

April 20, 2007

L-MT-07-031 Technical Specification 5.6.1

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

Monticello Nuclear Generating Plant Docket 50-263 License No. DPR-22

2006 Annual Radiological Environmental Operating Report

In accordance with the Monticello Nuclear Generating Plant Technical Specification 5.6.1, the Nuclear Management Company, LLC is submitting the Annual Radiological Environmental Operating Report for the year 2006.

This letter contains no new NRC commitments, nor does it modify any prior commitments.

John T. Conway

Site Vice President, Monticello Nuclear Generating Plant Nuclear Management Company, LLC

Enclosure

cc: Administrator, Region III, USNRC Project Manager, Monticello, USNRC Resident Inspector, Monticello, USNRC Minnesota Department of Commerce

ENCLOSURE 1

• ••• E

ANNUAL REPORT TO THE UNITED STATES NUCLEAR REGULATORY COMMISSION, RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM, JANUARY 1 TO DECEMBER 31, 2006

57 pages follow

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

XCEL ENERGY CORPORATION

MONTICELLO NUCLEAR GENERATING PLANT DOCKET NO. 50-263 LICENSE NO. DPR-22

1.

ANNUAL REPORT TO THE UNITED STATES NUCLEAR REGULATORY COMMISSION

Radiological Environmental Monitoring Program

January 1 to December 31, 2006

Prepared under Contract by

ENVIRONMENTAL, Inc. Midwest Laboratory

Project No. 8010

Bronia Grob, M.S. Laporatory Manager

Approved:

PREFACE

The staff of Environmental, Inc., Midwest Laboratory was responsible for the acquisition of data presented in this report. Samples were collected by personnel of the Monticello Nuclear Generating Plant, operated by Nuclear Management Company, LLC for XCEL Energy Corporation. This report was prepared by Environmental, Inc., Midwest Laboratory.

TABLE OF CONTENTS

<u>No.</u>		<u>Page</u>
	Preface	ii
	List of Tables	iv
	List of Figures	V
1.0		1
2.0	SUMMARY	2
3.0	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)3.1Program Design and Data Interpretation3.2Program Description3.3Program Execution3.4Laboratory Procedures3.5Program Modifications3.6Land Use Census	3 4 5 6 6
4.0	RESULTS AND DISCUSSION4.1Atmospheric Nuclear Detonations and Nuclear Accidents4.2Summary of Preoperational Data4.3Program Findings	7 7
5.0	FIGURES AND TABLES	12
6.0	REFERENCES	24
APPENDICES		
А	Interlaboratory Comparison Program Results	A-1
В	Data Reporting Conventions	B-1
С	Maximum Permissible Concentrations of Radioactivity in Air and Water Above Natural Background in Unrestricted Area	C-1
D	Sampling Location Maps	D-1

LIST OF TABLES

<u>No.</u>	Title	<u>Page</u>
5.1	Sample Collection and Analysis Program	13
5.2	Sampling Locations	14
5.3	Missed Collections and Analyses	16
5.4	Radiation Environmental Monitoring Program Summary	19

The following tables are in the Appendices:

Appendix A

A-1	Interlaboratory Comparison Program Results	A1-1
A-2	Thermoluminescent dosimeters (TLDs)	. A2-1
A-3	In-house Spiked Samples	. A3-1
A-4	In-house "Blank" Samples	A4-1
A-5	In-house "Duplicate" Samples	. A5-1
A-6	Department of Energy MAPEP comparison results	A6-1

Attachment A: Acceptance criteria for spiked samplesA2

Appendix C

C-1 Maximum Permissible Concentrations of Radioactivity in air and water above background in unrestricted areasC-2

LIST OF FIGURES

<u>No</u> .	Title	<u>Page</u>
5-1	Offsite Ambient Radiation (TLDs), inner versus outer ring locations	17
5-2	Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location	18
Appe	endix D	-
D-1	Sample collection and analysis program: TLD locations, Inner Ring	. D-2
D-2	Sample collection and analysis program: TLD locations, Outer Ring	. D-3
D-3	Sample collection and analysis program: TLD locations, Controls	. D-4
D-4	Sample collection and analysis program: Radiation Environmental Monitoring Program, Milk sampling locations	. D-5
D-5	Sample collection and analysis program: Radiation Environmental Monitoring Program, Milk, Sludge, Ground water and Shoreline sampling locations	. D-6

1.0 INTRODUCTION

Į.

This report summarizes and interprets results of the Radiological Environmental Monitoring Program (REMP) conducted by Environmental, Inc., Midwest Laboratory for the Monticello Nuclear Generating Plant, Monticello, Minnesota, during the period January - December, 2006. This Program monitors the levels of radioactivity in the air, terrestrial, and aquatic environments in order to assess the impact of the Plant on its surroundings.

Tabulation of the individual analyses made during the year are not included in this report. These data are included in a reference document (Environmental, Inc., Midwest Laboratory, 2006a) available at the Monticello Nuclear Generating Plant, Chemistry and Radiation Protection Department.

The Monticello Nuclear Generating Plant is a boiling water reactor with a nominal generating capacity of 620 MWe. It is located on the Mississippi River in Wright County, Minnesota, and operated by Nuclear Management Company, LLC. Initial criticality was achieved on December 10, 1970. Full power was achieved March 5, 1971 and commercial operation began on June 30, 1971.

1

2.0 SUMMARY

The Radiological Environmental Monitoring Program (REMP) required by the U.S. Nuclear Regulatory Commission (NRC) Technical Specifications and the Offsite Dose Calculation Manual (ODCM) for the Monticello Nuclear Generating Plant is described. Results for the year 2006 are summarized and discussed.

Program findings show background levels of radioactivity in the environmental samples collected in the vicinity of the Monticello Nuclear Generating Plant.

No effect on the environment due to the operation of the Monticello Nuclear Generating Plant is indicated.

3.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

3.1 Program Design and Data Interpretation

The purpose of the Radiological Environmental Monitoring Program (REMP) at the Monticello Nuclear Generating Plant is to assess the impact of the Plant on its environment. For this purpose, samples are collected from the air, terrestrial, and aquatic environments and analyzed for radioactive content. In addition, ambient gamma radiation levels are monitored by thermoluminescent dosimeters (TLD's).

Sources of environmental radiation include the following:

- (1) Natural background radiation arising from cosmic rays and primordial radionuclides;
- (2) Fallout from atmospheric nuclear detonations;
- (3) Releases from nuclear power plants;
- (4) Industrial and medical radioactive waste; and
- (5) Fallout from nuclear accidents.

In interpreting the data, effects due to the Plant must be distinguished from those due to other sources.

A major interpretive aid in assessment of these effects is the design of the monitoring program at the Monticello Plant which is based on the indicator-control concept. Most types of samples are collected both at indicator locations (nearby, downwind, or downstream) and at control locations (distant, upwind, or upstream). A plant effect would be indicated if the radiation level at an indicator location was significantly larger than that at the control location. The difference would have to be greater than could be accounted for by typical fluctuations in radiation levels arising from other sources.

An additional interpretive technique involves analyses for specific radionuclides present in environmental samples collected from the Plant site. The Plant's monitoring program includes analyses for tritium and iodine-131. Most samples are also analyzed for gamma-emitting isotopes with results for the following groups guantified: zirconium-95, cesium-137, cerium-144, beryllium-7, and potassium-40. The first three gamma-emitting isotopes were selected as radiological impact indicators because of the different characteristic proportions in which they appear in the fission product mix produced by a nuclear reactor and that produced by a nuclear detonation. Each of the three isotopes is produced in roughly equivalent amounts by a reactor: each constitutes about 10% of the total activity of fission products 10 days after reactor shutdown. On the other hand, 10 days after a nuclear explosion, the contributions of zirconium-95, cerium-144, and cesium-137 to the activity of the resulting debris are in the approximate ratio 4:1:0.03 (Eisenbud, 1963). Beryllium-7 is of cosmogenic origin and potassium-40 is a naturally-occurring isotope. They were chosen as calibration monitors and should not be considered as radiological impact indicators. The other group quantified consists of niobium-95, ruthenium-103 and -106. cesium-134, barium-lanthanum-140, and cerium-141. These isotopes are released in small quantities by nuclear power plants, but to date their major source of injection into the general environment has been atmospheric nuclear testing. Nuclides of the final group, manganese-54, iron-59, cobalt-58 and -60, and zinc-65, are activation products and arise from activation of corrosion products. They are typical components of a nuclear power plant's effluents, but are not produced in significant quantities by nuclear detonations.

Program Design and Data Interpretation (continued)

Other means of distinguishing sources of environmental radiation are employed in interpreting the data. Current radiation levels are compared with previous levels, including those measured before the plant became operational. Results of the Plant's Monitoring Program can be related to those obtained in other parts of the world. Finally, results can be related to events known to cause elevated levels of radiation in the environment, e.g., atmospheric nuclear detonations.

3.2 Program Description

The sampling and analysis schedule for the Radiological Environmental Monitoring Program (REMP) at the Monticello Plant is summarized in Table 5.1 and briefly reviewed below. Table 5.2 defines the sampling location codes used in Table 5.1 and specifies for each location its type (indicator or control) and its distance, direction, and sector relative to the plant site. To assure that sampling is carried out in a reproducible manner, detailed sampling procedures have been prescribed (Monticello Generating Plant REMP Surveillances, Current Revision). Maps of sampling locations are included in Appendix D.

To monitor the air environment, airborne particulates are collected on membrane filters by continuous pumping at five locations. Also, airborne iodine is collected by continuous pumping through charcoal filters at all of these locations. Filters are changed and counted weekly. Particulate filters are analyzed for gross beta activity and charcoal filters for iodine-131. Quarterly composites of particulate filters from each location are determined by gamma spectroscopy. One of the five locations is a control (M-1), and four are indicators (M-2, M-3, M-4, M-5). One of the indicators is located in the geographical sector expected to be most susceptible to any atmospheric emissions from the Plant (highest D/Q sector).

Ambient gamma radiation is monitored at forty locations, using CaSO₄:Dy dosimeters with four sensitive areas at each location: fourteen in an inner ring in the general area of the site boundary, sixteen in the outer ring within 4-5 mile radius, six at special interest locations and four control locations, outside a 10 mile radius from the plant. They are replaced and measured guarterly.

Milk samples are collected monthly from three farms (two indicator and one control). There are currently only two milk producers within the indicator area. Milk is collected biweekly during the growing season (May - October), because the animals may be on pasture. Samples are analyzed for iodine-131 and gamma-emitting isotopes.

Leafy green vegetables (cabbage) are collected annually from the highest D/Q garden and a control location and analyzed for iodine-131. Corn and potatoes are collected annually only if the field is irrigated by water in which liquid radioactive effluent has been discharged. Analysis is for gamma-emitting isotopes.

The terrestrial environment is also monitored by the quarterly collections of well water from eleven locations. Samples are analyzed for tritium and gamma-emitting isotopes.

River water is collected weekly at two locations, one upstream of the plant and one downstream. Monthly composites are analyzed for gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

Program Description (continued)

Drinking water is collected weekly from the City of Minneapolis water supply, which is taken from the Mississippi River downstream of the Plant. Monthly composites are analyzed for gross beta, iodine-131, and gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

The aquatic environment is also monitored by semi-annual upstream and downstream collections of fish, invertebrates, and shoreline sediments. Shoreline sediment is also collected semi-annually from one downstream recreational location. All samples are analyzed for gamma-emitting isotopes.

3.3 <u>Program Execution</u>

The Program was executed as described in the preceding section with the following exceptions:

(1) <u>Air Particulates / Air Iodine:</u>

No air particulate / air iodine samples were available from location M-1 for the weeks ending 06-14-06 through 07-12-06. There was no power to the substation.

(2) <u>Milk:</u>

Milk samples were not available from M-28 (Hoglund Farm) June 14th through October 25th, 2006. Dairy operations were temporarily discontinued. Collections were resumed on 11-22-06.

(3) <u>Thermoluminescent Dosimeters:</u>

TLDs for location M-08A and M-04S were missing for the second quarter, 2006. The TLDs were lost in the field.

(4) <u>Surface Water</u>:

Surface water could not be collected at location M-08 for the week of 12-20-06, due to freezing conditions. The monthly composite for December was made from three weekly collections.

Deviations from the program are summarized in Table 5.3.

3.4 Laboratory Procedures

The iodine-131 analyses in milk and drinking water were made using a sensitive radiochemical procedure which involves separation of the iodine using an ion-exchange method and solvent extraction and subsequent beta counting.

Gamma-spectroscopic analyses are performed using high-purity germanium (HPGe) detectors. Levels of iodine-131 in cabbage and natural vegetation and concentrations of airborne iodine-131 in charcoal samples were determined by gamma spectroscopy.

Tritium concentrations are determined by liquid scintillation.

Analytical Procedures used by Environmental, Inc. are on file and are available for inspection. Procedures are based on those prescribed by the Health and Safety Laboratory of the U.S. Dep't of Energy, Edition 28, 1997, U.S. Environmental Protection Agency for Measurement of Radioactivity in Drinking Water, 1980, and the U.S. Environmental Protection Agency, EERF, Radiochemical Procedures Manual, 1984.

Environmental, Inc., Midwest Laboratory has a comprehensive quality control/quality assurance program designed to assure the reliability of data obtained. Details of the QA Program are presented elsewhere (Environmental, Inc., Midwest Laboratory, 2003). The QA Program includes participation in Interlaboratory Comparison (crosscheck) Programs. Results obtained in the crosscheck programs are presented in Appendix A.

3.5 Program Modifications

Well Water, analysis for tritium and gamma-emitting isotopes. Seven onsite monitoring wells (M-29 through M-35) were added to the program in the third quarter of 2006. (Tables 5.1, 5.2).

3.6 Land Use Census

In accordance with the Offsite Dose Calculation Manual, sec. 07.01, a land use census shall be conducted and shall identify the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than 500 ft² producing fresh leafy vegetables, in each of the 16 meteorological sectors within a distance of 5 miles. The census shall also identify the locations of all milk animals and all 500 ft² or greater gardens producing broad leaf vegetation in each of the meteorological sectors within a distance of three miles. This census shall be conducted at least once per year between the dates of May 1 and October 31. New locations shall be added to the radiation environmental monitoring program within 30 days and sampling locations having lower calculated doses or a lower dose commitment may be deleted from this monitoring program after October 31 of the year in which the land use census was conducted.

The 2006 land use census was conducted between September 4 and September 11, 2006.

An increased D/Q value (> 20%) was calculated for the nearest garden in the NNW sector. A new garden was planted in the sector closer to the plant.

In summary, the highest D/Q locations for nearest resident, garden and nearest milk animal did not change from the 2005 census.

Details of the land use census are contained in the Land Use Census and Critical Receptor Report, Monticello Nuclear Generating Plant, Chemistry and Radiation Protection Department.

4.0 RESULTS AND DISCUSSION

All of the scheduled collections and analyses were made except those listed in Table 5.3.

All results are summarized in Table 5.4 in a format recommended by the Nuclear Regulatory Commission in Regulatory Guide 4.8. For each type of analysis of each sampled medium, this table lists the mean and range for all indicator locations and for all control locations. The locations with the highest mean and range are also shown.

4.1 Atmospheric Nuclear Detonations and Nuclear Accidents

There were no reported accidents at nuclear facilities and no atmospheric nuclear tests conducted in the year 2006. The last reported test was made by the People's Republic of China on October. 16, 1980.

4.2 Summary of Preoperational Data

The following constitutes a summary of preoperational studies conducted at the Monticello Nuclear Generating Plant during the years 1968 to 1970, to determine background levels expected in the environment, and provided, where applicable, as a means for comparison with present day levels. Strict comparisons, however, are difficult to make, since background levels of radiation were much higher in these years due to radioactive fallout from the atmosphere. Gross beta measurements in fallout averaged 20,600 pCi/m² in 1969 and 12,000 pCi/m² in 1970. These levels are reflected throughout the various media tested.

