Omaha Public Power District Fort Calhoun Nuclear Station 2006 Radiological Environmental Report

I

Ĥ

A

OMAHA PUBLIC POWER DISTRICT

FORT CALHOUN STATION

RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

TECHNICAL SPECIFICATION 5.9.4.b

January 01, 2006 – December 31, 2006

Annual Radiological Environmental Operating Report

This report is submitted in accordance with Section 5.9.4.b of the Technical Specifications of Fort Calhoun Station Unit No. 1, Facility Operating License DPR-40 for the period January 01, 2006 through December 31, 2006.

In addition, this report provides any observations and anomalies that occurred during the monitoring period.

Reviewed by:

Supervisor-System Chemistry

Approved by:

Manager-Chemistry

Annual Radiological Environmental Operating Report

In accordance with Technical Specification 5.9.4.b, herein is the Fort Calhoun Station (FCS) Annual Radiological Environmental Operating Report for year 2006. The data provided is consistent with the objectives as specified in Section 5.2.2 of the Offsite Dose Calculation Manual (ODCM), "Annual Radiological Environmental Operating Report." The report is presented as follows:

- 1) An introductory discussion of the implementation of the Radiological Environmental Monitoring Program (REMP), including program observations and environmental impact relevant to the operation of FCS.
- 2) The sample class, sample collection frequency, number of sample locations, and the number of samples collected this reporting period for each parameter are delineated in Table 1.0.
- 3) A statistical evaluation of REMP data is summarized in Table 2.0, in accordance with Regulatory Guide 4.8, Table 1. For each type of sample media and analysis, Table 2.0 presents data separately for all **indicator** locations, all **control** (background) locations, and the location having the highest annual mean result. For each of these classes, Table 2.0 specifies the following:
 - a. The total number of analyses
 - b. The fraction of analyses yielding detectable results (i.e., results above the highest Lower Limit of Detection (LLD) for this period
 - c. The maximum, minimum, and average results
 - d. Locations with the highest annual mean are specified by code, name, and by distance and direction from the center of plant reactor containment building
- 4) Table 3.0 is a listing of missed samples and explanations
- 5) Table 4.0 is the 2006 Land Use Survey
- 6) Review of Environmental Inc. Quality Assurance Program
- 7) Appendix A describes the Interlaboratory Comparison Program
- 8) Appendix B describes the vendor Data Reporting Conventions utilized
- 9) Appendix C reports the information required when primary coolant specific activity has exceeded the limits of Technical Specification 2.1.3
- 10) Appendix D is the Sample Location Maps

INTRODUCTION

Radiological Environmental Monitoring Program (REMP) - 2006

This report gives the results of the Radiological Environmental Monitoring Program (REMP) for the year 2006. The REMP is a requirement of the Fort Calhoun Station (FCS) operating license. It was initiated prior to plant operation in 1973.

The main purpose of the REMP is to ensure public safety by monitoring plant discharges and assessing the effect, if any, of plant operations, on the environment. Samples are collected that would account for various exposure pathways such as ingestion, inhalation, adsorption and direct exposure. Samples collected on a regular basis include: air, water, milk, vegetation, fish, sediment, food crops, and field crops. Direct radiation is measured by thermoluminescent dosimeters (TLDs). These samples and TLDs are sent to an independent vendor laboratory for analysis. The vendor uses analytical methods that are sensitive enough to detect a level of activity far below that which would be considered harmful. Locations for sample collection are based on radiological and meteorological data from the Annual Radiological Effluent Release Report and information obtained from the Environmental Land Use Survey.

Most samples, particularly indicator samples, are collected in a circular area within a five-mile radius of plant containment. (However, control locations are usually outside of five miles.) This circle is divided into sixteen equal sectors, each assigned an identification letter "A" through "R" (note: letters "I" and "O" are not used, as they may be mistaken for the numbers "1" and "O"). Sector "A" is centered on North or zero degrees. Sectors are also given directional labels such as "West-Southwest" ("WSW"). Sample locations are listed by number along with their respective distances and direction from plant containment, in the Offsite Dose Calculation Manual (ODCM).

When assessing sample results, data from indicator locations (those most likely to be affected by plant operations) are compared to those from control locations (those least or not likely to be effected). Results from an indicator location which were significantly higher than those from a control location, could indicate a plant-attributable effect, and could require additional investigation.

The results of the sample analyses, as required by the ODCM, are presented in the attached statistical tables in accordance with Table 1 of Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants." Sample collection was conducted by plant chemistry/environmental staff. A contract vendor (Environmental Inc., Northbrook, Illinois) performed sample analyses, preparation of monthly reports and the statistical evaluation of sample results. All vendor analysis techniques met the sensitivity requirements as stated in the ODCM. Results for 2006 were within expected ranges and compared closely with historical results. The following is a review of specific sample results.

1) <u>Ambient Gamma Radiation</u>

Ambient gamma radiation is measured by thermoluminescent dosimeters (TLDs) provided by the vendor laboratory. These dosimeters contain calcium sulfate phosphors and are processed quarterly.

All results for 2006 were within historical ranges. The indicator locations had results ranging from 1.2 to 1.8 mrem per week. The control location (OTD-L) had an annual mean of 1.3 mrem per week. Results from indicator locations are within the range of results from the control location. No plant-attributable results were observed.

2) <u>Milk/Pasture</u>

Milk samples are collected every two weeks from the beginning of May through September when dairy animals are in pasture. Indicator samples are collected from a herd of milk goats at a family farm located approximately 0.7 miles from the plant in Sector K (South-Southwest). The control samples are collected from a commercial dairy cow herd located approximately 9.9 miles from the plant in Sector J (South). These locations are unchanged from last year. There were no missed milk samples this year, therefore, no pasture samples were needed.

The milk sample collected from Bansen Farm on June 30, 2006, had some leakage during shipping. Final sample volume was 0.6 liter. Enough sample volume was available to determine appropriate LLD.

All milk sample results for lodine-131, Cesium-134, Cesium-137 and other gammas were less than LLD for both indicator and control locations. No plant-related effects were observed.

3) <u>Fish</u>

Fish are collected on an annual basis. Control samples are collected at a location approximately twenty miles upstream of the plant (river miles 665-667). Indicator samples are collected in the immediate vicinity of the power plant (river miles 644-646). Several species of fish, important to commercial and recreational interest, representing all levels of the aquatic food chain are collected at both locations. Results from both locations were less than LLD for all gamma emitters, indicating no plant-related effects.

4) Food Crops

Food crops samples are collected from three locations annually, two indicator locations and one control location. Based on the results of the 2006 Land Use Survey, the nearest high deposition pathway for food crops is the Ellis Acreage in Sector J (0.74 miles, 182°). Accordingly, vegetable samples were collected at Ellis Acreage for the purposes of the 2006 REMP. All results were less than LLD for all isotopes. No plant-related effects were observed.

5) Onsite Field Crops

In addition, onsite field crops were sampled near the plant boundary in Sector F (0.52 miles, 118°).

Sample results were comparable with historical results and within the range of results reported from the control location garden at Mohr Dairy in Sector J (9.86 miles, 186°). All results were less than LLD for all isotopes. No plant-related effects were observed.

6) <u>Sediment</u>

River sediment samples are collected twice a year at an upstream control location and a downstream indicator location. All results were less than LLD, and no plant-related effects were observed.

7) <u>Air Monitoring</u>

Air sample results for 2006 were well within historical limits for all locations. Additionally, all indicator locations showed results very similar to the control location. No plant-related effects were observed.

Three incidents were reported to the Plant Corrective Action Group in 2006 relating to air sampling problems. Each is discussed below.

When samples were being collected on February 8, 2006, it was found that the ground-fault interrupt (GFI) switch had tripped at location OAP-K-(I) after only 45 hours of run time. This resulted in a sample volume of only 155 cubic meters. The sample was analyzed and activity calculated for actual volume, yielding a Beta result of 0.017 pCi/L. This result is within the historical range of all sample locations. This sample was handled in accordance with the ODCM Section 4.1.1A(7) which addresses lost and non-standard samples. No significant airborne effluents were discharged from the plant during the time period in question. There were no violations of the ODCM or regulatory requirements. There was no effect on public safety or the Public Radiation Safety Cornerstone.

When the technician arrived at location OAP-K-(I) to change out the GFI switch on February 28, they found it had again tripped off after 70.32 hours of run time. The GFI was replaced and the system checked back to the transformer for potential grounds. In addition to the suspected malfunctioning GFI, a loose side lug was found in the meter. This could have contributed to the GFI tripping. The unit was re-started after repairs and monitored daily to verify continuous operation. The sample was collected at the regular day and time. Total sample collection time was 92.12 hours and total sample volume was 313 cubic meters. Sample activity was calculated accordingly, yielding a result of 0.040 pCi/L, which is within historical seasonal results. There was no violation of ODCM or regulatory requirements. The sample was completed in accordance with the ODCM Section 4.1.1A(7) which addresses lost or non-standard samples. There was no effect on public safety of the Public Radiation Safety Cornerstone.

On July 27, 2006, when the technician arrived at location OAP-B-(I), the rotometer on the air pump was showing a flow of 2.5 cubic feet per minute. The technician replaced the pump and returned the potentially malfunctioning pump to the instrument shop. When the pump was tested with the Teledyne flow standard equipment, to verify actual flow, it was found to be operating at 2.07 cubic feet per minute, well within the acceptance criteria. The self-contained rotometers on the air pumps are known to have a degree of accuracy problems. They are also subjected to temperature changes, humidity, and the potential for in-leakage of fine dust particles. As a result, the Teledyne flow standard equipment is considered the determiner of actual flow rates. Since actual flow rates were within limits, no correction was needed to sample volume results and this is considered a rotometer problem only.

8) <u>Surface Water</u>

Water samples are collected upstream of the plant (control location) as well as half-mile downstream, and at a municipal water treatment plant on the north edge of Omaha.

Results for Cs-134, Cs-137, and other gammas were all less than LLD. Tritium results were also less than LLD. No plant-related effects were detected.

9) Ground Water

Ground water monitoring for tritium is performed per the Site Ground Water Protection Program. Analysis results for ground water samples collected are presented in the 2006 Annual Radiological Effluent Release Report. Table 1.0 Sample collection program

i

Í

ł.

Sample Class	Collection Frequency	Number of Sample Locations	Number of Samples Collected This Period
Background Radiation (TLDs)	Quarterly	15	60
Air Particulates	Weekly	6	318
Airborne Iodine	Weekly	6	318
Milk	Semimonthly	2	22
Water	Monthly	3	36
Fish	Annually	2	5
Sediment	Semiannually	2	4
Food Crops	Annually	2	8
Onsite Field Crops	Annually	1	. 1

TOTAL

772

Table 2.0 Radiological Environmental Monitoring Program Summary

Reporting Period

Docket No.

