NINE MILE POINT NUCLEAR STATION - UNIT 2

7

RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2006

NINE MILE POINT NUCLEAR STATION - UNIT 2 RADIOACTIVE EFFLUENT RELEASE REPORT JANUARY – DECEMBER 2006

SUPPLEMENTAL INFORMATION

Facility: Nine Mile Point Unit #2 Licensee: Nine Mile Point Nuclear Station, LLC

1. TECHNICAL SPECIFICATION/ODCM LIMITS

- A) FISSION AND ACTIVATION GASES
 - 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 500 mrem/year to the whole body and less than or equal to 3000 mrem/year to the skin.
 - 2. The air dose from noble gases released in gaseous effluents from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of lodine-131, lodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from lodine-131, lodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ and, during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

 Improved Technical Specifications (ITS) limits the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001-20.2402, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity. 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 2 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by on-line gamma spectroscopic monitoring (intrinsic germanium crystal) of an isokinetic sample stream.

B) IODINES

lodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic sample stream.

C) PARTICULATES

Activity released from the main stack and the combined Radwaste/Reactor Building vent is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus.

E) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters.

F) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analyses of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

Summary Data

Page 1 of 2

Unit 1	Unit 2 <u>X</u>		Reporting Period	January - December 2006
Liquid Efflu	ents:			
ODCM Requ	uired MEC = 10 x 10CFR20.1001 - 20.2402, Appendix E	B, Table 2, Colum	n 2	
	Average MEC - μ Ci/ml (Qtr. <u>1</u>) =NO RELEASAverage MEC - μ Ci/ml (Qtr. 2) =9.68E-0		Average MEC - μ Ci/ml (Qtr. <u>3</u>) = Average MEC - μ Ci/ml (Qtr. <u>4</u>) =	9.86E-03 NO RELEASES
Average En	ergy (Fission and Activation gases - MEV):			· · · · · · · · · · · · · · · · · · ·
				·
	Qrtr. 1: Ey = 6.39E-01 Qrtr. 2: Ey = N/A Qrtr. 3: Ey = 1.29E+00 Qrtr. 4: Ey = 1.59E-01	$ \vec{E}_{\beta} = \\ \vec{E}_{\beta} = \\ \vec{E}_{\beta} = \\ \vec{E}_{\beta} = $	2.51E-01 N/A 4.64E-01 2.53E-01	
Liquid:				
			-	· · · · · · · · · · · · · · · · · · ·
	Number of Batch Releases Total Time Period for Batch Releases (hrs) Maximum Time Period for a Batch Release (hrs) Average Time Period for a Batch Release (hrs) Minimum Time Period for a Batch Release	17 5.31E+01 3.27E+00 3.13E+00 2.92E+00		
	Total volume of water used to dilute the liquid during the release period (L)	<u>1st</u> N/A	<u>2nd 3rd 4th</u> 1.10E+08 2.39E+08 N/A	
	Total volume of water available to dilute the liquid effluent during the report period	<u>1st</u> 1.21E+10	<u>2nd 3rd 4th</u> 1.46E+10 1.61E+10 1.34E+	-10
		1		
Gaseous/Fi	mergency Condenser Vent) "Not applicable for Unit	2"		
Ouscous(E	nergency contenser venty not approable for onit	-		
	Number of Batch Releases	N/A]	
	Total Time Period for Batch Releases (hrs)	N/A		
	Maximum Time Period for a Batch Release (hrs)	N/A		
	Average Time Period for a Batch Release (hrs)	N/A		
	Minimum Time Period for a Batch Release	N/A		
Gaseous (P	rimary Containment Purge)			
	-			
	Number of Batch Releases	12	4	
	Total Time Period for Batch Releases (hrs)	4.67E+02	4	
	Maximum Time Period for a Batch Release (hrs)	8.43E+01	4	
	Average Time Period for a Batch Release (hrs)	3.89E+01	4	
	Minimum Time Period for a Batch Release (hrs)	2.92E+00]	

Summary Data

Page 2 of 2

Unit 1	Unit 2 X			Reporting Period	January - December 2006
Abnormal Release	s:				
A. Liquids:					
	Number of Releases Total Activity Released	0 N/A C	i		
B. Gaseous:	Number of Releases Total Activity Released	0 N/A C	i		

Page 1 of 1

Unit 1	Unit 2	x	-		Reporting Per	iod	January - December
	GASEOUS EFFLU	ENTS - SUM	MMATION OF A	LL RELEASES	, ELEVATED A	ND GROUND	LEVEL
			<u>1st</u> Quarter	<u>2nd</u> Quarter	<u>3rd</u> Quarter	<u>4th</u> Quarter	<u>Est. Total</u> Error, <u>%</u>
A. Fission & Activation	Gases						_
1. Total Release		Ci	7.71E+01	0.00E+00	5.12E-03	7.99E-02	5.00E+01
2. Average Release	Rate	µCi/sec	9.91E+00	0.00E+00	6.44E-04	1.01E-02	
B. <u>lodines</u>							
1. Total lodine - 13	31	Ci	2.63E-04	1.34E-05	8.18E-07	1.63E-06	3.00E+01
2. Average Releas	se Rate for Period	µCi/sec	3.30E-05	1.72E-06	1.04E-07	2.07E-07	
C. Particulates							
1. Particulates with	h half-lives>8	Ci	3.73E-04	1.48E-03	1.03E-03	7.60E-05	3.00E+01
	se Rate for Period	µCi/sec	4.76E-05	1.90E-04	1.32E-04	9.67E-06	-
3. Gross alpha rad		Ci	1.18E-05	1.09E-05	4.24E-06	4.50E-07	2.50E+01
D. <u>Tritium</u>		Ci	2.005.01	E 02E 100	6 42E±00	1 605+01	5.00E+01
 Total release Average Release 	se Rate for Period	µCi/sec	2.09E+01 2.62E+00	5.92E+00 7.59E-01	6.42E+00 8.17E-01	1.60E+01 2.03E+00	5.002+01
Percent of Quarterly Limit (5 mR)	Gamma Air Dose	%	1.13E-01	0.00E+00	1.63E-05	2.58E-05]
	Beta Air Dose Limit	%	2.52E-03	0.00E+00	2.39E-07	2.25E-06	
(10 mrad) Percent of Annual G	amma Air Dose	% %	2.52E-03 5.64E-02	0.00E+00 5.64E-02	2.39E-07 5.64E-02	2.25E-06 5.64E-02	
(10 mrad) Percent of Annual G Limit to Date (10 mF	amma Air Dose						
(10 mrad) Percent of Annual G Limit to Date (10 mF Percent of Annual B	amma Air Dose २) eta Air Dose Limit to	%	5.64E-02	5.64E-02	5.64E-02	5.64E-02	
(10 mrad) Percent of Annual G Limit to Date (10 mR Percent of Annual B Date (20 mrad) Percent of Whole Bo	amma Air Dose २) eta Air Dose Limit to	% %	5.64E-02 1.26E-03	5.64E-02 1.26E-03	5.64E-02 1.26E-03	5.64E-02 1.26E-03	
(10 mrad) Percent of Annual G Limit to Date (10 mF Percent of Annual B Date (20 mrad) Percent of Whole Bo (500 mrem/yr) Percent of Skin Dose mrem/yr) <u>Tritium, Iodines, and</u> half-lives greater tha	amma Air Dose eta Air Dose Limit to ody Dose Rate Limit e Rate Limit (3000 <u>A Particulates (with</u> an 8 days)	% % %	5.64E-02 1.26E-03 4.43E-03 8.66E-04	5.64E-02 1.26E-03 0.00E+00 0.00E+00	5.64E-02 1.26E-03 6.17E-07 1.22E-07	5.64E-02 1.26E-03 9.92E-07 2.12E-07	
(10 mrad) Percent of Annual G Limit to Date (10 mF Percent of Annual B Date (20 mrad) Percent of Whole Bo (500 mrem/yr) Percent of Skin Dose mrem/yr) <u>Tritium, Iodines, and</u> half-lives greater that Percent of Quarterly mrem)	amma Air Dose eta Air Dose Limit to ody Dose Rate Limit e Rate Limit (3000 <u>A Particulates (with</u> <u>in 8 days)</u> ¹ Dose Limit (7.5	% % %	5.64E-02 1.26E-03 4.43E-03 8.66E-04 6.82E-02	5.64E-02 1.26E-03 0.00E+00 0.00E+00 7.21E-03	5.64E-02 1.26E-03 6.17E-07 1.22E-07 1.25E-02	5.64E-02 1.26E-03 9.92E-07 2.12E-07 7.68E-03	
(10 mrad) Percent of Annual G Limit to Date (10 mF Percent of Annual B Date (20 mrad) Percent of Whole Bo (500 mrem/yr) Percent of Skin Dose mrem/yr) <u>Tritium, Iodines, and</u> half-lives greater that Percent of Quarterly mrem)	amma Air Dose eta Air Dose Limit to ody Dose Rate Limit e Rate Limit (3000 <u>A Particulates (with an 8 days)</u> Dose Limit (7.5 pose Limit to Date (15	% % %	5.64E-02 1.26E-03 4.43E-03 8.66E-04	5.64E-02 1.26E-03 0.00E+00 0.00E+00	5.64E-02 1.26E-03 6.17E-07 1.22E-07	5.64E-02 1.26E-03 9.92E-07 2.12E-07	

