VIRGINIA ELECTRIC AND POWER COMPANY Richmond, Virginia 23261

April 30, 2007

United States Nuclear Regulatory Commission Serial No. 07-0300 Attention: Document Control Desk SS&L/TJN Washington, D. C. 20555-0001 Docket Nos. 50-280 50-281 72-2 License Nos. DPR-32 DPR-37 SNM-2501

Gentlemen:

VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION UNITS 1 AND 2 INDEPENDENT SPENT FUEL STORAGE INSTALLATION ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

Surry Units 1 and 2 Technical Specification 6.6.B.2 requires the submittal of an Annual Radiological Environmental Operating Report (AREOR) for Surry Power Station. Surry Independent Spent Fuel Storage Installation (ISFSI) Technical Specification Appendix C.1.3.1 requires that the Surry ISFSI be included in the environmental monitoring for the Surry Power Station. Accordingly, enclosed is the Surry Power Station AREOR for the period of January 1, 2006 through December 31, 2006 which includes environmental monitoring for the Surry ISFSI.

If you have any questions or require additional information, please contact Paul Harris at 757-365-2692.

Very truly yours,

Donald E Jernigan Site Vice President Surry Power Station

Attachment

Commitments made in this letter: None

Serial No. 07-0300 Docket Nos.: 50-280 50-281 72-2

copy: US Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street, S.E., Suite 23T85 Atlanta, Georgia 30303-8931

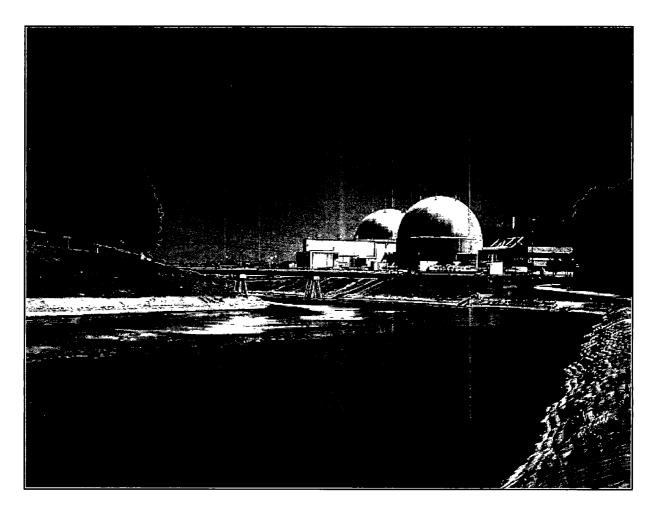
> Director, Nuclear Material Safety and Safeguards U. S. Nuclear Regulatory Commission Washington, D. C. 20555-0001

Mr. D. C. Arnett NRC Resident Inspector Surry Power Station

Commissioner Bureau of Radiological Health 1500 East Main Street Suite 240 Richmond, Virginia 23218

Serial No. 07-0300 Docket Nos.: 50-280 50-281 72-2

ATTACHMENT


2006 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

SURRY POWER STATION UNITS 1 AND 2 LICENSE NOS. DPR-32 AND DPR-37

INDEPENDENT SPENT FUEL STORAGE INSTALLATION LICENSE NO. SNM-2501

VIRGINIA ELECTRIC AND POWER COMPANY

Surry Power Station

2006 Annual Radiological Environmental Operating Report

Dominion

Surry Power Station

Radiological Environmental Monitoring Program

January 1, 2006 to December 31, 2006

Annual Radiological Environmental Operating Report Surry Power Station

January 1, 2006 to December 31, 2006

1. A. Blow

Prepared by: _

P. F. Blount Health Physicist

Reviewed by: _____

P. R. Harris P. R. Harris

Supervisor Radiological Analysis

Reviewed by: _

D. K. Miller Supervisor Health Physics Technical Services

Approved by:_

L. B. Jones

Manager Radiological Protection

Table of Contents

PREFACE	4
1. EXECUTIVE SUMMARY	5
2. PROGRAM DESCRIPTION	7
2.1 Introduction	7
2.2 Sampling and Analysis Program	8
3. ANALYTICAL RESULTS	20
3.1 Summary of Results	20
3.2 Analytical Results of 2006 REMP Samples	
4. DISCUSSION OF RESULTS	
4.1 Gamma Exposure Rate	50
4.2 Airborne Gross Beta	51
4.3 Airborne Radioiodine	53
4.4 Air Particulate Gamma	53
4.5 Cow Milk	53
4.6 Food Products	54
4.7 Well Water	54
4.8 River Water	54
4.9 Silt	54
4.10 Shoreline Sediment	56
4.11 Fish	56
4.12 Oysters	56
4.13 Clams	57
4.14 Crabs	57
5. PROGRAM EXCEPTIONS	58
6. CONCLUSIONS	59
REFERENCES	61
APPENDICES	63
APPENDIX A: LAND USE CENSUS	
APPENDIX B: SUMMARY OF INTERLABORATORY COMPARISONS	66

,

PREFACE

This report is submitted as required by Technical Specification 6.6.B.2, Annual Radiological Environmental Operating Report, for Surry, Units 1 and 2, Virginia Electric and Power Company Docket Nos. 50-280 and 50-281.

1. EXECUTIVE SUMMARY

This document is a detailed report of the 2006 Surry Power Station Radiological Environmental Monitoring Program (REMP). Radioactivity levels from January 1 through December 31, 2006, in air, water, silt, shoreline sediment, milk, aquatic biota, food products and direct exposure pathways have been analyzed, evaluated and summarized. The REMP is designed to confirm that radiological effluent releases are As Low As is Reasonably Achievable (ALARA), no undue environmental effects occur and the health and safety of the public are protected. The program also detects any unexpected environmental processes that could allow radiation accumulations in the environment or food pathway chains.

Radiation and radioactivity in the environment are monitored within a 20-mile radius of the station. Surry Power Station personnel collect a variety of samples within this area. A number of sampling locations for each medium are selected using available meteorological, land use, and water use data. Two types of samples are obtained. The first type, control samples, are collected from areas that are beyond the measurable influence of Surry Power Station or any other nuclear facility. These samples are used as reference data. Normal background radiation levels, or radiation present due to causes other than Surry Power Station, can be compared to the environment surrounding the station. Indicator samples are the second sample type obtained. These samples show how much radiation is contributed to the environment by the station. Indicator samples are taken from areas close to the station where any station contribution will be at the highest concentration.

Prior to station operation, samples were collected and analyzed to determine the amount of radioactivity present in the area. The resulting values are used as a "pre-operational baseline." Analysis results from the indicator samples are compared to control sample values and the pre-operational baseline to determine if changes in radioactivity levels are attributable to station operations, or causes such as the Chernobyl accident or natural variation.

The AREVA NP Environmental Laboratory provides radioanalyses for this program and Global Dosimetry Solutions Inc. provides thermoluminescent dosimetry (TLD) services. Participation in an Interlaboratory Comparison Program provides an independent check of sample measurement precision and accuracy. Typically, radioactivity levels in the environment are so low that analysis values frequently fall below the minimum detection limits of state-of-the-art measurement methods. Because of this, the United States Nuclear Regulatory Commission (USNRC) requires that equipment used for radiological environmental monitoring must be able to detect specified minimum Lower Limits of Detection (LLDs). This ensures that analyses are as accurate as possible. The USNRC also mandates a reporting level for radionuclides. Licensed nuclear facilities must report the radionuclide activities in those environmental samples that are equal to or greater than the

specified reporting level. Environmental radiation levels are sometimes referred to as a percent of the reporting level.

Analytical results are reported for all possible radiation exposure pathways to man. These pathways include airborne, aquatic, terrestrial and direct radiation exposure. The airborne exposure pathway includes radioactive airborne iodine and particulates. The 2006 airborne results were similar to previous years. No plant related radioactivity was detected and natural radioactivity levels remained at levels consistent with past years' results. Aquatic exposure pathway samples include well and river water, silt and shoreline sediments, crabs, fish, clams and oysters. Naturally occurring potassium-40 was detected at average environmental levels. No man-made radionuclides were detected in well water. This trend is consistent throughout the operational environmental monitoring program. Tritium was detected in one of eight river water samples at 7.4% of the USNRC reporting level, that sample being from the discharge canal. No other man-made radionuclides were detected in river water. Silt samples indicated the presence of cesium-137. The cesium-137 activity was present in the control and indicator locations and is attributable to global fallout from past nuclear weapons testing and nuclear accidents such as Chernobyl. Shoreline sediment, which may provide a direct exposure pathway, contained no station related radionuclides. Naturally occurring potassium-40 and thorium-228 were detected at average environmental levels. The terrestrial exposure pathway includes milk and food products. Iodine-131 was not detected in any 2006 milk samples and has not been detected in milk prior to or since the 1986 Chernobyl accident. Strontium-90 was again detected in milk and this activity is attributable to past atmospheric nuclear weapons testing. No man-made radionuclides were detected in food product samples. Consistent with historical data, naturally occurring potassium-40 was detected in milk and food products. The direct exposure pathway measures environmental radiation doses using TLDs. TLD results have remained relatively constant over the years.

During 2006, as in previous years, the operation of Surry Power Station has created no adverse environmental effects or health hazards. The maximum dose calculated for a hypothetical individual at the station site boundary due to liquid and gaseous effluents released from the station during 2006 was 0.001 millirem. For reference, this dose may be compared to the 360 millirem average annual exposure to every person in the United States from natural and man-made sources. Natural sources in the environment provide approximately 82% of radiation exposure to man, while nuclear power contributes less than 0.1%. These results demonstrate compliance with federal and state regulations and also demonstrate the adequacy of radioactive effluent controls at Surry Power Station.

2. PROGRAM DESCRIPTION

2.1 Introduction

This report documents the 2006 Surry Power Station operational Radiological Environmental Monitoring Program (REMP). The Dominion Surry Power Station is located on the Gravel Neck peninsula adjacent to the James River, approximately 25 miles upstream of the Chesapeake Bay. The site consists of two units, each with a pressurized water reactor (PWR) nuclear steam supply system and turbine generator furnished by Westinghouse Electric Corporation. Each unit is designed with a gross electrical output of 855 megawatts electric (MWe). Unit 1 achieved commercial operation on December 22, 1972, and Unit 2 on May 1, 1973.

The United States Nuclear Regulatory Commission regulations (10CFR50.34a) require that nuclear power plants be designed, constructed and operated to keep levels of radioactive material in effluents to unrestricted areas As Low As is Reasonably Achievable. To ensure these criteria are met, the operating license for Surry Power Station includes Technical Specifications that address the release of radioactive effluents. In-plant monitoring is used to ensure that these release limits are not exceeded. As a precaution against unexpected or undefined environmental processes which might allow undue accumulation of radioactivity in the environment, a program for monitoring the station environs is also included in Surry Power Station Technical Specifications.

Dominion personnel are responsible for collecting the various indicator and control environmental samples. Global Dosimetry Solutions Incorporated is responsible for processing the TLDs. The AREVA NP Environmental Laboratory is responsible for sample analyses. The results of the analyses are used to determine if changes in radioactivity levels may be attributable to station operations. Measured values are compared with control values, which vary with time due to external events, such as cosmic ray bombardment, nuclear weapons test fallout and seasonal variations of naturally occurring radionuclides. Data collected prior to station operation is used to indicate the degree of natural variation to be expected. This pre-operational data is compared with data collected during the operational phase to assist in evaluating any radiological impact of station operation.

Occasionally, samples of environmental media may show the presence of manmade radionuclides. As a method of referencing the measured radionuclide concentrations in the sample media to a dose consequence to man, the data is compared to the reporting level concentrations listed in the USNRC Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants", (December, 1975) and VPAP-2103S, Offsite Dose Calculation Manual (Surry). These concentrations are based upon the annual dose commitment recommended by 10CFR50, Appendix I, to meet the criterion of "As Low As is Reasonably

Achievable."

This report documents the results of the REMP for 2006 and satisfies the following objectives of the program:

- > To provide measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of the maximum exposed member of the public resulting from station operations.
- > To supplement the radiological effluent monitoring program by verifying that radioactive effluents are within allowable limits.
- > To identify changes in radioactivity in the environment.
- > To verify that station operations have no detrimental effect on the health and safety of the public.

2.2 Sampling and Analysis Program

Table 2-1 summarizes the 2006 sampling program for Surry Power Station. All samples listed in Table 2-1 are taken at indicator locations except those labeled "control." The Surry Radiological Monitoring Locations maps (Figures 1 - 5) denote sample locations for Surry Power Station. The locations are color coded to designate sample types. Table 2-2 summarizes the analysis program conducted by AREVA NP Environmental Laboratory and Global Dosimetry Solutions for Surry Power Station during the year 2006.

On June 30, 1998, the Commonwealth of Virginia, Department of Health, discontinued its comparative analysis (state split) program with Surry Power Station. Although the routine splitting of samples with the Commonwealth of Virginia has been discontinued, samples will be split at the request of the state. Dominion personnel collect all samples listed in Table 2-1. All samples, with the exception of the TLDs, are shipped to AREVA NP Environmental Laboratory, located in Westborough, MA, for analysis. The TLDs are shipped to Global Dosimetry Solutions, located in Costa Mesa, CA, for processing.

Table 2-1SURRY - 2006RADIOLOGICAL SAMPLING STATIONDISTANCE AND DIRECTION FROM UNIT NO. 1

						Collection	
Sample Media	Location	Station	Distance	Directio	n Degrees	Frequency	Remarks
Environmental	Control	(00)	-	-	-	Quarterly	Onsite (Stored in lead container outside protected area)
TLDs	West North West	(02)	0.2 mi	WNW	293°	Quarterly	Site Boundary
	Surry Station Discharge	(03)	0.4 mi	NW	321°	Quarterly	Site Boundary
	North North West	(04)	0.2 mi	NNW	329°	Quarterly	Site Boundary
	North	(05)	0.3 mi	Ν	4°	Quarterly	Site Boundary
	North North East	(06)	0.3 mi	NNE	28°	Quarterly	Site Boundary
	North East	(07)	0.3 mi	NE	44°	Quarterly	Site Boundary
	East North East	(08)	0.4 mi	ENE	67°	Quarterly	Site Boundary
	East	(09)	0.3 mi	Ε	89°	Quarterly	Site Boundary
	West	(10)	0.1 mi	W	271°	Quarterly	Site Boundary
	West South West	(11)	0.4 mi	WSW	252°	Quarterly	Site Boundary
	South West	(12)	0.3 mi	SW	228°	Quarterly	Site Boundary
	South South West	(13)	0.3 mi	SSW	201°	Quarterly	Site Boundary
	South	(14)	0.4 mi	S	182°	Quarterly	Site Boundary
	South South East	(15)	0.6 mi	SSE	157°	Quarterly	Site Boundary
	South East	(16)	0.9 mi	SE	135°	Quarterly	Site Boundary
	Station Intake	(18)	1.6 mi	ESE	115°	Quarterly	Site Boundary
	Hog Island Reserve	(19)	2.0 mi	NNE	26°	Quarterly	Near Resident
	Bacon's Castle	(20)	4.5 mi	SSW	202°	Quarterly	Apx. 5 mile
	Route 633	(21)	4.9 mi	SW	227°	Quarterly	Apx. 5 mile
	Alliance	(22)	5.1 mi	WSW	247°	Quarterly	Apx. 5 mile
	Surry	(23)	7.7 mi	WSW	256°	Quarterly	Population Center
	Route 636 and 637	(24)	4.0 mi	W	270°	Quarterly	Apx. 5 mile
	Scotland Wharf	(25)	5.0 mi	WNW	284°	Quarterly	Apx. 5 mile
	Jamestown	(26)	6.3 mi	NW	308°	Quarterly	Apx. 5 mile
	Colonial Parkway	(27)	3.8 mi	NNW	333°	Quarterly	Apx. 5 mile
	Route 617 and 618	(28)	4.9 mi	NNW	340°	Quarterly	Apx. 5 mile
	Kingsmill	(29)	4.6 mi	Ν.	2°	Quarterly	Apx. 5 mile
	Williamsburg	(30)	7.8 mi	Ν	0°	Quarterly	Population Center
	Kingsmill North	(31)	5.5 mi	NNE	12°	Quarterly	Apx. 5 mile
	Budweiser	(32)	5.8 mi	NNE	27°	Quarterly	Population Center
	Water Plant	(33)	5.0 mi	NE	46°	Quarterly	Apx. 5 mile