January-December, 2006

50-285

Name of Facility	
Location of Facility	

Fort Calhoun Nuclear Power Station - Unit 1 Washington, Nebraska (County, State)

Sample Type and			Indicator Locations	Location wit	h Highest Mean	Control Locations	Number Non-
Type (Units)	Number of Analyses ^a	LLD⁵	Mean (F) ^c Range ^c	Location ^d	Mean (F) ^c Range ^c	Mean (F) [°] Range [°]	Routine Results ^e
Background Radiation (TLD) (mR/week)	Gamma 60	0.5	1.5 (56/56) (1.2-1.8)	OTD-J-(I) Ellis Acreage 0.7 mi. @ 180 °	1.6 (4 /4) (1.5-1.8)	1.3 (4/4) (1.2-1.4)	0
Airborne Particulates (pCi/m3)	GB 318	0.005	0.028 (265/265) (0.010-0.070)	OAP-F-(C) Valley 19.5 mi. @ 219 °	0.030 (53 /53) (0.012-0.061)	0.030 (53/53) (0.012-0.061)	0
	GS 24	۱					
	Cs-134	0.001	< LLD	-	-	< LLD	0
·	Other Gammas	0.001		-	-		0
Airborne Iodine (pCi/m3)	I-131 311	3 0.07	< LLD	-	-	< LLD	0
Milk (pCi/L)	I-131 22	0.5	< LLD	-	-	< LLD	0
	65 22						
	K-40	150	1622 (11/11) (1136-1778)	OFM-F-(I) Bansen Farm 0.7 mi. @ 207 °	1622 (11/11) (1136-1778)	1157 (11/11) (691-1528)	0
	Cs-134	15	< LLD	-	-	< LLD	0
	Cs-137	15	< LLD	-	-	< LLD	0
	Other Gammas	15	< LLD	-	-	< LLD	0
Water (pCi/L)	GS 36 Cs-134 Cs-137 Other Gammas) 15 15 15	< LLD < LLD < LLD	- - -		< LLD < LLD < LLD	0 0 0
	H-3 12	300	< LLD	-	-	< LLD	0

Table 2.0 Radiological Environmental Monitoring Program Summary

Reporting Period

Docket No.

January-December, 2006

50-285

Name of Facility Location of Facility Fort Calhoun Nuclear Power Station - Unit 1 Washington, Nebraska

braska (County, State)

			Indicator	Location with	n Highest	Control	Number
Sample	ple Type and		Locations	Annual	Vean	Locations	Non-
Туре	Number of	LLD⁵	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
Fish	GS 5						
(pCi/g wet)	Mn-54	0.028	< LLD	-	-	< LLD	0
	Co-58	0.020	< LLD	-	-	< LLD	0
	Co-60	0.026	< LLD	-	-	< LLD	0
	Fe-59	0.051	< LLD	-	-	< LLD	0
	Zn-65	0.050	< LLD	-	-	< LLD	0
	Ru-103	0.037	< LLD	-	-	< LLD	0
	Cs-134	0.039	< LLD	-	-	< LLD	0
	Cs-137	0.030	< LLD	-	-	< LLD	0
Sodimont	CS A						
	Mn 54	0.018		_	_	<110	0
pc#g ary	Co 58	0.010		_	_		0
	C0-56	0.023		_			
	C0-60	0.014		-	-		
	Fe-59	0.051		-	-		0
		0.049		-	-		0
	Cs-134	0.025		-	-		
	CS-137	0.017	< LLD	-	-		
Food Crops	GS 9						
(pCi/g wet)	Mn-54	0.029	< LLD	-	-	< LLD	0
	Co-58	0.017	< LLD	-	-	< LLD	0
	Co-60	0.018	< LLD	-	-	< LLD	0
	Fe-59	0.026	< LLD	-	-	< LLD	0
	Zn-65	0.037	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.022	< LLD	-	-	< LLD	0
	Cs-134	0.015	< LLD	_	-	< LLD	0
	Cs-137	0.020	< LLD	-	-	< LLD	0
	Ba-La-140	0.039	< LLD	-	-	< LLD	0
			· ····	L	• · · · · · · · · · · · · · · · · · · ·		•

^a GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 95% confidence level.

^c Mean and range are based on detectable measurements only (i.e., >LLD) Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by code, (2) by name, and (3) by distance and direction relative to the Reactor Containment Building.

^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds the typical pre-operational value for the medium or location.

Table 3.0 Listing of Missed Samples (samples scheduled but not collected)

Sample Type	Date	Location	Reason

All required samples for the REMP were collected as scheduled for 2006.

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group	Remarks
Nearest Residence		Wright	4.36 / 351	Mail Survey	Adult, Child	Interviewed also
	Milk Animal	None	None	None	None	
A	Meat Animal	None	None	None	None	
	Vegetable Garden	None	None	None	None	
	Groundwater	Cottonwood	4.57 / 349	Mail Survey	None	
	Nearest Residence	J. Rand	1.93 / 12	Mail Survey	Adult	
	Milk Animal	None	None	None	None	
В	Meat Animal	D. Dugdale	4.72 / 29	City Register	Adult, Teen, Child	No Survey Response
	Vegetable Garden	None	None	None	None	
	Groundwater	J. Rand	1.93 / 12	Mail Survey	Adult	
	Nearest Residence	M. Hansen	1.52 / 42	Mail Survey	Adult, Infant	:
	Milk Animal	None	None	None	None	
С	Meat Animal	None	None	None	None	
	Vegetable Garden	Thiele	1.59 / 5 <u>2</u>	City Register	Adult, Child	No Survey Response
	Groundwater	M. Hansen	1.52 / 42	Mail Survey	Adult, Infant	
	Nearest Residence	G. Meade	4.79 / 63	Mail Survey	Adult	
	Milk Animal	None	None	None	None	
D	Meat Animal	None	None	None	None	
	Vegetable Garden	M. Borchers	4.98 / 58	City Register	Adult	No Survey Response
	Groundwater	G. Meade	4.79 / 63	Mail Survey	Adult	

Table 4.0 Environmental Land Use Survey

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

1-11 Yrs. Child

12-17 Yrs. Teen

Over 17 Yrs. Adult

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group	Remarks
	Nearest Residence	B. Herman	4.67 / 89	City Register	Adult	No Survey Response
	Milk Animal	None	None	None	None	
E	Meat Animal	D. Brothers	4.91 / 90	Mail Survey	Adult	
	Vegetable Garden	B. Herman	4.67 / 89	City Register	Adult	No Survey Response
	Groundwater	B. Herman	4.67 / 89	City Register	Adult	No Survey Response
	Nearest Residence	Wilson Island	4.22 / 121	Mail Survey	Adult	Staff-occupied housing
	Milk Animal	None	None	None	None	
F	Meat Animal	Watts	5.00 / 112	Mail Survey	Adult	
	Vegetable Garden	Watts	5.00 / 112	Mail Survey	Adult	
-	Groundwater	Wilson Island	4.22 / 121	Mail Survey	Adult	
	Nearest Residence	T. Carter	1.67 / 145	Mail Survey	Adult	
	Milk Animal	None	None	None	None	
G	Meat Animal	None	None	None	None	
	Vegetable Garden	W. Kalin	1.74 / 145	Mail Survey	Adult	
	Groundwater	Smith	1.99 / 134	Interview	Adult	
	Nearest Residence	S. Herber	0.65 / 163	Interview	Adult, Teen	Mailed Survey
	Milk Animal	None	None	None	None	
н	Meat Animal	R. Hineline	1.82 / 148	Mail Survey	Adult	Also has Holstein bulls
	Vegetable Garden	R. Hineline	1.82 / 148	Mail Survey	Adult	:
	Groundwater	S. Herber	0.65 / 163	Interview	Adult, Teen	Mailed Survey

1

Environmental Land Use Survey (continued) Table 4.0

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

Child 1-11 Yrs.

Teen

12-17 Yrs. Over 17 Yrs. Adult

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group	Remarks
	Nearest Residence	Dowler	0.73 / 175	Interview	Adult, Teen	Survey Response
	Milk Animal	Stangl	3.44 / 169	Mail Survey	Adult, Teen, Child, Infant	Interviewed
J	Meat Animal	L. Dickes	2.60 / 170	City Register	Adult	No Survey Response
	Vegetable Garden	J. Ellis	0.74 / 182	Interview	Adult	No Survey Response
	Groundwater	Dowler	0.73 / 175	Interview	Adult, Teen	Survey Response
	Nearest Residence	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
	Milk Animal	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	Goats, Survey Response
ĸ	Meat Animal	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	Survey Response
	Vegetable Garden	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	Survey Response
	Groundwater	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	Survey Response
	Nearest Residence	D. Robertson	0.73 / 224	Interview	Adult, Teen	No Survey Response
	Milk Animal	None	None	None	None	
L	Meat Animal	D. Robertson	0.73 / 224	City Register	Adult, Teen	No Survey Response
	Vegetable Garden	Stratman	0.75 / 232	Interview	Adult	Survey Response
	Groundwater	D. Robertson	0.73 / 224	City Register	Adult, Teen	No Survey Response
	Nearest Residence	M. Bensen	1.06 / 257	City Register	Adult	No Survey Response
	Milk Animal	None	None	None	None	4
м	Meat Animal	B. Wrich	2.42 / 250	City Register	Adult, Teen	No Survey Response
	Vegetable Garden	D. Russell	1.21 / 246	City Register	Adult	No Survey Response
	Groundwater	M. Bensen	1.06 / 257	City Register	Adult	No Survey Response

Environmental Land Use Survey (continued) Table 4.0

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

Child 1-11 Yrs.

Teen

12-17 Yrs. Over 17 Yrs. Adult

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group	Remarks
	Nearest Residence	D. Nielsen	1.20 / 263	City Register	Adult	No Survey Response
	Milk Animal	None	⁻ None	None	None	
N	Meat Animal	J. Anderson	3.25 / 281	Mail Survey	Adult	
	Vegetable Garden	D. Nielsen	1.20 / 263	City Register	Adult	No Survey Response
	Groundwater	D. Nielsen	1.20 / 263	City Register	Adult	No Survey Response
	Nearest Residence	G. Wachter	2.27 / 302	Mail Survey	Adult, Child, Infant	
	Milk Animal	None	None	None	None	
Р	Meat Animal	G. Wachter	2.27 / 302	Mail Survey	Adult, Child, Infant	
	Vegetable Garden	G. Wachter	2.27 / 302	Mail Sùrvey	Adult, Child, Infant	
	Groundwater	G. Wachter	2.27 / 302	Mail Survey	Adult, Child, Infant	-
	Nearest Residence	R. Hansen	2.40 / 318	City Register	Adult	No Survey Response
	Milk Animal	None	None	None	None	
Q	Meat Animal	None	None	None	None	
	Vegetable Garden	R. Hansen	2.40 / 318	City Register	Adult	No Survey Response
	Groundwater	R. Hansen	2.40 / 318	City Register	Adult	No Survey Response
	Nearest Residence	K. Kelley	2.08 / 330	Interview	Adult	No Survey Response
	Milk Animal	None	None	None	None	
R	Meat Animal	None	None	None	None	
	Vegetable Garden	S. Sorensen	4.01 / 329	City Register	Adult, Teen	No Survey Response
	Groundwater	Sonderup	3.73 / 328	Interview	Adult	

Table 4.0 Environmental Land Use Survey (continued)

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

Child

1-11 Yrs. 12-17 Yrs. Teen

Over 17 Yrs. Adult

Review of Environmental Inc., Quality Assurance Program

Fort Calhoun Station contracts with Environmental Inc., Midwest Laboratory (vendor) to perform radioanalysis of environmental samples. Environmental Inc. participates in interlaboratory comparison (cross-check) programs, as part of its quality control program. These programs are operated by agencies such as the Department of Energy, which supply blind-spike environmental type samples such as milk or water containing concentrations of radionuclides unknown to the testing laboratory. This type of program provides an independent check of the analytical laboratory's procedures and processes, and provides indication of possible weaknesses. In addition, Environmental Inc. has its own in-house QA program of blind-spike and duplicate analyses.