.

nit 1 Unit 2	X	_	1	Reporting Period	<u>Ja</u>
	GASEOUS E	FFLUENTS - ELEV	ATED RELEASE		
			Con	tinuous Mode (2)	
ides Released		<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	<u>4th Quarter</u>
Fission Gases (1)	-	**	**		**
Argon-41	Ci	**	**	5.12E-03	**
Krypton-85	Ci		**	**	
Krypton-85m	Ci	1.65E+01	**	**	7.99E-02
Krypton-87	Ci	6.67E-01	**	**	**
Krypton-88	Ci	2.19E+01	**	**	**
Xenon-127 Xenon 131m	Ci	**	**	**	**
Xenon-131m Xenon 133	Ci		**	**	**
Xenon-133 Xenon 133m	Ci	3.30E+01	**	**	**
Xenon-133m	Ci	1.57E-01	**	**	**
Xenon-135 Xenon-135m	Ci	2.92E+00	**	**	**
	Ci	5.69E-01	**	**	**
Xenon-137 Xenon-138	Ci Ci		**	**	**
Xenon-136	CI	7.72E-01			
lodines (1)					
lodine-131	Ci	2.61E-04	**	8.18E-07	1.63E-06
Iodine-133	Ci	4.99E-04	**	**	**
Iodine-135	Ci	**	**	**	**
Particulates (1)					
Chromium-51	Ci	**	**	**	**
Manganese-54	Ci	4.80E-06	**	2.40E-05	**
Iron-55	Ci	2.39E-06	9.28E-05	1.40E-04	1.17E-05
Iron-59	Ci	**	**	**	**
Cobalt-58	Ci	**	**	**	**
Cobalt-60	Ci	2.85E-06	**	3.68E-05	2.94E-06
Neodymium-147	Ci	**	**	**	**
Zirconium-95	Ci	**	**	**	**
Zinc-65	Ci	**	**	**	**
Strontium-89	Ci	2.28E-06	**	1.32E-05	**
Stronium-90	Ci	**	**	2.24E-06	**
Niobium-95	Ci	**	**	**	**
Zirconium-95	Ci	**	**	**	**
Molybdenum-99	Ci	**	**	**	**
Cesium-134	Ci	**	**	**	**
Cesium-136	Ci	**	**	**	**
Cesium-137	Ci	**	**	**	**
Barium-140	Ci	**	**	**	**
Lanthanum-140	Ci	**	**	**	**
Cerium-141	Ci	**	**	**	**
Cerium-144	Ci	**	**	**	**
	Ci	1.35E+01	2.48E+00	4.11E+00	1.08E+01

(1) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates and gross alpha, 1.00E-12 μCi/ml for required lodines, 1.00E-11 μCi/ml for Sr-89/90 and 1.00E-06 μCi/ml for Tritium, as required by the ODCM, has been verified.

(2) Contributions from purges are included. There were no other batch releases during the reporting period.

