	RMS of this section appear in capita	alized type and are	applicable throughout Part
PDMS			F	
0	ompleted, the core	nitored Storage (PDMS) is that con e debris removed from the reactor ility has been placed in a stable, sa	during the clean-up	period has been shipped
ACTION				
	CTION shall be the nd shall be the shall be part of	nose additional requirements speci f the controls.	fied as corollary sta	tements to each control
OPERABLE - OP	ERABILITY		i i	
it th si s	is capable of perf nat all necessary a ources, cooling or ystem, subsystem	em, train, component or device sha orming its specified function(s). Im attendant instrumentation, controls, seai water, lubrication or other au , train, component or device to per ated support function(s).	plicit in this definiti normal and emerg kiliary equipment, t	on shall be the assumption lency electrical power hat are required for the
CHANNEL CALIB	RATION			· ,
it rr a	responds with ne nonitors. The CH/ nd alarm and/or tr ALIBRATION ma	BRATION shall be the adjustment, cessary range and accuracy to kno ANNEL CALIBRATION shall encon ip functions, and shall include the (y be performed by any series of se channel is calibrated.	wh values of the p pass the entire ch CHANNEL FUNCT	arameter which the channel annel including the sensor IONAL TEST. CHANNEL
CHANNEL CHEC	K			
ol	bservation. This c	CK shall be the qualitative assessm determination shall include, where p other indications and/or status deriv e parameter.	oossible, comparise	on of the channel indication
			· ·	

		Number	• •
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01	
Title		Revision No.	-
Offsite Dose Calculation Manual (ODCM)		25	

1 Mumbou

CHANNEL FUNCTIONAL TEST

1.7 A CHANNEL FUNCTIONAL TEST shall be:

- Analog channels the injection of a simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and/or trip functions.
- b. Bistable channels the injection of a simulated signal into the channel sensor to verify OPERABILITY including alarm and/or trip functions.

SOURCE CHECK

1.8 A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a radioactive source.

COMPOSITE SAMPLE

1.9 A COMPOSITE SAMPLE is a combination of individual samples obtained at regular intervals over a time period. Either the volume of each individual sample is proportional to the flow rate discharge at the time of sampling or the number of equal volume samples is proportional to the time period used to produce the composite.

GRAB SAMPLE

1.10 A GRAB SAMPLE is an individual sample collected in less than fifteen minutes.

BATCH RELEASE

1.11 A BATCH RELEASE is the discharge of fluid waste of a discrete volume.

CONTINUOUS RELEASE

1.12 A CONTINUOUS RELEASE is the discharge of fluid waste of a non-discrete volume, e.g., from a volume or system that has an input flow during the CONTINUOUS RELEASE.

SITE BOUNDARY

1.13 The SITE BOUNDARY used as the basis for the limits on the release of gaseous effluents is as defined in Section 2.1.2.2 and shown on Figure 2.1-3 of the TMI-1 FSAR. This boundary line includes portions of the Susquehanna River surface between the east bank of the river and Three Mile Island and between Three Mile Island and Shelley Island.

The SITE BOUNDARY used as the basis for the limits on the release of liquid effluents is as shown in Figure 1.1 in Part I of this ODCM.

FREQUENCY NOTATION

1.14 The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1.1. All Surveillance Requirements shall be performed within the specified time interval with a maximum allowable extension not to exceed 25% of the surveillance interval.

			Number
	TMI - Unit 1 Radiological Controls Proc	edure	6610-PLN-4200.01
Title			Revision No.
Offsite Dose Calculation Ma	anual (ODCM)	 	25
	TABLE 1.1		
	Frequency Notation		
NOTATION	4	FREQUE	ENCY
S (Shiftly)		At least once p	er 12 hours.
D (Daily)		At least once p	er 24 hours.
W (Weekly)	At least once p	er 7 days.
M (Monthly)	At least once p	er 31 days.
Q (Quarter	ly)	At least once p	er 92 days.
SA (Semi-A	Annually)	At least once p	er 184 days.
A (Annually)	At least once p	er 12 months.
E		At least once p	er 18 months.
N.A.		Not applicable.	
P	· · · · ·	Completed price	or to each release

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Revision No.
Dose Calculation N	lanual (ODCM)	25
ONTROLS AND BASES	<u>}</u>	
2.0.1 Control each co	s and ACTION requirements shall be applicable du antrol.	uring the conditions specified for
specifie Control	nce to the requirements of the Control and/or asso d time interval shall constitute compliance with the is restored prior to expiration to the specified time N statement is not required.	control. In the event the
becaus actions a specia	vent the Control and associated ACTION requirem e of circumstances in excess of those addressed in to rectify the problem to the extent possible under al report to the Commission pursuant to TMI-2 PDM Spec.) Section 6.8.2 within 30 days unless otherwise	n the Control, initiate appropriate the circumstances, and submit MS Technical Specification
1 Radioactive Efflue	nt Instrumentation	
2.1.1 Radioad	tive Liquid Effluent Instrumentation	
	tive Liquid Effluent Instrumentation is common be s, applicability, and actions are specified in ODCM	
2.1.2 Radioad	tive Gaseous Process and Effluent Monitoring Ins	trumentation
CONTR	OL:	
in Table limits of	ioactive gaseous process and effluent monitoring i 2.1-2 shall be OPERABLE with their alarm/trip se Control 2.2.2.1 are not exceeded. The alarm/trip determined in accordance with the OFFSITE DOS).	tpoints set to ensure that the setpoints of these channels
APPLIC	ABILITY: As shown in Table 2.1-2.	· · ·
ACTION	k.	
a.	With a radioactive gaseous process or effluen channel alarm/trip setpoint less conservative t control, immediately suspend the release of ra the affected channel or declare the channel in	han required by the above adioactive effluent monitored by
b.	With less than the minimum number of radioad effluent monitoring instrumentation channels C shown in Table 2.1-2. Exert best efforts to retu OPERABLE status within 30 days and, if unsu Annual Effluent Release Report why the inope timely manner.	DPERABLE, take the ACTION urn the instrumentation to iccessful, explain in the next
	b.	the affected channel or declare the channel in b. With less than the minimum number of radioad effluent monitoring instrumentation channels C shown in Table 2.1-2. Exert best efforts to retu OPERABLE status within 30 days and, if unsu Annual Effluent Release Report why the inope

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.0
litle		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

BASES

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases. The alarm/trip setpoints for these instruments shall be calculated in accordance with NRC approved methods in the ODCM to provide reasonable assurance that the annual releases are within the limits specified in 10 CFR 20.1301.

Table 2.1-2

Radioactive Gaseous Process and Effluent Monitoring Instrumentation

		INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
1.	Contai	nment Purge Monitoring System			
	a.	Noble Gas Activity Monitor (2HP-R-225)	1	NOTE 1	NOTE 2
	b.	Particulate Monitor (2HP-R-225)	1	NOTE 1	NOTE 2
	C,	Effluent System Flow Rate Measuring Device (2AH-FR-5907 Point 1)	1	NOTE 1	NOTE 3
2.	Station	Ventilation System			
	<u>а</u> .	Noble Gas Activity Monitor (2HP-R-219) or (2HP-R-219A)	1	NOTE 1	NOTE 2
	b.	Particulate Monitor (2HP-R-219) or (2HP-R-219A)	· 1 .	NOTE 1	NOTE 2
	C.	Effluent System Flow Rate Monitoring Device (2AH-FR-5907 Point 6)	1	NOTE 1	NOTE 3

NOTES:

1. During operation of the monitored system.

2. With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, secure Reactor Building Purge if in progress.

3. With flow rate monitoring instrumentation out of service, flow rates from the Auxiliary (2AH-FR-5907 Point 2), Fuel Handling (2AH-FR-5907 Point 4), Soiled Exhaust System (2AH-FR-5907 Point 5), and Reactor Buildings (2AH-FR-5907 Point 1) may be summed individually. Under these conditions, the flow rate monitoring device is considered operable. If the flow rates cannot be summed individually, they may be estimated using the maximum design flow for the exhaust fans, and the reporting requirements of Control 2.1.2.b are applicable.

Number

TMI - Unit 1 Radiological Controls Procedure Revision No. 25

Offsite Dose Calculation Manual (ODCM)

Title

2.2 Radioactive Effluent Controls

2.2.1 Liquid Effluent Controls

2.2.1.1 Liquid Effluent Concentration

CONTROL:

The concentration of radioactive material released at anytime from the unit to unrestricted areas shall be limited to ten times the concentrations specified in 10 CFR Part 20.1001-20.2401, Appendix B, Table 2, Column 2.

APPLICABILITY: At all times

ACTION:

With the concentration of radioactive material released from the unit to unrestricted areas exceeding the above limits, immediately restore concentrations within the above limits.

BASES

This control is provided to ensure that the concentration of radioactive materials released in liquid waste effluent from the unit to unrestricted areas will be less than ten times the concentration levels specified in 10 CFR Part 20.1001-20.2401, Appendix B, Table 2. These Controls permit flexibility under unusual conditions, which may temporarily result in higher than normal releases, but still within ten times the concentrations, specified in 10 CFR 20. It is expected that by using this flexibility under unusual conditions, and exerting every effort to keep levels of radioactive material in liquid wastes as low as practicable, the annual releases will not exceed a small fraction of the annual average concentrations specified in 10 CFR 20. As a result, this Control provides reasonable assurance that the resulting annual exposure to an individual in off-site areas will not exceed the design objectives of Section II.A of Appendix I to 10 CFR Part 50, which were established as requirements for the cleanup of TMI-2 in the NRC's Statement of Policy of April 27, 1981.

2.2.1.2

Liquid Effluent Dose

CONTROL

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released from the unit to the SITE BOUNDARY shall be limited:

- a. During any calendar quarter to less than or equal to 1.5 mrem to the total body and to less than or equal to 5 mrem to any organ.
- b.
- During any calendar year to less than or equal to 3 mrem to the total body and to less than or equal to 10 mrem to any organ.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

APPLICABILITY: At all times

ACTION:

а.

With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce the releases of radioactive materials in liquid effluents during the remainder of the current calendar quarter and during the subsequent 3 calendar quarters so that the cumulative dose or dose commitment to any individual from such releases during these four calendar quarters is within 3 mrem to the total body and 10 mrem to any organ. This Special Report shall also include (1) the result of radiological analyses of the drinking water source, and (2) the radiological impact on finished drinking water supplies with regard to the requirements of 40 CFR 141, Safe Drinking Water Act.

BASES

This Control requires that the dose to offsite personnel be limited to the design objectives of Appendix 1 of 10 CFR Part 50. This will assure the dose received by the public during PDMS is equivalent to or less than that from a normal operating reactor. The limits also assure that the environmental impacts are consistent with those assessed in NUREG-0683, the TMI-2 Programmatic Environmental Impact Statement (PEIS). The ACTION statements provide the required flexibility under unusual conditions and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents will be kept "as low as is reasonably achievable". The dose calculations in the ODCM implement the requirements in Section III.A. of Appendix I that conformance with the guides of Appendix I is to be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October, 1977, and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April, 1977. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guides 1.109 and 1.113.

	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calcula	tion Manual (ODCM)	25

2.2.1.3 Liquid Radwaste Treatment System

CONTROL:

The appropriate portions of the liquid radwaste treatment system shall be used to reduce the radioactive materials in liquid wastes prior to their discharge when the projected doses due to the liquid effluent from the unit to unrestricted areas would exceed 0.06 mrem to the total body or 0.2 mrem to any organ in any calendar month.

APPLICABILITY: At all times

1.

2.

3.

ACTION:

a.

With radioactive liquid waste being discharged without treatment and in excess of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which includes the following information:

> Explanation of why liquid radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for inoperability,

| Number

- Action(s) taken to restore the inoperable equipment to OPERABLE status, and,
 - A summary description of action(s) taken to prevent a recurrence.

BASES

The requirement that the appropriate portions of this system (shared with TMI-1) be used, when specified, provides assurance that the releases of radioactive materials in liquid effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The intent of Section II.D. is to reduce effluents to as low as is reasonably achievable in a cost effective manner. This control satisfies this intent by establishing a dose limit which is a small fraction (25%) of Section II.A of Appendix I, 10 CFR Part 50 dose requirements. This margin, a factor of 4, constitutes a reasonable reduction.

Offsite Dose Calculation Manual (ODCM)		25
Title		Revision No.
· ·	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

2.2.2 Gaseous Effluent Controls

2.2.2.1 Gaseous Effluent Dose Rate

CONTROL:

The dose rate due to radioactive materials released in gaseous effluent from the site shall be limited to the following:

- a. For noble gases: less than or equal to 500 mrem/yr to the total body and less than or equal to 3000 mrem/yr to the skin, and
- b. For tritium and all radionuclides in particulate form with half lives greater than 8 days: less than or equal to 1500 mrem/yr to any organ.

APPLICABILITY: At all times.

ACTION:

With the release rate(s) exceeding the above limits, immediately decrease the release rate to comply with the above limit(s).

BASES

The control provides reasonable assurance that the annual dose at the SITE BOUNDARY from gaseous effluent from all units on the site will be within the annual dose limits of 10 CFR Part 20 for unrestricted areas. At the same time, these Controls permit flexibility under unusual conditions, which may temporarily result in higher than the design objective levels, but still within the dose limits specified in 10 CFR 20 and within the design objectives of Appendix I to 10 CFR 50. It is expected that using this flexibility under unusual conditions, and by exerting every effort to keep levels of radioactive material in gaseous wastes as low as practicable, the annual releases will not exceed a small fraction of the annual dose limits specified in 10 CFR 20 and will not result in doses which exceed the design objectives of Appendix 1 to 10 CFR 50, which were endorsed as limits for the cleanup of TMI-2 by the NRC's Statement of Policy of April 27, 1981. These gaseous release rates provide reasonable assurance that radioactive material discharged in gaseous effluent will not result in the exposure of a MEMBER OF THE PUBLIC in an unrestricted area, either within or outside the SITE BOUNDARY, to annual average concentrations exceeding the values specified in Appendix B, Table 2 of 10 CFR Part 20. For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of the MEMBER OF THE PUBLIC will be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the exclusion area boundary.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Titte		Revision No.
Offeite Dose Calculation Manual (ODCM)		25

The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrem/year to the total body or to less than or equal to 3000 mrem/year to the skin. The absence of iodine ensures that the corresponding thyroid dose rate above background to a child via the inhalation pathway is less than or equal to 1500 mrem/yr (NUREG 1301), thus there is no need to specify dose rate limits for these nuclides.

2.2.2.2

Gaseous Effluents Dose-Noble Gases

CONTROL:

The air dose due to noble gases released in gaseous effluents from the unit to areas at and beyond the SITE BOUNDARY shall be limited to the following:

- a. During any calendar quarter: less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation and,
- b. During any calendar year. less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

APPLICABILITY: At all times.

ACTION:

a.

With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

BASES

This control applies to the release of radioactive materials in gaseous effluents from TMI-2.

This control and associated action is provided to implement the requirements of Section II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.B of Appendix I. The ACTION statements provide flexibility under unusual conditions and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable." The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through

Number

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01 Revision No.

25

Offsite Dose Calculation Manual (ODCM)

Title

the appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Release of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guides 1.109 and 1.111.

2.2.2.3 Dose - Iodine-131, Iodine-133, Tritium, and Radionuclides In Particulate Form

CONTROL:

The dose to a MEMBER OF THE PUBLIC from Tritium and all radionuclides in particulate form with half lives greater than 8 days, in gaseous effluents released from the unit to areas at and beyond the SITE BOUNDARY shall be limited to the following:

- a. During any calendar quarter: less than or equal to 7.5 mrem to any organ, and
- b. During any calendar year: less than or equal to 15 mrem to any organ.

APPLICABILITY: At all times.

ACTION:

With the calculated dose from the release of Tritium and radionuclides in particulate form with half lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which identifies the cause(s) for exceeding the limit and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

Number

Revision No.

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01

25

Title

Offsite Dose Calculation Manual (ODCM)

BASES

This control applies to the release of radioactive materials in gaseous effluents from TMI-2.

This control and associated action is provided to implement the requirements of Section II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Controls are the guides set forth in Section II.C of Appendix I. The ACTION statement provides flexibility during unusual conditions and at the same time implements the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." The ODCM calculational methods specified in the surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October, 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Revision 1, July, 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate controls for iodine-131, iodine-133. tritium and radionuclides in particulate form with half lives greater than 8 days are dependent upon the existing radionuclide pathways to man, in areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of these calculations were: 1) individual inhalation of airborne radionuclides, 2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, 3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man, and 4) deposition on the ground with subsequent exposure of man. The absence of iodines at the site eliminates the need to specify dose limits for these nuclides.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offeite Dose Calculation Manual (ODCM)		25

2.2.2.4 Ventilation Exhaust Treatment System

CONTROL

The VENTILATION EXHAUST TREATMENT SYSTEM shall be OPERABLE. The appropriate portions of the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the monthly projected doses due to gaseous effluent releases from the site would exceed 0.3 mrem to any organ.

APPLICABILITY: At all times.

ACTION:

a.

With the VENTILATION EXHAUST TREATMENT SYSTEM inoperable for more than a month or with gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which includes the following information:

- Identification of the inoperable equipment or subsystems and the reason for inoperability,
- 2. Action(s) taken to restore the inoperable equipment to OPERABLE status, and
- A summary description of action(s) taken to prevent a recurrence.

BASES

The use of the VENTILATION EXHAUST TREATMENT SYSTEM ensures that gaseous effluents are treated as appropriate prior to release to the environment. The appropriate portions of this system provide reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." This control implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section 11.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the guide set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

Number

Revision No.

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01

Title

Offsite Dose Calculation Manual (ODCM)

25

2.2.3 Total Radioactive Effluent Controls

2.2.3.1 Total Dose

CONTROL:

The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC, due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the total body or any organ except the thyroid, which shall be limited to less than or equal to 75 mrem.

APPLICABILITY: At all times.

ACTION:

With the calculated dose from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of Controls 2.2.1.2.a, 2.2.1.2.b, 2.2.2.2.a, 2.2.2.2.b, 2.2.2.3.a, or, 2.2.2.3.b, calculations should be made including direct radiation contributions from the unit and from outside storage tanks to determine whether the above limits of Control 2.2.3.1 have been exceeded. If such is the case, prepare and submit to the NRC Region I Administrator within 30 days, a Special Report which defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in 10 CFR Part 20.2203(b), shall include an analysis which estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceed the above limits, and if the release condition resulting in violation of 40 CFR 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR 190. Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Man	nual (ODCM)	25

BASES

This control is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR Part 20.1301(d). This control requires the preparation and submittal of a Special Report whenever the calculated doses from plant generated radioactive effluents and direct radiation exceed 25 mrem to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrem. For sites containing up to 4 reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the reactor units and outside storage tanks are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the member of the public from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered. If the dose to any member of the public is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR Part 190.11 and 10 CFR Part 20.2203(b), is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Controls 2.2.1.1 and 2.2.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

					Number			
				TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01			
Title				· · · · · · · · · · · · · · · · · · ·	Revision No.			
Offsi	te Dos	e Calcul	ation Ma	anual (ODCM)	25			
3.0	<u>surv</u>	EILLANCI	<u>ES</u>					
		3.0.1	individua The Surv	nce Requirements shall be applicable during the cond I Controls unless otherwise stated in an individual Su veillance Requirements shall be performed to demons BILITY requirements of the Control.	rveillance Requirement.			
		3.0.2		rveillance Requirement shall be performed within the n allowable extension not to exceed 25% of the surve				
		3.0.3	3.0.2 sha time limit Surveilla delayed t outage ti	o perform a Surveillance Requirement within the time all constitute non-compliance with OPERABILITY requires to of the ACTION requirements are applicable at the ti- nce Requirement has not been performed. The ACTI for up to 24 hours to permit completion of the surveillar me limits of the ACTION requirements are less than 2 nents do not have to be performed on inoperable equirements and the time to be performed on time to be performed on the time time to be performed on the time time to be performed on time time to be performed on time time to be performed on time to b	irements for a Control. The me it is identified that a ON requirements may be ance when the allowable 4 hours. Surveillance			
	3.1	Radioact	ive Effluen	t Instrumentation				
	·	3.1.1	Radioact	Radioactive Liquid Effluent Instrumentation				
			Surveilla	nce Requirements				
				ive Liquid Effluent Instrumentation is common betwee nces for this instrumentation are specified in ODCM P				
		3.1.2	Radioact	ive Gaseous Process and Effluent Monitoring Instrum	entation			
			SURVEIL	LANCE REQUIREMENTS				
			3.1.2.1	Each radioactive gaseous process or effluent mon channel shall be demonstrated OPERABLE by per CHECK, SOURCE CHECK, CHANNEL CALIBRA TEST operations at the frequencies shown in Tabl	rformance of the CHANNEL TION, and CHANNEL e 3.1-2.			
		•						
					· · · ·			
			•.					

6610-PLN-4200.01 Revision 25

Table 3.1-2

Radioactive Gaseous Process and Effluent Monitoring Instrumentation Surveillance Requirements

		INSTRUMENT	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	APPLICABILITY
1.	Contai	nment Purge Monitoring System				
	a.	Noble Gas Activity Monitor (2HP-R-225)	D	E	, M	NOTE 1
	b.	Particulate Sampler (2HP-R-225)	w	N/A	N/A	NOTE 1
2.	Station	Ventilation Monitoring System				
	a .	Noble Gas Activity Monitor (2HP-R-219) and (2HP-R-219A)	D	E	М	NOTE 1
	b.	Particulate Sampler (2HP-R-219) and (2HP-R-219A)	w	N/A	N/A	NOTE 1

NOTES:

1. During operation of the monitored system.

					,	
						Number
					TMI - Unit 1	
		····	<u> </u>	Rad	diological Controls Procedure	6610-PLN-4200.01
Title			·			Revision No.
Offsi	te Dos	e Calcu	lation Ma	anual (ODC	CM)	25
	3.2	Radioac	tive Efflue	nts		
		3.2.1	Liquid E	ffluents		
			SURVE	LLANCE REG	UIREMENTS	
			3.2.1.1	Concentra	tion	
				3.2.1.1.1	The radioactivity content of each bate shall be determined by sampling and Table 3.2-1. The results of analyses calculational methods in the ODCM to concentration at the point of release in limits of Control 2.2.1.1.	analysis in accordance with shall be used with the p assure that the
				3.2.1.1.2	Analysis of samples composited from performed in accordance with Table 3 analysis shall be used with the calcul ODCM to assure that the concentration were maintained within the limits of C	3.2-1. The results of the ational methods in the point of release
				3.2.1.1.3	The radioactivity concentration of liqu continuous release points shall be de analysis of samples in accordance wi of the analysis shall be used with the ODCM to assure that the concentration maintained within the limits of Contro	termined by collection and th Table 3.2-1. The results calculational methods of the on at the point of release is
			3.2.1.2	Dose Calc	ulations	
	- 	·		3.2.1.2.1	Cumulative dose contributions from li determined in accordance with the O Manual (ODCM) at least once a mon	fisite Dose Calculation
			3.2.1.3	Dose Proje	ections	

Title

Doses due to liquid releases shall be projected at least once a month, in accordance with the ODCM. 3.2.1.3.1

	:	Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation Ma	nual (ODCM)	25

TABLE 3.2-1

Radioactive Liquid Waste Sampling and Analysis (4, 5)

A. Liquid Releases

Sampling Frequency	Type of Activity Analysis	Detectable Concentration (3)
Р	Individual Gamma	5E-7 μCi/ml (2)
Each Batch	H-3	1E-5 μCi/mi
Q	Gross Alpha	1E-7 μCi/ml
Quarterly Composite (1)	Sr-90	5E-8 μCi/ml

NOTES:

- (1) A COMPOSITE SAMPLE is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged from the plant.
- (2) For certain mixtures of gamma emitters, it may not be possible to measure radionuclides in concentrations near this sensitivity limit when other nuclides are present in the sample in much greater concentrations. Under these circumstances, it will be more appropriate to calculate the concentrations of such radionuclides using measured ratios with those radionuclides which are routinely identified and measured.
- (3) The detectability limits for radioactivity analysis are based on the technical feasibility and on the potential significance in the environment of the quantities released. For some nuclides, lower detection limits may be readily achievable and when nuclides are measured below the stated limits, they should also be reported.
- (4) The results of these analyses should be used as the basis for recording and reporting the quantities of radioactive material released in liquid effluents during the sampling period. In estimating releases for a period when analyses were not performed, the average of the two adjacent data points spanning this period should be used. Such estimates should be included in the effluent records and reports; however, they should be clearly identified as estimates, and the method used to obtain these data should be described.

⁽⁵⁾ Deviations from the sampling/analysis regime will be noted in the report specified in ODCM Part IV.

				Number
		Rac	TMI - Unit 1 liological Controls Procedure	6610-PLN-4200.01
itle				Revision No.
Offsite Dose Calcu	lation Ma	nual (ODC	M)	25
3.2.2	Gaseous	Effluents		
	SURVEIL	LANCE REQ	UIREMENTS	
	3.2.2.1	Dose Rate	25	
	• •	3.2.2.1.1	The dose rate due to noble gases determined to be within the limits of accordance with the methods and	of Control 2.2.2.1.a in
		3.2.2.1.2	The dose rate of radioactive mater gaseous effluents shall be determi Control 2.2.2.1.b in accordance wit the ODCM by obtaining representa analyses in accordance with the sa specified in Table 3.2-2.	ned to be within the limits of th methods and procedures of ative samples and performing
	3.2.2.2	Dose, Nob	le Gas	
		3.2.2.2.1	Cumulative dose contributions from current calendar quarter and current determined in accordance with the CALCULATION MANUAL (ODCM)	nt calendar year shall be OFFSITE DOSE
	3.2.2.3	Dose, Triti	um and Radionuclides In Particulate	Form
		3.2.2.3.1	Cumulative dose contributions from particulate form with half lives great calendar quarter and current calen accordance with the OFFSITE DO (ODCM) monthly.	ter than 8 days for the current dar year shall be determined in
	3.2.2.4	Ventilation	Exhaust Treatment	·
		3.2.2.4.1	Doses due to gaseous releases from monthly in accordance with the OD	
		· · ·		
•				· · · ·
				• • •
	·			· .

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.

Offsite Dose Calculation Manual (ODCM)

TABLE 3.2-2

25

Radioactive Gaseous Waste Sampling and Analysis (3)

SAMPLE POINT	SAMPLE TYPE	SAMPLING FREQUENCY	TYPE OF ACTIVITY ANALYSIS	DETECTABLE CONCENTRATION(1)(a)
Reactor Building Purge Releases		P	H-3	1E-6 μÇi/cc
	Gas	Each Purge	Individual Gamma Emitters	1E-4 μCi/cc (2)
Unit Exhaust Vent Release Points	· .	М	H-3	1E-6 μ Çi/cc
· · ·	Gas	Monthly	Individual Gamma Emitters	1E-4 μCi/cc (2)
		W Weekly	Individual (b) Gamma Emitters	1E-10 μCi/cc (2)
	Particulates	M Monthly Composite	Sr-90	1E-11 µCi/cc
		M Monthly Composite	Gross Alpha Emitters	1E-11 μCi/cc
Reactor Building Breather			Indv. Gamma Emitters (b)	1E-10 μCi/cc (2)
	Particulates	Semi-Annually	Sr-90	1E-11 μCi/cc
	L		Gross Alpha Emitters	1E-11 μCi/cc

- (1) The above detectability limits are based on technical feasibility and on the potential significance in the environment of the quantities released. For some nuclides, lower detection limits may be readily achievable and when nuclides are measured below the stated limits, they should also be reported.
- (2) For certain mixtures of gamma emitters, it may be possible to measure radionuclides at levels near their sensitivity limits when other nuclides are present in the sample at much higher levels. Under these circumstances, it will be more appropriate to calculate the levels of such radionuclides using observed ratios in the gaseous component in the reactor coolant for those radionuclides which are measurable.
- (3) Deviations from the sampling and analysis regime will be noted in the report specified in ODCM Part IV.

TMI - Unit 1 Radiological Controls Procedure 6610-PLN-4200.01 Revision No. 25

TABLE 3.2-2

Number

Radioactive Gaseous Waste Sampling and Analysis Program

Table Notation

a. The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability with 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \text{ s}_{\beta}}{\text{E x V x } 2.22 \text{ x } 10^6 \text{ x Y x } \exp(-\lambda \Delta t)}$$

Where

LLD is the lower limit of detection as defined above (as picocurie per unit mass or volume).

 S_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute).

E is the counting efficiency (as counts per transformation),

V is the sample size (in units of mass or volume),

2.22 is the number of transformations per minute per picocurie,

Y is the fractional radiochemical yield (when applicable),

 $\boldsymbol{\lambda}$ is the radioactive decay constant for the particular radionuclide, and

 Δt is the elapsed time between midpoint of sample collection and time of counting (for plant effluents, not environmental samples),

The value of S_b used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance. In calculating the LLD for a radionuclide determined by gamma-ray spectrometry, the background shall include the typical contributions of other radionuclides normally present in the samples. Typical values of E, V, Y, and Δt shall be used in the calculation. The background count rate is calculated from the background counts that are determined to be with ± one FWHM (Full-Width-at-Half-Maximum) energy band about the energy of the gamma-ray peak used for the quantitative analysis for that radionuclide.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

TABLE 3.2-2

b. The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall also be identified and reported. Nuclides which are below the LLD for the analyses shall be reported as "less than" the nuclide's LLD and shall not be reported as being present at the LLD level for that nuclide. The "less than" values shall not be used in the required dose calculations.

Number

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01 Revision No.

25

Offsite Dose Calculation Manual (ODCM)

Title

- 3.2.3 Total Radioactive Effluents
 - 3.2.3.1 Dose Calculation
 - 3.2.3.1.1 Cumulative annual dose contributions from liquid and gaseous effluents shall be determined in accordance with Surveillances 3.2.1.2.1, 3.2.2.2.1, and 3.2.2.3.1, including direct radiation contributions from the Unit and from outside storage tanks, and in accordance with the methodology contained in the ODCM.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	· · · · · · · · · · · · · · · · · · ·	Revision No.
Offsite Dose Calculation Manual (ODCM)		25

4.0 PART II REFERENCES

- 4.1 NUREG-0683, "Final Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2," March 1981, and its supplements.
- 4.2 TMI-2 PDMS Technical Specifications, attached to Facility License No. DPR-73
- 4.3 Title 10, Code of Federal Regulations, "Energy"
- 4.4 "Statement of Policy Relative to the NRC Programmatic Environmental Impact Statement on the Cleanup of Three Mile Island Unit 2," dated April 27, 1981
- 4.5 Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977
- 4.6 DOE/TIC-27601, Atmospheric Science and Power Reduction
- 4.7 TMI-1 Technical Specifications, attached to Facility Operating License No. DPR-50
- 4.8 PDMS SAR

	1		Number
		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title			Revision No.
Offsite Dose C	alculation Man	ual (ODCM)	25

PART III

EFFLUENT DATA AND CALCULATIONAL METHODOLOGIES

	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	· · · · · · · · · · · · · · · · · · ·	Revision No.
Offsite Dose Calculation	n Manual (ODCM)	25

1.0 LIQUID EFFLUENT MONITORS

1.1 TMI-1 and TMI-2 Liquid Radiation Monitor Set Points

The liquid effluent off-line monitors are set such that the concentration(s) of radionuclides in the liquid effluents will not exceed ten times the concentrations specified in 10 CFR 20, Appendix B Table 2, Col 2. Table 1.1 lists the Liquid Effluent Release Points and their parameters; Figure 1.1 provides a Liquid Release Pathway Diagram.

To meet the above limit, the alarm/trip set points for liquid effluent monitors and flow measuring devices are set in accordance with the following equation:

$$\frac{c * f}{F + f} \leq C$$

(eq 1.1)

| Number

where:

C = ten times the effluent concentration of 10 CFR 20 for the site, in μ Ci/ml.

- c = the set point, in μCi/ml, of the liquid effluent monitor measuring the radioactivity concentration in the effluent line prior to dilution and release. The set point is inversely proportional to the maximum volumetric flow of the effluent line and proportional to the minimal volumetric flow of the dilution stream plus the effluent stream. The alert set point value is set to ensure that advance warning occurs prior to exceeding any limits. The high alarm set point value is such that if it were exceeded, it would result in concentrations exceeding ten times the 10 CFR 20 concentrations for the unrestricted area.
- f = flow set point as measured at the radiation monitor location, in volume per unit time, but in the same units as F below.