Of the 52 samples analyzed in the Interlaboratory Comparison Crosscheck program, one had a failed result. An I-131 sample was analyzed three times, with an average result of 28.4 ± 1.2 pCi/L. Control limits were 16.9 - 27.3 pCi/L. When the sample was analyzed a fourth time and re-averaged, results were 24.89 pCi/L and were within limits. These QA results had no impact on Fort Calhoun sample results.

The vendor laboratory performed approximately 168 In-House duplicate samples for the year. Of these, two were listed as failures, a Gross Beta sample and a K-40 sample. The vendor reviewed their results, and determined that the failures were due to a 200-minute or longer count time, which resulted in a lower error. The vendor investigated and reported the results properly. These sample results had no impact on Fort Calhoun sample results.

The vendor laboratory also participated in the Department of Energy's Mixed Analyte Performance Evaluation Program. Of the 106 samples submitted to the vendor, six failed the acceptance criteria. These samples contained Pu-238, Pu-239/40, U-233/4 and U-238. The vendor investigated and determined that the cause of the failures was due to the incomplete dissolution of the samples. When four of the samples, which were of soil, were re-analyzed, the results were satisfactory. These test results had no impact on Fort Calhoun samples and were documented by the vendor.

Environmental, Inc. Midwest Laboratory an Allegheny Technologies Co.

ı

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE:

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A: TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2006 through December, 2006

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

The results in Table A-2 list results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 list results of the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Data for previous years available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Attachment A lists acceptance criteria for "spiked" samples.

Out-of-limit results are explained directly below the result.

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES*

		One standard deviation
Analysis	Level	for single determination
.		
Gamma Emitters	5 to 100 pCi/liter or kg	5.0 pCi/liter
	> 100 pCi/liter or kg	5% of known value
Strontium-80 ^b	5 to 50 pCi/litor or kg	E 0 pCillitor
Stiontium-05	> 50 pCi/liter or kg	10% of known value
Strontium-90 ^b	2 to 30 pCi/liter or kg	5.0 pCi/liter
	> 30 pCi/liter or kg	10% of known value
Potassium-40	≥ 0.1 g/liter or kg	5% of known value
Gross alpha	≤ 20 pCi/liter	5.0 pCi/liter
	> 20 pCi/liter	25% of known value
Gross beta	< 100 pCi/liter	5.0 pCi/liter
	> 100 pCi/liter	5% of known value
Tritium	≤ 4,000 pCi/liter	$\pm 1\sigma = (pCi/liter) =$
		169.85 x (known) ^{0.0933}
	> 4,000 pCi/liter	10% of known value
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value
Plutonium	> 0.1 nCi/liter gram or sample	10% of known value
	= 0.1 permer, gram, or sample	
lodine-131,	≤ 55 pCi/liter	6.0 pCi/liter
lodine-129 ^b	> 55 pCi/liter	10% of known value
Uranium-238,	≤ 35 pCi/liter	6.0 pCi/liter
Nickel-63 ^b	> 35 pCi/liter	15% of known value
Technetium-99 ^b		
Iron-55 ^b	50 to 100 pCi/liter	10 pCi/liter
	> 100 pCi/liter	10% of known value
ou b		·
Others		20% of known value

^a From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

		Concentration (pCi/L)					
Lab Code	Date	Analysis	Laboratory	ERA	Control		
•			Result ^b	Result ^c	Limits	Acceptance	
GTN/ 1079	04/46/06	S- 90	10.0 + 2.5	50.0	44.5 50.0	Deres	
STW-1070	01/16/06	51-09	49.9 ± 3.5	50.2	41.5 - 58.9	Pass	
STW-1070	01/10/00	SI-90 Do 122	31.5 ± 1.5	30.7	22.0 - 39.4	Pass	
STW-1079	01/10/00	Ba-133	80.5 ± 4.1	95.0	78.6 - 111.0	Pass	
STW-1079	01/10/00	Co-60	96.3 ± 4.1	95.3	86.6 - 104.0	Pass	
STW-1079	01/10/00	Cs-134	22.0 ± 3.0	23.1	14.4 - 31.8	Pass	
STW-1079	01/16/06	US-137	109.0 ± 5.9	111.0	101.0 - 121.0	Pass	
STW-1079	01/16/06		198.0 ± 11.2	192.0	159.0 - 225.0	Pass	
STW-1080	01/16/06	Gr. Alpha	10.8 ± 1.4	9.6	1.0 - 18.3	Pass	
STW-1080	01/16/06	Gr. Beta	56.9 ± 1.9	61.9	44.6 - 79.2	Pass	
STW-1081	01/16/06	Ra-226	4.3 ± 0.4	4.6	3.4 - 5.8	Pass	
STW-1081	01/16/06	Ra-228	7.1 ± 1.8	6.6	3.7 - 9.5	Pass	
STW-1081	01/16/06	Uranium	20.7 ± 0.5	22.1	16.9 - 27.3	Pass	
STW-1088	04/10/06	Sr-89	29.0 ± 1.8	32.4	23.7 - 41.1	Pass	
STW-1088	04/10/06	Sr-90	8.7 ± 1.0	9.0	0.3 - 17.7	Pass	
STW-1089	04/10/06	Ba-133	10.3 ± 0.4	10.0	1.3 - 18.7	Pass	
STW-1089	04/10/06	Co-60	114.0 ± 2.8	113.0	103.0 - 123.0	Pass	
STW-1089	04/10/06	Cs-134	41.9 ± 1.4	43.4	34.7 - 52.1	Pass	
STW-1089	04/10/06	Cs-137	208.0 ± 1.1	214.0	195.0 - 233.0	Pass	
STW-1089	04/10/06	Zn-65	154.0 ± 0.8	152.0	126.0 - 178.0	Pass	
STW-1090	04/10/06	Gr. Alpha	13.4 ± 1.1	21.3	12.1 - 30.5	Pass	
STW-1090	04/10/06	Gr. Beta	27.7 ± 2.1	23.0	14.3 - 31.7	Pass	
STW-1091	04/10/06	I-131	22.0 ± 0.3	19.1	13.9 - 24.3	Pass	
STW-1092	04/10/06	H-3	7960.0 ± 57.0	8130.0	6720.0 - 9540.0	Pass	
STW-1092	04/10/06	Ra-226	2.9 ± 0.4	3.0	2.2 - 3.8	Pass	
STW-1092	04/10/06	Ra-228	20.9 ± 1.2	19.1	10.8 - 27.4	Pass	
STW-1092	04/10/06	Uranium	68.6 ± 3.4	69.1	57.1 - 81.1	Pass	
STW-1094	07/10/06	Sr-89	159+07	19.7	11.0 - 28.4	Pass	
STW-1094	07/10/06	Sr-90	24.3 ± 0.4	25.9	17.0 - 20.4	Pass	
STW-1095	07/10/06	Ba-133	94 9 + 8 9	88.1	72.9 - 103.0	Pass	
STW-1095	07/10/06	Co-60	104.0 + 1.8	99.7	91.0 - 108.0	Pass	
STW-1095	07/10/06	Cs-134	487 + 13	57.1	51.0 - 100.0 45.4 - 62.8	Pass	
STW-1095	07/10/06	Ce-137		228.0	40.4 - 02.0 217.0 - 250.0	Pass	
STW-1005	07/10/06	Zn-65	126 0 ± 9.0	121 0	100 0 142 0	Pass	
STW-1095	07/10/06	Gr Aloba	10 0 ± 1 0	121.0	12 106	Pass	
STW-1090	07/10/06	Gr. Reta	0.5 I 1.0 07 ± 0 /		1.3 - 10.0	Pass	
STW-1030	07/10/06	Da.226	9.7 ± 0.4 11 Λ ± Λ Ε	0.9 10.7	U.Z - 17.J 70 49 E	Pass	
STW-1097	07/10/06	Da-220	10 1 U.U	10.7	1.3 - 13.3	Pass	
STW-1097	07/10/06	Na-220	12.2 I U.O	10.7	0.1-10.3	Pass	
0144-1097	07/10/00	Uranium	40.4 X V.I	40.3	JJ.J - 47.J	r'ass	

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

ľ

Lab Code	Date	Analysis	, Laboratory	ERA	Control		
			Result ^b	Result ^c	Limits	Acceptance	
STW-1104	10/06/06	Sr-89	38.4 ± 1.3	39.9	31.2 - 45.7	Pass	
STW-1104	10/06/06	Sr-90	15.5 ± 0.5	16.0	7.3 - 24.7	Pass	
STW-1105	10/06/06	Ba-133	64.9 ± 2.8	70.2	58.1 - 82.3	Pass	
STW-1105	10/06/06	Co-60	61.6 ± 1.0	62.3	53.6 - 71.0	Pass	
STW-1105	10/06/06	Cs-134	29.0 ± 0.9	29.9	21.2 - 38.6	Pass	
STW-1105	10/06/06	Cs-137	77.8 ± 2.4	78.2	69.5 - 86.9	Pass	
STW-1105	10/06/06	Zn-65	293.0 ± 2.4	277.0	229.0 - 325.0	Pass	
STW-1106	10/06/06	Gr. Alpha	23.9 ± 2.5	28.7	16.3 - 41.1	Pass	
STW-1106	10/06/06	Gr. Beta	23.7 ± 1.4	20.9	12.2 - 29.6	Pass	
STW-1107 ^d	10/06/06	I-131	28.4 ± 1.2	22.1	16.9 - 27.3	Fail	
STW-1108	10/06/06	Ra-226	14.5 ± 0.5	14.4	10.7 - 18.1	Pass	
STW-1108	10/06/06	Ra-228	6.6 ± 0.4	5.9	3.3 - 8.4	Pass	
STW-1108	10/06/06	Uranium	2.9 ± 0.1	3.2	0.0 - 8.4	Pass	
STW-1109	10/06/06	H-3	3000.0 ± 142.0	3050.0	2430.0 - 3670.0	Pass	

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d The reported result was an average of three analyses, results ranged from 25.36 to 29.23 pCi/L.

.

A fourth analysis was performed, result of analysis, 24.89 pCi/L.