Page 1 of 1

International State International State International State Fission Gases (1) Image: State Image: State Image: State Argon-41 Ci Image: State Image: State Image: State Krypton-85 Ci Image: State Image: State Image: State Image: State Krypton-87 Ci Image: State Image: State Image: State Image: State Krypton-88 Ci Image: State Im		- '	Jnit 2	X			Re	porting Period		January - Decer
Existen Released 1st Quere 2nd Quere Fission Gases (1)				GASEO	JS EFFI	LUENTS - G		RELEASES		
Fission Gases (1) Argon-41 Ci $\frac{\pi}{2}$ Krypton-85 Ci $\frac{\pi}{2}$ Krypton-85m Ci $\frac{\pi}{2}$ Krypton-87 Ci $\frac{\pi}{2}$ Krypton-88 Ci $\frac{\pi}{2}$ Xenon-127 Ci $\frac{\pi}{2}$ Xenon-131m Ci $\frac{\pi}{2}$ Xenon-133m Ci $\frac{\pi}{2}$ Xenon-135m Ci $\frac{\pi}{2}$ Xenon-135m Ci $\frac{\pi}{2}$ Xenon-135m Ci $\frac{\pi}{2}$ Xenon-137 Ci $\frac{\pi}{2}$ Xenon-138 Ci $\frac{\pi}{2}$ Iodine-131 Ci $\frac{\pi}{2}$ Iodine-133 Ci $\frac{\pi}{2}$ Iodine-135 Ci $\frac{\pi}{2}$ Particulates (1) $\frac{\pi}{2}$ $\frac{\pi}{2}$ Chromium-51 Ci $\frac{\pi}{2}$ $\frac{\pi}{2}$ Manganese-54 Ci $\frac{\pi}{2}$ $\frac{\pi}{2}$ Cobalt-60 Ci $\frac{5.86E-05}{8.30E-0}$ $\frac{3.99E-0}{2}$ Nicohum-95 Ci $\frac{\pi}{2}$ $\frac{\pi}{2}$							Contin	uous Mode (2)		
Argon-41 Ci ** ** Krypton-85 Ci ** ** Krypton-87 Ci ** ** Krypton-87 Ci ** ** Xenon-127 Ci ** ** Xenon-131m Ci ** ** Xenon-133m Ci 5.78E-01 ** Xenon-133m Ci ** ** Xenon-135 Ci ** ** Xenon-135m Ci ** ** Xenon-137 Ci ** ** Xenon-138 Ci ** ** Venon-137 Ci ** ** Xenon-137 Ci ** ** Xenon-138 Ci ** ** Iodine-131 Ci 2.26E-06 1.34E-0 Iodine-135 Ci ** ** Chromium-51 Ci 2.26E-04 1.26E-0 Iron-55 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-0 Neodymi					<u>1</u>	st Quarter	2nd Quarter	<u>3rd Quarter</u>	4th Quarter	
Argon-41 Ci $**$ $**$ Krypton-85 Ci $**$ $**$ Krypton-87 Ci $**$ $**$ Krypton-88 Ci $**$ $**$ Xenon-127 Ci $**$ $**$ Xenon-131m Ci $**$ $**$ Xenon-133 Ci $5.78E-01$ $**$ Xenon-133 Ci $**$ $**$ Xenon-135 Ci $**$ $**$ Xenon-136 Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-138 Ci $**$ $**$ Venon-133 Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-138 Ci $**$ $**$ Venon-137 Ci $**$ $**$ Xenon-138 Ci $**$ $**$ Iodine-131 Ci $2.26E-06$ $1.34E-0$ Iodine-135 Ci $2.26E-06$ $1.34E-0$ Iron-55 Ci 2										
Argunt 1 Ci ** ** Krypton-85 Ci ** ** Krypton-87 Ci ** ** Krypton-88 Ci ** ** Xenon-127 Ci ** ** Xenon-131m Ci ** ** Xenon-133 Ci 5.78E-01 ** Xenon-133 Ci ** ** Xenon-135 Ci ** ** Xenon-137 Ci ** ** Xenon-138 Ci ** ** Iodines (1) Ci ** ** Iodine-131 Ci 2.26E-06 1.34E-0 Iodine-133 Ci ** ** Iodine-135 Ci ** ** Vanon-55 Ci 2.295E-04 1.26E-0 Iron-55 Ci ** ** Cobalt-58 Ci ** ** Cobalt-58 Ci ** ** Zirconium-95 Ci ** ** Zirconium-95	ises	<u>es (1)</u>		Ci		**	**	**	**	Г
Krypton-85m Ci ** ** Krypton-87 Ci ** ** Krypton-88 Ci ** ** Xenon-131m Ci ** ** Xenon-131m Ci ** ** Xenon-133m Ci 5.78E-01 ** Xenon-135 Ci ** ** Xenon-135 Ci ** ** Xenon-136 Ci ** ** Xenon-137 Ci ** ** Xenon-138 Ci ** ** Iodine-131 Ci 2.26E-06 1.34E-0 Iodine-133 Ci ** ** Iodine-133 Ci ** ** Iodine-135 Ci ** ** Vanganese-54 Ci ** ** Iron-55 Ci $2.95E-04$ 1.26E-0 Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-58 Ci ** ** Circonium-95 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>**</td> <td>**</td> <td>-</td>								**	**	-
Krypton-87 Ci ** ** Krypton-88 Ci ** ** Xenon-127 Ci ** ** Xenon-131m Ci ** ** Xenon-133 Ci 5.78E-01 ** Xenon-133 Ci ** ** Xenon-135 Ci ** ** Xenon-135 Ci ** ** Xenon-135 Ci ** ** Xenon-137 Ci ** ** Xenon-138 Ci ** ** Vanon-138 Ci ** ** Vanon-137 Ci ** ** Xenon-138 Ci ** ** Vanon-138 Ci ** ** Vanon-138 Ci ** ** Vanon-137 Ci ** ** Xenon-138 Ci ** ** Vanon-135 Ci ** ** Vanon-135 Ci ** ** Vanon-135 Ci **						**	**	**	**	-
Krypton-88 Ci $\frac{++}{2}$ $\frac{++}{2}$ Xenon-127 Ci $\frac{++}{2}$ $\frac{++}{2}$ Xenon-131m Ci $\frac{++}{2}$ $\frac{++}{2}$ Xenon-133 Ci $\frac{++}{2}$ $\frac{++}{2}$ Xenon-133 Ci $\frac{++}{2}$ $\frac{++}{2}$ Xenon-135 Ci $\frac{++}{2}$ $\frac{++}{2}$ Xenon-135 Ci $\frac{++}{2}$ $\frac{++}{2}$ Xenon-137 Ci $\frac{++}{2}$ $\frac{++}{2}$ Xenon-138 Ci $\frac{++}{2}$ $\frac{++}{2}$ Modine-131 Ci $\frac{2.26E-06}{1.34E-0}$ $1.34E-0$ lodine-133 Ci $\frac{++}{2}$ $\frac{++}{2}$ lodine-135 Ci $\frac{++}{2}$ $\frac{++}{2}$ Particulates (1) Ci $\frac{++}{2}$ $\frac{++}{2}$ Chromium-51 Ci $\frac{++}{2}$ $\frac{++}{2}$ Manganese-54 Ci $\frac{++}{2}$ $\frac{++}{2}$ Iron-55 Ci $\frac{++}{2}$ $\frac{++}{2}$ Cobalt-60 Ci $\frac{5.86E-05}{8.30E-0}$ $8.30E-0$ Neodymium-147 Ci						**	**	**	**	-
Xenon-127 Ci $**$ $**$ Xenon-131m Ci $**$ $**$ Xenon-133 Ci $5.78E-01$ $**$ Xenon-133m Ci $**$ $**$ Xenon-135m Ci $**$ $**$ Xenon-135m Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-138 Ci $**$ $**$ Vanon-138 Ci $**$ $**$ Vanon-135 Ci $**$ $**$ Chromium-51 Ci $**$					\vdash			**	**	1
Xenon-131m Ci $**$ $**$ Xenon-133 Ci $5.78E-01$ $**$ Xenon-135 Ci $**$ $**$ Xenon-135 Ci $**$ $**$ Xenon-135 Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-138 Ci $**$ $**$ Iodine-131 Ci $2.26E-06$ $1.34E-0$ Iodine-133 Ci $**$ $**$ Iodine-135 Ci $**$ $**$ Particulates (1) Ci $**$ $**$ Chromium-51 Ci $**$ $**$ Manganese-54 Ci $**$ $3.25E-0$ Iron-55 Ci $2.95E-04$ $1.26E-0$ Iron-59 Ci $**$ $**$ Cobalt-58 Ci $**$ $**$ Cobalt-60 Ci $5.86E-05$ $8.30E-0$ Neodymium-147 Ci $**$ $**$ Zirconium-95 Ci $**$ $**$ Xinobium-95 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>**</td> <td>**</td> <td>1</td>								**	**	1
Xenon-133 Ci $5.78E-01$ ** Xenon-133m Ci $**$ $**$ Xenon-135 Ci $**$ $**$ Xenon-135m Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-138 Ci $**$ $**$ Iodine-131 Ci $**$ $**$ Iodine-131 Ci $2.26E-06$ $1.34E-0$ Iodine-133 Ci $**$ $**$ Iodine-135 Ci $**$ $**$ Particulates (1) Ci $**$ $**$ Chronium-51 Ci $**$ $3.25E-04$ Iron-55 Ci $2.95E-04$ $1.26E-05$ Iron-59 Ci $**$ $**$ Cobalt-58 Ci $**$ $**$ Cobalt-60 Ci $5.86E-05$ $8.30E-05$ Neodymium-147 Ci $**$ $**$ Zinco-65 Ci $**$ $**$ Stronium-89						**	**	**	**	4
Xenon-133m Ci $**$ $**$ Xenon-135 Ci $**$ $**$ Xenon-137m Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-138 Ci $**$ $**$ Iodine-137 Ci $**$ $**$ Iodine-133 Ci $**$ $**$ Iodine-135 Ci $**$ $**$ Chromium-51 Ci $**$ $**$ Cobalt-58 Ci $**$ $**$ Cobalt-60 Ci $**$ $**$ Neodymium-147 Ci $**$ $**$ Zirconium-95 Ci $**$ $**$ Stronium-89 Ci $**$ $**$ Niobium-95 Ci $**$						5 78E-01	**	**	**	4
Xenon-135 Ci ** ** Xenon-137 Ci ** ** Xenon-137 Ci ** ** Xenon-138 Ci ** ** Iodines (1) iodine-131 Ci $2.26E-06$ $1.34E-0$ Iodine-133 Ci ** ** ** Iodine-135 Ci ** ** ** Particulates (1) Ci ** ** ** Chromium-51 Ci ** ** ** Manganese-54 Ci ** 3.25E-0 Icoe-05 Iron-55 Ci $2.95E-04$ 1.26E-0 Icoe-05 Iron-59 Ci ** ** ** Cobalt-58 Ci ** ** ** Cobalt-60 Ci $5.86E-05$ $8.30E-0$ Neodymium-147 Ci ** Zirconium-95 Ci ** ** ** ** ** Stronium-89 Ci ** ** ** ** ** Niobium-95 Ci							**	**	**	1