F = flow rate of dilution water measured prior to the release point, in volume per unit time.

The set point concentration is reduced such that concentration contributions from multiple release points would not combine to exceed ten times 10 CFR 20 concentrations. The set point concentration is converted to set point scale units using appropriate radiation monitor calibration factors.

This section of the ODCM is implemented by the Radiation Monitor System Set Points procedure and, for batch releases, the Releasing Radioactive Liquid Waste procedure.

Number	

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01 Revision No.

25

Offsite Dose Calculation Manual (ODCM)

Title

1.2 TMI Liquid Effluent Release Points and Liquid Radiation Monitor Data

TMI-1 has two required liquid radiation monitors. These are RM-L6 and RM-L12. These liquid release point radiation monitors and sample points are shown in Table 1.1. (The TMI outfall radiation monitor, RM-L7, is also listed for information only.)

TMI-2 does not have any required liquid radiation monitors, but does utilize RM-L12, and RM-L7 for release of liquid waste.

1.2.1 <u>RM-L6</u>

RM-L6 is an off-line system, monitoring radioactive batch discharges from the TMI-1 liquid radwaste system (see Figure 1.1). These batch releases are sampled and analyzed per site procedures prior to release. The release rate is based on releasing one of two Waste Evaporator Condensate Storage Tanks (WECST) at a flow which will add less than 10%, of ten times the 10 CFR 20 concentrations [20% for H-3] to radionuclide concentrations in the unrestricted area, including conservative default values for Sr-89, Sr-90, and Fe-55.

The release flow rate used is the most restrictive of two flow rates calculated for each liquid batch release, per the approved plant procedure.

Two Dilution Factors (DF) are calculated to ultimately calculate the batch release flow rate. These two DF's are calculated to insure each radionuclide released to the unrestricted area is less than 10 percent of ten times the 10CFR20 radionuclide concentrations, (20% for H-3), and to ensure each liquid batch release boron concentration to the river will not exceed 0.7 ppm.

The maximum release flow rate is then calculated by dividing the most restrictive (largest) DF into 90 percent of the current dilution flow rate of the Mechanical Draft Cooling Tower (MDCT). This conservative flow rate is then multiplied by 0.9 for the allowable flow rate,

Calculation of the 10CFR20 concentration DF:

 $DF_1 = \Sigma_i (SA_i) \div (10\% [20\% \text{ for H-3}] \text{ of ten times the 10CFR20 concentration})$

SA = Specific Activity of each identified radionuclide

Calculation of Boron DF:

 $DF_2 = Actual Tank Boron Concentration \div 0.7.$

Maximum release flow rate calculation:

Max Flow = [(MDCT flow gpm * 0.9) + (Most Restrictive DF)] * 0.9

The dilution flow rate used is the current flow rate at the site. The minimum dilution flow rate is 5000 gpm per the TMI-1 FSAR. This ensures this batch release will meet the following equation.

$$\Sigma(C_{i}/X_{i}) + (C_{H-3}/2X_{H-3}) \leq 0.1,$$

(eq 1.2)

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	· · · · · · · · · · · · · · · · · · ·	Revision No.
Offsite Dose Calculation Manual (ODCM)		25

where:

Ci = diluted concentration of the ith radionuclide, other than H-3

X_i = Ten times the concentration for that radionuclide in the unrestricted area (10 CFR 20, App. B, Table 2, Col. 2). A value of 3E-3 μCi/ml for dissolved and entrained noble gases shall be used.

C_{H-3} =diluted concentration of H-3

X_{H-3} =Ten times the concentration for H-3 in the restricted area (10 CFR 20, App. B, Table 2, Col. 2).

The set points for RM-L6 are based on the maximum release rate (30 gpm), a minimum dilution flow (5000 gpm), and 25% of ten times the 10CFR20 concentration for Cs-137, which is the most limiting radionuclide at a concentration of 1.0E-5 uCi/mi. These inputs are used in Equation 1.1 to determine the RM-L-6 High Alarm setpoint for all radionuclides being released. A high alarm on RM-L-6 will close valve WDL-V-257 and terminate any WECST releases to the environment.

1.2.2 <u>RM-L12</u>

RM-L12 is an off-line system, monitoring periodic combined releases from the industrial Waste Treatment System/Industrial Waste Filtration System (IWTS/IWFS). The input to IWTS/IWFS originates in TMI-2 sumps, (see Figures 1.1 and 1.2) and the TMI-1 Turbine Building sump (see Figure 1.1). The set points are based on the maximum release rate from both IWTS and IWFS simultaneously, (see Figure 1.1) a minimum dilution flow rate, and 50% of ten times the 10CFR20 concentration for Cs-137, which is the most limiting radionuclide at a concentration of 1E-5 μ Ci/ml. These inputs are used in equation 1.1 to determine the RM-L12 High Alarm set point for all radionuclides being released. A high alarm on RM-L12 will close IWTS and IWFS release valves and trip release pumps to stop the release.

1:2.3 <u>RM-L10</u>

RM-L10 was a Nal detector submerged in the TMI-1 Turbine Building Sump. This detector has been removed from service.

1.2.4 RM-L7

RM-L7 is not an ODCM required liquid radiation monitor. RM-L7 is an off-line system, monitoring the TMI outfall to the Susquehanna River (see Figures 1.1 and 1.2). This monitor is the final radiation monitor for TMI-1 and TMI-2 normal liquid effluent releases.

1.3 Control of Liquid Releases

TMI liquid effluent releases are controlled to less than ten times the 10CFR20 concentrations by limiting the percentage of this limit allowable from the two TMI liquid release points. RM-L6 and effluent sampling limit batch releases to less than or equal to 25% for all radionuclides, and RM-L12 and effluent sampling limit releases from TMI-1 and TMI-2 to less than or equal to 50% for Cs-137.

These radiation monitor set points also include built in meter error factors to further ensure that TMI liquid effluent releases are less than ten times the 10CFR20 concentrations to the environment.

		Number
	TMI ~ Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

The radioactivity content of each batch of radioactive liquid waste is determined prior to release by sampling and analysis in accordance with ODCM Part I Table 3.2-1 or ODCM Part II, Table 3.2-1. The results of analyses are used with the calculational methods in Section 1.1, to assure that the concentration at the point of release is maintained within the ODCM Part I Control 2.2.1.1, and ODCM Part II Control 2.2.1.1.

Post-release analysis of samples composited from batch releases are performed in accordance with ODCM Part I Table 3.2-1 or ODCM Part II Table 3.2-1. The results of the previous post-release analysis shall be used with the calculational methods in the ODCM to assure that the concentrations at the point of release were maintained within the ODCM Part I Control 2.2.1.1, and ODCM Part II Control 2.2.1.1.

The radioactivity concentration of liquids discharged from continuous release points are determined by collection and analysis of samples in accordance with ODCM Part I Table 3.2-1, or ODCM Part II Table 3.2-1. The results of the analysis are used with the calculational methods of the ODCM to assure that the concentration at the point of release is maintained within the ODCM Part I Control 2.2.1.1, and ODCM Part II Control 2.2.1.1.

		Number	
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01	
Title		Revision No.	
Offsite Dose Calculation Manual (ODCM)		25	

TABLE 1.1

TMI Liquid Release Point and Liquid Radiation Monitor Data

LIQUID RADIATION MONITOR (DETECTOR)	LOCATION	LIQUID RELEASE POINT (Maximum Volume)	DISCHARGE FLOW RECORDER	RELEASE TERMINATION INTERLOCK (YES/NO) VALVES
RM-L6 (Nal)	281' Elevation TMI-1 Auxiliary Bldg	WECST Batch Releases (8000 gal.)	FT-84	YÉS WDL-V257
RM-L7 (Na!)	South end of TMI-1 MDCT	Station Discharge TMI-1 and TMI-2,	FT-146	YES WDL-V257 *WDL-R-1311
RM-L12 (Nal)	IWFS Building NW Corner	IWTS/IWFS Continuous Releases (300,000/ 80,000 gal.)	FT-342/ FT-373	YES IW-V73, IW-P16,17,18 IW-V279, IW-P29,30

WDL-R-1311 has been flanged off as a TMI-2 liquid outfall. RM-L7 is not an ODCM required liquid radiation monitor.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200
Title		Revision No.

0.01

25

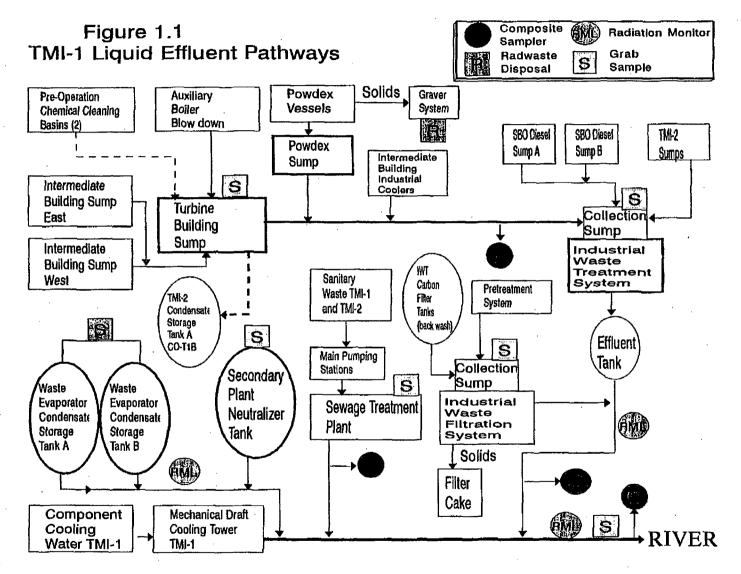
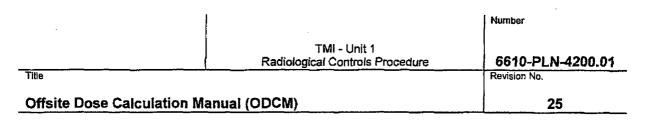
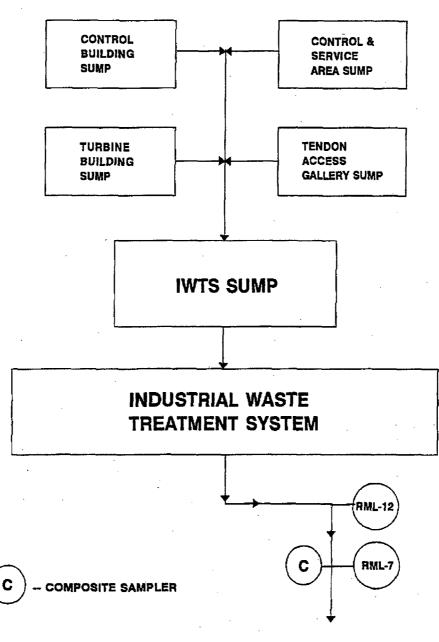

Offsite Dose Calculation Manual (ODCM)

TABLE 1.2


Sump	Total Capacity Gallons	Gallons per Inch
Turbine Building Sump	1346	22.43
Circulating Water Pump House Sump	572	10.59
Control Building Area Sump	718	9.96
Tendon Access Galley Sump	538	9.96
Control to Service Building Sump	1346	22.43
Contaminated Drain Tank Room Sump	135	3.80
Chlorinator House Sump		
Water Treatment Sump**	1615	22.43
Air Intake Tunnel Normal Sump	700	
Air Intake Tunnel Emergency Sump	100000	766.00
Condensate Polisher Sump*	2617	62.31
Sludge Collection Sump**	1106	26.33
Heater Drain Sump		
Solid Waste Staging Facility Sump	1476	24.00
Auxiliary Building Sump	10102	202.00
Decay Heat Vault Sump	479	10.00
Building Spray Vault Sump	479	10.00

TMI-2 Sump Capacities


Condensate Polisher Sump is deactivated and in PDMS condition. The Water Treatment and Sludge Collection Sumps will be deactivated for PDMS.

95

FIGURE 1.2

TMI-2 Liquid Effluent Pathways

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

2.0 LIQUID EFFLUENT DOSE ASSESSMENT

2.1 Liquid Effluents - 10 CFR 50 Appendix I

The dose from liquid effluents results from the consumption of fish and drinking water. The location of the nearest potable water intake is PP&L Brunner Island Steam Electric Station located downstream of TMI. The use of the flow of the Susquehanna River as the dilution flow is justified based on the complete mixing in the river prior to the first potable water supply, adequately demonstrated by flume tracer die studies and additional liquid effluent release studies conducted using actual TMI-1 tritium releases. Other pathways contribute negligibly at Three Mile Island. The dose contribution from all radionuclides in liquid effluents released to the unrestricted area is calculated using the following expression:

Dose
$$j = \frac{\Sigma}{i} \quad (\Delta f) \times (C_i) \times \left[\left(AW_{ij} \times \frac{f}{FR} \right) + \left(AF_{ij} \times \frac{f}{FD} \times \frac{1}{DF} \right) \right] \quad (eq 2.1)$$

where:

- Dose j = the cumulative dose commitment to the total body or any organ, j, from the liquid effluents for the total time period, in mrem.
 - Δt = the length of the time period of actual releases, over which C_i and f are averaged for all liquid releases, in hours.
 - C_{l} = the average concentration of radionuclide, i, in undiluted liquid effluent during time period Δt from any liquid release, in $\mu Ci/ml$.

	NOTE
For Fe-55, Sr-89, Sr-90, prior to concentration values will be used similar past plant conditions. LL calculations.	d in the initial dose calculation based on

- f = undiluted liquid waste flow, in gpm.
- FD = plant dilution water flowrate during the period of release, in gpm
- FR = actual river flowrate during the period of release or average river flowrate for the month the release is occurring, in gpm.
- DF = dilution factor as a result of mixing effects in the near field of the discharge structure of 0.2 (NUREG 0133) or taken to be 5 based on the inverse of 0.2.

AWij and AFij =

the site-related ingestion dose commitment factor to the total body or any organ, j, for each identified principle gamma and beta emitter, in mrem/hr per μ Ci/ml. AW is the factor for the water pathway and AF is the factor for the fish pathway.

	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	n Manual (ODCM)	25

Values for AWij are determined by the following equation:

$$AW_{ii} = (1.14E5) \times (U_w) \times (DF_{ii})$$

(eq 2.2)

| Numbe

where:

$1.14E5 = (1.0E6 \text{ pCi/}\mu\text{Ci}) \times (1.0E3 \text{ ml/kg}) + (8760 \text{ hr/yr})$

Uw = Water consumption rate for adult is 730 kg/yr (Reg. Guide 1.109, Rev. 1).

DFij = ingestion dose conversion factor for radionuclide, i, for adults total body and for "worst case" organ, j, in mrem/pCi, from Table 2.1 (Reg. Guide 1.109)

Values for AF_{ii} are determined by the following equation:

 $AFij = (1.14E5) \times (Uf) \times (DFij) \times (BFi)$ (eq 2.2.2)

where:

- 1.14E5 = defined above
 - Uf = adult fish consumption, assumed to be 21 kg/yr (Reg. Guide 1.109, Rev. 1).
 - DFij = ingestion dose conversion factor for radionuclide, i, for adult total body and for "worst case" organ, j, in mrem/pCi, from Table 2.1 (Reg. Guide 1.109, Rev. 1).
 - BFi = Bioaccumulation factor for radionuclide, i, in fish, in pCi/kg per pCi/L from Table 2.2 (Reg. Guide 1.109, Rev. 1).

2.2 TMI Liquid Radwaste System Dose Calcs Once/Month

ODCM Part I Control 2.2.1.3 and TMI-2 PDMS Tech Spec Section 6.7.4.a.6 requires that appropriate portions of the liquid radwaste treatment system shall be used to reduce the radioactive materials in liquid wastes prior to their discharge when the monthly projected doses due to the liquid effluent releases from each unit to unrestricted areas would exceed 0.06 mrem to the total body or 0.2 mrem to any organ in any calendar month. The following calculational method is provided for performing this dose projection.

At least once per month, the total dose from all liquid releases for the quarter-to-date will be divided by the number of days into the quarter and multiplied by 31. Also, this dose projection shall include the estimated dose due to any anticipated unusual releases during the period for which the projection is made. If this projected dose exceeds 0.06 mrem total body or 0.2 mrem any organ, appropriate portions of the Liquid Radwaste Treatment System, as defined in Section 3.1, shall be used to reduce radioactivity levels prior to release.

At the discretion of Radiological Engineering, time periods other than the current quarter-to-date may be used to project doses if the dose per day in the current quarter-to-date is not believed to be representative of the dose per day projected for the next month.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Ma	anual (ODCM)	25

2.3 Alternative Liquid Dose Calculational Methodology

As an alternative, models in, or based upon, those presented in Regulatory Guide 1.109 (Rev. 1) may be used to make a comprehensive dose assessment. Default parameter values from Reg. Guide 1.109 (Rev. 1) and/or actual site specific data are used where applicable.

As an alternative dose calculational methodology TMI calculates doses using SEEDS (simplified environmental effluent dosimetry system).

The onsite and SEEDS calculational models use actual liquid release data with actual monthly Susquehanna River flow data to assess the dispersion of effluents in the river.

TMI - Unit 1 Radiological Controls Procedure Revision No.

Offsite Dose Calculation Manual (ODCM)

TABLE 2.1

25

Liquid Dose Conversion Factors (DCF): DFij

Page 1 of 3

Ingestion Dose Factors for Adults* (MREM Per PCI ingested)

NUC		BONE	LIVER	T. BODY	THYROID	KIDNEY	LUNG	GI-LLI
H	3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07
C	14	2.84E-06	5.68E-07	5.68E-07	5.68E-07	5.68E-07	5.68E-07	5.68E-07
NA	24	1.70E-06						
CR	51	NO DATA	NO DATA	2.66E-09	1.59E-09	5.86E-10	3.53E-09	6.69E-07
MN	54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05
MN	56	NO DATA	1.15E-07	2.04E-08	NO DATA	1.46E-07	NO DATA	3.67E-06
FE	55	2.75E-06	1.90E-06	4.43E-07	NO DATA	NO DATA	1.06E-06	1.09E-06
FE	59	4.34E-06	1.02E-05	3.91E-D6	NO DATA	NO DATA	2.85E-06	3.40E-05
CO	58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05
CO	60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05
NI	63	1.30E-04	9.01E-06	4.36E-06	NO DATA	NO DATA	NO DATA	1.88E-06
NI	65	5.28E-07	6.86E-08	3.13E-08	NO DATA	NO DATA	NO DATA	1.74E-06
CU	64	NO DATA	8.33E-08	3.91E-08	NO DATA	2.10E-07	NO DATA	7.10E-06
ZN	65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06
ZN	69	1.03E-08	1.97E-08	1.37E-09	NO DATA	1.28E-08	NO DATA	2.96E-09
BR	83	NO DATA	NO DATA	4.02E-08	NO DATA	NO DATA	NO DATA	5.79E-08
BR	84	NO DATA	NO DATA	5.21E-08	NO DATA	NO DATA	NO DATA	4.09E-13
BR	85	NO DATA	NO DATA	2.14E-09	NO DATA	NO DATA	NO DATA	LT E-24
RB	86	NO DATA	2.11E-05	9.83E-06	NO DATA	NO DATA	NO DATA	4.16E-06
RB	88	NO DATA	6.05E-08	3.21E-08	NO DATA	NO DATA	NO DATA	8.36E-19
RB	89	NO DATA	4.01E-08	2.82E-08	NO DATA	NO DATA	NO DATA	2.33E-21
SR	89	3.08E-04	NO DATA	8.84E-06	NO DATA	NO DATA	NO DATA	4.94E-05
SR	90	7.58E-03	NO DATA	1.86E-03	NO DATA	NO DATA	NO DATA	2.19E-04
SR	91	5.67E-06	NO DATA	2.29E-07	NO DATA	NO DATA	NO DATA	2.70E-05
SR	92	2.15E-06	NO DATA	9.30E-08	NO DATA	NO DATA	NO DATA	4.26E-05
Y	90	9.62E-09	NO DATA	2.58E-10	NO DATA	NO DATA	NO DATA	1.02E-04

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculat	tion Manual (ODCM)	25

TABLE 2.1

Liquid Dose Conversion Factors (DCF): DFij

Page 2 of 3

Ingestion Dose Factors for Adults* (MREM Per PCI Ingested)

NUC	LIDE	BONE	LIVER	T. BODY	THYROID	KIDNEY	LUNG	<u>GI-LLI</u>
Y	91M	9.09E-11	NO DATA	3.52E-12	NO DATA	NO DATA	NO DATA	2.67E-10
Y	91	1.41E-07	NO DATA	3.77E-09	NO DATA	NO DATA	NO DATA	7.76E-05
Y	92	8.45E-10	NO DATA	2.47E-11	NO DATA	NO DATA	NO DATA	1.48E-05
Y	93	2.68E-09	NO DATA	7.40E-11	NO DATA	NO DATA	NO DATA	8.50E-05
ZR	95	3.04E-08	9.75E-09	6.60E-09	NO DATA	1.53E-08	NO DATA	3.09E-05
ZR	97	1.68E-09	3.39E-10	1.55E-10	NO DATA	5.12E-10	NO DATA	1.05E-04
NB	95	6.22E-09	3.46E-09	1.86E-09	NO DATA	3.42E-09	NO DATA	2.10E-05
MO	99	NO DATA	4.31E-06	8.20E-07	NO DATA	9.76E-06	NO DATA	9.99E-06
TC	99M	2.47E-10	6.98E-10	8.89E-09	NO DATA	1.06E-08	3.42E-10	4.13E-07
TC	101	2.54E-10	3.66E-10	3.59E-09	NO DATA	6.59E-09 [.]	1.87E-10	1.10E-21
RU	103	1.85E-07	NO DATA	7.97E-08	NO DATA	7.06E-07	NO DATA	2.16E-05
RU	105	1.54E-08	NO DATA	6.08E-09	NO DATA	1.99E-07	NO DATA	9.42E-06
RU	106	2.75E-06	NO DATA	3.48E-07	NO DATA	5.31E-06	NO DATA	1.78E-04
AG	110M	1.60E-07	1.48E-07	8.79E-08	NO DATA	2.91E-07	NO DATA	6.04E-05
SB	125	1.79E-06	2.00E-08	4.26E-07	1.82E-09	0.0	1.38E-06	1.97E-05
TE	125M	2.68E-06	9.71E-07	3.59E-07	8.06E-07	1.09E-05	NO DATA	1.07E-05
TE	127M	6.77E-06	2.42E-06	8.25E-07	1.73E-06	2.75E-05	NO DATA	2.27E-05
TE	127	1.10E-07	3.95E-08	2.38E-08	8.15E-08	4.48E-07	NO DATA	8.68E-06
TE	129M	1.15E-05	4.29E-06	1.82E-06	3.95E-06	4.80E-05	NO DATA	5.79E-05
TE	129	3.14E-08	1.18E-08	7.65E-09	2.41E-08	1.32E-07	NO DATA	2.37E-08
TE	131M	1.73E-06	8.46E-07	7.05E-07	1.34E-06	8.57E-06	NO DATA	8.40E-05
TE	131	1.97E-08	8.23E-09	6.22E-09	1.62E-08	8.63E-08	NO DATA	2.79E-09
TE	132	2.52E-06	1.63E-06	1.53E-06	1.80E-06	1.57E-05	NO DATA	7.71E-05
I	130	7.56E-07	2.23E-06	8.80E-07	1.89E-04	3.48E-06	NO DATA	1.92E-06
I	131	4.16E-06	5.95E-06	3.41E-06	1.95E-03	1.02E-05	NO DATA	1.57E-06
	132	2.03E-07	5.43E-07	1.90E-07	1.90E-05	8.65E-07	NO DATA	1.02E-07
	133	1.42E-06	2.47E-06	7.53E-07	3.63E-04	4.31E-06	NO DATA	2.22E-06
	134	1.06E-07	2.88E-07	1.03E-07	4.99E-06	4.58E-07	NO DATA	2.51E-10

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

TABLE 2.1

Liquid Dose Conversion Factors (DCF): DF_{ij}

Page 3 of 3

Ingestion Dose Factors for Adults* (MREM Per PCI Ingested)

NUC	LIDE	BONE	LIVER	T. BODY	THYROID	KIDNEY	LUNG	GI-LLI
I	135	4.43E-07	1.16E-06	4.28E-07	7.65E-05	1.86E-06	NO DATA	1.31E-06
CS	134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06
CS	136	6.51E-06	2.57E-05	1.85E-05	NO DATA	1.43E-05	1.96E-06	2.92E-06
CS	137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06
CS	138	5.52E-08	1.09E-07	5.40E-08	NO DATA	8.01E-08	7.91E-09	4.65E-13
BA	139	9.70E-08	6.91E-11	2.84E-09	NO DATA	6.46E-11	3.92E-11	1.72E-07
BA	140	2.03E-05	2.55E-08	1.33E-06	NO DATA	8.67E-09	1.46E-08	4.18E-05
BA	141	4.71E-08	3.56E-11	1.59E-09	NO DATA	3.31E-11	2.02E-11	2.22E-17
BA	142	2.13E-08	2.19E-11	1.34E-09	NO DATA	1.85E-11	1.24E-11	3.00E-26
LA	140	2.50E-09	1.26E-09	3.33E-10	NO DATA	NO DATA	NO DATA	9.25E-05
LA	142	1.28E-10	5.82E-11	1.45E-11	NO DATA	NO DATA	NO DATA	4.25E-07
CE	141	9.36E-09	6.33E-09	7.18E-10	NO DATA	2.94E-09	NO DATA	2.42E-05
CE	143	1.65E-09	1.22E-06	1.35E-10	NO DATA	5.37E-10	NO DATA	4.56E-05
CE	144	4.88E-07	2.04E-07	2.62E-08	NO DATA	1.21E-07	NO DATA	1.65E-04
PR	143	9.20E-09	3.69E-09	4.56E-10	NO DATA	2.13E-09	NO DATA	4.03E-05
PR	144	3.01E-11	1.25E-11	1.53E-12	NO DATA	7.05E-12	NO DATA	4.33E-18
ND	147	6.29E-09	7.27E-09	4.35E-10	NO DATA	4.25E-09	NO DATA	3.49E-05
W	187	1.03E-07	8.61E-08	3.01E-08	NO DATA	NO DATA	NO DATA	2.82E-05
NP	239	1.19E-09	1.17E-10	6.45E-11	NO DATA	3.65E-10	NO DATA	2.40E-05

* Dose factors of internal exposure are for continuous intake over a one-year period and include the dose commitment over a 50-year period; from Reg. Guide 1.109 (Rev. 1). Additional dose factors for nuclides not included in this table may be obtained from NUREG-0172.

	II - Unit 1 Controls Procedure 6610-PLN-4200.01
Title	Revision No.
Offsite Dose Calculation Manual (ODCM)	25

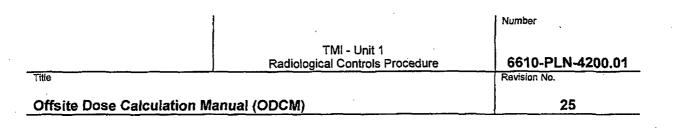
Mumb

TABLE 2.2

Bioaccumulation Factors, BF_i

Bioaccumulation Factors to be Used in the Absence of Site-Specific Data* (pCi/kg per pCi/liter)

ELEMENT	FRESH	WATER
	FISH	INVERTEBRATE
H	9.0E-01	9.0E-01
C	4.6E+03	9.1E+03
NA	1.0E+02	2.0E+02
CR ·	2.0E+02	2.0E+03
MN	4.0E+02	9.0E+04
FE	1.0E+02	3.2E+03
C0	5.0E+01	2.0E+02
NI	1.0E+02	1.0E+02
CU	5.0E+01	4.0E+02
ZN	2.0E+03	1.0E+04
BR	4.2E+02	3.3E+02
RB ·	2.0E+03	1.0E+03
SR	3.0E+01	1.0E+02
Y	2.5E+01	1.0E+03
ZR	3.3E+00	6.7E+00
NB	3.0E+04	1.0E+02
MO	1.0E+01	1.0E+01
тс	1.5E+01	5.0E+00
RU	1.0E+01	3.0E+02
RH	1.0E+01	3.0E+02
***AG-110m	2.30E+1	7.70E+2
**SB	1.0E+00	1.0E+00
TE]	4.0E+02	6.1E+03
E ·	1.5E+01	5.0E+00
CS	2.0E+03	1.0E+03
BA	4.0E+00	2.0E+02
LA	2.5E+01	1.0E+03
CE	1.0E+00	1.0E+03
PR	2.5E+01	1.0E+03
ND	2.5E+01	1.0E+03
W	1.2E+03	1.0E+01
NP	<u>1.0E+01</u>	4.0E+02


• Bioaccumulation factor values are taken from Reg. Guide 1.109 (Rev. 1), Table A-1j.

** Sb bioaccumulation factor value is taken from EPRI NP-3840.

*** Ag bioaccumulation factor value is taken from Reg. Guide 1.109 (Rev. 0), Table A-8.

				TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
tie				· · ·	Revision No.
Offsite	Dos	e Calcu	lation	Manual (ODCM)	25
.0	<u>tmi li</u>	QUID EF	FLUENT	WASTE TREATMENT SYSTEMS	
		<u>TMI-1 L</u>	iquid Eff	uent Waste Treatment System	
		3.1.1	Descr	ption of the Liquid Radioactive Waste Treatment Sy	stem (see Figure 3.1)
			React	or Coolant Train	
			а.	Water Sources - (3) Reactor Coolant Bleed Tank - (1) Reactor Coolant Drain Tank	
			b.	Liquid Processing - Reactor Coolant Waste Evapo - Demineralizers prior to release	
			C.	Liquid Effluent for Release - (2) Waste Evaporator - (WECST)	r Condensate Storage Tanks
			d.	Dilution - Mechanical Draft Cooling Tower (0-38k - River Flow (2E7 gpm average)	gpm)
			Misce	laneous Waste Train	
			a .	Water sources: - Auxiliary Building Sump - Reactor Building Sump - Miscellaneous Waste Storage Tak - Laundry Waste Storage Tank - Neutralizer Mixing Tank - Neutralizer Feed Tank - Neutralizer Feed Tank - Used Precoat Tank - Borated Water Tank Tunnel Sum - Heat Exchanger Vault Sump - Tendon Access Galley Sump - Spent Fuel Pool Room Sump - TMI-2 Miscellaneous Waste Hole	np
			b.	Liquid Processing - Miscellaneous Waste Evapora - Demineralizers prior to release	
	·		с.	Liquid Effluent for Release - (2) Waste Evaporator - (WECST)	r Condensate Storage Tanks
			d.	Dilution - Mechanical Draft Cooling Tower (0-38k g - River Flow (2E7 gpm average)	gpm)
				· · ·	

			1			Number
ītle				Radiolo	TMI - Unit 1 gical Controls Procedure	6610-PLN-4200.01
	Dos	e Calcu	ulation Ma	nuai (ODCM)		25
	3.2				nt Waste Treatment Syste	
	5.2	3.2.1	The TMI- Safety An	1 Liquid Waste Ti alysis Report is c	reatment System as desc	ribed in Section 11 of the TMI-1 Final when one of each of the following
<i>x</i>				liscellaneous Wa WDL-Z1A)	ste Evaporator (WDL-Z1E) or Reactor Coolant Evaporator
			b) V	vaște Evaporator	Condensate Demineralize	er (WDL-K3 A or B)
			·c) V	/aste Evaporator	Condensate Storage Tan	k (WDL-T 11 A or B)
			d) E	vaporator Conde	nsate Pumps (WDL-P 14	A or B)
		3.2.2	TMI-1 Re	presentative Sarr	pling Prior to Discharge	• •
			Waste Ev represent	aporator Conden	sate Storage Tanks. To p contents of the tank are r	tment System are made through the provide thorough mixing and a recirculated using one of the Waste
:	3.3	TMI-2 L	iquid Effluer	it Waste Treatme	nt System	•
		3.3.1	Descriptio	on of the TMI-2 Li	quid Radioactive Waste T	reatment System
			TMI-2 Acc system de various su governed	cident in 1979. T escribed in Sectio umps and tanks to	MI-2 Liquid Radioactive V on 3.1 prior to release. In o the river (see Figures 1. ires that encompass prop	tem has been out of service since the /aste is processed by the TMI-1 addition, TMI-2 releases water from 1 and 1.2). These processes are er sampling, sample analysis, and
			·		•	
		•				

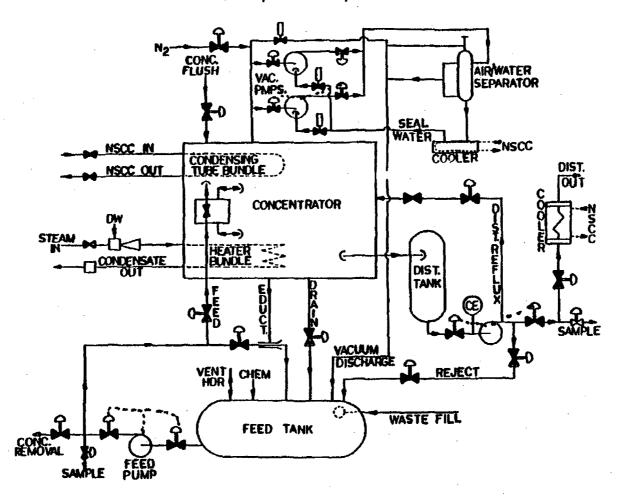

FIGURE 3.1

FIGURE 3.2

TMI-1 Liquid Waste Evaporators

107

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

4.0 GASEOUS EFFLUENT MONITORS

4.1 TMI-1 Noble Gas Monitor Set Points

The gaseous effluent monitor set points are established for each gaseous effluent radiation monitor to assure concentrations of radionuclides in gaseous effluents do not exceed the limits set forth in ODCM Part I Control 2.2.2.1. Table 4.1 lists Gaseous Effluent Release Points and their associated parameters; Figure 4.1 provides a Gaseous Effluent Release Pathway Diagram.