Table 2-1SURRY - 2006RADIOLOGICAL SAMPLING STATIONDISTANCE AND DIRECTION FROM UNIT NO. 1

-

		•				Collection	
Sample Media	Location	Station	Distance	Directio	n Degrees	Frequency	Remarks
	BASF	(34)	5.1 mi	ENE	70°	Quarterly	Apx. 5 mile
	Lee Hall	(35)	7.1 mi	ENE	75°	Quarterly	Population Center
	Goose Island	(36)	5.1 mi	E	90°	Quarterly	Apx. 5 mile
	Fort Eustis	(37)	4.9 mi	ESE	104°	Quarterly	Apx. 5 mile
	Newport News	(38)	19.3 mi	SE	130°	Quarterly	Population Center
	James River Bridge	(39)	17.1 mi	SE	142°	Quarterly	Control Location
	Benn's Church	(40)	17.0 mi	SSE	159°	Quarterly	Control Location
	Smithfield	(41)	13.4 mi	SSE	167°	Quarterly	Control Location
	Rushmere	(42)	5.3 mi	SSE	156°	Quarterly	Apx. 5 mile
	Route 628	(43)	5.1 mi	S	177°	Quarterly	Apx. 5 mile
Air Charcoal	Surry Station	(SS)	0.3 mi	NNE	18°	Weekly	Site Boundary (Highest D/Q)
and Particulate	Hog Island Reserve	(HIR)	2.0 mi	NNE	26°	Weekly	
	Bacon's Castle	(BC)	4.5 mi	SSW	202°	Weekly	
	Alliance	(ALL)	5.1 mi	WSW	247°	Weekly	
	Colonial Parkway	(CP)	3.8 mi	NNW	333°	Weekly	
	BASF	(BASF)	5.1 mi	ENE	70°	Weekly	
	Fort Eustis	(FE)	4.9 mi	ESE	104°	Weekly	
	Newport News	(NN)	19.3 mi	SE	130°	Weekly	Control Location
River Water	Surry Station Discharge	(SD)	0.4 mi	NW	323°	Monthly	
	Scotland Wharf	(SW)	4.9 mi	WNW	284°	Monthly	Control Location
Well Water	Surry Station	(SS)	0.1 mi	SW	227°	Quarterly	Onsite
	Hog Island Reserve	(HIR)	2.0 mi	NNE	28°	Quarterly	
Shoreline	Hog Island Reserve	(HIR)	0.6 mi	N	7°	Semi-Annually	
Sediment	Chickahominy River	(CHIC)	11.2 mi	WNW	301°	Semi-Annually	Control Location
Silt	Chickahominy River	(CHIC)	11.2 mi	WNW	300°	Semi-Annually	Control Location
эш с .	Surry Station Discharge	(CHIC) (SD)	11.2 mi 1.3 mi	NNW		Semi-Annually	Control Location
,	Surry Station Discharge	(SD)	1.5 ml	INTN AA	341	Senn-Annually	

10

,

Table 2-1SURRY - 2006RADIOLOGICAL SAMPLING STATIONDISTANCE AND DIRECTION FROM UNIT NO. 1

		·				Collection		-
Sample Media	Location	Station	Distance	Directio	n Degrees	Frequency		Remarks
Milk	Colonial Parkway	(CP)	3.7 mi	NNW	336°	Monthly	•	
	Williams	(WMS)	27.5 mi	S	175°	Monthly	Control Location	
	Epp's	(EPPS)	4.8 mi	SSW	200°	Monthly		
Oysters	Point of Shoals	(POS)	6.4 mi	SSE	157°	Semi-Annually		
	Mulberry Point	(MP)	4.9 mi	ESE	124°	Semi-Annually		
Clams	Chickahominy River	(CHIC)	11.2 mi	WNW	300°	Semi-Annually	Control Location	
	Surry Station Discharge	(SD)	1.3 mi	NNW	341°	Semi-Annually		
	Hog Island Point	(HIP)	2.4 mi	NE	52°	Semi-Annually		
	Lawne's Creek	(LC)	2.4 mi	SE	131°	Semi-Annually		
Fish	Surry Station Discharge	(SD)	1.3 mi	NNW	341°	Semi-Annually		
Crabs	Surry Station Discharge	(SD)	1.3 mi	NNW	341°	Annually	-	
Food Products	Brock's Farm	(BROCK)	3.8 mi	S	183°	Annually		
(Corn, Peanuts, Soybeans)	Slade's Farm	(SLADE)	3.2 mi	S	179°	Annually		

Table 2-2 (Page 1 of 3) SURRY - 2006 SAMPLE ANALYSIS PROGRAM

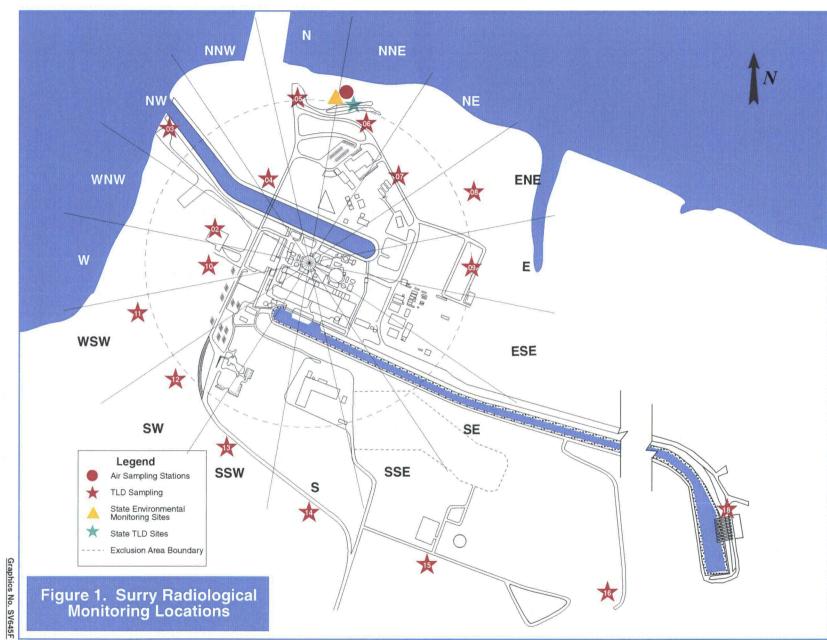
SAMPLE MEDIA	FREQUENCY	ANALYSIS	LLD*	REPORT UNITS
Thermoluminescent Dosimetry (TLD)	Quarterly	Gamma Dose	2	mR/Std. Month
Air Iodine	Weekly	I-131	0.07	pCi/m ³
Air Particulate	Weekly	Gross Beta	0.01	pCi/m ³
	Quarterly (a)	Gamma Isotopic		pCi/m ³
		Cs-134 Cs-137	0.05 0.06	
River Water	Quarterly Composite of monthly sample	Tritium (H-3)	2000	pCi/L
	Monthly	I-131	10	pCi/L
		Gamma Isotopic		pCi/L
		Mn-54	15	
		Fe-59	30	
		Co-58	15	
		Co-60	15	
		Zn-65	30	
		Zr-95	30	
		Nb-95	15	
		Cs-134	15	
		Cs-137	18	
		Ba-140	60	
		La-140	15	
Well Water	Quarterly	Tritium (H-3)	2000	pCi/L
		I-131	1	
		Gamma Isotopic		pCi/L
		Mn-54	15	
		Fe-59	30	
		Co-58	15	
		Co-60	15	
		Zn-65	30	
		Zr-95	30	
		Nb-95	15	
		Cs-134	15	
		Cs-137	18	
		Ba-140	60	
		La-140	-15	

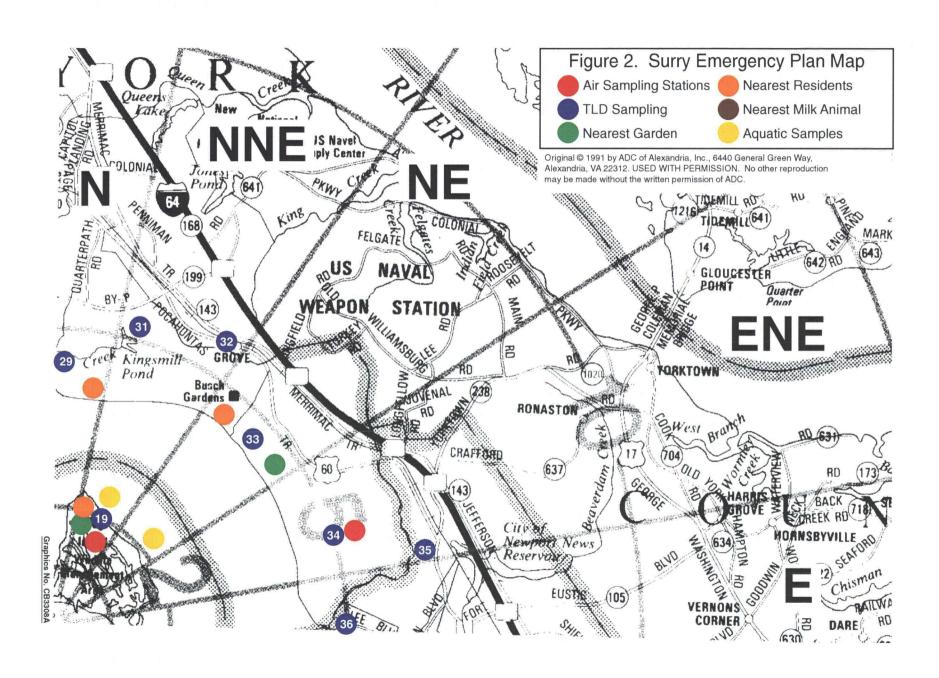
Footnotes located at end of table.

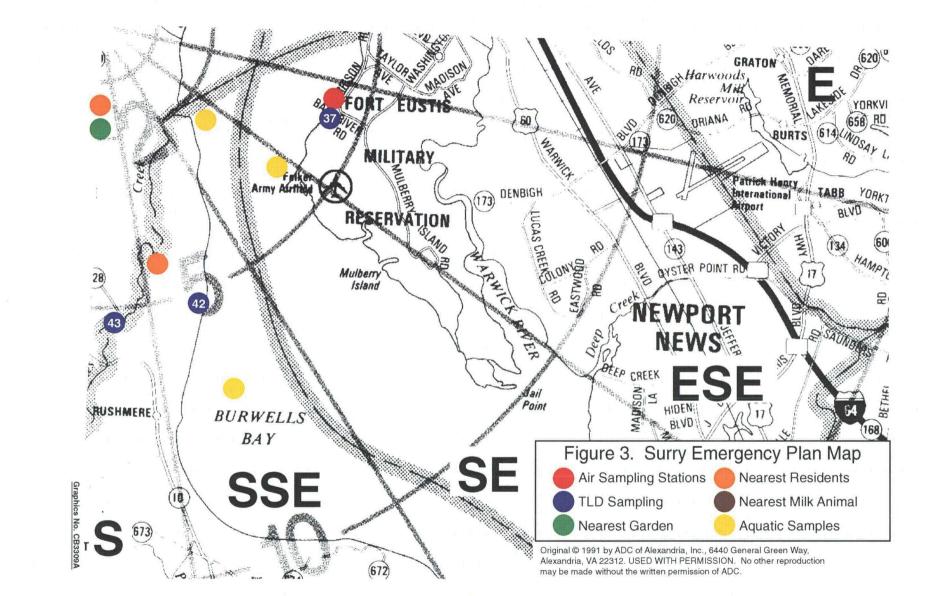
Table 2-2(Cont.) (Page 2 of 3) SURRY - 2006 SAMPLE ANALYSIS PROGRAM

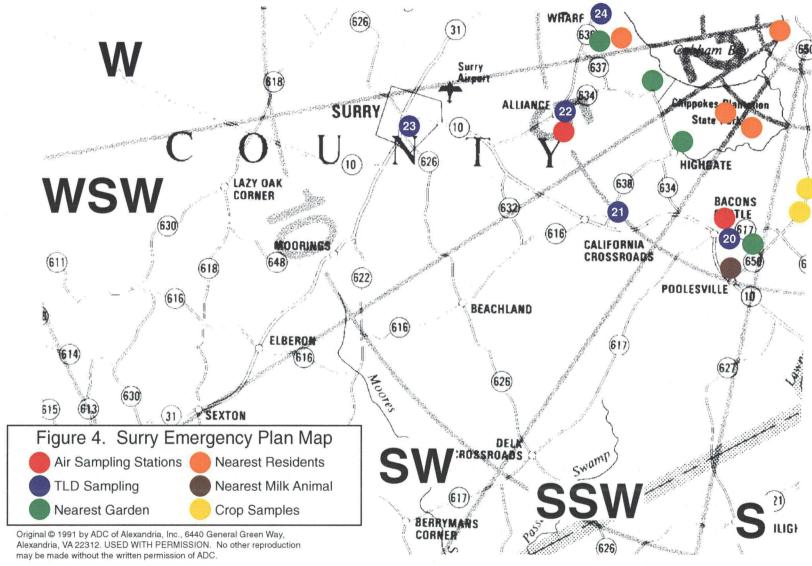
SAMPLE MEDIA	FREQUENCY	ANALYSIS	LLD*	REPORT UNITS
Shoreline Sediment	Semi-Annual	Gamma Isotopic		pCi/kg - dry
		Cs-134	150	
		Cs-137	180	
Silt	Semi-Annual	Gamma Isotopic		pCi/kg - dry
		Cs-134	150	
		Cs-137	180	
Milk	Monthly	I-131	1	pCi/L
		Gamma Isotopic		pCi/L
		Cs-134	15	
		Cs-137	18	
		Ba-140	60	
		La-140	15	
Oysters	Semi-Annual	Gamma Isotopic		pCi/kg - wet
		Mn-54	130	
		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
		Cs-134	130	
		Cs-137	150	
Clams	Semi-Annual	Gamma Isotopic		pCi/kg - wet
		Mn-54	130	
		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
		Cs-134	130	
		Cs-137	150	
Crabs	Annually	Gamma Isotopic		pCi/kg - wet
		Mn-54	130	
·		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
		Cs-134	130	
		Cs-137	150	

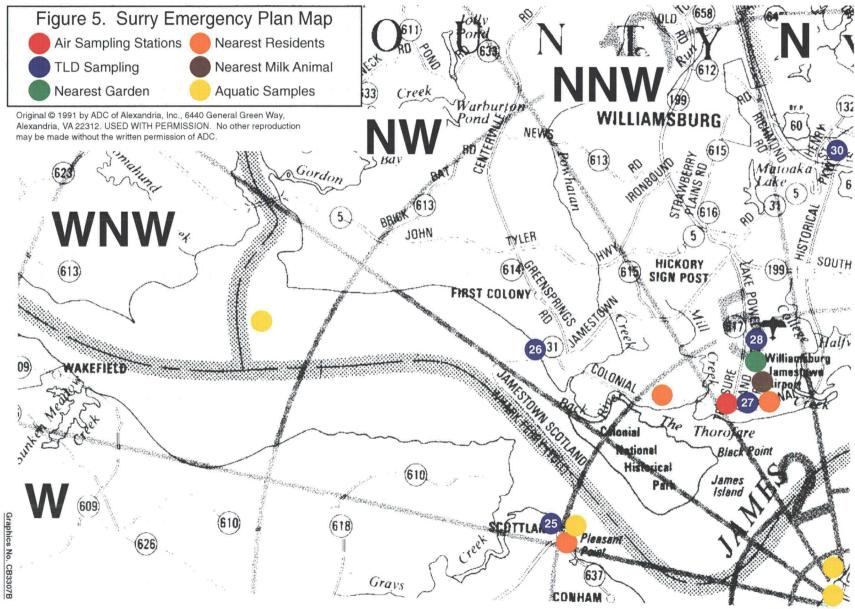
Footnotes located at end of table.