In the air environment, ambient gamma radiation (TLDs) averaged 9.1 mRem/4 weeks during preoperational studies (1970). Gross beta in air particulates in 1969 and 1970 averaged 0.20 pCi/m³. Present day levels have stabilized at around 0.025 pCi/m³. Airborne radioiodine remained below detection levels.

In the terrestrial environment of 1968 to 1970, milk, agricultural crops, and soil were monitored. In milk samples, low levels of Cs-137 and Sr-90 were detected. Cs-137 levels averaged 16.7 pCi/L. Soybean crop measurements in 1969 averaged 35.5 pCi/g for gross beta and 0.3 pCi/g for Cs-137. Gross beta measured in soil averaged 51.7 pCi/g. Present day measurements for cesium-137 are below detection levels in milk and agricultural crops.

The aqueous environment was monitored by testing of river water, bottom sediments, fish, aquatic vegetation, and periphyton. Specific location comparison of drinking, river, and well water concentrations for tritium and gross beta are not possible. However, tritium background levels, measured at seven separate locations from 1968 to 1970, averaged 970 pCi/L. Present day environmental samples measure below detection levels. Values for gross beta, measured from 1968 to 1970, averaged 9.8 pCi/L in upstream and downstream Mississippi River water, 4.4 pCi/L for well waters, and 18.6 pCi/L for lake waters. Gamma emitters were below the lower limit of detection (LLD). In shoreline sediments, gross beta background levels in 1970 averaged 49.8 pCi/g for both upstream and downstream samples. Cs-137 activity averaged 0.10 pCi/g for both upstream and downstream samples. Low levels of Cs-137, occasionally observed today can still be attributed to residual activity from atmospheric fallout. Gross beta levels in fish flesh averaged 5.3 pCi/g in 1968 and 1969. Cs-137, measured in 1969 and 1970, averaged 0.044 pCi/g. Gross beta background levels, in 1970, for aquatic vegetation, algae, and periphyton samples measured 86.7 pCi/g, 76.5 pCi/g, and 28.1 pCi/g respectively.

4.3 <u>Program Findings</u>

Results obtained show background levels of radioactivity in the environmental samples collected in the vicinity of the Monticello Nuclear Generating Plant.

Ambient Radiation (TLD's)

Ambient radiation was measured in the general area of the site boundary, at an outer ring 4 - 5 mi. distant from the Plant, at special interest areas and at four control locations. The means were similar for both inner and outer rings (16.5 and 15.6 mRem/91 days, respectively). The mean for special interest locations was 15.5 mRem/91 days and the mean for the control locations was 15.7 mRem/91 days. Dose rates measured at the inner and outer ring locations were similar to those observed from 1991 through 2005 and are tabulated below. No plant effect on ambient gamma radiation is indicated (Figure 5-1).

Year	Inner Ring	Outer Ring
	<u>Dose rate (m</u>	nRem/91 days)
1991	15.2	15.8
1992	15.1	15.1
1993	15.6	15.9
1994	14.6	14.0
1995	14.4	13.6
1996	14.0	13.5
1997	13.3	12.8
1998	15.0	14.4
1999	15.1	14.3
2000	15.1	14.5
2001	14.3	13.7
2002	15.9	14.8
2003	15.6	15.0
2004	16.0	15.4
2005	15.6	15.2
2006	16.5	15.6

Ambient gamma radiation as measured by thermoluminescent dosimetry. Average quarterly dose rates, Inner vs. Outer Ring locations

Airborne Particulates

The average annual gross beta concentrations in airborne particulates were almost identical at indicator and control locations (0.024 and 0.025 pCi/m³, respectively) and similar to levels observed from 1991 through 2005. The results are tabulated below.

<u>Year</u>	Indicators	<u>Control</u>			
	<u>Concentration (pCi/m³)</u>				
1991	0.024	0.024			
1992	0.023	0.023			
1993	0.024	0.023			
1994	0.023	0.024			
1995	0.024	0.025			
1996	0.023	0.023			
1997	0.023	0.023			
1998	0.023	0.023			
1999	0.023	0.025			
2000	0.027	0.026			
2001	0.027	0.026			
2002	0.028	0.028			
2003	0.027	0.027			
2004	0.024	0.024			
2005	0.025	0.025			
2006	0.024	.0.025			

Average annual gross beta concentrations in airborne particulates.

A spring peak in beta activity had been observed almost annually for many years (Wilson *et al.*, 1969). It had been attributed to fallout of nuclides from the stratosphere (Gold *et al.*, 1964). It was pronounced in 1981, occurred to a lesser degree in 1982, and has not occurred since 1983. The highest averages usually occur during the months of January and December, and the first and fourth quarters, as seen in 1991 through 2005.

Two pieces of evidence indicate conclusively that seasonal elevated activities observed are not attributable to the Plant operation. In the first place, elevated activity of similar size occurred simultaneously at both indicator and control locations. Secondly, an identical pattern was observed at the Prairie Island Nuclear Generating Plant, about 100 miles distant from the Monticello Nuclear Generating Plant (XCEL Energy Corp., 2006b).

Gamma spectroscopic analysis of quarterly composites of air particulate filters yielded similar results for indicator and control locations. Beryllium-7, which is produced continuously in the upper atmosphere by cosmic radiation (Arnold and Al-Salih, 1955) was detected in all samples, with an average activity of 0.074 pCi/m³ for all locations. All other gamma-emitting isotopes were below their respective LLD limits.

Airborne lodine

Weekly levels of airborne iodine-131 were below the lower limit of detection (LLD) of 0.03 pCi/m³ in all samples.

<u>Milk</u>

lodine-131 activity measured below the detection limit of 0.5 pCi/L in all samples.

No gamma-emitting isotopes, excepting naturally-occurring potassium-40, were detected. This is consistent with the finding of the National Center for Radiological Health (1968) that most radiocontaminants in feed do not find their way into milk due to the selective metabolism of the cow. Common exceptions are radioisotopes of potassium, cesium, strontium, barium, and iodine.

In summary, the milk data for 2006 show no radiological effects of the plant operation.

River Water and Drinking Water

Tritium activity measured below the LLD of 500 pCi/L in all samples. Gross beta activity in Minneapolis drinking water averaged 2.1 pCi/L and was similar to average levels observed from 1991 through 2005. Gross beta averages are tabulated below.

Year	Gross Beta (pCi/L)	Year	Gross Beta (pCi/L)
		1000	
1991	2.9	1999	2.2
1992	2.1	2000	2.5
1993	2.6	2001	2.5
1994	2.0	2002	2.9
1995	2.3	2003	3.0
1996	2.1	2004	2.7
1997	2.3	2005	2.8
1998	2.4	2006	2.1

Average annual concentrations; Gross beta in drinking water.

Comparisons with data reported by the USEPA for Minneapolis drinking water samples collected from 1980 through 2005 indicate that concentrations of these nuclides are remaining fairly constant. Gamma-emitting isotopes were below detection limits in all surface water samples. There was no indication of a plant effect.

Well Water

Tritium measured below the LLD level of 500 pCi/L in all samples. All gamma isotopic results were below detection limits. The data for 2006 were consistent with previous years results and no plant operational effects were indicated.

<u>Crops</u>

Cabbage and broccoli were collected in September from three locations and analyzed for iodine-131. Levels of I-131 measured below 0.023 pCi/g wet weight in both samples. Other gammaemitting isotopes were below respective LLD levels. There was no indication of a plant effect.

There were no crops irrigated from the Mississippi River within 5 miles of the plant in 2006; therefore, no corn or potato samples were collected for analysis from irrigated fields.

Fish

Fish samples were collected in May and October. Flesh was separated from the bones and analyzed by gamma spectroscopy. Naturally-occurring potassium-40 was found to be similar in upstream and downstream samples (2.98 and 3.48 pCi/g wet weight, respectively). All gamma-emitting isotopes were below their respective LLD levels. There was no indication of a plant effect.

Invertebrates

Samples were collected in the second and fourth quarters of 2006, and analyzed for gammaemitting isotopes. All gamma-emitting isotopes were below detection limits. There was no indication of a plant effect.

Shoreline Sediments

Upstream, downstream and downstream recreational area shoreline sediment collections were made in May and October and analyzed for gamma-emitting isotopes. Low levels of cesium-137 were detected in two of four downstream samples, averaging, 0.065 pCi/g dry weight, and 0.039 pCi/g dry weight in one of two control samples. Similar levels of activity and distribution have been observed since 1978, and are indicative of the influence of fallout deposition. The only gamma-emitting isotopes detected were naturally-occurring beryllium-7 and potassium-40. There was no indication of a plant effect.

5.0 FIGURES AND TABLES

• .

		The second se		
		Location	Collection Type and	Analysis Type and
Medium	No.	Codes (and Type) ^a	Frequency ^b	Frequency ^c
Ambient radiation (TLDs)	40	M-01A - M-14A M-01B - M-16B M-01S - M-06S M-01C - M-04C	C/Q	Ambient gamma
Airborne Particulates	5	M-1(C), M-2, M-3, M-4, M-5	C/W	GB, GS (QC of each location)
Airborne Iodine	5	M-1(C), M-2, M-3, M-4, M-5	C/W	I-131
Milk	3	M-10 (C), M-24, M-28	G/M ^d	I-131, GS
Surface water	2	M-8(C), M-9	G/W	GS(MC), H-3(QC)
Drinking water	1	M-14	G/W	GB(MC), I-131(MC) GS (MC), H-3 (QC)
Well water	4	M-10(C), M-11, M-12, M-27 M-29 - M-35 ^f	G/Q	H-3, GS
Edible cultivated crops -				
Corn ^e	1	M-19	G/A	GS
Leafy Vegetable	2	M-27, St. Cloud Example Mitt. (C)	G/A	I-131
Potatoes ^e	1	St. Cloud Farmer's Mkt. (C) M-21	G/A	GS
Fish (one species, edible portion)	2	M-8(C), M-9	G/SA	GS
Periphyton or invertebrates	2	M-8(C), M-9	G/SA	GS
Shoreline sediment	3	M-8(C), M-9, M-15	G/SA	GS

Table 5.1. Sample collection and analysis program, Monticello Nuclear Generating Plant.

^a Location codes are defined in Table 5.2. Control stations are indicated by (C). All other stations are indicators.

^b Collection type is coded as follows: C/ = continuous, G/ = grab. Collection frequency is coded as follows:

W= weekly, M = monthly, Q = quarterly, SA = semiannually, A = annually.

^c Analysis type is coded as follows: GB = gross beta, GS = gamma spectroscopy, H-3 = tritium, I-131 =

iodine 131. Analysis frequency is coded as follows: MC = monthly composite, QC = quarterly composite.

^d Milk is collected biweekly during the grazing season (May - October), if milch animals are on pasture.

^e Collected only if the plant discharges radioactive effluent into the river, then only from river irrigated fields.

^f M-29 through M-35, Onsite well locations added in the third quarter of 2006.

				Distance and Direction from
Code	Туре ^а	Collection Site	Sample Type ^b	Reactor
M-1	с	Air Station M-1	AP, AI	11.0 mi @ 307°/NW
M-2		Air Station M-2	AP, AI	0.8 mi @ 140°/SE
M-3		Air Station M-3	AP, Al	0.6 mi @ 104°/ESE
M-4		Air Station M-4	AP, AI	0.8 mi @ 146°/SSE
M-5		Air Station M-5	AP, AI	2.6 mi @ 134°/SE
M-8	С	Upstream of Plant	SW, SS, BO, F	< 1000' upstream of Plant Intake
M-9		Downstream of Plant	SW, SS, BO, F	< 1000' downstream o Plant Discharge
M-10	С	Campbell Farm	M, WW	10.6 mi @ 357°/N
M-11		City of Monticello	WW	3.3 mi @ 127°/SE
M-12		Plant Well #1	WW	0.26 mi @ 252°/SW
M-14		City of Minneapolis	DW	37.0 mi @ 132°/SE
M-15		Montissippi Park	SS	1.27 mi @ 114°/ESE
M-19		River Irrigated Corn Field ^c		
M-21		River Irrigated Potato Field ^c		
M-24		Weinand Farm	Μ	4.7 mi @ 180°/S
M-27		Wise residence (Highest D/Q Garden)	VE, WW	0.64 mi @ 207°/SSW
		a. Available Producer	VE	> 10.0 mi.
M-28		Hoglund Farm	Μ	3.8 mi @ 300°/WNW
M-29		Warehouse #5	WW	276' @ 32°/NNE
M-30		Receiving Warehouse	WW	0.27 mi @ 156°/SSE
M-31		Site Administration Building	WW	424' @ 192°/SSW
M-32		Shooting Range	WW	0.33 mi @ 111°/ESE
M-33		Monitoring Well #1	WW	593' @ 299°/WNW
M-34		Monitoring Well #2	WW	749' @ 301°/WNW
M-35		Monitoring Well #3	WW	770' @ 304°/NW
General Are	ea of the Site B	oundary		
M-01A		Sherburne Ave. So.	TLD	0.75 mi @ 353°/N
M-02A		Sherburne Ave. So.	TLD	0.79 mi @ 23°/NNE
M-03A		Sherburne Ave. So.	TLD	1.29 mi @ 55°/NE
M-04A		Biology Station Road	TLD	0.5 mi @ 86°/E
M-05A		Biology Station Road	TLD	0.48 mi @ 118°/ESE
M-06A		Biology Station Road	TLD	0.54 mi @ 135°/SE
M-07A		County Road 75	TLD	0.5 mi @ 155°/SSE
M-08A		County Road 75	TLD	0.48 mi @ 172°/S
M-09A		County Road 75	TLD	0.38 mi @ 209°/SSW
M-10A		County Road 75	TLD	0.38 mi @ 226°/SW
M-11A .		County Road 75	TLD	0.4 mi @ 239°/WSW
M-12A		County Road 75	TLD	0.5 mi @ 262°/W
M-13A		North Boundary Road	TLD	0.89 mi @ 324°/NW
M-14A		North Boundary Road	TLD	0.78 mi @ 334°/NNW

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

֍.

.

Code	Typeª	Collection Site	Sample Type ^b	Distance and Direction from Reactor
Approximat	ely 4 to 5 miles	Distant from the Plant		
M-01B		Sherco #1 Air Station	TLD	4.66 mi @ 02°/N
M-02B		County Road 11	TLD	4.4 mi @ 18°/NNE
M-03B		County Road 73 & 81	TLD	4.3 mi @ 57°/NE
M-04B		County Road 73 (196th St.)	TLD	4.2 mi @ 67°/ENE
M-05B		City of Big Lake	TLD	4.3 mi @ 89°/E
M-06B		County Road 14 and 196th St.	TLD	4.3 mi @ 117°/ESE
M-07B		Monte Industrial Drive	TLD	4.3 mi @ 136°/SE
M-08B		Residence, Hwy 25 & Davidson Ave.	TLD	4.6 mi @ 162°/SSE
M-09B		Weinand Farm	TLD	4.7 mi @ 178°/S
M-10B		Reisewitz Farm, Acacia Ave.	TLD	4.2 mi @ 204°/SSW
M-11B		Vanlith Farm, 97th Ave.	TLD	4.0 mi @ 228°/SW
M-12B		Lake Maria State Park	TLD	4.2 mi @ 254°/WSW
M-13B		Bridgewater Station	TLD	4.1 mi @ 270°/W
M-14B		Anderson Residence, Cty Rd. 111	TLD	4.3 mi @ 289°/WNW
M-15B		Red Oak Wild Bird Farm	TLD	4.3 mi @ 309°/NW
M-16B		Sand Plain Research Farm	TLD	4.4 mi @ 341°/NNW
Special Inte	rest Locations			
M-01S		Osowski Fun Market	TLD	0.66 mi @ 242°/WSV
M-02S		Krone Residence	TLD	0.5 mi @ 224°/SW
M-03S		Big Oaks Park	TLD	1.53 mi @ 102°/ESE
M-04S		Pinewood School	TLD	2.3 mi @ 131°/SE
M-05S		Rivercrest Christian Academy	TLD	3.0 mi @ 118°/ESE
M-06S		Monte Public Works	TLD	2.6 mi @ 134°/SE
M-01C	С	Kirchenbauer Farm	TLD	11.5 mi @ 323°/NW
M-02C	С	County Roads 4 and 15	TLD	11.2 mi @ 47°/NE
M-03C	C	County Rd 19 and Jason Ave.	TLD	11.6 mi @ 130°/SE
M-04C	С	Maple Lake Water Tower	TLD	10.3 mi @ 226°/ SW

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

^a "C" denotes control location. All other locations are indicators.