		<u> </u>		mR		
Lab Code	Date		Known	Lab Result	Control	
<u> </u>		Description	Value	± 2 sigma	Limits	Acceptance
<u>Environmenta</u>	<u>al, Inc.</u>					
2006-1	6/5/2006	30 cm	54.81	70.73 ± 0.69	38.37 - 71.25	Pass
2006-1	6/5/2006	60 cm	13.70	16.71 ± 1.89	9.59 - 17.81	Pass
2006-1	6/5/2006	60 cm	13.70	16.69 ± 0.94	9.59 - 17.81	Pass
2006-1	6/5/2006	90 cm	6.09	6.57 ± 0.82	4.26 - 7.92	Pass
2006-1	6/5/2006	120 cm	3.43	3.65 ± 0.22	2.40 - 4.46	Pass
2006-1	6/5/2006	120 cm	3.43	3.09 ± 0.33	2.40 - 4.46	Pass
2006-1	6/5/2006	150 cm	2.19	2.35 ± 0.38	1.53 - 2.85	Pass
2006-1	6/5/2006	150 cm	2.19	1.98 ± 0.10	1.53 - 2.85	Pass
2006-1	6/5/2006	180 cm	1.52	1.56 ± 0.26	1.06 - 1.98	Pass
Environmenta	al, Inc.					
2006-2	11/6/2006	30 cm.	55.61	60.79 ± 1.32	38.93 - 72.29	Pass
2006-2	11/6/2006	40 cm.	31.28	35.93 ± 3.70	21.90 - 40.66	Pass
2006-2	11/6/2006	50 cm.	20.02	21.55 ± 1.20	14.01 - 26.03	Pass
2006-2	11/6/2006	60 cm.	13.90	14.90 ± 1.42	9.73 - 18.07	Pass
2006-2	11/6/2006	75 cm.	8.90	8.03 ± 0.51	6.23 - 11.57	Pass
2006-2	11/6/2006	90 cm.	6.18	6.88 ± 0.68	4.33 - 8.03	Pass
2006-2	11/6/2006	120 cm.	3.48	2.90 ± 0.20	2.44 - 4.52	Pass
2006-2	11/6/2006	150 cm.	2.22	1.99 ± 0.07	1.55 - 2.89	Pass
2006-2	11/6/2006	180 cm.	1.54	1.79 ± 0.94	1.08 - 2.00	Pass

TABLE A-2. Crosscheck program results; Thermoluminescent Dosimetry, (TLD, CaSO4: Dy Cards).

.

.

TABLE A-3. In-House "Spike" Samples

į

.

		Concentration (pCi/L) ^a							
Lab Code ^b	Date	Analysis	Laboratory results	Known	Control				
	· · · · · · · · · · · · · · · · · · ·		2s, n=1 °	Activity	Limits ^o	Acceptance			
0011 004	410010000					_			
SPW-301	1/20/2006	Fe-55	2700.10 ± 70.00	2502.50	2002.00 - 3003.00	Pass			
SPAP-1224	3/7/2006	Cs-134	37.13 ± 3.70	39.52	29.52 - 49.52	Pass			
SPAP-1224	3/7/2006	Cs-137	118.25 ± 8.97	119.30	107.37 - 131.23	Pass			
SPAP-1224	3/7/2006	Gr. Beta	520.32 ± 7.42	455.00	364.00 - 637.00	Pass			
SPW-1228	3/7/2006	H-3	70891.00 ± 719.00	75394.00	60315.20 - 90472.80	Pass			
SPW-1230	3/7/2006	Cs-134	38.58 ± 2.10	39.51	29.51 - 49.51	Pass			
SPW-1230	3/7/2006	Cs-137	59.44 ± 4.51	59.65	49.65 - 69.65	Pass			
SPMI-1232	3/7/2006	Cs-134	41.20 ± 1.33	39.51	29.51 - 49.51	Pass			
SPMI-1232	3/7/2006	Cs-137	57.82 ± 3.96	59.65	49.65 - 69.65	Pass			
W-30906	3/9/2006	Gr. Alpha	24.24 ± 0.47	20.08	10.04 - 30.12	Pass			
W-30906	3/9/2006	Gr. Beta	63.79 ± 0.48	65.73	55.73 - 75.73	Pass			
SPW-2750	4/27/2006	Ni-63	116.00 ± 2.49	100.00	60.00 - 140.00	Pass			
SPW-2869	5/1/2006	Fe-55	19473.00 ± 188.00	23332.00	18665.60 - 27998.40	Pass			
SPAP-2871	5/1/2006	Cs-134	33.97 ± 1.10	37.50	27.50 - 47.50	Pass			
SPAP-2871	5/1/2006	Cs-137	114.44 ± 2.81	118.90	107.01 - 130.79	Pass			
SPW-2875	5/1/2006	H-3	71057.00 ± 730.20	75394.00	60315.20 - 90472.80	Pass			
STSO-3155	5/1/2006	Co-60	7950.80 + 67.29	7750.00	6975.00 - 8525.00	Pass			
STSO-3155	5/1/2006	Cs-134	12.49 + 0.13	11.59	1.59 - 21.59	Pass			
STSO-3155	5/1/2006	Cs-137	$14 10 \pm 0.12$	11.63	1 63 - 21 63	Pass			
SPAP-2873	5/2/2006	Gr. Beta	1724.80 + 4.51	1744 00	1395 20 - 2441 60	Pass			
SPF-3183	5/10/2006	Cs-137	2 47 + 0 03	2 38	1 43 - 3 33	Pass			
SPE-3183	5/10/2006	Cs-134	0.73 ± 0.01	0 74	0 44 - 1 04	Pass			
SPW-3460	5/26/2006	C-14	4009.60 + 14.43	4741.00	2844.60 - 6637.40	Pass			
W-60606	6/6/2006	Gr. Alpha	21.94 ± 0.46	20.08	10.04 - 30.12	Pass			
W-60606	6/6/2006	Gr. Beta	58.17 + 0.49	65 73	55 73 - 75 73	Pass			
SPW-3988	6/16/2006	Cs-134	35.56 ± 1.40	36.00	26.00 - 46.00	Pass			
SPW-3988	6/16/2006	Cs-137	60.23 ± 2.72	59 27	49 27 - 69 27	Pass			
SPW-3988	6/16/2006	I-131(G)	94 01 + 4 38	99.30	89.30 - 109.30	Pass			
SPW-3988	6/16/2006	Sr-89	52 40 + 4 23	58 16	46 53 - 69 79	Pass			
SPW-3988	6/16/2006	Sr-90	4535 + 195	41 21	32 97 - 49 45	Pass			
SPML3990	6/16/2006	Cs-134	35 52 + 5 05	36.00	26.00 - 46.00	Pass			
SPML3990	6/16/2006	Cs-137	56 78 + 3 86	59.00	49 27 - 69 27	Pass			
SPMI-3000	6/16/2006	L-131(G)	95.04 + 5.05	99.27	89.30 - 109.30	Pass			
SPMI-3001	6/16/2006	I-131	96 55 + 0 87	99.50	79 <i>M</i> - 119 16	Pass			
Gr 101-5351	0/10/2000	1-101	50.55 ± 0.67	33.30	73.44 - 113.10	F 835			
SPW-4356	7/5/2006	I-131	80.88 ± 1.09	77.23	61.78 - 92.68	Pass			
W-90506	9/5/2006	Gr. Alpha	23.11 ± 0.45	20.08	10.04 - 30.12	Pass			
W-90506	9/5/2006	Gr. Beta	65.01 ± 0.51	65.73	55.73 - 75.73	Pass			
SPAP-6950	9/30/2006	Cs-134	28.93 ± 1.56	32.65	22.65 - 42.65	Pass			
SPAP-6950	9/30/2006	Cs-137	116.62 ± 2.97	117.75	105.98 - 129.53	Pass			
SPAP-6952	9/30/2006	Gr. Beta	52.96 ± 0.14	53.50	42.80 - 74.90	Pass			

A3-1

TABLE A-3. In-House "Spike" Samples

		Concentration (pCi/L)							
Lab Code	Date	Analysis	Laboratory results 2s, n=1 ^b	Known Activity	Control Limits ^c	Acceptance			
SPW-6954	9/30/2006	Cs-134	63 29 + 8 24	65 30	55 30 - 75 30	Pass			
SPW-6954	9/30/2006	Cs-137	60.41 ± 7.53	58.87	48 87 - 68 87	Pass			
SPMI-6956	9/30/2006	Cs-134	69 26 + 4 85	65 31	55 31 - 75 31	Pass			
SPMI-6956	9/30/2006	Cs-137	61.35 ± 7.62	58.87	48.87 - 68.87	Pass			
W-120106	12/1/2006	Gr. Alpha	22.40 ± 1.03	20.08	10.04 - 30.12	Pass			
W-120106	12/1/2006	Gr. Beta	63.70 ± 1.14	65.73	55.73 - 75.73	Pass			
SPAP-9476	12/29/2006	Gr. Beta	57.51 ± 0.14	53.16	42.53 - 74.42	Pass			
SPAP-9478	12/29/2006	Cs-134	26.84 ± 1.23	30.06	20.06 - 40.06	Pass			
SPAP-9478	12/29/2006	Cs-137	110.54 ± 3.12	117.10	105.39 - 128.81	Pass			
SPW-9480	12/29/2006	H-3	68972.20 ± 748.00	72051.60	57641.28 - 86461.92	Pass			
SPW-9483	12/29/2006	Tc-99	29.43 ± 0.84	32.98	20.98 - 44.98	Pass			
SPW-9488	12/29/2006	Cs-134	61.35 ± 1.65	60.10	50.10 - 70.10	Pass			
SPW-9488	12/29/2006	Cs-137	60.30 ± 2.76	56.80	46.80 - 66.80	Pass			
SPMI-9490	12/29/2006	Cs-134	58.99 ± 5.43	60.10	50.10 - 70.10	Pass			
SPMI-9490	12/29/2006	Cs-137	54.16 ± 7.85	56.80	46.80 - 66.80	Pass			
SPF-9492	12/29/2006	Cs-134	0.64 ± 0.01	0.60	0.36 - 0.84	Pass			
SPF-9492	12/29/2006	Cs-137	2.61 ± 0.03	2.34	1.40 - 3.28	Pass			

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/m³), and solid samples (pCi/g).

^b Laboratory codes as follows: W (water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish).

^c Results are based on single determinations.

^d Control limits are based on Attachment A, Page A2 of this report.

NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

TABLE A-4. In-House "Blank" Samples

H

			4 - son		Concentration (pCi/	L) ^a
Lab Code	Sample	Date	Analysis ^b	Laborato	ry results (4.66σ)	Acceptance
	Туре		•••	LLD	Activity ^c	Criteria (4.66 σ)
SPW-302	water	1/20/2006	Fe-55	1061	-91 ± 637	1000
SPAP-1225	Air Filter	3/7/2006	Gr. Beta	1.16	-0.512 ± 51.20	3.2
SPW-1231	water	3/7/2006	Cs-134	2.71		10
SPW-1231	water	3/7/2006	Cs-137	2.05		10
W-30906	water	3/9/2006	Gr. Alpha	0.037	0.005 ± 0.026	1
W-30906	water	3/9/2006	Gr. Beta	0.076	-0.016 ± 0.052	3.2
SPW-2751	water	4/27/2006	Ni-63	1.48	0.37 ± 0.91	20
SPW-2868	water	5/1/2006	Fe-55	18.07	4.33 ± 11.27	1000
SPW-2874	water	5/1/2006	H-3	166.00	-8.3 ± 86.9	200
SPAP-2872	Air Filter	5/2/2006	Gr. Beta	1.18	-3.65 ± 0.64	3.2
SPF-3154	Fish	5/10/2006	Cs-134	16.4		100
SPF-3154	Fish	5/10/2006	Cs-137	13.7		100
SPW-3461	water	5/26/2006	C-14	10.20	-7.9 ± 5.20	200
W-60606	water	6/6/2006	Gr. Alpha	0.05	0.013 ± 0.037	1
W-60606	water	6/6/2006	Gr. Beta	0.16	-0.044 ± 0.11	3.2
SPW-3989	water	6/16/2006	Cs-134	3.00		10
SPW-3989	water	6/16/2006	Cs-137	3.65		10
SPW-3989	water	6/16/2006	1-131	0.21	0.045 ± 0.14	0.5
SPW-3989	water	6/16/2006	I-131(G)	8.34		20
SPW-3989	water	6/16/2006	Sr-89	0.54	0.005 ± 0.45	5
SPW-3989	water	6/16/2006	Sr-90	0.58	-0.079 ± 0.26	1
SPMI-3991	Milk	6/16/2006	Cs-134	4.42		10
SPMI-3991	Milk	6/16/2006	Cs-137	3.88		10
SPMI-3991	Milk	6/16/2006	I-131	0.28	-0.22 ± 0.19	0.5
SPMI-3991	Milk	6/16/2006	I-131(G)	3.76		20
SPMI-3991	Milk	6/16/2006	Sr-89	0.61	-0.25 ± 0.76	5
SPMI-3991 ^d	Milk	6/16/2006	Sr-90	0.52	0.88 ± 0.34	1
W-90506	water	9/5/2006	Gr. Alpha	0.06	0.00 ± 0.04	1
W-90506	water	9/5/2006	Gr. Beta	0.16	0.05 ± 0.11	3.2
SPMI-6383	Milk	9/14/2006	Sr-89	0.97	-0.18 ± 0.92	5
SPMI-6383 ^d	Milk	9/14/2006	Sr-90	0.57	0.65 ± 0.33	1
SPAP-6949	Air Filter	9/30/2006	Cs-134	0.89	0.00 - 0.00	100
SPAP-6949	Air Filter	9/30/2006	Cs-137	0.91		100
SPAP-6951	Air Filter	9/30/2006	Gr. Beta	1 12	-0 54 + 0 64	3.2
SPW-6953	water	9/30/2006	Cs-134	3 91	0.01 2 0.04	10
SPW-6953	water	9/30/2006	Cs-137	5.61		10
SPW-6953	water	9/30/2006	Sr-89	0.79	-0.14 ± 0.64	. 5
SPW-6953	water	9/30/2000	Sr-90	0.60	0.11 + 0.04	1
01 11-0300	Watel	3/30/2000	01-30	0.00	U. II I U.29	I

A4-1

.

TABLE A-4. In-House "Blank" Samples

j

			n ** •		Concentration (pCi/L) ^a			
Lab Code	Sample	Date	Analysis ^b	Laborato	ry results (4.66σ)	Acceptance		
	Туре	<u> </u>		LLD	Activity ^c	Criteria (4.66 σ)		
SPMI-6955	Milk	9/30/2006	Cs-134	2.86		10		
SPMI-6955	Milk	9/30/2006	Cs-137	2.39		10		
SPMI-6955	Milk	9/30/2006	I-131(G)	9.98		0.5		
W-120106	water	12/1/2006	Gr. Alpha	0.11	0.066 ± 0.072	1		
W-120106	water	12/1/2006	Gr. Beta	0.30	0.093 ± 0.16	3.2		
SPAP-9477	Air Filter	12/29/2006	Gr. Beta	1.13	-0.37 ± 0.66	3.2		
SPAP-9479	Air Filter	12/29/2006	Cs-137	0.87		100		
SPW-9481	water	12/29/2006	H-3	146.2	63.2 ± 80.1	200		
SPW-9483	water	12/29/2006	Tc-99	0.95	-1.20 ± 0.56	10		
SPW-9489	water	12/29/2006	Cs-134	2.30		10		
SPMI-9491	Milk	12/29/2006	Cs-134	3.10		10		
SPMI-9491	Milk	12/29/2006	Cs-137	2.90		10		
SPMI-9491	Milk	12/29/2006	l-131(G)	8.00		20		
SPF-9493	Fish	12/29/2006	Cs-134	7.6		100		
SPF-9493	Fish	12/29/2006	Cs-137	7.9		100		

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.

^c Activity reported is a net activity result. For gamma spectroscopic analysis, activity detected below the LLD value is not reported

.

^d Low levels of Sr-90 are still detected in the environment. A concentration of (1-5 pCi/L) in milk is not unusual.

H

l

			• • ·	Concentration (pCi/L) ⁶	······································	· · · · ·
				· · · · · · · · · · · · · · · · · · ·	Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
AP-7466, 7467	1/3/2006	Be-7	0.053 ± 0.015	0.057 ± 0.011	0.055 ± 0.009	Pass
AP-7513, 7514	1/3/2006	Be-7	0.033 ± 0.008	0.036 ± 0.008	0.035 ± 0.006	Pass
AP-7555, 7556	1/3/2006	Be-7	0.053 ± 0.007	0.054 ± 0.008	0.053 ± 0.005	Pass
MI-154, 155	1/10/2006	K-40	1254.20 ± 87.75	1369.60 ± 102.80	1311.90 ± 67.58	Pass
MI-217, 218	1/11/2006	K-40	1258.00 ± 118.00	1313.00 ± 98.00	1285.50 ± 76.69	Pass
MI-217, 218	1/11/2006	Sr-90	1.27 ± 0.37	0.92 ± 0.33	1.10 ± 0.25	Pass
MI-287, 288	1/17/2006	K-40	1383.10 ± 110.90	1457.80 ± 119.10	1420.45 ± 81.37	Pass
MI-287, 288	1/17/2006	Sr-90	0.74 ± 0.38	0.94 ± 0.37	0.84 ± 0.27	Pass
WW-314, 315	1/19/2006	Gr. Beta	9.21 ± 1.72	11.52 ± 1.93	10.37 ± 1.29	Pass
WW-314, 315	1/19/2006	H-3	168.64 ± 94.94	210.12 ± 96.51	189.38 ± 67.69	Pass
SWT-577, 578	1/31/2006	Gr. Beta	3.06 ± 0.66	3.68 ± 0.64	3.37 ± 0.46	Pass
SWU-598, 599	1/31/2006	Gr. Beta	2.03 ± 0.39	1.97 ± 0.40	2.00 ± 0.28	Pass
SWU-598, 599	1/31/2006	H-3	260.10 ± 98.20	134.10 ± 93.50	197.10 ± 67.80	Pass
F-3311, 3312 [⊾]	2/9/2006	Gr. Beta	4.12 ± 0.14	3.82 ± 0.13	3.97 ± 0.10	Fail
F-3311, 3312	2/9/2006	K-40	2.68 ± 0.37	2.76 ± 0.39	2.72 ± 0.27	Pass
SW-780, 781	2/14/2006	Gr. Alpha	4.09 ± 1.52	3.22 ± 1.37	3.66 ± 1.03	Pass
SW-780, 781	2/14/2006	Gr. Beta	5.91 ± 0.90	5.89 ± 0.92	5.90 ± 0.64	Pass
DW-934, 935	2/17/2006	I-131	0.35 ± 0.22	0.31 ± 0.25	0.33 ± 0.16	Pass
DW-1024, 1025	2/24/2006	I-131	0.24 ± 0.26	0.53 ± 0.24	0.39 ± 0.18	Pass
MI-1078, 1079	3/1/2006	Sr-90	1.42 ± 0.39	1.30 ± 0.62	1.36 ± 0.37	Pass
F-1357, 1358	3/10/2006	Gr. Beta	3.77 ± 0.07	3.71 ± 0.07	3.74 ± 0.05	Pass
F-1357, 1358	3/10/2006	K-40	2.46 ± 0.32	2.32 ± 0.44	2.39 ± 0.27	Pass
MI-1469, 1470	3/14/2006	K-40	1396.30 ± 120.80	1335.60 ± 113.80	1365.95 ± 82.98	Pass
CF-1538, 1539	3/21/2006	K-40	13.66 ± 0.81	13.97 ± 0.68	13.81 ± 0.53	Pass
WW-1583, 1584	3/22/2006	Gr. Beta	7.66 ± 0.73	8.87 ± 0.75	8.26 ± 0.52	Pass
DW-1955, 1956	3/27/2006	Gr. Beta	2.25 ± 0.60	3.15 ± 0.59	2.70 ± 0.42	Pass
MI-1760, 1761	3/29/2006	K-40	1271.00 ± 89.00	1378.00 ± 113.00	1324.50 ± 71.92	Pass
AP-2603, 2604	3/29/2006	Be-7	0.067 ± 0.015	0.056 ± 0.010	0.062 ± 0.009	Pass
E-1997, 1998	4/3/2006	Gr. Beta	1.82 + 0.07	1 87 + 0 07	1 85 + 0.05	Pass
E-1997, 1998	4/3/2006	K-40	1.28 ± 0.15	1 24 + 0 21	1.00 ± 0.00 1.26 ± 0.13	Pass
AP-2818, 2819	4/3/2006	Be-7	0.06 ± 0.01	0.06 ± 0.01	0.06 ± 0.01	Pass
SWU-2863, 2864	4/3/2006	Gr. Beta	3.20 ± 1.26	477 + 1.30	3 99 + 0 91	Pass
SS-2389, 2390	4/11/2006	Gr. Beta	10 53 + 0.96	9.38 + 0.84	9.96 ± 0.64	Pass
SS-2389, 2390	4/11/2006	K-40	5.51 ± 0.42	5.30 ± 0.01 5.79 ± 0.40	5.65 ± 0.29	Pass
DW-2773, 2774	4/21/2006	I-131	0.74 ± 0.12	0.53 ± 0.40	0.63 ± 0.23	Pass
SI -2932 2933	5/1/2006	Be-7	1.28 ± 0.19	1 27 + 0 17	1.28 ± 0.13	Pass
SL-2932, 2933	5/1/2006	Gr. Beta	6.09 ± 0.33	5.65 ± 0.31	5.87 ± 0.10	Pass
SI -2932 2933	5/1/2006	K-40	$3 13 \pm 0.00$	3.09 + 0.36	3.07 ± 0.20 3.11 ± 0.27	Pass
BS-3103 3104	5/1/2006	Gr Beta	8 27 + 1 46	9 03 + 1 59	8 65 + 1 027	Daes
BS-3103 3104	5/1/2006	K-40	6288 20 + 585 20	5643 70 + 599 80	5965 95 + 118 00	Pass
MI-3037_3038	5/2/2006	K-40	1238 90 + 98 59	1301 00 + 103 00	1269 95 + 71 62	Pace
MI-3037 3038	5/2/2006	Sr-90	1 76 + 0 42	1 48 + 0 42	1 62 ± 0 20	Deer
		01-00	1.70 I 0.72	1.40 I U.42	1.02 I U.29	F 833