TABLE 2-2 (Cont.) (Page 3 of 3) SURRY - 2006 SAMPLE ANALYSIS PROGRAM


SAMPLE MEDIA	FREQUENCY	ANALYSIS	LLD*	REPORT UNITS
Fish	Semi-Annual	Gamma Isotopic		pCi/kg - wet
		Mn-54	130	
		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
		Cs-134	130	
		Cs-137	150	
Crops	Annually	Gamma Isotopic		pCi/kg - wet
		I-131	60	
		Cs-134	60	
		Cs-137	80	


Note: This table is not a complete listing of nuclides that can be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, are also identified and reported.


* LLDs is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Program, Revision 1, November 1979. LLDs indicate those concentrations to which environmental samples are required to be analyzed. Actual analysis of samples may be lower than these listed values.


(a) Quarterly composites of each location's weekly air particulate samples are analyzed for gamma emitters.

3. ANALYTICAL RESULTS

3.1 Summary of Results

In accordance with the Surry Offsite Dose Calculation Manual (ODCM), a summary table of the analytical results has been prepared and is presented in Table 3-1. This data is presented in accordance with the format of the USNRC Branch Technical Position, "Acceptable Radiological Environmental Monitoring Program", Revision 1, November 1979. A more detailed analysis of the data is given in Section 4.

Surry Power Station, Surry County, Virginia - 2006 Docket No. 50-280-281 Page 1 of 6

Medium or Pathway	Analy			Indicator Locations	Locat	ion with Hig		Control Locations	Non-Routine
Sampled (Units)	Туре	Total No.	LLD*	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measurements
Direct Radiation TLD (mR/ Std Month)	Gamma	164	2	3.5 (152/152) (1.8 - 6.6)	STA-41	13.4 mi SSE	6.0 (4/4) (5.5 - 6.5)	4.0 (12/12) (1.8 - 6.5)	0
Air Particulate	Gross Beta	413	10	22.3 (358/361) (7.2 - 44.2)	FE	4.9 mi ESE	23.8 (51/52) (10.0 - 44.2)	23.1 (52/52) (8.4 - 41.5)	0
(1E-3 pCi/m3)	Gamma	32				· · · · · · · · · · · · · · · · · · ·			
	Be-7	32		137 (28/28) (91 - 187)	NN	19.3 mi SE	162 (4/4) (134 - 183)	162 (4/4) (134 - 183)	0
	Cs-134	32	50	< LLD	N/A		< LLD	< LLD	0
	Cs-137	32	60	< LLD	N/A		< LLD	< LLD	0
Air Iodine (1E-3 pCi/m3)	l-131	413	70	< LLD	N/A	*****	< LLD	< LLD	0
Milk (pCi/Liter)	Strontium	n 4	********			- 2083ü <i>kü - 20</i> - 2 4 44	=== === , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
(poulner)	Sr-89	4		< LLD	N/A		< LLD	N/A	0
	Sr-90	4		1.7 (1/4) (1.7 - 1.7)	СР	3.7 mi NNW	1.7 (1/4) (1.7 - 1.7)	N/A	0
	Gamma	36							
	K-40	36		1411 (24/24) (1260 - 1660)	СР	3.7 mi NNW	1462 (12/12) (1370 - 1600)	1319 (12/12) (1150 - 1460)	0
	I-131	36	1	< LLD	N/A		< LLD	< LLD	0
	Cs-134	36	15	< LLD	N/A		< LLD	< LLD	0
	Cs-137	36	18	< LLD	N/A		< LLD	< LLD	0
	Ba-140	36	60	< LLD	N/A		< LLD	< LLD	0
	La-140	36	15	< LLD	N/A		< LLD	< LLD	0

* LLD is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Monitoring Program, Revision 1, November 1979.

Surry Power Station, Surry County, Virginia - 2006 Docket No. 50-280-281 Page 2 of 6

Medium or Pathway	Analys	sis		Indicator Locations	Locati	ion with Hi	ghest Mean	Control Locations	Non-Routine
Sampled (Units)	Туре	Total No.	LLD*	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measurements
Food	Gamma	3							<u>[</u>
Products (pCi/kg wet)	K-40	3		7617 (3/3) (3340 - 14740)	Slade	3.2 mi S	14740 (1/1) (14740-14740)	N/A	0
	I-131	3	60	< LLD	N/A		< LLD	N/A	0
	Cs-134	3	60	< LLD	Ņ/A		< LLD	N/A	0
	Cs-137	3	80	< LLD	N/A		< LLD	N/A	0
Well Water	H-3	8	2000	< LLD	N/A		< LLD	N/A	0
(pCi/Liter)	Gamma	8							·
	Mn-54	8	15	< LLD	N/A		< LLD	N/A	0
	Co-58	8	15	< LLD	N/A		< LLD	N/A	0
	Fe-59	8	30	< LLD	N/A		< LLD	N/A	0
	Co-60	8	15	< LLD	N/A		< LLD	N/A	0
	Zn-65	8	30	< LLD	N/A		< LLD	N/A	0
	Nb-95	8	15	< LLD	N/A		< LLD	N/A	0
	Zr-95	8	30	< LLD	N/A		< LLD	N/A	0
	I-131	8	1	< LLD	N/A		< LLD	N/A	0
	Cs-134	8	15	< LLD	N/A		< LLD	N/A	0
	Cs-137	8	18	< LLD	N/A		< LLD	N/A	0

* LLD is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Monitoring Program, Revision 1, November 1979.

			200	2KCI 110. 30-200-20	01		1 age 5 61 0		
Medium or Pathway	Analy			Indicator Locations	Locat		ghest Mean	Control Locations	Non-Routine
Sampled	Turne	Total		Mean	Nama	Distance	Mean	Mean	Reported
(Units)	Туре	No.	LLD*	Range	Name	Direction	Range	Range	Measurements
Well Water	Ba-140	8	60	< LLD	N/A		< LLD	N/A	0
(pCi/Liter)	La-140	8	15	< LLD	N/A		< LLD	N/A	0
River Water (pCi/Liter)	H-3	8	2000	2210 (1/4) (2210 - 2210)	SD	0.4 mi NW	2210 (1/4) (2210 - 2210)	< LLD	0
(portier)	Gamma	24							
	K-40	24		103 (6/12) (88 - 135)	SD	0.4 mi NW	103 (6/12) (88 - 135)	< LLD	0
	Mn-54	24	15	< LLD	N/A		< LLD	< LLD	0
	Co-58	24	15	< LLD	N/A		< LLD	< LLD	0
	Fe-59	24	30	< LLD	N/A		< LLD	< LLD	0
	Co-60	24	15	< LLD	N/A		< LLD	< LLD	0
	Zn-65	24	30	< LLD	N/A		< LLD	< LLD	0
	Nb-95	24	15	< LLD	N/A		< LLD	< LLD	0
	Zr-95	24	30	< LLD	N/A		< LLD	< LLD	0
	I-131	24	10	< LLD	N/A		< LLD	< LLD	0
	Cs-134	24	15	< LLD	N/A		< LLD	< LLD	0
	Cs-137	24	18	< LLD .	N/A		< LLD	< LLD	0
	Ba-140	24	60	< LLD	N/A		< LLD	< LLD	0
	La-140	24	15	< LLD	N/A		< LLD	< LLD	0

Surry Power Station, Surry County, Virginia - 2006 Docket No. 50-280-281 Page 3 of 6

* LLD is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Monitoring Program, Revision 1, November 1979.

•

Medium or				Indicator				Control	
Pathway	Analy			Locations	Locat		ghest Mean	Locations	Non-Routine
Sampled		Total		Mean		Distance		Mean	Reported
(Units)	Туре	No.	LLD*	Range	Name	Direction	Range	Range	Measurements
Silt (pCi/kg dry)	Gamma K-40	4 4		19600 (0/0)	CHIC	11 0 mi	20550 (2/2)	20550 (2/2)	0
	K-40	4		18600 (2/2) (17000-20200)		11.2 mi WNW	20550 (2/2) (19100-22000)	20550 (2/2) (19100-22000)	0
	Cs-134	4	150	< LLD	N/A		< LLD	< LLD	0
	Cs-137	4	180	224 (2/2) (221 - 227)	CHIC	11.2 mi WNW	244 (2/2) (158 - 330)	244 (2/2) (158 - 330)	0
	Th-228	4		1195 (2/2) (1140 - 1250)	СНІС	11.2 mi WNW	1370 (2/2) (1220 - 1520)	1370 (2/2) (1220 - 1520)	0
Shoreline Sediment	Gamma	4							
(pCi/kg dry)	K-40	4		5430 (2/2) (4230 - 6630)	HIR	0.6 mi N	5430 (2/2) (4230 - 6630)	3345 (2/2) (1380 - 5310)	0
	Cs-134	4	150	< LLD	N/A		< LLD	< LLD	0
	Cs-137	4	180	< LLD	N/A		< LLD	< LLD	0
	Th-228	4		312 (1/2) (312 - 312)	HIR	0.6 mi N	312 (1/2) (312 - 312)	290 (1/2) (290 - 290)	0
Fish (pCi/kg wet)	Gamma	4							
	K-40	4		2008 (4/4) (1890 - 2110)	SD	1.3 mi NNW	2008 (4/4) (1890 - 2110)	N/A	0
	Mn-54	4	130	< LLD	N/A		< LLD	N/A	0
	Co-58	4	130	< LLD	N/A		< LLD	N/A	0
	Fe-59	4	260	< LLD	N/A		< LLD	N/A	0
	Co-60	4	130	< LLD	N/A		< LLD	N/A	0
	Zn-65	4	260	< LLD	N/A		< LLD	N/A	0

Surry Power Station, Surry County, Virginia - 2006 Docket No. 50-280-281 Page 4 of 6

* LLD is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Monitoring Program, Revision 1, November 1979.

.

Medium or				Indicator	[Control	
Pathway	Analy			Locations	Locat	ion with Hig	hest Mean	Locations	Non-Routine
Sampled	_	Total		Mean		Distance	Mean	Mean	Reported
(Units)	Туре	No.	LLD*	Range	Name	Direction	Range	Range	Measurements
Fish (pCi/kg wet)	Cs-134	4	130	< LLD	N/A		< LLD	_ N/A	0
	Cs-137	4	150	< LLD	N/A		< LLD	N/A	0
Oysters (pCi/kg wet)	Gamma	4							
	K-40	4		634 (4/4) (414 - 870)	POS	6.4 mi SSE	642 (2/2) (414 - 870)	N⁄A	0
	Mn-54	4	130	< LLD	N/A		< LLD	N/A	0
	Fe-59	4	260	< LLD	N/A		< LLD	N/A	0
	Co-58	4	130	< LLD	N/A		< LLD	, N/A	0
	Co-60	4	130	< LLD	N/A		< LLD	N/A	0
	Zn-65	4	260	< LLD	N/A		< LLD	N/A	0
	Cs-134	4	130	< LLD	N/A		< LLD	N/A	0
	Cs-137	4	150	< LLD	N/A		< LLD	N/A	0
Clams (pCi/kg wet)	Gamma	8							
	K-40	8		517 (6/6) (390 - 620)	HIP	2.4 mi NE	535 (2/2) (530 - 540)	159 (1/2) (159 - 159)	0
	Mn-54	8	130	< LLD	N/A		< LLD	< LLD	0
	Co-58	8	130	< LLD	N/A		< LLD	< LLD	0
	Fe-59	8	260	< LLD	N/A		< LLD	< LLD	0

Surry Power Station, Surry County, Virginia - 2006 Docket No. 50-280-281 Page 5 of 6

* LLD is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Monitoring Program, Revision 1, November 1979.

	•								<u> </u>
Medium or				Indicator				Control	
Pathway	Analys			Locations	Location with Highest Mean		Locations	Non-Routine	
Sampled	_	Total		Mean		Distance Mean		Mean	Reported
(Units)	Туре	No.	LLD*	Range	Name	Direction	Range	Range	Measurements
Clams (pCi/kg wet)	Co-60	8	130	< LLD	N/A		< LLD	< LLD	0
	Zn-65	8	260	< LLD	N/A		< LLD	< LLD	0
	Cs-134	8	130	< LLD	N/A		< LLD	< LLD	0
	Cs-137	8	150	< LLD	N/A		< LLD	< LLD	0
Crabs (pCi/kg wet)	Gamma	1							
(porky wei)	K-40	1		2150 (1/1) (2150 - 2150)	SD	1.3 mi NNW	2150 (1/1) (2150 - 2150)	N/A	0
	Mn-54	1	130	< LLD	N/A		< LLD	N/A	0
	Co-58	1	130	< LLD	N/A		< LLD	N/A	0
	Fe-59	1	260	< LLD	N/A		< LLD	N/A	0
	Co-60	1	130	< LLD	N/A		< LLD	N/A	0
	Zn-65	1	260	< LLD	N/A		< LLD	N/A	0
	Cs-134	1	130	< LLD	N/A		< LLD	N/A	0
	Cs-137	1	150	< LLD	N/A		< LLD	N/A	0

Surry Power Station, Surry County, Virginia - 2006 Docket No. 50-280-281 Page 6 of 6

* LLD is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Monitoring Program, Revision 1, November 1979.

26

· __

3.2 Analytical Results of 2006 REMP Samples

Radiological analyses of environmental media characteristically approach and frequently fall below the detection limits of state-of-the-art measurement methods. The reported error is two times the standard deviation (2σ) of the net activity. Unless otherwise noted, the overall error (counting, sample size, chemistry, errors, etc.) is estimated to be 2 to 5 times that listed. Results are considered positive when the measured value exceeds 1.5 times the listed 2σ error (i.e., the measured value exceeds 3σ).

AREVA NP Environmental Laboratory analytical methods meet the Lower Limit of Detection (LLD) requirements given in Table 2 of the USNRC Branch Technical Position, "An Acceptable Radiological Environmental Monitoring Program", (November 1979, Revision 1) and the Surry ODCM.

Data are given according to sample type as indicated below.