^b Sample Codes:

AP	Airborne particulates	F	Fish
AI	Airborne lodine	М	Milk
BS	Bottom (river) sediments	RW	River Water
BO	Bottom organisms	SS	Shoreline Sediments
DW	Drinking Water	VE	Vegetation / vegetables
	·	WW	Well Water

^c Collected only if the plant discharges radioactive effluent into the river, then only from river irrigated fields.

Table 5.3. Missed collections and analyses at the Monticello Nuclear Generating Plant.

Sample Type	Analysis	Location	Collection Date or Period	Reason for not conducting REMP as required	Plans for Preventing Recurrence
AP/AI	Beta, I-131	M-01	6/14/2006 through 7/12/2006	No power to substation.	None required.
MI	Gamma, , I-131	M-28	6/14/2006 through 10/25/2006	Hoglund Dairy temporarily out of business for the summer.	Hoglund will inform the MNGP upon resumption of operation. Operation resumed 11/22/06.
TLD	Ambient Gamma	M-04S	2nd. Qtr. 2006	TLD lost in field.	None required.
TLD	Ambient Gamma	M-08A	2nd. Qtr. 2006	TLD lost in field.	None required.
sw	Gamma H-3	M-08	12/20/2006	Shoreline frozen.	None required.

All required samples were collected and analyzed as scheduled with the following exceptions:

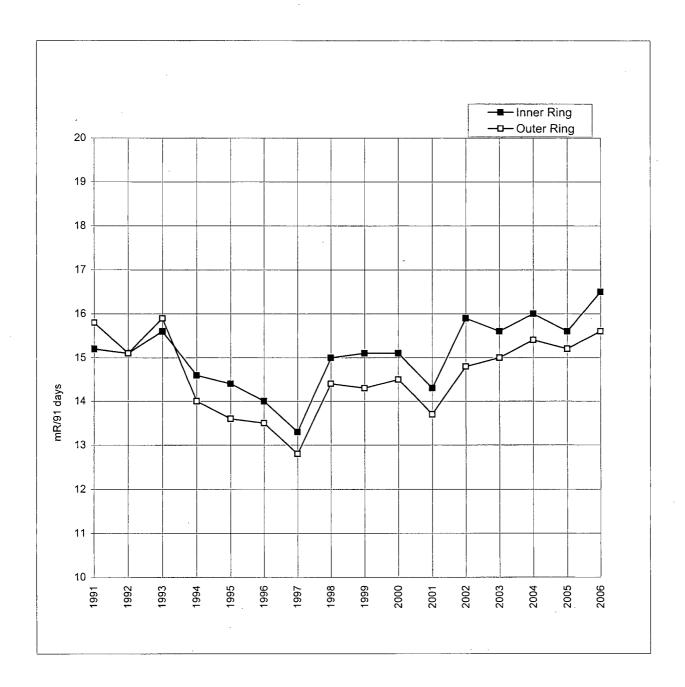


Figure 5-1. Offsite Ambient Radiation (TLDs); Inner Ring versus Outer Ring locations.

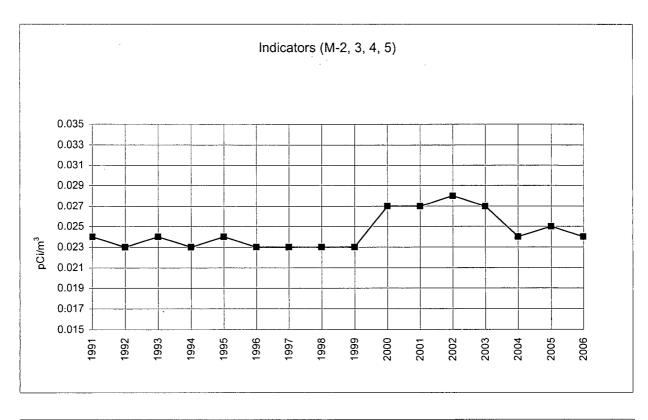


Figure 5-2. Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location.

.

•

Name of Facility Location of Facility		Monticello Nuclear Generating Plant Wright, Minnesota			Docket No. 50-263 Reporting Period January-December, 20		
Localio	on of Facility	(County, State)			Reporting Period	January-Decemb	er, 2006
			(00011	y, otale j			
			Indicator	Location with I	lighest	Control	Number
Sample	Type and		Locations	Annual Me		Locations	Non-
Туре	Number of	LLD	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
	Commo 55	3.0			40.0 (4.14)		
TLD (Inner Ring, General Area at	Gamma 55	3.0	16.5 (55/55) (13.4-19.9)	M-11A 0.4 mi @ 239°/WSW	18.6 (4 /4) (16.2-19.9)	(See Control below.)	0
Site Boundary)			(13.4-13.5)	0.4 111 @ 239 / 434	(10.2-13.3)	Delow.)	
mRem/91 days)							
TLD (Outer Ring,	Gamma 64	3.0	15.6 (64/64)	M-09B, Weinand Farm	17.0 (4 /4)	(See Control	0
4-5 mi. distant)			(12.2-18.7)	4.7 mi @ 178°/S	(16.0-18.7)	below.)	
mRem/91 days)							
			45 5 (00)00				
TLD (Special	Gamma 23	3.0	15.5 (23/23)	M-06S, Mont. Pub. Wks.	17.3 (4 /4)	(See Control	0
Interest Areas) mRem/91 days)			(12.3-18.5)	2.6 mi @ 134°/SE	(16.3-18.0)	below.)	
mikem/91 days)							
TLD (Control)	Gamma 16	3.0	None	M-03C, County Rd.19 &	16.7 (4/4)	15.7 (16/16)	o
mRem/91 days)				Jason, 11.6 mi. @ 130°/SE		(13.7-17.7)	
				- -			
Airborne	GB 255	0.005	0.024 (208/208)	M-1 (C)	0.025 (47 /47)	0.025 (47/47)	0
Particulates			(0.006-0.055)	11.0 mi @ 307°/NW	(0.007-0.053)	(0.007-0.053)	
(pCi/m³)							
	GS 20		0.070 (4040)		0.004 (444)		
	Be-7	0.015	0.072 (16/16) (0.043-0.109)	M-1 (C) 11.0 mi @ 307°/NW	0.081 (4/4) (0.062-0.098)	0.081 (4/4)	0
			(0.043-0.109)	11.0 mil@ 307 /iww	(0.002-0.090)	(0.062-0.098)	
	Mn-54	0.0009	< LLD	-	-	< LLD	0
	Co-58	0.0010	< LLD	. –	-	< LLD	0
	Co-60	0.0010	< LLD	-		< LLD	0
	Zn-65	0.0017	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.0019	< LLD	-	-	< LLD	0
	Ru-103	0.0013	< LLD	-	· -	< LLD	0
	Ru-106	0.0080	< LLD	-	-	< LLD	0
	Cs-134	0.0009	< LLD	-	-	< LLD	0
	Cs-137	0.0007	< LLD	-	-	< LLD	0
	Ba-La-140 Ce-141	0.0042	< LLD < LLD	•	-	< LLD < LLD	0
-	Ce-141 Ce-144	0.0040	< LLD < LLD	-	-	< LLD	0
	00-177	0.0000		_	_		
Airborne lodine	I-131 255	0.03	< LLD	_	_	< LLD	0
(pCi/m ³)	1-101 200				-		Ĭ
(r = 1,)							
			•	L			المحمد معالم

Zr-Nb-95

Cs-134

Cs-137

Ce-144

Ba-La-140

15

10

10

15

50

< LLD

< LLD

< LLD

< LLD

< LLD

۰.

.

Name of Facility Location of Facility			lo Nuclear Genera Minnesota (Count	y, State)	Docket No. Reporting Period	50-263 January-Decemb	er, 2006	
Sample Type (Units)	Type Numbe Analys	er of	LLD⁵	Indicator Locations Mean (F) ^c Range ^c	Location with I Annual Me Location ^d	•	Control Locations Mean (F) ^c Range ^c	Number Non- Routine Results ^e
Milk (pCi/L)	II-131	49	0.5	< LLD	-	-	< LLD	0
(2012)	GS	49	0.0					
	K-40		200	1327 (29/29) (1093-1428)	M-10 (C), Campbell 10.6 mi @ 357°/N	1361 (20 /20) (1205-1520)	1361 (20/20) (1205-1520)	0
	Cs-1	34	5	< LLD	-	-	< LLD	ο
	Cs-1	37	5	< LLD	· _	-	< LLD	0
	Ba-L	a-140	5	< LLD	-	-	< LLD	0
River Water (pCi/L)	H-3 GS	8	500	< LLD	-	-	< LLD	0
	Mn-5		10	< LLD	-	-	< LLD	0
	Fe-5	9	30	< LLD	-		< LLD	0
	Co-5	8	10	< LLD	-	-	< LLD	0
	Co-6	-	10	< LLD	-	-	< LLD	0
	Zn-6	5	30	< LLD	-	-	< LLD	0

_

-

-

_

-

-

-

< LLD

< LLD

< LLD

< LLD

< LLD

0

0

0

0

0

20

.

.

Name of Facility Location of Facility		ty	Monticell	o Nuclear Genera	ating Plant	Docket No.	50-263	
		Wright, Minnesota			Reporting Period	January-December, 2006		
				(Count	y, State)			
	T			Indicator Locations	Location with Highest Annual Mean		Control Locations	Number
Sample Type		e and ber of	LLD⁵	Mean (F) ^c	· · · · · · · · · · · · · · · · · · ·	Mean (F) ^c	Mean (F) ^c	Non- Routine
(Units)	Anal	yses ^a	•	Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
Drinking Water	GB	12	1.0	2.1 (12/12)	M-14, Minneapolis	2.1 (12/12)	None	0
(pCi/L)				(1.1-3.1)	37.0 mi. @ 132° /SE	(1.1-3.1)		
	1-131	12	1.0	< LLD	-	-	None	0
	н-з	4	500	< LLD	-		None	0
	GS	12						
	Mn	-54	10	< LLD	-	-	None	0
	Fe-		30	< LLD	-	-	None	0
	Co-		10	< LLD	-	-	None	0
	Co-		10	< LLD	-	-	None	0
	Zn-		30	< LLD	-	-	None	0
	1	Nb-95	15	< LLD	-	-	None	0
	1	134	10	< LLD	-	-	None	0
	1	137	10	< LLD	-	-	None	0
	· ·	La-140	15	< LLD	-	-	None	0
	Ce.	-144	55	< LLD	- 		None	0
Well Water (pCi/L)	н-з	30	500	< LLD	. -	-	< LLD	0
	GS	30						
	Mn	-54	10	< LLD	-	-	< LLD	0
	Fe-	59	30	< LLD	-	-	< LLD	0
	Co-	-58	10	< LLD	-	-	< LLD	0
	Co-	-60	10	< LLD	-	-	< LLD	0
	Zn-	65	30	< LLD	-	-	< LLD	0
	Zr-I	Nb-95	15	< LLD	-	-	< LLD	0
	Cs-	134	10	< LLD	-		< LLD	0
	Cs-	137	10	< LLD	-	-	< LLD	0
•	Ba-	La-140	15	< LLD	-	-	< LLD	-0
	Ce-	-144	56	< LLD	-	-	< LLD	0
Crops - Cabbage	GS	2						, ,
(pCi/gwet)	1-13		0.023	< LLD	-	-	< LLD	0
(P 0 " 91101)	4	134	0.014	< LLD	-		< LLD	0
	1	137	0.013	< LLD	-	-	< LLD	0
						l		

.

.

.

Name of Facility		Monticel	lo Nuclear Genera	ating Plant	Docket No.	50-263	
Locati	on of Facility	Wright, N	Vinnesota		Reporting Period	January-December, 2006	
		(Co	ounty, State)				·
			Indicator	Location with	Highest	Control	Number Non-
Sample	Type and		Locations	Annual M	Annual Mean		
Туре	Number of	LLD⁵	Mean (F) ^c		Mean (F) ^c	Mean (F) [°]	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
Fish	GS 4				. '		
(pCi/g wet)	K-40	0.10	3.48 (2/2)	M-09, Downstream	3.48 (2/2)	2.98 (2/2)	0
(===3)			(3.13-3.83)	< 1000' of discharge	(3.13-3.83)	(2.47-3.48)	
	Mn-54	0.021	< LLD	-	-	< LLD	0
	Fe-59	0.043	< LLD	-	-	< LLD	0
	Co-58	0.019	< LLD	-	-	< LLD	0
	Co-60	0.029	< LLD	-	-	< LLD	0
	Zn-65	0.053	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.028	< LLD	-	-	< LLD	0
	Cs-134	0.018	< LLD	-	-	< LLD	0
	Cs-137	0.022	< LLD	-	-	< LLD	0
	Ba-La-140	0.051	< LLD	-	-	< LLD	0
	Ce-144	0.18	< LLD	-	-	< LLD	0
Invertebrates	GS 4						
(pCi/g wet)	Be-7	0.66	< LLD	-	-	< LLD	0
	1			х.		1	
	K-40	1.33	< LLD	M-09, Downstream	1.38 (1/2)	< LLD	0
				< 1000' of discharge			
	Mn-54	0.049	< LLD	-	-	< LLD	0
	Fe-59	0.17	< LLD	-	-	< LLD	0
	Co-58	0.061	< LLD	-	-	< LLD	0
	Co-60	0.054	< LLD	-	-	< LLD	0
	Zn-65	0.11	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.13	< LLD	-	-	< LLD	0
	Ru-103	0.11	< LLD	-	-	< LLD	0
	Ru-106	0.47	< LLD	-	-	< LLD	0
	Cs-134	0.055	< LLD	-	-	< LLD	0
	Cs-137	0.052	< LLD	-	-	< LLD	0
	Ba-La-140	0.29	< LLD	- ·	-	< LLD	0
	Ce-144	0.31	< LLD	-	-	< LLD	0
]		220				<u> </u>