Xenon-135m Ci $**$ $**$ Xenon-137 Ci $**$ $**$ Xenon-138 Ci $**$ $**$ Iodines (1) Iodine-131 Ci $2.26E-06$ $1.34E-0$ Iodine-133 Ci $**$ $**$ $**$ Iodine-135 Ci $**$ $**$ Particulates (1) Ci $**$ $**$ Chromium-51 Ci $**$ $**$ Manganese-54 Ci $**$ $3.25E-0$ Iron-55 Ci $2.95E-04$ $1.26E-0$ Iron-59 Ci $**$ $**$ Cobalt-58 Ci $**$ $**$ Cobalt-60 Ci $5.86E-05$ $8.30E-05$ Neodymium-147 Ci $**$ $**$ Zirconium-95 Ci $**$ $**$ Stronium-89 Ci $**$ $**$ Niobium-95 Ci $**$ $**$ Zirconium-99 Ci $**$ $**$ Molybdenum-99 Ci $**$						**	**	**	**	1
Xenon-137 Ci $\frac{**}{*}$ $\frac{**}{*}$ Nodines (1) Iodine-131 Ci $2.26E-06$ $1.34E-0$ Iodine-133 Ci $\frac{**}{*}$ $\frac{**}{*}$ Iodine-133 Ci $\frac{**}{*}$ $\frac{**}{*}$ Iodine-133 Ci $\frac{**}{*}$ $\frac{**}{*}$ Iodine-135 Ci $\frac{**}{*}$ $\frac{**}{*}$ Particulates (1) Ci $\frac{**}{*}$ $\frac{**}{*}$ Chromium-51 Ci $\frac{**}{*}$ $\frac{3.25E-04}{1.26E-04}$ Iron-55 Ci $\frac{2.95E-04}{1.26E-04}$ $1.26E-04$ Iron-59 Ci $\frac{**}{*}$ $\frac{**}{*}$ Cobalt-58 Ci $\frac{**}{*}$ $\frac{**}{*}$ Cobalt-60 Ci $5.86E-05$ $8.30E-05$ Neodymium-147 Ci $\frac{**}{*}$ $\frac{**}{*}$ Zirconium-95 Ci $\frac{**}{*}$ $\frac{**}{*}$ Stronium-89 Ci $\frac{**}{*}$ $\frac{**}{*}$ Molybdenum-99 Ci $\frac{**}{*}$ $\frac{**}{*}$ Cesium-134 Ci $\frac{6.97E-06}{*}$ $\frac{**}{*}$						**	**	**	**	1
Xenon-138 Ci ** ** Iodines (1) Iodine-131 Ci 2.26E-06 1.34E-0 Iodine-133 Ci ** ** ** Iodine-135 Ci ** ** ** Particulates (1) Ci ** ** ** Chromium-51 Ci ** ** ** Manganese-54 Ci 2.95E-04 1.26E-0 Iron-55 Ci 2.95E-04 1.26E-0 Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-0 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinco65 Ci ** ** Niobium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** **						**	**	**	**	1
Iodine-131 Ci 2.26E-06 1.34E-0 Iodine-133 Ci ** ** ** Iodine-135 Ci ** ** ** Particulates (1) Ci ** ** ** Chromium-51 Ci ** ** 3.25E-0 Iron-55 Ci 2.95E-04 1.26E-0 Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-0 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** 8.99E-0 Stronium-89 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-137 Ci **						**	**	**	**]
Iodine-131 Ci 2.26E-06 1.34E-0 Iodine-133 Ci ** ** ** Iodine-135 Ci ** ** ** Particulates (1) Ci ** ** ** Chromium-51 Ci ** ** 3.25E-0 Iron-55 Ci 2.95E-04 1.26E-0 Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-0 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** 8.99E-0 Stronium-89 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-137 Ci **										_
Iodine-133 Ci ** ** Iodine-135 Ci ** ** Particulates (1) Ci ** ** Chromium-51 Ci ** 3.25E-0 Iron-55 Ci 2.95E-04 1.26E-0 Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-05 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** 8.99E-0 Stronium-89 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** ** <td>2</td> <td></td> <td></td> <td>0</td> <td>–</td> <td>2 265 06</td> <td>1 245 05</td> <td>**</td> <td>**</td> <td>Г</td>	2			0	–	2 265 06	1 245 05	**	**	Г
Iodine 133 Ci ** ** Iodine-135 Ci ** ** ** Particulates (1) Ci ** ** ** Chromium-51 Ci ** 3.25E-0 Iron-55 Ci 2.95E-04 1.26E-0 Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-0 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Stronium-89 Ci ** ** Niobium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Cerium-141 Ci ** **								**	**	4
Particulates (1) Chromium-51 Ci $**$ $**$ Manganese-54 Ci $**$ $3.25E-0$ Iron-55 Ci $2.95E-04$ $1.26E-0$ Iron-59 Ci $**$ $**$ Cobalt-58 Ci $**$ $**$ Cobalt-60 Ci $5.86E-05$ $8.30E-0$ Neodymium-147 Ci $**$ $**$ Zirconium-95 Ci $**$ $**$ Zinc-65 Ci $**$ $**$ Stronium-89 Ci $**$ $**$ Niobium-95 Ci $**$ $**$ Zirconium-95 Ci $**$ $**$ Molybdenum-99 Ci $**$ $**$ Cesium-134 Ci $6.97E-06$ $**$ Cesium-137 Ci $**$ $**$ Barium-140 Ci $**$ $**$ Lanthanum-140 Ci $**$ $**$ Cerium-141 Ci $**$ $**$								**	**	1
Chromium-51 Ci ** ** Manganese-54 Ci ** 3.25E-0 Iron-55 Ci 2.95E-04 1.26E-0 Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-0 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** ** Stronium-89 Ci ** ** Stronium-95 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci **							1	1		_
Manganese-54 Ci ** 3.25E-Ci Iron-55 Ci 2.95E-04 1.26E-Ci Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-Ci Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** ** Stronium-89 Ci ** ** Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **							·			-
Ivanganese-54 Ci 3.2.5E-4 Iron-55 Ci 2.95E-04 1.26E-6 Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-6 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** ** Stronium-89 Ci ** ** Stronium-95 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Cerium-141 Ci ** **								**	**	1
Iron-59 Ci ** ** Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-0 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** ** Stronium-89 Ci ** ** Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **	e-54	54					3.25E-05	3.71E-05	**]
Cobalt-58 Ci ** ** Cobalt-60 Ci 5.86E-05 8.30E-0 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zirconium-95 Ci ** ** Stronium-89 Ci ** ** Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **				Ci			1.26E-03	5.67E-04	6.14E-05	1
Cobalt-30 Ci 5.86E-05 8.30E-0 Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** ** Stronium-89 Ci ** ** Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								**	**	1
Neodymium-147 Ci ** ** Zirconium-95 Ci ** ** Zinc-65 Ci ** 8.99E-0 Stronium-89 Ci ** ** Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								**	**	4
Zirconium-95 Ci ** ** Zinc-65 Ci ** 8.99E-0 Stronium-89 Ci ** ** Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **							8.30E-05	9.62E-05	**	4
Zinc-65 Ci ** 8.99E-f Stronium-89 Ci ** ** Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Cerium-141 Ci ** **								**	**	1
Stronium-89 Ci ** ** Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **	95							**	**	4
Stronium-90 Ci ** ** Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **	_						8.99E-06	6.97E-05	**	4
Niobium-95 Ci ** ** Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								4.07E-05	**	4
Zirconium-95 Ci ** ** Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								7.42E-06	**	4
Molybdenum-99 Ci ** ** Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								**	**	4
Cesium-134 Ci 6.97E-06 ** Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								**	**	4
Cesium-136 Ci ** ** Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **		-99							**	4
Cesium-137 Ci ** ** Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								**		4
Barium-140 Ci ** ** Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								**	**	4
Lanthanum-140 Ci ** ** Cerium-141 Ci ** **								**	**	4
Cerium-141 Ci ** **		40						**	**	4
		40						**	**	4
					\vdash	**	**	**	**	4
Cerium-144 Ci <u>** **</u>	ł			Ci	L			l	I	1
Tritium Ci 7.40E+00 3.43E+				Ci		7.40E+00	3.43E+00	2.31E+00	5.20E+00]