The set points are established to satisfy the more restrictive set point concentration in the following two equations:

$$500 > \frac{2}{i} (c_i)(F)(K_i)(Dv)$$

and

 $3000 > \frac{\Sigma}{i}$ (c_i)(L_i + 1.1 M_i)(Dv)(F)

where:

- c_i = set point concentration based on Xe-133 equivalent, in μ Ci/cc
- F = gaseous effluent flowrate at the monitor, in cc/sec
- $K_i = \text{total body dose factor, in mrem/yr per } \mu \text{Ci/m}^3 \text{ from Table 4.3}$
- Dv = highest sector annual average gaseous atmospheric dispersion factor (X/Q) at or beyond the unrestricted area boundary, in sec/m³, from Table 4.4 for station vent releases and Table 4.5 for all other releases, (Condenser off gas, ESF FHB, and ground releases). Maximum values presently used are 7.17E-7 sec/m³ at sector NNE for station vent, and 1.16E-5 sec/m³ at sectors N and WNW for all other releases.
- L_i = skin dose factor due to beta emissions from radionuclide i, in mrem/yr per μCi/m³ from Table 4.3.
- M_i = air dose factor due to gamma emissions from radionuclide i, in mrad/yr per μ Ci/m³ from Table 4.3.
- 1.1 = mrem skin dose per mrad air dose.
- 500 = annual whole body dose rate limit for unrestricted areas, in mrem/yr.

3000 = annual skin dose rate limit for unrestricted areas, in mrem/yr.

The set point concentration is further reduced such that the concentration contributions from multiple release points would not combine to exceed ODCM Control limits.

The set point concentration is converted to set point scale units on each radiation monitor using appropriate calibration factors.

(eq 4.1.1)

(eq 4.1.2)

	TMI - Unit 1	Number
	Radiological Controls Procedure	6610-PLN-4200.01
itle	· · · · · · · · · · · · · · · · · · ·	Revision No.
Offsite Dose Calculation Manual (ODCM)		25

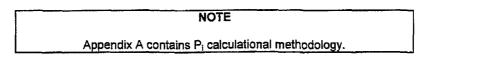
This section of the ODCM is implemented by the Radiation Monitor System Set Points procedure and the procedure for Releasing Radioactive Gaseous Waste.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

4.2 TMI-1 Particulate and Radioiodine Monitor Set Points

Set points for monitors which detect radionuclides other than noble gases are also established to assure that concentrations of these radionuclides in gaseous effluents do not exceed the limits of ODCM Part I Control 2.2.2.1.

Set points are established so as to satisfy the following equations:


$$1500 > \frac{2}{i} (c_i)(F)(P_i)(Dv$$

(eq 4.2)

where:

 c_l = set point concentration based on I-131 equivalent, in μ Ci/cc

- F = gaseous effluent flow rate at the monitor, in cc/sec
- P_i = pathway dose parameter, in mrem/yr per μ Ci/m3 for the inhalation pathway from Table 4.6. The dose factors are based on the actual individual organ and most restrictive age group (child) (NUREG-0133).

- 1500 = annual dose rate limit to any organ from particulates and radioiodines and radioiuclides (other than noble gases) with half lives greater than eight days in mrem/yr.
 - Dv = highest sector annual average gaseous dispersion factor (X/Q or D/Q) at or beyond the unrestricted area boundary from Table 4.4 for releases from the station vent and Table 4.5 for all other releases. X/Q is used for the inhalation pathway. Maximum values of X/Q presently used are 7.17E-7 sec/m3 for station vent, at sector SE, and 1.16E-5 sec/m3 for all other releases, at sectors N and WNW.

The set point concentration is further reduced such that concentration contributions from multiple release points would not combine to exceed ODCM Control limits.

The set point concentration is converted to set point scale units on each radiation monitor using appropriate calibration factors.

This section of the ODCM is implemented by the Radiation Monitor Systems Set Points procedure and the procedure for Releasing Radioactive Gaseous Waste.

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

4.3 TMI-2 Gaseous Radiation Monitor Set Points

TMI-2 Gaseous Radiation Monitors have their set points described in TMI Plant Procedure 1101-2.1. Figure 4.5 provides a gaseous effluent release pathway diagram. Table 4.2 provides TMI-2 Radiation Monitor Data.

These set points are set in accordance with the Controls delineated in Part II of this ODCM.

_	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation M	anual (ODCM)	25

4.4 TMI-1 Gaseous Effluent Release Points and Gaseous Radiation Monitor Data

TMI-1 has eleven (11) required effluent gaseous radiation monitors. These are RM-A4, RM-A5, RM-A15, RM-A6, RM-A7, RM-A8, RM-A9, RM-A14, ALC-RMI-18, WHP-RIT-1, and RLM-RM-1. These gaseous release points, radiation monitors, and sample points are shown in Table 4.1.

4.4.1 RM-A4/RM-A6 Fuel Handling and Auxiliary Building Exhaust

RM-A4 is the radiation monitor for the TMI-1 Fuel Handling Building Ventilation (see Figures 4.1 and 4.2). RM-A6 is the radiation monitor for the TMI-1 Auxiliary Building Ventilation (see Figures 4.1 and 4.2). High alarms on RM-A4 or RM-A6 noble gas channels will initiate shutdown of the related building ventilation air supply system. These two radiation monitors concurrently will satisfy requirements for the Station Vent release point in place of RM-A8.

1 Number

4.4.2 RM-A8 Station Ventilation Exhaust

RM-A8 is the particulate, radioiodine and gaseous radiation monitor for the TMI-1 Station Ventilation (see Figures 4.1 and 4.2). This in plant effluent radiation monitor also has an associated sampling panel with sampling lines located before the sample filters. High alarm on RM-A8 noble gas low channel will initiate shutdown of the Station Ventilation air supply systems. (The Fuel Handling and Auxiliary Building Ventilation). This radiation monitor satisfies requirements for the Station Vent release point in place of RM-A4 and RM-A6.

4.4.3 RM-A5/RM-A15 Condenser Off Gas Exhaust

RM-A5 is the gaseous radiation monitor for the TMI-1 Condenser Off Gas exhaust (see Figures 4.1 and 4.4). RM-A15 is the back up gaseous radiation monitor for the TMI-1 Condenser Off Gas exhaust (see Figures 4.1 and 4.4). High alarms on RM-A5 low channel or RM-A15 noble gas channels will initiate the MAP-5 Radioiodine Processor Station. These two radiation monitors together satisfy requirements for the Condenser Off Gas release point.

4.4.4 RM-A7 Waste Gas Decay Tank Exhaust

RM-A7 is the gaseous radiation monitor for the TMI-1 Waste Gas Decay tanks (see Figures 4.1 and 4.2). This in plant effluent radiation monitor also has an associated sampling panel. High alarm on RM-A7 noble gas channel will initiate shutdown of the Waste Gas Decay Tank release in progress. This radiation monitor satisfies requirements for batch gaseous releases to the Station Vent release point.

4.4.5 RM-A9 Reactor Building Purge Exhaust

RM-A9 is the particulate, radioiodine and gaseous radiation monitor for the TMI-1 Reactor Building Purge system (see Figures 4.1 and 4.3). This in plant effluent radiation monitor also has an associated sampling panel with sampling lines located before the sample filters. High alarm on RM-A9 noble gas low channel will initiate shutdown of the Reactor Building Purge System. This radiation monitor satisfies requirements for the Reactor Building Purge System release point.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Ma	nual (ODCM)	25

4.4.6 RM-A14 ESF FHB Ventilation System

RM-A14 is the gaseous radiation monitor for the TMI-1 Emergency Safeguards Features (ESF) Fuel Handling Building Exhaust system (see Figures 4.1 and 4.2). This in plant effluent radiation monitor also has an associated sampling panel with sampling lines located before the sampler filters. High alarm on RM-A14 noble gas channel will initiate shutdown of the ESF Fuel Handling Building Exhaust System. This radiation monitor satisfies requirements for the ESF Fuel Handling Building Exhaust System release point.

4.4.7 ALC-RMI-18 Chemical Cleaning Facility (CCF) Ventilation Exhaust

ALC-RMI-18 is an Victoreen particulate, radioiodine, and gaseous radiation monitor for the Chemical Cleaning building exhaust. This monitor is located in the Chemical Cleaning building on the ground floor, and has an associated sample panel. Sampling for particulate activity is performed off of the monitor.

4.4.8 WHP-RIT-1 Waste Handling and Packaging Facility (WHPF) Exhaust

WHP-RIT-1 is an Eberline AMS-3 particulate radiation monitor for the TMI WHPF. The monitor is located in the Mechanical Equipment Room in the WHPF. Sampling for particulate activity is performed off of the monitor. A high alarm will initiate shutdown of the ventilation air exhaust system.

4.4.9 RLM-RM-1 Respirator Cleaning and Laundry Maintenance (RLM) Facility

RLM-RM-1 is an Eberline AMS-3 particulate radiation monitor for the TMI RLM Facility. The monitor is located in the Mechanical Equipment Room in the RLM. Sampling for particulate activity is performed off of the monitor.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

4.5 TMI-2 Gaseous Effluent Release Points and Gaseous Radiation Monitor Data

TMI-2 has three (3) regulatory required gaseous effluent radiation monitors. These are HP-R-219, HP-R-219A and HP-R-225. These gaseous release points, radiation monitors, and sample points are shown in Table 4.2, and various gaseous effluent pathways are depicted in Figure 4.5.

4.5.1 HP-R-219 Station Ventilation Exhaust

HP-R-219 is a Victoreen particulate and gaseous radiation monitor for the TMI-2 ventilation exhaust. This in-plant effluent radiation monitor is located in the TMI-2 Auxiliary Building 328 foot elevation and has an associated sample panel.

4.5.2 HP-R-219A Station Ventilation Exhaust

HP-R-219A is a Victoreen particulate and gaseous radiation monitor for the TMI-2 ventilation exhaust. This in-plant effluent radiation monitor is located in the TMI-2 Auxiliary Building 328 foot elevation.

4.5.3 HP-R-225 Reactor Building Purge Air Exhaust Duct "A"

HP-R-225 is a Victoreen particulate and gaseous radiation monitor for the TMI-2 Reactor Building Purge Air Exhaust System. This in-plant effluent radiation monitor is located in the TMI-2 Auxiliary Building 328' elevation area.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Mar	nual (ODCM)	25

4.6 Control of Gaseous Effluent Releases

TMI gaseous effluent combined releases are controlled (per ODCM Part I for TMI-1 and ODCM Part II for TMI-2) by effluent sampling and radiation monitor set points. These measures assure that releases from the various vents do not combine to produce dose rates at the site boundary exceeding the most restrictive of 500 mrem per year to the total body or 3000 mrem per year to the skin, and 1500 mrem per year to the thyroid. This is done by restricting simultaneous releases and by limiting the dose rates that may be contributed by the various vents at any time. The various vent radiation monitor set points are each based on fractions of the above limits and do not exceed the above limits when summed together. These effluent radiation monitor set points are calculated using the methodology described in equations 4.1.1, or 4.1.2 and 4.2. The actual set points are then listed in TMI-1 Operations Procedure 1101-2.1.

The radioactive content of each batch of gaseous waste is determined prior to release by sampling and analyses in accordance with ODCM Part I for TMI-1 and ODCM Part II for TMI-2. The results of pre-release analyses are used with the calculational methods in Sections 4.1 and 4.2 to assure that the dose rates at the site boundary are maintained below the limits in ODCM Part I for TMI-1 and ODCM Part I for TMI-2.

Post-release analyses of samples composited from batch and continuous releases are performed in accordance with ODCM Part I for TMI-1 and ODCM Part II for TMI-2. The results of the analyses are used to assure that the dose rates at the site boundary are maintained within the limits of ODCM Part I for TMI-1 and ODCM Part I for TMI-2.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Tide		Revision No.
Offsite Dose Calculation M	anual (ODCM)	25

TABLE 4.1

TMI-1 Gaseous Release Point and Gaseous Radiation Monitor Data

GASEOUS RADIATION MONITOR (DETECTOR)	LOCATION	GASEOUS RELEASE POINT	(F) FLOW RECORDER	RELEASE TERMINATION INTERLOCK (YES/NO) VALVES
RM-A4	306' Elevation Auxiliary Bldg.	Fuel Hand. Building Exhaust	FR-149	YES AH-E-10 AH-D-120 AH-D-121 AH-D-122
RM-A6	306' Elevation Auxiliary Bldg.	Auxiliary Building Exhaust	FR-150	YES AH-E-11
RM-A8	RMA-8/9 Bidg. Near BWST Exhaust	Station Vent	FR-149 & FR-150	YES WDG-V47 AH-E-10 AH-E-11 Starts MAP-5 Radioiodine Sampler
RM-A5	322' Elevation Second Floor Turbine Bldg.	Condenser Off Gas Exhaust	FR-1113	YES Starts MAP-5 Radioiodine Sampler
RM-A15	322' Elevation Second Floor Turbine Bldg.	Condenser Off Gas Exhaust	FR-1113	YES Starts MAP-5 Radiolodine Sampler
RM-A7	306' Elevation Auxiliary Bldg.	Waste Gas Decay Tanks (A,B,C)	FR-123	YES WDG-V47
RM-A9	RMA-8/9 Bldg. Near BWST	Reactor Bullding Purge Exhaust	FR-909/ FR-148	YES AH-V-1A/B/C/D WDG-534/535 Starts MAP-5 Radioiodine Sampler
RM-A14	331' Elevation ESF FHB Outside Chem. Addition Bldg.	ESF Fuel Handling Building Exhaust	FR-1104A/B	NO Manuai Actions

	· · ·	Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

TABLE 4.1

TMI-1 Gaseous Release Point and Gaseous Radiation Monitor Data

GASEOUS RADIATION MONITOR (DETECTOR)	LOCATION	GASEOUS RELEASE POINT	RELEASE TERMINATION INTERLOCK (YES/NO) VALVES
ALC-RMI-18	Chemical Cleaning Bldg. 304' Elevation	CCB Exhaust System (Typical flow rate is 10,000 cfm)	NONE
WHP-RIT-1	WHPF Mechanical Equipment Room	WHPF Exhaust System (Typical flow rate is 7,500 cfm)	YES WHPF Ventilation Trips
RLM-RM-1	RLM-Mechanical Equipment Room	RLM Exhaust System (Typical flow rate is 900 cfm)	NONE

TABLE 4.2

TMI-2 Gaseous Release Point and Gaseous Radiation Monitor Data

GASEOUS RADIATION MONITOR (DETECTOR)	LOCATION	GASEOUS RELEASE POINT	RELEASE TERMINATION INTERLOCK (YES/NO) VALVES
HP-R-219	328' Elevation Auxiliary Building	Station Vent Exhaust	NONE
HP-R-219A	328' Elevation Auxiliary Building	Station Vent Exhaust	NONE
HP-R-225	328' Elevation Auxiliary Building	Reactor Bidg Purge Exhaust Duct "A"	NONE

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

TABLE 4.3

Dose Factors for Noble Gases and Daughters*

Radionuclide	Gamma Total Body Dose Factor(a) K _i (mrem/yr per μCi/m ³)	Beta Skin Dose Factor(b) L _i (mrem/yr per μCi/m ³)	Gamma Air Dose Factor M _i (mrad/yr per μCi/m ³)	Beta Air Dose Factor N _i (mrad/yr per μCi/m ³)
Kr-83m	7.56E-02**		1.93E+01	2.88E+02
Kr-85m	1.17E+03	1.46E+03	1.23E+03	1.97E+03
Kr-85	1.61E+01	1.34E+03	1.72E+01	1.95E+03
Kr-87	5.92E+03	9.73E+03	6.17E+03	1.03E+04
Kr-88	1.47E+04	2.37E+03	1.52E+04	2.93E+03
Kr-89	1.66E+04	1.01E+04	1.73E+04	1.06E+04
Kr-90	1.56E+04	7.29E+03	1.63E+04	7.83E+03
Xe-131m	9.15E+01	4.76E+02	1.56E+02	1.11E+03
Xe-133m	2.51E+02	9.94E+02	3.27E+02	1.48E+03
Xe-133	2.94E+02	3.06E+02	3.53E+02	1.05E+03
Xe-135m	3.12E+03	7.11E+02	3.36E+03	7.39E+02
Xe-135	1.81E+03	1.86E+03	1.92E+03	2.46E+03
Xe-137	1.42E+03	1.22E+04	1.51E+03	1.27E+04
Xe-138	8.83E+03	4.13E+03	9.21E+03	4.75E+03
Ar-41	8.84E+03	2.69E+03	9.30E+03	3.28E+03

Dose factors are for immersion exposure in uniform semi-infinite cloud of noble gas radionuclides that may be detected in gaseous effluents. Dose factor values are taken from Regulatory Guide 1.109 (Rev. 1), Table B-1.

** 7.56E-02 = 7.56 x 10^{-2} .

(a) Total body dose factor for gamma penetration depth of 5 cm into the body.

(b) Skin dose factor at a tissue depth or tissue density thickness of 7 mg/cm².

TMI - Unit 1 Number Radiological Controls Procedure 6610-PLN-4200.01 Title Revision No. Offsite Dose Calculation Manual (ODCM) 25

TABLE 4.4

Atmospheric Dispersion Factors for Three Mile Island

STATION			2/6/ ³ \			_	·		SEASON -	ΔΝΝΙΙΔΙ
SECTOR	610	2413	4022	5631	7240	12067	24135	40225	56315	72405
N	1.18E-07	5.32E-07	2.95E-07	1.93E-07	1.39E-07	5.52E-08	1.91E-08	5.02E-09	1.88E-09	1.09E-09
NNE	1.70E-07	7.17E-07	3.45E-07	2.00E-07	1.39E-07	5.58E-08	1.70E-08	4.77E-09	1.98E-09	9.69E-10
NE	1.12E-07	1.75E-07	3.26E-07	1.86E-07	1.21E-07	5.00E-08	1.67E-08	4.67E-09	1.85E-09	9.93E-10
ENE	1.09E-07	2.13E-07	2.67E-07	1.53E-07	1.05E-07	4.31E-08	1.42E-08	4.42E-09	1.59E-09	8.64E-10
E	2.31E-07	1.71E-07	1.52E-07	1.49E-07	1.06E-07	4.63E-08	1.52E-08	5.19E-09	2.48E-09	1.50E-09
ESE	3.50E-07	2.12E-07	2.50E-07	1.48E-07	9.48E-08	3.98E-08	1.50E-08	5.92E-09	2.92E-09	1.93E-09
SE	4.19E-07	3.79E-07	2.53E-07	1.55E-07	1.11E-07	4.82E-08	1.81E-08	6.84E-09	3.30E-09	2.22E-09
SSE	2.90E-07	3.62E-07	2.55E-07	1.49E-07	1.11E-07	5.02E-08	1.98E-08	6.97E-09	2.94E-09	1.70E-09
S	1.87E-07	6.47E-08	2.16E-07	1.30E-07	8.65E-08	4.09E-08	1.40E-08	4.96E-09	1.99E-09	1.04E-09
SSW	6.13E-08	4.16E-08	1.56E-07	1.03E-07	6.81E-08	2.72E-08	9.74E-09	3.01E-09	1.50E-09	8.23E-10
SW	5.76E-08	1.14E-07	1.70E-07	1.05E-07	6.93E-08	2.51E-08	9.34E-09	2.72E-09	1.33E-09	8.33E-10
WSW	8.52E-08	3.75E-07	2.14E-07	1.26E-07	7.74E-08	3.08E-08	1.02E-08	3.28E-09	1.39E-09	9.69E-10
W	1.15E-07	5.80E-07	2.88E-07	1.63E-07	1.18E-07	5.23E-08	1.72E-08	5.06E-09	1.98E-09	1.25E-09
WNW	1.41E-07	6.28E-07	3.30E-07	2.19E-07	1.48E-07	5.68E-08	1.95E-08	6.32E-09	2.16E-09	1.34E-09
NW	1.42E-07	5.67E-07	3.17E-07	1.93E-07	1.30E-07	5.67E-08	2.06E-08	5.90E-09	2.70E-09	1.45E-09
NNW	1.00E-07	5.77E-07	3.18E-07	1.80E-07	1.27E-07	5.20E-08	1.77E-08	4.82E-09	2.01E-09	1.22E-09

 STATION VENT 	
----------------------------------	--

DISTANCE

• SECTOR	SECTOR AVERAGE D/Q (IN M ²) (IN METERS)								SEASON - ANNUAL		
SECTOR	610	2413	4022	5631	7240	12067	24135	40225	56315	72405	
N	2.51E-09	8.72E-10	4.84E-10	2.98E-10	2.50E-10	8.57E-11	2.51E-11	4.98E-12	1.57E-12	7.84E-13	
NNE	3.89E-09	1.98E-09	9.54E-10	4.99E-10	3.38E-10	1.10E-10	2.89E-11	6.06E-12	2.10E-12	8.89E-13	
NE	2.58E-09	6.70E-10	9.13E-10	4.91E-10	2.97E-10	1.04E-10	2.87E-11	6.01E-12	1.99E-12	9.23E-13	
ENE	2.15E-09	5.85E-10	5.54E-10	3.06E-10	2.08E-10	8.30E-11	2.32E-11	5.41E-12	1.63E-12	7.64E-13	
E	5.54E-09	1.23E-09	6.17E-10	4.59E-10	3.63E-10	1.34E-10	3.66E-11	9.44E-12	3.77E-12	1.97E-12	
ESE	9.17E-09	2.05E-09	1.51E-09	8.66E-10	5.11E-10	1.82E-10	5.77E-11	1.72E-11	7.07E-12	4.07E-12	
SE	1.22E-08	2.88E-09	1.84E-09	1.02E-09	6.85E-10	2.60E-10	8.30E-11	2.34E-11	9.42E-12	5.51E-12	
SSE	7.50E-09	1.62E-09	1.08E-09	5.89E-10	4.49E-10	1.87E-10	6.16E-11	1.61E-11	5.67E-12	2.83E-12	
S	3.86E-09	6.53E-10	6.27E-10	3.59E-10	2.32E-10	1.06E-10	3.05E-11	8.10E-12	2.73E-12	1.23E-12	
SSW	1.13E-09	2.94E-10	4.19E-10	2.53E-10	1.56E-10	5.38E-11	1.68E-11	3.91E-12	1.64E-12	7.84E-13	
SW	1.19E-09	3.84E-10	4.96E-10	2.80E-10	1.70E-10	5.24E-11	1.65E-11	3.62E-12	1.49E-12	8.12E-13	
WSW	1.77E-09	.8.31E-10	6.49E-10	3.50E-10	1.99E-10	6.73E-11	1.89E-11	4.58E-12	1.63E-12	9.90E-13	
W	2.41E-09	1.29E-09	6.81E-10	3.65E-10	2.96E-10	1.12E-10	3.11E-11	6.90E-12	2.26E-12	1.25E-12	
WNW	3.20E-09	1.39E-09	7.73E-10	5.91E-10	3.66E-10	1.19E-10	3.43E-11	8.36E-12	2.39E-12	1.29E-12	
NW	3.25E-09	1.23E-09	7.39E-10	4.22E-10	2.77E-10	1.14E-10	7.28E-11	7.61E-12	2.92E-12	1.36E-12	
NNW	1.98E-09	9.88E-10	5.71E-10	3.05E-10	2.23E-10	8.21E-11	2.41E-11	4.93E-12	1.72E-12	9.03E-13	

DATA FROM 1/1/78 THROUGH 12/31/86 USED IN CALCULATIONS

TMI - Unit 1 Radiological Controls Procedure 6610-PLN-4200.01 Title Revision No. Offsite Dose Calculation Manual (ODCM) 25

TABLE 4.5

Number

Atmospheric Dispersion Factors for Three Mile Island -

SECTOR	AVERAGE	X/Q (IN SE	C/M ³)	(IN METERS)				SEASON - ANNUAL		
SECTOR	610	2413	4022	5631	7240	12067	24135	40225	56315	72405
N	1.16E-05	1.13E-06	5.94E-07	3.80E-07	2.38E-07	9.74E-08	3.45E-08	9.28E-09	3.52E-09	2.05E-09
NNE	1.08E-05	1.10E-06	5.66E-07	3.41E-07	2.38E-07	9.55E-08	3.11E-08	8.94E-09	3.74E-09	1.84E-09
NE	7.02E-06	9.81E-07	5.42E-07	3.17E-07	2.10E-07	9.01E-08	3.10E-08	8.87E-09	3.54E-09	1.91E-09
ENE	7.14E-06	9.64E-07	4.92E-07	2.85E-07	1.97E-07	7.82E-08	2.64E-08	8.38E-09	3.04E-09	1.66E-09
E	8.49E-06	1.09E-06	5.48E-07	2.91E-07	1.87E-07	8.40E-08	2.82E-08	9.85E-09	4.75E-09	2.87E-09
ESE	6.91E-06	9.02E-07	4.49E-07	2.57E-07	1.67E-07	7.20E-08	2.77E-08	1.12E-08	5.54E-09	3.68E-05
SE	6.70E-06	9.06E-07	4.53E-07	2.81E-07	2.03E-07	8.94E-08	3.33E-08	1.28E-08	6.19E-09	4.18E-09
SSE	7.26E-06	9.25E-07	4.91E-07	2.87E-07	2.08E-07	9.18E-08	3.72E-08	1.32E-08	5.62E-09	3.26E-09
S	8.70E-06	9.08E-07	3.99E-07	2.41E-07	1.61E-07	7.31E-08	2.57E-08	9.23E-09	3.74E-09	1.95E-09
SSW	6.05E-06	7.01E-07	2.75E-07	1.86E-07	1.24E-07	5.06E-08	1.82E-08	5.71E-09	2.87E-09	1.58E-09
SW ·	5.94E-06	5.71E-07	2.86E-07	1.81E-07	1.22E-07	4.50E-08	1.72E-08	5.12E-09	2.53E-09	1.59E-09
WSW	8.00E-06	7.02E-07	3.60E-07	2.15E-07	1.34E-07	5.50E-08	1.87E-08	6.12E-09	2.62E-09	1.83E-09
W	1.02E-05	1.07E-06	5.30E-07	3.02E-07	2.05E-07	9.31E-08	3.15E-08	9.48E-09	3.74E-09	2.38E-09
WNW	1.16E-05	1.13E-06	5.98E-07	3.67E-07	2.53E-07	1.00E-07	3.56E-08	1.18E-08	4.07E-09	2.54E-09
NW	1.13E-05	1.06E-06	5.70E-07	3.53E-07	2.40E-07	1.02E-07	3.82E-08	1.11E-08	5.14E-09	2.78E-09
NNW	1.08E-05	1.04E-06	5.72E-07	3.27E-07	2.22E-07	9.06E-08	3.20E-08	8.89E-09	3.75E-09	2.29E-09

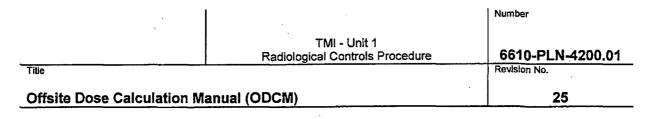
GROUND RELEASE

DISTANCE

 SECTOR 	AVERAGE	D/Q (IN M ²)	(IN METERS)						SEASON - ANNUAL	
SECTOR	610	2413	4022	5631	7240	12067	24135	40225	56315	72405	
N	2.30E-08	1.88E-09	8.93E-10	4.82E-10	2.70E-10	8.96E-11	2.53E-11	4.98E-12	1.57E-12	7.84E-13	
NNE	2.66E-08	2.25E-09	1.06E-09	5.42E-10	3.38E-10	1.10E-10	2.89E-11	6.06E-12	2.10E-12	8.89E-13	
NE	1.75E-08	2.00E-09	1.01E-09	5.04E-10	2.98E-10	1.04E-10	2.88E-11	6.01E-12	1.99E-12	9.23E-13	
ENE	1.68E-08	1.85E-09	8.65E-10	4.28E-10	2.65E-10	8.57E-11	2.33E-11	5.41E-12	1.63E-12	7.64E-13	
E	2.88E-08	2.99E-09	1.39E-09	6.34E-10	3.67E-10	1.35E-10	3.68E-11	9.42E-12	3.77E-12	1.97E-12	
ESE	3.59E-08	3.80E-09	1.77E-09	8.79E-10	5.15E-10	1.83E-10	5.78E-11	1.71E-11	7.06E-12	4.06E-12	
SE	4.12E-08	4.55E-09	2.13E-09	1.15E-09	7.50E-10	2.72E-10	8.31E-11	2.34E-11	9.42E-12	5.50E-12	
SSE	3.12E-08	3.23E-09	1.59E-09	8.00E-10	5.20E-10	1.88E-10	6.18E-11	1.61E-11	5.66E-12	2.83E-12	
S	2.65E-08	2.21E-09	9.07E-10	4.75E-10	2.86E-10	1.07E-10	3.06E-11	8.10E-12	2.73E-12	1.23E-12	
SSW	1.45E-08	1.30E-09	4.80E-10	2.82E-10	1.70E-10	5.71E-11	1.69E-11	3.91E-12	1.64E-12	7.84E-13	
SW	1.42E-08	1.10E-09	5.15E-10	2.82E-10	1.71E-10	5.24E-11	1.65E-11	3.62E-12	1.49E-12	8.12E-13	
WSW	2.01E-08	1.41E-09	6.82E-10	3.54E-10	2.00E-10	6.76E-11	1.89E-11	4.58E-12	1.63E-12	9.90E-13	
W	2.55E-08	2.16E-09	1.00E-09	4.91E-10	3.01E-10	1.12E-10	3.11E-11	6.90E-12	2.27E-12	1.25E-12	
WNW	2.88E-08	2.30E-09	1.13E-09	5.93E-10	3.67E-10	1.19E-10	3.43E-11	8.36E-12	2.39E-12	1.29E-12	
NW	2.78E-08	2.15E-09	1.06E-09	5.58E-10	3.41E-10	1.19E-10	3.57E-11	7.61E-12	2.92E-12	1.36E-12	
NNW	2.17E-08	1.75E-09	8.75E-10	4.24E-10	2.57E-10	8.55E-11	2.42E-11	4.93E-12	1.72E-12	9.03E-13	