22

Name of Facility		o Nuclear Genera	ating Plant	Docket No.	50-263	
on of Facility	Wright, Minnesota			Reporting Period	January-December, 2006	
		(Count	y, State)			
		Indicator	Location with I	Highest	Control	Number
Type and		Locations	Annual Me		Locations	Non-
Number of	LLD [⊳]	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
GS 6						
Be-7	0.29	0.32 (1/4)	M-15, Montissippi Park	0.32 (1/2)	< LLD	0
		· · ·	1.27 mi @ 114°/ESE			
K-40	0.10	10.86 (4/4)	M-15, Montissippi Park	11.52 (2/2)	10.50 (2/2)	0
		(9.45-11.54)	1.27 mi @ 114°/ESE	(11.49-11.54)	(10.46-10.53)	
Mn-54	0.027	< LLD	-	-	< LLD	0
Fe-59	0.089	< LLD	-	-	< LLD	0
Co-58	0.028	< LLD	-	-	< LLD	0
Co-60	0.022	< LLD	-	-	< LLD	0
Zn-65	0.057	< LLD	-	-	< LLD	0
Nb-95	0.034	< LLD	· -	· -	< LLD	0
Zr-95	0.070	< LLD	-	-	< LLD	0
Ru-103	0.029	< LLD	-	-	< LLD	0
Ru-106	0.18	< LLD	-	-	< LLD	0
Cs-134	0.031	< LLD	-	-	< LLD	0
Cs-137	0.026	0.065 (2/4)	M-09, Downstream	0.070 (1/2)	0.039 (1/2)	0
		(0.060-0.070)	< 1000' of discharge			
Ba-La-140	0.099	< LLD	-	-	< LLD	0
Ce-144	0.15	< LLD	-	-	< LLD	0
	Type and Number of Analyses ^e GS 6 Be-7 K-40 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Nb-95 Zr-95 Ru-103 Ru-106 Cs-134 Cs-137 Ba-La-140	Type and Number of Analyses ^a LLD ^b GS 6 Be-7 0.29 K-40 0.10 Mn-54 0.027 Fe-59 0.089 Co-58 0.028 Co-60 0.022 Zn-65 0.057 Nb-95 0.034 Zr-95 0.070 Ru-103 0.029 Ru-106 0.18 Cs-134 0.031 Cs-137 0.026 Ba-La-140 0.099	(Count Type and Number of Analyses ^a Indicator Locations Mean (F) ^c Range ^c GS 6 Be-7 0.29 0.32 (1/4) K-40 0.10 10.86 (4/4) (9.45-11.54) 10.86 (4/4) Mn-54 0.027 < LLD	(County, State) Type and Number of Analyses ^a Indicator Locations Mean (F) ^c Range ^c Location with I Locations Mean (F) ^c Range ^c GS 6 Be-7 0.29 0.32 (1/4) M-15, Montissippi Park 1.27 mi @ 114°/ESE K-40 0.10 10.86 (4/4) (9.45-11.54) M-15, Montissippi Park 1.27 mi @ 114°/ESE Mn-54 0.027 < LLD - Fe-59 0.089 < LLD - Co-58 0.028 < LLD - Co-60 0.022 < LLD - Zn-65 0.057 < LLD - Ru-103 0.029 < LLD - Ru-106 0.18 < LLD - Cs-137 0.026 0.065 (2/4) M-09, Downstream < 1000' of discharge Ba-La-140 0.099 < LLD -	(County, State) Type and Number of Analyses ^a Indicator Locations Mean (F) ^c Range ^c Location with Highest Annual Mean Mumber of Analyses ^a LLD ^b Mean (F) ^c Range ^c Mean (F) ^c Location ^d Mean (F) ^c Range ^c GS 6 8 0.29 0.32 (1/4) M-15, Montissippi Park 1.27 mi @ 114°/ESE 0.32 (1/2) K-40 0.10 10.86 (4/4) (9.45-11.54) M-15, Montissippi Park 1.27 mi @ 114°/ESE 11.52 (2/2) (11.49-11.54) Mn-54 0.027 < LLD	(County, State) Type and Number of Analyses ^a Indicator Locations Mean (F) ⁶ Range ^c Location with Highest Annual Mean Control Locations Mean (F) ⁶ Range ^c GS 6 Be-7 0.29 0.32 (1/4) M-15, Montissippi Park 1.27 mi @ 114°/ESE 0.32 (1/2) < LLD

^a GB ≠ gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 4.66 sigma counting error for background sample.

^c Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by name, and/or station code (Table 2) and (2) by distance (miles) and direction relative to reactor site.

^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten time the typical preoperational value for the medium or location.

6.0 <u>REFERENCES CITED</u>

Arnold, J. R. and H. A. Al-Salih. 1955. Beryllium-7 Produced by Cosmic Rays. Science 121: 451-453.

Eisenbud, M. 1963. Environmental Radioactivity, McGraw-Hill, New York, New York, pp. 213, 275, 276.

Environmental, Inc., Midwest Laboratory.

2001a through 2007a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January-December, 2000 through 2006.

2001b through 2007b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 2000 through 2006.

2003. Quality Assurance Program Manual, Rev. 1, 01 October 2003.

2005. Quality Control Procedures Manual, Rev. 0, 17 September 2005.

2003. Quality Control Program, Rev. 1, 21 August 2003.

Gold, S., H.W. Barkhau, B. Shlein, and B. Kahn, 1964. Measurement of Naturally Occurring Radionuclides in Air, in the Natural Environment, University of Chicago Press, Illinois, 369-382.

Hazleton Environmental Sciences Corporation.

_____1979a through 1983a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December 1978 through 1982.

____ 1979b through 1983b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December 1978 through 1982.

Hohenemser, C. M. Deicher, A. Ernst, H. Hofsass, G. Lindner, E. Racknagel, 1986. "Chernobyl," <u>Chemtech</u>, October 1986, pp. 596-605.

National Center for Radiological Health, 1968. Radiological Helath and Data Reports, Vol. 9, Number 12, 730-746.

Northern States Power Company.

_____ 1969 through 1971. Monticello Nuclear Generating Plant, Environmental Radiation Monitoring Program, Annual Report, June 18, 1968 to December 31, 1968, 1969, 1970. Minneapolis, Minnesota.

Northern States Power Company.

_____ Monticello Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1, to December 31, 1977 through 1982 (prepared by Hazleton Environmental Sciences). Minneapolis, Minnesota.

1984 through 2000. Monticello Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 1983 through 1999 (prepared by Teledyne Brown Engineering Environmental Services, Midwest Laboratory). Northbrook, Illinois

6.0 **REFERENCES CITED** (continued)

Teledyne Brown Engineering Environmental Services, Midwest Laboratory.

_____ 1984a to 2000a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

___ 1984b to 2000b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

U.S. Dep't of Energy 1997 HASL-300, Edition 28, Procedures Manual, Environmental Measurements Laboratory, New York, NY.

U.S. Environmental Protection Agency.

_____ 1980. Prescribed Procedures for Measurement of Radioactivity in Drinking Water, Cincinnati, Ohio (EPA-600/4-80-032).

_____ 1984. Eastern Environmental Radiation Facility, Radiochemistry Procedures Manual, Montgomery, Alabama (EPA-520/5-84-006).

____ 2007. RadNet, formerly Environmental Radiation Ambient Monitoring System, Gross Beta in Air, Gross Beta in Drinking Water (MN) 1981–2005.

Wilson, D. W., G. M. Ward and J. E. Johnson. 1969. In Environmental Contamination by Radioactive Materials, International Atomic Energy Agency. p.125.

XCEL Energy Corporation.

_ 2007. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2000 through 2006. (prepared by Environmental, Inc., Midwest Laboratory). Northbrook, Illinois

Environmental, Inc. Midwest Laboratory an Allegheny Technologies Co.

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE:

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2006 through December, 2006

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

The results in Table A-2 list results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 list results of the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Data for previous years available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Attachment A lists acceptance criteria for "spiked" samples.

Out-of-limit results are explained directly below the result.

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES^a

Analysis	Level	One standard deviation for single determination
Gamma Emitters	5 to 100 pCi/liter or kg > 100 pCi/liter or kg	5.0 pCi/liter 5% of known value
Strontium-89 ^b	5 to 50 pCi/liter or kg > 50 pCi/liter or kg	5.0 pCi/liter 10% of known value
Strontium-90 ^⁵	2 to 30 pCi/liter or kg > 30 pCi/liter or kg	5.0 pCi/liter 10% of known value
Potassium-40	≥ 0.1 g/liter or kg	.5% of known value
Gross alpha	≤ 20 pCi/liter > 20 pCi/liter	5.0 pCi/liter 25% of known value
Gross beta	≤ 100 pCi/liter > 100 pCi/liter	5.0 pÇi/liter 5% of known value
Tritium	≤ 4,000 pCi/liter	± 1σ = (pCi/liter) = 169.85 x (known) ^{0.0933}
	> 4,000 pCi/liter	10% of known value
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value
Plutonium	≥ 0.1 pCi/liter, gram, or sample	10% of known value
Iodine-131, Iodine-129 ^b	≤ 55 pCi/liter > 55 pCi/liter	6.0 pCi/liter 10% of known value
Uranium-238, Nickel-63 ^b Technetium-99 ^b	≤ 35 pCi/liter > 35 pCi/liter	6.0 pCi/liter 15% of known value
Iron-55 ^b	50 to 100 pCi/liter > 100 pCi/liter	10 pCi/liter 10% of known value
Others ^b		20% of known value

^a From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

·		Concentration (pCi/L)								
Lab Code	Date	Analysis	Laboratory	ERA	Control					
			Result ^b	Result ^c	Limits	Acceptanc				
STW-1078	01/16/06	Sr-89	49.9 ± 3.5	50.2	41.5 - 58.9	Pass				
STW-1078	01/16/06	Sr-90	31.5 ± 1.5	30.7	22.0 - 39.4	Pass				
STW-1079	01/16/06	Ba-133	86.5 ± 4.1	95.0	78.6 - 111.0	Pass				
STW-1079	01/16/06	Co-60	96.3 ± 4.1	95.3	86.6 - 104.0	Pass				
STW-1079	01/16/06	Cs-134	22.6 ± 3.0	23.1	14.4 - 31.8	Pass				
STW-1079	01/16/06	Cs-137	109.0 ± 5.9	111.0	101.0 - 121.0	Pass				
STW-1079	01/16/06	Zn-65	198.0 ± 11.2	192.0	159.0 - 225.0	Pass				
STW-1080	01/16/06	Gr. Alpha	10.8 ± 1.4	9.6	1.0 - 18.3	Pass				
STW-1080	01/16/06	Gr. Beta	56.9 ± 1.9	61.9	44.6 - 79.2	Pass				
STW-1081	01/16/06	Ra-226	4.3 ± 0.4	4.6	3.4 - 5.8	Pass				
STW-1081	01/16/06	Ra-228	7.1 ± 1.8	6.6	3.7 - 9.5	Pass				
STW-1081	01/16/06	Uranium	20.7 ± 0.5	22.1	16.9 - 27.3	Pass				
STW-1088	04/10/06	Sr-89	29.0 ± 1.8	32.4	23.7 - 41.1	Pass				
STW-1088	04/10/06	Sr-90	8.7 ± 1.0	9.0	0.3 - 17.7	Pass				
STW-1089	04/10/06	Ba-133	10.3 ± 0.4	10.0	1.3 - 18.7	Pass				
STW-1089	04/10/06	Co-60	114.0 ± 2.8	113.0	103.0 - 123.0	Pass				
STW-1089	04/10/06	Cs-134	41.9 ± 1.4	43.4	34.7 - 52.1	Pass				
STW-1089	04/10/06	Cs-137	208.0 ± 1.1	214.0	195.0 - 233.0	Pass				
STW-1089	04/10/06	Zn-65	154.0 ± 0.8	152.0	126.0 - 178.0	Pass				
STW-1090	04/10/06	Gr. Alpha	13.4 ± 1.1	21.3	12.1 - 30.5	Pass				
STW-1090	04/10/06	Gr. Beta	27.7 ± 2.1	23.0	14.3 - 31.7	Pass				
STW-1091	04/10/06	I-131	22.0 ± 0.3	19.1	13.9 - 24.3	Pass				
STW-1092	04/10/06	H-3	7960.0 ± 57.0	8130.0	6720.0 - 9540.0	Pass				
STW-1092	04/10/06	Ra-226	2.9 ± 0.4	3.0	2.2 - 3.8	Pass				
STW-1092	04/10/06	Ra-228	20.9 ± 1.2	19.1	10.8 - 27.4	Pass				
STW-1092	04/10/06	Uranium	68.6 ± 3.4	69.1	57.1 - 81.1	Pass				
STW-1094	07/10/06	Sr-89	15.9 ± 0.7	19.7	11.0 - 28.4	Pass				
STW-1094	07/10/06	Sr-90	24.3 ± 0.4	25.9	17.2 - 34.6	Pass				
STW-1095	07/10/06	Ba-133	94.9 ± 8.9	88.1	72.9 - 103.0	Pass				
STW-1095	07/10/06	Co-60	104.0 ± 1.8	99.7	91.0 - 108.0	Pass				
STW-1095	07/10/06	Cs-134	48.7 ± 1.3	54.1	45.4 - 62.8	Pass				
STW-1095	07/10/06	Cs-137	236.0 ± 3.0	238.0	217.0 - 259.0	Pass				
STW-1095	07/10/06	Zn-65	126.0 ± 8.0	121.0	100.0 - 142.0	Pass				
STW-1096	07/10/06	Gr. Alpha	10.9 ± 1.0	10.0	1.3 - 18.6	Pass				
STW-1096	07/10/06	Gr. Beta	9.7 ± 0.4	8.9	0.2 - 17.5	Pass				
STW-1097	07/10/06	Ra-226	11.0 ± 0.5	10.7	7.9 - 13.5	Pass				
STW-1097	07/10/06	Ra-228	12.2 ± 0.8	10.7	6.1 - 15.3	Pass				
STW-1097	07/10/06	Uranium	43.4 ± 0.1	40.3	33.3 - 47.3	Pass				

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

Lab Code	Date	Analysis	Laboratory	ERA	Control		
<u></u>			Result ^b	Result ^c	Limits	Acceptance	
STW-1104	10/06/06	Sr-89	38.4 ± 1.3	39.9	31.2 - 45.7	Pass	
STW-1104	10/06/06	Sr-90	15.5 ± 0.5	16.0	7.3 - 24.7	Pass	
STW-1105	10/06/06	Ba-133	64.9 ± 2.8	70.2	58.1 - 82.3	Pass	
STW-1105	10/06/06	Co-60	61.6 ± 1.0	62.3	53.6 - 71.0	Pass	
STW-1105	10/06/06	Cs-134	29.0 ± 0.9	29.9	21.2 - 38.6	Pass	
STW-1105	10/06/06	Cs-137	77.8 ± 2.4	78.2	69.5 - 86.9	Pass	
STW-1105	10/06/06	Zn-65	293.0 ± 2.4	277.0	229.0 - 325.0	Pass	
STW-1106	10/06/06	Gr. Alpha	23.9 ± 2.5	28.7	16.3 - 41.1	Pass	
STW-1106	10/06/06	Gr. Beta	23.7 ± 1.4	20.9	12.2 - 29.6	Pass	
STW-1107 ^d	10/06/06	I-131	28.4 ± 1.2	22.1	16.9 - 27.3	Fail	
STW-1108	10/06/06	Ra-226	14.5 ± 0.5	14.4	10.7 - 18.1	Pass	
STW-1108	10/06/06	Ra-228	6.6 ± 0.4	5.9	3.3 - 8.4	Pass	
STW-1108	10/06/06	Uranium	2.9 ± 0.1	3.2	0.0 - 8.4	Pass	
STW-1109	10/06/06	H-3	3000.0 ± 142.0	3050.0	2430.0 - 3670.0	Pass	

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d The reported result was an average of three analyses, results ranged from 25.36 to 29.23 pCi/L. A fourth analysis was performed, result of analysis, 24.89 pCi/L.

				mR		_
Lab Code	Date		Known	Lab Result	Control	Pass Pass Pass Pass Pass Pass Pass Pass
		Description	Value	± 2 sigma	Limits	Acceptance
4 - 4 - j		•				μ.
Environmenta	al, Inc.					
2006-1	6/5/2006	30 cm	54.81	70.73 ± 0.69	38.37 - 71.25	Pass
2006-1	6/5/2006	60 cm	13.70	16.71 ± 1.89	9.59 - 17.81	Pass
2006-1	6/5/2006	60 cm	13.70	16.69 ± 0.94	9.59 - 17.81	Pass
2006-1	6/5/2006	90 cm	6.09	6.57 ± 0.82	4.26 - 7.92	Pass
2006-1	6/5/2006	120 cm	3.43	3.65 ± 0.22	2.40 - 4.46	Pass
2006-1	6/5/2006	120 cm	3.43	3.09 ± 0.33	2.40 - 4.46	Pass
2006-1	6/5/2006	150 cm	2.19	2.35 ± 0.38	1.53 - 2.85	Pass
2006-1	6/5/2006	150 cm	2.19	1.98 ± 0.10	1.53 - 2.85	Pass
2006-1	6/5/2006	180 cm	1.52	1.56 ± 0.26	1.06 - 1.98	Pass
Environmenta	al, Inc.					
2006-2	11/6/2006	30 cm.	55.61	60.79 ± 1.32	38.93 - 72.29	Pass
2006-2	11/6/2006	40 cm.	31.28	35.93 ± 3.70	21.90 - 40.66	Pass
2006-2	11/6/2006	50 cm.	20.02	21.55 ± 1.20	14.01 - 26.03	Pass
2006-2	11/6/2006	60 cm.	13.90	14.90 ± 1.42	9.73 - 18.07	Pass
2006-2	11/6/2006	75 cm.	8.90	8.03 ± 0.51	6.23 - 11.57	Pass
2006-2	11/6/2006	90 cm.	6.18	6.88 ± 0.68	4.33 - 8.03	Pass
2006-2	11/6/2006	120 cm.	3.48	2.90 ± 0.20	2.44 - 4.52	Pass
2006-2	11/6/2006	150 cm.	2.22	1.99 ± 0.07	1.55 - 2.89	Pass
2006-2	11/6/2006	180 cm.	1.54	1.79 ± 0.94	1.08 - 2.00	Pass

TABLE A-2. Crosscheck program results; Thermoluminescent Dosimetry, (TLD, CaSO4: Dy Cards).