Page 1 of 2

Unit 1 Unit 2	X		Re	porting Period	<u>نل</u>	anuary - December 20
	LIQUID EFF	LUENTS - SUM	MATION OF AL	L RELEASES	(1)	
		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter	Est. Total Error, %
A. Fission & Activation Products						
1. Total Release (not including Tritium, gases, alpha)	Ci	No Releases	2.66E-04	1.91E-04	No Releases	5.00E+01
2. Average diluted concentration during reporting period	µCi/ml	No Releases	1.83E-11	1.18E-11	No Releases	
B. <u>Tritium</u>						
1.Total release	Ci	No Releases	2.55E+00	4.34E+00	No Releases	5.00E+01
2. Average diluted concentration during the reporting period	µCi/ml	No Releases	1.75E-07	2.69E-07	No Releases	
C. Dissolved and Entrained Gases						
1. Total release	Ci	No Releases	**	**	No Releases	5.00E+01
2. Average diluted concentration during the reporting period	µCi/ml	No Releases	**	**	No Releases	
D. Gross Alpha Radioactivity						
1. Total release	Ci	No Releases	**	**	No Releases	5.00E+01
E. Volumes						
1. Prior to Dilution	Liters	No Releases	5.23E+05	9.70E+05	No Releases	5.00E+01
2. Volume of dilution water used during release period	Liters	No Releases	1.10E+08	2.39E+08	No Releases	5.00E+01
3. Volume of dilution water available during reporting period	Liters	1.21E+10	1.46E+10	1.61E+10	1.34E+10	5.00E+01
F. Percent of Tech. Spec. Limits Fission and Activation Gases						
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	No Releases	2.28E-03	2.90E-03	No Releases	
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	%	No Releases	1.14E-03	2.59E-03	No Releases	
Percent of Quarterly Organ Dose Limit (5 mrem)	%	No Releases	1.30E-03	1.23E-03	No Releases	
Percent of Annual Organ Dose Limit to Date (10 mrem)	%	No Releases	6.52E-04	1.26E-03	No Releases	
Percent of 10CFR20 Concentration Limit (2), (3)	%	No Releases	1.80E-03	2.73E-03	No Releases	
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 µCi/ml)	%	No Releases	**	**	No Releases	

(1) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 μ Ci/ml for required gamma emitting nuclides, 1.00E-05 μ Ci/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μ Ci/ml for Sr-89/90, 1.00E-06 μ Ci/ml for l-131 and Fe-55, and 1.00E-07 μ Ci/ml for gross alpha radioactivity, as required by the Off-Site Dose Calculation Manual (ODCM), have been verified.

(2) The percent of 10CFR20 concentration limit is based on the average concentration during the quarter.

(3) Improved Technical Specifications limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001 - 20.2402, Appendix B, Table 2, Column 2. Maximum Effluent Concentrations (MEC) numerically equal to ten times the 10CFR20.1001 - 20.2402 concentrations were adopted to evaluate liquid effluents.

Page 2 of 2

Unit 1		Unit 2	X	_	Rej	porting Period	:
				LUENTS RELEA	ASED		
					Batch Mo	ode (1),(2)	
uclides Re	eleased			<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter
	Nuclides Release	d					
	Strontium-89		Ci	No Releases	**	**	No Releases
	Strontium-90		Ci	No Releases	**	**	No Releases
	Cesium-134		Ci	No Releases	**	**	No Releases
	Cesium-137		Ci	No Releases	**	**	No Releases
	lodine-131		Ci	No Releases	**	**	No Releases
	Cobalt-58		Ci	No Releases	**	**	No Releases
	Cobalt-60		Ci	No Releases	2.48E-04	1.84E-04	No Releases
	Iron-59		Ci	No Releases	**	**	No Releases
	Zinc-65		Ci	No Releases	**	**	No Releases
	Manganese-54		Ci	No Releases	6.30E-06	**	No Releases
	Chromium-51		Ci	No Releases	**	**	No Releases
	Zirconium-95		Ci	No Releases	**	**	No Releases
	Niobium-95		Ci	No Releases	**	**	No Releases
	Molybdenum-99		Ci	No Releases	**	**	No Releases
	Technetium-99m		Ci	No Releases	**	**	No Releases
	Barium-140		Ci	No Releases	**	**	No Releases
	Lanthanum-140		Ci	No Releases	**	**	No Releases
	Cerium-141		Ci	No Releases	**	**	No Releases
	Tungsten-187		Ci	No Releases	**	**	No Releases
	Arsenic-76		Ci	No Releases	**	**	No Releases
	lodine-133		Ci	No Releases	**	**	No Releases
	Iron-55		Ci	No Releases	8.82E-05	2.91E-05	No Releases
	Neptunium-239		Ci	No Releases	**	**	No Releases
	Silver-110m		Ci	No Releases	**	**	No Releases
	Gold-199		Ci	No Releases	**	**	No Releases
	Cerium-144		Ci	No Releases	**	**	No Releases
	Cesium-136		Ci	No Releases	**	**	No Releases
	Copper-64		Ci	No Releases	1.26E-05	6.82E-06	No Releases
Dissolved	or Entrained Gases		Ci	No Releases	**	**	No Releases
	Tritium		Ci	No Releases	2.55E+00	4.34E+00	No Releases

(1) No continuous mode release occurred during the report period as indicated by effluent sampling.

(2) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 µCi/ml for required gamma emitting nuclides, 1.00E-05 µCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 µCi/ml for Sr 80/90, 1.00E-06 µCi/ml for I-131 and Fe-55, and 1.00E-07 µCi/ml for gross alpha radioactivity, as identified in the ODCM, has been verified.