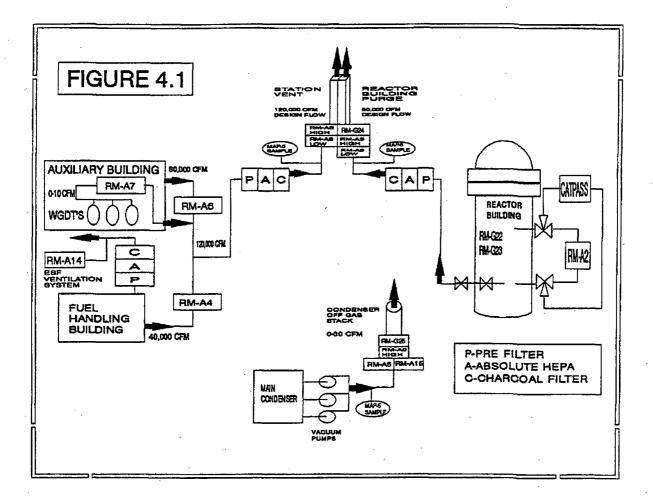
DATA FROM 1/1/78 THROUGH 12/31/86 USED IN CALCULATIONS

Number TMI - Unit 1 Radiological Controls Procedure 6610-PLN-4200.01 Revision No. Title Offsite Dose Calculation Manual (ODCM) 25


TABLE 4.6

Dose Parameters for Radioiodines and Radioactive Particulate in Gaseous Effluents*							
	CRITICAL	ORGAN			CRITICAL	ORGAN	
NUCLIDE	ORGAN	FACTOR	Pi***	NUCLIDE	ORGAN	FACTOR	Pi***
H-3**	TOTAL BODY	3.04E-07	1.12E+03	RU-103	LUNG	1.79E-04	6.62E+05
C-14	BONE	9.70E-06	3.59E+04	RU-105	GI-LLI	2.69E-05	9.95E+04
NA-24	TOTAL BODY	4.35E-06	1.61E+04	RU-106	LUNG	3.87E-03	1.43E+07
P-32	BONE	7.04E-04	2.60E+06	AG-110M	LUNG	1.48E-03	5.48E+06
CR-51	LUNG	4.59E-06	1.70E+04	TE-125M	LUNG	1.29E-04	4.77E+05
MN-54	LUNG	4.26E-04	1.58E+06	SB-125	LUNG	6.27E-04	2.32E+06
MN-56	GI-LLI	3.33E-05	1.23E+05	TE-127M	LUNG	4.00E-04	1.48E+06
FE-55	LUNG	3.00E-05	1.11E+05	TE-127	GI-LLI	1.52E-05	5.62E+04
FE-59	LUNG	3.43E-04	1.27E+06	TE-129M	LUNG	4.76E-04	1.76E+06
CO-58	LUNG	2.99E-04	1.11E+06	TE-129	GI-LLI	6.89E-06	2.55E+04
CO-60	LUNG	1.91E-03	7.07E+06	TE-131M	GI-LLI	8.32E-05	3.08E+05
NI-63	BONE	2.22E-04	8.21E+05	TE-131	LUNG	5.55E-07	2.05E+03
NI-65	GI-LLI	2.27E-05	8.40E+04	TE-132	LUNG	1.02E-04	3.77E+05
CU-64	GI-LLI	9.92E-06	3.67E+04	1-130	THYROID	4.99E-04	1.85E+06
ZN-65	LUNG	2.69E-04	9.95E+05	i-131	THYROID	4.39E-03	1.62E+07
ZN-69	GI-LLI	2.75E-06	1.02E+04	1-132	THYROID	5.23E-05	1.94E+05
BR-83	TOTAL BODY	1.28E-07	4.74E+02	1-133	THYROID	1.04E-03	3.85E+06
BR-84	TOTAL BODY	1.48E-07	5.48E+02	1-134	THYROID	1.37E-05	5.07E+04
BR-85	TOTAL BODY	6.84E-09	2.53E+01	1-135	THYROID	2.14E-04	7.92E+05
RB-86	LIVER	5.36E-05	1.98E+05	CS-134	LIVER	2.74E-04	1.01E+06
RB-88	LIVER	1.52E-07	5.62E+02	CS-136	LIVER	4.62E-05	1.71E+05
RB-89	LIVER	9.33E-08	3.45E+02	CS-137	BONE	2.45E-04	9.07E+05
SR-89	LUNG	5.89E-04	2.16E+06	CS-138	LIVER	2.27E-07	8.40E+02
SR-90	BONE	2.73E-02	1.01E+08	BA-139	GI-LLI	1.56E-05	5.77E+04
SR-91	GI-LLI	4.70E-05	1.74E+05	BA-140	LUNG	4.71E-04	1.74E+06
SR-92	GI-LLI	6.55E-05	2.42E+05	BA-141	LUNG	7.89E-07	2.92E+03
Y-90	GI-LLI	7.24E-05	2.68E+05	BA-142	LUNG	4.44E-07	1.64E+03
Y-91M	LUNG	7.60E-07	2.81E+03	LA-140	GI-LLI	6.10E-05	2.26E+05
Y-91	LUNG	7.10E-04	2.63E+06	LA-142	GI-LLI	2.05E-05	7.59E+04
Y-92	GI-LLI	6.46E-05	2.39E+05	CE-141	LUNG	1.47E-04	5.44E+05
Y-93	GI-LLI	1.05E-04	3.89E+05	CE-143	GI-LLI	3.44E-05	1.27E+05
ZR-95	LUNG	6.03E-04	2.23E+06	CE-144	LUNG	3.23E-03	1.20E+07
ZR-97	GI-LLI	9.49E-05	3.51E+05	PR-143	LUNG	1.17E-04	4.33E+05
NB-95	LUNG	1.66E-04	6.14E+05	PR-144	LUNG	4.23E-07	1.57E+03
MO-99	LUNG	3.66E-05	1.35E+05	ND-147	LUNG	8.87E-05	3.28E+05
TC-99M	GI-LLI	1.30E-06	4.81E+03	W-187	GI-LLI	2.46E-05	9.10E+04
TC-101	LUNG	1.58E-07	5.85E+02	NP-239	GI-LLI	1.73E-05	6.40E+04

The listed dose parameters are for radionuclides, other than noble gases that may be detected in gaseous * effluents. Pi factors include all nonatmospheric pathway transport parameters, the receptor's usage of pathway media, and are based on the most restrictive age group (child) critical organ. Additional dose parameters for nuclides not included in this Table may be calculated using the methodology described in NUREG-0133.


Tritium dose factors include an increase of 50% to account for the additional amount of this nuclide absorbed through the skin.

mrem/year per uCi/m³. ***

FIGURE 4.1

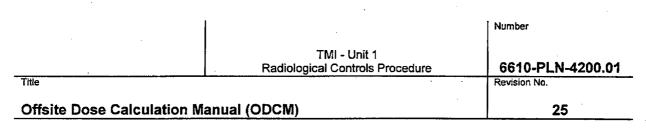
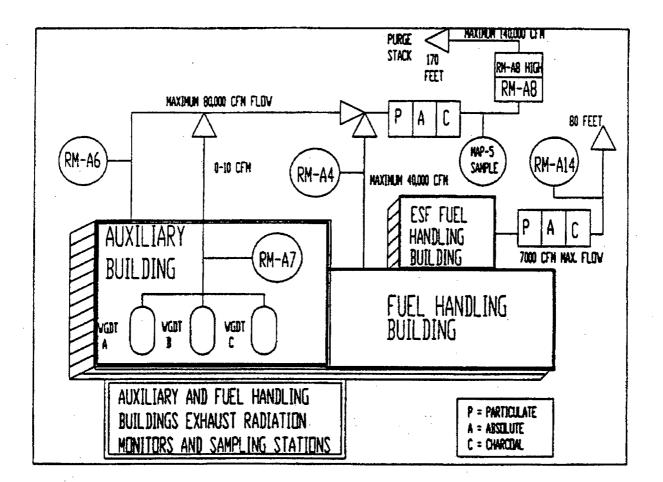
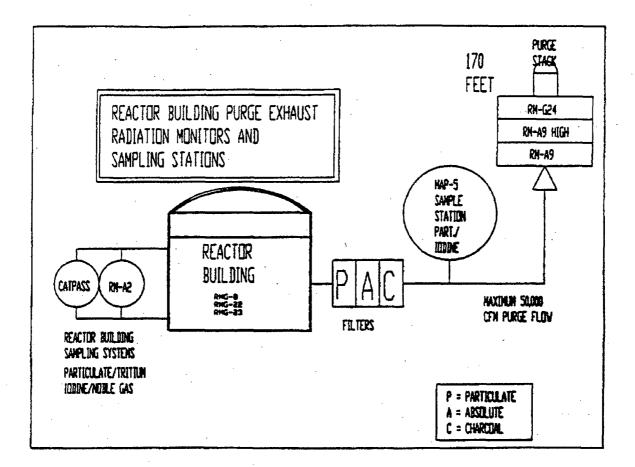
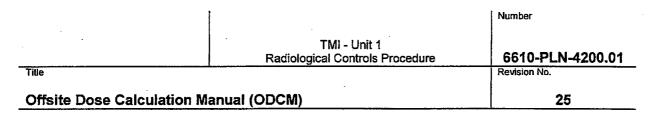



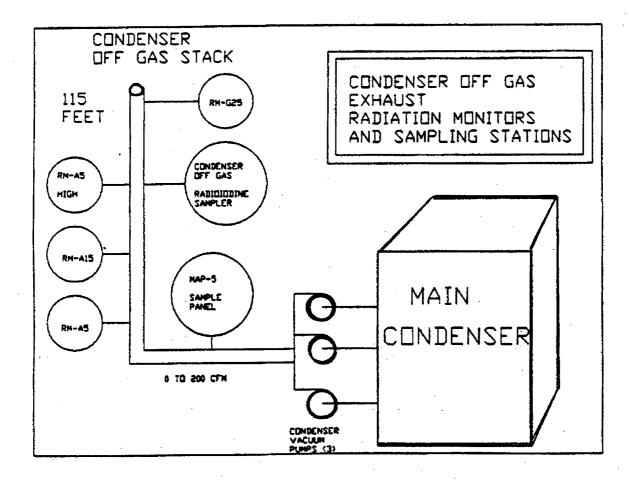
FIGURE 4.2





		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

FIGURE 4.3



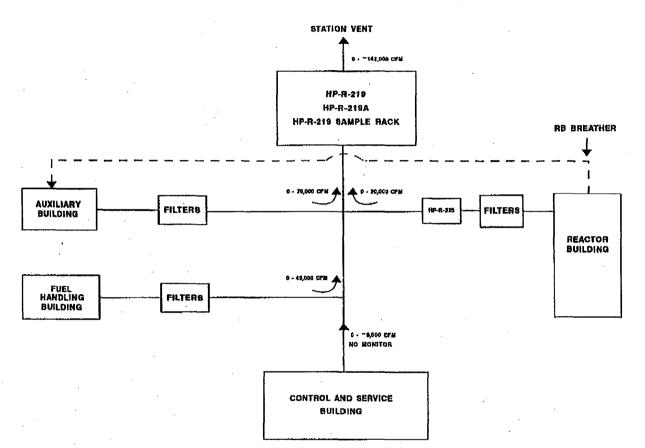


FIGURE 4.4

6610-PLN-4200.01 Revision 25

FIGURE 4.5 TMI-2 Gaseous Effluent Filtration System/Pathways

UNIT 2 EXHAUST AIR FLOW AND RMS SCHEMATIC

	Number
TMI - Unit 1 Radiological Controls Procedure	6610-P
	Revision No.

LN-4200.01

Offsite Dose Calculation Manual (ODCM)

Title

25

5.0 GASEOUS EFFLUENT DOSE ASSESSMENT

Gaseous Effluents - Instantaneous Release Limits 5.1

5.1.1 Noble Gases

For noble gases, the following equations apply for total body and skin dose rate at the unrestricted area boundary:

5.1.1.1 Total Body

Dose Rate_{tb} = $\frac{\Sigma}{i}$ (K_i) x (Dv) x (Q_i)

(eq 5.1.1.1)

where:

Dose Ratet b = instantaneous total body dose rate limit, at the site boundary, in mrem/yr.

- K_i = total body dose factor due to gamma emissions for each identified noble gas radionuclide, in mrem/yr per µCi/m³ from Table 4.3.
- Dv = highest sector annual average gaseous dispersion factor (X/Q) at or beyond the unrestricted area boundary, in sec/m³, from Table 4.4 for station vent releases; and Table 4.5 for all other releases (Condenser Off Gas, ESF FHB, and ground releases). Maximum values presently in use are 7.17E-7 sec/m³ at sector NNE for station vent, and 1.16E-5 sec/m³ for all other releases, at sectors N and WNW.
- Qi = Release rate of radionuclide, i, in µCi/sec as determined by sampling and analysis. Calculated using the concentration of noble gas radionuclide, i, in μ Ci/cc, times the release pathway flow rate, in cc/second.

		. · ·	Number
		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title			Revision No.
Offsite Dose Calcul	lation Manua		25
5.1.1.2	<u>Skin</u>		
	Dose Rate _{sk} ≂	$\frac{\Sigma}{i}$ (L ₁ + 1.1 M _i) X (Dv) X (Q _i)	(eq 5.1.1.2)
	where:		
	Dose Rate _{sk} =	instantaneous mrem/year skin dose rate limit, mrem/yr.	at the site boundary, in
	L, =	skin dose factor due to beta emissions for each radionuclide, in mrem/yr per $\mu\text{Ci/m}^3$ from Tab	
	. M _i =	air dose factor due to gamma emissions for e radionuclide, in mrad/yr per $\mu\text{Ci/m}^3$ from Table	
	1.1 =	mrem skin dose per mrad air dose. Converts	air dose to skin dose.
	Q _i =	release rate of radionuclide, i, in μ Ci/sec, as c analysis. Calculated using the concentration in μ Ci/cc, times the release pathway flow rate	of noble gas radionuclide, i,
	Dv =	highest sector annual average gaseous dispet beyond the unrestricted area boundary, in sec station vent releases; and Table 4.5 for all oth Gas, ESF FHB, and ground releases). Maxim are 7.17E-7 sec/m ³ at sector NNE for station all other releases, at sectors N and WNW.	c/m ³ , from Table 4.4 for er releases (Condenser Off num values presently in use

	1			Number
tle		TMI - Uni Radiological Contro	• •	6610-PLN-4200.01 Revision No.
	iculation Manual (O	DCM)	• •	25
5.1	2 <u>Iodine-131, Iodine-</u> Greater than 8 Day		dionuclides in Particu	late Form, with Half-Lives
		ritium and Radionuc llowing equation app		rm, with half-lives greater
	Dose Rate _{ip} = $\frac{\Sigma}{i}$ (Pi) (Dv) (Qi)		(eq 5.1.2)
	where:		<u>:</u>	
	Dose Rate _{IP} = mr	rem/year organ dose	rate.	
	Fo	orm, with half-lives gr rem/yr per μCi/m ³ , fr	eater than 8 days, for	Radionuclides in Particulate r the inhalation pathway, in ose factors are based on the age group (child).
	or the for 7.1	beyond the unrestric station vent release the inhalation pathy	eted area boundary, in es and Table 4.5 for a vay. Maximum value ion vent, at sector NN	bersion factor (X/Q or D/Q) at n sec/m ³ , from Table 4.4 for all other releases. X/Q is used s of X/Q presently used are NE, and 1.16E-5 sec/m ³ for all
	co		adionuclide, i, in µCi/	ec. Calculated using the cc, times the release pathway

			Number
		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title .			Revision No.
Offsite Do	se Calcu	lation Manual (ODCM)	25
5.2	Gaseou	<u>is Effluents - 10 CFR 50 Appendix I</u>	
	5.2.1	Noble Gases	
		The air dose in an unrestricted area due to noble gases from the site is determined using the following expression	
		Dose Γ = (3.17E-8) x $\frac{\Sigma}{i}$ (M _i) x (Dv) x (Qi)	(eq 5.2.1)
		and	
		Dose β = (3.17E-8) x $\frac{\Sigma}{i}$ (N _i) x (Dv) x (Qi)	(eq 5.2.2
		where:	
		Dose Γ = mrad gamma air dose due to gamma ex radionuclides.	nissions from noble gas
		Dose β = mrad beta air dose due to beta emission	ns from noble gas radionuclides
		M _i = air dose factor due to gamma emissions radionuclide, in mrad/yr per μCi/m ³ , fror	
		N _i = air dose factor due to beta emissions fo radionuclide, in mrad/yr per μCi/m ³ , fron	
		Dv = highest sector annual average gaseous beyond the unrestricted area boundary, interpolated from Table 4.4 for releases Table 4.5 for all other releases. Maximu are 7.17E-7 sec/m ³ for station vent at se all other releases at sectors N or WNW.	in sec/m ³ . Values may be reac from the station vent and um values of X/Q presently use ector NNE, and 1.16E-5 sec/m ³

- Q_i = release of noble gas radionuclide, i, in μ Ci, over the specified time period, (μ Ci/second * seconds).
- 3.17E-8 = inverse of the number of seconds in a year.

NOTE

If the methodology in this section is used in determining dose to an individual, rather than air dose due to noble gases, substitute Ki, from Table 4.3, for Mi, and (Li + 1.1 Mi) for Ni.

		Number	
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.	-
Offsite Dose Calculation Ma	25	_	

5.2.2 <u>Iodine-131, Iodine-133, Tritium and Radionuclides in Particulate Form, with Half-Lives</u> Greater than 8 Days

The dose to an individual from I-131, I-133, Tritium and Radionuclides in Particulate Form with half-lives greater than 8 days in gaseous effluents released from the site to an unrestricted area is determined by solving the following expression:

Dose_o =
$$\frac{\Sigma}{i}$$
 (3.17E-8) x $\frac{\Sigma}{i}$ (R_i) (Dv) (Q_i

(eq 5.2.2)

where:

- Dose_o = dose to all real pathways, p, to organ, o, of an individual in age group, a, from 1-131, I-133, Tritium and Radionuclides in Particulate Form, with half-lives greater than 8 days, in mrem, during any desired time period.
 - R_i = the dose factor for each identified radionuclide, i, pathway, p, age group, a, and organ, o, in mrem/yr per μ Ci/m³ for the inhalation pathway and m² mrem/yr per μ Ci/sec for other pathways, from Tables 5.2 to 5.7.

NOTE

Since there is minimal or no elemental iodine released from the condenser off-gas air ejector (see NUREG-0017) all lodine R_i values for all pathways, <u>except</u> the inhalation pathway, are considered to be zero when performing dose calculations for releases from the condenser off-gas air ejector. Only calculate the dose due to the inhalation pathway for condenser off-gas air ejector iodines.

NOTE

Tritium, H-3, dose factor is mrem/year per uCi/m³ for all pathways.

Dv = highest sector annual average gaseous dispersion factor (X/Q) at or beyond the unrestricted area boundary, in sec/m³, for the inhalation pathway, and D/Q, in m², for other pathways. Table 4.4 is used to derive the values for station vent releases and Table 4.5 is used to derive the values for all other releases. The values used to calculate site boundary and critical receptor doses are as follows:

Station Vent Releases - Be	oundary		
Inhalation X/Q	7.17 E-7	·	
Meat D/Q	1.22 E-8	Ground D/Q	1.22 E-8
Cow/Milk/Infant D/Q	1.22 E-8	Vegetation D/Q	1.22 E-8
Station Vent Releases - C	ritical Recepto	or	
Inhalation X/Q	7.2 E-7		
Meat D/Q	4.6 E-9	Ground D/Q	7.8 E-9
Cow/Milk/Infant D/Q	3.1 E-9	Vegetation D/Q	8.9 E-9

			Number	
	TMI - Unit 1 Radiological Controls P	rocedure	6610-PLN	-4200.01
Title			Revision No.	
Offsite Dose Calculation	Manual (ODCM)		2:	5
	Ground or Other Releases			
	Inhalation X/Q Meat D/Q	1.16 E-5 4.12 E-8	Ground D/Q	4.12 E-8
	Cow/Milk/Infant D/Q	4.12 E-8	Vegetation D/Q	4.12 E-8
	Ground or Other Releases		ceptor	
	Inhalation X/Q Meat D/Q Cow/Milk/Infant D/Q	1.2 E-5 9.2 E-9 6.3 E-9	Ground D/Q Vegetation D/Q	3.0 E-8 2.6 E-8

Dv(H-3) = In the case of H-3 only the X/Q's above are used for all pathways.

 Q_i = release of I-131, I-133, Tritium and Radionuclides, i, in Particulate Form with half-lives greater than 8 days, in μ Ci, cumulative over the specified time period (μ Ci/second * seconds).

3.17E-8 = inverse of the number of seconds in a year.

	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calcu	25	

5.3 Gaseous Radioactive System Dose Calculations Once per Month

ODCM Part I Control 2.2.2.4 and TMI-2 PDMS Tech Spec Section 6.7.4.a.6 requires that appropriate subsystem of the Gaseous Radwaste Treatment System shall be used to reduce the radioactive materials in gaseous waste prior to their discharge. When the monthly projected doses due to the gaseous effluent releases from the site would exceed:

Lhlumbor

0.2 mrad to air from gamma radiation; or 0.4 mrad to air from beta radiation; or 0.3 mrem to any organ.

The following calculational method is provided for performing this dose projection.

At least once per month the gamma air dose, beta air dose and the maximum organ dose for the quarter-to-date will be divided by the number of days into the quarter and multiplied by 31. Also, this dose projection shall include the estimated dose due to any anticipated unusual release during the period for which the projection is made. If these projected doses exceed any of the values listed above, appropriate portions of the TMI-1 Gaseous Waste Treatment System, as defined in Section 6.0, or appropriate portions of the TMI-2 Gaseous Effluent Filtration System as shown on Figure 4.5, shall be used to reduce radioactivity levels prior to release.

At the discretion of Radiological Engineering, time periods other than the current quarter-to-date may be used to project doses if the dose per day in the current quarter-to-date is not believed to be representative of the dose per day projected for the next month.

Offsite Dose Calculation N	25	
Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

5.4 Alternative Dose Calculational Methodologies for Gaseous Effluents

As an alternative to the methods described above, the models in/or based upon, those presented in Regulatory Guide 1.109 (Rev. 1) may be used to make a comprehensive dose assessment. Default parameter values from Regulatory Guide 1.109 (Rev. 1) and/or actual site specific data can be used where applicable.

The onsite, on-line computerized system for tracking gaseous effluent dose uses annual average gaseous dispersion factors. As an alternative dose calculational methodology. TMI calculates doses using an advanced class "A" dispersion model called SEEDS (simplified environmental effluent dosimetry system).

This model incorporates the guidelines and methodology set forth in USNRC Regulatory Guide 1.109, and uses actual hourly meteorological information matched to the time of releases to more accurately assess the dispersion of effluents in the atmosphere. Combining this assessment of dispersion with TMI effluent data for each unit, postulated maximum hypothetical doses to the public are calculated.

· · ·		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.

Offsite Dose Calculation Manual (ODCM)

TABLE 5.2.1

25

Pathway Dose Factors, Ri

AGE GROUP: INFANT	PATHWAY: INHALATION

NUCLIDE] 	ORG	AN DOSE FA	ACTORS; mr	em/year per	μCi/m ³	
	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3 C-14	0.00E+00 2.65E+04	6.47E+02 5.31E+03	6.47E+02 5.31E+03	6.47E+02 5.31E+03	6.47E+02 5.31E+03	6,47E+02 5.31E+03	6.47E+02 5.31E+03
CR-51	0.00E+00	0.00E+00	8.95E+01	5.75E+01	1.32E+01	1.28E+04	3.57E+03
MN-54	0.00E+00	2.53E+04	4.98E+03	0.00E+00	4.98E+03	1.00E+06	7.06E+03
FE-55 FE-59	1.97E+04 1.36E+04	1.17E+04 2.35E+04	3.33E+03 9.48E+03	0.00E+00 0.00E+00	0.00E+00 0.00E+00	8.69E+04 1.02E+06	1.09E+03 2.48E+04
CO-58	0.00E+00	1.22E+03	1.82E+03	0.00E+00	0.00E+00	7.77E+05	1.11E+04
CO-60 NI-63	0.00E+00 3.39E+05	8.02E+03 2.04E+04	1.18E+04 1.16E+04	0.00E+00 0.00E+00	0.00E+00 0.00E+00	4.51E+06 2.09E+05	3.19E+04 2.42E+03
ZN-65	1.93E+04	6.26E+04	3.11E+04	0.00E+00	3.25E+04	6.47E+05	5.14E+04
RB-86 SR-89	0.00E+00 3.98E+05	1.90E+05 0.00E+00	8.82E+04 1.14E+04	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 2.03E+06	3.04E+03 6.40E+04
SR-90	4.09E+07	0.00E+00	2.59E+06	0.00E+00	0.00E+00	1.12E+07	1.31E+05
Y-91 ZR-95	5.88E+05 1.15E+05	0.00E+00 2.79E+04	1.57E+04 2.03E+04	0.00E+00 0.00E+00	0.00E+00 3.11E+04	2.45E+06 1.75E+06	7.03E+04 2.17E+04
NB-95	1.57E+04	6.43E+03	3.78E+03	0.00E+00	4.72E+03	4.79E+05	1.27E+04
RU-103 RU-106	2.02E+03 8.68E+04	0.00E+00 0.00E+00	6.79E+02 1.09E+04	0.00E+00 0.00E+00	4.24E+03 1.07E+05	5.52E+05 1.16E+07	1.61E+04 1.64E+05
AG-110M	9.98E+03	7.22E+03	5.00E+03	0.00E+00	1.09E+04	3.67E+06	3.30E+04
TE-125M TE-127M	4.76E+03 1.67E+04	1.99E+03 6.90E+03	6.58E+02 2.07E+03	1.62E+03 4.87E+03	0.00E+00 3.75E+04	4.47E+05 1.31E+06	1.29E+04 2.73E+04
TE-129M	1.41E+04	6.09E+03	2.23E+03	5.47E+03	3.18E+04	1.68E+06	6.90E+04
I-131 I-133	3.79E+04 1.32E+04	4.44E+04 1.92E+04	1.96E+04 5.60E+03	1.48E+07 3.56E+06	5.18E+04 2.24E+04	0.00E+00 0.00E+00	1.06E+03 2.16E+03
CS-134	3.96E+05	7.03E+05	7.45E+04	0.00E+00	1.90E+05	7.97E+04	1.33E+03
CS-136 CS-137	4.83E+04 5.49E+05	1.35E+05 6.12E+05	5.29E+04 4.55E+04	0.00E+00 0.00E+00	5.64E+04 1.72E+05	1.18E+04 7.13E+04	1.43E+03 1.33E+03
BA-140	5.60E+04	5.60E+01	2.90E+03	0.00E+00	1.34E+01	1.60E+06	3.84E+04
CE-141 CE-144	2.77E+04 3.19E+06	1.67E+04 1.21E+06	1.99E+03 1.76E+05	0.00E+00 0.00E+00	5.25E+03 5.38E+05	5.17E+05 9.84E+06	2.16E+04 1.48E+05
PR-143	1.40E+04	5.24E+03	6.99E+02	0.00E+00	1.97E+03	4.33E+05	3.72E+04
ND-147	7.94E+03	8.13E+03	5.00E+02	0.00E+00	3.15E+03	3.22E+05	3.12E+04

TMI - Unit 1 Radiological Controis Procedure

Number

Revision No.

6610-PLN-4200.01

25

Title

Offsite Dose Calculation Manual (ODCM)

TABLE 5.2.2

Pathway Dose Factors, Ri

AGE GROUP: CHILD PATHWAY: INHALATION

NUCLIDE]	ORG	AN DOSE F	ACTORS; mr	em/year per	μCi/m ³	
	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.12E+03	1.12E+03	1.12E+03	1.12E+03	1.12E+03	1.12E+03
C-14	3.59E+04	6.73E+03	6.73E+03	6.73E+03	6.73E+03	6.73E+03	6.73E+03
CR-51	0.00E+00	0.00E+00	1.54E+02	8.55E+01	2.43E+01	1.70E+04	1.08E+03
MN-54	0.00E+00	4.29E+04	9.51E+03	0.00E+00	1.00E+04	1.58E+06	2.29E+04
FE-55	4.74E+04	2.52E+04	7.77E+03	0.00E+00	0.00E+00	1.11E+05	2.87E+03
FE-59	2.07E+04	3.34E+04	1.67E+04	0.00E+00	0.00E+00	1.27E+06	7.07E+04
CO-58	0.00E+00	1.77E+03	3.16E+03	0.00E+00	0.00E+00	1.11E+06	3.44E+04
CO-60	0.00E+00	1.31E+04	2.26E+04	0.00E+00	0.00E+00	7.07E+06	9.62E+04
NI-63	8.21E+05	4.63E+04	2.80E+04	0.00E+00	0.00E+00	2.75E+05	6.33E+03
ZN-65	4.26E+04	1.13E+05	7.03E+04	0.00E+00	7.14E+04	9.95E+05	1.63E+04
RB-86	0.00E+00	1.98E+05	1.14E+05	0.00E+00	0.00E+00	0.00E+00	7.99E+03
SR-89	5.99E+05	0.00E+00	1.72E+04	0.00E+00	0.00E+00	2.16E+06	1.67E+05
SR-90	1.01E+08	0.00E+00	6.44E+06	0.00E+00	0.00E+00	1.48E+07	3.43E+05
Y-91	9.14E+05	0.00E+00	2.44E+04	0.00E+00	0.00E+00	2.63E+06	1.84E+05
ZR-95	1.90E+05	4.18E+04	3.70E+04	0.00E+00	5.96E+04	2.23E+06	6.11E+04
NB-95	2.35E+04	9.18E+03	6.55E+03	0.00E+00	8.62E+03	6.14E+05	3.70E+04
RU-103	2.79E+03	0.00E+00	1.07E+03	0.00E+00	7.03E+03	6.62E+05	4.48E+04
RU-106	1.36E+05	0.00E+00	1.69E+04	0.00E+00	1.84E+05	1.43E+07	4.29E+05
AG-110M	1.69E+04	1.14E+04	9.14E+03	0.00E+00	2.12E+04	5.48E+06	1.00E+05
TE-125M	6.73E+03	2.33E+03	9.14E+02	1.92E+03	0.00E+00	4.77E+05	3.38E+04
TE-127M	2.49E+04	8.55E+03	3.02E+03	6.07E+03	6.36E+04	1.48E+06	7.14E+04
TE-129M	1.92E+04	6.85E+03	3.04E+03	6.33E+03	5.03E+04	1.76E+06	1.82E+05
I-131	4.81E+04	4.81E+04	2.73E+04	1.62E+07	7.88E+04	0.00E+00	2.84E+03
I-133	1.66E+04	2.03E+04	7.70E+03	3.85E+06	3.38E+04	0.00E+00	5.48E+03
CS-134	6.51E+05	1.01E+06	2.25E+05	0.00E+00	3.30E+05	1.21E+05	3.85E+03
CS-136	6.51E+04	1.71E+05	1.16E+05	0.00E+00	9.55E+04	1.45E+04	4.18E+03
CS-137	9.07E+05	8.25E+05	1.28E+05	0.00E+00	2.82E+05	1.04E+05	3.62E+03
BA-140	7.40E+04	6.48E+01	4.33E+03	0.00E+00	2.11E+01	1.74E+06	1.02E+05
CE-141	3.92E+04	1.95E+04	2.90E+03	0.00E+00	8.55E+03	5.44E+05	5.66E+04
CE-144	6.77E+06	2.12E+06	3.61E+05	0.00E+00	1.17E+06	1.20E+07	3.89E+05
PR-143	1.85E+04	5.55E+03	9.14E+02	0.00E+00	3.00E+03	4.33E+05	9.73E+04
ND-147	1.08E+04	8.73E+03	6.81E+02	0.00E+00	4.81E+03	3.28E+05	8.21E+04

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.