TABLE A-3. In-House "Spike" Samples

	÷	Concentration (pCi/L) ^a						
Lab Code ^b	Date	Analysis	Laboratory results	Known	Control			
			2s, n=1 ^c	Activity	Limits ^d	Acceptanc		
SPW-301	1/20/2006	Fe-55	2700.10 ± 70.00	2502.50	2002.00 - 3003.00	· Daaa		
SPAP-1224	3/7/2006	Cs-134	37.13 ± 3.70	39.52		Pass		
SPAP-1224	3/7/2006	Cs-134 Cs-137	37.13 ± 3.70 118.25 ± 8.97		29.52 - 49.52	Pass		
	3/7/2006			119.30	107.37 - 131.23	Pass		
SPAP-1224 SPW-1228	3/7/2006	Gr. Beta H-3	520.32 ± 7.42	455.00	364.00 - 637.00	Pass		
SPW-1226 SPW-1230		n-3 Cs-134	70891.00 ± 719.00	75394.00	60315.20 - 90472.80	Pass		
	3/7/2006		38.58 ± 2.10	39.51	29.51 - 49.51	Pass		
SPW-1230	3/7/2006	Cs-137	59.44 ± 4.51	59.65	49.65 - 69.65	Pass		
SPMI-1232	3/7/2006	Cs-134	41.20 ± 1.33	39.51	29.51 - 49.51	Pass		
SPMI-1232	3/7/2006	Cs-137	57.82 ± 3.96	59.65	49.65 - 69.65	Pass		
W-30906	3/9/2006	Gr. Alpha	24.24 ± 0.47	20.08	10.04 - 30.12	Pass		
W-30906	3/9/2006	Gr. Beta	63.79 ± 0.48	. 65.73	55.73 - 75.73	Pass		
SPW-2750	4/27/2006	Ni-63	116.00 ± 2.49	100.00	60.00 - 140.00	Pass		
SPW-2869	5/1/2006	Fe-55	19473.00 ± 188.00	23332.00	18665.60 - 27998.40	Pass		
SPAP-2871	5/1/2006	Cs-134	33.97 ± 1.10	37.50	27.50 - 47.50	Pass		
SPAP-2871	5/1/2006	Cs-137	114.44 ± 2.81	118.90	107.01 - 130.79	Pass		
SPW-2875	5/1/2006 -	H-3	71057.00 ± 730.20	75394.00	60315.20 - 90472.80	Pass		
STSO-3155	5/1/2006	Co-60	7950.80 ± 67.29	7750.00	6975.00 - 8525.00	Pass		
STSO-3155	5/1/2006	Cs-134	12.49 ± 0.13	11.59	1.59 - 21.59	Pass		
STSO-3155	5/1/2006	Cs-137	14.10 ± 0.12	11.63	1.63 - 21.63	Pass		
SPAP-2873	5/2/2006	Gr. Beta	1724.80 ± 4.51	1744.00	1395.20 - 2441.60	Pass		
SPF-3183	5/10/2006	Cs-137	2.47 ± 0.03	2.38	1.43 - 3.33	Pass		
SPF-3183	5/10/2006	Cs-134	0.73 ± 0.01	0.74	0.44 - 1.04	Pass		
SPW-3460	5/26/2006	C-14	4009.60 ± 14.43	4741.00	2844.60 - 6637.40	Pass		
W-60606	6/6/2006	Gr. Alpha	21.94 ± 0.46	20.08	10.04 - 30.12	Pass		
W-60606	6/6/2006	Gr. Beta	58.17 ± 0.49	65.73	55.73 - 75.73	Pass		
SPW-3988	6/16/2006	Cs-134	35.56 ± 1.40	36.00	26.00 - 46.00	Pass		
SPW-3988	6/16/2006	Cs-137	60.23 ± 2.72	59.27	49.27 - 69.27	'Pass		
SPW-3988	6/16/2006	I-131(G)	94.01 ± 4.38	99.30	89.30 - 109.30	Pass		
SPW-3988	6/16/2006	Sr-89	52.40 ± 4.23	58.16	46.53 - 69.79	Pass		
SPW-3988	6/16/2006		32.40 ± 4.23 45.35 ± 1.95	41.21	32.97 - 49.45			
		Sr-90				Pass		
SPMI-3990	6/16/2006	Cs-134	35.52 ± 5.05	36.00	26.00 - 46.00	Pass		
SPMI-3990	6/16/2006	Cs-137	56.78 ± 3.86	59.27	49.27 - 69.27	Pass		
SPMI-3990	6/16/2006	I-131(G)	95.04 ± 5.05	99.30	89.30 - 109.30	Pass		
SPMI-3991	6/16/2006	I-131	96.55 ± 0.87	99.30	79.44 - 119.16	Pass		
SPW-4356	7/5/2006	I-131	80.88 ± 1.09	77.23	61.78 - 92.68	Pass		
N-90506	9/5/2006	Gr. Alpha	23.11 ± 0.45	20.08	10.04 - 30.12	Pass		
W-90506	9/5/2006	Gr. Beta	65.01 ± 0.51	65.73	55.73 - 75.73	Pass		
SPAP-6950	9/30/2006	Cs-134	28.93 ± 1.56	32.65	22.65 - 42.65	Pass		
SPAP-6950	9/30/2006	Cs-137	116.62 ± 2.97	117.75	. 105.98 - 129.53	Pass		

A3-1

TABLE A-3. In-House "Spike" Samples

		<u></u>	Concentr	ation (pCi/L)		
Lab Code [Date	Analysis	Laboratory results 2s, n=1 ^b	Known Activity	Control Limits ^c	Acceptance
SPW-6954	9/30/2006	Cs-134	63.29 ± 8.24	65.30	55.30 - 75.30	Pass
SPW-6954	9/30/2006	Cs-137	60.41 ± 7.53	58.87	48.87 - 68.87	Pass
SPMI-6956	9/30/2006	Cs-134	69.26 ± 4.85	65.31	55.31 - 75.31	Pass
SPMI-6956	9/30/2006	Cs-137	61.35 ± 7.62	58.87	48.87 - 68.87	Pass
W-120106	12/1/2006	Gr. Alpha	22.40 ± 1.03	20.08	10.04 - 30.12	Pass
W-120106	12/1/2006	Gr. Beta	63.70 ± 1.14	65.73	55.73 - 75.73	Pass
SPAP-9476	12/29/2006	Gr. Beta	57.51 ± 0.14	53.16	42.53 - 74.42	Pass
SPAP-9478	12/29/2006	Cs-134	26.84 ± 1.23	30.06	20.06 - 40.06	Pass
SPAP-9478	12/29/2006	Cs-137	110.54 ± 3.12	117.10	105.39 - 128.81	Pass
SPW-9480	12/29/2006	H-3	68972.20 ± 748.00	72051.60	57641.28 - 86461.92	Pass
SPW-9483	12/29/2006	Tc-99	29.43 ± 0.84	32.98	20.98 - 44.98	Pass
SPW-9488	12/29/2006	Cs-134	61.35 ± 1.65	60.10	50.10 - 70.10	Pass
SPW-9488	12/29/2006	Cs-137	60.30 ± 2.76	56.80	46.80 - 66.80	Pass
SPMI-9490	12/29/2006	Cs-134	58.99 ± 5.43	60.10	50.10 - 70.10	Pass
SPMI-9490	12/29/2006	Cs-137	54.16 ± 7.85	56.80	46.80 - 66.80	Pass
SPF-9492	12/29/2006	Cs-134	0.64 ± 0.01	0.60	0.36 - 0.84	Pass
SPF-9492	12/29/2006	Cs-137	2.61 ± 0.03	2.34	1.40 - 3.28	Pass

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/m³), and solid samples (pCi/g).

^b Laboratory codes as follows: W (water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish).

^cResults are based on single determinations.

^d Control limits are based on Attachment A, Page A2 of this report.

NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

TABLE A-4.	In-House	"Blank"	Samples
------------	----------	---------	---------

					Concentration (pCi/	L) ^a
Lab Code	Sample	Date	Analysis ^b	Laborato	ry results (4.66σ)	Acceptance
	Туре			LLD	Activity ^c	Criteria (4.66 σ
SPW-302	water	1/20/2006	Fe-55	21.21	-1.82 ± 12.75	1000
SPAP-1225	Air Filter	3/7/2006	Gr. Beta	1.16	-0.512 ± 51.20	3.2
SPW-1231	water	3/7/2006	Cs-134	2.71		10
SPW-1231	water	3/7/2006	Cs-137	2.05		10
W-30906	water	3/9/2006	Gr. Alpha	0.037	0.005 ± 0.026	1
W-30906	water	3/9/2006	Gr. Beta	0.076	-0.016 ± 0.052	3.2
SPW-2751	water	4/27/2006	Ni-63	1.48	0.37 ± 0.91	20
SPW-2868	water	5/1/2006	Fe-55	18.07	4.33 ± 11.27	1000
SPW-2874	water	5/1/2006	H-3	166.00	-8.3 ± 86.9	200
SPAP-2872	Air Filter	5/2/2006	Gr. Beta	1.18	-3.65 ± 0.64	3.2
SPF-3154	Fish	5/10/2006	Cs-134	16.4		100
SPF-3154	Fish	5/10/2006	Cs-137	13.7		100
SPW-3461	water	5/26/2006	C-14	10.20	-7.9 ± 5.20	200
W-60606	water	6/6/2006	Gr. Alpha	0.05	0.013 ± 0.037	1
W-60606	water	6/6/2006	Gr. Beta	0.16	-0.044 ± 0.11	3.2
SPW-3989	water	6/16/2006	Cs-134	3.00		10
SPW-3989	water	6/16/2006	Cs-137	3.65		10
SPW-3989	water	6/16/2006	-131	0.21	0.045 ± 0.14	0.5
SPW-3989	water	6/16/2006	I-131(G)	8.34		20
SPW-3989	water	6/16/2006	Sr-89	0.54	0.005 ± 0.45	5
SPW-3989	water	6/16/2006	Sr-90	0.58	-0.079 ± 0.26	1
SPMI-3991	Milk	6/16/2006	Cs-134	4.42		10
SPMI-3991	Milk	6/16/2006	Cs-137	3.88		10
SPMI-3991	Milk	6/16/2006	I-131	0.28	-0.22 ± 0.19	0.5
SPMI-3991	Milk	6/16/2006	I-131(G)	3.76		20
SPMI-3991	Milk	6/16/2006	Sr-89	0.61	-0.25 ± 0.76	. 5
SPMI-3991 ^d	Milk	6/16/2006	Sr-90	0.52	0.88 ± 0.34	1
W-90506	water	9/5/2006	Gr. Alpha	0.06	0.00 ± 0.04	1
W-90506	water	9/5/2006	Gr. Beta	0.16	0.05 ± 0.11	3.2
SPMI-6383	Milk	9/14/2006	Sr-89	0.97	-0.18 ± 0.92	5
SPMI-6383 ^d	Milk	9/14/2006	Sr-90	0.57	0.65 ± 0.33	1
SPAP-6949	Air Filter	9/30/2006	Cs-134	0.89	0.00 ± 0.00	100
SPAP-6949	Air Filter	9/30/2006	Cs-137	0.91		100
SPAP-6951	Air Filter	9/30/2006	Gr. Beta	1.12	-0.54 ± 0.64	3.2
SPW-6953	water	9/30/2006	Cs-134	3.91		10
SPW-6953	water	9/30/2006	Cs-137	5.61		10
SPW-6953	water	9/30/2006	Sr-89	0.79	-0.14 ± 0.64	5
SPW-6953	water	9/30/2006 9/30/2006	Sr-90	0.60	-0.14 ± 0.04 0.11 ± 0.29	1

					Concentration (pCi/	L) ^a
Lab Code	Sample	Date	Analysis ^b	Laborator	boratory results (4.66o) Acc	
	Туре			LLD	Activity ^c	Criteria (4.66 σ
SPMI-6955	Milk	9/30/2006	Cs-134	2.86		10
SPMI-6955	Milk	9/30/2006	Cs-137	2.39		10
SPMI-6955	Milk	9/30/2006	l-131(G)	9.98		0.5
W-120106	water	12/1/2006	Gr. Alpha	0.11	0.066 ± 0.072	1
W-120106	water	12/1/2006	Gr. Beta	0.30	0.093 ± 0.16	3.2
SPAP-9477	Air Filter	12/29/2006	Gr. Beta	1.13	-0.37 ± 0.66	3.2
SPAP-9479	Air Filter	12/29/2006	Cs-137	0.87		100
SPW-9481	water	12/29/2006	H-3	146.2	63.2 ± 80.1	200
SPW-9483	water	12/29/2006	Tc-99	0.95	-1.20 ± 0.56	10
SPW-9489	water	12/29/2006	Cs-134	2.30		10
SPMI-9491	Milk	12/29/2006	Cs-134	3.10		10
SPMI-9491	Milk	12/29/2006	Cs-137	2.90		10
SPMI-9491	Milk	12/29/2006	l-131(G)	8.00		20
SPF-9493	Fish	12/29/2006	Cs-134	7.6		100
SPF-9493	Fish	12/29/2006	Cs-137	7.9		100

TABLE A-4. In-House "Blank" Samples

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.

^c Activity reported is a net activity result. For gamma spectroscopic analysis, activity detected below the LLD value is not reported $\frac{1}{2}$ is a value of C_{2} 0.0 and $\frac{1}{2}$ below the LLD value is not reported in the approximation of (1.5 pC/H) in milking per unusual

^d Low levels of Sr-90 are still detected in the environment. A concentration of (1-5 pCi/L) in milk is not unusual.