Page 1 of 4

	ASTE AND IRRAI	DIATED FUEL SH			
	<u>Volume</u> (m ³)			<u>Activity (1)</u> (Ci)	
	<u>Class</u>			<u>Class</u>	
А	B	С	Α	В	С
6.94E+01	0.00E+00	0.00E+00	8.97E+01	0.00E+00	0.00E+00
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
6.94E+01	0.00E+00	0.00E+00	8.97E+01	0.00E+00	0.00E+00
2.61E+02	0.00E+00	0.00E+00	1.43E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.61E+02	0.00E+00	0.00E+00	1.43E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ng)					
	A 6.94E+01 0.00E+00 0.00E+00 6.94E+01 2.61E+02 0.00E+00 2.61E+02	SOLID WASTE AND IRRAI Volume (m³) Class A B 6.94E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+01 0.00E+00 2.61E+02 0.00E+00 2.61E+02 0.00E+00 2.61E+02 0.00E+00	SOLID WASTE AND IRRADIATED FUEL SH Volume (m³) Class A B C 6.94E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+01 0.00E+00 0.00E+00 0.00E+02 0.00E+00 0.00E+00 2.61E+02 0.00E+00 0.00E+00 2.61E+02 0.00E+00 0.00E+00	SOLID WASTE AND IRRADIATED FUEL SHIPMENTS Volume (m³) (m³) Class A B C A 6.94E+01 0.00E+00 0.00E+00 8.97E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+02 0.00E+00 0.00E+00 0.00E+00 2.61E+02 0.00E+00 0.00E+00 1.43E+00 2.61E+02 0.00E+00 0.00E+00 1.43E+00	Yolume (m ³) Activity (1) (Ci) Class Class A B C A B 6.94E+01 0.00E+00 0.00E+00 8.97E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.61E+02 0.00E+00 0.00E+00 1.43E+00 0.00E+00 2.61E+02 0.00E+00 0.00E+00 1.43E+00 0.00E+00

Page 2 of 4

Unit 1	Unit 2X	Reporting Period	January - December
	SOLID WASTE AND IRI	RADIATED FUEL SHIPMENTS	
А1. ТҮРЕ	Container	Package	Solidification Agent
a.1 Spent Resin (Dewatered)	Poly Liner	General Design Type A	None
a.2 Filter Sludge	N/A	N/A	N/A
a.3 Concentrated Waste	N/A	N/A	N/A
b.1 Dry, Compressible waste	Metal Box	General Design	None
b.2 Dry, non-compressible waste (Contaminated Equipment)	N/A	N/A	N/A
		· · · · · · · · · · · · · · · · · · ·	
c. Irradiated Components, Control Rods	N/A	N/A	N/A
d. Other (to vendor for processing)		· · · · · · · · · · · · · · · · · · ·	
d.1 Tank Sediment and Filters	Poly Liner	Туре А	None

•

Page 3 of 4

Unit 1 Unit 2	X Reporting Perio	d January - December 2006							
SOLID WA	STE AND IRRADIATED FUEL SHIPMENTS								
A2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (BY TYPE OF WASTE)									
a. Spent Resins, Filter Sludges, Concentrated Waste	· · ·								
Nuclide		Percent							
Fe-55		4.90E+01							
Co-60		3.12E+01							
Mn-54		9.40E+00							
Zn-65		8.60E+00							
Other		1.80E+00							
b. Dry, compressible waste, dry, non-compressible wa	aste (contaminated equipment)								
Nuclide		Percent							
Fe-55		8.29E+01							
Co-60		1.40E+01							
Mn-54		2.40E+00							
Other		7.00E-01							
c. Irradiated Components, Control Rods: There were	no shipments.								
Nuclide		Percent							
N/A		N/A							
d. Other (To Vendor for Processing)		· · · · · · · · · · · · · · · · · · ·							
1. Tank Sediment and Filters									
Nuclide		Percent							
Fe-55		6.56E+01							
Co-60		2.82E+01							
Mn-54		3.70E+00							
Zn-65		1.60E+00							
Other		9.00E-01							

Page 4 of 4

SOLID WASTE AND IRRADIATED FUEL SHIPMENTS							
. SOLID WASTE DISPOSITION	N						
Number of Shipments	Mode of Transportation		Destination				
7	Hittman Transport		tek Services, Inc				
17	Hittman Transport		rocessing Facility, Inc				
1	Race Logistics	Stuc	lsvik Race, LLC				
IRRADIATED FUEL SHIPMEN	ITS (Disposition): There were no shipments.						
			Destination				
IRRADIATED FUEL SHIPMEN Number of Shipments 0	ITS (Disposition): There were no shipments. <u>Mode of Transportation</u> N/A		Destination N/A				
Number of Shipments	Mode of Transportation						
Number of Shipments 0	Mode of Transportation						

e Calculation A onitor setpoint ges do not affe Appendix I, au of the ODCM,	on gamma emitting nuclide activity only ct the levels of radioactive effluent contro nd do not adversely impact the accuracy Revision 27 is attached and a summary o	Peporting period to base the gamma sensitive liquid and to allow on-site analysis of tritium, strontium, ol required by 10 CFR 20.1302, 40 CFR 190, 10 CFR y or reliability of effluent, dose, or setpoint f the changes presented to and approved by the e summary also includes the justification for the Reason for Change This change allows liquid radwaste discharges to occur by eliminating spurious alarms when little or no radioactivity is present in the liquid radwaste discharge tanks. The non-gamma component in the calculation resulted in overly
onitor setpoint ges do not affe) Appendix I, a of the ODCM, eview Committe //Amended section #	on gamma emitting nuclide activity only ct the levels of radioactive effluent contro nd do not adversely impact the accuracy Revision 27 is attached and a summary of the on May 23, 2006 is provided below. The Revision 27 Description of Change Removes the non-gamma emitting nuclide activity from the gamma sensitive liquid radwaste effluent radiation monitor setpoint. Liquid radwaste effluent flow rate limits will be based on gamma and non-	And to allow on-site analysis of tritium, strontium, ol required by 10 CFR 20.1302, 40 CFR 190, 10 CFR y or reliability of effluent, dose, or setpoint f the changes presented to and approved by the e summary also includes the justification for the Reason for Change This change allows liquid radwaste discharges to occur by eliminating spurious alarms when little or no radioactivity is present in the liquid radwaste discharge tanks. The non-gamma component in the calculation resulted in overly
ection #	Description of Change Removes the non-gamma emitting nuclide activity from the gamma sensitive liquid radwaste effluent radiation monitor setpoint. Liquid radwaste effluent flow rate limits will be based on gamma and non-	This change allows liquid radwaste discharges to occur by eliminating spurious alarms when little or no radioactivity is present in the liquid radwaste discharge tanks. The non-gamma component in the calculation resulted in overly
ection #	Change Removes the non-gamma emitting nuclide activity from the gamma sensitive liquid radwaste effluent radiation monitor setpoint. Liquid radwaste effluent flow rate limits will be based on gamma and non-	This change allows liquid radwaste discharges to occur by eliminating spurious alarms when little or no radioactivity is present in the liquid radwaste discharge tanks. The non-gamma component in the calculation resulted in overly
	nuclide activity from the gamma sensitive liquid radwaste effluent radiation monitor setpoint. Liquid radwaste effluent flow rate limits will be based on gamma and non-	occur by eliminating spurious alarms when little or no radioactivity is present in the liquid radwaste discharge tanks. The non-gamma component in the calculation resulted in overly
		restrictive setpoints. By eliminating spurious alarms the reliability of the setpoint calculation is maintained.
	This change allows tritium analyses to also be performed on-site.	Nine Mile Point has the capability to perform tritium analyses on-site. Therefore, this administrative change deletes the reference that only off-site analyses are allowed.
SUMMARY (OF CHANGES TO THE OFF-SITE DOSE CALC	ULATION MANUAL (ODCM)
art I requiremer ''' with "FUNCTIC CFR 190, 10 CF etpoint calcula proved by the S	nts that allow unlimited operation and to ONALITY." These changes do not affect th R 50.36a, and 10 CFR 50 Appendix I, and tions. A copy of the ODCM, Revision 28 is	eporting period to remove the phrase "LCO 3.0.4 add the definition of "FUNCTIONALITY" and he levels of radioactive effluent control required do not adversely impact the accuracy or reliability attached and a summary of the changes September 26, 2006 is provided below. The
	Revision 28	
/Amended Section #	Description of Change	Reason for Change
	Remove the phrase "LCO 3.0.4 does not apply" for Part I requirements that allow unlimited operation	This administrative change is made to use the same terminology in the ODCM that corresponds with the change made by Unit 2 Technical Specifications Amendment 109.
f contents, 1.5 Table D 3.2.1-1	This change adds the definition of "FUNCTIONALITY" and replaces "OPERABILITY" with "FUNCTIONALITY."	This change corresponds to the guidance in Regulatory Issues Summary 2005-20. The purpose of this change is to clarify that the SSCs in the ODCM are not described in Technical Specifications but warrant programmatic controls to ensure that SSC availability and reliability is maintained
٦	(able D 3.2.1-1	Table D 3.2.1-1