LAR

25

Offsite Dose Calculation Manual (ODCM)

TABLE 5.2.3

Pathway Dose Factors, Ri

		AGE GROU	P: IEEN	PATHWAY:	INHALATIC	N	
		ORG	AN DOSE F	ACTORS; mr	rem/year per	μCi/m ³	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.27E+03	1.27E+03	1.27E+03	1.27E+03	1.27E+03	1.27E+03
C-14 CR-51	2.60E+04 0.00E+00	4.87E+03 0.00E+00	4.87E+03 1.35E+02	4.87E+03 7.50E+01	4.87E+03 3.07E+01	4.87E+03 2.10E+04	4.87E+03 3.00E+03
MN-54 FE-55	0.00E+00 3.34E+04	5.11E+04 2.38E+04	8.40E+03 5.54E+03	0.00E+00 0.00E+00	1.27E+04 0.00E+00	1.98E+06 1.24E+05	6.68E+04 6.39E+03
FE-59	1.59E+04	3.70E+04	1.43E+04	0.00E+00	0.00E+00	1.53E+06	1.78E+05
CO-58	0.00E+00	2.07E+03	2.78E+03	0.00E+00	0.00E+00	1.34E+06	9.52E+04
CO-60 NI-63	0.00E+00 5.80E+05	1.51E+04 4.34E+04	1.98E+04 1.98E+04	0.00E+00 0.00E+00	0.00E+00 0.00E+00	8.72E+06 3.07E+05	2.59E+05 1.42E+04
ZN-65 RB-86	3.86E+04 0.00E+00	1.34E+05 1.90E+05	6.24E+04 8.40E+04	0.00E+00 0.00E+00	8.64E+04 0.00E+00	1.24E+06 0.00E+00	4.66E+04 1.77E+04
SR-89	4.34E+05	0.00E+00	1.25E+04	0.00E+00	0.00E+00	2.42E+06	3.71E+05
SR-90	1.08E+08	0.00E+00	6.68E+06	0.00E+00	0.00E+00	1.65E+07	7.65E+05
Y-91 ZR-95	6.61E+05 1.46E+05	0.00E+00 4.58E+04	1.77E+04 3.15E+04	0.00E+00 0.00E+00	0.00E+00 6.74E+04	2.94E+06 2.69E+06	4.09E+05 1.49E+05
NB-95 RU-103	1.86E+04 2.10E+03	1.03E+04 0.00E+00	5.66E+03 8.96E+02	0.00E+00 0.00E+00	1.00E+04 7.43E+03	7.51E+05 7.83E+05	9.68E+04 1.09E+05
RU-106	9.84E+04	0.00E+00	1.24E+04	0.00E+00	1.90E+05	1.61E+07	9.60E+05
AG-110M	1.38E+04	1.31E+04	7.99E+03	0.00E+00	2.50E+04	6.75E+06	2.73E+05
TE-125M TE-127M	4.88E+03 1.80E+04	2.24E+03 8.16E+03	6.67E+02 2.18E+03	1.40E+03 4.38E+03	0.00E+00 6.54E+04	5.36E+05 1.66E+06	7.50E+04 1.59E+05
TE-129M I-131	1.39E+04 3.54E+04	6.58E+03 4.91E+04	2.25E+03 2.64E+04	4.58E+03 1.46E+07	5.19E+04 8.40E+04	1.98E+06 0.00E+00	4.05E+05 6.49E+03
I-133	1.22E+04	2.05E+04	6.22E+03	2.92E+06	3.59E+04	0.00E+00	1.03E+04
CS-134	5.02E+05	1.13E+06	5.49E+05	0.00E+00	3.75E+05	1.46E+05	9.76E+03
CS-136	5.15E+04 6.70E+05	1.94E+05 8.48E+05	1.37E+05 3.11E+05	0.00E+00 0.00E+00	1.10E+05 3.04E+05	1.78E+04 1.21E+05	1.09E+04 8.48E+03
CS-137							
BA-140 CE-141	5.47 <u>E+04</u> 2.84E+04	6.70E+01 1.90E+04	3.52E+03 2.17E+03	0.00E+00 0.00E+00	2.28E+01 8.88E+03	2.03E+06 6.14E+05	2.29E+05 1.26E+05
CE-144	4.89E+06	2.02E+06	2.62E+05	0.00E+00	1.21E+06	1.34E+07	8.64E+05
PR-143	1.34E+04	5.31E+03	6.62E+02	0.00E+00	3.09E+03	4.83E+05	2.14E+05
ND-147	7.86E+03	5.51E+03 8.56E+03	5.13E+02	0.00E+00	5.02E+03	4.83E+05 3.72E+05	1.82E+05
	<u></u>						

AGE GROUP: TEEN PATHWAY: INHALATION

TMI - Unit 1 Radiological Controls Procedure

Number

6610-PLN-4200.01 Revision No.

25

Title

Offsite Dose Calculation Manual (ODCM)

TABLE 5.2.4

Pathway Dose Factors, Ri

AGE GROUP: ADULT PATHWAY: INHALATION

NUCLIDE]	ORG	AN DOSE F	ACTORS; mr	em/year per	μCì/m ³	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.26E+03	1.26E+03	1.26E+03	1.26E+03	1.26E+03	1.26E+03
C-14	1.82E+04	3.41E+03	3.41E+03	3.41E+03	3.41E+03	3.41E+03	3.41E+03
CR-51	0.00E+00	0.00E+00	1.00E+02	5.95E+01	2.28E+01	1.44E+04	3.32E+03
MN-54	0.00E+00	3.96E+04	6.30E+03	0.00E+00	9.84E+03	1.40E+06	7.74E+04
FE-55	2.46E+04	1.70E+04	3.94E+03	0.00E+00	0.00E+00	7.21E+04	6.03E+03
FE-59	1.18E+04	2.78E+04	1.06E+04	0.00E+00	0.00E+00	1.02E+06	1.88E+05
CO-58	0.00E+00	1.58E+03	2.07E+03	0.00E+00	0.00E+00	9.28E+05	1.06E+05
CO-60	0.00E+00	1.15E+04	1.48E+04	0.00E+00	0.00E+00	5.97E+06	2.85E+05
NI-63	4.32E+05	3.14E+04	1.45E+04	0.00E+00	0.00E+00	1.78E+05	1.34E+04
ZN-65	3.24E+04	1.03E+05	4.66E+04	0.00E+00	6.90E+04	8.64E+05	5.34E+04
RB-86	0.00E+00	1.35E+05	5.90E+04	0.00E+00	0.00E+00	0.00E+00	1.66E+04
SR-89	3.04E+05	0.00E+00	8.72E+03	0.00E+00	0.00E+00	1.40E+06	3.50E+05
SR-90	9.92E+07	0.00E+00	6.10E+06	0.00E+00	0.00E+00	9.60E+06	7.22E+05
Y-91	4.62E+05	0.00E+00	1.24E+04	0.00E+00	0.00E+00	1.70E+06	3.85E+05
ZR-95	1.07E+05	3.44E+04	2.33E+04	0.00E+00	5.42E+04	1.77E+06	1.50E+05
NB-95	1.41E+04	7.82E+03	4.21E+03	0.00E+00	7.74E+03	5.05E+05	1.04E+05
RU-103	1.53E+03	0.00E+00	6.58E+02	0.00E+00	5.83E+03	5.05E+05	1.10E+05
RU-106	6.91E+04	0.00E+00	8.72E+03	0.00E+00	1.34E+05	9.36E+06	9.12E+05
AG-110M	1.08E+04	1.00E+04	5.94E+03	0.00E+00	1.97E+04	4.63E+06	3.02E+05
TE-125M	3.42E+03	1.58E+03	4.67E+02	1.05E+03	1.24E+04	3.14E+05	7.06E+04
TE-127M	1.26E+04	5.77E+03	1.57E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05
TE-129M	9.76E+03	4.67E+03	1.58E+03	3.44E+03	3.66E+04	1.16E+06	3.83E+05
I-131	2.52E+04	3.58E+04	2.05E+04	1.19E+07	6.13E+04	0.00E+00	6.28E+03
I-133	8.64E+03	1.48E+04	4.52E+03	2.15E+06	2.58E+04	0.00E+00	8.88E+03
CS-134	3.73E+05	8.48E+05	7.28E+05	0.00E+00	2.87E+05	9.76E+04	1.04E+04
CS-136	3.90E+04	1.46E+05	1.10E+05	0.00E+00	8.56E+04	1.20E+04	1.17E+04
CS-137	4.78E+05	6.21E+05	4.28E+05	0.00E+00	2.22E+05	7.52E+04	8.40E+03
BA-140	3.90E+04	4.90E+01	2.57E+03	0.00E+00	1.67E+01	1.27E+06	2.18E+05
CE-141	1.99E+04	1.35E+04	1.53E+03	0.00E+00	6.26E+03	3.62E+05	1.20E+05
CE-144	3.43E+06	1.43E+06	1.84E+05	0.00E+00	8.48E+05	7.78E+06	8.16E+05
PR-143	9.36E+03	3.75E+03	4.64E+02	0.00E+00	2.16E+03	2.81E+05	2.00E+05
ND-147	5.27E+03	6.10E+03	3.65E+02	0.00E+00	3.56E+03	2.21E+05	1.73E+05

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Titte		Revision No.
Offsite Dose Calculation Man	ual (ODCM)	25

TABLE 5.3.1

Pathway Dose Factors, Ri

AGE GROUP: ALL PATHWAY: GROUND PLANE

	r	
i t	ORGA	N DOSE
3	FAC	TORS*
NUCLIDE		`
I' L	T.BODY	SKIN
	[
H-3	0.00E+00	0.00E+00
i C-14 ¦ CR-51	0.00E+00	0.00E+00
MN-54	4.65E+06	5.50E+06
FE-55	1.39E+09 0.00E+00	1.62E+09 0.00E+00
FE-59	2.73E+08	3.21E+08
CO-58	3.79E+08	4.44E+08
CO-60	2.15E+10	2.53E+10
NI-63	0.00E+00	0.00E+00
ZN-65	7.47E+08	8.59E+08
; RB-86 ! SR-89	8.97E+06 2.16E+04	1.03E+07 2.51E+04
SR-90	0.00E+00	0.00€+00
Y-91	1.07E+06	1.21E+06
ZR-95	2.45E+08	2.84E+08
NB-95	1.37E+08	1.61E+08
RU-103	1.08E+08	1.26E+08
RU-106	4.22E+08	5.06E+08
AG-110M	3.44E+09 1.55E+06	4.01E+09 2.13E+06
TE-127M	9.17E+04	1.08E+05
TE-129M	1.98E+07	2.31E+07
I-131	1.72E+07	2.09E+07
1-133	2.45E+06	2.98E+06
+ CS-134	6.86E+09	8.00E+09
i CS-136 CS-137	1.51E+08 1.03E+10	1.71E+08 1.20E+10
BA-140	2.06E+07	2.36E+07
CE-141	1.37E+07	1.54E+07
CE-144	6.96E+07	8.05E+07
PR-143	0.00E+00	0.00 =+00
ND-147	8.39E+06	1.01E+07
		1

* m^2 - mrem/year per μ Ci/sec.

Number

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01

25

Revision No.

Title

Offsite Dose Calculation Manual (ODCM)

TABLE 5.4.1

Pathway Dose Factors, Ri

AGE GROUP: INFANT PATHWAY: GRASS-COW-MILK

]	ORGAN	DOSE FAC	TORS; m ² - r	nrem/year pe	er μCi/sec	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.38E+03	2.38E+03	2.38E+03	2.38E+03	2.38E+03	2.38E+03
C-14	2.34E+09	5.00E+08	5.00E+08	5.00E+08	5.00E+08	5.00E+08	5.00E+08
CR-51	0.00E+00	0.00E+00	1.61E+05	1.05E+05	2.30E+04	2.05E+05	4.70E+06
MN-54	0.00E+00	3.91E+07	8.85E+06	0.00E+00	8.65E+06	0.00E+00	1.43E+07
FE-55	1.35E+08	8.74E+07	2.34E+07	0.00E+00	0.00E+00	4.27E+07	1.11E+07
FE-59	2.25E+08	3.93E+08	1.55E+08	0.00E+00	0.00E+00	1.16E+08	1.88E+08
CO-58	0.00E+00	2.43E+07	6.06E+07	0.00E+00	0.00E+00	0.00E+00	6.05E+07
CO-60	0.00E+00	8.83E+07	2.08E+08	0.00E+00	0.00E+00	0.00E+00	2.10E+08
NI-63	3.50E+10	2.16E+09	1.21E+09	0.00E+00	0.00E+00	0.00E+00	1.08E+08
ZN-65	5.56E+09	1.91E+10	8.79E+09	0.00E+00	9.24E+09	0.00E+00	1.61E+10
RB-86	0.00E+00	2.23E+10	1.10E+10	0.00E+00	0.00E+00	0.00E+00	5.70E+08
SR-89	1.26E+10	0.00E+00	3.62E+08	0.00E+00	0.00E+00	0.00E+00	2.59E+08
SR-90	1.22E+11	0.00E+00	3.10E+10	0.00E+00	0.00E+00	0.00E+00	1.52E+09
Y-91	7.34E+04	0.00E+00	1.95E+03	0.00E+00	0.00E+00	0.00E+00	5.26E+06
ZR-95	6.81E+03	1.66E+03	1.18E+03	0.00E+00	1.79E+03	0.00E+00	8.27E+05
NB-95	5.94E+05	2.45E+05	1.41E+05	0.00E+00	1.75E+05	0.00E+00	2.07E+08
RU-103	8.68E+03	0.00E+00	2.90E+03	0.00E+00	1.81E+04	0.00E+00	1.06E+05
RU-106	1.91E+05	0.00E+00	2.38E+04	0.00E+00	2.25E+05	0.00E+00	1.45E+06
AG-110M	3.86E+08	2.82E+08	1.87E+08	0.00E+00	4.03E+08	0.00E+00	1.46E+10
TE-125M	1.51E+08	5.05E+07	2.04E+07	5.08E+07	0.00E+00	0.00E+00	7.19E+07
TE-127M	4.22E+08	1.40E+08	5.10E+07	1.22E+08	1.04E+09	0.00E+00	1.70E+08
TE-129M	5.58E+08	1.91E+08	8.59E+07	2.14E+08	1.39E+09	0.00E+00	3.33E+08
I-131	2.72E+09	3.21E+09	1.41E+09	1.05E+12	3.75E+09	0.00E+00	1.15E+08
I-133	3.63E+07	5.29E+07	1.55E+07	9.62E+09	6.22E+07	0.00E+00	8.96E+06
CS-134	3.65E+10	6.81E+10	6.88E+09	0.00E+00	1.75E+10	7.19E+09	1.85E+08
CS-136	1.98E+09	5.83E+09	2.18E+09	0.00E+00	2.32E+09	4.75E+08	8.85E+07
CS-137	5.15E+10	6.03E+10	4.27E+09	0.00E+00	1.62E+10	6.55E+09	1.89E+08
BA-140	2.42E+08	2.42E+05	1.25E+07	0.00E+00	5.75E+04	1.49E+05	5.94E+07
CE-141	4.34E+04	2.65E+04	3.12E+03	0.00E+00	8.17E+03	0.00E+00	1.37E+07
CE-144	2.33E+06	9.53E+05	1.30E+05	0.00E+00	3.85E+05	0.00E+00	1.34E+08
PR-143	1.49E+03	5.56E+02	7.37E+01	0.00E+00	2.07E+02	0.00E+00	7.84E+05
ND-147	8.83E+02	9.07E+02	5.55E+01	0.00E+00	3.50E+02	0.00E+00	5.75E+05

·		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.

ì

25

Offsite Dose Calculation Manual (ODCM)

TABLE 5.4.2

Pathway Dose Factors, Ri

AGE GROUP: CHILD PATHWAY: GRASS-COVV-MILK							
NUCLIDE	<u> </u>	ORGAN	DOSE FAC	TORS; m ² - r	nrem/year pa	er μCi/sec	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.57E+03	1.57E+03	1.57E+03	1.57E+03	1.57E+03	1.57E+03
C-14 CR-51	1.20E+09 0.00E+00	2.39E+08 0.00E+00	2.39E+08 1.02E+05	2.39E+08 5.65E+04	2.39E+08 1.54E+04	2.39E+08 1.03E+05	2.39E+08 5.40E+06
MN-54 FE-55	0.00E+00 1.12E+08	2.10E+07 5.94E+07	5.59E+06 1.84E+07	0.00E+00 0.00E+00	5.89E+06 0.00E+00	0.00E+00 3.36E+07	1.76E+07 1.10E+07
FE-59	1.20E+08	1.95E+08	9.70E+07	0.00E+00	0.00E+00	5.65E+07	2.03E+08
CO-58	0.00E+00	1.21E+07	3.72E+07	0.00E+00	0.00E+00	0.00E+00	7.08E+07
CO-60	0.00E+00	4.32E+07	1.27E+08	0.00E+00	0.00E+00	0.00E+00	2.39E+08
NI-63	2.97E+10	1.59E+09	1.01E+09	0.005+00	0.00E+00	0.00E+D0	1.07E+08
ZN-65	4.14E+09	1.10E+10	6.86E+09	0.00E+00	6.95E+09	0.00E+00	1.94E+09
RB-86 SR-89	0.00E+00 6.63E+09	8.78E+09 0.00E+00	5.40E+09 1.89E+08	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	5.65E+08 2.57E+08
SR-90	1.12E+11	0.00E+00	2.84E+10	0.00E+00	0.00E+00	0.00E+00	1.51E+09
Y-91	3.91E+04	0.00E+00	2.84E+10 1.05E+03	0.00E+00	0.00E+00	0.00E+00	5.21E+06
ZR-95	3.84E+03	8.43E+02	7.51E+02	0.00E+00	1.21E+03	0.00E+00	8.80E+05
NB-95	3.18E+05	1.24E+05	8.86E+04	0.00E+00	1.16E+05	0.00E+00	2.29E+08
RU-103 RU-106	4.29E+03 9.25E+04	0.00E+00 0.00E+00	1.65E+03 1.15E+04	0.00E+00 0.00E+00	1.08E+04 1.25E+05	0.00E+00 0.00E+00	1.11E+05 1.44E+06
AG-110M TE-125M	2.09E+08 7.39E+07	1.41E+08 2.00E+07	1.13E+08 9.85E+06	0.00E+00 2.07E+07	2.63E+08 0.00E+00	0.00E+00 0.00E+00	1.68E+10 7.13E+07
TE-127M	2.08E+08	5.61E+07	2.47E+07	4.98E+07	5.94E+08	0.00E+00	1.69E+08
TE-129M	2.72E+08	7.59E+07	4.22E+07	8.76E+07	7.98E+08	0.00E+00	3.31E+08
l-131	1.31E+09	1.31E+09	7.46E+08	4.34E+11	2.16E+09	0.00E+00	1.17E+08
l-133	1.72E+07	2.13E+07	8.05E+06	3.95E+09	3.55E+07	0.00E+00	8.58E+06
CS-134	2.27E+10	3.72E+10	7.85E+09	0.00E+00	1.15E+10	4.14E+09	2.01E+08
CS-136 CS-137	1.01E+09 3.23E+10	2.79E+09 3.09E+10	1.80E+09 4.56E+09	0.00E+00 0.00E+00	1.49E+09 1.01E+10	2.21E+08 3.62E+09	9.80E+07 1.93E+08
BA-140	1.18E+08	1.03E+05	6.86E+06	0.00E+00	3.35E+04	6.14E+04	5.96E+07
CE-141	2.19E+08	1.09E+04	1.62E+03	0.00E+00	4.79E+03	0.00E+00	1.36 =+ 07
CE-144	1.63E+06	5.09E+05	8.67E+04	0.00E+00	2.82E+05	0.00E+00	1.33E+08
PR-143	7.18E+02	2.16E+02	3.56E+01	0.00E+00	1.17E+02	0.00E+00	7.75E+05
ND-147	4.45E+02	3.61E+02	2.79E+01	0.00E+00	1.98E+02	0.00E+00	5.71E+05

AGE GROUP: CHILD PATHWAY: GRASS-COW-MILK

TMI - Unit 1 Radiological Controls Procedure

Number

6610-PLN-4200.01 Revision No.

25

Title

Offsite Dose Calculation Manual (ODCM)

TABLE 5.4.3

Pathway Dose Factors, Ri

AGE GROUP: TEEN PATHWAY: GRASS-COW-MILK

] .	ORGAN	DOSE FAC	TORS; m ² - r	nrem/year p	er μCi/sec	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	9.93E+02	9.93E+02	9.93E+02	9.93E+02	9.93E+02	9.93E+02
C-14	4.86E+08	9.73E+07	9.73E+07	9.73E+07	9.73E+07	9.73E+07	9.73E+07
CR-51	0.00E+00	0.00E+00	4.99E+04	2.77E+04	1.09E+04	7.13E+04	8.39E+06
MN-54	0.00E+00	1.40E+07	2.78E+06	0.00E+00	4.19E+06	0.00E+00	2.88E+07
FE-55	4.46E+07	3.16E+07	7.37E+06	0.00E+00	0.00E+00	2.01E+07	1.37E+07
FE-59	5.19E+07	1.21E+08	4.68E+07	0.00E+00	0.00E+00	3.82E+07	2.86E+08
CO-58	0.00E+00	7.94E+06	1.83E+07	0.00E+00	0.00E+00	0.00E+00	1.10E+08
CO-60	0.00E+00	2.78E+07	6.27E+07	0.00E+00	0.00E+00	0.00E+00	3.62E+08
NI-63	1.18E+10	8.36E+08	4.01E+08	0.00E+00	0.00E+00	0.00E+00	1.33E+08
ZN-65	2.11E+09	7.32E+09	3.42E+09	0.00E+00	4.69E+09	0.00E+00	3.10E+09
RB-86	0.00E+00	4.73E+09	2.22E+09	0.00E+00	0.00E+00	0.00E+00	7.00E+08
SR-89	2.68E+09	0.00E+00	7.67E+07	0.00E+00	0.00E+00	0.00E+00	3.19E+08
SR-90 Y-91 ZR-95	6.62E+10 1.58E+04 1.65E+03	0.00E+00 0.00E+00 5.21E+02	1.63E+10 4.24E+02 3.58E+02	0.00E+00 0.00E+00 0.00E+00 0.00E+00	0.00E+00 0.00E+00 7.65E+02	0.00E+00 0.00E+00 0.00E+00	1.86E+09 6.48E+06 1.20E+06
NB-95	1.41E+05	7.82E+04	4.30E+04	0.00E+00	7.58E+04	0.00E+00	3.34E+08
RU-103	1.81E+03	0.00E+00	7.75E+02	0.00E+00	6.39E+03	0.00E+00	1.51E+05
RU-106	3.76E+04	0.00E+00	4.73E+03	0.00E+00	7.24E+04	0.00E+00	1.80E+06
AG-110M	9.64E+07	9.12E+07	5.55E+07	0.00E+00	1.74E+08	0.00E+00	2.56E+10
TE-125M	3.01E+07	1.08E+07	4.02E+06	8.40E+06	0.00E+00	0.00E+00	8.87E+07
TE-127M	8.45E+07	3.00E+07	1.00E+07	2.01E+07	3.42E+08	0.00E+00	2.11E+08
TE-129M	1.10E+08	4.09E+07	1.74E+07	3.56E+07	4.61E+08	0.00E+00	4.14E+08
I-131	5.38E+08	7.53E+08	4.05E+08	2.20E+11	1.30E+09	0.00E+00	1.49E+08
I-133	7.08E+06	1.20E+07	3.66E+06	1.68E+09	2.11E+07	0.00E+00	9.09E+06
CS-134	9.83E+09	2.31E+10	1.07E+10	0.00E+00	7.35E+09	2.81E+09	2.88E+08
CS-136	4.49E+08	1.77E+09	1.19E+09	0.00E+00	9.63E+08	1.52E+08	1.42E+08
CS-137	1.34E+10	1.78E+10	6.21E+09	0.00E+00	6.06E+09	2.36E+09	2.54E+08
BA-140	4.87E+07	5.97E+04	3.14E+06	0.00E+00	2.02E+04	4.01E+04	7.51E+07
CE-141	8.89E+03	5.94E+03	6.82E+02	0.00E+00	2.80E+03	0.00E+00	1.70E+07
CE-144	6.59E+05	2.73E+05	3.54E+04	0.00E+00	1.63E+05	0.00E+00	1.66E+08
PR-143	2.90E+02	1.16E+02	1.44E+01	0.00E+00	6.73E+01	0.00E+00	9.55E+05
ND-147	1.81E+02	1.97E+02	1.18E+01	0.00E+00	1.16E+02	0.00E+00	7.12E+05

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	Revision No.	
Offsite Dose Calculation	25	

Offsite Dose Calculation Manual (ODCM)

TABLE 5.4.4

Pathway Dose Factors, Ri

							N
	יי	ORGAN	DOSE FAC	TORS; m ² - n	nrem/year pe	er μCi/sec	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	7.62E+02	7.62E+02	7.62E+02	7.62E+02	7.62E+02	7.62E+02
C-14 CR-51	2.63E+08 0.00E+00	5.26E+07 0.00E+00	5.26E+07 2.85E+04	5.26E+07 1.70E+04	5.26E+07 6.28E+03	5.26E+07 3.78E+04	5.26E+07 7.17E+06
MN-54	0.00E+00	8.40E+06	1.60E+06	0.00E+00	2.50E+06	0.00E+00	2.57E+07
FE-55	2.51E+07	8.40E+08 1.73E+07	4.04E+06	0.00E+00	0.00E+00	9.66E+06	9.93E+06
FE-59	2.97E+07	6.97E+07	2.67E+07	0.00E+00	0.00E+00	1.95E+07	2.32E+08
CO-58 CO-60	0.00E+00 0.00E+00	4.71E+06 1.64E+07	1.05E+07 3.61E+07	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	9.54E+07 3.08E+08
NI-63	6.72E+09	4.65E+08	2.25E+08	0.00E+00	0.00E+00	0.00E+00	9.71E+07
ZN-65	1.37E+09	4.36E+09	1.97E+09	0.00E+00	2.91E+09	0.00E+00	2.74E+09
RB-86	0.00E+00	2.59E+09 0.00E+00	1.21E+09 4.16E+07	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	5.10E+08 2.32E+08
SR-89	1.45E+09						
SR-90 Y-91	4.67E+10 8.57E+03	0.00E+00 0.00E+00	1.15E+10 2.29E+02	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	1.35E+09 4.72E+06
ZR-95	9.41E+02	3.02E+02	2.04E+02	0.00E+00	4.74E+02	0.00E+00	9.57E+05
NB-95	8.24E+04	4.58E+04	2.46E+04	0.00E+00	4.53E+04	0.00E+00	2.78E+08
RU-103 RU-106	1.02E+03 2.04E+04	0.00E+00 0.00E+00	4.38E+02 2.58E+03	0.00E+00 0.00E+00	3.88E+03 3.93E+04	0.00E+00 0.00E+00	1.19E+05 1.32E+06
AG-110M	5.81E+07	5.38E+07	3.19E+07	0.00E+00	1.06E+08	0.00E+00	2.19E+10
TE-125M	1.63E+07	5.89E+06	2.18E+06	4.89E+06	6.61E+07	0.00E+00	6.49E+07
TE-127M	4.57E+07	1.63E+07	5.57E+06	1.17E+07	1.86E+08	0.00E+00	1.53E+08
TE-129M I-131	6.01E+07 2.96E+08	2.24E+07 4.23E+08	9.51E+06 2.42E+08	2.06E+07 1.39E+11	2.51E+08 7.25E+08	0.00E+00 0.00E+00	3.02E+08 1.12E+08
I-133	3.87E+06	6.73E+06	2.05E+06	9.88E+08	1.17E+07	0.00E+00	6.04E+06
CS-134	5.64E+09	1.34E+10	1.10E+10	0.00E+00	4.34E+09	1.44E+09	2.35E+08
CS-136 CS-137	2.63E+08 7.37E+09	1.04E+09 1.01E+10	7.48E+08 6.60E+09	0.00E+00 0.00E+00	5.78E+08 3.42E+09	7.92E+07 1.14E+09	1.18E+08 1.95E+08
BA-140	2.69E+07	3.38E+04	1.76E+06	0.00E+00	1.15E+04	1.94E+04	5.54E+07
CE-141	4.84E+03	3.27E+03	3.71E+02	0.00E+00	1.52E+03	0.00E+00	1.25E+07
CE-144	3.57E+05	1.49E+05	1.92E+04	0.00E+00	8.85E+04	0.00E+00	1.21E+08
PR-143	1.57E+02	6.32E+01	7.81E+00	0.00E+00	3.65E+01	0.00E+00	6.90E+05
ND-147	9.40E+01	1.09E+02	6.50E+00	0.00E+00	6.35E+01	0.00E+00	5.22E+05

AGE GROUP: ADULT PATHWAY: GRASS-COW-MILK

		Number
	TMI - Unit 1 Radiological Controls Procedure	661 <u>0-P</u> LN-4200.01
Title		Revision No.
Offsite Dose Calculation M	anuai (ODCM)	25

TABLE 5.5.1

Pathway Dose Factors, Ri

AGE GROUP: INFANT PATHWAY: GRASS-GOAT-MILK

	}	ORGAN	I DOSE FAC	TORS; m ² - r	nrem/year pe	er μCi/sec	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LL!
H-3	0.00E+00	4.86E+03	4.86E+03	4.86E+03	4.86E+03	4.86E+03	4.86E+03
C-14	2.34E+09	5.00E+08	5.00E+08	5.00E+08	5.00E+08	5.00E+08	5.00E+08
CR-51	0.00E+00	0.00E+00	1.94E+04	1.26E+04	2.76E+03	2.46E+04	5.64E+05
MN-54	0.00E+00	4.68E+06	1.06E+06	0.00E+00	1.04E+06	0.00E+00	1.72E+06
FE-55	1.76E+06	1.14E+06	3.03E+05	0.00E+00	0.00E+00	5.55E+05	1.44E+05
FE-59	2.92E+06	5.10E+06	2.01E+06	0.00E+00	0.00E+00	1.51E+06	2.44E+06
CO-58	0.00E+00	2.91E+06	7.26E+06	0.00E+00	0.00E+00	0.00E+00	7.25E+06
CO-60	0.00E+00	1.06E+07	2.50E+07	0.00E+00	0.00E+00	0.00E+00	2.52E+07
NI-63	4.19E+09	2.59E+08	1.46E+08	0.00E+00	0.00E+00	0.00E+00	1.29E+07
ZN-65	6.67E+08	2.29E+09	1.05E+09	0.00E+00	1.11E+09	0.00E+00	1.93E+09
RB-86	0.00E+00	2.67E+09	1.32E+09	0.00E+00	0.00E+00	0.00E+00	6.83E+07
SR-89	2.65E+10	0.00E+00	7.59E+08	0.00E+00	0.00E+00	0.00E+00	5.44E+08
SR-90	2.55E+11	0.00E+00	6.50E+10	0.00E+00	0.00E+00	0.00E+00	3.19E+09
Y-91	8.80E+03	0.00E+00	2.34E+02	0.00E+00	0.00E+00	0.00E+00	6.31E+05
ZR-95	8.17E+02	1.99E+02	1.41E+02	0.00E+00	2.15E+02	0.00E+00	9.91E+04
NB-95	7.13E+04	2.93E+04	1.70E+04	0.00E+00	2.10E+04	0.00E+00	2.48E+07
RU-103	1.04E+03	0.00E+00	3.48E+02	0.00E+00	2.17E+03	0.00E+00	1.27E+04
RU-106	2.28E+04	0.00E+00	2.85E+03	0.00E+00	2.70E+04	0.00E+00	1.73E+05
AG-110M	4.63E+07	3.38E+07	2.24E+07	0.00E+00	4.84E+07	0.00E+00	1.75E+09
TE-125M	1.81E+07	6.05E+06	2.45E+06	6.09E+06	0.00E+00	0.00E+00	8.62E+06
TE-127M	5.06E+07	1.68E+07	6.12E+06	1.46E+07	1.24E+08	0.00E+00	2.04E+07
TE-129M	6.69E+07	2.29E+07	1.03E+07	2.57E+07	1.67E+08	0.00E+00	3.99E+07
I-131	3.27E+09	3.85E+09	1.69E+09	1.27E+12	4.50E+09	0.00E+00	1.37E+08
I-133	4.36E+07	6.35E+07	1.86E+07	1.15E+10	7.46E+07	0.00E+00	1.07E+07
CS-134	1.09E+11	2.04E+11	2.06E+10	0.00E+00	5.26E+10	2.15E+10	5.55E+08
CS-136	5.94E+09	1.75E+10	6.52E+09	0.00E+00	6.96E+09	1.42E+09	2.65E+08
CS-137	1.54E+11	1.81E+11	1.28E+10	0.00E+00	4.85E+10	1.96E+10	5.65E+08
BA-140	2.90E+07	2.90E+04	1.50E+06	0.00E+00	6.89E+03	1.78E+04	7.13E+06
CE-141	5.21E+03	3.18E+03	3.74E+02	0.00E+00	9.79E+02	0.00E+00	1.64E+06
CE-144	2.79E+05	1.14E+05	1.56E+04	0.00E+00	4.62E+04	0.00E+00	1.60E+07
PR-143	1.78E+02	6.66E+01	8.83E+00	0.00E+00	2.48E+01	0.00E+00	9.40E+04
ND-147	1.06E+02	1.09E+02	6.66E+00	0.00E+00	4.19E+01	0.00E+00	6.89E+04