				Concentration (pCi/L) ^a				
·					Averaged			
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance		
AP-7466, 7467	1/3/2006	Be-7	0.053 ± 0.015	0.057 ± 0.011	0.055 ± 0.009	Pass		
AP-7513, 7514	1/3/2006	Be-7	0.033 ± 0.008	0.036 ± 0.008	0.035 ± 0.006	Pass		
AP-7555, 7556	1/3/2006	Be-7	0.053 ± 0.007	0.054 ± 0.008	0.053 ± 0.005	Pass		
MI-154, 155	1/10/2006	K-40	1254.20 ± 87.75	1369.60 ± 102.80	1311.90 ± 67.58	Pass		
MI-217, 218	1/11/2006	K-40	1258.00 ± 118.00	1313.00 ± 98.00	1285.50 ± 76.69	Pass		
MI-217, 218	1/11/2006	Sr-90	1.27 ± 0.37	0.92 ± 0.33	1.10 ± 0.25	Pass		
MI-287, 288	1/17/2006	K-40	1383.10 ± 110.90	1457.80 ± 119.10	1420.45 ± 81.37	Pass		
MI-287, 288	1/17/2006	Sr-90	0.74 ± 0.38	0.94 ± 0.37	0.84 ± 0.27	Pass		
WW-314, 315	1/19/2006	Gr. Beta	9.21 ± 1.72	11.52 ± 1.93	10.37 ± 1.29	Pass		
WW-314, 315	1/19/2006	H-3	168.64 ± 94.94	210.12 ± 96.51	189.38 ± 67.69	Pass		
SWT-577, 578	1/31/2006	Gr. Beta	3.06 ± 0.66	3.68 ± 0.64	3.37 ± 0.46	Pass		
SWU-598, 599	1/31/2006	Gr. Beta	2.03 ± 0.39	1.97 ± 0.40	2.00 ± 0.28	Pass		
SWU-598, 599	1/31/2006	H-3	260.10 ± 98.20	134.10 ± 93.50	197.10 ± 67.80	Pass		
F-3311, 3312 [♭]	2/9/2006	Gr. Beta	4.12 ± 0.14	3.82 ± 0.13	3.97 ± 0.10	Fail		
F-3311, 3312	2/9/2006	K-40	2.68 ± 0.37	2.76 ± 0.39	2.72 ± 0.27	Pass		
SW-780, 781	2/14/2006	Gr. Alpha	4.09 ± 1.52	3.22 ± 1.37	3.66 ± 1.03	Pass		
SW-780, 781	2/14/2006	Gr. Beta	5.91 ± 0.90	5.89 ± 0.92	5.90 ± 0.64	Pass		
DW-934, 935	2/17/2006	I-131	0.35 ± 0.22	0.31 ± 0.25	0.33 ± 0.16	Pass		
DW-1024, 1025	2/24/2006	I-131	0.24 ± 0.26	0.53 ± 0.24	0.39 ± 0.18	Pass		
MI-1078, 1079	3/1/2006	Sr-90	1.42 ± 0.39	1.30 ± 0.62	1.36 ± 0.37	Pass		
F-1357, 1358	3/10/2006	Gr. Beta	3.77 ± 0.07	3.71 ± 0.07	3.74 ± 0.05	Pass		
F-1357, 1358	3/10/2006	K-40	2.46 ± 0.32	2.32 ± 0.44	2.39 ± 0.27	Pass		
MI-1469, 1470	3/14/2006	K-40	1396.30 ± 120.80	1335.60 ± 113.80	1365.95 ± 82.98	Pass		
CF-1538, 1539	3/21/2006	K-40	13.66 ± 0.81	13.97 ± 0.68	13.81 ± 0.53	Pass		
WW-1583, 1584	3/22/2006	Gr. Beta	7.66 ± 0.73	8.87 ± 0.75	8.26 ± 0.52	Pass		
DW-1955, 1956	3/27/2006	Gr. Beta	2.25 ± 0.60	3.15 ± 0.59	2.70 ± 0.42	Pass		
MI-1760, 1761	3/29/2006	K-40	1271.00 ± 89.00	1378.00 ± 113.00	1324.50 ± 71.92	Pass		
AP-2603, 2604	3/29/2006	Be-7	0.067 ± 0.015	0.056 ± 0.010	0.062 ± 0.009	Pass		
E-1997, 1998	4/3/2006	Gr. Beta	1.82 ± 0.07	1.87 ± 0.07	1.85 ± 0.05	Pass		
E-1997, 1998	4/3/2006	K-40	1.28 ± 0.15	1.24 ± 0.21	1.26 ± 0.13	Pass		
AP-2818, 2819	4/3/2006	Be-7	0.06 ± 0.01	0.06 ± 0.01	0.06 ± 0.01	Pass		
SWU-2863, 2864	4/3/2006	Gr. Beta	3.20 ± 1.26	4.77 ± 1.30	3.99 ± 0.91	Pass		
SS-2389, 2390	4/11/2006	Gr. Beta	10.53 ± 0.96	9.38 ± 0.84	9.96 ± 0.64	Pass		
SS-2389, 2390	4/11/2006	K-40	5.51 ± 0.42	5.79 ± 0.40	5.65 ± 0.29	Pass		
DW-2773, 2774	4/21/2006	I-131	0.74 ± 0.23	0.53 ± 0.40	0.63 ± 0.23	Pass		
SL-2932, 2933	5/1/2006	Be-7	1.28 ± 0.19	1.27 ± 0.17	1.28 ± 0.13	Pass		
SL-2932, 2933	5/1/2006	Gr. Beta	6.09 ± 0.33	5.65 ± 0.31	5.87 ± 0.23	Pass		
SL-2932, 2933	5/1/2006	K-40	3.13 ± 0.41	3.09 ± 0.36	3.11 ± 0.27	Pass		
BS-3103, 3104	5/1/2006	Gr. Beta	8.27 ± 1.46	9.03 ± 1.59	8.65 ± 1.08	Pass		
BS-3103, 3104	5/1/2006	K-40	6288.20 ± 585.20	5643.70 ± 599.80	5965.95 ± 418.99	Pass		
MI-3037, 3038	5/2/2006	K-40	1238.90 ± 98.59	1301.00 ± 103.90	1269.95 ± 71.62	Pass		
MI-3037, 3038	5/2/2006	Sr-90	1.76 ± 0.42	1.48 ± 0.42	1.62 ± 0.29	Pass		

A5-1

				Concentration (pCi/L) ^a					
			Averaged						
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance			
MI-3124, 3125	5/9/2006	K-40	1032.30 ± 91.12	1103.60 ± 120.50	1067.95 ± 75.54	Pass			
SW-3145, 3146	5/9/2006	Gr. Alpha	4.85 ± 1.68	4.12 ± 1.62	4.48 ± 1.17	Pass			
SW-3145, 3146	5/9/2006	Gr. Beta	8.94 ± 1.46	9.14 ± 1.36	9.04 ± 1.00	Pass			
MI-3236, 3237	5/10/2006	K-40	1412.40 ± 119.10	1427.90 ± 127.70	1420.15 ± 87.31	Pass			
F-3422, 3423	5/19/2006	H-3	8175.00 ± 252.00	8268.00 ± 253.00	8221.50 ± 178.54	Pass			
G-3491, 3492	. 5/24/2006	Gr. Beta	8.89 ± 0.18	9.03 ± 0.19	8.96 ± 0.13	Pass			
G-3491, 3492	5/24/2006	K-40	5.60 ± 0.71	6.30 ± 0.78	5.95 ± 0.53	Pass			
SO-3539, 3540	5/24/2006	Gr. Beta	19.57 ± 1.99	18.98 ± 1.91	19.27 ± 1.38	Pass			
SO-3539, 3540	5/24/2006	K-40	12.55 ± 0.89	11.49 ± 0.59	12.02 ± 0.53	Pass			
WW-3751, 3752	5/25/2006	Gr. Beta	9.85 ± 0.79	8.96 ± 0.74	9.41 ± 0.54	Pass			
F-3617, 3618	5/30/2006	K-40	2.42 ± 0.38	2.53 ± 0.37	2.47 ± 0.27	Pass			
SL-3641, 3642	6/1/2006	Be-7	1.41 ± 0.19	1.31 ± 0.27	1.36 ± 0.17	Pass			
SL-3641, 3642	6/1/2006	Gr. Beta	5.03 ± 0.18	5.30 ± 0.19	5.17 ± 0.13	Pass			
SL-3641, 3642	6/1/2006	K-40	2.21 ± 0.26	2.14 ± 0.37	2.18 ± 0.23	Pass			
MI-3886, 3887	6/12/2006	K-40	1424.20 ± 118.20	1318.80 ± 110.50	1371.50 ± 80.90	Pass			
VE-3949, 3950	6/13/2006	Gr. Alpha	0.13 ± 0.06	0.16 ± 0.07	0.15 ± 0.05	Pass			
VE-3949, 3950	6/13/2006	Gr. Beta	4.53 ± 0.19	4.47 ± 0.18	4.50 ± 0.13	Pass			
VE-3949, 3950	6/13/2006	K-40	6.02 ± 0.66	5.33 ± 0.66	5.67 ± 0.47	Pass			
BS-4016, 4017	6/13/2006	Co-60	0.18 ± 0.03	0.15 ± 0.03	0.16 ± 0.02	Pass			
BS-4016, 4017	6/13/2006	Cs-137	1.97 ± 0.09	2.01 ± 0.09	1.99 ± 0.06	Pass			
BS-4016, 4017	6/13/2006	K-40	11.03 ± 0.76	10.45 ± 0.78	10.74 ± 0.54	Pass			
MI-3992, 3993	6/14/2006	K-40	1358.50 ± 166.40	1395.80 ± 122.70	1377.15 ± 103.37	Pass			
LW-4175, 4176	6/16/2006	H-3	482.11 ± 90.25	397.50 ± 86.88	439.81 ± 62.63	Pass			
W-4130, 4131	6/21/2006	Н-3	401.50 ± 87.85	236.28 ± 80,89	318.89 ± 59.71	Pass			
AV-4330, 4331	6/26/2006	K-40	1717.10 ± 244.30	1893.10 ± 223.30	1805.10 ± 165.49	Pass			
SWU-4489, 4490	6/27/2006	Gr. Beta	1.70 ± 0.38	1.93 ± 0.38	1.82 ± 0.27	Pass			
AP-4909, 4910	6/29/2006	Be-7	0.11 ± 0.01	0.11 ± 0.02	0.11 ± 0.01	Pass			
AP-4952, 4953	6/29/2006	Be-7	0.08 ± 0.02	0.10 ± 0.02	0.09 ± 0.01	Pass			
AP-4930, 4931	7/3/2006	Be-7	0.08 ± 0.02	0.07 ± 0.01	0.08 ± 0.01	Pass			
E-4399, 4400	7/5/2006	Gr. Beta	1.85 ± 0.05	1.85 ± 0.05	1.85 ± 0.04	Pass			
E-4399, 4400	7/5/2006	K-40	1.25 ± 0.19	1.24 ± 0.18	1.25 ± 0.13	Pass			
G-4420, 4421	7/5/2006	Be-7	0.82 ± 0.20	0.61 ± 0.14	0.72 ± 0.12	Pass			
G-4420, 4421	7/5/2006	Gr. Beta	13.20 ± 0.40	14.00 ± 0.40	13.60 ± 0.28	Pass			
G-4420, 4421	7/5/2006	K-40	9.96 ± 0.44	10.06 ± 0.82	10.01 ± 0.47	Pass			
DW-60432, 60433		Gr. Alpha	3.24 ± 1.35	2.49 ± 1.33	2.87 ± 0.95	Pass			
DW-60514, 60515		Gr. Alpha	3.70 ± 1.12	3.09 ± 1.16	3.40 ± 0.81	Pass			
DW-60449, 60450		Gr. Alpha	6.87 ± 1.26	4.77 ± 1.09	5.82 ± 0.83	Pass			
MI-4599, 4600	7/12/2006	K-40	1403.50 ± 118.80	1330.40 ± 116.50	1366.95 ± 83.20	Pass			
MI-4599, 4600	7/12/2006	Sr-90	0.59 ± 0.34	0.70 ± 0.35	0.65 ± 0.24	Pass			
MI-4667, 4668	7/12/2006	K-40	1286.60 ± 92.62	1358.60 ± 158.40	1322.60 ± 91.75	Pass			
LW-4823, 4824	7/14/2006	Gr. Beta	1.75 ± 0.60	2.51 ± 0.59	2.13 ± 0.42	Pass			

			Concentration (pCi/L) ^a				
					Averaged		
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance	
DW-60502, 605	503 7/19/2006	Gr. Alpha	16.27 ± 2.49	21.41 ± 3.21	18.84 ± 2.03	Pass	
DW-60526, 605		Gr. Alpha	14.06 ± 1.82	15.57 ± 1.77	14.82 ± 1.27	Pass Pass	
DW-60539, 605		Gr. Alpha	5.09 ± 0.95	6.23 ± 1.05	5.66 ± 0.71		
MI-5125, 5126	7/25/2006	K-40	1480.60 ± 118.30	1402.60 ± 120.80	1441.60 ± 84.54	Pass	
DW-60609, 606		Gr. Alpha	1.00 ± 1.10	2.70 ± 1.30	1.85 ± 0.85	Pass Pass	
DW-60621, 606		Gr. Alpha	3.70 ± 1.00	1.90 ± 0.80	2.80 ± 0.64	Pass	
SL-5265, 5266		Be-7	1.10 ± 0.46	1.38 ± 0.52	1.24 ± 0.35	Pass	
SL-5265, 5266	8/1/2006	Sr-90	0.10 ± 0.03	0.16 ± 0.03	0.13 ± 0.02	Pass Pass	
SL-5265, 5266	8/1/2006	Gr. Beta	4.41 ± 0.41	3.46 ± 0.57	3.94 ± 0.35	Pass Pass	
SL-5265, 5266	8/1/2006	K-40	1.19 ± 0.52	0.87 ± 0.52	1.03 ± 0.37		
VE-5286, 5287	8/1/2006	Be-7	1.21 ± 0.32	1.32 ± 0.20	1.03 ± 0.37 1.27 ± 0.18	Pass	
VE-5286, 5287	8/1/2006	Gr. Beta	9.67 ± 0.35	9.37 ± 0.35	9.52 ± 0.18	Pass	
VE-5286, 5287	8/1/2006	K-40	6.25 ± 0.81	9.37 ± 0.35 6.50 ± 0.48	9.52 ± 0.25 6.38 ± 0.47	Pass	
SW-5383, 5384		Gr. Alpha	3.24 ± 1.35	2.94 ± 1.35	1	Pass	
SW-5383, 5384		Gr. Beta	4.86 ± 0.86	2.94 ± 1.35 5.46 ± 0.87	3.09 ± 0.96	Pass	
SW-5971, 5972		H-3	4.80 ± 0.80 119.90 ± 78.14	5.40 ± 0.87 144.41 ± 79.23	5.16 ± 0.61	Pass	
VE-5404, 5405		Be-7	0.77 ± 0.24	144.41 ± 79.23 1.01 ± 0.26	132.15 ± 55.64	Pass	
VE-5404, 5405	8/10/2006	K-40	4.71 ± 0.63	4.01 ± 0.26	0.89 ± 0.18	Pass	
DW-5480, 5481		H-3	4.71 ± 0.03 169.08 ± 85.52	4.01 ± 0.58 133.65 ± 83.96	4.36 ± 0.43	Pass	
DW-60645, 606		Gr. Alpha	10.41 ± 1.78	10.97 ± 1.85	151.36 ± 59.92	Pass	
W-5602, 5603	8/16/2006	H-3	2118.79 ± 151.55	2181.82 ± 153.09	10.69 ± 1.28	Pass	
DW-60634, 606		Gr. Alpha	12.99 ± 1.84		2150.30 ± 107.71	Pass	
DW-60634, 606 DW-60634, 606		Gr. Beta		9.67 ± 1.61	11.33 ± 1.22	Pass	
MI-5793, 5794	8/22/2006	Gr. Beta K-40	10.51 ± 1.33 1264.00 ± 115.00	8.61 ± 1.18 1377.00 ± 121.00	9.56 ± 0.89	Pass	
SWU-6150, 615		Gr. Beta	1.84 ± 0.28	1.81 ± 0.28	1320.50 ± 83.47	Pass	
DW-60657, 606					1.82 ± 0.20	Pass	
CF-7450, 7451	9/5/2006	Gr. Alpha Be-7 [:]	2.33 ± 0.80 0.78 ± 0.45	2.90 ± 0.78 0.78 ± 0.27	2.62 ± 0.56	Pass	
SL-6085, 6086	9/5/2006 9/5/2006	Co-60	0.78 ± 0.43 0.22 ± 0.03		0.78 ± 0.26	Pass	
SL-6085, 6086	9/5/2006 9/5/2006	Gr. Beta	0.22 ± 0.03 5.47 ± 0.69	0.21 ± 0.02 4.63 ± 0.58	0.22 ± 0.02	Pass	
SL-6085, 6086	9/5/2006	K-40	1.91 ± 0.28	4.03 ± 0.38 2.06 ± 0.41	5.05 ± 0.45	Pass	
DW-60695, 606		Gr. Alpha	1.91 ± 0.28 3.93 ± 1.17	4.62 ± 1.12	1.99 ± 0.25	Pass	
LW-6266, 6267	9/13/2006	-			4.28 ± 0.81	Pass	
MI-6424, 6425	9/19/2006 9/19/2006	Gr. Beta	3.09 ± 0.48	2.98 ± 0.48	3.03 ± 0.34	Pass	
DW-60715, 607		Sr-90 Gr. Alpha	0.78 ± 0.38	1.11 ± 0.37	0.95 ± 0.27	Pass	
		Gr. Alpha	1.30 ± 1.00	2.23 ± 1.01	1.77 ± 0.71	Pass	
SO-6597, 6598	9/22/2006	Cs-137	0.18 ± 0.04	0.18 ± 0.04	0.18 ± 0.03	Pass	
SO-6597, 6598	9/22/2006	K-40 Cr. Doto	10.25 ± 0.66	10.11 ± 0.64	10.18 ± 0.46	Pass	
SWU-6718, 671		Gr. Beta	3.45 ± 1.21	2.78 ± 1.19	3.12 ± 0.85	Pass	
SO-6668, 6669	9/27/2006	Cs-137	0.13 ± 0.04	0.13 ± 0.02	0.13 ± 0.02	Pass	
SO-6668, 6669	9/27/2006	K-40	13.04 ± 0.90	12.41 ± 0.54	12.72 ± 0.53	Pass	