3.3-8, 3.3-	
9,and I	
3.310,	
I B-3.1-3	B 3.1.3
I B 3.2-5	B 3.2.4
I B 3.2-6	B 3.2.5
IB 3.3-1	B 3.3.1
IB 3.3-2	B 3.3.2
4.1-1a	D 4.1.3
li 10	1.5
II 13	2.1.2
II 20	2.3
II 23	2.8
1	

Unit 1		Unit 2	x	Reporting Period	January - December 2006
	SUMM	ARY OF C	HANGES TO	THE PROCESS CONTROL PROC	GRAM (PCP)
There we	re no changes	to the NM	IP2 Process C	THE PROCESS CONTROL PROC Control Program (PCP) during the re	eport period.
1					
				-	

Page 1 of 1

-

Unit 1	Unit 2	x	Reporting Period <u>January - December 2006</u>				
SUMMARY OF INOPERABLE MONITORS							
Monitor	Dates of Inc	operability	Cause and Corrective Actions				
1) Main Stack Effluent Noble Gas Activity Monitor		31, 2005	The Gaseous Effluent Monitoring System (GEMS) Main Stack Effluent Noble Gas Activity Monitor channel was declared inoperable due to the failure of a communication link between the GEMS computer and both the Stack and Vent monitors. The Vent monitor was restored on 1/19/06. The necessary computer communication/interface card repair to restore Stack GEMS was completed on 09/14/06. Repairs were not timely due to the obsolescence of failed components. GEMS is a one-of-a-kind off- line real time gamma spectroscopy system. Because of the system age and obsolescence replacement parts rely on used parts that are refurbished. The station has approved a project plan for replacement of the system, with an expected completion in 2007. Required grab sampling and analysis as directed by the Off-Site Dose Calculation Manual were maintained during the period of inoperability.				
2) Main Stack Effluent Sample Flow Rate Monitor	March 29, 2 13:45 to Se 14, 2006 @	ptember	The Gaseous Effluent Monitoring System (GEMS) Main Stack Sample Flow Rate Monitor channel was declared inoperable due to the failure of a communication link between the GEMS computer and the Stack monitor. The necessary computer communication/interface card repair was completed on 9/14/06. Repairs were not timely due to the obsolescence of failed components. GEMS is a one-of-a-kind off-line real time gamma spectroscopy system. Because of the system age and obsolescence replacement parts rely on used parts that are refurbished. The station has approved a project plan for replacement of the system, with an expected completion in 2007. Required flow rate estimates as directed by the Off-Site Dose Calculation Manual were maintained during the period of inoperability.				
3) Main Stack Effluent Noble Gas Activity Monitor	September @ 11:30 to 29, 2006 @	October	The Gaseous Effluent Monitoring System (GEMS) Main Stack Effluent Noble Gas Activity Monitor channel was declared inoperable due to the failure of a communication link between the GEMS computer and both the Stack and Vent monitors. The necessary computer communication/interface card repair was completed on 10/29/06. Repairs were not timely due to the obsolescence of failed components. GEMS is a one-of-a-kind off- line real time gamma spectroscopy system. Because of the system age and obsolescence replacement parts rely on used parts that are refurbished. The station has approved a project plan for replacement of the system, with an expected completion in 2007. Required grab sampling and analysis as directed by the Off-Site Dose Calculation Manual were maintained during the period of inoperability.				

nit 1 Unit 2X Reporting Period DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUN	January – December 2006 NDARY
DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUN	NDARY
n assessment of the radiation dose potentially received by a Member of the Public due oundary from Nine Mile Point Unit 2 (NMP2) liquid and gaseous effluents has been conducted recember 2006.	
nis assessment considers the maximum exposed individual and the various exposure path aseous effluents to identify the maximum dose received by a Member of the Public durin oundary.	
rior to September 11, 2001, the public had access to the Energy Information Center for purpose isplays or for picnicking and associated activities. Fishing also occurred near the shoreline adja ne shoreline adjacent to the NMP Site was the onsite activity that resulted in the potential maxi tember of the Public. Following September 11, 2001 public access to the Energy Information C shing by Members of the Public at locations on site is also prohibited. Although fishing was not nnual dose to a hypothetical fisherman was still evaluated to provide continuity of data for the	acent to the NMP. Fishing near imum dose received by a Center has been restricted and conducted during 2006 the
ose Pathways	
ose pathways considered for this evaluation included direct radiation, inhalation and externa oil doses). Other pathways, such as ingestion pathways, are not considered because the isignificant, or are considered as part of the evaluation of the total dose to a member of ddition, only releases from the NMP2 stack and vent were evaluated for the inhalation p athways such as liquid effluents is not applicable since swimming is prohibited at the Nine Mile	hey are either not applicable i the public located off-site. In athway. Dose due to aquatic
ose to a hypothetical fisherman is received through the following pathways while standing on	the shoreline fishing:
External ground pathway; this dose is received from plant related radionuclides detected ir	n the shoreline sediment.
Inhalation pathway; this dose is received through inhalation of gaseous effluents released fr	rom NMP2 Stack and Vent.
Direct radiation pathway; dose resulting from the operation of NMP2, Nine Mile Point Unit 1 Fitzpatrick (JAF) Facilities.	(NMP1) and the James A.
Aethodologies for Determining Dose for Applicable Pathways	
xternal Ground (Shoreline Sediment) pathway	
ose from the external ground (shoreline sediment) is based on the methodology in the Unit 2 (NMP2 ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed t xposed individual fished from the shoreline at all times.	
 The total dose received by the whole body and skin of the maximum exposed individu using the following input parameters: Usage Factor = 312 hours (fishing 8 hours per weat 	
 Density in grams per square meter = 40,000 	
• Shore width factor = 0.3	
• Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Tab	le E-6.
• Fractional portion of the year = 1 (used average radionuclide concentration over total	I time period)
 Average Cs-137 concentration = 1.99E-01 pCi/g 	
ne total whole body and skin doses received by a hypothetical maximum exposed fisherman f athway is presented in Table 1, Exposure Pathway Dose.	from the external ground