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	25	

TABLE 5.5.2

Pathway Dose Factors, Ri

NUCLIDE			DOSE FAC				
	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	3.20E+03	3.20E+03	3.20E+03	3.20E+03	3.20E+03	3.20E+03
C-14 CR-51	1.20E+09 0.00E+00	2.39E+08 0.00E+00	2.39E+08 1.22E+04	2.39E+08 6.78E+03	2.39E+08 1.85E+03	2.39E+08 1.24E+04	2.39E+08 6.48E+05
MN-54	0.00E+00	2.52E+06	6.71E+05	0.00E+00	7.06E+05	0.00E+00	2.11E+06
FE-55 FE-59	1.45E+06 1.56E+06	7.71E+05 2.53E+06	2.39E+05 1.26E+06	0.00E+00 0.00E+00	0.00E+00 0.00E+00	4.36E+05 7.34E+05	1.43E+05 2.64E+06
CO-58 CO-60	0.00E+00 0.00E+00	1.46E+06 5.18E+06	4.46E+06 1.53E+07	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	8.49E+06 2.87E+07
NI-63	3.56E+09	1.91E+08	1.21E+08	0.00E+00	0.00E+00	0.00E+00	1.28E+07
		4.205.00		0.000.00			0.005.00
ZN-65 RB-86	4.96E+08 0.00E+00	1.32E+09 1.05E+09	8.22E+08 6.47E+08	0.00E+00 0.00E+00	8.33E+08 0.00E+00	0.00E+00 0.00E+00	2.32E+08 6.77E+07
SR-89	1.39E+10	0.00E+00	3.97E+08	0.00E+00	0.00E+00	0.00E+00	5.39E+08
SR-90	2.35E+11	0.00E+00	5.95E+10	0.00E+00	0.00E+00	0.00E+00	3.16E+09
Y-91	4.69E+03	0.00E+00	1.25E+02	0.00E+00	0.00E+00	0.00E+00	6.24E+05
ZR-95	4.60E+02	1.01E+02	9.00E+01	0.00E+00	1.45E+02	0.00E+00	1.05E+05
NB-95	3.82E+04	1.49E+04	1.06E+04	0.00E+00	1.40E+04	0.00E+00	2.75E+07
RU-103	5.14E+02	0.00E+00	1.98E+02	0.00E+00	1.29E+03	0.00E+00	1.33E+04
RU-106	1.11E+04	0.00E+00	1.38E+03	0.00E+00	1.50E+04	0.00E+00	1.73E+05
AG-110M	2.51E+07	1.69E+07	1.35E+07	0.00E+00	3.15E+07	0.00E+00	2.01E+09
TE-125M	8.86E+06	2.40E+06	1.18E+06	2.49E+06	0.00E+00	0.00E+00	8.55E+06
TE-127M	2.50E+07	6.72E+06	2.96E+06	5.97E+06	7.12E+07	0.00E+00	2.02E+07
TE-129M	3.26E+07	9.10E+06	5.06E+06	1.05E+07	9.56E+07	0.00E+00	3.97E+07
1-131	1.57E+09	1.57E+09	8.95E+08	5.21E+11	2.58E+09	0.00E+00	1.40E+08
I-133	2.06E+07	2.55E+07	9.66E+06	4.74E+09	4.25E+07	0.00E+00	1.03E+07
CS-134	6.80E+10	1.12E+11	2.35E+10	0.00E+00	3.46E+10	1.24E+10	6.01E+08
CS-136 CS-137	3.04E+09 9.68E+10	8.36E+09 9.26E+10	5.41E+09 1.37E+10	0.00E+00 0.00E+00	4.45E+09 3.02E+10	6.64E+08 1.09E+10	2.94E+08 5.80E+08
	9.0000+10	9.202+10	1.37 E+ 10	U.00E+00	3.022+10	1.092+10	J.502+08
BA-140	1.41E+07	1.24E+04	8.23E+05 1.95E+02	0.00E+00	4.02E+03	7.37E+03	7.15E+06
CE-141 CE-144	2.63E+03 1.95E+05	1.31E+03 6.11E+04	1.95E+02 1.04E+04	0.00E+00 0.00E+00	5.74E+02 3.38E+04	0.00E+00 0.00E+00	1.63E+06 1.59E+07
PR-143	8.61E+01	2.59E+01	4.27E+00	0.00E+00	1.40E+01	0.00E+00	9.29E+04
ND-147	5.34E+01	4.33E+01	3.35E+00	0.00E+00	2.37E+01	0.00E+00	6.85E+04

AGE GROUP: CHILD PATHWAY: GRASS-GOAT-MILK

TMI - Unit 1 Number Title 6610-PLN-4200.01 Title Revision No. Offsite Dose Calculation Manual (ODCM) 25

TABLE 5.5.3

Pathway Dose Factors, Ri

AGE GROUP: TEEN PATHWAY: GRASS-GOAT-MILK

	ORGAN DOSE FACTORS; m ² - mrem/year per μCi/sec						
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.04E+03	2.04E+03	2.04E+03	2.04E+03	2.04E+03	2.04E+03
C-14	4.86E+08	9.72E+07	9.72E+07	9.72E+07	9.72E+07	9.72E+07	9.72E+07
CR-51	0.00E+00	0.00E+00	5.99E+03	3.33E+03	1.31E+03	8.55E+03	1.01E+06
MN-54	0.00E+00	1.68E+06	3.34E+05	0.00E+00	5.02E+05	0.00E+00	3.45E+06
FE-55	5.79E+05	4.11E+05	9.58E+04	0.00E+00	0.00E+00	2.61E+05	1.78E+05
FE-59	6.74E+05	1.57E+06	6.08E+05	0.00E+00	0.00E+00	4.96E+05	3.72E+06
CO-58	0.00E+00	9.53E+05	2.20E+06	0.00E+00	0.00E+00	0.00E+00	1.31E+07
CO-60	0.00E+00	3.34E+06	7.52E+06	0.00E+00	0.00E+00	0.00E+00	4.35E+07
NI-63	1.42E+09	1.00E+08	4.81E+07	0.00E+00	0.00E+00	0.00E+00	1.60E+07
ZN-65	2.53E+08	8.78E+08	4.10E+08	0.00E+00	5.62E+08	0.00E+00	3.72E+08
RB-86	0.00E+00	5.67E+08	2.67E+08	0.00E+00	0.00E+00	0.00E+00	8.40E+07
SR-89	5.62E+09	0.00E+00	1.61E+08	0.00E+00	0.00E+00	0.00E+00	6.69E+08
SR-90	1.39E+11	0.00E+00	3.43E+10	0.00E+00	0.00E+00	0.00E+00	3.90E+09
Y-91	1.90E+03	0.00E+00	5.09E+01	0.00E+00	0.00E+00	0.00E+00	7.78E+05
ZR-95	1.98E+02	6.25E+01	4.30E+01	0.00E+00	9.18E+01	0.00E+00	1.44E+05
NB-95	1.69E+04	9.38E+03	5.16E+03	0.00E+00	9.09E+03	0.00E+00	4.01E+07
RU-103	2.17E+02	0.00E+00	9.29E+01	0.00E+00	7.66E+02	0.00E+00	1.82E+04
RU-106	4.50E+03	0.00E+00	5.68E+02	0.00E+00	8.69E+03	0.00E+00	2.16E+05
AG-110M	1.16E+07	1.09E+07	6.65E+06	0.00E+00	2.09E+07	0.00E+00	3.07E+09
TE-125M	3.61E+06	1.30E+06	4.82E+05	1.01E+06	0.00E+00	0.00E+00	1.06E+07
TE-127M	1.01E+07	3.59E+06	1.20E+06	2.41E+06	4.11E+07	0.00E+00	2.52E+07
TE-129M	1.32E+07	4.90E+06	2.09E+06	4.26E+06	5.53E+07	0.00E+00	4.96E+07
I-131	6.45E+08	9.03E+08	4.85E+08	2.64E+11	1.56E+09	0.00E+00	1.79E+08
I-133	8.49E+06	1.44E+07	4.40E+06	2.01E+09	2.53E+07	0.00E+00	1.09E+07
CS-134	2.95E+10	6.93E+10	3.22E+10	0.00E+00	2.20E+10	8.41E+09	8.62E+08
CS-136	1.35E+09	5.30E+09	3.56E+09	0.00E+00	2.89E+09	4.55E+08	4.27E+08
CS-137	4.02E+10	5.34E+10	1.86E+10	0.00E+00	1.82E+10	7.07E+09	7.60E+08
BA-140	5.84E+06	7.16E+03	3.76E+05	0.00E+00	2.43E+03	4.81E+03	9.01E+06
CE-141	1.07E+03	7.12E+02	8.18E+01	0.00E+00	3.35E+02	0.00E+00	2.04E+06
CE-144	7.90E+04	3.27E+04	4.25E+03	0.00E+00	1.95E+04	0.00E+00	1.99E+07
PR-143	3.48E+01	1.39E+01	1.73E+00	0.00E+00	8.08E+00	0.00E+00	1.15E+05
ND-147	2.18E+01	2.37E+01	1.42E+00	0.00E+00	1.39E+01	0.00E+00	8.54E+04

	· · ·	Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calcula	25	

TABLE 5.5.4

Pathway Dose Factors, Ri

NUCLIDE		ORGAN	DOSE FAC	TORS; m ² - n	nrem/year p	er μCi/sec	
	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	1.56E+03	1.56E+03	1.56E+03	1.56E+03	1.56E+03	1.56E+03
°C-14 CR-51	2.64E+08 0.00E+00	5.27E+07 0.00E+00	5.27E+07 3.43E+03	5.27E+07 2.05E+03	5.27E+07 7.56E+02	5.27E+07 4.55E+03	5.27E+07 8.63E+05
·							
MN-54 FE-55	0.00E+00 3.27E+05	1.01E+06 2.26E+05	1.93E+05 5.26E+04	0.00E+00 0.00E+00	3.01E+05 0.00E+00	0.00E+00 1.26E+05	3.10E+06 1.30E+05
FE-59	3.87E+05	9.09E+05	3.48E+05	0.00E+00	0.00E+00	2.54E+05	3.03E+06
CO-58	0.00E+00	5.66E+05	1.27E+06	0.00E+00	0.00E+00	0.00E+00	1.15E+07
CO-60	0.00E+00	1.97E+06	4.35E+06	0.00E+00	0.00E+00	0.00E+00	3.70E+07
NI-63	8.08E+08	5.60E+07	2.71E+07	0.00E+00	0.00E+00	0.00E+00	1.17E+07
ZN-65	1.65E+08	5.24E+08	2.37E+08	0.00E+00	3.51E+08	0.00E+00	3.30E+08
RB-86	0.00E+00	3.12E+08	1.45E+08	0.00E+00	0.00E+00	0.00E+00	6.14E+07
SR-89	3.05E+09	0.00E+00	8.76E+07	0.00E+00	0.00E+00	0.00E+00	4.89E+08
SR-90	9.84E+10	0.00E+00	2.41E+10	0.00E+00	0.00E+00	0.00E+00	2.84E+09
Y-91 ZR-95	1.03E+03 1.13E+02	0.00E+00 3.63E+01	2.76E+01 2.46E+01	0.00E+00 0.00E+00	0.00E+00 5.70E+01	0.00E+00 0.00E+00	5.68E+05 1.15E+05
		5 505 02		0.005.00			
NB-95 RU-103	9.92E+03 1.22E+02	5.52E+03 0.00E+00	2.97E+03 5.27E+01	0.00E+00 0.00E+00	5.45E+03 4.67E+02	0.00E+00 0.00E+00	3.35E+07 1.43E+04
RU-106	2.45E+03	0.00E+00	3.10E+02	0.00E+00	4.73E+03	0.00E+00	1.59E+05
AG-110M	6.99E+06	6.47E+06	3.84E+06	0.00E+00	1.27E+07	0.00E+00	2.64E+09
TE-125M	1.96E+06	7.09E+05	2.62E+05	5.89E+05	7.96E+06	0.00E+00	7.81E+06
TE-127M	5.50E+06	1.97E+06	6.70E+05	1.41E+06	2.23E+07	0.00E+00	1.84E+07
TE-129M	7.23E+06	2.70E+06	1.14E+06	2.48E+06	3.02E+07	0.00E+00	3.64E+07
I-131 I-133	3.56E+08 4.65E+06	5.09E+08 8.10E+06	2.92E+08 2.47E+06	1.67E+11 1.19E+09	8.73E+08 1.41E+07	0.00E+00 0.00E+00	1.34E+08 7.28E+06
CS-134 CS-136	1.70E+10 7.92E+08	4.04E+10 3.13E+09	3.30E+10 2.25E+09	0.00E+00 0.00E+00	1.31E+10 1.74E+09	4.34E+09 2.38E+08	7.07E+08 3.55E+08
CS-137	2.22E+10	3.03E+10	1.99E+10	0.00E+00	1.03E+10	3.42E+09	5.87E+08
BA-140	3.24E+06	4.07E+03	2.12E+05	0.00E+00	1.38E+03	2.33E+03	6.67E+06
CE-141	5.82E+02	3.94E+02	4.47E+01	0.00E+00	1.83E+02	0.00E+00	1.51E+06
CE-144	4.30E+04	1.80E+04	2.31E+03	0.00E+00	1.07E+04	0.00E+00	1.45E+07
PR-143	1.90E+01	7.60E+00	9.40e-01	0.00E+00	4.39E+00	0.00E+00	8.30E+04
ND-147	1.13E+01	1.31E+01	7.82e-01	0.00E+00	7.65E+00	0.00E+00	6.28E+04
							· · · · ·

AGE GROUP: ADULT PATHWAY: GRASS-GOAT-MILK

TMI - Unit 1 Radiological Controls Procedure

Number

6610-PLN-4200.01 Revision No.

25

Offsite Dose Calculation Manual (ODCM)

Title

TABLE 5.6.1

Pathway Dose Factors, Ri

AGE GROUP: INFANT PATHWAY: GRASS-COW-MEAT

NUCLIDE]	ORGAN	DOSE FAC	TORS; m ² - r	nrem/year p	er μCi/sec	** ** ** ** ** ** ** ** ** ** **
	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3 C-14	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
CR-51	0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
MN-54	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-56 FE-59	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
CO-58	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NI-63	.0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ZN-65 RB-86	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
SR-89	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SR-90	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Y-91 ZR-95	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
NB-95	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RU-103	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RU-106	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
AG-110M TE-125M	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
TE-127M	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TE-129M	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131 I-133	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
CS-134	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-136	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-137	0.00E+00	0.00€+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BA-140 CE-141	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
CE-144	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PR-143	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0D	0.00E+00
ND-147	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

Offsite Dose Calculation Manual (ODCM)

TABLE 5.6.2

Pathway Dose Factors, Ri

NUCLIDE				TORS; m ² - n			
	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.34E+02	2.34E+02	2.34E+02	2.34E+02	2.34E+02	2.34E+02
C-14 CR-51	3.84E+08 0.00E+00	7.67E+07 0.00E+00	7.67E+07 8.78E+03	7.67E+07 4.88E+03	7.67E+07 1.33E+03	7.67E+07 8.90E+03	7.67E+07 4.66E+05
MN-54 FE-55	0.00E+00 4.57E+08	8.01E+06 2.43E+08	2.13E+06 7.52E+07	0.00E+00 0.00E+00	2.25E+06 0.00E+00	0.00E+00 1.37E+08	6.73E+06 4.49E+07
FE-59	3.77E+08	6.10E+08	3.04E+08	0.00E+00	0.00E+00	1.77E+08	6.35E+08
 CO-58	0.00E+00	1.64E+07	5.03E+07	0.00E+00	0.00E+00	0.00E+00	9.58E+07
CO-60	0.00E+00	6.93E+07	2.04E+08	0.00E+00	0.00E+00	0.00E+00	3.84E+08
NI-63	2.91E+10	1.56E+09	9.91E+08	0.00E+00	0.00E+00	0.00E+00	1.05E+08
ZN-65	3.76E+08	1.00E+09	6.22E+08	0.00E+00	6.31E+08	0.00E+00	1.76E+08
RB-86	0.00E+00	5.76E+08	3.54E+08	0.00E+00	0.00E+00	0.00E+00	3.71E+07
SR-89	4.82E+08	0.00E+00	1.38E+07	0.00E+00	0.00E+00	0.00E+00	1.87E+07
SR-90	1.04E+10	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	1.40E+08
Y-91 ZR-95	1.80E+06 2.66E+06	0.00E+00 5.86E+05	4.82E+04 5.21E+05	0.00E+00 0.00E+00	0.00E+00 8.38E+05	0.00E+00 0.00E+00	2.40E+08 6.11E+08
NB-95 RU-103	3.10E+06 1.55E+08	1.21E+06 0.00E+00	8.63E+05 5.96E+07	0.00E+00 0.00E+00	1.13E+06 3.90E+08	0.00E+00 0.00E+00	2.23E+09 4.01E+09
RU-106	4.44E+09	0.00E+00	5.54E+08	0.00E+00	6.00E+09	0.00E+00	6.91E+10
AG-110M	8.39E+06	5.67E+06	4.53E+06	0.00E+00	1.06E+07	0.00E+00	6.74E+08
TE-125M	5.69E+08	1.54E+08	7.59E+07	1.60E+08	0.00E+00	0.00E+00	5.49E+08
TE-127M	1.78E+09	4.78E+08	2.11E+08	4.25E+08	5.06E+09	0.00E+00	1.44E+09
TE-129M	1.79E+09	5.00E+08	2.78E+08	5.77E+08	5.26E+09	0.00E+00	2.18E+09
I-131	1.66E+07	1.67E+07	9.48E+06	5.52E+09	2.74E+07	0.00E+00	1.48E+06
I-133	5.72e-01	7.08e-01	2.68e-01	1.31E+02	1.18E+00	0.00E+00	2.85e-01
CS-134	9.23E+08	1.51E+09	3.19E+08	0.00E+00	4.69E+08	1.68E+08	8.16E+06
CS-136 CS-137	1.63E+07 1.33E+09	4.48E+07 1.28E+09	2.90E+07 1.89E+08	0.00E+00 0.00E+00	2.39E+07 4.16E+08	3.56E+06 1.50E+08	1.57E+06 8.00E+06
BA-140 CE-141	4.42E+07 2.22E+04	3.87E+04 1.11E+04	2.58E+06 1.65E+03	0.00E+00 0.00E+00	1.26E+04 4.86E+03	2.31E+04 0.00E+00	2.24E+07 1.38E+07
CE-144	2.32E+06	7.26E+05	1.24E+05	0.00E+00	4.02E+05	0.00E+00	1.89E+08
PR-143 ND-147	3.33E+04 1.17E+04	1.00E+04 9.48E+03	1.65E+03 7.34E+02	0.00E+00 0.00E+00	5.42E+03 5.20E+03	0.00E+00 0.00E+00	3.60E+07 1.50E+07
	1.17 - 104	0.402-000	r.0∓∟•02		0.201.00	0.002700	

AGE GROUP: CHILD PATHWAY: GRASS-COW-MEAT

TMI - Unit 1 Radiological Controls Procedure

Number

Title

6610-PLN-4200.01 Revision No.

25

Offsite Dose Calculation Manual (ODCM)

TABLE 5.6.3

Pathway Dose Factors, Ri

AGE GROUP: TEEN PATHWAY: GRASS-COW-MEAT

NUCLIDE]	ORGAN DOSE FACTORS; m ² - mrem/year per µCi/sec						
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI	
H-3 C-14	0.00E+00 2.04E+08	1.93E+02 4.08E+07	1.93E+02 4.08E+07	1.93E+02 4.08E+07	1.93E+02 4.08E+07	1.93E+02 4.08E+07	1.93E+02 4.08E+07	
CR-51	0.00E+00	0.00E+00	5.63E+03	3.13E+03	1.23E+03	8.03E+03	9.46E+05	
MN-54	0.00E+00	7.00E+06	1.39E+06	0.00E+00	2.09E+06	0.00E+00	1.44E+07	
FE-55 FE-59	2.38E+08 2.12E+08	1.69E+08 4.95E+08	3.94E+07 1.91E+08	0.00E+00 0.00E+00	0.00E+00 0.00E+00	1.07E+08 1.56E+08	7.31E+07 1.17E+09	
CO-58	0.00E+00	1.40E+07	3.24E+07	0.00E+00	0.00E+00	0.00E+00	1.94E+08	
CO-60 NI-63	0.00E+00 1.52E+10	5.83E+07 1.07E+09	1.31E+08 5.15E+08	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	7.60E+08 1.71E+08	
ZN-65	2.50E+08	8.68E+08	4.05E+08	0.00E+00	5.56E+08	0.00E+00	3.68E+08	
RB-86 SR-89	0.00E+00 2.55E+08	4.06E+08 0.00E+00	1.91E+08 7.29E+06	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	6.00E+07 3.03E+07	
SR-90	8.04E+09	0.00E+00	1.99E+09	0.00E+00	0.00E+00	0.00E+00	2.26E+08	
Y-91 ZR-95	9.54E+05 1.50E+06	0.00E+00 4.73E+05	2.56E+04 3.25E+05	0.00E+00 0.00E+00	0.00E+00 6.95E+05	0.00E+00 0.00E+00	3.91E+08 1.09E+09	
NB-95.	1.79E+06	9.95E+05	5.48E+05	0.00E+00	9.64E+05	0.00E+00	4.25E+09	
RU-103 RU-106	8.56E+07 2.36E+09	0.00E+00 0.00E+00	3.66E+07 2.97E+08	0.00E+00 0.00E+00	3.02E+08 4.54E+09	0.00E+00 0.00E+00	7.15E+09 1.13E+11	
AG-110M	5.06E+06	4.78E+06	2.91E+06	0.00E+00	9.13E+06	0.00E+00	1.34E+09	
TE-125M TE-127M	3.03E+08 9.41E+08	1.09E+08 3.34E+08	4.05E+07 1.12E+08	8.46E+07 2.24E+08	0.00E+00 3.81E+09	0.00E+00 0.00E+00	8.94E+08 2.35E+09	
TE-129M	9.49E+08	3.52E+08	1.50E+08	3.06E+08	3.97E+09	0.00E+00	3.56E+09	
l-131 l-133	8.93E+06 3.08e-01	1.25E+07 5.22e-01	6.72E+06 1.59e-01	- 3.65E+09 7.29E+01	2.15E+07 9.16 e -01	0.00E+00 0.00E+00	2.47E+06 3.95 e -01	
CS-134	5.23E+08	1.23E+09	5.71E+08	0.00E+00	3.91E+08	1.49E+08	1.53E+07	
CS-136 CS-137	9.43E+06 7.24E+08	3.71E+07 9.63E+08	2.49E+07 3.35E+08	0.00E+00 0.00E+00	2.02E+07 3.28E+08	3.18E+06 1.27E+08	2.99E+06 1.37E+07	
BA-140	2.39E+07	2.93E+04	1.54E+06	0.00E+00	9.94E+03	1.97E+04	3.69E+07	
CE-141 CE-144	1.18E+04 1.23E+06	7.87E+03 5.08E+05	9.05E+02 6.60E+04	0.00E+00 0.00E+00	3.71E+03 3.03E+05	0.00E+00 0.00E+00	2.25E+07 3.09E+08	
PR-143	1.76E+04	7.03E+03	8.76E+02	0.00E+00	4.08E+03	0.00E+00	5.79E+07	
ND-147	6.23E+03	6.78E+03	4.06E+02	0.00E+00	3.98E+03	0.00E+00	2.44E+07	

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.

Offsite Dose Calculation Manual (ODCM)

TABLE 5.6.4

25

Pathway Dose Factors, Ri

AGE GROUP: ADULI PATHWAT, GRASS-COVI-IVIEAT							
NUCLIDE	ORGAN DOSE FACTORS; m ² - mrem/year per µCi/sec						
	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	3.24E+02	3.24E+02	3.24E+02	3.24E+02	3.24E+02	3.24E+02
C-14 CR-51	2.42E+08 0.00E+00	4.83E+07 0.00E+00	4.83E+07 7.04E+03	4.83E+07 4.21E+03	4.83E+07 1.55E+03	4.83E+07 9.35E+03	4.83E+07 1.77E+06
MN-54 FE-55	0.00E+00 2.93E+08	9.18E+06 2.03E+08	1.75E+06 4.73E+07	0.00E+00 0.00E+00	2.73E+06 0.00E+00	0.00E+00 1.13E+08	2.81E+07 1.16E+08
FE-59	2.66E+08	6.25E+08	2.39E+08	0.00E+00	0.00E+00	1.75E+08	2.08E+09
CO-58	0.00E+00	1.82E+07	4.09E+07	0.00E+00	0.00E+00	0.00E+00	3.70E+08
CO-60 NI-63	0.00E+00 1.89E+10	7.52E+07 1.31E+09	1.66E+08 6.33E+08	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	1.41E+09 2.73E+08
ZN-65 RB-86	3.56E+08 0.00E+00	1.13E+09 4.87E+08	5.12E+08 2.27E+08	0.00E+00 0.00E+00	7.57E+08 0.00E+00	0.00E+00 0.00E+00	7.13E+08 9.59E+07
SR-89	3.02E+08	0.00E+00	8.66E+06	0.00E+00	0.00E+00	0.00E+00	4.84E+07
SR-90	1.24E+10	0.00E+00	3.05E+09	0.00E+00	0.00E+00	0.00E+00	3.60E+08
Y-91	1.13E+06	0.00E+00 6.01E+05	3.03E+04	0.00E+00 0.00E+00	0.00E+00 9.43E+05	0.00E+00	6.24E+08
ZR-95	1.87E+06		4.07E+05			0.00E+00	1.90E+09
NB-95 RU-103	2.30E+06 1.05E+08	1.28E+06 0.00E+00	6.87E+05 4.53E+07	0.00E+00 0.00E+00	1.26E+06 4.02E+08	0.00E+00 0.00E+00	7.76E+09 1.23E+10
RU-106	2.80E+09	0.00E+00	3.54E+08	0.00E+00	5.41E+09	0.00E+00	1.81E+11
AG-110M	6.68E+06	6.18E+06	3.67E+06	0.00E+00	1.22E+07	0.00E+00	2.52E+09
TE-125M	3.59E+08	1.30E+08	4.81E+07	1.08E+08	1.46E+09	0.00E+00	1.43E+09
TE-127M	1.12E+09	3.99E+08	1.36E+08	2.85E+08	4.53E+09	0.00E+00	3.74E+09
TE-129M	1.13E+09 1.08E+07	4.23E+08 1.54E+07	1.79E+08 8.82E+06	3.89E+08 5.04E+09	4.73E+09 2.64E+07	0.00E+00 0.00E+00	5.71E+09 4.06E+06
(-131 -133	1.08≞+07 3.68e-01	6.41e-01	1.95e-01	9.42E+01	1.12E+00	0.00E+00	4.00E+00 5.76e-01
CS-134	6.58E+08	1.57E+09	1.28E+09	0.00E+00	5.07E+08	1.68E+08	2.74E+07
CS-136	1.21E+07	4.78E+07	3.44E+07	0.00E+00	2.66E+07	3.65E+06	5.43E+06
CS-137	8.72E+08	1.19E+09	7.82E+08	0.00E+00	4.05E+08	1.35E+08	2.31E+07
BA-140	2.90E+07	3.64E+04 9.51E+03	1.90E+06 1.08E+03	0.00E+00	1.24E+04 4.42E+03	2.08E+04	5.96E+07
CE-141 CE-144	1.41E+04 1.46E+06	9.51E+03 6.10E+05	7.83E+03	0.00E+00 0.00E+00	4.42E+03 3.62E+05	0.00E+00 0.00E+00	3.64E+07 4.93E+08

PR-143 ND-147	2.09E+04 7.08E+03	8.40E+03 8.18E+03	1.04E+03 4.90E+02	0.00E+00 0.00E+00	4.85E+03 4.78E+03	0.00E+00 0.00E+00	9.17E+07 3.93E+07
		5.102.00					

AGE GROUP: ADULT PATHWAY: GRASS-COW-MEAT

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
		}

Offsite Dose Calculation Manual (ODCM)

TABLE 5.7.1

25

Pathway Dose Factors, Ri

AGE GROUP: INFANT	PATHWAY:	VEGETATION
-------------------	----------	------------

NUCLIDE	<u></u> ר	ORGAN	DOSE FAC	TORS; m ² - r	nrem/year p	er μCi/sec	
	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C-14	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CR-51	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MN-54	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-55	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-59	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-58	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NI-63	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ZN-65	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RB-86	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SR-89	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SR-90	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Y-91	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ZR-95	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NB-95	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RU-103	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RU-106	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
AG-110M	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TE-125M	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TE-127M	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TE-129M	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-133	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-134	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-136	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-137	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BA-140	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CE-141	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CE-144	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PR-143	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ND-147	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

TMI - Unit 1 Number Radiological Controls Procedure 6610-PLN-4200.01 Title Revision No.