				Concentration (pCi/L)	3			
				<u> </u>	Averaged			
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance		
MI-6760, 6761	10/2/2006	K-40	1413:10 ± 113.20	1187.30 ± 155.20	1300.20 ± 96.05	Pass		
G-6797, 6798	10/2/2006	Be-7	4.70 ± 0.31	4.56 ± 0.41	4.63 ± 0.26	Pass		
G-6797, 6798	10/2/2006	Gr. Beta	6.89 ± 0.26	7.04 ± 0.24	6.97 ± 0.18	Pass		
G-6797, 6798 ^b	10/2/2006	K-40	5.39 ± 0.35	4.36 ± 0.47	4.88 ± 0.29	Fail		
AP-7531, 7532	10/3/2006	Be-7	0.07 ± 0.01	0.08 ± 0.01	0.08 ± 0.01	Pass		
AP-7552, 7553	10/3/2006	Be-7	0.08 ± 0.02	0.08 ± 0.01	0.08 ± 0.01	Pass		
AP-7573, 7574	10/3/2006	Be-7	0.08 ± 0.02	0.08 ± 0.01	0.08 ± 0.01	Pass		
SO-7103, 7104	10/4/2006	Cs-137	0.03 ± 0.02 0.25 ± 0.05	0.03 ± 0.01 0.27 ± 0.06	0.26 ± 0.04	Pass		
SO-7103, 7104	10/4/2006	K-40	12.95 ± 1.12	12.22 ± 1.07	12.58 ± 0.77	Pass		
DW-60759, 60760		Gr. Alpha	4.93 ± 0.97	5.04 ± 1.03	4.99 ± 0.71	Pass		
MI-7037, 7038	10/10/2006	GL Alpha K-40	4.93 ± 0.97 1326.10 ± 115.20	1251.40 ± 115.70	4.99 ± 0.71 1288.75 ± 81.64	Pass Pass		
VE-7058, 7059	10/10/2006	Gr. Alpha	0.18 ± 0.11	0.32 ± 0.14	0.25 ± 0.09	Pass		
VE-7058, 7059	10/10/2006	Gr. Beta	9.21 ± 0.34	8.83 ± 0.36	9.02 ± 0.25	Pass		
VE-7058, 7059	10/10/2006	K-40	10.90 ± 0.65	10.42 ± 0.80	10.66 ± 0.52	Pass		
SS-7079, 7080	10/10/2006	Cs-137	0.04 ± 0.01	0.04 ± 0.02	0.04 ± 0.01	Pass		
SS-7079, 7080	10/10/2006	Gr. Beta	12.23 ± 2.46	11.76 ± 2.23	11.99 ± 1.66	Pass		
SS-7079, 7080	10/10/2006	K-40	7.23 ± 0.36	7.37 ± 0.40	7.30 ± 0.27	Pass		
MI-7208, 7209	10/11/2006	K-40	1295.20 ± 116.90	1386.90 ± 119.10	1341.05 ± 83.44	Pass		
CF-7450, 7451	10/18/2006	K-40	20.40 ± 0.84	19.54 ± 0.99	19.97 ± 0.65	Pass		
LW-7945, 7946	10/26/2006	Gr. Beta	1.30 ± 0.37	1.44 ± 0.36	1.37 ± 0.26	Pass		
F-7971, 7972	10/29/2006	K-40	3.63 ± 0.54	3.33 ± 0.43	3.48 ± 0.34	Pass		
SWU-8194, 8195	10/31/2006	Gr. Beta	1.84 ± 0.28	1.43 ± 0.28	1.64 ± 0.20	Pass		
BS-8017, 8018	11/1/2006	Gr. Beta	10.54 ± 1.72	10.17 ± 1.73	10.36 ± 1.22	Pass		
BS-8017, 8018	11/1/2006	K-40	10.00 ± 0.53	9.60 ± 0.69	9.80 ± 0.44	Pass		
LW-8215, 8216	11/1/2006	Gr. Beta	2.23 ± 0.61	1.64 ± 0.37	1.93 ± 0.35	Pass		
F-8345, 8346	11/2/2006	K-40	2.84 ± 0.42	2.89 ± 0.40	2.86 ± 0.29	Pass		
BS-8366, 8367	11/2/2006	K-40	13.69 ± 0.66	13.61 ± 0.78	13.65 ± 0.51	Pass		
MI-8083, 8084	11/6/2006	K-40	1295.00 ± 121.20	1374.80 ± 162.80	1334.90 ± 101.48	Pass		
WW-8259, 8260	11/7/2006	H-3	337.00 ± 95.00	295.00 ± 93.00	316.00 ± 66.47	Pass		
MI-8484, 8485	11/22/2006	K-40	1405.80 ± 87.06	1390.70 ± 103.60	1398.25 ± 67.66	Pass		
SO-8619, 8620	11/27/2006	Cs-137	0.74 ± 0.08	0.69 ± 0.06	0.71 ± 0.05	Pass		
SO-8619, 8620	11/27/2006	Gr. Alpha	16.54 ± 5.65	12.24 ± 4.90	14.39 ± 3.74	Pass		
SO-8619, 8620	11/27/2006	Gr. Beta	24.99 ± 3.88	28.66 ± 3.95	26.82 ± 2.77	Pass		
SO-8619, 8620	11/27/2006	K-40	12.21 ± 1.11	12.92 ± 0.83	12.57 ± 0.69	Pass		
SWT-8641, 8642		Gr. Beta	2.83 ± 0.47	2.89 ± 0.45	2.86 ± 0.33	Pass		
SWT-9436, 9437		Gr. Beta	2.39 ± 0.64	2.25 ± 0.60	2.32 ± 0.44	Pass		

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

^a Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g).

^b 200 minute count time or longer, resulting in lower error.

			Concentration ^b							
		······································		Known	Control					
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance				
STVE-1082	01/01/06	Am-241	0.16 ± 0.06	0.16	0.11 - 0.20	Pass				
STVE-1082	01/01/06	Co-57	10.40 ± 0.20	8.58	6.00 - 11.15	Pass				
STVE-1082	01/01/06	Co-60	5.00 ± 0.20	4.52	3.16 - 5.88	Pass				
STVE-1082 °	01/01/06	Cs-134	< 0.20	0.00		Pass				
STVE-1082	01/01/06	Cs-137	3.40 ± 0.20	3.07	2.15 - 4.00	Pass				
STVE-1082	01/01/06	Mn-54	6.90 ± 0.20	6.25	4.37 - 8.12	Pass				
STVE-1082 ^f	01/01/06	Pu-238	0.08 ± 0.03	0.14	0.10 - 0.18	Fail				
STVE-1082	01/01/06	Pu-239/40	0.17 ± 0.03	0.16	0.11 - 0.21	Pass				
STVE-1082	01/01/06	Sr-90	1.40 ± 0.20	1.56	1.09 - 2.03	Pass				
STVE-1082	01/01/06	U-233/4	0.24 ± 0.05	0.21	0.15 - 0.27	Pass				
STVE-1082	01/01/06	U-238	0.19 ± 0.04	0.22	0.15 - 0.28	Pass				
STVE-1082	01/01/06	Zn-65	11.10 ± 0.50	9.80	6.86 - 12.74	Pass				
	01,01,00			0.00						
STSO-1083	01/01/06	Am-241	54.60 ± 5.50	57.08	39.96 - 74.20	Pass				
STSO-1083	01/01/06	Co-57	762.90 ± 12.70	656.29	459.40 - 853.18	Pass				
STSO-1083	01/01/06	Co-60	504.90 ± 3.10	447.10	312.97 - 581.23	Pass				
STSO-1083 °	01/01/06	Cs-134	< 1.70	0.00		Pass				
STSO-1083	01/01/06	Cs-137	406.50 ± 3.70	339.69	237.78 - 441.60	Pass				
STSO-1083	01/01/06	K-40	719.20 ± 18.40	604.00	422.80 - 785.20	Pass				
STSO-1083	01/01/06	Mn-54	415.60 ± 4.80	346.77	242.74 - 450.80	Pass				
STSO-1083	01/01/06	Ni-63	261.40 ± 14.70	323.51	226.46 - 420.56	Pass				
STSO-1083 ¹	01/01/06	Pu-238	14.60 ± 2.90	61.15	42.81 - 79.50	Fail				
STSO-1083	01/01/06	Pu-239/40	14.60 ± 2.40	45.85	32.09 - 59.61	Fail				
STSO-1083	01/01/06	U-233/4	13.50 ± 1.70	37.00	25.90 - 48.10	Fail				
STSO-1083	01/01/06	U-238	15.40 ± 1.80	38.85	27.20 - 50.50	Fail				
STSO-1083	01/01/06	Zn-65	783.40 ± 7.00	657.36	460.15 - 854.57	Pass				
3130-1003	01/01/00	20-05	103.40 ± 1.00	007.00	400.10 - 004.07	1 433				
STAP-1084	01/01/06	Gr. Alpha	0.26 ± 0.02	0.36	0.00 - 0.72	Pass				
STAP-1084	01/01/06	Gr. Beta	0.51 ± 0.03	0.48	0.24 - 0.72	Pass				
STAP-1085	01/01/06	Am-241	0.12 ± 0.02	0.09	0.07 - 0.12	Pass				
STAP-1085	01/01/06	Co-57	4.32 ± 0.10	4.10	2.87 - 5.32	Pass				
STAP-1085	01/01/06	Co-60	2.24 ± 0.16	2.19	1.53 - 2.84	Pass				
STAP-1085	01/01/06	Cs-134	2.96 ± 0.19	2.93	2.05 - 3.81	Pass				
STAP-1085	01/01/06	Cs-137	2.64 ± 0.20	2.53	1.77 - 3.29	Pass				
STAP-1005 STAP-1085 ^f	01/01/08	Pu-238	0.03 ± 0.01	0.07	0.05 - 0.09	Fail				
STAF-1085 °	01/01/08		0.03 ± 0.01 < 0.01	0.00	0.00 - 0.03	Pass				
		Pu-239/40	< 0.01 0.77 ± 0.21	0.00	0.55 1.02					
STAP-1085	01/01/06	Sr-90			0.55 - 1.03	Pass				
STAP-1085	01/01/06	U-233/4	0.03 ± 0.01	0.02	0.01 - 0.03	Pass				
STAP-1085	01/01/06	U-238	0.02 ± 0.01	0.02	0.01 - 0.03	Pass				
STAP-1085	01/01/06	Zn-65	3.94 ± 0.44	3.42	2.40 - 4.45	Pass				

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

		Concentration ^b					
				Known	Control		
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance	
STW-1086	01/01/06	Am-241	1.29 ± 0.05	1.30	0.91 - 1.69	Pass	
STW-1086	01/01/06	Co-57	177.10 ± 1.00	166.12	116.28 - 215.96	Pass	
STW-1086	01/01/06	Co-60	158.30 ± 1.00	153.50	107.45 - 199.55	Pass	
STW-1086	01/01/06	Cs-134	96.40 ± 1.50	95.10	66.57 - 123.63	Pass	
STW-1086 ^e	01/01/06	Cs-137	< 0.80	0.00		Pass	
STW-1086	01/01/06	Fe-55	102.50 ± 18.10	129.60	90.72 - 168.48	Pass	
STW-1086	01/01/06	H-3	956.60 ± 16.50	952.01	666.41 - 1238.00	Pass	
STW-1086	01/01/06	Mn-54	335.30 ± 2.20	315.00	220.50 - 409.50	Pass	
STW-1086	01/01/06	Ni-63	62.90 ± 3.60	60.34	42.24 - 78.44	Pass	
STW-1086	01/01/06	Pu-238	0.96 ± 0.07	0.91	0.70 - 1.30	Pass	
STW-1086 ^e	01/01/06	Pu-239/40	< 0.20	0.00		Pass	
STW-1086	01/01/06	Sr-90	12.80 ± 1.60	13.16	9.21 - 17.11	Pass	
STW-1086	01/01/06	Tc-99	22.30 ± 1.20	23.38	16.37 - 30.39	⁻ Pass	
STW-1086	01/01/06	U-233/4	2.02 ± 0.12	2.09	1.46 - 2.72	Pass	
STW-1086	01/01/06	U-238	2.03 ± 0.12	2.17	1.52 - 2.82	Pass	
STW-1086	01/01/06	Zn-65	249.50 ± 3.40	228.16	159.71 - 296.61	Pass	
STW-1087	01/01/06	·Gr. Alpha	0.59 ± 0.10	0.58	0.00 - 1.16	Pass	
STW-1087	01/01/06	Gr. Beta	1.69 ± 0.07	1.13	0.56 - 1.70	Pass	
STVE-1098 °	07/01/06	Co-57	< 0.14	0.00		Pass	
STVE-1098 9	07/01/06	Co-60	6.89 ± 0.17	5.81	4.06 - 7.55	Pass	
STVE-1098	07/01/06	Cs-134	8.46 ± 0.16	7.49	5.24 - 9.73	Pass	
STVE-1098	07/01/06	Cs-137	6.87 ± 0.29	5.50	3.85 - 7.14	Pass	
STVE-1098	07/01/06	Mn-54	10.36 ± 0.29	8.35	5.85 - 10.86	Pass	
STVE-1098	07/01/06	Zn-65	7.46 ± 0.50	5.98	4.19 - 7.78	Pass	
STSO-1099	07/01/06	Am 241	130.00 ± 11.60	105.47	73.83 - 137.11	Pass	
		Am-241		676.33	473.43 - 879.23	Pass	
STSO-1099	07/01/06	Co-57	784.90 ± 3.80 2.10 ± 0.90	1.98	0.00 - 5.00	Pass	
STSO-1099 STSO-1099	07/01/06	Co-60	500.70 ± 7.40	452.13	316.49 - 587.77	Pass	
	07/01/06	Cs-134 Cs-137		452.13 525.73	368.01 - 683.45		
STSO-1099	07/01/06		624.20 ± 4.90			Pass	
STSO-1099	07/01/06	K-40	701.30 ± 3.40	604.00	423.00 - 785.00	Pass	
STSO-1099	07/01/06	Mn-54	699.20 ± 5.20	594.25	415.98 - 772.52	Pass	
STSO-1099	07/01/06	Ni-63	614.40 ± 17.10	672.30	470.60 - 874.00	Pass	
STSO-1099	07/01/06	Pu-238	79.90 ± 5.80	82.00	57.00 - 107.00	Pass	
STSO-1099 °	07/01/06	Pu-239/40	< 0.70	0.00	400 74 400 47	Pass	
STSO-1099	07/01/06	U-233/4	150.50 ± 5.90	152.44	106.71 - 198.17	Pass	
STSO-1099 STSO-1099	07/01/06 07/01/06	U-238 Zn-65	151.60 ± 6.00 1021.90 ± 9.20	158.73 903.61	111.11 - 206.35 632.53 - 1175.00	Pass Pass	
					0.40	_	
STAP-1100	07/01/06	Am-241	0.16 ± 0.03	0.14	0.10 - 0.19	Pass	
STAP-1100	07/01/06	Co-57	2.17 ± 0.06	2.58	1.81 - 3.36	Páss	
STAP-1100	07/01/06	Co-60	1.38 ± 0.07	1.58	1.10 - 2.05	Pass	
STAP-1100	07/01/06	Cs-134	2.52 ± 0.13	3.15	2.20 - 4.09	Pass	