- 1. Gamma Exposure Rate
- 2. Air Particulates, Weekly Gross Beta Radioactivity
- 3. Air Particulates, Weekly I-131
- 4. Air Particulates, Quarterly Gamma Spectroscopy
- 5. Cow Milk
- 6. Food Products
- 7. Well Water
- 8. River Water
- 9. Silt
- 10. Shoreline Sediment
- 11. Fish
- 12. Oysters
- 13. Clams
- 14. Crabs

TABLE 3-2: GAMMA EXPOSURE RATE

mR/Std	Month ± 2 Sigma			Page 1 of 1			
STATION	FIRST	SECOND	THIRD	FOURTH	AVERAGE		
NUMBER	QUARTER	QUARTER	QUARTER	QUARTER	± 2 SIGMA		
02	5.2 ± 0.3	4.3 ± 0.0	4.4 ± 0.4	5.4 ± 1.2	4.8 ± 0.6		
03							
	5.1 ± 0.2	4.1 ± 0.7	4.5 ± 0.9	4.9 ± 0.3	4.7 ± 0.4		
04	3.9 ± 1.0	3.9 ± 0.6	3.9 ± 0.3	3.5 ± 0.7	3.8 ± 0.2		
05	4.3 ± 0.4	4.2 ± 1.0	3.7 ± 0.3	4.3 ± 0.2	4.1 ± 0.3		
06	4.2 ± 0.6	4.3 ± 0.3	4.1 ± 0.3	4.3 ± 0.4	4.2 ± 0.1		
07	4.5 ± 0.6	4.2 ± 0.8	4.1 ± 0.3	4.2 ± 0.3	4.3 ± 0.2		
08	3.8 ± 0.4	3.6 ± 0.8	3.9 ± 0.7	4.3 ± 1.2	3.9 ± 0.3		
. 09	6.4 ± 0.5	4.8 ± 0.2	5.6 ± 0.2	6.6 ± 0.6	5.9 ± 0.8		
10	4.5 ± 1.1	3.3 ± 0.9	4.0 ± 0.5	4.2 ± 0.6	4.0 ± 0.5		
11	3.2 ± 0.4	3.1 ± 0.7	3.1 ± 0.2	3.3 ± 0.3	3.2 ± 0.1		
12	3.6 ± 0.5	3.7 ± 0.6	3.2 ± 0.2	3.4 ± 0.8	3.5 ± 0.2		
13	4.4 ± 0.7	4.1 ± 0.3	3.9 ± 0.2	4.1 ± 0.3	4.1 ± 0.2		
14	4.2 ± 0.5	3.4 ± 0.7	3.8 ± 0.7	3.7 ± 0.3	3.8 ± 0.3		
15	4.8 ± 0.7	4.1 ± 0.3	4.3 ± 0.4	4.8 ± 0.7	4.5 ± 0.4		
16	4.4 ± 1.1	3.3 ± 1.5	3.6 ± 0.3	4.2 ± 0.6	3.9 ± 0.5		
18	2.4 ± 1.2	2.3 ± 0.5	2.0 ± 0.5	2.6 ± 0.2	2.3 ± 0.3		
19	3.2 ± 1.0	2.6 ± 0.4	2.3 ± 0.6	2.4 ± 0.8	2.6 ± 0.4		
20	3.2 ± 0.3	2.2 ± 0.2	2.9 ± 0.2	3.1 ± 0.6	2.9 ± 0.5		
21	3.4 ± 0.8	2.6 ± 0.2	2.7 ± 1.2	3.2 ± 0.9	3.0 ± 0.4		
22	2.2 ± 0.6	1.9 ± 0.2	1.8 ± 0.7	2.1 ± 0.2	2.0 ± 0.2		
23	4.2 ± 0.3	3.3 ± 0.6	3.6 ± 0.2	4.2 ± 0.8	3.8 ± 0.4		
24	3.4 ± 0.5	2.3 ± 0.6	2.9 ± 0.2	2.8 ± 1.1	2.9 ± 0.5		
25	3.1 ± 0.8	2.4 ± 1.0	3.3 ± 0.9	3.5 ± 0.8	3.1 ± 0.5		
26	5.0 ± 1.2	3.3 ± 0.6	3.5 ± 0.7	4.4 ± 0.3	4.1 ± 0.8		
27	3.2 ± 0.6	2.4 ± 0.4	3.0 ± 0.4	2.7 ± 0.5	2.8 ± 0.3		
28	2.9 ± 0.6	2.3 ± 0.4	2.5 ± 0.3	2.8 ± 0.2	2.6 ± 0.3		
29	2.8 ± 0.4	2.1 ± 0.3	2.2 ± 0.1	2.4 ± 0.3	2.4 ± 0.3		
30	3.5 ± 0.5	1.9 ± 0.6	2.6 ± 0.5	3.0 ± 0.5	2.8 ± 0.7		
31	2.5 ± 0.4	2.1 ± 0.5	2.2 ± 0.4	2.0 ± 0.7	2.2 ± 0.2		
32	3.4 ± 0.1	2.2 ± 0.5	2.9 ± 0.4	2.9 ± 1.2	2.9 ± 0.5		
33	3.5 ± 0.6	3.2 ± 0.8	2.9 ± 0.1	3.3 ± 0.2	3.2 ± 0.3		
34	3.7 ± 0.3	2.8 ± 1.3	3.2 ± 0.5	3.1 ± 0.3	3.2 ± 0.4		
35	4.5 ± 0.6	3.7 ± 0.3	3.9 ± 0.3	4.5 ± 0.7	4.2 ± 0.4		
36	4.9 ± 0.4	3.5 ± 0.6	3.9 ± 0.4	4.5 ± 0.2	4.2 ± 0.6		
37	3.2 ± 0.7	2.4 ± 0.8	2.7 ± 0.9	2.8 ± 0.4	2.8 ± 0.3		
38	5.9 ± 1.0	4.4 ± 1.9	5.6 ± 0.7	6.2 ± 0.5	5.5 ± 0.8		
39	3.1 ± 0.4	1.8 ± 0.3	2.2 ± 1.0	2.8 ± 0.5	2.5 ± 0.6		
40	3.9 ± 0.2	2.9 ± 0.6	3.4 ± 0.2	3.6 ± 0.4	3.5 ± 0.4		
41	6.5 ± 1.4	5.5 ± 1.1	5.6 ± 0.2	6.2 ± 0.4	6.0 ± 0.1		
42	3.4 ± 0.4	2.8 ± 0.4	3.3 ± 0.8	3.4 ± 0.4	3.2 ± 0.3		
43	3.1 ± 0.4	2.9 ± 0.7	2.7 ± 0.3	2.8 ± 0.9	2.9 ± 0.2		
ΤU	0.1 ± 0.4	2.0 ± 0.7	2.7 ± 0.0	2.0 2 0.0	2.0 ± 0.2		

1.0E-3 pCi/m3 ± 2 Sigma						Page 1 of 2			
COLLECTION				SAMPLING	LOCATIONS				
DATE	SS	HIR	BC	ALL	СР	BASF	FE	NN-C	
January 03	20.7 ± 5.0	21.0 ± 5.0	23.9 ± 5.1	23.6 ± 5.1	21.7 ± 5.0	26.6 ± 5.2	25.1 ± 5.1	21.4 ± 5.0	
January 10	18.7 ± 4.5	15.5 ± 4.3	16.2 ± 4.4	14.9 ± 4.3	15.4 ± 4.2	16.2 ± 4.3	16.5 ± 4.3	14.6 ± 4.2	
January 17	13.5 ± 4.1	16.2 ± 4.3	13.2 ± 4.2	15.7 ± 4.4	17.1 ± 4.5	18.9 ± 4.5	15.3 ± 4.3	13.7 ± 4.3	
January 24	18.8 ± 4.7	17.7 ± 4.6	16.8 ± 4.5	17.1 ± 4.5	15.9 ± 4.4	18.3 ± 4.6	15.3 ± 4.4	17.9 ± 4.5	
January 31	19.1 ± 4.6	19.4 ± 4.6	18.6 ± 4.6	19.8 ± 4.6	18.1 ± 4.5	21.7 ± 4.7	19.7 ± 5.1	17.6 ± 4.5	
February 06	19.3 ± 5.0	19.6 ± 5.1	17.7 ± 5.0	20.9 ± 5.1	16.0 ± 4.8	17.1 ± 5.0	24.1 ± 5.3	18.7 ± 5.0	
February 14	26.4 ± 4.5	28.5 ± 4.6	28.9 ± 4.7	28.7 ± 4.6	24.0 ± 4.3	23.3 ± 4.3	26.1 ± 4.4	25.0 ± 4.5	
February 21	31.5 ± 5.3	23.9 ± 5.0	25.5 ± 5.0	25.4 ± 5.0	28.6 ± 5.1	27.2 ± 5.2	29.6 ± 5.2	30.9 ± 5.3	
February 28	30.4 ± 5.1	29.2 ± 5.0	27.7 ± 4.9	31.3 ± 5.1	28.2 ± 4.9	29.7 ± 5.0	30.2 ± 5.0	31.1 ± 5.1	
March 07	25.2 ± 4.8	26.4 ± 4.8	26.9 ± 4.9	21.7 ± 4.5	18.6 ± 4.4	26.1 ± 4.8	24.8 ± 4.7	22.7 ± 4.6	
March 14	20.3 ± 4.6	23.0 ± 4.7	24.4 ± 4.8	21.4 ± 4.6	16.6 ± 4.3	21.9 ± 4.7	19.1 ± 4.4	23.4 ± 4.7	
March 21	29.3 ± 4.8	29.7 ± 4.8	29.5 ± 4.8	23.3 ± 4.5	26.3 ± 4.6	28.1 ± 4.8	27.5 ± 4.7	27.3 ± 4.8	
March 28	10.5 ± 4.4	8.6 ± 4.2	11.6 ± 4.5	7.7 ± 4.2	9.8 ± 4.8	12.0 ± 4.5	10.0 ± 4.4	8.4 ± 4.3	
Qtr. Avg. ± 2 s.d.	21.8 ± 12.8	21.4 ± 12.4	21.6 ± 12.3	20.9 ± 12.3	19.7 ± 11.3	22.1 ± 10.7	21.8 ± 12.5	21.0 ± 13.5	
April 04	23.2 ± 4.7	19.0 ± 4.4	26.0 ± 4.9	21.7 ± 4.6	17.6 ± 4.3	23.2 ± 4.7	24.7 ± 4.7	21.3 ± 4.5	
April 11	22.6 ± 4.5	24.9 ± 4.6	25.4 ± 4.6	22.8 ± 4.5	26.5 ± 4.7	25.3 ± 4.6	33.4 ± 5.0	23.9 ± 4.5	
April 18	15.1 ± 4.4	15.0 ± 4.4	17.1 ± 4.6	14.9 ± 4.4	14.7 ± 4.4	19.0 ± 4.7	19.2 ± 4.6	21.8 ± 4.8	
April 25	15.8 ± 4.7	17.8 ± 4.8	21.9 ± 5.0	20.3 ± 4.9	19.8 ± 4.8	20.4 ± 4.9	21.9 ± 4.9	17.6 ± 4.8	
May 02	17.6 ± 4.4	20.4 ± 4.5	22.1 ± 4.7	16.5 ± 4.3	17.9 ± 4.4	22.4 ± 4.6	21.4 ± 4.5	21.2 ± 4.6	
May 09	22.9 ± 4.9	23.5 ± 4.9	21.9 ± 4.9	25.3 ± 5.8	20.8 ± 4.8	27.4 ± 5.2	30.0 ± 5.2	21.8 ± 4.8	
May 16	21.0 ± 3.4	21.6 ± 3.4	21.6 ± 3.4	19.8 ± 3.3	21.8 ± 3.4	17.0 ± 4.3 (a)	20.5 ± 3.3	20.7 ± 3.4	
May 23	15.7 ± 4.4	18.2 ± 4.5	16.3 ± 4.5	15.7 ± 4.4	17.5 ± 4.5	17.7 ± 4.6	17.0 ± 4.4	20.0 ± 4.7	
May 30	27.2 ± 5.1	23.6 ± 5.0	26.2 ± 5.1	20.5 ± 4.7	21.5 ± 4.8	19.4 ± 4.7	26.0 ± 5.0	28.7 ± 5.2	
June 06	19.7 ± 4.7	17.8 ± 4.6	19.9 ± 4.6	18.5 ± 4.5	17.3 ± 4.5	17.3 ± 4.5	21.4 ± 4.6	23.4 ± 4.8	
June 13	23.5 ± 4.9	17.5 ± 4.6	18.0 ± 4.7	18.2 ± 4.6	16.2 ± 4.5	18.3 ± 4.6	19.7 ± 4.7	19.2 ± 4.7	
June 20	22.1 ± 4.7	15.5 ± 4.3	20.7 ± 4.6	12.9 ± 4.1	20.9 ± 4.6	23.1 ± 4.7	19.9 ± 4.5	18.6 ± 4.5	
June 27	17.5 ± 4.6	16.0 ± 4.5	18.6 ± 4.7	15.6 ± 4.4	16.3 ± 4.5	15.0 ± 4.5	18.4 ± 4.6	20.7 ± 4.7	
Qtr. Avg. ± 2 s.d.	20.3 ± 7.4	19.3 ± 6.5	21.2 ± 6.5	18.7 ± 7.0	19.1 ± 6.3	20.4 ± 7.2	22.6 ± 9.5	21.5 ± 5.6	