1

				Concentration (pCi/L)	3	
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
MI-3124, 3125	5/9/2006	K-40	1032.30 ± 91.12	1103.60 ± 120.50	1067.95 ± 75.54	Pass
SW-3145, 3146	5/9/2006	Gr. Alpha	4.85 ± 1.68	4.12 ± 1.62	4.48 ± 1.17	Pass
SW-3145, 3146	5/9/2006	Gr. Beta	8.94 ± 1.46	9.14 ± 1.36	9.04 ± 1.00	Pass
MI-3236, 3237	5/10/2006	K-40	1412.40 ± 119.10	1427.90 ± 127.70	1420.15 ± 87.31	Pass
F-3422, 3423	5/19/2006	H-3	8175.00 ± 252.00	8268.00 ± 253.00	8221.50 ± 178.54	Pass
G-3491, 3492	5/24/2006	Gr. Beta	8.89 ± 0.18	9.03 ± 0.19	8.96 ± 0.13	Pass
G-3491, 3492	5/24/2006	K-40	5.60 ± 0.71	6.30 ± 0.78	5.95 ± 0.53	Pass
SO-3539, 3540	5/24/2006	Gr. Beta	19.57 ± 1.99	18.98 ± 1.91	19.27 ± 1.38	Pass
SO-3539, 3540	5/24/2006	K-40	12.55 ± 0.89	11.49 ± 0.59	12.02 ± 0.53	Pass
WW-3751, 3752	5/25/2006	Gr. Beta	9.85 ± 0.79	8.96 ± 0.74	9.41 ± 0.54	Pass
F-3617, 3618	5/30/2006	K-40	2.42 ± 0.38	2.53 ± 0.37	2.47 ± 0.27	Pass
SL-3641, 3642	6/1/2006	Be-7	1.41 ± 0.19	1.31 ± 0.27	1.36 ± 0.17	Pass
SL-3641, 3642	6/1/2006	Gr. Beta	5.03 ± 0.18	5.30 ± 0.19	5.17 ± 0.13	Pass
SL-3641, 3642	6/1/2006	K-40	2.21 ± 0.26	2.14 ± 0.37	2.18 ± 0.23	Pass
MI-3886, 3887	6/12/2006	K-40	1424.20 ± 118.20	1318.80 ± 110.50	1371.50 ± 80.90	Pass
VE-3949, 3950	6/13/2006	Gr. Alpha	0.13 ± 0.06	0.16 ± 0.07	0.15 ± 0.05	Pass
VE-3949, 3950	6/13/2006	Gr. Beta	4.53 ± 0.19	4.47 ± 0.18	4.50 ± 0.13	Pass
VE-3949, 3950	6/13/2006	K-40	6.02 ± 0.66	5.33 ± 0.66	5.67 ± 0.47	Pass
BS-4016, 4017	6/13/2006	Co-60	0.18 ± 0.03	0.15 ± 0.03	0.16 ± 0.02	Pass
BS-4016, 4017	6/13/2006	Cs-137	1.97 ± 0.09	2.01 ± 0.09	1.99 ± 0.06	Pass
BS-4016, 4017	6/13/2006	K-40	11.03 ± 0.76	10.45 ± 0.78	10.74 ± 0.54	Pass
MI-3992, 3993	6/14/2006	K-40	1358.50 ± 166.40	1395.80 ± 122.70	1377.15 ± 103.37	Pass
LW-4175, 4176	6/16/2006	H-3	482.11 ± 90.25	397.50 ± 86.88	439.81 ± 62.63	Pass
W-4130, 4131	6/21/2006	H-3	401.50 ± 87.85	236.28 ± 80.89	318.89 ± 59.71	Pass
AV-4330, 4331	6/26/2006	K-40	1717.10 ± 244.30	1893.10 ± 223.30	1805.10 ± 165.49	Pass
SWU-4489, 4490	6/27/2006	Gr. Beta	1.70 ± 0.38	1.93 ± 0.38	1.82 ± 0.27	Pass
AP-4909, 4910	6/29/2006	Be-7	0.11 ± 0.01	0.11 ± 0.02	0.11 ± 0.01	Pass
AP-4952, 4953	6/29/2006	Be-7	0.08 ± 0.02	0.10 ± 0.02	0.09 ± 0.01	Pass
AP-4930, 4931	7/3/2006	Be-7	0.08 ± 0.02	0.07 + 0.01	0.08 + 0.01	Pase
E-4399, 4400	7/5/2006	Gr. Beta	1 85 + 0 05	1.85 ± 0.05	1.85 ± 0.04	Dass
E-4399, 4400	7/5/2006	K-40	1.25 + 0.19	1 24 + 0 18	1.05 ± 0.04 1.25 ± 0.13	Pass
G-4420, 4421	7/5/2006	Be-7	0.82 ± 0.20	0.61 ± 0.14	0.72 ± 0.12	Pass
G-4420, 4421	7/5/2006	Gr. Beta	13.20 ± 0.40	14.00 ± 0.40	13.60 ± 0.72	Pass
G-4420, 4421	7/5/2006	K-40	9.96 + 0.44	10.06 + 0.82	10.00 ± 0.20 10.01 ± 0.47	Pass
DW-60432, 6043	37/6/2006	Gr. Alpha	3.24 ± 1.35	2 49 + 1 33	2 87 + 0 95	Pass
DW-60514 6051	5 7/10/2006	Gr Alpha	3 70 + 1 12	3.09 ± 1.00	2.07 ± 0.95 3.40 ± 0.81	Pass
DW-60449, 6045	0 7/11/2006	Gr Alpha	6 87 + 1 26	4 77 + 1 09	5.82 ± 0.83	Pass
MI-4599 4600	7/12/2006	K-40	1403 50 + 118 80	4.11 ± 1.00 1330 40 ± 116 50	1366 05 ± 83 20	Pass
MI-4599 4600	7/12/2006	Sr-90	0.59 ± 0.34	0.70 ± 0.35	0 65 ± 0 3.20	r dss Daaa
MI-4667 4668	7/12/2006	K-40	1286 60 + 92 62	1358 60 ± 158 40	1322 60 ± 01 75	FdSS Dece
I W-4823 4824	7/14/2006	Gr Reta	1 75 + 0 60	2 51 ± 0 50	1322.00 I 91.75	Pass
211-7020, 7024	11712000	Or. Dela	1.75 ± 0.00	2.31 I 0.09	2.13 ± 0.42	Pass

Ŧ

A5-2

.

.

B

l

<u> </u>				Concentration (pCi/L)	8	· · · · · · · · · · · · · · · · · · ·
					Averaged	·
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
DW-60502 605	037/19/2006	Gr Alnha	16 27 + 2 49	21 / 1 + 3 21	18 84 + 2.02	Deep
DW-60526_605	27 7/21/2006	Gr Alpha	14.06 + 1.82	15 57 + 1 77	10.04 ± 2.03 14.82 ± 1.27	Pass
DW-60539, 605	540 7/21/2006	Gr Alpha	5.09 ± 0.95	623 ± 1.05	5.66 ± 0.71	Pass
MI-5125, 5126	7/25/2006	K-40	1480.60 ± 118.30	1402 60 + 120 80	1441 60 + 84 54	Pass
DW-60609, 606	510 7/26/2006	Gr. Alpha	1.00 ± 1.10	2.70 + 1.30	1 85 + 0 85	Pass
DW-60621, 606	22 7/31/2006	Gr. Alpha	3.70 ± 1.00	1.90 ± 0.80	2 80 + 0 64	Pass
SL-5265, 5266	8/1/2006	Be-7	1.10 ± 0.46	1.38 + 0.52	1.24 ± 0.35	Pass
SL-5265, 5266	8/1/2006	Sr-90	0.10 ± 0.03	0.16 ± 0.03	0.13 ± 0.02	Pass
SL-5265, 5266	8/1/2006	Gr. Beta	4.41 ± 0.41	3.46 + 0.57	3.94 ± 0.35	Pass
SL-5265, 5266	8/1/2006	K-40	1.19 ± 0.52	0.87 ± 0.52	1.03 ± 0.37	Pass
VE-5286, 5287	8/1/2006	Be-7	1.21 ± 0.30	1.32 ± 0.20	1.27 ± 0.18	Pass
VE-5286, 5287	8/1/2006	Gr. Beta	9.67 ± 0.35	9.37 ± 0.35	9.52 ± 0.25	Pass
VE-5286, 5287	8/1/2006	K-40	6.25 ± 0.81	6.50 ± 0.48	6.38 ± 0.47	Pass
SW-5383, 5384	8/8/2006	Gr. Alpha	3.24 ± 1.35	2.94 ± 1.35	3.09 ± 0.96	Pass
SW-5383, 5384	8/8/2006	Gr. Beta	4.86 ± 0.86	5.46 ± 0.87	5.16 ± 0.61	Pass
SW-5971, 5972	8/8/2006	H-3	119.90 ± 78.14	144.41 ± 79.23	132.15 ± 55.64	Pass
VE-5404, 5405	8/10/2006	Be-7	0.77 ± 0.24	1.01 ± 0.26	0.89 ± 0.18	Pass
VE-5404, 5405	8/10/2006	K-40	4.71 ± 0.63	4.01 ± 0.58	4.36 ± 0.43	Pass
DW-5480, 5481	8/11/2006	H-3	169.08 ± 85.52	133.65 ± 83.96	151.36 ± 59.92	Pass
DW-60645, 606	46 8/15/2006	Gr. Alpha	10.41 ± 1.78	10.97 ± 1.85	10.69 ± 1.28	Pass
W-5602, 5603	8/16/2006	H-3	2118.79 ± 151.55	2181.82 ± 153.09	2150.30 ± 107.71	Pass
DW-60634, 606	35 8/18/2006	Gr. Alpha	12.99 ± 1.84	9.67 ± 1.61	11.33 ± 1.22	Pass
DW-60634, 606	35 8/18/2006	Gr. Beta	10.51 ± 1.33	8.61 ± 1.18	9.56 ± 0.89	Pass
MI-5793, 5794	8/22/2006	K-40	1264.00 ± 115.00	1377.00 ± 121.00	1320.50 ± 83.47	Pass
SWU-6150, 615	51 8/29/2006	Gr. Beta	1.84 ± 0.28	1.81 ± 0.28	1.82 ± 0.20	Pass
DW-60657, 606	58 8/29/2006	Gr. Alpha	2.33 ± 0.80	2.90 ± 0.78	2.62 ± 0.56	Pass
CF-7450, 7451	9/5/2006	Be-7	0.78 ± 0.45	0.78 ± 0.27	0.78 ± 0.26	Pass
SL-6085, 6086	9/5/2006	Co-60	0.22 ± 0.03	0.21 ± 0.02	0.22 ± 0.02	Pass
SL-6085, 6086	9/5/2006	Gr. Beta	5.47 ± 0.69	4.63 ± 0.58	5.05 ± 0.45	Pass
SL-6085, 6086	9/5/2006	K-40	1.91 ± 0.28	2.06 ± 0.41	1.99 ± 0.25	Pass
DW-60695, 606	96 9/11/2006	Gr. Alpha	3.93 ± 1.17	4.62 ± 1.12	4.28 ± 0.81	Pass
LW-6266, 6267	9/13/2006	Gr. Beta	3.09 ± 0.48	2.98 ± 0.48	3.03 ± 0.34	Pass
MI-6424, 6425	9/19/2006	Sr-90	0.78 ± 0.38	1.11 ± 0.37	0.95 ± 0.27	Pass
DW-60715, 607	16 9/19/2006	Gr. Alpha	1.30 ± 1.00	2.23 ± 1.01	1.77 ± 0.71	Pass
SO-6597, 6598	9/22/2006	Cs-137	0.18 ± 0.04	0.18 ± 0.04	0.18 ± 0.03	Pass
SO-6597, 6598	9/22/2006	K-40	10.25 ± 0.66	10.11 ± 0.64	10.18 ± 0.46	Pass
SWU-6718, 671	9 9/26/2006	Gr. Beta	3.45 ± 1.21	2.78 ± 1.19	3.12 ± 0.85	Pass
SO-6668, 6669	9/27/2006	Cs-137	0.13 ± 0.04	0.13 ± 0.02	0.13 ± 0.02	Pass
SO-6668, 6669	9/27/2006	K-40	13.04 ± 0.90	12.41 ± 0.54	12.72 ± 0.53	Pass

.