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

		Concentration ^b					
				Known	Control		
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance	
STAP-1100	07/01/06	Cs-137	1.64 ± 0.08	1.81	1.26 - 2 <i>.</i> 35	Pass	
STAP-1100	07/01/06	Mn-54	1.76 ± 0.18	1.92	1.34 - 2.50	Pass	
STAP-1100	07/01/06	Pu-238	0.09 ± 0.02	0.12	0.08 - 0.15	Pass	
STAP-1100	07/01/06	Sr-90	0.66 ± 0.21	0.62	0.43 - 0.81	Pass	
STAP-1100	07/01/06	U-233/4	0.15 ± 0.02	0.13	0.09 - 0.17	Pass	
STAP-1100	07/01/06	U-238	0.13 ± 0.02	0.14	0.10 - 0.18	Pass	
STAP-1100 °	07/01/06	Zn-65	< 0.07	0.00		Pass	
STAP-1101	07/01/06	Gr. Alpha	0.08 ± 0.03	0.29	0.00 - 0.58	Pass	
STAP-1101	07/01/06	Gr. Beta	0.41 ± 0.05	0.36	0.18 - 0.54	Pass	
STW-1102	07/01/06	Gr. Alpha	0.76 ± 0.07	1.03	0.00 - 2.07	Pass	
STW-1102	07/01/06	Gr. Beta	1.23 ± 0.06	1.03	0.52 - 1.54	Pass	
STW-1103	07/01/06	Am-241	1.86 ± 0.09	2.31	1.62 - 3.00	Pass	
STW-1103	07/01/06	Co-57	224.10 ± 1.20	213.08	149.16 - 277.00	Pass	
STW-1103	07/01/06	Co-60	49.40 ± 0.50	47.50	33.20 - 61.80	Pass	
STW-1103	07/01/06	Cs-134	112.70 ± 0.90	112.82	78.97 - 146.66	Pass	
STW-1103	07/01/06	Cs-137	206.60 ± 1.40	196.14	137.30 - 254.98	Pass	
STW-1103	07/01/06	Fe-55	138.40 ± 5.40	165.40	115.80 - 215.00	Pass	
STW-1103	07/01/06	H-3	446.50 ± 11.80	428.85	300.20 - 557.50	Pass	
STW-1103 ^e	07/01/06	Mn-54	< 0.30	0.00		Pass	
STW-1103	07/01/06	Ni-63	116.70 ± 3.60	118.62	83.03 - 154.21	Pass	
STW-1103	07/01/06	Pu-238	1.27 ± 0.07	1.39	0.97 - 1 .81	Pass	
STW-1103	07/01/06	Pu-239/40	1.67 ± 0.08	1.94	1.36 - 2.52	Pass	
STW-1103	07/01/06	Sr-90	16.40 ± 1.90	15.69	10.98 - 20.40	Pass	
STW-1103	07/01/06	Tc-99	29.40 ± 1.10	27.15	19.00 - 35.29	Pass	
STW-1103	07/01/06	U-233/4	1.97 ± 0.08	2.15	1.50 - 2.80	Pass	
STW-1103	07/01/06	U-238	1.97 ± 0.08	2.22	1.55 - 2.89	Pass	
STW-1103	07/01/06	Zn-65	192.50 ± 2.40	176.37	123.46 - 229.28	Pass	

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

^e Included in the MAPEP as a false positive.

^f Difficulties with the analyses for transuranics isotopes in solid samples (Filters, Soil and vegetation), were attributed to incomplete dissolution of the samples. Soil samples were repeated, results of reanalyses: Pu-238, 53.1 ± 5.3 bq/kg. Pu-239/240, 42.4 ± 4.7 bq/kg. U-233/4, 33.3 ± 3.5 bq/kg. U-238, 35.5 ± 3.6 bq/kg.

^g The July vegetation sample was provided in two separate geometries, (100 ml. and 500 ml.). Results reported here used the 500 ml. standard size geometry. Results for the 100 ml. geometry showed approximately a 15% higher bias.

APPENDIX B

DATA REPORTING CONVENTIONS

Data Reporting Conventions

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

Each single measurement is reported as follows:

x = value of the measurement:

where:

s = 2σ counting uncertainty (corresponding to the 95% confidence level).

 $x \pm s$

In cases where the activity is less than the lower limit of detection L, it is reported as: < L,

where L = the lower limit of detection based on 4.66 σ uncertainty for a background sample.

3.0. Duplicate analyses

3.1	Individual results:	For two analysis result	s; $x_1 \pm s_1$ and $x_2 \pm s_2$
	Reported result:	$x \pm s$; where $x = (1/2)$	2) $(x_1 + x_2)$ and s = (1/2) $\sqrt{s_1^2 + s_2^2}$
3.2.	Individual results:	< L ₁ , < L ₂	<u>Reported result:</u> < L, where L = lower of L_1 and L_2
3.3.	Individual results:	x ± s, < L	<u>Reported result:</u> $x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l>

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average \bar{x} and standard deviation s of a set of n numbers x_1, x_2, \ldots, x_n are defined as follows:

$$\overline{x} = \frac{1}{n} \sum x$$
 $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$

4.2 Values below the highest lower limit of detection are not included in the average.

- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the number following those to be retained is less than 5, the number is dropped, and the retained number s are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the number following those to be retained is equal to or greater than 5, the number is dropped and the last retained number is raised by 1. As an example, 11.445 is rounded off to 11.45.

APPENDIX C

Maximum Permissible Concentrations of Radioactivity in Air and Water Above Background in Unrestricted Areas
 Table C-1.
 Maximum permissible concentrations of radioactivity in air and water above natural background in unrestricted areas^a.

Air (pCi/m ³)	Water (pC	Si/L)
Gross alpha 1×10^{-3}	Strontium-89	8,000
Gross beta 1	Strontium-90	500
lodine-131 ^b 2.8 x 10 ⁻¹	Cesium-137	1,000
	Barium-140	8,000
	lodine-131	1,000
	Potassium-40 [°]	4,000
	Gross alpha	2
	Gross beta	10
	Tritium	1 x 10 ⁶

^a Taken from Table 2 of Appendix B to Code of Federal Regulations Title 10, Part 20, and appropriate footnotes. Concentrations may be averaged over a period not greater than one year.

Value adjusted by a factor of 700 to reduce the dose resulting from the air-grass-cow-milk-child pathway.

A natural radionuclide.

APPENDIX D

Sampling Location Maps

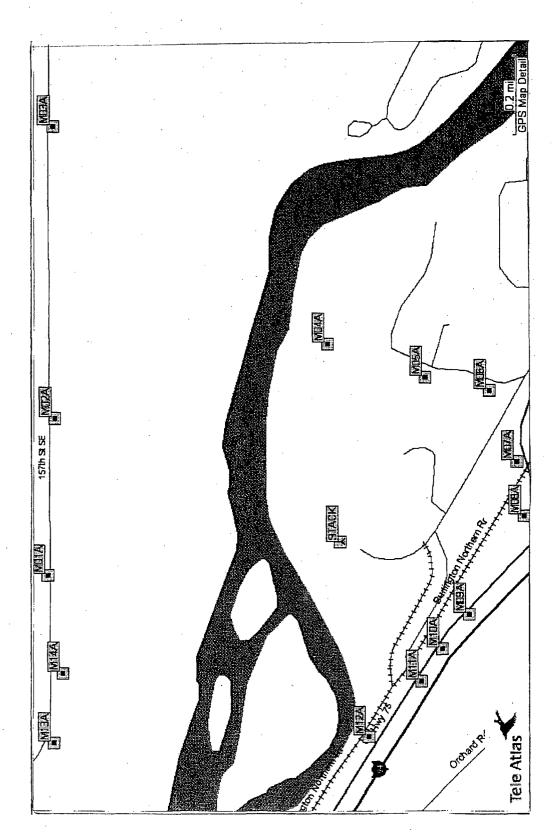


Figure D-1, Sample Collection and Analysis program: TLD locations, Inner ring (Table 5.2).

D-2

North America, Inc. America d/b/a eXitSource. All rights reserved.

tion 1995-2002

© Gam © 2001 © 2001

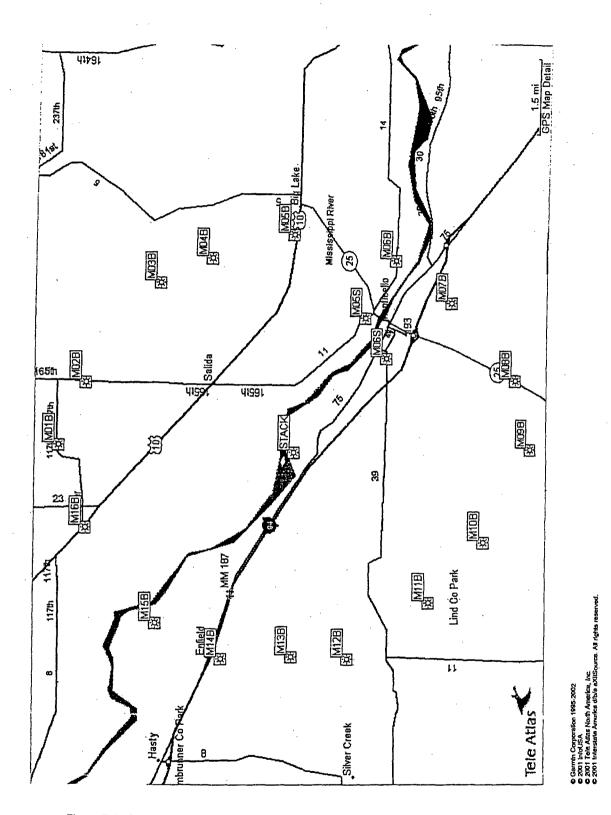


Figure D-2. Sample Collection and Analysis program: TLD locations, Outer ring (Table 5.2).

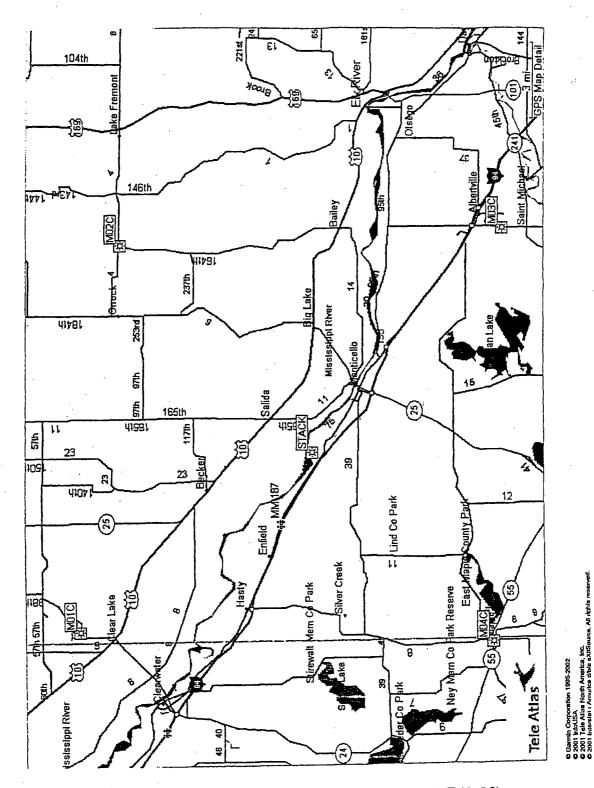


Figure D-3. Sample Collection and Analysis program: TLD locations, Controls (Table 5.2).

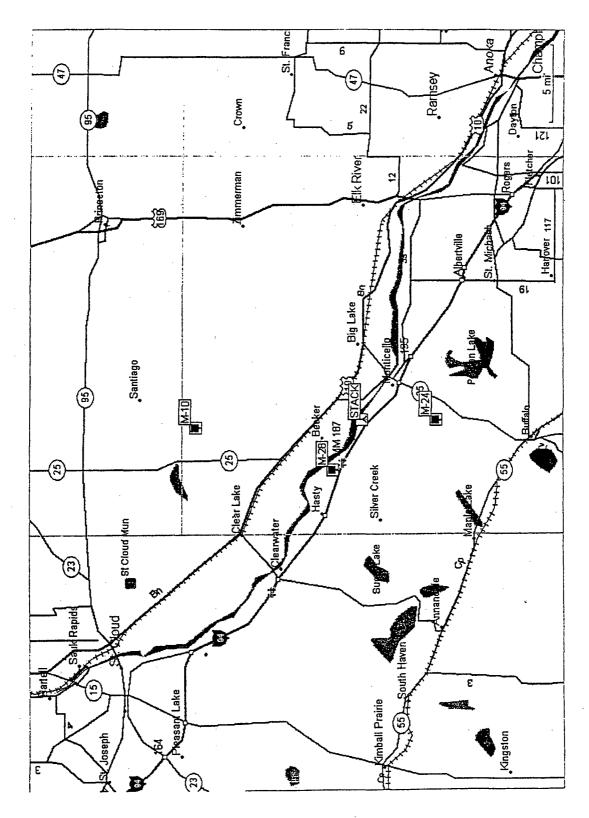
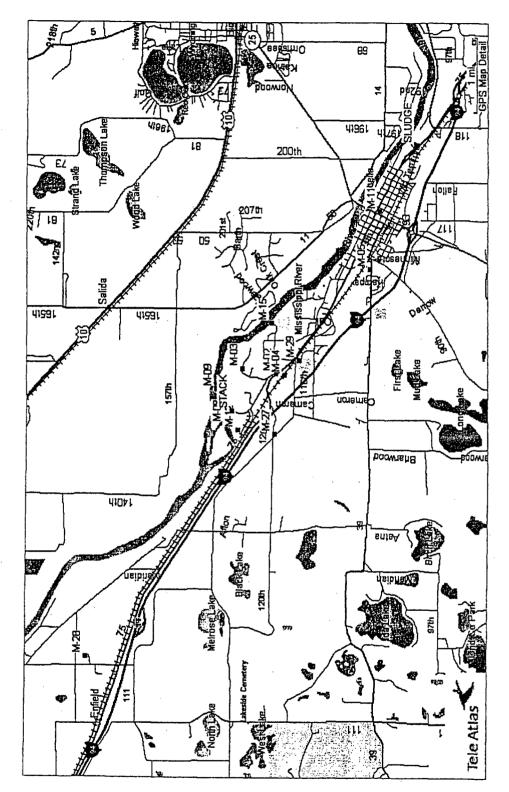



Figure D-4. Sample Collection and Analysis Program: Radiation Environmental Monitoring Program, Milk sampling locations. (Table 5.2)

© Garman Corporation 1995-2002

© Garmin Corporation 1995-2002 © 2001 InfoUSA © 2001 Tele Attas North America, Inc.

Figure D-5. Sample Collection and Analysis Program: Radiation Environmental Monitoring Program, Milk, Sludge, Ground Water and Shoreline sampling locations (Table 5-2.)