TABLE 3-3: GROSS BETA CONCENTRATION IN FILTERED AIR

1.0E-3 pCi/	m3 ± 2 Sigma						Page 2 of 2	
COLLECTION	_			SAMPLING	LOCATIONS			
DATE	SS	HIR	BC	ALL	СР	BASF	FE	NN
July 05	27.6 ± 4.8	23.7 ± 4.6	25.8 ± 4.7	23.1 ± 4.5	23.1 ± 4.5	23.3 ± 4.6	29.0 ± 4.8	22.2 ± 4.5
July 11	15.3 ± 5.0	17.2 ± 5.1	10.8 ± 4.7	15.1 ± 4.9	16.2 ± 4.9	13.5 ± 4.8	17.9 ± 5.0	12.8 ± 4.8
July 18	20.9 ± 4.9	15.7 ± 4.6	23.6 ± 5.1	22.8 ± 4.9	19.4 ± 4.8	19.0 ± 4.8	24.2 ± 5.0	24.0 ± 5.1
July 25	21.4 ± 4.9	25.2 ± 5.1	22.4 ± 4.9	23.5 ± 5.0	22.6 ± 4.9	20.6 ± 4.9	26.5 ± 5.1	28.3 ± 5.3
August 01	31.0 ± 5.4	24.0 ± 5.1	21.6 ± 5.0	25.6 ± 5.2	24.2 ± 5.1	23.0 ± 5.0	23.7 ± 5.0	32.1 ± 5.5
August 08	36.2 ± 5.3	39.9 ± 5.4	36.2 ± 5.2	39.5 ± 5.3	36.7 ± 5.2	35.2 ± 5.1	44.2 ± 5.5	41.5 ± 5.4
August 15	24.5 ± 4.8	25.6 ± 4.9	19.6 ± 4.5	26.2 ± 4.9	21.0 ± 4.6	20.7 ± 4.6	20.7 ± 4.6	26.4 ± 5.0
August 22	26.4 ± 5.2	24.7 ± 5.1	25.1 ± 5.1	25.1 ± 5.2	23.0 ± 5.1	23.7 ± 5.2	27.6 ± 5.2	26.2 ± 5.2
August 29	38.4 ± 5.7	36.8 ± 5.6	30.3 ± 5.3	38.7 ± 5.7	34.2 ± 5.4	32.6 ± 5.4	35.0 ± 5.5	33.0 ± 5.5
September 05	9.8 ± 3.9	10.1 ± 3.9	<5.5 (b)	12.6 ± 4.1	7.2 ± 3.9	9.0 ± 3.7	12.4 ± 4.1	8.6 ± 3.7
September 12	23.6 ± 4.7	24.5 ± 4.7	18.2 ± 4.5	24.2 ± 4.8	21.5 ± 4.6	22.3 ± 4.7	24.0 ± 4.8	22.8 ± 4.8
September 19	19.8 ± 4.6	17.8 ± 4.4	15.9 ± 4.1	21.6 ± 4.6	13.7 ± 4.0	15.9 ± 4.1	20.6 ± 4.4	21.7 ± 4.4
September 26	26.2 ± 5.1	24.6 ± 5.1	19.3 ± 4.8	26.4 ± 5.2	18.7 ± 4.7	19.2 ± 4.7	25.8 ± 5.0	29.0 ± 5.3
Qtr. Avg. ± 2 s.d.	24.7 ± 15.6	23.8 ± 16.0	22.4 ± 13.3	25.0 ± 15.0	21.7 ± 15.4	21.4 ± 14.0	25.5 ± 15.7	25.3 ± 16.9
October 03	25.1 ± 5.1	24.1 ± 5.1	18.7 ± 4.7	26.2 ± 5.2	26.3 ± 5.1	21.6 ± 4.9	26.6 ± 5.1	28.4 ± 5.2
October 10	22.2 ± 3.2	(C)	23.5 ± 3.4 (d)	26.6 ± 3.3	24.0 ± 3.2	20.8 ± 3.1	19.1 ± 3.0	26.6 ± 3.3
October 17	28.8 ± 4.8	19.8 ± 5.3 (e)	(f)	27.3 ± 4.8	29.4 ± 4.8	27.6 ± 4.8	34.6 ± 5.1	32.4 ± 5.0
October 24	16.9 ± 4.7	17.5 ± 4.8	(f)	19.9 ± 4.9	15.5 ± 4.6	15.1 ± 4.6	18.5 ± 4.7	18.9 ± 4.8
October 31	20.2 ± 4.5	23.6 ± 4.7	20.3 ± 4.3	18.0 ± 4.4	18.6 ± 4.3	15.9 ± 4.2	23.4 ± 4.6	25.2 ± 4.8
November 07	29.7 ± 5.4	23.7 ± 5.2	21.6 ± 5.0	30.1 ± 5.4	21.3 ± 4.9	26.3 ± 5.1	27.3 ± 5.2	24.6 ± 5.2
November 14	18.6 ± 4.6	16.3 ± 4.5	18.8 ± 4.6	24.3 ± 5.0	19.6 ± 4.6	16.1 ± 4.5	18.7 ± 4.6	18.7 ± 4.6
November 21	24.9 ± 5.1	22.8 ± 5.0	21.0 ± 4.9	23.7 ± 5.2	17.5 ± 4.7	23.7 ± 5.0	23.6 ± 5.0	20.8 ± 4.9
November 28	16.6 ± 2.5	16.1 ± 2.5	14.5 ± 2.4	19.2 ± 2.6	17.3 ± 2.5	16.3 ± 2.4	<6.3 (g)	16.4 ± 2.4
December 05	24.9 ± 5.1	20.9 ± 4.9	26.1 ± 5.2	29.0 ± 5.3	22.1 ± 4.9	22.3 ± 4.9	25.4 ± 5.1	25.4 ± 5.2
December 12	28.6 ± 5.4	33.3 ± 5.6	31.9 ± 5.6	37.5 ± 5.8	34.9 ± 5.6	28.1 ± 5.4	33.8 ± 5.6	28.0 ± 5.5
December 19	39.1 ± 5.6	37.2 ± 5.6	38.0 ± 5.7	40.8 ± 5.7	31.6 ± 5.3	34.4 ± 5.4	33.6 ± 5.4	34.0 ± 5.5
December 26	19.9 ± 4.7	22.3 ± 4.8	25.6 ± 5.0	21.7 ± 4.7	21.1 ± 4.6	<6.6 (h)	19.5 ± 4.6	19.4 ± 4.6
Qtr. Avg. ± 2 s.d. Ann. Avg. ± 2 s.d.	24.3 ± 12.6 22.8 ± 12.6	23.1 ± 12.8 21.9 ± 12.5	23.6 ± 13.2 22.2 ± 11.4	26.5 ± 13.5 22.7 ± 13.5	23.0 ± 11.9 20.9 ± 11.8	22.4 ± 12.0 21.5 ± 11.0	25.3 ± 12.1 23.8 ± 12.7	24.5 ± 10.9 23.1 ± 12.6

Table 3-3 Footnotes

- (a) Air sampler not operational at sample change out due to blown fuse. Fuse replaced. Sampler had 120.1 hour run time versus typical run time of 168 hours. Volume was sufficient to meet required LLD.
- (b) Low gross beta concentrations at all sample locations for this period. Most probable cause is impact of Tropical Storm Ernesto.
- (c) Air sampler not operational at sample change out. Sampler had been submerged due to flooding conditions from a Nor'Easter. Sample was saturated and not usable for analysis. Condition Report submitted to document exception to REMP requirements.
- (d) Air sampler not operational at sample change out on. Sample volume based on elapsed timer indication of 156.2 hours. Volume was sufficient to meet required LLD. Power pole was snapped due to vehicle accident. Power pole had been temporarily repaired with support brackets. Unable to reinstall sampler on pole due to temporary repair brackets.
- (e) Air sampler not operational at sample change out on. Sample volume based on elapsed timer indication of 32.1 hours. Volume and count time were sufficient to meet required LLD. The power strip in the sampler housing was defective and replaced.
- (f) Air sampler not operational due to inability to reinstall sampler on temporarily repaired power pole. Power pole not replaced due to extended recovery efforts from 10/7/06 Nor'Easter. Condition Report submitted to document exception to REMP requirements.
- (g) Air sampler not operational at sample change out due to blown fuse. Fuse replaced. Sampler had 82.1 hour run time. Volume was sufficient to meet required LLD.
- (h) Air sampler not operational at sample change out due to pump failure. Sample volume based on sampler timer indication of 146.6 hours. Volume was sufficient to meet required LLD.

TABLE 3-4: IODINE-131 CONCENTRATION IN FILTERED AIR

1.0E-3 pCi/m3 ± 2 Sigma							Page 1 of 2			
COLLECTION				SAMPLING						
DATE	SS	HIR	BC	ALL	СР	BASF	FE	NN-C		
January 03	<27	<26	<25	<25	<22	<27	<18	<27		
January 10	<32	<28	<30	<36	<30	<29	<25	<31		
January 17	<30	<28	<24	<34	<30	<31	<36	<36		
January 24	<30	<27	<30	<27	<26	<23	<25	<30		
January 31	<28	<27	<27	<20	<28	<29	<29	<28		
February 06	<47	<40	<38	<40	<42	<41	<38	<45		
February 14	<22	<31	<28	<30	<27	<33	<26	<32		
February 21	<32	<29	<29	<34	<35	<36	<41	<35		
February 28	<36	<30	<25	<28	<38	<40	<48	<48		
March 07	<28	<25	<24	<27	<25	<25	<23	<28		
March 14	<26	<30	<31	<25	<28	<29	<31	<24		
March 21	<27	<29	<26	<24	<26	<25	<20	<25		
March 28	<29	<34	<45	<36	<34	<27	<26	<27		
April 04	<25	<28	<32	<29	<26	<30	<31	<29		
April 11	<24	<24	<27	<24	<29	<27	<26	<27		
April 18	<30	<23	<21	<31	<30	<27	<21	<29		
April 25	<32	<24	<34	<34	<28	<38	<44	<38		
May 02	<21	<22	<24	<19	<21	<18	<20	<21		
May 09	<25	<23	<21	<21	<23	<28	<23	<29		
May 16	<26	<21	<27	<24	<28	<32 (a)	<30	<25		
May 23	<24	<24	<24	<23	<20	<25	<35	<21		
May 30	<28	<33	<29	<30	<24	<28	<23	<29		
June 06	<28	<20	<20	<31	<24	<27	<24	<25		
June 13	<26	<28	<24	<21	<28	<27	<26	<23		
June 20	<17	<26	<23	<25	<31	<24	<29	<29		
June 27	<33	<34	<39	<40	<35	<32	<39	<26		

TABLE 3-4: IODINE-131 CONCENTRATION IN FILTERED AIR

1.0E-3 pCi/	m3 ± 2 Sigma						Page 2 of	2
COLLECTION				SAMPLING	LOCATIONS			
DATE	SS	HIR	BC	ALL	СР	BASF	FE	NN
	<38	<34	<34	<42	-07	<38	-07	-00
July 05					<37		<37	<33
July 11	<38	<33	<32	<37	<39	<43	<37	<38
July 18	<29	<25	<28	<32	<29	<25	<21	<27
July 25	<38	<33	<37	<41	<38	<39	<40	<38
August 01	<23	<18	<18	<21	<20	<22	<22	<24
August 08	<35	<22	<29	<34	<29	<28	<25	<29
August 15	<33	<34	<29	<35	<31	<39	<44	<35
August 22	<25	<19	<26	<22	<23	<21	<20	<18
August 29	<29	<26	<23	<24	<27	<26	<29	<29
September 05	<29	<32	<26	<28	<34	<25	<25	<28
September 12	<25	<23	<26	<21	<19	<25	<19	<19
September 12	<27	<32	<39	<32	<34	<39	. <35	<31
September 26	<36	<02 <27	<26	<30	<25	<28	<30	<37
	00	00	00	00	00	00	07	40
October 03	<32	<38	<36	<26	<29	<38	<37	<40
October 10	<35	(b)	<42 (c)	<41	<38	<38	<24	<28
October 17	<35	<25 (d)	(e)	<44	<32	<34	<38	<35
October 24	<34	<31	(e)	<32	<26	<26	<36	<28
October 31	<23	<26	<25	<26	<20	<25	<27	<18
November 07	<17	<20	<22	<20	<19	<23	<19	<24
November 14	<21	<23	<26	<21	<23	<29	<34	<26
November 21	<24	<29	<35	<28	<34	<24	<39	<31
November 28	<31	<26	<23	<24	<28	<33	<67 (f)	<33
December 05	<23	<20	<31	<26	<24	<26	<24	<24
December 12	<25	<20	<17	<20	<21	<26	<23	<29
December 19	<20	<24	<22	<21	<18	<23	<25	<21
December 26	<38	<34	<39	<37	<38	<41 (g)	<44	<43
					~00	NY (9/	NTT	NTU

Table 3-4 Footnotes

- (a) Air sampler not operational at sample change out due to blown fuse. Fuse replaced. Sampler had 120.1 hour run time versus typical run time of 168 hours. Volume was sufficient to meet required LLD.
- (b) Air sampler not operational at sample change out. Sampler had been submerged due to flooding conditions from a Nor'Easter. Sample was saturated and not usable for analysis. Condition Report submitted to document exception to REMP requirements.
- (c) Air sampler not operational at sample change out on. Sample volume based on elapsed timer indication of 156.2 hours. Volume was sufficient to meet required LLD. Power pole was snapped due to vehicle accident. Power pole had been temporarily repaired with support brackets. Unable to reinstall sampler on pole due to temporary repair brackets.
- (d) Air sampler not operational at sample change out on. Sample volume based on elapsed timer indication of 32.1 hours. Volume and count time were sufficient to meet required LLD. The power strip in the sampler housing was defective and replaced.
- (e) Air sampler not operational due to inability to reinstall sampler on temporarily repaired power pole. Power pole not replaced due to extended recovery efforts from 10/7/06 Nor'Easter. Condition Report submitted to document exception to REMP requirements.
- (f) Air sampler not operational at sample change out due to blown fuse. Fuse replaced. Sampler had 82.1 hour run time. Volume was sufficient to meet required LLD.
- (g) Air sampler not operational at sample change out due to pump failure. Sample volume based on sampler timer indication of 146.6 hours. Volume was sufficient to meet required LLD.

TABLE 3-5: GAMMA EMITTER CONCENTRATION IN FILTERED AIR

1	1.0E-3 pCi/m3 ±	2 Sigma			Page 1 c	of 1
SAMPLING		FIRST	SECOND	THIRD	FOURTH	AVERAGE
LOCATIONS	NUCLIDE	QUARTER	QUARTER	QUARTER	QUARTER	±2 SIGMA
SS	Cs-134	<1.6	<1.3	<1.6	<1.1	
	Cs-137	<3.1	<1.2	<1.4	<0.8	
	Be-7	148 ± 34	163 ± 32	163°±36	112 ± 28	147 ± 24
HIR	Cs-134	<2.5	<1.5	<1.5	<1.3	
	Cs-137	<3.4	<1.4	<1.2	<1.4	
	Be-7	~~.+ 162 ± 34	142 ± 33	140 ± 31	102 ± 37	137 ± 25
	201					107 ± 20
BC	Cs-134	<2.4	<0.9	<1.4	<1.6	
20	Cs-137	<3.2	<0.5 <1.7	<1. 1	<1.6	
	Be-7	119 ± 31	167 ± 33	125 ± 32	158 ± 48	142 ± 24
		110 1 01			100 ± 40	
ALL	Cs-134	<2.5	<1.5	<1.1	<1.5	
-	Cs-137	<2.9	<1.1	<1.0	<1.7	
	Be-7	136 ± 34	132 ± 32	138 ± 26	114 ± 41	130 ± 11
	201				···+ <u>+</u> +·	100 ± 11
CP	Cs-134	<1.4	<1.6	<1.0	<1.4	
	Cs-137	<3.1	<1.4	<1.5	<1.1	
	Be-7	99 ± 32	138 ± 33	122 ± 25	91 ± 36	113 ± 21
BASF	Cs-134	<0.6	<1.7	<1.1	<1.2	
	Cs-137	<0.6	<0.8	<0.9	<1.7	
	Be-7	155 ± 19	172 ± 33	115 ± 27	93 ± 38	134 ± 36
FE	Cs-134	<1.8	<1.8	<1.3	<1.1	
	Cs-137	<3.1	<1.2	<1.0	<1.4	
	Be-7	172 ± 36			114 ± 40	159 ± 32
						-
NN-C	Cs-134	<1.6	<1.2	<1.3	<1.5	
	Cs-137	<3.0	<1.3	<1.4	<1.7	
	Be-7		183 ± 36			162 ± 21
	1					

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK

	pCi/Liter ±2Sigma		Page 1 of 3
		COLONIAL	
NUCLIDE	EPPS	PARKWAY	WILLIAMS-C
JANUARY		_	_
Cs-134	<8	<8	<7
Cs-137	<7	<8	<7
Ba-140	<10	<12	<12
La-140	<10	<13	<13
I-131	<1	<1	<1
K-40	1360 ± 140	1450 ± 140	1150 ± 130
FEBRUARY			
Cs-134	<10	<8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Cs-137	<7	<11	<8
Ba-140	<10	<12	<11
La-140	<11	<14	<13
I-131	<1	<1	<1
K-40	1520 ± 170	1600 ± 200	1460 ± 160
MARCH			
Cs-134	<6	<6	<6
Cs-137	<6	<6	<6
Ba-140	<12	<12	<11
La-140	<14	<13	<13
I-131	<1	<1	<1
K-40	1490 ± 120	1370 ± 110	1380 ± 120
Sr-89		<7	
Sr-90		2	
APRIL			
Cs-134	<5	<5	<5
Cs-137	~ <5	~~ <5	~~ <5
Ba-140	<10	\$ \$	<10
La-140	<11	、 <10	<10
I-131	<1	<1	<1
K-40	1390 ± 100	1417 ± 97	1361 ± 98

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK

]	pCi/Liter ±2 Sigma	Page 2 of 3			
		COLONIAL			
NUCLIDE	EPPS	PARKWAY	WLLIAMS-C		
MAY					
Cs-134	<7	<8	<8		
Cs-137	<8	\$ \$	<7		
Ba-140	<13	~	<11		
La-140	<15	~ ⊘	<12		
I-131	<1	<1	<1		
K-40	1340 ± 130	1430 ± 140	1310 ± 140		
JUNE					
Cs-134	<7	<10	<4		
Cs-137	<6	<8	<4		
Ba-140	<11	<7	<6		
La-140	<12	<8	<7		
I-131	<1	<1	<1		
K-40	1330 ± 130	1560 ± 170	1333 ± 74		
Sr-89		<9			
Sr-90		1.71 ± 0.99			
JULY					
Cs-134	<8	<8	<10		
Cs-137	<7	<7	<9		
Ba-140	<12	<12	<13		
La-140	<14	<13	<15		
I-131	<1	<1	<1		
K-40	1270 ± 170	1450 ± 150	1320 ± 180		
AUGUST					
Cs-134	<7	<8	<8		
Cs-137	<7	<8	<6		
Ba-140	<11	<10	<10		
La-140	<12	<12	<11		
I-131	<1	<1	<1		
K-40	1350 ± 130	1380 ± 140	1280 ± 140		