······································			<u> </u>	Concentration (pCi/L)	3	
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
NI 6760 6764	40/0/0000	K 40	1442 40 + 442 20	4407.00 + 455.00	4000.00 . 00.05	-
MI-6760, 6761	10/2/2006	K-40	1413.10 ± 113.20	1187.30 ± 155.20	1300.20 ± 96.05	Pass
G-6/97, 6798	10/2/2006	Be-/	4.70 ± 0.31	4.56 ± 0.41	4.63 ± 0.26	Pass
G-6/97, 6/98	10/2/2006	Gr. Beta	6.89 ± 0.26	7.04 ± 0.24	6.97 ± 0.18	Pass
G-6797, 6798 °	10/2/2006	K-40	5.39 ± 0.35	4.36 ± 0.47	4.88 ± 0.29	Fail
AP-7531, 7532	10/3/2006	Be-7	0.07 ± 0.01	0.08 ± 0.01	0.08 ± 0.01	Pass
AP-7552, 7553	10/3/2006	Be-7	0.08 ± 0.02	0.08 ± 0.01	0.08 ± 0.01	Pass
AP-7573, 7574	10/3/2006	Be-7	0.08 ± 0.02	0.08 ± 0.01	0.08 ± 0.01	Pass
SO-7103, 7104	10/4/2006	Cs-137	0.25 ± 0.05	0.27 ± 0.06	0.26 ± 0.04	Pass
SO-7103, 7104	10/4/2006	K-40	12.95 ± 1.12	12.22 ± 1.07	12.58 ± 0.77	Pass
DW-60759, 60760	0 10/5/2006	Gr. Alpha	4.93 ± 0.97	5.04 ± 1.03	4.99 ± 0.71	Pass
MI-7037, 7038	10/10/2006	K-40	1326.10 ± 115.20	1251.40 ± 115.70	1288.75 ± 81.64	Pass
VE-7058, 7059	10/10/2006	Gr. Alpha	0.18 ± 0.11	0.32 ± 0.14	0.25 ± 0.09	Pass
VE-7058, 7059	10/10/2006	Gr. Beta	9.21 ± 0.34	8.83 ± 0.36	9.02 ± 0.25	Pass
VE-7058, 7059	10/10/2006	K-40	10.90 ± 0.65	10.42 ± 0.80	10.66 ± 0.52	Pass
SS-7079, 7080	10/10/2006	Cs-137	0.04 ± 0.01	0.04 ± 0.02	0.04 ± 0.01	Pass
SS-7079, 7080	10/10/2006	Gr. Beta	12.23 ± 2.46	11.76 ± 2.23	11.99 ± 1.66	Pass
SS-7079, 7080	10/10/2006	K-40	7.23 ± 0.36	7.37 ± 0.40	7.30 ± 0.27	Pass
MI-7208, 7209	10/11/2006	K-40	1295.20 ± 116.90	1386.90 ± 119.10	1341.05 ± 83.44	Pass
CF-7450, 7451	10/18/2006	K-40	20.40 ± 0.84	19.54 ± 0.99	19.97 ± 0.65	Pass
LW-7945, 7946	10/26/2006	Gr. Beta	1.30 ± 0.37	1.44 ± 0.36	1.37 ± 0.26	Pass
F-7971, 7972	10/29/2006	K-40	3.63 ± 0.54	3.33 ± 0.43	3.48 ± 0.34	Pass
SWU-8194, 8195	10/31/2006	Gr. Beta	1.84 ± 0.28	1.43 ± 0.28	1.64 ± 0.20	Pass
BS-8017, 8018	11/1/2006	Gr. Beta	10.54 ± 1.72	10.17 ± 1.73	10.36 ± 1.22	Pass
BS-8017, 8018	11/1/2006	K-40	10.00 ± 0.53	9.60 ± 0.69	9.80 ± 0.44	Pass
LW-8215, 8216	11/1/2006	Gr. Beta	2.23 ± 0.61	1.64 ± 0.37	1.93 ± 0.35	Pass
F-8345, 8346	11/2/2006	K-40	2.84 ± 0.42	2.89 ± 0.40	2.86 ± 0.29	Pass
BS-8366, 8367	11/2/2006	K-40	13.69 ± 0.66	13.61 ± 0.78	13.65 ± 0.51	Pass
MI-8083, 8084	11/6/2006	K-40	1295.00 ± 121.20	1374.80 ± 162.80	1334.90 ± 101.48	Pass
WW-8259, 8260	11/7/2006	H-3	337.00 ± 95.00	295.00 ± 93.00	316.00 ± 66.47	Pass
MI-8484, 8485	11/22/2006	K-40	1405.80 ± 87.06	1390.70 ± 103.60	1398.25 ± 67.66	Pass
SO-8619, 8620	11/27/2006	Cs-137	0.74 ± 0.08	0.69 ± 0.06	0.71 ± 0.05	Pass
SO-8619, 8620	11/27/2006	Gr. Alpha	16.54 ± 5.65	12.24 ± 4.90	14.39 ± 3.74	Pass
SO-8619, 8620	11/27/2006	Gr. Beta	24.99 ± 3.88	28.66 ± 3.95	26.82 ± 2.77	Pass
SO-8619, 8620	11/27/2006	K-40	12.21 ± 1.11	12.92 ± 0.83	12.57 ± 0.69	Pass
SWT-8641, 8642	11/29/2006	Gr. Beta	2.83 ± 0.47	2.89 ± 0.45	2.86 + 0.33	Pass
SWT-9436, 9437	12/26/2006	Gr. Beta	2.39 ± 0.64	2.25 + 0.60	2.32 ± 0.33	Pass
	,_0,_000	J., 2010	2.00 2 0.01	v.vv	2.02 2 V.TT	1 000

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

^a Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g).

^b 200 minute count time or longer, resulting in lower error.

		Concentration ^b					
				Known	Control		
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance	
STVE-1082	01/01/06	Am-241	0.16 + 0.06	0.16	0 11 - 0 20	Base	
STVE-1082	01/01/06	Co-57	10 40 + 0 20	8.58	6 00 - 11 15	Pass	
STVE-1082	01/01/06	Co-60	5 00 + 0 20	4 52	3 16 - 5 88	Pass	
STVE-1082 °	01/01/06	Cs-134	< 0.20	0.00	0.10 - 0.00	Pass	
STVE-1082	01/01/06	Cs-137	3 40 + 0 20	3.07	2 15 - 4 00	Pass	
STVE-1082	01/01/06	Mn-54	6.90 ± 0.20	6.25	4 37 - 8 12	Pass	
STVE-1082 ¹	01/01/06	Pu-238	0.00 ± 0.20 0.08 ± 0.03	0.23	4.57 - 0.12	Fass	
STVE-1082	01/01/06	Pu-239/40	0.00 ± 0.00 0.17 ± 0.03	0.14	0.10 - 0.18	Гал	
STVE-1082	01/01/06	Sr-90	1.40 ± 0.00	1.56	1.00 - 2.02	Pass	
STVE-1082	01/01/06	11-233/4	0.24 + 0.05	0.21	0.15 0.27	Pass	
STVE-1082	01/01/06	11-238	0.24 ± 0.03	0.21	0.15 - 0.27	Pass	
STVE-1082	01/01/06	7p-65	0.13 ± 0.04	0.22	0.13 - 0.20 6 96 10 74	Pass	
01112 1002	01101100	211-00	11.10 ± 0.50	9.00	0.00 - 12.74	Pass	
STSO-1083	01/01/06	Am-241	54.60 ± 5.50	57.08	39.96 - 74.20	Pass	
STSO-1083	01/01/06	Co-57	762.90 ± 12.70	656.29	459.40 - 853.18	Pass	
STSO-1083	01/01/06	Co-60	504.90 ± 3.10	447.10	312.97 - 581.23	Pass	
STSO-1083 ^e	01/01/06	Cs-134	< 1.70	0.00		Pass	
STSO-1083	01/01/06	Cs-137	406.50 ± 3.70	339.69	237.78 - 441.60	Pass	
STSO-1083	01/01/06	K-40	719.20 ± 18.40	604.00	422.80 - 785.20	Pass	
STSO-1083	01/01/06	Mn-54	415.60 ± 4.80	346.77	242.74 - 450.80	Pass	
STSO-1083	01/01/06	Ni-63	261.40 ± 14.70	323.51	226.46 - 420.56	Pass	
STSO-1083	01/01/06	Pu-238	14.60 ± 2.90	61.15	42.81 - 79.50	Fail	
STSO-1083	01/01/06	Pu-239/40	14.60 ± 2.40	45.85	32.09 - 59.61	Fail	
STSO-1083	01/01/06	U-233/4	13.50 ± 1.70	37.00	25.90 - 48.10	Fail	
STSO-1083	01/01/06	U-238	15.40 ± 1.80	38.85	27.20 - 50.50	Fail	
STSO-1083	01/01/06	Zn-65	783.40 ± 7.00	657.36	460.15 - 854.57	Pass	
STAP-1084	01/01/06	Gr. Alpha	0.26 ± 0.02	0.36	0.00 - 0.72	Pass	
STAP-1084	01/01/06	Gr. Beta	0.51 ± 0.03	0.48	0.24 - 0.72	Pass	
STAP-1085	01/01/06	Am-241	0 12 + 0 02	90.0	0.07 - 0.12	Bacc	
STAP-1085	01/01/06	Co-57	4.32 ± 0.02	4 10	287 - 532	Pass	
STAP-1085	01/01/06	Co-60	2 24 + 0 16	2 19	1 53 - 2 84	Pass	
STAP-1085	01/01/06	Cs-134	2.2.4 ± 0.10	2.13	2.05 - 3.81	Pass	
STAP-1085	01/01/06	Cs-137	2.50 ± 0.10 2.64 ± 0.20	2.55	1 77 . 3 20	Pass	
STAP-1085 ¹	01/01/06	Du-238	2.07 ± 0.20	2.33 0.07	0.05 - 0.00	Fass	
STAP-1085 *	01/01/06	Pu-230/AN		0.07	0.03 - 0.09	Pasa	
STAP-1085	01/01/06	Sr_90	\ 0.01 0.77 ± 0.21	0.00	0.55 1.02	r'ass Dasa	
STAP_1085	01/01/06	11-232/4	0.11 ± 0.21	0.19	0.00 - 1.00	rass	
STAP-1005	01/01/00	0-233/4	0.03 ± 0.01	0.02	0.01 - 0.03	Pass	
STAP-1000	01/01/00	U-230 7n 65	0.02 ± 0.01	0.02	0.01 - 0.03	Pass	
31AP-1085	01/01/06	2 0-0 5	3.94 ± 0.44	3.42	2.40 - 4.45	Pass	

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

.