	Attachn		Page 2 of 4
Unit 1	Unit 2 <u>X</u>	Reporting Period <u>J</u>	anuary – December 200
	DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR	ACTIVITIES INSIDE THE SITE BOUNDARY	
Inhalation P	lathway		
Guide 1.109 2006 is calc	on dose pathway is evaluated by utilizing the inhalc P. The total whole body dose and organ dose rec culated using the following input parameters for gas riod exposure is received: k:	eived by the hypothetical maximum (exposed fisherman durin
	Variable	Fisherman *	
	X/Q (s/m³)	9.60E-07	
	Inhalation dose factor	Table E-7 Regulatory Guid	e 1.109
	Annual air intake m³/year) (adult)	8000	
	Fractional portion of the year (hours)	0.0356	
	H-3 (pCi/sec)	7.42 E+05	
	Mn-54 (pCi/sec)	1.02 E+00	
_	Fe-55 (pCi/sec)	1.04 E+01	
_	Co-60 (pCi/sec)	1.69 E+00	
	Sr-89 (pCi/sec)	5.60 E-01	
	Sr-90 (pCi/sec)	9.53 E-02	
	I-131 (pCi/sec)	1.04E-01	
NMP2 Vent:			
	Variable	Fisherman *	
	X/Q (s/m³)	2.80E-06	
	Inhalation dose factor	Table E-7 Regulatory Guide	e 1.109
	Annual air intake (m³/year) (adult)	8000	
Ļ	Fractional portion of the year (hours)	0.0356	
-	H-3 (pCi/sec)	4.65 E+05	
	Mn_{-54} (nCi/sec)	2 96 F+00	

Variable	Fisherman *	
X/Q (s/m³)	2.80E-06	
Inhalation dose factor	Table E-7 Regulatory Guide 1.109	
Annual air intake (m³/year) (adult)	8000	
Fractional portion of the year (hours)	0.0356	
H-3 (pCi/sec)	4.65 E+05	
Mn-54 (pCi/sec)	2.96 E+00	
Fe-55 (pCi/sec)	8.03 E+01	
Co-60 (pCi/sec)	7.61 E+00	
Zn-65 (pCi/sec)	3.34 E+00	
Sr-89 (pCi/sec)	1.73 E+00	
Sr-90 (pCi/sec)	3.15 E-01	
I-131 (pCi/sec)	5.69 E-01	

The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of . 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Dose.

Page 3 of 4

Unit 1	Unit 2	<u>x</u>	Reporting Period	<u>January – De</u>	ecember 2006

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP2 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 – December 31, TLD data for the second, third, and fourth quarters of 2006 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	7.13 E-03
Exposure time (hours)	312

Total Doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Dose.

Dose Received By A Hypothetical Maximum Exposed Member Of The Public Inside the Site Boundary During 2006

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from Liquid and Gaseous effluents released from NMP2 during 2006:

Exposure Pathway	Dose Type	Fisherman	
		(mRem)	
External Ground	Whole Body	3.13 E-03	
	Skin of Whole Body	3.66 E-03	
Inhalation	Whole Body	9.09 E-05	
	Maximum Organ	Lung: 9.75E-05	
Direct Radiation	Whole Body	0.48	

Table 1 Exposure Pathway Annual Dose

Page 4 of 4

Unit 1 _____ Unit 2 ____ X ___ **Reporting Period** January - December 2006 DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY Based on these values the total annual dose received by a hypothetical maximum exposed member of the public is as follows: Table 2 Annual Dose Summary Total Annual Dose for 2006 Fisherman (mRem) Total Whole Body 4.88 E-01 3.66E-03 Skin of Whole Body Lung: 9.75 E-05 Maximum Organ

Page 1 of 2

Unit 1 Unit 2 X Reporting Period January – December 2006
DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY
Introduction
Introduction
An assessment of radiation doses potentially received by the likely most exposed member of the public located beyond the site boundary was conducted for the period January through December 2006 for comparison against the 40CFR190 annual dose limits.
The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 2 (NMP2), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of NMP2, Nine Mile Point Unit 1 (NMP1) and the James A. FitzPatrick (JAF) facilities must be considered.
40CFR190 requires the annual radiation dose received by members of the public in the general environment, as a result of plant operations, be limited to:
 < 25 mRem wholebody
 < 25 mRem any organ (except thyroid)
• < 75 mRem thyroid
This evaluation compares doses resulting from Liquid and Gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP2, NMP1 and JAF nuclear facilities.
Dose Pathways
Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point Site.
Dose to the most likely member of the public, outside the site boundary, is received through the following pathways:
• Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in fish that is consumed by a member of the public.
• Shoreline Sediment; this dose is received as a result of an individual's exposure to plant radionuclides deposited in the shoreline sediment, which is used as a recreational area.
• Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is received through exposure to gaseous effluents released from NMP1, NMP2 and JAF operating facilities.
• Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAF facilities.
Methodologies for Determining Dose for Applicable Pathways
Fish Consumption
Dose received as a result of fish consumption is based on the methodology specified in the NMP2 Off-site Dose Calculation Manual (NMP2 ODCM) as adapted from Regulatory Guide 1.109. The dose for 2006 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed member of the public consumes fish taken near the site discharge points.
No radionuclides were detected in fish samples collected and analyzed during 2006; therefore no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2006.
Shoreline Sediment
Dose received from shoreline sediment is based on the methodology in the NMP2 ODCM as adapted from Regulatory Guide
1.109. For this evaluation it is assumed that the most likely exposed member of the public spends 67 hours/year along the shoreline for recreational purposes.

Page 2 of 2

Unit 1	Unit 2	x		Reporting Period	January – December 2006		
<u>Shorelir</u>	Shoreline Sediment continued:						
	al dose received by ng input parameters:	the whole body a	nd skin of the maximum e	xposed individual during	2006 is calculated using the		
•	Usage Factor = 67 h	iours per year					
•	Density in grams pe	r square meter = 4	0,000				
•	Shore width factor =	= 0.3					
•	Whole body and ski	in dose factor for e	each radionuclide = Regula	atory Guide 1.109, Table I	E-6		
•	Fractional portion o	f the year = 1					
•	Average Cs-137 Co	ncentration = 0.05	6 pCi/g				
Dose P	athways Resulting From	m Gaseous Effluen	<u>ts</u>				
methoo Manua	dology provided in th II. These calculations Is effluents from NMP1	ne NMP2 ODCM, s consider deposit	NMP1 Offsite Dose Calcul ion, inhalation and ingest	ation Manual, and the ion pathways. The total	lated in accordance with the JAF Offsite Dose Calculation sum of doses resulting from and maximum organ dose for		
Direct F	Radiation Pathway						
direct measur facilitie genera	radiation from any c red by environmenta s as well as the close	overhead gaseous II TLDs. The critico est residence in th seous plumes as de	s plumes, plume submersi al location is based on th e critical downwind secto etermined by the local me	on and from ground d e closest year-round re r in order to evaluate b	from the generating facilities, leposition. This total dose is sidence from the generating oth direct radiation from the the closest residence and the		

Dose Potentially Received by the Likely Most Exposed Member of the Public Outside the Site Boundary During 2006

Exposure Pathway	Dose Type	Dose (mRem)
Fish Consumption	Total Whole Body	No Dose
	Total Maximum Organ	No Dose
Shoreline Sediment	Total Whole Body	1.89E-04
	Total Skin of Whole Body	2.21E-04
Gaseous Effluents	Total Whole Body	1.17E-02
· · · ·	Total Maximum Organ	Thyroid: 9.28E-02
Direct Radiation	Total Whole Body	2.0

Based on these values the maximum total annual dose potentially received by the most likely exposed member of the public during 2006 is as follows:

- Total Whole Body: 2.01 mRem
- Total Skin of Whole Body: 9.38E-03 mRem
- Maximum Organ: Thyroid: 9.28E-02 mRem

40CFR190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAF facilities. The maximum organ dose (Thyroid: 0.093 mRem) and the maximum whole body dose (2.01 mRem) are below the 40 CFR 190 criteria of 25 mRem per calendar year to the maximum exposed organ or the whole body, and below 75 mRem per calendar year to the thyroid.

ATTACHMENT 12

Off-Site Dose Calculation Manual (ODCM)