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK

р	Ci/Liter ±2 Sigma	Page 3 of 3			
		COLONIAL			
NUCLIDE	EPPS	PARKWAY	WILLIAMS-C		
SEPTEMBER					
 Cs-134	<7	<5	<7		
Cs-137	<6	<5	<6		
Ba-140	<8	<9	<8		
La-140	<9	<10	<10		
I-131	<1	<1	<1		
K-40	1270 ± 140	- 1460 ± 110	1310 ± 120		
Sr-89		<8			
Sr-90		~2			
OCTOBER					
Cs-134	<8	<8	<7		
Cs-137	<7	<8	<7		
Ba-140	<9	<10	<11		
La-140	<10	<12	<13		
I-131	<1	<1	<1		
K-40	1260 ± 130	1490 ± 150	1300 ± 130		
NOVEMBER					
 Cs-134	<5	<6	<6		
Cs-137	<5	<6	<5		
Ba-140	<9	<10	<11		
La-140	<10	<11	<13		
I-131	<1	<1	<1		
K-40	1430 ± 110	1440 ± 120	1320 ± 110		
DECEMBER					
Cs-134	<6	<6	<4		
Cs-137	<5	<4	<4		
Ba-140	<10	<8	<8		
La-140	<12	<10	` <10		
I-131	<1	<1	<1		
K-40	1322 ± 94	1493 ± 87	1299 ± 79		
Sr-89		<9			
Sr-90		~			

TABLE 3-7: GAMMA EMITTER CONCENTRATION IN FOOD PRODUCTS

	$pCi/kg(wet) \pm 2Si$	gma			Page	1 of 1
SAMPLING LOCATIONS	COLLECTION DATE	Sample Type	Cs-134	Cs-137	I-131	K-40
BROCK FARM	11/07/2006 11/16/2006	Corn Peanuts	<22 ≼46	<18 <44	<28 ⊲53	3340 ± 340 4770 ± 860
SLADE FARM	12/05/2006	Soybeans	<28	<i><</i> 29	<36	14740 ± 790

TABLE 3-8: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN WELL WATER

	pCi/Liter ± 2 Sigma				Page 1 o	f 1
SAMPLING						
LOCATIONS	S DATE			ISOTOPE		
		Ba-140	Co-58	Co-60	Cs-134	Cs-137
SS	03/21/2006	<10	<8	<7	<8	<6
	06/20/2006	<8	<0 <5	২/ ব্য	~9 ~6	<5
	09/19/2006	<0 <10	<0 <6		<0 <5	
		<10 <7		୍ କ		<5
	12/12/2006	</td <td><5</td> <td><0</td> <td><6</td> <td><5</td>	<5	<0	<6	<5
		Fe-59	I-131	La-140	Mn-54	Nb-95
	03/21/2006	<16	<1	<11	<7	<8
	06/20/2006	<10	<1	\$	<6	<6
	09/19/2006	<11	<1	<11	<5	<5
	12/12/2006	<11	<1	<8	<5	<5
		Zn-65	Zr-95	H-3		
	03/21/2006	<14	<11	<1400 ⁻		
	06/20/2006	<14 <11	<7			
				<1300		
	09/19/2006	<11	<9	<1500		
	12/12/2006	<12	<9	<330		
		Ba-140	Co-58	Co-60	Cs-134	Cs-137
HIR	03/21/2006	<10	<7	<7	<7	<7
	06/20/2006	<7	<4	<4	<5	<5
	09/19/2006	<11	<7	<8	<7	<6
	12/12/2006	<11	<6	~9	<7	<6
		Fe-59	I-131	La-140	Mn-54	Nb-95
	03/21/2006	<13	<1	<12	<7	<8
	06/20/2006	<9	<1	<7	<4	~5
	09/19/2006	<13	<1	<12	<7 <6	<5 <7
	12/12/2006	<10	<1	<13	<0 <6	<7
	12/12/2000			<15	<0	</td
		Zn-65	Zr-95	H-3		
	03/21/2006	<15	<12	<1400		
	06/20/2006	<9	<7	<1300		
	09/19/2006	<13	<11	<1500		*
	12/12/2006	<13	<10	<330		

TABLE 3-9: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN RIVER WATER

	pCi/Liter ± 2 Sigm	a			Page 1 c	of 2
SAMPLING	COLLECTION					
LOCATIONS	DATE			ISOTOPE		
		Ba-140	Co-58	Co-60	Cs-134	Cs-137
SD	01/24/2006	<7	<4	<4	<4	<4
	02/22/2006	<8	<4	4 5	<4	<4
	03/28/2006	<10	<8	<9	<7	<7
	04/25/2006	<9	<7	<7	<6	<6
	05/16/2006	<10	<6	≪6	<6	<6
	06/13/2006	<8	<5	≪6	<5	<5
	07/18/2006	<8	<5	45	<5	<5
	.08/15/2006	<8	<4	<4	<4	<4
	09/19/2006	<7	<5	45	<5	<5
	10/17/2006	<6	<3	୍ୟ	<3	<3
	11/21/2006	<9	<5	≪6	_<6	<6
	12/12/2006	<7	<4	<4	<4	<4
		Fe-59	I-131	La-140	Mn-54	Nb-95
	01/24/2006	<7	<6	≪8	<4	<6
	02/22/2006	<9	<9	<9	<4	<5
	03/28/2006	<11	<10	<12	<6	<7
	04/25/2006	<10	<10	<10	<6	<9
	05/16/2006	<11	<10	<11	<5	<8
	06/13/2006	<10	<9	<10	<4	<5
	07/18/2006	<9	<8	<₽	<5	<5
	08/15/2006	<8	<8	<₽	<4	<4
	09/19/2006	<9	<8	<8	<4	<5
	10/17/2006	<6	<9	<7	<3	<4
	11/21/2006	<10	<10	<10	<6	<5
`	12/12/2006	<8	<6	8	<4	<4
		Zn-65	Zr-95	H-3	K-40	
	01/24/2006	<9	<7		<66	
	02/22/2006	<8	<7		<59	
	03/28/2006	<13	<10	<1300	135 ± 63	
	04/25/2006	<24	<10		113 ± 57	
•	05/16/2006	<13	<11		<83	
	06/13/2006	<12	<8	<1300	93 ± 51	
	07/18/2006	<10	<7		88 ± 44	
	08/15/2006	<10	<6		96 ± 39	
	09/19/2006	<10	<7	<1400	94 ± 38	
	10/17/2006	<7	<5		<01 <u>-</u> 00 <40	
	11/21/2006	<11	≪8		<78	
	12/12/2006	<9	<8	2210 ± 950	<25	

TABLE 3-9: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN RIVER WATER

` 	pCi/Liter ± 2 Sigm	a			Page 2 o	f 2
SAMPLING	COLLECTION			10070050	,	
LOCATIONS	DATE		- · · · · · · · · · · · · · · · · · · ·	ISOTOPES		
		Ba-140	Co-58	Co-60	Cs-134	Cs-137
SW-C	01/24/2006	<8	<4	<5	<5	<4
	02/22/2006	<8	<4	<4	<4	<5
	03/28/2006	<10	<7	<6	<6	<6
	04/25/2006	<9	<6	<6	<7	<6
	05/16/2006	<8	<5	<5	<6	<5
	06/13/2006	<⊅	<7	<6	<7	<5
	07/18/2006	<7	<5	<5	<5	<4
	08/15/2006	<8	<4	<5	<5	<4
	09/19/2006	~8	<6	<6	<7	<5
	10/17/2006	<7	<4	<4	<4	<3
	11/21/2006	<7	<4	<5	<4	<5
	12/12/2006	<7	<4	<4	<4	<4
		Fe-59	I-131	La-140	Mn-54	Nb-95
	01/24/2006	<9	<8	<10	<4	<4
	02/22/2006	<8	<9	<9	<4	<4
	03/28/2006	<13	<9	<12	≪6	<8
	04/25/2006	<12	<8	<10	<7	<9
	05/16/2006	<12	<9	<10	<5	<6
	06/13/2006	<10	<9	<10	≪6	<8
	07/18/2006	<10	<8	<8	<5	<5
	08/15/2006	<9	<7	<9	<4	<5
	09/19/2006	<12	<10	<9	<5	<6
	10/17/2006	<8	<10	<8	<4	<5
	11/21/2006	<11	<9	<8	<4	<5
	12/12/2006	≪8	<7	<8	<4	<4
		Zn-65	Zr-9 5	H-3	K-40	
	01/24/2006	<10	<7		<63	
	02/22/2006	<9	<6		<54	
a	03/28/2006	<13	<11	<1300	<94	
	04/25/2006	<23	<10		<75	
	05/16/2006	<10	<9		<77.	
	06/13/2006	<11	<9	<1300	<110	
	07/18/2006	<13	<7		<62	
	08/15/2006	<10	<7		<59	
	09/19/2006	<11	<9	<1400	<73	
	10/17/2006	<8	<6		<46	
	11/21/2006	<10	<8		<61	
	12/12/2006	<8	<7	<1300	<57	

TABLE 3-10: GAMMA EMITTER CONCENTRATIONS IN SILT

pCi/kg (dry) ± 2 Sigma				Page 1 of 1		
SAMPLING LOCATIONS	COLLECTION DATE	Cs-134	Cs-137	Th-228	K-40	
SD	03/30/2006 10/03/2006	<100 <92	221 ± 84 227 ± 91	1250 ± 240 1140 ± 220	20200 ± 1900 17000 ± 1700	
CHIC-C	03/30/2006 10/03/2006	<74 <130	158 ± 55 330 ± 100	1520 ± 150 1220 ± 240	19100 ± 1300 22000 ± 2200	

Surry Nuclear Power Station, Surry County, Virginia - 2006

÷

TABLE 3-11: GAMMA EMITTER CONCENTRATIONS IN SHORELINE SEDIMENT

	pCi/kg (dry) ± 2 Sigr	na	Page 1 of 1			
SAMPLING LOCATIONS	COLLECTION DATE	Cs-134	Cs-137	Th-228	K-40	
HIR	02/14/2006 08/08/2006	<45 <34	<30 <43	312 ± 68 <130	4230 ± 550 6630 ± 930	
CHIC-C	02/14/2006 08/08/2006	<30 <40	<23 <60	<97 290 ± 150	5310 ± 500 1380 ± 540	

TABLE 3-12: GAMMA EMITTER CONCENTRATION IN FISH

	$pCi/kg (wet) \pm 2 S$	igma	i		Page 1 o	f 1
SAMPLING LOCATION	COLLECTION DATE	Sample Type		ISOT	OPE	
			K-40	Co-58	Co-60	Cs-134
SD	04/11/2006	Catfish	2110 ± 510	<38	<38	<39
	04/11/2006	White Perch	1890 ± 390	<33	<30	<27
	10/05/2006	Catfish	2040 ± 280	<25	<19	<19
	10/05/2006	White Perch	1990 ± 290	<22	⊲21	<18
			Cs-137	Fe-59	Mn-54	Zn-65
	04/11/2006	Catfish	<31	<82	<42	<87
	04/11/2006	White Perch	<29	<61	<30	<62
	10/05/2006	Catfish	<19	<51	<20	<48
	10/05/2006	White Perch	<20	<42	<19	<48

Surry Nuclear Power Station, Surry County, Virginia - 2006

L

TABLE 3-13: GAMMA EMITTER CONCENTRATIONS IN OYSTERS

	pCi/kg (wet) ± 2 Si	gma		Page 1 of	1
SAMPLING LOCATIONS	COLLECTION DATE		ISO	TOPE	
POS	03/30/2006 10/03/2006	K-40 414 ± 93 870 ± 200	Co-58 <10 <21	Co-60 <10 <18	Cs-134 <8 <17
	03/30/2006 10/03/2006	Cs-137 <8 <18	Fe-59 <26 <47	Mn-54 <9 <19	Zn-65 <18 <49
MP	03/30/2006 10/03/2006	K-40 472 ± 80 780 ± 160	Co-58 <9 <15	Co-60 <7 <12	Cs-134 <8 <14
	03/30/2006 10/03/2006	Cs-137 <7 <15	Fe-59 <22 <43	Mn-54 <7 <14	Zn-65 <17 <32

TABLE 3-14: GAMMA EMITTER CONCENTRATIONS IN CLAMS

	pCi/kg (wet) ± 2 Sig	gma		Page 1 of	<u> </u>
SAMPLING LOCATIONS	COLLECTION DATE		ISO	ГОРЕ	
		K-40	Co-58	Co-60	Cs-134
HIP	03/30/2006 10/03/2006	530 ± 150 540 ± 230	<16 <25	<14 <34	<13 <23
	00/00/0000	Cs-137	Fe-59	Mn-54	Zn-65
	03/30/2006 10/03/2006	<12 <23	<42 <62	<13 <22	<28 <55
		K-40	Co-58	Co-60	Cs-134
SD	03/30/2006 10/03/2006	620 ± 120 390 ± 130	<12 <13	<10 <13	<10 <14
	03/30/2006	Cs-137 <10	Fe-59 <29	Mn-54 <9	Zn-65 <22
	10/03/2006	<13	<30	<13	<28
		K-40	Co-58	Co-60	Cs-134
CHIC-C	03/30/2006 10/03/2006	159 ± 86 <270	<10 <19	<8 <16	<8 <19
	03/30/2006	Cs-137 <7	Fe-59 <23	Mn-54 <8	Zn-65 <19
	10/03/2006	<19	<23 <52	<o <17</o 	<19 <43
		K-40	Co-58	Co-60	Cs-134
LC	03/30/2006 10/03/2006	524 ± 99 500 ± 200	<10 <24	<9 <21	<10 <23
	00/00/0000	Cs-137	Fe-59	Mn-54	Zn-65
	03/30/2006	<9 <19	<27 <52	<9 <21	<19 <50

TABLE 3-15: GAMMA EMITTER CONCENTRATIONS IN CRABS

pCi/kg (wet) ± 2 Sigma			Page 1 of 1					
SAMPLING LOCATIONS	COLLECTION DATE	ISOTOPE						
SD 06/21/2006		K-40 2150 ± 170	Co-58 <14	Co-60 <11	Cs-134 <12			
		Cs-137 <12	Fe-59 <31	Mn-54 <11	Zn-65 <24			

4. DISCUSSION OF RESULTS

Data from the radiological analyses of environmental media collected during 2006 and tabulated in Section 3, are discussed below. The procedures and specifications followed in the laboratory for these analyses are as required in the AREVA NP Environmental Laboratory quality assurance manual and laboratory procedures. In addition to internal quality control measures performed by the laboratory, it also participates in an Interlaboratory Comparison Program. Participation in this program ensures that independent checks on the precision and accuracy of the measurements of radioactive material in environmental samples are performed. The results of the Interlaboratory Comparison Program are provided in Appendix B.