Offsite Dose Calculation Manual (ODCM)

TABLE 5.7.2

25

Pathway Dose Factors, Ri

AGE GROUP:	CHILD	PATHWAY:	VEGETATION

)- 	ORGAN	DOSE FAC	TORS; m ² - n	nrem/year pe	er μCi/sec	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	4.02E+03	4.02E+03	4.02E+03	4.02E+03	4.02E+03	4.02E+03
C-14	8.89E+08	1.78E+08	1.78E+08	1.78E+08	1.78E+08	1.78E+08	1.78E+08
CR-51	0.00E+00	0.00E+00	1.17E+05	6.49E+04	1.77E+04	1.18E+05	6.20E+06
MN-54	0.00E+00	6.65E+08	1.77E+08	0.00E+00	1.86E+08	0.00E+00	5.58E+08
FE-55	8.01E+08	4.25E+08	1.32E+08	0.00E+00	0.00E+00	2.40E+08	7.87E+07
FE-59	3.98E+08	6.44E+08	3.21E+08	0.00E+00	0.00E+00	1.87E+08	6.71E+08
CO-58	0.00E+00	6.44E+07	1.97E+08	0.00E+00	0.00E+00	0.00E+00	3.76E+08
CO-60	0.00E+00	3.78E+08	1.12E+09	0.00E+00	0.00E+00	0.00E+00	2.10E+09
NI-63	3.95E+10	2.11E+09	1.34E+09	0.00E+00	0.00E+00	0.00E+00	1.42E+08
ZN-65	8.12E+08	2.16E+09	1.35E+09	0.00E+00	1.36E+09	0.00E+00	3.80E+08
RB-86	0.00E+00	-4.51E+08	2.77E+08	0.00E+00	0.00E+00	0.00E+00	2.90E+07
SR-89	3.60E+10	0.00E+00	1.03E+09	0.00E+00	0.00E+00	0.00E+00	1.39E+09
SR-90	1.24E+12	0.00E+00	3.15E+11	0.00E+00	0.00E+00	0.00E+00	1.67E+10
Y-91	1.87E+07	0.00E+00	4.99E+05	0.00E+00	0.00E+00	0.00E+00	2.49E+09
ZR-95	3.86E+06	8.48E+05	7.55E+05	0.00E+00	1.21E+06	0.00E+00	8.85E+08
NB-95	4.11E+05	1.60E+05	1.14E+05	0.00E+00	1.50E+05	0.00E+00	2.96E+08
RU-103	1.53E+07	0.00E+00	5.90E+06	0.00E+00	3.86E+07	0.00E+00	3.97E+08
RU-106	7.45E+08	0.00E+00	9.30E+07	0.00E+00	1.01E+09	0.00E+00	1.16E+10
AG-110M	3.21E+07	2.17E+07	1.73E+07	0.00E+00	4.04E+07	0.00E+00	2.58E+09
TE-125M	3.51E+08	9.50E+07	4.67E+07	9.84E+07	0.00E+00	0.00E+00	3.38E+08
TE-127M	1.32E+09	3.56E+08	1.57E+08	3.16E+08	3.77E+09	0.00E+00	1.07E+09
TE-129M	8.40E+08	2.35E+08	1.30E+08	2.71E+08	2.47E+09	0.00E+00	1.02E+09
I-131	1.43E+08	1.44E+08	8.18E+07	4.76E+10	2.36E+08	0.00E+00	1.28E+07
I-133	3.53E+06	4.37E+06	1.65E+06	8.12E+08	7.28E+06	0.00E+00	1.76E+06
CS-134	1.60E+10	2.63E+10	5.55E+09	0.00E+00	8.15E+09	2.93E+09	1.42E+08
CS-136	8.28E+07	2.28E+08	1.47E+08	0.00E+00	1.21E+08	1.81E+07	8.00E+06
CS-137	2.39E+10	2.29E+10	3.38E+09	0.00E+00	7.46E+09	2.68E+09	1.43E+08
BA-140	2.79E+08	2.44E+05	1.63E+07	0.00E+00	7.96E+04	1.46E+05	1.41E+08
CE-141	6.57E+05	3.28E+05	4.86E+04	0.00E+00	1.44E+05	0.00E+00	4.09E+08
CE-144	1.27E+08	3.99E+07	6.79E+06	0.00E+00	2.21E+07	0.00E+00	1.04E+10
PR-143	1.45E+05	4.36E+04	7.21E+03	0.00E+00	2.36E+04	0.00E+00	1.57E+08
ND-147	7.15E+04	5.79E+04	4.49E+03	0.00E+00	3.18E+04	0.00E+00	9.18E+07

Number TMI - Unit 1 Radiological Controls Procedure 6610-PLN-4200.01 Title Revision No. . 25

Offsite Dose Calculation Manual (ODCM)

TABLE 5.7.3

Pathway Dose Factors, Ri

AGE GROUP: TEEN PATHWAY: VEGETATION

	⁻ [ORGAN DOSE FACTORS; m ² - mrem/year per μCi/sec						
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI	
H-3	0.00E+00	2.59E+03	2.59E+03	2.59E+03	2.59E+03	2.59E+03	2.59E+03	
C-14	3.69E+08	7.38E+07	7.38E+07	7.38E+07	7.38E+07	7.38E+07	7.38E+07	
CR-51	0.00E+00	0.00E+00	6.16E+04	3.42E+04	1.35E+04	8.79E+04	1.03E+07	
MN-54	0.00E+00	4.54E+08	9.01E+07	0.00E+00	1.36E+08	0.00E+00	9.32E+08	
FE-55	3.26E+08	2.31E+08	5.39E+07	0.00E+00	0.00E+00	1.47E+08	1.00E+08	
FE-59	1.80E+08	4.19E+08	1.62E+08	0.00E+00	0.00E+00	1.32E+08	9.91E+08	
CO-58	0.00E+00	4.36E+07	1.01E+08	0.00E+00	0.00E+00	0.00E+00	6.01E+08	
CO-60	0.00E+00	2.49E+08	5.60E+08	0.00E+00	0.00E+00	0.00E+00	3.24E+09	
NI-63	1.61E+10	1.13E+09	5.45E+08	0.00E+00	0.00E+00	0.00E+00	1.81E+08	
ZN-65	4.24E+08	1.47E+09	6.86E+08	0.00E+00	9.42E+08	0.00E+00	6.23E+08	
RB-86	0.00E+00	2.73E+08	1.28E+08	0.00E+00	0.00E+00	0.00E+00	4.04E+07	
SR-89	1.52E+10	0.00E+00	4.34E+08	0.00E+00	0.00E+00	0.00E+00	1.80E+09	
SR-90	7.51E+11	0.00E+00	1.85E+11	0.00E+00	0.00E+00	0.00E+00	2.11E+10	
Y-91	7.84E+06	0.00E+00	2.10E+05	0.00E+00	0.00E+00	0.00E+00	3.22E+09	
ZR-95	1.72E+06	5.43E+05	3.73E+05	0.00E+00	7.98E+05	0.00E+00	1.25E+09	
NB-95	1.92E+05	1.07E+05	5.87E+04	0.00E+00	1.03E+05	0.00E+00	4.56E+08	
RU-103	6.82E+06	0.00E+00	2.92E+06	0.00E+00	2.41E+07	0.00E+00	5.70E+08	
RU-106	3.09E+08	0.00E+00	3.90E+07	0.00E+00	.5.97E+08	0.00E+00	1.48E+10	
AG-110M	1.52E+07	1.43E+07	8.72E+06	0.00E+00	2.74E+07	0.00E+00	4.03E+09	
TE-125M	1.48E+08	5.34E+07	1.98E+07	4.14E+07	0.00E+00	0.00E+00	4.37E+08	
TE-127M	5.52E+08	1.96E+08	6.56E+07	1.31E+08	2.24E+09	0.00E+00	1.37E+09	
TE-129M	3.61E+08	1.34E+08	5.72E+07	1.17E+08	1.51E+09	0.00E+00	1.36E+09	
I-131	7.69E+07	1.08E+08	5.78E+07	3.14E+10	1.85E+08	0.00E+00	2.13E+07	
I-133	1.94E+06	3.29E+06	1.00E+06	4.59E+08	5.77E+06	0.00E+00	2.49E+06	
CS-134	7.10E+09	1.67E+10	7.75E+09	0.00E+00	5.31E+09	2.03E+09	2.08E+08	
CS-136	4.39E+07	1.73E+08	1.16E+08	0.00E+00	9.41E+07	1.48E+07	1.39E+07	
CS-137	1.01E+10	1.35E+10	4.69E+09	0.00E+00	4.59E+09	1.78E+09	1.92E+08	
BA-140	1.39E+08	1.71E+05	8.97E+06	0.00E+00	5.78E+04	1.15E+05	2.15E+08	
CE-141	2.83E+05	1.89E+05	2.17E+04	0.00E+00	8.90E+04	0.00E+00	5.41E+08	
CE-144	5.28E+07	2.18E+07	2.83E+06	0.00E+00	1.30E+07	0.00E+00	1.33E+10	
PR-143	6.99E+04	2.79E+04	3.48E+03	0.00E+00	1.62E+04	0.00E+00	2.30E+08	
ND-147	3.62E+04	3.94E+04	2.36E+03	0.00E+00	2.31E+04	0.00E+00	1.42E+08	

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	25	

TABLE 5.7.4

Pathway Dose Factors, Ri

AGE GROUP: ADULT PATHWAY: VEGETATION

	<u></u>	ORGAN	DOSE FAC	TORS; m ² - n	nrem/year pa	er μCi/sec	
NUCLIDE	BONE	LIVER	T.BODY	THYROID	KIDNEY	LUNG	GI-LLI
H-3	0.00E+00	2.26E+03	2.26E+03	2.26E+03	2.26E+03	2.26E+03	2.26E+03
C-14	2.28E+08	4.55E+07	4.55E+07	4.55E+07	4.55E+07	4.55E+07	4.55E+07
CR-51	0.00E+00	0.00E+00	4.64E+04	2.77E+04	1.02E+04	6.15E+04	1.17E+07
MN-54	0.00E+00	3.13E+08	5.97E+07	0.00E+00	9.31E+07	0.00E+00	9.58E+08
FE-55	2.10E+08	1.45E+08	3.38E+07	0.00E+00	0.00E+00	8.08E+07	8.31E+07
FE-59	1.26E+08	2.97E+08	1.14E+08	0.00E+00	0.00E+00	8.29E+07	9.89E+08
CO-58	0.00E+00	3.07E+07	6.89E+07	0.00E+00	0.00E+00	0.00E+00	6.23E+08
CO-60	0.00E+00	1.67E+08	3.69E+08	0.00E+00	0.00E+00	0.00E+00	3.14E+09
NI-63	1.04E+10	7.21E+08	3.49E+08	0.00E+00	0.00E+00	0.00E+00	1.50E+08
ZN-65	3.17E+08	1.01E+09	4.56E+08	0.00E+00	6.75E+08	0.00E+00	6.36E+08
RB-86	0.00E+00	2.19E+08	1.02E+08	0.00E+00	0.00E+00	0.00E+00	4.32E+07
SR-89	9.98E+09	0.00E+00	2.86E+08	0.00E+00	0.00E+00	0.00E+00	1.60E+09
SR-90	6.05E+11	0.00E+00	1.48E+11	0.00E+00	0.00E+00	0.00E+00	1.75E+10
Y-91	5.12E+06	0.00E+00	1.37E+05	0.00E+00	0.00E+00	0.00E+00	2.82E+09
ZR-95	1.17E+06	3.77E+05	2.55E+05	0.00E+00	5.91E+05	0.00E+00	1.19E+09
NB-95	1.42E+05	7.92E+04	4.26E+04	0.00E+00	7.83E+04	0.00E+00	4.81E+08
RU-103	4.77E+06	0.00E+00	2.06E+06	0.00E+00	1.82E+07	0.00E+00	5.57E+08
RU-106	1.93E+08	0.00E+00	2.44E+07	0.00E+00	3.72E+08	0.00E+00	1.25E+10
AG-110M	1.05E+07	9.75E+06	5.79E+06	0.00E+00	1.92E+07	0.00E+00	3.98E+09
TE-125M	9.66E+07	3.50E+07	1.29E+07	2.90E+07	3.93E+08	0.00E+00	3.86E+08
TE-127M	3.49E+08	1.25E+08	4.26E+07	8.93E+07	1.42E+09	0.00E+00	1.17E+09
TE-129M	2.51E+08	9.37E+07	3.97E+07	8.63E+07	1.05E+09	0.00E+00	1.26E+09
I-131	8.08E+07	1.16E+08	6.62E+07	3.79E+10	1.98E+08	0.00E+00	3.05E+07
I-133	2.09E+06	3.63E+06	1.11E+06	5.34E+08	6.33E+06	0.00E+00	3.26E+06
CS-134	4.67E+09	1.11E+10	9.08E+09	0.00E+00	3.59E+09	1.19E+09	1.94E+08
CS-136	4.28E+07	1.69E+08	1.22E+08	0.00E+00	9.41E+07	1.29E+07	1.92E+07
CS-137	6.36E+09	8.70E+09	5.70E+09	0.00E+00	2.95E+09	9.81E+08	1.68E+08
BA-140	1.29E+08	1.62E+05	8.47E+06	0.00E+00	5.52E+04	9.29E+04	2.66E+08
CE-141	1.97E+05	1.33E+05	1.51E+04	0.00E+00	6.20E+04	0.00E+00	5.10E+08
CE-144	3.29E+07	1.38E+07	1.77E+06	0.00E+00	8.16E+06	0.00E+00	1.11E+10
PR-143	6.25E+04	2.51E+04	3.10E+03	0.00E+00	1.45E+04	0.00E+00	2.74E+08
ND-147	3.34E+04	3.85E+04	2.31E+03	0.00E+00	2.25E+04	0.00E+00	1.85E+08

Number

Revision No.

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01

25

Title

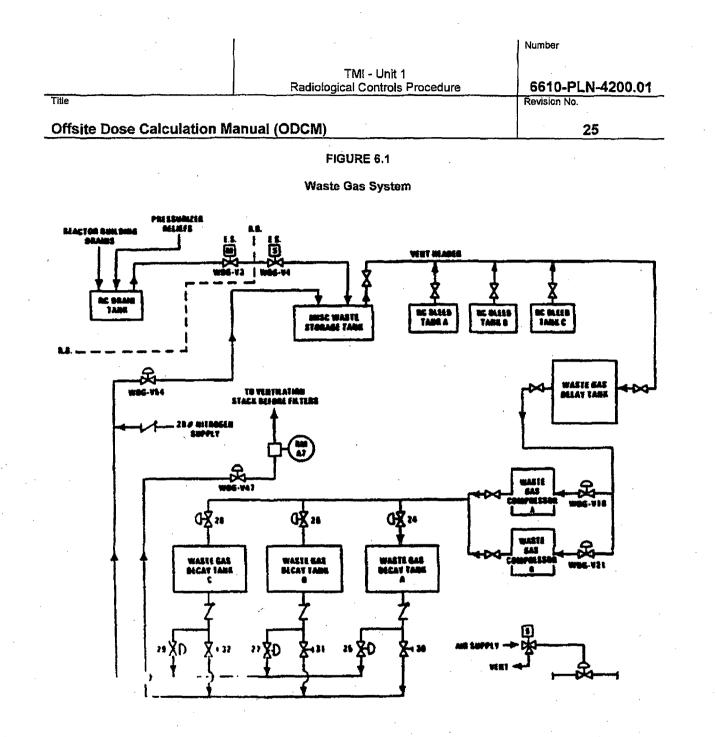
Offsite Dose Calculation Manual (ODCM)

6.0 TMI-1 GASEOUS WASTE TREATMENT SYSTEM

6.1 Description of the TMI-1 Gaseous Radwaste Treatment System (see Figure 6.1)

- 6.1.1 Waste Gas System
 - a. Reactor Building:

- Reactor Coolant Drain Tank (RCDT) header


- b. Auxiliary Building:
 - Vent Header from
 - 1. Miscellaneous Waste Storage Tank (MWST)
 - 2. Three (3) Reactor Coolant Bleed Tanks (RCBT)
 - Waste Gas Delay Tank
 - Two (2) Waste Gas Compressors
 - Three (3) Waste Gas Decay Tanks (WGDT)
 - Filtration and dilution provided by the Station Ventilation System.

6.2 <u>Operability</u>

C.

Operability of the Gaseous Waste Treatment System is defined as the ability to remove gas from the vent header/tank gas spaces and store it under a higher pressure in the Waste Gas Decay Tanks for subsequent release.

Except for initiating the make up tank sample and waste gas venting and the recycle or disposal of compressed waste gases stored in the waste gas decay tanks, the operation of the waste gas system is entirely automatic. One waste gas compressor comes on automatically, removing gases from the vent header system as required, to maintain the pressure in the system at a maximum of about 16.4 psia.

TMI - Unit 1 Radiological Controls Procedure Number Title 6610-PLN-4200.01 Offsite Dose Calculation Manual (ODCM) 25

7.0 EFFLUENT TOTAL DOSE ASSESSMENT

7.1 Total Dose Calculation

The annual (calendar year) dose or dose commitment to any member of the public, due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the total body or any organ except the thyroid, which shall be limited to less than or equal to 75 mrem. This control is provided in order to meet the dose limitations of 40 CFR 190.

The total dose from TMI-1 and TMI-2 (uranium fuel cycle facilities within 8 kilometers) is calculated by summing the calculated annual doses to critical organs of a real individual for liquid effluent using Section 2.1 methodology, for gaseous effluent using Section 5.2.1 and 5.2.2 methodology, and the direct radiation from the site from the environmental monitoring program's direct radiation (TLD) monitors.

Number

TMI - Unit 1 Radiological Controls Procedure

6610-PLN-4200.01 Revision No.

25

Offsite Dose Calculation Manual (ODCM)

Titte

8.0 TMINS RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

8.1 Monitoring Program Requirements

8.1.1 Controls

In accordance with the TMI-1 Tech. Specs. and TMI-2 PDMS Tech. Specs., the radiological environmental monitoring program shall be conducted as specified in Table 8.1.

8.1.2 Applicability

At all times.

8.1.3 <u>Action</u>

a.

b.

With the radiological environmental monitoring program not being conducted as specified in Table 8.1, prepare and submit to the Commission in the Annual Radiological Environmental Operating Report, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.

With the level of radioactivity as the result of plant effluents in an environmental sampling medium exceeding the reporting levels of Table 8.2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days from the end of the affected calendar quarter, a special report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to a member of the public is less than the calendar year limits of ODCM Part I Controls 2.2.1.2, 2.2.2.2 and 2.2.2.3 and ODCM Part II Controls 2.2.1.2, 2.2.2.3. When more than one of the radionuclides in Table 8.2 are detected as the result of plant effluents in the sampling medium, this report shall be submitted if:

 $\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + \ge 1.0$

When radionuclides other than those in Table 8.2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose* to a member of the public is equal to or greater than the calendar year limits of ODCM Part I Controls 2.2.1.2, 2.2.2.2 and 2.2.2.3 and ODCM Part II, Controls 2.2.1.2, 2.2.2.2 and 2.2.2.3. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report.

The methodology and parameters used to estimate the potential annual dose to a member of the public shall be indicated in this report.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculati	on Manuai (ODCM)	25

Offsite Dose Calculation Manual (ODCM)

C.

With milk or fresh leafy vegetation samples unavailable from one or more of the sample locations required by Table 8.1, identify specific locations for obtaining replacement samples and add them within 30 days to the Radiological Environmental Monitoring Program given in the ODCM. The specific locations from which samples were unavailable may then be deleted from the monitoring program. Pursuant to TMI-1 Tech. Spec. 6.14 and TMI-2 PDMS Tech, Spec. 6.12, submit in the next Annual Radioactive Effluent Release Report documentation for a change in the ODCM including a revised figure(s) and table for the ODCM reflecting the new location(s) with supporting information identifying the cause of the unavailability of samples and justifying the selection of the new location(s) for obtaining samples.

8.1.4 Bases

The radiological monitoring program required by this control provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures of members of the general public resulting from the station operation. This monitoring program implements Section IV B.2 of Appendix I to 10CFR50 and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and modeling of the environmental exposure pathways. Guidance for this monitoring is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring (Revision 1, November 1979), Program changes may be initiated based on operational experience.

8.1.5 Surveillance Requirements

The radiological environmental monitoring samples shall be collected pursuant to Table 8.1, from the specific locations given in Tables 8.4 through 8.10 and Maps 8.1 through 8.3, and shall be analyzed pursuant to the requirements of Table 8.1 and the detection capabilities required by Table 8.3.

				·	Number
				TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title Offsit	e Dos	e Calcul	ation Ma	nual (ODCM)	Revision No.
	8.2	Land Us	e Census		
		8.2.1	Controls		
			Census s location ir	ance with the TMI-1 Tech. Specs. and TMI-2 PDMS hall be conducted and shall identify within a distanc n each of the 16 meteorological sectors of the neare , and the nearest garden [®] of greater than 50 m ² (50 n.	e of 8 km (5 miles) the st milk animal, the nearest
		8.2.2	Applicabil	ity	
			At all time	s.	
		8.2.3	Action		
		•	a.	With a Land Use Census identifying a location(s) or dose commitment greater than the values curr ODCM Part I Surveillance 3.2.2.3.1, pursuant to identify the new location(s) in the next Annual Ra Report.	ently being calculated in ODCM, Part IV, Section 2.0,
			b.	With a Land Use Census identifying a location(s) or dose commitment (via the same exposure path location from which samples are currently being of Table 8.1, add the new location(s) within 30 days Environmental Monitoring Program given in the C location(s), excluding the control station location, dose or dose commitment(s), via the same expose deleted from this monitoring program after Octob this Land Use Census was conducted. Pursuant and TMI-2 PDMS Tech. Spec. 6.12, submit in the Effluent Release Report documentation for a cha revised figure(s) and table(s) for the ODCM reflec information supporting the change in sampling low	hway) 20% greater than at a obtained in accordance with to the Radiological DDCM. The sampling having the lowest calculated sure pathway, may be er 31 of the year in which to TMI-1 Tech. Spec. 6.14 e next Annual Radioactive nge in the ODCM including a cting the new location(s) with
	· .			· · · · · ·	•
· * <u>-</u>					a A A A A A A A A A A A A A A A A A A A
				· · · · · ·	· .
		``			

Broad leaf vegetation sampling of at least three different kinds of vegetation may be performed at the site boundary in each of two different sectors with the highest predicted D/Qs in lieu of the garden census. Requirements for broad leaf sampling in Table 8.1 shall be followed, including analysis of control samples.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	Manual (ODCM)	25

8.2.4 <u>Bases</u>

This Control is provided to ensure that changes in the use of unrestricted areas are identified and modifications to the monitoring program are made if required by the results of this census. The best information from the door-to-door survey, aerial surveys, or consulting with local agricultural authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR 50. Restricting the census to gardens of greater than 500 square feet (50 m²) provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/yr) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were used: 1) that 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and 2) a vegetation yield of 2 kg/square meter.

8.2.5 Surveillance Requirements

The Land Use Census shall be conducted during the growing season at least once per 12 months, using that information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agricultural authorities. The results of the Land Use Census shall be included in the Annual Radiological Environmental Operating Report pursuant to ODCM, Part IV, Section 1.0.

			Number
		TMI - Unit 1 Radiologicai Controls Procedure	6610-PLN-4200.01
Title			Revision No.
Offsite Dose C	alculation Ma	nual (ODCM)	25

8.3 Interlaboratory Comparison Program

8.3.1 <u>Controis</u>

In accordance with the TMI-1 Tech. Specs. and TMI-2 PDMS Tech. Specs., analyses shall be performed on radioactive materials supplied as part of an Interlaboratory Comparison Program which has been approved by the Commission (NRC). Only those samples and analyses which are required by Table 8.1 shall be performed.

8.3.2 Applicability

At all times.

8.3.3 <u>Action</u>

With analysis not being performed as required above, report the corrective action taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report.

8.3.4 Bases

The requirement for participation in an approved Interlaboratory Comparison Program is provided to ensure that independent checks on precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of a quality assurance program for environmental monitoring in order to demonstrate that the results are reasonably valid for the purpose of Section IV, B.2 of Appendix I to 10 CFR 50.

8.3.5 Surveillance Requirements

A summary of the Interlaboratory Comparison Program results shall be included in the Annual Radiological Environmental Operating Report.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)	25

TABLE 8.1

Sample Collection and Analysis Requirements

Exposure Pathway and/or Sample	Number of Samples and Sample Locations ^a	Sampling and Collection Frequency ^b	Type and Frequency of Analysis ^b
1. Airborne Radioiodine and Particulates	Samples from 5 locations from Table 8.4.	Continuous sampler operation with sample collection weekly, or more frequently if required by dust loading.	Radioiodine Canister: Analyze weekly for I-131. Particulate Filter: Analyze for gross beta radioactivity following filter change ⁴ . Perform gamma isotopic analysis ^e on composite (by location) sample quarterly.
2. Direct Radiation ^c	Samples from 40 locations from Table 8.5 (using either 2 dosimeters or at least 1 instrument for continuously measuring and recording dose rate at each location).	Sample Quarterly	Analyze for gamma dose quarterly.

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

TABLE 8.1

Sample Collection and Analysis Requirements

	Number of Samples		
Exposure Pathway	and	Sampling and	Type and Frequency
and/or Sample	Sample Locations ^a	Collection Frequency [®]	of Analysis ^b
3. Waterborne		}	
a. Surface ^f	 Samples from 2 locations from Table 8.6. 1 sample from downstream (indicator) location 	Composite [®] sample over 1 monthly period.	Perform gamma isotopic analysis ^e monthly. Composite for tritium analysis quarterly.
	 1 sample from upstream (control) location (or location not influenced by the station discharge) 		
b. Drinking	 Samples from 2 locations from Table 8.6. 1 sample at the location of the nearest water supply that could be affected by the station discharge. 	Composite ⁹ sample over 1 monthly period.	Perform gross beta and gamma isotopic analysis ^e monthly. Perform Sr-90 analysis if gross beta of monthly composite >10 times control. Composite for tritium analysis quarterly.
	 1 sample from a control location. 		
c. Sediment from Shoreline	Samples from 2 locations (1 Control and 1 Indicator) from Table 8.7.	Sample twice per year (Spring and Fall)	Perform gamma isotopic analysis ^e on each sample.

TMI - Unit 1 Radiological Controls Procedure

Number

6610-PLN-4200.01 Revision No.

25

Title

Offsite Dose Calculation Manual (ODCM)

TABLE 8.1

Sample Collection and Analysis Requirements

	Number of Samples		
Exposure Pathway and/or Sample	and Sample Locations ^a	Sampling and Collection Frequency ^b	Type and Frequency of Analysis ^b
4. Ingestion		Conection requercy	U Allalysis
a. Milk	Samples from 4 locations from Table 8.8.	Sample semimonthly when animals are on pasture; monthly at other times.	Perform gamma isotopic analysis ^e and i-131 analysis on each sample. Composite for Sr-90 analysis quarterly.
b. Fish	 Samples from 2 locations from Table 8.9. 1 sample of recreationally important bottom feeders and 1 sample of recreationally important predators in the vicinity of the station discharge. 1 sample of recreationally important bottom feeders and 1 sample of recreationally important predators from an area not influenced by the station discharge. 	Sample twice per year (Spring and Fall).	Perform gamma isotopic ^e and Sr-90 analysis on edible portions.
c. Food Products	 Samples from 2 locations from Table 8.10 (when available) 1 sample of green leafy vegetables or leafy vegetation at a location in the immediate vicinity of the station. (indicator) 1 sample of same species 	Sample at time of harvest.	Perform gamma isotopic ^e , I-131, and Sr-90 analysis on edible portions.
	or group from a location not influenced by the station discharge.		

	TABLE 8.1	
Offsite Dose Calculation	n Manual (ODCM)	25
Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

Sample Collection and Analysis Requirements

Table Notation

- a. Sampling locations are provided in Tables 8.4 through 8.10. They are depicted in Maps 8.1 through 8.3. Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons. All deviations from the sampling schedule shall be explained in the Annual Radiological Environmental Operating Report.
- b. Frequency notation: weekly (7 days), semimonthly (15 days), monthly (31 days), and quarterly (92 days). All surveillance requirements shall be performed within the specified time interval with a maximum allowable extension not to exceed 25% of the surveillance interval. A total maximum combined interval time for any 4 consecutive tests shall not exceed 3.25 times the specified collection or analysis interval.
- c. One or more instruments, such as a pressurized ion chamber for measuring and recording dose rate continuously, may be used in place of, or in addition to, integrating dosimeters. For the purpose of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor; two or more phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation.
- d. Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in an air particulate sample(s) is greater than ten times the calendar year mean of control samples, Sr-90 and gamma isotopic analysis shall be performed on the individual sample(s).
- e. Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.
- f. The "upstream sample" shall be taken at a distance beyond significant influence of the discharge. The "downstream sample" shall be taken in an area beyond but near the mixing zone.
- g. Composite sample aliquots shall be collected at time intervals that are short (e.g., hourly) relative to the compositing period (e.g., monthly) in order to assure obtaining a representative sample.

Offsite Dose Calculation Manual (ODCM)		25
Title	· · · · · · · · · · · · · · · · · · ·	Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

TABLE 8.2

Reporting Levels for Radioactivity Concentrations in Environmental Samples

Analysis	Water (pCi/L)	Airborne Particulate or gas (pCi/m ³)	Fish (pCi/kg,wet)	Milk (pCi/L)	Food Products (pCi/kg, wet)
H-3	20,000 ^(e)				
Mn-54	1000		30,000		
Fe-59	400		10,000		·
Co-58	1000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Sr-90	8	0.1	100	8	100
Zr-Nb-95	400				
1-131	2	0.9		3.	100
Cs-134	30	10	1000	60	1000
Cs-137	50	20	2000	70	2000
Ba-La-140	200			300	

^(a) For drinking water samples. This is 40 CFR Part 141 value.

	· ·	Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation	n Manual (ODCM)	25

1 ...

TABLE 8.3

Detection Capabilities for Environmental Sample Analysis^a

Analysis	Water (pCi/L)	Airborne Particulate or Gas (pCi/m ³)	Fish (pCi/kg, wet)	Milk (pCi/L)	Food Products (pCi/kg,wet)	Sediment (pCi/kg, dry)
Gross Beta	4	0.01				
H-3	2000					
Mn-54	15		130			
Fe-59	30		260			
Co-58, 60	15		130			
Zn-65	30		260			
Zr-95	30					. •
Sr-90	2	0.01	10	2	10	
Nb-95	15					
1-131	1 ^d	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-140	60			60	, ,	
La-140	15			15		

Lower Limit of Detection (LLD)^{b,c}

		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title	·		Revision No.
Off	site Dose Calculation Man	ual (ODCM)	25
	•	TABLE 8.3	
	Detection	Capabilities for Environmental Sample Ana Table Notation	lysis ^a
a.		nly these nuclides are to be considered. Other	

Numbo

- a. This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable, which may be related to plant operations, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report.
- b. Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13 (Rev. 1).
- c. The LLD is defined, for purposes of these controls, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \, \text{Sb}}{\text{E} \cdot \text{V} \cdot 2.22 \cdot \text{Y} \cdot \exp(-\lambda \, \Delta t)}$$

Where:

LLD is the "a priori" lower limit of detection as defined above, as picocuries per unit mass or volume.

 s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate, as counts per minute,

E is the counting efficiency, as counts per disintegration,

V is the sample size in units of mass or volume,

2.22 is the number of disintegrations per minute per picocurie,

Y is the fractional radiochemical yield (when applicable),

 $\boldsymbol{\lambda}$ is the radioactive decay constant for the particular radionuclide and

∆t for environmental samples is the elapsed time between sample collection, or end of the sample collection period, and time of counting.

Typical values of E, V, Y and Δt should be used in the calculation.

It should be recognized that the LLD is defined as an "a priori" (before the fact) limit representing the capability of a measurement system and not as an "a posteriori" (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidable small samples sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report.

LLD for drinking water.

d.