1

• •

,

		Concentration ^b					
				Known	Control		
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance	
STW-1086	01/01/06	Am-241	1.29 ± 0.05	1.30	0.91 - 1.69	Pass	
STW-1086	01/01/06	Co-57	177.10 ± 1.00	166.12	116.28 - 215.96	Pass	
STW-1086	01/01/06	Co-60	158.30 ± 1.00	153.50	107.45 - 199.55	Pass	
STW-1086	01/01/06	Cs-134	96.40 ± 1.50	95.10	66.57 - 123.63	Pass	
STW-1086 ^e	01/01/06	Cs-137	< 0.80	0.00		Pass	
STW-1086	01/01/06	Fe-55	102.50 ± 18.10	129.60	90.72 - 168.48	Pass	
STW-1086	01/01/06	H-3	956.60 ± 16.50	952.01	666.41 - 1238.00	Pass	
STW-1086	01/01/06	Mn-54	335.30 ± 2.20	315.00	220.50 - 409.50	Pass	
STW-1086	01/01/06	Ni-63	62.90 ± 3.60	60.34	42.24 - 78.44	Pass	
STW-1086	01/01/06	Pu-238	0.96 ± 0.07	0.91	0.70 - 1.30	Pass	
STW-1086 [®]	01/01/06	Pu-239/40	< 0.20	0.00		Pass	
STW-1086	01/01/06	Sr-90	12.80 ± 1.60	13.16	9.21 - 17.11	Pass	
STW-1086	01/01/06	Tc-99	22.30 ± 1.20	23.38	16.37 - 30.39	Pass	
STW-1086	01/01/06	U-233/4	2.02 ± 0.12	2.09	1.46 - 2.72	Pass	
STW-1086	01/01/06	U-238	2.03 ± 0.12	2.17	1.52 - 2.82	Pass	
STW-1086	01/01/06	Zn-65	249.50 ± 3.40	228.16	159.71 - 296.61	Pass	
STW-1087	01/01/06	Gr. Alpha	0.59 ± 0.10	0.58	0.00 - 1.16	Pass	
STW-1087	01/01/06	Gr. Beta	1.69 ± 0.07	1.13	0.56 - 1.70	Pass	
STVE-1098 °	07/01/06	Co.57	- 0.14	0.00		_	
STVE-1098 9	07/01/06	Co-57	N 0.14 6 90 ± 0.17	0.00		Pass	
STVE-1008	07/01/06	C0-00	0.09 ± 0.17	5.81	4.06 - 7.55	Pass	
STVE-1090	07/01/06	Cs-134	0.40 ± 0.10	7.49	5.24 - 9.73	Pass	
STVE-1090	07/01/06	Mn 54	0.07 ± 0.29	5.50	3.85 - 7.14	Pass	
STVE-1090	07/01/06	7n-65	10.30 ± 0.29	8.35	5.85 - 10.86	Pass	
0172-1030		211-00	7.40 ± 0.50	5.98	4.19 - 7.78	Pass	
STSO-1099	07/01/06	Am-241	130.00 ± 11.60	105.47	73.83 - 137.11	Pass	
STSO-1099	07/01/06	Co-57	784.90 ± 3.80	676.33	473.43 - 879.23	Pass	
STSO-1099	07/01/06	Co-60	2.10 ± 0.90	1.98	0.00 - 5.00	Pass	
STSO-1099	07/01/06	Cs-134	500.70 ± 7.40	452.13	316.49 - 587.77	Pass	
STSO-1099	07/01/06	Cs-137	624.20 ± 4.90	525.73	368.01 - 683.45	Pass	
STSO-1099	07/01/06	K-40	701.30 ± 3.40	604.00	423.00 - 785.00	Pass	
STSO-1099	07/01/06	Mn-54	699.20 ± 5.20	594.25	415.98 - 772.52	Pass	
STSO-1099	07/01/06	Ni-63	614.40 ± 17.10	672.30	470.60 - 874.00	Pass	
STSO-1099	07/01/06	Pu-238	79.90 ± 5.80	82.00	57.00 - 107.00	Pass	
STSO-1099 °	07/01/06	Pu-239/40	< 0.70	~ 0.00		Pass	
STSO-1099	07/01/06	U-233/4	150.50 ± 5.90	152.44	106.71 - 198.17	Pass	
STSO-1099	07/01/06	U-238	151.60 ± 6.00	158.73	111.11 - 206.35	Pass	
STSO-1099	07/01/06	Zn-65	1021.90 ± 9.20	903.61	632.53 - 1175.00	Pass	
STAP-1100	07/01/06	Am-241	0 16 + 0 03	0.14	0.10 0.10	D	
STAP-1100	07/01/06	Co-57	0.10 ± 0.00 2 17 ± 0.06	0.14 0.50	1 01 0.19	Pass	
STAP_1100	07/01/06	Co-60	4.17 ± U.UD	2.50	1.01 - 3.36	Pass	
STAP_1100	07/01/00	Co 124	1.30 ± 0.07	1.58	1.10 - 2.05	Pass	
51AF-1100	0//01/06	05-134	2.52 ± 0.13	3.15	2.20 - 4.09	Pass	

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

l

.

		Concentration ^b					
				Known	Control		
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance	
STAP-1100	07/01/06	Cs-137	1.64 ± 0.08	1.81	1.26 - 2.35	Pass	
STAP-1100	07/01/06	Mn-54	1.76 ± 0.18	1.92	1.34 - 2.50	Pass	
STAP-1100	07/01/06	Pu-238	0.09 ± 0.02	0.12	0.08 - 0.15	Pass	
STAP-1100	07/01/06	Sr-90	0.66 ± 0.21	0.62	0.43 - 0.81	Pass	
STAP-1100	07/01/06	U-233/4	0.15 ± 0.02	0.13	0.09 - 0.17	Pass	
STAP-1100	07/01/06	U-238	0.13 ± 0.02	0.14	0.10 - 0.18	Pass	
STAP-1100 °	07/01/06	Zn-65	< 0.07	0.00		Pass	
STAP-1101	07/01/06	Gr. Alpha	0.08 ± 0.03	0.29	0.00 - 0.58	Pass	
STAP-1101	07/01/06	Gr. Beta	0.41 ± 0.05	0.36	0.18 - 0.54	Pass	
STW-1102	07/01/06	Gr. Alpha	0.76 ± 0.07	1.03	0.00 - 2.07	Pass	
STW-1102	07/01/06	Gr. Beta	1.23 ± 0.06	1.03	0.52 - 1.54	Pass	
STW-1103	07/01/06	Am-241	1.86 ± 0.09	2.31	1.62 - 3.00	Pass	
STW-1103	07/01/06	Co-57	224.10 ± 1.20	213.08	149.16 - 277.00	Pass	
STW-1103	07/01/06	Co-60	49.40 ± 0.50	47.50	33.20 - 61.80	Pass	
STW-1103	07/01/06	Cs-134	112.70 ± 0.90	112.82	78.97 - 146.66	Pass	
STW-1103	07/01/06	Cs-137	206.60 ± 1.40	196.14	137.30 - 254.98	Pass	
STW-1103	07/01/06	Fe-55	138.40 ± 5.40	165.40	115.80 - 215.00	Pass	
STW-1103	07/01/06	H-3	446.50 ± 11.80	428.85	300.20 - 557.50	Pass	
STW-1103 ^e	07/01/06	Mn-54	< 0.30	0.00		Pass	
STW-1103	07/01/06	Ni-63	116.70 ± 3.60	118.62	83.03 - 154.21	Pass	
STW-1103	07/01/06	Pu-238	1.27 ± 0.07	1.39	0.97 - 1.81	Pass	
STW-1103	07/01/06	Pu-239/40	1.67 ± 0.08	1.94	1.36 - 2.52	Pass	
STW-1103	07/01/06	Sr-90	16.40 ± 1.90	15.69	10.98 - 20.40	Pass	
STW-1103	07/01/06	Tc-99	29.40 ± 1.10	27.15	19.00 - 35.29	Pass	
STW-1103	07/01/06	U-233/4	1.97 ± 0.08	2.15	1.50 - 2.80	Pass	
STW-1103	07/01/06	U-238	1.97 ± 0.08	2.22	1.55 - 2.89	Pass	
STW-1103	07/01/06	Zn-65	192.50 ± 2.40	176.37	123 46 - 229 28	Pass	
					.20.10 220.20	1 000	

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

^e Included in the MAPEP as a false positive.

¹ Difficulties with the analyses for transuranics isotopes in solid samples (Filters, Soil and vegetation), were attributed to incomplete dissolution of the samples. Soil samples were repeated, results of reanalyses: Pu-238, 53.1 ± 5.3 bq/kg. Pu-239/240, 42.4 ± 4.7 bq/kg. U-233/4, 33.3 ± 3.5 bq/kg. U-238, 35.5 ± 3.6 bq/kg.

^g The July vegetation sample was provided in two separate geometries, (100 ml. and 500 ml.). Results reported here used the 500 ml. standard size geometry. Results for the 100 ml. geometry showed approximately a 15% higher bias.

APPENDIX B

1 1 1

8

DATA REPORTING CONVENTIONS

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

Each single measurement is reported as follows: x ± s

where:

x = value of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: <L, where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

3.0. Duplicate analyses

3.1 <u>Individual results</u>: For two analysis results; $x_1 \pm s_1$ and $x_2 \pm s_2$

<u>Reported result:</u> $x \pm s$; where $x = (1/2)(x_1 + x_2)$ and $s = (1/2)\sqrt{s_1^2 + s_2^2}$

- 3.2. <u>Individual results:</u> $<L_1$, $<L_2$ <u>Reported result:</u> <L, where L = lower of L₁ and L₂
- 3.3. Individual results: $x \pm s$, <L Reported result: $x \pm s$ if $x \ge L$; <L otherwise.

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average \bar{x} and standard deviation s of a set of n numbers $x_1, x_2 \dots x_n$ are defined as follows:

$$\bar{x} = \frac{1}{n} \sum x$$
 $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$

4.2 Values below the highest lower limit of detection are not included in the average.

4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.

- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the figure following those to be retained is equal to or greater than 5, the figure is dropped and the last retained figure is raised by 1. As an example, 11.445 is rounded off to 11.45.
- 4.6 Composite samples which overlap the next month or year are reported for the month or year in which most of the sample is collected.

APPENDIX C

.

TECHNICAL SPECIFICATION 2.1.3

REACTOR COOLANT DOSE EQUIVALENT IODINE ABOVE TECHNICAL SPECIFICATION LIMIT

During the 2006 reporting period, radioactivity of primary coolant did not exceed the limits of Technical Specification 2.1.3.

بالمحاصين فالمحا

APPENDIX D

į

- ----

. - ..

SAMPLE LOCATION MAPS

D-1

Sample locations within Site Boundary/Owner Controlled Area

H

ł

R

Sample locations within 5-mile Area