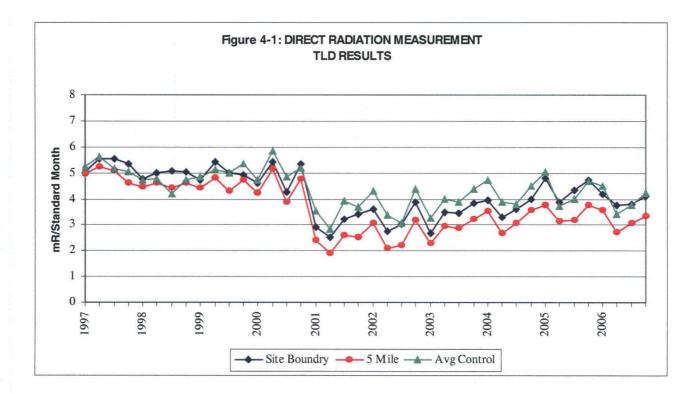
The predominant radioactivity detected throughout 2006 was from external sources, such as fallout from nuclear weapons tests (cesium-137, strontium-90) and naturally occurring radionuclides. Naturally occurring nuclides such as beryllium-7, potassium-40, and thorium-228 were detected in numerous samples.

On October 7, 2006, 15 inches of rain fell in the vicinity of the Surry Power Station due to a Nor'Easter. This abnormal amount of rain resulted in flooding conditions and extensive power outages. Two deviations from the Radiological Environmental Monitoring Program requirements occurred because of this storm.

The Hog Island Reserve (HIR) air sampling station was inoperable for the sampling period of 10/03/06 through 10/10/06 as a result of physical damage to the sampler from flooding conditions. In addition, the particulate and charcoal filters were saturated, and therefore, not usable for analyses. Due to this inoperability, the required gross beta, iodine-131 and gamma isotopic analyses were not performed. The HIR sampling station was returned to service on 10/10/06 following replacement of the air sampler. Other than replacement of the sampling equipment, no other plans to prevent recurrent storm damage could be implemented.

The second deviation was also a failure to perform the required gross beta, iodine-131 and gamma isotopic analyses at the Bacon's Castle (BC) air sampling station for two consecutive sampling periods, 10/10/06 through 10/24/06. A vehicle accident damaged the power pole that the air sampler was attached to. A temporary repair was made to the power pole to restore power. The temporary repair was not suitable for reinstallation of the air sampler to the pole. Due to the extensive regional recovery efforts from the 10/07/06 Nor'Easter, replacement of the power pole, electric lines and transformer was delayed until 10/22/06. The BC air sampler was returned to service on 10/23/06. No other plans to prevent loss of power supply equipment could be implemented.

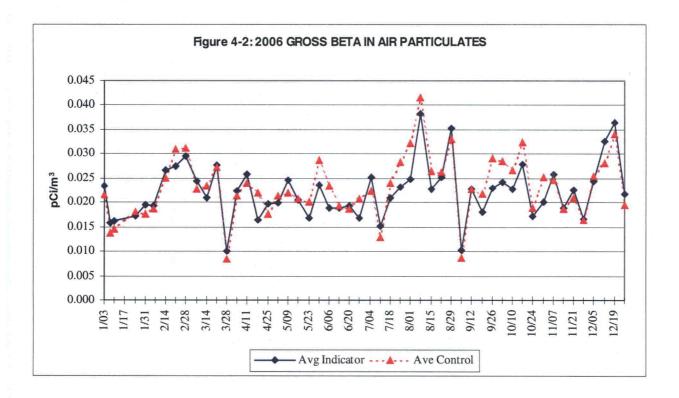
The following is a discussion and summary of the results of the environmental

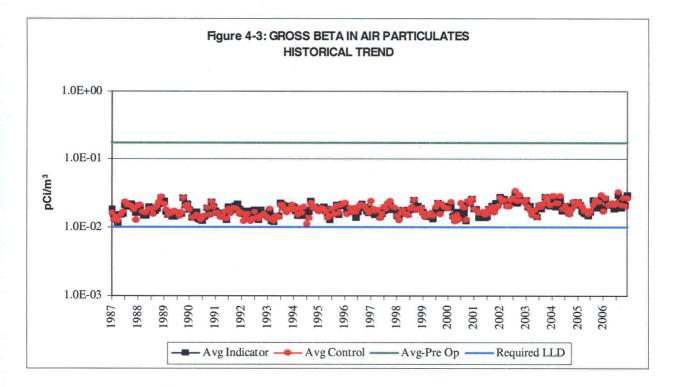

measurements taken during the 2006 reporting period.

4.1 Gamma Exposure Rate

A thermoluminescent dosimeter (TLD) is an inorganic crystal used to detect ambient radiation. TLDs are placed in two concentric rings around the station. The inner ring is located in the vicinity of the site boundary, and the outer ring is located at approximately five miles from the station. TLDs are also placed in special interest areas, such as population centers and nearby residences. Additional TLDs serve as controls. Ambient radiation comes from naturally occurring radioisotopes in the air and soil, radiation from cosmic origin, fallout from nuclear weapons testing, station effluents and direct radiation from the station.

The results of the TLD analyses are presented in Table 3-2. Figure 4-1 shows a historical trend of TLD exposure rate measurements, comparing the average of indicator TLDs located near the site boundary and at 5 miles to the average of all control TLD locations. Control and indicator averages indicate a steady relationship. Two dosimeters made of CaF and LiF sensitive elements, and specifically designed for environmental monitoring, are deployed at each sampling location. In 2001, these TLDs replaced the previously used CaSO4:Dy in Teflon TLDs. The dose with the replacement TLDs is lower than that of the previously used TLDs. This is due to the increased sensitivity of the replacement TLD that provides a greater response to ambient radiation and improved statistical analysis.


The six-year trend since TLD type replacement indicates a gradual and across the board increase in ambient exposure. Because the trend of the control and indicator locations continue to show the same historical relationship, this demonstrates that the increasing trend is not related to the operation of Surry Power Station. The most recent four-year trend indicates a stable trend. These trends will continue to be monitored.



4.2 Airborne Gross Beta

Air is continuously sampled by passing it through glass fiber particulate filters. The filters collect airborne particulate radionuclides. Once a week the samples are collected and analyzed for gross beta activity. Results of the weekly gross beta analyses are presented in Table 3-3. A review of the results from control and indicator locations continues to show no significant variation in measured activities (see Figure 4-2 and 4-3). This indicates that any station contribution is not measurable.

Gross beta activity found during the pre-operational and early operating period of Surry Power Station was higher because of nuclear weapons testing. During that time, nearly 740 nuclear weapons were tested worldwide. In 1985 weapons testing ceased, and with the exception of the Chernobyl accident in 1986, airborne gross beta results have remained steady.

4.3 Airborne Radioiodine

Air is also continuously sampled for radioiodines by passing it through charcoal cartridges. Once a week the charcoal cartridge samples are collected and analyzed. The results of the analyses are presented in Table 3-4. All results are below the lower limit of detection. No positive iodine-131 was detected. These results are similar to pre-operational data and the results of samples taken prior to and after the 1986 accident in the Soviet Union at Chernobyl.

4.4 Air Particulate Gamma

The air particulate filters from the weekly gross beta analyses are composited by location and analyzed quarterly by gamma spectroscopy. The results are listed in Table 3-5. The results indicate the presence of naturally occurring beryllium-7, which is produced by cosmic processes. Examination of pre-operational data indicates comparable measurements of Be-7, as would be expected. No man-made radionuclides were identified. These analyses confirm the lack of station effects.

4.5 Cow Milk

Analysis of milk samples is generally the most sensitive indicator of fission product existence in the terrestrial environment. This, in combination with the fact that consumption of milk is significant, results in this pathway usually being the most critical from the plant release viewpoint. This pathway also shows measurable amounts of nuclear weapons testing fallout. Therefore, this media needs to be evaluated very carefully when trying to determine if there is any station effect.

Analysis results for cow milk are contained in Table 3-6. All results show a lack of detectable iodine-131 above the LLD of 1 pCi/L. Results of gamma spectroscopy indicate no other detectable station related radioactivity in the milk samples. In years past, cesium-137 has been detected sporadically. The occurrences were attributed to residual global fallout from past atmospheric weapons testing. Cs-137 was not detected at a level above the LLD in 2006.

At the request of the Commonwealth of Virginia, a quarterly composite sample is prepared from the monthly milk samples from the Colonial Parkway collection station. The composite samples are analyzed for strontium-89 and strontium-90. Sr-90 was detected in one of the four composites analyzed, at a concentration of 1.71 pCi/L. The average Sr-90 concentration for the ten year period of 1997 to 2006 is 1.88 pCi/L. The Sr-90 detected is not a part of station effluents but, rather, a product of nuclear weapons testing fallout.

4.6 Food Products

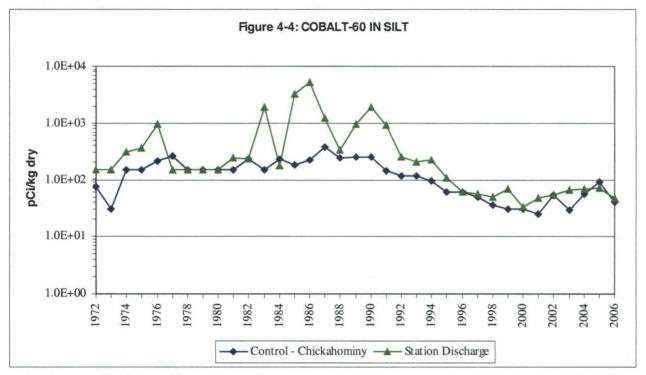
Three samples were collected and analyzed by gamma spectroscopy. The results of the analyses are presented in Table 3-7. As expected, naturally occurring potassium-40 was detected in all samples. The average concentration is consistent with that observed in previous years. No station related radioactivity was detected.

4.7 Well Water

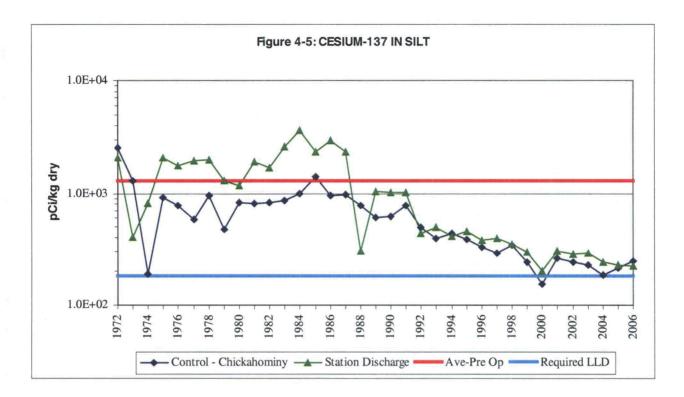
Well water is not considered to be affected by station operations because there are no discharges made to this pathway. However, Surry Power Station monitors well water quarterly at two indicator locations and analyzes for gamma radiation and for tritium. The results of these analyses are presented in Table 3-8. Consistent with past monitoring, no station related radioactivity was detected. No gamma emitting isotopes were detected during the pre-operational period.

4.8 River Water

Samples of the James River water are collected monthly and the results are presented in Table 3-9. All samples are analyzed by gamma spectroscopy. The monthly samples are also composited and analyzed for tritium on a quarterly basis. With the exception of naturally occurring potassium-40 detected in some samples analyzed, no other gamma emitters were detected. Tritium was detected in one of eight samples at 2,210 pCi/liter. This concentration represents 7.4% of the 30,000 pCi/liter NRC reporting level concentration. The tritium was detected at the station discharge canal indicator sample location. The water in the discharge canal is further diluted by the river water beyond the discharge structure. No tritium or gamma emitting radionuclides were detected in the control river water samples.


4.9 Silt

Silt is sampled to evaluate any buildup of radionuclides in the environment due to the operation of the station. Sampling of this pathway provides a good indication of the dispersion effects of effluents to the river. Buildup of radionuclides in silt could indirectly lead to increasing radioactivity levels in clams, oysters, crabs and fish.


Samples of silt are collected from two locations, one upstream and one downstream of the station. The results of the gamma spectroscopy analyses are presented in Table 3-10. Trend graphs of cobalt-60 and cesium-137 in silt appear in Figures 4-4 and 4-5.

Historically, cobalt-60 has been detected in samples obtained from the indicator location (SD). Cobalt-60 has not been detected since 2003.

Cesium-137 was detected, as expected, in both the control and indicator samples. The levels detected indicate a continual decreasing trend seen for over a decade. The detection of Cs-137 in both the control and indicator samples and decreasing levels indicate that the presence of Cs-137 is the result of accumulation and runoff into the river of residual weapons testing fallout. Its global presence has been well documented. During the pre-operational period, Cs-137 was detected in most silt samples with an average concentration as indicated in Figure 4-5. In 2006, cesium-137 was detected with an average indicator location concentration of 224 pCi/kg and an average control location concentration of 244 pCi/kg. These activities continue to represent fallout from nuclear weapons testing. Both indicator and control cesium-137 activities trend closely as shown in Figure 4-5.

Chickahominy had detectable activity in 1982 and 1984 through 1994. Other years were <MDL. Station Discharge was <MDL activity 1996 through 1998 and 2004 through 2006.

4.10 Shoreline Sediment

Shoreline sediment, unlike river silt, may provide a direct dose to humans. Buildup of radionuclides along the shoreline may provide a source of direct exposure for those using the area for commercial and recreational uses. The results are presented in Table 3-11.

The naturally occurring radionuclides potassium-40 and thorium-228 were detected at concentrations equivalent to normal background activities. The activities of these radionuclides indicate a steady trend. There were no radionuclides attributable to the operation of the station found in any shoreline sediment samples.

4.11 Fish

The radioactivity measured in fish sampled from the station discharge canal and analyzed by gamma spectroscopy is presented in Table 3-12. These results are the same as those seen over the last decade. No activity was observed in this media except for naturally occurring potassium-40.

4.12 Oysters

Oysters are collected from two different locations. The results of the oyster

analyses are presented in Table 3-13.

There were no gamma emitting radionuclides detected in oysters sampled except for naturally occurring potassium-40. No station related radioactivity has been detected in this media since 1991. The absence of station related radionuclides is attributable to the replacement of steam generators in 1982 and past improvements made to liquid effluent treatment systems.

4.13 Clams

Clams are analyzed from four different locations. The results of the gamma spectroscopy analyses are presented in Table 3-14. Like oysters, no station related radioactivity was detected. Naturally occurring potassium-40 was detected.

4.14 Crabs

A crab sample was collected in June from the station discharge canal and analyzed by gamma spectroscopy. The results of the analysis are presented in Table 3-15. Other than naturally occurring potassium-40, no other gamma emitting radionuclides were detected in the sample. This is consistent with preoperational data and data collected over the past decade.

5. PROGRAM EXCEPTIONS

REMP Exceptions	for Scheduled Samp	ling and Analysis	During 2006
i ume optiono	ior scheduled sump	mig and many ord	During 2000

		Date of	
Location	Description	Sampling	Reason(s) for Loss/Exception
HIR	Airborne; Gross beta, Air Particulate & Air iodine-131	10/10/06	This continuous air sampler was out of service for the sampling period of 10/03/06 through 10/10/06. The sampler was flooded from heavy rains due to a Nor'Easter. The particulate filter and charcoal cartridge samples were saturated and not suitable for radioanalysis.
BC	Airborne; Gross beta, Air Particulate & Air iodine-131	10/17/06, 10/24/06	This continuous air sampler was out of service for two sampling periods, $10/10/06$ through 10/24/06. The power pole that the sampler was attached to was destroyed by a vehicle accident. Replacement of the power pole, electric lines and transformer was delayed due to extensive regional recovery efforts from the 10/07/06 Nor'Easter.

6. CONCLUSIONS

The results of the 2006 Radiological Environmental Monitoring Program for Surry Power Station have been presented in previous sections. This section presents conclusions for each pathway.