	۰. ·	Number	
· · ·	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01	
Title		Revision No.	-
Offsite Dose Calculation	on Manual (ODCM)	25	-
	TABLE 8.4		

TMINS REMP Station Locations-Air Particulate and Air Iodine

Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
E1-2	0.4	97	2
F1-3	0.6	112	70
G2-1	1.4	126	74
M2-1	1.3	256	3
A3-1	2.7	357	4
H3-1	2.2	. 160	5
Q15-1	13.4	309	8

TABLE 8.5

TMINS REMP Station Locations-Direct Radiation (TLD)

Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
A1-4	0.3	6	9
B1-1	0.6	25	10
B1-2	0.4	23	11
C1-2	0.3	50	13
D1-1	0.2	76	14
E1-2	0.4	97	2
E1-4	0.2	97	16
F1-2	0.2	112	17
G1-3	0.2	130	18
H1-1	0.5	167	19
J1-1	0.8	176	21
J1-3	0.3	189	22
K1-4	0.2	209	24
L1-1	0.1	236	26
M1-1	0.1	250	27
N1-3	0.1	274	28
P1-1	0.4	303	29
P1-2	0.1	292	30

		1 11-54 4	Number
·		I - Unit 1 Controls Procedure	6610-PLN-4200.01 Revision No.
site Dose Calculati	on Manual (ODCM)		25
	TABL	E 8.5	
	TMINS REMP Station Locati	ons-Direct Radiation (T	LD)
Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
Q1-2	0.2	321	31
R1-1	0.2	335	32
C2-1	1.5	44	33
K2-1	1.2	200	34
M2-1	1.3	256	3
A3-1	2.7	357	4
H3-1	2.2	160	5
R3-1	2.6	341	35
B5-1	4.9	19	36
C5-1	4.7	43	37
E5-1	4.7	82 .	38
F5-1	4.7	109	39
G5-1	4.8	131	40
H5-1	4.1	158	41
J5-1	4.9	181	42
K5-1	4.9	202	43
L5-1	4.1	228	44
M5-1	4.3	249	45
N5-1	5.0	268	46
P5-1	5.0	284	47
Q5-1	5.0	317	48
R5-1	4.9	339	49
D6-1	5.2	66	50
E7-1	6.7	88	51
Q9-1	8.5	310	52
B10-1	9.2	21	53
G10-1	9.7	128	6
G15-1	14.4	126	54
J15-1	12.6	183	7
Q15-1	13.4	309	8

		II - Unit 1 Controls Procedure	6610-PLN-4200.01 Revision No.
site Dose Calculat	on Manual (ODCM)	·····	25
	TABL	E 8.6	
	TMINS REMP Station Lo	ocations-Surface Water	
Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
J1-2 (R)	0.5	188	57
A3-2 (R)	2.7	356	59
Q9-1 (F)	8.5	310	52
Q9-1 (R)	8.5	310	52
G15-2 (F)	13.3	129	62
G15-3 (F)	15.7	124	63
F15-1 (R)	12.6	122	65

TABLE 8.7

TMINS REMP Station Locations-Aquatic Sediment

Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
A1-3	0.5	359	67
G1-1	0.3	137	68 '
K1-3	0.2	212	69
J2-1	1.4	179	58
J1-2	0.5	188	57

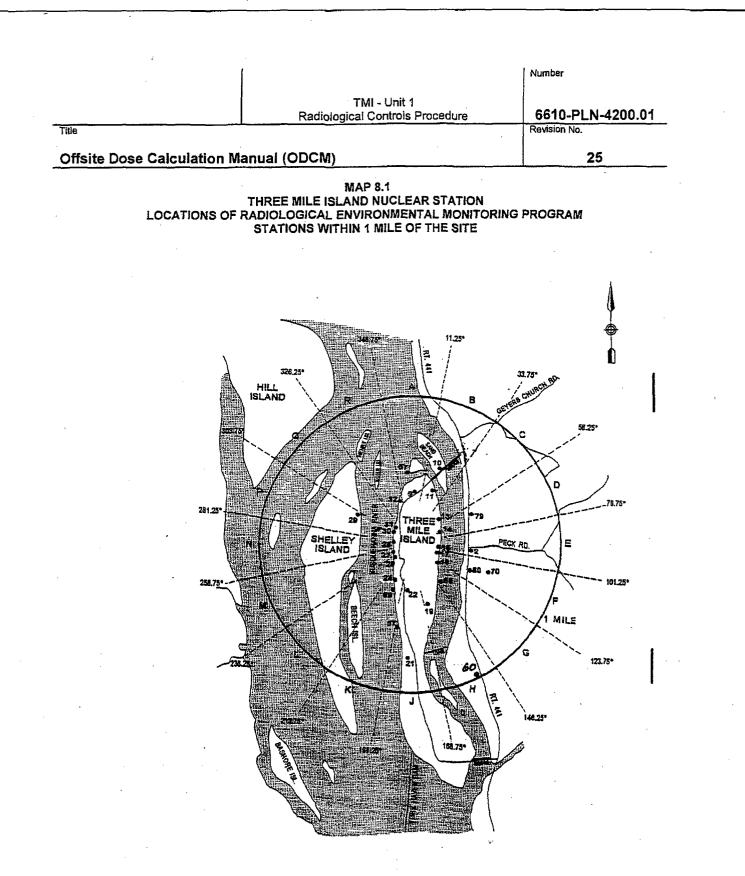
,			Number	
		II - Unit 1 Controls Procedure	6610-PLN-4200.01	
litie			Revision No.	
Offsite Dose Calculat	ion Manual (ODCM)		25	
	TABL	E 8.8		
	TMINS REMP Station	on Locations-Milk		
Station Code	Distance (miles)	Azimuth (°)	Map No.	

Station Code	Distance (miles)	Azintum ()	Map No.
D2-1	1.1	62	72
E2-2	1.1	96	73
F4-1	3.2	104	61
G2-1	1.4	126	74
P7-1	6.7	293	77
K15-3	14.4	205	78

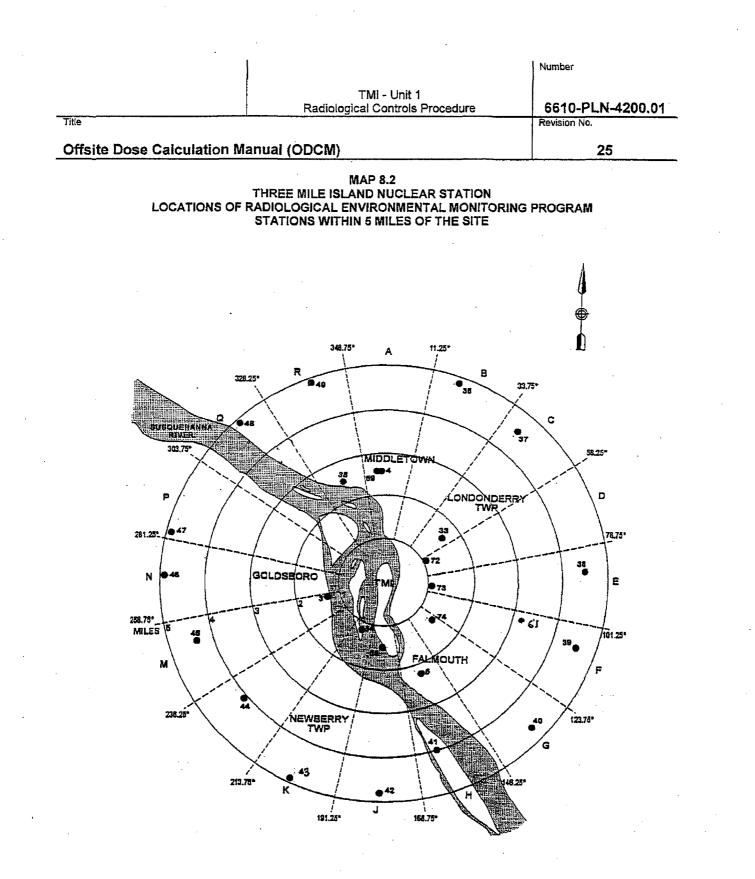
TABLE 8.9

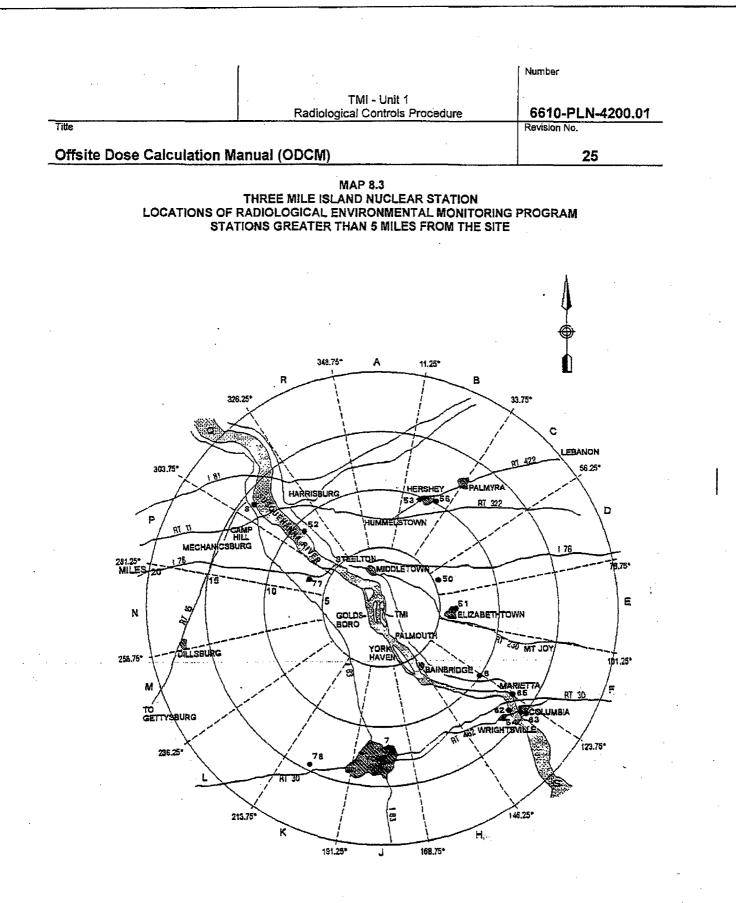
TMINS REMP Station Locations-Fish

Station Code


Station Location

IND BKG Downstream of Station Discharge Upstream of Station Discharge


		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation M	anual (ODCM)	25


TMINS REMP Station Locations-Food Products

Station Code	Distance (miles)	Azimuth (°)	<u>Map No.</u>
D1-3	0.5	65	79
E1-2	0.4	. 97	2
F1-1	0.5	117	80
H1 -2	1.0	151	60
B10-2	10.0	31	55

;

			Number
		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
litle			Revision No.
Offsite Dos	se Calculation M	anual (ODCM)	25
9.0 <u>PAR1</u>	III REFERENCES		
1.		P 1560-3 Final Report, "Environmental Radiatior re Nuclides," January 1985	n Doses From
2.		Three Mile Island Nuclear Station Unit 1 to Dem of 10 CFR 50, Appendix I," Nuclear Safety Asso	
3.	TMI-1 Final Safety	Analysis Report (FSAR)	-
4.	TMI-2 Final Safety	Analysis Report (FSAR)	
5.	Meteorological info	ormation and Dose Assessment System (MIDAS	3)
6.	NUREG-0017, "Ca from PWR," Revis	alculation of Releases of Radioactive Materials in ion 1, 1985	n Gaseous and Liquid Effluents
7.	NUREG-0133, "Pr Plants," October 1	eparation of Radiological Effluent Technical Spe 978	cifications for Nuclear Power
8.	NUREG-0172, "Ag November 1977	e-Specific Radiation Dose Commitment Factors	For A One-Year Chronic Intake,"
9	Releases of Radio	1.21, "Measuring, Evaluating, and Reporting Ra active Materials in Liquid and Gaseous Effluents vision 1, June 1974	
10.		1.109, "Calculation of Annual Doses to Man from urpose of Evaluating Compliance with 10 CFR 50	
11.	Simplified Environr	nental Effluent Dosimetry System (SEEDS)	
12.	TMI Recirculation	Factor Memos, April 12, 1988 and March 17, 198	88
13.	TMI-1 Operations I	Procedure, 1101-2.1, "Radiation Monitor Set Poi	nts"
14.	Title 10, Code of F	ederal Regulations, "Energy"	
15.	TMI-1 Technical S	pecifications, attached to Facility Operating Lice	nse No. DPR-50
16.		1.111, "Methods for Estimating Atmospheric Tra in Routine Releases from Light-Water-Cooled R	
17.	TMI-2 PDMS Tech	nical Specifications, attached to Facility License	No. DPR-73
18.	Radiological Asses November 1979	sment Branch Technical Position on Environme	ntal Monitoring, Revision 1,
19.	Title 40, Code of F	ederal Regulations, "Protection of Environment"	
		179	

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation M	anual (ODCM)	25

20. Regulatory Guide 4.13, "Performance, Testing, and Procedural Specifications for Thermoluminescence Dosimetry: Environmental Applications," Revision 1, July 1977

21. Post-Defueling Monitored Storage Safety Analysis Report (PDMS SAR)

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calcula	ation Manual (ODCM)	25

PART IV

REPORTING REQUIREMENTS

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Ma	anuai (ODCM)	25
	PARTIV	

Reporting Requirements

1.0 TMI ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

- 1.1 Routine Radiological Environmental Operating Reports covering the operation of the unit during the previous calendar year shall be submitted to the Commission prior to May 1 of each year.
- 1.2 The Annual Radiological Environmental Operating Reports shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental monitoring activities for the report period, including a comparison with pre-operational studies, with operational controls as appropriate, and with previous environmental monitoring reports, and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of Land Use Censuses required by Part III, Section 8.2.
- 1.3 The Annual Radiological Environmental Operating Reports shall include the summarized tabulated results of analysis of all radiological environmental samples and environmental radiation measurements required by Part III Table 8.1 taken during the period pursuant to the locations specified in the tables and figures in this ODCM, as well as summarized and tabulated results of these analyses and measurements in a format similar to the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

1.4 The reports shall also include the following: a summary description of the radiological environments monitoring program; a map(s) of all sampling locations keyed to a table giving distances and directions from a point that is midway between the Reactor Buildings of TMI-1 and TMI-2; the results of licensee participation in the Interlaboratory Comparison Program, required by Part III, Section 8.3; discussion of all deviations from the sampling schedule of Part III, Table 8.1; discussion of all the required analyses in which the LLD required by Part III, Table 8.3 was not achievable.

"A single submittal may be made for the station.

				Number
			TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title			Radiological Controls Procedure	Revision No.
	ite Dos	e Calculation M	anual (ODCM)	25
2.0		· · ·	IVE EFFLUENT RELEASE REPORT	
			•	· · · · · ·
		combine thos however, for	NOTE nittal may be made for the station. The submittal si se sections that are common to both units at the sta units with separate radwaste systems, the submitta lease of radioactive material from each unit.	tion
	2.1		ve Effluent Release Reports covering the operation is of operation shall be submitted prior to May 1 for	
	2.2	The following infor submitted each ye	mation shall be included in both Radioactive Efflue ar:	nt Release Reports to be
		liquid and gaseous	iffluent Release Reports shall include a summary of s effluents and solid waste released from the unit as summarized on a quarterly basis following the forma	outlined in Reg. Guide 1.21,
	2.3		ffluent Release Reports shall include the following d offsite during the report period:	information for each type of
		a. container	volume,	
		b. total curie	quantity (specify whether determined by measuren	nent or estimate),
	-	c. principal r	adionuclides (specify whether determined by measu	urement or estimate),
		d. type of wa	ste (e.g., spent resin, compacted dry waste, evapo	rator bottoms),
		e. type of shi	pment (e.g., LSA, Type A, Type B) and	
		f. solidification	on agent (e.g., cement).	
	2.4		ffluent Release Reports shall include a summary of areas of radioactive materials in gaseous and liqui	
×	2.5	period to the PRO CALCULATION M	ffluent Release Reports shall include any changes CESS CONTROL PROGRAM (PCP) documents ar ANUAL (ODCM), as well as a listing of new location hitoring identified by the land use census pursuant t	nd to the OFFSITE DOSE
	2.6		ffluent Release Reports shall include the instrumen within 30 days per ODCM Part I Controls 2.1.1b a	

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Offsite Dose Calculation Manual (ODCM)		25

- 2.7 The Radioactive Effluent Release Report to be submitted shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing of wind speed, wind direction, atmosphere stability, and precipitation (if measured) on magnetic tape, or in the form of joint frequency distribution of wind speed, wind direction, and atmospheric stability.
- 2.8 The Radioactive Effluent Release Report shall include an assessment of the radiation doses to MEMBERS OF THE PUBLIC due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. The meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents (as determined by sampling frequency and measurement) shall be used for determining the gaseous pathway doses. The assessment of radiation doses shall be performed in accordance with this ODCM.
- 2.9 The Radioactive Effluent Release Report shall include an assessment of the radiation doses from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY during the report period, to verify compliance with the limits of 10CFR20.1301(a)(1). All assumptions used in making these assessments (i.e., specific activity, exposure time and location) shall be included in these reports.
- 2.10 The Radioactive Effluent Release Report shall also include an assessment of radiation doses to the likely most exposed real individual from reactor releases and other nearby uranium fuel cycle sources including doses from primary effluent pathways and direct radiation for the previous 12 consecutive months to show conformance with 40 CFR 190 "Environmental Radiation Protection Standards for Nuclear Power Operation." Acceptable methods for calculating the dose contributions from liquid and gaseous effluents are given in Regulatory Guide 1.109, Rev. 1.

			Number
Title		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsi	te Dos	e Calculation Manual (ODCM)	25
3.0	PART	IV REFERENCES	
	3.1	Radiological Assessment Branch Technical Position, Revision 1, Nover	nber 1979
	3.2	Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioad Releases of Radioactive Materials in Liquid and Gaseous Effluents from Nuclear Power Plants," Revision 1, June 1974	
	3.3	TMI-1 Technical Specifications, attached to Facility Operating License I	No. DPR-50
	3.4	Title 40, Code of Federal Regulations, "Protection of Environment"	
	3.5	Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Rou Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 5 October 1977	
	3.6	Title 10, Code of Federal Regulations, "Energy"	
	3.7	Regulatory Guide 1.111, "Methods of Estimating Atmospheric Transpor Effluents in Routine Releases from Light-Water-Cooled Reactors," Revi	
	3.8	Regulatory Guide 1.112, "Calculation of Releases of Radioactive Mater Effluents from Light-Water-Cooled Power Reactors," Revision O-R, Apr	
	3.9	Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents fro Reactor Releases for the Purpose of Implementing Appendix I," Revision	

			Number
Title		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
	ose Calculation M	anual (ODCM)	25
		APPENDIX A	Page 1 of 1
		P _i - Pathway Dose Rate Parameter	
P _i (inhalat	ion) = k' (BR) DFA _i		(Eq A-1)
Where:			
P i =		parameter for radionuclide, i, (other than noble ga urie/m ³ . The dose factors are based on the critical	
k' =	conversion factor, 1E6	pCi/microcurie	
BR =	3700 m ³ /yr, breathing	rate for child (Reg. Guide 1.109, Rev. 1, Table E-5)
DFA _i =		halation dose factor for the infant age group for the Table E-10, Reg. Guide 1.109 (Rev. 1), or NUREC	
Re	solution of the units yiel	ds: (ODCM Part III Table 4.6)	
P _I (inhalati	ion) = 3.7E9 DFA; (mre	m/yr per μCi/m³)	(Eq A-2)

The latest NRC Guidance has deleted the requirement to determine P_i (ground plane) and P_i (food). In addition, the critical age group has been changed from infant to child.

NOTE

			Number
Title		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
	- Calculation M		
Unsite Dos	e Calculation M		25
		APPENDIX B	Page 1 of 1
		Ri - Inhalation Pathway Dose Factor	
R _i = k' (BR) (D	FA _{La,o}) (mrem/yr pe	r microcurie/m³)	(Eq B-1)
Where:	, <i>.</i>	· · · · · · · · · · · · · · · · · · ·	
k, =	conversion factor,	1E6 pCi/microcurie	
BR =		0, 3700, 8000, 8000 m ³ /yr for infant, child, teenag . Guide 1.109, Rev. 1, Table E-5)	ger, and adult age groups,
DFA _{i,a,o} =	radionuclide, in mr	factor for organ, o, of the receptor of a given age em/pCi. The total body is considered as an orgar om Tables E-7 through E-10, Reg. Guide 1.109 (in the selection of DFA _{i,a,o} .
Resolu	tions of the units yie	ids:	
Ri =	(1.4E9) (DFA _{l,a,o}) ir	fant (ODCM Part III Table 5.2.1)	

- **Ri** = (3.7E9) (DFA_{i,a,o}) child (ODCM Part III Table 5.2.2)
- $Ri = (8.0E9) (DFA_{i,a,o})$ teen and adult (ODCM Part III Tables 5.2.3 and 5.2.4)

	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Tille		Revision No.
Offsite Dose Calculation M	anual (ODCM)	25
	APPENDIX C	Page 1 of 1
	Ri - Ground Plane Pathway Dose Factor	
$R_i = k' k'' (SF) (DFG_i) [(1-e^{-\lambda_i t})/\lambda_i]$		(Eq C-1)
Where:		
k' = conversion factor,	1E6 pCi/microcurie	
k" = conversion factor,	8760 hr/yr	

- $\lambda_i = \text{decay constant for the ith radionuclide, sec⁻¹$
- t = the exposure time (this calculation assumes that decay is the only operating removal mechanism) 4.73 x 10⁸ sec. (15 yrs), Reg. Guide 1.109 (Rev. 1), Appendix C
- DFG_I = the ground plane dose conversion factor for the ith radionuclide (mrem/hr per pCi/m²). Values are taken from Table E-6, Reg. Guide 1.109 (Rev. 1), or NUREG 0172. <u>These values apply to all age groups</u>.
 - SF = 0.7, shielding factor, from Table E-15 Reg. Guide 1.109 (Rev. 1)

Reference ODCM Part III Table 5.3.1

188

Number

			Number
		TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title			Revision No.
Offsite Dos	e Calculation M	anuai (ODCM)	25
		APPENDIX D	Page 1 of 2
		Ri - Grass Cow-Milk Pathway Dose Factor	-
R _i = k' [(Q _F [((f _p x f	x U _{AP}) / (λ _i + λ _w)] x f _s)/Y _p) + ((I-f _p x f _s) e	(F _m) x (r) x (DFL _{i,a,o}) x '²iʿh)/Y₄] e ^{-λ} i ^ʿ f	(Eq D-1)
Where:			
k' =	conversion factor,	1E6 picocurie/microcurie (pCi/µci)	
Q _F =		ate, 50 kg/day, (Reg. Guide 1.109, Rev. 1) rate, 6 kg/day, (Reg. Guide 1.109, Rev. 1, Table E-2	?)
U _{AP} =		nsumption rate; 330, 330, 400, 310 liters/yr for infant ctively (Reg. Guide 1.109, Rev. 1)	t, child, teenager, and adult
Y _P =	agricultural produc	tivity by unit area of pasture feed grass, 0.7 kg/m ² (N	NUREG-0133)
Y _s =	agricultural produc	tivity by unit area of stored feed, 2.0 kg/m ² (NUREG	-0133)
F _m =	stable element trar	nsfer coefficient (Table E-1, Reg. Guide 1.109, Rev.	1)
r =		ed activity retained in cow's feed grass, 0.2 for partic Guide 1.109, Rev. 1)	ulates, 1.0 for radioiodine
DFL _{i,a,o} =		factor for organ, o, and the ith radionuclide for each 14, Reg. Guide 1.109, Rev. 1), or NUREG 0172.	respective age group, a
λι =	decay constant for	the ith radionuclide, sec ⁻¹	
λ =	decay constant for	weathering, 5.73 x 10^{-7} sec ⁻¹ (NUREG-0133); based	i on a 14 day half life
t _f =	1.73 x 10 ⁵ sec, the Guide 1.109, Rev.	transport time from pasture to cow to milk to recepte 1), or 2 days	or (Table E-15, Reg.
t _h =		transport time from pasture to harvest to cow to mill Rev. 1), or 90 days	k to receptor (Table E-15,
f. =	1.0, the fraction of	the year that the cow is on pasture	
- q•			

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation M	anual (ODCM)	25
	APPENDIX D	Page 2 of 2
The concentration of tritium in milk is based on (X/Q):	is based on the airborne concentration rather than	n the deposition. Therefore, R _i
$R^{C}_{t,a,o} = k'k''' F_m Q_F U_{AP} DFL_{t,a,o} (.7)$	5 [.5/H])	(Eq D-2)
Where:		
k''' = 1E3 grams/kg		
H = 8 grams/m ³ , absolu	ute humidity of the atmosphere	
.75 = fraction of the total	feed grass mass that is water	·

- .5 = ratio of the specific activity of the feed grass water to the atmospheric water (NUREG-0133)
- DFL_{t,a,o} = the ingestion dose factor for tritium and organ, o, for each respective age group, a (Tables E-11 to E-14, Reg. Guide 1.109, Rev. 1), or NUREG 0172.

All other parameters and values are as given above.

NOTE

Goat-milk pathway factor, R_i , will be computed using the cow-milk pathway factor equation. F_m factor for goat-milk will be from Table E-2 Reg. Guide 1.109, Rev. 1.

Reference: ODCM Part III Tables 5.4.1 to 5.4.4

				Number
		TMI - Unit 1 Radiological Controls Proce	odure	6610-PLN-4200.01
Title				Revision No.
Offsite Dos	e Calculation M	anual (ODCM)		25
	· .	APPENDIX E		
		Ri - Cow-Meat Pathway Dose Fa	ictor	
R _i = k' [(Q [((f _p x	$ \begin{array}{l} {}_{F} \mathbf{X} \; U_{AP} \right) / \left(\lambda_{I} + \lambda_{w} \right) \mathbf{I} \\ {}_{f_{S}} / Y_{p} \right) + \left((I - f_{p} f_{s}) \; e^{-\lambda_{I}} \right) \\ \end{array} $	(F₁) x (r) x (DFL _{i,a,o}) x i ^t h)/Y₅] x e ^{-x} i ^t f		(Eq E-1)
Where:				
k' =	conversion factor,	1E6 picocurie/microcurie (pCi/μci)		
Q _F =	cow consumption	rate, 50 kg/day, (Reg. Guide 1.109, Re	v. 1)	
U _{AP} =		onsumption rate; 0, 41, 65, 110 kg/yr fo ly (Reg. Guide 1.109, Rev. 1)	or infant, child, te	eenager, and adult age
F _f =	the stable element	t transfer coefficients, days/kg (Table E	-1, Reg. Guide	1.109, Rev. 1)
r =		ed activity retained in cow's feed grass Guide 1.109, Rev. 1)	, 0.2 for particula	ates, 1.0 for radioiodine
DFL _{i,a,o} =		factor for organ, o, and the ith radionu 14, Reg. Guide 1.109, Rev. 1), or NUR		spective age group, a
λ _i =	decay constant for	r the radionuclide i, sec ⁻¹		
λ., =	decay constant for	weathering, 5.73 x 10 ⁻⁷ sec ⁻¹ (NUREG	-0133), based o	n a 14 day half life
t _f =	1.73 x 10 ⁶ sec, the	e transport time from pasture to recepto	r (NUREG-0133	3)
• t _h =	7.78 x 10 ⁶ sec, the	7.78 x 10^{5} sec, the transport time from crop to receptor (NUREG-0133)		
Y _P =	agricultural produc	tivity by unit area of pasture feed grass	s, 0.7 kg/m² (NU	REG-0133)
Y ₅ =	agricultural produc	agricultural productivity by unit area of stored feed, 2.0 kg/m ² (NUREG-0133)		
f _P =	1.0, the fraction of the year that the cow is on pasture			
f _s =	1.0, the fraction of	the cow feed that is pasture grass whil	e the cow is on	pasture
The concentra is based on (X		t is based on the airborne concentratio	n rather than the	e deposition. Therefore, R
R _{ta,c} = k'k''' F	, Q _F U _{AP} (DFL _{ta,o}) x (0.75 x (0.5/H])		(Eq E-2)
Where:				
All terms are a	as defined above and	l in Appendix D.		
Reference: O	DCM Part III, Tables	5.6.1 to 5.6.4		

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

APPENDIX F

Ri - Vegetation Pathway Dose Factor

$$\mathbf{R}_{i} = \mathbf{k}' \times [\mathbf{r}/ (\mathbf{Y}_{\mathbf{v}} (\lambda_{i} + \lambda_{w}))] \times (\mathbf{DFL}_{i,a,o}) \times [(\mathbf{U}_{A}^{c}) \mathbf{f}_{L} \mathbf{e}^{\lambda_{i}} \mathbf{f}_{L} + \mathbf{U}_{A}^{o} \mathbf{f}_{g} \mathbf{e}^{\lambda_{i}} \mathbf{f}_{I}]$$

Where:

- k' = 1E6 picocurie/microcurie (pCi/µci)
- U^L_A = the consumption rate of fresh leafy vegetation, 0, 26, 42, 64 kg/yr for infant, child, teenager, or adult age groups, respectively (Reg. Guide 1.109, Rev. 1)
- U^S_A = the consumption rate of stored vegetation, 0, 520, 630, 520 kg/yr for infant, child, teenager, or adult age groups respectively (Reg. Guide 1.109, Rev. 1)
 - f_L = the fraction of the annual intake of fresh leafy vegetation grown locally, = 1.0 (NUREG-0133)
 - f_g = the fraction of the stored vegetation grown locally = 0.76 (NUREG-0133)
- t_c = the average time between harvest of leafy vegetation and its consumption, 8.6 x 10⁴ seconds [Table E-15, Reg. Guide 1.109, Rev. 1 (24 hrs)]
- t_h = the average time between harvest of stored leafy vegetation and its consumption, 5.18 x 10⁶ seconds, [Table E-15, Reg. Guide 1.109, Rev. 1 (60 days)]
- $y_v =$ the vegetation area density, 2.0 kg/m² (Table E-15, Reg. Guide 1.109, Rev. 1)

All other parameters are as previously defined.

The concentration of tritium in vegetation is based on the airborne concentration rather than the deposition. Therefore, R_i is based on (X/Q)

 $R_{ta,o} = k'k''' [U_A^L f_L + U_A^S f_g] (DFL_{ta,o}) (.75 [.5/H])$

(Eq F-2)

Where:

All terms are as defined above and in Appendix D.

Reference: ODCM Part III, Tables 5.7.1 to 5.7.4.

(Eq F-1)

		Number
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Title		Revision No.
Offsite Dose Calculation Manual (ODCM)		25

APPENDIX A-F REFERENCES

(Page 1 of 4)

Parameters Used in Dose Factor Calculations

Parameter	Value	Table in R.G. 1,109	Section of NUREG-0133	Site- Specific
	*** For P ₁ ***			
DFA;	Each radionuclide	Ë-9		Note 1
BR	3700 m ³ /yr (child)	E-5		
	For Ri (Vegetation)			
r	Each element type	E-1		
Υ _ν	2.0 kg/m ²	E-15		
λw	5.73 E-7 sec1		5.3.1.3	
DFLi	Each age group and radionuclide	E-11 thru E-14		Note 1
UaL	Each age group	E-5		
fL	1.0		5.3.1.5	
t,	8.6 E + 4 seconds	E-15		
Ua ^S	Each age group	E-5		,
fg	0.76		5.3.1.5	
th	5.18 E + 6 seconds	E-15		
Н	8.0 grams/kg		5.2.1.3	
	For Ri (Inhalation)			
BR	Each age group	E-5		
DFA	Each age group and nuclide	E-7 thru E-10		Note 1

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
Offsite Dose Calculation Manual (ODCM)		25

APPENDIX A-F REFERENCES

(Page 2 of 4)

Parameters Used in Dose Factor Calculations

	· · ·	Origin of Value		
Parameter	Value	Table in R.G. 1.109	Section of NUREG-0133	Site- Specific
	*** For R _i (Ground Plane) ***			
SF	0.7	E-15		
DFGi	Each radionuclide	E-6		······
t	4.73 E + 8 sec		5.3.1.2	
	*** For Ri (Grass/Animal/Meat) ***			<u> </u>
Q _F (Cow)	50 kg/day	E-3		· · · · · · · · · · · · · · · · · · ·
Q _F (Goat)	6 kg/day	E-3		Ref. Only
U _{ap}	Each age group	E-5		
λw	5.73 E-7 sec ¹		5.3.1.3	
F _f (Both)	Each element	E-1	· .	
r	Each element type	E-15		······································
DFL	Each age group and nuclide	E-11 thru E-14		Note 1
fp	1.0		5.3.1.3	Note 2
fs	1.0		5.3.1.3	Note 2
Yp	0.7 kg/m ³	E-15		
t _n	7.78 E + 6 sec	E-15		
Ys	2.0 kg/m ²	E-15		
tr	1.73 E + 6 sec	E-15		······································
Н	8.0 grams/kg		5.2.1.3	<u>, - 1, - 1, </u>

		Number
Title	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01 Revision No.
Offsite Dose Calculation Manual (ODCM)		25

APPENDIX A-F REFERENCES

(Page 3 of 4)

Parameters Used in Dose Factor Calculations

		Origin of Value		
Parameter	Value	Table in R.G. 1.109	Section of NUREG-0133	Site- Specific
	*** For R _i (Grass/Cow/Milk) ***			
Qf	50 kg/day	E-3		
U _{ap}	Each age group	E-5		•
λw	5.73 E-7 sec ¹		. 5.3.1.3	
Fm	Each element	E-1		
r	Each element type	E-15		
DFL1	Each age group and nuclide	E-11 thru E-14		Note 1
Yp	0.7 kg/m ²	E-15		
t _h	7.78 E + 6 sec	E-15		
Ys	2.0 kg/m ²	E-15		
tr .	1.73 E + 5 sec	E-15		
f _p	1.0		5.3.1.3	
fs	1.0		5.3.1.3	
Н	8.0 grams/kg		5.2.1.3	

Offsite Dose Calculation Manual (ODCM)		25
Title		Revision No.
	TMI - Unit 1 Radiological Controls Procedure	6610-PLN-4200.01
		Number

APPENDIX A-F REFERENCES

(Page 4 of 4)

NOTES

- 1. Inhalation and ingestion dose factors were taken from the indicated source. For each age group, for each nuclide, the organ dose factor used was the highest dose factor for that nuclide and age group in the referenced table.
- 2. Typically beef cattle are raised all year on pasture. Annual land surveys have indicated that the small number of goats raised within 5 miles typically are used for grass control and not food or milk. Nevertheless, the goats can be treated as full meat sources where present, despite the fact that their numbers cannot sustain the meat consumption rates of Table E-5, NUREG-0133.

REFERENCES

- 1. Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977.
- TMI-1 Technical Specifications, attached to Facility Operating License No. DPR-50.
- 3. NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," October 1978.