- Direct Radiation Exposure Pathway Control and indicator location averages continue to indicate a steady relationship. The dose trend of the new type TLD will continue to monitored and evaluated.
- Airborne Exposure Pathway Analysis of charcoal cartridge samples for radioiodines indicated no positive activity was detected. Quarterly gamma isotopic analyses of the composite particulate samples identified only naturally occurring beryllium-7. Air particulate gross beta concentrations at all of the indicator locations for 2006 trend well with the control location.
- Milk Milk samples are an important indicator measuring the effect of radioactive iodine and radionuclides in airborne releases. Cesium-137 and iodine-131 were not detected in any of the thirty-six samples. Naturally occurring potassium-40 was detected at a similar level when compared to the average of the previous year.

Strontium-90 was detected in one of four samples this year at a concentration of 1.71 pCi/L. Strontium-90 is not a part of station effluents, but rather, a product of nuclear weapons testing fallout.

- Food Products As expected, naturally occurring potassium-40 was detected in all three samples. In the past, cesium-137 has occasionally been detected in these samples and is attributable to global fallout from past nuclear weapons testing. Cesium-137 was not detected in any of the three samples collected in 2006.
- **Well Water** Well water samples were analyzed and the analyses indicated that there were no man-made radionuclides present. This trend is consistent throughout the monitoring period. No radioactivity attributable to the operation of the station was identified.
- River Water All river water samples were analyzed for gamma emitting radionuclides. Only naturally occurring potassium-40 was detected in six samples. Tritium was detected in one of eight samples with a concentration of 2,210 pCi/liter. This represents 7.4% of the NRC reporting level concentration. Because river water is not used for drinking water or for crop irrigation, there is a reduced dose consequence to the public from this pathway.
- Silt Cesium-137 was detected in both the control and indicator samples. The presence of Cs-137 is attributable to residual weapons testing fallout;

its presence has been well documented. Cobalt-60 has not been detected since 2003.

Shoreline Sediment - Naturally occurring radionuclides were detected at concentrations equivalent to normal background activities. There were no radionuclides attributable to the operation of Surry Power Station found in any sample.

Aquatic Biota

- Fish As expected, naturally occurring potassium-40 was detected in all four samples There were no other gamma emitting radionuclides detected in any of the fish samples.
- Oysters and Clams Other than naturally occurring potassium-40, there were no other gamma emitting radionuclides detected in any of the oyster or clam samples.
- Crabs Naturally occurring potassium-40 was detected. No other gamma emitting radionuclides were detected.

REFERENCES

References

- 1. NUREG-0472, "Radiological Effluent Technical Specifications for PWRs", Draft Rev. 3, March 1982.
- United States Nuclear Regulatory Commission Regulatory Guide 1.109, Rev. 1, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR50, Appendix I", October 1977.
- 3. United States Nuclear Regulatory Commission, Regulatory Guide 4.8 "Environmental Technical Specifications for Nuclear Power Plants", December 1975.
- 4. United States Nuclear Regulatory Commission Branch Technical Position, "Acceptable Radiological Environmental Monitoring Program", Rev. 1, November 1979.
- 5. Dominion, Station Administrative Procedure, VPAP-2103S, "Offsite Dose Calculation Manual (Surry)".
- 6. Virginia Electric and Power Company, Surry Power Station Technical Specifications, Units 1 and 2.
- 7. HASL-300, Environmental Measurements Laboratory, "EML Procedures Manual," 27th Edition, Volume 1, February 1992.
- 8. NUREG/CR-4007, "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," September 1984.

APPENDICES

,

APPENDIX A: LAND USE CENSUS

Year 2006

LAND USE CENSUS*

Surry Power Station, Surry County, Virginia

January 1 to December 31, 2006

Page 1 of 1

Sector	Direction	Nearest Resident	Nearest Garden**	Nearest Cow	Nearest Goat	
А	Ν	4.1 @ 10°	(a)	(a)	(a)	
В	NNE	1.9 @ 32°	1.9 @ 32°	(a)	(a)	
С	NE	4.7 @ 35°	4.9 @ 56°	(a)	(a)	
D	ENE	(a)	(a)	(a)	(a)	
E	Ε	(a)	(a)	(a)	(a)	
F	ESE	(a)	(a)	(a)	(a)	
G	SE	(a)	(a)	(a)	(a)	
Η	SSE	4.4 @ 163°	(a)	(a)	(a)	
J	S	1.7 @ 181°	1.8 @ 183°	(a)	(a)	
K	SSW	2.3 @ 212°	4.3 @ 193°	4.8 @ 200°	(a)	
L	SW	2.3 @ 221°	3.6 @ 223°	(a)	(a)	
Μ	WSW	0.4 @ 244°	3.6 @ 245°	(a)	(a)	
Ν	W	3.1 @ 260°	3.4 @ 260°	(a)	(a)	
Р	WNW	4.9 @ 283°	(a)	(a)	(a)	
Q	NW	4.6 @ 321°	(a)	(a)	(a)	
R	NNW	3.8 @ 338°	4.4 @ 334°	3.7 @ 336°	(a)	

* Locations are listed by miles and degrees heading relative to true north from center of Unit #1 Containment.

** Area greater than 50 m^2 and contains broadleaf vegetation.

(a) None

APPENDIX B: SUMMARY OF INTERLABORATORY COMPARISONS

.

YEAR 2006

INTRODUCTION

This appendix covers the Intercomparison Program of the AREVA NP Inc. Environmental Laboratory. AREVA NP uses QA/QC samples provided by Analytics, Inc. to monitor the quality of analytical processing associated with the Radiological Environmental Monitoring Program (REMP). The suite of Analytics QA/QC samples is designed to be comparable with the pre-1996 US EPA Interlaboratory Cross-Check Program in terms of sample number, matrices, and nuclides. It was modified to more closely match the media mix presently being processed by AREVA NP and includes:

- milk for gamma (10 nuclides) and low-level (LL) iodine-131 analyses once per quarter,
- > milk for Sr-89 and Sr-90 analyses during the 1st and 3rd quarters,
- > water for gamma (10 nuclides), low-level (LL) iodine-131, and gross beta analyses during the 1st and 3rd quarters,
- > water for Sr-89 and Sr-90 analyses during the 1st and 4th quarters,
- > water tritium analysis during the 2nd and 4th quarters,
- > air filter for gamma (9 nuclides) analyses during the 2nd and 4th quarters,
- > air filter for gross beta analysis during each quarter,
- ▶ filter for Sr-90 analysis during the 2nd and 4th quarters.

In addition to the Analytics Intercomparison Program, AREVA NP also participates in other intercomparison programs. These programs are the National Institute of Standards and Technology (NIST) Measurement Assurance Program (MAP), the Environmental Resource Associates (ERA) Proficiency Test (PT) Program, the Department of Energy (DOE) Quality Assessment Program

(QAP), and the Mixed Analyte Performance Evaluation Program (MAPEP).

RESULTS

Intercomparison program results are evaluated using AREVA NP's internal bias acceptance criterion. The criterion is defined as within 25% of the known strontium value for samples containing both Sr-89 and Sr-90 and within 15% of the known value for other radionuclides, or within two sigma of the known value. AREVA NP investigates any sample analysis result that does not pass these criteria.

Analytics Intercomparison Program results are included on the following pages for the first quarter through the fourth quarter of 2006. A total of 104 analysis results were obtained with 103 passing acceptance criteria, a 99% success rate. The unsuccessful analysis was Sr-90 in the filter matrix during the 2nd quarter. AREVA NP submitted Condition Report CR 06-16 to document their investigation of the unsuccessful analysis. The sample was reprocessed and the result was acceptable, 10.9 pCi and a Ratio of 0.87. AREVA NP also revised the analysis process by increasing the frequency of preparing blanks for background subtraction and extending the Y-90 in-growth phase to improve counting statistics.

(PAGE 1 OF 4)

1st Quarter	Identification	Motrice	Nuelida	Unite	Reported	Known	Datia (a)	Evoluction (d)
2006	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	Ratio (c)	Evaluation (d)
	E4889-162	Milk	I-131LL	pCi/L	81.8	78	1.05	А
			I-131	pCi/L	77.4	78.8	0.98	A
			Ce-141	pCi/L	101	104	0.97	А
			Cr-51	pCi/L	277	280	0.99	А
			Cs-134	pCi/L	113.8	121	0.94	Α,
	•		Cs-137	, pCi/L	86.7	88.8	0.98	A
			Co-58	pCi/L	100	105	0.95	Α
			Mn-54	, pCi/L	94.6	93.3	1.01	Α
			Fe-59	, pCi/L	90.7	86.6	1.05	А
			Zn-65	pCi/L	172.2	176	0.98	А
			Co-60	pCi/L	125	128	0.98	А
	E4890-162	Milk	Sr-89	pCi/L	79.7	99.2	0.80	А
			Sr-90	pCi/L	10.6	10.8	0.98	А
	E4884-162	Water	Gr-Beta	pCi/L	265	262	1.01	А
	E4885-162	Water	I-131LL	pCi/L	65.8	67.4	0.98	А
			l-131	pCi/L	66.3	67.4	0.98	А
			Ce-141	pCi/L	83	86.8	0.96	Α
			Cr-51	pCi/L	217	234	0.93	А
			Cs-134	pCi/L	91.9	101	0.91	А
			Cs-137	pCi/L	73.3	74.3	0.99	A
			Co-58	pCi/L	84.7	87.5	0.97	A
			Mn-54	pCi/L	74.7	78.1	0.96	A
			Fe-59	pCi/L	73.2	72.4	1.01	A
			Zn-65	pCi/L	146.7	148	0.99	А
			Co-60	pCi/L	102.5	107	0.96	А
	E4886-162	Water	Sr-89	pCi/L	82	99.4	0.82	А
			Sr-90	pCi/L	10.2	10.8	0.94	А
	E4888-162	Filter	Gr-Beta	pCi	104.5	97.3	1.07	А

Footnotes are on page 4 of 4.

.

2nd Quarter	Identification		· · · · · · · · · · · · · · · · · · ·		Reported	Known		
2006	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	Ratio (c)	Evaluation (d)
	E5017-162	Milk	l-131LL	pCi/L	67	63.2	1.06	А
			l-131	pCi/L	62	63.2	0.98	Α
			Ce-141	pCi/L	180.8	184	0.98	A
			Cr-51	pCi/L	248	259	0.96	Α
			Cs-134	pCi/L	120.1	127	0.95	Α
			Cs-137	pCi/L	117.3	117	1.00	Α
			Co-58	pCi/L	97.3	100	0.97	Α
			Mn-54	pCi/L	150.5	146	1.03	A
			Fe-59	pCi/L	95.4	93.6	1.02	Α
			Zn-65	pCi/L	183.9	185	0.99	Α
			Co-60	pCi/L	126.2	129	0.98	Α
	E5013-162	Water	Н-3	pCi/L	5830	6000	0.97	А
	E5014-162	Filter	Gr-Beta	pCi	103.8	96.8	1.07	А
	E5015-162	Filter	Ce-141	pCi	91.6	92.8	0.99	А
			Cr-51	pCi	131.7	131	1.01	А
			Cs-134	pCi	60.5	63.9	0.95	А
			Cs-137	pCi	62.9	59.3	1.06	А
			Co-58	pCi	52	50.6	1.03	А
			Mn-54	pCi	74.5	73.9	1.01	А
			Fe-59	pCi	46.4	47.3	0.98	Α
			Zn-65	pCi	93.4	93.6	1.00	Α
			Co-60	pCi	63	65	0.97	А
	E5016-162	Filter	Sr-89	pCi	146.6	163	0.90	А
• •	20010-102	T III.OT	Sr-90	pCi	7.0	12.3	0.57	Û

(PAGE 2 OF 4)

Footnotes are on page 4 of 4.

3rd Quarter	Identification			· · · · ·	Reported	Known		
2006	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	Ratio (c)	Evaluation (d)
	FF004 400	K 4211 -		- 0' //	70.0	70.0	4 00	
	E5094-162	Milk	I-131LL	pCi/L	79.9	73.8	1.08	A
			I-131	pCi/L	72.5	73.8	0.98	A
			Ce-141	pCi/L	85.5	86	0.99	A
			Cr-51	pCi/L	288	282	1.02	A
			Cs-134	pCi/L	84.8	85	1.00	A
			Cs-137	pCi/L	171	175	0.98	Α
			Co-58	pCi/L	106.0	109	0.97	А
			Mn-54	pCi/L	112	113.0	0.99	A
			Fe-59	pCi/L	45.3	43.7	1.04	A
			Zn-65	pCi/L	146	145	1.01	Α
			Co-60	pCi/L	129	134	0.96	A
	E5095-162	Milk	Sr-89	pCi/L	84.0	89.2	0.94	А
			Sr-90	pCi/L	12.4	12.4	1.00	А
	E5090-162	Water	Gr-Beta	pCi/L	253	273	0.93	А
	E5091-162	Water	I-131LL	pCi/L	84.4	79.9	1.06	А
			l-131	pCi/L	77.3	79.9	0.97	Α
			Ce-141	pCi/L	84.5	88	0.96	Α
			Cr-51	pCi/L	287	288	1.00	Α
			Cs-134	pCi/L	85.6	87	0.98	А
			Cs-137	pCi/L	174	179	0.97	А
			Co-58	pCi/L	108	112	0.96	А
			Mn-54	, pCi/L	116	115	1.01	А
			Fe-59	pCi/L	47	44.7	1.05	A
			Zn-65	pCi/L	146	148	0.99	A
			Co-60	pCi/L	130	137	0.95	A
	E5093-162	Filter	Gr-Beta	pCi	142	147	0.97	А
v								

(PAGE 3 OF 4)

.

4th Quarter 2006	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c)	Evaluation (d)
	E5227-162	Milk	I-131LL	pCi/L	71.0	70.8	1.00	А
	LJ227-102	IVIUE	I-131	pCi/L	64.8	70.8	0.91	Â
			Ce-141	pCi/L	277.7	294	0.94	A
			Cr-51	pCi/L	430.7	433	0.99	Â
			Cs-134	pCi/L	141.4	147	0.96	Â
			Cs-137	pCi/L	233.9	237	0.99	A
			Co-58	pCi/L	83.1	83.8	0.99	A
			Mn-54	pCi/L	110.6	111	1.00	A
			Fe-59	pCi/L	82.3	79.7	1.03	A
			Zn-65	pCi/L	171.4	164	1.05	A
			Co-60	pCi/L	273.1	281	0.97	Α
	E5222-162	Water	H-3	pCi/L	14570	14800	0.98	А
	E5223-162	Water	Sr-89	pCi/L	68.8	72.6	0.95	А
			Sr-90	pCi/L	5.56	5.9	0.94	Α
	E5224-162	Filter	Gr-Beta	pCi	209.6	203	1.03	А
	E5225-162	Filter	Ce-141	pCi	179.0	185	0.97	А
			Cr-51	pCi	277.9	273	1.02	А
			Cs-134	pCi	89.1	92.7	0.96	А
			Cs-137	pCi	158.8	149	1.06	А
			Co-58	pCi	54.0	52.8	1.02	А
			Mn-54	pCi	71.2	69.8	1.02	А
			Fe-59	pCi	51.0	50.2	1.02	А
			Zn-65	pCi	104.3	103	1.01	А
			Co-60	pCi	166.7	177	0.94	А
	E5226-162	Filter	Sr-89	pCi	69.5	74.2	0.94	А
			Sr-90	pCi	6.46	6.06	1.07	А

(PAGE 4 OF 4)

(a) AREVA reported result.

(b) The Analytics standard.

(c) Ratio of AREVA to Analytics results.

~

(d) Analytics evaluation: A= Acceptable. W= Acceptable with warning. U= Unacceptable.